
UNIVERSITY OF IOANNINA
SCHOOL OF SCIENCE

DEPARTMENTOFMATHEMATICS

Athanasios L. Konstantinidis

Algorithms and Complexity of Graph
Modification Problems

PhD Dissertation

Ioannina, 2021

”This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme «Human Resources Development, Education and
Lifelong Learning» in the context of the project “Strengthening Human Resources Research
Potential viaDoctorateResearch” (MIS-5000432), implemented by the State Scholarships Foun-
dation (ΙΚΥ)”

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ
ΣΧΟΛΗΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑΜΑΘΗΜΑΤΙΚΩΝ

Αθανάσιος Λ. Κωνσταντινίδης

Αλγόριθμοι και Πολυπλοκότητα σε Προβλήματα
Επεξεργασίας Γραφημάτων

Διδακτορική Διατριβή

Ιωάννινα, 2021

«Το έργο συγχρηματοδοτείται από την Ελλάδα και την Ευρωπαϊκή Ένωση (Ευρωπαϊκό
Κοινωνικό Ταμείο) μέσω του Επιχειρησιακού Προγράμματος «Ανάπτυξη Ανθρώπινου Δυνα-
μικού, Εκπαίδευση καιΔιάΒίουΜάθηση», στοπλαίσιο τηςΠράξης «Ενίσχυση τουανθρώπινου
ερευνητικού δυναμικού μέσω της υλοποίησης διδακτορικής έρευνας» (MIS-5000432), που
υλοποιεί το Ίδρυμα Κρατικών Υποτροφιών (ΙΚΥ)»

Η παρούσα Διδακτορική Διατριβή εκπονήθηκε στο πλαίσιο των σπουδών για την
απόκτηση του Διδακτορικού Διπλώματος που απονέμει το Τμήμα Μαθηματικών της
Σχολής Θετικών Επιστημών του Πανεπιστημίου Ιωαννίνων.

Εγκρίθηκε την 31/03/2021 από την εξεταστική επιτροπή:

Χάρης Παπαδόπουλος
Αναπληρωτής Καθηγητής (Επιβλέπων)
Τμήμα Μαθηματικών
Πανεπιστήμιο Ιωαννίνων

Σταύρος Δ. Νικολόπουλος
Καθηγητής (Τριμελή Συμβουλευτική Επιτροπή)
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Πανεπιστήμιο Ιωαννίνων

Λεωνίδας Παληός
Καθηγητής (Τριμελή Συμβουλευτική Επιτροπή)
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Πανεπιστήμιο Ιωαννίνων

Λουκάς Γεωργιάδης
Αναπληρωτής Καθηγητής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Πανεπιστήμιο Ιωαννίνων

Χρήστος Ζαρολιάγκης
Καθηγητής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Πανεπιστήμιο Πατρών

Δημήτριος Θηλυκός
Καθηγητής
Τμήμα Μαθηματικών
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Χρήστος Νομικός
Επίκουρος Καθηγητής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Πανεπιστήμιο Ιωαννίνων

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ
”Δηλώνω υπεύθυνα ότι η παρούσα διατριβή εκπονήθηκε κάτω από τους διεθνείς ηθι-
κούς και ακαδημαϊκούς κανόνες δεοντολογίας και προστασίας της πνευματικής ιδιο-
κτησίας. Σύμφωνα με τους κανόνες αυτούς, δεν έχω προβεί σε ιδιοποίηση ξένου επι-
στημονικού έργου και έχω πλήρως αναφέρει τις πηγές που χρησιμοποίησα στην εργα-
σία αυτή.”

Αθανάσιος Λ. Κωνσταντινίδης

Acknowledgments

I would like to express my gratitude to my supervisor Charis Papadopoulos for his
continuous support all these years. Without his encouragement and scientific guid-
ance it wouldn’t be possible to complete this dissertation. I should mention that he
was always willing to listen to every thought and explain any question patiently. All
these fruitful conversations and constructive meetings were a great lesson for me. I
am glad you are my teacher. Also, I thank you for the opportunities that you gave me.
One of them was when Prof. Pinar Heggernes invited us for the collaboration at the
Department of Informatics, University of Bergen, Norway.

I would like to thank Pinar Heggernes for the invitation and for her hospitality in
Bergen; it was an amazing and constructive week. Additionally, I want to thank the
other two co-authors form the same Department, Petr Golovach and Paloma T. Lima.
I really enjoyed working with you.

Moreover, I would like to thankProf. StavrosD.Nikolopoulos (co-author andmem-
ber of advisor committee) for the cooperation and valuable advices. It was a great ex-
perience working with you. I also want to thank Prof. Leonidas Palios (member of
advisor committee) for the useful comments and advices.

Last but not least, a special thanks to my family for their support throughout my
studies.

Abstract

Graph modification problems play important role in both structural and algorith-
mic graph theory.These problems have been studied for decades and find a large num-
ber of practical applications in several different fields in real world. In this thesis, we
study a famous edge deletion problem, known under the terms ClusterDeletion or
P3-free Edge Deletion, and we consider an edge labeling scheme that characterizes
social networks in terms of an edge deletion problem, known as MaxSTC. Both prob-
lems are known to be NP-hard.We provide the first computational results ofMaxSTC
and we determine the computational complexity of Cluster Deletion on particular
graph classes.Moreover, we generalize theMaxSTCproblem and propose a relaxation
of the classical F-free Edge Deletion problem that we call Strong F-Closure. We
study Strong F-Closure from the parameterized perspective and provide computa-
tional results with various natural parameterizations.

In social networks the Strong Triadic Closure is an assignment of the edges
with strong or weak labels such that any two vertices that have a common neighbor
with a strong edge are adjacent. The problem of maximizing the number of strong
edges that satisfy the strong triadic closure is known as MaxSTC and it was recently
shown to beNP-complete for general graphs.Herewe initiate the study of graph classes
for which MaxSTC is solvable in polynomial time or NP-complete. On the positive
side, we show that the problem admits a polynomial-time algorithm for the following
incomparable classes of graphs: proper interval graphs, cographs, graphs with max-
imum degree 3, and graphs with bounded treewidth. To complement our result, we
show that the problem remainsNP-complete on the following graphs: split graphs, and
consequently also on chordal graphs, graphs with maximum degree at most 4, planar
graphs, and (3K1, 2K2)-free graphs. Thus, we contribute to define the first border be-
tween graph classes on which the problem is polynomially solvable and on which it
remains NP-complete.

Inspired by the close relative of MaxSTC, we consider the Cluster Deletion
problem. The goal is to remove the minimum number of edges of a given graph,
such that every connected component of the resulting graph constitutes a clique. It
is known that the decision version of Cluster Deletion is NP-complete on (P5-free)
chordal graphs, whereas Cluster Deletion is solved in polynomial time on split
graphs. However, the existence of a polynomial-time algorithm of Cluster Dele-

i

ii

tion on interval graphs, a proper subclass of chordal graphs, remained a well-known
open problem. Our main contribution is that we settle this problem in the affirma-
tive, by providing a polynomial-time algorithm for Cluster Deletion on interval
graphs. Moreover, despite the simple formulation of a polynomial-time algorithm on
split graphs, we show that Cluster Deletion remains NP-complete on a natural and
slight generalization of split graphs that constitutes a proper subclass ofP5-free chordal
graphs. To complement our results, we provide faster and simpler polynomial-time al-
gorithms for ClusterDeletion on subclasses of such a generalization of split graphs.

Furthermore we introduce and initiate the parameterized study of the Strong F-
closure problem, for a fixed graph F, which a natural generalization ofMaxSTC.The
goal is to select a maximum number of edges of the input graph G, and mark them as
strong edges, in the following way: whenever a subset of the strong edges forms a sub-
graph isomorphic to F, then the corresponding induced subgraph of G is not isomor-
phic to F. Hence, the subgraph of G defined by the strong edges is not necessarily F-
free, but whenever it contains a copy of F, there are additional edges inG to forbid that
strong copy of F in G. Therefore Strong F-closure is a generalization of MaxSTC,
whereas it is a relaxation of F-free Edge Deletion. We study Strong F-closure
from a parameterized perspective with various natural parameterizations. Our main
focus is on the number k of strong edges as the parameter. We show that the problem
is FPT with this parameterization for every fixed graph F, whereas it does not admit
a polynomial kernel even when F = P3. In fact, this latter case is equivalent to the
MaxSTC problem, which motivates us to study this problem on input graphs belong-
ing to well known graph classes. We show that MaxSTC does not admit a polynomial
kernel even when the input graph is a split graph, whereas it admits a polynomial ker-
nel when the input graph is planar, and even d-degenerate. Furthermore, on graphs
of maximum degree at most 4, we show that MaxSTC is FPT with the above guar-
antee parameterization k − μ(G), where μ(G) is the maximum matching size of G.
We conclude with some results on the parameterization of Strong F-closure by the
number of weak edges of G.

Περίληψη

Τα προβλήματα επεξεργασίας γραφημάτων παίζουν σημαντικό ρόλο τόσο στην
δομική όσο και στην αλγοριθμική θεωρία γραφημάτων. Τα προβλήματα αυτά έχουν
μελετηθεί για δεκαετίες και βρίσκουν πρακτικές εφαρμογές σε σημαντικές περιοχές
έρευνας. Σε αυτήν την διατριβή μελετάμε ένα κλασικό πρόβλημα επεξεργασίας ακμών,
γνωστόωςClusterDeletionήP3-freeEdgeDeletion, και εξετάζουμε έναν κανό-
να επιγραφής ακμών ο οποίος χαρακτηρίζει τα κοινωνικά δίκτυα, ως ένα πρόβλημα
διαγραφής ακμών, γνωστό ως MaxSTC. Τα δύο αυτά προβλήματα είναι γνωστό ότι
είναιNP-δύσκολα.Παρέχουμε ταπρώτα υπολογιστικά αποτελέσματα για τοMaxSTC
και καθορίζουμε την υπολογιστική πολυπλοκότητα για το Cluster Deletion σε
κλάσεις γραφημάτων. Επιπλέον, γενικεύουμε το πρόβλημα MaxSTC προτείνοντας
μία “χαλάρωση” του κλασικού προβλήματος επεξεργασίας ακμώνF-freeEdgeDele-
tion, το οποίο καλούμε StrongF-Closure.Μελετάμε τοπρόβλημα StrongF-Clos-
ure από την σκοπιά της παραμετρικής πολυπλοκότητας και παρέχουμε τα πρώτα
υπολογιστικά αποτελέσματα υπό διαφορετικούς παραμέτρους.

Στα κοινωνικά δίκτυα η ΙσχυρήΤριαδικήΚλειστότητα είναι μία ανάθεση επιγραφών
στις ακμές ως ισχυρές ή ασθενείς ακμές, έτσι ώστε για οποιεσδήποτε δύο κορυφές οι
οποίες έχουν ένα κοινό γείτονα με ισχυρή ακμή είναι γειτονικές μεταξύ τους (είτε με
ισχυρή είτε με ασθενή ακμή). Το πρόβλημα μεγιστοποίησης του αριθμού των ισχυρών
ακμών οι οποίες να ικανοποιούν την ισχυρή τριαδική κλειστότητα είναι γνωστό ως
MaxSTC και έχει δειχθεί πρόσφατα ότι είναι NP-πλήρες σε γενικά γραφήματα. Σε
αυτή διατριβή επικεντρωνόμαστε σε κλάσεις γραφημάτωνμε την συστηματική μελέτη
για τις οποίες το πρόβλημα MaxSTC είναι επιλύσιμο σε πολυωνυμικό χρόνο ή παρα-
μένει NP-πλήρες. Από την θετική σκοπιά των υπολογιστικών αποτελεσμάτων, δεί-
χνουμε ότι το πρόβλημα επιδέχεται πολυωνυμικού χρόνου αλγόριθμο στις ακόλουθες
μη-συγκρίσιμες κλάσεις γραφημάτων: proper interval γραφήματα, cographs, γραφή-
ματα με μέγιστο βαθμό 3, και γραφήματα με φραγμένο δεντροπλάτος. Από την άλλη
πλευρά, δείχνουμε ότι το πρόβλημαπαραμένειNP-πλήρες ακόμακαι όταν το γράφημα
εισόδου ανήκει σε μια από τις ακόλουθες κλάσεις γραφημάτων: split γραφήματα (επο-
μένως, και chordal γραφήματα), γραφήματα με μέγιστο βαθμό το πολύ 4, επίπεδα
γραφήματα, και (3K1, 2K2)-free γραφήματα. Συνεπώς, συμβάλουμε να οριστούν τα
πρώτα υπολογιστικά όρια μεταξύ κλάσεων γραφημάτων για τις οποίες το πρόβλημα
είναι πολυωνυμικά επιλύσιμο και για τις οποίες παραμένει NP-πλήρες.

iii

iv

Εμπνευσμένοι από την στενή σχέση που έχει με το πρόβλημα MaxSTC, θεωρούμε
το πρόβλημα Cluster Deletion. Σκοπός είναι να αφαιρέσουμε το ελάχιστο πλήθος
ακμών από ένα δοθέν γράφημα, έτσι ώστε κάθε συνεκτική συνιστώσα του εναπομεί-
ναντος γραφήματος να σχηματίζει κλίκα. Είναι γνωστό ότι το Cluster Deletion
ως πρόβλημα απόφασης είναι NP-πλήρες στα (P5-free) chordal γραφήματα, ενώ το
Cluster Deletion λύνεται σε πολυωνυμικό χρόνο στα split γραφήματα. Ωστόσο, η
ύπαρξη ενός πολυωνυμικού χρόνου αλγορίθμου για το Cluster Deletion στα in-
terval γραφήματα, μία γνήσια υποκλάση των chordal γραφημάτων, παρέμενε ανοιχτό
πρόβλημα. Η κύρια συνεισφορά στο πρόβλημα αυτό είναι ότι απαντάμε θετικά, δίνο-
ντας έναν πολυωνυμικό αλγόριθμο για το πρόβλημα Cluster Deletion στα inter-
val γραφήματα. Επιπλέον, αν και ο πολυωνυμικός αλγόριθμος για τα split γραφήματα
είναι σχετικά απλός, δείχνουμε ότι το πρόβλημα Cluster Deletion παραμένει NP-
πλήρες σε μία φυσική και μικρή γενίκευση των split γραφημάτων που αποτελεί ταυτό-
χρονα μία γνήσια υποκλάση των (P5-free) chordal γραφημάτων. Παρά την δυσκολία
σε αυτή τη γενίκευση των split γραφημάτων, παρέχουμε γρηγορότερους και απλού-
στερους πολυωνυμικούς αλγορίθμους για το πρόβλημα Cluster Deletion σε υπο-
κλάσεις της συγκεκριμένης γενίκευσης.

Επιπροσθέτως, εισάγουμε και μελετάμε την παραμετρική πολυπλοκότητα του προ-
βλήματος Strong F-Closure, για σταθερό γράφημα F, που αποτελεί μία γενίκευση
του προβλήματος MaxSTC. Ο στόχος είναι να επιλέξουμε ένα μέγιστο πλήθος από
ακμές του δοθέντος γραφήματος G και να τις χαρακτηρίσουμε ως ισχυρές ακμές, με
τον ακόλουθο τρόπο: όταν ένα υποσύνολο από ισχυρές ακμές σχηματίζει ένα υπογρά-
φημα ισόμορφο με το F, τότε το αντίστοιχο επαγόμενο υπογράφημα του G δεν είναι
ισόμορφο με το F. Συνεπώς, το υπογράφημα τουG που ορίζεται από τις ισχυρές ακμές
δεν είναι απαραίτητα F-free, αλλά όταν περιέχει ένα αντίγραφο του F, υπάρχουν επι-
πλέον ακμές στο G ώστε να απαγορεύουν αυτό το ισχυρό αντίγραφο του F στο G.
Επομένως, το πρόβλημα Strong F-Closure αποτελεί μία γενίκευση του προβλήμα-
τος MaxSTC όταν F = P3, ενώ αποτελεί ένα είδος “χαλάρωσης” του προβλήματος F-
free EdgeDeletion.Μελετάμε την παραμετρική πολυπλοκότητα του προβλήματος
υπό διάφορες φυσικές παραμέτρους. Επικεντρωνόμαστε κυρίως στο πλήθος k των
ισχυρών ακμών ως παράμετρο. Δείχνουμε ότι το πρόβλημα είναι FPT με αυτή την
παραμετροποίηση για κάθε σταθερό γράφημα F, ενώ δεν επιδέχεται πολυωνυμικό
πυρήνα ακόμα και όταν το F = P3. Αυτή η τελευταία περίπτωση είναι ισοδύναμη με
τοMaxSTC πρόβλημα, το οποίο μας παρακινεί να μελετήσουμε το πρόβλημα αυτό σε
γνωστές κλάσεις γραφημάτων.Δείχνουμε ότι τοMaxSTCδεν επιδέχεται πολυωνυμικό
πυρήνα ακόμα και όταν το γράφημα που μας δίνεται είναι split, ενώ επιδέχεται ένα
πολυωνυμικό πυρήνααν το γράφημα είναι επίπεδο ή d-degenerate γράφημα. Επιπροσ-
θέτως, στα γραφήματα με μέγιστο βαθμό το πολύ 4, δείχνουμε ότι το MaxSTC παρα-
μένει FPT ακόμα και με τη παράμετρο k − μ(G), όπου μ(G) είναι το μέγεθος του

v

μέγιστου ταιριάσματος του G. Κλείνουμε με ορισμένα υπολογιστικά αποτελέσματα
της παραμετροποίησης του προβλήματος Strong F-Closure υπό το πλήθος των
ασθενών ακμών, όπου δείχνουμε ότι το πρόβλημα είναι FPT και επιδέχεται πολυωνυ-
μικό πυρήνα με τη συγκεκριμένη παράμετρο.

Contents

Abstract i

Περίληψη iii

1 Introduction 1
1.1 Graph modification problems . 1
1.2 Previously known results . 3
1.3 Our contribution . 5
1.4 Road map . 9

2 Definitions and Notations 11
2.1 Basic Concepts on Graph Theory . 11
2.2 Graph Classes . 15
2.3 Computational Complexity . 19
2.4 Problem Definitions . 24

3 MaxSTC on Split and Proper Interval Graphs 29
3.1 Introduction . 29
3.2 Preliminaries . 32

3.2.1 Basic Results . 33
3.2.2 The line-incompatibility graph and twin vertices 33

3.3 MaxSTC on split graphs . 36
3.4 Computing MaxSTC on proper interval graphs 43

4 MaxSTC on Cographs and graphs of low maximum degree 57
4.1 Introduction . 57
4.2 Preliminaries . 60

1

2 CONTENTS

4.3 Computing MaxSTC on Cographs 61
4.3.1 Maximum independent set of the cartesian product of cographs 66

4.4 Graphs of Low Maximum Degree . 68

5 Cluster Deletion on Interval graphs and Starlike graphs 73
5.1 Introduction . 73
5.2 Preliminaries . 76
5.3 Polynomial-time algorithm on interval graphs 77

5.3.1 Splitting into partial solutions 82
5.4 Cluster Deletion on starlike graphs 89

5.4.1 Polynomial-time algorithms on subclasses of starlike graphs . 94

6 Parameterized Aspects of Strong Subgraph Closure 103
6.1 Introdution . 104
6.2 Preliminaries . 107
6.3 Parameterized complexity of Strong F-closure 108
6.4 Parameterized complexity of MaxSTC 114
6.5 Further Results . 127

7 Conclusion 135
7.1 Summary . 135
7.2 Open Problems . 138

Bibliography 141

Short CV 151

List of Publications 153

CHAPTER1
Introduction

In this chapter, we discuss graphmodificationproblems andprovide previous known
results on such problems. We present the main motivation of our study and we high-
light our results. Moreover, we outline the content of each forthcoming chapter.

1.1 Graph modification problems

Graph modification problems is one of the fundamental computational problems
in structural and algorithmic graph theory. In such problems we want to modify the
input graph with theminimum number of modifications such that the resulting graph
satisfies a certain property. Completion, deletion, editing, contraction can be some of
the type of modifications over the vertices or the edges of the graph. These problems
have been studied over the last decades. In the classical book of Garey and Johnson, 18
different types of vertex and edge modification problems are mentioned [51]. Regard-
ing the vertex deletion problem there is a negative result which states that for any non-
trivial and hereditary property (on induced subgraphs) the problem is NP-complete
[99]. However, there is no such generalized result for edge modification problems, de-
spite the individual NP-completeness results on most of the interesting graph proper-
ties which are typically formalized into graph classes. In edge modification problems
the researchers focus on graph classes with good structural properties and propose
approximation or parameterized algorithms [7, 15, 16, 29, 107]. Apart from the algo-
rithmic aspects of these problems, graph modification problems find a large number
of practical applications in several different fields in real world. Molecular biology, nu-
merical linear algebra, social network, and other fields of computer science are some
of the application areas [6, 54, 111].

Our main aim in this thesis is to extend the algorithmic results on such prob-
lems. More precisely, we study a famous edge deletion problem, known under the
terms Cluster Deletion or P3-free Edge Deletion, and we consider an edge la-
beling scheme that characterizes social networks in terms of an edge deletion prob-

1

Chapter 1 1.1. Graph modification problems

lem, known under the term MaxSTC. We provide the first computational results of
MaxSTC andwe determine the classical computational complexity of ClusterDele-
tion on particular graph classes. Moreover, we generalize the MaxSTC problem and
propose a relaxation of the classical F-free Edge Deletion problem that we call
Strong F-Closure. We study Strong F-Closure from the parameterized perspec-
tive and provide computational results with various natural parameterizations. In clas-
sical computational complexity the goal is to show that a problem either can be solved
by a polynomial-time algorithm depending on the size of the input or provide an
NP-hardness reduction. In contrast to classical complexity, parameterized complexity
splits the size of the input into an input size and another value, called the parameter.
Themain goal is to showwhether or not a problem is fixed parametric tractable (FPT).
A problem is FPT if can be solved in time f(k) · nO(1), where k is the parameter, f some
computational function and n is the size of the problem. In other words, the goal is to
design an algorithm that are efficient when the parameter is small.

The principle of Strong Triadic Closure is an important concept in social networks
[41]. Understanding the strength and nature of social relationships has found an in-
creasing usefulness in the last years due to the explosive growth of social networks
(see e.g., [5]). Towards such a direction the Strong Triadic Closure principle enables
us to understand the structural properties of the underlying graph: it is not possible
for two individuals to have a strong relationship with a common friend and not know
each other [60]. Such a principle stipulates that if two people in a social network have a
”strong friend” in common, then there is an increased likelihood that they will become
friends themselves at some point in the future. Satisfying the Strong Triadic Closure
(STC) is to characterize the edges of the underlying graph into weak and strong such
that any two vertices that have a strong neighbor in common are adjacent. Since users
interact and actively engage in social networks by creating strong relationships, it is
natural to consider the MaxSTC problem: maximize the number of strong edges that
satisfy the Strong Triadic Closure.The problem has been introduced recently by Sintos
and Tsaparas and is known to be NP-hard [118].

Clustering is a general term that is considered on a set of elements with a relation
between the given elements. The task is to partition the elements into subsets, named
clusters, such that the elements of the same cluster have high similarities and elements
of different clusters have low similarities to each other [68, 69]. Some application of
clustering can be found in computational biology [117], image processing [124], VLSI
design [66]. Here, we study the Cluster Deletion problem: given a graph we want
to delete the minimum number of edges such that the resulting graph is a union of
cliques. Equivalently, the goal is characterized by no induced path P3 on three vertices
on the resulting graph and, therefore, it is also known under the term P3-free Edge
Deletion problem. It is known to be NP-hard and has been studied extensively even

2

Chapter 1 1.2. Previously known results

on restricted inputs formalized by graph classes.
Looking closer at the above definitions, one can realize a relationship between the

two problems MaxSTC and Cluster Deletion. In particular, the edges inside the
cliques of the resulting graph for Cluster Deletion can be labeled as strong edges
for MaxSTC, whereas the rest of the (deleted) edges can be labeled as weak edges. It is
not difficult to see that such a labeling scheme satisfies the strong triadic closure.Thus,
the number of edges in an optimal solution for Cluster Deletion consists a lower
bound for the number of weak edges in an optimal solution for MaxSTC. However,
the opposite is not always true. Hence, an interesting point of research direction is to
study and characterize graph classes in which both problems have the same size of
solution.

Motivated by the role of triadic closure in social networks and the importance
of finding a maximum subgraph avoiding a fixed pattern, we introduce Strong F-
Closure which is a generalization of MaxSTC and, at the same time, it consists a
relaxation of F-Free Edge Deletion. The task in Strong F-Closure is to select a
maximum number of edges of the input graph G, and mark them as strong edges, in
the followingway: whenever a subset of the strong edges forms a subgraph isomorphic
to F, then the corresponding induced subgraph ofG is not isomorphic to F. Hence, the
subgraph of G defined by the strong edges is not necessarily F-free, but whenever it
contains a copy of F, there are additional edges in G to forbid that strong copy of F in
G. Notice that whenever F = P3, the Strong F-Closure problem is equivalent to the
MaxSTC problem.

1.2 Previously known results

Motivated by social network analysis, Sintos andTsaparas introducedMaxSTC and
proved that it is anNP-complete problemon general graphs [118]. Also, a constant fac-
tor approximation ratio was proposed for its dual problem of minimizing the number
of weak edges [118].

On the contrary, Cluster Deletion has attracted several researchers. Regarding
its classical complexity, it is known to be NP-hard on general graphs [116]. With re-
spect to the maximum degree of a graph, Komusiewicz and Uhlmann[85] have shown
an interesting dichotomy result: ClusterDeletion remainsNP-hard onC4-free graphs
with maximum degree four, whereas it can be solved in polynomial time on graphs
having maximum degree at most three. For particular graph classes characterized by
forbidden induced subgraphs, Gao et al.[50] showed that Cluster Deletion is NP-
hard on (C5, P5, bull, fork, co− gem, 4−pan, co−4−pan)-free graphs or (3K1, 2K2)-
free graphs. In the positive side, they provide a polynomial-time algorithmon cographs

3

Chapter 1 1.2. Previously known results

(P4-free graphs) by iteratively picking a maximum clique as a cluster.
Moreover, Bonomoet al.[10] extended the result ofClusterDeletionon cographs

for the class of P4-reducible graphs by using the same approach. On another paper,
Bonomo et al. [11] studied Cluster Deletion on subclasses of chordal graphs. They
showed that the problem remains NP-hard on P5-free chordal graphs and, thus, on
chordal graphs. Moreover, they proposed polynomial-time algorithms on proper in-
terval graphs and split graphs. In regardswith the parameterized complexity, the brute-
force approach proposed by Cai [16] shows that Cluster Deletion is FPT param-
eterized by the number of deleted edges. Furthermore, Cluster Deletion is APX-
hard [116] and there is a 2-approximation (non-polynomial) algorithm [33]. A sum-
mary of the known results on classical complexity of MaxSTC and Cluster Dele-
tion are given in Table 1.1.

During our research, there was an increasing interest on generalizations of the
MaxSTC problem as well as the Cluster Deletion problem. Grüttemeier and Ko-
musiewicz [62, 63] studied the paremeterized complexity of MaxSTC and Cluster
Deletion. They showed that MaxSTC admits a linear kernel parameterized by the
weak edges, which implies that the particular parameterization problem is FPT. Fur-
ther, they showed that MaxSTC and Cluster Deletion are FPT whenever the pa-
rameter is the number of strong edges, but both problems do not admit polynomial
kernels. Moreover, a complexity dichotomy of both problems was proposed onH-free
graphs for any fixed graph H of order at most four [62, 63].

Furthermore, Sintos andTsaparas [118] had introduced a generalization ofMaxSTC
with c different types of strong edges, called Multi-STC. In Multi-STC an induced
P3 may receive two strong labels as long as they are different. Bulteau et al. [14] studied
the classical and parameterized complexity of Multi-STC and two variations under
the terms VL-Multi-STC and EL-Multi-STC. In the first variation every vertex has a
set of possible strong labels and the labeling of the incident edges must belong to this
set. In the latter variation every edge has a set of possible strong labels. They showed
that for all c ≥ 1 Multi-STC, VL-Multi-STC, and EL-Multi-STC are NP-hard prob-
lems [14]. In case of c ≥ 3 they obtain NP-hardness even if the number of weak edges
is equal to zero. Also, they showed that, assuming the ETH, there is no 2o(|V|2)-time
algorithm for VL-Multi-STC and EL-Multi-STC even if the number of weak edges
is equal to zero and c ∈ O(|V|). Regarding the parameterized complexity, Bulteau et
al. [14] proposed to use the number of weak edges of an optimal solution of MaxSTC,
denoted by k1, as a parameter. They provided a linear kernel for Multi-STC and a
2c+1 · k1-vertex kernel for VL-Multi-STC and EL-Multi-STC. On the other hand,
parameterization only by k1 leads to W[1]-hardness for both variations [14]. Also, in
[64] the authors studied the parameterized complexity of Multi-STC and EL-Multi-
STC by considering the following parameter, denoted by ξc−1: the minimum number

4

Chapter 1 1.3. Our contribution

of edges that need to be deleted from the input graph in order to obtain a graph with
maximumdegree c−1.They showed thatMulti-STC is FPTwith this parameter when
c ≤ 4 [64]. Moreover, EL-Multi-STC admits a linear kernel parameterized by ξ2 for
every fixed c [64].

Besides the above generalizations of MaxSTC, several other variations have been
considered closely related to triadic closure. Rozenshtein et al. [113] introduced two
such variations under the termsMinViol and its dualMaxTri. In theMinViol prob-
lem, we are given a graph G = (V,E), a set of communities C1, ...,Ck ⊆ V, and a set
of strong edges S ⊆ E, and the task is to ensure that each (Ci, S(Ci)) is connected
and the number of triadic violations, viol(S), is minimized. The authors showed that
both problems MinViol and MaxTri are NP-hard. In the MaxTri problem the goal
is to maximize the number of non-violated triangles. Rozenshtein et al. [113] devel-
oped an algorithm for MaxTri with an approximation guarantee. Moreover, Bevern
et al. [122] showed that uncapacitated facility location problemwithmatroid constraints
(UFLP-MC) is FPT. By using this problem, they proved that MaxTri is FPT with re-
spect to r + k, where r is the number of non-violated triangles and k the number of
communities.

Another way of attackingMaxSTC is through Linear Programming (LP) approach,
since MaxSTC can be formulated as maximization problem where: i) for each edge
there is a variable which takes 0 or 1 whether its label is weak or strong respectively,
ii) the objective function is the sum of all variables, and iii) the constrains can be con-
structed as follows: for every two variables that correspond to an induced P3 at most
one can be 1. Thus, MaxSTC has an Integer Programming (IP) formulation. Adriaens
et al. [3] studied such a relaxation of MaxSTC. The first relaxation is on the IP vari-
ables, where instead of using binary values for the variables, they allow each variable to
take value between 0 and 1. In case of {0, 1/2, 1}, the problem is half-integral and can
be solved in polynomial time [3]. The second relaxation allows the variables that cor-
respond to a triangle in the graph to take values larger than 1. Moreover, the authors
proposed three types of relaxations by changing the objective function and the con-
straints: allow violations, allow negative values, and maximize the number of strong
edges in all triangles [3].

1.3 Our contribution

Inspired by the NP-completeness result of MaxSTC on general graphs and in or-
der to have a better understanding on the complexity behavior of the problem, we
focus on graphs classes and provide new algorithmic results. We study MaxSTC on
subclasses of chordal graphs, since the class of chordal graphs finds important appli-

5

Chapter 1 1.3. Our contribution

cations in both theoretical and practical areas related to social networks [2, 83, 108].
We prove that MaxSTC remains NP-complete on split graphs and, thus, on chordal
graphs, since the class of split graphs forms a proper subclass of chordal graphs. More-
over, we give a polynomial-time algorithmon trivially perfect graphs by characterizing
an auxiliary graph that we call line-incompatibility. Surprisingly, our main result is a
polynomial-time algorithm on proper interval graphs by using a sophisticated analy-
sis and a rather technical dynamic programming approach which comes in contrast
to other known computational problems on proper interval graphs. Moreover, we are
able to express MaxSTC and Cluster Deletion in monadic second order logic of
second type (MSO2) which provide us to solve both problems in linear time on graphs
of bounded treewidth by applying Courcelle’s machinery throughMSO2.These results
have led to the following publications [88, 90]:

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis, and Charis Papadopoulos. In 28th In-
ternational Symposium on Algorithms and Computation (ISAAC 2017), Leibniz
International Proceedings in Informatics (LIPIcs), pages 53:1–53:12, 2017.

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis and Charis Papadopoulos. Discrete Ap-
plied Mathematics 285: 79-95, 2020.

Pushing further algorithmic results for MaxSTC, we prove that the optimal value
forMaxSTCmatches the optimal value for ClusterDeletion on cographs. By doing
so, we reveal an interesting vertex partitioning with respect to maximum cliques and
maximum independent sets.This result enables us to give anO(n2)-time algorithm for
MaxSTC on cographs. As a byproduct we characterize a maximum independent set
of the cartesian product of two cographs, which implies a polynomial-time algorithm
for computing such a maximum independent set. Furthermore, we work on graphs of
bounded degree. We show an interesting complexity dichotomy result: for graphs of
maximum degree four MaxSTC remains NP-complete, whereas for graphs of maxi-
mum degree three the problem is solved in polynomial time. The proof of hardness
on graphs of maximum degree four implies that there is no subexponential-time algo-
rithm forMaxSTCunless the Exponential-TimeHypothesis (ETH) fails.These results
have led to the following publications [86, 87]:

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos. 23rd
Annual International Computing andCombinatorics Conference, (COCOON2017),
Hong Kong, China, 2017. Springer Verlag, LNCS 10392: 346–358.

6

Chapter 1 1.3. Our contribution

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos.The-
oretical Computer Science 740: 76 -84, 2018.

Next we consider the Cluster Deletion which is well-studied problem. Despite
the intensively efforts of determining its complexity on proper subclasses of chordal
graphs, it still remained unresolved of whether it can be solved in polynomial time on
interval graphs. As alreadymentioned, Bonomo et al. [11] proved that ClusterDele-
tion is polynomial solvable on proper interval graphs, a subclass of interval graphs,
and it is NP-complete on chordal graphs. Our main contribution is that we settle this
problem in the affirmative, by providing a polynomial-time algorithm for Cluster
Deletion on interval graphs. In particular, our algorithm for interval graphs suggests
to consider a particular consecutiveness of a solution and apply a dynamic program-
ming approach defined by two vertex orderings.

Moreover, there is a very simple characterization of an optimal solution for Clus-
terDeletionon split graphs: either amaximal clique constitutes the only non-edgeless
cluster, or there are exactly two non-edgeless clusters whenever there is a vertex of the
independent set that is adjacent to all the vertices of the clique except one. Due to the
fact that true twins belong to the same cluster in an optimal solution, it is natural to
consider true twins at the independent set, as they are expected not to influence the
solution characterization. Surprisingly, we show that ClusterDeletion remainsNP-
complete even on such a slight generalization of split graphs. The class of graphs that
are obtained from split graphs by adding true twins is known as the class of starlike
graphs and, besides the NP-completeness, we provide interesting structural character-
izations. Based on the obtained structural properties, we reveal subclasses of starlike
graphs for which Cluster Deletion is polynomial time solvable. These results have
led to the following publication [89, 91]:

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis andCharis Papadopoulos. 44th International SymposiumonMath-
ematical Foundations of Computer Science,(MFCS 2019), Aachen,Germany, 2019.
Leibniz-Zentrum fur Informatik, LIPIcs 138: 12(1)-12(14), 2019.

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis and Charis Papadopoulos. Algorithmica, 2021.

In Table 1.1 we summarize our results together with previously-known results con-
cerning the complexity of Cluster Deletion and MaxSTC on graph classes.

Further, we introduce a generalization of MaxSTC, named Strong F-closure
problem, and we study parameterized aspects of such a problem. We consider three

7

Chapter 1 1.3. Our contribution

Graphs Cluster Deletion MaxSTC
General NP-hard [116] NP-hard [118]
Chordal NP-hard [11] NP-hard
Interval Poly-time [Th. 5.3.14] ?
Proper interval Poly-time [11] Poly-time [Th. 3.4.17]
Split Poly-time [11] NP-hard [Th. 3.3.4]
Starlike NP-hard [[11], Th. 5.4.3] NP-hard
Cograph Poly-time [50] Poly-time [Th. 4.3.6]
Trivially-perfect Poly-time [50] Poly-time [Th. 3.2.3]
Triangle free Poly-time Poly-time
Bounded treewidth Poly-time Poly-time
Planar NP-hard [Cor. 6.5.4] NP-hard [Th. 6.5.3]
(3K1, 2K2)-free NP-hard [50] NP-hard [Th. 6.5.5]
Δ = 3 Poly-time [85] Poly-time [Th. 4.4.3]
Δ ≥ 4 NP-hard [85] NP-hard [Th. 4.4.1]

Table 1.1: Complexity of Cluster Deletion and MaxSTC restricted on particular
graph classes. Our results obtained within this thesis are presented in bold.

different natural parameters to study the parameterized complexity of Strong F-
closure: the number of strong edges, the number of strong edges above guarantee
(maximum matching size) and the number of weak edges. We show that Strong F-
closure is FPT when parameterized by the number of strong edges for a fixed F,
even when we allow the size of F to be a parameter. We also observe that Strong F-
closure parameterized by the previous parameterization admits a polynomial kernel
if F has a component with at least three vertices and the input graph is restricted to be
d-degenerate. Next, we focus on the special case of F = P3 which coincides with the
MaxSTCproblem.We complement our FPT results by proving thatMaxSTCdoes not
admit polynomial kernel even on split graphs unless NP ⊆ coNP/poly. Since the size
of a maximum matching consists a lower bound for a solution of MaxSTC, we study
the parameterization above this bound. In particular, we show that MaxSTC is FPT
on graphs ofmaximumdegree atmost 4, parameterized by k−μ(G), where μ(G) is the
maximummatching size ofG. Moreover, we prove that Strong F-closure is FPT and
admits a polynomial kernel when parameterized by the number of weak edges and F is
a fixed graph. We conclude with some results related to classical computational com-
plexity. We show that MaxSTC remains NP-hard on (3K1, 2K2)-free graphs and on
planar graphs. Our reduction for planar graphs also works for the Cluster Deletion
problem and, thus, Cluster Deletion remains NP-hard on planar graphs. These re-
sults have led to the following publications [55, 56]:

8

Chapter 1 1.4. Road map

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima andCharis Papadopou-
los. 16th Scandinavian Symposium andWorkshops on AlgorithmTheory, (SWAT
2018), Malmo, Sweden, 2018. Leibniz-Zentrum fur Informatik, LIPIcs 101: 23(1)-
23(13), 2018.

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima, andCharis Papadopou-
los. Algorithmica 82: 2006-2038, 2020.

1.4 Road map

In Chapter 2, we give fundamental definitions and notations of graph theory and
graph classes. Moreover, we provide definitions of classical and parameterized com-
plexity theory. Finally, we give formal definitions of all decision problems that we con-
sider within this thesis.

In Chapter 3, we present our results for MaxSTC on split graphs, proper interval
graphs and trivially perfect graphs. For split graphs we prove NP-hardness, whereas
for the other two graph classes we provide polynomial-time algorithms.

InChapter 4, ourmain result is a polynomial-time algorithm for computingMaxSTC
on cographs and the equivalency betweenMaxSTC andClusterDeletion. Further-
more, we study MaxSTC on graphs with low maximum degree.

In Chapter 5, we give a polynomial-time algorithm for Cluster Deletion on in-
terval graphs andwe study the complexity of the problemon graphs related to a natural
generalization of split graphs.

In Chapter 6, we study the parameterized complexity of Strong F-closure and
MaxSTC with three different natural parameter. Moreover, we present NP-hardness
results for MaxSTC on planar and (3K1, 2K2)-free graphs.

In Chapter 7, we summarize our results and we discuss possible future directions
for further research.

9

Chapter 1 1.4. Road map

10

CHAPTER2
Definitions and Notations

In this chapter we fix some basic notation and terminology, and briefly introduce
the most fundamental concepts in computational complexity from both the classical
as well as the parameterized viewpoints. We discuss several graph classes which are
relevant to this thesis. Moreover we provide a catalogue with formal definitions of all
considered problems discussed within this thesis.

2.1 Basic Concepts on GraphTheory

A graph is a pair G = (V,E) such that E ⊆ V × V. The elements of V are called
vertices or nodes and the element of E are called edges of G. So, each edge is a pair of
vertices. We consider all pairs are unordered. We denote the number of vertices of G
by n and the number of edges of G by m; that is n = |V(G)| and m = |E(G)|.

A vertex v is incident to an edge e if v ∈ e or the edge e is incident to v. The two ver-
tices of an edge are called end-vertices or endpoints and the edge joins its end-vertices.
We denote an edge e that joins the vertices u and v by e = {u, v} or e = uv. For
simplicity, we sometimes write v ∈ G, instead of v ∈ V(G), and e ∈ G instead of
e ∈ E(G).

Two vertices u, v ∈ G are adjacent or neighbors if e = {u, v} is an edge of G.
Two edges are adjacent if they have an endpoint in common. The neighborhood of a
vertex v of G is N(v) = {x|{v, x} ∈ E} and the closed neighborhood of a vertex v of
G is N[v] = N(v) ∪ {v}. We extend this notion to vertex sets: for S ⊆ V, N(S) =⋃

v∈S N(v) \ S and N[S] = N(S) ∪ S. For two vertices u and v we say that u sees v if
{u, v} ∈ E(G); otherwise, we say that u misses v. We extend this notion to vertex sets:
a set A sees (resp., misses) a vertex set B if every vertex of A is adjacent (resp., non-
adjacent) to every vertex of B. Moreover, two adjacent vertices u and v are called true
twins if N[u] = N[v], whereas two non-adjacent vertices x and y are called false twins
if N(x) = N(y).

The degree of a vertex v is d(v) = |N(v)|, that is, the number of the incident edges

11

Chapter 2 2.1. Basic Concepts on Graph Theory

to v. We denote by Δ the maximum degree of G, so that Δ = max{d(v)|∀v ∈ G}. A
vertex of degree 0 is called isolated, a vertex of degree 1 is called pendant, and a vertex
v is called universal if d(v) = |V(G)| − 1.

The complement of a graph G, is the graph Ḡ = (V′,E′) with V′ = V and E′ =
{{u, v}|{u, v} /∈ E}.

A set of pairwise adjacent vertices of G is called clique. The size of maximum clique
in G is called the clique number, denoted by ω(G). A maximal clique of G is a clique
of G that is not properly contained in any clique of G.

A set of pairwise non-adjacent vertices ofG is called independent set.Themaximum
independent set denoted by α(G).

A vertex cover of a graph is a set of vertices that includes at least one endpoint of
every edge of the graph. It is not difficult to see that a set of vertices X is a vertex cover
if and only if V(G) \ X is an independent set.

A matching in G is a set of edges having no common endpoint. The maximum
matching number, denoted by μ(G), is the maximum number of edges in any match-
ing ofG. We say that a vertex v is covered by a matchingM if v is incident to an edge of
M. We denote by V(M) the set of vertices covered by a matching M. It is not difficult
to see that the number of vertices in a maximum matching constitutes a lower bound
for the size of a minimum vertex cover.

Operations over the graphs
Let G = (V,E) be a graph. The following operations applied onG, result in a graph

that is obtained from G by standard set operations on V and E. For a vertex v ∈ V
the vertex deletion of v from G has as result to delete the vertex v from G and all the
incident edges to v. We denote this operation by G − v. For an edge e ∈ E the edge
deletion of e from G has as result to delete only the edge e from G. We denote this
operation byG− e. We can extend these definitions for a set of verticesU and for a set
of edges F. In the former case we delete all the vertices of U and all the incident edges
toU fromG, denoted byG−U. In the latter case we delete only the edges of F fromG,
denoted by G \ F. Let {x, y} be an edge of G. The contraction of the edge {x, y} is the
operation consisting in deleting the vertices x and y from G and adding a new vertex
which is adjacent to every vertex of G \ {x, y} that is adjacent to x or y in G. More
general, contracting a set of vertices S is the operation of substituting the vertices of S
by a new vertex w with N(w) = N(S).

Relations between graphs
Let G = (V,E) and H = (U, F) be two graphs. We have the following definitions:

• G and H are disjoint if V ∩ U = ∅ (implying that E ∩ F = ∅).

12

Chapter 2 2.1. Basic Concepts on Graph Theory

• H is a subgraph of G ifU ⊆ V and F ⊆ E, which meansH can be obtained from
G by deleting some vertices or edges from G.

• H is an induced subgraph of G if U ⊆ V and F ⊆ E, butH can be obtained from
G by deleting only some vertices from G.

• H is a spanning subgraph of G if U = V and F ⊆ E (implying that H can be
obtained from G by deleting only some edges from G).

• H is a minor of G if H can be obtained from G by a (possibly empty) sequence
of vertex deletions or edge deletions or edge contractions.

• G andH are isomorphic if there is a bijection f : V → U that preserves the adja-
cency, i.e. {u, v} ∈ E if and only if {f(u), f(v)} ∈ F. If G and H are isomorphic
then we write G ≃ H, whereas G ̸≃ H stands for two non-isomorphic graphs.

For X ⊆ V(G), the subgraph of G induced by X, denoted by G[X], has vertex set X,
and for each vertex pair u, v from X, {u, v} is an edge of G[X] if and only if u ̸= v and
{u, v} is an edge of G. Observe that G[X] is the graph obtained from G by deleting the
vertices of V \ X. We say that G contains a graph H (as an induced subgraph) if G has
an induced subgraph isomorphic to H.

A graph G is self-complementary if G is isomorphic to its complement.

Operations between two graphs
Let G andH be two disjoint graphs G andH. We consider the following operations

resulting on a new graph:

• the disjoint union of G and H: G⊕H = (V(G) ∪ V(H),E(G) ∪ E(H)).

• the complete join ofG andH:G⊗H = (V(G)∪V(H),E(G)∪E(H)∪{{u, v}|u ∈
E(G), v ∈ E(H)}).

• the cartesian product ofG andH, denoted byG×H, is the graph with the vertex
setV(G)×V(H) and any two vertices (u, u′) and (v, v′) are adjacent inG×H if
and only if either u = v and u′ is adjacent to v′ inH, or u′ = v′ and u is adjacent
to v in G.

For a positive integer p, pG denotes the disjoint union of p copies of G. Moreover,
the disjoint union of two graphs G and H may be simply denoted by G+H.

Special graphs
A graph with n vertices is called complete graph if there is an edge for every pair

13

Chapter 2 2.1. Basic Concepts on Graph Theory

K3 K4 C4

P3 P4
K1,3 (claw)

Figure 2.1: Some basic graphs.

of vertices in the graph, denoted by Kn. The complete graph with tree vertices, K3, is
called triangle.

A chordless pathwithn vertices, denoted byPn, is a graphwithV(Pn) = {v1, . . . , vn}
and E(Pn) = {{vi, vi+1}|1 ≤ i < n}.

A chordless cyclewithn vertices, denoted byCn, is a graphwithV(Cn) = {v1, . . . , vn}
and E(Cn) = {{vi, vi+1}|1 ≤ i < n} ∪ {{vn, v1}}.

A graph G is connected if every pair of distinct vertices is joined by a path. Oth-
erwise, the graph is referred to as disconnected. A maximal connected subgraph of a
graph is called a connected component of the graph.

For a fixed graph F, a graph G is said to be F-free if G has no induced subgraph
isomorphic to F.

A cluster graph is a graph in which every connected component is a complete graph.
Cluster graphs are characterized as exactly the graphs that do not contain a P3 as an
induced subgraph. That is, cluster graphs are exactly the P3-free graphs.

The line graph L(G) of a graph G is the graph that has as vertex set the edges of G
and two vertices of L(G) are adjacent if and only if the corresponding edges in G have
a common endpoint.

The line-incompatibility Ĝ of a graph G is the graph that has as vertex set the edges
of G and two vertices of Ĝ are adjacent if and only if the corresponding edges induce
a P3 in G. The line-incompatibility graph has already been considered under the term
Gallai graph, denoted by Γ(G), in [96] or as an auxiliary graph in [24, 118]. Note that
the line-incompatibility graph of G is a spanning subgraph of the line graph of G.

14

Chapter 2 2.2. Graph Classes

An induced matching in a graph G, denoted by qK2, is a set of q edges, no two of
which have a common vertex or are joined by an edge of G.

An acyclic graph is a graph that does not contain any cycle and is called forest. A
connected forest is called tree. In a tree, the vertices of degree 1 are called leaveswhereas
the rest of its vertices are called internals. A tree with one internal vertex and n leaves
is called star graph and is denoted byK1,n. We will often refer to a particular star graph:
K1,3 that is called claw.

In Figure 2.1 are given some examples of special graphs.

2.2 Graph Classes

A graph class is a set of graphs that share a common property. Graphs arising from
applications may naturally fall into one such class. On the other hand, graph classes
arise naturally within the scope of better understanding the tractability boundaries of
a computational hard problem. For each pair of a graph problem that is intractable
in general and a graph class, we wish to determine that either the problem becomes
efficiently solvable when restricted to the class, or that it still remains hard. The body
of literature upon this type of results is vast, as exposed by the online database [31] that
currently lists 1623 graph classes with the corresponding 26763 algorithmic reference.

LetM be a family of nonempty sets. The intersection graph ofM is obtained by rep-
resenting each set in M by a vertex and two vertices are connected by an edge if and
only if their corresponding sets have a non-empty intersection. We refer to the ob-
tained graph as the intersection graph G of M and we call M the intersection model of
G. Without imposing some restrictions on the elements and the family ofM, the class
of graphs obtained as intersection graphs is simply all undirected graphs. An interest-
ing case is whenM is taken over a set of geometric objects. In such sense, intersection
graphs are a very popular “meta graph class”. An algorithmic vein towards this direc-
tion is to determine the complexity of recognizing themembers of each graph class. In
particular, the problemof characterizing the intersection graphs of families of sets hav-
ing some specific topological or other pattern is often very interesting and frequently
has applications to the real world.

