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Chapter 1

Introduction

The elastic constants are an important property of the material. They determine the behavior of materials

under arbitrary, fairly small deformations. Over the last decades several simulation methods have be

been developed based on an atomistic arrangement and a given interatomic interaction. There are several

approaches to calculate the elastic constants of a material, using strain fluctuation methodology, from

the strain-stress curve under applied stress or from the central difference of elastic energy. In the first,

displacement and, therefore, strain is calculated in comparison to a reference state and then elastic stiffness

constants are obtained through a transformation of the elastic compliance constants. The method of

using strain fluctuations has evolved and yields the elastic constants run in different thermodynamic

ensembles. The withdraw is the time-consuming convergence and the accuracy that is limited mainly at low

temperatures. Also under certain temperature and pressure conditions, strain fluctuations can be enhanced

if Born stability criteria are not satisfied. [1, 2, 3, 4] In the strain-stress curve method, for every elastic

constant an appropriate strain (or stress) have to applied. Also, this method can be problematic because of

the possibility of setting up a plastic flow in the system. [5]. Additionally, elastic constants can be obtained

by applying strain and calculating the elastic constants with respect to the second derivative of elastic

energy but this method is limited only at the temperature of 0K.

All real crystals contain imperfections which may be point, line, surface or volume defects and which disturb

the perfect arrangement of atoms. In this work, line defects, the so-called dislocations are considered.

Their modern study began independently in 1934 by Orowan, Polanyi and Taylor [6, 7, 8] in an attempt to

reconcile the theoretical and experimental values of the applied shear stress required to plastically deform a

single crystal. Plastic deformation occurs by the glide of dislocations and hence the critical shear stress for

the onset of plastic deformation is the stress required to move dislocations. Thus, a study of dislocations

and their associate quantities are of great interest.
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CHAPTER 1. INTRODUCTION

The atomistic simulations of individual dislocations require special treatment due to the long-ranged field

associated with them. Fixed Boundary Conditions (FBC) have been used in dislocation simulations,

where the exterior atoms of the simulation cell are frozen to their lattice positions. This requires very

large simulation cells and, therefore, computational memory requirements and time. Also, this method is

problematic because of the force built-up between fixed and relaxed atomic regions. To get rid of the external

boundary in all three directions, one can use Periodic Boundary Conditions (PBC) but the dislocation

should be introduced in the simulation cell as dislocation dipole, i.e. two dislocations with opposite Burgers

vectors. This way, the stress of these two dislocations will cancel at long distances as well as the elastic

interaction with image dislocations that appear because of the PBC. [9] Also, dislocation loss is also a

possible impementation due to the fact that dislocations glide at finite temperature and can be absorbed

by the boundary. In this work, Helicoidal Boundary Conditions (HBC) are originally applied in dislocation

simulation that overcome the aforementioned implementations.

The presence of dislocations create an elastic field around the dislocation that is declining inversely

proportional to the distance (∼ 1/r). The atoms near the core of the dislocation, i.e. the region in the

immediate vicinity of the line defect, are extremely distorted relatively to their normal lattice position, and

the result is the accumulation of elastic energy in the body. The excess of elastic strain energy has logarithmic

dependence on the distance from the dislocation core. In the present thesis, we introduced perfect screw

dislocations in aluminum (Al), copper (Cu) and tungsten (W) to calculate the shear modulus. Additionally,

the elastic constants C44 either for the isotropic case of Al and W or anisotropic case of Cu were obtained.

In the case of fcc metals, where the screw dislocation dissociates into co-planar partial screw dislocation, the

intristic stacking fault energy γ was calculated. In addition, we use a new potential interatomic potential for

W that is proved to be a very realistic approach for, otherwise, very difficult to describe semi-empirically.
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Chapter 2

Basic Elements on the Theory of

Elasticity

Solid bodies are said to be strained when the relative positions of points in the medium are altered . The

change in the position of the material points, when accompanied by a change in the distance between them,

is called deformation. When a body is deformed forces arise, called internal stresses, that tend to return the

body to equilibrum. Stress is linearly related to strain for small destortions via elastic stiffness constants.

Solids possessing symmetry, i.e. cubic symmetry, can have reduced number of elastic constants. For isotropic

solids the number of elastic constants is further reduced to only two elastic constants.

2.1 Strain tensor

The position of any point in the solid is defined by its radius vector r (with components xi) in a coordinate

system embedded in the body. The deformation of a body is described with the strain tensor in the following

way. Let a certain point have a radius vector r before deformation, and after the deformation have a different

value r′ with components x′i. [10] [11] The displacement vector is defined

ui = x′i − xi (2.1)

Let us consider two points close together. If the radius vector joining them before the deformation is dxi,

then the radius vector joining them in the deformed body would be dx′i = dxi + dui. The distance between

the two points is dl2 = dx2i and dl′
2

= dx′
2
i = (dxi + dui)

2 respectively, where the summation over i is
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CHAPTER 2. BASIC ELEMENTS ON THE THEORY OF ELASTICITY

implied. Substituing dui = (∂ui/∂xk)dxk, we can write

dl′
2

= dl2 + 2
∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl (2.2)

The summation is taken over both suffixes i and k in the second term, thus we can write ∂uk/∂xidxidxk

instead. In the third term, we interchange the suffixes i and l. Then dl2 takes the final form

dl′
2

= dl2 + 2εikdxidxk

where the tensor is defined as

εik =
1

2
(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂ui

∂ul
∂uk

) (2.3)

The tensor εik is called the strain tensor. By definition it is a symmetrical tensor, therefore it can be

diagonalised at any given point by choosing co-ordinate axes so that only the diagonal components ε11, ε22, ε33

are non-zero. Each of these strains is a simple extension (or compression) in the corresponding direction.

In practice for almost all cases, the strains are small. This means that the relative extensions are very small

compared with unity. Thus for small deformations, the third term will be neglected as being of second-order.

This procedure results in linear theory of elasticity, which is a good approximation for small displacements.

In general, the strain tensor is given

εik =
1

2
(
∂ui
∂xk

+
∂uk
∂xi

) (2.4)

For the off-diagonal components, i 6= j, that is, for shear strains Eq.(2.4) gives only half the shear strain, as

usually defined in engineering,

γij = 2εij , i 6= j

As showm in Figure 2.1, shear strain γij = φ1 + φ2 can be interprented as the angle of shear.

2.2 Stress tensor

When a body is not deformed, all parts of the body are in mechanical equilibrium. When deformation occurs,

the arrangement of the atoms is changed, and the body ceases to be in its initial state of equlibrium. Forces

therefore arise which tend to return the body to equilibrium. The internal forces per area, due to molecular

7



CHAPTER 2. BASIC ELEMENTS ON THE THEORY OF ELASTICITY

Figure 2.1: Shear displacements u1 and u2 and angles of shear φ1 and φ2 [9]

forces (i.e. interatomic forces) which occur when a body is deformed are called internal stresses.

Molecular forces are short range, their effect extends to a distance as betweeen atoms. In the theory of

elasticity, the distances considered are much greater compared to distances between atoms, therefore the

forces exerted on any part of the body by surrounding parts act only of the surface of that part.

Let us consider the total force on some portion of a body. It is the sum of all the forces on all volume elements

in that portion of the body,
∫
F dV , where ~F is the force per unit volume and FdV the force on the volume

element dV . With the above discussion, however, all these forces act on the surface of that portion, and so

the resultant force can be represented as the sum of forces acting on all the surfaces elements, i.e. as an

intergral over the surface. ∫
FdV =

∫
∂σik
∂xk

dV =

∮
σikdfk

The tensor σik is called the stress tensor. The σikdfk is the i-th component of the force on the surface element

perpendicular to the xk-axis.

Stress tensor is also symmetrical σij = σji. At rest, each volument element of the solid must be in mechanical

equilbrium. There are no torque on the element as a consequence of the symmetry of stress tensor. Also, no

net force can act on the element, so that

∂σij
∂xj

+ fi = 0 (2.5)

where fi is the ith component of the body force per unit volume.
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Figure 2.2: Stress distribution on a infitensimal volume element [9]

2.3 Elastic energy

For small distortions stresses depend linearly on deformation

σij = Cijklεkl (2.6)

The coefficients Cijkl are called the elastic constants. By virtue of both strain and stress tensor, it follows

that

Cijkl = Cjikl = Cijlk = Cjilk (2.7)

Substituting Eq.(2.4) and Eq. (2.6) into Eq. (2.5) yields the expression

σij = Cijkl
∂ul
∂uk

(2.8)

The further substitution of Eq.(2.8) into (2.5) gives

Cijkl
∂2uk
∂xj∂xl

+ fi = 0 (2.9)

We suppose that the deformation process occurs so slowly that is thermodynamically reversible. Then the

elastic strain energy is given by the work done on that element by the stresses acting

dW = σijdεij = Cijklεkldεij

The Helmholtz free energy for a reversible and isothermal change is

dF = −SdT + dW

9



CHAPTER 2. BASIC ELEMENTS ON THE THEORY OF ELASTICITY

If the deformation is reversible and isothermal, and if the work done is, in general, restricted to that of

elastic deformation, the differential work is equal to the differential change in Helmholtz free energy

dF = dW = Cijklεkldεij (2.10)

Thus,

∂2F

∂εij∂εkl
= Cijkl (2.11)

The free energy is a function of state and dF is a exact differential, so that the order of differentation in Eq.

