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1 Introduction

1.1 Systematic review and evidence synthesis methods

Systematic reviews and meta-analyses have been established as an integral part of comparative
effectiveness research and are used worldwide for decision-making in health and social care.
The World Health Organization (WHO, www.who.int) considers them as the most reliable
Evidence-Based Medicine method. Different types of studies such as cohort studies, animal
studies, observational studies, case-control studies or randomized control trials can be
synthesized in a systematic review to answer a research question. There is a broad agreement
that the randomized controlled trial (RCT) is the most valid (gold standard) type of clinical
trials. In RCT, individuals are randomly assigned to two groups where one group (experimental
group) takes the intervention and the other (control group) usually receives a placebo
intervention. Observed differences between the two groups depend exclusively on
interventions received because the participants have been randomized in both groups and
probability theory assures that they will not differ in any other characteristics beyond the
intervention they accept.

There are a plethora of individual studies in most problems in health, social or education.
Drawing conclusions from these studies may be misleading. Individual studies may be biased
(low-quality studies) or having conflicting results without being aware of whether these
differences are true or random. Systematic reviews synthesize several different studies and
provide conclusions to answer a research question. Meta-analysis is (not necessarily) a part of

the systematic review process.

Meta-analysis is a statistical technique that synthesizes evidence form individual studies and
provides the relative effectiveness between two interventions for a specific research question
[1]. It might happen that the results from individual studies disagree. Meta-analysis can
quantify and investigate the reasons of this disagreement [1]. Meta-analytical results are more
powerful and provide more precise results compared to the results from individual studies [1].
A pairwise meta-analysis pools the results from individual studies that compare two

interventions. Decision making commonly focuses on comparing more than two interventions.


http://www.who.int/
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More complicated evidence synthesis methods are used to investigate the relative effectiveness
of three or more interventions. Network meta-analysis (NMA), also known as a mixed-
treatment comparison or multiple-treatment meta-analysis, can provide the relative
effectiveness of several competing interventions for the outcome of interest. It synthesizes
direct (information of intervention effect from the comparison of two studies) and indirect
(information of intervention effect via a connected path) evidence with the aim to give a

summary estimate [2].

Let us consider three school-based interventions A, B, C and we are interested to compare their
relative effectiveness. Figure 1.1 (a) provides the direct evidence (solid lines) in a public-school
comparing A and B educational interventions and the direct evidence of A versus C in a private
school. It is obvious that there is no direct evidence between B and C educational interventions.
We can only have the indirect evidence for B versus C (dashed line) via the direct paths through
intervention A. The graphical representation in Figure 1.1 (a) is termed as network plot with
cycles of nodes denoting interventions and lines or edges denoting the interventions compared
in the included studies.

The network plot can provide information about the shape of network and network geometry.
The network should be connected, which means that there is a path with lines in network plot
(studies) to move from each intervention to any other intervention. If all intervention nodes are
compared with a common intervention node the network is a star-shaped network. For
example, Figure 1.1 (a) a star network that apart from the educational intervention comparisons
A versus B, A versus C. The paths that begin from an intervention node and end to the same
node via two or more intermediate interventions (e.g. there is a direct evidence for comparison
B versus C with path A - B — C— A) are closed loops. Networks comparing only three
treatments (for example, A, B, and C) in a number of two-arm studies called triangular

networks. Networks with at least one closed loop called full or entire networks.

NMA synthesizes direct and indirect evidence and offers the ability to estimate the relative
effectiveness of interventions (termed as network estimates) that have never compared before
by the individual studies (e.g. relative effectiveness of B versus C educational interventions).
The relative effectiveness of several interventions is provided in comparison with a common
intervention named reference treatment that is usually a placebo, usual care, no treatment or
active treatment. Several frequentist (e.g. multivariate meta-regression [3], [4], graph

theoretical method [5], etc.) and Bayesian approaches (e.g. hierarchical models) have been
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developed to derive the indirect and/or network estimates. NMA summarizing the results by
providing a hierarchy of the interventions and treatment ranking [6], [7] can inform decision
making. The most commonly used ranking measures are the probability of being the best and
the surface under the cumulative ranking curve (SUCRA) [6], [8], [9].

Figure 1.1 (a) Figure 1.1 (b)

Figure 1.1. Direct and indirect evidence between school-based interventions A, B and C (Figure 1.1
(a). Hlustration of direct and indirect evidence for comparisons B versus C (Figure 1.1 (b)).

Methodological or clinical differences between studies may cause differences between the
study-specific true underlying effects. This is a between-study variation, known as
heterogeneity. The existence of heterogeneity may affect the summary estimate and its
precision. Potential sources of heterogeneity can be investigated with meta-regression; a meta-
analytical model including covariates [10], [11] but also with sensitivity analyses or secondary
analyses such as subgroup analysis. that the authors performed to investigate potential sources

of heterogeneity or inconsistency.

Individual studies usually differ due to their characteristics. For example, AB studies compare
children from public schools while AC studies compare children from private schools. AB and
AC studies may differ due to population characteristics. Private schools may have children
from a high-income family with more educated and wealthy parents, highly-motivated children
for knowledge and may offer a longer and demanding schedule, compared to public schools.
Type of school can be an effect modifier which means that we cannot compare AB studies
(children population in public schools) with AC studies (children population in private

schools).

One clinically underlying fundamental assumption for the NMA model is the transitivity

assumption; this implies that the effect modifiers are comparable across intervention
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comparisons [2]. Transitivity assumes that the common comparator A is the same for AB and

AC studies and the distribution of effect modifiers is balanced across the different comparisons.

The statistical manifestation of transitivity is consistency, that is when direct and indirect
evidence agrees [2], [12]. Considering that there is a BC study in the network, we have a direct
evidence between school-based interventions for comparison B versus C. The consistency
assumption implies that the direct evidence of B versus C (solid line, Figure 1.1 (b)) is in
agreement with the indirect evidence of B versus C comparison (dashed line, Figure 1.1 (b)).
This implies that there are no differences between direct and indirect estimates in closed loops
within networks. Several statistical methods have been developed to evaluate the consistency
assumption in closed loops within networks such as the loop-specific approach [13], node-
splitting approach [14], design-by-treatment interaction model [4] (a synopsis of several

statistical tests for consistency are described in [15] and details are given).

It is common that a potential source of heterogeneity and inconsistency is the existence of
extreme study effects. Extreme study effects may also be an outlier study. There are several
definitions for outliers in the literature. A study with a markedly different intervention effect
estimate or a study that does not explain by the assumed model is generally defined as outlying
[16]. A study effect that lies far away from the bulk of the data can affect the summary effect,
possible causing bias (especially if the study is large) and can lead to an increase in
heterogeneity or inconsistency. An influential study can influence the model parameters, it
might cause large heterogeneity and inconsistency and therefore give biased results. Moreover,
small studies tend to give larger estimates than estimates from large studies (small-study effects
). A frequent phenomenon in evidence synthesis is publication bias caused by the fact that

small study effects without significant intervention effects are less likely to be published.

1.2 Meta-analysis and Education
Implementation of systematic reviews and meta-analyses is increased rapidly and there is a lot
of evidence for several educational outcomes. The Campbell Collaboration

(https://campbellcollaboration.org/) is an international network that published systematic

reviews and meta-analyses and has a group called Education Coordinating Group

(https://www.campbellcollaboration.org/contact/coordinating-groups/education.html) that

focuses on education. Based on high-quality evidence synthesis methods, Campbell
Collaboration provides a database of systematic reviews on educational outcomes that can

inform policy-makers and stakeholders.


https://campbellcollaboration.org/
https://www.campbellcollaboration.org/contact/coordinating-groups/education.html
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There are several published meta-analyses for autism [17], [18], bullying and cyberbullying
[19], [20], educational technology outcomes [21] for teaching and learning in different subject
matters (math, reading, writing, etc.) across a wide range of age children groups but also mental
health-related outcomes in students such as anxiety and depression [22]-[25].

The first meta-analysis that evaluates computer-based scaffolding in science, technology,
engineering and mathematics (STEM) education has recently been published on Review of
Educational Research [21]. Three hundred thirty-three outcomes across 144 studies were
included in the meta-analysis [21]. Computer-based scaffolding defined as the students’ ability
to generate and solve complex problems and goals [21]. According to Belland et al. there was
a positive effect of computer-based scaffolding interventions on cognitive outcomes significant
difference in STEM education [21]. If we are not interested only in the effectiveness of
computer-based scaffolding interventions but we are interested in the comparison between
different STEM disciplines (such as the comparison between science, technology, engineering
or mathematics), multiple testing is needed and traditional meta-analyses can be conducted.
Multiple testing with pairwise meta-analyses provides limitations such as increasing type |
error rates. Network meta-analysis model can give more precise results for comparative
treatment effectiveness and safety. A network meta-analysis that has recently been published
in the Review of Educational Research, compares the influence of contexts of scaffolding used
on cognitive outcomes in STEM education [26]. Effect sizes were reported with Hedge’s g
calculation [26]. Four different STEM disciplines, mathematics, technology, engineering and
science, and control were compared [26]. Figure 1.2 provides the network plot of direct
comparisons (solid lines) and indirect comparisons (dashed lines) comparing scaffolding used
in the context of different STEM disciplines. Authors noticed an additional 70% of studies
included in network meta-analysis than traditional pairwise meta-analyses [26]. Although the
authors presented this as an NMA, it is actually a moderator analysis. Authors also ranked the
disciplines in which STEM seems to be more effective by averaging the probability of being
the best, the second e.t.c for mathematics (ranking 1.62), technology (ranking 2.23),
engineering (ranking 3.23) and science (ranking 3.33) [26].
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Figure 1.2. Network plot of direct comparisons (solid lines) and indirect comparisons (dashed lines)

comparing scaffolding for the context of different STEM disciplines.

Caldwell et al. [27] have recently published in Lancet Psychiatry the first network meta-
analysis to prevent anxiety and depression in children and young people. Several school-based
interventions such as Behavioural therapy, Cognitive Behavioural Therapy, Third wave,
Psychoeducation, Psychosupport, etc. were compared for the outcomes of anxiety and
depression [27]. NMA model fitted using hierarchical models in the Bayesian framework. The
results provided little evidence to suggest the effectiveness of school-based interventions for
the prevention of anxiety or depression. The most included studies had an unclear risk of bias
for random sequence generation and allocation concealment and there was evidence of small-
study effects for self-report anxiety outcomes [27]. This phenomenon is usually identified in

studies with mental health-related outcomes.

In bibliography, there are studies comparing educational interventions for several educational
outcomes. Moreover, there are also many systematic reviews and meta-analyses in educational
research. Based on this fact, systematic reviewers and meta-analysts can provide the evidence
synthesis of studies in the field of education. Meta-analytical models can be a guidance for
teachers providing which interventions could be the best in each case. The implementation of
meta-analytical models can lead teachers in several aspects of educational system. For example
meta-analytical models can answear the question ‘Which educational method is most effective
for STEM education?’, but also they can inform special education teachers about the most
effective educational process that would be helpful for students with dyslexia, communication

disorders, physical disabilities e.t.c.

The currently published paper by Caldwell et al. [27] implements at first network meta-analysis

in Education. This can be the evidence for a new step in a synthesis of studies expecting more
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network meta-analyses to be conduced in the field of education. The proposed methodology on
developing outier detection for network meta-analysis would be helpful in Educational research
as outliers seems to be a usually problem when synthesize the results of studies comparing

educational interventions.

1.3 Objectives & outline of the Thesis

The aim of this dissertation is to provide and extend several outliers and influential detection
methodologies from pairwise meta-analysis to network meta-analysis model. Several statistical
outliers and influential detection measures, the forward search algorithm, and the random
variance shift outlier model are extended to NMA. All the proposed methodologies are focused
on detecting outlying and influential measures at the study level. Studies give aggregate
measures, which may have been influenced by the presence of outliers or data extraction errors
within the study. The proposed outlier detection methodologies are well illustrated using
motivated datasets of networks of interventions and simulation data. An R package

NMAoutlier [28] was developed for reproducibility of the proposed outlier detection methods.

The Thesis is structured as follows. Chapter 2 provides the network meta-analysis model as
was introduced by Ricker [5] using graph theory and motivating examples of networks of
interventions. Chapter 3 provides an empirical study based on a collection of 456 published
network meta-analyses by giving an empirical overview of NMA characteristics.. Chapter 4
outlines a synopsis of methodological strategies to detect outliers in a meta-analysis, gives an
overview of several proposed statistical measures to detect outlier and influential cases in NMA
with an application in a real dataset. Chapter 5 introduces the extended methodology of the
forward search algorithm for identifying outliers and influential studies in NMA and provides
applications of the proposed methodology in real and simulated datasets. Chapter 6 provides
the extended methodology for outlier identification with the random shift variance NMA model
and gives an application example on a published dataset. Chapter 7 describes and gives details
of the R package NMAoutlier developed for the proposed outlier and influential detection
methods and provides how to implement the package in real datasets of networks of

interventions.
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2 Network meta-analysis model and motivating examples

2.1 Introduction

Bucher et al. [13] were first to introduce the idea of indirect and mixed treatment comparisons.
Having three treatments A, B, C the indirect summary relative effect of AB (i.e. A versus B)
can be estimated indirectly by subtracting the direct relative effects of AC and BC [13] as
Aap(indirect) = Rac(airect) — Hpc(airect) (Where fi is the estimate of relative treatment effects).
Indirect estimates of relative treatment effects are also known as an adjusted indirect
comparison. The variance of the indirect estimate is the sum of the variances of the two direct
ones. The mixed estimate can be derived as a weighted average of direct and indirect treatment
effects [13]. The Bucher method [13] is also known as an adjusted indirect comparison meta-

analysis. This approach ignores correlations when multi-arm studies exist.

Extending the idea to larger networks, several indirect estimates of different comparing
interventions can be derived from network estimates. Popular established NMA methods
implemented in comparative effectiveness research adopt meta-regression, hierarchical
modeling or a multivariate meta-analysis approach. The meta-regression approach was first
proposed by Lumley [29] treating each treatment comparison as a covariate in a meta-
regression model. Lu et al. [30] proposed a different approach based on a two-stage meta-
regression. At the first stage, a meta-analysis is performed in each group of studies comparing
the same treatments, (e.g. all two-arm studies comparing A versus B) offering the direct
estimates on treatment comparisons. At the second stage, a weighted linear regression is
performed with the direct estimates as dependent variables. In the Bayesian framework, the
NMA model can be fitted as a hierarchical model with a multivariate normal likelihood
assumed on the observed relative effects for each study [31], [32]. White et al. introduced the
NMA model as a specific case of multivariate meta-regression (or multivariate meta-analysis)
[3]. The multivariate meta-regression model based on multivariate distributions assumptions
for the parameters representing random errors and random effects when multi-arm studies are

included [3]. Rucker [5] introduced a frequentist network meta-analysis model with a graph-
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theoretical approach by providing the correspondence between electrical networks and

multivariate meta-regression models.

This Chapter is structured as follows: Section 2.2 provides the NMA model from graph theory
and Section 2.3 offers examples of networks of interventions that motivating us to proposed

outlier diagnostics methods provided in this dissertation.

2.2 Network meta-analysis model from graph theory
This section provides a brief description of the NMA approach and the reader can find more
details in the relevant publications [5], [33], [34]. This NMA model is implemented in R

package netmeta [35]. The notation for the NMA model is summarized in Table 2.1.

Suppose that we have N potentially multi-arm studies i = 1, ..., N. For a study i, we denote
with k the pairwise comparison, with S; the set of treatments compared in study i with ng, to

represent the cardinality of S;and k € S;. Let m be the number of all possible pairwise

Si
2
n the total number of treatments and u to represent the vector with these n treatment effects.

comparisons (and hence m = Z’i‘;l( ) andm=NifS§; =2,vi =1,..,N). We denote with

Let y = (y1,¥5, ..., ¥n)' be the vector with the observed effect sizes and s = (s4, S5, ..., Sy)’
be the vector with the corresponding standard errors. For a study i =1,...,N, let y; =

{yix,k € S; } be the observed effect size, s; = {s;, k € S; } be the observed standard error and

s? = {sfk ,keS; } the observed sampling variance (or else the within-study variance).

Having the variability of studies to be the within-study variance for each pairwise comparison
in each study the fixed-effect (FE) network meta-analysis can be modeled. The fixed-effect

network meta-analysis model is written as
y=Xu+¢gée~N(0,S)

where S is a diagonal form matrix with entries s? and X is the m x n design matrix that
describes the structure of the network with rows denoting the pairwise comparisons and with
columns the treatments compared. Each row inputs one (1) in the column that corresponds to
the first treatment (treatment group) and minus one (-1) in the column that belongs to the second
treatment (control group). All other entries are equal to zero (0) for treatments not considered
in the relevant comparison. Hence, each row of X sums up to zero. X matrix is not a full rank

and it is not invertible.
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Assuming a common heterogeneity variance 72 for each pairwise comparison, the random-
effects (RE) network meta-analysis model can be modeled having the variability to be the
within-study variance plus the between-study variance (heterogeneity). The random-effects

network meta-analysis model is written as
y=Xu+6+¢&6~N(0,4),e~N(0,S)

where & represents the true random effects and A is a block diagonal matrix with the
heterogeneity variance 2. The between-study variance is estimated using a special case of the
generalized DerSimonian—Laird estimator [36] given in [37]. In the random-effects model, the

variance of each study is the heterogeneity estimator 2 plus the observed study variances s?.

Let W be a m X m diagonal weight matrix with a vector of weights in its diagonal to be the
inverse study variance, w;yrg = 1/sfk ,i=1,...,N,keS;, for the fixed-effect model.
Weight matrix can also be given by W = S~1. Weight matrix for random-effects is diagonal
with a vector of weights w; , rp = 1/(s§k +£2),i =1,..,N,k €S; or can be provided with
W = (S + A)~1. Then, the variance-covariance matrix for the observed data under the random-

effects model is Cov(y) = W1 =S+ A.

In mathematical field of graph theory, Laplacian matrix, sometimes called admittance matrix
or Kirchhoff matrix, is a matrix representation of a graph. Laplacian n X n matrix is given by
L = X'WX, has n — 1 rank and it is not invertible [5], [33]. To estimate treatment effects, the
Moore Penrose pseudoinverse n x n matrix L* of the Laplacian matrix L is constructed as
provided in [5], [33]. The Moore Penrose pseudoinverse is given by L* = (L —J/n)"1 +]/n
where J is n x n matrix with all elements equal to 1. In case of multi-arm studies, weights are
adjusted and are reduced as introduced by Ricker and Schwarzer [33]. When multi-arm studies
exist, the heterogeneity estimator £2 is added to the observed variance before reducing the

weights.

Pairwise comparisons of the multi-arm study are correlated, so their variances need to be

adjusted by a back-calculation method of the observed variances. Having a multi-arm study

with S; arms, variances can be artificially inflated by L* = —ZS%X’XV’X, where Vis §; X S;

symmetric matrix with the observed variances of all comparisons [33].

