A refinement of a Hardy type inequality for negative exponents, and sharp applications to Muckenhoupt weights on \mathbb{R}

Eleftherios N. Nikolidakis Theodoros Stavropoulos

July 24, 2018

Abstract

We prove a sharp integral inequality that generalizes the well known Hardy type integral inequality for negative exponents. We also give sharp applications in two directions for Muckenhoupt weights on \mathbb{R}. This work refines the results that appear in 9.

1 Introduction

In 1920, Hardy has proved (as one can see in [2] or [3]) the following inequality which is known as Hardy's inequality

Theorem A. If $p>1, a_{n} \geq 0$ and $A_{n}=a_{1}+a_{2}+\ldots+a_{n}, n \in \mathbb{N}^{*}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{A_{n}}{n}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p} \tag{1.1}
\end{equation*}
$$

Moreover, inequality (1.1) is best possible, that is the constant on the right side cannot be decreased.

In 1926, Copson generalized in (1) Theorem A, by replacing the arithmetic mean of a sequence by a weighted arithmetic mean. More precisely, he proved the following

Theorem B. Let $p>1, a_{n}, \lambda_{n}>0$ for $n=1,2, \ldots$. Further suppose that $\Lambda_{n}=\sum_{i=1}^{n} \lambda_{i}$ and $A_{n}=\sum_{i=1}^{n} \lambda_{i} a_{i}$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} \lambda_{n} a_{n}^{p} \tag{1.2}
\end{equation*}
$$

where the constant involved in (1.2) is best possible.

Certain generalizations of (1.1) have been given in [6, [7] and elsewhere. For example, one can see in [8] further generalizations of Hardy's and Copson's inequalities be replacing means by more general linear transforms. Theorem A has a continued analogue which is the following

Theorem C. If $p>1$ and $f:[0,+\infty) \rightarrow \mathbb{R}^{+}$is L^{p}-integrable, then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{t} \int_{0}^{t} f(u) \mathrm{d} u\right)^{p} \mathrm{~d} t \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f^{p}(t) \mathrm{d} t \tag{1.3}
\end{equation*}
$$

The constant in the right side of (1.3) is best possible.
It is easy to see that Theorems A and C are equivalent, by standard approximation arguments which involve step functions. Now as one can see in 4], there is a continued analogue of (1.3) for negative exponents, which is presented there without a proof. This is described in the following

Theorem D. Let $f:[a, b] \rightarrow \mathbb{R}^{+}$. Then for every $p>0$ the following is true

$$
\begin{equation*}
\int_{a}^{b}\left(\frac{1}{t-a} \int_{a}^{t} f(u) \mathrm{d} u\right)^{-p} \mathrm{~d} t \leq\left(\frac{p+1}{p}\right)^{p} \int_{a}^{b} f^{-p}(t) \mathrm{d} t \tag{1.4}
\end{equation*}
$$

Moreover (1.4) is best possible.
In [9], a generalization of (1.4) has been given, which can be seen in the following
Theorem E. Let $p \geq q>0$ and $f:[a, b] \rightarrow \mathbb{R}^{+}$. The following inequality is true and sharp

$$
\begin{equation*}
\int_{a}^{b}\left(\frac{1}{t-a} \int_{a}^{t} f(u) \mathrm{d} u\right)^{-p} \mathrm{~d} t \leq\left(\frac{p+1}{p}\right)^{q} \int_{a}^{b}\left(\frac{1}{t-a} \int_{a}^{t} f(u) \mathrm{d} u\right)^{-p+q} f^{-q}(t) \mathrm{d} t \tag{1.5}
\end{equation*}
$$

What is proved in fact in [9] is a more general weighted discrete analogue of (1.5) which is given in the following

Theorem F. Let $p \geq q>0$ and $a_{n}, \lambda_{n}>0$ for $n=1,2, \ldots$ Define A_{n} and Λ_{n} as in Theorem B. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \leq\left(\frac{p+1}{p}\right)^{q} \sum_{n=1}^{\infty} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q} a_{n}^{-q} \tag{1.6}
\end{equation*}
$$

Certain applications exist for the above two theorems. One of them can be seen in [9, concerning Muckenhoupt weights. In this paper we generalize and refine inequality (1.5) by specifying the integral of f over $[a, b]$. We also assume, for simplicity reasons, that f is Riemann integrable on $[a, b]$. More precisely we will prove the following

Theorem 1. Let $p \geq q>0$ and $f:[a, b] \rightarrow \mathbb{R}^{+}$with $\frac{1}{b-a} \int_{a}^{b} f=\ell$. Then the following inequality is true

$$
\begin{array}{r}
\int_{a}^{b}\left(\frac{1}{t-a} \int_{a}^{t} f(u) \mathrm{d} u\right)^{-p} \mathrm{~d} t \leq\left(\frac{p+1}{p}\right)^{q} \int_{a}^{b}\left(\frac{1}{t-a} \int_{a}^{t} f(u) \mathrm{d} u\right)^{-p+q} f^{-q}(t) \mathrm{d} t- \\
-\frac{q}{p+1}(b-a) \cdot \ell^{-p} . \tag{1.7}
\end{array}
$$

Moreover, inequality (1.7) is sharp if one considers all weights f that have mean integral average over $[a, b]$ equal to ℓ.

