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Abstract: This paper presents a model selection criterion in a composite likelihood framework based
on density power divergence measures and in the composite minimum density power divergence
estimators, which depends on an tuning parameter α. After introducing such a criterion, some
asymptotic properties are established. We present a simulation study and two numerical examples in
order to point out the robustness properties of the introduced model selection criterion.
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1. Introduction

Composite likelihood inference is an important approach to deal with those real situations of
large data sets or very complex models, in which classical likelihood methods are computationally
difficult, or even, not possible to manage. Composite likelihood methods have been successfully used
in many applications concerning, for example, genetics ([1]), generalized linear mixed models ([2]),
spatial statistics ([3–5]), frailty models ([6]), multivariate survival analysis ([7,8]), etc.

Let us introduce the problem, adopting here the notation by [9]. Let { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1}
be a parametric identifiable family of distributions for an observation y = (y1, ..., ym)T , a realization of
a random m-vector Y . In this setting, the composite likelihood function based on K different marginal
or conditional distributions has the form

CL(θ, y) =
K

∏
k=1

(
fAk (yj, j ∈ Ak; θ)

)wk

and the corresponding composite log-density

logCL(θ, y) =
K

∑
k=1

wk`Ak (θ, y), (1)

with `Ak (θ, y) = log fAk (yj, j ∈ Ak; θ), where {Ak}K
k=1 is a family of sets of indices associated either

with marginal or conditional distributions involving some yj, j ∈ {1, ..., m} and wk, k = 1, ..., K are
non-negative and known weights. If the weights are all equal, then they can be ignored. In this case,
all the statistical procedures give equivalent results. The composite maximum likelihood estimator
(CMLE), θ̂c, is obtained by maximizing, in respect to θ ∈ Θ, the expression (1).
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The CMLE is consistent and asymptotically normal and, based on it, we can establish hypothesis
testing procedures in a similar way to the classical likelihood ratio test, Wald test or Rao’s score test.
A development of the asymptotic theory of the CMLE including its application to obtain the composite
ratio statistics, Wald-type tests and Rao score tests in the context of composite likelihood can be seen
in [10]. However, in [11–13] is shown that the CMLE and the derived testing procedures present an
important lack of robustness. In this sense, [11–13] derived some new distance-based estimators and
tests with good robustness behaviour without an important loss of efficiency. In this paper, we are
going to consider the composite minimum density power divergence estimator (CMDPDE), introduced
in [12], in order to present a model selection criterion in a composite likelihood framework.

Model selection criteria, for summarizing data evidence in favor of a model, is a very well
studied subject in statistical literature, overall in the context of full likelihood. The construction of
such criteria requires a measure of similarity between two models, which are typically described in
terms of their distributions. This can be achieved if an unbiased estimator of the expected overall
discrepancy is found, which measures the statistical distance between the true, but unknown model,
and the entertained model. Therefore, the model with the smallest value of the criterion is the most
preferable model. The use of divergence measures, in particular Kullback–Leibler divergence ([14]),
to measure this discrepancy, is the main idea of some of the most known criteria: Akaike Information
Criterion (AIC, [15,16]), the criterion proposed by Takeuchi (TIC, [17]) and other modifications of
AIC [18]. DIC criterion, based on the density power divergence (DPD), was presented in [19] and,
recently, [20] presented a local BHHJ power divergence information criterion following [21]. In the
context of the composite likelihood there are some criteria based on Kullback–Leibler divergence,
see for instance [22–24] and references therein. To the best of our knowledge only Kullback–Leibler
divergence was used to develop model selection criteria in a composite likelihood framework. To fill
this gap, our interest is now focused on DPD.

In this paper, we present a new information criterion for model selection in the framework of
composite likelihood based on DPD measure. This divergence measure, introduced and studied
in the case of complete likelihood by [25], has been considered previously in [12,13] in the context
of composite likelihood. In these papers, a new estimator, the CMDPDE, was introduced and its
robustness in relation to the CMLE as well as the robustness of some families of test statistics were
studied, but the problem of model selection was not considered. This problem is considered in this
paper. The criterion introduced in this paper will be called composite likelihood DIC criterion (CLDIC).
The motivation of considering a criterion based on DPD instead of Kullback–Leibler divergence is due
to the robustness of the procedures based on DPD in statistical inference, not only in the context of full
likelihood [25,26], but also in the context of composite likelihood [12,13]. In Section 2, the CMDPDE
is presented and some properties of this estimator are discussed. The new model selection criterion,
CLDIC, based on CMDPDE is introduced in Section 3 and some of its asymptotic properties are studied.
A simulation study is carried out in Section 4 and some numerical examples are presented in Section 5.
Finally, some concluding remarks are presented in Section 6.

2. Composite Minimum Density Power Divergence Estimator

Given two probability density functions g and f , associated with two m-dimensional random
variables respectively, the DPD ([25]) measures a statistical distance between g and f by

dα(g, f ) =
∫
Rm

{
f (y)1+α −

(
1 +

1
α

)
f (y)αg(y) +

1
α

g(y)1+α

}
dy, (2)

for α > 0, while for α = 0 it is defined by

d0(g, f ) = lim
α→0+

dα(g, f ) = dKL(g, f ),
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where dKL(g, f ) is the Kullback–Leibler divergence (see, for example, [26]). For α = 1, the expression (2)
leads to the L2 distance L2(g, f ) =

∫
Rm ( f (y)− g(y))2 dy. It is also interesting to note that (2) is a special

case of the so-called Bregman divergence∫
Rm

[
T(g(y))− T( f (y))− {g(y)− f (y}T′( f (y))

]
dy. (3)

If we consider T(l) = 1
α l1+α in (3), we get dα(g, f ). The parameter α controls the trade-off between

robustness and asymptotic efficiency of the parameter estimates which are the minimizers of this
family of divergences. For more details about this family of divergence measures we refer to [27].

