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§0 Introduction .   

The author initiated and completed this  research in the island of Samos in Greece  during 

1990-1992 .One years later (1993) he discovered how sequences of rational numbers with 

equivalent relation based not only that they converge to the same point but also with the same 

“speed” lead directly to a partially ordered topological complete field that is  probably 

nothing more that the Newtonian Fluxes.The author gave it an other name: Floware of the 

rational numbers . Such a field contains fields of ordinal real numbers. Seven years later 

(1999) he discovered how such numbers can be interpreted as fields of random variables and 

completions of them in appropriate stochastic limits (stochastic real numbers), that links 

them to applications of statistics, stochastic processes and computer procedures. Thus, for 

instance, the ordinal natural numbers (including ) can be interpreted appropriately as 

stochastic limit of normal random variables. This requires Bayesian statistics for higher 

ordinals. This interpretation permits stochastic differential and integral calculus that succeeds 

exactly where the known stochastic calculi fail!   (The known stochastic calculi are : a) that in 

signal theory which is based on the spectral representation of stationary processes, b) that of 

Ito’s usually with applications in Economics and c) that of Heiseberg-Schrondinger with 

applications in microphysical reality and  based on operators in Hilbert spaces) From this 

point of view it turns out that the ontology of infinite is the phenomenology of changes of 

the finite. In particular the phenomenology of stochastic changes of the finite can be 

formulated as ontology of the infinite .He hopes that in future papers he shall be able to 

present this perspective in detail. It is a wonderful perspective to try to define the Dirac’s 

deltas as entities of such stochastic real numbers. Another application is in the speeds of 

convergence to infinite of real functions, therefore with applications in the measurement of 

computational complexity of Turing machines and algorithms. 

In this second paper on ordinal real numbers are proved, the main (elementary) properties of 

them. It is proved that the ordinal real numbers Rα of characteristic α, is the maximal field of 

characteristic α (maximality) and that it is , according  to the theory of Artin-Screier, a real 

closedfield. (It turned out ,after the work was  completed and by thinking aside, that they are 

also  Archimedean complete (see [ Glayzal A. 1937]),formal power series fields 
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with real coefficients ,Dedekind complete (see [Massaza,Carla 1971]),  and Pythagorean 

fields ). 

It is also proved a classification theorem which is analogous to the Hölder theorem for the 

Archimedean linearly ordered fields.In particular it is 

proved  that  any  linearly  ordered  field  of 

characteristic  α contains   the   field   Qα of   ordinal rational   numbers    of characteristic α, 

as a dense subfield and it is contained in the field Rα of ordinal real numbers of 

characteristic α, as a subfield ..As it is known, the linear segments of elementary euclidean 

geometry can be defined as special order-types with Archimedean property, and 

Archimedean (Hilbert) completness through axioms (see e.g. for a not ancient approach  the 

Hilbert axiomatisation in [ Hilbert D.1977] ch 1 ).It  can  be 

proved  to be order isomorphic with subsets of the real number field R. This is well-known 

and it can be called , the elementary arithmetisation  of the order-types of Euclidean linear 

segments . On this fact is based the Cartesian idea of analytic geometry. This was an 

important turning point in the developments of the ideas and techniques of mathematics , of 

the discrete nature  of numbers and continuous nature of geometry. The basic principle is 

that the continuum is developed from the discrete and not vice versa! An instance of this 

principle is the development of images and animation in computers through pixels and bits! It 

is surprising that in one of the consequences of the theory of ordinal real numbers, it is 

proved a far more advanced and complete result for the whole category of order types that 

has as corollary the previous important and elementary arithmetisation. Although more 

advanced, the result remains in the context of elementary theory of ordinal real numbers .In 

this result any order type can be “discretised” or “arithmetised” through the ordinal numbers. 

The process of  definition  of  the  maximal  fields  Rα, from  the minimal (double well 

ordered ) monoids Nα =α, of principal ordinal numbers,we call K- fundamental densification. 