What we mean by noting that (1.7) is sharp is the following: The constant in front of the integral on the right side cannot be decreased, while the one in front of ℓ^{-p} cannot be increased. These facts will be proved below. In fact more is true as can be seen in the following

Theorem 2. Let $p \geq q>0$ and $a_{n}, \lambda_{n}>0$, for every $n=1,2, \ldots$ Define A_{n} and Λ_{n} as above. Then the following inequality holds for every $N \in \mathbb{N}$.

$$
\begin{equation*}
\sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \leq\left(\frac{p+1}{p}\right)^{q} \sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q} a_{n}^{-q}-\frac{q}{p+1} \Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} \tag{1.8}
\end{equation*}
$$

In Section 2 we describe the proof of Theorem 2 and we also prove the validity and the sharpness of (1.7). Moreover if one wants to study the whole topic concerning generalization of inequalities (1.1) or (1.2), can see [5] and [10]. In the last section we prove an application of Theorem [1. More precisely we prove the following

Theorem 3. Let $\varphi:[0,1) \rightarrow \mathbb{R}^{+}$be non-decreasing satisfying the following Muckenhoupt type inequality

$$
\begin{equation*}
\left(\frac{1}{t} \int_{0}^{t} \varphi(y) \mathrm{d} y\right)\left(\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}(y) \mathrm{d} y\right)^{q-1} \leq M \tag{1.9}
\end{equation*}
$$

for every $t \in(0,1]$, where $q>1$ is fixed and $M \geq 1$ is given. Let now $p_{0} \in(1, q)$ be defined as the solution of the following equality:

$$
\begin{equation*}
\frac{q-p_{0}}{q-1}\left(M p_{0}\right)^{1 /(q-1)}=1 . \tag{1.10}
\end{equation*}
$$

Then for every $p \in\left(p_{0}, q\right]$ the following inequality

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s \leq\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} \frac{1}{K^{\prime}} c \frac{q}{p}\left(\frac{p-1}{q-1}\right)^{2} \tag{1.11}
\end{equation*}
$$

is true, for every $t \in(0,1]$, where $c=M^{1 /(q-1)}$ and $K^{\prime}=K^{\prime}(p, q, c)=$ $\frac{1}{p^{1 /(q-1)}}-c \frac{q-p}{q-1}$. It is also sharp for $t=1$.

The above theorem implies immediately the following
Corollary. Let φ be as in Theorem 3. Then the following inequality is true for every $t \in(0,1]$ and every $p \in\left(p_{0}, q\right]$.

$$
\left(\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(p-1)}\right)^{p-1}\left(\frac{1}{t} \int_{0}^{t} \varphi\right) \leq\left[\frac{1}{K^{\prime}} c \frac{q}{p}\left(\frac{p-1}{q-1}\right)^{2}\right]^{p-1}
$$

This gives us the best possible range of p's for which the Muckenhoupt condition (1.9) still holds, under the hypothesis of (1.9).

The above corollary is the content of [9] but with another constant. Thus by proving Theorem 3 we refine the results in [9] by improving the constants that appear there and by giving certain sharp inequalities that involve Muckenhoupt weights on \mathbb{R}.

2 The Hardy inequality

Proof of Theorem 2.
Let $p \geq q>0$ and $a_{n}, \lambda_{n}>0$, for every $n \in \mathbb{N}^{*}$. We define $\Lambda_{n}=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$, $A_{n}=\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots+\lambda_{n} a_{n}$, for $n=1,2, \ldots$ We shall prove inequality (1.8). In order to do this we will give two Lemmas that are stated below. We follow [9].
Lemma 1. Under the above notation the following inequality holds for every $n \in \mathbb{N}^{*}$.

$$
\begin{equation*}
\left(\frac{p+1}{p}\right)^{q} a_{n}^{-q}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q}+p\left(\frac{p}{p+1}\right)^{q / p} a_{n}^{q / p}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-q / p} \geq(p+1)\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \tag{2.1}
\end{equation*}
$$

Proof. It is well known that the following inequality holds

$$
\begin{equation*}
y_{1}^{-p}+p y_{1} y_{2}^{-p-1}-(p+1) y_{2}^{-p} \geq 0 \tag{2.2}
\end{equation*}
$$

for every $y_{1}, y_{2}>0$.
This is in fact an immediate consequence of the inequality

$$
\begin{equation*}
y^{-p}+p y \geq(p+1), \text { for every } y, p \geq 0 \tag{2.3}
\end{equation*}
$$

Inequality (2.3) is true in view of Young's inequality which asserts that for every t, s nonnegative the following inequality is true

$$
\begin{equation*}
\frac{1}{q} t^{q}+\frac{1}{q^{\prime}} s^{q^{\prime}} \geq t s \tag{2.4}
\end{equation*}
$$

whenever q is greater than 1 , and q^{\prime} is such that $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then by choosing $q=p+1$ in Young's inequality, and setting $t=\frac{1}{y}$ we obtain (2.3).