Let now Y1, ..., Yn be independent and identically distributed replications of Y which are
characterized by the true but unknown distribution g. Taking into account that the true model g
is unknown, suppose that Ξ = { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} is a parametric identifiable family of
candidate distributions to describe the observations y1, ..., yn. Then, the DPD between the true model g
and the composite likelihood function, CL(θ, ·), associated to the parametric model f (·; θ) is defined as

dα(g (·) , CL(θ, ·)) =
∫
Rm

{
CL(θ, y)1+α −

(
1 +

1
α

)
CL(θ, y)αg(y) +

1
α

g(y)1+α

}
dy, (4)

for α > 0, while for α = 0 we have dKL(g (·) , CL(θ, ·)), which is defined by

dKL(g (·) , CL(θ, ·)) =
∫
Rm

g(y) log
g(y)
CL(θ, y)

dy. (5)

In Section 3, we are going to introduce and study the CLDIC criterion based on (4).
Let

{Mk}k∈{1,...,`} (6)

be a family of candidate models to govern the observations Y1, ..., Yn. We shall assume that the true
model is included in {Mk}k∈{1,...,`} . For a specific k = 1, . . . , `, the parametric model Mk is described
by the composite likelihood function

CL(θ, ·), θ ∈ Θk ⊂ Rk.

In this setting, it is quite clear that the most suitable candidate model to describe the observations
is the model that minimizes the DPD in (4). However, the unknown parameter θ is included in it,
so it is not possible to use directly this measure for the choice of the most suitable model. A way
to overcome this problem is to plug-in, in (4), the unknown parameter θ by an estimator which is
desirable to obey some nice properties, like consistency and asymptotic normality. Based on this point,
the CMDPDE, introduced in [12], can be used. This estimator is described in the sequel for the sake
of completeness.

If we denote the kernel of (4) as

Wα (θ) =
∫
Rm
CL(θ, y)1+αd y−

(
1 +

1
α

) ∫
Rm
CL(θ, y)αg(y)dy, (7)

we can write
dα(g (·) , CL(θ, ·)) = Wα (θ) +

1
α

∫
Rm

g(y)1+αdy

and the term 1
α

∫
Rm g(y)1+αdy does not depend on θ and could be ignored in (9). A natural estimator

of Wα (θ), given in (7), can be obtained by observing that the last integral in (7), can be expressed
in the form

∫
Rm CL(θ, y)αdG(y), for G the distribution function corresponding to g. Hence, if the
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empirical distribution function of Y1, ..., Yn will be exploited, this last integral is approximated by
1
n

n
∑

i=1
CL(θ, Y i)

α, i.e.,

Wn,α (θ) =
∫
Rm
CL(θ, y)α+1dy−

(
1 +

1
α

)
1
n

n

∑
i=1
CL(θ, Y i)

α. (8)

Definition 1. The CMDPDE of θ, θ̂
α
c , is defined, for α > 0, by

θ̂
α
c = arg min

θ∈Θ
Wn,α (θ) . (9)

We shall denote the score of the composite likelihood by

u(θ, y) =
∂logCL(θ, y)

∂θ
. (10)

Let θ0 be the true value of the parameter θ. In [12], it was shown that the asymptotic distribution
of θ̂

α
c is given by

√
n(θ̂

α
c − θ0)

L−→
n→∞

N
(

0p, Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1
)

,

being

Hα(θ) =
∫
Rm
CL(θ, y)α+1u(θ, y)u(θ, y)Tdy (11)

and

Jα(θ) =
∫
Rm
CL(θ, y)2α+1u(θ, y)u(θ, y)Tdy

−
∫
Rm
CL(θ, y)α+1u(θ, y)dy

∫
Rm

u(θ, y)TCL(θ, y)1+αdy. (12)

Remark 1. For α = 0 we get the CMLE of θ

θ̂c = arg min
θ ∈Θ

(
− 1

n

n

∑
i=1

logCL(θ, yi)

)
. (13)

At the same time it is well-known that

√
n(θ̂c − θ)

L−→
n→∞

N
(

0p, G∗(θ)−1
)

,

where G∗(θ) denotes the Godambe information matrix defined by G∗(θ) = H(θ)J(θ)−1H(θ), with H(θ)

being the sensitivity or Hessian matrix and J(θ) being the variability matrix, defined, respectively, by

H(θ) = Eθ

[
− ∂

∂θ
u(θ, Y)T

]
, J(θ) = Eθ

[
u(θ, Y)u(θ, Y)T

]
.

3. A New Model Selection Criterion

In order to describe the CLDIC criterion we consider the model Mk given in (6). Following
standard methodology (cf. [28], pp. 240), the most suitable candidate model to describe the data
Y1, ..., Yn is the model that minimizes the expected estimated DPD

EY1,...,Yn

[
dα(g (·) , CL(θ̂α

c , ·))
]

, (14)

subject to the assumption that the unknown model g is belonging to Ξ, i.e., the true model is included
in {Ms}s∈{1,...,`} and taking into account that θ̂

α
c , defined in (9), is a consistent and asymptotic normally
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distributed estimator of θ. However, this expected value is still depending on the unknown parameter
θ. So, as a criterion, it should be used an asymptotically unbiased estimator of (14), for g ∈ Ξ.

The most appropriate model to select is the model which minimizes the expected value

EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
.

This expected value is still depending on the unknown parameter θ. So, an asymptotically unbiased
estimator of the above expected value could be the basis of a selection criterion, for g ∈ Ξ. In order to
proceed with the derivation of such an asymptotically unbiased estimator of EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
.

The empirical version of Wα (θ), in (7), is Wn,α(θ), given in (8), and plays a central role in the
development of the model selection criterion on the basis of the next theorem which expresses
the expected value EY1,...,Yn

[
Wα

(
θ̂

α
c

)]
by means of the respective expected value of Wn,α(θ̂

α
c ), in

an asymptotically equivalent way.

Theorem 1. If the true distribution g belongs to the parametric family Ξ and θ0 denotes the true value of the
parameter θ, then we have

EY1,...,Yn

[
Wα(θ̂

α
c )
]
= EY1,...,Yn

[
Wn,α(θ̂α) +

α + 1
n

trace
(

Jα (θ0) Hα (θ0)
−1
)]

+ op(1)

with Hα (θ) and Jα (θ) given in (11) and (12), respectively.

Based on the above theorem, the proof of which is presented in a full detail in the Appendix A,
an asymptotic unbiased estimator of EY1,....,Yn

[
Wα(θ̂

α
c )
]

is given by

Wn,α(θ̂
α
c ) +

α + 1
n

trace
(

Jα(θ̂
α
c )Hα(θ̂

α
c )
−1
)

.

This ascertainment is the basis and a strong motivation for the next definition which introduces the
model selection criterion.

Definition 2. Let {Mk}k∈{1,...,`} be candidate models for the observations Y1, ..., Yn. The selected model
M∗ verifies

M∗ = min
k∈{1,...,,`}

CLDICα (Mk) ,

where

CLDICα (Mk) = Wn,α(θ̂
α
c ) +

α + 1
n

trace
(

Jα(θ̂
α
c )Hα(θ̂

α
c )
−1
)

,

Wn,α(θ) was given in (8) and Jα (θ) and Hα (θ) were defined in (11) and (12), respectively.

