A refinement of a Hardy type inequality for negative exponents, and sharp applications to Muckenhoupt weights on \mathbb{R}

Eleftherios N. Nikolidakis Theodoros Stavropoulos July 24, 2018

Abstract

We prove a sharp integral inequality that generalizes the well known Hardy type integral inequality for negative exponents. We also give sharp applications in two directions for Muckenhoupt weights on \mathbb{R} . This work refines the results that appear in [9].

1 Introduction

In 1920, Hardy has proved (as one can see in [2] or [3]) the following inequality which is known as Hardy's inequality

Theorem A. If p > 1, $a_n \ge 0$ and $A_n = a_1 + a_2 + \ldots + a_n$, $n \in \mathbb{N}^*$, then

$$\sum_{n=1}^{\infty} \left(\frac{A_n}{n}\right)^p \le \left(\frac{p}{p-1}\right)^p \sum_{n=1}^{\infty} a_n^p. \tag{1.1}$$

Moreover, inequality (1.1) is best possible, that is the constant on the right side cannot be decreased.

In 1926, Copson generalized in [1] Theorem A, by replacing the arithmetic mean of a sequence by a weighted arithmetic mean. More precisely, he proved the following

Theorem B. Let p > 1, $a_n, \lambda_n > 0$ for $n = 1, 2, \ldots$ Further suppose that $\Lambda_n = \sum_{i=1}^n \lambda_i$ and $A_n = \sum_{i=1}^n \lambda_i a_i$. Then

$$\sum_{n=1}^{\infty} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^p \le \left(\frac{p}{p-1}\right)^p \sum_{n=1}^{\infty} \lambda_n a_n^p, \tag{1.2}$$

where the constant involved in (1.2) is best possible.

Certain generalizations of (1.1) have been given in [6], [7] and elsewhere. For example, one can see in [8] further generalizations of Hardy's and Copson's inequalities be replacing means by more general linear transforms. Theorem A has a continued analogue which is the following

Theorem C. If p > 1 and $f: [0, +\infty) \to \mathbb{R}^+$ is L^p -integrable, then

$$\int_0^\infty \left(\frac{1}{t} \int_0^t f(u) \, \mathrm{d}u\right)^p \, \mathrm{d}t \le \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(t) \, \mathrm{d}t. \tag{1.3}$$

The constant in the right side of (1.3) is best possible.

It is easy to see that Theorems A and C are equivalent, by standard approximation arguments which involve step functions. Now as one can see in [4], there is a continued analogue of (1.3) for negative exponents, which is presented there without a proof. This is described in the following

Theorem D. Let $f:[a,b] \to \mathbb{R}^+$. Then for every p>0 the following is true

$$\int_{a}^{b} \left(\frac{1}{t-a} \int_{a}^{t} f(u) du \right)^{-p} dt \le \left(\frac{p+1}{p} \right)^{p} \int_{a}^{b} f^{-p}(t) dt. \tag{1.4}$$

Moreover (1.4) is best possible.

In [9], a generalization of (1.4) has been given, which can be seen in the following

Theorem E. Let $p \ge q > 0$ and $f : [a,b] \to \mathbb{R}^+$. The following inequality is true and sharp

$$\int_{a}^{b} \left(\frac{1}{t-a} \int_{a}^{t} f(u) du\right)^{-p} dt \le \left(\frac{p+1}{p}\right)^{q} \int_{a}^{b} \left(\frac{1}{t-a} \int_{a}^{t} f(u) du\right)^{-p+q} f^{-q}(t) dt.$$
(1.5)

What is proved in fact in [9] is a more general weighted discrete analogue of (1.5) which is given in the following

Theorem F. Let $p \ge q > 0$ and $a_n, \lambda_n > 0$ for $n = 1, 2, \ldots$ Define A_n and Λ_n as in Theorem B. Then

$$\sum_{n=1}^{\infty} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^{-p} \le \left(\frac{p+1}{p}\right)^q \sum_{n=1}^{\infty} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^{-p+q} a_n^{-q}. \tag{1.6}$$

Certain applications exist for the above two theorems. One of them can be seen in [9], concerning Muckenhoupt weights. In this paper we generalize and refine inequality (1.5) by specifying the integral of f over [a, b]. We also assume, for simplicity reasons, that f is Riemann integrable on [a, b]. More precisely we will prove the following

Theorem 1. Let $p \ge q > 0$ and $f: [a,b] \to \mathbb{R}^+$ with $\frac{1}{b-a} \int_a^b f = \ell$. Then the following inequality is true

$$\int_{a}^{b} \left(\frac{1}{t-a} \int_{a}^{t} f(u) \, du \right)^{-p} dt \leq \left(\frac{p+1}{p} \right)^{q} \int_{a}^{b} \left(\frac{1}{t-a} \int_{a}^{t} f(u) \, du \right)^{-p+q} f^{-q}(t) \, dt - \frac{q}{p+1} (b-a) \cdot \ell^{-p}.$$
(1.7)

Moreover, inequality (1.7) is sharp if one considers all weights f that have mean integral average over [a, b] equal to ℓ .

