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ABSTRACT 

The present thesis deals with the modeling of cancer diagnosis, prognosis and treatment by 

utilizing and implementing well-established computational approaches that can efficiently 

and effectively contribute to cancer care research and precision oncology. The main 

objective of this thesis is to study and further understand the molecular basis underlying 

cancer progression and risk prediction by combining high-throughput data with patient 

information. Towards this direction, we seek to investigate how the integration of 

heterogeneous datasets related to cancer development, such as genomic changes and single 

nucleotide polymorphisms, could provide subsequently a better understanding on cancer 

classification and progression based on Dynamic Bayesian Networks (DBNs) and ensemble 

Machine Learning (ML) methodologies, respectively. 

The first part of the thesis concerns the interactions of the molecules and especially of 

differentially expressed genes (DEGs) that contribute to cancer progression. Based on this 

knowledge the identification of DEGS and their related molecular pathways is therefore of 

great importance. We exploited DEGs in order to further perform pathway enrichment 

analysis. According to our results we found significant pathways in which the disease 

associated genes have been identified as strongly enriched. Based on the performed pathway 

analysis we further proposed a methodology for predicting oral cancer recurrence using 

DBNs. The methodology takes into consideration time series gene expression data in order 

to predict a disease recurrence. Subsequently, we can conjecture about the causal interactions 

between genes in consecutive time intervals. A considerable overall performance of the 

predictive models was achieved with reference to the knowledge obtained from the pathway 

level. Cancer classification through DBN-based approaches that could reveal the importance 

of exploiting knowledge from statistically significant genes and key regulatory molecules 

was also explored. We identified the genes that act as regulators and mediate the activity of 

transcription factors that have been found in all promoters of our list with DEGs. These 

features serve as potential priors for distinguishing tumour from normal samples using a 
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DBN-based classification approach. We employed three microarray datasets from the Gene 

Expression Omnibus (GEO) public functional repository and performed differential 

expression analysis. Promoter and pathway analysis of the identified genes revealed the key 

regulators which influence the transcription mechanisms of these genes. We applied the 

DBN algorithm on selected genes and identified the features that can accurately classify the 

samples into wild type and controls. Both accuracy and area under the receiver operating 

characteristic (ROC) curve (AUC) were high for the gene sets comprising of the DEGS along 

with their master regulators. 

In the second part of the thesis we explored the contribution of the genetic susceptibility 

patients’ profiles and by combining them with known clinical, histological and serological 

risk factors we enhanced the accuracy of predicting lymphoma development in this patient 

population. The potential predictive role of both genetic variants and laboratory risk factors 

were investigated through a ML-based framework which encapsulated ensemble classifiers, 

such as Gradient Boosting (GB) and Random Forests (RFs) with Gini and entropy measures. 

Ensemble methods enhance the classification accuracy with approaches that are sensitive to 

minor perturbations in the training phase. The evaluation of the proposed methodology based 

on a 10-fold stratified cross validation procedure yielded considerable results in terms of 

balanced accuracy. The initial clinical, histological and serological findings at an early 

diagnosis were exploited to establish ML-based predictive tools in clinical practice and 

further enhance our understanding towards cancer development. 

In the present thesis, we studied the potential of integrating transcriptomic data with 

knowledge from the pathway level to model cancer progression and patient risk 

stratification. The development and application of novel DBN-based analysis methods 

allowed to infer models that could classify different phenotypes into groups with high 

classification accuracy. We also demonstrated that robust ensemble ML-based models could 

contribute to the prediction of cancer development based on the integration of genotype data 

along with clinical information; thus, contributing to improved disease prognosis and 

treatment. 
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ 

Η παρούσα διατριβή πραγματεύεται τη μοντελοποίηση της διάγνωσης, της πρόγνωσης και 

της θεραπείας του καρκίνου, αναλύοντας και εφαρμόζοντας ευρέως χρησιμοποιούμενες 

υπολογιστικές προσεγγίσεις οι οποίες μπορούν αποτελεσματικά να συμβάλουν στην έρευνα 

για τη διαχείριση του καρκίνου, την ογκολογία και την ιατρική ακριβείας. Κύριος στόχος 

αυτής της διατριβής είναι να μελετήσει και να κατανοήσει περαιτέρω τη μοριακή βάση της 

εξέλιξης του καρκίνου και την πρόβλεψη κινδύνου συνδυάζοντας τα ιατρικά δεδομένα του 

ασθενούς με δεδομένα υψηλής απόδοσης. Προς αυτή την κατεύθυνση, επιδιώξαμε να 

διερευνήσουμε τον τρόπο με τον οποίο η ενσωμάτωση ετερογενών συνόλων δεδομένων που 

σχετίζονται με την ανάπτυξη του καρκίνου, όπως οι γονιδιωματικές αλλαγές και οι 

πολυμορφισμοί ενός νουκλεοτιδίου, θα μπορούσε στη συνέχεια να επιτρέψει την καλύτερη 

και πιο έγκυρη ταξινόμηση διαφορετικών φαινοτύπων σχετικών με την εξέλιξη του 

καρκίνου. 

Ο τομέας της Συστημικής Βιολογίας έχει αναπτυχθεί σημαντικά τα τελευταία χρόνια και 

αφορά την ερμηνεία συγκεκριμένων βιολογικών συμβάντων χρησιμοποιώντας τη θεωρία 

των συστημάτων και των δικτύων. Τα βιολογικά δίκτυα ή δίκτυα γονιδιακής 

αλληλεπίδρασης, αποτελούν κοινή έννοια στη Συστημική Βιολογία ενώ ταυτόχρονα 

παρέχουν κρίσιμη πληροφορία σχετικά με τους βιολογικούς μηχανισμούς των υγιών και μη 

υγιών φαινοτύπων.  

Στην παρούσα διδακτορική διατριβή, δεδομένα γονιδιακής έκφρασης τα οποία έχουν 

εξαχθεί από διατάξεις μικροσυστοιχιών, αναλύονται περαιτέρω με στόχο την 

μοντελοποίηση δικτύων μέσω της τεχνικής των Μπαγιεσιανών (Bayesian) και Δυναμικών 

Μπαγιεσιανών (Dynamic Bayesian) δικτύων. Απώτερος στόχος είναι η ανίχνευση 

αλληλεπιδράσεων και σχέσεων μεταξύ των γονιδίων, καθώς και η διεξοδική ανάλυση των 

παραγόμενων δικτύων αλληλεπίδρασης που συμβάλλουν στη διάγνωση και πρόγνωση της 

ασθένειας του καρκίνου καθώς και στην ταξινόμηση των δειγμάτων σε διαφορετικές 

κλάσεις. Επιπλέον, μελετήθηκαν και υλοποιήθηκαν σειρά αλγορίθμων Μηχανικής 
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Μάθησης (Machine Learning) με σκοπό την αναπαράσταση της γνώσης και την εξαγωγή 

συμπερασμάτων αναφορικά με τα κλινικά, ιστολογικά και γενετικά ευρήματα ασθενών σε 

πρώιμη διάγνωση τα οποία αξιοποιήθηκαν περαιτέρω σε μια προσπάθεια δημιουργίας 

μοντέλων πρόβλεψης στην κλινική πρακτική και την ενίσχυσης της κατανόησής μας για την 

ανάπτυξη λεμφώματος. 

Το πρώτο μέρος της διατριβής αναφέρεται στις αλληλεπιδράσεις των μορίων και ιδιαίτερα 

των διαφορικά εκφρασμένων γονιδίων (differentially expressed genes) που συμβάλλουν 

στην διάγνωση και εξέλιξη της νόσου του καρκίνου. Με βάση αυτή την γνώση, ο 

προσδιορισμός και η αναγνώριση των διαφορικά εκφρασμένων γονιδίων και των σχετικών 

μοριακών μονοπατιών στα οποία συμμετέχουν είναι μεγάλης σημασίας. 

Εκμεταλλευτήκαμε τα σημαντικά ως προς την έκφρασή τους γονίδια για να 

πραγματοποιήσουμε περαιτέρω ανάλυση των βιολογικών μονοπατιών. Σύμφωνα με τα 

αποτελέσματα, προσδιορίσαμε σημαντικές βιολογικές οδούς στις οποίες τα γονίδια που 

σχετίζονται με την ανάπτυξη καρκίνου έχουν αναγνωριστεί ως έντονα εμπλουτισμένες και 

συμμετέχουν σε αυτές. Με βάση την ανάλυση που πραγματοποιήθηκε, προτείναμε 

μεθοδολογία για την πρόβλεψη της υποτροπής του καρκίνου του στόματος 

χρησιμοποιώντας Δυναμικά Μπαγιεσιανά δίκτυα. Η προτεινόμενη μεθοδολογία δέχεται ως 

είσοδο δεδομένα έκφρασης γονιδίων από διάφορες χρονικές στιγμές προκειμένου να 

προβλέψει την υποτροπή της νόσου. Στη συνέχεια και βάσει της μεθόδου των δυναμικών 

δικτύων, μπορούμε να εξάγουμε υποθέσεις για τις αιτιώδεις αλληλεπιδράσεις μεταξύ των 

γονιδίων σε διαδοχικά χρονικά διαστήματα. Επιτεύχθηκε έτσι η ανάπτυξη έγκυρων και 

ακριβών μοντέλων πρόβλεψης με αναφορά στα δεδομένα που αποκτήθηκαν από το επίπεδο 

των βιολογικών μονοπατιών στα οποία συμμετέχουν τα γονίδια προς μελέτη. Tα δεδομένα 

που αναφέρθηκαν παραπάνω χρησιμοποιήθηκαν ώστε να καθοριστούν η δομή και οι 

παράμετροι δύο μοντέλων Δυναμικών Μπαγιεσιανών δικτύων που σχετίζονται με την 

κατάσταση συγκεκριμένων ασθενών, δηλαδή εκείνων που επανεμφάνισαν ή όχι καρκίνο. 

Οι παράμετροι προσδιορίστηκαν μεταξύ των μεταβλητών του πρώτου χρονικού 

διαστήματος και κατά τη διάρκεια του πρώτου και δεύτερου διαστήματος. Έτσι, μπορέσαμε 

να υποθέσουμε σχετικά με τις σχέσεις - αλληλεπιδράσεις μεταξύ των γονιδίων. Επιπλέον, 

η χαρτογράφηση αυτών των αλληλεπιδράσεων με γνωστές και επαληθευμένες 

αλληλεπιδράσεις στην βιβλιογραφία είναι σε θέση να προσφέρει καλύτερη εικόνα στις 

υποκείμενες μοριακές διεργασίες της νόσου. Η συνολική απόδοση των μοντέλων 
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πρόβλεψης ήταν ίση με 81,8% ακρίβεια και περιοχή κάτω από την ROC καμπύλη ίση με 

0.892, αναφορικά με τις γνώσεις που αποκτήθηκαν από την ανάλυση εμπλουτισμού των 

σηματοδοτικών μονοπατιών. 

Στην συνέχεια, διερευνήθηκε η ταξινόμηση των ασθενών με καρκίνο σε προκαθορισμένες 

κλάσεις μέσω προσεγγίσεων που βασίζονται και πάλι στα Δυναμικά Μπαγιεσιανά δίκτυα 

τα οποία επιτρέπουν τη συνεκμετάλλευση της γνώσης από στατιστικά σημαντικά γονίδια 

και τα βασικά ρυθμιστικά τους μόρια. Προσδιορίσαμε τα γονίδια που λειτουργούν ως 

ρυθμιστές και μεσολαβούν στη δραστηριότητα παραγόντων μεταγραφής τα οποία έχουν 

βρεθεί σε όλους τους υποκινητές της λίστας με τα διαφορικά εκφρασμένα γονίδια. Τα 

χαρακτηριστικά αυτά χρησιμοποιήθηκαν ως προγενέστερη γνώση στα Δυναμικά 

Μπαγιεσιανά δίκτυα για τη διάκριση του όγκου από τα υγιή δείγματα. Χρησιμοποιήσαμε 

τρία σύνολα δεδομένων μικροσυστοιχιών από το αποθετήριο Gene Expression Omnibus 

(GEO) και πραγματοποιήσαμε αρχικά ανάλυση διαφορικής έκφρασης. Η μετέπειτα 

ανάλυση των υποκινητών και των σηματοδοτικών οδών των αναγνωρισμένων γονιδίων 

αποκάλυψε τους βασικούς ρυθμιστές που επηρεάζουν τους μηχανισμούς μεταγραφής των 

εν λόγω γονιδίων. Εφαρμόσαμε τον προτεινόμενο αλγόριθμο σε επιλεγμένα γονίδια και 

προσδιορίσαμε τα χαρακτηριστικά που μπορούν να ταξινομήσουν με ακρίβεια τα δείγματα 

στις ομάδες ελέγχου (controls) και άγριου τύπου (wild type). Τόσο η ακρίβεια όσο και η 

περιοχή κάτω από την καμπύλη ROC ήταν υψηλές, στηριζόμενοι στα τελικά σύνολα 

γονιδίων (δηλαδή στα διαφορικά εκφρασμένα γονίδια και τους υποκινητές τους). 

Συγκεκριμένα, η ακρίβεια κυμάνθηκε μεταξύ 70,8% - 98,5%, ενώ η καμπύλη ROC μεταξύ 

0,562 - 0,985. 

Στο δεύτερο μέρος της διατριβής μελετήσαμε τη συμβολή των προφίλ γενετικής 

ευαισθησίας σε ασθενείς με σύνδρομο Sjögren. Συνδυάζοντας τα γενετικά δεδομένα με 

γνωστούς κλινικούς, ιστολογικούς και ορολογικούς παράγοντες κινδύνου, ενισχύσαμε την 

ακρίβεια της πρόβλεψης ανάπτυξης λεμφώματος σε αυτόν τον πληθυσμό ασθενών. Ο 

δυνητικός προγνωστικός ρόλος τόσο των γενετικών παραλλαγών όσο και των 

εργαστηριακών παραγόντων κινδύνου διερευνήθηκε μέσω μεθοδολογίας Μηχανικής 

Μάθησης, η οποία ενσωματώνει ταξινομητές, όπως ο ταξινομητής Ενίσχυσης Σύστασης 

(Gradient Boosting - GB) και τα Τυχαία Δέντρα (Random Forests - RFs) με συγκεκριμένα 

μέτρα εντροπίας. Οι μέθοδοι συνόλου (ensemble) που αναπτύχθηκαν βελτίωσαν την 

ακρίβεια της ταξινόμησης των ασθενών βάσει προσεγγίσεων ευαίσθητων σε μικρές 
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διακυμάνσεις στη φάση της εκπαίδευσης. Η αξιολόγηση της προτεινόμενης μεθοδολογίας 

έγινε με διαδικασία διασταυρούμενης επικύρωσης και έδωσε σημαντικά αποτελέσματα ως 

προς την ακρίβεια, την ευαισθησία και την ειδικότητα (GB: ακρίβεια = 0.7780, RF με 

ευρετήριο Gini: ακρίβεια = 0.7626, RF με εντροπία: ακρίβεια = 0.7590). Επομένως, τα 

κλινικά, ιστολογικά και ορολογικά ευρήματα κατά την πρώιμη διάγνωση χρησιμοποιήθηκαν 

στον σχεδιασμό προγνωστικού μοντέλου που βασίζεται σε τεχνικές Μηχανικής Μάθησης 

και έχει ως στόχο την εφαρμογή του στην κλινική πράξη ενισχύοντας περαιτέρω την 

κατανόησή μας για την ανάπτυξη του καρκίνου. 

Συνοψίζοντας, στην παρούσα διατριβή, μελετήσαμε τις δυνατότητες συνδυασμού 

δεδομένων μεταγραφής με γνώσεις από σηματοδοτικά μονοπάτια στα οποία συμμετέχουν 

γονίδια σημαντικά στην εξέλιξη του καρκίνου, με στόχο την διαστρωμάτωση του κινδύνου 

των ασθενών. Η εφαρμογή νέων μεθόδων ανάλυσης που βασίζονται σε Δυναμικά 

Μπαγιεσιανά δίκτυα επέτρεψε την ανάπτυξη μοντέλων ικανών να ταξινομήσουν στις 

επιμέρους ομάδες διαφορετικούς φαινοτύπους με υψηλή ακρίβεια. Δείξαμε επίσης, ότι τα 

προβλεπτικά μοντέλα που βασίζονται σε τεχνικές Μηχανικής Μάθησης μπορούν να 

συμβάλουν στην πρόβλεψη της ανάπτυξης του καρκίνου μέσω της ενσωμάτωσης 

δεδομένων γενωμικής στις υπάρχουσες κλινικές πληροφορίες, συμβάλλοντας έτσι στη 

βελτίωση της πρόγνωσης και της θεραπείας της νόσου. 
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1.1 Background and Thesis Motivation 

1.2 Overview of the Thesis 

 

 

 

1.1 Background and Thesis Motivation 

Cancer is a genetic disease with diverse subtypes according to the tumor type, and it can start 

in almost any organ or tissue of the body [1-3]. It is characterized by abnormal cell growth 

that invades uncontrollably healthy cells in the body and interfere with the function of 

normal tissues and organs, initiating thereby metastases that leads eventually to death. The 

early diagnosis and prognosis of a cancer type as well as cancer prevention has become a 

necessity in cancer research, as it can facilitate the subsequent optimization of cancer 

treatment and the improvement of patients’ management in clinical practice [4]. 

According to the status report on the global cancer mortality and incidence [5], 

cancer burden is expected to grow drastically by 2040 to 27.5 million new cancer cases and 

16.3 million cancer deaths based on the growth and aging of the population [6]. Due to the 

increasing prevalence of risk factors, such as smoking, obesity, UV radiation and physical 

inactivity, cancer burden will be even larger in the future; thus, resulting in the tumor 

development. The estimated number of incidences across all cancer sites at the age of 0-69 

years, is expected to increase by 5.4% for males and by 4.6% for females in 2020 comparing 

to 2018 estimates, according to the Global Cancer Observatory (GCO) [7, 8].  

The European Society for Medical Oncology (ESMO) [9] and the American Society of 

Clinical Oncology (ASCO) [10] develop and publish clinical practice guidelines and opinions, 
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for providing evidence-based recommendations that will serve as a guide for both doctors and 

researchers to select appropriate methods for cancer treatment and care. The vision of these 

initiatives is to offer the best of care to cancer patients through tailoring treatment and fostering 

new precise cancer care that will support oncologists in their professional development while 

maintaining the sustainability of care worldwide for people suffering from cancer. 

Rapid advances in cancer research during the last decades revealed that cancer is a 

disease which includes dynamic genomic changes. Several molecular, cellular and 

biochemical characteristics have been suggested as the acquired capabilities that are shared by 

almost all types of human cancers. According to [2], a set of rules have been studied to provide 

the clues that control the transformation of normal cells into malignant tumors. In addition, a 

variety of published studies specify that tumor growth in humans is a multistage procedure 

which reveals the genetic mutations that govern the alteration of normal human cells [11-15]. 

Cancer heterogeneity refers not only to the complex network of interacting signaling 

pathways, but also to the interactions among cancer cells and their microenvironment. Hence, 

the increased cancer complexity is based on the large number of interacting molecules, the 

information exchange between pathways and the (non-)linear connections between the 

molecules. This multiparametric functioning of a system defines cancer as a systems biology 

disease. Consequently, there is a recent trend within the cancer research community to study 

cancer as a complex biological system and thus predict its behavior. 

With the advent of modern technologies, the scientific community has embraced the 

promise of high-throughput sequencing, microarray technology, and other large-scale 

approaches for exploring many questions related to cancer diagnosis, prognosis and 

treatment. One of the main objectives of microarray experiments is the class prediction based 

on gene expression data, which concerns the creation of gene-based predictive models that 

can be applied to new samples to assign the class labels and further clinical decisions (i.e. 

who will and who will not suffer from a disease relapse). Moreover, the identification of 

different types of cancer based on gene expression profiles of the tumors has been studied 

extensively in the literature. Microarray data has been also used to identify DEGs that may 

influence tumor progression, metastases, and survival outcomes. 

Towards this direction, in the era of precision oncology, data-driven approaches have 

been proposed in terms of computational and especially Artificial Intelligence (AI)-based 

models for improving the decision making in healthcare systems. Predictive modeling 
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frameworks have been established and facilitated the combination of heterogenous data 

sources (i.e. clinical variables, imaging and omics data) for further utilization regarding the 

clinical unmet needs. In cancer research, the introduction of well-known machine learning 

approaches and newly introduced methods such as deep learning and multi-modal integrative 

schemes paved the way for predictive capabilities in precision oncology aiming at patient 

stratification and risk prediction. To date, computational models with advanced predictive 

capabilities reveal the potential usefulness of ML algorithms which play a prominent role in 

accelerating the application of robust methodologies for the clustering, correlation, and 

classification of various data views towards patient risk stratification as well as a more 

precise diagnosis, prognosis, and treatment of cancers.  

In order to provide a better understanding on how cancer progresses across time and 

during the follow-up period of diagnosed patients and further comprehend the medical and 

genomic features for the clinical diagnosis and treatment of cancer, we herein propose 

certain computational approaches that have been adopted and developed for modeling cancer 

data. Based on the large amount of available biomedical data we investigated the modeling 

of gene expression measurements and the identification of DEGs among samples of different 

phenotypes for classification purposes. Special emphasis was given to the integration of 

knowledge from the pathway level based on the transcription factors of the significant genes 

in order to extract models that predict accurately the class labels of new samples. DBNs was 

employed aiming at identifying the changes of gene interactions in terms of gene expression 

data. Hence, we could model cancer progression and therefore conjecture about the 

underlying relationships among genes for classification purposes. Going one step further and 

motivated by the potential usefulness of integrating genetic information along with clinical 

findings we proposed a ML-based framework aiming at investigating the contribution of the 

genetic susceptibility profiles of patients at the time of disease diagnosis for predicting the 

risk for lymphoma development. 

On this basis, individualized treatment for the clinical management of cancer or 

diagnosis could be enhanced. The data-driven analysis of all biological information 

facilitates the detection of differences in gene expression due to the phenotype of each cancer 

sample. Therefore, predictive models could be a valuable and increasingly necessary tool for 

elucidating the behavior of cancer in clinical practice and modern healthcare systems. 
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1.2 Overview of the Thesis 

The present thesis is structured as follows: 

In the following chapter, an introduction to cancer biology and its causes is given 

with details about the hallmarks that have been assessed toward elucidating cancer 

development. We briefly discuss cancer genetics and the high throughput technologies that 

are used for producing the relevant biological data. Genes that have been found to initiate 

cancer progression along with the pathways of cancer pathogenesis are also presented. A 

summary report related to cancer descriptive epidemiology is provided as well as a 

description of the cancer burden today and in the future. Finally, a thorough explanation can 

be found in this chapter concerning the biomedical data that are stored and analyzed towards 

cancer management. 

The third chapter concerns the use of data science and AI in cancer research. The big 

data era is described with reference to initiatives that highlight the data for data science and 

big data in order to improve patient care and optimize cancer therapies. Furthermore, special 

emphasis is given on the use of AI and ML in precision oncology. We give details about 

well-established ML applications in cancer, prognosis and survival. The modern approach 

of Deep Learning (DL) is also described which is used currently for enhancing cancer 

diagnosis and classification. A few paradigms are also presented with reference to the 

expandability and reproducibility of ML models and how the new findings and results can 

be validated and reproduced by separate research groups. 

In the fourth chapter a literature overview on modeling gene expression data by 

means of BNs and DBNs is given for cancer prognosis prediction. Several BNs approaches 

are presented for the analysis of gene expression microarray data. Other ML methodologies 

that have been proposed in the literature for modeling cancer diagnosis, prognosis and 

treatment are also given with emphasis on cancer prediction and survival assessment. In 

addition, ensemble ML-based models for cancer prognosis and prediction are introduced 

aiming at pinpointing the multi-modal fusion strategies that can be applied at both the feature 

and the decision levels based on AI and ML techniques as a promising framework for cancer 

management and better decision making in clinical practice.  

The fifth chapter presents our first proposed methodology for predicting cancer 

recurrence through DBNs. Transcriptomic data are utilized for identifying the DEGs among 
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different samples. We perform a pathway enrichment analysis and further predict the disease 

recurrence through the utilization of DBN models while an overrepresentation analysis is 

conducted in order to detect the pathways that are enriched in the defined gene set. Promising 

results were derived in terms of cancer prediction and we showed that the combination of 

the specific gene set with the highly connected nodes from the selected pathway can provide 

accurate disease recurrence prediction. 

The sixth chapter deals with the next proposed methodology for classifying cancer 

samples and tissues based on time series gene expression data as well as on regulatory 

molecules. In this study we investigate the transcription factors and master regulators that 

are involved in the provided list of DEGs. DBNs are also employed with reference to the 

prediction of the class label of each provided sample. We performed an upstream analysis 

and further model the relative pathway data for developing gene regulatory networks from 

microarray time series gene expression data for cancer classification through DBNs. 

In the seventh chapter we introduce a ML-based methodology with ensemble 

classifiers aiming at exploring the contribution of combined initial clinical, serological and 

histopathological features with genetic variants in predicting lymphoma development. A 

robust pipeline with a list of estimators was developed for the accurate prediction of cancer 

risk. The sequential application of certain preprocessing steps, class imbalance handling, and 

model’s performance evaluation constitute the main procedure followed for predicting caner 

development.  

Finally, in the last chapter we discuss the main findings of the current thesis in 

accordance to the literature and state-of-the-art studies. The plan for our future steps for 

advancing the proposed computational methodologies is given and several key ideas are 

presented related to the integration of different data sources along with the application of 

multi-modal deep learning frameworks that facilitate the design and deployment of 

predictive models towards improved cancer management. 
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 BACKGROUND ON CANCER BIOLOGY AND 

DATA USED FOR DIAGNOSIS, PROGNOSIS AND TREATMENT 

2.1 The biology of cancer 

2.2 Human cancer genetics 

2.3 Cancer descriptive epidemiology 

2.4 Biomedical data used for cancer diagnosis, prognosis and treatment  

 

 

 

2.1 The biology of cancer 

2.1.1 The development of cancer 

Cancer, a broad term for a class of diseases, is characterized by the uncontrolled 

proliferation and spread of abnormal cells. It results from a breakdown of the regulatory 

mechanisms that control cell division and behavior. Cancer cells can infiltrate adjacent 

healthy cells and interfere with the function of normal tissues and organs, initiating the 

metastases and leading to death eventually. Understanding cancer at the molecular and 

cellular levels has been an objective for many years in the field of experimental biology. 

The thorough study of cancer cells has improved our understanding on the (i) regulation of 

the cell cycle, (ii) control of cell death and (iii) cell signaling. It is true that key molecules 

involved in cell regulation, have been identified by their abnormalities which contribute to 

the uncontrolled growth of cancer cells [1]. The study of cancer’s biology empowers our 

understanding of the fundamentals of human cell regulation. Based on the continual 

uncontrolled growth and the accumulated abnormalities in cell regulatory aspects, cancer 

cells are well discriminated from their normal counterparts. Because cancer cells can result 
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from any kind of cells in a healthy body, more than 100 distinct cancer types have been 

assessed. These cancer types differ substantially in their initiation, their progression and 

their response to treatment.  

In cancer pathology, the characterization of a tumor (i.e. a cell mass created because 

of the abnormal cell proliferation) as benign or malignant is one of the most important and 

critical parts for the subsequent disease management. While benign tumors do not invade 

surrounding healthy tissues and remains in their initial locations, malignant tumors can 

spread to other parts of the body through the circulatory or lymphatic systems (Figure 2.1). 

Malignant tumors are dangerous enough and are mentioned as cancers because of their 

ability to metastasize. In addition, the spread of malignant tumors to other body sites makes 

them resistant to localized treatments, such as surgery, and cannot thus be removed. 

Based on the type of cells that both benign and malignant tumors are initiated, they 

can be categorized into three main groups, namely: (i) carcinomas, (ii) sarcomas and (iii) 

leukemias or lymphomas. Sarcomas are rare in humans and refer to solid tumors of 

mesenchymal origin. The connective tissue that sarcomas can arise from includes bone, 

cartilage, fat, vascular, or hematopoietic tissues. Leukemias and lymphomas are malignancies 

that can arise from cells of the immune system and/or cells that form the blood. This type of 

tumors account for 8% of the human cancers. On the contrary, carcinomas include 90% of 

human malignancies and they are referring to malignancies in epithelial cells. Tumors can be 

further characterized based on the tissue and the cell type they are involved in.  

 

Figure 2.1  A micrograph showing carcinoid tumor, metastatic to liver, where the cancer cells have 

dark purple nuclei and are invading the normal tissue (pink) [1]. 
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One of the fundamental characteristics of cancer is that tumor cells come from an 

original cell which begins to proliferate abnormally. In other words, the cells of a tumor 

constitute a cell clone, and this has been proven in many situations with reference to the 

chromosome X inactivation [1].  

Because of the multistep process during cancer development, where the cells are 

transformed to malignant through progressive mutations, the progenitor cell does not adopt 

all the features of a cancer cell from the beginning. At the cellular level, we can consider 

cancer development as a multistep procedure where mutated cells that progressively 

proliferate, survive, invade and finally metastasize are selected. Tumor initiation is the first 

step of this process.  

Genetic alterations enhance the uncontrolled growth of a single cell and then this 

proliferation allow the formation of a population of clonally derived tumor cells. When 

additional mutations occur within the cancer cells, the tumor progression continues. Some 

of these mutations enable the cell to adopt selective advantages, such as more rapid growth. 

Therefore, the descendants of the cell with such mutations will become dominant 

within the cell population of the tumor. This is called clone selection, and properties such as 

increased growth rate, survival, invasion or metastasis characterize the new clones of tumor 

cells giving them a selective advantage. During the development of the tumor clonal 

selection persist; thus, tumors evolve more rapidly while they become increasingly 

malignant.  

Figure 2.2 presents a clear example of tumor progression and clonal selection of 

colon carcinoma. The increased proliferation of colon epithelial cells constitutes the very 

first step during tumor development. A benign neoplasm (an adenoma or polyp) of 

increasing size is then created by one of the cells resulting in tumor population. During the 

next clonal selection steps the adenomas is growing and it also increases in size. Later, the 

benign adenomas give rise to the malignant carcinomas which is denoted by the invasion of 

the tumor cells into the underlying connective tissue. Apparently, the cancer cells continue 

to proliferate and spread through the connective tissues [2, 3]. Finally, other abdominal 

organs (such as the small intestine) are invaded by the cancer cells after penetrating the blood 

and lymphatic vessels. As mentioned above, the rapid uncontrolled tumor growth results 

from accumulated mutations that affect regulatory mechanisms of the cell. These 
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Figure 2.2  Colon cancer development. A single mutated cell starts to proliferate abnormally. A 

benign adenoma of increasing size is firstly created and then results in malignant carcinoma. Invasion 

of the cancer cells into the underlying connective tissue occurs, which then penetrate blood and 

lymphatic vessels [2, 3]. 
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mechanisms concern the normal cell proliferation, differentiation, and survival. Cancer cells 

are therefore characterized by abnormalities in certain regulatory mechanisms and display 

attributes which distinguish them from their normal counterparts. The cancer cell 

characteristics constitute the main study objective of malignancy, at the cellular level. The 

primary differentiations among cancer and normal cells are (i) the density-dependent 

inhibition and contact inhibition of their growth and movement, (ii) the production of growth 

factors that stimulate their own proliferation and (iii) the less adhesive behavior of most 

cancer cells than normal [1].  

2.1.2 The causes of cancer 

Carcinogens are the primary initiators of cancer. They have been identified either by 

experimental studies and/or by epidemiological studies based on the analysis of human 

cancer frequencies (e.g. high prevalence of lung cancer in the cigarette smokers). Due to the 

complex nature of cancer which reflects a multistep process, it is very simplistic to talk about 

unique reasons that cause cancer. Many factors can affect the possibility of cancer incidence, 

with radiation, chemicals, and viruses being the most prominent. Most chemical carcinogens 

as well as radiation act by inducing mutations in the genome. Solar ultraviolent, the major 

cause of skin cancer, and the carcinogenic chemicals in tobacco smoke are among the main 

carcinogens that contribute to the development of human cancers. Aflatoxin, another liver 

carcinogen that is produced by some molds that affect stored grain supplies, is also 

considered to contribute to cell mutations [1]. Carcinogens included within the tobacco 

smoke are the main cause of nearly 90% of lung cancers while they are also involved in 

cancers of the oral cavity, pharynx, larynx, esophagus, and other sites [1]. It is estimated that 

tobacco smoking is responsible for one-third of cancer deaths.  

Some carcinogens, known as tumor promoters, facilitate the increased cell division; 

thus, invoking the growth of a cell population that proliferates at the early stages of tumor 

development. This abnormal cell proliferation occurs by mutations during Deoxyribonucleic 

acid (DNA) replication. Moreover, several kinds of viruses can also cause cancers (Table 

2.1), such as liver cancer and cervical carcinoma. The frequency rate of this type of cancers 

stands for 10-20% worldwide [1]. Experimental studies on tumor viruses has contributed to 

the elucidation of the molecular events responsible for human cancers development by both 

viral and nonviral carcinogens. While chemical carcinogens act by inducing mutations in 
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cellular genes, tumor viruses introduce new genetic material into contaminated cells. Tumor 

viruses are characterized by small genome size revealing our ability to detect through 

molecular analysis the viral genes responsible for cancer development. This knowledge 

paves the way to better understand mutations at the molecular level.  

2.1.3 The hallmarks of cancer 

During the multistep process of human tumor development, several traits need to be acquired 

by the cancer cells to become ultimately tumorigenic and malignant [3]. In 2000, the six 

hallmarks of cancer were established enabling the better understanding of the diversity of 

neoplastic diseases [2, 3]. For the normal cells to progress to a neoplastic state (i.e. the state 

of excessive and abnormal growth of cells known as tumor), they should successfully acquire 

one or more of the hallmark capabilities.  

Table 2.1  Tumor viruses [1]. The virus family of each human tumor is presented alongside the 

genome size in kilobase (kb). 

Virus family  Human tumors Genome size (kb) 

DNA Genomes   

Hepatitis B virus Liver cancer 3 

Polyomaviruses and SV40 Merkel cell carcinoma 

 

5 

Papillomaviruses Cervical carcinoma 8 

Adenoviruses - 35 

Herpesviruses Burkitt’s lymphoma, 

nasopharyngeal carcinoma, 

Kaposi’s sarcoma 

100-200 

Ribonucleic acid (RNA) 

Genomes 

  

Hepatitis C virus Liver cancer 10 

Retroviruses Adult T-cell leukemia 9-10 
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Tumors can be characterized as complex tissues which are composed of distinct cell 

types that interact with one another. The last decade, “tumor microenvironment” has been 

also identified to contribute to tumorigenesis, demonstrating that tumor biology can no 

longer be understood simply by the six primary traits of cancer cells which enable tumor 

growth and metastases. The distinctive and complementary hallmarks of cancer provide 

therefore a general framework for understanding the biology of this complex disease and the 

tumor development (Figure 2.3).  