The next remark summarizes the model selection criterion in the case α = 0 and it therefore
extends, in a sense, the pioneer and classic AIC.

Remark 2. For α = 0 we have,

dKL(g(·), CL(θ, ·)) = W0(θ) +
∫
Rn

g(y) log g(y)dy

with W0(θ) = −
∫
Rn log CL(θ, y)g(y)dy. Therefore, the most appropriate model which should be selected, is

the model which minimizes the expected value

EY1,...,Yn

[
W0(θ̂c)

]
, (15)
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where θ̂c is the CMLE of θ0 defined in (9).
The expected value (15) is still depending on the unknown parameter θ. A natural estimator of W0(θ̂c)

can be obtained by replacing the distribution function G, of g, by the empirical distribution function based on
Y1, . . . , Yn,

Wn,0(θ) = −
1
n

n

∑
i=1

log CL(θ, yi).

Based on it, we select the model M∗ that verifies

M∗ = min
k∈{1,...,,`}

CLDIC0 (Mk) ,

with
CLDIC0 (Mk) = Hn,0(θ̂c) +

1
n

trace
(

J(θ̂c)H(θ̂c)
−1
)

,

where J(θ̂c) and H(θ̂c) are defined in Remark 1. In a manner, quite similar to that of the previous theorem, it
can be established that CLDIC0(Mk) is an asymptotic unbiased estimator of EY1,...,Yn

[
W0(θ̂c)

]
.

This would be the model selection criterion in a composite likelihood framework based on Kullback–Leibler
divergence. We can observe that this criterion coincides with the criterion given in [22] as a generalization of the
classical criterion of Akaike, which will be referred from now as Composite Akaike Information Criterion (CAIC).

4. Numerical Simulations

4.1. Scenario 1: Two-Component Mixed Model

We are starting with a simulation example, which is motivated and follows ideas from the
paper [29] and the Example 4.1 in [20] which will compare the behaviour of the proposed criteria with
the CAIC criterion, for α = 0 (see Remark 2).

Consider the random vector Y = (Y1, Y2, Y3, Y4)
T from an unknown density g and let now

Y1, ..., Yn be independent and identically distributed replications of Y which are described by the true
but unknown distribution g. Taking into account that the true model g is unknown, suppose that
{ f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} is a parametric identifiable family of candidate distributions to describe
the observations y1, ..., yn. Let also CL(θ, y) denotes the composite likelihood function associated to
the parametric model f (·; θ).

We consider the problem of choosing (on the basis of n independent and identically distributed
replications y1, ..., yn of Y = (Y1, Y2, Y3, Y4)

T) between a 4-variate normal distribution, N
(
µN , Σ

)
,

with µN = (µN
1 , µN

2 , µN
3 , µN

4 )T and

Σ =


1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1

 ,

and a 4-variate t-distribution with ν degrees of freedom, tν

(
µtν , Σ∗

)
, with different location parameters

µtν = (µtν
1 , µtν

2 , µtν
3 , µtν

4 )T and same variance-covariance matrix Σ, and density,

Cm|Σ∗|−1/2
[

1 +
1
ν
(y− µtν)T(Σ∗)−1(y− µtν)

]−(ν+m)/2
,

with Σ∗ = ν−2
ν Σ, Cm = (πν)−m/2 Γ[(ν+m)/2]

Γ(ν/2) and m = 4.
Consider the composite likelihood function,

CLN(ρ, y) = f N
A1
(y; ρ) f N

A2
(y; ρ),
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with f N
A1
(y; ρ) = f N

12(y1, y2; µN
1 , µN

2 ; ρ) and f N
A2
(y; ρ) = f N

34(y3, y4; µN
3 , µN

4 ; ρ), where f N
12 and f N

34 are the
densities of the marginals of Y , i.e., bivariate normal distributions with mean vectors (µN

1 , µN
2 )T and

(µN
3 , µN

4 )T , respectively, and common variance-covariance matrix

Σ0 =

(
1 ρ

ρ 1

)
.

In a similar manner consider the composite likelihood

CLtν(ρ, y) = f tν
A1
(y; ρ) f tν

A2
(y; ρ),

with f tν
A1
(y; ρ) = f tν

12(y1, y2; µtν
1 , µtν

2 ; ρ) and f tν
A2
(y; ρ) = f tν

34(y3, y4; µtν
3 , µtν

4 ; ρ), where f tν
12 and f tν

34 are

the densities of the marginals of Y , i.e., bivariate t-distributions with mean vectors (µtν
1 , µtν

2 )T and
(µtν

3 , µtν
4 )T , respectively, and common variance-covariance matrix

Σ0 =

(
1 ρ

ρ 1

)
.

Under this formulation, the simulation study follows in the next two scenarios.

4.1.1. Scenario 1a

Following Example 4.1 in [20], the steps of the simulation study are the following:

• Generate 1000 samples of size n = 5, 7, 10, 20, 40, 50, 70, 100 from a two component mixture of two
4-variate distributions, namely, a 4-variate normal and a 4-variate t-distribution,

hω(y) = ωN
(

µN , Σ
)
+ (1−ω)tν

(
µtν , Σ∗

)
, 0 ≤ ω ≤ 1,

with µN = (0, 0, 0.5, 0) and µtν = (3.2, 1.5, 0.5, 2), for ω = 0, 0.25, 0.45, 0.5, 0.55, 0.75, 1, ν = 5, 10, 30
degrees of freedom and with specific values of ρ = −0.15,−0.10, 0.10. As pointed out in [29],
taking into account that Σ should be semi-positive definite, the following condition is imposed:
− 1

5 ≤ ρ ≤ 1
3 .

• Estimate the common parameter ρ, separately in each model, by using the CMDPDE estimator for
different values of the tuning parameter α = 0, 0.3. The composite density which corresponds to
the mixture hω(y) is defined by

CL(ρ, y) = ωCLN(ρ, y) + (1−ω)CLtν(ρ, y), 0 ≤ ω ≤ 1,

and it is used to obtain the CMDPDE estimator, ρ̂, of ρ.
• Define the mixture composite likelihood function

CL(ρ̂, y) = ωCLN(ρ̂, y) + (1−ω)CLtν(ρ̂, y), 0 ≤ ω ≤ 1.

