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ΠΡΟΛΟΓΟΣ 

Η παρούσα μεταπτυχιακή διπλωματική εργασία έχει ως στόχο την υπολογιστική μελέτη της 

συνεκτικότητας, τόσο την λειτουργική όσο και την αποτελεσματική, του εγκεφάλου.  Αυτή η 

μελέτη πραγματοποιήθηκε χρησιμοποιώντας δεδομένα λειτουργικής απεικόνισης 

μαγνητικού συντονισμού (fMRI) ασθενών με τη νόσο Πάρκινσον, τα οποία συγκρίθηκαν με 

αντίστοιχα λειτουργικά δεδομένα υγιών υποκειμένων.  Αξίζει να αναφερθεί ότι οι ασθενείς, 

που συμμετέχουν, βρίσκονται στα πρώτα στάδια της νόσου και δεν έχουν λάβει κάποια 

φαρμακευτική αγωγή, ενώ το σύνολο των δεδομένων προέρχεται από πείραμα σε 

κατάσταση ηρεμίας. 

Η δομή της παρούσας διατριβής διαρθρώνεται σε έξι ξεχωριστά κεφάλαια, όπου 

στα τέσσερα πρώτα γίνεται μία αναλυτική θεωρητική προσέγγιση της νόσου του 

Πάρκινσον, της λειτουργικής απεικόνισης μαγνητικού συντονισμού, της μεθοδολογίας που 

ακολουθείται προκειμένου να εξεταστεί το συγκεκριμένο θέμα και επίσης της μέχρι τώρα 

εξέλιξης που έχει πραγματοποιηθεί μέσω  βιβλιογραφικής ανασκόπησης.  Στα τελευταία 

δύο κεφάλαια παρουσιάζεται η πειραματική πορεία που ακολουθήθηκε καθώς επίσης και 

τα συμπεράσματα που εξήχθησαν. 

Πιο συγκεκριμένα, στο πρώτο κεφάλαιο γίνεται η περιγραφή της νόσου του 

Πάρκινσον, δηλαδή του βασικού φαινομένου που προκαλεί την νόσο αφού αποτελεί την 

μοναδική ασθένεια του κλάδου των νευροεκφυλιστικών διαταραχών που έχει διευκρινιστεί 

η παθοφυσιολογία της.  Επίσης παρουσιάζονται οι κλίμακες κλινικής αξιολόγησης της 

ασθένειας που έχουν αναπτυχθεί μαζί με τα κλινικά χαρακτηριστικά της.  Ενώ γίνεται 

σημαντική αναφορά στις υπάρχουσες θεραπείες, που θεραπεύουν κυρίως συμπτώματα της 

νόσου, και στα επιδημιολογικά στοιχεία και στοιχεία που σχετίζονται με την εμφάνισή της. 

Στο επόμενο κεφάλαιο παρουσιάζεται μία εκτενής αναφορά στην λειτουργική απεικόνιση 

μαγνητικού συντονισμού ξεκινώντας με ιστορικά στοιχεία και τις βασικές αρχές λειτουργίας 

της ευρέως διαδεδομένης διαγνωστικής τεχνικής.  Παρουσιάζονται δηλαδή στοιχεία για την 

αντίδραση BOLD, τους τύπους πειραματικού σχεδιασμού, την διαδικασία λήψης των 

λειτουργικών εικόνων, τις χρονοσειρές fMRI, τις κλινικές εφαρμογές και τέλος τα 

πλεονεκτήματα και μειονεκτήματα χρήσης της συγκεκριμένης τεχνικής. 

Η βιβλιογραφική ανασκόπηση των πρόσφατων μελετών σε σχέση με τη νόσο του 

Πάρκινσον και την εφαρμογή της τεχνικής fMRI για την εξέταση αυτής, αποτελεί το βασικό 

περιεχόμενο του τρίτου κεφαλαίου.  Οι μελέτες που παρουσιάζονται έχουν χωριστεί σε δύο 

κατηγορίες ανάλογα  με τον πειραματικό σχεδιασμό.  Δηλαδή αναφέρονται τόσο μελέτες 

που η λήψη των εικόνων σχετίζεται με κάποιο ερέθισμα (ηχητικό, οπτικό) όσο και μελέτες 



iv 
 

όπου η απόκτηση των εικόνων δε βασίζεται σε κάποιο ερέθισμα, πραγματοποιείται 

απουσία ερεθίσματος και καλείται κατάσταση ηρεμίας.  

Στο τέταρτο κεφάλαιο πραγματοποιείται μία εκτενής παρουσίαση των τριών τύπων 

συνεκτικότητας του εγκεφάλου, δηλαδή της δομικής, λειτουργικής και αποτελεσματικής. 

Ενώ επίσης παρουσιάζονται οι μέθοδοι που υπάρχουν για την μελέτη και ανίχνευση των 

διαφόρων τύπων συνεκτικότητας του εγκεφάλου. 

Η αναλυτική περιγραφή της μεθοδολογίας που ακολουθήθηκε στο πειραματικό 

μέρος της παρούσας εργασίας και τα αποτελέσματα που προέκυψαν παρουσιάζονται στο 

πέμπτο κεφάλαιο.  Συγκεκριμένα παρουσιάζονται οι τρεις ξεχωριστές μελέτες με τις τρεις 

ξεχωριστές μεθόδους ανάλυσης που εφαρμόστηκαν.  Οι δύο πρώτες μελέτες στόχευαν στην 

ανίχνευση της λειτουργικής συνεκτικότητας ενώ η τελευταία στην ανίχνευση της 

αποτελεσματικής συνεκτικότητας. 

Στο έκτο και τελευταίο κεφάλαιο της εργασίας γίνεται η συζήτηση των 

αποτελεσμάτων που προέκυψαν, βάσει των μεθοδολογιών που εφαρμόστηκαν ενώ 

προτείνεται η συνέχιση της έρευνας σε ασθενείς που βρίσκονται στα πρώτα στάδια της 

νόσου του Πάρκινσον. 
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ΠΕΡΙΛΗΨΗ 

Η μελέτη της λειτουργικότητας του εγκεφάλου βοηθά στην κατανόηση της εγκεφαλικής 

δραστηριότητας και στο πως αυτή μεταβάλλεται σε σχέση με τις διάφορες παθήσεις. Η 

παρούσα μεταπτυχιακή διπλωματική εργασία ασχολείται με την υπολογιστική μελέτη της 

συνεκτικότητας του εγκεφάλου, τόσο την λειτουργική όσο και την αποτελεσματική ή 

αιτιώδη, σε ασθενείς με τη νόσο Πάρκινσον που βρίσκονται στα πρώτα στάδια. Για το 

σκοπό αυτό χρησιμοποιήθηκαν δεδομένα λειτουργικής απεικόνισης μαγνητικού 

συντονισμού (functional Magnetic Resonance Imaging- fMRI) δεκατεσσάρων ασθενών με 

Πάρκινσον τα οποία συγκρίθηκαν με αντίστοιχα δεδομένα δεκατεσσάρων υγιών 

υποκειμένων, όταν αυτοί βρίσκονταν σε κατάσταση ηρεμίας. Η μελέτη της λειτουργικής 

συνεκτικότητας μπορεί να πραγματοποιηθεί με την επιλογή κατάλληλων υπολογιστικών 

μεθόδων, οι οποίες είτε βασίζονται σε δεδομένα που δεν χρειάζονται προηγούμενη γνώση 

είτε βασίζονται σε μοντέλα όπου απαιτείται προηγούμενη γνώση. Στη συγκεκριμένη 

εργασία εφαρμόστηκε η ανάλυση ανεξάρτητων συνιστωσών (ICA) η οποία ανήκει στην 

πρώτη κατηγορία, καθώς επίσης και μία μέθοδος που βασίζεται σε μοντέλα μέσω του 

εργαλείου CONN.  Για τη μελέτη της αποτελεσματικής συνεκτικότητας εφαρμόστηκε η 

μέθοδος των φασματικών αιτιοκρατικών μοντέλων (spDCM).  Τα αποτελέσματα έδειξαν ότι 

υπάρχει σημαντική αλλοίωση της λειτουργικής συνεκτικότητας των εγκεφαλικών δικτύων 

των ασθενών ακόμα και στα πολύ πρώιμα στάδια της νόσου.  Ενώ όλες οι αλλαγές που 

παρατηρούνται, οδηγούν σε μη κινητικά συμπτώματα των ασθενών. 
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PREFACE 

The main aim of the current master thesis is the computational modeling of brain 

connectivity, both the functional and the effective connectivity.  This computational study 

was conducted with the use of fMRI data of patients with Parkinson’s disease (PD) that 

compared with individual functional data of controls subjects.  It is worth noticing that the 

participating patients are in the early stages of the disease and they have not taken any kind 

of medication, while the dataset derive from an experiment in resting-state.  

The structure of the current thesis is consisted of six separate chapters.  In the first 

four chapters there is a detailed theoretical approach of Parkinson’s disease (PD), the 

functional magnetic resonance imaging (fMRI), the methodology that applied so as to study 

the current issue and also the progress that has been made so far through a state of the art.  

In the last two chapters the experimental course that is followed as well as the conclusions 

that resulted are presented. 

More specifically, the first chapter refers to Parkinson’s disease.  In particular, the 

chapter describes the basic phenomenon that causes the disease since it is the only disease 

in the field of neurodegenerative disorders that its pathophysiology has been classified.  

Moreover, the clinical rating scales of the disease that have been developed along with the 

clinical features are reported.  Additionally, the existing treatments, which mainly treat the 

symptoms of the disease, the epidemiology and the risk factors are significantly addressed. 

In the following chapter an extensive report of functional magnetic resonance imaging 

(fMRI), starting with historical information and the principles of the popular diagnostic 

technique is presented.  Furthermore, the BOLD mechanism, the types of experimental 

design, the image acquisition, the fMRI time-series, the clinical applications and finally the 

advantages and disadvantages of the specific technique are also discussed. 

The state of the art of the recent studies relatively to PD with the application of 

fMRI, is the main content of the third chapter.  The presented studies are separated in two 

categories depending on the experimental design.  There is a report both for task-based 

studies and resting-state studies. 

In the fourth chapter there is an extensive presentation of the three types of brain 

connectivity, namely structural, functional and effective, while the methods used in the 

particular study as well as the detection of these three types of brain connectivity is also 

reported. 
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The detailed description of the methodology that is followed in the experimental 

part of the thesis and the results that were extracted, are presented in the fifth chapter.  

Precisely, three different studies associated with the three separate methods that have been 

applied are shown.  Two of them aimed in the detection of the functional connectivity while 

the last one in the detection of effective connectivity. 

In the sixth and last chapter of the thesis a brief discussion of the obtained results, 

based on the methodologies that applied is made.  Α kind recommendation for the 

continuation of research in patients being in the early stages of Parkinson’s disease is also 

included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

ABSTRACT 

The study of brain connectivity helps to understand the activation of the brain and the 

alterations that may be occurred, due to the presence of different diseases.  The current 

master thesis is focused on the computational modeling of brain connectivity, both the 

functional and effective connectivity, in de-novo Parkinson’s disease (PD) patients in the 

early stages of the disease.   For that reason resting-state fMRI data of fourteen PD patients 

and fourteen healthy controls respectively were used, so as to make a comparison.  The 

study of functional connectivity can be carried out with the selection of appropriate 

computational techniques, where they could be data-driven with no need of prior 

knowledge or model-based with the need of prior knowledge.  In the current thesis the ICA 

method which is a data-driven method was used, while also a model-based method via 

CONN toolbox was implemented.  For the study of effective connectivity spectral DCM was 

used.  The results showed that there is significant alteration in functional connectivity of 

brain networks, even in such early stages of the disease.  All the observed alterations 

contribute to non-motor symptoms of PD patients. 

 

 

 

Key words: Parkinson’s disease, fMRI, brain connectivity, resting-state condition. 
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1.1 Pathophysiology, Diagnosis 

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized typically 

by motor features of tremor, rigidity and bradykinesia, due to depletion of dopaminergic 

nigrostriatal neurons [1].  It can also been characterized as a chronic degenerative disorder 

of the Central Nervous System, which is slowly evolving and affecting movement, muscle 

control and balance.  It is the second most common neurodegenerative disease, after 

Alzheimer’s disease, and its prevalence will increase as the population ages.  Parkinson’s 

disease was first described by James Parkinson in 1817 under the term ‘’ shaking palsy’’ and 

later named to his honor.  Nearly two hundred years after the first description of the 

disease, its aetiology is still unknown and the cure is only symptomatic.  Parkinson’s disease 

has made significant progress in the last decades, as it is unique from the neurodegenerative 

diseases that has been elucidated its pathophysiology [2]. 

The basic phenomenon that describes the neural pathophysiology of PD is a 

dopaminergic neuronal loss in the substantia nigra in the basal gaglia of the cerebra.  Inside 

the degenerating neurons can be observed specific inclusion bodies (Lewy bodies).  In 
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healthy people, the function of the extrapyramidal system that processes the movement 

information from the cortex to the striatum and returns it through the thalamus back to the 

cortex, has been controlled by the dopaminergic neurons.  Although in PD’s patients, the 

control of the extrapyramidal system is disturbed and the feedback from the striatum to the 

cortex is modified.  All these abnormalities in the function of basal ganglia lead to the motor 

symptoms of PD [3].  In Figure 1.1 it can be observed the difference in dopamine levels 

between a healthy individual and a patient with PD. 

As it has been already mentioned, PD has long been characterized by the classical 

motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic 

neurons in the substantia nigra.  However, the symptomatology of PD is now recognized as 

heterogeneous, with clinically significant non-motor features.  Similarly its pathology 

involves extensive regions of the nervous system, various neurotransmitters and protein 

aggregates other than just Lewy bodies [1]. 

 

Figure 1.1: Dopamine levels in a normal and a Parkinson’s affected nerve fiber [4]. 

 

The standard way that a physician follows for a definite diagnosis of PD, relies on the 

typical clinical presentation with a combination of a post-mortem histopathologic 

confirmation of characteristic neuronal loss together with the presence of Lewy bodies [5, 

6].  Functional brain imaging (e.g. dopamine transporter (DAT) imaging combined with 

single-photon emission computed tomography (SPECT)) does not have the ability to 

distinguish PD from other degenerative causes of parkinsonism (PSP, MSA, CBD, DLB) but is 

of value to differentiate against for example tremor, drug induced tremor and psychogenic 
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symptoms.  From the other hand, structural brain imaging methods (MRI) have the ability to 

rule out differential diagnoses, for example vascular parkinsonism.  Due to the lack of 

specific biomarkers, PD is still in practice a clinical diagnosis [1, 7].  According to the UK Brain 

Bank Criteria (Table 1.1), the clinical diagnosis of PD relies on the presence of bradykinesia 

together with at least one more of the cardinal motor symptoms and the exclusion 

underlying causes of secondary parkinsonism [8]. 

Table 1. 1: UK Brain Bank Criteria for PD [1, 8]. 

Step1: Diagnosis of Parkinsonian syndrome 

Bradykinesia 
At least one of the following : 
Muscular rigidity 
4-6 Hz rest tremor 
Postural instability not caused by primary visual, vestibular cerebellar, or proprioceptive 
dysfunction. 

Step 2: Exclusion criteria for PD 

History of repeated strokes with stepwise progression of parkinsonian features. 
History of repeated head injury and definite encephalitis. 
Neuroleptic treatment at onset symptoms. 
Negative response to large doses of levodopa (if malabsorption excluded). 
Sustained remission. 
Strictly unilateral features after 3 years. 
Early severe autonomic involvement. 
Early severe dementia with disturbances of memory, language and praxis. 
Oculogyric crisis. 
Supranuclear gaze palsy. 
Babinski sign. 
Cerebellar signs. 
MPTP exposure. 
Presence of a cerebral tumor or communicating hydrocephalus on CT scan or MRI. 
More than one affected relative. 

 Step 3: Supportive prospective criteria for PD 

Three or more of the following features are required for diagnosis of definite Parkinson’s 
disease: 
Unilateral onset. 
Rest tremor present. 
Progressive disorder. 
Persistent asymmetry affecting the side on onset most. 
Excellent response (70-100%) to levodopa. 
Severe levodopa-induced chorea. 
Levodopa response for 5 years or more. 
Clinical course of 10 years or more. 

 

A more recent insight in the diagnosis of PD is the recognition of non-motors 

symptoms as a primary part of the disease.  Such symptoms are currently not included in the 
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diagnostic criteria for PD [7].  A debatable feature of PD is impairment of muscle strength.  In 

modern time that symptom has received little attention and clinically apparent reduction of 

that has generally not been considered as primary symptom of PD [9, 10].  However when 

James Parkinson first described ‘’ the shaking palsy’’ he held it as a key feature of the disease 

and self-perceived muscle weakness to be a common complaint in PD patients.  Clinical 

assessment of muscle strength can only provide rough estimations [11]. 

1.2 Clinical Rating Scales 

Although Parkinson’s disease (PD) is progressive and worsens over time, it is highly 

individual and affects people differently.  The symptoms may vary in their severity between 

patients, so not all people who have PD will experience all the symptoms.  Also the 

progression of the disease differs in each case.  However, physicians have established 

several clinical scales that describe how the disease progresses as well as the severity of the 

disease.  The most traditional example is the Hoehn and Yahr (HY) that has first introduced 

in the 1960’s and since then used worldwide.  A modified version has later been introduced 

with the addition of intermediate stages between the original five.  The original version 

includes the following five stages (Table 1.2) [12]. 

Stage 1 of PD 

That is the earliest stage of the disease where the symptoms are mild and only seen on one 

side of the body (unilateral involvement).  Usually there is minimal or no functional 

impairment.  In this stage it is very difficult to make a diagnosis so the physician must wait to 

see if the symptoms get worse over time.  Symptoms at stage one may include tremor, such 

as intermittent tremor of one hand, rigidity, one hand or leg may feel more clumsy than 

another, or one side of the face may be affected, impacting the expression. 

Stage 2 of PD 

Stage two is also considered as an early stage of the disease and it is characterized by 

symptoms on both sides of the body (bilateral involvement) or at the midline without 

impairment to balance.  Stage two may develop months or years after the first stage.  

Although the patient can still be able to perform tasks of daily living at this stage the 

symptoms that experiences are different from the previous stage.  The symptoms of that 

stage may include the loss of facial expression on both sides of the face, decreased blinking, 

abnormalities of the speech, soft or monotone voice, fading volume after starting to speak 

loudly, slurring speech, stiffness or rigidity of the muscles in the trunk that may result in neck 

or back pain, stooped posture and general slowness in all daily activities.  The diagnosis is 

much easier at this stage except from the case that the stage one was missed and the only 
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symptoms that experienced the patient were lack of spontaneous movement or slowness, 

so PD may be misinterpreted as only advancing age. 

Stage 3 of PD 

In the category of mid-stage is considered the stage three and is characterized by loss of 

balance and slowness of movement.  The patient faced the inability to make the rapid, 

automatic and involuntary adjustments that are necessary to prevent falling and falls are 

common at this stage.  In general all other symptoms of PD are also present at this stage.  An 

important clarifying factor is that the patient is still fully independent in their daily living 

activities.  It is worth to be mentioned that the diagnosis is not in doubt at this stage and the 

physician will diagnose impairments in reflexes at this stage. 

Stage 4 of PD 

Parkinson’s disease in that stage has progressed as a severely disabling disease.  Patients 

may be able to walk and stand without help, but they are noticeably incapacitated.  Also are 

unable to live an independent life and need assistance with some activities of daily living.  

The necessity of help define that stage.   

Stage 5 of PD 

That stage is the most advanced and is characterized by the inability to rise from a chair or 

get out of bed without help.  Also they may have the tendency to fall when standing or 

turning and they may freeze or stumble when walking.  Hallucinations or delusions are 

symptoms that may be experienced by the patient at that stage.   

It is worth noting that some patients with PD never reach the stage five, while the 

symptoms are worsen over time.  Also the length of time to progress through the different 

stages varies from individual to individual.  The treatments that are available in every stage 

of the disease can help to manage the progression.  However, the earlier physician makes 

the diagnosis and the earlier the stage at which the disease is diagnosed, the more effective 

is the treatment at alleviating symptoms [13]. 

Table 1. 2: Stages of Parkinson’s disease from Hoehn and Yahr scale [13]. 

 Early PD Mid-stage PD Advanced PD 

Stage of PD 1 2 3 4 5 

Severity of 

symptoms 

 

MILD 

 

MILD 

 

MODERATE 

 

SEVERE 

 

SEVERE 
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Another rating scale that has been developed was the Unified Parkinson’s Disease 

Rating Scale (UPDRS).  The Unified Parkinson’s Disease Rating Scale (UPDRS), which was 

designed in the 1980’s and later revised by the Movements Disorders Society (MDS), is the 

most widely used clinical rating scale the past few years.  The new version is named as MDS-

UPDRS.  The UPDRS is a multidimensional tool and includes both questionnaire parts (I, II, IV) 

as well as a clinical examination (part III).  Specifically part I-II address experiences of daily 

living (non- motor and motor), part III address clinical motor signs and part IV address 

therapy complications (dyskinesias and motor fluctuations).  In the UPDRS, evolvement of 

symptoms and/or disabilities is reflected by declined scores [14].  Clinical rating scales, such 

as Schwab and England functional assessment scale and a set of validated tests have been 

developed and used but the most widely used are the aforementioned [15]. 

1.3 Epidemiology and risk factors 

As it has already been mentioned, Parkinson’s disease is recognized as the most common 

neurodegenerative disease after Alzheimer’s disease.  Higher levels of prevalence of PD are 

observed in Europe, North America and South America compared with African, Asian and 

Arabic countries.  The incidence of PD ranges from 10-18 per 100000 person-years.  The risk 

of developing PD is clearly multifactorial but the elaborate interplay between various factors 

is just beginning to be deciphered.  For example gender is an established risk factor with the 

ratio between male and female is 3:2.  Another risk factor for that disease is ethnicity.  

People of Hispanic ethnic origin, non-Hispanic Whites, Asians and Blacks have highest 

incidence in contrast with the USA.  Nevertheless age is a great risk factor for developing 

Parkinson’s disease.  The prevalence and incidence increase exponentially with age and peak 

after 80 years of age.  Due to the increase of life expectancy worldwide this result has 

important public health implications.  The conclusion of all these will be the rise of the 

number of people with PD by more than 50% by 2030 [16]. 

Environmental exposures are included in the list of risk factors that cause PD.  

Results of an analysis that examine 30 different potential risk factors identified 11 

environmental factors that altered the risk of PD.  Some examples of factors that increase 

risk were pesticide exposure, prior head injury, rural living, β- blocker use, agricultural 

occupation and well-water drinking.  Environmental factors that found to be associated with 

a decreased risk were tobacco smoking, coffee drinking, non-steroidal anti-inflammatory 

drug use, calcium channel blocker use and alcohol consumption.  While there is growing 

evidence that smoking and alcohol drinking both reduce the risk of PD, their dose-related 

associations remain controversial and are less well-defined in women.  A recent nationwide 
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cohort study showed that the risk of PD in relation to smoking and alcohol differed within 

men and women.  They found sex-related differences in both individual and joint impacts of 

smoking and alcohol drinking on the risk incident PD.  More specifically risk lowering effect 

of current smoking tended to be stronger in men, whereas that of alcohol drinking tended to 

be stronger in women.  These sex-related differences in smoking and alcohol may be 

explained by different effects of nicotine and multiple mechanisms, due to alcohol, in the 

brain [116].  However another more recent case-control study showed that PD patients can 

quit from smoking much easier than healthy people, suggesting that the negative association 

with smoking could instead be due to a decreased responsiveness to nicotine during the 

prodromal phase of PD.   

The participation of genetics to PD is suggested by the increased risk of disease 

associated with a family history of PD or tremor.  The most convincing evidence came with 

the discovery of monogenic forms of PD· the first gene was the SNCA which encodes the 

protein α- synuclein and was associated with inherited PD.  In the past decade, almost 900 

genetic association studies have implicated dozens of potential gene loci in PD.  A further 

understanding of PD risk factors and their interactions is needed so as to broad the 

information about the elucidation of pathogenic mechanisms, identification of biomarkers 

and individualization of treatment [10].  

1.4 Clinical Features 

The triad of motor symptoms (tremor, bradykinesia, rigidity) is the clinical features that are 

associated with Parkinson’s disease.  However PD is also associated with many non-motor 

symptoms that are often appeared years or even decades before the motor symptoms and 

the diagnosis of PD. 

That pre-motor or else prodromal phase of PD start, most of the times, 12-14 years 

before diagnosis.  There is evidence that the disease begin in the peripheral autonomic 

nervous system and/or the olfactory bulb and then spreading through central nervous 

system affecting the lower brainstem structures before involving the substantia nigra.  

Symptoms such as hyposmia, constipation and rapid eye movement sleep disorders may 

appear in PD patients before motor symptoms begin.  Patients that have faced tremor, 

balance problems, depression, constipation, fatigue and urinary dysfunction 5 years before 

diagnosis were more likely to develop PD than those without symptoms.  Additionally, 

individuals with constipation or tremor have a higher risk of developing PD over 10 years of 

follow-up.  Early non-motor symptoms include impaired olfactory ability, autonomic 

dysfunction, pain, fatigue, sleep disorders and cognitive and psychiatric disturbances.  These 
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symptoms affect the quality of patient’s life.  Also autonomic symptoms are difficult to treat 

with orthostatic hypotension causing significant problems for patients.  Dementia occurs in 

83% of patients with PD after 20 years of diagnosis.  Research in that prodromal state of PD 

was very interesting because that time point may be ideal and a very significant step for 

therapeutic intervention.  Many case-studies that have included patients with early PD, 

those within 2 years of diagnosis, have observed dopaminergic neuronal loss.  So it would be 

optimal for future studies in disease-modifying treatments to participate patients in 

prodromal state. 

The severity of motor and non-motor symptoms worsens as the disease progresses.  

As it is known PD is a very heterogeneous disease and there has been attempt to subclassify 

it further.  One subclassification that is based on clinical characteristics suggests two 

subtypes: a tremor dominant PD and a non-tremor dominant PD.  A patient with the first 

type lacks of any other motor symptoms and responds better to dopamine replacement 

therapy.  On the other hand, a patient with the second type may develop an akinetic-rigid 

syndrome and a postural instability disorder, as well as an increased incidence of non-motor 

features.  In an advanced stage of the disease, all kind of symptoms may become resistant to 

current medications.  Postural instability and freezing of gait may lead to falls and fractures, 

while dementia and hallucinations can develop in some patients which lead to home 

placement [17]. 

1.5 Treatment 

Initiation of symptomatic therapy  

Available therapies for PD only treat symptoms of the disease.  The basic treatment for 

motor symptoms that physician follow, includes drugs that enhance intracerebral dopamine 

concentrations or those that stimulate dopamine receptors.  Levodopa, dopamine agonists, 

monoamine oxidase type B inhibitors and amantadine (less used) are included in that list of 

drugs.  The initiation of the treatment must happen when symptoms are worsening and 

affect patient’s life.  Since none of the aforementioned drugs have proven to be 

neuroprotective or disease-modifying therapy, physician does not have to start the therapy 

at the time of diagnosis for all patients.  From the other hand, there is justification for delay.  

Dopaminergic treatments for symptoms such as bradykinesia and rigidity respond at the 

early stages of the disease.  Inversely dopamine replacement therapy is not effective for 

tremor, especially in lower doses· anti-cholinergic drugs (trihexyphenidyl, clozapine) can 

treat tremor.  Also monoamine oxidase type B inhibitors are the best only moderately 

beneficial.    
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Something else that is has to be taken into account is the adverse reactions that 

drugs can cause at patients.  For example, dopamine agonists and levodopa are both 

associated with nausea, daytime somnolence and oedema.  These side- effects tend to be 

more frequent with dopamine agonists.  Also dopamine agonists should be avoided in 

patients with a history of addiction, obsessive- compulsive disorder or impulsive personality, 

because there is a probability to develop impulse control disorders at that kind of patients.  

Last but not least, dopamine agonists are not prescribed for elderly patients because can 

cause hallucinations.  Long term use of levodopa is associated with motor complications, 

although can treat effectively symptoms.  So as to delay the appearance of these 

complications, an initial therapy of levodopa sparing with a monoamine oxidase type B 

inhibitor or else dopamine agonist can be considered [18].  

Management of symptoms and complications 

Complications of long-term therapy, usually describe the advance stage of the disease.  

Motor and non-motor fluctuations, dyskinesia and psychosis are included and affect the 

quality of patient’s life.  Fluctuations and dyskinesia are probably results from pulsatile 

stimulation of striatal dopamine receptors, which appear later on the disease and more 

specifically, when intracerebral levodopa concentrations become more closely linked to 

plasma levodopa concentrations.  Motor complications can reduced with non-dopaminergic 

treatments.  For example drugs with serotonergic or nicotinic properties and drugs that 

inhibit glutamatergic signalling or adenosine A2A receptors are being tested as potential 

treatments.  Psychosis in PD is treated via clozapine, but because it can be associated with 

potentially life-threatening agranulocytosis (an idiosyncratic adverse drug reaction), it is 

necessary to monitor regular the haematological status.   

Relating to the non-motor symptoms, these have limited options of treatment as 

well as response to that.  For example, depression - which is a significant non-motor 

symptom - is typically treated with antidepressants.  In patients without PD but with 

depression, non-pharmacological therapies such as electroconvulsive therapy and repetitive 

trans-cranial magnetic stimulation are used effectively.  Such therapy has not been tested in 

patients with PD. 

Surgical treatment 

At the stage of moderate to severe PD only deep brain stimulation- of either the subthalamic 

nucleus or globus pallidus internus- is a well established treatment for motor symptoms.  In 

general surgical treatment is an option when motor fluctuations and dyskinesia are not 

existed but the parkinsonian motor features continue to respond to levodopa.  Certainly 
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further study is needed to establish the contributions of the stimulation versus the effect of 

improvement in motor function and reduction in dopaminergic drugs that accompany deep 

brain stimulation.  Usually the surgical treatment is recommended 10-13 years after 

diagnosis of PD.  The development of disease modifying drugs that will help to slow down or 

even stop the underlying neurodegenerative process is very ambitious for the progress of 

PD.  Multiple cellular processes are involved in neurodegeneration in PD and thus the 

underlying causes of the disease are heterogeneous [1]. 

1.6 Problems and future aspects 

The major standard in the diagnostics of PD and the observation of disease’s progression are 

the clinical diagnostic criteria along with the clinical rating scales.  However, problems are 

observed both in the diagnostics and the treatment of the disease.  The result from these 

problems is the loss of 50-60% of the dopaminergic neurons by the time of the diagnosis.  It 

is quite understandable that the diagnostic accuracy is low and also there are no objectively 

measured characteristics and methods (e.g. biomarkers) for describing the progress of the 

disease and for quantifying the efficacy of treatment in PD.  In these objective methods are 

included, motor performance and olfaction tests, oculomotor and neurophysiological 

measurements, imaging techniques (e.g. MRI, SPECT, PET, fMRI), biochemical measurements 

(e.g. blood tests), evaluation of rapid eye movement (REM), sleep behavior disorder and 

genetic tests.  Advantages and disadvantages have been observed from every single method, 

regarding the sensitivity, usability and the cost-effectiveness.  The identification and 

evaluation of biomarkers has started but none of them is widely available or clinically used 

for PD.  Maybe a combination of biomarkers will be effective for treated PD [15, 16].  

Regarding to the imaging methods that have been used with the rise of 

neuroscience a plethora of new approaches and methods have become available.  Future 

developments in functional imaging, structural imaging and nuclear imaging can be very 

helpful so as to understand and diagnose or even treat PD.  

In this thesis will be refer only about functional imaging because it is the method of 

interest.  More specifically fMRI is an approach that has made significant progress in 

understanding the pathophysiology of PD.   The field has grown from focusing on abnormal 

task related activity in isolated brain regions (such as putamen) to demonstrating abnormal 

interactions between intrinsic, large scale networks in patients with PD such as the cortico-

striatal circuit.  An existing approach that has been used for a long time is the Parkinson’s 

Disease Related Pattern (PDRP). That approach is specific for PD and it is a metabolic 
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covariance pattern that can be calculated with PET and fMRI data.  Although it has proven its 

validity, has not been translated into standard clinical practice.   

