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EXTREMAL SEQUENCES FOR THE BELLMAN FUNCTION OF
THE DYADIC MAXIMAL OPERATOR AND APPLICATIONS TO
THE HARDY OPERATOR

ELEFTHERIOS N. NIKOLIDAKIS

Abstract: We prove that the extremal sequences for the Bellman function of the
dyadic maximal operator behave approximately as eigenfunctions of this operator for
a specific eigenvalue. We use this result to prove the analogous one with respect to the

Hardy operator.

1. INTRODUCTION

The dyadic maximal operator on R"” is a usefull tool in analysis and is defined by
1
(1.1) Map(z) = sup {@/ lp(y)|dy :z €@, @ CR"in a dyadic cube},
Q

for every ¢ € L (R™), where the dyadic cubes are those formed by the grids

loc

2~Nzn for N=0,1,2,... .

As is well known it satisfies the following weak type (1,1) inequality:

(12) o € B Mas(o) > M| <5 [ foluldn

{Mgp>A}

for every ¢ € L'(R") and every A > 0.
It is easily seen that (L2]) implies the following LP-inequality

(1.3) [Maglly < 2119l

It is also easy to see that the weak type inequality (L2) is best possible while (L3)) is
also sharp. (See [I] for general martingales and [15] for dyadic ones).
For the further study of the dyadic maximal operator it has been introduced the

following function of two variables, defined by
1 1 1
(14) B(f7F):Sup{_/(Md¢)p¢207_/¢:f7_/¢p:F}7
g Ql Jg 1Ql Jo 1Ql Jg

where @ is a fixed dyadic cube and 0 < fP < F.
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The function (I.4]), which is called the Bellman function of two variables of the dyadic
maximal operator, is in fact independent of the cube ) and it’s value has been given
in [2]. More precisely it is proved there that

Byp(f, F) = Fup(fP/F)”,

where w, : [0,1] — [1, p%l] denotes the inverse function H, ' of H, which is defined
by

Hy(2) = —(p—1)2P +pzF~t, for z ¢ [1, Ll]
p fe—
In fact this evaluation has been done in a much more general setting where the dyadic
sets are now given as elements of a tree 7 on a non-atomic probability space (X, ).

Then the associated dyadic maximal operator is defined by:

(15) Mro(z) = sup {ﬁ J1oldn: aere T},

Additionally the inequalities (IL.2) and (I3)) remain true and sharp in this setting.

Moreover, if we define

10 B r) =swf [ (ropdns o>, [ oau=r, [ pau=rf.

for 0 < f? < F, then B +(f, F) = By(f, F). In particular the Bellman of the dyadic
maximal operator is independent of the structure of the tree 7.

Another approach for finding the value of B, (f, F') is given in [3] where the following
function of two variables has been introduced:

1 1 t p
Sp(f, F) = sup {/ <Z/ g) dt: g:(0,1 — R" : non-increasing,
0 0

1 1
(1.7) continuous and / g= 1 / g° = F}
0 0

The first step, as it can be seen in [3], is to prove that S,(f, F') = By(f, F). This can be
viewed as a symmetrization principle of the dyadic maximal operator with respect to
the Hardy operator. The second step is to prove that S,(f, F') has the expected value
mentioned above.

Now the proof of the fact that S, = B, can be given in an alternative way as can be

seen in [9]. More precisely it is proved there the following result.

Theorem A. Given g,h : (0,1] — RT non-increasing integrable functions and a non-
decreasing function G : [0,+00) — [0, +00) the following equality holds:

sup {/ G[(M7o)*lh(t)dt : ¢ > 0,0" = g, K measurable subset of [0, 1] with
K

K| :k} :/OkG<%/0tg>h(t)dt,
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for any k € (0,1], where ¢* denotes the equimeasurable decreasing rearrangement

of ¢. O

It is obvious that Theorem A implies the equation S, = B), and gives an immediate
connection of the dyadic maximal operator with the Hardy operator.

An interesting question that arises now is the behaviour of the extremal sequences
of functions for the quantities (ILG) and (L7). The problem concerning (.6 has been
solved in [7] where it is proved the following:

Theorem B. If ¢, : (X,u) — RT be such that [ ¢ndp = f, [ $hdu = F,for every
X X

n € N then the following are equivalent

i) tim [ (Mron)Pdi = Fu(17/F and
i) lirlgn/|/\/l7-¢n—c¢n|pdu:0, where ¢ = wy(fP/F) . O

Now it is interesting to search for the opposite problem concerning (7). In fact we
will prove the following:

Theorem 1 Let g, : (0,1] — R+ be a sequence of non-increasing functions continuous

such that fgn )du = f and fgn Ydu = F, for every n € N. Then the following are

equwalent
1 . t
i) lim / (7 [ on) = Pyt
0
t
1 p
zz)hm/'; gn —cgn(t)| dt =0
where c:wp(fp/F). O

The proof is based on the proof of Theorem A and on the statement of Theorem B.

Concerning now the problem (I.6]) it can be easily seen that extremal functions do

not exist (when the tree 7 differentiates L'(X,u)). That is for every ¢ € LP(X, p)

with ¢ > 0 and [ ¢du = f, [ ¢Pdu = F we have the strict inequality [(M7¢)Pdu <
X X X

Fuy(f?/F)P.
This is because of a self-similar property that is mentioned in [§], which states that
for every extremal sequence (¢,,) for (L) the following is true:

1 1
. lim —— | ¢ndp = f while lim —— [ ¢Pdu=F.
(1.8) 1’?1#([)/I¢ dyp = f while IT]EH,U(I)/IQSPCZM F

1
So, if ¢ is an extremal function for (L6]), then we must have that —— [ ¢dp = f and

(1) I

1
) [ #Pdp = F and since the tree T differentiates L'(X, 1) (because of (LZ)), then
1
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we must have that p-a.e the following equalities hold ¢(z) = f and ¢P(z) = F, that is
fP = F which is the trivial case.