If we apply (2.3) when $y=y_{1} / y_{2}$ we obtain (2.2). Now we apply (2.2) when $y_{1}=\left(\frac{p}{p+1}\right)^{1+q / p} a_{n}^{q / p}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{1-q / p}$ and $y_{2}=\left(\frac{p}{p+1}\right) \frac{A_{n}}{\Lambda_{n}}$.
Then as it is easily seen (2.1) is immediately proved. Our proof of Lemma 1 is now complete.

As a consequence of Lemma 1 we have (by summing the respective inequalities) that:

$$
\begin{array}{r}
\left(\frac{p+1}{p}\right)^{q} \sum_{n=1}^{N} \lambda_{n} a_{n}^{-q}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q}+p\left(\frac{p}{p+1}\right)^{q / p} \sum_{n=1}^{N} \lambda_{n} a_{n}^{q / p}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-q / p} \\
\geq(p+1) \sum_{n=1}^{N}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \lambda_{n} \tag{2.5}
\end{array}
$$

for every $N \in \mathbb{N}^{*}$.
We proceed to the proof of
Lemma 2. Under the above notation the following inequality is true for every $N \in \mathbb{N}^{*}$

$$
\begin{equation*}
\sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}-\left(\frac{p}{p+1}\right) \sum_{n=1}^{N} \lambda_{n} a_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-1} \geq \frac{\Lambda_{n}}{p+1}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p} \tag{2.6}
\end{equation*}
$$

Proof. We follow [9].
For $N=1$, inequality (2.6) is in fact equality. We suppose now that it is true with $N-1$ in place of N. We will prove that it is also true for the choice of N.

$$
\text { Define } \begin{align*}
S_{N}= & \sum_{n=1}^{N}\left[\lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}-\left(\frac{p}{p+1}\right) \lambda_{n} a_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-1}\right]= \\
= & \sum_{n=1}^{N-1}\left[\lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}-\left(\frac{p}{p+1}\right) \lambda_{n} a_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-1}\right]+ \tag{2.7}\\
& +\lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}-\left(\frac{p}{p+1}\right)\left(A_{N}-A_{N-1}\right)\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1}
\end{align*}
$$

By our induction step we obviously see that

$$
\begin{align*}
S_{N} \geq \frac{\Lambda_{N-1}}{p+1}\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p}+\lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} & -\left(\frac{p}{p+1}\right)\left(A_{N}-A_{N-1}\right)\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1}= \\
=\frac{\Lambda_{N-1}}{p+1}\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p}+\lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} & -\frac{p}{p+1} \Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}+ \\
& +\frac{\Lambda_{N-1}}{p+1}\left[p \frac{A_{N-1}}{\Lambda_{N-1}}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1}\right] \tag{2.8}
\end{align*}
$$

We use now inequality (2.2) in order to find a lower bound for the expression in brackets in (2.8). We thus have

$$
\begin{equation*}
p\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p-1} \geq-\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p}+(p+1)\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p} \tag{2.9}
\end{equation*}
$$

We use (2.9) in (2.8) and obtain that

$$
\begin{aligned}
& S_{N} \geq \frac{\Lambda_{N-1}}{p+1}\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p}+\lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}-\left(\frac{p}{p+1}\right) \Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}+ \\
&+\frac{\Lambda_{N-1}}{p+1}\left[(p+1)\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}-\left(\frac{A_{N-1}}{\Lambda_{N-1}}\right)^{-p}\right]= \\
&=\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}\left(\lambda_{N}-\frac{p}{p+1} \Lambda_{N}+\Lambda_{N-1}\right)=\frac{\Lambda_{N}}{p+1}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}
\end{aligned}
$$

that is (2.6) holds. In this way we derived inductively the proof of our Lemma.

We consider now the quantity

$$
\begin{equation*}
y=\sum_{n=1}^{N} \lambda_{n} a_{n}^{q / p}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-q / p} \tag{2.10}
\end{equation*}
$$

Then $y=\sum_{n=1}^{N} \lambda_{n}\left[a_{n}^{q / p}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-q-q / p}\right]\left[\frac{A_{n}}{\Lambda_{n}}\right]^{-p+q}$. Suppose that $p>q$. The case $p=q$ will be discussed in the end of the proof. Applying Hölder's inequality now in the above sum with exponents $r=\frac{p}{q}$ and $r^{\prime}=\frac{p}{p-q}$, we have as a consequence that

$$
\begin{align*}
y & \leq\left\{\sum_{n=1}^{N} \lambda_{n} a_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p-1}\right\}^{\frac{q}{p}}\left\{\sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}\right\}^{1-\frac{q}{p}} \\
& \leq\left\{\frac{p+1}{p} \sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}-\frac{1}{p} \Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}\right\}^{\frac{q}{p}} \cdot\left\{\sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}\right\}^{1-\frac{q}{p}}, \tag{2.11}
\end{align*}
$$

in view of Lemma 2,
We set now $z=\sum_{n=1}^{N} \lambda_{n} a_{n}^{-q}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p+q}$ and $x=\sum_{n=1}^{N} \lambda_{n}\left(\frac{A_{n}}{\Lambda_{n}}\right)^{-p}$. Because of (2.11) we have that

$$
\begin{equation*}
y \leq\left\{\frac{p+1}{p} x-\frac{1}{p} \Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}\right\}^{\frac{q}{p}} \cdot x^{1-\frac{q}{p}} \tag{2.12}
\end{equation*}
$$