Another more recent approach, which deals with multi-dimensional data, is the use 

of generative models.  Those are computational models that estimate how observed fMRI 

data were generated, given a set of priors and hypotheses regarding the configuration of the 

network.  Dynamic Causal Modelling (DCM) is used in this approach because it can compare 

different models of brain function within a group or between two groups.  Also DCM has 

been used in PD so as to test how networks interactions give rise to tremor and to abnormal 

voluntary actions.  A third approach is the extraction of biologically meaningful features 

from multi-dimensional imaging data.  For example using resting-state fMRI data, 

parameters can be calculated that reflect gradient of corticostriatal connectivity across 

striatal subregions. Finally another development could lie in improved functional MRI 

sequences, enabling brain imaging at a high temporal and/or spatial resolution.  If clinically 

validated such approaches may be helpful for diagnosis and disease monitoring [19].  More 

details about fMRI are presented in the following chapter (Chapter 2). 
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Chapter 2: Functional Magnetic Resonance Imaging 

2.1 History  

2.2 Brain activation 

2.3 Image acquisition process – Types of fMRI experimental design 
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2.1 History 

The activity of human brain was first recorded in the 1920s by the German psychiatrist Hans 

Berger while he was practising on electroencephalographic methods.  Since then, a variety 

of methods that aim to map brain activity have been developed.  Two basic classes of 

mapping technique have evolved: those that map (or localise) the underlying electrical 

activity of the brain; and those that map local physiological or metabolic consequences of 

alterations in brain electrical activity.  Among the former are the non-invasive neural 

electromagnetic techniques of electroencephalography (EEG) and magnetoencephalography 

(MEG).  These methods allow high temporal resolution of neuronal processes (typically over 

a 10-100ms time scale) while the spatial resolution is poor (between 1 and several 

centimetres).  Methods such as magnetic resonance imaging (MRI), positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI) -in vivo imaging 

techniques- belong in the second category.  These methods present sensitivity to the 

changes in regional blood perfusion, blood volume or blood oxygenation in accompany 
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neuronal activity.  Especially the fMRI- the technique that is on focus on this study- allow 

good spatial resolution with limited temporal resolution [21, 22]. 

Human functional brain mapping as it is presently know it began when the 

experimental strategies of cognitive psychology were combined with modern brain imaging 

techniques (first PET and then fMRI) to examine how brain function supports mental 

activities.  This combination of disciplines and techniques galvanized the field of cognitive 

neuroscience, which has rapidly expanded to include a broad range of the social sciences in 

addition to basic scientists interested in the neurophysiology, cell biology and genetics of the 

imaging signals.  Although much of this work has transpired over the past couple of decades, 

its roots can be traced back more than a century. 

The scientific developments which have led to modern fMRI are described through 

the following phases.  The idea that local blood flow within the brain is intimately related to 

brain function is surprisingly old.  Angelo Mosso, a prominent Italian physiologist of the 19th 

century, had carefully monitored the pulsations of the brain in adults through 

neurosurgically created bony defects in the skulls of patients.  He noted that when his 

subjects engaged tasks such as mathematical calculations the pulsations of the brain 

increased locally.  Such observations led him to conclude, that blood flow to the brain 

followed function.  The actual physiological relationship between brain function and blood 

flow was first explored in 1890 by Charles Roy and Charles Sherrington.  Despite the 

promising beginning there was no progress during the first quarter of the 20th century.  Until 

a remarkable clinical study of a patient that was reported by John Fulton in the 1928.  During 

the course of his evaluation and treatment for a vascular malformation lying over his visual 

cortex, the patient remarked that a noise that he perceived in the back of his head increased 

in intensity when he was using his eyes.  The conclusion drawn from this remarkable case 

was that blood flow to visual cortices was sensitive to the attention paid to objects in the 

environment.  Seymour Kety (1955) et al developed the first quantitative method for 

measuring whole brain blood flow and metabolism in humans.  Because their measurements 

were confined to the whole brain they were not suitable for ‘brain mapping’.  However, their 

introduction of an in vivo tissue autoradiographic measurement of regional blood flow in 

laboratory animals provided the first glimpse of quantitative regional changes in blood flow 

in the brain related directly to brain function. 

David Ingvar, Neils Lassen and their Scandinavian colleagues following the work by 

Seymour Kety, introduced methods applicable to humans that permitted regional blood-flow 

measurements to be made using scintillation detectors arrayed like a helmet over the head.  
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They demonstrated conclusively that brain blood flow changed regionally in normal human 

subjects during task performance.  Until 1986 it was thought that behaviourally induced 

increases in local blood flow were the direct consequence of an increase in the brain’s need 

for oxygen to metabolize glucose to carbon dioxide and water for the production of energy.  

Based on this hypothesis, functionally induced increases in blood flow should be 

accompanied by quantitatively similar changes in oxygen consumption with no change in the 

ratio of oxy- to deoxyhemoglobin.  Cooper recorded oxygen availability in the human cortex 

in patients undergoing evaluation for epilepsy while their subjects performed various 

cognitive and motor tasks.  They clearly showed task-induced focal increases in oxygen 

availability signifying that blood flow had increased more than oxygen consumption. 

In 1971 Godfrey Hounsfield introduced X-ray computed tomography (or CT as it is 

now called).  In creating CT, Hounsfield had arrived at a practical solution to the problem of 

creating 3D transaxial tomographic images of an intact object from data obtained by passing 

highly focused X-ray beams through the object and recording their attenuation.  Hounsfield’s 

invention received enormous attention and quite literally changed the whole idea about the 

observation of human brain. Also, were difficult to interpret, unpleasant and sometimes 

dangerous clinical techniques such as pneumoencephalography.  CT, however, was an 

anatomical tool. Function was to be the province of PET and MRI.  After the invention of CT, 

the use of radiopharmaceuticals labelled with positron emitting radionuclides for biomedical 

research and clinical application had been the objective of several research groups.  The first 

medical cyclotron was installed in Hammersmith Hospital in London in 1955 and was 

followed by installations at the Massachusetts General Hospital and Washington University’s 

Mallinckrodt Institute of Radiology in 1965.  By 1974 there were 15 such installations 

worldwide.  Work among these groups provided much important background knowledge for 

the introduction of PET. 

Finally, another technology emerged contemporaneously with PET and CT named 

MRI.  Magnetic Resonance Imaging is based upon yet another set of physical principles 

associated with the behaviour of atoms in water in a magnetic field.  The physical principles 

associated with MRI were discovered independently by Felix Bloch and Edward Purcell et al. 

in 1946.  Many years of research followed, in which the technique was used for basic 

research in chemistry.  During that time it was known as nuclear magnetic resonance (NMR).  

The first important step in the development of fMRI was the work of a group of researchers 

at the Massachusetts General Hospital working on the use of exogenously administered MRI 

contrast agents designed to produce transient changes in the MRI image as the agent passed 
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through the brain after its intravenous administration.  Experiments in rodents and dogs 

using contrast agents confined to the vascular compartment and novel rapid data acquisition 

strategies demonstrated for the first time with MRI that it was possible to measure changes 

in brain blood volume produced by physiological manipulations of brain blood flow.  This 

approach was extended to normal human volunteers for task activation brain mapping by 

the same group in 1991.  Remarkably 91 years after, Michael Faraday studied the magnetic 

susceptibilities of oxygenated and deoxygenated haemoglobin differed significantly. 

In 1982, Keith Thulborn took the story one step further while seeking to exploit the 

difference in magnetic susceptibility of oxy- and deoxyhemoglobin for the measurement of 

brain oxygen consumption with MRI.  He clearly demonstrated the feasibility of measuring 

the state of oxygenation of blood in vivo with MRI, another crucial step on the road to fMRI 

BOLD imaging as it is known.  The potential of BOLD fMRI was soon realised with 

publications from three groups in 1992.  However the success of the human brain imaging 

was the product not only of relevant physiology, that could be imaged, and the scanning 

devices, that could accomplish this, but also of the behavioural paradigms that approached 

human behaviour in a principled and quantitative manner, while accommodating the 

constraints of the imaging environment and strategies to process the resulting data. 

Since the 19th century, and possibly longer, two perspectives on brain functions have existed.  

One view posits that the brain is primarily driven by external inputs; the other holds that the 

brain operates on its own, intrinsically, with sensory information interacting with rather than 

determining its operation.  Although neither view is today dominant, the former clearly has 

motivated the majority of research at all levels of neuroscience including that in cognitive 

neuroscience.  This is not entirely surprising given the enormous success of experiments 

measuring brain responses to controlled stimuli [23]. 

Functional Magnetic Resonance Imaging (fMRI) is a neuroimaging tool that employs 

MRI to image dynamic changes in brain tissue that are caused by alterations in neural 

metabolism.  These alterations may be caused by asking the subject to perform a task 

designed to target a specific cognitive process or may be happened spontaneously while the 

subject is in resting-state (absence of conscious mentation).  In every case a dynamic series 

of T2* weighted scans is acquired, resulting in time-series of signals for every brain voxel.  

These time-series are submitted to various levels of denoising (preprocessing steps) before 

model or data driven analyses are applied to obtain maps of activity.  Due to condition that 

BOLD signals are tiny, such analyses use statistical methods to discern false from true 
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activation [24].  Every functional imaging technique is studying about brain activation, blood 

flow in microscopic level and diffusion. 

2.2 Brain activation   

There are two primary consequences when the neuronal activity is increased, and both of 

them can be detected by MRI.  These are the alterations in local cerebral blood flow (CBF) 

and in oxygen concentration (BOLD contrast: Blood Oxygen Level Dependent).  These 

changes in CBF can be detected either by using an injected contrast agent and perfusion 

weighted MRI or non-invasively by arterial spin labelling (ASL).  In the case of ASL there are 

some disadvantages such as sensitivity reduction, increase of acquisition time and increase 

in sensitivity to motion compared with the BOLD contrast.  Its use is focusing on acquiring 

quantitative measurements of baseline cerebral blood flow (CBF) so as to model 

neurobiological mechanisms of activation, calibration of vasoreactivity; rather than mapping 

the brain function [25]. 

The most common method of fMRI takes advantage of the fact that when neurons 

in the brain become active, the amount of blood flowing through that area is increased.  The 

interesting thing in that case is that the amount of blood that reaches at the area is more 

than is needed to replenish the oxygen that is used by the activity of the cells.  Thus the 

activity related increase in blood flow caused by neuronal activity leads to a relative surplus 

in local blood oxygen.  The signal measured in fMRI depends on this change in oxygenation 

and is referring as the blood oxygen level dependent signal (BOLD) [26]. 

2.2.1 The fMRI BOLD signal 

The blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging 

arises from the magnetic properties of haemoglobin and the manner in which the brain 

metabolism and blood flow are related to changes in neuronal activity.  It is worth noting 

that under normal conditions the concentrations of local oxygen are relatively low, so blood 

contains a high concentration of paramagnetic deoxyhaemoglobin, whereas the brain tissue 

is diamagnetic [27].  Little effect on the magnetic field of an MRI scanner has the fully 

oxygenated haemoglobin in arteries.  However when haemoglobin loses oxygen to the tissue 

as it passes through the capillaries of the brain the resulting de-oxygenated haemoglobin 

disrupts the MRI magnetic field in proportion to the amount of oxygen lost.  With the 

increase of brain activity, blood flow and glucose consumption increase much more than 

oxygen consumption.  Due to the increasing magnetic susceptibility of the oxygenated 

blood, the activation area is characterized by great T2* constant in comparison to the non-
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activated brain regions.  As a result the amount of de-oxygenated haemoglobin decreases in 

the area of increased activity and the BOLD signal is enhanced.  When brain activity 

decreases, the reverse happens.  All the aforementioned are shown in Figure 2.1 [28]. 

 

 

Figure 2. 1: Schematic representation of the fMRI formation [29]. 

 

As it is known, the hemodynamic response is the increase in blood flow that follows 

a brief period of neuronal activity.  There are two details about that response that underlie 

the basic features of BOLD fMRI and determine how the data must be analyzed.  At first, 

while neuronal activity last less than milliseconds, the hemodynamic response is slow.  Thus 

the increase in blood flow that follows this activity takes about 5 seconds to reach its 

maximum.  This peak is followed by a long undershoot that does not fully return to baseline 

for at least 15-20 seconds.  The second detail is that the hemodynamic response can be 

treated as a linear time-invariant system.  This linearity makes it possible to create a straight 

forward statistical model that describes the time course of hemodynamic signals that would 

be expected given some particular time course of neuronal activity, using the mathematical 

operation of convolution [26]. 

In Figure 2.2, the common features of the fMRI BOLD response in a period of 

neuronal stimulation are a) the initial dip, b) positive BOLD response and c) post stimulus 

undershoot.  When there is an activation of a voxel in BOLD fMRI, it has been noted that the 

signal increases above the baseline at about 2 seconds following the onset of neuronal 

activity.  After that, is growing to a maximum value (peak) of about 5 seconds from a shot 

duration stimulus.  Provided that the neuronal activity is extended across a block of time, 

the peak could be similarly extended in a plateau.  After reaching its peak, the BOLD signal 



19 
 

decreases in amplitude to a blow-baseline level and remains below baseline for an extended 

interval.  Such event is named as post stimulus undershoot [30, 29]. 

 

Figure 2. 2: Schematic representation of the BOLD response [29]. 

 

2.3 Image acquisition process-Types of fMRI experimental design 

The primary approach to fMRI and diffusion imaging for connectivity studies involves single 

shot imaging using EPI (Echo Planar Imaging). Since its initial application, EPI scan times for 

whole brain coverage have not substantially decreased.  Progress in shortening the EPI 

acquisition time for spatial encoding only modestly reduces acquisition time for whole brain 

coverage.  This modest reduction is because each slice incorporates a physiological contrast 

preparation period that can equal or exceed the time employed for collecting the EPI echo 

train [31]. 

The data acquisition consists of the following stages.  At the beginning the subject is 

positioned in the scanner so as to start the process of fMRI experiment.  After that the 

subject is asked to perform several tasks or is stimulated so that different processes or 

emotions are triggered.  It is worth to be mentioned that the stimuli is usually audio or visual 

and stimulations involve the motor cortex, as well as, more cognitive demand functions such 

as the function of memory and thought.  All these experimental conditions are repeated at 

different period of time and can be alternated by inactive and relaxing periods [29].  The 

necessary equipment for an fMRI experiment is shown in Figure 2.3. 
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Figure 2. 3: The necessary equipment for an fMRI experiment [42]. 

 

Much of what is currently known about brain function comes from studies in which 

a task or stimulus is administered and the resulting changes in neuronal activity and 

behaviour are measured.  However, the brain is very active even as there is no input or 

output of stimuli or task [28].  Due to that reason the experimental design for fMRI includes 

task-based designs and resting-state designs.  Of course the combination of both methods is 

very important, due to the findings that are derived.  

2.3.1 Task- based fMRI 

In a typical experiment, a low resolution image of the brain is acquired every few seconds 

and over the course of the experiment, 100 images or more are usually recorded.  The 

stimulus can either be presented in a “block design”, “event- related design’’ and ‘’mixed 

design’’.  The first type alternates relatively long periods of rest and stimulation, whereas the 

second type presents short events at varying intervals.  The third type is actually a 

combination of the previous types, but it is not preferable type because it is much more 

complicated to design and analyze.  In each type of design the effect size is inferred from the 

difference in BOLD contrast between the two states [22, 24].  

The ‘’block design’’ constitute the most efficient type of design for comparing brain 

responses in different states during the imaging experiment.  This design uses long 

alternating periods (30seconds), during each of which a discrete cognitive state is 

maintained.  Only two states will be, in the simplest case, which are alternated throughout 

the experiment in order to ensure that variations arising from fluctuations in scanner 
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sensitivity, patient movement or changes in attention.  All these have the same effect on the 

signal responses associated with both states.  It is worth to be mentioned that it is difficult 

to control precisely a cognitive state for a long period of time of each block [21]. 

The design of ‘’event-related’’ experiments requires careful consideration of 

numerous issues of measurement, modelling and inference.  ‘’Event-related’’ or trial-based 

measurement, as it is called, is already standard in the field of electrophysiology, namely 

stimulus-locked, event-related potentials (ERPs) [32].  In instances where tasks are 

inappropriate for ‘’block design’’, for example as in an ‘’oddball’’ paradigm, an event-related 

design can be used in which data acquired while discrete stimuli or responses are repeated.  

So as to acquire a measurable response, the results from many trials are averaged. 

Comparing of two types of design, event-related design demands longer acquisition 

times than block design, so as to achieve a sufficient signal to noise ratio.  It has been shown 

that block designs are optimum for detecting activation.  Whereas event-related designs are 

most efficient for the characterization of the activation of the time course (mixed designs lie 

in between them).  Also when there is need to take a decision whether a hypothesized 

activation occurs in a brain region, the most effective from the types is block design.  It is 

preferable to use the event-related design when more details are needed about the 

characteristics of the neural response to the cognitive manipulation [21, 24]. 

2.3.2 Resting-state fMRI 

The knowledge that has been gained the past decades about brain functions focused on task 

state studies, when the presence of stimuli evokes the brain activity.  As it has already been 

mentioned, the brain remains active even in the absence of stimuli.  For that reason, recent 

studies involve investigation of brain fluctuations at resting conditions and their results 

demonstrate that spontaneous modulation of the BOLD does not produce randomly [33]. 

In other words, resting-state fMRI measures spontaneous, low frequency fluctuations in the 

BOLD signal, so as to investigate the functional architecture of the brain [34].  The 

participants are not required to perform any kind of cognitive task, motor or even to pay 

attention to any particular stimulus.  Instead they have to clear their minds and not to 

engage in specific thoughts or visual images [35, 123]. 

The most common purpose for using resting-state fMRI is the use of a larger sample 

of patients which are contracted from different diseases.  In contrast to task state fMRI, 

most of the patients could not do the experiment correctly in fMRI scanner.  Also the 

resting-state uses the same data for every study is up to do, for example language and 

motor studies; however in task state every experiment is unique and needs different data.  
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The energy consumption in resting-state is one-fifth of the total energy of the body and it is 

used to support ongoing neuronal signals.  In case of task state fMRI the same variable 

(energy consumption) is usually very small, less than 5%.  Another thing that is needed to 

take into account is that the most signals from the ongoing spontaneous BOLD modulations 

are desired signals, because they are focused on resting-state fMRI.  But only a small 

percentage of signals (less than 20%), that came from task state approaches are considered 

as desired.  The expected outcome is that the signal to noise ratio is better in resting-state 

studies than task-based approaches.  Last but not least, an important advantage of resting-

state is that it can ignore the parameters that may cause problems to the study; something 

like that is very difficult to achieve in task state approaches. 

It is understandable that resting-state approach has not have only advantages and it is 

not the preferable type for every fMRI study, between the two.  Every approach has 

advantages and disadvantages and each of them can be used on many studies.  For example, 

some disadvantages of resting-state are the following:  

 It is difficult to control whether the subject is awake or is in sleep state, because 

there are not individual differences in brain activity between the two states. 

 The poor acknowledge about the neural interactions and their relation to individual 

skill leads to the conclusion that, so as to define the structural network the task-

based approach is required. 

 Brain default energy, in multi tasking analyses, is related to the subject mental state 

(tired, excited, etc.) so it is impossible to control that parameter without using task 

related experiments. 

 The memory of every subject is cannot be tested during resting-state experiment 

because subjects are not thinking of something specific [33]. 

2.4 Advantages and disadvantages of fMRI 

Functional Magnetic Resonance Imaging is a technique that provides high quality in vivo 

brain images.  At least three features of MR images rendered them valuable for providing 

improved anatomical definition of cerebral lesions.  Those are a) the high resolution of 

images, b) the ability to obtain clear views of every corner of the brain, c) the well defined 

demarcation of abnormal signals that reflected underlying pathology.  Also functional MRI 

does not involve ionizing radiation, so it can be used repeatedly in subjects; even in children.  

Technical improvements that must be done, will lead to the increase of spatial and temporal 

resolution.  Something that has to be improved is firstly the high cost and secondly the 

position of patient’s body during the experiment [36, 37]. 
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2.5 Spatial and temporal resolution 

The notion of spatial resolution describes the ability to separate the alterations in an image 

(or map) across different spatial locations; while the term temporal resolution describes the 

ability to separate alterations in a single location over time [30].  Although fMRI combines 

relatively high spatial and temporal resolution, it is far from being an ideal reflection of the 

neuronal response.  Spatially, the signal is permitted in the whole brain area, not only to 

areas of increased neuronal activity, as changes in oxygen extraction and changes in blood 

flow [22].  Although it is restricted by signal to noise ratio (SNR).  Smaller voxels recommend 

smaller SNR but also enhance spatial resolution by detect smaller structures and smaller 

activated areas [29].  It provides special information about grey and white matter in the 

order of millimetres for spatial resolution whereas a few seconds for temporal resolution.  

The typical fMRI pixel size is 3-4mm, although with higher field magnets (7T) a pixel size of 

500 microns or less may be readily achieved.  The resolution of PET is limited by the size of 

the gamma ray detectors as well as the positron annihilation range, is typically larger than 5-

10mm.  In the case of NIRS resolution, it is low approximately 10-20mm and is limited 

predominantly by the strong scatter and attenuation of IR photons.  The resolution in EEG 

and MEG is similarly limited to larger than 10-20mm by the fact that a unique reconstruction 

of dipoles is not possible from scalp based measurements of electrical or magnetic 

distributions and models and regularization must be employed for model estimation.  In 

contrast with MEG, in EEG the scalp measurements may be spatially distorted by 

heterogeneous electrical conduction paths within the brain/skull [25].  

Temporally, the haemodynamic response and the signal to noise ratio (SNR) are 

factors that restrict that type of resolution of the fMRI signal.  The BOLD response has a 

width of approximately three seconds and typically peaks after four to six seconds after 

onset of a neuronal stimulus.  However the variability of the BOLD response limits the 

temporal resolution more than the lag itself, in brain regions, subjects and tasks.  Temporal 

resolution in a real fMRI experiment is further governed by T1 relaxation processes and 

hardware characteristics, along with the limits imposed by the BOLD response [22].  PET 

scans requires minutes to complete due to the low count rates of injected radio nuclides, so 

changes in neuronal processes can only be studied by repeated scanning.  Due to the fact 

that NIRS reports changes in blood oxygenation, just like BOLD, exhibits similar temporal 

limitations with fMRI.  On the other hand EEG and MEG have millisecond temporal 

resolution and can easily capture the dynamics of evoked responses that last from a few 

milliseconds to several hundred milliseconds.  In the case of combine two approaches, fMRI 
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and EEG, it is preferable to use fMRI maps as spatial priors to reconstruct high temporal 

resolution electrophysiology, thereby gaining resolution in both dimensions [25].  There are 

some ways for enhancing the fMRI spatial and temporal resolution.  These are: 1) by 

optimizing the MRI pulse sequences, 2) by improving resonators, 3) by using higher magnetic 

fields, 4) by developing intelligent strategies for parallel imaging.   

2.5.1 Source of noise in fMRI 

The noise that has been reported probably comes from the activity that evoked from the 

experiment.  The sources that cause the noise are the following: 1) systematic noise due to 

tissue pulsation related to cardiac and respiratory cycles, 2) noise due to the movement of 

the subject, 3) noise due to the slow fluctuations of blood oxygenation and 4) thermal noise 

due to the subject, the receiver coil and the amplifiers [29]. 

2.5.2 fMRI time-series 

It is important to order fMRI scans as a function of time or as it is known, treat them as a 

time-series (Figure 2.4).  This is necessary because the BOLD signal will tend to be correlated 

across successive scans and that means that can no longer be treated as independent 

samples.  The main reason for this correlation is the fast acquisition time (TR) for fMRI 

relative to the duration of the BOLD response.  Managing fMRI data as time-series also 

allows us to view statistical analyses in signal processing terms [38]. 

 

Figure 2. 4: Functional MRI time-series [41]. 

 

2.6 Applications of fMRI 

The rise in availability of magnetic resonance imaging for detecting disorders in the living 

brain has made it a very attractive technology for defining neural structure and function in a 
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large amount of prominent diseases.  Neuroimaging has become a major focus for multi-

institutional research in progressive alterations in brain architecture, proxy biomarkers of 

treatment response as well as the outcome of disease from cognitive activation and 

connectivity.  In general the variety of applications of fMRI is classified in two categories, 

cognitive neuroscience and clinical applications [39]. 

2.6.1 Cognitive neuroscience 

An interdisciplinary area of research that combines measurement of brain activity with 

simultaneous performance of cognitive tasks by human subjects is called cognitive 

neuroscience.  Mainly this area of research connects the science of human brain 

(Neuroscience) and the science of mind (Cognitive Sciences) [43].  The use of fMRI focuses 

on understanding the way in which an area of interest (activated area) affects another one.  

For instance, as it is already known a visual stimulus can have an impact on the brain 

response at the touch of an object or a face.  Demonstrating and learning the plasticity of 

brain systems it is a field of research where applications of cognitive neuroscience have 

already been used [22]. 

2.6.2 Clinical applications  

The functional MRI can localize brain functions well, allowing eloquent brain areas to be 

defined, characterizing the reorganization of patterns of brain activation as a consequence 

of disease or injury.  Also this technique can indentify differences in brain function between 

subjects associated with disease susceptibility or other factors causing variation [21].  In 

clinical applications there are several aspects of fMRI that should be taken into account so as 

to receive important information from clinical studies.  These aspects are: safety and 

preparation of the patient, necessity of effective patient cooperation, scanner capability, 

analysis and presentation of data, correct organization of paradigms, quantitative and 

qualitative sufficiency of the staff. 

This technique is preferable because it is available to use before the operation, thus 

allows more informed decision between the surgeon and the patient.  Also it is non-invasive, 

repeatable and can be overlaid with anatomy.  The visualization is in 3D [122].  In case, for 

example, of a brain tumor surgery its use is very important.  fMRI can define the relationship 

of lesions to eloquent areas prior to surgery.  Also it can determine the need for intra-

operative electrocortical mapping.  The definition of a surgical plan for resection and the 

determination of language lateralization are other two usages of fMRI.  There are some 

limitations that have to be mentioned.  At first fMRI is better at demonstrating motor areas 
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rather than language areas.  The BOLD signal, which is based on this technique, can be 

affected by biological aspects of brain tumors.  Moreover in patients with profound 

neurologic deficits may be difficult to acquire a clear perception about the tumor.  Last but 

not least, fMRI does not demonstrate essential cortex. 

As in brain tumor surgery like so in planning surgical interventions for epilepsy, fMRI 

has become the central technique of mapping eloquent regions responsible for motor, 

somatosensory, language and memory functions [122].  So as to manage and treat epilepsy, 

fMRI determine lateralization of language dominance and also predict the risk for declining 

the language function.  Furthermore, it is used as an adjunct to direct cortical stimulation in 

order to map the relationship between lesions to language, motor and somatosensory areas.  

Another use is to predict memory deficits following ATL (Adult T-cell leukemia/ lymphoma).  

Functional MRI can also be used in conjunction with EEG to indentify seizure foci.  

Specifically this conjunction may help to localize lesions where EEG and imaging data and 

EEG are discordant. 

Functional MRI has been shown in many studies to be capable of demonstrating 

impairment of the activation of the hippocampus and parahippocampal gyrus during 

memory encoding tasks in patients with Alzheimer’s disease (AD).  The discovery of the 

presence of an fMRI- based biomarker in patients at risk for Alzheimer’s disease has also 

been an attractive and active area of research. Its use is related with the understanding of 

the pathophysiology basis that causes the memory loss in patients with AD.  Also fMRI can 

predict the decline in cognitive function and can test transitions in brain physiology in 

response to pharmacologic agents. 

In conclusion, fMRI has shown great utility identifying the anatomic location 

corresponding with specific motor, somatosensory, language and cognitive processes.  It is 

helpful to understand the neuroanatomic and pathophysiologic alterations that occur in 

response to brain tumors, epilepsy, movement disorders, dementia and trauma.  A very 

promising area for fMRI is the creation of biomarkers that will be useful for monitoring 

diseases of the central nervous system and for testing the utility of already existing and 

experimental treatments [40].  Scientists have used fMRI to identify abnormal functional 

brain activity during task performance in a variety of patient populations, including those 

with neurodegenerative, demyelinating and other neurological disorders that emphasize the 

potential benefit of fMRI in both basic and clinical fields of research [39]. The importance of 

fMRI lays not only in its usage for diagnosis of diseases such as Dementia, Parkinson’s 

disease, Autism, Alzheimer’s disease etc., but also in its ability to differentiate the 
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characteristics of each disease in healthy and pathological subjects. In chapter 3 there is an 

extensive description about the use of fMRI in Parkinson’s disease. 
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Chapter 3: State of the art 

3.1Brain imaging in Parkinson’s Disease 

3.2An overview on literature methods 

 

 

 

 

 

 

 

 

 

 

3.1 Brain imaging in Parkinson’s Disease 

After the clarification of the pathophysiology of PD, several studies have been established so 

as to better understand the way that this neurogenerative disease works.  Except from the 

pathophysiology, brain imaging techniques are helpful tools that have been used for a better 

understanding of PD.  The combination of these (imaging techniques & pathophysiology) can 

lead all scientists that are involved, in new unknown pathways that will help to treat PD. 

In this chapter, some of the recent and of interest studies (for this thesis) are referenced and 

described below.  There is a classification of the studies in two subcategories according to 

presence (Task-based studies) or absence (Resting-state studies) of a particular task.  fMRI is 

the imaging technique that will be referenced in most of the cases, because that is the tool 

that is used to acquisition all the data for this thesis.   

3.1.1 Task-based studies 

Sabatini et al. studied about the cortical reorganization in akinetic patients with PD.  In that 

functional MRI study has been participated six akinetic patients and six normal subjects that 

were all right handed.  The selected patients had mild to moderate symptoms so as to 

ensure that they can perform the task in their off state.  The type of motor task had not 

been chosen by chance but because it induces a clear activation signal in areas that are 

involved in both motor programming and motor execution.  The performance of imaging 
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was done on a Siemens Magneton Vision scanner operating at 1.5T and equipped with EPI 

(echoplanar imanging) hardware.  During the performance the subjects were resting for 30 s 

and activating for 30 s four times.  Also T1-weighted images were acquired so as to obtain 

structural three-dimensional volume.  One statistical analysis on a pixel by pixel basis was 

done, using SPM96, for all the participants (patients & healthy controls) and the parametric 

maps that were acquired were then generated using an ANCOVA (analysis of covariance) 

model.  Comparing the results of activation in patients with those of controls, increased 

fMRI signals were observed in the right and left primary cortex, in the right and left 

premotor cortex, in the right and left inferior parietal cortex, in the caudal part of SMA and 

in the cingulated cortex.  On the other hand increased fMRI signals in controls were obtained 

in small areas of left lateral premotor cortex, in the rostral part of the SMA, in the left 

inferior parietal cortex and in the right dorsolateral prefrontal cortex.  In summary that study 

presents that the cortical motor pathways are being disorganized in a complicated way, by 

the subcortical putaminal dopamine deficit [44].   

Another interesting fMRI study was about the automatic movements by underlying 

neural mechanisms in patients with PD, by Wu et al..  Twelve patients with PD were included 

in that research and were compared with fourteen age-matched healthy controls.  The tasks 

that have to be accomplished so as to take some significant results were four. Two of them 

were self-initiated, self-paced sequences of finger movements with different complexity 

until the automatic performance of them.  The other two were dual tasks where subjects 

were asked to perform visual letter-counting that was similar with sequential movements.  

Subjects were asked to lie down in the MR scanner with response device on their right hand.  

For that reason the whole group was right handed.  According to the fMRI procedure, T2*-

sensitive functional images were obtained using a whole-body 1.5 T scanner and a standard 

head coil.  Also so as to obtain the functional images, an EPI gradient echo sequence was 

used.   The images were acquired before and after the achievement of automaticity from the 

subjects and each scanning session lasted four minutes.  For the imaging analysis SPM 99 

software was used.  A fixed effect boxcar design was used in order to model the data which 

convolved with a heamodynamic response function.  The results showed that the left 

primary sensorimotor cortex, bilateral premotor areas, bilateral parietal cortex, bilateral 

dorsal lateral prefrontal cortex, bilateral SMA, bilateral anterior cingulated motor cortex, 

bilateral basal ganglia, bilateral insular cortex and bilateral cerebellum were the activated 

areas for the patient’s group before training.  After training the behavior pattern of the 

activation was similar except from areas, bilateral superior parietal lobes and left insular 
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cortex, that were less activated than the before training process.  As for healthy controls, 

before training the brain activations were matched with those for patients.  Although after 

training, less activation was obtained in the bilateral premotor area, bilateral superior and 

inferior parietal lobes and pre-SMA.  Comparing healthy controls with patients before 

training, patients showed greater activation in the bilateral cerebellum, bilateral parietal 

cortex, bilateral premotor area, bilateral precuneus and bilateral dorsal lateral prefrontal 

cortex while performing the sequence-4.  Healthy controls had greater activity in the pre-

SMA than in patients.  After the training, patients had still greater activations in the 

aforementioned areas and also the results showed that there was no area in healthy 

controls with greater activation than in patient’s group.  As a conclusion, automaticity is an 

ability that a patient with PD can achieve after a proper training but with more difficulty 

than a healthy subject.  That study was the first one that suggests that a PD patient needs 

more brain activity to balance out for basal ganglia dysfunction so as to perform automatic 

movements [45]. 

