
JPatternJudge: An Extensible Framework for
Design Pattern Specification and Verification

A Thesis

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Anastasios Tsimakis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

February 2021

Acknowledgements

I am grateful to all who assisted me in this endeavor, and primarily prof. Apostolos
Zarras who supervised this work and guided me until its completion. He was always
available for anything, and his advice and suggestions were invaluable throughout
the process. I am also thankful to the members of the examining committee, prof.
Vassiliades and Papapetrou, for their insight and suggestions. I am also thankful to
my family and my good friend Chris, who supported me in every step of the way.

Table of Contents

List of Figures iv

List of Tables vi

Abstract vii

Εκτεταμένη Περίληψη viii

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Thesis Structure . 4

2 Related Work 6
2.1 Design Patterns . 6
2.2 Design Pattern Specification and Verification 8

2.2.1 Balanced Pattern Specification Language 10
2.2.2 jStar . 10
2.2.3 Design Pattern Modeling Language 10
2.2.4 HEDGEHOG . 11

3 Specification Model 12
3.1 Design Patterns . 12
3.2 Constraints . 15
3.3 Constraint Categories . 17

3.3.1 SelfConstraint . 17
3.3.2 Type Constraints . 18
3.3.3 Matching Constraints . 20

i

3.3.4 Negative Constraints . 20

4 Framework Mechanisms 22
4.1 Constraint Realization . 24
4.2 Design Pattern Realization . 27

4.2.1 Specification of Design Patterns in Practice 27
4.3 Detecting Design Pattern Instances . 29

4.3.1 Design Pattern Annotation . 30
4.3.2 Specifying Design Pattern Instances in Practice 31
4.3.3 Pattern Detection Mechanism . 32

4.4 Design Pattern Verification . 34
4.5 The JPatternJudge Plugin . 35

5 Design Pattern Specifications 37
5.1 Notation . 37
5.2 Structural Patterns . 38

5.2.1 Adapter . 38
5.2.2 Bridge . 39
5.2.3 Composite . 40
5.2.4 Decorator . 42
5.2.5 Flyweight . 42
5.2.6 Proxy . 43

5.3 Behavioral Patterns . 44
5.3.1 Chain Of Responsibility . 44
5.3.2 Command . 45
5.3.3 Mediator . 46
5.3.4 Memento . 47
5.3.5 Observer . 49
5.3.6 State . 50
5.3.7 Strategy . 51
5.3.8 Template Method . 52

5.4 Creational Patterns . 53
5.4.1 Abstract Factory . 53
5.4.2 Builder . 57
5.4.3 Singleton . 58

ii

5.5 Unspecified Patterns . 59

6 Validation 60
6.1 Reusability . 60
6.2 Extensibility . 61
6.3 Practical Evaluation . 64

6.3.1 2018 Project . 65
6.3.2 2020 Project . 68
6.3.3 Conclusions . 70

7 Future Work and Conclusion 73
7.1 Future Work . 73

7.1.1 Expanding JPatternJudge Functionality 73
7.1.2 Design Pattern Detection . 74
7.1.3 Automatic Introduction or Repair of Design Patterns 75

7.2 Conclusion . 75

Bibliography 77

iii

List of Figures

3.1 UML diagram of pattern specification metamodel 13
3.2 UML diagram of part of the AST model. 16

4.1 Package diagram of JPatternJudge. 23
4.2 UML diagram of JPatternJudge’s architecture. 24
4.3 UML Class Diagram of the constraint package. 25
4.4 UML Class Diagram of the designPattern package. 28
4.5 AdapterPattern source code . 29
4.6 DesignPattern annotation . 31
4.7 Patterns annotation required for @Repeatable meta-annotation 32
4.8 Design Pattern detection and instantiation algorithm pseudocode 33
4.9 The JPatternJudge menu object in Eclipse’s menu bar. 35
4.10 Example of a verification report generated by JPatternJudge. 36

5.1 UML Diagram of the Adapter pattern structure. 39
5.2 UML Diagram of the Bridge pattern structure. 40
5.3 UML Diagram of the Composite pattern structure. 41
5.4 UML Diagram of the Decorator pattern structure. 43
5.5 UML Diagram of the Flyweight pattern structure. 44
5.6 UML Diagram of the Proxy pattern structure. 45
5.7 UML Diagram of the Chain of Responsibility pattern structure. 46
5.8 UML Diagram of the Command pattern structure. 47
5.9 UML Diagram of the Mediator pattern structure. 48
5.10 UML Diagram of the Memento pattern structure. 49
5.11 UML Diagram of the Observer pattern structure. 50
5.12 UML Diagram of the State pattern structure. 51
5.13 UML Diagram of the Visitor pattern structure. 54

iv

5.14 UML Diagram of the Abstract Factory pattern structure. 56
5.15 UML Diagram of the Builder pattern structure. 58

v

List of Tables

6.1 Constraint Reusability Table . 61
6.2 LoC measurements in Design Pattern classes 62
6.3 LoC measurements in basic Constraint classes 63
6.4 LoC measurements in pattern-specific and method Constraint classes . 64
6.5 Composite pattern constraints . 65
6.6 Decorator pattern constraints . 66
6.7 Verification results for 2018 project . 67
6.8 Command pattern constraints . 68
6.9 Strategy pattern constraints . 69
6.10 Template Method pattern constraints . 69
6.11 Verification results for 2020 project . 70
6.12 Precision scores . 71
6.13 Developer effort for annotation as LoC - 2018 Projects 71
6.14 Developer effort for annotation as LoC - 2020 Projects 72

vi

Abstract

Anastasios Tsimakis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, February 2021.
JPatternJudge: An Extensible Framework for Design Pattern Specification and Verifi-
cation.
Advisor: Apostolos Zarras, Associate Professor.

Design Patterns are a staple of software development in object-oriented program-
ming languages. However, there are multiple reasons for a pattern that has been
applied on a piece of code to be erroneous; be it from faulty understanding of its
purpose, some mistake in the realization, or even the fact that since systems evolve
and change over time, the pattern can be broken inadvertently.

To automatically verify the correctness of a pattern, we must first devise a way of
specifying it. This thesis presents JPatternJudge, a framework that defines a specifica-
tion model for design patterns, represented as a collection of roles and constraints, as
well as mechanisms for detecting and verifying instances of design patterns in Java
source code. JPatternJudge is implemented as an Eclipse plugin, and includes specifi-
cations of 18 different design patterns. We also present a measure of the framework’s
reusability and extensibility, as well as the results of verification of patterns on real
Java projects.

vii

Εκτεταμένη Περίληψη

Αναστάσιος Τσιμάκης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροϕορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Φεβρουάριος 2021.
JPatternJudge: An Extensible Framework for Design Pattern Specification and Verifi-
cation.
Επιβλέπων: Απόστολος Ζάρρας, Αναπληρωτής Καθηγητής.

Τα σχεδιαστικά μοτίβα λογισμικού (software design patterns) αποτελούν ένα
πολύ βασικό κομμάτι της ανάπτυξης λογισμικού, επιτρέποντας σε προγραμματι-
στές να υλοποιήσουν πολύπλοκα συστήματα. Κάθε σχεδιαστικό μοτίβο αποτελεί
μια γενική λύση σε ένα συχνό πρόβλημα, και αναϕέρονται συνήθως σε αντικειμενο-
στρεϕείς γλώσσες προγραμματισμού όπως η Java.

Παρά την εκτεταμένη χρήση τους όμως, πολλές ϕορές ένα μοτίβο δύναται να
είναι λανθασμένο για διάϕορους λόγους: ίσως ο προγραμματιστής δεν κατάλαβε
πλήρως τον σκοπό του pattern, ή έκανε κάποιο λάθος στην υλοποίησή του. Μπορεί
επίσης το σϕάλμα να προέκυψε λόγω της αναπόϕευκτης εξέλιξης του συστήμα-
τος, όπου οι αλλαγές στον κώδικα κατέστρεψαν τη δομή του. Αυτό δεν είναι κάτι
που είναι πρακτικά εϕικτό να ελεγθεί από ανθρώπους, άρα ένα αυτοματοποιημένο
εργαλείο θα ήταν πολύ χρήσιμο.

Για να μπορέσει όμως ένα εργαλείο να επαληθεύσει την ορθή υλοποίηση ενός
pattern, θα πρέπει πρώτα να έχει έναν συγκεκριμένο ορισμό για αυτό. Σε αυτή την
εργασία, παρουσιάζουμε έναν τρόπο να ορίσουμε τα σχεδιαστικά μοτίβα ως ένα σύ-
νολο από κλάσεις που εξυπηρετούν έναν συγκεκριμένο ρόλο στο μοτίβο, καθώς και
ένα σύνολο από δηλωτικούς περιορισμούς (declarational constraints) τους οποίους
πρέπει να υπακούν. Οι περιορισμοί αυτοί εκϕράζονται σαν σχέσεις μεταξύ κόμ-
βων του αϕηρημένου συντακτικού δέντρου (Abstract Syntax Tree, AST) του πηγαίου

viii

κώδικα. Με βάση αυτό το σύστημα, παραθέτουμε επίσης 18 ορισμούς για design
pattern.

Τέλος, παρουσιάζουμε το JPatternJudge, ένα framework για το Eclipse IDE, το
οποίο χρησιμοποιεί τους ορισμούς αυτούς για αυτόματη επαλήθευση των patterns
και εστιάζει ιδιαίτερα στην επεκτασιμότητα. Για αναγώριση των κλάσεων που συμ-
μετέχουν σε ένα pattern και έχουν έναν ρόλο, το JPatternJudge χρησιμοποιεί ένα
καινούργιο Annotation το οποίο προσθέσαμε στην Java.

ix

Chapter 1

Introduction

1.1 Motivation

1.2 Contribution

1.3 Thesis Structure

The formal definition of design patterns, as used today, first appears in Christopher
Alexander’s 1977 book ”A Pattern Language: Towns, Buildings, Construction” [1].
Despite originating from architecture and civil engineering, patterns were quickly
incorporated in the field of software engineering as well, particularly in the land-
mark 1995 publication of the so-called ”Gang of Four”: Design Patterns: Elements
of Reusable Object-Oriented Software [2]. In their book, Gamma, Helm, Johnson, and
Vlissides introduced 23 software design patterns for object-oriented programming:
general solutions to common problems in software design, presented in a form that can
be translated to code from natural language. Since then, design patterns have been an
integral part of software engineering for decades, playing an important role in writing
good quality code - in particular, code that is easily extensible and maintainable.

The most common and important design patterns are described in various catalogs,
either in print or, more commonly lately, online. These catalogs act as a quick reference
guide for developers, giving an overview of how each pattern can be implemented.
However, there is a large element of uncertainty as to how exactly each pattern
can be defined and implemented; this can lead to various errors, whether due to
misunderstanding the pattern’s purpose or to an incorrect implementation.

1

1.1 Motivation

The driving force behind the idea of JPatternJudge is the issue that despite the signif-
icant importance of design patterns in software engineering, there are still very com-
mon and fundamental errors being committed by developers when the time comes to
implement a pattern. For example, a 2020 study [3] illustrated several common mis-
takes that occur in the implementation of the Command pattern due to inappropriate
division of responsibilities among the pattern’s constituent classes.

However, we could reduce the number of instances where a pattern is erroneously
implemented by using an automated verification mechanism. A tool can analyze a
given implementation of a design pattern according to some criteria, and decide if
it is correct or not. If there are errors, the tool can describe them to the developers,
assisting in better understanding the pattern and guiding them how to fix the code
to properly adhere to the pattern structure. In order for such a tool to work though
- or in fact for any sort of verification to succeed - we must first define the pattern as
strictly as possible. This is in fact not fully possible, since specifying a generic solution
is a contradictory notion. The most practical solution to this is to have specifications
for the most commonly accepted and used interpretations of each pattern, while using
a specification model that has a high degree of extensibility, allowing developers to
easily add more variations.

There have been some tools in the past with the same goal of pattern verification,
such as HEDGEHOG [4], jStar [5], and others. However, these tools all have several
limitations: many of them are outdated and unsupported, with some of them no
longer available for use. More importantly, extensibility and user-friendliness is often
an issue, since they utilize languages for pattern specification that can be difficult
for the average developer to fully utilize - HEDGEHOG, for example, uses a custom
made Prolog-derived language called SPINE, and jStar uses the assertion language of
separation logic. For that reason, JPatternJudge was conceived with extensibility being
a prime characteristic, while still using a simple and intuitive specification language
so as to assist the average developer with easily including additional variations of
patterns that commonly occur in their own context of work.

Essentially, we are motivated to assist two different sets of people with our frame-
work: First, pattern experts, who wish to quickly and easily create new design pattern
specifications. These users want high reusability of concepts to reduce the need for

2

new additions, while still being easily extensible for the addition of the new pattern
specifications. Secondly, software developers, even those without extensive knowledge
of design patterns, should be able to use the framework in practice with minimal ef-
fort, especially when it comes to specifying instances of design patterns in their code
for verification.

