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EcwduAro:

H napovoa Metamntuylakn Alatpipr ekmovibnke oto mAaiolo twv ormoudwv yla tnv
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MNaveniotnuiou lwavvivwy.
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2. Anuntplog I Pwtiadng
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Qo TNV EEETOOTLKN EMULTPOTN

BAOMIAA
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TMEY tng MOoAUTEXVLKAG
IxoAn¢ tou Mavemniotnuiou

lwovvivwy.

KaBnyntrg

TMEY tng MoAUTEXVLKAG
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YxoAn¢ tou Mavemniotnuiou
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“AnAwvw unevBuva otL n napovoa SlatplBrn ekmoviinke katw ond Stedveic ndikouc kat

akadnuaikoug koavovec OSeovtodoyiac kal mpootacio¢ TNG TVEUUATIKNG LOLOKTNOlaC.

ZUUQWVa LUIE TOUG KOVOVEG auToUS, bev €xw mpoBei oe 16tomoinon EEvou emtotnuovikoU

EPYOU Kal Exw MANPWE AVAPEPEL TIC TTNYEC TTOU Xpnoluoroinoa otnv epyacia autn.”

(Yroypapn urtoynepiou)



rnPOAOIoz

H nmapouoa petamtuylakn SUTAWUATLKY epyacia £XEL WG OTOXO TNV UTTOAOYLOTLK LEAETN TNG
OUVEKTLKOTNTOG, TOGO TNV AELTOUPYLKI) OGO KOL TNV AMOTEAECUATLKI, TOU eyKeEdAAoOU. Autn n
UEAETN  mpaypaTomolnOnke  xpnolpomolwvtog SeSopéva AELTOUPYLKAG  OTTELKOVLONG
payvnTkou cuvtoviopoU (fMRI) acBevwy pe tn vooo Ndapkivoov, Ta omoia cuykpibnkav pe
avtiotolya Asttoupyika Sedopéva uylwv UTIOKELEVWY. Afilel va avadepBel OTL oL aoBeveig,
TIOU CUMUETEXOUV, BplokovTal ota MpwTa oTadla TG vooou Kol &gv €xouv AABEL KAToLa
APHUAKEUTIKN) aywyr, €VW TO OUVOAO Twv OebopéVWV TIPOEPXETOL ATO TElpapa oe
Katdotaon npeuiag.

H doun tng mapouoag Siatplpng dapbpwvetal oe €L Eexwplotad kedaAala, omou
ota TECOEPA TPWTA Yivetal pio avaAuTik OswpnTikr TMPOcEyylon g vOooou Tou
MAapKLwVooV, TNG AELTOUPYLKNG OTTELKOVLONG LOYVNTLKOU CUVTOVLOMOU, TG nebodoloyiag mou
0KOAOUBELTOL TIPOKELUEVOU VOl EEETAOTEL TO CUYKEKPLUEVO BEUQ KaL EMIONG TNG HEXPL TWPA
€€EALENG MOV £xel mpaypatomolnBel péow PLPAloypadikn¢ avaokonnong. 2ta teAevtaia
600 Kepahala MapouoLaleTal N TELPAMATIKA TIOPEL TOU akoAouBnBnke KaBwg emiong Ko
TO CUMMEPACHATA TIOU €€nXBnoav.

Mo oUyKeKpLUéva, oTo TPpwTo keddalalo yivetalr n mepypadn Tng vOoou ToU
Mapkwoov, dnAadn tou Bactkol Gpalvopévou Tou MPOKaAel TNV vooo adoul amotelel Tnv
povasiki acBevela Tou KAASOU TwV VEUPOEKDUALOTIKWY SLATOPAXWVY TIOU £XEL SLEUKPLVLOTEL
n maboduololoyia tng. Emiong mapoucialovtal ot KALHAKEC KAWLIKAG afloAoynong tng
aoBévelag mou £xouv avoamrtuyxBel poll pe Ta KAWVIKA XOPOKTNPLOTIKA TNC. Evw yivetal
oNUaVTLKA avadopd oTLg UTIAPXOUOES Bepareieg, mou Bepamelouv KUPLWE CUUMTWUOTA TNG
vOOOU, Kal oTa eMLONULOAOYLKA OTOLXELO KOl OTOLXELD TTOU oXeTi{oVTal UE TNV EUdAVLOT] TNG.
210 enMOpeVOo KePAAALO TAPOUCLATLETAL pio EKTEVNC avadopd oTNV AELTOUPYLKN ATIELKOVION
HOYVNTLKOU CUVTOVLOUOU EEKLVWVTOG [E LOTOPLKA OTOLXELO KOl TIG BAOLKEG apXEG Aettoupyiag
™G eupEwg Sladedopévng SLayvwoTikAg TexVikng. Mapouaotalovtal SnAadn otolyeia yia tnv
avtiépacn BOLD, toug tumoug melpapatikol oxediacpol, tnv diadikacia ARPNng twv
AELTOUPYLKWY EKOVWY, TIG Xpovooelpég fMRI, T KAWLKEC edapuoyEG kol TEAOG Ta
TIAEOVEKTALOTA KOl LELOVEKTALATA XPAONG TNG CUYKEKPLUEVNG TEXVLKNC.

H BBAoypadlky avaokomnon Twv Mpoohoatwy UEAETWY O oX£0n UE Tn VOGO TOu
Mapkwoov kot tnv edappoyn tng texvikng fMRI yia tnv e€étaon autnc, anoteAel To Paoiko
TiepLleXOUEVO TOU Tpitou kKedalaiou. OL peléteg mou mapouctdlovtal £xouv XwpLotei og SUo
KOTNYopleg avaAoya LE TOV MELPAUOTIKO oxedlacuo. AnAadn ovadEpovtal TO00 UEAETEC

mou N ANPn twv elkdvwy oxetiletal Pe Kamolo gpgbiopa (NXNTIKO, OMTIKG) 600 Kol UEAETEC



OTIOU N amoKTnon Twv elkOvwv O PBaociletal os kAmolo ep€blopa, TMPAYLATOMOLETAL
anouoia epebilopartog Kat KaAeital katdotoon npeuiac.

21O TETOPTO KEPAAALO TIPAYLATOTIOLEITAL PO EKTEVIG TTAPOUCLOCH TWV TPLWV TUTIWV
OUVEKTLKOTNTAG Tou gyKePAAou, SnAadn tng SOULKAG, AELTOUPYLKAG KOL OTOTEAECOTLKAC.
Evw eniong nmapouoialovtal ol HEBOSOL TTIOU UTIAPXOUV Yl TNV PEAETN KoL OVIXVEUGN TWV
SLadOpwV TUNMWV CUVEKTLKOTNTAG TOU eYKEDAAOU.

H avahutikr meplypadn tne pebBodoloyiag mou akoAouBrOnke OTO TELPAUATIKO
MEPOG TNC MApoUOAE EPYACLag KAl T OMOTEAECUATA TIOU TIPoEKuav Tapouactalovtal oTo
TEUNTO KEGAAALO. ZUYKEKPLUEVA TAPOUCLATOVTAL OL TPELG EEXWPLOTEG UEAETEC HE TG TPELG
Eexwploteg pebdSouc avaluong nou edpapuootnkav. OL dU0 MPWTEG LEAETEG OTOXEVAV OTNV
avixveuon TNG AELTOUPYLKAC OUVEKTLKOTNTOC EVW N TeAeutala otnv avixveuon Tng
QTTOTEAECLOTLKI)G CUVEKTLKOTNTAG,.

JTo €Kkto Kal TeAeutaio keddAalo NG epyoociag yivetat n oulAtnon Twv
anoteAeopdtwy Tou mpogkupav, Pdacel Twv peBoSoAoylwv TOU £DAPUOCTNKOAV EVW
TPOTELVETAL N OUVEXLON TNG €peuvag oe aobeveig ou Pplokovial ota MPWTa oTASL TNG

vooou tou Mapkvoov.



NEPINHYH

H pelétn tng Aettoupylkotntag tou eykepdAou BonbBa otnv Katavonon tng eyKePOALKNG
6paoTNELOTATAG KOl OTO WG auth UeToBaMetal o oxéon e T¢ Stadopeg madrostc. H
mapoVoa HETATITUXLOK SUTAWMOTLKA €pyacia acXOAeital Ue TNV UTIOAOYLOTIKI UEAETN TNG
OUVEKTIKOTNTOG TOU £YKEDAAOU, TOOO TNV AELTOUPYLK OCO KOL TNV OTOTEAECUATIKN N
attwdn, os aobeveig pe tn vooo Mapkivoov mou PBpiokovrtal ota mpwta otadia. lMNa to
OKOTIO QUTO XpnotpomolBnkav Sedopéva  AELTOUPYLKNG  QTEIKOVIONG  HAyVNTLKOU
ouvtoviopoU (functional Magnetic Resonance Imaging- fMRI) dskatecodpwv acBevwv pe
Mapkwoov Ta omola ouykpiBnkav pe avtiotoa Oedopéva  SEKATECOAPWY UYLWV
UTTOKELEVWY, OTav autol Pplokovtav oe katdotaon npepiag. H peAETn tng AELTOUPYLKAG
OUVEKTLKOTNTAG UMopel va mpaypatonolnfel pe tnv emAoyr KAt@AANAWY UTIOAOYLOTIKWY
pueBodwy, oL onoieg eite Baoilovtal oe Sedopéva mou Sev xpeLalovtal mponyoUlLEVN YyVwan
elte Paocilovtal ce POVTEAA OMOU OUMALTEITOL TPONYOUEVN YVWON. TN OGUYKEKPLUEVN
epyooia ebapudotnke n avaluon avefaptntwv ocuvictwowv (ICA) n omola avrkel otnv
MpWTN Katnyopia, kabwg emniong kat pia péEBodog mou Paociletal os HOVIEAQ HECW TOU
epyoheiou CONN. T tn HEAETN TNG OMOTEAECUATIKAG OUVEKTIKOTNTAC £PAPUOOTNKE n
MEB0S0G TWV PACHATLKWY OULTLOKPATIKWY HOVTEAWYV (spDCM). Ta amoteAéopata £6el€av OTL
UTTAPXEL ONUOVTLKA oAAolwon TG AELTOUPYLKAG CUVEKTIKOTNTAG TWV EYKEDAALKWY SIKTUWV
TWV 000evwv akOpa KAl oTa TIOAU MPWLHA oTadla TG vooou. Evw OAeg ol alayEg mou

mapatnpolVTaL, 08nNyouV Og PN KVNTLIKAQ CUUMTWHATO TWV acBevwVv.

Nééeic kAetbia: Nooog tou Mapkivoov, fMRI, CUVEKTIKOTNTA EYKEQPAAOU, KATAOTAON NPEULNG.
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PREFACE

The main aim of the current master thesis is the computational modeling of brain
connectivity, both the functional and the effective connectivity. This computational study
was conducted with the use of fMRI data of patients with Parkinson’s disease (PD) that
compared with individual functional data of controls subjects. It is worth noticing that the
participating patients are in the early stages of the disease and they have not taken any kind
of medication, while the dataset derive from an experiment in resting-state.

The structure of the current thesis is consisted of six separate chapters. In the first
four chapters there is a detailed theoretical approach of Parkinson’s disease (PD), the
functional magnetic resonance imaging (fMRI), the methodology that applied so as to study
the current issue and also the progress that has been made so far through a state of the art.
In the last two chapters the experimental course that is followed as well as the conclusions
that resulted are presented.

More specifically, the first chapter refers to Parkinson’s disease. In particular, the
chapter describes the basic phenomenon that causes the disease since it is the only disease
in the field of neurodegenerative disorders that its pathophysiology has been classified.
Moreover, the clinical rating scales of the disease that have been developed along with the
clinical features are reported. Additionally, the existing treatments, which mainly treat the
symptoms of the disease, the epidemiology and the risk factors are significantly addressed.
In the following chapter an extensive report of functional magnetic resonance imaging
(fMRI), starting with historical information and the principles of the popular diagnostic
technique is presented. Furthermore, the BOLD mechanism, the types of experimental
design, the image acquisition, the fMRI time-series, the clinical applications and finally the
advantages and disadvantages of the specific technique are also discussed.

The state of the art of the recent studies relatively to PD with the application of
fMRI, is the main content of the third chapter. The presented studies are separated in two
categories depending on the experimental design. There is a report both for task-based
studies and resting-state studies.

In the fourth chapter there is an extensive presentation of the three types of brain
connectivity, namely structural, functional and effective, while the methods used in the
particular study as well as the detection of these three types of brain connectivity is also

reported.
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The detailed description of the methodology that is followed in the experimental
part of the thesis and the results that were extracted, are presented in the fifth chapter.
Precisely, three different studies associated with the three separate methods that have been
applied are shown. Two of them aimed in the detection of the functional connectivity while
the last one in the detection of effective connectivity.

In the sixth and last chapter of the thesis a brief discussion of the obtained results,
based on the methodologies that applied is made. A kind recommendation for the
continuation of research in patients being in the early stages of Parkinson’s disease is also

included.



ABSTRACT

The study of brain connectivity helps to understand the activation of the brain and the
alterations that may be occurred, due to the presence of different diseases. The current
master thesis is focused on the computational modeling of brain connectivity, both the
functional and effective connectivity, in de-novo Parkinson’s disease (PD) patients in the
early stages of the disease. For that reason resting-state fMRI data of fourteen PD patients
and fourteen healthy controls respectively were used, so as to make a comparison. The
study of functional connectivity can be carried out with the selection of appropriate
computational techniques, where they could be data-driven with no need of prior
knowledge or model-based with the need of prior knowledge. In the current thesis the ICA
method which is a data-driven method was used, while also a model-based method via
CONN toolbox was implemented. For the study of effective connectivity spectral DCM was
used. The results showed that there is significant alteration in functional connectivity of
brain networks, even in such early stages of the disease. All the observed alterations

contribute to non-motor symptoms of PD patients.

Key words: Parkinson’s disease, fMRI, brain connectivity, resting-state condition.
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Chapter 1: Parkinson’s Disease
1.1 Pathophysiology, Diagnosis

1.2 Clinical Rating Scales

1.3 Epidemiology and risk factors
1.4 Clinical Features

1.5 Treatment

1.6 Problems and future aspects

1.1 Pathophysiology, Diagnosis

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized typically
by motor features of tremor, rigidity and bradykinesia, due to depletion of dopaminergic
nigrostriatal neurons [1]. It can also been characterized as a chronic degenerative disorder
of the Central Nervous System, which is slowly evolving and affecting movement, muscle
control and balance. It is the second most common neurodegenerative disease, after
Alzheimer’s disease, and its prevalence will increase as the population ages. Parkinson’s
disease was first described by James Parkinson in 1817 under the term “ shaking palsy’”’ and
later named to his honor. Nearly two hundred years after the first description of the
disease, its aetiology is still unknown and the cure is only symptomatic. Parkinson’s disease
has made significant progress in the last decades, as it is unique from the neurodegenerative
diseases that has been elucidated its pathophysiology [2].

The basic phenomenon that describes the neural pathophysiology of PD is a
dopaminergic neuronal loss in the substantia nigra in the basal gaglia of the cerebra. Inside

the degenerating neurons can be observed specific inclusion bodies (Lewy bodies). In



healthy people, the function of the extrapyramidal system that processes the movement
information from the cortex to the striatum and returns it through the thalamus back to the
cortex, has been controlled by the dopaminergic neurons. Although in PD’s patients, the
control of the extrapyramidal system is disturbed and the feedback from the striatum to the
cortex is modified. All these abnormalities in the function of basal ganglia lead to the motor
symptoms of PD [3]. In Figure 1.1 it can be observed the difference in dopamine levels
between a healthy individual and a patient with PD.

As it has been already mentioned, PD has long been characterized by the classical
motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic
neurons in the substantia nigra. However, the symptomatology of PD is now recognized as
heterogeneous, with clinically significant non-motor features. Similarly its pathology
involves extensive regions of the nervous system, various neurotransmitters and protein

aggregates other than just Lewy bodies [1].

Dopamine levels in @
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Figure 1.1: Dopamine levels in a normal and a Parkinson’s affected nerve fiber [4].

The standard way that a physician follows for a definite diagnosis of PD, relies on the
typical clinical presentation with a combination of a post-mortem histopathologic
confirmation of characteristic neuronal loss together with the presence of Lewy bodies [5,
6]. Functional brain imaging (e.g. dopamine transporter (DAT) imaging combined with
single-photon emission computed tomography (SPECT)) does not have the ability to
distinguish PD from other degenerative causes of parkinsonism (PSP, MSA, CBD, DLB) but is

of value to differentiate against for example tremor, drug induced tremor and psychogenic



symptoms. From the other hand, structural brain imaging methods (MRI) have the ability to
rule out differential diagnoses, for example vascular parkinsonism. Due to the lack of
specific biomarkers, PD is still in practice a clinical diagnosis [1, 7]. According to the UK Brain
Bank Criteria (Table 1.1), the clinical diagnosis of PD relies on the presence of bradykinesia
together with at least one more of the cardinal motor symptoms and the exclusion

underlying causes of secondary parkinsonism [8].

Table 1. 1: UK Brain Bank Criteria for PD [1, 8].

Step1l: Diagnosis of Parkinsonian syndrome

Bradykinesia

At least one of the following :

Muscular rigidity

4-6 Hz rest tremor

Postural instability not caused by primary visual, vestibular cerebellar, or proprioceptive
dysfunction.

Step 2: Exclusion criteria for PD

History of repeated strokes with stepwise progression of parkinsonian features.
History of repeated head injury and definite encephalitis.

Neuroleptic treatment at onset symptoms.

Negative response to large doses of levodopa (if malabsorption excluded).
Sustained remission.

Strictly unilateral features after 3 years.

Early severe autonomic involvement.

Early severe dementia with disturbances of memory, language and praxis.
Oculogyric crisis.

Supranuclear gaze palsy.

Babinski sign.

Cerebellar signs.

MPTP exposure.

Presence of a cerebral tumor or communicating hydrocephalus on CT scan or MRI.
More than one affected relative.

Step 3: Supportive prospective criteria for PD

Three or more of the following features are required for diagnosis of definite Parkinson’s
disease:

Unilateral onset.

Rest tremor present.

Progressive disorder.

Persistent asymmetry affecting the side on onset most.

Excellent response (70-100%) to levodopa.

Severe levodopa-induced chorea.

Levodopa response for 5 years or more.

Clinical course of 10 years or more.

A more recent insight in the diagnosis of PD is the recognition of non-motors

symptoms as a primary part of the disease. Such symptoms are currently not included in the
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diagnostic criteria for PD [7]. A debatable feature of PD is impairment of muscle strength. In
modern time that symptom has received little attention and clinically apparent reduction of
that has generally not been considered as primary symptom of PD [9, 10]. However when
James Parkinson first described “ the shaking palsy” he held it as a key feature of the disease
and self-perceived muscle weakness to be a common complaint in PD patients. Clinical

assessment of muscle strength can only provide rough estimations [11].

1.2 Clinical Rating Scales

Although Parkinson’s disease (PD) is progressive and worsens over time, it is highly
individual and affects people differently. The symptoms may vary in their severity between
patients, so not all people who have PD will experience all the symptoms. Also the
progression of the disease differs in each case. However, physicians have established
several clinical scales that describe how the disease progresses as well as the severity of the
disease. The most traditional example is the Hoehn and Yahr (HY) that has first introduced
in the 1960’s and since then used worldwide. A modified version has later been introduced
with the addition of intermediate stages between the original five. The original version
includes the following five stages (Table 1.2) [12].

Stage 1 of PD

That is the earliest stage of the disease where the symptoms are mild and only seen on one
side of the body (unilateral involvement). Usually there is minimal or no functional
impairment. In this stage it is very difficult to make a diagnosis so the physician must wait to
see if the symptoms get worse over time. Symptoms at stage one may include tremor, such
as intermittent tremor of one hand, rigidity, one hand or leg may feel more clumsy than
another, or one side of the face may be affected, impacting the expression.

Stage 2 of PD

Stage two is also considered as an early stage of the disease and it is characterized by
symptoms on both sides of the body (bilateral involvement) or at the midline without
impairment to balance. Stage two may develop months or years after the first stage.
Although the patient can still be able to perform tasks of daily living at this stage the
symptoms that experiences are different from the previous stage. The symptoms of that
stage may include the loss of facial expression on both sides of the face, decreased blinking,
abnormalities of the speech, soft or monotone voice, fading volume after starting to speak
loudly, slurring speech, stiffness or rigidity of the muscles in the trunk that may result in neck
or back pain, stooped posture and general slowness in all daily activities. The diagnosis is

much easier at this stage except from the case that the stage one was missed and the only



symptoms that experienced the patient were lack of spontaneous movement or slowness,
so PD may be misinterpreted as only advancing age.

Stage 3 of PD

In the category of mid-stage is considered the stage three and is characterized by loss of
balance and slowness of movement. The patient faced the inability to make the rapid,
automatic and involuntary adjustments that are necessary to prevent falling and falls are
common at this stage. In general all other symptoms of PD are also present at this stage. An
important clarifying factor is that the patient is still fully independent in their daily living
activities. It is worth to be mentioned that the diagnosis is not in doubt at this stage and the
physician will diagnose impairments in reflexes at this stage.

Stage 4 of PD

Parkinson’s disease in that stage has progressed as a severely disabling disease. Patients
may be able to walk and stand without help, but they are noticeably incapacitated. Also are
unable to live an independent life and need assistance with some activities of daily living.
The necessity of help define that stage.

Stage 5 of PD

That stage is the most advanced and is characterized by the inability to rise from a chair or
get out of bed without help. Also they may have the tendency to fall when standing or
turning and they may freeze or stumble when walking. Hallucinations or delusions are
symptoms that may be experienced by the patient at that stage.

It is worth noting that some patients with PD never reach the stage five, while the
symptoms are worsen over time. Also the length of time to progress through the different
stages varies from individual to individual. The treatments that are available in every stage
of the disease can help to manage the progression. However, the earlier physician makes
the diagnosis and the earlier the stage at which the disease is diagnosed, the more effective

is the treatment at alleviating symptoms [13].

Table 1. 2: Stages of Parkinson’s disease from Hoehn and Yahr scale [13].

Early PD Mid-stage PD Advanced PD
Stage of PD 1 2 3 4 5
Severity of
symptoms MILD MILD MODERATE SEVERE SEVERE




Another rating scale that has been developed was the Unified Parkinson’s Disease
Rating Scale (UPDRS). The Unified Parkinson’s Disease Rating Scale (UPDRS), which was
designed in the 1980’s and later revised by the Movements Disorders Society (MDS), is the
most widely used clinical rating scale the past few years. The new version is named as MDS-
UPDRS. The UPDRS is a multidimensional tool and includes both questionnaire parts (1, Il, 1V)
as well as a clinical examination (part lll). Specifically part I-1l address experiences of daily
living (non- motor and motor), part Ill address clinical motor signs and part IV address
therapy complications (dyskinesias and motor fluctuations). In the UPDRS, evolvement of
symptoms and/or disabilities is reflected by declined scores [14]. Clinical rating scales, such
as Schwab and England functional assessment scale and a set of validated tests have been

developed and used but the most widely used are the aforementioned [15].

1.3 Epidemiology and risk factors

As it has already been mentioned, Parkinson’s disease is recognized as the most common
neurodegenerative disease after Alzheimer’s disease. Higher levels of prevalence of PD are
observed in Europe, North America and South America compared with African, Asian and
Arabic countries. The incidence of PD ranges from 10-18 per 100000 person-years. The risk
of developing PD is clearly multifactorial but the elaborate interplay between various factors
is just beginning to be deciphered. For example gender is an established risk factor with the
ratio between male and female is 3:2. Another risk factor for that disease is ethnicity.
People of Hispanic ethnic origin, non-Hispanic Whites, Asians and Blacks have highest
incidence in contrast with the USA. Nevertheless age is a great risk factor for developing
Parkinson’s disease. The prevalence and incidence increase exponentially with age and peak
after 80 years of age. Due to the increase of life expectancy worldwide this result has
important public health implications. The conclusion of all these will be the rise of the
number of people with PD by more than 50% by 2030 [16].

Environmental exposures are included in the list of risk factors that cause PD.
Results of an analysis that examine 30 different potential risk factors identified 11
environmental factors that altered the risk of PD. Some examples of factors that increase
risk were pesticide exposure, prior head injury, rural living, B- blocker use, agricultural
occupation and well-water drinking. Environmental factors that found to be associated with
a decreased risk were tobacco smoking, coffee drinking, non-steroidal anti-inflammatory
drug use, calcium channel blocker use and alcohol consumption. While there is growing
evidence that smoking and alcohol drinking both reduce the risk of PD, their dose-related

associations remain controversial and are less well-defined in women. A recent nationwide



cohort study showed that the risk of PD in relation to smoking and alcohol differed within
men and women. They found sex-related differences in both individual and joint impacts of
smoking and alcohol drinking on the risk incident PD. More specifically risk lowering effect
of current smoking tended to be stronger in men, whereas that of alcohol drinking tended to
be stronger in women. These sex-related differences in smoking and alcohol may be
explained by different effects of nicotine and multiple mechanisms, due to alcohol, in the
brain [116]. However another more recent case-control study showed that PD patients can
quit from smoking much easier than healthy people, suggesting that the negative association
with smoking could instead be due to a decreased responsiveness to nicotine during the
prodromal phase of PD.

The participation of genetics to PD is suggested by the increased risk of disease
associated with a family history of PD or tremor. The most convincing evidence came with
the discovery of monogenic forms of PD the first gene was the SNCA which encodes the
protein a- synuclein and was associated with inherited PD. In the past decade, almost 900
genetic association studies have implicated dozens of potential gene loci in PD. A further
understanding of PD risk factors and their interactions is needed so as to broad the
information about the elucidation of pathogenic mechanisms, identification of biomarkers

and individualization of treatment [10].

1.4 Clinical Features

The triad of motor symptoms (tremor, bradykinesia, rigidity) is the clinical features that are
associated with Parkinson’s disease. However PD is also associated with many non-motor
symptoms that are often appeared years or even decades before the motor symptoms and
the diagnosis of PD.

That pre-motor or else prodromal phase of PD start, most of the times, 12-14 years
before diagnosis. There is evidence that the disease begin in the peripheral autonomic
nervous system and/or the olfactory bulb and then spreading through central nervous
system affecting the lower brainstem structures before involving the substantia nigra.
Symptoms such as hyposmia, constipation and rapid eye movement sleep disorders may
appear in PD patients before motor symptoms begin. Patients that have faced tremor,
balance problems, depression, constipation, fatigue and urinary dysfunction 5 years before
diagnosis were more likely to develop PD than those without symptoms. Additionally,
individuals with constipation or tremor have a higher risk of developing PD over 10 years of
follow-up. Early non-motor symptoms include impaired olfactory ability, autonomic

dysfunction, pain, fatigue, sleep disorders and cognitive and psychiatric disturbances. These



symptoms affect the quality of patient’s life. Also autonomic symptoms are difficult to treat
with orthostatic hypotension causing significant problems for patients. Dementia occurs in
83% of patients with PD after 20 years of diagnosis. Research in that prodromal state of PD
was very interesting because that time point may be ideal and a very significant step for
therapeutic intervention. Many case-studies that have included patients with early PD,
those within 2 years of diagnosis, have observed dopaminergic neuronal loss. So it would be
optimal for future studies in disease-modifying treatments to participate patients in
prodromal state.

The severity of motor and non-motor symptoms worsens as the disease progresses.
As it is known PD is a very heterogeneous disease and there has been attempt to subclassify
it further. One subclassification that is based on clinical characteristics suggests two
subtypes: a tremor dominant PD and a non-tremor dominant PD. A patient with the first
type lacks of any other motor symptoms and responds better to dopamine replacement
therapy. On the other hand, a patient with the second type may develop an akinetic-rigid
syndrome and a postural instability disorder, as well as an increased incidence of non-motor
features. In an advanced stage of the disease, all kind of symptoms may become resistant to
current medications. Postural instability and freezing of gait may lead to falls and fractures,
while dementia and hallucinations can develop in some patients which lead to home

placement [17].

1.5 Treatment

Initiation of symptomatic therapy

Available therapies for PD only treat symptoms of the disease. The basic treatment for
motor symptoms that physician follow, includes drugs that enhance intracerebral dopamine
concentrations or those that stimulate dopamine receptors. Levodopa, dopamine agonists,
monoamine oxidase type B inhibitors and amantadine (less used) are included in that list of
drugs. The initiation of the treatment must happen when symptoms are worsening and
affect patient’s life. Since none of the aforementioned drugs have proven to be
neuroprotective or disease-modifying therapy, physician does not have to start the therapy
at the time of diagnosis for all patients. From the other hand, there is justification for delay.

Dopaminergic treatments for symptoms such as bradykinesia and rigidity respond at the
early stages of the disease. Inversely dopamine replacement therapy is not effective for
tremor, especially in lower doses' anti-cholinergic drugs (trihexyphenidyl, clozapine) can
treat tremor. Also monoamine oxidase type B inhibitors are the best only moderately

beneficial.



Something else that is has to be taken into account is the adverse reactions that
drugs can cause at patients. For example, dopamine agonists and levodopa are both
associated with nausea, daytime somnolence and oedema. These side- effects tend to be
more frequent with dopamine agonists. Also dopamine agonists should be avoided in
patients with a history of addiction, obsessive- compulsive disorder or impulsive personality,
because there is a probability to develop impulse control disorders at that kind of patients.
Last but not least, dopamine agonists are not prescribed for elderly patients because can
cause hallucinations. Long term use of levodopa is associated with motor complications,
although can treat effectively symptoms. So as to delay the appearance of these
complications, an initial therapy of levodopa sparing with a monoamine oxidase type B

inhibitor or else dopamine agonist can be considered [18].

Management of symptoms and complications

Complications of long-term therapy, usually describe the advance stage of the disease.
Motor and non-motor fluctuations, dyskinesia and psychosis are included and affect the
quality of patient’s life. Fluctuations and dyskinesia are probably results from pulsatile
stimulation of striatal dopamine receptors, which appear later on the disease and more
specifically, when intracerebral levodopa concentrations become more closely linked to
plasma levodopa concentrations. Motor complications can reduced with non-dopaminergic
treatments. For example drugs with serotonergic or nicotinic properties and drugs that
inhibit glutamatergic signalling or adenosine A2A receptors are being tested as potential
treatments. Psychosis in PD is treated via clozapine, but because it can be associated with
potentially life-threatening agranulocytosis (an idiosyncratic adverse drug reaction), it is
necessary to monitor regular the haematological status.

