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Abstract  The paper provides an account of the principal components regression (PCR) and uses some examples from the 

literature to illustrate the following: (1) the importance of PCR in the presence of multicollinearity; (2) some cautions on its 

correct implementation in SPSS, as some researchers use it improperly; (3) the use of the correct formulas, in accordance with 

the choice of scaling the variables; (4) the choice of principal components to be dropped; (5) the conditions for the PCR to 

outperform ordinary least squares, in the minimum mean-square-error sense; and (6) the robustness of the estimates to 

substantial changes in the sample.  
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1. Introduction 

A problem that is frequently encountered in applied 

regression analysis is multicollinearity, i.e., high correlation 

among the explanatory variables (regressors), which causes 

the estimates to be imprecise, thus leading to erroneous 

inferences and imprecise forecasts. As Jackson (2003, p. 276) 

notes, a “salvation in some thorny regression problem” of 

this type may be achieved by using principal components 

(PCs) analysis. Unfortunately, however, some researchers 

often fail to implement it properly, despite the strong 

warnings that exist in the literature; see, e.g., Jolliffe (1982) 

and Hadi and Ling (1998).  

For example, in a well cited paper, Liu, et al. (2003) drop 

the regressors that are not statistically significant at the 

5-percent level before applying the principal components 

regression (PCR). This can lead to a wrong model, however, 

thus causing an omitted-variable bias, when in fact 

multicollinearity is to blame for the low values of the 

t-statistics, which, therefore, should not be taken to mean that 

the corresponding regressors are irrelevant (Chatterjee and 

Hadi, 2006, p. 299).  

Also, Liu, et al. (2003) erroneously interpret the 

“component matrix” (produced by the SPSS Factor Analysis  
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procedure) as the matrix of eigenvectors, which can be 

obtained by writing a program, or by modifying the 

“component matrix” (see section 3). Apparently, as Sharma 

(1996, p. 58) notes, this confusion often arises in packages 

where principal component analysis is embedded in the 

factor analysis procedure.  

Finally, instead of using only a subset of the PCs in the 

model, Liu, et al. (2003) use all of them. Unless other errors 

are made, however, this procedure will return the original 

regression, thus nullifying the whole effort of implementing 

the PCR. Despite these errors, researchers still use Liu, et al. 

(2003) as a basic reference for the PCR, however; see, e.g., 

Ding, Ma, and Wang (2018) and Tran, et al. (2018). 

The present paper provides an account of the PCR 

(Section 2) and shows (in Section 3) step-by-step how to 

implement it correctly in SPSS by replicating an example 

from Chatterjee and Hadi (2006). We choose to replicate an 

example from a standard textbook, rather than providing our 

own, in order to convince the reader that the steps taken here 

are the correct ones. The example demonstrates the 

importance of the PCR, as it produces estimates that have the 

expected signs and are statistically significant at the 

1-percent level, whereas the ordinary least squares (OLS) 

regression fails in that respect. This result becomes stronger 

when we update the sample substantially. In addition, in 

Sections 2 and 4, we use two other data sets, one from 

Chatterjee and Hadi (2006) and another from Myers (1990), 

to illustrate other important aspects of the PCR, namely, the 

use of the correct formulas, in accordance with the choice of 

scaling the variables; the choice of PCs to be dropped from 

the PCR; and the conditions for the PCR to outperform OLS 
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in the sense of the minimum mean square error (MSE) 

criterion. Section 5 provides a summary. 

2. An Account of the PCR and Some 
Measures of Multicollinearity 

2.1. Estimation of the Coefficients of Interest via the PCR 

Consider the standard linear regression model with k 

regressors, X1, ..., Xk,  

y = Xβ + ,                (1) 

where y is a n×1 response vector; X is a n×(k+1) regressor 

matrix, whose first column is a vector of 1’s; β = (β0, β1, ..., 

βk)' is a (k+1)×1 vector of coefficients, where β0 is the 

constant term (or intercept) and β1, ..., βk are the slopes 

(usually the only coefficients of interest) collected in the 

slope vector βs = (β1, ..., βk)';  is a n×1 vector of errors; and n 

is the number of observations. For the i-th observation, 

Equation (1) is   

yi = β0 + β1x1i + ... + βkxki + εi.    (1a) 

Under the classical assumptions, the ordinary least squares 

(OLS) estimator of β, β̂ = (X'X)-1
X'y, is the best linear 

unbiased estimator (BLUE).  

To implement the PCR, we first write (1) in terms of 

standardized variables,   

, y Xθ ε                (2) 

where y  is the n×1 vector of the standardized response 

variable, whose i-th element is defined as ( )/i i yy y y s  , 

where y  is the sample mean of y and 
ys  is its standard 

deviation, so that y  has zero mean and unit standard 

deviation; X  is a n×k matrix (without a column of 1’s) 

whose ij-th element is defined as ( )/ ,ij ij j jX X X s   

where 
jX  is the sample mean of Xj and sj is its sample 

standard deviation (sj > 0), j = 1, ..., k, i = 1, ..., n; θ is k×1; 

and ε
 
is a n×1 error vector whose i-th (unobserved) value 

is ( )/ ,i i ys     where   is the sample mean of ε. 

We assume that Equation (2) is correctly specified; the X’s 

are stochastic, but strictly exogenous, implying that 

( | ) 0,iE  X  i = 1, ..., n; and ( | ) ( ' | )Cov E ε X εε X

2 ,n I  where σ2 > 0 and In is the identity matrix of order n. 

Note that the literature on the PCR almost invariably 

assumes non-stochastic regressors, but here we adopt the 

assumption of stochastic regressors, because: (1) it is more 

realistic; (2) it renders the results more naturally 

interpretable, in that they are viewed as conditional on the 

observed values of the regressors; and (3) it has been adopted 

by famous modern econometrics textbooks, such as Hayashi 

(2000), Stock and Watson (2003), and Wooldridge (2006).  