It is proved that any order-type is order isomorphic to a subset of some field Rα. Thus any 

order-type is constuctible by K-fundamental densification from ordinal numbers .This 

is  called the  K-arithmetisation of the  order-types. Although  in  the  way   it   is presented, 

this result  is softly obtained, throws new light to the relation of ordinal numbers and order-

types ,this relation turns out to be similar to the elementary relation of  numbers and line 

segments in geometry. 

Also  it,  holds  a  second  kind  of  arithmetisation  ,the  binary  arithmetisation which we 

state in the same paragraph . 

 §1   On the topology of linearly ordered fields. Local deepness, α-sequences. 

The ordering of any linearly  ordered  field  F  defines a well known topology : the  order-

topology denoted by T<; In this topology, as it is known, the field F is a topological field. 

This topology has very good separation properties;  it  is  a T1-T5 topology, that is 

a completely normal topology (see for instance [ Lynn A.Steen-Seebach J.A. Jr 1970] § 39 p. 

66-68, also see [ Munkress J.R. 1975]  Chapters  I,  II) 

The previously  described  order  topology is  also  called the  locally  convex  topology 

compatible with the order (see [Nachbin L. 1976] Ch I, II).  (The convexity defined by the 

order). 

Definition 1. Let X be a topological space. Let p X. The  least ordinal α such that it exists a 

(local) base denoted by  Bp of open neighbourhoods of the point p which is an  α-sequence 

such that if x<y<α, Ux  Uy, is called local deepness of X  at p. 



We notice that the concept of local deepness is very close to the concept of local 

weight of  a  topological  space,  where instead of ordinal we 

have  an  initial  ordinal  that  is  a cardinal number (see [Kuratowski K. 1966] V-I p. 53-54). 

Examples of topological spaces such that every point has local deepness, are the ξ
*
-uniform 

topological spaces as they are defined in [Cohen L.W.Goffman C. 1949] pp 66 conditions 

1.2.3.4. 

As in the case of fields that  are  classes,  we  may  permit topological spaces that are classes 

and the open  sets  is  a class of subclasses closed to union and finite  intersection. For such 

spaces, the local deepness may be   Ω1 that  is  the class of all ordinal numbers. 

Proposition 2. Let X a topological  space  and  α,  a  limit ordinal such that every point 

has local-deepness α  let  AX. It holds that  there  is  an  β-

sequence  {xs|s<β}  from elements of A such that . In other words  topological 

convergence in  X  can  be  treated  with  β-sequences  where β=car(α) is the upper character 

of α (see  [N.L.Alling 1987]  ch  1 §1.30  pp 29) 

The proof is almost direct and to save space we shall not give it here. 

Proposition  3.  Let  a  field  denoted  by  F  of   ordinal characteristic α, 

where α is  a  limit  ordinal.  Then  every point x F in the order-topology has local-deepness 

car(α), where  car(α)  is  the  upper  character  of  α   (see   [ N.L.Alling 1987] ch 1 §1.30  pp 

29 ). 

The proof is again direct and outside the scope of the paper. 

Corollary 4. Convergence in the order-topology of a field of ordinal characteristic α, can be 

treated with β-sequences βcar(α) 

          Needless  to  say,  that  in  the  case  in   which   the topological   space is a class and 

the local deepness is  Ω1, then convergence can  be treated with  Ω1-sequences. 

 §2 The Holder- type  classification . 

Lemma 5. In every field of characteristic the field Qα  is a dense subset. 

Proof. Let a field of characteristic α, which  we  denote  by Fα. By the theorem 17 of 

[Kyritsis C. OR1] the field Qα is a subfield of Fα. Let us suppose that  it is not dense in Fα. 

Then  there  are  two elements x,y  Fα x<y , such that there is no 

element  of  Qα in  the  internal  [x,y].  Then  the  element  z  =  y-x   is Qα-infinitesimal. 