In order to have the aspects of reusability, extensibility, and user-friendliness, we
must decide on the appropriate way to express the design pattern specifications in
such a way that they are both easily understood conceptually, as well as having a
formal representation that lends itself to extension. One might think that making
pattern specification more easily understood would also make it simpler and thus
not supporting as strict a definition as possible, but it is essential if we wish to move
the field of pattern specification and verification from theoretical-only tests on small
pieces of code to a practical application on real software systems. Previous works have
approached the field of pattern specification from many different angles; focusing
on the instances where extensibility was a concern, there exist several languages
specifically created for design pattern modeling such as DPML [6], BPSL [7], and
SPINE. However, none of them satisfied our needs - predominantly because they are
not easily understood and utilized, as mentioned earlier. We will explore some of the
languages and specification methods in detail in Chapter 2, explaining our decision
to use a new form of specification.

1.2 Contribution

This thesis presents JPatternJudge, a framework that allows precise specification of
design patterns and allows developers to automatically verify the presence and cor-
rectness of these patterns for the Java programming language. A pattern specification
is expressed as a set of declarative constraints regarding both static and dynamic as-
pects of the classes participating in a given pattern, i.e., relations such as the existence
of fields of a certain type, invocations of methods, inheritance relations, et cetera.

The core of the proposed approach is an extensible model that specifies highly
reusable constraints to facilitate the specification of design patterns and the realization
of the respective verification mechanisms. The proposed constraints are defined and
combined into pattern specifications using simple, developer-friendly object-oriented

3

programming constructs of Java, which is the target programming language of our
framework. This means that adding constraints and using them for pattern specifica-
tions amounts to developing simple classes and combining existing model elements.
In addition, we provide specifications for 18 software design patterns, along with
comments and notes on certain aspects of the specifications.

A noteworthy addition compared to previous works using declarative constraints
is the introduction of negative constraints - so far, such specification methods only
took into account the necessity for a given relation between classes to exist. We include
certain constraints where a given relation must NOT exist; for example, a certain class
does NOT have a field of a given type.

Finally, we showcase the framework implemented as a plugin for the Eclipse inte-
grated development environment, with testing done on two sets of real Java projects to
validate the framework’s verification capabilities. JPatternJudge successfully verifies
design pattern instances and reports on any errors detected, with the instances being
specified using a simple custom Java annotation in the source code being examined.
We also showcase the high level of reusability of constraints among our pattern spec-
ifications, as well as the framework’s extensibility in relation to both constraints and
pattern specifications as a measure of lines of code.

1.3 Thesis Structure

The thesis consists of 7 chapters as follows:

• Chapter 1, Introduction provides an overview of the contributions of this thesis
as well as its structure.

• Chapter 2, Related Work describes some fundamental concepts related to our
work, and explores work related to the field of pattern specification and verifi-
cation.

• Chapter 3, Pattern Specification Model presents the details of our metamodel
for design pattern specification

• Chapter 4, Design Pattern Specifications provides a list of specifications for 18
GoF design patterns supported by JPatternJudge.

4

• Chapter 5, Framework Mechanisms explains JPatternJudge’s system architec-
ture, design, and implementation, as well as how it can be used by developers.

• Chapter 6, Validation deals with practical applications of JPatternJudge, showing
the results of using the framework on real projects. It also gives a measure of
reusability of the constraints defined in the model, as well as extensibility in
terms of adding new constraints and design patterns.

• Chapter 7, Future Work and Conclusion gives further ideas for expanding the
framework and its utilities and provides a conclusion of the work presented.

5

Chapter 2

Related Work

2.1 Design Patterns

2.2 Design Pattern Specification and Verification

In this chapter we will present an overview of some basic concepts necessary for our
work. We will also examine works similar to ours in literature.

2.1 Design Patterns

The first mention of design patterns being formally defined in literature appears in
a 1977 book by Christopher Alexander, titled ”A Pattern Language: Towns, Build-
ings, Construction” [1]. As per the title, the concept of patterns began in the field of
architecture and civil engineering, but can be easily applied to almost any field. In
particular:

“Each pattern describes a problem that occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice.”

This concept was first transferred to the field of software engineering in the 1987
OOPSLA Conference by Kent Beck and Ward Cunningham, in a technical report titled
“Using Pattern Languages for Object-Oriented Programs” [8]. In [8], the authors
list 5 basic patterns for GUI development in the Smalltalk language, and explain

6

how creating a pattern language for object-oriented programming can be a great
boon to programmers when it comes to facing certain recurring issues in software
development. However, the work that was primarily responsible for popularizing
software design patterns to the scale they are used today was the 1995 book “Design
Patterns: Elements of Reusable Object-Oriented Software” [2] by the so-called Gang
of Four: Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. In [2], the
writers introduced 23 design patterns, serving as generic solutions for some common
problems under specific contexts in software engineering. These patterns in essence
show relationships and interactions between classes, without however specifying the
actual implementation of each class, providing a layer of abstraction, and were divided
in three categories. By the writers’ own admission, these categories are somewhat
arbitrary, and certain patterns could belong to another category; however, they have
remained as such since they serve their purpose as-is. Each pattern was accompanied
by examples in C++ and Smalltalk, since the Java language hadn’t yet been fully
developed at the time.

Creational patterns deal with mechanisms to create new objects in cases where it is
important to decide what type of object is being created. Creational patterns include
the Abstract Factory, Builder, Factory Method, Prototype, and Singleton patterns.

Structural patterns deal primarily with using object composition to extend the
functionality of a class. They include the Adapter, Bridge, Composite, Decorator,
Facade, Flyweight, and Proxy patterns.

Finally, Behavioral patterns deal with communication between objects, and how to
efficiently do that without overcomplication. They are the most numerous, including
the Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method, and Visitor patterns.

Besides its definition, the purpose of a software design pattern is to improve two
fundamental characteristics of the code it is applied on: extensibility and maintain-
ability, which are very tightly connected with each other. The majority of effort that
is spent on industrial software systems goes towards maintenance, rather than the
initial development. This means that techniques to reduce defects such as technical
debt and code smells are very useful to reduce costs as well. The question that arises
is whether software design patterns can indeed help in this aspect.

Empirically, the answer is yes; design patterns are taught worldwide in software
engineering courses, and their use is heavily promoted and encouraged. However,

7

there have also been studies on the matter as well, attempting to measure the impact
that design patterns have on the quality of code. A number of such studies were col-
lected and studied as part of a systematic literature review in 2019 [9], with interesting
results: Multiple studies ([10],[11],[12]) examined whether a class that participates in
a pattern is larger in size or more prone to changes than classes outside of patterns.
Size and change proneness in general are agreed to be an obstacle for maintainabil-
ity; large class size is the archetypal code smell, with all it entails. The results were
inconclusive, depending on the pattern examined. Certain pattern classes were more
prone to changes compared both to other patterns and non-pattern classes; in other
cases, there was no significant difference in change proneness. However, the question
here is whether the classes were prone to change primarily because they were part of
a pattern, or the opposite: they were part of a pattern because they have an important
role in the system and thus are often the subject of changes. This means we cannot
say with certainty how design patterns affect code quality in this aspect.

On the other hand, other studies ([13],[14],[15]) used controlled tests to discover
that documenting instances of design patterns in code leads to a marked increase of
comprehension of the code, and thus obviously easier maintenance and extension.
However, this doesn’t tell us something about the difference in code quality between
using a pattern and not doing so, merely the effects of documenting their presence.
Finally, in terms of actual quality metrics, a study [16] showed that design patterns
improve metrics such as coupling and cohesion. In general, we can see that the
empirical experience holds true: design patterns do indeed have a positive impact on
code.

2.2 Design Pattern Specification and Verification

The problem of design pattern verification is the following: given a piece of source
code that we suspect or know is the realization of a design pattern, we want to decide
whether this pattern was implemented correctly. Obviously, in order to judge the
correctness of a given concrete implementation, we must first define the correctness
in an abstract level. This is the specification of a design pattern, which is its own
problem.

Usually, both in printed catalogs of design patterns such as the one by the GoF as

8

well as various online sites (e.g. [17],[18]), patterns are described in an abstract way
and accompanied by examples. This is usually sufficient for developers to grasp the
general concept, purpose and structure of the pattern, but it is obviously not enough
when we need verification, and especially in an automated way. In this case, we need
a very strict formal specification of patterns.

The problem is that in truth, trying to specify a pattern is a bit of an oxymoron: a
pattern implies a solution to a number of similar problems; a generic guide that can be
customized to the given context of the problem at hand. A specification, on the other
hand, is the exact opposite: an exhaustive list of all possible characteristics, attributes,
constraints, et cetera of the concept we wish to explore. As such, we can see that it
is impossible to fully match these opposite concepts together. Each design pattern is
interpreted in a slightly different way by each programmer, so an exact specification
is out of our reach; we cannot account for every single possible interpretation.

Previous works have several approaches to this issue, each with different draw-
backs. The main issue in many of them that we wish to avoid is that even though the
specification methods are quite strong from a technical standpoint, they are difficult
to learn and utilize, meeting that even though theoretically extensibility is achievable,
in practice it is quite a difficult task. In addition, for many of them verification of
source code was a secondary concern.

Ideally, we want the specification method to be as easy to be expressed in Java as
possible, both to allow the developers to understand the patterns themselves, as well
as be able to write extensions not only on the theoretical level of the pattern language,
but also on the practical level of the automated verification tools. If those tools are
developed in Java, they are made much more accessible. Our specification method
contains aspects from several of the following languages, but attempts to move more
towards OOP concepts. In particular, we make use of declarative constraints expressed
as classes of our OO framework, combined to be used in a design pattern specification.
We will examine the exact model of specifications in more detail in Chapter 3. In the
following subsections, we will go over some of the most influential previous works
in the field of design pattern specification and verification.

9

2.2.1 Balanced Pattern Specification Language

The Balanced Pattern Specification Language (BPSL)[7] can express both structural
and behavioral aspects of a design pattern. This is done with two separate mech-
anisms: using First-Order Logic for the structural aspects, and Temporal Logic of
Actions [19] for the behavioral ones. These are both robust mathematical formalisms,
that lead to strict, well-defined specifications. However, this also leads to high com-
plexity; an average software developer in an industrial project would find it difficult
to understand how exactly a pattern is defined, and even more so to extend the
language with new specifications. However, it is important to note that BPSL was
designed primarily with the purpose of automatically generating pattern instances in
code, rather than verifying the validity of existing ones.

2.2.2 jStar

jStar [5] is a tool aimed at general verification of Java programs, not specifically for
design patterns. It uses separation logic, a type of logic that is used to ascertain the
correctness of programs and is derived from Hoare logic. It deals primarily with
the behaviour of programs, by using assertions that contain a precondition and a
postcondition over a single command, in contrast to Hoare logic, whose pre- and
postconditions over the entire program state. While separation logic is well suited for
verification - it was created for it - it is also a very complex type of logic that is not
within the means of the average software developer to understand or properly utilize.

2.2.3 Design Pattern Modeling Language

The Design Pattern Modeling Language (DPML) [6] uses a visual specification dia-
gram to model design patterns. It is essentially an extended form of UML, containing
additional notation tailored to design pattern specification. There are specific nota-
tions that represent concepts such as interfaces , operations and methods (essentially
declarations and definitions of methods respectively, in more OOP terms), as well as
more specific binary relations than UML such as “implements”, “declared in”, “cre-
ates”, etc. On the surface, DPML seems quite close to our own specification language,
albeit in a visual format rather than a textual one - already a disadvantage for tool
support. However, DPML seemed to lack more formal definitions for the relations

10

and constraints of the pattern’s participants (classes, interfaces, methods, etc), relying
on natural language to convey the necessary information. DPML had two automated
tools associated with it, DPTool and its successor MaramaDPTool, which was how-
ever discontinued in 2008. Both tools supported the creation of pattern specification
diagrams, as well as a mechanism for design pattern instantiation. Finally, they sup-
ported the verification of a design pattern UML model - however, not the verification
of a pattern in the actual source code, which is the focus of our work.

2.2.4 HEDGEHOG

HEDGEHOG [4] was an influential tool that is the most similar to our own work,
focusing primarily on the verification of existing patterns in Java source code - it is,
however, no longer available for use. It uses SPINE, a custom declarative language
based on Prolog syntax for pattern specification. This language however, in contrast
to Prolog, allows the use of evaluable sets and propositions to be used as part of the
rules. It was also easier to integrate in a Java tool than Prolog. Regardless, it also has
certain weaknesses; the syntax is more complex than Prolog, which is already foreign
to someone used to OOP-style concepts. In addition, some of the pattern specifications
rely on developers to conform to specific naming conventions, such as method names
beginning with “add” or “get”. This is not something we can assume will be true,
and can lead to inaccuracies.