A classG of graphs containingwith each graphG all induced subgraphs ofG is called
hereditary. In otherwords,G is hereditary if and only ifG ∈ G impliesG[X] ∈ G for any
X ⊆ V(G). Some known hereditary graph classes are perfect graphs, cluster graphs,
bipartite graphs, whereas simple examples showing the non-hereditary property are
paths or trees.

Let F be a set of graphs. A graph class G is characterized as F-free if and only if
every graph G ∈ G does not contain any graph F ∈ F as an induced subgraph. In this

15

Chapter 2 2.2. Graph Classes

scope, we say that the graphs in F are forbidden induced subgraphs for the class G.
Looking closer at the above two definitions of a hereditary class G and a set of

forbidden induced subgraphs F , an interesting characterization shows that a class of
graphs G is hereditary if and only if there is a set F such that G is F-free.

Characterizations of graph classes by forbidden induced subgraphs do not only pro-
vide algorithmic tools, but also play a key role as the subject of profoundmathematics.
The most striking example is probably the case of perfect graphs.

Perfect graphs:Agraph is perfect if for every induced subgraphH the chromatic num-
ber χ(H) equals the clique numberω(H).The class of perfect graphs is very important
from both theoretical as well as practical point of view, since the two problems of de-
termining the chromatic number and the clique number can be solved in polynomial
time [61]. Moreover, there is another characterization for perfect graphs, the Strong
Perfect Graph Theorem, which states that a graph G is perfect if and only if G and Ḡ
contain no induced C2k+1 for k ≥ 2 [23]. By this theorem, it is easy to see that a per-
fect graph is self-complementary.Therefore amaximum independent set can be found
in polynomial time on perfect graphs, as it is a maximum clique in the complement
graph.

Chordal graphs:Awell known subclass of perfect graphs is the class of chordal graphs,
also known as triangulated graphs. A graph is chordal if each cycle in G of length at
least 4 has at least one chord. Equivalently, G does not contain an induced subgraph
isomorphic to Cn for n > 3. Moreover, a graph is chordal if and only if it is the inter-
section graph of a family of subtrees of a tree [52].

Interval graphs:A graph is an interval graph if there is a bijection between its vertices
and a family of closed intervals of the real line such that two vertices are adjacent if
and only if the two corresponding intervals intersects. Such a bijection is called an
interval representation of the graph. An example of an interval graph and its interval
representation can be seen in Table 2.1. Thus they correspond to the graphs that can
be represented as the intersection graphs of intervals on the real line. Interval graphs
form a proper subclass of chordal graphs. Moreover, it is known that an interval graph
can be characterized by a set of forbidden induced subgraphs [98].

Proper interval graphs:The interval graphs inwhich no interval is properly contained
in another interval form the class of proper interval graphs. An example of a proper
interval graph and its interval representation can be seen in Table 2.1. The interval
graphs in which all intervals are required to have unit length form the class of unit
interval graphs. Roberts showed that the classes of unit interval graphs and proper in-
terval graphs coincide [110]. Also, he characterized them as claw-free interval graphs

16

Chapter 2 2.2. Graph Classes

Interval graph
K1 K2 K3 K4

a

u

y

x

z

b
a

u

y

x

z

b

Proper interval graph
a

u

y

x

z

v

b

a u

y

x

z

v

b

Split graph

Starlike graph

Cograph
a b

c

d

e f

u
x

Table 2.1: Five known graph classes and an example for each class.

[110].

Split graphs: Another subclass of chordal graphs is the class of split graphs which are
incomparable to interval and proper interval graphs. A graph is a split if its vertex set
can be partitioned into a clique and an independent set. Such a partition is called split
partition. A split graph with four vertices in the independent set and four vertices in
the clique can be seen in Table 2.1. It is not difficult to see that the class of split graphs
is self-complementary, that is, the complement of a split graph remains a split graph.
Furthermore, they have been characterized by forbidden set of induced subgraphs. A
graph is a split if and only if it contains no C4, C5 and 2K2 as an induced subgraph,
that is, they are exactly the {C4,C5, 2K2}-free graphs [45]. Moreover, in terms of the
intersection model, split graphs form the intersection graphs of distinct subtrees of a
star.

17

Chapter 2 2.2. Graph Classes

Perfect

Chordal

IntervalStarlike

Split

Cograph

K3-free

Bipartite

Proper Interval Trivially Perfect

Threshold

∆ ≤ 4

∆ ≤ 3

Planar

Bipartite Planar

Figure 2.2: A Hasse diagram among the considered graph classes. An arrow from class
X to class Y shows that Y is a proper subclass of X.

Starlike graphs: A graph G = (V,E) is called starlike graph if its vertex set can be
partitioned into C and I such thatG[C] is a clique and every two vertices of I are either
non-adjacent or true twins in G. A starlike graph with eight vertices in I and four
vertices inC can be seen in Table 2.1. By definition, split graphs form a proper subclass
of starlike graphs.Their name comes from the corresponding characterization through
intersection graphs: they are exactly the intersection graphs of subtrees of a star [19].

Bipartite graphs: A graph is bipartite if its vertex set can be partitioned into at most
2 independent sets. A bipartite graph G with a given bipartition A∪B will be denoted
G = (A,B,E). Moreover, a graph G is bipartite if and only if it contains no cycles of
odd length. A bipartite graph G = (A,B,E) is complete bipartite if every vertex of A
is adjacent to every vertex of B. A complete bipartite graph with parts of size n and
m is denoted Kn,m. Bipartite graphs can be seen as intersection bigraphs of two given
families M,M′ of subsets: the bipartite graph in which each set in M is a red vertex,
each set in M′ is a blue vertex, and a red vertex is adjacent to a blue vertex if and only
if the corresponding sets intersect.

Cographs: A graph is cograph if it can be generated from a single vertex graph and
recursively applying the disjoint union and complete join operations. Cographs are
exactly the graphs that do not contain any chordless path on four vertices, that is, they
are exactly the P4-free graphs [26]. An example of a cograph can be seen in Table 2.1.
Cographs are unrelated to chordal graphs, as they contain chordless cycles, whereas
any chordless path is a chordal graph.

18

Chapter 2 2.3. Computational Complexity

Trivially Perfect graphs: A graph G is called trivially-perfect (also known as quasi-
threshold) if for each induced subgraph H of G, the number of maximal cliques of H
is equal to the maximum size of an independent set of H. The class of trivial perfect
graphs coincides with the class of chordal graphs and cographs. In other words, this is
the class of (C4, P4)-free graphs [57].

Threshold graphs:Agraph is a threshold graph if there is a real number s (known as the
threshold) and for every vertex v there is a real weightw(v) such that: {u, v} is an edge if
and only ifw(v)+w(u) ≥ s. Amore intuitive characterization is that threshold graphs
are exactly the graphs that are both split graphs and cographs. Hence, they are exactly
the (P4,C4, 2K2)-free graphs. However, since split graphs are also chordal, threshold
graphs are actually a subclass of trivially perfect graphs. As they are split graphs, their
vertex set can be partitioned into a clique and an independent set, but, in addition, the
neighborhood of the independent set has the special property of being orderable by
inclusion [103].

Non-Perfect graphs:
A graph is triangle-free if it contains no K3 as an induced subgraph. Every bipartite

graph is triangle-free, whereas every triangle-free graph is not necessarily bipartite.
For a non-negative integer k, a k-degenerate graph is a graph in which every sub-

graph has a vertex of degree at most k. To give an example, forests are exactly the
1-degenerate graphs.

A graph is planar if it can be drawn in the plane so that no two edges cross each
other. However the most famous characterization of this graph class is through for-
bidden minors. Planar graphs are exactly the graphs that do not contain K5 and K3,3
as minors. A planar graph is 5-degenerate graph, as every planar graph has a vertex of
degree five or less.

In Figure 2.2 we present the inclusion relations among the considered graph classes.

2.3 Computational Complexity

Classical complexity
The theory of computational complexity explores the amount of resources that a

computational problem needs to be solved and classifies the problems according to
the amount of resources required. For example, as amount of resources can be con-
sidered time and space. Here, we mainly focus on time. In other words, for given a
computational problem we want to know if there is an algorithm that solves the prob-
lem in an efficient way or not. Hence, the complexity of an algorithm is intended to

19

Chapter 2 2.3. Computational Complexity

measure exactly this type of efficiency.
A fundamental notionused to describe the complexity of an algorithm is the asymp-

totic upper bound O(f(n)). Big O-notation expresses the upper bound of operations
(worst case running time) that an algorithm needs to solve a problem. More precisely,
for a given function g(n), that measures the worst case running time of an algorithm
on an input of size n, and another function f(n), we say that g(n) is O(f(n)) if there
exist constants c > 0 and n0 > 0 so that for all n ≥ n0, we have g(n) ≤ c · f(n).

Another useful notation is the little o-notation in which we say that g(n) is o(f(n)),
if for any constant c > 0 there exists a constant n0 > 0 so that for all n ≥ n0, we have
g(n) < c · f(n). Besides the asymptotic upper bound O(f(n)), one can consider the
asymptotic lower bound big Ω-notation in which we say that g(n) is Ω(f(n)), if there
exist constants c > 0 and n0 > 0 so that for all n ≥ n0, we have g(n) ≥ c · f(n).

The notation of big O helps us to order the algorithms based on their asymptotic
running times. For example, an algorithm is linear if it is O(n) and it is more efficient
than an exponential algorithmO(2n). We say that an algorithm is efficient if it is poly-
nomial, meaningO(nk) for some constant k ≥ 0.Thus, we can classify the problems in
classes based on the complexity of the algorithms that solve the problems. The classes
are known as Complexity Classes.

The class that contains all the problems which can be solved in polynomial time
is denoted by P. There are problems that are harder and, probably, they cannot be
solved in polynomial time. One class that contains such problems is the class of NP. To
define this class we must give the definition of certifier. A certifier is an algorithm that
checks if a given possible solution for a problem is indeed a solution, that iswhether the
decision problemanswers correctly “yes”.The class ofNP contains all the problems that
have a polynomial certifier. It is obvious that P⊆NP, but it is widely openwhether P=
NP or P ̸= NP. Also, there is the complement of the class NP. This class is called coNP
and is defined as the complexity class which contains the complements of problems
found in NP (whether the decision problem answers correctly “no”).

In order to study these problems, we need a technique to compare the relative diffi-
culty among them. In some sense, we want to know which problem is as least as hard
as another. This is achieved through the technique of reduction. Suppose we have a
black box that can solve instances of a problem Y. We say that a problem X is polyno-
mial time reducible to Y, denoted by X ≤p Y, if any instance of X can be solved using
polynomial number of computational step (transformed to some instance of Y) plus
a polynomial number of calls of the black box that solves Y.

There are some important results of this technique. If we know that the problem Y
is polynomial solvable then we have an algorithm to solves problem X in polynomial
time. On the other hand, if X cannot be solved in polynomial time then Y cannot be

20

Chapter 2 2.3. Computational Complexity

solved in polynomial time. By taking advantage of the second property, we can define
the hardest problem in class NP. A problem Y is NP-complete if: (i) Y ∈ NP and (ii)
every problemX ∈NP is polynomial reducible to Y. If we remove the first assumption
of NP-completeness (membership in NP), then we say that the problem Y isNP-hard.

Parameterized complexity
In contrast to classical complexity, parameterized complexity is a two dimensional

framework for studying the computational complexity of a problem.One dimension is
the input size n and the other is a parameter k associatedwith the input. As a parameter
in a problemmore often is used the natural parameter (the size of the solution). On the
other hand, it can be used anything that measures a structural property of the input.
For example, in graph problems parameters such as maximum degree, treewidth or
maximum matching may be widely chosen.

The basic idea of parameterized complexity is to refine the analysis of hard prob-
lems. It was developed by Downey and Fellow [36, 38]. The central part of the theory
is fixed-parameter tractability. A problem with input size n and parameter k is fixed
parameter tractable (FPT), if it can be solved in time f(k) · nO(1) for some computable
function f. Here, we want to design an algorithm that the non-polynomial part de-
pends only on the parameter. This means that the problem is solvable in an efficient
way whenever the parameter is small.

A classical NP-complete problem which is FPT parameterized by the size of the
solution is Vertex Cover. It is known that Vertex Cover can be solved in 2k · nO(1)
time by a Bounded Search Tree technique.The best running time for VertexCover is
O(1.2738k+k ·n) [21]. On the other hand, it is not known whether Independent Set
can be solved in f(k) · nO(1). It is believed that no such fixed-parameter algorithm for
Independent Set exists. For a fixed k, it can be solved in O(nk) time by enumerating
all subsets of size at most k. Problems which can be solved in f(k) · ng(k) for some
computable functions f, g are called slice-wise polynomial and they are denoted by the
complexity class XP. It holds FPT⊆ XP. Hence, there are problems that have the same
classical complexity, but they have different behavior in parameterized complexity.

Below we provide some formal definitions on parameterized complexity.

Definition 2.3.1 ([30]). A parameterized problem is a language L ⊆ Σ∗ × N, where Σ
is a finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

Definition 2.3.2 ([30]). A parameterized problem L ⊆ Σ∗ × N is called parameter
tractable (FPT) if there exist an algorithm A (called a fixed parameter algorithm), com-
putable function f : N −→ N, and a constant c such that, given (x, k) ∈ Σ∗ × N, the
algorithm A correctly decide whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The
complexity class containing all fixed parameter tractable problems is called FPT.

21

Chapter 2 2.3. Computational Complexity

Definition 2.3.3 ([30]). A parameterized problem L ⊆ Σ∗×N is called slice-wise poly-
nomial (XP) if there exists an algorithm A and two computable functions f, g : N −→ N
such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L
in time bounded by f(k) · |(x, k)|g(k). The complexity class containing all slice-wise poly-
nomial problems is called XP.

Moreover, there is an analogous notion of reduction for parameterized problems
that transfers fixed-parameter tractability.

Definition 2.3.4 ([30]). Let A,B ⊆ Σ∗×N be two parameterized problems. A parame-
terized reduction from A to B is an algorithm that, given an instance (x, k) of A, outputs
an instance (x′, k′) of B such that:

(i) (x, k) is a yes-instance of A if and only if ((x′, k′) is a yes-instance of B,

(ii) k′ ≤ g(k) for some computable function g, and

(iii) the running time is f(k) · |x|O(1) for some computable function f.

As alreadymentioned, there is an FPT algorithm for VertexCover, but not for In-
dependent Setwhich is in XP. It is interesting to provide evidence which shows that a
parameterized problem is not FPT. In this direction, Downey and Fellows introduced
the W-Hierarchy [37]. They defined the complexity classes W[t], for all t ∈ N such
that FPT⊆W[1]⊆W[2]⊆ · · · ⊆XP.The level ofW-hierarchy are defined by restrict-
ing the Weighted Circuit Satisfiability problem. Furthermore, a parameterized
problem Q is called W[t]-hard if every problem in W[t] is parameterized reducible
to Q, and W[t]-complete if it is also contained in W[t]. For example, it is known that
Independent Set is W[1]-complete and Dominating Set is W[2]-complete. Hence,
we have evidence that it is unlikely for both problems to be fixed-parameter tractable.

There are problems that do not admit FPT algorithms and not even belong to XP. A
typical example is the problem of k-Colorability. It is NP-complete even if we use
k = 3 colors. Thus any f(k) · nc algorithm or f(k) · ng(k), for any computable functions
f, g and any constant c that solves k-Colorability implies that P=NP. For these type
of problems we have the following complexity class.

A parameterized problem L ⊆ Σ∗ ×N is in para-NP, if there is a computable func-
tion f : N −→ N, a constant c, and a nondeterministic algorithm that, given x ∈ Σ∗,
decides if (x, k) ∈ L in at most f(k) · |(x, k)|c steps [44].

A parameterized problem Q is para-NP-hard if for any parameterized problem P
in para-NP there is parameterized reduction from P to Q. If the parameterized prob-
lem Q is additionally contained in para-NP then Q is para-NP-complete. Observe,
every parameterized problem that is already NP-hard for a constant parameter value

22

Chapter 2 2.3. Computational Complexity

is para-NP-hard, i.e., para-NP-hard problems do not admit FPT-algorithms under the
assumption that P ̸=NP.Hence, the problem of k-Colorability is known to be para-
NP-complete.

In order to study a parameterized problem one either designs a FPT algorithm or
shows that the problem is W[t] for some t. Instead of explicitly design a FPT algo-
rithm, there are some tools to implicitly show that a problem is FPT. One of them is
kernelization, a preprocessing algorithm that solves the easy part of an instance (with
polynomial rules) and shrinks it as much as possible (kernel) to its difficult part (solv-
able in brute force manner).

Definition 2.3.5. A generalized kernelization [8] (or bi-kernelization [4]) for a pa-
rameterized problem P is a polynomial algorithm that maps each instance (x, k) of P
with the input x and the parameter k into to an instance (x′, k′) of some parameterized
problem Q such that

(i) (x, k) is a yes-instance of P if and only if (x′, k′) is a yes-instance of Q,

(ii) the size of x′ is bounded by f(k) for a computable function f, and

(iii) k′ is bounded by g(k) for a computable function g.

The output (x′, k′) is called a generalized kernel of the considered problem. The
function f defines the size of a generalized kernel and the generalized kernel has poly-
nomial size if the function f is polynomial. If Q = P, then generalized kernel is called
kernel. Note that if Q is in NP and P is NP-complete, then the existence of a polyno-
mial generalized kernel implies that P has a polynomial kernel because there exists a
polynomial reduction of Q to P.

Definition 2.3.6. A polynomial compression of a parameterized problem P into a
(nonparameterized) problem Q is a polynomial algorithm that takes as an input an in-
stance (x, k) of P and returns an instance x′ of Q such that

(i) (x, k) is a yes-instance of P if and only if x′ is a yes-instance of Q,

(ii) the size of x′ is bounded by p(k) for a polynomial p.

Clearly, the existence of a (generalized) polynomial kernel implies that the prob-
lem admit a polynomial compression but not the other way around. It is well-known
that every decidable parameterized problem is FPT if and only if it admits a kernel,
but it is unlikely that every problem in FPT has a polynomial kernel or polynomial
compression. In particular, the now standard composition and cross-composition tech-
niques [8, 9] allow to show that certain problems have no polynomial compressions
unless NP ⊆ coNP/poly.

23

Chapter 2 2.4. Problem Definitions

It is common to build an FPT algorithm or a kernel for a parameterized problem
by constructing a series of reduction rules, that is, polynomial algorithms that either
solve the problem or produce instances of the problem that, typically, have small sizes
or small values of the parameter. Respectively, a rule is safe or sound if it either correctly
solves the problem or constructs an equivalent instance.

Lower Bounds and ETH
In order to prove lower bounds for a problem there is the conjecture of Exponential-

Time Hypothesis (ETH): it states that k-SAT, k ≥ 3, cannot be solved in time 2o(n) or
2o(m) where n is the number of variables and m is the number of clauses in the given
k-CNF formula (see for e.g., [74, 101, 123]). In this context, algorithms with running
time 2o(p) for some parameter p are called subexponential-time algorithms. Thus, for
any fixed k ≥ 3, k-satisfiability does not have a subexponential time algorithm, under
ETH.

2.4 Problem Definitions

In this section, we provide formal statements of some well-known NP-complete
problems, given in the following list. All problems are considered as decision problems
in which the output is a yes- or a no-answer.

Vertex Cover
Input: A graph G = (V,E) and a non-negative integer k.
Task: Does G have a vertex cover of size k or less?

Independent Set
Input: A graph G = (V,E) and a non-negative integer k.
Task: Does G have a independent set of size k or more?

Clique
Input: A graph G = (V,E) and a non-negative integer k.
Task: Does G have a clique of size k or more?

Dominating Set
Input: A graph G = (V,E) and a non-negative integer k.
Task: Does G have a dominating set of size k or less, (i.e a subset V′ ⊆ V

with |V′| ≤ k such that for all u ∈ V − V′ there is a v ∈ V′ for which
{u, v} ∈ E)?

24

Chapter 2 2.4. Problem Definitions

k-Colorability (Chromatic Number)
Input: A graph G = (V,E) and a non-negative integer k.
Task: IsG k-colorable, i.e, does there exist a function f : V → {1, 2, ..., k} such

that f(u) ̸= f(v) whenever {u, v} ∈ E?

F-Free Edge Deletion
Input: A graph G = (V,E) and a non-negative integer k.
Task: Does there exist a set E′ ⊂ E of size at most k such that G \E is an F-free

graph?

Induced Subgraph Isomorphism
Input: Two graphs G and H.
Task: Does G have an induced subgraph isomorphic to H?

d-Set Packing
Input: A universe U , a family F of sets over U , where each set in F is of size at

most d, and a non-negative integer k.
Task: Does there exist a family F ′ ⊆ F of k pairwise disjoint sets?

d-Hitting Set
Input: A universe U , a family F of sets over U , where each set in F is of size at

most d, and a non-negative integer k.
Task: Does there exist a set X ⊂ U of size at most k that has a nonempty inter-

section with every element of F?

Exact Cover by 3-Sets (X3C)
Input: A set X with |X| = 3q elements and a collection C of triplets of X.
Task: Does C contain an exact cover for X, i.e., a subcollection C′ ⊆ C such

that every element of X occurs in exactly one member of C′?

PlanarX3C
Input: A bipartite planar graph G = (A,B,E) where every vertex of B has de-

gree 3.
Task: Is there an induced subgraph H = (A′,B′,E′) of G such that A′ = A,

B′ ⊆ B, and every vertex of A′ has degree one?

Knapsack
Input: Finite set U, for each u ∈ U a size s(u) ∈ Z+ and a value v(u) ∈ Z+,

and positive integers B and K.
Task: Is there a subset U′ ⊆ U such that

∑
u∈U′ s(u) ≤ B and

∑
u∈U′ v(u) ≥

K?

25

Chapter 2 2.4. Problem Definitions

In the Cluster Deletion problem the goal is to partition the vertices of a given
graph G into vertex-disjoint cliques with the minimum number of edges outside the
cliques, or, equivalently, with the maximum number of edges inside the cliques.

Input: A graph G = (V,E) and a non-negative integer k.
Task: Does there exist a disjoint union of cliques by deleting at most k

edges?

Cluster Deletion

Observe that ClusterDeletion coincides with the F-Free EdgeDeletion problem
by setting F = P3.

Next we highlight and give formal statements of the main problems considered
within this thesis. Given a graph G = (V,E), a strong-weak labeling on the edges
of G is a function λ that assigns to each edge of E(G) one of the labels strong or weak;
i.e., λ : E(G) → {strong,weak}. An edge that is labeled strong (resp., weak) is simply
called strong (resp.weak).The strong triadic closure of a graphG is a strong-weak label-
ing λ such that for any two strong edges {u, v} and {v,w} there is a (weak or strong)
edge {u,w}. We say that such a labeling satisfies the strong triadic closure. In other
words, in a strong triadic closure there is no pair of strong edges {u, v} and {v,w}
such that {u,w} /∈ E(G).

Theproblemof computing amaximumstrong triadic closure, denoted byMaxSTC,
is stated as follows:

Input: A graph G = (V,E) and a non-negative integer k.
Task: Does there exist a strong-weak labeling of E(G) that satisfies the

strong triadic closure and has at least k strong edges?

MaxSTC

Note that the MaxSTC problem can be considered as an edge modification problem
where the task is to find a spanning subgraphH ofGwith at least k edges, such that for
every inducedP3 ofH the vertices ofP3 induce aK3 inG.We formalize this observation
in the following generalized problem.

In the Strong F-closure problem, we have a fixed graph F, and we are given an
input graph G, together with an integer k. The task is to decide whether we can select
at least k edges of G and mark them as strong, in the following way: whenever the
subgraph ofG spanned by the strong edges contains an induced subgraph isomorphic
to F, then the corresponding induced subgraph of G on the same vertex subset is not
isomorphic to F.The remaining edges ofG that are not selected as strong, will be called
weak. Consequently, whenever a subset S of the strong edges form a copy of F, there
must be an additional strong orweak edge inGwith endpoints among the endpoints of

26

Chapter 2 2.4. Problem Definitions

edges in S. A formal definition of the problem is easier to give via spanning subgraphs.
If two graphs H and F are isomorphic then we write H ≃ F, whereas if they are not
isomorphic then we simply write H ̸≃ F. Given a graph G and a fixed graph F, we
say that a (not necessarily induced) subgraphH of G satisfies the F-closure if, for every
S ⊆ V(H) with H[S] ≃ F, we have that G[S] ̸≃ F. In this case, the edges of H form
exactly the set of strong edges of G.

Input: A graph G and a non-negative integer k.
Task: Decide whether G has a spanning subgraph H that satisfies the F-

closure, such that |E(H)| ≥ k.

Strong F-closure

Based on this definition and the above explanation, the terms “marking an edge as
weak (inG)” and “removing an edge (ofG to obtainH)” are equivalent, andwewill use
them interchangeably. In connection to the previously mentioned problems, observe
that Strong P3-closure is exactly the MaxSTC problem.

27

Chapter 2 2.4. Problem Definitions

28

CHAPTER3
MaxSTC on Split and Proper
Interval Graphs

In this chapter, we initiate the study of graph classes for which MaxSTC is solvable.
We show that the problem admits a polynomial-time algorithm for two incomparable
classes of graphs: proper interval graphs and trivially-perfect graphs. To complement
our result, we show that the problem remains NP-complete on split graphs, and conse-
quently also on chordal graphs. Thus, we contribute to define the first border between
graph classes on which the problem is polynomially solvable and on which it remains
NP-complete.
The results of this chapter have led to the following publications [88, 90]:

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis, and Charis Papadopoulos. In 28th In-
ternational Symposium on Algorithms and Computation (ISAAC 2017), Leibniz
International Proceedings in Informatics (LIPIcs), pages 53:1–53:12, 2017.

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis and Charis Papadopoulos. Discrete Ap-
plied Mathematics 285: 79-95, 2020.

3.1 Introduction

Predicting the behavior of a network is an important concept in the field of so-
cial networks [41]. Understanding the strength and nature of social relationships has
found an increasing usefulness in the last years due to the explosive growth of social
networks (see e.g., [5]). Towards such a direction the Strong Triadic Closure prin-
ciple enables us to understand the structural properties of the underlying graph: it is
not possible for two individuals to have a strong relationship with a common friend
and not know each other [60]. Such a principle stipulates that if two people in a social

29

Chapter 3 3.1. Introduction

network have a “strong friend” in common, then there is an increased likelihood that
they will become friends themselves at some point in the future. Satisfying the Strong
Triadic Closure is to characterize the edges of the underlying graph into weak and
strong such that any two vertices that have a strong neighbor in common are adjacent.
Since users interact and actively engage in social networks by creating strong relation-
ships, it is natural to consider the MaxSTC problem: maximize the number of strong
edges that satisfy the Strong Triadic Closure. The problem has been shown to be
NP-complete for general graphs while its dual problem of minimizing the number of
weak edges admits a constant factor approximation ratio [118]. More recently, inter-
esting variations of the MaxSTC problem have been considered which impose ad-
ditional information than the network structure (e.g., through a collection of strong
subgraphs) [112, 113].

In this work, we initiate the computational complexity study of the MaxSTC prob-
lem in important classes of graphs. If the input graph is a P3-free graph (i.e., a graph
having no induced path on three vertices which is equivalent with a graph that consists
of vertex-disjoint union of cliques) then there is a trivial solution by labeling strong
all the edges. Such an observation might falsely lead into a graph modification prob-
lem, known as Cluster Deletion problem (see e.g., [11, 70]), in which we want to
remove the minimum number of edges that correspond to the weak edges, such that
the resulting graph does not contain a P3 as an induced subgraph. More precisely the
obvious reduction would consist in labeling the deleted edges in the instance of Clus-
ter Deletion as weak, and the remaining ones as strong. However, this reduction
fails to be correct due to the fact that the graph obtained by deleting the weak edges
in an optimal solution of MaxSTC may contain an induced P3, so long as those three
vertices induce a triangle in the original graph (prior to deleting the weak edges). We
stress that there are examples on split graphs (Figure 3.1) and proper interval graphs
(Figure 3.4) showing such a difference.

To the best of our knowledge, no previous results were known prior to our work
when restricting the input graph for the MaxSTC problem. It is not difficult to see
that for bipartite graphs the MaxSTC problem has a simple polynomial-time solu-
tion by considering a maximum matching that represent the strong edges [72]. In fact
such an argument regarding the maximum matching generalizes to the larger class of
triangle-free graphs. Also notice that for triangle-free graphs a set of edges is a max-
imum matching if and only if it is formed by a solution for the Cluster Deletion
problem. It is well-known that amaximummatching of a graph corresponds to amax-
imum independent set of its line graph that represents the adjacencies between the
edges [42]. As previously noted, for general graphs it is not necessarily the case that a
maximum matching corresponds to the optimal solution for MaxSTC. Here we show
a similar characterization for MaxSTC by considering the adjacencies between the

30

Chapter 3 3.1. Introduction

edges of a graph that participate in induced P3’s. Such a characterization allows us to
exhibit structural properties towards an optimal solution of MaxSTC.

Due to the nature of the P3 existence that enforce the labeling of weak edges, there
is an interesting connection to problems related to the square root of a graph; a graph
H is a square root of a graph G and G is the square of H if two vertices are adjacent in
G whenever they are at distance one or two in H. Any graph does not have a square
root (for example consider a simple path), but every graph contains a subgraph that
has a square root. Although it is NP-complete to determine if a given chordal graph
has a square root [95], there are polynomial-time algorithms when the input is re-
stricted to bipartite graphs [94], or proper interval graphs [95], or trivially-perfect
graphs [106]. Among several square roots that a graph may have, one can choose the
square root with the maximum or minimum number of edges [24, 97]. The relation-
ship between MaxSTC and to that of determining square roots can be seen as follows.
In the MaxSTC problem we are given a graph G and we want to select the maximum
possible number of edges, atmost one from each induced P3 inG.Thuswe need to find
the largest subgraph (in terms of the number of its edges)H of G such that the square
of H is a subgraph of G. However the known results related to square roots were con-
cerned with deciding if the whole graph has a (maximum or minimum) square root
and there are no such equivalent formulations related to the largest square root.

Ourmainmotivation in this chapter is to understand the complexity of the problem
on subclasses of chordal graphs, since the class of chordal graphs (i.e., graphs having no
chordless cycle of length at least four) finds important applications in both theoretical
and practical areas related to social networks [2, 83, 108]. More precisely two famous
properties can be found in social networks. For most known social and biological net-
works their diameter, that is, the length of the longest shortest path between any two
vertices of a graph, is known to be a small constant [76]. On the other hand it has been
shown that the most prominent social network subgraphs are cliques, whereas highly
infrequent induced subgraphs are cycles of length four [121]. Thus it is evident that
subclasses of chordal graphs are close related to such networks, since they have rather
small diameter (e.g., split graphs or trivially-perfect graphs) and are characterized by
the absence of chordless cycles (e.g., proper interval graphs). Towards such a direc-
tion we show that MaxSTC is NP-complete on split graphs and consequently also on
chordal graphs. On the positive side, we present the first polynomial-time algorithm
for computingMaxSTConproper interval graphs. Proper interval graphs, also known
as unit interval graphs or indifference graphs, form a subclass of interval graphs and
they are unrelated to split graphs [110]. By our result they form the first graph class,
other than triangle-free graphs, for which MaxSTC is shown to be polynomial time
solvable. In order to obtain our algorithm, we take advantage of their clique path (con-
secutive arrangement of maximal cliques) and apply a dynamic programming on sub-

31

Chapter 3 3.2. Preliminaries

Figure 3.1: A split graph G is shown to the left side. The right side depicts a solution
for MaxSTC onGwhere the weak edges are exactly the edges ofG that are not shown.

problems defined by passing the clique path in its natural ordering. Our structural
proofs together with its polynomial solution on proper interval graphs can be seen
as useful tools towards settling the complexity of MaxSTC on interval graphs. Fur-
thermore by considering the characterization of the induced P3’s mentioned earlier,
we show that MaxSTC admits a simple polynomial-time solution on trivially-perfect
graphs (i.e., graphs having no induced P4 or C4). Thus we contribute to define the first
borderline between graph classes on which the problem is polynomially solvable and
on which it remains NP-complete.

3.2 Preliminaries

Before we start with our results on MaxSTC, it is convenient here to remind the
formal definition of MaxSTC and provide a useful observation.

Input: A graph G = (V,E).
Task: Does there exist a strong-weak labeling of E(G) that satisfies the

strong triadic closure and has at least k strong edges?

MaxSTC

Let G be a strong-weak labeled graph. We denote by (ES,EW) the partition of E(G)
into strong edges ES and weak edges EW.The graph spanned by ES is the graphG\EW.
For a vertex v ∈ V(G) we say that the strong neighbors of v are the other endpoints of
the strong edges incident to v. We denote by NS(v) ⊆ N(v) the strong neighbors of
v. Similarly we say that a vertex u is strongly adjacent to v if u is adjacent to v and the
edge {u, v} is strong.

Observation 3.2.1. Let G be a strong-weak labeled graph with edge partition (ES,EW).
Then G satisfies the strong triadic closure if and only if for every P3 in G\EW, the vertices
of P3 induce a K3 in G.

32

Chapter 3 3.2. Preliminaries

Proof. Observe thatG\EW is the graph spanned by the strong edges. If for two strong
edges {u, v} and {v,w}, {u,w} /∈ E(G \ EW) then {u,w} is an edge in G and, thus,
u, v,w induce a K3 inG. On the other hand notice that any two strong edges ofG\EW
are either non-adjacent or share a common vertex. If they share a common vertex then
the vertices must induce a K3 in G, implying that (ES,EW) satisfies the strong triadic
closure.

Therefore in theMaxSTCproblemwewant tominimize the number of the removal
(weak) edges EW fromG such that every three vertices that induce a P3 inG\EW form
a clique in G. Then it is not difficult to see that G satisfies the strong triadic closure if
and only if for every vertex v, NS[v] induces a clique in G.

3.2.1 Basic Results

It is interesting to settle the complexity of MaxSTC on graphs of small structural
parameter, such as treewidth. Towards such a direction observe that every problem
expressible in monadic second order logic of second type (MSO2) with quantifica-
tion over vertex sets and edge sets can be solved in linear time for graphs of bounded
treewidth [28]. Indeed, MaxSTC can be formulated in MSO2: (i) the edges are parti-
tioned into two subsets ES,EW (i.e., a strong-weak labeling), (ii) the endpoints of every
path of length two spanned by the edges of ES have an edge inG (i.e., satisfy the strong
triadic closure), and (iii) |ES| is as large as possible. In particular, the following two
expressions correspond to properties (i) and (ii), respectively:

• ∀x∀y adj(x, y) → (EW(x, y) ∨ ES(x, y)) ∧ (¬EW(x, y) ∨ ¬ES(x, y))

• ∀x∀y∀z (ES(x, y) ∧ ES(y, z)) → adj(x, z)

Therefore there is a linear-time algorithm forMaxSTCongraphs of bounded treewidth
[28]. Notice that a similar observation holds for the Cluster Deletion problem in
which the only difference is that the endpoints considered in case (ii) must have an
edge of ES (i.e., the strong edges span a P3-free graph where the strong edges reflect
the edges of the graph resulting after removing the weak edges). We remark that the
graphs considered hereafter, such as split graphs, proper interval graphs, and trivially
perfect graphs do not have bounded treewidth.

3.2.2 The line-incompatibility graph and twin vertices

Wenext provide some interesting characterizations related to theMaxSTCproblem
that might be of independent interest with respect to our main results concerning

33

Chapter 3 3.2. Preliminaries

split graphs and proper interval graphs. First, we give an equivalent transformation
of MaxSTC related to the independent set of an auxiliary graph and, then, we show
how to contract twin vertices. As a consequence of the former characterization, we
show that its application leads to a polynomial solution for the class of trivially-perfect
graphs.

Instead of maximizing the strong edges of the original graph G, we will look at the
maximum independent set of the following graph that we call the line-incompatibility
graph Ĝ of G: for every edge of G there is a node in Ĝ and two nodes of Ĝ are ad-
jacent if and only if the vertices of the corresponding edges induce a P3 in G. In a
different context the notion of line-incompatibility has already been considered un-
der the term Gallai graph in [96] or as an auxiliary graph in [24, 118]. Note that the
line-incompatibility graph ofG is a subgraph of the line graph ofG. Moreover, observe
that for a graphG, its line graph and its line-incompatibility graph coincide if and only
if G is a triangle-free graph.

Proposition 3.2.2. A subset S of edges E(G) is an optimal solution for MaxSTC of G if
and only if S is a maximum independent set of Ĝ.

Proof. By Observation 3.2.1 for every P3 in G at least one of its two edges must be
labeled weak in S. This means that these two edges are adjacent in Ĝ and they cannot
belong to an independent set of Ĝ. On the other hand, by construction two nodes of
Ĝ are adjacent if and only if there is a P3 in G. Thus the nodes of an independent set
of Ĝ can be labeled strong in G satisfying the strong triadic closure.

Therefore, for the optimal solution of G one may look at a solution for a maximum
independent set of Ĝ. Also note that for any graph G, computing a maximum inde-
pendent set of Ĝ is an NP-complete problem [96]. As a byproduct, if we are interested
in minimizing the number of weak edges then we ask for the minimum vertex cover
of Ĝ. To distinguish the vertices of Ĝ with those of G, we refer to the former as nodes
and to the latter as vertices. For an edge {u, v} ofGwe denote by uv the corresponding
node of Ĝ. Figure 3.2 shows a graph and its line-incompatibility graph.

Due to Proposition 3.2.2 it is natural to characterize the graphs for which their
line-incompatibility graph is perfect. Such a characterization will lead to polynomial
cases ofMaxSTC, since the problem of finding amaximum independent set of perfect
graphs admits a polynomial solution [61]. A typical example is the class of bipartite
graphs for which their line graph coincides with their line-incompatibility graph and
it is known that the line graph of a bipartite graph is perfect (see for e.g., [12]). As we
show next, another paradigm of this type is the class of trivially-perfect graphs.

We remind here a graphG is called trivially-perfect (also known as quasi-threshold)
if for each induced subgraph H of G, the number of maximal cliques of H is equal to

34

Chapter 3 3.2. Preliminaries

a b c

def

G

ba bd

bcbf

ea ed

ecef

be af cd
Ĝ

1

Figure 3.2: A graph G on the left side and its line-incompatibility graph Ĝ on the right
side. Notice that if the nodes of an independent set in Ĝ are labeled strong and the rest
are labeled weak then such a strong-weak labeling satisfies the strong triadic closure.

the maximum size of an independent set of H. It is known that the class of trivially-
perfect graphs coincides with the class of (P4,C4)-free graphs, that is every trivially-
perfect graph has no induced P4 or C4 [57]. Notice that the graph given in Figure 3.2
is trivially-perfect. A cograph is a graph without an induced P4, that is a cograph is a
P4-free graph. Hence trivially-perfect graphs form a subclass of cographs.

Theorem 3.2.3. The line-incompatibility graph of a trivially-perfect graph is a cograph.

Proof. LetG be a trivially-perfect graph, that isG is a (P4,C4)-free graph.Wewill show
that the line-incompatibility graph Ĝ ofG is aP4-free graph. Consider anyP3 in Ĝ. Due
to the construction of Ĝ, theP3 has one of the following forms: (i) v1v2, v2v3, v3v4 or (ii)
v1x, v2x, v3x. We prove that the P3 has the second form becauseG has no induced P4 or
C4. If (i) applies then {v1, v3}, {v2, v4} /∈ E(G) and {v1, v2}, {v2, v3}, {v3, v4} ∈ E(G)
which implies that v4 ̸= v1.ThusG contains a P4 or aC4 depending onwhether there is
the edge {v1, v4} inG. Hence every P3 in Ĝ has the form v1x, v2x, v3xwhere v1, v2, v3, x
are distinct vertices ofG. Now, assume for contradiction that Ĝ contains a P4.Then the
P4 is of the form v1x, v2x, v3x, v4x because it contains two induced P3’s.The structure of
the P4 implies that {v1, v2}, {v2, v3}, {v3, v4} /∈ E(G) and {v1, v3}, {v2, v4}, {v4, v1} ∈
E(G). This however shows that the vertices v3, v1, v4, v2 induce a P4 in G leading to a
contradiction that G is a (P4,C4)-free graph. Therefore Ĝ is a P4-free graph.

ByTheorem 3.2.3 and the fact that a maximum independent set of a cograph can be
computed in linear time [26], MaxSTC can be solved in polynomial time on trivially-
perfect graphs. We would like to note that the line-incompatibility graph of a cograph
or a split graph or a proper interval graph is not necessarily a perfect graph. It is also
interesting to note that the line-incompatibility graph of the complement of a bipartite
graph (co-bipartite graph) is bipartite.

A natural contraction for several graph problems is to group twin vertices since
they play the same role on the given graph. For the Cluster Deletion problem, such
an approach has already been used [11, 109]. With the next result, we show that this is

35

Chapter 3 3.3. MaxSTC on split graphs

indeed the case for the MaxSTC problem. We denote by IĜ a maximum independent
set of Ĝ.

Lemma3.2.4. Let x and y be twin vertices of a graphG.Then there is an optimal solution
IĜ such that xy ∈ IĜ and for every vertex u ∈ N(x), xu ∈ IĜ if and only if yu ∈ IĜ.

Proof. First, we show that xy is an isolated node in Ĝ. If xy is adjacent to xu then y is
non-adjacent to u in G which contradicts the fact that x and y are twins. Thus xy is an
isolated node in Ĝ which implies xy ∈ IĜ. For the second argument observe that for
every vertex u ∈ N(x), xu and yu are non-adjacent in IĜ. Let u ∈ N(x). Then notice
that u ∈ N(y). This means that if xu ∈ IĜ (resp., yu ∈ IĜ) then yu (resp., xu) is a node
of Ĝ. We define the following sets of nodes in Ĝ:

• Let Ax be the set of nodes xa such that xa ∈ IĜ and ya /∈ IĜ and let Ay be the set
of nodes ya such that xa ∈ Ax.

• Let By be the set of nodes yb such that yb ∈ IĜ and xb /∈ IĜ and let Bx be the set
of nodes xb such that yb ∈ By.

It is clear that Ax ⊆ IĜ, By ⊆ IĜ, and Ax ∩ By = ∅. Also note that |Ax| = |Ay| and
|By| = |Bx|, since N[x] = N[y].

Let Ixy = IĜ \
(
Ax ∪ By

)
so that IĜ = Ax ∪ By ∪ Ixy. We show that every node of

Ay is non-adjacent to any node of IĜ \ By. Let ya be a node of Ay. If there is a node
az ∈ IĜ \ By that is adjacent to ya then z and y are non-adjacent in G which implies
that z and x are non-adjacent in G. This however leads to a contradiction because
xa, az ∈ IĜ and xa is adjacent to az in Ĝ. If there is a node yb ∈ IĜ that is adjacent to
ya then a is non-adjacent to b in G so that xa is also adjacent to xb in Ĝ. This means
that xb /∈ IĜ implying that yb ∈ By.Thus every node ofAy is non-adjacent to any node
of IĜ \By and with completely symmetric arguments, every node of Bx is non-adjacent
to any node of IĜ \ Ax. Hence both sets I1 = Ax ∪ Ay ∪ Ixy and I2 = Bx ∪ By ∪ Ixy
form independent sets in Ĝ. By the facts that |Ax| = |Ay| and |By| = |Bx| we have
|I1| ≥ |IĜ| whenever |Ax| ≥ |By| and |I2| ≥ |IĜ| whenever |Ax| < |By|. Therefore we
can safely replace one of the sets Ax or By by Bx or Ay and obtain the solutions I2 or I1,
respectively. Now observe that in both solutions I1 and I2 we have xu ∈ Ii if and only
if yu ∈ Ii, for i ∈ {1, 2}, and this completes the proof.

3.3 MaxSTC on split graphs

Here we provide an NP-hardness result for MaxSTC on split graphs. In fact, our
main result stated in Theorem 3.3.4 implies that computing a maximum independent

36

Chapter 3 3.3. MaxSTC on split graphs

set of the line-incompatibility graph of a split graph is NP-hard, improving a result in
[96] which states that computing a maximum independent set of the Gallai graph of
a graph is NP-hard. A graph G = (V,E) is a split graph if V can be partitioned into
a clique C and an independent set I, where (C, I) is called a split partition of G. Split
graphs form a subclass of the larger and widely known graph class of chordal graphs.It
is known that split graphs are self-complementary, that is, the complement of a split
graph remains a split graph. First we need the following two results.

Lemma 3.3.1. Let G = (V,E) be a split graph with a split partition (C, I). Let ES be the
set of strong edges in a solution forMaxSTC on G and let IW be the vertices of I that are
incident to at least one edge of ES. Furthermore, for every vertex wi of I we denote by Ai
its strong neighbors in C andwe denote by Bi the set of vertices in C that are non-adjacent
to wi. Then,

|ES| ≤ |E(C)|+
∑
wi∈IW

|Ai|
(
1 −

⌊
|Bi|
2

⌋)
.

Proof. Let wi be a vertex of I. For the edges of the clique, there are |Ai||Bi| weak edges
due to the strong triadic closure. Moreover any vertex wj of I \ {wi} cannot have a
strong neighbor in Ai. This means that Ai ∩ Aj = ∅. Notice, however, that both sets
Bi ∩ Bj and Ai ∩ Bj are not necessarily empty.

Observe that IW contains the vertices of I that are incident to at least one strong
edge. Let E(A,B) be the set of weak edges that have one endpoint in Ai and the other
endpoint in Bi, for every 1 ≤ i ≤ |IW|. We show that 2|E(A,B)| ≥

∑
wi∈IW |Ai||Bi|.

Let {a, b} ∈ E(A,B) such that a ∈ Ai and b ∈ Bi. Assume that there is a pair Aj,Bj
such that {a, b} is an edge between Aj and Bj, for j ̸= i. Then a cannot belong to Aj
since Ai∩Aj = ∅. Thus, a ∈ Bj and b ∈ Aj. Therefore, for every edge {a, b} ∈ E(A,B)
there are at most two pairs (Ai,Bi) and (Aj,Bj) for which a ∈ Ai ∩Bj and b ∈ Bi ∩Aj.
This means that every edge of E(A,B) is counted at most twice in

∑
wi∈IW |Ai||Bi|.

For any two edges {u, v}, {v, z} ∈ E(C) \ E(A,B), observe that they satisfy the
strong triadic closure since there is the edge {u, z} in G. Thus, the strong edges of the
clique are exactly the set of edges E(C) \ E(A,B). In total by counting the number
of strong edges between the independent set and the clique, we have |ES| = |E(C) \
E(A,B)|+

∑
wi∈IW |Ai|. Since 2|E(A,B)| ≥

∑
wi∈IW |Ai||Bi|, we get the stated formula.

Lemma 3.3.2. Let G = (V,E) be a split graph with a split partition (C, I). Let ES be the
set of strong edges in an optimal solution forMaxSTC on G and let IW be the vertices of
I that are incident to at least one edge of ES.

1. If every vertex of IW misses at least three vertices of C in G, then ES = E(C).

37

Chapter 3 3.3. MaxSTC on split graphs

2. If every vertex of IW misses exactly one vertex of C in G, then |ES| ≤ |E(C)| +
⌊ |IW|

2 ⌋.

Proof. We apply Lemma 3.3.1 in each case. The first claim of the lemma holds because
|Bi| ≥ 3 so that IW = ∅. For the second claim we show that for every vertex of IW,
|Ai| = 1. Let wi ∈ IW such that |Ai| ≥ 2 and let Bi = {bi}. Recall that no other vertex
of IW has strong neighbors in Ai. Also note that there is at most one vertex wj in IW
that has bi as a strong neighbor. If such a vertex wj exists and for the vertex bj of the
clique that misses wj it holds bj ∈ Ai, then we let v = bj; otherwise we choose v as
an arbitrary vertex of Ai. Observe that no vertex of I \ {wi} has a strong neighbor in
Ai\{v} and onlywj ∈ IW is strongly adjacent to bi.Thenwe labelweak the |Ai|−1 edges
between wi and the vertices of Ai \ {v} and we label strong the |Ai| − 1 edges between
bi and the vertices of Ai \ {v}. Making strong the edges between bi and the vertices of
Ai \ {v} does not violate the strong triadic closure since every vertex of C ∪ {wj} is
adjacent to every vertex of Ai \ {v}. Therefore for every vertex wi ∈ IW, |Ai| = 1 and
by substituting |Bi| = 1 in the formula for |ES| we get the claimed bound.

In order to give the reduction, we introduce the following problem that we call
maximum disjoint non-neighborhood (MaxDisjointNN):

Input: A split graph (C, I) where every vertex of I misses three vertices
from C and a nonnegative integer k.

Task: Find a subset SI of I such that the non-neighborhoods of the vertices
of SI are pairwise disjoint and |SI| ≥ k.

MaxDisjointNN

Thepolynomial-time reduction toMaxDisjointNN is given from the classical NP-
complete problem 3-Set Packing [80]: given a universeU of n elements, a familyF of
triplets of U , and an integer k, the problem asks for a subfamilyF ′ ⊆ F with |F ′| ≥ k
such that all triplets of F ′ are pairwise disjoint.

Corollary 3.3.3. MaxDisjointNN is NP-complete.

Proof. Given a split graph G = (C, I) and SI ⊆ I, checking whether SI is a solution
for MaxDisjointNN amounts to checking whether every pair of vertices of SI have
common neighborhood. As this can be done in polynomial time the problem is in
NP. We will give a polynomial-time reduction to MaxDisjointNN from the classical
NP-complete problem 3-Set Packing [80]: given a universe U of n elements, a family
F of triplets of U , and an integer k, the problem asks for a subfamily F ′ ⊆ F with
|F ′| ≥ k such that all triplets of F ′ are pairwise disjoint.

