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1 Introduction 

 

1.1 Systematic review and evidence synthesis methods 

Systematic reviews and meta-analyses have been established as an integral part of comparative 

effectiveness research and are used worldwide for decision-making in health and social care. 

The World Health Organization (WHO, www.who.int) considers them as the most reliable 

Evidence-Based Medicine method. Different types of studies such as cohort studies, animal 

studies, observational studies, case-control studies or randomized control trials can be 

synthesized in a systematic review to answer a research question. There is a broad agreement 

that the randomized controlled trial (RCT) is the most valid (gold standard) type of clinical 

trials. In RCT, individuals are randomly assigned to two groups where one group (experimental 

group) takes the intervention and the other (control group) usually receives a placebo 

intervention. Observed differences between the two groups depend exclusively on 

interventions received because the participants have been randomized in both groups and 

probability theory assures that they will not differ in any other characteristics beyond the 

intervention they accept. 

There are a plethora of individual studies in most problems in health, social or education. 

Drawing conclusions from these studies may be misleading. Individual studies may be biased 

(low-quality studies) or having conflicting results without being aware of whether these 

differences are true or random. Systematic reviews synthesize several different studies and 

provide conclusions to answer a research question. Meta-analysis is (not necessarily) a part of 

the systematic review process. 

Meta-analysis is a statistical technique that synthesizes evidence form individual studies and 

provides the relative effectiveness between two interventions for a specific research question 

[1]. It might happen that the results from individual studies disagree. Meta-analysis can 

quantify and investigate the reasons of this disagreement [1]. Meta-analytical results are more 

powerful and provide more precise results compared to the results from individual studies [1]. 

A pairwise meta-analysis pools the results from individual studies that compare two 

interventions. Decision making commonly focuses on comparing more than two interventions. 

http://www.who.int/


2 | 

 

 

More complicated evidence synthesis methods are used to investigate the relative effectiveness 

of three or more interventions. Network meta-analysis (NMA), also known as a mixed-

treatment comparison or multiple-treatment meta-analysis, can provide the relative 

effectiveness of several competing interventions for the outcome of interest. It synthesizes 

direct (information of intervention effect from the comparison of two studies) and indirect 

(information of intervention effect via a connected path) evidence with the aim to give a 

summary estimate [2].  

Let us consider three school-based interventions A, B, C and we are interested to compare their 

relative effectiveness. Figure 1.1 (a) provides the direct evidence (solid lines) in a public-school 

comparing A and B educational interventions and the direct evidence of A versus C in a private 

school. It is obvious that there is no direct evidence between B and C educational interventions. 

We can only have the indirect evidence for B versus C (dashed line) via the direct paths through 

intervention A. The graphical representation in Figure 1.1 (a) is termed as network plot with 

cycles of nodes denoting interventions and lines or edges denoting the interventions compared 

in the included studies.  

The network plot can provide information about the shape of network and network geometry. 

The network should be connected, which means that there is a path with lines in network plot 

(studies) to move from each intervention to any other intervention. If all intervention nodes are 

compared with a common intervention node the network is a star-shaped network. For 

example, Figure 1.1 (a) a star network that apart from the educational intervention comparisons 

A versus B, A versus C. The paths that begin from an intervention node and end to the same 

node via two or more intermediate interventions (e.g. there is a direct evidence for comparison 

B versus C with path A → B → C → A) are closed loops. Networks comparing only three 

treatments (for example, A, B, and C) in a number of two-arm studies called triangular 

networks. Networks with at least one closed loop called full or entire networks. 

NMA synthesizes direct and indirect evidence and offers the ability to estimate the relative 

effectiveness of interventions (termed as network estimates) that have never compared before 

by the individual studies (e.g. relative effectiveness of B versus C educational interventions). 

The relative effectiveness of several interventions is provided in comparison with a common 

intervention named reference treatment that is usually a placebo, usual care, no treatment or 

active treatment. Several frequentist (e.g. multivariate meta-regression [3], [4], graph 

theoretical method [5], etc.) and Bayesian approaches (e.g. hierarchical models) have been 
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developed to derive the indirect and/or network estimates. NMA summarizing the results by 

providing a hierarchy of the interventions and treatment ranking [6], [7] can inform decision 

making. The most commonly used ranking measures are the probability of being the best and 

the surface under the cumulative ranking curve (SUCRA) [6], [8], [9]. 

 

Figure 1.1. Direct and indirect evidence between school-based interventions A, B and C (Figure 1.1 

(a). Illustration of direct and indirect evidence for comparisons B versus C (Figure 1.1 (b)). 

Methodological or clinical differences between studies may cause differences between the 

study-specific true underlying effects. This is a between-study variation, known as 

heterogeneity. The existence of heterogeneity may affect the summary estimate and its 

precision. Potential sources of heterogeneity can be investigated with meta-regression; a meta-

analytical model including covariates [10], [11] but also with sensitivity analyses or secondary 

analyses such as subgroup analysis. that the authors performed to investigate potential sources 

of heterogeneity or inconsistency.  

Individual studies usually differ due to their characteristics. For example, AB studies compare 

children from public schools while AC studies compare children from private schools. AB and 

AC studies may differ due to population characteristics. Private schools may have children 

from a high-income family with more educated and wealthy parents, highly-motivated children 

for knowledge and may offer a longer and demanding schedule, compared to public schools. 

Type of school can be an effect modifier which means that we cannot compare ΑΒ studies 

(children population in public schools) with AC studies (children population in private 

schools).  

One clinically underlying fundamental assumption for the NMA model is the transitivity 

assumption; this implies that the effect modifiers are comparable across intervention 
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comparisons [2]. Transitivity assumes that the common comparator A is the same for AB and 

AC studies and the distribution of effect modifiers is balanced across the different comparisons.  

The statistical manifestation of transitivity is consistency, that is when direct and indirect 

evidence agrees [2], [12]. Considering that there is a BC study in the network, we have a direct 

evidence between school-based interventions for comparison B versus C. The consistency 

assumption implies that the direct evidence of B versus C (solid line, Figure 1.1 (b)) is in 

agreement with the indirect evidence of B versus C comparison (dashed line, Figure 1.1 (b)). 

This implies that there are no differences between direct and indirect estimates in closed loops 

within networks. Several statistical methods have been developed to evaluate the consistency 

assumption in closed loops within networks such as the loop-specific approach [13], node-

splitting approach [14], design-by-treatment interaction model [4] (a synopsis of several 

statistical tests for consistency are described in [15] and details are given). 