2.1.3.1 Sustaining Proliferative Signaling 

Chronic proliferation is the most fundamental characteristic of cancer cells. The normal 

growth and conservation of living organisms is based on a complex and extremely accurate 

system which controls the cellular growth and differentiation. Therefore, the normal tissues 

ensure a homeostasis of cell growth and maintenance. On the contrary, cancer cells cause 

the aberration from normal cell growth leading to creation of abnormal somatic cells which 

cause then tumor development. The signals that are dysregulated by the malignant cells are 

propagated typically by growth factors that bind receptors in the cell-surface. In general, the 

sources that convey the proliferative signals to normal cells remain unknown. These 

 

Figure 2.3  The hallmarks of cancer as originally proposed in 2000 [2].  
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mechanisms are poorly understood because the growth factor signaling that controls the cells 

number and division is transmitted in a temporal and spatial manner from one cell to its 

neighbors [2, 3].  

2.1.3.2 Evading growth suppressors 

Cancer cells can induce and sustaining growth signals towards their preservation. However, 

they must also inhibit powerful mechanisms that depend on the action of tumor suppressor 

genes. These genes represent the opposite side of cell growth control and cell proliferation 

and they act normally to circumvent tumor development [2, 3]. During cancer development, 

tumor suppressor genes are lost or inactivated, therefore contributing to the abnormal 

proliferation of tumor cells. It is worth mentioning that studies of retinoblastoma, a rare 

childhood eye tumor, paved the way for the identification of the first tumor suppressor gene 

(Rb retinoblastoma-associated gene). The p53 tumor suppressor gene is the second 

suppressor that has been identified to be inactivated in a wide variety of human cancers. p53 

is the most common target of mutations in human cancers, including leukemias, lymphomas 

and sarcomas among others [16].  

2.1.3.3 Resisting cell death 

Programmed cell death, serves as a barrier to cancer development since it is responsible for 

balancing cell proliferation and maintaining the numbers of cells in tissues constant. 

Moreover, the programmed cell death by apoptosis (i.e. a series of cellular changes), 

provides a defense framework by which damaged and unwanted cells are eliminated for the 

normal function of the organism. The most common strategy that tumor cells develop 

gradually in order to limit apoptosis is the loss of function of p53 tumor suppressor [17]. In 

a similar manner, tumors may influence the normal mechanisms of apoptosis by increasing 

the expression of antiapoptotic regulators or of survival signals [18]. 

2.1.3.4 Enabling replicative immortality 

Cancer cells require the potential of replication towards the development of macroscopic 

tumors. This contrasts with the behavior of normal cells in the body which can undergo a 

limited number of consecutive cellular growth and division cycles. This limitation of the 

normal cells is associated with two barriers of proliferation, namely the (i) senescence (i.e. 
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a non-proliferative but viable state of the cells) and (ii) crisis/apoptosis which corresponds 

to programmed cell death. Furthermore, cancer cells may revert to a pre-differentiated 

phenotype allowing the uninhibited cellular division and other metabolic adaptations. These 

characteristics enable thereby the survival in adverse conditions, known as immortalization 

[2, 3]. Two key signaling pathways are involved, among others, in these changes enabling 

the cancer cells replicative immortality: (i) the Hippo signaling and (ii) the Wnt signaling 

pathways. Hippo signaling controls organ size by adjusting cell proliferation, apoptosis, and 

stem cell self-renewal. Dysregulation of this pathway contributes to cancer development 

[19]. The Wnt/β-Catenin pathway controls stem cell pluripotency and cell fate decisions 

during cells’ development [20]. Both pathways are evolutionary conserved, and their 

alterations contribute to cancer’s ability to replicate abnormally and indefinitely.  

2.1.3.5 Inducing angiogenesis and activating invasion and metastasis 

Additional properties of malignant cells affect their interactions with other tissues; hence, 

playing significant role in invasion and metastasis. First, secretion of proteases by malignant 

cells permits the digestion of extracellular matrix components. This enables cancer cells to 

invade underlying connective normal tissues. For example, as depicted in Figure 2.2, the 

secretion of proteases that digest collagen implies an important determinant of carcinomas 

to penetrate through basal laminae into adjacent tissues. Second, through the process of 

angiogenesis, cancer cells excrete growth factors that are known to promote the formation 

of new blood vessels. Angiogenesis supports the growth of a tumor beyond the size of about 

a million cells [2, 3]. Obviously, at this point oxygen and nutrients supplied only by new 

blood vessels are required towards the growth and proliferation of tumor cells. The new 

blood vessels are then formed in response to growth factors enhancing therefore the 

proliferation of endothelial cells and the growth of new capillaries into the tumor. 

Angiogenesis is an important hallmark capability in terms of tumor growth and metastasis. 

The new capillaries that are formed based on the angiogenic stimulation can be penetrated 

by the cancer cells allowing the aberrant cells enter the circulatory system and start the 

metastatic process. The available new research tools and the refined experimental models 

have accelerated the research for angiogenesis, invasion and metastasis. In addition, the 

identification of critical regulatory genes permits the elucidation of significant features of 

these complex hallmark traits. 
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During the multistep tumorigenesis, the functional hallmark capabilities that are 

obtained from the tumor cells in order to proliferate, survive and metastasize can be adopted 

at different times and in different tumor types. Two enabling characteristics and two newly 

proposed emerging hallmarks could facilitate then the acquisition of core capabilities and 

the development and progression of cancer, respectively (Figure 2.4). The most discrete 

characteristic is the genomic instability developed in cancer cells including rearrangements 

of chromosomes. These genetic changes can influence and guide the presence of hallmark 

traits. The second enabling characteristic corresponds to the inflammatory state of malignant 

and premalignant lesions which is driven by cells of the immune system and promotes tumor 

progression. Concerning the distinct attributes of malignant cells that enhance the possibility 

of cancer development, two new hallmarks have evoked our interest the last years. The first 

includes the deregulation of cellular energetics which support the continuous cell growth 

and proliferation while it influences the metabolic program that characterizes normal cells. 

The second attribute refers to the ability of cancer cells to avoid immune destruction. Cancer 

cells can evade actively the attack and elimination by immune cells. These two additional 

hallmarks are involved in the pathogenesis of cancer and can therefore be considered as 

emerging hallmarks of cancer.  

2.2 Human cancer genetics 

Genomic medicine has evolved from the classical clinical genetics towards exploiting the 

knowledge coming from the human genome analysis. Although genome analysis has been 

conducted for several decades, genomic medicine essentially began in 2001, when the first 

version of the human genome was completed.  

2.2.1 The Human Genome 

With the advent of large-scale sequencing in the 1980s [21], the term of genomics started to 

be used. For the first time, researchers were able to design new strategies for patient 

management based on the complete genetic knowledge of an organism. This genomics-based 

research has been characterized by its massive scale, including the study of features involved 

in hundreds of millions of nucleotides or the analysis of the expression levels of thousands 

of genes simultaneously. The genomics era was launched by the first sequenced bacterial 
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genome with the sequencing of the human genome being the major event in genomics. 

The human genome is found in the nucleus and mitochondria of the cells. The 

genome located within the nucleus comprises 23 pairs of chromosomes. Each chromosome 

is made up of a large linear DNA molecule. The chromosome pairs are divided into 22 

autosomes, which are common in both sexes, and into a pair that differentiates the sex (i.e. 

XY for men and XX for women). Each cell contains hundreds of copies of mitochondrial 

DNA. Nuclear chromosomes are inherited by 50% of the father and 50% of the mother, 

whereas mitochondrial DNA originates exclusively from one’s mother side. 

The Human Genome Project (HGP) was presented as an idea in the middle of 1985s 

(eight years after the invention of Sanger sequencing described in 1977) and started officially 

at 1990 [22, 23]. It consisted of the sequencing and studying of the genomes of other 

organisms. However, the overarching goal was to determine the sequence of the 3 billion 

base pairs that constitute the 24 human chromosomes. In 2001, a landmark goal was met by 

two groups, namely: (i) a large international consortium of funded researchers and scientists 

(the International Human Genome Sequencing Consortium or IHGSC) and (ii) a private 

company called Celera Genomics. These groups independently published draft sequences of 

the human genome, each about 90% complete. In April 2003, a defining moment occurred 

 

Figure 2.4  Emerging hallmarks and enabling characteristics of malignant cells which promote the 

development and progression of cancer [2]. 
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with reference to the presentation of the finished reference sequence (99% completeness) of 

the human genome by the IHGSC. The reference sequence contained 100% of the entire 

sequence while it was characterized by higher quality and accuracy (>99,9%) than the draft 

sequences. The total cost of the first sequence reading was more than 3 billion while it took 

13 years in order to be completed.  

The haploid form of the genome consists of about 3 billion bases, which means that 

the first version had tens or even hundreds of thousands of errors. Based on this knowledge, 

the effort has been and is still being pursued by the Genome Reference Consortium (GRC) 

[24]. Hence, the latest version of the human genome, the 38th, was published in December 

2013 while there are still small areas that have not been read.  

The human genome, which is used as a reference genome and is the basis of all 

genetic analysis that is carried out, is not the result of thousands of human reads. Moreover, 

it does not represent the average in terms of the bases and their frequency. Instead, it is made 

up of parts of the genome of nine people who volunteered and donated their DNA for this 

purpose. Specifically, in the public effort by the IHGSC, the DNA of four people was used 

for reading the genome, but for technical reasons 71% of the total came from one of them. 

In the private effort by the Celera Genomics company, the genome of five volunteers was 

read. It should be noted that the five volunteers who participated in the second effort are 

members of the Caucasian race and therefore the reference genome largely represents the 

reference genome of the European population.  

Since 2000 many efforts have been made to best integrate the human genome 

revealing that there are differences between large geographic populations. In addition, there 

are entire regions that can cover hundreds of millions of bases. Within these regions even 

the arrangement of genes may vary. Concerning the typical features of the genome, the 

version 38.5 of 2015 [24] reveals that the total haploid human genome has 3,099,734,149 

bases, which are distributed among the 24 human chromosomes of nuclear DNA. The largest 

of them, chromosome 1, has about 250 million bases (250Mbp), while the smallest, 

chromosome 21, has about 46 million (46Mbp). We should also consider the mitochondrial 

genome, a 16,571-base (16.5Kbp) circular DNA molecule, which is reported to be in 

duplicate within each cell. However, there are still regions of the human genome that have 

been read but have not been identified in chromosomes or in the genome. 
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2.2.2 Functional elements of the Human Genome 

The human genome consists of hundreds of thousands of functional elements, such as: (i) 

genes coding for proteins or functional Ribonucleic acid (RNA) molecules, (ii) promoters, 

(iii) enhancers, and (iv) insulators among others. These elements act jointly in order to ensure 

the proper functioning of the genome. The last years, it has been understood that DNA should 

not be treated as a simple linear molecule. DNA folds and acquires a complex three-

dimensional structure, resulting in adjacent genetic elements that may be even 1 million 

bases apart. About 50% of the human genome includes repeating elements [25], namely: (i) 

the small sequences that make up to 8% of the genome and (ii) the retrotransposons. It is 

worth mentioning the fact that the human genome (DNA) is capable of a very large number 

of epigenetic modifications which determine its structure and therefore reveal which areas 

can be functional and which are not [26]. 

2.2.2.1 Genes 

Genes encode proteins and are the most well-studied part of the human genome. They 

constitute 1.5% of the human genome. Two main databases record the human genes, namely 

(i) the RefSeq [27, 28] which is the main reference system in clinical practice and (ii) the 

GENCODE [29] which contains more exons and more isoforms than RefSeq. Difference 

between these databases can be found in [30] which compares the gene annotation and the 

impact of reference genes on the prediction of variants’ effects. 

According to GENCODE and the statistics about the current release (01.2020 

GRCh38), human genes are estimated to be around 60,662 (2020 version 33, Table 2.2). 

19,957 of these encode proteins, about 17,952 large non-coding RNAs and approximately 

7,576 small non-coding RNAs. There are also more than 14,768 pseudogenes in the genome. 

These numbers are indicative, as there are many genes that have been characterized as 

“predicted” by the genetic features of the genome but have not yet been confirmed 

experimentally. Regarding the names of genes encoding proteins, an important database is 

the HGNC (HUGO gene nomenclature committee [31], which is responsible for giving 

names to new genes as well as to make updates on the older gene names. 

In addition to the genes encoding for proteins, there are approximately 26,000 genes 

encoding RNA molecules present in the human genome. They are discriminated into long 
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noncoding RNA genes greater than 200 bp and small noncoding RNA genes smaller than 

200 bp. However, these two categories are completely arbitrary concerning the inadequate 

knowledge we have about their function and how they affect cellular function. 

2.2.2.2 Mutations 

With respect to the reference genome there is on average one change per thousand bases in 

each human genome. It has been proved that these changes are not distributed constantly 

throughout the genome. On the contrary, they depend to a great extent on the function of the 

main genetic element they affect. It should be noted that among genes there are differences 

on the number of changes they carry on. These differences depend largely on the function of 

Table 2.2  Statistics about the current GENCODE Release (version 33). The statistics contains only 

the annotation of the main chromosomes, as derived from the respective gtf file. 

General Statistics 

Total No of Genes 60,662 Total No of Transcripts 22,7912 

Protein-coding genes 19,957 Protein-coding transcripts 84,107 

Long non-coding RNA genes 17,952 o full length protein-coding 58,048 

Small non-coding RNA genes 7,576 o partial length protein-

coding 

26,059 

Pseudogenes 14,768 Nonsense mediated decay 

transcripts 

15,937 

o processed pseudogenes 10,672 Long non-coding RNA loci 

transcripts 

48,438 

o unprocessed pseudogenes 3,554   

o unitary pseudogenes 232   

o polymorphic pseudogenes 55 Total No of distinct translations 62,357 

o pseudogenes 18 Genes that have more than one 

distinct translation 

13,739 

Immunoglobulin/T-cell receptor 

gene segments 

  

o protein coding segments 408   

o pseudogenes 237   
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protein(s) that each specific gene encodes [1]. In the recent years, the term "mutation" has 

been used to distinguish pathological from polymorphic changes in the genome. The 

discrimination of mutations can be difficult considering that some of them may be necessary 

but not enough for the occurrence of a disease or they may increase the risk for a complex 

disease in cases of common genetic changes in a population. In genetics, genome wide 

association studies (GWAS) are thereby conducted to detect any polymorphism that is 

associated with a trait in different individuals. However, any diagnosis and risk prediction 

must be carefully considered since most cases correspond to polymorphisms that are in 

linkage disequilibrium with the associated genetic mutation.  

Before the advent of modern cell biology, researchers proposed that a small number of 

events (i.e. chromosomal abnormalities) is needed for carcinogenesis. Concerning the origin 

of malignant tumours [32], they can arise as a consequence of certain abnormal chromosomal 

mutations. Figure 2.5 depicts a timeline of these mutations related to cancer development along 

with the significant reports on somatic mutations during tumorigenesis [33]. 

2.2.3 Cancer genetics  

The completion of the HGP and the recent advancements in molecular biology and genetics, 

verified the main idea that neoplasia is caused by acquired genetic mutations [34]. Based on 

this knowledge, cancer genetics have been reached its maturity the last three decades. 

Through different approaches, such as the microscopic (chromosomes) and sub-microscopic 

(genes) we can thereby conclude that cancer is a genetic disease [35].  

Cancer is a genetic disease in a sense that the primary "mutated" material is the 

genetic material of the cells. It has been well reported that any damage caused to the genetic 

material is responsible for the onset and progression of carcinogenesis. Nowadays, a huge 

amount of genetic information related to neoplasia has been collected while it continues to 

increase with high rate. This knowledge and information have contributed substantially to 

two major aims in cancer treatment: (i) the better understanding of the phenomena and 

mechanisms in oncogenesis and (ii) their direct application in clinical practice as indicators 

of diagnosis, prognosis, prevention, and cancer treatment. 

The analysis level of the genetic material corresponds mainly to its observed defects. 

In the cellular level we can detect chromosomal abnormalities while in the molecular level 
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gene anomalies. The term "genetic change" (i.e. rearrangement, damage or abnormality) 

refers to any minor or major change that cause the alteration of the normal function of a 

portion or portions of the genetic material. In addition, it has been shown that the 

chromosomal abnormalities result in gene rearrangements. Therefore, the basic concepts and 

definitions of genes involved in tumor development and progression are an essential part in 

the study of cancer genetics.  

2.2.3.1 Genes related to cancer 

From the huge number of genes that have been found in the cancer cells, more than 350 

genes have been recorded whose genetic abnormalities are involved in carcinogenesis [36, 

37]. Genes that are present in malignant cells have been classified into three categories, 

according to the genetic studies in oncology: (i) the oncogenes, (ii) the tumor suppressor 

genes and (iii) the stability genes.  

2.2.3.2 Oncogenes 

The alterations in key regulatory genes which control cell proliferation, differentiation and 

survival is the main cause of cancer. Towards the study of tumor viruses, it has been found 

that certain genes, namely the oncogenes, are capable of inducing cell mutation; thus, the 

first insights into the molecular basis of cancer were revealed [38]. However, more than 80% 

of human cancers arise due to other reasons (i.e. errors during DNA replication, radiation 

and chemical carcinogens) than viruses. The thorough study of viral oncogenes, for the 

 

Figure 2.5 Mutations related to carcinogenesis across time [33]. 
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overall understanding of cancer, revealed the cellular oncogenes which are involved in tumor 

development and are virus-related. This knowledge enhanced our better understanding of 

the molecular mechanisms of tumorigenesis. The key association between viral and cellular 

oncogenes was clarified during the study of retroviruses [39]. From the dozens of oncogenes 

that have been discovered until today, more information is given for those of the Ras family 

(Harvey-Ras, Kirsten-Ras and N-Ras [40]), for both their structure and function. Nowadays, 

the oncogenes are further studied as biomarkers for cancer prevention and as target genes 

for cancer therapy. 

2.2.3.3 Tumor suppressor genes 

The two types of genetic alterations that contribute to tumor development include (i) the 

activation of cellular oncogenes and (ii) the inactivation of tumor suppressor genes. The 

oncogenes stimulate the continuous abnormal cell proliferation in terms of either increase in 

gene expression or in the uncontrolled activity of respective oncogene-encoded proteins 

[41]. Tumor suppressor genes correspond to the opposite side of the mechanism controlling 

cell growth and under normal conditions they inhibit proliferation and tumor development. 

Tumor suppressor genes are lost or inactivated in cancer cells; hence, the negative regulators 

of cell proliferation are removed. This phenomenon results in the unusual malignant cell 

proliferation. Genetic changes in both oncogenes and tumor suppressor genes affect the 

normal function of cells similarly and comparably. 

2.2.3.4 Stability genes 

The third class of genes related to cancer refers to the stability genes that are responsible to 

retain the accumulation of genetic mutations caused by extracellular or intracellular factors 

in low rate. They are also known as guard genes and their alteration or suspension (i.e. loss 

of function) can increase the acquisition of changes in other genes, including the oncogenes 

or tumor suppressor genes among others.  

2.2.3.5 From genes to pathways of cancer pathogenesis 

The accumulation of data related to the type of genes involved in the process of 

carcinogenesis, led to their classification both functionally and clinically. This effort is still 

ongoing, and the data extracted have their origin on the extensive analyses of tumor genomes 
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and the study of the interaction between the genes and their products involved in the process. 

To this end, a complex network of intracellular and extracellular signal transduction 

pathways is created. Concerning the vast amount of “diseased” genes that have been found 

in malignant cells, only a small proportion (~200-300 genes), called driver genes, are 

supposed to contribute definitely to the development and progression of tumors [36, 37]. 

These genes are involved in a certain number of signal transduction pathways within the 

cells. A basic classification of the pathways that are involved in carcinogenesis can be 

achieved based on their primary function. They can be further discriminated into three 

groups, namely the pathways that: (i) have major effect on cell differentiation, (ii) affect 

importantly cell proliferation and survival and (iii) control the integrity of the genetic 

material within the cells [35, 42]. 

The deregulation of the normal cell differentiation is one of the basic characteristics 

of cancer cells. Genetic mutations to the genes in the respective pathways result in changes 

to the direction of cell “de-differentiation” and to the ability for continuing cell division. The 

related pathways that belong to this category are: (i) the APC pathways (APC, CDH1, 

CTNNB1 etc.) [43], (ii) the WNT1 pathway [43], (iii) the NOTCH (Notch 1, 2) pathway [44] 

and pathways related to chromatin alterations [45, 46]. 

The genes that influence cell proliferation and survival are involved in pathways that 

have direct effect on cell cycle control (TGF-β, MAPK) and apoptosis (p53, STAT). These 

genes and their products are also involved in pathways that permit the survival ability under 

adverse circumstances (RAS, PI3K) [47, 48]. 

The pathways responsible for preserving the integrity of genetic material within the 

cells ensure the correct DNA replication and the regulated cell death when they have 

accumulated genetic abnormalities [49]. The deregulation or damage of genes that 

participate in these pathways result in the genetic predisposition of organisms to accumulate 

genetic mutations in their cells [50, 51] 

Towards discovering and investigating the effect of gene pathways on 

carcinogenesis, we can conclude that important theoretical and practical implications exist. 

For instance, the way a targeted therapy may affect or restore the consequences of genetic 

damages could be predicted for genes that participate in the initial steps of the respective 
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pathway. The fact that a small number of pathways are involved in different tumor types 

enhances the ability of revealing similar results in these tumors based on a targeted therapy. 

As mentioned above, these pathways cover each other forming thereby a larger network 

which participates in more than one cellular process. Obviously, within the cells several 

networks operate in terms of interactions among the various pathways. 

In modern cancer genetics, the main conclusion is that the genetic changes of tumor 

cells are distributed unequally in the genome [42]. In different neoplasms, several genes, 

chromosomes, regions and other chromosomal zones are selectively involved in the genetic 

rearrangements. In addition, an increasing number of certain abnormalities have been found 

to be linked with specific diseases. These abnormalities and mutations in the genes are 

currently used as biomarkers for cancer diagnosis, prognosis, prevention and treatment in 

clinical practice. 

Among the different diagnostic biomarkers, the chimeric genes (such as the 

BCR/ABL genes in chronic myeloid leukemia) that result from chromosomal translocations, 

inversions, and intrusions is the most indicative group. The major advantage of studying the 

chimeric genes among other biomarkers is the fact that their presence characterizes only the 

cancer cells where they can be identified. Additionally, molecular biomarkers have been 

associated with cancer prognosis in several cases of hematologic malignancies. These 

biomarkers could help to accurately assess the actual status of disease progression and the 

possibility of a metastases or disease recurrence. In the last few years, the identification of 

inherited genetic abnormalities or polymorphisms associated with cancer development has 

been the main issue with extensive implications in prevention healthcare programs.  

The diverse role of genetics in cancer treatment has been elucidated through the 

clearer diagnosis and prognosis. Based on the rapid evolution of cancer genetics, a recent 

advancement in cancer therapy, i.e. the targeted therapy, has been unveiled. Targeted therapy 

refers to the treatment with specific molecules that prevent tumor development and 

progression. Its goal is to target precisely certain molecular functions to be more efficient 

and with less side effects than traditional chemotherapy. In general, targeted therapy makes 

use of monoclonal antibodies or small molecules in terms of adjustment. 
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2.2.3.6 Molecular approaches to cancer treatment 

Current and future research on cancer will focus on better understanding of this complex 

disease by improving its prevention and treatment. The last decade, the elucidation of the 

molecular cancer biology led to the development of new targeted strategies and therapies. 

Dealing with cancer implies the prevention of its development through the improved genetic 

understanding of its origin and metastasis [52].  

The most efficient way to deal with this malignant disease is to block its 

development. A second effective way is the early diagnosis of premalignant stages of tumor 

development that could be treated. Localized therapies, such as surgery or radiation, could 

be applied successfully for curing cancer if it has been diagnosed early before metastasis. 

The success rate of treating early carcinomas that remain localized to their initial positions 

is 90%. On the contrary, the survival rate decreases to 70% in patients that have been 

diagnosed with cancer that invaded adjacent tissues and lymph nodes. To this end, the early 

disease diagnosis is a major determinant of the disease progression and outcome [1].  

Regarding the applications of molecular biology to cancer prevention and early 

diagnosis, they correspond mainly to the identification of individuals with inherited 

predisposition to tumor development. The inherited susceptibility may refer to mutations on 

tumor suppressor genes, on at least two oncogenes and to the inactivation of the stability 

genes. These abnormalities can be discovered with molecular techniques, allowing the 

detection of individuals at high risk for cancer evolvement. 

Among the total cancer incidence, 5% correspond to the inheritance of mutations on 

well-established genes. The most common case of inherited cancer susceptibility is 

hereditary nonpolyposis colon cancer. This incidence corresponds to 15% of colon cancers. 

In breast cancer, mutations on the BRCA1 and BRCA2 tumor suppressor genes are very 

common and account for 5% among this type of cancer. Additional genes contribute to the 

increase susceptibility of cancer development and have been shown to be involved in 

common adult tumors. The detection of these susceptibility genes can thereby enhance the 

practical implications in the new approaches for molecular cancer treatment. The 

identification of individuals at high risk along with the early diagnosis and prevention could 

have a great impact on cancer mortality rates. 
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Most of the drugs used towards cancer treatment cause DNA damage or suspend 

DNA replication. Therefore, these drugs are toxic both for the cancer cells and the normal. 

An alternative strategy for curing cancer is the use of drugs that do not act immediately to 

malignant cells but inhibit tumor development in terms of angiogenesis [53]. A more 

promising personalized treatment corresponds to the creation of targeted drugs that act 

against the oncogenes that drive malignant cells and tumor development [54]. However, we 

should consider the fact that oncogenes do not function only to cancer cells; thus, they may 

affect negatively both benign and malignant cells. 

Several cancer types can be treated if they are diagnosed early in premalignant stages. 

The genetic approaches for identifying high-risk individuals with inherited mutations allow 

the immediate diagnosis and efficient treatment of these cancer patients. The scientific effort 

for designing targeted drugs has already been started aiming at developing new therapeutic 

agents that act selectively against cancer cells. 

2.3 Cancer descriptive epidemiology  

Cancer epidemiology is dedicated to cancer prevention, prognosis and control and aims at 

increasing understanding about cancer in terms of studying the distribution and determinants 

of cancer incidence. Epidemiology of cancer can be used to detect events that increase or 

decrease the possibility of cancer development in certain populations and/or regions [55]. 

A variety of methodological approaches have been evaluated within cancer descriptive 

epidemiology. These approaches correspond to (i) the identification of novel risk factors, (ii) 

the evaluation of tumor heterogeneity among different cancers and (iii) the description of 

current and new trends of common and rare malignant tumors [56]. 

Research on cancer descriptive epidemiology concerns three main areas of interest 

regarding the distribution of the disease occurrence in populations related to time, tissue 

origin and individuals. The first research area encompasses the description and interpretation 

of disease patterns regarding the incidence and mortality worldwide. Additional exploration 

of differences due to age, sex, socio-economic status, area of residence and time is also 

considered. In the second study of cancer descriptive epidemiological approaches, the same 

philosophy is followed related to the patterns of survival rate of cancer patients along with 
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the associated factors. The last research area contains the trends that are detected based on 

the comparison of morbidity, mortality and survival rates in Europe with those in other 

countries. 

2.3.1 Cancer Statistics 

According to the status report on the global cancer mortality and incidence provided by the 

International Agency for Research on Cancer (IARC) [5], it is expected that cancer burden 

will grow remarkably by 2040 to 27.5 million new cancer cases and 16.3 million cancer 

deaths based on the growth and aging of the population [6].  

Figure 2.6 presents a global map with the estimated number of new cancer cases by world 

area, in 2018 [57]. Similarly, Figure 2.7 illustrates the estimated new cancer incidences and 

deaths worldwide for leading cancer sites, except non-melanoma skin cancers as patients 

have not been tracked by cancer registries. We can observe that the corresponding new 

cancer cases and deaths in 2018 were estimated to be 17.0 million and 9.5 million, 

respectively [57].  

 

Figure 2.6  Estimated numbers of new cancer incidence worldwide. Region estimates do not sum 

to the worldwide estimate due to calculation method as noted by [57]. 
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The cancer burden will be probably even larger in the future due to the increasing 

prevalence of risk factors contributing to tumor development. Smoking, obesity, UV 

radiation, physical inactivity, and fewer pregnancies in economically developed countries, 

are attributable factors to cancer burden. According to the Global Cancer Observatory 

(GCO) [8], the estimated number of incidences across all cancer sites at the age of 0-69 

years, will increase 5.4% for males and 4.6% for females by 2020 comparing to 2018 

estimates [7]. Respectively, for the age group of 70+ years, the cancer incidence will increase 

by 2020 with equal rates (i.e. 5.4% for males and 4.6% for females). 

According to the GLOBOCAN 2018 estimates [6, 8] of incidence and mortality 

worldwide for 36 cancers in 185 countries, the most commonly diagnosed cancer is lung 

cancer (11.6% of the total cases) which is also the leading cause of mortality (18.4% of the 

total cancer deaths) for males. Among males, lung cancer is followed by prostate and 

colorectal cancer for incidence and by liver and stomach cancers for mortality. Breast cancer 

is the most common diagnosed cancer type and the leading cause of cancer death among 

women. For new cancer cases, breast cancer is followed by colorectal and lung cancer while 

for mortality it is followed by lung and colorectal cancers. Depending on the economic 

development of each country and the associated risk factors (i.e. lifestyle, social life and 

physical activity) the incident and cancer death cases vary across regions. The estimated 

cumulative risk of mortality in 2018, across all cancer sites for both sexes in the age group 

0-69 is illustrated in the global map Figure 2.7 (top), as extracted from the International 

Agency for Research on Cancer 2020. In a similar manner, Figure 2.7 (bottom) depicts the 

estimated cumulative risk of incidence in 2018, across all cancer sites for both sexes. We 

can also observe in Figure 2.8 (top) that the greatest number of deaths will be in Eastern 

Asia, followed by South-Central Asia, Northern American and Western Europe. Τhe greatest 

number of new cancer cases in 2018 will be in Eastern Asia, followed by Northern America 

and South-Central Asia. These numbers concern the size of the population, as well as cancer 

incidence and survival across countries. In addition, in Table 2.3 the estimated numbers of 

new cancer incidents and deaths by world areas and based on the GLOBOCAN 2018 

estimates are listed [6, 8]. As mentioned previously, Eastern Asia has the highest number of 

cases and deaths for both males and females. In Eastern Europe, the cancer cases are higher 

in females than in males, while concerning the cancer mortality rate, males are most 

commonly die from cancer than females in countries of this region. Variations across 
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countries with reference to cancer incidence and mortality have been associated with the 

Human Development Index (HDI) [58]. HDI is a measure of development that concerns not 

only the standard living but also the education and health status [58]. It is known that 

characteristics such as, age, risk factors prevalence, use of preventive strategies, early 

detection tests and high-quality treatment contribute to these differences. However, the level 

of development could also significantly influence these factors and cancer variations among 

regions. We should mention that countries with low HDI are characterized by higher cancer 

incidence attributable to causing infections, such as Helicobacter pylori (H. pylori). Across 

the world regions, 15% of cancer cases are attributed to infections, while in countries with 

medium and low HDI this percentage is higher (25%) [59]. It is noteworthy, that the most 

common cancer, across the world, related to infection is stomach cancer which is followed 

by liver and cervical cancers [6, 7]. Moreover, according to the most common types of cancer 

in each geographic region for males and females, separately, the most usual cancers in men 

other than lung and prostate include liver in several countries in Western Africa and South-

 

 

Figure 2.7  The estimations of new cancer cases (top) and deaths (bottom) worldwide for leading 

cancer sites [8, 57]. 
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Eastern Asia. For women, the most common disease type except breast is cervix and liver in 

Mongolia [57]. The financial costs of cancer management (i.e. treatment, care and 

rehabilitation) are increased substantially. These costs are direct and indirect influencing the 

economic status of both the patients and their families. Direct costs are related to treatment, 

care and resilience expenses, whereas indirect costs concern the morbidity costs due to lost 

productivity and the mortality costs (early death). Costs related to health insurance services 

and nonmedical charges are also included within the latter category. In Europe, the estimated 

annual direct costs for cancer in 2014 was 83€ billion [60]. The increased number of cancer 

cases and deaths, as well as of cancer therapies will result in higher rates of the global cost 

[61]. 

 

 

Figure 2.8  Global maps presenting the worldwide cumulative risk estimations of mortality (top) 

and incidence (bottom) in 2018 [6, 8]. 
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Towards cancer prevention and control, a considerable number of cancer types could 

be prevented by reducing tobacco use and unhealthy lifestyle. Based on [8, 62], in 2015 

around 20% of cancer deaths were caused by tobacco use, worldwide. Moreover, according 

to the World Cancer Research Fund estimates [63] about 15%-20% of malignant tumors are 

relevant to excess body weight, physical inactivity, and/or poor diet for health and growth.  

Several approaches have been considered for controlling cancer including: (i) 

prevention, (ii) early detection, (iii) diagnosis and treatment and (iv) efficient therapy, such 

Table 2.3  The estimated number of new cancer cases and deaths by world area according to 

GLOBOCAN 2018. The numbers for both males and females are given for each region [6, 8]. 

 Cases Deaths 

 Male Female Overall Male Female Overall 

Eastern Africa 126,400 198,400 324,900 92,900 134,400 227,300 

Middle Africa 40,500 53,500 94,000 30,200 37,600 67,800 

Northern Africa 132,300 146,800 279,100 95,600 81,000 176,600 

Southern Africa 47,400 61,500 108,900 29,700 31,300 61,000 

Western Africa 87,200 136,900 224,200 62,100 88,300 150,400 

Caribbean 54,900 51,700 106,600 34,000 28,500 62,400 

Central America 109,900 135,600 245,500 56,800 60,800 117,600 

South America 480,600 511,400 992,100 250,900 234,800 485,600 

Northern America 970,100 926,000 1,896,100 363,900 329,100 693,000 

Eastern Asia 3,090,600 2,497,300 5,587,800 2,129,600 1,315,100 3,444,700 

South-Eastern Asia 470,900 504,900 975,800 342,400 283,400 625,800 

South-Central Asia 848,200 871,000 1,719,200 614,600 545,000 1,159,600 

Western Asia 204,400 186,200 390,600 128,900 90,800 219,700 

Eastern Europe 595,200 607,800 1,203,000 381,700 310,800 692,500 

Northern Europe 326,600 296,800 623,400 145,400 126,800 272,200 

Southern Europe 479,200 393,000 872,200 244,900 174,300 419,300 

Western Europe 658,700 554,100 1,212,700 305,900 239,800 545,800 

Australia/New 

Zealand 

87,700 76,100 163,800 32,700 25,600 58,300 

Melanesia 6,400 8,200 14,600 4,200 4,700 8,900 

Micronesia 500 500 1,000 400 300 700 

Polynesia 800 700 1,500 500 400 900 
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as palliative care [64]. The World Health Organization (WHO) has emphasized on these 

approaches and suggest that countries across the world should create national strategies 

based on their economic status for controlling and preventive cancer. Until today, several 

national policies for cancer control have been founded and raise awareness about the risk 

factors and their minimization, the adoption of healthy lifestyles and the early disease 

detection [65].  