38

Chapter 3 3.3. MaxSTC on split graphs

Let (U ,F , k) be an instance of the 3-Set Packing. We construct a split graph G =
(C, I) as follows. The clique of G is formed by the n elements of U . For every triplet Fi
ofF we add a vertex vi in I that is adjacent to every vertex ofC except the three vertices
that correspond to the triplet Fi. Thus every vertex of I misses exactly three vertices
from C and sees the rest of C. Now it is not difficult to see that there is a solution
F ′ for 3-Set Packing(U ,F , k) of size at least k if and only if there is a solution SI for
MaxDisjointNN(G, k) of size at least k. For every pair (Fi, Fj) ofF ′ we know that Fi∩
Fj = ∅ which implies that the vertices vi and vj have disjoint non-neighborhood since
Fi corresponds to the non-neighborhood of vi. By the one-to-one mapping between
the sets ofF and the vertices of I, every set Fi belongs toF ′ if and only if vi belongs to
SI.

Now we turn to our original problem MaxSTC. The decision version of MaxSTC
takes as input a graphG and an integer k and askswhether there is strong-weak labeling
of the edges of G that satisfies the strong triadic closure with at least k strong edges.

Theorem 3.3.4. The decision version of MaxSTC is NP-complete on split graphs.

Proof. Given a strong-weak labeling (ES,EW) of a split graph G = (C, I), check-
ing whether (ES,EW) satisfies the strong triadic closure amounts to check in G \ EW
whether there is a non-edge in G between the endvertices of every P3 according to
Observation 3.2.1. Thus by listing all P3’s of G \ EW the problem belongs to NP. Next
we give a polynomial-time reduction to MaxSTC from the MaxDisjointNN prob-
lem on split graphs which is NP-complete by Corollary 3.3.3. Let (G, k) be an instance
of MaxDisjointNN whereG = (C, I) is a split graph such that every vertex of the in-
dependent set Imisses exactly three vertices from the clique C. For a vertex wi ∈ I, we
denote by Bi the set of the three vertices in C that are non-adjacent to wi. Let n = |C|.
We extend G and construct another split graph G′ as follows (see Figure 3.3):

• We add n vertices y1, . . . , yn in the clique that constitute the set CY.

• We add n vertices x1, . . . , xn in the independent set that constitute the set IX.

• For every 1 ≤ i ≤ n, yi is adjacent to all vertices of (C ∪ CY ∪ I ∪ IX) \ {xi}.

• For every 1 ≤ i ≤ n, xi is adjacent to all vertices of (C ∪ CY) \ {yi}.

Thus wi misses only the vertices of Bi from the clique. By construction it is clear that
G′ is a split graph with a split partition (C ∪ CY, I ∪ IX). Notice that the clique C ∪ CY
has 2n vertices and G = G′[I ∪ C].

We next prove that G has a solution for MaxDisjointNN of size at least k if and
only ifG′ has a strong triadic closure with at least n(2n− 1)+ ⌊n2 ⌋+ ⌈ k2⌉ strong edges.

39

Chapter 3 3.3. MaxSTC on split graphs

x1

y1

B1

w1

· · ·

· · ·

· · ·

· · ·

xk

yk

Bk

wk

xk+1

yk+1

Bk+1

wk+1

xk+2

yk+2

· · ·

· · ·

· · ·

· · ·

xn−1

yn−1

xn

yn

B|I|

w|I|

IX

CY

C

I

Figure 3.3: The split graph (C ∪ CY, I ∪ IX) given in the polynomial-time reduction.
Every vertex wi misses the vertices of Bi and sees the vertices of (C ∪ CY) \ Bi. Every
vertex xi misses yi and sees the vertices of (C ∪ CY) \ {yi}. The sets B1, . . . ,Bk are
pairwise disjoint whereas for every set Bj, k < j ≤ |I|, there is a set Bi, 1 ≤ i ≤ k,
such that Bi ∩ Bj ̸= ∅. The drawn edges correspond to the strong edges between the
independent set and the clique, and the dashed edges are the only weak edges in the
clique C ∪ CY.

(⇒) Assume that {w1, . . . ,wk} ⊆ I is a solution for MaxDisjointNN on G of size
at least k. Since the sets B1, . . . ,Bk are pairwise disjoint, there are k distinct vertices
y1, . . . , yk in CY such that k ≤ n. We will give a strong-weak labeling for the edges of
G′ that fulfills the strong triadic closure and has at least the claimed number of strong
edges. For simplicity, we describe only the strong edges; the edges of G′ that are not
given are all labeled weak. We label the edges incident to each vertex wi, yi, xi and the
three vertices of each set Bi, for 1 ≤ i ≤ k as follows:

• The edges of the form {yi, v} are labeled strong if v ∈ (C ∪ CY) \ Bi or v = wi.

• The edges between xi and the three vertices of Bi are labeled strong.

Next we label the edges incident to the rest of the vertices. No edge incident to a ver-
tex of I \ {w1, . . . ,wk} is labeled strong. For every vertex u ∈ C \ (B1 ∪ · · · ∪ Bk) we
label the edge {u, v} strong if v ∈ (C ∪ CY). Let C′

Y = {yk+1, . . . , yn} and let I′X =
{xk+1, . . . , xn}. Recall that every vertex xk+j is adjacent to every vertex of C′

Y \ {yk+j}.
Let ℓ = ⌊n−k

2 ⌋. Let M = {e1, . . . , eℓ} be a maximal set of pairwise non-adjacent
edges in G′[C′

Y] where ej = {yk+2j−1, yk+2j}, for j ∈ {1, . . . , ℓ}; note that M is a max-
imal matching of G′[C′

Y]. For every vertex y ∈ C′
Y, we label the edge {y, v} strong if

v ∈ (C ∪ CY) \ {y′} such that {y, y′} ∈ M. Moreover, for j ∈ {1, . . . , ℓ}, the edges
{xk+2j−1, yk+2j} and {xk+2j, yk+2j−1} are labeled strong. Note that if n− k is odd then

40

Chapter 3 3.3. MaxSTC on split graphs

no edge incident to the unique vertex yn belongs to M and all edges between yn and
the vertices of C∪CY are labeled strong; in such a case also note that no edge incident
to xn is strong.

Let us show that such a labeling fulfills the strong triadic closure. Any labeling for
the edges insideG′[C∪CY] is satisfied sinceG′[C∪CY] is a clique. Also note that there
are no two adjacent strong edges that have a common endpoint in the clique C ∪ CY
and the two other endpoints in the independent set I ∪ IX. If there are two strong
edges incident to the same vertex v of the independent set then v ∈ {x1, . . . , xk} and
NS[v] = Bi which is a clique. Assume that there are two adjacent strong edges {u, v}
and {v, z} such that u ∈ I ∪ IX, and v, z ∈ C ∪ CY.

• If u ∈ {w1, . . . ,wk} then {u, z} ∈ E(G′) since every wi misses only the vertices
of Bi.

• If u ∈ {x1, . . . , xk} then v ∈ Bi and {u, z} ∈ E(G′) since every vertex xi misses
only yi.

• If u ∈ IX \ {x1, . . . , xk} then the strong neighbors of v in C ∪ CY are adjacent
to u in G′ since for the only non-neighbor of u in C ∪ CY there is a weak edge
incident to v.

Recall that there is no strong edge incident to the vertices of I\{w1, . . . ,wk}.Therefore
the given strong-weak labeling fulfills the strong triadic closure.

Observe that the number of vertices in C ∪ CY is 2n. There are exactly 3k+ ℓ weak
edges in G′[C ∪ CY]. Thus the number of strong edges in G′[C ∪ CY] is n(2n − 1) −
3k− ℓ. There are k strong edges incident to {w1, . . . ,wk}, 3k strong edges incident to
{x1, . . . , xk}, and 2ℓ strong edges incident to IX \ {x1, . . . , xk}. Thus the total number
of strong edges is n(2n − 1) − 3k − ℓ + k + 3k + 2ℓ = n(2n − 1) + ℓ + k and by
substituting ℓ = ⌊n−k

2 ⌋ we get the claimed bound.

(⇐) For the opposite direction, assume that G′ has a strong triadic closure with at
least n(2n − 1) + ⌊n2 ⌋ + ⌈ k2⌉ strong edges. Let ES be the set of strong edges in such a
strong-weak labeling.Observe that the number of edges inG′[C∪CY] isn(2n−1)which
implies thatES contains edges between the independent set I∪IX and the cliqueC∪CY.
If no vertex of IX is incident to an edge of ES then the first statement of Lemma 3.3.2
implies that |ES| = |E(C∪CY)| = n(2n−1). And if no vertex of I is incident to an edge
of ES then the second statement of Lemma 3.3.2 shows that |ES| ≤ |E(C∪CY)|+ ⌊n2 ⌋.
Therefore,ES contains edges that are incident to a vertex of I and edges that are incident
to a vertex of IX.

In the graph spanned by ES we denote by SW the set of vertices of I that have strong
neighbors in C ∪ CY. A nice solution is a strong-weak labeling that satisfies the strong

41

Chapter 3 3.3. MaxSTC on split graphs

triadic closure with a set of strong edges E′S such that |ES| = |E′S|. We will show that
the non-neighborhoods of the vertices of SW in C ∪ CY are disjoint in G′ and, since G
is an induced subgraph of G′, their non-neighborhoods are also disjoint in G.

Claim 3.3.5. There exists a nice solution such that for every wi ∈ SW, (i) NS(wi) ⊆ CY
holds and (ii) there is a unique vertex x ∈ IX with NS(x) = Bi.

Proof: Let wi be a vertex of SW. We first show that NS(wi) ⊆ CY. Let Wi be the strong
neighbors of wi in C and let Yi be the strong neighbors of wi in CY. Observe that no
other vertex of SW has a strong neighbor inWi∪Yi. Furthermore, notice that there are
(|Wi|+|Yi|)|Bi|weak edges sincewi is non-adjacent to the vertices of Bi.We show that
Wi = ∅, for every vertexwi ∈ SW. For all verticeswi for whichWi ̸= ∅we replace in ES
the strong edges betweenwi and the vertices ofWi by the edges between the vertices of
Bi andWi. Notice that making strong the edges between the vertices of Bi andWi does
not violate the strong triadic closure since no vertex from SW has a strong neighbor in
Bi and every vertex of IX is adjacent to all the vertices of Wi. Let E(W,B) be the set of
edges that have one endpoint in Wi and the other endpoint in Bi, for every wi ∈ SW.
Notice that the difference between the two described solutions is |E(W,B)|−

∑
|Wi|.

By Lemma 3.3.1 and |Bi| = 3, we know that |E(W,B)| ≥ 3/2
∑

|Wi|. Thus, such a
replacement is safe for the number of edges of ES and every vertex wi ∈ SW has strong
neighbors only in CY.

Let Xi be the set of vertices of IX that have at least one non-neighbor in Yi. By
construction every vertex of Yi is non-adjacent to exactly one vertex of IX, and thus
|Xi| = |Yi|. Since wi has strong neighbors in Yi, every edge between Xi and Yi is weak.
By the previous argument every vertex of SW has strong neighbors only in CY so that
NS(Bi)∩I = ∅. Also notice that no two vertices of the independent set have a common
strong neighbor in the clique, whichmeans that there are atmost |Bi| strong neighbors
between the vertices of Bi and IX. Choose an arbitrary vertex x ∈ Xi. We replace all
strong edges in ES between Bi and IX by |Bi| strong edges between x and the vertices of
Bi. Notice that such a replacement is safe since the unique non-neighbor of x belongs
to Yi and there are weak edges already in the solution between Bi and Yi because of
the strong edges between wi and Yi. Thus Bi ⊆ NS(x). We focus on the edges between
the vertices of (C∪CY) \ (Bi ∪Yi) and x. If a vertex x of Xi has a strong neighbor u in
(C∪CY)\Bi then the edge {u, y} is weak where y ∈ Yi is the unique non-neighbor of
x. Also notice thatNS(u)∩ (I∪ IX) = {x},NS(y)∩ (I∪ IX) = {wi}, and wi is adjacent
to u. Then we can safely replace the strong edge {x, u} by the edge {u, y} and keep the
same size of ES. Hence NS(x) = Bi. ♢

Claim 3.3.6. There exists a nice solution such that for every wi ∈ SW, NS(wi) = {y}
where y ∈ CY is the non-neighbor of x with NS(x) = Bi.

42

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Proof: Let Yi = NS(wi). By Claim 3.3.5 we know that Yi ⊆ CY and there exists x ∈ IX
such that NS(x) = Bi. Both wi and x are vertices of the independent set and, thus, no
other vertex of I ∪ IX has strong neighbors in Bi ∪ Yi. This means that if we remove
wi from SW by making weak the edges incident to wi and the vertices of Yi then the
edges between the vertices of Bi andYi\{y} are safely turned into strong. Let E′S be the
set of strong edges in a nice solution such that all edges incident to wi are weak. Then
|ES| − |E′S| = |Yi| + |Bi| − |Yi||Bi| and |ES| > |E′S| only if |Yi| = 1 because |Bi| > 1.
Thus NS(wi) contains exactly one vertex y ∈ CY. ♢

We claim that for every pair of vertices wi,wj ∈ SW, Bi ∩ Bj = ∅. Assume for
contradiction that Bi ∩ Bj ̸= ∅. Applying Claim 3.3.5 for wi shows that there exists
x ∈ IX that has strong neighbors in every vertex of Bi ∩ Bj. With a similar argument
for wj we deduce that there exists x′ ∈ IX that has strong neighbors in every vertex of
Bi∩Bj. If x ̸= x′ then a vertex fromBi∩Bj has two distinct strong neighbors in IX which
is not possible due to the strong triadic closure. Thus x = x′. Claim 3.3.6 implies that
the unique non-neighbor y of x is strongly adjacent to both wi and wj. This however
violates the strong triadic closure for the edges of ES since wi,wj are non-adjacent and
we reach a contradiction. Thus Bi ∩ Bj = ∅. This means that the number of edges in
ES is at least n(2n − 1) + ⌊n2 ⌋ + ⌈ |SW|

2 ⌉ which is maximized for k = |SW|. Therefore
there are at least |SW| vertices from the independent set which form a solution for
MaxDisjointNN on G, since G is an induced subgraph of G′.

3.4 Computing MaxSTC on proper interval graphs

Due to the NP-completeness on split graphs given in Theorem 3.3.4, it is natural to
consider interval graphs that form another well-studied subclass of chordal graphs.
However besides few observations of this section that may be applied for interval
graphs, we found several unresolved technical cases. Moreover we would like to note
that, to the best of our knowledge, the complexity of the close-related Cluster Dele-
tion problem still remains unresolved on interval graphs [11]. Therefore we further
restrict the input to the class of proper interval graphs that form a proper subclass of
interval graphs. Our polynomial solution for MaxSTC on proper interval graphs can
be seen as a first step towards determining its complexity on interval graphs.

A graph is a proper interval graph if there is a bijection between its vertices and a
family of closed intervals of the real line such that two vertices are adjacent if and only
if the two corresponding intervals overlap and no interval is properly contained in
another interval. A vertex ordering σ is a linear arrangement σ = ⟨v1, . . . , vn⟩ of the
vertices ofG. For a vertex pair x, ywe write x ≼ y if x = vi and y = vj for some indices
i ≤ j; if x ̸= y which implies i < j then we write x ≺ y. We extend ≺ to support sets

43

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

of vertices, as follows: for two sets of vertices A and B we write A ≺ B if for any a ∈ A
and b ∈ B, a ≺ b holds. The first position in σ will be referred to as the left end of σ,
and the last position as the right end. We will use the expressions to the left of, to the
right of, leftmost, and rightmost accordingly.

A vertex ordering σ forG is called a proper interval ordering if for every vertex triple
x, y, z of G with x ≺ y ≺ z, {x, z} ∈ E(G) implies {x, y}, {y, z} ∈ E(G). Proper inter-
val graphs are characterized as the graphs that admit such orderings, that is, a graph is
a proper interval graph if and only if it has a proper interval ordering [102]. We only
consider this vertex ordering characterization for proper interval graphs. Moreover it
can be decided in linear time whether a given graph is a proper interval graph, and if
so, a proper interval ordering can be generated in linear time [102]. It is clear that a
vertex ordering σ for G is a proper interval ordering if and only if the reverse of σ is a
proper interval ordering. A connected proper interval graph without twin vertices has
a unique proper interval ordering σ up to reversal [32, 73]. Figure 3.4 shows a proper
interval graph with its proper interval ordering.

Before reaching the details of our algorithm for proper interval graphs, let us high-
light the difference between the optimal solution for MaxSTC and the optimal solu-
tion for the Cluster Deletion. As already explained in the Introduction a solution
for Cluster Deletion satisfies the strong triadic closure, though the converse is not
necessarily true. In fact such an observation carries out for the class of proper interval
graphs as shown in the example given in Figure 3.4. For the Cluster Deletion prob-
lem twin vertices can be grouped together following a similar characterization with
Lemma3.2.4, as proved in [11].Thismeans that theP3-free graph depicted in the lower
part of Figure 3.4 that is obtained by removing its weak edges (i.e., the dashed drawn
lines) is an optimal solution for Cluster Deletion problem on the given proper in-
terval graph. Therefore when restricted to proper interval graphs the optimal solution
for Cluster Deletion does not necessarily imply an optimal solution for MaxSTC.

LetG be a proper interval graph and let σ be a proper interval ordering forG. Here-
after we denote by ES the set of strong edges in an optimal solution for MaxSTC onG.
Moreover a labeled edge {x, y} (weak or strong) is simple denoted by xy. By Proposi-
tion 3.2.2 and the strong triadic closure, in the forthcoming arguments we will apply
the following observations:

• If xy ∈ ES, then for every strong edge yz ∈ ES, {x, z} ∈ E(G).

• If xy /∈ ES, then there is a strong edge yz ∈ ES such that {x, z} /∈ E(G).

We say that a solution ES has the consecutive strong property with respect to σ if for
any three vertices x, y, z of G with x ≺ y ≺ z the following holds: xz ∈ ES implies
xy, yz ∈ ES. Our task is to show that such an ordering exists for an optimal solution.

44

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

a b

{cde} {fgh}
i j

G:

a b {cde} {fgh} i j
G:

a b {cde} {fgh} i j
G:

Figure 3.4: A proper interval graph G and its proper interval ordering. The vertices
{c, d, e} and {f, g, h} form twin sets inG.The two lower orderings depict two solutions
for MaxSTC on G. A solid edge corresponds to a strong edge, whereas a dashed edge
corresponds to aweak edge.Observe that the upper solution contains larger number of
strong edges than the lower one. Also note that the lower solution consists an optimal
solution for the Cluster Deletion problem on G.

We start by characterizing the optimal solution ES with respect to the proper interval
ordering σ.

Lemma 3.4.1. Let x, y, z be three vertices of a proper interval graph G such that x ≺
y ≺ z. If xz ∈ ES then xy ∈ ES or yz ∈ ES.

Proof. We show that at least one of xy or yz belongs to ES. Assume towards a contra-
diction that neither xy nor yz belong to ES. Consider the edge xy in G. Since xy /∈ ES,
there is a strong edge of ES that share a common vertex with xy. Suppose that there is
an edge xxℓ ∈ ES such that {xℓ, y} /∈ E(G). Then observe that xℓ ≺ y because x ≺ y
and {xℓ, y} /∈ E(G). Since both xxℓ and xz belong to ES, {xℓ, z} ∈ E(G). This, how-
ever, contradicts the proper interval ordering because xℓ ≺ y ≺ z, {xℓ, z} ∈ E(G) and
y is non-adjacent to xℓ. Thus, there is no strong edge xxℓ with {xℓ, y} /∈ E(G) and, in
analogous fashion, there is no strong edge zzr with {y, zr} /∈ E(G).

45

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Now, if all strong neighbors of y are adjacent to x (resp., z) then the edge xy (resp.,
yz) can be made strong. So, let us assume that there are edges yyr ∈ ES and yℓy ∈ ES
such that {x, yr} /∈ E(G) and {z, yℓ} /∈ E(G). Since {x, z} ∈ E(G), yℓ and yr cannot
be ordered between x and y in the proper interval ordering. In particular, by the facts
{x, yr} /∈ E(G) and {z, yℓ} /∈ E(G) we have yℓ ≺ x ≺ y ≺ z ≺ yr. Then, notice that
{yℓ, yr} ∈ E(G), because both yyr, yyℓ ∈ ES. By the proper interval ordering we know
that both x and z are adjacent to yℓ, yr, leading to a contradiction to the assumptions
{x, yr} /∈ E(G) and {z, yℓ} /∈ E(G). Therefore, at least one of xy or yz belongs to
ES.

Thus, by Lemma 3.4.1 we have two symmetric cases to consider. The next char-
acterization suggests that there is a fourth vertex with important properties in each
corresponding case.

Lemma 3.4.2. Let x, y, z be three vertices of a proper interval graph G such that x ≺
y ≺ z and xz ∈ ES.

• If xy /∈ ES and yz ∈ ES then for every edge xℓx ∈ ES, {xℓ, y} ∈ E(G) holds and
there is a vertex w such that yw ∈ ES, {x,w} /∈ E(G), and z ≺ w.

• If xy ∈ ES and yz /∈ ES then for every edge zzr ∈ ES, {y, zr} ∈ E(G) holds and
there is a vertex w such that wy ∈ ES, {w, z} /∈ E(G) and w ≺ x.

Proof. Let xy /∈ ES and yz ∈ ES. The case for xy ∈ ES and yz /∈ ES is completely
symmetric. First, we prove that there is no strong edge xℓx such that {xℓ, y} /∈ E(G).
Suppose that there is an edge xℓx ∈ ES with y being non-adjacent to xℓ. Notice that
xℓ ≺ x because y is adjacent to x and x ≺ y. Due to the fact that xℓx, xz ∈ ES, we have
{xℓ, z} ∈ E(G). Since xℓ ≺ x ≺ y ≺ z and {xℓ, z} ∈ E(G), by the proper interval
ordering we get {xℓ, y} ∈ E(G) leading to a contradiction. Thus there is no strong
edge xℓx ∈ ES with {xℓ, y} /∈ E(G).

Now to prove the statement, assume towards a contradiction that there is no vertex
w such that yw ∈ ES, {x,w} /∈ E(G), and z ≺ w. Thus, for all edges yyr ∈ ES either
{x, yr} /∈ E(G) and yr ≺ z, or {x, yr} ∈ E(G). If {x, yr} /∈ E(G)we know that yr ≺ x or
x ≺ yr ≺ zby the proper interval ordering.However, both cases lead to a contradiction
to {x, yr} /∈ E(G) since in the former case we have {yr, y} ∈ E(G) and yr ≺ x ≺ y,
and in the latter case we know that {x, z} ∈ E(G). If {x, yr} ∈ E(G) then putting xy
in ES does not violate the strong triadic closure, contradicting the assumption xy /∈ ES
of the statement. Therefore, the corresponding statement holds.

Now we are ready to show that there is an optimal solution that has the described
properties with respect to the given proper interval ordering.

46

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Lemma 3.4.3. There exists an optimal solution ES that has the consecutive strong prop-
erty with respect to σ.

Proof. Let σ be a proper interval ordering for G. Assume towards a contradiction that
ES does not have the consecutive strong property. Then there exists a conflict with
respect to σ, that is, there are three vertices x, y, z with x ≺ y ≺ z and xz ∈ ES such
that xy /∈ ES or yz /∈ ES. We will show that as long as there are conflicts in σ, we can
reduce the number of conflicts in σ without affecting the value of the optimal solution
ES. Consider such a conflict formed by the three vertices x ≺ y ≺ z with xz ∈ ES.
By Lemma 3.4.1 we know that xy ∈ ES or yz ∈ ES. Without loss of generality, assume
that yz ∈ ES. Then, clearly xy /∈ ES, for otherwise there is no conflict. Moreover, by
Lemma3.4.2 there is a vertexw such that yw ∈ ES, {x,w} /∈ E(G), and x ≺ y ≺ z ≺ w.
Notice that both triples x, y, z and y, z,w create conflicts in σ.

We start by choosing an appropriate such conflict that is formed by four vertices
x, y, z,w so that x ≺ y ≺ z ≺ w, xz, yz, yw ∈ ES, and {x,w} /∈ E(G). Fix y and z in σ
with y, z being the leftmost and the rightmost vertices, respectively, such that for every
vertex v with y ≺ v ≺ z, yv, vz ∈ ES holds. Recall that yz ∈ ES. We choose x as the
leftmost vertex such that xz ∈ ES, xy /∈ ES and we choose w as the rightmost vertex
such that yw ∈ ES, zw /∈ ES. Observe that {x,w} /∈ E(G), since y and z participate in
a conflict. Due to the properties of the considered conflicts, all such vertices exist (see
for e.g., Figure 3.5). Our task is to create a new set of strong edges E′S from ES such
that (i) E′S does not violate the strong triadic closure, (ii) |E′S| = |ES|, and (iii) E′S has
strictly less conflicts than ES. We do so, with a series of claims that we prove next.

We define the following sets of vertices with respect to the strong neighbors of z
and y:

• Let X(z) be the set of vertices xj such that xjz ∈ ES and {xj,w} /∈ E(G).

• Let W(y) be the set of vertices wi such that ywi ∈ ES and {x,wi} /∈ E(G).

Claim 3.4.4. X(z) ≺ y ≺ z ≺ W(y) holds. Moreover, for any vertex of xj ∈ X(z),
xjy /∈ ES holds, and for any vertex of wi ∈ W(y), zwi /∈ ES holds.

Proof: Let xj ∈ X(z). Ifw ≺ xj then {xj,w} ∈ E(G) because z ≺ w and {xj, z} ∈ E(G),
and if y ≺ xj ≺ w then {xj,w} ∈ E(G) because {y,w} ∈ E(G). By the definition of
X(z) we know that {xj,w} /∈ E(G) which means xj ≺ y. Thus, {xj, y} ∈ E(G) holds,
since {xj, z} ∈ E(G).With symmetric arguments for the vertices ofW(y), we conclude
that X(z) ≺ y ≺ z ≺ W(y). Moreover, if xjy ∈ ES then by the fact that yw ∈ ES, we
have {xj,w} ∈ E(G), contradicting the definition of X(z). ♢

47

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

x
· · ·

xj

X(z)

aj

A(z)

y u z bi

B(y)

wi

· · ·
w

W (y)

x
· · ·

xj

X(z)

aj

A(z)

y u z bi

B(y)

wi

· · ·
w

W (y)

Figure 3.5: A proper interval ordering for a graph G with two different solutions con-
sidered in the proof of Lemma 3.4.3. A solid edge corresponds to a strong edge in an
optimal strong-weak labeling, whereas a dashed edge corresponds to aweak edge in an
optimal strong-weak labeling. Observe that the lowest ordering contains less conflicts
than the topmost, that is, triple of vertices that violate the consecutive strong property.

Notice that the previous claim and the choices for x andw imply that x is the leftmost
vertex of X(z) and w is the rightmost vertex of W(y). We further partition the strong
neighbors of z that lie to the left of y, and the strong neighbors of y that lie to the right
of z, as follows (see Figure 3.5):

• Let A(z) be the set of vertices aj such that aj ≺ y, ajz ∈ ES, {aj,w} ∈ E(G), and
ajy /∈ ES.

• Let B(y) be the set of vertices bi such that z ≺ bi, ybi ∈ ES, {x, bi} ∈ E(G), and
zbi /∈ ES.

Claim 3.4.5. X(z) ≺ A(z) ≺ y ≺ z ≺ B(y) ≺ W(y) holds. Moreover, every vertex of
A(z) is adjacent to all the vertices of W(y) and every vertex of B(y) is adjacent to all the
vertices of X(z).

Proof: By Claim 3.4.4 and the definition ofA(z), we know thatX(z) ≺ y andA(z) ≺ y.
Let xj ∈ X(z) and aj ∈ A(z). Since {xj,w} /∈ E(G), {aj,w} ∈ E(G), and σ is a proper

48

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

interval ordering, we deduce that X(z) ≺ A(z) ≺ y. Moreover, aj is adjacent to w by
definition, and w is the rightmost vertex of W(y). Thus, aj is adjacent to every vertex
of W(y). Symmetric arguments for the vertices of B(y) and W(y) show the rest of the
claims. ♢

Claim 3.4.6. Let v be a vertex of G. For any vertex xj ∈ X(z), we have vxj ∈ ES implies
{v, y} ∈ E(G). Moreover, for any vertex aj ∈ A(z), we have vaj ∈ ES implies {v, y} ∈
E(G).

Proof: For the first claim, notice that v ≺ w, since {xj,w} /∈ E(G). If xj ≺ v ≺ w then
{v, y} ∈ E(G), since xj ≺ y ≺ w and y is adjacent to xj and w; and if v ≺ xj then,
due to the fact that xjz, vxj ∈ ES and {z, v} ∈ E(G), we have again {v, y} ∈ E(G),
because v ≺ y ≺ z. For the latter, if y ≺ v then {v, y} ∈ E(G) because aj ≺ y ≺ v
and {aj, v} ∈ E(G); and if v ≺ y then {v, z} ∈ E(G) because ajz, vaj ∈ ES, so that
{v, y} ∈ E(G) by the proper interval ordering v ≺ y ≺ z. ♢

With symmetric arguments, we get the following for the vertices of W(y) and B(y):

Claim 3.4.7. Let v be a vertex of G. For any vertex wi ∈ W(y), we have vwi ∈ ES
implies {v, z} ∈ E(G). Moreover, for any vertex bi ∈ B(y), we have vbi ∈ ES implies
{v, z} ∈ E(G).

The next claim shows that for every vertex v that is strongly adjacent to y and lies
to the right of y, either v belongs to B(y)∪W(y) or v is strongly adjacent to z, as well.

Claim 3.4.8. Let yv ∈ ES such that y ≺ v and v /∈ B(y) ∪W(y). Then, zv ∈ ES.

Proof: If y ≺ v ≺ z then according to the choice of y and z we have yv, zv ∈ ES.
Assume for contradiction that z ≺ v and zv /∈ ES. Then, v is either adjacent to x or
non-adjacent to x. In the former case we have v ∈ B(y) and in the latter case we have
v ∈ W(y). Thus, in all cases we get zv ∈ ES. ♢

Symmetrically, for the left strong neighbors of z we have the following:

Claim 3.4.9. Let zv ∈ ES such that v ≺ z and v /∈ X(z) ∪ A(z). Then, yv ∈ ES.

We define the following set of weak and strong edges:

• Let S(y) be the set of weak edges of the form yv where v ∈ X(z) ∪ A(z).

• Let E(y) be the set of strong edges of the form yv where v ∈ B(y) ∪W(y).

• Let S(z) be the set of weak edges of the form zv where v ∈ B(y) ∪W(y).

• Let E(z) be the set of strong edges of the form zv where v ∈ X(z) ∪ A(z).

49

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Now we are ready to modify ES as follows:

E′S = (ES \ (E(y) ∪ E(z))) ∪ (S(y) ∪ S(z)) .

We say that a labeled edge e is removed from ES if e ∈ ES \ E′S, whereas e is added in
E′S if e ∈ E′S \ ES. Under these terms, observe that an edge uy is added only if u ≺ y,
and uy is removed only if y ≺ u; symmetrically, uz is added only if z ≺ u, and uz is
removed only if u ≺ z.

Claim 3.4.10. Labeling strong the edges of E′S does not violate the strong triadic closure.

Proof: Observe that we only replace labeled edges incident to y and z. Consider the
edges incident to y.Those new strong edges are formed by the set S(y). SinceES satisfies
the strong triadic closure, the edges ofES\E(y) donot violate the strong triadic closure.
Let uy ∈ E′S. By the definition of S(y), we know that u ∈ X(z)∪A(z) and u ≺ y. There
are three cases to consider:

(i) there is an edge vy ∈ E′S and v ∈ X(z) ∪ A(z).

(ii) there is an edge vy ∈ E′S and v /∈ X(z) ∪ A(z).

(iii) there is an edge uv ∈ E′S.

In the former case (i), observe that uz, vz ∈ ES according to the definition of X(z)
and A(z). Thus, {u, v} ∈ E(G) holds. For the second case (ii), if y ≺ v then vz ∈ ES
by Claim 3.4.8, which means that {u, v} ∈ E(G) holds, since uz ∈ ES. If v ≺ y then
x ≺ v because yw, vy ∈ ES and {x,w} /∈ E(G). Thus, x ≺ {u, v} ≺ y ≺ z and, since
{x, z} ∈ E(G), we get {u, v} ∈ E(G). For the third case (iii), Claim 3.4.6 shows that
{y, v} ∈ E(G). Therefore, the edges incident to y in E′S do not violate the strong triadic
closure.

Completely symmetric arguments hold for the edges incident to z in E′S. Hence,
labeling strong the edges of E′S does not violate the strong triadic closure. ♢

Claim 3.4.11. |E′S| = |ES| holds.

Proof: Only edges incident to y and z are modified from ES with respect to E′S. By
definition, the number of edges incident to y that are removed from ES is |B(y)| +
|W(y)|, whereas the number of edges incident to z that are added in E′S is |B(y)| +
|W(y)|. Symmetrically, the number of edges incident to z that are removed from ES
is |X(z)| + |A(z)|, whereas the number of edges incident to y that are added in E′S is
|X(z)| + |A(z)|. Since the rest of the edges in ES and E′S remain the same, we have
|E′S| = |ES|. ♢

50

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Claim 3.4.12. The number of conflicts in E′S is strictly smaller than the number of con-
flicts in ES.

Proof:Observe that conflicts of the formX(z) ≺ y ≺ z and y ≺ z ≺ W(y) in ES do not
create conflicts in E′S by the construction of E′S. Since X(z) and W(y) are non-empty
sets, such already existed conflicts in ES do not appear in E′S. We show that for every
other conflict in E′S, there is a unique conflict in ES. First we show that both y and z do
not participate in a conflict in E′S. Assume for contradiction that y and z form a conflict
in E′S with another vertex v. If v ≺ y ≺ z then, since yz ∈ ES ∩ E′S, we have vy /∈ E′S
and vz ∈ E′S in order to create a conflict. Then, observe that vz ∈ ES, because no
added edge is incident to the left of z in E′S. Moreover, no edge incident to the left of y
is removed from ES which means that vy /∈ ES. This, however, contradicts Claim 3.4.9,
since vz ∈ ES, v /∈ X(z) ∪ A(z), and vy /∈ ES. If y ≺ z ≺ v then symmetric arguments
show that there is no such conflict. Moreover, if y ≺ v ≺ z holds, then by the choice of
y and z, we know that yv, vz ∈ ES ∩ E′S. Thus, there is no conflict in E′S that is formed
by y and z.

Consider the edges incident to y. Note that with respect to the proper interval or-
dering, we only add edges incident to y and a vertex to the left of y, andwe only remove
edges incident to y and a vertex to the right of y. This means that for any vertex v ≺ y
with vy /∈ E′S, we have vy /∈ ES, and for any vertex y ≺ vwith yv ∈ E′S, we have yv ∈ ES.
Observe also that the (added or removal) edges of E′S \ES and ES \E′S are incident to y
or z. Thus, for any two vertices u, v different than y and z, we have uv ∈ E′S if and only
if uv ∈ ES.

Assume that there is a conflict inE′S formed by the verticesu, v, y. Note that u, v ̸= z,
since y and z do not participate in a conflict. If both edges of the conflict belong to
ES∩E′S and the non-edge of the conflict does not belong to ES∪E′S, then such a conflict
formed by the vertices u, v, y was already a conflict in ES. So, let us assume next that
at least one of the two edges in the conflict belongs to E′S \ ES and is incident to y (i.e.,
uy ∈ E′S \ ES or vy ∈ E′S \ ES) or the non-edge of the conflict belongs to ES \ E′S and is
incident to y (i.e., uy ∈ ES \ E′S).

• Suppose that u ≺ v ≺ y. Then, we have either uy, uv ∈ E′S and vy /∈ E′S, or
uy, vy ∈ E′S and uv /∈ E′S. In the former case, we have the following:

– Let uy ∈ E′S, uv ∈ E′S, and vy /∈ E′S. Notice that uv ∈ ES and vy /∈ ES,
which means that uy ∈ E′S \ ES. Then, by the definition of E′S, we have
u ∈ X(z) ∪ A(z) and v /∈ X(z) ∪ A(z). This means that vz /∈ ES by
Claim 3.4.9. Thus, u ≺ v ≺ z form a conflict in ES, because uz ∈ ES
and vz /∈ ES. Moreover, observe that u, v, z is not a conflict in E′S, because
uz /∈ E′S by the definition of E′S.

51

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

In the latter case, we distinguish between uy being an added edge:

– Let uy ∈ E′S \ES, uv /∈ E′S, and vy ∈ E′S. Notice that uv /∈ ES. If vy ∈ E′S \ES
then u ≺ v ≺ z form a conflict in ES, because u, v ∈ X(z) ∪ A(z) and
uz, vz ∈ ES. Moreover, by the definition of E′S observe that uz, vz /∈ E′S,
so that u, v, z is not a conflict in E′S. If vy ∈ ES then, since uz ∈ ES, v is
strongly adjacent to u or z in ES by Lemma 3.4.1. By the fact that uv /∈ ES,
we get vz ∈ ES. This shows that u ≺ v ≺ z form a conflict in ES. Moreover,
observe that u, v, z is not a conflict in E′S, because uz /∈ E′S by the definition
of E′S.

– Let uy ∈ E′S ∩ ES, uv /∈ E′S, and vy ∈ E′S \ ES. Notice that uy ∈ ES,
uv /∈ ES, vy /∈ ES. This, however, is not possible due to Lemma 3.4.1, since
u ≺ v ≺ y and v is not strongly adjacent to u and y.

• Suppose that u ≺ y ≺ v. Then, we have either uv, uy ∈ E′S and yv /∈ E′S, or
uv, yv ∈ E′S and uy /∈ E′S. In the former case, we distinguish between uy being
an added edge:

– Let uy ∈ E′S \ ES, uv ∈ E′S, and yv /∈ ES ∪ E′S. Notice that uy /∈ ES
and uv ∈ ES. This, however, is not possible due to Lemma 3.4.1, since
uy, yv /∈ ES.

– Let uy ∈ E′S \ ES, uv ∈ E′S, and yv ∈ ES \ E′S. Notice that uy /∈ ES, uv ∈ ES,
and yv ∈ ES. Thus u ≺ y ≺ v form a conflict in ES.

– Let uy ∈ ES ∩ E′S, uv ∈ E′S, and yv ∈ ES \ E′S. Notice that uv ∈ ES and
yv ∈ ES. Then, by the definition of E′S, we have v ∈ B(y) ∪ W(y) which
implies zv /∈ ES and y ≺ z ≺ v. Moreover, by Lemma 3.4.1 we have
uz ∈ ES, since u ≺ z ≺ v and uv ∈ ES. Thus, u ≺ z ≺ v form a conflict
in ES, because uv, uz ∈ ES, and zv /∈ ES. Further, notice that u, z, v is not
a conflict in E′S, because zv ∈ E′S by v ∈ B(y) ∪ W(y) and uz ∈ E′S by
u /∈ X(z) ∪ A(z).

In the latter case, we have the following:

– Let uy /∈ E′S, uv ∈ E′S, and yv ∈ E′S. Notice that uy /∈ ES because u ≺ y,
uv ∈ ES, and yv ∈ ES because y ≺ v. Thus, u ≺ y ≺ v form a conflict in
ES.

• Suppose that y ≺ u ≺ v. Then, we have either yv, yu ∈ E′S and uv /∈ E′S, or
yv, uv ∈ E′S and yu /∈ E′S. We distinguish between the two cases:

– Let yv ∈ E′S, yu ∈ E′S and uv /∈ E′S. Notice that yv ∈ ES, yu ∈ ES, because
y ≺ {u, v}, and uv /∈ ES. Thus, y ≺ u ≺ v form a conflict in ES.

52

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

– Let yu /∈ E′S, yv ∈ E′S, and uv ∈ E′S. Notice that yv ∈ ES because y ≺ v,
and uv ∈ ES. Thus, yu is a removal edge, so that yu ∈ ES \E′S. Then, by the
definition ofE′S, we have u ∈ B(y)∪W(y) and v /∈ B(y)∪W(y).Thismeans
that zu /∈ ES and by Claim 3.4.8 we have zv ∈ ES. Thus, z ≺ u ≺ v form a
conflict in ES, because zu /∈ ES, zv ∈ ES, and uv ∈ ES. Moreover, observe
that z, u, v is not a conflict in E′S, because zu, zv ∈ E′S by the definition of
E′S.

Putting together, for all edges incident to y that create new conflict in E′S there is a
unique conflict in ES. With completely symmetric arguments, we get that edges inci-
dent to z that create new conflict in E′S there is a unique conflict in ES. Therefore, E′S
has strictly smaller number of conflicts than ES, since the conflicts formed by y and z
in ES are not conflicts in E′S. ♢

Thus,we replace appropriate set of strong edges inES andobtain an optimal solution
by Claims 3.4.10 and 3.4.11 having a smaller number of conflicts by Claim 3.4.12.
Therefore, by applying such a replacement in every possible conflict, we get an optimal
solution that has no conflicts and, thus, it satisfies the consecutive strong property.

Lemma 3.4.3 suggests to find an optimal solution that has the consecutive strong
property with respect to σ. In fact by the proper interval ordering, this reduces to
computing the largest proper interval subgraph H of G such that the vertices of every
P3 of H induce a clique in G.

Let G be a proper interval graph and let σ = ⟨v1, . . . , vn⟩ be its proper interval
ordering. For a vertex vi we denote by ℓ(i) and r(i) the positions of its leftmost and
rightmost neighbors, respectively, in σ. Observe that for any two vertices vi ≺ vj in
σ, vℓ(i) ≼ vℓ(j) and vr(i) ≼ vr(j) [32]. For 1 ≤ i ≤ n, let Vi = {vi, . . . , vn} and
let Gi = G[Vi]. In what follows, we assume that ES is a solution of G that has the
consecutive strong propertywith respect to σ. GivenES, we denote by rS(i) the position
of the rightmost strong neighbor of vi, that is,

rS(i) =

n if i = n or vivk ∈ ES for every vertex vk ∈ Vi+1,

i if vivk /∈ ES for every vertex vk ∈ Vi+1,

k if vivk ∈ ES and vivk+1 /∈ ES for a vertex vk ∈ Vi+1.

Observe that if rS(i) = i, then vi has no strong neighbor in Vi. Moreover, notice that
i ≤ rS(i) ≤ r(i). It is not difficult to see that given rS(i) for every vertex vi, we can
describe all strong edges of a solution ES, since, by the consecutive strong property,
for i < j, we have vivj ∈ ES if and only if i < j ≤ rS(i) holds.

53

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

We are now ready to define our subproblemswith respect to σ. LetAi be the value of
an optimal solutionES ofGi. ClearlyA1 corresponds to the value of an optimal solution
of G.

Definition 3.4.13. For i ≤ r ≤ r(i), we denote by A[i, r] the value of an optimal solution
of Gi such that rS(i) = r.

As a base case, observe that An = A[n, n] = 0, because Gn contains exactly one
vertex. By the consecutive strong property, we get the following equation, for any 1 ≤
i ≤ n:

Ai = max
i≤r≤r(i)

A[i, r]. (3.1)

For i ≤ r, we denote by rS(i,r)(j) the position of the rightmost strong neighbor of every
vertex vj ∈ Vi that is described by the valueA[i, r]. For 1 ≤ i < r ≤ r′ ≤ n, let Bi,r,r′ be
the number of strong edges incident to vi+1, . . . , vr−1 (i.e., to the vertices of Vi+1 \Vr)
that belong to Gi+1 in an optimal solution of Gi such that

• rS(i) = r and

• rS(j) = rS(r,r′)(j), for every r ≤ j ≤ n.

Observe that if r = i + 1 then Bi,r,r′ = 0, as there is no vertex between vi and vr (i.e.,
the setVi+1 \Vr is empty). Moreover, notice that rS(r,r′)(j) corresponds to the position
of the rightmost strong neighbor of vj described by A[r, r′].

In order to recursively compute A[i, r], the key idea is that we try every allowed
position r′ of the rightmost strong neighbor of r. This is achieved through the consec-
utive strong property. Then, we split the solution into two parts among the vertices of
Vi \ Vr and Vr, respectively.

Lemma 3.4.14. Let 1 ≤ i ≤ r ≤ n. Then An = A[n, n] = 0, A[i, i] = Ai+1, and

A[i, r] = max
r≤r′≤r(i)

(
A[r, r′] + Bi,r,r′ + r− i

)
.

Proof. The base cases follow by definition. Assume that vivr ∈ ES with i < r and vr
being the rightmost strong neighbor of vi. It is clear that r ≤ r(i), as {vi, vr} ∈ E(G).
Moreover, for the rightmost strong neighbor vr′ of vr, we know that {vi, vr′} ∈ E(G)
since both strong edges vivr and vrvr′ satisfy the strong triadic closure. Thus we have
r ≤ r′ ≤ r(i). Furthermore, vi is strongly adjacent to every vertex vi+1, . . . , vr by the
consecutive strong property, implying that there are r − i strong edges incident to vi
in Gi.

54

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

Let Si,r and Sr,r′ be the strong edges described by the values A[i, r] and A[r, r′], re-
spectively. Suppose that {x, y} is an edge of Gr. We claim that xy ∈ Si,r if and only if
xy ∈ Sr,r′ . If xy ∈ Si,r then xy ∈ Sr,r′ , since Vr ⊆ Vi. Assume for contradiction that
xy ∈ Sr,r′ and xy /∈ Si,r. Then there is a vertex w ∈ Vi \ Vr such that wx ∈ Si,r and
{w, y} /∈ E(G). If w ̸= vi then wx is not a strong edge described by the definition of
Bi,r,r′ .Thusw = vi. Since vr is the only strong neighbor of vi inGr, we know that x = vr.
For any strong neighbor y of vr in Sr,r′ we know that vr ≼ y ≼ vr′ by the consecutive
strong property. Then, however, by the fact that r′ ≤ r(i) we reach a contradiction to
{vi, y} /∈ E(G). Therefore the given formula describes the considered solutions.

Next we focus on computing Bi,r,r′ . For doing so, we define a recursive formulation
on subsolutions that take into account the position rS(i + 1) of the rightmost strong
neighbor of vi+1. Observe that r ≤ rS(i+ 1) ≤ r′ holds, since vivr ∈ ES and vrvr′ ∈ ES
by the consecutive strong property. In fact, it is not difficult to verify that, for every
i < k < r, r ≤ rS(k) ≤ r′ holds, because rS(i) = r and rS(r) = r′.

Definition 3.4.15. For i < r ≤ t ≤ r′, we denote by B[i, r, t, r′] the number of strong
edges incident to vi+1, . . . , vr−1 (i.e., to the vertices of Vi+1 \ Vr) that belong to Gi+1 in
an optimal solution of Gi such that

• rS(i) = r,

• t ≤ rS(k), for every i < k < r, and

• rS(j) = rS(r,r′)(j), for every r ≤ j ≤ n.

By the definition of the describes values and the previous discussion on the consec-
utive strong property, we get the following equation:

Bi,r,r′ = max
r≤t≤r′

B[i, r, t, r′] (3.2)

For every i < k < r, let xr′(k) be the rightmost position j such that j ≤ r′ and
rS(r,r′)(j) ≤ r(k). Observe that r ≤ xr′(k), because r′ ≤ r(i) ≤ r(k) for every vi ≺ vk.

Lemma 3.4.16. Let 1 ≤ i < r ≤ t ≤ r′ ≤ n. Then B[r− 1, r, t, r′] = 0 and

B[i, r, t, r′] = max
t≤j≤xr′ (i+1)

(
B[i+ 1, r, j, r′] + j− (i+ 1)

)
.

Proof. Let vj be the rightmost strong neighbor of vi+1 inGi+1. Then t ≤ j holds, by the
restriction described in B[i, r, t, r′]. By the fact that rS(r,r′)(r) = r′ and vi+1 ≺ vr we
deduce that j ≤ r′. Suppose that xr′(i+ 1) < j. By the choice of xr′(i+ 1)we know that

55

Chapter 3 3.4. Computing MaxSTC on proper interval graphs

either r′ < j which is not possible, or j ≤ r′ and there is a strong edge vjv ∈ S(r, r′)
with {vi+1, v} /∈ E(G) which violates the strong triadic closure. Thus we conclude
t ≤ j ≤ xr′(i+ 1) and the consecutive strong property implies that there are j− i− 1
strong edges incident to vi+1 in Gi+1.

Let Si and Si+1 be the strong edges described byB[i, r, t, r′] andB[i+1, r, j, r′], respec-
tively. Suppose that {vi+2, v} is an edge ofGi+2. We claim that vi+2v ∈ Si if and only if
vi+2v ∈ Si+1. If vi+2v ∈ Si then it is clear that vi+2v ∈ Si+1, sinceVi+1 = Vi+2∪{vi+1}.
Assume for contradiction that vi+2v ∈ Si+1 and vi+2v /∈ Si. Observe that vr ≼ v ≼ vr′ .
Let z be the rightmost strong neighbor of v in Si+1.Then, by definition, we have vz ∈ Si.
This means that there is a strong edge wvi+2 in Si \ Si+1 such that {w, v} /∈ E(G). By
the definition of B[i, r, t, r′], we have that w = vi+1. Then, however, we reach a con-
tradiction to {vi+1, v} /∈ E(G), since v ≼ vr′ and r′ ≤ r(i) ≤ r(i + 1). Therefore we
conclude the described formula.

Now we are equipped with our necessary tools in order to obtain our main result,
namely a polynomial-time algorithm that solves the MaxSTC problem on proper in-
terval graphs.

Theorem 3.4.17. There is a polynomial-time algorithm that computes the MaxSTC of
a proper interval graph.

Proof. Let G be a proper interval graph on n vertices and m edges. We first compute
its proper interval ordering σ in linear time [102]. In order to compute an optimal
solution A1 for G described in Equations 3.1 and 3.2, we use a dynamic programming
approach based on their recursive formulation given in Lemmas 3.4.14 and 3.4.16,
respectively. For doing so, we store two tables TA and TB that correspond to the values
A[i, r] and B[i, r, t, r′]. Whenever we compute the value TA[i, r], we perform a second
sweep to backtrack the actual rightmost strong neighbor of each vertex in Vi. More
precisely, it suffices to backtrack the rightmost strong neighbors of each vertex of Vi \
Vr. Correctness follows from Lemmas 3.4.3, 3.4.14, and 3.4.16.

