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EXTREMAL SEQUENCES FOR THE BELLMAN FUNCTION OF

THE DYADIC MAXIMAL OPERATOR AND APPLICATIONS TO

THE HARDY OPERATOR

ELEFTHERIOS N. NIKOLIDAKIS

Abstract: We prove that the extremal sequences for the Bellman function of the

dyadic maximal operator behave approximately as eigenfunctions of this operator for

a specific eigenvalue. We use this result to prove the analogous one with respect to the

Hardy operator.

1. Introduction

The dyadic maximal operator on R
n is a usefull tool in analysis and is defined by

Mdφ(x) = sup

{

1

|Q|

∫

Q
|φ(y)|dy : x ∈ Q, Q ⊆ R

n in a dyadic cube

}

,(1.1)

for every φ ∈ L1
loc(R

n), where the dyadic cubes are those formed by the grids

2−N
Z
n, for N = 0, 1, 2, . . . .

As is well known it satisfies the following weak type (1,1) inequality:

|{x ∈ R
n : Mdφ(x) > λ}| ≤

1

λ

∫

{Mdφ>λ}
|φ(u)|du,(1.2)

for every φ ∈ L1(Rn) and every λ > 0.

It is easily seen that (1.2) implies the following Lp-inequality

‖Mdφ‖p ≤
p

p− 1
‖φ‖p,(1.3)

It is also easy to see that the weak type inequality (1.2) is best possible while (1.3) is

also sharp. (See [1] for general martingales and [15] for dyadic ones).

For the further study of the dyadic maximal operator it has been introduced the

following function of two variables, defined by

Bp(f, F ) = sup

{

1

|Q|

∫

Q
(Mdφ)

p : φ ≥ 0,
1

|Q|

∫

Q
φ = f,

1

|Q|

∫

Q
φp = F

}

,(1.4)

where Q is a fixed dyadic cube and 0 < fp ≤ F .
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The function (1.4), which is called the Bellman function of two variables of the dyadic

maximal operator, is in fact independent of the cube Q and it’s value has been given

in [2]. More precisely it is proved there that

Bp(f, F ) = Fωp(f
p/F )p,

where ωp : [0, 1] →
[

1,
p

p− 1

]

denotes the inverse function H−1
p of Hp which is defined

by

Hp(z) = −(p− 1)zp + pzp−1, for z ∈

[

1,
p

p− 1

]

.

In fact this evaluation has been done in a much more general setting where the dyadic

sets are now given as elements of a tree T on a non-atomic probability space (X,µ).

Then the associated dyadic maximal operator is defined by:

MT φ(x) = sup

{

1

µ(I)

∫

I
|φ|dµ : x ∈ I ∈ T

}

,(1.5)

Additionally the inequalities (1.2) and (1.3) remain true and sharp in this setting.

Moreover, if we define

B′
p,T (f, F ) = sup

{
∫

X
(MT φ)

pdµ : φ ≥ 0,

∫

X
φdµ = f,

∫

X
φpdµ = F

}

,(1.6)

for 0 < fp ≤ F , then B′
p,T (f, F ) = Bp(f, F ). In particular the Bellman of the dyadic

maximal operator is independent of the structure of the tree T .

Another approach for finding the value of Bp(f, F ) is given in [3] where the following

function of two variables has been introduced:

Sp(f, F ) = sup

{
∫ 1

0

(

1

t

∫ t

0
g

)p

dt : g : (0, 1] → R
+ : non-increasing,

continuous and

∫ 1

0
g = f,

∫ 1

0
gp = F

}

.(1.7)

The first step, as it can be seen in [3], is to prove that Sp(f, F ) = Bp(f, F ). This can be

viewed as a symmetrization principle of the dyadic maximal operator with respect to

the Hardy operator. The second step is to prove that Sp(f, F ) has the expected value

mentioned above.

Now the proof of the fact that Sp = Bp can be given in an alternative way as can be

seen in [9]. More precisely it is proved there the following result.

Theorem A. Given g, h : (0, 1] → R
+ non-increasing integrable functions and a non-

decreasing function G : [0,+∞) → [0,+∞) the following equality holds:

sup

{
∫

K
G[(MT φ)

∗]h(t)dt : φ ≥ 0, φ∗ = g, K measurable subset of [0, 1] with

|K| = k

}

=

∫ k

0
G

(

1

t

∫ t

0
g

)

h(t)dt,
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for any k ∈ (0, 1], where φ∗ denotes the equimeasurable decreasing rearrangement

of φ. �

It is obvious that Theorem A implies the equation Sp = Bp, and gives an immediate

connection of the dyadic maximal operator with the Hardy operator.

An interesting question that arises now is the behaviour of the extremal sequences

of functions for the quantities (1.6) and (1.7). The problem concerning (1.6) has been

solved in [7] where it is proved the following:

Theorem B. If φn : (X,µ) → R
+ be such that

∫

X

φndµ = f ,
∫

X

φp
ndµ = F ,for every

n ∈ N then the following are equivalent

i) lim
n

∫

X

(MT φn)
pdµ = Fωp(f

p/F )p and

ii) lim
n

∫

X

|MT φn − cφn|
pdµ = 0, where c = ωp(f

p/F ) . �

Now it is interesting to search for the opposite problem concerning (1.7). In fact we

will prove the following:

Theorem 1. Let gn : (0, 1] → R
+ be a sequence of non-increasing functions continuous

such that
1
∫

0

gn(u)du = f and
1
∫

0

gpn(u)du = F , for every n ∈ N. Then the following are

equivalent

i) lim
n

1
∫

0

(

1

t

t
∫

0

gn

)p

dt = Fωp(f
p/F )p

ii) lim
n

1
∫

0

∣

∣

∣

∣

1

t

t
∫

0

gn − cgn(t)

∣

∣

∣

∣

p

dt = 0

where c = ωp(f
p/F ). �

The proof is based on the proof of Theorem A and on the statement of Theorem B.

Concerning now the problem (1.6) it can be easily seen that extremal functions do

not exist (when the tree T differentiates L1(X,µ)). That is for every φ ∈ Lp(X,µ)

with φ ≥ 0 and
∫

X

φdµ = f ,
∫

X

φpdµ = F we have the strict inequality
∫

X

(MT φ)
pdµ <

Fωp(f
p/F )p.

This is because of a self-similar property that is mentioned in [8], which states that

for every extremal sequence (φn) for (1.6) the following is true:

lim
n

1

µ(I)

∫

I
φndµ = f while lim

n

1

µ(I)

∫

I
φp
ndµ = F.(1.8)

So, if φ is an extremal function for (1.6), then we must have that
1

µ(I)

∫

I

φdµ = f and

1

µ(I)

∫

I

φpdµ = F and since the tree T differentiates L1(X,µ) (because of (1.2)), then
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we must have that µ-a.e the following equalities hold φ(x) = f and φp(x) = F , that is

fp = F which is the trivial case.