Under these assumptions, the OLS estimator of θ, denoted 

as ˆ ,OLSθ  is BLUE. The vector θ is related to the slope 

vector βs as follows: θj = (sj/sy)βj, j = 1, ..., k, or 

1 ,s

ysθ Sβ               (3a) 

where S = diag(s1, ..., sk) is a k×k diagonal matrix, with s1, ..., 

sk in its main diagonal, so it is positive definite (Hadley, 1961, 

p. 260). Thus, βj = (sy/sj)θj, j = 1, ..., k, so we can estimate the 

βs through the θs (Chatterjee and Hadi, 2006, pp. 242 and 

260): 

0 1  1,  .ˆ ˆ ˆ ˆ( / ) , , .., .k

j y j j j j js s y x j k       (3b) 

Principal components are k orthogonal variables, C1, ...,  

Ck, defined as the following linear combinations of the 

standardized regressors: 

C = .XV                 (4) 

Here, V is a k×k matrix of the eigenvectors of the 

correlation matrix of the regressors with the property VV' = I, 

hence V' = V-1 and (V')-1 = V, where V' is the transpose of V. 

Thus, inserting VV' into (2) and using (4), Equation (2) can 

be restated in terms of the PCs, since ' y XVV θ ε  can 

be written as 

, y Cα ε               (5) 

where α  is a k×1 vector of new coefficients, defined as 

'α V θ , hence .θ Vα  Thus, the OLS estimators of 

θ  and α  are related as follows: 

ˆ ˆ.OLS θ Vα               (6) 

To prove (6), post-multiply (4) by V', use VV' = I, to   

get X = CV', and note that 
-1'ˆ ) '(OLS  X Xθ X y

-1( ' )' ' VC CV VC y
1 1 1( ') ( ' ) '   V C C V VC y

1( ' ) '
V C C C y

 
= ˆ ,Vα  since it is obvious from (5) that, 

when all the (k) PCs are retained, the OLS estimator of α  is 
1ˆ ( ' ) ' ,α C C C y

 
which, under the classical assumptions, 

is BLUE. Pre-multiplying (6) by V' and using V' = V-1 yields 
 

ˆˆ ' OLSα V θ .              (7) 

So far, we have included all the (k) PCs, so the PCR results 

in the same BLUE ˆ
OLSθ  and ˆ

OLSβ  that would be obtained 

by applying OLS to Equations (1)-(2), so it is of no practical 

interest, as the idea of the PCR is to escape from these 

imprecise estimators in the presence of multicollinearity. In 

practice, we always want to drop d PCs whose variances are 

close to zero or have no predictive power for y  in (5), and 

hence also drop the corresponding d columns of V and the 

corresponding d elements of α̂ . Let ˆ
PCθ  and ˆ

PCβ  denote 

the resulting PCR estimators of θ and β, which are biased 

(Myers, 1990, p. 415). Thus, instead of (6), we want to have 
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a relation between ˆ
PCθ  and the k – d retained elements of 

α̂ , collected in the (k-d)×1 sub-vector ˆ
k dα . Let ˆ

dα  

denote the d×1 sub-vector of the d dropped elements of α̂ , 

and partition V as [ ],k d dV V V  where Vk-d is the 

k×(k-d) sub-matrix of the k-d retained eigenvectors, and Vd is 

the k×d sub-matrix of the d dropped eigenvectors. Thus, (6) 

is replaced by 

ˆ ˆ .PC k d k d θ V α                 (8) 

Clearly, if we retain all the (k) PCs, i.e., if d = 0, then 

Equation (8) reduces to (6), i.e., ˆ
PCθ  = ˆ

OLSθ , and hence, 

using Equation (3b), ˆ
PCβ  = ˆ

OLSβ ; see Chatterjee and Hadi 

(2006, p. 264, Table 10.3, and p. 231, Table 9.7) and 

Rawlings (1988, p. 360).  

Finally, since ( ' )/( 1) '[( ' )/( 1)]n n   CC V X X V  

1diag( , ..., )k Λ is the covariance matrix of the k PCs, 

where λ1, ..., λk are the eigenvalues of the correlation matrix 

of the regressors, ( ' )/( 1)nX X (Hadley, 1961, p. 248), it 

is useful to partition  as follows: 

,
k d

d

 
  
 

Λ 0
Λ

0 Λ
            (9) 

where k-d and d are diagonal matrices of order k-d and d, 

respectively, whose elements in the main diagonal are the 

eigenvalues associated with the retained and the dropped 

PCs, respectively; the upper-right zero sub-matrix is (k-d)×d, 

and the lower-left one is d×(k-d). Note that, since 

( ' )/( 1)nX X  is positive definite, it follows that λ1 > 0, ..., 

λk > 0 (Goldberger, 1964, p. 34), so  is also positive definite, 

and so are k-d and d. Applying the result of inverting a 

partitioned nonsingular matrix to (9) (Hadley, 1961, pp. 

107-109), we can now write the OLS estimator of  as 

follows: 

1 1

1

1

ˆ 1
( ' ) ' ' '

ˆ 1

' '1
.

1 ' '

k d

d

k d k d

d d

n

n

  



 



 
  

 

 
  

   

α
C C C y Λ V X y

α

Λ V X y

Λ V X y

   (10) 

2.2. Variance of ˆ
PCθ  and ˆ

PCβ , t-ratios, Bias, and Mean 

Square Error 

Consider the variance-covariance matrix of ˆ ,PCθ  

obtained from (8), 

ˆ ˆ( | ) ( | ) '.PC k d k d k dCov Cov  θ X V α X V
  (11) 

But  

2
2 1 1

12

1

ˆ
( ' )

ˆ 1|

1

k d

d

k d

d

Cov
n

n






  







 
  

 

 
  

   

α
C C Λ

α X

Λ 0

0 Λ

,   (12) 

so  

2
1ˆ( | ) ,

1
k d k dCov

n

 

 


α X Λ        (13a) 

i.e., 

2ˆ( | ) /[( 1) ],

ˆ ˆ( , | ) 0, for .

j j

j l

Var n

Cov j l

  

 

 

 

X

X
   (13b) 

Substituting (13a) into (11) yields  

2
1ˆ( | ) '.

