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Abstract
It is widely documented that the density property of rational numbers is challenging for students. The framework theory approach to
conceptual change places this observation in the more general frame of problems faced by learners in the transition from natural to rational
numbers. As students enrich, but do not restructure, their natural number based prior knowledge, certain intermediate states of understanding
emerge. This paper presents a study of Greek and Flemish 9th grade students who solved a test about the infinity of numbers in an interval. The
Flemish students outperformed the Greek ones. More importantly, the intermediate levels of understandingdwhere the type of the interval
endpoints (i.e., natural numbers, decimals, or fractions) affects students’ judgmentsdwere very similar in both groups. These results point to
specific conceptual difficulties involved in the shift from natural to rational numbers and raise some questions regarding instruction in both
countries.
� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

The present study replicates a study by Vamvakoussi and
Vosniadou (2010), conducted with Greek students, albeit
with Flemish students. Vamvakoussi and Vosniadou investi-
gated secondary school students’ understanding of the dense
ordering of rational numbers from the perspective of the
framework theory approach to conceptual change (Vosniadou,
Vamvakoussi, & Skopeliti, 2008). The density property of the
rational numbers differentiates them from natural numbers:
The latter are discrete, in the sense that every natural number
has a unique successor. Thus, between any two natural
numbers there is a finite numberdpossibly zerodof inter-
mediate numbers. In contrast, between any two non-equal
rational numbers there are infinitely many numbers, and one
can no longer speak of a successor for a given rational number.
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It is widely documented that density is a difficult notion for
students to comprehend. A repeated finding is that students of
various ages state that there is a finite number of numbers
between two rational numbers or point to the successor of
a particular rational number (Giannakoulias, Souyoul, &
Zachariades, 2007; Hartnett & Gelman, 1998; Hannula,
Pehkonen, Maijala, & Soro, 2006; Malara, 2002; Merenluoto
& Lehtinen, 2002; Tirosh, Fischbein, Graeber, & Wilson,
1999; Vamvakoussi & Vosniadou, 2004, 2007). Such find-
ings indicate that students mistakenly assign the property of
discreteness to rational numbers. Thus students’ difficulties
with density can be placed in the more general framework of
the problems faced by learners in the transition from natural to
rational and real numbers. This transition is characterized by
the interference of natural number knowledge in rational
number tasks, where relying on natural number reasoning is no
longer appropriate and leads to systematic errors. This
phenomenon is acknowledged by mathematics educators and
cognitive-developmental psychologists as an instance of
a situation where prior knowledge hindersdrather than
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facilitatesdfurther learning. This calls for substantial changes
to students’ conceptual organization of number, namely
conceptual change (Desmet, Grégoire, & Mussolin, 2010;
Gelman, 2000; Hartnett & Gelman, 1998; Merenluoto &
Lehtinen, 2002; Moss, 2005; Ni & Zhou, 2005; Smith,
Solomon, & Carey, 2005; Stafylidou & Vosniadou, 2004;
Vamvakoussi & Vosniadou, 2004, 2007).
1.1. Theoretical background
In explaining how prior knowledge of number hinders
further learning, Vamvakoussi and Vosniadou (2010) advocate
the framework theory approach to conceptual change. Based
on evidence from cognitive-developmental research, this
theoretical frame assumes that young children organize their
everyday experiences in the context of lay culture in domain-
specific conceptual structures, termed framework theories.
These initial theories constitute explanatory frameworks that
are generative: They underlie children’s predictions and
explanations regarding unfamiliar situations in a relatively
coherent way. Thus, with respect to different perspectives on
conceptual change, the framework theory approach empha-
sizes coherence rather than fragmentation of children’s
thinking (for a thorough discussion, see Disessa, 2006;
Vosniadou et al., 2008). The framework theory approach to
conceptual change was originally developed to account for the
challenges that students face in regard to the learning of
certain concepts in science (Vosniadou et al., 2008). It is
assumed that a major source of difficulty is the incompatibility
of the background assumptions of students’ initial theories and
the scientific ideas, to which they are exposed mainly via
instruction. A prominent example is students’ initial under-
standing of the Earth as a flat, motionless, physical object
where gravity works in an up-down direction. This under-
standing is in sharp contrast with the Earth as an astronomical
body, which is spherical, rotates upon its axis, and revolves
around the Sun. Vosniadou and her colleagues have identified
a small number of conceptions of the shape of the Earth that
are synthetic in the sense that they incorporate some aspects of
the new, scientifically correct information while the pre-
existing, underlying assumptions are not re-evaluated. One
such example is the conception of Earth as a flat disc, which
combines the flatness with elements of “roundness”.

In the past few years, the conceptual change perspective on
learning has been fruitfully applied in the domain of mathe-
matics (e.g., Greer & Verschaffel, 2007; Prediger, 2008;
Verschaffel & Vosniadou, 2004). Regarding the development
of the number concept, the framework theory approach to
conceptual change assumes that, before they are exposed to
rational number instruction, students have formed a rather
coherent domain-specific, naı̈ve theory of number. This theory
shapes their expectations about what counts as a number and
how numbers are supposed to behave. From the students’ point
of view, numbers are essentially discrete counting numbers
that obey the successor principle and are grounded in additive
reasoning (Vosniadou et al., 2008; see also Gelman, 2000; Ni
& Zhou, 2005; Smith et al., 2005). Students are of course not
expected to have an elaborated and explicit understanding of
natural numbers and their properties. The term theory is
employed to denote a complex system of interrelated ideas and
beliefs, which is relatively coherent and acts as a framework
underlying students’ thinking in a given (problem) situation.