This holds because 

where similarly. But by 

the hypothesis and every element of 

Qα can be  written as r2-r1 where r2  (y) and r1  (x).  Also  we  have  that 0<y-x<r2-r1. 

Then y-x is a  Qα-infinitesimal  and   is  a Qα-infinite element of Fα, thus   >α, 

contradiction since Char Fα = α. 

Then there are not two element y,x  Fα x<y with  no  element of Qα in [x,y], and Qα is 

dense in Fα. Q E D 



Remark. Thus every field Fα of characteristic  α  is  a  Weil completion of the field 

Qα of  ordinal   rational  numbers (see [ Weil A.] ChIII Definition 2 but applied not 

only  to  local fields). 

Theorem 6 (Maximality or completness up-to-characteristic ). 

          The field Rα is the maximal field, of characteristic  α. In the sense that every field of 

characteristic α is contained as  subfield of Rα (more precisely Rαcontains an order  

preserving  monomorphic image of the field).The field Rα is the unique fundamentally 

complete field of characteristic α. 

Remark. This theorem is analogous to the  well-known  Holders theorem 

theorem ςηιψη στατες that every linearly ordered Archimedean field is  a  subfield of the field 

of real numbers.  In other words the field of  real numbers is the maximal Archimedean 

linearly ordered  field. The previous property of the ordinal real numbers Rα relative to their 

characteristic ,we call maximality or completness up-to  characteristic . 

But as an erroneous application  of  terms  R   is  also  the minimal Cauchy complete field of 

characteristic    and  this also applies for the fields Rα in the sense that a completion of a 

linearly ordered field of characteristic α  must be the field Rα . 

Proof. Let any field of ordinal characteristic α  denoted  by Fα. By theorem 17 of [ Kyritsis C. 

1991], the field Qα is contained in Fα: QαFα. Let x  Fα. Let (L(x), R(x)) be the cut that 

x  defines on Qα (L(x) = {v|v  Qα v<x}, R(x) = {v|v  Qα x<v}).  Since Qα is dense in 

Fα (Lemma 5). There is  a Cauchy  α-sequence {xn|n w(α)} of elements of Qα that 

converges in Fα to x  (all topologies are the order-topologies). Hence QαFαRα  and the 

field Rα is a maximal field of characteristic α ;  but  also  the  field  Rα is actually a 

minimal   Cauchy complete  field  of characteristic α  in  the  sense  that the  (strong) Cauchy 

completion  of any field Fα of characteristic  α  contains the field  Rα:QαFα has as a 

concequence that Rα . Thus  if Fα  is complete then RαFα, FαRα  hence Fα =Rα   Q.E.D. 

The theory of Artin-Schreier of real closed fields has an excellant application  to the ordinal 

real numbers . 

Corollary 7. The fields of ordinal real numbers  Rα are  real closed fields. 

Proof.  Direct  from  Theorem  6 , and  remark 5 of [ Kyritsis C.1991]      Q.E.D. 

 Post written Remark A. The author developed the theory of ordinal real numbers during 

1990-1992 He had used the name “transfinite real numbers” without being aware that this 

term had been introduced by A.Glayzal during 1937 for his theory of linearly ordered fields. 

From the moment he fell upon the work of A.Glayzal (see [ Glayzal A. 1937 ])  in the 

bibliography of the Book of N.L alling (see [N.L.Alling 1987 ] ) he changed the title to 

“Ordinal Real Numbers” . After the work had been  completed ,the author realised , 

by  thinking  aside,  a  quite  unexpected and not unhappy fact :That the fields of ordinal real 

numbers are algebraically and order isomorphic to the   fields of transfinite real numbers of 

Galyzal  .This can be deduced by the fact that the fields of transfinite real numbers are 

exactly all the Archemidean complete fields (see [Glayzal A. 1937] theorems 4,8,9) and by 

the maximality of the ordinal real numbers (theorem 6). Thus if Rα is a field of ordinal real 

numbers of  characterisic  α, any  Archemidean  (linearly ordered  field  ) extension of it ,it 

shall have the same characteristic with Rα. It seems that it can be proved , that any cofinal 

(coterminal) linearly ordered field extension ,is  of  the same characteristic . By the 

maximality of Rα (theorem 6) it shall have to coinside with  Rα. In other words the fields of 



ordinal real numbers are Archemidean complete fields (although they may be non-

Archemidean ).But this is a characteristic property of the fields of transfinite real numbersb 

of Glayzal. 