It turns out that the above doesn’t hold for the extremal problem (7). That is there
exist extremal functions for (7). We state it as:

Theorem 2. There erists unique g : (0,1] — R non-increasing and continuous with

1 1
[g(u)du = f and [ g*(u)du = F such that
0 0

(19) [ (5 [ o) ae=rustirsop

1 t
As it is expected due to Theorem 1, g satisfies the following equality n J g(u)du =
0
wp(fP/F)g(t) for every t € (0,1] which gives immediately gives (9. O
After proving Theorem 2 we will be able to prove the following

Theorem 3. Let g, be as in Theorem 1. Then the following are equivalent
1 t
1 p
i) lim/ <¥/gn> dt = Fw,(fP/F)P
n
0 0
1

ii) lim/ lgn — g|Pdt =0, where g is the function constructed in Theorem 2. O
n
0

In this way we complete the discussion about the characterization of the extremal
functions of the corresponding problem related to the Hardy operator. We also remark
that for the proof of Theorem 1 we need to fix a non-atomic probability space (X, u)
equipped with a tree structure 7 which differentiates L'(X, ). We use this measure
space as a base in order to work there with measurable non-negative rearrangements
of certain non increasing functions on (0, 1].

We should also mention that the exact evaluation of (L4]) for p > 1 has been also
given in [10] by L. Slavin, A. Stokolos and V. Vasyunin which linked the computation
of it to solving certain PDE’s of the Monge-Ampere type, and in this way they obtained
an alternative proof of the results in [2]. This method is different from that it is used in
[2] or [6]. However the techniques that appear in the last two articles and the present
one, give us the possibility to provide effective and powerful stability results (see for
example [7]).

We also remark that there are several problems in harmonic analysis were Bellman
functions arise. Such problems (including the dyadic Carleson imbedding theorem
and weighted inequalities) are described in [10] (one can also see [4] and [5]) and also
connections to stochastic optimal control are provided, from which it follows that the
corresponding Bellman functions satisfy certain nonlinear second-order PDE’s. We
remark at last that the exact evaluation of a Bellman function is a difficult task and is
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connected with the deeper structure of the corresponding harmonic analysis problem.
We mention also that until now several Bellman functions have been computed (see [2],
3], |, ), [6], [, [12], [3] and [14]).

The paper is organized as follows: In Section 2 we give some preliminary definitions
and results. In Section 4 we give an alternative proof of Theorem B, which is based
on the proof of the evaluation of the Bellman function of two variables for the dyadic
maximal operator and which is presented in Section 3. At last we prove Theorems 1
and 2 and 3 in Sections 5 and 6 and 7 respectively.

2. PRELIMINARIES

Let (X, i) be a non-atomic probability measure space. A set 7 of measurable subsets
of X will be called a tree if it satisfies the conditions of the following

Definition 2.1.
i) X € T and for every I € T we have that u(I) > 0.
ii) For every I € T there corresponds a finite or countable subset C(I) C T con-
taining at least two elements such that
(a) the elements of C(I) are pairwise disjoint subsets of I

(b) I=UC(I).
iii) 7= U Tim) where Toy ={X} and Tpry = U CU).
m=>0 IE’T(m)
iv) We have that lim sup wu(l)=0. O

m — o0 167—(777,)

Examples of trees are given in [2]. The most known is the one given by the family of
all dyadic subcubes of [0,1]™. The following has been proved in [3].

Lemma 2.1. For every I € T and every a such that 0 < a < 1 there exists a subfamily
F(I) C T consisting of pairwise disjoint subsets of I such that

(U 7)= T ) =a-aum,

JeF(I) JeF(I)

We will also need the following fact obtained in [9].
Lemma 2.2. Let ¢ : (X,u) — R and (4;); a measurable partition of X such that
w(A;) >0,V j. Then if [ ¢dp = f there exists a rearrangement of ¢, say h (h* = ¢*)
X

1
——— | hdu = f, for every j. O
M(Aj)Afj

Now given a tree on (X, u) we define the associated dyadic maximal operator as

such that

follows

MT¢($):SUP{ﬁ/I|¢|d,&3 wGIGT},
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where ¢ € LY(X, ). We also recall the following from [9].

Lemma 2.3. Let k € (0,1] and K measurable subset of X with u(K) = k. Then the
following inequality holds

/KG[MTqﬁ]du < /fG(% /Otg(u)du>dt

where g=¢*, p€ LY (X, 1) and G : [0, +00) — [0, +00) is a non-decreasing function. [

3. THE BELLMAN FUNCTION OF THE DYADIC MAXIMAL OPERATOR

In this section we provide a proof of the evaluation of the Bellman function of the
dyadic maximal operators with respect to two variables f, F. The result appears in [0]
in a more general form, but we give a proof of this so as this work is complete. For this
purpose we will need the following.

Lemma 3.1. Let ¢ : (X, ) — RT be such that
[ odu=1 and [ orau=F.