Prevention concerns with the reduction or elimination of exposure to cancer causes, 

such as UV radiation, tobacco use, unhealthy lifestyle and diet and other environmental risk 

factors. In order to achieve the long-term control of the disease and the public health potential 

primary prevention should be adopted. Early detection would allow clinicians and patients 

to diagnose tumors at early stages allowing the timely diagnostic follow-up and the more 

effective medication. Organized and opportunistic screenings by physicians to individuals 

are strategies for early proven detection tests. Cancer diagnosis and treatment is among the 

most important steps in the disease management. Once the clinical and pathological 

assessments are carefully assigned (early diagnosis) then the most appropriate options and 

therapeutic protocols could be determined and prescribed. Among the initial agents for 

cancer treatment, surgery, chemotherapy, radiotherapy, hormone therapy, immune therapy, 

and targeted therapy are the most suitable. However, even if the developing countries 

assisted by WHO could integrate radiotherapy into sustainable cancer programs, there are 

low HDI countries that could not afford radiotherapy facilities and enough cancer centers, 

such as central Africa. Surgery, chemotherapy, and radiotherapy are among the most 

valuable modalities of palliative care [66]. Palliative care corresponds to the effective pain 

management and monitoring. Patients diagnosed with advanced cancer stage, especially in 

low income countries, are in the need of inexpensive pain relief medications, ranging from 

aspirin to opiates [67].  

According to the GCO and the summary statistics for cancer mortality and incidence in 

Greece on 2018, the number of new cancer cases and deaths were estimated to 67,401and 

33,288 for both sexes, respectively. The risk of developing cancer before the age of 75 years 

was equal to 33,1% and 22,8% for males and females, respectively. Similarly, the risk of 

dying from cancer before the age of 75 years was 15,6% and 7,8% for both males and 

females. Among the most frequent cancers excluding non-melanoma skin cancer for both 

sexes the top five ranked are: (i) lung, (ii) breast, (iii) colorectal, (iv) prostate and (v) bladder 
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cancer [7]. Regarding the age-standardized incidence and mortality rates in Greece, for the 

top 10 cancers, breast and lung cancers have the highest incidence and mortality rates, 

respectively (Figure 2.9). Furthermore, Figure 2.10 depicts the respective numbers of new 

cancers cases in 2018 for all ages for both males (top) and females (bottom), respectively. 

 

 

  

 

Figure 2.9  Estimated numbers of new cancer cases in Greece in 2018 for males (top) and females 

(bottom) [7]. 

 

 

 

 

 

 

 

 

 
Figure 2.10  Bar chart of top ten cancer age-standardized (ASR) incidence and mortality rates per 

100,000 individuals [7]. 
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2.4 Biomedical data used for cancer diagnosis, prognosis and treatment 

With the continuous improvement and the greater availability of new powerful and low-cost 

research technologies, the volume of biological and clinical data during biomedical studies 

has exploded. More specifically, technologies like next-generation sequencing [21, 68], 

high-throughput screening [69] and mass spectroscopy [70] have contributed to the ways 

biomedical data are collected and stored. In the era of big data, large biomedical data 

repositories, such as the Cancer Genome Atlas (TCGA) [71] and the 100,000 Genomes 

Project [72] have been created for improving prediction of cancer patients’ prognosis and 

therapy. These public repositories consist of hundreds of matched histopathological imaging, 

genomic, and clinical data modalities providing the framework for a holistic and multi-modal 

integrative analysis of complex diseases, such as cancer. 

The biomedical data availability and the insights they may provide into the biology 

of cancer, enhanced the possibility of making progress towards precision medicine and 

oncology. The molecular profiles of patients alongside the clinical findings allow for 

tailoring cancer prognosis, diagnosis and treatment. 

Mining the large amounts of big data in order to decipher the molecular mechanisms 

of cancer and answering thereby complex biological questions, remains a big challenge. This 

open challenge will bring then precision medicine and oncology into the field of clinical care 

and management of diseases.  

2.4.1 Big data for precision oncology 

In the era of big data and with the advent of national and international electronic health 

records, the creation of comprehensive databases of multi-omics data as well as of initial 

patients’ findings and treatment records have been enabled. Big data concerns the (i) high 

variety, (ii) high velocity, and (iii) large volume of information that can be acquired by 

different sources such as high-throughput technologies, electronic medical records, high-

resolution imaging and omics approaches. The analysis and interpretation of these multi-

modal data are progressing rapidly, remaining a challenge towards the evaluation of clinical 

endpoints.  
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The “high variety” characteristic reflects the different practices adopted to aggregate 

data into a single dataset for combined analysis. “High velocity” concerns the real-time 

compilation and analysis of generated data in terms of computational methods that lack 

human intervention. The definition of the “large volume” concerns the datasets that include 

orders of magnitude more observations and sample records than datasets previously reported 

and created [73]. 

In cancer research the acquisition, analysis and further exploitation of big data have 

been studied widely. Starting from DNA and RNA as well as from health information in 

digital format, researchers can elucidate the patient’s phenotype and genotype allowing the 

extraction of knowledge related to personalized selection of treatment. This knowledge can 

then be applied to prevent or decrease cancer incidence as well as improve the design of 

therapeutic protocols for reducing mortality rates. 

The assembly of large consortia and the creation of patient cohorts have produced 

large amounts of biological and clinical data leading to the need for new solutions regarding 

storage, analysis and guidelines for sharing. The ultimate objective is to uncover hidden 

patterns and unknown collinearities within and between multiple sets of patient data gathered 

from heterogeneous sources. This knowledge can then be applied to enhance the health care 

of individuals separately, making personalized precision oncology a reality [74-78]. 

To accelerate progress toward a new era of precision oncology [79], researchers 

require access to curated datasets for empowering the identification of meaningful 

relationships among different samples. The establishment of infrastructure that could help 

clinicians and other relevant parties to store, analyze, integrate, access, and visualize large 

amounts of biomedical data is one of the main objectives of bioinformatics. Over the last 

years the access, integration and comprehensive analysis of big data within data “clouds” 

have become a basic requirement for optimizing the exploitation of heterogeneous data in 

precision oncology. Although difficult, the integration of raw data among different areas 

alongside their sharing, analysis and visualization will increase our understanding of the 

molecular basis of cancer at a personalized level. 

Thinking of the complex nature of cancer and the multistep process of tumorigenesis, 

one can easily presume that not enough data can be obtained from single centers regarding 

cancer research. Moreover, the main goal of precision medicine in cancer is to tailor 
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diagnosis, progression and therapeutic protocols of patients according to the overall status 

at both the phenotype and genotype levels. Therefore, the implementation of the FAIR 

(Findable, Accessible, Interoperable and Reusable) data principles in precision oncology 

have emerged and good practices in data sharing have been clearly defined [80]. “Findable” 

implies data that can be searched and found online in search engines for instance. The term 

“Accessible” concerns the data that can be retrieved and extracted directly or after a “request 

and approve” procedure. “Interoperable” means that data to be shared follow specific 

standards and finally, “Reusable” implies that the metadata produced by the analysis of raw 

datasets can be further exploited to produce the same results and/or be integrated with other 

datasets in different analysis pipelines [81].  

Sharing of heterogeneous biomedical data among research groups is of utmost 

importance. In recent years, researchers express their increase willingness to share 

biomedical data and embrace data sharing practices. Towards this direction, reuse and 

reproducibility of research have been increased with reference to cancer prevention, disease 

follow-up, targeted medicine and treatment management [82, 83] 

Based on this knowledge, specific challenges appear when data sharing in medicine 

and in precision oncology is considered. These challenges involve mainly the privacy and 

ethical issues as well as the way data are collected and stored [77, 84, 85]. 

The future of big data in precision medicine lies in the current and/or second next 

generation sequencing technologies. These technologies produce large amounts of short 

reads, while they are sequenced multiple times. The data extracted are characterized by 

technical and analytical errors and a large proportion cannot be aligned to known regions 

within the genome. To address these problems, the third-generation sequencing technologies 

will be introduced. DNA and RNA molecules are sequenced and reads up to 100,000 base 

pairs are produced providing deeper insights into the human genome and its reconstruction 

[86]. Regarding precision oncology, this is of great importance since the reference genome 

would be more complete and more accurate as the read alignments and calling variants will 

become more precise [74]. The sequencing of other biological components such as the 

proteome, epigenome and non-coding RNA would enhance the correlation between the 

patients’ genotypes and phenotypes leading to the identification of altered pathways and the 

suggestion of new targets [87-90]. 
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2.4.2 High-throughput technologies for cancer research 

The expression profiling studies using cDNA microarrays [91] and the recent development 

of DNA and RNA sequencing technologies [92], have revolutionized biomedical research 

and clinical practice [93]. From Sanger sequencing almost 40 years ago [94] to the 

introduction of next-generation sequencing (NGS) techniques in 2005 [21] we can thereby 

answer complex biological questions by aggregating high-throughput data.  

During the last decade, high-throughput sequencing technologies have enabled the 

accumulation of large and different types of biological data (omics data) alongside the 

respective medical data in digital format (i.e. electronic health records - EHRs) for 

monitoring cancer onset and progression based on genomic changes at the molecular level. 

Exploring health and disease at the omics scale would enhance the processing, analysis and 

sharing of data that would empower targeted therapies and hence the era of personalized 

precision medicine. With the rise of omics data, integrative approaches have been proposed 

towards their analysis and the elucidation of the underlying molecular pathways and 

processes within cells [95, 96]. 

2.4.2.1 DNA microarrays and gene expression 

Array technologies can quantify interactions among a set of molecules (i.e. DNA fragments 

and proteins) based on molecular probes that have been previously defined. The most 

commonly used of these technologies is DNA microarrays which enable the simultaneous 

measurement of the messenger RNA (mRNA) levels of certain genes within cells [91]. 

DNA microarrays is the most well-known method for detecting and quantitating gene 

expression levels. Its relative low cost, ease of use and the rapid technological progression 

constitute the main reasons why DNA microarrays have been used extensively. Most 

experiments conducted towards the study of expression levels of genes in parallel have been 

conducted through cDNA (complementary DNA) arrays [97-99].  

The general principle of DNA microarrays refers to the physical property of 

hybridization of DNA molecules and the scientific progress in nanotechnology which 

enables the immobilization of many molecules on coated glass microscope slides with 

extremely high precision. A DNA microarray experiment contains therefore single-
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stranded DNA fragments on a solid surface. Through hybridization, these segments 

(probes) will find subsequently their complementary single-stranded molecules (cDNA) 

passing over the chip.  

More specifically, genes of interest are obtained and following purification and 

quality control are printed on a surface (i.e. coated glass). mRNA from both the control and 

the test samples is labelled with fluorescent dyes (i.e. Cye3 and Cye5 dyes, respectively). 

Then, the targets which are also fluorescent are pooled in order to hybridize to the probes on 

the array. Through laser excitation of the targets, an emission is yielded measured using a 

laser microscope. Data derived from a DNA microarray experiment can be viewed as a 

normalized ratio (Cye3/Cye5) which corresponds to (i) no change on the levels of gene 

expression (no deviations from 1), (ii) increased expression levels (>1) or decreased (<1) 

expression levels relative to the reference RNA samples. It is noteworthy that the extracted 

information depends on the type of organism under study, the number of genes whose 

expression levels someone would like to measure, and the quantification ability of the 

microarrays used. In any case, these are high-throughput experiments which can be translated 

into a few thousand or tens of thousands of gene expression values. A reference example of 

the results of a DNA microarray experiment is shown in Table 2.4. The rows correspond to 

the quantified gene expression values for each gene (probe code number) identified (first 

column). The measurements of gene expression imply the fluorescence measurement for the 

given probe for each sample. We should mention that this type of data can be further exploited 

towards the identification of DEGs between the control and the test samples. 

Generally, a DNA microarray experiment contains four specific steps: (i) mRNA 

isolation from the corresponding sample, (ii) generation of complementary DNA (cDNA) 

by reverse transcription, (iii) labeling of the cDNA with fluorescent dyes and (iv) 

hybridization of cDNA to the microarray and fluorescence measurement [91, 97]. 

2.4.2.2 Next Generation Sequencing  

NGS technologies have been introduced the last decade due to the high demand for 

technologies that deliver fast, low-cost and accurate information with reference to the human 

genome. The main advantage of these technologies over conventional approaches, such 

as the array technologies, is the extraction of large amounts of sequencing data cheaply 

[21, 92]. 
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In the realm of NGS techniques the primary order of millions or tens of millions of 

sequences is identified at a time and in parallel. Hence, gene expression microarrays are now 

being replaced by sequencing methods that can provide information about transcripts of a 

gene and/or of sequence variants [100, 101].  

In the case of quantifying gene expression with NGS, the experiment is conducted 

based on the sequencing of sample mRNA which is converted to cDNA as in the microarray 

experiments. The main difference of RNA sequencing technologies concerns initially the 

fragmentation of the cDNA in order to be around 300-500 bases. Amplification via 

polymerase chain reaction (PCR) is performed and then sequencing through synthesis is 

applied. New cDNA clones are created based on the sample clones and synthesis is 

conducted nucleotide-nucleotide [101]. These steps result in a file that contains a very large 

Table 2.4  An output file with the gene expression results of a DNA microarray experiment. The 

first column contains the probe code number that can be assigned to a gene or region within the 

genome. The following values in columns 2-6 correspond to the fluorescence measurement for the 

given probe for each of the fifteen different samples. These values are given without any 

preprocessing steps regarding their normalization. 

ID_REF GSM764749 GSM764750 GSM764751 GSM764752 GSM764753 

1007_at 10,513 10,007 99,586 98,068 8,145 

1053_at 75,275 83,168 48,133 79,584 79,279 

117_at 70,429 74,713 59,696 5,016 56,357 

121_at 25,882 26,992 25,738 34,532 28,001 

1255_at 2,234 22,433 22,281 22,601 22,519 

1294_at 39,417 52,873 58,897 40,192 4,762 

1316_at 40,741 34,632 34,305 34,302 35,546 

1320_at 26,283 26,366 2,597 26,686 26,532 

1405_at 91,945 77,194 81,731 26,686 82,065 

1431_at 33,865 35,316 2,702 32,732 24,578 

1438_at 57,451 64,705 68,193 52,343 4,206 

1487_at 7,392 74,031 72,347 70,048 69,781 

1494_at 25,065 2,358 23,378 23,722 2,363 

1552256_at 63,473 52,559 6,521 60,042 75,942 

1552257_at 76,159 88,312 93,935 90,271 87,538 
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amount of short sequence reads which can be analysed subsequently based on biomedical 

and bioinformatics approaches. The quantification of the results can be achieved according 

to three main steps: (i) the quality control of the sequences and removal of those that do not 

meet specific reliability criteria, (ii) the mapping of the sequence reads to the reference 

genome to detect accurately how many times did each base of the genome under study have 

been read and (iii) the quantification of number of reads per transcript.  

Considering the main applications of NGS technologies one can argue that the 

resequencing of the human genomes could unveil new genetic abnormalities that affect 

individual’s health in terms of complex and multistep diseases, such as cancer. Moreover, 

NGS strategies can reveal genetic variants as they allow the sequencing of targeted regions 

and the whole genome of an individual. Hence, rare and common genetic variants within 

coding regions can be screened and determined. 

2.4.3 Omics data for cancer research 

Recent advancements in high-throughput technologies enabled the acquisition of large 

biological datasets (i.e. different types of omics data). Towards this direction, cancer 

research is progressing drastically with reference to the disease monitoring and management. 

Furthermore, the advent of these techniques permitted the characterization and quantification 

of the main classes of the biological molecules, namely (i) DNA, (ii) RNA and (iii) proteins. 

Hence, omics data could be generated independently at various genome levels (i.e. 

epigenome, transcriptome, proteome, metabolome and microbiome layers) [95] allowing 

thereby their global integrative analysis in cancer research as regards to multi-omics 

approaches. 

Based on this knowledge, public comprehensive repositories have been developed 

containing relevant information for (i) gene expression measurements (Gene Expression 

Omnibus database [102]), (ii) phenotypes and genotypes (dbGaP database [103]), (iii) 

proteomics (ProteomeXchange [104]), (iv) metabolomics (MetabolomeXchange [105]) as 

well as (v) genome wide association studies of Single Nucleotide Polymorphism (SNP) - 

trait associations (GWAS catalogue [106]).  

Among the several omics approaches that have been studied so far, in the current 

thesis we place special interest in (i) the genome and genomics, (ii) transcriptome and 
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transcriptomics, (iii) proteome and proteinomics, (iv) epigenome and epigenomics, (v) 

metabolome and metabolomics and (vi) microbiome and microbiomics, concerning the 

recent studies in cancer diagnosis, prediction and treatment [95, 107]. Figure 2.11 depicts 

the multiple omics data types as proposed in [95] among the respective biological layers for 

disease research. Each data layer reflects both the genetic basis and environment within cells, 

whereas interactions between the different layers can be observed (black arrows between 

layers). Genome and phenotype levels are presented implying that from the genome level 

the starting point can be the genome features and genetic variants, while from the phenotype 

level we can start an experimental study at any layer of interest.  

Genomics concerns the study of an organism’s whole genome. The human genome 

consists of 3 billion DNA base pairs. These base pairs encode approximately 20,000 genes 

for the cells’ functioning. This information reflects the coding regions which is 

approximately 1-2% of the whole genome, whereas the remaining percentage corresponds 

to non-coding regions (i.e. structural and functional annotations) [107, 108]. Because cancer 

is a genetic disease, the elucidation of patients’ genetic background is of great importance 

 

Figure 2.11  The levels of omics data types. Omics data are represented as circles collected under 

an experimental study of certain molecules. Each data layer concerns both the environment and 

the genetic status, except the genome level. Interactions among the different data types are 

depicted as black thin arrows. From the genome level one can start by studying the genomic 

alterations and genetic variants, whereas from the phenotypic level the starting point could be each 

of the individual data layers [95]. 
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for identifying the genetics changes between different phenotypes. Many genetic variants 

exist within the genome. Most of them are harmful and increase the risk for a disease while 

others are protective and benign. Variants are discriminated into (i) the single nucleotide 

variations (SNVs), such as small insertions and/or deletions, and (ii) the structural variations 

(SV), such as copy number variants and inversions [109]. The most common SNVs are the 

single nucleotide polymorphisms (SNPs). Variants that are found in coding regions may 

affect protein sequence and their function, while SNVs or SVs found in non-coding regions 

may impact the expression of genes and other biological processes. Sanger sequencing, DNA 

microarrays and NGS methods are among the technologies that are used to capture genetic 

variants. 

The transcriptome is the total amount of RNA transcripts within a cell or a population 

of cells. It consists of coding and non-coding regions, such as mRNA, transfer RNA (tRNA), 

micro RNA (miRNA) etc. The most common technique for gene expression profiling is 

DNA microarrays and recently the NGS methods. Changes in the transcriptome can impact 

health and disease; thus, analyzing mRNA transcripts could reveal the absence or presence 

of transcripts and assess also the impact of genotype on gene expression using alleles 

information. GEO [102], ArrayExpress [110] and Expression Atlas in EBI [111] are among 

the main repositories that store, analyze and share gene expression profiling studies.  

Proteome refers to the entire set of proteins in each cell or biological sample. The 

thorough study of proteomics, protein-protein interactions and structural proteomics is 

known as proteinomics. Although sequencing technologies have emerged and widely used, 

the sequencing of proteins cannot be currently performed considering that incompleteness 

and inaccuracy of the respective sequence databases. Mass spectrometry (MS) [112] is 

mainly used in proteomics for the quantification and qualification of the proteome. Within 

proteomics, protein structure analysis and protein-protein interactions are studied in terms 

of identifying diagnostic molecules and common functions among proteins that co-localize 

or interact [112, 113]. 

Among genomics, transcriptomics and proteomics other fields at the omics scale 

have started to gain attention for their contribution to the understanding of disease 

conditions. Although these new areas have not yet achieved the level of complexity, depth 

and resolution like the main omics scales, their improvements could provide better 
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explanations for the disease causes, its prevention and the design of effective and targeted 

treatments. We herein describe in more details the new omics areas which include the 

metabolomics, epigenomics and microbiomics. It has been found that the newly introduced 

approaches could enhance the potential of cancer diagnosis, prognosis and therapy. 

However, more effective inter-disciplinary efforts are needed for integrating multi-omics 

data towards (i) deciphering the underlying molecular basis of the disease, (ii) predicting 

patient outcomes and (iii) supporting treatment decisions [114]. 

Metabolomics implies the comprehensive catalogue of metabolites in an organism’s 

cell [115]. Metabolites are produced during biochemical reactions and their alterations 

influence the genetic background of an individual. They are involved in metabolic reactions 

while they are essential for the proper function of cells and their growth. Hence, the study of 

metabolomics in cancer research could potentially improve the diagnosis and discovery of 

the underlying molecular pathways that characterize certain phenotypes.  

The molecules that impact DNA metabolism after their binding are studied in the 

area of epigenomics. Epigenomics deals with the role of epigenetic modifications of DNA 

or DNA-associated proteins, while their importance in biological processes and disease 

development is evident based on epigenome-wide association studies [116].  

The field of microbiomics is a fast-growing research area in which all the 

microorganisms of a given community are investigated together. The human microbiome is 

very complex considering the microorganisms that are colonized in the human skin, mucosal 

surfaces, and the gut. Profiling the human microbiome will unveil variations in its 

constituents (i.e. microbiota) allowing for finding correlations of microbial species with 

disease or other phenotypes [117, 118]. 

2.4.4 Imaging data for cancer research 

Together with the multi-omics data and the health content obtained by clinicians in digital 

formats (i.e. EHRs), imaging data can be also considered as a valuable resource of 

information in cancer research. Biological image datasets contain quantitative 

measurements of cell, tissue and organism’s processes and structures. They are of large 

volumes and provide illustrations showing tissues at the subcellular level. Metadata can be 

also acquired related to the imaging protocols used, the biological system under study and 
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the output quantitative results of the image data. Obviously, the integration of cancer image 

data along with the respective medical and omics datasets within added-value platforms 

could support computational preprocessing and reanalysis for better disease outcomes 

[119-121]. 

In clinical oncology, imaging data have a critical impact on the evaluation of 

treatments, the extraction of imaging biomarkers, the design and planning of new therapeutic 

protocols as well as for diagnosis and staging of cancer. In the field of precision oncology, 

a new direction focusing on (i) the extraction of imaging features in terms of high-throughput 

technologies and (ii) the relationships among imaging phenotypes and genomics data have 

emerged in recent years for improved patient outcomes [122]. Radiomics and radiogenomics 

have gained increasing attention as they can facilitate cancer research in terms of precision 

diagnosis, assessment of prognosis and risk prediction and design of targeted therapies [123]. 

Radiomics concerns the detection of imaging biomarkers and important image features 

through high-throughput technologies. Several steps are required in order to extract 

significant imaging signatures including image acquisition, tumor segmentation, feature 

detection and predictive modeling [122]. Radiogenomics allows for the integration of 

imaging phenotypes with the related omics profiles towards precision medicine. The main 

idea is to identify correlates among genotypes and phenotypes of specific tumors; thereby, 

elucidating the biological and molecular processes underlying tumor development. The 

identification of novel imaging biomarkers and significant correlates of tumors molecular 

profile with the relevant phenotypes, could therefore improve tumor classification to major 

subtypes as well as patient stratification [123, 124]. 

2.4.5 Sensor data for cancer research 

In the era of personalized oncology and medicine, the acquisition of patient health data from 

mobile apps and wearable devices is also considered of utmost importance for disease 

monitoring and for curing complex diseases like cancer [125]. Mobile health (mHealth) apps 

and wearable health devices have become increasingly popular as they provide accurate 

information about the patient’s treatment history, daily lifestyle and behavior. Collecting 

sensor data for diseases like cancer, enables their integration with other potential data 

sources facilitating thereby patient monitoring and accurate assessment of health status [75, 
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79]. Due to the multistep process of tumor development and considering the biology of 

cancer disease, the accumulation of heterogeneous data from different sources could 

potentially improve the decision making in disease management. 

Based on this knowledge, the present thesis considers cancer disease and its progression for 

the elucidation of the underlying molecular mechanisms in terms of computational methods 

for modeling purposes. Data from cancer genetics studies as well as from transcriptomic 

repositories were utilized with the development and analysis of novel algorithms in the field 

of DBNs and other well-established ML approaches. Considering that cancer is a genetic 

disease and a multi-stage process we aimed at extracting knowledge from the pathway level 

along with gene expression changes between different phenotypes for modeling the dynamic 

behavior of the molecular mechanisms with reference to cancer diagnosis and prognosis. 

Cancer burden is going to be increased the next few years in terms of incidence and mortality 

rates, worldwide. Concerning the epidemiological studies that have been conducted and the 

bioinformatics analysis results, a huge amount of data is now available for deciphering the 

complex nature of cancer related to the mutations and metastases. We herein employed high-

throughput and biomedical data coming from genotype studies and from genomic analysis 

for modeling cancer progression and prediction. Classification and predictive modes were 

obtained based on multidimensional techniques within the field of biomedical engineering 

and bioinformatics. Therefore, we could conjecture about the improved disease management 

in clinical practice while the acceleration of decision making in precision oncology can be 

anticipated.  
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3.1 Data science in cancer research  

3.2 Artificial intelligence and machine learning for precision oncology  

 

 

 

3.1 Data science in cancer research 

With the emergence of data science, new meaningful insights can be obtained from large 

biomedical and high-throughput databases towards helping cancer researchers for better 

disease management [126]. Harnessing raw data, i.e. big data, in public health and especially 

in cancer research would allow clinicians tailoring medical treatment to the individual 

profiles of each patient. Data science covers a range of computational approaches and 

methods for the extraction of actionable knowledge from large, complex, multidimensional, 

and diverse data sources.  

In the era of big data and precision oncology, technical challenges like (i) sharing, 

(ii) accessing and (iii) analyzing large biological and clinical datasets, as well as 

extracting meaningful outcomes from these data sources, could be overcome in terms of 

data science. On this basis, leveraging big data to their fullest extent could improve 

cancer care and decision making of patients’ monitoring. A representative example is the 

Big Data for Breast Cancer initiative (BD4BC) [127] that highlights the need of data 

science and big data for advancing research, discovering new therapies and improving 

breast cancer patient care and outcomes; thus, optimizing precision medicine in cancer 

research. The initiative offers opportunities to researchers and data scientists to create a 
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workforce with researchers that will understand breast cancer risks, onset, and 

progression and can apply data science methods to answer the challenges faced by breast 

cancer patients. 

Accelerating research with reference to improved personalized treatments, will help 

cancer patients and the general public towards understanding the sharing of data and data 

science tools in order to deliver patient-oriented care and save lives. The promise of data 

science for advancing cancer research will decrease the percentage of population risk for 

cancer incidence and the rate of cancer deaths worldwide [126].  

In general, the benefits that data science can bring to healthcare systems and 

especially to cancer research and management may be summarized to: (i) the better 

forecasting of population trends, (ii) the delivery of more preventive patient care, (iii) the 

selection of personalized therapies according to each patient profile and (iv) the cost-

effective actions taken across a healthcare system and hospitals. 

Data science can help to predict more accurately the trends on cancer patients and on 

the disease costs. The identification of high-risk patient groups for developing the disease 

and the selection of targeted therapies for prevention could be achieved. Additionally, data 

science could expand the research towards the identification of novel risk factors and 

biomarkers for cancer prevention. Hence, research is not only focused on the treatment of 

patients but to interventions that could prevent disease occurrence or reoccurrence. In 

precision oncology, tailoring therapies to the characteristics of each individual profile would 

increase life expectancy by considering the most effective and appropriate treatment 

pathways. Using the results of large population studies and integrating information from the 

different omics levels could allow the delivery of further personalized treatments.  

In a data-enabled healthcare system, data science and the computational tools and 

methods it covers could optimize the productivity and costs across a hospital. Diagnostic 

tools and prescription options could be faster and cheaper providing more accurate results 

than the current practice. It has been shown that AI and ML has contributed to the automation 

of data-driven tasks within a healthcare system for extracting new clinical knowledge 

towards disease monitoring [130]. In addition, the use of data-enabled ML applications 

would improve the risk assessment, the plan of optimal treatment and the extraction of 

optimal research outcomes towards cancer prevention. 
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3.2 Artificial intelligence and machine learning for precision oncology 

In the last decades, the potential of Artificial Intelligence (AI) to transform cancer research 

and thereby patient care and disease management have emerged. AI concerns the 

representation of problems and logic in a human-readable fashion [128] implying a very 

good idea that human thinking and machine computing might be "radically the same” [129]. 

As a field of computer science, AI aims at developing computational methods that can 

perform and execute analytical and predictive tasks. 

In general, AI have expanded into three different areas in medicine for potential 

application, such as: (i) clinical practice, (ii) translational medical research and (iii) basic 

biomedical research [130]. In these areas indicative list of current and potential AI 

applications in medicine and healthcare systems has thereby been proposed [130]. In clinical 

practice, automated data collection, prediction of transcription factor binding sites and text 

mining are among the several applications of AI. In a similar way, in translational medicine 

the biomarker and drug discovery as well as the genetic variant identification have been 

elucidated by using AI. In clinical practice, disease diagnosis, patient monitoring, patient 

stratification and treatment selection are among the most indicative examples of AI usage.  

The application of AI in clinical oncology corresponds to five main use cases 

concerning disease diagnosis and management [131]. In the first case of preclinical research 

an example of AI usage could be the automated analysis of multi omics datasets and the 

prediction of potential side effects of cancer. In the case of process optimization an indicative 

example of AI applications is the analysis of patient’s experience and resilience after disease 

diagnosis or follow-up treatment. In the third case of AI applications in clinical pathways, 

the analysis of clinical prognostication and of digital imaging could be indicative examples. 

Concerning the patient-facing applications for symptoms checking and disease monitoring, 

AI could be also exploited. Last but not least, AI applications at the population level 

correspond to the prediction of infectious disease outcomes and the identification of risk 

factors of complex diseases such as cancer, among others [132]. 

The potential applications of AI in medicine and precision oncology could augment 

patient stratification and offer new challenges and opportunities in clinical practice and 

decision making. Toward this direction, we herein discuss the main key challenges in AI for 

precision oncology which correspond to: (i) multi-view data integration, (ii) insufficient 

cancer datasets, and (iii) interpretable and explainable AI in cancer research. 



 

50 

With the rise of omics data and the large amount of clinical data generated from 

different sources, their integration in a learning process is a key step for the successful 

analysis through AI techniques [133]. Several methods have been proposed that incorporate 

different data views at the model’s input level for obtaining better results related to disease 

outcomes and progression. Moreover, the combination of features that are extracted from 

heterogeneous data sources and of predictions made by different AI approaches have been 

studied thoroughly [134]. Towards enhancing the prediction of patient outcomes or specific 

phenotypes in precision oncology, the integration of multi-omics data with imaging features 

and respective clinical and medical data could enhance the predictive capabilities in AI while 

addressing the main challenge. 

Dealing with different distributions of the training and test datasets in a classification 

problem is a great challenge that should be faced through AI approaches, such as transfer 

learning [135]. Despite the recent advances in high-throughput technologies, the availability 

of large, matched and fully annotated datasets is not always guaranteed. Hence, approaches 

like transfer learning have been studied and further applied in precision oncology for 

classification, regression and clustering where informative features detected in a specific 

domain can also be applied to a different but related domain. Transfer learning strategies has 

been adopted for prediction in learning problems to enhance the predictive accuracy of 

patients’ risk stratification. 

Achieving interpretable and explainable AI models in biomedical and healthcare 

research is one of the most challenging tasks. The evaluated performance of predictive 

models should reveal the causality that supports explanation and understanding of the 

problem related to patient-specific predictions. On this basis, explainable AI systems could 

provide details about the predictive features that are assigned to specific phenotypes or 

clinical outcomes. 

In the era of AI, the problem of the black box models concerns the existence of 

complex models that are characterized by their insufficient interpretability (i.e. how they 

came to the prediction) [133]. Making black box models explainable, by providing 

explanation for their outputs, can be achieved at different levels when developing a 

predictive model, i.e. from the preprocessing steps to the solution of a classification problem 

and how predictions are made. The potential of interpretability for obtaining explanations 
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and contributions of the variables for making prediction have been elucidated based on 

attribution methods [136, 137]. Moreover, improvements on models’ interpretability 

relevant to precision oncology have been tested through “visible approaches” [138]. These 

new approaches concern the use of prior biological knowledge of the cells to be integrated 

within predictive models for the elucidation of the underlying biological processes. This 

knowledge will guide therefore new hypothesis to be made toward the progression on 

predictive performance of AI models.  

Recently, promising efforts have been made toward interpreting predictive models 

in healthcare [139, 140] and especially in precision oncology [141]. However, these efforts 

are at their early stages and thus collaborative work would allow the understanding and 

explanation of how the results are obtained in terms of patient-oriented predictions alongside 

with their meanings. Generally, the three main steps for understanding AI decision making 

through modeling approaches are: (i) the explainability (i.e. understanding the reasoning 

behind any decision), (ii) the transparency (i.e. understanding of AI model decision making) 

and (iii) the provability (i.e. certainty behind decisions through mathematical and other 

computational approaches). 

Below, we further describe the field of ML, a successful and well-known branch of 

AI, which have contributed to cancer diagnosis, prognosis and treatment by means of 

descriptive and predictive modeling. Several established algorithms are described along with 

the newly ones, such as DL techniques. Concerns about the interpretability and reusability 

of ML models and their results are also discussed explicitly. 

3.2.1 Machine learning applications in cancer diagnosis, prognosis and treatment 

Machine learning, a branch of Artificial Intelligence, relates the problem of learning from 

data to the general concept of inference [142, 143]. Every learning problem consists of two 

phases: (i) the estimation of unknown dependencies in a system from a given dataset and (ii) 

the use of these dependencies to predict new outputs of the system. The contribution of ML 

approaches in biomedical research and healthcare is apparent due to the existence of large 

amounts of biological and clinical data [144]. The applications of ML methods in biomedical 

engineering can be summarized to (i) sequence annotation, (ii) disease gene annotation, (iii) 

drug discovery and (iv) patient risk stratification. 
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According to the learning problems, there are two main categories that ML 

approaches belong to: (i) the supervised learning and (ii) the unsupervised learning 

categories. In supervised learning a labeled set of training data is used to estimate or map 

the input data to the desired output. On the other hand, under the unsupervised learning 

methods no labeled examples are provided and there is no notion of the output during the 

learning process. As a result, it is up to the learning scheme or algorithm to find patterns or 

identify groups according to the input data.  

In supervised learning this procedure can be thought as a classification problem. The 

task of classification refers to a learning process that categorizes the objects to one of several 

predefined categories. The other two common ML tasks are regression and clustering. In the 

case of regression problems, a learning function maps the data (i.e. independent variables) 

into a real-valued variable (i.e. dependent variable). Subsequently, for new unseen data the 

value of a dependent variable can be estimated, based on regression analysis. Clustering is a 

common unsupervised task and implies the identification of categories or clusters (groups) 

that describe the data. Based on this process each new sample can be assigned to one of the 

identified clusters concerning the similar characteristics that they share. Suppose for 

example that we have collected medical records relevant to breast cancer and we try to 

predict if a tumor is malignant or benign based on its size. The ML question would concern 

the estimation of the probability that the tumor is malignant or not (1=Yes, 0=No).  