It turns out that the above doesn’t hold for the extremal problem (1.7). That is there

exist extremal functions for (1.7). We state it as:

Theorem 2. There exists unique g : (0, 1] → R
+ non-increasing and continuous with

1
∫

0

g(u)du = f and
1
∫

0

gp(u)du = F such that

∫ 1

0

(

1

t

∫ t

0
g

)p

dt = Fωp(f
p/F )p.(1.9)

As it is expected due to Theorem 1, g satisfies the following equality
1

t

t
∫

0

g(u)du =

ωp(f
p/F )g(t) for every t ∈ (0, 1] which gives immediately gives (1.9). �

After proving Theorem 2 we will be able to prove the following

Theorem 3. Let gn be as in Theorem 1. Then the following are equivalent

i) lim
n

1
∫

0

(

1

t

t
∫

0

gn

)p

dt = Fωp(f
p/F )p

ii) lim
n

1
∫

0

|gn − g|pdt = 0, where g is the function constructed in Theorem 2. �

In this way we complete the discussion about the characterization of the extremal

functions of the corresponding problem related to the Hardy operator. We also remark

that for the proof of Theorem 1 we need to fix a non-atomic probability space (X,µ)

equipped with a tree structure T which differentiates L1(X,µ). We use this measure

space as a base in order to work there with measurable non-negative rearrangements

of certain non increasing functions on (0, 1].

We should also mention that the exact evaluation of (1.4) for p > 1 has been also

given in [10] by L. Slavin, A. Stokolos and V. Vasyunin which linked the computation

of it to solving certain PDE’s of the Monge-Ampère type, and in this way they obtained

an alternative proof of the results in [2]. This method is different from that it is used in

[2] or [6]. However the techniques that appear in the last two articles and the present

one, give us the possibility to provide effective and powerful stability results (see for

example [7]).

We also remark that there are several problems in harmonic analysis were Bellman

functions arise. Such problems (including the dyadic Carleson imbedding theorem

and weighted inequalities) are described in [10] (one can also see [4] and [5]) and also

connections to stochastic optimal control are provided, from which it follows that the

corresponding Bellman functions satisfy certain nonlinear second-order PDE’s. We

remark at last that the exact evaluation of a Bellman function is a difficult task and is
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connected with the deeper structure of the corresponding harmonic analysis problem.

We mention also that until now several Bellman functions have been computed (see [2],

[3], [4], [5], [6], [11], [12], [13] and [14]).

The paper is organized as follows: In Section 2 we give some preliminary definitions

and results. In Section 4 we give an alternative proof of Theorem B, which is based

on the proof of the evaluation of the Bellman function of two variables for the dyadic

maximal operator and which is presented in Section 3. At last we prove Theorems 1

and 2 and 3 in Sections 5 and 6 and 7 respectively.

2. Preliminaries

Let (X,µ) be a non-atomic probability measure space. A set T of measurable subsets

of X will be called a tree if it satisfies the conditions of the following

Definition 2.1.

i) X ∈ T and for every I ∈ T we have that µ(I) > 0.

ii) For every I ∈ T there corresponds a finite or countable subset C(I) ⊆ T con-

taining at least two elements such that

(a) the elements of C(I) are pairwise disjoint subsets of I

(b) I = ∪C(I).

iii) T =
⋃

m≥0
T(m) where T(0) = {X} and T(m+1) =

⋃

I∈T(m)

C(I).

iv) We have that lim
m → ∞

sup
I∈T(m)

µ(I) = 0. �

Examples of trees are given in [2]. The most known is the one given by the family of

all dyadic subcubes of [0, 1]n. The following has been proved in [3].

Lemma 2.1. For every I ∈ T and every a such that 0 < a < 1 there exists a subfamily

F(I) ⊆ T consisting of pairwise disjoint subsets of I such that

µ

(

⋃

J∈F(I)

J

)

=
∑

J∈F(I)

µ(J) = (1− a)µ(I).

�

We will also need the following fact obtained in [9].

Lemma 2.2. Let φ : (X,µ) → R
+ and (Aj)j a measurable partition of X such that

µ(Aj) > 0, ∀ j. Then if
∫

X

φdµ = f there exists a rearrangement of φ, say h (h∗ = φ∗)

such that
1

µ(Aj)

∫

Aj

hdµ = f , for every j. �

Now given a tree on (X,µ) we define the associated dyadic maximal operator as

follows

MT φ(x) = sup

{

1

µ(I)

∫

I
|ϕ|dµ : x ∈ I ∈ T

}

,
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where φ ∈ L1(X,µ). We also recall the following from [9].

Lemma 2.3. Let k ∈ (0, 1] and K measurable subset of X with µ(K) = k. Then the

following inequality holds

∫

K
G[MT φ]dµ ≤

∫ k

0
G

(

1

t

∫ t

0
g(u)du

)

dt

where g=φ∗, φ∈L1(X,µ) and G : [0,+∞) → [0,+∞) is a non-decreasing function. �

3. The Bellman Function of the Dyadic Maximal Operator

In this section we provide a proof of the evaluation of the Bellman function of the

dyadic maximal operators with respect to two variables f, F . The result appears in [6]

in a more general form, but we give a proof of this so as this work is complete. For this

purpose we will need the following.

Lemma 3.1. Let φ : (X,µ) → R
+ be such that

∫

X
φdµ = f and

∫

X
φpdµ = F,

where 0 < fp ≤ F . Then
∫

X
(MT φ)

pdµ ≤ F · ωp(f
p/F )p.

Proof. We consider the integral

I =

∫

X
(MT φ)

pdµ.

By using Fubini’s theorem we can write

I =

∫ +∞

λ=0
pλp−1µ({MT φ > λ})dλ

=

∫ f

λ=0
+

∫ +∞

λ=f
pλp−1µ({MT φ > λ})dλ = I1 + I2,(3.1)

where

I1 =

∫ f

λ=0
pλp−1µ({MT φ > λ})dλ

=

∫ f

λ=0
pλp−1µ(X)dλ =

∫ f

λ=0
pλp−1dλ = fp,(3.2)

since MT φ(x) ≥ f , for every x ∈ X.