Network estimates are weighted sums of the observed estimates with weights to come from the
rows of H; "¢ = X(X'WX)*X'Wy = Hy, where H = X(X'WX)*X'W is the m x m hat
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matrix. The variance-covariance matrix of network estimates is given by Var(y™™¢) =
XL*X' = G,,x,. Treatment effects can be estimated (zi) using direct evidence and each piece
of indirect by defining the vector i = (X'WX)*X'Wy of dimension n that represents the
effects of the interventions. The variance of comparison between treatments A and B is defined
as V,g = L}, + Lk; — 2L} [38]. Having the design of treatment comparison X; and fi the
estimate of treatment effects, the predicted effect size for the study i is given by y; =

Dix =X keS;}i=1,..,N.

Let denote with fi; the relative treatment estimates compared with the treatment reference for
study i with dimensions (n — 1) and with X to be the reduced design matrix with dimensions
(n — 1) x n of treatment comparisons with the reference (for each row denote treatment
comparisons with the reference input zero entries, values 1 to the column corresponding the
reference treatment and -1 for the treatment compared). Then, the variance-covariance matrix
of (n—1) relative treatment estimates fi; is denoted with XL*X’' and has dimensions
n—1)xMn-1).

The restricted (residual) maximum log-likelihood (REML) function for random-effects NMA
model is given by

1 1
LR(y; %) = —Elog(detIS +A]) — Elog(detIX’(S + A) X))
1 ., _ R
—E(y—Xu) S+A)'(y—Xp)
1 1 , 1 ., R
=5 log(det|W|) — > log(det|X'WX]) — > (y — Xi)'W(y — Xp)

where W = (S + A)~1. The restricted maximum estimation method minimizes the above

likelihood function to obtain the parameter estimates.

Krahn et al. provided generalized Cochran’s Q (Q%*%") [39]. Based on the fixed-effect model
and assuming homogeneity and consistency in the whole network, the generalized Cochran’s

Q statistic is given by
QU = (y —Xm)'W(y — X
Qtotal can be decomposed into two parts:

e a part coming from within designs (heterogeneity between studies that compare the

same set of treatments), Q"¢
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e a part coming from between designs (inconsistency between studies that compare

different sets of treatments), QU
where the design of a study is called the set of treatments compared within the study [39].

The Q statistic (Q7¥) assess consistency under the assumption of a full design-by-treatment
interaction model with a fixed-effect. Having the design-by-treatment interaction model with
random-effects, we can measure the inconsistency between studies with different design Q™.
The full design-by-treatment interaction model looks for global inconsistency by allowing for

both loop inconsistency and design inconsistency [40].

Table 2.1. Notation for network meta-analysis model.

Studiesi =1, ....,N

Treatments 1, ....,n

k pairwise comparison

S; the set of treatments compared in a study or else the number of arms in study i.

ng, represents the cardinality of S;and k € S; .

Pairwise comparisons k = 1, ....,m.

Observed effect size vector y = (¥4, ¥4, .., ¥n)' Withy; = {yix ke S; } keS;.

Observed standard errors s = (s, Sy, ..., Sy)' Withs; = {s;, ke S; }, ke S;.

Design m x n matrix X, X; the design of treatment comparison.

£2 the Generalized DerSimonian—Laird heterogeneity estimator.

Weight m x m matrix W a diagonal matrix with weights of pairwise comparisons in its diagonal.

w; i re the fixed-effect (FE) weight of pairwise comparison

_ 2
Wikrg = 1/8{,i=1,...,N,k€S;

w; k. re the random-effects (RE) weight of pairwise comparison

Wi,k,RE = 1/(512']( +‘f2),l = 1,...,N,k€5i

Laplacian n X n matrix L = X'WX

Moore Penrose pseudoinverse n X n matrix Lt
L'=L-J/m)™"+]/n
where J is n X n matrix with all elements equal to 1.

In case of k multi-arm studies

Lt =-— X'XVX'X

2
i

where V is §; X S; symmetric matrix with the observed variances of all comparisons.
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Hat m x m matrix H = X(X'WX)*X'W

Network estimates
ymma = X(X'WX)*X'Wy = Hy
with variance-covariance m X m matrix
Var(y™me) = XL*X'

Treatment effects estimates i = (X' WX)*X'Wy

Variances between treatments A and B, V5 = L}, + L}z — 2L} g

Predicted effect size y; = {§;, = XL ke S; },i=1,..,N.

Relative treatment estimates gi; compared with the reference for study i with dimensions (n — 1).

X the reduced design matrix with dimensions (n — 1) x n of treatment comparisons with the

reference treatment.

XLtX' the (n — 1) x (n — 1) variance-covariance matrix of (n — 1) relative treatment estimates i;

compared with the reference treatment.

2.3 Motivating examples
This section provides three published examples of networks of interventions that motivate us
to proceed and provide the proposed research in this dissertation; a synthesis of studies to aid

smoking cessation dataset, dataset for actinic keratosis and a dataset with thrombolytic drugs.

2.3.1 Dataset comprises four interventions to aid smoking cessation

The first example comprises four interventions to aid smoking cessation [41] [42]. Twenty-
four studies (N = 24), including twenty-two two-arm trials and two three-arm trials, compared
the relative effects of four smoking cessation counseling programs (n = 4): defined as no
contact (A), self-help (B), individual counseling (C), and group counseling (D). The binary
outcome was the number of individuals that successful stopped smoking at 6 to 12 months and
the odds ratio was used as summary measure. The dataset with arm level data is a part of R
package netmeta [35] and the corresponding R code to calculate odds ratios is provided in

Appendix A. Data with odds ratios are provided in Appendix Table 1.

2.3.2 Dataset comprises nine interventions for actinic keratosis

Gupta and Paquet [43] compared eight interventions and placebo for actinic keratosis. Thirty-
five studies (N = 35), including three three-arm trials, compared the relative effects of
interventions (n = 9): placebo/vehicle (including placebo-PDT) (treatment 1), diclofenac 3%
in 2.5% hyaluronic acid (DCF/HA) (treatment 2), 5-fluorouracil (5-FU) 0.5% (treatment 3),
imiquimod (IMI) 5% (treatment 4), methyl aminolevulinate (MAL)-PDT (treatment 5), 5-
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aminolaevulinic acid (ALA)-photodynamic therapy (PDT) (treatment 6), 5-fluorouracil (5-FU)
5.0% (treatment 7), cryotherapy (treatment 8), and ingenolmebutate (IMB) 0.015-0.05%
(treatment 9). The binary outcome was participant complete clearance or an equivalent efficacy
and the odds ratio was used as summary measure. The dataset is provided in Appendix Table
2.

2.3.3 Dataset with thrombolytic drugs

Boland et al. [44] compared eight thrombolytic drugs (n = 8) prescribed after acute myocardial
infarction. Twenty-eight studies (N = 28), including two three-arm studies and twenty-six
two-arm studies comparing interventions: streptokinase (treatment 1), accelerated alteplase
(treatment 2), alteplase (treatment 3), streptokinase plus alteplase (treatment 4), tenecteplase
(treatment 5), reteplase (treatment 6), urokinase (treatment 7), and nistreptilase (treatment 8).
The binary outcome was the mortality within 30 to 35 days of hospital admission. The dataset
is provided in Appendix Table 3.
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3 Characteristics of published networks of interventions

3.1 Introduction

NMA has been considered as the ‘new norm’ in evidence synthesis [45]. However, there are
still limitations that may cast doubt on the reliability of results. Such limitations are ignoring
the underlying assumptions, potential biases, inadequate and not transparent reporting of

methods used and the use of wrong synthesis models [8], [12], [46].

There are previous empirical studies exploring the characteristics of networks of interventions
concluding to the need for improving the quality of NMA applications [47]-[52]. For example,
Bafeta et al. resulted that reporting guidelines are necessary to reduce bias in NMA results
while Nikolakopoulou et al. reported that 68% of the NMAs published by the end of 2012 used

inappropriate or unspecified methods for the assessment of inconsistency [48], [49].

There are empirical studies that provide information about the choice of optimal methods used
for the assessment of risk of bias in the included studies [53]-[55], the magnitude of
heterogeneity [56]-[58], the relative advantages of different methods to evaluate publication
bias and small-study effects [59]-[61], and the importance of a comprehensive search for
relevant studies [62]. Song et al. evaluated the prevalence of inconsistency in networks with
three treatments [63], [64], Veroniki et al. studied the assessment of inconsistency in NMAs
that included at least four treatments using two alternative methods [65] while Chaimani et al.

have provided empirical evidence about the impact of risk of bias and small study effects [66].

Several developments have been made in the field of NMA and many tutorial and guidance
papers have been published [2], [12], [67]-[70]. Efthimiou et al. provided a review of
methodological articles published until March 2014 [71] and found an increase of published
articles with NMA methodology after 2011. In 2012 and 2013, 83 methodological articles were
published compared to 58 articles published between 2005-2011. New NMA estimation
methods have been provided; Riicker introduced the NMA model from graph theory [5], White

et al. introduced the NMA model as a specific case of multivariate meta-regression, while
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Higgins et al. provided a new test for the inconsistency assessment [3], [4]. Several statistical
packages and codes have been developed to fit the models using frequentist software. R
package netmeta offers an advantage for the implementation of the NMA model from graph
theory [35]. Moreover, Stata routines are provided by White et al. and Chaimani et al. for the
application of NMA models [72]-[74].

We aim to describe how methodological aspects of NMA and reporting quality of results have
evolved over time, monitor the rate of adoption for the new methodologies and provide an
overview of the characteristics of published networks of interventions. We aim to provide
empirical studies based on the data of published NMA database with the future target to
describe how often outliers are provided in NMA datasets and how their existence biased the

final results.

3.2 Methods

We conducted an empirical study to collect a database of published NMAs as well as

published methodological papers about NMA.

3.2.1 Inclusion and exclusion criteria

Networks were included if they evaluate at least four different interventions (defined as
different drugs or other medical treatments, or different schedules, doses or formulations of the
same treatment) including placebo, no treatment, waiting list or other control interventions.
NMAs with observational or diagnostic test accuracy studies were excluded. NMAs with a
smaller number of studies than the number of interventions and NMAs performed with naive
indirect comparisons for pooling data were excluded.

3.2.2 Literature search and screening

The search was conducted in Medline, Embase and the Cochrane Database of Systematic
Reviews from inception until April 14, 2015, without language restrictions. Titles and abstracts
were screened for the eligibility criteria. Potentially relevant full-text articles were screened in
the same manner.

3.2.3 Extraction of data characteristics and categorization

We extracted general publication characteristics of articles such as first author, year and journal
of publication, residence country of the contact author. We recorded whether the primary
outcome measured efficacy or safety and we categorize it into dichotomous, continuous, time-
to-event or rate. The total number of interventions was extracted (termed nodes of the network

plot) and the reference intervention. Each network is categorized according to the type of



119

treatment comparison; pharmacological versus placebo, pharmacological versus
pharmacological or non-pharmacological versus any treatment. When the reference treatment
was not reported, any of the following were selected as the reference treatment node: placebo,
usual care, or no treatment. The network geometry was extracted (connected/disconnected

network) and each network categorized to star-shaped or network with closed loops.

Characteristics for NMA methodology with an emphasis on statistical analysis and reporting
were also extracted. We recorded whether and how the authors evaluated the plausibility of
transitivity [2]. For networks including at least one closed-loop, we also recorded the use of
inconsistency tests. We categorized the method used to derive indirect and/or network
estimates, the effect measure employed to undertake the analysis (such as odds ratio or mean
difference) and whether a fixed-effect, random-effects or both models are used. We also
recorded any secondary analyses such as subgroup, network meta-regression, or sensitivity
analyses that the authors performed to investigate potential sources of heterogeneity or
inconsistency. We examined whether authors assessed small-study effects, whether they
considered the potential for publication bias and the methods they applied to evaluate their
impact on the results. Although, the aim of this dissertation focus on outlier diagnostics, we
did not extracted any information because the methodology of outlier detection in network
meta-analysis is new and has not been provided in practice yet.

We recorded whether the published article or even the supplementary material presented every
possible relative effect estimate between the nodes of the network or if only a subset of them
was provided. We also extracted if a ranking measure used for the treatment hierarchy.

3.2.4 Statistical analysis

For the extracted characteristics a descriptive statistical analysis was performed. We evaluated
changes over time for several characteristics such as the use of appropriate methods to evaluate
consistency or the use of frequentist NMA framework, and quality of reporting over the years.
We used a X2 test for time trend for dichotomous characteristics and the Cox-Stuart trend test
for continuous characteristics [75]. All analyses were performed in R software [76] using the
R package trend [77].

3.3 Results

We identified 3727 abstracts that resulted in 456 networks satisfying all inclusion criteria.

Figure 3.1 provides the flow chart of the search strategy and the selection process.
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Figure 3.1. Flow chart of the selection process of published networks of interventions.

3.3.1 General NMA and publication characteristics

We first monitored that the number of published NMAs has been increasing over the last two
decades. Only 6 NMAs were published for the period from 1999 to 2004.

The median number of studies per network was 21 (interquartile range (IQR) 13 to 40) and the
median number of treatments was 7 (IQR of 5 to 9) (Table 3.1). Most articles were published
in general medicine journals (183 NMAs, 40%). 234 NMAs (51%) had a contact author with
affiliation from Europe and 140 NMAs (31%) from the United States.

The majority of NMAs provided pharmacological interventions and placebo treatment
comparisons (299 NMAs, 66%). 88 NMAs (19%) provided only pharmacological interventions
(19%) and 69 NMAs (15%) compared a mixture of pharmacological, non-pharmacological and
control treatments (Table 3.1).

Regarding the network geometry, 73% of networks (331 NMAs) included at least one closed-
loop and 27% of NMAs (125 NMAs) were star-shaped networks. Table 3.2 provides that all
the NMAs published in 2005 were star-shaped networks but the percentage decreased to 19%
in 2015. Moreover, the number of networks with at least one closed-loop has increased through
time (p=0.01, Table 3.2).
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Characteristics regarding the outcome indicated that the majority of NMAs provided a
beneficial type of outcome (260 NMAs, 57%) while 43% of NMAs provided a harmful
outcome. The most commonly measured as a dichotomous scale (267 NMAs, 59%), while only
30% of NMAs provide an outcome measured on a continuous scale (Table 3.1).

Table 3.1. Characteristics of 456 NMAs published until 2015. IQR: Interquartile range.

Characteristics of NMAs Median (IQR)
Median number of included treatments 75,9
Median number of included studies 21 (13, 40)
Number of NMAs (%0)
General publication characteristics
Published in general medicine journals”™ 183 (40%)
Published in health services research journals** 56 (12%)
Published in specialty journals 217 (48%)
Contact author with affiliation in Europe 234 (51%)
Contact author with affiliation in the United States 140 (31%)
Treatment comparisons
Compare Pharmacological treatments versus placebo 299 (66%)
Only pharmacological treatment comparisons 88 (19%)

A mixture of pharmacological, non-pharmacological and | 69 (15%)

control treatments

Network geometry

Networks included at least one closed loop 331 (73%)

Star-shaped networks 125 (27%)
Outcome

Beneficial outcome 260 (57%)

Dichotomous scale 267 (59%)

Continuous scale 135 (30%)

*Medicine, General & Internal, Pharmacology & Pharmacy, Multidisciplinary Sciences, Medicine,
Research & Experimental, Primary Health Care. ** Health Care Sciences & Services, Health Policy &

Services.

3.3.2 Evaluation of transitivity and consistency assumption
The majority of NMAs (353 NMAs, 77%) did not report any statement regarding the

transitivity assumption. This tendency changed over time as we found 77% of NMAs published
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in 2015 discussing the transitivity assumption (p<0.01) (Table 3.2). We only found 5 NMAs
(1%) in which authors reported concerns about potential intransitivity. We found 100 NMAs
(22%) that did report how transitivity was evaluated and the majority provided study
characteristics comparisons (76 NMAS).

331 NMAs included at least one closed-loop allowing assessment of inconsistency. Nearly half
of the networks (150 NMAs, 45%) used appropriate statistical methods to assess consistency
and their uptake has increased in the last years (p<0.01, Table 3.2). The most commonly used
method for the assessment of inconsistency was the loop-specific approach [13] (59 NMAs,
18%) followed by the node-splitting approach [14] (39 NMAs, 12%). We found only 5 NMAs
(2%) implemented the design-by-treatment interaction model [4] but the method was
introduced in 2012. Almost 28% percent of NMAs (94 NMAs) did not report any method used

to check the plausibility of the consistency assumption.

The proportion of NMAs considered transitivity or methods to evaluate the consistency
increased over the years (p<0.01, Table 3.2) with a percentage of 17% of published NMAs in
2006 to 86% of published NMAs in 2015 discussing transitivity or inconsistency.

3.3.3 Statistical synthesis of the data

The most commonly used effect size for NMAs was the odds ratio (177 NMAs, 39%) for the
dichotomous outcome and the mean difference (89 NMAs, 20%) for the continuous outcome.
Trend test indicated that reporting quality was poor overtime of explaining the reason to choose
between the fixed and random-effects model (p=0.01, Table 3.2). Half of the networks (230
NMASs) performed the analysis using the random-effects model. Among the 170 networks
(37%) that used the fixed-effect model, the majority (141 NMAs, 83%) also applied the
random-effects approach either as sensitivity analysis or with the aim to choose between the

two models.

Only 24 NMAs (5%) did not report the synthesis NMA model used while the percentage of
NMASs reporting the statistical method used to fit NMA has increased over time from 67% in
2005 to 100% in 2015 (p<0.01, Table 3.2). We found that the Bayesian hierarchical approach
(302 NMAs, 64.5%) followed by the Bucher method (88 NMAs, 18.8%) were implemented
more often for the statistical evidence synthesis (Table 3.3). Only 80 (18%) NMAs which
included at least one multi-arm study employed a method to derive the treatment effect that
ignored correlations (e.g. adjusted indirect comparison meta-analysis or Bucher method). We
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found 5 NMAs that fit the NMA model as multivariate meta-analysis or multivariate meta-

regression. We also found one NMA that employed the NMA approach form graph-theory.

Subgroup, meta-regression or sensitivity analysis were employed to investigate potential
sources of heterogeneity or inconsistency by almost half on the NMAs (256 NMAs, 56%). 143
(31%) NMAs implemented methods and graphical tools for small-study effects and publication
bias for pairwise comparisons in meta-analysis. Funnel plots (116 NMAs, 81%) and regression
tests (82 NMAs, 57%) were the most commonly used methods for the assessment of
publication bias while only 7 NMAs (5%) applied the trim and fill method. More complicated
approaches, such as the comparison-adjusted funnel plot and the extended selection models
[73], [78]-[80] were only implemented by 6 NMAS (4%).

