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ABSTRACT

Sotirios Tsioutsiouliklis, M.Sc. in Data and Computer Systems Engineering, Depart-
ment of Computer Science and Engineering, School of Engineering, University of
Ioannina, Greece, September 2020.
Fairness Aware Ranking & Recommendations in Networks.
Advisor: Evaggelia Pitoura, Professor.

Algorithmic fairness has attracted significant attention in the past years. Surprisingly,
there is little work on fairness in networks. In this work, we consider fairness for
link analysis algorithms and in particular for the celebrated PageRank algorithm. We
provide definitions for fairness, and propose two approaches for achieving fairness.
Furthermore, we explore how a recommendation system can affect the fairness of
a network. We define objective for a fair recommender and we propose two recom-
mendation policies in this direction. We present experiments with real and synthetic
graphs that examine the fairness of PageRank, demonstrate qualitatively and quanti-
tatively the properties of our fair algorithms and evaluate the impact of the different
recommendation systems.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Σωτήριος Τσιουτσιουλικλής, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών
Συστημάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανε-
πιστήμιο Ιωαννίνων, Σεπτέμβριος 2020.
Αλγόριθμοι Κατάταξης και Συστήματα Συστάσεων σε Κοινωνικά Δίκτυα Ενάντια
στις Διακρίσεις.
Επιβλέπων: Ευαγγελία Πιτουρά, Καθηγήτηρια.

Στην εποχή μας, λόγο του συνεχούς αυξανόμενου όγκου των δεδομένων προς
επεξεργασία, χρησιμοποιούνται καθημερινά συτήματα και αλγόριθμοι για την ολο-
κλήρωση διάφορων διαδiκασιών που μέχρι πρόσφατα διεξάγονταν από ανθρώπους.
Συνήθεις διαδικασίες τέτοιων αλγορίθμων είναι η κατάταξη και η κατηγοριοποίηση
των δεδομένων. Η εφαρμογή τέτοιων αλγορίθμων σε διαδικασίες που σχετίζονται
με ανθρώπους (π.χ. 10 καλύτεροι ερευνητές για το 2020) είχαν ως αποτέλεσμα την
εμφάνιση του ζητήματος των άκριτων διακρίσεων διαφόρων μορφών (π.χ. φυλετι-
κές διακρίσεις) και της άνισης μεταχείρησης ανθρώπων από αλγορίθμους. Παρ’ ότι
το φαινόμενο έχει απασχολήσει την ερευνητική κοινότητα σε διάφορες κατηγορίες
αλγορίθμων, όπως αυτών της μηχανικής μάθησης, και τα δίκτυα χρησιμοποιούντε
στη μοντελοποίηση πληθώρας καθημερινών καταστάσεων και προβλημάτων, ύπαρ-
χει ελάχιστη δραστηριότητα προς αυτή τη κατεύθυνση στον τομέα των αλγορίθμων
δικτύων.

Σε αυτη την εργασία επιχειρούμε μια προσέγγιση στη καταπολέμιση των δια-
κρίσεων σε αλγορίθμους που δρουν σε δίκτυα. Αρχικά, ορίζουμε τις έννοιες της
δικαιοσύνης και του δίκαιου αλγορίθμου για δίκτυα. Επικεντρωνόμαστε στον δη-
μοφιλή αλγόριθμο PageRank (Αν και η ανάλυση και οι αλγόριθμοι μπορούν να επε-
κταθούν κατά φυσικό τρόπο σε διάφορους άλλους αλγορίθμους για δίκτυα) και σε
δυαδικά προστατυεόμενα χαρακτηριστικά (π.χ. άντρας - γυναίκα), μελετάμε τις
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ιδιότητες του δικτύου που το κάνουν άδικο και προτείνουμε διαφορετικές προσ-
σεγγίσεις προς τη παραγωγή ενός δίκαιου αποτελέσματος διατηρώντας παράλληλα
εκείνα τα χαρακτηριστικά του αρχικού αλγορίθμου που τον ξεχωρίζουν και του
προσδίδουν ιδιαίτερη αξία. Η πρώτη προσέγγιση χρησιμοποιεί τον διάνυσμα ”άλ-
ματος” του PageRank για την επίτευξη ενός δίκαιου αποτελέσματος, ενώ η δεύτερη
επιχειρεί μέσο της ατομικής συμπεριφοράς κάθε κόμβου αναγκάζοντας τον, κατά
κάποιον τρόπο, να λειτουργήσει δίκαια. Επίσης, αξιολογούμε τους διαφορετικούς
αλγορίθμους βάση της αλλαγής που φέρνουν σε σύγκριση με τον PageRank και
τη χρησιμότητα τους. Οι αλγόριθμοι που προτείνουμε κλιμακώνουν αποδοτικά σε
δεδομένα ευρείας κλίμακας.

Στη συνέχεια εξετάζουμε την επιρροή των συστημάτων συστάσεων συνδέσμων
στη δικαιωσυνή ενός δικτύου. Παρατηρούμε ότι τα εώς τώρα συστήματα συστά-
σεων δεν επιρεάζουν το δύκτιο σε αυτή τη παράμετρο, παρά διατηρούν την αρχική
κατάσταση. Προτείνουμε ένα σύστημα συστάσεων που επιτυγχάνει την ανάδειξη
και προβολή της αδικημένης/προστατευόμενης κατηγορίας στο δίκτυο με εξερετικά
αποτελέσματα, θυσιάζοντας όμως τη ποιότητα των συστάσεων. Διατηρούμε το σκορ
που παράγεται από το σύστημα αυτό και το εφραμόζουμε σε μια υβριδική μορφή σε
συνδιασμό με ένα υπάρχον σύστημα συστάσεων. Για την πειραματική αξιολόγηση
του συστήματος χρησιμοποιούμε ένα σύστημα συστάσεων βασισμένο σε embed-
dings προερχόμενα από τον node2vec αλγόριθμο και παρατηρούμε ότι το υβριδικό
σύστημα ισορροπεί με ικανοποιητικό τρόπο τους δύο αντικειμενικούς στόχους μας
(ανάδειξη της αδικημένης κατηγορίας και διατήρηση ποιοτικών συστάσεων). Επι-
πλέον, εξετάζουμε σε συνθετικά δίκτυα την συμπεριφορά των διαφόρων συστημά-
των για διαφορετικές παραμέτρους και βλέπουμε ότι το προτεινόμενο σύστημα δεν
επιρεάζεται από τα χαρακτηριστικά του δικτύου και συνεχίζει να έχει όμοια απο-
τελέσματα. Τέλος, μελετάμε τα ποιοτικά χαρακτηριστικά των συστάσεων όλων τον
αλγορίθμων και προσπαθούμε να εξηγήσουμε το σύστημα συστάσεων μέσα από
απλά χαρακτηριστικά των προτεινόμενων συστάσεων.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Scope

1.2 Thesis Structure

Today, algorithmic systems driven by large amounts of data are increasingly being
used in all aspects of life. Often, such systems are being used to assist, or, even re-
place human decision making. This increased dependence on algorithms has given
rise to the field of algorithmic fairness, where the goal is to ensure that algorithms do
not exhibit biases towards specific individuals, or groups of users (see e.g., [1] for a
survey). We also live in a connected world where networks, be it, social, communica-
tion, interaction, or cooperation networks, play a central role. However, surprisingly,
fairness in networks has received less attention.

Link analysis algorithms, such as Pagerank [2], HITS [3], or SALSA [4], take a
graph as input and use the structure of the graph to determine the relative importance
of its nodes. The output of the algorithms is a numerical weight for each node
that reflects its importance. The weights are used to produce an ordering of the
nodes and as input features in a variety of machine learning algorithms including
classification [5], and search result ranking [2]. In this work, we focus on the Pagerank
algorithm [2]. Pagerank performs a random walk on the input graph, and ranks the
nodes according to the stationary probability of this walk. At every step, the random
walk restarts with probability c. The restart node is selected according to a“jump”
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distribution vector v. Since its introduction in the Google search engine, Pagerank has
been the cornerstone algorithm in several applications (see, e.g., [6]).

1.1 Thesis Scope

As in previous research, we view fairness as lack of discrimination against a protected
group defined by the value of a sensitive attribute, such as, gender, or race [1]. We
operationalize this view by saying that a link analysis algorithm is ϕ-fair, if the fraction
of the total weight allocated to the members of the protected group is ϕ. The value
of ϕ is a parameter that can be used to implement different fairness policies. In the
simplest case, ϕ is set equal to the fraction of the protected nodes in the graph,
asking that these nodes have a share in the weights proportional to their share in the
population. We also consider targeted fairness, where we focus on a specific subset of
nodes to which we want to allocate weight in a fair manner.

We revisit Pagerank through the lens of our fairness definition, and we consider
the problem of defining Pagerank variants that are fair. We also define the utility loss
of a fair algorithm as the difference between its output and the output of the Pagerank
algorithm, and we pose the problem of achieving fairness while minimizing utility.
We consider two approaches for achieving fairness. Our first approach, the fairness-
sensitive Pagerank algorithm, exploits the jump vector v. There has been a lot of work
on modifying the jump vector to obtain variants of pagerank biased towards a specific
set of nodes, for example, in personalized pagerank, all jump probability is assigned
to a single node, while in topic-sensitive pagerank, the probability is assigned to nodes
of a specific topic [7]. In this thesis, we take the novel approach of using the jump
vector to achieve ϕ-fairness. We determine the conditions under which this is feasible
and formulate the problem of finding the jump vector that achieves ϕ-fairness while
minimizing utility loss from the original PageRank as a convex optimization problem.

Our second approach takes a microscopic view by looking at the behavior of
each individual node in the graph. Implicitly, a link analysis algorithm assumes that
links in the graph correspond to endorsements between the nodes. Therefore, we
can view each node, as an agent that endorses (or votes for) the nodes that it links to.
The link analysis algorithm defines a process that takes these individual actions of
the nodes and transforms them into a global weighting of the nodes. To this end,

2



we introduce, the locally fair PageRank algorithms, where each individual node acts
fairly by distributing its own PageRank to the protected and non-protected groups
according to the fairness ratio ϕ. Local fairness defines a dynamic process that can
be viewed as a fair random walk, where at each step of the random walk (not only at
convergence), the probability of being at a node of the protected group is ϕ.

In our first locally fair PageRank algorithm, termed the neighborhood locally fair
PageRank algorithm, each node distributes its PageRank fairly among its immediate
neighbors, allocating a fraction ϕ to the neighbors in the protected group, and 1− ϕ

to the neighbors in the non-protected group. Or, in random walk terms, at each node
the probability of transitioning to a neighbor in the protected group is ϕ and the
probability of transitioning to a non-protected neighbor is 1 − ϕ. The residual-based
locally fair pagerank algorithms generalizes this idea. Consider a node i that has less
neighbors in the protected group than ϕ. The node distributes an equal portion of
its pagerank to each of its neighbors and a residual portion δ(i) to members in the
protected group but not necessarily in its neighborhood. Or, in random walk terms,
at each node i, the probability of transitioning to a neighbor is 1 − δ(i) and the
probability of transitioning to a node in the protected group is δ(i). The residual is
allocated based on a residual redistribution policy, which allows us to control the fairness
policy. In this thesis, we use the residual redistribution policy to minimize the utility
loss.

Finally, we present a post-processing approach that given the output of a link
analysis algorithm, it redistributes the weights so as to attain fairness. This gives us
a lower bound on the utility loss.

We study the fairness of the original PageRank in both real and synthetic networks.
We also evaluate quantitatively and qualitatively the output of our fairness-sensitive
algorithms. The weights produced by the neighborhood locally fair PageRank tend to
promote protected nodes lying on the boundaries of the two groups especially in ho-
mophilic networks, while the fairness-sensitive PageRank tends to jump to protected
nodes especially when the requested ϕ is large.

Besides that, previous research has considered algorithms that weight nodes ac-
cording to their degree, and found biases that arise as a network evolves [8, 9]. Link
recommendation systems is known that can affect the evolution of a network. The
first objective of a link recommendation system is to speed up the physical evolution
of the network as this would have been done without any external intervention as this

3



assumed to be more pleasant for the users. However, there are cases where chang-
ing a feature is important and recommendation systems are used for this purpose
[10, 11]. In the context of fairness, as it is defined in the first part, we see that existing
recommenders preserve the initial bias of the network. We explore the possibilities
that recommendations systems have and we show that they can be used to improve
the fairness of a network.

At first, we call a recommender fair if the recommendations it makes improve the
cumulative PageRank of the protected group. In previous PageRank related perturba-
tion analysis they have study the effect of adding a directed out edge to the individual
PageRankof each node [12]. We show in our analysis how adding edges affect the
cumulative PageRank of a group. We detect those edges that will raise the PageRank
of the protected group and we rank them based the raise they can succeed. We use
this raise as a score for a fair link recommendation system and we introduce a hybrid
fair recommendation system which acts complementary to known recommendation
systems to achieve link recommendation that improve our objective and are close to
the natural evolution of the network. In this thesis we embed our recommendation in
a recommendation system based on node2vec embeddings [13] creating the hybrid
fair link recommendation system.

To evaluate the existing and the fair recommenders we use again real and synthetic
data. We explore their impact both in fairness and in quality of link recommenda-
tions, meaning the score we derive from the existing recommendation system which
we use to create the hybrid fair recommender. In our case this is the node2vec rec-
ommendation score. Last we examine in depth the features of the proposed links for
each recommendation system and we analyze their underlying mechanisms.