What we mean by noting that (1.7) is sharp is the following: The constant in front of the integral on the right side cannot be decreased, while the one in front of ℓ^{-p} cannot be increased. These facts will be proved below. In fact more is true as can be seen in the following

Theorem 2. Let $p \ge q > 0$ and $a_n, \lambda_n > 0$, for every $n = 1, 2, \ldots$ Define A_n and A_n as above. Then the following inequality holds for every $N \in \mathbb{N}$.

$$\sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^{-p} \le \left(\frac{p+1}{p}\right)^q \sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^{-p+q} a_n^{-q} - \frac{q}{p+1} \Lambda_N \left(\frac{A_N}{\Lambda_N}\right)^{-p}. \tag{1.8}$$

In Section 2 we describe the proof of Theorem 2 and we also prove the validity and the sharpness of (1.7). Moreover if one wants to study the whole topic concerning generalization of inequalities (1.1) or (1.2), can see [5] and [10]. In the last section we prove an application of Theorem 1. More precisely we prove the following

Theorem 3. Let $\varphi:[0,1) \to \mathbb{R}^+$ be non-decreasing satisfying the following Muckenhoupt type inequality

$$\left(\frac{1}{t} \int_0^t \varphi(y) \, \mathrm{d}y\right) \left(\frac{1}{t} \int_0^t \varphi^{-1/(q-1)}(y) \, \mathrm{d}y\right)^{q-1} \le M,\tag{1.9}$$

for every $t \in (0,1]$, where q > 1 is fixed and $M \ge 1$ is given. Let now $p_0 \in (1,q)$ be defined as the solution of the following equality:

$$\frac{q - p_0}{q - 1} (M p_0)^{1/(q - 1)} = 1. (1.10)$$

Then for every $p \in (p_0, q]$ the following inequality

$$\frac{1}{t} \int_0^t \left(\frac{1}{s} \int_0^s \varphi\right)^{-1/(p-1)} ds \le \left(\frac{1}{t} \int_0^t \varphi\right)^{-1/(p-1)} \frac{1}{K'} c \frac{q}{p} \left(\frac{p-1}{q-1}\right)^2 \tag{1.11}$$

is true, for every $t\in(0,1]$, where $c=M^{1/(q-1)}$ and $K'=K'(p,q,c)=\frac{1}{p^{1/(q-1)}}-c\frac{q-p}{q-1}$. It is also sharp for t=1.

The above theorem implies immediately the following

Corollary. Let φ be as in Theorem 3. Then the following inequality is true for every $t \in (0,1]$ and every $p \in (p_0,q]$.

$$\left(\frac{1}{t} \int_0^t \varphi^{-1/(p-1)}\right)^{p-1} \left(\frac{1}{t} \int_0^t \varphi\right) \le \left[\frac{1}{K'} c \frac{q}{p} \left(\frac{p-1}{q-1}\right)^2\right]^{p-1}$$

This gives us the best possible range of p's for which the Muckenhoupt condition (1.9) still holds, under the hypothesis of (1.9).

The above corollary is the content of [9] but with another constant. Thus by proving Theorem 3 we refine the results in [9] by improving the constants that appear there and by giving certain sharp inequalities that involve Muckenhoupt weights on \mathbb{R} .

2 The Hardy inequality

Proof of Theorem 2.

Let $p \geq q > 0$ and $a_n, \lambda_n > 0$, for every $n \in \mathbb{N}^*$. We define $\Lambda_n = \lambda_1 + \lambda_2 + \ldots + \lambda_n$, $A_n = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$, for $n = 1, 2, \ldots$ We shall prove inequality (1.8). In order to do this we will give two Lemmas that are stated below. We follow [9].

Lemma 1. Under the above notation the following inequality holds for every $n \in \mathbb{N}^*$.

$$\left(\frac{p+1}{p}\right)^{q} a_n^{-q} \left(\frac{A_n}{\Lambda_n}\right)^{-p+q} + p \left(\frac{p}{p+1}\right)^{q/p} a_n^{q/p} \left(\frac{A_n}{\Lambda_n}\right)^{-p-q/p} \ge (p+1) \left(\frac{A_n}{\Lambda_n}\right)^{-p}. \tag{2.1}$$

Proof. It is well known that the following inequality holds

$$y_1^{-p} + p y_1 y_2^{-p-1} - (p+1) y_2^{-p} \ge 0,$$
 (2.2)

for every $y_1, y_2 > 0$.

This is in fact an immediate consequence of the inequality

$$y^{-p} + py \ge (p+1)$$
, for every $y, p \ge 0$. (2.3)

Inequality (2.3) is true in view of Young's inequality which asserts that for every t, s nonnegative the following inequality is true

$$\frac{1}{q}t^q + \frac{1}{q'}s^{q'} \ge ts \tag{2.4}$$

whenever q is greater than 1, and $q^{'}$ is such that $\frac{1}{q} + \frac{1}{q'} = 1$. Then by choosing q = p + 1 in Young's inequality, and setting $t = \frac{1}{y}$ we obtain (2.3).

If we apply (2.3) when $y = y_1/y_2$ we obtain (2.2). Now we apply (2.2) when

$$y_1 = \left(\frac{p}{p+1}\right)^{1+q/p} a_n^{q/p} \left(\frac{A_n}{\Lambda_n}\right)^{1-q/p}$$
 and $y_2 = \left(\frac{p}{p+1}\right) \frac{A_n}{\Lambda_n}$.