3.3.4 Presentation of results

The presentation of outcome data decreased over time (p=0.03). All possible relative treatment
effects are provided for half of the NMAs (234 NMAs, 51%). The rest NMAs present only a
subset of relative treatment effects and one NMA (0.2%) did not report any relative treatment
effect. 43% (195 NMAs) of NMAs provided the treatment hierarchy with the probability of
being the best to be the most commonly used (166 NMAs, 85%) followed by SUCRA values
(39 NMAs, 20%). The time trend indicated that the use of the probability of being the best has
not changed significantly (p=0.86) but the use of SUCRA values has increased (p<0.01) (Table
3.2).

Table 3.2. The number of NMAs and percentages for characteristics of NMAs published between 2005
and 2015 (until 15 April).
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Total -
. 200 | 200 | 200 | 200 | 200 | 201 | 201 | 201 | 201 | 201 | 201 P
Characteristics of NMAs | Num val
5 6 7 8 9 0 1 2 3 4 5
ber ue
6 5 2 6 7 7 14 | 17 | 19 | 32 8 00
Star Networks | 125 | (10 | (42 | (22 | (50 | (26 | (23 | (26 | (29 | (20 | (31 | (19 1
0%) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
Compare 1 2 2 3 8 3 5 5 23 29 7 o1
pharmacological vs 88 a7 | (A7 | (22 | (25 | (30 | (10 9 8 | (24 | (28 | (16 5
pharmacological %) | %) | %) | %) | %) | W) | %) | %) | %) | %) | %)
Compare 5 8 6 9 14 | 22 | 43 | 42 | 62 | 56 | 26 03
pharmacologicalvs | 299 | (83 | (67 | (67 | (75 | 52 | (73 | (81 | (71 | (65 | (54 | (60 1
placebo %) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
0 2 1 0 5 5 5 12 | 11 | 18 | 10
Compare non- 0.0
. 69 0% | 17 |12 | © | @29 | @7 | 9 | (20 | Q1 | (17 | (=3
plarmacological vs any 5
) | %) | %) | %) | %) | %) | %) | %) | %) | % | %)
. . 6 12 7 11 | 23 26 | 46 | 46 | 67 | 71 | 33
No information or <0.
. . . 353 | (10 | (10 | (78 | (92 | (85 | (87 | (87 | (78 | (70 | (B9 | (77
discussion on transitivity 01
0%) | 0%) | %) | %) | %) | %) | %) | %) | %) | %) | %)
0
o 0 1 1 4 4 7 13 | 27 | 30 | 10
Reported that transitivity <0.
L 98 | (0% (11 { 8 | (15| (13 | (13 | (22 | (28 | (29 | (23
is likely to hold (0% 01
) ) %) | %) | %) | %) | %) | %) | %) | %) | %
. 1 2 2 6 4 13 | 16 | 43 | 36 | 26
Use appropriate methods <0.
. . 150 | NA | (14 | (29 | (33 | (30 | (17 | (33 | (38 | (56 | (51 | (74
to test inconsistency*** 01
%) | %) | %) | %) | %) | %) | %) | %) | %) | %)
Discuss about transitivity 0 2 3 5 12 17 30 | 40 | 66 | 72 | 37 0
<0.
or inconsistency (atleast | 285 | (0% | (17 | (33 | (42 | 44 | (57 | (57 | (68 | (69 | (70 | (86 o1
one of the two) ) %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
Clearly reported whether 5 10 7 10 | 20 25 | 44 | 53 | 91 | 93 | 38 0.0
random or fixed effects | 400 | (83 | (83 | (78 | (83 | (74 | (B3 | (83 | (90 | (95 | (90 | (88 1
are used %) %) | %) | %) | )| %) | %) | %) | %) | %) | %)
4 8 9 11 | 23 30 | 51 | 56 | 95 | 99 | 43
Method for NMA <0.
432 | (67 | (67 | (10 | (92 | (85 | (10 | (96 | (95 | (99 | (96 | (10
reported 01
%) | %) 0) | %) | %) | 0%) | %) | %) | %) | %) | 0)
Use Bayesian 1 3 3 4 13 19 35 | 43 | 77 | 71 33 0
<0.
hierarchical model to fit | 302 | (17 | (25 | (33 | (33 | (48 | (63 | (66 | (73 | (80 | (69 | (77 o1
NMA %) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
. 2 9 5 6 16 20 | 36 | 32 | 56 | 51 | 20
Formal exploration of
. 256 | (33 | (75 | (56 | (50 | (59 | (67 | (68 | (54 | (58 | (50 | (47 | 0.1
heterogeneity
%) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
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o 1 3 2 4 15 17 31 | 29 | 54 | 55 | 23
All pairwise effects are 0.0
234 | 17 | (25 | (22 | (33 | (56 | (57 | (58 | (49 | (56 | (53 | (53
presented 2
%) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
4 8 8 10 | 23 24 36 | 38 | 55 | 71 | 27 00
Available outcome data | 308 | (67 | (67 | (89 | (83 | (85 | (80 | (68 | (64 | (57 | (69 | (63 3
%) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
1 2 3 1 10 13 16 | 20 | 33 | 32 6
Use only Pbest for 0.8
" 137 | (17 | (17 | 33 | (B8 | (37 | (43 | (30 | (34 | (34 | (31| (14 6
rankin
9 %) | %) | %) | %) | %) | %) | %) | %) | %) | %) | %)
0 0 0 0
0 0 1 4 10 9 14 0
<0.
Use SUCRA | 39 () (0 (2 7 | @ | 9 | (33
0% | (0% | (0 (0% 01
%) | %) %) | %) | %) | %) | %)
) ) | %) )
Number of NMAs 0.0
. 456* 6 12 9 12 | 27 30 53 | 59 | 96 | 103 | 43
published 4+

*There are 6 networks published before 2005 and are included in the total NMA group. ** In the test for trend for the
total number of published NMAs we excluded the year 2015 as it is not complete. ***Here the denominator is the
number of articles with at least one closed-loop (number of NMAs published minus the star-shaped NMA). P-values

from a trend test.

Table 3.3. Statistical models used for evidence synthesis. The number of articles and percentages.

Characteristics of NMAs Number of NMAs (%)
Bayesian hierarchical model 302 (64.5%)

Bucher method 88 (18.8 %)
Meta-regression 44 (9.4 %)

Not reported or unclear 25 (5.4 %)

Multivariate meta-analysis or meta-regression | 5 (1.1 %)

Indirect synthesis method 3 (0.6 %)

NMA from graph theory 1 (0.2 %)

3.4 Discussion

The number of published NMAs increased substantially over the years. The importance of
multiple treatment comparisons has now well known among researchers in various fields of

health and education.

Reporting quality was also improved as we found all articles published in 2015 to include a
description of the statistical methods used. The PRISMA (Preferred Reporting Items for
Systematic reviews and Meta-analysis) statement was published only recently and we expect

to have an impact on the improvements in reporting quality for NMA applications.
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Improvements might be due to statisticians becoming more experienced with the NMA
methodology. There are several educational published articles for NMA methodology that
might provide some impact for the improvement of NMA methodology and the reporting
quality [2], [12], [67], [81], [82]. Suggestions for accompanied detailed protocols on which
authors should base their NMASs have started to be applied [2], [12]. NMA protocol registration
can improve the reporting quality of NMAs and it can help to define a priori the assessment of

transitivity, inconsistency and several methodologies used for the NMA analysis.

It is notable that the Bayesian hierarchical model found to be the most popular approach for
NMA model synthesis as only five articles employed NMA using frequentist approaches. The
use of new methodological frequentist developments is expected to be increased after 2015,
such as the NMA model from graph theory with netmeta R package [35], Stata routines for
the multivariate random-effects meta-analysis model [3], [74], and design-by-treatment

interaction model to test the consistency assumption [4].

Many NMA:s in this database provide important methodological limitations. Accordingly, the
use of appropriate methods improved over the years. For example, an increasing number of
NMAs addressed transitivity or inconsistency, as three-quarters of networks published in 2015
used appropriate methods to test the plausibility of the consistency assumption. It was not
noticed a change regarding the discussion of the transitivity assumption but it is a need to

change that aiming to take valid NMA results.

To the best of our knowledge, this is the largest collection of published NMAs up to date. It
includes nearly three times the data included in Bafeta et al. [47], more than twice the data
included in Nikolakopoulou et al. [49] and about 40% more data compared to the collection by
Chambers et al. [83]. This is also the first study to formally investigate the changes in

methodology and reporting quality of NMAs over time.

This empirical evidence could inform simulation scenarios (e.g. median number of studies or
treatments) conducted in the NMA field. Based on this database of NMAs, several empirical
projects can be conducted in several aspects of NMA methodology. For the aim of the research
of this dissertation, the extracted data of NMA database could be used to provide a description
on how often outliers are provided in NMA datasets and how their existence biased the final

results.



4 Methods to detect outliers in meta-analysis

4.1 Introduction

There are many definitions for outliers in the literature and several methods to detect outliers
in regression models have been provided. Meta-analysis is actually a weighted regression
model. Assumption that no outliers exist in the data is the basis for weighted least squares
estimation or for normal likelihood maximization. Outlier detection is crucial as weighted least
sguares estimates are sensitive to outliers and their existence may be bias the model parameter
estimation. Several outlier detection methods have been extended from regression models to a

pairwise meta-analysis.

Outlier diagnostics measures fitted in the fixed-effect meta-analysis were firstly provided in a
Chapter by Hedges [84]. Viechtbauer and Cheung offered outlier diagnostics measures
considering the effect deletion of study have on fixed- and random-effects meta-analysis [85].

The detection of outliers is not an integral part of NMA. Outlier detection in NMA is much
more challenging compared to a pairwise meta-analysis as outlying studies may have an impact
on the underlying model and may not be easily identified visually. In addition, data are
multivariate and an effect can be suspicious not only by its mere size but also by its size
conditional on the comparison of the study and/or the corresponding effect derived from

indirect evidence.

As Zhang et al. [86] and Zhao et al. [87] remarked previously, outliers may be the primary
source of heterogeneity or inconsistency and may affect the validity of NMA results. Only four
methodological papers have addressed how to detect outliers in NMA evidence structures up
to date. Lu and Ades proposed the use of residual deviance to detect outliers in the Bayesian
hierarchical model [41]. Zhang et al. [86] provided four measures for the detection of outliers
in the Bayesian hierarchical model while Zhao et al. [87] offered outlier detection measures

for generalized Bayesian hierarchical models to detect outliers at observation data and not at
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aggregated data. Noma et al. [88] have recently provided four measures to detect outliers in

frequentist NMA model based on multivariate random-effects meta-regression method.

In this Chapter, we provide a brief synopsis of the several outlier detection strategies that have
been proposed in regression and meta-analytical context. We propose and evaluate several
measures and graphical tools that seek to accomodate influential studies and outliers in network
meta-analysis. These procedures are logical extensions from pairwise meta-analysis and
regression to the NMA model. The proposed outlier and influential detection measures and
visual tools can be implemented to any NMA dataset with our developed R package
NMAoutlier [28].

This Chapter is organized as follows: Section 4.2 provides an overview of outlying
identification in the meta-analytical context; Section 4.3 outlines the proposed measures
extended from pairwise meta-analysis to network meta-analysis; Section 4.4 provides an
application of the several outlier and influential measures in real datasets of networks of

interventions and Section 4.5 discusses the main findings and provides conclusions.

4.2 Outlying detection strategies in meta-analysis

Outliers can affect model parameters possibly causing bias. For example, the arithmetic mean,
is known to be particularly sensitive to outlying observations and the presence of even one
outlier unduly influences the results derived.

There are two different ways to interpret outliers; geometrically and probabilistically. With the
former interpretation, outliers are extreme values that lie far away from the other observations
while with the latter, outliers are those observations that are most unlikely to occur under the

hypothesized model [89]. Fitting of the model should be based on a clean dataset.

There are two interpretation mistakes if characterizing a study as an outlier or not; the masking
effect and the swamping effect. If there is a cluster of outliers, it is likely that results would be
affected to such a degree that outliers will not be identified. This is known as masking effect
and it is similar to a false negative. Barnett and Lewis define the masking effect as the inability
to identify even a single outlier in the presence of several suspected values [90]. Thus, the
presence of a single outlier masks the appearance of other outliers. Moreover, we may have a
false-positive result. Outliers may affect the summary effect to a such a degree that non-

outlying values may falsely appear to be outlying. This is known as the swamping effect.
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Based on our bibliographic knowledge, we outline a synopsis of the strategies to accommodate
outliers in meta-analysis. The several strategies to detect and adjust for outliers in meta-
analytical models can be classified in five general categories: A. Use of distribution other than
normal (alternative distributions) for random effects; B. Robust heterogeneity measures; C.
Likelihood methods; D. Deletion/backward methods; E. Forward methods and F. Robust

estimation.

A. Alternative distributions for the random-effects model

Meta-analysis typically assumes a normal distribution for the random-effects model. Jackson
and White provided several situations in which normality is questioned [91]. It has been
suggested that more flexible distributions should be taken more frequent in practice.
Alternative long-tailed random effects distributions reduce the weight given to more extreme
study effects (outliers). Lee and Thompson argued that normality might be a restrictive
assumption for the random-effects model and they provided alternative distributions with

heavier tails [92]. They suggested the ¢ distribution for random effects u; with density function

—(df+1)/2

p(u;/mean, scale, df) = ri@f +1)/2) (1 N (u; — mean) >

r(df/2)\/rdf dfscale

where mean is the mean, scale is the scale parameter and df degrees of freedom and they
offered skewed extensions for normal and t distribution. Baker and Jackson suggested
alternative distributions to downweigh outlying studies such as long-tailed distributions, arcsin
distribution, beta distribution, Subbotin distribution and alternative vague priors in Bayesian
analysis [93]. Baker and Jackson proposed two new marginal distributions with additional

parameters to model skewness and heavier tails [94].

B. Robust heterogeneity measures

Outliers can have an impact on the estimation of heterogeneity causing bias to meta-analytical
results. Lin et al. proposed alternative heterogeneity measures in the meta-analysis that are
robust in the presence of outliers [95]. They provided two alternative Dersimonian and Laird
heterogeneity estimators using the weighted average and the weighted median instead of the
standard weighted mean. Yu et al. proposed a robust to outliers version of maximum likelihood
(ML) estimation method based on two loss functions for log-likelihood; Huber’s rho function
and Tukey’s biweight function [96].
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C. Likelihood methods

Gumedze and Jackson, based on the likelihood function, proposed a model that shifts the
random-effects variance of each included study, separately [97]. A random-effects shift
variance model is capable to identify and downweigh studies with inflated variance (outliers)
[97]. Monitoring is deemed helpful as sharp changes in detection measures can be an indication
for outliers. Beath [98] proposed a method that considers two classes of outlying and non-
outlying studies and based on a finite mixture approach can detect and downweigh the outlying

cases.

D. Backward/Deletion methods

Viechtbauer and Cheung extended several outlying and influence diagnostic measures
developed for the linear regression model in the context of meta-analysis [85] and included
them in the R package metafor [99]. The diagnostic measures provided the influence of a study
to model parameters considering its deletion [85]. Deleted residuals, Cook’s distance, the
change in the variance-covariance matrix of the parameter estimates when a study deleted and
R; statistic are some of the measures provided [85]. Shi et al. provided an updating formula of
the measures using case deletion diagnostic method and local influence analysis under the
DerSimonian and Laird and maximum likelihood estimation, respectively [100]. Backward
algorithms have been developed for outlier diagnosis in meta-analysis [101]. This type of
algorithm removes observations according to some criterion (e.g. the largest residual) and stops
when some criterion is met (e.g. all residuals are smaller than a threshold value) [100]. The
main drawback of backward methods is that may have masking and swamping effects due to
the fact that all observations, including outliers, are used and conclusion may be affected.

E. Forward methods

Forward Search algorithm is an outlying identification method and it has recently been
implemented in meta-regression [101]. It starts with an initial subset of studies that is ideally
assumed to be outlier-free and it gradually adds the remaining studies according to their
closeness to the set of selected studies under the hypothesized model. In each iteration,
parameter estimates, measures of fit and test statistics can be monitored. Sharp changes in
monitoring measures can indicate potential outlying studies. In contrast to deletion methods,
forward methods are unaffected of masking and swamping effects and this is the main

advantage of their implementation.



131

F. Robust estimation

The classical least squares regression is sensitive in the presence of outliers. The robust
estimation has been developed for regression models and several methods have been suggested.
Yu et al. provided a review of robust estimation methods that have been proposed in regression
and conducted a simulation comparison of the detection methods [96]. Huber [102] introduced
the M-estimator which is a solution of the normal equation with appropriate weight functions.
Rousseeuw provided the least trimmed squares (LTS) estimates [103] which minimize the
trimmed sum of squared residuals. Rousseeuw [104] also introduced the least median squares
(LMS) estimation which minimize the median sum of squares. Extension of robust statistics to
meta-analytical models is innovative as there is no methodological work up to date. It can be
an area for future work in the view that there is large bibliographic research for robust

estimation statistics in regression models and it is not sensitive in the presence of outliers.

4.3 Outlier and influential case diagnostics measures for NMA

This Section provides the extension of the several outlying and influential detection measures
from regression or pairwise meta-analytical models to the frequentist random-effects NMA
model [5]. Details about the fitted model and useful notation can also be found in Chapter 2

of this dissertation.

4.3.1 Outlier detection measures
Table 4.1 provides an overview of the proposed outlier detection measures; contribution to the

Q statistic (Mahalanobis distance), residuals, and leverage.
Contribution to the Q; (Mahalanobis distance)

The most commonly used tool to assess the presence of outliers for multivariate data is the
Mahalanobis distance. An analogy to Mahalanobis distance for a pairwise comparison (or two-
arm study) is the contribution of the study i to Cochran’s Q statistic [105]. More specifically,

the formula is give by
2 ~ 2
Dy, = Qik = Wikre(Vik — Vik)

where w; j pp = 1/51-2,,( ,i=1,...,N,keS; is the fixed-effect weight of pairwise comparison

of a study.

In the case of multi-arm study, the squared of contribution to the Q for a study i with k pairwise

comparisons is given by the arithmetic average
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1 1 N2
Déi =Q; = n— Qi,k =— z Wi,k,FE(yi,k - yi,k)

Si kEeS; nsi kES;
where ng, the cardinality of S; and in matrix form
o~ -1 -
D§,, = Qix =i =) (Cov(y:)) (i — %)
P -1 -
=i —Xi)' (Siaaj) i — Xi)
= — XiD)'W;(y; — X;0)
where W; is the fixed-effect weight matrix of a study i with W; = (Si,ad,-)_l, with §; 44j a
matrix with adjusted squares of standard errors for a study i.

