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ABSTRACT

Nikolaos Kornelakis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, January 2021.
The Inclusion Criterion for Data Clustering.
Advisor: Aristidis Likas, Professor.

Evaluating the quality of clustering solutions is a significant task in data analysis,
since it allows the comparison among partitions with different number of clusters.
In this way the difficult problem of estimating the true number of clusters can be
tackled.

A clustering quality measure called ‘inclusion’ has been proposed in the context of
community detection, ie. partitioning the nodes of graph into clusters (communities),
with many edges joining nodes of the same cluster and comparatively few edges
joining nodes of different clusters. The inclusion quality measure evaluates how well
each node is ‘included’ in its community by considering both its existing and its
non-existing edges. However, it is restricted to the case of binary graphs, where each
edge is either zero or one.

We introduce an extension of the inclusion definition for the case of general edge
matrices where the weight of each edge could take any value between zero and one.
Such a wide extension allows the proposed inclusion criterion to be used for any
clustering problem given the similarity matrix between data objects. Two methods
are considered to exploit the proposed criterion. The first is a greedy approach that
starts with every data object in a separate cluster and tries to improve the inclusion
of the partitioning by moving each time a single data object to another cluster. The
second method relies on using spectral clustering to obtain solutions with different
number of clusters and keeping the best solution according to the inclusion criterion.
An alternative inclusion definition (called ‘nearest inclusion’) is also proposed that

vii



computes inter-cluster similarity as the similarity to the nearest cluster only, instead
of considering the similarity to all other clusters.

Experiments have been conducted using synthetic and real world datasets to com-
pare inclusion with well-known criteria of clustering quality, such as modularity and
silhouette.
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Νικόλαος Κορνελάκης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Ιανουάριος 2021.
Το Κριτήριο Inclusion για Ομαδοποίηση Δεδομένων.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Η ομαδοποίηση (clustering) αποτελεί ένα από τα σημαντικότερα προβλήματα
της ανάλυσης δεδομένων. Στόχος της ομαδοποίησης είναι η διαμέριση των δεδο-
μένων σε ομάδες (clusters), έτσι ώστε να υπάρχει μεγάλη ομοιότητα μεταξύ των
δεδομένων της ίδιας ομάδας και όσο το δυνατόν μικρότερη ομοιότητα με δεδομένα
διαφορετικών ομάδων.

Δύο από τις πιο διαδεδομένες τεχνικές ομαδοποίησης είναι οι αλγόριθμοι k-
means και spectral clustering. Και οι δύο όμως, απαιτούν ως είσοδο τον αριθμό των
ομάδων, ο οποίος στις περισσότερες περιπτώσεις δεν είναι γνωστός. Προκύπτει
λοιπόν η ανάγκη μετρικών/κριτηρίων έτσι ώστε να μπορεί αξιολογηθεί η ποιότητα
της διαμέρισης που παράγεται από μία μέθοδο ομαδοποίησης.

Τέτοια γνωστά κριτήρια αξιολόγησης της ποιότητας ομαδοποίησης είναι το sil-
houette και το modularity. Πρόσφατα έχει προταθεί το κριτήριο inclusion το οποίο
παρουσιάζει καλές επιδόσεις. Όμως έχει οριστεί μόνο για δυαδικούς πίνακες ομοιό-
τητας με δυαδικές τιμές (δηλαδή η ομοιότητα (similarity) μεταξύ των δεδομένων
είναι ένα ή μηδέν), γεγονός που περιορίζει σημαντικά το πεδίο εφαρμογής του.

Βασικός στόχος αυτής της εργασίας είναι η γενίκευση του κριτηρίου inclusion
ώστε να μπορεί να χρησιμοποιηθεί σε προβλήματα όπου οι τιμές του πίνακα ομοιό-
τητας λαμβάνουν τιμές στο διάστημα μεταξύ μηδέν και ένα. Προτείνονται διάφορες
προσεγγίσεις για την επίτευξη του στόχου αυτού. Οι δύο πρώτες μέθοδοι βασί-
ζονται στο μετασχηματισμό του πίνακα ομοιότητας σε δυαδικό χρησιμοποιώντας

ix



είτε κατωφλίωση είτε λαμβάνοντας υπόψη του κοντινότερους γείτονες κάθε δεδο-
μένου. Στη συνέχεια αξιοποιείται το κριτήριο inclusion όπως έχει ήδη διατυπωθεί
για δυαδικούς πίνακες ομοιότητας.

Η σημαντικότερη ωστόσο συνεισφορά της εργασίας είναι μια νέα διατύπωση
για το κριτήριο inclusion ώστε να μπορεί να χρησιμοποιηθεί για το γενικό πρό-
βλημα ομαδοποίησης, όπου η ομοιότητα μπορεί να λάβει οποιαδήποτε τιμή μεταξύ
μηδέν και ένα. Ταυτόχρονα παρουσιάζεται μια άπληστη (greedy) μεθοδολογία για
τη μεγιστοποίηση του προτεινόμενου κριτηρίου. Επιπλέον προτείνεται και μια τρο-
ποποίηση του κριτηρίου (που την ονομάζουμε nearest inclusion) η οποία λαμβάνει
υπόψη μόνο την κοντινότερη ομάδα κάθε δεδομένου (εκτός της ομάδας στην οποία
ήδη ανήκει) και όχι όλες τις υπόλοιπες ομάδες.

Για την αξιολόγηση των κριτηρίων πραγματοποιήθηκαν πειράματα χρησιμοποιώ-
ντας τόσο τεχνητά όσο και πραγματικά σύνολα δεδομένων. Από τη σύγκριση με τα
αποτελέσματα που προκύπτουν χρησιμοποιώντας τα γνωστά κριτήρια silhouette
και modularity μπορούμε να συμπεράνουμε ότι οι προτεινόμενες μεθοδολογίες στις
περισσότερες περιπτώσεις παρέχουν ομαδοποιήσεις συγκρίσιμης ή ανώτερης ποιό-
τητας.
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CHAPTER 1

INTRODUCTION

1.1 Objectives

1.2 Structure

Clustering is an important problem with several applications. There are many meth-
ods proposed for clustering, but most of them like K-Means and Spectral clustering
require the number of clusters as input. Unfortunately, in most of the real prob-
lems the number of clusters is unknown. For these problems, to use the previously
mentioned methods, one must have a way of evaluating the solutions obtained for
different number of clusters and select the best among them.

Quality measures make use of different definitions and aspects of clustering prob-
lem, in order to evaluate a clustering solution. Examples of well-known quality mea-
sures are silhouette and modularity. This thesis focuses on inclusion, another recently
proposed quality measure. Inclusion has desirable properties with most import being
that it considers both intra and inter cluster density. Also, experimental results has
been shown that inclusion criterion is very effective. However, it is defined only for
binary similarity matrices which is very restrictive in real problems.

So, the main goal is the generalization of inclusion quality measure for weighted
similarity matrices. To accomplish that, we tested three different approaches and we
present the results of the experiments we conducted compared to silhouette and
modularity on various datasets.
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1.1 Objectives

The objectives of this thesis are the following:

• Study and present data clustering and known methods that are used.

• Study and evaluate inclusion quality measure for clustering using binary simi-
larity matrices.

• Generalize the inclusion criterion for the case of weighted similarity matrices.

• Evaluate the quality of generalized inclusion against other widely used criteria
for evaluating clustering solutions.

1.2 Structure

This thesis consists of 6 chapters. In chapter 2 we present, the definition of data
clustering problem and some basic categories of clustering methods. Also, we describe
in more details K-Means and Spectral clustering, two of the most popular methods
for data clustering and two clustering quality measures, silhouette and modularity.

