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Abstract

In this thesis the equilibrium and stability properties of a helically symmetric magnetized plasma
with pressure anisotropy and incompressible flow are investigated. Helical symmetry consists of
the most generic case of continuous geometrical symmetry including both the translational and
axial symmetry as special cases. The main novel contribution is the derivation of a generalized
Grad-Shafranov equation governing pertinent equilibria with flow of arbitrary direction, in con-
nection with the steady states of two-dimensional ‘straight stellarators’ as well as of helically
symmetric astrophysical jets. This equation includes six free surface functions and recovers
known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one.
In addition, a new class of analytical solutions of the aforementioned equation is obtained
and specific equilibria are constructed for a plasma surrounded by a fixed boundary, and the
impact of both pressure anisotropy and mass flow on their physical properties is examined.
Also specific families of incompressible magnetohydrodynamic equilibria in which two out of the
magnetic field, velocity, current density and vorticity vectors are specially related, including the
‘force-free’ and Beltrami cases, are studied. Furthermore, the symmetry transformations for
magnetohydrodynamic equilibria with isotropic pressure and incompressible flow with collinear
velocity and magnetic fields introduced by Bogoyavlenskij are generalized in the case of the
respective Chew-Goldberger-Low equilibria with anisotropic pressure. It is proved that the geo-
metrical symmetry of an initial equilibrium can be violated by those transformations only when
the magnetic and velocity fields are purely poloidal. In this case three-dimensional equilibria
from given axisymmetric ones are constructed. Regarding stability, a sufficient condition for
the linear stability of plasma equilibria with incompressible flow parallel to the magnetic field,
constant mass density and anisotropic pressure such that the ratio of the difference between
the scalar pressures in the directions parallel and perpendicular to the magnetic field over the
magnetic pressure remains constant, is derived. This condition is applicable to any steady
state without geometrical restriction and involves physically interpretable terms related to the
magnetic shear, the flow shear and the variation of total pressure perpendicular to the magnetic
surfaces. On the basis of this condition the impact of pressure anisotropy, flow, and torsion
of a helical magnetic axis on the stability properties of a specific class of analytic equilibria is
examined.





Εκτεταμένη Περίληψη

(Extended Summary in Greek)

Είναι γεγονός πως η παγκόσμια ενεργειακή ζήτηση έχει αυξηθεί σημαντικά τα τελευταία

χρόνια, ενώ προβλέπεται πως θα συνεχίσει να αυξάνεται με ραγδαίους ρυθμούς κύρια
λόγω του ολοένα αυξανόμενου πληθυσμού του πλανήτη μας, της συνεχούς τεχνολογικής
προόδου, αλλά και της κλιματικής αλλαγής. ΄Ετσι διαφαίνεται ότι μια από τις μεγαλύτερες
μελλοντικές προκλήσεις για την ανθρωπότητα είναι η ενεργειακή επάρκεια και μάλιστα

με τρόπο φιλικό προς το περιβάλλον. ΄Ολα τα παραπάνω κάνουν την ελεγχόμενη θερμοπ-
υρηνική σύντηξη μια ελκυστική πηγή ενέργειας, η αξιοποίηση της οποίας θα τροφοδοτήσει
την ανθρωπότητα με φθηνή, πρακτικά απεριόριστη και καθαρή ενέργεια.
Η έρευνα στην ελεγχόμενη πυρηνική σύντηξη έχει ξεκινήσει εδώ και περισσότερες από

έξι δεκαετίες όμως ακόμη δεν έχει επιτευχθεί παραγωγή ενέργειας σε μεγάλη κλίμακα.
Αυτό συμβαίνει διότι παραμένουν ακόμη πολλά άλυτα προβλήματα, όπως ο επιτυχής πε-
ριορισμός του πλάσματος ταυτόχρονα με τη θέρμανση και η επίτευξη της ανάφλεξης. Μια
από τις κύριες μεθόδους στην οποία εστιάζεται η έρευνα για τον περιορισμό του πλάσμα-

τος είναι η συγκράτηση του με μαγνητικά πεδία σε κλειστά τοροειδή συστήματα, τα πιο
διαδεδομένα εκ των οποίων είναι το Tokamak και το Stellarator. Το πλάσμα είναι δύσκολο
να παραμείνει απόλυτα ευσταθές καθώς μεγάλα ποσά ενέργειας παγιδεύονται στον πε-

ριορισμένο χώρο των διατάξεων αυτών ικανά να διεγείρουν μια ποικιλία ασταθειών. Ο
μαγνητικός περιορισμός του πλάσματος βασίζεται στην κατασκευή καλά ορισμένων ισορ-

ροπιών, οι οποίες θα πρέπει να είναι μακροσκοπικά ευσταθείς, καθώς και στον περιορισμό
των φαινομένων μεταφοράς.
Η μελέτη της ευστάθειας ή αστάθειας του πλάσματος αρχίζει με τον προσδιορισμό των

καταστάσεων ισορροπίας του. Στις περισσότερες μελέτες κατά το παρελθόν το πλάσμα
θεωρούνταν ώς στατικό και με ισότροπη πίεση. Η περιγραφή τέτοιων ισορροπιών πλάσ-
ματος, στα πλαίσια του μοντέλου της Μαγνητοϋδροδυναμικής (ΜΥΔ) σε αξονική συμ-
μετρία, διέπεται από την γνωστή εξίσωση Grad-Shafranov, μια ελλειπτική μερική διαφορική
εξίσωση (ΜΔΕ) η οποία περιλαμβάνει δύο ελεύθερες συναρτήσεις. ΄Ομως οι σύγχρονες
μέθοδοι που χρησιμοποιούνται για την θέρμανση του πλάσματος, όπως για παράδειγμα
η μέθοδος εμβολής δεσμών ουδέτερων σωματιδίων, δημιουργούν σημαντικές ροές μάζας
και ανισοτροπία πίεσης, ανάλογα με την διεύθυνση της εμβαλλόμενης ροής.
Στη παρούσα διατριβή γίνεται μελέτη της ισορροπίας και της ευστάθειας μαγνητικά

περιορισμένου πλάσματος, ελικοειδώς συμμετρικού, παρουσία ανισότροπης πίεσης και
ροής μάζας. Η ελικοειδής συμμετρία αποτελεί μια γενική περίπτωση γεωμετρικής συμ-
μετρίας η οποία περιλαμβάνει την μεταφορική και την αξονική συμμετρία ως ειδικές περι-
πτώσεις.
Μία από τις κύριες συνεισφορές της μελέτης αυτής αποτελεί η παραγωγή μιας γενικευ-

μένης εξίσωσης Grad-Shafranov που διέπει την ισορροπία ελικοειδώς συμμετρικού πλάσ-
ματος με ανισότροπη πίεση και ασυμπίεστη ροή τυχαίας διεύθυνσης. Αυτή είναι μια
ελλειπτική ΜΔΕ για την συνάρτηση πολοειδούς μαγνητικής ροής ψ η οποία περιλαμβάνει
έξι ποσότητες επιφάνειας, δηλαδή συναρτήσεις των ολοκληρωμάτων του συστήματος. Η
εξίσωση αυτή αποτελεί γενίκευση τόσο των εξισώσεων ισορροπίας ελικοειδώς συμμετρικού

πλάσματος με ισότροπη πίεση, ή στατικού είτε παρουσία ροής, όσο και των εξισώσεων
που διέπουν την ισορροπία αξονικά και μεταφορικά συμμετρικού πλάσματος παρουσία

τόσο ισότροπης/ανισότροπης πίεσης ή/και ροής. Στα πλαίσια της παραγωγής αυτής η
ισότροπη πίεση στα πλαίσια του μοντέλου ΜΥΔ αντικαθίσταται από τον τανυστή πίεσης

Chew-Goldberger-Low (CGL). Ο τανυστής CGL είναι διαγώνιος με στοιχεία τις βαθμωτές
πιέσεις στις διευθύνσεις της κίνησης παράλληλα, P‖, και κάθετα, P⊥, στο μαγνητικό πεδίο.



Ως μέτρο της ανισοτροπίας πίεσης ορίζεται η συνάρτηση σd = µ0(P‖ − P⊥)/B2, η οποία
θεωρείται πως μεταβάλλεται ομοιόμορφα πάνω στις μαγνητικές επιφάνειες (σd = σd(ψ)).
Παράλληλα παράγεται και μια εξίσωση τύπου Bernoulli για την ενεργό πίεση P , η οποία
ορίζεται ως το ημιάθροισμα των βαθμωτών πιέσεων παράλληλα και κάθετα στο μαγνητικό

πεδίο.
Στη συνέχεια, με τη μέθοδο γενικευμένων δυναμοσειρών παράγονται αναλυτικά λύσεις

της γενικευμένης εξίσωσης Grad-Shafranov, με βάση τις οποίες κατασκευάζονται ισορ-
ροπίες πλάσματος σε σχέση με τον μαγνητικό σχηματισμό ‘ευθύ stellarator’. Το ‘ευθύ
stellarator’ αποτελείται από καλά ορισμένες, ένθετες, ελικοειδώς συμμετρικές μαγνητικές
επιφάνειες με αυθαιρέτο σχήμα πολοειδούς διατομής, οι οποίες περιβάλλονται από στα-
θερό σύνορο. Οι σχηματισμοί αυτοί έχουν μη-μηδενική στρέψη και περιγράφουν προσεγ-
γιστικά στο όριο πολύ μεγάλου λόγου όψεων το σύστημα μαγνητικού περιορισμού Stel-
larator. Οι νέες αναλυτικές λύσεις με κατάλληλη επιλογή συγκεκριμένων παραμέτρων
μεταπίπτουν σε γνωστές στη βιβλιογραφία λύσεις εκφρασμένες μέσω κλασικών συναρτήσεων.
Κατόπιν μελετάται η επίδραση τόσο της ροής όσο και της ανισοτροπίας της πίεσης

στα χαρακτηριστικά των νέων ισορροπιών μέσω φυσικών ποσοτήτων. ΄Οσον αφορά τις
μαγνητικές ιδιότητες του πλάσματος διαπιστώνεται ότι η ανισοτροπία της πίεσης δρα

είτε παραμαγνητικά όταν P‖ > P⊥, είτε διαμαγνητικά όταν P‖ < P⊥, ανεξάρτητα από
την παρουσία ροής ή μη. Απουσία ηλεκτρικού πεδίου η παράλληλη συνιστώσα της ροής
δρα παραμαγνητικά και αθροιστικά με την ανισοτροπία πίεσης για σd > 0. Ωστόσο, για
ροή τυχαίας διεύθυνσης η μη παράλληλη συνιστώσα της ροής, η οποία σχετίζεται με το
ηλεκτρικό πεδίο, δρα διαμαγνητικά, με την παράλληλη ροή να ενισχύει την διαμαγνητική
αυτή επίδραση. Επίσης, τόσο η ροή όσο και η ανισοτροπία πίεσης έχουν σημαντική
επίδραση τόσο στην πυκνότητα ρεύματος όσο και στην ταχύτητα, στην παράμετρο β και
στον παράγοντα ασφάλειας.
Επίπρόσθετα μελετώνται ειδικές περιπτώσεις ισορροπιών στις οποίες το μαγνητικό

πεδίο, η ταχύτητα, η πυκνότητα ρεύματος και η στροβιλότητα ικανοποιούν ανά δύο ειδικές
σχέσεις μεταξύ τους, ενώ εξετάζονται οι αντίστοιχες ελικοειδώς συμμετρικές ισορροπίες
με βάση την ειδική μορφή της γενικευμένης εξίσωσης Grad-Shafranov σε κάθε περίπτωση.
Στο δεύτερο κύριο μέρος της διατριβής στα πλαίσια των μοντέλων ιδανικής ΜΥΔ και

CGL μελετώνται οι μετασχηματισμοί συμμετρίας Bogoyavlenskij. Συγκεκριμένα, γενικεύον-
ται οι μετασχηματισμοί που εφαρμόζονται σε αρχική ΜΥΔ ισορροπία με ασυμπίεστη ροή

παράλληλη στο μαγνητικό πεδίο και παράγουν νέα ΜΥΔ ισορροπία με εν γένει συμπ-

ιεστή ροή, στην περίπτωση ανισότροπης πίεσης. Οι νέοι μετασχηματισμοί εφαρμόζον-
ται σε αρχική ισορροπία CGL με ασυμπίεστη παράλληλη ροή στην οποία η συνάρτηση
ανισοτροπίας σd μεταβάλλεται με σταθερό τρόπο πάνω στις μαγνητικές γραμμές και
δημιουργούν επαναληπτικά νέες κλάσεις ισορροπιών CGL στις οποίες τόσο η συνάρτηση
πυκνότητας μάζας όσο και η συνάρτηση ανισοτροπίας μπορούν να μεταβάλλονται πάνω

στις μαγνητικές γραμμές. ΄Ωστόσο, η ροή των μετασχηματισμένων ισορροπιών παραμένει
ασυμπίεστη. Οι μετασχηματισμοί αυτοί μπορούν να εφαρμοστούν σε αρχικά στατική
ισορροπία και να δημιουργήσουν νέες ισορροπίες με ροή, διατηρώντας την τοπολογία των
μαγνητικών γραμμών της αρχικής ισορροπίας.
Ακολούθως, εξετάζεται η δομή των αυθαίρετων βαθμωτών συναρτήσεων οι οποίες

εμπλέκονται στους μετασχηματισμούς, σε σχέση με την τοπολογία του μαγνητικού πεδίου
της αρχικής ισορροπίας και την ύπαρξη μαγνητικών επιφανειών. Αποδεικνύεται ότι σε
όλες τις περιπτώσεις μετασχηματισμών, η γεωμετρική συμμετρία μιας γνωστής ισορροπίας
μπορεί να παραβιαστεί μέσω αυτών αν και μόνο αν αυτή έχει παράλληλη ροή και αμιγώς

πολοειδές μαγνητικό πεδίο, ενώ σε κάθε άλλη περίπτωση οι μετασχηματισμένες ισορροπίες
διατηρούν την αρχική συμμετρία. Στην περίπτωση αυτή κατασκευάζεται τρισδιάστατη
ισορροπία από γνωστή, αξονικά συμμετρική αρχική ισορροπία.



΄Οσον αφορά στην ευστάθεια, μελετάται η γραμμική ευστάθεια ισορροπιών με ροή
μάζας και ανισότροπη πίεση σε σχέση με τις μακροσκοπικές αστάθειες που εξελίσσονται

στην ταχεία κλίμακα χρόνου της ιδανικής ΜΥΔ και είναι πολύ επικίνδυνες για τον πε-

ριορισμό του πλάσματος. Κύρια συνεισφορά της μελέτης αυτής είναι η παραγωγή μιας
σχετικής ικανής συνθήκης ευστάθειας με εφαρμογή μιας Ενεργειακής Αρχής. Η συνθήκη
αυτή είναι άμεσα εφαρμόσιμη σε οποιαδήποτε ισορροπία με ασυμπίεστη ροή παράλληλη

στο μαγνητικό πεδίο, σταθερή πυκνότητα μάζας και σταθερή συνάρτηση ανισοτροπίας,
χωρίς γεωμετρικό περιορισμό. Για την εξέταση της γραμμικής ευστάθειας τέτοιων ισορ-
ροπιών είναι ικανή η μελέτη του προσήμου μιας ποσότητας A η οποία είναι συνάρτηση
φυσικά ερμηνεύσιμων όρων σχετιζόμενων με την μαγνητική διάτμηση, την ροή και την
διάτμηση αυτής, καθώς και με την μεταβολή της ολικής πίεσης κάθετα στις μαγνητικές
επιφάνειες.
Με βάση την συνθηκή αυτή αποδεικνύεται ότι εάν μια αρχική ισορροπία με παράλληλη

ροή, είτε ισότροπη είτε ανισότροπη, είναι γραμμικά ευσταθής, τότε θα είναι επίσης και
όλες οι νέες ισορροπίες που προκύπτουν από την εφαρμογή των μετασχηματισμών συμ-

μετρίας στην αρχική ισορροπία όταν μια εμπλεκόμενη παράμετρος είναι θετική. Τέλος,
η προαναφερθείσα συνθήκη εφαρμόζεται σε γνωστή κλάση ελικοειδώς συμμετρικών ισορ-

ροπιών και μελετάται η επίδραση της ροής, της ανισοτροπίας πίεσης και της στρέψης
ενός ελικοειδούς μαγνητικού άξονα στην γραμμική ευστάθεια αυτών των ισορροπιών.
Αποδεικνύεται ότι τόσο η ροή όσο και η ανισοτροπία πίεσης έχουν είτε σταθεροποιητική

είτε αποσταθεροποιητική επίδραση στην ισορροπία, ενώ επίσης ότι ελικοειδώς συμμετρικοί
σχηματισμοί με μικρότερη στρέψη και μεγαλύτερα μήκη κλίσης (pitch lengths) παρουσιά-
ζουν βελτιωμένα χαρακτηριστικά ευστάθειας.
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1 | Introduction

“Plasma seems to have the kinds of properties one would like
for life. It is somewhat like liquid water -unpredictable and
thus able to behave in an enormously complex fashion. It
could probably carry as much information as DNA does. It
has at least the potential for organizing itself in interesting
ways.”

Friemann Dyson

1.1 Plasma, the fourth state

Upon the primary stages of mankind, man was already familiar with matter in its two first
states, solids and liquids, to very later discover the gases. It was only in the early 20th century
to realize that matter exists in an additional form arrising as the next natural step from solid
to liquid to gas, and with significantly different properties than these states. When a gas
is heated up to the degree that the kinetic energy of its atoms becomes so high that when
they collide with each other their electrons can be stripped away in the process, matter is
formed as a collection of electrons and positive ions, as well as neutral particles. Plasma
constitutes the fourth fundamental state of matter defined as an ionized gas, which is globally
neutral and displays collective behavior. It is the most abundant form of ordinary matter in
the cosmos, as it is estimated that more than 99% of baryonic matter in the visible Universe
is in plasma state, including the Sun and all the stars, as well as the interplanetary, interstellar
and intergalactic medium. On Earth plasmas can be found in a series of natural phenomena,
like the lightning strikes, the electric sparks and the aurora borealis, as well as in numerous
technological applications, including neon lights, plasma displays and thermonuclear fusion
devices. In practice, however, the transition point between the gas and the plasma phase is
not unique, but it is considered that 0.1% degree of ionization gives clear plasma properties,
while 1% degree of ionization means approximately perfect conductivity. In fact, plasma is
typically a good electrical conductor. The degree of ionization for a gas is given by the well
known Saha’s equation [1, 2], which implies that it increases rapidly with the temperature,
while it is inversely proportional to the density of the ionized atoms in connection with the
recombination effect. This explains the fact that the plasma state is less common in the lower
atmospheric levels of our planet.

Plasma consists of a mixture of free oppositively charged particles and strongly interacts
with electromagnetic fields, either applied externally or created by the plasma itself, i.e. charge
separation between ions and electrons give rise to electric fields and charged particle flows give
rise to currents and magnetic fields. A fundamental characteristic of a plasma is its ability to
shield out applied electric fields. Despite the existence of localized charge concentrations, there
are approximately equal numbers of positive and negative charges distributed, so that overall
plasma is quasi-neutral. However, the distribution of these different kinds of particles are not

1



2 1.1. Plasma, the fourth state

necessarily uniform in space and so charge density gradients and fields can still exist within
the plasma. In fact, quasi-neutrality is plausible in large scale lengths, while deviations from
charge neutrality can develop in shorter scales. The limiting distance over which significant
charge separations can occur is the Debye length, which is the smallest macroscopic scale in
the plasma with respect to the dimensions of the system. Whenever external potentials are
introduced, they are shielded out in the Debye scale, so that the plasma is neutral enough
but not to the rate that all the electromagnetic forces vanish. Although in some domains the
Debye length is estimated to be in the order of less than millimeter, i.e. in solar corona and
tokamak discharge, in others, like the solar wind, it can have macroscopic values, and in order
for it to be a statistically valid concept there must be a large number of particles inside the
sheath region.

Plasmas are characterized by a large spectrum of density and temperature values. Indeed,
in the plasma state one can find densities similar to those in all different states of ordinary
matter. However, a fundamental property of the plasma, that distinguishes it from them,
concerns the way in which particles interact with each other. The particles of a neutral
medium mainly interact with direct binary collisions and in a short distance. In contrast, the
charged particles in a plasma predominantly interact through long-range Coulomb collisions,
due to electrostatic interaction. Each particle is simultaneously influenced by a large number
of surrounding particles, and therefore its trajectory is governed by a collective field. When
an electric field is applied to a plasma charged particles will start to move responding to this
field; however, their motion will be slowed down after a transient because of the presence of
collisions, leading to a steady state. This overall dynamics can be represented as an effective
resistivity of the plasma. In a relatively short time scale electrons, which are highly mobile,
will collide with ions as well as with other electrons, therefore leading to an isotropization of
their distribution function, which tends to a Maxwellian. In addition, collisions between the
heavy ions tend to a thermalization of their distribution function in larger timescales, leading
to a momentum exchange. Furthermore, on a much longer timescale, the electrons and the
ions that have thermalized with each other will exchange energy and tend to reach the same
temperature. According to Spitzer’s law [3,4] the resistivity of a plasma is proportional to the
effective electron-ion collision frequency, which in turn decreases with the electron temperature.
Although fully ionized gases are mainly dominated by Coulomb collisions, in weakly ionized
ones collisions with the neutral particles should also be taken into account. However, in order
for an ionized gas to be chacterized as plasma collisions between charged and neutral particles
must not be too frequent.

The earliest studies in plasma physics date back to the 1920’s when few isolated scientists,
among which Irving Langmuir, were performing research both on ionospheric plasmas, because
these were affecting radio transmission, and on gaseous electron discharge tubes at the same
time. Some years later, another pioneer working on plasma physics, Hannes Alfvén, discovered
the fundamental magnetohydronamic waves and proposed that these have an impact on the
dynamics of astrophysical plasmas. Since then, plasma physics has been expanded to the key
physics for the study of several astrophysical phenomena, such as the behavior of the aurora,
the Van Allen radiation belts, the effects of magnetic storms, the formation of astrophysical
jets, the accretion discs of black holes and numerous other. However, the largest development
of plasma physics came after the second world war as an offshoot of the nuclear weapons
programme, when it was proposed that the nuclear fusion reaction that occurs in the stars
could be controlled to make an effective reactor on our planet. Therefore, the strongest drive
to the study of plasma physics has been the production of a clean and sustainable energy
source that could cover the needs of a growing world population.
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1.2 Thermonuclear fusion and magnetic confinement

The global demand for energy and especially electricity, has been increasing and will continue
to increase rapidly, due to the development of civilization, due to population expansion, as well
as due to climate change. As a consequence, the demand for fossil fuels, especially petroleum
and gas, is everyday growing, and it is estimated that after it reaches a peak in the near
future, their world reserves are going to be depleted within a century. At the same time, the
renewable sources of energy, towards which an enegy shift is taking place, are not expected
to have practically the potential of completely covering the fastly growing energy needs. On
account on these facts, it seems that nuclear energy has a key role to play in our energy future
as a stable and always available source, even when the wind is not blowing and the sun is not
shining. Fission reactors are already being exploited and have an important contribution to
the world energy reserves. However, the waste produced in vast amounts from such nuclear
power stations are radioactive and their safe disposal is very difficult and expensive. Although
experts are working on designing safer and more efficient fission reactors, the quantities of
the related fuels would still not be enough, if a time span of several centuries is considered.
A possible alternative, into which the scientific- and not only- community is vast devoting, is
nuclear fusion.

Nuclear fusion is the same process that powers the sun and every other star in the universe,
which can be viewed as ‘natural fusion reactors’. In a fusion reaction, two light atoms fuse
together to make a heavier one. To make the nuclei come close enough to each other and
overcome the electrical repulsive forces they need to collide at a very high speed. This means
that the plasma needs to have a very high temperature. Once the nuclei fuse, the process
releases a large amount of energy which is potentially inexhaustible because it uses the most
abundant element in the universe, hydrogen. In the sun 600 million tons of hydrogen is fused
into helium each second due to the huge gravitational pressures and high tempreratures that
exist there, and it is the energy from this process that sustains life on our planet. Since
scientists first figured out what was causing the sun to shine they were inspired of harnessing
this energy as a clean source, by achieving thermonuclear fusion in a controlled manner on
Earth. However, in laboratory the hydrogen-hydrogen reaction would be impractical since it
would require too much energy, and thus, lighter isotopes, such as Deuterium (D) and Tritium
(T), are used. The D-T reaction, 2

1D + 2
1T → 4

2He (3.5MeV ) + 1
0n (14.1MeV ), has the

highest cross-section and is the one to be undertaken in the first stages of development; this
process needs a temperature of 100 to 150 million degrees Centigrade, which are higher than
the temperatures in the core of the sun, and in which temperature matter is in plasma state.
Despite the important advantages of nuclear fusion such as the abundance of fuel (Deuterium
and Tritium are extracted and generated by sea water and lithium), the absence of greenhouse
gas emissions, and the absence of hazards such as dangerous accidents in power plants and
long-lasting radioactive waste products, achieving controlled thermonuclear fusion still remains
an open issue.

The efficiency and self-sustainment of a nuclear fusion reaction relies on the simultaneous
achievement of very high plasma temperature, T , at which the charged particles can overcome
their repulsive forces, of sufficiently large density of fuel ions, n, as well as of sufficient energy
confinement time, τc, which can be interpreted as the time of the retainment of energy before
being lost. Maintenance of these conditions relies on the ratio of the thermal energy per
unit volume, nT , which decreases by heat condunction and by particle losses, as well as on
the power input. The Lawson criterion [5] states that in order for a fusion reaction to be
energetically favourable the rate of the produced energy must be higher than the energy loss,
and has to be satisfied for a successful operation of a fusion reactor. The fusion energy is
three orders of magnitude higher than the mean thermal energy, and thus, τc has to be not
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Figure 1.1: The combination of toroidal, Bt, and poloidal, Bp, magnetic fields results in a
twisted, helical magnetic field which is essential for confinement in toroidal geometry.

less than 10−3 of complete burn time. As a result, for the D-T self-sustained reaction, and for
a temperature of T ∼ 10 keV , the necessary condition nτc ≥ 1020m−3s has to be satisfied.
The reduction of energy and of particle losses, and the achievement of sufficiently high energy
confinement times, indicate that the plasma should be heated and confined in a bounded
volume. However, no known material enclosing the plasma volume can withstand the huge
temperatures into which the plasma is heated.

At present, the major research effort in the area of controlled thermonuclear fusion is
focused on the magnetic confinement fusion (MCF) technique, in which strong magnetic
fields are used to confine the hot plasma, isolating it from the cold vessel walls. The MCF
devices most actively studied are the toroidal configurations not having an open end. Toroidal
geometry came as a replacement of the first studied linear (cylindrical) devices, which suffered
from plasma leaking out at their ends. In the simple toroidal field, ions and electrons drift in
opposite directions due to the gradient of the magnetic field, B∗. This drift causes charge
separation that induces an electric field, E∗, directed parallel to the major axis of the torus.
If the magnetic field is purely toroidal, then a drift velocity perpendicular to the resulting
subsequent E∗ × B∗ field will result, which will point horizontally. So the plasma will very
quickly drift straight to the outer walls of the device. In order to mitigate this tendency, it
is necessary to connect the upper and lower parts of the plasma by lines of magnetic force
thus leading to a short circuit of the separated charges along these field lines. Therefore,
the combination of poloidal and toroidal fields tends to reduce the tendency of the plasma to
drift to the walls, that would exist due to the non-uniform toroidal field, and the geometry
enables longer confinement times for the plasma. Consequently, a twisted, helical magnetic
field as that shown in figure 1.1 is essential to the equilibrium of toroidal plasmas. Such a
field is characterized by the so called rotational transform, which can be roughly defined as
the poloidal twist of the field lines round the short direction of the torus, while revolving round
the long way around it. Toroidal devices may be classified according to the methods used to
generate this rotational transform.

The most promising devices, into which the major scientific research is focused, are the
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Tokamak and the Stellarator, both of these concepts being studied for almost half of a century.
In a Tokamak device the twist of the magnetic field is produced by a toroidal plasma current
driven inductively by an external coil. Although this fact leads to a simplified geometry,
since the Tokamak is axisymmetric, the generation of the toroidal current by a transformer
action makes it difficult to operate in steady state, as well as vulnerable to current driven
instabilities. On the other hand, in a Stellarator the rotational transform is produced by
external non-axisymmetric coils. Every Stellarator has its own symmetry, consisting of a
different number of identical parts that are connected together, denoting the number of field
periods, and of a non-planar magnetic axis. Each of the external helical windings has to be
designed and positioned properly in every one of these field periods. Despite its complex
geometry, a Stellarator is inherently current free, and thus, able to operate in steady state.
A general comparison between Tokamak and Stellarator devices can be found in [6, 7]. The
largest Tokamak device, ITER, is now being under construction in Cadarache, France, and
is expected to start operating within the next decade, while the largest fusion device of the
Stellarator type is the Wendelstein 7-X (W7-X), being already in operation in Greifswald,
Germany. Both of these devices are characterized as experimental fusion reactors and not as
functioning power plants, but their possible success is expected to bring humanity a step closer
to achieving the dream of controlled thermonuclear fusion.

1.3 Plasma modeling
A plasma consists of charged particles which move under the effects of the electric and mag-
netic fields that they have themselves generated, as well as under the effects of externally
applied fields, so that in general the equations of motion together with the Maxwell equations
determine its dynamics. The Maxwell equations in SI units are the following

∇ · E∗ =
$

ε0

, (1.1)

∇ ·B∗ = 0, (1.2)

∇× E∗ = −∂B∗

∂t
, (1.3)

∇×B∗ = µ0J
∗ + ε0µ0

∂E∗

∂t
, (1.4)

where E∗(r, t) and B∗(r, t) are the electric and the magnetic field, while $(r, t) and J∗(r, t)
are the charge and the current density in terms of position and time; ε0, µ0 are the electric
and magnetic constant permeabilities, satisfying the relation c2 = (ε0µ0)−1. In order for
such a system to be closed the sources ($, J∗) have to be specified in terms of the fields
(E∗, B∗). According to the Newton’s law, once the forces, Fj, that act on each plasma
particle, j = 1, 2, ..., N , are known, then the velocity, υj, and the position, rj, of all the
particles are also known; therefore the charge density and the current density of the plasma
can be evaluated

$ =
N∑
j=1

qjδ(r− rj), J∗ =
N∑
j=1

qjυjδ(r− rj). (1.5)

In fact, solving self-consistently the kinetic equation together with equations (1.1)-(1.4) is
much more tougher because the spatial dependence of the fields appearing in the Lorenz
force is not known from the outset. One could expect that this description would be able
to represent the evolution and the motion of all the charged particles consisting the system
in the most complete way, once a given set of initial conditions are given. However, such a
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description is non practical, since it is impossible to determine the position and the velocity
of the huge number of particles being present in a fusion experiment, even by using advanced
supercomputers. In fact the self-consistent solution of equations (1.1)-(1.5) is much more
complicated because the magnetic force depends on the particle velocity, υj. Also, such a
description lacks rigorous treatment of various atomic processes, i.e. radiation emittions, as
well as of phenomena for which quantum description is required. For this reason approximation
schemes based on the application of different self-consistent or less self-consistent models, valid
for different time and length scales, are employed to describe plasma dynamics.

1.3.1 Kinetic description
Kinetic theory provides a statistical description of the very large number of interacting particles
constituting the plasma by the means of smooth distribution functions. From a microscopic
viewpoint the description of the collective behavior of the plasma accounts on the treatment
of the particles in the continuum limit as a whole, called also microfluid by averaging over
all possible microstates, and not individually. The distribution function fα(r, υ, t) determines
how the particles of each species-α, α = i, e, for an ion - electron plasma, are distributed in
the six-dimensional phase space (r, υ) at an instant in time. Note that in general, there may
exist different species of ions, with different charges and different masses in a plasma. The
evolution of the distribution function is described by the Boltzmann’s equation

∂fα
∂t

+ υ · ∇rfα +
qα
mα

(E∗ + υ ×B∗) · ∇υfα = C[fα], (1.6)

where qα and mα denote the charge and the mass for each species, while C[fα] is the so-
called collision operator that is associated with the evolution of the distibution function due to
the particle collisions. The Boltzmann equation (1.6) states that the derivative, with respect
to time, of the distribution function, depends on the streaming of particles in configuration
space, on the streaming in velocity space due the long-range electromagnetic forces, and on
the short-range forces that are associated with collisions. Therefore, kinetic theory provides
a distinction between the effects of long-range and short-range interactions. As concerns the
collision operator, it is usually constructed by taking into account that particles of one species
interact with particles of the same as well as of different species, but its form is not unique. It
is an objective of kinetic theory to specify C[fα] in order for the respective effects to be taken
into account in collisional plasmas. Examples of exact expressions of the collision operator
are the Landau [8], the Lenard-Balescu [9, 10], and the Bhatnagar-Gross-Krook (BGK) [11]
operators. As already mentioned, while in some plasmas as the low density, weakly ionized
ones, collisions may play an important role, in highly ionized ones they can become negligible.
Also, recall that the Spitzer law implies that the collision frequency decreases with the plasma
temperature, specifically as T−3/2, and thus, in high temperature plasmas as the ones in
nuclear fusion, collisions can be neglected. In such applications the collision term of equation
(1.6) can be approximated with zero, and the evolution of the distribution function for each
species can be accurately described by the Vlasov equation

∂fα
∂t

+ υ · ∇rfα +
qα
mα

(E∗ + υ ×B∗) · ∇υfα = 0. (1.7)

Equation (1.7) does not imply the absence of interactions; it implies that the charged particles
interact through the dominant long-range Coulomb collisions.

Either for a collisional or a collisionless plasma, the solution of the Boltzmann (1.6) or
the Vlasov (1.7) kinetic equations for the distribution function is not sufficient to completely
describe the dynamics of the system. In order to complete the equations the following closures
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for the sources are necessary

$ =
∑
α

qαnα, J∗ =
∑
α

qαnαvα, (1.8)

where nα and vα are the particle density and average velocity for each species, and which have
to be expressed in terms of fα. Therefore, equations (1.1)-(1.4) and (1.8) together with either
(1.6) or (1.7) complete the kinetic theory equations. The kinetic description is very detailed
and captures effectively most of the physical phenomena in a plasma. However, solving the
kinetic equation self-consistently with the Maxwell ones is a tough, complicated task which
even numerically becomes extremely expensive (in time). As a result, there is the need to
come up with simpler models, such as fluid-like models, in order to describe the dynamics of
a plasma.

1.3.2 Fluidistic description
In a fluid description the plasma is treated as a continuous medium and is described by well-
defined macroscopic quantities, such as density, pressure, mean velocity and temperature,
which are indeed measurable in related experiments. Different models employed in such an
approach are the multi-fluid model, upon which the plasma is considered to consist of two
or more co-existing fluids for each different particle species, and the magnetohydrodynamics
model, in the framework of which the plasma is treated as a single electrically conducting fluid.

The multi-fluid equations are derived by taking the moments of the Boltzmann equation and
are obtained upon properly chosen velocity dependent functions, weighted by the distribution
function, and integrated over the velocity space. These equations include a number of fluid
variables for each species α, as the particle number density, nα, the average velocity, vα, the
thermal pressure tensor, P∗α, and the heat flux tensor, Tα, defined as follows

nα(r, t) =

∫
fα(r,υ, t)dυ,

vα(r, t) =
1

nα

∫
υfα(r,υ, t)dυ,

P∗α = mα

∫
(υ − vα)(υ − vα)fα(r,υ, t)dυ,

Tα = mα

∫
(υ − vα)(υ − vα)(υ − vα)fα(r,υ, t)dυ.

(1.9)

By taking the zeroth, first and second order velocity moments of the Boltzmann equation, we
come up with a continuity, a momentum, and an energy equation for each species, respectively.
These are of the form:

∂nα
∂t

+∇ · (nαvα) = 0, (1.10)

mαnα
Dvα
Dt
− qαnα(E∗ + vα ×B∗) +∇ · P∗α = mα

∫
(υ − vα)C[fα]dυ, (1.11)

3

2
nα
DKα

Dt
+ P∗α : ∇vα +∇ · Qα =

1

2
mα

∫
|υ − vα|2C[fα]dυ, (1.12)

where
Qα =

1

2
mα

∫
|υ − vα|2(υ − vα)fα(r,υ, t)dυ, (1.13)

is the heat flux vector, defined through contracting with the third-rank tensor Tα, which
represents the energy flux as observed in a frame moving with velocity υ, and Kα = mα

3nα

∫
|υ−



8 1.3. Plasma modeling

vα|2fα(r,υ, t)dυ is the kinetic energy due to the spreading around fluid velocity, properly
normalized; D/Dt = ∂/∂t+ vα · ∇ is the convective derivative. The terms on the right-hand
side (RHS) of equations (1.11)-(1.12), involving C[fα], represent the viscous forces due to the
collisions and the heat generated by such forces, therefore implying that the collision operator
has yet to be determined. However, the contribution of the related integrals are usually thought
to be negligible based on general conservation laws involving the collision term, i.e that the
collisions characterized by C[fα] are purely elastic Coulomb collisions such that the energy and
the momentum between both like and unlike particles are conserved; also, inelastic collisions
related with phenomena such as ionization, alpha production, recombination etc., are not as
dominant as Coulomb collisions in fusion plasmas. The continuity equation (1.10) was derived
upon the assumption that the number of the total particles is conserved; however, this may
not be the case when fusion reactions take place.

The above multi-fluid equations were evaluated under the assumptions that the Boltzmann
equation is valid, and that the acting forces are the electromagnetic ones, such that the Maxwell
equations are also valid; however, gravitational forces may also be included in related plasmas.
In such a multi-fluid model some microscopic properties, arising from the separate treatment
between the different species, are accurately described, i.e. ion/electron skin depth.

The simplest model to describe the dynamics of plasmas interacting with an electromag-
netic field is the one-fluid magnetohydrodynamics (MHD) in the framework of which the
plasma is treated as a continuous single conducting fluid, by the means of a single mass den-
sity, %∗, a single mean fluid velocity, V∗, a charge density, $ and a current density, J∗. These
single-fluid macroscopic variables are defined from the respective quantities of the two-fluid
model, which can be thought as the degenerate multi-fluid model when the plasma consists,
among with the electron fluid, of only one-kind ion fluid, such that α = i, e; they are of the
form

%∗ =
∑
α=i, e

nαmα, V∗ =

∑
α=i, e nαmαvα∑
α=i, e nαmα

,

$ = e(ne − ni), J∗ = e(nev
∗
e − niv∗i ).

(1.14)

The derivation of the single-fluid equations that describe the dynamics of magnetized plasmas
is based on the key assumptions that MHD involves low-frequency and large spatial scale
phenomena. In fact, the MHD length scales, L, are much larger than the Debye length,
λD/L � 1, and as described earlier the plasma is quasi-neutral in such macroscopic length
scales. Owing to quasineutrality, for a fully-ionized plasma the electron and the ion number
densities are assumed to be approximately equal, i.e. for a hydrogen plasma it holds ne ≈
ni = n, where n is defined as the common plasma density. As a result the charge density
of equation (1.14) vanishes, $ ≈ 0, and the quasineutrality condition accurately substitutes
the Poisson’s law (1.1), which is no more considered for an MHD description. Also, the
MHD related frequencies are much less than the plasma frequency and the electron cyclotron
frequency. On account of this assumption the electrons respond very fast to acting forces,
such that the heavy ions dominate the fluid quantities (1.14), me/mi � 1, which therefore
can be written to a good approximation as: %∗ ≈ min, V∗ ≈ v∗i , and J∗ ≈ ne(V∗ − v∗e).
Equivalently, the electrons are asymptotically assumed to be massless, and thus, their inertia
can be neglected and the displacement current can be dropped from the Amprere’s law (1.4),
which therefore reduces to

∇×B∗ = µ0J
∗. (1.15)

By combining the continuity equations (1.10) of the two-fluid model, under the above
described assumptions, we obtain the following continuity equation for the single fluid

∂%∗

∂t
+∇ · (%∗V∗) = 0, (1.16)
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together with the equation
∇ · J∗ = 0, (1.17)

which implies that the single-fluid current density is divergence-free. Furthermore, by combin-
ing the respective two-fluid momentum equations for the two species we obtain the following
momentum equation for the single-fluid

%∗
DV∗

Dt
= J∗ ×B∗ −∇ · P∗, (1.18)

where D/Dt ≡ ∂/∂t + V∗ · ∇, and P∗ ≡ P∗i + P∗e, can be interpreted as a single-fluid
pressure tensor, which in general is not diagonal; in fact, the respective pressure tensors for
each particle species can be written in the form P∗i, e = P ∗i, eI+Πi, e, where I is the unit tensor,
while the scalars P ∗i, e denote the diagonal elements of P∗i, e and the tensors Πi, e consist of
the non-diagonal parts of P∗i, e, involving quantities such as the fluid viscocity. In addition,
from the two-fluid momentum equations we obtain the following generalized Ohm’s law for
the single-fluid

E∗ + V∗ ×B∗ =
1

en
(J∗ ×B∗ −∇ · P∗e) + η̃J∗, (1.19)

where η̃ is defined as the resistivity of the fluid. Whenever the terms consisting the RHS of
equation (1.19) are not negligible, the dynamics of the related plasma is described by different
versions of the ordinary MHD model, namely, the resistive MHD (RMHD), the Hall MHD
(HMHD), and the Extended MHD (XMHD) models, depending on which of these different
terms is being considered important. Finally, as concerns the energy equations of the two-fluid
theory, under the MHD basic assumptions employed above, these can be cast into the following
forms

3%∗γ

2

D

Dt

(
P ∗i
%∗γ

)
+∇ · Qi + Πi : ∇V∗ = 0, (1.20)

3%∗γ

2

D

Dt

(
P ∗e
%∗γ

)
+∇ · Qe + Πe : ∇

(
V∗ − J∗

en

)
− 1

en
J∗ · ∇

(
P ∗e
%∗γ

)
= 0, (1.21)

containing both the single-fluid variables and two-fluid effects, but can be properly manipulated
in an one-fluid form. Note that we have neglected all integrals including the collision operator.