By setting now $c=\Lambda_{N}\left(\frac{A_{N}}{\Lambda_{N}}\right)^{-p}$, we have because of (2.12),

$$
\begin{equation*}
y \leq\left(\frac{p+1}{p} x-\frac{c}{p}\right)^{\frac{q}{p}} \cdot x^{1-\frac{q}{p}}=\left(\frac{p+1}{p}\right)^{\frac{q}{p}}\left[x-\frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}} . \tag{2.13}
\end{equation*}
$$

Note that by (2.13) the quantity $x-\frac{c}{p+1}$ is positive, that is $x>\frac{c}{p+1}$. Now because of Lemma 1, it is immediate that

$$
\begin{gather*}
\left(\frac{p+1}{p}\right)^{q} z+p\left(\frac{p}{p+1}\right)^{\frac{q}{p}} y \geq(p+1) x \stackrel{(2.13)}{\Longrightarrow} \\
\left(\frac{p+1}{p}\right)^{q} z+p\left(\frac{p}{p+1}\right)^{\frac{q}{p}}\left(\frac{p+1}{p}\right)^{\frac{q}{p}}\left[x-\frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}} \geq(p+1) x \Longrightarrow \\
\left(\frac{p+1}{p}\right)^{q} z \geq(p+1) x-p\left[x-\frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}= \\
= \tag{2.14}\\
x+\left\{p x-p\left[x-\frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}\right\}=x+p G(x)
\end{gather*}
$$

where $G(x)$ is defined for $x>\frac{c}{p+1}$, by $G(x)=x-\left[x-\frac{c}{p+1}\right]^{\frac{q}{p}} x^{1-\frac{q}{p}}$. By (2.14) now we obtain

$$
\begin{equation*}
\left(\frac{p+1}{p}\right)^{q} z-x \geq p G(x) \geq p \inf \left\{G(x): x>\frac{c}{p+1}\right\} \tag{2.15}
\end{equation*}
$$

We will now find the infimum in the above relation. Note that

$$
\begin{align*}
G^{\prime}(x)= & 1-\left(1-\frac{q}{p}\right) x^{-\frac{q}{p}}\left(x-\frac{c}{p+1}\right)^{\frac{q}{p}}-x^{1-\frac{q}{p}}\left(\frac{q}{p}\right)\left(x-\frac{c}{p+1}\right)^{\frac{q}{p}-1}= \\
& =1-\left(1-\frac{q}{p}\right)\left(1-\frac{c}{(p+1) x}\right)^{\frac{q}{p}}-\frac{q}{p}\left(1-\frac{c}{(p+1) x}\right)^{\frac{q}{p}-1} \tag{2.16}
\end{align*}
$$

We consider now the function

$$
H(t)=1-\left(1-\frac{q}{p}\right) t^{\frac{q}{p}}-\frac{q}{p} t^{\frac{q}{p}-1}, \quad t \in(0,1) .
$$

Then $H^{\prime}(t)=-t^{q / p-2}\left(1-\frac{q}{p}\right) \frac{q}{p}(t-1)>0$, for every $t \in(0,1)$. Thus $H(t)$ is strictly increasing $\Longrightarrow H(t) \leq H(1)=0, \forall t \in(0,1)$. By setting now $t=1-\frac{c}{(p+1) x}$, we conclude that the expression in the right of (2.16) is negative, that is $G^{\prime}(x) \leq 0, \forall x>\frac{c}{p+1} \Longrightarrow G$ is decreasing in $\left(\frac{c}{p+1},+\infty\right)$. Thus $G(x) \geq \lim _{x \rightarrow+\infty} G(x)=\ell$.
Then $\ell=\lim _{x \rightarrow+\infty}\left[x-x^{1-\frac{q}{p}}\left(x-\frac{c}{p+1}\right)^{\frac{q}{p}}\right]=\lim _{x \rightarrow+\infty} \frac{1-\left(1-\frac{c}{(p+1) x}\right)^{\frac{q}{p}}}{\frac{1}{x}}=$
$=\lim _{y \rightarrow 0^{+}} \frac{1-\left(1-\frac{c}{p+1} y\right)^{\frac{q}{p}}}{y}=-\frac{q}{p}\left(-\frac{c}{p+1}\right)=\frac{q c}{p(p+1)}$, by applying the De L'Hospital
rule. Thus we have by (2.15) that $\left(\frac{p+1}{p}\right)^{q} z-x \geq p \frac{q c}{p(p+1)}=\frac{q c}{p+1}$, which gives inequality (1.8), by the definitions of x, z and c.
The proof of Theorem 2 in the case $p>q$ is complete. The case $p=q$ is also true by continuity reasons, that is by letting $p \rightarrow q^{+}$in (1.8).