In chapter 3 we focus on another, recently introduced quality measure, called
inclusion that can be used for binary similarity matrices. We also present the greedy
method proposed for inclusion maximization. In chapter 4 we define the weighted
inclusion criterion for general similarity matrices, which is the main contribution of
this thesis, along with some variations of this new criterion.

Chapter 5 contains the results of the experiments we conducted, both on synthetic
and real-world data to test the quality of the generalized inclusion criterion. Finally,
in chapter 6, we summarize the results obtained from the experiments, we present
our conclusions and discuss about future work.

2



CHAPTER 2

PRELIMINARIES

2.1 Data clustering

2.2 Clustering methods

2.3 Clustering quality measures

2.1 Data clustering

Data mining is a process of extracting meaningful and useful information from sets
of data. Clustering is one of the data mining problems and belongs to unsupervised
learning since data are not labeled. It aims to group a set of data objects, so that
objects of the same group are similar to each other and different from objects of the
other groups.

Part of the difficulty of clustering lies in the fact that in some cases, clusters are not
well defined. A characteristic example presented in [2] is shown in figure 2.1 where
there are three different reasonable ways of clustering the original points, in two, four
and six clusters.

3



Figure 2.1: Different ways of clustering the same set of points.

Clustering has applications in many practical problems of different areas like social
sciences, biology, statistics, information retrieval and more. There are two basic types
of clustering: partitional and hierarchical. The main difference between them, is that
in partitional clustering the data objects are divided in groups and each data object
belongs to exactly one group while in hierarchical clustering groups are overlapping
subsets of data objects, forming hierarchies and can be organized as a tree, known as
dendrogram (figure 2.2, again from [2]).

Figure 2.2: Hierarchical clustering example.

The most famous method of partitional clustering is k-means, which will be pre-
sented in more details in the next section. On the other hand, methods of hierarchical
clustering are divided in two categories: agglomerative and divisive. In agglomerative
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hierarchical clustering, methods start by setting each data object in a separate group
and continue by merging groups until only one group is left, while in divisive hier-
archical clustering, methods work with the opposite logic. They start by placing all
data object to a single group and continue by dividing groups until each data object
belongs to a separate group.

Usually, clustering methods work on the given data objects. There are cases though,
in which data objects cannot be provided but only the similarities or the dissimilarities
between them. One of these cases is graph clustering or similarity-based clustering.
As the name suggests, these methods require the similarity matrix of the data. The
most popular of these methods is spectral clustering which will be presented in more
detail at the following section.

Graph Partitioning

Graph partitioning is the problem of partitioning the nodes of a graph into k almost
equal-sized groups and at the same time minimize the number of edges between
different groups [3]. Graph partitioning has many applications in different areas of
computer science like VLSI circuit design [4], parallel computing [5] and many more.

It is an NP-hard problem and thus only approximate methods can be used. Despite
the difficulty of the problem, there are many heuristic methods proposed, showing
good results. Two of the most famous methods are Kernighan–Lin algorithm [6] and
Fiduccia–Mattheyses algorithm [7].

Graph partitioning problem is one of the mathematical formalizations of commu-
nity detection [8] which is a graph clustering problem so it can also be approached
with similarity-based clustering methods.

2.2 Clustering methods

In this section we will describe in more detail two of the most popular methods of
clustering: k-means and spectral clustering.

5



2.2.1 K‐means

K-means [9] is one of the most popular clustering methods since it is very fast and
simple, but effective at the same time. It requires the set of objects in form of d-
dimensional vectors X = {x1, x2,…, xn} and the number of clusters k as input.

K-means starts with an initialization step, by choosing randomly k representatives
for each cluster usually from the input dataset X , which are called centroids. Next,
two steps are iteratively applied. In the first step, k clusters are formed, by assigning
each object to the cluster of the closest centroid. At the second step, the centroid of
each cluster is recomputed as the mean of all the objects assigned to its cluster. This
process continues until centroids stop getting updated.

Algorithm 2.1 K-means algorithm.
Require: input data as d-dimensional vectors and the number of clusters k
1: Select randomly k objects as the initial centroids.
2: repeat
3: Form k clusters by assigning each object to the cluster of the closest centroid.
4: Recompute the centroids for each cluster.
5: until centroids stop getting updated

K-means aims to minimize the sum squared error of the distances between each
object x of each cluster Ci and the centroid ci of that cluster, formulated as follows:

SSE =
k∑

i=1

∑
x∈Ci

∥x− ci∥2 (2.1)

The centroid ci in the above formula is calculated as:

ci =
1

ni

∑
x∈Ci

x (2.2)

where ni is the number of objects in cluster Ci.
Although k-means has linear complexity and good results in general, it has some

disadvantages too. One of them is the high dependence on the initial positions of
centroids. In order to avoid this, one can run k-means multiple times and keep the
solution with the minimum error. Another disadvantage is that it is affected from
outliers. They can shift the centroids away from the center of the clusters and distort

6



the result. This can be avoided by removing outliers from data as a preprocessing
step. Finally, k-means has troubles when clusters of the data have different size and
density. It tends to create compact circular groups and break big clusters.

2.2.2 Spectral clustering

Spectral clustering is a technique introduced by Ng, Jordan and Weiss in [10]. Given
the similarity matrix, consisting of the pairwise similarities of the data objects, and the
number of clusters, spectral clustering performs dimensionality reduction using the
spectrum of similarity matrix and then applies a standard clustering method, usually
k-means, to the transformed data.

Algorithm 2.2 Spectral clustering algorithm.
Require: m×m similarity matrix S of the data and the number of clusters k
1: Define D as the diagonal matrix whose (i, i)-element is the sum of S’s i-th row
2: Compute the Laplacian L = D−1/2SD−1/2

3: Compute the k largest eigenvectors of L
4: Create an m× k matrix Y with the k eigenvectors in its columns
5: Run k-means with k clusters and Y matrix as input

As mentioned above, spectral clustering requires as input the similarity matrix.
In cases where data are provided and distances between them can be calculated, one
can easily convert distances to similarities using many different ways given the data
vectors x and x′, like:

• RBF Similarity:

S (x, x′) = e

(
−∥x−x′∥2

2σ2

)
(2.3)

• Cosine Similarity:

S (x, x′) =
xx′T

∥x∥ ∥x′∥
(2.4)

Spectral clustering has many advantages compared to other clustering algorithms
with the most important being that it is not affected from clusters having different size
or shape. The following figure 2.3 shows one of the most typical examples, comparing
spectral clustering and k-means on a synthetic dataset that consists of 900 objects
divided in 3 clusters.

7



Figure 2.3: Spectral clustering versus k-means.

The main disadvantage of spectral clustering is that it cannot be used in large
datasets since it has computational complexity O(n3).

2.3 Clustering quality measures

Quality measures are used to evaluate a clustering solution of a set of objects. In most
of the real-world clustering problems the number of clusters is unknown, mean-
ing that spectral clustering, k-Means, or other clustering techniques that require the
number of clusters as input cannot be used directly.

Clustering quality measures help dealing with this problem. The selected clustering
technique can be applied multiple times for different number of clusters k and the
obtained solutions can then be evaluated by a quality measure. In the end, the solution
of highest quality will be chosen as the final solution of the clustering problem.

2.3.1 Silhouette criterion

Silhouette is a criterion introduced by Rousseeuw in [11]. It is used not only for
the evaluation of a clustering result, but also for its interpretation since silhouette
provides a graphical display, showing for each object how well it fits in its cluster and
how well it is separated from objects of other clusters.

Silhouette starts by calculating for each object i the average dissimilarity/distance

8



to all other objects that belong to the same cluster with i, using the following formula:

a (i) =
1

|Ci| − 1

∑
j∈Ci, i ̸=j

d(i, j) (2.5)

where d (i, j) is the dissimilarity between objects i and j and |Ci| is the number of
objects in the cluster Ci. This is used to evaluate the wellness of each object in its
cluster.