1
PC k d k d k dCov

n

 

  


θ X V Λ V     (14a) 

Thus, 

22

, 1
ˆ( | ) ( ), 1,..., ,

1

jik d

j PC i

i

v
Var j k

n








  


X (14b) 

which shows clearly that if any of the eigenvalues is close to 

zero, the variance of any or all of the elements of ˆ
PCθ  (and 

hence of ˆ
PCβ ) may be inflated. Note that, since we use 

Chatterjee and Hadi’s (2006, p. 240) second type of scaling 

the variables in (2), which are standardized with zero mean 

and unit standard deviation (not unit length); and since the 

λ’s are the eigenvalues of the correlation matrix 

( ' )/( 1),nX X  the division by n – 1 in (14b) is correct; 

see McCallum (1970), Cheng and Iglarsh (1976), and Gunst 

and Mason (1980, pp. 114-115). We stress this point, as the 

various types of scaling used in the literature seem to be a 

source of error. For example, in Chatterjee and Hadi’s (2006, 

pp. 249-251) application of the PCR to the advertising data, 

where the variables and the λ’s are defined as above, the 

authors fail to divide their Equations (9.34) and (9.35) by n – 

1. Their calculation of the standard error of 
1̂  is correct, 

however, as it is based on their Equation (9.33), which is 

correct.
1
 

Now, using (3a), we can write 
1ˆ ˆ ,s

PC y PCs β S θ  hence 

                                                             
1
 The data for this example are given in Table 9.9 of Chatterjee and Hadi (2006, 

p. 236), where n = 22. Using the exact figures, and not the three-digit 

approximations used by the authors, we confirmed that the eigenvalues of the 

correlation matrix are indeed those given on p. 251, and that if their Equations 

(9.34) and (9.35) are used, then the standard error of 
1
̂  is incorrectly 

calculated as 1.947. On the other hand, their Equation (9.33) and our Equation 

(14b) both give the correct estimate of this standard error, which is 0.425 (=

1.947/ 21 ). Note that Chatterjee and Hadi’s estimate of this standard error is 

given on p. 253 and is slightly different, 0.438, because of rounding errors. 
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2 1 1ˆ ˆ( | ) ( | ) .s

PC y PCCov s Cov β X S θ X S    (15a) 

Substituting (14a) into (15a) and replacing σ2 with its 

estimator (S2) based on Equation (5) that retains all the (k) 

PCs yields the following estimator of (15a):  

2
2 1 1 1ˆˆ ( | ) ' .

1

s

PC y k d k d k d

S
Cov s

n

  

  


β X S V Λ V S   (15b) 

In addition, using (3b), we have that 

2

0, 1 ,

, ,

ˆ ˆ( | ) ( | )

ˆ ˆ2 ( , | ).

k

PC j j j PC

j l j PC l PC
j l

Var x Var

x x Cov

 

 





 

 

X X

X
   (15c) 

The t-ratio of 
,

ˆ
j PC  is the same as that of 

,
ˆ

j PC , j = 1, ..., 

k, since 

, ,
ˆ ˆ, ,

ˆ ˆ/ [( / ) ] / [( / ) ]
j PC j PC

j j PC y j j PC y jt s s s s s s
 

  
 

= 
,

ˆ,
ˆ / ,

j PC
j PC s


  j = 1, ..., k.                  (16) 

As we noted earlier, ˆ
PCθ  (and hence ˆ

PCβ ) is biased. To 

calculate its bias, we follow Myers (1990, p. 415) and begin 

by using (7), to obtain  

ˆˆ 'k d k d OLS α V θ            (17a) 

and 

ˆˆ 'd d OLSα V θ .            (17b)  

Substituting (17a) into (8) yields ˆ ˆ' ,PC k d k d OLS θ V V θ  

so  

ˆ ˆ( | ) ' ( | ) ' ,PC k d k d OLS k d k dE E    θ X V V θ X V V θ (18) 

since ˆ
OLSθ  is unbiased. Now, since VV' = I, we have that 

' ' ,k d k d d d   V V V V I  hence ' ',k d k d d d   V V I V V  

so (18) becomes ˆ( | ) ( ')PC d dE  θ X I V V θ =

' .d dθ V V θ  From (17b) we have 

ˆˆ( | ) ' ( | ) ' .d d OLS d dE E  α X V θ X V θ α  

Substituting in the previous equation yields ˆ( | )PCE θ X

,d dθ V α  so   

ˆ ˆ( | ) ( | ) .PC PC d dbias E   θ X θ X θ V α     (19) 

Goldberger (1964, p. 127) notes, however, that 

“unbiasedness is not sacred” and reminds us of the 

intuitively appealing minimum mean square error (MSE) 

criterion, “which selects a biased estimator if its variance is 

small enough to compensate for its bias.” Of course, the 

minimum MSE and other criteria for choosing among 

competing estimators are widely discussed in the literature 

(see, e.g., McCallum, 1970, Gunst and Mason, 1977, and Wu, 

2017). Using the MSE to choose between ˆ
PCθ  and ˆ

OLSθ , 

we must determine whether the k×k matrix 

ˆ ˆ( | ) ( | )OLS PCMSE MSEθ X θ X  is positive semi-definite, 

in which case ˆ
PCθ  will be preferable. Since

 
ˆ

OLSθ  is 

unbiased, we have ˆ ˆ( | ) ( | ).OLS OLSMSE Covθ X θ X  But, 

using (12), we obtain from (6) the following expression: 

ˆ( | )OLSCov θ X = ˆ( | ) 'CovV α X V =
2 1[ /( 1)] '.n  VΛ V  

Thus, we have 

2 2
1 1ˆ( | ) ' '.