Regarding the running time, notice that all instances of TA[i, r] and TB[i, r, t, r′] can
be computed as follows. At each vertex vi, we compute all possible vertex pairs vr, vr′
with i ≤ r ≤ r′ ≤ r(i) which are bounded by n2. For each vertex vk with i < k < r,
computing xr′(k) takes O(n) time by scanning the rightmost strong neighbors of the
vertices of Vr \ Vr′ . Moreover, for each index t with r ≤ t ≤ r′, there are at most n
choices.Thus the number of instances TA[i, r] and TB[i, r, t, r′] generated by vi isO(n3).
Because we visit n vertices, the total running time of the algorithm is O(n4).

56

CHAPTER4
MaxSTC on Cographs and
graphs of low maximum degree

Here in Chapter 4, we further explore the complexity of the MaxSTC problem on
graph classes. Also, we conduct the first systematic study that reveals graph families
for which the optimal solutions for MaxSTC and Cluster Deletion coincide. We
first show that MaxSTC coincides with Cluster Deletion on cographs and, thus,
MaxSTC is solvable in polynomial time on cographs. As a side result, we give an
interesting computational characterization of the maximum independent set on the
cartesian product of two cographs. Furthermore, we address the influence of the low
degree bounds to the complexity of the MaxSTC problem. We show that this problem
is polynomial-time solvable on graphs of maximum degree three, whereas MaxSTC
becomes NP-complete on graphs of maximum degree four. The proof of the latter re-
sult implies that there is no subexponential-time algorithm for MaxSTC unless the
Exponential-Time Hypothesis fails.
The results of this chapter have led to the following publications [86, 87]:

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos. 23rd
Annual International Computing andCombinatorics Conference, (COCOON2017),
Hong Kong, China, 2017. Springer Verlag, LNCS 10392: 346–358.

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos.The-
oretical Computer Science 740: 76 -84, 2018.

4.1 Introduction

The principle of strong triadic closure is an important concept in social networks
[41]. It states that it is not possible for two individuals to have a strong relationshipwith

57

Chapter 4 4.1. Introduction

a common friend and not know each other [60]. The strong triadic closure is satisfied
if the edges of the underlying graph are characterized into weak and strong such that
any two vertices that have a strong neighbor in common are adjacent. Towards the
investigation of the behavior of a network, such a principle has been recently proposed
as amaximization problem, calledMaxSTC, in which the goal is to assign each edge as
strong orweak so that tomaximize the number of strong edges of the underlying graph
that satisfy the strong triadic closure [118]. Closely related to the MaxSTC problem is
theClusterDeletionproblemwhich finds important applications in areas involving
clustering [6]. In the latter problem the goal is to remove the minimum number of
edges such that the resulting graph consists of vertex-disjoint union of cliques.

The relation between MaxSTC and Cluster Deletion arises from the fact that
the edges inside the cliques in the resulting graph for Cluster Deletion can be seen
as strong edges forMaxSTCwhich satisfy the strong triadic closure.Thus, the number
of edges in an optimal solution for Cluster Deletion consists a lower bound for the
number of strong edges in an optimal solution forMaxSTC.However there are graphs
(see for e.g., Figure 4.1) showing that an optimal solution for MaxSTC contains larger
number of edges than an optimal solution for Cluster Deletion. Interestingly, there
are also families of graphs in which their optimal value for MaxSTC matches such a
lower bound. For instance, any maximum matching on graphs that do not contain tri-
angles constitutes a solution for both problems. Here we initiate a systematic study on
other non-trivial classes of graphs for which the optimal solutions for both problems
have exactly the same value.

Our main motivation is to further explore the complexity of the MaxSTC problem
when restricted to graph classes. As MaxSTC has been recently introduced, there are
few results concerning its complexity.The problemhas been shown to beNP-complete
for general graphs [118] andwe showed in Chapter 3 thatMaxSTC isNP-complete for
split graphs (Theorem 3.3.4) whereas it becomes polynomial-time tractable on proper
interval graphs (Theorem3.4.17) and trivially perfect graphs (Theorem3.2.3).TheNP-
completeness forMaxSTC on split graphs shows an interesting algorithmic difference
between the two problems, since Cluster Deletion on such graphs can be solved in
polynomial time [11]. It is known that Cluster Deletion is NP-complete on gen-
eral graphs [116] and remains NP-complete on chordal graphs and, also, on graphs
of maximum degree four [11, 85]. On the positive side Cluster Deletion admits
polynomial-time algorithms on proper interval graphs [11], graphs of maximum de-
gree three [85], and cographs [50]. In fact for cographs a greedy algorithm that finds
iteratively maximum cliques gives an optimal solution, although no running time was
explicitly given in [50].

Such a greedily approach is also proposed for computing a maximal independent
set of the cartesian product of general graphs. Summing the partial products between

58

Chapter 4 4.1. Introduction

G Cluster Deletion MaxSTC

Figure 4.1: Two examples of graphs with their corresponding optimal solutions for
Cluster Deletion and MaxSTC, respectively. For the MaxSTC problem the edges
of G that are not drawn in the solution correspond to the weak edges.

iteratively maximum independent sets consists a lower bound for the cardinality of
the maximum independent set of the cartesian product [75, 77]. Here we prove that a
maximum independent set of the cartesian product of two cographs matches such a
lower bound. We would like to note that a polynomial-time algorithm for computing
such a maximum independent set is already claimed [71]. However neither a charac-
terization is given, nor an explicit running time of the algorithm is reported.

In the following sections, we further explore the complexity of the MaxSTC prob-
lem. We consider two unrelated families of graphs, namely, cographs and graphs of
bounded degree and we settle the complexity of the MaxSTC problem on both graph
families. Cographs are characterized by the absence of a chordless path on four ver-
tices. For such graphs we prove that the optimal value for MaxSTC matches the opti-
mal value for Cluster Deletion. For doing so, we reveal an interesting vertex parti-
tioning with respect to their maximum clique and maximum independent set. This
result enables us to give an O(n2)-time algorithm for MaxSTC on cographs. As a
byproductwe characterize amaximum independent set of the cartesian product of two
cographs which implies a polynomial-time algorithm for computing such amaximum
independent set. Moreover we study the influence of low maximum degree for the
MaxSTC problem. We show an interesting complexity dichotomy result: for graphs
ofmaximumdegree fourMaxSTC remainsNP-complete, whereas for graphs ofmaxi-
mumdegree three the problem is solved in polynomial time.Our reduction for theNP-
completeness on graphs ofmaximumdegree four implies that, under the Exponential-

59

Chapter 4 4.2. Preliminaries

Time Hypothesis, there is no subexponential time algorithm for MaxSTC.

4.2 Preliminaries

Weremind here the definitions ofMaxSTC andClusterDeletion aswell as some
notations.

In theMaxSTC problem the goal is to to find a strong-weak labeling on the edges of
E(G) that satisfies the strong triadic closure and has the maximum number of strong
edges. We denote by (ES,EW) the partition of E(G) into strong edges ES and weak
edges EW. The graph spanned by ES is the graphG\EW; notice that the graph spanned
by ES consists of the whole vertex set V(G) and it may contain vertices with degree
equal to zero. For a strong edge {u, v}, we say that u (resp., v) is a strong neighbor of
v (resp., u). We denote by NS(v) ⊆ N(v) the strong neighbors of v. Given an optimal
solution for MaxSTC that consists of the strong edges ES, the graph spanned by the
edges of ES is denoted by ES(G). Whenever we write |ES(G)| we refer to its number of
edges, that is |ES(G)| = |ES|.

In the Cluster Deletion problem the goal is to partition the vertices of a given
graph G into vertex-disjoint cliques with the minimum number of edges outside the
cliques, or, equivalently, with the maximum number of edges inside the cliques. A
cluster graph is a graph inwhich every connected component is a clique. Cluster graphs
are characterized as exactly the graphs that do not contain aP3 as an induced subgraph.
Given an optimal solution for Cluster Deletion, the cluster graph spanned by the
edges that are inside the cliques is denoted by EC(G). We write |EC(G)| to denote the
number of edges in the cluster graph. Notice that if we assign strong labels to all the
edges of a cluster graph then such a labeling satisfies the strong triadic closure of the
given graph. Thus |EC(G)| ≤ |ES(G)| holds for any graph G.

Figure 4.1 shows two graphs in which the optimal solution of Cluster Deletion
contains strictly less edges than the optimal solution for MaxSTC. In terms of EC(G)
and ES(G) notice that in such cases we have |EC(G)| < |ES(G)|, though in general
|EC(G)| ≤ |ES(G)| holds. In the first example, from top to bottom, an optimal solution
of Cluster Deletion consists of 7 edges whereas there is a solution of MaxSTC that
contains 8 edges. The second example shows an optimal solution of Cluster Dele-
tion with 22 edges, whereas there is a solution of MaxSTC with 23 edges. Notice that
in the second example the 6 vertices drawn in themiddle induce a clique on 6 vertices.

60

Chapter 4 4.3. Computing MaxSTC on Cographs

4.3 Computing MaxSTC on Cographs

A graph is a cograph if it can be generated from single-vertex graphs and recur-
sively applying the disjoint union and complete join operations. The complement of
a cograph is also a cograph. Cographs are exactly the graphs that do not contain any
chordless path on four vertices [26], and they can be recognized in linear time [27].

Let G be the given cograph. Our main goal is to show that there is an optimal so-
lution for MaxSTC on G that coincides with an optimal solution for Cluster Dele-
tion.The strong edges that belong to an optimal solution forMaxSTC span the graph
ES(G). An optimal solution for Cluster Deletion consists of a cluster graph EC(G)
by removing a minimum number of edges of G. Labeling all edges of a cluster graph
as strong, results in a strong-weak labeled graph that satisfy the strong triadic closure.
Thus, our goal is to show that there is an optimal solution ES(G) for MaxSTC that is
a cluster graph.

A clique (resp. independent set) of G having the maximum number of vertices is
denoted by Cmax(G) (resp., Imax(G)). A greedy clique partition of G, denoted by C, is
the ordering of cliques (C1,C2, . . . ,Cp) in G such that

• C1 = Cmax(G) and

• Ci = Cmax

(
G−

⋃i−1
j=1 Cj

)
for i = 2, 3, . . . , p.

Similarly, a greedy independent set partition of G, denoted by I , is the ordering of in-
dependent sets (I1, I2, . . . , Iq) in G such that

• I1 = Imax(G) and

• Ii = Imax

(
G−

⋃i−1
j=1 Ij

)
for i = 2, 3, . . . , q.

Observe that the subgraph spanned by the edges of C does not contain any P3 and,
thus, consists a solution for Cluster Deletion. Although in general a greedy clique
partition does not necessarily imply an optimal solution forClusterDeletion, when
restricted to cographs the optimal solution is characterized by the greedy clique par-
tition.

Lemma 4.3.1 ([50]). Let G be a cograph with a greedy clique partition C.Then the edges
of C span an optimal solution EC(G) for Cluster Deletion.

Wewill use such a characterization of ClusterDeletion in order to give its equiv-
alence with theMaxSTC problem. Notice, however, that due to the freedom of the ad-
jacencies between the cliques of a greedy clique partition, it is not sufficient to consider

61

Chapter 4 4.3. Computing MaxSTC on Cographs

such a partition of the vertices. For doing so, we will further decompose the cliques of
a greedy clique partition. It is known that a graph G is a cograph if and only if for any
maximal clique C and any maximal independent set I of every induced subgraph of
G, |C∩ I| = 1 holds (also known as the clique-kernel intersection property) [26]. Thus,
we state the following lemma.

Lemma 4.3.2 ([26]). Let G be a cograph. Then Cmax(G) ∩ Imax(G) = {v} for some
vertex v.

We recursively apply Lemma 4.3.2 to obtain the following result.

Lemma 4.3.3. Let G be a cograph with a greedy clique partition C = (C1, . . . ,Cp) and
a greedy independent set partition I = (I1, . . . , Iq). For every i, j with 1 ≤ i ≤ p and
1 ≤ j ≤ q, if |Ci| ≥ j or |Ij| ≥ i then Ci ∩ Ij ̸= ∅.

Proof. We prove that if |Ci| ≥ j or |Ij| ≥ i then Ci ∩ Ij ̸= ∅. Assume for contradiction
that there exist Ci and Ij such that Ci ∩ Ij = ∅. Let i and j be the smallest integers
for which Ci ∩ Ij = ∅. By the choice of j we know that for every j′ < j, Ci ∩ Ij′ ̸= ∅
holds because |Ci| ≥ j > j′. This means that there are j − 1 vertices u1, . . . , uj−1
such that Ci ∩ I1 = {u1}, . . . ,Ci ∩ Ij−1 = {uj−1}. Similarly, for every i′ < i we have
|Ci′ | ≥ |Ci| ≥ j, by the greedy choice of C1, . . . ,Ci. Thus there are i − 1 vertices
v1, . . . , vi−1 such that C1 ∩ Ij = {v1}, . . . ,Ci−1 ∩ Ij = {vi−1}. Let Gi,j be the graph
obtained from G by removing the sets of vertices C1, . . . ,Ci−1 and I1, . . . , Ij−1. Notice
that Gi,j contains at least one vertex because |Ci| ≥ j or |Ij| ≥ i. We will prove that
Cmax(Gi,j) = Ci \ {u1, . . . , uj−1} and Imax(Gi,j) = Ij \ {v1, . . . , vi−1}.

Let C′ be the vertices of C1, . . . ,Ci−1 and let I′ be the vertices of I1, . . . , Ij−1. By the
greedy independent set partition, the vertices ofGi,j can be partitioned into |Ci|− j+ 1
independent sets Ij \ C′, . . . , I|Ci| \ C′. This implies that a maximum clique of Gi,j has
size at most |Ci| − j + 1. As Gi,j is an induced subgraph of G, Ci \ {u1, . . . , uj−1} is
a clique of size |Ci| − j + 1 of Gi,j. Thus, we have Cmax(Gi,j) = Ci \ {u1, . . . , uj−1}.
Following symmetric arguments, the vertices of Gi,j can be partitioned into |Ij| − i+ 1
cliques Ci \ I′, . . . ,C|Ij| \ I′. This implies that a maximum independent set of Gi,j has
size at most |Ij| − i+ 1. Thus Imax(Gi,j) = Ij \ {v1, . . . , vi−1}.

Notice that {u1, . . . , uj−1} ∩ {v1, . . . , vi−1} = ∅, due to the choice of i and j. Then
Lemma 4.3.2 applies to Gi,j, which shows that(

Ci \ {u1, . . . , uj−1}
)
∩
(
Ij \ {v1, . . . , vi−1}

)
̸= ∅.

ThereforeCi∩Ij ̸= ∅, leading to a contradiction that proves the desired statement.

Lemma 4.3.3 suggests a partition of the vertices of G with respect to C and I as
follows. We call greedy canonical partition a pair (C, I) with elements ⟨vi,j⟩, where

62

Chapter 4 4.3. Computing MaxSTC on Cographs

a b

c

d

e f

u
x

a c x

b d

f u

e

C1

C2

C3

C4

I1 I2 I3

Figure 4.2: A cograph and its greedy canonical partition (C, I) where C =
(C1,C2,C3,C4) and I = (I1, I2, I3).

1 ≤ i ≤ p and 1 ≤ j ≤ |Ci|, such that V(G) =
{
v1,1, . . . , vp,|Cp|

}
and vi,j ∈ Ci ∩ Ij.

Figure 4.2 shows such a greedy canonical partition of a given cograph. Observe that
such a partition corresponds to a 2-dimensional representation of G. By Lemma 4.3.3
it follows that a cograph admits a greedy canonical partition.

Let us turn our attention back to the initial MaxSTC problem.We first consider the
disjoint union of cographs.

Lemma 4.3.4. Let G and H be vertex-disjoint cographs. Then ES(G ⊕ H) = ES(G) ⊕
ES(H) and EC(G⊕H) = EC(G)⊕ EC(H).

Proof. There are no edges between G and H so that a strong edge of G and a strong
edge of H have no common endpoint. Thus the union of the solutions for G and H
satisfy the strong triadic closure. By Lemma 4.3.1, EC(G ⊕ H) contains the edges of
a greedy clique partition which is obtained from the corresponding cliques of G and
H.

We next consider the complete join of cographs. Given two vertex-disjoint cographs
G and H with greedy clique partitions C = (C1, . . . ,Cp) and C′ = (C′

1, . . . ,C′
p′),

respectively, we denote by Ci(G,H) the edges that have one endpoint in Ci and the
other endpoint in C′

i, for every 1 ≤ i ≤ min{p, p′}.

Lemma 4.3.5. Let G and H be vertex-disjoint cographs with greedy clique partitions
C = (C1, . . . ,Cp) and C′ = (C′

1, . . . ,C′
p′), respectively. Then,

63

Chapter 4 4.3. Computing MaxSTC on Cographs

• ES(G⊗H) = (ES(G)⊕ ES(H)) ∪ E(G,H) and

• EC(G⊗H) = (EC(G)⊕ EC(H)) ∪ E(G,H),

where E(G,H) = C1(G,H) ∪ · · · ∪ Ck(G,H) and k = min{p, p′}.

Proof. For the edges of EC(G ⊗ H) we know that a greedy clique partition of G ⊗ H
forms an optimal solution by Lemma 4.3.1. A greedy clique partition of G ⊗ H is
obtained from the cliques Ci ∪ C′

i, for every 1 ≤ i ≤ k, since all the vertices of G are
adjacent to all the vertices of H. The edges of Ci ∪ C′

i can be partitioned into the sets
E(Ci),E(C′

i), and Ci(G,H) giving the desired formulation for EC(G⊗H).
We consider the optimal solution forMaxSTC described by the edges of ES(G⊗H).

Let us show that any solution on the edges ofG satisfy the strong triadic closure in the
graph G ⊗ H. Consider a strong edge {x, y} of G. If the resulting labeling does not
satisfy the strong triadic closure then there is a strong edge {x,w} such that y and w
are non-adjacent. As G and H are vertex-disjoint graphs, w ∈ V(G) or w ∈ V(H). If
w ∈ V(G) then we already know that the labeling of ES(G) satisfies the strong triadic
closure so that y and w are adjacent. If w ∈ V(H) then by the complete join operation
w is adjacent to y. Thus maximizing the number of strong edges that belong in G and
H results in an optimal solution for G⊗H.

We next consider the edges that have one endpoint inG and the other inH, denoted
by E(G,H). Our goal is to show that edges of C1(G,H) ∪ · · · ∪ Ck(G,H) belong to an
optimal solution. Let (C, I) and (C′, I ′) be the greedy canonical partitions of G and
H, respectively, where

• C = (C1, . . . ,Cp), I = (I1, . . . , Iq), and

• C′ = (C′
1, . . . ,C′

p′), I ′ = (I′1, . . . , I′q′).

Now observe that |C1(G,H)∪· · ·∪Ck(G,H)| =
∑k

i=1 |Ci||C′
i|. Notice that the edges of

C1(G,H)∪· · ·∪Ck(G,H) satisfy the strong triadic closure, since every two strong edges
incident to a vertex of G belong to Ci(G,H) which implies that the endpoints of H
belong to a cliqueC′

i and, thus, are adjacent inG⊗H.Therefore, we have |ES(G⊗H)| ≥
|EC(G⊗H)| and

|E(G,H)| ≥
k∑
i=1

|Ci||C′
i|.

In the forthcoming arguments we prove that |E(G,H)| ≤
∑k

i=1 |Ci||C′
i|.

We consider the vertices of Ij, 1 ≤ j ≤ q, and count the number of strong edges
that have one endpoint in Ij and the other endpoint on a vertex of H. Without loss

64

Chapter 4 4.3. Computing MaxSTC on Cographs

of generality assume that |I1| ≤ |I′1|. Then, k = |I1| since p = |I1| and p′ = |I′1| by
Lemma 4.3.3. For a subsetW of vertices ofG, we denote by s(W) the number of strong
edges of E(G,H) that are incident to the vertices of W. By the strong triadic closure
principle, any vertex ofH has at most one strong neighbor in Ij and any vertex ofG has
at most one strong neighbor in I′j′ , 1 ≤ j′ ≤ q′. Thus, for any I′j′ of H there are at most
min{|Ij|, |I′j′ |} strong edges between the vertices of Ij and I′j′ . Let rj be the largest index
of {1, . . . , q′} for which |I′rj | ≥ |Ij|; notice that rj exists, since |Ij| ≤ |I1| ≤ |I′1|. Then,
since |I′1| ≥ · · · ≥ |I′q′ |, it is clear that |Ij| is smaller than or equal to any of |I′1|, . . . , |I′rj |
and greater than to any of |I′rj+1|, . . . , |I′q′ |. Thus, we get the following inequality:

s(Ij) ≤
q′∑
j′=1

min{|Ij|, |I′j′ |} =

rj∑
j′=1

|Ij|+
q′∑

j′=rj+1

|I′j′ |.

We next describe the vertices of I′1, . . . , I′rj , I
′
rj+1, . . . , I′q′ by the cliques of H. In partic-

ular, for every 1 ≤ i ≤ |Ij|, we consider a clique C′
i of H. By Lemma 4.3.3 we know

that C′
i contains exactly one vertex from each of I′1, . . . , I′rj , I

′
rj+1, . . . , I′|C′

i |
. This means

that all previously described vertices are contained in the disjoint union of cliques
C′

1, . . . ,C′
|Ij|. Thus, the previous inequality can be written as follows.

s(Ij) ≤
rj∑

j′=1

|Ij|+
q′∑

j′=rj+1

|I′j′ | =
|Ij|∑
i=1

|C′
i|.

Summing up each of s(Ij) for every Ij, 1 ≤ j ≤ q, we obtain:

|E(G,H)| =
q∑
j=1

s(Ij) ≤
q∑
j=1

|Ij|∑
i=1

|C′
i|.

Observe that, in the described sum, each |C′
i| is counted for all 1 ≤ j ≤ q for which

|Ij| ≥ i. For such |Ij| and i, by Lemma 4.3.3 we have Ci∩ Ij ̸= ∅. Thus, the number that
|C′

i| appears in the formula is exactly |Ci|. Moreover, by the greedy canonical partition
we know that

∑q
j=1 |Ij| =

∑p
i=1 |Ci| and p = |I1|. Hence, we get the desired upper

bound for the number of strong edges in E(G,H):

|E(G,H)| ≤
q∑
j=1

|Ij|∑
i=1

|C′
i| =

|I1|∑
i=1

|Ci||C′
i|.

Therefore, the claimed formula holds for the strong edges of ES(G⊗H) and this con-
cludes the proof.

65

Chapter 4 4.3. Computing MaxSTC on Cographs

We are now ready to state our claimed result, namely that the solutions forMaxSTC
and Cluster Deletion coincide for the class of cographs.

Theorem 4.3.6. Let G be a cograph.There is an optimal solution forMaxSTC on G that
is a cluster graph. Moreover MaxSTC on G can be solved in O(n2) time.

Proof. An optimal solution forMaxSTC coincides with an optimal solution for Clus-
ter Deletion trivially for graphs that consist of a single vertex. If G is a non-trivial
cograph then it is constructed by the disjoint union or the complete join operation. In
the former case Lemma 4.3.4 applies, whereas in the later Lemma 4.3.5 applies show-
ing that in all cases ES(G) = EC(G).

Regarding the running time, a maximum clique C1 of G can be found in O(n) time
[26], due to a suitable data structure called cotree. We first construct the cotree of G
which takes timeO(n+m) [27]. Removing a vertex v from a cographG and updating
the cotree takes O(d(v)) time, where d(v) is the degree of v in G [115]. Thus, after re-
moving all vertices from G we can mantain the cotree in an overallO(n+m) time. In
every intermediate step, we first remove the set of vertices Ci in O(d(Ci)) time where
d(Ci) is the sum of the degree of the vertices of Ci, and then spend O(n) time to com-
pute amaximum clique by using the resulting cotree.Therefore, since there are atmost
n such cliques in C, a greedy clique partition ofG can be found in totalO(n2) time.

4.3.1 Maximum independent set of the cartesian product of cographs

In this section we apply the characterization of Theorem 4.3.6 in order to show
an interesting computational characterization of the cartesian product of cographs.
Towards such a characterization we take advantage of the equivalent transformation
of an optimal solution for MaxSTC in terms of a maximum independent set of the
line-incompatibility graph.The line-incompatibility (also knownunder the termGallai
graph [24, 96]), denoted by Γ(G), graph has a node uv in Γ(G) for every edge {u, v} of
G, and two nodes uv, vw of Γ(G) are adjacent if and only if the vertices u, v,w induce a
P3 in G. The connection between a maximum independent set in Γ(G) and a solution
for MaxSTC in G was proved in Chapter 3, Proposition 3.2.2 and it is the following:

Proposition 3.2.2: For any graph G, a subset ES of edges span ES(G) if and only if
the nodes corresponding to ES form Imax (Γ (G)).

Let G and H be two vertex-disjoint graphs. The cartesian product of G and H, de-
noted by G × H, is the graph with the vertex set V(G) × V(H) and any two vertices
(u, u′) and (v, v′) are adjacent inG×H if and only if either u = v and u′ is adjacent to
v′ in H, or u′ = v′ and u is adjacent to v in G. We are interested in computing a maxi-
mum independent set ofG×HwheneverG andH are cographs. We first characterize
the graph Γ(G⊗H) in terms of G×H.

66

Chapter 4 4.3. Computing MaxSTC on Cographs

Lemma 4.3.7. Let G and H be two vertex-disjoint cographs.Then, Γ(G⊗H) = Γ(G)⊕
Γ(H)⊕

(
G×H

)
.

Proof. Notice that G ⊗ H is a connected cograph, as every vertex of G is adjacent to
every vertex of H. The edges of G ⊗ H can be partitioned into the following sets of
edges: E(G), E(H), and E(G,H) where E(G,H) is the set of edges between G and H
in G⊗ H. By definition the nodes of Γ(G) and Γ(H) correspond to the sets E(G) and
E(H). Moreover since G and H are vertex-disjoint graphs, Γ(G) and Γ(H) are also
node-disjoint. This means that there are no common endpoints in the edges inside G
and H. Hence every node of Γ(G) is non-adjacent to all nodes of Γ(H).

Next we show that every node of Γ(G⊗H) that corresponds to an edge of E(G,H) is
non-adjacent to the nodes of Γ(G) and Γ(H). If a node xy of Γ(G) is adjacent to a node
xa of E(G,H) then a is a vertex of H and {y, a} is not an edge of G⊗H contradicting
the adjacency between the vertices of G and H. Symmetric arguments show that any
node of Γ(H) is non-adjacent to any node of E(G,H). Thus no node that corresponds
to an edge of E(G,H) is adjacent to any node of Γ(G)⊕ Γ(H).

To complete the proof we need to show that graph of Γ(G ⊗ H) induced by the
nodes of E(G,H) is exactly the graph G× H. Let x, y be two vertices of G and let w, z
be two vertices of H. By the definition of Γ(G ⊗ H), two nodes xw, yz are adjacent if
and only if either x = y and w is non-adjacent to z in H (so that w is adjacent to z in
H), or w = z and x is non-adjacent to y in G (so that x is adjacent to y in G). Such an
adjacency corresponds exactly to the definition of the cartesian product of G and H.
Therefore the graph of Γ(G⊗H) induced by the nodes of E(G,H) is exactly the graph
G×H.

Nowwe are ready to give the characterization of amaximum independent set of the
cartesian product of cographs, in terms of their greedy independent set partition. Al-
though a polynomial-time algorithm for computing such amaximum independent set
has already been claimed earlier [71], no characterization is proposed nor an explicit
bound on the running time is reported.

Theorem 4.3.8. Let G and H be two vertex-disjoint cographs with greedy indepen-
dent set partitions I = (I1, . . . , Iq) and I ′ = (I′1, . . . , I′q′), respectively. Then the ver-
tices of (I1 × I′1) ⊕ · · · ⊕ (Iℓ × I′ℓ) form a maximum independent set of G × H, where
ℓ = min {q, q′}. Moreover Imax(G × H) can be computed in O(n2) time, where n =
max{|V(G)|, |V(H)|}.

Proof. Let (C1, . . . ,Cp) and (C′
1, . . . ,C′

p′) be greedy clique partitions of G and H, re-
spectively. By Lemma 4.3.5, we know that ES(G ⊗ H) = ES(G) ⊕ ES(H) ∪ E(G,H),
where E(G,H) = C1(G,H) ∪ · · · ∪ Ck(G,H) and k = min{p, p′}. Notice that if

67

Chapter 4 4.4. Graphs of Low Maximum Degree

(C1, . . . ,Cp) is a greedy clique partition for G then (C1, . . . ,Cp) is a greedy indepen-
dent set partition for G. Moreover, by Proposition 3.2.2, we know that the edges of
ES (G⊗H) correspond to the nodes of Imax (Γ (G⊗H)). Since Γ (G⊗H) = Γ(G)⊕
Γ(H) ⊕

(
G×H

)
by Lemma 4.3.7, we get E(G,H) = Imax(G × H). Therefore, the

vertices of (I1 × I′1)⊕ · · · ⊕ (Iℓ × I′ℓ) consist a Imax (Γ (G⊗H)).
For the running time, we need to compute two greedy independent set partitions

(I1, . . . , Iq) and (I′1, . . . , I′q′) forG andH, respectively, and then combine each of Ij with
I′j, for 1 ≤ j ≤ ℓ. Computing a greedy independent set partition for a cographG can be
done inO(n2) time by applying the algorithmonG given in the proof ofTheorem4.3.6.
Therefore, the total running time is bounded by O(|V(G)|2 + |V(H)|2).

4.4 Graphs of LowMaximumDegree

Here we study the influence of the bounded degree in a graph for the MaxSTC
problem. We show an interesting complexity dichotomy result: for graphs of maxi-
mum degree four MaxSTC remains NP-complete, whereas for graphs of maximum
degree three the problem has a polynomial solution.

We prove the hardness result even on a proper subclass of graphs with maximum
degree four. A graphG is a 4-regular K4-free graph, if every vertex ofG has degree four
and there is no K4 in G. The decision version of MaxSTC takes as input a graph G
and an integer k and asks whether there is a strong-weak labeling of G that satisfies
the strong triadic closure with at least k strong edges. Similarly the decision version of
Cluster Deletion takes as input a graph G and an integer k and asks whether G has
a spanning cluster subgraph by removing at most k edges. It is known that the decision
version of Cluster Deletion on connected 4-regular K4-free graphs is NP-complete
[85].

Theorem4.4.1. Thedecision version ofMaxSTC is NP-complete on connected 4-regular
K4-free graphs.

Proof. We give a polynomial-time reduction to MaxSTC from the Cluster Dele-
tion problem on connected 4-regular K4-free graphs which is already known to be
NP-complete [85]. LetG = (V,E) be a connected 4-regularK4-free graphwith n = 3q
and 2n edges. Let EC(G) be a solution for the Cluster Deletion with k = n edges.
It is not difficult to see that every connected component of EC(G) is a triangle, since
the graph is 4-regular and K4 is a forbidden graph [85]. Then EC(G) is a solution for
MaxSTC with at least n strong edges.

For the opposite direction, assume that ES(G) is a solution for MaxSTC with at
least n strong edges. We show that the graph spanned by the strong edges of ES(G) is a

68

Chapter 4 4.4. Graphs of Low Maximum Degree

two-regular graph.That is, every vertex ofG has exactly two strong neighbors. Assume
that there is a vertex v that has at least three strong neighbors. By the strong triadic
closure all its strong neighbors must induce a clique in G. Then N[v] induces a K4
which is a forbidden subgraph. Thus every vertex has at most two strong neighbors.
Furthermore if there is a vertex having only one strong neighbor then |ES(G)| < n
which contradicts the assumption of n strong edges. Hence every vertex has exactly
two strong neighbors in ES(G).

Since ES(G) is a 2-regular graph we know that the graph spanned by the strong
edges is the disjoint union of triangles or chordless cycles Cp, with 4 ≤ p ≤ n. Let us
also rule out that a connected component of ES(G) is a chordless cycle on four vertices
C4. To see this, observe that if there is a C4 in ES(G) then the four vertices of the C4
induce a K4 in G. Now assume that there is a connected component of ES(G) that is
a chordless cycle Cp with 4 < p < n. In such a connected component, every vertex
belongs to two distinct P3’s as an endpoint. More precisely, let v1, . . . , vp be the vertices
of Cp such that {vi, vi+1} and {vp, v1} are strong edges with 1 ≤ i < p. Then, for every
vertex vi of Cp there two P3’s vi−2, vi−1, vi and vi, vi+1, vi+2 such that vi−2 ̸= vi+2. By
the strong triadic closure, we know that vi is adjacent to both vi−2 and vi+2 inG. Since
G is a 4-regular graph, there are no more edges incident to any vertex of Cp. Thus,
every vertex of Cp is non-adjacent to any other vertex ofG−Cp which contradicts the
original connectivity of G. Therefore, either every connected component of ES(G) is a
triangle or ES(G) is connected and ES(G) = Cn.

If every connected component of ES(G) is a triangle then clearly ES(G) spans a
cluster graph. Suppose that ES(G) = Cn. Since n = 3q, we can partition the vertices of
Cn into q triangles with the same number of strong edges as follows. For every triplet of
vertices vi, vi+1, vi+2, 1 ≤ i ≤ n− 2, we further label the edge {vi, vi+2} strong and we
label both edges {vi+2, vi+3} and {vn, v1}weak. Observe that {vi, vi+2} is an edge ofG,
since both {vi, vi+1}, {vi+1, vi+2} are strong edges. Such a labeling satisfies the strong
triadic closure property and maintain the same number of strong edges. Therefore in
every case a solution for MaxSTC with n edges can be equivalently transformed into
a solution for Cluster Deletion with n edges.

We can also obtain lower bounds for the running time of MaxSTC with respect
to the integer k (size of the solution) or the number of vertices n. For that purpose,
we make use of the exponential-time hypothesis: it states that k-SAT, k ≥ 3, cannot be
solved in time 2o(n) or 2o(m) where n is the number of variables and m is the number
of clauses in the given k-CNF formula (see for e.g., [74, 101, 123]). In this context,
algorithms with running time 2o(p) for some parameter p are called subexponential-
time algorithms.

A subexponential-time algorithm for MaxSTC would imply an algorithm for solv-

69

Chapter 4 4.4. Graphs of Low Maximum Degree

ing Cluster Deletion that has running time subexponential in the size of the so-
lution k or the number of vertices n. However, Cluster Deletion does not admit
such subexponential-time algorithms even if we restrict to graphs of maximum de-
gree four [85]. Since we can reduce Cluster Deletion to MaxSTC instances on the
same graph with k = n, we arrive at the following.

Corollary 4.4.2. MaxSTC cannot be solved in 2o(k) · poly(n) time or in O(2o(n)) time
unless the exponential-time hypothesis fails.

Due to Proposition 3.2.2, we stress that MaxSTC reduces to finding a minimum
vertex cover of Γ(G) corresponding to the weak edges in an optimal solution. Thus
MaxSTC admits algorithms with running times 2Ω(k) poly(n) or O∗(cn)¹ where k is
the minimum number of weak edges and c < 2 is a constant [30, 46].

Now let us show that if we restrict to graphs ofmaximumdegree three thenMaxSTC
becomes polynomial-time solvable. Our goal is to show that there is an optimal solu-
tion for MaxSTC that is a cluster graph, since Cluster Deletion is solved in poly-
nomial time on such graphs [85].

Theorem 4.4.3. Let G be a graph with maximum degree three.Then, there is an optimal
solution for MaxSTC on G that is a cluster graph.

Proof. Observe that if there is a K4 in G then the vertices of the K4 form a connected
component in G since no vertex can have degree more than three. Let ES(G) be the
graph spanned by the strong edges in an optimal solution for MaxSTC. For a vertex
v, we denote by NS(v) the strong neighbors of v. Clearly |NS(v)| ≤ 3. If |NS(v)| = 3
then the vertices of N[v] form a K4 since the strong neighbors of v are adjacent in G,
which implies that all edges of G[N[v]] are strong. In what follows we assume that for
every vertex v, |NS(v)| ≤ 2 holds.

If every connected component of ES(G) is a clique then ES(G) is a cluster graph.
Assume that there is a connected component of ES(G) that is not a clique. Then, there
is a P3 = x, y, z in ES(G) so that {x, y} and {y, z} are strong edges. Notice that y
has no other strong neighbor in ES(G). We distinguish cases according to the strong
neighbors of x and z.

• Let NS(x) = {y} and NS(z) = {y}. Observe that {x, z} is an edge of G by
the strong triadic closure. Then, we reach a contradiction to the optimality of
ES(G) since labeling the edge {x, z} as strong does not violate the strong triadic
closure.

¹The O∗ notation suppresses polynomial factors of n.

70

Chapter 4 4.4. Graphs of Low Maximum Degree

• Let NS(x) = {x′, y} and NS(z) = {y}. Then, observe that the edge {y, x′} is
weak. We show that we can label the edge {y, x′} as strong and the edge {y, z}
as weak without violating the strong triadic closure. Assume for contradiction
that labeling the edge {y, x′} as strong violates the strong triadic closure. Then,
since there is no other strong edge incident to y, there is a strong edge {x′, a}.
Since NS(z) = {y}, a ̸= z. Then, however, we reach a contradiction to the
degree of x since x is adjacent to a, x′, y, and z in G. Hence, we can safely label
the {y, x′} as strong so that x, y, x′ does not induce a P3 in ES(G).

• LetNS(x) = {x′, y} andNS(z) = {z′, y}. If x′ ̸= z′ then ymust be adjacent inG
to all four vertices x, z, x′, z′ which contradicts its degree in G. Thus x′ = z′ and
the vertices x, y, z, x′ induce a K4 in G by the strong triadic closure. This means
that all edges of the K4 are strong.

Since |NS(x)| ≤ 2 and |NS(z)| ≤ 2, we have considered all cases for the strong neigh-
bors of x and z. Thus, we can reform the solution ES(G) for MaxSTC into a union of
cliques and keep the same size. Therefore, there is a solution for Cluster Deletion
having the same size with an optimal solution for MaxSTC.

By combining Theorem 4.4.3 with the fact that Cluster Deletion can be solved
in O(n1.5 · log2 n) on graphs with maximum degree three [85], we get the following
result.

Corollary 4.4.4. MaxSTC can be solved in O(n1.5 · log2 n) time when the input graph
has maximum degree three.

71

Chapter 4 4.4. Graphs of Low Maximum Degree

72

CHAPTER5
Cluster Deletion on Interval
graphs and Starlike graphs

It is known that the decision version of Cluster Deletion is NP-complete on (P5-
free) chordal graphs, whereasClusterDeletion is solved in polynomial time on split
graphs.The existence of a polynomial-time algorithm of ClusterDeletion on inter-
val graphs, a proper subclass of chordal graphs, remained awell-known open problem.
Ourmain contribution, in this chapter, is that we settle this problem in the affirmative,
by providing a polynomial-time algorithm for Cluster Deletion on interval graphs.
Moreover, we show that Cluster Deletion remains NP-complete on a natural and
slight generalization of split graphs that constitutes a proper subclass ofP5-free chordal
graphs. Although the later result arises from the already-known reduction for P5-free
chordal graphs, we give an alternative proof showing an interesting connection be-
tween edge-weighted and vertex-weighted variations of the problem. To complement
our results, we provide faster and simpler polynomial-time algorithms for Cluster
Deletion on subclasses of such a generalization of split graphs.
The results of this chapter have led to the following publications [89, 91]:

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis andCharis Papadopoulos. 44th International SymposiumonMath-
ematical Foundations of Computer Science,(MFCS 2019), Aachen,Germany, 2019.
Leibniz-Zentrum fur Informatik, LIPIcs 138: 12(1)-12(14), 2019.

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis and Charis Papadopoulos. Algorithmica (to appear).

5.1 Introduction

In graph theoretic terms, clustering is the task of partitioning the vertices of the
graph into subsets, called clusters, in such away that there should bemany edgeswithin

73

Chapter 5 5.1. Introduction

each cluster and relatively few edges between the clusters. In many applications, the
clusters are restricted to induced cliques, as the represented data of each edge corre-
sponds to a similarity value between twoobjects [68, 69].Under the term cluster graph,
which refers to a disjoint union of cliques, one may find a variety of applications that
have been extensively studied [6, 20, 114]. Here we consider the Cluster Deletion
problem which asks for a minimum number of edge deletions from an input graph,
so that the resulting graph is a disjoint union of cliques. In the decision version of the
problem, we are also given an integer k and we want to decide whether at most k edge
deletions are enough to produce a cluster graph.

Although Cluster Deletion is NP-hard on general graphs [116], settling its com-
plexity status restricted on graph classes has attracted several researchers. Cluster
Deletion remains NP-hard on C4-free graphs with maximum degree four, whereas
it can be solved in polynomial time on graphs having maximum degree at most three.
Quite recently, Golovach et al. [55] have shown that it remains NP-hard on planar
graphs. For graph classes characterized by forbidden induced subgraphs, Gao et al.
[50] showed that ClusterDeletion isNP-hard on (C5, P5, bull, fork, co-gem, 4-pan,
co-4-pan)-free graphs and on (2K2, 3K1)-free graphs. RegardingH-free graphs, Grüt-
temeier et al. [62], showed a complexity dichotomy result for any graph H consist-
ing of at most four vertices. In particular, for any graph H on four vertices with H /∈
{P4, paw}, Cluster Deletion is NP-hard onH-free graphs, whereas it can be solved
in polynomial time on P4- or paw-free graphs [62]. Interestingly, Cluster Deletion
remains NP-hard on P5-free chordal graphs [11].

On the positive side, Cluster Deletion has been shown to be solved in polyno-
mial time on cographs [50], proper interval graphs [11], split graphs [11], and P4-
reducible graphs [10]. More precisely, iteratively picking maximum cliques defines a
clustering on the graph which actually gives an optimal solution on cographs (i.e., P4-
free graphs), as shown by Gao et al. in [50]. In fact, the greedy approach of selecting
a maximum clique provides a 2-approximation algorithm, though not necessarily in
polynomial-time [33]. As the problem is already NP-hard on chordal graphs [11], it
is natural to consider subclasses of chordal graphs such as interval graphs and split
graphs. Although for split graphs there is a simple polynomial-time algorithm, re-
stricted to interval graphs only the complexity on proper interval graphs was deter-
mined by giving a solution that runs in polynomial-time [11]. Settling the complexity
of Cluster Deletion on interval graphs, was left open [11, 10, 50].

For proper interval graphs, Bonomo et al. [11] characterized their optimal solution
by consecutiveness of each cluster with respect to their natural ordering of the vertices.
Based on this fact, a dynamic programming approach led to a polynomial-time algo-
rithm. It is not difficult to see that such a consecutiveness does not hold on interval
graphs, as potential clusters might require to break in the corresponding vertex order-

74

Chapter 5 5.1. Introduction

ing. Here, we characterize an optimal solution of interval graphs whenever a cluster is
required to break. In particular, we take advantage of their consecutive arrangement
of maximal cliques and describe subproblems of maximal cliques containing the last
vertex. One of our key observations is that the candidate clusters containing the last
vertex can be enumerated in polynomial time given two vertex orderings of the graph.
We further show that each such candidate cluster separates the graph in a recursive
way with respect to optimal subsolutions, that enables to define our dynamic pro-
gramming table to keep track about partial solutions. Thus, our algorithm for interval
graphs suggests to consider a particular consecutiveness of a solution and apply a dy-
namic programming approach defined by two vertex orderings. The overall running
time of our algorithm isO(n6) for an interval graph on n vertices and, thus, exploiting
the first polynomial-time such algorithm.

Furthermore,we complement the previously-knownNP-hardness ofClusterDele-
tion on P5-free chordal graphs, by providing a proper subclass of such graphs for
which we prove that the problem remains NP-hard. This result is inspired and moti-
vated by the very simple characterization of an optimal solution on split graphs: ei-
ther a maximal clique constitutes the only non-edgeless cluster, or there are exactly
two non-edgeless clusters whenever there is a vertex of the independent set that is
adjacent to all the vertices of the clique except one [11]. Due to the fact that true
twins belong to the same cluster in an optimal solution, it is natural to extend split
graphs by allowing two vertices that do not belong to the clique to be adjacent only
if they are true twins, as they are expected not to influence the solution characteriza-
tion. Surprisingly, we show that Cluster Deletion remains NP-complete even on
such a slight generalization of split graphs. This is achieved by observing that the con-
structed graphs given in the reduction for P5-free graphs [11], constitute such split-
related graphs. However, here we give a different reduction that highlights an interest-
ing connection between edge-weighted and vertex-weighted split graphs. In fact, the
resulting split-related graphs are known as starlike graphs which are exactly the inter-
section graphs of subtrees of a star [19]. We then study two different classes of starlike
graphs that can be viewed as the parallel of split graphs that admit disjoint clique-
neighborhood (that we call stable-like graphs) and nested clique-neighborhood (that
we call threshold-like graphs). For Cluster Deletion we provide polynomial-time
algorithms on both classes of graphs. In particular, for the former case, a polynomial-
time algorithm is already known and is achieved through computing a minimizer of
submodular functions [11]. Here we provide a simpler and faster (linear-time) algo-
rithm for Cluster Deletion on such graphs that avoids the usage of submodular
minimization. In order to unify both classes, we also consider the starlike graphs that
are obtained from disjoint threshold-like graphs with a common clique (that we call
laminar-like graphs). Our general approach that uses both subroutines on stable-like

75

Chapter 5 5.2. Preliminaries

and threshold-like graphs, results in a quadratic-time algorithm for Cluster Dele-
tion on laminar-like graphs.

5.2 Preliminaries

We remind here the problem of Cluster Deletion. Given a graph G = (V,E),
the goal is to compute the minimum set F ⊆ E(G) of edges such that every connected
component of G \ F is a clique. Also, cluster graph is a P3-free graph, or equivalently,
any of its connected components is a clique. Thus, the task of Cluster Deletion is
to turn the input graph G into a cluster graph by deleting the minimum number of
edges. Let S = C1, . . . ,Ck be a solution of Cluster Deletion such that G[Ci] is a
clique. In such terms, the problem can be viewed as a vertex partition problem into
C1, . . . ,Ck. Each Ci is simple called cluster. Edgeless clusters, i.e., clusters containing
exactly one vertex, are called trivial clusters.The edges ofG are partitioned into internal
and external edges: an internal edge uv has both its endpoints u, v ∈ Ci in the same
cluster Ci, whereas an external edge uv has its endpoints in different clusters u ∈ Ci
and v ∈ Cj, for i ̸= j. Then, the goal of Cluster Deletion is to minimize the number
of external edges which is equivalent to maximize the number of internal edges. We
write S(G) to denote an optimal solution for Cluster Deletion of the graph G, that
is, a cluster subgraph of G having the maximum number of edges. Given a solution
S(G), the number of edges incident only to the same cluster, that is the number of
internal edges, is denoted by |S(G)|.

Definition 5.2.1. For a clique C, we say that a vertex x is C-compatible if C \ {x} ⊆
N(x).

We start with few preliminary observations regarding twin vertices. Notice that for
true twins x and y, if x belongs to any cluster C then y is C-compatible.

Lemma 5.2.2 ([11]). Let x and y be true twins in G. Then, in any optimal solution x
and y belong to the same cluster.

The above lemma shows that we can contract true twins and look for a solution
on a vertex-weighted graph that does not contain true twins. Even though false twins
cannot be grouped into the same cluster as they are non-adjacent, we can actually
disregard one of the false twins whenever their neighborhood forms a clique.

Lemma 5.2.3. Let x and y be false twins in G such that N(x) = N(y) is a clique. Then,
there is an optimal solution such that x constitutes a trivial cluster.

76

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

Proof. Let Cx and Cy be the clusters of x and y, respectively, in an optimal solution
such that |Cx| ≥ 2 and |Cy| ≥ 2. We construct another solution by replacing both
clusters by Cx ∪ Cy \ {y} and {y}, respectively. To see that this indeed a solution, first
observe that x is adjacent to all the vertices of Cy \ {y} because N(x) = N(y), and
Cx ∪ Cy \ {y} ⊆ N[x] forms a clique by the assumption. Moreover, since |Cx| ≥ 2
and |Cy| ≥ 2, we know that |Cx| + |Cy| ≤ |Cx||Cy|, implying that the number of
internal edges in the constructed solution is at least as the number of internal edges of
the optimal solution.

Moreover, we prove the following generalization of Lemma 5.2.2.

Lemma 5.2.4. Let C and C′ be two clusters of an optimal solution and let x ∈ C and
y ∈ C′. If y is C-compatible then x is not C′-compatible.

Proof. Let S be an optimal solution such that C,C′ ∈ S. Assume for contradiction that
x isC′-compatible.We show that S is not optimal. Since y isC-compatible, we canmove
y toC and obtain a solution Sy that contains the clustersC∪{y} andC′\{y}. Similarly,
we construct a solution Sx from S, by moving x to C′ so that C \ {x},C′ ∪ {x} ∈ Sx.
Notice that the Sx forms a clustering, since x isC′-compatible.We distinguish between
the following cases, according to the values |C| and |C′|.

• If |C| ≥ |C′| then |Sy| > |S|, because
(|C|+1

2
)
+
(|C′|−1

2
)
>

(|C|
2
)
+
(|C′|

2
)
.

• If |C| < |C′| then |Sx| > |S|, because
(|C|−1

2
)
+
(|C′|+1

2
)
>

(|C|
2
)
+
(|C′|

2
)
.

In both cases we reach a contradiction to the optimality of S. Therefore, x is not C′-
compatible.

Corollary 5.2.5. Let C be a cluster of an optimal solution and let x ∈ C. If there is a
vertex y that is C-compatible and N[y] ⊆ N[x], then y belongs to C.

Proof. Assume for contradiction that y belongs to a cluster C′ different than C. Then,
observe that x is C′-compatible. Indeed, for any vertex u of C′, we know xu ∈ E(G),
since u is adjacent to y and N[y] ⊆ N[x]. Thus, by Lemma 5.2.4 we reach a contradic-
tion, so that y ∈ C.