Leverage

Influential studies are observations that have a large impact on the model parameters. The study
with extreme value and moderate to large weight in the model parameters is called the leverage
point. Detection of such observations in regression can easily be observed with the leverage
score. For the k" pairwise comparison in the it" study, the leverage score is the k" diagonal
of the hat matrix, defined as

hix = (H); ki

where H is the block diagonal hat matrix of random-effects model H = X(X'WX)~1X'W with
blocks referring to different studies. Large leverage points indicate the existence of influential

studies.
Raw residuals

A more formal approach is to examine the residuals. The raw pairwise residual for the k"

pairwise comparison in i*"* the study is the difference between the observed effect size y;  and

the predicted effect size based on the random-effects model y; = {371-,,c =Xill,keS; } given by

A kpairraw __ ~
€ =Yik — Vik

=Yix — Xill

For each two-arm study, the raw residual (raw study residual) is the same with its raw pairwise

residual. In case of a multi-arm study i with ke S; pairwise comparisons, we define the raw
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study residual to be equal to the square root of the average of squared raw residuals within the

trial.

1 2
A k,study,raw __ ~
& —\/— § (J’i,k _yi,k)
Ng.

t kESi
Standardized residuals

The standardized pairwise residual (equivalent to the squared of Mahalanobis distance with
random-effects weights) for the k" pairwise comparison in it study is the standardized
difference between the observed effect size y; , and the predicted effect size ¥; , given by

é kpair,stand __ Yik — Vik
; E

where £2 is the Generalized DerSimonian and Laird heterogeneity estimator. For each two-arm
study, the standardized residual (standardized study residual) is the same with its standardized
pairwise residual. In case of a multi-arm study i with ke S; pairwise comparisons, we define
the standardized study residual to be the squared root of the average of squared standardized

pairwise residuals

é k,study,stand __ 1 Yik — Vik

L ng, Z ’
Sl keSi ka + ‘L’;Z
where ng, represents the cardinality of S;.
Studentized residuals
The studentized pairwise residual for the k" pairwise comparison in it" study is given by

~k,pair,stud __ Yik —Yik

l \/(1 — h)(sZ +2)

where h; , = (H) is the i*® diagonal of hat matrix H = X(X'WX) ~1X’W in the NMA model.
For each two-arm study, the studentized residual (studentized study residual) is the same with

its studentized pairwise residual. In case of a multi-arm study i with k pairwise comparisons,
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we define the studentized study residual to be the squared root of the average of squared

studentized pairwise residuals

rk,study,stud __

l

2
1 / Yik — Vik
Ng; kES; \\/(1 - hl')(siz,k + -L’:Z)

We can use a boundary of 1.96 or 2 for the value of standardized and studentized study

residuals.

Table 4.1 Overview of outlier detection measures in NMA.

1 / Yik —
é ) \Ja- 5 (2+7)

Outlier detection Formula Cut-offs
measures
Contribution to the Q , 1 Z 0
- Qi ~ p. ik
(Mahalanobis distance) s, (& l
2
5i:_ WlkFE(yl'k yzk)
L keS;
Leverage hix = (H); kk large value
H = XX'WX)"1X'wW
Raw study residual Kostudy,raw 1 2
g T = Ez (yi,k _yi,k)
v keS;
Standardized study 2 1.96 or 2
residual ék,study,stand _ i Z yi,k - yi,k
i "~ |ng,
Si fes, /sfk + 22
Studentized study residual 1.96 or 2

2
TR

~k,study,stud __
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4.3.2 Outlier detection measures considered deletion

“Leave one out” parameters for NMA model

Viechtbauer and Cheung suggested using residuals after study deletion [85]. We provide by
analogy the corresponding measures in NMA context. Table 4.2 summarizes the notation for
“leave one out” model parameters. We denote the NMA model parameters excluding study i;

the summary estimate of treatment effects “leave one out” fi_; and the between-study
variance estimator f(z_i) termed as heterogeneity estimator “leave one out”. X; is the raw of the
design matrix for study i from the whole network that provides the treatment comparison of
the study i. Based on model estimation, let us define the predicted value “leave one out” for
study i (that is actually excludes the study i) in the k" pairwise comparison Vik(—i) = Xilp).
We define the random-effects weight “leave one out” to be the weight excluding the study i of
the k" pairwise comparison

1

W; = —_—
b0 st + Ty

The weight “leave one out” for a multi-arm study is given with the arithmetic mean by
1
Wi-i) = g, Wi k(i)
t kES;
Having w; x (s in a diagonal for the k" pairwise comparison in i*" study, we denote the weight
matrix W_; to be a diagonal with w; ;_;) entries. Then, the hat matrix “leave one out” can be
defined as H_;) = Xi(Xi'W(_i)Xi)_lxi'W(_i) with the leverage “leave one out” to be the kP

diagonal of the hat matrix h_;y = (H(-y)), -

Table 4.2. “Leave one out” parameters for the NMA model.

“leave one out” model parameters Symbol or Formula
Summary estimate of treatment effects “leave one out” Hep
Heterogeneity estimator “leave one out” f(z_l-)

Predicted value “leave one out”

Weight “leave one out” 1
Wi-i) = — Wik(-i)
Si KES;
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1
W; = =
DT S+ £,

Leverage “leave one out” hp = (H(_i))kk
] -1
Hey = Xi(X; W(—i)X') X' Wi

W( i) —dlag(z +A% ))

Raw, Standardized, Studentized residuals considered deletion

The raw study deleted residual &*;)">""*" can be provided as
A k,study,raw 1 ~ 2
€i(-i) = |0 (yi.k _yi,k(—i))
n,
kESi

and the standardized study deleted residual is given by

A k,study, stand yl k yl k( 1)

i)
S kesl lk + T( i)

where f(z_l-) is the heterogeneity “leave one out” and studentized study deleted residual is

provided by

2
~k,study,stud 1 ~k,pair,stud
€i(-1) T e 2 Ci-h
Ng.

t kES;

2
yl Jk(=1)
Ng; ¥
kESl Var(yl k yk(—l’))

_ = Vik(=i
ns
i kes; 1
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where ng, represents the cardinality of S;.

We can use a boundary of 1.96 or 2 for the value of standardized and studentized study deleted

residuals.
Cook’s distance

To examine the influence of the deletion of study i, Viechtbauer and Cheung provided an
analogy to Cook’s statistic in meta-analytical context [85]. Let us consider again the relative
treatment estimates fi; compared with the reference for study i with dimensions (n — 1) as
introduced in Chapter 2. We denote with fi;_; the relative treatment estimates after considered
deletion of study i. Based on the formula that Viechtbauer and Cheung provided for Cook’s
statistic in meta-analytical context. Noma et al. [88] extended the Cook’s distance measure in
a multivariate meta-regression model. The analogy for the Cook’s distance or Cook’s statistic

for study i in NMA model from graph theory is given by
~ TR DI
C; = (H; — Hy—p) (XL*X") (H; — Fy-py)

where X is the reduced design matrix and XL* X' isthe (n — 1) x (n — 1) variance-covariance
matrix of (n — 1) relative treatment estimates fi; as introduced in Chapter 2. A general rule
provided in the bibliography for a cut off value for Cook’s statistic is that the study i is
considered outlier and/or influential if C; > 1 [106], [107]. It has been suggested that C; larger
than the 50% of F distribution with n and m — n degrees of freedom, F(n, m —n), can
indicates an influential study [106]. According to Chatterjee and Hadi, a graphical plot with all

Cook’s distance values can be examined rather than using a cut off value [106].
COVRATIO

Viechtbauer and Cheung propose the ratio of the determinants of the variance-covariance
matrix of treatment estimates (COVRATIO) when excluding the i** study from model fitting
[85]. Noma et al. [88] extended the COVRATIO measure in a multivariate meta-regression

model.

For graph-theoretical NMA model is given by

det(Cov(ﬁ(_i)))
det(Cov(fK))

COVRATIO; =



38|
where det denotes the determinant of a matrix. More analytically, the ratio of the determinant

of the variance-covariance matrix of treatment estimates is defined as

det(X -y Ly X(-p))
det()~(L+ X’)

COVRATIO; =

where X(_i) is the reduced design matrix and LJ(’_i) the Laplacian matrix “leave one out” by

fitting the model without the study i. When the ratio of determinants of the variance-covariance
matrix of treatment estimates is lower than the value 1 indicates that the removal of study i

yields to more precise treatment estimates [85].
R; statistic

Large changes in the estimate of between-study heterogeneity can provide the presence of a
potential outlier. Viechtbauer and Cheung provided the R; statistic is given by
RGZ), = 100 x LoD
()i = 100 X —5—
R(%?); statistic quantifies the change in the estimate of the heterogeneity estimator with the
exclusion of the study.

Hedges and Olkin suggested also to examine changes in Cochran’s Q statistic [84]. We provide

the R; statistic for monitoring changes for generalized Cochran’s Q (Q*°*%") defined as

total _ ntotal
R(Qtotal)i =100 X Q Q(—l)

Q total

The analogy of R; statistic for Q statistic within designs (Q"¢?) as the presence of outlier can
influence the amount of heterogeneity

het __ le—elt)

R(Q"™); = 100 X —e—

and the analogy of R; statistic for Q statistic between designs (Q) as the presence of outlier

can influence the inconsistency

Qe — Qéﬁ%

R(Q™); = 100 X g
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Large positive values of R; statistics indicate that the removal of study i provides large changes
in heterogeneity or inconsistency measures which we expect it when study i is outlier and/or

influential study [85].
DFBETAS statistic

The influence of deletion of study i can also be examined with the DFBETAS statistic that is

given in NMA by

_ _ _ _ 1
DFBETAS; = f; — fy—p = (B — ”i(—i))\/_ Z Wi k(i)
Ng.
t kES;
Where w; i = 1/(sfx + £f-;y). When DFBETAS; > 1 then the study i is considered
influential for small to medium datasets [85], [108]. Table 4.3 summarizes the “leave one out”

detection measures.

Table 4.3. Overview of outlying detection measures considered study deletion “leave one out”

measures.

Leave one out detection Formula Cut-offs

measure

Raw study deleted residual

1 2
A k,studyraw _ _wN
) = ng E (y ik — Y i,k(—i))
i kES;

Standardized study deleted 2 1.96 or 2
residual A kstudy,stand _ 1 yi'k B yl':k(_l')
LS N N PO
RS\ Stk T T
Studentized study deleted gl,’?jg‘dy'“ud 1.96 or 2
residual
_ 1 Yik = Vikc—p
Ng. 1
i €S, A2
kesi \ Sl-z,k +71° + h(—i) B Y n i
\ Sik T T(=D

Cook’s distance C; C, = (ﬁi B ﬁi(—i)),(xl‘-‘- i’)_l(ﬁi _ ﬁi(—i)) C;>1
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treatment estimates

R(ii;); = 100 x

Hi

Ratio of the determinants of det(X—y Li_y X(_p) COVRATIO;
(=D (=) A=) L
_ _ COVRATIO; = -
the variance-covariance det(XL+ X') <1
matrix (COVRATIO;) of
treatment estimates
R; statistic for heterogeneity £2 — f(z_l-) Large positive
R(fz)i =100 x —
T values
R; statistic for relative B — By Large positive

values

R; statistic for generalized
Cochran’s Q (Q°t%)

l total
Qtota _ Q((—)LSI

R(Q***"); = 100 x Qtotal

Large positive

values

R; statistic for Q statistic

within designs (Q"¢?)

het het
Q" - Q%

R(Q"¢"); =100 x oret

Large positive

values

R; statistic for Q statistic

between designs (Q ™€)

Qinc _ Q(LE(L:)

R(Q™€); = 100 x T

Large positive

values

DFBETAS; statistic

1

DFBETAS; = (fi; — Fy—p)) \/— Z Wi k(~i)

Ng.
Si KES;

DFBETAS; > 1
for small to
medium

datasets

4.4 lllustrative examples with outlier and influential diagnostics measures

4.4.1 Dataset comprises four interventions to aid smoking cessation

We performed an outlier detection analysis based on several proposed outlying and influential

detection measures in the dataset comprises four interventions to aid smoking cessation [41],

[42] (details for dataset is given provided in Chapter 2). Figure 4.1 indicates the contribution

to the Q statistic (Mahalanobis distance) for each study computed with function

NMAoutlier measures ()and plotted with plot NMAoutlier measures (). We

monitored that study 3 has the largest contribution to the Q statistic with value 117.39 while

the rest values ranged from 0.34 to 26.40. Hence, study 3 is potential an outlying study.




| 41

Mahalanobis plot
120 - -

Q0 -

60 -

Qi-Mahalanobis distance

30 -

-
o L O 4 e ® ® LA SR 5 e . o *

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

study

Figure 4.1. Contribution to the Q (Mahalanobis distance) for each study for the smoking cessation

dataset.

Figure 4.2 shows the standardized study deleted residuals for each study. For all included
studies in the network, standardized study deleted residuals values range inside the (0, 2)
interval except study 3 that is far away with a large value (4.14) and study 7 that is close to the

boundary of two with value (2.11) (Figure 4.2).

Standardized study deleted residual

Standardized study deleted residual
L]

Study deleted

Figure 4.2. Standardized study deleted residuals for the smoking cessation dataset.

Figure 4.3 depicts that study 3 has the largest Cook’s distance (value 1.51) and is the only study

that exceeds the cut off value and satisfies C; > 1,i = 3. All the included studies have
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COVRATI05,i = 3, close to 1 or larger but study 3 is the only one that provides the smallest
COVRATI05 with value 0.06 satisfying COVRATIO; < 1 (Figure 4.3, right-hand side).
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Figure 4.3. Cook distance (left-hand side) and COVRATIO (right-hand side) for the smoking
cessation dataset.

Leaving the study 3 out of the NMA model fitting, “leave-one-out” model parameters
providing a large change. Study 3 provides a large impact in model parameters as its deletion
creates a large change to “leave-one-out” model parameters. We monitored the heterogeneity
“leave-one-out” for study 3 to be dramatically decreased affecting the weight “leave one out”

to be increased and the relative treatment effects to be influenced (Figure 4.4).
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Figure 4.4. Heterogeneity (left-hand side) and weight “leave-one-out” (right-hand side) for smoking

cessation dataset.
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Figure 4.5 shows the DFBET AS statistic for each treatment considering the deletion of a study.

DFBETAS;, i = 3 statistic (deletion of study 3) has the largest change for each treatment B, C,
and D.
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Figure 4.5. DFBETAS statistic for each treatment considering deletion of a study for smoking

cessation dataset.

Table 4.4

provides the statistic

changes in R;
R(£?) for heterogeneity estimator 2, total Q statistic Qt°t*, (Q statistic within designs Q"¢
and between designs Q. We monitored large changes in R; statistic for Q% Q"¢t and
R(t?) as R;,i=3 increased
(R;(Qt°ta) = 69.79, R;(Q™¢) = 75.89, R;3(£2%) = 74.20). The deletion of study 3 reduced

heterogeneity. Large changes provided also in R; statistic for Q¢ with a large decreased

values for statistic has been

(R3(Q™™) = —105.29) can provide us that the deletion of study 3 increased the inconsistency.
Hence, “leave one out” measures providing large changes when removing study 3 from NMA
model fitting. Based on several outliers and influential detection measures conducted, we can

conclude that study 3 is an influential study and outlier.

Table 4.4 “Leave one out” detection measures for R(Q°*%!), R(Q™), R(Q"eY), R(£?).

Study R(Qotet) R(Q™) R(Q"e) R(#%)
deletion
1 3.82 42.52 0.00 -0.95
2 0.57 3.74 0.00 -5.30
3 69.79 -105.29 75.89 74.20
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4 0.03 0.57 0.03 -1.11
5 1.33 8.29 1.52 -14.42
6 1.03 -0.77 1.11 0.43
7 5.37 -4.53 5.77 4.59
8 1.43 -1.15 1.53 0.71
9 0.08 1.25 0.09 -1.85
10 1.76 4.52 1.42 -5.44
11 0.20 2.68 0.41 -4.37
12 1.36 7.21 1.55 -12.28
13 0.41 0.96 0.46 -1.14
14 0.02 291 0.03 -4.79
15 1.76 53.61 0.00 1.24
16 0.63 -1.06 0.90 -2.10
17 0.38 10.44 0.46 -19.02
18 3.01 0.97 3.31 -0.73
19 14.73 -2.21 16.24 5.51
20 5.87 3.11 6.50 -4.08
21 1.08 6.89 0.00 -1.79
22 0.84 10.14 0.00 -1.64
23 1.40 -3.94 0.92 -1.08
24 0.22 -5.12 0.92 -1.08

4.4.2 Dataset with thrombolytic drugs

We applied the proposed outlier detection measures in a network of interventions of eight
thrombolytic drugs for acute myocardial infarction [44] provided in Chapter 2. We selected
this dataset partly because inconsistency has been detected by others due to studies 22 and 23
and partly because Zhao et al. [87] have provided an outlying diagnosis and concluded that the
above studies are indeed outliers. We are interested to investigate if outliers are responsible for

this inconsistency and if this can be detected with our proposed detection measures.

Figure 4.6 depicts that studies 22 and 23 have the largest values in the contribution to the Q
statistic (Mahalanobis distance) plot. Study 22 has the largest contribution to the Q statistic
followed by study 23. Based on our detection outlier analysis, we can conclude that studies 22

and 23 are indeed outliers which comes in agreement with Zhao et al. [87].
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Mahalanobis plot

Qi-Mahalanobis distance

study

Figure 4.6. Contribution to the Q for each study in the thrombolytic drugs dataset.

4.5 Discussion

We propose and extend several measures and visual tools to detect outlier and influential cases
in NMA. The outlier and influential diagnostics presented are logical extensions from
regression or pairwise meta-analysis to the NMA context. Several graphical methods provided
in this Chapter can be used to figure out studies that are far away for the rest of the data and to
find the studies that are responsible for large changes in model parameters, heterogeneity and

inconsistency measures.

Conclusions for outlying and influential cases can be made if there are sharp changes and/or if
the proposed cut-offs no satisfied. Following bibliographic recommendations, several cut-offs
for the detection measures are provided but this should not strictly be used as this offered as
empirical rules to make conclusions for outlyingness and influential cases. For example,
Viechtbauer and Cheung [85] provided values 1.96 and 2 for the absolute studentized residuals
while Noma et al. [88] following a parametric bootstrap method to obtain the sampling
distribution for studentized residual. There is no subjective rule in the diagnosis of outlyingness
as conclusions made due to sharp changes or empirical cut-offs in proposed measures. The
proposed measures and visual tools can detect and visualize extreme study effects that are
outliers and influential studies and studies responsible for heterogeneity and inconsistency

existence.

Meta-analytical models are sensitive to outliers and identification of such cases needs further

investigation. Deletion of studies should not be routinely done in meta-analyses as this may be
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problematic to omit nonoutlier extreme study effects due to their large sampling errors [109].
Following the recommendation in systematic reviews, potential outliers can be excluded in
sensitivity analyses to explore the robustness of results [110], [85]. Results should be stated
with caution when outlier analysis provides different conclusions than the primary analysis
[85]. If outlier analysis does not alter the results, we can be more confident that conclusions
are robust to outliers [85]. In the smoking cessation example, there is enough evidence that
studies 3 and 7 are potential outliers. However, results from these studies can be valid and
genuine. It could be the case that characteristics of these trials may explain the differences in
observed effect sizes. Generally, caution is needed in deleting outliers and hereby extension in
methodological aspects for downweighing the effects of influential and outlying studies may
be an alternative choice for future work and motivate us to provide the proposed research

provided in Chapter 6.