I2 is defined by

I2 =

∫ +∞

λ=f
pλp−1µ({MT φ > λ})dλ.
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By using inequality (1.2) we conclude that

I2 ≤

∫ +∞

λ=f
pλp−1 1

λ

(
∫

{MT φ>λ}
φdµ

)

dλ

=

∫ +∞

λ=f
pλp−2

(
∫

{MT φ>λ}
φdµ

)

dλ =
p

p− 1

∫

X
φ(x)

[

λp−1
]MT φ(x)

λ=f
dµ(x),

where in the last step we have used Fubini’s theorem and the fact that MT φ(x) ≥ f ,

∀ x ∈ X. Therefore

I2 ≤
p

p− 1

∫

X
φ · (MT φ)

p−1dµ−
p

p− 1
fp.(3.3)

Thus from (3.1), (3.2) and (3.3) we have as a consequence that

I =

∫

X
(MT φ)

pdµ ≤ −
1

p− 1
fp +

p

p− 1

∫

X
φ · (MT φ)

p−1dµ.(3.4)

Using Hölder’s inequality now, it is easy to see that for every φ as above the following

inequality is true
∫

X
φ(MT φ)

p−1dµ ≤

(
∫

X
φpdµ

)1/p

·

(
∫

X
(MT φ)

pdµ

)(p−1)/p

.(3.5)

By (3.4) and (3.5) we thus have

I =

∫

X
(MT φ)

pdµ ≤ −
1

p− 1
fp +

p

p− 1
· F 1/p · I(p−1)/p ⇒

I

F
≤ −

1

p− 1
·
fp

F
+

(

p

p− 1

)(

I

F

)(p−1)/p

.(3.6)

If we set now J =
( I

F

)1/p
, we have because of (3.6) that

Jp ≤ −
1

p− 1
·
fp

F
+

p

p− 1
Jp−1,(3.7)

We distinguish the two following cases:

i) J ≤ 1. Then J ≤ ωp(f
p/F ), since ωp takes values on [1, p/(p − 1)]. Thus

(

I

F

)1/p

≤ ωp(f
p/F ) ⇒ I ≤ Fωp(f

p/F )p,

and our result is trivial in this case.

ii) J > 1. Then because of (3.7) we conclude

pJp−1 − (p− 1)Jp ≥
fp

F

or that

Hp(J) ≥
fp

F
⇒ J ≤ ωp

(

fp

F

)

,

since ωp = H−1
p . As a consequence we have that

∫

X
(MT φ)

pdµ ≤ F · ωp

(

fp

F

)p

,
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that is we derived the proof of our Lemma.

�

As we shall see in Section 6, for every f, F fixed such that 0 < fp ≤ F and p > 1

there exists g : (0, 1] → R
+ non-increasing, continuous which satisfies

∫ 1

0
g(u)du = f ,

∫

0
gp(u)du = F and

1

t

∫ t

0
g(u)du = cg(t), for every t ∈ (0, 1] where

c = ωp

(

fp

F

)

.

Thus the next Theorem is a consequence of Theorem A, and the results of this Section.

Theorem 3.1. Let f, F be fixed such that 0 < fp ≤ F where p > 1. Then the following

equality is true

sup

{
∫

X
(MT φ)

pdµ : φ ≥ 0,

∫

X
φdµ = f,

∫

X
φpdµ = F

}

= Fωp

(

fp

F

)p

.(3.8)

4. Characterization of the Extremal Sequences for the Bellman

Function

In this section we will provide an alternative proof of Theorem B, different from

that in [7], based on the proof of the evaluation of the Bellman function of the dyadic

maximal operator, which is given in Section 3.

Proof of Theorem B.

i) ⇒ ii) Let (φn)n be a sequence of functions φn : (X,µ) → R
+ such that

∫

X
φndµ =

f ,

∫

X
φp
ndµ = F for which lim

n

∫

X
(MT φn)

pdµ = Fωp(f
p/F )p.

We will prove that

lim
n

∫

X
| MT φn − cφn |p dµ = 0,

where c = ωp

(

fp

F

)

.

By setting ∆n = {MT φn > cφn} and ∆′
n = X \ ∆n = {MT φn ≤ cφn}, it is

immediate to see that it is enough define

In =

∫

∆n

(MT φn − cφn)
pdµ and Jn =

∫

∆′
n

(cφn −MT φn)
pdµ,

and then prove that In, Jn → 0, as n → ∞.

For the evaluation of the Bellman function, as it is described in the previous section

we used the following inequality:

∫

X
φ · (MT φ)

p−1dµ ≤

(
∫

X
φpdµ

)1/p

·

(
∫

X
(MT φ)

pdµ

)(p−1)/p

,(4.1)
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which for our sequence (φn)n must hold as an equality in the limit (we pass to a

subsequence if necessary). We write this fact as

∫

X
φn · (MT φn)

p−1dµ ≈

(
∫

X
φp
ndµ

)1/p

·

(
∫

X
(MT φn)

pdµ

)(p−1)/p

.(4.2)

Now, we are going to state and prove the following:

Lemma 4.1. Under the above notation and hypotheses we have that:
∫

Xn

φn(MT φn)
p−1dµ ≈

(
∫

Xn

φp
ndµ

)1/p

·

(
∫

Xn

(MT φn)
pdµ

)(p−1)/p

,(4.3)

where Xn may be replaced either by ∆n or ∆′
n.

Proof. Certainly the following inequalities hold true in view of Hölder’s inequality.

These are
∫

∆n

φn · (MT φn)
p−1dµ ≤

(
∫

∆n

φp
ndµ

)1/p

·

(
∫

∆n

(MT φn)
pdµ

)(p−1)/p

,(4.4)

and
∫

∆′
n

φn(MT φn)
p−1dµ ≤

(
∫

∆′
n

φp
ndµ

)1/p

·

(
∫

∆′
n

(MT φn)
pdµ

)(p−1)/p

,(4.5)

for any n ∈ N. Adding them we obtain
∫

X
φn · (MT φn)

p−1dµ ≤

(
∫

∆n

φp
ndµ

)1/p

·

(
∫

∆n

(MT φn)
pdµ

)(p−1)/p

+

(
∫

∆′
n

φp
ndµ

)1/p

·

(
∫

∆′
n

(MT φn)
pdµ

)(p−1)/p

,(4.6)

We use now the following elementary inequality, which proof is given below.

For every t, t′ > 0, s, s′ > 0 such that

t+ t′ = a > 0 and s+ s′ = b > 0 and any q ∈ (0, 1),

we have that

tq · s1−q + (t′)q · (s1)1−q ≤ aq · b1−q,(4.7)

Applying it for q = 1/p we obtain from (4.6) the following inequality:

∫

X
φn · (MT φn)

p−1dµ ≤

(
∫

X
φp
ndµ

)1/p

·

(
∫

X
(MT φn)

pdµ

)(p−1)/p

which in fact is an equality in the limit, because of our hypothesis. Thus, we must have

equality in both (4.4) and (4.5) in the limit and our lemma is proved, as soon as we

prove (4.7).

Fix t ∈ (0, a] and consider the function Ft of the variable s ∈ (0, b) defined by

Ft(s) = tq · s1−q + (a− t)q · (b− s)1−q.
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Then

F ′
t(s) = (1− q)

[(

t

s

)q

−

(

a− t

b− s

)q]

, s ∈ (0, b)

so that F ′
t(s) > 0 for every s ∈ (0, tba ), and F ′

t (s) < 0 for s ∈ ( tba , b). Thus F attains its

maximum on the interval [0, b] at the point tb
a . The result is now easily derived. �

We continue now with the proof of Theorem B.