Then silhouette calculates again for each object i, the average dissimilarity to all
objects that belong to the nearest cluster of Ci.

b (i) = mink ̸=i
1

|Ck|
∑
j∈Ck

d(i, j) (2.6)

The nearest cluster of Ci is also called neighboring cluster. Using b (i) silhouette
evaluates how well each object is separated from objects out of its cluster.

Combining a (i) and b (i), the final evaluation of each object i is obtained from:

s (i) =


1− a (i) /b (i) , if a (i) < b (i)

0, if a (i) = b (i)

b (i) /a (i)− 1, if a (i) > b (i)

(2.7)

or using a single formula:

s (i) =
b (i)− a(i)

max{a (i) , b (i)}
(2.8)

Having s (i) calculated per object, one can easily calculate the silhouette of the
clustering solution by averaging s(i) of all the data objects.

In case the similarities are provided as input, instead of dissimilarities, silhouette
can still be calculated with two small modifications. One is at the calculation of b (i),
where we need maximum instead of minimum and the other is at the calculation of
s (i), updated as:

s′ (i) =


1− b′ (i) /a′ (i) , if a′ (i) > b′ (i)

0, if a′ (i) = b′ (i)

a′ (i) /b′ (i)− 1, if a′ (i) < b′ (i)

(2.9)

Silhouette outputs a value in [−1, 1]. In case where there is only one cluster it
cannot be defined so in this case output value is zero. Also, it can be used with any
distance, but Euclidean is the most frequently used.
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Finally, as mentioned in the beginning, silhouette can also provide a graphical
display to ease the evaluation of a clustering solution of a set of objects using the s(i)
values of objects.

Figure 2.4 provides a graphical presentation of silhouette, produced using Python’s
Yellowbrick library, after applying k-means to a dataset with 2000 objects divided in
10 clusters.

Figure 2.4: Silhouette graphical display using Python’s Yellowbrick library.

2.3.2 Modularity criterion

As already mentioned, community detection is equivalent to the graph clustering
problem. The term network refers to the graph, nodes refer to the vertices of graph
and communities to clusters. If the nodes of a network are naturally divided into
groups having high internal edge density and at the same time low edge density
between them, then the network is said to have community structure.

Modularity is a known quality measure introduced by Newman and Girvan [12]
and is very often used in community detection to evaluate the strength of a commu-
nity structure. The concept behind modularity is that in a graph having community
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structure, communities are expected to have more internal edges than in a random
graph with the same number of nodes and same node degrees.

Modularity is defined as follows:

Q =
1

2m

∑
i,j

[
wij −

kikj
2m

]
δ(ci, cj) (2.10)

where wij is the edge weight between node i and j, m = 1
2

∑
ij wij is the sum of

weights of the graph, ki =
∑

j wij is the sum of weights of the edges attached to node
i, ci is the community in which node i belongs and δ(u, v) outputs 1 if u = v and 0
otherwise.

One disadvantage of modularity, proved by Fortunato and Barthélemy in [13], is
that it suffers from resolution limit and hence, it fails to detect small communities.
Also, Brandes, Delling, Gaertler, Gorke, Hoefer, Nikoloski and Wagner proved in [14]
that exact modularity optimization is an NP-Complete problem meaning that, at least
in large networks, only approximate methods can be used. The most popular method
among them is Louvain Algorithm.

Louvain is a greedy algorithm introduced by Blondel, Guillaume, Lambiotte and
Lefebvre in [15] and consists of two phases. The first phase starts by initializing each
node to a separate community. Next for each node i, the algorithm calculates the gain
of modularity by moving node i to its neighbor’s communities one by one and finally
places the node to the community with the maximum gain. If the maximum gain is
negative, then the node stays in its cluster. This process continuous until modularity
stop improving.

The second phase starts by creating a new graph having as nodes the communities
occurred from the previous phase. The edges between two nodes i and j in the new
graph, are calculated as the sum of all the edges between nodes of communities Ci

and Cj in the original graph. Internal edges of a community in the original graph are
interpreted as self-loops for this node in the new graph. After that, the same iteration
of the first phase is applied again in the new graph. These two phases iteratively
applied until improvement of modularity stops.

The order of the nodes affects the algorithm’s computation time, but in general
Louvain algorithm is fast with time complexity O(nlog2n) where n is the number
of nodes in graph. Another reason for being fast is because modularity gain ∆Q by
moving an isolated node to a community C is very easy to calculate with the following
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formula:

∆Q =

[∑
in +ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(

ki
2m

)2
]

(2.11)

where
∑

in is the sum of weights of internal edges of C ,
∑

tot is the sum of weights
of edges incident to nodes in C , ki is the sum of weights of edges incident to node i,
ki,in is the sum of weights of edges from node i to nodes of community C and m is
the sum of weights of all edges in the graph. Another formula, like the above, exists
to calculate the gain of removing a node from its community.
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CHAPTER 3

INCLUSION FOR BINARY GRAPHS

3.1 Binary inclusion criterion

3.2 Inclusion Maximization

In this chapter we present the binary inclusion criterion for community detection.
Given the fact that community detection is equivalent to graph clustering, as men-
tioned in section 2.3.2, and that a similarity matrix can be represented as a graph,
inclusion could be presented as a criterion for data clustering when binary similarity
matrix is provided (consisting only of 0s and 1s). However, for literature consistency
matters, we will present inclusion in terms of community detection.

3.1 Binary inclusion criterion

Inclusion is a quality measure used for community evaluation and detection in undi-
rected and unweighted graphs, introduced by Koufos and Likas [16] [1]. The main
idea behind this quality measure, is that a node is well placed in a community if it has
many edges with other nodes of the same community and as few edges as possible
with nodes of other communities, considering both inter and intra cluster density.

So, the goal is the maximization of two quantities one for inter and one for intra
cluster density. The inter cluster density for a node is formulated as the number of
edges to nodes of the same community divided by the degree of the node. On the
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other hand, the intra cluster density for a node is formulated as the number of non-
existing edges with nodes outside its community divided by the number of nodes
in the graph minus the degree of the node. Note that graph is unweighted, so edge
weights can be either 0 or 1.

The interpretation of the above description is that a node is perfectly placed in a
community when it has edges only to nodes of this community, which is pretty much
the definition of community detection problem. More specifically, given a graph and
community structure C = {C1, C2, . . . , Ck}, inclusion is calculated per node and is
defined as follows:

IBi =
I1i (in) + I0i (out)

2
=

1

2

(
e1i (in)

di
+

e0i (out) + 1

n− di

)
(3.1)

where n is the number of nodes in the graph, di is the degree of each node i, e1i (in)
is the number of existing edges between node i and nodes in its community and
e0i (out) is the number of none-existing edges between node i and nodes out of its
community.

The final inclusion is defined as the average inclusion of all the nodes in the graph:

IB =
1

n

n∑
i=1

Ii (3.2)

The maximum value of inclusion (IBi = 1) occurs when the graph is complete
and all the nodes belongs to the same community, or multiple disconnected complete
subgraphs and each subgraph forms a different community. The smallest value (IBi =

0.5) occurs for the previously mentioned graphs, but this time when each node forms
its own community.

Inclusion has desirable properties. The most important is that it considers both
intra and inter cluster density, since the inclusion of a node is calculated based on
how well the node fits in its community (I1i (in)) and how well the node is separated
from the nodes out of its community (I0i (out)).