5.3 Polynomial-time algorithm on interval graphs

Here we present a polynomial-time algorithm for the Cluster Deletion problem
on interval graphs. A graph is an interval graph if there is a bijection between its ver-
tices and a family of closed intervals of the real line such that two vertices are adjacent

77

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

if and only if the two corresponding intervals intersect. Such a bijection is called an in-
terval representation of the graph, denoted by I . We identify the intervals of the given
representation with the vertices of the graph, interchanging these notions appropri-
ately. Whether a given graph is an interval graph can be decided in linear time and if
so, an interval representation can be generated in linear time [48]. Notice that every
induced subgraph of an interval graph is an interval graph.

LetG be an interval graph. Instead of working with the interval representation ofG,
we consider its sequence ofmaximal cliques. It is known that a graphGwith pmaximal
cliques is an interval graph if and only if there is an orderingK1, . . . ,Kp of themaximal
cliques of G, such that for each vertex v of G, the maximal cliques containing v appear
consecutively in the ordering (see e.g., [12]). A path P = K1 · · ·Kp following such
an ordering is called a clique path of G. Notice that a clique path is not necessarily
unique for an interval graph. Also note that an interval graph with n vertices contains
at most n maximal cliques. By definition, for every vertex v of G, the maximal cliques
containing v form a connected subpath in P .

Given a vertex v, we denote by Ka(v), . . . ,Kb(v) the maximal cliques containing v
with respect to P , where Ka(v) and Kb(v) are the first (leftmost) and last (rightmost)
maximal cliques containing v. Notice that a(v) ≤ b(v) holds. Moreover, for every
edge of G there is a maximal clique Ki of P that contains both endpoints of the edge.
Thus, two vertices u and v are adjacent if and only if a(v) ≤ a(u) ≤ b(v) or a(v) ≤
b(u) ≤ b(v).

For a set of verticesU ⊆ V, wewrite a-minU and a-maxU to denote theminimum
and maximum value, respectively, among all a(u)with u ∈ U. Similarly, b-minU and
b-maxU correspond to the minimum and maximum value, respectively, with respect
to b(u).

With respect to the Cluster Deletion problem, observe that for any clusterC of a
solution, we know that C ⊆ Ki where Ki ∈ P , as C forms a clique. A vertex y is called
guarded by two vertices x and z if

min{a(x), a(z)} ≤ a(y) and b(y) ≤ max{b(x), b(z)}.

For a clique C, observe that y is C-compatible if and only if there exists a maximal
clique Ki such that C ⊆ Ki with a(y) ≤ i ≤ b(y).

Lemma 5.3.1. Let x, y, z be three vertices of G such that y is guarded by x and z. If x and
z belong to the same cluster C of an optimal solution and y is C-compatible then y ∈ C.

Proof. To ease the presentation, for three non-negative numbers i, j, k we write i ∈
[j, k] if j ≤ i ≤ k holds. Without loss of generality, assume that a(y) ∈ [a(x), a(z)].
Assume for contradiction that y belongs to another cluster C′. We apply Lemma 5.2.4

78

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

to either x and y or z and y. To do so, we need to show that x is C′-compatible or z is
C′-compatible, as y is already C-compatible. Since C′ is a cluster that contains y, there
is a maximal clique Ki such that C′ ⊆ Ki with i ∈ [a(y), b(y)].

We show that i ∈ [a(x), b(x)] or i ∈ [a(z), b(z)]. If i /∈ [a(x), b(x)] then b(x) <
i ≤ b(y), because a(x) ≤ a(y) ≤ i. As y is guarded by x and z, we know that i ≤
b(y) ≤ b(z). Now observe that if i < a(z) then b(x) < a(z), implying that x and z are
non-adjacent, reaching a contradiction to the fact that x, z ∈ C. Thus, a(z) ≤ i ≤ b(z)
which shows that i ∈ [a(z), b(z)]. This means that i ∈ [a(x), b(x)] or i ∈ [a(z), b(z)].

Hence, x or z belong to the maximal clique Ki for which C′ ⊆ Ki. Therefore, at least
one of x or z is C′-compatible and by Lemma 5.2.4 we conclude that y ∈ C.

Let v1, . . . , vn be an ordering of the vertices such that b(v1) ≤ · · · ≤ b(vn). For
every vi, vj with b(vi) ≤ b(vj), we define the following set of vertices:

Vi,j =
{
v ∈ V(G) : min{a(vi), a(vj)} ≤ a(v) and b(v) ≤ b(vj)

}
.

That is,Vi,j contains all vertices that are guarded by vi and vj. We write a(i, j) to denote
the value ofmin{a(vi), a(vj)} and we simple write Ka(j) and Kb(j) instead of Ka(vj) and
Kb(vj). Notice that for a neighbor u of vj with u ∈ Vi,j, we have either a(vj) ≤ a(u) or
a(vi) ≤ a(u) ≤ a(vj). This means that all neighbors of vj that are totally included (i.e.,
all vertices u such that a(vj) ≤ a(u) ≤ b(u) ≤ b(vj)) belong to Vi,j for any vi with
b(vi) ≤ b(vj). To distinguish such neighbors of vj, we define the following sets:

• U(j) contains the neighborsu ∈ Vi,j of vj such that a(u) < a(vj) ≤ b(u) ≤ b(vj)
(neighbors of vj in Vi,j that partially overlap vj).

• M(j) contains the neighbors w ∈ Vi,j of vj such that a(vj) ≤ a(w) ≤ b(w) ≤
b(vj) (neighbors of vj that are totally included within vj).

In the forthcoming arguments, we restrict ourselves to the graph induced by Vi,j. It
is clear that the first maximal clique that contains a vertex of Vi,j is Ka(i,j), whereas the
last maximal clique is Kb(j).

We now explain the necessary sets that our dynamic programming algorithm uses
in order to compute an optimal solution of G.

Definition 5.3.2 (Optimal solutions Ai,j). For two vertices vi, vj with b(vi) ≤ b(vj),

• Ai,j is the value of an optimal solution forClusterDeletion of the graphG[Vi,j].

To ease the notation, when we say a cluster of Ai,j we mean a cluster of an optimal
solution of G[Vi,j]. Notice that A1,n is the desired value for the whole graph G, since
V1,n = V(G).

79

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

Our task is to construct the values forAi,j by taking into account all possible clusters
that contain vj. To do so, we show that (i) the number of clusters containing vj in Ai,j
is polynomial and (ii) each such candidate cluster containing vj separates the graph in
a recursive way with respect to optimal subsolutions.

Observe that if vivj ∈ E(G) then vi ∈ U(j) if and only if a(vi) < a(vj), whereas
vi ∈ M(j) if and only if a(vj) ≤ a(vi); in the latter case, it is not difficult to see that
Vi,j = M(j) ∪ {vj}, according to the definition of Vi,j. Thus, whenever vi ∈ M(j)
holds, we have Vi,j = Vj,j. The candidates of a cluster of Ai,j containing vj lie among
U(j) and M(j). Let us show with the next two lemmas that we can restrict ourselves
into a polynomial number of such candidates. To avoid repeating ourselves, in the
forthcoming statements we let vi, vj be two vertices with b(vi) ≤ b(vj).

Lemma 5.3.3. Let C be a cluster of Ai,j containing vj. If there is a vertex w ∈ M(j)
such that w ∈ C then there is a maximal clique Kt with a(vj) ≤ t ≤ b(vj) such that
Kt ∩M(j) ⊆ C and C ∩M(j) ⊆ Kt.

Proof. Since vj,w ∈ C, we know that there is a maximal clique Kt for which C ⊆
Kt with a(vj) ≤ a(w) ≤ t ≤ min{b(vj), b(w)}. We show that all other vertices of
Kt ∩M(j) are guarded by vj and w. Notice that for every vertex y ∈ M(j) we already
know that a(vj) ≤ a(y) and b(y) ≤ b(vj). Thus, for every vertex y ∈ M(j) we have
a(vj) = min{a(vj), a(w)} ≤ a(y) and b(y) ≤ max{b(vj), b(w)}. This means that
all vertices of Kt ∩ M(j) \ {w} are guarded by vj and w. Moreover, since C ⊆ Kt, we
know that all vertices ofKt∩M(j) are C-compatible. Therefore, we apply Lemma 5.3.1
to every vertex of Kt ∩ M(j), showing that Kt ∩ M(j) ⊆ C. Furthermore, there is no
vertex of M(j) \ Kt that belongs to C, because C ⊆ Kt.

By Lemma 5.3.3, we know that we have to pick the entire setKt∩M(j) for construct-
ing candidates to form a cluster that contains vj and some vertices of M(j). As there
are at most n choices for Kt, we get a polynomial number of such candidate sets. We
next show that we can construct polynomial number of candidate sets that contain vj
and vertices ofU(j). For doing so, we consider the vertices ofU(j) increasingly ordered
with respect to their firstmaximal clique.More precisely, letU(j)≤a = (u1, . . . , u|U(j)|)
be an increasingly order of the vertices of U(j) such that a(u1) ≤ · · · ≤ a(u|U(j)|). The
right part of Figure 5.1 illustrates the corresponding case.

Lemma 5.3.4. Let C be a cluster of Ai,j containing vj and let uq ∈ U(j)≤a.If uq ∈ C
then every vertex of {uq+1, . . . , u|U(j)|} that is C-compatible belongs to C.

Proof. Let u be a vertex of {uq+1, . . . , u|U(j)|}. We show that u is guarded by uq and vj.
By the definition of U(j)≤a, we know that a(uq) < a(u) < a(vj). Moreover, observe
that b(u) ≤ b(vj) holds by the fact that u ∈ Vi,j and b(uq) ≤ b(vj). Thus, we apply

80

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

vj

vi

M [t]

KtKa(j) Kb(j)

M(j)

vj

M [t]

uq

u1

U [t]
U(j)

vi

Ka(i) Ka(j) Kt Kb(j)

M(j)

Figure 5.1: Illustrating the sets M(j) and U(j) for vj. The left part shows the case in
which vi ∈ M(j) (or, equivalently, Vi,j = Vj,j), whereas the right part corresponds to
the case in which a(vi) < a(vj).

Lemma 5.3.1 to u, because uq, vj ∈ C and u is C-compatible, showing that u ∈ C as
desired.

For a(vj) ≤ t ≤ b(vj), letM[t] = Kt∩M(j). Observe that eachM[t]may be an empty
set. On the part M(j), all vertices are grouped into the sets M[a(vj)], . . . ,M[b(vj)].
Similar toM[t], letU[t] = U(j)∩Kt.Then, all vertices ofU[t] are {vj,M[t]}-compatible
and all vertices ofM[t] are {vj,U[t]}-compatible. Figure 5.1 depicts the corresponding
sets.

Lemma 5.3.5. Let C be a cluster of Ai,j containing vj. Then, there is a(vj) ≤ t ≤ b(vj)
such that M[t] ⊆ C.

Proof. Assume for contradiction that no setM[t] is contained in C. LetUC = U(j)∩C
and let i′ = b-min(UC). Notice thatC = {vj}∪UC because of the assumption as there
are no other neighbors of vj in Vi,j. Then, a(vj) ≤ i′ ≤ b(vj) holds, because vj ∈ C.
We show that M[i′] ⊆ C. Observe that C ⊆ Ki′ . If M[i′] = ∅ then clearly M[i′] ⊂ C.
Assume thatM[i′] ̸= ∅ and letC′ be a non-empty subset ofM[i′] that forms a cluster in
Ai,j. Then, all vertices of C are C′-compatible and all vertices of C′ are C-compatible,
because C,C′ ∈ Kt. Thus, we reach a contradiction by Lemma 5.2.4 to the optimality
of Ai,j. This means that there is a vertex w ∈ M(j) that is contained in C together with
vj.Therefore, by Lemma 5.3.3, there is a setM[t] = Kt∩M(j) that is included inC.

All vertices of a cluster C containing vj belong to U(j) ∪ M(j). Thus, C \ {vj} can
be partitioned into C ∩ U(j) and C ∩M(j). Also notice that C ⊆ Kt for some a(vj) ≤
t ≤ b(vj). Combined with the previous lemmas, we can enumerate all such subsets
C of U(j) ∪ M(j) in polynomial-time. In particular, we first build all candidates for
C∩M(j), which are exactly the setsM[t] by Lemma 5.3.3 and Lemma 5.3.5. Then, for

81

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

each of such candidateM[t], we apply Lemma 5.3.4 to construct all subsets containing
the last q vertices of U[t]≤a. Thus, there are at most n2 number of candidate sets from
the vertices of U(j) ∪M(j) that belong to the same cluster with vj.

5.3.1 Splitting into partial solutions

We further partition the vertices ofM(j). Given a pivot groupM[t], we consider the
vertices that lie on the right part of M[t]. More formally, for a(vj) ≤ t < b(vj), we
define the set

Bj(t) =
((
Kt+1 ∪ · · · ∪ Kb(j)

)
\ Kt

)
∩M(j).

The reason of breaking the vertices of the part M(j) into sets Bj(t) is the following.

Lemma 5.3.6. Let C be a cluster of Ai,j such that {vj}∪M[t] ⊆ C, for a(vj) ≤ t ≤ b(vj).
Then, for any two vertices x ∈ Vi,j \ Bj(t) and y ∈ Bj(t), there is no cluster of Ai,j that
contains both of them.

Proof. First observe that y ∈ (M[t+ 1]∪· · ·∪M[b(j)])\M[t].We consider two cases for
x, depending on whether x ∈ M(j) or not. Assume that x ∈ M(j). Then, we show that
xy /∈ E(G). To see this, observe that by the definition of each groupM[t] = Kt ∩M(j),
there is no maximal clique that contains both x and y. Thus, there is no cluster that
contains both of them.

Now assume that x ∈ U(j). If x ∈ C, then y does not belong to Kt, so that y /∈ C.
If x /∈ C, then we show that x does not belong to a cluster with any vertex of Bj(t).
Assume for contradiction that x belongs to a cluster C′ such that C′ ∩ Bj(t) ̸= ∅. This
means that x ∈ Ki′ with t < i′ ≤ b(vj) and C′ ⊆ Ki′ . Then vj is C′-compatible and x is
C-compatible, as both x and vj belong to Kt∩Ki′ . Therefore, by Lemma 5.2.4 we reach
a contradiction to x and vj belonging to different clusters.

Definition 5.3.7 (Optimal solution A(S)). For a non-empty set S ⊆ V(G), we write
A(S) to denote the following solutions:

• A(S) = Ai′,j′ , where vi′ is the vertex of S having the smallest a(vi′) and vj′ is the
vertex of S having the largest b(vj′).

Having this notation, observe that Ai,j = A(Vi,j), for any vi, vj with b(vi) ≤ b(vj).
However, it is important to notice thatA(S) does not necessarily represent the optimal
solution ofG[S], since the vertices of Smay not be consecutive with respect toVi′,j′ , so
that S is only a subset of Vi′,j′ in the corresponding solution Ai′,j′ for A(S). Under the
following assumptions, with the next result we show that for the chosen sets we have
S = Vi′,j′ .

82

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

Observation 5.3.8. Let vi, vj be two vertices with b(vi) ≤ b(vj) and let Vt = Kt ∩ Vi,j,
for any maximal clique Kt of P with a(vj) ≤ t ≤ b(vj).

(i) If SL =
(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt then SL = Vi′,j′ ,

where i′ = a-min(SL) and j′ = b-max(SL).

(ii) If SR =
(
Vt+1 ∪ · · · ∪ Vb(vj)

)
\ Vt then SR = Vi′,j′ ,

where i′ = a-min(SR) and j′ = b-max(SR).

Proof. We prove the case for SL =
(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt. As each Vt contains

vertices of Vi,j, we have Vi′,j′ ⊆ Vi,j. Observe that either a(vi′) < a(vj′) or a(vj′) ≤
a(vi′). In both cases we show that b(vj′) = t− 1. Assume that there is a vertex w ∈ SL
with t − 1 < b(w). Then a(w) ≤ t − 1 as w ∈ SL, and w ∈ Kt by the consecutiveness
of the clique path. This shows that w /∈ SL because w ∈ Vt. Thus, b(vj′) = t − 1.
We show that a(vi′) = min{a(vi), a(vj)}. If there is a vertex w in SL with a(w) <
min{a(vi), a(vj)} then w /∈ Vi,j leading to a contradiction that Vi′,j′ ⊆ Vi,j. Hence
we have a(vi′) = min{a(vi), a(vj)} and b(vj′) = t− 1. Moreover, observe that by the
definition of SL, we already know that SL ⊆ Vi′,j′ . Now it remains to notice that for
every vertex w with min{a(vi), a(vj)} ≤ a(w) and b(w) ≤ t − 1 we have w ∈ SL.
This follows from the fact that w ∈ Va(w) ∪ · · · ∪ Vb(w) and w /∈ Vt. Therefore we get
SL = Vi′,j′ . Completely symmetric arguments along the previous lines, shows the case
for SR.

Given the clique path P = K1 · · ·Kp, a clique-index t is an integer 1 ≤ t ≤ p. Let
ℓ(j), r(j) be two clique-indices such that a(i, j) ≤ ℓ(j) ≤ a(vj) and a(vj) ≤ r(j) ≤
b(vj). We denote by ℓr(j) the minimum value of a(v) among all vertices of v ∈ Kr(j) ∩
Vi,j having ℓ(j) ≤ a(v). Clearly, ℓ(j) ≤ ℓr(j) ≤ r(j) holds.

Definition 5.3.9 (Admissible pair and crossing). A pair of clique-indices (ℓ(j), r(j)) is
called admissible pair for a vertex vj, if both

• a(i, j) ≤ ℓ(j) ≤ a(vj) and

• a(vj) ≤ r(j) ≤ b(vj) hold.

Given an admissible pair (ℓ(j), r(j)), we define the following set of vertices:

• C(ℓ(j), r(j)) = {z ∈ Vi,j : ℓr(j) ≤ a(z) ≤ r(j) ≤ b(z)}.

We say that a vertex u crosses the pair (ℓ(j), r(j)) if we have a(u) < ℓr(j) and r(j) ≤
b(u).

83

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

Observe that all vertices ofC(ℓ(j), r(j)) induce a clique inG, becauseC(ℓ(j), r(j)) ⊆
Kr(j). It is not difficult to see that for a vertex u that crosses (ℓ(j), r(j)), we have u /∈
C(ℓ(j), r(j)). We prove the following properties of C(ℓ(j), r(j)).

Lemma 5.3.10. Let vi′ , vj′ be two vertices with b(vi′) ≤ b(vj′) and let (ℓ, r) be an ad-
missible pair for vj′ . Moreover, let vi, vj be the vertices of Vi′,j′ \C(ℓ, r) having the smallest
a(vi) and largest b(vj), respectively. If the vertices of C(ℓ, r) form a cluster in Ai′,j′ then
the following statements hold:

1. Vi,j = Vi′,j′ \ C(ℓ, r).

2. If a(x) ≤ r ≤ b(x) holds for a vertex x ∈ Vi,j, then x crosses (ℓ, r).

3. Every vertex of Bj(r) does not belong to the same cluster with any vertex of Vi,j \
Bj(r).

4. Every vertex that crosses (ℓ, r) does not belong to the same cluster with any vertex
y ∈ Vi,j having ℓr ≤ a(y).

Proof. First we show that Vi,j = Vi′,j′ \C(ℓ, r). Assume that there is a vertex v ∈ Vi,j \
Vi′,j′ . Then v /∈ C(ℓ, r) and v is distinct from vi, vj because, by definition, vi, vj ∈ Vi′,j′ .
Also notice that v ∈ Vi,j implies a(i, j) ≤ a(v) and b(v) ≤ b(vj). By the second
inequality, we get b(v) ≤ b(vj) ≤ b(vj′). Suppose that a(v) < a(i′, j′). As we already
know that a(i, j) ≤ a(v), we conclude that a(i, j) < a(i′, j′) leading to a contradiction
that vi, vj ∈ Vi′,j′ . Thus we have a(i′, j′) ≤ a(v) and b(v) ≤ b(vj′), showing that
v ∈ Vi′,j′ . This means that Vi,j ⊂ Vi′,j′ , so that Vi,j = Vi′,j′ \ C(ℓ, r).

For the second statement, observe that if ℓr ≤ a(x) then x ∈ C(ℓ, r). Since x ∈ Vi,j,
we conclude that x /∈ C(ℓ, r) by the first statement. Thus a(x) < ℓr holds, implying
that x crosses (ℓ, r).

With respect to the third statement, observe that no vertex of Bj(r) belongs to the
clique Kr. This means that all vertices of Bj(r) belong to both sets Vi,j and Vi′,j′ . Thus
Lemma 5.3.6 and the first statement show that no two vertices x ∈ Vi,j \ Bj(r) and
y ∈ Bj(r) belong to the same cluster.

For the fourth statement, let x be a vertex that crosses (ℓ, r). By the first statement
we know that x ∈ Vi,j. If r < a(y) then y ∈ Bj(r) and the third statement show
that x and y do not belong to the same cluster. Suppose that ℓr ≤ a(y) ≤ r. If r ≤
b(y) then y ∈ C(ℓ, r) contradicting the fact that y ∈ Vi,j. Putting together, we have
ℓr ≤ a(y) ≤ b(y) < r. Now assume for contradiction that x and y belong to the
same cluster Cxy. By the fact that a(x) < a(y), observe that a(y) ≤ a-min(Cxy) ≤
b-min(Cxy) ≤ min{b(vj), b(y)}. We consider the graph induced by Vi′,j′ . We show
that there is a vertex ofCxy that isC(ℓ, r)-compatible and there is a vertex ofC(ℓ, r) that

84

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

is Cxy-compatible. Notice that x is C(ℓ, r)-compatible, because x crosses (ℓ, r) so that
x ∈ Kr. To see that there is a vertex of C(ℓ, r) that is Cxy-compatible, choose z to be the
vertex ofC(ℓ, r) having the smallest a(z).Thismeans that a(z) = ℓr.Then z is adjacent
to every vertex of Cxy because a(z) ≤ a(y) and b(y) < r ≤ b(z). Thus, z ∈ C(ℓ, r)
is Cxy-compatible. Therefore, Lemma 5.2.4 shows the desired contradiction, implying
that x and y do not belong to the same cluster.

Notice that the number of admissible pairs (ℓ(j), r(j)) for vj is polynomial because
there are at most n choices for each clique-index. Moreover, if vi ∈ M(j) then we have
ℓ(j) = a(vj).

Definition 5.3.11 (Bounding pair). A pair of clique-indices (ℓ, r) with ℓ ≤ r is called
bounding pair for vj if either b(vj) < r holds, or vj crosses (ℓ, r). Given an bounding pair
(ℓ, r) for vj, we write (ℓ(j), r(j)) ≺ (ℓ, r) to denote the set of admissible pairs (ℓ(j), r(j))
for vj such that

• r(j) ≤ b(vj), whenever b(vj) < r holds, and

• r(j) < ℓ, otherwise.

Observe that if b(vj) < r holds, then (ℓ(j), r(j)) ≺ (ℓ, r) describes all admissible
pairs for vj with no restriction, regardless of ℓ. On the other hand, if ℓ < a(vj) and
r ≤ b(vj) hold, then (ℓ, r) is not a bounding pair for vj. In fact, we will show that
the latter case will not be considered in our partial subsolutions. For any admissible
pair (ℓ(j), r(j)) and any bounding pair (ℓ, r) for vj, observe that vj ∈ C(ℓ(j), r(j)) and
vj /∈ C(ℓ, r). Intuitively, an admissible pair (ℓ(j), r(j)) corresponds to the cluster con-
taining vj, whereas a bounding pair (ℓ, r) forbids vj to select certain vertices as they
have already formed a cluster that does not contain vj.

Our task is to construct subsolutions over all admissible pairs for vj with the prop-
erty that the vertices of C(ℓ(j), r(j)) form a cluster. To do so, we consider a vertex vj′
with b(vj) ≤ b(vj′) and a cluster containing vj′ . Let (ℓ, r) be an admissible pair for
vj′ such that a(vj) ≤ r ≤ b(vj). The previous results suggest to consider solutions in
which the vertices of C(ℓ, r) form a cluster in an optimal solution. It is clear that if
ℓ ≤ a(vj) then vj ∈ C(ℓ, r). Moreover, if b(vj) < r, then no vertex of Vi,j belongs to
C(ℓ, r). Thus, we need to construct solutions for Ai,j, whenever (ℓ, r) is a bounding
pair for vj and the vertices of C(ℓ, r) form a cluster. Such an idea is formally described
in the following restricted solutions.

Definition 5.3.12 ((ℓ, r)-restricted solution). Let (ℓ, r) be a bounding pair for vj. We
call the following solution, (ℓ, r)-restricted solution:

85

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

vj

CL

C(`(j), r(j))

L

CR

C(`, r)

R

Bj(r)

K`(j) Ka(j) Kr(j) K` Kr Kb(j)

Figure 5.2: A partition of the set of vertices given in Ai,j[ℓ, r], where VL = CL ∪ L and
VR = CR ∪ R. Observe that Bj(r(j)) = R ∪ CR ∪

(
C (ℓ, r) ∩ Vi,j

)
∪ Bj(r).

• Ai,j[ℓ, r] is the value of an optimal solution for Cluster Deletion of the graph
G[Vi,j]−

(
C(ℓ, r) ∪ Bj(r)

)
such that the vertices of C(ℓ, r) form a cluster.

Hereafter, we assume that Bj(t) with t ≥ b(vj) corresponds to an empty set. Fig-
ure 5.2 illustrates a partition of the vertices with respect toAi,j[ℓ, r]. Notice that an opti-
mal solutionAi,j without any restriction is described in terms ofAi,j[ℓ, r]byAi,j[1, b(vj)+
1], since no vertex ofVi,j belongs toC(1, b(vj)+1).Therefore,A1,n[1, n+1] corresponds
to the optimal solution of the whole graph G. As base cases, observe that if Vi,j con-
tains at most one vertex then Ai,j[ℓ, r] = 0 for all bounding pairs (ℓ, r), since there
are no internal edges. For a set C, we write |C|2 to denote the number

(|C|
2
)
. With the

following result, we describe a recursive formulation for the optimal solutionAi,j[ℓ, r],
which is our central tool for our dynamic programming algorithm.

Lemma 5.3.13. Let (ℓ, r) be a bounding pair for vj. Then,

Ai,j[ℓ, r] = max
(ℓ(j),r(j))≺(ℓ,r)

(A(VL)[ℓ(j), r(j)] + |C(ℓ(j), r(j))|2 + A(VR)[ℓ, r]) ,

where VL = Vi,j \
(
C(ℓ(j), r(j)) ∪ Bj(r(j))

)
and VR = Bj(r(j)) \

(
C(ℓ, r) ∪ Bj(r)

)
.

Proof. We first argue that C(ℓ(j), r(j)) corresponds to the correct cluster C containing
vj. Observe that vj /∈ C(ℓ, r), because (ℓ, r) is a bounding pair for vj, so that a(vj) < ℓ
whenever a(vj) ≤ r ≤ b(vj) holds. By Lemmas 5.3.4 and 5.3.3, there are r(j) = t and
ℓ(j) = k, where a(vj) ≤ t ≤ b(vj) and k = a-min(Kt∩C), such thatC = C(ℓ(j), r(j)).

86

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

We show that such a set C(ℓ(j), r(j)) is obtained from a correct choice among the
described (ℓ(j), r(j)). Assume first that b(vj) < r. Then Ai,j[ℓ, r] = Ai,j, because for
every vertex u of C(ℓ, r) we know the b(vj) < b(u), so that Vi,j ∩ C(ℓ, r) = ∅. This
means that a(vj) ≤ r(j) ≤ b(vj) for every admissible pair (ℓ(j), r(j)), as described in
the given formula. Now assume that r ≤ b(vj). Since vj crosses (ℓ, r), Lemma 5.3.10 (4)
shows that vj is not contained in a cluster with a vertex y having ℓ < a(y). Thus, for
any vertex y ∈ C we know that y ∈ Kt where a(vj) ≤ t < ℓ. This means that there
is a set C(ℓ(j), r(j)) that contains exactly the vertices of C such that a(vj) ≤ r(j) < ℓ.
Therefore, (ℓ(j), r(j)) ≺ (ℓ, r) holds, as desired.

Next, we consider the setsVL andVR.We show thatA(VL)[ℓ(j), r(j)] andA(VR)[ℓ, r]
correctly store the optimal values of each part. To do so, we show first that the vertex
sets of each part correspond to the correct sets and, then, each pair (ℓ(j), r(j)) and (ℓ, r)
is indeed a bounding pair for the last vertex of VL and VR, respectively. We start with
some preliminary observations. Notice that Bj(r) ⊆ Bj(r(j)), because r(j) < r, which
means that every vertex Bj(r) does not belong to VL ∪VR. Since C(ℓ(j), r(j)) contains
only vertices of Kr(j) and r(j) < ℓ, no vertex of Bj(r) is considered in the described
formula, as required in Ai,j[ℓ, r]. By the properties of C(ℓ(j), r(j)) and C(ℓ, r), we have
the following:

• Let x ∈ Kr(j)∩Vi,j.Then, either x ∈ C(ℓ(j), r(j)) or x crosses the pair (ℓ(j), r(j)).
Moreover, if a vertex v crosses (ℓ(j), r(j)) then v ∈ VL.

• Let y ∈ Kr ∩ Vi,j. Then, either y ∈ C(ℓ, r) or y crosses the pair (ℓ, r). Moreover,
if a vertex v crosses (ℓ, r) but does not cross (ℓ(j), r(j)) then v ∈ VR.

Let CL be the set of vertices ofVi,j that cross (ℓ(j), r(j)) and let CR be the set of vertices
of Vi,j \ CL that cross (ℓ, r). The previous properties imply that we can partition VL to
the vertices ofCL and the vertices ofVi,j that belong toL = (Ka(i,j)∪· · ·∪Kr(j)−1)\Kr(j).
Similarly, VR is partitioned to the vertices of CR and the vertices of Vi,j that belong to
R = (Kr(j)+1 ∪ · · · ∪ Kr−1) \ (Kr(j) ∪ Kr). See Figure 5.2 for an exposition of the
corresponding sets. Thus, we have the following partitions for VL and VR:

• VL = CL ∪ L, where L =
(
(Ka(i,j) ∪ · · · ∪ Kr(j)−1) \ Kr(j)

)
∩ Vi,j.

• VR = CR ∪ R, where R =
(
(Kr(j)+1 ∪ · · · ∪ Kr−1) \ (Kr(j) ∪ Kr)

)
∩ Vi,j.

Let vi′ , vj′ be the vertices ofVL with i′ = a-min(VL) and j′ = b-max(VL). We now
show thatA(VL)[ℓ(j), r(j)] corresponds to the optimal solution of the graphG[Vi′,j′]−(
Bj′(r(j)) ∪ C(ℓ(j), r(j))

)
such that the vertices of C(ℓ(j), r(j)) form a cluster. Assume

for contradiction that there is a vertex x of Vi′,j′ \
(
C(ℓ(j), r(j)) ∪ Bj′(r(j))

)
that does

not belong to VL = Vi,j \
(
Bj(r) ∪ C(ℓ, r)

)
. First notice that Kr(j) ∩Vi,j = C(ℓ(j), r(j))

87

Chapter 5 5.3. Polynomial-time algorithm on interval graphs

if and only if CL is an empty set. In such a case, by Observation 5.3.8, we have Vi′,j′ =
Vi,j \

(
Kr(j) ∪ · · · ∪ Kb(j)

)
, contradicting the existence of such a vertex x. Suppose that

vi′ ̸= vi. Then vi ∈ M(j) or vi ∈ C(ℓ(j), r(j)), because min{a(vi), a(vj)} is the first
maximal clique of all vertices of Vi,j. If vi ∈ M(j) then U(j) = ∅ and ℓ(j) = a(j). This
means that for every a(vj) ≤ r(j) ≤ b(vj), we haveKr(j)∩Vi,j = C(ℓ(j), r(j)), reaching
a contradiction. If vi ∈ C(ℓ(j), r(j)) then ℓ(j) = a(vi) and CL is empty, reaching again
a contradiction. Suppose now that i′ = i. It is clear that x ̸= vj′ . If vj′ ∈ L then
CL = ∅, so that Kr(j) ∩ Vi,j = C(ℓ(j), r(j)). Assume that vj′ ∈ CL. Now observe that if
x ∈ L∪CL, then x is a vertex ofVi,j \

(
Bj(r) ∪ C(ℓ, r)

)
. Thus, x /∈ L∪CL. If b(x) < r(j)

then x ∈ L because a(vi) ≤ a(x). This means that r(j) ≤ b(x). If ℓ(j) ≤ a(x) ≤ r(j)
then x ∈ C(ℓ(j), r(j)), leading to a contradiction that x ∈ VL, and if a(x) < ℓ(j) then
x ∈ CL, leading to a contradiction that x /∈ L ∪ CL. Thus, we know that r(j) < a(x)
and b(x) ≤ b(vj′). This, however, implies that x ∈ Bj′(r(j)), reaching a contradiction
to the fact that x ∈ Vi′,j′ \Bj′(r(j)). Therefore, we have shown that an optimal solution
of the vertices of Vi′,j′ \

(
Bj′(r(j)) ∪ C(ℓ(j), r(j))

)
corresponds to an optimal solution

of the vertices of VL.
Furthermore, we argue that (ℓ(j), r(j)) is a bounding pair for vj′ inA(VL)[ℓ(j), r(j)].

Assume that r(j) ≤ b(vj′). If r(j) ≤ a(vj′) then vj′ ∈ Bj(r(j)), because a(vj) ≤
r(j). As vj′ ∈ VL, we have a(vj′) < r(j) ≤ b(vj′). Then, if ℓ(j) ≤ a(vj′), we get
vj′ ∈ C(ℓ(j), r(j)), which implies that a(vj′) < ℓ(j), showing that (ℓ(j), r(j)) is a
bounding pair for vj′ . Assume next that b(vj′) < r(j). Then, vj′ /∈ CL, implying
that CL = ∅. Thus, for any value of ℓ(j) we know that (ℓ(j), r(j)) is a bounding pair
for vj′ . Therefore, A(VL)[ℓ(j), r(j)] corresponds to the optimal solution of the graph
G[Vi′,j′]−

(
Bj′(r(j)) ∪ C(ℓ(j), r(j))

)
.

Next we consider the vertices of VR, in order to show that A(VR)[ℓ, r] corresponds
to an optimal solution of the graph G[VR]. Let vi′′ , vj′′ be the vertices of VR with i′′ =
a-min(VR) and j′′ = b-max(VR). Assume for contradiction that there is a vertex x
of Vi′′,j′′ \

(
C(ℓ, r) ∪ Bj′′(r)

)
that does not belong to VR = Bj(r(j)) \

(
C(ℓ, r) ∪ Bj(r)

)
.

Every vertex of R ∪ CR belongs to VR, so that x /∈ R ∪ CR. This means that b(x) > r,
since x /∈ R, and a(x) > r, since x /∈ CR ∪ C(ℓ, r). Then we obtain r < a(x) ≤ b(x) ≤
b(vj′′), showing that x ∈ Bj′′(r). Thus we reach a contradiction, because Bj′′(r) ⊆
Bj(r). Hence, the vertices described in A(VR)[ℓ, r] correspond to the vertices of VR, as
desired.

With respect to A(VR)[ℓ, r], it remains to show that (ℓ, r) is a bounding pair for vj′′ .
If b(vj′′) < r then CR = ∅, which means that (ℓ, r) is a bounding pair for vj′′ . Next
suppose that r ≤ b(vj′′). If r ≤ a(vj′′) then vj′′ ∈ Bj(r), contradicting the fact that
vj′′ ∈ VR. Thus, we know that a(vj′′) < r ≤ b(vj′′). If further ℓ ≤ a(vj′′), then vj′′ ∈
C(ℓ, r), contradicting vj′′ ∈ VR. Hence, we conclude that vj′′ crosses (ℓ, r), showing
that (ℓ, r) is indeed a bounding pair for vj′′ .

88

Chapter 5 5.4. Cluster Deletion on starlike graphs

To complete the proof, observe that no vertex of VL belongs to the same cluster
with a vertex of VR by Lemma 5.3.10 (3). Thus, the optimal solutions described by
A(VL)[ℓ(j), r(j)] andA(VR)[ℓ, r] do not overlap inAi,j[ℓ, r].Therefore, the claimed for-
mula holds.

Now we are ready to obtain our main result, namely a polynomial-time algorithm
for Cluster Deletion on interval graphs.

Theorem 5.3.14. Cluster Deletion is polynomial-time solvable on interval graphs.

Proof. We describe a dynamic programming algorithm that computes A1,n based on
Lemma 5.3.13. In a preprocessing step, we first compute two orderings of the vertices
according to their first a(v) and last b(v) maximal cliques. Then we visit all vertices
in ascending order with respect to b(vj) and for each such vertex vj we consider the
vertices vi with b(vi) ≤ b(vj) in descending order with respect to b(vi). In such a way,
we construct the setsVi,j. We use a table T [i, j, ℓ, r] to store the values of eachAi,j[ℓ, r].
At the end, we output the maximum value of T [1, n, n+ 1, n+ 1] that corresponds to
A1,n[n+ 1, n+ 1], as already explained. Regarding the running time, observe that the
number of our table entries is at most n4, as each table index is bounded by n. More-
over, computing a single table entry requires O(n2) time, since we take the maximum
of at most (ℓ, r) table entries. Therefore, the overall running time of the algorithm is
O(n6).

5.4 Cluster Deletion on starlike graphs

A graph G = (V,E) is a split graph if V can be partitioned into a clique C and an
independent set I, where (C, I) is called a split partition of G. Split graphs are charac-
terized as (2K2,C4,C5)-free graphs [45]. They form a subclass of the larger and widely
known graph class of chordal graphs, which are the graphs that do not contain induced
cycles of length 4 or more as induced subgraphs. In general, a split graph can have
more than one split partition and computing such a partition can be done in linear
time [67].

Hereafter, for a split graphG, we denote by (C, I) a split partition ofG in which C is
a maximal clique. It is known that Cluster Deletion is polynomial-time solvable on
split graphs [11]. In fact, the algorithm given in [11] is characterized by its simplicity
due to the following elegant characterization of an optimal solution: if there is a vertex
v ∈ I such thatN(v) = C\{w} andw has a neighbor v′ in I then the non-trivial clusters
of an optimal solution are C \ {w} ∪ {v} and {w, v′}; otherwise, the only non-trivial
cluster of an optimal solution isC [11].Herewe studywhether such a simple character-
ization can be extended into more general classes of split graphs. Due to Lemma 5.2.2,

89

Chapter 5 5.4. Cluster Deletion on starlike graphs

C4 C5 P5 2P3 Ā X

Figure 5.3:The list of forbidden induced subgraph characterization for starlike graphs.

it is natural to consider true twins of V \ C, as they are grouped together in an op-
timal solution and they are expected not to influence the solution characterization¹.
Surprisingly, we show that Cluster Deletion remains NP-complete even on such a
slight generalization of split graphs. Before presenting our NP-completeness proof, let
us first show that such graphs form a proper subclass of P5-free chordal graphs. We
start by giving the formal definition of such graphs that were introduced in [19].

Definition 5.4.1. A graph G = (V,E) is called starlike graph if its vertex set can be
partitioned into C and I such that G[C] is a clique and every two vertices of I are either
non-adjacent or true twins in G.

It is clear that in a starlike graph G with vertex partition (C, I) the following holds:

(i) each connected component of G[I] is a clique and forms a true-twin set in G,
and

(ii) contracting the connected components of G[I] results in a split graph, denoted
by G∗.

Starlike graphs are exactly the intersection graphs of subtrees of a star [19]. In fact,
a forbidden induced subgraph characterization was already given in [19]; figure 5.3
illustrates the induced subgraphs that are forbidden in a starlike graph. Despite the
known forbidden subgraph characterization, here we give a shorter and different proof
of such a characterization.

Proposition 5.4.2. A graph G is starlike if and only if it does not contain any of the
graphs C4,C5, P5, 2P3, Ā,X as induced subgraphs.

Proof. Let F be the list of such subgraphs, i.e., F = {C4,C5, P5, 2P3, Ā,X}. We show
that starlike graphs are exactly the F-free graphs. It is clear that any subgraph of F
does not contain true twins. Moreover, each subgraph of F \ {C4,C5} contains an

¹Note that the class of split graphs is closed under the addition of true twins in the clique.

90

Chapter 5 5.4. Cluster Deletion on starlike graphs

induced 2K2, which implies that all such subgraphs of F are not starlike graphs. Thus,
if a graph G contains one of the subgraphs of F then G is not a starlike graph.

We show that anyF-free graphG is starlike. IfG is a split graph then, by definition,
G is starlike. Assume that G is not a split graph. Since G does not contain C4 or C5
and split graphs are exactly the (2K2,C4,C5)-free graphs, there is an induced 2K2 in
G. Let x1x2 and y1y2 be the two edges of an induced 2K2. We show that the endpoints
of at least one of the two edges are true twins. Assume for contradiction that neither
x1, x2 nor y1, y2 are true twins in G. Let a be a neighbor of x1 that is non-adjacent to
x2, and let b be a neighbor of y1 that is non-adjacent to y2. We show that the vertices
of {a, x1, x2, b, y1, y2} induce one of the subgraphs of F , contradicting the fact that
no pair of vertices form true twins. If b /∈ N({x1, x2}) and a /∈ N({y1, y2}) then
there is an induced P5 or 2P3 depending on whether a and b are adjacent or not. Thus,
b ∈ N({x1, x2}) or a ∈ N({y1, y2}). Observe that if a is adjacent to at least one of
y1 or y2 then a is adjacent to both y1 and y2; otherwise, {x1, x2, a, y1, y2} induce a P5.
By symmetric arguments we know that either b is adjacent to both x1, x2 or to none.
Without loss of generality, assume that bx1, bx2 ∈ E(G).

• Suppose that a and b are non-adjacent. If a /∈ N({y1, y2}) then there is a P5
induced by {a, x1, b, y1, y2}. Moreover, by the previous argument, we know that
if a ∈ N({y1, y2}) then ay1, ay2 ∈ E(G), which implies a C4 in G induced by
{a, x1, b, y1}. Thus if ab /∈ E(G) we obtain a induced subgraph of F.

• Suppose that a and b are adjacent. If a /∈ N({y1, y2}), then all six vertices in-
duce an X graph. Otherwise, we know that ay1, ay2 ∈ E(G), showing that all six
vertices induce a graph Ā, where a and b are the degree four vertices.

Thus in all cases we obtain an induced subgraph ofF , reaching to a contradiction that
G being anF-free graph. This means that for any 2K2 we know that at least one of the
two edges contains true twin vertices in G. By iteratively picking such true twins and
contracting them into a new vertex, results in a graph G∗ that does not contain 2K2.
Therefore G∗ is a split graph, implying that G is a starlike graph.

Thus by Proposition 5.4.2, starlike graphs form a proper subclass of P5-free chordal
graphs, i.e., of (C4,C5, P5)-free graphs. Now let us show that decision version of Clus-
ter Deletion is NP-complete on starlike graphs. This is achieved by observing that
the constructed graphs given in the reduction for P5-free graphs [11], constitute such
split-related graphs. In particular, the reduction shown in [11] comes from the X3C
problem: given a universe X of 3q elements and a collection C = {C1, . . . ,C|C|} of
3-element subsets of X, asks whether there is a subset C′ ⊆ C such that every element
ofX occurs in exactly onemember ofC′.The constructed graphG is obtained by iden-
tifying the elements of X as a clique KX and there are |C| disjoint cliques K1, . . . ,K|C|

91

Chapter 5 5.4. Cluster Deletion on starlike graphs

each of size 3q corresponding to the subsets of C and a vertex x of KX is adjacent to all
the vertices of Ki if and only if x belongs to the corresponding subset Ci of Ki. Then,
it is not difficult to see that the vertices of each Ki are true twins and the contracted
graph G∗ is a split graph, showing that G is indeed a starlike graph. Therefore, by the
NP-completeness given in [11], we have:

Theorem 5.4.3. Cluster Deletion is NP-complete on starlike graphs.

However, here we give a different reduction that highlights an interesting connec-
tion between edge-weighted and vertex-weighted split graphs. In the EdgeWeighted
Cluster Deletion problem, each edge of the input graph is associated with a weight
and the objective is to construct a clustered graph having the maximum total (cumu-
lative) weight of edges. As already explained, we can contract true twins and obtain
a vertex-weighted graph as input for the corresponding Cluster Deletion. Simi-
larly, it is known that for edge-weighted graphs the corresponding Edge Weighted
ClusterDeletion remains NP-hard even when restricted to particular variations on
special families of graphs [11]. In fact, it is known [11] that EdgeWeighted Cluster
Deletion remains NP-hard on split graphs even when

(i) all edges inside the clique have weight one,

(ii) all edges incident to a vertex w ∈ I have the same weight q, and

(iii) q = |C|.

We abbreviate the latter problem by EWCD and denote by (C, I, k) an instance of the
problem where (C, I) is a split partition of the vertices of G and k is the total weight of
the edges in a cluster solution for G. With the following result, we show an interest-
ing connection between the two variations of the problem when restricted to starlike
graphs.

Theorem5.4.4. There exists a polynomial time algorithm that, given an instance (C, I, k)
for EWCD, produces an equivalent instance for Cluster Deletion on starlike graphs.

Proof. Let (C, I, k) be an instance of EWCD,whereG = (C∪I,E) is a split graph. From
G, we build a starlike graph G′ = (C′ ∪ I′,E′) by keeping the same clique C′ = C, and
for every vertex wj ∈ I we apply the following:

• We replace wj by q = |C| true twin vertices I′j (i.e., by a q-clique) such that
for any vertex w′ ∈ I′j we have NG′(w′) = NG(wj) ∪ (I′j \ {w′}). That is, their
neighbors outside I′j are exactly NG(wj). Moreover, the set of vertices I′1, . . . , I′|I|
form I′.

92

Chapter 5 5.4. Cluster Deletion on starlike graphs

By the above construction, it is not difficult to see that G′ is a starlike graph, since the
graph induced by I′ is a disjoint union of cliques and two adjacent vertices of I′ are
true twins in G′. Also observe that the construction takes polynomial time because q
is at most n = |V(G)|. We claim that there is an edge weighted cluster solution for G
with total weight at least k if and only if there is a cluster solution forG′ having at least
k+ |I| ·

(q
2
)
edges.

Assume that there is a cluster solution S for G with total weight at least k. From S,
we construct a solution S′ for G′. There are three types of clusters in S:

(a) Cluster formed only by vertices of the clique C, i.e., Y ∈ S, where Y ⊆ C. We
keep such clusters in S′. We denote by ta the total weight of clusters of type (a).
Notice that since the weight of edges having both endpoints in C are all equal to
one, ta corresponds to the number of edges in Y.

(b) Cluster formed only by one vertex wj ∈ I, i.e., {wj} ∈ S. In S′ we replace such
cluster by the corresponding clique I′j having exactly

(q
2
)
edges. It is clear that

the total weight of such clusters do not contribute to the value of S.

(c) Cluster formed by the vertices y1, . . . , yp,wj, where yi ∈ C and wj ∈ I. As the
weights of the edges between the vertices of yi is one, the total number of weights
in such a cluster is

(p
2
)
+p·q. Let tc be the total weight of clusters of type (c). In S′

we replace wj by the vertices of I′j and obtain a cluster S′ having
(p
2
)
+ p · q+

(q
2
)

number of edges.

Now observe that in S we have ta + tc total weight, which implies ta + tc ≥ k. Thus, in
S′ we have at least ta + tc + |I| ·

(q
2
)
edges, giving the desired bound.

For the opposite direction, assume that there is a cluster solution S′ of G′ having
at least k + |I| ·

(q
2
)
edges. All vertices of I′j are true twins and, by Lemma 5.2.2, we

know that they belong to the same cluster in S′. Thus, any cluster of S′ has one of the
following forms:

(i) Y′, where Y′ ⊆ C′,

(ii) I′j,

(iii) I′j ∪ {y′1, . . . , y′p}, where y′i ∈ C′.

This means that all internal edges having both endpoints in I′ contribute to the value
of S′ by |I| ·

(q
2
)
. Moreover, observe that for any internal edge of S′ of the form y′w′

with y′ ∈ C′ and w′ ∈ I′j, we know that there are exactly q internal edges incident
to y′ and the q vertices of I′j. Thus, internal edges y′w′ of S′ correspond to exactly one

93

Chapter 5 5.4. Cluster Deletion on starlike graphs

gem dart

Figure 5.4: Forbidden induced subgraphs of stable-like graphs that are starlike graphs.

internal edge ywj of S having weight q, where y = y′ (recall that C = C′) and wj is the
vertex of I associated with Ij. Hence, all internal edges outside each I′j in S′ correspond
to either a weighted internal edge in S or to the same unweighted edge of the clique C
in S. Therefore, there is an edge weighted solution S having weight at least k.

5.4.1 Polynomial-time algorithms on subclasses of starlike graphs

Due to the hardness result given inTheorem5.4.4, it is natural to consider subclasses
of starlike graphs related to their analogue subclasses of split graphs. We consider two
such subclasses. The first one corresponds to the starlike graphs in which the vertices
of I have no common neighbor in the clique, unless they are true or false twins. The
second one is related to the true twin extension of threshold graphs (i.e., split graphs
in which the vertices of the independent set have nested neighborhood) and form the
starlike graphs in which the vertices of the I have nested neighborhood. The third one
comprises a generalization of the formers and consists of the starlike graphs that are
obtained from vertex-disjoint threshold graphs with a common clique. We formally
define such graphs and give polynomial-time algorithms for Cluster Deletion on
the considered graph classes. For a vertex x ∈ I we write NC(x) to denote the set
N(x) ∩ C and for a vertex a ∈ C we write NI(a) to denote the set N(a) ∩ I.

Definition 5.4.5. A starlike graph G with partition (C, I) on its vertices is called stable-
like graph if

• ∀x, y ∈ I: either NC(x) ∩ NC(y) = ∅ or NC(x) = NC(y).