From the above analysis it follows that both the multi-fluid and the MHD models are not
complete since the pertinent equations consisting each of these models do not form a closed
system of equations. In this respect, either the multi-fluid equations (1.9)-(1.12) or the MHD
ones (1.14)-(1.20) should properly be called moment equations rather than fluid equations.

Closure of the fluid equations

Every fluid model suffers from an “autoimmune” problem known as the closure problem, since
any fluid equation obtained from the N th moment of the Boltzmann equation also contains a
quantity of its (N+1)th moment, so that each time an additional equation for the evolution of
this moment is required to close the system. Specifically, in deriving the multi-fluid equations
the 0th moment yields the continuity equation (1.10) which contains the species velocity,
vα; the 1st moment gives the momentum equation (1.11) in which the second rank pressure
tensor, P∗α, appears, while the 2nd moment yields the energy equation (1.12), containing the
heat flux vector Qα related with the third rank tensor Tα, which can be thought as an unknown.
Obviously, taking further moments of the kinetic equation does not cure the problem since each
time a higher rank tensor will appear, thus, making calculations more and more complicated
and only delaying the problem.

Two main closure schemes are usually employed to close the fluid equations; these are
either an asympotic approach, which involves the kinetic equation itself in some degree by
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expanding the distribution function with respect to a small parameter of interest, i.e. [12], or a
truncation scheme in which higher order moments are expressed in terms of lower ones or simply
are assumed to vanish. In the framework of the single-fluid description of plasmas, a truncation
up to the second moment is being considered, such that the pertinent equations are closed up
to an energy equation, i.e. by assuming either adiabatic, isothermal, or incompressible flows.
In this respect, specific equations of state describing the evolution of the pressure tensor have
to be employed. Along the lines of the present thesis special emphasis will be given to the Ideal
MHD [13] and the Chew-Goldberge-Low (CGL) [14] models, which were established within
different assumptions for plasma collisionality. In the framework of these models the plasma
is treated as a perfectly conducting fluid completely described through single-fluid variables,
i.e. information concerning the different species pressure tensors P∗i, e is lost from the coupled
energy equations (1.20)-(1.21), and the respective equations are closed under the imposure of
the adiabatic or the double-adiabatic equations of state.

1.3.3 Ideal MHD and CGL frameworks
Ideal MHD is the simplest model than can describe the plasma as a conducting fluid and
is valid under specific length and timescales. The key assumtpion made to close the MHD
equations is that both the ions and the electrons are collision-dominated. More presicely, this
means that the mean free path of both the ions and the electrons is small relative to the
chacteristic scale length of the system, L, as well as that the collision time for the ions and
the electrons is short compared to the characteristic timescales of MHD which equals to the
inverse of the characteristic MHD frequency, ω̃. In fact, the ions that are heavy and moving
slowly are dominated by collisions with other ions, in timescales τii, while for the electrons
that are higly mobile collisions with both ions and with other electrons are important, for the
timescales of which it is estimated that τei ∼ τee ∼ (mi/me)

−1/2τii. Therefore, the high
collisionality assumption can be described by the relation(

mi

me

)1/2

ω̃τii � 1, (1.22)

which justifies the accuracy of the assumption that the energy transfer terms involving the
collision operators are neglected from equations (1.20)-(1.21). Owing to the high collisionality
the plasma tends to have an isotropic velocity distribution. This is because the collisions
between the particles lead to a randomization of their respective distribution functions which
tend to be Maxwellians. As a consequence the off-diagonal elements of the pertinent pressure
tensors are negligible, Πi, e = 0, such that the total pressure tensors can be replaced by
respective scalar pressures, and the plasma can be accurately described by a single-fluid MHD
scalar pressure P ∗:

P∗i → P ∗i , P∗e → P ∗e , P ∗ = P ∗i + P ∗e . (1.23)

With the use of (1.23) it is straightforward that the momentum equation (1.18) in the ideal
MHD limit reduces into the form

%∗
DV∗

Dt
= J∗ ×B∗ −∇P ∗. (1.24)

In addition to the assumption of high collisionality, two more conditions, related with the
ion gyroradius, rLi , and the resistivity, η̃, have to be satisfied in order for the ideal MHD
model to be valid. Recall that the MHD is characterized as a low-frequency theory because its
characteristic frequencies are slow relative to the ion cyclotron frequency. This is equivalent to
the requirement that the ion gyroradius is small compared to the characteristic length scales
in plasma

rLi
L
� 1, (1.25)
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which is well satisfied in fusion related experiments. Furthermore, within the ideal MHD
framework, the conductivity of the plasma is considered very high, or equivalently the resistive
diffusion is thought to be negligible:

|η̃J∗|
|V∗ ×B∗|

� 1. (1.26)

As a consequence, the magnetic field lines are frozen into the plasma and do not diffuse due to
the resistivity, which is very low. Such a condition is well satisfied for high temperature fusion
plasmas owing to Spitzer’s law, but this condition puts a further restriction on the smalness of
the collision time related with the high collisionality assumption (1.22). However, the resistivity
term may be important in some astrophysical plasmas in which magnetic reconnection occurs.

On account of the above conditions, the terms in equations (1.19)-(1.21) related with the
resistivity, the Hall term, the electron inertia and the viscosity terms, are negligible, and thus,
the ideal Ohm’s law has the following form:

E∗ + V∗ ×B∗ = 0. (1.27)

The above equation implies that the electric field, E∗, can be calculated from the velocity
and the magnetic field. Also, recall that due to the quasineutrality assumption the Poisson’s
equation (1.1) is not included in the MHD equations. Therefore, the electric field can be
entirely eliminated once the ideal Ohm’s law (1.27) and the Faraday’s law (1.3) are simplified
to one single equation

∇× (V∗ ×B∗) =
∂B∗

∂t
. (1.28)

That is E∗ in ideal MHD is not considered a dynamical variable, and as a result its component
parallel to B∗ is always zero.

Finally, as concerns equations (1.20) and (1.21), under the conditions (1.23)-(1.26) these
can be simplified to a single energy equation in terms of one fluid variables of the form

D

Dt

(
P ∗

%∗γ

)
+

2

3%∗γ
(∇ · Q) = 0, (1.29)

where the single fluid heat flux related variable is defined as, Q ≡ Qi + Qe, and is proportional
to the existing temperature gradients [15]. In fact, the heat flux is stronger in the direction
parallel to the local magnetic field since the particles stream freely in this direction. The closure
usually adopted in the framework of the ideal MHD model is that of adiabaticity, Q = 0. That
is, there is no heat conduction between the system and the environment as well as between the
elements consisting the system. In this case the plasma is governed by the ideal gas equation
of state

P ∗

%∗γ
= const., (1.30)

where γ is the constant ratio of specific heats, and which equation completes the set of
ideal MHD equations. An alternative to the adiabatic equation of state, is the assumption of
incompressible fluid motion

∇ ·V∗ = 0, (1.31)

implying that the fluid elements do not suffer any compression due to the external pressure
forces, and the plasma density remains homogeneous. In fact, the incompressibility condition
(1.31) corresponds to a singular limit of the adiabatic equation of state for γ →∞, and can not
be formally considered as an equation of state since the pressure is no longer an independent
dynamic variable. In general, the dynamics of the plasma can be assumed incompressible once
the velocity and the frequency are also small compared to that of the propagating compressional
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waves [16, 17]. Incompressibility is a reasonable assumption for the motion perpendicular to
the magnetic field and will be considered as the key closure along the lines of the present
thesis.

Fluidistic description of a system near to thermodynamic equilibrium requires a certain
degree of collisions, and in this respect the collision-dominated ideal MHD model should
properly describe plasmas as fluids. However, the region of validity of ideal MHD is limited
since for many important hot plasmas, as that related to fusion experiments, the mean free
path and the collision time is so long, that the high collisionality assumption (1.22) is never
satisfied. Such plasmas should be better described as collisionless rather than collisional, and
in general are anisotropic owing to the presence of a strong magnetic field.

Collisionless fluid modeling

A plasma can be considered as collisionless whenever length scales shorter than the mean free
path and timescales smaller than the collision time become not important, such that collisions
between charged particles can be completely ignored. Comprehesively, collisionless plasmas are
described by the Vlasov equation (1.7), which comes from the respective Boltzmann equation
(1.6) once the collision operator vanishes. It would appear that for such plasmas a fluid
description would not be appropriate. However, in the direction perpendicular to the magnetic
field the gyroradius, which is usually very small, plays the role of the effective mean free path,
restricting particle motion, and thus, the magnetic field itself plays the role of collisions [18].
Also, even in the absence of Coulomb collisions turbulence can result to dissipation such that
in general the related distribution functions do not relax to Maxwelians, while it turns out
that gradients of the distribution function in the direction parallel to the magnetic field are
much weaker than in the perpendicular direction [17]. Therefore, for large-scale motions of
collisionless plasmas the possibility of a fluid description is restored.

The establishment of a collisionless fluidistic description is based on pertinent fluid equa-
tions obtained upon taking the velocity moments of the Vlasov equation (1.7) in a procedure
analogous to that of deriving the respective MHD equations. Note that the MHD equations
were derived from the Boltzmann equation (1.6) without a specific prescription of the collision
related term, which later was neglected due to the ideal approximation. Therefore, it follows
that the MHD equations can also be derived from the Vlasov equation in a straightforward
way. However, both the multi-fluid models as well as the single fluid MHD (ideal or not) are
implicitly highly-collisional once a scalar pressure, corresponding to a Maxwellian distribution
function, is forced. However, in magnetized collisionless (or weakly collisional) plasmas the
distribution functions depart from Maxwellians and become anisotropic, and thus, cannot be
accurately described by a single scalar pressure. In this case, pressure fluctuations in the direc-
tions along and across the magnetic field are different even if no mean temperature anisotropy
exists in these directions. In this respect, a collisionless fluid model is one derived from the
moments of the Vlasov equation (1.7) and for which two different pressure evolution equations,
parallel and perpendicular to the magnetic field, hold.

Macroscopic, single fluid, equations for a collisionless plasma in the presence of a strong
magnetic field, with the Lorentz force playing a role analogous to that of the collision term,
were derived in [14]. Such a derivation is formally based upon an asymptotic expansion of
the distribution function in powers of the Larmor radius (or gyroradius), rLα = mαcvα/qαB

∗,
which is very small relative to the macroscopic physical length scales, i.e. fα(r, υ, t) =
fα0 +O(rLα); in fact, that derivation is based upon considering the lowest order approximation,
fα ∼ fα0 , also called gyrotropic approximation. By taking the first-order moment of the
Vlasov equation, with respect to the definitions (1.9), we obtain a momentum equation for
each species analogous to (1.11) but with zero right hand side. Such an equation contains
the anisotropic pressure tensor, P∗α, an equation for the evolution of which is obtained from
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the second velocity moment of (1.7) of the form:

∂P∗α
∂t

+∇ · (vαP∗α + Qα) + P∗α · ∇vα + (P∗α · ∇vα)T

+
qα
mαc

(B∗ × P∗α − P∗α ×B∗) = 0, (1.32)

where the superscript T indicates the transpose of the respective tensor. On account of the
smallness of the gyroradius the last term of equation (1.32) is dominant to the lowest order,
such that it reduces to the form

B∗ × P∗α0
= P∗α0

×B∗. (1.33)

The most general solution satisfying equation (1.33) is the following

P∗α0
= P ∗⊥α(I− b∗b∗) + P ∗‖αb

∗b∗, (1.34)

where I is the unit tensor; b∗ = B∗/|B∗| is a unit vector pointing in the direction of the local
magnetic field, while P ∗‖α(r, t) and P ∗⊥α(r, t) are the scalar pressure tensor elements for each
species along and across this direction, defined as

P ∗‖α = mα

∫
(υ‖ − vα · b∗)2fα0dυ,

P ∗⊥α =
mα

2

∫
|υ⊥ − vα⊥|2fα0dυ,

(1.35)

with respect to a velocity decomposition in the directions parallel and perpendicular to b∗. It
readily follows that, to the lowest order, the pressure tensor is diagonal in a local rectangular
system one of whose axes points along B∗:

[P∗α0
]ij =

 P ∗⊥α 0 0
0 P ∗⊥α 0
0 0 P ∗‖α

 . (1.36)

We recall that this approximation is acceptable only at spatial scales very long compared to the
gyroradius and frequencies very low relative to the gyrofrequency. However, at length scales
comparable to the gyroradius, higher order corrections to the pressure tensor may become
significant and must be taken into account. In this case the entire pressure tensor is of the
form

P∗α = P∗α0
+ Πα, (1.37)

where, Πα is called the gyroviscous stress tensor or Finite Larmor Radius (FLR) tensor, con-
taining all non-gyrotropic corrections to P∗α0

[for a detailed review see [19]]. For the purposes
of the present study the FLR corrections described by Πα will be assumed negligible. In this
respect, from now on the subscript 0 will be dropped, and henceforth P∗α will be referred to
the gyrotropic part of the entire pressure tensor, also called as CGL pressure tensor.

Introducing the variables, P ∗‖ (r, t) =
∑

α=i, e P
∗
‖α , P

∗
⊥(r, t) =

∑
α=i, e P

∗
⊥α , and on account

of the definitions (1.14), we come up with a single fluid description of the pertinent collisionless
plasmas. Thus, a momentum equation of the form (1.18) holds, in which the CGL pressure
tensor is defined as

P∗(r, t) = P ∗⊥(I− b∗b∗) + P ∗‖b
∗b∗. (1.38)
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It is clear that P ∗⊥ represents the thermal energy associated with gyration, while P ∗‖ measures
the thermal motion along the magnetic field. A more convenient form for equation (1.38) is

P∗ = P ∗⊥I +
σ∗d
µ0

B∗B∗, (1.39)

where the dimensionless function

σ∗d :=
µ0(P ∗‖ − P ∗⊥)

|B∗|2
(1.40)

is a measure of the pressure anisotropy between the parallel and perpendicular motion. It is
clear that particle collisions equilibrating parallel and perpendicular energies lower the value of
σ∗d, and therefore a highly collisional plasma is described accurately by a single scalar pressure,
P ∗. In view of this fact, when pressure anisotropy is present it is useful to introduce an effective
isotropic pressure,

P∗(r, t) :=
P ∗‖ + P ∗⊥

2
, (1.41)

that reduces to P ∗ in the absence of anisotropy.
In addition, in the ideal approximation, in which the resistivity and the Hall term are

negligible, the ideal Ohm law of the form (1.27) is valid, while two evolution equations are
obtained for the scalar pressures parallel and perpendicular to the magnetic field, of the form

D

Dt

(
P ∗‖ |B∗|2

%∗3

)
= −|B

∗|2

%∗3
[
∇ · (Q‖b∗)− 2Q⊥∇ · b∗

]
,

D

Dt

(
P ∗⊥

%∗|B∗|

)
= − 1

%∗|B∗|
[∇ · (Q⊥b∗) +Q⊥∇ · b∗] .

(1.42)

The above equations are derived by combining the respective equations (1.32) for each species
in a form containing only one-fluid variables, and decomposing the gyrotropic pressure tensor
and the gyrotropic part of the heat flux vector into the parallel and perpendicular directions.
In this respect, Q‖ and Q⊥ are defined as the elements of the gyrotropic part of the one
fluid heat flux variable, i.e. Q0 =

∑
α=i, e Qα0 (all non-gyrotropic FLR effects having been

neglected). Equations (1.42) were first derived in [14] [see equations (31) and (32) therein],
their exact form (1.42) being recovered by the substitutions qn = Q‖−3Q⊥, qs = Q⊥, therein
[see [19]]. Therefore, the dynamics of an ideal collisionless anisotropic plasma are described
macroscopically by the equation of continuity (1.16), the equation of momentum (1.18), the
Ohm’s law (1.27), and the energy equations (1.42), along with the Maxwell equations (1.2),
(1.15) and (1.28). However, this system of equations still remains incomplete since two
additional equations (for the heat flux vector components) are required in order to be closed.
Two such equations are the double adiabatic equations of state, associated with the CGL fluid
model [14], which are recovered from equations (1.42) under the assumption that there is no
heat conduction in neither of the directions parallel and perpendicular to B∗, Q‖ = Q⊥ = 0;
they are of the form

D

Dt

(
P ∗‖ |B∗|2

%∗3

)
= 0,

D

Dt

(
P ∗⊥

%∗|B∗|

)
= 0,

(1.43)

implying that the first and second adiabatic invariants are conserved. In connection with the
present study, however, we will assume incompressible flows (see equation (1.31)) together
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with the condition

B∗ · ∇σ∗d = 0, (1.44)

in order to close the fluid equations. Equation (1.44) implies that the anisotropy function is
constant on the magnetic field lines. The motivation for this choice will be explained later.

To summarize, we present below together all the equations derived above, which describe
the motion of an ideal collisionless plasma:

∂%∗

∂t
+∇ · (%∗V∗) = 0, (1.45)

%∗
DV∗

Dt
= J∗ ×B∗ −∇ · P∗, (1.46)

∇× (V∗ ×B∗) =
∂B∗

∂t
, (1.47)

∇ ·B∗ = 0, (1.48)
∇×B∗ = µ0J

∗, (1.49)

where P∗ is defined through equations (1.39)-(1.40). Recall that in the limit σ∗d = 0, the scalar
pressures parallel and perpendicular to B∗ equilibrate. Therefore in this case the pressure tensor
becomes isotropic [P∗]ij = P ∗I, such that the plasma state in the presence of many collisions
can be accurately described by a scalar pressure, P ∗(= P∗ = P ∗‖ = P ∗⊥). In this respect,
the ideal MHD model equations are recovered from the respective equations (1.45)-(1.49) by
setting σ∗d = 0. In fact this substitution takes effect only into the momentum equation (1.46),
since the rest of them are not dependent on the anisotropy function. Therefore, we will further
refer to an isotropic plasma as one described by the set of equations (1.45)-(1.49) for σ∗d = 0.
We note that although the CGL collisionless model and the ideal MHD model are established
through different physical assumptions for the particle collisions, the form of the equations
they consist of are identical, such that passing from the one set of equations to the other is
mathematically convenient.

1.4 MHD equilibrium and stability elements

Plasmas are, in general, found to be unstable once large amounts of energy are concenrated
in a limited volume of a laboraty device. For favorable confinement a potential magnetic con-
figuration must meet the following criteria: (i) it must operate in steady state and thus, the
plasma should be in equilibrium state, (ii) once established, an equilibrium must be macroscop-
ically stable, and (iii) the loss of plasma energy to the surrounding walls, arising from heat and
particle transport, must be reduced. In principle, the examination of the problem of stability or
instability of a physical system is based upon the establishment of a background equilibrium, so
that the construction of such an equilibrium is the basis of stability and transport studies. Such
low entropy states are susceptible to numerous instabilities as strong ideal pressure and current
driven modes, resistive instabilities often associated with magnetic reconnection, and kinetic
micro-instabilities which occur when the distribution functions depart from Mawxellians. Also,
certain instabilities are a source of turbulence, which can drive transport. Investigation of
macro-instabilities is usually performed within the framework of MHD, since this model is a
good approximation in describing the plasma as a macroscopic fluid and capturing most of the
physics of the force balance. Although microscopic instabilities -the study of which requires
kinetic theory- may sometimes become important, it is the MHD instabilities that are more
dangerous for a successful confinement [20].
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1.4.1 Equilibrium
The ideal MHD equilibrium states of a plasma with flow and anisotropic pressure are governed
by the following counterpart to the set (1.45)-(1.49) time-independent equations:

∇ · (%V) = 0, (1.50)
%(V · ∇)V = J×B−∇ · P, (1.51)

∇× (V ×B) = 0, (1.52)
∇ ·B = 0, (1.53)

∇×B = µ0J, (1.54)

where the absence of the superscript ∗ denotes equilibrium and therefore not dependence on
time. In this sense, the equilibrium variables, B(r), V(r), J(r), %(r), as well as all quantities
related with the pressure, are functions only of the spatial variables. In this respect, the
equilibrium related pressure tensor of equation (1.51) is

P(r) = P⊥I +
σd
µ0

BB, σd(r) =
µ0[P‖(r)− P⊥(r)]

|B|2
. (1.55)

In particular, the so called force-balance equation (1.51) describes the balance of the forces
associated with the anisotropic pressure tensor, ∇ · P, the convective flow term, %(V · ∇)V,
and the magnetic one, J×B. We recall that an important physical property of ideal MHD is
the magnetic flux conservation associated with the frozen of the magnetic field lines in the fluid
elements. Despite its simplicity, MHD is very accurate in examining configurations of complex
geometries, with emphasis on the magnetic-field shaping which is essential for confinement.

A magnetic field line before closing to itself may either cover a surface, if such a surface
exists, or fill a volume. Any surface that is traced out by a number of magnetic field lines is
called magnetic surface. In plasmas of fusion devices, however, the name is usually reserved for
nested toroidal surfaces. The generic structure of the magnetic field can be either “open”, in
the sense that it closes to itself through infinity, as for example in magnetic mirror, screw pinch
and earth’s magnetosphere, or closed if it remains in a spatially finite region, as for example in
the central region of tokamak and stellarator. It can be proved that if the magnetic field lines
lie on some closed surfaces contained in a bounded region and do not have any singularities,
then they must be toroids (topological tori) [21–23].

The lines of force lying on nested toroidal magnetic surfaces encircle the magnetic axis.
This encirclement is characterized by the rotational transform which is defined as the ratio of
the number of poloidal transits (the short way around the toroid) to the number of toroidal
transits (the long way around it) of a field line. If the rotational transform is a rational number
then the magnetic field lines close upon themselves on surfaces that are called rational surfaces,
leaving finite parts of them with vanishing magnetic field. If not, the surfaces are ergodic (or
irrational) and the field lines cover them densely everywhere. In systems without geometrical
symmetry there might exist stochastic regions in which the magnetic field lines do not lie on
any surfaces but are chaotic, e.g. near a separatrix. Such regions are undesirable for MHD
equilibrium and stability. If the symmetry of the field is violated, for example by superimposing
a perturbation, then magnetic surfaces may no longer be uniquely defined or be defined at
all [24].

The form of the Ohm-Faraday law (1.52) implies that

V ×B = ∇Φ(r)⇒ Φ(r) =

∫ r

r0

(V ×B) · ds, (1.56)

where the scalar function Φ is the electrostatic potential. Therefore, it follows that in the ideal
MHD framework, the plasma velocity and the magnetic field share common surfaces, i.e. the
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electrostatic potential is a flux label, Φ = Φ(ψ), whenever magnetic surfaces ψ = const. can
be defined. Also, for static isotropic plasmas the momentum equation (1.51) reduces into the
form

J×B = ∇P ⇒ B · ∇P = J · ∇P = 0, (1.57)

implying that the total kinetic pressure is a flux label, or equivalently P is constant on the
magnetic surfaces ψ = const., i.e. P = P (ψ). However, this is not the case in the presence of
flow and/or pressure anisotropy, because of the respective additional terms in the force-balance
equation (1.51), which can be cast into the useful form:

%∇
(
V 2

2

)
− %V ×Ω = (1− σd)J×B−∇P − B

µ0

(B · ∇σd) +
|B|2

2µ0

∇σd, (1.58)

where, Ω is the vorticity, defined as

Ω = ∇×V, (1.59)

and P is the equilibrium effective pressure given by

P =
P‖ + P⊥

2
. (1.60)

To derive equation (1.58) we employed the relations (1.55) together with the identities:

∇ · (fGG) ≡ [∇ · (fG)]G + [(fG) · ∇]G,

∇(F ·G) ≡ (G · ∇)F + (F · ∇)G + F× (∇×G) + G× (∇× F).

In [25] it was proved that all smooth steady MHD equilibria with field-aligned incompressible
flows possess (open) magnetic surfaces, with possible exception the force-free or Beltrami
equilibria. Also, in [26] it was proved the existence of (open) magnetic surfaces of three-
dimensional (3D) equilibria with field-aligned flows.

A fundamental quantity that measures the efficiency of plasma confinement by the mag-
netic field is the plasma beta, β̄. There is no unique definition of β̄ in the literature and
various definitions are distinguished by different geometric factors in connection with the as-
pect ratio and cross sectional shape of a given configuration. The plasma beta is locally
defined as the ratio of the thermal pressure to the magnetic pressure, i.e. for isotropic plasmas
this corresponds to β̄ = P/(B2/2µ0). Recall that in the presence of pressure anisotropy we
represent the plasma pressure by the effective pressure, so that the plasma beta can be defined
in this case as β̄ = P/(B2/2µ0), where P(r) is the equilibrium effective isotropic pressure
(1.60). Using the relations (1.55) and (1.60), the equilibrium scalar pressures parallel and
perpendicular to B are given by

P‖(r) = P + σd
|B|2

2µ0

,

P⊥(r) = P − σd
|B|2

2µ0

.

(1.61)

A more practically useful equilibrium figure of merit is the average beta, defined as the ratio
of the average plasma energy to the average magnetic energy

β̄av :=
P̄

< B2
t +B2

p > /2µ0

, (1.62)
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where Bt and Bp correspond to the toroidal and poloidal components of the magnetic field,
the presence of both of each is essential for toroidal confinement, and P̄ (r) is the average
plasma pressure, defined as

P̄ :=
1

3
Tr(P) =

P‖ + 2P⊥
3

= P − σd
|B|2

6µ0

. (1.63)

In general, high values of plasma beta are desirable for fusion reactor economics and technology.
However, there is a maximum allowable value of β̄ set by MHD related instabilities driven by
the pressure gradients.

1.4.2 Linear stability
In order to investigate the stability of a hydromagnetic system being initially in an equilibrium,
one must examine the system’s reaction to displacements from that equilibium. In general,
if those displacements shortly burn out, such that the system returns to its initial state, then
the system is said to be stable; on the other hand, if the displacements evolve in time, such
that the system deviates more and more from the background equilibrium state, then it is
said to be unstable. There are two main methods for studying ideal MHD stability: first,
for small perturbations from the equilibrium, linear stability is examined by the normal mode
analysis which can calculate the perturbation growth rate and second, the use of variational
principles, involving perturbations of arbitrary amplitude and therefore covering the nonlinear
regime, in connection with the sign of the perturbation potential energy. Both methods are
briefly presented below.

The method of normal mode analysis examines stability as an initial value problem within
a linear framework as follows. Assume that the initial equilibrium state of interest, originated
in a position r, is perturbed to a position r∗(r, t) through the Lagrangian displacement vector
ξ(r, t), defined as

ξ := r∗ − r, (1.64)

such that all physical quantities at the new position r∗, denoted by N∗(r, t), are given by

N∗ = N(r) + N‡(r, t), (1.65)

whereN(r) correspond to the respective equilibrium physical quantity, andN‡(r, t) is the small
initial perturbation, in the sense that |N‡/N| � 1. Upon substituting (1.65) for all physical
quantities into the dynamical MHD equations (1.45)-(1.49) and by keeping only first-order
terms involving the perturbations, a linearized system of the respective equations is obtained
in which all quantities N‡ are then expressed in terms of ξ. The resulting linearized equation
of motion is of the form

Lξ = F̂ [ξ], (1.66)

where L is a differential operator involving derivatives with respect to time, e.g. for static
initial equilibrium (V = 0) it has the form L = %(∂2/∂t2), and F̂ is the so-called force oper-
ator, which is self-adjoint [27]. Furthermore, by adopting in connection with the linearization
a time evolution for the displacement vector of the form ξ(r, t) = ξ̃(r)eiωt the problem of
linear stability reduces to an eigenvalue problem which has to be solved together with appro-
priate boundary conditions. That is, stability is determined from the independent solutions
(eigenvectors), ξ̃i(r), so-called normal modes, each of them corresponding to a respective
normal frequency (eigenvalue), ωi. It follows that if for every ωi it holds ω2

i > 0, then |ξ| is
bounded, and the system is stable, thus oscillating around the equilibrium position. In contrast,
if there exists at least one ωi for which it holds, ω2

i < 0, then the respective normal mode ξ̃i
grows exponentially, and therefore the equilibrium is characterized unstable. In general, the
determination of the eigenvalues of equation (1.66) is a difficult task.
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The Energy Principle offers a more direct approach to the investigation of the stability of
an ideal MHD equilibrium configuration, based upon a variational formulation. Such method
relies on the fact that in the ideal framework the total energy of the perturbation is conserved,
E = K +W = constant. Here, K is the kinetic energy of the perturbation, given by

K =
1

2

∫
%

(
∂2ξ

∂t2

)
d3r, (1.67)

and W is the perturbation’s potential energy,

W = −1

2

∫
ξ · F̂ [ξ]d3r, (1.68)

where integrations are perfomed throughout the system’s volume. Suppose that W0 is a
total maximum of the potential energy, such that when the equilibrium is perturbed into a
neighboring position it happens that δW = W −W0 < 0. Owing to the energy conservation,
K +W = K0 +W0, where K0 is the initial kinetic energy originated by a small perturbation,
one finds that δK = K −K0 > 0, implying that the system has a tendency to further depart
from its equilibrium state, and therefore is unstable. On the other hand, if W0 consists of a
total minimum, then δK < 0, so that the system remains localized around equilibrium position
and can be characterized stable. Since K is quadratic in velocity, and therefore non-negative,
stability is related to the sign of W . That is, for stability the relation W ≥ 0 must be satisfied
or equivalently ∫

ξ · F̂ [ξ]d3r < 0, (1.69)

for all possible displacements ξ. When the background equilibrium is a static one, V = 0, if
there exists a displacement ξ for which the integral of equation (1.69) is positive, then the
system is unstable. However, this is not the case in the presence of equilibrium flows, in which
situation the above condition is only sufficient. Although the Energy Principle is not suitable
in establishing the existence of an instability, since the exact form of the kinetic energy is
not known, it is a powerful technique capable of answering the important question of stability
of a given equilibrium, and which can in general be applied to more complex and realistic
configurations.

The safety factor

A key parameter for plasma confinement in toroidal devices is the safety factor Q, which plays
an important role in determining stability and is also involved in transport theory. The safety
factor is defined as the ratio of the times a magnetic field line travels around the toroidal
direction (the long way around the torus) to the respective times around the poloidal direction
(the short way around the torus), and is a measure of the helical twist of the field lines. An
alternative expression for Q is obtained in terms of the magnetic fluxes when nested toroidal
surfaces, i.e. ψ = const., are defined. In such case the safety factor can be defined as the rate
of change of the toroidal magnetic flux, ψt, with respect to the poloidal magnetic flux, ψp, as

Q :=
dψt(r)

dψp(r)
. (1.70)

Note that the safety factor is usually employed in tokamak devices, while in stellarators the
rotational transform, defined as the inverse of the safety factor: ι := 2π/Q, is commonly
used for analogous considerations. Plasmas that rotate equal number of times along both
toroidally and poloidally are susceptible to certain instabilities and, in general, higher values
of Q are desirable for an equilibrium to be stable. In order for a tokamak equilibrium to be
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stable with respect to current driven modes there exists a necessary condition known as the
Kruskal-Shafranov criterion, which implies that Q must be higher than the unit: Q > 1. A
clarification on the Kruscal-Shafranov limit is given in [28] [see paragraph 2.4.3(b) therein].

1.5 Helical symmetry

The establishment of a specific equilibrium within the framework of ideal MHD relies on the
solution of the pertinent system of equations (1.50)-(1.54) together with appropriate bound-
ary conditions. In practice, however, this consists of a 3D and fully nonlinear problem, the
solution of which is not guaranteed in the most general case, in connection of the existence
of well defined toroidal magnetic surfaces. Also, although 3D codes offer an efficient tool
in performing numerical equilibrium calculations, their success is often limited because of the
current computers efficiency, particularly when highly complicated geometries are considered;
also, from a physical point of view, there is usually no self-consistent treatment of the equi-
librium problem within a totally computational framework. However, when the system under
consideration is invariant under a specific group of uniparametric transformations its dimen-
sionality can be reduced. That is the case when the geometry of a magnetic configuration
possesses a continuous symmetry in which an ignorable coordinate exists, and thus the system
is described as two-dimensional (2D).

The most general known kind of continuous geometrical symmetry is the concept of helical
symmetry, which can be visualized as the motion along a helical (or screw) axis as a result
of the combination of a rotation around a fixed axis and a simultaneous translation along
this same axis. If the ratio of the values of the speeds of the respective rotational and
translational motions is constant, then the resulting helical motion is called ordinary and the
pertinent surfaces formed by the respective helical curves are called ordinary helical surfaces.
There is a number of phenomena for the description of which helical geometry is employed.
More spefically, helical geometry is used to model flows arising behind propellers and wind
turbines [29, 30] and general fluid flows [31, 32], particularly, inside helically symmetric pipes
[33–43], related with engineering applications of fluid mechanics. Also, blood flow inside the
aorta [44,45] and helical configurations of chain molecules of polymers, i.e. of proteins, nucleic
acids etc. [46–48], are studied within such a framework. In addition, helical symmetry is widely
employed in astrophysics for the modelling of the structure of astrophysical jets [49–52]. As
concerns space physics, according to recent observations, the emitted plasma outflow from
stellar and galactic jets is described as helically symmetric [53,54].

In connection with magnetic confinement fusion, helical symmetry is used towards a first
step understanding of the Physics of stellarators, since it can approximately describe a ‘straight
stellarator’ configuration without toroidal curvature [55–57]. The geometry of a stellarator is
inherently 3D, and such a complex geometry makes the theoretical analysis of MHD equilib-
ria and stability complicated. Stellarator equilibrium configurations may be divided into two
classes based on the magnetic axis formation: first, conventional stallarators in which the
magnetic surfaces surround a central planar axis, and second, stellarators with a non-planar
axis following large helical excursions from the center. The ‘straight stellarator’ configuration
is acquired in the limit of very-large-aspect-ratio expansion of a non-planar axis stellarator,
which is well approximated as helical invariant. Therefore, helical symmetry corresponds to
2D configurations with constant torsion and without toroidicity. The free-boundary equilibrium
problem for such systems was studied in a number of papers, e.g. [58–60].

For both analytical and numerical computations of equilibrium, stability and transport of
toroidal plasmas, the use of appropriate curvilinear coordinates is important. The basic ele-
ments of such general systems of coordinates are presented in Appendix A. For the description
of a helical system we introduce the non-orthogonal system of helical coordinates r = (r, u, ζ),
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u=const.

Figure 1.2: The coordinate surfaces of the helical system (r, u, ζ) defined in (1.71). The blue
and green-colored surfaces ζ = constant and r = constant respectively, are the same with the
usual cylindrical surfaces. The red colored surface u = constant is a helicoid, at every point of
which there is a helix lying on the helicoid which passes through that point.

given in terms of the usual cylindrical coordinates (ρ, φ, z), as

r = ρ,

u = mφ− kz,
ζ = z,

(1.71)

wherem, k are real constants, and u can be interpreted as a ‘helical angle’. It may be seen that
these coordinates are not well defined on the z-axis (since neither the cylindrical coordinates
are well defined therein). However, helical coordinates are convenient since in this system
a helix is a straight line parallel to the ζ-axis, simply defined by the parametric equations:
r = constant, u = constant. Therefore, a helical scalar function is a function which has
invariance along a helix, or equivalently: a scalar function f : R3 → R is helically symmetric if
and only if it is independent of ζ: ∂f/∂ζ = 0⇒ f = f(r, u). In this respect, a vector field is
helically symmetric if and only if all its components in basis of the helical coordinates defined
in Appendix B.1 are helically symmetric scalar functions [61]. The characteristic coordinate
surfaces of the helical system are illustrated in figure 1.2. We note that each helix described
by the equations (r = r0 = const., u = u0 = const.) has a pitch length η0 = 2π(|m/k|), and
a constant torsion, τ0 = km/(k2r2

0 + m2). Certain details are given in Appendix B.2. The
effect of the torsion on helical pipe flows were studied in a series of papers [62–66].

At this point we define the vector

h := mqgζ = q(rkφ̂+mẑ), (1.72)

where gζ is the ζ-covariant basis vector, and

q := (k2r2 +m2)−1. (1.73)

It follows that the helical vector h is tangent to the helix (r = const., u = const.) and points
along the direction resulting from a rotation around the z axis and a parallel translation along
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Figure 1.3: A helically symmetric tube composed of nested helicoidal surfaces of arbitrary
cross-sectional shape. The innermost of these surfaces degenerates to a helical magnetic axis
(red colored helix). The shape of the cross-section remains invariant along the helical direction.

the same axis. Also, the helical vector satisfies the relations

∇ · h = 0, (1.74)
∇× h = 2kmqh, (1.75)

h · ∇f = 0 ∀f = f(r, u), (1.76)

which imply that h is a divergent-free, Beltrami vector.
Helical symmetry consists of the most general case of continuous geometric symmetry and

includes axisymmetry, which describes an ideal tokamak, and translational symmetry, in which
the system is unbounded along the symmetry direction, as limiting cases. We note that the
latter category can represent a ‘straight tokamak’ when the magnetic field is periodic along the
direction of symmetry and therefore can be considered as a toroidal field, since a single period
of such a field is topologically equivalent to a torus. In specific, in the limit (k = −1,m = 0)
it follows that the condition of axisymmetry is recoved, i.e. ∂f/∂φ = 0∀f(r, z), since in this
case u→ z and h→ −∇φ, while in the limit (k = 0,m = 1) we obtain, u→ φ and h→ ẑ,
and hence the system is translationally symmetric, i.e. ∂f/∂z = 0 ∀f(r, φ). For this reason,
although a helix can be characterized by just one parameter, for instance k/m, it is convenient
to keep both m and k in order to discuss these limiting cases.

Hamiltonian theory assures the existence of magnetic surfaces in all three kinds of con-
tinuous geometrical symmetry [67], namely: helical symmetry, axisymmetry, and translational
symmetry. For such systems the magnetic surfaces are nested and well defined by the level sets
of a function ψ(x1, x2), with the third spatial coordinate, x3, being ignorable because of the
symmetry condition. Such a nested helical surface of circular cross-sectional shape is shown in
Figure 1.3. In general, however, the shape of the tube’s cross-section is arbitrary, and remains
invariant along the helical direction. The innermost of these nested surfaces degenerates to
single curve defining the configuration’s magnetic axis, which in the helically symmetric case
is a helix, e.g. (r = ra, u = ua) cf Appendix B.2. Recall that two important directions
are defined in closed toroidal systems; these are the toroidal direction (the long way round
the torus), and the poloidal direction (the short way around). For example, in axisymmetric
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systems, a toroidal field is the one pointing in the symmetry direction, φ̂, while a poloidal
field is the one that lies on the plane (r, z). In this respect, for the helical configurations of
interest we shall refer to a helicoidal field as a field pointing along the direction of symmetry,
h, and to a poloidal field as that lying on the plane transverse to this direction. To this end,
the cross-section of a helicoidal surface shall be refered as poloidal cross-section.

1.6 Thesis objectives and outline

Understanding the equilibrium properties of magnetically confined plasmas in one of the most
important tasks of fusion research, since such steady states can be starting points of stability
and transport studies. Within the framework of ideal MHD the equilibrium states of general
2D plasmas are governed by a pertinent equilibrium equation for the poloidal flux function,
obtained from the reduction of the 3D and fully non linear MHD equations, owing to the
existing continuous geometrical symmetry. In specific, the MHD steady states of static ax-
isymmetric plasmas are governed by the well known Grad-Shafranov (GS) equation [68, 69].
The most widely employed analytic solutions of this equation are the Solovev solution [70] and
the Hernegger-Maschke solution [71,72], the former corresponding to toroidal current density
non vanishing on the plasma boundary and the latter to toroidal current density vanishing
thereon. Also, exact global solutions of the Grad-Shafranov equation were obtained in [73,74]
which model static, axisymmetric astrophysical jets and solar prominences. In addition, the
ideal steady states of static helically symmetric plasmas are governed by a respective GS-
type equation, also called helical GS equation or Johnson-Frieman-Kulsrud-Oberman (JFKO)
equation [75]. Different families of closed form analytic solutions of the JFKO equation were
obtained in [51,52,76–79]. Both the GS and the JFKO equations contain two scalar functions
associated with the pressure and the toroidal/helicoidal current, and which functions in the
static case, i.e when the convective flow terms is neglected in equation (1.51), depend only
on the poloidal flux and therefore are flux labels. However, this is not the case in the presence
of equilibrium flows.

In the last thirty years there has been an increasing interest in equilibria with mass flows
which are created in plasmas of various fusion devices mainly as a result of auxiliary heating.
More specifically, mass flows can be driven externally with either electromagnetic waves or
neutral beam injection for plasma heating and current drive, or can be created spontaneously
(zonal flows). For example, plasma flows as a result of heating with neutral beams have
been observed in stellarators [80]. These flows are usually associated with radial electric fields
which play a significant role in the transitions to improved confinement regimes such as the
L-H transition [81] and the formation of internal transport barriers [82–85]. An additional
effect of external heating, depending on the direction of the injected momentum, is pressure
anisotropy. For tokamaks and stellarators the MHD pressure is usually considered isotropic.
However, plasma heating by the neutral beam injection, ion resonance waves and electron
cyclotron waves can produce strong plasma anisotropy [86–90]. Thus, pressure anisotropy is
present in strongly magnetized plasmas and may play a role in some astrophysical ones [91–100]
as well as in several magnetic fusion related problems [101–113].