Now we write
∫

X
(MT φn)

pdµ =

∫

∆n

(MT φn)
pdµ+

∫

∆′
n

(MT φn)
pdµ.(4.8)

We first assume that
∫

∆n

φp
ndµ,

∫

∆′
n

φp
ndµ > 0, for any n ∈ N.

Thus in view of Hölder’s inequality, (4.4), (4.5) and (4.9) we must have that

∫

X
(MT φn)

pdµ ≥

(

∫

∆n

φn · (MT φn)
p−1dµ

)p/(p−1)

(

∫

∆n

φp
ndµ

)1/(p−1)

+

(

∫

∆′
n

φn · (MT φn)
p−1dµ

)p/(p−1)

(

∫

∆′
n

φp
ndµ

)1/(p−1)
.(4.9)

We use now Hölder’s inequality in the following form:

ak

bk−1
+

ck

dk−1
≥

(a+ c)k

(b+ d)k−1
, for any a, c ≥ 0, b, d > 0, where k > 1.(4.10)

The above inequality is true as an equality if and only if

a

b
=

c

d
= λ, for some λ ∈ R, λ ≥ 0.

Thus in view of (4.10), (4.9) becomes:

∫

X
(MT φn)

pdµ ≥

(

∫

X
(MT φn)

p−1φndµ
)(p−1)/p

(

∫

X
φp
ndµ

)1/(p−1)
,(4.11)

which is an equality in the limit, in view of the fact that φn is extremal for the Bellman

function, that is lim
n

∫

X
(MT φn)

pdµ = Fωp

(fp

F

)p
. From all the above we conclude, by

passing if necessary to a subsequence that

lim
n

∫

∆n

φn · (MT φn)
p−1dµ

∫

∆n

φp
ndµ

= lim
n

∫

∆′
n

φn · (MT φn)
p−1dµ

∫

∆′
n

φp
ndµ

= λ ∈ R
+.(4.12)
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Thus, by the equality that holds in the limit in (4.9), which is true because of the

equality in (4.11) we conclude that

λp/(p−1) lim
n

[
∫

∆n

φp
ndµ +

∫

∆′
n

φp
ndµ

]

= lim
n

∫

X
(MT φn)

pdµ

or that

λp/(p−1) · F = Fωp

(

fp

F

)p

⇒ λ = ωp

(

fp

F

)p−1

.

Thus by (4.12) we conclude

∫

∆n

φn · (MT φn)
p−1dµ ≈ ωp

(

fp

F

)p−1

·

(
∫

∆n

φp
ndµ

)

, and

∫

∆′
n

φn(MT φn)
p−1dµ ≈ ωp

(

fp

F

)p−1

·

(
∫

∆′
n

φp
ndµ

)

.

Then, because of Lemma 4.1 we obtain that
∫

∆n

(MT φn)
pdµ ≈ ωp

(

fp

F

)p

·

∫

∆n

φp
ndµ, and(4.13)

∫

∆′
n

(MT φn)
pdµ ≈ ωp

(

fp

F

)p

·

∫

∆′
n

φp
ndµ.(4.14)

We will now need the following

Lemma 4.2. Suppose we are given ωn : Xn → R
+ where Xn ⊆ X, for n ∈ N, and

w : X → R
+ satisfying wn ≥ w on Xn. Suppose also that

lim
n

∫

Xn

wp
ndµ = lim

n

∫

Xn

wpdµ, where p > 1.

Then

lim
n

∫

Xn

(wn − w)pdµ = 0.

Proof. It is a simple matter to prove this lemma because of the following inequality.

For any x > y > 0, p > 1 the following holds (x− y)p ≤ xp − yp. Thus
∫

Xn

(wn − w)pdµ ≤

∫

Xn

wp
ndµ−

∫

Xn

wpdµ → 0, as n → ∞

and the proof is complete. �

In view of Lemma 4.2, now and the definitions of ∆n,∆
′
n, we see immediately that

∫

∆n

(MT φn − cφn)
pdµ → 0 and

∫

∆′
n

(cφn −MT φn)
pdµ → 0, as n → ∞.
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As a consequence

∫

X
| MT φn − cφn |p dµ → 0, as n → ∞ and our result is proved, in

the case where
∫

∆n

φp
n > 0 and

∫

∆′
n

φp
ndµ > 0, for any n ∈ N.(4.15)

The same proof holds even if we have that (4.15) is true for every n ≥ n0, for some

n0 ∈ N.

Assume now that
∫

∆′
n

φp
ndµ = 0 for a fixed n ∈ N.

Since

∆′
n = {MT φn ≤ cφn} and MT φn(x) ≥ f for every x ∈ X

we conclude that

fpµ(∆′
n) ≤

∫

∆′
n

(MT φn)
pdµ ≤ cp

∫

∆′
n

φp
n = 0

⇒ µ(∆′
n) = 0 ⇒ MT φn > cφn µ − a.c. on X. As a consequence, for our fixed n ∈ N

we must have that
∫

X
(MT φn)

pdµ > cp ·

∫

X
φp
ndµ = F · ωp(f

p/F )p,

which cannot hold in view of Lemma 3.1.

Now suppose that for some subsequence of (φn)n which we suppose without loss of

generality that is the same as (φn), we have that
∫

∆n

φp
ndµ = 0(4.16)

Remember that ∆n = {MT φn > cφn}.

Let then x ∈ {φn = 0}. Then if x ∈ ∆′
n we would have that MT φn(x) ≤ cφn(x) or

that MT φn(x) = 0, which is impossible, since MT φn(y) ≥ f , for every y ∈ X. Thus

{φn = 0} ⊆ ∆n ⇒ ∆′
n ⊆ {φn > 0}.

But from (4.16) we have that

∫

∆′
n

φp
ndµ = F , so if µ({φn > 0} \ ∆′

n) is positive we

would obtain

∫

{φn>0}
φp
ndµ > F , which is impossible. Thus we have that

∆′
n ⊆ {φn > 0} and µ(∆′

n) = µ({φn > 0})

for every n ∈ N. Since integrals are not affected by adding or deleting a set of measure

zero, we may suppose that

∆′
n = {φn > 0}.(4.17)

Because of Lemma 4.1 we have that
∫

∆′
n

φn(MT φn)
p−1 ≈

(
∫

∆′
n

φp
ndµ

)1/p

·

(
∫

∆′
n

(MT φn)
pdµ

)(p−1)/p

,(4.18)
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Since (4.17) holds we conclude by (4.18) that

∫

X
φn(MT φn)

p−1dµ ≈ F 1/p

(
∫

∆′
n

(MT φn)
pdµ

)(p−1)/p

,(4.19)

But the next inequality is true in view of the extremality of the sequence of (φn) (see

at the beginning of this section)

∫

X
φn(MT φn)

p−1dµ ≈ F 1/p ·

(
∫

X
(MT φn)

pdµ

)(p−1)/p

.(4.20)

Thus
∫

∆′
n

(MT φn)
pdµ ≈

∫

X
(MT φn)

pdµ ⇒

∫

∆n

(MT φn)
pdµ ≈ 0,

and since MT φn ≥ f on X we conclude that µ(∆n) → 0. Then
∫

X
| MT φn − cφn |p dµ =

∫

∆n

+

∫

∆′
n

| MT φn − cφn |p dµ = In + Jn.