Relating to the non-motor symptoms, these have limited options of treatment as
well as response to that. For example, depression - which is a significant non-motor
symptom - is typically treated with antidepressants. In patients without PD but with
depression, non-pharmacological therapies such as electroconvulsive therapy and repetitive
trans-cranial magnetic stimulation are used effectively. Such therapy has not been tested in
patients with PD.

Surgical treatment

At the stage of moderate to severe PD only deep brain stimulation- of either the subthalamic
nucleus or globus pallidus internus- is a well established treatment for motor symptoms. In
general surgical treatment is an option when motor fluctuations and dyskinesia are not

existed but the parkinsonian motor features continue to respond to levodopa. Certainly



further study is needed to establish the contributions of the stimulation versus the effect of
improvement in motor function and reduction in dopaminergic drugs that accompany deep
brain stimulation. Usually the surgical treatment is recommended 10-13 years after
diagnosis of PD. The development of disease modifying drugs that will help to slow down or
even stop the underlying neurodegenerative process is very ambitious for the progress of
PD. Multiple cellular processes are involved in neurodegeneration in PD and thus the

underlying causes of the disease are heterogeneous [1].

1.6 Problems and future aspects

The major standard in the diagnostics of PD and the observation of disease’s progression are
the clinical diagnostic criteria along with the clinical rating scales. However, problems are
observed both in the diagnostics and the treatment of the disease. The result from these
problems is the loss of 50-60% of the dopaminergic neurons by the time of the diagnosis. It
is quite understandable that the diagnostic accuracy is low and also there are no objectively
measured characteristics and methods (e.g. biomarkers) for describing the progress of the
disease and for quantifying the efficacy of treatment in PD. In these objective methods are
included, motor performance and olfaction tests, oculomotor and neurophysiological
measurements, imaging techniques (e.g. MRI, SPECT, PET, fMRI), biochemical measurements
(e.g. blood tests), evaluation of rapid eye movement (REM), sleep behavior disorder and
genetic tests. Advantages and disadvantages have been observed from every single method,
regarding the sensitivity, usability and the cost-effectiveness. The identification and
evaluation of biomarkers has started but none of them is widely available or clinically used
for PD. Maybe a combination of biomarkers will be effective for treated PD [15, 16].

Regarding to the imaging methods that have been used with the rise of
neuroscience a plethora of new approaches and methods have become available. Future
developments in functional imaging, structural imaging and nuclear imaging can be very
helpful so as to understand and diagnose or even treat PD.

In this thesis will be refer only about functional imaging because it is the method of
interest. More specifically fMRI is an approach that has made significant progress in
understanding the pathophysiology of PD. The field has grown from focusing on abnormal
task related activity in isolated brain regions (such as putamen) to demonstrating abnormal
interactions between intrinsic, large scale networks in patients with PD such as the cortico-
striatal circuit. An existing approach that has been used for a long time is the Parkinson’s

Disease Related Pattern (PDRP). That approach is specific for PD and it is a metabolic
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covariance pattern that can be calculated with PET and fMRI data. Although it has proven its
validity, has not been translated into standard clinical practice.

Another more recent approach, which deals with multi-dimensional data, is the use
of generative models. Those are computational models that estimate how observed fMRI
data were generated, given a set of priors and hypotheses regarding the configuration of the
network. Dynamic Causal Modelling (DCM) is used in this approach because it can compare
different models of brain function within a group or between two groups. Also DCM has
been used in PD so as to test how networks interactions give rise to tremor and to abnormal
voluntary actions. A third approach is the extraction of biologically meaningful features
from multi-dimensional imaging data. For example using resting-state fMRI data,
parameters can be calculated that reflect gradient of corticostriatal connectivity across
striatal subregions. Finally another development could lie in improved functional MRI
sequences, enabling brain imaging at a high temporal and/or spatial resolution. If clinically
validated such approaches may be helpful for diagnosis and disease monitoring [19]. More

details about fMRI are presented in the following chapter (Chapter 2).
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Chapter 2: Functional Magnetic Resonance Imaging

2.1 History

2.2 Brain activation

2.3 Image acquisition process — Types of fMRI experimental design
2.4 Advantages and disadvantages of fMRI

2.5 Spatial and temporal resolution

2.6 Applications of fMRI

2.1 History

The activity of human brain was first recorded in the 1920s by the German psychiatrist Hans
Berger while he was practising on electroencephalographic methods. Since then, a variety
of methods that aim to map brain activity have been developed. Two basic classes of
mapping technique have evolved: those that map (or localise) the underlying electrical
activity of the brain; and those that map local physiological or metabolic consequences of
alterations in brain electrical activity. Among the former are the non-invasive neural
electromagnetic techniques of electroencephalography (EEG) and magnetoencephalography
(MEG). These methods allow high temporal resolution of neuronal processes (typically over
a 10-100ms time scale) while the spatial resolution is poor (between 1 and several
centimetres). Methods such as magnetic resonance imaging (MRI), positron emission
tomography (PET) and functional magnetic resonance imaging (fMRI) -in vivo imaging
techniques- belong in the second category. These methods present sensitivity to the

changes in regional blood perfusion, blood volume or blood oxygenation in accompany

13



neuronal activity. Especially the fMRI- the technique that is on focus on this study- allow
good spatial resolution with limited temporal resolution [21, 22].

Human functional brain mapping as it is presently know it began when the
experimental strategies of cognitive psychology were combined with modern brain imaging
techniques (first PET and then fMRI) to examine how brain function supports mental
activities. This combination of disciplines and techniques galvanized the field of cognitive
neuroscience, which has rapidly expanded to include a broad range of the social sciences in
addition to basic scientists interested in the neurophysiology, cell biology and genetics of the
imaging signals. Although much of this work has transpired over the past couple of decades,
its roots can be traced back more than a century.

The scientific developments which have led to modern fMRI are described through
the following phases. The idea that local blood flow within the brain is intimately related to
brain function is surprisingly old. Angelo Mosso, a prominent Italian physiologist of the 19
century, had carefully monitored the pulsations of the brain in adults through
neurosurgically created bony defects in the skulls of patients. He noted that when his
subjects engaged tasks such as mathematical calculations the pulsations of the brain
increased locally. Such observations led him to conclude, that blood flow to the brain
followed function. The actual physiological relationship between brain function and blood
flow was first explored in 1890 by Charles Roy and Charles Sherrington. Despite the
promising beginning there was no progress during the first quarter of the 20™" century. Until
a remarkable clinical study of a patient that was reported by John Fulton in the 1928. During
the course of his evaluation and treatment for a vascular malformation lying over his visual
cortex, the patient remarked that a noise that he perceived in the back of his head increased
in intensity when he was using his eyes. The conclusion drawn from this remarkable case
was that blood flow to visual cortices was sensitive to the attention paid to objects in the
environment. Seymour Kety (1955) et al developed the first quantitative method for
measuring whole brain blood flow and metabolism in humans. Because their measurements
were confined to the whole brain they were not suitable for ‘brain mapping’. However, their
introduction of an in vivo tissue autoradiographic measurement of regional blood flow in
laboratory animals provided the first glimpse of quantitative regional changes in blood flow
in the brain related directly to brain function.

David Ingvar, Neils Lassen and their Scandinavian colleagues following the work by
Seymour Kety, introduced methods applicable to humans that permitted regional blood-flow

measurements to be made using scintillation detectors arrayed like a helmet over the head.
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They demonstrated conclusively that brain blood flow changed regionally in normal human
subjects during task performance. Until 1986 it was thought that behaviourally induced
increases in local blood flow were the direct consequence of an increase in the brain’s need
for oxygen to metabolize glucose to carbon dioxide and water for the production of energy.
Based on this hypothesis, functionally induced increases in blood flow should be
accompanied by quantitatively similar changes in oxygen consumption with no change in the
ratio of oxy- to deoxyhemoglobin. Cooper recorded oxygen availability in the human cortex
in patients undergoing evaluation for epilepsy while their subjects performed various
cognitive and motor tasks. They clearly showed task-induced focal increases in oxygen
availability signifying that blood flow had increased more than oxygen consumption.

In 1971 Godfrey Hounsfield introduced X-ray computed tomography (or CT as it is
now called). In creating CT, Hounsfield had arrived at a practical solution to the problem of
creating 3D transaxial tomographic images of an intact object from data obtained by passing
highly focused X-ray beams through the object and recording their attenuation. Hounsfield’s
invention received enormous attention and quite literally changed the whole idea about the
observation of human brain. Also, were difficult to interpret, unpleasant and sometimes
dangerous clinical techniques such as pneumoencephalography. CT, however, was an
anatomical tool. Function was to be the province of PET and MRI. After the invention of CT,
the use of radiopharmaceuticals labelled with positron emitting radionuclides for biomedical
research and clinical application had been the objective of several research groups. The first
medical cyclotron was installed in Hammersmith Hospital in London in 1955 and was
followed by installations at the Massachusetts General Hospital and Washington University’s
Mallinckrodt Institute of Radiology in 1965. By 1974 there were 15 such installations
worldwide. Work among these groups provided much important background knowledge for
the introduction of PET.

Finally, another technology emerged contemporaneously with PET and CT named
MRI. Magnetic Resonance Imaging is based upon yet another set of physical principles
associated with the behaviour of atoms in water in a magnetic field. The physical principles
associated with MRI were discovered independently by Felix Bloch and Edward Purcell et al.
in 1946. Many years of research followed, in which the technique was used for basic
research in chemistry. During that time it was known as nuclear magnetic resonance (NMR).
The first important step in the development of fMRI was the work of a group of researchers
at the Massachusetts General Hospital working on the use of exogenously administered MRI

contrast agents designed to produce transient changes in the MRl image as the agent passed
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through the brain after its intravenous administration. Experiments in rodents and dogs
using contrast agents confined to the vascular compartment and novel rapid data acquisition
strategies demonstrated for the first time with MRI that it was possible to measure changes
in brain blood volume produced by physiological manipulations of brain blood flow. This
approach was extended to normal human volunteers for task activation brain mapping by
the same group in 1991. Remarkably 91 years after, Michael Faraday studied the magnetic
susceptibilities of oxygenated and deoxygenated haemoglobin differed significantly.

In 1982, Keith Thulborn took the story one step further while seeking to exploit the

difference in magnetic susceptibility of oxy- and deoxyhemoglobin for the measurement of
brain oxygen consumption with MRI. He clearly demonstrated the feasibility of measuring
the state of oxygenation of blood in vivo with MRI, another crucial step on the road to fMRI
BOLD imaging as it is known. The potential of BOLD fMRI was soon realised with
publications from three groups in 1992. However the success of the human brain imaging
was the product not only of relevant physiology, that could be imaged, and the scanning
devices, that could accomplish this, but also of the behavioural paradigms that approached
human behaviour in a principled and quantitative manner, while accommodating the
constraints of the imaging environment and strategies to process the resulting data.
Since the 19" century, and possibly longer, two perspectives on brain functions have existed.
One view posits that the brain is primarily driven by external inputs; the other holds that the
brain operates on its own, intrinsically, with sensory information interacting with rather than
determining its operation. Although neither view is today dominant, the former clearly has
motivated the majority of research at all levels of neuroscience including that in cognitive
neuroscience. This is not entirely surprising given the enormous success of experiments
measuring brain responses to controlled stimuli [23].

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging tool that employs
MRI to image dynamic changes in brain tissue that are caused by alterations in neural
metabolism. These alterations may be caused by asking the subject to perform a task
designed to target a specific cognitive process or may be happened spontaneously while the
subject is in resting-state (absence of conscious mentation). In every case a dynamic series
of T2* weighted scans is acquired, resulting in time-series of signals for every brain voxel.
These time-series are submitted to various levels of denoising (preprocessing steps) before
model or data driven analyses are applied to obtain maps of activity. Due to condition that

BOLD signals are tiny, such analyses use statistical methods to discern false from true
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activation [24]. Every functional imaging technique is studying about brain activation, blood

flow in microscopic level and diffusion.

2.2 Brain activation

There are two primary consequences when the neuronal activity is increased, and both of
them can be detected by MRI. These are the alterations in local cerebral blood flow (CBF)
and in oxygen concentration (BOLD contrast: Blood Oxygen Level Dependent). These
changes in CBF can be detected either by using an injected contrast agent and perfusion
weighted MRI or non-invasively by arterial spin labelling (ASL). In the case of ASL there are
some disadvantages such as sensitivity reduction, increase of acquisition time and increase
in sensitivity to motion compared with the BOLD contrast. Its use is focusing on acquiring
guantitative measurements of baseline cerebral blood flow (CBF) so as to model
neurobiological mechanisms of activation, calibration of vasoreactivity; rather than mapping
the brain function [25].

The most common method of fMRI takes advantage of the fact that when neurons
in the brain become active, the amount of blood flowing through that area is increased. The
interesting thing in that case is that the amount of blood that reaches at the area is more
than is needed to replenish the oxygen that is used by the activity of the cells. Thus the
activity related increase in blood flow caused by neuronal activity leads to a relative surplus
in local blood oxygen. The signal measured in fMRI depends on this change in oxygenation

and is referring as the blood oxygen level dependent signal (BOLD) [26].

2.2.1 The fMRI BOLD signal

The blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging
arises from the magnetic properties of haemoglobin and the manner in which the brain
metabolism and blood flow are related to changes in neuronal activity. It is worth noting
that under normal conditions the concentrations of local oxygen are relatively low, so blood
contains a high concentration of paramagnetic deoxyhaemoglobin, whereas the brain tissue
is diamagnetic [27]. Little effect on the magnetic field of an MRI scanner has the fully
oxygenated haemoglobin in arteries. However when haemoglobin loses oxygen to the tissue
as it passes through the capillaries of the brain the resulting de-oxygenated haemoglobin
disrupts the MRI magnetic field in proportion to the amount of oxygen lost. With the
increase of brain activity, blood flow and glucose consumption increase much more than
oxygen consumption. Due to the increasing magnetic susceptibility of the oxygenated

blood, the activation area is characterized by great T2* constant in comparison to the non-
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activated brain regions. As a result the amount of de-oxygenated haemoglobin decreases in

the area of increased activity and the BOLD signal is enhanced.

When brain activity

decreases, the reverse happens. All the aforementioned are shown in Figure 2.1 [28].
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Figure 2. 1: Schematic representation of the fMRI formation [29].

As it is known, the hemodynamic response is the increase in blood flow that follows
a brief period of neuronal activity. There are two details about that response that underlie
the basic features of BOLD fMRI and determine how the data must be analyzed. At first,
while neuronal activity last less than milliseconds, the hemodynamic response is slow. Thus
the increase in blood flow that follows this activity takes about 5 seconds to reach its
maximum. This peak is followed by a long undershoot that does not fully return to baseline
for at least 15-20 seconds. The second detail is that the hemodynamic response can be
treated as a linear time-invariant system. This linearity makes it possible to create a straight
forward statistical model that describes the time course of hemodynamic signals that would
be expected given some particular time course of neuronal activity, using the mathematical
operation of convolution [26].

In Figure 2.2, the common features of the fMRI BOLD response in a period of
neuronal stimulation are a) the initial dip, b) positive BOLD response and c) post stimulus
undershoot. When there is an activation of a voxel in BOLD fMRI, it has been noted that the
signal increases above the baseline at about 2 seconds following the onset of neuronal
activity. After that, is growing to a maximum value (peak) of about 5 seconds from a shot
duration stimulus. Provided that the neuronal activity is extended across a block of time,

the peak could be similarly extended in a plateau. After reaching its peak, the BOLD signal
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decreases in amplitude to a blow-baseline level and remains below baseline for an extended

interval. Such eventis named as post stimulus undershoot [30, 29].

Post stimulus
undershoot

Stimulus

Figure 2. 2: Schematic representation of the BOLD response [29].

2.3 Image acquisition process-Types of fMRI experimental design

The primary approach to fMRI and diffusion imaging for connectivity studies involves single
shot imaging using EPI (Echo Planar Imaging). Since its initial application, EP| scan times for
whole brain coverage have not substantially decreased. Progress in shortening the EPI
acquisition time for spatial encoding only modestly reduces acquisition time for whole brain
coverage. This modest reduction is because each slice incorporates a physiological contrast
preparation period that can equal or exceed the time employed for collecting the EPI echo
train [31].

The data acquisition consists of the following stages. At the beginning the subject is
positioned in the scanner so as to start the process of fMRI experiment. After that the
subject is asked to perform several tasks or is stimulated so that different processes or
emotions are triggered. Itis worth to be mentioned that the stimuli is usually audio or visual
and stimulations involve the motor cortex, as well as, more cognitive demand functions such
as the function of memory and thought. All these experimental conditions are repeated at
different period of time and can be alternated by inactive and relaxing periods [29]. The

necessary equipment for an fMRI experiment is shown in Figure 2.3.
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Figure 2. 3: The necessary equipment for an fMRI experiment [42].

Much of what is currently known about brain function comes from studies in which
a task or stimulus is administered and the resulting changes in neuronal activity and
behaviour are measured. However, the brain is very active even as there is no input or
output of stimuli or task [28]. Due to that reason the experimental design for fMRI includes
task-based designs and resting-state designs. Of course the combination of both methods is

very important, due to the findings that are derived.

2.3.1 Task- based fMRI
In a typical experiment, a low resolution image of the brain is acquired every few seconds
and over the course of the experiment, 100 images or more are usually recorded. The
stimulus can either be presented in a “block design”, “event- related design” and “mixed
design”. The first type alternates relatively long periods of rest and stimulation, whereas the
second type presents short events at varying intervals. The third type is actually a
combination of the previous types, but it is not preferable type because it is much more
complicated to design and analyze. In each type of design the effect size is inferred from the
difference in BOLD contrast between the two states [22, 24].

The “block design’” constitute the most efficient type of design for comparing brain
responses in different states during the imaging experiment. This design uses long
alternating periods (30seconds), during each of which a discrete cognitive state is

maintained. Only two states will be, in the simplest case, which are alternated throughout

the experiment in order to ensure that variations arising from fluctuations in scanner
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sensitivity, patient movement or changes in attention. All these have the same effect on the
signal responses associated with both states. It is worth to be mentioned that it is difficult
to control precisely a cognitive state for a long period of time of each block [21].

The design of “event-related” experiments requires careful consideration of
numerous issues of measurement, modelling and inference. “Event-related” or trial-based
measurement, as it is called, is already standard in the field of electrophysiology, namely
stimulus-locked, event-related potentials (ERPs) [32]. In instances where tasks are
inappropriate for “block design”, for example as in an “oddball” paradigm, an event-related
design can be used in which data acquired while discrete stimuli or responses are repeated.
So as to acquire a measurable response, the results from many trials are averaged.

Comparing of two types of design, event-related design demands longer acquisition
times than block design, so as to achieve a sufficient signal to noise ratio. It has been shown
that block designs are optimum for detecting activation. Whereas event-related designs are
most efficient for the characterization of the activation of the time course (mixed designs lie
in between them). Also when there is need to take a decision whether a hypothesized
activation occurs in a brain region, the most effective from the types is block design. It is
preferable to use the event-related design when more details are needed about the

characteristics of the neural response to the cognitive manipulation [21, 24].

2.3.2 Resting-state fMRI

The knowledge that has been gained the past decades about brain functions focused on task
state studies, when the presence of stimuli evokes the brain activity. As it has already been
mentioned, the brain remains active even in the absence of stimuli. For that reason, recent
studies involve investigation of brain fluctuations at resting conditions and their results
demonstrate that spontaneous modulation of the BOLD does not produce randomly [33].

In other words, resting-state fMRI measures spontaneous, low frequency fluctuations in the
BOLD signal, so as to investigate the functional architecture of the brain [34]. The
participants are not required to perform any kind of cognitive task, motor or even to pay
attention to any particular stimulus. Instead they have to clear their minds and not to
engage in specific thoughts or visual images [35, 123].

The most common purpose for using resting-state fMRI is the use of a larger sample
of patients which are contracted from different diseases. In contrast to task state fMRI,
most of the patients could not do the experiment correctly in fMRI scanner. Also the
resting-state uses the same data for every study is up to do, for example language and

motor studies; however in task state every experiment is unique and needs different data.
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The energy consumption in resting-state is one-fifth of the total energy of the body and it is
used to support ongoing neuronal signals. In case of task state fMRI the same variable
(energy consumption) is usually very small, less than 5%. Another thing that is needed to
take into account is that the most signals from the ongoing spontaneous BOLD modulations
are desired signals, because they are focused on resting-state fMRI. But only a small
percentage of signals (less than 20%), that came from task state approaches are considered
as desired. The expected outcome is that the signal to noise ratio is better in resting-state
studies than task-based approaches. Last but not least, an important advantage of resting-
state is that it can ignore the parameters that may cause problems to the study; something
like that is very difficult to achieve in task state approaches.

It is understandable that resting-state approach has not have only advantages and it is
not the preferable type for every fMRI study, between the two. Every approach has
advantages and disadvantages and each of them can be used on many studies. For example,
some disadvantages of resting-state are the following:

e It is difficult to control whether the subject is awake or is in sleep state, because

there are not individual differences in brain activity between the two states.

e The poor acknowledge about the neural interactions and their relation to individual
skill leads to the conclusion that, so as to define the structural network the task-
based approach is required.

e Brain default energy, in multi tasking analyses, is related to the subject mental state
(tired, excited, etc.) so it is impossible to control that parameter without using task
related experiments.

e The memory of every subject is cannot be tested during resting-state experiment

because subjects are not thinking of something specific [33].

2.4 Advantages and disadvantages of fMRI

Functional Magnetic Resonance Imaging is a technique that provides high quality in vivo
brain images. At least three features of MR images rendered them valuable for providing
improved anatomical definition of cerebral lesions. Those are a) the high resolution of
images, b) the ability to obtain clear views of every corner of the brain, c) the well defined
demarcation of abnormal signals that reflected underlying pathology. Also functional MRI
does not involve ionizing radiation, so it can be used repeatedly in subjects; even in children.
Technical improvements that must be done, will lead to the increase of spatial and temporal
resolution. Something that has to be improved is firstly the high cost and secondly the

position of patient’s body during the experiment [36, 37].
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2.5 Spatial and temporal resolution
The notion of spatial resolution describes the ability to separate the alterations in an image
(or map) across different spatial locations; while the term temporal resolution describes the
ability to separate alterations in a single location over time [30]. Although fMRI combines
relatively high spatial and temporal resolution, it is far from being an ideal reflection of the
neuronal response. Spatially, the signal is permitted in the whole brain area, not only to
areas of increased neuronal activity, as changes in oxygen extraction and changes in blood
flow [22]. Although it is restricted by signal to noise ratio (SNR). Smaller voxels recommend
smaller SNR but also enhance spatial resolution by detect smaller structures and smaller
activated areas [29]. It provides special information about grey and white matter in the
order of millimetres for spatial resolution whereas a few seconds for temporal resolution.
The typical fMRI pixel size is 3-4mm, although with higher field magnets (7T) a pixel size of
500 microns or less may be readily achieved. The resolution of PET is limited by the size of
the gamma ray detectors as well as the positron annihilation range, is typically larger than 5-
10mm. In the case of NIRS resolution, it is low approximately 10-20mm and is limited
predominantly by the strong scatter and attenuation of IR photons. The resolution in EEG
and MEG is similarly limited to larger than 10-20mm by the fact that a unique reconstruction
of dipoles is not possible from scalp based measurements of electrical or magnetic
distributions and models and regularization must be employed for model estimation. In
contrast with MEG, in EEG the scalp measurements may be spatially distorted by
heterogeneous electrical conduction paths within the brain/skull [25].

Temporally, the haemodynamic response and the signal to noise ratio (SNR) are
factors that restrict that type of resolution of the fMRI signal. The BOLD response has a
width of approximately three seconds and typically peaks after four to six seconds after
onset of a neuronal stimulus. However the variability of the BOLD response limits the
temporal resolution more than the lag itself, in brain regions, subjects and tasks. Temporal
resolution in a real fMRI experiment is further governed by T1 relaxation processes and
hardware characteristics, along with the limits imposed by the BOLD response [22]. PET
scans requires minutes to complete due to the low count rates of injected radio nuclides, so
changes in neuronal processes can only be studied by repeated scanning. Due to the fact
that NIRS reports changes in blood oxygenation, just like BOLD, exhibits similar temporal
limitations with fMRI. On the other hand EEG and MEG have millisecond temporal
resolution and can easily capture the dynamics of evoked responses that last from a few

milliseconds to several hundred milliseconds. In the case of combine two approaches, fMRI
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and EEG, it is preferable to use fMRI maps as spatial priors to reconstruct high temporal
resolution electrophysiology, thereby gaining resolution in both dimensions [25]. There are
some ways for enhancing the fMRI spatial and temporal resolution. These are: 1) by
optimizing the MRI pulse sequences, 2) by improving resonators, 3) by using higher magnetic

fields, 4) by developing intelligent strategies for parallel imaging.

2.5.1 Source of noise in fMRI

The noise that has been reported probably comes from the activity that evoked from the
experiment. The sources that cause the noise are the following: 1) systematic noise due to
tissue pulsation related to cardiac and respiratory cycles, 2) noise due to the movement of
the subject, 3) noise due to the slow fluctuations of blood oxygenation and 4) thermal noise

due to the subject, the receiver coil and the amplifiers [29].

2.5.2 fMRI time-series

It is important to order fMRI scans as a function of time or as it is known, treat them as a
time-series (Figure 2.4). This is necessary because the BOLD signal will tend to be correlated
across successive scans and that means that can no longer be treated as independent
samples. The main reason for this correlation is the fast acquisition time (Tg) for fMRI
relative to the duration of the BOLD response. Managing fMRI data as time-series also

allows us to view statistical analyses in signal processing terms [38].
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Figure 2. 4: Functional MRI time-series [41].

2.6 Applications of fMRI
The rise in availability of magnetic resonance imaging for detecting disorders in the living

brain has made it a very attractive technology for defining neural structure and function in a
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large amount of prominent diseases. Neuroimaging has become a major focus for multi-
institutional research in progressive alterations in brain architecture, proxy biomarkers of
treatment response as well as the outcome of disease from cognitive activation and
connectivity. In general the variety of applications of fMRI is classified in two categories,

cognitive neuroscience and clinical applications [39].

2.6.1 Cognitive neuroscience

An interdisciplinary area of research that combines measurement of brain activity with
simultaneous performance of cognitive tasks by human subjects is called cognitive
neuroscience. Mainly this area of research connects the science of human brain
(Neuroscience) and the science of mind (Cognitive Sciences) [43]. The use of fMRI focuses
on understanding the way in which an area of interest (activated area) affects another one.
For instance, as it is already known a visual stimulus can have an impact on the brain
response at the touch of an object or a face. Demonstrating and learning the plasticity of
brain systems it is a field of research where applications of cognitive neuroscience have

already been used [22].

2.6.2 Clinical applications

The functional MRI can localize brain functions well, allowing eloquent brain areas to be
defined, characterizing the reorganization of patterns of brain activation as a consequence
of disease or injury. Also this technique can indentify differences in brain function between
subjects associated with disease susceptibility or other factors causing variation [21]. In
clinical applications there are several aspects of fMRI that should be taken into account so as
to receive important information from clinical studies. These aspects are: safety and
preparation of the patient, necessity of effective patient cooperation, scanner capability,
analysis and presentation of data, correct organization of paradigms, quantitative and
qualitative sufficiency of the staff.

This technique is preferable because it is available to use before the operation, thus
allows more informed decision between the surgeon and the patient. Also it is non-invasive,
repeatable and can be overlaid with anatomy. The visualization is in 3D [122]. In case, for
example, of a brain tumor surgery its use is very important. fMRI can define the relationship
of lesions to eloquent areas prior to surgery. Also it can determine the need for intra-
operative electrocortical mapping. The definition of a surgical plan for resection and the
determination of language lateralization are other two usages of fMRI. There are some

limitations that have to be mentioned. At first fMRI is better at demonstrating motor areas
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rather than language areas. The BOLD signal, which is based on this technique, can be
affected by biological aspects of brain tumors. Moreover in patients with profound
neurologic deficits may be difficult to acquire a clear perception about the tumor. Last but
not least, fMRI does not demonstrate essential cortex.

As in brain tumor surgery like so in planning surgical interventions for epilepsy, fMRI
has become the central technique of mapping eloquent regions responsible for motor,
somatosensory, language and memory functions [122]. So as to manage and treat epilepsy,
fMRI determine lateralization of language dominance and also predict the risk for declining
the language function. Furthermore, it is used as an adjunct to direct cortical stimulation in
order to map the relationship between lesions to language, motor and somatosensory areas.
Another use is to predict memory deficits following ATL (Adult T-cell leukemia/ lymphoma).
Functional MRI can also be used in conjunction with EEG to indentify seizure foci.
Specifically this conjunction may help to localize lesions where EEG and imaging data and
EEG are discordant.

Functional MRI has been shown in many studies to be capable of demonstrating
impairment of the activation of the hippocampus and parahippocampal gyrus during
memory encoding tasks in patients with Alzheimer’s disease (AD). The discovery of the
presence of an fMRI- based biomarker in patients at risk for Alzheimer’s disease has also
been an attractive and active area of research. Its use is related with the understanding of
the pathophysiology basis that causes the memory loss in patients with AD. Also fMRI can
predict the decline in cognitive function and can test transitions in brain physiology in
response to pharmacologic agents.

In conclusion, fMRI has shown great utility identifying the anatomic location
corresponding with specific motor, somatosensory, language and cognitive processes. It is
helpful to understand the neuroanatomic and pathophysiologic alterations that occur in
response to brain tumors, epilepsy, movement disorders, dementia and trauma. A very
promising area for fMRI is the creation of biomarkers that will be useful for monitoring
diseases of the central nervous system and for testing the utility of already existing and
experimental treatments [40]. Scientists have used fMRI to identify abnormal functional
brain activity during task performance in a variety of patient populations, including those
with neurodegenerative, demyelinating and other neurological disorders that emphasize the
potential benefit of fMRI in both basic and clinical fields of research [39]. The importance of
fMRI lays not only in its usage for diagnosis of diseases such as Dementia, Parkinson’s

disease, Autism, Alzheimer’s disease etc., but also in its ability to differentiate the

26



characteristics of each disease in healthy and pathological subjects. In chapter 3 there is an

extensive description about the use of fMRI in Parkinson’s disease.
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Chapter 3: State of the art

3.1Brain imaging in Parkinson’s Disease

3.2An overview on literature methods

3.1 Brain imaging in Parkinson’s Disease

After the clarification of the pathophysiology of PD, several studies have been established so
as to better understand the way that this neurogenerative disease works. Except from the
pathophysiology, brain imaging techniques are helpful tools that have been used for a better
understanding of PD. The combination of these (imaging techniques & pathophysiology) can
lead all scientists that are involved, in new unknown pathways that will help to treat PD.