It is common that a potential source of heterogeneity and inconsistency is the existence of 

extreme study effects. Extreme study effects may also be an outlier study. There are several 

definitions for outliers in the literature. A study with a markedly different intervention effect 

estimate or a study that does not explain by the assumed model is generally defined as outlying 

[16]. A study effect that lies far away from the bulk of the data can affect the summary effect, 

possible causing bias (especially if the study is large) and can lead to an increase in 

heterogeneity or inconsistency. An influential study can influence the model parameters, it 

might cause large heterogeneity and inconsistency and therefore give biased results. Moreover, 

small studies tend to give larger estimates than estimates from large studies (small-study effects 

). A frequent phenomenon in evidence synthesis is publication bias caused by the fact that 

small study effects without significant intervention effects are less likely to be published. 

1.2 Meta-analysis and Education 

Implementation of systematic reviews and meta-analyses is increased rapidly and there is a lot 

of evidence for several educational outcomes. The Campbell Collaboration 

(https://campbellcollaboration.org/) is an international network that published systematic 

reviews and meta-analyses and has a group called Education Coordinating Group 

(https://www.campbellcollaboration.org/contact/coordinating-groups/education.html) that 

focuses on education. Based on high-quality evidence synthesis methods, Campbell 

Collaboration provides a database of systematic reviews on educational outcomes that can 

inform policy-makers and stakeholders.  

https://campbellcollaboration.org/
https://www.campbellcollaboration.org/contact/coordinating-groups/education.html
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There are several published meta-analyses for autism [17], [18], bullying and cyberbullying 

[19], [20], educational technology outcomes [21] for teaching and learning in different subject 

matters (math, reading, writing, etc.) across a wide range of age children groups but also mental 

health-related outcomes in students such as anxiety and depression [22]–[25].  

The first meta-analysis that evaluates computer-based scaffolding in science, technology, 

engineering and mathematics (STEM) education has recently been published on Review of 

Educational Research [21]. Three hundred thirty-three outcomes across 144 studies were 

included in the meta-analysis [21]. Computer-based scaffolding defined as the students’ ability 

to generate and solve complex problems and goals [21]. According to Belland et al. there was 

a positive effect of computer-based scaffolding interventions on cognitive outcomes significant 

difference in STEM education [21]. If we are not interested only in the effectiveness of 

computer-based scaffolding interventions but we are interested in the comparison between 

different STEM disciplines (such as the comparison between science, technology, engineering 

or mathematics), multiple testing is needed and traditional meta-analyses can be conducted. 

Multiple testing with pairwise meta-analyses provides limitations such as increasing type I 

error rates. Network meta-analysis model can give more precise results for comparative 

treatment effectiveness and safety. A network meta-analysis that has recently been published 

in the Review of Educational Research, compares the influence of contexts of scaffolding used 

on cognitive outcomes in STEM education [26]. Effect sizes were reported with Hedge’s g 

calculation [26]. Four different STEM disciplines, mathematics, technology, engineering and 

science, and control were compared [26]. Figure 1.2 provides the network plot of direct 

comparisons (solid lines) and indirect comparisons (dashed lines) comparing scaffolding used 

in the context of different STEM disciplines. Authors noticed an additional 70% of studies 

included in network meta-analysis than traditional pairwise meta-analyses [26]. Although the 

authors presented this as an NMA, it is actually a moderator analysis. Authors also ranked the 

disciplines in which STEM seems to be more effective by averaging the probability of being 

the best, the second e.t.c for mathematics (ranking 1.62), technology (ranking 2.23), 

engineering (ranking 3.23) and science (ranking 3.33) [26].  
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Figure 1.2. Network plot of direct comparisons (solid lines) and indirect comparisons (dashed lines) 

comparing scaffolding for the context of different STEM disciplines. 

Caldwell et al. [27] have recently published in Lancet Psychiatry the first network meta-

analysis to prevent anxiety and depression in children and young people. Several school-based 

interventions such as Behavioural therapy, Cognitive Behavioural Therapy, Third wave, 

Psychoeducation, Psychosupport, etc. were compared for the outcomes of anxiety and 

depression [27]. NMA model fitted using hierarchical models in the Bayesian framework. The 

results provided little evidence to suggest the effectiveness of school-based interventions for 

the prevention of anxiety or depression. The most included studies had an unclear risk of bias 

for random sequence generation and allocation concealment and there was evidence of small-

study effects for self-report anxiety outcomes [27]. This phenomenon is usually identified in 

studies with mental health-related outcomes. 

In bibliography, there are studies comparing educational interventions for several educational 

outcomes. Moreover, there are also many systematic reviews and meta-analyses in educational 

research. Based on this fact, systematic reviewers and meta-analysts can provide the evidence 

synthesis of studies in the field of education. Meta-analytical models can be a guidance for 

teachers providing which interventions could be the best in each case. The implementation of 

meta-analytical models can lead teachers in several aspects of educational system. For example 

meta-analytical models can answear the question ‘Which educational method is most effective 

for STEM education?’, but also they can inform special education teachers about the most 

effective educational process that would be helpful for students with dyslexia, communication 

disorders, physical disabilities e.t.c.  

The currently published paper by Caldwell et al. [27] implements at first network meta-analysis 

in Education. This can be the evidence for a new step in a synthesis of studies expecting more 
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network meta-analyses to be conduced in the field of education. The proposed methodology on 

developing outier detection for network meta-analysis would be helpful in Educational research 

as outliers seems to be a usually problem when synthesize the results of studies comparing 

educational interventions. 

1.3 Objectives & outline of the Thesis 

The aim of this dissertation is to provide and extend several outliers and influential detection 

methodologies from pairwise meta-analysis to network meta-analysis model. Several statistical 

outliers and influential detection measures, the forward search algorithm, and the random 

variance shift outlier model are extended to NMA. All the proposed methodologies are focused 

on detecting outlying and influential measures at the study level. Studies give aggregate 

measures, which may have been influenced by the presence of outliers or data extraction errors 

within the study.  The proposed outlier detection methodologies are well illustrated using 

motivated datasets of networks of interventions and simulation data. An R package 

NMAoutlier [28] was developed for reproducibility of the proposed outlier detection methods. 