Proof of Theorem 1. We first prove the validity of (1.7). We simplify the proof by considering the case where $a=0$ and $b=1$. We consider also the case where $f:[0,1] \rightarrow \mathbb{R}^{+}$is continuous. The general case for Riemann integrable functions can be handled by using approximation arguments which involve sequences of continuous functions. We suppose that $\int_{0}^{1} f=\ell$. We define $F:(0,1] \rightarrow \mathbb{R}^{+}$by $F(t)=\frac{1}{t} \int_{0}^{t} f(u) \mathrm{d} u$. Then

$$
\int_{0}^{1}\left(\frac{1}{t} \int_{0}^{t} f(u) \mathrm{d} u\right)^{-p} \mathrm{~d} t=\int_{0}^{1}(F(t))^{-p} \mathrm{~d} t
$$

The integral above can be approximated by Riemann sums of the following type:

$$
\sum_{n=1}^{2^{k}} \frac{1}{2^{k}}\left(F\left(\frac{n}{2^{k}}\right)\right)^{-p}=\frac{1}{2^{k}} \sum_{n=1}^{2^{k}}\left(\frac{\sum_{i=1}^{n} a_{i}^{(k)}}{n}\right)^{-p}
$$

where the quantities $a_{i}^{(k)}$ are defined as follows:

$$
a_{i}^{(k)}=2^{k} \int_{\frac{i-1}{2^{k}}}^{\frac{i}{2^{k}}} f
$$

for $i=1, \ldots, 2^{k}$. We use now inequality (1.8). Thus the sum that appears above is less or equal than

$$
\left(\frac{p+1}{p}\right)^{q} \frac{1}{2^{k}} \sum_{n=1}^{2^{k}}\left(\frac{\sum_{i=1}^{n} a_{i}^{(k)}}{n}\right)^{-p+q}\left(a_{n}^{(k)}\right)^{-q}-\frac{q}{p+1}\left(\frac{\sum_{n=1}^{2^{k}} a_{n}^{(k)}}{2^{k}}\right)^{-p} .
$$

Now we obviously have that $\frac{\sum_{n=1}^{2^{k}} a_{n}^{(k)}}{2^{k}}=\ell$, while since f is continuous, for every $n=1, \ldots, 2^{k}$ there exists $b_{n}^{(k)} \in\left[\frac{n-1}{2^{k}}, \frac{n}{2^{k}}\right]$, such that $a_{n}^{(k)}=f\left(b_{n}^{(k)}\right)$. Thus the quantity that appears above equals

$$
\left(\frac{p+1}{p}\right)^{q} \frac{1}{2^{k}} \sum_{n=1}^{2^{k}}\left(F\left(\frac{n}{2^{k}}\right)\right)^{-p+q}\left(f\left(b_{n}^{(k)}\right)\right)^{-q}-\frac{q}{p+1} \ell^{-p} .
$$

Now, by continuity reasons, and by the choice of $b_{n}^{(k)}$, the quantity above approximates

$$
\left(\frac{p+1}{p}\right)^{q} \frac{1}{2^{k}} \sum_{n=1}^{2^{k}}\left(F\left(b_{n}^{(k)}\right)\right)^{-p+q}\left(f\left(b_{n}^{(k)}\right)\right)^{-q}-\frac{q}{p+1} \ell^{-p}
$$

as $k \rightarrow \infty$. It is clear now that this last quantity approximates the right side of (1.7), as $k \rightarrow \infty$.

We now prove the sharpness of (1.7). Let $\ell>0$ be fixed and $p \geq q>0$. We consider for any $a \in\left(-\frac{1}{p}, 0\right)$ the following function $g_{a}(t)=\ell(1-a) t^{-a}$, $t \in[0,1]$. It is easy to see that $\int_{0}^{1} g_{a}=\ell, \frac{1}{t} \int_{0}^{t} g_{a}=\frac{1}{1-a} g_{a}(t)$ for every $t \in(0,1]$ and that $\int_{0}^{1} g_{a}^{-p}=\frac{\ell^{-p}(1-a)^{-p}}{1+a p}$. We consider now the difference

$$
L_{a}=\int_{0}^{1}\left(\frac{1}{t} \int_{0}^{t} g_{a}\right)^{-p} \mathrm{~d} t-\left(\frac{p+1}{p}\right)^{q} \int_{0}^{1}\left(\frac{1}{t} \int_{0}^{t} g_{a}\right)^{-p+q} g_{a}^{-q}(t) \mathrm{d} t
$$

It equals to (because of the above properties that g_{a} satisfy)

$$
L_{a}=\ell^{-p} \frac{\left[1-(1-a)^{-q}\left(\frac{p+1}{p}\right)^{q}\right]}{1+a p} .
$$

We let $a \rightarrow-\frac{1}{p}^{+}$and we conclude that

$$
\left.\lim _{a \rightarrow-\frac{1}{p}} L_{a}=\ell^{-p} q(1-a)^{-q-1}\right]_{a=-\frac{1}{p}}(-1)\left(\frac{p+1}{p}\right)^{q}=-\frac{q}{p+1} \ell^{-p} .
$$

In this way we derived the sharpness or (1.7).
The proof of Theorem 1 is complete.