Another type of ML method that have been also applied is semi-supervised learning, 

which is a combination of supervised and unsupervised learning. It combines labeled and 

unlabeled data in order to define and construct an accurate learning model. Usually, this type 

of learning is used when there are more unlabeled datasets than labeled.  

When defining a learning problem, data samples constitute the basic components. 

Every sample is described by several attributes with different types of values. Furthermore, 

knowing apriori the specific type of the attributes allows the selection of appropriate 

algorithms that can be used in ML-based analysis. Data-related issues refer to the quality of 

the data and the preprocessing steps in order to prepare them for a ML problem. Data quality 

issues include the presence of (i) noise, (ii) outliers, (iii) missing or duplicate data and (iv) 

data that is biased, hence unrepresentative. When data quality is improved, typically the 

quality of the resulting analysis is also improved. A few different techniques and methods 
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have been proposed, relevant to data preprocessing that focus on modifying the data for 

better fitting in a specific ML algorithm. Among these techniques the most important 

approaches include (i) the dimensionality reduction (ii) the feature selection and (iii) the 

feature extraction. There are many benefits regarding the dimensionality reduction when the 

datasets are described by many features. ML algorithms work better when the dimensionality 

is lower [142]. Moreover, the reduction of dimensionality can eliminate irrelevant features, 

reduce noise and can produce more robust learning models due to the involvement of less 

but informative features. In general, selecting a subset of features which are representative 

of the initial feature set based on dimensionality reduction techniques, can be characterized 

as a process in the feature selection approach. Three common approaches exist for feature 

selection namely embedded, filter and wrapper approaches [142]. In the case of feature 

extraction, a new set of features can be created from the initial set that captures all the 

significant information in each dataset. The creation of new feature sets allows the gathering 

of benefits from the dimensionality reduction techniques. 

However, the application of feature selection techniques may result in specific 

fluctuations concerning the creation of predictive feature sets. In the literature, the 

phenomenon of (i) lack of agreement between the predictive gene lists discovered by 

different groups, (ii) the need of thousands of samples in order to achieve the desired 

outcomes, (iii) the lack of biological interpretation of predictive signatures and (iv) the 

dangers of information leak recorded in published studies has been thoroughly discussed 

[142, 143]. 

The main objective of ML techniques is to develop a model that can be further used 

to perform a classification, prediction, or estimation task. The most common task in a 

learning problem within biomedical research is classification. As mentioned previously, the 

learning function classifies the data item into one of several predefined classes. When a 

classification model is developed, by means of ML techniques, training and generalization 

errors can be produced. The former refers to misclassification errors on the training data 

while the latter on the expected errors on testing data. A good classification model should fit 

the training set well and accurately classify all the instances. If the test error rates of a 

predictive model begin to increase even though the training error rates decrease, then the 

phenomenon of model overfitting occurs. This situation is related to model complexity 

meaning that the training errors of a model can be reduced if the model complexity increases. 
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Obviously, the ideal complexity of a model not susceptible to overfitting is the one that 

produces the lowest generalization error. A formal method for analyzing the expected 

generalization error of a learning algorithm is the bias-variance decomposition. The bias 

component of a learning algorithm measures the error rate of that algorithm. Additionally, a 

second source of error over all possible training sets of given size and all possible test sets 

is called variance of the learning method. The overall expected error of a classification model 

is constituted of the sum of bias and variance, namely the bias-variance decomposition [142]. 

Once a classification model is obtained using one or more ML algorithms, it is 

important to estimate the classifier’s performance. The performance evaluation of each 

predictive model is measured in terms of metrics such as sensitivity, specificity, accuracy 

and AUC. Sensitivity is defined as the proportion of true positives that are correctly observed 

by the classifier, whereas specificity is given by the proportion of true negatives that are 

correctly identified. The quantitative metrics of accuracy and AUC are used for assessing 

the overall performance of a classifier. Specifically, accuracy is a metric related to the total 

number of correct predictions. On the contrary, AUC is a measure of the model’s 

performance which is based on the ROC curve that plots the tradeoffs between sensitivity 

and 1-specificity.  

The predictive accuracy of the model is computed from the testing set which provides 

an estimation of the generalization errors. In order to obtain reliable results regarding the 

predicting performance of a model, training and testing samples should be sufficiently large 

and independent while the labels of the testing sets should be known. Among the most 

commonly used methods for evaluating the performance of a classifier by splitting the initial 

labeled data into subsets are: (i) the holdout method, (ii) the random sampling method, (iii) 

the k-fold cross-validation method and (iv) the bootstrap approach. In the holdout method, 

data samples are partitioned into two separate sets, namely the training and the test sets. A 

classification model is generated from the training set while its performance is estimated on 

the test set. Random sampling is a similar approach to the holdout method. In this case, in 

order to better estimate the accuracy, the holdout method is repeated several times, choosing 

the training and test instances randomly. In the third approach, namely k-fold cross-

validation, each sample is used the same number of times for training and only once for 

testing. As a result, the original data set is covered successfully both in the training and in 

the test set. The accuracy results are calculated as the average of all different validation 
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cycles. In the last approach, i.e. bootstrap, the samples are separated with replacement into 

training and test sets; hence, they are placed again into the entire data set after they have 

been chosen for training.  

We herein, describe some of the well-known ML techniques that have been applied 

widely in the literature for the case study of cancer diagnosis, prognosis and treatment. 

Artificial Neural Networks (ANNs), Decision Trees (DTs), Support Vector Machines 

(SVMs) and Bayesian Networks (BNs) are presented along with their main characteristics 

[142]. We identify the trends regarding the types of ML methods that are used, the types of 

data that are integrated as well as the evaluation methods employed for assessing the overall 

performance of the methods used for cancer prediction or disease outcomes. 

ANNs handle a variety of classification or pattern recognition problems. They are 

trained to generate an output as a combination between the input variables. Multiple hidden 

layers that represent the neural connections mathematically are typically used for this 

process. Even though ANNs serve as a gold standard method in several classification tasks 

[142] they suffer from certain drawbacks. Their generic layered structure proves to be time-

consuming while it can lead to very poor performance. Additionally, this specific technique 

is characterized as a “black-box” technology. Trying to find out how it performs the 

classification process or why an ANN did not work is difficult to understand and interpret.  

DTs follow a tree-structured classification scheme where the nodes represent the 

input variables and the leaves correspond to decision outcomes. DTs are one of the earliest 

and most prominent ML methods that have been widely applied for classification purposes 

[142]. Based on the architecture of the DTs, they are simple to interpret and “quick” to learn. 

When traversing the tree for the classification of a new sample we can conjecture about its 

class. The decisions resulted from their specific architecture allow for adequate reasoning 

which makes them an appealing technique.  

SVMs is a well-known method of ML approaches applied in the field of cancer 

prediction/prognosis. Initially SVMs map the input vector into a feature space of higher 

dimensionality and identify the hyperplane that separates the data points into classes. The 

marginal distance between the decision hyperplane and the instances that are closest to 

boundary is maximized. The resulting classifier achieves considerable generalizability and 
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can therefore be used for the reliable classification of new samples. It is worth noting that 

probabilistic outputs can also be obtained from SVMs [142]. The identified hyperplane can 

be thought as a decision boundary between the clusters. Obviously, the existence of a 

decision boundary allows for the detection of any misclassification produced by the method. 

BNs classifiers produce probability estimations rather than predictions. As their 

name implies, they are used to represent knowledge coupled with probabilistic dependencies 

among the variables of interest via a directed acyclic graph. BNs have been applied widely 

to several classification tasks as well as for knowledge representation and reasoning 

purposes.  

The potential of AI in biomedicine and precision oncology has become apparent 

recently with advances in new ML technologies for computer-aided diagnosis [145]. These 

new technologies are capable of being integrated in clinical practice for improving patient 

outcomes and accelerating clinical decision making [146]. Since the early 2000s, DL 

approaches, a branch of ML, have advanced rapidly with applications in bioinformatics and 

biomedical engineering [147, 148]. Based on big data and the parallel and distributed ML 

frameworks for their analysis, DL architectures have emerged and are categorized into four 

groups: (i) the deep neural networks (DNNs) [149, 150], (ii) the convolutional neural 

networks (CNNs) [151, 152] and (iii) the recurrent neural networks (RNNs) [153, 154]. 

Basically, DL architectures correspond to artificial neural networks of multiple non-linear 

layers. Different types of DL architectures have been presented according to the type of the 

input data and the research objectives [155]. The main characteristic of DL is that the feature 

layers are learned from data using a general-purpose learning procedure and are not thereby 

constructed by the user. The DL applied research can be categorized into three main research 

topics, including the (i) omics, (ii) biomedical imaging and (iii)biomedical signal processing 

fields, among others. 

In cancer, several DL architectures have been applied for the classification and / or 

detection of cancer types [156]. More specifically, a single deep CNN has been utilized for 

the classification of skin lesions using images and the disease labels (malignant and benign) 

as inputs to the algorithm [157]. The evaluation performance of the CNN algorithm showed 

that DL application on cancer prognosis outperforms other conventional ML techniques. DL 

frameworks have been also developed and further utilized for cancer diagnosis and 
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classification based on gene expression profiles [158, 159]. Concerning cancer prognosis 

and treatment, DL methods have been also proposed to tackle the problem of predicting the 

drug response in certain cancer types [160]. 

Reinforcement learning (RL) [161], a distinctive class of ML, has also found 

applications in cancer research in terms of finding the optimal treatment policies and 

computer-aided disease diagnosis [162, 163]. In RL, an agent (i.e. the physician) learns from 

the interaction with his/her environment to achieve a goal based on the outcome that he/she 

wants to optimize (reward function). The learning process of an agent in a typical RL cycle 

is a continuous procedure. The interaction with the environment occurs at discrete time 

points. Once an environment’s state is received the agent selects a certain action to interact 

with it. The environment responds then to the action and the reward that the agent will or 

will not receive is finally determined [161]. The corresponding applied DL and RL 

approaches to biological data include research avenues ranging from protein structure 

prediction to cancer prediction and risk stratification [147]. 

Furthermore, network-based ML approaches have attracted considerable attention in 

precision oncology and especially in network-based analysis of patient genomic profiles and 

drug repositioning [164]. The integration of genomic data with molecular networks in 

network analysis empowers the detection of network-based features and the prediction of 

cancer phenotypes. Moreover, the identification of cancer driver genes can be achieved when 

oncogenic alterations are detected based on the genomic profiles and the given molecular 

networks. Toward the network-based drug repositioning, the graph connectivity measures 

allow the prediction of any drug-target interaction. Network-based classification approaches 

extract all the topological features based on the drug-drug and target-target interaction 

networks. Subsequently, ML classifiers can be used to predict new targets in the test set of 

the drugs list. Recent and forthcoming application of DL, RL and network-based approaches 

to clinical oncology highlight their potential in health care and their significant impact in 

decision making with reference to cancer prediction and therapy. 

The challenges on the reproducibility of ML models in healthcare and the concerns 

of how well new findings and results can be validated and reused by different research teams 

have also emerged the past few years [165]. A research study can be considered reproducible 

if given the employed dataset and the source code an independent researcher can obtain the 
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same results with the initial study. Additionally, a study is replicable if the same conclusions 

can be reached by an independent group that studies the same clinical problem and perform 

the same experiments and analysis procedure after collecting new data. 

Reproducibility does not imply that the results of a certain study are correct and 

validated. With the advancement of ML prediction models in clinical practice several 

obstacles and challenges should be addressed to consider these tools valid and safely 

deployed. The improved understanding of the underlying mechanisms of a complex disease 

such as cancer and its better clinical management, are the main outcomes of reproducibility 

and replication; thus, any limitation that hampers the use of reproducible ML research results 

should be addressed. The use of big data and ML algorithms in precision oncology gives the 

ability to analyze diverse data types and further integrate them into predictions for cancer 

diagnosis, prognosis and appropriate therapeutic protocols [166]. Examples of ML 

applications in oncology care delivery [74, 130, 133, 167] reveal the importance of using 

ML trained models toward accelerating progression in health care decisions and further help 

doctors to optimize complex clinical problems. As ML models improve patient outcomes 

and further influence the clinical decision making, they should firstly be reproduced and 

replicated before they are deployed in the clinical domain. 

In the present thesis, we developed and applied novel analysis algorithms and 

multidimensional approaches in the field of ML and AI aiming at exploring the molecular 

basis of cancer by integrating high-throughput data, such as transcriptomics and genomics. 

To this end, we demonstrated the potential usefulness of ML methods and algorithms and 

anticipated that the combination of information from different levels could contribute to the 

elucidation of cancer prognosis and risk prediction. 
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4.1 Introduction 

In the era of personalized precision oncology, modeling cancer diagnosis, prognosis and 

treatment based on multidimensional computational approaches, such as machine learning 

and data mining, have become apparent. Cancer classification and prediction have been 

studied extensively in the literature by means of novel analysis and algorithms aiming at 

providing clues for the underlying complex molecular mechanisms of the disease.  

In this chapter, we present a literature overview on modeling approaches which deal with 

cancer classification and prediction. Concerning the availability and the significance of high-

throughput data related to cancer progression, we first present two well-known probabilistic 

methods, i.e. BNs and DBNs, that have been used widely in several studies for modeling 

gene expression data. Several research works are described that have contributed to cancer 

classification and prediction by developing probabilistic models that decipher the 

relationships within regulatory networks. Next, we present indicative studies which employ 

classification-based methods for cancer prediction. These studies utilize different types of 

biomedical data for developing and evaluating their models concerning cancer progression. 
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Finally, a comprehensive overview of ensemble-based techniques that have been developed 

the last few years for cancer risk prediction is given. Ensemble methods which are related to 

conventional machine learning techniques and provide integrative models at both the feature 

and the decision levels are described for modeling cancer progression. In the last section, we 

go one step beyond the-state-of-the-art and present the contribution of the current thesis 

towards the research that have been undertaken in modeling cancer diagnosis and prognosis 

based on computational approaches in the field of ML. 

4.2 Modeling high-throughput data using probabilistic methods 

Probabilistic approaches enable the representation and manipulation of uncertainty as 

regards to models and predictions, and they play a central role in machine learning and 

artificial intelligence [168]. Using probability theory to express any form of uncertainty we 

can further compute the distributions for representing all the unobserved quantities in a 

model and for finding their relation to the data [169]. Subsequently, the unobserved 

quantities given the observed data are inferred using the basic probability rules. 

Furthermore, high-throughput technologies, such as DNA microarrays, allow the 

measurement of expression levels of many genes simultaneously, as they change over time. 

The amount of such experimental data can be further exploited in order to provide an 

overview of how genes interact with each other forming thereby a network and allowing the 

integrative analysis of biological systems [170, 171]. Gene networks can be defined as a 

graph over a set of nodes (genes or gene activities) and several edges that may represent 

different kinds of relationships. Modeling gene expression data in order to identify the 

structure of the underlying causal network that generates the observed data and further 

perform cancer classification in terms of tumor types is very appealing [172-174]. The 

combination of microarray data, and biological knowledge, such as protein-protein and 

protein-DNA interactions, toward estimating gene networks by using a Bayesian network 

model has been studied in the literature for determining the direction of gene regulation [173, 

175]. Moreover, the inference of temporal transitions and changes between nodes in 

biological networks may unveil crucial aspects of the molecular processes in a complex 

disease, such as cancer [176, 177].  
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The prevalent example in machine learning over the last years for representing 

probabilistic models include the directed graphs, i.e. the BNs also known as belief networks, 

among others (i.e. undirected graphs). BNs is a well-studied approach for analyzing gene 

expression patterns. They represent the dependencies among several interacting quantities, 

such as the expression levels of genes. Biological processes that involve locally interacting 

components, for example components whose values directly depend on the value of other 

relative components, can be described through BNs. Several algorithms have been used 

towards their application in learning the structure of BNs from observations providing 

models of causal influence [176, 178-181]. Although BNs are characterized by probabilities 

and conditional independencies the notion of causal influence can be also defined [182]. 

These causal connections on gene expression data can be therefore deciphered depending on 

several assumptions of the nature of biological systems. 

BNs refer to the general class of graphical models in which nodes and the edges 

between them denote the assumptions on their conditional dependence [183]. In a BN, causal 

reasoning (from known causes to unknown effects) and/or diagnostic reasoning (from known 

effects to unknown causes) can be deduced.  

In addition, DBNs, an extension of BNs, enable (i) the modeling of stochastic 

phenomena such as the expression of genes within time into a cell, (ii) the incorporation of 

prior knowledge and (iii) the handling of hidden variables [184-186]. They have been 

utilized for modeling and classification of time series microarray data and for discovering 

how a random variable 𝑋 evolves over time during a stochastic process [186]. The 

conditional probability distribution of future states of this variable has the Markov property 

which states that future events are independent of past events given the present.  

The last decades, both BNs and DBNs approaches have been employed in the field 

of cancer research for modeling purposes; especially by applying the respective algorithms 

towards progression in cancer evolution and therapeutic strategies [187-190]. The 

proposed models can handle stochastic events in the context of probabilities accounting 

for noise and loss of independence which correspond only to strong interactions among 

the observed data (i.e. the expression values of certain genes). Below, we present the 

computational studies that have been published in the literature regarding the use of BNs 

and DBNs in the management of cancer disease. Gene expression data and other relevant 
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types of biological data, such as epigenetics and mRNA expression profiles, regarding 

cancer progression were utilized aiming at developing network models based either on 

BNs or DBNs methodologies. 

4.2.1 Bayesian network models for cancer classification and prediction 

Several studies in the literature have proposed computational methods with reference to BN 

modeling aiming to infer gene network models from multiple sources of biological data, such 

as gene expression data. To this end, in [191] an integrative inference model is described for 

the reconstruction of gene regulatory networks in ovarian cancer. Differences in the network 

topologies have been identified which may reveal the regulatory mechanisms associated with 

different cancer subtypes. Additionally, in [180] a framework for learning the structure of 

gene networks from experimental data is proposed. Bayesian networks with the integration 

of external knowledge are used in order to extract gene interaction information for pairs of 

genes. In a similar manner, the inference of gene regulatory networks using BNs is studied in 

[192]. The authors showed that the integration of gene expression and epigenetic data can 

improve the identification of gene regulatory interactions in terms of accuracy. 

Recent studies have proposed network analysis methods towards accelerating the 

application of BNs models in predicting cancer subtypes. In [187] the approach of network 

analysis through BNs was selected for the detection of subtle but coordinated changes in 

expression of interacting and functionally related genes. The gene expression profiles of 

Acute Myeloid Leukemia (AML) and Myelodysplastic Syndrome (MDS) were analyzed 

using topological analysis for improving the classification of these two malignancies. BNs 

were employed to model the interactions between thousands of genes. The proposed 

predictive model deciphers the association between gene modules (i.e. certain genes that are 

related to biological pathways) and the disease type.  

In [189, 193] cancer progression and survival have been studied by BN models based 

on their structure and parameter learning. The first study contributes to the monitoring of 

myeloid leukemia progression through a causal BN model. Hence, based on the model’s 

predictions, the authors demonstrated that possible mechanisms related to the disease 

progression can be elucidated from the chronic phase to blast crisis of the disease. In the 

second study changes in mRNA expression profiles and the cell-cycle progression in breast 

cancer cells that follow inhibition of the MEK signaling network across time were assessed 
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based on BN modeling. In [194], ensembles of Bayesian networks were developed to 

investigate and identify novel MEK-dependent regulatory molecules of the cel-cycle which 

may connect with the NFkB network.  

In the study of [188] the basic motivation was to test the viability of developing BN 

models towards improving the clinical decision support with reference to survival prediction 

and therapy selection in lung cancer patients. The authors propose a decision support tool in 

terms of BN models for the accurate personalized estimation of patients’ survival as well as 

of the selection of treatment recommendations. A large national lung cancer patient dataset 

was exploited, and the obtained results were promising for accelerating the clinical decision 

support in lung cancer care. 

In a similar study [195], a substantially larger patient cohort has been employed for 

developing a BN for modeling the survival prediction for colon cancer patients. Relevant 

BN applications for survival prediction and local failures have been conducted aiming at 

predicting the life expectancy and the disease progression in cancer patients [196, 197]. On 

this basis, the use of BNs as a predictive tool in clinical practice and cancer care has been 

studied thoroughly in the literature with encouraging outcomes for disease prediction and 

treatment management. The prediction of patient survival outcomes has been achieved 

through certain BN approaches alongside the exploitation of many patient records including 

gene expression measurements. 

4.2.2 Dynamic Bayesian network models for cancer classification and prediction 

Building stochastic models empowers the automated identification of the structure of 

underlying causal networks that are generated from observed data. DBNs have been proposed 

years ago for modeling stochasticity, integrating prior knowledge, and handling hidden 

variables and missing data [184]. Apart from that, it is known that gene expression is an 

inherently stochastic phenomenon in living organisms; therefore, DBNs can be used for 

modeling time-series data. DBNs methods concern the development of directed graphical 

models that capture time which flows forward [179]. Within a DBN model the arcs can be 

directed or undirected, since probability correlations are studied. The term “dynamic” in a 

DBN model corresponds to the modeling of a dynamic system and it does not mean that the 

structure of the graph changes over time. 
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DBN models have been developed and implemented in the field of cancer care for 

modeling gene expression data and further predict the disease status. Based on this 

knowledge, personalized predictions for patients at low/high risk for tumorigenesis can be 

obtained in the field of precision medicine.  

Relevant approaches have been proposed in the literature for the inference of gene 

regulatory networks by utilizing time series microarray data [185, 198, 199]. These methods 

integrate time course data and implement DBN algorithms for learning the structure of gene 

regulatory networks accurately. They further discuss the application of these methods for 

deriving gene regulatory networks with their transition nodes; thus, deciphering the 

biological networks under study. A slightly different algorithm has been also presented in 

the literature that scores regulatory interactions between genes using DBNs [186]. The 

authors tested their method in mRNA time series data from breast cancer cells and identified 

co-expressed genes accurately. 

The exploitation of clinical as well as longitudinal data for learning the structure of 

a gene network allows for the identification of gene interactions that can be proven crucial 

for cancer prediction and outcomes. Furthermore, the integration of genomic data with 

network knowledge allows for the identification of biomarkers not only as individual genes 

but as functional hubs as well. 

In [200] DBN models have been developed for lung cancer screening. More 

specifically, the models were developed based on longitudinal data (i.e. patients screening 

information at follow-up period) for identifying high-risk lung cancer patients at an early 

stage and improving their survival. Demographics, smoking status, cancer history, family 

lung cancer history, exposure risk factors, comorbidities related to lung cancer, and 

screening related information were employed for building the DBN predictive models. The 

results presented are comparable to clinical experts’ decisions with DBN models 

outperforming other conventional statistical and ML techniques. The performance 

evaluation of the proposed methodology concerns the generalization ability of the 

methodology to model new unseen data with reference to lung cancer incidence prediction.  

A multiscale and multiparametric approach based on DBNs has been studied in 

[190] for modeling the onset and progression of oral squamous cell carcinoma (OSCC) 

after remission. Gene expression microarray data from circulating blood cells throughout 
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the follow-up period in consecutive time-slices were collected and analyzed in order to 

model the temporal dimension of the OSCC. To this end, a DBN method was implemented 

to capture the underlying mechanism dictating the disease evolvement. The proposed 

model was further employed for monitoring the status and prognosis of the patients after 

remission. 

DBN models have been increasingly used with further applications in decision 

making related to cancer diagnosis, prediction and treatment. In [201] the assessment of 

increased cervical cancer risk has been performed in terms of a DBN-based approach able 

to handle the inherent temporal nature of screening observations over time and further 

minimize cancer risk through more frequent test.  

4.3 Modeling biomedical data using classification techniques 

The last two decades a variety of ML techniques and feature selection algorithms have been 

widely applied to cancer prognosis and prediction [202-205]. Most of these studies employ 

ML methods for modeling cancer progression and survival and identify thereby informative 

features that can be employed for classification purposes. Generally, these studies utilize 

high throughput data, clinical findings as well as histological parameters for developing 

predictive models in terms of ML algorithms. The successful disease prognosis depends on 

the quality of a clinical diagnosis; however, a prognostic prediction should consider more 

than a simple diagnostic decision. When dealing with cancer diagnosis and prognosis (i.e. 

prediction) one is concerned with three predictive tasks: (i) the prediction of cancer 

susceptibility (risk assessment), (ii) the prediction of cancer recurrence and (iii) the 

prediction of cancer survival. In the first two cases one is trying to find the likelihoods of 

tumorigenesis and of developing again a type of cancer after complete or partial remission. 

In the last case, the prediction of a survival outcome such as disease-specific or overall 

survival after cancer diagnosis or treatment is the main objective. The prediction of cancer 

outcome usually refers to the cases of (i) life expectancy. (ii) survivability, (iii) progression 

and (iv) treatment sensitivity. 

Most of the studies in cancer literature make use of one or more ML algorithms and 

integrates data from heterogeneous sources for the detection of tumors as well as for the 

prediction of cancer development in terms of risk assessment. A growing trend in the last 
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decade concerns the use of conventional supervised learning techniques, namely SVMs, DTs 

and BNs, as well as of DL algorithms towards cancer prediction and treatment. The 

respective ML algorithms have been extensively used in a wide range of applications in 

healthcare systems with regards to precision oncology [133]. With the advent of genomic, 

proteomic and imaging technologies, molecular information related to cancer onset and 

progression can be obtained. Molecular biomarkers, cellular parameters as well as genes that 

are differentially expressed among phenotypes have been proven informative indicators for 

cancer diagnosis, prognosis and treatment. High throughput technologies nowadays have 

produced huge amounts of cancer data that are collected and are available to the medical 

research community. However, the accurate prediction of a disease outcome is one of the 

most interesting and challenging tasks for physicians. As a result, ML methods have become 

a popular tool for medical researchers. These techniques discover and identify patterns and 

relationships between them, from complex datasets, while they can effectively predict future 

outcomes of a cancer type. Additionally, the implementation of feature selection approaches 

alongside the selected ML algorithm enables the detection of significant features that are 

informative and contribute the most to cancer patients’ risk stratification. 

In the literature, a significant number of relevant ML-based studies integrate data 

from heterogeneous sources in order to predict the desirable outcome. To this end, the studies 

that have employed certain ML techniques, such as SVMs, for cancer susceptibility and 

recurrence prediction are presented in Table 4.1 along with their relevant publications and 

findings. We further discuss some of the most recent studies related to cancer prognosis and 

survivability with their respective results obtained based on their methods (Table 4.2).  

 



 

 

  

 

Publication Cancer Type Dataset Type of Data Methods Results Validation 

Waddell M. et al., 

[212] 

Multiple 

Myeloma 

80 

patients 
SNPs SVM Acc. = 0.71 

Leave-one-out 

cross validation 

Listgarten J. et al., 

[213] 
Breast cancer 

174 

patients 
SNPs SVM Acc. = 0.69 

20-fold cross 

validation 

Kim W. et al., 

[210] 
Breast cancer 

679 

patients 

Clinical, Pathologic, 

Epidemiologic 
SVM Acc. = 0.89 Hold-Out 

Tseng C.-J. et al., 

[211] 

Cervical 

Cancer 

168 

patients 
Clinical, Pathologic SVM Acc. = 0.68 Hold-Out 

Lu H. et al., 

[214] 
Breast cancer 

82,707 

records 

Incidence and 

population 
Genetic Algorithm Acc. = 0.88 

3-fold cross 

validation 

Vasudevan P. et al., 

[215] 
Glioblastoma 

215 

patients 
Genomic ANN Acc. = 0.89 

10-fold cross 

validation 

Sepehri S. et al., 

[216] 
Lung cancer 

396 

patients 
Clinical, radiomics LR Acc. = 0.76 Random sampling 

 

Table 4.1.  Relevant publications with regards to the use of ML applications in cancer diagnosis and prediction. The cancer type, the total number of 

samples, the data types along with the methods and the obtained results are presented for each separate study. 



 

 

 

Table 4.1.  continued 

Publication Cancer Type Dataset Type of Data Methods Results 
Validation 

Method 

Yu K. H. et al., 

[206] 
Lung cancer 

9,879 

features 
Image features SVM Acc. = 0.85 

10-fold cross 

validation 

Lu T. P. et al., 

[207] 

Ovarian 

cancer 
575 genes 

Gene expression 

microarray 
SVM 

log-rank test, 

p = 0.015 

Leave-one-out 

cross validation 

Zhang S. et al., 

[208] 

Prostate 

cancer 
43 genes Genetic features SVM Acc. = 0.66 

5-fold cross 

validation 

Ahmad L. G. et al., 

[217] 
Breast cancer 

1189 

patients 
Clinical variables ANN Acc. = 0.94 

10-fold cross 

validation 

Exarchos K. P. et al., 

[218] 
Oral cancer 41 patients 

Clinical, imaging and 

genomic 
BN, SVM Acc. = 0.69 

10-fold cross 

validation 

Chang S.W et al., 

[219] 
Oral cancer 31 patients 

Clinicopathologic and 

genomic markers 

Adaptive 

neuro-fuzzy 

inference 

system 

Acc. = 0.74 
5-fold cross 

validation 
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Table 4.1 presents indicative studies published in the field of cancer diagnosis and 

prognosis prediction. The relevance of each publication was assessed based on the keywords 

of the predictive tasks found in their titles and abstracts. Specifically, we selected those 

publications that study two of the three foci of cancer prediction (i.e. cancer susceptibility 

prediction and cancer recurrence prediction). The third foci, i.e. cancer survival prediction, 

is discussed afterwards in Table 4.2 where the relevant studies are depicted. 

The cancer type, the data sources employed, the methods and the results obtained are 

also depicted. Several types of cancer are studied for making accurate prognosis including 

breast cancer, prostate cancer, thyroid and ovarian cancer among others. Most of the studies 

utilized the well-known ML technique, namely SVMs which outperforms other well-

established techniques. In the studies of [206-213] the prognostic performance of SVMs was 

evaluated on external datasets yielding promising results for predicting and differentiating 

cancer subtypes as well as phenotypes.  

In [210] an SVM-based model for the prediction of breast cancer recurrence, called 

BCRSVM has been proposed. The authors support the idea that the classification of cancer 

patients into high-risk or low-risk groups allows experts to adjust a better treatment and 

follow-up planning. In this work, the development of a predictive model regarding the breast 

cancer recurrence within five years after surgery was achieved. SVM, ANN as well as Cox-

proportional hazard regression were employed for producing the models and find the optimal 

one. The authors claimed that after comparing the three models based on their resulted 

accuracies, they found that the proposed model outperformed the other two. From the initial 

set of 193 available variables in their data, only 14 features were selected based on their 

clinical knowledge. These data refer to clinical, epidemiological and pathological variables 

of 733 patients considered out of 1.541. In the final stage of the feature selection process, 

Kaplan-Meier analysis and Cox regression were applied which resulted in 7 variables as 

most informative. These features were then entered as input to the SVM and ANN classifiers 

as well as to the Cox regression statistical model. In order to evaluate the performance of the 

models, the authors employed the hold-out method, which splits the data sample into two 

sub-sets, namely training and testing set. Likewise, in most studies, accuracy, sensitivity and 

specificity were calculated for the estimation of the models’ performance in terms of 

generalizability and robustness. Based on their results, the authors claimed that the proposed 

model outperformed the ANN and Cox regression models with accuracy 84.6%, 81.4% and 
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72.6%, respectively. Comparison among the performance of other previously established 

recurrence prediction models revealed that BCRSVM has superior performance. According 

to their findings, the authors propose that for each of the three predictive models, the most 

significant factor regarding the prediction of breast cancer recurrence was the local invasion 

of tumor. Similarly, in [207] the authors utilized SVMs to develop a model for the chemo-

response. The data exploited were from the Cancer Cell Line Encyclopedia (CCLE) while 

TCGA and the GSE9891 datasets were utilized for evaluating the predictive model. 

Moreover, based on their findings the resulted 10-gene predictive model demonstrated that 

a longer recurrence-free survival was observed in the high response group. These patients 

had also good response and favorable prognosis. The presented studies constitute indicative 

examples of the use of ML approaches to cancer prediction. Several other studies utilized 

well-established ML methods, such as ANNs, BNs and DTs for predicting cancer diagnosis 

and progression by integrating heterogeneous data sources to obtain accurate models [214-

219]. 

Recently, several studies utilized techniques related to the DL approach aiming at 

exploiting many imaging data and further improve the decision support on cancer prediction. 

In [220-222] deep and convolutional neural network models were applied for diagnostic 

purposes in cancer care. The authors aim at improving the diagnostic accuracy of cancer by 

analyzing imaging as well as multi-dimensional data. The ability of DL methods to 

accelerate cancer diagnosis, prognosis and treatment has been elucidated in the literature 

with efficient algorithms that can capture feature representation in a general manner for 

classification purposes [167].  

Specifically, in [220] multi-dimensional data were exploited, and a novel multimodal 

deep neural network approach was proposed for cancer prognosis prediction. The predictive 

model consists of an input layer, multiple hidden layers and an output layer, while 

heterogeneous data such as clinical, gene expression and copy number variations were 

considered. The proposed method achieved an overall better performance compared to 

conventional ML techniques like SVMs and RFs. The authors also presented the usefulness 

of exploiting different data sources along with multimodal deep neural networks for cancer 

prognosis prediction. In [221], a multicohort diagnostic study was performed using 

ultrasound images sets and deep convolutional neural networks. Based on the obtained 

results the predictive model achieved high performance towards identifying thyroid cancer 



 

71 

patients. In [222], a deep convolutional neural network was trained on whole-slide images 

derived from TCGA to classify accurately cancer and normal tissues in non–small cell lung 

cancer. The performance of the proposed method achieved an average AUC equal to 0.97 

Similarly, the research work of [223] demonstrates new strategies based on deep 

learning-based predictive models. In this study a multi-model ensemble method that exploits 

RNA-seq datasets of different cancer types is proposed based on DL. Feature selection 

techniques were applied while their classification method was evaluated in terms of cross-

validation. Their results reveal that more accurate results can be obtained from their 

ensemble methodology rather than from single classifiers. Breast cancer risk prediction has 

been also studied in [224]. Deep learning models were designed and developed based on 

screening mammograms to assess breast cancer risk within 5 years. The final hybrid DL 

model incorporates both traditional risk factors and mammograms showing significant 

higher results compared to the single models that utilized only individual risk factors or 

mammograms. Other related works consider the cancer risk prediction in terms of 

mammography-based models [225, 226]. Conventional ML-based approaches and DL 

methods were applied for early cancer detection based on the utilization of mammography 

images and clinical findings.  

Concerning cancer survival prediction, several works have been done and published 

the last decades towards assessing disease survivability through ML techniques. Table 4.2 

shows indicative studies that utilized well-established ML algorithms for predicting life 

expectancy. The types of cancer, the data used alongside the methods and the obtained results 

are also presented. The relevance of each publication was assessed based on the keywords 

of the predictive task found in their titles and abstracts. Specifically, we selected those 

publications that study cancer survival in terms of ML-based methods. 