In a series of papers (e.g. [51, 85, 105, 114–138]) ideal MHD equilibria both static with
pressure anisotropy and with mass flow, either isotropic or anisotropic, were investigated under
various symmetries. In connection with the present thesis, we particularly mention [114] on
axisymmetric equilibria with incompressible flow and pressure anisotropy and [115] regarding
helically symmetric equilibria with incompressible flow and isotropic pressure. In the presence of
mass flow the equilibrium satisfies a generalized Grad-Shafranov (GGS) equation together with
a Bernoulli equation involving the pressure (see for example [117,139,140]). For compressible
flow the GGS equation can be either elliptic or hyperbolic, depending on the value of a Mach
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function associated with the poloidal velocity, and is coupled with the Bernoulli equation
through the density which is not uniform on magnetic surfaces. Note that the toroidal velocity
is inherently incompressible because of the existing continuous geometrical symmetry. For
incompressible flow the density becomes a surface quantity and the GGS equation becomes
elliptic and decouples from the Bernoulli equation; consequently one has to solve an easier
and well posed elliptic boundary value problem. In particular for fixed boundaries, convergence
to the solution is guaranteed under mild requirements of monotonicity fot the free functions
involved in the GGS equation [141]. In contrast to the static isotropic GS equation, in the
presence of flow and/or anisotropic pressure the free functions involved in the GGS equation
are more than two. For plasmas with anisotropic pressure the equilibrium equations involve the
function σd associated with this anisotropy [equation (1.55)], such that in this situation the
pertinent GGS and Bernoulli equations are coupled through the anisotropy function (together
with the density for stationary anisotropic equilibria). Therefore, to get a closed set of reduced
equilibrium equations an assumption on the functional dependence of this function is required
(cf. [102,106,124,125,129,142,143] for static equilibria and [103–105,107,114,116,128,130,
133] for stationary ones).

In [115] a GGS equation governing helically symmetric equilibria with incompressible flow,
generalizing the static JFKO equation, was derived. Furthermore, in [114] a GGS equation
governing axisymmetric plasma equilibria with incompressible flow and anisotropic pressure,
under the assumption that the anisotropy function is constant on the magnetic surfaces, was
derived. The latter equation reduces to the original GS equation [68, 69] in the absence of
anisotropy and mass flow. Both of the above equations were obtained upon the reduction of
the 3D MHD equations in a self-consistent way.

The main motivation of the present work was the extension of the results of [114] to the
more generic case of helical symmetry, or alternatively the exention of the results of [115] to
the case of anisotropic pressure. In other words, it was the derivation of a GGS equation which
would govern the equilibrium states of stationary, anisotropic plasmas, with potential gener-
alization of the respective GS or GS-type ones governing all kinds of geometrically symmetric
equilibria, either static, and/or with flow and pressure anisotropy or not. Since as already
mentioned in nowadays and future experiments in toroidal devices the external momentum
sources employed for heating and current drive usually induce both plasma flow and pressure
anisotropy, understanding their combined effects is of practical importance. To this end, once
a pertinent helically symmetric equilibrium is constructed in connection with a ‘straight stel-
larator’, then one can examine the impact of anisotropy on its characteristics and compare
with that of the flow.

Another important motive of the thesis is the investigation of the stability properties of
such kind of equilibria, particularly in the presence of anisotropic pressure.

The well known Energy Principle [27] is a powerful tool for deriving necessary and sufficient
conditions for the linear stability of static MHD equilibria, e.g. for such a stability criterion
for symmetric equilibria see [144]. In the presence of flow, however, the problem of stability
becomes much tougher because of the anti-Hermitian convective flow term in the momentum
equation. As a result, only sufficient conditions for the linear stability of stationary equilibria
were previously obtained [145–149]. Particularly, in connection with the present study, the
derivation of a sufficient condition for the linear stability of ideal MHD equilibria and plasmas
of constant density, isotropic pressure and incompressible flow parallel to the magnetic field, was
initiated in [147,148] and completed in [149]. A key element to obtain this condition is that the
pressure perturbation remains arbitrary, that is, there is no need to express that perturbation in
terms of the Lagrangian displacement vector. Also, pressure anisotropy is usually responsible
for various instabilities, such as the fire-hose and the mirror instability [150–155]. Therefore,
investigation of the stability properties of anisotropic plasmas, either static or stationary, is



Chapter 1. Introduction 25

also a significant objective. Thus, a further incentive was the potential generalization of
the sufficient stability condition derived in [149] for the case of anisotropic pressure and its
application to the constructed helically symmetric equilibria in order to investigate their stability
properties as well as the impact of the flow and pressure anisotropy on them.

Before proceeding to the outline of this thesis, we note in passing that equilibrium solvers
have also been developed to model helically symmetric systems [156,157] as well as 3D configu-
rations in connection with stellarators [112,158–162]. In these studies equilibrium construction
is based, among others, on the widely applied 3D MHD, free boundary codes VMEC [163] for
isotropic pressure and its extension ANIMEC for anisotropic pressure [164]. These codes use
a variational principle to minimize the plasma energy functional. In the presence of pressure
anisotropy this functional consists of the magnetic energy and the parallel pressure energy. The
parallel pressure consists of a thermal-particle part and a hot-particle contribution calculated by
means of a bi-Mawxellian distribution function. The perpendicular pressure is not determined
as a moment of the distribution function but by employing the MHD force-balance parallel to
the equilibrium magnetic field; in this respect the code is based on a hybrid (kinetic-MHD)
model. In this respect, it should be understood that although 3D equilibrium codes provide a
more realistic description, they may lack self-consistency.

The derivations and main results of this thesis are presented in four leading chapters,
namely

• Helically Symmetric Equilibria: Generalized Grad-Shafranov Equation (Chapter 2).

• An Analytic Class of Helically Symmetric Equilibria (Chapter 3).

• Symmetry Transformations for Ideal MHD and CGL Equilibria (Chapter 4).

• Stability of Anisotropic Incompressible Equilibria (Chapter 5).

In more detail, in Chapter 2 a GGS equation with pressure anisotropy and non-parallel flow
governing helically symmetric equilibria is derived by employing helical coordinates described
in Section 1.5. This equation involves six arbitrary surface quantities and recovers known
equations as particular cases. Together we obtain a Bernoulli equation for the effective isotropic
pressure. For the derivation we assume that the function of pressure anisotropy is uniform on
the magnetic surfaces. Also, under the assumption of well defined 3D toroidal magnetic
surfaces we examine the properties of special ideal MHD equilibria with incompressible flow
and pressure anisotropy, such that any two of the velocity, magnetic field, current density and
vorticity vectors are parallel one another, including the cases of magnetic-field aligned flows,
force-free, in the sense that the magnetic force vanishes, Beltrami, and complex-lamellar
equilibria. In each of these cases we employ specific forms of the GSS equation governing
respective helically symmetric equilibria. In Chapter 3 adopting the most generic linearizing
ansatz for the free functions involved in the derived GGS equation we obtain a new class of
exact analytical solutions describing a ‘2D straight stellarator’. Moreover, on the basis of the
constructed solutions we examine the impact of flow and pressure anisotropy on the equilibrium
characteristics. Parts of the results presented in Chapters 2 and 3 were published in [165,166].
Also, the results presented in Section 2.2 consist of a generalization of that published in
[167]. Chapter 4 deals with the important sets of equilibrium transformations, known as
Bogoyavlenskij transformations, previously introduced in the literature, and which are proven
very useful in constructing new families of MHD equilibria. Specifically, we introduce a set of
transformations that can be applied to any known anisotropic CGL equilibria with field-aligned
incompressible flows (or static equilibria) and anisotropy function constant on magnetic field
lines, and produce an infinite family of anisotropic equilibria with collinear velocity and magnetic
fields, but density and anisotropy functions that may remain arbitrary; these transformations
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consist of a generalization of the respective Bogoyavlenskij transformations concerning field-
aligned MHD equilibria with isotropic pressure. In addition, we prove that all these sets of
transformations can break the geometrical symmetries of a known given equilibrium, static or
with field-aligned flow, if and only if its magnetic field is purely poloidal. Then we construct
3D equilibria by applying the introduced transformations to a known class of axisymmetric
equilibria. The results presented in Chapter 4 were published in [168]. In Chapter 5 we
derive a sufficient condition for the linear stability of plasma equilibria with incompressible flow
parallel to the magnetic field, constant mass density and pressure anisotropy, such that the
pertinent anisotropy function remains constant. This condition is applicable to any steady state
without geometrical restriction and generalizes the respective condition for MHD equilibria
with isotropic pressure and constant density previously derived in [149]. On the basis of this
condition we prove that if a given equilibrium is linearly stable, then the ones resulting from
the application of Bogoyavlenskij symmetry transformations are linearly stable too, provided
that a parameter involved in those transformations is positive. In addition, we examine the
impact of pressure anisotropy, flow, and torsion of a helical magnetic axis, for a specific class
of analytic equilibria. The results presented in Chapter 5 were published in [169]. Finally, in
Chapter 6 the main results of the aforementioned chapters are summarized and the overall
conclusions are presented. Also, potential projects for future research are briefly outlined.



2 | Helically Symmetric Equilibria: Gen-
eralized Grad-Shafranov Equation

“ In order to understand the phenomena in a certain plasma
region, it is necessary to map not only the magnetic but also
the electric field and the electric currents. Space is filled with
a network of currents which transfer energy and momentum
over large or very large distances. The currents often pinch to
filamentary or surface currents. The latter are likely to give
space, as also interstellar and intergalactic space, a cellular
structure.”

Hannes Alfvén

2.1 Derivation of generalized Grad-Shafranov equation
in the presence of pressure anisotropy and plasma
flow

The ideal MHD states of plasma flows and anisotropic pressure are governed by the set of
equations (1.50)-(1.54) and (1.55) presented in Section 1.4. From the reduction of these
equations we obtain a GGS equation under the condition of helical symmetry, by using helical
coordinates presented in Section 1.5. The derivation of the GGS equation has been organized
as follows: first, we express the divergence-free fields, the magnetic field, the current density
and the mass flow in terms of helical scalar functions. Second, we identify some integrals
of the system in the form of surface quantities, and third, by using these integrals we derive
a GGS equation together with a Bernoulli equation for the effective pressure, under specific
assumptions for the density and the anisotropy function. This derivation procedure is presented
below in detail.

2.1.1 Divergence-free fields

Owing to equations (1.50), (1.53) and to the equilibrium counterpart of equation (1.17),
∇ · J = 0, it is obvious that each of the magnetic field, B, the momentum density field, %V,
and the current density, J, can be expressed as the ‘vorticity’ of a pertinent vector field, or in
other words, each of B, %V, J, can be expressed as the curl of a respective vector field. In
specific, as concerns the magnetic field, with respect to equation (1.53) it can be expressed in
terms of a magnetic vector potential, denoted by A, as

B = ∇×A. (2.1)

27
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Under the assumption of helical symmetry, the above equation yields

B =
m

r

[
∂Aζ
∂u

gr −
∂Aζ
∂r

gu +

(
∂Au
∂r
− ∂Ar

∂u

)
gζ

]
, (2.2)

where Ai, i = (r, u, ζ), are the covariant components of the magnetic potential and which are
helical scalar functions. Furthermore, by expanding B in the covariant base, as

B = Brgr +Bugu +Bζgζ , (2.3)

and substituting this form into equation (1.53) we obtain

1

r

∂

∂r
(rBr) +

∂Bu

∂u
= 0. (2.4)

At this point it is useful to introduce the stream function ψ, defined through the ζ-covariant
component of the magnetic potential as

ψ(r, u) := −mAζ(r, u). (2.5)

On account of the definition (2.5), by comparing equations (2.2) and (2.3) it readily follows
that

Br = −1

r

∂ψ

∂u
, Bu =

1

r

∂ψ

∂r
, (2.6)

under which equation (2.4) is trivially satisfied. Then, on account of the equations (2.6) the
magnetic field in equation (2.3) can be re-written in the form

B = Bζgζ + Bp, (2.7)

where Bp is the poloidal magnetic field defined as

Bp := m−1gζ ×∇ψ. (2.8)

Therefore, the stream function ψ is related to the poloidal magnetic field through the poloidal
magnetic field components (Br, Bu). However, the expression (2.7) for the magnetic field
involves both the covariant and the contravariant basis vectors gζ anb gζ . This in fact dictated
us to make use of the helical vector h, which also points along the symmetry direction gζ (see
equation (1.72)), and show that the field on the plane normal to h is related to the poloidal
magnetic field as

h×∇ψ = Bp − kqr
∂ψ

∂r
gζ . (2.9)

As a result, by the substitution of equation (2.9) into (2.7) we obtain the following compact
expression for B in terms of helical scalar functions

B = Ih + h×∇ψ, (2.10)

where I(r, u) relates to the helicoidal magnetic field and is defined as

I :=
Bζ

mq
+
kr

m

∂ψ

∂r
=

B · h
q

. (2.11)

Note that from equation (2.10) it also follows that

∇ψ =
B× h

q
. (2.12)
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Along the same lines, on the basis of the continuity equation (1.50) the momentum density
field is expressed in terms of helical scalar functions as

%V = Θh + h×∇F, (2.13)

where the function Θ(r, u) is defined as

Θ :=
%V ζ

mq
+
kr

m

∂F

∂r
=
%V · h
q

, (2.14)

while F (r, u) is a stream function for the field %V, in analogy with ψ, for which it holds

∇F =
%V × h

q
. (2.15)

In addition, upon the substitution of equation (2.10) into the Ampere law (1.54) we derive
in a straightforward way the following expression for the current density, involving the scalar
functions ψ and I

J =
1

µ0

(Lψ + 2kmqI)h− 1

µ0

h×∇I, (2.16)

where the operator L is defined as

L :=
1

q
~∇ · (q~∇) =

1

r

∂

∂r

(
r
∂

∂r

)
+

1

qr2

∂2

∂u2
− 2k2rq

∂

∂r
. (2.17)

That is, we have expressed the divergence-free helical fields, B, %V, and J, in terms of the
helical scalar functions ψ, I, Θ, and F , as indicated by equations (2.10), (2.13) and (2.16).
We have to note that the force balance equation (1.58) involves another divergence-free field,
and that is the vorticity, Ω = ∇×V, having the following form in helical geometry

Ω =

[
F
′

%
Lψ +

(
F
′

%

)′
|∇ψ|2 +

2kmqΘ

%

]
h− h×∇

(
Θ

%

)
, (2.18)

where the prime implies differentiation with respect to ψ, ′ := d/dψ. However, the use of this
vector is not necessary in deriving the GGS equilibrium equation.

Physical interpretation of ψ and I

Owing to the helical symmetry and on account of the relations (1.74)-(1.76) the following
important equation arises from (2.10):

B · ∇ψ = 0, (2.19)

which indicates that the magnetic field lies on well defined nested helicoidal surfaces, ψ(r, u) =
const., henceforth called magnetic surfaces. Note that a representation for the magnetic field
(and as a result for all the divergence-free fields) as that in equation (2.10) is possible in all
kinds of continuous geometrical symmetry, including axisymmetry and translational symmetry,
which consist of reductions of the general case of helical symmetry employed here. For example,
under invariance with respect to the cylindrical coordinate φ, the axisymmetric magnetic field
is usually expressed in terms of the scalar functions ψax(ρ, z) = −ρAφ(ρ, z) and Iax(ρ, z) =
ρBφ(ρ, z), as

Bax =
1

ρ
(Iaxêφ + êφ ×∇ψax) , (2.20)
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where Bφ and Aφ denote the toroidal components of the axisymmetric magnetic field and
magnetic potential with respect to cylindrical coordinates. In addition, under the condition of
translational symmetry, the magnetic field is usually expressed in the form

Btr = Bz(ρ, φ)êz + êz ×∇ψtr(ρ, φ), (2.21)

where ψtr(ρ, φ) = −Az(ρ, φ), Bz(ρ, φ), are respective translationally symmetric functions.
It can be shown from equation (2.20) that in axisymmetric equilibria the magnetic field lies
on nested toroidal surfaces ψax(ρ, z) = const. (Bax · ∇ψax = 0), and that the function ψax
relates to the poloidal magnetic flux, ψpax , through a disk lying on the plane z = const., as
ψpax = −2πψax. Respectively, in the case of translationally symmetric equilibria, there exist
well defned nested cylindrical surfaces ψtr(ρ, φ) = const. in which the magnetic field lie on
(Btr · ∇ψtr = 0), the function ψtr in this situation being related to the poloidal magnetic flux
ψptr passing through a section φ = const. of a cylindrical surface of height L, as ψptr = Lψtr.

Considering equations (B.11), (B.14) and (B.24) it follows that the ζ-covariant helical
component of the magnetic potential is expressed through its respective components in the
cylindrical base as Aζ = (rk/m)Aφ + Az, and as a result equation (2.5) yields

ψ(r, u) = kψax +mψtr. (2.22)

Therefore, the helical stream function ψ is decomposed into two parts each of them recovering
the respective axisymmetric and translationally symmetric stream functions as limiting cases.
Recall that the stream function ψ is related with the poloidal magnetic field as indicated
by equation (2.8). In order to calculate the poloidal magnetic flux consider the coordinate
transformation (r, u, ζ) → (ψ(r, u), u, ζ) with Jacobian, J = (r/m)/(∂ψ/∂r). Then the
magnetic flux through a helical surface of height L = Nη, η = (2πm)/k being the pitch and
N is an integer, and of surface area ds = J dψdζgu, is calculated:

ψp =

∫
Bp · ds =

1

m

∫ ψ

0

dψ

∫ L

0

dζ ⇒ ψp =
2πN

k
ψ. (2.23)

Thus, the helical function ψ is indeed the poloidal flux per radian, and which reduces to the
respective axisymmetric and translationally symmetric poloidal fluxes, owing to the decompo-
sition

ψp = −Nψpax + ψptr . (2.24)

In addition, from equation (2.16) it readily follows that

J · ∇I = 0, (2.25)

and therefore the current density lies on nested helical surfaces I = const., which need no
coincide with the magnetic surfaces. Note that, additional kinds of pressure surfaces, on which
P , P‖, P⊥ take constant values, can be defined; although for static isotropic equilibria these
sets of surfaces are identical (e.g. see equation (1.57)), in the presence of flow and anisotropic
pressure, in general, they do not coincide. In an analogous way, it can be shown that the
function I, which is related to the magnetic field component in the direction of symmetry, can
be decomposed into the respective functions employed in the limiting cases of axisymmetric
and translationally symmetric equilibria, Iax(ρ, z) = ρBφ and Itr(ρ, φ) = Bz, as

I = kIax +mItr, (2.26)

and its physical interpretation is indeed the net poloidal current per radian

Ip =

∫
Jp · ds = −2πNI

kµ0

, (2.27)
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which can be further decomposed as Ip = −NIpax + Iptr ; here the specific relations for the
axisymmetric and translationally symmetric poloidal currents are given by Ipax = (2πIax)/µ0

and Iptr = −(LBz)/µ0. Finally, as concerns the function F , it turns out that it is related to
the poloidal flux of the momentum density field.

2.1.2 Integrals of the system
Equations (1.50)-(1.54) can be reduced by the means of certain integrals of the system, which
are shown to be surface quantities. These integrals are obtained by the projection of the
Ohm’s law in the directions h, B, ∇ψ, and of the momentum equation along h, using the
relations (2.10), (2.13) and (2.16). In particular, expressing the time independent electric field
in terms of the electrostatic potential, E = −∇Φ, with Φ being a helical scalar function, and
projecting the Ohm’s law, in the form (1.56), along the helical direction, h, yields

h · (∇ψ ×∇F ) = 0⇒ F = F (ψ), (2.28)

implying that the function F is a surface quantity. This is reasonable since in the absence of
resistivity V and B share common surfaces; therefore, the velocity field lies on the magnetic
surfaces ψ = const.. Furthermore, projection of the Ohm’s law along the direction of the
magnetic field implies that the electrostatic potential is also a surface quantity

B · ∇Φ = 0⇒ Φ = Φ(ψ). (2.29)

An additional integral is found from the component of the Ohm’s law perpendicular to
a magnetic surface; i.e. the derivative of the electrostatic potential with respect to ψ is a
surface quantity

Φ
′
=
q

%
(IF

′ −Θ). (2.30)

In addition, by substituting the above equation into (2.13) leads to the following useful relation
for the velocity

V =
Mp√
µ0%

B− Φ
′

q
h, (2.31)

where Mp(r) denotes the poloidal Mach function, defined as

Mp :=
|Vp|
VAp

=

√
µ0(F ′)2

%
, (2.32)

with VAp = |Bp|/(
√
µ0%) being the Alfvén velocity associated with the poloidal magnetic field.

Equation (2.31) implies that V is decomposed into a component parallel to B and a non-
parallel one associated with the electric field in consistence with the Ohm’s law. Therefore, in
the absence of the electric field, Φ

′
= 0, the velocity is aligned with the magnetic field, V ‖ B

(field-aligned flows).
To identify another integral of the system, we project the momentum equation, in the form

(1.58), along the direction of h; this yields the following surface quantity

X(ψ) := (1− σd −M2
p )I +

µ0Φ
′
F
′

q
. (2.33)

From equation (2.33) it follows that, in general, in the presence of mass flow and anisotropic
pressure I is not a surface quantity, since it holds

I(ψ, r) =
X − µ0Φ

′
F
′

q

1− σd −M2
p

. (2.34)
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The condition that for static, isotropic equilibria the current surfaces coincide with the magnetic
surfaces is recovered from (2.34), since for Θ = F = Mp = σd = 0 it reduces to I =
X(ψ). Furthermore, by combining equations (2.30) and (2.33) the following expression for
the function Θ arises

Θ(ψ, r) =
XF

′ − (1−σd)%Φ
′

q

1− σd −M2
p

. (2.35)

We note that from equations (2.33) and (2.35) it follows that helically symmetric equilibria with
purely poloidal flow, non-parallel to the magnetic field (Θ = 0, F

′ 6= 0,Φ
′ 6= 0) cannot exist

because of the following contradiction: from equation (2.35) it follows that X = (1−σd)%Φ
′

q(r)F ′
,

implying that X has an explicit dependence on r, while it has been shown earlier in equation
(2.33) that X is a surface quantity.

2.1.3 GGS-Bernoulli system
In order to obtain a reduced set of equilibrium equations we project the momentum equation
(1.58) along the direction of the magnetic field as well as along ∇ψ. In particular, the
component of (1.58) along B yields the following equation:

B ·
[
∇
(
V 2

2
+

ΘΦ
′

%

)
+
∇P
%

+
B2

2µ0

∇σd
%

]
= 0, (2.36)

which may be interpreted as a Bernoulli equation for P . Before proceeding to the next step,
we first put the terms −%V × Ω and J × B, involved in equation (1.58), in a more useful
form. On account of equations (2.10), (2.13) and (2.16), these terms are calculated as

−%V ×Ω =

[
−∇ ·

(
q(F

′
)2

%
∇ψ
)

+
qF

′
F
′′

%
|∇ψ|2 − 2kmq2 ΘF

′

%

]
∇ψ

+

[
(h×∇ψ) · ∇

(
ΘF

′

%

)]
h− 1

2
q%∇

(
Θ

%

)2

, (2.37)

J×B = − q

µ0

(Lψ + 2kmqI)∇ψ −∇ψ · (h×∇I)h− q

2µ0

∇I2.

Subsequently, projection of the momentum conservation equation (1.58) perpendicular to the
magnetic surfaces, together with the use of the relations (2.37), yields the following GGS
equilibrium equation{

∇ ·
[
(1− σd −M2

p )q∇ψ
]

+ q

[
µ0
F
′
F
′′

%
|∇ψ|2 +∇ψ · ∇σd

]
+ 2kmq2X

}
|∇ψ|2

+µ0

{
%∇
(
V 2

2

)
− q

2

[
%∇
(

Θ

%

)2

− (1− σd)
∇I2

µ0

]
+∇P −

(
B2

2µ0

)
∇σd

}
· ∇ψ

= 0. (2.38)

Therefore, the equilibrium of helically symmetric plasmas with flow and anisotropic pressure is
governed by the equations (2.36) and (2.38) which are valid for generic (compressible flows),
being coupled through the density %(r) and the anisotropy function σd(r). For compressible
flow these equations remain coupled and the pertinent differential equation can be either
elliptic or hyperbolic in connection with specific transition points of the poloidal Mach function
M2

p [103,104,170]. Also, equation (2.38) has a singularity when σd+M2
p = 1 and so we must

assume that σd +M2
p 6= 1. For isotropic pressure this corresponds to the Alfvénic value of the

poloidal Mach function (M2
p = 1). In [171] it was found that sub-Alfvénic and super-Alfvénic

regions separated by this Alfvén singularity can be smoothly connected by the Hall-effect.
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2.1.4 GGS equation for incompressible flows and uniform anisotropy
To reduce further the equilibrium equations two assumptions for the arbitrary functions % and
σd must be made in connection with the closure problem of the MHD equations. At first,
an equation of state is required such as isentropic or isothermal magnetic surfaces, associated
inherently with compressible flow, or alternatively incompressibility. Since experimental poloidal
velocities lie within the first elliptic regime incompressibility associated with ellipticity is a
reasonable approximation [172]. Indeed incompressible flow, ∇ ·V = 0 (see equation (1.31)),
which we henceforth consider, implies that the mass density is a surface quantity

% = %(ψ), (2.39)

as it follows from the mass conservation equation (1.50). Therefore, from equations (2.28),
(2.32) and (2.39) it also follows that the Mach function is a surface quantity

Mp = Mp(ψ). (2.40)

However, it should be clarified that compressible equilibrium flows permitting variations of %
and Mp on magnetic surfaces represent better the actual experimental situation. In addition,
following [51,114,124,125,128] we adopt the condition (1.44) which implies that the anisotropy
function is uniform on the magnetic surfaces

σd = σd(ψ). (2.41)

For static equilibria this follows from equation (2.33), which becomes X(ψ) = (1−σd)I, if in
the presence of anisotropy the current density remains on the magnetic surfaces (I = I(ψ)),
i.e. for low-pressure plasmas (P‖,⊥/B2 � 1) and/or weakly anisotropic ones (P‖−P⊥ � B2)
[173]. SinceMp = Mp(ψ), the same implication holds for parallel incompressible flow (Φ

′
= 0)

as well as for purely helical flow (F = 0, Θ 6= 0). Also, the hypothesis σd = σd(ψ), according
to [124], may be the only suitable for satisfying the boundary conditions on a rigid, perfectly
conducting wall.

Owing to the assumptions (2.39)-(2.41), equations (2.36), (2.38) decouple one another as
follows; first equation (2.36) can be put in the form

B · ∇

%V 2

2
+

XF
′
Φ
′

1− σd −M2
p

− (1− σd)%(Φ
′
)2

q(1− σd −M2
p )

+ P︸ ︷︷ ︸
:=f

 = 0, (2.42)

which implies that the scalar function, under the above gradient term is a surface quantity,
f = f(ψ). As a result, we obtain in a straightforward way a Bernoulli equation for the effective
pressure in the following form

P = Ps(ψ)− %
[
V 2

2
− (1− σd)(Φ

′
)2

q(1− σd −M2
p )

]
, (2.43)

where Ps := f(ψ) − XF
′
Φ
′

1−σd−M2
p
. Therefore, in the presence of flow the magnetic surfaces in

general do not coincide with surfaces on which P , and as a result P‖, P⊥, lie on1. In this
respect, the term containing Ps(ψ) is the static part of the effective pressure which does not

1In fact it will be shown that the P‖ and P⊥ surfaces do not coincide with the magnetic surfaces
irrespective of the flow.
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vanish when V = 0. Then by substituting the expression (2.43) into (2.38), the later reduces
to the following elliptic differential equation

(1− σd −M2
p )Lψ +

1

2
(1− σd −M2

p )
′|∇ψ|2 +

1

2

[
X2

1− σd −M2
p

]′
+

+
µ0

q
P ′s +

µ0

2q2

[
(1− σd)%(Φ

′
)2

(1− σd −M2
p )

]′
+ 2kmqX = 0. (2.44)

Equation (2.44) is the GGS equation that governs the equilibrium of helically symmetric plas-
mas with pressure anisotropy and incompressible flow. It contains six arbitrarily specified
surface quantities, i.e. the poloidal Alfvén Mach function, Mp(ψ), the pressure anisotropy
function, σd(ψ), the density, %(ψ), the electrostatic potential, Φ(ψ), the static part of the ef-
fective pressure, Ps(ψ), and the function X(ψ) associated with the helicoidal magnetic field.
Note that this equation contains a term involving the quantity |∇ψ|2. It is also noted that
while in numerical studies, e.g. [156,157], P⊥ and P‖ are prescribed as functions of ψ and B,
here, since the anisotropy function is uniform on the magnetic surfaces because of incompress-
ibility, we only have to prescribe the pressure Ps(ψ) which explicitly appears in (2.44). Then
P⊥ and P‖ can be calculated from the relations (1.61).

Under the transformation

U(ψ) =

∫ ψ

0

√
1− σd(g)−M2

p (g)dg, |M2
p + σd| < 1, (2.45)

the GGS equation (2.44) reduces to the simpler and more compact form

LU + 2kmqI +
1

2

dI2

dU
+
µ0

q

dPs
dU

+
µ0

2q2

dF
dU

= 0, (2.46)

where the surface functions I and F are defined as follows

I(U) :=
X√

1− σd −M2
p

, (2.47)

F(U) := (1− σd)%
(
dΦ

dU

)2

. (2.48)

Transformation (2.45) does not affect the magnetic surfaces, it just relabels them by the flux
function U, and is a generalization of that introduced in [174] for isotropic equilibria with
incompressible flow (σd = 0) and that introduced in [125] for static anisotropic equilibria
(M2

p = 0). Note that no quadratic term as |∇U |2 appears anymore in (2.46). Also, note
that transformation (2.45) involves the square root of 1−σd−M2

p , and therefore our study is
restricted to the sub-Alfvénic region (|M2

p +σd| < 1), this constraint however being practically
insignificant because it is well satisfied in laboratory fusion plasmas. The GGS equation (2.46)
is the most general equation governing the ideal steady plasma states of equilibrium configura-
tions pocessing a continuous geometrical symmetry, either helical, axial or translational, since
all these equations, static or stationary and/or isotropic/anisotropic, consist of limiting cases
of (2.46) as presented below.

• Helical Symmetry

- In the absence of pressure anisotropy (σd = 0) equation (2.46) reduces to the re-
spective equation governing helically symmetric equilibria with incompressible flow and
isotropic pressure derived in [115] [see equation (27) therein].
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- In the static isotropic limit (σd = M2
p = 0) it reduces to the JFKO equation [75] [see

equation (30) therein].

• Axisymmetry

- In the limit (k = −1,m = 0) the respective equation governing axisymmetric equi-
libria with pressure anisotropy and incompressible flow derived in [114] is recovered [see
equation (34) therein].

- For vanishing flow (M2
p = 0) it reduces to the respective equation governing static

anisotropic axisymmetric equilibria derived in [124] [see equation (9) therein].

- In the absence of anisotropy (σd = 0) it reduces to the respective equation governing
axisymmetric equilibria with incompressible flow and isotropic pressure introduced in
[174] [see equation (17) therein].

- In the absence of both flow and pressure anisotropy (σd = M2
p = 0) equation (2.46)

reduces to the well-known GS equation [68,69].

• Translational Symmetry

- In the limit (k = 0,m = 1) equation (2.46) in the absence of pressure anisotropy,
σd = 0, reduces to the respective equation governing cylindrically symmetric incom-
pressible equilibria derived in [174,175] [see equation (8) in [174]].

Once a solution of the GGS equation (2.46) is found, the equilibrium can be completely
constructed in the U -space by using (2.45) and the inverse transformation

ψ(U) =

∫ U

0

(1− σd(g)−M2
p (g))−1/2dg. (2.49)

Thus, the equilibrium quantities of interest, presented above, are written in the following forms
in U -space:

P = Ps(U)− %

[
V 2

2
− (1− σd)

q

(
dΦ

dU

)2
]
, (2.50)

X(U) = (1− σd −M2
p )1/2

[
(1− σd −M2

p )1/2I +
µ0

q

(
M2

p%

µ0

)1/2(
dΦ

dU

)]
, (2.51)

B = Ih + (1− σd −M2
p )−1/2h×∇U, (2.52)

V =
Mp√
µ0%

B− (1− σd −M2
p )1/2

(
dΦ

dU

)
h

q
, (2.53)

µ0J =

[
LU

1− σd −M2
p

+
(1− σd −M2

p )−3/2

2
×

d(σd +M2
p )

dU
|∇U |2 + 2kmqI

]
h− h×∇I, (2.54)

Ω =

{
Mp√
µ0%

(1− σd −M2
p )−1/2LU +

d

dU

[
Mp√
µ0%

(1− σd −M2
p )−1/2

]
|∇U |2

+
2kmqΘ

%

}
h− h×∇

(
Θ

%

)
. (2.55)
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The safety factor in helical coordinates

Consider an infinitesimal annulus between two flux surfaces; with the use of the relations (2.7)
and (2.23) for the helically symmetric magnetic field, the expression (1.70) for the safety factor
yields

Q =
k

2πN

d
∫
Bζds

dψ
. (2.56)

We apply the coordinate transformation (r, u, ζ) −→ (ψ(r, u), lp(r, u), ζ) with Jacobian

J =
[
(∇ψp ×∇lp) · gζ

]−1
=

[
m

r

(
∂ψ

∂r

∂lp
∂u
− ∂ψ

∂u

∂lp
∂r

)]−1

, (2.57)

where ψ is the usual poloidal flux function and lp denotes the length element along the poloidal
direction. Then equation (2.56) assumes the form

Q =
k

2πN

∮
JBζdlp, (2.58)

where we have used ds = J dψdlpgζ ; here
∮
dlp is the line integral along the intersection curve

of the helicoidal flux surface with the poloidal plane. Moreover, we calculate the quantity
Bp · ∇lp and find

Bp · ∇lp =
1

r

(
∂ψ

∂r

∂lp
∂u
− ∂ψ

∂u

∂lp
∂r

)
= (mJ )−1. (2.59)

Furthermore, we represent lp as ∇lp = Bp/Bp and obtain the following expression from which
the safety factor can be numerically calculated in terms of equilibrium quantities

Q =
1

ηN

∮
Bζ(r, u)

Bp(r, u)
dlp. (2.60)

2.2 Special ideal incompressible MHD equilibria with
anisotropic pressure

The GGS equation (2.38), valid for generic flow and anisotropy function, as well as its reduced
form (2.44), governing incompressible equilibria with anisotropy function uniform on magnetic
surfaces, were obtained from a reduction of the ideal MHD equilibrium equations (1.50)-
(1.54) under the condition of helical symmetry, in which the existence of well-defined magnetic
surfaces is assured. However, it is known that well-defined magnetic surfaces for 3D toroidal
equilibria in general do not exist [24, 176]; the existence of such 3D equilibrium states are
important for finite-beta stellarators. The aforementioned 3D equilibrium equations contain
the vectors V, Ω, B and J, which in general are arbitrary. However, steady states involving
special relative orientations between two of these vectors have drawn particular attention. An
example of such special steady states are the force-free ones in which the magnetic force,
J × B, vanishes [177–183]; in this case the convective flow term is usually neglected in the
force-balance equation and therefore the plasma pressure is constant. Also, steady states
with Beltrami flows, in which the velocity V is parallel to the vorticity Ω are of particular
interest [182–186]. We will examine the properties of such kind of special 3D equilibria by
assuming the existence of well defined magnetic surfaces labelled by a smooth function ψ(r),
on which surfaces both the fluid element velocity and the magnetic field lie on (see equation
(1.56)), as follows.
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2.2.1 Parallel flows (V ‖ B)

In the special case of collinear velocity and magnetic fields related through

V =
λ(r)
√
µ0%

B, (2.61)

with λ an arbitrary dimensionless scalar function, the continuity equation (1.50) yields

1

%
(B · ∇%) = −2

λ
(B · ∇λ). (2.62)

Then with the use of the relations (2.61) and (2.62) the momentum equation (1.58) for
field-aligned flows reads

(1− σd − λ2)J×B = ∇
(
P + λ2 B

2

2µ0

)
+
B2

2µ0

∇(1− σd − λ2)− B

µ0

[
B · ∇(1− σd − λ2)

]
,

(2.63)
being valid for arbitrary functions % and σd, and therefore for compressible flows. We further
assume that the anisotropy function is uniform on magnetic surfaces, σd = σd(ψ), together
with incompressible flows, % = %(ψ). In this case equation (2.62), implies that the function λ
is also a surface quantity, λ = λ(ψ), and equation (2.63) reduces to

(1− σd − λ2)J×B = ∇
(
P + λ2 B

2

2µ0

)
− (σd + λ2)

′ B2

2µ0

∇ψ. (2.64)

The component of (2.64) parallel to B implies that P + λ2B2/(2µ0) is a magnetic-surface
quantity, to be called Ps(ψ), in consistency with (2.43) for field-aligned flows given by (2.61);
consequently, (2.64) yields

J×B = g(ψ,B2)∇ψ, (2.65)

where

g(ψ,B2) := (1− σd − λ2)−1

[
P ′s − (σd + λ2)

′ B2

2µ0

]
. (2.66)

Equation (2.65) implies that J lies on the magnetic surfaces, a property which was very useful
in obtaining the sufficient condition for linear stability in [149].

At this point let us mention the special class of isodynamic equilibria introduced by
Palumbo [187] in which by definition the magnetic field modulus is uniform on magnetic
surfaces. Thus, they may have favourable confinement properties because the ∇B drift van-
ishes. The latter equilibria are degenerate in the sense that irrespective of the choice of the
functional dependence of the free functions in the GGS equation the equilibrium configuration
is unique [188]. In this configuration the magnetic surfaces in the vicinity of the magnetic axis
have circular cross-sections and the outermost magnetic surface reaches the axis of symmetry
through a corner; this will be called Palumbo equilibrium. When the magnetic field magnitude
is a surface quantity, B2 = B2(ψ), equation (2.65) can be put in the form J×B = ∇G(ψ),
which in the isotropic limit is formally equivalent to the well known static ideal MHD equa-
tion. Consequently, the only isodynamic equilibrium with parallel incompressible flow is the
axisymmetric Palumbo one, as it was proved for static equilibria in [189]. This also holds for
anisotropic equilibria with σd = σd(ψ) as noted in [114].

2.2.2 Flows parallel to the current density (V ‖ J)

Assume that the velocity and the current density vectors are collinear, related through

V = λ(r)J, (2.67)
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with λ being an arbitrary scalar function. This is physically plausible case too because certain
species of charged fluid elements should be in motion in order to create the current. For static
equilibria J is created by the electrons; for stationary ones the ions may also contribute. In
this case V, B and J have common surfaces by the Ohm’s law, which reads

J×B = λ−1∇Φ. (2.68)

Also, under relation (2.67) the continuity equation takes the form

%(J · ∇λ) = −λ(J · ∇%). (2.69)

Let us discuss here the physical meaning of λ. Recall that the MHD momentum equation
is derived by adding the two-fluid momentum equations and using the relations for V∗, J∗

given in (1.14). Since V∗ = λJ∗ then we can compute the electron velocity in terms of the
ion velocity, i.e.

v∗e =
ne(mi +me)λ−mi

ne(mi +me)λ+me

v∗i = µ(λ, n)v∗i . (2.70)

Therefore v∗e ‖ v∗i as it was expected and in addition we conclude that λ determines the
relative velocity of electrons and ions for a given particle density n. In particular, for |λ| � 1
(i.e. for velocity magnitudes much more greater than the current density) the electrons are
moving nearly with the ion velocity (almost no current). For very small and reversed flow
velocity compared to the current density, the electrons are moving in the same direction with
the ions but much faster. Also, for small but positive (with respect to the direction of J) flows
the electron velocity reverses and the electrons move in the opposite direction with respect to
the ions. This case is not desirable since it is generally known that opposing beams of charged
particles drive the so called two stream instability. The threshold for electron flow reversal is
λc = mi[en(mi +me)]

−1.
Assuming uniform pressure anisotropy, σd = σd(ψ), together with incompressible flows,

% = %(ψ), in this case equation (2.69) implying λ = λ(ψ) since J, B share the same surfaces,
the Ohm’s law is written in the form

J×B = ς(ψ)∇ψ, (2.71)

where ς := Φ
′
/λ is the charge density. Furthermore the momentum equation in this case takes

the form

(1− σd)J×B + %λ2J× (∇× J) = ∇
(
P +

%λ2J2

2

)
−
(
σ
′

d

B2

2µ0

+ (%λ2)
′ J2

2

)
∇ψ. (2.72)

The component of (2.72) parallel to J implies that P + (%λ2J2)/2 is a surface quantity to
be called Ps(ψ), in consistency with (2.43) for flows parallel to the current density given by
(2.67); consequently, (2.72) yields

J× (∇× J) = g(ψ,B2, J2)∇ψ, (2.73)

where

g(ψ,B2, J2) :=
1

%λ2

[
P ′s − (%λ2)

′ J2

2
− σ′d

B2

2µ0

− (1− σd)ς
]
. (2.74)

From equation (2.73) it follows that the vector field ∇ × J = −∇2B/µ0 also lies on the
magnetic surfaces.
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2.2.3 Beltrami flows (Ω ‖ V)

This kind of flows have been thoroughly investigated in the framework of hydrodynamics.
The Beltrami condition, Ω = λ(r)V, λ being an arbitrary scalar function, together with the
condition of divergence-free vorticity, ∇ ·Ω, yield

λ(∇ ·V) = −V · ∇λ, (2.75)

which under the incompressibility condition implies that λ = λ(ψ). By further assuming that
σd = σd(ψ) the momentum equation takes the form

(1− σd)J×B = ∇
(
P + %

V 2

2

)
−
(
%
′ V 2

2
+ σ

′

d

B2

2µ0

)
∇ψ. (2.76)

Then projection of equation (2.76) along B (or J) implies that P + (%V 2)/2 := Ps(ψ) is a
surface quantity, and consequently equation (2.76) assumes the form

J×B = g(ψ,B2, V 2)∇ψ, (2.77)

with

g(ψ,B2, V 2) :=
1

1− σd

[
P ′s − %

′ V 2

2
− σ′d

B2

2µ0

]
, (2.78)

thus implying that all four vectors Ω, V, J, B lie on the magnetic surfaces.