An essential hypothesis of the framework theory approach
to conceptual change in the domain of number is that there are
certain intermediate states of understanding that create
a bridge between the initial perspective of number and the
intended one that is as yet unavailable to the student. These
intermediate states are generated as students enrich, via the use
of additive learning mechanisms, their knowledge base with
new information about numbers provided through instruction
without actually (or entirely) re-evaluating the underlying
assumptions of their initial theory of number. At the secondary
level, taking a rational number perspective requires a)
conceptualizing natural and non-natural numbers as members
of the same family, b) differentiating between numbers and
their symbolic representation, and c) being aware that rational
numbers behave differently than natural numbers (e.g., with
respect to ordering and operations). Given these aspects,
Vamvakoussi and Vosniadou (2010) described a plausible path
regarding the development of rational number understanding
in school settings: Starting from a conceptualization of
numbers consistent with natural numbers, students are intro-
duced to non-natural numbers in the form of decimals and
fractions. As they rely heavily on their initial understandings
of number to interpret information about these new constructs,
it was hypothesized that natural number properties are attrib-
uted to rational numbers (see also Moss, 2005; Ni & Zhou,
2005; Smith et al., 2005). At the same time, students face
difficulties in conceptualizing natural and non-natural numbers
as a unified system of numbers, invariant under different
symbolic representations (see also Kilpatrick, Swafford, &
Findell, 2001; Markovits & Sowder, 1991). Nevertheless,
they do enrich their knowledge base with new information on
decimals and fractions. It was thus hypothesized that a specific
synthetic conception would be the conceptualization of
rational numbers as a loose collection of different, unrelated
“sets” of numbers (i.e., natural numbers, decimals, and frac-
tions). These hypotheses were tested in the context of
students’ understanding of density. Density was identified as
a notion with the potential to reveal students’ difficulties in
overcoming an essential presupposition of their assumed
initial theories of number, namely discreteness. More impor-
tantly, it was predicted that there would be intermediate states
of understanding of this notion, allowing for natural numbers,
decimals, and fractions to behave differently with respect to
ordering (discrete/dense).

Focusing on secondary students’ judgments regarding the
number of intermediate numbers in an interval, Vamvakoussi
and Vosniadou (2004, 2007) obtained qualitative and quanti-
tative evidence that confirmed the above predictions. In their
most recent study (Vamvakoussi & Vosniadou, 2010) they
systematically investigated this phenomenon with Greek 7th,
9th, and 11th grade students. The idea of discreteness was
present in all age groups. In addition, the type of interval
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endpoints (i.e., natural numbers, decimals, or fractions) had
a large effect on students’ judgments regarding the number as
well as the type of numbers in a given interval. Specifically,
students were more inclined to answer that there is an infinite
number of intermediates in the case of natural numbers, but
less inclined in the case of decimals and fractions. Moreover,
students were reluctant to accept that there can be decimals
between fractions and vice versa.

There are some findings in the literature which indicate that
the interval endpoints have an effect upon students’ answers
regarding the number as well as the type of intermediate
numbers (see for example Tirosh et al., 1999). However, this
study wasdto the best of our knowledgedthe first to inves-
tigate these two phenomena systematically and in combina-
tion. Vamvakoussi and Vosniadou suggested that their study
provided supportive evidence for the framework theory
approach to conceptual change: They identified intermediate
states of understanding of density, where students were apt to
consider the infinity of numbers in an interval in some but not
all cases. This indicated that the idea of discreteness is robust
and that the understanding of density is not an “all or nothing”
situation. As expected, students in these intermediate states of
understanding did not respond randomly. Rather, their
responses depended on the interval endpoints. This finding
was in line with the prediction that different types of numbers
(i.e., natural numbers, decimals, or fractions) would not be
treated in the same way with respect to ordering (dense/
discrete). This was interpreted as a manifestation of the
synthetic conception of the rational numbers set as a collection
of unrelated sets instead of a unified number system.

The original study was conducted on a sample of Greek
students, who came from middle class state-funded schools in
an urban area. A replication of that study with a different
population would test the generality of its results. In addition,
Vamvakoussi and Vosniadou relate their findings to a theoret-
ical stance that makes a more general claim about the
processes of learning counter-intuitive concepts in science and
mathematics. Thus, a replication of their study is of theoretical
interest as well: If a different population did not appear to face
any difficulty with the particular notion, or did not show
intermediate states comparable to those observed amongst the
Greek students, one could argue that the results of the original
study were merely a by-product of instruction in the context of
a particular educational system. Similarly, if students from
a different population either succeeded or failed across all
number types or made random mistakes, then not only the
generality of the particular findings but also the hypotheses
stemming from the framework theory approach to conceptual
change could be questioned.
1.2. Educational background
For the replication study, we compared the results of
Flemish (i.e., Dutch-speaking Belgian) students and Greek
students in the 9th grade. We identified 9th grade students as
an age group of particular interest: According to the curricula
of both countries, 9th grade students have been taught
everything that is in principle required to complete the
research tasks correctly. In addition, 9th grade students were
an interesting age group in the original study: They performed
significantly better than the younger participants (7th grade
students) and just as well as the older ones (11th grade
students). Finally, 9th grade students are the age group tar-
geted by PISA (Programme for International Student Assess-
ment). Therefore, there is further information available
regarding the two populations’ mathematical competencies.