The next study was all about of exploring the cerebral substrates of action- related 

word production in non-demented PD patients.  That study of Péran et al. was affected from 

previous studies that have resulted in, that for non-demented PD patients is a little hard to 

produce verbs in a word generation situation.  An event-related fMRI task was used so as to 

explore the brain regions that are involved in generation of action-words (GenA) and in 

object naming (ON) in an amount of fourteen PD patients.  For the two tasks was used a 

standard set of object drawings that were either man-made objects (MMO) or manipulable 

biological objects (MBO).  In object naming, subjects must name aloud the objects drawings 

that they were seeing while in GenA must produce orally a verb pointing an action that could 

be performed with the pictured object.  Only for the task of GenA, a study of twelve young 

Italian healthy controls was performed.  For that study was used a 3T magnetic resonance 

imaging scanner while the acquisition of fMRI data happened using a gradient echo imaging 

(EPI).  So as to remove the noise from the data, the Cool Edit Pro software was used.  After 

the acquisition the data were analyzed using SPM2 implemented in MATLAB.  As for the 

statistical analysis, is consisted of two steps.  The first comprised individual analyses 

performed on each of the 12 subjects.  The second step consisted of a group analysis in 

which contrast images that were obtained previously, were combined in a second level 

random effect analysis yielding main contrasts.  The main brain activations, for the ON task, 

were observed bilaterally in the frontal cortex, superior temporal cortex, supplementary 

motor area (SMA), inferior occipital cortex, fusiform gyrus, lingual gyrus and cerebellum.  For 
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the GenA task, the observed brain activations were similar with the ON task except from the 

regions of the frontal and temporal cortices that were activated to a greater degree.  Also 

there was an extra activation in the left inferior and superior parietal cortex.  Comparing the 

two tasks the following results were observed: 1)GenA MBO> ON MBO in the left occipital 

cortex, left supramarginal gyrus and ACC, 2) GenA MMO> ON MMO in the left prefrontal cortex 

and right insula, 3) GenA MBO> ON MMO occipital cortex bilaterally, ACC, left prefrontal cortex, 

left frontal operculum, left supramarginal gyrus and right superior frontal cortex.  As for the 

results from the correlation analyses the main activations where in the left pre-central gyrus 

in all conditions.  Those results lead to the outcome that there is a relationship between the 

motor system dysfunction in PD patients and the extent of activation in verb generation, 

which is a task that process in depth of semantic representation of actions [46].  

The last study of the category of task-based studies that will be referenced in this 

thesis, is a little different from the aforementioned because included except from the 

Parkinson’s disease and some atypical parkinsonian syndromes.  Also is a longitudinal study 

that lasted one year.  More specifically Burciu et al. investigated changes in brain activity in 

patients with Parkinson’s disease, Multiple system atrophy (MSA) and Progressive 

supranuclear palsy (PSP) using task-based functional MRI.  The regions of interest that they 

focus were the putamen, primary motor cortex (M1), supplementary motor area (SMA) and 

superior motor regions of the cerebellum (lobules V-V1) using a unimanual grip force fMRI 

protocol.  Also they hypothesized that the basal ganglia and motor cortex would have 

reduced fMRI signal in PD, MSA, PSP comparing with the healthy controls which both MSA 

and PSP would have extensive and more pronounced cortical changes than PD.  In this 

cohort study the amount of participants was one-hundred and twelve (112) with forty six PD 

patients, thirteen MSA patients, nineteen PSP patients and thirty four healthy controls.  

Most of the patients were taking medication but the performance of the test happened 12-

14 hours after the overnight dose of antiparkinsonian medication.  All the participants were 

produced force against a custom-designed MRI compatible fiber optic transducer with a 

resolution of 0.025N.  The protocol consisted of a block design with shifting force and rest 

blocks.  After the acquisition of data with a 3T Philips system along with a T2*- weighted, 

single shot, echoplanar pulse sequence and an anatomical 3D T1-weighted sequence, the 

processing steps carried out.  The last ones were based in previous studies of grip force in 

parkinsonian disorders.  Then they examined group differences at baseline using analysis of 

covariance (ANOVA).  The results demonstrated group differences at baseline in age and 

gender.  Also patients with PD showed a decline in functional connectivity after the one year 
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follow up in the putamen and M1 compared to controls.  As for MSA patients the changes of 

functional activity were exclusively extrastriatal and included a reduction in the areas of M1, 

SMA and superior cerebellum.  At last, in PSP patients all the regions of interest had less 

activation after one-year of study compared to baseline.  The functional activity of these 

regions did not change in the healthy controls.  Overall that study provided evidence for 

distinct patterns of motor-related changes across the basal ganglia and cerebello-thalamo-

cortical loops in PD, MSA and PSP.  These findings could provide a platform to test 

therapeutic strategies that aim to slow the progression of parkinsonian disorders [53].   

3.1.2 Resting-state studies 

Resting-state functional connectivity MRI is a technique that permits the investigation of 

large scale functional networks at whole brain level based on the temporal correlation of 

spontaneous fluctuations in a very low frequency range.  That technique has been 

discovered by Biswal et al. (1995) and has successfully been used to identify a variety of 

intrinsic cortical and cortico-subcortical networks with a homogenous resolution in the 

millimeter range [120]. 

The first resting-state study that will be referenced in this thesis is from Kwak et al. 

where they investigated alterations in cortico-striatal functional connectivity networks 

within PD patients and age matched controls using six different striatal seed regions.  They 

tested twenty- five mild to moderate stage PD patients where thirteen of them had taken 

levodopa (L-DOPA ON) and twelve had received placebo medications (L-DOPA OFF).  The 

controls group was consisted of twenty-four individuals where none of them had taken any 

medication.  The participants underwent of the fMRI scanner, as usual, so as to collect the 

fMRI data which were preprocessed as part of a standard processing stream at the 

University of Michigan.  After the preprocessing, was followed the normalization to MNI 

space using SPM5.  Except from the usual analysis a frequency content analysis of the fMRI 

BOLD signal was performed, using ANOVA.  The results were presented with the left side of 

the images because that was the more affected brain hemisphere.  They observed an overall 

increase in the strength of cortico-striatal functional connectivity within PD patients of L-

DOPA OFF and controls.  That connectivity was decreased within motor cortical regions in 

the case of L-DOPA ON patients.  More specifically for the caudate seed, the ventromedial 

prefrontal and orbitofrontal regions for inferior ventral striatum, the dorsolateral prefrontal 

and frontal eye field regions for superior ventral striatum and dorsal caudate.  As for 

putamen seed, the primary and secondary motor areas were affected.  Also between PD-ON 

and PD-OFF they did not find any areas more correlated with putamen and caudate 
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themselves than the putamen and caudate seed regions; except from the dorsal prefrontal 

cortex in PD-OFF and the dorsolateral prefrontal cortex in PD-ON which exhibited more 

correlated activity with the caudate.  From the frequency content analysis the results 

showed an overall elevation of cortico-striatal functional connectivity in PD patients and that 

Levodopa decreased the heightened connectivity.  From the results they concluded that PD 

and L-DOPA are variables that affect striatal resting state BOLD signal oscillations and 

cortico-striatal network coherence [47]. 

Skidmore et al. focused his fMRI study in connectivity brain networks based on 

wavelet correlation analysis in Parkinson data.  In fourteen subjects with idiopathic PD and 

fifteen age-matched healthy controls they investigated the efficiency of human brain 

functional networks.  That type of correlation analysis can show the functional similarity 

between brain regions that were activated in a defined frequency interval or wavelet scale.  

This is important in the case of a resting-state study where the greatest frequencies are 

below 0.1 Hz and non neural sources of correlations belong to higher frequency ranges.  

Functional images were acquired using a Philips Acheiva 3T scanner while also three 

dimensional structural images were acquired.   For every dataset the geometric 

displacement, and more specifically the head motion, was accurate and the co-registration 

step was performed using the Montreal Neurologic Institute gradient-echo echoplanar 

imaging (EPI) template with the AFNI package.  Also data were not spatially smoothed but 

the regional parcellation was performed in base of the anatomical labeling template.  That 

parcellation leaded to a separation of each hemisphere into 116 different anatomical images 

of interest.  The results showed that the mean global efficiency of these networks was 

greater in healthy controls (1.25± 0.25) compared with PD patients (0.95±0.17).  In both 

healthy controls and PD patients the top 30 nodes where observed in the precuneus, 

cuneus, superior occipital and middle frontal regions.  These regions comprise aspects from 

the resting network that has been described as the “Default Mode Network”.  Regions such 

as the left supplementary motor cortex, contiguous precentral regions, the Calcarine 

cortices, secondary visual regions and regions within the cerebellum appeared increased 

efficiency in controls than PD patients.  Authors suggested that such algorithmic approaches 

and graph metrics are accustomed to understand better and track neurodegenerative 

diseases.  Although a lot of research must be done so as to separate on a case by case basis 

the PD subjects from the controls [48].  

Another significant research was that of Baudrexel et al. where they investigated the 

functional connectivity changes of the subthalamic nucleus - motor cortex (STN) using 
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resting-state BOLD correlations, on a voxel by voxel basis in fMRI.  They choose to 

investigate the STN because it plays an essential role in normal motor functioning and also in 

pathophysiology of PD.  Firstly from an anatomical and physiological perspective its position 

is special because it is part of two functional loops, a slow indirect (cortex-striatum- external 

pallidum (GPe) –STN- internal pallidum (GPi)/ substantia nigra pars reticularis (SNr)- 

thalamus cortex) and a fast hyperdirect pathway (cortex- STN- GPi/SNr-thalamus- cortex).  

Secondly for patients that are in advanced stage of the disease, the deep brain stimulation 

of STN along with basal ganglia nuclei constitutes the most effective target.  In that study 

were participated thirty one early stage PD patients and forty four healthy controls.  Except 

from the classical analysis between PD patients and healthy controls, there was another one 

where patients divided into subgroups according to the presence (Number of patients = 16) 

or absence (Number of patients = 15) of tremor.  The imaging performance was carried out 

on a 3T MR scanner system where subjects lie still, relax and keep their eyes closed without 

thinking anything specific or falling asleep.  Also patients scanned while they were in an off 

medication state.  The functional scans from the whole brain were acquired with EPI 

sequence.  As for the data preprocessing, that was performed using SPM8 with custom built 

programs written in MATLAB.  After that, functional connectivity was analyzed with a 

common seed-region approach that conducted in MNI space.  The last step was the 

conduction of a voxel based morphometry because the alterations in the structural of the 

brain may confound the results of functional connectivity.  The analysis of the results 

showed increased functional connectivity between the STN and cortical motor areas in PD 

patients in accordance with electrophysiological studies.  Comparing the results between 

healthy controls and tremor patients, increased STN FC was observed in the hand area of M1 

and the primary sensory cortex.  As for non-tremor patients increased FC was observed 

between the STN and midline cortical motor areas including the supplementary motor area 

(SMA). From the aforementioned findings the authors suggested that PD rigor and tremor 

symptoms may be resulted in a connection of these areas and lead to the conclusion that 

STN is a key node for the modulation of the motor network in PD patients [49]. 

Tessitore et al. were interested in investigating another motor symptom of 

Parkinson’s disease, freezing of gait.  Freezing of gait (FOG) is a common cause of disability 

and falls in patients, that is characterized by the feeling of “glued” to the floor that prevents 

locomotion generally occurring during gait initiation and/or turning.  Using resting-state 

functional MRI they studied a group of patients with (Number of patients = 16) and without 

(Number of patients = 13) FOG and they compared them with fifteen age and sex matched 
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healthy controls.  All subjects were evaluated (clinical and cognitive) 60-90minutes after 

their morning dose of levodopa and then were scanned in the “on medication” state.  In that 

case the magnetic resonance images were acquired on a 3T GE scanner equipped with an 8-

channel parallel head coil.  The fMRI data were consisted of 240 volumes of a repeated 

gradient- echo planar imaging T2*-weighted sequence.  Also three dimensional high 

resolution T1-weighted sagittal images were acquired for registration and normalization of 

the functional images.  As for the computational techniques they used the Brain Voyager QX 

for data preprocessing and statistical analysis (the data were co-registered and spatially 

normalized to the standard Talairach space before the statistical analyses).  Also ICA was 

used for single-subject and component analysis.  So as to map the distribution of the whole 

brain of the components of interest, single-group one sample t-tests were used in all the 

participants.  Then so as to define the search volume for within network group comparisons, 

they created an inclusive mask from the control group component.  After that, a two-sample 

t-test was computed to produce a T map of the differences between the groups.  The results 

showed that patients with freezing of gait exhibit reduced functional connectivity within 

“executive attention” network, namely in the right middle frontal gyrus and in the angular 

gyrus, and also visual networks, namely in the right occipito-temporal gyrus.  These findings 

suggest that the phenomenon of FOG is generally associated with both early cognitive 

frontal dysfunction and mood changes, suggesting a tight relation between these symptoms 

[50]. 

Another interesting resting-state fMRI study was that by Luo et al..  They studied 

functional connectivity in a group of twenty-seven early-stage drug-naive Parkinson’s 

disease patients compared with fifty-two age and sex-matched healthy controls.  In that 

study they focused on the functional connectivity of the substriatum subregions.  It is 

interesting to refer that this study was the first resting state fMRI which examined brain 

network integrity in a large group of patients in early-stage drug-naïve along with the 

relationship between the Non-motor Symptoms Scale (NMSS) and alteration of functional 

connectivity.  The acquisition of the magnetic resonance images was performed as always 

with a 3T MRI scanner.  The statistical analysis and preprocessing was carried out using 

SPM8 while for functional connectivity analysis, a seed voxel correlation approach was used.  

The seeds that have been selected were the left and right putamen and caudate, just like 

previous researches.  Also they used the tool REST to investigate the functional connectivity.  

The last analysis that they performed was a voxel-based morphometry, so as to investigate if 

functional results influenced potentially by structural differences among groups.  Although 
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the deceased functional connectivity within cortical sensorimotor areas was only evident 

within the foremost affected putamen subregion, a reduction of functional connectivity 

within mesolimbic regions was prevalent throughout the striatum.  Increased functional 

connectivity was not obtained during this cohort.  By studying a group of early-stage drug-

naïve PD patients, they excluded the potential confounding effect of extended antiparkinson 

medication use on the functional integration of neural networks.  Decreased functional 

integration obtained across neural networks involving striatum, mesolimbic cortex and 

sensorimotor regions and hypothesized that the prevalent disconnection in mesolimbic-

striatal loops caused by some early clinical nonmotor features in PD.  Although prolonged 

antiparkinson medication may result in reorganization of functional neural networks through 

unknown mechanisms and confound our understanding of the first pathological process, 

their findings of prevalent reduced functional connectivity of neural networks in early-stage 

drug-naïve PD patients reflect the first pathological changes within the natural disease 

course [51]. 

Baggio et al. studied about frontostriatal functional connectivity in Parkinson’s 

disease patients that suffer from apathy, a symptom that affect 23% - 70% of the patients 

and is related to frontostriatal dopamine deficits.  Using resting-state functional magnetic 

resonance imaging they investigated thirty-one healthy controls and sixty-five age, gender 

and education matched PD patients.  From the group of PD patients, the twenty-six were 

classified as apathetic.  Using 3T MRI scanner were acquired structural T1-weighted images, 

FLAIR images as well functional resting-state images.  AFNI and FSL had been used for the 

preprocessing of the resting-state images.   Also the structural data were analyzed with FSL-

VBM which is a voxel-based morphometry (VBM) style analysis.  As for the statistical analysis 

a voxelwise general linear model was applied, using a non-parametric testing for 

connectivity and VBM.   Furthermore before the analysis, the definition of regions of interest 

took part.  More detailed the frontal cortices were divided into limbic (anterior, posterior, 

medial orbital gyri, gyrus rectus, subcallosal gyrus/ventral anterior cingulate), executive 

(rostral superior and middle frontal gyri and dorsal prefrontal cortex), rostral motor (caudal 

portions of lateral and medial superior frontal gyrus, caudal middle and inferior frontal 

gyrus) and caudal motor (precentral gyrus and caudal premotor area).  Reductions of 

functional connectivity showed the apathetic PD patients while comparing them with non-

apathetic patients and healthy controls.  These reductions were observed in left-sided 

circuits and predominantly involving limbic striatal and frontal territories.  As for the 

structural analyses there was not found any significant effects.  From the results, authors 
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suggested that the presence of apathy in PD patients is related to the reductions of 

functional connectivity in frontostriatal circuits, predominating within the left hemisphere 

and mainly involving its limbic components but also extending to premotor and primary 

motor regions.  That is applicable even in the absence of significant structural degeneration 

and while controlling for associated depression and cognitive decline [52]. 

Another resting-state study that will be referenced is that of Engels et al. where they 

focused in dynamic functional connectivity (dFC) of both the default mode network (DMN) 

and the frontoparietal network (FPN) as neural correlates of cognitive functioning in patients 

with PD.  Also they investigated symptoms such as pain and motor problems of PD in 

relation to dFC.  The individuals that participated in that study were twenty-four PD patients 

and twenty-seven healthy controls.  All the participants underwent resting-state functional 

connectivity from which dFC was defined by calculating the variability of functional 

connectivity over variety of sliding windows within each scan.  The assessment of the pain 

happened with the Numeric Rating Scale (NRS) while for the motor symptom severity the 

Unified Parkinson’s Disease Rating Scale, was used.  Patients underwent MRI two times with 

and without Parkinson medication, but in that study only the without medication phase 

imaging was used so as to reduce the effect of dopaminergic medication.  As always the MRI 

data were collected with a 3T GE Signa HDxT MRI scanner along with structural and 

functional images.  The analysis of the data happened using FSL FMRIB software library and 

custom built scripts in bash and MATLAB.  As for the statistical analysis were performed with 

IBM SPSS.  The results showed that patients performed worse on tests of visuospatial 

memory, verbal memory and working memory compared with healthy controls.  The cause 

of that may be the lower level of education of patients.  Between groups the dFC had no 

differences in the DMN or the FPN with the rest of the brain regions.  Although a positive 

correlation existed between dFC of the DMN and visuospatial memory.  This association was 

not found when investigated motor symptoms or pain, which suggests that dFC of the DMN 

may be specifically linked to cognitive functioning.  That study helps to understand which of 

the factors contribute to cognitive functioning in PD [54]. 

The last resting-state study that will be referenced is a latest study about the functional 

brain network of motor reserve that is related to patients with early PD.  They proposed the 

notion of motion reserve in Parkinson’s disease, which is similar to the notion of cognitive 

reserve in Alzheimer’s disease, so as to explain the heterogeneity of symptom severity in 

Parkinson’s disease regardless the analogous level of nigostriatal dopamine depletion on 

dopamine transporter (DAT) scans.  From a total number of one hundred fifty six 
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participants only one hundred thirty four were included on the study because of apparent 

artifacts and motion artifacts.  The twenty two participants were excluded at the step of 

preprocessing of fMRI data.  All of the participants were de novo PD patients who 

underwent dopamine transporter (DAT) imaging and showed appropriate DAT defects in the 

posterior putamen.  Also they underwent MRI, including high resolution of T1-weighted MRI 

and resting state fMRI at baseline evaluation.  The preprocessing of the fMRI data was 

performed using SPM12 and custom codes running on MATLAB while the Toolbox of 

Network-Based Statistic and their custom codes running on MATLAB was applied for the 

network analysis.  Furthermore they examined longitudinal changes in dopaminergic 

medication doses at a subset of participants (n= 109) according to the motor reserve 

network strength.  That happened using a linear mixed model named LED.  Last but not least 

they performed a voxel-based morphometry analysis to estimate if alterations in gray matter 

were related to the level of motor reserve.  The DAT imaging was performed using a 

Discovery 600 device while the processing of the acquired images was performed using 

SPM8 implemented in MATLAB.  After that the motor reserve of each patient separately was 

estimated, dependent on their baseline UPDRS-III score and dopamine transporter 

availability in the posterior putamen. The UPDRS-III score is a clinical criteria for the 

diagnosis of PD.  They defined the motor reserve estimate as the standardized value for the 

residual that was calculated as (raw value - A)/B, where A and B were the mean and 

standard deviation of the residuals of all patients with PD.  The MRI images were acquired 

using 3.0T scanner both for the high resolution axial T1-weighted MRI scans and T2*-

weighted single-shot echo planar imaging sequences.  From the network-based statistic 

analysis the results showed that brain regions such asbasal ganglia, inferior frontal cortex, 

insula and cerebellar vermis are included in the motor reserve network. Also the presence of 

a bigger degree of functional connectivity within the motor reserve network was found in 

patients with greater motor reserve.  Moreover the interaction that was observed within the 

motor reserve network strength and time in the linear mixed model resulted in that motor 

reserve network strength and levodopa-equivalent dose are inversely proportional sizes. So 

as a more general result, functional connections within the motor reserve network are 

connected to the individual’s capacity to cope with pathologies that concern PD [107]. 
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3.2 An overview of the literature  

In the following table (Table 3.1) is presented an overview on recent literature methods. 

 

Table 3. 1: An overview of the literature. 

Authors Dataset Regions Imaging 
technique 

Computation
al 

technique 

Results 

 
U. Sabatini 
et al 2000 
[44] 

 
6 akinetic 
patients 
6 normal 
subjects 
All participants 
were right 
handed 
Motor task 

 
Rostral part of 
SMA, right DPC, 
PSC, LPC, IPC, 
caudal part of 
SMA & ACC 

 
fMRI 
 
 

 
SPM96 

These fMRI data 
confirm that the frontal 
hypoactivation 
observed in patients 
with PD is restricted to 
the rostral part of SMA 
and to the DPC. Also 
other cortical motor 
areas of these patients 
showed increase 
signals. 

 
T. Wu  
et al 2005 
[45] 

15 patients (3 
of them were 
excluded 
because they 
could not 
achieve 
automaticity) 
14 age-matched 
normal subjects 
Automatic 
movement task 
Visual letter-
counting tasks 

 
BSPL, LIC, 
Cerebellum, 
premotor area, 
parietal cortex, 
precuneus, 
prefrontal 
cortex 

 
fMRI 
1.5 T MRI 
 
 

 
SPM99 
 

For both groups, the 
activation was observed 
in similar brain regions 
before and after 
automaticity was 
achieved. PD patients 
require more brain 
activity to compensate 
for basal ganglia 
dysfunction so as to 
perform automatic 
movements. 

 
P. Péran  
et al 2009 
[46] 

 
14 non-
demanded 
Italian PD 
patients 
Event-related 
task 
 
 
 
 
 
 
 

 
Premotor and 
prefrontal 
cortices, pre 
and post central 
gyri bilaterally, 
left frontal 
operculum, left 
SMA, right 
superior 
temporal cortex 

 
fMRI 
3T MRI 

 
SPM2 
 

The direct comparison 
of brain activity during 
the production of 
action-words and of 
object names did not 
reveal any major 
differences. However 
there is a relationship 
between motor system 
dysfunction in PD and 
the extent of activation 
in verb generation, a 
task which implies 
processing of semantic 
representation of 
actions. 

 
Y. Kwan et 
al 2010 
[47] 

 
25 mild to 
moderate stage 
PD patients 
24 healthy 
controls 
Resting-state 

 
Caudate, 
putamen, dorsal 
prefrontal 
cortex, DCP, 
ventromedial 
prefrontal & 
orbitofrontal 
regions for 
inferior ventral 
striatum, frontal 

 
fMRI 
3T MRI 

 
SPM5 
ANOVA 

 
The results showed that 
PD and L-DOPA are 
variables that affect 
striatal RS BOLD signal 
oscillations and cortico-
striatal network 
coherence. 
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eye regions for 
superior ventral 
striatum & 
dorsal caudate, 
PMC, Secondary 
MA 

 
F. 
Skidmore 
et al 2011 
[48] 

 
14 idiopathic 
PD patients 
15 healthy 
controls  
Resting- state 
 
 
 
 

 
Cortical and 
subcortical 
regions 

 
fMRI 
3T MRI 
 

 
Wavelet –based 
correlation 
analysis 

PD patients showed 
decrease in nodal and 
global efficiency. For 
identifying and tracking 
neurodegenerative 
diseases, the use of 
graph metrics and 
algorithmic approach it 
might be necessary. 

 
S. 
Baudrexel 
et al 2011 
[49] 
 
 
 
 
 
 
 
 
 

 
31 early stage 
PD 
patients(right 
handed) 
44 healthy 
controls 
Presence of 
tremor 16 
patients 
Absence of 
tremor 15 
patients 
Resting-state 

 
PMC, STN, 
cortical motor 
areas, basal 
ganglia 

 
fMRI 
3T MRI 
 
 

 
Voxel by voxel 
basis 
SPM8 

Increased FC between 
the STN and cortical 
motor areas was 
observed in PD 
patients.  FC analysis of 
the PMC hand area 
revealed that the FC 
increase was primarily 
found in STN area 
within the basal 
ganglia. 
Tremor and non tremor 
patients showed 
increased FC in STN. 

 
 
A. 
Tessitore 
et al 2012 
[50] 
 
 
 
 
 
 
 
 
 

29 PD 
patients(16 
presented with 
freezing of gait) 
15 healthy 
controls  
Resting-state 

Right middle 
frontal gyrus 
and in angular 
gyrus, right 
occipito-
temporal gyrus 

 
fMRI  
3T MRI 
 
 

 
ICA 
BrainVoyager 
QX 
 
 
 

 
Patients with freezing 
of gait exhibit reduced 
FC within both 
executive- attention 
and visual networks. 

 
C. Luo  
et al 2014 
[51] 

 
52 early-stage 
drug naïve PD 
patients 
52 healthy 
controls 
Resting- state 
study  
 
 
 

 
Mesolimbic-
striatal, 
corticostriatal 
loops, CSA, 
putamen 
subregion,meso
limbic cortex, 
sensorimotor 
regions 

 
fMRI 
3T MRI 
 

 
SPM8 
REST 

PD patients showed 
decreased functional 
integration across 
neural networks and 
postulate that the 
prevalent disconnection 
in mesolimbic-striatal 
loops is associated with 
some early clinical 
nonmotor features in 
PD. 
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H.C. 
Baggio et 
al 2015 
[52] 

 
 
65 PD patients 
26 apathetic PD 
patients 
31 healthy 
controls 
Resting-state 

 
 
Left-
hemispheric 
limbic 
ventromedial, 
premotor and 
primary motor 
regions 

 
 
fMRI 
3T MRI 

 
 
Voxel based 
morphometry 
analysis 
 

 
The presence of apathy 
in PD patients is related 
to the reductions of 
functional connectivity 
in frontostriatal circuits, 
predominating within 
the left hemisphere and 
mainly involving its 
limbic components. 

 
R.G. Burciu 
et al 2016 
[53] 

 
112 
individuals:46 
PD, 13 MSA, 19 
PSP, 34 healthy 
controls 
Task-based 
fMRI (1 year 
research) 
 
 
 
 

 
Putamen, 
PMC(M1), SMA, 
superior motor 
regions of the 
cerebellum 
(lobules V-V1) 

 
fMRI 
 

 
ANOVA 
 

PD patients showed a 
decline in functional 
activity compared with 
controls. MSA patients 
showed a reduction of 
functional activity in 
M1, SMA and superior 
cerebellum. All regions 
in PSP were less active 
after 1 year. In healthy 
controls there was no 
change in these 
regions. 

 
G. Engels 
et al 2018 
[54] 

 
24 PD patients 
27 healthy 
controls 
Resting-state  
 
 
 
 
 
 
 
 
 

 
DMN, 
FPN, 
visuospatial 
memory  

 
fMRI 
3T MRI 
scanner3D  
 

 
FSL FMRIB 
MCFLIRT 
SPSS 
 

The results suggest that 
dynamics during the 
resting-state are a 
neural correlate of 
visuospatial memory in 
PD patients. Also brain 
dynamics of DMN could 
be a phenomenon 
specifically linked to 
cognitive functioning in 
PD, but not to other 
symptoms. 

 
S.J. Chung 
et al 2020 
[107] 

 
134 de novo PD 
Resting state 

Motor reserve 
network 
composed of 
basal ganglia, 
inferior frontal 
cortex, insula, 
cerebellar 
vermis. 

fMRI 
MRI 
Dopamine 
transporter 
imaging (DAT) 

Network based 
statistic 
analysis, 
SPM8, 
SPM12, 
Voxel based 
Morphometry 
analysis 

Functional connections 
within the motor 
reserve network are 
connected to the 
individual’s capacity to 
cope with pathologies 
that concern PD. 
Patients with increase 
of functional 
connectivity within the 
motor reserve network 
had greater motor 
reserve. 
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Chapter 4: Methodologies for connectivity extraction 

4.1 Preprocessing of fMRI data 

4.2 Brain connectivity 

 

 

 

 

 
 

 

4.1 Preprocessing of fMRI data  

While fMRI identifies neuronal activity via hemodynamic response to alterations in 

metabolic consumption of oxygen, the acquired time-series have, most of the times, 

confounds of non-neurally related sources of variations.  Such sources include subject’s head 

motion, magnetic field inhomogeneity, physiological oscillations like heart beats and 

respiration and differences in the timing of image acquisition.    These unwanted fluctuations 

may cover the intrinsic patterns of neural activity, alter experimental conclusions by 

introducing structured noise that affects the real neurally-related results and also decrease 

the detection of a possible following statistical analysis.  In general all these lead to spatial 

and temporal inaccuracy of the fMRI data.  For that reason several computational 

procedures have been developed, termed as the preprocessing pipeline, so as to remove 

unwanted variations and increase the functional signal to noise ratio (fSNR) before further 

analysis.  In the most frequently steps are included, motion correction (realignment), slice 

timing correction, coregistration, spatial normalization and spatial smoothing [24]. 

4.1.1 Motion correction (realignment) 

The basic aim of that preprocessing step is to correct artifacts that are related to the 

movement.  Most of the times the movement is large and particularly subject’s head 
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movement is a prominent concern in most fMRI studies.  In cases where the duration of scan 

is long, subjects become increasingly drowsy and restless as time goes by.  Also, when the 

study is task-based subject’s motion synchronizes with the on-going stimulus or different 

types of subjects, such as elderly and diseased people affect the movement [24].  Due to the 

fact that head movement in the scanner cannot fully be eliminated, different mathematical 

transformations focus on the removal of the movement.  Furthermore the statistical results 

are affected by movement in different ways.  For example, when motion induces distance-

dependent variance (more similar between voxels nearby than far apart) that causes 

alterations in the intrinsic correlation structure of the data.  Another way is when motion 

interplays with field inhomogeneity and slice excitation, causing more complicated noisy 

fluctuations [116]. 

The first step in motion correction is the best possible alignment within the input 

image and the target image.  Usually the target image is the first or the intermediate image.  

Due to the fact that the brain is assumed to be a rigid object that estimates at each time 

point its displacement from a reference position, rigid body transformation involving six 

variable parameters is used in realignment.  So as to match the target image with the input 

image, the last one is translated (shifted in the 𝑥, 𝑦 and 𝑧 directions) and rotated (altered 

roll, pitch and yaw).  It is necessary to use a cost function in order to determine the optimal 

value of parameters.  Figure 4.1 demonstrates the raw and corrected images after the 

motion correction step. 

From the mathematical perspective, a position 𝑥 = [𝑥1 , 𝑥2, 𝑥3, 1]𝑇   in image f is 

mapped to a position 𝑦 = [𝑦1, 𝑦2, 𝑦3, 1]𝑇 in image 𝑔 by rigid body transformation and is 

expressed by the following equation:  

𝑦 = 𝑀 ∗ 𝑥 ,  (4.1) 

 

where 𝑀 = 𝑀𝑓−1𝑀𝑡𝑀𝜃𝑀𝜑𝑀𝜔𝑀𝑔  is the transformation matrix. 
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Figure 4. 1: Motion correction [117]. 