X X
where 0 < fP < F. Then

[ (Mropdn < Few(/py
Proof. We consider the integral

I = / (Mr)Pdp.
X

By using Fubini’s theorem we can write

+00
= / PN (M > AD)dA
)\_

=0
f 400

(3.1) - / 4 / PN (Mo > ADdA = I + I,
A=0 Ja=¢

f
- / PN u({ My > A})dA
A=0

f f
(3.2) :/ PP u(X)dX :/ pAPTLAN = fP,
A=0 A=0

since Mré(z) > f, for every z € X.
15 is defined by

+oo
I = / PV LU({Mré > AP)dA.
A=f
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By using inequality (I.2]) we conclude that

+oo
I, < / pAp—11< / ¢du> d\
A=f AN Mro>a)

—+oco
- p 1y Mrd(z)
— [T 2( / cbdu)d/\:— [ o@ R auta),
/,\:f (Mo} p—1Jx [ ]A_f

where in the last step we have used Fubini’s theorem and the fact that Mr¢(z) > f,
V x € X. Therefore
p -1 p
3.3 L <—— [ ¢- Myp)P" duy — ——fP.
(3.3) 2 p—1 /)y ( ) K p—1
Thus from (B1)), (32) and (B3] we have as a consequence that

(3.4) I:/X(MT@pdﬂ3—pilprrpfl/XQS'(MTqb)p_ldu.

Using Hoélder’s inequality now, it is easy to see that for every ¢ as above the following

inequality is true

35 [ otmrortas ([ wdu)l/p- (/. <MT¢>pdu)(p_l)/p.

By (3.4) and (3.5]) we thus have
I= / (Mro)Pdu < — 1 P+ N S VR (CESDV/ N
X p—1 p—1
I 1 P 7\ P-D/p
(3.6) ot ro(r (L _
F p—1 F p—1 F

IN\1/p
If we set now J = (F) , we have because of (3.6]) that

1 J? p -1
. P~ .2 _ 4 = JP
(3.7) TS p—1 F p—lJ ’

We distinguish the two following cases:

i) J < 1. Then J < wy,(fP/F), since w, takes values on [1,p/(p — 1)]. Thus

I

1/p
(£) " wsm/m) > 1< Furr/py,

and our result is trivial in this case.
ii) J > 1. Then because of (3.7]) we conclude

P
=1 _ (p _ P> f
pJ (p—1)J? >

or that

Hy(J) > % = ngp<%>,

since wy = H; 1 As a consequence we have that

/ (Mro)Pdu < F - Wp<ﬁ>pa
X F
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that is we derived the proof of our Lemma.

0

As we shall see in Section 6, for every f,F fixed such that 0 < fP < Fand p > 1
1

there exists g : (0,1] — R™ non-increasing, continuous which satisfies / g(u)du = f,
0

1 t
/gp(u)du = F and " / g(u)du = cq(t), for every t € (0, 1] where
0 0

fP
c=wy| = ).
Thus the next Theorem is a consequence of Theorem A, and the results of this Section.

Theorem 3.1. Let f, I be fixed such that 0 < fP < F where p > 1. Then the following
equality is true

p
(3.8)  sup { /X(Mmﬁ)”du 1> 0,/X pdp = f,/Xtﬁpdu = F} = pr<§> .

4. CHARACTERIZATION OF THE EXTREMAL SEQUENCES FOR THE BELLMAN
FuNcTION

In this section we will provide an alternative proof of Theorem B, different from
that in [7], based on the proof of the evaluation of the Bellman function of the dyadic
maximal operator, which is given in Section [Bl

Proof of Theorem B.
i) = ii) Let (¢,)n be a sequence of functions ¢, : (X, u) — RT such that / Gndp =
X

f, / ®Pdp = F for which lim/ (Mr¢n)Pdu = Fwy,(fP/F)P.
X moJX
We will prove that

lim/ | Mro, — con |P du =0,
noJx

where ¢ = wp<%).
By setting A, = {M7¢, > cdp} and A, = X \ 4, = {M71¢, < cop}, it is
immediate to see that it is enough define

In :/ (MTqb” _C¢n)pd:u and J, :/ (C¢n _MT(ZSn)pd,uv
An A

and then prove that I, J, — 0, as n — oc.
For the evaluation of the Bellman function, as it is described in the previous section
we used the following inequality:

(4.1) /X b (Myop—Lldp < < /X #’du)l/p- < /X <MT¢>pdu>(p_1)/p,
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which for our sequence (¢,,), must hold as an equality in the limit (we pass to a
subsequence if necessary). We write this fact as

@2 [ bu Mrodus < /. %du)l/p- ( /. <M7¢n>Pdu>(p_l)/p.

Now, we are going to state and prove the following:

Lemma 4.1. Under the above notation and hypotheses we have that:

1/p (p=1)/p
(43) suMronptau= ([ oran) ([ aroran)”

Xn

where X, may be replaced either by A, or Al.

Proof. Certainly the following inequalities hold true in view of Holder’s inequality.
These are

1/p (p—1)/p
(4.4) b - (Moo )P\t < < / ¢¢;du> ( / (MT%)”CZM) ,
Ap Ay Ap

and

1/p (p—1)/p
(4.5) ¢n(MT¢n)”_ldu§< /A | cbﬁdu> < / ,<M7¢n>pdu> ,

/
An

n

for any n € N. Adding them we obtain

/X¢n S (Mgd)Pldp < </An %@) l/p‘ (/AH(MT%)de) (»—1)/p

(4.6) " ( /. %du)l/p' ( /. % <M7¢n>7’du> v

We use now the following elementary inequality, which proof is given below.
For every t,t' > 0, s, s’ > 0 such that

/
n

t+t'=a>0 and s+s =b>0 and any ¢e€ (0,1),
we have that
(4.7) 9. 810 ()9 (17T < a? b1,

Applying it for ¢ = 1/p we obtain from (£6) the following inequality:

which in fact is an equality in the limit, because of our hypothesis. Thus, we must have
equality in both (£4]) and (4.3) in the limit and our lemma is proved, as soon as we

prove (4.1).