3 Proof of Theorem 3

Let $\varphi:[0,1) \rightarrow \mathbb{R}^{+}$be non decreasing satisfying the inequality

$$
\begin{equation*}
\left(\frac{1}{t} \int_{0}^{t} \varphi\right)\left(\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}\right)^{q-1} \leq M \tag{3.1}
\end{equation*}
$$

for every $t \in(0,1]$, where q is fixed such that $q>1$ and $M>0$. We assume also that there exists an $\varepsilon>0$ such that $\varphi(t) \geq \varepsilon>0, \forall t \in[0,1)$. The general case can be handled using this one, by adding a small constant $\varepsilon>0$ to φ. We need the following from [9].

Lemma A. Let $\psi:(0,1) \rightarrow[0,+\infty)$, such that $\lim _{t \rightarrow 0} t[\psi(t)]^{a}=0$, where $a \in \mathbb{R}, a>1$ and $\psi(t)$ is continuous and monotone on $(0,1)$. Then the following is true for any $a \in(0,1)$.

$$
\begin{equation*}
a \int_{0}^{u} \psi^{a-1}(t)[t \psi(t)]^{\prime} \mathrm{d} t=u \psi^{a}(u)+(a-1) \int_{0}^{u} \psi^{a}(t) \mathrm{d} t \tag{3.2}
\end{equation*}
$$

We refer to [9] for the proof.

We continue the proof of Theorem 3. We set $h:[0,1) \rightarrow \mathbb{R}^{+}$by $h(t)=$ $\varphi^{-1 /(q-1)}(t)$. Then obviously h satisfies $h(t) \leq \varepsilon^{-1 /(q-1)}, \forall t \in[0,1)$. Let also $p_{0} \in[1, q]$ be defined such that

$$
\frac{q-p_{0}}{q-1}\left(M p_{0}\right)^{1 /(q-1)}=1
$$

Let also $p \in\left(p_{0}, q\right]$. Define ψ by $\psi(t)=\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}$. Then by Lemma A, we get for $a=\frac{q-1}{p-1}>1$, the following:

$$
\begin{align*}
& \frac{q-1}{p-1} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-p}{p-1}} \mathrm{~d} s- \\
& \quad-\left(\frac{q-p}{p-1}\right) \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-1}{p-1}} \mathrm{~d} s=t\left(\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}\right)^{\frac{q-1}{p-1}} . \tag{3.3}
\end{align*}
$$

Define for every $y>0$ the following function of the variable of $x \in[y,+\infty)$

$$
\begin{equation*}
g_{y}(x)=\frac{q-1}{q-p} y x^{(q-p) /(p-1)}-x^{(q-1) /(p-1)} . \tag{3.4}
\end{equation*}
$$

Then $g_{y}^{\prime}(x)=\frac{q-1}{p-1} x^{[(q-1) /(p-1)]-2}(y-x) \leq 0, \forall x \geq y$. Then g_{y} is strictly decreasing on $[y,+\infty)$.
So if $y \leq x \leq w \Longrightarrow g_{y}(x) \geq g_{y}(w)$. For every $s \in(0, t]$ set now

$$
x=\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}, y=\varphi^{-1 /(q-1)}(s), c=M^{1 /(q-1)}, \text { and } z=\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{q-1}} .
$$

Note that by (3.1) the following is true $y \leq x \leq c z=: w$. Thus

$$
\begin{align*}
& g_{y}(x) \geq g_{y}(w) \Longrightarrow \\
& \quad \frac{q-1}{q-p} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{(q-p)}{(p-1)}}-\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{(q-1)}{(p-1)}} \geq \\
& \geq \frac{q-1}{q-p} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{\frac{1}{q-1}-\frac{1}{p-1}} c^{\frac{q-p}{p-1}}-c^{\frac{q-1}{p-1}}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{(p-1)}} \tag{3.5}
\end{align*}
$$

Integrating (3.5) on $s \in(0, t]$ we get

$$
\begin{align*}
& \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}+\frac{1}{q-1}} \mathrm{~d} s \cdot c^{\frac{q-p}{p-1}} \leq \\
& \quad \leq \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-p}{p-1}} \mathrm{~d} s- \\
& \quad-\int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-1}{p-1}} \mathrm{~d} s+c^{\frac{q-1}{p-1}} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s \tag{3.6}
\end{align*}
$$

Now because of (3.3) we get

$$
\begin{array}{r}
\frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-p}{p-1}} \mathrm{~d} s-\int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi^{-1 /(q-1)}\right)^{\frac{q-1}{p-1}} \mathrm{~d} s \\
=\frac{p-1}{q-p} \frac{1}{t^{(q-p) /(p-1)}}\left(\int_{0}^{t} \varphi^{-1 /(q-1)}\right)^{\frac{q-1}{p-1}} \tag{3.7}
\end{array}
$$

Thus (3.6) gives

$$
\begin{align*}
& c^{\frac{q-p}{p-1}} \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}+\frac{1}{q-1}} \mathrm{~d} s \leq \\
& \quad \leq c^{\frac{q-1}{p-1}} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s+\frac{p-1}{q-p} t\left(\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}\right)^{(q-1) /(p-1)} \tag{3.8}
\end{align*}
$$