Then as it is easily seen (2.1) is immediately proved. Our proof of Lemma 1 is now complete.

As a consequence of Lemma 1 we have (by summing the respective inequalities) that:

$$\left(\frac{p+1}{p}\right)^{q} \sum_{n=1}^{N} \lambda_{n} a_{n}^{-q} \left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q} + p \left(\frac{p}{p+1}\right)^{q/p} \sum_{n=1}^{N} \lambda_{n} a_{n}^{q/p} \left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-q/p} \\
\geq (p+1) \sum_{n=1}^{N} \left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \lambda_{n}, \quad (2.5)$$

for every $N \in \mathbb{N}^*$.

We proceed to the proof of

Lemma 2. Under the above notation the following inequality is true for every $N \in \mathbb{N}^*$

$$\sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} - \left(\frac{p}{p+1} \right) \sum_{n=1}^{N} \lambda_n a_n \left(\frac{A_n}{\Lambda_n} \right)^{-p-1} \ge \frac{\Lambda_n}{p+1} \left(\frac{A_n}{\Lambda_n} \right)^{-p}. \quad (2.6)$$

Proof. We follow [9].

For N = 1, inequality (2.6) is in fact equality. We suppose now that it is true with N - 1 in place of N. We will prove that it is also true for the choice of N.

Define
$$S_N = \sum_{n=1}^N \left[\lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} - \left(\frac{p}{p+1} \right) \lambda_n a_n \left(\frac{A_n}{\Lambda_n} \right)^{-p-1} \right] =$$

$$= \sum_{n=1}^{N-1} \left[\lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} - \left(\frac{p}{p+1} \right) \lambda_n a_n \left(\frac{A_n}{\Lambda_n} \right)^{-p-1} \right] +$$

$$+ \lambda_N \left(\frac{A_N}{\Lambda_N} \right)^{-p} - \left(\frac{p}{p+1} \right) (A_N - A_{N-1}) \left(\frac{A_N}{\Lambda_N} \right)^{-p-1}. \tag{2.7}$$

By our induction step we obviously see that

$$S_{N} \geq \frac{\Lambda_{N-1}}{p+1} \left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p} + \lambda_{N} \left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} - \left(\frac{p}{p+1}\right) (A_{N} - A_{N-1}) \left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1} = \frac{\Lambda_{N-1}}{p+1} \left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p} + \lambda_{N} \left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} - \frac{p}{p+1} \Lambda_{N} \left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} + \frac{\Lambda_{N-1}}{p+1} \left[p \frac{A_{N-1}}{\Lambda_{N-1}} \left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1}\right].$$
(2.8)

We use now inequality (2.2) in order to find a lower bound for the expression in brackets in (2.8). We thus have

$$p\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)\left(\frac{A_N}{\Lambda_N}\right)^{-p-1} \ge -\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p} + (p+1)\left(\frac{A_N}{\Lambda_N}\right)^{-p}.$$
 (2.9)

We use (2.9) in (2.8) and obtain that

$$\begin{split} S_N & \geq \frac{\Lambda_{N-1}}{p+1} \left(\frac{A_{N-1}}{\Lambda_{N-1}} \right)^{-p} + \lambda_N \left(\frac{A_N}{\Lambda_N} \right)^{-p} - \left(\frac{p}{p+1} \right) \Lambda_N \left(\frac{A_N}{\Lambda_N} \right)^{-p} + \\ & + \frac{\Lambda_{N-1}}{p+1} \left[\left(p+1 \right) \left(\frac{A_N}{\Lambda_N} \right)^{-p} - \left(\frac{A_{N-1}}{\Lambda_{N-1}} \right)^{-p} \right] = \\ & = \left(\frac{A_N}{\Lambda_N} \right)^{-p} \left(\lambda_N - \frac{p}{p+1} \Lambda_N + \Lambda_{N-1} \right) = \frac{\Lambda_N}{p+1} \left(\frac{A_N}{\Lambda_N} \right)^{-p} \end{split}$$

that is (2.6) holds. In this way we derived inductively the proof of our Lemma.

We consider now the quantity

$$y = \sum_{n=1}^{N} \lambda_n a_n^{q/p} \left(\frac{A_n}{\Lambda_n}\right)^{-p-q/p}.$$
 (2.10)