In this chapter, some of the recent and of interest studies (for this thesis) are referenced and
described below. There is a classification of the studies in two subcategories according to
presence (Task-based studies) or absence (Resting-state studies) of a particular task. fMRI is
the imaging technique that will be referenced in most of the cases, because that is the tool

that is used to acquisition all the data for this thesis.

3.1.1 Task-based studies

Sabatini et al. studied about the cortical reorganization in akinetic patients with PD. In that
functional MRI study has been participated six akinetic patients and six normal subjects that
were all right handed. The selected patients had mild to moderate symptoms so as to
ensure that they can perform the task in their off state. The type of motor task had not
been chosen by chance but because it induces a clear activation signal in areas that are

involved in both motor programming and motor execution. The performance of imaging
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was done on a Siemens Magneton Vision scanner operating at 1.5T and equipped with EPI
(echoplanar imanging) hardware. During the performance the subjects were resting for 30 s
and activating for 30 s four times. Also T1-weighted images were acquired so as to obtain
structural three-dimensional volume. One statistical analysis on a pixel by pixel basis was
done, using SPM96, for all the participants (patients & healthy controls) and the parametric
maps that were acquired were then generated using an ANCOVA (analysis of covariance)
model. Comparing the results of activation in patients with those of controls, increased
fMRI signals were observed in the right and left primary cortex, in the right and left
premotor cortex, in the right and left inferior parietal cortex, in the caudal part of SMA and
in the cingulated cortex. On the other hand increased fMRI signals in controls were obtained
in small areas of left lateral premotor cortex, in the rostral part of the SMA, in the left
inferior parietal cortex and in the right dorsolateral prefrontal cortex. In summary that study
presents that the cortical motor pathways are being disorganized in a complicated way, by
the subcortical putaminal dopamine deficit [44].

Another interesting fMRI study was about the automatic movements by underlying
neural mechanisms in patients with PD, by Wu et al.. Twelve patients with PD were included
in that research and were compared with fourteen age-matched healthy controls. The tasks
that have to be accomplished so as to take some significant results were four. Two of them
were self-initiated, self-paced sequences of finger movements with different complexity
until the automatic performance of them. The other two were dual tasks where subjects
were asked to perform visual letter-counting that was similar with sequential movements.
Subjects were asked to lie down in the MR scanner with response device on their right hand.
For that reason the whole group was right handed. According to the fMRI procedure, T2*-
sensitive functional images were obtained using a whole-body 1.5 T scanner and a standard
head coil. Also so as to obtain the functional images, an EPI gradient echo sequence was
used. The images were acquired before and after the achievement of automaticity from the
subjects and each scanning session lasted four minutes. For the imaging analysis SPM 99
software was used. A fixed effect boxcar design was used in order to model the data which
convolved with a heamodynamic response function. The results showed that the left
primary sensorimotor cortex, bilateral premotor areas, bilateral parietal cortex, bilateral
dorsal lateral prefrontal cortex, bilateral SMA, bilateral anterior cingulated motor cortex,
bilateral basal ganglia, bilateral insular cortex and bilateral cerebellum were the activated
areas for the patient’s group before training. After training the behavior pattern of the

activation was similar except from areas, bilateral superior parietal lobes and left insular
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cortex, that were less activated than the before training process. As for healthy controls,
before training the brain activations were matched with those for patients. Although after
training, less activation was obtained in the bilateral premotor area, bilateral superior and
inferior parietal lobes and pre-SMA. Comparing healthy controls with patients before
training, patients showed greater activation in the bilateral cerebellum, bilateral parietal
cortex, bilateral premotor area, bilateral precuneus and bilateral dorsal lateral prefrontal
cortex while performing the sequence-4. Healthy controls had greater activity in the pre-
SMA than in patients. After the training, patients had still greater activations in the
aforementioned areas and also the results showed that there was no area in healthy
controls with greater activation than in patient’s group. As a conclusion, automaticity is an
ability that a patient with PD can achieve after a proper training but with more difficulty
than a healthy subject. That study was the first one that suggests that a PD patient needs
more brain activity to balance out for basal ganglia dysfunction so as to perform automatic
movements [45].

The next study was all about of exploring the cerebral substrates of action- related
word production in non-demented PD patients. That study of Péran et al. was affected from
previous studies that have resulted in, that for non-demented PD patients is a little hard to
produce verbs in a word generation situation. An event-related fMRI task was used so as to
explore the brain regions that are involved in generation of action-words (GenA) and in
object naming (ON) in an amount of fourteen PD patients. For the two tasks was used a
standard set of object drawings that were either man-made objects (MMO) or manipulable
biological objects (MBO). In object naming, subjects must name aloud the objects drawings
that they were seeing while in GenA must produce orally a verb pointing an action that could
be performed with the pictured object. Only for the task of GenA, a study of twelve young
Italian healthy controls was performed. For that study was used a 3T magnetic resonance
imaging scanner while the acquisition of fMRI data happened using a gradient echo imaging
(EPI). So as to remove the noise from the data, the Cool Edit Pro software was used. After
the acquisition the data were analyzed using SPM2 implemented in MATLAB. As for the
statistical analysis, is consisted of two steps. The first comprised individual analyses
performed on each of the 12 subjects. The second step consisted of a group analysis in
which contrast images that were obtained previously, were combined in a second level
random effect analysis yielding main contrasts. The main brain activations, for the ON task,
were observed bilaterally in the frontal cortex, superior temporal cortex, supplementary

motor area (SMA), inferior occipital cortex, fusiform gyrus, lingual gyrus and cerebellum. For

31



the GenA task, the observed brain activations were similar with the ON task except from the
regions of the frontal and temporal cortices that were activated to a greater degree. Also
there was an extra activation in the left inferior and superior parietal cortex. Comparing the
two tasks the following results were observed: 1)GenA wmeo> ON wmeo in the left occipital
cortex, left supramarginal gyrus and ACC, 2) GenA mmo> ON mmo in the left prefrontal cortex
and right insula, 3) GenA meo> ON mmo Occipital cortex bilaterally, ACC, left prefrontal cortex,
left frontal operculum, left supramarginal gyrus and right superior frontal cortex. As for the
results from the correlation analyses the main activations where in the left pre-central gyrus
in all conditions. Those results lead to the outcome that there is a relationship between the
motor system dysfunction in PD patients and the extent of activation in verb generation,
which is a task that process in depth of semantic representation of actions [46].

The last study of the category of task-based studies that will be referenced in this
thesis, is a little different from the aforementioned because included except from the
Parkinson’s disease and some atypical parkinsonian syndromes. Also is a longitudinal study
that lasted one year. More specifically Burciu et al. investigated changes in brain activity in
patients with Parkinson’s disease, Multiple system atrophy (MSA) and Progressive
supranuclear palsy (PSP) using task-based functional MRI. The regions of interest that they
focus were the putamen, primary motor cortex (M1), supplementary motor area (SMA) and
superior motor regions of the cerebellum (lobules V-V1) using a unimanual grip force fMRI
protocol. Also they hypothesized that the basal ganglia and motor cortex would have
reduced fMRI signal in PD, MSA, PSP comparing with the healthy controls which both MSA
and PSP would have extensive and more pronounced cortical changes than PD. In this
cohort study the amount of participants was one-hundred and twelve (112) with forty six PD
patients, thirteen MSA patients, nineteen PSP patients and thirty four healthy controls.
Most of the patients were taking medication but the performance of the test happened 12-
14 hours after the overnight dose of antiparkinsonian medication. All the participants were
produced force against a custom-designed MRI compatible fiber optic transducer with a
resolution of 0.025N. The protocol consisted of a block design with shifting force and rest
blocks. After the acquisition of data with a 3T Philips system along with a T2*- weighted,
single shot, echoplanar pulse sequence and an anatomical 3D T1-weighted sequence, the
processing steps carried out. The last ones were based in previous studies of grip force in
parkinsonian disorders. Then they examined group differences at baseline using analysis of
covariance (ANOVA). The results demonstrated group differences at baseline in age and

gender. Also patients with PD showed a decline in functional connectivity after the one year
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follow up in the putamen and M1 compared to controls. As for MSA patients the changes of
functional activity were exclusively extrastriatal and included a reduction in the areas of M1,
SMA and superior cerebellum. At last, in PSP patients all the regions of interest had less
activation after one-year of study compared to baseline. The functional activity of these
regions did not change in the healthy controls. Overall that study provided evidence for
distinct patterns of motor-related changes across the basal ganglia and cerebello-thalamo-
cortical loops in PD, MSA and PSP. These findings could provide a platform to test

therapeutic strategies that aim to slow the progression of parkinsonian disorders [53].

3.1.2 Resting-state studies

Resting-state functional connectivity MRI is a technique that permits the investigation of
large scale functional networks at whole brain level based on the temporal correlation of
spontaneous fluctuations in a very low frequency range. That technique has been
discovered by Biswal et al. (1995) and has successfully been used to identify a variety of
intrinsic cortical and cortico-subcortical networks with a homogenous resolution in the
millimeter range [120].

The first resting-state study that will be referenced in this thesis is from Kwak et al.
where they investigated alterations in cortico-striatal functional connectivity networks
within PD patients and age matched controls using six different striatal seed regions. They
tested twenty- five mild to moderate stage PD patients where thirteen of them had taken
levodopa (L-DOPA ON) and twelve had received placebo medications (L-DOPA OFF). The
controls group was consisted of twenty-four individuals where none of them had taken any
medication. The participants underwent of the fMRI scanner, as usual, so as to collect the
fMRI data which were preprocessed as part of a standard processing stream at the
University of Michigan. After the preprocessing, was followed the normalization to MNI
space using SPM5. Except from the usual analysis a frequency content analysis of the fMRI
BOLD signal was performed, using ANOVA. The results were presented with the left side of
the images because that was the more affected brain hemisphere. They observed an overall
increase in the strength of cortico-striatal functional connectivity within PD patients of L-
DOPA OFF and controls. That connectivity was decreased within motor cortical regions in
the case of L-DOPA ON patients. More specifically for the caudate seed, the ventromedial
prefrontal and orbitofrontal regions for inferior ventral striatum, the dorsolateral prefrontal
and frontal eye field regions for superior ventral striatum and dorsal caudate. As for
putamen seed, the primary and secondary motor areas were affected. Also between PD-ON

and PD-OFF they did not find any areas more correlated with putamen and caudate
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themselves than the putamen and caudate seed regions; except from the dorsal prefrontal
cortex in PD-OFF and the dorsolateral prefrontal cortex in PD-ON which exhibited more
correlated activity with the caudate. From the frequency content analysis the results
showed an overall elevation of cortico-striatal functional connectivity in PD patients and that
Levodopa decreased the heightened connectivity. From the results they concluded that PD
and L-DOPA are variables that affect striatal resting state BOLD signal oscillations and
cortico-striatal network coherence [47].

Skidmore et al. focused his fMRI study in connectivity brain networks based on
wavelet correlation analysis in Parkinson data. In fourteen subjects with idiopathic PD and
fifteen age-matched healthy controls they investigated the efficiency of human brain
functional networks. That type of correlation analysis can show the functional similarity
between brain regions that were activated in a defined frequency interval or wavelet scale.
This is important in the case of a resting-state study where the greatest frequencies are
below 0.1 Hz and non neural sources of correlations belong to higher frequency ranges.
Functional images were acquired using a Philips Acheiva 3T scanner while also three
dimensional structural images were acquired. For every dataset the geometric
displacement, and more specifically the head motion, was accurate and the co-registration
step was performed using the Montreal Neurologic Institute gradient-echo echoplanar
imaging (EPI) template with the AFNI package. Also data were not spatially smoothed but
the regional parcellation was performed in base of the anatomical labeling template. That
parcellation leaded to a separation of each hemisphere into 116 different anatomical images
of interest. The results showed that the mean global efficiency of these networks was
greater in healthy controls (1.25%+ 0.25) compared with PD patients (0.95+0.17). In both
healthy controls and PD patients the top 30 nodes where observed in the precuneus,
cuneus, superior occipital and middle frontal regions. These regions comprise aspects from
the resting network that has been described as the “Default Mode Network”. Regions such
as the left supplementary motor cortex, contiguous precentral regions, the Calcarine
cortices, secondary visual regions and regions within the cerebellum appeared increased
efficiency in controls than PD patients. Authors suggested that such algorithmic approaches
and graph metrics are accustomed to understand better and track neurodegenerative
diseases. Although a lot of research must be done so as to separate on a case by case basis
the PD subjects from the controls [48].

Another significant research was that of Baudrexel et al. where they investigated the

functional connectivity changes of the subthalamic nucleus - motor cortex (STN) using

34



resting-state BOLD correlations, on a voxel by voxel basis in fMRI. They choose to
investigate the STN because it plays an essential role in normal motor functioning and also in
pathophysiology of PD. Firstly from an anatomical and physiological perspective its position
is special because it is part of two functional loops, a slow indirect (cortex-striatum- external
pallidum (GPe) —STN- internal pallidum (GPi)/ substantia nigra pars reticularis (SNr)-
thalamus cortex) and a fast hyperdirect pathway (cortex- STN- GPi/SNr-thalamus- cortex).
Secondly for patients that are in advanced stage of the disease, the deep brain stimulation
of STN along with basal ganglia nuclei constitutes the most effective target. In that study
were participated thirty one early stage PD patients and forty four healthy controls. Except
from the classical analysis between PD patients and healthy controls, there was another one
where patients divided into subgroups according to the presence (Number of patients = 16)
or absence (Number of patients = 15) of tremor. The imaging performance was carried out
on a 3T MR scanner system where subjects lie still, relax and keep their eyes closed without
thinking anything specific or falling asleep. Also patients scanned while they were in an off
medication state. The functional scans from the whole brain were acquired with EPI
sequence. As for the data preprocessing, that was performed using SPM8 with custom built
programs written in MATLAB. After that, functional connectivity was analyzed with a
common seed-region approach that conducted in MNI space. The last step was the
conduction of a voxel based morphometry because the alterations in the structural of the
brain may confound the results of functional connectivity. The analysis of the results
showed increased functional connectivity between the STN and cortical motor areas in PD
patients in accordance with electrophysiological studies. Comparing the results between
healthy controls and tremor patients, increased STN FC was observed in the hand area of M1
and the primary sensory cortex. As for non-tremor patients increased FC was observed
between the STN and midline cortical motor areas including the supplementary motor area
(SMA). From the aforementioned findings the authors suggested that PD rigor and tremor
symptoms may be resulted in a connection of these areas and lead to the conclusion that
STN is a key node for the modulation of the motor network in PD patients [49].

Tessitore et al. were interested in investigating another motor symptom of
Parkinson’s disease, freezing of gait. Freezing of gait (FOG) is a common cause of disability
and falls in patients, that is characterized by the feeling of “glued” to the floor that prevents
locomotion generally occurring during gait initiation and/or turning. Using resting-state
functional MRI they studied a group of patients with (Number of patients = 16) and without

(Number of patients = 13) FOG and they compared them with fifteen age and sex matched
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healthy controls. All subjects were evaluated (clinical and cognitive) 60-90minutes after
their morning dose of levodopa and then were scanned in the “on medication” state. In that
case the magnetic resonance images were acquired on a 3T GE scanner equipped with an 8-
channel parallel head coil. The fMRI data were consisted of 240 volumes of a repeated
gradient- echo planar imaging T2*-weighted sequence. Also three dimensional high
resolution T1-weighted sagittal images were acquired for registration and normalization of
the functional images. As for the computational techniques they used the Brain Voyager QX
for data preprocessing and statistical analysis (the data were co-registered and spatially
normalized to the standard Talairach space before the statistical analyses). Also ICA was
used for single-subject and component analysis. So as to map the distribution of the whole
brain of the components of interest, single-group one sample t-tests were used in all the
participants. Then so as to define the search volume for within network group comparisons,
they created an inclusive mask from the control group component. After that, a two-sample
t-test was computed to produce a T map of the differences between the groups. The results
showed that patients with freezing of gait exhibit reduced functional connectivity within
“executive attention” network, namely in the right middle frontal gyrus and in the angular
gyrus, and also visual networks, namely in the right occipito-temporal gyrus. These findings
suggest that the phenomenon of FOG is generally associated with both early cognitive
frontal dysfunction and mood changes, suggesting a tight relation between these symptoms
[50].

Another interesting resting-state fMRI study was that by Luo et al.. They studied
functional connectivity in a group of twenty-seven early-stage drug-naive Parkinson’s
disease patients compared with fifty-two age and sex-matched healthy controls. In that
study they focused on the functional connectivity of the substriatum subregions. It is
interesting to refer that this study was the first resting state fMRI which examined brain
network integrity in a large group of patients in early-stage drug-naive along with the
relationship between the Non-motor Symptoms Scale (NMSS) and alteration of functional
connectivity. The acquisition of the magnetic resonance images was performed as always
with a 3T MRI scanner. The statistical analysis and preprocessing was carried out using
SPMS8 while for functional connectivity analysis, a seed voxel correlation approach was used.
The seeds that have been selected were the left and right putamen and caudate, just like
previous researches. Also they used the tool REST to investigate the functional connectivity.
The last analysis that they performed was a voxel-based morphometry, so as to investigate if

functional results influenced potentially by structural differences among groups. Although
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the deceased functional connectivity within cortical sensorimotor areas was only evident
within the foremost affected putamen subregion, a reduction of functional connectivity
within mesolimbic regions was prevalent throughout the striatum. Increased functional
connectivity was not obtained during this cohort. By studying a group of early-stage drug-
naive PD patients, they excluded the potential confounding effect of extended antiparkinson
medication use on the functional integration of neural networks. Decreased functional
integration obtained across neural networks involving striatum, mesolimbic cortex and
sensorimotor regions and hypothesized that the prevalent disconnection in mesolimbic-
striatal loops caused by some early clinical nonmotor features in PD. Although prolonged
antiparkinson medication may result in reorganization of functional neural networks through
unknown mechanisms and confound our understanding of the first pathological process,
their findings of prevalent reduced functional connectivity of neural networks in early-stage
drug-naive PD patients reflect the first pathological changes within the natural disease
course [51].

Baggio et al. studied about frontostriatal functional connectivity in Parkinson’s
disease patients that suffer from apathy, a symptom that affect 23% - 70% of the patients
and is related to frontostriatal dopamine deficits. Using resting-state functional magnetic
resonance imaging they investigated thirty-one healthy controls and sixty-five age, gender
and education matched PD patients. From the group of PD patients, the twenty-six were
classified as apathetic. Using 3T MRI scanner were acquired structural T1-weighted images,
FLAIR images as well functional resting-state images. AFNI and FSL had been used for the
preprocessing of the resting-state images. Also the structural data were analyzed with FSL-
VBM which is a voxel-based morphometry (VBM) style analysis. As for the statistical analysis
a voxelwise general linear model was applied, using a non-parametric testing for
connectivity and VBM. Furthermore before the analysis, the definition of regions of interest
took part. More detailed the frontal cortices were divided into limbic (anterior, posterior,
medial orbital gyri, gyrus rectus, subcallosal gyrus/ventral anterior cingulate), executive
(rostral superior and middle frontal gyri and dorsal prefrontal cortex), rostral motor (caudal
portions of lateral and medial superior frontal gyrus, caudal middle and inferior frontal
gyrus) and caudal motor (precentral gyrus and caudal premotor area). Reductions of
functional connectivity showed the apathetic PD patients while comparing them with non-
apathetic patients and healthy controls. These reductions were observed in left-sided
circuits and predominantly involving limbic striatal and frontal territories. As for the

structural analyses there was not found any significant effects. From the results, authors
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suggested that the presence of apathy in PD patients is related to the reductions of
functional connectivity in frontostriatal circuits, predominating within the left hemisphere
and mainly involving its limbic components but also extending to premotor and primary
motor regions. That is applicable even in the absence of significant structural degeneration
and while controlling for associated depression and cognitive decline [52].

Another resting-state study that will be referenced is that of Engels et al. where they
focused in dynamic functional connectivity (dFC) of both the default mode network (DMN)
and the frontoparietal network (FPN) as neural correlates of cognitive functioning in patients
with PD. Also they investigated symptoms such as pain and motor problems of PD in
relation to dFC. The individuals that participated in that study were twenty-four PD patients
and twenty-seven healthy controls. All the participants underwent resting-state functional
connectivity from which dFC was defined by calculating the variability of functional
connectivity over variety of sliding windows within each scan. The assessment of the pain
happened with the Numeric Rating Scale (NRS) while for the motor symptom severity the
Unified Parkinson’s Disease Rating Scale, was used. Patients underwent MRI two times with
and without Parkinson medication, but in that study only the without medication phase
imaging was used so as to reduce the effect of dopaminergic medication. As always the MRI
data were collected with a 3T GE Signa HDxT MRI scanner along with structural and
functional images. The analysis of the data happened using FSL FMRIB software library and
custom built scripts in bash and MATLAB. As for the statistical analysis were performed with
IBM SPSS. The results showed that patients performed worse on tests of visuospatial
memory, verbal memory and working memory compared with healthy controls. The cause
of that may be the lower level of education of patients. Between groups the dFC had no
differences in the DMN or the FPN with the rest of the brain regions. Although a positive
correlation existed between dFC of the DMN and visuospatial memory. This association was
not found when investigated motor symptoms or pain, which suggests that dFC of the DMN
may be specifically linked to cognitive functioning. That study helps to understand which of
the factors contribute to cognitive functioning in PD [54].

The last resting-state study that will be referenced is a latest study about the functional
brain network of motor reserve that is related to patients with early PD. They proposed the
notion of motion reserve in Parkinson’s disease, which is similar to the notion of cognitive
reserve in Alzheimer’s disease, so as to explain the heterogeneity of symptom severity in
Parkinson’s disease regardless the analogous level of nigostriatal dopamine depletion on

dopamine transporter (DAT) scans. From a total number of one hundred fifty six
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participants only one hundred thirty four were included on the study because of apparent
artifacts and motion artifacts. The twenty two participants were excluded at the step of
preprocessing of fMRI data. All of the participants were de novo PD patients who
underwent dopamine transporter (DAT) imaging and showed appropriate DAT defects in the
posterior putamen. Also they underwent MRI, including high resolution of T1-weighted MRI
and resting state fMRI at baseline evaluation. The preprocessing of the fMRI data was
performed using SPM12 and custom codes running on MATLAB while the Toolbox of
Network-Based Statistic and their custom codes running on MATLAB was applied for the
network analysis. Furthermore they examined longitudinal changes in dopaminergic
medication doses at a subset of participants (n= 109) according to the motor reserve
network strength. That happened using a linear mixed model named LED. Last but not least
they performed a voxel-based morphometry analysis to estimate if alterations in gray matter
were related to the level of motor reserve. The DAT imaging was performed using a
Discovery 600 device while the processing of the acquired images was performed using
SPMS8 implemented in MATLAB. After that the motor reserve of each patient separately was
estimated, dependent on their baseline UPDRS-Ill score and dopamine transporter
availability in the posterior putamen. The UPDRS-IIl score is a clinical criteria for the
diagnosis of PD. They defined the motor reserve estimate as the standardized value for the
residual that was calculated as (raw value - A)/B, where A and B were the mean and
standard deviation of the residuals of all patients with PD. The MRI images were acquired
using 3.0T scanner both for the high resolution axial T1-weighted MRI scans and T2*-
weighted single-shot echo planar imaging sequences. From the network-based statistic
analysis the results showed that brain regions such asbasal ganglia, inferior frontal cortex,
insula and cerebellar vermis are included in the motor reserve network. Also the presence of
a bigger degree of functional connectivity within the motor reserve network was found in
patients with greater motor reserve. Moreover the interaction that was observed within the
motor reserve network strength and time in the linear mixed model resulted in that motor
reserve network strength and levodopa-equivalent dose are inversely proportional sizes. So
as a more general result, functional connections within the motor reserve network are

connected to the individual’s capacity to cope with pathologies that concern PD [107].
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3.2 An overview of the literature

In the following table (Table 3.1) is presented an overview on recent literature methods.

Table 3. 1: An overview of the literature.

Authors Dataset Regions Imaging Computation Results
technique al
technique
These fMRI data
U. Sabatini 6 atl.dne;tic ;?As;ral' p;atrtDthfC fMRI SPM96 Eonfirmt_thi_t the frontal
patients , rig . ypoactivation
et al 2000 6 normal PSC, LPC, IPC, observed in patients
[44] subjects caudal part of with PD is restricted to
All participants | SMA & ACC the rostral part of SMA
were right and to the DPC. Also
handed other cortical motor
Motor task areas of these patients
showed increase
signals.
15 patients (3 For both groups, the
T. Wu of them were BSPL, LIC, fMRI SPM99 activation was observed
excluded Cerebellum, 1.5T MRI in similar brain regions
et al 2005 because they premotor area, before and after
[45] could not parietal cortex, automaticity was
achieve precuneus, achieved. PD patients
automaticity) prefrontal require  more brain
14 age-matched | cortex activity to compensate
normal subjects for basal ganglia
Automatic dysfunction so as to
movement task perform automatic
Visual letter- movements.
counting tasks
The direct comparison
P. Péran 14 non- Premotor and fMRI SPM2 of brain activity during
demanded prefrontal 3T MRI the  production  of
et al 2009 Italian PD cortices, pre action-words and of
[46] patients and post central object names did not
Event-related gyri bilaterally, reveal any major
task left frontal differences. However
operculum, left there is a relationship
SMA, right between motor system
superior dysfunction in PD and
temporal cortex the extent of activation
in verb generation, a
task  which  implies
processing of semantic
representation of
actions.
Y. Kwan et 25 mild to Caudate, fMRI SPM5 The results showed that
moderate stage | putamen, dorsal | 3T MRI ANOVA PD and L-DOPA are
al 2010 PD patients prefrontal variables that affect
[47] 24 healthy cortex, DCP, striatal RS BOLD signal
controls ventromedial oscillations and cortico-

Resting-state

prefrontal &
orbitofrontal
regions for
inferior ventral
striatum, frontal

striatal network

coherence.
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eye regions for
superior ventral
striatum &
dorsal caudate,
PMC, Secondary
MA

PD patients showed
F. 14 idiopathic Cortical and fMRI Wavelet —based | decrease in nodal and
. PD patients subcortical 3T MRI correlation global efficiency. For
Skidmore 15 healthy regions analysis identifying and tracking
etal 2011 controls neurodegenerative
[48] Resting- state diseases, the use of
graph  metrics and
algorithmic approach it
might be necessary.
Increased FC between
s. 31 early stage PMC, STN, fMRI Voxel by voxel the STN and cortical
PD cortical motor 3T MRI basis motor areas was
Baudrexel patients(right areas, basal SPM8 observed in PD
etal 2011 handed) ganglia patients. FC analysis of
[49] 44 healthy the PMC hand area
controls revealed that the FC
Presence of increase was primarily
tremor 16 found in STN area
patients within the basal
Absence of ganglia.
tremor 15 Tremor and non tremor
patients patients showed
Resting-state increased FCin STN.
29 PD Right middle
patients(16 frontal gyrus fMRI ICA Patients with freezing
presented with and in angular 3T MRI BrainVoyager of gait exhibit reduced
A. . freezing of gait) | gyrus, right Qx FC within both
Tessitore 15 healthy occipito- executive-  attention
etal 2012 controls temporal gyrus and visual networks.
[50] Resting-state
PD patients showed
C. Luo 52 early-stage Mesolimbic- fMRI SPM8 decreased  functional
drug naive PD striatal, 3T MRI REST integration across
etal 2014 patints corticostriatal neufal networks and
[51] 52 healthy loops, CSA, postulate  that the
controls putamen prevalent disconnection
Resting- state subregion,meso in  mesolimbic-striatal
study limbic cortex, loops is associated with
sensorimotor some early clinical
regions nonmotor features in

PD.

41




The presence of apathy

65 PD patients Left- fMRI Voxel based in PD patients is related
H.c. . 26 apathetic PD | hemispheric 3T MRI morphometry to the reductions of
Baggio et | patients limbic analysis functional connectivity
al 2015 31 healthy ventromedial, in frontostriatal circuits,
[52] controls premotor and predominating  within
Resting-state primary motor the left hemisphere and
regions mainly involving its
limbic components.
PD patients showed a
R.G. Burciu 112 Putamen, fMRI ANOVA decline in functional
individuals:46 PMC(M1), SMA, activity compared with
etal 2016 PD, 13 MSA, 19 | superior motor controls. MSA patients
[53] PSP, 34 healthy | regions of the showed a reduction of
controls cerebellum functional activity in
Task-based (lobules V-V1) M1, SMA and superior
fMRI (1 year cerebellum. All regions
research) in PSP were less active
after 1 year. In healthy
controls there was no
change in these
regions.
The results suggest that
G. Engels 24 PD patients DMN, fMRI FSL FMRIB dynamics during the
27 healthy FPN, 3T MRI MCFLIRT resting-state are a
etal 2018 controls visuospatial scanner3D SPSS neural correlate of
[54] Resting-state memory visuospatial memory in
PD patients. Also brain
dynamics of DMN could
be a phenomenon
specifically linked to
cognitive functioning in
PD, but not to other
symptoms.
Motor reserve fMRI Network based Functional connections
S.J. Chung 134 de novo PD | network MRI statistic within the motor
Resting state composed of Dopamine analysis, reserve network are
et al 2020 basal ganglia, transporter SPMS, connected to the
[107] inferior frontal imaging (DAT) SPM12, individual’s capacity to
cortex, insula, Voxel based cope with pathologies
cerebellar Morphometry that concern PD.
vermis. analysis Patients with increase

of functional
connectivity within the
motor reserve network
had greater motor
reserve.
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Chapter 4: Methodologies for connectivity extraction

4.1 Preprocessing of fMRI data

4.2 Brain connectivity

4.1 Preprocessing of fMRI data

While fMRI identifies neuronal activity via hemodynamic response to alterations in
metabolic consumption of oxygen, the acquired time-series have, most of the times,
confounds of non-neurally related sources of variations. Such sources include subject’s head
motion, magnetic field inhomogeneity, physiological oscillations like heart beats and
respiration and differences in the timing of image acquisition. These unwanted fluctuations
may cover the intrinsic patterns of neural activity, alter experimental conclusions by
introducing structured noise that affects the real neurally-related results and also decrease
the detection of a possible following statistical analysis. In general all these lead to spatial
and temporal inaccuracy of the fMRI data. For that reason several computational
procedures have been developed, termed as the preprocessing pipeline, so as to remove
unwanted variations and increase the functional signal to noise ratio (fSNR) before further
analysis. In the most frequently steps are included, motion correction (realignment), slice

timing correction, coregistration, spatial normalization and spatial smoothing [24].