More specifically, 𝑀𝑡  is the matrix that implements the translations and 

𝑀𝜃 , 𝑀𝜑 , 𝑀𝜔  are the matrices that implement the rotations about the 𝑥, 𝑦, 𝑧 axes 

respectively.  The other two matrices, 𝑀𝑓  and 𝑀𝑔, are the transformation matrices into 

Euclidian space for images 𝑓 and 𝑔 that are to be registered together.  The matrices are 

represented below [118]. 

 

𝑀𝑡 = [

1 0 0 𝑥𝑡

0 1 0 𝑦𝑡

0 0 1 𝑧𝑡

0 0 0 1

]  , 𝑀𝜃 = [

1 0 0 0
0 cos 𝜃 sin 𝜃 0
0 − sin𝜃 cos 𝜃 0
0 0 0 1

]       (4.2, 4.3) 

𝑀𝜑 = [

cos𝜔 0 sin𝜔 0
− sin𝜔 0 cos𝜔 0

0 0 1 0
0 0 0 1

]  , 𝑀𝑓 = 𝑀𝑔 = 

[
 
 
 
 
 𝑥𝑚𝑚 0 0 −

𝑎

2
𝑥𝑚𝑚

0 𝑦𝑚𝑚 0 −
𝑏

2
𝑦𝑚𝑚

0 0 𝑧𝑚𝑚 −
𝑐

2
𝑧𝑚𝑚

0 0 0 1 ]
 
 
 
 
 

    (4.4, 4.5). 

 

Where 𝑥𝑚𝑚 , 𝑦𝑚𝑚 , 𝑧𝑚𝑚  are the voxel’s dimensions and 𝑎, 𝑏, 𝑐 the dimensions of images.  The 

best possible fit for all 𝑗 voxels within the two images 𝑓 and 𝑔 is obtained by minimizing the 

following equation and solving the parameters 𝑝: 

𝑙(𝑝) =  ∑ (𝑀𝑥𝑣 − 𝑠𝑦𝑣)
2

𝑗 ,                                            (4.6) 

where 𝑝 =  [𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝜃, 𝜑, 𝜔] 𝑇 is the parameter vector, 𝑣 is the voxel and 𝑠 the parameter 

that is used to offset the differences in voxel intensity of two images [117]. 
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4.1.2 Slice-timing correction 

This preprocessing step, also, causes inaccuracies in time-series and is related to the 

sequential collection of slices within each volume (Figure 4.2) [118].  The major part of fMRI 

studies use a two-dimensional pulse sequence that illustrates one slice at a time, leading to 

inconsistent acquisition time among different brain slices within one TR.   That kind of slice-

timing errors, if uncorrected, may present inaccuracy in cases where the temporal 

information is critical, for example, in rapid event-related experiments or in studies with 

positing causal association among different cortical regions.  The acquisition order defines 

the scan time of an individual slice.  There are three options for the acquisition order, known 

as interleaved slice acquisition, ascending and descending sequential acquisitions.  The first 

one is used more frequently because is collecting all of the odd slices at first and then all of 

the even slices, avoiding cross-slice excitation.  In this acquisition order, the adjacent slices 

are collected a full TR/2 apart.  The less common ascending and descending sequential 

acquisitions, are collecting the slices consecutively and particularly the last slice is collected 

almost one TR after the first slice.  It is important to be mentioned that the data acquired via 

interleaved acquisition at a long TR, the step of slice-timing correction must be performed 

first, before the motion correction [30]. 

 

 

Figure 4. 2: Slice-timing correction [117]. 

 

The statistical analysis accepts that every voxel is sampled simultaneously, so the 

main point of slice-timing correction is to relocate each voxel’s time course in order to 

consider them as they were measured at exactly the same time point.  Due to this fact, 

phase shifting of the sines that comprise of the signal must be performed.  Furthermore, the 

time-series of the voxels is transformed in the frequency domain, the data is performed to 

phase shifting and the inverse Fourier is used so as to execute the corrected time-series 

recovery [29]. 
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From the mathematical aspect, each image volume that has 𝑞 slices with 𝑚 𝑥 𝑛 

pixels (𝑚 is the number of the rows and 𝑛 is the number of columns), the matrix that is 

formed is the following: 

𝐴𝑐𝑞 = [

𝑎11 𝑎12 …
⋮ ⋱ ⋮

𝑎𝑘1 𝑎𝑘2 …
] ,                                              (4.7) 

 

where 𝑐 ranges within 1 and 𝑛 (𝑐 = 1,… . , 𝑛) and 𝑘 represents the time points.  The element 

𝛼𝑖𝑗 expresses the intensity value of the voxel that is localized in slice 𝑞.  Consequently, the 

first column of the matrix illustrates the time-series of the voxel (𝑐, 1, 𝑞).  The performing 

convolution is applied for each column of the matrix in the frequency domain with a shifting 

vector.  The number of slices, TR, TA and the acquisition order (ascending, descending and 

interleaved) affect the shifting vector [117]. 

4.1.3 Co-registration 

In general this preprocessing step maps the functional and structural images to each other 

applying computational procedures.  The collected 3D stack of functional and structural 

images, usually do not match each other.  That happens because of differences in MR 

contrasts and acquisitions, e.g. inconsistent slice orientation, voxel resolution and image 

distortion, leading to problems in mapping activity to the structural image.  The 

computational procedures, basically, at first resample the structural data to the spatial 

resolution of the functional data and then employ a rigid body transformation where mutual 

information (cost function) is minimized [24]. 

4.1.4 Intensity normalization 

With the intensity normalization step, is occurred the rescaling of all intensities in an fMRI 

volume by the same amount and is applied at each volume separately.  That happens 

because, during an fMRI experiment, a supplementary scan-to-scan variance appears at very 

low spatial frequencies that may be caused by the scanner itself (scanner drift).  In most 

studies, first the calculation of the mean intensity across all voxels happens, for every fMRI 

volume that has been at intensity above a predetermined threshold.  Then follows the 

rescaling of all intensity values by a constant value and last the new mean intensity turns 

into a present value.  The usage of mean intensity value of each volume as confounding 

variables is required so as to be applied in statistical analysis later, based on other approach.  

But there is a disadvantage in the case of a strong activation.  Particularly, when there is a 

strong activation, the mean intensity increases and results in the negative correlation of the 
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non-activated sections of the volume with the stimulation after normalization.  So, the final 

statistical image will include a part of deactivation [29]. 

4.1.5 Spatial normalization 

Due to the fact, that in most fMRI studies there is comparison between brain activation 

across multiple individuals, this step is necessary.  The shape and the size of brains are 

inconsistent within subjects so a comparison between different images is difficult.  With 

spatial normalization each individual’s brain is normalized to a template, which is usually 

based on specific populations or published ones.  The most common templates are Talairach 

atlas, Tournoux atlas and Montreal Neurological Institute space (MNI).  A large number of 

normal MRI scans are applied in the MNI space, so it is more representative of the 

population, in contrast, with the other two which are based on one subject’s brain. 

Spatial normalization can be based on intensity, landmark or even on surface.  

Typically, it is implemented by registering each individual’s functional images to a functional 

template.  This can happens directly or in two steps, where the co-registration of functional 

and structural images is the first step and then follows the registration of the anatomical 

images to a high-resolution structural template.  Each of the two approaches has advantages 

and drawbacks.  The first one prevents inconsistent geometric distortions induced by 

different imaging contrasts, while the second approach is more robust because of the 

improved resolution and quality of structural image [24]. 

In a more detailed description, in the first step occurs the determination of the 

optimum 12-parameter registration within the template and the image to be normalized.  

While in the second step follows the estimation of the nonlinear deformations determined 

by a linear combination of three-dimensional discrete cosine transform (DCT) basis 

functions.  A maximum a posteriori (MAP) approach is applied for the determination of the 

optimum affine transformation.  The affine transformation is represented as: 

 

𝑦 = 𝑀 ∗ 𝑥,                                                                     (4.8) 

 

where 𝑀 = 𝑀𝑓−1𝑀𝑡𝑀𝜃𝑀𝜑𝑀𝜔𝑀𝑧𝑀𝑠𝑀𝑔 .  Focus matrix is represented as 𝑀𝑧  and shearing 

matrix as 𝑀𝑠, as you can see below [119]. 
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  𝑀𝑧 = [

𝑥𝑧 0 0 0
0 𝑦𝑧 0 0
0 0 𝑧𝑧 0
0 0 0 1

], 𝑀𝜃 = [

1 𝑥𝑠 𝑦𝑠 0
0 1 𝑧𝑠 0
0 0 1 0
0 0 0 1

]                         (4.9, 4.10). 

 

 

The estimation of the nonlinear deformations that appear throughout the 

normalization, it is very important.  In order to achieve the distortion modeling a linear 

combination of basis functions are used.  An example is given below: 

 

𝑦𝑖 = 𝑥𝑖 − ∑ 𝑡𝑗𝑏𝑗(𝑥𝑗)𝑗  ,                                              (4.11) 

 

Where 𝑡𝑗 is the 𝑗th coefficient describing translation for each three dimensions and 𝑏𝑗(𝑥𝑗) is 

the 𝑗th basic function at spatial position 𝑥𝑖 [119]. 

4.1.6 Spatial smoothing 

The benefits of including the spatial smoothing in the preprocessing procedure are three.  

Firstly, with spatial smoothing the fSNR of the data can be improved.  The acquired fMRI 

data are inherently spatially, because of the blurred signal by vascular origins and the 

functional similarity of adjacent brain areas.  Secondly, can also be enhanced the anatomical 

or functional variations within different subjects.  Unlikely, the optimum kernel sizes 

determined by different goals are not consistent.  Thirdly, spatial smoothing may improve 

the validity of following statistical analysis by softening the difference within spatial 

structure of the data and the assumed model.   

Meanwhile, several disadvantages of spatial smoothing in relation with the correct 

size of the kernel, must be considered.  For conventional studies that adopt fixed kernel size 

among the brain, a recommended kernel size ~ 4mm is suitable for single subject analysis, 

while for a group level analysis a wider kernel size 6-8mm is suggested.  So as to be sure, the 

examination of the results when a wide smoothing kernel is used, is recommended [24]. 

The most common approach is the convolution of each volume with Gaussian kernel.  The 

amount of the image spatial smoothing relies on the full width half maximum (FWHM), as 

shown in Figure 4.3.  The equation that represents the convolution is the following: 

 

𝑡𝑖 = ∑ ℎ𝑖−𝑢
𝑑
𝑢=−𝑑  𝑓𝑢 ,                                                    (4.12) 
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where 𝑑 is the length of the kernel, ℎ is the kernel and 𝑓 is the image that undergoes the 

spatial smoothing.  The kernel amplitude 𝐴, at 𝑢 units away from the center is characterized 

as:  𝐴𝑢 =
𝑒

−
𝑢

2𝑟𝑙2

2

√2𝜋𝑟𝑙2
 , where 𝑟𝑙 =  

𝐹𝑊𝐻𝑀

√8𝑙𝑛2
 and the FWHM is the full width at half maximum of the 

Gaussian kernel.   

 

Figure 4. 3: Width of Gaussian kernel [117]. 

 

 

4.2 Brain connectivity 

4.2.1 Functional organization and brain connectivity 

In the recent past (18th century), neuroscientists believed that many brain functions were 

deliberated by its structure and that its structure was programmed by the genes.  However, 

in past decades, this perspective has changed and has been believed that the neural 

pathways of the brain are flexible, connected, adaptable and moldable by alterations in the 

environment of the individuals or by injury or disease.  Briefly, the brain is quintessentially 

plastic and can adapt and adopt new functionalities through necessity.  This understanding 

depends on the mean of connectionism, with the hypothesis that the function of the brain 

can be characterized as the interaction among simple units, for example, neurons connected 

by synapses that cause a connected whole which changes over time.  After some other 

ideas, the notions of functional segregation and functional integration have been 

introduced.  Since their appearance, there has been a trend to move from functional 

segregation toward functional integration [55].   The notion of functional segregation implies 

that a certain cortical area is responsible for some aspects of perceptual or motor 
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processing.  Although the notion of functional integration supports that many specialized 

areas are functionally integrated [56].  So later the integration within and between 

functionally specialized areas are described by functional and effective connectivity [57]. 

A long term goal of neuroscience is to develop models that integrate brain structure 

and function to predict human perception, cognition and behavior, but unfortunately they 

lack of characterization at the level of the individual subject.  Neuroimaging research has 

only start to address this gap of knowledge and substantial work needs to be carried out 

before the study of individuality and variation of brain networks.  The brain connectome is 

comprised of both grey matter (GM) regions representing neuronal units of information 

processing (the nodes of Figure 4.4) and white matter (WM) tracks, serving as structural 

communication pathways (the edges of Figure 4.4) [58]. 

 

Figure 4. 4: Connectome nodes and edges. Cortical termination of the arcuate fasciculus. 
Yellow higher, red lower termination density. Two magor WM tracts, cortico-spinal tract 

(CST) & arcuate fasciculus [58]. 

 

Generally brain connectivity describes the relationship between brain regions that 

may be spatially close or distant, anatomically different and also are connected either 

functionally –spontaneous intrinsic synchronization- or structurally –neuronal axons [59].  

Due to its diversity, connectivity divided into three forms.  These are structural, functional 

and effective connectivity [60]. 
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4.2.2 Structural connectivity 

As it has already been mentioned, connectivity is the study of the interaction within two 

different brain regions.  The structural or elsewhere the anatomical connectivity describes 

the physical connections or interactions through synaptic contacts within neighboring 

neurons or fiber tracks connecting neuron pools in spatially distant brain regions.  All these 

fiber tracks are known as white matter of the brain.  Persistence and stability on short time 

scales as well as substantial plasticity on longer time scales (may be observed sometimes) 

are characteristics of that type of connectivity [60, 61] 

The anatomical connectivity can be acquired using techniques of structural imaging 

along with diffusion tensor tractography methods.  DTI and fiber tractography allow the 

researchers to measure the properties of the connectome in living human brains at the 

meso- and macro-scale (mm to cm), providing information about brain computational 

machinery that changes all the time.  Recent technologies identify major white matter tracts 

in living brains.  These tracts are the most prominent edges within the connectome, 

information highways that implement communication about the senses, motor control, 

language and cognition.  The variability of the connectome leads to the following limitations; 

firstly the dependency of connectomes on the tracking methods and secondly the 

insufficient reliability of connectome estimates in individual brains or even in intra-individual 

brain when explored at different times [58, 120].    

Basically DTI measures the water diffusion tensor with the use of diffusion weighted 

pulse sequence as they are sensitive to the random water motion in microscopic level [59, 

64].  The diffusion of the water can be characterized due to the motion (constrained or not 

constrained), as anisotropic and isotropic.  The diffusion is anisotropic when the motion is 

constrained in white matter tracks or in other words when the motion prevails towards one 

direction than another.  On the other hand, the characterization of isotropic refers to the 

case where diffusion occurs in all directions in equal and random rate.  That happens deep in 

brain, in ventrices where the fluid covers large areas and the motion is not constrained [62].  

However these methods suffer from low spatial resolution.  In DTI literature the most 

mentioned frequent diffusivity indicators are the mean diffusivity (MD), franctional 

anisotropy (FA) and Mode.  MD is based on the volume of the diffusion ellipsoid which 

describes the average displacement of water molecules as an outcome of diffusion in a given 

amount of time.  Lowest number of MD is observed in tissues where diffusivity is restricted 

(e.g WM), while highest in tissues where there are some impediments to water diffusion (e.g 

CSF).  As for the FA, is known as a measure of the sphericity of the diffusion ellipsoid.  The 
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values range from zero, which indicates the spherical diffusion, to one which indicates 

absolutely aspherical diffusion.  Also reduced FA means that there is damage to the axon 

membrane, reduced axonal myelination, reduced axonal packing density and/or reduced 

axonal coherence; on the other hand increased FA leads to supranormal levels of 

myelination or axonal sprouting.  A relatively recently development of such indicators is the 

Mode.  That type, provides furthermore information expressed by the 3D shape of the 

diffusion ellipsoid than the one that provided by FA.  Basically describes whether the shape 

of the diffusion ellipsoid is cylinder (highly “tubular” anisotropy) or disk (highly “planar” 

anisotropy) for a given FA value [63]. 

DTI fiber tracking 

The aim of DTI fiber tracking is to specify intervoxel connectivity based on the anisotropic 

diffusion of water.  The diffusion tensor of every single voxel is used by fiber tracking so as to 

observe an axonal tract in three dimensions from voxel to voxel through the human brain. 

DTI divided into two broad categories, the deterministic and the probabilistic that they 

include reconstruction methods for WM tracts.  For the first category (e.g Fiber Assignment 

by Continuous Tracking), line propagation algorithms along with local tensor information for 

each step of propagation have been applied.  For the second category, the global energy 

minimization, which detects a path within two predetermined voxels with minimum energy 

violation, is the main characteristic.  That type also is effective for tracking fibers in areas of 

reduced anisotropy, not excepting gray matter [64]. 

4.2.3 Functional connectivity 

With the term functional connectivity (FC) is meant “the temporal correlations between 

spatially remote “neurophysiological events”.  In addition with anatomical and effective 

connectivity, functional connectivity investigates regional interactions in the brain at a 

macro scale using datasets from electroencephalographic (EEG), magnetoencephalographic 

(MEG), positron emission tomography (PET), single-photon emission computed tomography 

(SPECT), local field potentials (LFP) and functional magnetic resonance imaging (fMRI) [65].   

Another useful clue is that FC does not explain how these correlations are mediated, but 

only provides information about the correlation that is noticed [22].  As it is mentioned the 

use of different neuroimaging modalities is required so as to measure FC.  This is because of 

the statistical behavior of FC, as it relies on statistical measures such as correlation, 

coherence, spectral coherence or phase locking [7].  From the aforementioned modalities, 

fMRI is the most commonly used and therefore the most important as it studies the blood 
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oxygen-level-dependent (BOLD) signal of the data.  As it is commonly accepted, the methods 

that are used for FC analysis via fMRI are generally grouped into two types: model-based 

methods and data-driven methods (Figure 4.5).  The first type is based on prior knowledge, 

methods with many variables are included and its use is widely.  The second type does not 

need any prior knowledge, methods with one variable are included and it is useful for 

resting-state fMRI studies, where spatial and temporal pattern are unknown [11, 124]. 

 

Figure 4. 5: Current Methods for FC fMRI study [65]. 

 

The correlations in activity that are mentioned all the time, which describe the FC, 

can result from a number of reasons.  As it is shown in Figure 4.6, there are in general three 

ways to describe the correlations.  At first, the direct influence from one region to another 

region which is known as effective connectivity.  More specifically the signal along 

connection between two regions one of which sends the efferent connections to the other 

can be interpreted as a correlated activity.  Secondly, the indirect influence where a third 

region operates as a mediator between the two regions.  At last, the shared influence where 

a third region works as a common input for both of the regions.  This is named as the 
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problem of stimulus-driven transients.  The critical point is that only in the first case does 

functional connectivity reveal a direct causal influence between regions.  For that reason, 

results from functional connectivity analysis must be interpreted with great caution [66]. 

 

 

Figure 4. 6: Direct influence (left panel), indirect influence through a third region (centre 
panel) and shared influence of a common input region (right panel) [66]. 

 

Model-based functional connectivity analysis 

Essentially in a model-based analysis it is important to select a seed or region of interest 

(ROI) and find the linear correlation of this seed region with all the other voxels in the entire 

brain, thereby yielding a seed-based FC map.  For that reason this method is also referenced 

as seed-based analysis.  Because of the fact that this analysis is dependent on the definition 

of the ROIs, it is difficult to test the FC of the whole brain using this technique [60].  As it is 

known this method is based on prior knowledge or experience as it is required a priori 

selection of a voxel, cluster or atlas region from which the extraction of time-series can be 

accomplished [65].  Also seed-based analysis was the first method that has been used by 

Biswal et al. to identify the resting-state networks [67].  In accordance to the metrics that 

have been used for the measurement of connectivity, the model-based methods could be 

classified in cross-correlation analysis, coherence analysis, and statistical parametric 

mapping (SPM) [65]. 

 

Cross-correlation analysis (CCA) 

That type of analysis is a technique that has been widely used in many fields.  Basically this 

analysis suggests that if one region of the brain is functionally connected to a certain seed, 

there should be correlation in terms of their BOLD time courses.  Mathematically for fMRI 
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BOLD time course 𝐹𝑥(𝑘) and 𝐹𝑦 (𝑘) is a seed (which is also a time course), then the CCA 

estimates the correlation at lag 𝜇 as: 

 

𝐶𝑜𝑟𝑟𝑥,𝑦 (𝜇)  =  
𝐶𝑜𝑣𝑥,𝑦 (𝜇)

√𝑉𝑎𝑟(𝑥)×𝑉𝑎𝑟(𝑦) 
,                                     (4.13) 

 

where 𝑉𝑎𝑟(𝑥) and 𝑉𝑎𝑟(𝑦) are the variances of 𝐹𝑥(𝑘) and 𝐹𝑦 (𝑘), respectively; 𝐶𝑜𝑣𝑥,𝑦  (𝑢) is 

the cross variance of 𝐹𝑥(𝑘) and 𝐹𝑦  (𝑘) at lag 𝜇:  

 

𝐶𝑜𝑣𝑥,𝑦  (𝜇) = E{(( 𝐹𝑥 (𝑘) −  𝐸(𝐹𝑥 )) × (( 𝐹𝑦  (𝑘) −  𝐸(𝐹𝑦  )) },         (4.14) 

 

𝐸 is the expected value, 𝐸(𝐹𝑥 ) and 𝐸(𝐹𝑦  ) are the expectation or the mean of 𝐹𝑥(𝑘) and 

𝐹𝑦 (𝑘), respectively.  If 𝐶𝑜𝑣𝑥,𝑦  (𝜇) is above a certain threshold, the two BOLD time courses 

𝐹𝑥(𝑘) and 𝐹𝑦 (𝑘) are considered as functionally connected. 

An advantage of that analysis is that it is not needed the full-lag-space calculation of 

cross-correlation of the hemodynamic response of blood, where its computational cost is 

high in order to calculate the cross-correlation of all lags.  Although the hemodynamic 

response function (HRF) varies, its duration is restricted.  That happens because it will return 

to baseline after some time (few dozen seconds).  Therefore the correlation must be 

computed with a time window of a dozen time points or so.  In fact many cross-correlation 

researches compute the correlation with zero lag [65]. 

Although CCA has been used for fMRI data analysis on both task-based and resting-

state dataset, the use of correlation at zero lag has been controversial.  From the one 

perspective, correlation is sensitive to the shape of HRF while from the other high 

correlation can be detected within regions that have no blood flow fluctuations.  The 

presence of noises such as blood vessel activity and cardiac activity in the brain would also 

conclude to delusion of high correlation.  All these problems overcame by the appearance of 

a new analysis, called coherence analysis [65]. 

 

Coherence analysis 

While correlation is defined in the time domain, coherence is defined in the frequency 

domain.  The first is responsible for time delays comprising the effects of one region on 

another and it has great usage as statistic for the functional connectivity studies.  In the case 

that the ordinary zero-order correlation within two different regions is moderate or low, 
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means that the time-series in one region is broadly similar to that in another, but with a time 

delay.  In contrast, the coherence is high between the bandwidth of the curve [68]. 

For the same time courses  𝐹𝑥(𝑘) and 𝐹𝑦 (𝑘), the coherence is expressed as:  

 

𝐶𝑜ℎ𝑥,𝑦 (𝜆) =
ǀ𝐹𝑥,𝑦(𝜆)ǀ2

𝐹𝑥,𝑥(𝜆)𝐹𝑦,𝑦(𝜆 )
  ,                                             (4.15) 

 

where 𝐹𝑥,𝑦(𝜆) is the cross spectrum, defined by the Fourier transform of the cross 

covariance as follows: 

 

𝐹𝑥,𝑦(𝜆) = ∑ 𝐶𝑜𝑣𝑥,𝑦𝑢 (𝑢) × 𝑒−𝑗𝜆𝑢 ,                                  (4.16) 

 

where  𝐹𝑥,𝑥(𝜆) is the power spectrum, such as the 𝐹𝑦,𝑦(𝜆).  They are defined as following: 

 

𝐹𝑥,𝑥(𝜆) = ∑ 𝐶𝑜𝑣𝑥,𝑥𝑢 (𝑢) × 𝑒−𝑗𝜆𝑢 ,                                    (4.17) 

 

𝐹𝑦,𝑦(𝜆) = ∑ 𝐶𝑜𝑣𝑦,𝑦𝑢 (𝑢) × 𝑒−𝑗𝜆𝑢 .                                   (4.18) 

            

 

The study of time course relationships can be achieved via the expression of 

correlation in frequency domain.  For example, at high frequency around 1.25 Hz the 

coherence may be caused by the cardiac activity instead of the functional connectivity.  

While at low frequency values below 0.1 Hz the coherence can be related to functional 

connectivity [65]. 

 

Statistical parametric mapping (SPM) 

The last model-based method that will be referenced is statistical parametric mapping 

(SPM).  Its use is based on finding the patterns of activity that are induced by cognitive tasks 

in a fMRI experinment.  Although is considering from scientists as a method for task studies, 

recently, SPM methodology has been applied for the detection of functional connectivity 

under resting-state [70].  The point of this method is to copy a stimulus based on the 

selected seed, then to use it in the same way as the real stimulus did in cognitive tasks.  This 

happens because in resting-state studies there are no designed cognitive activities.  As for 

the modeling and statistical inference, these are following the basic steps of the classical 

SPM [65]. 
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In general this analysis averages the voxels in certain seed, after the steps of scaling 

and filtering across all brain voxels, and is considering it as a covariate of interest in the first 

level of the analysis.  Then the second-level random effect of analysis took place where 

contrast images were determined individually for each subject, that are corresponding to 

that regressor.  The aim of this step is the definition of the brain areas that exhibit significant 

functional connectivity across subjects [65]. 

SPM is, basically, a voxel-based approach that adapts the classical inference, in order 

to gain the remark of particular regional responses related to experinmental factors.  

Nowadays statistical parametric maps are considered as a way to make classical inferences 

about spatially extended data with the joining of general linear model (GLM) and gaussian 

random field (GRF).  That joint of the two models is not random.  GLM estimates the 

parameters that could explain the data, while GRF solves the multiple comparison problems 

so as to make statistically powerful inferences [65,69]. 

Although the use of model-based methods, especially CCA, is remarkable there are 

some disadvantages that have to be mentioned.  It is common that different seeds would 

lead to detection of different connectivity, so seed-based methodology renders the detected 

functional connectivity sensitive to seed selection [71].  Also the need of prior knowledge 

constrains the exploration of possible functional connectivity.  This lead to the conclusion 

that only brain regions related to the prior knowledge will be investigated, neglecting other 

parts or functions of brain.  So this method is not capable to explore the whole brain and 

might need other type of methods to achieve that.  Data-driven methods assume to solve 

this problem [65]. 

Data-driven functional connectivity analysis 

The development of data-driven methods lead to overcome the limitations that where 

observed on the model-based methods and also make possible to investigate the functional 

connectivity of the whole human brain.  This new type for detection of the functional 

connectivity has two main categories.  The first category is known as decomposition and is 

composed of principal component analysis (PCA), singular value decomposition (SVD) and 

independent component analysis (ICA).  The goal of this category is to represent the original 

fMRI data as linear combination of basis vectors (PCA/SVD) or as statistically independent 

components (ICA).  Clustering analysis is the second category and is composed of fuzzy 

clustering analysis (FCA) or hierarchical clustering analysis (HCA).  The aim of this category is 

to apply traditional clustering techniques to fMRI data [65]. 
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Decomposition-based methods 

Principal Component Analysis and Singular Value Decomposition 

Principal component analysis and singular value decomposition are two techniques that 

have been used in a lot of researches and because of their similarity in their theoretical 

background, they are considered as one type.  To begin with PCA/SVD is a method that 

reexpresing a dataset in terms of a set of components that are uncorrelated, or orthogonal 

to one another.  The first principal component is equivalent to the direction through the 

data that has the biggest amount of variance, while the second component is the direction 

with the next biggest amount of variance and also is uncorrelated with the first principal 

component and so on.  The numbers of components is the minimum against the number of 

observations or dimensions.  Another important information about PCA is that it can 

analyzes only the data from the first few principals components, which accounts from the 

majority of the variance in the data.  Thats why it can be applied as a data reduction 

technique [66].   

From the mathematically perspective, the aim of PCA/SVD is to represent the 

observed fMRI time courses 𝑋  with a combination of orthogonal contributors.  Each from 

the contributors is made of a temporal pattern (principal component) multiplied with a 

spacial pattern (an eigen map).  The SVD of 𝑋 (𝑇  time points ×  𝑁 voxels) is: 

𝑋 = 𝑈𝑆𝑉𝑇 = ∑ 𝑆𝑖𝑈𝑖𝑉𝑖
𝑇𝑝

𝑖=1 ,                                       (4.19) 

where 𝑆𝑖  is the singular value of 𝑋, 𝑈𝑖  is the 𝑖th principal component, 𝑉𝑖 is the corresponding 

eigen map and 𝑝 is the number of the collected components.  The generated eigen maps 

reveal the connectivity of different regions of brain, regions with high absolute values 

(positive or negative) are considered as correlated [65]. 

To perform PCA on fMRI data, a two dimensional matrix is applied that has been 

created by the reformation of the data, with voxels as columns and time-points/subjects as 

rows.  Then a set of components will be provided from PCA that have a value for each time-

point, which reveals the combinations of voxels that account for the most variance.  Also 

every component has a loading for each voxel, denoted the contribution of the voxel to each 

component [66]. 

In general this technique is simple and easily implemented.  However it has the 

disadvantage of being sensitive only to signals that follow a Gaussian distribution.  Although 

some signals in fMRI data follow such distribution, there also many signals of interest that do 

not follow such distribution [66].  Another issue is that its use is constrained in functional 

connectivity detection.  That happened because it fails to identify activations at lower 
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contrast to noise ratios (CNR) when there are other sources present.  Last but not least 

PCA/SVD is used some times as a preprocessing step for reduction of the dimensions for 

further analysis, just like ICA [65]. 

 

Independent Component Analysis  

Independent component analysis was developed to give a solution to the problem called the 

blind source separation, which means to detect the unknown signals in a given dataset [66].   

Blind signal separation is an explorative technique which is used in the field of image and 

sound analysis.  Because of the fact that signals are from various types of fMRI recordings, 

blind separation techniques are suitable to isolate and distinguish the source of these signals 

separation [72]. 

ICA is a popular method for functional connectivity detection with no need of prior 

knowledge about the spatial or temporal patterns of source signals; so it has been applied 

for both task-based and resting-state studies.  Particularly for an rs-fMRI signal, ICA 

facilitates the effective extraction of distinct rs-fMRI networks by using mathematical 

algorithms to decompose the signal from the whole brain voxels to temporally and spatially 

independent components.  ICA investigates multiple simultaneous voxel to voxel 

interactions of distinct networks in the brain.  It is assumed as a powerful technique which 

utilizes for both group level analysis and same group analysis, having different conditions 

such as psychological, physiological and pharmachological [60, 124]. 

From the mathematically perspective, ICA searches for linear combination of 

components in the dataset.  In contrast with PCA/SVD, ICA finds components that are as 

statistically independent as possible.  For fMRI data 𝑋 (𝑇 time points ×  𝑁 voxels), the ICA 

model can be written as: 

𝑋 = 𝐴𝐶 = ∑ 𝐴𝑖𝐶𝑖
𝑁
𝑖=1 ,                                              (4.20) 

where 𝐶𝑖  is the 𝑖th underlying signal source, 𝐴 is the mixing matrix with dimension 

equivalent with 𝑇 × 𝑁.  Every different source is independent from one another: 

𝑃(𝐶1 , 𝐶2 , … , 𝐶𝑁) = ∏ 𝑃(𝐶𝑖)
𝑁
𝑖=1 ,                               (4.21) 

 

where 𝑃(𝐶𝑖) presents the probability of the 𝑖th underlying signal source.  Assuming as the 

pseudo reverse of 𝐴 the 𝑊, the independent components can simply obtain by the following 

equation [14]: 
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𝐶 = 𝑊𝑋.                                                                    (4.22) 

In the initial stage, ICA decomposes the concatenated multiple fMRI data, so as to 

identify distinct patterns of functional connectivity in every subject.  In the next stage 

identifies for all the subjects, the spatial maps and the associated time courses.  In the third 

stage a generation of different component maps, is happening, for different subjects and are 

complied into a single four-dimensional file to perform the non-parametric analysis.  That 

kind of analysis is a methodology of statistical test which aims to extract statistical 

significance across groups or across subjects in a group [60]. 