• Calculate CLDICα (Mk), the value of the model selection criterion considered in this paper, for the
two candidate models, with

CLDICα (Mk) = Wn,α (ρ̂) +
α + 1

n
trace

(
Jα (ρ̂) Hα (ρ̂)

−1
)

.

An explanation of how to obtain this value for the both candidate models is given in Appendix B.
• Compute the times that the 4-variate normal model was selected.

Results are summarized in Table 1. Extreme values of ω = 0, 1 represent the times that the 4-variate
normal model was selected under the 4-variate t-distribution and 4-variate normal distribution,
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respectively. This means that, for ω = 1, the perfect discrimination will be achieved when 1000 of
the 1000 simulated samples are correctly assigned, while for ω = 0, the more near to 0, the better
discrimination of the criterion. ω = 0.5 means that each sample was generated both from the normal
and t-distribution in the same proportion.

Table 1. Main results, Scenario 1a.

α = 0 (CAIC) α = 0.3

ω 0 0.25 0.45 0.5 0.55 0.75 1 0 0.25 0.45 0.5 0.55 0.75 1

ν = 5, ρ = −0.15

n = 5 0 1 269 499 713 996 1000 0 0 273 498 712 1000 1000
7 0 1 246 504 758 998 1000 0 1 220 511 738 999 1000

10 0 0 202 482 775 1000 1000 0 0 185 467 771 1000 1000
20 0 0 114 486 871 1000 1000 0 0 112 473 866 1000 1000
40 0 0 41 459 947 1000 1000 0 0 54 496 954 1000 1000
50 0 0 21 475 964 1000 1000 0 0 41 556 986 1000 1000
70 0 0 9 461 985 1000 1000 0 0 48 656 995 1000 1000

100 0 0 5 472 992 1000 1000 0 0 142 885 1000 1000 1000

ν = 10, ρ = −0.15

5 0 3 222 445 688 996 1000 0 3 218 433 688 997 1000
7 0 1 191 439 720 1000 1000 0 0 179 431 690 999 1000

10 0 0 163 432 747 1000 1000 0 0 152 402 725 1000 1000
20 0 0 59 399 819 1000 1000 0 0 49 361 773 1000 1000
40 0 0 19 336 912 1000 1000 0 0 12 326 899 1000 1000
50 0 0 6 362 936 1000 1000 0 0 10 334 925 1000 1000
70 0 0 1 292 960 999 1000 0 0 2 356 973 1000 1000

100 0 0 0 301 983 1000 1000 0 0 1 531 992 1000 1000

ν = 30, ρ = −0.15

5 0 4 237 423 677 997 1000 0 2 235 413 656 996 1000
7 0 0 155 394 689 1000 1000 0 0 141 379 677 999 1000

10 0 0 144 413 719 1000 1000 0 0 134 393 701 1000 1000
20 0 0 57 351 801 1000 1000 0 0 40 311 764 1000 1000
40 0 0 11 296 904 1000 1000 0 0 8 263 882 1000 1000
50 0 0 6 271 918 1000 1000 0 0 3 253 903 1000 1000
70 0 0 1 225 942 1000 1000 0 0 0 229 941 1000 1000

100 0 0 0 208 978 1000 1000 0 0 0 303 989 1000 1000

ν = 10, ρ = −0.10

5 0 4 242 464 680 996 1000 0 3 238 459 682 999 1000
7 0 0 187 461 733 997 1000 0 0 199 457 731 998 1000

10 0 0 162 445 738 1000 1000 0 0 165 407 713 1000 1000
20 0 0 62 378 807 1000 1000 0 0 59 354 789 1000 1000
40 0 0 19 357 902 999 1000 0 0 14 333 895 1000 1000
50 0 0 6 325 932 1000 1000 0 0 8 325 931 1000 1000
70 0 0 2 305 954 1000 1000 0 0 6 367 967 1000 1000

100 0 0 0 307 979 1000 1000 0 0 2 507 993 1000 1000

ν = 10, ρ = 0.10

5 0 11 268 459 669 991 1000 1 11 268 478 680 993 1000
7 0 1 211 456 720 999 1000 0 3 207 464 716 998 1000

10 0 0 168 423 704 1000 1000 0 0 162 403 702 1000 1000
20 0 0 86 360 789 1000 999 0 0 89 357 786 1000 1000
40 0 0 35 367 893 1000 1000 0 0 38 398 896 1000 1000
50 0 0 19 331 886 1000 1000 0 0 19 360 913 1000 1000
70 0 0 11 311 933 1000 1000 0 0 16 379 963 1000 1000

100 0 0 2 276 969 1000 1000 0 0 7 490 985 1000 1000
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4.1.2. Scenario 1b

Same Scenario is evaluated under the more-closed means µN = (0, 1.5, 0.5,−0.75) and µtν =

(0, 1.5, 0.5, 2) for moderate-large sample sizes and α ∈ {0, 0.2, 0.4}. Here ν = 5 and ρ = −0.15. Results
are shown in Table 2. In this case, the models under consideration are more similar, so it would be
understandable that the CLDIC criterion did not discriminate in such as good way.

Table 2. Main results, Scenario 1b.

α = 0 (CAIC) α = 0.2 α = 0.4

0 0.25 0.75 1 0 0.25 0.75 1 0 0.25 0.75 1

n = 40 0 0 39 731 0 0 537 961 0 0 580 949
50 0 0 24 732 0 0 859 990 0 0 944 994
60 0 0 14 772 0 0 999 1000 0 1 999 1000
70 0 0 9 734 0 0 999 1000 0 27 999 1000
80 0 0 5 770 0 1 1000 1000 0 326 1000 1000
90 0 0 4 782 0 23 1000 1000 2 794 1000 1000

100 0 0 4 802 0 173 1000 1000 26 978 1000 1000

4.2. Scenario 2: Three-Component Mixed Model

Now, we consider a mixed model composed on two 4-variate normal distributions and a
4-variate t-distribution with ν = 10 degrees of freedom. The three distributions have common
variance-covariance matrix, as in the previous scenario, with unknown ρ = −0.15 and different but
known means µN

1 = (0, 0, 0.5, 0), µN
2 = (0, 1.5, 0.5, 0) and µt = (0, 1.5, 0.5, 2). The model is defined by

ωN (µN
1 , Σ) + λN (µN

2 , Σ) + (1−ω− λ)tν=10(µ
t, Σ∗), 0 ≤ ω, λ, ω + λ ≤ 1,

with Σ being again a common variance-covariance matrix with unknown parameter ρ of the form

Σ =


1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1

 .