In summary, in this thesis we make the following contributions:

• We propose the fairness-sensitive Pagerank algorithm that modifies the jump
vector so as to attain fairness and the locally fair Pagerank algorithms that
guarantee that individually each node behaves in a fair manner

• We formulate optimization problems for finding the algorithms that minimizes
the utility loss and estimate a lower bound for the optimal utility loss by post-
processing the output of Pagerank

• We define the notion of fair link recommendation system.
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• We propose the fair and the hybrid fair link recommendation systems.

• We perform experiments on several datasets. Our experiments demonstrate
qualitatively and quantitatively the properties of the fair Pagerank algorithms
and of the fair recommendatin systems.

1.2 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2 we present the
required preliminaries knowledges to follow the thesis and a table with all the basic
notations we use throughout the text. In Chapter 3 we define fair link analysis and
our fair link analysis algorithms. In chapter 4 we present the notion of a fair recom-
mender, we define the problem of fair link recommendations and we introduce a fair
recommendation policy. Chapter 5 Includes the experimental evaluation for our fair
algorithms and our fair recommendation system. Finally, we compare our work with
related research in Chapter 6 and offer our conclusions and our future work ideas in
Chapter 7.
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CHAPTER 2

PRELIMINARIES

2.1 PageRank

2.2 Markov Chains

2.3 Relation Between PageRank and Absorbing Markov Chains.

2.4 Useful Notations

In this chapter, we present prerequisite knowledges that would be useful for the
understanding of this thesis. This includes the PageRank algorithm and its variations
and basic theory of the stochastic processes and particular of the Markov chains. Also
we present a table with the notation we will use in the following chapters.

2.1 PageRank

The PageRank algorithm is the best-known link analysis algorithm, popularized by
its application in the Google search engine. The scoring vector of the algorithm is the
stationary distribution of a random walk on the graph G. We will use p to denote
this probability vector (which is the same as the scoring vector w).

More formal, let G = (V,E) be a graph where V = {0, 1, ..., n} is the set of nodes
and E ⊆ V xV is the set of edges exist in the graph. PageRank is a link analysis
algorithm Gn → Rn, Gn := the set of all graphs of size n, that defines a stochastic
process based on the graph structure - and particular an ergodic Markov chain.
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In PageRank the nodes are the states of the stochastic process and the transition
probabilities are defined by the formula PG = (1− c) ·P+ c · evT , 0 < c < 1, where PG

is the transition matrix defined by PageRank and P is the transition matrix derived
from the adjacency matrix of the graph with the difference that if a node has 0 out
neighbors (it is an absorbing node) then we consider all nodes to be its neighbors, c is a
factor known as ”jump coefficient”, v is a probability vector (commonly the uniform
one) known as ”jump vector” and e is the vector with 1 in all of its coordinates.
PageRank vector can also be expressed as

pt = (1− c)pt · PG + cvt (2.1)

PageRank is a way of evaluating the nodes and assign to them a score that rep-
resents their importance in the network. A common problem is when we want to
evaluate the nodes not by their importance in the network but by their importance
in the network for a specific node u ∈ V (or for a specific set of nodes U ⊂ V ). In
this case the PageRank is called personilized and this can be achieved by setting the
jump vector

v(i) =

1/|U |, i ∈ U

0, otherwise

From 2.1 we can take that

pt = avt · Q, Q = [I− (1− a) · PG]
−1 (2.2)

The last relation implies that the PageRank of each node is the average personilized
PageRank of that node (U = {u}), for all the nodes in the network.

2.2 Markov Chains

Markov chains are descrete stochastic processes on countable state spaces where the
probability to move from one state to another depends only upon the present state.
We call a state transient if the probability to leave from it is greater than 0 and
absorbing otherwise. When the probability to move from every state to any other
state is greater than 0 the Markov chain is called irreducible. Moreover, when for all
states the gcd of the number of steps that is possible to go back to the current state
is equal to 1 the Markov chain is called aperiodic. We call ergodic a Markov chain
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that is both irreducible and aperiodic. These stochastic processes have what we call
as ”stationary distribution”. This means the existence of a distribution over the states,
which describes the probability to visit each state, with the property that stays stable
through time. We can express this as ∃ p : pt = pt · P ∧ pT · e = 1,p ∈ Rn.

An interesting category of stochastic processes are the absorbing Markov chains.
An absorbing Markov chain is a Markov chain that has one or more absorbing states
and it is possible from every transient state to reach at least an absorbing one. We will
now present the basic theory of absorbing Markov chains and a common modification
of a Markov chain to an absorbing one, which provides us with the tools to prove
interesting properties.

As it is clear by now every state in an absorbing Markov chain is either transient
or absorbing. If we consider that the transient states are the first k states and the
absorbing ones the last n− k, n = |V |, then we can write the transition matrix in its
”canonical form”:

P =

Pt R
0 I

 (2.3)

where Pt is the transition matrix from transient to transient states, R is the transition
matrix from transient to absorbing states, 0 is the zero matrix denoting the proba-
bilities from absorbing to transient states and I is the identity matrix denoting the
probabilities from absorbing to absorbing states.

Transition probabilities in m steps are given by Pm, from 2.3 we get:

Pm =

Pm
t R∗

0 I

 (2.4)

Since there is a probability to reach an absosbing state from any transient state
(not necessarily in 1 step) is greater than 0 we have that limm→∞Pm

ij = 0, ∀i, j ∈
{i|i ∈ V ∧ i is a transient state}. Also we have that Pm

ii = 1, ∀i ∈ {i|i ∈ V ∧
i is an absorbingt state}. These implies that the limm→∞ Pm exists and it holds:

lim
m→∞

Pm =

0 B
0 I

 (2.5)

where Bij denotes the probability that has a random walk to gets absorbed from the
transient state k + j starting from state i, 1 ≤ i ≤ k, 1 ≤ j ≤ (n− k)

We can see that the i, j element of matrix N = I+P1
t +P2

t + ... (the series converges
and the matrix N is well defined) gives us the expected number of visits to state j if
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we start the random walk from state i until we get absorbed by an absorbing state.
Matrix N is called the ”foundamental matrix” of an absorbing Markov chain. Now, if
we mulitply both sides of equation of matrix N by (I− Pt) we get:

(I− Pt) ·N = I (2.6)

which implies that (I− Pt) is the invers of the matrix N.
Knowing the foundamental matrix we are able now to calculate the absorbing

probabilities for the transient states denoted as B in the canonical form. This because
the probability to be absorbed from state j starting from the transient state i is equal
with the expected times I visit each state multiplied by the probability to be absorbed
in the next step from that state, or more formally:

B = NR (2.7)

R as defined in the canonical form.

2.3 Relation Between PageRank and Absorbing Markov Chains.

Last we must point out that for an ergodic Markov chained defined from the PageRank
algorithm we can define a new absorbing Markov chain by adding some absorbing
random nodes and by connecting each of the pre existing nodes in one of the new
absorbing nodes with probability equal to the jump probability c. Then, the transition
probabilities between transient states are defined as Pt = (1− c)P and Rij = c, if the
transient state i has been connected to the new absorbing state k+ j and 0 otherwise.
For this pair of Markov Chains, from equations 2.2, 2.6 it holds that the foundamental
matrix of the new absorbing Markov chain is equal with the matrix of personalized
PageRanks Q.

N = Q (2.8)

2.4 Useful Notations
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Table 2.1: Useful notations.

Notation Description

Ai the ith row of matrix A.
e vector with all coordinates 1.

ei ei(j) = 1 for i = j, otherwise = 0.

G = (V,E) Graph with set of nodes V and set of edges E.

Ei Out neighbors of node i.

G′ = (V,E ′) The new graph resulting of the addition of new edges.

Ẽ E ′ = E ∪ Ẽ

p PageRank vector

c Jump coefficient of PageRank.

v Jump vector of PageRank.

P Transition matrix derived from graph.

PG Transition matrix defined by PageRank.

Pt Transition matrix between transient states.

R Transition matrix from transient to absorbing states.

Q Qi:= is the pesonilized PageRank of node i.

D Perturbation matrix of rank one.

B Absorption probabilities matrix of an absorbing Markov chain.

N The foundamental matrix of an absorbing Markov chain.
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CHAPTER 3

FAIRNESS AWARE PAGERANK

3.1 Introduction and Problem Definition

3.2 Fairness Sensitive PageRank

3.3 Locally Fair PageRank

3.4 A Post Processing Approach

In this chapter we formally define the problem of ranking and we study the fairness
aware ranking in link analysis with focus on famous PageRank. We start with a quick
introduction about link analysis algorithms and we define the notion of fairness for
this kind of algorithms. We introduce different approaches to succeed a fairness aware
ranking based on PageRank and we study the utility of the fair algorithms in cases
where we care only for a subset of the nodes, we call this approach targeted.

3.1 Introduction and Problem Definition

A link analysis algorithm can be seen as a function A : Gn → Rn from the set Gn

of all graphs of size n to the real vectors of size n. The function takes as input a
graph G = (V,E) (directed, or undirected) of size n, and produces a vector w of size
n, which assigns a weight wv to each node v in the graph. This weight defines the
importance of the node in the graph G, and it depends on the graph structure. The
best known link analysis algorithm is PageRank, which we consider in this thesis.
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Given a graph G = (V,E), we assume that there exists a subset of nodes that
define a protected group. This group may be defined based on a protected attribute
of the nodes in the graph, such as race or gender. In this thesis, we consider two
types of nodes, the groups R and B of red and blue nodes, and we assume that R is
the protected group. We denote with r = |R|

n
, and b = |B|

n
, the fraction of nodes that

belong to the red and blue group respectively.
We will say that a link analysis algorithm is fair, if it assigns weights to each group

according to a specified ratio ϕ. Ratio ϕ may be specified so as to implement specific
affirmative action policies, or other fairness enhancing interventions. For example, ϕ
may be set in accordance to the 80 percent rule advocated by the US Equal Em-
ployment Opportunity Commission (EEOC), or some other formulation of disparate
impact [14].

Definition 3.1 (Fair link analysis). A link analysis algorithm A : Gn → Rn is ϕ-fair
on graph G, if for the output w = A(G), it holds that:

∑
v∈R wv∑
v∈V wv

= ϕ, where R ⊂ V is
the protected set of nodes.

For instance by setting ϕ = r, we ask for a fair link analysis algorithm that assigns
weights proportionally to the sizes of the two groups. In this case, fairness is analogous
to demographic parity, i.e., the requirement that the demographics of those receiving
a positive outcome are identical to the demographics of the population as a whole
[15]. It is easy to show (see Appendix) that in this case the weights produced by the
fair link analysis are such that the average weight of the red nodes is the same with
the average weight of the blue nodes.

We define the following problem:

Problem 1. Given a value ϕ, a graph G, and a link analysis algorithm A, design a link
analysis algorithm AF that is ϕ-fair on graph G.

Note that the fair variant AF will necessarily change the original weights of algo-
rithm A, incurring some loss in utility. We quantify the utility loss using the sum of
squares loss function L(A,AF ) = ∥A(G)−AF (G)∥2. We then consider the problem of
designing a fair algorithm that minimizes utility loss.

Problem 2. Given a value ϕ, a graph G, and a link analysis algorithm A, design a link
analysis algorithm AF that is ϕ-fair on graph G, such that the utility loss L(A(G), AF (G))

is minimized.
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Finally, we consider an extension of the fairness definition that asks for a fair
distribution of weights among a specific set of nodes S that is given as input. We
assume that the set S is selected such that it contains nodes from both groups R and
B.

Definition 3.2 (Targeted Fair link analysis). A link analysis algorithm A : Gn → Rn

is targeted ϕ-fair on graph G = (V,E) for a set of nodes S ⊂ V , if for the output
w = A(G), it holds that

∑
v∈S∩R wv∑
v∈S wv

= ϕ, where R ⊂ V is the protected set of nodes.

In this thesis, we consider the PageRank link analysis algorithm.

3.2 Fairness Sensitive PageRank

Our first algorithm achieves fairness by keeping the transition matrix fixed and chang-
ing the jump vector v so as to meet the fairness criterion.

3.2.1 The Algorithm

First, we note that that pagerank vector p can be written as linear function of the
jump vector v. Solving Equation (2.1) for p, using column vector notation, we have
that p = Qv, where

Q = c
(
[I− (1− c)PG]

−1)T
Let pR denote the pagerank mass that is allocated to the nodes of the protected

category. We have that

pR =

(∑
i∈R

Qv
)
[i] =

(∑
i∈R

QT
i

)
v = QT

Rv (3.1)

where QT
i is the i-th row of matrix Q, and QT

R is the vector that is the sum of the
rows in the set R. In order for the algorithm to be fair, we need pR = ϕ. Our goal is
to find a vector v such that QT

Rv = ϕ.
Does such a vector always exist? We can prove the following:

Lemma 3.1. Given the vector QT
R, there exists a vector v such that QT

Rv = ϕ, if and only
if, there exist entries i, j in QT

R, where QT
R(i) ≤ ϕ and QT

R(j) ≥ ϕ
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Proof. We have that pR =
∑N

j=1QT
R(j)vj , that is, pR is the weighted average of the

values QT
R(j), with weights vj , where 0 ≤ vj ≤ 1. Since QT

Rv = ϕ, there must exist at
least one entry i with QT

R(i) ≤ ϕ, and one entry j QT
R(j) ≥ ϕ. Conversely, if there exists

two such entries i, j, then we can find values vi and vj , such that viQT
R(i)+vjQT

R(j) = ϕ

and vi + vj = 1.

3.2.2 Optimizing Utility

An implication of Lemma 3.1 is that, in most cases, there are multiple jump vectors
that give a fair pagerank vector. We are interested in the solution that minimizes the
utility loss.