Fix ¢t € (0,a] and consider the function F; of the variable s € (0,b) defined by

Fi(s) =t s 4 (a—t)7- (b—s)' 7%
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o -a-o(4) - ()] sewp

so that F{(s) > 0 for every s € (0,2), and F{(s) < 0 for s € (£,b). Thus F attains its
maximum on the interval [0,b] at the point %. The result is now easily derived. O

Then

We continue now with the proof of Theorem B.
Now we write

(48) /X (Mo én)Pdp = /A (Morihn)Pdp + /A (Mréu)dp.

n

We first assume that
/ ordu, ¢Pdp >0, for any n e N.
An Al

Thus in view of Holder’s inequality, (£.4]), ([4.5) and (£9]) we must have that

(/. 6o Mro.ytan

(/A %d,u)l/(p_l)

( /A e (Mr o)

(/A %du)l/(p_l)

!
n

>p/(p—1)

/ (Mordon)Pdps >
X

)p/(p—l)

(4.9) +

We use now Holder’s inequality in the following form:
a® n o (a+c)*
pk—1 dk-1 — (b + d)k—l’

The above inequality is true as an equality if and only if

(4.10)

for any a,c¢ >0, b,d >0, where k> 1.

%:2:)\, for some A eR, A>0.

Thus in view of (£.I0), (49]) becomes:
([ ronro,au

(/ ﬁdu)l/(p_l)
X

which is an equality in the limit, in view of the fact that ¢,, is extremal for the Bellman

P
function, that is lim / (Mr1op)Pdp = Fuwy, (‘%)p. From all the above we conclude, by
noJX

>(p—1)/p

9

(4.11) [ (Mo, >

passing if necessary to a subsequence that

On - (Mrn)™dp On- (Mrn)~ldp
(4.12)  lim 22» = lim 22n

" / K " /. o

/
n

=\eR™.
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Thus, by the equality that holds in the limit in (4.9]), which is true because of the
equality in (£I1]) we conclude that

v [ g |
n Ap Al

P\ P p\ P—1
AP/ =1 Fuw, <f?> = )\ = wp<f—> )

Thus by (@IZ) we conclude

p\ P—1
/A n%-(an)p—lduwp(%) < /A n(bﬁdﬂ), and

p—1
[ ooy, (£) ([ o).

n

%du} = lim /X (Mrén)Pdu

or that

Then, because of Lemma [4.1] we obtain that

p
(4.13) /A (M7¢n)pdumwp<§> '/A ¢Pdu, and

(4.14) /A

We will now need the following

p
e R

i
n n

Lemma 4.2. Suppose we are given w, : X, — RT where X,, C X, for n € N, and
w: X — R satisfying w, > w on X,,. Suppose also that

lim wbdp = lim wPdp, where p > 1.
n Jx, n Jx,

Then

lim | (w, —w)Pdu = 0.
nJx,

Proof. 1t is a simple matter to prove this lemma because of the following inequality.
For any x >y > 0, p > 1 the following holds (z — y)? < aP — yP. Thus

/(wn—w)pd,ug/ wfld,u—/ wPdp — 0, as n — oo

and the proof is complete. O

In view of Lemma 4.2 now and the definitions of A,,, Al | we see immediately that

/ (M — con)Pd— 0 and
Ay

/ (chn — M7dp)Pdu — 0, as n — oo.
A/

n
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As a consequence / | M7y, — con [P du — 0, as n — oo and our result is proved, in
X

the case where
(4.15) / ¢P >0 and ¢Pdp >0, for any n € N.
An Al
The same proof holds even if we have that ([£I5]) is true for every n > ng, for some
ng € N.
Assume now that
dPdp =0 for afixed neN.
A/

n

Since
Al ={Mr¢, < cpp} and Mro,(x) > f for every z € X
we conclude that
ruy < [ Mrorause [ o—o
An A,
= u(Al) =0= Myp, > cp, p— a.c. on X. As a consequence, for our fixed n € N
we must have that

/ (M)l > & / = F - w,(f?/F)P,
X X

which cannot hold in view of Lemma 3.1
Now suppose that for some subsequence of (¢y,), which we suppose without loss of
generality that is the same as (¢,,), we have that

(4.16) /A i = 0

Remember that A,, = {M1d, > cd,}.
Let then = € {¢, = 0}. Then if 2 € A}, we would have that M7, (z) < cp,(x) or
that M7, (x) = 0, which is impossible, since M7, (y) > f, for every y € X. Thus

{on =0} C A= A, € {¢n >0}

But from (4.I6]) we have that / dbdp = F, so if pu({¢n > 0} \ Al) is positive we
An

would obtain / ¢bdp > F, which is impossible. Thus we have that
{¢n>0}

A, € {¢p >0} and p(4%) = p({pn > 0})
for every n € N. Since integrals are not affected by adding or deleting a set of measure
zero, we may suppose that
(4.17) Ay, = {on > 0}.