(2.11) is immaterial. Hence, Eq.(2.11) indicates that

Cijkl = Cklij (2.12)

The strain energy-density is determined from Eq. (2.10) to be

w =
1

2
Cijklεijεkl (2.13)

2.4 Elastic constants

The Cijkl is a 9x9 matrix. Direct consequence of the symmetry in strain and stress tensor is that only

36 out of 81 components of the elastic stiffness tensor are independent and distinct terms. Additional

simplification of the stress-strain relationship can be realized through simplification of the matrix notation.

It is common for elastic constants to be written in a contracted form as Cmn, where m and n are each indices

corresponding to a pair of indices ij and kl, as followed :

ij or kl 11 22 33 23 31 12 32 13 21

m or n 1 2 3 4 5 6 7 8 9

Of the 36 elastic constants, there are six constants where m = n, leaving 30 constants where m 6= n.

Only one-half of these are independent due to symmetry Cmn = Cnm (Eq. (2.12)), thus for the general

anisotropic linear elastic solid there 21 independent elastic constants. It is usually written in the following

6x6 representation where γij are used for shear strains instead of εij :
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CHAPTER 2. BASIC ELEMENTS ON THE THEORY OF ELASTICITY



σ11

σ22

σ33

σ23

σ31

σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

γ23

γ31

γ12


(2.14)

Cubic crsytals

The number of independent elastic stiffness constants are further reduced because of crystal symmetry. In the

case of cubic crystal there are only three independent elastic stiffness constants. Let the coordinate axes be

parallel to the cube edges. In Eq. (2.14) we must have: C11 = C22 = C33, C12 = C23 = C13, C44 = C55 = C66

due the fact that x,y and z axes are identical by 90◦ rotations. Also the off-diagonal shear components are

zero, ie. C45 = C56 = C46, and mixed compression/shear does occur, i.e. C14 = C24 = ... = 0. Therefore, the

cubic elasticity matrix is

Cmn =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(2.15)

and the relation between σ and ε from Eq (2.14) and Eq.(2.15) are:

σ11 = C11ε11 + C12ε22 + C12ε33 σ23 = 2C44ε23

σ22 = C12ε11 + C22ε22 + C12ε33 σ31 = 2C44ε31

σ33 = C12ε11 + C12ε22 + C11ε33 σ12 = 2C44ε12

(2.16)

2.5 Elasticity theory of isotropic solids

If the medium is elastically isotropic, i.e. the elastic properties are independent of the directions, only two

independent constants are required. Let only ε11 6= 0, so that Eq. (2.16) gives

σ11 = C11ε11

σ22 = σ33 = C12ε11 = C12

C11
ε11
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CHAPTER 2. BASIC ELEMENTS ON THE THEORY OF ELASTICITY

The transformation matrix to rotate the cooordinate system 45◦ about z axis is:

Tij =


√
2
2

√
2
2 0

−
√
2
2

√
2
2 0

0 0 1


Strain and stress transforms the following way

ε′12 = T11T12ε11

σ′12 = −1

2
σ11 +

1

2
σ22 = −1

2
C11ε11 +

1

2
C12ε11 = (C11 − C12)ε′12

But from Eq. (2.16), σ′12 = 2C44ε
′
12, so that

(C11 − C12) = 2C44

and only two of three elastic constants are independent. For anisotropic cubic crystals, the anisotropy ratio

is defined

A =
2C44

C11 − C12

For isotropic materials A = 1 and for anisotropic materials the degree of anisotropy is measured by the

deviation of A from unity. When this condition is satisfied, it is usual to express Eq. (2.16) in terms of the

two elastic constants λ (the Lame constant) and G (the shear modulus)

σ11 = 2Gε11 + λ(ε11 + ε22 + ε33) σ12 = 2Gε12

σ22 = 2Gε22 + λ(ε11 + ε22 + ε33) σ23 = 2Gε23

σ33 = 2Gε33 + λ(ε11 + ε22 + ε33) σ13 = 2Gε13

(2.17)
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Chapter 3

Introduction to dislocation theory

Metals and many important non-metallic classes of solids are crystalline, i.e. the constituent atoms are

arranged in a regular sequence that repeats itself periodically in three dimensions. The actual arrangement

of the atoms is described by the crystal structure. The crystal strucures of most pure metals are relatively

simple. The most common are the body-centered cubic, face-centered cubic and close-packed hexagonal.

Real crystals contain imperfections; dislocations are linear defects, around which atoms of the crystal lattice

are misaligned. There are two basic types of dislocations, the edge dislocation and the screw dislocation.

In this chapter basic concepts of dislocations are introduced. The strain and stress of a scew dislocation is

derived, as well as the strain energy. Furthermore, slip and dissociation of dislocations are presented for fcc

and bcc metals.

3.1 Geometry of dislocations

Figure 3.1 depicts a simplified descriptive model of the atomic arrangement and bonding in a simple cubic

structure. For convenience it is assumed that the bonds can be represented by flexible springs between

adjacent atoms. Neverthelesss, bonding in real solids is complex and the nature of bonds can determine

the equilibrium positions of atoms. Edge dislocation can be represented in the following way: all the bonds

across the surface ABCD are broken and the faces of the crystal are separated so that an extra half-plane of

atoms can be inserted in between. The only large distortion of the atoms from their normal positions relative

to their neighbors is close to the line DC. The region of irregularity extends few lattice periods and decrease

with increasing distance from the line. The line DC is an edge dislocation.

A screw dislocation can be obtained by displacing the crystal on one side of ABCD relative to the other

side in the direction AB as in Figure 3.2. The presence of a straight screw dislocation transforms the crystal

13



CHAPTER 3. INTRODUCTION TO DISLOCATION THEORY

Figure 3.1: (a) Model of simple cubic lattice (b) Edge dislocation DC formed by inserting an extra half-plane
of atoms in ABCD [12]

planes into a helicoidal surface. The line DC is a screw dislocation. Looking down the dislocation line, if

the helix advances one plane when a clockwise circuit is made round, it is referred to as right-handed screw

dislocation, and if the reverse is true it is a left-handed.

Figure 3.2: (a) A left-hand screw dislocation (b) A right-hand screw dislocation [12]

3.2 Burgers vector and Burgers circuit of a dislocation

We consider a dislocation in a simple cubic lattice as in Figure 3.1. Figure 3.3 shows a section normal

to a cube plane intersected by an edge dislocation and a perfect reference lattice, where the translation

vector mt1 + nt2, with m = 1, 2, 3, n = 1, 2, 3. After passage around any closed atom-to-atom loop that

encircles the dislocation line the displacement vector to enclose the loop in the perfect reference lattice

receives a certain increment b, called the Burgers vector, which is equal to one of the lattice vectors

in magnitude and direction. We define the sense of the dislocation line by assigning a unit vector ~ξ

parallel to the dislocation line and taking the positive sense in the direction of ~ξ. Burgers vector now can

be defined by the procedure illustrated in Figure 3.3, where the positive sense of ~ξ is taken to be into the paper.

For a Burgers circuit enclosing a screw dislocation the Burgers vector is parallel to the dislocation line sense.

Thus:

a) The Burgers vector of an edge dislocation is normal to the line of the dislocation.

14
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Figure 3.3: Burgers circuit about an edge dislocation [9]

b) The Burgers vector of a screw dislocation is parallel to the line of the dislocation.

In general the dislocation line lies in an arbitrary angle to its Burgers vector and the dislocation has a mixed

edge and screw character.

3.3 Glide

Dislocations move under internal or applied stress. Glide occurs when the dislocation moves in the surface

that contains both its line and Burgers vector. Glide of many dislocations results in slip, which is one of the

main mechanisms of plastic deformation in crystalline solids. It can be envisaged as sliding of one plane of

atoms over another.

The slip planes are normally the planes with the highest density of atoms and the direction of slip is the

direction in the slip plane corresponding to one of the shortest lattice translation vectors.

The glide plane of an edge dislocation is normal to plane defined by the dislocation line and the Burgers

vector ~b× ~ξ.For a screw dislocation, however, where ~b is parallel to ~ξ, (~b× ~ξ = 0), any plane for which ~b is a

zone axis is a possible glide plane.

15
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3.4 Screw dislocation

The elastic distortion of an infinitely-long straight dislocation can be represented in terms of a cylinder of

material. In Figure 3.4 (a) there is a screw dislocation AB; the cylinder in Figure 3.4 (b) has been deformed

to produce a similar distortion.