11

Chapter 3

Specification Model

3.1 Design Patterns

3.2 Constraints

3.3 Constraint Categories

In this chapter we will present the details of the conceptual model used to express
design pattern specifications. Examples of such specifications can be found in Chapter
5.

3.1 Design Patterns

Each design pattern is applied on a particular set of classes and interfaces, collectively
referred to as types in Java. Each type that participates in a pattern has a specific
purpose, or role, and multiple types can have the same role. These roles have a unique
name in the pattern, signifying approximately what their purpose is in the context
of the problem the pattern is supposed to resolve. For example, in the Command
pattern, we have an interface serving the Command role, a number of classes serving
the Concrete Command role, a class serving as the Receiver, and a class serving the
Invoker role.

In Figure 3.1, we can see a UML metamodel of a design pattern specification. It
contains a number of types, each with a role, and a number of constraints for each

12

Figure 3.1: UML diagram of pattern specification metamodel

13

participating type. Each Constraint has the primary participant type, and a number
of target types if applicable. In addition, each Constraint may contain additional
Constraint elements. Below, we further define the model using OCL [20]:

A DesignPattern has a role collection, which is a set of tuples. Each tuple represents
a role, and contains the role’s name and the set of types that serve that role in the
pattern.

context DesignPattern::roles : Set{Tuple{role: String, types: Set{Type}}}

The FullRoleConstraints invariant expresses that if a type with a role is a primary
participant in a Constraint, then all types with that role must be primary participants
in a Constraint of that kind - essentially, as mentioned before, all types with the same
role must obey the same Constraints.

context DesignPattern inv FullRoleConstraints:

self.roles -> forAll(rt | if

self.constraints -> includes(c | rt.types ->

includes(ct | ct = c.primaryParticipant))

then

rt.types -> forAll(x | self.constraints ->

includes(c2 | c2.primaryParticipant = x and c2.oclIsTypeOf(c)))

Additionally, the FullTypeConstraintTargets makes sure that if there is a Type-
Constraint with a primary participant of a given role and a target participant with
another role, then there is a TypeConstraint of that sort for each type of the primary
participants role and each type of the target participant’s role - essentially an all-to-all
connection between the primary and the target participant roles.

context DesignPattern inv FullTypeConstraintTargets

self.roles -> forAll(rt,rt2 | if

self.constraints -> includes(c | c.oclIsKindof (TypeConstraint) and

rt.types -> includes(ct | ct = c.primaryParticipant)) and

rt2.types -> includes(ct2 | ct2 = c.targetParticipant))

then

rt.types->forAll(x | self.constraints ->

includes(c2 | c2.primaryParticipant = x

and c2.oclIsTypeOf(c))) and rt2.types->forAll(x2 | self.constraints ->

includes(c2 | c2.targetParticipant = x2 and c2.oclIsTypeOf(c)))))

The RolesExist invariant expresses that for each role in the pattern, there must be

14

at least one type with that role.
context DesignPattern inv RolesExist:

self.roles -> forAll(rt | rt.types -> notEmpty())

Finally, the AllConstraintsSatisfied invariant ensures that for a DesignPattern to
be verified as correct, all of its Constraint elements are satisfied.

context DesignPattern inv AllConstraintsSatisfied:

self.verifyPattern() = true implies

self.constraints -> forAll(c | c.satisfied = true)

3.2 Constraints

In order for participating types to properly fulfill their role, they must have cer-
tain static and dynamic aspects. We represent those necessary aspects as a set of
declarative constraints that the types with a given role must obey, similar to SPINE,
the language used by HEDGEHOG. There are, however, several differences. SPINE
has a syntax similar to Prolog, allowing the combination of constraints with logical
operands (AND/OR). In our case, all constraints must hold true, thus essentially all
of them are linked with the AND operand by default. In addition, all types that are
part of the design pattern with the same role must all obey the same constraints.

The static or dynamic aspects of a type that a Constraint expresses are specified
with respect to specific structures of the Abstract Syntax Tree (AST) of that type. This
type is called the primary participant of the Constraint. These AST structures essentially
express a relation (such as inheritance or dependency) of the primary participant
with some other type, called the target participant of the Constraint. As mentioned
previously, all types with the same role must obey the same Constraint elements.
This means that when we mention a primary participant, we usually express it with
the name of its role rather than the participant’s implementation name, and imply
that there are multiple such Constraints; each with a different primary participant
implementation for all types of the primary participant’s roles. In our model we
assume the standard AST model structure of the Java Language Specification [21]. In
Figure 3.2, we can see an abstract model of the AST nodes that are most commonly
used by our Constraints. For our implementation of JPatternJudge, we used Eclipse’s
AST library [22].

15

Figure 3.2: UML diagram of part of the AST model.

Constraint has 3 specializations according to the number of target participants:
SelfConstraint, TypeConstraint, and MatchingConstraint. In addition, we can charac-
terize a Constraint as being either simple, or composite. A composite Constraint makes
use of other Constraint elements, either simple or recursively composite, to express the
required AST structure. All of the simple Constraint elements are used very often in
pattern specifications, both on their own and as part of composite Constraints, a fact
we will see in more detail in Chapter 5. Finally, we can make a distinction between
positive and negative Constraints, a concept that previous works do not make use
of. A positive Constraint is an assertion that a static or dynamic aspect does indeed
exist for a type. A negative Constraint, on the other hand, asserts that a static or dy-
namic aspect categorically does NOT exist. We will go over each Constraint category
in Section 3.3

Composite Constraints have certain limitations to what Constraint elements they
can contain, as expressed by the OCL invariants below. The AllConstraintsSatisfied
invariant expresses that for the pattern to be verified as correct, all of its Constraint
elements must hold true. Finally, the SelfInternalConstraints and TypeInternalCon-
straints restrict what kinds of Constraint elements can be included in a composite
Constraint of the respective sort, in order to maintain the appropriate number of
target participants (0 for Self, 1 for Type). MatchingConstraint elements do not need

16

such an invariant.
context SelfConstraint inv SelfInternalConstraints:

self.internalConstraints -> forAll(ic | ic.oclIsTypeOf(SelfConstraints))

context TypeConstraint inv TypeInternalConstraints:

self.internalConstraints -> forAll(ic | ic.oclIsTypeOf(SelfConstraint)

or ic.oclIsTypeOf(TypeConstraint))

3.3 Constraint Categories

In the following subsections, we will further explore each category of Constraints,
as well as the reusable Constraints used for specifications. Constraints used only in
the context of a single pattern will be presented in Chapter 5, in the appropriate
pattern specification. Each Constraint will be formalized using the Object Constraint
Language (OCL).

3.3.1 SelfConstraint

A SelfConstraint element does not have a target participant. The primary participant
type does not have a relation with another type, but rather we examine a particular
inherent characteristic. A composite SelfConstraint may obviously only contain other
SelfConstraint elements, to maintain the absence of a target participant.

TypeIsInterface: The primary participant is an interface.
context TypeIsInterface inv:

self.primaryParticipant.isInterface() = true

ClassIsAbstract: The primary participant is a class with the abstract modifier.
context ClassIsAbstract inv:

self.primaryParticipant.getModifiers() -> includes(m | m.isAbstract() = true)

TypeIsInterfaceOrAbstractClass: The primary participant is either an interface,
or a class with the abstract modifier.

context TypeIsInterfaceOrAbstractClass inv:

self.constraints() -> includes(c1 | c1.oclIsTypeOf(ClassIsAbstract))

context TypeIsInterfaceOrAbstractClass inv:

self.constraints() -> includes(c2 | c2.oclIsTypeOf(TypeIsInterface))

17

These three are the only SelfConstraint instances utilized for our specifications,
but other examples of SelfConstraint are those that would express the existence of
specific access modifiers for a class (private, protected, public) or the static modifier.

3.3.2 Type Constraints

A TypeConstraint has a single target participant, meaning that the primary participant
has a relation with exactly one other type. This relation can be of any sort as defined
by UML, such as inheritance or dependency. A composite type Constraint can contain
other TypeConstraint or SelfConstraint elements, but not MatchingConstraints, in or-
der to maintain the single target participant. TypeConstraint are the most numerous
and the most widely used in specifications.

ClassExtendsSuperclass: The primary participant is a class that extends the target
participant.

context ClassExtensSuperclass inv:

self.primaryParticipant.getSuperclass().oclIsTypeOf(targetParticipant)

TypeImplementsInterface: The primary participant implements the target par-
ticipant interface.

context TypeImplementsInterface inv:

self.primaryParticipant.getInterfaces() ->

includes(i | i.getType().oclIsTypeOf(targetParticipant))

TypeInheritsFrom: The primary participant has an inheritance relation with the
target participant, extending it if it is a class and implementing it if it is an interface.

context TypeInheritsFrom inv:

self.constraints -> includes(c1 | c1.oclIsTypeOf(ClassExtendsSuperclass))

context TypeInheritsFrom inv:

self.constraints -> includes(c2 | c2.oclIsTypeOf(TypeImplementsInterface))

ClassHasFieldOfType: The primary participant has a field whose type is the target
participant.

context ClassHasFieldOfType inv:

self.primaryParticipant.getFields() -> (f | f.getType().oclIsTypeOf(targetPrticipant))

ClassHasFieldCollectionOfType: The primary participant has a field that is a
collection of objects whose type is the target participant.

context ClassHasFieldOfType inv:

18

self.primaryParticipant.getFields() -> (f | f.oclIsTypeOf(Collection(targetParticipant)))

ClassHasVariableOfType: The primary participant has a method which contains
a variable whose type is the target participant.

context ClassHasVariableOfType inv:

self.primaryParticipant.getMethods() -> includes(m | m.getVariables() -> includes(v

| v.getType().oclIsTypeOf(targetParticipant)))

ClassHasFieldOrVariableOfType: The primary participant either has a field whose
type is the target participant, or has a method which contains a variable whose type
is the target participant.

context ClassHasFieldOrVariableOfType inv:

self.constraints -> includes(c1 | c1.oclIsTypeOf(ClassHasFieldOfType))

context ClassHasFieldOrVariableOfType inv:

self.constraints -> includes(c1 | c1.oclIsTypeOf(ClassHasVariableOfType))

ClassInstantiatesObjectOfType: The primary participant has a method which in-
stantiates an object whose type is the target participnt.

context ClassInstantiatesObjectOfType inv:

self.primaryParticipant.getMethods() -> includes(m | m.getExpressions() -> includes(

e | e.oclIsTypeOf(ClassInstanceCreation) and e.getType().oclIsTypeOf(targetParticipant)))

ClassHasMethodWithParameter: The primary participant has a method, which
has a parameter whose type is the target participant.

context ClassHasMethodWithParameter inv:

self.primaryParticipant.getMethods() -> includes(m | m.getParameters() -> includes(p

| p.typeOf().oclIsTypeOf(targetParticipant)))

ClassHasMethodWithReturnType: The primary participant has a method whose
return type is the target participant.

context ClassHasMethodWithReturnType inv:

self.primaryParticipant.getMethods() -> includes(m |

m.getReturnType().oclIsTypeOf(targetParticipant))

ClassHasMethodWithReturnCollectionOfType: The primary participant has a method
that returns a collection of objects whose type is the target participant.

context ClassHasMethodWithReturnCollectionOfType inv:

self.primaryParticipant.getMethods() -> includes(m |

m.getReturnType().oclIsTypeOf(Collection(targetParticipant)))

19

ClassInvokesMethodOf: The primary participant has a method which invokes a
method that is declared in the target participant.

context ClassInvokesMethod inv:

self.primaryParticipant.getMethods() -> includes(m | m.getExpressions() -> includes(e

| e.oclIsTypeOf(MethodInvocation) and self.targetParticipant.getMethods() -> includes(m2

| m2.name = e.methodName)))

3.3.3 Matching Constraints

MatchingConstraint instances are always composite, and not cross-pattern reusable.
Each MatchingConstraint is used only in a specific design pattern and perhaps its
variations. A MatchingConstraint has more than one type as target participants; how-
ever, every type must have the same role in the pattern. For TypeConstraint elements,
the combination of the FullRoleConstraints and FullTypeConstraintTargets invariants
means that if a pattern has a TypeConstraint element with primary participant of
role X, and target participant of role Y, it also has such TypeConstraint elements with
primary participants every type with role X, and target participants every type with
role Y. However, only in certain cases, we don’t want the FullTypeConstraintTargets
invariant to hold - we have a TypeConstraint with a given target participant, and we
know the role of the target participant, but we don’t know which of the types serv-
ing that role is the correct one. To resolve this, we create a MatchingConstraint: it is
composed of a set of TypeConstraint elements, and has as a set of target participants
the set of all types that serve a role. The TypeConstraint elements are checked with
each individual type as a target participant, and if one of them is satisfied, then the
entire MatchingConstraint element is also satisfied.