The Thesis is structured as follows. Chapter 2 provides the network meta-analysis model as 

was introduced by Rücker [5] using graph theory and motivating examples of networks of 

interventions. Chapter 3 provides an empirical study based on a collection of 456 published 

network meta-analyses by giving an empirical overview of NMA characteristics.. Chapter 4 

outlines a synopsis of methodological strategies to detect outliers in a meta-analysis, gives an 

overview of several proposed statistical measures to detect outlier and influential cases in NMA 

with an application in a real dataset. Chapter 5 introduces the extended methodology of the 

forward search algorithm for identifying outliers and influential studies in NMA and provides 

applications of the proposed methodology in real and simulated datasets. Chapter 6 provides 

the extended methodology for outlier identification with the random shift variance NMA model 

and gives an application example on a published dataset. Chapter 7 describes and gives details 

of the R package NMAoutlier developed for the proposed outlier and influential detection 

methods and provides how to implement the package in real datasets of networks of 

interventions.  
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2 Network meta-analysis model and motivating examples 

 

2.1 Introduction 

Bucher et al. [13] were first to introduce the idea of indirect and mixed treatment comparisons. 

Having three treatments A, B, C the indirect summary relative effect of AB (i.e. A versus B) 

can be estimated indirectly by subtracting the direct relative effects of AC and BC [13] as 

�̂�𝐴𝐵(𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = �̂�𝐴𝐶(𝑑𝑖𝑟𝑒𝑐𝑡) − �̂�𝐵𝐶(𝑑𝑖𝑟𝑒𝑐𝑡) (where �̂� is the estimate of relative treatment effects). 

Indirect estimates of relative treatment effects are also known as an adjusted indirect 

comparison. The variance of the indirect estimate is the sum of the variances of the two direct 

ones. The mixed estimate can be derived as a weighted average of direct and indirect treatment 

effects [13]. The Bucher method [13] is also known as an adjusted indirect comparison meta-

analysis. This approach ignores correlations when multi-arm studies exist. 

Extending the idea to larger networks, several indirect estimates of different comparing 

interventions can be derived from network estimates. Popular established NMA methods 

implemented in comparative effectiveness research adopt meta-regression, hierarchical 

modeling or a multivariate meta-analysis approach. The meta-regression approach was first 

proposed by Lumley [29] treating each treatment comparison as a covariate in a meta-

regression model. Lu et al. [30] proposed a different approach based on a two-stage meta-

regression. At the first stage, a meta-analysis is performed in each group of studies comparing 

the same treatments, (e.g. all two-arm studies comparing A versus B) offering the direct 

estimates on treatment comparisons. At the second stage, a weighted linear regression is 

performed with the direct estimates as dependent variables. In the Bayesian framework, the 

NMA model can be fitted as a hierarchical model with a multivariate normal likelihood 

assumed on the observed relative effects for each study [31], [32]. White et al. introduced the 

NMA model as a specific case of multivariate meta-regression (or multivariate meta-analysis) 

[3]. The multivariate meta-regression model based on multivariate distributions assumptions 

for the parameters representing random errors and random effects when multi-arm studies are 

included [3]. Rücker [5] introduced a frequentist network meta-analysis model with a graph-
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theoretical approach by providing the correspondence between electrical networks and 

multivariate meta-regression models. 

This Chapter is structured as follows: Section 2.2 provides the NMA model from graph theory 

and Section 2.3 offers examples of networks of interventions that motivating us to proposed 

outlier diagnostics methods provided in this dissertation. 

 

2.2 Network meta-analysis model from graph theory 

This section provides a brief description of the NMA approach and the reader can find more 

details in the relevant publications [5], [33], [34]. This NMA model is implemented in R 

package netmeta [35]. The notation for the NMA model is summarized in Table 2.1. 

Suppose that we have 𝛮 potentially multi-arm studies 𝑖 = 1,… ,𝑁. For a study 𝑖, we denote 

with 𝑘 the pairwise comparison, with 𝑆𝑖 the set of treatments compared in study 𝑖 with 𝑛𝑆𝑖  to 

represent the cardinality of 𝑆𝑖 and 𝑘 𝜖 𝑆𝑖 . Let 𝑚 be the number of all possible pairwise 

comparisons (and hence 𝑚 = ∑ (
𝑆𝑖
2
)𝑁

𝑖=1  and 𝑚 = 𝑁 if 𝑆𝑖 = 2, ∀𝑖 = 1, … , 𝑁). We denote with 

𝑛 the total number of treatments and 𝝁 to represent the vector with these 𝑛 treatment effects. 

Let 𝒚 = (𝒚1, 𝒚2, … , 𝒚𝑁)
′ be the vector with the observed effect sizes and 𝒔 = (𝒔1, 𝒔2, … , 𝒔𝑵)

′ 

be the vector with the corresponding standard errors. For a study 𝑖 = 1,… ,𝑁, let 𝒚𝒊 =

{𝑦𝑖,𝑘 , 𝑘 𝜖 𝑆𝑖 } be the observed effect size, 𝒔𝒊 = {𝑠𝑖,𝑘 , 𝑘 𝜖 𝑆𝑖 } be the observed standard error and 

𝒔𝒊
𝟐 = {𝑠𝑖,𝑘 

2 , 𝑘 𝜖 𝑆𝑖 } the observed sampling variance (or else the within-study variance). 

Having the variability of studies to be the within-study variance for each pairwise comparison 

in each study the fixed-effect (FE) network meta-analysis can be modeled. The fixed-effect 

network meta-analysis model is written as  

𝒚 = 𝚾𝝁 + 𝜺, 𝜺~𝛮(𝟎, 𝐒) 

where 𝐒 is a diagonal form matrix with entries 𝒔𝒊
𝟐 and 𝐗 is the 𝑚 × 𝑛 design matrix that 

describes the structure of the network with rows denoting the pairwise comparisons and with 

columns the treatments compared. Each row inputs one (1) in the column that corresponds to 

the first treatment (treatment group) and minus one (-1) in the column that belongs to the second 

treatment (control group). All other entries are equal to zero (0) for treatments not considered 

in the relevant comparison. Hence, each row of 𝐗 sums up to zero. 𝐗 matrix is not a full rank 

and it is not invertible. 
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Assuming a common heterogeneity variance 𝜏2 for each pairwise comparison, the random-

effects (RE) network meta-analysis model can be modeled having the variability to be the 

within-study variance plus the between-study variance (heterogeneity). The random-effects 

network meta-analysis model is written as  

𝒚 = 𝚾𝝁 + 𝜹 + 𝜺, 𝜹~𝛮(𝟎,𝚫), 𝜺~𝛮(𝟎, 𝐒) 

where 𝜹 represents the true random effects and 𝚫 is a block diagonal matrix with the 

heterogeneity variance 𝜏2. The between-study variance is estimated using a special case of the 

generalized DerSimonian–Laird estimator [36] given in [37]. In the random-effects model, the 

variance of each study is the heterogeneity estimator �̂�2 plus the observed study variances 𝒔𝒊
𝟐.  