4.1.1 Motion correction (realignment)
The basic aim of that preprocessing step is to correct artifacts that are related to the

movement. Most of the times the movement is large and particularly subject’s head

43



movement is a prominent concern in most fMRI studies. In cases where the duration of scan
is long, subjects become increasingly drowsy and restless as time goes by. Also, when the
study is task-based subject’s motion synchronizes with the on-going stimulus or different
types of subjects, such as elderly and diseased people affect the movement [24]. Due to the
fact that head movement in the scanner cannot fully be eliminated, different mathematical
transformations focus on the removal of the movement. Furthermore the statistical results
are affected by movement in different ways. For example, when motion induces distance-
dependent variance (more similar between voxels nearby than far apart) that causes
alterations in the intrinsic correlation structure of the data. Another way is when motion
interplays with field inhomogeneity and slice excitation, causing more complicated noisy
fluctuations [116].

The first step in motion correction is the best possible alighment within the input
image and the target image. Usually the target image is the first or the intermediate image.
Due to the fact that the brain is assumed to be a rigid object that estimates at each time
point its displacement from a reference position, rigid body transformation involving six
variable parameters is used in realignment. So as to match the target image with the input
image, the last one is translated (shifted in the x, y and z directions) and rotated (altered
roll, pitch and yaw). It is necessary to use a cost function in order to determine the optimal
value of parameters. Figure 4.1 demonstrates the raw and corrected images after the
motion correction step.

From the mathematical perspective, a position x = [xq, x5, X3, 1]T in image f is
mapped to a position ¥ = [y1,V,,¥3,1]7 in image g by rigid body transformation and is

expressed by the following equation:

y:M*x, (4.1)

where M = Mg-1M;MgM, M, M, is the transformation matrix.
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CORRECTED

Figure 4. 1: Motion correction [117].

More specifically, M; is the matrix that implements the translations and
Mg, My, M, are the matrices that implement the rotations about the x,y,z axes
respectively. The other two matrices, My and My, are the transformation matrices into
Euclidian space for images f and g that are to be registered together. The matrices are

represented below [118].

10 0 x 1 0 0 0
101 0 y; _ 10 cos@ sing O
M=o 0 1 z|['™M |0 —sing coso 0 (4.2,43)
0 0 0 1 0 0 0 1
o o -2
cosw 0 sinw 0 |rxmm 2xmm]l
M. =|~sin® 0 cosw O . _ ., 10 yum 0 =2y
: D Ol My = M, = 2Ymm | (4.4,45).
o o o 1 | 0 0 Zpm —3Zmm]|
l0 0 0 1 J

Where Xm, Vmm» Zmm are the voxel’s dimensions and a, b, ¢ the dimensions of images. The
best possible fit for all j voxels within the two images f and g is obtained by minimizing the
following equation and solving the parameters p:

l(p) = Zj(Mxv - 53’17)2: (4.6)

where p = [x¢, V¢, 2,0, @, W] Tis the parameter vector, v is the voxel and s the parameter
that is used to offset the differences in voxel intensity of two images [117].
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4.1.2 Slice-timing correction

This preprocessing step, also, causes inaccuracies in time-series and is related to the
sequential collection of slices within each volume (Figure 4.2) [118]. The major part of fMRI
studies use a two-dimensional pulse sequence that illustrates one slice at a time, leading to
inconsistent acquisition time among different brain slices within one TR. That kind of slice-
timing errors, if uncorrected, may present inaccuracy in cases where the temporal
information is critical, for example, in rapid event-related experiments or in studies with
positing causal association among different cortical regions. The acquisition order defines
the scan time of an individual slice. There are three options for the acquisition order, known
as interleaved slice acquisition, ascending and descending sequential acquisitions. The first
one is used more frequently because is collecting all of the odd slices at first and then all of
the even slices, avoiding cross-slice excitation. In this acquisition order, the adjacent slices
are collected a full TR/2 apart. The less common ascending and descending sequential
acquisitions, are collecting the slices consecutively and particularly the last slice is collected
almost one TR after the first slice. Itis important to be mentioned that the data acquired via
interleaved acquisition at a long TR, the step of slice-timing correction must be performed

first, before the motion correction [30].

EENEER
EENEER

Figure 4. 2: Slice-timing correction [117].

The statistical analysis accepts that every voxel is sampled simultaneously, so the
main point of slice-timing correction is to relocate each voxel’s time course in order to
consider them as they were measured at exactly the same time point. Due to this fact,
phase shifting of the sines that comprise of the signal must be performed. Furthermore, the
time-series of the voxels is transformed in the frequency domain, the data is performed to
phase shifting and the inverse Fourier is used so as to execute the corrected time-series

recovery [29].
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From the mathematical aspect, each image volume that has q slices with mxn

pixels (m is the number of the rows and n is the number of columns), the matrix that is

a1 Qaqz ...
Acq = [ : ] , (4.7)

Ak1 Qg2

formed is the following:

where ¢ ranges within 1 and n (c = 1, ....,n) and k represents the time points. The element
@;j expresses the intensity value of the voxel that is localized in slice q. Consequently, the
first column of the matrix illustrates the time-series of the voxel (c,1,q). The performing
convolution is applied for each column of the matrix in the frequency domain with a shifting
vector. The number of slices, TR, TA and the acquisition order (ascending, descending and

interleaved) affect the shifting vector [117].

4.1.3 Co-registration

In general this preprocessing step maps the functional and structural images to each other
applying computational procedures. The collected 3D stack of functional and structural
images, usually do not match each other. That happens because of differences in MR
contrasts and acquisitions, e.g. inconsistent slice orientation, voxel resolution and image
distortion, leading to problems in mapping activity to the structural image. The
computational procedures, basically, at first resample the structural data to the spatial
resolution of the functional data and then employ a rigid body transformation where mutual

information (cost function) is minimized [24].

4.1.4 Intensity normalization

With the intensity normalization step, is occurred the rescaling of all intensities in an fMRI
volume by the same amount and is applied at each volume separately. That happens
because, during an fMRI experiment, a supplementary scan-to-scan variance appears at very
low spatial frequencies that may be caused by the scanner itself (scanner drift). In most
studies, first the calculation of the mean intensity across all voxels happens, for every fMRI
volume that has been at intensity above a predetermined threshold. Then follows the
rescaling of all intensity values by a constant value and last the new mean intensity turns
into a present value. The usage of mean intensity value of each volume as confounding
variables is required so as to be applied in statistical analysis later, based on other approach.
But there is a disadvantage in the case of a strong activation. Particularly, when there is a

strong activation, the mean intensity increases and results in the negative correlation of the
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non-activated sections of the volume with the stimulation after normalization. So, the final

statistical image will include a part of deactivation [29].

4.1.5 Spatial normalization

Due to the fact, that in most fMRI studies there is comparison between brain activation
across multiple individuals, this step is necessary. The shape and the size of brains are
inconsistent within subjects so a comparison between different images is difficult. With
spatial normalization each individual’s brain is normalized to a template, which is usually
based on specific populations or published ones. The most common templates are Talairach
atlas, Tournoux atlas and Montreal Neurological Institute space (MNI). A large number of
normal MRI scans are applied in the MNI space, so it is more representative of the
population, in contrast, with the other two which are based on one subject’s brain.

Spatial normalization can be based on intensity, landmark or even on surface.
Typically, it is implemented by registering each individual’s functional images to a functional
template. This can happens directly or in two steps, where the co-registration of functional
and structural images is the first step and then follows the registration of the anatomical
images to a high-resolution structural template. Each of the two approaches has advantages
and drawbacks. The first one prevents inconsistent geometric distortions induced by
different imaging contrasts, while the second approach is more robust because of the
improved resolution and quality of structural image [24].

In a more detailed description, in the first step occurs the determination of the
optimum 12-parameter registration within the template and the image to be normalized.
While in the second step follows the estimation of the nonlinear deformations determined
by a linear combination of three-dimensional discrete cosine transform (DCT) basis
functions. A maximum a posteriori (MAP) approach is applied for the determination of the

optimum affine transformation. The affine transformation is represented as:

y = M = x, (4.8)

where M = MM MgM,M,M,MsM,. Focus matrix is represented as M, and shearing

matrix as M, as you can see below [119].
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The estimation of the nonlinear deformations that appear throughout the
normalization, it is very important. In order to achieve the distortion modeling a linear

combination of basis functions are used. An example is given below:

yi=x — Xjtibi(x), (4.11)

Where t; is the jth coefficient describing translation for each three dimensions and b;(x;) is

the jth basic function at spatial position x; [119].

4.1.6 Spatial smoothing

The benefits of including the spatial smoothing in the preprocessing procedure are three.
Firstly, with spatial smoothing the fSNR of the data can be improved. The acquired fMRI
data are inherently spatially, because of the blurred signal by vascular origins and the
functional similarity of adjacent brain areas. Secondly, can also be enhanced the anatomical
or functional variations within different subjects. Unlikely, the optimum kernel sizes
determined by different goals are not consistent. Thirdly, spatial smoothing may improve
the validity of following statistical analysis by softening the difference within spatial
structure of the data and the assumed model.

Meanwhile, several disadvantages of spatial smoothing in relation with the correct
size of the kernel, must be considered. For conventional studies that adopt fixed kernel size
among the brain, a recommended kernel size ~ 4mm is suitable for single subject analysis,
while for a group level analysis a wider kernel size 6-8mm is suggested. So as to be sure, the
examination of the results when a wide smoothing kernel is used, is recommended [24].

The most common approach is the convolution of each volume with Gaussian kernel. The
amount of the image spatial smoothing relies on the full width half maximum (FWHM), as

shown in Figure 4.3. The equation that represents the convolution is the following:

ti=X3_ _ghicy fu (4.12)
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where d is the length of the kernel, h is the kernel and f is the image that undergoes the

spatial smoothing. The kernel amplitude A4, at u units away from the center is characterized

u 2
e 2ri2 FWHM . . .
as: A, =————=, whererl = and the FWHM is the full width at half maximum of the
2mril? \8in2
Gaussian kernel.
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Figure 4. 3: Width of Gaussian kernel [117].

4.2 Brain connectivity

4.2.1 Functional organization and brain connectivity

In the recent past (18" century), neuroscientists believed that many brain functions were
deliberated by its structure and that its structure was programmed by the genes. However,
in past decades, this perspective has changed and has been believed that the neural
pathways of the brain are flexible, connected, adaptable and moldable by alterations in the
environment of the individuals or by injury or disease. Briefly, the brain is quintessentially
plastic and can adapt and adopt new functionalities through necessity. This understanding
depends on the mean of connectionism, with the hypothesis that the function of the brain
can be characterized as the interaction among simple units, for example, neurons connected
by synapses that cause a connected whole which changes over time. After some other
ideas, the notions of functional segregation and functional integration have been
introduced. Since their appearance, there has been a trend to move from functional
segregation toward functional integration [55]. The notion of functional segregation implies

that a certain cortical area is responsible for some aspects of perceptual or motor
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processing. Although the notion of functional integration supports that many specialized
areas are functionally integrated [56]. So later the integration within and between
functionally specialized areas are described by functional and effective connectivity [57].

A long term goal of neuroscience is to develop models that integrate brain structure
and function to predict human perception, cognition and behavior, but unfortunately they
lack of characterization at the level of the individual subject. Neuroimaging research has
only start to address this gap of knowledge and substantial work needs to be carried out
before the study of individuality and variation of brain networks. The brain connectome is
comprised of both grey matter (GM) regions representing neuronal units of information
processing (the nodes of Figure 4.4) and white matter (WM) tracks, serving as structural

communication pathways (the edges of Figure 4.4) [58].

Anatomical or Connection Matrix Network Analysis
Functional Imaging

NODES: neural elements

EDGES: structural or functional
connectivity values

Figure 4. 4: Connectome nodes and edges. Cortical termination of the arcuate fasciculus.
Yellow higher, red lower termination density. Two magor WM tracts, cortico-spinal tract
(CST) & arcuate fasciculus [58].

Generally brain connectivity describes the relationship between brain regions that
may be spatially close or distant, anatomically different and also are connected either
functionally —spontaneous intrinsic synchronization- or structurally —neuronal axons [59].
Due to its diversity, connectivity divided into three forms. These are structural, functional

and effective connectivity [60].
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4.2.2 Structural connectivity

As it has already been mentioned, connectivity is the study of the interaction within two
different brain regions. The structural or elsewhere the anatomical connectivity describes
the physical connections or interactions through synaptic contacts within neighboring
neurons or fiber tracks connecting neuron pools in spatially distant brain regions. All these
fiber tracks are known as white matter of the brain. Persistence and stability on short time
scales as well as substantial plasticity on longer time scales (may be observed sometimes)
are characteristics of that type of connectivity [60, 61]

The anatomical connectivity can be acquired using techniques of structural imaging
along with diffusion tensor tractography methods. DTl and fiber tractography allow the
researchers to measure the properties of the connectome in living human brains at the
meso- and macro-scale (mm to cm), providing information about brain computational
machinery that changes all the time. Recent technologies identify major white matter tracts
in living brains. These tracts are the most prominent edges within the connectome,
information highways that implement communication about the senses, motor control,
language and cognition. The variability of the connectome leads to the following limitations;
firstly the dependency of connectomes on the tracking methods and secondly the
insufficient reliability of connectome estimates in individual brains or even in intra-individual
brain when explored at different times [58, 120].

Basically DTI measures the water diffusion tensor with the use of diffusion weighted
pulse sequence as they are sensitive to the random water motion in microscopic level [59,
64]. The diffusion of the water can be characterized due to the motion (constrained or not
constrained), as anisotropic and isotropic. The diffusion is anisotropic when the motion is
constrained in white matter tracks or in other words when the motion prevails towards one
direction than another. On the other hand, the characterization of isotropic refers to the
case where diffusion occurs in all directions in equal and random rate. That happens deep in
brain, in ventrices where the fluid covers large areas and the motion is not constrained [62].
However these methods suffer from low spatial resolution. In DTI literature the most
mentioned frequent diffusivity indicators are the mean diffusivity (MD), franctional
anisotropy (FA) and Mode. MD is based on the volume of the diffusion ellipsoid which
describes the average displacement of water molecules as an outcome of diffusion in a given
amount of time. Lowest number of MD is observed in tissues where diffusivity is restricted
(e.g WM), while highest in tissues where there are some impediments to water diffusion (e.g

CSF). As for the FA, is known as a measure of the sphericity of the diffusion ellipsoid. The
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values range from zero, which indicates the spherical diffusion, to one which indicates
absolutely aspherical diffusion. Also reduced FA means that there is damage to the axon
membrane, reduced axonal myelination, reduced axonal packing density and/or reduced
axonal coherence; on the other hand increased FA leads to supranormal levels of
myelination or axonal sprouting. A relatively recently development of such indicators is the
Mode. That type, provides furthermore information expressed by the 3D shape of the
diffusion ellipsoid than the one that provided by FA. Basically describes whether the shape
of the diffusion ellipsoid is cylinder (highly “tubular” anisotropy) or disk (highly “planar”

anisotropy) for a given FA value [63].

DTl fiber tracking

The aim of DTI fiber tracking is to specify intervoxel connectivity based on the anisotropic
diffusion of water. The diffusion tensor of every single voxel is used by fiber tracking so as to
observe an axonal tract in three dimensions from voxel to voxel through the human brain.
DTI divided into two broad categories, the deterministic and the probabilistic that they
include reconstruction methods for WM tracts. For the first category (e.g Fiber Assignment
by Continuous Tracking), line propagation algorithms along with local tensor information for
each step of propagation have been applied. For the second category, the global energy
minimization, which detects a path within two predetermined voxels with minimum energy
violation, is the main characteristic. That type also is effective for tracking fibers in areas of

reduced anisotropy, not excepting gray matter [64].

4.2.3 Functional connectivity

With the term functional connectivity (FC) is meant “the temporal correlations between
spatially remote “neurophysiological events”. In addition with anatomical and effective
connectivity, functional connectivity investigates regional interactions in the brain at a
macro scale using datasets from electroencephalographic (EEG), magnetoencephalographic
(MEG), positron emission tomography (PET), single-photon emission computed tomography
(SPECT), local field potentials (LFP) and functional magnetic resonance imaging (fMRI) [65].
Another useful clue is that FC does not explain how these correlations are mediated, but
only provides information about the correlation that is noticed [22]. As it is mentioned the
use of different neuroimaging modalities is required so as to measure FC. This is because of
the statistical behavior of FC, as it relies on statistical measures such as correlation,
coherence, spectral coherence or phase locking [7]. From the aforementioned modalities,

fMRI is the most commonly used and therefore the most important as it studies the blood
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oxygen-level-dependent (BOLD) signal of the data. As itis commonly accepted, the methods
that are used for FC analysis via fMRI are generally grouped into two types: model-based
methods and data-driven methods (Figure 4.5). The first type is based on prior knowledge,
methods with many variables are included and its use is widely. The second type does not
need any prior knowledge, methods with one variable are included and it is useful for

resting-state fMRI studies, where spatial and temporal pattern are unknown [11, 124].

Methods of functional connectivity analysis study

| l

Model-based Data-driven
Statistical Parametric
Decomposition Clustering
Mapping (SPM)
Principal Component Fuzzy Clustering
Cross-carrelation Analysis/ Singular Value Analysis (FCA)
Analysis (CCA) Decomposition
(PCA/SVD)
Hierarchical
Coherence Analysis Clustering Analysis
(CA) Independent (HCA)
Component Analysis
(ICA)
Probabilistic ICA
(pICA) Spatial ICA Temporal ICA

Figure 4. 5: Current Methods for FC fMRI study [65].

The correlations in activity that are mentioned all the time, which describe the FC,
can result from a number of reasons. As it is shown in Figure 4.6, there are in general three
ways to describe the correlations. At first, the direct influence from one region to another
region which is known as effective connectivity. More specifically the signal along
connection between two regions one of which sends the efferent connections to the other
can be interpreted as a correlated activity. Secondly, the indirect influence where a third
region operates as a mediator between the two regions. At last, the shared influence where

a third region works as a common input for both of the regions. This is named as the
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problem of stimulus-driven transients. The critical point is that only in the first case does
functional connectivity reveal a direct causal influence between regions. For that reason,

results from functional connectivity analysis must be interpreted with great caution [66].

© © O
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Direct influence Indirect influence Shared influence

Figure 4. 6: Direct influence (left panel), indirect influence through a third region (centre
panel) and shared influence of a common input region (right panel) [66].

Model-based functional connectivity analysis

Essentially in a model-based analysis it is important to select a seed or region of interest
(ROI) and find the linear correlation of this seed region with all the other voxels in the entire
brain, thereby yielding a seed-based FC map. For that reason this method is also referenced
as seed-based analysis. Because of the fact that this analysis is dependent on the definition
of the ROls, it is difficult to test the FC of the whole brain using this technique [60]. As it is
known this method is based on prior knowledge or experience as it is required a priori
selection of a voxel, cluster or atlas region from which the extraction of time-series can be
accomplished [65]. Also seed-based analysis was the first method that has been used by
Biswal et al. to identify the resting-state networks [67]. In accordance to the metrics that
have been used for the measurement of connectivity, the model-based methods could be
classified in cross-correlation analysis, coherence analysis, and statistical parametric

mapping (SPM) [65].

Cross-correlation analysis (CCA)
That type of analysis is a technique that has been widely used in many fields. Basically this
analysis suggests that if one region of the brain is functionally connected to a certain seed,

there should be correlation in terms of their BOLD time courses. Mathematically for fMRI
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BOLD time course F,(k) and F, (k) is a seed (which is also a time course), then the CCA

estimates the correlation at lag u as:

Covy y (1)

COTTx’y ([1) = W, (4.13)

where Var(x) and Var(y) are the variances of (k) and F, (k), respectively; Cov,,, (u) is

the cross variance of Fy (k) and F,, (k) at lag u:

Covey W =E{((E. () — E(E))x ((F, () — E(F, )},  (4.14)

E is the expected value, E(F,) and E(Fy ) are the expectation or the mean of F, (k) and
E, (k), respectively. If Covy, (u) is above a certain threshold, the two BOLD time courses
F, (k) and E, (k) are considered as functionally connected.

An advantage of that analysis is that it is not needed the full-lag-space calculation of
cross-correlation of the hemodynamic response of blood, where its computational cost is
high in order to calculate the cross-correlation of all lags. Although the hemodynamic
response function (HRF) varies, its duration is restricted. That happens because it will return
to baseline after some time (few dozen seconds). Therefore the correlation must be
computed with a time window of a dozen time points or so. In fact many cross-correlation
researches compute the correlation with zero lag [65].

Although CCA has been used for fMRI data analysis on both task-based and resting-
state dataset, the use of correlation at zero lag has been controversial. From the one
perspective, correlation is sensitive to the shape of HRF while from the other high
correlation can be detected within regions that have no blood flow fluctuations. The
presence of noises such as blood vessel activity and cardiac activity in the brain would also
conclude to delusion of high correlation. All these problems overcame by the appearance of

a new analysis, called coherence analysis [65].

Coherence analysis

While correlation is defined in the time domain, coherence is defined in the frequency
domain. The first is responsible for time delays comprising the effects of one region on
another and it has great usage as statistic for the functional connectivity studies. In the case

that the ordinary zero-order correlation within two different regions is moderate or low,
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means that the time-series in one region is broadly similar to that in another, but with a time
delay. In contrast, the coherence is high between the bandwidth of the curve [68].

For the same time courses Fy (k) and F, (k), the coherence is expressed as:

|Fy,y () 12

Cohry (D) = - m )

(4.15)

where F.,,(1) is the cross spectrum, defined by the Fourier transform of the cross

covariance as follows:

Fey(A) = Xy Covyyy (u) X e /2%, (4.16)

where F, (1) is the power spectrum, such as the F, ,,(1). They are defined as following:

Fex(A) = Xy Covyy (u) X e /2%, (4.17)

Fyy(2) = Xy Covyy (u) X e/, (4.18)

The study of time course relationships can be achieved via the expression of
correlation in frequency domain. For example, at high frequency around 1.25 Hz the
coherence may be caused by the cardiac activity instead of the functional connectivity.
While at low frequency values below 0.1 Hz the coherence can be related to functional

connectivity [65].

Statistical parametric mapping (SPM)

The last model-based method that will be referenced is statistical parametric mapping
(SPM). Its use is based on finding the patterns of activity that are induced by cognitive tasks
in a fMRI experinment. Although is considering from scientists as a method for task studies,
recently, SPM methodology has been applied for the detection of functional connectivity
under resting-state [70]. The point of this method is to copy a stimulus based on the
selected seed, then to use it in the same way as the real stimulus did in cognitive tasks. This
happens because in resting-state studies there are no designed cognitive activities. As for
the modeling and statistical inference, these are following the basic steps of the classical

SPM [65].
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In general this analysis averages the voxels in certain seed, after the steps of scaling
and filtering across all brain voxels, and is considering it as a covariate of interest in the first
level of the analysis. Then the second-level random effect of analysis took place where
contrast images were determined individually for each subject, that are corresponding to
that regressor. The aim of this step is the definition of the brain areas that exhibit significant
functional connectivity across subjects [65].

SPM is, basically, a voxel-based approach that adapts the classical inference, in order
to gain the remark of particular regional responses related to experinmental factors.
Nowadays statistical parametric maps are considered as a way to make classical inferences
about spatially extended data with the joining of general linear model (GLM) and gaussian
random field (GRF). That joint of the two models is not random. GLM estimates the
parameters that could explain the data, while GRF solves the multiple comparison problems
so as to make statistically powerful inferences [65,69].

Although the use of model-based methods, especially CCA, is remarkable there are
some disadvantages that have to be mentioned. It is common that different seeds would
lead to detection of different connectivity, so seed-based methodology renders the detected
functional connectivity sensitive to seed selection [71]. Also the need of prior knowledge
constrains the exploration of possible functional connectivity. This lead to the conclusion
that only brain regions related to the prior knowledge will be investigated, neglecting other
parts or functions of brain. So this method is not capable to explore the whole brain and
might need other type of methods to achieve that. Data-driven methods assume to solve

this problem [65].

Data-driven functional connectivity analysis

The development of data-driven methods lead to overcome the limitations that where
observed on the model-based methods and also make possible to investigate the functional
connectivity of the whole human brain. This new type for detection of the functional
connectivity has two main categories. The first category is known as decomposition and is
composed of principal component analysis (PCA), singular value decomposition (SVD) and
independent component analysis (ICA). The goal of this category is to represent the original
fMRI data as linear combination of basis vectors (PCA/SVD) or as statistically independent
components (ICA). Clustering analysis is the second category and is composed of fuzzy
clustering analysis (FCA) or hierarchical clustering analysis (HCA). The aim of this category is

to apply traditional clustering techniques to fMRI data [65].
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Decomposition-based methods

Principal Component Analysis and Singular Value Decomposition

Principal component analysis and singular value decomposition are two techniques that
have been used in a lot of researches and because of their similarity in their theoretical
background, they are considered as one type. To begin with PCA/SVD is a method that
reexpresing a dataset in terms of a set of components that are uncorrelated, or orthogonal
to one another. The first principal component is equivalent to the direction through the
data that has the biggest amount of variance, while the second component is the direction
with the next biggest amount of variance and also is uncorrelated with the first principal
component and so on. The numbers of components is the minimum against the number of
observations or dimensions. Another important information about PCA is that it can
analyzes only the data from the first few principals components, which accounts from the
majority of the variance in the data. Thats why it can be applied as a data reduction
technique [66].

From the mathematically perspective, the aim of PCA/SVD is to represent the
observed fMRI time courses X with a combination of orthogonal contributors. Each from
the contributors is made of a temporal pattern (principal component) multiplied with a
spacial pattern (an eigen map). The SVD of X (T time points X N voxels) is:

X=0svT =30 S;uv7, (4.19)

where §; is the singular value of X, U; is the ith principal component, V; is the corresponding
eigen map and p is the number of the collected components. The generated eigen maps
reveal the connectivity of different regions of brain, regions with high absolute values
(positive or negative) are considered as correlated [65].

To perform PCA on fMRI data, a two dimensional matrix is applied that has been
created by the reformation of the data, with voxels as columns and time-points/subjects as
rows. Then a set of components will be provided from PCA that have a value for each time-
point, which reveals the combinations of voxels that account for the most variance. Also
every component has a loading for each voxel, denoted the contribution of the voxel to each
component [66].

In general this technique is simple and easily implemented. However it has the
disadvantage of being sensitive only to signals that follow a Gaussian distribution. Although
some signals in fMRI data follow such distribution, there also many signals of interest that do
not follow such distribution [66]. Another issue is that its use is constrained in functional

connectivity detection. That happened because it fails to identify activations at lower
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contrast to noise ratios (CNR) when there are other sources present. Last but not least
PCA/SVD is used some times as a preprocessing step for reduction of the dimensions for

further analysis, just like ICA [65].

Independent Component Analysis

Independent component analysis was developed to give a solution to the problem called the
blind source separation, which means to detect the unknown signals in a given dataset [66].
Blind signal separation is an explorative technique which is used in the field of image and
sound analysis. Because of the fact that signals are from various types of fMRI recordings,
blind separation techniques are suitable to isolate and distinguish the source of these signals
separation [72].

ICA is a popular method for functional connectivity detection with no need of prior
knowledge about the spatial or temporal patterns of source signals; so it has been applied
for both task-based and resting-state studies. Particularly for an rs-fMRI signal, ICA
facilitates the effective extraction of distinct rs-fMRI networks by using mathematical
algorithms to decompose the signal from the whole brain voxels to temporally and spatially
independent components.  ICA investigates multiple simultaneous voxel to voxel
interactions of distinct networks in the brain. It is assumed as a powerful technique which
utilizes for both group level analysis and same group analysis, having different conditions
such as psychological, physiological and pharmachological [60, 124].

From the mathematically perspective, ICA searches for linear combination of
components in the dataset. In contrast with PCA/SVD, ICA finds components that are as
statistically independent as possible. For fMRI data X (T time points X N voxels), the ICA
model can be written as:

X=AC =YV, AC, (4.20)

where C; is the ith underlying signal source, A is the mixing matrix with dimension

equivalent with T X N. Every different source is independent from one another:

P(Cy,Cy, ..., Cy) =TI, P(C), (4.21)

where P(C;) presents the probability of the ith underlying signal source. Assuming as the
pseudo reverse of A the W, the independent components can simply obtain by the following

equation [14]:
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C =WX. (4.22)

In the initial stage, ICA decomposes the concatenated multiple fMRI data, so as to
identify distinct patterns of functional connectivity in every subject. In the next stage
identifies for all the subjects, the spatial maps and the associated time courses. In the third
stage a generation of different component maps, is happening, for different subjects and are
complied into a single four-dimensional file to perform the non-parametric analysis. That
kind of analysis is a methodology of statistical test which aims to extract statistical
significance across groups or across subjects in a group [60].

During the performance of ICA, two different assumptions can be made that are
leading to different results. Firstly for both of the assumptions, the reconstruction of the
original 4D matrix into a 2D matrix is needed. Afterward, the first assumption claims that
the data composes of T random variables (time-points) where all of them are measured in N
voxels. So T three-dimensional maps of activity are generated while there is possibility to
analyze the 3D map into an original N X T matrix. The result from this is that the mixing
matrix A has T X T dimensions. According to the second assumption, the expression of
data is described as N random variables where all of them are measured in T time-points.
Consequently, the output is N independent time-series with T as the length. This leads to
anoriginal T X N matrix with X dimensions and a mixing matrix A with N X N dimensions.
For the solution of ICA there have been used two common algorithms, Infomax and Fixed-
Point. Both of them are attempt to minimize the mutual information of components C..
Infomax manages to accomplish this aim, using adaptively minimization of the output
entropy of neural network with as many outputs as the number of ICs to be estimated. As
for Fixed-Point, this is based on the notion of negentropy. Several studies reveal the
conjoint efficiency and accuracy of the findings after the use of both algorithms. Obviously
they have their own separate advantages. Fixed-Point algorithm prevails over Infomax in
the level of spatial and temporal accuracy, while Infomax shows competitive superiority in
global model estimation and the decrease of noise [65, 72].