For example, in the Abstract Factory pattern, we have multiple Concrete Facto-
ries and multiple Products, but each Concrete Factory produces only one Product.
Thus, each concrete factory has a MatchingConstraint with all products; and for the
Constraint to hold true, there must be at least one product for which the internal
Constraint elements hold true.

3.3.4 Negative Constraints

As mentioned earlier, a negative Constraint is essentially the assertion that a posi-
tive Constraint (any of the Constraints mentioned earlier) does NOT hold true. As

20

expressed by OCL:
context NegativeConstraint:: satisfied : boolean

derive:

not(constraint.satisfied)

The reason previous works do not mention negative Constraints might be because
they seem quite trivial, and to a certain degree that would be correct. For example,
we could add a negative Constraint to every single pattern that all fields of all roles
must not be public - something that is taught to programmers from the very be-
ginning of introductions to object-oriented programming as a fundamental necessity
of good quality code. That would indeed be a trivial Constraint that doesn’t really
add something to the specification. However, there are some instances that negative
Constraints can be important without being so obvious, especially depending on cer-
tain interpretations of patterns, which we will see in Chapter 5. Also, in some cases,
it would not be easy to express negative Constraints - for example, in DPML using
visual specification diagrams.

21

Chapter 4

Framework Mechanisms

4.1 Constraint Realization

4.2 Design Pattern Realization

4.3 Detecting Design Pattern Instances

4.4 Design Pattern Verification

4.5 The JPatternJudge Plugin

In this chapter we will discuss the abstract mechanisms of the JPatternJudge frame-
work, as well as certain aspects of our actual implementation. We can divide them in
the following parts:

• Constraint Realization: How the framework realizes the constraints defined in
the model.

• Design Pattern Realization: How the framework realizes the design patterns
defined in the model.

• Design Pattern Instance Detection: Given a piece of source code, how the frame-
work detects which classes participate in a pattern.

• Design Pattern Verification: Given a set of design patterns, how the framework
verifies their correctness.

22

Figure 4.1: Package diagram of JPatternJudge.

23

Figure 4.2: UML diagram of JPatternJudge’s architecture.

We will discuss each one individually in the following sections. We can see the
package diagram of JPatternJudge in 4.1, and a more detailed architecture in 4.2.

The DesignPatternRegistry class contains a collection with a single object for each
subclass of DesignPattern - i.e. one of each patterns specified in the framework. It is
used as a prototype to check against pattern instances detected that are to be verified.
The DesignPatternStorage class on the other hand contains a collection of the actual
design pattern instances detected.

4.1 Constraint Realization

The realization of the constraints follows the abstract model presented in 3, and is
concentrated in a single package. The class diagram of the package can be seen in
4.3, including the main hierarchy and some cases of the concrete classes.

The RoleConstraint class is an abstract superclass representing the general concept
of the constraint as defined in 3. It has a TypeDeclaration AST node as a field,
containing the primary participant of any constraint. It also contains abstract methods
for error messages, which we will expand upon later. Below that in the hierarchy, we

24

Figure 4.3: UML Class Diagram of the constraint package.

have the three different abstract forms of constraints, self, type, and matching. Each
one has its own abstract class, containing the appropriate TypeDeclaration field for
the target participants: none for self, one for type, and a collection for matching. In
the diagram we can also see a small number of concrete constraints for each kind of
RoleConstraint. Each individual concrete constraint is represented in its own class.
We can see that the matching constraint BuilderProductMatching is associated with
the ClassHasFieldOfType type constraint, indicating that it is a composite constraint
as defined in 3. Finally, we have the NegativeConstraint class, which extends the
RoleConstraint and also has a field of RoleConstraint, as defined in the model.

At this point we must address the existence of the additional hierarchy and classes
present in the diagram, namely the classes Constraint and MethodConstraint. Method-
Constraint is an abstract superclass for constraints regarding a single method, rather
than a class or interface, and as such is never actually directly used in a design
pattern. Rather, method constraints are only auxiliary classes to reduce the size of
role constraint classes and offer an element of reusability. For example, the Method-
InvokesMethod constraint shown in the diagram checks whether a method invokes
another method of a given name, and is used both by the ClassInvokesMethod con-
straint and the special TemplateMethod constraint, reducing code duplication. The
Constraint superclass encompasses both method and role constraints, essentially the

25

concept of a constraint in general, and has an abstract check() method. This method
is responsible for determining whether a constraint is satisfied or not, returning a
boolean value of true if the constraint holds, or false if it doesn’t.

In order to decide whether a constraint is satified or not, the check() method
examines the properties of child AST nodes of the TypeDeclaration nodes of the
primary and target participants. For example, in the ClassHasFieldOfType constraint,
all the FieldDeclaration nodes of the primary participant are checked; if one of them
shares a type with the TypeDeclaration of the target participant, the constraint is
satisfied.

As for the error messages, each constraint obviously has its own different message
to indicate what went wrong if it is not satisfied. We do however have two different
messages for each constraint: one for when it is used on its own, and one when
it is used through a NegativeConstraint. The reason they are different is that we
can’t automatically derive the negative message from the positive without having
some awkward phrasing that would impede readability and might cause confusion
on what exactly is wrong with the pattern.

Finally, we must make note that some constraints have restrictions on how they
were realized in our implementation. One of the main restrictions is that constraints
dealing with inheritance (ClassExtendsSuperclass, TypeImplementsInterface) can only
work with a single level of inheritance. For example, if we have three classes A, B,
and C, A extends B an B extends C. Technically, the constraint ClassExtendsSuper-
class(A,C) is satisfied; however, due to the nature of the AST structure, our implemen-
tation cannot properly process it since the TypeDeclaration node of A is not directly
connected to the TypeDeclaration node of C, only of B. There is a way of bypassing
this issue, which is to iteratively search for the TypeDeclaration node of the imme-
diate superclass in the source code and check for the constraint there (e.g. find B,
and do ClassExtendsSuperclass(B,C)) but it is not included in the scope of our work.
Secondly, another important restriction is the concept of an object collection. While
in an abstract specification a collection is well defined, in reality we cannot be sure
what is or isn’t a collection of objects. In Java, it can be an array, one of the builtin
collections provided by the language (e.g. ArrayList, HashSet, et cetera), but it can
also be a custom-made class. This is not something we can reliably detect through
the AST, so we make the compromise that our constraints detect the following kinds
of collections: either it is an array, or a parameterized type with the target participant

26

as a parameter.

4.2 Design Pattern Realization

Each design pattern is realized in its own class, inheriting from the abstract Design-
Pattern class. There is no need to make a distinction between creational, structural,
and behavioral patterns, or any other categorization; all patterns are treated the same.

First of all, a concrete pattern object has a name and an id. The name is self-
explanatory; for example, the Adapter pattern’s pattern name is ”Adapter”. The id
field indicates which pattern instance an actual object represents, since a Java project
can have multiple distinct instances of the same pattern, and is unique among objects.
Secondly, a pattern has a collection - in our implementation an ArrayList - containing
the names of all the pattern’s roles. Finally, we have the two most important fields: the
collection of participating types, and the collection of constraints. The first collection
is the ”roles” collection defined via OCL in 3, in the Design Patterns section. In the
model, it was defined as a set of tuples; each tuple representing a role, and containing
the role’s name and a set of all types with that role. In our implementation, it is
realized by a Java HashMap, with the role names as keys, and sets of TypeDeclarations
as values.

The DesignPattern class also has certain methods that are common amongst all
patterns. In particular, the checkRoles() method realizes the RolesExist invariant de-
fined in 3: A pattern instance must have at least one type for each of its roles. The
verifyPattern() method realizes the AllConstraintsSatisfied invariant, which asserts
that for a pattern to be verified as correct, all of its constraints must be satisfied (i.e.
their check() method must return true). Finally, populateConstraints() is an abstract
method in which the constraints are created for each different pattern.

4.2.1 Specification of Design Patterns in Practice

Essentially, from the perspective of a pattern expert, it is quite easy to create additional
pattern specifications in the framework. Due to the high degree of reusability of
constraints among patterns, the general extensibility of the model elements, and our
utilization of object-oriented concepts, all that is required in the creation of a new
class that subclasses DesignPattern.

27

Figure 4.4: UML Class Diagram of the designPattern package.

28

Figure 4.5: AdapterPattern source code

In this class, the names of the roles participating in the pattern are added to
the roleNames list, and the appropriate RoleConstraint objects are instantiated in the
populateConstraints() method, following the OCL invariants mentioned. In Figure 4.5
we can see an example, showing the implementation of the Adapter pattern. Every
other mechanism such as verification of the pattern, checking for the existence of all
roles, et cetera, are already present in the abstract DesignPattern class, and do not
need to be re-created.

4.3 Detecting Design Pattern Instances

In Chapter 3 we defined the abstract model of design pattern specifications, and in
Chapter 5 we also give the exact specifications for each pattern. However, in order
to proceed to the verification stage, we must first have a way to extract them from
the source code. So, given a large Java project, we must have a way of understanding
which classes and interfaces participate in a pattern, and what roles they have.

A vital assumption we make here is that the developers do in fact know these
particulars. This is something that other works such as HEDGEHOG also accept,

29

and is in fact inescapable; assuming otherwise shifts the problem in the domain of
automatic pattern detection, which while adjacent to this, is not within the scope of
our work.

In jStar, the entire Java project examined is transformed into a Jimple form, and
the types that are involved in the verification are included in the specification rules.
In HEDGEHOG, only the specific files that contain the source code of the types
involved in a pattern are loaded in the tool. We adopt a different approach, by using
a custom Java annotation to mark the participating classes directly in the source
code. The project is then parsed, and the Abstract Syntax Tree is produced. If the
custom annotations are detected in the created AST, JPatternJudge is aware that that
particular type is involved in a pattern.

4.3.1 Design Pattern Annotation

An annotation is a form of metadata that can be added to a piece of source code.
Java provides certain builtin annotations, such as @Override and @Deprecated, but
also gives the ability to create custom annotations, which can have their own fields.
Annotations can be applied in various code elements, such as classes, fields, methods,
etc; however, our annotation is only applied on classes and interfaces, since only they
can have a role and participate in a pattern.

Our custom annotation has two parts, which can be seen in Figures 4.6 and
4.7. The @DesignPattern annotation is the one that is used to annotate the source
code, and has three fields. The pattern field is used to specify what kind of pattern
the type participates in; e.g. Adapter, Command, etc. The patternID field specifies
which instance of that pattern the type belongs to. Finally, the role field specifies
what role the type has in the pattern. The @Target meta-annotation specifies that
@DesignPattern can only be applied on types, while the @Repeatable meta-annotation
specifies that multiple instances of @DesignPattern can be applied on the same type
- in case it has a role in multiple different patterns. This also requires the existance
of the @Patterns annotation, which essentially acts as a storage for @DesignPatterns
annotations applied on the same type.

30

Figure 4.6: DesignPattern annotation

import java.lang.annotation.ElementType;

import java.lang.annotation.Repeatable;

import java.lang.annotation.Target;

@Target(ElementType.TYPE)

@Repeatable(value = Patterns.class)

public @interface DesignPattern {

public String pattern() default "";

public int patternID() default 0;

public String role() default "";

}

4.3.2 Specifying Design Pattern Instances in Practice

It is trivially easy for software developers to utilize our custom annotation to specify
the existence of a design pattern instance in their code. All that is required is to
annotate each class or interface with the @DesignPattern annotation, appropriately
filling the fields. For example, to annotate the class CObClass that plays the role of a
concrete observer in the first instance of an Observer pattern, the source code would
look like this:

@DesignPattern(pattern="Observer", patternID=1, role="Concrete Observer")

public class CObClass {......}

To annotate the interface FileCommand that plays the role of Command in the
homonymous pattern, the annotation would be the following:

@DesignPattern(pattern="Command", patternID=1, role="Command")

public interface FileCommand {......}

If, in the same project, there was n additional instance of the Command pattern
referring to e.g. buttons instead of files, the annotation would be the following:

@DesignPattern(pattern="Command", patternID=2, role="Command")

public interface ButtonCommand {......}

Something to note here is that these two annotations must be included in the Java
source code that is being verified - NOT in the framework itself.

31

Figure 4.7: Patterns annotation required for @Repeatable meta-annotation

import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

@Target(ElementType.TYPE)

public @interface Patterns {

DesignPattern[] value();

}

4.3.3 Pattern Detection Mechanism

The detection mechanism relies on the @DesignPattern annotation described above,
and is implemented in the PatternDetector class. There are two main steps involved:
First, a Parser processes the source code to create the abstract syntax tree for each
type in the program. Then, a Pattern Detector examines these ASTs; if the presence
of the @DesignPattern annotation is detected, the information in it is processed an
the annotated type is added in the appropriate DesignPattern object. We can see a
pseudocode algorithm of this process in Figure 4.8:

The DesignPatternRegistry has a collection of DesignPattern objects. In fact, it has
a single object for each different pattern specified in the framework. It is used to
check whether a pattern name found by the detector is valid. On the other hand,
the DesignPatternStorage is a collection of the actual pattern instances detected in the
source code.