The elastic field in the dislocated cylinder can be found directly. There are no displacements in the x and y

directions ux = uy = 0. The displacement in the z-direction increases from zero to b as θ increases from 0 to

2π :

uz =
bθ

2π
=

b

2π
arctan(y/x)

It is found from Eq. (1.4) that

εxx = εyy = εzz = εxy = εyx = 0

εxz = εzx = − b

4π

y

x2 + y2
= − b

4π

sinθ

r

εyz = εzy =
b

4π

x

x2 + y2
=

b

4π

cosθ

r

(3.1)

From Eq (1.16) and Eq. (1.17), the components of stress are

σxx = σyy = σzz = σxy = σyx = 0

σxz = σzx = −Gb
2π

y

x2 + y2
= −Gb

2π

sinθ

r

σyz = σzy =
Gb

2π

x

x2 + y2
=
Gb

2π

cosθ

r

(3.2)

It is practical to write the stress components in cylindrical polar coordinates using the relations

σrz = σxz cos θ + σyz sin θ

σθz = −σxz sin θ + σyz cos θ

(3.3)

and similarly for the shear strains, the only non-zero components are found to be

εθz = εzθ =
b

4πr

σθz = σzθ =
Gb

2πr

(3.4)

K
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Figure 3.4: (a) Screw dislocation AB formed in a crystal (b) Elastic distortion of a cylindrical tube simulating
the distortion produced by the screw dislocation [12]

3.5 Strain energy of a dislocation

The existence of distortion around a dislocation implies that a crystal is not its lowest energy state. The

total strain energy is divided into two parts

Etotal = Ecore + Eelasticstrain (3.5)

The elastic part, stored outside the core, may be determined by intergration of Eq. (1.13) for each small

element of volume that for a screw dislocation is cylidrical shell of radius r and thickerss dr. The elastic

strain energy stored in this volume per length of dislocation is

dEel(screw) =
1

2
2πrdr(σθzεθz + σzθεzθ) = 4πrdrGε2θz (3.6)

Thus, by replacing the strain of screw dislocation in the above equation, the total elastic energy stored in

the cylinder (Figure 3.4) per unit length of dislocation is

Eel(screw) =
Gb2

4π

∫ R

r0

dr

r
=
Gb2

4π
ln(

R

r0
) (3.7)

where R is the outer radius and r0 is the core radius. The energy Eel(screw)/L diverges as R → ∞ or as

r0 → 0. The divergence with R shows one cannot ascribe a definite characteristic energy to the dislocation;

the energy depends on the size of the crystal. The divergence with r0 arises becauses linear elasticity theory

ceases to be valid due the extreme lattice distortion near the core of the dislocation. Therefore the intergral

is taken from r0 to the outer radius. A reasonable value for dislocation core radius lies in the range b to 4b.
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The elastic strain energy of an edge dislocation are

Eel(edge) =
Gb2

4π(1− ν)
ln(

R

r0
) (3.8)

The elastic strain energy of a mixed dislocation can be written as the superposition of the screw and edge

counterparts. The energy per unit length is relatively insensitive to the type of the dislocation and the values

of R and r0 because of the logarithmic dependence, thus, all equations can be approximately written

Eel = αGb2 (3.9)

where α ≈ 0.5− 1.0. This leads to Frank’s rule; that two dislocations react and combine if it is energetically

favorable. If (b21 + b22 > b23) then the reaction is favorable. If (b21 + b22 < b23) the reaction is unfavorable and

the dislocation with Burgers vector dissociates into partial dislocations.

3.6 Forces on dislocations

Forces on dislocations are virtual. Applied stress does work on a crystal when a dislocation moves; the

dislocation responds to the stress as it experiences a force equal to the work done divided by the distance it

moves. The force between two dislocations is determined from the work done of introducing a dislocation in

a crystal against the stresses of another dislocation present. [13] [peach and ]

The force ~F acting on a dislocation of length L can be obtained from relation

~F = (~b · ¯̄σ)× ~L (3.10)

3.7 Dislocations in FCC metals & Stacking fault

The geometry of a close packed plane of hard spheres such as the (111) plane in an fcc crystal is shown in

Figure 3.5. We can distinguish two kinds of hollows in such a plane; we call them arbitrarily B and C. The

next layer in a closed packed stacking will now fill either all the B hollows or all the C hollows. Two hollows

of the same nature are separated by the vector of the type 1
2 [110]. If such two layers are to glide one with

respect to the next one, perfect register is achieved after glide over a vector of the type 1
2 [110] (Amelinckx

citation).

According to dislocation theory this glide motion is performed by the movement of a dislocation with

Burgers vector ~b1 = 1
2 [110]. It is energetically more favorable to perform this motion in two steps: the first

step leading to an intermediate position, whereby the atom occupies the wrong type of hollow, the second

step brings the layer in the right type of hollows.(Heiderich, Schockley) In this way atoms from B site instead
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of moving over the top of A atoms (vector ~b1) will move first to the nearby C site along the ’valley’ between

the two A atoms (vector ~b2) the then to the new B site via a second ’valley’ (vector ~b3).

Figure 3.5: Slip of {111} planes in face-centeed cubic metals [12]

Thus the perfect dislocation splits into two partial dislocations. Partials dislocations of the type 1
2 < 112 >

which are glissile in the {111} planes are called Schockley partials.

The region between the two partial dislocations is faulted, since the top layer occupies the wrong

family of hollows. The region in the faulted region between the two partials then becomes

...ABCABCBCABA...

it contains a triplet in the hexagonal arrangement ..BCBC.. The dislocations with Burgers vector ~b2 = 1
2 [21̄1̄]

and ~b3 = 1
2 [112̄] are called partial since they are not lattice vectors.

Figure 3.6: Dissociation of a perfect dislocation into Shockley partials [9]
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Frank’s rule shows that the reaction is energetically favorable, for from ~b1
2

= a2/2 which is greater than

~b2
2

+ ~b3
2

= a2/3. The two partial dislocations with Burgers vector ~b2 and ~b3 repel each other. In contrast,

if the partials move apart from each other, they increase the surface of the stacking fault and increase the

stacking fault energy, which amounts to E = γr per unit length of dislocation are separated by r. The

restoring force −∂E/∂r = −γ is attractive.

Equilibrating this repulsive force with the attractive stacking fault leads to stable equilibrium distance

between partials

re =
Gb21
8πγ

2− ν
1− ν

(1− 2νcos2β

2− ν
) (3.11)

As shown in Figure 3.6 the angle β is between perfect screw dislocation and its line sense, ν is Poisson’s ratio

and b1 the Burgers vector of the perfect screw dislocation.

3.8 Dislocations in BCC metals

The dislocation geometry in the body-centered cubic crystals differs from that in the face-centered cubic

crystals. The dislocation core structure in BCC metals are not dictated by geometry alone, but are influenced

also by the potential.

The shortest lattice vectors in BCC metals are of the α
2 [111] type, and slip is indeed observed to occur in

the [111] direction. There have been also observed dislocations of the [100] type, but those are thought to

be products of reactions between 1
2 [111] dislocations. The most widely spaced atomic planes in bcc metals

are the {110} planes. It has been generally observed that slip occurs most actively in {110} planes. [14]

However, slip on {112} and even {123} planes has been also observed at higher temperatures, as {112}

planes have the second largest spacing and {123} planes rank the third among the planes that contain the

[111] direction.

Screw dislocations in bcc metals do not dissociate into a plane, as in fcc metals, because there are no stable

stacking faults in bcc metals. Various variants of screw dislocation splitting were considered. [15] Eventually,

with the help of computer simulations, a three-way dissociation into three equivalent {110} planes emerged.

Vitek et al. [16] and Duesbery et al. [17],[18] have shown that such a dissociation can occur even when no

plane of the zone contain a stable stacking fault. Therefore, the term ”dissociation” implies that the perfect

screw dislocation somehow splits into several partial dislocations.
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Figure 3.7: Stacking of BCC structure (a) Three-dimensional view (b) Plan view [19]

3.8.1 Stacking sequence on {110} planes

In Figure 3.7 (a) we see three adjacent unit cells of the bcc crystal structure. The atoms on each (110) plane

form a centered-rectangle lattice. The atomic layer, labelel as A, passing through the origin is shown as

white spheres with solid borders and the next atomic layer, labeled as layer B, in the [110] direction is shown

as gray spheres with solid borders. The entire bcc crsytal structure can be considered as (110) atomic layers

stacked on top of each other in the sequence ABAB... . The Figure 3.7 (b) showsthe bcc crystal structure

viewed in the [110] direction. Layer B is displaced from layer A in out-of-plane direction by α/sqrt2, where

α is the lattice constant.

3.8.2 Stacking sequence on {112} planes

Figure 3.8 shows a set of (11̄2) atomic planes in a bcc crystal. There are six types of (11̄2) layers,stacked

ontop of each oher in a periodic pattern of ABCDEFABCDEF... . Figure 3.9 a has the same viewing direction

as that used in Figure 3.7 b. White atoms are in the plane of the paper, and the coordinates of the gray

atoms have an out-of-plane component of α
2 . The dashed lines represent the (11̄2) of Figure 3.8 and the

horizontal axis is along the [1̄11 direction.