It is not difficult to see that in a stable-like graph, any two vertices of I having a
common neighbor in C have exactly the same neighborhood in C. Before presenting
our linear-time algorithm, we first give a forbidden induced subgraph characterization
for the class of stable-like graphs. The graphs gem and dart are shown in Figure 5.4.

Proposition 5.4.6. A graph G is stable-like if and only if it does not contain any of the
graphs C4,C5, P5, 2P3, gem, dart as induced subgraphs.

94

Chapter 5 5.4. Cluster Deletion on starlike graphs

Proof. We first show that if G is stable-like then it does not contain any graph of the
given list as an induced subgraph. Since G is a starlike graph, by Proposition 5.4.2
G does not contain any of C4,C5, P5, 2P3 as induced subgraphs. Moreover, it is not
difficult to see that in any proper partition (C, I) of a gem or a dart there are no two
vertices x, y ∈ I for which NC(x) ∩ NC(y) = ∅ or NC(x) = NC(y). Thus, the claimed
list is indeed forbidden for stable-like graphs.

For the opposite direction, we show that any starlike graph that is not stable-like
contains a gem or a dart as an induced subgraph. Then, by Proposition 5.4.2 we obtain
the claimed list of forbidden induced subgraphs. Let G be a starlike graph that is not
stable-like, with partition (C, I) such that |C| is maximum. By definition, we know that
there are two vertices x, y ∈ I such that NC(x) ∩ NC(y) ̸= ∅ and NC(x) ̸= NC(y).

• Assume that NC(x) * NC(y) and NC(y) * NC(x). Let a ∈ NC(x) \ NC(y),
b ∈ NC(y) \ NC(x), and c ∈ NC(x) ∩ NC(y). Notice that all three vertices exist
because of our assumptions.Then, xy /∈ E(G) because there is noC4 in a starlike
graph which means that the vertices of {x, y, a, b, c} induce a gem in G.

• Assume that NC(x) (NC(y). There are two vertices b, c ∈ C such that b ∈
NC(y) \ NC(x) and c ∈ NC(x) ∩ NC(y). We show that y is non-adjacent to all
the vertices of C. For this, observe that if C ⊆ NC(y) then (C ∪ y, I \ {y}) is
a partition of the vertices of G that respects Definition 5.4.1 and properties (i)
and (ii). By the maximality of C, we obtain that there is a vertex z ∈ C such that
z /∈ NC(y). SinceNC(x) (NC(y), we know that z /∈ NC(x). Thus the vertices of
{x, y, b, c, z} induce a gem whenever xy ∈ E(G) or a dart whenever xy /∈ E(G).

Therefore, in all cases we obtain a gem or a dart as an induced subgraph.

Theorem 5.4.7. Cluster Deletion can be solved in time O(n + m) for a stable-like
graph on n vertices and m edges.

Proof. Let G be a stable-like graph with partition (C, I). First observe that if G is dis-
connected then I contains isolated cliques, i.e., true twins having no neighbor in C.
Thus we can restrict ourselves to a connected graphG, since by Lemma 5.2.2 each iso-
lated clique is contained in exactly one cluster of an optimal solution. We now show
that all vertices of C that have a common neighbor in I are true twins. Let u and v be
two vertices of C such that x ∈ N(u)∩N(v)∩ I. All vertices of C \ {u, v} are adjacent
to both u and v. Assume that there is a vertex y ∈ I that is adjacent to u and non-
adjacent to v. If xy ∈ E(G) then by the definition of starlike graphs x and y are true
twins which contradicts the assumption of xv ∈ E(G) and yv /∈ E(G). Otherwise, x
and y are non-adjacent and since NC(x) ∩ NC(y) ̸= ∅ we reach a contradiction to the

95

Chapter 5 5.4. Cluster Deletion on starlike graphs

definition of stable-like graphs. Thus, all vertices of C that have a common neighbor
in I are true twins.

We partition the vertices of C into true twin classes C1, . . . ,Ck, such that each Ci
contains true twins of C. From the previous discussion, we know that any vertex of
I is adjacent to all the vertices of exactly one class Ci; otherwise, there are vertices
of different classes in C that have common neighbor. For a class Ci, we partition the
vertices of N(Ci) ∩ I into true twin classes I1i , . . . , I

q
i such that |I1i | ≥ · · · ≥ |Iqi |.

We claim that in an optimal solution S, the vertices of each class Iji with j ≥ 2 consti-
tute a cluster. To see this, observe first that the vertices of Iji, 1 ≤ j ≤ q, are true twins,
and by Lemma 5.2.2 they all belong to the same cluster of S. Also, by Lemma 5.2.2 we
know that all the vertices of Ci belong to the same cluster of S. Moreover, all vertices
between different classes Iji,I

j′
i are non-adjacent and are Ci-compatible. Since every

vertex of Iji is non-adjacent to all the vertices of V(G) \ (Iji ∪ Ci), we know that any
cluster of S that contains Iji is of the form either Iji ∪ Ci or I

j
i. Assume that there is a

cluster that contains Iji ∪ Ci with j ≥ 2. Then, we substitute the vertices of Iji by the
vertices of I1i and obtain a solution of at least the same size, because |I1i | ≥ |Iji| implies(|Ci|+|I1i |

2

)
≥

(|Ci|+|Iji|
2

)
. Thus, all vertices of each class Iji with j ≥ 2 constitute a cluster

in an optimal solution S.
This means that we can safely remove the vertices of Iji with j ≥ 2, by constructing a

cluster that contains only Iji. Hence, we construct a graphG∗ fromG, in which there are
only matched pair of k classes (Ci, Ii) such that (i) all sets Ci, Ii are non-empty except
possibly the set Ik, (ii) N(Ci) ∩ I = Ii, (iii) N(Ii) = Ci, (iv) G∗[Ci ∪ Ii] is a clique, and
(v) G∗[C1 ∪ · · · ∪ Ck] is a clique. Our task is to solve Cluster Deletion on G∗, since
for the rest of the vertices we have determined their cluster. By Lemma 5.2.2, observe
that if the vertices of Ci ∪Cj belong to the same cluster then the vertices of each Ii and
Ij constitute two respectively clusters. Thus, for each set of vertices Ii we know that
either one of Ci ∪ Ii or Ii constitutes a cluster in S. This boils down to compute a setM
of matched pairs (Ci, Ii) from the k classes, having the maximum value∑

(Ci,Ii)∈M

(
|Ci|+ |Ii|

2

)
+

(∑
Cj /∈M |Cj|

2

)
+

∑
Ij /∈M

(
|Ij|
2

)
.

Let (Ci, Ii) and (Cj, Ij) be two pairs of classes such that |Ci|+ |Ii| ≤ |Cj|+ |Ij|. We show
that if (Cj, Ij) /∈ M then (Ci, Ii) /∈ M. Assume for contradiction that (Cj, Ij) /∈ M and
(Ci, Ii) ∈ M. Observe that |Ij| <

∑
Ct /∈M\Cj

|Ct|, because Ij is Cj-compatible. Similarly,
we know that

∑
Ct /∈M\Cj

|Ct| + |Cj| ≤ |Ii|. This however, shows that |Cj| + |Ij| < |Ii|,
contradicting the fact that |Ci|+|Ii| ≤ |Cj|+|Ij|.Thus (Cj, Ij) /∈ M implies (Ci, Ii) /∈ M.

This means that we can consider the k pair of classes (Ci, Ii) in a decreasing order

96

Chapter 5 5.4. Cluster Deletion on starlike graphs

according to their number of vertices |Ci| + |Ii|. With a simple dynamic program-
ming algorithm, starting from the largest ordered pair (C1, I1) we know that either
(C1, I1) belongs to M or not. In the former, we add

(|C1|+|I1|
2

)
to the optimal value of

(C2, I2), . . . , (Ck, Ik) and in the latter we know that no pair belongs toM giving a total
value of

(∑ |Ci|
2

)
+

∑(|Ii|
2
)
. By choosing the maximum between the two values, we

construct a table of size k needed for the dynamic programming. Computing the twin
classes and the partition (C, I) takes linear time in the size of G and sorting the pair
of classes can be done O(n) time, since

∑
(|Ci|+ |Ii|) is bounded by n. Thus, the total

running time is O(n + m), as the dynamic programming for computing M requires
O(n) time. Therefore, all steps can be carried out in linear time for a stable-like graph
G.

We next define the analogue of threshold graphs in terms of starlike graphs.

Definition5.4.8. A starlike graphGwith partition (C, I) on its vertices is called threshold-
like graph if

• ∀x, y ∈ I: NC(x) ⊆ NC(y).

It is not difficult to see that the class of threshold-like graphs and stable-like graphs
are unrelated. Threshold-like graphs are also known as starlike-threshold graphs under
the notions of intersection graphs [19]. Although the absence of an induced P4 follows
from the results of [19], we give the following short proof for completeness.

Lemma 5.4.9. Let G be a threshold-like graph. Then G is a P4-free graph.

Proof. We show that there is no induced path on four vertices, P4, in G. Assume for
contradiction that there is a P4 = v1v2v3v4 in G. Since G[C] is a clique and G[I] is a
disjoint union of cliques, at least one of v1, v4, say v1, belongs to I. If v4 ∈ C then v2 ∈ I
because v4v2 /∈ E(G), which gives a contradiction as v1v2 ∈ E(G) and v1, v2 are not
true twins. Otherwise, we have v4 ∈ I, so that v2, v3 ∈ C because v1, v2 and v3, v4 are
not true twins G. The latter, results again in a contradiction because NC(v1) * NC(v4)
and NC(v4) * NC(v1). Therefore, G is a P4-free graph.

By Lemma 5.4.9 and the O(n2)-time algorithm on P4-free graphs (also known as
cographs) [50, 87], Cluster Deletion is polynomial-time solvable on threshold-like
graphs.

Next we proceed with a subclass of starlike graphs that generalizes the previous two
classes, as it contains both the class of stable-like graphs and the class of threshold-like
graphs.

97

Chapter 5 5.4. Cluster Deletion on starlike graphs

Definition5.4.10. A starlike graphGwith partition (C, I) on its vertices is called laminar-
like graph² if

1. ∀x, y ∈ I: either NC(x) ∩ NC(y) = ∅ or NC(x) ⊆ NC(y), and

2. ∀a, b ∈ C: either NI(a) ∩ NI(b) = ∅ or NI(a) ⊆ NI(b).

We start by characterizing the laminar-like graphs in terms of disjoint threshold-
like graphs.

Lemma 5.4.11. A graph G = (V,E) is a laminar-like graph with partition (C, I) if and
only if V(G) can be partitioned into vertex-disjoint threshold-like graphs Gi = (Ci ∪
Ii,Ei) such that C = ∪Ci, I = ∪Ii, and E(G) = E(C) ∪ (∪Ei).

Proof. Given a laminar-like graphGwith partition (C, I), we partition the vertices ofG
according to whether the vertices of I have a common neighbor in C. Let Ii be a subset
of I that contains all vertices x, y ∈ I such thatNC(x)∩NC(y) ̸= ∅ orNC(x) = NC(y).
Let alsoCi = NC(Ii).We claim thatGi = G[Ci∪Ii] is a threshold-like graph. By the first
property ofDefinition 5.4.10, for any two vertices x, y ∈ Ii wehaveNC(x) ⊆ NC(y). Let
z ∈ Ii. Then NC(z) ⊆ NC(y) by the construction of Ii. Assume for contradiction that
NC(x) * NC(z) and NC(z) * NC(x). Let a ∈ NC(x) \ NC(z) and b ∈ NC(z) \ NC(x).
Then observe that y ∈ NI(a)∩NI(b).Thus by the second property of Definition 5.4.10
we reach a contradiction toNI(a) ⊆ NI(b). Therefore the vertices of Ii can be ordered
as w1, . . . ,w|Ii| such that NC(w1) ⊆ · · · ⊆ NC(w|Ii|) which means that Gi is indeed a
threshold-like graph. Moreover consider any two subgraphs Gi = (Ci, Ii) and Gj =
(Cj, Ij) that are constructed as explained above. Then it is clear that Ii ∩ Ij = ∅ and
Ci∩Cj = ∅, since the construction partitions I into equivalent classes of I. In particular,
for every two vertices w ∈ Ii and w′ ∈ Ij we have NC(w) ∩ NC(w′) = ∅. What is left
to show is that there are no edges between the vertices of Ii and Ij. For this, observe
that if there is an edge between w ∈ Ii and w′ ∈ Ij then w and w′ are true twins, as G
is a starlike graph. Therefore we have NC(w) = NC(w′) which means that both w,w′

belong to the same set Ii.
For the opposite direction, assume that we are given vertex-disjoint threshold-like

graphs Gi = (Ci ∪ Ii,Ei). We consider the graph G obtained from the union of Gi
by adding all edges among the vertices of ∪Ci. As there are all the edges among the
vertices of Ci and Cj, we have that C = ∪Ci is a clique. Moreover, each class of true
twins of Ii remains a class of true twins in G. Thus G is starlike graph. We show that
G is indeed a laminar-like graph by verifying the two properties of Definition 5.4.10.

²The term laminar comes from the notion of laminar family of sets: a family of sets is called laminar
if any two of its sets are either disjoint or one includes the other.

98

Chapter 5 5.4. Cluster Deletion on starlike graphs

For any two vertices x, y ∈ Ii we haveNC(x) ⊆ NC(y) by Definition 5.4.8. If x ∈ Ii and
y ∈ Ij thenNC(x)∩NC(y) = ∅, since there are no edges between the vertices of Ii and
Ij. Similarly, for any two vertices a, b ∈ Ci we have NIi(a) ⊆ NIi(b) which means that
NI(a) ⊆ NI(b) because every vertex of G − Gi is either adjacent to both a and b or
non-adjacent to both a and b. Moreover, for two vertices a ∈ Ci and b ∈ Cj, we have
NI(a) ∩ NI(b) = ∅ because Ii ∩ Ij = ∅ and both a and b are adjacent to every vertex
of C. Therefore G is a laminar-like graph.

We next show a polynomial-time algorithm for solving Cluster Deletion on
laminar-like graphswhich form themore general subclass of the considered subclasses
of starlike graphs. Towards this, we apply Lemma 5.4.11, obtain an optimal solution
in each Gi, and then apply the algorithm given in Theorem 5.4.7.

Theorem 5.4.12. Cluster Deletion can be solved in time O(n2) for a laminar-like
graph on n vertices.

Proof. Let G be a laminar-like graph. We first compute the true twin classes and the
partition (C, I) of G which can be done in linear time. By the true twin classes and
Lemma 5.4.11, we compute the threshold-like induced subgraphs Gi of G. For do-
ing so, all vertices of I, denoted by Ii, having a common neighbor in C belong to the
same graph Gi, whereas all vertices of I having no neighbor in C belong to the same
graph, that we denote by G0. Observe that the vertices of Ii define the set Ci = NC(Ii).
Moreover, all adjacent vertices of I0 are true twins in G and NC(I0) = ∅. Thus each
connected component ofG0 is already a clique inG and forms a cluster in any optimal
solution.

Consider a threshold-like graph Gi with partition (Ci, Ii). To ease the notation, we
let H = Gi and (A,B) be the partition (Ci, Ii). By Lemma 5.4.9, H is a P4-free graph.
For P4-free graphs, it is known that greedily selecting maximum cliques results in an
optimal solution for Cluster Deletion [50]. Let S(H) = (S1, . . . , Sk) be the clusters
of an optimal solution of H such that Si is a maximum clique of the graph H − (S1 ∪
· · · ∪ Si−1), for 1 ≤ i ≤ k with S0 = ∅. We call S(H) a greedy-optimal solution of H.
Observe that all true twins of H belong to the same cluster Si by the greedy choice of
a maximum clique. We partition the vertices of each cluster Si ∈ S(H) with respect to
(A,B). In particular, for every 1 ≤ i ≤ k, we define Ai = Si ∩ A and Bi = Si ∩ B. Due
to the construction of H, in which NC(B) = A, notice that all sets Bi are non-empty,
whereas a set Ai may be empty. We prove the following claim.

Claim 5.4.13. Let S(H) = (S1, . . . , Sk) be a greedy-optimal solution of the threshold-
like graph H. For every Si = (Ai,Bi), 1 ≤ i ≤ k, the following hold:

1. Bi constitutes a class of true twins.

99

Chapter 5 5.4. Cluster Deletion on starlike graphs

2. For every i < j ≤ k with Sj = (Aj,Bj), we have |Ai| + |Bi| ≥ |W| + |Bj|, where
W = (Ai ∪ · · · ∪ Ak) ∩ NH(Bj).

3. Removing all edges with one endpoint in Ai and the other endpoint in Bj, for j ̸= i,
results in a stable-like graph.

Proof: Let C(H) = A1 ∪ · · · ∪ Ak and I(H) = B1 ∪ · · · ∪ Bk. For the first statement,
observe that every pair of adjacent vertices in I(H) are true twins since H is a starlike
graph. Thus, by Lemma 5.2.2, every set Bi constitutes a class of true twins.

For the second statement, letH′ be the graph obtained fromH by removing the ver-
tices of (A1,B1), . . . , (Ai−1,Bi−1). As (Ai,Bi) is a maximum clique inH′ by the greedy
choice for Si, |Ai|+ |Bi| is greater or equal than the size of any other (maximal) clique
in H′. Any maximal clique containing Bj in H′, consists of Bj together with adjacent
vertices of Ai ∪ · · · ∪ Ak. Therefore the second statement follows.

For the third statement we consider the graph H′′ with vertex set C(H) ∪ I(H) and
edge set formed by making C(H) and each (Ai,Bi) a clique, for 1 ≤ i ≤ k. In order
to show that H′′ is a stable-like graph, observe that every pair of adjacent vertices in
I(H) are true twins since they belong to the same set Bi. Thus H′′ is a starlike graph.
To conclude, we need to prove that for any two vertices x, y of I(H) either NC(H)(x) ∩
NC(H)(y) = ∅ or NC(H)(x) = NC(H)(y). If x, y ∈ Bi then NC(H)(x) = NC(H)(y) = Ai
by construction, and if x ∈ Bi and y ∈ Bj then NC(H)(x) = Ai and NC(H)(y) = Aj so
that Ai ∩ Aj = ∅. Therefore, H′′ is indeed a stable-like graph. ♢

Next we show that there is an optimal solution for G that respects the internal clus-
ters of a greedy-optimal solution of H. That is, every cluster (Ai,Bi) in H remains a
cluster in G, or is split into two clusters Ai ∪ Z and Bi where Z is a set of vertices of C.

Claim 5.4.14. Let S(H) = (S1, . . . , Sk) be a greedy-optimal solution of H and let Si =
(Ai,Bi) be a cluster of S(H), 1 ≤ i ≤ k. There is an optimal solution S(G) of G such that
either Ai ∪ Bi ∈ S(G), or Ai ∪ Y,Bi ∈ S(G), where Y ⊆ C.

Proof: Let (C, I) be the partition of the vertices of G into a clique C and a union of
cliques I. Let also C(H) = A1 ∪ · · · ∪ Ak and I(H) = B1 ∪ · · · ∪ Bk. Recall that
every vertex of Bi is non-adjacent to any vertex of G − H, whereas every vertex of Ai
is adjacent to every vertex of C. Thus for any vertex z ∈ V(G) \ V(H) we know that
the vertices {z}∪Ai∪Bi do not induce a clique inG. If there is no cluster of S(G) that
contains vertices of both G − H and H, then every cluster (Ai,Bi) of H is a cluster of
G, since S(H) is an optimal solution of H. In what follows, we assume that a set Z of
vertices of G − H together with a set X of vertices of H constitutes a cluster in S(G).
It is clear Z ⊆ C \ C(H) and X ⊆ C(H). Observe also that all the vertices of Z are
adjacent to every vertex of C(H) = A1 ∪ · · · ∪ Ak and non-adjacent to any vertex of

100

Chapter 5 5.4. Cluster Deletion on starlike graphs

I(H) = B1 ∪ · · · ∪ Bk by Lemma 5.4.11. First we claim that there is no cluster Z′ ∪ X′

in S(G) with Z′ ⊆ C \ (V(H) ∪ Z) and X′ ⊆ C(H) \ X. To see this, notice that all the
vertices of Z are (Z′ ∪X′)-compatible and all the vertices of Z′ are (Z∪X)-compatible
which by Lemma 5.2.4 is not possible.

We consider the graph F = G[Z∪V(H)]. It is not difficult to see that F is a threshold-
like graph, sinceH is a threshold-like graph and all the vertices of Z are adjacent to ev-
ery vertex ofC(H) and non-adjacent to any vertex of I(H). In particular, (C(H), I(H)∪
Z) is a partition of the vertices of Fwhere the vertices of Z are true twins. Let Sℓ be the
cluster of S(H)with the smallest 1 ≤ ℓ ≤ k such that |Aℓ|+|Bℓ| < |Z|+|Aℓ|+· · ·+|Ak|.
We show that there is a greedy-optimal solution (S′1, . . . , S′k+1) of F such that:

• S′i = Si, for every 1 ≤ i ≤ ℓ− 1,

• S′ℓ = (Aℓ ∪ · · · ∪ Ak,Z), and

• S′j+1 = (∅,Bj), for every ℓ ≤ j ≤ k.

For this, observe that for any Si, 1 ≤ i ≤ ℓ − 1, we have |Ai| + |Bi| ≥ |Z| + |Ai| +
· · · + |Ak| by the choice of Sℓ. Thus, by Claim 5.4.13 (2), Si is a maximum clique of
F − (S1 ∪ · · · ∪ Si−1), so that S′i = Si. Due to the greedy choice and Claim 5.4.13 (2),
we know that the described S′ℓ is the maximum clique of F − (S1 ∪ · · · ∪ Sℓ−1). Thus
S′ℓ is indeed a cluster of a greedy-optimal solution of F. Moreover all vertices of Bj,
ℓ ≤ j ≤ k, form true twins by Claim 5.4.13 (1). Since the vertices of each Bj have no
neighbors in F− (S′1 ∪ · · · ∪ S′ℓ ∪Bj), every Bj constitutes a cluster. Therefore there is a
greedy-optimal solution of F with the claimed properties. As the clusters in F remain
clusters in G, we conclude the claim. ♢

Let us now describe the remaining steps of our algorithm. Assume that every graph
Gi is an induced threshold-like subgraph of G as given in Lemma 5.4.11.

1. For every Gi, compute a greedy-optimal solution S(Gi) = (Si1, . . . , Siki).

2. Construct the graph G′ from G by removing all edges among the vertices of Sip
and Siq, for every Gi and 1 ≤ p, q ≤ ki with p ̸= q.

3. Run the algorithm described in Theorem 5.4.7 on G′ and return the obtained
solution.

For the correctness, observe that Claim 5.4.13 (3) shows that every induced sub-
graph of G′ on the vertices of V(Gi) is indeed a stable-like graph. Since the vertices
of each set Ii and Ij of Gi and Gj, respectively, have no common neighbor in G′, we
conclude that G′ is indeed a stable-like graph. Moreover Claim 5.4.14 implies that the

101

Chapter 5 5.4. Cluster Deletion on starlike graphs

constructed solution is an optimal solution of G, as required. Regarding the running
time, observe that a greedy-optimal solution on each P4-free graph Gi can be com-
puted in O(n2

i) time where ni = |V(Gi)| [50, 87]. The removal of the described edges
and the algorithm given in Theorem 5.4.7 takes linear time. Therefore the total run-
ning of the algorithm is O(n2).

102

CHAPTER6
Parameterized Aspects of
Strong Subgraph Closure

In this chapter, motivated by the role of triadic closures in social networks, and the
importance of finding a maximum subgraph avoiding a fixed pattern, we introduce
and initiate the parameterized study of the Strong F-closure problem, where F is a
fixed graph. This is a generalization of MaxSTC, whereas it is a relaxation of F-free
EdgeDeletion.We study StrongF-closure fromaparameterized perspectivewith
various natural parameterizations. Our main focus is on the number k of strong edges
as the parameter. We show that the problem is FPT with this parameterization for ev-
ery fixed graph F, whereas it does not admit a polynomial kernel even when F = P3.
In fact, this latter case is equivalent to the MaxSTC problem, which motivates us to
study this problem on input graphs belonging to well known graph classes. We show
that MaxSTC does not admit a polynomial kernel even when the input graph is a
split graph, whereas it admits a polynomial kernel when the input graph is planar, and
even d-degenerate. Furthermore, on graphs of maximum degree at most 4, we show
thatMaxSTC is FPTwith the above guarantee parameterization k−μ(G), where μ(G)
is the maximum matching size of G. We conclude with some results on the parame-
terization of Strong F-closure by the number of edges of G that are not selected as
strong.
The results of this chapter have led to the following publications [55, 56]:

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima andCharis Papadopou-
los. 16th Scandinavian Symposium andWorkshops on AlgorithmTheory, (SWAT
2018), Malmo, Sweden, 2018. Leibniz-Zentrum fur Informatik, LIPIcs 101: 23(1)-
23(13), 2018.

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima, andCharis Papadopou-
los. Algorithmica 82: 2006-2038, 2020.

103

Chapter 6 6.1. Introdution

6.1 Introdution

Graph modification problems are at the heart of parameterized algorithms. In par-
ticular, the problem of deleting as few edges as possible from a graph so that the re-
maining graph satisfies a given property has been studied extensively from the view-
point of both classical and parameterized complexity for the last four decades [38, 30,
125]. For a fixed graph F, a graph G is said to be F-free if G has no induced subgraph
isomorphic to F. The F-Free Edge Deletion problem asks for the removal of a min-
imum number of edges from an input graph G so that the remaining graph is F-free.
Here, we introduce a relaxation of this problem, which we call Strong F-closure.
Our problem is also a generalization of the MaxSTC problem, which asks to select as
many edges as possible of a graph as strong, so that whenever two strong edges uv and
vw share a common endpoint v, the edge uw is also present in the input graph (not
necessarily strong). This problem is well studied in the area of social networks [5, 41],
and its classical computational complexity has been studied recently on general graphs
[118].

In the Strong F-closure problem, we have a fixed graph F, and we are given an
input graph G, together with an integer k. The task is to decide whether we can select
at least k edges ofG and mark them as strong, in the following way: whenever the sub-
graph of G spanned by the strong edges contains an induced subgraph isomorphic to
F, then the corresponding induced subgraph ofG on the same vertex subset is not iso-
morphic to F. The remaining edges of G that are not selected as strong, will be called
weak. Consequently, whenever a subset S of the strong edges form a copy of F, there
must be an additional strong or weak edge in G with endpoints among the endpoints
of edges in S. A formal definition of the problem is easier to give via spanning sub-
graphs. If two graphsH and F are isomorphic then we writeH ≃ F, and if they are not
isomorphic then we write H ̸≃ F. Given a graph G and a fixed graph F, we say that a
(not necessarily induced) subgraphH ofG satisfies the F-closure if, for every S ⊆ V(H)
withH[S] ≃ F, we have that G[S] ̸≃ F. In this case, the edges ofH form exactly the set
of strong edges of G.

Strong F-closure
Input: A graph G and a nonnegative integer k.
Task: Decide whetherG has a spanning subgraphH that satisfies the F-closure,

such that |E(H)| ≥ k.

Based on this definition and the above explanation, the terms ”marking an edge as
weak (in G)” and ”removing an edge (of G to obtain H)” are equivalent, and we will
use them interchangeably. An induced path on three vertices is denoted by P3. Re-
lating Strong F-closure to the already mentioned problems, observe that Strong

104

Chapter 6 6.1. Introdution

G,F = P3 P3-free Edge Deletion(G) Strong P3-Closure(G)

G,F = C4 C4-free Edge Deletion(G) Strong C4-Closure(G)

strong
E(H)

E(G)− E(H)
weak

Figure 6.1: Two examples where the optimal solution of Strong F-closure is sightly
larger than the optimal solution of H-free Edge Deletion.

P3-closure is exactly MaxSTC. Observe also that a solution for F-free Edge Dele-
tion is a solution for Strong F-closure, since the removed edges in the first problem
can simply be taken as the weak edges in the second problem. However it is important
to note that the reverse is not always true. For instance, consider the square of a chord-
less cycle on seven vertices, denoted by C2

7 (i.e., the graph obtained from C7 by adding
edges between vertices that are in distance two in C7). An optimal solution for the P3-
free Edge Deletion consists of two vertex-disjoint triangles and a singleton vertex
spanned by 6 edges. For the Strong P3-closure, an optimal solution is spanned by
the 7 edges of the C7. Such observations arise from the fact that any edge removal of
a P3 in C2

7 results in a new P3 which needs to be handled for the P3-free Edge Dele-
tion, whereas for the Strong P3-closure we cannot create new forbidden structure
by the removal of edges. Figure 6.1 shows the above instance of the square of a chord-
less cycle on seven vertices as well as another instance where F = C4 and the optimal
solution of Strong C4-closure is larger than the optimal solution of C4-free Edge
Deletion.

All of the mentioned problems are known to be NP-hard. The parameterized com-
plexity of F-free Edge Deletion has been studied extensively when parameterized
by ℓ, the number of removed edges. With this parameter, the problem is fixed param-
eter tractable (FPT) if F is of constant size [16], whereas it becomes W[1]-hard when
parameterized by the size of F even for ℓ = 0 [81].Moreover, there exists a small graph
F on seven vertices for which F-free Edge Deletion does not admit a polynomial
kernel [92] when the problem is parameterized by ℓ. In Table 6.1 we summarize the
parameterized complexity of F-free Edge Deletion. To our knowledge, MaxSTC
has not been studied with respect to parameterized complexity before our work.

105

Chapter 6 6.1. Introdution

We study the parameterized complexity of Strong F-closure with three different
natural parameters: the number of strong edges, the number of strong edges above
guarantee (maximum matching size), and the number of weak edges. In follow we
explain the content of every section.

• In Section 6.3, we show that Strong F-closure is FPT when parameterized by
k = |E(H)| for a fixed F. Moreover, we prove that the problem is FPT even when
we allow the size of F to be a parameter, that is, if we parameterize the problem
by k + |V(F)|, except if F has at most one edge. In the latter case Strong F-
closure is co-W[1]-hard when parameterized by |V(F)| even if k ≤ 1. We also
observe that Strong F-closure parameterized by k+ |V(F)| admits a polyno-
mial kernel if F has a component with at least three vertices and the input graph
is restricted to be d-degenerate.

• In Section 6.4, we focus on the case F = P3, that is, we investigate the parame-
terized complexity ofMaxSTC.We complement the FPT results of the previous
section by proving that MaxSTC does not admit a polynomial kernel even on
split graphs unless NP ⊆ coNP/ poly. It is straightforward to see that if F has
a connected component on at least three vertices, then a matching in G gives
a feasible solution for Strong F-closure. Thus the maximum matching size
μ(G) provides a lower bound for the maximum number of edges of H. Conse-
quently, parameterization above this lower bound becomes interesting. Moti-
vated by this, we study Strong F-closure parameterized by |E(H)| − μ(G). It
is known that MaxSTC can be solved in polynomial time on subcubic graphs,
but it is NP-complete on graphs of maximum degree at most d for every d ≥ 4
[86]. As a first step in the investigation of the parameterization above lower
bound, we show that MaxSTC is FPT on graphs of maximum degree at most 4,
parameterized by |E(H)| − μ(G).

• Finally, in Section 6.5, we consider Strong F-closure parameterized by ℓ =
|E(G)|−|E(H)|, that is, by the number of weak edges.We show that the problem
is FPT and admits a polynomial generalized kernel if F is a fixed graph. Notice
that, contrary to the parameterization by k + |V(F)|, we cannot hope for FPT
results when the problem is parameterized by ℓ+ |V(F)|. This is because, when
ℓ = 0, Strong F-closure is equivalent to asking whether G is F-free, which is
equivalent to solving Induced Subgraph Isomorphism that is well known to
beW[1]-hard [39, 81].We also state some additional results and open problems.
Our findings are summarized in Table 6.2.

Independently from our work, Grüttemeier and Komusiewicz [62] very recently
studied MaxSTC and showed that the problem parameterized by |E(H)| = k, the

106

Chapter 6 6.2. Preliminaries

Parameter Restriction Parameterized Reference
Complexity

|E(H)|+ |V(F)| |E(F)| ≤ 1 W[1]-hard [81]

|E(G)| − |E(H)| None FPT [16]
no polynomial kernel [92]

Table 6.1: Summary of known results: parameterized complexity analysis of F-free
Edge Deletion.

number of strong edges, is fixed-parameter tractable but has no polynomial kernel
unless NP ⊆ coNP/ poly. Also, they showed that MaxSTC parameterized by ℓ =
|E(G)| − |E(H)|, the number of weak edges, admits a linear kernel.

Parameter Restriction Parameterized Result
Complexity

|E(H)|+ |V(F)|

|E(F)| ≤ 1 co-W[1]-hard Propositions 6.3.2, 6.3.3
|E(F)| ≥ 2 FPT Theorem 6.3.8
F has a component with ≥ 3 polynomial kernel Proposition 6.3.10vertices, G is d-degenerate

|E(H)| F has no isolated vertices FPT Corollary 6.3.9
F = P3, G is split no polynomial kernel Theorem 6.4.1

|E(H)| − μ(G) F = P3, Δ(G) ≤ 4 FPT Theorem 6.4.9
F = K1,t, t ≥ 3 FPT Theorem 6.5.6

|E(G)| − |E(H)| None
FPT Theorem 6.5.1
polynomial generalized Theorem 6.5.2
kernel

Table 6.2: Summary of our results: parameterized complexity analysis of Strong F-
closure.

6.2 Preliminaries

Let us give a couple of observations on the nature of our problem. An F-graph of a
subgraph H of G is an induced subgraph H[S] ≃ F such that G[S] ≃ F. Clearly, if H is
a solution for Strong F-closure on G, then there is no F-graph in H, even though
H might have induced subgraphs isomorphic to F. For F-free Edge Deletion, note
that the removal of an edge that belongs to a forbidden subgraph might generate a
new forbidden subgraph. However, for Strong F-closure problem, it is not difficult
to see that the removal of an edge that belongs to an F-graph cannot create a new

107

Chapter 6 6.3. Parameterized complexity of Strong F-closure

critical subgraph.

Observation 6.2.1. Let G be a graph, and let H andH′ be spanning subgraphs of G such
that E(H′) ⊆ E(H). If H satisfies the F-closure for some F, then H′ satisfies the F-closure.

In particular, Observation 6.2.1 immediately implies that if an instance of Strong
F-closure has a solution, it has a solution with exactly k edges.

6.3 Parameterized complexity of Strong F-closure

In this section we give a series of lemmata, which together lead to the conclusion
that Strong F-closure is FPT when parameterized by k = |E(H)|. Observe that in
our definition of the problem, F is a fixed graph of constant size. However, the results
of this section allow us to also take the size of F as a parameter, making the results
more general. We start by making some observations that will rule out some simple
types of graphs as F.

Observation 6.3.1. Let p be a positive integer. A graph G has a spanning subgraph H
satisfying the pK1-closure if and only if G is pK1-free, and if G is pK1-free, then every
spanning subgraph H of G satisfies the pK1-closure.

Recall that the Independent Set problem asks, given a graph G and a positive
integer k, whether G has an independent set of size at least k. By combining Obser-
vation 6.3.1 and the well known result that Independent Set is W[1]-hard when pa-
rameterized by the size of the independent set [39], we obtain the following:

Proposition 6.3.2. For a positive integer p, Strong pK1-closure can be solved in time
nO(p), and it is co-W[1]-hard for k ≥ 0 when parameterized by p.

Using Proposition 6.3.2, we assume throughout the remaining parts of the paper
that every considered graph F has at least one edge. We have another special case F =
pK1 + K2.

Proposition 6.3.3. For a nonnegative integer p, Strong (pK1 + K2)-closure can be
solved in time nO(p), and it is co-W[1]-hard for k ≥ 1 when parameterized by p.

Proof. Let F = pK1+K2. If p = 0, then (G, k) is a yes-instance of Strong F-closure
if and only if k = 0. Assume that p ≥ 1. Let H be a spanning subgraph of G. Notice
that H satisfies the F-closure if and only if for every edge uv of H, G − N[{u, v}] has
no independent set of size p.

108

Chapter 6 6.3. Parameterized complexity of Strong F-closure

This observation implies that to find a spanning subgraph H of G satisfying the
F-closure, we can use the following procedure: for every edge uv ∈ E(G), we check
whether G − N[{u, v}] has an independent set with p vertices, and then if this holds,
we discard uv, and we include uv in the set of edges of H otherwise. Clearly, it can be
done in time nO(p).

To show hardness, we reduce Independent Set. For simplicity, we prove the claim
for k = 1. Let (G, p) be an instance of Independent Set. LetQ be the graph obtained
from two copies of the star K1,p by making their central vertices u and v adjacent.
We define G′ = G + Q. We claim that G′ has a spanning subgraph H satisfying the
F-closure that has exactly one edge if and only if G has no independent set with p
vertices. Suppose that G has no independent set with p vertices. Then the spanning
subgraph H of G′ with E(H) = {uv} satisfies the F-closure. Assume now that H is a
spanning subgraph of G′ with E(H) = {xy}. We show that xy = uv. Suppose this is
not the case. If u (resp. v) is not an endpoint of xy, then G′ − N[{x, y}] contains an
independent set of size at least p, namely the one formed by the p vertices of degree
one adjacent to u (resp. v) in G′. This contradicts the property that H satisfies the F-
closure. Hence, xy = uv. Then G = G′ − N[{u, v}] has no independent set with p
vertices. By Observation 6.2.1, we have that (G, p) is a no-instance of Independent
Set if and only if (G′, k) is a yes-instance of Strong F-closure.

From now on we assume that F ̸= pK1 and F ̸= pK1 + K2. We show that Strong
F-closure is FPT when parameterized by k and |V(F)| in this case. We will consider
separately the case when F has a connected component with at least 3 vertices and the
case F = pK1 + qK2 for p ≥ 0 and q ≥ 2.

Lemma 6.3.4. Let F be a graph that has a connected component with at least 3 vertices.
Then Strong F-closure can be solved in time 2O(k2)(|V(F)|+ k)O(k) + nO(1).

Proof. We show the claim by proving that the problem has a kernel with at most
22k−2(|V(F)|+ k) + 2k− 2 vertices. Let (G, k) be an instance of Strong F-closure.
We recursively apply the following reduction rule in G:

Rule 6.3.4.1. If there are at least |V(F)| + k + 1 false twins in G, then remove one of
them.

To show that the rule is sound, let v1, . . . , vp be false twins ofG for p = |V(F)|+k+1
and assume that G′ is obtained from G by deleting vp. We claim that (G, k) is a yes-
instance of Strong F-closure if and only if (G′, k) is a yes-instance.

Let (G, k) be a yes-instance. By Observation 6.2.1, there is a solution H for (G, k)
such that |E(H)| = k. Since |E(H)| = k, there is i ∈ {1, . . . , p} such that vi is an
isolated vertex of H. Since v1, . . . , vp are false twins we can assume without loss of

109

Chapter 6 6.3. Parameterized complexity of Strong F-closure

generality that i = p. Then H′ = H − vp is a solution for (G′, k), that is, this is a
yes-instance. Assume that (G′, k) is a yes-instance of Strong F-closure. Let H′ be
a solution for the instance with k edges. Denote by H the spanning subgraph of G
with E(H) = E(H′). We show that H satisfies the F-closure with respect to G. To
obtain a contradiction, assume that there is a set of vertices S of G such that H[S] ≃ F
and G[S] ≃ F. Since H′ satisfies the F-closure with respect to G, S * V(H′). Thus,
vp ∈ S. Note that vp is an isolated vertex of H. Because p = |V(F)| + k + 1, there
is i ∈ {1, . . . , p − 1} such that vi is an isolated vertex of H and vi /∈ S. Let S′ =
(S \ {vp}) ∪ {vi}. Since vi and vp are false twins, H[S′] = H′[S′] ≃ F and G[S′] ≃ F; a
contradiction. Therefore, we conclude that H satisfies the F-closure with respect to G,
that is, H is a solution for (G, k).

It is straightforward to see that the rule can be applied in polynomial time. To sim-
plify notations, assume that (G, k) is the instance of Strong F-closure obtained
by the exhaustive application of Rule 6.3.4.1. We greedily find an inclusion maximal
matching M in G. Notice that the spanning subgraph H of G with E(H) = M sat-
isfies the F-closure because every component of H has at most two vertices and by
the assumption of the lemma F has a component with at least 3 vertices. Therefore, if
|M| ≥ k, we have that H is a solution for the instance. Respectively, we return H and
stop.

Assume that |M| ≤ k− 1. Let X be the set of end-vertices of the edges ofM. Clearly,
|X| ≤ 2k − 2 and X is a vertex cover of G. Let Y = V(G) \ X. We have that Y is an
independent set, since M is an inclusion-wise maximal matching. Every vertex in Y
has its neighbors inX. Hence, there are at most 2|X| vertices of Ywith pairwise distinct
neighborhoods. Hence, the vertices of Y can be partitioned into at most 2|X| classes of
false twins. After applying Rule 6.3.4.1, each class of false twins has at most |V(F)|+ k
vertices. It follows that |Y| ≤ 2|X|(|V(F)|+ k) and

|V(G)| = |X|+ |Y| ≤ |X|+ 2|X|(|V(F)|+ k) ≤ (2k− 2) + 22k−2(|V(F)|+ k).

Now we can find a solution for (G, k) by brute force checking all subsets of edges
of size k by Observation 6.2.1. This can be done it time |V(G)|O(k). Hence, the total
running time is 2O(k2)(|V(F)|+ k)O(k) + nO(1).

Nowwe consider the case F = pK1+qK2 for p ≥ 0 and q ≥ 2. First, we explain how
to solve Strong qK2-closure for q ≥ 2.We use the random separation technique pro-
posed by Cai, Chen and Chan [18] (see also [30]). To avoid dealing with randomized
algorithms and subsequent standard derandomization we use the following lemma
stated in [22].

Lemma6.3.5 ([22]). Given a setU of size n and integers 0 ≤ a, b ≤ n, one can construct
in time 2O(min{a,b} log(a+b)) · n log n a family S of at most 2O(min{a,b} log(a+b)) · log n

110

Chapter 6 6.3. Parameterized complexity of Strong F-closure

subsets of U such that the following holds: for any sets A,B ⊆ U, A ∩ B = ∅, |A| ≤ a,
|B| ≤ b, there exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

Lemma 6.3.6. For q ≥ 2, Strong qK2-closure can be solved in time 2O(k log k) · nO(1).

Proof. Let (G, k) be an instance of Strong qK2-closure. If k < q, then every span-
ning subgraphH ofGwith k edges satisfies theF-closure, that is, (G, k) is a yes-instance
of Strong F-closure if k ≤ |E(G)|. Assume from now that q ≤ k.

Suppose that G has a vertex v of degree at least k. Let X be the set of edges of G
incident to v and consider the spanning subgraph H of G with E(H) = X. Since F =
qK2 and q ≥ 2, H satisfies the F-closure. Hence, H is a solution for (G, k). We assume
that this is not the case and Δ(G) ≤ k− 1.

Suppose that (G, k) is a yes-instance. Then by Observation 6.2.1, there is a solution
H with exactly k edges. Let A = E(H) and denote by X the set of end-vertices of the
edges ofA. Denote by B the set of edges of E(G)\A that have at least one end-vertex in
N[X]. Clearly,A∩B = ∅.Wehave that |A| = k and because themaximumdegree ofG is
atmost k−1, |B| ≤ 2k(k−1)(k−2). Applying Lemma 6.3.5 for the universeU = E(G),
a = k and b = 2k(k − 1)(k − 2), we construct in time 2O(k log k) · nO(1) a family S of
at most 2O(k log k) · log n subsets of E(G) such that there exists a set S ∈ S with A ⊆ S
and B∩ S = ∅. For every S ∈ S , we find (if it exists) a spanning subgraphH of G with
k edges such that (i) E(H) ⊆ S and (ii) for every e1, e2 ∈ S that are adjacent or have
adjacent end-vertices, it holds that either e1, e2 ∈ E(H) or e1, e2 /∈ E(H). Property (ii)
ensures that the set of edges of S \ E(H) do not belong to B. By Lemma 6.3.5, we have
that if (G, k) is a yes-instance of Strong F-closure, then it has a solution satisfying
(i) and (ii). Hence, if we find a solution for some S ∈ S , we return it and stop and,
otherwise, if there is no solution satisfying (i) and (ii) for some S ∈ S , we conclude
that (G, k) is a no-instance.

Assume that S ∈ S is given. We describe the algorithm for finding a solution H
with k edges satisfying (i) and (ii). Let R be the set of end-vertices of the edges of S.
Consider the graphG[R] and denote by C1, . . . ,Cr its components. Let Ai = E(Ci)∩ S
for i ∈ {1, . . . , r}.

Observe that if H is a solution with k edges satisfying (i) and (ii), then for each
i ∈ {1, . . . , r}, either Ai ⊆ E(H) or Ai ∩ E(H) = ∅. It means that we are looking for
a solution H such that E(H) is union of some sets Ai, that is, E(H) = ∪i∈IAi for I ⊆
{1, . . . , r}. Let ci = |Ai| for i ∈ {1, . . . , r}. Clearly, we should have that

∑
i∈I ci = k.

In particular, it means that if |Ai| > k, then the edges of Ai are not in any solution.
Therefore, we discard such sets and assume from now that |Ai| ≤ k for i ∈ {1, . . . , r}.
For i ∈ {1, . . . , r}, denote by wi the maximum number of edges in Ai that form an
induced matching in Ci. Since each |Ai| ≤ k, the values ofwi can be computed in time

111

Chapter 6 6.3. Parameterized complexity of Strong F-closure

2k ·nO(1) by brute force. Observe that for distinct i, j ∈ {1, . . . , r}, the vertices ofCi and
Cj are at distance at least two in G and, therefore, the end-vertices of edges of Ai and
Aj are not adjacent. It follows, that the problem of finding a solution H is equivalent
to the following problem: find I ⊆ {1, . . . , r} such that

∑
i∈I ci = k and

∑
i∈I wi ≤ q.

It is easy to see that we obtain an instance of a variant of the well known Knapsack
problem (see, e.g., [82]); the only difference is that we demand

∑
i∈I ci = k instead of∑

i∈I ci ≥ k as in the standard version. This problem can be solved by the standard
dynamic programming algorithm (again see, e.g., [82]) in time O(kn).

Since the familyS is constructed in time 2O(k log k) ·nO(1) andwe consider 2O(k log k) ·
log n sets S, we obtain that the total running time is 2O(k log k) · nO(1).

We use Lemma 6.3.6 to solve Strong (pK1 + qK2)-closure.

Lemma 6.3.7. For p ≥ 0 and q ≥ 2, Strong (pK1 + qK2)-closure can be solved in
time 2O((k+p) log(k+p)) · nO(1).

Proof. Let F = pK1 + qK2. If p = 0, we can apply Lemma 6.3.6 directly. Assume that
p ≥ 1. Let (G, k) be an instance of Strong F-closure. If k < q, then every spanning
subgraph H of G with k edges satisfies the F-closure, that is, (G, k) is a yes-instance of
Strong F-closure if k ≤ |E(G)|. Assume from now that q ≤ k.

Suppose thatG has a vertex v of degree at least k. Then we argue in exactly the same
way as in the proof of Lemma 6.3.6. We consider the set of edges X incident to v and
define H be the spanning subgraph of G with E(H) = X. Since q ≥ 2, H satisfies the
F-closure and we have thatH is a solution for (G, k). We assume from now that this is
not the case and Δ(G) ≤ k− 1.

Suppose that |V(G)| < 2k(k− 1)+ pk. In this case we solve Strong F-closure by
brute force trying all possible subsets X of k edges and checking whether the spanning
subgraph H with E(H) = X is a solution. By Observation 6.2.1, it is sufficient to solve
the problem. To check whether H is a solution, we have to verify whether H satisfies
the F-closure. We do it by brute force in time nO(|V(F)|). Since n ≤ 2k(k− 1) + pk and
|V(F)| = p+2q ≤ p+2k, this can be done in time 2O((k+p) log(k+p)). Since the number
of sets X is 2O((k+p) log(k+p)), the total running time is 2O((k+p) log(k+p)).

Assume now that |V(G)| ≥ 2k(k− 1) + pk.
We claim that in this case a spanning subgraphH ofG satisfies the pK1+qK2-closure

if and only if H satisfies the qK2-closure. It is straightforward to see that if H satisfies
the qK2-closure, thenH satisfies the pK1+qK2-closure. Suppose thatH does not satisfy
the qK2-closure.Then there is S ⊆ V(G) of size 2q such thatG[S] = H[S] is a matching
with q edges. LetX = V(G)\N[S]. SinceΔ(G) ≤ k−1, |N[S]| ≤ 2k(k−1) and, therefore,
|X| ≥ pk. It implies that G[X] has an independent set S′ of size at least p because the

112

Chapter 6 6.3. Parameterized complexity of Strong F-closure

maximum degree is bounded by k−1.We have thatG[S∪S′] = H[S∪S′] ≃ pK1+qK2.
It means that H does not satisfy the pK1 + qK2-closure.

By the proved claim, we have to solve Strong qK2-closure and this can be done
in time 2O(k log k) · nO(1) by Lemma 6.3.6.

Combining Lemmata 6.3.4, 6.3.6, and 6.3.7, we obtain the following theorem.

Theorem 6.3.8. If F ̸= pK1 for p ≥ 1 and F ̸= pK1 + K2 for p ≥ 0, then Strong
F-closure is FPT when parameterized by |V(F)|+ k.

Notice that if |E(F)| > k, then (G, k) is a yes-instance of Strong F-closure. This
immediately implies the following corollary.

Corollary 6.3.9. If F has no isolated vertices, then Strong F-closure is FPT when
parameterized by k, even when F is given as a part of the input.

We conclude this section with a kernel result. It can be observed that if the input
graphG is restricted to be a graph from a sparse graph class and is closed under taking
subgraphs, then the kernel constructed in Lemma 6.3.4 becomes polynomial in some
cases. We demonstrate this for d-degenerate graphs ¹.