1 1
OLS k d k d k d d d dMSE

n n

  

   
 

θ X V Λ V V Λ V

(20a) 

From (14a) and (20a) we obtain the k×k matrix 

ˆ( | )OLSCov θ X – ˆ( | )PCCov θ X
 
= 

2 1[ /( 1)] ',d d dn  V Λ V  

which is positive semi-definite, since d is positive definite 

and the k×d matrix Vd has rank d < k (Rencher and Schaalje, 

2008, p. 26, Corollary 2). Thus, the variance of ˆ
PCθ  will 

never be greater than that of ˆ
OLSθ , so the burden of the 

choice between the two estimators falls on the size of the 

ˆ( | ).PCbias θ X  If the cost (bias) of falsely omitting a PC 

(underfitting) outweighs the gain (lower variance), the PCR 

will fail to be a minimum MSE estimator.   

By definition (see Goldberger, 1964, p. 129), we have 

ˆ ˆ ˆ( | ) [( )( ) ' | ]

ˆ ˆ ˆ( | ) [ ( | )][ ( | )]'.

PC PC PC

PC PC PC

MSE E

Cov bias bias

  

 

θ X θ θ θ θ X

θ X θ X θ X
(20b) 

Substituting (14a) and (19) in (20b) gives  

2
1ˆ( | ) ' ' ' .

1
PC k d k d k d d d d dMSE

n

 

   


θ X V Λ V V α α V (20c) 

Subtracting (20c) from (20a) yields 

2
1

ˆ ˆ( | ) ( | )

( ') '.
1

OLS PC

d d d d d

MSE MSE

n

 



 


θ X θ X

V Λ α α V
      (21) 

Following the same steps, one can show that
2
 

2
2 1 1 1

ˆ ˆ( | ) ( | )

( ') ' ,
1

s s

OLS PC

y d d d d d

MSE MSE

s
n

  



 


β X β X

S V Λ α α V S
        (22) 

where 
1, , 1, ,

ˆ ˆ ˆ ˆ ˆ ˆ( ,..., ) ', ( ,..., ) ',s s

OLS OLS k OLS PC PC k PC    β β  

and S is defined in (3a).  

The k×k symmetric matrix in (21) will be positive 

semi-definite if and only if all its eigenvalues are 

                                                             
2
 The proof of Equation (22) is given in an appendix that is available from the 

first author upon request. 
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nonnegative (Goldberger, 1964, p. 37). Note that if the 

matrix in (21) is positive semi-definite, then so is that in (22), 

since the latter comes from the former by multiplying it by 

the positive scalar sy
2 and by pre- and post-multiplying it by 

the positive definite matrix S-1 (see Hadley, 1961, p. 255). In 

fact, (21) and (22) will be positive semi-definite if  

2
1 '

1
d d d

n

  


Λ α α  is a positive semi-definite matrix. (23) 

Necessary, but not sufficient, conditions for (23) are (see 

Goldberger, 1964, p. 37) 

σ2/[(n–1)λj] – j
2  0, j = 1, ..., d.       (24) 

Thus, as a test of dropping the “optimal” number of PCs 

(in the sense of the minimum MSE), we can start from the PC 

with the smallest eigenvalue, or from the most insignificant 

one in the regression equation (5), and keep dropping such 

PCs until the conditions (24) are violated. Note that for d = 1, 

(24) is also a sufficient condition, since in this case 
2 1[ /( 1)] 'd d dn  Λ α α  is a scalar, so it can be factored 

out in (21), and the kk matrix that emerges, VdVd', is 

positive semi-definite [Goldberger, 1964, p. 37, Property 

(7.15) with P = Vd']. Note also that versions of (23) already 

exist in the literature (see, e.g., McCallum, 1970, Farebrother, 

1972, and Ö zkale, 2009). In particular, McCallum’s (1970, p. 

112) condition (12) can be shown to be a special case of (23) 

for k = 2 and considering the MSE of only one coefficient.  

Consider the factors that enter (23) and favor the PCR over 

the OLS estimator. First, the larger the error variance (σ2) is, 

the more crucial it becomes to reduce the coefficient 

variances via the PCR. Second, for the same reason, the 

smaller the size of the sample (n), the higher the level of 

uncertainty, and hence the larger the need for precision of the 

coefficient estimates gained by applying the PCR. Third, the 

smaller the eigenvalues associated with the dropped PCs are, 

the more severe the multicollinearity problem is, hence the 

more meaningful the application of the PCR becomes. 

Fourth, the smaller the (absolute) values of the coefficients 

of the dropped PCs (d) are, the weaker the effects of these 

PCs on the dependent variable, and hence the more 

justifiable their removal from the PCR becomes.  

Note that a difficulty with condition (23) is that it involves 

unknown parameters. A way out is to use their unbiased 

estimators (see McCallum, 1970, p. 112, Farebrother, 1972, 

p. 335, and Ö zkale, 2009, p. 546). Since σ2 is inherited from 

Equation (2) or (5), its estimate (s2), as well as the estimate of 

d, should be obtained from the regression equation (5) that 

retains all the PCs. In sum, we have the following 

Proposition 1: ˆ
PCβ  outperforms ˆ

OLSβ , in the minimum 

MSE sense, if and only if the eigenvalues of the symmetric 

d×d matrix 
2 1 ˆ ˆ[ /( 1)] 'd d ds n  Λ α α  are all nonnegative. 