2.2.4 “Force-free” equilibria (J ‖ B)

The force-free condition relates the current density with the magnetic field through

J = λ(r)B, (2.79)

where λ is an arbitrary scalar function. This case has also been extensively investigated in the
literature in connection with relaxed states of astrophysical and fusion magnetically confined
plasmas. The most known example is associated with the Taylor conjecture [190,191] accord-
ing to which a slightly resistive plasma surrounded by a fixed perfectly conducting boundary
relaxes to a state of minimum magnetic energy under the constraint of global magnetic helicity
conservation, a state which is deduced to the force-free with λ = constant. For static isotropic
equilibria if the magnetic force is zero the pressure must be constant and therefore none force
is exerted on the fluid element, which justifies the term force-free. A physical reason that
many astrophysical plasmas relax to such a state is that if the current would not be parallel to
the magnetic field the resulting magnetic force should be so large that it could not be balanced
by pressure-gradient and gravitational forces. However, in the presence of plasma flow if the
magnetic force vanishes the pressure can not be constant because a ∇P -force is required to
balance the inertial flow one. This is the reason we use here quotation marks for the term
“force-free”.

Since both J and B are divergence-free the “force-free” condition implies that λ = λ(ψ).
Under the assumptions of incompressible flows and uniform anisotropy the momentum equation
takes the form

%V ×Ω = ∇
(
P + %

V 2

2

)
−
(
%
′ V 2

2
+ σ

′

d

B2

2µ0

)
∇ψ. (2.80)

Then projection of latter equation along V implies that P + (%V 2)/2 := Ps(ψ) is a surface
quantity, and consequently equation (2.80) reduces into the form

V ×Ω = g(ψ,B2, V 2)∇ψ, (2.81)

with

g(ψ,B2, V 2) :=
1

%

[
P ′s − %

′ V 2

2
− σ′d

B2

2µ0

]
, (2.82)

thus implying that all four vectors Ω, V, J, B lie on the magnetic surfaces.
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2.2.5 Equilibria with Ω ‖ B (Ω ‖ J)

Assume that the vorticity is parallel to the magnetic field through, Ω = λ(r)B; then owing to
both Ω and B being divergence-free, the scalar function λ is a surface function, λ = λ(ψ).
For incompressible flows and uniform pressure anisotropy function, the force balance equation
takes the form

[(1− σd)J + %λV]×B = ∇
(
P + %

V 2

2

)
−
(
%
′ V 2

2
+ σ

′

d

B2

2µ0

)
∇ψ. (2.83)

Then projection of the latter equation along V implies that P+(%V 2)/2 := Ps(ψ) is a surface
quantity, and consequently equation (2.80) reduces to

[(1− σd)J + %λV]×B = g(ψ,B2, V 2)∇ψ, (2.84)

with

g(ψ,B2, V 2) :=
1

%

[
P ′s − %

′ V 2

2
− σ′d

B2

2µ0

]
. (2.85)

Also in this case the Ohm’s law implies that

J×B =
(%λΦ

′
)

1− σd
∇ψ, (2.86)

and thus, all four vectors Ω, V, J, B share the same surfaces.
Now consider a different kind of equilibria in which the vorticity is parallel to the current

density, Ω = λ(r)J; since both Ω and J being divergence-free, it follows that the scalar
function λ is uniform on the current surfaces, S = const., on which the current density
lie on, λ = λ(S), assuming that such surfaces are well-defined. Under the condition of
incompressibility together with σd being uniform on the magnetic surfaces the momentum
equation takes the form

[%λV − (1− σd)B]× J = ∇
(
P + %

V 2

2

)
−
(
%
′ V 2

2
+ σ

′

d

B2

2µ0

)
∇ψ. (2.87)

In order to further reduce the above equation we assume that the magnetic surfaces coincide
with the current surfaces, J · ∇ψ = 0, in which case the projection of (2.87) along J yields
that P + (%V 2)/2 := Ps(ψ) is a surface quantity, and consequently

[%λV − (1− σd)B]× J = g(ψ,B2, V 2)∇ψ, (2.88)

with

g(ψ,B2, V 2) :=

[
P ′s − %

′ V 2

2
− σ′d

B2

2µ0

]
. (2.89)

2.2.6 Special helically symmetric equilibria
Here we examine the special helically symmetric equilibria with incompressible flows (% =
%(ψ), Mp = Mp(ψ)) and pressure anisotropy function uniform on magnetic surfaces (σd =
σd(ψ)) respective to those of subsections 2.2.1-2.2.5 together with the cases of equilibria with
either complex lamellar V and complex lamellar B, as follows.
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Parallel flows

The poloidal component of relation (2.61) implies that λ = Mp = λ(ψ), in consistency with
(2.31). Also, equation (2.34) for Φ

′
= 0 implies that I = X/(1−σd−M2

p ) = I(ψ) and thus,
the current surfaces coincide with the magnetic surfaces. In addition, the helicoidal component
of (2.61) yields Θ = (MpI

√
%)/
√
µ0 in consistency with (2.30) for Φ

′
= 0. Consequently,

Mp, the helicoidal Alfvén Mach function, Mt = Vh/(Bh/
√
µ0%), and the parallel Alfvén Mach

function, M = V/(B/
√
µ0%), are equal one another. Since the electric field vanishes the GGS

equation (2.44) under the transformation (2.45) takes the following form in U space

LU + 2kmqI +
1

2

dI2

dU
+
µ0

q

dPs
dU

= 0, (2.90)

which is identical with the static isotropic JFKO equilibrium equation. Furthermore, the
Bernoulli equation (2.50) becomes P = Ps−M2

p (B2/2µ0). Therefore non-negativeness of P
sets a lower bound (approximately) for the plasma beta

β̄ ≥M2
p . (2.91)

Flows parallel to the current density

The helicoidal and poloidal components of relation (2.67) yield respectively

Lψ =
µ0Θ

%λ
− 2kmqI, (2.92)

and
µ0F

′

%
h×∇ψ = −h×∇I. (2.93)

From the projection of (2.93) along ∇ψ it follows that I = I(ψ). Compatibility with the
relation (2.34) implies that for the current density to stay on the magnetic surfaces the velocity
should be either helicoidal (Mp = 0) or parallel to the magnetic field (Φ

′
= 0).

In the isotropic axisymmetric limit (σd = 0, P → P, k → −1, m→ 0, u→ z, q → ρ−1)
the pertinent equilibrium states are governed by the following equation

(1−M2
p )∆?ψ −

(M2
p )
′

2
|∇ψ|2 +

1

2

(
X2

1−M2
p

)′
+ µ0ρ

2P
′

s +
ρ4

2

[
%(Φ

′
)2

1−M2
p

]′
= 0, (2.94)

while equation (2.92) takes the form

∆?ψ =
µ0Θ

%λ
. (2.95)

Here, ψ = ψ(ρ, z), ∆? = ρ2∇ · (∇/ρ2) and Ps is the static part of the isotropic axisymmetric
pressure. In this case equations (2.94) and (2.95) imply that ψ should satisfy a couple of
equations of the form

∆∗ψ = a1(ψ) + ρ2a2(ψ), (2.96)
|∇ψ|2 = a3(ψ) + ρ2a4(ψ) + ρ4a5(ψ), (2.97)

where the functions ai, i = 1, ...5, can be expressed in terms of X, Ps, Mp, %, Φ, and λ. The
set of equations (2.96)-(2.97) describe a special class of isodynamic-like equilibria with non-
parallel flow [192] associated with the so-called Mawxellian condition, P +B2(2µ0) = const.,
in connection with a hidden integrability of ideal MHD. It is also noted that alternative “side-
conditions” imposed on axisymmetric incompressible equilibria, as B2 = B2(ψ) or P = P (ψ)
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[193], lead to more generic isodynamic-like equilibria in connection with an additional term on
the RHS of (2.96) of the form ρ4a6(ψ). For parallel flows it holds a5 = 0 and (2.96)-(2.97)
lead to the Palumbo configuration. The presence of non-parallel flow (Φ

′ 6= 0) modifies this
configuration, i.e. the magnetic surfaces in the vicinity of the magnetic axis can have elliptical
cross-sections elongated either parallel or perpendicular to the axis of symmetry [193].

Beltrami flows

The poloidal component of the Beltrami condition, Ω = λ(ψ)V, reads

h×∇Θ =

(
Θ%

′

%
− λF ′

)
h×∇ψ. (2.98)

Then projection of this equation perpendicular to the magnetic surfaces implies that Θ = Θ(ψ).
To be this compatible with the integral (2.30) it follows that Φ

′
= 0 and therefore helically

symmetric incompressible Beltrami flows must be parallel to B. Also, from relation (2.34) it
follows that in this case the current density remains on the magnetic surfaces, I = I(ψ). The
GGS equation governing such helically symmetric Beltrami equilibria has the following form
under the transformation (2.45)

LU + 2kmqI +
1

2

dI2

dU
+
µ0

q

dPs
dU

= 0, (2.99)

with P = Ps −M2B2/(2µ0), the parallel Mach function being equal in this case to M =√
µ0Θ/(

√
%I).

“Force-free” equilibria

Since in this case, Ω, V, B and J share the same surfaces it should hold I = I(ψ) and
Θ = Θ(ψ). Consequently compatibility with (2.30) implies, as in the Beltrami case, that the
flows should be parallel to B. In this case the pertinent momentum equation describes the
balance between the pressure tensor related force and the flow force, while the resulting GGS
equation governing the equilibrium is identical with (2.99).

Vorticity parallel to the magnetic field/current density

Consider the case Ω = λB. Projection of the poloidal component of this relation,

h×∇Θ =

(
Θ%

′

%
− %λ

)
h×∇ψ, (2.100)

onto the direction of ∇ψ implies that Θ = Θ(ψ). Consequently, compatibility with (2.35)
leads to flows parallel to B.

Similarly, the ∇I-component of the relation Ω = λ(ψ)J implies that Θ is uniform on the
current surfaces, which in this case coincide with the magnetic surfaces, Θ = Θ(I) = Θ(ψ).
This restricts one more the flows to be parallel to B.

Complex lamellar equilibria

Complex lamellar is a vector field, a, which is orthogonal to its own curl, c = ∇ × a. This
is related to the orthogonal decomposition of c with respect to the direction of a: c =
λ1a + a × w. When w = 0 the field a becomes Beltrami while for λ1 = 0, a becomes
complex lamellar (a · c = 0). In hydrodynamics all the two-dimensional flows satifying the
Navier-Stokes equation are complex-lamellar. The research of complex lamellar flow has been
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of great help to understanding the complexity and generality of the flow, e.g. [194–197].
Also, in helically symmetric MHD equilibria with purely toroidal (helicoidal) flow, inherently
incompressible because of symmetry, this flow is complex lamellar. Here we examine helically
symmetric and axisymmetric equilibria with complex lamellar flow.

Employing equations (2.13), (2.18) and (2.35) the condition V ·Ω = 0 yields(
A(ψ) +

C(ψ)

q

)[
D(ψ)Lψ + 2kmq

(
A(ψ) +

C(ψ)

q

)]
− 2k2rC(ψ)D(ψ)

∂ψ

∂r

+

[(
A(ψ) +

C(ψ)

q

)
D
′
(ψ)−D(ψ)

(
A
′
(ψ) +

C
′
(ψ)

q

)]
|∇ψ|2 = 0, (2.101)

where A := (XMp)/
√
µ0%(1 − σd − M2

p ), C := −(1 − σd)Φ
′
/(1 − σd − M2

p ) and D :=
Mp/
√
µ0%. Therefore the equilibrium is governed by the GGS equation (2.44) and (2.101). In

the special case of axisymmetry the corresponding equations can be cast in the forms

(a1(ψ) + ρ2a2(ψ))∆?ψ + a3(ψ)ρ
∂ψ

∂ρ
,

= A1(ψ) + A2(ψ)ρ2 + A3(ψ)ρ4 + A4(ψ)ρ6, (2.102)

(a1(ψ) + ρ2a2(ψ))|∇ψ|2 + b3(ψ)ρ
∂ψ

∂ρ
,

= B1(ψ) +B2(ψ)ρ2 +B3(ψ)ρ4 +B4(ψ)ρ6, (2.103)

where ai, Ai, Bi are known functions of the surface quantities of equilibrium. Consequently,
the electric field gives rise to a class of non-isodynamic axisymmetric equilibria with complex
lamellar flow governed by equations (2.102) and (2.103). The construction of specific equilibria
can be pursued by a method introduced in [187] and employed in [193]. For parallel flow
(C = 0) these equations reduce to

∆?ψ = d1(ψ) + ρ2d2(ψ), (2.104)
|∇ψ|2 = u1(ψ) + ρ2u2(ψ), (2.105)

and thus, in this case the equilibrium becomes isodynamic. We note that the same result holds
for equilibria with complex lamellar magnetic field, B · J = 0.
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3 | An Analytic Class of Helically Sym-
metric Equilibria

“There are endless planes of attention, endless realities and
endless mind states. They’re like collections of atoms and pro-
tons and neutrons, nuclei. They just go on forever. They’re
plasma, they’re fluid ... they’re alive.”

Frederick Lenz

3.1 Construction of analytic equilibrium solutions

The equilibrium of a helically symmetric plasma with anisotropic pressure and incompressible
flow of arbitrary direction is governed by the GGS equation (2.46), which is a non-linear, par-
tial differential equation of second order. In order to solve analytically that equation we first
have to linearize it for several choices of the free function terms I(U), F(U), and Ps(U).
These choices should correspond to reasonable profiles of the equilibrium surface quantities
X(U), %(U), Φ(U), Mp(U) and σd(U), since both I(U) and F(U) depend on these quanti-
ties. In particular, to solve equation (2.46) we adopt the most generic linearizing ansatz for
the free function terms as

I(U) := χ00 + χ11(U − Ub),
µ0F(U) := ϕ00 + ϕ11(U − Ub) + ϕ22(U − Ub)2, (3.1)
µ0Ps(U) := π00 + π11(U − Ub) + π22(U − Ub)2,

where χ00, χ11, π00, π11, π22, ϕ00, ϕ11, ϕ22, Ub are free parameters which will thereafter be
specified. In particular, the parameter Ub refers to the outermost magnetic flux surface or
equivalently is the value of U on the plasma boundary. We note that for plasmas of magnetic
confinement fusion interest, both the mass flow and the pressure must vanish on the plasma
boundary; otherwise a well defined equilibrium may not be maintained, potentially leading to
catastrophic disruptions. In this sense, in connection with modeling of fusion related equilib-
rium configurations, we henceforth assume π00 = (π11−π22Ub)Ub and ϕ00 = (ϕ11−ϕ22Ub)Ub,
which imply that for U = Ub the profiles of both the electric field term and of the static effective
pressure vanish thereon1. It is also noted that the first two choices of the ansatz (3.1) specify
the functional dependence of a couple out of the free functions X2(U), %(U), Φ

′
(U)2, Mp(U)

and σd(U). In this respect we choose these functions to be X2 and (Φ
′
)2; therefore the

solutions to be constructed are valid for any functions σd(U), M2
p (U) and %(U). Then under

the coordinate transformation

s :=
k2r2

m2
, (3.2)

1In the special case Ub = 0 one has to assume that π00 = ϕ00 = 0.

45
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equation (2.46) takes the form

s2

1 + s

∂2U

∂s2
+
m2

4

∂2U

∂u2
+

s

(1 + s)2

∂U

∂s
+ Υ(s)U = Γ(s), (3.3)

in connection with the following definitions:

Υ(s) := s

[
λ22 + λ33(1 + s) +

λ11

(1 + s)2
+

λ2
11

(1 + s)

]
, (3.4)

λ11 :=
mχ11

2k
, λ22 :=

π22m
4

2k2
, λ33 :=

ϕ22m
6

4k2
, (3.5)

Γ(s) := −s
[
τ22 + τ33(1 + s) +

τ11

(1 + s)2
+

τ11λ11

(1 + s)

]
, (3.6)

τ11 :=
mχ̃00

2k
, τ22 :=

π̃11m
4

2k2
, τ33 :=

ϕ̃11m
6

4k2
, (3.7)

χ̃00 := χ00 − χ11Ub, π̃11 := (π11 − 2π22Ub)/2, ϕ̃11 := (ϕ11 − 2ϕ22Ub)/2. (3.8)

Thus, the problem reduces into solving the non-homogeneous, linear PDE (3.3). The general
solution of (3.3) should be of the form

U(s, u) = Uh(s, u) + Up(s), (3.9)

where Uh(s, u) is the general solution of the respective homogeneous equation

s2

1 + s

∂2Uh(s, u)

∂s2
+
m2

4

∂2Uh(s, u)

∂u2
+

s

(1 + s)2

∂Uh(s, u)

∂s
+ Υ(s)Uh = 0, (3.10)

while Up(s) is any particular solution of (3.3) satisfying equation

s2

1 + s

d2Up(s)

ds2
+

s

(1 + s)2

dUp(s)

ds
+ Υ(s)Up(s) = Γ(s). (3.11)

In order to first solve the homogeneous PDE (3.10) we apply the method of separation of
variables for Uh(s, u):

Uh(s, u) = H(s)T (u). (3.12)

Then substitution of the trial form (3.12) into (3.10) reduces the problem to a couple of linear
ODEs of the second order, in connection with a separation constant, n. The first for the
function T (u) is

d2T (u)

du2
+

(
2n

m

)2

T (u) = 0, (3.13)

having the periodic in u general solution

T (u;n) = l1 cos

(
2nu

m

)
+ l2 sin

(
2nu

m

)
, (3.14)

where l1, l2 are arbitrary coefficients. The second ODE satisfied by the function H(s) is

s2(1 + s)
d2H(s)

ds2
+ s

dH(s)

ds
+

(
4∑
i=0

Υis
i

)
H(s) = 0, (3.15)
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where Υi, i = 1, ..4 are functions of the free parameters and n defined as follows

Υ0 := −n2,

Υ1 := λ11 + λ2
11 + λ22 + λ33 − 2n2,

Υ2 := λ2
11 + 2λ22 + 3λ33 − n2, (3.16)

Υ3 := λ22 + 3λ33,

Υ4 := λ33.

Moreover, for the radial function H(s) we apply the transformation

H(s) = sne−κsR(s), κ2 := −Υ3, (3.17)

under which ODE (3.15) reduces further into a more compact one for the function R(s)

s(1 + s)
d2R(s)

ds2
+ (ε00 + ε11s+ ε22s

2)
dR(s)

ds
+ (ε33 + ε44s+ Υ4s

3)R(s) = 0. (3.18)

Here the parameters appearing in the polynomial coefficients (which are analytic functions of
s except for s = 0 and s→∞) are defined as follows

ε00 := 1 + 2n, ε11 = 2(n− κ), ε22 := −2κ,
ε33 := Υ1 − (n+ κ)− 2nκ + n2, ε44 := Υ2 + κ2 − 2nκ. (3.19)

We note that the form of transformation (3.17) implies that one may consider different kinds
of solutions depending on the specific relation between the parameters κ and Υ3. In particular,
if one assumes κ = i

√
Υ3, Υ3 > 0, such that κ be imaginary, then the radial solution will

possess an oscillatory part involving sines and cosines in terms of s. However, if one assumes
Υ3 < 0 such that κ be real, then the solution will involve an exponential part either growing
or decaying with s, depending on the sign of κ. Here we consider the latter case:

(Υ3, κ) ∈ R, Υ3 < 0 < κ. (3.20)

In this situation, owing to the relations (3.5), (3.16) and (3.20) the following constraint for
the values of the parameters π22 and ϕ22, related with the non-linear with respect to U parts
of the effective pressure and non-parallel flow ansatz (3.1), arises

π22 +
3ϕ22m

2

2
< 0, (3.21)

which in the absence of the electric field term becomes π22 < 0. Let us now find the general
solution of (3.18) under the above assumptions. Note that for the variable s it holds that
s ≥ 0, since it is defined through the radial helical coordinate r by (3.2). Consequently,
s = 0 is a regular singular point of (3.18) while +∞ consists of an irregular singularity of
this equation. In the present thesis we solve (3.18) analytically in the neighborhood of an
ordinary point {s0 | s0 ∈ R+, s0 6= 0, +∞}. In this case it is known that if s0 is an ordinary
point of ODE (3.18) and ρ̄ denotes the finite distance between s0 and the nearest zero of the
polynomial coefficient s(s + 1) of d2R(s)/ds2, which is s = 0, then every solution of (3.18)
can be represented by a Taylor series expansion around s0 of the form

R(s) =
∞∑
j=0

Wjχ
j, χ := s− s0, (3.22)

that converges at least in the open interval (s0 − ρ̄, s0 + ρ̄). Such kind of solutions are
sufficient for describing helically symmetric plasma tubes of major radius s0 = (k2r2

0)/m2,
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corresponding to the configuration’s geometric center, i.e. the helix (r = r0, u = u0), and
minor radius related with the poloidal cross-section ρ̄ < r0, as that illustrated in figure 1.3,
for which the origin s = 0 (or r = 0) lies outside of configurations of interest. In addition, in
Appendix C we derive an alternative analytical solution of (3.18) in the neighborhood of the
regular singular point s = 0 for completeness.

Substituting (3.22), together with its first and second s-derivatives, into the ODE (3.18)
yields the following relations

0 ·W0χ
−2

+ (0 ·W0 + 0 ·W1)χ−1

+ [2t00W2 + Y0W1 + Z0W0]χ0

+ [6t0W3 + 2(t11 + Y0)W2 + (Y1 + Z0)W1 + Z1W0]χ1

+ [12t00W4 + 3(2t11 + Y0)W3 + (2 + 2Y1 + Z0)W2 + (ε22 + Z1)W1 + Z2W0]χ2

+
∞∑
j=5

{j(j − 1)t00Wj + (j − 1) [(j − 2)t11 + Y0]Wj−1 + [(j − 2)(j − 3)+

(j − 2)Y1 + Z0]Wj−2 + [(j − 3)ε22 + Z1]Wj−3 + Z2Wj−4 + Υ4Wj−5}χj−2

= 0, (3.23)

where:

t00 := s0(1 + s0), t11 := 1 + 2s0,

Y0 := ε00 + ε11s0 + ε22s
2
0, Y1 := ε11 + 2ε22s0, (3.24)

Z0 := ε33 + ε44s0 + Υ4s
3
0, Z1 := ε44 + 3Υ4s

2
0, Z2 := 3Υ4s0.

In order for equation (3.23) to be satisfied all coefficients of χj must vanish; this evidently
implies that both W0 and W1 remain arbitrary as well as that all coefficients Wj, with j > 1,
can be expressed as a linear combination of W0, W1 of the form Wj = W0Bj + W1Cj. As a
result, the general solution of the radial ODE (3.18) is written in the form

R(s) = W0R1(s;n) +W1R2(s;n), (3.25)

where R1, R2 are two linearly independent solutions of (3.18) given by

R1(s;n) = 1 +
∞∑
j=2

Bj(j;n)(s− s0)j, R2(s;n) =
∞∑
j=1

Cj(j;n)(s− s0)j. (3.26)

In the latter solutions the specific recurrence relations for the power series coefficients Bj(j;n)
and Cj(j;n) were calculated as

B2 = − Z0

2t00

,

B3 = − 1

6t00

[2(t11 + Y0)B2 + Z1] ,

B4 = − 1

12t00

[3(2t11 + Y0)B3 + (2 + 2Y1 + Z0)B2 + Z2] ,

B5 = − 1

20t00

[4(3t11 + Y0)B4 + (6 + 3Y1 + Z0)B3 + (2ε22 + Z1)B2 + Υ4] ,

B6 = − 1

30t00

[5(4t11 + Y0)B5 + (12 + 4Y1 + Z0)B4 + (3ε22 + Z1)B3 + Z2B2] ,

Bj = − 1

t00j(j − 1)
{(j − 1) [t11(j − 2) + Y0]Bj−1+

+ [(j − 2)(j − 3) + (j − 2)Y1 + Z0]Bj−2 + [(j − 3)ε22 + Z1]Bj−3+

+ Z2Bj−4 + Υ4Bj−5} , j ≥ 7, (3.27)
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and

C1 = 1,

C2 = − Y0

2t00

,

C3 = − 1

6t00

[2(t11 + Y0)C2 + Y1 + Z0] ,

C4 = − 1

12t00

[3(2t11 + Y0)C3 + (2 + 2Y1 + Z0)C2 + ε22 + Z1] ,

C5 = − 1

20t00

[4(3t11 + Y0)C4 + (6 + 3Y1 + Z0)C3 + (2ε22 + Z1)C2 + Z2] ,

C6 = − 1

30t00

[5(4t11 + Y0)C5 + (12 + 4Y1 + Z0)C4 + (3ε22 + Z1)C3 + Z2C2 + Υ4] ,

Cj = − 1

t00j(j − 1)
{(j − 1) [t11(j − 2) + Y0]Cj−1+

+ [(j − 2)(j − 3) + (j − 2)Y1 + Z0]Cj−2 + [(j − 3)ε22 + Z1]Cj−3+

+ Z2Cj−4 + Υ4Cj−5} , j ≥ 7. (3.28)

Therefore, we have found the general solution of the homogeneous equation (3.10), valid for
arbitrary values of the separation constant n; this is

Uh(s;u;n) = sne−κs [W0R1(s;n) +W1R2(s;n)]

[
l1b1 cos

(
2nu

m

)
+ l2 sin

(
2nu

m

)]
.(3.29)

For further treatment it is convenient to restrict the separation constant n to positive integer
values, n ∈ Z+. Therefore, by applying the linear superposition principle the general solution
of (3.10), periodic in u, is given by

Uh(s, u) =
nm∑
n=1

sn
[
anR1(s;n) cos

(
2nu

m

)
+ bnR1(s;n) sin

(
2nu

m

)
+

+ cnR2(s;n) cos

(
2nu

m

)
+ dnR2(s;n) sin

(
2nu

m

)]
e−κs, (3.30)

where nm is an arbitrary upper bound on the linear superposition and an, bn, cn, dn are
arbitrary coefficients to be determined.

Then we proceed to find a special solution of the inhomogeneous equation (3.11). First
we write this equation as

s(s+ 1)
d2Up(s)

ds2
+
dUp(s)

ds
+

(
3∑
i=0

Kis
i

)
Up(s) =

(
3∑
i=0

Mis
i

)
, (3.31)

where

K0 := λ2
11 + λ11 + λ22 + λ33,

K1 := λ2
11 + 2λ22 + 3λ33,

K2 := λ22 + 3λ33,

K3 := λ33, (3.32)
M0 := − (τ11 + τ22 + τ33 + τ11λ11) ,

M1 := − (2τ22 + 3τ33 + τ11λ11) ,

M2 := − (τ22 + 3τ33) ,

M4 := −τ33.
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Following again a procedure as that of solving the respective homogeneous equation we assume
a power series expansion for Us(s), around the regular point s0, of the form

Up(s) =
∞∑
j=0

Djχ
j, χ = s− s0. (3.33)

Upon substitution of (3.33) into (3.31) yields

0 ·D0χ
−2

+ (0 ·D0 + 0 ·D1)χ−1

+ (2t00D2 +D1 +H0D0 − L0)χ0

+ [6t00D3 + 2(t11 + 1)D2 +H0D1 +H1D0 − L1]χ1

+ [12t00D4 + 3(2t11 + 1)D3 + (2 +H0)D2 +H1D1 +H2D0 − L2]χ2

+ [20t00D5 + 4(3t11 + 1)D4 + (6 +H0)D3 +H1D2 +H2D1 +H3D0 − L3]χ3

+
∞∑
j=0

{(j + 6)(j + 5)t00Dj+6 + (j + 5) [(j + 4)t11 + 1]Dj+5 + [(j + 4)(j + 3)+

H0]Dj+4 +H1Dj+3 +H2Dj+2 +H3Dj+1}χj+4

= 0, (3.34)

where the parameters Hi and Li, i = 0, 1, 2, 3, are defined as

H0 := K0 +K1s0 +K2s
2
0 +K3s

3
0,

H1 := K1 + 2K2s0 + 3K3s
2
0,

H2 := K2 + 3s0K3,

H3 := K3,

L0 := M0 +M1s0 +M2s
2
0 +M3s

3
0,

L1 := M1 + 2M2s0 + 3M3s
2
0,

L2 := M2 + 3s0M3,

L3 := M3. (3.35)

From equation (3.34) it follows that both D0 and D1 remain arbitrary and thus, without loss
of genereality we choose: D0 = 0, D1 = 1. Thus, we find that

Up(s) =
∞∑
j=1

Dj(s− s0)j (3.36)

consists of a special solution of the inhomogeneous ODE (3.11), with coefficients Dj satisfying
the following recursion relations:

D1 = 1,

D2 = − 1

2t00

(1− L0) ,

D3 = − 1

6t00

[2(t11 + 1)D2 +H0 − L1] ,

D4 = − 1

12t00

[3(2t11 + 1)D3 + (2 +H0)D2 +H1 − L2] , (3.37)

D5 = − 1

20t00

[4(3t11 + 1)D4 + (6 +H0)D3 +H1D2 +H2 − L3]

Dj = − 1

t00j(j − 1)
{(j − 1) [t11(j − 2) + 1]Dj−1 + [(j − 2)(j − 3) +H0]Dj−2

+ H1Dj−3 +H2Dj−4 +H3Dj−5} , j ≥ 6.
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To summarize, the general solution of the linearized GGS equation (3.3) for the flux function
U with respect to the ansatz (3.1) has the form

U(r, u) =
nm∑
n=1

sn
[
anR1(s;n) cos

(
2nu

m

)
+ bnR1(s;n) sin

(
2nu

m

)
+

+ cnR2(s;n) cos

(
2nu

m

)
+ dnR2(s;n) sin

(
2nu

m

)]
e−κs + Up(s), (3.38)

in which the explicit forms of the power series R1, R2, Up are given by the relations (3.26)-
(3.28) and (3.36)-(3.37), respectively. As concerns the free coefficients an, bn, cn and dn,
their values will be determined by imposing boundary (shaping) conditions, in connection with
the construction of pertinent, helically symmetric, equilibrium configurations.

3.1.1 Construction of straight helically symmetric equilibrium
configurations

The construction of a specific equilibrium relies on the values of the free coefficients an, bn,
cn, dn in the general solution (3.38). These values are specified by the imposure of appro-
priate boundary (shaping) conditions related with physical and/or geometrical characteristics
of desirable configurations. In this work we are interested in “modeling” equilibria pertinent
to stellarator devices. However, the flux function U(r, u) is a helical scalar function, and as
noted before, helical symmetry corresponds to 2D ‘straight stellarators’, of constant torsion
without toroidicity, and not to the actual 3D devices. To this end we have to clarify that the
term “modeling” here actually refers to using values of geometrical quantities, e.g. major and
minor radius, in connection with specific stellarator-device characteristics.

Consider a spatial curve described by the vector

r0(`) = r0(r = r0 = const., u = u0 = const., ζ(`) = mq
1/2
0 `) (3.39)

in helical coordinates, where ` is the differential arc-length along this helix of reference (see
Appendix B.3). Employing the Frenet-Serret formulas we find that the tangent vector to this
helix is defined by

t(`) =
h0(`)

|h0|
, (3.40)

where h0 := h|r0,u0 ; also, we obtain the first and second normal vectors to the helical curve

n(`) = −gr(`), b(`) = −r0
√
q0g

u(`), (3.41)

where q0 := q(r = r0). These vectors define the perpendicular plane (n,b) on each point
of this helix, henceforth called poloidal plane [198]. Then, the position of each point of
the poloidal plane, originated at a specific length `, is described by the system of intrinsic
coordinates (xn, xb, `) as:

r(xn, xb, `) := r0(`) + xnn(`) + xbb(`)︸ ︷︷ ︸
poloidal cross-section

. (3.42)

It is clear that xn is the distance from the helix (r = r0 = const., u = u0 = const.) in the
direction n and xb measures the distance from that helix in the direction b; in this sense,
the coordinates xn, xb define a “Cartesian” plane at each point ` = `0 (origin), and thus,
moving along the helix. Intrinsic coordinates are useful when imposing a specific boundary
and/or for considerations based on expansions near the magnetic axis [198]. We note that
(xn, xb, `) do not form an orthogonal coordinate system (see Appendix B.3), and although these
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coordinates are useful when imposing rectangular boundaries, for circular or elliptical cross-
sectional shapes one has to consider alternative sets of coordinates. For such considerations,
following the arguments made in [62, 199, 200] we employ the “generalized intrinsic polar
coordinates” (ρ∗, ω) defined by the transfomations

xn = ρ∗ cos(ω − τ0`),

xb = ρ∗ sin(ω − τ0`), (3.43)

where ρ∗ is the distance of any point on the poloidal plane from the reference helix, r0, of
torsion τ0 = kmq0, and ω can be interpreted as a rotational angle in the poloidal plane which
is related with the usual polar coordinate θ, measured from the principal normal n, as

ω = θ +

∫ `

0

τ0d`. (3.44)

In contrast with the usual intrinsic polar coordinates (ρ∗, θ, `) which are not orthogonal, the
generalized intrinsic polar ones (ρ∗, ω, `) form an orthonormal system of coordinates with
metric [62,199,200]:

dr · dr = dρ∗2 + ρ∗2dω2 + [1− κρ∗ cos(ω − τ0`)]
2d`2, (3.45)

where κ is the curvature of the helix of reference; however, the two systems of intrinsic polar
coordinates become identical at ` = 0. The coordinates (ρ∗, ω, `) are widely employed in
hydrodynamics for investigations of the fluid flow through helically symmetric pipes of circular
cross-sectional shape [33,35,41,44,62,65,66]. A detailed description of that coordinate system
is given in Appendix B.3.1.

The transformation between the helical coordinates (r, u) and the intrinsic coordinates
(ρ∗, ω, `) is:

r =
√

[r0 − ρ∗ cos(ω − τ0`)]2 + ρ∗2 sin2(ω − τ0`)m2q0,

u = m arccos

[
(r0 − ρ∗ cos(ω − τ0`)) cos(k

√
q0`)

r(ρ∗, ω, `)
+

ρ∗ sin(ω − τ0`)m
√
q0 sin(k

√
q0`)

r(ρ∗, ω, `)

]
− k√q0(m`+ kr0ρ

∗ sin(ω − τ0`)). (3.46)

Based on the above transformation one can fully determine the solution (3.38) by imposing
boundary conditions pertinent to fusion magnetic configurations, i.e. of the form U(ρ∗0, ω, `) =
Ub = const. in circular geometry, implying that the flux function takes a constant value on
a circular boundary of radius ρ∗ = ρ∗0 as well as that the flow and the pressures vanish
thereon. Such conditions involve the free parameters r0, k, m and ρ∗0 the values of which may
be assigned in connection with geometrical characteristics of specific stellarator devices. As
noted earlier, every stellarator device consists of a specific number of field periods, denoted
by N , with the shape of the cross-section being changed with the toroidal angle in each of
these field periods composing the closed toroid. In fact, in several stellarators the configuration
becomes poloidally symmetric only in toroidal angles π/N . However, for a ‘straight stellarator’
the equivalent N should satisfy the relation 2πR0 = Nη0, where η0 = 2π|m/k| is the straight
helicoidal pitch length and R0 corresponds to the major radius of the respective 3D device. Due
to this analogy, we shall relate the parameters ρ∗0 and r0 with the respective minor and major
radius of a stellarator of interest; in this sense the helix of reference, r0, denotes the geometrical
center of the corresponding ‘straight stellarator’ equilibrium to be constructed. In such a system
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Figure 3.1: The straight helically symmetric equilibrium configuration of circular cross-section
obtained as a solution of the GGS equation (2.46) with W7-X parameters as described in the
text.

because of the helical symmetry the poloidal cross-section shaping remains invariant along the
direction of symmetry (helical axis) unlike the toroidal variation of the respective poloidal
shaping in 3D equilibria. Therefore, a cross-section obtained from the pertinent boundary
conditions at a specific arc-length `0, based upon the transformation r(ρ∗0, `0, ω), u(ρ∗0, `0, ω)
in (3.46), will remain `-invariant moving in the helical direction2.

In order to fully determine the function U we choose nm = 6 in (3.38), and thus we need to
solve a system of twenty four algebraic equations with equal number of unknown coefficients,
a1, a2, ..., b1, ..., b6, c1, ..., d1, ..., d6, arrising from the imposure of Dirichlet-type boundary
conditions in circular geometry, of the form

U [r(ρ∗0, `0, ω), u(ρ∗0, `0, ω)] = Ub, τ0`0 ≤ ω ≤ 2π + τ0`0. (3.47)

Figure 3.1 shows an example of the straight helically symmetric configuration constructed
having the following W7-X characteristics [201] (in pertinent SI units): r0 = 5.5, ρ∗0 = 0.53
and m = 0.1, k = 0.05 such that N = 5, τ0 = 0.0584; also we have choosen to perform
the calculations at `0 = η0/2 = 6.283. The constructed configuration is composed of nested
helicoidal magnetic surfaces of circular cross-sectional shape and has a finite length (in the ζ-
direction) equal to L = 5η0. The up-down symmetric cross-section of the constructed equilibria
are shown in figure 3.2 both on the plane (r, u) and on the poloidal plane (n,b). The values

2In general the coordinates `, ρ∗ can effectively desrcibe an unbounded region varying within the limits
−∞ < ` <∞, 0 ≤ ρ∗ <∞. However, to describe a ‘straight stellarator’ bounded configuration extending
radially up to a finite helicoidal surface (boundary) and of finite length, L, we choose 0 ≤ ` ≤ L and
0 ≤ ρ∗ ≤ ρ∗0 < r0.
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Figure 3.2: Poloidal cut of the nested helicoidal magnetic surfaces of up-down symmetric circular
cross-section of the equilibrium configuration obtained with W7-X characteristics as prescribed
in the text, on (a) the plane (r, u) and (b) the poloidal plane (n,b). The boundary represented
by the thick-blue line was prescribed analytically.
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Figure 3.3: The flux function U(r, u = ua) on the (r, u)-plane for the equilibrium of figure 3.2.

of the other constants used are (in pertinent SI units): χ00 = 0.8, χ11 = −0.002, ϕ11 =
0.5, ϕ22 = −0.08, π11 = 1.528, π22 = −0.103 and Ub = 0. Therefore, the flux function U
vanishes on the boundary while it peaks on the magnetic axis, where Ua = 0.01577. The
magnetic axis on the (n,b) plane is at the position of (xna = −0.0097, xba = −5.67× 10−7),
while on the (r, u) plane it is at (ra = 5.5097, ua = 3.02 × 10−8). The variation of U with
respect to the radial coordinate r, on the plane of magnetic axis, is shown in figure 3.3. We
note that the convergence of the power series appearing in the general solution was checked
by extensive numerical tests; for the construction of the specific equilibrium of figure 3.2 we
have included up to fifty terms in each of those series.

The intrinsic polar coordinates ρ∗, ω (θ) are usually employed for investigating configura-
tions the magnetic surfaces of which possess circular cross-sections; in toroidal geometry these
coordinates are connected with the so-called Shafranov coordinates [202]. However, since
elongation and triangularity play an important role on confinement both in tokamak [203,204]
and stellarator [205, 206] devices, one may resort to more general coordinate systems which
permit the control of these geometrical parameters, and thus, greater shaping flexibility. Here
we introduce such a system of intrinsic coordinates (ρ∗, ω, `) related with the coordinates
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Figure 3.4: Up-down symmetric equilibrium of (a) banana- and (b) triangular- like cross-section-
shape with W7-X geometrical characteristics, on the plane (r, u). The boundaries represented
by the thick-blue lines were prescribed analytically.

(xn, xb) through the transformation

xn = ρ∗[1 + δ(ρ∗) cos(ω − τ`)] cos(ω − τ`),
xb = e1ρ

∗ sin(ω − τ`), (3.48)

where

δ(ρ∗) := γ1 + γ2(ρ∗)β1 , (3.49)

and e1, γ1, γ2 and β1 are arbitrary parameters related with the elongation and triangularity
of the magnetic surfaces. These coordinates do not form an orthogonal system; however, for
γ1 = γ2 = 0 and e1 = 1 they reduce to the orthogonal ones given in (3.43). The coordinate
system (3.48) is simpler than others employed for similar considerations, i.e. in describing D-
shaped magnetic surfaces [203, 204], because it does not involve highly non-linear composite
trigonometric functions of the form cos(sin(f(ε, θ)), where the parameter ε is connected with
the triangularity. These coordinates consist of a more general form of the ones introduced
in [207] to study the impact of the elongation and the triangularity on respective axisymmetric
equilibria (τ = 0), i.e. they reduce to the ones in [207] for γ2 = 0, in which case the parameter
γ1 is indeed the triangularity. Note that in general alternative functional forms for δ(ρ∗) may
be chosen.