Suppose that layer B (together with all layers above it) slips relative to layer A by α
6 [1̄11], then it becomes

layer F, as shown in Figure 3.9b. The stacking sequene becomes ABCDEFA|FABCDE..., where | indicates

the plane on which slip occurs. The result is an intristic stacking fault, and the same sequence can be obtained

if four layers (BCDE) were removed. This result is analogous to the intristic stacking fault ..ABC|BCA... in

fcc metals, that can also be obtained by either slip ir removing an atomic layer.
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Figure 3.8: The (11̄2) planes of a bcc crystal showing the six layers comprising the ABCDEF... stacking
sequence. [19]

Figure 3.9: BCC crystal viewed along the [110] direction, showing the stacking sequence on the (11̄2) plane
(a) Perfect stacking sequence ABCDEF... (b) If the layer slips relative to layer A by α

6 [1̄11], it becomes layer
Fcreating an intristic stacking fault [19]
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Chapter 4

Molecular dynamics

4.1 Why simulations

Computer simulation is a widely used tool in modelling natural systems and predicting dynamic behavior in

many scientific fields, both in academic research and industry. It allows for adequately describing structure,

energetics and dynamics at the microscopic level, which govern material properties on the macroscopic level.

Therefore it provides convenient access to material properties, particularly if they are difficult to obtain

by experiment, like in the scope of this thesis where elastic properties of dislocations are under study. It

is achieved through numerical solutions to problems, where analytical solutions are impossible, such as

the many-body problem, and permits the prediction of the system under a set of parameters and initial

conditions. Furthemore, simulation technique is also a useful tool for toxic, explosive or in any other way

hazardous substances for which more detailed information is available from calculations of this type than it

is ever possible to get from real experiments.

Over the years several simulation techniques have developed both classical, where Newton’s equations of

motions is solved, and quantum for which the Schroedinger’s equation is solved. Regarding the classical

ones, most widely used are Molecular dynamics (MD) and Monte Carlo (MC) methods. In the Monte

Carlo calculation, the positions of particles are randomly sampled and averaged. For this reason, only the

equilibrium properties can be calculated, whereas Molecular Dynamics was originally designed for relaxation

phenomena and to study transport propertis in general.

Alder and Wainright first introduced Molecular Dynamics (MD) simulations in 1957, who studied several

hunderd interacting hard-sphere particles. Their efforts delivered quantitive properties regarding the

behaviour of simple liquids. [20, 21] The first simulations on dislocations began few years later in 1960s. The
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papers published, especially the classic ones by Vitek and Duesbery [18], have identified many of the peculiar

characteristics of dislocation behavior in bcc metals and have laid the groundwork of current investigations.

Multiscale materials modeling of mechanical properties such as crystal plasticity and strength requires an in

depth understanding of fundamental defects and deformation processes.

Dislocation and their dynamics are well known and associated with deformation and plasticity. The predictive

atomic scale modeling of solids with dislocations provides an insight into relevant aspects regarding elasticity,

including elastic moduli and how the presence of dislocations affect these moduli. Also, the single-crystal

elastic moduli often serve as basic constraints on interatomic potential used in the atomistic simulation of

dislocations and other defects. [22]

4.2 Molecular Dynamics

A model for molecular dynamics contains in general two contributions: one that describes the interaction

between the molecules of the system and a second that describes the interaction between molecules and their

environment. The first contribution is actually the function of the potential model. This means that this

function describes(even indirectly) the shape of these molecules or better their electronic distribution. In

fact, the potential function is defined, the symmetry of the molecules, their elasticity etc are determined. For

simplicity, we assume only isolated systems and consequently we refer to inter-molecular interactions that

depend only on the inter-molecular potential model. For an isolated system the quantity that is conserved

is the total energy that is the combination of kinetic and potential energy. This quantity is, in fact, the

Hamiltonian:

H(rN , pN ) =
1

2mi

∑
p2i + u(rN ) = E (4.1)

In order to find the equations of motion, we first find, the total time differential of the Hamiltonian:

dH

dt
=

∑
i

∂H

∂pi
ṗi +

∑
i

∂H

∂ri
ṙi +

∂H

∂t
(4.2)

But the Hamiltonian is time independent, thus:

dH

dt
=

∑
i

∂H

∂pi
ṗi +

∑
i

∂H

∂ri
ṙi = 0 (4.3)

Considering an isolated system

dH

dt
=

1

m

∑
i

piiṗi +
∑
i

∂U

∂ri
ṙi = 0 (4.4)
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If we compare the above two equations we take:

∂H

∂pi
=
pi
m

= ṙi (4.5)

and

∂H

∂ri
=
∂U

∂ri
(4.6)

And by subistitution we take ∑
i

ṙiṗi +
∑
i

∂H

∂ri
ṙi = 0 (4.7)

∑
i

(ṗi +
∑
i

∂H

∂ri
)ṙi = 0 (4.8)

Due to the fact that velocities are independent from each other, the last equation is satisfied only when for

each atom/molecule i :

∂H

∂ri
= −ṗi (4.9)

Equations (4.6) and (4.7) are the Hamiltonian equations of motion. For a system of N spherical molecules,

these equations correspond to a system of 6N first order differential equations which are equivalent to 3N

second order differential equations of Newton. If we eliminate the momentum fro Hamiltonians equations,

we take:

∂H

∂ri
= −mr̈i (4.10)

And by using the relation

∂H

∂ri
=
∂U

∂ri
(4.11)

We find that

Fi = −∂H
∂ri

= −∂U
∂ri

(4.12)

From the above discussion we can conclude that there is a difference between the Newtonian and the

Hamiltonian dynamics. In the former, the motion is the result of the force being applied, while in the latter,

forces don’t appear directly, and the motion takes place in such way that the Hamiltonian is conserved. In the

above discussion that system is isolated. If the system interacts with its surroundings then the Hamiltonian

contains additional terms and it would not correspond to the total energy of the system, which in general in

not conserved necessarily whereas Hamiltonian itself is conserved. Thus, the Hamiltonian approach is more

general than the Newtonian.
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4.3 Verlet algorithm

One of the most used algorithms is the central difference algorithm, that was firstly applied in MD

simulationsby Verlet [23]. The mathematical derivation of the Verlet algorithm results from the Taylor

expansion of the position at a preceding time (t− δt) and a succeeding time (t+ δt)

~r(t− δt) = ~r(t)− d~r(t)

dt
δt+

1

2

d2~r(t)

dt2
δt2 − 1

3!

d~r3(t)

dt3
δt3 +O(δt4)

~r(t+ δt) = ~r(t) +
d~r(t)

dt
δt+

1

2

d2~r(t)

dt2
δt2 +

1

3!

d~r3(t)

dt3
δt3 +O(δt4)

By adding in parts we obtain

~r(t+ δt) = 2~r(t)− ~r(t− δt) +
d~r2(t)

dt2
+O(δt4) (4.13)

Or

d2ri(t)

dt2
=
ri(t+ δt)− ri(t− δt)

2δt
(4.14)

Consequently the initial differential equation Fi = md2 ~ri
dt2 , by substituting Eq. (4.14) becomes

d2ri
dt2

=
ri(t+ δt)− 2ri(t) + ri(t− δt)

δt2
=
Fi(t)

m
(4.15)

All above differential equations are solved numerically. The crystallographic positions of the chosen

crystal strucure are the initial positions of the simulation, and the initial velocities are chosen from the

Maxwell-Boltzmann distribution corresponding to a temperature T of choice. These initial positions and

velocities consist the initial conditions to the numerical problem.

4.4 Interatomic potential - TBSMA

The interatomic interactions are determined from the potential. In this work, a semi-empirical potential

is used and it is an analogy to the theory of Tight Binding scheme in the Second Moment Approximation

(TBSMA). The interaction energy in copper derived from a phenomenological N-body potential according

to which the energy of an atom i in the crystal is expressed by [27]

Ei =
∑
j 6=i

Ae−p(
rij
r0
−1) −

√∑
j 6=i

ξ2e−2q(
rij
r0
−1)) (4.16)
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Table 4.1: Parameters of TBSMA potential model for Al and Cu.
el/ment r0 A (eV) ξ q p C1 S1 C2

Cu 3.6015 1.675288× 10−3 0.505 2.2 13.5
Al 4.02 0.178 1.3831 2.07 6.50 0.00947 0.00515 0.01664

In the above expression, the first term is a short-range repulsive term described as a sum of Born-Mayer

ion-ion repulsions and denotes the pair-wise repulsive energy terms. [24] The second term is attractive and

denotes the many-body metallic bonding potential that is obtained by intergrating the local density of states

up the Fermi level [34]. The free parameter p is associated with the bulk modulus. The distance rij is the

distance of atom at site i from atom at site j and r0 denotes the first neighbor distance. For face-centered

cubic lattices, it is r0 = α0√
2
, where α0 is the corresponding lattice constant at T=0K. The parameter q

represents the distance dependence of the hoping intergrals between atoms at site i and atoms at site j, ξ is

an effective hopping intergral.