In Greece as well as in Flanders, compulsory education
extends at least up to the 9th grade. With the exception of
a small number of students who attend specialized high
schools emphasizing musical or athletic training, the vast
majority of the Greek students attend the same type of lower
high school (General Gymnasium) and follow the same
curriculum in mathematics. All 9th grade students attend 4 h
of mathematics instruction per week and use the same
textbook.

In contrast, Flemish students in general secondary educa-
tion choose between a variety of study streams from the 9th
grade onwards. In all study streams, students attend 4 h of
mathematics instruction per week, with the exception of the
students who choose the science-oriented stream. These attend
6 h of mathematics instruction per week. The same national
standards apply to all students.

The mathematics curricula of Greece and Flanders do not
differ substantially in terms of content, at least with respect to
number-related material. By grade 9, both Flemish and Greek
students have been introduced to the terms natural, rational,
irrational, and real numbers. In addition, they have already
had extensive practice in procedural aspects of the number
concept, including ordering, operations, conversions from
decimal to fractional form, and vice versa. Flemish students
are introduced to various types of non-natural numbers slightly
earlier than their Greek peers. They encounter fractions in the
2nd grade and negative numbers already at the elementary
level. Greek students, on the other hand, encounter fractions
and negative numbers in the 3rd grade and at the lower
secondary level, respectively. Flemish students are introduced
to the notion of rational number in the 7th grade, one year
earlier than their Greek peers. It should be noted that the 7th
grade textbook of the Flemish participants of our study made
use of Venn diagrams to make the interrelations between the
various subsets of rational numbers explicit. In contrast, Venn
diagrams are presented in Greek textbooks in the 10th grade.
In a more general fashion, despite its overarching orientation
toward the use of numbers in real life situations and problem
solving, the Flemish curriculum pays explicit attention to the
conceptualization of decimals and fractions as numbers. For
example, the number line is used as a means to present
a unified view of natural numbers and decimals. Specifically, it
is explicitly mentioned that decimals are numbers and, as
such, they can be placed on the number line. Moreover, the
conversion of fractions to decimals is explicitly used to justify
the claim that fractions are numbers. In contrast, this issue is
not explicitly dealt within the Greek textbooks, which stem
from a procedure-oriented curriculum.
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Density is not explicitly mentioned in the curricular goals
of either of the two countries. Nevertheless, tasks that
implicitly relate to this notion, such as the approximation of
irrational numbers by rational ones, are present in both
curricula.

Belgium and Greece participated in all three cycles of
PISA, which took place in 2000, 2003, and 2006. Greek
students have been consistently ranked below the OECD
average for mathematics, whereas Belgian students have been
ranked above the OECD average. In particular, Flemish
students were ranked among the best performing students
worldwide (all information can be accessed at http://
pisacountry.acer.edu.au/).
1.3. Hypotheses
Given the above considerations, we expected that a pop-
ulation of Flemish students from a similar background to the
Greek population in the original study (i.e., attending middle-
class, urban state-funded schools) would perform better than
the Greek ones in the tasks employed by Vamvakoussi and
Vosniadou in their study (2010) (Hypothesis 1). On the basis
of the framework theory approach to conceptual change, we
expected that Flemish students would nevertheless face similar
conceptual difficulties with the research tasks as their Greek
peers. We hypothesized that they would be achieving inter-
mediate levels of understanding where the idea of discreteness
is overcome for some but not all types of numbers. More
specifically, we predicted that the interval endpoints would
have a similar effect on Flemish and Greek students’ judg-
ments in terms of mean performances (Hypothesis 2), and also
in terms of individual students’ responses across the different
number types (Hypothesis 3). Finally, we hypothesized that
the idea of discreteness would be robust in the Flemish pop-
ulation as well, in the sense that there would be students who
would consistently state that there is a finite number of
intermediates across all types of numbers (Hypothesis 4).

2. Method
2.1. Participants
Table 1
The participants of this study were 84 Greek and 128
Flemish 9th grade students. They came from middle-class,
state-funded schools (two Greek and three Flemish), situated
in the areas of Athens and Leuven, respectively. For each
school, all 9th grade classes participated in the study. All
Greek students came from General Gymnasia, and the various
study streams available to the Flemish students were repre-
sentatively present in the Flemish portion of the sample.
The number pairs included in the questionnaire.