Then $y=\sum_{n=1}^N \lambda_n \left[a_n^{q/p} \left(\frac{A_n}{\Lambda_n}\right)^{-q-q/p}\right] \left[\frac{A_n}{\Lambda_n}\right]^{-p+q}$. Suppose that p>q. The case p=q will be discussed in the end of the proof. Applying Hölder's inequality now in the above sum with exponents $r=\frac{p}{q}$ and $r'=\frac{p}{p-q}$, we have as a consequence that

$$y \leq \left\{ \sum_{n=1}^{N} \lambda_n a_n \left(\frac{A_n}{\Lambda_n} \right)^{-p-1} \right\}^{\frac{q}{p}} \left\{ \sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} \right\}^{1-\frac{q}{p}}$$

$$\leq \left\{ \frac{p+1}{p} \sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} - \frac{1}{p} \Lambda_N \left(\frac{A_N}{\Lambda_N} \right)^{-p} \right\}^{\frac{q}{p}} \left\{ \sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n} \right)^{-p} \right\}^{1-\frac{q}{p}},$$

$$(2.11)$$

in view of Lemma 2. We set now $z = \sum_{n=1}^{N} \lambda_n a_n^{-q} \left(\frac{A_n}{\Lambda_n}\right)^{-p+q}$ and $x = \sum_{n=1}^{N} \lambda_n \left(\frac{A_n}{\Lambda_n}\right)^{-p}$. Because of (2.11) we have that

$$y \le \left\{ \frac{p+1}{p} x - \frac{1}{p} \Lambda_N \left(\frac{A_N}{\Lambda_N} \right)^{-p} \right\}^{\frac{q}{p}} \cdot x^{1-\frac{q}{p}}. \tag{2.12}$$

By setting now $c = \Lambda_N \left(\frac{A_N}{\Lambda_N}\right)^{-p}$, we have because of (2.12),

$$y \le \left(\frac{p+1}{p}x - \frac{c}{p}\right)^{\frac{q}{p}} x^{1-\frac{q}{p}} = \left(\frac{p+1}{p}\right)^{\frac{q}{p}} \left[x - \frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}.$$
 (2.13)

Note that by (2.13) the quantity $x - \frac{c}{p+1}$ is positive, that is $x > \frac{c}{p+1}$. Now because of Lemma 1, it is immediate that

$$\left(\frac{p+1}{p}\right)^{q} z + p \left(\frac{p}{p+1}\right)^{\frac{q}{p}} y \ge (p+1)x \stackrel{(2.13)}{\Longrightarrow}$$

$$\left(\frac{p+1}{p}\right)^{q} z + p \left(\frac{p}{p+1}\right)^{\frac{q}{p}} \left(\frac{p+1}{p}\right)^{\frac{q}{p}} \left[x - \frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}} \ge (p+1)x \implies$$

$$\left(\frac{p+1}{p}\right)^{q} z \ge (p+1)x - p \left[x - \frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}} =$$

$$= x + \left\{px - p \left[x - \frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}\right\} = x + pG(x), \tag{2.14}$$

where G(x) is defined for $x > \frac{c}{p+1}$, by $G(x) = x - \left[x - \frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}$. By (2.14) now we obtain

$$\left(\frac{p+1}{p}\right)^q z - x \ge p G(x) \ge p \inf \left\{ G(x) : x > \frac{c}{p+1} \right\}, \tag{2.15}$$

We will now find the infimum in the above relation. Note that

$$G'(x) = 1 - \left(1 - \frac{q}{p}\right)x^{-\frac{q}{p}}\left(x - \frac{c}{p+1}\right)^{\frac{q}{p}} - x^{1-\frac{q}{p}}\left(\frac{q}{p}\right)\left(x - \frac{c}{p+1}\right)^{\frac{q}{p}-1} = 1 - \left(1 - \frac{q}{p}\right)\left(1 - \frac{c}{(p+1)x}\right)^{\frac{q}{p}} - \frac{q}{p}\left(1 - \frac{c}{(p+1)x}\right)^{\frac{q}{p}-1}. \quad (2.16)$$

We consider now the function

$$H(t) = 1 - \left(1 - \frac{q}{p}\right)t^{\frac{q}{p}} - \frac{q}{p}t^{\frac{q}{p}-1}, \quad t \in (0,1).$$

Then $H'(t) = -t^{q/p-2} \left(1 - \frac{q}{p}\right) \frac{q}{p} \left(t - 1\right) > 0$, for every $t \in (0,1)$. Thus H(t) is strictly increasing $\Longrightarrow H(t) \leq H(1) = 0$, $\forall t \in (0,1)$. By setting now $t = 1 - \frac{c}{(p+1)x}$, we conclude that the expression in the right of (2.16) is negative, that is $G'(x) \leq 0$, $\forall x > \frac{c}{p+1} \implies G$ is decreasing in $\left(\frac{c}{p+1}, +\infty\right)$. Thus $G(x) \geq \lim_{x \to +\infty} G(x) = \ell$.

Then
$$\ell = \lim_{x \to +\infty} \left[x - x^{1-\frac{q}{p}} \left(x - \frac{c}{p+1} \right)^{\frac{q}{p}} \right] = \lim_{x \to +\infty} \frac{1 - \left(1 - \frac{c}{(p+1)x} \right)^{\frac{p}{p}}}{\frac{1}{x}} =$$

$$= \lim_{y \to 0^+} \frac{1 - \left(1 - \frac{c}{p+1}y \right)^{\frac{q}{p}}}{y} = -\frac{q}{p} \left(-\frac{c}{p+1} \right) = \frac{qc}{p(p+1)}, \text{ by applying the De L'Hospital}$$

rule. Thus we have by (2.15) that $\left(\frac{p+1}{p}\right)^q z - x \ge p \frac{q c}{p(p+1)} = \frac{q c}{p+1}$, which gives inequality (1.8), by the definitions of x, z and c.