Figure 3.1 shows an example of binary inclusion presented in [1] for 3 different
partitions of the same graph. Visually, one can easily understand that the best parti-
tioning for this graph is (b). Partitioning (a) is a good enough while (c) is the worst.
Inclusion agrees with this intuition, since it gives the maximum score IB = 0.89 to
solution (b), the second maximum score IB = 0.85 to (a) and the worst IB = 0.80 to
(c).
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Figure 3.1: Binary inclusion example a) 3-clusters solution with I = 0.85, b) 4-clusters
solution with I = 0.89 and c) 5-clusters solution with I = 0.80 [1].

3.2 Inclusion Maximization

In [1] Koufos and Likas also formulated a search strategy, inspired by Louvain algo-
rithm, for finding communities by maximizing inclusion criterion. This approximate
method is called Greedy Node Movement since, as its name suggests it is a greedy
search algorithm.

Greedy Node Movement starts with an initialization step by setting all the nodes
of the graph in separate communities. After that, the algorithm is iteratively moving
each time a single node between communities, by calculating for each possible node
movement the difference in graph inclusion caused by the movement of the node i

from community Ck to community Cl, as follows:

∆IB1i =
1

2

∑
j∈Ck, j ̸=i

{
(1− eij)

(
1

n− dj
+

1

n− di

)
− eij

(
1

dj
+

1

di

)}
(3.3)

∆IB2i =
1

2

∑
j∈Cl

{
eij

(
1

dj
+

1

di

)
− (1− eij)

(
1

n− dj
+

1

n− di

)}
(3.4)

where n is the number of nodes in the graph, di is the degree of node i and eij is the
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weight of the edge between node i and j. Note here that since graphs are unweighted,
the weight between two nodes can be either 0 or 1, so only one of the two terms of
∆I1i and ∆I2i must be calculated each time. In the above formula ∆I1i expresses the
gain of removing a node from its community and ∆I2i expresses the gain of moving
a node to the new community.

Combining ∆I1i and ∆I2i the difference in graph inclusion by a node movement
from community Ck to community Cl, can be calculated as follows:

∆IBi (Ck, Cl) =
1

n
(∆I1i +∆I2i) (3.5)

The algorithm stops when there is no possible node movement that improves the
graph inclusion.

Algorithm 3.1 Greedy Node Movement Algorithm [1].
Require: A graph G = (V,E)

Ensure: A partition C = {C1, C2, . . . , Ck} of the graph
1: C ← Set all nodes to separate communities
2: repeat
3: max∆IB ← 0

4: for node n ∈ V do
5: for community c ∈ C do
6: Calculate ∆IB

7: if ∆IB > max∆IB then
8: Store n, c with the current maximum ∆IB

9: end if
10: end for
11: end for
12: Move node n to community c that resulted in max∆IB

13: until graph inclusion is not getting improved

Some alternative strategies have also been tested in [1], in order to improve the
algorithm both from computational complexity and accuracy perspective. The first
one is to move a node from a community to another without necessarily having the
maximum ∆IB but just positive. This strategy reduces the complexity of algorithm
and at the same time ensures that total inclusion is improved at each step. Another
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strategy tested was to check only the neighbor community of the node for possible
movement. The final variation tested, refers to the examination order of the nodes,
sequentially or randomized.
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CHAPTER 4

THE INCLUSION CRITERION FOR WEIGHTED
SIMILARITY MATRICES

4.1 The generalized inclusion

4.2 Adjusting the importance of the two terms

4.3 Pointwise inclusion

4.4 Greedy Inclusion Optimization

4.5 Nearest Inclusion

4.1 The generalized inclusion

As mentioned in the previous chapter, although inclusion seems to have good results,
it is defined only for binary similarity matrices, which seems to be restrictive since
most of the real-world problems are defined using weighted ones.

In order to apply inclusion in general similarity matrices we examined three dif-
ferent approaches:

• k-nearest neighbor(kNN)-based

• threshold-based

• generalization of inclusion definition
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The first two approaches are simple and similar to each other. They use binary
inclusion as presented in the previous chapter but before that, they transform the
weighted similarity matrix to binary in a preprocessing step. For each object, kNN-
based approach assigns 1 to the k maximum and 0 to the rest weights of similarity
matrix, where k is a user specified parameter. Similarly, threshold-based approach
assigns 1 to the weights greater than a threshold t and 0 to the rest weights of
similarity matrix, where t is again a user specified parameter.

The third and most important approach is the generalization of binary inclusion
itself. We now define the new inclusion measure for general similarity matrices with
weights wij ∈ [0, 1]. So, given a similarity matrix and a clustering solution C =

{C1, C2, ..., Ck}, the inclusion of a data object i is defined as:

Ii =
1

2

(
w1

ij

d1i
+

w0
ij + 1

d0i

)
(4.1)

where:
w1

ij =
∑

j∈Ci
wij is the sum of weight between object i and the rest objects in its cluster,

w0
ij =

∑
j /∈Ci

(1− wij) corresponds to the sum of weights of “non-existing” edges of
the binary inclusion, between object i and objects outside its cluster,
d1i =

∑
j w

1
ij =

∑
j wij is the sum of weights of object i with all the other objects,

d0i =
∑

j w
0
ij =

∑
j (1− wij) = N − d1i corresponds to the sum of weights of “none-

existing” edges of binary inclusion, between object i and the rest data objects.
Thus, inclusion is computed using the following more analytic formula:

Ii =
1

2

∑
j∈Ci

wij∑
j wij

+

[∑
j /∈Ci

(1− wij)
]
+ 1

N −
∑

j wij

 (4.2)

As one can observe in the above formula, we kept an analogy between binary
inclusion and the new inclusion for general similarity matrices, in order to keep all
the good properties of the original inclusion. Hence, object level inclusion calculation
consists again of two parts. The first part expresses how well the object i fits in its
cluster and the second part expresses how well object i is separated from objects of
other clusters. Therefore both intra and inter cluster density are considered.

The total inclusion of a given clustering solution is calculated again by averaging
the object level inclusion:
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I =
1

n

n∑
i=1

Ii (4.3)

In the case of a graph, we can see that in the ideal case where the graph consists
of a single complete graph and all nodes belong to the same cluster, or multiple
disconnected complete subgraphs and each subgraph forms a different cluster, new
inclusion’s value is also maximized. In the worst case when each node forms its own
cluster, inclusion gets its minimum value.

4.2 Adjusting the importance of the two terms

Until now, object level inclusion considers both intra and inter clusters density equally.
A new parameter can be added, in order to give inclusion the capability to put more
emphasis on one of them. Parameter a ∈ [0, 1] is included in the object level inclusion
formula as follows:

Ii = a
w1

ij

d1i
+ (1− a)

w0
ij + 1

d0i
(4.4)

High values of a make inclusion focus more on intra cluster density, while low
values of a on inter cluster density. The total inclusion calculation remains the same.

I =
1

n

n∑
i=1

Ii (4.5)

4.3 Pointwise inclusion

As we have already mentioned, given a similarity matrix and a clustering solution,
inclusion is calculated by averaging the object level inclusion. This additional infor-
mation can be visualized and used to interpret the final inclusion score.

Suppose that we apply spectral clustering with several different values for param-
eter k, using inclusion as a quality measure, to find the best clustering solution. For
each candidate solution, along with the final inclusion score, we can extract additional
information by constructing a histogram of object level inclusion scores. Each bin in
the histogram corresponds to a value of k and the value of each bin represents the
number of objects that presented their maximum inclusion score for that k. If the
maximum inclusion score of an object occurs for more than one k, the object will be
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counted in all the corresponding bins of the histogram. An example is presented in
figure 4.1.

Figure 4.1: Histogram of object level inclusion.

If a bin has much higher value than the other bins, one can be more confident
about the solution proposed by inclusion. If multiple bins have values close to the
maximum, further investigation may be needed.

In other words, the produced histogram can also be used as an additional criterion
to decide which candidate solution is the best.