The ICA can be divided into spatial ICA and temporal ICA which depends on the way
the data are decomposed. Spatial ICA is based on the analysis of spatially independent
components and spatially independent time-course. In contrast, temporal ICA is denoted to
the data decomposition into temporarily independent components and temporarily
independent time-course. The nature of the task determines which of the two methods is
the most suitable, because these methods lead to different results in relation to the

characteristics of the underlying signals that are to be assessed. For example, when the
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underlying signals are spatially but not temporarily correlated, temporal ICA is the proposed
method. When, in contrast, signals are temporarily but not spatially correlated, spatial ICA
must be applied [65].

Although the widely use of ICA algorithm to fcMRI studies and especially on resting-
state fMRI dataset, there are some “traps” that have to be on concern. As it has already
been mentioned, this decomposition-based method relies on the independence of the
components (signal sources) even it is spatially or temporally. If something like that
hindered, the conclusion will be the decrease of effectiveness of ICA. Another issue is the
selection of the number of independent components and how to threshold the IC maps.
These questions have been studied by Ma et al. and the conclusions that were referenced
were the following; when the number of ICs is smaller than that of the source signals then
ICA results are highly dependent on the number [71]. Because of the difficulty of the direct
thresholding of IC maps, it is widely accepted the conversion of an independent map with a
non-Gaussian distribution into a z-map with a Gaussian distribution [65]. Ma et al.’s results
showed that the conversion of z-map is inclined to overestimate the false positive rate (FPR)
[71]. However this overestimation is in many cases acceptable. The last issue that has to be
mentioned is about the consideration of ICA as a non-free generative model, which
expresses in detail the fMRI data through source signals and the mixing matrix A. Because of
this fact, the evaluation of the statistical significance of the source within the framework of
null-hypothesis is not allowed. The solution of this “trap” comes from a newly development
of a model called probabilistic ICA. As stated in pICA, a set of q (q < p) statistically
independent non-Gaussian sources (spatial maps) produce the observed p dimensional time-
series through a linear and instantaneous ‘mixing’ procedure violated by additive Gaussian

noise n(t):
Xi = ASL + 1% + Ni, (423)

where X; is the p-dimensional column vector of individual measurements at voxel location I,
A is mixing matrix, S; refers to the g-dimensional column vector of non-Gaussian source
signals contained in the data, u is the constant part and 7;is the Gaussian noise
n;~ N (0,0%%)) [14, 21].

ICA is not able to naturally generalize to a method suitable to make significant
results about a group of subjects, in comparison with univariate methods. In contrast using
for example GLM approach on a dataset, the regressors of interest will be specified by the

scientist. This is the reason that inferences about group data arise naturally as all subjects in
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the group use common regressors. From the other perspective with the implementation of
ICA there is not the capability to clarify directly the way of making inferences about group
data, because different subjects in the group have different time-courses and so the
classification follows different way. For that reason, several ICA multi subject approaches
have been recommended. There are five categories of these approaches, including single
subject ICA, group ICA with temporal concatenation or spatial concatenation, pre-averaging
and tensor ICA. Their distinction relies on the way the data has been grouped before the
analysis, what kinds of output are available and the way of the processing of the statistical
inference [74].

In the first category a large amount of approaches are included. The first step is the
performance of a single-subject ICA and then follows the application of other approaches
like self-organized clustering or spatial correlation of the components in order to combine
the output into a group post hoc. Typically this category identifies unique spatial and
temporal features, in contrast with the fact that the components are not certainly mixture
similarly for each subject, because of the noise of the data. As for the other four
approaches, those include the computation of ICA on the whole group dataset. After the
examination of the temporal and spatial concatenation, the single performance of ICA is an
advantage that has been referenced. Subsequently, it is able to be separated into subject-
specific parts and because of that is quite simple to make a comparison between subject
differences within a component. While temporal concatenation approach gives unique time
courses for individual subjects and supposes same aggregate spatial maps; spatial
concatenation approach provides unique spatial maps with common time-series. Even
though there are differences between them in the organization of the data, there are proofs
that temporal concatenation suits better on fMRI data. This conclusion arise from the fact
that ICA time courses are greater concerning temporal variations in contrast with the
variation in the spatial maps at conventional field strengths of 3T and below.

As a less computationally demanding approach is averaging the data before ICA. Of
course allows the possession of a common time course and a common spatial map. Last but
not least, recently great interest arises from the multidimensional or multi-way or N-way
decompositions which represent the tensor decomposition approaches. However their
effectiveness on group and multi-group fMRI data, have not been proven. According to a
typical approach, a three-dimensional tensor used so as to assess a single spatial, temporal
and subject-specific process for every component to reorganize the multidimensional

structure of the data in the level of estimation. Definitely a preprocessing procedure is
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necessary as a precaution of existence of different time courses within subjects. It is
comprehensible that this works in resting-state MRI studies, where there is no
synchronization of time courses within subjects; while in task-based experiments similar

timing between subjects are existed [75].

Clustering Analysis

The second category of the data-driven analysis of functional connectivity is known as
clustering analysis. The variety of the methods of this analysis has been applied in many
functional MRI studies so as to investigate the activity patterns. Fuzzy clustering analysis,
vector quantification, self-organizing maps and neural gas network are the methods that are
included in the notion of clustering. The aim of these methods, and in general in clustering
analysis, is to division the data into different clusters that rely on the intensity proximity of
the time course. When time courses are close enough, they are considered as one cluster
[65]. In the case of an fcMRI study the use of clustering analysis based on the intensity
proximity is not able to give the desired detection of functional connectivity. For that reason
instead of characterizing the distance by intensity proximity, they use the similarity within

time courses as measurement of distance [76].

Fuzzy Clustering Analysis (FCA)
The term fuzzy clustering analysis means an allowing fuzzy partition of the dataset. The
main concept of this method is the minimization of an objective function, which is defined,

most of the times, as the total distance within all patterns and their cluster centers [65]:

J(M,€) = Rz ¥ MPD2, (4.24)

where M;; is a metric that measures the probability of a voxel i relates to j, D;; is the
distance within voxel i and the centroid (; of a cluster j, N is the amount of voxels in brain,
K is the number of the primary clusters and ¢ is a weighting component. The objective
function is subject to [65]:

MMy =1i=12,..,N , (4.25)

YEYM; =1, j=12,..,K;M;; €[01], (4.26)
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A solution that provided by Bezdec for the membership matrix M and clustering

centroids C, is presenting below [79]:

2

p?t i =1,2,..,N;
Mij =——, ﬁ'= 1,2, .., K;" (4.27)
2%=KDiql)_1 1449 ’ ’
Ti2) My X
G = 1—qu,] =12, ..,K;, (4.28)
i=1 ij

where X; is a vector which includes the coordinates of a cluster centroid i. After a repetitive
process the membership matrix M and centroids can be acquired.

For fcMRI study has been proposed two distance metrics DZ. and D2, that was based on
Pearson’s correlation coefficient CCy ,, within two time courses F, (k) and F, (k). The two

distance metrics are shown below:

B

1 _ 1-CCyy
Dee = (HCCW) : (4.29)
D¢ = 2(1 —CCypy), (4.30)

where CCy ,, is the cross-correlation of F(k) and F, (k) at lag zero. The two proposed
distances describe the degree of correlation within two fMRI time courses. It is known that
as functionally connected brain areas are those where their distance is under a certain
threshold.

However a significant question concerns about the number of clusters that should
be selected and generally which would be the typical number so as to investigate the
connectivity. Different reports had been shown that a variety of numbers lead to a
significant affection of the connectivity. This observation happens especially when the
initially chosen clusters are less than the number of underlying function networks [77].
Several studies have been done so as to give an appropriate answer, just like Golay et al.[65]
which suggested the use of a large number of clusters initially. This suggestion will lead to
obtain a complete description of the clusters without acquisition of insignificant cluster
centers. Despite these recommendations this issue is an intrinsic problem for FCA and might
not be completely solved within the framework of FCA. Another issue concerns the distance
metrics. Golay et al.[65] proposed that might be mixed with noises, such as human heart
beat and respiration. These noises contribute to the distance metrics at a relatively high

frequency domain (around 1 Hz), while the distance contributors that are of interest, are low
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frequency oscillations (<0.1 Hz). At this frequency domain observed synchrony in cerebral

blood flow and oxygenation between different brain regions [65].

Hierarchical Clustering Analysis
This analysis have been introduced by Cordes et al.[65] in order to give a solution to the
aforementioned problems of the FCA, applying a new distance measurement based on
frequency analysis. Hierarchical clustering analysis, in contrast with FCA, considers each
voxel as one cluster at the initial stage and combines the close clusters according to a certain
distance measurement. Applying different ways lead to measure the closeness of the
clusters, which distinguishes single-linkage from complete-linkage and average-linkage
clustering. Is characterized as an expensive computational technique and is thought to be
more effective when applied to 3D human brain data.

The recently developed single-linkage HCA algorithm measures the distance
combining correlation analysis along with frequency decomposition. The decomposition of
Pearson’s correlation coefficient within two time courses Fy (k) and F, (k) can be expressed

as below:

CClayy = V2 Re(wf)Re(fpfS) + Im(wy)im(gp;)

N(Re(wf)Re(<pf)+ Im(wf)lm(<pf))
S

where wr and @ are complex frequency components of F, (k) and F, (k) respectively, Re(x

) and Im(*) describe the real and imaginary component of signal * and S is expressed as

below:

§ = \/Zﬁ;& Fe (k) EieZo By (k), (4.32)
The distance D (x, y) within the two time courses has been defined as below:

D(x,y) = 1= CCr(x,y), (4.33)

In conclusion, a low-pass filter to Pearson’s correlation coefficient applies this

distance and then creates a reverse increase function to map the output into distance. From
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the above filtering process, the extraction of the information from correlation coefficient
happens. That information is the one that reflects synchrony in cerebral blood flow and
oxygenation between different brain areas. Results from experiments, that have
investigated both simulated data and human brain data, have proven the successful remove
of the structured contaminations (respiratory or cardiac noises) [65].

Because of some disadvantages, such as the high complexity, sensitivity to outliers
and the poor scaling, HCA has not been used in resting-state fMRI analysis just like other
methods that have been used fluently. Something that should not been forgotten is the fully
deterministic character of this approach and also the ability to express data as stratum
through a hierarchical structure [78].

Model-based methods against Data-driven methods

A number of researches have investigated the issue about when the use of model-based or
data-driven methods is most appropriate or elsewhere which of the two methods is more
capable and with the best results. However, no one outperformed the other in an all around
way. The choice or the preference of a model-based or data-driven method depends on the
concept of the experiment. In general there is no reason to forget the knowledge and the
experience from the one type of method and only use it in every situation. From the other
hand is not reasonable to use CCA instead of ICA in order to detect extensive regions of

correlated voxels [65].

4.2.4 Effective Connectivity
As it has been mentioned, the aim of functional connectivity methods is to find temporal
correlations between spatially remote neurophysiological events. However a very important
issue is whether the activity, from the neurophysiological events, has a causal influence in
the activity of another brain region. Effective connectivity methods were created and
applied for that reason, specifically to test causal models that concern the interactions
within regions either at a synaptic or population level. Such models of causal processes are
described in terms of directed graphs, just like in Figure 4.7. There is also another definition
of them, named as path diagrams in parts of path analysis and SEM. More specifically the
nodes (circles) in Figure 4.7 illustrate the brain areas while the edges (lines with arrows)
illustrate the causal relations [66].

Aertsen and Preibl [80] proposed that “the term of effective connectivity should be
understood as the experiment and time dependent, simplest possible circuit diagram that

would replicate the observed timing relationships between the recorded neurons”. This
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proposal leads to the conclusion that effective connectivity is dynamic, namely activity
dependent, and also that it relies on a model of coupling or interactions [80].

While FC is an observable phenomenon that uses measures of statistical
dependencies, such as correlations, coherence or transfer entropy so as to be quantified;
effective connectivity wants to explain observed dependencies (functional connectivity) that
corresponds to the parameter of a model. This is very important because in this way the
analysis of effective connectivity can be reduced to model comparison, i.e. compare a model
with and without a specific connection to infer its presence. In this sense, in the analysis of
effective connectivity, every model corresponds to an alternative hypothesis about the
cause of the observed data. In general the key aspect of effective connectivity is that it
relies on the comparison or the optimization of the given models. In contrary, the functional
connectivity is essentially descriptive [80].

It is obvious that effective and functional connectivity have differences in practice,
even though their common use in the areas of neuroimaging and electrophysiology. For
example, it could be an attractive approach of using temporal dynamics (dynamic FC) on the
development of FC but it is restricted because of the lack of the causal explanation. This
happens because of the fact that FC focuses on the definition of second-order data
characteristics, preventing the interpretation of neurophysiological time-series under a
mechanistic point. Thus is it important to divide the notions of functional and effective
connectivity as it forms the character of the inferences coming from functional integration
and solves different problems that result from intricate interrelationship within effective and
functional connectivity [81].

Despite the fact that effective connectivity analysis is implemented to fMRI data, it is
important to know that the underlying neuronal signals concern the causal interactions,
which are the main focus of the study. Thus, the evaluation of the causal relations from
variables, that derived from observed signals and also contain noise and systematic
distortion of the signal, is required. But during the estimation, the recorded noise heads to
identify causal relations that are not actually existent. Also another problem relies on the
use of temporal information for the extraction of the causal relations. In that case the
alterations of the hemodynamic response across brain areas are an additional purpose for
fake causal association.

Except for the aforementioned information about the relations within the observed
activity through brain areas, an interesting perspective is to study about the connectivity in

inferences that showed up in a bigger amount of individuals rather than in a set of subjects.
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Parameters such as age, genetics and experience e.g. maybe affect the connectivity pattern,
even in the case of same causal structure. This leads scientists to the conclusion that the
development of methods, at a population level, for effective connectivity evaluation is
required. The combinational approach that consisted of data across individuals and also the
model’s estimation in the complex dataset is not recommended. That happened because
the conclusion would be an observed pattern of independence and conditional
independence interactions that did not correspond to any individual of the group. Thus a
random effect analysis for the accurate and effective evaluation of connectivity across
individuals is needed [66].

The diverse nature of the observed causal inferences of the effective connectivity
and its various interpretations lead to the development and application of different methods
of effective connectivity [82]. Two models are used to describe the effective connectivity,
the linear and the non linear. Those models give details of the mathematical perspective
about the way of connection of brain regions, and also of the neuroanatomy perspective
about which regions are connected. Due to some previous knowledge, while the linear
model provides sufficient results, the non linear model is that of more interest. Specifically,
it is known that the brain responds at simple and well-organized experiments in a directed
process, in contrast with the non linear neurophysiological interactions that make the linear
model’s efficiency controversial [22].

The most commonly used approaches for the study of effective connectivity with
fMRI, are the structural equation modeling (SEM), Granger causality analysis, dynamic causal
modelling (DCM), graphical causal modeling, dynamic Bayesian networks, switching linear
dynamic systems (sLDSf) and psychophysiological interactions (PPI). Those have been

applied in a variety of clinical studies and will be analyzed below [24].

Structural Equation Modeling (SEM)
The first method that will be described, for the analysis of effective connectivity is the
structural equation modeling. SEM is a method in which hypotheses about causal inferences
within variables can be examined. Elsewhere defines a set of equations with supporting
assumptions of the system being analyzed, and the parameters are adapted from statistical
observations [66, 83].

SEM belongs to the category of linear statistical technique which illustrates steady-
state connection within brain areas using the covariance structure of the data, while the

temporal dynamics of the fMRI time-series are not of concern. It is worth noting that is an
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ideal method for the estimation of effective connectivity on fMRI data [84]. The path
coefficients for every link are estimated by the changes in activity of an area that has been
affected by a given unit change. Also they indicate the average influence throughout the
measure of the time interval.

From the mathematical perspective, a SEM model can be expressed as:

Y = MY +¢, (4.34)

where Y is the data matrix, M is a path coefficients matrix and ¢ is independent and
identically distributed Gaussian noise.

The previous equation can be expressed and in another form as below:

Y=(0-Me (4.35)

where [ is the identify matrix. So as to acquire the result for the unknown coefficients that
are included in M, the empirical covariance matrix Y is used [85].

As well as the modeling connectivity within regions, SEM can also have extraneous
variables along with error terms for the observed variables. Therefore can include /atent
variables which are hypothesized but unobserved variables, that are associated (in some
way) with the observed variables.

SEM, instead of comparing the actual and predicted data, achieves the estimation of
the parameters by minimizing the difference within the actual and predicted covariance
between the variables. The estimated parameters are called as path coefficients and
illustrate how a change of a variable can lead to a change in another variable, while all other
variables are staying constant. After the estimation level, the use of statistical test is
required so as to see the fitting of the observed data [66]. This technique is advantageous
besides others because of the fast and robust computations and also due to the
implementation on large scale simulations applying neuroimaging data. Also because of the
early development, there is access in many software packages and algorithmic variations.
Notably this technique can be used on PET, fMRI and also EEG data and because of that it
suits in cognitive networks including those arbitrating motor control, visual perception,

language function, associative learning and pain processing [86].

70



Even though the important use of it, SEM has some complications when it is
applying on fMRI data. Firstly SEM provides a reduction of temporal information when there
is the assumption of normally distributed and independent from sample to sample data.
That fact leads to the creation of the same path coefficient as the original data on the
permuted one, since the assumed independence is interfered with the analysis of a single
subject [85]. Disadvantages such as the primary estimation of the connection directions,
the incapability of utilizing fully reciprocal models and the high dependency of the sample

size on the absolute evaluation of the model, are also involved [87].

Granger Causality Mapping (GCM)

In general Granger causality is a method that has been advanced in order to model causality
by testing the time relation within variables, for the analysis of economic data. Its base is on
the notion that causes always antedate effects in time [66]. Also its use in a whole-brain
manner is named as Granger causality mapping (GCM), through which the comparison
between the time course in a seed voxel and all other voxels in the brain is tested, and the
Granger causality for every voxel is computed. GCM depends on the idea of Granger
causality in order to define the existence and direction of influence from information in the
data [88].

The multivariate autoregressive (MAR) model can describe how Granger causality
functions, so as to observe interactions among brain areas. This happens by reporting a
causal and dynamic system of linear interaction driven by stochastic innovations [87, 89].
Therefore because of the use of past values of one brain area so as to predict the current
values of another area, a priori specification of a structural model is not needed [85].

The theory behind this analysis is based on the use of a vector autoregressive (VAR)
modeling of fMRI time series in the concept of Granger causality. With the hypothesis that
x[n] and y[n] are the measured time courses of two brain areas (voxels), Granger causality
specifies the quantity of the usefulness of unique information in one of the time series in
predicting values of the other. In the case that incorporating past values of x improves the
prediction of the current value of y then x “Granger causes” y. In this way, temporal
precedence is applied for the identification of the direction of causality from the information
in the data. So as to achieve the computation of Granger causality maps (GCMs), the
temporal precedence is used, that identifies voxels that are sources or targets of directed
influence for any region of interest. Therefore the analysis does not need the specification

of a directed graph model and is investigative in nature.
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From the mathematical perspective, the VAR process of order p can be applied so as
to model the discrete zero-mean vector time series x[n] = (x;[n], ..., xy[n])7 can be

described as below:

x[n] = = ¥7_, Alilx[n — i] + u[n], (4.36)

where u[n] is (multivariate) white noise. As autoregression (AR) coefficients are named the
matrices A[i] because they regress x[n] onto its own past. As it has already been
mentioned, the VAR model can be characterised as a linear prediction model. Thus the
current value of a component x;[n] is predicted by a linear combination of its own past
values and the past values of the other components. With this it is understandable the
matter of importance of the use of VAR model in the quantification of Granger causality
within components.

It is also important to describe the use of temporal precedence in Granger causality
approach. More specifically, if x[n] and y[n] are given time courses, it is easy to identify
independently influence from the two directions with suitable models. The proposal
measure of linear dependence Fy,, within x[n] and y[n] which applies Granger causality in

terms of vector autoregressive models, is shown below:

Foy = Fey + Fyy + Fey, (4.37)

where F, ,, will evaluate to zero if there is no value at a given instant that can be described
by a linear model that contains all the values of the other. Therefore the two directed
components (Fx_w,Fy_)x) take advantage of the time so as to decide on the direction of
influence. However, the total linear dependence does not depend on only these two
components, but also at the undirected instantaneous influence F.,. Basically the last
component quantifies the improvement in the prediction of the current value x by including
the current value of y, and inversely, in a linear model that already includes the past values
of x and y. Itis understandable that F..,, does not contain information about the direction
but illustrates residual correlations in the data. Basically, the directed influence within x and
y can demonstrate from the nonzero values of F.,, [88].

While Granger causality and especially GCM is an attractive approach for the model
of effective connectivity without the requirement of the specification of an anatomical

network, in contrast with SEM and DCM, when applying in fMRI data become problematic
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due to the temporal features of them. The first disadvantage that will be mentioned
concerns the slice timing, since Granger causality depends on the relative activity of regions
in time. Potentially, the alterations in relative timing of acquisition through slices are
probably much larger than the relative timing effects caused by neural processing. Secondly,
the assumption of Granger causality about the similar timing features of the hemodynamic
response across brain is false. Actually, there are many researches that show that
generation of accurate causal influence by Granger causality on fMRI time series does not
exist, against the use of electrophysiological and fMRI recordings. Only in the case that time
series are deconvolved, accurate outcomes can be acquired. The third disadvantage
concerns the problem about sampling the data at a rate slower than the causal process. A
possible solution might be the acquirement of residuals from a time series analysis and after
that the use of graphical causal model. At last, the multivariate extension (when required)
must be done carefully because the results might be unstable due to the involvement of a

large amount of regions [66, 87].

Dynamic Causal Modeling (DCM)

Dynamic causal modeling is a powerful tool that has been applied in a lot of studies. It can
be both used in fMRI and EEG/MEG studies with the generation of mutually confirmative
outcomes that might be more robust and show deeper insights into cortical physiology than
separately [90]. In general DCM addresses causal interactions within distinct predefined
brain areas with the construction and the test of realistic models of the interacting neuronal
areas. DCM estimates the coupling within brain areas and tests how the changes of the
experimental context affect the coupling. Basically, in a neuronal model of interacting
cortical regions DCM adds a forward model, which explains the transformation of the
neuronal or synaptic activity into a signal that can be measured by fMRI (BOLD) or EEG/MEG.
Particularly, a hemodynamic response model is contained in the case of fMRI so as to explain
the transformation [58]. For an fMRI experiment DCM is composed of two sections. The
first concerns about a model of the neurodynamics (i.e. the underlying neuroactivity) and
the second section concerns about a model of the hemodynamics (i.e. the blood flow
response induced by the neurodynamics).

The neurodynamic model in DCM is described by the following equation:

d . ’
Z= =4+ T ()BD) 7z + Cu, (4.38)
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where t is the time, Z; is the derivative of neuronal activity in time, u.(j) is the jth of
J extrinsic inputs at time t and 4, BWand C are connectivity matrices. More specifically, the
matrix A describes the intrinsic connections, which specifies which regions are connected to
one another and also the type of the connections (unidirectional or bidirectional). The input
connections are described by the matrix C, which specifies which regions are influenced by
which extrinsic inputs u.(j). The BU) matrix describes the modulatory connections, which
specify the alterations in intrinsic connections in A by each of the u,(j) inputs.

From the other hand, the hemodynamic model in DCM is alike to the balloon-
windkessel model which aims to model the relation within neuronal activity and alteration in
blood volume, blood flow and blood oxygenation that result in the measured fMRI signal
[66]. The Balloon model is composed by equations that define the association within four
hemodynamic state variables using five parameters.

Due to the involvement of the interaction of two linear effects, DCM is usually
mentioned as a bilinear model. However the use of DCM has been extended to nonlinear
cases in which connections are modulated by a third region [91].

As it is already mentioned, the combination of hemodynamic and neurodynamic models
leads to the full forward model that describes the DCM. The following equation presents the

full model where 6 is a joint parameter vector:

X =F(x,u,0), (4.39)
y = A(x). (4.40)

Supposing a set of given parameters 8 and inputs u, the predicted BOLD response
h (u, 8) outcomes from the integration of the joint state equation and its pass across the
output nonlinearity 4. The observation model that contains observation error e and

confounding effects X can be expressed as [99]:

y=nh(u,0)+ XB +e. (4.41)

Just like the previous methods that have been referenced, DCM has some important
limitations. Firstly, it is known that the validity of the outcomes relies on the anatomical
models that are specified and the regions that are used for data extraction. A possible
solution might be the use of graphical search techniques so as to construct a set of plausible
candidate models and then applying DCM to examine particular assumptions about those

models. Secondly, the current implementation of DCM is restricted because of the models
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that have relatively few regions; MATLAB memory limitations are responsible for this
disadvantage. This might be relieved by the use of 64-bit systems. Furthermore it is a high
computational cost technique with the weakness to estimate effective connectivity in more
than six areas. Finally, in cases where there are correlations within different parameter
values, the estimation of the parameter can be relatively unreliable, while DCM is highly

reliable in model selection [66].

Spectral Dynamic Causal Modelling (spDCM)

The extension of DCM named as spectral DCM aims to model intrinsic dynamics on resting-
state fMRI data, in order to define effective connectivity among populations of coupling
neurons which contains the observed functional connectivity in the frequency domain [99].
Spectral DCM, typically, provides a constrained inversion of the stochastic model with the
parameterization of the spectral density neuronal fluctuations. Through this process it is
possible to compare parameters that encode neuronal fluctuations among groups.

The main notion of spectral DCM is to add a stochastic parameter to model
endogenous neuronal fluctuations in the ordinary differential equations that were used in
the standard DCM. In this way, the equations of motion become stochastic and the
stochastic model for the resting-state fMRI time-series includes the Langevin form of
evolution equation (Z) and the observation equation (y). It is worth to be mentioned that
the observation equation illustrates a static non-linear mapping from the hidden
physiological states to the observed BOLD activity. The two types of equation that are

mentioned are expressed below:

z=f(z,u,0)+v, (4.42)
y=hzue)+e, (4.43)

where Z is the rate in change of the neural states z, 8 and ¢ are unknown parameters of the
evolution and observation equation respectively, v is the stochastic process (state noise)
which models the random neuronal fluctuations concerning the resting-state activity and
u is the exogenous inputs (that are not presence in resting-state condition). In a resting-

state experiment, the Langevin equation will be expressed as below:

z=Az+Cu+u, (4.44)
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where A is the Jacobian, that describes the effective connectivity close to its stationary point
when fluctuations vare not presented [99].

Spectral DCM estimates the time-invariant parameters of their cross spectra.
Efficiently this is performed with the replacement of the original time series with their
second-order statistics (cross spectra), which means that instead of estimating time-varying
hidden states, covariance has been estimated. Consequently, the definition of covariance of

the random fluctuations is required. Thus the observation noise can be expressed as:

gy (@,0) = a, 0P, (4.45)
ge (@,0) = a, w™P¢, (4.46)

where {a,f} € 0 are the parameters that controls the amplitudes and exponents of the
spectral density of the neural fluctuations [55].

While the three aforementioned methods, SEM, DCM, Granger Causality, are the
most used and most qualified in the study of effective connectivity in fMRI data; there are

some other approaches that they are not that common. Those are described below briefly.

Graphical Causal Models

For the characterization of the causal structure of a given dataset, Graphical causal models
have been introduced. The general concept of that approach is that the causal relations in a
graph have consequences concerning the conditional independence relations within
different sets of variables in the graph. With the term conditional independence is meant
that two variables are independent only when they conditioned on some other variables.
Therefore this idea could be described from the point of regression. According to that, when
two variables are correlated via a third variable, means that is equivalent to include it as a
covariate in the statistical model. Thus the third variable functions as regressor that will
remove the correlation and still let the other variables independent.

Over the past twenty years, a set of methods that have been developed in the field
of machine learning has made available to investigate efficiently such graphical structures.
There are a lot of search algorithms for graph investigation, where the most of them are
implemented in TETRAD software. After the identification of the optimal graphs applying
these graph search approaches, then they can be used as basis on experiments with other

effective connectivity approaches (SEM, DCM) [66].
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The combination of the data across multiple subjects is a very challenging stage in a
method like this. Although there are obvious solutions, these have the ability to obtain false
results. As it is mentioned, the independence relations within variables in a given dataset
may not reveal the relations that present for any of the individuals. Ramsey et al.
introduced a method named IMaGES in order to solve this problem. This method searches
across multiple subjects for the best fitting graph structure, focusing at each subject in each
step of the search and then combining the fit across subjects, so as to find the model that

suits beat across the entire group [92].

Dynamic Bayesian Models

In order to address dynamic systems modeling, another approach was introduced named as
Dynamic Bayesian Models. This approach is a temporal extension of Bayesian networks and
is included in the group of graphical models [93, 94]. Dynamic Bayesian networks are based
on a multi-dimensional expression of a random process, in contrast with Bayesian networks
which is characterized by a cumulative probability distribution in a set of random variables
that are independent of time [93]. Due to its dynamic features, it has been used in studies
so as to illustrates the alterations within healthy and control individuals. Also the
application of static Bayesian networks could lead to examine problems such as in genetics,
speech recognition, identification and target tracking, probabilistic expert systems and
medical diagnostic systems. Recently dynamic Bayesian models have been applied to

investigate the genomic regulation [94, 95].

Switching Linear Dynamic System (sLDSf)

In fMRI, Switching Linear Dynamic system provides infinite variability over time in the
parameter values of connectivity and also instantaneous connectivity by probabilistically
combining a small amount of static models regimes [96]. The observation equations that are

used in sLDSf and are based on the linear convolution model are presented below:

vt = Pz + Dve + {;,{ ~N(O,R), (4.47)

Zr = [xtlxt—‘r' Xt—20) Xt-37) ""xt—(h—l)‘r] 7 (448)

where the variable z; includes h errorless lagged copies of the signals x fromx; — (h — 1)7

to x¢ .
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While the observation equation y; describes the instantaneous linear function of z;
any additional observation level input v; and noise {; with a diagonal covariance matrix
RY =0fori # j. The priori known set of basic vectors is the matrix @, which connect the
possible variability in the hemodynamic impulse response function (hIRF), similar to a
canonical hemodynamic response and its derivatives with respect to time and dispersion.
Regionally specific weights for these bases are included in matrix B so as to generate a
unique hIRF B{®. In this way the linear output {® Z! is able to convolve every signal with a
regionally specific hemodynamic response. In order to achieve the estimation, the sLDSf

output equations with three basic vectors need three additional parameters per region [97].