The proof of Theorem 2 in the case p > q is complete. The case p = q is also true by continuity reasons, that is by letting $p \to q^+$ in (1.8).

Proof of Theorem 1. We first prove the validity of (1.7). We simplify the proof by considering the case where a=0 and b=1. We consider also the case where $f:[0,1]\to\mathbb{R}^+$ is continuous. The general case for Riemann integrable functions can be handled by using approximation arguments which involve sequences of continuous functions. We suppose that $\int_0^1 f = \ell$. We define $F:(0,1]\to\mathbb{R}^+$ by $F(t) = \frac{1}{t} \int_0^t f(u) du$. Then

$$\int_0^1 \left(\frac{1}{t} \int_0^t f(u) \, \mathrm{d}u \right)^{-p} \, \mathrm{d}t = \int_0^1 (F(t))^{-p} \, \mathrm{d}t.$$

The integral above can be approximated by Riemann sums of the following type:

$$\sum_{n=1}^{2^k} \frac{1}{2^k} (F(\frac{n}{2^k}))^{-p} = \frac{1}{2^k} \sum_{n=1}^{2^k} (\frac{\sum_{i=1}^n a_i^{(k)}}{n})^{-p}.$$

where the quantities $a_i^{(k)}$ are defined as follows:

$$a_i^{(k)} = 2^k \int_{\frac{i-1}{2^k}}^{\frac{i}{2^k}} f$$

for $i = 1, ..., 2^k$. We use now inequality (1.8). Thus the sum that appears above is less or equal than

$$(\frac{p+1}{p})^q \frac{1}{2^k} \sum_{n=1}^{2^k} (\frac{\sum_{i=1}^n a_i^{(k)}}{n})^{-p+q} (a_n^{(k)})^{-q} - \frac{q}{p+1} (\frac{\sum_{n=1}^{2^k} a_n^{(k)}}{2^k})^{-p}.$$

Now we obviously have that $\frac{\sum_{n=1}^{2^k} a_n^{(k)}}{2^k} = \ell$, while since f is continuous, for every $n=1,...,2^k$ there exists $b_n^{(k)} \in [\frac{n-1}{2^k},\frac{n}{2^k}]$, such that $a_n^{(k)} = f(b_n^{(k)})$. Thus the quantity that appears above equals

$$(\frac{p+1}{p})^q \frac{1}{2^k} \sum_{n=1}^{2^k} (F(\frac{n}{2^k}))^{-p+q} (f(b_n^{(k)}))^{-q} - \frac{q}{p+1} \ell^{-p}.$$

Now, by continuity reasons, and by the choice of $b_n^{(k)}$, the quantity above approximates

$$(\frac{p+1}{p})^q \frac{1}{2^k} \sum_{r=1}^{2^k} (F(b_n^{(k)}))^{-p+q} (f(b_n^{(k)}))^{-q} - \frac{q}{p+1} \ell^{-p}$$

as $k \to \infty$. It is clear now that this last quantity approximates the right side of (1.7), as $k \to \infty$.

We now prove the sharpness of (1.7). Let $\ell > 0$ be fixed and $p \geq q > 0$. We consider for any $a \in \left(-\frac{1}{p},0\right)$ the following function $g_a(t) = \ell (1-a) t^{-a}$, $t \in [0,1]$. It is easy to see that $\int_0^1 g_a = \ell$, $\frac{1}{t} \int_0^t g_a = \frac{1}{1-a} g_a(t)$ for every $t \in (0,1]$ and that $\int_0^1 g_a^{-p} = \frac{\ell^{-p} (1-a)^{-p}}{1+ap}$. We consider now the difference

$$L_a = \int_0^1 \left(\frac{1}{t} \int_0^t g_a\right)^{-p} dt - \left(\frac{p+1}{p}\right)^q \int_0^1 \left(\frac{1}{t} \int_0^t g_a\right)^{-p+q} g_a^{-q}(t) dt.$$

It equals to (because of the above properties that g_a satisfy)

$$L_a = \ell^{-p} \frac{\left[1 - (1-a)^{-q} \left(\frac{p+1}{p}\right)^q\right]}{1 + a p}.$$

We let $a \to -\frac{1}{p}^+$ and we conclude that

$$\lim_{a \to -\frac{1}{p}^+} L_a = \ell^{-p} q (1-a)^{-q-1} \Big]_{a=-\frac{1}{p}} (-1) \left(\frac{p+1}{p}\right)^q = -\frac{q}{p+1} \ell^{-p}.$$

In this way we derived the sharpness or (1.7). The proof of Theorem 1 is complete.

3 Proof of Theorem 3

Let $\varphi:[0,1)\to\mathbb{R}^+$ be non decreasing satisfying the inequality

$$\left(\frac{1}{t} \int_0^t \varphi\right) \left(\frac{1}{t} \int_0^t \varphi^{-1/(q-1)}\right)^{q-1} \le M,\tag{3.1}$$

for every $t \in (0,1]$, where q is fixed such that q > 1 and M > 0. We assume also that there exists an $\varepsilon > 0$ such that $\varphi(t) \ge \varepsilon > 0$, $\forall t \in [0,1)$. The general case can be handled using this one, by adding a small constant $\varepsilon > 0$ to φ . We need the following from [9].