Following the same procedure as above, we have constructed up-down symmetric equilibria
of banana- and triangular-like cross sectional shape, with W7-X parameters, by employing the
relations (3.48). The magnetic surfaces of these equilibria are shown in figure 3.4. For the
configuration of banana-like cross-section presented in figure 3.4(a) we have used the following
values: ρ∗0 = 0.35, e1 = 2.68, γ1 = −0.45, γ2 = −0.8, β1 = 1/2, while for the triangular-
like equilibrium of figure 3.4(b) the values: ρ∗0 = 0.53, e1 = 1.03, γ1 = −0.15, γ2 = −0.34
and β1 = 1/2, respectively. We note that the analytical solutions obtained here permit the
construction of equilibria with desirable poloidal cross-section-boundary shape by appropriately
assigning the arbitrary constants in the general solution (3.38) as well as in the relations (3.43),
(3.48) related with the applied boundary conditions. This shaping choice is as flexible as in
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the numerical equilibrium construction; an indication is that the configurations of figure 3.4
remarkably resemble the symmetric ones of W7-X on the poloidal plane corresponding to zero
and π/5 toroidal angles [162] (figures 2(a) and 2(c) therein obtained with consistent ANIMEC
equilibrium), as it was also obtained by the VMEC code [208] (figure 6 therein). However, as
already mentioned in the helically symmetric equilibria constructed in the framework of this
thesis, pertinent to ‘straight stellarators’, the poloidal cross-section remains invariant along
the direction of the symmetry, irrespective of its specific shape.

Finally, it may be noted that we can obtain a more instructive relation for Q than (2.60),
in circular geometry with the use of the intrinsic coordinates (ρ∗, ω) given in (3.43). In this
coordinate system the length element of the poloidal cross section at any point ` = const. is
written in the form (see equation (3.45)):

dr · dr := dl2p = dρ?2 + ρ?2dω2 ⇒ dlp = dω

[
ρ?2 +

(
dρ?

dω

)2
]1/2

. (3.50)

In particular, on a streamline U(ρ?, ω, `) = const. it holds

dU =
∂U

∂ρ?
dρ? +

∂U

∂ω
dω +

∂U

∂`
d` = 0, (3.51)

and thus, for a specific poloidal cross section ` = `0 = const. the above relation yields

dρ?

dω
= − Uω

Uρ?
, (3.52)

where Uω = ∂U
∂ω

and Uρ? = ∂U
∂ρ?

. As a result, one can calculate the profile of the safety factor
by performing an integration in the angle ω around the poloidal cross-section, once first all
equilibrium quantities are expressed in terms of intristic coordinates, by employing the following
relationship:

Q =
1

ηN

∫ 2π+τ`0

τ`0

Bζ(ρ?, ω)

Bp(ρ?, ω)

[
ρ?2 +

(
Uω
Uρ?

)2
]1/2

dω. (3.53)

3.1.2 Reduction to close form analytical solutions
Ansatz (3.1) consists of the most generic one under which the GGS equation (2.46) remains
linear. Under those generic profiles for the free functions contained therein we have obtained
a class of analytic solutions of the GGS equation in terms of generalized power series and
constructed equilibria with pressure anisotropy and incompressible flow of arbitrary direction
in general. However, when one or more of the free parameters in the ansatz (3.1) vanish the
solution to the linearized GGS equations can be expressed in terms of well-known analytical
mathematical functions. Such special cases are presented below.

Linear profiles (π22 = ϕ22 = 0)

This case corresponds to linear profiles for all surface functions I(U), F(U) and Ps(U). We
shall also assume that π00 = π11Ub and ϕ00 = ϕ11Ub, such that both the flow and the static
pressure vanish on the plasma boundary. Under these profiles, the radial ODE (3.15) for the
function H(s) reduces to

s2(1 + s)
d2H(s)

ds2
+ s

dH(s)

ds
+

(
2∑
i=0

Υis
i

)
H(s) = 0, (3.54)
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where Υi, i = 1, ..2 are given by the respective forms (3.16) for λ22 = λ33 = 0. ODE (3.54)
admits the exact general solution, in terms of the first order Bessel functions of the first and
second kind J2n and Y2n, of the form

H(s;n) = ν1H
1(s;n) + ν2H

2(s;n), (3.55)

H1 = 23n+2(2n)!
(λ2

11 − n2)−n/2

n+ λ11

s1−λ11 d

ds

[
sλ11J2n

(√
4s(λ2

11 − n2)

)]
, (3.56)

H2 =
n

2n|2n− 1|!
(λ2

11 − n2)n/2

n− λ11

s1−λ11 d

ds

[
sλ11Y2n

(√
4s(λ2

11 − n2)

)]
, (3.57)

valid for λ2
11 6= n2. Thus, is this case the general solution of the GGS equation (2.46) is

determined by the relations (3.9), (3.12), (3.14) and (3.55)-(3.57), where Up is any solution
satisfying the limiting form of ODE (3.31), (3.32) for λ22 = λ33 = 0. We note that the
exact solution (3.55)-(3.57) was previously obtained in [76] upon solving the respective static,
isotropic helically symmetric GGS (JFKO equation). However, we have succesfully showed
that this solution is also valid for pressure anisotropic, stationary equilibria, and indeed for
flow of arbitrary direction since in our case ϕ11 6= 0. In the limit of parallel flows, ϕ11 = 0,
implying that τ33 = 0, an exact expression for the particular solution can be found of the form

Up(s) =
τ22 − λ11(λ11τ11 + τ22(1 + s))

λ3
11

. (3.58)

I = constant (χ11 = ϕ22 = 0)

In this case, in the absence of pressure anisotropy and flow (σd = Mp = 0) it follows that
the quantity X related with the integral (2.33) is constant. In addition, the function F(U),
related with the non-parallel component of the flow, becomes linear in U , while the static
effective pressure has the explicit form given in (3.1). Again we assume that these quantities
vanish on the plasma boundary, i.e. ϕ00 = ϕ11Ub, π00 = (π11 − π22Ub)Ub. On the basis of
these profiles the radial ODE (3.15) for the function H(s) reduces to

s2(1 + s)
d2H(s)

ds2
+ s

dH(s)

ds
+ (1 + s)2(λ22s− n2)H(s) = 0, (3.59)

since it follows that λ11 = λ33 = 0. ODE (3.59) admits the exact general solution of the form

H(s;n) = ν1H
1(s;n) + ν2H

2(s;n), (3.60)

H1 = snens
d

ds

[
e−s(n+i

√
λ22)

1F1

(
(n+ i

√
λ22)2

2i
√
λ22

, 2n, i
√
λ22s

)]
, (3.61)

H2 = snens
d

ds

[
e−s(n+i

√
λ22)Ũ

(
(n+ i

√
λ22)2

2i
√
λ22

, 2n, i
√
λ22s

)]
, (3.62)

valid for λ2
11 6= n2, where 1F1(`, n, s) is the confluent hypergeometric function and Ũ(`, n, s)

are two independent solutions of the Kummer’s differential equation:

s
d2W (s)

ds2
+ (n− s)dW (s)

ds
− `W (s) = 0. (3.63)

Thus, is this case the general solution of the GGS equation (2.46) is determined by the relations
(3.9), (3.12), (3.14) and (3.60)-(3.62), where Up is any solution satisfying the limiting form
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of ODE (3.31), (3.32) for λ11 = λ33 = 0. Note that for π22 = 0, corresponding to linear
dependence of Ps on U , the linearly independent radial homogeneous solutions (3.61), (3.62)
reduce to

H1(s;n) = snens, H2(s;n) = s−ne−ns. (3.64)

The above exact solutions (3.60)-(3.64) was previously obtained in [76] upon solving the
respective static, isotropic helically symmetric GGS (JFKO equation). However, we have
again shown that this solution is also valid for anisotropic, stationary equilibria with flow of
arbitrary direction, since in our case ϕ11 6= 0.

A model for astrophysical jets (χ00 = π11 = F = 0, π00 6= 0)

In this case the profiles for the free functions in (3.1) simply become3

I(U) := χ11U,

µ0Ps(U) := π00 + π22U
2, (3.65)

where the absence of the electric field term (F = 0) implies equilibria with flow parallel to
the magnetic field. Under the substitutions: m→ −m, k = −1 and π22 = −2w2, where w is
also a free parameter, on account of the ansatz (3.65) the helically symmetric GGS equation
(2.46) reduces to the following linearized form:

1

r2

∂2U

∂u2
+

1

r

∂

∂r

(
r

r2 +m2

∂U

∂r

)
+

(
χ2

11

r2 +m2
+

2χ11m

(r2 +m2)2
− 4w2

)
U = 0. (3.66)

The above homogeneous PDE was solved analytically in [209] and the exact solution, polyno-
mial in the variable r, obtained therein is

Uδµν(r, u = mφ− z) = e−wr
2{fδH0δ(υ) + rµHµν(υ)[cµν cos(µu/m) + dµν sin(µu/m)]},

(3.67)
where δ, µ, ν are arbitrary integers ≥ 0 satisfying the condition 2δ > 2ν + µ; fδ, cµν , dµν are
arbitrary coefficients, and υ = 2wr2. The form of the polynomial functions Hµν(υ) involve
derivatives of the Laguerre polynomials Lµ+ν(υ) as

Hµν(υ) =
dµ

dυµ
Lµ+ν(υ)−Rµνυ

dµ+1

dυµ+1
Lµ+ν(υ),

γµν =
1

2µν
[4(δ − ν)− µ−

√
(4δ − µ)2 − 16νδ],

(3.68)

e.g see equations (3.7)-(3.8) in [209], and H0δ is the respective polynomial for µ→ 0, ν = δ 6=
0. On account of solution (3.67), different classes of exact helically symmetric MHD equilibria
describing astrophysical jets with isotropic pressure (σd = 0) were constructed in [209]. For
such kind of equilibria both the magnetic field, the flow velocity and the current density fall
rapidly to zero at r →∞, while the pertinent isotropic pressure takes a limiting constant value
therein. As a result, the above solution is not pertinent in describing magnetically confined
fusion related plasmas. We have to note that solution (3.67) can also accurately describe
helically symmetric CGL anisotropic pressure equilibria, with σd being a surface quantity (or
constant), and incompressible flow. This is due to the fact that although the MHD and CGL
models are established through different physical assumptions for the particle collisions, the
respective generalised GS equations governing them are identical in form.

3We have assumed Ub = 0 without loss of generality.
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3.2 Impact of flow and pressure anisotropy
To completely determine the equilibria we have to properly assign the remaining, unspecified
surface quantities appearing in the GGS equation (2.46) in terms of U ; those are the plasma
density, %(U), the Mach function,Mp(U) and the anisotropy function, σd(U). Here we choose
the following functional forms, peaked on the magnetic axis and vanishing on the boundary,

σd = σda

(
U − Ub
Ua − Ub

)µ
, M2

p = M2
pa

(
U − Ub
Ua − Ub

)ν
, % = %a

(
U − Ub
Ua − Ub

)λ
, (3.69)

where the parameters σda , M2
pa , %a denote the pertinent maximum values on the magnetic

axis, while the parameters µ, ν, λ are related with the shaping of the respective profiles. We
note that the above profiles are connected with on-axis heating sources. However, alternative
functional dependence on the flux function U , i.e. connected with off-axis heating sources,
can also be adopted for these profiles.

In the present Section we investigate the characteristics of the helically symmetric equi-
librium of circular poloidal cross-section of figure 3.2, constructed with W7-X parameters,
through physical quantities, on the basis of the obtained analytic solution (3.38) together
with the relations (2.50)-(2.55) and (3.69)4. In particular, we examine the impact of pressure
anisotropy and flow on the equilibrium through the variation of the parameters σda , associated
with the anisotropy, M2

pa , associated with the parallel component of the flow, and ϕ11, ϕ22,
associated with the non-parallel flow component. For the rest of the parameters in the profiles
(3.69) we assign the following values: µ = ν = 2, λ = 1/2, %a = 5 × 10−7Kg/m3. From
the requirement of positiveness for all pressures within the whole plasma region, we find that
for the free anisotropy parameter it must hold: −6× 10−3 ≤ σda ≤ 6× 10−3, both for static
as well as for stationary equilibria; here negative anisotropy implies that P⊥ > P‖, and vise
versa in the case σd > 0. It is noted that both cases of anisotropy (P‖ − P⊥), either positive
or negative, are of practical interest for magnetic confinement systems [133, 210, 211]. For
field-aligned flow the same requirement for the above values of anisotropy parameter yields for
the Mach number 0 ≤ M2

pa ≤ 3 × 10−4; however, in the presence of the electric field term,
associated with the non-parallel flow, the maximum values for the poloidal Mach number can
be almost one order of magnitude greater, 0 ≤ M2

pa ≤ 10−3. Such values of M2
pa imply ro-

tation velocities of the order 104 − 106ms−1 which are good for large conventional tokamaks
on account of experimental evidence [212, 213]. We note that the approximate maximum
permissible values of the free parameter σda in connection with the non negativeness of the
pressures, are, in general, larger than the respective ones for M2

pa .
To examine the impact of pressure anisotropy and flow on the equilibrium, employing

equations (2.47), (2.48) and (2.50)-(2.53), we find for the function I, related to the helicoidal
magnetic field, the magnetic field magnitude, B (:= |B|), and the effective pressure, P , the
following expressions in terms of σda , M2

pa and F(ϕ11, ϕ22):

I(r, U) =
I

(1− σd −M2
p )1/2

−
√
µ0

q

MpF1/2

(1− σd −M2
p )1/2(1− σd)1/2

, (3.70)

B(r, U) =

[
q(I2 + |∇U |2)

1− σd −M2
p

+
µ0M

2
pF

q(1− σd −M2
p )(1− σd)

−
2I√µ0MpF1/2

(1− σd −M2
p )(1− σd)1/2

]1/2

, (3.71)

4Since the topology of the magnetic surfaces remains unchanged in both planes of figure 3.2 we may
restrict our study on the (r, u)-plane (figure 3.2(a)).
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P(r, U) = Ps −
M2

p

(1− σd −M2
p )

q(I2 + |∇U |2)

2µ0

+
MpF1/2(1− σd)1/2

(1− σd −M2
p )

I
√
µ0

+
F
2q

(
1−

M2
p

1− σd −M2
p

)
. (3.72)

Then, substituting (3.71) and (3.72) into equations (1.61), we come up with the following
relations for the parallel and perpendicular pressures as functions of σda , M2

pa and F(ϕ11, ϕ22):

P⊥(r, U) = Ps −
(σd +M2

p )

(1− σd −M2
p )

q(I2 + |∇U |2)

2µ0

+
MpF1/2I

√
µ0(1− σd −M2

p )(1− σd)1/2

+
F
2q

[
1−

M2
p

(1− σd −M2
p )(1− σd)

]
, (3.73)

P‖(r, U) = Ps +
(σd −M2

p )

(1− σd −M2
p )

q(I2 + |∇U |2)

2µ0

+
(1− 2σd)MpF1/2I

√
µ0(1− σd −M2

p )(1− σd)1/2

+
F
2q

[
1−

(1− 2σd)M
2
p

(1− σd −M2
p )(1− σd)

]
. (3.74)

To begin with, we consider static equilibria (Mp = ϕ11 = ϕ22 = 0). In the absence of the
flow equation (3.71) yields for the magnetic field magnitude

B(r, U) =

√
q(I2 + |∇U |2)

1− σd
. (3.75)

From the above equation it follows that pressure anisotropy acts paramagnetically for P‖ > P⊥,
since in that case the magnetic field increases from its isotropic values with σda > 0, while it
acts diamagnetically for P‖ < P⊥, since B decreases with σda < 0, as shown in figure 3.5(a).
Observe that the magnitude of the magnetic field on the high-field side of the configuration is
B ≈ 3T , which is very close to the value of the vacuum magnetic field of the W7-X device.
This behavior becomes more clear on the profile of the function I associated with the helicoidal
component of the magnetic field5, presented in figure 3.5(b); note that in the static case from
equation (3.70) it follows that I = I(U) and thus, the current density remains on the magnetic
surafces U = const. In fact, the above result for the impact of pressure anisotropy also holds
in the presence of equilibrium flows, since σd appears in the denominators of the respective
flow terms in equations (3.70), (3.71). This is consistent with the result of [114] in which only
the case σd > 0 was examined and with those of [211] about the impact of pressure anisotropy
on high-beta tokamak equilibria for either P‖ > P⊥ or P‖ < P⊥. Also the impact of pressure
anisotropy for either σd > 0 or σd < 0 on certain equilibrium characteristics of tokamaks and
stellarators were examined in [133], including the limits P‖ � P⊥ and P‖ � P⊥. We note that
experimental observations of plasma paramagnetism in tokamaks have been reported in [214].

Furthermore, in the absence of the flow the effective pressure becomes a surface quantity,
P = P(U) = Ps(U), thus remaining on the magnetic surfaces U = const., as follows from
equation (3.72). The static effective pressure peaks on the magnetic axis and vanishes on the
boundary, while it does not depend on the pressure anisotropy parameter σda , in consistence
with ansatz (3.1), as shown in figure 3.6. However, this result does not hold for the profiles
of the scalar pressures in the directions perpendicular and parallel to B which have the forms

P⊥(r, U) = P(U)− σd
(1− σd)

q(I2 + |∇U |2)

2µ0

, (3.76)

P‖(r, U) = P(U) +
σd

(1− σd)
q(I2 + |∇U |2)

2µ0

. (3.77)

5Inspection of equation (3.75) implies that B is proportional to √q = 1/
√
k2r2 +m2
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Figure 3.5: (a) The magnetic field magnitude, B(r, ua), and (b) the function I(r, ua) related to
the helical component of the magnetic field, as functions of the anisotropy parameter σda , for
Mpa = ϕ11 = ϕ22 = 0.
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Figure 3.6: The profile of the static effective pressure, Ps(U(r, ua)), for the equilibrium of figure
3.2(a), in consistence with that of the flux function U shown in figure 3.3.
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Figure 3.7: The impact of pressure anisotropy on P‖(r, ua) for (a) σda > 0 and (b) σda < 0, for
Mpa = ϕ11 = ϕ22 = 0.
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Figure 3.8: The impact of pressure anisotropy on P⊥(r, ua) for (a) σda > 0 and (b) σda < 0, for
Mpa = ϕ11 = ϕ22 = 0.

From the above equations it follows that although for static anisotropic equilibria the effective
pressure is a surface quantity, neither P⊥ nor P‖ remain constant on the magnetic surfaces; in
fact the anisotropic scalar pressures never become uniform on the magnetic surfaces even in the
presence of mass flows6, as indicated by equations (3.73), (3.74). From the relations (3.76),
(3.77) it follows that raise of the parameter σda > 0 makes P‖ to increase and P⊥ to decrease
from the respective isotropic pressure, while σda < 0 affects the scalar pressures in just the
opposite way. The impact of pressure anisotropy on P‖ and P⊥ is shown in figures 3.7 and 3.8,
respectively. Therefore, the families of surfaces on which either P‖ or P⊥ are constant do not
coincide with the magnetic surfaces. As indicated by figure 3.8(b), when σd < 0 the profiles
of the perpendicular pressure peak close to the magnetic axis; in that case the topology of the
P⊥ surfaces does not differ from that of the magnetic surfaces, i.e. the cross-section shape of
P⊥ surfaces remain circular. However, when σd > 0 the increase of the anisotropy noticeably
affects the topology of the P⊥ = const. surfaces. Indeed, for σda = 0.003 the pertinent
inner surfaces have a non-zero triangularity, thus deviating from circular. In addition, for
σda = 0.006 it is found that the cross-sections of surfaces close to the boundary remain
circular, while the ones of the inner surfaces consist of two lobes and one saddle point (X-
point); the respective axes of the two lobes are located at (r = 5.852, u = 2.94× 10−7) and
(r = 5.462, u = 1.46× 10−8), while the X-point is located at (r = 5.123, u = −1.49× 10−7).
These features are illustrated in figure 3.9. We note that analogous characteristics are found
for the P‖ surfaces for the opposite values of σd.

6This happens only for static, isotropic MHD equilibria (σd = 0) in which only a single scalar pressure
is defined.
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Figure 3.9: Poloidal cut of the helicoidal surfaces P⊥ = const. for (a) σda = 0.003 and (b)
σda = 0.006, in constistence with the respective curves of graph 3.8(a).
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Figure 3.10: The impact of the parallel flow in connection with the parameter M2
pa on (a)

P‖(r, ua) and (b) P⊥(r, ua), for ϕ11 = ϕ22 = 0, corresponding to the cases of figures 3.7(a) and
3.8(a).

For stationary equilibria with field-aligned flows (Mp 6= 0, F = 0) equations (3.70), (3.73)
and (3.74) reduce to the forms

I(r, U) =
I

(1− σd −M2
p )1/2

, (3.78)

P⊥(r, U) = Ps −
(σd +M2

p )

(1− σd −M2
p )

q(I2 + |∇U |2)

2µ0

, (3.79)

P‖(r, U) = Ps +
(σd −M2

p )

(1− σd −M2
p )

q(I2 + |∇U |2)

2µ0

. (3.80)

Inspection of the above relations implies that, in the absence of the electric field term, the
parallel flow associated with M2

p acts additively with pressure anisotropy for σd > 0, with the
exeption of P‖ in which it acts additively with σd < 0. In fact, this also follows from the GGS
equation (2.44) for Φ

′
= 0, owing to the term 1− σd−M2

p . The impact of M2
p on the scalar

pressures parallel and perpendicular to B is shown in figure 3.10. Consequently, it follows that
the parallel flow through the parameterM2

pa > 0 has a paramagnetic impact on the equilibrium
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Figure 3.11: (a) The impact of M2
pa on the function I(r, ua) associated with the helicoidal

component of the magnetic field, for σda = 0.003, ϕ11 = ϕ22 = 0. (b) the cumulative paramag-
netic impact of the pressure anisotropy and the parallel flow in the absence of the electric field
term; the displayed curves correspond to the following values: Isostatic (black straight curve):
σda = M2

pa = 0; Anisostatic (blue dashed curve): σda = 3 × 10−3, M2
pa = 0; Isoflow (red dotted

curve): σda = 0, M2
pa = 10−4; Anisoflow (green dotdashed curve): σda = 3× 10−3, M2

pa = 10−4.

as shown in figure 3.11(a). Although the pressure anisotropy for P‖ > P⊥ and the parallel
flow act cumulatively, the impact of the anisotropy is stronger since the maximum values of
the Mach number are one order of magnitude lower than those of σda ; it also follows that the
greatest paramagnetic impact is found in the presence of both the pressure anisotropy and the
parallel flow. These results are shown in figure 3.11(b). We note that for field-aligned flows the
current surfaces coincide with the magnetic surfaces, I = I(U) (see equation (3.78)), while
the surfaces on which the effective pressure is constant deviate from the magnetic surfaces,
P 6= P(U), in connection with the second term of equation (3.72) for F = 0.

Furthermore, for purely helicoidal flows the quantity I and the magnetic field modulus
become independent on F (cf. equations (3.70) and (3.71) for Mp = 0). Therefore, it follows
that the non-parallel flow affects B only in the presence of the parallel component of the flow,
in connection with the respective flow terms in equations (3.70), (3.71). On the other hand,
it is found that the non-parallel flow affects both the parallel and the perpendicular pressures
in the same way, as implied by the expressions

P⊥(r, U) = Ps −
σd

(1− σd)
q(I2 + |∇U |2)

2µ0

+
F
2q
, (3.81)

P‖(r, U) = Ps +
σd

(1− σd)
q(I2 + |∇U |2)

2µ0

+
F
2q
, (3.82)

obtained from (3.73), (3.74) for purely helicoidal flow. In particular, it follows that the non-
parallel flow has a slight positive contribution on the scalar pressures as can be seen in figure
3.12.

For equilibria with flow of arbitrary direction, that is for flow with both helicoidal and
poloidal components, inspection of equations (3.70), (3.71) leads to the following conclusions.

(i) The non-parallel flow associated with the electric field related with the term F in (3.70)
has a diamagnetic impact, in connection with a decrease of I(r, U) as the parameter ϕ11

takes larger values, which can be seen in figure 3.13. Note that in that case the current
density J does not remain on the magnetic surfaces since I 6= I(U).

(ii) In contrast with the paramagnetic behavior of the parallel flow in field-aligned equilibria,
in the case of mass flows of arbitrary direction the second term in equation (3.70) implies



Chapter 3. An Analytic Class of Helically Symmetric Equilibria 65

φ11=0.15

φ11=0.50

φ11=0.75

5.0 5.2 5.4 5.6 5.8 6.0

0

2000

4000

6000

8000

10 000

r

P⊥

(a)

φ11=0.15

φ11=0.50

φ11=0.75

5.0 5.2 5.4 5.6 5.8 6.0

0

5000

10 000

15 000

20 000

25 000

30 000

r

P

(b)

Figure 3.12: The impact of the parameter ϕ11 on (a) P⊥(r, ua) and (b) P‖(r, ua), for purely
helicoidal flows: M2

p = 0, ϕ22 = −0.08 and σda = 0.003.
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Figure 3.13: The helicoidal component of the magnetic field for the equilibrium of figure 3.2(a)
for different values of the non-parallel flow parameter ϕ11, for ϕ22 = −0.08, M2

pa = 10−4 and
σda = 3× 10−3.
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Figure 3.15: The pressure anisotropy strengthens the diamagnetic impact of the non-parallel
flow for P‖ < P⊥ and encounters that impact for P‖ > P⊥. This figure corresponds to flows of
arbitrary direction: M2

pa = 5× 10−5, ϕ11 = 0.5, ϕ22 = −0.08.

that the stronger the diamagnetic effect of F is the higher M2
p ; that is the parallel flow

enhances the diamagnetic action of the non-parallel one. This impact is shown in figure
3.14.

(iii) The second term in equation (3.70) implies that the pressure anisotropy strengthens
this non-parallel flow caused diamagnetic effect for σd < 0 and weakens that effect for
σd > 0, as can be seen in figure 3.15. This behavior is consistent with the diamagnetic
and/or paramagnetic impact of the pressure anisotropy for σd < 0 and/or σd > 0 of
figure 3.5(b) for static equilibria.

The above results for the effects of the pressure anisotropy and the flow are also consistent
with their impact on the local plasma beta, which is defined as

β̄a =

(
P

B2/2µ0

)
|r=ra,u=ua

(3.83)

For field aligned flows the values of β̄a are lower than the respective ones for static equilibria,
sinceM2

p acts paramagnetically in that case. However, for purely helicoidal flows β̄a is enhanced
since the non-parallel flow term has a positive contribution to both P‖ and P⊥, though not
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Figure 3.16: The overall impact of pressure anisotropy and flow on the local beta on the magnetic
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affecting the magnetic field. In addition, for flows of arbitrary direction β̄a takes noticeably
larger values when the non-parallel component of the flow has an implicit diamagnetic impact
in the presence of the parallel one. In all of the above kinds of equilibria, either static or
stationary, the pressure anisotropy strengthens β̄a for σd < 0 and weakens it for σd > 0, in
accordance with its diamagnetic action in the former and its paramagnetic one in the latter
case. These features can be seen in figure 3.16.

Furthermore, we examine the influence of pressure anisotropy and flow on the physical
components of the flow velocity and the current density along the direction of the symmetry,
Vζ and Jζ [see equation (B.14) in Appendix B], which were calculated on the basis of equations
(2.53) and (2.54) in the forms

Vζ̄ =

√
qM2

p

µ0%

(
I − kr

m

∂U/∂r√
1− σd −M2

p

)
−

√
(1− σd −M2

p )F
q%(1− σd)

, (3.84)

Jζ̄ =

√
q

µ0

[
LU

1− σd −M2
p

+
(1− σd −M2

p )−3/2

2

d(σd +M2
p )

dU
|∇U |2

+2kmqI +
kr

m

∂I

∂r

]
. (3.85)

It turns out that the static isotropic ζ-component of the current density monotonically increases
from the low to the high magnetic field side. However, in the presence of anisotropy there
exists a noticeable modification of the respective profile; in that case Jζ̄ reverses in comparison
with its isotropic profile, thus exhibiting opposite behavior in the regions left and right of the
magnetic axis in both cases for σd > 0 and σd < 0. The impact of pressure anisotropy on
Jζ̄ is shown in figure 3.17(a); we note that the parallel flow affects Jζ̄ in the same way as
σd > 0, this impact being weaker due to the lower actual values of the parameter M2

pa . It is
also found that the increase of the non-parallel flow through ϕ11 results in a slight decrease of
the values of the current density component, as may be seen in figure 3.17(b). As concerns
the ζ-component of the fluid velocity, it is found that for field-aligned flows it peaks on the
magnetic axis, in that case the parallel flow through M2

p possessing a positive contribution
on Vζ̄ , as shown in figure 3.18(a). In the presence of the electric field associated with the
non-parallel flow, the increase of the parameter ϕ11 weakens Vζ̄ , thus leading to a velocity
reversal, presented in figure 3.18(b), in that case the parallel flow counteracting the influence
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Figure 3.17: (a) The impact of pressure anisotropy on Jζ̄ in the absence of the flow (M2
pa =

ϕ11 = ϕ22 = 0). (b) The impact of the non-parallel flow on Jζ̄ through the parameter ϕ11, for
σda = 3× 10−3, M2

pa = 10−4 and ϕ22 = −0.08.

of the non-parallel one, as can be seen in figure 3.18(c).
Finally, we examine the influence of pressure anisotropy and flow on the safety factor for

the constructed equilibrium of figure 3.2(a), the profile of which is computed on the basis of
equation (3.53), by using the intrinsic coordinates (ρ∗, ω) on the poloidal plane originating on
the geometric center helix; it takes the form

Q(U) =
1

2πr0

∫ 2π+τ0`0

τ0`0

B(U, ω)

√√√√√ ρ?2 +
(
∂U/∂ω
∂U/∂ρ?

)2

1
m2

(
∂U
∂r

)2
+ 1

r2

(
∂U
∂u

)2dω,

B := mqI(U)−m

√
M2

p (U)F(U)

µ0(1− σd(U))
− kqr∂U

∂r
. (3.86)

This relation indicates that both the anisotropy and the flow have an impact on Q for flows of
arbitrary direction. It is found that the safety factor monotonically decreases from the boundary
to the magnetic axis, while both the parallel flow, associated with M2

p , and the non-parallel
flow, in connection with the function F , weaken the values of Q and more drastically near the
magnetic axis, as shown in figure 3.19. Therefore, it turns out that the rotation velocity might
have unfavorable effects regarding plasma stability. We note that a similar result for the impact
of the parallel flow on the safety factor was obtained in [213] for axisymmetric equilibria with
toroidal mass flow (see figure 5 therein). It may be noted that pressure anisotropy for σd > 0
have the same effect on Q as M2

p , while the opposite effect for σd < 0, this impact however,
being negligible for the maximum permissible values of σda due to the factor (1− σd)−1/2.



Chapter 3. An Analytic Class of Helically Symmetric Equilibria 69

Mpa
2 =5×10-5

Mpa
2 =10-4

Mpa
2 =1.5×10-4

5.0 5.2 5.4 5.6 5.8 6.0

0

10 000

20 000

30 000

40 000

r

Vζ
_

(a)

φ11=0.15

φ11=0.50

φ11=0.75

5.0 5.2 5.4 5.6 5.8 6.0

-20 000

-15 000

-10 000

-5000

0

5000

r

Vζ
_

(b)

5.0 5.2 5.4 5.6 5.8 6.0

-15 000

-10 000

-5000

0

5000

10 000

r

Vζ
_

(c)

Mpa
2 =5×10-5

Mpa
2 =10-4

Mpa
2 =1.5×10-4

Figure 3.18: The impact on Vζ̄ of : (a) M2
p for field-aligned flows and isotropic pressure,

σda = ϕ11 = ϕ22 = 0, (b) the non-parallel flow in connection with the parameter ϕ11, for
σda = 3×10−3, M2

pa = 5×10−5, ϕ22 = −0.08, (c) the parallel flow in the presence of the electric
field term associated with non-parallel flow, for σda = 0, ϕ11 = 0.5, ϕ22 = −0.08.
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(b)

Figure 3.19: (a) The influence of the parallel flow throughM2
pa on the safety factor, for ϕ11 = 0.5.

(b) The impact of non-parallel flow on Q in connection with the parameter ϕ11, for M2
pa =

5× 10−5; Both figures correspond to the values ϕ22 = −0.08 and σda = 0.
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4 | Symmetry Transformations for Ideal
MHD and CGL Equilibria

“On that night the sky laid bare its internal construction in
many sections which, like quasi-anatomical exhibits, showed
the spirals and whorls of light, the pale-green solids of dark-
ness, the plasma of space, the tissue of dreams .”

Bruno Schulz

4.1 Brief introduction to the symmetry transformations
As recognized earlier the establishment of a confined equilibrium is very crucial for stability
and transport studies. In connection with the ideal isotropic MHD and anisotropic CGL
models widely employed within the context of this thesis, one has to solve the sets of related
equations (1.50)-(1.54), together with appropriate boundary conditions, in order to create
pertinent equilibria. However, there do not exist any general methods for the production of
exact solutions to these equations in generic 3D domains [215].

In references [73, 153, 209, 216–220] methods for constructing new continuous families of
equilibria in the framework of the above mentioned models, once a given equilibrium is known,
are introduced. More specifically, in references [73, 209, 216, 217] three sets of equilibrium
transformations in the framework of MHD model, commonly known as ‘Bogoyavlenskij trans-
formations’, were presented. The first set is applied to given equilibria with incompressible flow
of arbitrary direction, while the second one to both static equilibria and stationary equilibria
with field-aligned incompressible flow. The third set of transformations concerns plasma equi-
libria with compressible flow. In addition, in reference [153] symmetry transformations that
produce an infinite class of anisotropic CGL equilibria, on the basis of prescribed CGL ones
with flow of arbitrary direction are introduced; also in references [153, 218–220] symmetric
transformations mapping static or stationary MHD equilibria into CGL ones are presented. All
these symmetry transformations depend on a number of scalar functions which have to be
constant on the magnetic field lines. This implies that the new equilibria resulting from the
transformations depend on the structure of the magnetic fields of the original ones, and thus,
the topology of the original equilibria is essential for these transformations.

In the present Chapter we make an extensive revision of the transformations presented
previously in references [73,153,209,216–220] concerning equilibria with incompressible flows,
and introduce a set of transformations that can be applied to any known anisotropic CGL
equilibria with field-aligned incompressible flows (or static equilibria) and anisotropy function
constant on magnetic field lines, and produce an infinite family of anisotropic equilibria with
collinear velocity and magnetic fields, but density and anisotropy functions that may remain
arbitrary. These transformations consist of a generalization of the ones introduced in reference
[216] for field-aligned MHD equilibria. We also prove that all transformations presented in
references [73, 153, 209, 216–220] can break the geometrical symmetries of a known given
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equilibrium, either static or with field-aligned flow, if and only if its magnetic field is purely
poloidal, and construct pertinent 3D analytic equilibria related with the symmetry breaking.

4.2 Transformations for ideal MHD equilibria with field-
aligned flows

In section IV of reference [216] transformations between MHD equilibria with parallel flows
are presented. Specifically, it is stated therein that if {B, V, P, %} is a solution of the ideal
MHD equilibrium system of equations with field-aligned incompressible flow (V × B = 0),
which consist of the counterpart to the set (1.50)-(1.54) for σd = 0:

%(V · ∇)V = J×B−∇P, ∇ ·B = 0,

∇ · (%V) = 0, ∇×B = µ0J,
(4.1)

then {B1, V1, P1, %1} defined by the following symmetry transformations, that depend on
the arbitrary functions a1(r), b1(r), c1(r), and λ(r), consists of a new solution to the MHD
equilibrium set of equations with field-aligned flows:

B1 = b1(r)B, V1 =
c1(r)

a1(r)
√
µ0%

B,

%1(r) = a2
1(r)%, P1 = C

(
P +

B2

2µ0

)
− B2

1

2µ0

,

C =
b2

1(r)− c2
1(r)

1− λ2(r)
= const. 6= 0.

(4.2)

The above special transformations are defined only when the velocity and magnetic field of
the original equilibria are related through V = (λ/

√
µ0%)B [equation (2.61)], and are also

valid in the static limit, V = 0. Their reductive form for constant a1, b1, c1, and λ was first
derived in reference [73] from given axisymmetric equilibria found in reference [74]. According
to reference [216] the functions a1(r), b1(r), c1(r), depending on the topology of the original
equilibria may either (i) be constant on magnetic surfaces, or (ii) in case of symmetry involving
two dimensional dependence, depend on two transversal variables (i.e. variables not dependent
explicitly on the ignorable coordinate), or (iii) be constants in the case of force-free equilibria.
Also it is claimed therein that transformations (4.2) can break the geometrical symmetry of
the original equilibria (4.1) with general field-aligned incompressible flow.

4.3 Generalized symmetry transformations for anisotropic
pressure

In the present Section we first generalize the transformations (4.2) introduced in reference [216]
for CGL anisotropic equilibria with field-aligned incompressible flow and show that the only
situation in which the symmetry of the original equiliria can be broken is that for purely poloidal
magnetic fields. These considerations are summarized in the following theorem:

Theorem 1. Let {B, V, %, P⊥, P‖} be a known solution to the CGL equilibrium system of
equations with field-aligned incompressible flows specially related through (2.61), and pres-
sure anisotropy function being constant on the magnetic field lines, B · ∇σd = 0. Then
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{B1, V1, %1, P⊥1 , P‖1} are given by the following transformations:

B1 =
b1(r)

n1(r)
B, V1 =

c1(r)
√

1− σd
a1(r)

√
µ0%

B,

%1(r) = a2
1(r)%, P⊥1 = C

(
P⊥ +

B2

2µ0

)
− B2

1

2µ0

,

P‖1 = C

(
P⊥ +

B2

2µ0

)
+
[
1− 2n2

1(r)(1− σd)
] B2

1

2µ0

,

C =
[b2

1(r)− c2
1(r)] (1− σd)

1− σd − λ2(r)
= const. 6= 0,

(4.3)

where a1(r) 6= 0, b1(r), c1(r), and n1(r) 6= 0 are arbitrary functions, define a solution to the
CGL set of equilibrium equations with field-aligned flows, if and only if the functions

g1(r) =
b1(r)

n1(r)
, f1(r) = a1(r)c1(r), (4.4)

are constant on the magnetic field lines of the original equilibria.

Proof. The original equilibria {B, V, %, P⊥, P‖} satisfy the CGL equilibrium equations with
field-aligned flows (V ×B = 0):

%(V · ∇)V = J×B−∇ · P, ∇ ·B = 0,

∇ · (%V) = 0, ∇×B = µ0J,
(4.5)

where the CGL pressure tensor and the function σd measuring the pressure anisotropy are
defined in (1.55). It is assumed that the flow is incompressible, ∇ · V = 0, which by the
continuity equation implies that the mass density is constant on streamlines, V · ∇%(r) =
0; it is also assumed that the anisotropy function is constant on the magnetic field lines,
B · ∇σd(r) = 0. It may be noted that for the given field-aligned equilibria, the vectors
V and B are collinear (parallel) and therefore the magnetic field lines are the same as the
velocity streamlines. It follows that the function λ(r) must be constant on magnetic field
lines, B · ∇λ(r) = 0. Also, the force balance equation of the set (4.5) can be cast into the
useful form

(1− σd − λ2)
1

µ0

B× (∇×B) + (σd + λ2)∇
(

B2

2µ0

)
+∇P⊥ = 0. (4.6)

In order for the new solution (4.3) to be valid it must satisfy the following set of CGL equilibrium
equations:

%1(V1 · ∇)V1 = J1 ×B1 −∇ · P1, ∇ ·B1 = 0,

∇ · (%1V1) = 0, ∇×B1 = µ0J1,
(4.7)

where

P1 = P⊥1I +
σd1
µ0

B1B1, σd1 = µ0

P‖1 − P⊥1

B2
1

= 1− n2
1(r)(1− σd). (4.8)

Note that systems (4.5) and (4.7) are reductions of the generic CGL equilibrium equations
since for field-aligned flows it holds V × B = V1 × B1 = 0, and therefore the electric field
vanishes by Ohm’s law.
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Substituting (4.3) into (4.7) yields

B · ∇
(
b1(r)

n1(r)

)
= 0, (4.9)

B · ∇(a1(r)c1(r)) = 0, (4.10)

C

[
(1− σd − λ2)

1

µ0

B× (∇×B) + (σd + λ2)∇
(

B2

2µ0

)
+∇P⊥

]
−1− σd

µ0

B ·
(
b2

1

∇n1

n1

+ c2∇a1

a1

)
= 0. (4.11)

With the use of equation (4.6) and assuming that σd 6= 1 (in which case V1 = 0, C = 0 and
the transformations (4.3) are not invertible), equation (4.11) takes the form

B ·
(
b2

1

∇n1

n1

+ c2
1

∇a1

a1

)
= 0. (4.12)

Now with the aid of (4.4), equations (4.9), (4.10) and (4.12) assume the forms

B · ∇g1(r) = 0, (4.13)
B · ∇f1(r) = 0, (4.14)

C

2
B · ∇

(
1− σd − λ

1− σd

)
︸ ︷︷ ︸

0

+
c2

1(r)

f1(r)
B · ∇f1(r)− b2

1(r)

g1(r)
B · ∇g1(r) = 0. (4.15)

Since the first term on the left hand side of (4.15) vanishes, it is apparent that if equations
(4.13) and (4.14) are valid, then (4.15) is trivially satisfied. Thus, we conclude that in order for
transformations (4.3) to be valid, equations (4.13) and (4.14) must be satisfied, or equivalently,
both functions g1(r) and f1(r) have to be constant on the magnetic field lines of the original
equilibria; quod erat demonstrandum.