Then we proceed as follows: In =
∫

∆n
(MT φn−cφn)

pdµ ≤
∫

∆n
(MT φn)

pdµ−cp
∫

∆n
(φn)

pdµ

in view of the elementary inequality used in the proof of Lemma 4.2. By all the above

and by our hypothesis we conclude that

In ≈ 0

As for Jn, we have

Jn =

∫

∆′
n

(cφn −MT φn)
pdµ ≤ cp

∫

∆′
n

φp
i dµ −

∫

∆′
n

(MT φn)
pdµ

≈ Fωp

(

fp

F

)p

−

∫

X
(MT φn)

pdµ ≈ 0,

since (φn) is extremal.

Thus, in any case we conclude Theorem B.

5. Proof of Theorem 1

We will prove Theorem 1 by arguing as in the proof of Theorem A and by using also

Theorem B.

We begin with a sequence (gn)n of non-increasing continuous functions gn : (0, 1] →

R
+ such that

1
∫

0

gn(u)du = f and
1
∫

0

gpn(u)du = F where 0 < fp ≤ F . We set c =

ωp(f
p/F ) and we suppose that (gn)n is extremal for (1.7), that is

lim
n

∫ 1

0

(

1

t

∫ t

0
gn

)p

dt = Fωp(f
p/F )p = F · cp.

Our aim is to prove that

lim
n

∫ 1

0

∣

∣

∣

∣

1

t

∫ t

0
gn − cgn(t)

∣

∣

∣

∣

p

dt = 0.
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For this purpose it is enough to prove that
∫

{t: 1
t

t∫

0

gn>cgn(t)}

[

1

t

∫ t

0
gn − cgn(t)

]p

dt = I1,n → 0, and(5.1)

∫

{t: 1
t

t∫

0

gn<cgn(t)}

[

cgn(t)−
1

t

∫ t

0
gn

]p

dt = I2,n → 0, as n → ∞.

We consider the first quantity in (5.1) and similarly we work on the second. Set An =
{

t ∈ (0, 1] :
1

t

t
∫

0

gn > cgn(t)

}

so we need to prove that

∫

An

[

1

t

∫ t

0
gn − cgn(t)

]p

dt → 0, as n → ∞.

Since (x− y)p < xp − yp, for x > y > 0 and p > 1 it is enough to prove that

IIn =

∫

An

(

1

t

∫ t

0
gn

)p

dt− cp
∫

An

gpn → 0, n → ∞.

For each An, which is an open set of (0, 1] we consider it’s connected components In,i,

i = 1, 2, . . . . So An =
∞
⋃

i=1
In,i, with In,i open intervals in (0, 1] with In,i ∩ In,j = ∅ for

i 6= j.

Let ε > 0. For every n ∈ N choose in ∈ N such that

|IIIn − III1,n| < ε and |IVn − IV1,n| < ε

where IIIn =
∫

An

(1

t

t
∫

0

gn

)p
dt, III1,n =

∫

Fn

(1

t

t
∫

0

gn

)p
dt, IVn = cp

∫

An

gpn, IV1,n = cp
∫

Fn

gpn,

and Fn =
in
⋃

i=1
In1i.

It is clear that such choice of in exists. Then |IIn − II1,n| < 2ε where

II1,n =

∫

Fn

(

1

t

∫ t

0
gn

)p

dt− cp
∫

Fn

gpn.

We need to find a n0 ∈ N such that II1,n < ε, ∀ n ≥ n0. Fix now a gn =: g. We prove

the following

Lemma 5.1. There exists a family φa : (X,µ) → R
+ of rearrangements of g (φ∗

a = g

for each a ∈ (0, 1)) such that for each γ ∈ (0, 1] there exists a family of measurable

subsets of X, S
(γ)
a satisfying the following:

lim
a → 0+

∫

S
(γ)
a

[MT (φa)]
pdµ =

∫ γ

0

(

1

t

∫ t

0
g

)p

dt

and lim
a → 0+

µ(S(γ)
a ) = γ. Moreover we have that S

(γ)
a ⊆ S

(γ′)
a for each a γ < γ′ ≤ 1 and

a ∈ (0, 1). �
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Proof. We follow [9]. Let a ∈ (0, 1). By using Lemma 2.1 we choose for every I ∈ T a

family F(I) ⊆ T of disjoint subsets of I such that

∑

J∈F(I)

µ(J) = (1− a)µ(I).(5.2)

We define S = Sa to be the smallest subset of T such that X ∈ S and for every I ∈ S,

F(I) ⊆ S. We write for I ∈ S, AI = I \
⋃

J∈F(I)

J . Then if aI = µ(AI) we have because

of (5.2) that aI = aµ(I). It is also clear that

Sa =
⋃

m≥0

Sa,(m), where Sa,(0) = {X} and Sa,(m+1) =
⋃

I∈Sa,(m)

F(I).

We also define for I ∈ Sa, rank(I) = r(I) to be the unique integer m such that

I ∈ Sa,(m).

Additionally, we define for every I ∈ Sa with r(I) = m

γ(I) = γm =
1

a(1− a)m

∫ (1−a)m

(1−a)m+1

g(u)du.

We also set for I ∈ Sa, bm(I) =
∑

S∋J⊆I
r(J)=r(I)+m

µ(J). We easily then see inductively that

bm(I) = (1− a)mµ(I). It is also clear that for every I ∈ Sa, I =
⋃

Sa∋J⊆I AJ .

At last we define for every m the measurable subset of X, Sm =
⋃

I∈Sa,(m)

I.

Now, for each m ≥ 0, we choose τ
(m)
a : Sm \ Sm+1 → R such that

[

τ (m)
a

]∗
=

(

g
/

(

(1− a)m+1, (1− a)m
]

)∗

.

This is possible since µ(Sm \ Sm+1) = µ(Sm) − µ(Sm+1) = bm(X) − bm+1(X) =

(1− a)m − (1− a)m+1 = a(1− a)m. It is obvious now that Sm \Sm+1 =
⋃

I∈Sa,(m)

AI and

that

∫

Sm\Sm+1

τ (m)
a dµ =

∫ (1−a)m

(1−a)m+1

g(u)du ⇒
1

µ(Sm \ Sm+1)

∫

Sm\Sm+1

τadµ = γm.

Using now Lemma 2.2 we see that there exists a rearrangement of τa

/

Sm\Sm+1 = τ
(m)
a

called φ
(m)
a for which

1

aI

∫

AI

φ
(m)
a = γm, for every I ∈ Sa,(m).

Define now φa : X → R
+ by φa(x) = φ

(m)
a (x), for x ∈ Sm \Sm+1. Of course φ∗

a = g.