4.4 Greedy Inclusion Optimization

The Greedy Node Movement algorithm that we described in the previous chapter,
can also be used to optimize the new general inclusion criterion. The steps of the
algorithm remain the same, but since inclusion for general similarity matrices is
calculated differently, the inclusion gain ∆Q by moving an object from cluster Ck to
Cl must be updated as follows:

∆I1i =
1

2

∑
j∈Ck,j ̸=i

{
(1− wij)

(
1

n−
∑

x∈X wjx

+
1

n−
∑

x∈X wix

)

− wij

(
1∑

x∈X wjx

+
1∑

x∈X wix

)} (4.6)
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∆I2i =
1

2

∑
j∈Cl,j ̸=i

{
wij

(
1∑

x∈X wjx

+
1∑

x∈X wix

)

− (1− wij)

(
1

n−
∑

x∈X wjx

+
1

n−
∑

x∈X wix

)} (4.7)

∆Ii (Ck, Cl) =
1

n
(∆I1i +∆I2i) (4.8)

where X is the set of objects, wij is the weight between object i and j in similarity
matrix and n is the total number of objects.

One improvement we tested, in order to make Greedy Node Movement faster was
to check the gain of inclusion considering only the k nearest clusters of an object
instead of all the neighbor clusters, where k is a parameter. This improvement does
not seem to compromise the quality of the algorithm’s performance and decreases
the time complexity of the algorithm.

4.5 Nearest Inclusion

As already mentioned, inclusion considers both intra and inter density of clusters. If
an object is placed in a cluster, inter cluster density is increased, as the number of
almost zero weights between the object and objects of different clusters increase.

An alternative modeling of inter cluster density is to consider the weights between
an object and the objects of its closest cluster only. This can be achieved by first
calculating the inclusion of an object i with each one of its outer clusters separately,
and then keep the minimum value as the final inclusion. Based on this idea, the
nearest inclusion criterion can be formulated as follows:

INi = minCm∈C−Ci

1

2

 ∑
j∈Ci

wij∑
j∈(Ci∪Cm) wij

+

[∑
j∈Cm

(1− wij)
]
+ 1

N −
∑

j∈(Ci∪Cm) wij

 (4.9)

IN =
1

n

n∑
i=1

Ii (4.10)

where Ci is the cluster of object i, wij is the weight between objects i and j and n is
the total number of objects.
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Note that the formulation of nearest inclusion is based on the way silhouette
criterion is defined, which considers only the neighboring cluster for the evaluation
of inter cluster density.

The main advantage of inclusion against silhouette criterion is that inclusion is
formulated to maximize both parts of intra and inter cluster density, while silhouette
is formulated to minimize the part of intra and maximize the part of inter cluster
density.
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CHAPTER 5

EXPERIMENTS

5.1 Binary graphs

5.2 Weighted graphs (binary inclusion)

5.3 Weighted graphs

5.4 Synthetic 2D datasets

5.5 Pointwise inclusion

5.6 Inclusion on real datasets

For the conduction of the experiments we used Python. Nearest inclusion score is
denoted as ‘N-Inclusion’ in the results and it is not presented in experiments that we
used greedy node movement since ∆IN , the gain of nearest inclusion after moving a
node from a cluster to another, is not expressed yet. To evaluate the quality of a solu-
tion compared to ground truth we used two metrics: Normalize Mutual Information
and Adjusted Rand Index.

Mutual Information (MI) in information theory, is a measure of mutual depen-
dence between two random variables [17]. It expresses the ‘amount of information’
that knowing either variable provides about the other. NMI is the normalized MI to
scale its result between [0, 1], with 0 meaning no mutual information and 1 perfect
correlation. In data clustering ΝΜΙ is used to express the shared information between
a pair of clustering solutions [18].

Rand Index (RI) is a measure to evaluate the similarity between two clustering
solutions by examining all the possible pair combinations and counting those that are
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not in the same cluster [19]. RI produces values in [0, 1]. Adjusted RI (ARI) corrects
RI by ignoring permutations that would have happened by chance, since RI does not
ensure that random assignments will produce a value close to 0. The ARI produces
values in [−1, 1], with value 1 meaning exact match and value −1 completely different
clusterings.

5.1 Binary graphs

As a first step, we implemented the existing binary inclusion and the Greedy Node
Movement (GNM) algorithm, proposed for the optimization of this quality measure,
in C++. We conducted experiments on the different categories of synthetic unweighted
graphs presented in [16] and [1]:

• B&D: Balanced and Dense clusters

• B&DD: Balanced clusters of Decreasing Density

• DL&SS: Dense Large clusters and Sparse small clusters

• DS&DD: Decreasing Size and Decreasing Density clusters

• IS&DD: Increasing Size and Decreasing Density clusters

Graphs of B&D category consist of equally distributed clusters having high proba-
bility in [0.8, 1] for intra-edges. This category results to graphs with clearly separated
clusters. B&DD category contains graphs with equally distributed clusters but this
time, the probability for intra-edges starts from [0.9, 1] and decreases for each cluster
by a constant amount 0.15. DL&SS category contains graphs with high intra-edge
probability in [0.8, 1] for each cluster and decreasing cluster size. Graphs of DS&DD
category consist of clusters with decreasing both size and intra-edge density. Finally,
IS&DD category contains graphs having decreasing intra-edge density and increasing
cluster size at the same time. This category results to graphs with large sparse and
small dense clusters.

For each category, the results of 10 different executions of the experiment on
graphs consisting of 500 vertices and 10 clusters, comparing GNM with inclusion
and Louvain algorithm with modularity, are summarized in table 5.1.
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Table 5.1: GNM (binary inclusion) vs Louvain on unweighted synthetic graphs con-
sisting of 500 vertices and 10 clusters.

GNM Louvain algorithm

Graph Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

B&D 7.8 0.6338 0.9282 0.7970 7.7 0.1708 0.9238 0.7807

B&DD 8.2 0.6182 0.9390 0.8174 7.4 0.1521 0.9146 0.7644

DL&SS 7.5 0.6703 0.9512 0.9172 6.3 0.2080 0.9100 0.8604

DS&DD 7.1 0.6340 0.9387 0.8627 6.2 0.1700 0.9015 0.8251

IS&DD 8.2 0.6627 0.9558 0.9234 6.2 0.1978 0.8912 0.8333

Next, we conducted the same experiment but this time using spectral clustering
with inclusion and modularity as quality measures. The results are presented in the
table 5.2.

Table 5.2: Binary inclusion vs Modularity using spectral clustering on unweighted
synthetic graphs consisting of 500 vertices and 10 clusters.

Binary inclusion Modularity

Graph Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

B&D 10 0.6403 1 1 10 0.1805 1 1

B&DD 10 0.6235 1 1 10 0.1611 1 1

DL&SS 8.7 0.6731 0.9881 0.9888 8.5 0.2105 0.9859 0.9869

DS&DD 8.5 0.6384 0.9788 0.9814 8.2 0.1756 0.9754 0.9782

IS&DD 8.1 0.6651 0.9733 0.9752 7.6 0.2026 0.9605 0.9476

It can be observed that in both cases (comparing GNM to Louvain algorithm
and inclusion to modularity using spectral clustering) the use of inclusion leads to
better results for all the different categories of graphs. In some cases the superiority
is significant.

Email‐Eu‐network dataset

The next step was to test the quality of inclusion compared to modularity in a real-
world network with known ground truth. Email-Eu-core network1 is a dataset con-
sisting of 1005 vertices separated in 42 clusters. Each node represents a member of a

1https://snap.stanford.edu/data/email-Eu-core.html
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research institute and there is an edge between two members if they have exchanged
at least one email. Each member belongs to exactly one of the 42 departments of the
research institute. This information has been used for the generation of ground truth.