The parameters A, p, q, ξ and r0 in general are adjusted to experimental or ab initio simulation data. The

selection of material properties to fit to depends on subective judgement. In the simulation of dislocations,

for instance elastic constants, point defect energies stacking fault energies are physical parameters one would

fit the potential function to obtain proper dislocation-related mechanical properties and better chance of

describing dislocation behaviors accurately. [25].

The model used for aluminium yields the energy of an atom i as [26]

Ei =
∑
j 6=i

Ae−p(
rij
r0
−1) −

√∑
i 6=j

ξ2e−2q(
rij
r0
−1)) +

∑
j 6=i

{[C1 cos(2kfrij)

(rij/r0)3
] + [

S1 sin(2kfrij)

(rij/r0)4
] + [

C2 cos(2kfrij)

(rij/r0)5
]}

(4.17)

where kf stands for the Fermi wave vector of aluminum, and C1, S1 and C2 are also adjustable parameters

in addition to the A, p, ξ, q and r0. Th value of the parameters of both models are listed in Table 4.1.

The potential model describing tungsten was developed by Pontikis (unpublished) with the LCAO method

and is given by the Equation (4.18)

Ui = ASR
∑
j 6=i

(1− rij
ρSR

)+ATF6s (
∑
j 6=i

fsd (rij)ρ6s(rij))
5/3+ξ5d(

∑
j 6=i

fdd (rij)ρ5d(rij))
1/2+ξ6s(

∑
j 6=i

fdd (rij)ρ6s(rij))
1/2

(4.18)

where the first term corresponnds to the hard-core and is approximately zero if rij > ρSR. The second term is

the Thomas-Fermi repulsion, the third and fourth terms correspond to the tight-binding and tight-binding-like

attraction respectively. More details on the tungsten potential are given in the Appendix
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4.5 Boundary conditions

In computer simulations the size of the system of molecules is usually limited by computer’s memory and

speed. Most of the works published are based on systems containing a few thousands to a few hundreds

of thousands particles. In such small systems, the surface effect have a great impact compared to their

macroscopic bulk counterparts where only a small fraction of the particles are close to the surface. In

order to pass by the surface effects in MD simulations Periodic Boundary Conditions (PBC) are applied,

mimicking an infinite bulk system. The use of PBC introduces identical images of the simulation box on

each of the box as shown in Figure 4.1 .

Consequently, a particle that leaves the simulation box during the run re-enters it through the opposite site

of the same direction with the same velocity. The particles near the borders can interact with the adjacent

copy, in this way the undesired surface effect can be avoided. One should notice that the simulation box has

to be still long enough so that particles do not interact with themselves. An convention is to use at least two

times the cut-off radius of the potential as the box length.

The simulation of dislocations need special care in the way the boundary conditions are imposed. First, a

Figure 4.1: Periodic Boundary Conditions. Images of the simulation box (in the centre) are attached side by
side in all dimensions. When a particle leaves the box from one side, it re-enters from the opposite one with
the same velocity. [28]

dislocation creates a long-range elastic field which needs to be taken into account. Second, it is impossible

to include a single dislocation is a simulation box with full periodic boundary conditions: the dislocation

opens a displacement discontinuity and another defect is needed to close the discontinuity so that the total

Burgers vector would be zero.[22] Thus, in our approach we use PBC along the dislocation line while along

the other directions, i.e. x,y directions, Helicoidal Boundary Conditions (HBC) are imposed. HBC are a

variation of the PBC. [29] In practice, when an atom leaves from one side of the box, it returns back to its

previous position but shifted in z-direction and then it enters from the other opposite site as supposed to. A
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visualization of the HBC conitions is shown in Figure 4.2

Figure 4.2: Two dimensional lattice with helicoidal boundary conditions. [30]

4.6 Statistical ensembles. Thermostat and Barostat

MD simulations can be realized in several statistical ensembles. In the microcanonical ensemble (NVE) the

number of particles N of an isolated system with constant volume V have a total energy ET being constant.

The Hamiltonian of the system coincides with the total energy and can be expressed as:

H = ET = K + U =
∑
i

p2i
2mi

+
∑
i

Ui

where K and U correspond to the kinetic potential energy of the system respectively, pi is the momentum of

the ith atom, and Ui is the potential energy of the atom. In order to imitate the canonical ensemble NVT, a

thermostat is commonly used. Thus, to control the temperature, an additional degree of freedom s, and its

associated momentum ps is introduced, to account for a virtual thermal bath [31], which has been proved its

Hamiltonian refers to the canonical distributon. [32]. The Hamiltonian of the system then become:

H =

N∑
i

p2i
2mis2

+

N∑
i

Ui +
p2s
2Q

+ (3N + 1)kbT lns (4.19)

where Q is an effective mass of the thermostat that determines the frequency of the temperature fluctuations,

kB is the Boltzmann’s constant and T is the temperature of the thermal bath.

If the pressure of the system needs to be controled, a barostat is applied. The barostat adds new terms in the

Hamiltonian, in a similar way as the thermostat, although in this case, the fluctuation of the box is allowed

so that the pressure can match the external pressure. The barostat used in this thesis was the Andersen

barostat [33]. When the thermostat and the barostat are combined, the temperature and the pressure are

kept constant corresponding to the Isothermal-Isobaric ensemble (NPT). In that case, the Hamiltonian has
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to following form:

H =

N∑
i

p2i
2mis2V 2/3

+

N∑
i

Ui +
p2s
2Q

+ (3N + 1)kBT lns+
p2V
2W

+ PextV (4.20)

where V is the volume of the system and W is the effective mass of the Andersen piston as Q is the effective

mass of the Nose thermostat. In this case, the equations of motion become:

∂2~ri
∂t′2

= − 1

mV 2/3

∂Ui

∂ ~r′ij
− 1

s

∂s

∂t′
∂~ri
∂t′
− 2

3
V
∂V

∂t′
∂~ri
∂t′

(4.21)

∂2s

∂t′2
= − s

V
V 2/3

N∑
i

mi(
∂~ri
∂t′

)2 − (3N + 1)kBTs

Q
+

1

s
(
∂s

∂t′
)2 (4.22)

∂2V

∂t′2
= − s2

3WV 1/3

N∑
i

mi(
∂~ri
∂t′

)2 − s2

3WV
+

1

s
(
∂s

∂t′
∂V

∂t′
+

N∑
i

~ri
∂Ui
∂~ri

)− Pext
s2

W
(4.23)

~r′i = ~riV
1/3

t′ =

∫ t ∂t

s

(4.24)
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Chapter 5

Method-Computational details

5.1 Computational details

We aimed to calculate the elastic constant C44 and stacking fault energy from the properties and behavior

of screw dislocations in aluminum (fcc), copper (fcc) and tungsten (bcc). For the aluminium and copper

the computational box with X,Y and Z directions parallel to the [111], [112̄] and [11̄0] directions are

generated by repeating this cell in the three space directions. The simulation boxes for the case of aluminum

consist of 11 × 8 × 8 and 20 × 28 × 8 cells with 6720 and 26880 atoms respectively. The lengths of the

boxes are approximately (70, 69, 23) Å and (139, 138, 23) Å. For the case of copper the simulation box

contains 25×35×8 cells with 42000 atoms. The lengths of the box in the three directions are (156, 154, 20) Å.

A perfect screw dislocation line oriented along Z direction and with Burgers vector b = 1
2 [11̄0] = α/

√
2

is introduced at the center of the simulation box (X = 0, Y = 0). For both fcc crystals, Al and Cu, the

systems were equilibrated to 0K using quenched molecular dynamics with periodic boundary conditions

along Z direction and helicoidal boundary conditions along x and y directions of the simulation box. Also,

a screw dislocation was introduced and were equilibrated at 400K to check its stability in the crystal at a

finite temperature.

The model parameters for Al of the potential [26] used are C ′ = 27.8 GPa, C44 = 29.618 GPa, the anisotropy

factor A=1.0654 and stacking fault energy γ ≈ 136mJ/m2. The lattice constant for aluminum is α = 4.02Å.

For Cu the model [27] parameters are C ′ = 23.7 GPa, C44 = 72.8 GPa, A=3.07, α = 3.6015 Å and γ45mJ/m2.

In the case of tungsten, the X,Y and direction are parallel to [11̄0, [112̄] and [111]. The simulation box

consists of 18×10×14 cells containing 15120 atoms. The screw dislocation parallel to Z direction of Burgers

vector b = 1
2 [111] = α

√
3/2 is introduced similarly at the centre of the simulation box (X=0,Y=0). The
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Figure 5.1: DDM of the screw dislocation before
damping (Al 6720 atoms)

Figure 5.2: Energy per atom in x-y plane around
a perfect screw dislocation at 0K (Al 6720 atoms)

potential for tungsten [to be published] have C ′ = 160.86 GPa, C44 = 161.72 GPa, A ≈ 1 and α = 3.158 Å.