Item block
2.2. Materials

Nn NnDec Dec Fra

0 and 1 .9 and 1 2.4 and 2.5 3/5 and 4/5

99 and 100 6 and 6.1 .1 and .2 1/3 and 2/3

7 and 7.001 .005 and .006 1/7 and 1/6

.009 and 1 3.124 and 3.125 1/8 and 1/7
We used the questionnaire developed by Vamvakoussi and
Vosniadou (2010), which was translated first from Greek to
English, and then to Dutch. It was a multiple-choice ques-
tionnaire that consisted of 14 items asking how many numbers
there are between two given rational numbers. The item-
sdwhich were offered in a randomized orderdbelonged to
four item blocks based on the type of the interval endpoints,
namely two natural numbers (Nn, 2 items), a natural number
and a decimal (NnDec, 4 items), two decimals (Dec, 4 items),
and two fractions (Fra, 4 items). The specific pairs of numbers
included in the questionnaire are presented in Table 1.

The answering alternatives offered were the same across all
items and were as follows

a) There is no other number
b) There is a finite number of decimals
c) There is a finite number of fractions
d) There are infinitely many decimals
e) There are infinitely many fractions
f) There are infinitely many numbers and they can take
different forms, such as decimals, fractions, and non-
terminating decimals

g) I don’t agree with any of the above. I believe that .

The expression “a finite number of” was explained as “a
specific number of numbers that could be written down one by
one”. Alternative (a), coded as Fin0, corresponds to the most
“naı̈ve” answer, reflecting the idea that the given numbers are
successive. Choosing the alternatives (b) or (c), coded as
Fins0/specific type, means that the given numbers are not
deemed successive but that the intermediate numbers are still
finite in number and also of a specific type (i.e., either deci-
mals or fractions). Alternatives (d) and (e), coded as Inf-/
specific type, are more advanced than the preceding ones in
that they allow for infinitely many intermediate numbers. The
intermediates, however, are again of the same type as the
interval endpoints. Alternative (f) is the most sophisticated
answer, coded as Inf.

Finally, alternative (g) offered students the option of
providing an answer different to the ones already presented.
We note in advance that very few students chose this alter-
native. These students either gave more examples of types of
intermediate numbers (e.g., irrational numbers) or accepted
the alternatives (d), (e), and (f), explaining that (e) and (d)
follow from (f). They were all credited with a correct answer
(Inf). The Fin0 answer was scored as 1, the Fins0 as 2, the Inf-
as 3, and the Inf as 4. Cronbach’s a for the 14 items was .953.
2.3. Procedure
The questionnaires were administered during regular school
hours in the classrooms. One of the researchers read aloud
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some clarifications/instructions, which were also written on
the first page of the questionnaire. These were the following:
a) “The term ‘numbers’ refers to real numbers -all numbers
that you know of are real numbers”, b) “We say that a number
is between two other numbers, if it is greater than the first and
smaller than the second”, c) “The particular multiple choice
responses used in the questionnaires were provided by students
of your age. Do not hesitate to express a different opinion,
because it might be better or more accurate than the given
answers”, and d) “You can choose only one of the answers”. In
case they found that more than one of the given answers fitted,
students were instructed to use the open-ended alternative (g)
to express and explain their opinion. The students had 45 min
to complete the questionnaire.

3. Results
3.1. Comparisons by nationality
Students’ total mean performance in the 14 items (Greek:
M ¼ 2.78, SD ¼ .82, Flemish: M ¼ 3.04, SD ¼ .83, on
a maximum of 4) was subjected to an analysis of variance with
nationality as between-subjects factor. The results showed
a weak, albeit significant, main effect for nationality, F(1,
211) ¼ 4.981, p < .05, h2 ¼ .023 (Hypothesis 1).
3.2. Comparisons across the different number types by
nationality
Students’ mean performances in Nn, NnDec, Dec, and Fra
were subjected to a repeated measures analysis of variance
with number type as within-subject factor and nationality as
between-subjects factor. The results showed main effects for
number type, F(3, 630) ¼ 23.490, p < .001, h2 ¼ .101, and
nationality, F(1, 210) ¼ 2676.336, p < .05, h2 ¼ .022; and
no interaction effect between number type and nationality.
Table 2 shows that Greek and Flemish students’ mean
performances across the different number types follow a very
similar pattern (Hypothesis 2).

Specifically, for both groups, mean performance was higher
for Nn items compared to all other types of items, particularly
the Dec and Fra items. Mean performance gradually decreased
for NnDec and Dec items and was lowest for Fra items. Table 2
Table 2

Mean, standard error, and 95% confidence interval of performance by number

type and nationality.

Nationality Number

Type

M SE 95% Confidence Interval

Lower Bound Upper Bound

Greek Nn 3.11 .10 2.92 3.30

NnDec 2.77 .10 2.57 2.96

Dec 2.74 .10 2.53 2.94

Fra 2.69 .10 2.49 2.89

Flemish Nn 3.29 .08 3.13 3.44

NnDec 3.02 .08 2.86 3.18

Dec 3.02 .08 2.85 3.18

Fra 2.98 .08 2.82 3.13
also shows that Flemish students performed better than their
Greek peers across all types of items, the difference being more
salient for Dec and Fra items.
3.3. Student profiles
Both Greek and Flemish students performed better for
natural than for non-natural numbers. This finding already
suggests that the type of interval endpoints affects students’
judgments regarding the infinity of numbers in an interval
(Hypothesis 2) and thus also the existence of synthetic
conceptions. It is, however, based on the mean performance of
our sample across the different number types, and as such it
does not provide information about the individual student’s
treatment of the different number types (Hypothesis 3). To
examine Hypothesis 3 and Hypothesis 4, we formed individual
student profiles.