16 ELEFTHERIOS N. NIKOLIDAKIS

Let now I ∈ Sa,(m). Then

AvI(φa) =
1

µ(I)

∫

I
φadµ =

1

µ(I)

∑

Sa∋J⊆I

∫

AJ

φadµ

=
1

µ(I)

∑

ℓ≥0

∑

Sa∋J⊆I
r(J)=r(I)+ℓ

∫

AJ

φadµ

=
1

µ(I)

∑

ℓ≥0

∑

Sa∋J⊆I

γm+ℓaJ

=
1

µ(I)

∑

ℓ≥0

∑

Sa∋J⊆I

aµ(J)
1

a(1 − a)m+ℓ

∫ (1−a)m+ℓ

(1−a)m+ℓ+1

g(u)du

=
1

µ(I)

∑

ℓ≥0

1

(1− a)m+ℓ

∫ (1−a)m+ℓ

(1−a)m+ℓ+1

g(u)du ·
∑

Sa∋J⊆I
r(J)=m+ℓ

µ(J)

=
1

µ(I)

∑

ℓ≥0

1

(1− a)m+ℓ

∫ (1−a)m+ℓ

A)m+ℓ+1

g(u)du · bℓ(I)

=
1

(1− a)m

∑

ℓ≥0

∫ (1−a)m+ℓ

(1−a)m+ℓ+1

g(u)du

=
1

(1− a)m

∫ (1−a)m

0
g(u)du.(5.3)

Now for x ∈ Sm \ Sm+1, there exists I ∈ Sa,(m) such that x ∈ I so

MT (φa)(x) ≥ AvI(φa) =
1

(1− a)m

∫ (1−a)m

0
g(u)du =: θm,(5.4)

Since µ(Sm) = (1 − a)m, for every m ≥ 0 we easily see from the above that we have

[MT (φa)]
∗(t) ≥ θm, for every t ∈

(

(1− a)m+1, (1 − a)m
]

.

For any a, γ ∈ (0, 1] we now choose m = ma such that (1 − a)m+1 ≤ γ < (1 − a)m. So

we have lim
a → 0+

(1− a)ma = γ.

Then using Lemma 2.3 we have that

lim sup
a → 0+

∫

∪Sa,(ma)

[MT (φa)]
pdµ ≤

∫ γ

0

(

1

t

∫ t

0
g

)p

dt < +∞,(5.5)

where ∪Sa,(ma) denotes the union of the elements of Sa,(ma). This is Sma =
⋃

I∈Sa,(ma)

I.

This is true since µ(Sma) → γ, as a → 0+.
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Then
∫

Sma

(MT φa)
pdµ =

∑

ℓ≥ma

∫

Sℓ\Sℓ+1

(MT φa)
pdµ

≥
∑

ℓ≥ma

(

1

(1− a)ℓ

∫ (1−a)ℓ

0
g(u)du

)p

µ(Sℓ \ Sℓ+1)

=
∑

ℓ≥ma

(

1

(1− a)ℓ

∫ (1−a)ℓ

0
g(u)du

)p∣
∣

∣

(

(1− a)ℓ+1, (1− a)ℓ
]

∣

∣

∣
,(5.6)

Since (1− a)ma → γ and the right hand side of (5.6) expresses a Riemann sum of the
(1−a)ma

∫

0

(1

t

t
∫

0

g

)p

dt we conclude that

lim sup
ℓ → 0+

∫

Sma

(MT φa)
pdµ ≥

∫ γ

0

(

1

t

∫ t

0
g

)p

dt.(5.7)

Then by (5.5) we have equality on (5.7).

We thus constructed the family (φa)a∈(0,1), for which we easily see that if 0 < γ <

γ′ ≤ 1 then S
(γ)
a ⊆ S

(γ′)
a for each a ∈ (0, 1). � �

Remark 5.1. It is not difficult to see by the proof of Lemma 5.1 that for every ℓ ∈ N,

and a ∈ (0, 1) the following holds h = g/(0, (1 − a)ℓ], where h is defined by h :=
(

φa

/

Sa,(ℓ)

)∗
on (0, (1 − a)ℓ].

We now return to the proof of Theorem 1.

We remind that

II1,n =

∫

Fn

(

1

t

∫ t

0
gn

)p

dt− cp
∫

Fn

gpn = III1,n − IV1,n

with Fn =
in
⋃

i=1
In,i =

in
⋃

i=n
(an,i1bn,i), which is a disjoint union. Thus

III1,n =
∑

n

[
∫ bn,i

0

(

1

t

∫ t

0
gn

)p

dt−

∫ an,i

0

(

1

t

∫ t

0
gn

)p

dt

]

.

Now, for every n ∈ N we consider the corresponding to gn, family (φa,n)a∈(0,1) and the

respective subsets of X, S
(an,i)
a,n , S

(bn,i)
a,n , a ∈ (0, 1), i = 1, 2, . . . , ni for which

µ
(

S
(an,i)
a,n

)

→ an,i and µ
(

S
(bn,i)
a,n

)

→ bn,i, as a → 0+.

We can also suppose that

an,i < bn,i ≤ an,i+1 < bn,i+1, i = 1, 2, . . . , in − 1.

Then we also have that

S
(an,i)
a,n ⊆ S

(bn,i)
a,n ⊆ S

(an,i+1)
a,n and of course
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lim
a → 0+

∫

S
(an,i)
a,n

[MT (φa,n)]
pdµ =

∫ an,i

0

(

1

t

∫ t

0
gn

)p

dt,(5.8)

and similarly for the other endpoint bn,i of In,i. Therefore, by (5.8) there exists for

every n ∈ N an a0,n ∈ (0, 1) such that 0 < a < a0,n ⇒ |III1,n − Vn| <
1

n
, where

Vn =

in
∑

i=1

[
∫

S
(bn,i)
a,n

(MT φa,n)
pdµ −

∫

S
(an,i)
a,n

(MT φa,n)
pdµ

]

=

∫

Λ
(a)
n

(MT φa,n)
pdµ, Λ(a)

n =

in
⋃

i=1

[

S
(bn,i)
a,n \ S

(an,i)
a,n

]

.

Additionally, we can suppose because of the relation

lim
a → 0+

∫

X
(MT φa,n)

pdt =

∫ 1

0

(

1

t

∫ t

0
gn

)p

dt, for each n ∈ N

and since gn is extremal for the problem (1.7), that a0,n can be chosen such that for

every a ∈ (0, a0,n)
∣

∣

∣

∣

∫

X
(MT φa,n)

pdµ− Fωp(f
p/F )p

∣

∣

∣

∣

<
1

n
, for every n ∈ N.(5.9)

Choose a′n ∈ (0, an) and form the sequence

φa′n,n =: φn.

Then, because of (5.9) and since φ∗
n = gn we have that φn is extremal for (1.6).