Dislocation representation

To visulaize the dislocation, we plot the differential displacement maps (DDM) of the screw dislocation.[34]

Each point represents a column of atoms. The dislocation line and Burgers vector are parallel to the atom

columns, i.e. along z direction (out of plane). The DDM map is constructed by first computing the atom

displacement along z direction its respect to perfect lattice for each column. The arrows then indicate the

difference between displacements of neighbouring columns. The length of the arrow is proportional to the

magnitude of displacement difference and the direction of the arrow indicate the sign of the displacement

diffrence, i.e. the column that the arrow points to has a larger displacement than the column on the other

end of the arrow. Because the lattice is periodic in z direction. The displacement difference between any two

columns can be only defined modulo b.

5.2 Results

5.2.1 Aluminium (fcc)

6720 atoms

The displcacement map of the dislocation before damping is shown in Figure 5.1 and the site energies in x-y

plane is shown is Figure 5.2 depicting the major role of helicoidal boundary conditions as no borders are

shown at the edges of the box.

We started with the accurate determination of the dislocation position. Before the relaxtion of the system

a {111} plane normal to x-direction was chosen. Plotting z ([11̄0]) positions along y ([112̄]), z=f(y) yields
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discrete sigmoidal graphs corresponding to u = (b/2π) arctan(z/y), in Figure 5.3 is depicted one of them for

z between 9.8 and 11.4 Å. Fitting a function of the form f(x) = a ∗arctan((x−x0)/b) + c on the data points

results in f(x) = 0.452 arctan(x/1.124) + 10.66.

The value of the Burgers vector is found b= 0.452× 2× π = 2.84 Å in agreement with the elastic prediction.

The derivative of these functions are Lorentzians with the maximum located at the effective position of the

dislocation. The parameters found from the fitting to the displacement data points were used to evaluate the

analytical form of the derivative that is shown in Figure 5.4. The dislocation is centered at (X = 0, Y = 0).

Figure 5.3: z coordinate as function of y on {111} plane after the screw dislocation was introduced (Al 6720
atoms)

The strain energy due to dislocation is found the following way: the total energy in excess of cylinders centered

at (0,0) with the dislocation is subtracted from the total energy of cylinders in a perfect crystal. We only

consider cylinders of radius r greater than r0 ≈ 3 Å and exclude atoms with positions r =
√
x2 + y2 < r0,

so that the energy of the core is not included because linear elasticity fails at the core of the dislocation. In

Figure 5.5 is shown the elastic strain energy in a cylindrical shell of increasing outer radius R and a constant

inner radius r0 with its axis at (0,0). The logarithmic dependence on distance of the elastic strain energy

is described by Eq. (2.7). From the data the slope is found a=2.643 (eV), therefore shear modulus can be

calculated directly from Eq. (3.7).

Gb2

4π
=
a

L
⇒ G =

4× π × 2.643eV

(2.84)2 × 22.74Å
3 ⇒ G = 0.181eV/Å

3
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Figure 5.4: Analytical derivative of z=f(y) indicates the position of an 1
2 [11̄0] screw dislocation (Al 6720

atoms)

or

G = 28.97GPa

Figure 5.5: The strain energy within a cylinder of radius R that contains a screw dislocation along its axis
(Al 6720 atoms)
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Figure 5.6: DDM of the dissociated screw
dislocation after damping at 0K (Al 6720 atoms)

Figure 5.7: Site energies in x-y plane around
a dissociated screw dislocation at 0K (Al 6720
atoms)

For isotropic cubic crystals shear modulus equals to the elastic constant C44, though for anisotropic media

that is not the case. A correction can be taken into account to calculate elastic constant C44 more precisely.

We multiply shear modulus G with the square root of anisotropy factor. Therefore

C44 = G×
√
A = 28.97×

√
1.065395 = 29.9GPa

In Figure 5.6 we see the DDM of the disssociated screw dislocation, the two Shockley partials are shifted

along [112̄], and in Figure 5.7 is the energy per atom of the dissociated dislocation at x-y plane.

After the damping the screw dislocation with Burgers vector ~b = 1
2 [11̄0] dissociates into Shockley partials

bounded by a {111} stacking fault ribbon. The discrete graphs are then described by the sum of two

Lorentzians shifted along [112̄] and the derivatives do contain two maxima as shown in Figure 5.8 and in

Figure 5.9. Fitting of the function f(x) = a arctan((x− x1)/b) + a arctan((x− x2)/b) + c gives the following

values for the parameters

a = 0.231, x1 = 2.71305, x2 = −2.34849, b = 1.8405, c = −3.556

The dissociation width between the two partial dislocations is then req = |x1 − x2| = 5.062 Å. Shockley

partials have equal Burgers vectors and each is inclined 30◦ to the initial Burgers vector and 60◦ to each

other. The norm of the partial Burgers vector is b2 = b3 = 1
6 [112] = α√

6
cos(30) = 1.42 Å.

As for the case of one perfect dislocation, we can estimate the partial Burgers vector in the relaxed

configuration. From the parameters fitted to the graph in Figure 5.8, it follows

bp = 0.231× 2× π = 1.45Å
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Figure 5.8: z coordinate as function of y on {111} plane in the relaxed configuration of 6720 atoms

Figure 5.9: Analytical derivative of z=f(y) indicates the positions of the Shockley partials (6720 atoms)

in good agreement with the elastic prediction of 1.42 Å. Similarly in order to find the elastic energy as a

function of distance we took cylindrical shells of inner radius r0 = 6Å and increasing outer radius R. In the

relaxed configuration the excess energy is not only due to the strain energy of partial dislocations but the

sum of energy of the two Shockley partials. The interaction energy E12 between them and the stacking fault

energy γ′ are given as [35]

E = 2Epartial + E12 + γ′req (5.1)
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Figure 5.10: The strain energy within cylindrical shells containing two partial dislocations(6720 atoms)

E12 = (
3K3

4
− K1

12
− K2

6
)
b2p
4π
ln(R/req) (5.2)

Epartial = (
K1

12
+
K2

6
+

3K3

4
)
b2p
4π
ln(r/r0) (5.3)

The strain energy as a function of lnR is shown in Figure 5.10; line’s gradient is a’=2.70 (eV) and the

y-intercept is -4.538 (eV). Thus, from Eq. (5.1)-(5.3) the stacking fault energy equals

γ′req − (
3K3

4
− K1

12
− K2

6
)
b2p
4π
ln(req)− (

K1

12
+
K2

6
+

3K3

4
)
b2p
4π
ln(r0) =

−4.538(eV )

22.74(Å)

γ′(5.062)Å = −0.065726eV/Å⇒ γ = −0.012984eV/Å
2 ⇒ γ′ = −207mJ/m2

Nevertheless, from Eq. (3.7) we can calculate the effective shear modulus G’ from the data in Figure 5.10.

G′b2

4π
=
a′

L
⇒ G′ =

a′4π

b2L
=

2.70× 4× π
2.842 × 22.74

⇒= 0.185eV/Å
3 ⇒ G′ = 29.58GPa

400K

Last, we introduced the screw dislocation at 400K and then the system was equilibrated in the NVT ensemble.

The dislocation before an after dissociation is seen in Figure 5.11 and Figure 5.12. As shown, the perfect

screw dislocation does not vanish in a finite temperature but dissociates into partials and remains present in
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Figure 5.11: DDM of a perfect screw dislocation
at 400K (Al 6720 atoms)

Figure 5.12: DDM of the dissociated screw
dislocation at 400K (Al 6720 atoms)

the crystal.

26880 atoms

In the same fashion, elastic constant C44, dissociation width req and stacking fault energy γ′ are calculated

for a bigger aluminum system. The lattice vectors have the same orientation 20 × [111] 28 × [112̄] and

8× [11̄0], and the box lengthes are (139.26, 137.86, 22.74168545)Å. In Figure 5.13 is depicted the strain energy

in cylindical shells of iner radius r0 = 3Å and increasing outer radius R. The fitting of f(x) = a ∗ x + b to

the data results in a = 2.60689 and y-intercept 1.14858. Therefore the shear modulus and C44 in this case are

Figure 5.13: The strain energy within cylindrical shells of outter r and inner radius r0 with a 1
2 [11̄0] screw

dislocation (Al 26880 atoms)
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Gb2

4π
=
a

L
⇒ G =

4× π × 2.60689eV

(2.84)2 × 22.74Å
3 ⇒ G = 0.178eV/Å

3

or

G = 28.537GPa

and

C44 = 28.537GPa×
√

1.065395 = 29.46GPa

After relaxation the screw dislocation dissociates into Shockely partials; the dissociation width in this

system is found from the graph of Figure 5.14, its derivative is shown in Figure 5.15. The fitting of

f(x) = a arctan((x− x1)/b) + a arctan((x− x2)/b) + c results in a = 0.226, x1 = −3.65772, x2 = 3.91553, b =

1.23079andc = −7.82077, and therefore req = 7.57275Å. The partial Burgers vector is

bp = 0.226× 2× π = 1.419Å

The relation of strain energy with ln(r) is shown in Figure 5.16. The slope is a’=2.67746 eV and y-intercept

is -4.4704 eV. From Eq.(5.1-5.3) the stacking fault energy is estimated

γ′req − (
3K3

4
− K1

12
− K2

6
)
b2p
4π
ln(req)− (

K1

12
+
K2

6
+

3K3

4
)
b2p
4π
ln(r0) =

−4.4704eV

22.74Å

γ′(7.573)Å = 0.1966eV/Å+ 0.112eV/Å+ 0.00246eV/Å⇒ γ = −0.00803eV/Å
2 ⇒ γ′ ≈ 129mJ/m2

From Eq. (3.7) effective shear modulus is

G′b2

4π
=
a′

L
⇒ G′ =

a′4π

b2L
=

2.67746× 4× π
2.842 × 22.74

⇒= 0.eV/Å
3 ⇒ G′ = 29.35GPa

5.2.2 Copper (fcc)

The above methodology of calculating the C44 and stacking fault energy has been applied also for the case

of copper, an anisotropic material. A crystallite of 42000 atoms in a parallelepiped-shaped simulation box

with fcc lattice vectors 25× [111]35× [112̄] and 30× [11̄0] was used. The unit cell vectors orientation is the

same as in the case of aluminum. A perfect screw dislocation with Burgers vector ~b = α
2 [11̄0] = 2.546 Å was

introduced at the centre of the simulation box.