Following the same steps that in the first scenario, we generate 1000 samples of the
three-component mixture for different sample sizes n = 5, 7, 10, 20, 40, 50, 70, 100 and different values
of ω and λ. Then, we consider the problem of choosing among one of the two 4-variate normal
distributions and the 4-variate t-distribution through the CLDIC criterion, for different values of the
tuning parameter α = 0, 0.3, 0.5, 0.7. See Table 3 for results. Here, the normal models are denoted by N1
and N2, respectively, while the 4-variate t-distribution is denoted by MT. The first three cases evaluate
the selected model under these multivariate distributions. In the last two scenarios, a mixed model is
considered as the true distribution.

4.3. Discussion of Results

In Scenario 1a, two well-differentiated multivariate models are considered. In this case CLDIC
criterion works in a very efficient way, with an almost-perfect discrimination for extreme values of ω.
The good behaviour is also observed for not so extreme values of ω, such as ω = 0.55 or 0.45. We can
not observe a significant difference in the choice of α.

In Scenario 1b we consider closer models, which affect the discrimination power of the CLDIC.
However, in this case, we do observe great differences when considering different α. While the
discrimination power of CLDIC for α = 0 (CAIC) and ω = 1 is around 75%, for α = 0.2 or α = 0.4
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the behaviour is excellent. This happens also for large but not extreme values of ω, such as ω = 0.75.
However, a medium value of α turns into a worse discrimination for low values of ω.

Table 3. Main results, Scenario 2.

α = 0 (CAIC) α = 0.3 α = 0.5 α = 0.7

Model ∗ N1 N2 MT N1 N2 MT N1 N2 MT N1 N2 MT

True model: N (µN
1 , Σ)

n = 5 957 24 19 950 16 34 939 23 38 936 28 36
7 970 19 11 966 13 24 961 13 26 950 22 28

10 993 3 4 986 4 10 979 6 15 971 6 23
20 1000 0 0 1000 0 0 998 0 2 997 0 3
40 1000 0 0 1000 0 0 1000 0 0 1000 0 0
50 1000 0 0 1000 0 0 1000 0 0 1000 0 0
70 1000 0 0 1000 0 0 1000 0 0 1000 0 0

100 1000 0 0 1000 0 0 1000 0 0 999 0 0

True model: N (µN
2 , Σ)

5 29 638 333 34 610 356 38 639 323 50 646 304
7 15 622 363 13 589 398 17 599 384 28 627 345

10 6 610 384 5 540 455 5 540 455 11 586 403
20 1 612 387 1 518 481 1 472 527 1 527 472
40 0 566 434 0 650 350 0 590 410 0 614 386
50 0 561 439 0 804 196 0 797 203 0 835 165
70 0 584 416 0 987 13 0 994 6 0 998 2

100 0 520 480 0 1000 0 0 1000 0 0 1000 0

True model: tν=10(µ
t, Σ)

5 2 15 983 1 6 993 1 8 991 3 15 982
7 0 3 997 0 1 999 2 2 996 0 4 996

10 0 1 999 0 2 998 0 2 998 0 3 997
20 0 0 1000 0 0 1000 0 0 1000 0 0 1000
40 0 0 1000 0 0 1000 0 0 1000 0 0 1000
50 0 0 1000 0 0 1000 0 0 1000 0 0 1000
70 0 0 1000 0 0 1000 0 0 1000 0 0 1000

100 0 0 1000 0 0 1000 0 4 996 0 296 704

True model: 0.7N (µN
2 , Σ) + 0.3tν=10(µ

t, Σ)

5 6 384 610 6 375 619 4 401 595 11 452 537
7 1 331 668 1 294 705 1 317 682 1 373 626

10 1 261 738 1 218 781 1 253 746 1 306 693
20 0 109 891 0 101 899 0 107 893 0 141 859
40 0 26 974 0 126 874 0 122 878 0 166 834
50 0 13 987 0 311 689 0 345 655 0 445 555
70 0 6 994 0 948 52 0 982 18 0 994 6

100 0 2 998 0 1000 0 0 1000 0 0 999 1

True model: 1
3N (µN

1 , Σ) + 1
3N (µN

2 , Σ) + 1
3 tν=10(µ

t, Σ)

5 127 377 496 121 363 516 107 392 501 107 424 469
7 87 357 556 70 339 591 66 356 578 63 396 541

10 69 326 605 61 314 625 56 330 614 45 381 574
20 37 259 704 25 298 677 17 337 646 15 349 636
40 7 145 848 9 452 539 4 508 488 1 469 530
50 2 122 876 5 744 251 3 814 183 3 853 144
70 0 99 901 4 996 0 4 996 0 4 996 0

100 0 36 964 355 645 0 645 355 0 856 144 0
∗ Here the model candidates are expressed as N1, N2, MT to denote N (µN

1 , Σ), N (µN
2 , Σ)

and t10(µ
t, Σ), respectively.
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Scenario 2 deals with three different models, two multivariate normal and one multivariate t
(N1, N2 and MT, respectively). The second normal distribution is closer to MT in terms of means.
While CLDIC criterion discriminate well between N1 and N2 and between N1 and MT, it has difficulties
in distinguishing N2 an MT distributions, overall for small samples sizes and α = 0.

It seems, therefore, that when we have well-discriminated models, CLDIC criterion works very
well, independently of the sample size and the tuning parameter α considered. Dealing with closer
models leads, as expected, to worst results, overall for α = 0 (CAIC).

Note that the behaviour of Wald-type and Rao tests based on CMDPDEs was studied in [12,13]
through extensive simulation studies.

5. Numerical Examples

5.1. Choice of the Tuning Parameter

In the previous sections, we have seen that CLDIC criterion works generally very well,
independently of α, but that some values present a better behaviour, overall when distinguishing
similar models. In these situations, it appears that values close to 0.2 or 0.3 work well, while CAIC
criterion presents a worse behaviour. A data-driven approach for the choice of the tuning parameter
which would be helpful in practice. The approach of [30] was adapted In [13], for the choice of the
optimum α in CMDPDEs. This approach consisted on minimizing the estimated mean squared error
by means of a pilot estimator, θP. This approximation is given by

M̂SEα = (θ̂
α
c − θP)T(θ̂

α
c − θP) +

1
n

Trace
(

H−1
α (θ̂

α
c )Jα(θ̂

α
c )H−1

α (θ̂
α
c )
)

, (16)

where Hα(θ) and Jα(θ) are given in (11) and (12). The optimum α will be the one that minimizes
expression (16). The choice of the pilot estimator is probably one of the major drawbacks of this
approach, as it may lead to a choice of α too close to that used for the pilot estimator. A pilot estimator
with α ≈ 0.4, was proposed in [13] after some simulations, in concordance with [30], where the initial
choice of a pilot is suggested to be a robust one in order to obtain the best results in terms of robustness.