Because of the Remark 5.1 we now have for every ℓ ∈ N, each n ∈ N and a ∈ (0, 1),

that
(

φa,n

/

Sa,(ℓ)

)∗
: (0, µ(Sℓ) = (1− a)ℓ] → R

+

is equal to gn
/

(0, (1 − a)ℓ]. Since lim
a → 0+

µ(Λ(a)
n ) = |Fn|, for every n ∈ N we can

additionally suppose that a0,n satisfies the following

∣

∣µ(Λ(a)
n )− |Fn|

∣

∣ <
1

n
, for every a ∈ (0, a0,n)

so if Λn = Λ
(a′n)
n we must have additionally, since φa′n,n

= φn, that

∣

∣

∣

∣

∫

Fn

(

1

t

∫ t

0
gn

)p

dt−

∫

Λn

(MT φn)
pdµ

∣

∣

∣

∣

≤
1

n
(5.10)

and that
∣

∣µ(Λn)− |Fn|
∣

∣ <
1

n
, for every n ∈ N.

It is also easy to see because of the above relations, the Remark 5.1 and the form of

Λn (by passing to a subsequence if necessary), that

lim
n

∫

Λn

φp
n = lim

n

∫

Fn

gpn.(5.11)

We now take advantage of Theorem B.
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Since φn is extremal for (1.6) we must have that
∫

X

|MT φn− cφn|
pdµ → 0, as n → ∞

where c = ωp(f
p/F )p. This implies:
∫

Λn∩{MT φn≥cφn}
(MT φn − cφn)

pdµ → 0, as n → ∞ or

∫

Λ′
n

(MT φn − cφn)
pdµ → 0, as n → ∞, where Λ′

n = Λn ∩ {MT φn ≥ cφn}.

Since
[
∫

Λ′
n

(MT φn)
p

]1/p

≤

[
∫

Λ′
n

(MT φn − cφn)
p

]1/p

+

[
∫

Λ′
n

(cφn)
p

]1/p

we must have, because of the definition of Λ′
n and the above inequality that:

lim
n

∫

Λ′
n

(MT φn)
p = cp lim

n

∫

Λ′
n

φp
n.

In the same way we prove that:

lim
n

∫

ΛnrΛ′
n

(MT φn)
p = cp lim

n

∫

ΛnrΛ′
n

φp
n, so

lim
n

∫

Λn

(MT φn)
pdµ = cp lim

n

∫

Λn

φp
ndµ.

Because of (5.10) and (5.11) we have that

lim
n

∫

Fn

(

1

t

∫ t

0
gn

)p

dt = lim
n

cp
∫

Fn

gpn,

and from the choice of Fn we see that we must have that IIn < 2ε, for n ≥ n0, for a

suitable n0 ∈ N. And this was our aim. �

6. Uniqueness of extremal functions

In this section we will prove that there exists unique g0 : (0, 1] → R
+ continuous,

with
∫ 1

0
g0(u)du = f,

∫ 1

0
gp0(u)du = F and

∫ 1

0

(

1

t

∫ t

0
g0(u)du

)p

dt = Fωp(f
p/F )p.

This is the statement of Theorem 2.

Proof of Theorem 2. By Theorem 1 it is obvious that if such a function g0 exists, it

must satisfies

1

t

∫ t

0
g0(u)du = cg0(t), a.e on (0, 1], where c = ωp(f

p/F ).(6.1)

Because of the continuity of g0 we must have equality on (6.1) in all (0, 1].
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So, in order that g0 satisfies (6.1) we need to set g0(t) = kt−1+ 1
c , t ∈ (0, 1], and search

for a constant k (by solving the respective first order linear differential equation) such

that
∫ 1

0
g0(u)du = f and

∫

0
gp0(u)du = F.

The first equation becomes
∫ 1

0
kt−1+ 1

c dt = f ⇔ kc = f ⇔ k = f/c.

So, we ask if g0 for this k satisfies the second equation. This is
∫ 1

0
gp0(u)du = F ⇔

kp
(

− p+ 1 + p
c

) = F ⇔ fp/F =

[

(−p+ 1) +
p

c

]

cp ⇔

− (p− 1)cp + pcp−1 = fp/F.

But this is true because of the choice of c = ωp(f
p/F ) and ωp = H−1

p where

Hp(z) = −(p− 1)zp + pzp−1, for t ∈

[

1,
p

p− 1

]

.

Because now of the form of g0 : (0, 1] → R
+ we have that

1

t

∫ t

0
g0(u)du = cg0(t), ∀ t ∈ (0, 1] ⇒

∫ 1

0

(

1

t

∫ t

0
g0(u)du

)p

du = Fωp(f
p/F )p.

So g0 is the only extremal function in (0, 1].

7. Uniqueness of extremal sequences

We are now able to prove Theorem 3.

The direction ii)⇒i) is obvious from the conditions that g satisfies.

We now proceed to ii)⇒i)

We suppose that we are given gn : (0, 1] → R
+ non-increasing, continuous, such

that
1
∫

0

gn(u)du = f ,
∫ 1
0 gpn(u)du = F and

lim
n

∫ 1

0

(

1

t

∫ t

0
gn(u)du

)p

dt = Fωp(f
p/F )p.

Using Theorem 2 we conclude that

lim
n

∫ 1

0

∣

∣

∣

∣

1

t

∫ t

0
gn − cgn(t)

∣

∣

∣

∣

p

dt.

Thus there exists a subsequence (gkn)n such that if

Fn(t) =
1

t

∫ t

0
gn − cgn(t), t ∈ (0, 1], n ∈ N,

then Fkn → 0 almost everywhere (with respect to Lesbesgue measure). By a well known

theorem in measure theory we have because of the finiteness of the measure space [0, 1]

that Fkn → 0 uniformly almost everywhere on (0, 1]. This means that there exists a
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sequence of Lesbesgue measurable subsets of (0, 1], say (Hn)n, such that Hn+1 ⊆ Hn,

|Hn| ≤
1

n
satisfying the following condition

∣

∣

∣

∣

1

t

∫ t

0
gkn − cgkn(t)

∣

∣

∣

∣

= |Fkn(t)| ≤
1

n
, ∀ t ∈ (0, 1] \Hn.

Additionally from the external regularity of the Lesbesgue measure, we can suppose

that Hn is a disjoint union of closed intervals on (0, 1]. Let now t, t′ ∈ [a, 1] \ Hkn ,

where a is a fixed element of (0, 1].

Then the following hold (c = ωp(f
p/F ))

|cgkn(t)− cgkn(t
′)| ≤

∣

∣

∣

∣

cgkn(t)−
1

t

∫ t

0
gkn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

t

∫ t

0
gkn −

1

t′

∫ t′

0
gkn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

t′

∫ t′

0
gkn − cgkn(t

′)

∣

∣

∣

∣

= I + II + III.

Then I ≤
1

kn
since t /∈ Hkn . Similarly for III.

We look now at the second quantity II.