Let 𝐖 be a 𝑚 ×𝑚 diagonal weight matrix with a vector of weights in its diagonal to be the 

inverse study variance, 𝑤𝑖,𝑘,𝐹𝐸 = 1 𝑠𝑖,𝑘
2  , 𝑖 = 1,… . , 𝑁,⁄ 𝑘 𝜖 𝑆𝑖 , for the fixed-effect model. 

Weight matrix can also be given by 𝐖 = 𝐒−𝟏. Weight matrix for random-effects is diagonal 

with a vector of weights 𝑤𝑖,𝑘,𝑅𝐸 = 1 (𝑠𝑖,𝑘
2 + �̂�2), 𝑖 = 1, … , 𝑁, 𝑘 𝜖 𝑆𝑖  ⁄ or can be provided with 

𝐖 = (𝐒 + 𝚫)−𝟏. Then, the variance-covariance matrix for the observed data under the random-

effects model is 𝐶𝑜𝑣(𝒚) = 𝐖−1 = 𝐒 + 𝚫. 

In mathematical field of graph theory, Laplacian matrix, sometimes called admittance matrix 

or Kirchhoff matrix, is a matrix representation of a graph. Laplacian 𝑛 × 𝑛 matrix is given by 

𝐋 = 𝐗′𝐖𝐗, has 𝑛 − 1 rank and it is not invertible [5], [33]. To estimate treatment effects, the 

Moore Penrose pseudoinverse 𝑛 × 𝑛 matrix 𝐋+ of the Laplacian matrix 𝐋 is constructed as 

provided in [5], [33]. The Moore Penrose pseudoinverse is given by 𝐋+ = (𝐋 − 𝐉 𝑛⁄ )−1 + 𝐉 𝑛⁄  

where 𝐉 is 𝑛 × 𝑛 matrix with all elements equal to 1. In case of multi-arm studies, weights are 

adjusted and are reduced as introduced by Rücker and Schwarzer [33]. When multi-arm studies 

exist, the heterogeneity estimator �̂�2 is added to the observed variance before reducing the 

weights. 

Pairwise comparisons of the multi-arm study are correlated, so their variances need to be 

adjusted by a back-calculation method of the observed variances. Having a multi-arm study 

with 𝑆𝑖 arms, variances can be artificially inflated by 𝐋+ = −
1

2𝑆𝑖
2 𝐗

′𝐗𝐕′𝐗, where 𝐕 is 𝑆𝑖 × 𝑆𝑖 

symmetric matrix with the observed variances of all comparisons [33].  

Network estimates are weighted sums of the observed estimates with weights to come from the 

rows of H; �̂�𝑛𝑚𝑎 = 𝐗(𝐗′𝐖𝐗)+𝐗′𝐖𝒚 =  𝚮𝒚, where 𝚮 = 𝐗(𝐗′𝐖𝐗)+𝐗′𝐖 is the 𝑚 ×𝑚 hat 
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matrix. The variance-covariance matrix of network estimates is given by 𝑉𝑎𝑟(�̂�𝑛𝑚𝑎) =

𝐗𝐋+𝐗′ = 𝐆𝑚×𝑚. Treatment effects can be estimated (�̂�) using direct evidence and each piece 

of indirect by defining the vector �̂� = (𝐗′𝐖𝐗)+𝐗′𝐖𝒚  of dimension 𝑛 that represents the 

effects of the interventions. The variance of comparison between treatments A and B is defined 

as 𝐕𝐴𝐵 = 𝐋𝐴𝐴
+ + 𝐋𝐵𝐵

+ − 2𝐋𝐴𝐵
+  [38]. Having the design of treatment comparison 𝐗𝑖 and �̂� the 

estimate of treatment effects, the predicted effect size for the study 𝑖 is given by �̂�𝑖 =

{�̂�𝑖,𝑘 = 𝐗𝑖�̂�, 𝑘 𝜖 𝑆𝑖 }, 𝑖 = 1, … ,𝑁.  

Let denote with �̃�𝒊 the relative treatment estimates compared with the treatment reference for 

study 𝑖 with dimensions (𝑛 − 1) and with �̃� to be the reduced design matrix with dimensions 

(𝑛 − 1) × 𝑛 of treatment comparisons with the reference (for each row denote treatment 

comparisons with the reference input zero entries, values 1 to the column corresponding the 

reference treatment and -1 for the treatment compared). Then, the variance-covariance matrix 

of (𝑛 − 1) relative treatment estimates �̃�𝒊 is denoted with  �̃�𝐋+�̃�′ and has dimensions 

(𝑛 − 1) × (𝑛 − 1). 

The restricted (residual) maximum log-likelihood (REML) function for random-effects NMA 

model is given by 

𝐿𝑅(𝒚;  𝜏2) = −
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐒 + 𝚫|) −

1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐗′(𝐒 + 𝚫)−1𝐗|)

−
1

2
(𝒚 − 𝐗�̂�)′(𝐒 + 𝚫)−1(𝒚 − 𝐗�̂�)

=
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐖|) −

1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐗′𝐖𝐗|) −

1

2
(𝒚 − 𝐗�̂�)′𝐖(𝒚 − 𝐗�̂�) 

where 𝐖 = (𝐒 + 𝚫)−𝟏. The restricted maximum estimation method minimizes the above 

likelihood function to obtain the parameter estimates. 