5.2. Iris Data

The Iris data (Fisher, [31]) includes 3 categories of 50 sample values each, where each category
refers to a type of iris plant: setosa, versicolor and virginica. Each plant is categorized in its class and
described by other 4 variables: (1) sepal length, (2) sepal width, (3) petal length and (4) petal width.
This is one of the most known data sets for discriminant analysis. [32] proposed the use of a Gaussian
finite mixture for modeling Iris data, in which each known class is modeled by a single Gaussian term
with the same variance-covariance matrix. The resulting model is as follows

f (x) =
1
3
N (µ1, Σ) +

1
3
N (µ2, Σ) +

1
3
N (µ3, Σ), (17)

with

µ1 = (µ11, µ12, µ13, µ14)
T , µ2 = (µ21, µ22, µ23, µ24)

T , µ3 = (µ31, µ32, µ33, µ34)
T

and

Σ =


σ2

1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4

 .
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Exact values can be obtained by MclustDA() function of mclust package in R Software ([32]).
We propose a composite likelihood approach to modeling (17) where we suppose independence

between the two first and two last variables. This is

fCL(y) =
1
3

CLN1 +
1
3

CLN2 +
1
3

CLN3, (18)

with

CLNi = f N
Ai1

(ρ12, y) f N
Ai2

(ρ34, y),

where f N
Ai1

(ρ12, y) = f N
Ai1

(ρ12, µi1, µi2, ΣA1 , y) and f N
Ai2

(ρ34, y) = f N
Ai2

(ρ34, µi3, µi4, ΣA2 , y), i = 1, 2, 3 are
bivariate normals with variance-covariance matrices

ΣA1 =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
, ΣA2 =

(
σ2

3 ρ34σ3σ4

ρ34σ3σ4 σ2
4

)
.

We are going to evaluate the behavior of the CLDIC criterion proposed in previous sections.
After estimating parameters ρ12 and ρ34 in (18), we consider 10 different subsets of the IRIS data:

• SE subset: 50 first observations, corresponding to Setosa plants (n = 50).
• VE subset: 50 second observations, corresponding to Versicolor plants (n = 50).
• VI subset: 50 last observations, corresponding to Virginica plants (n = 50).
• SE(VE) subset: SE subset with 2 first observations of VE subset (n = 52).

Equivalently: SE(VI), VE(SE), VE(VI), VI(SE) and VI(VE).
• VI(SE+VE) subset: VI subset with 2 first observations of SE and VE subsets (n = 54).

In Table 4, chosen models for each one of the subsets are obtained by the proposed CLDIC
criterion. When a “pure” subset is considered, all the tuning parameters lead to optimal decisions,
but when a “contaminated” subset is under consideration, only α = 0.2, 0.3 have an optimal response
in all the cases.

Table 4. Selected model in each of the subsets. Iris data.

α SE VE VI SE(VE) SE(VI) VE(SE) VE(VI) VI(SE) VI(VE) VI(SE+VE)

0 (CAIC) CN1 CN2 CN3 CN1 CN1 CN1∗ CN2 CN1∗ CN3 CN3
0.2 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.3 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.4 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3
0.5 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3
0.8 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN1∗ CN3 CN3

0.22 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3

We now apply the ad hoc approach presented in Section 5.1 for selecting the tuning parameter α

in a composite likelihood framework. Applying this procedure to our data set though a grid search
of length 100 and by means of a pilot estimator with α = 0.4 leads to the optimal tuning parameter
α = 0.22, what is in concordance with the obtained results (see Table 5). We can see that the use of
other pilot estimators would not affect very much to the final decission.
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Table 5. Selected α for different pilot estimators, ad-hoc tuning parameter selection procedure. Iris and
Wine data

αpilot 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iris αopt 0.31 0.17 0.20 0.21 0.22 0.23 0.24 0.24 0.25 0.25 0.25
Wine αopt 0.45 0.46 0.47 0.49 0.51 0.53 0.55 0.56 0.56 0.56 0.57

5.3. Wine Data

We now work with Wine data ([33]), which contain a chemical analysis of 178 Italian wines
from three different cultivars (Barolo, Grignolino, Barbera) yielded 13 measurements. In order to
illustrate our criterion, we will work with only first four explanatory variables: Alcohol, Malic, Ash and
Alkalinity. As in the previous section, we adjust a Gaussian mixture model with weights, in this case:
59/178 , 72/178 and 47/178 corresponding to Barolo, Grignolino and Barbera classes, respectively. We
now consider these 10 different subsets of the Wine data:

• BO subset: 20 first observations of Barolo wines (n = 20).
• GR subset: 20 first observations of Grignolino wines (n = 20).
• BA subset: 20 first observations of Barbera wines (n = 20).
• BO(GR) subset: BO subset with 5 first observations of GR subset (n = 25).

Equivalently: BO(BA), GR(BO), GR(BA), BA(BO) and BA(GR).
• BA(BO+GR) subset: BA subset with 3 first observations of BO and GR subsets (n = 26).

We can observe how, for medium values of α, the discrimination is perfect (see Table 6). Applying
ad-hoc tuning parameter choice procedure we obtain αopt ≈ 0.51, with a perfect discrimination again
(Table 5).

Table 6. Selected model in each of the subsets. Wine data.