Thus they are order and field isomorphic with fields of transfinite real numbers .Conversely 

,let any  field  R(λ)  of  transfinite  real numbers  of Archemidean base  λ. 

Let  us  denote   by   α   its ordinal characteristic .Let us suppose  that  there  is  an order 

and  field extension of it with the same characteristic .Then it has to be an Archemidean 

extension of R(λ). By the Archemidean completness of the transfinite real numbers ,it has to 

coinside with the R(λ). Thus the transfinite real numbers are also complete up-to-

characteristic . 

But this is a characteristic property of the fields of the ordinal real numbers.Hence 

they are order and  field  isomorphic  with  fields  of 

ordinal  real  numbers  .Thus  the ordinal  real  numbers  should   be considered as 

a different technique ,nevertheless indispensable and more far reaching .It is the 

technique  that  everyone  would  like  to work. 

Post written Remark B .Let  a  field  Rα of  ordinal  real  numbers  of ordinal 

characteristic α. It is also a field  of  transfinite  real numbers of archemidean base  λ. 

The  set  of  all  elements  of  Rα that as formal power series have support 

of  ordinality  less  than  βo(λ)=maximum ordinality of well ordered set of λ, and which we 

denote 

by Rα,β is a field ,subfield of Rα .Indeed Rα,ο(λ) =Rα. For  the 

applications  and  especially  with   measurment proceeses ,the fields Rα,ω are of prime 

interest and indispensable . 

Post written remark C .The  facts of the previous remark ,have as a concequence that the 

fields of ordinal real numbers are formal power 

series  fields  with  coefficients  in  the  real  numbers  and exponents in some order 

types.Thus the n-roots of their positive elements are contained in them (see [Neumann B.H. 

1949] pp 211 ,4.91 Corollary).In other words  they are Pythagorean complete fields. 

     Theorem 8. (The Holder-type classification theorem). 

     Every field of ordinal characteristic α, denoted by Fα (where α is a principal ordinal) is 

contained between the fields  Qα and Rα :QαFαRα . 

     Proof. Contained in the proofs of the theorem 7  and lemma 5       Q.E.D. 

     Remark.9 The previous theorem gives that the hierarchy of ordinal real numbers 

has universal embedding property for the category of linearly ordered fields, that is every 

linearly ordered field has an monomorphic image in some field of the hierarchy.The 

hierarchy of transfinite real numbers is known to have, also, this property .Such 

hierarchies  we call universal embedding hierarchies. Especially  the hierarchy of ordinal real 

numbers after the classification theorem 8 ,we call also, universal classification hierarchy. 

Remark.10 We  notice  that since every order type λ is order-embeddable in some transfinite 

real number field R(λ) (see [Glayzal A. 1937]   )as Archemidean base which in its turn is 

embeddable in some ordinal real number field Rα ,the above two hierarchies as hierarhies of 

order-types are universal embedding hierarchies for the category of order-types .Let an order 

type λ ; the least principal ordinal number α  such that λ is order-embeddable (by a 

monomorphism) in the order-type and field Rα, is called the fundamental density of the order 

type λ and is denoted by df(λ). 