Krahn et al. provided generalized Cochran’s 𝑄 (𝑄𝑡𝑜𝑡𝑎𝑙) [39]. Based on the fixed-effect model 

and assuming homogeneity and consistency in the whole network, the generalized Cochran’s 

𝑄 statistic is given by 

𝑄𝑡𝑜𝑡𝑎𝑙 = (𝒚 − 𝐗�̂�)′𝐖(𝒚 − 𝑿�̂�) 

𝑄𝑡𝑜𝑡𝑎𝑙 can be decomposed into two parts: 

• a part coming from within designs (heterogeneity between studies that compare the 

same set of treatments), 𝑄ℎ𝑒𝑡 
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• a part coming from between designs (inconsistency between studies that compare 

different sets of treatments), 𝑄𝐹𝐸
𝑖𝑛𝑐 

where the design of a study is called the set of treatments compared within the study [39]. 

The 𝑄 statistic (𝑄𝐹𝐸
𝑖𝑛𝑐) assess consistency under the assumption of a full design-by-treatment 

interaction model with a fixed-effect. Having the design-by-treatment interaction model with 

random-effects, we can measure the inconsistency between studies with different design 𝑄𝑖𝑛𝑐. 

The full design-by-treatment interaction model looks for global inconsistency by allowing for 

both loop inconsistency and design inconsistency [40]. 

Table 2.1. Notation for network meta-analysis model. 

Studies 𝑖 = 1,… . , 𝛮 

Treatments 1,… . , 𝑛 

𝑘 pairwise comparison 

𝑆𝑖 the set of treatments compared in a study or else the number of arms in study 𝑖. 

𝑛𝑆𝑖 represents the cardinality of 𝑆𝑖 and 𝑘 𝜖 𝑆𝑖 . 

Pairwise comparisons 𝑘 = 1,… . ,𝑚. 

Observed effect size vector 𝒚 = (𝒚1, 𝒚2, … , 𝒚𝑁)
′ with 𝒚𝒊 = {𝑦𝑖,𝑘 , 𝑘 𝜖 𝑆𝑖 }, 𝑘 𝜖 𝑆𝑖 . 

Observed standard errors 𝒔 = (𝒔1, 𝒔2, … , 𝒔𝑁)
′ with 𝒔𝒊 = {𝑠𝑖,𝑘 , 𝑘 𝜖 𝑆𝑖 }, 𝑘 𝜖 𝑆𝑖 . 

Design 𝑚× 𝑛 matrix 𝐗, X𝑖 the design of treatment comparison. 

�̂�2 the Generalized DerSimonian–Laird heterogeneity estimator. 

Weight 𝑚 ×𝑚 matrix 𝐖 a diagonal matrix with weights of pairwise comparisons in its diagonal. 

𝑤𝑖,𝑘,𝐹𝐸 the fixed-effect (FE) weight of pairwise comparison  

𝑤𝑖,𝑘,𝐹𝐸 = 1 𝑠𝑖,𝑘
2  , 𝑖 = 1,… . , 𝑁⁄ , 𝑘 𝜖 𝑆𝑖  

𝑤𝑖,𝑘,𝑅𝐸  the random-effects (RE) weight of pairwise comparison  

𝑤𝑖,𝑘,𝑅𝐸 = 1 (𝑠𝑖,𝑘
2 + �̂�2), 𝑖 = 1,… , 𝑁, 𝑘 𝜖 𝑆𝑖  ⁄  

Laplacian 𝑛 × 𝑛 matrix 𝐋 = 𝐗′𝐖𝐗 

Moore Penrose pseudoinverse 𝑛 × 𝑛 matrix 𝐋+ 

𝐋+ = (𝐋 − 𝐉 𝑛⁄ )−1 + 𝐉 𝑛⁄  

where 𝐉 is 𝑛 × 𝑛 matrix with all elements equal to 1. 

In case of 𝑘 multi-arm studies 

𝐋+ = −
1

2𝑆𝑖
2 𝐗

′𝐗𝐕𝐗′𝐗 

where 𝐕 is 𝑆𝑖 × 𝑆𝑖 symmetric matrix with the observed variances of all comparisons. 
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Hat 𝑚 ×𝑚 matrix 𝚮 = 𝐗(𝐗′𝐖𝐗)+𝐗′𝐖 

Network estimates 

�̂�𝑛𝑚𝑎 = 𝐗(𝐗′𝐖𝐗)+𝐗′𝐖𝒚 =  𝚮𝒚 

with variance-covariance 𝑚 × 𝑚 matrix  

𝑉𝑎𝑟(�̂�𝑛𝑚𝑎) = 𝐗𝐋+𝐗′ 

Treatment effects estimates �̂� = (𝐗′𝐖𝐗)+𝐗′𝐖𝒚   

Variances between treatments A and B, 𝐕𝐴𝐵 = 𝐋𝐴𝐴
+ + 𝐋𝐵𝐵

+ − 2𝐋𝐴𝐵
+  

Predicted effect size �̂�𝑖 = {�̂�𝑖,𝑘 = 𝐗𝑖�̂�, 𝑘 𝜖 𝑆𝑖 }, 𝑖 = 1,… ,𝑁. 

Relative treatment estimates �̃�𝒊 compared with the reference for study 𝑖 with dimensions (𝑛 − 1). 

�̃� the reduced design matrix with dimensions (𝑛 − 1) × 𝑛 of treatment comparisons with the 

reference treatment. 

�̃�𝐋+�̃�′ the (𝑛 − 1) × (𝑛 − 1) variance-covariance matrix of (𝑛 − 1) relative treatment estimates �̃�𝒊 

compared with the reference treatment. 

 

2.3 Motivating examples 

This section provides three published examples of networks of interventions that motivate us 

to proceed and provide the proposed research in this dissertation; a synthesis of studies to aid 

smoking cessation dataset, dataset for actinic keratosis and a dataset with thrombolytic drugs.  

2.3.1 Dataset comprises four interventions to aid smoking cessation  

The first example comprises four interventions to aid smoking cessation [41] [42]. Twenty-

four studies (𝛮 = 24), including twenty-two two-arm trials and two three-arm trials, compared 

the relative effects of four smoking cessation counseling programs (𝑛 = 4): defined as no 

contact (A), self-help (B), individual counseling (C), and group counseling (D). The binary 

outcome was the number of individuals that successful stopped smoking at 6 to 12 months and 

the odds ratio was used as summary measure. The dataset with arm level data is a part of R 

package netmeta [35] and the corresponding R code to calculate odds ratios is provided in 

Appendix A. Data with odds ratios are provided in Appendix Table 1.  