In [227], a deep learning-based method was developed for predicting survival across 

many cancers. Histopathology images were used from around 5,000 cases alongside their 

slides. Based on this cohort and on multivariable Cox regression analysis the proposed 

method was associated with disease specific survival (hazard ratio of 1.58, 95% CI 1.28-

1.70, p<0.0001). Deep learning methods have been also utilized in [228] towards improving 

survival prediction in colorectal cancer. This multicenter study exploited hematoxylin–eosin 

(HE)–stained tissue slides from patients and further investigated whether there are 
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prognostic features that can predict their survival. A convolutional neural network was 

trained and after the validation of the model on an external dataset a nine-class accuracy 

equal to 0.94 was obtained. Colorectal survival prediction was also studied in [229]. A two-

stage model was developed based on ensemble ML techniques to predict survival time on a 

monthly basis; hence, improvement on the decisions regarding the treatment options could 

be achieved. A classification and a regression model were proposed by exploiting data from 

the surveillance, epidemiology, and end results program (SEER) [230]. Data preprocessing 

was performed, and the class imbalance problem was addressed based on under sampling 

techniques. According to the obtained classification results an overall better performance 

and generalizability were achieved when class imbalance handling was considered in the 

training phase. Breast cancer survivability prediction was studied in [205, 231] in terms of 

ML models which were trained and evaluated after integrating different data sources. 

Promising results were obtained, and the authors demonstrated the potential of ML principles 

in the progression of cancer prediction. Related studies that utilized conventional but robust 

ML methodologies, such as SVMs and ANNs approaches, have been also published recently 

addressing the survival prediction in patients with gastric, glioma, lung and bladder cancer 

[232-235] 

 

 

 

 

 



 

 

 

Publication Cancer Type Dataset Type of Data Methods Results 
Validation 

Method 

Wulczyn E et al., 

[227] 

Multiple cancer 

types 

9,086 image 

slides 
Clinical, imaging DL 

hazard ratio [CI 95%]: 

1.58 [1.28-1.70], 

p<0.0001 

External 

validation 

Park K. et al., 

[205] 
Breast Cancer 433,272 patients SEER DT Acc. = 0.93 

External 

validation 

Zhu et al., 

[232] 
Gastric cancer 289 patients 

Clinical, 

histological, 

laboratory 

ANN Acc. = 0.85 
Cross-

validation 

Wang Y. et al., 

[229] 

Colorectal 

cancer 
158,483 patients SEER 

Tree-

based 

approach 

Acc. = 0.70 

10-fold 

cross 

validation 

Kather J. N. et al., 

[228] 

Colorectal 

cancer 

> 100,000 image 

patches 
Imaging features CNN 

hazard ratio [CI 95%]: 

1.99 [1.27-3.12], 

p = 0.0028 

External 

validation 

 

Table 4.2.  Relevant publications with regards to the use of ML applications in cancer survival prediction. The cancer type, total number of samples, 

data types along with the exact methods and the obtained results are presented for each study. 



 

 

 

 

Table 4.2 continued 

Publication Cancer Type Dataset Type of Data Methods Results 
Validation 

Method 

Papp L. et al., 

[233] 
Glioma 70 patients 

Medical imaging 

and demographics 

Genetic 

algorithm 
AUC = 0.90 

14-fold cross-

validation 

Kate R. J. et al., 

[231] 
Breast cancer 174,518 patients SEER LR AUC = 0.85 

5-fold cross-

validation 

Hasnain Z. et al., 

[234] 

Bladder 

cancer 
3503 patients Clinical SVM 

Sens. = 0.70 

Spec. = 0.70 

Outer 10-fold 

cross 

validation 

Inner 3-fold 

cross 

validation 

Lynch C. M., 

[235] 
Lung cancer 10,442 patients SEER SVM 

RMSE: = 

15.05 

10-fold cross 

validation 
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4.4 Cancer risk prediction using ensemble learning techniques 

Recently, multi-modal fusion strategies applied at both the feature and the decision levels 

based on AI and ML techniques have emerged as a promising framework towards cancer 

prognosis prediction. Integrative AI prognostic modeling methods have been developed and 

deployed through ensemble-based ML principles. Although significant progress has been 

made towards precision medicine most cancer patients still don’t receive individualized 

cancer treatment. Hence, many patients do not receive the necessary treatment affecting 

thereby both quality of life and clinical outcomes. A plethora of information is available with 

modern imaging and sequencing techniques (i.e. radiomics and genomics) which could 

increase the diagnostic potential and further optimize personalized treatment plans in cancer 

progression. To this end, integrating data from multiple sources into a high-precision clinical 

support system using ensemble ML techniques is an unmet clinical need due to the lack of 

different cancer data views, the heterogeneity of the data and the complexity of integrative 

AI frameworks. Fusion of different model priors that have been developed based on several 

data sources, could be achieved considering an ensemble fashion which may include both 

bagging and boosting [236]. Moreover, fusion strategies at the decision level have been 

proposed in terms of sparse ensembles and multi-modal learning scheme providing a 

framework for integrating different data modalities as well as different base classifiers [134, 

237, 238]. 

In the literature this crucial clinical need is addressed through integrative diagnostics 

and prognostics approaches that empower personalized precision medicine in cancer patient 

stratification through the integration of the most common data sources (i.e. imaging data, 

clinical findings, histological and omics data). From the clinical perspective, the first 

advances are related to radiogenomics correlations like MRI-gene expression combinations 

for cancer patient survival [239]. Similarly, integrative multiscale analysis for assessing 

cancer progression by concatenating DNA methylation in conjunction with imaging data has 

been also studied in the literature [240]. However, there is still lack in such approaches due 

to the absence of comprehensive multi-modal fusion methods towards precision cancer 

decision support systems.  

The emergence of deep learning methods and multi-dimensional data allowed the design and 

development of multimodal deep neural networks architectures for cancer diagnosis, 
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prognosis and treatment. In [220] a novel and robust methodology is proposed with reference 

to DL architecture and to data integration with reference to breast cancer prognosis 

prediction. Specifically, gene expression data, copy number alteration profile and clinical 

variables were exploited after integrating them. The authors demonstrate the superiority of 

the proposed methodology and anticipate its robustness in the cancer clinical practice since 

it outperforms other conventional ML algorithms. They also confirmed the effectiveness of 

their study by comparing their results with experiments on separate data sources. The overall 

performance of the multi-modal deep neural network alongside the fusion of several data 

sources achieved an AUC value of 0.84.  

A similar methodology that considers the use of multi-modal learning for predicting 

disease-genes associations have been proposed [241]. The method has been tested in several 

diseases, including cancer showing promising results in finding relationships among disease-

genes by utilizing multimodal deep belief networks. In comparison with other well-known 

algorithms the proposed method was evaluated in terms of 5-fold cross-validation on a set 

of curated disease–gene associations achieving an AUC value of 0.96. Based on these 

results, the proposed method could accurately predict gene associations that are responsible 

for cancer progression. Furthermore, concerning the computer-aided diagnosis in breast, in 

[242] the authors have demonstrated the usefulness of dealing with multiple predictive 

models and thereby with the intelligent combination of their prediction probabilities. Data 

fusion of several SVM models was accomplished using generalized regression neural 

network (GRNN). Cross validation was performed for evaluating the performance of the 

model and an overall AUC of 0.81 was obtained. 

Several studies in the literature have utilized ensemble methods at both the feature 

and the decision levels for improving the clinical prediction of cancer and thereby 

contributing to treatment de-escalation. Although the results proposed seem promising in 

terms of cancer prediction, most of these studies combine the predictions from multiple 

models on the same dataset based on machine learning techniques. Furthermore, stacked 

generalization [243], a method for combining estimators to reduce their biases has been 

proposed many years before for combining the output of several base classifiers. It is a 

schema for minimizing the generalization error rate of one or more generalizers. Stacked 

generalization works by deducing the biases of the generalizer(s) with respect to a provided 
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learning set. The predictions of each individual estimator are stacked together and used as 

input to a final estimator to compute the prediction. In [244] a diagnostic model was 

developed for prostate cancer with both high accuracy and good interpretability. Clinical and 

demographic information was used for implementing the ensemble method. 

Ensemble ML methods, such as DTs, RFs and GB algorithms could enhance the 

classification accuracy by aggregating the predictions of multiple base classifiers [142]. The 

rationale for ensemble methods is that the error rate during a classifier’s performance is 

considerably lower than the error rate of the base classifiers, considering that the base 

classifiers are not identical but independent. Based on this knowledge, the integration of 

multi-omics data and the subsequent exploitation of ensemble techniques for integrative 

diagnosis, prognosis and treatment could contribute drastically in the application of robust 

approaches in the cancer clinical practice for better management of the disease and the 

decision making. 

Multiple Kernel Learning (MKL) technique that permits data fusion in terms of 

kernels’ integration has also emerged in the last decade with applications in cancer prognosis 

[134, 245]. In [246, 247] MKL transforms the data integration to kernel integration in the 

sample space including various data types such as omics data, clinical, treatment, 

histological and biomolecular data as well as individual gene sets. More specifically, in [246] 

omics data are utilized distinctly within multiple kernels for the classification of breast 

cancer subtypes. The proposed framework encompasses both SVM and MKL to accelerate 

the classification accuracy of breast cancer samples. The fusion of the heterogenous data 

occurs in the sample space; hence, the identification of informative features was achieved. 

In [247], the authors proposed a MKL framework for discriminating early-and late-stage 

cancers using gene expression profiles. Based on the predictive performance of this method, 

an improved understanding of the underlying molecular mechanisms was achieved which 

might have affected cancer progression.  

Additionally, SimpleMKL [248] was employed which is a very efficient multiple 

kernel machine algorithm and it has been proven that outperforms many other algorithms. 

𝐿2 − 𝑛𝑜𝑟𝑚 MKL methods are very efficient approaches and simpleMKL is based on a 

weighted 𝐿2 − 𝑛𝑜𝑟𝑚 regularization. Based on this knowledge, the authors combined SVM 

optimization and kernel fusion processes to one standard SVM optimization problem 
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which allows to improve the glioblastoma clinical treatment. MKL is an intermediate 

fusion technique that firstly computes similarity matrices for each data view separately and 

then integrates these matrices to produce a final kernel learner for further use in a ML 

model. 

4.5 Contribution of the Thesis 

4.5.1 A DBN-based model for the prediction of oral cancer recurrence 

As discussed in sections 4.1.1 and 4.1.2, modeling gene expression data through BNs and 

DBNs have been studied widely in the literature for identifying DEGs and pathways 

associated with cancer onset and progression. Network analysis using microarray data have 

been also introduced for investigating different network topologies between two disease 

subtypes and further suggest treatment options for improving cancer therapy and 

management. Moreover, the exploitation of pathway knowledge in terms of enrichment 

analysis could provide details about the interacting molecules; thus, significant pathways 

that are related to certain tumors may be unveiled. Several works have studied the network 

topology of significant genes to elucidate interactions that may contribute to mutations and 

thereby to cancer onset. 

In the current thesis, we analysed gene expression microarray data available from 

open repositories for modeling the progression of cancer between different phenotypes. 

Specifically, we employed DBNs to incorporate both the significant genes that have been 

found to contribute to cancer recurrence along with the knowledge from the pathway level 

based on the enrichment analysis. Therefore, the most significant molecules were extracted 

and fed as input to the DBN model for the prediction of a disease relapse. The identification 

of highly connected genes that participate in the most overrepresented pathways, along with 

the DEGs determined in a previous work [13], compose the training set for the interaction 

network models. The contribution of the present thesis in the analysis of gene expression 

data and the inference of a DBN model for cancer prediction has been presented in [249]. 

The proposed method takes into consideration time series gene expression data in order to 

predict a disease recurrence. Subsequently, we can conjecture about the causal interactions 

between genes in consecutive time intervals. 
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4.5.2 Cancer classification from time series microarray data through regulatory DBNs 

models 

As discussed in section 4.1.2, gene regulatory networks concern the deciphering of the 

relationships between transcription factors and their target genes. In cancer genomics the 

modeling of the molecular and cellular processes during tumorigenesis, by inferring 

networks of genes regulation, is of paramount importance. In the literature, the employment 

of biological data and the conduction of network analysis for the reconstruction of gene 

regulatory networks and thereby the extraction of disease subtypes has been studied 

thoroughly. Canonical correlation analysis [186] and DBN approaches [180, 185] have been 

applied to time series gene expression data for the inference of validated gene regulatory 

networks. To this end, these approaches with the inherent ability to represent longitudinal 

data allow the exploitation of time series data with reference to DBNs for deciphering 

stochastic processes, such as gene expression. In addition, the integration of gene expression 

changes and their respective transcription factor binding sites (TFBSs) could further 

contribute to cancer classification in order to detect gene profiles that can accurately 

distinguish samples of different phenotypes. 

In the present thesis, we developed gene regulatory networks from microarray time 

series gene expression data for cancer classification through DBNs. The interactions 

between significant genes, i.e. (i) DEGs, and (ii) their master regulators (MRs), were 

identified and the classification performance of the DBN-based algorithm was further 

evaluated. Going beyond the state-of-the-art, we studied the integration of heterogeneous 

data for cancer classification through DBN models. MRs were identified based on the 

identified DEGs. The proposed methodology suggests that the combination of both DEGs 

and MRs into a DBN-based methodology could yield better classification results than the 

combination of DEGs into a simple classification scheme. The contribution of the present 

thesis in cancer classification based on time series gene expression data and on TFBSs has 

been presented in [250]. We identified the genes that act as regulators and mediate the 

activity of transcription factors that have been found in all promoters of our differentially 

expressed gene sets. These features served as potential priors for distinguishing tumor from 

normal samples using a DBN-based classification approach. 
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4.5.3 Predicting lymphoma development by exploiting genetic variants and clinical 

findings in a machine learning-based methodology with ensemble classifiers 

Several clinical, serological and histopathological variables have been found as predictors 

for lymphoma development. These adverse risk factors have been found to be correlated 

with the aggressive behavior towards lymphoma development relative to the genetic 

background of patients. On this basis, lymphoma risk prediction in the context of Sjögren’s 

Syndrome have been studied widely in the literature in terms of statistical analysis and 

prediction rules based on clinical and biological predictors. As discussed in sections 4.2 and 

4.1.3, data mining algorithms and ML-based methodologies have been also used for the 

identification of patient subgroups and the prediction of lymphoma as regards of features’ 

importances.  

In the present thesis we proposed a robust ML-based pipeline which incorporates a list 

of sequential estimators for predicting lymphoma development. We aim at assessing the 

contribution of combined clinical, serological and histopathological features with genetic 

variants in predicting lymphoma. Special emphasis is given in the ML-based ensemble 

framework which encapsulates both RFs and GB algorithms to compare their performance 

and further identify the most accurate overall performance. The evaluation of the proposed 

models’ performance reveals the potential usefulness of integrating information from the 

genetic background of patients for predicting the risk for cancer development. The 

contribution of the current thesis in developing and implementing robust predictive models 

for cancer risk prediction has been presented in [251]. We highlighted the potential 

usefulness of genetic variants and clinical findings in predicting lymphoma development in 

Sjögren's Syndrome patients based on ensemble methods. 
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 DYNAMIC BAYESIAN NETWORKS FOR 

THE PREDICTION OF ORAL CANCER RECURRENCE 

5.1 Introduction 

5.2 Materials and Methods 

5.3 Results and Discussion 

5.4 Conclusions 

 

 

 

5.1 Introduction 

It is generally argued that cancer is a disease characterized by abnormal cells growth that 

invades healthy tissues in the body. The last decade, rapid advances in cancer research 

community revealed that cancer is a complex disease with fluctuations in gene expression 

process at the molecular level. Oral Squamous Cell Carcinoma (OSCC) constitutes one of 

the most frequent neoplasm in humans [5, 57] and its mortality rate is known to be very high. 

It can be detected in any part of the oral cavity or oropharynx; thus, it may be referred to any 

malignancy that has been initiated in the head and neck region. Due to locoregional 

recurrence in cancer, early identification of a disease relapse can be crucial for the patient’s 

prognosis and treatment. Furthermore, extended investigation of the underlying molecular 

mechanisms and the disease progression may offer a crucial impact on the disease 

management and outcomes. 

With the advent of high-throughput technologies, such as DNA microarrays, the 

expression levels of many genes can be measured simultaneously. The amount of such 

experimental data can be further analyzed in order to identify long lists of individual genes 
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with their expression values which provide knowledge regarding the condition being studied. 

Furthermore, by grouping and analyzing, at a functional level, smaller sets of related genes 

allow us to identify: (i) groups of genes that function on the same and/or different pathways, 

and (ii) pathways that differ between two phenotypes [252]. Methods for the analysis of 

pathways and significant gene sets have been developed in the literature to gain insight into 

the functional mechanisms of living cells. Therefore, pathway analysis at the functional level 

is very appealing.  

Lately, several studies in the literature have applied pathway analysis methods to 

microarray transcriptomic data, aiming to identify significant gene sets that are 

representative for a given pathway, as well as to explore the pathways which are related to a 

specific phenotype. Specifically, in [177] the authors have utilized Kidney Renal Clear Cell 

Carcinoma (KIRC) patients’ sequencing data in order to identify a set of DEGs and pathways 

associated with the disease. After performing pathway and network analysis they suggested 

that distinct disease subtypes are correlated with different biological processes. In the same 

context, in [191] they proposed a network analysis method for angiogenesis in ovarian 

cancer. They identified different network topologies between the two disease subtypes and 

suggested possible therapeutic improvements for the treatment of ovarian cancer. Finally, in 

[174] the authors introduce a new method that scores for each pathway and tumor a pathway 

deregulation value; thus, each sample is characterized by its score and the stratification of 

the disease is performed in terms of pathway-based variables. 

Modeling transcriptomic data in order to reveal how genes interact with each other 

and form an interaction network may provide more insights into the molecular processes and 

the progression of a complex disease. To this end, computational methods, such as DBNs, 

have been proposed in the literature for the inference of the underlying structure of gene 

networks [185]. These approaches integrate genome-wide expression data for the inference 

of gene regulatory networks through the utilization of DBNs. 

In the current study, transcriptomic data were exploited in order to perform gene-

based pathway enrichment analysis of OSCC patients. More specifically, a set of DEGs 

among the two groups of patients in the dataset, i.e. (i) patients that have suffered a disease 

relapse after complete remission, and (ii) patients that have not suffered a relapse after 

complete remission of the disease were employed. Moreover, pathway enrichment analysis 
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was performed for predicting the disease recurrence through the utilization of DBN models. 

Compared to a previous study [253], we have updated several parts aiming to combine the 

knowledge from the pathway level and the DBN modeling methodology for the prediction 

of a disease relapse. We also conducted an overrepresentation analysis and detected the 

pathways which are enriched in our gene set. The extraction of highly connected genes that 

participate in the most overrepresented pathways, along with the DEGs determined in [190] 

compose the training set for the interaction network models. The derived results indicate that 

the combination of the specific gene set with the highly connected nodes from the Pre-

NOTCH Expression & Processing (PNEP) pathway can provide the most accurate prediction 

of oral cancer recurrence. 

5.2 Materials and Methods 

The proposed methodology consists of three main steps. In the first step, transcriptomic data 

is analyzed in order to identify a subset of the most differentially expressed genes among the 

two groups of patients. In the second step, pathway enrichment analysis is performed for the 

specific gene list aiming to identify the most significant pathways in terms of 

overrepresentation. Finally, highly connected genes that participate in the most significant 

pathways are extracted. This gene list along with the genes determined firstly as 

differentially expressed, constitute the training set for the development of the interaction 

networks regarding the prediction of OSCC recurrence. 

5.2.1 Transcriptomic Dataset  

In the current study, transcriptomic data from 23 patients that have been diagnosed with 

OSCC and had reached complete remission, were considered [190]. For each patient, data 

from circulating blood cells have been collected and the 4x44K oligo-RNA human genome 

array, from Agilent Technologies was utilized. The measurements of the gene expression 

values were conducted during the baseline state and the follow-up period of each patient; 

thus, time course data are used in each step of the proposed methodology. During the follow-

up period and for a 24-month time span, blood genomic data were collected from each patient 

regularly, during scheduled visits planned in consecutive time intervals. During this time, 

the possibility of a disease relapse was studied. 
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According to the occurrence or not of a disease relapse during the follow-up study, 

patients have been discriminated into two groups, respectively. The first group includes the 

12 patients out of 23 that have suffered a disease recurrence, while the second one consists 

of the remaining 11 patients that have not suffered a disease relapse during the follow-up 

study. 

Since the initial transcriptomic data file consists of expression values of many entries, 

some basic filtering steps were applied upon the raw data according to [190]. These steps 

refer to the removal of duplicate and control features, as well as genes of low quality or high 

rates of missing values. Duplicate features correspond to genes that are printed in the array 

more than once in random positions, thus, they are excluded from the dataset. Subsequently, 

an algorithm for microarray analysis is employed in order to extract a subset of the most 

differentially expressed genes between the two groups of patients. This gene list is then 

exploited aiming to perform pathway enrichment analysis. 

5.2.2 Dataset Formulation 

The initial genomic data file consisted of 45,015 expression values for each patient. After 

the filtering steps, the output was a set of 33,491 entries which were then fed as input to the 

Significance Analysis of Microarrays (SAM) statistical technique [254], aiming to identify 

a limited subset of the most DEGs. SAM searches for genes that differ significantly in terms 

of their expression during the follow-up period. The final gene list was determined upon the 

False Discovery Rate (FDR) [142] of the gene expression values between the two groups of 

patients. More specifically, the Wilcoxon statistical test was performed which identifies 

those genes that are mostly differentially expressed between the groups. The threshold for 

the fold change between the two groups of patients was set to 1.8 according to [190]. 

5.2.3 Pathway Enrichment Analysis 

The subset of genes that were found to be most differentially expressed between the two 

groups of patients, were further considered along with their expression values in order to 

perform pathway enrichment analysis based on the Reactome database information [255]. 

Reactome is a curated, peer-reviewed database of human pathways and processes. The 

exploitation of the Reactome tools allowed us to perform pathway analysis of our datasets 
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and further explore the overrepresentation of pathways in the submitted data. After the 

assignment of specific pathways to the supplied list, we studied whether the genes that 

represent OSCC risk associated genes are assigned by chance within specific pathways or 

refer to significantly disrupted pathways correlated with the disease in terms of the p-value 

and the FDR score that were calculated automatically by the analysis tool. The criteria 

considered before choosing the most enriched pathways for further analysis in the current 

work were: (i) the selection of the first sub-pathways of any single pathway, instead of large 

pathways or reactions according to the pathway hierarchy panel, and (ii) the selection of 

those pathways that were found enriched with the most entities of our submitted gene list. 

These criteria were selected in order to identify the most critical genes within the pathways 

found enriched. 

Additionally, in order to identify the highly connected nodes of the most significant 

pathways and proceed to the next step of the proposed methodology, the functional 

interaction network of each pathway was derived. The Cytoscape software platform [256] 

was utilized and the Reactome plugin was applied. Thus, we were able to extract all the 

information regarding the network and the connected nodes. 

5.2.4 Dynamic Bayesian Networks Models 

The approach of DBNs has been widely used for the inference of gene interaction networks 

from time series microarray data; thus, they constitute a suitable choice for modeling oral 

cancer recurrence, as well. 

DBNs are an extension of BNs which encode the joint probability distributions over 

a set of random variables 𝑋 = {𝑥1, … 𝑥𝑛}. A BN is a pair B=(G, Θ). The first component 𝐺 

is an annotated directed acyclic graph and the second one 𝛩 represents the parameters that 

quantify the network. Given 𝐺 and 𝛩, a BN, 𝐵, defines a unique joint probability distribution 

over 𝑋 given by: 

 

𝑃𝐵(𝑥1, . . 𝑥𝑛) = 𝛱𝑖=1
𝑛 𝑃𝐵(𝑥𝑖|𝑝𝑎(𝑥𝑖)),                                    (5.1) 

where 𝑝𝑎(𝑥𝑖) denotes the parents of 𝑥𝑖, in 𝐺.  
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DBNs are tuned to model the stochastic processes of a set of random variables over time 

[184]. More specifically, they can describe causal interactions of stochastic processes 

between the state variables, thus, their application in complex systems may provide a better 

approximation of the interactions underlying the molecular processes. DBN theory is 

generally based on two assumptions. First, the process is Markovian in the set of variables 

𝑋, i.e. 𝑃(𝑋[𝑡 + 1]|𝑋[0], . . . , 𝑋[𝑡]) = 𝑃(𝑋[𝑡 + 1]|𝑋[𝑡]). Second, it is assumed that the 

process is stationary, i.e. the transition probability 𝑃(𝑋[𝑡 + 1]|𝑋[𝑡]) is independent of 𝑡. To 

represent beliefs about the possible trajectories of the process, we need a probability 

distribution over random variables for all 𝑡. A DBN that represents the joint distribution over 

all possible trajectories of a process consists of two parts: 

• a prior network 𝐵0 that specifies a distribution over initial states 𝑋[0], and  

• a transition network, 𝐵→, over the variables 𝑋[0] ∪ 𝑋[1] that is taken to specify the 

transition probability 𝑃(𝑋[𝑡 + 1]|𝑋[𝑡]) for all 𝑡.  

Given a DBN model, the joint distribution over 𝑋[0], . . . , 𝑋[𝑇] is: 

𝑃𝐵(𝑥[0], . . , 𝑥[𝑇]) = 𝑃𝐵0
(𝑥[0])𝛱𝑡=𝑜

𝑇−1𝑃𝐵→
(𝑥[𝑡 + 1]|𝑥[𝑡]).              (5.2) 

DBNs can be defined by a graphical structure and a set of parameters. Therefore, in 

order to construct a DBN we need to specify the intra-slice topology (connections within a 

slice), the inter-slice topology (connections between two slices) and the parameters for the 

first two slices. Figure 5.1 depicts a simple structure of a DBN model. Two time slices (t=0 

and t=1) are illustrated, as well as the topology among the variables. 

 

Figure 5.1  A simple DBN structure, where 𝑉𝑖,𝑗 corresponds to the 𝑖𝑡ℎ variable in the 𝑗𝑡ℎ time-slice. 
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In the current work we employ the training dataset as determined above, in order to 

define the structure and the parameters of two DBN models related to the status of a specific 

patient, i.e. relapser or no-relapser. The parameters were specified according to the variables 

within the first time slice and across the first and the second time slice. They were 

represented as CPD (Conditional Probability Distribution) objects. The parameters of the 

models were specified as conditional linear Gaussian distributions [21]. Regarding the 

development of the DBN models, the junction tree engine, which is the source of all the 

exact inference algorithms, was used for inference [22]. 

We implemented our models in MATLAB, using the Bayes Net Toolbox (BNT) 

[178] and the Dynamic Bayesian Markov Chain Monte Carlo (DBmcmc) [178] packages. In 

addition, the Canonical Correlation Analysis-based (CCA) algorithm [186] was used aiming 

to compute potential interactions between genes. The results of CCA algorithm constitute 

the prior knowledge needed for the construction of the interaction network models. 

5.3 Results and Discussion 

5.3.1 Pathway Enrichment Analysis 

According to the initial transcriptomic dataset and the application of the statistical SAM 

technique, we identified a subset of significant genes between the two groups of patients 

considered in the current study. Table 5.1 depicts these genes as pinpointed by the 

employment of the algorithm. This subset contains nine genes with their expression 

measurements which were further analyzed in order to perform pathway enrichment analysis 

through the utilization of the Reactome pathway database. Thus, gene identifiers from the 

submitted data were mapped to certain pathways. According to the analysis results per 

Table 5.1  List of the differentially expressed genes after the employment of the SAM statistical 

technique. 

Gene IDs 

AK023526 HMCN1 LEPRE1 

NOTCH2 RGMA STX6 

THC2344152 THC2447689 TSC1 
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pathway, we observed that the pathways with the highest proportion to the input list are: (i) 

the Pre-NOTCH Expression and Processing (PNEP), and (ii) the Generic Transcription (GT) 

pathways. In a previous report [257], pathway enrichment analysis has been performed on 

the same transcriptomic data and six overrepresented pathways were identified and 

presented. In the current study, we only exploited two of the six enriched pathways, which 

are present in the Reactome pathway hierarchy and have the largest number of mapped gene 

IDs. Moreover, in comparison with the other enriched pathways, this pathway along with 

the PNEP were presented as first sub-pathways in the hierarchy panel. The PNEP pathway 

consists of the NOTCH gene family. Their transcription is developmentally regulated and is 

tissue specific, but little information exists on the molecular mechanisms of the 

transcriptional regulation [258]. Concerning the GT pathway and the gene transcription 

regulation in eukaryotic systems, the general principles and mechanisms by which cell- or 

tissue-specific regulation of differential gene transcription is arbitrated have been revealed 

[258].  

Table 5.2 indicates the analysis results per pathway. The columns represent (i) the 

pathway name at the lower level of the Reactome pathway hierarchy and (ii) the number of 

submitted genes that map the pathway, respectively. It should be noted that the table contains 

only the first 10 enriched pathways with the number of entities that were found in each 

pathway. Since our criteria for selecting the pathways is based on the enrichment event, we 

only present here the pathway names along with the number of IDs from our submitted gene 

list. 

Based on the results of the overrepresentation analysis and the selected enriched 

pathways, we proceeded with the construction of the interaction network models. As Table 

5.2 depicts, the Pre-NOTCH Transcription and Translation pathway has also been found to 

be enriched to the submitted gene list and contains the same number of genes as the PNEP 

pathway. However, since this pathway is involved in the PNEP event according to the 

Reactome hierarchy and it is not represented as a first sub-pathway at the pathway hierarchy 

panel, was not considered for further analysis. 
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In the next step, in order to identify the most significant nodes in each pathway, based 

on the number of connected interactors, we inferred their functional interaction network 

through the utilization of the Reactome FIViz plugin [256]. Hence, we were able to detect 

all the interacting partners and further select only the highly connected ones. Specifically, 

only the genes that had 10 or more neighbors were selected as highly connected. As reported 

in the literature [26], hubs are defined as nodes with connectivity greater than 5. In the 

current work, we considered a connectivity threshold equal or greater than 10 in order to 

 

Table 5.3  Highly connected genes along with the number of neighbors in the PNEP pathway. 

Gene IDs Number of neighbors 

NOTCH1 24 

CCND1 15 

NOTCH4 15 

CREBBP 14 

E2F1 12 

E2F3 12 

EP300 12 

NOTCH3 12 

 

Table 5.2  Reactome analysis results per pathway. 

Pathway name IDs 

Pre-NOTCH Expression and Processing 3 

Pre-NOTCH Transcription and Translation 3 

Notch-HLH transcription pathway 1 

Signaling by NOTCH 2 

Pre-NOTCH Processing in Golgi 1 

Defective LFNG causes SCDO3 1 

Pre-NOTCH Processing in the Endoplasmic Reticulum 1 

Signaling by NOTCH4 1 

Inhibition of TSC complex formation by PKB 1 

Generic Transcription Pathway 2 

 



 

 
 

 

Figure 5.2  The functional interaction networks of the PNET pathway, in terms of the Reactome FIViz plugin. Circles correspond to genes with their 

respective edges/connections. Known functional annotations are presented as edges with arrow shape. 
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identify only the genes that are more plausible candidates to function as signaling centers. Table 

5.3 depicts the highly connected genes in the PNEP pathway, which has the highest proportion 

to the input list, along with the number of neighbors for each gene. Figure 5.2 illustrates the 

interaction network underlying the functional relationships in PNEP pathway. Genes are 

connected based on the protein functional interaction network of the Reactome plugin in 

Cytoscape. They are depicted as nodes along with their respective interactions. The highly 

connected genes of the pathway are shown in red. Connections that have known functional 

annotations based on the Reactome plugin are illustrated with arrow shapes, whereas unknown 

interactions are presented as simple lines. It should be noted that the functional interaction 

network of the GT pathway was also derived (Appendix I). We herein present only the 

illustration of the PNEP pathway as it was identified as the most overrepresented pathway 

according to the submitted gene list. The extraction of the most significant genes which 

participate in both pathways along with the DEGs that were identified from the initial dataset, 

constituted the training set for the construction of the DBN interaction network models. 

5.3.2 Prediction of OSCC recurrence through DBN models 

Knowledge from the pathway level, regarding the transcriptomic dataset, was further 

exploited in order to build a model that can assess the prediction of a disease relapse. The 

gene expression values of the significant genes constituted the training set for the DBN 

algorithm. More specifically, the training set consists of the expression values of the DEGs 

in two time slices along with the expression values of the highly connected genes of the 

enriched pathway found in the analysis. 

The leave-one-out cross validation technique was repeated 100 times with 

independent initializations in order to further reduce the bias introduced by the stochastic 

nature of the DBmcmc algorithm [178]. The 100 times were empirically selected in order to 

Table 5.4  Results for each predictive model. 

Dataset Acc. AUC Sens. Spec. F-score 

SAM & PNEP 81.8% 89.2% 76.9% 90.1% 83.4% 

SAM & GT 54.5% 59.3% 54.5% 54.5% 54.5% 
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handle this bias. Due to the limited number of samples in our dataset, cross validation is a 

suitable technique for estimating accurately the performance of model prediction. The 

reported overall accuracy (Acc.) for the prediction of OSCC recurrence is 81.8%, the 

specificity (Spec.) is 90.1%, sensitivity (Sens.) is 76.9%, F-score equals to 83.4% and AUC 

is 89.2% (Table 5.4). In a same manner, we also estimated the prediction of a disease relapse 

through the utilization of the expression values of the highly connected genes that participate 

in the second most overrepresented pathway, namely GT pathway, along with the gene 

expressions of the most differentially expressed ones which constituted the training set for 

the DBN algorithm. Subsequently, the interaction network models were inferred for the 

relapsers and no-relapsers. The Acc. and AUC were 54.5% and 59.3%, respectively (Table 

5.4), indicating that the employed criteria were enough since the second overrepresented 

pathway did not provide higher results. Figure 5.3 depicts the AUC curves for the DBN 

algorithm in the two training sets: (i) the DEGs along with the PNEP pathway’s highly 

connected nodes (SAM & Pre-NOTCH Expression and Processing pathway) training set, 

and (ii) the DEGs along with the GT pathway’s highly connected nodes (SAM & Generic 

Transcription pathway) training set. It should be argued that using the expression values of 

 

Figure 5.3  ROC curves for the performance of the predictive DBN algorithm in two training sets: 

(i) SAM & Pre-NOTCH Expression and Processing pathway training set, and (ii) SAM & Generic 

Transcription pathway training set. 
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the genes that are differentially expressed along with the expression measurements of the 

highly connected genes in the PNEP network, the model achieves much higher accuracy in 

terms of the algorithm’s predictive performance.  

In the same manner, we also estimated the most frequent connections among genes 

in the intra- and inter-slice topology of the model for no relapsers. In addition, we further 

explored whether each one of the predicted interactions, for both groups of patients, have 

been validated experimentally in the literature regarding the OSCC progression and have 

been supported by the Human Protein Reference Database (HPRD) database [259]. 