Remark. In the [ Massaza Carla, 1971] Definition I , is defined which cuts are the Dedekind 

cuts in  linearly  ordered  fields  .It  is   proved   also that   the Dedekind completion D(F) of a 

linaerly ordered field F is also its  Cauchy completion  (in the order topology ).If  we  take 

the  Dedekind completion D(Rα) of a field of ordinal real numbers Rα, it has  to  be its Cauchy 

completion which is again the  Rα. Thus the fields of the ordinal real numbers are 

alsoDedekind complete . Conversely ,let any Dedekind complete linearly field F .Let us 

denote with α its ordinal characteristic .Then by the Holder type classification (theorem 8 ) it 

is a subfield of the field Rα of ordinal real numbers of characteristic α .Since the Dedekind 

completion D(F) =F coincides with the F and also with its Cauchy completion ,we get that 

F=Rα, because the Cauchy completion of F is the Rα. In other words the class of Dedekind 

complete fields coincides with the class of the fields of  ordinal real numbers . 

Summarising we mention that the fields of ordinal real numbers have at least four kinds of 

completnesses that characterise them : Cauchy completness 

,Dedekind completness,completness up-to-characteristic, Archemidean  completness  .It 

seems that he previous four 

completnesses  can  be  summarised  by  saying  that   there   is   no cofinal (coterminal ) 

order field extensions of them ;in short they are cofinally complete ,or cofinally 

maximal .They are also realcomplete (closed ,Artin-Shreier )  and Pythagorean complete. 

Remark. By corollary 7 we get that the field Cα is the algebraic closure of Rα :Cα= . 

          We close this paragraph by mentioning that an  axiomatic definition of the field 

Rα (α is a principal  ordinal)  would be the following: 

      First  axiomatic   definition   of   Rα. 

     The   field of ordinal real numbers   Rα   is   the unique Funtamental (Canchy)-

complete,   in   the order-topology, field    of characteristic α. 

     Second axiomatic definition of Rα . 

     The field  of ordinal real numbers Rα is  the unique complete (up-to-characteristic)  field 

of characteristic α . These  definitions apply even in the case of the field of real numbers (a 

= ω). 

  § 3 The arithmetisation of order-types . 

Remark.As it is known the linear segments of elementary Euclidean geometry can be 

defined as special order-types with Archimedean property and Hilbert completness through 

axioms (see e.g. for a not ancient approach  the Hilbert axiomatisation in [Hilbert D 1977] ch 

1 ).Then ,they can be proved to be order isomorfic with subsets of the real number field R. 

This is known as the elementary arithmetisation of the order-types of Euclidean linear 

segments. 

 Proposition 10.(the K- funtamental arithmetisation theorem of order-types.) 

  Every order-type λ is K-arithmetisable with ordinal numbers and has a fundamental density 

df(λ) which is a principal ordinal number . 

In the next paper ,after the unification theorem of the transfinite real ,surreal ,ordinal real 

numbers ,a second arithmetisation theorem shall be proved. Two more universal hierarchies 

of formal power series fields shall be, also, proved that they are universal embedding 

hierarchies .We state these results here. For the definition of tree ,height of a tree, level of a 

tree, binary tree e.t.c.see [Kuratowski K.-Mostowski A. 1968] ch ii § 1, § 2 . The binary tree 

of height the ordinal α we denote with Dα. After the previously mentioned unification 



theorem 17 of the next paper we  get  that  the  hierarchy  of  binary  trees  is  a universal 

embedding  hierarchy for the order- types . Since the binary trees are subsets of linearly 

ordered fields and their elements consisting exclusively from 1's in the binary 

sequence,  correspond  to   the   ordinal   numbers with   the Hessenberg operations (see also 

[Conway J.H. 1976] ch 3 note pp 28 and  also [ Kyritsis C. 1991Alt] the characterisation 

theorem ) this universal   embedding property   we   call also   binary  arithmetisation .The 

least ordinal αsuch that  an  order-type λ is order embeddable in the binary tree Dα ,we call 

the binary density of λ ,and we denote it by  db(λ). 

Theorem 11 ( The binary arithmetisation theorem of order-types ) 

Every order-type λ  is binary arithmetisable and has a binary density db(λ) which is an 

ordinal number . 