The proposed measures fitted in the frequentist framework with NMA model from graph theory
but they can also be implemented in Bayesian framework. To date, Zhang et al. [86] have
provided some outlier detection measures for the Bayesian NMA model. Matsushima et al.
fitted also some measures to detect outliers in the meta-analysis of diagnostic accuracy studies
[111]. The proposed measures and visual tools in this Chapter can also be extended in the meta-

analysis of diagnostics accuracy studies or in meta-analysis with individual participant data.



5 Forward Search Algorithm to detect outliers in network meta-

analysis

5.1 Introduction

The Forward Search (FS) algorithm was initially developed for the estimation of covariance
matrices [112] and regression models [113], [114]. It was subsequently extended for outlier
detection to multivariate data methods [115], factor analysis and item response theory models
[116], [117]. Mauvridis et al. recently extended the FS algorithm in meta-regression [101]. This
algorithm starts with an initial subset of studies that is ideally assumed to be outlier-free and it
gradually adds the remaining studies according to their closeness to the set of selected studies
under the hypothesized model. Parameter estimates, measures of fit and test statistics can be
monitored during the search. During the search, sharp changes denote the existence of
influential studies and/or outliers and can detect studies responsible for heterogeneity and

inconsistency existence.

This Chapter provides the methodological extension of the FS algorithm in network meta-
analysis. As part of this research, the R package NMAoutlier [28] was developed to perform
FS to any NMA evidence datasets. The structure of this Chapter is organized as follows:
Section 5.2 outlines the methodological extension of the FS algorithm to NMA model; Section
5.3 presents applications of the proposed FS methodology in real and simulated datasets of
networks of interventions and Section 5.4 discusses the main findings and provides directions

of the proposed diagnostic methodology in NMA applications.

5.2 Methodological extension of the forward search algorithm in NMA

The FS algorithm is a diagnostic iterative method for outlier detection. It starts with a small
subset of the included studies that is ideally considered to be outlier-free. The initial subset of
studies constitutes the basic set. The studies not included in this basic set constitute the non-

basic set. These two sets are not constant throughout the search but they are continuously
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changed. In each iteration, the method adds a study from the non-basic set to the basic set. The
study from the non-basic set was chosen based on how close the study is to the hypothesized
model fitted to the basic set. The process is repeated until all studies are included in the basic
set. We monitored model parameter estimates and other statistics of interest during the search.
Monitoring is helpful to identify the studies that have an impact on model parameters or/and in
statistics measurements and are responsible for heterogeneity and inconsistency. We
categorized the FS procedure in three steps: (1) the choice of the initial subset; (2) the
processing of search and (3) monitoring. The steps in relation to NMA and details are presented

as follow:

5.2.1 Choice of the initial subset

The choice of the initial subset is the first crucial point of the FS. Network meta-analysis is a
regression model with the number of treatments defining the number of columns of the design
matrix. During the search, the number of columns of the design matrix may increase if a new
treatment is added to the basic set. Hence, when contrasting the basic to the non-basic set we
may compare different models. Also, we need to make sure that there is a path between each

pair of vertices in the network. In a nutshell, the requirements for the initial subset are:

e toinclude all n treatments, otherwise, the design matrix X will not have the same
number of columns throughout the search and
e the network to be connected.
For the choice of the initial subset, we need to define how to select the size of the initial
subset and how to select the studies that constitute the initial subset.

5.2.1.1 Selecting the size of the initial subset

In a network meta-analysis with n treatments, the number of model parameters to estimate is
n (n — 1 effect estimates and heterogeneity — assumed equal heterogeneity estimator across
treatment comparisons). Also, a minimum of n — 1 two-arm studies is necessary to create a
connected network graph with n treatments (nodes). We require the size [ of the initial subset

to include all n treatments, [ = n studies.

For networks with a large number of trials, a bigger size [ of the initial subset can be considered
to save time and allow the search to start with a more robust initial subset. We chose to start
with a size equal to the maximum between the number of treatments and the 20% of the total
number of studies, | = max (n studies, 0.2 X N studies) aiming to have better parameter

estimation in the early iterations of the search.
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5.2.1.2 Selecting the studies to include in the initial subset

Search a large number (P) of candidate initial subsets of size [ (e.g. P = 100). Ideally, the
initial subset is clean of outliers. Following the typical strategy of literature in the FS algorithm
[113], we fit an objective function to each candidate’s initial subset. We choose to minimize
the median of the absolute standardized residuals. We can also assume other objective
functions such as maximizing the median of the absolute log-likelihood contributions. The
candidate subset that optimizes the objective function (minimize the median of standardized
residuals or maximize the median of the absolute log-likelihood contributions) is considered to
be the initial subset.

Let us denote with D}, each candidate initial subset p = 1,.., P of [ studies, then we obtain the

subset-specific estimates  (fi,:, 2;) of each subset D! and we calculate the objective
Dy ‘D P
P

function f (}’z,Sz,Xz,ﬁD;,,ff,zzJ ) with observations y;, s;, X;,i = 1, ...., N of all entire data set.

Objective functions of the median of the absolute standardized residuals and of the median of
the absolute log-likelihood contributions are provided with the equations (1) and (2),

)
2 ) @

respectively:

) k,study,stand
i.D},

a0 a2 ) .
f (}’i' 5i, Xi) ”Dzl):TDzl)) = medlan(

_ log(wl-) _ (é k,study,stand)

= A2 .
f (}’i, s X, M%,TDZ%) = medtan(

i.D},
where w; = 1/ (sl-2 + fgl) and &4 the standardized residual of study i as
p Dp
. . . o~ e AD e ~2 . akstudystand __
introduced in Chapter 4 by replacing i with Bpt and 7= with T ei,D{, =

5.2.2 Processing in the search

Let us denote the initial basic set (for j = 1) with D! and the complementary non-basic set as
(DYH¢. For each study in non-basic set y;,s;, X; € (DY), calculate the objective function
f(yi,si,Xi,ﬁDz,ff)l) that measures the closeness between D! and (D!)¢, where ﬁDz,flz), are

estimated from the basic set D*. The study lies closer to the basic set is the next to enter it. Bear
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S;

in mind that if a S; - arm study enters the FS algorithm, all ( 5 ) possible treatment comparisons

enter at once.

Proceed with the algorithm for j = 2,.... N — [ iterations until all studies are included in the

basic set. For each iteration define the basic set D! and the non-basic (D})°. Compute the

objective function f (yl-, Si, Xi, By, f;l), where (f,1, f;,) are subset-specific estimates for the
J j J J

basic set D/ with observations y;, s;, X; € (D})C. Then, re-define the basic set and the non-

basic, order studies during the FS procedure by monitoring parameter estimates, outlier and

influential diagnostics, ranking measures, heterogeneity and inconsistency measures (as

described in Section 4.2.3). Forward plots for statistical measures are developed during the

procedure aiming to monitor changes in the statistical measures. Table 5.1 summarizes the

notation for the methodology of the FS algorithm in NMA.

Table 5.1. Notation for the methodology of the FS algorithm in NMA.

FS algorithm notation:

[ the size of the initial subset

P a large number of candidate initial subsets of size [ (e.g. P = 100)
p = 1,.., P each candidate initial subset of [ studies

j=1,...,N — leach iteration of the FS algorithm

Steps of FS algorithm:
For the initial subset:

Dz’, each candidate initial subset p of [ studies

(ﬁD}z’ , fgé ) subset-specific estimates of each subset Dzl,

f (yl-, si, X;, ﬁn},' fﬁ;} ) objective function with observations y;, s;, X; of all entire data set.

For the first iteration j = 1:
D} initial basic set, (D})*non-basic set

(PA‘Di , flz){ ) subset-specific estimates for the initial basic set D}

f (yl-,sl-,Xi, ﬁui'flz){ ) objective function with observations y;, s;, X; € (D})".

For iterationsj = 2,....N — [:

D} basic set, (D})* non-basic set
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~ A2 ige . R 1
([,lD]z_, ‘L'D}) subset-specific estimates for the basic set D;

f (yi, s, X, ﬁD];, ff);) objective function with observations y;, s;, X; € (D})C.
J

5.2.3 Monitor the search

5.2.3.1 Outlier and influential case diagnostics measures
During the forward search algorithm, several outlier and influential case diagnostics measures

are monitored. Standardized residual for i study &°™“®"***® (provided in Chapter 4) is

calculated in each iteration. We monitored the Cook’s statistic for NMA introduced in Chapter

4 at j — 1 iteration to j iteration by replacing f; with the relative treatment estimates . at Djl
]

basic set and the relative treatment estimates after considered deletion of study fi;_;) with the

relative treatment estimates at the basic set Djl_l, fipr . For Cook’s statistic, we denote
j—1
the (n — 1) x (n — 1) variance-covariance matrix X, L7, X', of (n — 1) relative treatment
j bj Dj
estimates ji,,; compared with the reference. The ratio of determinants of the variance-
J

covariance matrix of treatment estimates (provided in Chapter 4) was also calculated at

iteration j to iteration j — 1 denoting the variance-covariance matrix with X, L*, X', and
j DjDj

X, L7, X', forbasicsets D} and D_; respectively.

l
Dj_4 j-1 Yj-1

5.2.3.2 Ranking measures

We monitored P-scores [7] to identify potential studies that influence the ranking of treatments.
The P-score (P,) of a treatment A can be interpreted as the proportion of treatments inferior to
treatment A. That is, a large P-score indicates a good treatment option for treatment A instead

of the other competing treatments.

5.2.3.3 Heterogeneity and inconsistency measures

Large heterogeneity will challenge the interpretation of summary results whereas inconsistency
may lead to biased treatment estimates. During the FS procedure, we calculated the generalized
Cochran’s Q (Qt°t*)), Q statistic within designs (Q"¢%) and Q statistic between-designs with
full design-by-treatment interaction model (Q™¢) [39] as provided in Chapter 2. The
assumption of consistency can be tested by comparison of direct and indirect evidence [118].
Konig et al. introduced a back-calculation method to derive indirect estimates from direct



52 |

pairwise comparisons and network estimates [119]. We monitored the z — values of

disagreement between direct and indirect evidence for each comparison.

5.3 lllustrative examples

5.3.1 Artificial simulated outlier

For illustration, we simulated a single NMA data set with four treatments (A, B, C, and D) and
eight pairwise comparisons (studies), i =1, .....8. Treatment A is chosen as reference
treatment, the true effects are chosen with values pyg = 0.3, g = 0.4, uyp = 0.5 and the
between-study variance is 72 = 0.12. Following Kontopantelis and Reeves [120] and
Brockwell and Gordon [121], we generated the study variances from ¢;2~ X2 /4,i = 1,.....8
with values restricted to the interval (0.009,0.6). Seven effect sizes are generated from
Vierea~NWe1e2, 02 +72),i = 1,....,7 where t1t2 are the treatment comparisons t1t2 =
(AB,AC,BC,BD,AD,CD,CD), u;1+, the true effects generated from consistency equations for
t1t2 # (AB,AC,AD),i.e ugc = Uac — Hap- Following Filzmoser [122], Knight and Wang
[123], and Hardin and Rocke [124], we artificially generated a shift outlier for the eighth study
(i = 8) with treatment comparison C versus D and with observed effect size to follow the

formula yg cp~N(ucp + 4SD(y), og* + 72), where SD(y) is the sample standard deviation of

values y = (¥1,4p -1 ¥7,cp)-

Study 8 provides a markedly different intervention effect compared to the rest of the simulated
data (Table 5.2). The artificial simulated dataset is provided in Table 5.2. We used R function
NMAoutlier from R package NMAoutlier [28] with the criterion of the smallest absolute
standardized residuals; see equation (1). We considered P = 100 candidate initial subsets and
the size [ to be equal with the number of treatments, [ = ma x(4,0.2 X 8) = 4 studies. The
subset with studies 3, 5, 1 and 7 minimized the criterion (the median of the absolute
standardized residuals) among the candidate subsets and set as initial set. Then, forward search
gradually added the study that minimized the median of the absolute standardized residuals,
until all studies entered after four iterations. FS algorithm was completed after a total of five

iterations.

Table 5.2. Effect size y;, standard error s; and treatment comparisons for each study of the artificial

simulated dataset.
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Effect size y; | Standard error s; | treatl | treat2 | study label
-0.0820 0.5091 A B 1
0.3198 0.0125 A C 2
0.2171 0.2437 B C 3
0.2100 0.0153 B D 4
0.4926 0.1928 A D 5
-0.8612 0.4800 C D 6
0.4115 0.1007 C D 7
2.7639 0.4604 C D 8

Figure 5.1 provides the forward plot of standardized residuals for each iteration produced with
fwdplot from R package NMAoutlier [28]. Study 8 entered last in the forward selection
procedure. Figure 5.1 shows that study 8 has a very large standardized residual in comparison

with other studies and, thus, clearly detected as outlying.

forward plot for standardized residuals
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Figure 5.1. Forward plot for standardized residuals of basic set in each iteration of the FS algorithm.

5.3.2 Dataset comprises four interventions to aid smoking cessation

5.3.2.1 Assessing outlying cases

Figure 5.2 provides the comparison-adjusted funnel plot [78] for the smoking cessation data by
choosing the order from least effective to most effective treatment, (1) no contact (A), (2) self-
help (B), (3) group counseling (D) and (4) individual counseling (C). We can see that study 3
lies far away from the bulk of the data. This is because study 3 has a large effect size given its

size. We conducted the FS algorithm starting with P = 100 candidate initial subsets of size
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[ = 5 and used the criterion of the smallest absolute residual. The FS steps were completed in
27 seconds. Table 5.3 summarizes the studies constitute the initial set and which study entered

each iteration of the FS algorithm but also heterogeneity and inconsistency measures. We

noticed that study 3 entered in the last iteration.
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Figure 5.2. Comparison-adjusted funnel plot [78] for smoking cessation data. Comparison-adjusted

funnel plot produced in R [76] from netmeta package [35]. y — axis provides the standard error and

the x — axis provides the odds ratio centered at comparison-specific effect.

Table 5.3. Initial set and study entered into the basic set of FS algorithm. Q statistics (Q°t, Qi¢, Q"¢t)

and  heterogeneity  estimator #2  for each iteration of the FS  algorithm.
Results are given from NMAoutlier [35] package.
iterations Study entering Qtotal Qinc Qhet 2
1 9,14,17,11, 15 0.06 0.00 0.06 0.00
(initial set)

2 4 0.22 0.00 0.22 0.00
3 16 0.50 0.00 0.50 0.00
4 21 0.65 0.16 0.50 0.00
5 13 1.16 0.13 1.03 0.00
6 5 1.46 0.08 1.38 0.00
7 12 1.69 0.06 1.64 0.00
8 6 4.17 0.06 4.11 0.00
9 18 7.42 0.03 7.38 0.00
10 8 11.05 0.04 11.01 0.00
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11 20 15.03 0.00 15.02 0.02
12 10 18.46 0.42 17.69 0.03
13 19 29.12 0.14 28.67 0.07
14 7 43.96 0.21 43.42 0.13
15 1 53.45 6.84 43.42 0.16
16 24 53.45 6.85 43.42 0.15
17 2 55.40 7.61 43.42 0.14
18 23 58.44 7.92 45.17 0.15
19 22 61.21 9.57 45.17 0.15
20 3 202.62 4.66 187.40 0.59

Confidence intervals of summary estimates for the treatments B and C broaden in the last
iteration (Figure 5.3) because the between-study heterogeneity estimator increased
substantially in this iteration (Table 5.3). As the forward plot (Figure 5.4, right panel) shows,
the ratio of variances increased rapidly in the last iteration. We monitored a dramatic increase
for heterogeneity estimator, Q"¢ and Q™¢¢ but a reduction for Q¢ in this final iteration (Table

5.3). Thus, inconsistency in the whole network is masked due to the large heterogeneity.

6 6 6
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Figure 5.3. Forward plots for summary estimates and their 95% confidence intervals for each
treatment B, C, D versus control A. Forward plots produced in R [76] with function

forwardest () from NMAoutlier package [28].

In conclusion, study 3 is considered an outlier and influential study. Study 3 entered the last
FS iteration, produced sharp changes in outlying measures and influenced the model
parameters (heterogeneity and summary estimates). Table 5.3 provides that the whole network

has large values for heterogeneity estimator £2 = 0.59 and Q"*¢* = 187.40 (last iteration 20 of
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the FS algorithm). Before adding study 3, at iteration 19, heterogeneity measures are decreased
with values 2 = 0.15, Q"¢ = 45.17 (Table 5.3). By entering of study 3, we monitored the
95% confidence intervals of summary estimates to broaden (Figure 5.4). Inclusion of study 3
provide different summary estimates with values (last iteration 18 of FS) [iz =
0.42 (—0.30,1.13), fic = 0.73 (0.30,1.16), fip, = 0.90 (0.09,1.70) in comparison with
summary estimates at iteration 19, fiz = 0.27 (—0.17,0.71), i = 0.47(0.19,0.73), [ip =
0.65 (0.12,1.19). Moreover, study 7, a study that compares A versus C treatments, provides
closer effect estimate with study 3 that the rest studies with treatment comparisons A versus C.
It enters at iteration 14 and occurring an increase in heterogeneity but also a sharp change in
Cook distance (Figure 5.4 and Table 5.3).
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Figure 5.4. Forward plots for cook distance (left) and the ratio of variances (right) for each iteration
of the FS algorithm. Forward plots are provided by function fwdplot () in package NMAoutlier
[28].

Repeating the process of FS algorithm for smoking cessation data for 100 times, conclusions
about the robustness of study ordering indicates that study 3 entered in the last FS iteration in

82 times, in the initial set 15 times and 3 times at an intermediate iteration.

5.3.2.2 Assessing inconsistency in smoking cessation data

Higgins et al. [40] initially applied the full design-by-treatment interaction model to the
smoking cessation data. For the whole network, the full interaction model does not provide
evidence for inconsistency (Q*¢ = 4.66,p = 0.7). Monitoring the full interaction model in

each iteration of the FS algorithm, we noticed a sharp increase in Q™*¢ when study 1 entered at
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iteration 15 (Table 5.3). Searching for local inconsistency, entering of study 1 provides changes
of differences between direct and indirect comparisons. Forward plot of z — values (Figure
5.5) depicts that at iteration 15, differences between direct and indirect evidence are large for
‘A versus D and ‘C versus D’ (4 yersus p = 1.50, Z¢ persus p = 2.20). Study 1 is a triangle
three-arm study with treatment arms A, C, and D. It was the first time that a study comparing
interventions A, C and D enters the search. Conclusions from forward plot of z — values but
also changes of Q" show that study 1 is influential for the design inconsistency in ‘A versus
B’ and ‘A versus D’ effect sizes between the two-arm and three-arm studies. We monitored
also changes in inconsistency measures when the other three-arm, study 2 with treatment arms
B, C and D, entered (iteration 17). This comes in agreement with the conclusion given by
Higgins et al. [40] that there is a design inconsistency in effect sizes between two-arm and

three-arm studies in smoking cessation data.

forward plot for difference of direct and indirect estimate (z-values)
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Figure 5.5. The forward plot of z — values of disagreement between direct and indirect evidence for
each comparison (back-calculation method) for each iteration of the FS algorithm. Forward plots are

provided by function fwdplot () in package NMAoutlier [28].