3.3.1. Cluster analysis
To obtain individual student profiles, Vamvakoussi and

Vosniadou examined the number of correct responses within
each number type (i.e., natural numbers, decimals, and frac-
tions) and used an a priori criterion to place students in
different categories. In this study, we opted for a very different
approach. Specifically, we employed two-step cluster analysis
in order to derive categories directly from the data. In the first
stage of this procedure, the records are clustered into many
small sub-clusters. Then these sub-clusters are arranged into
an appropriate number of clusters. SPSS 19 offers a choice of
statistics that can be applied to determine the number of
clusters which provides the best description of the data.

Before running the cluster analysis, we transformed the
data set in two ways. First, we were primarily interested in
students’ responses within each type of number (i.e., natural
numbers, decimals, and fractions). Therefore we excluded,
similarly to Vamvakoussi and Vosniadou (2010), the NnDec
items from our analysis. Second, we rescored our data so that
Fin0 and Fins0 were collapsed into one response type, namely
the FIN one (“there is a finite number of numbers in the
interval, either 0 or s 0”). This is because both responses
reflect the idea of discreteness. Moreover, the great majority of
students (65.1%) gave no Fin0 responses across the items and
another 25.5% gave at most three. Only 1.8% gave more than
five Fin0 answers. The FIN response type was scored as 1. The
Inf- and Inf response types were scored as 2 and 3, respec-
tively, leading to a maximum mean performance of 3.

We conducted a two-step cluster analysis on nine variables
representing the number of FIN, Inf-, and Inf answers that the
individual student gave for each type of interval endpoints. For
example, the values 2, 1, 1 for fractions corresponded to
a response of 2 FIN answers, 1 Inf- answer, and 1 Inf answer
in this particular block. We employed the log-likelihood
algorithm, and we determined the optimal solution (in terms of
the number of clusters) using the Schwartz Bayesian Infor-
mation Criterion (BIC), a goodness-of-fit measure wherein
smaller values indicate a better fit. Table 3 provides infor-
mation about the BIC indices for the adjacent solutions.



Table 3

BIC indices for 15 adjacent solutions of the cluster analysis.

Number

of Clusters

Schwarz’s Bayesian

Information

Criterion (BIC)

BIC

Change

Ratio of BIC

Changes

Ratio of

Distance

Measures

1 4453.352

2 3605.340 �848.011 1.000 2.013

3 3265.063 �340.277 .401 1.997

4 3174.837 �90.226 .106 1.154

5 3118.090 �56.747 .067 1.401

6 3123.558 5.467 �.006 1.377

7 3171.532 47.975 �.057 1.036

8 3223.449 51.917 �.061 1.006

9 3276.056 52.607 �.062 1.105

10 3338.973 62.918 �.074 1.086

11 3409.636 70.662 �.083 1.157

12 3492.484 82.848 �.098 1.048

13 3578.895 86.411 �.102 1.220

14 3678.695 99.800 �.118 1.025

15 3779.974 101.278 �.119 1.140

Note. The changes are from the previous number of clusters in the table. The

ratios of changes are relative to the change for the two cluster solution. The

ratios of distance measures are based on the current number of clusters against

the previous number of clusters.
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The BIC value reached its minimum in a solution with five
clusters, which was selected as the optimal one. This solution
explained a substantial percentage of the variance in our data,
namely 68.7%. Fifty-four students (25.5%) were placed in the
first cluster, 32 (25.1%) in the second, 34 (16.0%) in the third,
32 (15.1%) in the fourth, and 60 (28.3%) in the fifth.

Table 4 presents the frequencies and percentages of the
response types in the total of non-null answers provided within
each cluster. The great majority of responses in Cluster
1dhereafter called Finitenessdwas FIN. This response was
substantially lower but remained dominant in Cluster 2,
hereafter Advanced Finiteness. In the two subsequent clusters
the great majority of responses were of the “infinitely many
intermediates” type. However, in Cluster 3dhereafter Naı̈ve
Infinity1dthe dominant answer was Inf-, that is, the infinite
amount of intermediate numbers was mostly deemed to be of
the same type as the interval endpoints. On the contrary, the
dominant answer in Cluster 4dhereafter Naı̈ve Infinity
2dwas Inf. In spite of this difference, a common feature of
these two clusters was the presence of a considerable number
Table 4

Frequency and percentage of response types by cluster.

Cluster Response type

FIN Inf- Inf Total

1e Finiteness (N ¼ 540) 476 25 36 537

88.1% 4.6% 6.7% 99.4%

2 e Advanced Finiteness (N ¼ 320) 123 98 94 315

38.4% 30.6% 29.4% 98.4%

3e Naı̈ve Infinity 1 (N ¼ 340) 84 213 43 340

24.7% 62.6% 12.6% 100.0%

4 e Naı̈ve Infinity 2 (N ¼ 320) 104 65 145 314

32.5% 20.3% 45.3% 98.1%

5 e Sophisticated Infinity (N ¼ 600) 1 0 599 600

.2% .0% 99.8% 100.0%
of FIN answers. In Cluster 5dhereafter Sophisticated Infin-
itydpractically all answers were Inf.