Proposition6.3.10. If F has a connected componentwith at least 3 vertices, then Strong
F-closure has a kernel with kO(d)d(|V(F)|+ k) vertices on d-degenerate graphs.

Proof. Let (G, k) be an instance of Strong F-closure and G is d-degenerate. First,
we exhaustively apply Rule 6.3.4.1. To simplify notations, assume that (G, k) is the
obtained instance.Thenwe find an inclusionmaximalmatchingM inG. If |M| ≥ k, we
have that H is a solution for the instance. Respectively, we return H and stop. Assume
that this is not the case, that is, |M| ≤ k − 1. Let X be the set of end-vertices of the
edges of M. Clearly, |X| ≤ 2k− 2 and X is a vertex cover of G. Let Y = V(G) \ X. We
have that Y is an independent set.

Observe that if Y contains at least
(|X|
d+1

)
d + 1 vertices of degree at least d + 1,

then G contains the complete bipartite graph Kd+1,d+1 as a subgraph contradicting
d-degeneracy. We conclude that Y contains d · kO(d) vertices of degree at least d + 1.
The number of vertices of degree at most d with pairwise distinct neighborhoods is
kO(d). This immediately implies that G has kO(d)d(|V(F)|+ k) vertices.

In particular, we have a polynomial kernel when F = P3. Similar results can be
obtained for some classes of dense graphs. For example, ifG is dK1-free, thenV(G)\X
has at most d− 1 vertices and we obtain a kernel with 2k+ d− 3 vertices.

¹NP-completeness result for F = P3 restricted to planar graphs (and, thus, 5-degenerate graphs) is
given in Section 6.5.

113

Chapter 6 6.4. Parameterized complexity of MaxSTC

6.4 Parameterized complexity of MaxSTC

In this section we study the parameterized complexity of Strong P3-closure,
which is more famously known as MaxSTC.

Note thatMaxSTC is FPT and admits an algorithmwith running time 2O(k2) ·nO(1)

by Lemma 6.3.4. We complement this result by showing that MaxSTC does not admit
a polynomial kernel, even when the input graph is a split graph. A graph is a split graph
if its vertex set can be partitioned into an independent set and a clique. MaxSTC is
known to be NP-hard on split graphs (Theorem 3.3.4).

Theorem 6.4.1. MaxSTC has no polynomial compression unless NP ⊆ coNP/ poly,
even when the input graph is a split graph.

Proof. The reduction comes from the Set Packing problem: given a universe U of
t elements and subsets B1, . . . ,Bp of U decide whether there are at least k subsets
which are pairwise disjoint. Set Packing (also known as Rank Disjoint Set prob-
lem), parameterized by |U|, does not admit a polynomial compression unless NP ⊆
coNP/ poly [35]. Clearly, it can be assumed that k ≤ t as, otherwise, we have a trivial
no-instance. Given an instance (U ,B1, . . . ,Bp, k) for the Set Packing, we construct a
split graph G with a clique U ∪ Y and an independent set W ∪ X as follows:

• The vertices of U correspond to the elements of U .

• For every Bi there is a vertex wi ∈ W that is adjacent to all the vertices of (U ∪
Y) \ Bi.

• X andY contain additional 2t verticeswithX = {x1, . . . , xt} andY = {y1, . . . , yt}
such that yi is adjacent to all the vertices of (W ∪ X) \ {xi} and xi is adjacent to
all the vertices of (U ∪ Y) \ {yi}.

Notice that the clique of G contains 2t vertices. We will show that there are at least
k pairwise disjoint sets in {B1, . . . ,Bp} if and only if there is a solution for Strong P3-
closure onGwith at least k′ = |E(U∪Y)|+ ⌈k/2⌉+ ⌊t/2⌋ edges. Since k ≤ t = |U|,
this means that k′ = O(t2) and, therefore, the existence of a polynomial compression
for MaxSTC would imply the same result for Set Packing parameterized by t.

Assume thatB′ is a family of k pairwise disjoint sets of B1, . . . ,Bp. For every B′i ∈ B′

we choose three vertices wi, yi, xi from W, Y, and X, respectively, such that xi is non-
adjacent to yi with the following strong edges: wi is strongly adjacent to yi and xi is
strongly adjacent to the vertices of B′i in U. We also make weak the edges inside the
clique between the vertices of B′i and yi. All other edges incident to wi and xi are weak.

114

Chapter 6 6.4. Parameterized complexity of MaxSTC

W

U

Y

X

B1 B2 B3

Figure 6.2: Illustrating the split graph G given in the construction in the proof of The-
orem 6.4.1, whereU∪Y is a clique andW∪X is an independent set. Given an instance
(U,B1,B2,B3, 2) for the Set Packing, the labeled edges correspond to a solution for
Strong P3-closure on G. To keep the figure clean, we only draw the strong edges
between the independent set W ∪ X and the clique U ∪ Y; the dashed edges of the
clique U∪ Y correspond to its weak edges. Notice that the dashed edges span a union
of star graphs.

Let W′,Y′,X′ be the set of vertices that are chosen from the family B′ according to
the previous description. Every vertex of W \W′ is not incident to a strong edge and,
thus, it is isolated inH. For the t−k vertices of Y\Y′ we choose a maximum matching
of ⌊ t−k

2 ⌋ edges. For each matched pair yj, yj′ we make the following edges strong: xjyj′
and xj′yj where xj and xj′ are non-adjacent to yj and yj′ , respectively. Moreover each
edge yjyj′ of the clique is weak and all other edges incident to xj and xj′ are weak. The
rest of the edges inside the cliqueU∪Y are strong. Figure 6.2 illustrates such a labeling
on the edges of G.

Let us now show that the described subgraph H satisfies the P3-closure with the
claimed number of strong edges. Observe that if there is a P3-graph in H then it must
contain a vertex of the independent set incident to a strong edge. Also notice that no
vertex of the cliqueU∪Y is strongly adjacent to more than one vertex of the indepen-
dent setW∪X. By construction for each B′i ∈ B′ the verticeswi, xi of the independent
set are incident to a strong edge. The vertices of the clique that are non-adjacent to wi
constitute B′i, and xi is non-adjacent only to vertex yi. Since all edges of E(B′i, {yi}) are
weak, both vertices wi and xi cannot induce a P3-graph. The rest of the vertices of the
independent set that are incident to at least one strong edge belong to X \ X′. Every
vertex xj of X \X′ is adjacent to all vertices of (U∪ Y) \ {yj}. For the strong edge xjyj′
there is a weak edge yjyj′ implying that xj does not participate in any P3-graph of H.
Thus for any vertex v of the independent set that is strongly adjacent to a vertex v′ of

115

Chapter 6 6.4. Parameterized complexity of MaxSTC

the clique there are weak edges between v′ and the non-neighbors of v in the clique.
Consequently there is no P3-graph in H. For the number of edges in H notice that for
every weak edge inside the cliqueU∪Y there is a uniquematched strong edge incident
to a vertex of X. Furthermore every vertex of W′ is incident to an unmatched strong
edge and each of the ⌊ |X\X

′|
2 ⌋ vertices is incident to an additional unmatched strong

edge. Hence |E(H)| = |E(U ∪ Y)|+ k+ ⌊ t−k
2 ⌋, which gives the claimed bound k′.

For the opposite direction, assume that H is a subgraph of G that satisfies the P3-
closure with at least k′ edges. For a vertex v ∈ W∪X, let S(v) be the strong neighbors of
v inH and let B(v) be the non-neighbors of v inU∪Y. Our task is to show that for any
two vertices u, v of W ∪ X with non-empty sets S(u), S(v), we have B(u) ∩ B(v) = ∅.
Since there is no P3-graph inH, it is clear that all edges of E(S(v),B(v)) are weak. Also
observe that for any two vertices u, v ∈ W ∪ X, S(u) ∩ S(v) = ∅.

A spanning subgraphH ofG that satisfies the P3-closure is called nice solution if for
any weak edge uv of the clique U ∪ Y the following property holds:

(W1) there are two vertices u′, v′ in the independent setW∪X such that u ∈ S(u′)∩
B(v′) and v ∈ S(v′) ∩ B(u′).

We first prove that every solution can be transformed into an equivalent nice solution.

Claim 6.4.2. For any spanning subgraphH of G that satisfies the P3-closure with at least
k′ edges, there is a nice solution H′ with at least k′ edges.

Proof:We assume thatH is not a nice solution. This means that there is a weak edge uv
with u, v ∈ U∪Y that does not admit property (W1). We will show that we can safely
make the edge uv strong andmaintain the same number of strong edges. If u, v /∈ S(x)
for every vertex x of W ∪ X then we can make the edge uv strong without violating
the P3-closure. Thus there is at least one vertex u′ that is strongly adjacent to u so that
u ∈ S(u′). Moreover if v ∈ S(u′) then both u and v have no other strong neighbor
in the independent set which means that we can safely make the edge uv strong. This
implies that v /∈ S(u′). Now assume that v /∈ B(u′), meaning that v is a neighbor of u′
in G but not a neighbor of u′ in H. Observe that v has at most one strong neighbor in
the independent set. If there is such a strong neighbor v′ of v in W ∪ X then we make
vv′ weak and uv strong. Such a replacement is safe, since u has exactly one strong
neighbor u′ in W ∪ X and all other strong neighbors of u or v belong to the clique.
Hence v ∈ B(u′).

Suppose next that v has no strong neighbor in the independent set.Thenwe replace
the strong edge u′u by the edge uv; such a replacement is safe since v has no strong
neighbors in the independent set and u′ is the only strong neighbor of u in the inde-
pendent set.Thus there is a strong neighbor v′ of v such that v′ ∈ W∪X. Summarizing,

116

Chapter 6 6.4. Parameterized complexity of MaxSTC

there are u′, v′ ∈ W ∪ X such that u ∈ S(u′), v ∈ S(v′), v ∈ B(u′), and by symmetry
for v′ we get u ∈ B(v′). Therefore u ∈ S(u′) ∩ B(v′) and v ∈ S(v′) ∩ B(u′). ♢

In what follows we assume that H is a nice solution. We next consider the vertices
of X from the independent set.

Claim 6.4.3. Let H be a nice solution in which no vertex of W is incident to a strong
edge. Then |E(H)| ≤ |E(U ∪ Y)|+ ⌊t/2⌋.

Proof: We first show that for every vertex xi of X, S(xi) contains at most one vertex.
Recall that B(xi) contains exactly one vertex. Assume for contradiction that S(xi) con-
tains at least two vertices. Let u, v ∈ S(xi) and let B(xi) = z. By the P3-closure, both
edges uz and vz of the clique must be weak. Then by property (W1) and Claim 6.4.2,
there is a vertex xj ∈ X such that z ∈ S(xj) and {u, v} ⊆ B(xj). This however is not
possible since by construction we know that B(xj) contains exactly one vertex. Thus
|S(xi)| ≤ 1 for every vertex xi ∈ X.

Let EW be the set of weak edges that have both their endpoints in the clique. If
there are two edges of EW incident to the same vertex u then by property (W1) and
Claim 6.4.2 the unique vertex u′ ∈ X that is strongly adjacent to u has two non-
adjacent vertices in the clique. Since every vertex of X is non-adjacent to exactly one
vertex, there are no two edges of EW incident to the same vertex. This means that the
edges of EW form amatching in E(U∪Y). Moreover property (W1) and the fact thatH
is nice solution, imply that for every edge of EW there are exactly two strong edges be-
tween the vertices of the independent set and the clique. Thus EW ⊆ E(Y) and |EW| ≤
⌊ t

2⌋, since |Y| = t. For the same reason, also observe that |S(X)| = 2|EW| where S(X)
are the strong edges with one endpoint inX.Therefore E(H) = (E(U∪Y)\EW)∪S(X)
which implies |E(H)| ≤ |E(U ∪ Y)|+ ⌊ t

2⌋. ♢
Thus by Claim 6.4.3 and the fact that a nice solution H contains k′ > |E(U ∪ Y)|+

⌊t/2⌋ edges, we know that some vertices of W are incident to strong edges in H. We
next show that these type of vertices ofWmust have disjoint non-neighborhood inG.
To do so, we consider theweak components of E(H) in the clique. Aweak component is
a connected component of the clique spanned by the weak edges, that is, by the edges
of E(G)− E(H).

LetCw be a weak component with n(Cw) its number of vertices andm(Cw) its num-
ber of weak edges. Denote by ES(Cw) the set of strong edges between Cw and W ∪ X.
By property (W1) and Claim 6.4.2, ES(Cw) is non-empty. Notice that every vertex of
Cw has exactly one strong neighbor in the independent set, since H satisfies the P3-
closure. This means that |ES(Cw)| = n(Cw). Then the number of edges in H can be

117

Chapter 6 6.4. Parameterized complexity of MaxSTC

described as follows:

|E(H)| = |E(U ∪ Y)|+
∑
Cw

(n(Cw)−m(Cw)) . (6.1)

We say that a nice solutionH is a nice sparse solution if every weak component ofH is
a tree.

Claim 6.4.4. For every nice solution H, there is a nice sparse solution H′ such that
|E(H)| = |E(H′)|.

Proof: Consider a weak component Cw of H. If we make strong all edges among the
vertices of Cw and remove the edges of ES(Cw) from H then the resulting graph H′

satisfies the P3-closure. Thus ifm(Cw) ≥ n(Cw) then we can safely ignore such a com-
ponent in the sum of |E(H)| in Equation 6.1 by replacing all its weak edges by the
strong edges of ES(Cw). This means that m(Cw) = n(Cw)− 1 because the weak edges
of Cw span a connected component. Therefore every weak component Cw is a tree in
H′. ♢

In fact wewill prove that there is a nice solution inwhich everyweak component is a
tree of height one (star graph). Before that, let us first show the following property with
respect to the nested non-neighborhood of vertices ofW∪X. For a vertex v ∈ W∪X,
observe that all edges between S(v) and B(v) are weak. Thus all vertices of S(v) belong
to the same weak component of H.

We say that a nice sparse solutionH is nice disjoint solution if for any vi, vj ∈ W∪X
with non-empty S(vi) and S(vj), we have B(vi) ̸⊆ B(vj) and B(vj) ̸⊆ B(vi).

Claim 6.4.5. For every nice sparse solution H, there is a nice disjoint solution H′ such
that |E(H)| = |E(H′)|.

Proof: By the P3-closure ofH, we know that no vertex of the clique has more than one
strong neighbor in the independent set, which implies S(vi)∩ S(vj) = ∅. Assume that
there are two vertices vi, vj in W ∪ X such that B(vi) ⊆ B(vj). This means that the
vertices of S(vi) ∪ S(vj) belong to the same weak component Cw. We show that there
is an optimal solutionH′ for which S(vj) = ∅ and |E(H′)| = |E(H)|. There is no weak
edgewith the endpoints in S(vi) and S(vj), respectively, sinceCw is a tree.Thus all edges
between the vertices of S(vi) and S(vj) are strong.Thismeans that vi is adjacent to every
vertex of S(vj). We construct H′ by replacing all strong edges incident to vj by strong
edges incident to vi. Remove all strong edges incident to vj and let S(vi)∪ S(vj) be the
strong neighbors of vi inH′. Notice that |E(H′)| = |E(H)|. Since we only added strong
edges incident to vi and B(vi) ⊆ B(vj), all edges between B(vi) and S(vi) ∪ S(vj) are
weak and, thus, H′ satisfies the P3-closure. Therefore applying the same replacement

118

Chapter 6 6.4. Parameterized complexity of MaxSTC

for every pair of vertices with nested non-neighborhood, results in an optimal solution
as desired. ♢

Claim 6.4.6. Every weak component of a nice disjoint solution H is a star graph.

Proof. Let u1, u2, . . . , ur be a path of a weak component Cw of H where u1 is a leaf
vertex of Cw. Since u1u2 is a weak edge, property (W1) implies that there is a vertex vi
in the independent set that is strongly adjacent to u1 such that B(vi) = {u2}. If Cw is
not a star then r ≥ 4. For r ≥ 4, the weak edge u3u4 implies that there is a vertex vj
in the independent set that is strongly adjacent to u3 such that {u2, u4} ⊆ B(vj). Then
we reach a contradiction since B(vi) ⊂ B(vj)which is not possible by the definition of
H. Therefore we have r ≤ 3, which implies that Cw is a tree of height one.

Claim 6.4.7. For any two vertices vi, vj ∈ W ∪ X of a nice disjoint solution H with
non-empty S(vi) and S(vj), we have B(vi) ∩ B(vj) = ∅.

Proof: Recall that S(vi) ∩ S(vj) = ∅ and notice that all edges of E(S(vi),B(vi)) and
E(S(vj),B(vj)) are weak. If the vertices of S(vi) belong to a different weak component
than the vertices of S(vj) then B(vi) and B(vj) are disjoint. Suppose that the vertices
of S(vi) and S(vj) belong to the same weak component Cw. By Claim 6.4.6, Cw is a
star graph. Let u be the non-leaf vertex of the star Cw. If both vi and vj are strongly
adjacent to leaf vertices of Cw, then B(vi) = B(vj) = {u}. Thus by the definition ofH,
vi is strongly adjacent to u so that B(vi) = V(Cw) \ {u} and vj is strongly adjacent to
all leaf vertices of Cw so that B(vj) = {u}. Consequently B(vi) and B(vj) are disjoint
sets. ♢

Claim 6.4.8. Let H be a nice disjoint solution. Then, the following hold:

(i) The number of weak components in H is at least ⌈k/2⌉+ ⌊t/2⌋.

(ii) Every vertex of W∪X has strong neighbors in at most one weak component of H.

(iii) For every weak component Cw of H, there are exactly two vertices of W ∪ X that
have strong neighbors in Cw.

Proof: LetCw be a weak component ofH. SinceH is a nice disjoint solution,Cw is a tree
whichmeansm(Cw) = n(Cw)−1. From Equation 6.1 we get |E(H′)| = |E(U∪Y)|+c,
where c is the number of weak components in H′. Thus we have c = ⌈k/2⌉+ ⌊t/2⌋.

For (ii), let v be a vertex ofW∪X that has strong neighbors in aweak componentCw.
Property (W1) implies that B(v)∩Cw ̸= ∅. This means that for any vertex v′ ∈ S(v) all
edges between v′ and B(v) are weak from the P3-closure. Thus we have S(v) ⊂ V(Cw).

119

Chapter 6 6.4. Parameterized complexity of MaxSTC

For a weak component Cw, we know that there are at least two vertices v1, v2 of
W∪X that have strong neighbors in Cw by property (W1). By Claim 6.4.6, Cw is a star
graph. Let u be the non-leaf vertex of Cw. If u /∈ S(v1) ∪ S(v2) then u ∈ B(v1) ∩ B(v2)
which is not possible by Claim 6.4.7. Without loss of generality assume that u ∈ B(v1).
Then, by property (W1) we have u ∈ S(v2). Recall that S(v) ∩ S(v′) = ∅ for any two
vertices v, v′ ∈ W ∪ X. Assume that there is a vertex v ∈ (W ∪ X) \ {v1, v2} that
is strongly adjacent to Cw. Then u /∈ S(v) and S(v) contains a non-leaf vertex of Cw.
Thus we reach a contradiction to Claim 6.4.7 because u ∈ B(v) by property (W1) and
u ∈ B(v1). Therefore the third statement follows. ♢

Now we are equipped with our necessary tools to show our claimed result. Given
a solution H of G with at least k′ edges, Claims 6.4.2, 6.4.4, and 6.4.5 imply that there
is a nice disjoint solution H′ with |E(H′)| = k′. By Claim 6.4.8 (i) there are at least
⌈k/2⌉+ ⌊t/2⌋ weak components inH′. Moreover, Claim 6.4.8 (ii) and (iii) imply that
there are at least k+ t vertices of W ∪ X that have a strong neighbor in U ∪ Y. Recall
that |X| = t and, by construction, B(x)with x ∈ X is disjoint with any B(v) of a vertex
v ∈ (W ∪ X) \ {x}. Thus there are at least k vertices in W that have a strong neighbor
in U ∪ Y. Claim 6.4.7 shows that all vertices of W that are incident to at least one
strong edge in H′ must have disjoint non-neighborhood. Since B(wi) = Bi, there are
k pairwise disjoint sets in {B1, . . . ,Bp} for the k vertices of W that are incident to at
least one strong edge inH′. Therefore there is a solution for the Set Packing problem
for (U ,B1, . . . ,Bp, k).

Let F be a graph that has at least one component with at least three vertices. IfM is a
matching in a graphG, then the spanning subgraphH ofGwithE(H) = M satisfies the
F-closure. Hence, if G has a matching of size at least k, then (G, k) is a yes instance of
Strong F-Closure. Such instances that admit a solution that is given by a matching
can be detected in polynomial time, since the size of a maximum matching of a graph
can be computed in polynomial time [105]. This gives rise to the question about the
parameterized complexity of Strong F-Closure with the parameter r = k − μ(G).
We show that MaxSTC is FPT with this parameter for the instances where Δ(G) ≤ 4.
Note that MaxSTC is NP-complete on graphs G with Δ(G) ≤ d for every d ≥ 4 by
Theorem 4.4.1.

Theorem 6.4.9. MaxSTC can be solved in time 2O(r) · nO(1) on graphs of maximum
degree at most 4, where r = k− μ(G).

Proof. Let (G, k) be an instance ofMaxSTC such that Δ(G) ≤ 4. Let also r = k−μ(G).
Recall that a triangle is a cycle on three vertices. Slightly abusing notation, we do

not distinguish between a triangle and its set of vertices and write G − T instead of
G− V(T) for a triangle T and do the same for a union of triangles.

120

Chapter 6 6.4. Parameterized complexity of MaxSTC

We construct the set of vertices X and the set of edges A as follows. Initially, X = ∅
and A = ∅. Then we exhaustively perform the following steps in a greedy way:

1. If there exists a copy of K4 in G− X, we add the vertices of this K4 to X and the
edges between these vertices to A.

2. If there exists a triangle T in G − X such that μ(G − X) < 3 + μ(G − X − T),
we add the vertices of T to X and and the edges of T to A.

Let M be a maximum matching of G − X for the obtained set X. Note that the
spanning subgraphH of G with the set of edges A∪M is a disjoint union of complete
graphs with 1, 2, 3 or 4 vertices, that is,H has no induced path on three vertices. Hence,
H satisfies the P3-closure. Assume that Step 1 was applied p times and we used Step 2
q times. Clearly, |A| = 6p+ 3q. Notice that the vertices of a copy of K4 can be incident
to at most 4 edges of a matching and the complete graph with 4 vertices has 6 edges.
Observe also that by the application of Step 2, we increase the size ofA by 3 and μ(G−
X) − μ(G − X − T) ≤ 2. This implies that |E(H)| = |A| + |M| ≥ μ(G) + 2p + q.
Therefore, if 2p + q ≥ r, (G, k) is a yes-instance of MaxSTC. Assume from now that
this is not the case. In particular, it means that |X| ≤ 4r and G′ = G − X is a K4-free
graph. By the choices made in both steps, notice that every vertex of X has at least two
neighbors inside X. Let Y = V(G) \ X = V(G′).

Weneed some structural properties ofG′ and (possible) solutions for the considered
instance of MaxSTC.

Claim 6.4.10. If T is a triangle in G′, then T satisfies the following properties:

(i) T contains no edge of M;

(ii) every vertex of T is incident to an edge of M.

Proof: If either (i) or (ii) does not hold, the triangle T is such that at most two edges of
the matching M are incident to its vertices. This implies that μ(G′) < 3 + μ(G′ − T),
which is a contradiction with the fact that Step 2 can no longer be applied. ♢

We say that a solutionH for (G, k) is regular if H[Y] is a disjoint union of triangles,
edges and isolated vertices. We also say that a solution H is triangle-maximal if (i) it
contains the maximum number of edges and, subject to (i), (ii) contain the maximum
number of pairwise distinct triangles.

Claim 6.4.11. If (G, k) is a yes-instance of MaxSTC, then every triangle-maximal so-
lution is regular.

121

Chapter 6 6.4. Parameterized complexity of MaxSTC

Proof: Let H be a triangle-maximal solution for (G, k).
We first note that, H has no K1,3 as a subgraph. Otherwise it would imply the ex-

istence of a K4 in G − X, because for every copy xyz of (not necessarily induced) P3
in H, xz ∈ E(G) if H satisfies the P3-closure. This implies that H consists of a disjoint
union of paths and cycles. Consider an induced path on three vertices P3 = v1v2v3 in
H. By the P3-closure there is the edge v1v3 in G. We prove that the P3 has a particular
form which allows us to make v1v3 strong, i.e., the triangle v1v2v3 belongs to a solu-
tion H. In particular we show that NH(v2) = {v1, v3} and either NH(v1) = {v2} and
NH(v3) = {v2, y} hold or NH(v1) = {v2, y} and NH(v3) = {v2} hold, where y is a
vertex in G.

• First observe that v2 has no other neighbor inH, because v2 belongs to a path or
a cycle inH. Assume that there is a vertex x ∈ X that is adjacent to v2 inH. Then
by the P3-closure, x is adjacent in G to all three vertices of P3 which contradicts
the fact that d(x) ≤ 4, because x is adjacent to at least two vertices inside X.
Thus v2 has no other neighbor in H.

• Next assume that there are vertices u1, u3 such that u1 ∈ NH(v1) \ {v2} and
u3 ∈ NH(v3) \ {v2}. If u = u1 = u3 then u does not belong to Y because there
is no K4 in G′. And if u ∈ X then by the P3-closure, u is adjacent to all three
vertices of the P3 which contradicts the fact that d(u) ≤ 4. For u1 ̸= u3, notice
that v2 is adjacent to both u1, u3 by the P3-closure. Then both u1v1v2 and u3v3v2
form triangles in G, which implies by Claim 6.4.10 that there is an edge v2v of
M with v /∈ {v1, v3, u1, u3}. This, however, contradicts the fact that d(v2) ≤ 4.

• By the previous two arguments, we know that at least one of v1, v3 is only ad-
jacent to v2 in H. Without loss of generality, assume that NH(v1) = {v2}. If
NH(v3) = {v2, y, y′} then by the P3-closure v2 is adjacent in G to both y, y′. Ap-
plying Claim 6.4.10 shows that there is another edge incident v2, contradicting
the fact that d(v2) ≤ 4. Also note that if NH(v3) = {v2} then both v1, v3 have
no other strong edge incident to them, so that the edge v1v3 of G can be made
strong which contradicts the maximality of H.

Thus for the given P3 we know thatNH(v1) = {v2},NH(v2) = {v1, v3}, andNH(v3) =
{v2, y} or NH(v1) = {v2, y}, NH(v2) = {v1, v3}, and NH(v3) = {v2}. This means that
in both cases we can replace inH the edge v3y or v1y by the edge v1v3 without violating
the P3-closure. Iteratively applying such a replacement for every P3 of H′ shows that
H is regular. ♢

In the following we use the notion of distance between two subsets of vertices. For
two disjoint subsets of vertices X1 and X2 the distance between X1 and X2 is the length
of the shortest path among all pairs of vertices v1 and v2 with v1 ∈ X1 and v2 ∈ X2.

122

Chapter 6 6.4. Parameterized complexity of MaxSTC

Claim 6.4.12. Let T = abc be a triangle in G′ that is at distance one from X. If H is a
solution containing T, then H contains no other edge incident to the vertices a, b, and c.

Proof:LetT = abc be a triangle as described above and letH be a solution containingT.
Assume for a contradiction that there exists an edge xa inH that is incident to a vertex
of T. Suppose that x ∈ X. This implies that xb ∈ E(G) and xc ∈ E(G). Since x has at
least two neighbors insideX, we conclude that d(x) > 4, a contradiction. If x ∈ G−X,
this would imply the existence of K4 in G′, a contradiction. ♢

Claim 6.4.13. Let T be a triangle at distance at least two from X that does not intersect
any other triangle. Then T is included in every triangle-maximal regular solution for
(G, k).

Proof: Let T = abc be a triangle as described above and assume that H is a triangle-
maximal regular solution that does not contain T. Since no other triangle intersects T,
at most one edge of H is incident to each vertex of T by Claim 6.4.11 and these edges
are not included in any other triangle except, possibly, T. If no edge ofT is inH, we can
replace the edges incident to T by the edges ab, bc and ac and obtain a solution with
at least as many edges asH containing T. This solution contains an additional triangle
contradicting the condition that H is a triangle-maximal solution. If there exists an
edge of T in H, let ab be such an edge. Clearly, ab is the unique edge of the solution
in T. Again, since no other triangle intersects T, there is no other edge of the solution
that is incident to a or b and at most one edge is incident to c. Then we replace the
edge incident to c by the two edges of the triangle abc and obtain a solution with more
edges, a contradiction. We conclude that the edges of T are included in H. ♢

Claim 6.4.14. If T1 and T2 are two intersecting triangles in G′, then the following holds:

1. T1 and T2 have one edge in common;

2. No other triangle intersects T1 or T2.

Proof: Let T1 and T2 be two intersecting triangles as described above. Assume for a
contradiction that T1 and T2 have only a single vertex in common and let a be such a
vertex. Recall that M is a maximum matching in G− X. By Claim 6.4.10, there exists
an edge of the matching incident to a that cannot be contained neither in T1 nor in T2,
which implies that d(a) > 4, which is a contradiction. We conclude that the triangles
must intersect in one edge. Let T1 = abc and T2 = bcd. Assume for the sake of contra-
diction that there exists a triangle T that intersects T1. Since by the first argument of
the claim the triangles T and T1 cannot intersect in a single vertex, T contains at least
one of b or c. Assume b ∈ V(T). Again, by Claim 6.4.10, there must be an edge of M
incident to b that is not contained in any of the triangles, which implies that d(b) > 4,
a contradiction. This concludes the proof. ♢

123

Chapter 6 6.4. Parameterized complexity of MaxSTC

Claim 6.4.15. If T1 and T2 are two intersecting triangles such that T1 is at distance at
least two from X, then either T1 or T2 is included in every triangle-maximal regular
solution for (G, k).

Proof: Let H be a solution. By Claim 6.4.14, T1 and T2 have exactly one common
edge. Let T1 = abc and T2 = bcd. Assume that a triangle-maximal regular solu-
tion H contains neither T1 nor T2. Note that at most one edge of H is incident to a by
Claim 6.4.11. BecauseH does not contain all the edges of T2, the same holds for b and
c by Claim 6.4.11. By Claim 6.4.14, these edges are not included in any other trian-
gles except, possibly, T1 and T2. Now we repeat the same arguments as in the proof of
Claim 6.4.13. If no edge of T1 is in H, we can replace the edges incident to T1 by the
edges ab, bc and ac and obtain a solution with at least as many edges as H containing
one additional triangle T1 contradicting the triangle-maximality of H. If there exists
an edge ofT1 inH, then atmost two edges ofH are incident to the vertices ofT1 and we
can replace them by the edges of T1 and increase the number of edges in the solution
contradicting the choice of H. ♢

Given the properties of the triangles in G′ and the properties of triangle-maximal
regular solutions, we are now ready to solve the problem by finding a regular solution
if it exists. Recall that by Claim 6.4.11, a regular solution H to the problem when re-
stricted toG−X is a disjoint union of triangles, edges and isolated vertices.The crucial
step is to sort out triangles in G′.

We first consider the triangles in G′ that are at distance at most one from the set X
in G, that is, the triangles that contain at least one vertex that is adjacent to a vertex of
X in G. Since |X| ≤ 4r and since every vertex of X has at least two neighbors inside
X, we have that |NG(X)| ≤ 8r. By Claim 6.4.14, at most 2 triangles of G′ contain the
same vertex. Thus, the number of pairwise distinct triangles in G′ that are at distance
at most one from the setX inG is at most 16r. We list all these triangles, and branch on
all at most 216r choices of the triangles that are included in a triangle-maximal regular
solution. Then, for each choice of these triangles, we try to extend the partial solution.
If we obtain a solution for one of the choices we return it and the algorithm returns
NO otherwise.

Assume that we are given a set T1 of triangles at distance one from X that should be
in a solution. Note that by Claim 6.4.11, the triangles in T1 are pairwise disjoint. We
apply the following reduction rule.

Rule 6.4.15.1. Set G = G− ∪T∈T1T and set k = k− 3|T1|.

By Claim 6.4.12, the original instance has a regular solution if and only if the ob-
tained instance has a regular solution that does not contain triangles in G−X that are

124

Chapter 6 6.4. Parameterized complexity of MaxSTC

at distance one from X. Our aim now is to find such a solution. For simplicity, we keep
the same notation and assume that G′ = G− X.

Now we deal with triangles that are at distance at least 2 from X. Consider the set
T2 of triangles inG′ that are at distance at least 2 fromX and have no common vertices
with other triangles in G′. By Claim 6.4.13, all these triangles are in every triangle-
maximal regular solution. It immediately gives us the following rule.

Rule 6.4.15.2. Set G = G− ∪T∈T2T and set k = k− 3|T2|.

We again assume that G′ = G− X. To consider the remaining triangles, recall that
by Claim 6.4.14, for every such a triangle T, T is intersecting with a unique triangle T′

of G′ and T,T′ are sharing an edge.
Let T3 be the set of triangles in G′ that are at distance at least 2 from X in G and

have a common edge with a triangle at distance one fromX. Recall that we are looking
for a regular solution that does not contain triangles in G− X that are at distance one
fromX.Then byClaim 6.4.15, triangles of T3 should be included to a triangle-maximal
regular solution, and we get the next rule.

Rule 6.4.15.3. Set G = G− ∪T∈T3T and set k = k− 3|T3|.

As before, let G′ = G − X. The remaining triangles in G′ at distance at least 2
from X in G form pairs {T1,T2} such that T1 and T2 have a common edge and are not
intersecting any other triangle. Let P be the set of all such pairs. By Claim 6.4.15, a
triangle-maximal regular solution contains either T1 or T2. We use this to apply the
following rule.

Rule 6.4.15.4. For every pair {T1,T2} ∈ P , delete the vertices of T1 and T2 from G,
construct a new vertex u andmake it adjacent to the vertices of NG((T1\T2)∪(T2\T1)).
Set k = k− 3|P|.

Denote by (Ĝ, k̂) the instance of MaxSTC obtained from (G, k) by the application
of Rule 6.4.15.4. We show the following claim.

Claim 6.4.16. If the instance (G, k) has a triangle-maximal regular solution H that has
no triangles in G − X at distance one from X, then there is a solution Ĥ for (Ĝ, k̂) such
that Ĥ− X is a disjoint union of edges and isolated vertices, and if there is a solution Ĥ
for (Ĝ, k̂) such that Ĥ− X is a disjoint union of edges and isolated vertices, then (G, k)
has a regular solution H that has no triangles in G− X at distance one from X.

Proof: Let H be a triangle-maximal regular solution for (G, k) such that H has no tri-
angles in G − X at distance one from X. Notice that if H contains a triangle, then it
belongs to one of the pairs of P . By Claim 6.4.15, we can assume that H contains a
triangle from every pair from P . We construct a solution Ĥ for (Ĝ, k̂) by modifying

125

Chapter 6 6.4. Parameterized complexity of MaxSTC

H as follows. First, we include in Ĥ the edges ofH that are not incident to the vertices
of the pairs of triangles of P . For every pair {T1,T2} ∈ P , H contains either T1 or T2.
Assume without loss of generality that T1 is in H. Let v be the vertex of T2 that is not
included in T1. By Claims 6.4.11 and 6.4.10, at most one edge ofH is incident to v and
there is no edge in H that is incident to exactly one vertex of T1. Let u be the vertex of
Ĝ constructed by Rule 6.4.15.4 for {T1,T2}. If vx ∈ E(H) for some x ∈ V(G), then we
include the edge ux′ in Ĥ, where x′ is the vertex constructed from x by the rule; note
that it can happen that x is a vertex of some other pair of triangles. Since we include
in Ĥ at most one edge incident to a vertex constructed by the rule, Ĥ does not con-
tain triangles and is a disjoint union of edges and isolated vertices. Moreover, since
|E(H)| ≥ k, we have that |E(Ĥ)| ≥ k− 3|P| = k̂.

Suppose now that Ĥ is a solution for (Ĝ, k̂) such that Ĥ − X is a disjoint union of
edges and isolated vertices. Now we constructH by modifying Ĥ. For every edge uv of
Ĥ such that u and v are vertices of the original graph G, we include uv in H. Assume
that uv ∈ E(Ĥ) is such that v ∈ V(G) and u was obtained from a pair {T1,T2} ∈ P .
Then v is adjacent inG to a vertex x that belongs to exactly one of the triangles, say T1.
We include xv and T2 in H. Suppose that uv ∈ E(Ĥ) is such that u was obtained from
a pair {T1,T2} ∈ P and vwas obtained from a pair {T′

1,T′
2} ∈ P . ThenG has an edge

xy such that x that belongs to exactly one of the triangles T1,T2, say T1, and y belongs
to exactly one of the triangles T′

1,T′
2, say T′

1. We include xy, T2 and T′
2 in H. Finally, if

there is a pair {T1,T2} ∈ P such that for the vertex u ∈ V(Ĝ) constructed from this
pair, Ĥ has no edge incident to u, we include T1 inH. With this way we obtainH such
thatH−X is a disjoint union of triangles, edges and isolated vertices. It remains to note
that because |E(Ĥ)| ≥ k̂, we have that |E(H)| ≥ k, that is, H is a regular solution. ♢

By Claim 6.4.16, we have to find a solution for the instance (Ĝ, k̂) such that Ĥ− X
is a disjoint union of edges and isolated vertices. We do it by branching on all possible
choices of edges in a solution that are incident to the vertices of X. Since |X| ≤ 4r
and Δ(G) ≤ 4, there are at most 16r edges that are incident to the vertices of X and,
therefore, we branch on at most 216r choices of a set of edges S. Then for each choice
of S, we are trying to extend it to a solution. If we can do it for one of the choices, we
return the corresponding solution, and the algorithm returns NO otherwise.

Assume that S is given. First, we verify whether the spanning subgraph of G with
the set of edges S satisfies the P3-closure. If it is not so, we discard the current choice of
S since, trivially, S cannot be extended to a solution. Assume that this is not the case.
Let R = Ĝ− X. We modify R by the exhaustive application of the following rule.

Rule 6.4.16.1. If there are vertices x, y, z such that xy ∈ E(R), z ∈ X, xz ∈ S, and
yz /∈ E(Ĝ), then delete xy from R.

Let R′ be the graph obtained from R by the rule. Observe that the edges deleted by

126

Chapter 6 6.5. Further Results

Rule 6.4.16.1 cannot belong to a solution. Hence, to extend S, we have to complement
it by some edges of R′ that form a matching. Moreover, every matching of R′ could be
used to complement S. To see this, observe that every matching of R′ and the edges of
S satisfy the P3-closure. By Rule 6.4.16.1, we ensure that the edges of S∪M in Ĝ satisfy
the P3-closure. Respectively, we find a maximum matching M in R′ in polynomial
time [105]. We obtain that the spanning subgraph Ĥ of Ĝ with E(Ĥ) = S∪M satisfies
the P3-closure. We verify whether |S| + |M| ≥ k̂. If it holds, we return Ĥ. Otherwise,
we discard the current choice of S.

The correctness of the algorithm follows from the properties of Rules 6.4.15.1–
6.4.16.1 and Claim 6.4.16. To evaluate the running time, observe that Steps 1 and 2
that are used to construct X and A can be done in polynomial time. Then we branch
on at most 216r choices of T1. For each choice, we apply Rules 6.4.15.1–6.4.15.4 in poly-
nomial time. Then we consider at most 216r choices of a set of edges S. For each choice,
we apply Rule 6.4.16.1 in polynomial time and then compute a maximum matching
in R′ [105]. Summarizing, we obtain the running time 2O(r) · nO(1).

6.5 Further Results

To complement our results so far, we give here the parameterized complexity results
when our problem is parameterized by the number of weak edges.The following result
is not difficult to deduce using similar ideas to those used in proving that F-free Edge
Deletion is FPT by the number of deleted edges [16].

Theorem6.5.1. For every fixed graph F, Strong F-closure can be solved in time 2O(ℓ) ·
nO(1), where ℓ = |E(G)| − k.

Proof. We basically use the main idea given in [16]. Since F is of fixed size, we can
list all induced subgraphs of G isomorphic to F in polynomial time. For each induced
subgraph F′ we check whether G[F′] ≃ F. If G[F′] ≃ F, then we must remove at least
one of the edges of F′.We branch at all such possible |E(F)| edges and on each resulting
graph we apply the same procedure for at most ℓ steps. If at some intermediate graph
we have G[F′] ̸≃ F for all of its induced subgraphs then we have found the desired
subgraph within at most ℓ edge deletions. Otherwise, we can safely output that there
is no such subgraph with at most ℓ edge removals. As the depth of the search tree is
bounded by ℓ, the overall running time is 2O(ℓ) · nO(1).

Next we show that Strong F-closure has a generalized polynomial kernel with
this parameterization whenever F is a fixed graph. We obtain this result by construct-
ing generalized kernelization that reduces Strong F-closure to the d-Hitting Set

127

Chapter 6 6.5. Further Results

problem that is the variant of Hitting Set with all the sets in C having d elements.
Notice that this result comes in contrast to the F-free Edge Deletion problem, as
it is known that there are fixed graphs F for which there is no polynomial compres-
sion [17] unless NP ⊆ coNP/ poly.

Theorem 6.5.2. For every fixed graph F, Strong F-closure has a generalized polyno-
mial kernel, when parameterized by ℓ = |E(G)| − k.

Proof. Let d be the number of edges of F. We enumerate all the induced subgraphs
of G isomorphic to F in polynomial time. Let FG = {F1, . . . , Fq} be the produced
subgraphs isomorphic to F such that V(Fi) ̸= V(Fj). For each Fi ∈ FG, we construct
the set Ei = E(Fi). Notice that |E1| = · · · = |Eq| = d. Now our task is to select at most
ℓ edges E′ from G such that E′ ∩ Ei ̸= ∅ for every Ei. We claim that such a subset of
edges is enough to produce a solution for the Strong F-closure. To see this, consider
an F-graph Fi of G and denote by G′ the graph obtained from G by removing an edge
e = xy of Fi. Assume for contradiction that at least one new F-graph F′ is created in
G′ so that F′ /∈ FG and F′ ∈ FG′ . Then both x and y must belong to F′ which implies
that x and y are non-adjacent in G′[F′]. This, however, contradicts the fact that G[F′]
induces a graph isomorphic to F, because x and y are adjacent in G. Thus FG′ ⊂ FG
which implies that the described set of edges E′ constitutes a solution. This actually
corresponds to the d-Hitting Set problem: given a collection of sets Ci = Ei each of
size d from a universe U = E(G), select at most ℓ elements from U such that every set
Ci contains a selected element.Thenwe use the result of Abu-Khzam [1] (see also [30])
that d-Hitting Set admits a polynomial kernel with the universe sizeO(ℓd) and with
O(ℓd) sets.

Observe thatwhenever StrongF-closure is polynomially solvable orNP-complete
for a given F, Theorem 6.5.2 implies that Strong F-closure admits a polynomial
kernel. If the problem can be solved in polynomial time, then it has a trivial ker-
nel. If Strong F-closure is NP-complete, then there is a polynomial reduction of
d-Hitting Set to Strong F-closure. Combining the generalized kernelization and
this reduction, we obtain a polynomial kernel.

We would like to underline that Theorems 6.5.1 and 6.5.2 are fulfilled for the case
when F is a fixed graph of constant size, as the degree of the polynomial in the run-
ning time of our algorithm depends on the size of F and, similarly, the size of F is
in the exponent of the function defining the size of our generalized kernel. We can
hardly avoid this dependence as it can be observed that for ℓ = 0, Strong F-closure
is equivalent to asking whether the input graph G is F-free, that is, we have to solve
the Induced Subgraph Isomorphism problem. It is well known that Induced Sub-
graph Isomorphismparameterized by the size of F isW[1]-hardwhen F is a complete

128

Chapter 6 6.5. Further Results

t

x y z

tx ty tz

ax ay azbx by bz

x y z

Figure 6.3: The planar configuration used in the proof of Theorem 6.5.3.

graph or graph without edges [39], and the problem is W[1]-hard when F belongs to
other restricted families of graphs [81].

We concludewith a fewopenproblems.An interesting question iswhetherMaxSTC
is FPT when parameterized by r = k− μ(G). We proved that this holds on graphs of
maximumdegree at most 4, and we believe that this question is interesting not only on
general graph but also on various other graph classes. In particular, what can be said
about planar graphs? To set the background, we show that MaxSTC is NP-hard on
planar graphs and (3K1, 2K2)-free graphs. The Lemma 3.2.4 is needed for the proofs
of Theorems 6.5.3 and 6.5.5.

Lemma 3.2.4: Let x and y be true twins in G. Then, there is an optimal solution H
for MaxSTC such that xy ∈ E(H) and for every vertex u ∈ N(x), xu ∈ E(H) if and
only if yu ∈ E(H).

Theorem 6.5.3. MaxSTC is NP-hard on planar graphs.

Proof. We show the theorem by a reduction from PlanarX3C. In X3C we are given
a set X with |X| = 3q elements and a collection C of triplets of X and the problem
asks for a subcollection C′ ⊆ C such that every element of X occurs in exactly one
member of C′. If such a subcollection C′ exists, then it is called an exact cover of X.
For the PlanarX3C we associate a bipartite graph G with this instance as follows:
we have a vertex for every element of X and a vertex for every triplet of C and there
is an edge between an element and a triplet if and only if the element belongs to the
triplet. The problem is known to be NP-complete even restricted to instances whose
associated graph is planar [40]. LetG = (X∪C,E) be an instance of PlanarX3Cwith
|C| = m ≥ q. We construct another graph G′ by replacing the three edges incident
to each triplet with the configuration shown in Figure 6.3. More precisely, we replace
each triplet vertex t by a triangle {tx, ty, tz} (middle triangle) and for each original
edge tx we introduce two triangles {tx, ax, bx} (inner triangle) and {ax, bx, x} (outer
triangle). Thus for every triplet we associate seven triangles in which four of them are

129

Chapter 6 6.5. Further Results

tx ty tz

ax ay azbx by bz

x y z

(a)

tx ty tz

ax ay azbx by bz

x y z

(b)

tx ty tz

ax ay azbx by bz

x y z

(c)

Figure 6.4: A solid edge corresponds to a strong edge, whereas a dashed edge corre-
sponds to a weak edge. Form (a) has 12 strong edges and corresponds to a triplet that is
a member of an exact cover. Form (b) has 9 strong edges and corresponds to a triplet
that does not belong to an exact cover. Form (c) contains all other cases; we depict
only one of them.

vertex-disjoint (themiddle and the outer triangles) and the other three triangles (inner
triangles) share all their vertices with two vertex-disjoint triangles. Such a subgraph
corresponding to the triplet (x, y, z) ∈ C is simply called triplet subgraph. Observe that
any two triplet subgraphs have in common only a subset of the vertices x, y, z of their
outer triangles. Notice also thatG′ remains a planar graph.We prove that PlanarX3C
has an exact cover if and only ifG′ has a spanning subgraphwith at least 9m+3q strong
edges that satisfies the P3-closure.

Assume C′ is an exact cover for PlanarX3C with |C′| = q. If a triplet belongs to C′

then we make the edges of all four vertex-disjoint triangles strong (see Figure 6.4 (a)).
If a triplet does not belong to C′ then we make the edges of all inner triangles strong
(see Figure 6.4 (b)). This labeling satisfies the P3-closure as there is no P3 spanned by
strong edges and the total number of strong edges is 12q + 9(m − q) which gives the
claimed bound.

For the opposite direction, assume that G′ has a spanning subgraph H with at least
9m + 3q strong edges. Consider the graph induced by the vertices {tx, ax, bx, x} that
corresponds to an original edge between an element x and a triplet t. Since ax, bx are
true twins in G, by Lemma 3.2.4, E(H) contains the edge axbx and ax, bx are also true
twins inH.The latter implies that either one of the two triangles {x, ax, bx}, {tx, ax, bx}
belongs toH, or no such triangle belongs toH. The same observation carries along the
vertices ay, by and az, bz. Thus for every triplet subgraph, E(H) contains all its outer
triangles, or all its inner triangles, or a combination of some inner and outer triangles.
These cases correspond to the three forms given in Figure 6.4.We show that there exists
an optimal solution H only with the first two forms of Figure 6.4, which particularly
means that every triplet subgraph of H contains either all its outer triangles or all its
inner triangles.

Toprove this, we first show that everymiddle triangle in a triplet subgraphhas either

130

Chapter 6 6.5. Further Results

all its edges strong or none of its edges is strong. We refer to the former case as strong
middle triangle and the later as weak middle triangle. Assume that the middle triangle
contains at least one strong edge txtz. Then there is no other strong edge incident to tx
or tz. If the inner triangle of ty is not strong, then we can safely make the edges tytx, tytz
strong. Otherwise, the inner triangle of ty is strong and we remove both edges tyay and
tyby from H and add the edges tytx, tytz. Thus if there is a strong edge in the middle
triangle then there is a solution with a strong middle triangle.

Next we consider a (strong or weak) middle triangle. If a middle triangle is weak
then E(H) contains at most 9 edges from its triplet subgraph. In such a case we replace
all its edges from E(H) by the 9 edges of its inner triangles by keeping the same size for
E(H).The replacement is safewith respect to theP3-closure because the inner triangles
of each triplet subgraph are vertex-disjoint with any other triplet subgraph. For every
strong middle triangle notice that all the edges of its inner triangles are weak. If there
is at most one outer triangle that is strong then we make the middle triangle weak and
we replace its edges of E(H) by the edges of its inner triangles. Thus for every strong
middle triangle we know that either two or three outer triangles are strong. Also recall
that for every weak middle triangle, all its outer triangles are weak.