We first consider the case were we want fairness over all nodes. To solve this
problem we exploit the fact that the utility loss function L(pv,pu) = ∥pv − pu∥2 is
convex, and that we can express the fairness requirement as a linear function. We
can then define the following convex optimization problem.

minimize
x

∥Qx− pu∥2

subject to QT
Rx = ϕ
n∑

i=1

xi = 1

0 ≤ xi ≤ 1, i = 1, . . . , n

This problem can be solved using standard convex optimization solvers.

3.2.3 Targeted Fairness Algorithm

We will now formulate a similar convex optimization problem for the targeted fair-
ness problem. Let QT

S =
∑

i∈S Q
T
i be the sum of rows of Q for the nodes in S, and

QT
R|S =

∑
i∈S∩R QT

i be the sum of rows of Q for the R nodes in S. We define a convex
optimization problem that is exactly the same as in Section 3.2.2, except for the fact
that we replace the constraint QT

Rx = ϕ with the constraint QT
R|Sx = ϕQT

Sx
We can model specific cases by adding additional constraints. For example, let

Tk(w) denote the k nodes with the largest weights in vector w, and let S = Tk(pu),
that is, the top-k nodes of the original Pagerank algorithm. We want fair redistribution
of Pagerank among the nodes in S, but we also want these nodes to remain in the
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top-k position in the fair pagerank, that is, Tk(p) = Tk(pu). This requirement can be
achieved by adding the constraint:

QT
i x ≥ QT

j x, i ∈ Tk(p), j ̸∈ Tk(p).

3.3 Locally Fair PageRank

The locally fair PageRank algorithms take a microscopic view, by asking that each
individual node acts fairly, i.e., each node distributes its own pagerank to red and blue
nodes fairly. In random walk terms, local fairness defines a dynamic process that can
be viewed as a random walk that is fair, i.e., at each step, and not just at convergence,
the probability of being at a node of the protected group is ϕ.

3.3.1 The Algorithms

In our first algorithm, the neighborhood locally fair PageRank algorithm, each node
distributes its own pagerank fairly among the red and blue nodes in its neighbors.
The residual-based locally fair PageRank algorithms generalize this idea, by again asking
that each node allocates its pagerank fairly among the red and blue nodes, but not
necessarily among the red and blue nodes in its own neighborhood. Finally, we show
that the local PageRank algorithms are fair.

The neighborhood locally fair PageRank algorithm

We first consider a node that treats its neighbors fairly, that is, by allocating a fraction
ϕ of its pagerank to its red neighbors and the remaining 1 − ϕ fraction to its blue
neighbors. In random walk terms, at each node the probability of transitioning to a
red neighborhood is ϕ and the probability of transitioning to a blue neighborhood
1− ϕ.

Specifically, we define the neighborhood locally fair pagerank (LFPRN) pN as follows.
Each node i splits the ϕpN(i) portion of its pagerank value evenly among its red
out-neighbors and the remaining (1− ϕ)pN(i) portion of its pagerank evenly among
its blue out-neighbors. Similarly, we use a modified “fair” jump vector vN with vN [i]

= ϕ
|R| , if i ∈ R, and vN [i] = 1−ϕ

|B| , if i ∈ B.
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Let outR(i) and outB(i) be the number of edges directed from node i to red nodes
and blue nodes respectively. We define PR as the normalized adjacency matrix that
includes links to red nodes, or random jumps to red nodes if such links do not exist:

PR(i, j) =


1

outR(i)
, if j ∈ R, outR(i) ̸= 0, and (i, j) ∈ E

1
|R| , if j ∈ R, and outR(i) = 0

0, otherwise

PB is defined similarly. The transition matrix PN of the LFPRN algorithm is:

PN = ϕPR + (1− ϕ)PB

and, the neighborhood locally-fair pagerank vector pN is defined as:

pT
N = (1− c)pT

NPN + cvT
N

The neighborhood locally-fair pagerank value pN of a node is the stationary prob-
ability that a neighborhood-fair walker ends up at this node.

The residual‐based locally fair PageRank algorithms

We consider an alternative fair behavior for individual nodes. Similarly to the LFPRN

algorithm, each node i acts fairly by respecting the ϕ ratio when distributing its
own pagerank to red and blue nodes. However, now node i treats its neighbors the
same, independently of their color and assigns to each of them the same portion of
its pagerank. When a node is in a “biased” neighborhood, i.e., the ratio of its red
neighbors is different than ϕ, to be fair, node i distributes the remaining portion of
its pagerank to nodes in the underrepresented group. We call the remaining portion
residual and denote it by δ(i). How δ(i) is distributed to the underrepresented group
is determined by a residual policy.

Intuitively, this corresponds to a fair random walker that upon arriving at a node
i, with probability 1-δ(i) follows one of i’s outlinks and with probability δ(i) jumps
to one or more nodes in the locally underrepresented group.

We now describe the algorithm formally. We divide the nodes in V into two sets,
LR and LB , based on the fraction of their red and blue neighbors. Set LR includes the
“blue-biased” nodes, that is, all nodes i such that (1 − ϕ) outR(i) < ϕoutB(i), that is,
the nodes for which the ratio of red nodes in their neighborhood is smaller than the
required ϕ ratio. These are the nodes having a residual that needs to be distributed to
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red nodes. Analogously, LB includes all “red-biased” nodes, that is, all nodes i such
that (1− ϕ) outR(i) ≥ ϕ outB(i).

Let us first consider a node i in LR. Each neighbor of i gets the same portion of
i’s pagerank, let ρR(i) be this portion. To attain the ϕ ratio, the residual δR(i) of i’s
pagerank goes to the red nodes. Portions ρR(i) and δR(i) must be such that:

(1− ϕ) (outR(i) ρR(i) + δR(i)) = ϕ (outB(i) ρR(i)) (3.2)

outR(i) ρR(i) + outB(i) ρR(i) + δR(i) = 1 (3.3)

From Equations (3.2) and (3.3), we get ρR(i) = 1−ϕ
outB(i)

and the residual is δR(i) =
ϕ− (1−ϕ) outR(i)

outB(i)
.

Analogously, for a node i in LB , we get ρB(i) = ϕ
outR(i)

and a residual δB(i) =

(1− ϕ)− ϕ outB(i)
outR(i)

that goes to the blue nodes.

Example. Consider a node i with 5 out-neighbors, 1 red and 4 blue, and let ϕ be 0.5.
This is a “blue-biased”node, that is a node in LR. In the original PageRank algorithm,
each of the 5 neighbors gets 1/5 of i’s pagerank, resulting in red nodes getting 1/5

and blue nodes 4/5 of i’s pagerank, which is an unfair behavior for node i. With
the residual algorithm, each of i’s neighbors gets ρR(i) = 1/8 portion of i’s Pagerank,
resulting in red neighbors getting 1/8 and blue neighbors 4/8 of i’s pagerank. The
residual δB(i) = 3/8 goes to nodes in the red group so as to attain the ϕ ratio and make
i fair. Which of the nodes in the red group will get the residual is determined by the
residual policy. In terms of the random walker interpretation, a random walker that
arrives at i, with probability 5/8 chooses one (any) of i’s outlinks and with probability
3/8 jumps to nodes in the red group.

The transition matrix PL is defined as

PL(i, j) =


1−ϕ

outB(i)
, if (i, j) ∈ E and i ∈ LR

ϕ
outR(i)

, if (i, j) ∈ E and i ∈ LB

0, otherwise

Let δR be the vector carrying the red residual, that is, δR[i] = ϕ − (1−ϕ) outR(i)
outB(i)

, if
i ∈ LR and 0 otherwise. Similarly, let δB be the vector carrying the blue residual,
that is, δB(i) = (1 − ϕ) − ϕ outB(i)

outR(i)
, if i /∈ LB and 0 otherwise. We have a total red
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residual ∆R = pT
L δR and a total blue residual ∆B = pT

L δB , where pL is the locally fair
pagerank vector.

To express the residual distribution policy, we introduce two matrices, matrices
X and Y, that capture the policy for distributing the residual to red and blue nodes
respectively. Specifically, X[i, j] denotes the portion of the δR(i) of node i ∈ LR that
goes to node j ∈ R and Y[i, j] the portion of the δB(i) of node i ∈ LB that goes to
node j ∈ B.

The locally-fair pagerank vector pL is defined as:

pT
L = (1− c)pT

L (PL +X+ Y) + cvT
N

Residual Distribution Policies. The X and Y allocation matrices allow us the flex-
ibility to specify appropriate policies for distributing the residual. In particular, the
following holds (proof in the Appendix):

Lemma 3.2. The LFPRN algorithm is a special case of the residual-based algorithm, with

XN [i, j] =

 1
outR(j)

, if i ∈ R, j ∈ LR, and (j, i) ∈ E

0 otherwise

YN [i, j] =

 1
outB(j)

, if i ∈ B, j ∈ LB, and (j, i) ∈ E

0 otherwise

We also consider residual policies where all nodes follow the same policy in dis-
tributing their residual. In this case, the residual policy is expressed through two
(column) vectors x and y, with x[i] being the portion of ∆R going to red node i, and
y[i] the portions of ∆B going to blue node i. In this case, we have:

pT
L = (1− c)pT

L (PL + δR xT + δB yT ) + cvT
N .

We define two locally fair PageRank algorithms based on two intuitive policies of
distributing the residual, namely:

(1) the Uniform Locally Fair PageRank (LFPRU) algorithm, which distributes the
residual uniformly. Specifically, for the LFPRU algorithm, we define the vector
x, as x[i] = 1

|R| if i ∈ R and 0 otherwise, and the vector y, as y[i] = 1
|B| , if i ∈ B

and 0 otherwise.
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(2) the Proportional Locally Fair PageRank (LFPRP ) algorithm, which distributes the
residual proportionally based on the original pagerank weight pu(i) of node i.
Specifically, for the LFPRP algorithm, we define the vector x, as x[i] = p[i]∑

i∈R p[i] ,
if i ∈ R and 0 otherwise, and the vector y, as y[i] = p(i)∑

i∈B p[i] , if i ∈ B and 0,
otherwise.

Fairness of the locally fair PageRank algorithms

In the locally fair pagerank algorithms, each node in the graph treats the red and
blue nodes fairly by respecting the ϕ ratio. However, each node acts independently
of the other nodes in the network. It is interesting to see how this microscopic view
of fairness relates to our macroscopic view of link fairness.

We prove the following theorem.

Theorem 3.1. The locally fair PageRank algorithms are fair.

Proof. We must show that
∑

v∈R pN (u)∑
v∈V pN (u)

= ϕ. Since each node in the graph gives a portion
ϕ of its pagerank to red nodes, we have∑

v∈R

pN(u) =
∑
v∈V

ϕpN(u)

which proves the theorem.

3.3.2 Optimizing Utility

We consider how to optimally distribute the residual so as to minimize the utility
loss of the fair Pagerank. We denote this algorithm as LFPRO. To this end, we define
appropriate x and y residual distribution vectors by formulating an optimization
problem.

We can write the vector pL as a function of the vectors x and y as follows:

pT
L(x,y) = cvT

[
I− (1− c)(PL + δR xT + δB yT )

]−1

We can now define the optimization problem of finding the vectors x and y that
minimize the loss function L(pL,pu) = ∥pL(x,y)− pu∥2 subject to the constraint that
the vectors x and y define a distribution over the nodes in R and B respectively.

We solve this optimization problem using gradient descent. We enforce the distri-
bution constraints by adding a penalty term λ ((

∑n
i=1 xi − 1)2 + (

∑n
i=1 yi − 1)2). We

enforce the positivity constraints through proper bracketing at the line-search step.
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Note that we can also formulate a convex optimization problem asking for the
jump vector that minimizes utility loss, as in Section 3.2.2. In this case, since the
transition matrix is fair, we just need to constrain the jump vector to obey the ϕ ratio.

3.3.3 Targeted Fair Local Algorithms

We show how to apply the local algorithms to the targeted fairness problem. Let SR

and SB be the red and blue nodes in the set S respectively, and let IS be the set of
in-neighbors of S. The idea is that the nodes in IS should distribute their PageRank
to SR and SB fairly, such that the ratio of the portion that goes to nodes in SR and
the portion that goes to nodes in SB is equal to ϕ

1−ϕ
. We can implement the same

redistribution policies as in the case of the neighborhood local and the residual-based
local fair algorithms.

We also need the (global) jump vector v to obey the ϕ ratio for the nodes in S. We
can achieve this by redistributing the probability |S|/n of the jump vector according
to the ϕ ratio. Note that there is a variety of policies one could implement, depending
on a specific objective. For example if we want to increase the weight of the nodes in
S, we can make the jump vector allocate all probability to the nodes in S.

3.4 A Post Processing Approach

We now consider a post processing approach in which we assume that we are given
a weight vector w = A(G) of a link analysis algorithm A on graph G. The goal is
to produce a new weight vector f such that: (1) f is fair, and (2) the utility loss
L(w, f) = ∥w − f∥2 is minimized. The post-processing algorithm is agnostic to the
fact that the weight vector w is the result of a link analysis algorithm, much less
of the specific link analysis algorithm (e.g., Pagerank). Therefore, the vector f that
minimizes the loss L(w, f) may not be attainable by any Pagerank algorithm.