3.3.2. Cluster features
Table 5 presents the means, standard errors, and 95%

confidence intervals with respect to students’ performance for
Nn, Dec, and Fra by cluster. It also presents the percentage of
the response types within each number type. Students in
Finiteness clearly performed worse than students in all other
clusters in terms of total mean performance as well as within
all number types. Within this cluster, natural numbers elicited
higher mean performances than decimals and fractions. This is
due to the fact that students in Finiteness gave FIN responses
across all number types, but relatively more Inf answers for
natural numbers.

Students in Sophisticated Infinity gave Inf responses across
all types of numbers. As a result, mean performance over the
different number types was clearly higher in this cluster than
in all other clusters, with the exception of Naı̈ve Infinity 2 in
the case of natural numbers. Performance for natural numbers
differentiated the three intermediate clusters, increasing
gradually from one cluster to the next. A common feature of
these three clusters is that mean performance for fractions was
the lowest of all number types.

Advanced Finiteness and Naı̈ve Infinity 1 cannot be
differentiated in terms of total mean performance or mean
performance for decimals and fractions. However, considering
the percentages of responses types for Nn, Dec, and Fra pre-
sented in Table 5, it becomes clear that the pattern of
responses was quite different for these two clusters. Specifi-
cally, the FIN response was dominant in Advanced Finiteness
across all number types. Students in this cluster also provided
a mixture of Inf- and Inf answers. On the other hand, the Inf-
response was dominant across all number types for students in
Naı̈ve Infinity 1. Within this cluster, there is a salient differ-
ence between natural numbers and decimals and between
natural numbers and fractions. One can also notice that frac-
tions elicited a considerable number of FIN answers.

Naı̈ve Infinity 2 is characterized by the absence of FIN and
Inf- answers for natural numbers. The response Inf is also
dominant for decimals. As a result, mean performance for
decimals differentiates this cluster from all preceding ones. In
the case of fractions, however, the dominant response is FIN.
In fact, this cluster is quite similar to Naı̈ve Infinity 1 with
respect to mean performance for fractions.

3.3.3. Distribution of students across the clusters by
nationality

Table 6 shows the distribution of Greek and Flemish
students across the clusters. Greek students were distributed
more amongst the first two clusters. On the other hand,
Flemish students were more heavily represented in the final
cluster. A chi-square test, however, showed that this difference
was not significant, c2(4, N ¼ 212) ¼ 6.920, p > .05. Thus,
despite their overall better performance, Flemish students
were also represented in the two first clusters, wherein the FIN
answer was dominant across all number types (Hypothesis 4).



Table 5

Mean, standard error, and 95% confidence interval of performance; and percentage of response types by number type and cluster.

Cluster Number Type M SE Confidence Interval Percentages of Response Types

Lower Bound Upper Bound FIN Inf- Inf

1 Finiteness Nn 1.36 .06 1.24 1.48 81.5 .9 17.6

Dec 1.10 .05 1.00 1.19 83.3 2.3 4.2

Fra 1.16 .06 1.04 1.27 87.0 8.8 3.7

Total 1.18 .04 1.10 1.25

2 Advanced Finiteness Nn 1.90 .08 1.73 2.05 40.6 29.7 29.7

Dec 1.90 .06 1.77 2.02 37.5 30.5 30.5

Fra 1.85 .08 1.70 2.00 38.3 31.3 28.1

Total 1.88 .05 1.78 1.98

3 Naive Infinity 1 Nn 2.22 .08 2.07 2.37 11.8 54.4 33.8

Dec 1.88 .06 1.76 2.01 16.9 77.9 5.1

Fra 1.71 .07 1.56 1.85 39.0 51.5 9.6

Total 1.88 .05 1.79 1.97

4 Naive infinity 2 Nn 2.91 .08 2.75 3.06 .0 .0 96.9

Dec 2.15 .06 2.02 2.27 35.2 14.8 50.0

Fra 1.63 .08 1.48 1.77 46.1 35.9 14.8

Total 2.10 .05 1.99 2.19

5 Sophisticated Infinity Nn 2.99 .06 2.87 3.10 .8 .0 99.2

Dec 3.00 .05 2.91 3.10 .0 .0 100.0

Fra 3.00 .06 2.89 3.11 .0 .0 100.0

Total 3.00 .04 2.93 3.07
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Interestingly, only half of the 34 Flemish students with the
stronger mathematical background were placed in Sophisti-
cated Infinity. From the remaining half, 4 (11.8%) were placed
in Naı̈ve Infinity 2, 6 (17.6%) in Naı̈ve Infinity 1, 2 (5.9%) in
Advanced Finiteness, and 5 (14.7%) in Finiteness.
4. Discussion
4.1. Summary and discussion of the results
As expected, Flemish students outperformed their Greek
peers in the tasks focused on the infinity of numbers in an
interval (Hypothesis 1). However, these tasks were far from
trivial for Flemish students, including those that followed the
science study stream and were therefore considered to have
a stronger mathematical background.