The displacement map of the perfect screw dislocation is shown in Figure 5.17 at 0K. The Burgers vector

and the position of the perfect screw dislocation can be verified in the same way as in aluminum.
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Figure 5.14: z=f(y) on a {111} plane in relaxed configuration (Al 26880 atoms)

Figure 5.15: Analytical derivative of z=f(y) indicates the effective positions of the Shockley partiasl (Al 26880
atoms)

For the calculation of the shear modulus, and consequently of the C44, we followed the same steps as in

the fcc case. Cylindrical shells of outer radius r and inner radius r0 were taken about the dislocation line

located at the centre of the simulation box. The core radius was chosen r0 = 5.4 Å. In Figure 5.19, the elastic

strain energy within these cylindrical shells is shown with relation to the distance from the dislocation line.

A linear fitting to the data of of Figure 5.19 yields a slope equal to 3.93162 and y-intercept equal -0.079.

From Equation (3.7), we can calculate the shear modulus
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Figure 5.16: The strain energy in cylindrical shells around Shockley partials(Al 26880 atoms)

Figure 5.17: DDM around a α
2 [110] screw

dislocation in Cu viewed from [110] direction
Figure 5.18: Energy per atom in x-y plane around
a perfect screw dislocation at 0K in copper

a

L
=
Gb2

4π
⇒ G =

a× 4× π
b2 × L

=
3.93162× 4× π
2.5462 × 21.84

= 0.349ev/Å
2

or

G = 55.83GPa

The mechanical behavior of copper is highly anisotropic; the elastic constants vary considerably for different

crystallographic orientations. Thus, C44 differs from shear modulus. In this simulation model C44=72.8 GPa

and C’=23.70 Gpa, and anisotropy ratio A=3.0717. Thus, the C44 will be:

C44 = G×
√
A = 55.83×

√
3.0717 = 97.85GPa
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Figure 5.19: The elastic strain energy in copper containing a 1
2 [111]screwdislocation

Figure 5.20: DDM of Shockely partials in Cu
Figure 5.21: Energy per atom in Cu containing
Shockley partials

After the relaxation of the system using quenched molecular dynamics, the screw dislocation has been

dissociated into 30◦ Shockley partials. The displacement map and the energy in site are in Figure 5.20,

Figure 5.21. In Figure 5.21, we can distinguish two energy maxima.

After damping of 2000 timesteps the system is at 0K. The perfect screw dislocation dissociates into Shockley

partials. The dissociated dislocations are not aligned normal to the slip plane, but instead are aligned very

close to 111 plane. The sigmoidal graph is shown in Figure 5.22. Because of the fact that the perfect screw

dislocation in this case is not dissociated only in [112] direction, a fitting of the form uz = b/2πatan(z/y) in

not applicable. Instead, Spline interpolation to the data was used in order to derive its numerical derivative

that is shown in in Figure 5.23. The two maxima indicate the positions of the Shockley partials. The
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Figure 5.22: z=f(y) viewed from [111] direction in Cu with Shockley partials

Figure 5.23: Numerical derivative of z=f(y) indicates the effective positions of the Shockley partials in Cu

dissociation width is found to be req = 34.57 Å. Similar dissociation widths between 15 Å and 45 Å have

been found in another MD study of screw dislocations in Cu. [36]

To calculate the intristic stacking fault energy, we considered the elastic strain energy of the partial

dislocations. The logarithmic dependence on distance of the elastic strain energy is shown in Figure 5.24.
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Figure 5.24: The strain energy within cylindrical shells containing Shockley partials in anisotropic copper.

Figure 5.25: DDM of a perfect screw dislocation
in copper at 400K

Figure 5.26: DDM of a disscociated screw
dislocation in copper at 400K

The fitting of a linear function to E ∼ log(r) = a ∗ x+ b yields a=3.62703 and b=-6.22543.

Using the Equations (5.1-5.3), we can calculate the stacking fault energy bounded by the two partial

dislocations.

E(r) = 3.62703log(r)− 2ln(r0)(
K1

12
+
K2

6
+ 3

K3

4
)
b2p
4π
− ln(req)(3

K3

4
− K1

12
− K2

6
)
b2p
4π

+ γ′req

γ′34.57 = −6.22453eV/L+ 2ln(r0)(
K1

12
+
K2

6
+ 3

K3

4
)
b2p
4π

+ ln(req)(3
K3

4
− K1

12
− K2

6
)
b2p
4π

γ′req = 6.22453eV/21.84Å+ 0.181145eV/Å

γ′ = −48mJ/m2
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400K

The screw dislocations in an anisotropic crystals, such as copper, are stable at finite temperatures as well

as in isotropic fcc crystals (Al). In Figure 5.25 and Figure 5.26, the screw dislocation is shown before and

after relaxation in the (NVT) ensemble. Better visualization can be achieved with further equilibration,.The

screw dislocation dissociates fairly quickly, so the system can be suffciently equilibrated containing the partial

dislocations, and not the perfect dislocation.

5.2.3 Tungsten (bcc)

When the same methology was applied in a body-centered cubic metal, the resuls are satisfactory as in the

case of fcc metals. The shortest lattice vector is of the type α
2 [111], therefore a screw dislocation of Burgers

vector b2 = α2

22 [12 + 12 + 12]⇒ b = 2.75Å was introduced using tungsten.

The displacement map normal to dislocation line along z-axis is shown in Figure 5.27. A (112̄) plane

was chosen in order to verify dislocation’s position and Burgers vector. The fitting of the function

f(x) = a × atan((x − x0)/b) + c on the data of the discrete sigmoid graph in Figure 5.28 yields

the parameters: a=0.435274, x0 = 6 × 10−11, b=0.644624 and c=-1.59547. Thus,the Burgers vector

b = 0.435274 × 2 × π = 2.7349Å is in total agreement with the elastic prediction. The analytical derivative

of fitting function is shown in Figure 5.29.

Figure 5.27: DDM of a perfect screw dislocation in Tungest (bcc) of Burgers vector α
2 [111]

The strain energy of the dislocation is found in the same way as in the fcc metlas; by summing the total

energy of atoms contained in concentric cylindrical shells about (X,Y=0,0). The atoms in the inner core of

radius taken r0 ≈ 2b = 5.5Å are excluded. In Figure 5.30 is shown the elastic strain energy in cylindrical
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Figure 5.28: z coordinate as function of x on {111} plane before relaxation

Figure 5.29: Analytical derivative of z=f(x) indicates the position of the screw dislocation in tungsten (W)

shells of an increasing outer radius r and the constant radius r0. From the data the slope is found a=22.6016

(eV). The tungsten is fully isotropic, so the anisotropy ratio is equal to unity. The shear modulus can be

calculated directly from Eq. (3.7)

Gb2

4π
=
a

L
⇒ 4× π × 22.6016eV

(2.735)2
× 38.29Å

3 ⇒ G = ev/Å
2

or

G = C44 = 158.65GPa

This value of C44 is in good agreement with model’s parameter C44 = 161.72GPa.
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Figure 5.30: The strain energy within a cylindrical shell of inner radius r and outer radius r0 along a screw
dislocation α

2 [111] in W

Figure 5.31: Displacement map of three partial α
6 [111] screw dislocations in W

After relaxation of 2000 timesteps using quenched molecular dynamics, we obtain the configuration seen

in Figure 5.31 at 0K. The perfect screw dislocation has been dissociated into three non co-planar partial

dislocations. In order to find in which three planes of the same type has the perfect screw dislocation

dissociated, planes normal to [110] and [112] direction were investigated to identify the partial Burgers vector.

In Figure 5.32 we see the z-coordinate as a function of y. The fitting to to the data points of f(x) =

a∗atan((x−x0)/b+ c yields a=0.145585, x0 = 1.9366, b=3.09713 and c=-5.01048. The analytical derivative

of this function is shown in Figure 5.33. Thus, the partial Burgers is bp = 0.145584× 2× π = 0.915 Å that
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Figure 5.32: z=f(y) in tungsten (W) viewed from [110] direction.