5.3.3 Dataset comparing interventions for actinic keratosis

We identified statistically significant inconsistency in the whole dataset for actinic keratosis
[43] using the design-by-treatment interaction model (Q™¢ = 23.05,df = 7,p = 0.001).
Table 5.4 provides the between-designs Q¢ statistic after detaching a single design for actinic
keratosis dataset. The between-designs Q"¢ statistic indicates that the dataset satisfies the
consistency assumption only when the design 1 versus 6 versus 8 was detached (Q*¢ =
10.18,df = 5,p = 0.07) (Table 5.4). Study 28 is the unique study with treatment design 1
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versus 6 versus 8. We are interested to investigate if study 28 is a potential source of

inconsistency. Therefore, we are interested to check whether study 28 is outlying or influential.

Table 5.4. Between-designs Q" statistic after detaching of single designs for actinic keratosis dataset.

Detached design Between-designs Q Degrees of freedom p-value
statistic (df)

1 versus 3 103.72 6 <0.0001

1 versus 4 86.80 6 <0.0001

1 versus 5 93.89 6 <0.0001

1 versus 6 98.61 6 <0.0001

3 versus 6 103.72 6 <0.0001

4 versus 5 101.94 6 <0.0001

4 versus 7 95.78 6 <0.0001

1 versus 5 versus 6 73.77 5 <0.0001
1 versus 6 versus 8 10.18 5 0.0704
4 versus 7 versus 8 73.52 5 <0.0001

We conducted the FS algorithm starting with P = 100 candidate initial subsets of size [ =9
using the criterion of the smallest absolute residual. Study 28 entered in the last step of the FS
algorithm which can be the first indication that study 28 is outlying or influential. Fitting the
full interaction model, we monitored a sharp increase in Q™ statistic (from 3.68 to 23.05)
when study 28 entered (iteration 27) (Figure 5.6). Thus, the FS algorithm confirms that study

28 is a source of inconsistency.
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Figure 5.6. Forward plots for generalized Cochran’s Q (Q“’t‘”), Q statistic within designs (Q"*¢?) Q

statistic between-designs with full design-by-treatment interaction model Q€. Forward plots produced

in R [76] with function forwardplot () from NMAoutlier package [28].

Sharp changes in the last step of FS in forward plots for Cook distance and the ratio of variances
lead to the conclusion that study 28 is an outlier (Figure 5.7). After removing the outlying study
28, i.e., the source of inconsistency, from the dataset, the inconsistency problem was overcome

(design-by-treatment interaction model, Q = 3.68,df = 5,p = 0.59).
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Figure 5.7. Forward plots for Cook distance (left) and ratio of variances (right). Forward plots produced

in R [76] with function forwardplot () from NMAoutlier package [28].

5.4 Discussion

We propose a diagnostic method with the FS algorithm that detects studies having a
disproportionate effect on summary effects, heterogeneity, and inconsistency in NMA. The
novel tool allows us to identify outlying and influential studies on the basis of observing sharp

changes in the chosen monitoring measures.

There are some limitations to the FS methodology in NMA. FS methodology can be a time-
consuming method as it requires a lot of time for very large NMAs. FS application in the real
data sets indicated that computation time increased in accordance with the total number of
studies in the network (27 seconds for 24 studies with smoking cessation outcome in

comparison with 59 seconds for 35 studies with actinic keratosis outcome). FS methodology
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should be used with caution as different criteria to initiate and progress in the search may result

in a different ordering of studies.

Even if the same criteria are selected, different ordering of studies can be provided, but sharp
changes in monitoring measures conclude to the same conclusions. The initial subset is likely
considered outlier-free but there is a possibility of outlier entering in the initial subset. For
example, in smoking cessation data, we monitored 15 out of 100 times the entry of outlier
(study 3) in the first FS iteration. Entering of an outlying study in the initial subset would be
sure if this study is the only one with a specified treatment comparison in the network structure
and therefore it will be entered in the initial subset due to the methodological requirements
(connectivity of initial subset including all treatments) of FS procedure. Entering an outlier in
the initial subset can cause abnormalities; that can be the larger heterogeneity estimator for the

first iteration compared to other iterations.

The FS algorithm may be impaired by abnormalities in the search and for this reason, we
suggest to rerun the forward search 5-10 times from random starting points to explore the
robustness of the ordering. Moreover, if abnormalities are still provided in the initial subset,
even if some repeats of forward search conducted, we advise monitoring the FS methodology
in accordance with simple measures, such as residuals or contribution to the Q statistic for each

study (see Chapter 4 for measure details).

Another issue is how to detect if a change in a statistic is due to the inclusion of an outlying
study or can be attributed to random variation. For this reason, it has been suggested to
accompany forward plots with simulation envelopes that set the boundaries of changes in fit
statistics that can be attributed to random variation. These simulations envelopes can be
generated from many forward searches applied to data sets generated using parameters,
summary effects, and heterogeneity, equal to those observed in the dataset in question. Such a
process is time-consuming and future research may find alternative methods of computing the

acceptable changes in fit statistics that can be attributed to random variation.

The forward search algorithm is a promising diagnostic tool for extreme study effects which is
unaffected from masking and swamping effects. Robustness of results indicates that we get
reliable conclusions by using different criteria and there is the robustness of ordering the
studies. The FS algorithm can be extended to the meta-analysis of diagnostic accuracy studies,

the meta-analysis with multiple outcomes or individual patient data meta-analysis.
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In conclusion, we argue that the method should be employed as a diagnostic tool and may
reveal important information about the data. It is particularly useful for detecting studies

responsible for heterogeneity and inconsistency.
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6 Random shift variance NMA model for outlier identification

6.1 Introduction

Several outlier detection measures, such as deletion measures, allow a shift in the mean for a
single observation (study result) known as a mean shift. An outlier is typically observed as an
inflated (shifted) effect variance [97]. Cook et al. [125], based on shift variance, introduced an
alternative approach to detect outliers in which each data observation was considered with
inflated variance (shift variance) in the fixed-effect linear model. All parameters were
estimated with the maximum likelihood estimation method [125]. Cook and Weisberg [107]
used the term variance shift for this model. Thompson [126] considered the same model using
restricted maximum likelihood estimation instead of maximum likelihood. Harville [127] and
Thompson [126] recommended to use the restricted maximum estimation method rather than
the maximum estimation method. Gumedze and Jackson [97] extended the variance shift model
in a random-effects meta-analysis model for identifying and downweighing outlying studies.
For brevity, we denote the Random-effects Variance Shift Outlier Model with RVSOM. The
shift variance model initially allows the identification of outliers and if any study or studies are

identified as outliers, the RVSOM model allows their downweighing [97].

In this Chapter, the extension of the RVSOM to detect outliers from pairwise meta-analysis to
the NMA model is provided (RVSOM NMA). We provide the methodological challenges to
extend the model in a network of interventions with the presence of multi-arm studies and we
will discuss the technicalities of model fitting. As part of this research, R package NMAoutlier
was developed for performing the RVSOM NMA model and offering visual tools with the
proposed methodology to any NMA data. We implement the proposed outlier detection method

to the smoking cessation dataset which was introduced in Chapter 2.

The Chapter is organized as follows: Section 6.2 outlines the RVSOM model by generalizing
the method from pairwise to network meta-analysis model [97]. Section 6.3 presents an
application of the RVSOM NMA model in published data of networks of interventions; Section
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6.4 outlines the main findings and provides guidance and advice for the use of RVSOM outlier

detection methodology in NMA.

6.2 Shift variance NMA model to downweigh outliers

We employed the shift variance model to the NMA model presented by Ricker and used in R
library netmeta [5] (details of the model provided also in Chapter 2). The shift variance model
assumes three sources of variance; the within-study variance, the between-study variance, and
the shift variance. Within-study variances are data and the two other sources of variance,
between and shift variance of each study, need to be estimated based on likelihood methods.
The RVSOM model is fitted using the restricted maximum estimation method. Restricted
maximum estimation is widely used to estimate the variance as it provides estimates with less
downwards bias than maximum estimation. RVSOM outlier detection method is a repeatable
procedure. RVSOM model is fitted by shifting the variance for each included study
sequentially in NMA and therefore the number of RVSOM model fitting is equal to the number
of studies. RVSOM provides an estimate of the shift in the error variance associated with that
study [97]. A large shift may indicate a possible outlier and, if desired, can be downweighed
[97].

6.2.1 Shift variance NMA model (RVSOM NMA)

The RVSOM model initially allows the identification of outliers [97]. It allows inflating
variance for the study i. If the variance for a treatment effect y; needs to be inflated, that means
that the standard variance considerations of the typical random effects model are not enough
to explain the study treatment effect and this study probably gives an outlying effect estimate.
The model RVSOM NMA takes the form

y=Xu+u;+38+¢&d8~N(0,A),e~N(0,S),u;~N(0,Q;)

which adds an extra term u; compared to the standard NMA model. The term u; is an unknown
random effect with u;~N(0, Q;) that adds the additional variance term associated. Q; denotes
am x m block diagonal shift variance-covariance matrix with shift variance estimators w;* of
shift variances w;? in its diagonal. For the study i, the vector w;? has length m and values
w;2 > 0, with zero value to denote a non-inflated study variance and with w;2 > 0 to denote

an inflated study variance in i position (or positions of pairwise comparisons in case of a S;-



| 65

arm study, i (1),....., i ((Z‘))) For a multi-arm study, the variance was shifted for all

Si !
pairwise comparisons (‘;L) within the study. The vector w;? = (wiz o e, W2 (2)) denotes

the shift variance values for each pairwise comparison within a S;-arm study. Assuming a

common shift-variance within a study with d; arms, the block diagonal shift variance-

covariance sub-matrix Qg with dimensions (Z‘) X (“Zl) of Q; is given by

Q; =

L Iw ]
l 2 '

The total variance for the study i in RVSOM NMA model is decomposed to the within-study
variance s?Z, the shift variance w;2 and the between-study heterogeneity 72. The weight matrix

for the RVSOM model is Wgyire = (S + A + Q;)~1. REML offers us estimates for the two

unknown variance model parameters, the heterogeneity 72 and the shift variance w;? as well

as summary estimates fgpife = X(X’WshiﬂX)_IX’Wshiﬁy .

The restricted (residual) maximum log-likelihood function for RVSOM NMA model

multiplied with —% is given by
LRy (y; T2, w;?)

1
= —Elog(detIS +A+ Q)
1 , 1
—Elog(detIX S+A+ Q)7 'X])
1 N . R
—3 (¥ — XBshise) (S + A+ Q) (¥ — XBsnife)
1
= —log(det|Wshlﬂ|) — —log(det|X wshtftXD

1 !
-3 (¥ — XBshife) Wsnige(y — XBshifr)
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where Cov(y) = Ws‘hl,-ft =S+ A+ Q; is the variance-covariance matrix for y under the

RVSOM NMA model.

6.2.2 Monitoring measures

Downweighing an outlying study may provide large changes in summary estimates and
heterogeneity. For each RVSOM model fitted, model parameters, heterogeneity, inconsistency
measures, ranking measures and likelihood ratio test are monitored. Sharp changes in
monitoring measures can be an indication for outlier existence. Plotting the changes of the
several monitoring measures visually conveys the possibility of each study to have an inflated

variance or else the possibility to be an outlier.

Summary estimates and their 95% confidence intervals for each treatment, REML

2

heterogeneity estimator 2 and shift variance estimator w;“ are monitored. Standardized

residual &/***%"? from the RVSOM model for i study is calculated by replacing the

standard NMA estimates with RVSOM NMA estimates in formula provided for standardized

residual (see Chapter 4) and ranking measure with P-scores [7] are monitored.

We monitored the generalized total of Cochran’s Q statistic Q¢°4, Cochran’s Q statistic for
heterogeneity Q"¢ and inconsistency Q¢ [39] as provided in Chapter 2 by replacing the
standard NMA estimates with RVSOM NMA estimates. Having the treatment estimates figpf;
and the weight matrix Wy; ¢, for RVSOM NMA model, the total Cochran’s Q statistic is given

by Qtotal = (y — Xﬁshift)lwshift(y — Xﬁsh,-ft) [39],[128], [129] [130]. We also monitored
the z — values of disagreement between direct and indirect evidence for each comparison to
derive the mixed estimates [118], [119].

6.2.3 Likelihood Ratio Test (LRT)

Likelihood ratio test (LRT) can be an objective measure to evaluate if a study i can be
considered outlier and if downweighing is needed with the RVSOM model. Having the null
hypothesis Hy: w;? = 0 against the alternative H,: w;? > 0, the LRT; statistic for study i is

given by

LRT; = 2{LR(y; %) — LR(;)(y; T2, w;?*)}
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and can evaluate if standard NMA model (when shift variance for study i is zero) is fitted better
for study i than the RVSOM NMA model (when shift variance for study i is larger than zero).
If study i is an outlier, the RVSOM NMA model provides a better fit and, in this case, the null
hypothesis is rejected. Gumedze and Jackson [97] proposed an empirical distribution for the

likelihood ratio test using a parametric bootstrap procedure following the steps:

1) Under the assumption of no outlier exist, fit the standard NMA model and obtain the
estimates fi and £2,

2) Generate new simulated data with the standard NMA, y*~N(Xg@, 21, +
diag(S)), where m denotes the pairwise comparisons.

3) Compute the likelihood ratio test LRT; for each study fitting the RVSOM NMA model
with the simulated data y* and save the order of LRT;.

4) For each order statistic, repeat the steps 2) and 3) for a large number of replications
R, (e.g. R = 5000).

5) For a level of significance a (a = 0.05) compute an (1 — a)% percentile for each
ordered likelihood statistic (e.g. the largest likelihood ratio test).

The empirical distribution of likelihood ratio test statistic can provide the threshold for

identifying outliers with the LRT test under the null hypothesis that no outliers are present.

6.2.4 Extended RVSOM NMA
The RVSOM model can be extended to detect more than one outlier. Having a subset of =& =

{1,2,....,&} studies considered as outliers, RVSOM model can be extended by allowing
different inflated variances wz? = (w42, ..., w;2) for more than one study. Allowing for &
inflated variances of studies, the vector w;? has length m with values w;? > 0, where zero
values denoting the studies with non-inflated variances (m — & studies) and with w;_z2 > 0

the studies i = & = {1, 2, ...., ¢} with £ different inflated variances.

6.3 Hlustrative example of interventions to aid smoking cessation

We implement the RVSOM NMA model to the smoking cessation dataset which was
introduced in Chapter 2. We used R function NMAsvr () from R package NMAoutlier [5] to
fit the RVSOM NMA model. Number of RVSOM model fitting is equal to the number of
studies (N = 24). The variance is shifted for each study and 24 overdispersion parameter
estimators were calculated (Figure 6.1). Study 3 has the largest overdispersion parameter
estimator and this is an indication that study 3 is an outlier (Figure 6.1). Study 7 provides the

second largest value of overdispersion parameter estimator when study 7 was shifted.
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Figure 6.2 depicts the LRT test when fitting the RVSOM NMA model for each study. It is
clearly provided that study 3 has the largest value for the LRT test and afterward study 7
provides the second largest value of LRT. A large LRT value can claim that the null hypothesis
of LRT test H,: w32 = 0 can be rejected and it can be a promise that study 3 is a potential

outlier. A large LRT value for study 7 can also be evidence that study 7 is a potential outlier.

Overdispersion for Random Shift Variance Model

Overdispersion

0o0- ® e e e ® e @ @ & o e e e @ e o

Study

Figure 6.1. Over-dispersion parameter of the random shift variance model for each study for smoking
cessation data.

We monitored a sharp decrease of the REML heterogeneity estimator by downweighing the
study 3 (Table 6.2) with value 2 = 0.16 compared to the rest REML heterogeneity estimator
values ranging from 0.34 to 0.42.

Likelihood Ratio Test (LRT)

Likelihood Ratio Test (LRT)
N w
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Study

Figure 6.2 Likelihood ratio test (LRT) values of random shift variance model for each study for

smoking cessation data.
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Shifting the variance of study 3 has a large effect on the estimated summary odds-ratios.
RVSOM NMA model resulted in fisz =1.32 (0.83,2.09), fisc = 1.62 (1.23,2.15), fiup =
1.96 (1.13, 3.39) with REML heterogeneity estimator £2 = 0.16 when the variance of study
3 is downweighed while the results from standard NMA model are [izp =
1.48 (0.79,2.77), fiac = 2.02 (1.39,2.93), fiap = 2.36 (1.15,4.83) and REML
heterogeneity estimator £2 = 0.42. Shifting the variance of study 7 provides also a large effect
on the estimated summary odds-ratios (Figure 6.3). We can conclude that study 3 is an outlier
followed by study 7. Conclusion with RVSOM method for outlier detection is the same with
the conclusion from the FS outlier detection method for smoking cessation data (see also
Chapter 5). This can confirm that our proposed methods are reliable for outlier detection. Both
methods are iterative with 27 seconds of completion for FS method and 29 seconds for RVSOM

model.

Figure 6.3 Summary estimates and their 95% confidence intervals for each treatment fitting the

random shift variance model for each study in smoking cessation data.

Table 6.2. Study downweighed fitting the RVSOM NMA model. Q statistics (Q*°*%, 0™, 0"**) and

restricted maximum likelihood heterogeneity estimator 7% for the RVSOM NMA model fitted by

downweighed a study for each application. Results are given from NMAoutlier [35] package.

Study downweighed Qtotal Qhet Qinc 72
1 202.6188 187.3985 4.663504 | 0.4224061
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2 202.6189 187.3985 4.663506 | 0.4225465
3 62.45292 46.43391 9.504379 | 0.1688964
4 202.6189 187.3985 4.663506 | 0.422459
5 202.6189 187.3985 4.663505 | 0.4225125
6 201.6597 186.4441 4.683338 | 0.4169078
7 192.7938 177.6191 4.848289 | 0.3454409
8 200.8982 185.6879 4.69686 | 0.4099748
9 202.6189 187.3985 4.663506 | 0.422459
10 202.6189 187.3985 4.663506 | 0.4225465
11 202.6189 187.3985 4.663505 | 0.4225034
12 202.6189 187.3985 4.663505 | 0.4225125
13 202.6189 187.3985 4.663506 | 0.4224101
14 202.6189 187.3985 4.663506 | 0.4224838
15 200.1248 185.6879 3.087227 | 0.4101728
16 202.6189 187.3985 4.663506 | 0.4225034
17 202.6188 187.3985 4.663481 | 0.4221723
18 198.3849 183.1005 4.647703 | 0.4135832
19 174.4131 158.6404 4.778086 | 0.389938

20 197.6053 182.2837 4.617336 | 0.4210417
21 202.6189 187.3985 4.663506 | 0.4224417
22 202.6189 187.3985 4.663506 | 0.4224379
23 202.6188 187.3985 4.663505 | 0.4225674
24 202.6189 187.3985 4.663506 | 0.4224101

6.4 Discussion
RVSOM model is an outlier diagnostic method that identifies and downweighs outliers in
NMA. We fit an alternative model from standard random effects NMA that take into account

outlyingness by shifting (downweighing) the variance of identified outliers.