Specifically, the algorithm has the following steps for each type in the project being
examined:

• Parse the type and create its AST. (lines 2-3)

• Examine the AST and extract the annotations applied on the type. (line 4)

• For each annotation applied, examine if it is a @DesignPattern annotation and
if the information in it is valid. (lines 5-6)

• To check if the annotation is correct, check if the name of the pattern given exists
in the DesignPatternRegistry, and the name of the role exists in the appropriate

32

Figure 4.8: Design Pattern detection and instantiation algorithm pseudocode

1 for (Type type: Project) {

2 ast = Parser.getAST(type);

3 typeDeclaration = ast.getTypeDeclaration();

4 annotations = typeDeclaration.getAnnotations();

5 for (Annotation annotation: annotations){

6 if (annotation.isDesignPattern() and checkInformationValidity(annotation)) {

7 pattern = annotation.getPattern();

8 id = annotation.getID();

9 role = annotation.getRole();

10 if (!DesignPatternStorage.get(pattern).contains(id)){

11 DesignPatternStorage.addPattern(pattern, id);

12 }

13 DesignPatternStorage.get(pattern).get(id).addRole(role, typeDeclaration);

14 }

15 }

16 }

17 for (DesignPattern p: PatternStorage)

18 {

19 p.populateConstraints();

20 }

33

Pattern. (line 6)

• Extract the (confirmed valid) information from the annotation. (lines 7-9)

• If a pattern with the given ID does not exist in the DesignPatternStorage, create
a new instance. (lines 10-12)

• Add the type and its role to the pattern instance. (line 13)

When all the design patterns have been detected and fully populated with their
roles and types, we go over them one more time and create the necessary constraints
as per their specification, taking care to follow Design Pattern model defined in 3.
(lines 17-20)

4.4 Design Pattern Verification

The verification process is extremely simple in our framework. For each pattern
instance stored in the DesignPatternStorage collection, the PatternVerifier checks their
validity in two steps: first, it checks if the pattern instance has a type for each role,
and if so, it checks if all the constraints are satisfied.

for (DesignPattern pattern: DesignPatternStorage){

if(pattern.checkRoles()){

pattern.verifyPattern();

}

print(pattern.getErrorMessage())

}

A pattern’s error message depends on the type of error. If the pattern is missing
role types, as indicated by checkRoles(), then the message outlines which roles are
missing. Otherwise, the message is a collation of the error messages of the individual
constraints. If all the constraints are satisfied, the message simply indicates that the
pattern is verified as correct.

34

Figure 4.9: The JPatternJudge menu object in Eclipse’s menu bar.

4.5 The JPatternJudge Plugin

Our implementation of the framework takes the form of a plugin for the Eclipse Inte-
grated Development Environment. Eclipse is a very popular IDE used by developers
in the production of industrial OOP projects, and as such is ideal for integrating our
framework directly in the development process.

Using the plugin is very straightforward. First, the user must add the @Design-
Pattern annotation definitions in the project being examined, and annotate all the
classes and interfaces that participate in patterns appropriately. The plugin adds a
new menu to Eclipse’s menu bar, titled ”JPatternJudge”. This menu contains a sin-
gle menu item, which detects and verifies the patterns present and annotated in the
selected Eclipse project in the Project Explorer view. The menu can be seen in 4.9.

When JPatternJudge finishes the verification process, it generates a popup window
containing a full report. This report includes the error messages for every pattern
detected, as they were described in the previous section. This popup window, along
with an example report showing 3 kinds of messages (pattern is correct, pattern is
missing roles, and pattern has constraints that are not satisfied) is shown in 4.10.
The report is also stored in a text file titled ”DesignPatternReport.txt”, which is saved
in the project’s workspace folder, for the developer to peruse at their leisure.

35

Figure 4.10: Example of a verification report generated by JPatternJudge.

36

Chapter 5

Design Pattern Specifications

5.1 Notation

5.2 Structural Patterns

5.3 Behavioral Patterns

5.4 Creational Patterns

5.5 Unspecified Patterns

In this chapter we will list the design patterns included in JPatternJudge, as well as
their specifications. The specification of each pattern takes form as a list of roles and
a list of constraints, obeying the model presented in the previous chapter. We assume
the reader has at least a basic familiarity with the GoF patterns, but we do include
a short description of each pattern’s purpose and what each role represents in the
context, as well as a UML diagram of the pattern’s structure.

5.1 Notation

In Chapters 3 and 4 we showed that pattern specification writers can develop simple
classes for the specifications extending the DesignPattern subclass and overriding the
populateConstraints() method, hile still following certain OCL constraints. For brevity,
we do not include the entire source code of the class for each pattern, but utilize the
following notation when it comes to constraints:

37

A SelfConstraint element with a primary participant that has a given role is rep-
resented as:

SelfConstraint(PrimaryParticipantRole)
Similarly, a TypeConstraint is represented as:
TypeConstraint(PrimaryParticipantRole, TargetParticipantRole)
And a MatchingConstraint with a set of target participants is represented as:
MatchingConstraint(PrimaryParticipantRole, [TargetPrticipantRole])
When a pattern contains a NegativeConstraint element, they are represented as

follows, depending on what kind of constraint they contain:
NegativeConstraint(SelfConstraint(PrimaryParticipantRole))
NegativeConstraint(TypeConstraint(PrimaryParticipantRole, TargetParticipantRole))
NegativeConstraint(MatchingConstraint(PrimaryParticipantRole, [TargetParticipant-

Role]))

5.2 Structural Patterns

5.2.1 Adapter

The adapter pattern is a very common pattern that is used to connect two classes
that are normally incompatible, by creating a linking interface. The client is a class
that contains some already existing business logic we wish to expand upon, but the
adaptee (also known as service, and usually part of third-party or legacy code), which
contains useful behavior the client wants, has an incompatible interface. The solution
is to create an adapter interface that describes the protocol the client wants to use,
and then an Adapter. The adapter implements the adapter interface, and also has a
field of adaptee. It realizes the behavior that connects the two incompatible classes,
the client and the adaptee. The client can now have a field of adapter, and use it
instead of the adaptee directly.

Roles

• Client

• AdapterInterface

• Adapter

38

Figure 5.1: UML Diagram of the Adapter pattern structure.

• Adaptee

Constraints

• TypeIsInterface(AdapterInterface)

• TypeImplementsInterface(Adapter, AdapterInterface)

• ClassHasFieldOfType(Adapter, Adaptee)

• ClassInvokesMethod(Adapter, Adaptee)

• ClassHasFieldOfType(AdapterClient, Adapter)

• NegativeConstraint(ClassHasFieldOrVariableOfType(AdapterClient, Adaptee)

5.2.2 Bridge

Bridge is a pattern that is used to split a set of related classes in two different hier-
archies, the abstraction and the implementor, allowing each of them to be developed
independent of the other. The abstraction provides high-level control, while the con-
crete implementors take care of the low-level work for each different context they
operate in, all through the implementor interface.

Roles

• Abstraction

39

Figure 5.2: UML Diagram of the Bridge pattern structure.

• RefinedAbstraction

• Implementor

• ConcreteImplementor

Constraints

• ClassIsAbstract(Abstraction)

• ClassHasFieldOfType(Abstraction, Implementor)

• ClassExtendsSuperclass(RefinedAbstraction, Abstraction)

• TypeIsInterface(Implementor)

• TypeImplementsInterface(ConcreteImplementor, Implementor)

5.2.3 Composite

The Composite pattern is used to represent sets of objects that can form a tree struc-
ture. There are two main variants of Composite, focusing either on type safety or
uniformity. Our specification is based on the latter. The component is the abstract
tree node; the leaf represents a node that does not contain any components, while the
composite represents a tree node that does - whether these are leaves or recursively
composites.

Roles

40

Figure 5.3: UML Diagram of the Composite pattern structure.

• Component

• Composite

• Leaf

Constraints

• ClassIsAbstract(Component)

• ClassHasMethodWithParameter(Component, Component)

• ClassHasMethodWithReturnCollectionOfType(Component, Component)

• ClassExtendsSuperclass(Leaf, Component)

• ClassExtendsSuperclass(Composite, Component)

• ClassHasFieldCollectionOfType(Composite, Component)

41

5.2.4 Decorator

The Decorator pattern, also known as Wrapper, is used to attach extra behavior to an
object. An interface (component) is used for both the wrapper and wrapped objects.
The concrete components are the objects being wrapped, containing the basic behav-
ior. The decorator implements the component interface to ensure compatibility, while
defining additional behavior. A variant of this pattern has an abstract decorator, and
concrete decorators to further extend the wrapped object’s functionality by providing
alternative behavior.

Roles

• Component

• ConcreteComponent

• Decorator

Constraints

• TypeIsInterfaceOrAbstractClass(Component)

• TypeInheritsFrom(ConcreteComponent, Component)

• TypeInheritsFrom(Decorator, Component)

• ClassHasFieldOfType(Decorator, Component)

5.2.5 Flyweight

Flyweight is used to reduce the memory usage of a program by extracting the common
parts of multiple objects and keeping them in a single, shared one. The flyweight
class contains the shared state of the objects, which are represented by the context. A
flyweight factory manages the production of flyweights when a new one is needed.

Roles

• Flyweight

• Context

• FlyweightFactory

42

Figure 5.4: UML Diagram of the Decorator pattern structure.

Constraints

• ClassHasFieldOfType(Context, Flyweight)

• ClassInvokesMethod(Flyweight, FlyweightFactory)

• ClassHasFieldCollectionOfType(FlyweightFactory, Flyweight)

• ClassInstantiatesObject(FlyweightFactory, Flyweight)

• ClassHasMethodWithReturnType(FlyweightFactory, Flyweight)

5.2.6 Proxy

Proxy is used to create a substitute of an object, acting as an intermediate to other
objects and giving indirect access. To ensure compatibility, a shared interface between
the two objects is created. The proxy has a field of the real subject, and invokes its
methods, while layering additional functionality.

Roles

• Subject

• Proxy

• RealSubject

43

Figure 5.5: UML Diagram of the Flyweight pattern structure.

Constraints

• TypeIsInterface(Subject)

• TypeImplementsInterface(RealSubject, Subject)

• TypeImplementsInterface(Proxy, Subject)

• ClassHasFieldOfType(Proxy, RealSubject)

• ClassInvokesMethod(Proxy, RealSubject)

5.3 Behavioral Patterns

5.3.1 Chain Of Responsibility

Chain of responsibility is a pattern used to create a series of processing objects. Each
object is essentially a handler for a request with different behavior. When the request
reaches a handler, the handler can either process it if able or pass it along to the next
in the chain until it reaches the one that can handle it.

Roles

44

Figure 5.6: UML Diagram of the Proxy pattern structure.

• Handler

• ConcreteHandler

Constraints

• TypeIsInterface(Handler)

• ClassHasMethodWithParameter(Handler, Handler)

• TypeImplementsInterface(ConcreteHandler, Handler)

• ClassHasFieldOfType(ConcreteHandler, Handler)

5.3.2 Command

Command is a design pattern that is used to transform a request into a concrete
object,allowing more capabilities when it comes to handling it such as parameteriza-
tion of methods concerning requests. A concrete command object has a receiver and
invokes its method, while an invoker object is the one who executes the commands
without knowing a concrete command specifically.

Roles

• Command

• ConcreteCommand

45

Figure 5.7: UML Diagram of the Chain of Responsibility pattern structure.

• Invoker

• Receiver

Constraints

• TypeIsInterface(Command)

• TypeImplementsInterface(ConcreteCommand, Command)

• ClassHasFieldOfType(ConcreteCommand, Receiver)

• ClassHasFieldOrVariableOfType(Invoker, Command)

• NegativeConstraint(ClassHasFieldOfType(Invoker, ConcreteCommand))

5.3.3 Mediator

Mediator is a design pattern used to reduce coupling between objects by assigning
a single mediator object to be responsible for communication between the rest. The
communicating objects, called colleagues, do so through the mediator object. We can
also have multiple mediators supporting different behavior.

Roles

46

Figure 5.8: UML Diagram of the Command pattern structure.