But

$$
\begin{align*}
& {\left[\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}\right]^{(q-1) /(p-1)} \leq M^{1 /(p-1)}\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} \stackrel{\text { (3.8) }}{\Longrightarrow}} \\
& c^{\frac{q-p}{p-1}} \frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}+\frac{1}{q-1}} \mathrm{~d} s \leq \\
& \quad \leq c^{\frac{q-1}{p-1}} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s+\frac{p-1}{q-p} t M^{1 /(p-1)}\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} \Longrightarrow \\
& A_{1}:=\frac{q-1}{q-p} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}+\frac{1}{q-1}} \mathrm{~d} s \leq \\
& \quad \leq c \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s+\frac{p-1}{q-p} \frac{M^{1 /(p-1)}}{c^{(q-p) /(p-1)}} t\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} . \tag{3.9}
\end{align*}
$$

Now by using Theorem 1 we get

$$
\left.\begin{array}{l}
\int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}} \mathrm{~d} s
\end{array}\right)=\begin{aligned}
&\left(\frac{1+\frac{1}{p-1}}{\frac{1}{p-1}}\right)^{\frac{1}{q-1}} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-\frac{1}{p-1}+\frac{1}{q-1}} \varphi^{-\frac{1}{q-1}}(s) \mathrm{d} s-\frac{\frac{1}{q-1}}{1+\frac{1}{p-1}} t\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-\frac{1}{p-1}}= \\
&=p^{\frac{1}{q-1}} A_{1} \frac{q-p}{q-1}-\frac{p-1}{(q-1) p} t\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-\frac{1}{p-1}}
\end{aligned}
$$

Thus in view of (3.10), (3.9) becomes

$$
\begin{align*}
& A_{1} \leq c p^{1 /(q-1)} A_{1} \frac{q-p}{q-1}-c \frac{p-1}{(q-1) p} t\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)}+ \\
& +\frac{p-1}{q-p} \frac{M^{1 /(p-1)}}{c^{(q-p) /(p-1)}} t\left(\frac{1}{t} \int_{0}^{1} \varphi\right)^{-1 /(p-1)} \Longrightarrow \\
& {\left[1-c p^{1 /(q-1)} \frac{q-p}{q-1}\right] A_{1} \leq\left[\frac{M^{1 /(p-1)}}{c^{(q-p) /(p-1)}} \frac{p-1}{q-p}-c \frac{p-1}{(q-1) p}\right]} \\
& \Longrightarrow K(p, q, c) \\
& \qquad\left[\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}(s)\left(\frac{1}{t} \int_{0}^{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)+1 /(q-1)}\right)^{-1 /(p-1)} \Longrightarrow \\
& \leq\left[\frac{p-1}{q-1} \frac{M^{1 /(p-1)}}{c^{(q-p) /(p-1)}}-c \frac{(p-1)(q-p)}{p(q-1)^{2}}\right]\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} \tag{3.11}
\end{align*}
$$

As a consequence (3.11) gives

$$
\begin{align*}
K\left[\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(p-1)}(s)\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)+1 /(q-1)} \mathrm{d} s\right] & \leq \\
& \leq\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)}\left(\frac{p-1}{q-1}\right)^{2} c \frac{q}{p} \tag{3.12}
\end{align*}
$$

Now we use the inequality

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \varphi^{-1 /(q-1)}(s) & \left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)+1 /(q-1)} \mathrm{d} s \geq \\
& \geq\left[\frac{1 /(p-1)}{1+(1 /(p-1))}\right]^{1 /(q-1)} \cdot \frac{1}{t} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s
\end{aligned}
$$

which is true because of Theorem E Thus (3.12) gives

$$
\begin{equation*}
\frac{K^{\prime}}{t} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s \leq\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)}\left(\frac{p-1}{q-1}\right)^{2} c \frac{q}{p} \tag{3.13}
\end{equation*}
$$

where $K^{\prime}=\frac{K}{p^{1 /(q-1)}}, K=1-c p^{1 /(q-1)} \frac{q-p}{q-1}$.
Thus the inequality stated in Theorem 3 is proved.
We need to prove the sharpness of (3.13). We consider a such that $0<a<q-1$ and the function $\varphi_{a}:(0,1] \rightarrow \mathbb{R}^{+}$defined by $\varphi_{a}(t)=t^{a}, t \in(0,1]$. The function
φ_{a} is strictly increasing and $\frac{1}{t} \int_{0}^{t} \varphi_{a}=\frac{1}{t} \frac{t^{a+1}}{a+1}=\frac{1}{a+1} \varphi_{a}(t), \forall t \in(0,1]$, while $\int_{0}^{t} \varphi_{a}^{-1 /(q-1)}=\frac{1}{1-a /(q-1)} t^{1-a /(q-1)}$. Thus

$$
\begin{array}{r}
\left(\frac{1}{t} \int_{0}^{t} \varphi_{a}\right)\left[\frac{1}{t} \int_{0}^{t} \varphi_{a}^{-1 /(q-1)}\right]^{q-1}=\left[\frac{q-1}{q-1-a}\right]^{q-1}\left[t^{-a /(q-1)}\right]^{q-1} \\
\cdot\left(\frac{1}{t} \int_{0}^{t} \varphi_{a}\right)=\frac{1}{a+1}\left(\frac{q-1}{q-1-a}\right)^{q-1}=: M(q, a)
\end{array}
$$

and

$$
c_{a}=c(q, a)=[M(q, a)]^{1 /(q-1)}=\left[\frac{q-1}{(q-1)-a}\right] \frac{1}{(1+a)^{1 /(q-1)}}
$$