Based on observed sharp changes in monitoring measures, the novel RVSOM tool allows the
identification of outlying studies. A large over-dispersion parameter estimator can be an
indication of an outlier. Conclusions on outlyingness should be based on the LRT test.
Following bibliographical suggestions, a threshold for outlyingness of the LRT test can be
provided by an empirical distribution with the parametric bootstrap method. However,

empirical distribution with the parametric bootstrap method requires a lot of iterations and
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makes the RVSOM model be a computationally intensive method. This is a limitation for the
RVSOM NMA model and our future research is to provide alternative methods to obtain a
threshold for the LRT test.

RVSOM method concluded to the same results with FS method after the application in smoking
seccation data. This can confirm that both FS and RVSOM methods are reliable for outlier
detection. Both methods indicated that computation time increased in accordance with the total
number of studies in the network and thresolds with parametric bootstrap in RVSOM method

and simulation envelopes in FS method can make the methods more computational intensive.

Caution is needed in deleting/omitting outliers and hereby extension of downweighing outliers
may be an alternative choice. Shifting (downweighing) the variance of an outlier is more
conservative than a simple study deletion. Exploring the robustness of results with the proposed
downweighing method may be an alternative choice, possibly reducing bias, compared to
deletion methods. RVSOM NMA estimates can be provided by downweighing outlier as
secondary or sensitivity analysis. In any case, primary analysis with standard NMA is on real
importance and attention of outlyingness needed when results from primary analysis and
sensitivity differed. In conclusion, we argue that the method can be employed as an outlier
diagnostic tool.
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7 Using the R package NMAoutlier

7.1 Introduction

In this Chapter, we provide a description of how to use the R package NMAoutlier [28] for
the implementation of the proposed methodologies presented in Chapters 4-6.

The aim of the package is to detect outliers in network meta-analysis. For transparency and
reproducibility purposes, our proposed methods and visual tools have now offered in R
statistical package NMAoutlier [28]. NMAoutlier [28] was developed with the aim to detect
outlying and/or influential studies in NMA datasets with several outlier detection measures
(such as Chapter 3) including the methods of the forward search algorithm and the shift
variance random effects NMA model presented in Chapters 4 and 5 respectively. The package
contains published NMA datasets that can be used for illustration issues of the detection
methods.

There are several approaches [85], [92]-[95], [97], [98], [101] that have been developed for
outlier detection in a pairwise meta-analysis (see for more details Section 3). Viechtbauer
provided deletion outlier diagnostic measures for meta-analysis [85] and offered with the R
package metafor [99]. Viechtbauer and Cheung [85] and Hedges and Olkin [84] provided the
function metaoutliers in package altmeta [131] for the calculation of standardized residuals for
each study. Beath developed an R package metaplus [132] for the implementation of the outlier

detection method of finite mixture method of outliers and non-outliers.

To our knowledge, there does not exist any statistical software to offer the advantage of an
outlier and influential detection in NMA. The need for the implementation of the outlier and
influential diagnostical tools in NMA models motivating us to develop the R package
NMAoutlier [28]. The Chapter is organized as follows: Section 7.2 outlines the NMAoutlier
package description and Section 7.3 applies the package in R [76] with a real NMA dataset.
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7.2 Software description
R package NMAuoutlier [28] implements several outlier detection measures, the FS algorithm
and the random shift variance model in NMA datasets. NMAoutlier [28] package employs the

following:
» Outlying and influential detection measures

- Several outlier detection measures (function: NMAoutlier measures) are provided:
(a) Raw, (b) Standardized, (c) Studentized residuals; (d) Contribution to the Q statistic
(Mahalanobis distance) and (c) leverage.

- Plots for outlier and influential measures (function: plot NMAoutlier measures):
(a) Raw, (b) Standardized, (c) Studentized residuals; (d) contribution to the Q statistic
(Mahalanobis distance) and (c) leverage

- Several outlier and influential detection measures considered deletion (function:
NMAoutlier measures deletion): (a) Raw, (b) Standardized, (c) Studentized
deleted residuals; (d) Cook distance; (¢) COVRATIO; (f) weight “leave one out”; (g)
leverage “leave one out”; (h) heterogeneity “leave one out”; (i) R heterogeneity; (k) R
Qtotal; (I) R Qheterogeneity (m); R Qinconsistency; (n) DFBETAS.

- Plots for outlier and influential detection measures considered deletion (function:
plot NMAoutlier measures deletion). In plots, the y-axis provides the
monitoring outlier detection measure considered deletion (measures (a)-(n) in function

NMAoutlier measures deletion) the x-axis provides the study deleted.
 The forward search algorithm in network meta-analysis (function NMAoutlier)

» Forward plots (fwdplot) for the monitoring statistics in each iteration of forward search
algorithm: (a) P-scores, Riicker G & Schwarzer G (2015) [33]; (b) z-values for difference of
direct and indirect evidence with back-calculation method, Konig (2013) [119], Dias (2010)
[118]; (c) Standardized residuals; (d) heterogeneity variance estimator; (e) cook distance; (f)
ratio of variances; (g) Q statistics, Krahn et al. (2013) [39] .

 Forward plot (fwdplotest) for summary estimates and their confidence intervals for each

treatment in each iteration of the forward search algorithm.
» Random shift variance NMA model, RVSOM NMA (function: NMAsvr)

+ Plots for the monitoring measures for random shift variance model (function: svrplot)
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* Plots for the monitoring measures for random shift variance model (function: svrplotest)

The package apart from the functions; NMAoutlier measures,
plot NMAoutlier measures, NMAoutlier measures deletion,
plot NMAoutlier measures deletion, NMAoutlier, fwdplot,
fwdplotest, NMAsvr, svrplot, svrplotest. An overview of functions in
NMAuoutlier [28] package and a short description for the implementation of each function is
provided in Table 7.1.

Table 7.1. Overview of functions in NMAoutlier [28] package and a short description for the

implementation of each function.

Function Implementation

NMAoutlier measures Several outlier detection measures:
(a) Raw residuals

(b) Standardized residuals

(c) Studentized residuals

(d) Contribution to the Q statistic
(c) leverage

plot NMAoutlier measures Plots for outlier and influence measures
provided with function

NMAoutlier measures

NMAoutlier measures_deletion Several outlier and influence detection
measures considered deletion:

(a) Raw deleted residuals

(b) Standardized deleted residuals
(c) Studentized deleted residuals
(d) Cook distance

(e) COVRATIO

(f) weight “leave one out”

(g) leverage “leave one out”

(h) heterogeneity “leave one out”
(i) R heterogeneity

(k) R Qtotal

(D) R Qheterogeneity

(m) R Qinconsistency

(n) DFBETAS
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plot NMAoutlier measures deletion

Plots for outlier and influence measures
provided with function

NMAoutlier measures detetion

NMAoutlier

The forward search algorithm in network

meta-analysis.

fwdplot

Forward plots for the monitoring statistics
in each step of forward search algorithm:
(@) P-scores, Rucker G & Schwarzer G
(2015) [33];

(b) z-values for difference of direct and
indirect evidence with back-calculation
method, Koénig (2013) [119], Dias (2010)
[118]; (c) Standardized residuals;

(d) heterogeneity variance estimator;

(e) cook distance;

() ratio of variances;

(9) Q statistics, Krahn et al. (2013) [39]

fwdplotest

Forward plot for summary estimates and
their confidence intervals for each treatment

in each step of the forward search algorithm.

NMAsvr

Random shift variance network meta-

analysis model.

svrplot

Plots for the monitoring measures for the

random shift variance model.

svrplotest

Plot for summary estimates and their
confidence intervals for each treatment for

the random shift variance model.

NMAoutlier measures function provides several outlier and influential measures and
NMAoutlier measures_deletion offers the ability to compute several outliers and
influential measures considered deletion. NMAout1ier function employs the forward search
algorithm and NMAsvr function employs the random shift variance model. The proposed
detection measures and methods can be diagnostic tools for detection outlying and/or

influential studies. They can also be used to detect studies that are responsible for heterogeneity

and inconsistency.
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An overview of the arguments and their descriptions of the components of all functions in the
NMAoutlier package is provided in the Appendix (Appendix Tables 4-14). A brief overview
of the package can also be provided with he1p function by typing

R> help (NMAoutlier)

NMAoutlier measures, NMAoutlier deletion measures, NMAoutlier,
and NMAsvr functions calculate the outlier detection methodologies for network meta-
analysis model from graph theory [5] fitted (netmeta function) with R package netmeta
[35]. The researcher can choose the reference treatment (reference) fitted in the NMA

model.

Monitoring is helpful to identify outlying and/or influential studies. Monitoring statistical

measures for the basic set in each FS iteration and for RVSOM NMA model can be:

- Likelihood statistics (for NMAsvr function only). The heterogeneity estimation method is
conducted under the Restricted Maximum likelihood estimator and likelihood statistics offered
from the calculation, the twice of maximum log-likelihood, the convergence diagnostic, and
the Likelihood Ration test (LRT) test.

- Outlier and influential case diagnostics measures. Standardized residuals (arithmetic mean
in case of multi-arm studies); Cook statistic; Ratio of determinants of the variance-covariance

matrix

- Ranking measures (for NMAoutlier function only). P-scores for ranking of treatments
[33] with implementation of (netrank function) from R package netmeta [35]. Therefore,
argument small.values isan argument for function NMAoutlier with options “good” or

“bad” if small values considered beneficial or harmful on the outcome, respectively.

- Heterogeneity and inconsistency measures. Overall heterogeneity/inconsistency Q statistic
(Q) is the design-based decomposition of Cochran Q as provided by Krahn et al. [39]; Overall
heterogeneity Q statistic (Q); Between-designs Q statistic (Q), based on a random-effects
model with square-root of between-study variance estimated embedded in a full design-by-
treatment interaction model. Implementation with (decomp.design function) from R
package netmeta [35]; Z-values for comparison between direct and indirect evidence for each

iteration of the forward search algorithm.
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By monitoring the difference between direct and indirect evidence, potential sources of
consistency can be detected with the implementation of (netsp11it function) from R package
netmeta [35]. Based on the methodology with the back-calculation method to derive indirect
estimates from direct pairwise comparisons and network estimates (Dias et al. [118], Konig et
al. [119)).

The development version of the package is available on the GitHub repository:

https://github.com/petropouloumaria/NMAoutlier.

7.3 Application of NMAoutlier in practice with smoking cessation data

This example comprises four interventions to aid smoking cessation [41], [42] introduced in
Chapter 2. Smoking cessation data is part of netmeta [35] package with arm level data. We

load the dataset by typing

R> data (smokingcessation, package = "netmeta")

Before conducting the analysis, the R packages netmeta and NMAoutlier should be installed.
The function install.packages () can be used to install the packages that the user needs.

The two above packages can be installed by typing

R> install.packages (c (“netmeta”, “NMAoutlier”))
The function 1ibrary can be used to make the library available

R> library(netmeta)

The NMAoutlier package performs outlier and influential detection methodologies to NMA
datasets with contrast level data. The transformation is needed if arm level data provided and

can be conducted with function pairwise from the netmeta package.

We transform the dataset from arm to contrast level data with odds ratios using the function
pairwise from the netmeta package [35] (the same information is also provided in

Appendix A) (this is the reason that we load the netmeta package).
R> pl <- pairwise(list(treatl, treat2, treat3),
+ list (eventl, event2, event3),

+ 1list(nl, n2, n3),


https://github.com/petropouloumaria/NMAoutlier
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+ data=smokingcessation,
+ sm="OR")

We denoted with p1 the object that assigned the data with smoking cessation in contrast level.

7.3.1 Part 1: Simply outlier detection measures
We can calculate some simple outlier detection measures for NMA. The function

NMAoutlier measures calculate several outlier detection measures for each study.

R> measures <- NMAoutlier measures (pl)

The object measures apart from the calculation of several measures for each study offered
from function NMAoutlier measures; raw residuals, standardized residuals, studentized
residuals, contribution to the Q statistic, and leverage. We can see the contribution to the Q
statistic (Mahalanobis distance) for each study by typing

R> measures$Mahalanobis.distance

Functionplot NMAoutlier measures generates plot(s) to monitor selected outlier and
influential statistical measure(s). The function creates a plot of the selected outlier detection
measure of each study in the network. An object of class function NMAoutlier measures
(for this example object measures) is mandatory for running this function. Candidate
statistics to be monitored (argument stat) can be raw residuals; standardized residuals;

studentized residuals; contribution to the Q statistic and leverage.
We can plot the contribution to the Q statistic (Mahalanobis distance) measure.

R> plot NMAoutlier measures (measures, stat = "mah")
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Figure 7.1. Contribution to the Q statistic (Mahalanobis distance) values for each study for smoking
cessation data.

7.3.2 Part 2: Outlier detection measures considered deletion
We can calculate some outlier detection measures considering the deletion of a study. The
function NMAoutlier deletion measures calculates several outlier detection

measures considering study deletion.

R> deletion <- NMAoutlier deletion measures (pl)

Measures that provided in this function are raw, standardized and studentized deleted residuals,
Cook’s distance, COVRATIO, weight “leave one out” etc. We can see the standardized deleted

residuals for each study

R> deletionS$stand.deleted

We can see the values of COVRATIO when considering deletion for each study

R> deletion$covratio

Function plot NMAoutlier deletion measures generates plot(s) to monitor
selected outlier and influential statistical measure(s) after considered a deletion of a study. The
function creates a plot of the selected outlier detection measure after the deletion of a study.
An object of class function NMAoutlier deletion measures is mandatory (here

object deletion) for running the function. Candidate statistics to be monitored (argument
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stat) can be raw deleted residuals; standardized deleted residuals; studentized deleted
residuals; COVRATIO; Cook distance; R statistic for heterogeneity; R statistic for Qtotal; R

statistic for Qheterogeneity; R statistic for Qinconsistency.
We can display the R statistic for Qinconsistency by typing

R> plot NMAoutlier deletion measures (deletion, stat = "rginc")

R statistic for Qinconsistency leave-one-out

50 - *
-

Q
L]
[ ]
L
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123456 7 8 9 1011121314151617 181920212223 24
study deleted

Figure 7.2. R statistic for Qinconsistency for smoking cessation data.

7.3.3 Part 3: Forward Search Algorithm - Detection Method

NMAoutlier function employs the forward search algorithm in network meta-analysis.
During the search, several measures calculated and among them, P-scores can be monitored. A
researcher should take into account outcome is beneficial or harmful as this is a need for P-
scores calculation. The default value considered a beneficial outcome and therefore small
values specified to be “good”. In smoking cessation data, the outcome is harmful and we

should specify the argument small.values with “bad”.

We can conduct the forward search algorithm in this dataset with the criterion of the smallest

absolute standardized residuals (default value that the researcher should not specify) as follows:
R> FSresultl <- NMAoutlier (pl, small.values = "bad")

We can see the basic set for each iteration of the forward search algorithm

R> FSresultlS$basic

We can conduct the forward search algorithm with function NMAoutlier by taking the
criterion of the maximum of median absolute likelihood contributions to select the initial subset

and the study entered from non-basic set to basic set.
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R> FSresult2 <- NMAoutlier (pl, critl = "L", crit2 = "L",
+ small.values = "bad")

We can see the basic set for each iteration of the forward search algorithm

R> FSresult2S$Sbasic

Function fwdplot generates forward plot(s) to monitor selected statistic(s) and/or method(s).
The function creates a plot of the selected statistic throughout the iterations of the forward
search algorithm. An object of class function NMAoutlier is mandatory for running the
function. Candidate statistics to be monitored (argument stat) can be P-score; z-values by
back-calculation method to derive indirect estimates from direct pairwise comparisons and
network estimates; standardized residuals; heterogeneity variance estimator; cook distance;
ratio of variances; Q statistics (Overall heterogeneity/ inconsistency Q statistic (Q), overall
heterogeneity Q statistic (Q), between-designs Q statistic (Q) based on a random-effects design-

by-treatment interaction model).

We can see the forward plot to monitor z-values by the back-calculation method to derive

indirect estimates from direct pairwise comparisons and network estimates
R> fwdplot (FSresultl, stat = “dif”)

forward plot for difference of direct and indirect estimate (z-values)

+ AD
< B:C
B:D
CcD

Difference of direct and indirect estimate (z-values)

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
Iterations

Figure 7.3. Forward plot for z-values by the back-calculation method in smoking cessation data.

The researcher has the choice to provide forward plots for a selected statistical measure

(argument select. st) for P-scores/z-values by the back-calculation method to derive indirect
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estimates from direct pairwise comparisons and network estimates/standardized residuals for
selected treatment/comparisons/study, respectively.

We can see the forward plot

R> fwdplot (FSresultl, stat = %, select.st)

Function fwdplotest generates forward plots for summary estimates with a 95 percent
confidence interval for each treatment. An object of class function NMAoutlier is the only

argument and it is mandatory for running the function.

We can see the forward plots for summary estimates with 95 percent confidence interval for

each treatment

R> fwdplotest (FSresultl)
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Figure 7.4. Forward plot for summary estimates with 95 percent confidence interval for each

treatment in smoking cessation data.

7.3.4 Part 4: Shift Variance Network Meta-analysis — Detection method and sensitivity
analysis downweighing outlier

NMAsvr function employs the RVSOM NMA model for the detection of outlying and
influential studies. We can implementthe model for each study in smoking seccation dataset as

follows:

R> SVRresultl <- NMAsvr(pl, small.values = "bad")

Some measures for the random shift variance model are outlined, such as; the variance
estimator of shift variance model (over-dispersion) and likelihood statistics such as the twice

maximum log-likelihood, its convergence diagnostic, and the likelihood ratio test (LRT).
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Moreover, values of statistical monitoring measures of random shift variance model are given,
such as; standardized residuals, P scores, Q statistics, heterogeneity estimator, etc.

We can see the LRT with random shift variance model of each study with

R> SVRresultlSLRT

We can see the over-dispersion with random shift variance model of each study with

R> SVRresultlSover disp

Function svrplot generates plots for monitoring measures. An object of function NMAsvr
is the first mandatory argument for running the function and the statistic to be monitored should
be the second argument of the function. We can figure out a plot of LRT of the random shift

variance model for each study with
R> svrplot (SVRresultl, "LRT")

Likelihood Ratio Test (LRT)
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Figure 7.5. Likelihood Ratio Test (LRT) of the random shift variance model for each study for

smoking cessation data.