• Mediator

• ConcreteMediator

• Colleague

• ConcreteColleague

Constraints

• TypeIsInterface(Mediator)

• TypeImplementsInterface(ConcreteMediator, Mediator)

• ClassHasFieldOfType(ConcreteMediator, ConcreteColleague)

• ClassIsAbstract(Colleague)

• ClassHasFieldOfType(Colleague, Mediator)

• ClassExtendsSuperclass(ConcreteColleague, Colleague)

5.3.4 Memento

Memento is a design pattern used to store the state of an object in another object,
allowing to save and restore the previous state at any point. It is essentially a data
object, but with a specific purpose and behavior. The originator is an object that has

47

Figure 5.9: UML Diagram of the Mediator pattern structure.

a specific state, however we want to be able to switch between previous states at will;
for example, if we want to undo a change or load a previous version. The memento is
the object containing that state, created by the originator when it is ”saved”, and the
caretaker is an object that manages a list of mementos, loading them on the originator.

Roles

• Originator

• Memento

• Caretaker

Constraints

• ClassHasFieldCollectionOfType(Caretaker, Memento)

• ClassHasFieldOfType(Caretaker, Originator)

• ClassHasMethodWithParameter(Originator, Memento)

• ClassHasMethodWithReturnType(Originator, Memento)

48

Figure 5.10: UML Diagram of the Memento pattern structure.

• ClassInstantiatesObjectOfType(Originator, Memento)

5.3.5 Observer

Also known as Subscriber or Listener, the Observer pattern is used when a single
object want to notify multiple others when a change occurs in it. The object that
changes and sends out the notifications is the Subject, while the objects interested
in the subject’s state changes are concrete observers implementing an observer in-
terface. A variant of observer contains multiple concrete subjects instead of just one,
implementing their own interface.

Roles

• Subject

• Observer

• ConcreteObserver

Constraints

• ClassHasFieldCollectionOfType(Subject, Observer)

• ClassHasMethodWithParameter(Subject, Observer)

49

Figure 5.11: UML Diagram of the Observer pattern structure.

• ClassInvokesMethod(Subject, Observer)

• TypeIsInterface(Observer)

• TypeImplementsInterface(ConcreteObserver, Observer)

5.3.6 State

State allows an object to alter it behavior when its internal state is changed, allowing
switching from one type of behavior to another at runtime. We have an object, our
context, that has a finite number of distinct states, each with different behavior. We
represent each of those states in a different concrete state class, allowing the context to
switch from one to another in a controlled manner, similar to a finite state machine.
This sounds similar to Memento, but there the states all have the same behavior and
simply change attributes; in State, each one has completely different behavior.

Roles

• Context

• State

• ConcreteState

50

Figure 5.12: UML Diagram of the State pattern structure.

Constraints

• ClassHasFieldOfType(Context, State)

• ClassInvokesMethod(Context, State)

• TypeIsInterface(State)

• ClassHasMethodWithParameter(State, Context)

• TypeImplementsInterface(ConcreteState, State)

5.3.7 Strategy

Strategy is a design pattern that can be used to allow selection of a specific algorithm,
out of a family of them, at runtime. A context object has a job to do, which can be
done in multiple different ways. Each of those is realized in its own concrete strategy
class, and the context uses one of them. This sounds very similar to the State pattern,
however a key difference is that in this case the context does not select which strategy
it will use; instead, it is provided with one by some other external class.

Roles

• Context

• Strategy

51

• ConcreteStrategy

Constraints

• ClassHasFieldOrVariableOfType(Context, Strategy)

• ClassInvokesMethod(Context, Strategy)

• TypeIsInterface(Strategy)

• TypeImplementsInterface(ConcreteStrategy, Strategy)

5.3.8 Template Method

Template Method is a design pattern that defines the skeleton of an algorithm in
a superclass via abstract methods, allowing the subclasses to implement their own
specific steps without changing the algorithm’s structure. A template class has an
algorithm that has s specific structure, but some of the steps can have variations.
Those steps are declared as abstract methods, which are defined in subclasses of the
template.

Roles

• Template

• Concrete

Constraints

• ClassIsAbstract(Template)

• ClassExtendsSuperclass(Concrete, Template)

• TemplateMethodConstraint(Template)

The TemplateMethodConstraint is used only in this pattern, and is defined as
follows:

TemplateMethodConstraint: The primary participant has at least an abstract
method, and a concrete method that invokes the abstract one.

context TemplateMethodConstraint inv:

self.primaryParticipant.getMethods() -> includes(m | m.getModifiers() -> excludes(mod

| mod.isAbstract() = true) and m.getExpressions() ->

52

includes(e | e.oclIsTypeOf(MethodInvocation) and self.primaryParticipant.getMethods()

-> includes(m2 | m2.getModifiers() -> includes(mod2 | mod2.isAbstract() = true) and

e.methodName = m2.name)))

Visitor Visitor is a pattern that is used to separate an algorithm from the objects
it operates on, by moving the relevant methods in a single object. The visitor object
contains the algorithm itself, and can ”visit” any of the objects being operated on,
called elements. Each element also has a method for accepting a visitor, creating a
two-way relation between elements and visitors.

Roles

• Visitor

• ConcreteVisitor

• Element

• ConcreteElement

Constraints

• TypeIsInterface(Visitor)

• ClassHasMethodWithParameter(Visitor, ConcreteElement)

• TypeImplementsInterface(ConcreteVisitor, Visitor)

• TypeIsInterface(Element)

• ClassHasMethodWithParameter(Element, Visitor)

• TypeImplementsInterface(ConcreteElement, Element)

• ClassInvokesMethod(ConcreteElement, Visitor)

5.4 Creational Patterns

5.4.1 Abstract Factory

The Abstract Factory pattern is used when we have multiple factories that produce
families of objects. We have a number of product interfaces; for each of those, we

53

Figure 5.13: UML Diagram of the Visitor pattern structure.

54

have a number of concrete products. Each concrete factory can produce one concrete
product of each product family.

Roles

• AbstractFactory

• ConcreteFactory

• Product

• ConcreteProduct

Constraints

• TypeIsInterface(AbstractFactory)

• ClassHasMethodWithReturnType(AbstractFactory, Product)

• TypeImplementsInterface(ConcreteFactory, AbstractFactory)

• TypeIsInterface(Product)

• ConcreteProductInterfaceMatching(ConcreteProduct, [Product])

• FactoryProductMatching(ConcreteFactory, [ConcreteProduct])

The two matching constraints are defined below:
ConcreteProductInterfaceMatching: Each ConcreteProduct implements one of the

Product interfaces, not all of them. In general form, this means that the primary
participant implements at least one of the target participant interfaces.

context ConcreteProductInterfaceMatching inv:

self.constraints -> forAll(c | c.oclIsTypeOf(TypeImplementsInterface) and

c.primaryParticipant = self.primaryParticipant and

self.targetParticipants -> includes(t | t = c.targetParticipant))

and self.constraints -> includes(c2 | c2.satisfied = true)

FactoryProductMatching: Each concrete factory instantiates a concrete product
for each different product interface.

context FactoryProductMatching inv:

self.constraints -> forAll(c | c.oclIsTypeOf(ClassInstantiatesObjectOfType) and

c.primaryParticipant = self.primaryParticipant and self.targetParticipants -> forAll(t1,t2

| not t1.oclIsKindOf(t2)))

55

Figure 5.14: UML Diagram of the Abstract Factory pattern structure.

56

5.4.2 Builder

The Builder pattern is used when we need to create complicated objects with lots of
different parts. There are multiple concrete builders, and each one of them uses a
different assembly of parts to create a different product object. The building process
is managed by a director, who calls on the appropriate builder when necessary to
create the desired object.

Roles

• Builder

• ConcreteBuilder

• Product

• Director

Constraints

• TypeIsInterface(Builder)

• TypeImplementsInterface(ConcreteBuilder, Builder)

• BuilderProductMatching(Concretebuilder, [Product])

• ClassHasFieldOfType(Director, Builder)

BuilderProductMatching: This constraint ensures that a given concrete builder
is connected to a single product. This means that it has a field of that product type,
it instantiates an object of that product type, and it has a method with return type of
that product.

context BuilderProductMatching inv:

self.constraints -> select(c | c.oclIsTypeOf(ClassHasFieldOfType)) -> forAll(f

| f.primaryParticipant = self.primaryParticipant and self.targetParticipants -> includes(tP

| tp = f.targetParticipant))

context BuilderProductMatching inv:

self.constraints -> select(c | c.oclIsTypeOf(ClassInstantiatesObjectOfType)) ->

forAll(f | f.primaryParticipant = self.primaryParticipant and self.targetParticipants

-> includes(tP | tp = f.targetParticipant))

context BuilderProductMatching inv:

57

Figure 5.15: UML Diagram of the Builder pattern structure.

self.constraints -> select(c | c.oclIsTypeOf(ClassHasMethodWithReturnType)) ->

forAll(f | f.primaryParticipant = self.primaryParticipant and self.targetParticipants

-> includes(tP | tp = f.targetParticipant))

5.4.3 Singleton

The Singleton pattern is used to ensure that a class has only a single instance at any
given time, which can be accessed globally. This means that this class has private
constructors, and instantiates itself statically.

Roles

• Singleton

Constraints

• SingletonInstantiation(Singleton)

58

SingletonInstantiation: This constraint ensures 3 things for the singleton: that
all of its constructors are private, that it has a static field of itself, and that a static
method creates n instance of itself.

context SingletonInstantiation inv:

self.primaryParticipant.getMethods() -> select(m | m.isConstructor() = true) ->

forAll(c | c.getModifiers() -> includes(mod | mod.isPrivate() = true))

context SingletonInstantiation inv:

self.primaryParticipant.getFields() -> includes(f | f.getModifiers() -> indludes(mod

| mod.isStatic() = true) and f.getType().oclIsTypeOf(primryParticipant))

context SingletonInstantiation inv:

self.primaryParticipant.getMethods() -> includes(m | m.getModifiers() -> includes(mod

| mod.isStatic() = true) and m.getReturnType().oclIsTypeOf(primaryParticipant))

5.5 Unspecified Patterns

Some patterns have not been specified or included in our framework. In particular,
there are 3 such patterns: Facade, Iterator, and Prototype.

Facade is a pattern that is so generic, we cannot specify it. It can be defined as
a pattern that uses an object as a front-facing interface to obscure more complex
behavior behind it - which can be achieved in a myriad of ways. While in some
cases of previous patterns with multiple variations we have included at least one
interpretation, for Facade we believe there is no particular reason to.

Iterator and Prototype both share the same reason. They are patterns that have
become so widespread in their use, the Java Language Specification has included
them by default. When we wish for a class to realize the Iterator pattern over a
certain type of collection, java provides the java.util.Iterator interface. Similarly, the
Prototype pattern can be realized by a class that implements the java.lang.Cloneable
interface. This means that there is no need to specify these patterns in terms of
declarational constraints, since by simply implementing those interfaces we can be
sure the corresponding pattern is indeed correctly applied.

59

Chapter 6

Validation

6.1 Reusability

6.2 Extensibility

6.3 Practical Evaluation

In this chapter we will showcase how JPatternJudge can verify patterns in real Java
projects. We also present some data concerning the extensibility and reusability of
the framework.

6.1 Reusability

In this section we will examine how reusable the realized constraints are. In particular,
in Table 6.1 we list the simple constraints used in our pattern specifications, showing
how many times each of them is used in a specification in general, and in how many
distinct specifications. This includes being used as part of a composite constraint.

As we can see, there are three constraints that are exceedingly common among
pattern specifications: TypeIsInterface, TypeImplementsInterface, and ClassHasField-
OfType. In fact, they account for 50 out of the 89 total uses of simple constraints
among all pattern specifications (including them being used as part of a composite
constraint), or 56% of them. Of course, TypeIsInterface and TypeImplementsInterface
are very tightly connected, since if an interface exists in a pattern then necessarily some

60

Table 6.1: Constraint Reusability Table

Constraint Total Uses Pattern Uses
TypeIsInterface 15 13
ClassIsAbstract 4 4
TypeImplementsInterface 17 13
ClassExtendsSuperclass 5 4
ClassHasFieldOfType 18 11
ClassHasFieldCollectionOfType 4 4
ClassHasVariableOfType 2 2
ClassHasMethodWithParameter 7 6
ClassHasMethodWithReturnType 5 5
ClassHasMethodWithReturnCollectionOfType 1 1
ClassInvokesMethod 7 7
ClassInstantiatesObjectOfType 4 4

class will implement it - however, it still goes to show that there is a very high degree
of reusability among certain constraints. Perhaps a more indicative example is that 16
out of the 18 pattern specifications (89%) contain at least one inheritance constraint
(TypeIsInterface or ClassIsAbstract). In addition, 14 out of 18 specifications (78%)
contain a field constraint (ClassHasFieldOfType or ClassHasFieldCollectionOfType).
Finally, and perhaps most importantly, there are only 5 instances of constraints that
were not specified as part of the abstract model being used in a pattern specification,
out of the 87 total constraints among the 18 specifications, or approximately 5,7%.
This means that the overwhelming majority of constraints used are already defined
in the framework.