2.3.2 Dataset comprises nine interventions for actinic keratosis 

Gupta and Paquet [43] compared eight interventions and placebo for actinic keratosis. Thirty-

five studies (𝛮 = 35), including three three-arm trials, compared the relative effects of 

interventions (𝑛 = 9): placebo/vehicle (including placebo-PDT) (treatment 1), diclofenac 3% 

in 2.5% hyaluronic acid (DCF/HA) (treatment 2), 5-fluorouracil (5-FU) 0.5% (treatment 3), 

imiquimod (IMI) 5% (treatment 4), methyl aminolevulinate (MAL)-PDT (treatment 5), 5-
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aminolaevulinic acid (ALA)-photodynamic therapy (PDT) (treatment 6), 5-fluorouracil (5-FU) 

5.0% (treatment 7), cryotherapy (treatment 8), and ingenolmebutate (IMB) 0.015–0.05% 

(treatment 9). The binary outcome was participant complete clearance or an equivalent efficacy 

and the odds ratio was used as summary measure. The dataset is provided in Appendix Table 

2. 

2.3.3 Dataset with thrombolytic drugs 

Boland et al. [44] compared eight thrombolytic drugs (𝑛 = 8) prescribed after acute myocardial 

infarction. Twenty-eight studies (𝛮 = 28), including two three-arm studies and twenty-six 

two-arm studies comparing interventions: streptokinase (treatment 1), accelerated alteplase 

(treatment 2), alteplase (treatment 3), streptokinase plus alteplase (treatment 4), tenecteplase 

(treatment 5), reteplase (treatment 6), urokinase (treatment 7), and nistreptilase (treatment 8). 

The binary outcome was the mortality within 30 to 35 days of hospital admission. The dataset 

is provided in Appendix Table 3. 
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3 Characteristics of published networks of interventions 

 

3.1 Introduction 

NMA has been considered as the ‘new norm’ in evidence synthesis [45]. However, there are 

still limitations that may cast doubt on the reliability of results. Such limitations are ignoring 

the underlying assumptions, potential biases, inadequate and not transparent reporting of 

methods used and the use of wrong synthesis models [8], [12], [46]. 

There are previous empirical studies exploring the characteristics of networks of interventions 

concluding to the need for improving the quality of NMA applications [47]–[52]. For example, 

Βafeta et al. resulted that reporting guidelines are necessary to reduce bias in NMA results 

while Nikolakopoulou et al. reported that 68% of the NMAs published by the end of 2012 used 

inappropriate or unspecified methods for the assessment of inconsistency [48], [49].  

There are empirical studies that provide information about the choice of optimal methods used 

for the assessment of risk of bias in the included studies [53]–[55], the magnitude of 

heterogeneity [56]–[58], the relative advantages of different methods to evaluate publication 

bias and small-study effects [59]–[61], and the importance of a  comprehensive search for 

relevant studies [62]. Song et al. evaluated the prevalence of inconsistency in networks with 

three treatments [63], [64], Veroniki et al. studied the assessment of inconsistency in NMAs 

that included at least four treatments using two alternative methods [65] while Chaimani et al. 

have provided empirical evidence about the impact of risk of bias and small study effects [66].  

Several developments have been made in the field of NMA and many tutorial and guidance 

papers have been published [2], [12], [67]–[70]. Efthimiou et al. provided a review of 

methodological articles published until March 2014 [71] and found an increase of published 

articles with NMA methodology after 2011. In 2012 and 2013, 83 methodological articles were 

published compared to 58 articles published between 2005-2011. New NMA estimation 

methods have been provided; Rücker introduced the NMA model from graph theory [5], White 

et al. introduced the NMA model as a specific case of multivariate meta-regression, while 
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Higgins et al. provided a new test for the inconsistency assessment [3], [4]. Several statistical 

packages and codes have been developed to fit the models using frequentist software. R 

package netmeta offers an advantage for the implementation of the NMA model from graph 

theory [35]. Moreover, Stata routines are provided by White et al. and Chaimani et al. for the 

application of NMA models [72]–[74].  

We aim to describe how methodological aspects of NMA and reporting quality of results have 

evolved over time, monitor the rate of adoption for the new methodologies and provide an 

overview of the characteristics of published networks of interventions. We aim to provide 

empirical studies based on the data of published NMA database with the future target to 

describe how often outliers are provided in NMA datasets and how their existence biased the 

final results. 

 

3.2 Methods 

We conducted an empirical study to collect a database of published NMAs as well as 

published methodological papers about NMA.  

3.2.1 Inclusion and exclusion criteria  

Networks were included if they evaluate at least four different interventions (defined as 

different drugs or other medical treatments, or different schedules, doses or formulations of the 

same treatment) including placebo, no treatment, waiting list or other control interventions. 

NMAs with observational or diagnostic test accuracy studies were excluded. NMAs with a 

smaller number of studies than the number of interventions and NMAs performed with naive 

indirect comparisons for pooling data were excluded.  

3.2.2 Literature search and screening 

The search was conducted in Medline, Embase and the Cochrane Database of Systematic 

Reviews from inception until April 14, 2015, without language restrictions. Titles and abstracts 

were screened for the eligibility criteria. Potentially relevant full-text articles were screened in 

the same manner.  

3.2.3 Extraction of data characteristics and categorization 

We extracted general publication characteristics of articles such as first author, year and journal 

of publication, residence country of the contact author. We recorded whether the primary 

outcome measured efficacy or safety and we categorize it into dichotomous, continuous, time-

to-event or rate. The total number of interventions was extracted (termed nodes of the network 

plot) and the reference intervention. Each network is categorized according to the type of 
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treatment comparison; pharmacological versus placebo, pharmacological versus 

pharmacological or non-pharmacological versus any treatment. When the reference treatment 

was not reported, any of the following were selected as the reference treatment node: placebo, 

usual care, or no treatment. The network geometry was extracted (connected/disconnected 

network) and each network categorized to star-shaped or network with closed loops. 