α BO GR BA BO(GR) BO(BA) GR(BO) GR(BA) BA(BO) BA(GR) BA(BO+GR)
0 (CAIC) CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN2∗

0.2 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.3 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.4 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.5 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3
0.8 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN2∗ CN2∗ CN3

0.51 CN1 CN2 CN3 CN1 CN1 CN2 CN2 CN3 CN3 CN3

6. Conclusions and Future Research

In this paper, we have addressed the problem of model selection in the framework of composite
likelihood methodology, on the basis of the DPD as a measure of the closeness of the composite density
and the true model that drives the data. In this context, an information criterion is introduced and
studied which is defined by means of composite minimum distance type estimators of the unknown
parameters, well-known for having nice robustness properties. Thanks to a simulation study, we
have shown that the proposed here model selection criterion works well in practice and mainly that
the use of CMDPDE makes the criterion more robust than the criteria based on the classic CMLE
and the Kullback–Leibler divergence, given in [22]. The analysis of two real data examples of the
literature illustrate on how the model selection criterion, presented here, can be applied in practical
cases. This paper is a part of a series of papers by the authors where composite likelihood ideas and
methods are harmonically weaved with divergence theoretic methods in order to develop statistical
inference (estimation and testing of hypotheses) and model selection criteria, as well. We envision
future work in some directions. The development of change point methodology on the basis of
composite density with CMDPDE and divergence measures would be maybe an appealing problem
for a future research on the topic. However, all the information theoretic methods developed on the
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basis of the composite likelihood depend on the choice of the family of sets {Ak}K
k=1, appeared in

Formula (1). A question is raised at this point: how the information theoretic procedures developed on
the basis of the composite likelihood are affected by this family of sets? It is an appealing problem
which deserves also investigation in a future work.
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The following abbreviations are used in this manuscript:

MLE Maximum likelihood estimator
CMLE Composite maximum likelihood estimator
CLDIC Composite likelihood DIC
DPD Density power divergence
MDPDE Minimum density power divergence estimator
CMDPDE Composite minimum density power divergence estimator
AIC Akaike Information Criterion
CAIC Composite Akaike Information Criterion
TIC Takeuchi Information Criterion

Appendix A. Proof of Theorem 1

Proof. A Taylor expansion of Wα (θ) around the true parameter θ0 and evaluated in θ = θ̂
α
c , gives

Wα

(
θ̂

α
c

)
= Wα (θ0) +

(
∂Wα (θ)

∂θ

)
θ=θ0

(
θ̂

α
c − θ0

)
+

1
2

(
θ̂

α
c − θ0

)T
(

∂2Wα (θ)

∂θ∂θT

)
θ=θ0

(
θ̂

α
c − θ0

)
+ o

(∥∥∥(θ̂
α
c − θ0

)∥∥∥2
)

.

Now,

∂Wα (θ)

∂θ
=
∫
Rm

(1 + α) CL(θ, y)α ∂CL(θ, y)
∂θ

dy −
(

1 +
1
α

)
α
∫
Rm
CL(θ, y)α−1 ∂CL(θ, y)

∂θ
g(y)dy

= (1 + α)
∫
Rm
CL(θ, y)α+1u (θ, y) dy − (1 + α)

∫
Rm
CL(θ, y)αu (θ, y) g(y)dy.

It is clear that if the true distribution g belongs to the parameter family f (.; θ), θ ∈ Θ and θ0 denotes
the true value of the parameter θ, we get(

∂Wα (θ)

∂θ

)
θ=θ0

= 0.

Now we are going to get
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∂2Wα (θ)

∂θ∂θT = (1 + α)

{∫
Rm

(1 + α) CL(θ, y)α+1u (θ, y) u (θ, y)T dy

−
∫
Rm
CL(θ, y)α+1

(
−∂2 log CL(θ, y)

∂θ∂θT

)
dy

−α
∫
Rm
CL(θ, y)αu (θ, y) u (θ, y)T g(y)dy +

∫
Rm
CL(θ, y)α

(
−∂2 log CL(θ, y)

∂θ∂θT

)
g(y)dy

}
.

If the true distribution g belongs to the parameter family fθ(·; θ), θ ∈ Θ and θ0 denotes the true value
of the parameter θ, verifies,

(
∂2Wα (θ)

∂θ∂θT

)
θ=θ0

= (1 + α)
∫
Rm
CL(θ0, y)α+1u (θ0, y) u (θ0, y)T dy

= (1 + α) Hα (θ0) .

Therefore,

nWα

(
θ̂

α
c

)
= nWα (θ0) +

(1 + α)

2
√

n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

)
+ no

(∥∥∥(θ̂
α
c − θ0

)∥∥∥2
)

.

But

√
n
(

θ̂
α
c − θ0

)
L→

n→∞
N
(

0,Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1
)

,

and no
(∥∥∥(θ̂

α
c − θ0

)∥∥∥2
)
= o(Op(1)) = op(1).

The asymptotic distribution of the quadratic form
√

n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

)
, verifies

√
n
(

θ̂
α
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
α
c − θ0

) L−→
n→∞

k

∑
r=1

λrZ2
r

being λr, r = 1, ..., k, the eigenvalues of the matrix

Hα (θ0) Hα(θ0)
−1 Jα(θ0)Hα(θ0)

−1 = Jα(θ0)Hα(θ0)
−1

and Zr are independent normal random variable of mean zero and variance 1. Therefore,

EY1,...,Yn

[√
n
(

θ̂
a
c − θ0

)T
Hα (θ0)

√
n
(

θ̂
a
c − θ0

)]
=

k

∑
r=1

λr + op(1)

= trace
(

Jα(θ0)Hα(θ0)
−1
)
+ op(1)

and

EY1,...,Yn

[
nWα(θ̂

α
c )
]
= nWα (θ0) +

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1).

Now a Taylor expansion of Wn,α (θ), around θ̂
α
c and evaluated at θ = θ0 gives
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Wn,α(θ0) = Wn,α(θ̂
α
c ) +

(
Hn,α (θ)

∂θ

)
θ=θ̂

α
c

(
θ0 − θ̂

α
c

)
+

1
2

(
θ0 − θ̂

α
c

)T
(

∂2Wn,α (θ)

∂θ
∂θT

)
θ=θ̂

α
c

(
θ0 − θ̂

α
c

)
+ o

(∥∥∥θ0 − θ̂
α
c

∥∥∥2
)

.

But

Wn,α (θ)

∂θ
= (α + 1)

∫
Rm
CL(θ, y)α+1u (θ, y) dy− (α + 1)

1
n

n

∑
k=1
CL(θ, yk)

αu (θ, yk)

therefore (
Wn,α (θ)

∂θ

)
θ=θ̂

a
c

P→
n→∞

0.

On the other hand

∂2Wn,α (θ)

∂θ ∂θT = (1 + α)

{∫
Rm

(1 + α) CL(θ, y)α+1u (θ, y)T u (θ, y) dy +
∫
Rm
CL(θ, y)α+1 ∂u (θ, y)

∂θT dy

− 1
n

n

∑
i=1

αCL(θ, yi)
αu (θ, yi)

T u (θ, yi)−
1
n

n

∑
i=1
CL(θ, yi)

α ∂u (θ, yi)

∂θT

}
.