Therefore, the anisotropic CGL equilibrium system (4.5) possesses a family of intrinsic
symmetries since the constituent differential equations are invariant under the transformed
variables (4.3).

Remark 1. The symmetry transformations (4.3) presented herein are defined only when
the velocity and the magnetic field of the original equilibria are related through (2.61), and
transformations (4.2) introduced in reference [216] for field-aligned MHD equilibria consist of
a special case of them for σd = 0 and n1(r) = 1. Although both sets of transformations (4.3)
and (4.2) can change the magnitude of the physical equilibrium quantities or create station-
ary configurations from static ones, they do preserve the topology of the magnetic surfaces,
ψ =const. (if such surfaces exist), since it holds B · ∇ψ = B1 · ∇ψ = 0.

Let us now examine the structure of the arbitrary scalar functions in connection with the
magnetic field by first noting that the magnetic and velocity fields of the original equilibria lie
on the surfaces λ(r) = const., B · ∇λ(r) = V · ∇λ(r) = 0, if such surfaces exist.

If the magnetic field lines are spatially bounded closed curves, labeled by l, then the surfaces
λ = const. are defined in the neighbourhood of l, with l being itself both a magnetic field
line and a streamline. In this situation, the function λ depends on two transversal variables
which must define a plane normal to every point of l. If the magnetic field lines are “open”,
i.e. they approach infinity in one direction, defined by a variable x 3, then the magnetic field
should be finite as x 3 → ∞. The function λ(r) should depend on two transversal variables
when the third one goes to infinity, λ(x 1, x 2, x 3 → ∞) = λ(x 1, x 2), and thus, must depend
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on these two variables in the whole plasma domain for magnetic surfaces λ(x 1, x 2) = const. to
exist. In both of the above kinds of magnetic field lines (bounded and “open”), the functions
g1(r), f1(r) have to be functions of two transversal variables, i.e. x 1, x 2. One could suggest
that this does not restrict the functions a1(r), b1(r), c1(r), n1(r) to have the same two-
dimensional dependency (i.e. a(r) = A(x 1, x 2)D(x 3) and c1(r) = K(x 1, x 2)/D(x 3), such
that f1(r) = A(x 1, x 2)K(x 1, x 2)). However, equation ∇ · (%1V1) = 0 yields B · ∇a1(r) = 0,
which means that a1 = a1(x 1, x 2) and consequently c1 = c1(x 1, x 2). Then from the definition
of the constant C it follows that b1 = b1(x 1, x 2), and as a result n1 = n1(x 1, x 2). Thus, if
the magnetic field lines are finite closed loops or go to infinity in some direction, all functions
of transformations must, in general, depend on two variables transversal to this direction.

If the magnetic field lines cover densely everywhere (ergodically) closed magnetic surfaces,
λ(r) = const. (which are toroids), then the functions g1(r), f1(r) must be constant on them,
and so must be all four functions of the transformations. In this situation, if the field possesses
some geometrical symmetry, with ignorable variable x 3, the surfaces λ(r) = const. are nested,
with λ = λ(x 1, x 2). Then all functions a1(r), b1(r), c1(r), n1(r) have the same symmetry (i.e.
are functions only of x 1, x 2). However, there exists an exception; the one when the original
equilibrium has some known geometrical symmetry with purely poloidal magnetic field to be
examined as follows.

Axial symmetry: Consider the case that the original equilibria are axially symmetric with field-
aligned incompressible flows and anisotropy function constant on magnetic surfaces [114].
Employing cylindrical coordinates (ρ, z, φ) we have

B =
I

ρ
φ̂+

φ̂

ρ
×∇ψ(ρ, z ), V =

Mp√
µ0%

B, (4.16)

where the function I relates to the toroidal magnetic field and ψ(ρ, z) = const. labels the
magnetic surfaces. Thus, λ(r) = λ(ψ) = Mp(ψ), where Mp = (

√
µ0%|Vpol|)/|Bpol| is the

poloidal Alfvén Mach function, which for parallel flows equals to the total Mach function
(M =

√
µ0%|V|/|B|). To examine whether transformations (4.3) can break axisymmetry

we permit the transformation functions to depend, in addition to ψ, explicitly on φ, i.e.
f1 = f1(ψ, φ), g1 = g1(ψ, φ). Then (4.13) and (4.14) yield

I

ρ2

(
∂g1

∂φ

)
= 0,

I

ρ2

(
∂f1

∂φ

)
= 0.

(4.17)

Set (4.17) is satisfied either if functions g1, f1 are constant on the magnetic surfaces, or
I = 0. The latter case implies that transformations (4.3) can break the axial symmetry
of field-aligned equilibria with purely poloidal magnetic field. The same statement holds for
translationally symmetric equilibria with field-aligned flows [118], while the more generic case
of helical symmetry will be studied separately below.

Helical symmetry: Consider now that the original equilibria are helically symmetric with field-
aligned incompressible flows and anisotropy function constant on magnetic surfaces for which
the following relations hold:

B = Ih + h×∇ψ(r , u), V =
Mp(ψ)
√
µ0%

B, (4.18)

where the function I is related to the ζ-contravariant component of B and the flux function ψ
through (2.11), as presented in Chapter 2 and with the aid of the helical coordinates introduced
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in Section 1.5. Also note that in this case the useful equations (2.7)-(2.9) hold. Now let us
assume that f1 = f1(ψ, ζ), g1 = g1(ψ, ζ). Then satisfaction of equations (4.13) and (4.14)
requires

Bζ

(
∂g1

∂ζ

)
= 0,

Bζ

(
∂f1

∂ζ

)
= 0.

(4.19)

Similar to the case of (4.17), with the aid of (2.7)-(2.9), equation (4.19) leads to

Bζ = 0⇒ I =
kr

m

∂ψ

∂r
⇒ B = Bp. (4.20)

Thus, transformations (4.3) can also break the helical symmetry of the original equilibrium
with field-aligned incompressible flow and pressure anisotropy, if and only if the magnetic field
is purely poloidal.

Remark 2. The flow of the transformed 3D equilibria, obtained from the application of
transformations (4.3) to geometrically symmetric equilibria with purely poloidal and field-
aligned incompressible flow, is indeed incompressible, ∇ ·V1 = 0. However, the transformed
mass density, %1, may vary on the magnetic surfaces since the continuity equation of the set
(4.7) is trivially satisfied for purely poloidal velocity, V1.

Finally, it may happen that λ = constant and consequently, ∇λ = 0 in the whole plasma
domain. In this situation the force balance equation (4.6) is written in the form

(1− σd − λ2)J×B = ∇
(
P + λ2 B2

2µ0

)
− B2

2µ0

∇σd, (4.21)

where P is defined through (1.60). In this case a family of magnetic surfaces w(r) = const.,
where w ≡ P+λ2 B2

2µ0
can be defined, in which both magnetic field lines and velocity streamlines

lie on, B·∇w(r) = 0. Analogous considerations can be made on the structure of these surfaces.
Now it may happen w = const. with ∇w = 0 if J = y(r)B, that is the current density is

parallel to the magnetic field, or equivalently ∇×V = t(r)V, that is the velocity is parallel
to the vorticity. This is the case of force free or Beltrami equilibria. Then magnetic surfaces
y(r) = const. can be yet defined, B · ∇y(r) = 0. But in the particular case y ≡ const.
(everywhere) and therefore ∇y = 0 (and then as well t ≡ const., with ∇t = 0), we finally
escape from the topological constraint that magnetic field lines lie on surfaces. The lines of
force may be chaotic (space-filling) in this case, and all functions a1(r), b1(r), c1(r), n1(r)
have to be constant.

The above conclusions lead us to formulate the following corollary:

Corollary 1. Transformations (4.3) can break the geometrical symmetry, either axial or
translational or helical, of the original field-aligned equilibria with incompressible flow and
anisotropy function constant on magnetic surfaces, if and only if its magnetic field is purely
poloidal. Otherwise, the transformed equilibria retain the original symmetry.

All conclusions derived herein concerning the validity of the transformations, the structure of
the arbitrary functions and the symmetry breaking, also hold for the respective transformations
(4.2) with isotropic pressure (cf Remark 1).
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4.4 Construction of 3D CGL equilibria with field-aligned
flows

Consider axisymmetric equilibria [114] with field-aligned incompressible flows, pressure anisotropy
and purely poloidal magnetic field. In this case the equilibrium quantities are expressed as

B = (1− σd −M2
p )−1/2 φ̂

ρ
×∇U,

µ0J =
1

ρ

[
(1− σd −M2

p )−1/2∆∗U +
1

2

d(σd +M2
p )

dU
(1− σd −M2

p )−3/2|∇U |2
]
φ̂,

V =
Mp√
µ0%

B, P = Ps(U)−M2
p

B2

2µ0

,

(4.22)

and the steady sates obey the following generalized GS equation

∆∗U + µ0ρ
2dPs
dU

= 0, σd +M2
p < 1. (4.23)

Here the elliptic operator is defined as ∆∗ = ρ2∇ · (∇/ρ2); Ps is the effective pressure in the
absence of flow, and the functions %, σd, Mp are uniform on magnetic surfaces, U(ρ, z) =
const. Assigning the surface function to be linear in U , Ps(U) = (p1U)/µ0 with p1 being free
parameter, equation (4.23) takes the linearized form

∂2U

∂ρ2
+
∂2U

∂z2
− 1

ρ

∂U

∂ρ
+ p1ρ

2 = 0. (4.24)

The partial differential equation (4.24), consisting of a reduction of the respective one found
in reference [221], admits a generalized Solovev analytical solution of the form

U = ρ

(∑
j

[
w1jJ1(jρ)ejz + w2jJ1(jρ)e−jz + w3jY1(jρ)ejz

+w4jY1(jρ)e−jz
]
− p1ρ

3

8

)
, (4.25)

where J1 and Y1 are first order Bessel functions of the first and second kind, and j = 1, 2, 3, ...,
while the coefficients wij , i = 1, 2, 3, 4 can be specified by appropriate boundary conditions.
To completely specify the equilibrium we choose the following peaked on-axis profiles for the
following free surface functions

σd = σda

(
U

Ua

)2

, M2
p = M2

pa

(
U

Ua

)2

, % = %a

(
U

Ua

)1/2

, (4.26)

where the parameters σda , M2
pa , %a, and Ua denote the values (in pertinent SI units) of the

respective functions on the magnetic axis. Imposing the condition that the plasma extends up
to the magnetic surface U = 0, such that both the pressure and the flow vanish thereon, we
construct the up-down symmetric with respect to the plane z = 0 configuration of triangular
magnetic surfaces shown in figure 4.1, the magnetic axis of which is located at the position
(ρa = 2.16, za = −6 × 10−6). The cross-section of the magnetic surfaces of the above
axisymmetric equilibria remain invariant along the toroidal direction, and the streamlines of its
purely poloidal B and V fields lying on those surfaces are presented in figure 4.2. Furthermore,
every physical quantity associated with equilibria (4.22) is φ-independent. Figure 4.3 shows
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Figure 4.1: Poloidal cut of nested toiroidal magnetic surfaces U(ρ, z) =const. for the axisym-
metric equilibria (4.22).
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Figure 4.2: Topology of the purely poloidal magnetic field lines (left) and velocity streamlines
(right) for the constructed axisymmetric equilibria (4.22).

Figure 4.3: Both the pressure anisotropy function, σd, (left) and density, %, (right) of the original
equilibria peak on the magnetic axis, where σda = 0.3 and %a = 5× 10−7 Kg/m3, and vanish on
the bounding surface U = 0 for any toroidal angle φ.



Chapter 4. Symmetry Transformations for Ideal MHD and CGL Equilibria 79

Figure 4.4: The magnetic field magnitude vanishes on the magnetic axis and varies from the
high field-side (B = 0.68T) to the low field-side (B = 0.47T) uniformly for every any angle φ.

how anisotropy and density uniformly change along the radial direction for every any angle φ
on the plane z = za, while the respective variation of the magnitude of magnetic field on the
same plane is presented in figure 4.4.

Applying the symmetry transformations (4.3), with λ = Mp(U), to (4.22) we find the
following expressions for the physical quantities of the transformed equilibria:

B1 =
b1

n1

(1− σd −M2
p )−1/2 φ̂

ρ
×∇U, V1 =

c1

a1

√
1− σd√
µ0%

(1− σd −M2
p )−1/2 φ̂

ρ
×∇U,

µ0J1 =

[
b1

n1

(
(1− σd −M2

p )−1/2∆∗U +
1

2

d(σd +M2
p )

dU
(1− σd −M2

p )−3/2|∇U |2
)

+(1− σd −M2
p )−1/2∂(b1/n1)

∂U
|∇U |2

]
φ̂

ρ
− ∂(b1/n1)

∂φ
(1− σd −M2

p )−1/2∇U
ρ2

,

%1 = a2
1%, P1 = CPs(U)− c2

1(1− σd)
B2

2µ0

, σd1 = 1− n2
1(1− σd),

(4.27)

where the functions a1, b1, c1, and n1 may depend, in addition to U , on the toroidal angle
φ. However, if either of the functions n1(r) or a1(r) remains constant on magnetic surfaces,
the breaking of the geometrical symmetry of the original equilibria remains unaffected. Note
that the transformed current density J1 has a component perpendicular to the magnetic
surfaces which is undesirable for confinement but this component vanishes when the function
g1 = b1/n1 is φ-independent. This choice, however, yields special equilibria with purely poloidal
magnetic field, B1 = κ(U)B and permits only 3D variations of velocity and pressure.

To construct a specific equilibrium let us make the following choice for the arbitrary func-
tions:

c1(U, φ) = sinh(cos(φ))

(
1− σd −M2

p

1− σd

)1/2

,

b1(U, φ) = cosh(cos(φ))

(
1− σd −M2

p

1− σd

)1/2

,

a1(U, φ) = cosh(cos(φ))(1− σd)−1/2, n1(U, φ) = [cosh(cos(φ))]1/2 (1− σd)−1/2.

(4.28)

It is apparent that (4.27) together with (4.28) define exact 3D equilibria with purely poloidal
magnetic field and field-aligned flow by breaking the axisymmetry of the original equilibria
(4.22). We note that the above equilibria preserve the topology of the original magnetic field
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Figure 4.5: (left) The magnitude of the transformed magnetic field, B1, does change periodically
along the toroidal direction. (right) Variation of B1 along the radial direction on the plane z = za
for different values of the toroidal angle φ.
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Figure 4.6: While the original B at a poloidal point (chosen as the point (ρ = 1.8, z = za in the
figure) is φ-independent, the respective transformed B1 varies along the toroidal direction. The
magnitude of the transformed field is in general higher than the respective original one except
from some specific narrow toroidal regions.

lines and streamlines, B1 · ∇U = V1 · ∇U = B · ∇U = V · ∇U = 0, and do not obey
a GS-like equation analogous to (4.23). Although the topology of the original field lines is
preserved, the strenth of the transformed magnetic field in now dependent on the angle φ.
The magnitude of B1 is not constant along a specific field-line along the toroidal direction,
as shown in figure 4.5; it also differs from the magnitude of the original B, as shown in figure
4.6.

The flow of the transformed equilibria remains incompressible (cf Remark 2). However, on
account of the profile of the function a1(U, φ) the mass density %1 is not a surface function,
and its variation along the radial direction is not uniform for every toroidal angle φ, in contrast
to the original density %, as shown in figure 4.7. In addition, the anisotropy function of the
transformed equilibria, σd1 , does not remain constant on the magnetic surfaces, depending on
the toroidal angle φ, in connection with the scalar function n1(U, φ). In contrast to σd which
is positive and peaked on axis, meaning that P‖ > P⊥ within the plasma region for every φ,
the function σd1 can take negative values along the toroidal direction; for specific values of φ
it becomes zero, and thus, P‖1 and P⊥1 equilibrate there. These features can be seen in figure
4.8.

Finally, on the basis of the choices for the arbitrary scalar functions (4.28) the function
g1 = b1/n1 depends in addition to U , on the toroidal angle φ. Owing to this dependence,
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Figure 4.7: (left) The transformed density %1(U, φ) on the plane z = za does not remain uniform
on the magnetic surfaces as the toroidal angle φ varies. (right) The value of %1 on the magnetic
axis varies along φ and is higher than the respective value of the original %, which is constant
and maximum thereon.
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Figure 4.8: (left) The variation of the anisotropy function, σd1 , of the transformed equilibria is
not uniform along the toroidal direction. (right) The perpendicular pressure of the transformed
equilibria is higher than the respective parallel one, except from the toroidal angles π/2 and
3π/2 for which P‖1 = P⊥1 , in contrast with the original σd which is always peaked on-axis and
positive for every φ.
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Figure 4.9: The φ-derivative of the function g1 changes periodically sign with respect to φ at a
period π/2, thus vanishing for φ = δ π2 , δ = 0, 1, 2, . . . , . This results in a similar variation of the
poloidal current density component from negative to positive values.
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Figure 4.10: The topology of the transformed poloidal -current-density lines for the toroidal
angles φ = π

4 (left), and φ = 3π
4 (right) .

the transformed purely poloidal magnetic field is no more axisymmetric but varies periodically
with φ; therefore, the transformed current density in (4.27) has an additional component
perpendicular to the magnetic surfaces. Note that the direction of the transformed poloidal
magnetic field follows the behavior of the φ-derivative of the function g1(U, φ), which varying
sinusoidally changes periodically sign at a period π/2 as shown in figure 4.9. As a result,
as φ varies the direction of the poloidal current density reverses from outwards to inwards
the magnetic surfaces, while it vanishes when φ = δ π

2
, δ = 0, 1, 2, . . ., at which angles the

transformed current density becomes purely toroidal (but not axisymmetric). The topology of
the poloidal current density component for different toroidal angles is shown in figure 4.10.

Though it is well known that toroidal plasma confinement is not possible with a purely
poloidal magnetic field [222], it is interesting that in that case transformations (4.3) can break
the geometrical symmetry and yield 3D equilibria. These equilibria may be of astrophysical
interest.
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4.5 Transformations for flow of arbitrary direction

4.5.1 Review of transformations between MHD-MHD and CGL-
CGL equilibria

In references [153,216,217] symmetry transformations that produce an infinite family of MHD
(CGL) equilibria with arbitrary incompressible flow once a respective MHD (CGL) equilibrium
with incompressible flow is given, were introduced as follows.

MHD into MHD: In the case of isotropic pressure, suppose that {B, V, P, %} is a known
solution of the MHD equilibrium system with flow of arbitrary direction

%(V · ∇)V = J×B−∇P, ∇ · (%V) = 0,

∇×B = µ0J, ∇ ·B = 0, V ×B = ∇Φ,
(4.29)

where Φ is the electrostatic potential. Note that the above set of equations consist of a
limiting form of the set (1.50)-(1.54) for σd = 0. The flow is assumed to be incompressible,
% = %(ψ), and the function ψ labels the common magnetic and velocity surfaces, if such
surfaces exist. Note that these two sets of surfaces should coincide for flows of arbitrary di-
rection because of the Faraday’s and Ohm’s laws. Then according to references [216, 217],
{B1, V1, P1, %1} defined by the following symmetry transformations (depending on the arbi-
trary functions a1(r), b1(r), c1(r))

B1 = b1(r)B + c1(r)
√
µ0%V, V1 =

c1(r)

a1(r)
√
µ0%

B +
b1(r)

a1(r)
V,

%1(r) = a2
1(r)%, P1 = C

(
P +

B2

2µ0

)
− B2

1

2µ0

,

C ≡ b2
1(r)− c2

1(r) = const. 6= 0,

(4.30)

consists of a new family of solutions to the MHD equilibrium system.
CGL into CGL: For anisotropic pressure let {B, V, ρ, P⊥, P‖} be a given solution of the

CGL equilibrium system of equations (1.50)-(1.54):

%(V · ∇)V = J×B−∇ · P, ∇ · (%V) = 0,

∇×B = µ0J, ∇ ·B = 0, V ×B = ∇Φ,
(4.31)

with arbitrary incompressible flow implying % = %(ψ), and anisotropy function constant on
magnetic surfaces, σd = σd(ψ). Then, according to reference [153], {B1, V1, %1, P⊥1 , P‖1}
defined by the following symmetry transformations

B1 =
b1(r)

n1(r)
B +

c1(r)
√
µ0%

n1(r)
√

1− σd
V, V1 =

c1(r)
√

1− σd
a1(r)

√
µ0%

B +
b1(r)

a1(r)
V

%1(r) = a2
1(r)%, P⊥1 = C

(
P⊥ +

B2

2µ0

)
− B2

1

2µ0

,

P‖1 = C

(
P⊥ +

B2

2µ0

)
+
[
1− 2n2

1(r)(1− σd)
] B2

1

2µ0

,

C ≡ b2
1(r)− c2

1(r) = const. 6= 0,

(4.32)

is also a solution. Note that transformations (4.32) depend on the arbitrary functions a1(r),
b1(r), c1(r), n1(r), and reduce to the respective ones for isotropic pressure given by the set
(4.30) when σd = 0 and n1(r) = 1.

As stated in reference [153] the functions a1(r), b1(r), c1(r), n1(r) have to be constant on
the magnetic surfaces. Below we examine the validity of these transformations and whether
they can break the geometrical symmetry of the original equilibria.
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Validation of equilibrium equations for the transformed fields

In order for the new solution (4.32) to be valid it must satisfy the following set of CGL
equilibrium equations

∇ · (%1V1) = 0,

%1(V1 · ∇)V1 = J1 ×B1 −∇ · P1,

∇×B1 = µ0J1,

∇× (V1 ×B1) = 0,

∇ ·B1 = 0,

V1 ×B1 −∇Φ1 = 0,

(4.33)

where P1 and σd1 are given by (4.8).
Expressing in (4.33) the transformed fields in terms of the original ones by means of (4.32)

leads to the following system of equations:

B · ∇b1 + ΛV · ∇c1 − (b1B + c1ΛV) · ∇n1

n1

= 0,(4.34)

ΛV · ∇b1 + B · ∇c1 + (Λb1V + c1B) · ∇a1

a1

= 0,(4.35)

B ·
(
∇a1

a1

+
∇n1

n1

)
= 0,(4.36)

V ·
(
∇a1

a1

+
∇n1

n1

)
= 0,(4.37)

−B ·
(
b2

1

∇n1

n1

+ c2
1

∇a1

a1

)
− b1c1ΛV ·

(
∇n1

n1

+
∇a1

a1

)
+ ΛV · (b1∇c1 − c1∇c1) = 0,(4.38)

ΛV ·
(
c2

1

∇n1

n1

+ b2
1

∇a1

a1

)
+ b1c1B ·

(
∇n1

n1

+
∇a1

a1

)
+ B · (b1∇c1 − c1∇c1) = 0,(4.39)

where Λ ≡ √µ0%/
√

1− σd.
It is apparent that if all four functions appearing in the symmetry transformations are

constant on the magnetic surfaces, equations (4.34)-(4.39) are trivially satisfied; otherwise
the above system of six equations for the four functions a1(r), b1(r), c1(r), n1(r) is in general
overdetermined. However, if the functions a1(r), b1(r), c1(r), n1(r) are chosen so that

− ∇a1

a1

=
∇n1

n1

=
∇(b1 + c1)

(b1 + c1)
, (4.40)

being satisfied when

a1 =
1

n1

, n1 = b1 + c1, (4.41)

then (4.36) and (4.37) are trivially satisfied, while (4.34), (4.35), (4.38) and (4.39) reduce to
the single relationship:

(B− ΛV) · (b1∇c1 − c1∇b1) = 0. (4.42)

Since b1 6= ±c1 for the transformation to be invertible, equation (4.42) is satisfied only for
parallel flows:

V =

√
1− σd√
µ0%

B. (4.43)

Note that the field-aligned equilibria (4.43) and (2.61) differ from each other, and thus,
transformations (4.32) introduced in reference [153] for flow of arbitrary direction are not
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reducible into the respective transformations (4.3) for parallel flows presented herein (cf Section
4.3). This result also holds for the respective isotropic transformations (4.30) and (4.2) derived
in reference [216]. For the special equilibria with field-aligned flows satisfying (4.43) and a1(r),
b1(r), c1(r), n1(r) generally not constant on magnetic surfaces, transformations (4.32) reduce
to

B1 = B, V1 = (b1 + c1)2V, %1 = %/(b1 + c1)2,

P‖1 = CP⊥ +
[
C + 1− 2(b1 + c1)2(1− σd)

] B2

2µ0

,

P⊥1 = CP⊥ + (C − 1)
B2

2µ0

, σd1 = 1− (b1 + c1)2(1− σd),

C = b2
1 − c2

1 = const. 6= 0.

(4.44)

For equilibria with isotropic pressure satisfying (4.30), being recovered from (4.32) for σd = 0
and n1 = a1 = b1 + c1 = 1, the choice (4.41) leads to

B1 = B, V1 = V, %1 = %,

P1 = CP + (C − 1)
B2

2µ0

,

C = b1 − c1 = const. 6= 0.

(4.45)

With the aid of (4.44) and (4.45) we observe that in the presence of pressure anisotropy the
transformed velocity and mass density differ from the respective, original ones.

Now suppose that the original equilibrium is the helically symmetric introduced in Chapter
2 for which the following relations hold

B = Ih + h×∇ψ, (4.46)

V =
Θ

%
h +

Mp√
µ0%

h×∇ψ, (4.47)

1

q

dΦ

dψ
=

IMp√
µ0%
− Θ

%
. (4.48)

Then, equation (4.41) implies I = (
√

1− σd/
√
µ0%)(Θ/%) and dΦ/dψ = 0, and thus, the

above relations lead to the following one

I
√
µ0%

(
Mp −

√
1− σd

)
= 0, (4.49)

which implies either I = 0 or M2
p + σd = 1. It turns out again that symmetry breaking is

possible only for purely poloidal parallel flows (I = 0). The relation M2
p +σd = 1 is connected

to the Alfvén singularity. The same conclusion holds for axially and translationally symmetric
original equilibria with or without pressure anisotropy.

Arbitrary functions constant on magnetic surfaces

In the above subsection we found that the symmetry transformations (4.32) (and the respective
transformations (4.30) for isotropic pressure) are valid when the arbitrary functions are constant
on magnetic surfaces, since equations (4.34)-(4.39) are trivially satisfied. Here we examine
the equilibria derived from a given geometrically symmetric one of this kind.

Let the original CGL equilibria (4.31) posses magnetic surfaces ψ =const. which both
B and V lie on. Also, suppose that respective surfaces ψ1 =const. are defined for the
transformed equilibria (4.32) which B1 and V1 lie on. It holds that

B1 ×V1 =
C

n1(ψ)a1(ψ)
B×V, (4.50)
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and thus, the magnetic surfaces through the transformation are preserved:

ψ1 = W(ψ). (4.51)

This means that all vectors B, B1, V, V1 lie on the surfaces ψ =const. As a result, if the
original equilibria has some known geometrical symmetry, the transformed equilibria will have
the same symmetry, too.

Consider now helically symmetric equilibria with incompressible flow of arbitrary direction
and anisotropy function constant on magnetic surfaces presented in Chapter 2, for which the
following relationships hold that we write here again for convenience:

B = Ih + h×∇ψ(r, u),

V =
Θ

%
h +

Mp√
µ0%

h×∇ψ(r, u),

µ0J = (Lψ(r, u) + 2kmqI(ψ, r))h− h×∇I(ψ, r),

P = Ps(ψ)− %

[
V2

2
− (1− σd)
q(1− σd −M2

p )

(
dΦ

dψ

)2
]
,

(4.52)

Recall that the current density lies on well defined helicoidal surfaces I =const., while the
effective pressure is uniform on the surfaces defined by P =const., both of these two sets of
surfaces not coinciding with the magnetic surfaces. By applying the symmetry transformations
(4.32) with a1 = a1(ψ), b1 = b1(ψ), c1 = c1(ψ), n1 = n1(ψ), we obtain the following class of
equilibria:

B1 =
1

n1

(
b1I + c

√
µ0%√

1− σd
Θ

%

)
︸ ︷︷ ︸

I1

h +
1

n1

(
b1 + c1

Mp√
1− σd

)
︸ ︷︷ ︸

G

h×∇ψ, (4.53)

V1 =
1

a1

(
c1

√
1− σd√
µ0%

I + b1
Θ

%

)
h +

1

a1
√
µ0%

(
c1

√
1− σd√
µ0%

+ b1
Mp√
1− σd

)
h×∇ψ, (4.54)

µ0J1 =

(
GLψ +

dG
dψ
|∇ψ|2 + 2kmqI1

)
h− h×∇I1, (4.55)

P1 = CP + (1− σd)
(CB2 − n2

1B
2
1)

2µ0

.(4.56)

Note that although the magnetic surfaces are preserved, neither the transformed current den-
sity nor the transformed effective pressure remains on the surfaces of the respective original
quantities: J1 · ∇I 6= 0, P1 6= P .

Now since ψ1 = W(ψ) and the original equilibria are helically symmetric the transformed
ones should retain that symmetry. This means that the transformed fields can also be written
in a form similar to (4.52); in particular for the transformed velocity we have:

V1 =
Θ1

%1

h +
Mp1√
µ0%1

h×∇ψ1(r, u), (4.57)

where

M2
p1

=
|Vp1|2

|Bp1|2/µ0%1

= (n1

√
1− σd)

c1

√
1− σd + b1Mp

b1

√
1− σd + c1Mp

. (4.58)

Equality of the poloidal velocity components in (4.54) and (4.57) yields

dψ1

dψ
=
b1

√
1− σd + c1Mp

n1

√
1− σd

⇒ ψ1(ψ) =

∫ ψ

0

b1(χ)
√

1− σd(χ) + c1(χ)Mp(χ)

n1(χ)
√

1− σd(χ)
dχ. (4.59)
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Adopting (2.45) both for the original and the transformed helically symmetric equilibria,
equation (4.59) yields

dU1(U)

dU
= C1/2 ⇒ U1 = C1/2U. (4.60)

Therefore the transformed equilibria differ from the starting ones only by a constant factor
C1/2, in agreement with the conclusions drawn in the previous Sections; the geometrical
symmetry of the original equilibria can break only for purely poloidal magnetic field, otherwise
the transformed equilibria retain the original symmetry.

4.5.2 Transformations between MHD-CGL equilibria
In references [153,218,219] transformations that produce CGL anisotropic equilibria from given
isotropic MHD ones, are introduced as follows: If {B, V, P, %} is a known solution of the
MHD equilibrium system (4.29), then the following symmetry transformations

B1 = f2(r)B, V1 = g2(r)v, %1 =
C0µ0

g2
2(r)

%,

P⊥1 = C0µ0P + C1 +
(
C0µ0 − f 2

2 (r)
) B2

2µ0

,

P‖1 = C0µ0P + C1 −
(
C0µ0 − f 2

2 (r)
) B2

2µ0

,

(4.61)

where C0 and C1 are arbitrary constants and f2 and g2 are arbitrary scalar functions, produce
an infinite family of CGL equilibria satisfying (4.33). Transformations (4.61) are also valid in
the static limit, V = 0. Let us examine their validity.

Substituting (4.61) into (4.33) we obtain

B · ∇f2(r) = 0,

V · ∇g2(r) = 0.
(4.62)

Thus, in order for transformations (4.61) to be valid, the functions f2(r) and g2(r) must be
constant on the magnetic field lines and velocity streamlines of the original equilibria, and
respective considerations on their structure can be made as those in Section 4.3. Therefore
it turns out again that the only way that the geometrical symmetry of the original isotropic
equilibria can be broken is if and only if the magnetic and velocity fields are collinear and purely
poloidal.
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5 | Stability of Anisotropic Incom-
pressible Equilibria

“There are two kinds of mistakes. There are fatal mistakes
that destroy a theory, but there are also contingent ones,
which are useful in testing the stability of a theory .”

Gian-Carlo Rota

5.1 Energy principle and perturbation potential energy

The Energy Principle [27,223] is a fundamental technique in investigating ideal magnetostatic
plasma stability on the basis of a variational formulation of the pertinent equations of motion.
Its simpler mathematical formulation makes it advantageous over the normal mode analysis,
and thus widely employed for determing whether a system is stable or not rather than precise
growth rates for specific instabilities. The energy principle is based of the fact that the total
perturbation energy

E = K +W =
1

2

∫
D
%ξ̇2d3r − 1

2

∫
D
ξ · F̂ξd3r (5.1)

is conserved, where K is the kinetic energy, W is the potential energy and ξ is a vector related
to the displacement of an initial equilibrium. Stability is related to the sign of E. In fact,
since, K is quadratic in velocity and therefore non negative definite, stability is related to the
sign of the potential energy. More presicely, it is possible to establish instability by finding
a trial function ξ for which W < 0 as well as to obtain sufficient conditions for the linear
stability of a given equilibrium state for which it holds W ≥ 0. It must be noted, however,
that such sufficient conditions in general do depend on stringent hypothesis and their necessity
remains an open problem [224, 225]. This is totally the case in the presence of equilibrium
flows where, though the force operator remains Hermitian, in that case the convective flow
term of the force-balance equation, (V · ∇)V, is antisymmetric (cf p.22 in [226]); as a result
only a few sufficient conditions for stationary equilibria have been acquired, e.g. [145–149].
Moreover, respective stability conditions for equilibria with anisotropic pressure are also limited.
In fact, the Energy Principle in [27] was extended for the case of CGL pressure anisotropy.
However, that condition is applicable to static equilibrium for which no heat conduction along
and across the magnetic field is assumed (double adiabatic equations of state); it may be
noted that the stability of respective static CGL anisotropic equilibria is guaranteed once the
respective isotropic ideal MHD (adiabatic) is found to be stable on the basis of the respective
static isotropic Energy Principle [227].

Here we derive a sufficient condition for determining the linear stability of hydromagnetic
equilibria with the combined effects of both mass flow, which is incompressible, and anisotropic
pressure. The derivation is presented in detail bellow in this Chapter.

89
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Consider an inviscid, perfectly conducting plasma with anisotropic pressure contained in a
domain D surrounded by a fixed boundary ∂D. The dynamics of such a plasma is determined
by the set of equations (1.45)-(1.49) and (1.39)-(1.40), in which the quantities related with the
fluid as well as with the electromagnetic field depend on both the spatial and time variables.
Note that the momentum equation (1.46) can be written in the following form

%∗(DtV
∗) = (1− σ∗d)J∗ ×B∗ −∇P∗ − B∗

µ0

(B∗ · ∇σ∗d) +
|B∗|2

2µ0

∇σ∗d, (5.2)

in which the scalar pressures P ∗‖ and P
∗
⊥ do not appear explicitly. This fact is very useful for the

stability analysis to follow. In (5.2) the Langrangian derivative is defined as Dt ≡ ∂t+(V∗ ·∇)
and the effective pressure P∗ is given in (1.41). Recall that in the absence of anisotropy, owing
to particle collisions, equilibration of the scalar pressures along and across B∗ reduces P∗ into
a respective isotropic MHD pressure, P ∗. The counterpart to set (1.45)-(1.49), (1.39)-(1.40)
and (1.41) equilibrium equations are defined by equations (1.50)-(1.54), (1.55) and (1.60), in
which all related physical equilibrium quantities (without the superscript ∗) depend only on r.
Henceforth we consider that the flow of the background equilibria is incompressible, ∇·V = 0,
and thus the continuity equation (1.50) reduces to

V · ∇% = 0. (5.3)

In order to examine the linear stability of a given equilibrium with anisotropic pressure and
incompressible flows, we assume that the equilibrium position, r, is perturbed to a position
r∗(r, t), through the usual Lagrangian displacement vector ξ(r, t) ≡ r∗ − r, so that

B∗ = B(r) + b(r, t), V∗ = V(r) + v(r, t), J∗ = J(r) + j(r, t),

P∗ = P(r) + p(r, t), %∗ = %(r) + δ(r, t), σd
∗ = σd(r) + ε(r, t). (5.4)

Here, b, j, p, δ, ε, and

v = u(r, t) +
∂ξ

∂t
(5.5)

correspond to small perturbations of the respective equilibrium quantities. Note that we have
assumed perturbations of the effective pressure, P , and the anisotropy function, σd, instead
of explicit perturbations of the scalar pressures P‖ and P⊥. Also, on the fixed boundary ∂D
surrounding a plasma domain D of interest we adopt the following conditions:

b · n̂ = u · n̂ = 0, (5.6)

where n̂ is the perpendicular outward unit vector on the boundary. Introducing perturbations
(5.4) and employing the equilibrium equations (5.3), (1.51)-(1.54), the dynamical equations
are linearized as follows. First, with the aid of (1.53) equation (1.48) yields

∇ · b = 0. (5.7)

Then, with the use of (5.7) together with (1.54) the linearized form of the Ampere’s law (1.49)
is obtained

j =
1

µ0

∇× b. (5.8)

In addition, by employing (5.3) the continuity equation (1.45) yields

∂δ

∂t
+ V · ∇δ +∇ · (%v) = 0, (5.9)
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while with the aid of (1.51) the momentum equation (1.46) reduces into the linearized form

%
∂v

∂t
+ % [(V · ∇)v + (v · ∇)V]− (1− σd)(J× b + j×B) +∇p = G(r, t), (5.10)

where

G := −δ(V · ∇)V − εJ×B +
1

µ0

[
B2

2
∇ε− (B · ∇ε+ b · ∇σd)B

+

(
B · b +

b2

2

)
∇σd − (B · ∇ε)b

]
. (5.11)

Finally, as concerns the linearized form of the Ohm-Faraday law (1.47), it is obtained upon
the definition

[Q,W] := (W · ∇)Q− (Q · ∇)W, (5.12)

where Q, W are any two arbitrary vectors. It is found that

∂b

∂t
= [V,b] + [v,B], (5.13)

where (1.52) was also employed.
At this point recall that in order that the set of dynamical equations (1.45)-(1.49) be

closed one needs in connection with the pressures P ∗‖ and P ∗⊥ a couple of energy equations
or equations of state, e.g. the double adiabatic equations [14] associated with the known
CGL model. For the purposes of the present study one such equation of state corresponds
to incompressibility in connection with an evolution with constant mass density; that is, we
assume %∗ = % = const., (δ = 0), which apparently implies that the fluid is incompressible.
As a result, equation (5.3) is trivially satified while equation (5.9) yields

∇ · v = 0. (5.14)

Also, the fact that the momentum equation can be cast in the form (5.2) involving the
pressures P ∗‖ and P ∗⊥ only implicitly through the effective pressure, P∗, and the anisotropy
function, σd, motivated us to adopt as second equation of state the constrain that the latter
function remains constant, σ∗d = σd = const., (ε = 0). This implies that P ∗‖ and P ∗⊥ (precisely
their difference) evolve in such a way that they keep proportional to the magnetic pressure
B2/(2µ0), which on physical grounds is an acceptable approximation. Consequently, equation
(5.11) implies that G = 0, while the linearized momentum equation (5.10) reduces to

%
∂v

∂t
+ % [(V · ∇)v + (v · ∇)V]− (1− σd)(J× b + j×B) +∇p = 0. (5.15)

Furthermore, in view of the relation (5.14), we consider incompressible perturbations,
∇ · ξ = 0, which are more harsh compared to compressible ones, such that the condition
ξ · n̂ = 0 is satisfied on the boundary. Then, equation (5.14) implies that ∇ · u = 0.
Subsequently, the perturbation of the velocity field can be expressed in terms of ξ, as

u = ∇× (ξ ×V). (5.16)

Also, by employing the Jacobian identity, [[Q,W],S] ≡ [Q, [W,S]]− [W, [Q,S]], in equation
(5.13) for Q = ξ, W = V, S = B yields

∂

∂t
(b− [ξ,B]) = [V,b− [ξ,B]]. (5.17)
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Then from relation (5.17) it follows that if b = [ξ,B] is satisfied at t = 0, then it holds for
any t > 0. Thus, we conclude that b = [ξ,B], or equivalently with the use of (1.53) and
(1.52)

b = ∇× (ξ ×B). (5.18)

Furthermore, the linearized force balance equation (5.15) is put in the form

%
∂2ξ

∂t2
+ 2%(V · ∇)

∂ξ

∂t
+∇f = F̂ξ. (5.19)

Here,

F̂ := %u× (∇×V) + %V × (∇× u) + (1− σd)J× b− 1

µ0

B× (∇× b), (5.20)

is the symmetric force operator and the scalar function f is defined as

f := %V · u + p. (5.21)

So far we have succesfully linearized the dynamical equations (1.45)-(1.49) each of them
being related with the displacement vector. Indeed, on account of equations (5.16)-(5.21),
the potential energy W = 1

2

∫
D ξ · F̂ξd

3r is expected to depend only on the physical quantities
of the background equilibrium and the displacement vector, ξ, with the exception of the
perturbation, p, of the effective pressure, appearing in the gradient of the quantity f . However,
the contribution of the latter term to W vanishes due to the implied boundary conditions on
∂D, (5.6). Thus, one finds for the perturbation potential energy

W =
1

2

∫
D

{
%u · [ξ × (∇×V)]− %u2 + (1− σd)b · (J× ξ) +

(1− σd)
µ0

b2

}
d3r. (5.22)

This is the form of the potential energy for incompressible perturbations, of an initial equi-
librium with incompressible flow of arbitrary direction, of constant mass density and constant
anisotropy function, the study of the sign of which may determine their stability.