Characteristics for NMA methodology with an emphasis on statistical analysis and reporting 

were also extracted. We recorded whether and how the authors evaluated the plausibility of 

transitivity [2]. For networks including at least one closed-loop, we also recorded the use of 

inconsistency tests. We categorized the method used to derive indirect and/or network 

estimates, the effect measure employed to undertake the analysis (such as odds ratio or mean 

difference) and whether a fixed-effect, random-effects or both models are used. We also 

recorded any secondary analyses such as subgroup, network meta-regression, or sensitivity 

analyses that the authors performed to investigate potential sources of heterogeneity or 

inconsistency. We examined whether authors assessed small-study effects, whether they 

considered the potential for publication bias and the methods they applied to evaluate their 

impact on the results. Although, the aim of this dissertation focus on outlier diagnostics, we 

did not extracted any information because the methodology of outlier detection in network 

meta-analysis is new and has not been provided in practice yet. 

We recorded whether the published article or even the supplementary material presented every 

possible relative effect estimate between the nodes of the network or if only a subset of them 

was provided. We also extracted if a ranking measure used for the treatment hierarchy. 

3.2.4 Statistical analysis 

For the extracted characteristics a descriptive statistical analysis was performed. We evaluated 

changes over time for several characteristics such as the use of appropriate methods to evaluate 

consistency or the use of frequentist NMA framework, and quality of reporting over the years. 

We used a 𝑋2 test for time trend for dichotomous characteristics and the Cox-Stuart trend test 

for continuous characteristics [75]. All analyses were performed in R software [76] using the 

R package trend [77].  

 

3.3 Results 

We identified 3727 abstracts that resulted in 456 networks satisfying all inclusion criteria. 

Figure 3.1 provides the flow chart of the search strategy and the selection process. 
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Figure 3.1. Flow chart of the selection process of published networks of interventions. 

3.3.1 General NMA and publication characteristics 

We first monitored that the number of published NMAs has been increasing over the last two 

decades. Only 6 NMAs were published for the period from 1999 to 2004.  

The median number of studies per network was 21 (interquartile range (IQR) 13 to 40) and the 

median number of treatments was 7 (IQR of 5 to 9) (Table 3.1). Most articles were published 

in general medicine journals (183 NMAs, 40%). 234 NMAs (51%) had a contact author with 

affiliation from Europe and 140 NMAs (31%) from the United States. 

The majority of NMAs provided pharmacological interventions and placebo treatment 

comparisons (299 NMAs, 66%). 88 NMAs (19%) provided only pharmacological interventions 

(19%) and 69 ΝΜΑs (15%) compared a mixture of pharmacological, non-pharmacological and 

control treatments (Table 3.1). 

Regarding the network geometry, 73% of networks (331 NMAs) included at least one closed-

loop and 27% of NMAs (125 NMAs) were star-shaped networks. Table 3.2 provides that all 

the NMAs published in 2005 were star-shaped networks but the percentage decreased to 19% 

in 2015. Moreover, the number of networks with at least one closed-loop has increased through 

time (p=0.01, Table 3.2).  
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Characteristics regarding the outcome indicated that the majority of NMAs provided a 

beneficial type of outcome (260 NMAs, 57%) while 43% of NMAs provided a harmful 

outcome. The most commonly measured as a dichotomous scale (267 NMAs, 59%), while only 

30% of NMAs provide an outcome measured on a continuous scale (Table 3.1).  

 

Table 3.1. Characteristics of 456 NMAs published until 2015. IQR: Interquartile range. 

Characteristics of NMAs Median (ΙQR) 

Median number of included treatments 7 (5, 9) 

Median number of included studies 21 (13, 40) 

 Number of NMAs (%) 

General publication characteristics 

Published in general medicine journals* 183 (40%) 

Published in health services research journals** 56 (12%) 

Published in specialty journals 217 (48%) 

Contact author with affiliation in Europe 234 (51%) 

Contact author with affiliation in the United States 140 (31%) 

Treatment comparisons 

Compare Pharmacological treatments versus placebo 299 (66%) 

Only pharmacological treatment comparisons  88 (19%) 

A mixture of pharmacological, non-pharmacological and 

control treatments 

69 (15%) 

Network geometry 

Networks included at least one closed loop  331 (73%) 

Star-shaped networks 125 (27%) 

Outcome 

Beneficial outcome 260 (57%) 

Dichotomous scale 267 (59%) 

Continuous scale 135 (30%) 

*Medicine, General & Internal, Pharmacology & Pharmacy, Multidisciplinary Sciences, Medicine, 

Research & Experimental, Primary Health Care. ** Health Care Sciences & Services, Health Policy & 

Services. 

 

3.3.2 Evaluation of transitivity and consistency assumption 

The majority of NMAs (353 NMAs, 77%) did not report any statement regarding the 

transitivity assumption. This tendency changed over time as we found 77% of NMAs published 
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in 2015 discussing the transitivity assumption (p<0.01) (Table 3.2). We only found 5 NMAs 

(1%) in which authors reported concerns about potential intransitivity. We found 100 NMAs 

(22%) that did report how transitivity was evaluated and the majority provided study 

characteristics comparisons (76 NMAs). 

331 NMAs included at least one closed-loop allowing assessment of inconsistency. Nearly half 

of the networks (150 NMAs, 45%) used appropriate statistical methods to assess consistency 

and their uptake has increased in the last years (p<0.01, Table 3.2). The most commonly used 

method for the assessment of inconsistency was the loop-specific approach [13] (59 NMAs, 

18%) followed by the node-splitting approach [14] (39 NMAs, 12%). We found only 5 NMAs 

(2%) implemented the design-by-treatment interaction model [4] but the method was 

introduced in 2012. Almost 28% percent of NMAs (94 NMAs) did not report any method used 

to check the plausibility of the consistency assumption. 

The proportion of NMAs considered transitivity or methods to evaluate the consistency 

increased over the years (p<0.01, Table 3.2) with a percentage of 17% of published NMAs in 

2006 to 86% of published NMAs in 2015 discussing transitivity or inconsistency.  

3.3.3 Statistical synthesis of the data 

The most commonly used effect size for NMAs was the odds ratio (177 NMAs, 39%) for the 

dichotomous outcome and the mean difference (89 NMAs, 20%) for the continuous outcome. 

Trend test indicated that reporting quality was poor overtime of explaining the reason to choose 

between the fixed and random-effects model (p=0.01, Table 3.2). Half of the networks (230 

NMAs) performed the analysis using the random-effects model. Among the 170 networks 

(37%) that used the fixed-effect model, the majority (141 NMAs, 83%) also applied the 

random-effects approach either as sensitivity analysis or with the aim to choose between the 

two models.  