We compared the results of GNM and Louvain algorithm for the above dataset
and we present the results in table 5.3.

Table 5.3: GNM (binary inclusion) vs Louvain on email-Eu-core network.

GNM Louvain Algorithm

Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

135 0.74354 0.7295 0.5455 27 0.4308 0.5957 0.3306

Even though the number of clusters occurred in both cases differs a lot from the
original, the solution of GNM with inclusion shows better values for both NMI and
ARI measures which indicates and overall better solution.

5.2 Weighted graphs (binary inclusion)

To evaluate kNN-based and threshold-based approaches on weighted graphs, we used
a graph of B&D category, consisting of 700 vertices and 20 clusters. In order to add
weights to the binary graphs, we used two Normal distributions, one with mean 0.8
and std 0.1 for the existing edges of the graph and another one with mean 0.2 and
std 0.1 for the non-existing edges.

KNN‐based approach

In this experiment we tried different values for parameter k ∈ {33, 34, 35, 36, 37}, since
in a graph with 700 vertices and 20 clusters we expect for a vertex to have around
35 important edges. Finally, we kept as solution, the one that yield the maximum
score of inclusion. We also applied Louvain algorithm with modularity on the same
graph. The results are presented in tables 5.4 and 5.5.
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Table 5.4: GNM with kNN-based approach on weighted graphs.

Clusters Inclusion NMI ARI K

13 0.59968 0.67269 0.42766 33

13 0.59537 0.59806 0.37363 34

11 0.60019 0.66221 0.44468 35

15 0.60162 0.83517 0.63133 36

14 0.60397 0.84557 0.64277 37

Table 5.5: Louvain with modularity on weighted graphs.

Clusters Modularity NMI ARI

15 0.06745 0.9386 0.78258

Threshold‐based approach

In this experiment we tried different values of parameter t ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
kept as final solution, the one with the maximum inclusion score. Then we applied
Louvain algorithm to the same graph. The results are presented in tables 5.6 and 5.7.

Table 5.6: GNM with threshold-based approach on weighted graphs.

Clusters Inclusion NMI ARI Thres

5 0.54647 0.07767 0.02474 0.1

7 0.56496 0.76542 0.42404 0.3

13 0.61602 0.91188 0.71777 0.5

12 0.6116 0.8873 0.63651 0.7

39 0.59778 0.34584 0.13106 0.9

Table 5.7: Louvain with modularity on weighted graphs.

Clusters Modularity NMI ARI

14 0.06647 0.92034 0.71777

As it can be observed both kNN-based and threshold-based approaches, end up
to a satisfactory enough solution, but worse compared to modularity. This is most
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likely due to the loss of information after transforming the graph from weighted to
unweighted.

Another obvious disadvantage of these two approaches, is that they have a pa-
rameter (k or t) which adds one more level of complexity, that is to find the best
parameter value, if no prior knowledge exist on the dataset.

5.3 Weighted graphs

To evaluate the generalized inclusion for weighted similarity matrices, we first con-
ducted experiments on graphs of all the categories of synthetic graphs mentioned
in the first section, having 500 vertices and 10 clusters. In order to make the graph
weighted, we followed the same approach mentioned in the previous section. We
generated the weights from two Normal distributions, one with mean 0.8 and std
0.1 for the existing edges of the graph and another one with mean 0.2 and std 0.1
for the non-existing edges. The results of 5 different executions for each graph type,
comparing GNM to Louvain algorithm are summarized in table 5.8.

Table 5.8: GNM (inclusion) vs Louvain on weighted synthetic graphs consisting of
500 vertices and 10 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Graph Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

B&D 10 0.5951 1 1 9.8 0.1234 0.9682 0.9027

B&DD 9.2 0.5678 0.9748 0.9202 9 0.0894 0.9682 0.9027

DL&SS 9.6 0.6284 0.9901 0.9924 5 0.1498 0.8567 0.7824

DS&DD 8.4 0.5722 0.9706 0.9725 6 0.0901 0.9048 0.8736

IS&DD 8.4 0.6173 0.9501 0.9720 4 0.1395 0.7756 0.6349

It can be observed that in all experiments GNM with inclusion presented much
better results than Louvain algorithm with modularity.

Another set of experiments we conducted for the evaluation of generalized inclu-
sion was on weighted ring graphs. An unweighted ring graph consists of complete
subgraphs which are connected to each other with only one edge forming a ring. An
example of a ring graph with 30 vertices divided in 6 fully connected subgraphs is
presented in figure 5.1.
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Figure 5.1: Ring graph example.

We defined 5 different categories of ring graphs based on the number of vertices
and clusters (table 5.9) and 5 different variations using different Normal distributions
for edge weights generation (table 5.10).

Table 5.9: Ring graph categories.

Category Vertices Clusters

1 30 10

2 60 15

3 150 30

4 300 50

5 500 10

Table 5.10: Ring graph variations.

0 ‐ Edges 1 ‐ Edges

Var. Mean Std Mean Std

1 0 0 1 0

2 0 0 0.8 0.1

3 0.1 0.1 0.8 0.1

4 0.2 0.1 0.8 0.1

5 0.3 0.2 0.7 0.2

The results from 5 different executions of GNM and Louvain algorithm for each
combination of the different ring graph categories and variations, are presented below.
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Table 5.11: Ring graphs with 30 vertices and 10 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Variation Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

1 10 0.8961 1 1 5.6 0.6720 0.8470 0.5613

2 10 0.8906 1 1 5.8 0.6739 0.8550 0.5735

3 10 0.6601 1 1 6 0.2485 0.8588 05801

4 9.4 0.6020 0.9810 0.9213 5.4 0.1325 0.8245 0.5159

5 6.4 0.5754 0.6897 0.3424 3.6 0.0734 0.6101 0.2606

Table 5.12: Ring graphs with 60 vertices and 15 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Variation Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

1 15 0.9407 1 1 8 0.7949 0.8644 0.5874

2 15 0.9350 1 1 9 0.7977 0.8858 0.6275

3 15 0.6316 1 1 9.4 0.2131 0.8923 0.6391

4 14.6 0.5803 0.9931 0.9654 7.4 0.1125 0.8370 0.5157

5 9.6 0.5524 0.7196 0.3785 4.6 0.0592 0.5875 0.2265

Table 5.13: Ring graphs with 150 vertices and 30 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Variation Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

1 30 0.9614 1 1 16.6 0.8866 0.8998 0.6283

2 30 0.9585 1 1 17.2 0.8883 0.9047 0.6394

3 30 0.5804 1 1 14.4 0.1390 0.8692 0.5364

4 29.8 0.5455 0.9986 0.9918 11 0.0690 0.8185 0.4308

5 10.8 0.5317 0.5578 0.1588 6.6 0.0379 0.4931 0.1344
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Table 5.14: Ring graphs with 300 vertices and 50 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Variation Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

1 50 0.9727 1 1 28.2 0.9273 0.9163 0.6488

2 50 0.9712 1 1 27.4 0.9289 0.9129 0.6404

3 50 0.5535 1 1 18 0.0953 0.8420 0.4373

4 49 0.5295 0.9964 0.9766 14.6 0.0468 0.8039 0.3609

5 8.4 0.5227 0.4002 0.0633 7.4 0.0272 0.3834 0.0620

Table 5.15: Ring graphs with 500 vertices and 10 clusters.