Let now $p \in\left(p_{0}, q\right]$ and suppose additionally that $a<p-1$ so that $\int_{0}^{1} \varphi_{a}^{-1 /(p-1)}=$ $(p-1) /(p-1-a)$. We prove the sharpness of (1.11) for $t=1$. That is we prove that the inequality

$$
\frac{K^{\prime}}{t} \int_{0}^{t}\left(\frac{1}{s} \int_{0}^{s} \varphi\right)^{-1 /(p-1)} \mathrm{d} s \leq\left(\frac{1}{t} \int_{0}^{t} \varphi\right)^{-1 /(p-1)} c \frac{q}{p}\left(\frac{p-1}{q-1}\right)^{2}
$$

becomes sharp for $t=1$. Obviously if $I_{a}=\int_{0}^{1}\left(\frac{1}{s} \int_{0}^{s} \varphi_{a}\right)^{-1 /(p-1)} \mathrm{d} s$, then $I_{a}=\frac{1}{(1+a)^{-1 /(p-1)}} \cdot \int_{0}^{1} \varphi_{a}^{-1 /(p-1)}=(1+a)^{1 /(p-1)} \frac{1}{1-a /(p-1)}$ while $\left(\int_{0}^{1} \varphi_{a}\right)^{-1 /(p-1)}=$ $\left(\frac{1}{a+1}\right)^{-1 /(p-1)}$. Thus in order to prove the sharpness of the above inequality we just need to prove that the following is true

$$
\begin{align*}
& {\left[\frac{1}{p^{1 /(q-1)}}-\frac{q-p}{q-1} c_{a}\right]\left(\frac{p-1}{(p-1)-a}\right) \cong c_{a} \frac{q}{p}\left[\frac{(p-1)}{(q-1)}\right]^{2} \text { as } a \rightarrow(p-1)^{-} \Longleftrightarrow} \\
& {\left[\frac{1}{p^{1 /(q-1)}}-\frac{q-p}{q-1} \frac{1}{(1+a)^{1 /(q-1)}}\left(\frac{q-1}{(q-1)-a}\right)\right] \frac{1}{(p-1)-a} \cong} \\
& \quad \cong \frac{q}{p} \frac{p-1}{(q-1)^{2}} \frac{1}{(1+a)^{1 /(p-1)}} \frac{q-1}{(q-1)-a}, \text { as } a \rightarrow(p-1)^{-} . \tag{3.14}
\end{align*}
$$

Let then $a \rightarrow(p-1)^{-}$or equivalently $x:=(a+1) \rightarrow p^{-}$. Then for the proof of (3.14) we just need to note that

$$
\frac{\left[p^{-\frac{1}{1 /(q-1)}}-\frac{q-p}{q-x} \frac{1}{x^{1 /(q-1)}}\right]}{p-x} \cong \frac{q}{p} \frac{p-1}{q-1} \frac{1}{p^{1 /(q-1)}} \frac{1}{q-p}, \quad \text { as } \quad x \rightarrow p^{-}
$$

which is a simple application of De L'Hospitals rule.
The proof of Theorem 3 is now complete.

References

[1] Copson, E. Note on series of positive terms. Journal of the London Mathematical Society 3, no. 1, (1928), 49-51.
[2] Hardy, G. Note on a theorem of Hilbert. Mathematische Zeitschrift 6, no. 3-4 (1920), 314-317.
[3] Hardy, G. H., Littlewood, J. E., and Pólya, G. Inequalities. Cambridge University Press, 1952.
[4] Korenovskir, A. The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions. Mathematical Notes 52, no. 5-6, (1992), 1192-1201.
[5] Kufner, A., Maligranda, L., and Persson, L.-E. The prehistory of the Hardy inequality. The American Mathematical Monthly 113, no. 8, (2006), 715-732.
[6] Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Scient. Math. (Szeged) 31, (1970), 279-285.
[7] Levinson, N., et al. Generalizations of an inequality of Hardy. Duke Mathematical Journal 31, (1964), 389-394.
[8] Love, E. Generalizations of Hardy's and Copson's inequalities. Journal of the London Mathematical Society 2, 30, (1984), 431-440.
[9] Nikolidakis, E. N. A sharp integral Hardy type inequality and applications to Muckenhoupt weights on \mathbb{R}. Ann. Acad. Scient. Fenn. Math., 39 (2014), 887-896.
[10] Pachpatte, B. G. Mathematical inequalities, vol. 67. North Holland Math. Library, 2005.

Nikolidakis Eleftherios, University of Ioannina, Department of Mathematics, E-mail address: enikolid@cc.uoi.gr
Stavropoulos Theodoros, National and Kapodistrian University of Athens, Department of Mathematics, E-mail address: tstavrop@math.uoa.gr