We can draw a plot of the over-dispersion parameter of the random shift variance model for
each study with

R> svrplot (SVRresultl, "over disp")
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Shift variance estimator for Random Shift Variance Model
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Figure 7.6. Over-dispersion parameter of the random shift variance model for each study for smoking

cessation data.

7.4 Discussion

Network meta-analysis is the most popular evidence synthesis method and there are several
statistical packages available for the implementation of meta-analytical models up to date. The
R package netmeta implements the network meta-analysis model in a frequentist framework
and it is the most comprehensive R package for NMA [35].

The proposed package NMAoutlier [28] is the first package that implements outlier
diagnostics measures, methods, and tools in NMA evidence structures. It offers the ability to
calculate several outlier and influential measures for NMA but also two methods for outlier
diagnosis; the FS algorithm and the RVSOM NMA maodel. In this Chapter, we described details
about the R package NMAoutlier [28] and an overview of the methods offered. For illustration
reasons, a working example of smoking cessation data is provided to give an insight on how to
use the R package NMAoutlier [28].
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8 Summary

8.1 Summary

Systematic reviews and meta-analyses have been established as an integral part of comparative
effectiveness research. The increasing number of different educational and psychological
interventions in the educational system has led to the need for comparative effectiveness
research with the aim to identify the best intervention. Network meta-analysis synthesizes both
direct and indirect evidence, gives more powerful results and provides estimates with increased
precision compared to pairwise estimates. NMA has become a popular statistical tool in
evidence synthesis. Based on a database of published NMA from the onset until 14 April 2015,
the time trend indicates the increasing number of published NMAs and the tendency for the
use of appropriate methods. Moreover, the overview of the characteristics of published NMAs
is a useful resource of information for methodologists that aim to update the current knowledge
on appraising NMA methods. This collection of 456 published NMAs indicates that many
NMAs provide important methodological limitations, but the comprehensive use of appropriate
methodologies and completeness of reporting (such as the description of the statistical methods
used) improved over the years. For example, an increasing number of NMAs used appropriate
methods to test the plausibility of the consistency assumption and in recent years around 90%
of articles clearly reported whether a random-effects of the fixed-effect model was used.

A common problem in the synthesis of studies is the existence of outlying or/and influential
studies. Outlying and influential studies may bias the results but little work has been done for
outlying identification in NMA. For this reason, this Thesis focuses on developing several
methodologies for the identification of outliers and influential studies in network meta-
analysis. Heterogeneity and inconsistency can be seen as differences in the potential effect
modifiers within and across the pairwise comparisons in a network of interventions. It is
common that a potential source of heterogeneity and inconsistency is provided due to the
existence of extreme study effects. Extreme study effects may be an outlier or influential study.

A study that is far away from the rest of the data and does not explain by the assumed model
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defined as an outlier and a study that influences the model parameters (network estimates and
heterogeneity estimator) defined as influential. Several methods for outlier and influential
identification have been developed in a pairwise meta-analysis considering addition or deletion
of studies, based on the likelihood or by taking alternative distributions for heterogeneity. In
this dissertation, several simple measures for outlier and influential studies detection are
provided. Measures considering the deletion of a study for outlier and influential studies
detection are extended in NMA. A forward search algorithm, considered the addition of studies,
has recently been developed in meta-regression. This algorithm starts with a subset of studies
that considered outlying-free and it gradually adds studies until all studies entered. Sharp
changes in monitoring measures during the search are considered potential outlying and/or
influential studies. In this Thesis, the methodology with the forward search algorithm for
outlying identification has been developed in the NMA model. Additionally, a novel model
with shifting the variance taking into account outlying studies from meta-analysis to network
meta-analysis model is extended. The advantage of the random shift variance model is that it

offers the ability of down-weighting studies and therefore can be used as a sensitivity analysis.

The several outlier and influential measures and two proposed methods in NMA for outlying
identification, forward search algorithm and shift random NMA model, applied in real and in
simulated datasets. Results of measures and methods indicate the potential source of outlying
and influential cases in datasets. The methods are promising tools for the identification of
outlying and influential cases and sources of heterogeneity and/or inconsistency. For the
implementation of the several detection measures and methods a flexible and user-friendly
software, an R package, called NMAoutlier, was developed with a description and details to
provide guidance on how to use the R package through real datasets.

8.2 Mepiinyn

Ol GLOTNUATIKEG OVOCKOTNGELS KOl WETO-OAVOAVCELS €xovv KabepmBel g avamdomacTto
KOUUATL TNG £PELVOG Y10 TN CYETIKY] OMOTEAECUATIKOTNTA UETOED TapeUPdoemy. Xnuepa, M
AMYM ATOQAGE®V KoL 1] IEPAPYNON HETAED OVTAYWOVICTIKOV TAPEUPACEDV G€ TOAALOVS TOLELC,
Baciovtar oty avamtuén tov peta-avdivong dwtdwv (MAA). O ohoéva av&avopevog
aplOUOG JOPOPETIKAOV EKTOIOEVTIKMV KOl YUYOAOYIKAOV TOPEUPACEDY GTO EKTOIOEVTIKO
ovoTnua 0dNYyel otV avdykn cOYKpPIoNG TOVG HE GTOXO TNV EVPECT TNG KATOAANAOTEPNC

napéuPaonc. H peta-avdivon diktdmv cuvBétel 1060 Gueseg 0G0 Kot EUIECEG TANPOPOPIEG
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£T01 DOTE VO TOPEYEL TTLO 1OYXVPE OTOTEAEGUOTO KO EKTIUNOELG PE avEnuévn akpifeta o oyéon
pe tig ektunoelg avd Cevyn. H MAA éxet yiver éva onUOPIAEG OTATIOTIKO epyaAeio o
ovvbeon otolyeimv. Baoel pog cuAloyng dedopévav pe dnpoctevpéve MAA and v apyn
¢w¢ T1g 14 Ampidiov 2015, n tdon deiyvel tov avéavopuevo apBpd dnpocievpévov e MAA
KOl TNG EQOPHOYNG 0A0EVA Kot KOTAAANAOTEPV peBodoroyidv. EmmAéov, | emokdnnon tov
YOPOKTNPIOTIKOV TV Onpoctevuéveov MAA elvarl o ypnowun iy TAnpoedopnong yo
EPELVNTEG TOV GTOYEVOLV VO avafadicovV TNV VITAPYOVGA YVAGCT GYETIKA e TNV aloldynon
TV neBodwv MAA. Avti 1 cuAloyn amd 456 dnpocievpéveov MAA vrodetkvietl 6Tt TOALEG
MAA mapéyovv onuaviikodg peBodorloytkovg meplopiopods, aALL 1 EKTETAUEVT) XPTOT TOV
KatdAAnAwv pebodoroyidv kol TG mAnpOTTOS TV eKBEcE®V (OTMG M TEPLYPAPT TMOV
YPNOYLOTOIOVUEVOV GTATIOTIK®OV UeBOOwV) €xel Pedtiwbel pe v mhpodo tov etmv. o
napadetypa, £vag avsavopevog aptipoc MAA ypnowomoince katdAAnieg pebodovg yuo vo
eréyéel v aglomiotio TG vdBeong ™G cLVETELNS Kot To TEAevTain Ypovia YOpw oto 90%
TV ApBpwv avépepe capdg av ypnowomomdnke 1o poviéAo Tuyoiov 1 otabepdv

EMOPAGEMV.

[Moporko mov 1M Pphoypapikny pekétn €0e&e  Pehtiopévn otatiotikn pebodoroyia,
e&axoAovBovV va VTTAPYOVY HEBOSOAOYIKEG TTTUYEG GTOL LOVTEAD LETO-OVOADGEDV SIKTVMV TOV
yperalovtat akopa Tepattép® avantuén. Eva koo TpofAnua otn cuvieon Tov HeAET®V givat
N Ymapén axpaiov kot /M ennpealovomv peretav. [apdio mov ot axpaieg kot o1 ennpedlovoeg
LLEAETEG EVOEXETAL VO, 00TV |GOVV GE LEPOANTITIKA OTOTEAECLLATOL, EAGYLOTT EPEVVNTIKT OOVAELL
&xel mpaypotonombel yo tn depegvvnon térolwv peretdv ot MAA. o to Adyo avtd, M
TopOVCO,  OOAKTOPIKY OlaTpiPr] emkevipodvetor otnv  avdmtuén pebodoroyiog o
depedvnon axpaiov kot ennpedlovomv pedetmv. H etepoyévela kot n 0GLVETELN LITOPOVV VoL
Bewpn oV G S1POPES GTOVG TPOTOTOUTES TOV AMOTEAEGUATOS GE £V SIKTVO TOPEUPACEDV.
Mo mBavr Tnyn €1epoyEVELNS Kot aoVVETELNG omotedel 1) bapén akpaiwv 1 ennpedlovcmv
peretov. Q¢ akpaio opileron N peAén mov améyel ToAH omd o VITOAOUTO SEGOUEVA KOt OEV
TpoPAETETOL IKOVOTOMTIKE 0td TO HOVTEAO oL £yovpe LOBESEL, evd ®G emnpedlovca M
HEAETN oL ennpedlel TIG TaPARETPOVS TOL LOVTELOV, SNAOON TIG EKTIUNGELS TOL OIKTHOL Kot
v etepoyévela. Apketég pebBodoroyieg yio v ebpeon akpaimv Kot ETNPealovcwv HEAETOV
&yovv avamtvybel ot peta-avdivon ovo mapepPdcemv, pebodoroyieg mov Bewpodv v
eloodo N £€€000 peretmv, pebodoroyieg mov ompilovtal otn cvvapTnon TOAVoEAvELNG 1
peBodoroyieg mov Pacilovror otn ANYN EVOAAOKTIKOV KOTOVOU®OV Yo ETEPOYEVELD. XTN|

Tapovoo SakTopikn datpPn mapovsidlovior mOAAG amhd pétpo €bpecng aKpaiov Kot
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emmpedlovowv peretdv. Métpa Bewpdvtag T dtorypapn LEAETNG Yo THV €DPECT] AKPOI®OV Kot
emmpedlovcwv peretdv enektdOnkav oto poviého MAA. O mpog ta eumpodg adyoplOpog
avalnmong avartoydnke npdoeata ot peta-maitvopounon. O aryopidpog Poaciletor ot
oTOdWKY TPocHNKN TV peret®v, Eekivd pe €va vTocOVOAD peAetdv Tov Besmpeiton
OTOAAQYLEVO OO aKpaieg HEAETEG KO TPOGOETEL OTASIOKA TIC UEAETEG UEXPL VA E1GEADOVLY
Olec ot peréteg. Ot évtoveg oAAOYEG TOV PETP®V TopaKoAoVONoNG Katd T OdpKela TG
avalnmong omoteAel €voelEn yw mbavég axpaieg M / ko ennpedlovoeg perétec. Xtnv
ddaktopikn StatpPn, n pebodoroyia pe Tov TPOS T EUTPOG aAyOPOHo avalnTnong yio
dtepedivnon akpaiov /Kot exnpedalovcmv HeAeT®V avartuydnke oto poviého MAA amd 10
LOVTELO NG peta-maivopounone. Emmiéov, enékteva éva véo Lovtédo Tuyoimv emdplcemv
LLE TN UETATOTION TNG SOKOUAVONG, AAUPAvOVTag LITOWYT TIC aKpoies LEAETES OO TO LOVTELO
™G amANg peta-avaivong ovo mapepPdcemv oto poviého e MAA. To migovéktnpa Tov
LLOVTEAOL TUYOIOV EMOPACEDV LE TN UETOTOMION TNG OLOKVUOVONG ival OTL TPOGOEPEL TNV
wKavoTTa HEl®mONS TOV BAPOVS TOV AKPOI®V HEAETMOV Kol GUVETMG PUropel va ypnotpomombet

g avdivon gvoucOnociag.

Ta dupopa pétpa Ko ot dvo mpotevoueveg pebodoroyieg otn MAA yia diepgvvnon v
axpaiov Kot emNPedlovcmv HEAETMV, LE TOV TPOG To EUTPOS aAYOpIBLo avalnTtnong Kot 1o
HOVTEAO TuYOIOV eMOpAcE®V HE HETATOMION TG OKOUOVONG, EQPUPUOCTNKOV OE
ONUOGIELIEVA OIKTLO HETA-OVOAVCEWMV KOl GE TPOCOUOIMUEVAE dedopéva. Ta amoteléopota
amod TL EQOUPUOYEG VTOOEIKVOOLV TNV €0pecn akpoiv Kol emnpedlovcmV UEAETOV GTO
dedopéva. Ot mpotewvopeveg neBodoroyieg AmoTEAOVV KA VTOGYOUEVA EPYOAELR YO TOV
EVIOTICUO OKPOi®V Kot EXNPEAOVCMV HEAETMV KOl TNV EVPECT TNYAOV dNUIOLPYING VYNANG
etepoyévelag ko / 1 acvvénelag. [a v vAomoinomn TV dlpopmv LETP®V EVPEGTS AKPOImY
Kot enNPedlovcmV HEAETMOV OALA Kot TV 000 TPOTEWVOUEVOV HLEBOJOAOYIDV GE EVO EVEMKTO
KOl @IAKO TPOG TO XPpNoTn AOYIoHKD, avartuydnke to otatiotikod makéto NMAoutlier oty
R mov meptypagpetol ot Tapovca 0100KTOPIKT S1oTpiPr) TopEXovTos AETTOUEPELEG KO 0N YiES

Y10 TOV TPOTO YPTONG TOV TAKETOV UECH TNG EPUPHOYNG TOV GE TPOYLOTIKE OEOOUEVQL.
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Appendix Tables.

Appendix Table 1. Effect size y;, standard error s; and treatment comparisons for each study

of the smoking cessation dataset.

Effect size y; Standard error s; treatl treat2 study label
-1.0513 0.4132 A C 1
-0.1285 0.4760 A D 1
0.9228 0.3998 C D 1
-0.0012 0.4504 B C 2
-0.2253 0.3839 B D 2
-0.2241 0.3723 C D 2
-2.2023 0.1430 A C 3
-0.8704 0.7911 A C 4
-0.4156 0.1557 A C 5
-2.7797 1.4698 A Cc 6
-2.7054 0.6252 A C 7
-2.4252 1.0423 A C 8
-0.4436 0.5220 A C 9
0.0160 0.1699 A B 10
-0.3935 0.3266 A B 11
-0.3904 0.1680 A C 12
-0.1063 0.5956 A C 13
-0.5834 0.2983 A C 14
-3.5225 1.4970 A D 15
-0.6796 0.4411 A B 16
-0.5397 0.1401 A C 17
0.1255 0.3200 A C 18
0.2400 0.1737 A Cc 19
-0.0390 0.1874 A C 20
0.1517 0.4290 B Cc 21
-1.0435 0.4490 B D 22
-0.6807 0.4092 C D 23
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Appendix Table 2. Effect size y;, standard error s; and treatment comparisons for each study

of the actinic keratosis dataset.

Effect size y; Standard error s; treatl treat2 study label
-0.7069 0.4287 1 2 1
-1.2933 0.4227 1 2 2
-1.6319 0.6076 1 2 3
-0.8391 0.4543 1 2 4
-5.1527 1.4500 1 3 5
-4.0763 1.4747 1 4 6
-3.2321 0.7862 1 3 7
-1.1632 1.1247 1 4 8
-1.6802 0.4443 1 2 9
-2.4849 0.5381 1 5 10
0.0000 0.8165 3 6 11
-3.3998 1.4527 1 3 12
-3.2241 0.4078 1 4 13
-3.3266 0.6755 1 5 14
-2.6210 0.5475 1 5 15
-3.0888 0.5388 1 6 16
-4.1017 0.6070 1 4 17
-2.4902 0.2764 1 4 18
-2.2548 1.5713 1 4 19
-3.9478 0.6104 1 4 20
0.1367 0.3700 1 4 21
-0.2448 0.6159 4 7 22
-2.1370 1.1131 7 8 22
-2.3817 1.1078 4 8 22
-2.7642 0.8146 4 7 23
-2.1145 0.5023 1 5 24
-2.2003 0.4821 1 9 25
-6.4754 15717 1 4 26
-3.1540 0.7690 1 6 27
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-0.5564 0.2344 1 6 28
2.5020 0.5005 6 8 28
1.9456 0.4999 1 8 28
-1.6112 0.6282 1 4 29
-1.8099 0.6269 1 4 30
-3.3759 0.5914 1 5 31
-2.6507 0.5733 1 6 32
-2.1698 0.3323 1 5 33
-2.8571 0.3413 1 6 33
-0.6873 0.2033 5 6 33
-2.6659 0.2410 1 9 34
-1.2164 0.6562 4 5 35

Appendix Table 3. Effect size y;, standard error s; and treatment comparisons for each study

of the thrombolytics dataset.

Effect size y; Standard error s; treatl treat2 study label
0.1575 0.0486 1 2 1
0.04521 0.0471 1 4 1
-0.1123 0.0558 2 4 1
0.0260 0.0394 1 3 2
0.0048 0.0392 1 8 2
-0.0211 0.0394 3 8 2
0.3718 0.5427 1 3 3
0.8988 0.8571 1 3 4
-0.0162 0.8361 1 3 5
-0.0532 0.0491 1 3 6
0.6096 0.6464 1 3 7
0.5463 0.4908 1 3 8
0.7323 0.5618 1 3 9
-0.4054 0.6603 1 4 10
0.0603 0.0891 1 6 11
0.3976 0.7068 1 7 12
-0.1013 0.9302 1 8 13
-0.2816 0.7281 1 8 14
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0.7672 0.7750 1 8 15
-0.1818 0.4491 1 8 16
-0.0054 0.0638 2 5 17
-0.0341 0.0667 2 6 18
0.7508 0.4826 2 6 19
-0.5806 0.8401 2 7 20
-0.0217 0.3908 2 7 21
-1.2789 0.5185 2 8 22
-1.4737 0.6520 2 8 23

0 0.6318 3 7 24

0.5490 0.5285 3 7 25

0.1652 0.6194 3 7 26

0.2623 0.4360 3 8 27

0.3247 0.6051 3 8 28
Appendix A.

R code calculates odds ratios for smoking cessation data. The dataset is a part of R package
netmeta [35] that compared the relative effects of four smoking cessation counseling programs
(n = 4): defined as no contact (A), self-help (B), individual counseling (C), and group
counseling (D). The binary outcome was the number of events that successful stopped smoking
at 6 to 12 months. Arm level data (number of events, total sample size in each arm and

treatments compared) can be found in netmeta [35] package. Here is provided the code for

calculating odds ratios.

library(netmeta)

data ("smokingcessation")

pm <- pairwise

(list (treatl, treat2, treat3l),

event = list (eventl, event?2,
n = list (nl, n2, n3),
data = smokingcessation,

sm = "OR")

event3),
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