GNM (Inclusion) Louvain algorithm (Modularity)

Variation Clusters Inclusion NMI ARI Clusters Modularity NMI ARI

1 10 0.9996 1 1 10 0.8992 1 1

2 10 0.9889 1 1 10 0.8992 1 1

3 10 0.7111 1 1 10 0.3460 1 1

4 10 0.6379 1 1 10 0.2023 1 1

5 10 0.5765 1 1 10 0.0984 1 1

The results of the experiments on ring graphs demonstrate modularity’s resolution
limit problem. In the case where the ring graph consist of 500 vertices in 10 clusters
(table 5.15), both inclusion and modularity easily identify the best clusters. But in
all other cases, where the number of vertices in clusters is small in relation to the
total number of vertices in the graph, modularity fails to identify the best clustering
solution. On the other hand GNM provides high quality solutions (NMI = 1 in almost
all cases).

5.4 Synthetic 2D datasets

In this section we present another set of experiments, using spectral clustering with in-
clusion, modularity and silhouette as quality measures on different synthetic datasets
consisting of 2-dimensional vectors. For these experiments we used the alpha param-
eter of inclusion with value a = 0.75, in order to focus more on the inter density of
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clusters. To construct the similarity matrix, we used an RBF Kernel with σ = 0.5. To
compute silhouette the Euclidean distance has been used.

The 3Wings dataset

The 3Wings dataset consists of 1500 points divided in 3 clusters. The initial dataset
along with its ground truth, are presented below.

Figure 5.2: The 3Wings dataset and its ground truth.

Next, we present the results of spectral clustering with different number of clus-
ters k ∈ {2, 3,…, 7}, using inclusion, modularity and silhouette for the evaluation of
solution.

Table 5.16: Spectral clustering on 3Wings dataset.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.63576 0.52466 2 0.84841 0.84841 0.41195 0.38974

0.88251 0.92547 3 0.89662 0.86478 0.62149 0.54219
0.82532 0.87816 4 0.88855 0.76911 0.61962 0.53494

0.77203 0.82191 5 0.87468 0.74436 0.61228 0.48561

0.79906 0.84046 6 0.87735 0.74445 0.61382 0.44878

0.23549 0.05026 7 0.75345 0.71106 0.13407 0.01598

The 5Gaussians dataset

The 5Gaussians dataset consists of 704 points divided in 5 clusters. The initial dataset
along with its ground truth, are presented below.
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Figure 5.3: The 5Gaussians dataset and its ground truth.

Next, we present the results of spectral clustering with different number of clusters
k ∈ {2, 3,…, 9}, using inclusion, modularity and silhouette for the evaluation of each
solution as mentioned.

Table 5.17: Spectral clustering on 5Gaussians dataset.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.45886 0.20468 2 0.83865 0.83865 0.24981 0.6659

0.69387 0.40257 3 0.89231 0.85195 0.3351 0.68697

0.8522 0.64572 4 0.92941 0.87518 0.43762 0.68524

0.97286 0.97681 5 0.93012 0.89986 0.60794 0.7528
0.81715 0.61895 6 0.88927 0.76481 0.4181 0.62113

0.79521 0.59417 7 0.84851 0.73502 0.3919 0.54409

0.78245 0.58563 8 0.83396 0.72814 0.38386 0.54189

0.90343 0.91285 9 0.83447 0.74749 0.55299 0.65049

The 7Clusters dataset

The 7Clusters dataset consists of 1400 points divided in 7 clusters. The initial dataset
along with its ground truth, are presented below.
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Figure 5.4: The 7Clusters dataset and its ground truth.

Next, we present the results of spectral clustering with different number of clusters
k ∈ {2, 3,…, 11} using inclusion, modularity and silhouette for the evaluation of each
solution.

Table 5.18: Spectral clustering on 7Clusters dataset.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.49766 0.26696 2 0.88038 0.88038 0.49874 0.48442

0.63902 0.35355 3 0.9014 0.83776 0.5982 0.46271

0.79996 0.61785 4 0.94177 0.86098 0.70977 0.56075

0.86505 0.71358 5 0.94684 0.87117 0.77503 0.57994

0.91994 0.82813 6 0.94849 0.87854 0.7929 0.5531

0.97504 0.97562 7 0.94968 0.88443 0.80519 0.57846

0.94695 0.93737 8 0.94075 0.83449 0.79846 0.60051
0.92395 0.89129 9 0.92601 0.82685 0.78476 0.59817

0.90215 0.84256 10 0.9028 0.81246 0.75784 0.57721

0.90511 0.84414 11 0.89323 0.7917 0.75323 0.56641

In all the experiments we can see that the three quality measures agree to the cor-
rect among the solutions obtained from spectral clustering except for the last dataset,
where silhouette prefers the solution with the 8 clusters after breaking down in two,
the large cluster on the bottom left corner (figure 5.5).
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(a) k = 7 (b) k = 8

Figure 5.5: Spectral clustering solutions on 7Clusters dataset.

5.5 Pointwise inclusion

In this set of experiments, we used the 5Gaussians dataset presented in the previous
section and the 4Gaussians, one more dataset consisting again from 2-dimentional
vectors generated from four scaled Gaussian distributions, shown in figure 5.6 along
with its ground truth.

Figure 5.6: The 4Gaussians dataset and its ground truth.

To find the best clustering solution for the data, we applied again spectral cluster-
ing for different number of clusters k ∈ {2, 3,…, 10} and evaluated each solution using
inclusion with a = 0.5, modularity and silhouette as quality measures. To construct
the similarity matrix, we used again an RBF Kernel with σ = 1.5 for the 4Gaussians
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and σ = 0.5 for the 5Gaussians dataset. For each dataset we also present the his-
togram of the best object-level inclusion scores. The results of the experiments are
presented in tables 5.19 and 5.20.

Table 5.19: Spectral clustering on 4Gaussians dataset.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.57716 0.33166 2 0.70626 0.70626 0.36579 0.26226

0.85714 0.71274 3 0.84301 0.74722 0.61592 0.19277

1 1 4 0.9116 0.80564 0.7497 0.81817
0.94119 0.91236 5 0.89506 0.71395 0.715 0.71172

0.88913 0.81723 6 0.87158 0.69371 0.66501 0.58581

0.84237 0.71242 7 0.84622 0.67737 0.61119 0.46656

0.80193 0.60375 8 0.82314 0.66013 0.56457 0.34596

0.77918 0.56059 9 0.81024 0.6529 0.53876 0.34989

0.75924 0.52356 10 0.79989 0.65066 0.51848 0.35227

For the experiment on 4Gasussian dataset, we also present the visualization of
spectral clustering results for each k.

(a) k = 2 (b) k = 3
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(c) k = 4 (d) k = 5

(e) k = 6 (f) k = 7

(g) k = 8 (h) k = 9

Figure 5.7: Spectral clustering results on 4Gaussians dataset.
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Figure 5.8: Pointwise inclusion histogram for 4Gaussians dataset.

As we mentioned, the histogram of the best object-level inclusion scores can be
used to give us additional information for the clustering solution. In the case of 2
clusters none of the points are presented their maximum inclusion score. In case of 3
clusters we can see that the 2 out of 4 clusters are separated correctly and therefore we
observe in the histogram that almost half of the data have their maximum inclusion
score. In case of 4 clusters almost all the data are well placed. For number of clusters
k ∈ {5, 6, 7, 8} a cluster is split in half each time meaning that objects in that cluster
get lower inclusion score. For this reason the data in this cluster are removed from
the corresponding histogram bin.

Table 5.20: Spectral clustering on 5Gaussians dataset.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.45886 0.20468 2 0.6773 0.6773 0.24981 0.6659

0.69387 0.40257 3 0.78565 0.70419 0.3351 0.68697

0.8522 0.64572 4 0.87394 0.76055 0.43762 0.68524

0.97286 0.97681 5 0.93305 0.8607 0.60794 0.7528
0.81715 0.61895 6 0.84915 0.5831 0.4181 0.62113

0.79521 0.59417 7 0.82528 0.58294 0.3919 0.54409

0.78245 0.58563 8 0.81604 0.58006 0.38386 0.54189

0.90343 0.91285 9 0.87409 0.6275 0.55299 0.65049

0.88798 0.90126 10 0.86264 0.62535 0.54106 0.6414
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Figure 5.9: Pointwise inclusion histogram for 5Gaussians dataset.