During the performance of ICA, two different assumptions can be made that are 

leading to different results.  Firstly for both of the assumptions, the reconstruction of the 

original 4D matrix into a 2D matrix is needed.   Afterward, the first assumption claims that 

the data composes of 𝑇 random variables (time-points) where all of them are measured in 𝑁 

voxels.  So 𝑇 three-dimensional maps of activity are generated while there is possibility to 

analyze the 3D map into an original 𝑁 ×  𝑇 matrix.  The result from this is that the mixing 

matrix 𝐴  has 𝑇 ×  𝑇 dimensions.  According to the second assumption, the expression of 

data is described as 𝑁 random variables where all of them are measured in 𝑇 time-points.  

Consequently, the output is 𝑁 independent time-series with 𝑇 as the length.  This leads to 

an original 𝑇 × 𝑁 matrix with 𝑋 dimensions and a mixing matrix 𝐴 with 𝑁 ×  𝑁 dimensions.   

For the solution of ICA there have been used two common algorithms, Infomax and Fixed-

Point.  Both of them are attempt to minimize the mutual information of components Ci.  

Infomax manages to accomplish this aim, using adaptively minimization of the output 

entropy of neural network with as many outputs as the number of ICs to be estimated.  As 

for Fixed-Point, this is based on the notion of negentropy.  Several studies reveal the 

conjoint efficiency and accuracy of the findings after the use of both algorithms.  Obviously 

they have their own separate advantages.  Fixed-Point algorithm prevails over Infomax in 

the level of spatial and temporal accuracy, while Infomax shows competitive superiority in 

global model estimation and the decrease of noise [65, 72].  

The ICA can be divided into spatial ICA and temporal ICA which depends on the way 

the data are decomposed.  Spatial ICA is based on the analysis of spatially independent 

components and spatially independent time-course.  In contrast, temporal ICA is denoted to 

the data decomposition into temporarily independent components and temporarily 

independent time-course.  The nature of the task determines which of the two methods is 

the most suitable, because these methods lead to different results in relation to the 

characteristics of the underlying signals that are to be assessed.  For example, when the 
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underlying signals are spatially but not temporarily correlated, temporal ICA is the proposed 

method.  When, in contrast, signals are temporarily but not spatially correlated, spatial ICA 

must be applied [65].   

Although the widely use of ICA algorithm to fcMRI studies and especially on resting-

state fMRI dataset, there are some “traps” that have to be on concern.  As it has already 

been mentioned, this decomposition-based method relies on the independence of the 

components (signal sources) even it is spatially or temporally.  If something like that 

hindered, the conclusion will be the decrease of effectiveness of ICA.  Another issue is the 

selection of the number of independent components and how to threshold the IC maps.  

These questions have been studied by Ma et al. and the conclusions that were referenced 

were the following; when the number of ICs is smaller than that of the source signals then 

ICA results are highly dependent on the number [71].  Because of the difficulty of the direct 

thresholding of IC maps, it is widely accepted the conversion of an independent map with a 

non-Gaussian distribution into a z-map with a Gaussian distribution [65].  Ma et al.’s results 

showed that the conversion of z-map is inclined to overestimate the false positive rate (FPR) 

[71].  However this overestimation is in many cases acceptable.  The last issue that has to be 

mentioned is about the consideration of ICA as a non-free generative model, which 

expresses in detail the fMRI data through source signals and the mixing matrix A.  Because of 

this fact, the evaluation of the statistical significance of the source within the framework of 

null-hypothesis is not allowed.  The solution of this ‘’trap’’ comes from a newly development 

of a model called probabilistic ICA.  As stated in pICA, a set of 𝑞 (𝑞 < 𝑝) statistically 

independent non-Gaussian sources (spatial maps) produce the observed p dimensional time-

series through a linear and instantaneous ‘mixing’ procedure violated by additive Gaussian 

noise 𝜂(𝑡): 

𝑋𝑖 = 𝐴𝑆𝑖 + 𝜇 + 𝜂𝑖,                                                    (4.23) 

where 𝑋𝑖 is the 𝑝-dimensional column vector of individual measurements at voxel location 𝐼, 

𝐴 is mixing matrix, 𝑆𝑖  refers to the 𝑞-dimensional column vector of non-Gaussian source 

signals contained in the data, 𝜇 is the constant part and 𝜂𝑖 is the Gaussian noise 

𝜂𝑖~ 𝑁 (0, 𝜎2𝛴𝑖) [14, 21].  

ICA is not able to naturally generalize to a method suitable to make significant 

results about a group of subjects, in comparison with univariate methods.  In contrast using 

for example GLM approach on a dataset, the regressors of interest will be specified by the 

scientist.  This is the reason that inferences about group data arise naturally as all subjects in 
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the group use common regressors.  From the other perspective with the implementation of 

ICA there is not the capability to clarify directly the way of making inferences about group 

data, because different subjects in the group have different time-courses and so the 

classification follows different way.  For that reason, several ICA multi subject approaches 

have been recommended.  There are five categories of these approaches, including single 

subject ICA, group ICA with temporal concatenation or spatial concatenation, pre-averaging 

and tensor ICA.  Their distinction relies on the way the data has been grouped before the 

analysis, what kinds of output are available and the way of the processing of the statistical 

inference [74]. 

In the first category a large amount of approaches are included.  The first step is the 

performance of a single-subject ICA and then follows the application of other approaches 

like self-organized clustering or spatial correlation of the components in order to combine 

the output into a group post hoc.  Typically this category identifies unique spatial and 

temporal features, in contrast with the fact that the components are not certainly mixture 

similarly for each subject, because of the noise of the data.  As for the other four 

approaches, those include the computation of ICA on the whole group dataset.  After the 

examination of the temporal and spatial concatenation, the single performance of ICA is an 

advantage that has been referenced.  Subsequently, it is able to be separated into subject-

specific parts and because of that is quite simple to make a comparison between subject 

differences within a component.  While temporal concatenation approach gives unique time 

courses for individual subjects and supposes same aggregate spatial maps; spatial 

concatenation approach provides unique spatial maps with common time-series.  Even 

though there are differences between them in the organization of the data, there are proofs 

that temporal concatenation suits better on fMRI data.  This conclusion arise from the fact 

that ICA time courses are greater concerning temporal variations in contrast with the 

variation in the spatial maps at conventional field strengths of 3T and below. 

As a less computationally demanding approach is averaging the data before ICA.  Of 

course allows the possession of a common time course and a common spatial map.  Last but 

not least, recently great interest arises from the multidimensional or multi-way or N-way 

decompositions which represent the tensor decomposition approaches.  However their 

effectiveness on group and multi-group fMRI data, have not been proven.  According to a 

typical approach, a three-dimensional tensor used so as to assess a single spatial, temporal 

and subject-specific process for every component to reorganize the multidimensional 

structure of the data in the level of estimation.  Definitely a preprocessing procedure is 
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necessary as a precaution of existence of different time courses within subjects.  It is 

comprehensible that this works in resting-state MRI studies, where there is no 

synchronization of time courses within subjects; while in task-based experiments similar 

timing between subjects are existed [75]. 

 

Clustering Analysis 

The second category of the data-driven analysis of functional connectivity is known as 

clustering analysis.  The variety of the methods of this analysis has been applied in many 

functional MRI studies so as to investigate the activity patterns.  Fuzzy clustering analysis, 

vector quantification, self-organizing maps and neural gas network are the methods that are 

included in the notion of clustering.  The aim of these methods, and in general in clustering 

analysis, is to division the data into different clusters that rely on the intensity proximity of 

the time course.  When time courses are close enough, they are considered as one cluster 

[65].  In the case of an fcMRI study the use of clustering analysis based on the intensity 

proximity is not able to give the desired detection of functional connectivity.  For that reason 

instead of characterizing the distance by intensity proximity, they use the similarity within 

time courses as measurement of distance [76]. 

 

Fuzzy Clustering Analysis (FCA) 

The term fuzzy clustering analysis means an allowing fuzzy partition of the dataset.  The 

main concept of this method is the minimization of an objective function, which is defined, 

most of the times, as the total distance within all patterns and their cluster centers [65]: 

 

𝐽(𝑀, 𝐶) = ∑ ∑ 𝑀𝑖𝑗
𝜑
𝐷𝑖𝑗

2𝑗=𝐾
𝑗=1

𝑖=𝑁
𝑖=1 ,                                             (4.24) 

 

where  𝑀𝑖𝑗   is a metric that measures the probability of a voxel 𝑖 relates to 𝑗, 𝐷𝑖𝑗  is the 

distance within voxel 𝑖 and the centroid 𝐶𝑗  of a cluster 𝑗, 𝑁 is the amount of voxels in brain, 

𝐾 is the number of the primary clusters and 𝜑 is a weighting component.  The objective 

function is subject to [65]: 

 

∑ 𝑀𝑖𝑗 = 1, 𝑖 = 1,2, … ,𝑁     𝑗=𝐾
𝑗=1  ,                               (4.25) 

 

∑ 𝑀𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝐾;𝑀𝑖𝑗 ∈ [0,1]𝑖=𝑁
𝑖=1 ,                        (4.26) 
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A solution that provided by Bezdec for the membership matrix 𝑀 and clustering 

centroids 𝐶, is presenting below [79]: 

 

𝑀𝑖𝑗 =
𝐷

𝑖

2
𝜑−1

∑ 𝐷
𝑖𝑙

2
𝜑−1𝑙=𝐾

𝑙

, {
𝑖 = 1,2, … ,𝑁;
𝑗 = 1,2, … , 𝐾;

 ,                               (4.27) 

 

𝐶𝑗 = 
∑ 𝑀𝑖𝑗

𝜑
𝑋𝑖

𝑖=𝑁
𝑖=1

∑ 𝑀
𝑖𝑗
𝜑𝑖−𝑁

𝑖=1

, 𝑗 = 1,2, … , 𝐾; ,                                   (4.28) 

where 𝑋𝑖 is a vector which includes the coordinates of a cluster centroid 𝑖.  After a repetitive 

process the membership matrix 𝑀 and centroids can be acquired. 

For fcMRI study has been proposed two distance metrics 𝐷𝑐𝑐
1  and 𝐷𝑐𝑐

2  that was based on 

Pearson’s correlation coefficient 𝐶𝐶𝑥,𝑦  within two time courses 𝐹𝑥(𝑘) and 𝐹𝑦(𝑘).  The two 

distance metrics are shown below: 

 

𝐷𝑐𝑐
1 = (

1−𝐶𝐶𝑥,𝑦

1+𝐶𝐶𝑥,𝑦
)
𝛽

,                                                         (4.29) 

𝐷𝑐𝑐
2 = 2(1 − 𝐶𝐶𝑥,𝑦),                                                    (4.30) 

 

where 𝐶𝐶𝑥,𝑦 is the cross-correlation of 𝐹𝑥(𝑘) and 𝐹𝑦(𝑘) at lag zero.  The two proposed 

distances describe the degree of correlation within two fMRI time courses.  It is known that 

as functionally connected brain areas are those where their distance is under a certain 

threshold. 

However a significant question concerns about the number of clusters that should 

be selected and generally which would be the typical number so as to investigate the 

connectivity.  Different reports had been shown that a variety of numbers lead to a 

significant affection of the connectivity.  This observation happens especially when the 

initially chosen clusters are less than the number of underlying function networks [77].   

Several studies have been done so as to give an appropriate answer, just like Golay et al.[65] 

which suggested the use of a large number of clusters initially.  This suggestion will lead to 

obtain a complete description of the clusters without acquisition of insignificant cluster 

centers.  Despite these recommendations this issue is an intrinsic problem for FCA and might 

not be completely solved within the framework of FCA.  Another issue concerns the distance 

metrics.  Golay et al.[65] proposed that might be mixed with noises, such as human heart 

beat and respiration.  These noises contribute to the distance metrics at a relatively high 

frequency domain (around 1 Hz), while the distance contributors that are of interest, are low 
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frequency oscillations (<0.1 Hz).  At this frequency domain observed synchrony in cerebral 

blood flow and oxygenation between different brain regions [65]. 

 

Hierarchical Clustering Analysis 

This analysis have been introduced by Cordes et al.[65] in order to give a solution to the 

aforementioned problems of the FCA, applying a new distance measurement based on 

frequency analysis.  Hierarchical clustering analysis, in contrast with FCA, considers each 

voxel as one cluster at the initial stage and combines the close clusters according to a certain 

distance measurement.  Applying different ways lead to measure the closeness of the 

clusters, which distinguishes single-linkage from complete-linkage and average-linkage 

clustering.  Is characterized as an expensive computational technique and is thought to be 

more effective when applied to 3D human brain data. 

The recently developed single-linkage HCA algorithm measures the distance 

combining correlation analysis along with frequency decomposition.  The decomposition of 

Pearson’s correlation coefficient within two time courses 𝐹𝑥(𝑘) and 𝐹𝑦(𝑘) can be expressed 

as below: 

 

𝐶𝐶(𝑥, 𝑦) =
𝑁 ∑ 𝑅𝑒(𝜔𝑓)𝑅𝑒(𝜑𝑓) +  𝐼𝑚(𝜔𝑓)𝐼𝑚(𝜑𝑓)𝑓

𝑆
 

 

= 𝛴𝑓
𝑁(𝑅𝑒(𝜔𝑓)𝑅𝑒(𝜑𝑓)+ 𝐼𝑚(𝜔𝑓)𝐼𝑚(𝜑𝑓))

𝑆
= 𝛴𝑓𝐶𝐶𝑓(𝑥, 𝑦),                      (4.31) 

 

where 𝜔𝑓  and 𝜑𝑓  are complex frequency components of 𝐹𝑥(𝑘) and 𝐹𝑦(𝑘) respectively, 𝑅𝑒(∗

) and 𝐼𝑚(∗) describe the real and imaginary component of signal * and 𝑆 is expressed as 

below: 

 

𝑆 = √∑ 𝐹𝑥
2(𝑘)𝑁−1

𝑘=0 ∑ 𝐹𝑦
2(𝑘)𝑁−1

𝑘=0 ,                                  (4.32) 

 

The distance 𝐷(𝑥, 𝑦) within the two time courses has been defined as below: 

 

𝐷(𝑥, 𝑦) = 1 − ∑ 𝐶𝐶𝑓(𝑥, 𝑦)0.1 𝐻𝑧
𝑓=0 ,                                  (4.33) 

 

In conclusion, a low-pass filter to Pearson’s correlation coefficient applies this 

distance and then creates a reverse increase function to map the output into distance.  From 
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the above filtering process, the extraction of the information from correlation coefficient 

happens.  That information is the one that reflects synchrony in cerebral blood flow and 

oxygenation between different brain areas.  Results from experiments, that have 

investigated both simulated data and human brain data, have proven the successful remove 

of the structured contaminations (respiratory or cardiac noises) [65]. 

Because of some disadvantages, such as the high complexity, sensitivity to outliers 

and the poor scaling, HCA has not been used in resting-state fMRI analysis just like other 

methods that have been used fluently.  Something that should not been forgotten is the fully 

deterministic character of this approach and also the ability to express data as stratum 

through a hierarchical structure [78]. 

Model-based methods against Data-driven methods 

A number of researches have investigated the issue about when the use of model-based or 

data-driven methods is most appropriate or elsewhere which of the two methods is more 

capable and with the best results.  However, no one outperformed the other in an all around 

way.  The choice or the preference of a model-based or data-driven method depends on the 

concept of the experiment.  In general there is no reason to forget the knowledge and the 

experience from the one type of method and only use it in every situation.  From the other 

hand is not reasonable to use CCA instead of ICA in order to detect extensive regions of 

correlated voxels [65]. 

4.2.4 Effective Connectivity 

As it has been mentioned, the aim of functional connectivity methods is to find temporal 

correlations between spatially remote neurophysiological events.  However a very important 

issue is whether the activity, from the neurophysiological events, has a causal influence in 

the activity of another brain region.  Effective connectivity methods were created and 

applied for that reason, specifically to test causal models that concern the interactions 

within regions either at a synaptic or population level.  Such models of causal processes are 

described in terms of directed graphs, just like in Figure 4.7.  There is also another definition 

of them, named as path diagrams in parts of path analysis and SEM.  More specifically the 

nodes (circles) in Figure 4.7 illustrate the brain areas while the edges (lines with arrows) 

illustrate the causal relations [66]. 

Aertsen and Preibl [80] proposed that “the term of effective connectivity should be 

understood as the experiment and time dependent, simplest possible circuit diagram that 

would replicate the observed timing relationships between the recorded neurons”.  This 
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proposal leads to the conclusion that effective connectivity is dynamic, namely activity 

dependent, and also that it relies on a model of coupling or interactions [80]. 

While FC is an observable phenomenon that uses measures of statistical 

dependencies, such as correlations, coherence or transfer entropy so as to be quantified; 

effective connectivity wants to explain observed dependencies (functional connectivity) that 

corresponds to the parameter of a model.  This is very important because in this way the 

analysis of effective connectivity can be reduced to model comparison, i.e. compare a model 

with and without a specific connection to infer its presence.  In this sense, in the analysis of 

effective connectivity, every model corresponds to an alternative hypothesis about the 

cause of the observed data.  In general the key aspect of effective connectivity is that it 

relies on the comparison or the optimization of the given models.  In contrary, the functional 

connectivity is essentially descriptive [80]. 

It is obvious that effective and functional connectivity have differences in practice, 

even though their common use in the areas of neuroimaging and electrophysiology.  For 

example, it could be an attractive approach of using temporal dynamics (dynamic FC) on the 

development of FC but it is restricted because of the lack of the causal explanation.  This 

happens because of the fact that FC focuses on the definition of second-order data 

characteristics, preventing the interpretation of neurophysiological time-series under a 

mechanistic point.  Thus is it important to divide the notions of functional and effective 

connectivity as it forms the character of the inferences coming from functional integration 

and solves different problems that result from intricate interrelationship within effective and 

functional connectivity [81].  

Despite the fact that effective connectivity analysis is implemented to fMRI data, it is 

important to know that the underlying neuronal signals concern the causal interactions, 

which are the main focus of the study.  Thus, the evaluation of the causal relations from 

variables, that derived from observed signals and also contain noise and systematic 

distortion of the signal, is required.  But during the estimation, the recorded noise heads to 

identify causal relations that are not actually existent.  Also another problem relies on the 

use of temporal information for the extraction of the causal relations.  In that case the 

alterations of the hemodynamic response across brain areas are an additional purpose for 

fake causal association. 

Except for the aforementioned information about the relations within the observed 

activity through brain areas, an interesting perspective is to study about the connectivity in 

inferences that showed up in a bigger amount of individuals rather than in a set of subjects.  
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Parameters such as age, genetics and experience e.g. maybe affect the connectivity pattern, 

even in the case of same causal structure.  This leads scientists to the conclusion that the 

development of methods, at a population level, for effective connectivity evaluation is 

required.  The combinational approach that consisted of data across individuals and also the 

model’s estimation in the complex dataset is not recommended.  That happened because 

the conclusion would be an observed pattern of independence and conditional 

independence interactions that did not correspond to any individual of the group.  Thus a 

random effect analysis for the accurate and effective evaluation of connectivity across 

individuals is needed [66]. 

The diverse nature of the observed causal inferences of the effective connectivity 

and its various interpretations lead to the development and application of different methods 

of effective connectivity [82].  Two models are used to describe the effective connectivity, 

the linear and the non linear.  Those models give details of the mathematical perspective 

about the way of connection of brain regions, and also of the neuroanatomy perspective 

about which regions are connected.  Due to some previous knowledge, while the linear 

model provides sufficient results, the non linear model is that of more interest.  Specifically, 

it is known that the brain responds at simple and well-organized experiments in a directed 

process, in contrast with the non linear neurophysiological interactions that make the linear 

model’s efficiency controversial [22].  

The most commonly used approaches for the study of effective connectivity with 

fMRI, are the structural equation modeling (SEM), Granger causality analysis, dynamic causal 

modelling (DCM), graphical causal modeling, dynamic Bayesian networks, switching linear 

dynamic systems (sLDSf) and psychophysiological interactions (PPI).  Those have been 

applied in a variety of clinical studies and will be analyzed below [24].  

 

Structural Equation Modeling (SEM) 

The first method that will be described, for the analysis of effective connectivity is the 

structural equation modeling.  SEM is a method in which hypotheses about causal inferences 

within variables can be examined.  Elsewhere defines a set of equations with supporting 

assumptions of the system being analyzed, and the parameters are adapted from statistical 

observations [66, 83].  

SEM belongs to the category of linear statistical technique which illustrates steady-

state connection within brain areas using the covariance structure of the data, while the 

temporal dynamics of the fMRI time-series are not of concern.  It is worth noting that is an 
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ideal method for the estimation of effective connectivity on fMRI data [84].  The path 

coefficients for every link are estimated by the changes in activity of an area that has been 

affected by a given unit change.  Also they indicate the average influence throughout the 

measure of the time interval.   

From the mathematical perspective, a SEM model can be expressed as: 

 

𝑌 = 𝑀𝑌 + 𝜀,                                                               (4.34) 

 

where 𝑌 is the data matrix, 𝑀 is a path coefficients matrix and 𝜀 is independent and 

identically distributed Gaussian noise. 

The previous equation can be expressed and in another form as below: 

 

𝑌 = (𝐼 − 𝑀)−1𝜀,                                                        (4.35) 

 

where 𝐼 is the identify matrix.  So as to acquire the result for the unknown coefficients that 

are included in 𝑀, the empirical covariance matrix 𝑌 is used [85]. 

As well as the modeling connectivity within regions, SEM can also have extraneous 

variables along with error terms for the observed variables.  Therefore can include latent 

variables which are hypothesized but unobserved variables, that are associated (in some 

way) with the observed variables.  

SEM, instead of comparing the actual and predicted data, achieves the estimation of 

the parameters by minimizing the difference within the actual and predicted covariance 

between the variables.  The estimated parameters are called as path coefficients and 

illustrate how a change of a variable can lead to a change in another variable, while all other 

variables are staying constant.  After the estimation level, the use of statistical test is 

required so as to see the fitting of the observed data [66].  This technique is advantageous 

besides others because of the fast and robust computations and also due to the 

implementation on large scale simulations applying neuroimaging data. Also because of the 

early development, there is access in many software packages and algorithmic variations.  

Notably this technique can be used on PET, fMRI and also EEG data and because of that it 

suits in cognitive networks including those arbitrating motor control, visual perception, 

language function, associative learning and pain processing [86].  
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Even though the important use of it, SEM has some complications when it is 

applying on fMRI data.  Firstly SEM provides a reduction of temporal information when there 

is the assumption of normally distributed and independent from sample to sample data.  

That fact leads to the creation of the same path coefficient as the original data on the 

permuted one, since the assumed independence is interfered with the analysis of a single 

subject [85].   Disadvantages such as the primary estimation of the connection directions, 

the incapability of utilizing fully reciprocal models and the high dependency of the sample 

size on the absolute evaluation of the model, are also involved [87].  

 

Granger Causality Mapping (GCM) 

In general Granger causality is a method that has been advanced in order to model causality 

by testing the time relation within variables, for the analysis of economic data.  Its base is on 

the notion that causes always antedate effects in time [66].  Also its use in a whole-brain 

manner is named as Granger causality mapping (GCM), through which the comparison 

between the time course in a seed voxel and all other voxels in the brain is tested, and the 

Granger causality for every voxel is computed.  GCM depends on the idea of Granger 

causality in order to define the existence and direction of influence from information in the 

data [88]. 

The multivariate autoregressive (MAR) model can describe how Granger causality 

functions, so as to observe interactions among brain areas.  This happens by reporting a 

causal and dynamic system of linear interaction driven by stochastic innovations [87, 89].  

Therefore because of the use of past values of one brain area so as to predict the current 

values of another area, a priori specification of a structural model is not needed [85].   

The theory behind this analysis is based on the use of a vector autoregressive (VAR) 

modeling of fMRI time series in the concept of Granger causality.  With the hypothesis that 

𝑥[𝑛] and 𝑦[𝑛] are the measured time courses of two brain areas (voxels), Granger causality 

specifies the quantity of the usefulness of unique information in one of the time series in 

predicting values of the other.  In the case that incorporating past values of x improves the 

prediction of the current value of 𝑦 then 𝑥 “Granger causes” 𝑦.  In this way, temporal 

precedence is applied for the identification of the direction of causality from the information 

in the data.  So as to achieve the computation of Granger causality maps (GCMs), the 

temporal precedence is used, that identifies voxels that are sources or targets of directed 

influence for any region of interest.  Therefore the analysis does not need the specification 

of a directed graph model and is investigative in nature. 
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From the mathematical perspective, the VAR process of order p can be applied so as 

to model the discrete zero-mean vector time series 𝑥[𝑛] = (𝑥1[𝑛], … , 𝑥𝑀[𝑛])𝑇  can be 

described as below: 

 

𝑥[𝑛] = −∑ 𝐴[𝑖]𝑥[𝑛 − 𝑖] + 𝑢[𝑛]𝑝
𝑖=1 ,                                (4.36) 

 

where 𝑢[𝑛] is (multivariate) white noise.  As autoregression (AR) coefficients are named the 

matrices 𝐴[𝑖] because they regress 𝑥[𝑛] onto its own past.  As it has already been 

mentioned, the VAR model can be characterised as a linear prediction model.  Thus the 

current value of a component 𝑥𝑖[𝑛] is predicted by a linear combination of its own past 

values and the past values of the other components.  With this it is understandable the 

matter of importance of the use of VAR model in the quantification of Granger causality 

within components. 

It is also important to describe the use of temporal precedence in Granger causality 

approach.  More specifically, if 𝑥[𝑛] and 𝑦[𝑛] are given time courses, it is easy to identify 

independently influence from the two directions with suitable models.  The proposal 

measure of linear dependence 𝐹𝑥,𝑦  within 𝑥[𝑛] and 𝑦[𝑛] which applies Granger causality in 

terms of vector autoregressive models, is shown below: 

 

𝐹𝑥,𝑦 = 𝐹𝑥→𝑦 + 𝐹𝑦→𝑥 + 𝐹𝑥.𝑦,                                        (4.37) 

 

where 𝐹𝑥,𝑦  will evaluate to zero if there is no value at a given instant that can be described 

by a linear model that contains all the values of the other.  Therefore the two directed 

components (𝐹𝑥→𝑦 , 𝐹𝑦→𝑥)  take advantage of the time so as to decide on the direction of 

influence.  However, the total linear dependence does not depend on only these two 

components, but also at the undirected instantaneous influence 𝐹𝑥∙𝑦 .  Basically the last 

component quantifies the improvement in the prediction of the current value 𝑥 by including 

the current value of 𝑦, and inversely, in a linear model that already includes the past values 

of 𝑥 and 𝑦.  It is understandable that  𝐹𝑥∙𝑦    does not contain information about the direction 

but illustrates residual correlations in the data.  Basically, the directed influence within 𝑥 and 

𝑦 can demonstrate from the nonzero values of 𝐹𝑥∙𝑦 [88]. 

While Granger causality and especially GCM is an attractive approach for the model 

of effective connectivity without the requirement of the specification of an anatomical 

network, in contrast with SEM and DCM, when applying in fMRI data become problematic 
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due to the temporal features of them.  The first disadvantage that will be mentioned 

concerns the slice timing, since Granger causality depends on the relative activity of regions 

in time.  Potentially, the alterations in relative timing of acquisition through slices are 

probably much larger than the relative timing effects caused by neural processing.  Secondly, 

the assumption of Granger causality about the similar timing features of the hemodynamic 

response across brain is false.  Actually, there are many researches that show that 

generation of accurate causal influence by Granger causality on fMRI time series does not 

exist, against the use of electrophysiological and fMRI recordings.  Only in the case that time 

series are deconvolved, accurate outcomes can be acquired.  The third disadvantage 

concerns the problem about sampling the data at a rate slower than the causal process.  A 

possible solution might be the acquirement of residuals from a time series analysis and after 

that the use of graphical causal model.  At last, the multivariate extension (when required) 

must be done carefully because the results might be unstable due to the involvement of a 

large amount of regions [66, 87].   

 

Dynamic Causal Modeling (DCM) 

Dynamic causal modeling is a powerful tool that has been applied in a lot of studies.  It can 

be both used in fMRI and EEG/MEG studies with the generation of mutually confirmative 

outcomes that might be more robust and show deeper insights into cortical physiology than 

separately [90].  In general DCM addresses causal interactions within distinct predefined 

brain areas with the construction and the test of realistic models of the interacting neuronal 

areas.  DCM estimates the coupling within brain areas and tests how the changes of the 

experimental context affect the coupling.  Basically, in a neuronal model of interacting 

cortical regions DCM adds a forward model, which explains the transformation of the 

neuronal or synaptic activity into a signal that can be measured by fMRI (BOLD) or EEG/MEG.  

Particularly, a hemodynamic response model is contained in the case of fMRI so as to explain 

the transformation [58].  For an fMRI experiment DCM is composed of two sections.  The 

first concerns about a model of the neurodynamics (i.e. the underlying neuroactivity) and 

the second section concerns about a model of the hemodynamics (i.e. the blood flow 

response induced by the neurodynamics). 

The neurodynamic model in DCM is described by the following equation: 

 

𝑑𝑧

𝑑𝑡
= �̇�𝑡  = (𝐴 + ∑ 𝑢𝑡 (𝑗)𝐵(𝑗)𝑗

𝑗=1 )
̇

𝑧𝑡 + 𝐶𝑢𝑡 ,                         (4.38) 
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where 𝑡 is the time,  �̇�𝑡  is the derivative of neuronal activity in time, 𝑢𝑡(𝑗) is the 𝑗th of 

𝐽 extrinsic inputs at time 𝑡 and 𝐴, 𝐵(𝑗)and 𝐶 are connectivity matrices.  More specifically, the 

matrix 𝐴 describes the intrinsic connections, which specifies which regions are connected to 

one another and also the type of the connections (unidirectional or bidirectional).  The input 

connections are described by the matrix 𝐶, which specifies which regions are influenced by 

which extrinsic inputs 𝑢𝑡(𝑗).  The 𝐵(𝑗) matrix describes the modulatory connections, which 

specify the alterations in intrinsic connections in 𝐴 by each of the  𝑢𝑡(𝑗) inputs. 

From the other hand, the hemodynamic model in DCM is alike to the balloon-

windkessel model which aims to model the relation within neuronal activity and alteration in 

blood volume, blood flow and blood oxygenation that result in the measured fMRI signal 

[66].  The Balloon model is composed by equations that define the association within four 

hemodynamic state variables using five parameters.  

Due to the involvement of the interaction of two linear effects, DCM is usually 

mentioned as a bilinear model.  However the use of DCM has been extended to nonlinear 

cases in which connections are modulated by a third region [91]. 

As it is already mentioned, the combination of hemodynamic and neurodynamic models 

leads to the full forward model that describes the DCM.  The following equation presents the 

full model where 𝜃 is a joint parameter vector: 

 

�̇� = 𝐹(𝑥, 𝑢, 𝜃),                                                             (4.39) 

𝑦 = 𝜆(𝑥).                                                                   (4.40) 

Supposing a set of given parameters 𝜃 and inputs 𝑢, the predicted BOLD response 

ℎ (𝑢, 𝜃) outcomes from the integration of the joint state equation and its pass across the 

output nonlinearity 𝜆.  The observation model that contains observation error 𝑒 and 

confounding effects 𝑋 can be expressed as [99]: 

 

𝑦 = ℎ(𝑢, 𝜃) +  𝑋𝛽 + 𝑒.                                                  (4.41) 

 

Just like the previous methods that have been referenced, DCM has some important 

limitations.  Firstly, it is known that the validity of the outcomes relies on the anatomical 

models that are specified and the regions that are used for data extraction.  A possible 

solution might be the use of graphical search techniques so as to construct a set of plausible 

candidate models and then applying DCM to examine particular assumptions about those 

models.  Secondly, the current implementation of DCM is restricted because of the models 
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that have relatively few regions; MATLAB memory limitations are responsible for this 

disadvantage.  This might be relieved by the use of 64-bit systems.  Furthermore it is a high 

computational cost technique with the weakness to estimate effective connectivity in more 

than six areas.  Finally, in cases where there are correlations within different parameter 

values, the estimation of the parameter can be relatively unreliable, while DCM is highly 

reliable in model selection [66].   