Figure 5.33: Analytical derivative of z=f(y) indicates the position of one of the three α
6 [111] partial dislocation

in tungsten.

is in agreement with elastic prediction:

b2p =
a2

36
(12 + 12 + 12) = 0.912Å

Therefore, the effective position of one of the three dislocation is x0 = 1.936 Å in y-direction. The dislocation

dissociates to {112} planes.

The elastic strain energy in crystal tungsten containing the three partial dislocations in shown in Figure 5.34.

The fitting to the data yields almost identical results as in the case of the perfect a
2 [111] dislocation. The

slope of the line is a=22.5951 and y-intercept is b=1.71302. Therefore, the shear modulus of the tungsten

with three partial screw dislocations is :
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Figure 5.34: Elastic strain energy in cylindrical shells of outer radius r and inner radius r0 containing three
α
6 [111] partial dislocations in tungsten (W).

Gb2

4π
=
a

L
⇒ 4× π × 22.5951eV

(2.735)2
× 38.29Å

3 ⇒ G = 0.9913ev/Å
2

or

G = C44 = 158.61GPa

Finally, the dislocation in W was equilibrated to 300K in the (NVT) ensemble. The dissociated screw

dislocation stays stable in the simulation cell at finite temperature in bcc metals as well as in fcc metals as

shown in Figure 5.35.

Figure 5.35: DDM of the dissociated screw dislocation in W at 300K
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Table 5.1: Shear modulus and C44 calculated in current work compared to the experimental values
el/ment G (GPa) Gexper (GPa) [37] C44 (GPa) C44 GPa
Cu 55.83 45 97.85 75.4 [38]
Al 28.54 27 29.46 28.3 [39]
W 158.61 161 159.6 163.8 [40]

5.3 Discussion

We introduced perfect screw dislocations in three metals: aluminum, copper and tungsten. The models

take the elastic anisotropy into account. Thus, aluminum and tungsten are isotropic and copper shows

highly anisotropic behavior. We calculated the distance dependence of elastic strain energy in respect to the

dislocation centre. From this relation we obtained the shear modulus as the elastic strain energy has a linear

dependence to the logarithm of r. For isotropic materials shear modulus coincides with the elastic constant

C44 while for anisotropic materials shear modulus has to be multiplied by the anisotropy factor to give the

elastic constant C44. The calculated values of shear modulus and C44 for Al (26880 atoms), Cu and W are

shown in Table (6.1).

After relaxation, for all three cases, perfect screw dislocation dissociates into partial dislocations. In fcc Al

and Cu perfect screw dislocation dissociates into co-planar Shockley partials as expected. The dissociation

width between them was found and the SFEs were calculated 129mJ/m2 for Al and 48mJ/m2 for Cu

in agreement with model’s parameters (141mJ/m2 for and 45mJ/m2 for Cu). In bcc W perfect screw

dislocation dissociates into three non co-planar partial screw dislocations. Therefore the same methology of

calculating the SFE was not applicable. The partial dislocations were identified. The calculated SFEs are in

good comparison with DFT simulation results where the stacking fault energy of Al is 162mJ/m2 [41] and

of Cu 41mJ/m2. [42]

To identify the finite size effects the dissociation width req in Al was calculated additionally for systems of

9216 atoms with Lx ≈ Ly ≈ 79 Å and 38016 atoms with Lx ≈ Ly ≈ 162 Å. The dissociation widths were

found 5.17 Å and 7.62 Å respectively. A graph of the dissociation width with respect to 1/L is shown in

Figure 5.36. The y-intercept of linear function would give the dissociation width in the case of ”infinitely”

large system. For the graph of Figure 5.36 the y-intercept is found 9.87 Å in good agreement with the elastic

prediction of 10.47Å calculated from Equation (3.11).

The above method of calculating the elastic constant C44 was compared to the central difference method for

the isotropic case of Al as for isotropic media C ′ ≈ C44 . Different values of strain were applied on a Al

crystal of 16128 atoms in a simulation cell of 80 × 80 × 40 Å at 0K. The energy density is given from the

50



CHAPTER 5. METHOD-COMPUTATIONAL DETAILS

Figure 5.36: Dissociation width in Al as a function of inverse box length L in x-, y-direction

Equation (2.13). So, if we suppose only pure shear εzz = 0, it is then

Uel =
1

2
(2ε2)C11 + C12(−ε2) = (C11 − C12)ε2

∂Uel
∂ε

= 2εC11 − 2C12ε⇒
∂2Uel
∂ε2

= 2(C11 − C12)

C11 − C12 =
1

2

∂2Uel
∂ε2

But C ′ = 1
2 (C11 − C12), so

C ′ =
1

4

∂2Uel
∂ε2

The calculation of the second derivative of the elastic energy U with respect to the strain is given the following

way. We consider the Taylor expansion series of U about ε and -ε.

U(ε) = U(0) + εU ′(0) + ε+ ε2U ′′(0)/2! + ε3U ′′′(0)/3! +O(ε4)

U(ε) = U(0)− εU ′(0) + ε+ ε2U ′′(0)/2! + ε3U ′′′(0)/3! +O(ε4)

By considering terms only to the second order, we add the above two equations. The second derivative is

given by

∂2Uel
∂ε2

=
U(ε) + U(−ε)− 2U(0)

ε2
+O(ε4)

In Figure 5.37 the calculated values of C’ are shown for several strain values between between 5× 10−4 and

1× 10−1. We see that the value of C’ converges to [30.3− 30.9] GPa for ε between 10−3 and 2× 10−2. This

result is in good agreement with the calculated value of C44 = 29.46 GPa in Al (26880 atoms) from the screw

51



CHAPTER 5. METHOD-COMPUTATIONAL DETAILS

dislocation energy at 0K.

Figure 5.37: C’ calculated from pure shear applied in Al at 0K
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Concluding remarks

Overall the use of Helicoidal Boundary Conditions in the simulation of dislocations is successful. From the

introduction of screw dislocation in fcc and bcc metals and its properties we calculated the shear modulus

and elastic constant C44 in good agreement with the bibliography and experimental results. The results

are specially good for the isotropic cases of Al (fcc) and W (bcc) but diverge for the case of Cu (fcc).

That probably is due to the interatomic potential. This method of calculating the C44 is advantageous in

comparison to the central difference method as disscused above as it is faster, no need to apply different

strains and find the plateu, and can be performed at finite temperatures.

In fcc metals, where the perfect screw dislocations dissociate into co-planar Shockley partials, we found the

effective positions of the partial screw dislocations and calculated the stacking fault energies (SFEs) of Al

and Cu in good agreement with other simulation works. In the bcc metal, the perfect screw dislocation

dissociates into three partial dislocations successfuly as predicted using a new interatomic potential for W

that has been proved to give very realistic results for this kind of work. That could set the base for a future

work to explain the brittle-to-ductile transition of Tungsten at extreme cold temperatures.

The biggest advantages of the Helical Boundary Conditions in the dislocation simulation are the fast

equilibration time (∼ 103 timesteps) and the use of small simulation cells. Of course, by increasing the

simulation cell in x,y-directions one can get closer values, i.e.the dissociation width, to the elastic prediction.

Additionally, the maintenance of the dislocations in the simulation cell at finite temperature is another

important outcome of the application of HBC.
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Appendix A

Tungsten Potential

This model potential for tungsten was implemented implemented using the Linear Combination Atomic

Orbital (LCAO) method and adjusting to experimental values.

Ui = ASR
∑
j 6=i

(1− rij
ρSR

)+ATF6s (
∑
j 6=i

fsd (rij)ρ6s(rij))
5/3+ξ5d(

∑
j 6=i

fdd (rij)ρ5d(rij))
1/2+ξ6s(

∑
j 6=i

fdd (rij)ρ6s(rij))
1/2

Fist term is the repulsion hard-core, approximately zero if rij > ρSR. The second term is the Thomas-Fermi

repulsion. The third and fourth terms correspond to the tight-binding attraction of electron d and for

tight0-binding attraction of electron s respectively.

The screening function Fermi-Dirac is

fd(rij) = 1

1+exp(ε(
rij
rc
−1))

for which ε and rc are different for 6s or 5d electrons, and

ρ5d(rij) = [(B0 −B1ρ
∗ + ρ∗2)× aN × Z∗3/2d × ρ∗2 exp(−ρ2 ∗ /2)]2

B0 = 42, B1 = 14

aN = 1
150
√
70

ρ∗ =
zZ∗

d

5
rij

αBohr
, aBohr = 0.529177 Å

ρ6s(rij) = [(B0 −B1ρ
∗ + ρ∗2 +B2ρ

∗2 −B3ρ
∗3 +B4ρ

∗4 − r∗5)× aN × Z∗s ]2

B0 = 720, B1 = 1800, B2 = 1200, B3 = 300, B4 = 30, αN = 1
2160

√
6

ρ∗ =
zZ∗

s

6
rij

αBohr
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