Lemma A. Let $\psi:(0,1)\to[0,+\infty)$, such that $\lim_{t\to 0} t \, [\psi(t)]^a=0$, where $a\in\mathbb{R}$, a>1 and $\psi(t)$ is continuous and monotone on (0,1). Then the following is true for any $a\in(0,1)$.

$$a \int_0^u \psi^{a-1}(t) \left[t \, \psi(t) \right]' \mathrm{d}t = u \, \psi^a(u) + (a-1) \int_0^u \psi^a(t) \, \mathrm{d}t. \tag{3.2}$$

We refer to [9] for the proof.

We continue the proof of Theorem 3. We set $h:[0,1)\to\mathbb{R}^+$ by h(t)= $\varphi^{-1/(q-1)}(t)$. Then obviously h satisfies $h(t) \leq \varepsilon^{-1/(q-1)}$, $\forall t \in [0,1)$. Let also $p_0 \in [1, q]$ be defined such that

$$\frac{q - p_0}{q - 1} (M p_0)^{1/(q - 1)} = 1.$$

Let also $p \in (p_0, q]$. Define ψ by $\psi(t) = \frac{1}{t} \int_0^t \varphi^{-1/(q-1)}$. Then by Lemma A, we get for $a = \frac{q-1}{n-1} > 1$, the following:

$$\begin{split} \frac{q-1}{p-1} \int_0^t \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_0^s \varphi^{-1/(q-1)}\right)^{\frac{q-p}{p-1}} \mathrm{d}s - \\ - \left(\frac{q-p}{p-1}\right) \int_0^t \left(\frac{1}{s} \int_0^s \varphi^{-1/(q-1)}\right)^{\frac{q-1}{p-1}} \mathrm{d}s = t \left(\frac{1}{t} \int_0^t \varphi^{-1/(q-1)}\right)^{\frac{q-1}{p-1}}. \quad (3.3) \end{split}$$

Define for every y>0 the following function of the variable of $x\in[y,+\infty)$

$$g_y(x) = \frac{q-1}{q-p} y x^{(q-p)/(p-1)} - x^{(q-1)/(p-1)}.$$
 (3.4)

Then $g_y'(x) = \frac{q-1}{p-1} x^{[(q-1)/(p-1)]-2} (y-x) \le 0, \ \forall x \ge y.$ Then g_y is strictly decreasing on $[y, +\infty)$. So if $y \le x \le w \implies g_y(x) \ge g_y(w)$. For every $s \in (0, t]$ set now

$$x = \frac{1}{s} \int_0^s \varphi^{-1/(q-1)}, \ y = \varphi^{-1/(q-1)}(s), \ c = M^{1/(q-1)}, \ \text{and} \ z = \left(\frac{1}{s} \int_0^s \varphi\right)^{-\frac{1}{q-1}}.$$

Note that by (3.1) the following is true $y \le x \le cz =: w$. Thus

$$g_{y}(x) \geq g_{y}(w) \Longrightarrow \frac{q-1}{q-p} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi^{-1/(q-1)}\right)^{\frac{(q-p)}{(p-1)}} - \left(\frac{1}{s} \int_{0}^{s} \varphi^{-1/(q-1)}\right)^{\frac{(q-1)}{(p-1)}} \geq \\ \geq \frac{q-1}{q-p} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{\frac{1}{q-1} - \frac{1}{p-1}} c^{\frac{q-p}{p-1}} - c^{\frac{q-1}{p-1}} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{(p-1)}}$$
(3.5)

Integrating (3.5) on $s \in (0, t]$ we get

$$\frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1} + \frac{1}{q-1}} ds \cdot c^{\frac{q-p}{p-1}} \leq
\leq \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi^{-1/(q-1)}\right)^{\frac{q-p}{p-1}} ds -
- \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi^{-1/(q-1)}\right)^{\frac{q-1}{p-1}} ds + c^{\frac{q-1}{p-1}} \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)} ds \quad (3.6)$$

Now because of (3.3) we get

$$\frac{q-1}{q-p} \int_0^t \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_0^s \varphi^{-1/(q-1)}\right)^{\frac{q-p}{p-1}} ds - \int_0^t \left(\frac{1}{s} \int_0^s \varphi^{-1/(q-1)}\right)^{\frac{q-1}{p-1}} ds \\
= \frac{p-1}{q-p} \frac{1}{t^{(q-p)/(p-1)}} \left(\int_0^t \varphi^{-1/(q-1)}\right)^{\frac{q-1}{p-1}} (3.7)$$

Thus (3.6) gives

$$c^{\frac{q-p}{p-1}} \frac{q-1}{q-p} \int_0^t \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_0^s \varphi\right)^{-\frac{1}{p-1} + \frac{1}{q-1}} ds \le$$

$$\le c^{\frac{q-1}{p-1}} \int_0^t \left(\frac{1}{s} \int_0^s \varphi\right)^{-1/(p-1)} ds + \frac{p-1}{q-p} t \left(\frac{1}{t} \int_0^t \varphi^{-1/(q-1)}\right)^{(q-1)/(p-1)} .$$
(3.8)