From the previous theorem ,by denoting a level of height α of a binary tree ,by Tα ,and giving 

to the Cartesian product   the lexicographical ordering ,we also get the next  : 

Corollary 12. The formal power series hierarchies R((Dα)), , are universal 

embedding hierarchies for the linearly ordered  fields . 

§ 4 Some general results on linearly ordered fields . 

In this paragraph we give some results generally for the category of linearly ordered fields. 

To save space we shall not give the proofs, since they do not have serious 

dificulties,nevertheless we shall indicate how they can be obtained . 

     Lemma 13 (On the rank and characteristic) 

     Let us suppose that the characteristic of the field F is   where α, is α limit ordinal. It 

holds  that  the  rank  of the extension F/K is a cofinal order-type with the characteristic of 

the field F. That is cf(r(F/K))= cf(charF)=cf(char F-char K). 

Remark.For the definition of the rank of an extension see [ Kyritsis C. 1991] § 4. For the 

proof of the previous theorem we use the 

existence for any principal ordinal  of the ordinal real numbers fields of 

characteristic  . 

          Let F be  a linearly ordered field. If x F by L(x) we denote the set L(x) = {y| y F 

y<x} and by R(x) the set R(x) ={y| y F x<y}. 

          By elementary arguments on linearly ordered  fields  the following identities can be 

proved. 

     Lemma  14 

          Let x, y  F. The following hold 

     1.   L(-x) = - L(x)                          R(-x) = -R(x) 

     2.   L(x+y) = L(x)+y = x+L(y) 

          R(x+y) = R(x)+y = x+R(y) 

     3.   L(x.y) = L(x).y + xL(y) - L(x).L(y)  = R(x).y + xR(y) - R(x)R(y) 

          R(x.y) = L(x).y+xR(y) - L(x).R(y) = R(x).y + xL(y) - R(x).L(y) 



     4.  

     5.    

          The previous identities show also that the definition of operations used to define the 

surreal number fields   are  not  something  peculiar  to  these  fields  but hold in any linearly 

ordered field . 

      In the next paper  of  this  work  we  will understand 

the   true   peculiarity   of    the    technique    of    the surreal  numbers. 

     Lemma 15  If F/k is an  extension  of  two  linearly  ordered fields , it  holds that   

     tr.d.(F/k)  2
(Char.F)

 where tr.d.is the transandental degree of the extension . 

     Remark. For the definition of the  transandental  degree, base e.t.c see for instance [ 

Zariski O.-Samuel P. 1958] vol. I pp. 95-102 also [Kyritsis C. 1991 ] § 4 ). The proof is 

obtained by using the Holder-type classification for F :Qα  F  Rα where α=char(F). 

    The  next proposition shows that  all  the  information of  an extension of linearly ordered 

fields is to be found in the ideal of infinitesimals (or in the infinite elements). Proposition 16. 

Let F/k, F'/k two (ordered) extensions of the same linearly ordered field k. If the  ideals  of K-

infinitesimals of the extension denoted respectively by mF and mF' are isomorphic as ordered 

integral domains ,then this isomorphism is extendable to an algebraic  and order isomorphism 

of the fields F, F'. 

 Remark .The  proof is direct from the definitions. 

Remark. An extension F/k of the linearly ordered field  k  to F, is transcendental if Char 

F>char k and then  the field F is an infinite dimensional vector space over k. 

Proposition 17 .  Let  F  be  a  linearly   ordered   field   of characteristic char(F)= 

 where α is a limit ordinal . It holds that the field F in the order topology is totally 

disconnected . 

Remark. The proof  uses  the  existence,  for  every  principal ordinal  , of the fields of 

ordinal real numbers R . 

Theorem 18  The classes of transfinite real numbers CR, and of ordinal real numbers Ω1R, 

coinside. 