We may suppose that t′ > t, so t′ = t+ δ for some δ > 0. Then

II =
1

tt′

∣

∣

∣

∣

t′
∫ t

0
gkn − t

∫ t′

0
gkn

∣

∣

∣

∣

≤
1

at

∣

∣

∣

∣

(t+ δ)

∫ t

0
gkn − t

∫ t

0
gkn − t

∫ t′

t
gkn

∣

∣

∣

∣

=
1

at

∣

∣

∣

∣

δ

∫ t

0
gkn − t

∫ t′

t
gkn

∣

∣

∣

∣

≤
δ

a2
f +

1

a

∫ t′

t
gkn ,(7.1)

where f =
1
∫

0

gkn . Now by Holder’s inequality we have that

∫ t′

t
gkn ≤

(
∫ t′

t
gpkn

)1/p

|t′ − t|1−
1
p = Fδ

1− 1
p .

Thus II ≤
δf

a
+

1

a
δ
1− 1

pF .

We consequently have that for a given ε > 0 and a ∈ (0, 1) there exists δ = δa,ε > 0

for which the following implication holds

t, t′ ∈ [a, 1] \Hkn , |t− t′| < δ ⇒ |gkn(t)− gkn(t
′)| < ε, for every n ∈ N.(7.2)

Thus (gkn)n has a property of type of equicontinuity on a certain set that depends on

a. We consider now an enumeration of the rationals in (0, 1], let {q1, q2, . . . , qk1 , . . .} =

Q ∩ (0, 1].
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For every q ∈ Q∩(0, 1] we have that (gkn(q))n is a bounded sequence of real numbers,

because gkn is a sequence of non-negative, non-increasing functions on (0, 1] satisfying
1
∫

0

gkn = f .

By a diagonal argument we produce a subsequence which we denote again by gkn
such that gkn(q) → λq, n → ∞ where λq ∈ R

+, q ∈ Q ∩ (0, 1].

Let H =
∞
⋂

n=1
Hkn , which is a set of Lebesgue measure zero, and suppose that x ∈

(a, 1) \H. Then x > a, and there exist a n0 ∈ N such that x /∈ Hkn0
, so that x /∈ Hkn ,

∀ n ≥ n0. Additionally, choose a sequence (pk)k of rationals on (a, 1) \Hkn0
such that

pk → x. This is possible because the set (a, 1)\Hkn0
is an open set. Thus, we have that

pk > a and pk /∈ Hkn , n ≥ n0, k ∈ N.

Let now k0 ∈ N : |pk − x| < δ, ∀ k ≥ k0, where δ is the one given in (7.2).

We then have that |gkn(x)− gkm(pk0)| < ε, for every n ∈ N. Thus, for every such x,

and every n,m ∈ N we have that

|gkn(x)− gkm(x)| ≤ |gkn(x)− gkn(pk0)|+ |gkn(pk0)− gkm(pk0)|

+ |gkm(pk0)− gkm(x)| < 2ε + |gkn(pk0)− gkm(pk0)|.

But (gkn(pk0))n is convergent sequence, thus Cauchy. Then (gkn(x))n is a Cauchy

sequence for every x ∈ (a, 1) \H for every a ∈ (0, 1].

Thus (gkn(x))n is a Cauchy sequence in all (0, 1] \H.

As a consequence there exists g′0 : (0, 1] → R
+ such that

gkn → g′0 a.e. on (0, 1](7.3)

Additionally by using the relation

lim
n

1
∫

0

|
1

t

t
∫

0

gkn − cgkn(t)|
pdt = 0

we may assume (by passing if necessary to a subsequence) that Fkn → 0 almost every-

where in (0, 1]. Thus

1

t

t
∫

0

gkn − cgkn(t) → 0(7.4)

for almost every t ∈ (0, 1].

Our aim is to prove that limn

1
∫

0

|gkn − g′0|
p = 0, and that g′0 = g0, where g0 is the

function constructed in section 6, thus giving us gkn
Lp

−→ g0. By (7.3) and (7.4) we

immediately get that

lim
n

1

t

t
∫

0

gkn = cg′0(t)(7.5)
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for almost every t ∈ (0, 1].

Moreover, for every t ∈ (0, 1], we get by using Fatou’s Lemma

1

t

t
∫

0

g′0 =
1

t

t
∫

0

lim
n

gkn ≤ lim inf
n

1

t

t
∫

0

gkn = cg′0(t).(7.6)

Inequality (7.6) for t = 1 gives
1
∫

0

g′0 ≤ f , since
1
∫

0

gkn = f for all n ∈ N.

Additionally
1

∫

0

(g′0)
p =

1
∫

0

(lim gkn)
p ≤ lim inf

n

1
∫

0

gpkn = F

using again Fatou’s Lemma.

Now by Theorem 13.44 of [16], page 207, we have that if p > 1 and (fn)n∈N is a

sequence of nonnegative measurable functions in measure space (X,A, µ) such that

supn
∫

X fp
ndµ < +∞ and fn → f µ- a.e. then fn → f weakly on Lp that is

∫

X fngdµ →
∫

X fgdµ for every g ∈ Lq where 1
p + 1

q = 1. We apply this theorem to our case:

supn
1
∫

0

gpkndµ = F < +∞, and gkn → g′0 a.e. Thus

gkn → g′0(7.7)

weakly on Lp. By (7.7) we immediately get

lim
n

t
∫

0

gkn =

t
∫

0

g′0, ∀t ∈ (0, 1].(7.8)

By using now (7.4) and (7.8) we get

1

t

t
∫

0

g′0 = cg′0(t)(7.9)

for almost every t ∈ (0, 1].

Thus g′0 can be considered to be continuous on (0, 1] and (7.9) is true for every

t ∈ (0, 1]. Moreover (7.8) for t = 1 gives

1
∫

0

g′0 = f(7.10)

From (7.9), which is true for every t ∈ (0, 1] and (7.10) we easily get that g′0 has the

following form

g′0(t) =
f

c
t−1+ 1

c , t ∈ (0, 1].(7.11)
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Since c = ωp(
fp

F ) it is easily seen that
1
∫

0

(g′0)
p = F . Thus g′0 = g0 where g0 is the

function constructed in Section 6.

Now we use the following result (see (13.47) in [16], page 208-209).

If fn : (X,A, µ) → R, n ∈ N are such that fn → f µ-a.e. for some f : (X,A, µ) → R

and ‖fn‖L1 → ‖f‖L1 , then ‖fn− f‖L1 → 0. By using the above mentioned theorem we

get, since gpkn → (g′0)
p a.e. on (0, 1] and

1
∫

0

gpkn =
1
∫

0

(g′0)
p = F , ∀n ∈ N, that

1
∫

0

|gpkn − (g′0)
p| → 0, as n → ∞ which means that

1
∫

0

|gpkn − gp0 | → 0, as n → ∞.

Using now the the elementary inequality (x − y)p ≤ xp − yp which holds for every

x ≥ y ≥ 0, p > 1 we immediately get that
1
∫

0

|gkn − g0|
p → 0 thus gkn

Lp

−→ g0, and the

proof of Theorem 3 is completed.
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