Psychophysiological Interactions (PPI)

The last approach of this category that will be discussed is the Psychophysiological
interactions and the related technique of psychophysiologocal interactions (OPI). That
approach is based on extensions to statistical models of factorial designs. Both of them can
be considered as models of “contribution”. Another important issue is that PPIs are on the
border within functional (FC) and effective (EC) connectivity. It is already mentioned that FC
is defined as the temporal correlation within spatially remote neurophysiological events, are
typically model-free and do not specify a direction of influence [98]. On the other hand, PPIs
are relied on regression models and also the direction of influence is based on the model
selection. As for EC, is defined as the affect that has one neural system to another. Thus,
even if PPls are more related to EC models, because of their simplicity they are very
restricted models of EC [99]. As observed in every other approach, PPl presents some
potential problems due to its simplicity. For example PPl hypothesizes that the fit of
hemodynamic model is precise. Thus in the case of misspecification of the model, this could
result to correlation that reflect activation-induced effects instead of reflecting functional

connectivity [66].

4.2.5 Network Analysis and Graph Theory

In neuroscience, the aim of graph theory is to establish mathematical models of complex
network functions within the human brain. The main characteristics of these networks are
the connections and associations within different regions and subregions of the brain, where
the combination of their dynamics form a larger single network [60]. The explanation of the
brain networks can be achieved in micro-scale, meso-scale and last in macro-scale or large-
scale. But most of the studies use large-scale networks because of some technical

restrictions and computational requirements [100].
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In general the approach of graph theory is based on the study of nodes and edges.
Their relation can be described as G = (V,E), where V characterizes the nodes that are
connected with edges E, which describes the interaction within nodes [101]. Due to the
term of directionality, the graphs usually divided into categories. The main categories are
the directed or undirected graphs, while another classification is the weighted or
unweighted graphs, as shown in Figure 4.7. As unweighted graph is characterized, when an
equal weight of 1 in every edge of the graph, while as weighted when there are different
strengths at every edge. In the cases of undirected and unweighted graphs G = (V,E),
the connectivity patterns could be represented by a V X V symmetric square matrix, the
adjacency matrix A. When there is an edge within node i and j, the entry of a;;, that ranges

between 1 - V,is 1 and it takes the value of 0 in the reverse situation [100].

(a) ) . (b) 2. s (c) .

: 1 - | 3 x/
' 8 - . . _/ 4
1 | g . 1\\.

Figure 4. 7: Different types of graphs: (a) undirected, (b) directed, (c) weighted networks
[106].

In brain functional connectivity analysis, the application of graph theory has lead to
answer a variety of issues that are of interest using information from different graph
parameters. Such parameters are the average path length, degree of node, clustering
coefficient, level of modularity and measures of centrality. More specifically the path length
is graph theoretical metrics that represents the level of global communication efficiency of
the given network. The shortest path length indicates the smallest number of edges that are
needed to attach all the nodes together. Therefore, the characteristic path length of
node i demonstrates the proximity of node i to all the other nodes in the network. The
simplest measurement of all these is the degree of node. Typically this measurement
achieves the quantification of the total number of connections of the node. An unavoidable
role in the flow of information plays the node with the higher degree, for a particular

network. The clustering coefficient parameter represents the local connectedness of the
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graph. Also is the ratio within the number of connections between direct neighbors of node
i and the maximum number of possible connections between the neighbors of node i [100].

The notion of modularity is based on the ability of the networks to create couples on
modular or community structure. As modules, are described a set of nodes with thick
connections among them in contrast with the connections along the whole brain network
which are weak. The performance of the modularity can be achieved through different
algorithms, which give the opportunity to comprehend the anatomical or functional
components [100].

Graph metrics such as global efficiency and average path length point out the
integration of the brain networks. As it is already mentioned, global efficiency tests the
ability of a brain network to spread information on a global level, while the average path
length represents the shortest number of edges that are able to connect two nodes in a
network. Consequently the segregation of the networks can be described through the terms
of local efficiency, clustering coefficient and centrality. Thus local efficiency signifies the
information flow in a local network (subpart of a whole brain network), while clustering
coefficient indicates which nodes tend to create clusters. At last the parameter of centrality
points out the importance of a node and tests whether the particular node operates as a
central or leading role in the spread of the information to other nodes in the network [60].

Another notion that is of interest is the hierarchical networks. This network is
composed of hubs that are connected to nodes, which from a different sight are not
connected to each other. Basically this means that the value of the parameter clustering
coefficient is lower in the case where the degree is larger. The benefits that are observed
are the better top-down relations within the nodes and minimize of the wiring cost. The
weak part concerns of the hubs attacking [102].

It has to be mentioned that as small world network is characterized the one with
high value of local and global efficiency and a small characteristic path length [103, 104]. On
the other hand a large scale network, according to Supekar et al.[60], is characterized the
one that has short range of connectivity and more supremacy from the part of long range
functional connectivity [60].

While the main focus of the seed-based analysis is the strength of correlation within
the regions of interest, graph theory examines and measures the topological properties of
the regions of interest within the whole brain or that network that is related to a particular
function. The keys for the representation of brain networks are the integration and

segregation due to the brain regions that works in such a manner. So anyone can
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understand the significance of graph theory but there are some limitations that have to be
mentioned. Primarily the human brain consists of neurons and physical elements that have
differences and so the estimation of the functional networks is very complicated. Applying
the graph theory, which is depends on voxels or anatomically —or functionally-defined ROls,
it is understandable that it is not quite easy to acquire results. At last even if the selected
nodes are the appropriate (no many differences), the complication of the brain networks
and the unknown pathways make this impossible [105].

Taking advantage of the classical steps of the preprocessing, that were described in
this chapter, with a combination of statistical methods we tried to extract brain connectivity
(functional and effective) from our data. We demonstrate three different studies, where the
two of them focus on extracting functional connectivity and the other one focus on
extracting effective connectivity. More details about the exact steps that we follow and the

results that we take are shown in Chapter 5.
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Chapter 5: Results

5.1 Imaging protocol

5.2 Subjects

5.3 Study 1: Functional connectivity using seed-based analysis
5.4 Study 2: Functional connectivity using data-driven method

5.5 Study 3: Effective connectivity using spectral Dynamic Causal Modeling

5.1 Imaging protocol

The fMRI data that was used in this thesis was acquired from the OpenNeuro database?
[108]. MRI was performed on a 1.5 T MR scanner system (Magnetom Avanto, software
version Syngo MR B17, Siemens, Erlangen-Germany) equipped with a 12-element matrix
radiofrequency head coil and SQ-engine gradients. All subjects underwent high resolution
3D T1-weighted imaging and resting-state fMRI (rsfMRI), the latter with simultaneously
cardiorespiratory monitoring. T1-weighted MR images were acquired with an axial high
resolution 3D sequence (Magnetization Prepared Rapid Gradient Echo, MPRAGE) with
repetition time (TR) = 1900ms, echo time (TE) = 3.44ms, inversion time (Tl) = 1100ms, flip
angle = 15°, slice thickness = 0.86mm, field of view (FOV) = 220mm x 220mm, matrix size =
256 x 256, number of excitations (NEX) = 2. A fluid attenuated inversion recovery (FLAIR)
sequence (TR = 9000ms, TE = 88ms, Tl = 2500ms, slice thickness = 3mm, FOV = 172.5mm x
230mm, matrix size = 154 x 256, turbo factor = 16, NEX = 1) was also obtained in the axial

plane. For the rsfMRI experiments, they used a T2*- weighted echo-planar imaging (EPI)

lhttps://openneuro.org/datasets/ds001354/versions/1.0.0
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sequence (TR = 2130ms, TE = 40ms, flip angle = 90°, slice thickness = 5mm, FOV = 256mm x
256mm, matrix size 64 x 64; number of slices = 32; interleaved slice acquisition) exploiting
the blood-oxygen-level-dependent (BOLD) effect. Three hundred volumes were acquired for
a total acquisition time of about 8 minutes and 10 seconds. The slices were oriented along
and parallel to the bi-commissural plane and covered the entire brain. During rsfMRI
acquisition the subjects were instructed to lie still with their eyes closed and not to think of

anything particular. Cushions were used to minimize head motion during the scan.

5.2 Subjects

In this thesis fourteen (3 women and 11 men, age 63.7+11.1 years, mean + standard
deviation) patients with de-novo PD and fourteen age and gender-matched healthy subjects
(controls) (3 women and 11 men, age 64.7+9.6 years, mean = SD), with no history of
neurological disease and normal neurological examination, take part. The functional images
received from MRI are transformed into image *.img and image *.hdr files with the use of
MATLAB code, while the structural images are transformed into image *.img and image
* . hdr with the MRIcro application. After the transformation every subject has 600 functional
images (300 images in *.img format and the corresponding 300 images in *.hdr format) and
2 structural images (1 image in *.img and 1 image in *.hdr).

The following studies have been performed.

5.3 Study 1: Functional connectivity using seed-based analysis
The main aim of the first study of this thesis is to extract functional connectivity measures
using a seed-to-voxel analysis. This analysis calculates the temporal correlation between
brain activity of a selected region and all other regions applying a General Linear Model
approach. For that reason, CONN functional connectivity toolbox v172is utilized.

The preprocessing is the first step that has to be done in order to start the analysis.
The preprocessing pipeline for volume-based analysis, that is used, includes the following
stages: (1) functional realignment and unwarping (subject motion estimation and
correction), (2) functional center to (0, 0, 0) coordinates (translation), (3) functional slice
timing correction, (4) functional outlier detection (ART- based identification of outlier scans
for scrubbing), (5) functional direct segmentation and normalization (simultaneous
GM/WM/CSF segmentation and MNI normalization), (6) structural center to (0, 0, 0)
coordinates (translation), (7) structural segmentation and normalization (simultaneous

GM/WM/CSF segmentation and MNI normalization), (8) functional smoothing (spatial

2 https://www.nitrc.org/projects/conn
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convolution with Gaussian kernel). After the preprocessing step, a denoising clean up step is
followed so as to remove physiological subject motion and other confounding effects from
BOLD signal.

The seeds that are selected in seed-to-voxel analysis and ROI-to-ROI analysis are
different brain networks such as Sensorimotor, Salience and Default Mode Network (DMN).
Although all these networks are affected by Parkinson’s disease, the DMN is chosen for
functional connectivity analysis since it is used more often in studies. DMN includes Medial
Prefrontal Cortex (MPFC), right and left Lateral Parietal Cortex (LPC) and Posterior Cingulate
Cortex (PCC).

Results

The following tables (Table 5.1 and Table 5.2) present the results of the coordinates of the
maximum voxel, the size of the cluster, the associated brain areas and their figures from the
seed-to-voxel analysis. These tables concern the results from the analysis using the medial
prefrontal cortex as seed for both of groups (PD and controls). The tables for the other

three regions of DMN are stored in Appendix (Table 7.1-Table 7.6).

Table 5. 1: Brain areas that are functionally connected with the medial prefrontal cortex
(MPFC) concerning PD group.

MNI coordinates | Cluster Brain areas Size Size Size Peak Peak
of maximum Size p-FWE p-FDR p-unc p-FWE p-unc
voxel (voxels)
[06, 50, -04] 14435 Orbital Medial 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
Frontal Gyrus Right
[-08, -50, 30] 5344 Posterior Cingulum | 0.000000 | 0.000000 | 0.000000 | 0.000032 | 0.000000
Left
[-42,-64, 32] 1533 Angular Gyrus Left 0.000000 | 0.000000 | 0.000000 | 0.000318 | 0.000000
[64, -18,-16] 1424 Middle Temporal 0.000000 | 0.000000 | 0.000000 | 0.021562 | 0.000000
Gyrus Right
[48 -58, 26] 1144 Angular Gyrus Right | 0.000000 | 0.000000 | 0.000000 | 0.006738 | 0.000000
[-62,-20, -12] 770 Middle Temporal 0.000000 | 0.000000 | 0.000000 | 0.263724 | 0.000002
Gyrus Left
[48, -34, 62] 748 Postcentral Gyrus 0.000000 | 0.000000 | 0.000000 | 0.832015 | 0.000019
Right
[-44, -40, 58] 684 Postcentral Gyrus 0.000000 | 0.000000 | 0.000000 | 0.767841 | 0.000015
Left
[-26, 16, -18] 269 Insula Left 0.000573 | 0.000162 | 0.000022 | 0.078735 | 0.000000
[10, -50, -40] 244 Cerebellum 9 Right | 0.001125 | 0.000286 | 0.000043 | 0.757389 | 0.000014
[-02, -16, 06] 213 Thalamus Left 0.002683 | 0.000620 | 0.000103 | 0.420169 | 0.000004
[02, 06, 72] 202 Supplementary 0.003689 | 0.000782 | 0.000142 | 0.858180 | 0.000022
Motor Area Right
[-34,-74, -40] 156 Cerebellum Crus2 0.014904 | 0.002932 | 0.000578 | 0.394032 | 0.000003
Left
[20, -74, -50] 149 Cerebellum 8 Right 0.018625 | 0.003409 | 0.000723 | 0.698248 | 0.000011
[20, -80, -36] 107 Cerebellum Crus2 0.075735 | 0.013328 | 0.003029 | 0.905015 | 0.000029
Right
[-04, 10, 52] 91 Supplementary 0.132889 | 0.022623 | 0.005484 | 0.505882 | 0.000005
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Motor Area Left

[28, -26,-12]
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ParaHippocampal
Gyrus Right

0.153188

0.024829

0.006395 | 0.900756

0.000028

Table 5. 2: Brain areas that are functionally connected with the Medial Prefrontal Cortex
(MPFC) concerning controls group.

MNI Cluster Brain areas Size Size Size Peak Peak
coordinates of Size p-FWE p-FDR p-unc p-FWE p-unc
maximum (voxels)
voxel
[08, 50, -08] 13555 Orbital Medial 0.000000 | 0.000000 | 0.000000 | 0.000000 0.000000
Frontal Gyrus
Right
[-10, -54, 24] 5195 Precuneus Left 0.000000 | 0.000000 | 0.000000 | 0.000303 0.000000
[22,-38, 72] 2442 Postcentral Gyrus | 0.000000 | 0.000000 | 0.000000 | 0.000335 0.000000
Right
[50, -66, 32] 1902 Angular Gyrus 0.000000 | 0.000000 | 0.000000 | 0.002801 0.000000
Right
[-52, -66, 26] 1501 Angular Gyrus 0.000000 | 0.000000 | 0.000000 | 0.001790 0.000000
Left
[-62,-34, 40] 1406 Supramarginal 0.000000 | 0.000000 | 0.000000 | 0.010132 0.000000
Gyrus Left
[60, -02, -24] 1119 Middle Temporal | 0.000000 | 0.000000 | 0.000000 | 0.039505 0.000000
Gyrus Right
[-54,-10, -16] 748 Middle Temporal | 0.000000 | 0.000000 | 0.000000 | 0.150799 0.000001
Gyrus Left
[-04, -58, -40] 725 Vermis 9 0.000000 | 0.000000 | 0.000000 | 0.001772 0.000000
[08 ,-86, -40] 599 Cerebellum Crus2 | 0.000000 | 0.000000 | 0.000000 | 0.215302 0.000001
Right
[-18,-02, -12] 380 Amygdala Left 0.000033 | 0.000007 | 0.000001 | 0.751830 0.000014
[-50, -50, -18] 272 Inferior Temporal | 0.000502 | 0.000096 | 0.000019 | 0.524980 0.000006
Gyrus Left
[-46, 14, -44] 153 Inferior Temporal | 0.015861 | 0.002816 | 0.000610 | 0.330386 0.000002
Gyrus Left
[00, 14, 46] 118 Supplementary 0.050551 | 0.008484 | 0.001979 | 0.603778 0.000008
Motor Area Left
[-42, 38, 20] 116 Middle Frontal 0.054143 | 0.008497 | 0.002124 | 0.901128 0.000028
Gyrus Left
[24, -64, 50] 90 Superior Parietal | 0.135044 | 0.020761 | 0.005536 | 0.997806 0.000112
Lobule Right
[-16, -86, -40] 79 Cerebellum Crus2 | 0.200356 | 0.030114 | 0.008532 | 0.987653 0.000069
Left
[34, 30, -18] 77 Orbital Inferior 0.215251 | 0.030832 | 0.009250 | 0.752090 0.000014

Frontal Gyrus
Right

In order to have a visual aspect of the results that will be helpful to understand

them, ROI-to-ROI results carried out.

The specific type of results display functional

connectivity results but at a different resolution. Instead of demonstrating a whole brain
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connectivity map, as it is common, ROI-to-ROI results present only ROIs that are significantly
correlated with other ROIs. As shown in Figure 5.1 and Figure 5.2 the red lines indicate
which ROIs are significantly correlated with a selected seed, while the blue lines indicate

significantly negative correlations.

connectivity values

Figure 5. 1: Functional connectivity results between ROls of the MPFC for PD group.
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connectivity values

Figure 5. 2: Functional connectivity results between ROIs of the MPFC for the controls group.

Also, ROI-to-ROI results allow anyone to see in more detail how nodes of certain
networks are correlated with other nodes in the brain. The following figures (Figure 5.3,
Figure 5.4) demonstrate the more detailed images which are known as connectograms.
Again the red lines show significant positive correlation between the nodes whereas the
blue lines show significant negative correlation between them.

More specifically, the PD group shows greater positive correlation between MPFC
and PCC and LPC regions, due to the fact that these areas belong to the same network, while
the negative correlation is observed within MPFC and Dorsolateral Attention Network. It is
important to be mentioned that significant correlation is observed within MPFC and Salience
Network. As for controls group greater positive correlation is observed within MPFC and LP
while negative correlation is noticed between MPFC and Dorsolateral Attention and Salience

Networks.

88



Figure 5. 3: Connectogram using as seed MPFC for PD group.
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Figure 5. 4: Connectogram using as seed MPFC for controls group.

Discussion
Comparing the results that are acquired from CONN for the two groups, one can conclude
the following. At first the brain regions that are functionally connected with the MPFC are
pretty similar between PD and controls group, with the size of clusters to be different. For
example, grouping in lobes the regions that are functionally connected with MPFC (Table
5.1, Table 5.2), it is obvious that the same lobes concern all the subjects except from some
differences. Specifically, the frontal lobe, parietal lobe, temporal lobe and cerebellum are
shown in both groups, while insula and diencephalon are shown only in PD. The brain
regions that are connected are similar because patients of PD group are in the early stages
of the disease, so there is not a lot of alteration in brain connections.

At first, the activation in dienchephalon and precisely in left thalamus in PD patients
is an important issue that has to be discussed. The role of the thalamus is to receive and
process information from the basal ganglia, limbic system and cerebellum and then to

transfer the information to the cerebral cortex. It also plays a noticeable role in complex
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somatosensory and motor, just like in controlling cognition and emotion. Although changes
in thalamus are shown to be related with the symptom of dyskinesia in PD patients,
according to previous studies, nonmotor symptoms are also related with thalamus [109]. In
our case, due to the fact that PD patients are in the early stages of the disease, the
activation in thalamus is related with nonmotor symptoms. Additionally, insula is a highly
interconnected region with the basal ganglia and it is related to the sensorimotor
integration.

As it is previously noticed, significant correlation observed within MPFC and Salience
Network. This finding along with the activation of parahippocampal gyrus, observed only in
PD group, corresponds to PD and the memory impairment caused by the disease [110].
Another finding is the activation in amygdala, only in controls group, which means that the
same brain region in PD group has been affected by the disease even in the early stages.
The primary role of amygdala is the processing of memory, emotional responses and
decision-making.

It is important to be mentioned that the connections in controls group are stronger
than in PD group. Definitely that is caused by the disease. All the brain regions that are
referenced on the tables are in accordance with the bibliography findings. Also all the
symptoms that are related with the brain activations are definitely nonmotor symptoms,

since the UPDRS score of our patients is very low.
5.4 Study 2: Functional connectivity using data-driven method

The second study of this thesis investigates the functional connectivity by applying a
different type of method, compared to the previous study, known as data-driven method.
The Independent Component Analysis (ICA) is used for this study, which is a widely used
method especially for studies that include resting-state fMRI data. The GrouplICAT of fMRI
toolbox (GIFT) version 4.0b3 is utilized. It is important to be mentioned that the ICA study of
a specific group requires the simultaneous analysis of all data, no matter how many subjects
are included in that group.

Before the set up of the ICA analysis, preprocessing of the resting-state fMRI data must
be done. For that reason SPM12%s used and the steps that are followed are described

below:

1. Slice-timing correction

3 https://trendscenter.org/software/gift/
4 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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All the raw images are selected and the time that the image was acquired is
corrected within the slices. The corrected images have an ‘a’ as prefix.

Realignment (Motion correction)

All the slice-timing corrected images are selected and realigned according to the
mean image of 300 functional images. The name of realigned images has an extra ‘r’
as prefix.

Co-registration

In this step all the functional images are co-registered with the structural image in
order to maximize the mutual information. When the co-registration step is done,
are displayed the voxel-to-voxel affine transformation matrix, the histograms of the
images with the original orientations and the final orientation as well as the

registered images (Figure 5.5).

Normalised Mutual Information Coregistration
XK1= 0215% 00001y +0002*°Z +4.TET
¥ = 000X 0. A3 +0U0ETZ +1.251
Z1 =-00002°% -0 021Y +0171'Z +3.339

Original Joint Histogram Final Joint Histogram

20140222 defaced img
20140222 defaced img

..skrest_bold 001.img ..sk-rest_bald 001.img

Figure 5. 5: The co-registration step of a subject.

Segmentation
In this step gray and white matter images are produced along with a bias field
corrected structural image that will be used in the next step.

Normalization
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All the realigned and re-sliced functional images and the preprocessed structural

image are normalized to the MNI (Montreal Neurological Institute) space. The

images have the ‘w’ as prefix.

6. Smoothing

In this step all the normalized images are smoothed with Gaussian kernel of a

specified width (10mm). In the last step all the preprocessed images have the prefix

‘s’.

The analysis of data via ICA happens simultaneous for all the subjects of a group.
For that reason, all the 28 subjects must be classified into two groups depending on their
condition (control or PD patient). Afterwards the set up of the analysis is followed with the
selection of the data and the estimation of Independent Components (ICs). In order to
eliminate complicated computations, GIFT adopts the use of Principal Component Analysis in
which the data was reduced into 12 Independent Components for every group separately.
The algorithm that is used in the dataset is Infomax since it maximizes the transferring
information from the input to the output of a network, using a non linear function. Spatial
maps are reconstructed from the final mixing matrix data, depending on the courses of each
participant and component. Due to the fact that number of subjects and the number of
Independent Components are the same for both of the groups, the number of spatial maps
is also equal. More specifically, 168 spatial maps are produced for every group (14
participants x 12 Independent Components x 1 session = 168 spatial maps). For every
subject are recorded the coordinates of maximum voxel according to the z-scores. Also, the
components are spatially sorted, that is a way to classify components spatially, using
maximum voxel criteria. All these are carried out in group context for both the PD and
control subjects but also for every subject separately.
Results
First, the findings of IC analysis are studied in a group level and then separately for every
subject. In group level and specifically in PD group, the maximum z-score is located in voxels
in pons, supplementary motor area right and in cerebellum crus 1 right. Similarly, controls
group showed maximum z-score in voxels in paracentral lobule left, pons and cerebellum
crus 1 right. The brain areas that are found to be active on both of the groups are pons,
cerebellum crus 1 right and left, fusiform gyrus left and precuneus right. The tables with
detailed information about the coordinates of maximum voxel and the associated brain

areas of every group are presented in Appendix (Table 7.7 and Table 7.22).

93



Concerning the findings of each PD subject, the brain areas with the maximum voxel
values are pons, paracentral lobule left, precuneus left, lingual gyrus right and
supplementary motor area right. Also different locations of cerebellum such as cerebellum
crus 1 right and left and cerebellum 9 left, are included. The results from every control
subject present activation in brain areas such as pons, lingual gyrus left and right,
paracentral lobule left and occipital inferior right. Areas such as cerebellum crus 1 right and
left and cerebellum 9 left are also included. The Tables 7.8 - 7.21 concerns each subject from
controls group, while Tables 7.23 — 7.36 concerns each subject from PD group in the
Appendix.

Observing the functional connectivity matrix (Figure 5.6) of the PD group, the
maximum positive correlation that is demonstrated in dark red colour, is between the
components 7 [38,-80,-25] and 3 [-26,-84,-30], 10 [-42,-52,55] and 9 [2,-4,75] that
correspond to the areas of cerebellum crus 1 right, cerebellum crus 1 left, inferior parietal
lobule left and supplementary motor area right respectively. Furthermore, between the
components 11 [2,-76,55] and 2 [34,56,5], 12 [-62,-20,15] and 10 [-42,-52,55] which
correspond to the areas of precuneus right, middle frontal gyrus right, rolandic operculum
left and inferior parietal lobule left. On the contrary, high negative correlations (dark blue
colour) are observed within the components 7 [38,-80,-25] and 5 [-6,-28,-50], 9 [2,-4,75] and
6 [34,16,-25] which correspond to the cerebellum crus 1 right, pons, supplementary motor
area right and superior temporal pole right, respectively. There is also observed positive
correlations in some other components with light red colour, such as between the
components 4 [-50,-60,30] and 1 [2,-72,40], 8 [-38,-80,-15] and 1 [2,-72,40], 11 [2,-76,55]
and 6 [34,16,-25], 12 [-62,-20,15] and 8 [-38,-80,-15], 12[-62,-20,15] and 9 [2,-4,75]. All the
previously mentioned components correspond to angular gyrus left, precuneus right,
fusiform gyrus left, superior temporal pole right, rolandic operculum left, supplementary
motor area right. Except from the light red colour, it can be observed the light blue colour
which concerns negative correlations. More specifically, negative correlations are observed
between the components 8 [-38,-80,-15] and 2 [34,56,5], 8[-38,-80,-15] and 3 [-26,-84,-30].
The associated areas are fusiform gyrus left, middle frontal gyrus right and cerebellum crus 1

left.
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Figure 5. 6: Functional connectivity correlation matrix of PD group.

Furthermore, functional connectivity correlation matrix is acquired for the controls
group, demonstrating the correlations with positive and negative values within the

components. Figure 5.7 shows the matrix for controls group.
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Figure 5. 7: Functional connectivity correlation matrix of controls group.

In order to have a different aspect of the results, the Network Summary tool is used
from GrouplCAT. That tool organizes all the independent components by network names.
In this case, the components and precisely the associated brain regions are divided into
groups depending on which lobes are being involved. For the PD subjects, the twelve

components are grouped into seven lobes of the brain as shown below:

1. Parietal Lobe contains the precuneus right (1, 11), angylar gyrus left (4), inferior
parietal lobule left (10).

2. Frontal Lobe contains the middle frontal gyrus right (2) and supplementary motor

area right (9).

Cerebellum contains the cerebellum crus 1 left and right (3, 7).

Brainstem contains the pons (5).

Temporal Lobe contains the superior temporal pole right (6).

Occipital Lobe contains the fusiform gyrus left (8).

N o v s~ w

Insula contains the rolandic operculum left (12).
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For the controls subjects, the twelve components are grouped into six lobes of the brain as

shows below:

1. Parietal Lobe contains the precuneus right (6) and superior parietal lobule right (10).

2. Frontal Lobe contains the orbital inferior frontal gyrus left and right (1, 5),
paracentral lobule left (9) and olfactory sulcus left (11).

3. Cerebellum contains the cerebellum crus 1 right and left (3, 4) and cerebellum 6 left
(7).

4. Brainstem contains the pons (12).

5. Occipital Lobe contains fusiform gyrus left (2).

6. Insula contains the insula right (8).

From the Network Summary is acquired the functional connectivity correlations matrix,
as well as a connectogram that shows the correlations within components and regions in

another way. Figure 5.8 and Figure 5.9 demonstrate the connectograms for both of groups.

97



Figure 5. 8: Connectogram of the 12 components of PD group.
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Figure 5. 9: Connectogram of the 12 components of controls group.

In the connectograms there is a coloured circle with the names of independent
components where components within the same network are shown in the same color.
Particularly, blue color corresponds to parietal lobe, green color to frontal lobe, pink color to
cerebellum, orange color to brainstem, purple color to temporal lobe, yellow color to
occipital lobe and dark blue corresponds to insula (there is only in Figure 5.8). Also, around
the circle are thumbnails of spatial maps for every component. The curves inside the circles
are known as Bezier curves. Those curves show the functional connectivity correlations
within components and have different colors according to their negative or positive
correlation. Negative correlation is demonstrated with the blue color while positive
correlation is demonstrated with red and yellow color.

In Figure 5.8, the connectogram for PD group, the highest positive correlation is
observed within parietal and frontal lobe and more specifically within inferior parietal lobule
left and supplementary motor area right. While in Figure 5.9 the highest positive correlation
is observed within occipital lobe and cerebellum and specifically within fusiform gyrus left

and cerebellum crus 1 right. Also comparing the two connectograms in controls group there

99



are more positive correlations within components, while in PD group there are positive and
negative correlations in similar proportion. It is worth to be mentioned that within the
components of the same network there are only positive correlations with the negative
correlations of the connectogram to be within the different networks. Comparing the
connectograms with the functional connectivity correlation matrices (Figures 5.6, 5.7) that
are acquired from ICA analysis the correlations within regions are identified.

Discussion

Setting side by side the findings from the analysis, one can understand that most of the
activated brain regions are regions of the cortex. From the other side there are areas such
as middle frontal gyrus and supplementary motor area of the right hemisphere in frontal
lobe, angular gyrus and inferior parietal of the left hemisphere in parietal lobe, superior
temporal pole of the right hemisphere in temporal lobe, fusiform gyrus of the left
hemisphere in occipital lobe and rolandic operculum of the left hemisphere in insula that
appear only in PD subjects. This finding leads to the conclusion that these areas are related
to the disease. While, a significant activation is observed only in controls group and is the
activation in olfactory sulcus. It is important to be referenced that the region of insula is
activated in both of the groups. But in controls group the activation is restricted only in the
region of insula of the right hemisphere while in PD group affects a wider area, the rolandic
operculum. Also observing the lobes that are affected in both groups, temporal lobe is the
one that concerns only PD group.