Because of Lemma [£.1] we have that

1/p (»-1)/p
(4.18) %(Mm)p—lz( / %dpc) ( / <M7¢n>Pdu> ,
AL i A

/
n
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Since (4I7) holds we conclude by (£I8) that

(»—1)/p
(4.19) /X %(an)p‘lduw”p( /A <M7¢n>”du> :

But the next inequality is true in view of the extremality of the sequence of (¢,) (see
at the beginning of this section)

(r—=1)/p
(4.20) /X (M) dp ~ FUP < /X <M7¢n>pdu) .

Thus
[ Mroyans [ (ronrau= [ (ronrau=o
A{n X An
and since M7¢,, > f on X we conclude that u(4,) — 0. Then
[ 1 nron—copau= [+ [ 1 Mron—con P du=1,+
X A" A'In

Then we proceed as follows: I, = fAn (Mrdn—cdn)Pdp < fAn (Mrdn)Pdu—cP fAn(gbn)pd,u
in view of the elementary inequality used in the proof of Lemma 4.2. By all the above
and by our hypothesis we conclude that

I, ~0

As for J,,, we have
(etn = Mro, = [ o= [ (Mronya

T :/
A n
P\
~ Fuw, (—) — / (Mrdn)Pdu = 0,
F X

since (¢y,) is extremal.

/
n

Thus, in any case we conclude Theorem B.

5. PROOF OF THEOREM 1

We will prove Theorem 1 by arguing as in the proof of Theorem A and by using also
Theorem B.

We begin with a sequence (gy), of non-increasing continuous functions g, : (0,1] —
1 1
R* such that [ g,(u)du = f and [gh(u)du = F where 0 < fP < F. We set ¢ =
0 0
wp(fP/F) and we suppose that (gy)y is extremal for (L), that is

1 to\P
lirrln/o <%/0 gn> dt = Fu,(fP/F)P = F - P,

Our aim is to prove that
1 1 t p
lim/ —/ In — cqn(t)
nJo |1t Jo

dt = 0.
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For this purpose it is enough to prove that

1 t p
(5.1) / . [—/ Jn — cgn(t)] dt =1, =0, and
{6} [ gn>con ()} tJo

1 t p
/ . [cgn(t) — —/ gn] dt =13, — 0, as n — oo.
{6} [ gn<con()} tJo

We consider the first quantity in (5.I) and similarly we work on the second. Set A, =
{ (0,1] fgn > cgn(t )} so we need to prove that

1 /[t P
/ [— / In — an(t)} dt — 0, as n — oo.
An Lt Jo

Since (z — y)P < aP — yP, for x > y > 0 and p > 1 it is enough to prove that

1 t p
IIn:/ <—/gn> dt — P gv — 0, n— oo.
A, \t Jo An

For each A,,, which is an open set of (0, 1] we consider it’s connected components I, ;,

i1=1,2,... .50 A, = U I, ;, with I,, ; open intervals in (0,1] with I,,; N I, ; = 0 for
i

Let € > 0. For every n € N choose 4, € N such that

III, —III,,| <& and |[IV, —IVi,| <e

where IT1,, = f (%

t 1t P
[g ) dt, IT,, = [ (—fgn) dt, IV, =P [ g IVin=c* [ gb,
0 Fy t 0 An Fn

in
and F,, = | Iy
i=1
It is clear that such choice of i, exists. Then |II, — II; ;| < 2¢ where

1 t p
IIl,n = / <_/ gn> dt —c? grg
.\t Jo Fy

We need to find a ng € N such that Il ,, <e, Vn > ng. Fix now a g, =: g. We prove
the following

Lemma 5.1. There exists a family ¢q : (X, 1) — RT of rearrangements of g (¢% = g
for each a € (0,1)) such that for each v € (0,1] there exists a family of measurable
subsets of X, SC(:/) satisfying the following:

Y /1 t p
| P
Jim [ o /0 <t /0 g) dt

and lim M(S( )) = v. Moreover we have that S((;Y) - S((;Y/) for each a v <+ <1 and

a— 0t

€ (0,1). 0



EXTREMAL SEQUENCES FOR THE BELLMAN FUNCTION AND APPLICATIONS 15

Proof. We follow [9]. Let a € (0,1). By using Lemma 2.1] we choose for every I € T a
family F(I) C T of disjoint subsets of I such that

(5.2) > ul) =1 —au(l).

JeFI)

We define S = S, to be the smallest subset of 7 such that X € S and for every I € S,

F(I)CS. Wewrite for I € S, Ar=I\ U J. Then if a; = u(Ar) we have because
JeF(I)
of (52) that a; = au(I). It is also clear that

Sq = U Sa,(m), where Sg gy ={X} and S, (1) U F(I
m>0 I€S,, (m)

We also define for I € S,, rank(I) = r(I) to be the unique integer m such that
Ie Sa,(m)-
Additionally, we define for every I € S, with 7(I) =m

I 1 (1 a)'rn d
Y(I) = Ym = sl oy /( g(u)du.