3.4.1 The Post Processing Algorithm

Given the weight vector w, let wR denote the weight vector for the nodes in R, and
wB the weight vector for the nodes in B. We also use WR to denote the total weight
allocated to R, and WB to denote the total weight allocated to B. We assume that w
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Algorithm 3.1 Optimal Redistribution Algorithm

Input: Excess weight ∆, nodes B, weights wB

Output: Optimal weight vector fB

1: BNZ ← {x ∈ B : wx > 0}
2: δ = ∆/|BNZ |
3: β = minx∈BNZ

wx

4: if β ≥ δ then
5: wx = wx − δ for all x ∈ BNZ

6:

7: return wB

8: else
9: wx = wx − β for all x ∈ BNZ

10: ∆ = ∆− |BNZ |β
11:

12: return REDISTRIBUTE(∆,B,wB)
13: end if

has non-negative entries, and it is normalized so that its entries sum to 1. Without
loss of generality assume that WR < ϕ. Let ∆ = ϕ−WR. To make the vector fair we
need to distribute weight ∆ to the nodes in R, and remove weight ∆ from the nodes
in B. It is easy to show that in order to minimize the loss, the optimal redistribution
will remove weight ∆/|B| from all nodes in B and add ∆/|R| from all nodes in
B. This follows from the fact that among all distribution vectors the one with the
smallest length is the uniform one. Therefore, we obtain the following lower-bound
for the loss:

LossLB =
∆2

|R|
+

∆2

|B|
Note that this lower bound does not guarantee that the new vector f has non-
negative entries, thus it is not a valid weight vector. We now describe an optimal
redistribution algorithm that ensures that when removing weight no entry becomes
negative, while using the principle that whenever removing weight, the optimal way
is to remove uniformly from all nodes. The pseudocode for the algorithm is shown
in Algorithm 3.1.

The algorithm takes as input the value of excess weight ∆ that needs to be re-
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moved, the set of nodes B from which we want to remove the weight, and the current
weights wB of these nodes. First, it finds the subset of nodes BNZ in B that have
non-zero weight. If the minimum weight β among these nodes is at least ∆/|BNZ |,
then we can remove the weight uniformly without making the weights negative. The
algorithm updates the weights and returns. Otherwise, we can remove at most β.
The algorithm removes β from all nodes in BNZ and makes a recursive call with the
remaining excess weight ∆ − |BNZ |β. Note that anytime we want to remove weight
from a set of nodes, we remove it uniformly from all nodes, which guarantees opti-
mality. The algorithm returns the updated weight vector fB for the nodes in B. We
can now compute the optimal loss as

LossO =
∆2

|R|
+ ∥fB −wB∥2

3.4.2 Targeted Fairness

Computing algorithmically the optimal redistribution is harder in the targeted fairness
case, since there are many different options in how we can redistribute weight. We
can move weight between the nodes in S, or bring in weight from outside of S,
or move weight out of S, or a combination of those. In Appendix A.1 we compute
analytically a lower bound for the loss, which provides some intuition on how the
weight is moved in different cases .

Finding the optimal redistribution vector can be formulated as a convex optimiza-
tion problem:

minimize
f

∥f− p∥2

subject to
∑

i∈S∩R

fi = ϕ

n∑
i=1

fi = 1

0 ≤ fi ≤ 1, i = 1, . . . , n

We use the solution of the optimization problem to compare the optimal redistri-
bution with that achieved by the modified Pagerank algorithms.
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CHAPTER 4

PAGERANK FAIR RECOMMENDATIONS

4.1 Introduction and Problem Definition

4.2 Impact of Adding Edges

4.3 Efficient Computation of Personalized PageRank

4.4 Fair Link Recommendations

4.5 Fair Important Edges

Link recommendation systems are a valuable feature in online social networks. Their
main use is to help a network grow faster and create a more pleasant experience for
the users. Besides that, link recommendation systems can also be used to change un-
willing properties of the network. We explore their possibilities on helping a network
grow in a more fair way, we show how we can succeed this and we propose a link
recommendation system for this purpose.

4.1 Introduction and Problem Definition

We consider a link recommendation system, as a function which accepts as input a
graph G = (V,E) and a node u ∈ V and returns the probability for every possible link
recommendations for node/user u, to be accepted by u. We will refer to this probability
as the quality of candidate link recommendation. Usually this probability is used to
rank the candidate link recommendations and propose the best k of them to the
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user. However there are cases where the quality of the proposed links isn’t the only
objective. In this direction various methods have been proposed to recommend links
that satisfy some objective function without sacrificing the quality of the recommended
links [10, 11, 16].

We consider again a binary sensitive attribute to nodes and a protected group
based on this attribute. We want to recommend the edges that enhance the presence
of the protected group in the network and are highly possible to be accepted by the
user they are about to be proposed to. As in chapter 3, we use as a metric to evaluate
the presence of a group in a network, the cumulative score of the group coming from
the link analysis algorithm that we are interested in.

Definition 4.1. Given a graph G = (V,E) and a link analysis algorithm A, we call
the link recommendation system fair if the edges it proposes improve the cumulative
score of the group based on algorithm A.

By the definition we understand that may exist algorithms that are both fair but
with different magnitude of impact in the network. For reason of cohesion we focus
again on the PageRank algorithm. We start our analysis by identifying the impact of
an new edge addition to the node u and we extend our conclusions for a set of nodes
being added to a single source. We consider the impact on cumulative PageRank
of the group as the fair score of the candidate edge. This is the difference between
the new and the old cumulative PageRank. We then define our fair recommendation
system based on fair score and our hybrid fair recommendation system which acts
complementary to an existing link recommendation system, taking into consideration,
not only the fair score, but the recommendation score as well.

4.2 Impact of Adding Edges

Lets assume an unweighted, directed graph G = (V,E) where V is the set of all nodes
and E is the set of all edges. And let G′ = (V,E ′ = E ∪ {(u, v)}) where (u, v) /∈ E.
We denote with p(R), p′(R) the ratio of the pagerank that goes to Red nodes in the
graph G and G′ respectively. We denote by ku the out degree of node u

Now let Q be the matrix where Qij is the personilized PageRank of node i to node
u and so Qi(R) is the personilized PageRank of node i to all Red nodes. We want to
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find the impact of the edge (u, v) to the cumulative PageRank of the red group. We
prove the following.

Theorem 4.1. If G′ = (V,E ′ = E ∪ {(u, v)}) then:

p′(R) = p(R) + pu ·
(1−c)

c

[
Qv(R)− 1

ku

∑
w∈Eu

Qw(R)
]

(ku + 1)− (1−c)
c

[
Qvu − 1

ku

∑
w∈Eu

Qwu

] (4.1)

Proof. To prove this we first write the transition matrix P of G′ as a sum of the
tranistion matrix P of graph G and a rank one, perturbation matrix D. This is:

P′ = P+D, Di =

0, i ̸= u

(−1 + ku
ku+1

)Pu +
1

ku+1
ev

And then we exploit a fundamental lemma [17] that states that If G is nonsingular,
H is of rank 1 and G+H is nonsingular as well, then:

(G+H)−1 = G−1 − 1

1 + g
G−1HG−1, g := tr(HG−1)

We also know from equation 3.1 that p = vQ and [18] that Q = c · N where N is
the foundamental matrix of an absorbing Markov chain with transition matrix for
transient states equal to (1− c)P, c is the jump probability of PageRank.

For G = [I− (1− c) P] and H = −(1− c) ·D, we have:

N′ = N− 1

1 + q
N(−(1− c)DN), q := tr(−(1− c)DN)⇒

1

c
Q′ =

1

c
Q− 1

c2
1

1 + q
Q(−(1− c) ·D)Q, q := tr(−(1− c)D1

c
Q)⇒

Q′ = Q+
1

c

(1− c)

1− (1−c)
c

q
QDQ, q := tr(DQ) (4.2)

If we compute DQ, QDQ we get:

DQij =

0, i ̸= u

1
ku+1

[·Qvj − 1
ku

∑
w∈Eu

Qwj], i = u

QDQij =
1

ku + 1

(
Qvu −

1

ku

∑
w∈Eu

Qwj)
)
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And from (1):

Q′
ij = Qij + Qiu

(1−c)
c

(
Qvj − 1

ku

∑
w∈Eu

(Qwj)
)

ku + 1− (1−c)
c

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

Since p = vQ we have to compute

p′(R) =
1

n

n∑
i=1

n∑
j∈R

Q′
ij

to obtain the formula of the theorem.

If we examine the formula 4.1 we see that the result agrees with our intuition.
The fraction that exists in the formula is the impact that the new edge will have on
the PageRank of the red group. First we see that the magnitude of the impact is (by
approximation) proportional to the fraction of the PageRank of the source node to the
out degree of the source node. This is logical if we consider adding an edge to a node
with out degree 1 and to a node with out degree 10. In the first case the node will give
much more of its PageRank to the new neighbor. Also we prove right below that the
quantity on the denominator is always positive. This means that if an edge will have
positive or negative impact is determined by that nominator. What the nominator
indicates is that if we want to have gain in the red PageRank of the network we
must add an edge that the target node will have greater red personalized PageRank
than the average personalized PageRanks of the current neighbors of the source node.
The last quantity we didn’t comment so far, that exists in the denominator affects
the magnitude of the impact. Though, the impact of this quantity on formula is not
important, it describes the fact that if the target node of the edge that we added gives
less PageRank to the source node than the average of the current neighbors of the
source node, then the impact of the edge is getting smaller as the PageRank of the
source node is getting smaller.

We will show now that the denominator of the fraction is always positive. To do
that we will need the following lemma.

Lemma 4.1. ∀v, u ∈ V, it holds:

Qvu < Quu

26



Proof. Let f (i)
vu be the possibility to reach transient state u starting from the transient

state v for the first time at step i. And let f ∗
vu =

∑∞
i=1 f

(i)
vu . For the absorbing Markov

chain X it holds:

f ∗
vu < 1 (4.3)

That is because there is possibility c for transient state v to be absorbed at the first
step to the absorbing state a0.

Let Nu to denote the number of visits to state u. then:

P [Nu = m | X0 = u] = f ∗
uu

m−1(1− f ∗
uu)

P [Nu = m | X0 = v] =

1− f ∗
vu, m = 0

f ∗
vuf

∗
uu

m−1(1− f ∗
uu)

So Nu follows geometric distribution with success probability of (1− f ∗
uu) and so:

E[Nu | X0 = u] = 1
1−f∗

uu

E[Nu | X0 = v] = f ∗
vuE[Nu | X0 = u]

⇒

E[Nu | X0 = v] < E[Nu | X0 = u]

We also know that E[Nu | X0 = v] = Nvu = 1
c
Qvu,

1
c
> 0 and so:

Qvu < Quu

Now, we can continue with the proof. To do this we define an absorbing Markov
chain X. We add two adsorbing states n + 1, n + 2, from now on au, ao and we
connect the state u to the state au and all other states to state ao, all with probability
c. We denote with Bi1 the absorbing probability of node i to node au and Qiu the
personilized PageRank of node i for the node u.

Lemma 4.2. The absorption probability of state i to state au of the absorbing Markov chain
X is equal with the personilized PageRank of node i to node u.

Qiu = Bi1
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Proof. The new transition matrix P in its canonical form is:

P =

(1− c)P R
02xn I2

 , R ∈ Rnx2,

Where

R =

c, (i = u ∧ j = 1) ∨ (i ̸= u ∧ j = 2)

0, otherwise

We know[18] that absorption probabilities B = NR where N is the Foundamental
matrix of process X and as before N = 1

c
Q So:B = NR

N = 1
c
Q

⇒ Bij =
∑
k

QikR′
kj =

Qiu, j = 1

Qi(V \ {u}), j = 2

Lemma 4.3. For the personilized PageRank that the node i gives to itself, it holds:

Qii = c+ (1− c)
1

ki

∑
w∈Ei

(
Qwi

)
Proof. From lemma 4.2 we know that Qiu = Bi1. It also holds [18] that Bi1 = 1Rij +∑

j∈Ei
PijBj1. So:

Qiu = Bi1

= Rij +
∑
j∈Ei

(1− c)PijBj1

= Ri1 + (1− c)
∑
j∈Ei

PijQju

= Ri1 + (1− c)µEi

(
Q·(R)

)
, Ri1 =

c, i = u

0, otherwise

From lemma 4.3 we can get now that :

ku + 1− (1− c)

c
(Qvu −

1

ku

∑
w∈Eu

(Qwu)) = ku −
1

c

[
(1− c)Qvu − Quu

]
This quantity is always positive because Qvu−Quu is always negative, lemma 4.1, and
1− c < 1.

Theorem 4.1 can be generalized by adding a set of nodes to a fixed source node.
In this case it holds the following.
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Theorem 4.2. If G′ = (V,E ′ := E ∪ Ẽ), Ẽ = {(u, vi)|vi ∈ V ∧ v /∈ Eu i =

1, 2, ..., k̃}, E ′
u = Eu ∪ Ẽu, Ẽu = {v|(u, v) ∈ Ẽ} then:

p′(R) = p(R) + pu ·
(1−c)

c

(
1

k̃

∑
v∈Ẽu

(Qv(R))− 1
ku

∑
w∈Eu

(Qw(R))
)

ku+k̃

k̃
− (1−c)

c

(
1

k̃

∑
v∈Ẽu

(Qvu)− 1
ku

∑
w∈Eu

(Qwu)
) (4.4)

Identical natural meaning as for the single edge formula 4.1 can be derived from
the generalized one.

4.3 Efficient Computation of Personalized PageRank

Both the above formulas 4.1, 4.2 include quantities like the red personalized PageRank
of all nodes and the personalized PageRank for the source node of all nodes that are
prohibitive to calculate them for every node in the network by executing multiple
PageRank algorithms. In this section, we present an efficient way to compute all the
forth mentioned quantities by executing only two PageRank - like iterative algorithms.

From Lemma 4.2 we know that for the Markov chain X, Qiu = Bi1, Qi(V \{u}) =
Bi2

Furthermore, we know that Pn

ij gives as the probability to be in state j starting
from state i after n steps. Also we know that limn→∞ Pn exists. From the canonical
form of P we take:

Pn
=

(1− c)nPn R(n)

02xn I2

⇒ B = lim
n→∞

R(n)

I2

⇒

B = lim
n→∞

Pn · en+1, en+1 ∈ Rn+2 (4.5)

The above expression allows us to compute the personilized PageRank of all nodes
to node u with the computational cost of one PageRank.