Particularly, the existence of activation in insula which is highly interconnected with
the basal ganglia and other cortical regions including supplementary motor area indicates its
possible role in sensorimotor integration [107]. Observing the connectogram between
insula and supplementary motor area there is strong positive correlation, a fact that
confirms the presence of Parkinson’s disease. As for angular gyrus has been found to acts as
a hub region wherein multisensory information is converged and integrated together.
Specifically, the left angular gyrus that is found in this thesis, has been implicated in speech
processing with the most common feature of hypophonia in PD [111]. Our PD patients may
not have experienced the symptom of hypophonia but they will for sure. Furthermore, the
activation of temporal lobe leads to the conclusion that there is temporal pole atrophy in
patients which is an early sign in PD according to previous description of Braak et al. [112].
As for activation in fusiform gyrus that leads also in brain atrophy. Fusiform gyrus is an area
that is involved in the visual network that’s why a lot of PD patients appear visual common

symptoms such as blurred vision, visuoperceptual impairments and visual hallucinations.
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Also fysiform gyrus has constantly been found to be involved in the perception of faces and
body regions since is part of the visuoperceptive ventral stream [113]. That symptom is
occurred even in the early stages of the disease, just like in our PD group. The last thing that
has to be discussed is about the activation in olfactory sulcus, only in controls group. That
finding means that olfactory sulcus is affected by the disease in PD group that’s why there is
no activation in that group. There is evidence that the disease begin in the peripheral
autonomic nervous system and/or the olfactory bulb and then spreading through central
nervous system affecting the lower brainstem structures before involving the substantia
nigra [17]. Also patients maybe experienced that symptom, the loss of olfaction, even years
before the diagnosis of the disease.

All the aforementioned findings agree with the bibliography. Differences that may
be occurred between the Study 1 and Study 2 are related with the fact that the Study 1 is
more focused on one area of the Default Mode Network while the Study 2 is a more general

approach concerning of Default Mode Network as a whole.

5.5 Study 3: Effective connectivity using spectral Dynamic Causal Modelling
The third study of this thesis is about the investigation of effective connectivity using a
model-based approach, known as Dynamic Causal Modelling (DCM). More specifically the
extension of DCM named as spectral DCM is used, in order to model intrinsic dynamics on
resting-state fMRI data and define effective connectivity [99]. This method is suitable for
implementation in resting-state fMRI data because models BOLD signal when exogenous
inputs do not exist.

The spectral DCM analysis is implemented in both control and Parkinson’s disease
(PD) groups. This analysis is performed using DCM12.5 routine implemented in SPM12. The
images of all the subjects are preprocessed before this analysis, following the same
preprocessing procedure that was described previously. After the preprocessing, four
regions of interest (ROIs) are selected and the time-series from the selected ROls are created
as the residuals of a general linear model (GLM). The regressors that are part of this model
are the six rigid body realignment parameters to model the movement correlated effects
and the signal that is extracted from white matter (WM) and cerebrospinal fluid (CSF) so as
to be used as confound [99].

The ROIs of spectral DCM analysis are the key regions of the Default Mode Network
(DMN), a brain network that has increased level of involvement in PD. In general DMN is a

brain system which mediates internal modes of cognitive activity, showing higher neural
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activation when someone is at rest [121]. ROIs are defined as spheres with a radius of 8mm

produced by the previous CONN study. The selected ROIs are shown in Table 5.3.

Table 5. 3: Selected ROIs for the spectral DCM analysis.

ROIs Center of ROI
1 Medial Prefrontal Cortex (MPFC) [1, 55, -3]
2 Left Lateral Parietal Cortex (ILPC) [-39,-77, 33]
3 Right Lateral Parietal Cortex (rLPC) [47,-67, 29]
4 Posterior Cingulate Cortex (PCC) [1,-61, 38]

After the extraction of the resting-state fMRI time-series from all four ROls, the
specification of a fully-connected model which has bi-directional connections between any
pair of ROIs is performed (Figure 5.10). In Table 5.4 the effective connectivity parameters of
the first PD subject are presented, where the matrix elements represent the effective
influence between regions. The tables of effective connectivity parameters for the rest of

the subjects are presented in the Appendix (Table 7.37- Table 7.62).
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Figure 5. 10: The fully connected model with bi-directional connections between any pair of
ROIs and effective connectivity parameters for the first PD subject.

Table 5. 4: Effective connectivity parameters of the first PD subject.

MPFC ILPC rLPC PCC
MPFC 0.1219 0.0972 0.0431 0.1466
ILPC -0.7871 -0.6943 0.4536 -0.3913
rLPC -01972 0.4580 0.0966 0.0159
PCC -0.2266 0.0102 0.4708 0.0300

The next step of this analysis is the selection of a Bayesian Model and the use of
Fixed Effects Inference Method (FFX) in order to compare the winning model that effectively
describes and fits to the data. For that reason, eight different connectivity models are

specified for both PD and control groups. More specifically, a fully connected model, three
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models where different regions primarily affected the other ones (MPFC, PCC, bilateral

modulation) and the same models without direct connections between rLPC and ILPC, as

shown in Figure 5.11 and Figure 5.12 are specified.

)\
& mPFC
N / . M

Figure 5. 11: The investigated models. (A) Models with direct connections between bilateral
RLP and LLP, left to right: fully connected model (DMN), MPFC, PCC, bilateral modulation.
(B)Models with no direct connections between RLP and LLP. Double arrows correspond to

mutual connections [114].
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Figure 5. 12: The desirable specification of endogenous (fixed) connections for the model
comparison.

Bayesian Model Selection finds that the fully connected model is the best at the
group level. Moreover, this model is the best one for eight out of thirteen PD subjects and

ten out of thirteen control subjects. The winning model of the first PD subject is shown in

Figure 5.13.
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Figure 5. 13: The winning model is the first one using Fixed Effects Inference Method (FFX).
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Chapter 6: Conclusions

6.1 Discussion
6.2 Limitations

6.3 Future work

6.1 Discussion

Parkinson’s disease (PD) is the second most common age related neurodegenerative
disorder after Alzheimer’s disease. Itis a progressive disorder that is characterized by motor
symptomes, rigidity, tremor and bradykinesia. Nowadays it is well known that except from
the common motor symptoms of the disease there are non-motor symptoms that occur in
the early stages or even years before the diagnosis of the disease. Although the significant
progress that has been made with the clarification of its pathophysiology, the variability of
symptoms along with the still unknown etiology facilitates the disease an important issue for
more investigation (Chapter 1).

MRI-based studies have been frequently occurred so as to better understand the
disease and its alterations within the different stages and within different group of subjects.
A modern application known as fMRI has been used in order to find the location of activated
brain regions when subjects are at resting-state or in task condition, depending on the field
of investigation (Chapter 2). There are a lot of studies for both conditions, task-based and
resting-state concerning the analysis of brain imaging in Parkinson’s disease (Chapter 3).
After this process, the acquisition of fMRI images, patterns of connected and disconnected

brain regions can be acquired applying appropriate statistical analyses (preprocessing and
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brain connectivity methods) that will be empathized with the differences within healthy and
patient subjects or within subjects of the same group (Chapter 4).

In this thesis resting-state functional MRI (rs-fMRI) data from drug naive PD patients
is used in order to measure functional connectivity in spatially distinctive brain regions and
compared them with the patterns of healthy subjects respectively. The number of
participants is 28, 14 PD subjects and 14 healthy subjects and the investigation focuses on
the Default Mode Network. So as to measure functional connectivity two different
approaches are applied. The first is a seed-based approach utilized via CONN toolbox where
the results that provide are more specific due to the selection of only one seed (region) for
investigation. While the second is a data-driven method, using ICA, which is a more general
approach and gives better visualization of the brain. Differences observed within the two
approaches are occurred due to the more general aspect and more pointed aspect of them.
In general regions such as temporal pole, angular gyrus, insula, supplementary motor area
and fusiform gyrus occurred in PD patients and consequently are related with the disease.
Except from the aforementioned studies a third study carried out in order to investigate the
effective connectivity in the same data. In this study the extension of DCM, named as
spectral DCM, is used where compares 8 different models between healthy and PD subjects
so as to find the most appropriate to describe the data. It is found that the Default Mode
Network is the one (Chapter 5).

As it is already mentioned, in this work, the description of PD from the perspective
of brain connectivity using fMRI data and applying appropriate analysis methods is
presented. Although the use of classical methods such as ICA and spectral DCM, as a lot of
researchers, the way that the results (connectograms) are presented and the significant
conclusions in such early stages of PD subjects, maybe can help the investigation in this field.
The analysis of brain connectivity in patients with PD and the comparison with the brain
connectivity of controls subjects reveal that, even at the onset of the disease, the alteration
of brain connectivity can provide significant information to the experts for the disease
effects to the patient and its efficient management. The observations become even more
important since do not concern a specific brain region but a network of regions, which is the
innovation of this work. A lot of previous studies focus on a particular symptom such as
freezing of gait (Tessitore et al.[50]) or apathy (Baggio et al.[52]) something that helps to

understand that symptom but the investigation is restricted.
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6.2 Limitations

The methods that are applied in the current thesis give, all of them, reliable results
considering functional and effective connectivity patterns. Because of the fact that the
number of the participants is restricted further studies must be done so as to make more
robust results about the early stages of the disease. Also PD patients were at very early
stages of the disease so we could not make a comparison between them, but only with
healthy subjects, because of the similar experience of the disease. Another limitation is the
fact that the results are related only with one network that has been in our interest.
Furthermore, the complexity of the effective connectivity models and the large number of
areas and their combinations that are necessary in order to construct each model, render

the determination of the best model a not simple matter.

6.3 Future work

The target of this thesis was not to prove that there is only one method to describe the PD
data, as there is no such thing, but to present both advantages and disadvantages of each
method. The selection of the most appropriate method depends on the researcher’s
motivation and the aim of each study. Although PD’s pathophysiology has been clarified,
the variability of symptoms and the still unknown etiology facilitates the disease an
important issue for more investigation, especially in the early stages where the symptoms

can be controlled.
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Appendix: Tables with results from the three studies
Table 7. 1: Brain areas that are functionally connected with the left lateral parietal cortex

(ILPC) concerning PD group.
MNI coordinates Cluster Brain areas Size Size Size Peak Peak
of maximum voxel Size p-FWE p-FDR p-unc p-FWE p-unc
(voxels)
[-06, -54, 46] 5435 Precuneus Left 0.000000 | 0.000000 | 0.000000 | 0.010201 | 0.000000
[24, 36, 44] 3518 Superior Frontal 0.000000 | 0.000000 | 0.000000 | 0.391603 | 0.000003
Gyrus Right
[-40, -70, 28] 3356 Occipital Middle 0.000000 | 0.000000 | 0.000000 | 0.000008 | 0.000000
Left
[40, -58, 26] 2556 Angular Gyrus 0.000000 | 0.000000 | 0.000000 | 0.005809 | 0.000000
Right
[54, -08, -16] 248 Middle Temporal | 0.000721 | 0.000294 | 0.000026 | 0.989613 | 0.000068
Gyrus Right
[00, -80, -24] 235 Cerebellum Crus2 | 0.001046 | 0.000356 | 0.000038 | 0.553290 | 0.000006
Left
[30, -38, -14] 227 Fusiform Gyrus 0.001319 | 0.000385 | 0.000048 | 0.320430 | 0.000002
Right
[-22,-12,-22] 142 Hippocampus Left | 0.018878 | 0.004863 | 0.000695 | 0.518074 | 0.000005
[-58, -56, 00] 121 Middle Temporal | 0.039000 | 0.009023 | 0.001450 | 0.991725 | 0.000073
Gyrus Left
[-60, -06, -22] 93 Middle Temporal | 0.107645 | 0.023250 | 0.004152 | 0.983103 | 0.000058
Gyrus Left

Table 7. 2: Brain areas that are functionally connected with the right lateral parietal cortex
(rLPC) concerning PD group.

MNI coordinates | Cluster Brain areas Size Size Size Peak Peak
of maximum Size p-FWE p-FDR p-unc p-FWE p-unc
voxel (voxels)
[-04, 66, 06] 9295 Superior Frontal 0.000000 | 0.000000 | 0.000000 | 0.005160 | 0.000000
Medial Gyrus Left
[06, -52, 14] 6768 Precuneus Right 0.000000 | 0.000000 | 0.000000 | 0.002127 | 0.000000
[46, -60, 22] 4319 Middle Temporal 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
Gyrus Right
[-40, -70, 32] 2944 Middle Occipital 0.000000 | 0.000000 | 0.000000 | 0.008115 | 0.000000
Gyrus Left
[-56, -20, -30] 815 Inferior Temporal 0.000000 | 0.000000 | 0.000000 | 0.230909 | 0.000001
Gyrus Left
[54,-02, -28] 412 Postcentral Gyrus 0.000011 | 0.000005 | 0.000000 | 0.875585 | 0.000023
Right
[66, -36, -10] 351 Middle Temporal 0.000051 | 0.000018 | 0.000002 | 0.533846 | 0.000006
Gyrus Right
[28,-32,-18] 308 Fusiform Gyrus 0.000153 | 0.000048 | 0.000006 | 0.184688 | 0.000001
Right
[08, 12, -10] 257 Caudate Nucleus 0.000603 | 0.000168 | 0.000022 | 0.666477 | 0.000009
Right
[-02, 00, 68] 241 Supplementary 0.000944 | 0.000237 | 0.000035 | 0.983325 | 0.000059
Motor Area Left
[44, 16, -34] 175 Temporal Pole 0.006766 | 0.001547 | 0.000250 | 0.886422 | 0.000024
Middle Right
[-54, 24, 34] 141 Inferior Frontal 0.020436 | 0.004314 | 0.000761 | 0.188570 | 0.000001
Gyrus Operculum
Left
[-06, -50, -50] 129 Cerebellum 9 Left 0.030736 | 0.006021 | 0.001151 | 0.754529 | 0.000013
[34, 38, -10] 122 Inferior Frontal 0.039180 | 0.007158 | 0.001474 | 0.732440 | 0.000012
Gyrus Orbital Right
[54, 12, 00] 107 Rolandic Operculum | 0.066674 | 0.011533 | 0.002544 | 0.902822 | 0.000027
Right
[26, -22, 76] 91 Precentral Gyrus 0.119422 | 0.019928 | 0.004689 | 0.020545 | 0.000000
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Right

[-62,-52, 02]

90

Middle Temporal
Gyrus Left

0.259696

0.044346

0.011086

0.997486

0.000103

Table 7. 3: Brain areas that are functionally connected with the posterior cingulate cortex
(PCC) concerning PD group.

MNI coordinates Cluster Brain areas Size Size Size Peak Peak
of maximum voxel Size p-FWE p-FDR p-unc p-FWE p-unc
(voxels)
[00, -68, 48] 20026 Precuneus Left 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
[12, 50, -14] 3808 Orbital Superior | 0.000000 | 0.000000 | 0.000000 | 0.030009 | 0.000000
Frontal Gyrus
Right
[26, 26, 40] 960 Middle Frontal 0.000000 | 0.000000 | 0.000000 | 0.015087 | 0.000000
Gyrus Right
[-24, 30, 42] 926 Middle Frontal 0.000000 | 0.000000 | 0.000000 | 0.321283 | 0.000002
Gyrus Left
[04, -54, -38] 533 Vermis 9 0.000001 | 0.000000 | 0.000000 | 0.335579 | 0.000002
[62,-02,-18] 365 Middle Temporal | 0.000040 | 0.000018 | 0.000001 | 0.031671 | 0.000000
Gyrus Right
[52,12,-02] 345 Superior Temporal | 0.000065 | 0.000025 | 0.000002 | 0.797966 | 0.000016
Pole Right
[08, 16, -10] 285 Caudate Right 0.000307 | 0.000103 | 0.000011 | 0.739710 | 0.000013
[-64,-04, -20] 226 Middle Temporal | 0.001565 | 0.000468 | 0.000058 | 0.986849 | 0.000066
Gyrus Left
[14, -36, -52] 207 Cerebellum 8 0.002722 | 0.000733 | 0.000102 | 0.724293 | 0.000012
Right
[-32,-36, -40] 131 Cerebellum 7b 0.030090 | 0.007468 | 0.001141 | 0.328555 | 0.000002
Left
[28, -16, 76] 109 Precentral Gyrus | 0.064577 | 0.014957 | 0.002493 | 0.003078 | 0.000000
Right
[46, -08, 62] 103 Precentral Gyrus | 0.079974 | 0.017239 | 0.003113 | 0.962732 | 0.000044
Right
[50, 20, -32] 79 Middle Temporal | 0.191409 | 0.040803 | 0.007934 | 0.944952 | 0.000037
Pole Right
[-32,-90, -24] 73 Cerebellum Crusl | 0.238366 | 0.048807 | 0.010168 | 0.903035 | 0.000027
Left

Table 7. 4: Brain areas that are functionally connected with the left lateral parietal cortex
(ILPC) concerning controls group.

MNI coordinates | Cluster Brain areas Size Size Size Peak Peak
of maximum Size p-FWE p-FDR p-unc p-FWE p-unc
voxel (voxels)
[08, 38, 10] 10488 Anterior Cingulum | 0.000000 | 0.000000 | 0.000000 | 0.000150 | 0.000000
Right
[-38,-76, 32] 9418 Middle Occipital 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
Gyrus Left
[40, -70, 28] 2959 Middle Occipital 0.000000 | 0.000000 | 0.000000 | 0.000275 | 0.000000
Gyrus Right
[26, -40, 56] 867 Postcentral Gyrus | 0.000000 | 0.000000 | 0.000000 | 0.022749 | 0.000000
Right
[54, -04, -18] 634 Middle Temporal 0.000000 | 0.000000 | 0.000000 | 0.396330 | 0.000003
Gyrus Right
[64, -28, 26] 603 SupraMarginal 0.000000 | 0.000000 | 0.000000 | 0.749607 | 0.000012
Gyrus Right
[38, 10, 02] 513 Insula Right 0.000001 | 0.000000 | 0.000000 | 0.109982 | 0.000000
[06, -52, -50] 391 Cerebelum 9 Right | 0.000012 | 0.000004 | 0.000000 | 0.610574 | 0.000007
[-26,-34, -14] 310 Fusiform Gyrus Left | 0.000102 | 0.000028 | 0.000004 | 0.217615 | 0.000001
[16, -02, 74] 282 Superior Frontal 0.000219 | 0.000054 | 0.000008 | 0.487510 | 0.000004

Gyrus Right
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[46, -58, -08] 273 Inferior Temporal 0.000282 | 0.000063 | 0.000010 | 0.558913 | 0.000006
Gyrus Right
[-60,-22, -12] 222 Middle Temporal 0.001243 | 0.000243 | 0.000044 | 0.995353 | 0.000082
Gyrus Left
[-40, -82, -24] 221 Cerebellum Crus 1 | 0.001281 | 0.000243 | 0.000045 | 0.793998 | 0.000014
Left
[10, -80, -42] 195 Cerebellum Crus 2 | 0.002852 | 0.000503 | 0.000101 | 0.953114 | 0.000037
Right
[28, -34,-16] 180 Fusiform Gyrus 0.004597 | 0.000757 | 0.000162 | 0.022199 | 0.000000
Right
[-28, -40, 70] 152 Postcentral Gyrus | 0.011612 | 0.001800 | 0.000411 | 0.924922 | 0.000029
Left
[-34, 34, -14] 147 Orbital Inferior 0.013775 | 0.002011 | 0.000488 | 0.014812 | 0.000000
Frontal Gyrus Left
[-30,-72, 08] 127 Middle Occipital 0.027771 | 0.003857 | 0.000992 | 0.213919 | 0.000001
Gyrus Left
[68, -34, -06] 123 Middle Temporal 0.032066 | 0.004228 | 0.001148 | 0.993264 | 0.000074
Gyrus Right
[32,-76, -44] 105 Cerebelum Crus 2 | 0.062170 | 0.007911 | 0.002260 | 0.999711 | 0.000151
Right
[28, 32,-12] 87 Orbital Inferior 0.123292 | 0.015446 | 0.004634 | 0.167578 | 0.000001

Frontal Gyrus Right

Table 7. 5: Brain areas that are functionally connected with

(rLPC) concerning controls group.

right lateral parietal cortex

MNI coordinates | Cluster Brain areas Size Size Size Peak Peak
of maximum Size p-FWE p-FDR p-unc p-FWE p-unc
voxel (voxels)
[-06, 48, -06] 14663 Orbital Medial 0.000000 | 0.000000 | 0.000000 | 0.000037 | 0.000000
Frontal Gyrus Left
[-02, -56, 20] 6969 Precuneus Left 0.000000 | 0.000000 | 0.000000 | 0.000003 | 0.000000
[48, -66, 28] 4074 Middle Occipital 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
Gyrus Right
[-46, -62, 28] 3164 Angular Gyrus Left | 0.000000 | 0.000000 | 0.000000 | 0.000358 | 0.000000
[58, -04, -28] 1928 Inferior Temporal 0.000000 | 0.000000 | 0.000000 | 0.032217 | 0.000000
Gyrus Right
[-54, -08, -20] 1396 Middle Temporal 0.000000 | 0.000000 | 0.000000 | 0.007813 | 0.000000
Gyrus Left
[36, -28, 72] 1108 Postcentral Gyrus | 0.000000 | 0.000000 | 0.000000 | 0.009177 | 0.000000
Right
[00, -56, -48] 940 Cerebellum 9 Right | 0.000000 | 0.000000 | 0.000000 | 0.284212 | 0.000000
[-16, -88, -44] 700 Cerebellum Crus 2 | 0.000000 | 0.000000 | 0.000000 | 0.308297 | 0.000002
Left
[30, -70, -20] 332 Cerebellum 6 Right | 0.000060 | 0.000016 | 0.000002 | 0.584110 | 0.000006
[56, 10, 04] 313 Rolandic 0.000100 | 0.000024 | 0.000004 | 0.855124 | 0.000019
Operculum Right
[56, -28, 28] 228 Supramarginal 0.001089 | 0.000238 | 0.000039 | 0.613558 | 0.000007
Gyrus Right
[34, -80, -38] 173 Cerebelum Crus 2 | 0.005994 | 0.001214 | 0.000213 | 0.951680 | 0.000037
Right
[20, -44, 50] 147 Inferior Parietal 0.014242 | 0.002599 | 0.000509 | 0.776180 | 0.000014
Gyrus Right
[-58, 12,-02] 146 Superior Temporal | 0.014737 | 0.002599 | 0.000527 | 0.989452 | 0.000065
Pole Left
[-24,-32, -24] 136 Cerebellum 4_5 0.020822 | 0.003454 | 0.000747 | 0.259327 | 0.000001
Left
[-36, -48, 64] 110 Superior Parietal 0.052937 | 0.008402 | 0.001930 | 0.963866 | 0.000042
Lobule Left
[-50, -36, 52] 94 Inferior Parietal 0.096328 | 0.014778 | 0.003595 | 0.979886 | 0.000053
Lobule Left
[10, -86, -38] 87 Cerebelum Crus 2 | 0.125779 | 0.018580 | 0.004771 | 0.262577 | 0.000002
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Right

[00, -04, 56]

71

Supplementary
Motor Area Left

0.232499 | 0.034747 | 0.009391

0.596486

0.000007

Table 7. 6: Brain areas that are functionally connected with posterior cingulate cortex (PCC)
concerning controls group.

MNI coordinates | Cluster Brain areas Size Size Size Peak Peak
of maximum Size p-FWE p-FDR p-unc p-FWE p-unc
voxel (voxels)
[-06, -62, 34] 22820 Precuneus Left 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
[22, 30, 44] 8505 Middle Frontal 0.000000 | 0.000000 | 0.000000 | 0.000135 | 0.000000
Gyrus Right
[-46, 32, 04] 1625 Triangularis Inferior | 0.000000 | 0.000000 | 0.000000 | 0.023036 | 0.000000
Frontal Gyrus Left
[-24, 26, 44] 927 Middle Frontal 0.000000 | 0.000000 | 0.000000 | 0.094606 | 0.000000
Gyrus Left
[08, -54, -50] 510 Cerebellum 9 Right | 0.000002 | 0.000001 | 0.000000 | 0.408313 | 0.000003
[60, 18, 04] 444 Operculum Inferior | 0.000007 | 0.000002 | 0.000000 | 0.926193 | 0.000032
Frontal Gyrus Right
[-50, -42, -38] 346 Cerebellum Crus 1 | 0.000070 | 0.000020 | 0.000003 | 0.665179 | 0.000010
Left
[62,-04, -28] 295 Middle Temporal 0.000257 | 0.000064 | 0.000010 | 0.850793 | 0.000021
Gyrus Right
[-68, -06, -16] 271 Middle Temporal 0.000485 | 0.000108 | 0.000018 | 0.011764 | 0.000000
Gyrus Left
[16, -74,-54] 190 Cerebellum 8 Right | 0.004822 | 0.000969 | 0.000183 | 0.641107 | 0.000009
[-04, 10, 74] 126 Supplementary 0.037280 | 0.006921 | 0.001436 | 0.066991 | 0.000000
Motor Area Left
Table 7. 7: The brain areas that show activation in controls group.
Component Maximum Voxel Brain areas z-score
1 [-50,28,-5] Orbital Inferior Frontal Gyrus Left 5.6455
2 [-34,-80,-15] Fusiform Gyrus Left 5.1936
3 [30,-84,-20] Cerebellum Crus 1 Right 11.1809
4 [-34,-84,-25] Cerebellum Crus1 Left 7.353
5 [34,12,-20] Orbital Inferior Frontal Gyrus Right 7.6982
6 [2,-52,20] Precuneus Right 6.3801
7 [-26,-68,-20] Cerebellum 6 Left 4.2253
8 [50,16,-5] Insula Right 6.4867
9 [-2,-28,80] Paracentral Lobule Left 8.767
10 [30,-68,55] Superior Parietal Lobule Right 6.4147
11 [-2,20,-10] Olfactory Sulcus Left 3.6483
12 [6,-28,-50] Pons 13.1346
Table 7. 8: The brain areas that show activation in the first control subject.
Component Maximum Voxel Brain areas z-score
1 [-42,-64,40] Angular Gyrus Left 6.0857
2 [14,-88,-15] Cerebellum Crus1 Right 10.8579
3 [22,-8,-15] Lingual Gyrus Right 20.9321
4 [2,28,64] Superior Medial Frontal Gyrus Right 7.2633
5 [2,-44,-30] Vermis 10 6.8355
6 [2,-48,65] Precuneus Right 5.5434
7 [-42,-64,-15] Fusiform Gyrus Left 5.9079
8 [30,-84,-15] Inferior Occipital Gyrus Right 10.3593
9 [-2,-24,80] Paracentral Lobule Left 7.7172
10 [34,-68,55] Inferior Parietal Lobule Right 6.7349
11 [2,-64,5] Lingual Gyrus Right 4.944
12 [6,-28,-50] Pons 11.0658

Table 7. 9: The brain areas that show activation in the second control subject.
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Component Maximum Voxel Brain areas z-score
1 [2,-28,-50] Pons 12.484
2 [2,32,60] Superior Medial Frontal Gyrus Right 6.8094
3 [6,-28,-45] Pons 4.1712
4 [-46,-80,-10] Inferior Occipital Gyrus Left 3.8874
5 [14,-56,15] Precuneus Right 5.4139
6 [46,-56,50] Inferior Parietal Lobule Right 5.9069
7 [-34,-84,-20] Cerebellum Crus 1 Left 6.9314
8 [30,12,-20] Superior Temporal Pole Right 7.6346
9 [42,-76,-15] Inferior Occipital Gyrus Right 10.7943
10 [-38,-88,10] Middle Occipital Gyrus Left 6.4816
11 [2,32,60] Medial Superior Frontal Gyrus Right 6.7136
12 [-34,-84,-20] Cerebellum Crus1 Left 6.5204
Table 7. 10: The brain areas that show activation in the third control subject.
Component Maximum Voxel Brain areas z-score
1 [-2,-40,75] Paracentral Lobule Left 13.13
2 [22,-68,60] Superior Parietal Lobule Right 6.5719
3 [2,-80,45] Cuneus Right 5.3964
4 [2,-52,15] Precuneus Right 6.2982
5 [50,20,-5] Orbital Inferior Frontal Gyrus Right 6.2131
6 [-34,-64,55] Superior Parietal Lobule Left 6.863
7 [54,-56,-15] Inferior Temporal Gyrus Right 49852
8 [-34,12,-25] Superior Temporal Pole Left 10.5653
9 [14,-28,-40] Pons 6.4223
10 [-50,-64,-25] Cerebellum Crus1 Left 11.8693
11 [2,28,65] Medial Superior Frontal Right 6.2343
12 [14,-92,-10] Lingual Gyrus Right 6.7896
Table 7. 11: The brain areas that show activation in the fourth control subject.
Component Maximum voxel Brain areas z-score
3 [2,-16,80] Supplementary Motor Area Right 5.7107
4 [-38,-80,-15] Fusiform Gyrus Left 12.9052
5 [-22,56,-5] Orbital Superior Frontal Gyrus Left 6.5406
6 [34,16,-25] Superior Temporal Pole Right 12.2051
7 [-6,-32,-50] Pons 10.9364
9 [-42,40,-15] Orbital Inferior Frontal Gyrus Left 7.156
10 [-38,-80,-20] Cerebellum Crus 1 Left 10.7458
12 [-30,64,10] Superior Frontal Gyrus Left 4.807
1,2,8,11 [30,-88,-15] Inferior Occipital Gyrus Right 7.8879,
13.6128,
14.7652,
10.7718
Table 7. 12: The brain areas that show activation in the fifth control subject.
Component Maximum Voxel Brain areas z-score
1 [-26,-88,-25] Cerebellum Crus 1 Left 8.2146
2 [26,52,40] Superior Frontal Gyrus Right 4.87
3 [-26,-88,-20] Cerebellum Crus 1 Left 7.0427
4 [-62,-52, -5] Middle Temporal Gyrus Left 5.3193
5 [-42,-72,30] Middle Occipital Gyrus Left 8.0297
6 [-10,-88,-20] Cerebellum Crus 1 Left 9.6162
7 [2,-36,75] Paracentral Lobule Right 5.9147
8 [46,-68,-40] Cerebellum Crus 2 Right 5.9925
9 [-38,-80,-30] Cerebellum Crus 1 Left 7.6974
10 [-10,-28,-45] Pons 13.6901
11 [-2,-68,60] Precuneus Left 5.9954
12 [-6,-88,30] Cuneus Left 7.1656

Table 7. 13: The brain areas that show activation in the sixth control subject.
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Component Maximum Voxel Brain areas z-score
1 [2, -80, 45] Cuneus Right 8.9546

2 [18,-92, -15] Lingual Gyrus Right 9.4551
3,10,11 [-6, 0, -15] Amygdala Left 9.9485,
8.0716,

8.1834
4,6 [-22,-92, -15] Lingual Gyrus Left 10.5072,
10.5165
5 [30, 8, -20] Superior Temporal Pole Right 13.8152

7 [10, -80, 50] Superior Parietal Lobule Right 7.5098
8 [2,-88, 35] Cuneus Left 11.6371
9 [2,-16, 80] Supplementary Motor Area Right 6.6672
12 [26, -88, -20] Cerebellum Crus 1 Right 19.2961
Table 7. 14: The brain areas that show activation in the seventh control subject.