 

Spectral Dynamic Causal Modelling (spDCM) 

The extension of DCM named as spectral DCM aims to model intrinsic dynamics on resting-

state fMRI data, in order to define effective connectivity among populations of coupling 

neurons which contains the observed functional connectivity in the frequency domain [99].   

Spectral DCM, typically, provides a constrained inversion of the stochastic model with the 

parameterization of the spectral density neuronal fluctuations.  Through this process it is 

possible to compare parameters that encode neuronal fluctuations among groups.  

The main notion of spectral DCM is to add a stochastic parameter to model 

endogenous neuronal fluctuations in the ordinary differential equations that were used in 

the standard DCM.  In this way, the equations of motion become stochastic and the 

stochastic model for the resting-state fMRI time-series includes the Langevin form of 

evolution equation (�̇�) and the observation equation (𝑦).  It is worth to be mentioned that 

the observation equation illustrates a static non-linear mapping from the hidden 

physiological states to the observed BOLD activity.  The two types of equation that are 

mentioned are expressed below: 

 

�̇� = 𝑓(𝑧, 𝑢, 𝜃) + 𝑣 ,                                                   (4.42) 

𝑦 = ℎ(𝑧, 𝑢, 𝜑) + 𝑒 ,                                                  (4.43) 

 

where �̇� is the rate in change of the neural states 𝑧 , 𝜃 and 𝜑 are unknown parameters of the 

evolution and observation equation respectively, 𝑣 is the stochastic process (state noise) 

which models the random neuronal fluctuations concerning the resting-state activity and 

𝑢 is the exogenous inputs (that are not presence in resting-state condition).  In a resting-

state experiment, the Langevin equation will be expressed as below: 

 

�̇� = 𝐴𝑧 + 𝐶𝑢 + 𝑢 ,                                                     (4.44) 
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where 𝐴 is the Jacobian, that describes the effective connectivity close to its stationary point 

when fluctuations v are not presented [99]. 

Spectral DCM estimates the time-invariant parameters of their cross spectra.  

Efficiently this is performed with the replacement of the original time series with their 

second-order statistics (cross spectra), which means that instead of estimating time-varying 

hidden states, covariance has been estimated.  Consequently, the definition of covariance of 

the random fluctuations is required.  Thus the observation noise can be expressed as:  

 

𝑔𝑣 (𝜔, 𝜃) = 𝛼𝑣  𝜔
−𝛽𝑣,                                              (4.45) 

𝑔𝑒 (𝜔, 𝜃) = 𝛼𝑒  𝜔
−𝛽𝑒,                                               (4.46) 

 

where {𝛼, 𝛽}  ⊂  𝜃 are the parameters that controls the amplitudes and exponents of the 

spectral density of the neural fluctuations [55]. 

While the three aforementioned methods, SEM, DCM, Granger Causality, are the 

most used and most qualified in the study of effective connectivity in fMRI data; there are 

some other approaches that they are not that common.  Those are described below briefly. 

 

Graphical Causal Models 

For the characterization of the causal structure of a given dataset, Graphical causal models 

have been introduced.  The general concept of that approach is that the causal relations in a 

graph have consequences concerning the conditional independence relations within 

different sets of variables in the graph.  With the term conditional independence is meant 

that two variables are independent only when they conditioned on some other variables.  

Therefore this idea could be described from the point of regression.  According to that, when 

two variables are correlated via a third variable, means that is equivalent to include it as a 

covariate in the statistical model. Thus the third variable functions as regressor that will 

remove the correlation and still let the other variables independent.   

Over the past twenty years, a set of methods that have been developed in the field 

of machine learning has made available to investigate efficiently such graphical structures.  

There are a lot of search algorithms for graph investigation, where the most of them are 

implemented in TETRAD software.  After the identification of the optimal graphs applying 

these graph search approaches, then they can be used as basis on experiments with other 

effective connectivity approaches (SEM, DCM) [66].   
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The combination of the data across multiple subjects is a very challenging stage in a 

method like this.  Although there are obvious solutions, these have the ability to obtain false 

results. As it is mentioned, the independence relations within variables in a given dataset 

may not reveal the relations that present for any of the individuals.  Ramsey et al. 

introduced a method named IMaGES in order to solve this problem.  This method searches 

across multiple subjects for the best fitting graph structure, focusing at each subject in each 

step of the search and then combining the fit across subjects, so as to find the model that 

suits beat across the entire group [92].  

 

Dynamic Bayesian Models 

In order to address dynamic systems modeling, another approach was introduced named as 

Dynamic Bayesian Models.  This approach is a temporal extension of Bayesian networks and 

is included in the group of graphical models [93, 94].  Dynamic Bayesian networks are based 

on a multi-dimensional expression of a random process, in contrast with Bayesian networks 

which is characterized by a cumulative probability distribution in a set of random variables 

that are independent of time [93].   Due to its dynamic features, it has been used in studies 

so as to illustrates the alterations within healthy and control individuals.  Also the 

application of static Bayesian networks could lead to examine problems such as in genetics, 

speech recognition, identification and target tracking, probabilistic expert systems and 

medical diagnostic systems.  Recently dynamic Bayesian models have been applied to 

investigate the genomic regulation [94, 95].  

 

Switching Linear Dynamic System (sLDSf) 

In fMRI, Switching Linear Dynamic system provides infinite variability over time in the 

parameter values of connectivity and also instantaneous connectivity by probabilistically 

combining a small amount of static models regimes [96].  The observation equations that are 

used in sLDSf and are based on the linear convolution model are presented below: 

 

𝑦𝑡 = 𝛽𝛷𝑧𝑡 + 𝐷𝑣𝑡 + 𝜁𝑡 , 𝜁 ~𝑁(0, 𝑅),                               (4.47) 

𝑧𝑡 = [𝑥𝑡 , 𝑥𝑡−𝜏 , 𝑥𝑡−2𝜏 , 𝑥𝑡−3𝜏 , … , 𝑥𝑡−(ℎ−1)𝜏] ,                         (4.48) 

 

where the variable 𝑧𝑡  includes ℎ errorless lagged copies of the signals 𝑥  from 𝑥𝑡 − (ℎ − 1)𝜏  

to 𝑥𝑡 . 
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While the observation equation 𝑦𝑡 describes the instantaneous linear function of 𝑧𝑡  

any additional observation level input 𝑣𝑡  and noise 𝜁𝑡  with a diagonal covariance matrix 

𝑅𝑖𝑗 = 0 for 𝑖 ≠  𝑗.  The priori known set of basic vectors is the matrix  𝛷, which connect the 

possible variability in the hemodynamic impulse response function (hIRF), similar to a 

canonical hemodynamic response and its derivatives with respect to time and dispersion.  

Regionally specific weights for these bases are included in matrix β so as to generate a 

unique hIRF 𝛽𝑖𝛷.  In this way the linear output 𝛽𝑖𝛷 𝑍𝑡
𝑖  is able to convolve every signal with a 

regionally specific hemodynamic response.  In order to achieve the estimation, the sLDSf 

output equations with three basic vectors need three additional parameters per region [97].   

 

Psychophysiological Interactions (PPI) 

The last approach of this category that will be discussed is the Psychophysiological 

interactions and the related technique of psychophysiologocal interactions (ΦPI).  That 

approach is based on extensions to statistical models of factorial designs.  Both of them can 

be considered as models of “contribution”.  Another important issue is that PPIs are on the 

border within functional (FC) and effective (EC) connectivity.  It is already mentioned that FC 

is defined as the temporal correlation within spatially remote neurophysiological events, are 

typically model-free and do not specify a direction of influence [98].  On the other hand, PPIs 

are relied on regression models and also the direction of influence is based on the model 

selection.  As for EC, is defined as the affect that has one neural system to another.  Thus, 

even if PPIs are more related to EC models, because of their simplicity they are very 

restricted models of EC [99].  As observed in every other approach, PPI presents some 

potential problems due to its simplicity.  For example PPI hypothesizes that the fit of 

hemodynamic model is precise.  Thus in the case of misspecification of the model, this could 

result to correlation that reflect activation-induced effects instead of reflecting functional 

connectivity [66].  

4.2.5 Network Analysis and Graph Theory 

In neuroscience, the aim of graph theory is to establish mathematical models of complex 

network functions within the human brain.  The main characteristics of these networks are 

the connections and associations within different regions and subregions of the brain, where 

the combination of their dynamics form a larger single network [60].  The explanation of the 

brain networks can be achieved in micro-scale, meso-scale and last in macro-scale or large-

scale.  But most of the studies use large-scale networks because of some technical 

restrictions and computational requirements [100].   
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In general the approach of graph theory is based on the study of nodes and edges. 

Their relation can be described as 𝐺 =  (𝑉, 𝐸), where 𝑉 characterizes the nodes that are 

connected with edges 𝐸, which describes the interaction within nodes [101].  Due to the 

term of directionality, the graphs usually divided into categories.  The main categories are 

the directed or undirected graphs, while another classification is the weighted or 

unweighted graphs, as shown in Figure 4.7.   As unweighted graph is characterized, when an 

equal weight of 1 in every edge of the graph, while as weighted when there are different 

strengths at every edge.  In the cases of undirected and unweighted graphs  𝐺 =  (𝑉, 𝐸), 

the connectivity patterns could be represented by a 𝑉 × 𝑉 symmetric square matrix, the 

adjacency matrix 𝐴.  When there is an edge within node 𝑖 and 𝑗, the entry of 𝛼𝑖𝑗, that ranges 

between 1 –  𝑉, is 1 and it takes the value of 0 in the reverse situation [100].  

 

 

Figure 4. 7: Different types of graphs: (a) undirected, (b) directed, (c) weighted networks 
[106]. 

 

In brain functional connectivity analysis, the application of graph theory has lead to 

answer a variety of issues that are of interest using information from different graph 

parameters.  Such parameters are the average path length, degree of node, clustering 

coefficient, level of modularity and measures of centrality.  More specifically the path length 

is graph theoretical metrics that represents the level of global communication efficiency of 

the given network.  The shortest path length indicates the smallest number of edges that are 

needed to attach all the nodes together.  Therefore, the characteristic path length of 

node 𝑖 demonstrates the proximity of node 𝑖 to all the other nodes in the network.  The 

simplest measurement of all these is the degree of node.  Typically this measurement 

achieves the quantification of the total number of connections of the node.  An unavoidable 

role in the flow of information plays the node with the higher degree, for a particular 

network.  The clustering coefficient parameter represents the local connectedness of the 
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graph.  Also is the ratio within the number of connections between direct neighbors of node 

𝑖 and the maximum number of possible connections between the neighbors of node 𝑖 [100].   

The notion of modularity is based on the ability of the networks to create couples on 

modular or community structure.  As modules, are described a set of nodes with thick 

connections among them in contrast with the connections along the whole brain network 

which are weak.  The performance of the modularity can be achieved through different 

algorithms, which give the opportunity to comprehend the anatomical or functional 

components [100].  

Graph metrics such as global efficiency and average path length point out the 

integration of the brain networks.  As it is already mentioned, global efficiency tests the 

ability of a brain network to spread information on a global level, while the average path 

length represents the shortest number of edges that are able to connect two nodes in a 

network.  Consequently the segregation of the networks can be described through the terms 

of local efficiency, clustering coefficient and centrality.  Thus local efficiency signifies the 

information flow in a local network (subpart of a whole brain network), while clustering 

coefficient indicates which nodes tend to create clusters.  At last the parameter of centrality 

points out the importance of a node and tests whether the particular node operates as a 

central or leading role in the spread of the information to other nodes in the network [60].  

Another notion that is of interest is the hierarchical networks.  This network is 

composed of hubs that are connected to nodes, which from a different sight are not 

connected to each other.  Basically this means that the value of the parameter clustering 

coefficient is lower in the case where the degree is larger.  The benefits that are observed 

are the better top-down relations within the nodes and minimize of the wiring cost.  The 

weak part concerns of the hubs attacking [102].   

It has to be mentioned that as small world network is characterized the one with 

high value of local and global efficiency and a small characteristic path length [103, 104].  On 

the other hand a large scale network, according to Supekar et al.[60], is characterized the 

one that has short range of connectivity and more supremacy from the part of long range 

functional connectivity [60]. 

While the main focus of the seed-based analysis is the strength of correlation within 

the regions of interest, graph theory examines and measures the topological properties of 

the regions of interest within the whole brain or that network that is related to a particular 

function.  The keys for the representation of brain networks are the integration and 

segregation due to the brain regions that works in such a manner.  So anyone can 
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understand the significance of graph theory but there are some limitations that have to be 

mentioned.  Primarily the human brain consists of neurons and physical elements that have 

differences and so the estimation of the functional networks is very complicated.  Applying 

the graph theory, which is depends on voxels or anatomically –or functionally-defined ROIs, 

it is understandable that it is not quite easy to acquire results.  At last even if the selected 

nodes are the appropriate (no many differences), the complication of the brain networks 

and the unknown pathways make this impossible [105].  

Taking advantage of the classical steps of the preprocessing, that were described in 

this chapter, with a combination of statistical methods we tried to extract brain connectivity 

(functional and effective) from our data.  We demonstrate three different studies, where the 

two of them focus on extracting functional connectivity and the other one focus on 

extracting effective connectivity.  More details about the exact steps that we follow and the 

results that we take are shown in Chapter 5.  
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Chapter 5: Results 

5.1 Imaging protocol 

5.2 Subjects 

5.3 Study 1: Functional connectivity using seed-based analysis 

5.4 Study 2: Functional connectivity using data-driven method 

5.5 Study 3: Effective connectivity using spectral Dynamic Causal Modeling 

 

 

 

 

 

 

 

 

 

5.1 Imaging protocol 

The fMRI data that was used in this thesis was acquired from the OpenNeuro database1 

[108].  MRI was performed on a 1.5 T MR scanner system (Magnetom Avanto, software 

version Syngo MR B17, Siemens, Erlangen-Germany) equipped with a 12-element matrix 

radiofrequency head coil and SQ-engine gradients.  All subjects underwent high resolution 

3D T1-weighted imaging and resting-state fMRI (rsfMRI), the latter with simultaneously 

cardiorespiratory monitoring.   T1-weighted MR images were acquired with an axial high 

resolution 3D sequence (Magnetization Prepared Rapid Gradient Echo, MPRAGE) with 

repetition time (TR) = 1900ms, echo time (TE) = 3.44ms, inversion time (TI) = 1100ms, flip 

angle = 15˚, slice thickness = 0.86mm, field of view (FOV) = 220mm x 220mm, matrix size = 

256 x 256, number of excitations (NEX) = 2.  A fluid attenuated inversion recovery (FLAIR) 

sequence (TR = 9000ms, TE = 88ms, TI = 2500ms, slice thickness = 3mm, FOV = 172.5mm x 

230mm, matrix size = 154 x 256, turbo factor = 16, NEX = 1) was also obtained in the axial 

plane.  For the rsfMRI experiments, they used a T2*- weighted echo-planar imaging (EPI) 

                                                             
1https://openneuro.org/datasets/ds001354/versions/1.0.0  

https://openneuro.org/datasets/ds001354/versions/1.0.0
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sequence (TR = 2130ms, TE = 40ms, flip angle = 90˚, slice thickness = 5mm, FOV = 256mm x 

256mm, matrix size 64 x 64; number of slices = 32; interleaved slice acquisition) exploiting 

the blood-oxygen-level-dependent (BOLD) effect.  Three hundred volumes were acquired for 

a total acquisition time of about 8 minutes and 10 seconds.  The slices were oriented along 

and parallel to the bi-commissural plane and covered the entire brain.  During rsfMRI 

acquisition the subjects were instructed to lie still with their eyes closed and not to think of 

anything particular.  Cushions were used to minimize head motion during the scan. 

5.2 Subjects 

In this thesis fourteen (3 women and 11 men, age 63.7±11.1 years, mean ± standard 

deviation) patients with de-novo PD and fourteen age and gender-matched healthy subjects 

(controls) (3 women and 11 men, age 64.7±9.6 years, mean ± SD), with no history of 

neurological disease and normal neurological examination, take part.  The functional images 

received from MRI are transformed into image *.img and image *.hdr files with the use of 

MATLAB code, while the structural images are transformed into image *.img and image 

*.hdr with the MRIcro application.  After the transformation every subject has 600 functional 

images (300 images in *.img format and the corresponding 300 images in *.hdr format) and 

2 structural images (1 image in *.img and 1 image in *.hdr). 

The following studies have been performed. 

5.3 Study 1: Functional connectivity using seed-based analysis 

The main aim of the first study of this thesis is to extract functional connectivity measures 

using a seed-to-voxel analysis.  This analysis calculates the temporal correlation between 

brain activity of a selected region and all other regions applying a General Linear Model 

approach.  For that reason, CONN functional connectivity toolbox v172is utilized.   

The preprocessing is the first step that has to be done in order to start the analysis.  

The preprocessing pipeline for volume-based analysis, that is used, includes the following 

stages: (1) functional realignment and unwarping (subject motion estimation and 

correction), (2) functional center to (0, 0, 0) coordinates (translation), (3) functional slice 

timing correction, (4) functional outlier detection (ART- based identification of outlier scans 

for scrubbing), (5) functional direct segmentation and normalization (simultaneous 

GM/WM/CSF segmentation and MNI normalization), (6) structural center to (0, 0, 0) 

coordinates (translation), (7) structural segmentation and normalization (simultaneous 

GM/WM/CSF segmentation and MNI normalization), (8) functional smoothing (spatial 

                                                             
2 https://www.nitrc.org/projects/conn 

https://www.nitrc.org/projects/conn
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convolution with Gaussian kernel).  After the preprocessing step, a denoising clean up step is 

followed so as to remove physiological subject motion and other confounding effects from 

BOLD signal. 

The seeds that are selected in seed-to-voxel analysis and ROI-to-ROI analysis are 

different brain networks such as Sensorimotor, Salience and Default Mode Network (DMN).  

Although all these networks are affected by Parkinson’s disease, the DMN is chosen for 

functional connectivity analysis since it is used more often in studies.  DMN includes Medial 

Prefrontal Cortex (MPFC), right and left Lateral Parietal Cortex (LPC) and Posterior Cingulate 

Cortex (PCC). 

Results 

The following tables (Table 5.1 and Table 5.2) present the results of the coordinates of the 

maximum voxel, the size of the cluster, the associated brain areas and their figures from the 

seed-to-voxel analysis.  These tables concern the results from the analysis using the medial 

prefrontal cortex as seed for both of groups (PD and controls).  The tables for the other 

three regions of DMN are stored in Appendix (Table 7.1-Table 7.6).  

 

Table 5. 1: Brain areas that are functionally connected with the medial prefrontal cortex 
(MPFC) concerning PD group. 

MNI coordinates 
of maximum 

voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size 
 p-FDR 

Size 
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[06, 50, -04] 14435 Orbital Medial 
Frontal Gyrus Right 

0.000000 0.000000 0.000000 0.000000 0.000000 

[-08, -50, 30] 5344 Posterior Cingulum 
Left 

0.000000 0.000000 0.000000 0.000032 0.000000 

[-42, -64, 32] 1533 Angular Gyrus Left 0.000000 0.000000 0.000000 0.000318 0.000000 

[64, -18, -16] 1424 Middle Temporal 
Gyrus Right 

0.000000 0.000000 0.000000 0.021562 0.000000 

[48 -58, 26] 1144 Angular Gyrus Right 0.000000 0.000000 0.000000 0.006738 0.000000 
[-62, -20, -12] 770 Middle Temporal 

Gyrus Left 
0.000000 0.000000 0.000000 0.263724 0.000002 

[48, -34, 62] 748 Postcentral Gyrus 
Right 

0.000000 0.000000 0.000000 0.832015 0.000019 

[-44, -40, 58] 684 Postcentral Gyrus 
Left 

0.000000 0.000000 0.000000 0.767841 0.000015 

[-26, 16, -18] 269 Insula Left 0.000573 0.000162 0.000022 0.078735 0.000000 

[10, -50, -40] 244 Cerebellum 9 Right 0.001125 0.000286 0.000043 0.757389 0.000014 

[-02, -16, 06] 213 Thalamus Left 0.002683 0.000620 0.000103 0.420169 0.000004 

[02, 06, 72] 202 Supplementary 
Motor Area Right 

0.003689 0.000782 0.000142 0.858180 0.000022 

[-34, -74, -40] 156 Cerebellum Crus2 
Left 

0.014904 0.002932 0.000578 0.394032 0.000003 

[20, -74, -50] 149 Cerebellum 8 Right 0.018625 0.003409 0.000723 0.698248 0.000011 

[20, -80, -36] 107 Cerebellum Crus2 
Right 

0.075735 0.013328 0.003029 0.905015 0.000029 

[-04, 10, 52] 91 Supplementary 0.132889 0.022623 0.005484 0.505882 0.000005 
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Table 5. 2: Brain areas that are functionally connected with the Medial Prefrontal Cortex 
(MPFC) concerning controls group. 

 

In order to have a visual aspect of the results that will be helpful to understand 

them, ROI-to-ROI results carried out.  The specific type of results display functional 

connectivity results but at a different resolution.  Instead of demonstrating a whole brain 

Motor Area Left 

[28, -26, -12] 87 ParaHippocampal 
Gyrus Right 

0.153188 0.024829 0.006395 0.900756 0.000028 

MNI 
coordinates of 

maximum 
voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size  
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[08, 50, -08] 13555 Orbital Medial 
Frontal Gyrus 

Right 

0.000000 0.000000 0.000000 0.000000 0.000000 

[-10, -54, 24] 5195 Precuneus Left 0.000000 0.000000 0.000000 0.000303 0.000000 

[22,-38, 72] 2442 Postcentral Gyrus 
Right 

0.000000 0.000000 0.000000 0.000335 0.000000 

[50, -66, 32] 1902 Angular Gyrus 
Right 

0.000000 0.000000 0.000000 0.002801 0.000000 

[-52, -66, 26] 1501 Angular Gyrus 
Left 

0.000000 0.000000 0.000000 0.001790 0.000000 

[-62, -34, 40] 1406 Supramarginal 
Gyrus  Left 

0.000000 0.000000 0.000000 0.010132 0.000000 

[60, -02, -24] 1119 Middle Temporal 
Gyrus Right 

0.000000 0.000000 0.000000 0.039505 0.000000 

[-54, -10, -16] 748 Middle Temporal 
Gyrus Left 

0.000000 0.000000 0.000000 0.150799 0.000001 

[-04, -58, -40] 725 Vermis 9 0.000000 0.000000 0.000000 0.001772 0.000000 

[08 ,-86, -40] 599 Cerebellum Crus2 
Right 

0.000000 0.000000 0.000000 0.215302 0.000001 

[-18, -02, -12] 380 Amygdala Left 0.000033 0.000007 0.000001 0.751830 0.000014 

[-50, -50, -18] 272 Inferior Temporal 
Gyrus Left 

0.000502 0.000096 0.000019 0.524980 0.000006 

[-46, 14, -44] 153 Inferior Temporal 
Gyrus Left 

0.015861 0.002816 0.000610 0.330386 0.000002 

[00, 14, 46] 118 Supplementary 
Motor Area Left 

0.050551 0.008484 0.001979 0.603778 0.000008 

[-42, 38, 20] 116 Middle Frontal 
Gyrus Left 

0.054143 0.008497 0.002124 0.901128 0.000028 

[24, -64, 50] 90 Superior Parietal 
Lobule Right 

0.135044 0.020761 0.005536 0.997806 0.000112 

[-16, -86, -40] 79 Cerebellum Crus2 
Left 

0.200356 0.030114 0.008532 0.987653 0.000069 

[34, 30, -18] 77 Orbital Inferior  
Frontal Gyrus 

Right 

0.215251 0.030832 0.009250 0.752090 0.000014 
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connectivity map, as it is common, ROI-to-ROI results present only ROIs that are significantly 

correlated with other ROIs.  As shown in Figure 5.1 and Figure 5.2 the red lines indicate 

which ROIs are significantly correlated with a selected seed, while the blue lines indicate 

significantly negative correlations. 

 

 

Figure 5. 1: Functional connectivity results between ROIs of the MPFC for PD group. 
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Figure 5. 2: Functional connectivity results between ROIs of the MPFC for the controls group. 

 

Also, ROI-to-ROI results allow anyone to see in more detail how nodes of certain 

networks are correlated with other nodes in the brain.  The following figures (Figure 5.3, 

Figure 5.4) demonstrate the more detailed images which are known as connectograms.  

Again the red lines show significant positive correlation between the nodes whereas the 

blue lines show significant negative correlation between them. 

More specifically, the PD group shows greater positive correlation between MPFC 

and PCC and LPC regions, due to the fact that these areas belong to the same network, while 

the negative correlation is observed within MPFC and Dorsolateral Attention Network.  It is 

important to be mentioned that significant correlation is observed within MPFC and Salience 

Network.  As for controls group greater positive correlation is observed within MPFC and LP 

while negative correlation is noticed between MPFC and Dorsolateral Attention and Salience 

Networks. 
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Figure 5. 3: Connectogram using as seed MPFC for PD group. 
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Figure 5. 4: Connectogram using as seed MPFC for controls group. 

 

Discussion 

Comparing the results that are acquired from CONN for the two groups, one can conclude 

the following.  At first the brain regions that are functionally connected with the MPFC are 

pretty similar between PD and controls group, with the size of clusters to be different.  For 

example, grouping in lobes the regions that are functionally connected with MPFC (Table 

5.1, Table 5.2), it is obvious that the same lobes concern all the subjects except from some 

differences.  Specifically, the frontal lobe, parietal lobe, temporal lobe and cerebellum are 

shown in both groups, while insula and diencephalon are shown only in PD.   The brain 

regions that are connected are similar because patients of PD group are in the early stages 

of the disease, so there is not a lot of alteration in brain connections.   

 At first, the activation in dienchephalon and precisely in left thalamus in PD patients 

is an important issue that has to be discussed.  The role of the thalamus is to receive and 

process information from the basal ganglia, limbic system and cerebellum and then to 

transfer the information to the cerebral cortex.  It also plays a noticeable role in complex 
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somatosensory and motor, just like in controlling cognition and emotion.  Although changes 

in thalamus are shown to be related with the symptom of dyskinesia in PD patients, 

according to previous studies, nonmotor symptoms are also related with thalamus [109].  In 

our case, due to the fact that PD patients are in the early stages of the disease, the 

activation in thalamus is related with nonmotor symptoms.  Additionally, insula is a highly 

interconnected region with the basal ganglia and it is related to the sensorimotor 

integration.   

As it is previously noticed, significant correlation observed within MPFC and Salience 

Network.  This finding along with the activation of parahippocampal gyrus, observed only in 

PD group, corresponds to PD and the memory impairment caused by the disease [110]. 

Another finding is the activation in amygdala, only in controls group, which means that the 

same brain region in PD group has been affected by the disease even in the early stages.  

The primary role of amygdala is the processing of memory, emotional responses and 

decision-making. 

It is important to be mentioned that the connections in controls group are stronger 

than in PD group.  Definitely that is caused by the disease.  All the brain regions that are 

referenced on the tables are in accordance with the bibliography findings.  Also all the 

symptoms that are related with the brain activations are definitely nonmotor symptoms, 

since the UPDRS score of our patients is very low. 

5.4 Study 2: Functional connectivity using data-driven method 

The second study of this thesis investigates the functional connectivity by applying a 

different type of method, compared to the previous study, known as data-driven method.  

The Independent Component Analysis (ICA) is used for this study, which is a widely used 

method especially for studies that include resting-state fMRI data.  The GroupICAT of fMRI 

toolbox (GIFT) version 4.0b3 is utilized.  It is important to be mentioned that the ICA study of 

a specific group requires the simultaneous analysis of all data, no matter how many subjects 

are included in that group. 

Before the set up of the ICA analysis, preprocessing of the resting-state fMRI data must 

be done.  For that reason SPM124is used and the steps that are followed are described 

below: 

1. Slice-timing correction 

                                                             
3 https://trendscenter.org/software/gift/ 
4 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 

https://trendscenter.org/software/gift/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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All the raw images are selected and the time that the image was acquired is 

corrected within the slices.  The corrected images have an ‘a’ as prefix. 

2. Realignment (Motion correction) 

All the slice-timing corrected images are selected and realigned according to the 

mean image of 300 functional images.  The name of realigned images has an extra ‘r’ 

as prefix. 

3. Co-registration 

In this step all the functional images are co-registered with the structural image in 

order to maximize the mutual information.  When the co-registration step is done, 

are displayed the voxel-to-voxel affine transformation matrix, the histograms of the 

images with the original orientations and the final orientation as well as the 

registered images (Figure 5.5). 

 

 

Figure 5. 5: The co-registration step of a subject. 

4. Segmentation  

In this step gray and white matter images are produced along with a bias field 

corrected structural image that will be used in the next step. 

5. Normalization 
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All the realigned and re-sliced functional images and the preprocessed structural 

image are normalized to the MNI (Montreal Neurological Institute) space.  The 

images have the ‘w’ as prefix. 

6. Smoothing 

In this step all the normalized images are smoothed with Gaussian kernel of a 

specified width (10mm).  In the last step all the preprocessed images have the prefix 

‘s’. 

The analysis of data via ICA happens simultaneous for all the subjects of a group.  

For that reason, all the 28 subjects must be classified into two groups depending on their 

condition (control or PD patient).  Afterwards the set up of the analysis is followed with the 

selection of the data and the estimation of Independent Components (ICs).  In order to 

eliminate complicated computations, GIFT adopts the use of Principal Component Analysis in 

which the data was reduced into 12 Independent Components for every group separately.  

The algorithm that is used in the dataset is Infomax since it maximizes the transferring 

information from the input to the output of a network, using a non linear function.  Spatial 

maps are reconstructed from the final mixing matrix data, depending on the courses of each 

participant and component.  Due to the fact that number of subjects and the number of 

Independent Components are the same for both of the groups, the number of spatial maps 

is also equal.  More specifically, 168 spatial maps are produced for every group (14 

participants x 12 Independent Components x 1 session = 168 spatial maps).  For every 

subject are recorded the coordinates of maximum voxel according to the z-scores.  Also, the 

components are spatially sorted, that is a way to classify components spatially, using 

maximum voxel criteria.  All these are carried out in group context for both the PD and 

control subjects but also for every subject separately. 

Results 

First, the findings of IC analysis are studied in a group level and then separately for every 

subject.  In group level and specifically in PD group, the maximum z-score is located in voxels 

in pons, supplementary motor area right and in cerebellum crus 1 right.  Similarly, controls 

group showed maximum z-score in voxels in paracentral lobule left, pons and cerebellum 

crus 1 right.  The brain areas that are found to be active on both of the groups are pons, 

cerebellum crus 1 right and left, fusiform gyrus left and precuneus right.  The tables with 

detailed information about the coordinates of maximum voxel and the associated brain 

areas of every group are presented in Appendix (Table 7.7 and Table 7.22). 
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Concerning the findings of each PD subject, the brain areas with the maximum voxel 

values are pons, paracentral lobule left, precuneus left, lingual gyrus right and 

supplementary motor area right.  Also different locations of cerebellum such as cerebellum 

crus 1 right and left and cerebellum 9 left, are included.  The results from every control 

subject present activation in brain areas such as pons, lingual gyrus left and right, 

paracentral lobule left and occipital inferior right.  Areas such as cerebellum crus 1 right and 

left and cerebellum 9 left are also included. The Tables 7.8 - 7.21 concerns each subject from 

controls group, while Tables 7.23 – 7.36 concerns each subject from PD group in the 

Appendix. 

Observing the functional connectivity matrix (Figure 5.6) of the PD group, the 

maximum positive correlation that is demonstrated in dark red colour, is between the 

components 7 [38,-80,-25] and 3 [-26,-84,-30], 10 [-42,-52,55] and 9 [2,-4,75] that 

correspond to the areas of cerebellum crus 1 right, cerebellum crus 1 left, inferior parietal 

lobule left and supplementary motor area right respectively.  Furthermore, between the 

components 11 [2,-76,55] and 2 [34,56,5], 12 [-62,-20,15] and 10 [-42,-52,55] which 

correspond to the areas of precuneus right, middle frontal gyrus right, rolandic operculum 

left and inferior parietal lobule left.  On the contrary, high negative correlations (dark blue 

colour) are observed within the components 7 [38,-80,-25] and 5 [-6,-28,-50], 9 [2,-4,75] and 

6 [34,16,-25] which correspond to the cerebellum crus 1 right, pons, supplementary motor 

area right and superior temporal pole right, respectively.  There is also observed positive 

correlations in some other components with light red colour, such as between the 

components 4 [-50,-60,30] and 1 [2,-72,40], 8 [-38,-80,-15] and 1 [2,-72,40], 11 [2,-76,55] 

and 6 [34,16,-25], 12 [-62,-20,15] and 8 [-38,-80,-15], 12[-62,-20,15] and 9 [2,-4,75].  All the 

previously mentioned components correspond to angular gyrus left, precuneus right, 

fusiform gyrus left, superior temporal pole right, rolandic operculum left, supplementary 

motor area right.  Except from the light red colour, it can be observed the light blue colour 

which concerns negative correlations.  More specifically, negative correlations are observed 

between the components 8 [-38,-80,-15] and 2 [34,56,5], 8[-38,-80,-15] and 3 [-26,-84,-30].  