Approximately a quarter of our participants were included
in Finiteness. These students did not differentiate between
Table 6

Frequency and percentage of students by cluster and nationality.

Cluster Nationality Total

Greek Flemish

1e Finiteness 25 29 54

29.8% 22.7% 25.5%

2 e Advanced Finiteness 17 15 32

20.2% 11.7% 15.1%

3e Naı̈ve Infinity1 12 22 34

14.3% 17.2% 16.0%

4 e Naı̈ve Infinity 2 13 19 32

15.5% 14.8% 15.1%

5 e Sophisticated Infinity 17 43 60

20.2% 33.6% 28.3%

Total 84 128 212

100.0% 100.0% 100.0%
natural and rational numbers with respect to ordering and
transferred the property of discreteness from natural to non-
natural numbers. Interestingly, more than half of both the
Flemish and Greek students were not consistently on the
“finite” or on the “sophisticated infinite” side. Students in
Advanced Finiteness provided a substantial number of Inf and
Inf- answers. Nevertheless, FIN answers were still dominant
across all number types. Although they did consider the
infinity of intermediates in an interval, these students were still
constrained by the idea of discreteness and were reluctant to
accept that the intermediates can be of various symbolic
representations.

The effect of the interval endpoints was clear in Naı̈ve
Infinity 1 and Naı̈ve Infinity 2. Students in Naı̈ve Infinity 1
provided a large number of Inf- answers, indicating that they
were affected by the interval endpoints as far as the type of
intermediate numbers was concerned. Moreover, there was an
endpoint effect with respect to the number of intermediate
numbers. These students provided more Inf answers for
natural numbers than for decimals and fractions. On the other
hand, fractions elicited considerably more FIN answers than
decimals. A similar pattern can be observed in Naı̈ve Infinity 2,
which is characterized by a practically flawless performance
for natural numbers. Inf answers were also dominant for
decimals. On the contrary, FIN answers were dominant for
fractions. Moreover, when students considered the infinity of
intermediates in this case, they opted for numbers in the form
of fractions.

These findings corroborate the claim that understanding of
density is not an “all or nothing” situation. It is evident that the
idea of discreteness was robust (Hypothesis 4) and persisted
even when students considered the infinity of intermediates in
an interval. As expected, the type of interval endpoints used
affected students’ judgments regarding the type as well as the
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number of intermediate numbers. This effect was evident both
at the group and at the individual level (Hypotheses 2 and 3).
Similar to the findings of Vamvakoussi and Vosniadou (2010),
it appears that the idea of an infinity of numbers in an interval
was more accessible to students in the case of natural numbers,
and less so in the case of fractions. This holds for Greek and
Flemish students alike, considering that the distribution of the
two nationalities in the intermediate clusters, in particular in
Naı̈ve Infinity 1 and Naı̈ve Infinity 2, was very similar.

These findings replicate those of the original study
(Vamvakoussi & Vosniadou, 2010) in a different population,
providing supporting evidence for their generality. It should
also be stressed that the individual profiles in our study were
obtained via a cluster analysis, in which statistical criteria
were used to determine the number of clusters that was best
fitting to the data. The profiles obtained bear remarkable
similarities to the categorization that was applied by Vamva-
koussi and Vosniadou, even though the latter categorization
was developed on the basis of a priori criteria. The observed
similarities constitute more convincing evidence for specific
challenges that students meet in acquiring the rational number
concept than either of the two studies could offer alone.

Furthermore, the finding that students’ responses depended
on the interval endpoints could be interpreted as an indication
that they treated natural numbers, decimals and fractions as
different kinds of numbers, as opposed to instances or alter-
native representations of rational numbers. In terms of the
framework theory approach to conceptual change, this is
a synthetic conception of the rational number set.

Therefore, the results of this study are in line with the
predictions derived from the framework theory approach to
conceptual change (Vamvakoussi & Vosniadou, 2010;
Vosniadou et al., 2008). Thus, this theoretical frame could
be viewed as a source of fruitful hypotheses on students’
learning in the domain of number.
4.2. Considerations regarding instruction
This study raises some questions in regard to rational
number instruction, in view of the fact that Flemish students,
placed by PISA among the best students worldwide with
respect to their mathematics competence, appeared to face
similar conceptual difficulties to the Greek students with
respect to the rational number concept. One could argue that
dealing with the notion of density was bound to be difficult for
students in both countries, as it is not explicitly taught in
either. But it is precisely this fact that makes density tasks
appropriate as generative tasks: They present students with
a novel problem for which they probably do not have a ready-
made answer in advance, while they have in principle the
required knowledge to attain the correct answer. Thus, failure
to deal with the particular tasks is not interesting per se. The
focus is rather upon what students’ responses reveal about
their rational number reasoning. It appears that 9th grade
students in both countries, to a considerable extent, are
unaware of the differences between natural and rational
numbers, confuse numbers with their representations, and do
not deem natural and non-natural numbers to be members of
the same category, in spite of the fact that they have already
been exposed to at least 6 years of instruction upon rational
numbers.