5.2 Sufficient condition for linear stability of field-aligned
equilibria

In connection with potential acquisition of sufficient stability conditions from the expression
for the potential energy (5.22), we restrict our analysis to field-aligned flows. In other words,
we henceforth consider a background equilibrium with collinear velocity and magnetic fields
specially related through (2.61), as that described in Subsection 2.2.1. In fact, under the
assumptions that the mass density and the anisotropy function remain constant everywhere
inside a volume D (%, σd = const.) it follows that the corresponding field-aligned equilibrium
flow becomes incompressible and the function λ is constant on magnetic surfaces ψ = const.,
whenever such surfaces exist. Also, both the magnetic and velocity fields lie on those surfaces,
B·∇λ(ψ) = V·∇λ(ψ) = 0. It is known that the existence of three-dimensional equilibria with
nested toroidal magnetic surfaces is not guaranteed, and in general, irrespective of the existence
of magnetic surfaces the function λ is constant on both the magnetic field lines and the velocity
streamlines. Henceforth, we will presume the existence of well defined equilibrium magnetic
surfaces. Such kind of field-aligned equilibria are governed by a force-balance equation of the
form (2.65):

J×B = g(ψ,B2)∇ψ, (5.23)



Chapter 5. Stability of Anisotropic Incompressible Equilibria 93

where the exact form of the function g for σd = const. is

g(ψ,B2) := (1− σd − λ2)−1

[
P ′s − (λ2)

′ B2

2µ0

]
, (5.24)

and the static effective pressure is defined as

Ps(ψ) := P + λ2 B2

2µ0

. (5.25)

Owing to equations (2.61) and (5.23)-(5.25) the potential energy of the perturbations (5.22),
for equilibria with field-aligned incompressible flows, constant density and constant anisotropy
function, reduces to the form

W =
1

2µ0

∫
D

{
(1− σd − λ2)[b2 + b · (µ0J× ξ)]− 2λ(ξ · ∇λ)(ξ · [(B · ∇)B])

}
d3r.

(5.26)
In what follows we employ the form of W given in equation (5.26) to derive a sufficient
condition for the linear stability of the respective kind of equilibria. To this end, we define the
following quantities:

N := J×B, M := ∇×N = ∇g ×∇ψ, (5.27)

from which it follows that
N ·M = 0. (5.28)

As noted earlier in Subsection 2.2.1 and is also evident from equations (2.61), (5.23)-(5.25),
for the equilibria with field-aligned incompressible flows, constant mass density and constant
pressure anisotropy function, σd, the current density stays on magnetic surfaces, ψ = const.,
and thus, the vectors B, J and N = J×B, form a basis in R3 space. Accordingly, following
references [147–149], we assume that J×B 6= 0 and expand the displacement vector in this
basis, as

ξ = α(r, t)N + β(r, t)J + γ(r, t)B, (5.29)

where α, β, and γ are arbitrary, appropriately dimensional scalar functions. We note that
in [149] a sufficient condition was derived for the linear stability of equilibria with field-aligned
incompressible flows, isotropic pressure and constant density; in fact, the constant density and
the vacuum magnetic permeability constant were set to unity therein. These equilibria are
recovered from the respective anisotropic-pressure equilibria defined above for σd = 0. Also,
we observe that the form (5.26) of potential energy for σd = 0 (and % = µ0 = 1) reduces to
the respective isotropic form of [149] [see equation (13) therein]. Thus, it is straightforward
to derive along the same lines as in [149] a sufficient condition for the linear stability of the
present anisotropic equilibria. In specific, it can be shown (see Appendix D for a detailed
derivation) that W assumes the form

W = W1 +W2, (5.30)

W1 =
1

2µ0

∫
D

(1− σd − λ2)(b + αµ0J×N)2d3r, (5.31)

W2 =
1

2µ0

∫
D
A(
√

2gα)2d3r, (5.32)

where

A := −(1− σd − λ2)
{
|µ0J×∇ψ|2 − (µ0J×∇ψ) · [(∇ψ · ∇)B]

}
+
µ0

2
[ln(1− σd − λ2)]

′ |∇ψ|2∇ψ · ∇
(
P⊥ +

B2

2µ0

)
. (5.33)
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Equations (5.31) and (5.32) imply that W is non-negative if both quantities 1− σd − λ2 and
A are also non-negative definite in D. Thus, we conclude to the following statement:

An equilibrium with anisotropic pressure with σd = const., field-aligned incompressible flow in
connection with constant plasma density is linearly stable if both of the following conditions
are satisfied:

1− σd − λ2 ≥ 0, (5.34)

A ≥ 0. (5.35)

Conditions (5.34) and (5.35) can be applied to any steady state without geometrical restriction.
They generalize the ones derived in [149] for isotropic pressure, since for σd = 0 condition
(5.34) reduces to sub-Alfvénic flows, λ2 < 1, while (5.35) reduces to the condition introduced
in equation (22) of reference [149]. In fact, the expression (5.33) is more compact because it
consists of three terms, instead of four terms in the respective one of [149]. The first of these
terms,

A1 = −(1− σd − λ2)|µ0J×∇ψ|2, (5.36)

is negative and therefore always destabilizing, in potential connection with current-driven
modes. The second term,

A2 = (1− σd − λ2)(µ0J×∇ψ) · [(∇ψ · ∇)B], (5.37)

is related to the magnetic shear (i.e. it depends on the variation of B across the magnetic
surfaces), and can be either stabilizing or destabilizing. The third term,

A3 =
µ0

2
[ln(1− σd − λ2)]

′|∇ψ|2∇ψ · ∇
(
P⊥ +

B2

2µ0

)
, (5.38)

can be regarded as flow term, though being affected by anisotropy, since it vanishes in the
absence of flow (λ = 0). Note that it relates to the variation of the total pressure perpendicular
to the magnetic surfaces; indeed, on account of equations (1.61) and (5.25) one finds

P⊥ +
B2

2µ0

= Ps(ψ)︸ ︷︷ ︸
static

− 1

2
%V2︸ ︷︷ ︸
flow

+ (1− σd)
B2

2µ0︸ ︷︷ ︸
magnetic

, (5.39)

which involves all three pressures, static effective, flow and magnetic, the latter being influenced
by the pressure anisotropy through the factor (1 − σd). In addition, satisfaction of condition
(5.34) in the absence of flow, σd ≤ 1, implies that the corresponding static anisotropic
equilibria are stable under the fire-hose instability [153].

Before closing this section it is convenient to express the derived stability condition in
U -space. That is, under the transformation (2.45), which implies that the condition (5.34) is
always satisfied in the sub-Alfvénic region, (5.35) is written as

A = −|µ0J×∇U |2 + (µ0J×∇U) · [(∇U · ∇)B]

+
µ0

2(1− σd − λ2)

d ln(1− σd − λ2)

dU
|∇U |2∇U · ∇

(
P⊥ +

B2

2µ0

)
. (5.40)

Condition A ≥ 0 in connection with form (5.40) will be employed in Section 5.4 to examine
the linear stability of specific helically symmetric equilibria.
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5.3 Stability under symmetry transformations
In Section 4.3 transformations that map CGL-CGL equilibria with field-aligned incompressible
flows and anisotropic pressure were introduced. In this Section we examine the linear stability
of the continuous families of equilibria arising from the application of those transformations
to given equilibrium with field-aligned incompressible flows and constant anisotropy function,
in connection with the derived sufficient stability condition as follows.

From (4.3) it readily follows that the transformed collinear velocity and magnetic fields are
related through

V1 =
λ1√
µ0%1

B1, λ1 =
c1n1

b1

√
1− σd, (5.41)

and thus, the trasformed equilibria satisfy a force-balance equation analogous to (2.63):

(1−σd1−λ2
1)J1×B1 = ∇

(
P1 + λ2

1

B2
1

2µ0

)
+

B2
1

2µ0

∇(1−σd1−λ2
1)−B1

µ0

[
B1 · ∇(1− σd1 − λ2

1)
]
.

(5.42)
With the aid of equations (4.3) and (5.41) we obtain the useful relations

1− σd1 − λ2
1 = C

(
n1

b1

)2

(1− σd − λ2), (5.43)

P1 + λ2
1

B2
1

2µ0

= C

(
P + λ2 B2

2µ0

)
= CPs, (5.44)

under which equation (5.42) reduces to(
n1

b1

)2

J1 ×B1 = J×B +
B2

1

2µ0

∇
(
n1

b1

)2

. (5.45)

Now, presume that the original equilibrium belongs to the family described in Section 5.2 for
which equations (2.61) and (5.23)-(5.25) hold; then equation (5.45) becomes(

n1

b1

)2

J1 ×B1 = g(ψ,B2)∇ψ +
B2

1

2µ0

∇
(
n1

b1

)2

. (5.46)

Projection of equation (5.46) along J1 yields

J1 · ∇ψ = −B2
1

2µ0

[
J1 · ∇

(
n1

b1

)2
]
, (5.47)

and thus, it turns out that the transformed current density, J1, remains on the magnetic
surfaces if and only if the ratio n1/b1 is uniform on those surfaces

n1

b1

:= y1(ψ). (5.48)

In this case, the transformed vectors, J1, B1, and N1 ≡ J1 × B1, form a basis in R3, and
thus, for constant %1 and σd1 , sufficient conditions for the linear stability of the transformed
equilibria, satisfying (4.3), (5.41) and (5.48), analogous to (5.34) and (5.35) can be derived:

1− σd1 − λ2
1 ≥ 0, (5.49)

A1 ≥ 0, (5.50)
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where

A1 = −(1− σd1 − λ2
1){|µ0J1 ×∇ψ|2 + (µ0J1 ×∇ψ) · [(∇ψ · ∇)B1]}

+
µ0

2
[ln(1− σd1 − λ2

1)]
′ |∇ψ|2∇ψ · ∇

(
P⊥1 +

B2
1

2µ0

)
. (5.51)

In order to investigate the stability of an aforementioned transformed equilibrium, we pre-
sume that the original equilibrium has constant density and anisotropy functions (% = const.,
σd = const.) and is stable under small three-dimensional perturbations; therefore, conditions
(5.34) and (5.35) are satisfied in D. Note that in this case the scalar functions of transfor-
mation (4.3) must have a structrure of the form: a1 = const., n1 = const., b1 = b1(ψ), c1 =
c1(ψ); as a result, breaking potential geometrical symmetry of the original equilibrium is not
possible by the transformation even for purely poloidal B and V fields. In [148] the stability
of respective isotropic equilibria was examined; in particular, it was stated therein that all
equilibrium families resulting from the application of the respective isotropic transformations
introduced by Bogoyavlenskij to given equilibria of field-aligned incompressible flows, isotropic
pressure and constant mass density, are linearly stable, if either the original equilibria is stable
and C > 0, or the original equilibria is unstable and C < 0. A straightforward calculation
shows that

A1 = CA, (5.52)

so that conditions (5.49) and (5.50) assume the form

C

(
n1

b1

)2

(1− σd − λ2) ≥ 0, (5.53)

CA ≥ 0. (5.54)

By inspection of the latter relations we come to the conclusion that the transformed equilibrium
is linearly stable if, either (i) the original one is linearly stable and C > 0, or (ii) neither of
the conditions (5.34), (5.35) are satisfied and C < 0. However, when C is negative equation
(5.44) in the absence of flow (λ = 0) yields the physically unacceptable relation

P1

P
< 0. (5.55)

Thus, we finally conclude to the formulation of the following statement:

The infinite class of equilibria, obtained from the application of the symmetry transformations
(4.3) for the case %1 = const. and σd1 = const. to given respective equilibria which are
linearly stable (by satisfying the sufficient conditions (5.34)-(5.35)), are also linearly stable if
the transformation constant C is positive definite.

This statement corrects and generalises the respective statement in [148] for isotropic equilibria
(σd = σd1 = 0, n1 = 1).

5.4 Linear stability of helically symmetric equilibria
Consider helically symmetric equilibria of astrophysical jets with field-aligned incompressible
flows and anisotropic pressure defined by equations (3.65)-(3.68), derived in [209]. In order to
construct specific equilibria, we restict our analysis to solution (3.67) for δ = 2, µ = 1, ν = 0,
and χ11 = 7/(6m), which assumes the simpler form [see equation (4.2) in [209]]:

U(r, u) = e−wr
2

[1− 10wr2 + 8w2r4 + c10 cos(u/m)]. (5.56)
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Figure 5.1: Poloidal cut of helicoidal magnetic surfaces U(x, y, z = 0) =const. for the helically
symmetric equilibrium solution (5.56).
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Figure 5.2: Profile of the function U(x, y = 0, z = 0) =const. for the helically symmetric
equilibrium solution (5.56).

Solution (5.56) of the GGS equation (2.46) associated with the profiles (3.65) defines a spe-
cial class of exact helically symmetric equilibria with field-aligned incompressible flows and
anisotropic pressure, valid for any functional dependence ofM2

p (U), %(U) and σd(U) . In con-
nection with the present Chapter, in order to completely determine an equilibrium we assume
that both the mass density and pressure anisotropy functions are constant everywhere inside
the plasma volume D: % = σd = const.; also we employ the following profile for the Mach
function

M2
p (U) = M2

p0
U2, (5.57)

whereMp0 is an arbitrary parameter. The magnetic surfaces of the above constructed equilibria
on the Cartesian plane z = 0, for w = 0.01, c10 = 0.5, π00 = 2µ0, and m = 2.318, are shown
in figure 5.1; all dimensional quantities present in this section are measured in appropriate SI
units. Also, the profile of the flux function U along the x-axis is given in figure 5.2. In figures
5.1 and 5.2 it can be seen that the plasma domain consists of two sub-domains: an outer one
consisting of magnetic surfaces with circular poloidal cross-sections extending up to infinity
(r → ∞), and an inner sub-domain containing three lobes and a couple of saddle points
(X-points). The inner X-point, corresponding to a maximum of U is located at x = −17.6.
Then on the right hand side of this first X-point are located successively two lobes, then the
second X point and farther outwards the third lob. The respective magnetic axes of the lobes
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Figure 5.3: The profiles of the scalar pressures (a) P⊥(x, y = 0, z = 0) and (b) P‖(x, y = 0, z = 0)

for the constructed stationary equilibria, for M2
p0 = 10−3. The blue dashed curve correspond to

σd = 0.1, while the red dotted one to σd = −0.1.

are located at x = −7.07, x = 2.31 and x = 15.3 while the second X-point is located at
x = 7.07. Each helix composing such a helically symmetric configuration is characterized by
a pitch, η, and a torsion, τ , given by

η = 2πm, τ =
m

r2 +m2
. (5.58)

The above equilibrium can model helically symmetric jets with anisotropic pressure, tending
to become isotropic at very long distances (r →∞). In more detail, for any σd = const. 6= 0
inside D, the scalar pressures parallel and perpendicular to B are given by the relations (1.61)
indicating that when σd > 0, its increase results in an enhancement of P⊥ while P‖ decreases,
and vice versa for σd < 0, as can be seen at the profiles of P‖ and P⊥ shown in figure 5.3.
In the limit of r → ∞ the magnetic field, current density and velocity vanish and therefore
the scalar pressures become equal each other, i.e. P⊥ = P‖ = π00/µ0 = const. because of
the second of (3.65) and (1.61). Thus the configuration becomes in this limit isotropic. Note
that this is compatible with a non zero value of σd on account of the definition (1.55), which
makes σd indefinite in the limit of r → ∞. Profiles of the magnetic field magnitude, B, and
the helicoidal component of the current density, Jh, are shown in figure 5.4. The values of B
becomes greater (lower) for σd > 0 (σd < 0), in connection with a diamagnetic (paramagnetic)
behavior. The helicoidal current density, Jh, reverses near the origin and becomes more peaked
(hollow) for σd > 0 (σd < 0). In addition profiles of the helicoidal velocity component, Vh and
the Mach function, M2

p , are provided in figure 5.5. It is noted that Vh reverses in the region
of the left-lobe, where U becomes negative, and that the flow in terms of the Mach function,
M2

p , strengthens the impact of pressure anisotropy for σd > 0, due to the factor 1−σd−M2
p .

In this respect, it is expected that the increase of the parameter M2
p0

has the same impact on
Vh as that shown in figure 5.5(a) for σd > 0.
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Figure 5.4: Variation of (a) |B(x, y = 0, z = 0)| and (b) Jh(x, y = 0, z = 0), for the stationary
equilibria constructed here, for M2

p0 = 10−3 and the impact of pressure anisotropy on them for
positive and negative values of σd.
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Figure 5.5: Profiles of (a) the helicoidal velocity component for M2
p0 = 0.06, and the impact of

pressure anisotropy through σd, and (b) the Mach function along the x-axis for different values
of the flow parameter M2

p0 .
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Figure 5.6: (a): For the static anisotropic helically symmetric equilibrium (σd = M2
p0 = 0) the

stability condition A ≥ 0 is satisfied in the orange coloured regions. (b): The term A2 has a
stabilizing effect (red-dotted curve) which counteracts the destabilizing one of A1 (blue-dashed
curve), so that the quantity A = A1 +A2 indicated by the black-straight curve becomes positive
in the aforementioned orange coloured regions.

In what follows, we employ the derived suffiecient condition by calculating the quantity
A = A1 + A2 + A3 of equation (5.40) (in connection with equations (5.33), (5.36)-(5.38)
in the ψ-space) for the helically symmetric equilibria under consideration, in order to examine
the impact of the pressure anisotropy, flow and torsion on their linear stability, through the
variation of the parameters σd, Mp0 , and η, respectively. We recall that the aforementioned
relations were obtained by applying the integral transformation (2.45); in this respect the
condition (5.34) is trivially satisfied. Figure 5.6(a) shows that the condition A ≥ 0 in the
absence of pressure anisotropy and flow, σd = M2

p0
= 0, is satisfied in a broad region including

the outer domain and the two magnetic axes located on the left and right side of the origin
(x = y = 0). In these regions, the term A2 being stabilising surpasses the destabilising
term A1 as shown in figure 5.6(b) (while in this case the flow term A3 vanishes). However,
the condition is satisfied neither near the central magnetic axis, where Jh reverses and U is
negative, nor in a small region located at the left side of the magnetic axis of the left lobe, in
which Vh reverses; in this respect it should be noted that since the condition is only sufficient,
the white colored regions in figure 5.6(a) and in the figures to follow, where A < 0, do not
necessarily imply instability. Thus we will consider only regions in which the condition A ≥ 0
is satisfied.

The presence of pressure anisotropy does not affect the isotropic stability map of figure
5.6(a), as it is clearly indicated in the profiles of figure 5.7. However, it affects the values of A.
Specifically, in the regions where A ≥ 0, for P‖ > P⊥ (σd > 0) the anisotropy has a stabilizing
impact, in the sense that the maximum values of A become larger than the respective isotropic
ones, and a destabilizing effect for σd < 0. These characteristics are illustrated in figure 5.7. In
addition, it is found that the flow in terms ofM2

p has a peculiar effect on stability. Specifically,
on the one hand it results in shrinking the orange colored area located on the left hand side of
the first lobe, where the helicoidal velocity reverses, as it can be seen in figure 5.8(a),(b). This
shrinking is connected with a destabilizing effect of M2

p0
on both terms A1 and A2 as shown

in figure 5.9(a),(b). On the other hand the flow has a stabilizing effect, similar to that of
σd > 0, because the respective maximum values of A get larger in this area as M2

p increases,
as it can be seen in figure 5.8(c). Also, the flow gives rise to a stabilizing contribution via the
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Figure 5.7: The impact of pressure anisotropy on the quantities (a) A, (b) A1 and (c) A2 in the
absence of flow (Mp0 = 0) for σd = 0.2 (blue-dashed curves) and σd = −0.2 (red-dotted curve).
For comparison are also given the respective isotropic black continuous curves. In the regions
where A ≥ 0 this impact is stabilizing for σd > 0 and destabilizing for σd < 0.



102 5.4. Linear stability of helically symmetric equilibria

-20 -10 0 10 20

-20

-10

0

10

20

x

y

-20 -10 0 10 20

-20

-10

0

10

20

x

y

Static

Mp0
2 =0.06

Mp0
2 =0.08

-20 -10 0 10 20

-0.04

-0.02

0.00

0.02

0.04

0.06

x

A

(c)

Figure 5.8: Impact of the flow through M2
p0 in the central orange colored region where the sta-

bility condition A ≥ 0 is satisfied in comparison with the respective static isotropic equilibrium.
The maximum used value of the parameter Mp0 for which all the pressures remain positive is
0.08.
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Figure 5.9: The impact of the flow parameter M2
p0 on the terms: (a) A1, (b) A2, and (c) A3,

for σd = 0.

term A3. However, this contribution in the region of interest is an order of magnitude lower
than the destabilizing impact of M2

p on A1 and A2, as can be seen in figure 5.9(c). Because
of the stronger impact of the pressure anisotropy on A than the destabilizing effect of the
flow, the presence of both anisotropy and flow has an overall stabilizing effect in terms of the
region where the condition A ≥ 0 is satisfied and the maximum values of A. This is shown
in figure 5.10.

Finally, as concerns the impact of the torsion, τ , on the quantity A, for a specific helix,
defined by the equations r = rc = const., u = uc = const. (in helical coordinates), equation
(5.58) implies that τ depends only on the parameter η, which characterises the pitch of that
helix. Inspection of equation (5.58) implies that τ has an extremum for m = rc, corresponding
to the maximum torsion, τmax = 1/2rc. For example, for the static, isotropic equilibrium of
figure 5.1 the helical magnetic axis of the central lobe intersects the plane z = 0 at the position
xc = 2.318, yc = 0, corresponding to rc = 2.318, and has maximum torsion, τmax = 0.2157.
Therefore, there can exist two different helically symmetric configurations with the same torsion
but different values of m one for m < rc and the other m > rc, corresponding to different
pitches η. However, the same torsion does not imply that these configurations have necessarily
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Figure 5.10: The overall stabilizing impact of pressure anisotropy in combination with flow
on the stability of the constructed helically symmetric equilibria. The pertinent parametric
values employed are as follows: (straight black curve) σd = M2

p0 = 0, (blue dashed curve)
σd = 0, M2

p0 = 0.07, (red dotted curve) σd = 0.07, M2
p0 = 0, and (green dot-dashed curve)

σd =M2
p0 = 0.07.

the same stability properties. The regions in which the condition A ≥ 0 is satisfied for the
equilibrium of figure 5.1 is shown in figure 5.6. We found the respective stability maps for
three pairs of equilibria, shown in figure 5.11. Each pair corresponds to the same torsion,
τ < τmax but different pitch lengths, η < 2πrc and η > 2πrc. Specifically, the torsion
and pitch values we employed in connection with these equilibrium pairs are the following:
(upper pair consisting of the figures 5.11(a),(b)) τ(a),(b) = 0.207, η(a) = 10.10, η(b) = 19.29,
(middle pair consisting of the figures 5.11(c),(d)) τ(c),(d) = 0.157, η(c) = 2π, η(d) = 33.76, and
(lower pair consisting of the figures 5.11(e),(f)) τ(e),(f) = 0.089, η(e) = π, η(f) = 67.52. The
stability maps indicate that the condition A ≥ 0 is satisfied in a wider region as the torsion
decreases from its maximum value and for a given torsion A it gets larger as the pitch length
η > 2πrc increases. Thus, we conclude that helical configurations with smaller torsion and
bigger pitch lengths may have improved stability characteristics. This result is reasonable if
one considers the limit of zero torsion and infinite pitch length in which a helically symmetric
plasma column degenerates into an one dimensional, cylindrical θ-pinch. It is well known
that such a configuration has favorable stability properties, since the safety factor approaches
infinity. However, confinement in a θ-pinch is not possible in the presence of toroidicity because
the axial magnetic field becomes purely toroidal.
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stability of helically symmetric equilibria. Each pair of figures illustrate configurations that have
same torsion, but different pitch values as explained in the text.
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6 | Conclusions and potential future
work

“We’re always, by the way, in fundamental physics, always
trying to investigate those things in which we don’t under-
stand the conclusions. After we’ve checked them enough,
we’re okay.”

Richard P. Feynman

6.1 Summary and main conclusions
Equilibrium and stability are important disciplines of magnetic confinement fusion science
and engineering in connection with the outstanding challenge of controlled thermonuclear
fusion, the successful implementation of which would open up the possibility of completely
worldwide solving the energy problem. In the present thesis we investigated the equilibrium
and stability properties of a helically symmetric magnetized plasma with pressure anisotropy
and incompressible mass flow of arbitrary direction. The main conclusions are summarized as
follows.

I. Helically symmetric equilibria with pressure anisotropy and incompressible flow

(a) In Chapter 2 we derived a generalized Grad-Shafranov equation [equation (2.46)]
which governs the equilibrium of helically symmetric magnetized plasmas in the pres-
ence of pressure anisotropy and incompressible flow. That equation recovers the re-
spective GS-like ones that govern both isotropic helically symmetric equilibria, either
static or stationary, and axisymmetric as well as translationally symmetric equilibria
either with pressure anisotropy and/or mass flow or not. Also, it contains six free sur-
face quantities, as functions of the poloidal magnetic flux. The derivation was based
on the adoption of a diagonal pressure tensor, known as CGL pressure tensor, with
one element parallel to the magnetic field, P‖, and two equal perpendicular ones, P⊥.
As a measure of the pressure anisotropy we introduced the function σd [see equation
(1.55)], assumed to be uniform on magnetic surfaces, while the parallel component
of the flow was expressed by the poloidal Alfvénic Mach function Mp [see equation
(2.32)]. The form of the GGS equation containing the sum σd + M2

p indicates that
pressure anisotropy and flow act additively in the absence of the electric field term,
associated with the non-parallel component of the flow. Furthermore, we derived
a generalized Bernoulli equation [equation (2.43)] involving the effective isotropic
pressure P [see equation (1.60)].

(b) In addition, under the assumption of the existence of well defined 3D magnetic sur-
faces we examined the properties of special ideal, anisotropic MHD equilibria with
incompressible flow such that any two of the vectors of flow velocity, V, vorticity, Ω,
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magnetic field, B, and current density, J, are parallel one another including the cases
of magnetic-field-aligned flows, force-free, in the sense that the magnetic force van-
ishes, and Beltrami. It turns out that the vorticity and the current density share the
same surfaces with the magnetic field and velocity. In many of the cases considered
it is shown that the only possible isodynamic state is the axisymmetric Palumbo one.
Also, we examined the respective helically symmetric equilibria for which the specific
forms of the GGS equations were obtained. For these equilibria it was proved that
the flow should be parallel to the magnetic field with the exception of equilibria with
V parallel to J. Furthermore, we examined axisymmetric and helically symmetric
equilibria with either complex lamellar flow or complex lamellar magnetic field. In
these cases it turns out that the electric field results in non-isodynamic equilibria
governed by a couple of differential equations [equations (2.101)-(2.103)].

(c) In Chapter 3 the GGS equation was solved by adopting the most generic linearizing
choices for the arbitrary function terms contained in it, and a new class of exact
helically symmetric equlibria with pressure anisotropy and flow of arbitrary direction
was obtained. This analytic class recovers known solutions as particular cases, e.g.
solutions describing equilibria of helically symmetric astrophysical jets. On the basis
of those generic analytical considerations we constructed equilibria describing config-
urations pertinent to ‘straight stellarators’, consisting of a helicoidal tude of nested
magnetic surfaces, with poloidal cross-section shape invariant along the helical direc-
tion. That tube was considered to be surrounded by a fixed helicoidal boundary, of
finite length and non-zero torsion, in connection with appropriate boundary/ shaping
conditions.

(d) In addition, we examined the impact of pressure anisotropy and flow on the prop-
erties of the equilibrium constructed, through physical quantities, and came to the
following conclusions. As concerns the plasma magnetic properties, it turns out that
anisotropy acts paramagnetically for P‖ > P⊥ and diamagnetically for P‖ < P⊥, ir-
respective of the presence of flow. The non-parallel component of the flow decreases
the magnetic field from its static value, thus inducing diamagnetism. Also, in the
absence of the electric field term, associated with non-parallel flow, the component of
the flow parallel to B, in connection with M2

p , has a paramagnetic impact due to the
cumulative effect with anisotropy for σd > 0. However, for flows of arbitrary direction
the parallel flow enhances the diamagnetic effect of the non-parallel one. Moreover,
both the flow and anisotropy have a noticeable influence on the scalar pressures along
and across B and consequently on the plasma beta; specifically, the local beta on the
magnetic axis takes its largest values in the presence of both mass flows of arbitrary
direction and pressure anisotropy for σd < 0, indicating more favorable confinement
properties in that case. At last, it is found that both anisotropy and flow have a
significant impact on the components of the current density and velocity along the
direction of symmetry, while it turns out that the flow weakens the safety factor near
the magnetic axis, which might be disadvantageous regarding stability.

II. Symmetry transformations for ideal MHD and CGL equilibria

(a) In Chapter 4 we presented a new set of symmetry transformations [transformations
(4.3)] that can be applied to any known CGL equilibrium with special field-aligned
incompressible flow and pressure anisotropy function, σd, constant on the magnetic
field lines, to produce an infinite new continuous families of respective equilibria with
collinear velocity and magnetic fields, and with arbitrary mass density and pressure
anisotropy functions. They contain four arbitrary scalar functions, the structure of
which depends on the topology of the magnetic field of the given equilibria; also,
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they can be used for changing the magnitude of the equilibrium quantities or create
stationary configurations from static ones without changing the solutions’ magnetic
surfaces. These transformations consist of a generalization of the ones introduced
in reference [216] for the same kind of field-aligned incompressible flow and isotropic
pressure, known as ‘Bogoyavlenskij transformations’.

(b) In addition, we examined the structure of the arbitrary scalar functions included in
the symmetry transformations in relation to the topology of the magnetic field of the
original equilibrium and the existence of magnetic surfaces, and proved that if the
original equilibrium possesses some known continuous geometrical symmetry, either
helical or axial or translational, this can be broken by the transformations if and only
if the magnetic field is purely poloidal. In this respect, we applied the aforementioned
symmetry transformations to specifically prescibed axisymmetric CGL equilibria with
collinear and purely poloidal V and B fields, incompressible flow, and σd uniform on
the magnetic surfaces; we constructed 3D equilibria with collinear and purely poloidal
velocity and magnetic fields, but with mass density and anisotropy function varying
on the magnetic surfaces, all physical quantities of which depending on all three
spatial variables not being invariant along the toroidal direction.

(c) Furthermore, we extensively studied the symmetry transformations previously intro-
duced in a series of papers in references [73, 153, 209, 216–220] applied to given
equilibria with incompressible flow of arbitrary direction. We examined several trans-
formations that map MHD into MHD, CGL into CGL and MHD into CGL equilibria,
with V non-collinear to B. We showed that these transformations are valid if the ar-
bitrary scalar functions included therein are either constant on the magnetic surfaces,
if such surfaces exist, or if they are related by a special relationaship; in the latter
case it turns out that the velocity and magnetic fields of the original equilibria are
restricted to be collinear. If the original equilibria have certain geometrical symmetry,
in the former case they differ from the transformed ones only by a constant factor,
while in the latter case this symmetry can be broken only for purely poloidal magnetic
fields.

The generic conclusion of the study presented in the fourth Chapter is that all afore-
mentioned sets of symmetry transformations can break the geometrical symmetry of the
original equilibria, if and only if the magnetic field is purely poloidal. Otherwise the
transformed equilibria retain the geometrical symmetry of the original ones.

III. Linear stability of anisotropic pressure equilibria with field-aligned incompressible flow

(a) At the end, in Chapter 5 we derived a sufficient condition for the linear stability
of plasma equilibria for field-aligned incompressible flows, and plasmas of constant
density, and pressure anisotropy such that the difference between the pressures along
and across B be proportional to the magnetic pressure, by employing an Energy
Principle. Specifically, we have shown that the linear stability of such kind of equi-
libria, being guaranteed when the functional of the perturbation potential energy
is positive definite, relates to the sign of a function A [equation (5.33)] which de-
pends only on equilibrium quantities. According to that condition, any equilibrium
is linearly stable to small three-dimensional perturbations whenever (i) the sum of
the anisotropy function plus the Mach function of the equilibrium velocity collinear
with the magnetic field lower than unity [equation (5.34)] and (ii) A is non-negative
[equation (5.35)]. This condition generalizes the sufficient condition derived in [149]
for respective equilibria with isotropic pressure.



110 6.2. Future directions

(b) The aforementioned condition can be applied to any plasma state without geometrical
restriction, that is, it can be employed for three-dimensional equilibria. The quantity
A involved consists of three physically interpretable terms. The first of these terms,
being always negative and therefore destabilizing, may relate to current driven insta-
bilities. The other two terms may have either positive or negative contributions to
A depending on the characteristics of the background equilibria. The second term
relates to the magnetic shear, while the third term relates to the velocity shear and to
the variation of the total pressure perpendicular to the magnetic surfaces; the latter
term vanishes for static equilibria.

(c) In addition, we have shown that if a given equilibrium with field-aligned incompressible
flows of constant mass density and constant pressure anisotropy function fulfills the
aforementioned condition, and therefore is linearly stable, then all the families of
equilibria obtained by the application of the symmetry transformations (4.2) and/or
(4.3) on the original equilibrium, are also linearly stable, provided that a parameter,
C, appearing in these transformations, is positive definite.

(d) At last, we applied the derived sufficient condition to a special class of helically sym-
metric analytic equilibria describing astrophysical jets in order to examine the impact
of flow, pressure anisotropy as well as of the torsion and pitch of certain equilibrium
helices on stability. For this class of equilibria we have found that both the flow and
the anisotropy can have noticeable impact on stability, which in different plasma re-
gions can be either stabilizing or destabilizing; the impact of pressure anisotropy is in
general stronger than that of the flow. Specifically, in the regions where the stability
condition A ≥ 0 is satisfied the combined effect of flow and anisotropy is stabilizing
when P‖ > P⊥. Finally, the results indicate that helically symmetric equilibria with
smaller torsion and larger pitch length are favored in terms of stability.

6.2 Future directions
In the framework of the present thesis we employed the ideal MHD and CGL single fluid models,
to study the equilibrium and stability properties of helically symmetric incompressible plasmas
with uniform pressure anisotropy. However, complete understanding of the equilibrium and
stability properties of magnetized plasmas in the presence of mass flows and pressure anisotropy
requires substantial additional work in connection with the actual physical mechanisms by
exploiting advanced computational techniques. To this end, below are presented some ideas
that may constitute the objectives of future studies.

I. The exact class of helically symmetric equlibria obtained in this thesis as solution of the
GGS equation derived recovers known solutions as particular cases. As an example, in
the limiting case of axisymmetric equilibria with incompressible flow of arbitrary direction
and anisotropic pressure, it recovers a respective solution obtained in [114] (equation (50)
therein) consistining of an extension of the well known Solovév solution widely employed
to validate numerical codes. In this respect the new analytic solutions constructed here
can be employed for alternative or additional validation of equilibrium codes. In this view
the development of a flexible code solving the GGS equation, as HELENA [228, 229] in
the axisymmetric case, could be established.

II. The results of the study on the different reduced kinds of the equilibria, in which two
out of the magnetic field, velocity, current density and vorticity vectors are specially
related, performed in Chapter 2 indicate a preference of the ideal steady states to involve
either parallel flows or isodynamicity. Moreover, the current density lies on the magnetic
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surfaces, a property which played an important role in deriving the sufficient condition for
linear stability for 3D equilibria with parallel incompressible flows and constant anisotropy
function [condition (5.34), (5.35)]. Therefore, we conjecture that the aforementioned
condition might be extended to other cases of special equilibria, such as equilibria with
velocity parallel to the current density, thus contributing to the elimination of the tough
problem of stability with equilibrium flows.

III. Incompressibility together with the condition of anisotropy function being uniform on
magnetic surfaces where key assumptions along the lines of the present thesis that played
an important role in deriving the GGS equilibrium equation in Chapter 2 as well as the
sufficient stability condition in Chapter 5. It is interesting to pursue additional extensions
on the equilibrium and stability concerning compressible flows or/and more physically
relevant pressure anisotropy which may represent better the actual experimental situa-
tions. This requires replacing incompressibility and the assumption of uniform pressure
anisotropy function by alternative equations of state on the understanding that finding
self consistently more appropriate equations of state (or energy equations) associated with
the pressure tensor elements P‖ and P⊥ relates to the tough closure problem of a hybrid
kinetic-fluid model, e.g. [230,231].

IV. The results of the analytic studies presented in this dissertation were performed self
consistently within the frameworks of the ideal MHD and CGL fluid models under the
condition of helical symmetry, and though toroidicity is absent they may contribute to
better understanding the physics of confinement in tokamaks and stellarators. In this
respect it should be noted that, although a (non trivial) analytic study has its own value,
3D equilibrium codes permitting arbitrary toroidicity and connecting the parallel pressure
with kinetic theory provide a more realistic description. However, since these codes are
based on a hybrid model, i.e. a fluid model perpendicularly and a kinetic one parallel to
the magnetic field, lack complete self-consistency. In this view the construction of 3D
equilibria or quasi-symmetric equilibria with toroidicity in the framework of full kinetic
models, e.g. gyrokinetic or more ambitiously Maxwell-Vlasov ones, would be not only
advantageous as concerns self-consistency but in the prospect that it might provide more
fundamental additional information.
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A | General curvilinear coordinates
for magnetic confinement geome-
tries

We suppose that we have three level surfaces xi = xi(x, y, z) = ci for each i and that
[∇x1, ∇x2, ∇x3] > 0, where the bracket denotes the triple scalar product. These are coordi-
nate surfaces. Any two coordinate surfaces intersect in a coordinate curve. All three coordinate
curves intersect in a single point P. Since P is uniquely specified by (c1, c2, c3), then a point
P is uniquely specified by prescribing values for (x1, x2, x3). Thus, (x1, x2, x3) represent P
in curvilinear coordinates. We also assume that each function can be inverted to the cartesian
basis (x1, x2, x3). Hence we can write:

xi = f i(x1, x2, x3) ←→ xi = f̄ i(x1, x2, x3).

Then we can write the vector field of position in curvilinear coordinates

r =
3∑
i=1

f̄ i(x1, x2, x3)êi, (A.1)

where êi are the cartesian base vectors.