1_a)m+1

We also set for I € Sg, by (I) => .  ssscr u(J). We easily then see inductively that
r(J)=r(I)+m

bin(I) = (1 —a)™u(I). It is also clear that for every I € Sy, I =g, 5 cr A

At last we define for every m the measurable subset of X, S,, = J [I.
1€5a,(m)

Now, for each m > 0, we choose Tém) :Sm \ Sm+1 — R such that
7_am (g/ _ m+1 (1 —a)™ D*

This is possible since u(Sy, \ Smt1) = w(Sm) — w(Smr1) = b (X) — b1 (X) =

(1—a)™—(1—a)™ = a(l—a)™. It is obvious now that Sy, \ Spr1 = | Ay and
IESa,(m)

that

(1 a)’m 1
(m) gy = / du— — / dpt =
™M dp g(u)du Tadt = Y.
/Sm\smﬂ (1—aym+1 (u) 1(Sm \ Smt1) J 8\ Syt
(m)

Using now Lemma[2.2] we see that there exists a rearrangement of 7, / Sm \Sm+1 = Ta
1

called ¢¢(1m) for which — [ gb[(lm) = Ym, for every I € S, (1)
arg Ar ’

Define now ¢, : X — RT by ¢,(z) = o™ (x), for x € Sy, \ Sm+1. Of course ¢} = g.
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Let now I € S, (). Then

Z / Padps

S >JCI

TSNS /(badu

g>0 Sa3JCI

Avr(a) = /<z>a

- r(J))=r{I)+¢
Z Z Im4LQJ
Z>O Sa2JCI
1 1 /<1—a>m”
= — ap(J g(u)du
() Z>: ;:CI — )m"'é (1—q)m+t+1 (u)
1 1 /U—“)’”“
g(u)du - w(J
( )Z: (1 —a)m“ (1—a)m+e+1 ( ) S(;:gl ( )
- r(J)=m+<¢
1 1 (1—a)m+t
du - be(1
w(l )Z: (1—a)mtl /A)m+e+1 g(u)du - be(I)
B (1—a m+l
1—am§/lam+é+l du
1 (I—a)™

Now for x € Sy, \ Spmy1, there exists I € S () such that x € I so

1 (1—a)™
64 Mr@)e) 2 Auldn) = o [ aludu =6,

Since p(Sp) = (1 —a)™, for every m > 0 we easily see from the above that we have
M7 (¢a)]"(t) > 6, forevery te ((1 — a)m+1, (1-— a)m].

For any a,v € (0,1] we now choose m = m, such that (1 —a)™" <~ < (1 —a)™. So
we have lim (1 —a)™ =+.
a— 0t

Then using Lemma [2.3] we have that

y 1 t p
65 msw [ (Mr@Pdes | <; / g> dt < +oo,

where US,, (,,,,) denotes the union of the elements of S, (,,,,). This is Sy, = J [
IES(L,(ma)

a,(ma)

This is true since u(Sm,) — 7, asa — 0.
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Then

[ o= 3 [ rouran

{>mg Se\Se1

D> ( o [ s s s
(5.6) = Z ( o) /(1 a)lg(u)du>p‘((1_a)€+1,(1—a)é]‘7

Since (1 —a)™* — ~ and the right hand side of (5.6]) expresses a Riemann sum of the
(I—a)™a 1 ¢ \P

f <Z f g> dt we conclude that

0 0

¥ t p
(5.7 imswp [ (Mreanz [1(5 [ o) a
Z—)O+ Sma 0 t 0

Then by (5.5 we have equality on (5.7).
We thus constructed the family (¢q)qe(0,1), for which we easily see that if 0 < vy <

~" <1 then S((l v) - Sé” for each a € (0,1). O O

Remark 5.1. It is not difficult to see by the proof of Lemma [5.1] that for every £ € N,
and a € (0,1) the following holds A = g/(0,(1 — a)’], where h is defined by h :=

(60/S00)) " on (0,1~ a)’.

We now return to the proof of Theorem 1.
We remind that

1 t p
IIl,n = / <Z/ gn> dt — Cp/ gﬁ = IIIl,n - IVl,n
n 0 n

in
with F,, = U I; = U (an,ibn;), which is a disjoint union. Thus

i=1 1=n

bn,i 1t p An,i 1 t p
I, = - n — - n t].
N S S RO

n
Now, for every n € N we consider the corresponding to g,, family (¢qn)ee(0,1) @and the
respective subsets of X, S[(l?ﬁ'i), S[(llj}i’i), a€(0,1),7=1,2,...,n; for which
u(S}fﬁ'i)) — ap,; and u(S[(le}i’i)) — bpg, as a — ot.
We can also suppose that
Ani <bni < apit1 <bniy1, 1=1,2,... 4, — 1L

Then we also have that

S(an i) Sgbg ) c S(‘”” “1) and of course
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An,i 1 t p
. li an)]’ = " n )
65:) Jim [ s Gapan= [ (G o) a

and similarly for the other endpoint b, ; of I,,;. Therefore, by (G.8)) there exists for
1

every n € N an ag, € (0,1) such that 0 < a < ag, = |11, — V,,| < —, where
n

=3 | [, Mrowrd [

= A(d) (MTQSCL,n)pd'U,, A1(’La) — U |: \S anz ]

(an,ﬁwma,nvdn}

a,n

Additionally, we can suppose because of the relation

1 1 t p
lim (M7 dan)Pdt = / <— / gn> dt, for each neN
a— 0t Jx 0 t 0

and since g, is extremal for the problem (7)), that ag, can be chosen such that for

every a € (0,a0,,)

1
< —, forevery neN.
n

(5.9) ‘ [ (Mrswapas = Fo /5y

Choose a], € (0,a,) and form the sequence
¢a§l,n =: On.