But

$$\left[\frac{1}{t} \int_{0}^{t} \varphi^{-1/(q-1)}\right]^{(q-1)/(p-1)} \leq M^{1/(p-1)} \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)} \xrightarrow{(3.8)}$$

$$c^{\frac{q-p}{p-1}} \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1} + \frac{1}{q-1}} ds \leq$$

$$\leq c^{\frac{q-1}{p-1}} \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)} ds + \frac{p-1}{q-p} t M^{1/(p-1)} \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)} \Longrightarrow$$

$$A_{1} := \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1} + \frac{1}{q-1}} ds \leq$$

$$\leq c \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)} ds + \frac{p-1}{q-p} \frac{M^{1/(p-1)}}{c^{(q-p)/(p-1)}} t \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)} .$$
(3.9)

Now by using Theorem 1 we get

$$\int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}} ds \leq$$

$$\left(\frac{1 + \frac{1}{p-1}}{\frac{1}{p-1}}\right)^{\frac{1}{q-1}} \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1} + \frac{1}{q-1}} \varphi^{-\frac{1}{q-1}}(s) ds - \frac{\frac{1}{q-1}}{1 + \frac{1}{p-1}} t \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-\frac{1}{p-1}} =$$

$$= p^{\frac{1}{q-1}} A_{1} \frac{q - p}{q - 1} - \frac{p - 1}{(q - 1) p} t \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-\frac{1}{p-1}} . \quad (3.10)$$

Thus in view of (3.10), (3.9) becomes

$$A_{1} \leq c \, p^{1/(q-1)} A_{1} \, \frac{q-p}{q-1} - c \, \frac{p-1}{(q-1)p} \, t \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)} + \frac{p-1}{q-p} \, \frac{M^{1/(p-1)}}{c^{(q-p)/(p-1)}} \, t \left(\frac{1}{t} \int_{0}^{1} \varphi\right)^{-1/(p-1)} \Longrightarrow \left[1 - c \, p^{1/(q-1)} \frac{q-p}{q-1}\right] A_{1} \leq \left[\frac{M^{1/(p-1)}}{c^{(q-p)/(p-1)}} \frac{p-1}{q-p} - c \, \frac{p-1}{(q-1)p}\right] \cdot t \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)} \Longrightarrow K(p,q,c) \left[\frac{1}{t} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)+1/(q-1)} \, ds\right] \leq \frac{\left[\frac{p-1}{q-1} \frac{M^{1/(p-1)}}{c^{(q-p)/(p-1)}} - c \, \frac{(p-1)(q-p)}{p(q-1)^{2}}\right] \left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1/(p-1)}$$

$$(3.11)$$

where $K = K(p, q, c) = 1 - c p^{1/(q-1)} \frac{q-p}{q-1} > 0, \forall p \in (p_0, q]$. As a consequence (3.11) gives

$$K\left[\frac{1}{t}\int_{0}^{t}\varphi^{-1/(p-1)}(s)\left(\frac{1}{s}\int_{0}^{s}\varphi\right)^{-1/(p-1)+1/(q-1)}\mathrm{d}s\right] \leq \left(\frac{1}{t}\int_{0}^{t}\varphi\right)^{-1/(p-1)}\left(\frac{p-1}{q-1}\right)^{2}c\frac{q}{p}. \quad (3.12)$$

Now we use the inequality

$$\frac{1}{t} \int_{0}^{t} \varphi^{-1/(q-1)}(s) \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)+1/(q-1)} ds \ge \\
\ge \left[\frac{1/(p-1)}{1+(1/(p-1))}\right]^{1/(q-1)} \cdot \frac{1}{t} \int_{0}^{t} \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1/(p-1)} ds$$

which is true because of Theorem E. Thus (3.12) gives

$$\frac{K'}{t} \int_0^t \left(\frac{1}{s} \int_0^s \varphi\right)^{-1/(p-1)} ds \le \left(\frac{1}{t} \int_0^t \varphi\right)^{-1/(p-1)} \left(\frac{p-1}{q-1}\right)^2 c \frac{q}{p} \tag{3.13}$$

where $K' = \frac{K}{p^{1/(q-1)}}$, $K = 1 - c p^{1/(q-1)} \frac{q-p}{q-1}$.

Thus the inequality stated in Theorem $\hat{3}$ is proved.

We need to prove the sharpness of (3.13). We consider a such that 0 < a < q-1 and the function $\varphi_a : (0,1] \to \mathbb{R}^+$ defined by $\varphi_a(t) = t^a$, $t \in (0,1]$. The function

 φ_a is strictly increasing and $\frac{1}{t}\int_0^t \varphi_a = \frac{1}{t}\frac{t^{a+1}}{a+1} = \frac{1}{a+1}\varphi_a(t)$, $\forall t \in (0,1]$, while $\int_0^t \varphi_a^{-1/(q-1)} = \frac{1}{1-a/(q-1)}t^{1-a/(q-1)}$. Thus

$$\left(\frac{1}{t} \int_0^t \varphi_a\right) \left[\frac{1}{t} \int_0^t \varphi_a^{-1/(q-1)}\right]^{q-1} = \left[\frac{q-1}{q-1-a}\right]^{q-1} \left[t^{-a/(q-1)}\right]^{q-1} \cdot \left(\frac{1}{t} \int_0^t \varphi_a\right) = \frac{1}{a+1} \left(\frac{q-1}{q-1-a}\right)^{q-1} =: M(q,a)$$

and

$$c_a = c(q, a) = [M(q, a)]^{1/(q-1)} = \left[\frac{q-1}{(q-1)-a}\right] \frac{1}{(1+a)^{1/(q-1)}}.$$