Proof. Since both Hierarchies of transfinite real and ordinal real numbers have the  universal 

embedding property (see remark 9 ) ,every transfinite real number-field is contained in some 

ordinal real number-field and every ordinal  real-number   field   in   some   transfinite   real 

number-field.Thus CR Ω1R  and  Ω1R  CR, and CR = Ω1R .      Q.E.D. 

§ 5       The A-Archimedeanity 

       The, at least  two different, definitions of archemideanity, that can be found for instance 

in [Glayzal A. 1937] and in other authors as in [ Conway J.H. 1976 ] or [ Arin E. Schreier O. 



1927] give us the opportunity to treat them in unified way through the concept of 

archemideanity relative to a monoid. 

     The  fact  that  the  linearly  ordered  field   F   has characteristic ω  (the least infinite 

ordinal)  is  equivalent with the statement that the field F is Archimedean  according to any 

(classical) known definition. 

     Let us denote by G a linearly ordered group and by A a monoid  of endomorphisms of 

G  as a group. 

     It is said that x is A-Archimedean to y where x,y G  iff there are a,b A with a(x)y and 

b(y)x.   If A is the domain Z of integers (the endomorphisms are  multiplication  with  an 

integer )we simply say that x is Archimedean to y. If for every pair x,y of elements of G 

holds that x is A-Archimedean to y, it is said that G is A-Archimedean 

     Let F be a linearly ordered field .If we consider it as an additive group, and we denote by 

A1 a monoid of endomorphisms of the additive group ,   we get the concept of x being A-

additively Archimedean to y. If we consider the multiplicative group F
*
 and we take a 

monoid, denoted by A2, of edomorphisms of the multiplicative group, we get the concept of 

x  being A-multiplicatively Archimedean to y. 

     Let A=A1VA2 be the monoid of mappings from F to F generated by the previous monoids 

. It is said that x is A-field-Archimedean to y iff there are a, b A such that a(x)y, b(y)x. 

     In any extension F/k of a field K by a field F, where F,k are fields of ordinal 

characteristic  with  char  F>Char  K,  if we take as A1, to be the multiplication with elements 

from the field K ( considering the field  F as a linear space over K), we get the concept of x 

being K-additively Archimedean to y.( For K=R this is also known as "x is commensurate to 

y " see [Conway J.H. 1976] ch 3 pp 31 ). 

     If A1 is the multiplication with  integers and A2 is  power  with integral exponents ,then it 

is simply said that x is field Archimedean to y  (Known also from  the 

A.  Gleyzal’s  definition of  Archimedeanity) 

     A non-Archimedean linearly ordered field denoted by F is simply  a linearly ordered 

field  for which  not all pairs (x,y) of its elements are mutually additively Archimedean. 

(Thus charF>ω ) But it can be very well A-additively Archimedean for other monoids A.In 

particular if charF=α and A is the monoid of endomorphisms of the additive group of F 

defined by  (field ) multiplication with ordinals less than α, then it is A-additively 

Archimedean  and we denote it by writing that it is α-additively Archimedean 
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List of special symbols 

  

   α,β,ω           :  Small Greek letters 

  

      Ω1         :  Capital   Greek   letter   omega   with    the subscript 1 

  

     F
a
          :  Capital   letter F  with   superscript  a.  

  

     N      :  Capital Aleph ,the first letter of the hebrew alphabet . In the text is used a capital 

script. letter n . 

       : cross in a circle, point in a circle . 

     Nα,Zα,Qα,Rα,:  Roman capital  letters  with subscript small Greek letters 

     Cα,Hα 

      
*
Χ, 

*
R et.c  :  Capital standard or roman letters with left superscript a star. 

     CN,CZ,CQ,      :Capital   standard    letter    c    followed    by capital  letters 

     C
*
R,                   with  possibly  a  left superscript  a  star 

                :  Capital tstandard letter with a cap. 

     Σ           :  Capital Greek letter sigma 

            :  Capital standard  D with subscript a  small Greek  letter and in upper place a 

small zero. 

  

  

  



  

  

  

  

  

  

  

  

  