Then, because of (.9) and since ¢} = g, we have that ¢,, is extremal for (L.6l).
Because of the Remark 5.1 we now have for every ¢ € N, each n € N and a € (0,1),
that

(Gan/Sai0) : O.1(S0) = (1= a)f] — R*
is equal to g,/(0,(1 — a)]. Since lin%+ w(AD) = |F,|, for every n € N we can
a—
additionally suppose that ag, satisfies the following

(A ~ ]| < %, for every a € (0,0,

soif A, = A,(qail) we must have additionally, since ¢, = ¢y, that

(510) [ G Lm)a- [ vrsral <t

and that |,u(/1n) — |Fn|‘ < —, for every n € N.
n
It is also easy to see because of the above relations, the Remark 5.1 and the form of
A, (by passing to a subsequence if necessary), that

(5.11) lim/ ¢P =lim [ gP.
"J A, " JF,

We now take advantage of Theorem B.
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Since ¢, is extremal for (L) we must have that [ M7, —con[Pdp — 0, as n — oo
X
where ¢ = wy(fP/F)P. This implies:

/ (Mrdp — cop)Pdu — 0, as n— oo or
A {MTdn>con}

/ (Mrépn — cpp)Pdu — 0, as n — oo, where A, = A, N {Mzd, > con}.
A

[ /A (Mfrqbn)”} " < [ /A

we must have, because of the definition of A/, and the above inequality that:

Since

(Mrn — c%)f’} "y [ / <c¢n>p] h

/ ’ ’
n n n

lim [ (M7¢,)P =cPlim [ ¢P.

"oJa "oJa

In the same way we prove that:
lim/ (Mr1d,)P = cplim/ oP, so
T JApNAL o JANAL

lim/ (Mrdp)Pdp = cplim/ obdu.
Because of (5.10) and (5.I1]) we have that

1 t p
lim <— / gn> dt = lim ¢? gb,
n Jr, \t Jo n Fo

and from the choice of F;, we see that we must have that I, < 2e, for n > ng, for a
suitable ng € N. And this was our aim. O
6. UNIQUENESS OF EXTREMAL FUNCTIONS

In this section we will prove that there exists unique go : (0,1] — R™ continuous,
with

1 1
/ go(u)du = f, / gh(u)du = F and
0 0

/01 <% /Ot go(u)du>pdt = Fu,(f?/F)P.

This is the statement of Theorem 2.

Proof of Theorem 2. By Theorem 1 it is obvious that if such a function gg exists, it
must satisfies

(6.1) %/0 go(u)du = cgo(t), a.eon (0,1], where ¢ = wy,(f?/F).

Because of the continuity of gy we must have equality on (6.]) in all (0, 1].
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So, in order that go satisfies ([6.1]) we need to set go(t) = ktte te (0, 1], and search
for a constant k (by solving the respective first order linear differential equation) such
that

1
/ go(u)du = f and /gg(u)du =F.
0 0
The first equation becomes

1
/ bt idt=f e ke=fo k= f/c
0

So, we ask if gg for this k satisfies the second equation. This is
D

/1gg(u)du:F<:>k—:F<:>fp/F: [(—p+1)+]—9]cp<:>
o (o7 c
—(p— 1)@ +pcf~t = fP/F.

But this is true because of the choice of ¢ = w,(f?/F) and w, = H,* where

Hy(2) = —(p— 1)2P +pzP~ 1, for te€ [1 —J
Because now of the form of go : (0,1] — R™ we have that

1 t 1 1 t p
2 [ av(wdn =cqit), vee 1) = [ (; / go<u>du) du = Fu,(f?/F)".
0 0 0
So go is the only extremal function in (0, 1].

7. UNIQUENESS OF EXTREMAL SEQUENCES

We are now able to prove Theorem 3.
The direction ii)=-i) is obvious from the conditions that g satisfies.
We now proceed to ii)=1)
We suppose that we are given g, : (0,1] — R™ non-increasing, continuous, such

that fgn )du = f, fo u)du = F and

lim / ( / du> dt = Fuw,(f?/F)P.

Using Theorem 2 we conclude that

1 1 t
;/ gn—an(t)
0

Thus there exists a subsequence (gg,, )n such that if

1 t
Fn(t):—/o gn —cgn(t), t€(0,1], neN,

P
dt.

t
then Fj,, — 0 almost everywhere (with respect to Lesbesgue measure). By a well known
theorem in measure theory we have because of the finiteness of the measure space [0, 1]
that Fy, — 0 uniformly almost everywhere on (0,1]. This means that there exists a
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sequence of Lesbesgue measurable subsets of (0, 1], say (Hy)n, such that H,1 C H,,
1
|H,| < — satisfying the following condition
n
I 1
0

Additionally from the external regularity of the Lesbesgue measure, we can suppose
that H, is a disjoint union of closed intervals on (0,1]. Let now t,t' € [a,1] \ Hy,,
where a is a fixed element of (0, 1].

Then the following hold (¢ = wy(f?/F))

1 t
Ok, (t) — = / Gk,
0

1 [t 1 [t
. +‘¥/09kn—p/0 Gk,

1 [t
- / Gk — COhy, (')
0

legr., (t) — egr, ()] <

+ =1+11+1I1I.

t/

1
Then I < . since t ¢ Hy,, . Similarly for III.
n

We look now at the second quantity II.
We may suppose that t' > t, so t' =t + ¢ for some § > 0. Then

t t!
II1=—|t —t

oy /0 Ik, /0 Ik,
1 t t 4

< — (t+5)/ gkn—t/ gkn—t/ Gk,
at 0 t

= —‘ / Iky, — Ik,

(71) é 2f+ / 9k, s
t

1
where f = [ gi,. Now by Holder’s inequality we have that
0

t! t/ 1/p L1 L1
o= ([ ) wmat et
t t
5f

Thus 17 < 2L 4+ 1525 p.
We consequently have that for a given ¢ > 0 and a € (0, 1) there exists § = J, > 0
for which the following implication holds

(7.2) t,t' €la, 1)\ Hy,, |t—1t'|<0=|gk,t) — gk, (t')| <e, forevery neN.