For i ∈ {0, 2, 3}, let ℓi be the number of triplet subgraphs in which there are i outer
triangles strong. We will show that, since H contains at least 9m+ 3q edges, there are
no triplet subgraphs with exactly two outer triangles strong, i.e., ℓ2 = 0. Observe that
ℓ0 + ℓ2 + ℓ3 = m. Also notice that each of the subgraphs corresponding to ℓ0 contains
9 strong edges, ℓ2 contains 10 strong edges, and ℓ3 contains 12 strong edges. Therefore
the total number of strong edges is 9ℓ0 + 10ℓ2 + 12ℓ3. As H contains at least 9m+ 3q
edges, we get ℓ2 + 3ℓ3 ≥ 3q. Now notice that every vertex of X is incident to at most
one strong triangle. Thus for each of the ℓ2 subgraphs there are 2 vertices in X that are
incident to strong edges, whereas for each of the ℓ3 subgraphs there are 3 such vertices
in X. This implies that 2ℓ2 + 3ℓ3 ≤ |X| = 3q. Therefore |E(H)| ≥ 9m + 3q holds
only if ℓ2 = 0 and ℓ3 = q, so that all triplet subgraphs with strong middle triangles
correspond to an exact cover for the elements of X.

Moreover, in proof of Theorem 6.5.3 every strong connected component forms a
clique and, thus, we have the following corollary.

Corollary 6.5.4. Cluster Deletion is NP-hard on planar graphs.

We next proceed with the (3K1, 2K2)-free graphs. The reduction comes from the
Clique problem which is known to be NP-complete on such graphs [58].

Theorem 6.5.5. MaxSTC restricted on (3K1, 2K2)-free graphs remains NP-hard.

131

Chapter 6 6.5. Further Results

Proof. Let (G, k) be an instance of CliquewithG being a (3K1, 2K2)-free graph. From
G we construct G′ by adding a clique X of size x = nk such that every vertex of X is
adjacent to every vertex of G. Clearly G′ remains (3K1, 2K2)-free graph. We show that
G has a solution for Clique of size at least k if and only if G′ has a spanning subgraph
that satisfies the P3-closure with at least q = x(x−1)

2 + k(k−1)
2 + kx strong edges.

Assume thatC ⊆ V(G) is a solution for Clique onG of size at least k. ThenC∪X is
a clique in G′. Maintaining only the edges of C∪X in a spanning subgraph of G′ does
not create any P3. Thus there is a spanning subgraph of G′ that satisfies the P3-closure
and the number of edges in G′[C ∪ X] gives the desired bound.

For the opposite direction, assume thatH is such a solution for StrongP3-closure
on G′. Observe that the vertices of X have the same closed neighborhood in G′, so
they are true twins. By Lemma 3.2.4 we know that all vertices of X have the same
neighborhood in H and all edges inside X are strong. If there is a vertex of X with k
strong neighbors in G′[V] then there is a k-clique in G. Moreover if there is a vertex
of G′[V] with k − 1 strong neighbors then those vertices induce a clique of size k. We
show that at least one of the two conditions holds inH. Assume for contradiction, that
there is no such vertex: all the vertices of X have the same k − 1 strong neighbors in
G′[V], and every vertex of G′[V] has at most k − 2 strong neighbors. This means that
the claimed solution has at most p strong edges where p = x(x−1)

2 +x(k−1)+n(k−2).
Since p < q, we get a contradiction to the number of strong edges in H. Thus there is
at least one vertex v of the following type: either v ∈ Xwith at least k strong neighbors
in G or v ∈ V(G) with at least k− 1 strong neighbors in G. Therefore in both cases we
get a k-clique in G.

The proof of Theorem 6.5.5 can be generalized to any graph class Π for which the
following two conditions hold: (i) Clique is NP-hard on Π and (ii) Π is closed under
addition of a universal vertex.

Regarding the parameterization by r = k − μ(G), it is still interesting to extend
Strong F-closure when F ̸= P3 has a connected component with at least three ver-
tices. As a first step, we give an FPT result when F is a star.

Theorem 6.5.6. For every t ≥ 3, Strong K1,t-closure can be solved in time 2O(r2) ·
nO(1), where r = k− μ(G) .

Proof. We prove the theorem by constructing a kernel for the problem.
Let G be a graph and M be a maximum matching of G. We assume without loss of

generality that G has no isolated vertices. Otherwise, we just delete such vertices and,
trivially, obtain an equivalent instance of the problem. Let VM be the set of vertices of
G that are covered byM. LetX be a subset of vertices ofV(G) andA be a subset of edges

132

Chapter 6 6.5. Further Results

of G[X], both initially set to be empty. We add elements to X and A by performing the
following steps in a greedy way:

1. If there is v ∈ V(G) \ VM and xy ∈ M such that vx ∈ E(G) or vy ∈ E(G), then
we add v, x and y to X and add all the edges between {v, x, y} to A.

2. If there is xy,wz ∈ M such that G[{x, y,w, z}] ̸≃ 2K2, then we add x, y, w and z
to X and add all the edges between {x, y,w, z} to A.

Note that since the set {v, x, y} does not induce a K1,t, and since xy,wz ∈ E(G), the
set {x, y,w, z} does not induce a K1,t either, the edges added to A in each step can be
part of a solution. Moreover, after each application of step 1 or step 2, the size of the
set A ∪M is increased by at least one. As a consequence, if the steps can be applied at
least r times, then |A ∪ M| ≥ |M| + r and therefore we have a yes instance. Assume
that this is not the case. This implies that |X| < 4r.

After the exhaustive application of steps 1 and 2 in a greedy way, we consider the
matching obtained from M by the deletion of the edges included in A. For simplicity,
we call this matchingM again and useVM to denote the set of vertices ofV(G)\X that
are covered byM. Observe thatM is amaximummatching ofG−X. Since step 1 cannot
be applied, we have that the vertices of the setW = V(G)\(X∪VM) are not adjacent to
the vertices ofVM. By themaximality ofM, the vertices ofW are pairwise nonadjacent.
Because step 2 can no longer be applied,M is actually an induced matching of G. That
is, G− X is the disjoint union of the edges of M and the isolated vertices of W.

In what follows, we show that the sizes ofW and M can be reduced to bound them
by a function of r.

Recall thatG has no isolated vertices. Hence, each vertex ofW is adjacent to a vertex
of X. We partition the vertices ofW according to their neighborhood in X, that is, two
vertices x, y ∈ W are in the same class if and only ifNG(x) = NG(y). Clearly, we obtain
at most 2|X| ≤ 24r classes. We exhaustively apply the following rule.

Rule 6.5.6.1. If there exists a class of vertices of W that has size at least (t− 1) · 4r+ 1,
then delete one vertex of the class from the graph.

To see that Rule 6.5.6.1 is safe, assume that one given class contains at least (t −
1) · 4r + 1 vertices and we applied the rule for this class. Denote by G′ the obtained
graph. Observe that every vertex of X can be adjacent to at most t− 1 vertices ofG−X
in a solution, otherwise the solution would contain a set of strong edges inducing a
K1,t in G. This, together with the fact that |X| < 4r, gives us that at most (t − 1) · 4r
vertices ofW are adjacent to vertices of X in a solution. Since the class contains at least
(t − 1) · 4r + 1 vertices, at least one vertex of the class has no incident edges in the

133

Chapter 6 6.5. Further Results

solution. Notice that μ(G′) = μ(G). Therefore, if (G, k) is a yes instance, then (G′, k)
is a yes instance as well. For the opposite direction, it is sufficient to observe that every
solution to (G′, k) is a solution for (G, k).

Weuse similar approach to reduce the size ofM.WepartitionM to classes according
to their neighborhood in X. More precisely, two edges x1y1, x2y2 ∈ M are in the same
class if and only if either NG(x1) ∩ X = NG(x2) ∩ X and NG(y1) ∩ X = NG(y2) ∩ X
or, symmetrically, NG(x1) ∩ X = NG(y2) ∩ X and NG(y1) ∩ X = NG(x2) ∩ X. There
are at most 24r possible subsets of X that can be the neighborhood of a given vertex of
G−X. Then, we can partition the edges ofM into at most 28r classes, according to the
neighborhoods of the two endpoints of the edge. We exhaustively apply the following
rule.

Rule 6.5.6.2. If there exists a class of edges of M that has size at least (t− 1) ·4r+ 1, then
delete the end-vertices of one edge of the class from the graph and reduce the parameter
k by one.

To show safeness, suppose that one given class contains at least (t− 1) ·4r+ 1 edges.
Assume that Rule 6.5.6.2 is applied for this class and denote by G′ the graph obtained
by the application of the rule. Since M is an induced matching in G, every vertex of X
can be adjacent to end-vertices of at most t− 1 edges ofM in a solution, otherwise the
solution would contain a set of strong edges inducing a K1,t in G. Together with the
fact that |X| < 4r, we obtain that at most (t− 1) · 4r edges ofM have end-vertices that
are adjacent to vertices of X in a solution. Since the class contains at least (t− 1) ·4r+ 1
edges, at least one edge of the class is such that both of its end-vertices are not adjacent
to any vertex of X in the solution. This edge can therefore be part of every solution H.
Note that μ(G′) = μ(G)−1.This implies that if (G, k) is a yes instance, then (G′, k−1) is
a yes instance. For the opposite direction, consider any solution for (G′, k− 1). Clearly,
we can construct a solution for (G, k) by adding the edge that was deleted by the rule.
Hence, if (G′, k− 1) is a yes instance, then (G, k) is a yes instance.

Once Rules 6.5.6.1 and 6.5.6.2 have been exhaustively applied, the number of ver-
tices of the graph is bounded by 4r + 24r · (t − 1) · 4r + 28r · (t − 1) · 4r · 2 = g(r).
It is now possible to use brute force to solve the problem in the following way. First,
we guess which edges inside X go into the solution. Since |X| < 4r, this guessing takes
2O(r2) time. Since every vertex of X can have at most 2t − 2 neighbors in G − X in a
solution, we can again guess which edges from X to G − X go into the solution. This
takes 2O(r2) time. Finally, for each of these guesses made for the edges in E(G) \M, we
test which edges ofM can be added into the solution without forming an induced K1,t
in H that also induce a K1,t in G. This takes time 2O(r). The total running time of the
brute force algorithm is therefore 2O(r2) · nO(1).

134

CHAPTER7
Conclusion

7.1 Summary

In this thesis, we mainly considered MaxSTC, an optimization problem that arises
in social network analysis, andClusterDeletion, a classical edgemodification prob-
lem, and we studied their computational complexity on several graph classes. More-
over, we introduced the Strong F-closure problem, which serves as a generalization
of MaxSTC, as well as a relaxation of F-free Edge Deletion. We studied Strong F-
closure from a parameterized perspective with various natural parameterizations.

In particular, we studied the NP-complete problem MaxSTC in important classes
of graphs, since, to the best of our knowledge, no previous results were known prior to
our work when restricting the input graph for the MaxSTC problem. We first consid-
ered subclasses of chordal graphs.We showed thatMaxSTC remains NP-hard on split
graphs (Theorem 3.3.4), and consequently also on chordal graphs. However, we solved
MaxSTC in polynomial time on proper interval graphs (Theorem 3.4.17) and trivially
perfect graphs (Theorem 3.2.3). On proper interval graphs, we characterized a specific
solution by taking advantage of the ordering of the vertices andwe designed a dynamic
programming algorithm to construct such a solution. On trivially perfect graphs we
characterized their line-incompatibility graph and we solved the Independent Set
on their line-incompatibility graph which consists an optimal solution for MaxSTC.
Moreover, we expressed MaxSTC and Cluster Deletion in monadic second order
logic of second type (MSO2) and, thus, both problems can be solved in linear time on
graphs of bounded treewidth (Subsection 3.2.1).

Furthermore,we presented a 2-dimension schemewhichhelpedus to solveMaxSTC
in polynomial time on cographs (Theorem 4.3.6).The optimal solution of the problem
on cograph can be greedily taken by a sequence of maximum cliques. As a byproduct
of this procedure, we show that Independent Set of the cartesian product of two
cographs is polynomial solvable (Theorem 4.3.8). Moreover, we studied the influence
of lowmaximumdegree for theMaxSTCproblem.We show an interesting complexity

135

Chapter 7 7.1. Summary

Graphs Cluster Deletion MaxSTC Matched
General NP-hard [116] NP-hard [118] <

Chordal NP-hard [11] NP-hard <
Interval Poly-time [Th. 5.3.14] ? <
Proper interval Poly-time [11] Poly-time [Th. 3.4.17] <
Split Poly-time [11] NP-hard [Th. 3.3.4] <
Starlike NP-hard [[11], Th. 5.4.3] NP-hard <

Cograph Poly-time [50] Poly-time [Th. 4.3.6] X
Trivially-perfect Poly-time [50] Poly-time [Th. 3.2.3] X
Triangle-free Poly-time Poly-time X
Bounded treewidth Poly-time Poly-time
Planar NP-hard [Cor. 6.5.4] NP-hard [Th. 6.5.3]
(3K1, 2K2)-free NP-hard [50] NP-hard [Th. 6.5.5]
Δ = 3 Poly-time [85] Poly-time [Th. 4.4.3] X
Δ ≥ 4 NP-hard [85] NP-hard [Th. 4.4.1]

Table 7.1: Complexity of Cluster Deletion and MaxSTC restricted on particular
graph classes. Our results obtained within this thesis are presented in bold. In col-
umnMatched, the symbols “X” or “<” indicate whether the optimal value ofMaxSTC
matches or is greater than, respectively, to the optimal value of Cluster Deletion.

dichotomy result: for graphs ofmaximumdegree fourMaxSTC remainsNP-complete
(Theorem4.4.1), whereas for graphs ofmaximumdegree three the problem is solved in
polynomial time (Theorem 4.4.3). Our reduction for the NP-completeness on graphs
of maximum degree four implies that, under the Exponential-Time Hypothesis, there
is no subexponential time algorithm for MaxSTC.

Next, we considered the close related Cluster Deletion problem. It is a well-
studied NP-complete problem and there are several computational results when the
input graph is restricted on graph classes. However, the complexity of Cluster Dele-
tion on interval graphs was left as an open problem by several researchers for more
than a decade. Here, we provided a polynomial time algorithm for computing an opti-
mal solution for Cluster Deletion when the input graph is an interval graph (The-
orem 5.3.14) and, thus, we settled the open problem in the affirmative. Our algorithm
relied on the linear structure obtained from the clique path of the interval graph. We
considered a dynamic programming approach defined by two vertex ordering to solve
the problem. Moreover, we studied the class of starlike graphs, a slight generalization
of split graphs. We characterized starlike graphs by a list of forbidden subgraphs and
we showed that Cluster Deletion is NP-hard ([11], Theorem 5.4.3). We also stud-
ied stable-like, threshold-like and laminar-like graphs that consist three subclasses
of starlike graphs. In all cases we proved that Cluster Deletion can be solved in

136

Chapter 7 7.1. Summary

polynomial time (Subsection 5.4.1). In Table 7.1 we summarize our results together
with previously-known results concerning the complexity of Cluster Deletion and
MaxSTC on graph classes.

Apart fromour results on classical computational complexity ofMaxSTCandClus-
ter Deletion on particular graph classes, we proposed sufficient conditions so that
the optimal solutions of MaxSTC and Cluster Deletion coincide. We deduced that
when the input graph is restricted either on K3-free graphs, on P4-free graphs or on
graphs with maximum degree 3, a cluster graph corresponds to an optimal solution
for both problems. However, we found instances on split graphs ((2K2,C4,C5)-free
graphs) and proper interval graphs (claw-free interval graphs) for which an optimal
solution of MaxSTC is slightly larger than an optimal solution of Cluster Deletion
(see for e.g. Figure 4.1). Furthermore, it should be noticed that among the considered
graph classes, split graphs consists the only graph family for which the complexity of
MaxSTC differs form the complexity of ClusterDeletion. In Table 7.1 we highlight
this relationship between the two problems regarding their optimal solutions.

Motivated by the role of triadic closures in social networks, and the importance
of finding a maximum subgraph that avoids a fixed pattern, we introduced and initi-
ated the parameterized study of the Strong F-Closure problem, where F is a fixed
graph.This study has been donewith three different natural parameters: the number of
strong edges k, the number of strong edges above guarantee (maximummatching size)
k − μ(G), and the number of weak edges ℓ. We showed that the Strong F-Closure
is FPT when parameterized by k, for a fixed F (Theorem 6.3.8). Also, we proved that
the problem is FPT even when we allow the size of F to be a parameter, that is, if we
parameterize the problem by k + |V(F)| (Corollary 6.3.9), unless F has at most one
edge. In the latter case Strong F-closure is co-W[1]-hard when parameterized by
|V(F)| even if k ≤ 1 (Propositions 6.3.2, 6.3.3). With this parameterization we ob-
served that Strong F-Closure admits a polynomial kernel when the input graph is
planar graph or a d-degenerate graph (Proposition 6.3.10). Next, we studied the spe-
cial case of F = P3 which coincides with the MaxSTC problem. We complemented
our FPT results by proving that MaxSTC does not admit polynomial kernel even on
split graphs (Theorem 6.4.1). Moreover, on graphs of maximum degree at most 4, we
were able to show that MaxSTC is FPT with the above guarantee parameterization
k− μ(G) (Theorem 6.4.9). Under the same parameterization, we showed that for ev-
ery t ≥ 3, Strong K1,t-closure is FPT (Theorem 6.5.6). Furthermore, we proved
that Strong F-closure is FPT and admits a polynomial kernel when parameterized
by the number of weak edges and F is a fixed graph (Theorems 6.5.1, 6.5.2). We con-
cluded with some results related to classical computational complexity. We showed
that MaxSTC remains NP-hard on (3K1, 2K2)-free graphs (Theorem 6.5.5) and on
planar graphs (Theorem 6.5.3). Our reduction for planar graphs also works for the

137

Chapter 7 7.2. Open Problems

Cluster Deletion problem and, thus, Cluster Deletion remains NP-hard on pla-
nar graphs (Corollary 6.5.4).

7.2 Open Problems

Here, we discuss possible future directions for further research and we highlight
few open problems that arise from the results obtained within this thesis.

Given the first study with positive and negative results for the MaxSTC problem
on restricted input, there are some interesting open problems. As we pointed out,
MaxSTC is more difficult than Cluster Deletion in the following sense: a solution
for ClusterDeletion forms a solution forMaxSTC but the converse is not necessar-
ily true.We have given examples showing that such an observation carries out for split
graphs as well as for proper interval graphs. Despite the structural difference of both
problems, our result on split graphs points out an important and interesting complex-
ity difference between the two problems: on split graphs Cluster Deletion has al-
ready been shown to be polynomially solvable [11], whereas we proved that MaxSTC
remains NP-complete. It is interesting to explore other graph classes that exhibit the
same behavior. A natural graph class towards such a direction, can be considered as
the class of interval graphs. The structural properties that we proved for the solution
of MaxSTC on proper interval graphs, as well as, the extensive analysis that we did for
computing an optimal solution for Cluster Deletion on interval graphs seem to be
helpful in order to attack MaxSTC on interval graphs.

Moreover, our algorithm for Cluster Deletion on interval graphs, which heav-
ily relies on the linear structure obtained from their clique paths, leads us to consider
few open questions regarding two main directions. On the one hand, it seems tempt-
ing to adjust our algorithm for other vertex partitioning problems on interval graphs
within a more general framework, as already have been studied for particular graph
properties [13, 53, 70, 79, 120]. On the other hand, it is reasonable to ask whether our
approach works for Cluster Deletion on graphs admitting similar linear structure
such as permutation graphs [43, 58, 104]. In addition, permutation graphs consist
a superclasses of cographs, where the optimal solutions for MaxSTC and Cluster
Deletion coincide. On permutation graphs both problems do not coincide (the low-
est example of Figure 4.1 is a permutation graph) and both problems restricted to such
graphs have unresolved complexity status.

Furthermore, line-incompatibility graph is a useful tool to study MaxSTC because
of the equivalency between Independent Set andMaxSTC by Proposition 3.2.2. Ob-
serving that Independent Set is polynomial solvable on perfect graphs [61], a poten-
tial characterization of whether the line-incompatibility of a graph is perfect, will give

138

Chapter 7 7.2. Open Problems

us immediately a polynomial time solution forMaxSTC. Besides, line-incompatibility
graph has already been considered under the term of Gallai graph. Gallai graph has
attracted many researchers [78, 96, 119], where they tried either to characterize the
Gallai graph of a graph or to provide interesting structural properties.

Given the fact that the solutions of both problems coincide on P4-free and K3-free
but not on (2K2,C4,C5)-free graphs and claw-free interval graphs, an interesting topic
is to completely characterize graphs by forbidden subgraphs for which MaxSTC and
Cluster Deletion coincide. In this direction, regardingH-free graphs, Grüttemeier
et al. [62], showed a complexity dichotomy result for any graphH consisting of at most
four vertices. In particular, for any graph H on four vertices with H /∈ {P4, paw},
Cluster Deletion is NP-hard onH-free graphs, whereas it can be solved in polyno-
mial time on P4- or paw-free graphs. It is interesting to exhibit similar characterization
for a family H of graphs that handles H-free graphs.

Another area of interest is graphs with small structural parameters, since Cluster
Deletion and MaxSTC can be solved in linear time on graphs of bounded treewidth
by usingCourcelle’smachinery [28]. Although, for other structural parameters it seems
rather difficult to obtain a similar result, it is still interesting to settle the complexity
for both problems on distance hereditary graphs as they admit constant clique-width
[59]. In fact, we would like to settle the case in which from a given cograph (P4-free
graph) we can append degree-one vertices.This comes in conjunctionwith the starlike
graphs, as they can be seen as a degree-one extension of a clique.

Moreover, other structural parameters that seempromising on parameterized com-
plexity are neighborhood diversity and leafage [49, 84, 47, 65, 100]. Neighborhood di-
versity has been introduced by Lampis in [93], as a new graph parameter which gen-
eralizes vertex cover to dense graphs. A graph G = (V,E) has neighborhood diver-
sity at most w, if there exists a partition of V into at most w sets, such that all the
vertices in each set have the same type: two vertices v, v′ of G have the same type iff
N(v) \ {v′} = N(v′) \ {v}. It is a prominent parameter, since it can be seen as a
generalization of false twins and we showed that twin vertices play important role in
MaxSTC as well as in Cluster Deletion.

According to Gavril [52], a graph G is chordal if and only if G can be represented
as the intersection graph of a collection of subtrees of a host tree, the so-called tree
model of G. The leafage ℓ(G) of a connected chordal graph G is defined as the min-
imum number of leaves of the host tree of a tree model of G. This concept was first
defined by Lin et al. in [100]. It is known that leafage can be computed in polyno-
mial time on chordal graphs [65] and when the graph G is interval it holds ℓ(G) = 2.
Considering that Cluster Deletion is polynomial solvable on interval graphs and
both Cluster Deletion and MaxSTC are NP-hard on chordal graphs, it is interest-
ing if this parameter can lead to an FPT algorithm on chordal graphs. For example, an

139

Chapter 7 7.2. Open Problems

FPT algorithm for Domitation Set on connected chordal graphs parameterized by
leafage was given in [47].

As we already mentioned, the above structural parameters may be proved to be
helpful in order to show thatMaxSTC and ClusterDeletion admit FPT algorithms
with respect to suchparameters. Additionally, the parameterized complexity of Strong
F-closure can be further explored. Since maximum matching of a graph satisfy F-
Closure when F has a component with three vertices and MaxSTC admits an FPT
algorithm on graphs of maximum degree at most 4 with the above guarantee param-
eterization k − μ(G), we believe that this parameterization is interesting not only on
general graph but also on various other graph classes. In particular, is MaxSTC fixed-
parameter tractable when parameterized by k− μ(G)? What can be said about planar
graphs, since MaxSTC is already NP-hard on planar graphs?

Amore general and realistic scenario for ClusterDeletion andMaxSTC is to re-
strict the choice of the considered edges. Assume that a subset F of edges is required to
be included in the same clusters for Cluster Deletion or, analogously, the described
edges are required to be strong for MaxSTC. Then, it is natural to ask for a suitable set
of edges E′ ⊆ E\Fwith |E′| as large as possible such that the edges of E′∪F span a clus-
ter graph or satisfy the strong triadic closure, respectively. Clarifying the complexity of
such generalized problems is interesting on graphs for which Cluster Deletion or
MaxSTC are solved in polynomial time. Another generalization of MaxSTC, that is
introduced by Sintos and Tsaparas [118], is having multiple type of strong edges, since
in real world scenarios every person has different type of relation with other people.
This problem is referred to as Multi-STC. In Multi-STC an induced P3 may receive
two strong labels as long as they are different. Towards this direction, there are some
results by Bulteau et al. [14] who studied the classical and parameterized complexity of
Multi-STC and its variations such as VL-Multi-STC and EL-Multi-STC that con-
cern vertex or edge restrictions. Also Grüttemeier et al. [64] studied the parameterized
complexity of Multi-STC and EL-Multi-STC. It is interesting to study graph classes
for which VL-Multi-STC or EL-Multi-STC admit polynomial solutions.

140

Bibliography

[1] Abu-Khzam, F. N. A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76, 7 (2010), 524–531.

[2] Adcock, A. B., Sullivan, B. D., and Mahoney., M. W. Tree decompositions
and social graphs. Internet Mathematics 12 (2016), 315–361.

[3] Adriaens, F., Bie, T. D., Gionis, A., Lijffijt, J., Matakos, A., and Rozen-
shtein, P. Relaxing the strong triadic closure problem for edge strength infer-
ence. Data Min. Knowl. Discov. 34, 3 (2020), 611–651.

[4] Alon, N., Gutin, G., Kim, E. J., Szeider, S., and Yeo, A. Solving max-r-sat
above a tight lower bound. Algorithmica 61, 3 (2011), 638–655.

[5] Backstrom, L., and Kleinberg, J. Romantic partnerships and the dispersion
of social ties: a network analysis of relationship status on facebook. In Proceed-
ings of CSCW 2014 (2014), pp. 831–841.

[6] Bansal, N., Blum, A., andChawla, S. Correlation clustering. Machine Learn-
ing 56 (2004), 89–113.

[7] Bliznets, I., Cygan, M., Komosa, P., and Pilipczuk, M. Hardness of approx-
imation for H-free edge modification problems. TOCT 10, 2 (2018), 9:1–9:32.

[8] Bodlaender, H. L., Downey, R. G., Fellows, M. R., and Hermelin, D. On
problems without polynomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423–
434.

[9] Bodlaender, H. L., Jansen, B. M. P., and Kratsch, S. Kernelization lower
bounds by cross-composition. SIAM J. Discrete Math. 28, 1 (2014), 277–305.

141

Bibliography

[10] Bonomo, F., Durán, G., Napoli, A., and Valencia-Pabon, M. A one-to-one
correspondence between potential solutions of the cluster deletion problem and
the minimum sum coloring problem, and its application to P4-sparse graphs.
Inf. Proc. Lett. 115 (2015), 600–603.

[11] Bonomo, F., Durán, G., and Valencia-Pabon, M. Complexity of the cluster
deletion problem on subclasses of chordal graphs. Theor. Comp. Science 600
(2015), 59–69.

[12] Brandstädt, A., Le, V. B., and Spinrad, J. Graph Classes: A Survey. Society
for Industrial and Applied Mathematics, 1999.

[13] Bui-Xuan, B., Telle, J. A., and Vatshelle, M. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor.
Comput. Sci. 511 (2013), 66–76.

[14] Bulteau, L., Grüttemeier, N., Komusiewicz, C., and Sorge,M. Your rugby
mates don’t need to know your colleagues: Triadic closure with edge colors. In
Algorithms and Complexity (2019), Springer International Publishing, pp. 99–
111.

[15] Burzyn, P., Bonomo, F., and Durán, G. Np-completeness results for edge
modification problems. Discret. Appl. Math. 154, 13 (2006), 1824–1844.

[16] Cai, L. Fixed-parameter tractability of graph modification problems for hered-
itary properties. Information Processing Letters 58 (1996), 171–176.

[17] Cai, L., and Cai, Y. Incompressibility of H-free edge modification problems.
Algorithmica 71 (2015), 731–757.

[18] Cai, L., Chan, S., and Chan, S. Random separation: a new method for solving
fixed-cardinality optimization problems. In IWPEC 2006 (2006), pp. 239–250.

[19] Cerioli, M. R., and Szwarcfiter, J. L. Characterizing intersection graphs of
substars of a star. Ars Comb. 79 (2006).

[20] Charikar, M., Guruswami, V., and Wirth, A. Clustering with qualitative
information. In Proceedings of FOCS 2003 (2003), pp. 524–533.

[21] Chen, J., Kanj, I. A., and Xia, G. Improved parameterized upper bounds for
vertex cover. InMathematical Foundations of Computer Science 2006, 31st Inter-
national Symposium,MFCS 2006, Stará Lesná, Slovakia, August 28-September 1,
2006, Proceedings (2006), R. Kralovic and P. Urzyczyn, Eds., vol. 4162 of Lecture
Notes in Computer Science, Springer, pp. 238–249.

142

Bibliography

[22] Chitnis, R., Cygan, M., Hajiaghayi, M., Pilipczuk, M., and Pilipczuk, M.
Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput. 45, 4 (2016), 1171–1229.

[23] Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. The strong
perfect graph theorem. Annals of Mathematics 164 (2006), 51–229.

[24] Cochefert, M., Couturier, J.-F., Golovach, P. A., Kratsch, D., and
Paulusma, D. Parameterized algorithms for finding square roots. Algorith-
mica 74 (2016), 602–629.

[25] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

[26] Corneil, D., Lerchs, H., and Stewart, L. Complement reducible graphs.
Discrete Applied Mathematics 3 (1981), 163–174.

[27] Corneil, D., Perl, Y., and Stewart, L. A linear recognition algorithm for
cographs. SIAM Journal on Computing 14 (1985), 926––934.

[28] Courcelle, B. The monadic second-order logic of graphs i: Recognizable sets
of finite graphs. Information and Computation 85 (1990), 12–75.

[29] Crespelle, C., Drange, P. G., Fomin, F. V., and Golovach, P. A. A survey
of parameterized algorithms and the complexity of edge modification. CoRR
abs/2001.06867 (2020).

[30] Cygan,M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk,
M., Pilipczuk,M., and Saurabh, S. ParameterizedAlgorithms. Springer, 2015.

[31] de Ridder, H. N. Information system on graph classes and their inclusions.
graphclasses.org, accessed December 2020.

[32] Deng, X., Hell, P., and Huang, J. Linear-time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25
(1996), 390–403.

[33] Dessmark, A., Jansson, J., Lingas, A., Lundell, E., and Persson, M. On the
approximability of maximum and minimum edge clique partition problems.
Int. J. Found. Comput. Sci. 18 (2007), 217–226.

[34] Diestel, R. Graph Theory, 4th Edition, vol. 173 of Graduate Texts in Mathe-
matics. Springer, 2012.

143

Bibliography

[35] Dom, M., Lokshtanov, D., and Saurabh, S. Kernelization lower bounds
through colors and ids. ACM Trans. Algorithms 11, 2 (2014), 13:1–13:20.

[36] Downey, R. G., and Fellows, M. R. Fixed parameter tractability and com-
pleteness. In Complexity Theory: Current Research, Dagstuhl Workshop, Febru-
ary 2-8, 1992 (1992), K. Ambos-Spies, S. Homer, and U. Schöning, Eds., Cam-
bridge University Press, pp. 191–225.

[37] Downey, R. G., and Fellows, M. R. Fixed-parameter tractability and com-
pleteness II: on completeness for W[1]. Theor. Comput. Sci. 141, 1&2 (1995),
109–131.

[38] Downey, R. G., and Fellows, M. R. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999.

[39] Downey, R. G., and Fellows, M. R. Fundamentals of Parameterized Complex-
ity. Texts in Computer Science. Springer, 2013.

[40] Dyer, M. E., and Frieze, A. M. Planar 3DM is NP-complete. Journal of Algo-
rithms 7 (1986), 174–184.

[41] Easley, D., and Kleinberg, J. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. Cambridge University Press, 2010.

[42] Edmonds, J. Paths, trees and flowers. Canad. J. Math. 17 (1965), 449–467.

[43] Even, S., Pnueli, A., and Lempel, A. Permutation graphs and transitive
graphs. J. Assoc. Comput. Mach. 19 (1972), 400–410.

[44] Flum, J., and Grohe, M. Parameterized Complexity Theory. Texts in Theoret-
ical Computer Science. An EATCS Series. Springer, 2006.

[45] Földes, S., and Hammer, P. L. Split graphs. Congressus Numerantium 19
(1977), 311–315.

[46] Fomin, F., and Kratsch, D. Exact Exponential Algorithms. Springer, 2010.

[47] Fomin, F. V., Golovach, P. A., and Raymond, J. On the tractability of opti-
mization problems on h-graphs. Algorithmica 82, 9 (2020), 2432–2473.

[48] Fulkerson, D. R., and Gross, O. A. Incidence matrices and interval graphs.
Pacific Journal of Mathematics 15 (1965), 835–855.

[49] Ganian, R. Using neighborhood diversity to solve hard problems. CoRR
abs/1201.3091 (2012).

144

Bibliography

[50] Gao, Y., Hare,D. R., andNastos, J. The cluster deletion problem for cographs.
Discrete Mathematics 313 (2013), 2763–2771.

[51] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., USA, 1979.

[52] Gavril, F. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16, 1 (1974), 47 – 56.

[53] Gerber, M. U., and Kobler, D. Algorithms for vertex-partitioning problems
on graphs with fixed clique-width. Theor. Comp. Science 299 (2003), 719 – 734.

[54] Goldberg, P. W., Golumbic, M. C., Kaplan, H., and Shamir, R. Four strikes
against physical mapping of dna. Journal of Computational Biology 2, 1 (1995),
139–152.

[55] Golovach, P. A., Heggernes, P., Konstantinidis, A. L., Lima, P. T., and
Papadopoulos, C. Parameterized aspects of strong subgraph closure. In Pro-
ceedings of SWAT 2018 (2018), pp. 23:1–23:13.

[56] Golovach, P. A., Heggernes, P., Konstantinidis, A. L., Lima, P. T., and
Papadopoulos, C. Parameterized aspects of strong subgraph closure. Algo-
rithmica 82, 7 (2020), 2006–2038.

[57] Golumbic, M. Trivially perfect graphs. Discrete Mathematics 24 (1978), 105–
107.

[58] Golumbic, M. C. Algorithmic Graph Theory and Perfect Graphs. Annals of
Discrete Mathematics, Elsevier, 2004.

[59] Golumbic, M. C., and Rotics, U. On the clique-width of some perfect graph
classes. Int. J. Found. Comput. Sci. 11 (2000), 423–443.

[60] Granovetter, M. The strength of weak ties. American Journal of Sociology 78
(1973), 1360–1380.

[61] Grötschel, M., Lovász, L., and Schrijver, A. Polynomial algorithms for
perfect graphs. InTopics on Perfect Graphs, C. Berge andV. Chvátal, Eds., vol. 88
of North-Holland Mathematics Studies. North-Holland, 1984, pp. 325 – 356.

[62] Grüttemeier, N., and Komusiewicz, C. On the relation of strong triadic
closure and cluster deletion. In WG 2018 (2018), vol. 11159 of Lecture Notes in
Computer Science, Springer, pp. 239–251.

145

Bibliography

[63] Grüttemeier, N., and Komusiewicz, C. On the relation of strong triadic
closure and cluster deletion. Algorithmica 82 (2020), 853–880.

[64] Grüttemeier, N., Komusiewicz, C., and Morawietz, N. Maximum Edge-
Colorable Subgraph and Strong Triadic Closure Parameterized by Distance to
Low-Degree Graphs. In 17th Scandinavian Symposium andWorkshops on Algo-
rithmTheory (SWAT 2020) (2020), vol. 162 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 26:1–26:17.

[65] Habib, M., and Stacho, J. Polynomial-time algorithm for the leafage of
chordal graphs. In Algorithms - ESA 2009, 17th Annual European Sympo-
sium, Copenhagen, Denmark, September 7-9, 2009. Proceedings (2009), A. Fiat
and P. Sanders, Eds., vol. 5757 of Lecture Notes in Computer Science, Springer,
pp. 290–300.

[66] Hagen, L., and Kahng, A. B. New spectral methods for ratio cut partition-
ing and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 11, 9 (1992), 1074–1085.

[67] Hammer, P. L., and Simeone, B. The splittance of a graph. Combinatorica 1
(1981), 275–284.

[68] Hansen, P., and Jaumard, B. Cluster analysis andmathematical programming.
Math. Programming 79 (1997), 191–215.

[69] Hartigan, J. Clustering Algorithms. Wiley, New York, 1975.

[70] Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., and Telle, J. A.
Generalized graph clustering: recognizing (p, q)-cluster graphs. In Proceedings
of WG 2010 (2010), pp. 171–183.

[71] Hon, W., Kloks, T., Liu, H., Poon, S., and Wang, Y. On independence dom-
ination. In Proceedings of FCT 2013 (2013), pp. 183–194.

[72] Hopcroft, J. E., and Karp, R. M. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput. 2 (1973), 225–231.

[73] Ibarra, L. The clique-separator graph for chordal graphs. Discrete Applied
Mathematics 157 (2009), 1737–1749.

[74] Impagliazzo, R., Paturi, R., and Zane, F. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences 63 (2001),
512––530.

146

Bibliography

[75] Imrich, W., Klavzar, S., and Rall, D. Topics in Graph Theory: Graphs and
Their Cartesian Product. AK Peters Ltd, 2008.

[76] Jackson, M. O. Social and economic networks. Princeton University press, vol.
3, 2008.

[77] Jha, P., and Slutzki, G. Independence numbers of product graphs. Applied
Mathematics Letters 7 (1994), 91–94.

[78] Joos, F., Le, V. B., and Rautenbach, D. Forests and trees among gallai graphs.
Discret. Math. 338, 2 (2015), 190–195.

[79] Kanj, I. A., Komusiewicz, C., Sorge, M., and van Leeuwen, E. J. Solving
partition problems almost always requires pushing many vertices around. In
Proceedings of ESA 2018 (2018), pp. 51:1–51:14.

[80] Karp, R. M. Reducibility among combinatorial problems. Complexity of Com-
puter Computations (1972), 85–103.

[81] Khot, S., and Raman, V. Parameterized complexity of finding subgraphs with
hereditary properties. Theor. Comput. Sci. 289, 2 (2002), 997–1008.

[82] Kleinberg, J. M., and Tardos, É. Algorithm design. Addison-Wesley, 2006.

[83] Kleitman, D. J., and Vohra, R. V. Computing the bandwidth of interval
graphs. SIAM J. Disc. Math. 3 (1990), 373–375.

[84] Knop, D. Partitioning graphs into induced subgraphs. Discret. Appl. Math. 272
(2020), 31–42.

[85] Komusiewicz, C., and Uhlmann, J. Cluster editing with locally bounded
modifications. Discrete Applied Mathematics 160 (2012), 2259–2270.

[86] Konstantinidis, A. L., Nikolopoulos, S. D., and Papadopoulos, C. Strong
triadic closure in cographs and graphs of low maximum degree. In COCOON
2017 (2017), pp. 346–358.

[87] Konstantinidis, A. L., Nikolopoulos, S. D., and Papadopoulos, C. Strong
triadic closure in cographs and graphs of lowmaximumdegree. Theor. Comput.
Sci. 740 (2018), 76–84.

[88] Konstantinidis, A. L., and Papadopoulos, C. Maximizing the strong tri-
adic closure in split graphs and proper interval graphs. In ISAAC 2017 (2017),
pp. 53:1–53:12.

147

Bibliography

[89] Konstantinidis, A. L., and Papadopoulos, C. Cluster deletion on interval
graphs and split related graphs. In 44th International Symposium onMathemat-
ical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany (2019), P. Rossmanith, P. Heggernes, and J. Katoen, Eds., vol. 138 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 12:1–12:14.

[90] Konstantinidis, A. L., and Papadopoulos, C. Maximizing the strong triadic
closure in split graphs and proper interval graphs. Discret. Appl. Math. 285
(2020), 79–95.

[91] Konstantinidis, A. L., and Papadopoulos, C. Cluster deletion on interval
graphs and split related graphs. Algorithmica (2021).

[92] Kratsch, S., and Wahlstrom, M. Two edge modification problems without
polynomial kernels. Discrete Optimization 10 (2013), 193–199.

[93] Lampis, M. Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64, 1 (2012), 19–37.

[94] Lau, L. C. Bipartite roots of graphs. ACM Transactions on Algorithms 2 (2006),
178–208.

[95] Lau, L. C., and Corneil, D. G. Recognizing powers of proper interval, split,
and chordal graphs. SIAM J. Disc. Math. 18 (2004), 83–102.

[96] Le, V. B. Gallai graphs and anti-gallai graphs. Discrete Mathematics 159 (1996),
179–189.

[97] Le, V. B., Oversberg, A., and Schaudt, O. Polynomial time recognition of
squares of ptolemaic graphs and 3-sun-free split graphs. Theor. Comp. Science
602 (2015), 39–49.

[98] Lekkerkerker, C. G., and Boland, J. C. Representation of a finite graph by a
set of intervals on the real line. Fundam. Math. 51 (1962), 45–64.

[99] Lewis, J. M., and Yannakakis, M. The node-deletion problem for hereditary
properties is np-complete. Journal of Computer and SystemSciences 20, 2 (1980),
219 – 230.

[100] Lin, I., McKee, T. A., and West, D. B. The leafage of a chordal graph. Discuss.
Math. GraphTheory 18, 1 (1998), 23–48.

[101] Lokshtanov, D., Marx, D., and Saurabh, S. Lower bounds based on the
exponential time hypothesis. Bulletin of the EuropeanAssociation forTheoretical
Computer Science 105 (2011), 41––72.

148

Bibliography

[102] Looges, P. J., and Olariu, S. Optimal greedy algorithms for indifference
graphs. Computers & Mathematics with Applications 25 (1993), 15–25.

[103] Mahadev, N. V. R., and Peled, U. N. Threshold Graphs and Related Topics,
vol. 56. North Holland, 1995.

[104] McConnell, R. M., and Spinrad, J. P. Modular decomposition and transitive
orientation. Discrete Mathematics 201, 1 (1999), 189 – 241.

[105] Micali, S., and Vazirani, V. V. An O(
√
|V||E|) algorithm for finding maxi-

mum matching in general graphs. In FOCS 1980 (1980), pp. 17–27.

[106] Milanič, M., and Schaudt, O. Computing square roots of trivially perfect
and threshold graphs. Discrete Applied Mathematics 161 (2013), 1538–1545.

[107] Natanzon, A., Shamir, R., and Sharan, R. Complexity classification of some
edge modification problems. Discret. Appl. Math. 113, 1 (2001), 109–128.

[108] Pfaltz, J. L. Chordless cycles in networks. In Proceedings of ICDE Workshops
2013 (2013), pp. 223–228.

[109] Protti, F., da Silva, M. D., and Szwarcfiter, J. L. Applying modular de-
composition to parameterized cluster editing problems. Theory Comput. Syst.
44 (2009), 91–104.

[110] Roberts, F. S. Indifference graphs. In Proof Techniques in Graph Theory, Aca-
demic Press, New York (1969), pp. 139–146.

[111] Rose, D. J. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In Graph Theory and Computing, R. C.
READ, Ed. Academic Press, 1972, pp. 183 – 217.

[112] Rotabi, R., Kamath, K., Kleinberg, J., and Sharma, A. Detecting strong ties
using network motifs. In Proceedings of WWW 2017 (2017), pp. 983–992.

[113] Rozenshtein, P., Tatti, N., andGionis, A. Inferring the strength of social ties:
a community-driven approach. In Proceedings of KDD 2017 (2017), pp. 1017–
1025.

[114] Schaeffer, S. E. Graph clustering. Computer Science Review 1, 1 (2007), 27–64.

[115] Shamir, R., and Sharan, R. A fully dynamic algorithm formodular decompo-
sition and recognition of cographs. Discrete Applied Mathematics 136 (2004),
329–340.

149

Bibliography

[116] Shamir, R., Sharan, R., and Tsur, D. Cluster graph modification problems.
Discrete Applied Mathematics 144 (2004), 173–182.

[117] Sharan, R., and Shamir, R. Click: a clustering algorithm with applications
to gene expression analysis. Proceedings. International Conference on Intelligent
Systems for Molecular Biology 8 (2000), 307–16.

[118] Sintos, S., and Tsaparas, P. Using strong triadic closure to characterize ties
in social networks. In Proceedings of KDD 2014 (2014), pp. 1466–1475.

[119] Sun, L. Two classes of perfect graphs. Journal of Combinatorial Theory, Series
B 53, 2 (1991), 273 – 292.

[120] Telle, J. A., and Proskurowski, A. Algorithms for vertex partitioning prob-
lems on partial k-trees. SIAM J. Discrete Math. 10 (1997), 529–550.

[121] Ugander, J., Backstrom, L., and Kleinberg, J. Subgraph frequencies: Map-
ping the empirical and extremal geography of large graph collections. In Pro-
ceedings of WWW 2013 (2013), pp. 1307–1318.

[122] van Bevern, R., Tsidulko, O. Y., and Zschoche, P. Fixed-parameter algo-
rithms formaximum-profit facility location undermatroid constraints. InAlgo-
rithms and Complexity - 11th International Conference, CIAC 2019, Rome, Italy,
May 27-29, 2019, Proceedings (2019), P. Heggernes, Ed., vol. 11485 of Lecture
Notes in Computer Science, Springer, pp. 62–74.

[123] Woeginger, G. Exact algorithms for NP-hard problems: a survey, vol. 2570.
Lecture Notes in Computer Science, Springer, 2003.

[124] Wu, Z., and Leahy, R. An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 15, 11 (1993), 1101–1113.

[125] Yannakakis, M. Edge-deletion problems. SIAM Journal on Computing 10, 2
(1981), 297–309.

150

Short CV

Athanasios L. Konstantinidis is a PhD candidate at the Department of Mathemat-
ics of the University of Ioannina and supervised by Associate Professor Charis Pa-
padopoulos. His PhD studies are supported by a grant from the National Grant Foun-
dation of Greece (IKY). He received his B.Sc and M.Sc degrees from the same depart-
ment at 2014 and 2016 respectively. Throughout his studies he was labs assistant in
the following courses: Introduction to Computers, Introduction to Programming and
Data Structure. His research focuses on theoretical computer science and in particular
on design and analysis of algorithms and algorithmic graph theory. He has published
research papers in journals and refereed conferences. He has given research talks at
ACAC 2017 (Greece), Algorithms Seminars 2017 (Dept. of Informatics, University
of Bergen, Norway), ISAAC 2017 (Thailand), 2nd Conference of Young Researchers
in the Branches of Mathematical Science 2018 (Dept. of Mathematics, University of
Ioannina, Greece), SWAT 2018 (Sweden), MFCS 2019 (Germany).

151

152

List of Publications

The results of this thesis have already been published [55, 56, 86, 87, 88, 89, 90, 91].
For completeness, here we list the related publications in chronological order:

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis, and Charis Papadopoulos. In 28th In-
ternational Symposium on Algorithms and Computation (ISAAC 2017), Leibniz
International Proceedings in Informatics (LIPIcs), pages 53:1–53:12, 2017.

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos. 23rd
Annual International Computing andCombinatorics Conference, (COCOON2017),
Hong Kong, China, 2017. Springer Verlag, LNCS 10392: 346–358.

• Strong triadic closure in cographs andgraphsof lowmaximumdegree.Athana-
sios L. Konstantinidis, Stavros D. Nikolopoulos, and Charis Papadopoulos.The-
oretical Computer Science 740: 76 -84, 2018.

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima andCharis Papadopou-
los. 16th Scandinavian Symposium andWorkshops on AlgorithmTheory, (SWAT
2018), Malmo, Sweden, 2018. Leibniz-Zentrum fur Informatik, LIPIcs 101: 23(1)-
23(13), 2018.

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis andCharis Papadopoulos. 44th International SymposiumonMath-
ematical Foundations of Computer Science,(MFCS 2019), Aachen,Germany, 2019.
Leibniz-Zentrum fur Informatik, LIPIcs 138: 12(1)-12(14), 2019.

• Parameterized aspects of strong subgraph closure. Petr A. Golovach, Pinar
Heggernes,Athanasios L.Konstantinidis, PalomaT. Lima, andCharis Papadopou-
los. Algorithmica 82: 2006-2038, 2020.

153

• Maximizing the strong triadic closure in split graphs and proper interval
graphs. Athanasios L. Konstantinidis and Charis Papadopoulos. Discrete Ap-
plied Mathematics 285: 79-95, 2020.

• Cluster deletion on interval graphs and split related graphs. Athanasios L.
Konstantinidis and Charis Papadopoulos. Algorithmica, 2021.

154

	Abstract
	Περίληψη
	1 Introduction
	1.1 Graph modification problems
	1.2 Previously known results
	1.3 Our contribution
	1.4 Road map

	2 Definitions and Notations
	2.1 Basic Concepts on Graph Theory
	2.2 Graph Classes
	2.3 Computational Complexity
	2.4 Problem Definitions

	3 MaxSTC on Split and Proper Interval Graphs
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Basic Results
	3.2.2 The line-incompatibility graph and twin vertices

	3.3 MaxSTC on split graphs
	3.4 Computing MaxSTC on proper interval graphs

	4 MaxSTC on Cographs and graphs of low maximum degree
	4.1 Introduction
	4.2 Preliminaries
	4.3 Computing MaxSTC on Cographs
	4.3.1 Maximum independent set of the cartesian product of cographs

	4.4 Graphs of Low Maximum Degree

	5 Cluster Deletion on Interval graphs and Starlike graphs
	5.1 Introduction
	5.2 Preliminaries
	5.3 Polynomial-time algorithm on interval graphs
	5.3.1 Splitting into partial solutions

	5.4 Cluster Deletion on starlike graphs
	5.4.1 Polynomial-time algorithms on subclasses of starlike graphs

	6 Parameterized Aspects of Strong Subgraph Closure
	6.1 Introdution
	6.2 Preliminaries
	6.3 Parameterized complexity of Strong F-closure
	6.4 Parameterized complexity of MaxSTC
	6.5 Further Results

	7 Conclusion
	7.1 Summary
	7.2 Open Problems

	Bibliography
	Short CV
	List of Publications