The associated areas are fusiform gyrus left, middle frontal gyrus right and cerebellum crus 1 

left.   
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Figure 5. 6: Functional connectivity correlation matrix of PD group. 

 

Furthermore, functional connectivity correlation matrix is acquired for the controls 

group, demonstrating the correlations with positive and negative values within the 

components.  Figure 5.7 shows the matrix for controls group. 
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Figure 5. 7: Functional connectivity correlation matrix of controls group. 

 

In order to have a different aspect of the results, the Network Summary tool is used 

from GroupICAT.  That tool organizes all the independent components by network names.  

In this case, the components and precisely the associated brain regions are divided into 

groups depending on which lobes are being involved.  For the PD subjects, the twelve 

components are grouped into seven lobes of the brain as shown below: 

1. Parietal Lobe contains the precuneus right (1, 11), angylar gyrus left (4), inferior 

parietal lobule left (10). 

2. Frontal Lobe contains the middle frontal gyrus right (2) and supplementary motor 

area right (9). 

3. Cerebellum contains the cerebellum crus 1 left and right (3, 7). 

4. Brainstem contains the pons (5). 

5. Temporal Lobe contains the superior temporal pole right (6). 

6. Occipital Lobe contains the fusiform gyrus left (8). 

7. Insula contains the rolandic operculum left (12). 
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For the controls subjects, the twelve components are grouped into six lobes of the brain as 

shows below: 

1. Parietal Lobe contains the precuneus right (6) and superior parietal lobule right (10). 

2. Frontal Lobe contains the orbital inferior frontal gyrus left and right (1, 5), 

paracentral lobule left (9) and olfactory sulcus left (11). 

3. Cerebellum contains the cerebellum crus 1 right and left (3, 4) and cerebellum 6 left 

(7). 

4. Brainstem contains the pons (12). 

5. Occipital Lobe contains fusiform gyrus left (2). 

6. Insula contains the insula right (8). 

From the Network Summary is acquired the functional connectivity correlations matrix, 

as well as a connectogram that shows the correlations within components and regions in 

another way.  Figure 5.8 and Figure 5.9 demonstrate the connectograms for both of groups. 
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Figure 5. 8: Connectogram of the 12 components of PD group. 
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Figure 5. 9: Connectogram of the 12 components of controls group. 

 

In the connectograms there is a coloured circle with the names of independent 

components where components within the same network are shown in the same color.  

Particularly, blue color corresponds to parietal lobe, green color to frontal lobe, pink color to 

cerebellum, orange color to brainstem, purple color to temporal lobe, yellow color to 

occipital lobe and dark blue corresponds to insula (there is only in Figure 5.8).  Also, around 

the circle are thumbnails of spatial maps for every component.  The curves inside the circles 

are known as Bezier curves.  Those curves show the functional connectivity correlations 

within components and have different colors according to their negative or positive 

correlation.  Negative correlation is demonstrated with the blue color while positive 

correlation is demonstrated with red and yellow color. 

In Figure 5.8, the connectogram for PD group, the highest positive correlation is 

observed within parietal and frontal lobe and more specifically within inferior parietal lobule 

left and supplementary motor area right.  While in Figure 5.9 the highest positive correlation 

is observed within occipital lobe and cerebellum and specifically within fusiform gyrus left 

and cerebellum crus 1 right.  Also comparing the two connectograms in controls group there 
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are more positive correlations within components, while in PD group there are positive and 

negative correlations in similar proportion.  It is worth to be mentioned that within the 

components of the same network there are only positive correlations with the negative 

correlations of the connectogram to be within the different networks.  Comparing the 

connectograms with the functional connectivity correlation matrices (Figures 5.6, 5.7) that 

are acquired from ICA analysis the correlations within regions are identified. 

Discussion 

Setting side by side the findings from the analysis, one can understand that most of the 

activated brain regions are regions of the cortex.  From the other side there are areas such 

as middle frontal gyrus and supplementary motor area of the right hemisphere in frontal 

lobe, angular gyrus and inferior parietal of the left hemisphere in parietal lobe, superior 

temporal pole of the right hemisphere in temporal lobe, fusiform gyrus of the left 

hemisphere in occipital lobe and rolandic operculum of the left hemisphere in insula that 

appear only in PD subjects.  This finding leads to the conclusion that these areas are related 

to the disease.  While, a significant activation is observed only in controls group and is the 

activation in olfactory sulcus.  It is important to be referenced that the region of insula is 

activated in both of the groups.  But in controls group the activation is restricted only in the 

region of insula of the right hemisphere while in PD group affects a wider area, the rolandic 

operculum.  Also observing the lobes that are affected in both groups, temporal lobe is the 

one that concerns only PD group.   

Particularly, the existence of activation in insula which is highly interconnected with 

the basal ganglia and other cortical regions including supplementary motor area indicates its 

possible role in sensorimotor integration [107].  Observing the connectogram between 

insula and supplementary motor area there is strong positive correlation, a fact that 

confirms the presence of Parkinson’s disease.  As for angular gyrus has been found to acts as 

a hub region wherein multisensory information is converged and integrated together.  

Specifically, the left angular gyrus that is found in this thesis, has been implicated in speech 

processing with the most common feature of hypophonia in PD [111].  Our PD patients may 

not have experienced the symptom of hypophonia but they will for sure.  Furthermore, the 

activation of temporal lobe leads to the conclusion that there is temporal pole atrophy in 

patients which is an early sign in PD according to previous description of Braak et al. [112].  

As for activation in fusiform gyrus that leads also in brain atrophy.  Fusiform gyrus is an area 

that is involved in the visual network that’s why a lot of PD patients appear visual common 

symptoms such as blurred vision, visuoperceptual impairments and visual hallucinations.  
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Also fysiform gyrus has constantly been found to be involved in the perception of faces and 

body regions since is part of the visuoperceptive ventral stream [113].  That symptom is 

occurred even in the early stages of the disease, just like in our PD group.  The last thing that 

has to be discussed is about the activation in olfactory sulcus, only in controls group.  That 

finding means that olfactory sulcus is affected by the disease in PD group that’s why there is 

no activation in that group.  There is evidence that the disease begin in the peripheral 

autonomic nervous system and/or the olfactory bulb and then spreading through central 

nervous system affecting the lower brainstem structures before involving the substantia 

nigra [17].  Also patients maybe experienced that symptom, the loss of olfaction, even years 

before the diagnosis of the disease.  

All the aforementioned findings agree with the bibliography.  Differences that may 

be occurred between the Study 1 and Study 2 are related with the fact that the Study 1 is 

more focused on one area of the Default Mode Network while the Study 2 is a more general 

approach concerning of Default Mode Network as a whole. 

5.5 Study 3: Effective connectivity using spectral Dynamic Causal Modelling 

The third study of this thesis is about the investigation of effective connectivity using a 

model-based approach, known as Dynamic Causal Modelling (DCM).  More specifically the 

extension of DCM named as spectral DCM is used, in order to model intrinsic dynamics on 

resting-state fMRI data and define effective connectivity [99].  This method is suitable for 

implementation in resting-state fMRI data because models BOLD signal when exogenous 

inputs do not exist. 

The spectral DCM analysis is implemented in both control and Parkinson’s disease 

(PD) groups.  This analysis is performed using DCM12.5 routine implemented in SPM12.  The 

images of all the subjects are preprocessed before this analysis, following the same 

preprocessing procedure that was described previously.  After the preprocessing, four 

regions of interest (ROIs) are selected and the time-series from the selected ROIs are created 

as the residuals of a general linear model (GLM).  The regressors that are part of this model 

are the six rigid body realignment parameters to model the movement correlated effects 

and the signal that is extracted from white matter (WM) and cerebrospinal fluid (CSF) so as 

to be used as confound [99]. 

The ROIs of spectral DCM analysis are the key regions of the Default Mode Network 

(DMN), a brain network that has increased level of involvement in PD.  In general DMN is a 

brain system which mediates internal modes of cognitive activity, showing higher neural 
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activation when someone is at rest [121].  ROIs are defined as spheres with a radius of 8mm 

produced by the previous CONN study. The selected ROIs are shown in Table 5.3. 

Table 5. 3: Selected ROIs for the spectral DCM analysis. 

 ROIs Center of ROI 

1 Medial Prefrontal Cortex (MPFC) [1, 55, -3] 

2 Left Lateral Parietal Cortex (lLPC) [-39, -77, 33] 

3 Right Lateral Parietal Cortex (rLPC) [47, -67, 29] 

4 Posterior Cingulate Cortex (PCC) [1, -61, 38] 

  

After the extraction of the resting-state fMRI time-series from all four ROIs, the 

specification of a fully-connected model which has bi-directional connections between any 

pair of ROIs is performed (Figure 5.10).  In Table 5.4 the effective connectivity parameters of 

the first PD subject are presented, where the matrix elements represent the effective 

influence between regions.  The tables of effective connectivity parameters for the rest of 

the subjects are presented in the Appendix (Table 7.37- Table 7.62). 
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Figure 5. 10: The fully connected model with bi-directional connections between any pair of 
ROIs and effective connectivity parameters for the first PD subject. 

 

Table 5. 4: Effective connectivity parameters of the first PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.1219 0.0972 0.0431 0.1466 

lLPC -0.7871 -0.6943 0.4536 -0.3913 

rLPC -01972 0.4580 0.0966 0.0159 

PCC -0.2266 0.0102 0.4708 0.0300 

 

The next step of this analysis is the selection of a Bayesian Model and the use of 

Fixed Effects Inference Method (FFX) in order to compare the winning model that effectively 

describes and fits to the data.  For that reason, eight different connectivity models are 

specified for both PD and control groups.  More specifically,  a fully connected model, three 
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models where different regions primarily affected the other ones (MPFC, PCC, bilateral 

modulation) and the same models without direct connections between rLPC and lLPC, as 

shown in Figure 5.11 and Figure 5.12 are specified.   

 

 

Figure 5. 11: The investigated models. (A) Models with direct connections between bilateral 
RLP and LLP, left to right: fully connected model (DMN), MPFC, PCC, bilateral modulation. 
(B)Models with no direct connections between RLP and LLP. Double arrows correspond to 

mutual connections [114]. 

 

Figure 5. 12: The desirable specification of endogenous (fixed) connections for the model 
comparison. 

Bayesian Model Selection finds that the fully connected model is the best at the 

group level.  Moreover, this model is the best one for eight out of thirteen PD subjects and 

ten out of thirteen control subjects.  The winning model of the first PD subject is shown in 

Figure 5.13. 
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Figure 5. 13: The winning model is the first one using Fixed Effects Inference Method (FFX). 
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Chapter 6: Conclusions 

6.1 Discussion 

6.2 Limitations 

6.3 Future work  

 

 

 

 

 

 

 

 

 

6.1 Discussion 

Parkinson’s disease (PD) is the second most common age related neurodegenerative 

disorder after Alzheimer’s disease.  It is a progressive disorder that is characterized by motor 

symptoms, rigidity, tremor and bradykinesia.  Nowadays it is well known that except from 

the common motor symptoms of the disease there are non-motor symptoms that occur in 

the early stages or even years before the diagnosis of the disease.  Although the significant 

progress that has been made with the clarification of its pathophysiology, the variability of 

symptoms along with the still unknown etiology facilitates the disease an important issue for 

more investigation (Chapter 1).   

MRI-based studies have been frequently occurred so as to better understand the 

disease and its alterations within the different stages and within different group of subjects.  

A modern application known as fMRI has been used in order to find the location of activated 

brain regions when subjects are at resting-state or in task condition, depending on the field 

of investigation (Chapter 2).  There are a lot of studies for both conditions, task-based and 

resting-state concerning the analysis of brain imaging in Parkinson’s disease (Chapter 3).  

After this process, the acquisition of fMRI images, patterns of connected and disconnected 

brain regions can be acquired applying appropriate statistical analyses (preprocessing and 
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brain connectivity methods) that will be empathized with the differences within healthy and 

patient subjects or within subjects of the same group (Chapter 4). 

In this thesis resting-state functional MRI (rs-fMRI) data from drug naïve PD patients 

is used in order to measure functional connectivity in spatially distinctive brain regions and 

compared them with the patterns of healthy subjects respectively.  The number of 

participants is 28, 14 PD subjects and 14 healthy subjects and the investigation focuses on 

the Default Mode Network.  So as to measure functional connectivity two different 

approaches are applied.  The first is a seed-based approach utilized via CONN toolbox where 

the results that provide are more specific due to the selection of only one seed (region) for 

investigation.  While the second is a data-driven method, using ICA, which is a more general 

approach and gives better visualization of the brain.  Differences observed within the two 

approaches are occurred due to the more general aspect and more pointed aspect of them.  

In general regions such as temporal pole, angular gyrus, insula, supplementary motor area 

and fusiform gyrus occurred in PD patients and consequently are related with the disease.  

Except from the aforementioned studies a third study carried out in order to investigate the 

effective connectivity in the same data.  In this study the extension of DCM, named as 

spectral DCM, is used where compares 8 different models between healthy and PD subjects 

so as to find the most appropriate to describe the data.  It is found that the Default Mode 

Network is the one (Chapter 5). 

As it is already mentioned, in this work, the description of PD from the perspective 

of brain connectivity using fMRI data and applying appropriate analysis methods is 

presented.  Although the use of classical methods such as ICA and spectral DCM, as a lot of 

researchers, the way that the results (connectograms) are presented and the significant 

conclusions in such early stages of PD subjects, maybe can help the investigation in this field.  

The analysis of brain connectivity in patients with PD and the comparison with the brain 

connectivity of controls subjects reveal that, even at the onset of the disease, the alteration 

of brain connectivity can provide significant information to the experts for the disease 

effects to the patient and its efficient management.  The observations become even more 

important since do not concern a specific brain region but a network of regions, which is the 

innovation of this work.  A lot of previous studies focus on a particular symptom such as 

freezing of gait (Tessitore et al.[50]) or apathy (Baggio et al.[52]) something that helps to 

understand that symptom but the investigation is restricted. 
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6.2 Limitations 

The methods that are applied in the current thesis give, all of them, reliable results 

considering functional and effective connectivity patterns.  Because of the fact that the 

number of the participants is restricted further studies must be done so as to make more 

robust results about the early stages of the disease.  Also PD patients were at very early 

stages of the disease so we could not make a comparison between them, but only with 

healthy subjects, because of the similar experience of the disease.  Another limitation is the 

fact that the results are related only with one network that has been in our interest.  

Furthermore, the complexity of the effective connectivity models and the large number of 

areas and their combinations that are necessary in order to construct each model, render 

the determination of the best model a not simple matter. 

6.3 Future work 

The target of this thesis was not to prove that there is only one method to describe the PD 

data, as there is no such thing, but to present both advantages and disadvantages of each 

method. The selection of the most appropriate method depends on the researcher’s 

motivation and the aim of each study.  Although PD’s pathophysiology has been clarified, 

the variability of symptoms and the still unknown etiology facilitates the disease an 

important issue for more investigation, especially in the early stages where the symptoms 

can be controlled. 
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Appendix: Tables with results from the three studies 
Table 7. 1: Brain areas that are functionally connected with the left lateral parietal cortex  
(lLPC) concerning PD group. 

MNI coordinates 
of maximum voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size  
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[-06, -54, 46] 5435 Precuneus Left 0.000000 0.000000 0.000000 0.010201 0.000000 

[24, 36, 44] 3518 Superior Frontal 
Gyrus Right 

0.000000 0.000000 0.000000 0.391603 0.000003 

[-40, -70, 28] 3356 Occipital Middle 
Left 

0.000000 0.000000 0.000000 0.000008 0.000000 

[40, -58, 26] 2556 Angular Gyrus 
Right 

0.000000 0.000000 0.000000 0.005809 0.000000 

[54, -08, -16] 248 Middle Temporal 
Gyrus Right 

0.000721 0.000294 0.000026 0.989613 0.000068 

[00, -80, -24] 235 Cerebellum Crus2 
Left 

0.001046 0.000356 0.000038 0.553290 0.000006 

[30, -38, -14] 227 Fusiform Gyrus 
Right 

0.001319 0.000385 0.000048 0.320430 0.000002 

[-22, -12, -22] 142 Hippocampus Left 0.018878 0.004863 0.000695 0.518074 0.000005 

[-58, -56, 00] 121 Middle Temporal 
Gyrus Left 

0.039000 0.009023 0.001450 0.991725 0.000073 

[-60, -06, -22] 93 Middle Temporal 
Gyrus Left 

0.107645 0.023250 0.004152 0.983103 0.000058 

Table 7. 2: Brain areas that are functionally connected with the right lateral parietal cortex 
(rLPC) concerning PD group. 

MNI coordinates 
of maximum 

voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size 
 p-FDR 

Size 
 p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[-04, 66, 06] 9295 Superior Frontal 
Medial Gyrus Left 

0.000000 0.000000 0.000000 0.005160 0.000000 

[06, -52, 14] 6768 Precuneus Right 0.000000 0.000000 0.000000 0.002127 0.000000 
[46, -60, 22] 4319 Middle Temporal 

Gyrus Right 
0.000000 0.000000 0.000000 0.000000 0.000000 

[-40, -70, 32] 2944 Middle Occipital 
Gyrus Left 

0.000000 0.000000 0.000000 0.008115 0.000000 

[-56, -20, -30] 815 Inferior Temporal 
Gyrus Left 

0.000000 0.000000 0.000000 0.230909 0.000001 

[54, -02, -28] 412 Postcentral Gyrus 
Right 

0.000011 0.000005 0.000000 0.875585 0.000023 

[66, -36, -10] 351 Middle Temporal 
Gyrus Right 

0.000051 0.000018 0.000002 0.533846 0.000006 

[28, -32, -18] 308 Fusiform Gyrus 
Right 

0.000153 0.000048 0.000006 0.184688 0.000001 

[08, 12, -10] 257 Caudate Nucleus 
Right 

0.000603 0.000168 0.000022 0.666477 0.000009 

[-02, 00, 68] 241 Supplementary 
Motor Area Left 

0.000944 0.000237 0.000035 0.983325 0.000059 

[44, 16, -34] 175 Temporal Pole 
Middle Right 

0.006766 0.001547 0.000250 0.886422 0.000024 

[-54, 24, 34] 141 Inferior Frontal 
Gyrus Operculum 

Left 

0.020436 0.004314 0.000761 0.188570 0.000001 

[-06, -50, -50] 129 Cerebellum 9 Left 0.030736 0.006021 0.001151 0.754529 0.000013 
[34, 38, -10] 122 Inferior Frontal 

Gyrus Orbital Right 
0.039180 0.007158 0.001474 0.732440 0.000012 

[54, 12, 00] 107 Rolandic Operculum 
Right 

0.066674 0.011533 0.002544 0.902822 0.000027 

[26, -22, 76] 91 Precentral Gyrus 0.119422 0.019928 0.004689 0.020545 0.000000 
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Right 

[-62, -52, 02] 90 Middle Temporal 
Gyrus Left 

0.259696 0.044346 0.011086 0.997486 0.000103 

Table 7. 3: Brain areas that are functionally connected with the posterior cingulate cortex 
(PCC) concerning PD group. 

MNI coordinates 
of maximum voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size  
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[00, -68, 48] 20026 Precuneus Left 0.000000 0.000000 0.000000 0.000000 0.000000 
[12, 50, -14] 3808 Orbital Superior 

Frontal Gyrus 
Right 

0.000000 0.000000 0.000000 0.030009 0.000000 

[26, 26, 40] 960 Middle Frontal 
Gyrus Right 

0.000000 0.000000 0.000000 0.015087 0.000000 

[-24, 30, 42] 926 Middle Frontal 
Gyrus Left 

0.000000 0.000000 0.000000 0.321283 0.000002 

[04, -54, -38] 533 Vermis 9 0.000001 0.000000 0.000000 0.335579 0.000002 

[62, -02, -18] 365 Middle Temporal 
Gyrus Right 

0.000040 0.000018 0.000001 0.031671 0.000000 

[52, 12, -02] 345 Superior Temporal 
Pole Right 

0.000065 0.000025 0.000002 0.797966 0.000016 

[08, 16, -10] 285 Caudate Right 0.000307 0.000103 0.000011 0.739710 0.000013 

[-64, -04, -20] 226 Middle Temporal 
Gyrus Left 

0.001565 0.000468 0.000058 0.986849 0.000066 

[14, -36, -52] 207 Cerebellum 8 
Right 

0.002722 0.000733 0.000102 0.724293 0.000012 

[-32, -36, -40] 131 Cerebellum 7b 
Left 

0.030090 0.007468 0.001141 0.328555 0.000002 

[28, -16, 76] 109 Precentral Gyrus 
Right 

0.064577 0.014957 0.002493 0.003078 0.000000 

[46, -08, 62] 103 Precentral Gyrus 
Right 

0.079974 0.017239 0.003113 0.962732 0.000044 

[50, 20, -32] 79 Middle Temporal 
Pole Right 

0.191409 0.040803 0.007934 0.944952 0.000037 

[-32, -90, -24] 73 Cerebellum Crus1 
Left 

0.238366 0.048807 0.010168 0.903035 0.000027 

Table 7. 4: Brain areas that are functionally connected with the left lateral parietal cortex 
(lLPC) concerning controls group. 

MNI coordinates 
of maximum 

voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size 
 p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[08, 38, 10] 10488 Anterior Cingulum 
Right 

0.000000 0.000000 0.000000 0.000150 0.000000 

[-38, -76, 32] 9418 Middle Occipital 
Gyrus Left 

0.000000 0.000000 0.000000 0.000000 0.000000 

[40, -70, 28] 2959 Middle Occipital 
Gyrus  Right 

0.000000 0.000000 0.000000 0.000275 0.000000 

[26, -40, 56] 867 Postcentral Gyrus 
Right 

0.000000 0.000000 0.000000 0.022749 0.000000 

[54, -04, -18] 634 Middle Temporal 
Gyrus Right 

0.000000 0.000000 0.000000 0.396330 0.000003 

[64, -28, 26] 603 SupraMarginal 
Gyrus Right 

0.000000 0.000000 0.000000 0.749607 0.000012 

[38, 10, 02] 513 Insula Right 0.000001 0.000000 0.000000 0.109982 0.000000 

[06, -52, -50] 391 Cerebelum 9 Right 0.000012 0.000004 0.000000 0.610574 0.000007 

[-26, -34, -14] 310 Fusiform Gyrus Left 0.000102 0.000028 0.000004 0.217615 0.000001 

[16, -02, 74] 282 Superior Frontal 
Gyrus Right 

0.000219 0.000054 0.000008 0.487510 0.000004 
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Table 7. 5: Brain areas that are functionally connected with right lateral parietal cortex 
(rLPC) concerning controls group. 

MNI coordinates 
of maximum 

voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size  
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[-06, 48, -06] 14663 Orbital Medial 
Frontal Gyrus Left 

0.000000 0.000000 0.000000 0.000037 0.000000 

[-02, -56, 20] 6969 Precuneus Left 0.000000 0.000000 0.000000 0.000003 0.000000 
[48, -66, 28] 4074 Middle Occipital 

Gyrus Right 
0.000000 0.000000 0.000000 0.000000 0.000000 

[-46, -62, 28] 3164 Angular Gyrus Left 0.000000 0.000000 0.000000 0.000358 0.000000 

[58, -04, -28] 1928 Inferior Temporal 
Gyrus Right 

0.000000 0.000000 0.000000 0.032217 0.000000 

[-54, -08, -20] 1396 Middle Temporal 
Gyrus Left 

0.000000 0.000000 0.000000 0.007813 0.000000 

[36, -28, 72] 1108 Postcentral Gyrus 
Right 

0.000000 0.000000 0.000000 0.009177 0.000000 

[00, -56, -48] 940 Cerebellum 9 Right 0.000000 0.000000 0.000000 0.284212 0.000000 

[-16, -88, -44] 700 Cerebellum Crus 2 
Left 

0.000000 0.000000 0.000000 0.308297 0.000002 

[30, -70, -20] 332 Cerebellum 6 Right 0.000060 0.000016 0.000002 0.584110 0.000006 

[56, 10, 04] 313 Rolandic 
Operculum Right 

0.000100 0.000024 0.000004 0.855124 0.000019 

[56, -28, 28] 228 Supramarginal 
Gyrus Right 

0.001089 0.000238 0.000039 0.613558 0.000007 

[34, -80, -38] 173 Cerebelum Crus 2 
Right 

0.005994 0.001214 0.000213 0.951680 0.000037 

[20, -44, 50] 147 Inferior Parietal 
Gyrus Right 

0.014242 0.002599 0.000509 0.776180 0.000014 

[-58, 12, -02] 146 Superior Temporal 
Pole Left 

0.014737 0.002599 0.000527 0.989452 0.000065 

[-24, -32, -24] 136 Cerebellum 4_5 
Left 

0.020822 0.003454 0.000747 0.259327 0.000001 

[-36, -48, 64] 110 Superior Parietal 
Lobule Left 

0.052937 0.008402 0.001930 0.963866 0.000042 

[-50, -36, 52] 94 Inferior Parietal 
Lobule Left 

0.096328 0.014778 0.003595 0.979886 0.000053 

[10, -86, -38] 87 Cerebelum Crus 2 0.125779 0.018580 0.004771 0.262577 0.000002 

[46, -58, -08] 273 Inferior Temporal 
Gyrus Right 

0.000282 0.000063 0.000010 0.558913 0.000006 

[-60, -22, -12] 222 Middle Temporal 
Gyrus Left 

0.001243 0.000243 0.000044 0.995353 0.000082 

[-40, -82, -24] 221 Cerebellum Crus 1 
Left 

0.001281 0.000243 0.000045 0.793998 0.000014 

[10, -80, -42] 195 Cerebellum Crus 2 
Right 

0.002852 0.000503 0.000101 0.953114 0.000037 

[28, -34, -16] 180 Fusiform Gyrus 
Right 

0.004597 0.000757 0.000162 0.022199 0.000000 

[-28, -40, 70] 152 Postcentral Gyrus 
Left 

0.011612 0.001800 0.000411 0.924922 0.000029 

[-34, 34, -14] 147 Orbital  Inferior 
Frontal Gyrus Left 

0.013775 0.002011 0.000488 0.014812 0.000000 

[-30, -72, 08] 127 Middle Occipital 
Gyrus Left 

0.027771 0.003857 0.000992 0.213919 0.000001 

[68, -34, -06] 123 Middle Temporal 
Gyrus Right 

0.032066 0.004228 0.001148 0.993264 0.000074 

[32, -76, -44] 105 Cerebelum Crus 2 
Right 

0.062170 0.007911 0.002260 0.999711 0.000151 

[28, 32, -12] 87 Orbital  Inferior 
Frontal Gyrus Right 

0.123292 0.015446 0.004634 0.167578 0.000001 
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Right 

[00, -04, 56] 71 Supplementary 
Motor Area Left 

0.232499 0.034747 0.009391 0.596486 0.000007 

Table 7. 6: Brain areas that are functionally connected with posterior cingulate cortex (PCC) 
concerning controls group. 

MNI coordinates 
of maximum 

voxel 

Cluster 
Size 

(voxels) 

Brain areas Size  
p-FWE 

Size  
p-FDR 

Size  
p-unc 

Peak  
p-FWE 

Peak  
p-unc 

[-06, -62, 34] 22820 Precuneus Left 0.000000 0.000000 0.000000 0.000000 0.000000 

[22, 30, 44] 8505 Middle Frontal 
Gyrus Right 

0.000000 0.000000 0.000000 0.000135 0.000000 

[-46, 32, 04] 1625 Triangularis Inferior 
Frontal Gyrus Left 

0.000000 0.000000 0.000000 0.023036 0.000000 

[-24, 26, 44] 927 Middle Frontal 
Gyrus Left 

0.000000 0.000000 0.000000 0.094606 0.000000 

[08, -54, -50] 510 Cerebellum 9 Right 0.000002 0.000001 0.000000 0.408313 0.000003 

[60, 18, 04] 444 Operculum Inferior 
Frontal Gyrus Right 

0.000007 0.000002 0.000000 0.926193 0.000032 

[-50, -42, -38] 346 Cerebellum Crus 1 
Left 

0.000070 0.000020 0.000003 0.665179 0.000010 

[62, -04, -28] 295 Middle Temporal 
Gyrus Right 

0.000257 0.000064 0.000010 0.850793 0.000021 

[-68, -06, -16] 271 Middle Temporal 
Gyrus Left 

0.000485 0.000108 0.000018 0.011764 0.000000 

[16, -74, -54] 190 Cerebellum 8 Right 0.004822 0.000969 0.000183 0.641107 0.000009 
[-04, 10, 74] 126 Supplementary 

Motor Area Left 
0.037280 0.006921 0.001436 0.066991 0.000000 

Table 7. 7: The brain areas that show activation in controls group. 

Component Maximum Voxel Brain areas z-score 

1 [-50,28,-5] Orbital Inferior Frontal Gyrus Left 5.6455 

2 [-34,-80,-15] Fusiform Gyrus Left 5.1936 
3 [30,-84,-20] Cerebellum Crus 1 Right 11.1809 

4 [-34,-84,-25] Cerebellum Crus1 Left 7.353 

5 [34,12,-20] Orbital Inferior Frontal Gyrus Right 7.6982 

6 [2,-52,20] Precuneus Right 6.3801 

7 [-26,-68,-20] Cerebellum 6 Left 4.2253 

8 [50,16,-5] Insula Right 6.4867 

9 [-2,-28,80] Paracentral Lobule Left 8.767 
10 [30,-68,55] Superior Parietal Lobule Right 6.4147 

11 [-2,20,-10] Olfactory Sulcus Left 3.6483 

12 [6,-28,-50] Pons  13.1346 

Table 7. 8: The brain areas that show activation in the first control subject. 

Component Maximum Voxel Brain areas z-score 

1 [-42,-64,40] Angular Gyrus Left 6.0857 
2 [14,-88,-15] Cerebellum Crus1 Right 10.8579 

3 [22,-8,-15] Lingual Gyrus Right 20.9321 

4 [2,28,64] Superior Medial Frontal Gyrus Right 7.2633 

5 [2,-44,-30] Vermis 10 6.8355 

6 [2,-48,65] Precuneus Right 5.5434 

7 [-42,-64,-15] Fusiform Gyrus Left 5.9079 

8 [30,-84,-15] Inferior Occipital Gyrus Right 10.3593 
9 [-2,-24,80] Paracentral Lobule Left 7.7172 

10 [34,-68,55] Inferior Parietal Lobule Right 6.7349 

11 [2,-64,5] Lingual Gyrus Right 4.944 

12 [6,-28,-50] Pons 11.0658 

Table 7. 9: The brain areas that show activation in the second control subject. 
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Component Maximum Voxel Brain areas z-score 

1 [2,-28,-50] Pons 12.484 

2 [2,32,60] Superior Medial Frontal Gyrus Right 6.8094 
3 [6,-28,-45] Pons 4.1712 

4 [-46,-80,-10] Inferior Occipital Gyrus Left 3.8874 

5 [14,-56,15] Precuneus Right 5.4139 

6 [46,-56,50] Inferior Parietal Lobule Right 5.9069 

7 [-34,-84,-20] Cerebellum Crus 1 Left 6.9314 

8 [30,12,-20] Superior Temporal Pole Right 7.6346 

9 [42,-76,-15] Inferior Occipital Gyrus Right 10.7943 
10 [-38,-88,10] Middle Occipital Gyrus Left 6.4816 

11  [2,32,60] Medial Superior Frontal Gyrus  Right 6.7136 

12 [-34,-84,-20] Cerebellum Crus1 Left 6.5204 

Table 7. 10: The brain areas that show activation in the third control subject. 