Thus (g, )n has a property of type of equicontinuity on a certain set that depends on
a. We consider now an enumeration of the rationals in (0, 1], let {q1,q2,...,qr,,---} =

Qn(0,1].
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For every ¢ € QN (0, 1] we have that (g, (q))n is a bounded sequence of real numbers,
because gy, is a sequence of non-negative, non-increasing functions on (0, 1] satisfying

1
Jor, =1
0
By a diagonal argument we produce a subsequence which we denote again by g,
such that gi, (¢9) — Ag, n — oo where \; € R*, ¢ € QN (0,1].

Let H = ﬁ Hj, ., which is a set of Lebesgue measure zero, and suppose that =z €
(a,1)\ H. TTlLl_eil x > a, and there exist a ng € N such that « ¢ Hy,, , so that x ¢ Hy,,,
V'n > ng. Additionally, choose a sequence (py )y, of rationals on (a,1) \ Hg, such that
pr — x. This is possible because the set (a,1)\ H, kn, 18 an open set. Thus, we have that
pr > a and py ¢ Hy, , n > ng, k € N.

Let now kg € N : |py, — x| < 0, V k > ko, where ¢ is the one given in (7.2]).

We then have that |g, (x) — gk, (Pk,)| < €, for every n € N. Thus, for every such z,

and every n,m € N we have that
|gkn (x) - gk'm (x)| é |gkn (':U) - gkn (pk0)| + |gkn (pk()) - gk'm (pk0)|
+ Gk (Pro) = Gk (T)] < 28 + |Gk, (Pho) — Gkt (Pio)-

But (gk, (Pk,))n is convergent sequence, thus Cauchy. Then (gi,(z)), is a Cauchy
sequence for every z € (a,1) \ H for every a € (0,1].

Thus (gk, (z))n is a Cauchy sequence in all (0,1] \ H.

As a consequence there exists gf : (0,1] — RT such that

(7.3) gk, — go a.e. on (0,1]

Additionally by using the relation

1
lim / |
n
0
we may assume (by passing if necessary to a subsequence) that Fy, — 0 almost every-
where in (0, 1]. Thus

~ | =

t
/ Gh, — cgn, (£)[Pdt = 0
0

(7.4)

| =

t
/ Gk, — CGk, (t) = 0
0

for almost every ¢ € (0, 1].

1
Our aim is to prove that lim, [ |gx, — go|? = 0, and that g{, = go, where go is the
0

function constructed in section 6, thus giving us gy, RN go. By (@3) and (T4) we
immediately get that

¢
(7.5) lim /gkn = cg)(t)
0
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for almost every t € (0, 1].
Moreover, for every t € (0, 1], we get by using Fatou’s Lemma
t t t
1
/ _ = . <1 . + _ / )
90 t/hgngkn < hn}@mf . /gkn cgo(t)
0 0 0

(7.6)

SR
[

1 1
Inequality (Z.6) for ¢t = 1 gives [ g{ < f, since [ gi, = f for all n € N.
0 0

Additionally
1

1 1
/(96)p = /(limgkn)p < liminf/gfgJ =F
n n
0 0 0
using again Fatou’s Lemma.

Now by Theorem 13.44 of [16], page 207, we have that if p > 1 and (f,)nen is a
sequence of nonnegative measurable functions in measure space (X,.A, x) such that
sup,, [y fhdp < +oo and f, — f p- a.e. then f, — f weakly on L? that is [y frgdy —
[ « fgdp for every g € L7 where % + % = 1. We apply this theorem to our case:

1
sup,, [ g5 dpu=F < +o0, and gi, — gj a.e. Thus
0

(7.7) Ikn — 90

weakly on LP. By (L1 we immediately get

t

¢

(7.8) lim/gkn = /gf), vt € (0,1].
0 0

By using now (74 and (8] we get

(7.9)

S
o\W
Ne)
S~
Il
(@)
Q
o~
—
~
N—

for almost every ¢ € (0, 1].
Thus g{, can be considered to be continuous on (0,1] and (7.9) is true for every
t € (0,1]. Moreover (L8] for t =1 gives

1
(7.10) g0="1r
/

From (Z.9)), which is true for every ¢ € (0,1] and (ZI0) we easily get that g has the
following form

(7.11) gh(t) = {t‘H%, t € (0,1].
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Since ¢ = wp(f ,,) it is easily seen that f = F. Thus g{ = go where g is the

function constructed in Section 6.

Now we use the following result (see (13.47) in [16], page 208-209).

If f, : (X, A,u) - R, n € N are such that f,, — f p-a.e. for some f: (X, A, u) = R
and || fnllzr — || fllz1, then || fr, — f|z1 — 0. By using the above mentioned theorem we

get since g, — (gé)p a.e. on (0,1] and
1
fgkn f = F, Vn € N, that f lgn = (90)?] = 0, as n — oo which means that

f\gzn — g5 — 0, as n — 0.
Using now the the elementary inequality (x — y)P? < zP — yP which holds for every
1
z>y>0,p>1we immediately get that [ |gr, — go[? — 0 thus gy, L, go, and the
0

proof of Theorem 3 is completed.
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