A.1 Covariant and contravariant basis vectors

The covariant basis vectors gi are defined as

gi ≡
∂r

∂xi
. (A.2)

Since the derivative is taken along the xi curve (i.e., with xj and xk held fixed), gi is the
tangent vector to the xi curve through P. Note that gi and gj are generally not orthogonal
vectors (i.e., for i 6= j, gi ·gj 6= 0) nor they are unit vectors (i.e., gi ·gj 6= 1). The contravariant
basis vectors gi are defined as the vectors normal to the xi coordinate surfaces

gi ≡ ∇xi. (A.3)

In general, gi is not proportional to gi. In the orthogonal case, these vectors coincide up to
scaling, but this does not hold in general. We can expand both sets of vectors in the Cartesian
basis. We end up with the following:

gi =
∑
j

∂xj
∂xi

êj, gi =
∑
j

∂xi

∂xj
êj. (A.4)
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It turns out that each triplet of vectors is linearly independent and hence at each point P forms
a basis for R3 footed at P. Since (g1, g2, g3) form a basis for R3, we can expand any vector
v in this basis. Hence we can write:

v =
∑
i

vig
i (A.5)

and therefore vi = v · gi. Since the vectors gi are not unit vectors, the numbers vi are not
physical components of the vector. They are called the covariant components of v. Similarly
we can expand v in the basis (g1, g2, g3) to wrtite

v =
∑
i

vigi. (A.6)

It also turns out that vi = v ·gi. Since the vectors gi do not have unit length, the real numbers
vi are not physical components of v too. They are called the contravariant components of
v. The sets of vectors (g1, g2, g3) and (g1, g2, g3) are reciprocal, or adjoint, sets of vectors;
this means that for all i and j

gi · gj = δi
j. (A.7)

Since these reciprocal sets of vectors are both bases for R3, we say that the sets are dual
bases. If we define A to be the matrix whose rows are the vectors gi and B to be the matrix
whose columns are the vectors gi, it follows that A and B are inverse. Since the determinant
of A is the triple scalar product [g1, g2, g3] we get the relation

detB = (detA)−1 (A.8)

and the metric coefficients gij (for i, j = 1, 2, 3) are defined by

gij = gi · gj. (A.9)

Note that if the curvilinear coordinates are orthogonal, the metric coefficients are zero unless
i = j, in which case the metric coefficient is the square of the ith Lamé coefficient. We can
also define reciprocal metric coefficients gij as

gij = gi · gj. (A.10)

The commutativity of the dot product implies that

gij = gji, gij = gji ∀ i, j. (A.11)

Using the metric coefficients and the reciprocal metric coefficients, we can determine the
contravariant components of gi and the covariant components of gi. Specifically:

gi =
∑
j

gijgj, gi =
∑
j

gijg
j. (A.12)

We can use these relations to determine how to transform between covariant and contravariant
components of a vector as:

vi =
∑
j

gijv
j, vi =

∑
j

gijvj. (A.13)
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A.2 Integration in general curvilinear coordinates

Let G be a matrix with elements gij (metric coefficients), and

g = detG. (A.14)

It will be shown that g is related with the Jacobian of the transformation from Cartesian to
curvilinear coordinates (xi). We can similarly arrange the reciprocal coefficients in a matrix
and the result is the inverse G−1. To integrate in general curvilinear coordinates the integrand
must be multiplied by

√
g. For any cyclic permutation of i, j, k equation (A.7) implies that

gi =
√
g(gj × gk), (A.15)

where
√
g =

1

g1 · (g2 × g3)
. (A.16)

Taking the cross product of gi and gj and using equation (A.15) yields

gi =
gj × gk√

g
. (A.17)

Thus, from equations (A.7) and (A.17) it follows

√
g = (g1 × g2) · g3 =

(
∂r

∂x1
× ∂r

∂x2

)
· ∂r

∂x3
, (A.18)

implying that
√
g is the Jacobian. In addition, equations (A.15) and (A.17) give us the

cross-product relationships:
gi × gj =

∑
k

εijk
√
ggk (A.19)

and
gi × gj =

∑
k

εijk
1
√
g
gk. (A.20)

Also, with the aid of equations (A.5)-(A.7) the dot-product of two vectors v and u is written
as

v · u = viu
jδji , (A.21)

while, considering equations (A.19) and (A.20), their cross-product is written as

v × u =
√
gεijkv

iujgk =
1
√
g
εijkviujgk. (A.22)

A.3 Vector operators in curvilinear coordinates
For any scalar function Φ the gradient operator ∇Φ is defined as

dΦ ≡ ∂Φ

∂xi
dxi = ∇Φ · dr, (A.23)

where

dr =
∂r

∂xi
dxi = gidx

i. (A.24)
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Equating coefficients of dxi in equation (A.23) yields the covariant components of ∇Φ: gi ·
∇Φ = ∂Φ

∂xi
, and thus, using equations (A.5)-(A.6) yields

∇Φ =
∂Φ

∂xi
gi. (A.25)

Now, consider the vector identities:

∇ ·
(

gi√
g

)
= ∇ ·

(
gj × gk

)
= ∇ ·

(
∇xj ×∇xk

)
= 0, (A.26)

and
∇× gi = ∇×

(
∇xi

)
= 0. (A.27)

Then using equations (A.5)-(A.6) in the form v = (g1/2vi)(g−1/2gi), together with (A.26)
yields the curvilinear formula for the divergence operator:

∇ · v =
1
√
g

∂

∂xi
(
√
gvi). (A.28)

Also, using equations (A.5)-(A.6) and (A.27) yields the curl operator

∇× v =
∂vj
∂xi

(gi × gj) (A.29)

or, with the aid of (A.20):

∇× v =
1
√
g
εijk

∂vj
∂xi

gk. (A.30)

Furthermore, the Laplacian operator ∇2Φ ≡ ∇ · (∇Φ) can be obtained by using equation
(A.28) with vi = (∂Φ/∂xj)gi · gj:

∇2Φ =
1
√
g

∂

∂xi

(
√
ggij

∂Φ

∂xj

)
. (A.31)

The differential arclength d`2 ≡ dr · dr can be written

d`2 = gijdx
idxj. (A.32)

The element of the line segment dli along the coordinate curve xi is also given by

dli = gidx
i (A.33)

with no implied summation. Also, as concerns the element of surface area dsi directed normal
to the coordinate surface xi =constant, this is

dsi =
√
gdxjdxkgi. (A.34)

Note that it holds
|dsi| =

√
gjjgkk − g2

jkdx
jdxk. (A.35)

Finally, the element of volume is given by the following expression

dV =
√
gdx1dx2dx3. (A.36)

A.4 Physical components of a vector
The physical components vī of a vector v in general curvilinear coordinates is related with its
covariant and contravariant components as

vī =
√
giiv

i =
√
giig

ijvj. (A.37)



B | Helical coordinate system

B.1 Vector representation and differential operators

We introduce helical coordinates (x1, x2, x3) = (r, u, ζ) related with the Cartesian (x, y, z)
and the cylindrical (ρ, φ, z) ones as

r =
√
x2 + y2 = ρ,

u = m arccos

(
x√

x2 + y2

)
− kz = mφ− kz,

ζ = z.

(B.1)

The inverse transformations are given by

x = r cos

(
u+ kζ

m

)
, ρ = r,

y = r sin

(
u+ kζ

m

)
, φ =

u+ kζ

m
,

z = ζ,

(B.2)

where m and k are real constant parameters. The vector field of position can be written

r(r, u, ζ) = rρ̂(u, ζ) + ζ ẑ, (B.3)

where the cylindrical unit vectors are expressed in terms of the helical coordinates as

ρ̂(u, ζ) = cos

(
u+ kζ

m

)
x̂ + sin

(
u+ kζ

m

)
ŷ,

φ̂(u, ζ) = − sin

(
u+ kζ

m

)
x̂ + cos

(
u+ kζ

m

)
ŷ.

(B.4)

Using equations (A.2), (A.3) we find the tangent vectors to the (r, u, ζ) curves and the vectors
normal to the helical coordinate surfaces as:

g1 := gr = ρ̂, g1 ≡ gr = ρ̂,

g2 := gu =
r

m
φ̂, g2 := gu =

m

r
φ̂− kẑ,

g3 := gζ =
rk

m
φ̂+ ẑ, g3 := gζ = ẑ.

(B.5)

Also, with the aid of equation (A.9) we find the following metric coefficients:

grr = 1, guu =
r2

m2
, gζζ =

1

qm2
, guζ = gζu =

kr2

m2
, gru = gur = grζ = gζr = 0. (B.6)
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Then, the matrix of the metric coefficients is obtained

G =

1 0 0

0 r2

m2
kr2

m2

0 kr2

m2
1

qm2

 (B.7)

and thus, we find that

g =
r2

m2
. (B.8)

In addition, using equation (A.10) we find the reciprocal metric coefficients as:

grr = 1, guu =
1

qr2
, gζζ = 1, guζ = gζu = −k, gru = gur = grζ = gζr = 0. (B.9)

Any vector v can be expanded both in contravariant (covariant) basis as:

v = vrg
r + vug

u + vζg
ζ = vrgr + vugu + vζgζ , (B.10)

where (vr, vu, vζ) are the covariant and (vr, vu, vζ) the contravariant components of v. The
transformations between the covariant and contravariant components of v are:

vr = vr

vu =
r2

m2
vu +

kr2

m2
vζ , vu =

1

qr2
vu − kvζ ,

vζ =
kr2

m2
vu +

1

qm2
vζ , vζ = −kvu + vζ ,

(B.11)

while the vectors of the two bases are related as:

gr = gr

gu =
r2

m2
gu +

kr2

m2
gζ , gu =

1

qr2
gu − kgζ ,

gζ =
kr2

m2
gu +

1

qm2
gζ , gζ = −kgu + gζ .

(B.12)

Furthermore, under equations (A.15) and (A.17) the following relations for the cross-products
arise:

gr × gu =
r

m
gζ , gr × gu =

m

r
gζ ,

gr × gζ = − r

m
gu, gr × gζ = −m

r
gu,

gu × gζ =
r

m
gr, gu × gζ =

m

r
gr.

(B.13)

The physical components of a vector in helical coordinates are related with its contravariant
and covariant components as:

vr̄ = vr = vr

vū =
r

m
vu =

1

qrm
vu −

kr

m
vζ

vζ̄ =
1

mq1/2
vζ = − k

mq1/2
vu +

1

mq1/2
vζ .

(B.14)
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Now, using equations (A.23)-(A.36) we find for the differential elements and operators in the
helical coordinate system the following relationships:

dr = grdr + gudu+ gζdζ, (B.15)

d`2 = dr2 +
r2

m2
du2 +

1

qm2
dζ2 +

2kr2

m2
dudζ, (B.16)

dl1 = grdr, dl2 = gudu, dl3 = gζdζ, (B.17)

ds1 =
r

m
dudζgr, ds2 = − r

m
drdζgu, ds3 =

r

m
drdugζ , (B.18)

dV =
r

m
drdudζ, (B.19)

∇Φ = gr
∂Φ

∂r
+ gu

∂Φ

∂u
+ gζ

∂Φ

∂ζ
, (B.20)

∇ · v =
1

r

∂

∂r
(rvr) +

∂vu

∂u
+
∂vζ

∂ζ
, (B.21)

∇× v =
m

r

[(
∂vζ
∂u
− ∂vu

∂ζ

)
gr +

(
∂vr
∂ζ
− ∂vζ

∂r

)
gu +

(
∂vu
∂r
− ∂vr
∂u

)
gζ

]
, (B.22)

∇2Φ =
1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

qr2

∂2Φ

∂u2
+
∂2Φ

∂ζ2
− 2k

∂2Φ

∂u∂ζ
. (B.23)

The covariant, contravariant and physical components of a vector in helical coordinates are
related with its components in the cylindrical system as follows:

vρ = vr = vr, vρ = vr̄

vφ =
m

r
vu =

r

m
vu +

rk

m
vζ , vφ = vū + rkq1/2vζ̄

vz = vζ − kvu = vζ , vz = mq1/2vζ̄ .

(B.24)

B.2 Helix parametrization
In the helical system introduced in section B.1 of the present Appendix, a helix is characterized
by the equations: r = constant, u = constant. Consider a helix of reference defined by the
following equations

r = r0 = const.,
u = u0 = const..

(B.25)

Then the coordinate ζ is related to the differential arc-length, `, along this helix as

ζ(`) = mq
1/2
0

∫ `

`0

d`, (B.26)

where q0 = q(r = r0) = (k2r2
0 +m2)−1. Setting `0 = 0 and u0 = 0 for simplicity we obtain

ζ(`) = mq
1/2
0 `,

φ(`) = kq
1/2
0 `.

(B.27)

The position of every point of this helix is then described by the vector

r0 = r0g
r(`) +mq

1/2
0 `gζ . (B.28)
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Once the above relation is put in the form

ra(φ) = ra cosφx̂ + ra sinφŷ +
m

k
φẑ, (B.29)

it is obvious that the helix has a pitch

η0 = 2π
m

k
. (B.30)

Also for a finite helix we may choose for the parameter ` the interval

0 ≤ ` ≤ N
√

(2πr0)2 + η2
0, (B.31)

and thus, in this case

0 ≤ ζ ≤ L, (B.32)

where L = Nη0 is denoted as the heigth of the helix, with N equals to the number of its spirals
(how many times the helix turns around the axis of symmetry, 0 ≤ φ ≤ N2π). In fact, the
restrictions for the arc-length of the relations (B.31) and (B.32) are pertinent for describing
the limiting case of a helix of finite height; however, formally, helical symmetry corresponds to
infinite helical length (−∞ < `, ζ <∞).

The covariant and contravariant helical basis vectors are found to relate with the parameter
` as:

gr(`) = gr(`) = cos(kq
1/2
0 `)x̂ + sin(kq

1/2
0 `)ŷ,

gu(`) = −r0

m
sin(kq

1/2
0 `)x̂ +

r0

m
cos(kq

1/2
0 `)ŷ,

gu(`) = −m
r0

sin(kq
1/2
0 `)x̂ +

m

r0

cos(kq
1/2
0 `)ŷ − kẑ,

gζ(`) = −r0k

m
sin(kq

1/2
0 `)x̂ +

r0k

m
cos(kq

1/2
0 `)ŷ + ẑ, gζ = ẑ.

(B.33)

B.2.1 Frenet-Serret Formulas
Employing the Frenet-Serret formulas for the helix curve the tangent vector to this helix,
defined as t ≡ (dr0/d`)/|dr0/d`|, is found to be

t(`) = mq
1/2
0 gζ(`) =

h0(`)

|h0|
, (B.34)

where h0 = h(r = r0, u = u0). Then, the vector of curvature, κ = dt/d`, is obtained

κ(`) = −r0k
2q0gr(`). (B.35)

and thus, the curvature of the helix equals

κ(`) = |κ(`)| = r0k
2q0, (B.36)

while the curvature radius is

R =
1

κ
=

1

r0

√
r2

0 + (
η0

2π
)2. (B.37)

In addition, the first and second normal vectors to that helix defined as: n ≡ κ/κ, and
b ≡ t× n, are found to be

n(`) = −gr(`),

b(`) = −r0q
1/2
0 gu(`).

(B.38)

Then, the torsion of this helix, defined as τ0 ≡ −n · (db/d`) is independent on `:

τ = kmq0. (B.39)
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B.3 Intrinsic coordinates - Poloidal cross-section mod-
eling

We now introduce a coordinate system associated with the special curve r = r0(`), which we
will take to be the axis of the coordinate system. Let xn, xb be “cartesian” coordinates with
rerspect to the axis of the system, and ` is the arc-length along the axis computed from the
fixed point `0 = 0. This system is defined from the Frenet triad, t ,n ,b in the sence that
xn is the distance from the helix in the direction n and xb measures the distance from that
helix in the direction b. The position of every point M of the poloidal plane with origin at
any point ` of the helix of reference is described by the vector

rcs = xnn(`) + xbb(`). (B.40)

Since the plane (n,b) is normal to the helix, the coordinates (xn, xb) denote the position of
the points on this plane, henceforth called poloidal plane, for every `. This is because the
system is co-moving with the helix.

With respect to the origin of the Cartesian system (fixed point O(x = 0, y = 0, z = 0))
the position of the points of the poloidal plane are defined by the vector

r = r0(`) + rcs. (B.41)

Thus, the intrinsic coordinates (xn , xb , `) are related with the Cartesian coordinates (x , y , z)
as

x(xn, xb, `) = (r0 − xn) cos(kq
1/2
0 `) +mq

1/2
0 xb sin(kq

1/2
0 `),

y(xn, xb, `) = (r0 − xn) sin(kq
1/2
0 `)−mq1/2

0 xb cos(kq
1/2
0 `), (B.42)

z(xn, xb, `) = q
1/2
0 (m`+ kr0xb),

and as a result with the helical coordinates (r, u, ζ) as

u(xn, xb, `) = m arccos

(
(r0 − xn) cos(kq

1/2
0 `) +mq

1/2
0 xb sin(kq

1/2
0 `)√

(r0 − xn)2 +m2q0x2
b

)
−kq1/2

0 (m`+ kr0xb),

r(xn, xb) =
√

(r0 − xn)2 +m2q0x2
b , (B.43)

ζ(xb, `) = q
1/2
0 (m`+ kr0xb).

Then one finds the transformations between the covariant and contravariant basis vectors with
the vectors of the Frenet triad

gr = gr = −n(`),

gu =
kr2

0q
1/2
0

m
t(`)− r0q

1/2
0 b(`),

gu = − 1

r0q
1/2
0

b(`), gζ =
1

mq
1/2
0

t(`), (B.44)

gζ = mq
1/2
0 t(`) + kr0q

1/2
0 b(`),

and the inverse transformations as

t(`) =
kr2

0q
1/2
0

m
gu +

1

mq
1/2
0

gζ ,

n(`) = −gr, (B.45)

b(`) = − 1

r0q
1/2
0

gu + kr0q
1/2
0 gζ ,
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together with equations (B.34) and (B.38). Then the vector of position (B.41) can be cast
into the form

r = m2q0`t(`) + (xn − r0)n(`) + (xb + kmr0q0`)b(`). (B.46)

Taking into account the Frenet formulas

db(`)

d`
= −τn(`),

dt(`)

d`
= κn(`), (B.47)

dn(`)

d`
= −κt(`) + τb(`),

one finds

dr · dr =
([
m2q0 − κ(xn − r0)

]2
+ τ 2

0 (x2
n + x2

b)
)
d`2 +

+dx2
n + dx2

b + 2τ(xnd`dxb − xbd`dxn) (B.48)

which means that the coordinate system (xn, xb, `) is not orthogonal in the sence that its
metric is not diagonal. We have to note that there is a flexibility in connecting “cartesian
intrinsic” coordinates (xn, xb) with various other coordinates in order to obtain desirable cross-
section shapes. Here we present a generalized set of intrinsic coordinates related with xn, xb
as

xn = ρ∗(1 + δ(ρ∗) cos θ) cos θ,

xb = e1ρ
∗ sin θ, (B.49)

with

δ(ρ∗) = γ1 + γ2ρ
∗β1 , (B.50)

where the parameters e1, γ1, γ2, β1 determine the shaping of the magnetic surfaces (i.e. elon-
gation, triangularity).

B.3.1 Circular cross-section
We introduce intrinsic-polar coordinates (ρ?, θ) in the plane (n,b) related with the intrinsic-
cartesian ones as

xn = ρ? cos θ, xb = ρ? sin θ. (B.51)

These coordinates are recovered from the ones defined in equations (B.49)-(B.50) for γ1 =
γ2 = 0 and e1 = 1. Then coordinates (ρ?, θ, `) are related with helical ones as

r(ρ?, θ) =
√

(r0 − ρ? cos θ)2 +m2q0ρ?2 sin2 θ,

u(ρ?, θ, `) = m arccos

(
(r0 − ρ? cos θ) cos(kq

1/2
0 `) +mq

1/2
0 ρ? sin θ sin(kq

1/2
0 `)√

(r0 − ρ? cos θ)2 +m2q0ρ?2 sin2 θ

)
− kq

1/2
0 (m`+ kr0ρ

? sin θ), (B.52)

ζ(ρ?, θ, `) = q
1/2
0 (m`+ kr0ρ

? sin θ).

The vector of position can be written in the form

r = (m2q0`)t(`) + (ρ? cos θ − r0)n(`) + (ρ? sin θ + τ0r0`)b(`), (B.53)
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to find that that the coordinates (ρ?, θ, `) are indeed not orthogonal:

dr · dr =
([
m2q0 − κ(ρ? cos θ − r0)

]2
+ τ 2

0 ρ
?2
)
d`2 + dρ?2 + ρ?2dθ2 + 2τ0ρ

?2d`dθ. (B.54)

The unit vectors along the coordinate lines are:

êρ? = cos θn + sin θb,

êθ = − sin θn + cos θb =
∂êρ?

∂θ
, (B.55)

ê` = t.

The above system can easily be made orthogonal if the variable θ is replaced by the new angle
variable [62,199,200]:

ω := θ + α(`), α(`) :=

∫ `

`0=0

τ0d` = τ0`. (B.56)

The metric for this orthogonal coordinate system is now

dr · dr = dρ?2 + ρ?2dω2 + [1− κρ? cos θ(ω, `)]2 d`2. (B.57)

If the coordinate axis is a closed line, the coordinate surfaces ω = const. (surface curvature
strips) do not close upon themselves in a complete circuit along the axis. The ambiguity in
the coordinate ω that arises under these conditions is easily circumvented by requiring that all
physical quantities depend on the angle variable ω in combination with the function α(`):

f = f(ρ?, θ, `), θ = ω − α(`) = ω − τ0`. (B.58)

The lines ω = const. on the surface ρ? = const. are orthogonal (by definition) to the cross
section ` = const. and follow the ` axis continuously. The surface θ = const. (asymptotic
surface strip) closes upon itself since it forms a fixed angle with the closed surface θ = 0 that
extends along the principal normal n(`). The principal normal to the n axis is rotaded with
respect to the surface ω = 0 by an angle α(`), so that θ = ω − α(`); the angle α(`) can
change discontinuously [200].

In the case of smooth rotation, the rate of change of the angle α(`) along `, which gives
the angle of rotation of the binormal b in space, is the torsion of the axis, τ0 = dα(`)/d`. If
nR and bR are two orthonormal vectors related by α(`) with respect to n and b such that

nR = cosα(`)n− sinα(`)b,

bR = sinα(`)n + cosα(`)b,
(B.59)

then:

êρ? = cosωnR + sinωbR = cos θn + sin θb,

êω = − sinωnR + cosωbR = − sin θn + cos θb.
(B.60)

A geometrical representation of the coordinate system (ρ∗, ω, `) is given in figure B.1. For this
orthogonal system we obtain the following relationships:

dr · r = hρ?dρ
?êρ? + hωdωêω + h`d`ê`, (B.61)

with hρ? = 1 , hω = ρ? , h` = 1− κρ? cos(ω − τ0`) and êρ? × êω = ê` , êρ? × ê` = −êω , êω =
×ê` = êρ? . Also we obtain:

ds1 = hωh`dωd`êρ?

ds2 = hρ?h`dρ
?d`êω

ds3 = hωhρ?dωdρ
?ê`

dV = hρ?hωh`dρ
?dωd`. (B.62)
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Figure B.1: The coordinates of any point M on the poloidal plane: ρ∗, θ coordinates refer to
the natural axes n,b; ρ∗, ω coordinates refer to the rotated axes nR,bR.

As for the differential operators:

∇f =
1

hρ?

∂f

∂ρ?
êρ? +

1

hω

∂f

∂ω
êω +

1

h`

∂f

∂`
ê`,

∇2f =
1

hρ?hωh`

[
∂

∂ρ?

(
hωh`
hρ?

∂f

∂ρ?

)
+

∂

∂ω

(
hρ?h`
hω

∂f

∂ω

)
+

∂

∂`

(
hωhρ?

h`

∂f

∂`

)]
,

∇ ·B =
1

hρ?hωh`

[
∂

∂ρ?
(hωh`Bρ?) +

∂

∂ω
(hρ?h`Bω) +

∂

∂`
(hρ?hωB`)

]
,

∇×B =
1

h`hω

[
∂

∂ω
(h`B`)−

∂

∂`
(hωBω)

]
êρ?+

1

h`

[
∂Bρ?

∂`
− ∂

∂ρ?
(h`B`)

]
êω +

1

hω

[
∂

∂ρ?
(hωBω)− ∂Bρ?

∂ω

]
ê`. (B.63)

The coordinates (ρ?, ω, `) are related with the helical coordinates (r, u, ζ) as:

r(ρ?, ω, `) =
√

(r0 − ρ? cos θ(ω, `))2 + ρ?2 sin2 θ(ω, `)m2q0,

u(ρ?, ω, `) = m arccos

(
(r0 − ρ? cos θ(ω, `)) cos(kq

1/2
0 `) + ρ? sin θ(ω, `)mq

1/2
0 sin(kq

1/2
0 `)

r(ρ?, ω, `)

)
− kq1/2

0 (m`+ kr0ρ
? sin θ(ω, `)),

ζ(ρ?, ω, `) = q
1/2
0 (m`+ kr0ρ

? sin θ(ω, `)). (B.64)

Each vector can be expanded in the polar-intrisic coordinate basis as:

v = vρ? êρ? + vωêω + v`ê`. (B.65)

Then the transformations between the components (vρ? , vω, v`) and the respective ones in the
helical sytem are:

vρ? = − cos θvr − r0q
1/2
0 sin θvu = − cos θvr̄ − r0q

1/2
0 sin θ

m

r
vū,

vω = sin θvr − r0q
1/2
0 cos θvu = sin θvr̄ − r0q

1/2
0 cos θ

m

r
vū,

v` =
kr2

0q
1/2
0

m
vu +

1

mq
1/2
0

vζ =
kr2

0q
1/2
0

r
vū +

(
q

q0

)1/2

vζ̄ . (B.66)
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As for the transformations between the basis (êρ? , êω, ê`) and the covariant, contravariant and
Frenet triad bases we obtain: êρ?

êω
ê`

 =

0 cos θ sin θ
0 − sin θ cos θ
1 0 0

 t
n
b



=


− cos θ − sin θ

r0q
1/2
0

kr0q
1/2
0 sin θ

sin θ − cos θ

r0q
1/2
0

kr0q
1/2
0 cos θ

0 0 mq
1/2
0


 gr

gu
gζ



=


− cos θ −r0q

1/2
0 sin θ 0

sin θ −r0q
1/2
0 cos θ 0

0
kr20q

1/2
0

m
1

mq
1/2
0


 gr

gu

gζ

 . (B.67)

Finally, the inverse transformations are: t
n
b

 =

 0 0 1
cos θ − sin θ 0
sin θ cos θ 0

 êρ?
êω
ê`

 ,

 gr
gu
gζ

 =

 − cos θ sin θ 0

−r0q
1/2
0 sin θ −r0q

1/2
0 cos θ

kr20q
1/2
0

m

0 0 1

mq
1/2
0


 êρ?

êω
ê`

 ,

 gr

gu

gζ

 =

 − cos θ sin θ 0
− sin θ

r0q
1/2
0

− cos θ

r0q
1/2
0

0

kr0q
1/2
0 sin θ kr0q

1/2
0 cos θ mq

1/2
0


 êρ

êω
ê`

 . (B.68)
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C | Solution of ODE (3.18) in the
neighborhood of a regular sin-
gular point

We present an alternative analytical solution for (3.18) by first writting this ODE in canonical
form as

R′′(s) + P (s)R′(s) +Q(s)R(s) = 0, s ≥ 0, (C.1)

where P (s) = (ε00 + ε11s + ε22s
2)/s(1 + s), Q(s) = (ε33 + ε44s + Υ4s

3)/s(1 + s) and the
prime denotes differentiation with respect to s. It is apparent that the point s = 0 consists of
a regular singular point of ODE (C.1). Since both functions sP (s) and s2Q(s) are analytic at
s = 0 we can expand them as

sP (s) =
∞∑
j=0

ajs
j, s2Q(s) =

∞∑
j=0

bjs
j, (C.2)

assuming that each of these series have a radius of convergence, e.g. ρ̄1 and ρ̄2, respectively.
In order to solve ODE (C.1) we employ the Frobenius method applying a series expandion for
the solution around the regular singular point of the form

R(s) =
∞∑
j=0

Bjs
j+r, s < ρ̄, (C.3)

where ρ̄ = min(ρ̄1, ρ̄2) denotes its convergence radius and the index r should not be confused
with the radial helical coordinate. Then substitution of (C.3), together with its first and second
derivatives with respect to s, into (C.1) using the expansions (C.2) yields

[r(r − 1) + ra0 + b0]B0s
r−2 +

∞∑
j=1

[{(j + r)(j + r − 1 + a0) + b0}Bj

+

j−1∑
l=0

{(l + r)aj−l + bj−l}Bl

]
sj+r−2 = 0, (C.4)

which in order to be satisfied the coefficients of both sr−2 and sj+r−2 must vanish:

[r(r − 1) + ra0 + b0]B0 = 0, (C.5)

{(j + r)(j + r − 1 + a0) + b0}Bj +

j−1∑
l=0

{(l + r)aj−l + bj−l}Bl = 0, j = 1, 2, ... (C.6)

We assume B0 6= 0 and consequently from (C.5) we obtain the indicial equation

r(r − 1) + ra0 + b0 = 0, (C.7)
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which has the following roots

r1,2 =
1

2

(
1− a0 ±

√
(a0 − 1)2 − 4b0

)
. (C.8)

Also note that by comparing the coefficients of the powers of s in (C.2) we find the following
specific expressions for aj and bj

aj =


a0 = 1 + 2n,

a1 = −(1 + 2κ),

a2 = 1,

aj = −aj−1, j ≥ 3,

(C.9)

and

bj =



b0 = 0,

b1 = ε33,

b2 = ε44 − b1,

b3 = −b2,

b4 = Υ4 − b3,

bj = −bj−1, j ≥ 5.

(C.10)

As a result, we find that the roots of the indicial equation are

r1 = 0 and r2 = −2n. (C.11)

By noticing that the difference between these two roots are r1 − r2 = 2n, equation (C.6) is
simplieifed as

Rj(r)Bj +

j−1∑
l=0

{(l + r)aj−l + bj−l}Bl = 0, j = 1, 2, ..., (C.12)

where
Rj(r) = (j + r)(j + r + r1 − r2). (C.13)

In order for a solution to ODE (C.1) to exist it must hold for both roots that ∀j 6= 0:
Rj(r1) = j(j + 2n) 6= 0 and Rj(r2) = j(j − 2n) 6= 0 . Thus, we conclude that different
families of solutions may be found dependent on the specific value of the separation constant
n. Each of those cases are separately examined below.

C.1 n>0
In this case it follows that <(r1) > <(r2) so we first proceed into finding a solution for r1 = 0;
note that it holds Rj(0) 6= 0∀ j 6= 0 (recall that j ≥ 0). Depending on whether the difference
of the roots of the indicial equation is an integer or not we examine these two cases separately
as follows.

r1 − r2 = 2n 6=integer

In this case, equation (C.12) for j = 1 yields B1 = 0 which is unacceptable, while it also
implies that

Bj = −

j−1∑
l=0

(laj−l + bj−l)Bl

j(j + 2n)
, j ≥ 1. (C.14)
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Thus, a first series solution is the following:

R1(s;n) =
∞∑
j=0

Bjs
j, Bj =


B0 (arbitrary),

−
j−1∑
l=0

(laj−l+bj−l)Bl

j(j+2n)
, j ≥ 1.

(C.15)

Furthermore, since j = 1, 2, ... and 2n 6=integer, it holds Rj(r2) 6= 0 ∀ j 6= 0, and thus a
second solution can be constructed along the same lines. That is

R2(s;n) = s−2n

∞∑
j=0

Cjs
j, Cj =


C0 (arbitrary),

−
j−1∑
l=0

[(l−2n)aj−l+bj−l]Cl

j(j+2n)
, j ≥ 1.

(C.16)

Thus, the general solution of the radial ODE (C.1) when the separation constant n is not a
positive integer reads

R(s) = w1R1(s;n) + w2R2(s;n), {n > 0 |n /∈ Z+ |n 6= +
1

2
}, (C.17)

where R1, R2 are two linearly independent solutions given by equations (C.15)-(C.16).

r1 − r2 = 2n =integer

This is equivalent to the case n ∈ Z+ or n = 1/2, respectively. We observe that Rj(r1 = 0) 6=
0 ∀ j 6= 0 and thus a first solution can be constructed again having the exact form (C.15).

In this case we observe that Rj(r2) = 0 when j = 2n and as result all coefficients Cj
with j ≥ 2n cannot be determined. Therefore, a second solution cannot be constructed by
applying an analogous procedure. However, the method of the differentiation of coefficients
guarantees that a second linearly independent solution can be yet constructed of the form

R2(s) = cR1(s)logs+
∞∑
j=0

Cj(r2)sj−2n, (C.18)

where c is a constant which may be zero and the coefficients Cj can be calculated through

Cj(r2 = −2n) =

{
∂

∂r
[(r + 2n)Bj(r)]

}
|r=r2

, j = 1, 2, ..., (C.19)

with

Bj(r) = −

j−1∑
l=0

[(l − 2n)aj−l + bj−l]Bl

(j + r)(j + r + 2n)
. (C.20)

In order to formally determine the constant c and the coefficients Cj we substitute (C.18) into
the ODE (C.1); after some algebraic calculations be find the following

c = −

2n−1∑
l=0

[(l − 2n)a2n−l + b2n−l]Cl

2nB0

, (C.21)
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and

Cj =



C0 (arbitrary),

−
j−1∑
l=0

[(l−2n)aj−l+bj−l]Cl

j(j−2n)
, 1 ≤ j ≤ 2n− 1,

C2n (arbitrary),

−

j−1∑
l=0

[(l−2n)aj−l+bj−l]Cl+c

(
2(j−n)Bj−2n+

j−2n−1∑
l=0

aj−2n−lBl

)
j(j−2n)

, j ≥ 2n+ 1.

(C.22)

Thus, the general solution of the radial ODE (C.1) when the separation constant n equals a
positive integer reads

R(s;n) = w1R1(s;n) + w2R2(s;n), {n ∈ Z+ |n = +
1

2
}, (C.23)

where R1, R2 are two linearly independent solutions given by equations [(C.15), (C.18)] and
[(C.21), (C.22)] respectively.

C.2 n<0

In this case it follows that <(r2) > <(r1). By following in detail the same procedure as that
in Section C.1 for the case n > 0, we find that for n < 0 in all cases there exists a symmetry
between the solutions for n↔ −n. Below we present all the resulting forms for the solutions.

When r2 − r1 = −2n 6= integer, or equivalently {n /∈ Z− |n 6= −1/2}, we obtain two
linearly independent solutions R1(s;n) and R2(s;n) of the forms:

R1(s;n) = s−2n

∞∑
j=0

Bjs
j, Bj =


B0 (arbitrary),

−
j−1∑
l=0

[(l−2n)aj−l+bj−l]Bl

j(j−2n)
, j ≥ 1,

(C.24)

and

R2(s;n) =
∞∑
j=0

Cjs
j, Cj =


C0 (arbitrary),

−
j−1∑
l=0

(laj−l+bj−l)Cl

j(j−2n)
, j ≥ 1.

(C.25)

On the other hand, when r2 − r1 = −2n = integer, or equivalently {n ∈ Z− |n = −1/2},
we obtain two linearly independent solutions, from which R1(s;n) has the form (C.24) and
R2(s;n) is of the form:

R2(s;n) = cR1(s;n)logs+
∞∑
j=0

Cjs
j, (C.26)
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where

Cj =



C0 (arbitrary),

−
j−1∑
l=0

[laj−l+bj−l]Cl

j(j+2n)
, 1 ≤ j ≤ −2n− 1,

C−2n (arbitrary),

−

j−1∑
l=0

[laj−l+bj−l]Cl+c

(
2(j+n)Bj+2n+

j+2n−1∑
l=0

aj+2n−lBl

)
j(j+2n)

, j ≥ −2n+ 1,

(C.27)

and with

c =

−2n−1∑
l=0

[la−(2n+l) + b−(2n+l)]Cl

2nB0

. (C.28)

C.3 n=0
Finally we examine the special case when the separation constant is zero. In this case the
two roots of the indicial equation are equal, r1 = r2 = 0. Thus, it holds Rj(r1) = Rj(r2) =
j2 ∀ j 6= 0. Then ODE (C.1) yields

j2Bj +

j−1∑
l=0

[laj−l + bj−l]Bl = 0, j = 0, 1, 2, ... (C.29)

which implies that B0 may remain arbitrary. Therefore, a first independent solution is the
following:

R1(s;n) =
∞∑
j=0

Bjs
j, Bj =


B0 (arbitrary),

−
j−1∑
l=0

[laj−l+bj−l]Bl

j2
, j ≥ 1.

(C.30)

Finally, in order to construct a second linearly independent solution we assume that

R2(s;n) = R1(s;n)logs+
∞∑
j=0

Cjs
j, (C.31)

and find that this indeed is a solution once the following relationships for the coefficients Cj
are satisfied:

Cj =

C0 (arbitrary),

− 1
j2

{
2jBj +

j−1∑
l=0

[(laj−l + bj−l)Cl + aj−lBl]

}
, j ≥ 1.

(C.32)
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D | Proof of the relations (5.30)-(5.33)

Preliminarily, we present the useful vector identities

∇ · (Q×W) ≡W · (∇×Q)−Q · (∇×W), (D.1)
∇× (Q×W) ≡ (W · ∇)Q−W(∇ ·Q)− (Q · ∇)W + Q(∇ ·W), (D.2)
∇(Q ·W) ≡ (W · ∇)Q + (Q · ∇)W + W × (∇×Q) + Q× (∇×W), (D.3)

as well as the useful following relations

∇ · (αN) + J · ∇β + B · ∇γ = 0, (D.4)
ξ ×B = αN×B + βN, (D.5)
J× ξ = αJ×N + γN, (D.6)
b = ∇× (αN×B + βN), (D.7)

which are obtained on the basis of representation (5.29) and the condition ∇ · ξ = 0.
To begin with, we decompose the potential energy of equation (5.26) into two integrals as

W =
1

2µ0

∫
D

(1− σd − λ2)[b2 + b · (µ0J× ξ)]d3r︸ ︷︷ ︸
S1

−2

∫
D
λ(ξ · ∇λ){ξ · [(B · ∇)B]}d3r︸ ︷︷ ︸

S2

 .

(D.8)
The rest of the present Appendix is dedicated in calculating these integrals in order to derive
the exact expressions (5.30)-(5.33) as follows.

Calculation of S1: By employing equation (D.6) we obtain

b2 + b · (µ0J× ξ) = b2 + αb · (µ0J×N) + µ0γb ·N
= (b + αµ0J×N)2 − αb · (µ0J×N) (D.9)
−α2(µ0J×N)2 + µ0γb ·N.

Also, with the aid of the identity (D.1) we find that

µ0γb ·N = µ0γN · [∇× (αN×B + βN)]

= µ0(αN×B + βN) · [∇× (γN)] +∇ · (µ0γαN2B), (D.10)

and therefore

(1− σd − λ2)µ0γb ·N = (1− σd − λ2)µ0(αN×B + βN) · [∇× (γN)]

+∇ · [(1− σd − λ2)µ0αγN2B]. (D.11)

135



136

Then owing to (D.9) together with (D.11) and the fact that
∫
D∇·[(1−σd−λ

2)µ0αγN2B]d3r
vanishes due to the boundary conditions, the integral S1 can be written in the form

S1 =

∫
D

(1− σd − λ2){(b + αµ0J×N)2 − α2(µ0J×N)2

−αb · (µ0J×N) + µ0(αN×B + βN) · [∇× (γN)]︸ ︷︷ ︸
Λ1

}d3r. (D.12)

In order to obtain a more useful form for S1, we further proceed as below.
For the third and fourth term of the integral in (D.12) we find

−αb · (µ0J×N) = −α(µ0J×N) · [∇× (αN×B + βN)]

= −α(µ0J×N) · [α∇× (N×B) +∇α× (N×B) + βM +∇β ×N]

= −µ0αN2(J · ∇β + N · ∇α)− µ0αβM · (J×N)

−µ0α
2(J×N) · [∇× (N×B)], (D.13)

and

µ0(αN×B + βN) · [∇× (γN)] = µ0(αN×B + βN) · (γM +∇γ ×N)

= µ0αγM · (N×B)− µ0αN2B · ∇γ. (D.14)

Also, employing the identities (D.2) and (D.3) for Q = N and W = B yields

µ0(J×N) · [∇× (N×B)] = µ0(J×N) · [2(B · ∇)N + B×M]

−(µ0J×N)2 + µ0N
2(∇ ·N). (D.15)

Therefore, with the use of relations (D.13)-(D.15), we find in a straightforward way that
the quantity Λ1 reads

Λ1 = α2(µ0J×N)2 − µ0α(βJ + γB) · (N×M)− 2α2(µ0J×N) · [(B · ∇)N]. (D.16)

Afterall, substitution of the later relation into (D.12) results into the following useful form for
the integral S1

S1 =

∫
D

(1− σd − λ2){(b + αµ0J×N)2 − µ0α(βJ + γB) · (N×M)

−2α2(µ0J×N) · [(B · ∇)N]}d3r. (D.17)

Calculation of S2: We now consider the second integral of W in equation (D.8) as follows.
Using the relations

ξ · ∇λ = αN · ∇λ, (D.18)

and

ξ · [(B · ∇)B] = (αN + βJ + γB) · ∇
(

B2

2

)
+ µ0αN2, (D.19)

the later obtained with the aid of identity (D.3) for Q = W = B, the integral S2 is written
in the useful form

S2 = µ0

∫
D

{
λα2(N · ∇λ)

[
N · ∇

(
B2

2µ0

)
+ N2

]
+ α(βJ + γB) · ∇

(
B2

2µ0

)}
d3r. (D.20)
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To continue with, we plug the expressions (D.17) and (D.20) back into the relation for
the potential energy (D.8); then if we further rearrange the containing terms and integrate by
parts, W is put in the following form

W =
1

2µ0

[∫
D

(1− σd − λ2)(b + αµ0J×N)2d3r +

∫
D
Aα2d3r

−µ0

∫
D
αβ(J · L)d3r− µ0

∫
D
αγ(B · L)d3r

]
, (D.21)

where

L := (1− σd − λ2)(N×M) + 2λ(N · ∇λ)∇
(

B2

2µ0

)
, (D.22)

and

A := −2

{
(1− σd − λ2)(µ0J×N) · [(B · ∇)N] + µ0λ(N · ∇λ)×[

N · ∇
(

B2

2µ0

)
+ N2

]}
. (D.23)

Then we can show that the coefficients of αβ and αγ in the third and fourth integrals of (D.21)
vanish identically. Indeed, with the aid of the equilibrium equations (5.23)-(5.25), (5.27), the
fact that λ = λ(ψ), Ps = Ps(ψ), and the identity ∇(qw) ≡ q∇w + w∇q for arbitrary scalar
functions q, w, equation (D.22) yields

L = g|∇ψ|2
[
(Ps)

′′
+ (λ2)

′
g − (λ2)

′′ B2

2µ0

]
∇ψ. (D.24)

Thus, it follows that
J · L = B · L = 0, (D.25)

since for the field-aligned incompressible equilibria under consideration, it holds J · ∇ψ =
B · ∇ψ = 0.

Finally, as concerns the quantity A given in (D.23), it can be written in a more useful form
as follows. Recall that N = g∇ψ, as implied from the equilibrium equations (5.23), (5.24)
and (5.27). On account of this relation, and with the use of the identity (D.3) for Q = ∇ψ,
W = B, as well as of the identity (B · ∇)(g∇ψ) ≡ ∇ψ(B · ∇g) + g(B · ∇)∇ψ, we obtain
from (D.23)

A :=
A

2g2
= −(1− σd − λ2)

{
|µ0J×∇ψ|2 − (µ0J×∇ψ) · [(∇ψ · ∇)B]

}
+
µ0

2
[ln(1− σd − λ2)]

′|∇ψ|2∇ψ · ∇
(
P + (1− σd)

B2

2µ0

)
, (D.26)

or equivalently, with the use of (1.61)

A = −(1− σd − λ2)
{
|µ0J×∇ψ|2 − (µ0J×∇ψ) · [(∇ψ · ∇)B]

}
+
µ0

2
[ln(1− σd − λ2)]

′ |∇ψ|2∇ψ · ∇
(
P⊥ +

B2

2µ0

)
, (D.27)

the later relation having the exact form (5.33). Thus, substitution of the relations (D.25) and
(D.26) into (D.21) yields for the exact expressions (5.30)-(5.32) for the potential energy:

W =
1

2µ0

∫
D

(1− σd − λ2)(b + αµ0J×N)2d3r︸ ︷︷ ︸
W1

+
1

2µ0

∫
D
A(
√

2gα)2d3r︸ ︷︷ ︸
W2

. (D.28)
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