Component Maximum Voxel Brain areas z-score 

1 [-2,-40,75] Paracentral Lobule Left 13.13 
2 [22,-68,60] Superior Parietal Lobule Right 6.5719 

3 [2,-80,45] Cuneus Right 5.3964 

4 [2,-52,15] Precuneus Right 6.2982 

5 [50,20,-5] Orbital Inferior Frontal Gyrus Right 6.2131 

6 [-34,-64,55] Superior Parietal Lobule Left 6.863 

7 [54,-56,-15] Inferior Temporal Gyrus Right 
 

4.9852 

8 [-34,12,-25] Superior Temporal Pole Left 10.5653 

9 [14,-28,-40] Pons 6.4223 

10 [-50,-64,-25] Cerebellum Crus1 Left 11.8693 

11 [2,28,65] Medial Superior Frontal Right 6.2343 

12 [14,-92,-10] Lingual Gyrus Right 6.7896 

Table 7. 11: The brain areas that show activation in the fourth control subject. 

Component Maximum voxel Brain areas z-score 

3 [2,-16,80] Supplementary Motor Area Right 5.7107 

4 [-38,-80,-15] Fusiform Gyrus Left 12.9052 

5 [-22,56,-5] Orbital Superior Frontal Gyrus Left 6.5406 

6 [34,16,-25] Superior Temporal Pole Right 12.2051 

7 [-6,-32,-50] Pons 10.9364 

9 [-42,40,-15] Orbital Inferior Frontal Gyrus Left 7.156 
10 [-38,-80,-20] Cerebellum Crus 1 Left 10.7458 

12 [-30,64,10] Superior Frontal Gyrus Left 4.807 

1,2,8,11 [30,-88,-15] Inferior Occipital Gyrus Right 7.8879, 
13.6128, 
14.7652, 
10.7718 

Table 7. 12: The brain areas that show activation in the fifth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [-26,-88,-25] Cerebellum Crus 1 Left 8.2146 

2 [26,52,40] Superior Frontal Gyrus Right 4.87 

3 [-26,-88,-20] Cerebellum Crus 1 Left 7.0427 
4 [-62, -52, -5] Middle Temporal Gyrus Left 5.3193 

5 [-42,-72,30] Middle Occipital Gyrus Left 8.0297 

6 [-10,-88,-20] Cerebellum Crus 1 Left 9.6162 

7 [2,-36,75] Paracentral Lobule Right 5.9147 

8 [46,-68,-40] Cerebellum Crus 2 Right 5.9925 

9 [-38,-80,-30] Cerebellum Crus 1 Left 7.6974 

10 [-10,-28,-45] Pons 13.6901 
11 [-2,-68,60] Precuneus Left 5.9954 

12 [-6,-88,30] Cuneus Left 7.1656 

Table 7. 13: The brain areas that show activation in the sixth control subject. 
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Component Maximum Voxel Brain areas z-score 

1 [2, -80, 45] Cuneus Right  8.9546 

2 [18, -92, -15] Lingual Gyrus Right 9.4551 
3,10,11 [-6, 0, -15] Amygdala Left 9.9485, 

8.0716, 
8.1834 

4,6 [-22, -92, -15] Lingual Gyrus Left    10.5072, 
10.5165 

5 [30, 8, -20] Superior Temporal Pole Right 13.8152 

7 [10, -80, 50] Superior Parietal Lobule Right  7.5098 

8 [2, -88, 35] Cuneus Left 11.6371 

9 [2, -16, 80] Supplementary Motor Area Right 6.6672 

12 [26, -88, -20] Cerebellum Crus 1 Right 19.2961 

Table 7. 14: The brain areas that show activation in the seventh control subject. 

Component Maximum Voxel Brain areas z-score 

1 [2, -68, 25]               Cuneus Left 6.2332 

2 [-2, 52, -15]            Rectus Left 6.3714 

3 [-6, -88, -15]   Lingual Gyrus Left 12.3827 

4 [-6, -32, -50]    Pons   10.5271 

5,7 [-38, -76, -25] Cerebellum Crus 1 Left 11.041, 
9.8098 

6 [-34, -44, -40]          Cerebellum 7b Left   6.0203 

8 [38, -60, 55] Superior Parietal Lobule Right 6.848 

9 [54, 12, 0] Rolandic Opercular Right 6.744 

10 [-50, 20, 0]             Triangularis Inferior Frontal Gyrus Left 4.8746 

11 [2, 52, -15]               Rectus Right 5.5613 

12 [42, 12, -15]             Superior Temporal Pole Right 11.4382 

Table 7. 15: The brain areas that show activation in the eighth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [-18, -88, -20]         Cerebellum Crus 1 Left   12.4378 

2 [-26, -84, -20]   Cerebellum Crus 1 Left 10.8847 

3,8 [-26, -84, -25]       Cerebellum Crus 1 Left 16.0534, 
16.3754 

4   [-6, -88, -15]            
  

Lingual Gyrus Left 6.2778 

5 [-30, -84, -25]      Cerebellum Crus 1 Left   23.3432 

6,9   [-50, -64, -20]         
  

Cerebellum Crus 1 Left    14.42, 
12.4522 

7  [26, -88, -20]            
  

Cerebellum Crus 1 Left 8.3776 

10 [-14, -28, -40]           Pons 11.8624 

11 [30, -84, -20]          Cerebellum Crus 1 Right   11.6284 

12 [-34, -80, -20]                Cerebellum Crus 1 Left    15.7548 

*The observed brain areas are similar because the maximum voxels are in nearby 
coordinates. 

Table 7. 16: The brain areas that show activation in the ninth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [-30, -72, 45]              Inferior Parietal Lobule Left 6.0497 

2 [-46, 20, 35]               Opercular Inferior Frontal Gyrus Left 5.8241 

3      [22, -28, 75]          Precentral Gyrus Right 7.0765 

4 [38, -12, 65]              Precentral Gyrus Right 3.7034 

5     [38, -76, -20] Cerebellum Crus 1 Right      8.045 

6 [-34, -72, -45]           Cerebellum Crus 2 Left   5.5662 
7 [54, 16, 0]              Opercular Inferior Frontal Gyrus Right 

 
6.0348 

8 [-38, -72, 40]              Middle Occipital Gyrus Left 6.6686 
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9     [6, -28, -50] Pons 14.9 

10     [-30, -88, -15]        Lingual  Gyrus Left 8.9033 

11     [-30, -88, -20]     Cerebellum Crus 1 Left 12.3408 
12   [-6, -96, 0]         Calcarine Cortex Left 9.7576 

Table 7. 17: The brain areas that shown activation in the tenth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [38, 16, -20]               Superior Temporal Pole Right 8.2588 

2 [-2, -28, 80]         Paracentral Lobule Left 9.3751 

3 [2, -76, 0]                  Lingual  Gyrus Right 4.9975 
4  [38, -80, -20]         

  
Cerebellum Crus 1 Right     14.4844 

5 [50, -60, 30]              Angular Gyrus Right 7.1468 

6 [30, -84, -25]             Cerebellum Crus 1 Right    10.2988 

7 [-42, -76, -25]           Cerebellum Crus 1 Left 7.2689 

8  [42, -68, -20]              Cerebellum Crus 1 Right  5.7195 

9 [-10, -36, -50]           
  

 Cerebellum 9 Left 14.9744 

10 [30, -68, 50]             Superior Parietal Lobule Right 7.8565 

11 [-38, -80, -25]            Cerebellum Crus 1 Left 6.9109 

12 [58, 8, -5] Superior Temporal Pole Right 8.5864 

Table 7. 18: The brain areas that show activation in the eleventh control subject. 

Component Maximum Voxel        Brain areas z-score 

1,3,4,5 [38, -80, -20]         Cerebellum Crus1 Right    8.412, 
10.1758, 
9.9593, 
8.7215 

2      [14, -88, -20]         Cerebellum Crus1 Right   13.5994 

6          [-6, -52, 65]          Precuneus Left 9.7947 

7 [-46, -72, -20]             
  

Cerebellum Crus1 Left 4.0231 

8 [-34, -84, -25]      Cerebellum Crus1 Left    13.4967 

9           [-2, -24, 80]             Paracentral Lobule Left   7.4252 

10 [-6, -52, 65]               Precuneus Left 5.5003 
11      [-34, -84, -20]     Cerebellum Crus1 Left    5.9915 

12 [-2, 0, 75]                Supplementary Motor Area Left 10.5984 

Table 7. 19: The brain areas that shown activation in twelfth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [2, -28, -50]    Pons 21.2358 

2 [26, -88, -25] Cerebellum Crus 1 Right   12.3434 
3 [-18, -88, -20] Cerebellum Crus 1 Left 5.7887 

4 [22, -68, 60] Superior Parietal Lobule Right 9.0536 

5 [2, -52, 15] Precuneus Right 7.6552 

6 [2, -68, 0] Lingual Gyrus Right 7.058 

7 [10, -84, 40] Cuneus Right 7.4908 

8 [2, 40, 55] Medial Superior Frontal Gyrus Right 9.0917 

9 [54, -56, -30] Cerebellum Crus 1 Right 7.6655 
10 [2, -44, 5] Vermis 4_5 7.5728 

11 [2, -76, -5] Lingual Gyrus Right 6.248 

12 [-2, -40, 75] Paracentral Lobule Left    11.0513 

Table 7. 20: The brain areas that show activation in thirteenth control subject. 

Component Maximum Voxel Brain areas z-score 

1 [6, -28, -50] Pons 15.0238 
2 [54, 8, 0] Superior Temporal Pole Right   5.0793 

3 [18, -28, -20] Cerebellum 3 Right   5.0199 

4 [30, 64, 15] Superior Frontal Gyrus Right     4.6606 

5 [-2, -72, 35] Cuneus Left   6.1981 
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6 [10, -16, 80] Precentral Gyrus Right 7.1482 

7 [-38, -76, -25] Cerebellum Crus 1 Left 9.8994 

8 [-6, -88, -15] Lingual Gyrus Left 6.0158 
9 [18, 8, -20] ParaHippocampal Gyrus Right 8.4571 

10 [-54, -56, 30] Angular Gyrus Left 5.3793 

11 [22, -68, 60] Superior Parietal Lobule Right    7.8948 

12 [-30, -84, -25] Cerebellum Crus 1 Left     4.3646 

Table 7. 21: The brain areas that show activation in the fourteenth control subject. 

Component Maximum Voxel Brain areas z-score 
1 [2, -20, 0]            Thalamus Right 8.6635 

2 [-6, -32, -50]     Pons 14.6121 

3 [18, -76, 55]               Superior Parietal Lobule Right 10.2975 

4 [26, -92, -15]          Lingual Gyrus Right 7.2467 

5,8,10 [-14, -32, -45]            
  

Cerebellum 10 Left 8.7392, 
10.0838, 
6.8709 

6 [54, -56, -25]        Inferior Temporal Gyrus Right   5.9593 

7 [18, -92, -15]     Lingual Gyrus Right 12.1407 

9  [-6, 68, 15]               Medial Superior Frontal Gyrus Left 4.9934 

11     [-2, -24, 80]            Paracentral Lobule Left   11.2695 

12       [-34, -84, -25]      
  

Cerebellum Crus1 Left      7.4345 

Table 7. 22: The brain areas that show activation in PD group. 

Component Maximum Voxel Brain areas z-score 

1 [2,-72,40] Precuneus Right 6.3088 

2 [34,56,5] Middle Frontal Gyrus Right 4.1911 

3 [-26,-84,-30] Cerebellum Crus 1 Left 5.6288 

4 [-50,-60,30] Angular Gyrus Left 5.8226 
5 [-6,-28,-50] Pons 11.0831 

6 [34,16,-25] Superior Temporal Pole Right 7.0113 

7 [38,-80,-25] Cerebellum Crus 1 Right 10.2877 

8 [-38,-80,-15] Fusiform Gyrus Left 5.6988 

9 [2,-4,75] Supplementary Motor Area Right 12.9611 

10 [-42,-52,55] Inferior Parietal  Lobule Left 6.0779 

11 [2,-76,55] Precuneus Right 4.1397 
12 [-62,-20,15] Rolandic Operculum Left 5.8766 

Table 7. 23: The brain areas that show activation in the first PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [2, -56, 20] Precuneus Right 10.4482 

2 [-42, -76, -15] Fusiform Gyrus Left 7.2299 

3 [14, -24, -40] Pons 7.3812 
4 [14, -92, -10] Lingual Gyrus Right 6.6352 

5 [6, -28, -50] Pons 12.4861 

6 [6, -92, -5] Lingual Gyrus Right 8.8708 

7 [10, -88, -15] Cerebellum Crus 1 Right 8.9839 

8 [22, -92, -10] Lingual Gyrus Right 8.4199 

9 [-2, 0, 75] Supplementary Motor Area 10.1897 

10 [42, -64, 45] Angular Gyrus Right 5.29 
11 [26, -92, -10] Inferior Occipital Gyrus Right 6.1564 

12 [34, 16, -25] Superior Temporal Pole Right 6.2652 

Table 7. 24: The brain areas that show activation in second PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-38, -68, 45] Angular Gyrus Left 5.1487 

2 [2, -48, 10] Precuneus Right 5.1683 
3 [2, -48, 10] Precuneus Right 6.1436 

4 [-22, -88, -20] Cerebellum Crus 1 Left 4.1985 
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5 [2, -44, -30] Vermis 10 8.7105 

6 [22, -88, -20] Cerebellum Crus1 Right 15.0921 

7 [30, 24, -15] Insula Right 4.322 
8 [10, -88, -15] Lingual Gyrus Right 6.1206 

9 [-34, -76, -15] Fusiform Gyrus Left 4.7264 

10 [10, -32, -50] Pons 10.3583 

11 [-2, -12, 75] Paracentral Lobule Left 16.3885 

12 [14, -88, -15] Lingual Gyrus Right 9.348 

Table 7. 25: The brain areas that show activation in the third PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-2, -56, 70] Precuneus Left 5.1667 

2 [-26, -88, -20] Cerebellum Crus 1 Left 8.4029 

3 [26, -88, -20] Cerebellum Crus 1 Right 5.0299 

4 [-50, 28, -5] Orbital Inferior Frontal Gyrus Left 6.8601 

5 [26, -88, -20] Cerebellum Crus 1 Right 6.6819 

6 [-2, 20, 65] Supplementary Motor Area Left 9.3948 
7 [-62, -28, 15] Superior Temporal Gyrus Left 6.1874 

8 [-38, -52, 60] Superior Parietal Lobule Left 8.6435 

9 [26, -88, -20] Cerebellum Crus 1 Right 7.6504 

10 [-2, -56, 70] Precuneus Left 13.8023 

11 [-2, -80, -5] Calcarine Cortex Left 9.9472 

12 [2, -72, 55] Precuneus Right 7.9859 

Table 7. 26: The brain areas that show activation in the fourth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-46, -72, -20] Cerebellum Crus 1 Left 8.592 

2 [-2, -56, 70] Precuneus Left 12.3591 

3 [-50, -44, 50] Inferior Parietal Lobule Left 5.9747 

4 [-30, -84, -25] Cerebellum Crus 1 Left 9.3791 

5 [-62, -24, 15] Superior Temporal Gyrus Left 5.3951 
6 [-30, -88, 10] Middle Occipital Gyrus Left 6.2742 

7 [34, -84, -20] Cerebellum Crus 1 Right 6.3327 

8 [26, 60, -5] Orbital Superior Frontal GyrusRight 4.445 

9 [-54, -60, 35] Angular Gyrus Left 6.772 

10 [46, -72, -20] Cerebellum Crus 1 Right 6.0617 

11 [34, -84, -20] Cerebellum Crus1 Right 13.478 

12 [62, -44, 40] SupraMarginal  Gyrus Right 4.9512 

Table 7. 27: The brain areas that show activation in the fifth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [14, -88, -20] Cerebellum Crus 1 Right 6.8927 

2 [2, -68, 35] Precuneus Right 7.0149 

3 [-2, -44, -35] Vermis 10 8.4784 

4 [42, 4, -15] Superior Temporal Pole Right 8.2265 
5 [54, 12, -5] Superior Temporal Pole Right 7.2198 

6 [-6, -84, -20] Cerebellum Crus 2 Left 11.5302 

7 [2, -80, 50] Superior Parietal Lobule Right 6.0666 

8 [-38, -64, 55] Superior Parietal Lobule Left 7.2604 

9 [54, -48, 45] Inferior Parietal Lobule Right 4.9892 

10 [42, -56, 55] Angular Gyrus Right 5.4232 

11 [-10, -36, -50] Cerebellum 9 Left 14.0362 

12 [-2, -12, 75]   Paracentral Lobule Left 10.126 

Table 7. 28: The brain areas that show activation in the sixth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-14, -68, 60] Precuneus Left 7.5351 

2 [-30, -64, 55] Superior Parietal Lobule Left 6.2057 

3 [2, -52, 20] Precuneus Right 6.9003 

4 [-58, -4, 10] Rolandic Operculum Left 5.6974 
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5 [-46, -72, -20] Cerebellum Crus 1 Left 5.8182 

6 [2, -44, -30] Vermis 10 5.4328 

7 [-6, -28, -50] Pons 8.3058 
8 [-18, -44, 75] Superior Parietal Lobule Left 6.262 

9 [6, 68, 10] Medial Superior Frontal Gyrus Right 6.1567 

10 [2, -24, 75] Paracentral Lobule Right 14.933 

11 [-26, -88, -20] Cerebellum Crus 1 Left 13.3288 

12 [-6, -92, -10] Calcarine Cortex Left 10.3211 

Table 7. 29: The brain areas that show activation in the seventh PD subject. 

Component Maximum Voxel Brain areas z-score 

1,4 [-34, -68, 55] Superior Parietal Lobule Left 8.1176, 
6.2591 

2 [-50, -60, -25] Angular Gyrus Left 6.3768 

3 [-42, -60, 50] Angular Gyrus Left 6.3845 

5 [-2, -80, -15] Cerebellum 6 Left 11.1267 

6 [54, -52, 30] Angular Gyrus Right 4.1331 
7 [-2, -24, 75] Paracentral Lobule Left 7.0831 

8 [-34, -84, -15] Lingual Left 10.379 

9 [2, -4, 75] Supplementary Motor Area Right 15.1426 

10,12 [-30, -68, 55] Superior Parietal Lobule Left 10.1474, 
9.7156 

11 [-6, -28, -50] Superior Parietal Lobule Left 11.1716 

Table 7. 30: The brain areas that show activation in the eighth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [14, -32, -50] Cerebellum 9 Right 14.463 

2,9 [2, 4, 70] Supplementary Motor Area Right 5.5716, 
19.627 

3 [-42, -76, -30] Cerebellum Crus 1 Left 8.3314 

4 [2, 40, 55] Medial Superior Frontal Gyrus Right 5.6767 

5 [-42, -76, -25] Cerebellum Crus 1 Left 13.1362 

6 [-14, -88, -25] Cerebellum Crus 2 Left 7.1634 

7 [-34, 12, -25] Superior Temporal Pole Left 10.0126 

8 [-54, -36, 50] Inferior Parietal Lobule Left 6.3245 
10 [2, -52, 15] Precuneus Right 7.1332 

11 [-6, -88, -20] Cerebellum Crus 1 Left 13.6774 

12 [-10, 32, 60] Medial Superior Frontal Gyrus Left 5.067 

Table 7. 31: The brain areas that show activation in the ninth PD subject. 

Component Maximum Voxel Brain areas z-score 

1,4,9 [26, -92, -10] Inferior Occipital Gyrus Right 11.2952, 
10.0192, 
6.4914 

2 [34, 16, -20] Orbital Inferior Frontal Gyrus Right 7.945 

3 [-34, -84, -20] Cerebellum Crus 1 Left 7.9991 

5 [34, -84, -20] Cerebellum Crus 1 Right 14.9537 

6,12 [14, -28, -45] Cerebelum 9 Right 6.0098, 
6.2064 

7 [-6, -28, -50] Pons 11.6688 

8 [38, 56, -5] Orbital Middle Frontal Gyrus Right 4.9343 

10 [10, -4, 75] Supplementary Motor Area Right 15.0393 

11 [-46, -64, 25] Angular Gyrus Left 5.9592 

Table 7. 32: The brain areas that show activation in the tenth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [10, -32, -50] Cerebelum 9 Right  12.9976 

2 [-62, -52, 5] Middle Temporal GyrusLeft 5.3021 

3,6 [-42, -56, 55] Inferior Parietal Lobule Left 6.1378, 
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5.5182 

4 [18, -88, -25] Cerebellum Crus 1 Right 7.8154 

5,7 [50, -68, -25] Cerebellum Crus1 Right 9.4539, 
11.7782 

8 [2, -56, 65] Precuneus Right 5.366 

9 [22, -88, -20] Cerebellum Crus 1 Right 11.8017 

10 [50, 16, -5] Superior Temporal Pole Right 5.0382 

11 [50, -64, -20] Cerebellum Crus 1 Right 7.1926 

12 [14, -32, -50] Cerebelum 9 Right  6.356 

Table 7. 33: The brain areas that show activation in the eleventh PD subject. 

Component Maximum Voxel Brain areas z-score 

1,7,11 [-34, -84, -20] Cerebellum Crus 1 Left 4.942, 
12.9389, 
19.219 

2 [2, -52, 65] Precuneus Right 5.526 

3,6 [-46, -72, -20] Cerebellum Crus1 Left 10.1912, 
12.6028 

4 [-30, -88, -15] Lingual Gyrus Left 16.3879 

5 [10, -32, -50] Pons 8.2963 

8 [-22, -92, -15] Lingual Gyrus Left 7.5554 

9 [18, -92, -10] Lingual Gyrus Right 5.8685 
10 [-22, -92, -15] Lingual Gyrus Left 5.8076 

12 [6, -92, 5] Calcarine Cortex Right 13.0484 

Table 7. 34: The brain areas that show activation in the twelfth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-42, -72, -25] Cerebellum Crus1 Left 6.0897 

2 [-10, -76, 50] Precuneus Left 6.3166 
3 [10, -88, -10] Lingual Gyrus Right 13.4364 

4 [-2, 40, 55] Medial Superior Frontal Gyrus Left 9.1099 

5 [10, -32, -50] Pons 9.8303 

6 [6, -88, 0] Calcarine Cortex Right 8.9704 

7 [-2, -16, 75] Paracentral Lobule Left 6.6426 

8 [2, -72, 35] Cuneus Left 6.8667 

9 [26, -88, -15] Lingual Gyrus Right 8.1845 
10 [34, -76, 30] Middle Occipital Gyrus Right 5.665 

11 [-54, -56, 30] Angular Gyrus Left 5.4014 

12 [26, -88, -15] Lingual Gyrus Right 7.3175 

Table 7. 35: The brain areas that show activation in the thirteenth PD subject. 

Component Maximum Voxel Brain areas z-score 

1 [-42, -48, 55] Inferior Parietal Lobule Left 7.4235 
2 [2, -8, 75] Supplementary Motor Area Right   11.8076 

3 [2, 44, 50] Medial Superior Frontal Gyrus Left 6.9096 

4 [38, -80, -25] Cerebellum Crus1 Right 17.5022 

5 [-42, -76, -20]     Cerebelum Crus1 Left 10.6029 

6 [-38, -80, -20]     Cerebellum Crus 1 Left 5.6061 

7 [2, -72, 35] Cuneus Left 5.9264 

8,9  [-42, -76, -20] Cerebellum Crus1 Right 12.5048, 
12.2672 

10 [-22, -84, -25]   Cerebellum Crus 1 Left 9.4221 

11 [-42, -76, -20]   Cerebellum Crus 1 Left 7.7751 

12 [2, -80, -10]    Lingual Gyrus Right 9.1658 

Table 7. 36: The brain areas that show activation in the fourteenth PD subject. 

Component Maximum Voxel Brain areas z-score 
1 [34, 12, -20] Superior Temporal Pole Right 4.1448 

2 [38, -48, 55] Inferior Parietal Lobule Right 6.5379 

3 [-42, -56, 55] Inferior Parietal Lobule Left 5.2939 
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4 [-38, -80, 30] Middle Occipital Gyrus  Left 4.3041 

5 [-6, -28, -50] Pons 9.3715 

6 [10, -32, -50] Pons 5.4793 
7 [10, -24, 80] Paracentral Lobule Right 7.2388 

8,12 [46, 16, 10] Opercular Inferior Frontal Gyrus Right 6.0604, 
5.6975 

9 [-50, -64, -25] Cerebellum Crus 1 Left 4.6371 

10 [46, -72, -25] Cerebellum Crus1 Right 12.3531 

11 [2, -64, 55] Precuneus Right 7.8411 

Table 7. 37: Effective connectivity parameters of the first control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.0131 0.1729 -0.3609 0.1935 

lLPC 0.1944 0.5994 0.0559 0.1050 

rLPC 0.3945 0.0030 0.5921 0.1123 

PCC 0.2271 0.2228 -0.0258 0.5240 

Table 7. 38: Effective connectivity parameters of the second control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.3409 -0.0095 0.0287 0.3760 

lLPC 0.2225 -0.0663 -0.1892 0.1131 

rLPC 0.0649 0.4457 0.2602 -0.0840 

PCC -0.0807 -0.1214 0.4663 0.2411 

Table 7. 39: Effective connectivity parameters of the third control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.6117 -0.0369 0.2816 0.2229 

lLPC -0.0546 0.4855 -0.1303 0.6263 

rLPC -0.3334 0.3397 0.5930 0.5210 

PCC -0.1049 0.0369 -0.0536 -0.4543 

Table 7. 40: Effective connectivity parameters of the fourth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4194 -0.0475 0.3882 -0.0950 

lLPC -0.2142 0.5035 0.3916 -0.2322 

rLPC -0.4512 -0.4391 -0.5133 -0.2383 

PCC -0.3199 -0.1647 0.5808 0.4402 

Table 7. 41: Effective connectivity parameters of the fifth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.6729 0.1377 0.0553 0.4224 

lLPC -0.1940 -0.1770 -0.1849 0.4380 

rLPC -0.4472 0.5938 0.6267 0.2989 

PCC -0.8348 0.5770 0.0535 -0.1177 

Table 7. 42: Effective connectivity parameters of the sixth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4842 0.4467 -0.1681 -0.0220 

lLPC 0.1200 0.2641 0.0000 0.1131 

rLPC 0.0991 0.1272 0.6863 0.1613 

PCC 0.3270 0.1163 -0.0097 0.4175 

Table 7. 43: Effective connectivity parameters of the seventh control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.0391 -0.2867 0.6001 0.0402 

lLPC 0.4096 0.5521 0.1534 0.3647 

rLPC 0.4408 -0.6923 -0.7068 -0.0060 

PCC 0.4027 -0.1843 0.2199 -0.3658 

Table 7. 44: Effective connectivity parameters of the eighth control subject. 
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 MPFC lLPC rLPC PCC 

MPFC 0.2556 0.2622 0.1941 0.3579 

lLPC -0.2610 0.0468 0.1456 0.1605 
rLPC -0.2605 0.1463 0.2897 0.2752 

PCC -0.3177 0.0118 0.3014 -0.0008 

Table 7. 45: Effective connectivity parameters of the ninth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.2506 -0.0470 -0.2217 0.4359 

lLPC 0.0631 0.3956 0.2300 0.0713 
rLPC 0.2096 -0.0338 0.3874 0.1403 

PCC -0.1158 0.3901 0.1173 0.2457 

Table 7. 46: Effective connectivity parameters of the tenth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.7435 0.0736 -0.0558 0.5092 

lLPC -0.1576 0.2787 -0.1396 0.1478 
rLPC -0.1550 0.5888 0.8250 0.7199 

PCC -0.2029 0.1685 -0.2094 -0.1367 

Table 7. 47: Effective connectivity parameters of the eleventh control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.5846 -0.1811 -0.0335 0.3711 

lLPC 0.0223 0.8152 -0.0815 0.3541 
rLPC 0.0276 0.0058 0.8925 0.3808 

PCC -0.0467 0.0249 -0.0645 -0.6374 

Table 7. 48: Effective connectivity parameters of the twelfth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.5616 0.1339 0.0411 0.2949 

lLPC -0.0685 0.7182 0.2263 0.4427 
rLPC -0.1601 0.1592 0.5939 0.4540 

PCC -0.1506 -0.0757 -0.0513 -0.8184 

Table 7. 49: Effective connectivity parameters of the thirteenth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4306 0.0024 0.3613 0.3446 

lLPC -0.2100 0.0355 0.3396 -0.0206 
rLPC -1.0472 -0.0643 -0.3000 0.3540 

PCC -0.4998 -0.1265 0.4724 -0.5394 

Table 7. 50: Effective connectivity parameters of the fourteenth control subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.2465 0.0681 0.0701 0.3364 

lLPC 0.1121 0.2454 -0.0887 0.4601 
rLPC 0.1628 0.2460 0.1911 -0.1658 

PCC -0.0868 -0.0344 0.3178 0.0635 

Table 7. 51: Effective connectivity parameters of the second PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.6322 0.3110 -0.0398 -0.2094 

lLPC -0.4643 0.1316 0.1278 0.2784 

rLPC 0.0680 -0.0238 0.3576 0.1441 

PCC 0.4280 -0.4581 0.5122 0.0344 

Table 7. 52: Effective connectivity parameters of the third PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4675 0.3794 0.0284 0.1087 
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lLPC -0.0200 0.2241 0.1388 0.2638 

rLPC 0.0083 0.1686 0.5896 0.2390 

PCC 0.1838 0.3978 -0.0781 0.4249 

Table 7. 53: Effective connectivity parameters of the fourth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.0763 0.1434 -0.0062 0.3200 

lLPC -0.1241 0.0605 0.3132 0.1250 

rLPC 0.1699 -0.1590 0.0176 -0.0102 

PCC -0.0155 0.2847 -0.1399 0.1113 

Table 7. 54: Effective connectivity parameters of the fifth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.3359 -0.2866 0.2099 -0.7475 

lLPC 0.3962 0.1932 0.0358 -0.0496 

rLPC 0.2299 0.4094 -0.0043 -0.7405 

PCC 0.0495 0.3043 0.5294 -0.3430 

Effective connectivity parameters of the sixth PD subject were not acquired because of an 
error. 

Table 7. 55: Effective connectivity parameters of the seventh PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.2670 -0.2563 -0.4601 0.5708 
lLPC -0.4704 -0.3848 0.6135 -0.0690 

rLPC 0.0366 -1.1487 -0.7340 0.1846 

PCC -0.4508 -0.4098 0.0917 -0.8893 

Table 7. 56: Effective connectivity parameters of the eighth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4148 -0.0565 0.0935 -0.1237 
lLPC -0.1748 0.5732 0.4150 -0.2105 

rLPC 0.0350 0.0432 0.2588 -0.0311 

PCC -0.2695 -0.0521 0.3483 0.6081 

Table 7. 57: Effective connectivity parameters of the ninth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.0819 0.6927 -0.1885 0.7225 
lLPC -0.5264 -0.7069 -0.1476 0.0532 

rLPC 0.1241 0.5070 0.4875 -0.2572 

PCC -0.1896 0.6535 0.1747 -0.3789 

Table 7. 58: Effective connectivity parameters of the tenth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.1084 0.6960 -0.9831 0.1389 
lLPC -0.1560 -0.5742 0.0263 -0.0052 

rLPC 0.5452 -0.0690 -0.1498 -0.3125 

PCC 0.2095 0.3442 0.1495 0.3638 

Table 7. 59: Effective connectivity parameters of the eleventh PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.6253 -0.0501 0.0948 0.1418 
lLPC -0.0562 0.7169 -0.2091 0.4637 

rLPC 0.0579 0.2405 0.8900 0.2648 

PCC 0.4230 -0.0783 -0.3468 -0.3692 

Table 7. 60: Effective connectivity parameters of the twelfth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.4178 -0.1301 -0.1345 0.3827 
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lLPC 0.2611 0.0039 -0.3343 0.1426 

rLPC 0.0485 0.7358 0.8632 0.0364 

PCC -0.7914 -0.2009 0.1081 -1.0468 

Table 7. 61: Effective connectivity parameters of the thirteenth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC 0.0200 0.1930 0.0019 0.1916 

lLPC 0.3106 0.0171 0.4912 -0.0532 

rLPC 0.0215 0.1330 0.1907 0.3171 

PCC 0.1212 -0.6437 0.4787 -0.8774 

Table 7. 62: Effective connectivity parameters of the fourteenth PD subject. 

 MPFC lLPC rLPC PCC 

MPFC -0.1886 0.0719 0.2209 -0.1399 

lLPC -0.0856 -0.6587 0.4273 -1.1175 

rLPC 0.1183 0.2609 -0.0210 -0.4782 

PCC 0.1336 -0.0178 0.3283 0.2923 
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