Same as in Lemma 4.2 we can define the Markov chain X̃. We add two absorbing
states n + 1, n + 2, from now on ar, ab respectively. We then unite all red nodes to

29



state ar with probability c and all the blue nodes to state ab also with probability c. If
Bi1,Bi2 are the absorbing probabilities for nodei to ar, ab respectivly and Qi(R),Qi(B)

is the ratio of personilized PageRank of node i for Red and Blue nodes, then we can
prove the following.

Lemma 4.4. The absorption probabilities of state i to state ar, ab of the absorbing Markov
chain X̃ are equal to the ratio of personilized PageRank of node i that Red and Blue nodes
receive respectively. This is:

Qi(R) = Bi1, Qi(B) = Bi2

Proof. proof is identical to lemma 4.2

Now working for X̃ as before we can get a similar expression for Qi(R) and
compute also the personilizes Red PageRank of all nodes.

From the above is clear that we need computational cost equal to three PageRanks
to compute the expressions of theorems 4.1, 4.2 for all possible future edges of the
network with fixed source node.

4.4 Fair Link Recommendations

Exploiting the results of the theorems 4.1, 4.2, we propose the fair recommendation
system. This saying we mean a link recommendation system that takes into consid-
eration only the maximum gain of cumulative PageRank of the protected group.

Definition 4.2. Given a graph G = (V,E), a source node u and the number of
proposed edges k, the Fair Link Recommendation System returns the k edges that
would have caused the greatest gain on the cumulative PageRank of the protected
group, if they had been added independently.

This score - the fair score - of an edge is compute with for all candidate edges
with the use of the formula 4.1. We then rank the candidate edges based on this
score and we return the k best of them. Although, as we see in the chapter 5, the
fair recommendation system has amazing results as to our objective of improving the
presence of the protected group in the network, we observe that the top edges by the
fair score lack in quality score (acceptance probability by node2vec). Furthermore,
we observe that the simple recommenders lack significantly in fair score.
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In order to balance this trade off between fair score and acceptance probability
we propose a hybrid fair link recommendation system. This system is based on an
existing link recommendation system of our choice and uses the fair score as com-
plementary to the acceptance probability derived from the recommendation system.
More specific the hybrid fair system computes the expected gain (or expected fairness)
for all candidate edges for a source node and proposes to the user the best k of them.
More formal we give the following definition.

Definition 4.3. Given a graph G = (V,E), a source node u, a link recommendation
system and the number of proposed edges k, the Hybrid Fair Link Recommenda‐
tion System returns the k edges with the greatest expected gain on the cumulative
PageRank of the protected group, if they had been added independently. Expected
gain is calculated based on the acceptance probability deriving from the link recom-
mendation system.

The hybrid fair link recommendation system can be used in any known link
recommendation system and is balancing sufficient good both the objective of fairness
and the objective of the acceptance probability. In our experimental evaluation we use
it complementary to a node2vec based link recommendation system. Node2vec is a
famous node embedding algorithm. We construct the link recommendation system
as a link prediction process. For every pair of nodes (source , target) we construct
the edge embedding by taking the Hadamard product of the two nodes. We then
train a logistic regression classifier that returns the probability of an edge to exists in
the graph. We use this score as the acceptance probability score. More details about
the implementation of the node2vec link recommendation system can be found on
chapter 5.

4.5 Fair Important Edges

In the road of understanding how fairness evolves in a networks, it is interesting
enough to understand the role of the existing edges to the current fairness of the
network. To do that we measure the impact that would have to the network if we
removed an edge. This is, as before, a rank one perturbation to the transition matrix of
the network and the formula of this score can be calculated equivalent with theorem
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4.1 by defining properly the matrix D. Following the same process we can take the
2 following theorems:

Theorem 4.3. If G′ = (V,E ′ = E \ {(u, v)}), v ∈ Eu then:

P(R)′ = P(R) + pu ·
1−c
c
( 1
ku

∑
w∈Ẽu

Qw(R)− Qv(R))

(ku − 1)− 1−c
c
( 1
ku

∑
w∈Ẽu

Qwu − Qvu)

Theorem 4.4. If G′ = (V,E ′ := E\Ẽ), Ẽ = {(u, vi)|vi ∈ V ∧vi ∈ Eu i = 1, 2, ..., k̃} then:

p′(R) = p(R) + pu ·
(1−c)

c

(
1
ku

∑
w∈Eu

(Qw(R))− 1

k̃

∑
v∈Ẽu

(Qv(R))
)

ku−k̃

k̃
− (1−c)

c

(
1
ku

∑
w∈Eu

(Qwu)− 1

k̃

∑
v∈Ẽu

(Qvu)
) (4.6)

We see again that the impact of an edge/a set of edges is determined by the fraction
in the formulas. These formulas indicate that important edges for the preservation
of the fairness across the network are edges that source node is strong as to his (
PageRank/out degree ) metric and the target node is strong as to his personalized
red PageRank and mainly when its personalized PageRank is far better than the
average personalized red PageRank of the rest of out neighbors of the source node.
Besides that, an edge is more important if the source node isn’t strong at the target’s
personalized PageRank. This means that the strong target node was managing more
PageRank of the source node than it was giving to it. An example of such a good
edge would be a source node of the favorite group in a central role in a cluster of
favorite group, which would had only a few out neighbors and one edge towards a
node of the unfavored group with great red personalized PageRank. The target node
could be a leaf in a big cluster of the unfavored team.

32



CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Dataset Description

5.2 Fairness in the original Pagerank algorithm.

5.3 Fairness Aware PageRank Ranking

5.4 PageRank Fairness Aware Recommendations

5.1 Dataset Description

In this section, we evaluate experimentally the different fair PageRank algorithms and
provide quantitative and qualitative results. In the experiments we use the following
datasets:

• TWITTER: A political retweet graph from [19].

• DBLP2: An author collaboration network constructed from DBLP including a
subset of data mining and database conferences.

• BOOKS: A network of books about US politics where edges between books rep-
resented co-purchasing1.

• BLOGS: A directed network of hyperlinks between weblogs on US politic [20].

1http://www-personal.umich.edu/~mejn/netdata/
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Table 5.1: Real dataset characteristics. r, b relative size of protected and unprotected
group, respectively; pR, pB pagerank assigned to the red and blue group respectively

Dataset #nodes #edges Protected attribute r b crossR crossB pR pB

BOOKS 92 748 political (left) 0.47 0.53 0.063 0.065 0.46 0.54
BLOGS 1,222 19,089 political (left) 0.48 0.52 0.284 0.036 0.33 0.67
DBLP 13,015 79,972 gender (women) 0.17 0.83 0.96 0.86 0.16 0.84
TWITTER 18,470 61,157 political (left) 0.61 0.39 0.07 0.03 0.57 0.43
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Figure 5.1: Fairness of the PageRank algorithm with the size of the protected group
for varying same group preference.

The characteristics of the real datasets, and the protected groups, are shown in
Table 5.1. To infer the gender in the DBLP2, we used the python gender guesser pack-
age2. We also report homophily which was shown to affect degree distributions among
groups [8]. We measure it as the number of mixed edges, i.e., edges between nodes
belonging to different groups, divided by 2 r (r − 1), i.e., the expected number of
such edges. Values significantly smaller than 1 indicate that the network exhibits
homophily [21].

We have used various real data sets. We focus on the following four, while results
for additional datasets can be found in the Appendix.

Synthetic networks are generated using a variation of the biased preferential at-
tachment model introduced in [8]. The graph evolves with time as follows. Let
Gt = (Vt, Et) and dt(v) denote the graph and the degree of node v at time t, re-

2https://pypi.org/project/gender-guesser/
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Figure 5.2: Personalized pageranks starting from each of the blue nodes: histogram
of the fraction of the personalized weight. The x-axis corresponds to weights fractions
(blue, red and all (black bar)) and the y-axis to the percentage of the blues nodes
with the corresponding fraction. The majority of nodes allocate the larger fraction
of the personalized weight to blue nodes, thus being highly unfair to the opposite
group.

spectively. The process starts with an arbitrary initial connected graph G0, with n0 r

red and n0 (1 − r) blue nodes. At each time step t + 1, t > 0, a new node v enters
the graph. The color of v is red with probability r and blue with probability 1 − r.
Node v chooses to connect with an existing node u with probability dt(u)∑

w∈Gtdt(w)
. If the

color of the chosen node u is the same with the color of the new node v, then an
edge between them is inserted with probability p; otherwise an edge is inserted with
probability 1− p. If no edge is inserted, the process of selecting a neighbor for node
v is repeated until an edge is created.

Probability p controls the level of homophily in the network, where p = 0 corre-
sponds to the zero preference to same group, p = 0.5 to the random preferences and
p = 1 to total preference to the same group. We also consider asymmetry in same
group preference probability. In this case, the above procedure is followed by a node
v only when v belongs to the red group. A node v in the blue group connects with
the selected node u without testing u’s color.
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Table 5.2: Utility loss with respect to optimal utility ( LFPRX

OPTIMAL
, for ϕ = 0.5)

Dataset LFPRN LFPRU LFPRP LFPRO SFPR

TWITTER 6.576 6.683 4.218 2.1671 2.699
DBLP2 1.356 1.232 1.516 1.1792 2.6
BLOGS 5.05 5.08 3.163 1.5923 1.73
BOOKS 9.53 4.94 1.576 1.000 1

The datasets and code are available at GitHub 3.

5.2 Fairness in the original Pagerank algorithm.

We use the synthetic datasets to study the behavior of Pagerank for different levels of
homophily and relative sizes of the two groups. For this set of experiments, we set ϕ =
r. As shown in Figure 5.1, for the symmetric case, when the groups exhibit homoplily
(h = 0.8 and h = 0.6), PageRank is unfair towards the minority group. On the contrary,
when the groups exhibit heterophily (p = 0.4 and p = 0.2), then PageRank is unfair
towards the majority group. For the asymmetric case, i.e., when the blue group shows
no homophily, being homophilic helps the red group independently of its size, while
being heterophilic hurts the red group independently of its size.

For the real dataset, we report the fraction of the total weight allocated to each
of the two groups in Table 5.1. In some cases (BLOGS, TWITTER), the fraction of the
weight assigned to the protected group is significantly smaller than r. In all cases, by
setting ϕ to the desired level of fairness, we can redistribute weights so that we get
the desired ϕ-fairness. We report quantitative and qualitative results for ϕ = 0.5 in
the next section.

To get a better insight about the distribution of the weights between the two
groups, we also run personalized Pagerank algorithms starting from each node i and
calculated for each node i the fraction of the weight allocated to the blue and red
nodes (ignoring the Pagerank allocated to the node itself). In all graphs, most of the
starting nodes allocate the majority of their personalized pagerank weights to nodes
in their group, resulting in highly unfair weights. We report the histogram of the

3https://github.com/SotirisTsioutsiouliklis/FairLaR
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Figure 5.3: Fairness sensitive Pagerank for ϕ = r and ϕ = 0.5.

fraction of the weights allocated to blue and red node for personalized pageranks
starting from each of the blue nodes in Figure 5.2. Correlation with homophily can
be oberved, with the most homophilic networks, i.e, BOOKS and TWITTER, showing
the largest unfairness. Our locally fair Pagerank algorithms can be used to attain
ϕ-fairness for personalized Pagerank as well.

5.3 Fairness Aware PageRank Ranking

The fair PageRank algorithms. We run our fair Pagerank algorithm for various
values of ϕ. In Figure 5.3, we report results for ϕ = r and ϕ = 0.5 for the fairness
sensitive Pagerank (SFPR), while in Figure 5.4, results for ϕ = 0.5 for the various
locally fair Pagerank algorithms (i.e, neighbor (LFPRN), uniform (LFPRU), propor-
tional (LFPRP ) and with optimized residual (LFPRO)). Results for ϕ = r can be found
in the Appendix.

Table B.1 reports the utility loss for each of the fair pagerank algorithms relative
to the optimal utility loss as estimated by Algorithm 3.1. For the non-optimized al-
gorithms, as expected taking into account the original pagerank values, the LFPRP

algorithm results in the smallest utility loss. The LFPRN algorithm incurs the highest
utility loss. The utility loss decreases significantly when considering the optimized
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Figure 5.4: Locally fair Pagerank algorithms for ϕ = 0.5.

algorithms. It is interesting that for different datasets different variants perform bet-
ter. This suggests that the different algorithms provide different levers for adjusting
fairness. Depending on the dataset one approach may be more applicable for pre-
serving utility than another. We discuss this further in our qualitative comparison of
the algorithms.

We report the results of all targeted fair PageRank algorithms in Figure B.3. The
targeted fair PageRank algorithms allows us to focus on a specific set of nodes and
adjust their weights in a fair manner. In this experiment, we selected the set S for each
dataset, so as to include the 10% of the nodes having the highest original PageRank
values. This provides us with the flexibility to adjust weights in the top positions.

Residual distribution policies. In this set of experiments, we take a closer look at
the set of nodes that are mostly affected by the different residual distribution policies.
To this end, we consider the sets LOSS (resp. GAIN) with the 10 red and 10 blue nodes
whose PageRank decreased (resp. increased) the most. For each node i, we define
its in-neighborhood fairness, in_f(i) as the ratio of its red in-neighbors over all its in-
neighbors. Thus, inf (i) = 0 corresponds to a node i i with only blue in-neighbors,
inf (i) = 1 to only red in-neighbors and inf (i) = 0.5 to a balanced in-neighborhood.