Component Maximum Voxel Brain areas z-score
1 [2, -68, 25] Cuneus Left 6.2332

2 [-2,52,-15] Rectus Left 6.3714
3 [-6, -88, -15] Lingual Gyrus Left 12.3827
4 [-6,-32, -50] Pons 10.5271

5,7 [-38, -76, -25] Cerebellum Crus 1 Left 11.041,
9.8098

6 [-34, -44, -40] Cerebellum 7b Left 6.0203

8 [38, -60, 55] Superior Parietal Lobule Right 6.848

9 [54, 12, 0] Rolandic Opercular Right 6.744

10 [-50, 20, 0] Triangularis Inferior Frontal Gyrus Left 4.8746

11 [2,52,-15] Rectus Right 5.5613

12 [42, 12, -15] Superior Temporal Pole Right 11.4382

Table 7. 15: The brain areas that show activation in the eighth control subject.

Component Maximum Voxel Brain areas z-score
1 [-18, -88, -20] Cerebellum Crus 1 Left 12.4378

2 [-26, -84, -20] Cerebellum Crus 1 Left 10.8847
3,8 [-26, -84, -25] Cerebellum Crus 1 Left 16.0534,
16.3754

4 [-6, -88, -15] Lingual Gyrus Left 6.2778

5 [-30, -84, -25] Cerebellum Crus 1 Left 23.3432

6,9 [-50, -64, -20] Cerebellum Crus 1 Left 14.42,
12.4522

7 [26, -88, -20] Cerebellum Crus 1 Left 8.3776

10 [-14, -28, -40] Pons 11.8624

11 [30, -84, -20] Cerebellum Crus 1 Right 11.6284

12 [-34, -80, -20] Cerebellum Crus 1 Left 15.7548

*The observed brain areas are similar because the maximum voxels are in nearby

coordinates.

Table 7. 16: The brain areas that show activation in the ninth control subject.

Component Maximum Voxel Brain areas z-score
1 [-30, -72, 45] Inferior Parietal Lobule Left 6.0497
2 [-46, 20, 35] Opercular Inferior Frontal Gyrus Left 5.8241
3 [22,-28, 75] Precentral Gyrus Right 7.0765
4 [38,-12, 65] Precentral Gyrus Right 3.7034
5 [38, -76, -20] Cerebellum Crus 1 Right 8.045
6 [-34,-72, -45] Cerebellum Crus 2 Left 5.5662
7 [54, 16, 0] Opercular Inferior Frontal Gyrus Right 6.0348
8 [-38,-72, 40] Middle Occipital Gyrus Left 6.6686
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9 [6, -28, -50] Pons 14.9
10 [-30, -88, -15] Lingual Gyrus Left 8.9033
11 [-30, -88, -20] Cerebellum Crus 1 Left 12.3408
12 [-6,-96, 0] Calcarine Cortex Left 9.7576
Table 7. 17: The brain areas that shown activation in the tenth control subject.
Component Maximum Voxel Brain areas z-score
1 [38, 16, -20] Superior Temporal Pole Right 8.2588
2 [-2,-28, 80] Paracentral Lobule Left 9.3751
3 [2,-76, 0] Lingual Gyrus Right 4.9975
4 [38, -80, -20] Cerebellum Crus 1 Right 14.4844
5 [50, -60, 30] Angular Gyrus Right 7.1468
6 [30, -84, -25] Cerebellum Crus 1 Right 10.2988
7 [-42,-76, -25] Cerebellum Crus 1 Left 7.2689
8 [42, -68, -20] Cerebellum Crus 1 Right 5.7195
9 [-10, -36, -50] Cerebellum 9 Left 14.9744
10 [30, -68, 50] Superior Parietal Lobule Right 7.8565
11 [-38, -80, -25] Cerebellum Crus 1 Left 6.9109
12 [58, 8, -5] Superior Temporal Pole Right 8.5864
Table 7. 18: The brain areas that show activation in the eleventh control subject.
Component Maximum Voxel Brain areas z-score
1,3,4,5 [38, -80, -20] Cerebellum Crus1 Right 8.412,
10.1758,
9.9593,
8.7215
2 [14, -88, -20] Cerebellum Crus1 Right 13.5994
6 [-6, -52, 65] Precuneus Left 9.7947
7 [-46,-72, -20] Cerebellum Crus1 Left 4.0231
8 [-34, -84, -25] Cerebellum Crus1 Left 13.4967
9 [-2,-24, 80] Paracentral Lobule Left 7.4252
10 [-6,-52, 65] Precuneus Left 5.5003
11 [-34, -84, -20] Cerebellum Crus1 Left 5.9915
12 [-2,0, 75] Supplementary Motor Area Left 10.5984
Table 7. 19: The brain areas that shown activation in twelfth control subject.
Component Maximum Voxel Brain areas z-score
1 [2, -28, -50] Pons 21.2358
2 [26, -88, -25] Cerebellum Crus 1 Right 12.3434
3 [-18, -88, -20] Cerebellum Crus 1 Left 5.7887
4 [22, -68, 60] Superior Parietal Lobule Right 9.0536
5 [2,-52, 15] Precuneus Right 7.6552
6 [2,-68, 0] Lingual Gyrus Right 7.058
7 [10, -84, 40] Cuneus Right 7.4908
8 [2, 40, 55] Medial Superior Frontal Gyrus Right 9.0917
9 [54, -56, -30] Cerebellum Crus 1 Right 7.6655
10 [2, -44, 5] Vermis 4_5 7.5728
11 [2,-76, -5] Lingual Gyrus Right 6.248
12 [-2,-40, 75] Paracentral Lobule Left 11.0513
Table 7. 20: The brain areas that show activation in thirteenth control subject.
Component Maximum Voxel Brain areas z-score
1 [6, -28, -50] Pons 15.0238
2 [54, 8, 0] Superior Temporal Pole Right 5.0793
3 [18, -28, -20] Cerebellum 3 Right 5.0199
4 [30, 64, 15] Superior Frontal Gyrus Right 4.6606
5 [-2,-72, 35] Cuneus Left 6.1981
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6 [10, -16, 80] Precentral Gyrus Right 7.1482
7 [-38,-76, -25] Cerebellum Crus 1 Left 9.8994
8 [-6, -88, -15] Lingual Gyrus Left 6.0158
9 [18, 8, -20] ParaHippocampal Gyrus Right 8.4571
10 [-54, -56, 30] Angular Gyrus Left 5.3793
11 [22, -68, 60] Superior Parietal Lobule Right 7.8948
12 [-30, -84, -25] Cerebellum Crus 1 Left 4.3646
Table 7. 21: The brain areas that show activation in the fourteenth control subject.
Component Maximum Voxel Brain areas z-score
1 [2,-20, 0] Thalamus Right 8.6635
2 [-6,-32, -50] Pons 14.6121
3 [18, -76, 55] Superior Parietal Lobule Right 10.2975
4 [26,-92, -15] Lingual Gyrus Right 7.2467
5,8,10 [-14,-32, -45] Cerebellum 10 Left 8.7392,
10.0838,
6.8709
6 [54, -56, -25] Inferior Temporal Gyrus Right 5.9593
7 [18,-92, -15] Lingual Gyrus Right 12.1407
9 [-6, 68, 15] Medial Superior Frontal Gyrus Left 4.9934
11 [-2,-24, 80] Paracentral Lobule Left 11.2695
12 [-34, -84, -25] Cerebellum Crus1 Left 7.4345
Table 7. 22: The brain areas that show activation in PD group.
Component Maximum Voxel Brain areas z-score
1 [2,-72,40] Precuneus Right 6.3088
2 [34,56,5] Middle Frontal Gyrus Right 4.1911
3 [-26,-84,-30] Cerebellum Crus 1 Left 5.6288
4 [-50,-60,30] Angular Gyrus Left 5.8226
5 [-6,-28,-50] Pons 11.0831
6 [34,16,-25] Superior Temporal Pole Right 7.0113
7 [38,-80,-25] Cerebellum Crus 1 Right 10.2877
8 [-38,-80,-15] Fusiform Gyrus Left 5.6988
9 [2,-4,75] Supplementary Motor Area Right 12.9611
10 [-42,-52,55] Inferior Parietal Lobule Left 6.0779
11 [2,-76,55] Precuneus Right 4.1397
12 [-62,-20,15] Rolandic Operculum Left 5.8766
Table 7. 23: The brain areas that show activation in the first PD subject.
Component Maximum Voxel Brain areas z-score
1 [2, -56, 20] Precuneus Right 10.4482
2 [-42,-76, -15] Fusiform Gyrus Left 7.2299
3 [14, -24, -40] Pons 7.3812
4 [14,-92,-10] Lingual Gyrus Right 6.6352
5 [6, -28, -50] Pons 12.4861
6 [6,-92,-5] Lingual Gyrus Right 8.8708
7 [10, -88, -15] Cerebellum Crus 1 Right 8.9839
8 [22,-92,-10] Lingual Gyrus Right 8.4199
9 [-2,0, 75] Supplementary Motor Area 10.1897
10 [42, -64, 45] Angular Gyrus Right 5.29
11 [26,-92, -10] Inferior Occipital Gyrus Right 6.1564
12 [34, 16, -25] Superior Temporal Pole Right 6.2652
Table 7. 24: The brain areas that show activation in second PD subject.
Component Maximum Voxel Brain areas z-score
1 [-38, -68, 45] Angular Gyrus Left 5.1487
2 [2,-48, 10] Precuneus Right 5.1683
3 [2,-48, 10] Precuneus Right 6.1436
4 [-22, -88, -20] Cerebellum Crus 1 Left 4,1985
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5 [2, -44,-30] Vermis 10 8.7105
6 [22,-88, -20] Cerebellum Crus1 Right 15.0921
7 [30, 24, -15] Insula Right 4.322
8 [10, -88, -15] Lingual Gyrus Right 6.1206
9 [-34,-76, -15] Fusiform Gyrus Left 4.7264
10 [10, -32, -50] Pons 10.3583
11 [-2,-12, 75] Paracentral Lobule Left 16.3885
12 [14, -88, -15] Lingual Gyrus Right 9.348
Table 7. 25: The brain areas that show activation in the third PD subject.
Component Maximum Voxel Brain areas z-score
1 [-2,-56, 70] Precuneus Left 5.1667
2 [-26, -88, -20] Cerebellum Crus 1 Left 8.4029
3 [26, -88, -20] Cerebellum Crus 1 Right 5.0299
4 [-50, 28, -5] Orbital Inferior Frontal Gyrus Left 6.8601
5 [26, -88, -20] Cerebellum Crus 1 Right 6.6819
6 [-2, 20, 65] Supplementary Motor Area Left 9.3948
7 [-62,-28, 15] Superior Temporal Gyrus Left 6.1874
8 [-38, -52, 60] Superior Parietal Lobule Left 8.6435
9 [26, -88, -20] Cerebellum Crus 1 Right 7.6504
10 [-2,-56, 70] Precuneus Left 13.8023
11 [-2,-80, -5] Calcarine Cortex Left 9.9472
12 [2,-72, 55] Precuneus Right 7.9859
Table 7. 26: The brain areas that show activation in the fourth PD subject.
Component Maximum Voxel Brain areas z-score
1 [-46,-72, -20] Cerebellum Crus 1 Left 8.592
2 [-2,-56, 70] Precuneus Left 12.3591
3 [-50, -44, 50] Inferior Parietal Lobule Left 5.9747
4 [-30, -84, -25] Cerebellum Crus 1 Left 9.3791
5 [-62, -24, 15] Superior Temporal Gyrus Left 5.3951
6 [-30, -88, 10] Middle Occipital Gyrus Left 6.2742
7 [34, -84, -20] Cerebellum Crus 1 Right 6.3327
8 [26, 60, -5] Orbital Superior Frontal GyrusRight 4.445
9 [-54, -60, 35] Angular Gyrus Left 6.772
10 [46, -72,-20] Cerebellum Crus 1 Right 6.0617
11 [34, -84, -20] Cerebellum Crus1 Right 13.478
12 [62, -44, 40] SupraMarginal Gyrus Right 49512
Table 7. 27: The brain areas that show activation in the fifth PD subject.
Component Maximum Voxel Brain areas z-score
1 [14, -88, -20] Cerebellum Crus 1 Right 6.8927
2 [2, -68, 35] Precuneus Right 7.0149
3 [-2,-44, -35] Vermis 10 8.4784
4 [42, 4, -15] Superior Temporal Pole Right 8.2265
5 [54, 12, -5] Superior Temporal Pole Right 7.2198
6 [-6, -84, -20] Cerebellum Crus 2 Left 11.5302
7 [2, -80, 50] Superior Parietal Lobule Right 6.0666
8 [-38, -64, 55] Superior Parietal Lobule Left 7.2604
9 [54, -48, 45] Inferior Parietal Lobule Right 4,9892
10 [42, -56, 55] Angular Gyrus Right 5.4232
11 [-10, -36, -50] Cerebellum 9 Left 14.0362
12 [-2,-12,75] Paracentral Lobule Left 10.126
Table 7. 28: The brain areas that show activation in the sixth PD subject.
Component Maximum Voxel Brain areas z-score
1 [-14, -68, 60] Precuneus Left 7.5351
2 [-30, -64, 55] Superior Parietal Lobule Left 6.2057
3 [2,-52, 20] Precuneus Right 6.9003
4 [-58, -4, 10] Rolandic Operculum Left 5.6974
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5 [-46,-72, -20] Cerebellum Crus 1 Left 5.8182
6 [2,-44,-30] Vermis 10 5.4328
7 [-6, -28, -50] Pons 8.3058
8 [-18, -44, 75] Superior Parietal Lobule Left 6.262
9 [6, 68, 10] Medial Superior Frontal Gyrus Right 6.1567
10 [2,-24, 75] Paracentral Lobule Right 14.933
11 [-26, -88, -20] Cerebellum Crus 1 Left 13.3288
12 [-6,-92, -10] Calcarine Cortex Left 10.3211
Table 7. 29: The brain areas that show activation in the seventh PD subject.
Component Maximum Voxel Brain areas z-score
1,4 [-34, -68, 55] Superior Parietal Lobule Left 8.1176,
6.2591
2 [-50, -60, -25] Angular Gyrus Left 6.3768
3 [-42,-60, 50] Angular Gyrus Left 6.3845
5 [-2,-80, -15] Cerebellum 6 Left 11.1267
6 [54, -52, 30] Angular Gyrus Right 4.1331
7 [-2,-24, 75] Paracentral Lobule Left 7.0831
8 [-34, -84, -15] Lingual Left 10.379
9 [2, -4, 75] Supplementary Motor Area Right 15.1426
10,12 [-30, -68, 55] Superior Parietal Lobule Left 10.1474,
9.7156
11 [-6, -28, -50] Superior Parietal Lobule Left 11.1716
Table 7. 30: The brain areas that show activation in the eighth PD subject.
Component Maximum Voxel Brain areas z-score
1 [14,-32,-50] Cerebellum 9 Right 14.463
2,9 [2, 4, 70] Supplementary Motor Area Right 5.5716,
19.627
3 [-42,-76, -30] Cerebellum Crus 1 Left 8.3314
4 [2, 40, 55] Medial Superior Frontal Gyrus Right 5.6767
5 [-42,-76, -25] Cerebellum Crus 1 Left 13.1362
6 [-14, -88, -25] Cerebellum Crus 2 Left 7.1634
7 [-34, 12, -25] Superior Temporal Pole Left 10.0126
8 [-54, -36, 50] Inferior Parietal Lobule Left 6.3245
10 [2,-52, 15] Precuneus Right 7.1332
11 [-6, -88, -20] Cerebellum Crus 1 Left 13.6774
12 [-10, 32, 60] Medial Superior Frontal Gyrus Left 5.067
Table 7. 31: The brain areas that show activation in the ninth PD subject.
Component Maximum Voxel Brain areas z-score
1,4,9 [26,-92,-10] Inferior Occipital Gyrus Right 11.2952,
10.0192,
6.4914
2 [34, 16, -20] Orbital Inferior Frontal Gyrus Right 7.945
3 [-34, -84, -20] Cerebellum Crus 1 Left 7.9991
5 [34, -84, -20] Cerebellum Crus 1 Right 14.9537
6,12 [14, -28, -45] Cerebelum 9 Right 6.0098,
6.2064
7 [-6,-28, -50] Pons 11.6688
8 [38, 56, -5] Orbital Middle Frontal Gyrus Right 4,9343
10 [10, -4, 75] Supplementary Motor Area Right 15.0393
11 [-46, -64, 25] Angular Gyrus Left 5.9592
Table 7. 32: The brain areas that show activation in the tenth PD subject.
Component Maximum Voxel Brain areas z-score
1 [10, -32,-50] Cerebelum 9 Right 12.9976
2 [-62,-52, 5] Middle Temporal GyrusLeft 5.3021
3,6 [-42, -56, 55] Inferior Parietal Lobule Left 6.1378,
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5.5182

4 [18, -88, -25] Cerebellum Crus 1 Right 7.8154
5,7 [50, -68, -25] Cerebellum Crus1 Right 9.4539,
11.7782
8 [2, -56, 65] Precuneus Right 5.366
9 [22,-88, -20] Cerebellum Crus 1 Right 11.8017
10 [50, 16, -5] Superior Temporal Pole Right 5.0382
11 [50, -64, -20] Cerebellum Crus 1 Right 7.1926
12 [14,-32,-50] Cerebelum 9 Right 6.356
Table 7. 33: The brain areas that show activation in the eleventh PD subject.
Component Maximum Voxel Brain areas z-score
1,7,11 [-34, -84, -20] Cerebellum Crus 1 Left 4,942,
12.9389,
19.219
2 [2,-52, 65] Precuneus Right 5.526
3,6 [-46,-72, -20] Cerebellum Crus1 Left 10.1912,
12.6028
4 [-30, -88, -15] Lingual Gyrus Left 16.3879
5 [10, -32,-50] Pons 8.2963
8 [-22,-92, -15] Lingual Gyrus Left 7.5554
9 [18,-92,-10] Lingual Gyrus Right 5.8685
10 [-22,-92, -15] Lingual Gyrus Left 5.8076
12 [6,-92, 5] Calcarine Cortex Right 13.0484
Table 7. 34: The brain areas that show activation in the twelfth PD subject.
Component Maximum Voxel Brain areas z-score
1 [-42,-72,-25] Cerebellum Crus1 Left 6.0897
2 [-10, -76, 50] Precuneus Left 6.3166
3 [10, -88, -10] Lingual Gyrus Right 13.4364
4 [-2, 40, 55] Medial Superior Frontal Gyrus Left 9.1099
5 [10, -32,-50] Pons 9.8303
6 [6, -88, 0] Calcarine Cortex Right 8.9704
7 [-2,-16, 75] Paracentral Lobule Left 6.6426
8 [2,-72, 35] Cuneus Left 6.8667
9 [26, -88, -15] Lingual Gyrus Right 8.1845
10 [34, -76, 30] Middle Occipital Gyrus Right 5.665
11 [-54, -56, 30] Angular Gyrus Left 5.4014
12 [26, -88, -15] Lingual Gyrus Right 7.3175
Table 7. 35: The brain areas that show activation in the thirteenth PD subject.
Component Maximum Voxel Brain areas z-score
1 [-42,-48, 55] Inferior Parietal Lobule Left 7.4235
2 [2,-8, 75] Supplementary Motor Area Right 11.8076
3 [2, 44, 50] Medial Superior Frontal Gyrus Left 6.9096
4 [38, -80, -25] Cerebellum Crus1 Right 17.5022
5 [-42,-76, -20] Cerebelum Crus1 Left 10.6029
6 [-38, -80, -20] Cerebellum Crus 1 Left 5.6061
7 [2,-72, 35] Cuneus Left 5.9264
8,9 [-42,-76, -20] Cerebellum Crus1 Right 12.5048,
12.2672
10 [-22, -84, -25] Cerebellum Crus 1 Left 9.4221
11 [-42,-76, -20] Cerebellum Crus 1 Left 7.7751
12 [2,-80,-10] Lingual Gyrus Right 9.1658
Table 7. 36: The brain areas that show activation in the fourteenth PD subject.
Component Maximum Voxel Brain areas z-score
1 [34,12,-20] Superior Temporal Pole Right 4.1448
2 [38, -48, 55] Inferior Parietal Lobule Right 6.5379
3 [-42, -56, 55] Inferior Parietal Lobule Left 5.2939
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4 [-38, -80, 30] Middle Occipital Gyrus Left 4.3041
5 [-6, -28, -50] Pons 9.3715
6 [10, -32,-50] Pons 5.4793
7 [10, -24, 80] Paracentral Lobule Right 7.2388
8,12 [46, 16, 10] Opercular Inferior Frontal Gyrus Right 6.0604,
5.6975
9 [-50, -64, -25] Cerebellum Crus 1 Left 4.6371
10 [46,-72,-25] Cerebellum Crus1 Right 12.3531
11 [2,-64, 55] Precuneus Right 7.8411
Table 7. 37: Effective connectivity parameters of the first control subject.
MPFC ILPC rLPC pcc
MPFC 0.0131 0.1729 -0.3609 0.1935
ILPC 0.1944 0.5994 0.0559 0.1050
rLPC 0.3945 0.0030 0.5921 0.1123
PCC 0.2271 0.2228 -0.0258 0.5240
Table 7. 38: Effective connectivity parameters of the second control subject.
MPFC ILPC rLPC pcc
MPFC 0.3409 -0.0095 0.0287 0.3760
ILPC 0.2225 -0.0663 -0.1892 0.1131
rLPC 0.0649 0.4457 0.2602 -0.0840
PCC -0.0807 -0.1214 0.4663 0.2411
Table 7. 39: Effective connectivity parameters of the third control subject.
MPFC ILPC rLPC PCC
MPFC 0.6117 -0.0369 0.2816 0.2229
ILPC -0.0546 0.4855 -0.1303 0.6263
rLPC -0.3334 0.3397 0.5930 0.5210
PCC -0.1049 0.0369 -0.0536 -0.4543
Table 7. 40: Effective connectivity parameters of the fourth control subject.
MPFC ILPC rLPC PCC
MPFC 0.4194 -0.0475 0.3882 -0.0950
ILPC -0.2142 0.5035 0.3916 -0.2322
rLPC -0.4512 -0.4391 -0.5133 -0.2383
PCC -0.3199 -0.1647 0.5808 0.4402
Table 7. 41: Effective connectivity parameters of the fifth control subject.
MPFC ILPC rLPC PCC
MPFC 0.6729 0.1377 0.0553 0.4224
ILPC -0.1940 -0.1770 -0.1849 0.4380
rLPC -0.4472 0.5938 0.6267 0.2989
PCC -0.8348 0.5770 0.0535 -0.1177
Table 7. 42: Effective connectivity parameters of the sixth control subject.
MPFC ILPC rLPC Pcc
MPFC 0.4842 0.4467 -0.1681 -0.0220
ILPC 0.1200 0.2641 0.0000 0.1131
rLPC 0.0991 0.1272 0.6863 0.1613
PCC 0.3270 0.1163 -0.0097 0.4175
Table 7. 43: Effective connectivity parameters of the seventh control subject.
MPFC ILPC rLPC Pcc
MPFC 0.0391 -0.2867 0.6001 0.0402
ILPC 0.4096 0.5521 0.1534 0.3647
rLPC 0.4408 -0.6923 -0.7068 -0.0060
PCC 0.4027 -0.1843 0.2199 -0.3658
Table 7. 44: Effective connectivity parameters of the eighth control subject.
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MPFC ILpPc rLPC pcc
MPFC 0.2556 0.2622 0.1941 0.3579
ILPC -0.2610 0.0468 0.1456 0.1605
rLPC -0.2605 0.1463 0.2897 0.2752
PCC -0.3177 0.0118 0.3014 -0.0008
Table 7. 45: Effective connectivity parameters of the ninth control subject.
MPFC ILPC rLPC pcc
MPFC 0.2506 -0.0470 -0.2217 0.4359
ILPC 0.0631 0.3956 0.2300 0.0713
rLPC 0.2096 -0.0338 0.3874 0.1403
PCC -0.1158 0.3901 0.1173 0.2457
Table 7. 46: Effective connectivity parameters of the tenth control subject.
MPFC ILPC rLPC pcc
MPFC 0.7435 0.0736 -0.0558 0.5092
ILPC -0.1576 0.2787 -0.1396 0.1478
rLPC -0.1550 0.5888 0.8250 0.7199
PCC -0.2029 0.1685 -0.2094 -0.1367
Table 7. 47: Effective connectivity parameters of the eleventh control subject.
MPFC ILPC rLPC PCC
MPFC 0.5846 -0.1811 -0.0335 0.3711
ILPC 0.0223 0.8152 -0.0815 0.3541
rLPC 0.0276 0.0058 0.8925 0.3808
PCC -0.0467 0.0249 -0.0645 -0.6374
Table 7. 48: Effective connectivity parameters of the twelfth control subject.
MPFC ILPC rLPC PCC
MPFC 0.5616 0.1339 0.0411 0.2949
ILPC -0.0685 0.7182 0.2263 0.4427
rLPC -0.1601 0.1592 0.5939 0.4540
PCC -0.1506 -0.0757 -0.0513 -0.8184
Table 7. 49: Effective connectivity parameters of the thirteenth control subject.
MPFC ILPC rLPC PCC
MPFC 0.4306 0.0024 0.3613 0.3446
ILPC -0.2100 0.0355 0.3396 -0.0206
rLPC -1.0472 -0.0643 -0.3000 0.3540
PCC -0.4998 -0.1265 0.4724 -0.5394
Table 7. 50: Effective connectivity parameters of the fourteenth control subject.
MPFC ILPC rLPC pcc
MPFC 0.2465 0.0681 0.0701 0.3364
ILPC 0.1121 0.2454 -0.0887 0.4601
rLPC 0.1628 0.2460 0.1911 -0.1658
PCC -0.0868 -0.0344 0.3178 0.0635
Table 7. 51: Effective connectivity parameters of the second PD subject.
MPFC ILPC rLPC PCC
MPFC -0.6322 0.3110 -0.0398 -0.2094
ILPC -0.4643 0.1316 0.1278 0.2784
rLPC 0.0680 -0.0238 0.3576 0.1441
PCC 0.4280 -0.4581 0.5122 0.0344
Table 7. 52: Effective connectivity parameters of the third PD subject.
MPFC ILPC rLPC pcc
MPFC 0.4675 0.3794 0.0284 0.1087
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ILPC -0.0200 0.2241 0.1388 0.2638
rLPC 0.0083 0.1686 0.5896 0.2390
pPcc 0.1838 0.3978 -0.0781 0.4249
Table 7. 53: Effective connectivity parameters of the fourth PD subject.
MPFC ILPC rLPC pcc
MPFC 0.0763 0.1434 -0.0062 0.3200
ILPC -0.1241 0.0605 0.3132 0.1250
rLPC 0.1699 -0.1590 0.0176 -0.0102
Pcc -0.0155 0.2847 -0.1399 0.1113
Table 7. 54: Effective connectivity parameters of the fifth PD subject.
MPFC ILPC rLPC pcc
MPFC -0.3359 -0.2866 0.2099 -0.7475
ILPC 0.3962 0.1932 0.0358 -0.0496
rLPC 0.2299 0.4094 -0.0043 -0.7405
pcc 0.0495 0.3043 0.5294 -0.3430

Effective connectivity parameters of the sixth PD subject were not acquired because of an

error.

Table 7. 55: Effective connectivity parameters of the seventh PD subject.

MPFC ILPC rLPC PCC
MPFC -0.2670 -0.2563 -0.4601 0.5708
ILPC -0.4704 -0.3848 0.6135 -0.0690
rLPC 0.0366 -1.1487 -0.7340 0.1846
PCC -0.4508 -0.4098 0.0917 -0.8893
Table 7. 56: Effective connectivity parameters of the eighth PD subject.
MPFC ILPC rLPC PCC
MPFC 0.4148 -0.0565 0.0935 -0.1237
ILPC -0.1748 0.5732 0.4150 -0.2105
rLPC 0.0350 0.0432 0.2588 -0.0311
PCC -0.2695 -0.0521 0.3483 0.6081
Table 7. 57: Effective connectivity parameters of the ninth PD subject.
MPFC ILPC rLPC PCC
MPFC -0.0819 0.6927 -0.1885 0.7225
ILPC -0.5264 -0.7069 -0.1476 0.0532
rLPC 0.1241 0.5070 0.4875 -0.2572
PCC -0.1896 0.6535 0.1747 -0.3789
Table 7. 58: Effective connectivity parameters of the tenth PD subject.
MPFC ILPC rLPC pcc
MPFC -0.1084 0.6960 -0.9831 0.1389
ILPC -0.1560 -0.5742 0.0263 -0.0052
rLPC 0.5452 -0.0690 -0.1498 -0.3125
PCC 0.2095 0.3442 0.1495 0.3638
Table 7. 59: Effective connectivity parameters of the eleventh PD subject.
MPFC ILPC rLPC pcc
MPFC 0.6253 -0.0501 0.0948 0.1418
ILPC -0.0562 0.7169 -0.2091 0.4637
rLPC 0.0579 0.2405 0.8900 0.2648
PCC 0.4230 -0.0783 -0.3468 -0.3692
Table 7. 60: Effective connectivity parameters of the twelfth PD subject.
MPFC ILPC rLPC pcc
MPFC 0.4178 -0.1301 -0.1345 0.3827
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ILPC 0.2611 0.0039 -0.3343 0.1426
rLPC 0.0485 0.7358 0.8632 0.0364
PcC -0.7914 -0.2009 0.1081 -1.0468
Table 7. 61: Effective connectivity parameters of the thirteenth PD subject.
MPFC ILPC rLPC pPcc
MPFC 0.0200 0.1930 0.0019 0.1916
ILPC 0.3106 0.0171 0.4912 -0.0532
rLPC 0.0215 0.1330 0.1907 0.3171
Pcc 0.1212 -0.6437 0.4787 -0.8774
Table 7. 62: Effective connectivity parameters of the fourteenth PD subject.
MPFC ILpC rLPC pPcc
MPFC -0.1886 0.0719 0.2209 -0.1399
ILPC -0.0856 -0.6587 0.4273 -1.1175
rLPC 0.1183 0.2609 -0.0210 -0.4782
PcC 0.1336 -0.0178 0.3283 0.2923
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