Necessary (but not sufficient) conditions are 
2 2ˆ/[( 1) ] 0,j js n      j = 1, ..., d, where s2 and ˆ

j  (an 

element of ˆ
dα ) are obtained from regression (5) that retains 

all the PCs. As a test of dropping the “optimal” number of 

PCs, one can start from the PC with the smallest eigenvalue 

or from the most insignificant one in (5), and keep dropping 

PCs until the condition is violated. For d = 1, the condition is 

also sufficient. 

2.3. Some Measures of Multicollinearity  

The simplest measures of multicollinearity that one could 

think of are the absolute values of Pearson’s pairwise 

correlation coefficients (rij) among the regressors. If k = 2, 

this criterion is reliable, in that a “low” value of r12 means 

absence of multicollinearity and a “high” value of r12 means 

that multicolinearity is present. If k > 2, however, this 

criterion is not reliable, in that, although “high” values of rij 

(at least one of them) still imply that multicolinearity is 

present, nevertheless “low” values of rij do not necessarily 

imply absence of multicollinearity (Chatterjee and Hadi, 

2006, pp. 233-237). Kmenta (1971, pp. 382-384) presents an 

example with k = 3, where there exists an exact linear 

relationship among the three regressors, i.e., there is perfect 

multicollinearity, and yet none of the three rijs exceeds 0.5 in 

absolute value. 

According to another simple criterion, multicollinearity is 

considered harmful if, at a level of significance, say, 

5-percent, the standard F statistic (for the hypothesis that the 

joint effect of all the regressors is zero) is significant, but  

all the t-statistics for the individual slope coefficients are 

insignificant. As Kmenta (1971, p. 390) points out, however, 

this criterion is too strong, since it considers 

multicollinearity harmful only when all the t-statistics for the 

slopes are insignificant, which makes it difficult to 

disentangle the individual effects of the regressors on the 

dependent variable. 

Chatterjee and Hadi (2006, p. 233) suggest that 

researchers should pay attention to the following indications 

of multicollinearity: (i) large changes in the estimated 

coefficients if a regressor is added or dropped, or if a data 

point is altered or dropped; (ii) insignificant t-statistics for 

regressors that are important, according to the pertinent 

theory; and (iii) the signs of some of the estimated slope 

coefficients do not conform to those expected (based on 

theoretical grounds).  

A well-known statistic that measures multicollinearity is 

the variance inflation factor (VIF), defined as VIFj = 

1/Tolerancej, where Tolerancej = 1 – Rj
2 and Rj

2 = the 

coefficient of determination in the (auxiliary) regression of 

Xj on the other regressors. Clearly, if the Xs are orthogonal 

among themselves, then Rj
2= 0 and VIFj = Tolerancej = 1, j = 

1, ..., k. According to Chatterjee and Hadi (2006, p. 238), “a 

VIF in excess of 10 is an indication that multicollinearity 

may be causing problems in estimation.”  

Another indication of the presence of multicollinearity is 

that some eigenvalues are close to zero. Thus, as another 

measure of multicollinearity, some authors suggest the 

condition index (κ), defined as 1/ ,p    where λ1 and 

λp are, respectively, the largest and the smallest eigenvalue of 
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the matrix X'X. By definition, κ > 1. A large value of κ is 

evidence of strong multicollinearity, suggesting that the 

inversion of X'X will be sensitive to small changes in X. As 

an empirical rule, multicollinearity is considered to be 

harmful when κ > 15 (Chatterjee and Hadi, 2006, pp. 

244-245). 

The diagnostics of multicollinearity are often 

complemented by the “variance proportions” in assessing the 

effect of each linear dependency among the regressors on the 

coefficient variances. In the OLS regression Equation (1), if 

any of the eigenvalues of X'X is close to zero (indicating a 

serious linear dependency), the variance of any or all of the 

coefficients in ˆ
OLSβ  may be inflated. The variance 

proportion pji is the proportion of the variance of the 

coefficient 
,

ˆ
i OLS  attributed to the linear dependency 

characterized by the eigenvalue λj (see Myers, 1990, pp. 

371-379). 

3. Step-by-Step PCR in SPSS by 
Replicating and Updating an Example  

Chatterjee and Hadi (2006, ch. 9) illustrate the PCR by 

estimating a linear imports function using French annual 

aggregate data, 1949-1959 (n = 11), on Imports (IMPORT, y), 

Gross Domestic Product (DOPROD, X1), increase in 

Inventories (STOCK, X2), and Consumption (CONSUM, X3), 

all measured in billions of French francs at 1959 prices. 

Some useful descriptive statistics are y =21.891, 
1x

=194.591, 
2x = 3.3, 

3x = 139.736, sy = 4.5437, s1 = 30, s2 = 

1.6492, and s3 = 20.6344. 

Note that in this example there are economic as well as 

econometric reasons to believe that the classical assumptions 

fail. For example, from the point of view of correct 

specification, instead of including STOCK and CONSUM as 

regressors, we would include the real exchange rate; and 

from the point of view of time-series econometrics, we 

would consider the problems of nonstationarity, endogeneity 

of the regressors, and serial correlation. We refrain from 

these issues here, however, and focus on the correct 

application of the PCR. 

In step 1, we apply OLS to Equation (1) and use the above 

criteria to decide whether multicollinearity is harmful. After 

entering the data in SPSS and selecting  

Analyze > Regression > Linear > Statistics > Collinearity 

Diagnostics 

we get R2 = 0.992 (coefficient of determination) and 

Tables 1-2. The second and the fourth column of Table 1 

report the elements of ˆ
OLSβ  and ˆ

OLSθ . Note that the 

coefficient 
1,

ˆ
OLS  = -0.051 has the wrong sign and is 

insignificant at all conventional levels (p-value = 0.488). 

Economic theory suggests that domestic income exerts a 

positive influence on imports, so we blame multicollinearity 

for these unexpected results, and keep DOPROD for the 

PCR. 