We run the algorithms on all datasets. The results are depicted in Figure 5.6. As
shown in Figure 5.6(a), with very low variance, all algorithms penalize the nodes
that are in homophilic in-neighborhoods, that is, red nodes with large inf , and blue
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Figure 5.5: Targeted fair PageRank algorithms and the optimal post-processing re-
distribution for ϕ = 0.5. In each dataset, the target set S includes the 10% of nodes
with the highest PageRank weights.

nodes with small inf . The algorithms exhibit different behavior regarding which
nodes each algorithm promotes as shown in Figure 5.6(b). LFPRN promotes the red
(i.e., protected group) nodes that are in heterophilic (i.e., protected-group dominated)
in-neighborhoods. This does not hold for the blue nodes. On the other hand, LFPRP

does not seem to particularity favor heterophilic red nodes, while it tends to follow
the trend of the PageRank promoting homophilic blue (i.e, favored-group) nodes.
Finally, for LFPRU , inf seems to play a lesser role, with the small favoritism to
homophilic blue nodes most probably reflecting the homophily of the blue group in
the underlying population.

Qualitative comparison. To provide some insight on the weights produced by the
various algorithm, we visualize their output for ϕ = 0.5 in Figures 5.7 and 5.8. In
the visualizations, red nodes are colored red, and blue nodes are colored blue. Their
size depends on the value of the quantity we visualize.

For the TWITTER and the BOOKS datasets, where the fraction of the weight of the
protected group is close to ϕ, the fairness sensitive pagerank is very similar to the
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Figure 5.6: In neighborhood fairness for the nodes with the maximum loss and gain
for each algorithm.

original one. For the BLOGS and especially for the DBLP2 datasets, where the fraction
of the weight of the protected (red) group is much smaller, the fairness sensitive
pagerank promotes red nodes. We also visualize the jump vector for the fairness
sensitive pagerank. We observe that for the TWITTER and the BOOKS dataset, where the
algorithm is already “almost” fair, the jump vector assigns rather uniform weights, as
the original Pagerank. For the other two datasets, it gives large values to a number of
red nodes. This suggests an interesting line for future work: considering these nodes
in link recommendation algorithms, since it seems that these nodes play a role in
fairness.

The neighborhood locally fair pagerank algorithm produces different weights from
the original Pagerank for all four datasets. In all cases, it promotes nodes connecting
the two opposite groups, i.e., nodes that are minorities in their neighborhoods. This
is more evident in the most homophilic networks, that is, in TWITTER and BOOKS. Such
nodes are also known as weak links and play an important role. They can also be
useful in the context of recommendations, since research shows that it is more likely
for such nodes to be accepted from the other side [22].

5.4 PageRank Fairness Aware Recommendations

In this section we compare and evaluate different known recommendation policies and
our novel ones. We start by studying various known link recommendation systems
and we show that they don’t improve our objective (enhance the protected group in
the network). Due to the fact that our policy acts complementary to an existing one

40



(a) Twitter: Original

PageRank

(b) Fairness Sensitive

PageRank

(c) Local Neighbor-

hood PageRank

(d) Jump Vector for

Sensitive

(e) BDLP2: Original

PageRank

(f) Fairness Sensitive

PageRank

(g) Local Neighbor-

hood PageRank

(h) Jump Vector for

Sensitive

Figure 5.7: Visualization for ϕ = 0.5

we could use any recommendation policy to apply it on. In these experiments we
use node2vec recommender as it is one well known recommender that has been used
extensively in research with good results.

Node2vec recommender was implemented by taking the node2vec implementation
of snap 4 and train a logistic regression classifier with sklearn module in python. For
both the classifier and the node2vec embeddings we used the default settings. For
the training of the classifier we use as train test the 80% of the network’s edges for
positive examples and equal amount of edges that don’t exist for negative example.
We use the rest 20% of positive edges and equal amount of negative edges as test
set. For all the rest recommendation algorithms we used their implementation on
networkx 5 module for python

To evaluate our policy we compare both the impact to our objective and the quality
of link recommendations it produces. We evaluate the quality of recommendations by
assuming that the acceptance probability of candidate links coming from the original
recommender (node2vec in our case) is in fact true. We proceed further the analysis of
our policy by identifying the differences in quality features of link recommendations

4http://snap.stanford.edu/snap/index.html
5https://networkx.github.io/
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Figure 5.8: Visualization for ϕ = 0.5

and explaining in a level the underlying mechanism of each one.

5.4.1 Existing Recommendation Policies

Each of the link recommendation policies has its own mechanism of selecting and
proposing links to a source node. Also, as we saw in theorem 4.1, the impact of
a link addition to the network it depends not only on the node that is being pro-
posed but also on the node that is proposed to. To study the impact of the different
policies to the red PageRank of the network we have decided to use the resource
allocation, Jaccard coefficient, Adamic Adar, preferential attachment and node2vec
recommendation policies. In this direction we conducted the following experiment.

First we choose a set of source nodes. Then we take the 10 best link recommen-
dations for every source node by each policy. After that, we add one edge per source
node (starting from the best one and continuing with the second best etc.). We con-
tinue the process until we have added all the 10 edges to all source nodes. We use
K to denote the number of the links that have been added to each of the source
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nodes (e.g. K = 4 means that we have added 4 links to each of the source nodes).
We conduct the experiments for 3 different sets of source nodes. In the first one we
chose randomly 10% of the nodes and for the other two we chose a hundred best red
and a hundred best blue nodes. By best we mean those nodes in which we expect
to have the greatest expected impact on the network as derived from the formula in
theorem 4.1. The expected impact for the source nodes is computed by approxima-
tion due to the prohibitive complexity of the actual computation. This approximation
is (PageRank )/(outdegree). We present the red PageRank of the network as evolves
after the addition of the recommended edges for K = 0, 1, ..., 10. In this experiment
series we excluded the Books dataset because its small size is prohibitive.

In general, we can separate the known recommendation policies into two cate-
gories. In the first we classify policies that their recommendation score is based on the
number of the common neighbors between two nodes (resource allocation index, Jac-
card coefficient, Addamic Adar) and In the second one policies that tend to propose
strong/popular nodes in the network (preferential attachment, node2vec). Algorithms
in each category tend to share common characteristics and behavior, or equivalently
they affect the networks evolution in the same way.

To start with, we can see in fig. 5.9 that policies of the first group behave similar
with the random policy in a smooth way, giving a small privilege to the bigger group.
The policies of the second group have a slightly unpredicted behavior in the first 1 -
3 steps but they too follow the trend of the initial PageRank as the network evolves.
This unpredicted behavior can be explained - as we will see below - due to the fact
that policies of the second group, in contradiction with the ones of the first (see table
5.3), tend to propose common neighbors independently of the source node. Thus, the
characteristic of the first few proposed nodes dominate the impact on the network.
As the number of the links accepted added to the source node gets higher, the more
the initial trend of the network is represented in the target nodes, so the impact of
the proposed links in networks Red PageRank approaches that of the random link
recommendations.

As far as the source node concerns, we can see from figures 5.10, 5.11 that the
behavior of the policies of second group change slightly in the pace they converge to
the random policy, meaning they are more robust to source node selection while the
policies of the first group change total behavior and they enhance the team that the
source nodes belong to. This is expected, if we consider that social networks tends
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Figure 5.9: Impact on Fairness - Known Recommenders - Random Source Nodes.

to be homophilic (this also holds in our datasets) by their nature and these kind
of recommendation policies propose links in distance two. The first one means that
a blue source node will probably have blue neighbors and it will exists in a blue
dominated cluster and that a blue node will also have a higher personalized blue
PageRank. The equivalent holds for a red source node. So from our formula about
edge addition impact and considering the second observation about the distance of
proposed links, it is clear that the links proposed of the policies of first group are
ideal to rise the PageRank of the source node’s group.

To sum up, though the link recommendation policies already exists have shown
some valuable results, proposing edges in a simple way and having an expected impact
on the network, they can not be used as link recommendation system if we care to
restrict the discrimination on a network, improve fairness or in more general term
enhance the presence of a protected group. We continue the experimental evaluation
by showing how we can tackle this behavior and how our proposed fair policy can
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Figure 5.10: Impact on Fairness - Known Recommenders - Red Source Nodes.

affect a recommender towards this direction.

5.4.2 Fair Recommendation Policies

In this section we study the link recommendations provided by our fair recommender,
from node2vec recommender and from the hybrid fair recommender. We observe
that between node2vec and the fair recommender there is a significant trade off
between the quality and the wanted impact of the links, however this trade off is
nicely balanced by the hybrid fair recommender.

To compare this result we present the red PageRank ratio of each network as we
did before, only this time for random, node2vec, fair and hybrid fair recommenders
and for the same experiment we also present the average acceptance probability of
the networks as this calculated based on node2vec recommendation score.

As we see in figures 5.12, 5.13, 5.14, the fair policy rises the red PageRank more
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Figure 5.11: Impact on Fairness - Known Recommenders - Blue Source Nodes.

than any other and the hybrid fair policy succeeds impressive rise as well. This shows
us that taking into consideration both fair and recommendation score doesn’t affect
significant the wanted impact on the network. Moreover by figures 5.15 5.16 5.17
we conclude that fair policy doesn’t take into consideration at all the acceptance
probability of the link it proposes, performing in some cases worst than the random
recommendation policy. This makes these recommendation invaluable as it is highly
possible not be accepted by the users. On the other side we see that the hybrid
fair policy manages to restrict this phenomenon, approaching in a satisfying level
the average recommendation score of the node2vec recommender. Also, we see that
the results are not affected by the set of source nodes which is really important
as in practice social networks differs in their demographic characteristics. Last but
not least, we observe (DBLP case) that when a recommendation system provides low
information about the quality of each recommended link, then as expected, the hybrid
fair algorithm follows the fair algorithm as the score of the recommendation system
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Figure 5.12: Impact on Fairness - Fair Recommenders - Random Source Nodes.

isn’t valuable. This indicates that the fair algorithm takes into consideration not only
the ranking of the recommendation system but also the magnitude of the score,
protecting in a way the fair score - our first objective - when there isn’t valuable
information. The almost neutral score of the node2vec recommendation system is
partially explained by the high density and the lack of homophily in the network.
This can be corrected by choosing others than the default parameters to learn the
node2vec embeddings.

An interesting observation about the impact of fair recommendation policies is
presented in figures 5.18 5.19. In this figures we see the ratio of red PageRank at top
k nodes by PageRank as it has been formed at the end of the previous experiment.
The interesting effect of fair policies in contrast with the node2vec is that fair policies
improve the red PageRank ratio in a network while node2vec preserve the original
distribution. This difference means that fair recommendations help the protected
group to gain higher scores and positions in the ranking by PageRank algorithm and
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Figure 5.13: Impact on Fairness - Fair Recommenders - Red Source Nodes.

Table 5.3: Number of Total Unique Target Nodes by Policy

Dataset Node2vec Fair Hybrid Fair Resource Allocation Jaccard Coefficient Adamic Adar Preferencial Attachment
Blogs 15 20 40 351 662 315 17
Twitter 51 154 105 5184 7492 4833 12

so be represented more fairly in the top positions.

5.4.3 Target Nodes Analysis

So far it seems that hybrid fair policy performs really good in all the metrics of
our evaluation. However, having a link recommender in use, is always interesting
to understand its link recommendation mechanism in a more simple way. That is
understanding what are these node and edge characteristics that rule its decisions
and which is the dynamic of each proposed target node to the network. This kind of
results most of times aren’t so unexpected and they provide us with useful insights
based on simple metrics. In this direction we study the nodes that have been selected
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Figure 5.14: Impact on Fairness - Fair Recommenders - Blue Source Nodes.

from the previous experiment. We first present in table 5.3 the total distinct number
of nodes for each policy per dataset and then, in tables 5.4, 5.5 we present the quality
features for the node2vec, fair and hybrid fair policies.

In table 5.3 we see that node2vec, preferencial attachment, fair and hybrid fair,
are tend to propose a relative small number of distinct target nodes. On the other,
side the rest of the policies propose a much larger number. This result follows our
instinct as the node2vec, preferencial attachment and fair policies tends to highlight
nodes strong globally in the network while the rest policies propose nodes that are
locally strong. The result for the hybrid fair policy can be explained straight forward
as it is the combination of the node2vec and fair policies.

Except the fact that node2vec, fair and hybrid fair policies select a relative small
number of distinct target nodes to propose, there is a subset of them that have
significant more occurrences. To study further the 3 policies we keep only the top in
occurrences nodes. The selection process is described in figures 5.21, 5.22. The exact
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Figure 5.15: Average Acceptance Probability - Random Source Nodes.

number of minimum occurrences that we accept is found by plotting the occurrences
of each node in descending order, we observe that this plot approaches a sigmoid
function, something that allow us to define properly this minimum.

We present these results in tables 5.4, 5.5. First we observe that node2vec rec-
ommendations are characterized by nodes that are strong by PageRank and gather
the distribution of distances around smaller values. Fair policy nodes are high in red
personalized PageRank and in red out neighbors ratio while hybrid fair balances all
the above having in general higher values in all the forthmentioned scores.

Table 5.4: Target Quality Features in Blogs Network.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 2.809016 3 7 0.000243 0.000331 0.045172 0.000000 0.282878 0.638946 0.000000 0.500000 1.000000
Node2vec 2.313158 2 4 0.000243 0.004722 0.010006 0.161032 0.313908 0.564971 0.000000 0.099480 0.957143
Fair 3.745805 4 7 0.000243 0.000243 0.000583 0.615104 0.620985 0.638946 1.0 1.0 1.0
Hybrid Fair 2.644818 3 5 0.000243 0.001271 0.006028 0.490224 0.555863 0.638946 0.834951 0.970612 1.000000
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Figure 5.16: Average Acceptance Probability - Red Source Nodes.