Table 5.5 and Table 5.6 present the interactions between the nodes of the network 

models as computed by the DBN algorithm for the patients that had and had not suffered a 

disease relapse, respectively. The intra- and inter-slice interactions in the network model 

structure are shown in relation to the training set of significant genes. Specifically, in order 

to further evaluate the inferred interactions among genes, we calculated the number each 

Table 5.5  Most frequent interactions in the DBN model about relapsers. 

RELAPSERS 

Intra-slice interactions 

GeneA GeneB 

THC2447689 NOTCH3 

E2F1 E2F3 

CCND1 E2F1 

TSC1 E2F1 

NOTCH3 CREBBP 

Inter-slice interactions 

GeneA GeneB 

HMCN1 E2F3 

AK023526 CREBBP 

CCND1 EP300 

STX6 EP300 

NOTCH3 E3F3 
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interaction was observed after the 100 iterations of the learning simulation. Thus, we sorted 

the interactions according to their observations after all iterations, and we selected the most 

informative and frequent ones.  

In addition, we further explored whether each one of the predicted interactions for 

both groups of patients, have been validated experimentally in the literature regarding the 

OSCC progression and have been supported by the HPRD database [259]. Considering the 

integration of knowledge from the pathway level for predicting cancer recurrence, we have 

utilized and tested certain pathway interactions separately through the utilization of the 

Reactome pathway database analysis tool. Thus, we were able to identify whether a given 

relationship exists in specific pathways and what kind of relationships occurs among the 

gene sets. Moreover, we also further explored the inferred interactions through the utilization 

of the National Center for Biotechnology Information (NCBI) Gene database [27]. From all 

the detected interactions presented in the current study, it is worth to note that CCND1 → 

EP300 was found to be overrepresented in significant Reactome pathways, such as the PNEP 

Table 5.6  Most frequent interactions in the DBN model about no relapsers 

NO RELAPSERS 

Intra-slice interactions 

GeneA GeneB 

NOTCH2 LEPRE1 

TSC1 LEPRE1 

NOTCH3 HMCN1 

E2F1 LEPRE1 

STX6 THC2344152 

Inter-slice interactions 

GeneA GeneB 

NOTCH4 NOTCH2 

EP300 AK023526 

CREBBP E2F3 

AK023526 LEPRE1 

EP300 THC2344152 
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and the Cell Cycle-mitotic pathways. This interaction has been validated experimentally and 

is supported by the HPRD source [259], as well. Specifically, it has been shown that Cyclin 

D1 (CCND1) gene associates with the C-terminal domain of the p300 transcriptional co-

activator protein (EP300 gene) [260]. In addition, mutations, amplification and 

overrepresentation of the CCND1 gene alter the progression in cell cycle and are observed 

in a variety of tumors; thus, may be partly responsible for tumorigenesis. In [261] the authors 

explored the role of EP300 in tumor progression of OSCC. They suggest that the gene itself 

or one of its targets play a key role in the aggressive phenotypes of the specific disease, based 

on its overexpression and its association with clinical factors in patients suffering from 

OSCC. It should be highlighted that this interaction was identified accurately by the 

algorithm in the inter-slice topology of the model regarding the relapsers. Thus, it constitutes 

a true positive result which has been also verified experimentally and may provide better 

insights into the underlying molecular processes of the disease recurrence. The CREBBP → 

E2F3 interaction was also found overrepresented in the PNEP Reactome pathway. Both 

genes are involved in the NOTCH1 gene transcription. Subsequently, we detected that this 

connection is also supported by [28]. Although this finding has not been validated 

experimentally, it is generally argued that altered activity of the E2F3 transcription factor 

has been observed in several human cancers [27].  

The interaction network prediction methodology was also compared with similar 

works in the literature [174, 177]. We observed that the proposed methodology exhibits 

promising results regarding the combination of gene expression profiles with pathway and 

interaction network analysis for: (i) the identification of altered interactions, and (ii) the 

prediction of a possible disease recurrence. Nevertheless, direct comparison could not be 

achieved since different datasets have been exploited on each work and different predictive 

algorithms have been utilized. Concerning the results of the current methodology, a 

remarkable advantage is the prior knowledge that has been integrated in order to construct 

the predictive model. Time series gene expression measurements from two consecutive time 

intervals were exploited and distinctly expressed genes between the two groups of patients 

have been identified. This knowledge was further analyzed in terms of pathway 

overrepresentation analysis which constituted subsequently the prior knowledge for the 

DBN algorithm. On the other hand, other approaches that have been proposed [174], take 

into consideration only knowledge from biological pathways in order to perform pathway 
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analysis of expression data and further identify significant pathways related to a disease. The 

current work allows for the combination of knowledge from the transcriptomic and pathway 

levels in order to model the prediction of OSCC recurrence through the utilization of a DBN 

model. A future research direction is the enrichment of the dataset with more patient records 

as well as on better handling missing data in the new dataset with imputation techniques 

[142]. Moreover, the new dataset will contribute as a validation set on the currently 

developed predictive model. 

5.4 Conclusions 

In this study, we proposed a methodology that exploits transcriptomic data along with 

pathway knowledge aiming to predict OSCC recurrence through the employment of a DBN 

algorithm. The obtained results indicate that the integration of time series gene expression 

data and of distinctly expressed genes among the two groups of patients can provide better 

knowledge regarding the prediction of a disease relapse. Our methodology can be extended 

to other types of cancer as well as integrate pathway knowledge from various biomedical 

databases in order to further assess regulatory interactions in each biological network. 
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6.1 Introduction 

The complex nature of the global cancer landscape unveils the continuous growth of the 

expected numbers of new cancer cases and deaths [8]. Improved understanding of cancer 

trajectories, from diagnosis to treatment, disease recurrence, late effects and comorbidities, 

could enhance the decision making in healthcare systems, towards a more precise and 

personalized patient management in almost every cancer type. In addition, the elucidation of 

the intertwined mechanisms at multiscale levels (i.e. molecular, cellular, etc.) through in 

silico medicine could empower cancer diagnosis at early stages and accurately predict any 

possible progression, leading to a better design of targeted therapeutic protocols [130].  

In order to uncover the cancer biology across multiscale levels, detailed and 

comprehensive pathway and network-based descriptions with regulatory relationships 

should be considered [262]. Gene regulatory networks have been widely studied for 

deciphering the relationships between transcription factors and their target genes. Modeling 
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the molecular and cellular processes during tumor progression, by developing networks of 

genes regulation, is of paramount interest in cancer genomics [262]. Several methods have 

been reported in the literature for network analysis and the reconstruction of gene regulatory 

networks with reference to the integration of biological data [171, 175, 186]. These studies 

employ gene expression data for inferring gene networks, while the identification of key 

regulatory elements (i.e. transcription factors) is also considered. Therefore, transcription 

factors and gene interactions that may be associated with the disease progression and 

subsequently may contribute to the design of patient oriented therapeutic protocols are 

retrieved. In [186], canonical correlation analysis and DBNs were applied to time series gene 

expression data for the inference of validated gene regulatory networks. In a similar manner 

[171], the construction of gene regulatory networks was achieved by using a Partial Least 

Squares (PLS) based feature selection algorithm. In [175, 180], Bayesian approaches were 

considered for network analysis by employing biological data and especially time series gene 

expression measurements. As aforementioned, among the different methods for modeling 

gene regulatory networks, BNs and DBNs have been systematically used for modeling gene 

expression changes over time [181, 184], in terms of regulatory network structures. These 

approaches with the inherent ability to represent the time-varying behavior of the underlying 

biological network allow for a better representation of spatiotemporal input-output 

dependencies. Therefore, the exploitation of time series data with reference to DBNs has 

been proven a valuable strategy for deciphering stochastic processes, such as gene 

expression. 

With the advent of high-throughput sequencing technologies, multiple genome 

datasets related to the gene expression changes during disease onset and progression have 

been generated. Gene expression patterns extracted with reference to genomic and 

transcriptomic datasets could enhance the identification of differences between cancerous 

and normal cells. Hence, a better classification of cancer patients into distinct groups enables 

the development of more accurate diagnostic and/or prognostic models. In terms of tumor 

classification, several cancer types have been studied by employing microarray gene 

expression data [202]. These studies contributed to the identification of gene patterns and 

revealed the associations of gene expression differences with clinical outcomes. In addition 

to the exploitation of gene expression data for studying the underlying molecular 

mechanisms, the identification of transcription factors which actively regulate and mediate 

the expression of specific genes by their activity is also crucial for cellular processes in the 
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biological systems [263]. It has been shown that a small number of these transcription factors 

can act as regulators. These regulatory molecules are considered as promising drug targets, 

since their alteration can influence the transcriptional mechanisms of the respective 

transcription factors. Subsequently, the combination of gene expression changes with 

transcription factor binding sites (TFBSs) could further contribute to cancer classification in 

order to identify gene profiles which accurately distinguish cancerous samples [264].  

In the present study, gene regulatory networks were built from microarray time series 

gene expression data for cancer classification through DBNs. The linkages between 

important genes, i.e. (i) DEGs, and (ii) their master regulators (MRs), were identified and 

the classification performance of the DBN-based algorithm was further evaluated. 

Statistically significant genes, which have been identified after differential expression 

analysis, were considered for the identification of their regulatory molecules. The novelty of 

the current work pertains to cancer classification through DBN models based on MRs which 

have not been utilized so far for classification and prediction purposes. In terms of time series 

microarray data, our study suggests that the integration of both DEGs and MRs into a DBN-

based methodology could yield better classification results than the combination of DEGs 

into a simple classification scheme. In addition, the exploitation of molecules from the 

pathway level enables researchers to gain better insights into the underlying complex 

molecular processes of cancer. The presented DBN-based classification models demonstrate 

high discrimination and predictive power of cancer and non-cancer samples. The impact of 

investigating the temporal dependencies among genes from time series microarray data is 

also revealed in the current work. As DBNs enable the inference of temporal relationships 

between state variables, they can be considered as a better approximation of the actual 

stochastic process.  

6.2 Materials and Methods 

6.2.1 Transcriptomic datasets 

Microarray time series gene expression datasets were retrieved from the NCBI’s GEO 

functional genomics public repository [102]. In the current study, the selection query of the 

most appropriate datasets in the current study was based on three keywords, i.e. (i) “gene 

expression profiling”, (ii) “time course” and (iii) “cancer type”. The datasets with the highest 
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number of samples and recent published results were finally selected. The R/Bioconductor 

software package GEOquery [265] was utilized to download the indicative GEO Datasets, 

which represent curated collections of biologically and statistically comparable GEO 

samples. The three different cancer types selected to apply our computational workflow 

were: (i) Pancreatic Ductal Adenocarcinoma (PDAC), (ii) Colon Cancer (CC), and (iii) 

Breast Cancer (BR). The respective gene expression profiling studies selected from GEO 

were GSE14426, GSE37182 and GSE5462. These datasets correspond to measurements of 

gene expression in cancerous and non-cancerous tissues and blood samples at different time 

points during the follow-up period. More specifically, in the GSE14426 study a pancreatic 

stellate cell line in plastic culture wells was treated with all-trans retinoic acid (ATRA) for 

5 timepoints: 30 mins, 4 hours, 12 hours, 24 hours and 168 hours, to evaluate the post-

treatment genes’ expression changes. In total, 30 control and ATRA RNA samples were 

used and 48,701 Illumina identifiers were measured in terms of microarray analysis. In the 

GEO study GSE37182, RNA was extracted from sample specimens of 14 patients at four 

post-surgery time-points. These samples were further analyzed for gene expression changes. 

A total of 48,803 Illumina identifiers were studied and a mixed-effect model was used to 

identify the probes with different expression means across the four different time points. In 

the third dataset (GSE5462), sequential biopsies of the same cancers from a group of 

postmenopausal women with large operable or locally advanced breast cancer before and 

after 10 to14 days of treatment with letrozole were taken. In a total number of 58 patients, 

microarray analysis was performed and the expression of 22,283 reference IDs was 

measured. In order to explore the distribution of the values for the samples we have selected 

(i.e. the values of the original submissions), the GEO2R interactive web tool [102] was 

utilized. Assessing the distribution is important to determine the suitability of the selected 

samples for any comparison and for the identification of DEGs. Generally, median-centered 

values are indicative that the gained data are normalized and cross-comparable. 

6.2.2 Time course differential expression analysis of microarray studies  

Differential expression analysis was performed using the R/Bioconductor limma package 

[266] which is an appealing choice to analyze data from experiments involving microarrays. 

Limma operates on a matrix of gene expression values or other genomic feature, where each 

column corresponds to an RNA sample. We extracted genes that have been differentially 
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expressed over time in cancerous and normal samples in order to detect changes of gene 

expression during disease progression or their association with the applied treatment 

protocol. Specifically, transcriptomic datasets were selected for time course differential gene 

expression analysis. Limma operates by fitting linear models to a matrix of gene expression 

values to handle differences in variability among genes and samples. A linear model can be 

considered as: 

𝐸[𝑦𝑔] = 𝑋𝛽𝑔.                                                                                                                   (6.1) 

For each gene 𝑔, we have a vector of gene expression values 𝑦𝑔 and a design matrix 

𝑋 which relates these values to some coefficients of interest 𝛽𝑔. Except gene-wise analysis, 

limma also empowers higher-level analysis of gene expression profiles by gene-wise 

independence or interaction and the decomposition of gene signatures into distinct molecular 

pathways. The utilization of the limma approach facilitated the analysis of genomic 

experiments selected as a whole; thus, any correlation that may exist between the samples 

could be revealed. 

The detection of DEGs in a statistically rigorous manner was achieved by setting the 

FDR threshold to 0.05 [267]. p-values were calculated to detect the statistically significant 

changes in gene expression. For all the datasets considered, the p-value threshold was set to 

0.01. Additionally, to infer the most up- and down-regulated genes the log2 fold change cut-

off was set to 1.5 (for GSE14426) and 0.5 (for GSE37182 and GSE5462 datasets). Different 

cut-off values for the log2 fold change were used since the proposed DBN methodology 

suffers from computational complexity for large number of input genes. Keeping the input 

gene list to a minimum should be a requirement for the efficient design of the proposed 

DBN-based algorithm. Therefore, a list with the most statistically meaningful genes could 

be retrieved.  

6.2.3 Upstream analysis for regulatory molecules  

To enable a promoter-pathway interpretation of the identified genes according to the 

differential analysis workflow, a pathway analysis strategy which is implemented in the 

GeneXplain platform [268] was adopted. MRs that are known to be linked with cancer onset 

and progression were identified. GeneXplain is a commercial online workbench which 

provides several bioinformatics and systems biology functions and enables several standard 
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statistical and systems biology analyses. In the upstream analysis a list of DEGs is considered 

for performing the promoter and pathway analysis. In the first step, potential TFBSs were 

identified in all promoters and enhancers of the DEGs of the experiment under study and in 

a negative control set, as well. Hence, transcription factors which are characteristic of the 

gene set under study and have potentially regulated these DEGs were identified. The 

comprehensive matrix library TRANSFAC was used for the sequence analysis [269]. Step 

1 resulted in several transcription factors possibly responsible for the differential regulation 

of the identified DEGs set. In the next step, signaling pathways which have been shown to 

be activated by the hypothesized transcription factors were reconstructed by employing the 

TRANSPATH database [270]. TRANSPATH contains information about all relevant 

signaling cascades that regulate the activity of the transcription factors. Subsequently, the 

molecules which converge in the selected pathways were considered as master regulators. 

The algorithm for TFBS enrichment analysis, called F-Match, has been described in [270]. 

The aim of this algorithm is to find nodes in the global signal transduction network that may 

potentially regulate the activity of the set of transcription factors found in the first step of the 

analysis. These nodes could be considered as most promising drug targets, since any 

influence on a respective node may switch the transcription mechanisms of several DEGs 

which are regulated by the related transcription factors.  

As mentioned previously, two databases were utilized in the analysis workflow for 

performing the promoter and the pathway analysis, i.e. the TRANSFAC and the 

TRANSPATH databases. The negative control set for each experiment was the set of genes 

which are required for the maintenance of basal cellular functions (i.e. “Housekeeping 

genes”) [270]. The TRANSFAC profile “all Human 1 in 10k base” was also selected. A 

profile is a set of matrices and their cut-offs designed for function-driven searches within 

regulatory regions of genes whose function is partially known. The start locus for detecting 

the promoters was set to -1000 and the end to 100 as annotated in the Ensembl genome 

database [271]. Important regulators were discovered in signal transduction pathways on the 

network of the TRANSPATH database with a default cutoff for Score at 0.2, for FDR at 0.05 

and for Z-Score at 1.0 [270].  

The Score value of each master regulatory molecule reflects how well this molecule 

relates to other molecules in the database, and how many molecules from the input list are 

present in the network of this master molecule. The score is computed for each potential 
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master regulator and it reflects a certain balance between sensitivity and specificity of signal 

transduction from this master node to the downstream effector transcription factors [272]: 

 

𝑆(𝑘) =  ∑
𝑀𝑘

(1+𝑘∗ 
𝑁𝑘

𝑁𝑚𝑎𝑥,𝑘
)∗ 𝑀𝑚𝑎𝑥,𝑘

𝑘=𝑚𝑎𝑥
𝑘=1 ,                                                                                          (6.2) 

where 𝑘 is the radius of pathway steps (i.e. maximal radius) from the master node to the 

effector nodes, 𝑀𝑘 is the number of input transcription factors reached by a signal from the 

master node within 𝑘 steps, and 𝑁𝑘  is the total number of all potential steps from the master 

node to the effector nodes, 𝑀𝑘 is the number of input transcription factors in the database 

reached by a signal from the master node within 𝑘 steps. 𝑀𝑚𝑎𝑥,𝑘  and 𝑁𝑚𝑎𝑥,𝑘 are the highest 

values among all possible master regulator nodes which help to normalize the score in the 

(0,1) interval. The higher this score, the more sensitive and more specific this master 

regulator is for the set of input transcription factors. The parameter 𝑘 is a user-defined 

penalty (default value is 0.1) [272]. The FDR corresponds to the expected proportion of false 

positives (Type I errors). The Z-score value reflects how specific each master molecule is 

for the input list. The higher the Z-score value for a molecule, the more specific this molecule 

is for the input list, and the lesser is the probability to find such a molecule as master 

regulator in another analysis. Score and Z-Score reflect separate characteristics of the 

suggested master regulators.  

Overall, according to the output of the above upstream analysis, the annotated 

regulatory molecules, were characterized by four metrics: (i) Score, (ii) Z-score, (iii) FDR 

and (iv) Ranks Sum [270]. The Ranks Sum score corresponds to a sorting approach which 

combines the Score with the Z-Score. Finally, each identified molecule was ranked upon the 

Ranks Sum score. The lower the Ranks Sum, the more promising in terms of candidate master 

regulator the molecule is. 

6.2.4 Dynamic Bayesian Networks for modeling time series microarray data 

DBNs enable the modeling of stochastic phenomena, the incorporation of prior knowledge 

and the handling of hidden variables. The conditional probability distribution of future states 

within a DBN structure implies the Markov property which states that future events are 

independent of past events given the present.  
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As discussed in CHAPTER 5, DBNs, an extension of BNs, encode the joint 

probability distributions over a set of random variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. To define a 

DBN, the graph structure and the conditional probability distributions at each node should 

be computed. Learning the structure of a DBN corresponds to the specification of the intra-

slice and the inter-slice topologies. It should be noted that the Gaussian distribution is the 

most commonly used approach for defining the probability distribution of a node given its 

parents (with mixture of Gaussians to approximate other continuous distributions being 

another possible choice). There are two different approaches to structure learning: (i) 

constraint-based, and (ii) search-and-score [178]. In the constraint-based approach, we start 

with a fully connected graph, and remove edges if certain conditional independencies are 

measured in the data. This approach has the disadvantage that repeated independence tests 

lose statistical power. In the more popular search-and-score approach, we perform a search 

through the space of possible directed acyclic graphs, and either return the best one found (a 

point estimate) or return a sample of the models found. Since the number of directed acyclic 

graphs is super-exponential in the number of nodes, we cannot exhaustively search the space, 

so we either use a local search algorithm (e.g., hill climbing) or a global search algorithm 

(e.g., Markov Chain Monte Carlo) [273]. As Figure 5.1 illustrates, a typical DBN structure 

with two time slices (𝑡1 and 𝑡2) consists of the intra and the inter-slice topology which are 

represented between the variables 𝜈𝑖,𝑗, where 𝑖 is the number of the variable and 𝑗 the exact 

time slice.  

In the proposed study, DEGs and MRs are the features that were further exploited 

for the inference of DBN models related to the classification problem under study (i.e. 

distinguish tumor samples from normal samples). Gene expression values of both DEGs 

and MRs constituted the training data for our learning algorithm. The classification model 

was implemented in MATLAB using the BNT toolbox [178] and the Dynamic Bayesian 

Markov Chain Monte Carlo (DBmcmc) package. Moreover, the CCA [186] was employed 

to compute the prior knowledge for our DBN modeling approach. This algorithm computes 

potential interactions among targets (i.e. DEGs) and regulators (i.e. MRs) in terms of 

weight vectors which maximize the canonical correlation between two genes. We selected 

this algorithm due to its ability to score potential regulatory relationships in a set of genes. 

These scores are then employed as prior information for the DBN-based algorithm. 

Concerning the classification task, we had to discriminate the cancerous from non-
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cancerous samples. We employed the training dataset (i.e. the DEGs and MRs) to define 

the structure and the parameters of the DBN models with reference to patients and control 

subjects, respectively. The parameters are represented as CPD (Conditional Probability 

Distribution) objects and are specified as conditional linear Gaussian distributions. Leave-

one-out cross validation technique was repeated 100 times with independent initializations 

towards the decrease of bias introduced by the stochastic nature of the DBmcmc algorithm 

[178]. Therefore, we utilized as much data as possible for the training phase, while the 

tests sets were kept mutually exclusive covering the entire dataset effectively. Concerning 

the bias that may be introduced during the training of the DBN models and the variance of 

the estimated performance that may be high due to the leave-one-out cross validation 

approach, the selection of both DEGs and MRs was done based on the whole dataset. 

Hence, the computational complexity was kept low when repeating the whole procedure 

100 times. 

For each case (i.e. sample) the log-likelihood of both DBNs models (cancerous/non-

cancerous) was estimated using the junction tree inference engine [178]. Cases were 

classified as cancerous when the corresponding DBN model had higher log-likelihood given 

the specific case evidence, compared to the non-cancerous one (i.e. the case had higher 

probability to be generated from the cancer probability distribution model). The AUC of the 

classification method was estimated using the vector of classifier predictions scores (log-

likelihood of the two DBN models) given the true class labels (actual patient status).  

6.3 Results 

6.3.1 Time series differential expression analysis 

The list with the most statistically significant genes that have been expressed 

differentially among the groups selected for each dataset was determined according to 

the p-value and log2 fold change cut-offs. Figure 6.1 depicts the volcano plots for each 

microarray dataset. Genes are represented as circles. Red circles correspond to the DEGs 

with p-value < 0.01,  whereas genes with lowest or highest log2 fold change and lowest 

p-values at the same time, are depicted as green circles. The dashed green and blue lines 

indicate the p-value and log2 fold change thresholds, respectively. For GSE14426 the 
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log2 fold change cut-off was set to 1.5, while for GSE37182 and GSE5462 to 0.5 to 

depict the most informative gene set. The FDR cut-off was set to 0.05 to detect the most 

statistically significant genes. 

Based on the literature results of the GSE14426 dataset, two specific DEGs that were 

identified by the authors as statistically significant genes during the disease progression after 

treatment, were also present in our gene list extracted by the limma package. sFRP4 and 

RARβ are the transcripts that have been studied in the literature for their repression and 

progressive increase, respectively. According to the GSE37182 study, the probes that have 

Figure 6.1  Volcano plots for the three microarray dataset considered. Red and green circles indicate 

the most differentially expressed genes and the genes with the highest/lowest log2 fold change, 

respectively. Green and blue dashed lines indicate the p-value and log2 fold change thresholds, 

respectively. 
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exhibited different means of expression across four time points for both normal and tumor 

samples are the histones: (i) HIST1H1D, (ii) HIST1H1E, (iii) HIST1H4E, and (iv) 

HIST4H4. These results are complementary to our findings with the histone protein 

HIST1H2BF involved in our gene list with changes in its expression during the follow-up. 

According to the differential expression analysis of the dataset GSE5462, the nine genes that 

were detected in the literature with significant differential expression are: NUSAP1, 

KIAA0101, TPBG, ZWINT, MLF1IP, CDC2, CCNB1, HMGB2 (downregulated), and 

COLEC12. Based on our results the genes that were found as statistically significant were 

only two: RTCB and ARL3, according to their fold change. 

6.3.2 Promoter and pathway analysis of microarray data  

Promoter analysis was also performed for potential TFBSs identification in combination 

with a knowledge-based analysis of the upstream pathway that may control the activity of 

these transcription factors. The activity of these transcription factors has been shown to lead 

to hypothetical master regulators. We applied this strategy separately to the gene lists 

obtained from the previous step (differential expression analysis) in the current pipeline. The 

significant regulatory molecules were identified by setting the maximal distance of the 

search for MRs equal to 10 steps upstream of the input DEG list. This selection gives a good 

chance to find regulators that are quite distant in the network by considering upstream 

direction from the identified transcription factors. For the DEG set in the pancreatic dataset, 

we found 219 master regulators. For the colon dataset we identified 164 regulators annotated 

with reference to the input gene set and for the third dataset (i.e. breast cancer) 200 MRs 

were selected. To further exploit the large number of MRs annotated for the three gene lists, 

as well as to avoid overfitting during the predictive modeling approach we employed a 

relatively small set of MRs for modeling our data. The output tables were sorted according 

to the Ranks Sum values. This metric suggests molecules with a balance between their well-

studied status and high connectivity to the selected profile (reflected by Score). The 

computed Z-Score reflects the molecule’s novelty and specificity concerning the input DEGs 

set. The top-ranking master regulators obtained from the upstream analysis for the genes 

considered in each dataset are provided in Appendix II. Particularly, the regulators with the 

highest-ranking scores for datasets GSE14426, GSE37182 and GSE5462 were: (i) cyclin B1 

(CCNB1), (ii) RSK2 and (iii) NR1, respectively. Figure 6.2 depicts the identified MRs for 

the lists of up- and down regulated genes in these three microarray datasets. The MRs are 
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depicted at the top-most position of the schematic overview and illustrated in the pink 

rectangle. They connect molecules of up to 10 steps upstream which are represented with 

green rectangles, starting from the identified by the geneXplain platform transcription 

factors sites (blue rectangles). Known complexes are also highlighted in Figure 6.2 (a)-(c), 

by the dark-green hexagonal frames. According to the STRING database that contains data 

on functional interaction networks of proteins [274], cyclin B1 (CCNB1) is essential for the 

control of the cell cycle at the G2/M (mitosis) transition and key predicted functional 

partners are cyclin-dependent kinases, cyclin A2, CDC28 protein kinase regulatory subunit 

 

Figure 6.2  (a) cyclin B1 (CCNB1), (b) RSK2 and (c) NR1 diagrams as presented by the geneXplain 

platform. Known complexes and transcription factors are illustrated according to the identified 

connections with the master regulators. The master regulators are depicted in the pink rectangle. 

They connect molecules of up to 10 steps upstream (green rectangles), starting from the 

transcription factors sites (blue rectangles) identified. Known complexes are also highlighted dark-

green hexagonal frames. 



 

109 

2 and polo-like kinase 1. The ribosomal protein S6 kinase (RSK2) mediates mitogenic 

activation of transcription factors, such as: (i) CREB1, (ii) ETV1/ER81, and (iii) 

NR4A1/NUR77 and operates downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) 

signaling pathway. The predicted functional partners include the cAMP responsive element 

binding protein 1, the Mitogen-activated protein kinase 1, the Tuberous sclerosis 1 and 2 

among others. For the third identified master regulator, i.e. NR1, nucleotide binding proteins 

1 and 2, BRCA1 interacting protein C-terminal helicase 1 and Regulator of telomere 

elongation helicase 1, are among the predicted functional partners according to the protein-

protein interactions network of STRING [274]. Further investigation of the connected 

molecules will improve our understanding concerning the transcriptional pathways 

underlying each tumor development.  

6.3.3 Classification with Dynamic Bayesian Networks 

The identified MRs were further exploited by the DBN-based methodology in order to 

classify tumor samples. Leave-one-out cross validation was employed to evaluate the 

performance of the DBN models [142]. The conditional probability tables for all nodes in 

the intra and inter slices were computed for each DBN model. Based on the models’ 

performance, we were able to classify as correct more than 90% of the test samples in one 

of the three datasets (GSE37182), while both accuracy and AUC metrics were high for all 

the three cancer datasets. Additionally, we used three subsets in each dataset to identify the 

gene list that yields the highest classification accuracy. Specifically, to avoid overfitting due 

to the high number of MRs identified and the small sized datasets considered [143], we 

compared the classification accuracy of the first 10, 15 and 20 MRs extracted from each 

dataset. Keeping the MRs list to a minimum, as in the case of DEGs, should be a requirement 

for our classification algorithm since it suffers from computational complexity for large 

number of input genes. Therefore, this step would preclude its potential success when the 

number of significant MRs is high.  
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We found that in the case of the first 20 highly ranked regulators, highest 

classification accuracies can be achieved. In addition, we performed classification 

experiments based on: (i) the gene list identified during the differential expression analysis 

of each dataset, and (ii) the combination of DEGs along with their identified MRs. Table 6.1 

shows the classification results (accuracy and AUC) with the indicative gene sets that could 

correctly classify the cancerous samples within the three microarray datasets. When the DEG 

sets and the MR sets were employed separately in our DBN algorithm lower classification 

results were retrieved. Figure 6.3 illustrates the ROC curves obtained using the same three 

subsets of each dataset. From Table 6.1 and Figure 6.3, we can conclude that the DBN-based 

algorithm achieved the highest classification accuracy when the list with the DEGs was 

enriched with the identified MRs. Leave-one-out cross validation technique was repeated 

100 times to evaluate the proposed classification method. The overall results obtained for 

each case (i.e. (i) classification results with the DEGs, (ii) classification results with the MRs 

and (iii) classification results for both DEGs and MRs concerning the 3 MR subsets) for each 

microarray dataset are provided in Appendix III. 

6.4 Discussion 

In personalized medicine genomic profiling is becoming ubiquitous to elucidate the 

underlying molecular processes of cancer onset and progression. Several studies contributed 

to the identification of gene patterns and revealed the associations of gene expression 

differences for cancer classification. In the current study, we carried out cancer classification 

Table 6.1  The classification results according to the DBN-based methodology in terms of DEGs, 

MRs and DEGs with MRs sets. Leave-one-out cross validation was used to evaluate the model’s 

performance. 

Input Set GEO Dataset 

 GSE14426 GSE37182 GSE5462 

 Accuracy AUC Accuracy AUC Accuracy AUC 

DEGs 65.00% 0.700 97.14% 0.994 65.76% 0.458 

MRs 55.00% 0.516 97.85% 0.984 61.53% 0.499 

DEGs with 

MRs 
73.33% 0.822 98,57% 0.985 70,77% 0.562 
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on three different time series gene expression profiling research works by utilizing DBNs on 

both tumor and control samples. Based on the proposed methodology and on our results, the 

integration of different data types, from the pathway level (i.e. DEGs and MRs), into a DBN-

based classification scheme could enhance the discrimination of cancer and non-cancer 

samples. We found out that, among the DEGs and their potential regulatory molecules, the 

combination of both associated data sources yields better classification results. Thus, our 

 

Figure 6.3  ROC curves for the classification performance of the DBN-based algorithm for datasets 

(a) GSE14426 (b) GSE37182 and (c) GSE5462, respectively. Three cases are considered, namely: 

(i) DEGs, (ii) MRs and (iii) DEGs and MRs. 
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computational approach reveals the importance of integrating data from the pathway level 

for microarray-based cancer classification. By utilizing the information from transcription 

factors and their MRs, we improved the classification accuracy of cancer samples. Based on 

our results, the current study could be considered as a complementary work in terms of time 

series gene expression analysis and cancer classification through DBNs. We correctly 

classified tumor samples and distinguished them from control samples with high accuracy 

and AUC. Remarkably, for the GSE37182 microarray dataset we were able to classify more 

than 90% of the test set samples with AUC = 0.985. For GSE14426 and GSE5462 datasets 

the classification results yielded accuracies 73.3% and 70.8% and AUCs 0.822 and 0.562, 

respectively. We further compared the proposed classification DBN algorithm with state-of-

the-art classification methods previously reported in the literature in terms of the top DEGs 

in each dataset. The follow-up measurements were considered for each DEGs list. We used 

the significant DEGs to compare the performance of the proposed methodology against well-

known classification algorithms. Naïve Bayes (NB), SVM (polynomial kernel), RF and 

AdaBoost algorithms were implemented. The accuracies of the NB algorithm for the 

GSE14426, GSE37182 and GSE5462 datasets were 66.67%, 96.42% and 66.70%, 

respectively (Table 6.2). The performances of the SVM classification algorithm were 

slightly lower than NB with accuracies 62.50%, 94.64%, and 51.66%, in each case (Table 

6.2). For RF and AdaBoost algorithms the results were slightly higher than NB and SVM 

for the GSE14426 and GSE37182 datasets. It should be noted that leave-one-out cross 

validation was also employed in these experiments to evaluate the performance of the 

classification algorithms and further compare their results with those of the DBN model. 

Here, we used only the DEGs as input to the four classifiers since the significant genes (i.e. 

DEGs) have been commonly used in most approaches for cancer classification.  

In the current study, the novelty consists of the integration of both DEGs and MRs 

for discriminating cancerous from non-cancerous samples. Moreover, we should recall the 

inherent ability of DBNs to model time series microarray data which reveals their potential 

usefulness in modeling gene expression data. 

Additionally, we performed experiments by utilizing both DEGs and MRs subsets 

within the competing algorithms (NB, SVM, RF and AdaBoost) for comparison reasons 

(Table 6.3). The results are slightly different from those presented in Table 6.2, with regards 

to the use of the input data. Although direct comparison with our method might be 
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misleading, due to the static algorithms used in Table 6.2 and Table 6.3, we should note that 

slightly different results were achieved by the selected algorithms for the GSE37182 and 

GSE14426 datasets. 

The identification of genes with differential expression which reflects different 

clinical profiles has been studied for the elucidation of the underlying biological mechanisms 

and disease molecular key pathways. Further exploitation of this type of information through 

computational approaches could provide the means for the classification of tumor samples. 