The particular difficulties have not gone unnoticed in the
rational number development and learning literature (e.g.,
Kilpatrick et al., 2001; Moss, 2005; Markovits & Sowder,
1991; Ni & Zhou, 2005). We would like, however, to focus
on a related but slightly different aspect of the problem. As
Greer and Verschaffel (2007) state, within the mathematics
education research community there is a conceptual shift away
from the view of mathematics learning as enrichment, merely
building on prior knowledge without the need for restructur-
ing. This shift, however, has not found its way into the
classrooms. Instruction appears to be grounded on the
assumption that learning about rational numbers can be
accomplished via the gradual accumulation of related infor-
mation and neglects the fact that prior knowledge may actually
stand in the way of further learning (Resnick, 2006; Vosniadou
& Vamvakoussi, 2006). Both Greek and Flemish mathematics
curricula appear to downgrade the fact that the shift from
natural to rational number entails qualitative rather than
merely quantitative changes in the concept of number. Thus
Greek and Flemish students focus first on natural number
arithmetic, validating and strengthening the conception of
number as natural number. They are then gradually introduced
to non-natural numbers and spend much of their time at
elementary school becoming familiar with mostly procedural
aspects of these new constructs. In textbooks, the similarities
between natural and non-natural numbers are over-emphasized
with a view to making the latter more accessible to students.
For example, the part-whole aspect of fractions, which allows
for natural number reasoning, is prominent. This, however,
creates several problems in the long run. The idea that frac-
tions are discrete is arguably one such problem (Mamede,
Nunes, & Bryant, 2005; Moss, 2005). On the other hand,
a more sophisticated aspect of the similarity between natural
and non-natural numbers, namely what makes them members
of the same family, is not adequately addressed. In addition,
the decimal and fractional representations of rational numbers
are mostly presented separately. The 7th grade textbook of our
Flemish participants, for example, introduces students to the
notion of the decimal number system in the first chapter,
attempting to provide a unifying view of natural and rational
(non-natural) numbers in decimal form. Fractions, however,
are treated separately and as many as four chapters later.

Dealing with the problem of conceptual change in the
number concept requires designing instruction on a long-term
perspective basis (Greer, 2006). Probably the first step should
be to increase the awareness of teachers and textbook devel-
opers regarding the problem of conceptual change and the
particular difficulties that are bound to appear in the learning
process. It seems plausible that teaching that recognizes the
specific difficulties that were identified in this paper and
explicitly addresses them can lead to considerably better
outcomes. On the flip side, being aware of the specific diffi-
culties can help avoiding certain “missteps” in instruction that



684 X. Vamvakoussi et al. / Learning and Instruction 21 (2011) 676e685
may actually enhance students’ misunderstandings. Let us
illustrate such a “misstep”: In the Greek textbook, rational
numbers are introduced as the set comprising “all the numbers
we have studied so far, namely natural numbers, decimals,
fractions, and their respective negative numbers”. Similarly,
the Flemish textbook reads “we call the positive and negative
fractions and decimal numbers rational numbers; we will
name their set Q”. Such “definitions” attempt to introduce the
rational number set in a simple way, building on students’
available knowledge. However, they are bound to enhance
students’ tendency to treat rational numbers as a loose
collection of unrelated “sets” of numbers.

It should be noted that the conceptual difficulty relating to
the assumed synthetic conception of rational numbers as
consisting of different, unrelated “sets” of numbers has
consequences for students when dealing with notions that do
comprise part of their curricula. Consider for instance the
notion of the (real) variable, which is in many aspects
instrumental in the mathematics curriculum (e.g., with respect
to inequalities, the notion of absolute value, functions, etc.).
Greek and also Flemish students were found to be reluctant to
accept that any numberdregardless of its type (natural/non-
natural) and its symbolic representation (fraction/decimal)d
can substitute a variable (Van Dooren, Christou, &
Vamvakoussi, 2010). Greek students in particular showed
a strong tendency to substitute only natural numbers, which
predicted their ability to deal with a series of tasks, such as the
solving of equalities (Christou & Vosniadou, 2009).
4.3. Limitations and further research
The purpose of this study has been to test the replicability
of the findings of the study undertaken by Vamvakoussi and
Vosniadou (2010), also with a view to evaluate the predic-
tions of the framework theory approach to conceptual change
in this domain. The results were as expected. However, a study
with larger samples and different age groups could form
a basis upon which stronger conclusions with regard to the
similarities and differences between the populations could be
drawn. More importantly, qualitative evidence is necessary to
provide more information about the underlying reasoning of
students and to verify that students encounter similar obstacles
when approaching the tasks. A replication with a population
from an educational system with salient differences in respect
to the mathematics curriculum would be worth investigating.

A different line of research could focus on intervention
studies addressing the specific conceptual difficulties identi-
fied in this study. In particular, one could investigate the
instructional value of the number line in this respect. The
number line is a continuous representation. As such, it has the
potential to contradict students’ belief that numbers are
discrete. In addition, it allows for the integration of different
types of numbers within a unified number system (Kilpatrick
et al., 2001). Finally, further research could also focus on
mathematics teachers, aiming at raising their awareness of
students’ conceptual difficulties in the shift from natural to
rational numbers.
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