5.4.4 Homophily and Minority Size

We have already seen in figure 5.1 the effect of homophily and minority size to
the Red PageRank ratio of a network. A subsequent question is if and how these
factors affect the evolution of Red PageRank in a network depending on the the link
recommendation policy.

We present in figures 5.23, 5.24 the impact of the different recommendation poli-
cies in the evolution of the networks for different degrees of protected group size and
different degrees of symmetric and asymmetric same group preference probability.

Table 5.5: Target Quality Features in Twitter Network.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 4.98 5 12 0.000054 0.000037 0.003275 0.577001 0.639552 1.0 0.512503 0.5 1.0
Node2vec 3.85 4 11 0.001410 0.001376 0.003275 0.643997 0.733387 0.817765 0.750000 1.0 1.0
Fair 5.27 5 11 0.000185 0.000228 0.000298 0.942876 1.0 1.0 1.0 1.0 1.0
Hybrid Fair 4.87 5 11 0.000457 0.000283 0.001412 0.935682 1.0 1.0 1.0 1.0 1.0
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Figure 5.17: Average Acceptance Probability - Blue Source Nodes.

Synthetic network confirm the behavior we show before that node2vec doesn’t change
the network’s red PageRankratio. Fair policies they both enhance protected group as
expected but we see that their dynamics are affected both by the size and the same
group preference probability. The general rule that applies to both forth mentioned
quantities s the greater the values the greater the impact.

5.4.5 Batch vs Online Gain

Fair policy exhibits satisfactory results but we can understand from the formula that
it doesn’t take into consideration the changes in the network’s structure that happens
from the addition of edges on other nodes. We conduct the basic experiment with
a greedy algorithm recalculating the fair score before any recommendation. Figures
5.25 5.26

We see that in many cases the greedy algorithm can extend in grade level the
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Figure 5.18: Red PageRank ratio at top k nodes by PageRank - Blogs network.

0 250 500 750 1000 1250 1500 1750
Top k

0.5

0.6

0.7

0.8

0.9

1.0

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial
Node2vec
Fair
Hybrid Fair
Random

(a) Random

0 250 500 750 1000 1250 1500 1750
Top k

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial
Node2vec
Fair
Hybrid Fair
Random

(b) Red

0 250 500 750 1000 1250 1500 1750
Top k

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial
Node2vec
Fair
Hybrid Fair
Random

(c) Blue

Figure 5.19: Red PageRank ratio at top k by nodes PageRank - Twitter network.

impact on the network but there are also cases where the two algorithms perform
equivalently. This happens when the changes in the network doesn’t change the order
of best targets per source.

5.4.6 Fairness, Accepted Probability Correlation

From the experiments so far it is obvious that it is difficult to combine high recom-
mendation score with high fair impact. In fact, the next experiments show us that
there is also a negative correlation between acceptance probability and fair score on
the top suggestions of each.

To measure that we use the recommendations of node2vec and fair policy we had
for the synthetic networks. From these sets we keep the best 50%. For the edges
proposed from node2vec recommender we separate them in buckets of equal size
and we plot the average fair score for all buckets. We create the corresponding plots
for the edges proposed from fair recommender. The number and the size of buckets
differs in every occasion depending on the range of the values. Results are presented
in figure 5.27
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Figure 5.20: Red PageRank ratio at top k by nodes PageRank - DBLP network.
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Figure 5.21: Cutting Point for Selecting Nodes.
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Figure 5.22: Cutting Point for Selecting Nodes

55



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(a) Size: 0.1, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(b) Size: 0.1, K = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.25

0.30

0.35

0.40

0.45

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(c) Size: 0.3, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.25

0.30

0.35

0.40

0.45

0.50
Re

d 
Pa

ge
Ra

nk
 R

at
io
Initial (K=0)
Node2vec
Fair
Hybrid Fair

(d) Size: 0.3, K = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(e) Size: 0.5, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.50

0.52

0.54

0.56

0.58

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(f) Size: 0.5, K = 10

Figure 5.23: Red PageRank ratio to different same group preference probability for
sizes 0.1, 0.3, 0.5 after 5 and 10 link additions for symmetric same group preference.

56



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(a) Size: 0.1, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(b) Size: 0.1, K = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.25

0.30

0.35

0.40

0.45

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(c) Size: 0.3, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.25

0.30

0.35

0.40

0.45
Re

d 
Pa

ge
Ra

nk
 R

at
io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(d) Size: 0.3, K = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(e) Size: 0.5, K = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Re
d 

Pa
ge

Ra
nk

 R
at

io

Initial (K=0)
Node2vec
Fair
Hybrid Fair

(f) Size: 0.5, K = 10

Figure 5.24: Red PageRank ratio to different same group preference probability for
sizes 0.1, 0.3, 0.5 after 5 and 10 link additions for asymmetric same group preference.
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Figure 5.25: Fairness Impact for Batch and Online Fair Policy - Blogs.
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Figure 5.26: Fairness Impact for Batch and Online Fair Policy - Twitter.
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Figure 5.27: Recommendation Score - Fair Score Correlation.
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CHAPTER 6

RELATED WORK

Algorithmic fairness. Recently, there has been increasing interest in algorithmic fair-
ness, especially in the context of machine learning. Fairness is regarded as the lack of
discrimination on the basis of some protective attribute. Various definition of fairness
having proposed especially for classification [15, 1, 23, 24]. We use a group-fairness
definition, based on parity. Approaches to handing fairness can be classified as pre-
processing, that modify the input data, in-processing, that modify the algorithm and
post-processing ones, that modify the output. We are mostly interested in in-processing
techniques.

There is also prior work on fairness in ranking [25, 26, 27, 28]. All of these works
consider ranking as an ordered list of items, and use different rules for defining and
enforcing fairness that consider different prefixes of the ranking [25, 26], pair-wise
orderings [28], or exposure and presentation bias [29, 27].

Our goal in this paper is not to propose a new definition of ranking fairness, but
rather to initiate a study of fairness in link analysis. A distinguishing aspect of our
approach is that we take into account the actual Pagerank weights of the nodes, not
just their ranking. Furthermore, our focus in this paper, is to design in-processing
algorithms that incorporate fairness in the inner working of the Pagerank algorithm.
We present a post-processing approach as a means to estimate a lower bound on the
utility loss. None of the previous approaches considers ranking in networks, so the
proposed approaches are novel.
Fairness in networks. There has been some recent work on network fairness in the
context of graph embeddings [30, 31, 32]. The work in [30] follows an in-processing
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approach that extends the learning function with regulatory fairness enforcing terms,
while the work in [31] follows a post-processing approach so as to promote link
recommendations to nodes belonging to specific groups. Both works are not related
to our approach. The work in [32] extends the node2vec graph embedding method
by modifying the random walks used in node2vec with fair walks, where nodes are
partitioned into groups and each group is given the same probability of being selected
when a node makes a transition. The random walk introduced in [32] has some
similarity with the random walk interpretation of LFPRN . It would be interesting
to see, whether our extended residual-based algorithms could be utilized also in the
context of graph embeddings, besides its use in link analysis.

There are also previous studies on the effect of homophily, preferential attachment
and differences in group sizes. It was shown that the combination of these three
factors leads to uneven degree distributions between groups [8]. Evidence of this
kind of inequality - like between degree distribution of minorities and majorities -
was also found in many real networks [33]. Our work extends this line of research
by looking at Pagerank values instead of degrees.

We note here that there is previous work on diversity in network ranking. In this
line of research, the goal is to find important nodes that also maximally cover the
nodes in the network [34, 35]. Our problem is fundamentally different, since we look
for rankings that follow a parity constraint.

Fair recommendation systems. Recent work also shows that this phenomenon is ex-
aggerated by many link recommendation algorithms [9]. Existing works have shown
way to update the results of the PageRank [36], [37] but they focus on efficient com-
putations methods. There are studies providing similar analysis towards predicting
the impact of new edges based a particular objective [10], [12] but their problem is
complete different and their analysis not applicable in our context. Besides that, our
analysis provide an efficient way to compute the impact of the new edges.

We have seen different approaches for fair recommendation systems like [32]
that suggest a link recommendations system based on node embedding which have
been computed using a fair variation of node2vec, or [38] that proposing a hybrid
recommender system using a set of probabilistic soft logic rules. Our approach is
complete different as it exploits the fairness score of each edge which we compute
based on our perturbation analysis. Last the [31] studies the close related problem
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of link prediction, introducing a dyadic-level fairness cryterion and provide a post
processing approach to promote more heterogenous links.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

In this paper we study the fairness for link analysis algorithms. We give general def-
initions of fairness, and we focus on fair algorithms for the PageRank algorithm. We
considered two approaches, one that modifies the jump vector, and one that imposes a
fair behavior per node. We also consider the problem of attaining fairness while min-
imizing the utility loss of Pagerank. Besides that we examine the possibilities of link
recommendation systems to affect the fairness of a network. We present a theoretical
analysis on the impact of new edges to the fairness of a network and we propose
fair link recommendation systems. Our experiments demonstrate the behavior of our
different algorithms. Last we evaluate our recommendation systems under the lens
of both impact on fairness and quality of link recommendations.

7.2 Future Work

For link analysis ranking, we would like to study and generalize our fair approaches
in other link analysis algorithms than the PageRank. We want to explore the utility
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of our residual policies in graph embeddings. We also plan to study further their
personalized and the targeted versions. Moreover, we would like to explore different
objectives for the sensitive algorithms and explore its utility in different contexts.
Last we like to explore the possibilities of our link recommendation mechanism in
problems that can be modeled similarly, like the mitigation of polarization and the
information diffusion in social networks.
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APPENDIX A

PROOFS

A.1 Fairness Aware PageRank Ranking

A.2 PageRankFair Recommendations

A.1 Fairness Aware PageRank Ranking

When ϕ = r, the average weight of red nodes is equal with the average weight of the
blue nodes, i.e.,

∑
v∈R wv

|R| =
∑

v∈B wv

|B| .

Proof. It holds:
∑

v∈B wv

|B| =
∑

v∈V wv−
∑

v∈R wv

|N |−|R| = 1/r
∑

v∈R wv−
∑

v∈R wv

|N |−|R| = N/|R|
∑

v∈R wv−
∑

v∈R wv

|N |−|R| =∑
v∈R wv

|R| .

Proof of Lemma 3.2.

Proof. From the transition matrix PL, each node i ∈ LR gives a portion 1−ϕ
outB(i)

of each
of its pagerank to its neighbors. The blue neighbors do not get any residual pagerank,
thus they get an 1−ϕ portion as in the LFPRN algorithm. Each of the red neighbors
gets an additional 1

outR(i)
δR(i) = 1

outR(i)
(ϕ − (1−ϕ) outR(i)

outB(i)
), which sums to ϕ

outR(i)
. Thus,

the red nodes get an ϕ portion of i’s pagerank as in the LFPRN algorithm. The proof
is analogous for each node i ∈ LB.
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A lower bound for the optimal weight redistribution for targeted

fairness

Given the weight vector w and the set S, we divide the full set of nodes in three
categories: the set BS of blue nodes in S, the set RS of red nodes in S, and the
rest of nodes O not in S. In order for f to be fair, it must be that it moves weight
between these categories. Furthermore, this movement is always in one direction,
e.g., all nodes in RS will increase their weight. It is clearly sub-optimal to increase
the weight of some nodes in RS and decrease the weight of others. We define the
variables xB =

∑
i∈BS

(fi−wi), xR =
∑

i∈RS
(fi−wi), and xO =

∑
i∈O(fi−wi) to be the

total change in weight for the nodes in BS , RS , and O respectively. Note that these
values may be positive, indicating an increase in weight for the respective category,
or negative, indicating a decrease in weight for the respective category. It holds:

xB + xR + xO = 0 (A.1)

Let fR and fB the weight allocated to nodes in RS and RB respectively, and ρ and
β be their desired values according to ϕ. Also, let wB and wR be the weight of the
nodes in BS and RS respectively. Since the vector f is fair for the nodes in S it holds
that

wR + xR

wB + xB

=
ρ

β
(A.2)

Using Equations A.1 and A.2, we can express xB and xR as a function of xO:

xR = ρwB − βwR − ρxO (A.3)

xB = βwR − ρwB − βxO (A.4)

Now, let NB , NR, and NO denote the number of nodes in categories BS , RS , and
O respectively. To minimize loss, and since we allow f to have negative entries, the
change in weight must be distributed equally in each category. Thus, the total loss is

Loss(f,w) =
x2
R

NR

+
x2
B

NB

+
x2
O

NO

(A.5)

We substitute Equations A.3 and A.4 in Equation A.5, we take the derivative with
respect to xO, and we set it zero. Solving for xO, we get:

xO =
NO(βwB − ρwR)(βNR − ρNB)

ρNB(ρNO +NR) + βNR(βNO +NB)
(A.6)
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Substituting xO in Equations A.4 and A.3, we obtain:

xR =
(ρwB − βwR)NR(βNO +NB)

ρNB(ρNO +NR) + βNR(βNO +NB)
(A.7)

xB =
(βwR − ρwB)NB(ρNO +NR)

ρNB(ρNO +NR) + βNR(βNO +NB)
(A.8)

There are some interesting observations in these equations. First, a factor that
appears in all equations is βwR−ρwB , which tells us how unfair the original weights
are. For example, if βwR − ρwB < 0, then we are unfair towards category R. In this
case the nodes in category R will always receive weight wR > 0. The origin of the
weight depends on the ratio NR/NB of the nodes in S. If βNR−ρNB < 0, then we have
proportionally more nodes of B in S with an excess of weight. In this case we remove
weight only from the nodes in B, and we distribute it to the nodes in R and O as
defined by Equations A.8 and A.6. If βNR−ρNB < 0, then we have proportionally less
nodes of B in S, but they have proportionally more weight. In this case we remove
weight from both the nodes in B, and O, as defined by Equations A.8 and A.6, and
we distribute it to the nodes in R. If βNR − ρNB = 0, then we take weight only from
the nodes in B and give only to the nodes in R.