Table 1.  OLS estimates of β and θa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 
Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 

(Constant) -10.128 1.212  -8.355 .000   
DOPROD -.051 .070 -.339 -.731 .488 .005 185.997 

STOCK .587 .095 .213 6.203 .000 .981 1.019 

CONSUM .287 .102 1.303 2.807 .026 .005 186.110 

a. Dependent Variable: IMPORT 

Table 2.  Collinearity Diagnosticsa 

 

Model 

 

Dimension 

 

Eigenvalue 

 

Condition Index 

Variance Proportions 

(Constant) DOPROD STOCK CONSUM 

1 

1 3.838 1.000 .00 .00 .01 .00 

2 .148 5.086 .01 .00 .94 .00 

3 .013 17.073 .77 .00 .03 .00 

4 5.447E-5 265.461 .22 1.00 .02 1.00 

a. Dependent Variable: IMPORT 

We obtain a large value of VIF1 ≈ 186 for DOPROD (see 

Table 1), suggesting that multicollinearity is present indeed. 

The high correlation coefficient between DOPROD and 

CONSUM (r13 = 0.997, see Table 3) confirms this 

conclusion. The condition index is κ = 265.46 > 15 (Table 2), 

so this criterion, too, suggests that multicollinearity may be 

harmful.
3
 The linear dependency between DOPROD and 

CONSUM is also revealed by the small value of the last 

eigenvalue, λ3 = 0.00005447, accompanied by the extremely 

                                                             
3
 For an excellent theoretical discussion of the collinearity indices reported in 

Tables 2 and 3, including their marginal values, see Myers (1990, pp. 123-133, 

369-371) and Rawlings (1988, pp. 273-281). 
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high variance proportions of 
1,

ˆ( )OLSVar   and 

3,
ˆ( )OLSVar  , namely, p31 = 0.9984 and p33 = 0.9989 (see 

Table 2, where both of these values are rounded to 1). That   

is to say, 99.84% of 
1,

ˆ( )OLSVar   and 99.89% of 

3,
ˆ( )OLSVar   can be attributed to the above linear 

dependency. 

Table 3.  Simple correlations 

 DOPROD STOCK CONSUM 

DOPROD 1 .026 .997** 

STOCK .026 1 .036 

CONSUM .997** .036 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

Thus, in step 2, we estimate Equation (5). First, we need to 

standardize the original variables by selecting  

Analyze > Descriptive Statistics > Descriptives > (bring 

into the dialog box all four variables) IMPORT, DOPROD, 

STOCK, CONSUM > Save Standardized Values as 

Variables (denoted as ZIMPORT, ZDOPROD, ZSTOCK, 

ZCONSUM).  

We can now obtain the PCs, the matrices V and C, and the 

vector α̂  by selecting  

File > New > Syntax 

and by writing the following program in the command 

syntax window that appears: 

matrix.  /* Comment: The dot at the end of each 

command is necessary. 

get x /variables ZDOPROD, ZSTOCK, ZCONSUM. 

compute xtx=t(x)*x/10.   /*We divide by n–1=10, since 

we use the correlation matrix. 

call eigen(xtx,eigvec,eigval).  

print eigval.  /* eigval is the vector of the 

eigenvalues of the correlation matrix. 

print eigvec.       /* eigvec is the correct matrix V. 

compute c=x*eigvec.  /* see Equation (4). 

print c. 

compute thetaols={-0.339; 0.213; 1.303}.  /* see 

Table 1, 4th column. 

compute alpha=t(eigvec)*thetaols.  /* see 

Equation  (7). 

print alpha.  

end matrix. /* To execute this program, do a right click 

and select Run All. 

Although this program produces the correct matrix V 

directly, we will also construct it manually, in order to see 

the error made by Liu, et al. (2003). First, select  

Analyze > Dimension Reduction > Factor > (insert into 

the dialog box the variables) DOPROD, STOCK, CONSUM > 

Extraction > Fixed Number of Factors > Factors to Extract > 

(enter into the dialog box) 3 (the number of the original 

regressors) > Continue > OK.  

Tables 4-5 report the results. The 3×3 “component matrix” 

(Table 5) differs from that in Chatterjee and Hadi (2006, p. 

243) and does not satisfy the property V'V = I, so it is not the 

correct matrix of eigenvectors, as Liu, et al. (2003) 

erroneously assume. Its elements need to be “normalized,” 

i.e., its columns must be divided by the square root of the 

corresponding eigenvalue, given by the second column of 

Table 4. That is, the first column of this matrix must be 

divided by 1.999,  the second by 0.998,  and the third 

by 0.002691.  We thus obtain the correct matrix of 

eigenvectors: 

0.707 0.036 0.707

0.044 0.999 0.007 .

0.707 0.026 0.707

 
 

  
 
  

V     (25) 

Table 4.  Total Variance Explained 

 

Component 

Initial Eigenvalues 

Total % of Variance Cumulative % 

1 1.999 66.638 66.638 

2 .998 33.272 99.910 

3 .002691a .090 100.000 

Extraction Method: Principal Component Analysis. 
a
In the Table printed by SPSS this figure was rounded to 0.003. 

Table 5.  Component Matrixa 

 
Component 

1 2 3 

DOPROD .999 -.036 .037 

STOCK .062 .998 0.000362b 

CONSUM .999 -.026 -.037 

Extraction Method: Principal Component Analysis. 

a. 3 components extracted. 

b. In the Table printed by SPSS this figure was rounded to 0.000. 