Towards this direction, the detection of genes which have been up- or down-regulated among 

individuals has been proven valuable for therapeutic protocols in personalized precision 

medicine [275]. We performed microarray differential expression analysis in three 

microarray studies pertaining to the identification of the most informative genes related to 

the diagnosis, prognosis and treatment of different cancer types. Based on our results, we 

found that our extracted lists with the most DEGs in each dataset were complementary to 

the ones identified in the literature. For the pancreatic dataset (GSE14426) we extracted the 

sFRP4 and RARβ genes with the lowest p-values and a log2 fold change > 1.5. These genes 

were also identified in the original study [276]. Differential expression analysis results of 

GSE37182 and GSE5462 showed that the identified significant genes in the current study, 

were also presented in the literature as differentially expressed in colon and breast cancer 

samples. Hence, our results are consistent with those from the respective studies. However, 

direct comparison could not be achieved due to the different parameters and methods utilized 

for the time course differential expression analysis. Concerning the new findings of the 

current analysis, we found that CFI (in GSE14426 dataset), EPS8L2 (in GSE37182 dataset) 

Table 6.2  Comparison results between the proposed DBN-based classification method and the NB, 

SVM, RF and AdaBoost classifiers. For comparison reasons, only the significant genes were 

exploited by the classifiers. Leave-one-out cross validation was employed for performance 

evaluation. 

GEO 

Dataset 

NB SVM RF AdaBoost 
Proposed 

method 

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC 

GSE14426 66.67% 0.833 62.50% 0.625 70.83% 0.813 66.67% 0.785 73.33% 0.822 

GSE37182 96.42% 0.990 94.64% 0.946 96.42% 0.929 98.21% 0.964 98,57% 0.985 

GSE5462 66.70% 0.682 51.66% 0.517 53.34% 0.586 58.33% 0.608 70,77% 0.562 
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and RTCB (in GSE5462 dataset) genes were identified with the lowest p-values as most 

statistically significant; thus, further analysis of these candidate genes may contribute to the 

elucidation of complex molecular processes underlying cancer progression. 

Concerning the upstream analysis in the proposed workflow, we identified the factors 

that trigger the expression of a gene and may be responsible for its transcription. Towards 

this direction, better understanding about their interactions and the biological networks that 

these factors might be involved in, was achieved. We found the TFBSs that are enriched in 

the promoters of the DEGs. This knowledge was then exploited to search for regulatory 

molecules in signal transduction pathways upstream of the identified transcription factors. 

Our results are in accordance with those of other studies exploring genetic variants that may 

regulate gene activity and may influence transcriptional processes and mechanisms during 

cancer development.  

Specifically, the most highly ranked MRs identified for each one of the pancreatic, 

colon and breast cancer datasets were: (i) cyclin B1, (ii) RSK2 and (iii) NR1, respectively. 

According to the biomedical and genomic information from the NCBI and the Online 

Mendelian Inheritance in Man (OMIM) database of human genes and genetic disorders, 

cyclin B1 (CCNB1) is a gene that encodes a regulatory protein involved in mitosis and it 

shows a broad expression in lymph nodes, testis and 21 other tissues (including pancreatic 

tissue). Its prognostic role has been studied extensively in solid tumors revealing the 

potential role to the invasiveness of adenomas. The ribosomal protein S6 kinase A3 (RSK2) 

encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. It 

consists of 2 non-identical kinase catalytic domains while phosphorylates a variety of 

Table 6.3  Results obtained using the NB, SVM, RF and AdaBoost classifiers. Both the significant 

genes and the MRs were exploited by the classifiers. Leave-one-out cross validation was employed 

for performance evaluation 

GEO 

Dataset 

NB SVM RF AdaBoost 

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC 

GSE14426 66.67% 0.882 79.16% 0.792 79.16% 0.875 79.16% 0.882 

GSE37182 99.98% 0.1 100% 0.998 98.21% 0.1 98.21% 0.968 

GSE5462 60.00% 0.672 50.00% 0.500 58.34% 0.568 68.34% 0.734 
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substrates. The activity of this protein has been implicated in controlling cell growth and 

differentiation. It shows a ubiquitous expression in colonic and 25 other tissues. The third 

regulatory molecule identified from the microarray breast cancer dataset, the NR1 gene, has 

been found to encode an NADPH-dependent diflavin reductase. It has been determined that 

it is highly expressed in a panel of human cancer cell lines derived from ovary, breast, 

bladder, lung, colon, liver, and cervical carcinoma tissues. 

Subsequently, we utilized the results from the classification algorithm to accurately 

distinguish patient samples into distinct groups (i.e. control and cancerous). The proposed 

DBN-based approach was developed in terms of the CCA algorithm to infer the potential 

regulatory interactions among a set of (i) DEGs, (ii) MRs and (iii) DEGs along with their 

MRs. This data was employed as prior knowledge for the development of the DBN models 

and for the inference of gene regulatory networks, as well. Our experiments showed that this 

methodology can accurately classify patients into distinct groups with high AUC. We found 

that the integration of both data sources (i.e. DEGs and their MRs) can yield better 

classification results (Table 6.1) in comparison to the results obtained when the data sources 

are employed separately. This is complementary to other published works [262], where the 

importance of deriving information from the pathway level is considered for disease 

classification. Our results extend the findings of previous studies related to cancer 

classification by utilizing the significant genes and their regulatory molecules. This 

knowledge can be employed by researchers in healthcare to better understand the underlying 

disease complex regulatory mechanisms, while the presented methodology could be further 

evaluated in the patient care in terms of classification of new patient samples.  

In the present study, transcriptomics datasets were exploited for the identification of 

DEGs and their master regulatory molecules. However, DNA methylation and copy number 

alteration are also well-known regulators especially in cancer datasets. Based on this 

knowledge, in a future study we plan to exploit additional datasets to perform a more targeted 

upstream analysis. Moreover, the exploitation of data generated from next-generation 

sequencing (NGS) technologies could empower our findings related to the identification of 

gene expression patterns [68, 277] and to the classification problem addressed. The 

acquisition of count data from RNA-Seq analysis in oncology provides comprehensive 

knowledge about the high percentage of actionable mutations in cancer datasets. Hence, the 
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information extracted from the sequence level could be translated into better clinical 

outcomes and personalized treatments. The proposed DBN-based methodology could be 

modified accordingly to increase the classification accuracy by adjusting the algorithm’s 

parameters to new types of data. This would allow the extraction of more precise and robust 

results for the clinical practice.  

6.5 Conclusions 

We herein employed time series microarray gene expression data to identify DEGs with their 

potential MRs for cancer classification. Promoter and pathway analysis of the important 

genes revealed statistically significant regulatory molecules that may contribute to the 

transcription mechanisms of tumor development. We proposed a DBN-based approach 

which can model time series gene expression data for classification purposes. We classified 

more than 90% of test set samples from the GSE37182. Likewise, satisfactory results were 

achieved when the GSE14426 and GSE5462 datasets were utilized, which demonstrates that 

DBN-based models can accurately classify patient samples in terms of the computed 

interactions (conditional probabilities) between genes and their potential regulatory factors. 

Hence, the application of the current knowledge (meaningful and generalized cancer 

classification model) to the healthcare and cancer treatment domains could leverage 

predictive modeling and clinician’s interpretability. 
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 LYMPHOMA DEVELOPMENT RISK 

PREDICTION THROUGH ENSEMBLE MACHINE LEARNING-
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7.1 Introduction 

Sjögren’s syndrome (SS) is a chronic autoimmune disorder mainly manifested with 

symptoms denoting dryness of the internal mucosae as a result of exocrine gland 

involvement. Though SS is traditionally considered a disease of dryness, systemic features 

affecting internal organs commonly occur with lymphoma development being a major 

complication [278].  

Over the last decades a large amount of data revealed several clinical (salivary gland 

enlargement, purpura, Raynaud, tongue atrophy), serological (RF, Ro/La autoantibodies, 

monoclonal gammopathy, low complement C4, serum BAFF) and histopathological features 

(extensive lymphocytic infiltration), as predictors for lymphoma development in the context 

of Sjögren’s syndrome. Of interest, these adverse risk factors are usually present early at 

disease onset implying that a distinct genetic background could rely behind the aggressive 

behavior towards lymphoma development [279]. 
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On this basis, genetic variants of genes implicated in the regulation of chronic 

inflammation such as TNFAIP3 and LILRA3, B cell activation, type I IFN pathways like 

TREX-1 or epigenetic processes have been shown to increase SS related Non-Hodgkin 

Lymphoma (SS NHL) susceptibility especially when the disease onset starts before 40 years 

old, as evidenced by the higher frequencies of the BAFF-R, TNFAIP3 and LILRA3 variants 

in the young onset group. 

Identifying novel biomarkers for elucidating the risk for lymphoma development still 

remains a clinical unmet need in SS. Lymphoma prediction based on clinical and biological 

predictors have been studied widely in the literature in terms of statistical analysis and 

prediction rules [280, 281]. Towards this direction, in [280] a predictive tool in clinical 

practice has been developed for SS-related lymphoma development. Based on the initial 

clinical, laboratory and histopathological variables of SS patients the probability score of 

lymphoma development reached 100% when all 7 risk factors were considered (i.e. salivary 

gland enlargement, lymphadenopathy, Reynaud phenomenon, anti-Ro/SSA or/and anti-

La/SSB as well as RF positivity, monoclonal gammopathy and C4 hypocomplementemia). 

Data mining algorithms have been also exploited for the identification of patient subgroups 

and the prediction of lymphoma. The associations among patient’s demographics, clinical 

and serological variables have been defined and a prediction model based on Artificial 

Neural Networks (ANNs) has been developed able to predict new unseen records with high 

sensitivity and specificity. 

In this study, we aim at identifying the contribution of combined initial clinical, 

serological and histopathological features with genetic variants in predicting lymphoma 

development using a ML-based methodology with ensemble classifiers. We focused on the 

development of this methodology since it can classify accurately new patients according not 

only to their traditional clinical measurements but also to their genetic susceptibility as a 

critical factor that predispose SS complications, such as lymphoma. The proposed 

methodology is based on the GB and Random RF ensemble classifiers for developing the 

predictive models which are characterized by the ability to generalize their decision 

boundaries to regions where there are no available training examples. This type of classifiers 

was selected in terms of the variance and bias estimation which contribute to the expected 

error of a classification model. The novelty of the proposed ML-based methodology 
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pertaining to the potential usefulness of genetics in predicting lymphoma development in SS 

patients. The classification results reported in our study are obtained from stratified 10-fold 

cross validation with the ensemble classifiers outperforming the single LR approach and the 

SVM classifier.  

In the following sections, we first introduce the study cohort and the preprocessing 

steps followed towards the development of accurate predictive models. Next, the proposed 

ML-based methodology in terms of ensemble classifiers is presented. The formulation of the 

learning problem is given along with the background information on GB and RF estimators. 

Based on our results, we demonstrate that the combination of clinical phenotypes with 

genetic variants in SS could further improve the prediction performance of the ML models. 

We anticipate that the current work could provide new insights into the aggressive behavior 

of lymphoma development in SS patients. 

7.2 Materials and Methods 

7.2.1 Study cohort 

Medical records of 143 primary SS patients (SS) without and 64 SS patients with a history 

or a current diagnosis of concomitant B-cell Non-Hodgkin lymphoma (SS NHL), fulfilling 

the revised European/American International classification criteria for SS, were collected 

(Table 7.1). DNA derived from whole peripheral blood of 207 patients with primary SS 

fulfilling the same classification criteria. The patients were genotyped for 13 single 

nucleotide polymorphisms (Table 7.2) which were subsequently extracted and stored at -

20OC upon use at the Department of Physiology, National and Kapodistrian University of 

Athens, Greece. Methods of DNA extraction and genotyping protocols are described in more 

details in [280]. Demographic, clinical and laboratory features were recorded after thorough 

chart review. Lymphoma diagnosis in the pSS-lymphoma group was based on the criteria 

outlined by the World Health Organization classification. This study was carried out in 

accordance with the recommendations of the Ethics Committee of the National and 

Kapodistrian University of Athens (approved No. 6337) with written informed consent from 

all subjects following the Declaration of Helsinki.  
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Information regarding the presence of glandular manifestations such as salivary 

gland enlargement was obtained. Systemic features such as Raynaud’s phenomenon and 

lymphadenopathy were also recorded. Laboratory data included serological characteristics 

such as monoclonal gammopathy, autoantibodies (antinuclear antibodies, anti-Ro/SSA, anti-

La/SSB antibodies, rheumatoid factor [RF], antimitochondrial, and anti-thyroid), 

cryoglobulins, and C3 protein levels. At the level of Minor Salivary Gland (MSG) tissue, 

germinal center formation and the presence of monoclonality (as described in [280]) were 

also recorded. Demographic and clinical characteristics such as: (i) gender, (ii) year of birth, 

(iii) year of disease diagnosis, (iv) age at SS diagnosis, (v) ≥ 40 age at SS diagnosis, (vi) 

lymphoma development and (vii) lymphoma type were also considered.  

7.2.2 Data preprocessing and curation 

Data preprocessing was performed by utilizing an automated framework for evaluating the 

data quality [282]. The main steps followed towards the dataset quality assessment are 

referred to: (i) the detection of missing values in an autonomous way, (ii) the detection and 

removal of outliers, and (iii) the identification of duplicate values and highly correlated 

distributions among variables.  

The data curation framework enhanced our assessment related to the types of 

variables included in the raw dataset and their quality in terms of missing and duplicate 

measurements and outlier’s detection. In the case of missing values handling, we excluded 

subsequently the clinical records that exhibited a percentage of missing values higher than 

90%. The variables within the dataset that also exhibited a percentage of missing values 

higher than 80% were not selected for further analysis. In terms of outliers and duplicate 

values detection, the respective features were not considered in the cleaned dataset. To 

complete any missing value detected within the dataset after the data preprocessing and 

curation step, an imputation transformer was also developed in Python by utilizing the Sci-

kit learn library [283]. The “SimpleImputer” transformer was adopted with strategy “mean” 

for replacing missing values using the mean along the continuous variables, and 

“most_frequent” for each categorical variable. After applying the preprocessing procedure, 

we concluded with 207 patient records consisting of 23 clinical, laboratory, demographic 

and genetic variables. 



 

121 

Table 7.1 and Table 7.2 present the four different categories of the preprocessed dataset 

exploited in the current study. We have removed the duplicate features, the patient records 

with high percentage of missing values and the features detected with outliers, as described 

above. The samples distribution of the categorical features within each class (class 0 = no 

lymphoma development; class 1 = lymphoma development) was described by the 

corresponding percentages, whereas for the continuous variables was described by their 

arithmetic mean and standard deviation values (SD) as well as their minimum and maximum 

values.  

  



 

 

Table 7.1 The variables of the initial demographic, clinical and laboratory findings related to the patients’ samples considered in the current study. The 

mean±SD values and the min/max values were calculated for continuous variables. The respective percentages were also calculated for the discrete variables. 

These values were computed for both classes (i.e. class 0 = no lymphoma development; class 1 = lymphoma development). The undefined percentages for 

categorical variables are also given. 

Category Variable 
Class 0  Class 1 

mean SD min / max mean SD min / max 

Demographic Age at SS diagnosis (years) 50.93 13.38 15 / 74 50.67 14.27 24 / 81 

Category Variable 
Class 0 (%) Class 1 (%) 

False True Undefined False True Undefined 

Clinical features Salivary Grand Enlargement (SGE) 78.32 20.97 0.71 31.25 67.18 1.57 

Raynaud phenomenon 78.35 21.65 0.00 59.37 40.63 0.00 

Lymphadenopathy 86.00 14.00 0.00 54.68 45.32 0.00 

≥ 40 age at SS diagnosis 82.52 17.48 0.00 25.00 75.00 0.00 

Laboratory 

characteristics 

Monoclonal gammopathy 89.51 6.29 4.20 71.87 25.00 3.13 

Anti-Ro/SSA or/and anti-La/SSB 

positivity 
74.12 24.47 1.41 11.00 89.00 0.00 

RF positivity 50.34 41.25 8.41 15.62 82.81 1.57 

Low C4 53.14 45.45 1.41 20.31 76.56 3.13 

  



 

 

Table 7.2 The genetic variants (genes (IDs) and reference numbers (rs#)) related to the patients’ samples considered in the current study. The percentages 

for common genotype (0), heterozygous (1), homozygous (2) and undefined SNPs within both classes are presented. 

Category GENE/ ID rs # 
Class 0 (%) Class 1 (%) 

0 1 2 Undefined 0 1 2 Undefined 

Genetic variant MTHFR/ 4524 rs1801133 39.80 46.20 14.00 0.00 39.06 2.18 8.76 0.00 

MTHFR/ 4524 rs1801131 55.64 32.16 11.20 0.00 53.12 5.93 10.95 0.00 

TNFRSF13C 

(BAFF Receptor)/ 

115650 

rs61756766 93.70 0.30 0.00 0.00 90.60 0.40 0.00 0.00 

TNFSF13B 

(BAFF)/ 10673 
rs1224141 71.32 26.57 1.40 0.71 60.93 35.93 0.00 3.14 

TNFSF13B 

(BAFF)/ 10673 
rs12583006 51.04 35.66 13.30 0.00 53.12 39.06 4.70 3.12 

TNFSF13B 

(BAFF)/ 10673 
rs9514828 15.39 56.64 27.97 0.00 10.93 56.25 29.68 3.14 

TNFSF13B 

(BAFF)/ 10673 
rs1041569 52.44 44.05 3.51 0.00 51.56 39.06 6.25 3.13 

TNFSF13B 

(BAFF)/ 10673 
rs9514827 44.05 44.75 11.20 0.00 35.93 48.43 10.93 4.71 

TREX1/ 11277 rs11797 35.66 44.75 18.90 0.69 34.37 40.62 23.43 1.58 



 

 

TREX1/ 11277 rs3135941 69.23 23.07 7.00 0.70 78.12 17.18 3.12 1.58 

TNFAIP3/ 7128 rs2230926 89.51 9.80 0.00 0.69 93.75 6.25 0.00 0.00 

PTPN22/ 26191 rs2476601 89.51 10.49 0.00 0.00 89.06 10.94 0.00 0.00 

LILRA3/11026 deletion 79.00 14.70 0.00 6.30 87.50 6.25 1.56 4.69 
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7.2.3 Problem formulation 

In a predictive learning problem, lymphoma development, 𝐿, 𝐿 ∈ {𝐿0, 𝐿1}, can be estimated 

as a non-linear parameterized function, 𝐹, of a confined set of features 𝑥 ∈  𝑅𝑑 such that 

𝐹(𝑥) = 𝐿, and 𝑥 = [𝑥1 , … , 𝑥𝑑]. We consider a set of training samples 𝑍 = {(𝑦𝑖 , 𝑥𝑖 , )𝑖=1
𝑁 } of 

known (𝑦, 𝑥) values, where 𝑥 corresponds to the random “input” or “explanatory” features 

and 𝑦 to the “output” or the “response” variable. Each sample (𝑦𝑖 , 𝑥𝑖) associates the input 

vector 𝑥𝑖  ∈  𝑅𝑑 of each patient 𝑃𝑖 with the actual classification of his/her lymphoma 

development status assessed by the clinicians. The main objective is to obtain an estimate or 

approximation of the function 𝐹∗(𝑥) mapping 𝑥 to 𝑦, which minimizes the expected value 

of a loss function 𝐿(𝑦, 𝐹(𝑥)) over the joint distribution of all (𝑦, 𝑥) values : 

𝐹∗ = argmin
𝐹

𝐸𝑦,𝑥 𝐿(𝑦, 𝐹(𝑥)) = arg min
𝐹

𝐸𝑥[𝐸𝑦(𝐿(𝑦, 𝐹(𝑥)))|𝑥 ].  (7.1) 

Commonly, a procedure to restrict 𝐹(𝑥) is the function to be a member of a 

parameterized class of functions 𝐹(𝑥; 𝑃), where 𝑃 = {𝑃1, 𝑃2, … } is the set of parameters 

whose joint values identify individual class members. We consider “additive” expansions in 

the form: 

𝐹(𝑥; {𝛽𝑚, 𝑎𝑚}1
𝑀) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)𝑀

𝑚=1 ,     (7.2) 

where ℎ(𝑥;  𝑎) is a generic parameterized function of the input variables 𝑥 characterized by 

parameters 𝑎 = {𝑎1, 𝑎2, … } and 𝑚 = 1, … , 𝑀, which denotes the 𝑚𝑡ℎ adaptive 

(parameterized) simple function (namely the base learner).  

7.2.4 Cost-sensitive Random Forest Feature Selection and Ranking 

The RF classifier was applied aiming at evaluating the importance of features with reference 

to the classification problem. The “balanced mode” of the RF estimator was selected in the 

current study to automatically adjust weights associated with the class frequencies in the 

training set. The identification of the most important predictor variables which contribute to 

accurate and unbiased predictions of the response variable was achieved. The maximum 

number of features selected after keeping the threshold disabled (i.e. threshold = −∞) was 

also reported with reference to the feature ranking results. 
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According to the binary classification and regression trees and RFs background 

[284], the best split 𝑠𝑡 = 𝑠∗ at each node 𝑡 maximizes the decrease: 

𝛥𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅),      (7.3) 

of some impurity measure 𝑖𝑡 (e.g. the Gini index, the Shannon entropy or the variance of the 

response variable 𝑌). 𝑡𝐿 and 𝑡𝑅 denote the left and right child nodes of node 𝑡 following split 

𝑠𝑡, respectively. The RF algorithm instead of searching for the best split at each node, selects 

a random subset of 𝐾 variables and determines subsequently the best split over these features 

only. To evaluate the importance of a variable 𝑋 when considering aggregation of 

randomized trees for predicting response 𝑌, the weighted impurity decrease is used over all 

𝑁𝑇 trees in the forest [284]: 

𝐼𝑚𝑝(𝑋𝑚) =
1

𝑁𝑡
∑ ∑ 𝑝(𝑡)∆𝑖(𝑠𝑡 , 𝑡)𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚𝑇 ,    (7.4) 

where 𝑝𝑡 is the proportion 
𝑁𝑡

𝑁
 of training samples reaching node 𝑡 and 𝑣(𝑠𝑡) is the feature 

used in split 𝑠𝑡. Equation (7.4) constitutes the Mean Decrease Impurity (MDI) importance. 

By sorting the importance scores 𝑖𝑚𝑝(𝑋𝑗) in descending order, a ranked list of variables, 

𝑅 = [𝑋𝑗1
′ ,…,𝑋𝑗𝑑

′ ] is obtained, where 𝐽′ = [𝑗1
′ , … , 𝑗𝑑

′ ], 𝑗𝑗
′ ∈ [1, … , 𝑑] and 𝑖𝑚𝑝(𝑋𝑗𝑗

′) ≥

𝑖𝑚𝑝(𝑋𝑗𝑗+1
′ ). 

7.2.5 Model training and parameter tuning with ensemble classifiers 

Ensemble methods enhance the classification accuracy by aggregating the predictions of 

multiple base classifiers [142]. During a classification task with ensemble methods a set of 

base classifiers is developed from the training data and the performance of the classification 

model is evaluated by voting on the individual predictions made by each classifier. The 

rationale for ensemble methods is that the error rate during a classifier’s performance is 

considerably lower than the error rate of the base classifiers, considering that the base 

classifiers are not identical but independent.  

Let 𝐷 denote the original training data and 𝑇 be the test set. A training set 𝐷𝑖 is 

created from 𝐷, which size is kept identical with the original data while the distribution of 

records may be different. A base learner 𝐶𝑖 is built from 𝐷𝑖, for 𝑖 = 1, . . . , 𝑘, which denotes 



 

127 

the number of base classifiers. For each test record 𝑥 ∈ 𝑇 to be classified, the predictions 

made by each base classifier 𝐶𝑖(𝑥) are then aggregated by taking a majority vote on the 

individual base learners predictions in order to obtain the class 𝐶∗(𝑥): 

𝐶∗(𝑥) = 𝑉𝑜𝑡𝑒(𝐶1(𝑥), 𝐶2(𝑥), . . . , 𝐶𝑘(𝑥)).     (7.5) 

Ensemble methods achieve better classification results with unstable classifiers 

which are sensitive to minor perturbations in the training phase. Examples of such classifiers 

are the decision trees, the rule-based classifiers and the artificial neural networks. The 

proposed ML-based methodology enables the minimization of errors related to the 

variability of the training samples due to the utilization of ensemble algorithms. The bias-

variance decomposition method is usually applied for the analysis of such types of errors 

concerning the predictions of a classification model [142]. In the current study, the GB and 

RF ensemble classifiers are considered and further implemented based on imbalanced 

datasets towards the development of predictive models with high generalization ability and 

less training errors.  

7.2.5.1 Gradient Boosting (GB) classification model 

Boosting is a known example of ensemble methods that manipulates the training samples 

for improving classification accuracy. The overall classification accuracy is obtained by 

aggregating the predictions of multiple base learners [285]. Boosting methods assign a 

weight to each training sample and at the end of each boosting round they may adaptively 

change the weight. GB for classification approximates a simple parameterized function and 

fits regression tree(s) sequentially on the negative gradient of the specified loss function. 

Furthermore, GB incorporates randomness into the function estimation procedures for 

improving the performance. Based on this knowledge, GB constitutes an appealing choice 

for solving classification problems and building predictive models from an input dataset.  

According to (7.2), the parameters {𝑎𝑚}0
𝑀 and the expansion coefficients {𝛽𝑚}0

𝑀 are 

jointly fit to the training data in a stage-wise manner. Based on an initial guess 𝐹0(𝑥), for 

each 𝑚 = 1,2, … , 𝑀 we have: 

(𝛽𝑚, 𝑎𝑚) = arg min
𝛽,𝑎

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎)𝑁
𝑖−1 ,   (7.6) 

and 
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𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥; 𝑎𝑚).      (7.7) 

According to [285], GB solves equation (7.6) for differentiable loss function 

𝐿(𝑦, 𝐹(𝑥)) with a two-step procedure. In the first step, the function ℎ(𝑥;  𝑎) is fit to the 

current “pseudo”-residuals by least squares: 

𝑎𝑚 = arg min
𝑎,𝜌

∑ [𝑦𝑖𝑚 − 𝜌ℎ(𝑥𝑖; 𝑎)]2𝑁
𝑖=1 ,     (7.8) 

where 𝑦𝑖𝑚 is the current “pseudo”–residuals. Then, given ℎ(𝑥; 𝑎𝑚), the optimal value of the 

coefficient 𝛽𝑚 is determined based on: 

𝛽𝑚 = arg min
𝛽

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−𝑖(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎𝑚))𝑁
𝑖=1 .    (7.9) 

Gradient tree boosting follows this approach considering that the base learner 

ℎ(𝑥;  𝑎) is an 𝐿 terminal node regression tree. In the current study, the ensemble model 

selection procedure reveals the efficiency of the gradient tree boosting classifier, which may 

well reduce model’s variance, noise and bias; thus, minimizing model’s training error. The 

proposed ML-based methodology was implemented in Python by utilizing the Sci-kit learn 

library and the imbalanced-learn toolbox for classification purposes. Gradient tree boosting 

algorithm was nested into an EasyEnsemble [286] random under-sampling scheme to handle 

the class imbalance problem in our dataset. The EasyEnsemble approach exploits the 

samples from the majority class that have been ignored by under-sampling. Given a set of 

minority class samples 𝑃, a set of majority class samples 𝑁, where |𝑃| < |𝑁|, the number of 

subsets 𝑇 to sample from 𝑁 and the number of iterations to train the gradient boosting 

ensemble 𝑠𝑖, EasyEnsemble method randomly samples a subset 𝑁𝑖, |𝑁𝑖| = |𝑃| for learning 

an ensemble of balanced gradient tree boosting classifiers trained on different balanced 

bootstrap samples. The output of EasyEnsemble is a single ensemble with 𝑠𝑖 gradient 

boosting classifiers (“ensemble of ensembles”) which reduces the bias of model performance 

while improving generalization of the decision boundary.  

7.2.5.2 Random Forest (RF) classification model 

RF is a class of ensemble methods which encompasses multiple decision trees using random 

vectors from the original training data [142, 287]. Predictions made by multiple decision 

trees are combined via majority voting aiming at improving the classification accuracy. RFs 
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constitute a combination of tree learners (predictors), where each tree is generated according 

to the values of an independent train set of random vectors. Internal estimates of the 

generalization error of the combined ensemble trees allow the control and monitoring of 

error, strength and correlation. Towards this direction, out-of-bag methods have been used 

aiming at improving internal estimates in relation to the classification accuracy [287]. 

Internal out-of-bag estimates have also applications to the understanding and measurement 

of variable importance. 

For the 𝑘𝑡ℎ tree, a random vector 𝛩𝜅 is generated which is independent of the past 

random vectors 𝛩1, . . . , 𝛩𝑘−1, but with the same distribution. The training set and 𝛩𝜅 are used 

to construct the trees resulting into a classifier ℎ(𝑥, 𝛩𝑘), with 𝑥 being the input vector.  

According to the definition in [142], RF is a classifier consisting of a number of tree-

based classifiers {ℎ(𝑥, 𝛩𝜅), 𝑘 = 1, … }, where {𝛩𝜅} are independent random vectors with the 

same distribution and each tree in the forest obtains a vote for the most popular class given 

input 𝑥. According to [142], it has been proven that the upper bound for the generalization 

error of RFs converges to the following expression, when the number of trees is sufficiently 

large: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 ≤  
�̅�(1−𝑠2)

𝑠2 ,      (7.10) 

where �̅� is the average correlation between the trees and 𝑠 is a quantity that expresses the 

“strength” of the tree classifiers. The strength of a classifier implies its average performance, 

which is computed probabilistically in terms of the classifier’s margin: 

𝑚𝑎𝑟𝑔𝑖𝑛, 𝑀(𝑋, 𝑌) = 𝑃(𝑌�̂� = 𝑌) − max
𝑍≠𝑌

𝑃(𝑌�̂� = 𝑍),    (7.11) 

where 𝑌�̂� is the predicted class of 𝑋 based on the random vector 𝜃 that builds the classifier. 

The higher the margin, the more likely the classifier predicts a new unseen record. 

In the present study, the model selection procedure reveals that RF is also an 

appealing choice for ensemble-based classification purposes in order to learn imbalanced 

datasets and achieve better decision boundaries for the predictive model. The RF algorithm 

was nested into a random under-sampling scheme included in the imbalanced-learn toolbox 
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for handling such datasets. Specifically, the balanced RF classifier was implemented which 

randomly under-samples each bootstrap sample to balance it. Each tree of the forest is 

provided with a balanced bootstrap sample resulting in an ensemble of samples including 

inner balancing samplers.  

7.2.6 Performance evaluation and validation 

To evaluate the classification performance of our proposed methodology six measures 

including balanced accuracy, which deals with balanced datasets, sensitivity, specificity, 

positive predictive value, negative predictive value and AUC were used for both GB and RF 

models.  

An external stratified 10-fold cross validation was applied with reference to the 

feature ranking and the boosting classification scheme in each iteration, allowing for the 

reduction of the models’ variance. The stratified 10-fold cross validator [283] returns 

stratified training folds by preserving the percentage of samples for each class within the 

dataset. We should note that an inner 5-fold cross validation was also applied in the proposed 

ML-based methodology for assessing the exhaustive grid search over specified parameter 

values for each classifier. Using grid search with a nested cross validation for parameter 

estimation ensures the optimization of model’s parameterization. 

7.3 Results 

Table 7.3 and Figure 7.1 present the evaluation performance of the GB and RF ensemble 

classifiers. For the RF classifier both Gini and entropy criteria were applied in order to 

determine the best way to split the samples. These measures are defined according to the 

fraction of samples that belong to class 𝑖 at a given node 𝑡. The best split is then selected 

according to the degree of impurity of the child nodes [142].  

Three input cases were considered in the current study for comparison reasons and 

for assessing the models’ performances. More specifically, the clinical phenotype of each 

patient along with the genetic data were considered (input case 1) for building the proposed 

predictive models and further evaluate their performance. For assessing the potential of 

combining the initial SS patient’s medical features with genetic variants in predicting 
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lymphoma development, we followed the same procedure for input case 2 (the clinical 

phenotype for each patient) and input case 3 (the genotyped data acquired for each patient) 

and evaluated the models’ performances in terms of certain metrics and a hyper-parameter 

optimization criterion (i.e. balanced accuracy). For each prediction model (i.e. RF models 

and GB model) the mean value of each metric is presented along with the computed standard 

deviation.  

We can observe that the combination of the initial clinical, serological and 

histopathological features with genetic variants (input case 1) result in the accurate 

prediction of lymphoma development in SS patients with considerable high balanced 

accuracy for RF Gini (0.7626±0.1787), RF Entropy ( 0.7590±0.1837) and GB 

(0.7780±0.1514) classifiers, respectively (Table 7.3). We should also report for input case 

1, the high results obtained with reference to the sensitivity metric implying the high 

proportion of patients with lymphoma who have been predicted as positive by the classifiers 

(RF Gini classifier: 0.8000±0.3435, RF Entropy classifier: 0.8000±0.3435 and GB classifier: 

0.8309±0.2594) (Table 7.3 and Figure 7.1).  

As illustrated in the confusion matrices Figure 7.1, the GB model could predict more 

subjects as true positives (=104) and true negatives (=53) in comparison to RF Gini and RF 

models. The mean AUC of the models in terms of the sensitivity and specificity results are 

0.7988±0.2186 (RF Gini classifier), 0.7995±0.1917 (RF Entropy classifier) and 

0.8054±0.1570 (GB classifier) which constitute promising results for predicting lymphoma 

development (Figure 7.1). For input case 2 the GB classifier performed better with slightly 

higher mean AUC (0.8215±0.1534) in comparison to the mean AUC of input case 1 

(0.8054±0.1570). The exploitation of only the clinical and laboratory patient records (i.e. 

input case 2) could be comparable with the combination of both genotyped data and the 

clinical phenotypes (i.e. input case 3) towards predicting lymphoma development. However, 

we can observe that the computed sensitivity, positive predictive and negative predictive 

values of the GB model for input case 2 are notably lower in accordance to the respective 

evaluation metrics for input case 1.  

Concerning the exploitation of individual genetic variants for building the predictive 

models (input case 3) the results yielded by the proposed methodology are moderate with 

significantly lower balanced accuracy, sensitivity and specificity in comparison to input 
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cases 1 and 2. Based on this knowledge, we can admit that the combination of both data 

sources (clinical and genetic profiles) could result in more accurate classification results by 

obtaining predictive models with reference to ML techniques. 



 

 

 

Table 7.3  RF Gini, RF Entropy and GB classification results. Outer stratified 10-fold cross validation for evaluating the models’ performances 

and inner 5-fold cross validated grid search for hyper-parameter optimization have been performed for obtaining the classification results. Certain 

evaluation metrics have been computed regarding the models’ performance. The results are presented as mean±2SD. For each input case, 

balanced accuracy was selected as criterion within the grid search procedure. We highlighted in bold the best results obtained by either input 

case 1 (clinical and genetic data), input case 2 (clinical data) and input case 3 (genetic data), for each estimator in order to pinpoint the significant 

findings of the current study. 