6.2 Extensibility

In this section we will analyze JPatternJudge’s extensibility in terms of Design Patterns
and Constraints. The measure we examine are the lines of code required to add a new
design pattern or constraint in the framework, both in terms of total class size and in
terms of the populateConstraints() and check() methods for patterns and constraints
respectively. These are the methods where the important business logic is located.

61

In Table 6.2 we can see the number of lines of code for each DesignPattern
subclass, as well as how many of them are part of the populateConstraints() method
which contains the pattern’s constraints.

Table 6.2: LoC measurements in Design Pattern classes

Pattern Total LoC populateConstraints() LoC
Abstract Factory 68 33
Adapter 43 18
Bridge 49 21
Builder 58 25
Chain Of Responsibility 38 13
Command 49 21
Composite 43 15
Decorator 48 21
Flyweight 46 17
Mediator 54 27
Memento 39 13
Observer 42 17
Proxy 40 14
Singleton 31 5
State 42 16
Strategy 40 14
Template Method 39 13
Visitor 48 21

Total 817 324
Average 45 18

As we can see, only a very small amount of code is required to implement pattern
specification in JPatternJudge. The caveat is that the constraints required for it are
already defined in their own classes, somewhat obscuring the real number of lines.
However, the vast majority of constraints used are simple and thus already present
in the tool, as was shown in Section 6.1, after the implementation of the constraints
defined in Chapter 3, only 5 new constraints were required.

In terms of extensibility of contraints, in Table 6.3 we can see the number of

62

lines of code for each class, and for the check() method containing the logic that
decides if the constraint is satisfied or not for the basic constraints defined in the
model (Chapter 3). In Table 6.4, we see the same information for constraints created
for a specific pattern (found in Chapter 5), and method constraints (as mentioned in
Chapter 4).

Table 6.3: LoC measurements in basic Constraint classes

Basic constraints Total LoC check() LoC
TypeIsInterface 28 3
ClassIsAbstract 31 4
TypeIsInterfaceOrAbstractClass 25 6
TypeImplementsInterface 41 13
ClassExtendsSuperclass 36 11
TypeInheritsFrom 51 25
ClassHasFieldOfType 39 12
ClassHasFieldCollectionOfType 60 28
ClassHasVariableOfType 40 13
ClassHasFieldOrVariableOfType 34 8
ClassHasMethodWithParameter 43 14
ClassHasMethodWithReturnType 42 14
ClassHasMethodWithReturnCollectionOfType 41 14
ClassInvokesMethod 48 18
ClassInstantiatesObject 42 13

Total 601 195
Average 40 13

As we can see, constraint classes are in general quite small, even the ones that
express more complicated constraints used in particular patterns. On average, the
basic constraint classes contain 40 lines of code, while the pattern-specific constraints
contain 58.

A special note should be made for the three extremely large method constraints,
MethodHasVariableOfType, MethodInvokesMethod, and MethodInstantiatesObjectOfType.
The reason that these classes are so large, is that they need to individually check al-
most every single different type of Expression and Statement present in a method -

63

Table 6.4: LoC measurements in pattern-specific and method Constraint classes

Pattern-specific constraints Total LoC check() LoC
BuilderProductMatching 61 27
ConcreteProductInterfaceMatching 41 14
FactoryProductMatching 42 12
TemplateMethodConstraint 82 40
SingletonInstantiation 64 30

Total 290 123
Average 58 25

Method constraints Total LoC check() LoC
MethodHasParameterOfType 30 13
MethodReturnsType 19 4
MethodReturnsCollectionOfType 44 23
MethodHasVariableOfType 141 114
MethodInvokesMethod 471 457
MethodInstantiatesObjectOfType 513 455

Total 1218 1066
Average 244 213

there are 33 different subclasses of Expression, and 22 subclasses of Statement, each
with different attributes that need examination. This leads to a total of up to 55 dif-
ferent cases that need to be explicitly examined, and even though the logic for each
one is simple, it still leads to this sort of class. However, as we saw in the previous
section, the constraints that we have already included in JPatternJudge are sufficient
for most specifications, so it is unlikely that such a large class will need to be added.

6.3 Practical Evaluation

In this section we will present the results of using JPatternJudge on a set of Java
projects. These were developed by students as part of a university-level Software
Engineering course. The use of specific design patterns was explicitly required as
part of the assignment, meaning that we both know that patterns do indeed exist in

64

Table 6.5: Composite pattern constraints

Constraint ID Constraint
1 ClassIsAbstract(Composite)
2 ClassHasMethodWithParameter(Component, Component)
3 ClassHasMethodWithReturnCollectionOfType(Component, Component)
4 ClassExtendsSuperclass(Leaf, Component)
5 ClassExtendsSuperclass(Composite, Component)
6 ClassHasFieldCollectionOfType(Composite, Component)

the code, and that specific classes have known roles in those patterns. We have two
sets of projects from two different years (2018 and 2020).

6.3.1 2018 Project

This project concerned the creation of an application for pattern writing, supporting
various templates for patterns as well as generating documents for the patterns in
various text formats (simple text, LaTeX).

There are two design patterns utilized in this project that we verified: Composite
andDecorator. Composite is applied on a set of classes that represent an entire pattern
language: the leaf is a simple class (PatternPart) that holds some basic data, while the
composite (PatternComposite) is subclassed further into a PatternLanguage, a Pattern,
and a Decorator class. The Decorator pattern is applied on the PatternComposite
class (which has the component role for the decorator pattern); the PatternLanguage
and Pattern classes are the concrete components, while the Decorator is obviously
the homonymous role and is responsible for adding the commands for a LaTeX
document (e.g. declaring sections and subsections).

We examined 15 different projects for that assignment and added the appropriate
annotations to each class. We then ran JPatternJudge on each project. The pattern
detection and verification proceeded as normal, and the reports were generated. In
both Composite and Decorator patterns, there were several common errors that were
detected.

In Table 6.5 we can see again the list of constraints in the Composite pattern.
For composite, there were 3 distinct errors that were found:

• CE1: The Component class was concrete. (Constraint 1)

65

Table 6.6: Decorator pattern constraints

Constraint ID Constraint
1 TypeIsInterfaceOrAbstractClass(Component)
2 TypeInheritsFrom(ConcreteComponent, Component)
3 TypeInheritsFrom(Decorator, Component)
4 ClassHasFieldOfType(Decorator, Component)

• CE2: The method returning a collection of components was missing. (Constraint
3)

• CE3: No inheritance relations at all, and Composite did not have a field that
was a collection of Components. (Constraints 4, 5, 6)

We represent them with the shorthand CE, for Composite Error.
In Table 6.7, we can see the results of the verification: 10 of the 15 projects had

a concrete Composite class (CE1), and 4 projects lacked the collection return method
(CE2). CE3 was present only in a single instance, but it meant that the pattern
structure was completely wrong. Pattern instances that did not contain any errors an
were verified as correct are marked with ” - ”.

As for the Decorator pattern, 4 of the projects did not implement it at all, while
all except a single one of the others shared the same 2 mistakes. The constraints for
the Decorator pattern are shown again in Table 6.6, and the errors are listed below:

• DE1: The Component class was concrete. (Constraint 1)

• DE2: The Decorator class was missing a field of type Component. (Constraint
4)

We represent them with the shorthand DE, for Decorator Error.
Here the issue also lies with the structure of the project itself, rather than only on

the developers. The component role of Decorator is the PatternComposite class, which
needs to be concrete for the purposes of the Composite pattern in participates in. So
there is a conflict in constraints there. However, according to the commonly accepted
specification, these implementations are still wrong and were verified as such.

66

Table 6.7: Verification results for 2018 project

Project Composite Errors Decorator errors
Project 1 CE1 DE1
Project 2 CE1 DE1, DE2
Project 3 CE1, CE2 Missing
Project 4 CE3 Missing
Project 5 CE1 DE1, DE2
Project 6 CE1, CE2 DE1, DE2
Project 7 - Missing
Project 8 - DE1, DE2
Project 9 CE1 DE1, DE2
Project 10 CE2 DE1, DE2
Project 11 - DE1, DE2
Project 12 CE1, CE2 DE1, DE2
Project 13 CE1 Missing
Project 14 CE1 DE1, DE2
Project 15 CE1 DE1, DE2

67

Table 6.8: Command pattern constraints

Constraint ID Constraint
1 TypeIsInterface(Command)
2 TypeImplementsInterface(ConcreteCommand, Command)
3 ClassHasFieldOfType(ConcreteCommand, Receiver)
4 ClassHasFieldOrVariableOfType(Invoker, Command)
5 NegativeConstraint(ClassHasFieldOfType(Invoker, ConcreteCommand))

6.3.2 2020 Project

This project concerned the creation of a simple Text-To-Speech application composed
of a GUI, a text editor, and the text-to-speech conversion using an external library.

There are three design patterns of interest in this project: Command, Template
Method, and Strategy. We examine a total of 10 projects.

We have 3 instances of Command in each project: One for manipulating docu-
ments(creating, opening, saving), one for converting entire documents to speech, and
one for converting single line to speech. e can see the constraints for the Command
pattern in Table 6.8. An issue that appears is that the Command role in all 3 cases
is served by the ActionListener interface, provided by java.awt - an external library
that we o not have access to. As such, in some cases we cannot annotate it so as to
properly detect the pattern instance. This means that JPatternJudge won’t proceed
with individual constraint verification if it detects a role missing, as outlined in the
verification mechanism in Chapter 4. However, in some projects it was implemented
by a new interface included in the project. In general, we detected 3 distinct problems
with the Command patterns:

• CRM: Command role not detected - belongs to external library.

• CE1: Invoker does not contain a Command field or variable. (Constraint 4)

• CE2: The Concrete Commands do not have a field of Receiver. (Constraint 3)

CE is shorthand for Command Error, and CRM is for Command Role Missing.
The Strategy and Template Method patterns are combined, and used to imple-

ment various different encoding algorithms for the documents: There is a Template
Encoding class, and an EncodingStrategy class. One of them is subclassed to the

68

Table 6.9: Strategy pattern constraints

Constraint ID Constraint
1 ClassHasFieldOrVariableOfType(Context, Strategy)
2 ClassInvokesMethod(Context, Strategy)
3 TypeIsInterface(Strategy)
4 TypeImplementsInterface(ConcreteStrategy, Strategy)

Table 6.10: Template Method pattern constraints

Constraint ID Constraint
1 ClassIsAbstract(Template)
2 ClassExtendsSuperclass(Concrete, Template)
3 TemplateMethodConstraint(Template)

other (varying among projects) and then further subclassed by the concrete strate-
gies/template classes (which are one an the same). This 2-layer hierarchy caused the
presence of false negatives in every instance, as was described in Chapter 3: The
concrete strategies inherit directly from one of the Strategy or Template classes, but
not both; and indirect inheritance cannot be detected by our implementation. The
constraints for the Template Method and Strategy pattern are given in Tables 6.10
and 6.9 respectively. In general, we found the following errors:

• IH: Indirect Hierarchy. (Template constraint 2 or Strategy constraint 4)

• TE1: Template method was not appropriately defined. (Template constraint 3)

• SE1: Strategy context does not invoke a strategy method. (Strategy constraint
2)

Where TE is shorthand for Template Error, and SE for Strategy Error.
We can see the results of the verifications in Table 6.11. We cannot properly

detect any of the Command instances for 4 of the 10 projects, and we cannot detect
its first instance for an additional 1. However, in every detectable instance, we can see
that there were errors committed that JPatternJudge found during verification. As for
Template and Strategy, we do indeed have the false negative of Indirect Hierarchy
(IH), but we also detected additional mistakes that were correctly verified.

69

Table 6.11: Verification results for 2020 project

Project Command 1 Command 2 Command 3 Template Method Strategy
Project 1 CRM CE1, CE2 CE1 - IH
Project 2 CE1, CE2 CE1, CE2 CE1, CE2 - IH
Project 3 CRM CRM CRM IH -
Project 4 CE1, CE2 CE1 CE1, CE2 Missing SE1
Project 5 CRM CRM CRM - IH
Project 6 CRM CRM CRM TE1 IH
Project 7 CE1, CE2 CE1, CE2 CE1, CE2 IH, TE1 -
Project 8 CE1 CE1 CE1 TE1 IH
Project 9 CRM CRM CRM TE1 IH
Project 10 CE1 CE1 CE1 - IH

6.3.3 Conclusions

As we saw form the results of the project verification, JPatternJudge can function in
a real environment outside of custom-made projects for testing, with the capacity to
correctly verify patterns as well as detect errors.

From the data presented in Tables 6.7 and 6.11, we can extract a measure of
correctness over the results of the verifications. We determined the Recall of JPattern-
Judge to be 1 - i.e., all of the patterns that contained errors were in fact verified as
incorrect; whether we examine patterns individually or in total. This was determined
through manual examination of the pattern instances. Precision has differences from
pattern to pattern, and its lower score is due to the practical limitations of the tool
(leading to errors CRM and IH) mentioned earlier. The exact results for Precision can
be found in Table 6.12.