Having computed the values for xR, xB and xO, we can now compute the loss using
Equation A.5. Note that this is a lower bound to the optimal loss for our problem,
since it does not guarantee that the resulting vector f has non-negative entries.

A.2 PageRankFair Recommendations

Proof. Detailed proof of Theorem 4.1

Assume that E ′ = E ∪ {u, v} then:

Di =

0, i ̸= u

−Pu +
ku

ku+1
Pu +

1
ku+1

ev = (−1 + ku
ku+1

)Pu +
1

ku+1
ev = −1

ku+1
Pu +

1
ku+1

ev, i = u
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DQij =

0, i ̸= u∑
w∈Eu

[DuwQwj] +DuvQvj =
∑

w∈Eu
[ −1
ku(ku+1)

· Qwj] +
1

ku+1
· Qvj, i = u

=

0, i ̸= u

1
ku+1

[·Qvj − 1
ku

∑
w∈Eu

Qwj], i = u

QDQij =
n∑

w=1

Qiw[DQ]wj = Qiu[DQ]uj =
1

ku + 1
Qiu

(
Qvj −

1

ku

∑
w∈Eu

Qwj)
)

(A.9)

q = tr(DQ) =
n∑

i=0

DQii = DQuu =
1

ku + 1

(
Qvu −

1

ku

∑
w∈Eu

Qwj)
)

(A.10)

We know[17] that If G is nonsingular, H is of rank 1 and G +H is nonsingular
as well, then:

(G+H)−1 = G−1 − 1

1 + g
G−1HG−1, g := tr(HG−1)

For G = [I− (1− c) P] and H = −(1− c) ·D, we have:

N′ = N− 1

1 + q
N(−(1− c)DN), q := tr(−(1− c)DN)⇒

1

c
Q′ =

1

c
Q− 1

c2
1

1 + q
Q(−(1− c) ·D)Q, q := tr(−(1− c)D1

c
Q)

=
1

c
Q+

1

c2
(1− c)

1 + q
QDQ, q := −(1− c)

c
· tr(DQ)⇒

Q′ = Q+
1

c

(1− c)

1− (1−c)
c

q
QDQ, q := tr(DQ)

= Q+
(1−c)

c

1− (1−c)
c

q
QDQ, q := tr(DQ)⇒
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Q′
ij = Qij +

(1−c)
c

1− (1−c)
c

q

1

ku + 1
Qiu

(
Qvj −

1

ku

∑
w∈Eu

(Qwj)
)

= Qij +
Qiu

ku + 1

(1−c)
c

1− (1−c)
c

1
ku+1

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

(
Qvj −

1

ku

∑
w∈Eu

(Qwj)
)

= Qij + Qiu

(1−c)
c

(
Qvj − 1

ku

∑
w∈Eu

(Qwj)
)

ku + 1− (1−c)
c

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

We want to maximize PageRank of Red (R). We know that p = vQ, so:

p′(R) =
1

n

n∑
i=1

n∑
j∈R

Q′
ij

=
1

n

n∑
i=1

n∑
j∈R

Qij + Qiu

(1−c)
c

(
Qvj − 1

ku

∑
w∈Eu

(Qwj)
)

ku + 1− (1−c)
c

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

= p(R) +
1

n

n∑
i=1

n∑
j∈R

Qiu

(1−c)
c

(
Qvj − 1

ku

∑
w∈Eu

(Qwj)
)

ku + 1− (1−c)
c

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

= p(R) + pu

(1−c)
c

(
Qv(R)− 1

ku

∑
w∈Eu

(Qw(R))
)

(ku + 1)− (1−c)
c

(Qvu − 1
ku

∑
w∈Eu

(Qwu))

lemma 1.2, 1.4
=⇒

=



p(R) + pu ·
(1−c)

c

(
Qv(R) + c

1−c
− 1

1−c
Qu(R)

)
ku + 1− (1−c)

c
(Qvu +

c
(1−c)

− 1
(1−c)

Quu)
, u ∈ R

p(R) + pu ·
(1−c)

c

(
Qv(R)− 1

1−c
Qu(R)

)
ku + 1− (1−c)

c
(Qvu +

c
(1−c)

− 1
(1−c)

Quu)
, u ∈ B

=



p(R) + pu ·
1
c

(
(1− c)Qv(R) + c− Qu(R)

)
ku + 1− 1

c
((1− c)Qvu + c− Quu)

, u ∈ R

p(R) + pu ·
1
c

(
(1− c)Qv(R)− Qu(R)

)
ku + 1− 1

c
((1− c)Qvu + c− Quu)

, u ∈ B

Assume that G′ = (V,E ′ := E∪Ẽ), Ẽ = {(u, v)|v ∈ V ∧v /∈ Eu}, E ′
u = Eu∪Ẽu, Ẽu =
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{v|(u, v) ∈ Ẽ} then:

DQij =

0, i ̸= u

k̃

ku+k̃

(
− 1

k̃

∑
w∈Ẽu

(Qvj)− 1
ku

∑
w∈Eu

(Qwj)
)

QDQij =
k̃

ku + k̃
Qiu

(
− 1

k̃

∑
w∈Ẽu

(Qvj)−
1

ku

∑
w∈Eu

(Qwj)
)

tr
(
DQ

)
= DQuu =

k̃

ku + k̃

(
− 1

k̃

∑
w∈Ẽu

(Qvu)−
1

ku

∑
w∈Eu

(Qwu)
)

Q′
ij = Qij + Qiu

(1−c)
c

(
− 1

k̃

∑
w∈Ẽu

(Qvj)− 1
ku

∑
w∈Eu

(Qwj)
)

ku+k̃

k̃
− (1−c)

c

(
− 1

k̃

∑
w∈Ẽu

(Qvu)− 1
ku

∑
w∈Eu

(Qwu)
)

p′(R) = p(R) + pu ·
(1−c)

c

(
− 1

k̃

∑
w∈Ẽu

(Qv(R))− 1
ku

∑
w∈Eu

(Qw(R))
)

ku+k̃

k̃
− (1−c)

c

(
− 1

k̃

∑
w∈Ẽu

(Qvu)− 1
ku

∑
w∈Eu

(Qwu)
)

Proof. Lemma 4.4

The new transition matrix is:

P̃ ∈ R(n+2)x(n+2) := P̃ij =



(1− c)Pij, 0 ≤ i, j ≤ n

c, (i ∈ R ∧ j = ar) ∨ (i ∈ B ∧ j = ab)

1, (i = j = ar) ∨ (i = j = ab)

0, otherwise

P̃ can also be written in its canonical form:

P̃ =

(1− c)P R
02xn I2

 , R ∈ Rnx2, R =

c, (i ∈ R ∧ j = 1) ∨ (i ∈ B ∧ j = 2)

0, otherwise

We know[18] that absorption probabilities are B = NR where N is the Founda-
mental matrix of X̃ defined as N = [In − (1− c)P]−1.
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We observe that N = 1
c
Q So:B = NR

N = 1
c
Q

⇒

B = QR′

R′ = 1
c
R

⇒ Bij =
∑
k

QikR′
kj =

Qi(R), j = 1

Qi(B), j = 2
,⇒

Qi(R) = Bi1, Qi(B) = Bi2

74



APPENDIX B

EXPERIMENT EVALUATION

B.1 Fairness Aware PageRank Ranking

B.2 PageRankFair Recommendations

Additional datasets and experiments

In Table B.2, we present statistics for additional datasets.

• POKEC [39]: This is a Slovak social network. Nodes correspond to users, and
links to friendships. Friendship relations are directed.

• DBLP1: An author collaboration network constructed by the Arnetminer aca-
demic search system [40] using publication data from dblp. Two authors are
connected if they have co-authored an article.

Table B.1: Utility loss with respect to optimal utility ( LFPRX

OPTIMAL
)

Dataset LFPRN LFPRU LFPRP SFPR

POKEC 30.57 35.31 15.39 -
TWITTER 152.08 156.02 66.92 6.94
DBLP1 99.12 41.66 21.80 -
DBLP2 95.84 47.81 25.18 6.13
LINKEDIN 4,913 1,787 1,149 -
PHYSICS 9.56 9.04 8.21 50.24
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Table B.2: Real dataset characteristics. r, b relative size of protected and unprotected
group, respectively; pR, pB pagerank assigned to the red and blue group respectively

Dataset #nodes #edges Protected attribute r b homophily pR pB

POKEC 1,632,803 30,622,564 gender (women) 0.51 0.49 1.11 0.54 0.46
DBLP1 423,469 2,462,422 gender (women) 0.19 0.81 0.83 0.13 0.87
LINKEDIN 3,209,448 13,016,453 gender (women) 0.37 0.63 0.72 0.37 0.63
PHYSICS 30,359 347,235 year (after 1997) 0.66 0.34 0.76 0.39 0.61
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(d) linkedin

Figure B.1: Locally fair Pagerank algorithms for the additional datasets with ϕ = 0.5.

• LINKEDIN [41]: Nodes correspond to LinkedIn profiles. Two profiles are linked if
they were co-viewed by the same user.

• PHYSICS: This is the Arxiv HEP-PH (high energy physics phenomenology) cita-
tion graph from the SNAP dataset1. Nodes correspond to papers and there is
an edge from a paper to another, if the first paper cites the second one.

Again, there are cases where the fraction of the weight assigned to the protected
group is even smaller than r.v

B.1 Fairness Aware PageRank Ranking

In Figure B.1, we report results for the original and the locally fair PageRank algo-
rithms for the additional datasets and in Figure B.2, we report results for the locally
fair PageRank algorithms for ϕ = r.

1http://snap.stanford.edu/data
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(a) Twitter
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(b) DBLP2
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(c) Blogs
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(d) Books

Figure B.2: Locally fair Pagerank algorithms for ϕ = r.
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(a) Twitter
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(c) Blogs
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Figure B.3: Targeted locally fair PageRank algorithms and the optimal post-processing
redistribution for ϕ = 0.5. The size of the set S is set to 10% of the size of the dataset.

B.2 PageRankFair Recommendations

Similar results with those in analysis for random source nodes can derived for the
other two source nodes sets from the tables B.3, B.4, B.5, B.6. Selection threshold
for each set is presented in figures B.4, B.5, B.6, B.7.

Table B.3: Target Quality Features in Blogs - Red Source Nodes.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 3.380000 3 5 0.000822 0.000339 0.045172 0.332817 0.282878 0.638946 0.435733 0.500000 1.000000
Node2vec 2.722222 3 4 0.004934 0.004793 0.010006 0.340760 0.321328 0.564971 0.308273 0.160000 0.957143
Gain 3.890000 4 7 0.000284 0.000243 0.000583 0.622608 0.620985 0.638946 1.000000 1.000000 1.000000
ExpGain 3.040816 3 5 0.000940 0.000583 0.002620 0.580573 0.590254 0.638946 0.969143 1.000000 1.000000
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Figure B.4: Cutting Point for Selecting Nodes.
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Figure B.5: Cutting Point for Selecting Nodes.

Table B.4: Target Quality Features in Blogs - Blue Source Nodes.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 2.846667 3 6 0.000840 0.000331 0.045172 0.337866 0.282878 0.638946 0.445203 0.500000 1.000000
Node2vec 2.437037 2 4 0.004934 0.004793 0.010006 0.340760 0.321328 0.564971 0.308273 0.160000 0.957143
Gain 4.200000 4 7 0.000284 0.000243 0.000583 0.622608 0.620985 0.638946 1.000000 1.000000 1.000000
ExpGain 3.160839 3 5 0.000982 0.000742 0.002620 0.578018 0.577612 0.638946 0.967215 0.989131 1.000000
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Figure B.6: Cutting Point for Selecting Nodes.
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Figure B.7: Cutting Point for Selecting Nodes.

Table B.5: Target Quality Features in Twitter - Red Source Nodes.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 4.762500 5 7 0.000054 0.000037 0.001418 0.579776 0.639552 1.000000 0.511345 0.500000 1.000000
Node2vec 3.636364 4 7 0.001447 0.001376 0.003275 0.590534 0.721374 0.817765 0.650000 1.000000 1.000000
Gain 4.775000 5 7 0.000185 0.000228 0.000298 0.942876 1.000000 1.000000 1.000000 1.000000 1.000000
ExpGain 4.442857 4 7 0.000457 0.000283 0.001412 0.935682 1.000000 1.000000 1.000000 1.000000 1.000000

Table B.6: Target Quality Features in Twitter - Blue Source Nodes.

Policy
Distance PageRank Red PageRank Node Homophily

mean median max mean median max mean median max mean median max
Random 4.754545 5 7 0.000058 0.000037 0.001418 0.575291 0.639552 1.000000 0.511240 0.500000 1.000000
Node2vec 3.829545 4 5 0.001574 0.001376 0.003275 0.651073 0.736853 0.817765 0.750000 1.000000 1.000000
Gain 5.372727 5 7 0.000185 0.000228 0.000298 0.942876 1.000000 1.000000 1.000000 1.000000 1.000000
ExpGain 4.904255 5 7 0.000457 0.000283 0.001412 0.935682 1.000000 1.000000 1.000000 1.000000 1.000000
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