5.6 Inclusion on real datasets

In this section we consider three real-world datasets: Pendigits, Optdigits and Iris.
Pendigits2 train set consists of 7494 digits of 10 classes produced from 44 writers
using a pressure sensitive tablet. Each digit has 16 attributes and its label.

Optdigits3 train set consists of 3823 hand-written digits of 10 classes and each digit
has 64 attributes and its label. For both datasets, to produce the similarity matrix, we
used an RBF Kernel with σ = 0.7. We applied spectral clustering for various subsets
of digits ({2, 3}, {2, 3, 6}, {0, 2, 3, 6}, {0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}) and determined the best
solution using inclusion, modularity and silhouette. The results of the experiments
on Pendigits and Optdigits datasets are presented in tables 5.21 - 5.28.

Table 5.21: Spectral clustering on Pendigits subset {2, 3}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

1 1 2 0.81444 0.81444 0.48201 0.59598
0.81229 0.79929 3 0.80743 0.64553 0.45818 0.47272

0.69638 0.58648 4 0.76808 0.62059 0.39502 0.33518

2https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
3https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Table 5.22: Spectral clustering on Pendigits subset {2, 3, 6}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.74252 0.5908 2 0.75356 0.75356 0.4425 0.40546

1 1 3 0.86787 0.8012 0.62459 0.55881
0.90303 0.87678 4 0.84135 0.691 0.57488 0.48362

0.82941 0.76212 5 0.82477 0.64283 0.54485 0.41905

Table 5.23: Spectral clustering on Pendigits subset {0, 2, 3, 6}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.48851 0.28118 2 0.68819 0.68819 0.28693 0.38716

0.8148 0.69844 3 0.83053 0.74359 0.62116 0.41473

0.91949 0.90816 4 0.88525 0.7849 0.69435 0.52609

0.90213 0.87776 5 0.87545 0.70466 0.66988 0.49907

0.90708 0.87961 6 0.869 0.62211 0.65852 0.48879

Table 5.24: Spectral clustering on Pendigits subset {0, 2, 4, 6, 8}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.384 0.22456 2 0.69277 0.69277 0.403 0.26311

0.59411 0.4775 3 0.79913 0.72015 0.56811 0.30085

0.71062 0.61062 4 0.83313 0.71891 0.63921 0.34925

0.79767 0.74548 5 0.85531 0.71041 0.66094 0.40603

0.83497 0.79325 6 0.85834 0.68005 0.65911 0.41883

0.8287 0.77326 7 0.84907 0.68173 0.63689 0.41363

Table 5.25: Spectral clustering on Optdigits subset {2, 3}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

1 1 2 0.74866 0.74866 0.49649 0.23381

0.79206 0.75155 3 0.77875 0.67555 0.54739 0.20273

0.3581 0.29041 4 0.66522 0.50051 0.33785 0.09842
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Table 5.26: Spectral clustering on Optdigits subset {2, 3, 6}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.73148 0.56625 2 0.7212 0.7212 0.49893 0.27316
1 1 3 0.83223 0.74839 0.63422 0.26981

0.90058 0.86867 4 0.83885 0.67311 0.62542 0.24642

0.7151 0.61061 5 0.77694 0.50162 0.47169 0.16525

Table 5.27: Spectral clustering on Optdigits subset {0, 2, 3, 6}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.66666 0.49951 2 0.75034 0.75034 0.38283 0.23109

0.85167 0.70729 3 0.81128 0.70724 0.62122 0.25885

0.99671 0.99827 4 0.87389 0.74846 0.65402 0.28349

0.93228 0.90857 5 0.87349 0.67165 0.63996 0.26968

0.78988 0.62767 6 0.81228 0.50389 0.40154 0.19313

Table 5.28: Spectral clustering on Optdigits subset {0, 2, 4, 6, 8}.

NMI ARI Clusters Inclusion N‐Inclusion Modularity Silhouette

0.46306 0.20648 2 0.65829 0.65829 0.49947 0.11062

0.76229 0.60336 3 0.81749 0.70023 0.42624 0.18052

0.8852 0.77246 4 0.8572 0.71432 0.65712 0.21729

0.9811 0.98815 5 0.89523 0.74583 0.66811 0.23768

0.97057 0.97789 6 0.89614 0.52473 0.66815 0.23919
0.82048 0.68733 7 0.85499 0.52664 0.42783 0.17243

We also applied k-means to the same subsets of digits, but results were similar to
the ones of spectral clustering.

For most of the cases, all compared criteria show good results. There are cases
though, where some of them deviate from the correct solution. This deviation may
be due to the fact that these datasets consists of handwritten digits. Depending on
the handwriting, there may be different digits similar to each other in which case a
criterion may prefer to combine them into one cluster. On the other hand, the same
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digit can be written in different ways so it may be preferable from a criterion, to split
the cluster of that digit into two or more clusters.

Finally, Iris4 is a dataset of 150 objects. Each object consists of 4 attributes and
its label, which refers to a type of iris plant. There are 3 different types of plants:
Iris Setosa, Iris Versicolour and Iris Virginica. To produce the similarity matrix, we
used an RBF Kernel with σ = 0.5. The results of the experiments are presented in
table 5.29.

Table 5.29: Spectral clustering on Iris dataset.

NMI ARI Clusters Inclusion Ν‐Inclusion Modularity Silhouette

0.6994 0.55837 2 0.76274 0.76274 0.16193 0.68579
0.77715 0.70736 3 0.71908 0.68669 0.13348 0.55173

0.60559 0.45306 4 0.67977 0.63269 0.09495 0.37892

0.72092 0.64031 5 0.64289 0.6233 0.08031 0.32846

Summarizing the experimental results, inclusion criterion presents in many cases
better results than modularity. Compared to silhouette criterion, inclusion has in
general equally good results. In regards to comparison between inclusion and nearest
inclusion criterion, nearest inclusion presents good results too, but in difficult datasets
like Pendigits and Optdigits, it seems to prefer solutions with small number of clusters,
deviating from the real solution.

4https://archive.ics.uci.edu/ml/datasets/iris
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we studied data clustering focusing on inclusion, a recently proposed
quality measure to evaluate a clustering solution, along with Greedy Node Movement,
an algorithm for optimizing this criterion. The inclusion measure can be used to solve
clustering problems without a prior knowledge of the number of clusters.

The goal of this thesis is the generalization of inclusion quality measure to general
similarity matrices, since until now, it was defined only for binary similarity matrices.
To achieve that, we considered three different approaches. Two of them rely on binary
inclusion but first, they convert the similarity matrix to binary. The third approach
and the most effective relies on extending the inclusion definition to accommodate
general similarity values. We propose two definitions of inclusion.

The experiments we conducted showed that the first two approaches that rely on
binary inclusion provide good results, but inferior to other criteria like modularity
and silhouette, due to the loss of information after converting the similarity matrix
to binary.

However, the generalization of inclusion itself had very good experimental results
and in many cases much better than the previously mentioned quality measures.

Even though inclusion presented very good results, there are several issues that
need further elaboration. An important one is to assess the performance of inclusion
on more datasets, especially real-world ones. The two versions of inclusion, the role
of parameter a and the comparative performance with respect to silhouette should
be investigated in more detail.
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Another issue that could be studied concerns the development of greedy heuristic
of lower computational complexity compared to Greedy Node Movement, that would
allow the direct optimization of inclusion criterion to partition large datasets.
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