In addition, we can measure the amount of effort required for the developers to
use JPatternJudge in the following way: The effort required is simply the number
of annotations used, each one of which is only one line of code - which in turn
is equal to the number of classes participating in design patterns. We can see this
metric in Tables 6.13 and 6.14 for each set of projects. The larger effort required in
the second set of projects is due to the presence of the Command pattern, and the
multiple ConcreteCommand classes associated with it.

We can also see that there is indeed a reason to use JPatternJudge, as mistakes

70

Table 6.12: Precision scores

Pattern Precision Score
Composite 1
Decorator 1
Command 0.567

Template Method 0.6
Strategy 0.125
Total 0.667

Table 6.13: Developer effort for annotation as LoC - 2018 Projects

Project Annotation LoC

Project 1 6
Project 2 6
Project 3 3
Project 4 3
Project 5 6
Project 6 6
Project 7 3
Project 8 6
Project 9 6
Project 10 6
Project 11 6
Project 12 6
Project 13 6
Project 14 6
Project 15 6

Average 5.4

71

Table 6.14: Developer effort for annotation as LoC - 2020 Projects

Project Annotation LoC
Project 1 22
Project 2 22
Project 3 27
Project 4 20
Project 5 17
Project 6 21
Project 7 24
Project 8 16
Project 9 12
Project 10 21

Average 20.2

are indeed being committed by programmers when using Design Patterns. From
the data presented, we can also see that these mistakes are very commonly shared
among programmers; although interpreting this is outside the scope of our work. Of
course, as we mentioned these projects were part of a university assignment rather
than professional code, which means that a lower level of quality and experience
was expected. However, this doesn’t mean that professional developers do not make
similar mistakes; in addition, patterns can be broken due to the inevitable evolution
of a system, meaning that by verifying the patterns after every system update devel-
opers can avoid problems occurring down the line unexpectedly. Finally, by using
JPatternJudge and annotating the design patterns, developers are also documenting
their existence; this can assist later on in maintenance, as was described in [15].

72

Chapter 7

Future Work and Conclusion

7.1 Future Work

7.2 Conclusion

7.1 Future Work

There is a great deal of possible further work that may follow on from JPatternJudge.
In this section we will present some possibilities.

7.1.1 Expanding JPatternJudge Functionality

An obvious expansion to JPatternJudge includes the specification of more pattern
variants. If done by independent developers, this will also give us a clearer picture
of the framework’s extensibility, since our experience with JPatternJudge obviously
makes it an easier process for us.

Another possibility is to add further functionality to JPatternJudge beyond the
pattern specifications themselves. We can define each role of a pattern as having one
or multiple classes serving that role, which would allow us to detect and flag instances
where a role with a single class is for some reason served by many. However, this
would have a slight impact on extensibility without really offering any significant
advantage.

Alternatively, we can include supporting multiple variants of a pattern in a single
definition, meaning that the class corresponding to the design pattern will include

73

specifications for all variations. This can make the tool easier on the end user, since
there will be no need to be so exact with the class annotation - however, this will
introduce more complexity on the back end, further hampering extensibility. For ex-
ample, if we had two variations of Decorator, normally we would create two separate
specifications e.g. ”Decorator 1” and ”Decorator 2” in two different classes. A devel-
oper would then have to be careful to select the proper variant in the annotation of
his source code, which somewhat defeats the purpose of the tool - if the developer is
aware of the differences between pattern variations and can select the correct one for
annotation, it’s unlikely they commit an error in the actual implementation. Ideally,
they would simply annotate as ”Decorator”, and JPatternJudge would automatically
detect which variation is used. This is a very difficult task, since there is the question
of how, exactly, we decide which variation is used. One way would be to iterate over
all variants, and select the one where all constraints are satisfied; but of course this
means we can only decide if the pattern if correctly applied, again essentially losing
the main function of JPatternJudge.

7.1.2 Design Pattern Detection

The problem of detecting a design pattern is quite different from the problem of
verification. We do not have prior knowledge or suspicion about the presence of a
specific pattern - rather, we blindly search the source code for possible structures
that correspond to one. Of course, both problems of verification an detection are first
reliant of specification of patterns. Using our current method of declarative constraints,
pattern detection will not yield good results, even with a large number of pattern
variations specified. The general structures used in patterns are very common, leading
to a very high number of false positives - meaning that another form of specification
must be used. There have been a multitude of works in this field, such as using
template matching[23], graph-based similarity scoring[24], and machine learning[25].

Since using JPatternJudge as a basis for full pattern detection is not promising,
we can shift to a more approachable problem: partial pattern detection. So far, users
of JPatternJudge must annotate every class or interface that participates in a pattern
with the correct role. This can become cumbersome in large projects, so we could try
and find a way to reduce this workload. Additionally, a developer might be certain
about the role of a specific class, but not about the roles of other classes. A possibility

74

for additional functionality would thus be to ”fill in the blanks”, so to speak, when
not every role in a pattern has been annotated. This will require us to examine each
pattern to decide in which cases the pattern can be filled in, how many roles are
needed for us to be sure of the result, an what is the tolerance (if any) on errors in
the application of the pattern.

7.1.3 Automatic Introduction or Repair of Design Patterns

Moving further than detection, we have two more possibilities that might warrant
further exploration, although they far exceed the scope of JPatternJudge.

First, automatic suggestion and introduction of design patterns. An almost oppo-
site concept of pattern detection, this is the problem of deciding a piece of code is not
part of a design pattern, but could be. This is a very difficult issue, since we cannot
know the programmer’s intent based simply on the structure of the code. We could
have an empirical list of possible code structures that can be shifted to the form of a
design pattern, but this isn’t a general solution.

Alternatively, we can attempt to automatically repair erroneous pattern instances.
Meaning that if JPatternJudge detects an error in a specific pattern application, we can
not only show what the error was, but also suggest ho it cn be resolved. This isn’t as
simple as only altering the classes so that the constraints are obeyed; we must make
sure that the function of the code remains the same. In this context, both repairing a
pattern and automatically implementing one are related to the concept of Refactoring,
since we want to restructure exiting code without altering its external behavior.

7.2 Conclusion

In this thesis, we presented the problem of formulating a specification for a software
design pattern, as well as automatically verifying its implementation. Various tools
have been developed in the past, but none of them are being supported at this time.
In addition, they used complicated pattern languages and were difficult to use. We
presented JPatternJudge, an Eclipse-based framework for design pattern specification
and verification.

JPatternJudge uses a system of declarative constraints to define patterns. While
other works have also used declarative constraints in the past, we introduce a new

75

concept of negative constraints that have been ignored so far, in order to have a stricter
definition of pattern implementations. It is also much easier to extend with new
variations of design patterns, with our implementation of the framework requiring on
average only 45 lines of code for a new pattern specification, and 40 for a constraint.
In addition, the constraints defined are very highly reusable.

Finally, we showed that JPatternJudge can indeed verify design patterns in real
Java projects, correctly identifying mistakes according to the specifications.

76

Bibliography

[1] C. Alexander, A pattern language: towns, buildings, construction. Oxford University
press, 1977.

[2] E. Gamma, Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[3] A. V. Zarras, “Common mistakes when using the command pattern and how
to avoid them,” in Proceedings of the European Conference on Pattern Languages of
Programs 2020, 2020, pp. 1–9.

[4] A. Blewitt, “Hedgehog: automatic verification of design patterns in Java,” Ph.D.
dissertation, University of Edinburgh. College of Science and Engineering., 2006.

[5] D. Distefano and M. J. Parkinson J, “jStar: Towards practical verification for
java,” ACM Sigplan Notices, vol. 43, no. 10, pp. 213–226, 2008.

[6] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling and instan-
tiation using DPML,” in ACM International Conference Proceeding Series, vol. 21,
2002, pp. 3–11.

[7] T. Taibi and D. C. L. Ngo, “Formal specification of design pattern combination
using BPSL,” Information and Software Technology, vol. 45, no. 3, pp. 157–170,
2003.

[8] K. Beck and W. Cunningham, “Using pattern languages for object oriented pro-
grams,” in Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1987.

[9] F. Wedyan and S. Abufakher, “Impact of design patterns on software quality: a
systematic literature review,” IET Software, vol. 14, no. 1, pp. 1–17, 2019.

77

[10] J. M. B. D. J. Helen and J. Yang, “OO design patterns, design structure, and
program changes: An industrial case study,” in IEEE International Conference on
Software Maintenance, 2001.

[11] D. Posnett, C. Bird, and P. Dévanbu, “An empirical study on the influence of
pattern roles on change-proneness,” Empirical Software Engineering, vol. 16, no. 3,
pp. 396–423, 2011.

[12] M. Vokac, “Defect frequency and design patterns: An empirical study of in-
dustrial code,” IEEE Transactions on Software Engineering, vol. 30, no. 12, pp.
904–917, 2004.

[13] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy, “Two con-
trolled experiments assessing the usefulness of design pattern documentation in
program maintenance,” IEEE Transactions on Software Engineering, vol. 28, no. 6,
pp. 595–606, 2002.

[14] C. Gravino, M. Risi, G. Scanniello, and G. Tortora, “Does the documentation of
design pattern instances impact on source code comprehension? results from two
controlled experiments,” in 2011 18th Working Conference on Reverse Engineering.
IEEE, 2011, pp. 67–76.

[15] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and G. Dodero, “Documenting
design-pattern instances: A family of experiments on source-code comprehen-
sibility,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 24, no. 3, pp. 1–35, 2015.

[16] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-oriented design
patterns in game development,” Information and Software Technology, vol. 49, no. 5,
pp. 445–454, 2007.

[17] “Refactoring guru design patterns.” [Online]. Available: https://refactoring.guru/
design-patterns/catalog

[18] “Tutorials point design patterns.” [Online]. Available: https://www.
tutorialspoint.com/design_pattern/index.htm

[19] L. Lamport, “The temporal logic of actions,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 16, no. 3, pp. 872–923, 1994.

78

https://refactoring.guru/design-patterns/catalog
https://refactoring.guru/design-patterns/catalog
https://www.tutorialspoint.com/design_pattern/index.htm
https://www.tutorialspoint.com/design_pattern/index.htm

[20] J. Cabot and M. Gogolla, “Object constraint language (ocl): a definitive guide,”
in International school on formal methods for the design of computer, communication
and software systems. Springer, 2012, pp. 58–90.

[21] “Java specification.” [Online]. Available: https://docs.oracle.com/javase/specs/

[22] “Eclipse package org.eclipse.jdt.core.dom.” [Online]. Avail-
able: https://help.eclipse.org/2020-03/ntopic/org.eclipse.jdt.doc.isv/reference/api/
org/eclipse/jdt/core/dom/package-summary.html

[23] J. Dong, Y. Sun, and Y. Zhao, “Design pattern detection by template matching,”
in Proceedings of the 2008 ACM symposium on Applied computing, 2008, pp. 765–
769.

[24] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis, “Design pat-
tern detection using similarity scoring,” IEEE transactions on software engineering,
vol. 32, no. 11, pp. 896–909, 2006.

[25] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine learning tech-
niques for design pattern detection,” Journal of Systems and Software, vol. 103, pp.
102–117, 2015.

https://docs.oracle.com/javase/specs/
https://help.eclipse.org/2020-03/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html
https://help.eclipse.org/2020-03/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/package-summary.html

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Related Work
	Design Patterns
	Design Pattern Specification and Verification
	Balanced Pattern Specification Language
	jStar
	Design Pattern Modeling Language
	HEDGEHOG

	Specification Model
	Design Patterns
	Constraints
	Constraint Categories
	SelfConstraint
	Type Constraints
	Matching Constraints
	Negative Constraints

	Framework Mechanisms
	Constraint Realization
	Design Pattern Realization
	Specification of Design Patterns in Practice

	Detecting Design Pattern Instances
	Design Pattern Annotation
	Specifying Design Pattern Instances in Practice
	Pattern Detection Mechanism

	Design Pattern Verification
	The JPatternJudge Plugin

	Design Pattern Specifications
	Notation
	Structural Patterns
	Adapter
	Bridge
	Composite
	Decorator
	Flyweight
	Proxy

	Behavioral Patterns
	Chain Of Responsibility
	Command
	Mediator
	Memento
	Observer
	State
	Strategy
	Template Method

	Creational Patterns
	Abstract Factory
	Builder
	Singleton

	Unspecified Patterns

	Validation
	Reusability
	Extensibility
	Practical Evaluation
	2018 Project
	2020 Project
	Conclusions

	Future Work and Conclusion
	Future Work
	Expanding JPatternJudge Functionality
	Design Pattern Detection
	Automatic Introduction or Repair of Design Patterns

	Conclusion

	Bibliography