Classifier 

input 

case 

# 

Hyper-

parameter 

optimization 

criterion 

Balanced 

Accuracy 
Sensitivity Specificity 

Positive 

Predictive 

Value 

Negative 

Predictive 

Value 

AUC 

mean 2SD mean 2SD mean 2SD Mean 2SD mean 2SD mean 2SD 

RF Gini 

Ensemble 

classifier 

input 

case 1 

balanced  

accuracy 

0.7626 0.1787 0.8000 0.3435 0.7252 0.1702 0.5701 0.1795 0.8974 0.1638 0.7988 0.2186 

input 

case 2 
0.7626 0.1705 0.800 0.3188 0.7252 0.1577 0.5696 0.1856 0.8964 0.1569 0.8043 0.2019 

input 

case 3 
0.5350 0.1500 0.6880 0.3045 0.3819 0.2624 0.3352 0.1347 0.7389 0.1587 0.4986 0.1791 

RF 

Entropy 

Ensemble 

classifier 

input 

case 1 

balanced 

accuracy 

0.7590 0.1837 0.8000 0.3435 0.7180 0.1989 0.5662 0.1868 0.8960 0.1643 0.7995 0.1917 

input 

case 2 
07542 0.1907 0.7833 0.3598 0.7252 0.1577 0.5625 0.2006 0.8900 0.1713 0.8107 0.2040 

input 

case 3 
0.5264 0.1823 0.6428 0.2651 0.4100 0.2907 0.3352 0.1722 0.7142 0.1812 0.4987 0.1557 

GB 

Ensemble 

classifier 

input 

case 1 

balanced 

accuracy 

0.7780 0.1514 0.8309 0.2594 0.7252 0.2398 0.5921 0.2095 0.9099 0.1284 0.8054 0.1570 

input 

case 2 
0.7509 0.1701 0.7833 0.2812 0.7185 0.1630 0.5591 0.1859 0.8844 0.1455 0.8215 0.1534 

input 

case 3 
0.5209 0.1792 0.6880 0.3392 0.3538 0.2872 0.3256 0.1441 0.7279 0.2634 0.4618 0.1996 
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Figure 7.1  The normalized and non-normalized confusion matrices obtained for each classification model. The ROC curves after the 

evaluation of models’ performance are also illustrated. Each row corresponds to the respective classifier’s evaluated performance. In the 

upper side the classification performance of RF Gini estimator is depicted (confusion matrices and ROC curve). In the middle and lower 

side of the figure the classification results of RF Entropy and GB classifiers are presented, respectively. The ROC curves correspond to 

the mean ROC curves and AUC after applying the 10-fold cross validation procedure. The ROC curve in each fold is also illustrated for 

comparison purposes. In addition, the ± 1SD is also given with the mean ROC. 
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Figure 7.2 illustrates the boxplot with mean feature importances according to the 

feature selection and ranking procedure performed with RF selector. Hence, the most 

important features which contribute to accurate and unbiased predictions of lymphoma 

development were identified. We can observe that the 10 most informative features are SGE, 

age at SS diagnosis, low C4, lymphadenopathy, RF plus, BAFF snp2, TREX snp1, 

MTHFR677, TREX snp2 and BAFF snp6. We shall recall that the presented values refer to 

the mean importance rankings.  

7.4 Discussion and Conclusions 

Predicting the risk for lymphoma development remains a clinical unmet need in SS. The last 

decade significant progress has been made towards the understanding of key processes 

underlying B cell lymphomas occurrence through the identification of novel biomarkers and 

the development of prediction scores. However, main clinical and genetic aspects of this 

major complication need to be elucidated for providing a meaningful clinical impact and 

translational findings in the field.  

 

Figure 7.2  Boxplot with the mean feature rankings for each variable considered by the respective 

estimator (i.e. GB). RF feature selection was performed with threshold the “mean” for the computed 

importances and “max_features” equal to the max number of features in the dataset considered at 

the first experiment (input case 1clinical and genetic data). 
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In this study, we highlight the potential of combining the clinical, histological and 

serological parameters with the genetic profile of SS patients for the prediction of 

lymphoma development through a ML methodology consisting of ensemble algorithms. 

GB and RF classifiers were utilized to obtain accurate classification results based on their  

generalization ability and the minimization of errors in the training phase. The 

EasyEnsemble classifier from the imbalanced-learn toolbox was utilized due to the 

imbalanced dataset of the current study. Based on the selected estimators in the inner 

ensemble, the training phase was conducted on different balanced bootstrap samples while 

random under-sampling was considered. Feature selection and ranking was applied in 

terms of the RF selector based on importance weights. The threshold value used for 

feature selection and ranking was set to the maximum number of variables within our 

dataset. The number of features ranked by the estimator was 22, with SGE and age at SS 

diagnosis being the most important features that contribute to the classification of 

patients’ samples (mean ranking of SGE = 0.1446, mean ranking of age at SS diagnosis 

= 0.1347). rs12583006 and rs11797 genetic variants are also included within the first 10 

most informative features contributing to the prediction of lymphoma development (mean 

ranking of rs12583006 = 0.0462, mean ranking of rs11797 = 0.0460). The feature ranking 

results (Figure 7.2) confirmed the identification of SGE and lymphadenopathy as 

independent adverse predictors for NHL development. We should also note that the age 

of patients at disease diagnosis could be a potential predictor for lymphoma development. 

According to published results, mucosa-associated lymphoid tissue (MALT) lymphoma 

occurs in younger pSS patients [288] which indicates the severity of diagnosis at an early 

stage. 

The reported classification results of the proposed methodology are high with 

balanced accuracies of 0.7626, 0.7590 and 0.7780 for RF Gini, RF Entropy and GB 

estimators, respectively. The respective mean AUC obtained by the classifiers are 

considerably high implying the accurate model prediction in terms of sensitivity and 

specificity as presented in Table 7.3 (RF Gini classifier: 0.7988, RF Entropy classifier: 

0.7995 and GB classifier: 0.8054) and Figure 7.1. The mean ROC curves of RF Gini, RF 

Entropy and GB predictive models, with reference to input case 1, are depicted in Figure 

7.3, pinpointing the variance of each curve based on the different subsets created when the 

training sets are splitted. The figures exhibit how the classifiers output is affected by changes 
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in the training data and how different the subsets are from one another according to the cross-

validation procedure. We can observe the low variance which is closely related to the 

robustness of our methodology. 

We can also observe the high results achieved by the three classifiers in terms of the 

negative predictive value metric (Table 7.3). This constitutes a promising impact of our 

methodology in predicting accurately the patients that are found as negatives and have not 

been diagnosed with lymphoma during SS progression. As illustrated in Figure 7.1, the high 

sensitivity values were obtained when both initial findings and genetic variants are exploited. 

This reveals the ability of the developed classification models to predict at high proportion 

the patients who have lymphoma and are truly predicted as positive. To evaluate the 

predictions on the test sets, different scores were also applied besides the balanced accuracy 

criterion, such as the f1 score, the log loss metric and the recall. However, the results 

obtained were similar or with very slight differences in comparison to the balanced accuracy 

scoring parameter. The proposed methodology was also applied to different input cases (i.e. 

input cases 2 and 3) where the clinical and genetic variants were considered separately (Table 

7.3). Obviously, the exploitation of the genotyped data from the patients result in moderate 

classification balanced accuracy related to the risk for lymphoma development. 

On the contrary, individual clinical, serological and histopathological parameters have 

been identified in the literature as major predictors of B cell lymphomas. This is in accordance 

with the reported ML-based classification results (input case 2 in Table 7.3) revealing the 

superiority of collecting both the initial parameters and the genetic data on the disease onset. 

In the present work, we highlight the need for identifying risk clinical phenotypes in 

combination with the patients’ genetic profiles for predicting the development of lymphomas 

which constitutes a major complication of SS. We show that the integration of both the 

patient’s genetic background and the clinical phenotype could enhance the prediction accuracy 

of our ML models while improving disease diagnosis. Apart from the genotyped data coming 

from 13 genetic variants in the current study, the integration of new single nucleotide 

polymorphisms could clearly contribute to the development of more accurate predictive 

models related to lymphoma development with higher sensitivity and specificity results.  

We further validated the methodology with other supervised learning methods used 

for classification, such as SVM and LR. Given the reported results based on the exploitation 

of both data types, we demonstrated that the proposed methodology with the ensemble 
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classifiers outperforms the model performance based on SVM and LR. The reported 

balanced accuracy and AUC for SVM are 0.6395±0.2540 and 0.6934±0.2586, respectively. 

The evaluated performance for the LR predictive model resulted in a balanced accuracy of 

0.7259±0.2087 and an AUC of 0.7962±0.2133. 

Based on the scientific studies published in the field which deal with the underlying 

factors and mechanisms that predispose lymphoma occurrence, we could state that the 

proposed work constitutes a complementary one with considerable prediction results. 

Although novel biomarkers have been identified (i.e. BAFF and TNFAIP3 polymorphisms) 

and validated risk scores have been also developed in terms of clinical parameters, we 

showed that the combination of both data types and the application of ML-based frameworks 

could result in robust predictive models with impact in clinical practice. We should also note 

that the proposed study constitutes a stable methodology by exploiting ensemble classifiers 

and by addressing the class imbalance problem (Figure 7.3). Moreover, the reported 

classification results reveal the ability of the selected estimators to generalize their decisions 

to new unseen records with considerable accuracy and AUC values. The relatively small 

number of SS patients and the class imbalanced problem related to class 1 (i.e. 64 with either 

a history or a current diagnosis of SS NHL) are the main limitations of the current study. 

However, given the rates of unrecognized diagnosis of SS patients in the general population 

as well as the infrequency of SS initial findings in the healthcare sector, the dataset of the 

present study can be considered as one of the largest SS databases.  

According to the reported classification results in the current study we could 

conjecture about the potential of exploiting the clinicogenomic profiles of patients for 

predicting lymphoma development during SS progression. Based on the proposed ML-based 

methodology we demonstrated that ensemble methods could obtain better classification 

results than conventional statistical methods and/or other supervised learning algorithms 

used for the development of predictive models in healthcare. Although lymphoma 

development presents an unmet clinical need in the research field of SS, the international 

efforts among groups and the conduction of SS prospective studies could provide a clinical 

impact to the disease management and the patients’ daily activity by integrating the genetic 

susceptibility profiles alongside the initial clinical findings.  
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Figure 7.3  The calculated mean ROC curve and AUC, with the variance of each curve when the 

training set is split into 10 different subsets. This pinpoints how the estimator output is affected by 

changes in the training data, and how different the splits are from one another in 10-fold cross 

validation. The upper ROC curve corresponds to RF Gini estimator and the middle and lower ones 

to RG Entropy and GB classifiers, respectively. 
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 THESIS OUTCOMES AND PERSPECTIVES 

8.1 Thesis Outcomes 

8.2 Perspectives 

 

 

 

8.1 Thesis Outcomes 

In the realm of data science and precision oncology, AI-based approaches empower cancer 

researchers to extract new meaningful information from large clinical cohorts and molecular 

datasets. The diagnosis, prognosis and treatment of cancer through computational modeling 

have been widely studied in the literature and several ML-based frameworks have been 

developed and tested on high throughput datasets that could radically improve the disease 

management. DNA microarrays and modern sequencing techniques, such as NGS, allow the 

measurement of expression levels of many genes simultaneously, as they change over time 

as well as the identification of genetic mutations among phenotypes. Modeling gene 

expression data and further detect the interactions between genes and functional proteins 

within biological networks could reveal the molecular processes of cancer onset and 

progression. To this end, BNs and DBNs have been proposed for modeling gene expression 

data and inferring their regulatory networks that constitute a paradigm on how molecules 

interact; thus, forming a network of relevant causal interactions. These networks could be 

exploited to identify the changes of connections between genes that contribute to the 

discrimination and classification of different phenotypes. Furthermore, the prediction of 

cancer diagnosis and prognosis based on ML-based schemes that incorporate both feature 

selection and classification algorithms have yielded promising results for accelerating 

decision making in clinical practice and research. What is more, the benefits that ML and 
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data science have brought to cancer research and management allowed to (i) better forecast 

population trends, (ii) deliver higher preventive patient care, and (iii) tailor treatments 

according to each patient profile. 

Towards this direction, the present thesis contributes to the computational modeling 

of cancer diagnosis, prognosis and treatment aiming at developing robust and exploitable 

methodologies that further accelerate the selection of personalized options towards patients’ 

management compromising the quality of life. The modeling of time series gene expression 

data has been studied thoroughly in terms of DBNs development and application to 

microarray datasets. Going beyond the state-of-the-art, this thesis deals with knowledge from 

the pathway level (i.e. regulatory molecules and transcription factors) in conjunction with 

longitudinal data to better predict the patient phenotype and further classify both cancerous 

and non-cancerous samples.  

The first proposed research study utilizes transcriptomic data from different time 

points during the follow-up period of the patients aiming at predicting OSCC recurrence 

through the development of the respective DBN model. The obtained results indicate that 

modeling gene expression data in terms of DEGs among the two groups of patients can 

provide better knowledge regarding the prediction of a disease recurrence. The identification 

of DEGs among patients allowed us to define specific gene patterns that are present to certain 

phenotypes. Moreover, their fusion with knowledge from the pathway level allowed the 

extraction of more accurate DBN models, i.e. gene interactions among the different patient 

groups. 

In the next proposed study, time series gene expression data are exploited this time 

to identify DEGs with their potential MRs for cancer classification. Both promoter and 

pathway analysis are conducted based on the informative genes for extracting statistically 

significant regulatory molecules that may contribute to the transcription mechanisms of 

tumorigenesis. A DBN-based approach is thereby proposed which can model time series 

gene expression data for classification purposes alongside knowledge from the transcription 

factors. We achieved an overall higher classification performance by discriminating more 

than 90% of the test set samples from the first gene expression microarray dataset. Likewise, 

satisfactory results were achieved when the other two datasets were employed in our 

methodology, which demonstrates that DBN-based models can accurately classify patient 
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samples. The estimated interactions (i.e. conditional probabilities) though, among genes and 

their potential regulatory factors could be further examined. Therefore, the application of the 

current knowledge (meaningful and generalized cancer classification models) to the 

healthcare systems and cancer treatment domains could leverage predictive modeling and 

clinician’s interpretability.  

In the final section of the proposed computational approaches to cancer prediction, 

we studied thoroughly the potential exploitation of clinicogenomic profiles of patients for 

predicting lymphoma development during SS progression. Going one step beyond the state-

of-the-art we designed and proposed an ML-based methodology and demonstrated that 

ensemble methods with fusion strategies could obtain better classification results when 

dealing with predictive modeling. The proposed methodology integrates knowledge from 

both the genetic profiles and their clinical findings of the patients and further predicts with 

a good overall performance lymphoma development. The presented ML pipeline assembles 

several steps that can be cross validated together while setting different parameters. 

Moreover, it can be applied to heterogenous datasets across many diseases. Finally, our study 

anticipates that international efforts among groups alongside the conduction of SS 

prospective studies could provide an additional clinical impact to the disease management 

and the patients’ daily activity through the application of predictive models towards 

accelerating cancer diagnosis and prognosis. 

8.2 Perspectives 

Based on the proposed methodologies and the corresponding results of this thesis we can 

further advance our computational approaches as regards to the integration of heterogenous 

data sources and the implementation of integrative ML-based approaches for developing 

multi-modal fusion models towards cancer diagnosis, prognosis. Thus, better treatment 

options could be adopted.  

Concerning the modeling of time series gene expression data and their integration to 

DBN models for knowledge extraction our methodology can be extended to other types of 

cancer and diseases while integrating knowledge from various biomedical databases 

including protein-protein interactions and other omics datasets. Thus, we could further assess 

and estimate the regulatory interactions that may be altered during the disease onset. 
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Moreover, the combination of data from different data sources when dealing with biological 

networks of complex diseases such as cancer could improve drastically our knowledge for 

estimating gene networks which constitutes the gene regulation mechanisms within cells for 

functioning.  

In addition, the integration of pathway knowledge for modeling cancer progression 

could be advanced by elucidating the exact transcription factors (TFs) that are included 

within certain biological processes of cancer cells, identifying the binding sites for known 

TFs and discovering TF binding motifs in genomic regions. Using genome wide data in the 

lab, such as genetic interactions, protein-protein interactions and protein domain similarity 

network data would empower our understanding about the formation of gene regulatory 

interaction networks and how they change over time based on mutations. 

Lymphoma development presents an unmet clinical need in the research field of SS, 

and several studies have been published for deciphering the onset and progression of cancer 

occurrence. On this basis, several clinical variables and genetic variants have been proven 

to increase lymphoma risk development. Moreover, predicting lymphoma in terms of ML-

based methodologies could reveal the adverse risk factors during lymphoma diagnosis, 

prognosis and treatment. We plan to expand our study on lymphoma development prediction 

by means of other well established ML-based pipelines, such as MKL and DL. Apparently, 

Genome Wide Association studies (GWAs) could provide observational studies of genome-

wide genetic variants which can be easily incorporated in our proposed methodology; thus, 

enhancing the identification of new population-based risk genetic variants in SS. Towards 

this direction, the exploitation of large and heterogeneous SS datasets in the future from 

multicenter studies could contribute to the development of more accurate predictive models 

through ML techniques. Furthermore, the rise of omics data and their exploitation in the 

biomedical sciences could permit the identification of key factors involved in 

lymphomagenesis and the detection of high-risk patients at early stages.  

Another brief selection of research directions that we plan to consider for further 

advancing and accelerating the application of ML in precision oncology and increase 

predictive accuracy correspond to the development of integrative models for cancer 

prognosis prediction. On this basis, the integration of heterogeneous data sources would 

allow to design and deploy predictive models for improving cancer management. 
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Specifically, a multi-modal fusion strategy that exploits sparse ensembles based on machine 

learning principles could be designed and deployed for accelerating treatment optimization 

and de-escalation in cancer. A hybrid approach may be adopted for improving cancer 

patients’ therapy response, cancer diagnostics and treatment, and facilitating patient care. In 

order to increase the performance of our future strategy, the predictions of several models 

will be combined in an intelligent way providing a fusion at the decision level. Therefore, to 

enhance computer-aided diagnosis integrative methods such as MKL and multi-modal deep 

learning will be adopted. MKL learning tools will be implemented for building predictive 

models based on multi-view omics data as well as clinical findings. In addition, a deep neural 

network-based multi-modal structure can be followed to integrate the multi-view omics data 

and capture their high-level associations for predicting cancer patients that do respond to 

treatment. A separate subnetwork will be selected for each data view and the output of 

individual subnetworks in higher layers will be then integrated.  

The present thesis deals with the development and application of novel analysis 

methods and algorithms from the field of ML for modeling cancer diagnosis, prognosis and 

treatment. High-throughput data, such as gene expression microarray data are modeled in 

terms of DBNs for cancer classification and prediction. The integration of knowledge from 

the pathway level, such as TFBSs and other regulatory molecules, revealed the superiority 

of combining heterogeneous data sources towards accelerating the progression in precision 

oncology. In addition, cancer risk prediction based on ensemble ML-based pipelines has 

been studied to highlight the potential usefulness of combining clinical findings along with 

the genetic susceptibility profiles of patients for personalized treatment selection and disease 

prevention. 
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APPENDIX I 

The functional interaction network of the GT pathway. Circles correspond to genes with their respective edges/connections. 
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APPENDIX II 

The top-ranking master regulators obtained from the upstream analysis for the genes 

considered in each dataset. 
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Master molecule 
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Master molecule 
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sum 

Master molecule 

name 

Ranks 

sum 

NR1(h) 30 LKB1-

isoform1(h){ace

K48} 

67 PtdIns(3,5)P2 99 

AMPKbeta-2-

isoform1(h) 

31 CLAN(h) 68 Bcl-x(h) 99 

PKAc(h):GSK3a

lpha(h) 

32 14-3-3eta(h) 69 Apaf-1:dATP 100 

PKAc(h):GSK3b

eta(h) 

32 granzymeB(h) 69 PtdIns(5)P 102 

AMPKalpha-

2(h) 

32 ML-IAP(h) 70 proCaspase-

3(h){pS150} 

103 

AMPKbeta-2(h) 32 calpain-4(h) 70 Septin4-

isoform1(h) 

103 

AMPKbeta-1(h) 32 Cytochrome 

C:(Apaf-1) 

71 PtdIns(3,4)P2 105 

PKCzeta{pT410}

:PIP3 

32 c-FLIP-L(h) 72 PtdIns(3)P 109 

AMPKbeta-1(h) 33 Pyk2-

isoform1(h) 

74 PtdIns(4)P 111 

LKB1(h) 34 PHD3(h) 74 VEGF-A(h) 124 

PKACA(h) 38 AKT(v.s.){pT308 74   

thrombin(h) 41 LCMT(h) 74   

LKB1-

isoform2(h) 

46 Hip-1(h) 76   
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thrombin(h) 49 proCaspase-3(h) 77   

D1(h) 50 SK1(h){p} 77   

CAMKKB(h) 51 (Caspase-10)2 77   

Caspase-1(h) 52 CaMKK-alpha-
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zVAD-fmk 53 Ubc5B-
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54 Aven(h) 81   

glycine 56 HGF(h) 82   
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alpha(h) 
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isoform1(h) 

60 dATP 94   
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140 cyclosome(h) 166 

MEG2(h) 102 cyclosome{p}n:C

dc20{p} 

140 TFIIH-CAK(h) 169 

acpp(h) 103 cyclosome{p}n:F

zr:MAD2B 

140 PARP(h) 172 

C/EBPalpha-
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104 cyclinB1(h):Cdk
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pkmyt1-
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Chk1(h){pS280} 109 Cdc25A2(h) 145 ErbB2(h)[261] 182 

cyclosome(h):Cd

c20(h) 

110 Cdk1(h){pY15} 146 Wee1(h):14-3-

3beta(h) 

183 

RASSF1-A(h) 110 E2-C(h) 146 ErbB4(h)[261] 184 

cyclinB2(h) 110 ANAPC2(h) 148 USP44(h) 184 

Cdc25C-

isoform1(h) 

111 Cdk1(h){p} 148 Chk2(h) 185 

ErbB2(h) 114 cyclinB:Cdk1{p

Y15} 

150 LOK(h) 185 

CTAK1(h) 116 cyclinA:Cdk2{p

Y15} 

151 ErbB3(h)[261] 186 

Cdc25B-

isoform3(h) 

117 cyclinA:Cdk1{p

Y15} 

152 Cdc14A2(h) 187 

PKACA(h){pT19

8} 

119 Pin1(h) 155 ErbB1(h)[261] 188 

CaMKII{p} 120 Skp1(h):NIPA 156 alpha5-integrin 190 

cyclinB1-

isoform1(h) 

123 Roc1(h) 156 C/EBPalpha(h) 193 
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CBL-3L(h) 125 p57Kip2(h) 157 plk4-isoform1(h) 193 

Cdk1(h){pT14}{p
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125 Cdc25C(h) 158 plk2(h) 193 

UBP41-
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128 Cdc25C(h){p} 159 plk4-isoform2(h) 193 

APC11(h) 131 cyclosome(h):Cd

c20(h){ub}n 

159 Cdc25B(h) 195 

E2-C-isoform1(h) 131 cyclinB2(h) 159 tPA(h) 197 

UBP41(h) 132 APC1(h): 159 plk3(h) 199 

cyclosome:Cdc20

{ub}n 

133 Cdc25B(h){p} 159 NEK11-

isoform1(h) 
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(MAD2(h))4 136 cyclosome(h) 160 cyclosome(h) 201 

DNA-PKcs-

isoform1(h) 

136 Cdc23(h) 160 Wee1(h) 201 

NR1(h) 137 Cdc25B(h){p} 161 ErbB1-p170(h) 203 

pkmyt1(h) 138 Cdc25C(h){p} 161 PKAc(h):GSK3a

lpha(h) 
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Master molecule 
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sum 

Master molecule 
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Ranks 

sum 

PKAc(h) 204 Chk2-

isoform1(h) 

223 Mps1-

isoform1(h) 

259 

Cdk1-

isoform1(h):cycli

nB1 

204 p38beta(h){p} 224 FOXP3(h) 260 

Wee1-

isoform1(h) 

204 Cdk1-

isoform1(h) 

227 DP97(h) 260 

NEK11(h) 204 HIP14-xbb1(h) 227 Lyn(h){pY508} 260 

Cdc14A(h) 206 APC1(h) 228 E2F-1(h) 261 

APC10(h) 209 CLAN(h) 229 Chk2(h){pT68} 261 

Caspase-1(h) 210 Cdc16(h) 230 Aurora-

A(h){pT288} 

261 
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HAUSP(h) 210 APC5(h) 231 Chk1(h){pS317}{

pS345} 

261 

Cdc25A(h){pS11

5}{pS320} 

210 APC7(h) 231 ATF-3(h) 262 

SLK-isoform2(h) 210 IFNalpha8(h) 231 RPN-II(h) 262 

cyclinB(h){p}:Cd

k1(h) 

212 IFNalpha6(h) 231 NEK11-

isoform2(h) 

262 

ErbB1(h){ub}n 213 IFNalpha5(h) 232 Lyn(h){pY397}{

pY508} 

262 

cyclinB(h):Cdk1

(h) 

214 Cdc23(h) 233 c-Cbl(h) 264 

LOK(h) 214 ANAPC16(h) 233 AKT(h){p} 264 

plk1(h) 215 Chk1-

isoform1(h) 

234 Lyn(h){pY397} 264 

ErbB4(h){ub}n 215 IFNalpha4(h) 234 beta-TrCP1(h) 267 

Cdc27(h) 216 LynA(h) 235 rnf11(h) 268 

plk2(h) 216 cyclinA(h):Cdk1

(h) 

236 TRF2(h) 270 

plk4(h) 216 LynB(h) 237 pot1(h) 272 

Chk2-xbb12(h) 216 huntingtin(h) 237 E-cadherin(h) 276 

Chk1-

isoform2(h) 

216 IFNalpha2(h) 237 FOXO6(h) 276 

Chfr(h) 217 PARP(h) 239 securin(h) 277 

plk1(h) 218 Fzr1-isoform2(h) 247 MUC4(h) 279 

DNA-PKcs(h) 218 Raf-1(h){p} 248 CamKII(h) 280 

SLK(h) 218 Raf-1(h){p} 248 acpp-

isoform2(h) 

280 

Cdk1(h) 220 proCaspase-2(h) 250 GSK3alpha(h) 282 

plk3(h) 220 proCaspase-6(h) 253 BARD1(h):brca1

(h) 

283 

huntingtin(h) 220 Pin1(h) 256 DDB1(h) 285 

Cdc20(h) 222 DNA-PKcs(h){p} 257 brca1(h):BARD1 285 
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(h) 

Lyn(h) 223 beta-TrCP2(h) 258 Caspase-8-

p18(h) 

286 

 

Master molecule 

name 

Ranks 

sum 

Master molecule 

name 

Ranks 

sum 

Master molecule 

name 

Ranks 

sum 

Caspase-8-

p10(h) 

286 E1{ub(1)} 300 cyclinA1soform2 327 

Aurora-

A{pT288} 

287 E1(h){ub(1)} 302 pim1 329 

BARD1(h):brca1

-isoform1(h) 

287 E1:UbcH7 302 pim1-isoform 329 

PP2Cgamma 290 E1:Ubc5A 302 APC4(h) 339 

Cdc25A(h){p} 290 Cas(h) 303 p31-comet(h) 346 

IKK-alpha 291 E1{ub(1)} 304 AMPKalpha-1-

isoform1(h) 

356 

B55A(h) 291 p53-isoform1(h) 306 AMPKalpha-1-

isoform2(h) 

356 

Tome-1(h) 292 p53-isoform4(h) 306 Daxx-

isoform1(h) 

359 

Cdc25A(h){p} 292 p53-isoform2(h) 306 cyclinA(h):Cdk2 384 

HEF1(h) 295 p27Kip1(h) 309 Cks1(h) 390 

E1:Ubc7 297 cyclinB1(h) 318 p107(h) 408 

HIP2(h) 298 mmp2(h) 319 SCF-Skp2(h) 420 

 

GSE37182 

Master molecule 

name 

Ranks  

sum 

Master molecule  

name 

Ranks 

 sum 

Master molecule 

name 

Ranks 

sum 

RSK2(h) 15 Septin4-

isoform1(h) 

103 Cytochrome C 137 

XIAP(h) 49 p70S6K1(h) 106 c-FLIP-S(h) 138 
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XIAP(h) 52 RSK1-

isoform2(h) 

109 Bcl-x(h) 139 

RSK3(h) 52 beta1-integrin(h) 110 CD19(h) 139 

granzymeB(h) 52 Fyn(h)[261] 111 cyclinE(h):Cdk2

(h) 

140 

RSK3-isoform 55 ERK5(h){p} 112 ERK(h){p} 142 

granzymeB(h) 69 CARD4-

isoform1(h) 

113 Caspase-9(h) 142 

Cytochrome 

C(h) 

72 (angiotensin II) 115 RSK2(h) 145 

Caspase-3-

p12(h) 

76 (proCaspase-

9(h))2 

117 ATR(h) 146 

Caspase-3-

p17(h) 

76 TFF1(h) 117 BAP1(h) 147 

cIAP-2(h) 76 MSK1-

isoform1(h) 

117 CUL4A(h) 148 

Caspase-10a(h) 77 zVAD-fmk 118 p38alpha-

CSBP1(h) 

148 

Caspase-8a(h) 79 cIAP-2(h) 118 p38alpha-

CSBP2(h) 

148 

usp13-

isoform1(h) 

79 proCaspase-

3(h){pS150} 

118 p38alpha-

Mxi2(h) 

148 

usp13(h) 79 E2F-7(h) 118 Apaf-1:dATP 152 

Src(h)[261] 80 E2F-8(h) 118 apollon(h) 153 

Apaf-1(h) 86 PRL3(h) 120 MSK1(h) 155 

Cytochrome 

C(h) 

86 Cytochrome 

C(h) 

122 Cytochrome 

C(h) 

156 

proCaspase-3(h) 93 Fzr1(h) 126 XAF1(h) 162 

Smac-alpha(h) 94 rrp1b(h) 127 ATM(h) 164 

Smac(h) 97 Omi(h) 128 Caspase-3(h) 165 

Cytochrome C 98 Smac-

isoform2(h) 

128 RSK2(h) 165 
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Smac-delta(h) 98 NADE(h) 131 PP2A(h) 166 

Aven(h) 99 G{re} 132 Caspase-3-

p20(h) 

166 

Apaf-1L(h) 99 Caspase-9-

p10(h) 

133 Caspase-3-

p19(h) 

166 

AKT(v.s.){pT 99 TFIIH-CAK(h) 134 p38alpha(h) 166 

(Caspase-10)2 100 Caspase-9-

p35(h) 

135 Csk(h) 167 

p38beta1(h) 101 CARD4(h) 137 PP2Calpha1(h) 167 

ERK4(h) 101 proCaspase-

3(h):Hsp10 

137 Wip1(h) 167 

dATP 103 ML-IAP(h) 137 plk3(h) 167 

 

Master molecule 

name 

Ranks 

sum 

Master molecule  

name 

Ranks 

sum 

Master molecule 

name 

Ranks 

sum 

RSK1(h) 168 DDB1(h) 206 Fbw5(h) 258 

CamKII(h) 168 DR4(h) 206 FBXO9(h) 258 

Caspase-6(h) 169 CaMKK 207 ZUBR1(h) 258 

IFNalpha1(h) 170 c-FLIP-L(h) 211 MIB1(h) 258 

plk2(h) 170 OTB1(h) 221 WDR48(h):USP

1(h) 

258 

MAK(h) 170 FAF1(h) 222 alpha4-

integrin(h) 

260 

DNA-PKcs(h) 171 USP28 222 Ubc13 262 

Murr1(h) 171 USP28 222 ATM(h){pS1981 263 

plk4(h) 172 IFNalpha8(h) 224 mgat5(h) 263 

(Caspase-8(h))2 173 IFNalpha6(h) 225 LRR1(h) 273 

p38beta(h) 175 BAP1(h) 225 Bcl-2(h) 276 

TIEG-1(h) 176 IFNalpha5(h) 226 TLR9(h){ub}n 287 

apollon(h) 176 Trx1(h)[80]2 227 Pyk2 293 

plk3(h) 178 PTEN(h) 235 ML-IAP1(h) 295 

RSK1(h){pS221} 179 IFNalpha2a(h) 237 hBre1(h) 295 
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Hip-1(h) 180 rnf5(h) 238 CDCA7L(h) 295 

IFNalpha4(h) 180 Rad-18(h) 239 RARRES1(h) 299 

TOSO(h) 180 FANCL 240 ML-IAP2(h) 302 

IFNalpha2(h) 183 Fbx11(h): Cul-

1(h) 

241 IFNbeta(h) 314 

IMP-1(h) 185 KPC1 242 ATM(h) 328 

USP28(h) 190 ing4(h) 243 ATM(h) 328 

proCaspase-

10(h) 

193 THBS2(h) 248   

Fzr1-isoform2(h) 193 RNF168(h) 252   

p38beta(h){p} 193 vcam1(h) 253   

OGT(h) 195 EULIR(h) 253   

BAP1(h):ASXL1 195 march8 254   

DNA-PKcs 197 brca1-

isoform2(h) 

255   

PTEN(h) 198 rnf5(h) 256   

nanog(h) 202 cyclinE2(h) 257   

RelA-p65(h) 203 RNF8(h) 257   

 

  



 

 

APPENDIX III 

CLASSIFICATION RESULTS FOR THE MICROARRAY DATASET OF GSE14426 PANCREATIC CANCER STUDY 

Differentially 

Expressed Genes 

(Limma analysis) 

Master Regulators (GeneXplain Upstream Analysis) Differentially Expressed Genes with Master Regulators 

27 DEGs 10 MRS 15 MRS 20 MRS 27 DEGs & 10 

MRs 

27 DEGs & 15 

MRs 

27 DEGs & 20 

MRs 

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC 

65,00% 70,00% 50,00% 43,33% 50,00% 51,67% 55,00% 51,67% 71.66% 78.33% 71,68% 85,56% 73.33% 82.22% 

 

CLASSIFICATION RESULTS FOR THE MICROARRAY DATASET OF GSE37182 COLON CANCER STUDY 

Differentially 

Expressed Genes 

(Limma analysis) 

Master Regulators (GeneXplain Upstream Analysis) Differentially Expressed Genes with Master Regulators 

7 DEGs 10 MRS 15 MRS 20 MRS 7 DEGs & 10 MRs 7 DEGs & 15 MRs 7 DEGs & 20 MRs 

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC 

97,14% 99,49% 99,28% 98,54% 97,14% 96,53% 97,85% 98,47% 95,71% 98,78% 97,14% 99,59% 98,57% 98,57% 

 

 



 

 

CLASSIFICATION RESULTS FOR THE MICROARRAY DATASET OF GSE5462 BREAST CANCER STUDY 

Differentially 

Expressed Genes 

(Limma analysis) 

Master Regulators (GeneXplain Upstream Analysis) Differentially Expressed Genes with Master Regulators 

19 DEGs 10 MRS 15 MRS 20 MRS 19 DEGs & 15 

MRs 

19 DEGs & 10 

MRs 

19 DEGs & 20 

MRs 

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC 

65,76% 45,84% 62,69% 45,26% 62,69% 51,53% 61,53% 49,91% 68,84% 50,85% 68.46% 49.55% 70,77% 56,29% 
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