But

1
n

n

∑
i=1
CL(θ, yi)

αu (θ, yi)
T u (θ, yi)

P→
n→∞

∫
Rm
CL(θ, y)α+1u (θ, y)T u (θ, y) dy

and

1
n

n

∑
i=1
CL(θ, yi)

α ∂u (θ, yi)

∂θT
P→

n→∞

∫
Rm
CL(θ, y)α+1 ∂u (θ, y)

∂θT dy.

Therefore (
∂2Hn,α(θ)

∂θ∂θT

)
θ=θ̂

α
c

P→
n→∞

(1 + α) Hα (θ0) .

We can now write

nWn,α (θ0) = nWn,α(θ̂
α
c ) +

(1 + α)

2
√

n
(

θ0 − θ̂
α
c

)T
Hα (θ0)

√
n
(

θ0 − θ̂
α
c

)
+ op(1).

It is clear that

EY1,...,Yn

[√
n
(

θ0 − θ̂
α
c

)T
Hα (θ0)

√
n
(

θ0 − θ̂
α
c

)]
=

k

∑
r=1

λr + op(1)

= trace
(

Jα(θ0)Hα(θ0)
−1
)
+ op(1).

Then
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EY1,...,Yn [nWn,α(θ0)] = EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

and, on the other hand, it is clear that

EY1,...,Yn [Wn,α(θ0)] = Wα(θ0).

Therefore,

EY1,...,Yn

[
nWα(θ̂

α
c )
]
= nWα (θ0) +

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn [nWn,α (θ0)] +
(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+

(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)

+
(1 + α)

2
trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1)

= EY1,...,Yn

[
nWn,α(θ̂

α
c )
]
+ (1 + α) trace

(
Jα(θ0)Hα(θ0)

−1
)
+ op(1).

Hence nWn,α(θ̂
α
c ) + (1 + α) trace

(
Jα(θ0)Hα(θ0)

−1) is an asymptotic unbiased estimator of

EY1,...,Yn

[
nWα(θ̂

α
c )
]

.

Appendix B. Computation of the CLDIC in Section 4.1

We have to compute

CLDIC (Mk) = Wn,α (ρ̂) +
α + 1

n
Jα (ρ̂)

Hα (ρ̂)
,

where

Wn,α (ρ̂) =
∫
R4
CL(ρ̂, y)α+1dy− (1− α−1)

1
n

n

∑
i=1
CL(ρ̂, yi)

α, (A1)

Jα(ρ̂) =
∫
R4
CL(ρ̂, y)2α+1u(ρ̂, y)2dy−

(∫
R4
CL(ρ̂, y)α+1u(ρ̂, y)dy

)2
, (A2)

Hα(ρ̂) = −
∫
R4
CL(ρ̂, y)α+1u(ρ̂, y)2dy, (A3)

for our candidate models, namely, composite normal and composite 4-variate t-distribution.
As commented in Section 4.1, we consider a composite likelihood function based on the product
of two bivariate distributions with common variance-covariance matrix. It is therefore, necessary
in this example, to obtain values (A1), (A2) and (A3) for both composite normal and composite
t-distributions. However, as stated in [10], while the sensitivity and variability matrices can be
sometimes be evaluated explicitly, it is more usual to use empirical estimates. Following this comment,
in the current example, we compute Equations (A1), (A2) and (A3) empirically through the sample
data using
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Ŵn,α (ρ̂) =
n

∑
i=1
CL(ρ̂, yi)

α+1 − (1− α−1)
1
n

n

∑
i=1
CL(ρ̂, yi)

α,

Ĵα(ρ̂) =
n

∑
i=1
CL(ρ̂, yi)

2α+1u(ρ̂, yi)
2 −

(
n

∑
i=1
CL(ρ̂, yi)

α+1u(ρ̂, yi)

)2

Ĥα(ρ̂) = −
n

∑
i=1
CL(ρ̂, yi)

α+1u(ρ̂, yi)
2.

Now, we obtain the score of the composite likelihood u(ρ̂, yi) explicitly for both cases. By equation (A.5)
in [12],

uN(ρ̂, yi) =
ρ̂

1− ρ̂2

[
2 +

1
ρ̂
(t1it2i + t3it4i)

− 1
1− ρ̂2

(
t2
1i − 2ρ̂t1it2i + t2

2i

)
− 1

1− ρ̂2

(
t2
3i − 2ρ̂t3it4i + t2

4i

)]
,

with tji = yji − µj, j = 1, . . . , 4. On the other hand, we want to compute utν(ρ̂, yi).

utν(ρ̂, yi) =
∂CLtν(ρ̂, yi)

∂ρ̂
=

∂ log CLtν(ρ̂, yi)

∂ρ̂
=

1
CLtν(ρ̂, yi)

∂CLtν(ρ̂, yi)

∂ρ̂

=
1

f tν
12(yi; ρ̂) f tν

34(yi; ρ̂)

[
∂

∂ρ̂
f tν
12(yi; ρ̂) f tν

34(yi; ρ̂)

]
=

1
f tν
12(yi; ρ̂) f tν

34(yi; ρ̂)

[(
∂

∂ρ̂
f tν
12(yi; ρ̂)

)
f tν
34(yi; ρ̂) + f tν

12(yi; ρ̂)

(
∂

∂ρ̂
f tν
34(yi; ρ̂)

)]
=

1
f tν
12(yi; ρ̂)

(
∂

∂ρ̂
f tν
12(yi; ρ̂)

)
+

1
f tν
34(yi; ρ̂)

(
∂

∂ρ̂
f tν
34(yi; ρ̂)

)
.

Now, it can be shown that

∂ f tν
12(yi; ρ̂)

∂ρ̂
= f tν

12(yi; ρ̂)
ν
[
(ν− 2)ρ̂3 − t1it2iνρ̂2 +

(
(t2

1i + t2
2i − 1)ν + t2

2i + t2
1i + 2

)
ρ̂− t1it2iν− 2t1it2i

]
(1− ρ̂2)

[
(ν− 2)ρ̂2 + 2t1it2i ρ̂− ν− t2

1i − t2
2i + 2

]
and

∂ f tν
34(yi; ρ̂)

∂ρ̂
= f tν

34(yi; ρ̂)
ν
[
(ν− 2)ρ̂3 − t3it4iνρ̂2 +

(
(t2

3i + t2
4i − 1)ν + t2

4i + t2
3i + 2

)
ρ̂− t1it4iν− 2t3it4i

]
(1− ρ̂2)

[
(ν− 2)ρ̂2 + 2t3it4i ρ̂− ν− t2

3i − t2
4i + 2

] .
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