Let now $p \in (p_0, q]$ and suppose additionally that a < p-1 so that $\int_0^1 \varphi_a^{-1/(p-1)} = (p-1)/(p-1-a)$. We prove the sharpness of (1.11) for t=1. That is we prove that the inequality

$$\frac{K'}{t} \int_0^t \left(\frac{1}{s} \int_0^s \varphi\right)^{-1/(p-1)} ds \le \left(\frac{1}{t} \int_0^t \varphi\right)^{-1/(p-1)} c \frac{q}{p} \left(\frac{p-1}{q-1}\right)^2$$

becomes sharp for t=1. Obviously if $I_a=\int_0^1\left(\frac{1}{s}\int_0^s\varphi_a\right)^{-1/(p-1)}\mathrm{d}s$, then

$$I_{a} = \frac{1}{(1+a)^{-1/(p-1)}} \cdot \cdot \int_{0}^{1} \varphi_{a}^{-1/(p-1)} = (1+a)^{1/(p-1)} \frac{1}{1-a/(p-1)} \text{ while } \left(\int_{0}^{1} \varphi_{a}\right)^{-1/(p-1)} = \left(\frac{1}{1-a}\right)^{-1/(p-1)}$$
Thus in order to prove the sharpness of the above inequality

 $\left(\frac{1}{a+1}\right)^{-1/(p-1)}$. Thus in order to prove the sharpness of the above inequality we just need to prove that the following is true

$$\left[\frac{1}{p^{1/(q-1)}} - \frac{q-p}{q-1}c_a\right] \left(\frac{p-1}{(p-1)-a}\right) \cong c_a \frac{q}{p} \left[\frac{(p-1)}{(q-1)}\right]^2 \text{ as } a \to (p-1)^- \iff \\
\left[\frac{1}{p^{1/(q-1)}} - \frac{q-p}{q-1} \frac{1}{(1+a)^{1/(q-1)}} \left(\frac{q-1}{(q-1)-a}\right)\right] \frac{1}{(p-1)-a} \cong \\
\cong \frac{q}{p} \frac{p-1}{(q-1)^2} \frac{1}{(1+a)^{1/(p-1)}} \frac{q-1}{(q-1)-a}, \text{ as } a \to (p-1)^-.$$
(3.14)

Let then $a \to (p-1)^-$ or equivalently $x := (a+1) \to p^-$. Then for the proof of (3.14) we just need to note that

$$\frac{\left[p^{-\frac{1}{1/(q-1)}} - \frac{q-p}{q-x} \frac{1}{x^{1/(q-1)}}\right]}{p-x} \cong \frac{q}{p} \frac{p-1}{q-1} \frac{1}{p^{1/(q-1)}} \frac{1}{q-p}, \text{ as } x \to p^-,$$

which is a simple application of De L'Hospitals rule. The proof of Theorem 3 is now complete.

References

- [1] COPSON, E. Note on series of positive terms. Journal of the London Mathematical Society 3, no. 1, (1928), 49–51.
- [2] HARDY, G. Note on a theorem of Hilbert. *Mathematische Zeitschrift* 6, no. 3-4 (1920), 314–317.
- [3] HARDY, G. H., LITTLEWOOD, J. E., AND PÓLYA, G. *Inequalities*. Cambridge University Press, 1952.
- [4] Korenovskii, A. The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions. *Mathematical Notes* 52, no. 5-6, (1992), 1192–1201.
- [5] KUFNER, A., MALIGRANDA, L., AND PERSSON, L.-E. The prehistory of the Hardy inequality. *The American Mathematical Monthly 113*, no. 8, (2006), 715–732.
- [6] Leindler, L. Generalization of inequalities of Hardy and Littlewood. *Acta Scient. Math. (Szeged)* 31, (1970), 279-285.
- [7] LEVINSON, N., ET AL. Generalizations of an inequality of Hardy. *Duke Mathematical Journal* 31, (1964), 389–394.
- [8] LOVE, E. Generalizations of Hardy's and Copson's inequalities. *Journal* of the London Mathematical Society 2, 30, (1984), 431–440.
- [9] NIKOLIDAKIS, E. N. A sharp integral Hardy type inequality and applications to Muckenhoupt weights on \mathbb{R} . Ann. Acad. Scient. Fenn. Math., 39 (2014), 887–896.
- [10] PACHPATTE, B. G. Mathematical inequalities, vol. 67. North Holland Math. Library, 2005.

Nikolidakis Eleftherios, University of Ioannina, Department of Mathematics, E-mail address: enikolid@cc.uoi.gr

Stavropoulos Theodoros, National and Kapodistrian University of Athens, Department of Mathematics, E-mail address: tstavrop@math.uoa.gr