As we noted earlier, λi is the variance of the i-th PC. Here, 

λ3 = 0.002691, which is close to zero, suggesting that C3 is 

almost a constant, and can be omitted, whereas keeping    

it would inflate the s.e. of 
,

ˆ
j PC  and hence that of 

,
ˆ

j PC ; 

see Equations (14b), (15a)-(15c). If C3 is included in the 

regression equation (5), along with C1 and C2 (and no 

intercept), its coefficient is 
3̂ = 1.16, which is 

insignificant at the 5-percent level (p-value = 0.095), 

whereas the other estimates are the same as those of Table 6. 

Thus, we estimate (5), using only C1 and C2 as regressors 

(and no intercept), implying that the third column of V in (25) 

is dropped.
4
 Table 6 reports the results. 

Equation (5) does not suffer from multicollinearity, since 

the PCs are orthogonal. The estimates 
1

ˆ 0.690   and 

2
ˆ 0.191    (Table 6) have no natural interpretation, 

however, since the PCs are linear combinations of the 

                                                             
4
 The regressor sets {C1, C3}, {C2, C3}, {C2}, {C3} (and no intercept) all 

produce insignificant coefficients. 
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original variables, so they are used only as an intermediate 

step to estimate the βs.  

Table 6.  Equation (5) with C1 and C2 as regressorsa,b,c 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

1 
C1 .690 .026 .976 27.032 .000 

C2 -.191 .036 -.191 -5.296 .000 

a. Dependent Variable: Zscore(IMPORT) 

b. Linear Regression through the Origin 

c. R
2
 = 0.988 

Thus, in step 3, we get ˆ
PCθ  and ˆ

PCβ  and their standard 

errors (s.e.). Using (8), where Vk-d is 3×2, and the above 

estimates of 1 and 2, we get 

1, 2, 3,
ˆ ˆ ˆ( , , ) (0.481, 0.221, 0.483).PC PC PC      (26) 

Using Equation (14a), after replacing σ2 with the estimate 

s2 = 0.010129 [obtained from the regression equation (5) 

when all the three PCs are retained], we calculate 

 0.000259   0.000021   0.000258

ˆˆ ( )  0.001030   0.000011

       0.000258

PCCov

 
 

 
 
  

θ (27) 

(symmetric terms are omitted). In SPSS, (26) and (27) can 

be obtained by running the following program: 

matrix. 

compute alpha2={0.690; -0.191}. 

compute v2={0.707, 0.036; 0.044, -0.999; 0.707, 0.026}. 

compute thetapc=v2*alpha2. 

print thetapc.              

  /* This gives the estimates in (26). 

compute Lamda2={1.999, 0; 0, 0.998}. 

compute covtheta=(0.01029/10)*v2*inv(Lamda2)*t(v2).

 /* This is Equation (14a). 

print covtheta. 

end matrix. /* To execute this program, do a right click 

and select Run All. 

Next, using (3b), we calculate the values of the ˆ s.PC  

These estimates are reported in Table 7 (the PCR) and are the 

same as those obtained by Chatterjee and Hadi (2006, p. 

263).
5
 Table 7 also reports the estimated s.e.s of the ˆ sPC  

and their t-ratios. The s.e.s are obtained from the matrix 

ˆˆ ( ),PCCov β which is calculated in accordance with 

(15a)-(15c) and (27) and is reported below in (28) (the 

covariances between 
0,

ˆ
PC  and the slope coefficients are 

not reported, as they are almost never useful): 

                                                             
5
 Chatterjee and Hadi (2006, p. 263) report a slightly different estimate of the 

intercept, namely -9.106, apparently because of rounding errors. 

1.005

0.0000059   0.0000088    0.0000086
ˆˆ ( ) .

     0.007818 2 0.0000065

     0.0000125

PCCov

   
 
 
 
  
 
 

β

(28) 

Comparing the results of Table 7 with those of Table 1 

(OLS), we observe that the major difference is that the 

coefficient of DOPROD has now the expected sign and is 

highly statistically significant. We conclude that the original 

OLS estimate of this coefficient (-0.051) involves a large 

sampling error, whereas the PCR yields a precise estimate 

with the expected sign (0.0728) and s.e. = 0.0024, which is 

about 30 times smaller than that of Table 1 (0.0703). The 

other coefficients also have the expected signs and are highly 

significant. Thus, the PCR is a substantial improvement over 

the OLS estimator, and our decision not to drop DOPROD 

turned out to be correct. Unfortunately, however, the 

minimum MSE criterion does not support this conclusion, as 

Proposition 1 fails, since 0.010129/(100.002691) – 1.162 = 

-0.97 < 0, apparently because the coefficient 
3̂  = 1.16 is 

relatively large. 

Table 7.  Estimation of Equation (1) via the PCR, French annual data, 
1949-1959a 

Variable Coefficient Standard error t-statisticb 

Constant -9.1407 1.0024 -9.12*** 

DOPROD 0.0728 0.0024 29.90*** 

STOCK 0.6093 0.0884 6.89*** 

CONSUM 0.1063 0.0035 30.07*** 

 
a Dependent Variable: IMPORT; 

b
 the asterisks 

***
 denote significance at the 

1-percent level. 

To check the robustness of these findings to substantial 

changes in the sample, we now re-estimate Equation (1) with 

French annual aggregate data, 1960-2018 (n = 59). The 

variables are defined as before, but they are now measured in 

billions of euros at 2010 prices. The source of the data is the 

European Commission (AMECO Online). Again, we refrain 

from the theoretical and the econometric issues referred to 

earlier.  

In the updated sample, multicollinearity is again strong, as 

r13 = 0.999, VIF1 = 570 for DOPROD, VIF3 = 576 for 

CONSUM, κ = 172, the value of the smallest eigenvalue is λ3 

= 0.0001, and the variance proportions of 
1,

ˆ( )OLSVar   and 

3,
ˆ( )OLSVar   are p31 ≈ p33 ≈ 0.9994. Thus, following 

exactly the same steps as before, we obtain and report the 

OLS and the PCR estimates side by side in Table 8.  

Again, the PCR is a substantial improvement over the 

OLS estimator in that it produces estimates that have the 

expected sign and are highly statistically significant. In 

particular, the OLS estimate of the coefficient of DOPROD 

(-0.848) is negative and statistically significant at the 

1-percent level, an unacceptable result from the point of view 

of economic theory, whereas the PCR eliminates this 

obvious sampling error. Recall that in the case of the 
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1949-1959 data, this coefficient was wrongly signed, but at 

least it was insignificant at any conventional level. Thus, in 

the updated sample, the PCR proves to be even more 

important.  

Table 8.  Estimation of Equation (1), French annual aggregate data, 1960-2018a 

  OLS   PCR  

Variable Coeff. s.e. t-ratiob Coeff. s.e. t-ratiob 

Constant -216.39 16.54 -13.1*** -217.76 15.4212 -14.12*** 

DOPROD -0.848 0.255 -3.33*** 0.175 0.0063 27.93*** 

STOCK 3.157 0.550 5.74*** 3.592 0.5346 6.72*** 

CONSUM 2.199 0.469 4.69*** 0.319 0.0113 28.35*** 

 
a Dependent Variable: IMPORT; 

b
 the asterisks 

***
 denote significance at the 1-percent level. 

Proposition 1 fails again, however. Here, s2 = 0.038767,  

λ3 = 0.000873, n – 1 = 58, and 
3̂ = -3.543, so 

0.038767/(580.000873) – 3.5432 = -11.78 < 0. The failure 

of the minimum MSE criterion to support a theoretically and 

empirically sound result suggests that other criteria for 

comparing the PCR with the OLS estimator should also be 

used. This is beyond the purpose of this paper, however; see, 

e.g., Wu (2017). 

4. Another Example, Where More than 
One PCs are Dropped 

To illustrate how Proposition 1 is implemented when more 

than one PCs (not necessarily consecutive) are to be dropped 

from the regression equation (5), we employ the “Hospital 

manpower data” given in Myer’s (1990, pp. 132-133) Table 

3.8, where n = 17 and k = 5. In this example, too, 

multicollinearity is strong, as the bivariate correlation 

coefficients are high and highly statistically significant, e.g., 

r13 = 0.9999, r14 ≈ r34 ≈ 0.94, r12 ≈ r23 ≈ r24 ≈ 0.91, whose 

p-values for two-tailed tests are all 0.000; VIF1 = 9598 and 

VIF3 = 8933; the condition index is κ = 427; the last three 

eigenvalues of the X'X matrix are 0.0447, 0.0082, and 

0.00002848; and the two highest variance proportions are p51 

≈ p53 ≈ 0.999. In this example, we have s2 = 0.012223; the 

last three eigenvalues of the correlation matrix are λ3 = 

0.0946332, λ4 = 0.040712, and λ5 = 0.00005397; and the PCs 

C3 and C5 are statistically insignificant in (5), since the 

p-values of their estimated coefficients, 
3̂ = 0.064 and 

5̂

= -1.301, are 0.493 and 0.735 (whereas the p-values of the 

coefficients of C1, C2, and C4 are 0.000000, 0.000976, and 

0.001859). Thus, if we drop C5 only, Proposition 1 gives  

0.012223/(160.00005397) – 1.3012 = 12.46 > 0.  (29) 

The choice of PCs to be deleted is a debatable issue in the 

literature. There are two strategies. The first deletes the PCs 

that are associated with the smallest eigenvalues of the 

correlation matrix, whereas the second deletes those that are 

not significant in (5). Gunst and Mason (1980, pp. 327-328) 

argue that “the first strategy often works better in practice 

than the second, although the individual t tests can be more 

effective if a very small significance level is used (say     

 = .001). The rationale behind this suggestion is that the 

decrease in variance associated with the deletion of 

multicollinear components generally is much greater than the 

bias incurred by doing so.” Myers (1990, p. 419) favors the 

second strategy based on the individual t-values, which 

“should be rank ordered and components be considered   

for elimination beginning with the smallest t-value, in 

magnitude” (Myers’s emphasis). Jackson’s (2003, p. 44) 

advice is: “do NOT include pc’s in the model that do not 

belong there statistically” (Jackson’s emphasis). With these 

suggestions in mind, we choose to drop C3 and C5, because, 

as we demonstrated earlier, they are highly insignificant. 

Thus, in accordance with our Proposition 1, we must 

calculate the two eigenvalues of the following 22 

symmetric matrix:   

 
1

0.0946332 0 0.064
0.064 -1.301

0 0.00005397 -1.301

0.003977    0.083264 

0

0.012223

1

.083264   12.46

1

2

7

516
.



   
   

    

 
  
 

(30) 

They are 12.46 and 0.0034. Since both are nonnegative, 

we conclude that the matrix is positive semi-definite, and 

hence ˆ
PCβ  outperforms ˆ

OLSβ  in the minimum MSE 

sense. 

5. Summary 

In this paper, we revisit the PCR and show step-by-step 

how to implement it properly in SPSS by replicating an 

example of Chatterjee and Hadi (2006), in which the 

regressors are highly collinear. The PCR proves to be 

important, as it produces estimates that have the expected 

signs and are statistically significant at the 1-percent level, 

whereas the OLS fails in that respect. This result becomes 

stronger when we update the sample substantially. Our main 

motivation has been the fact that some researchers still fail to 

implement this useful estimation method properly, despite 

the strong warnings that already exist in the literature. As an 

example of such a failure, we have briefly commented on the 

paper by Liu, et al. (2003).  

In addition, we use two more data sets from the literature 

to illustrate other important aspects of the PCR, namely, the 

use of the correct formulas, in accordance with the choice of 

scaling the variables, the choice of PCs to drop, and the 

conditions for the PCR to outperform OLS in the sense of the 
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minimum MSE criterion. 
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