Only 24 NMAs (5%) did not report the synthesis NMA model used while the percentage of 

NMAs reporting the statistical method used to fit NMA has increased over time from 67% in 

2005 to 100% in 2015 (p<0.01, Table 3.2). We found that the Bayesian hierarchical approach 

(302 NMAs, 64.5%) followed by the Bucher method (88 NMAs, 18.8%) were implemented 

more often for the statistical evidence synthesis (Table 3.3). Only 80 (18%) NMAs which 

included at least one multi-arm study employed a method to derive the treatment effect that 

ignored correlations (e.g. adjusted indirect comparison meta-analysis or Bucher method). We 
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found 5 NMAs that fit the NMA model as multivariate meta-analysis or multivariate meta-

regression. We also found one NMA that employed the NMA approach form graph-theory.  

Subgroup, meta-regression or sensitivity analysis were employed to investigate potential 

sources of heterogeneity or inconsistency by almost half on the NMAs (256 NMAs, 56%). 143 

(31%) NMAs implemented methods and graphical tools for small-study effects and publication 

bias for pairwise comparisons in meta-analysis. Funnel plots (116 NMAs, 81%) and regression 

tests (82 NMAs, 57%) were the most commonly used methods for the assessment of 

publication bias while only 7 NMAs (5%) applied the trim and fill method. More complicated 

approaches, such as the comparison-adjusted funnel plot and the extended selection models 

[73], [78]–[80] were only implemented by 6 NMAs (4%). 

 

3.3.4 Presentation of results 

The presentation of outcome data decreased over time (p=0.03). All possible relative treatment 

effects are provided for half of the NMAs (234 NMAs, 51%). The rest NMAs present only a 

subset of relative treatment effects and one NMA (0.2%) did not report any relative treatment 

effect. 43% (195 NMAs) of NMAs provided the treatment hierarchy with the probability of 

being the best to be the most commonly used (166 NMAs, 85%) followed by SUCRA values 

(39 NMAs, 20%). The time trend indicated that the use of the probability of being the best has 

not changed significantly (p=0.86) but the use of SUCRA values has increased (p<0.01) (Table 

3.2).

Table 3.2. The number of NMAs and percentages for characteristics of NMAs published between 2005 

and 2015 (until 15 April).  
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Characteristics of NMAs 

Total 

Num

ber 

200

5 

200

6 

200

7 

200

8 

200

9 

201

0 

201

1 

201

2 

201

3 

201

4 

201

5 

p-

val

ue 

Star Networks 125 

6 

(10

0%)  

5 

(42

%) 

2 

(22

%) 

6 

(50

%) 

7 

(26

%) 

7 

(23

%) 

14 

(26

%) 

17 

(29

%) 

19 

(20

%) 

32 

(31

%) 

8 

(19

%) 

0.0

1 

Compare 

pharmacological vs 

pharmacological 

88 

1 

(17

%) 

2 

(17

%) 

2 

(22

%) 

3 

(25

%) 

8 

(30

%) 

3 

(10

%) 

5  

(9

%) 

5  

(8

%) 

23 

(24

%) 

29 

(28

%) 

7 

(16

%) 

0.1

5 

Compare 

pharmacological vs 

placebo 

299 

5 

(83

%) 

8 

(67

%) 

6 

(67

%) 

9 

(75

%) 

14 

(52

%) 

22 

(73

%) 

43 

(81

%) 

42 

(71

%) 

62 

(65

%) 

56 

(54

%) 

26 

(60

%) 

0.3

1 

Compare non-

plarmacological vs any 
69 

0  

(0%

) 

2 

(17

%) 

1 

(11

%) 

0  

(0

%) 

5 

(19

%) 

5 

(17

%) 

5  

(9

%) 

12 

(20

%) 

11 

(11

%) 

18 

(17

%) 

10 

(23

%) 

0.0

5 

No information or 

discussion on transitivity 
353 

6 

(10

0%) 

12 

(10

0%) 

7 

(78

%) 

11 

(92

%) 

23 

(85

%) 

26 

(87

%) 

46 

(87

%) 

46 

(78

%) 

67 

(70

%) 

71 

(69

%) 

33 

(77

%) 

<0.

01 

Reported that transitivity 

is likely to hold 
98 

0  

(0%

) 

0 

 

(0%

) 

1 

(11

%) 

1  

(8

%) 

4 

(15

%) 

4 

(13

%) 

7 

(13

%) 

13 

(22

%) 

27 

(28

%) 

30 

(29

%) 

10 

(23

%) 

<0.

01 

Use appropriate methods 

to test inconsistency*** 
150 ΝΑ  

1 

(14

%) 

2 

(29

%) 

2 

(33

%) 

6 

(30

%) 

4 

(17

%) 

13 

(33

%) 

16 

(38

%) 

43 

(56

%) 

36 

(51

%) 

26 

(74

%) 

<0.

01 

Discuss about transitivity 

or inconsistency (at least 

one of the two) 

285 

0  

(0%

) 

2 

(17

%) 

3 

(33

%) 

5 

(42

%) 

12 

(44

%) 

17 

(57

%) 

30 

(57

%) 

40 

(68

%) 

66 

(69

%) 

72 

(70

%) 

37 

(86

%) 

<0.

01 

Clearly reported whether 

random or fixed effects 

are used 

400 

5 

(83

%) 

10 

(83

%) 

7 

(78

%) 

10 

(83

%) 

20 

(74

%) 

25 

(83

%) 

44 

(83

%) 

53 

(90

%) 

91 

(95

%) 

93 

(90

%) 

38 

(88

%) 

0.0

1 

Method for NMA 

reported 
432 

4 

(67

%) 

8 

(67

%) 

9 

(10

0) 

11 

(92

%) 

23 

(85

%) 

30 

(10

0%) 

51 

(96

%) 

56 

(95

%) 

95 

(99

%) 

99 

(96

%) 

43 

(10

0) 

<0.

01 

Use Bayesian 

hierarchical model to fit 

NMA 

302 

1 

(17

%) 

3 

(25

%) 

3 

(33

%) 

4 

(33

%) 

13 

(48

%) 

19 

(63

%) 

35 

(66

%) 

43 

(73

%) 

77 

(80

%) 

71 

(69

%) 

33 

(77

%) 

<0.

01 

Formal exploration of 

heterogeneity 
256 

2 

(33

%) 

9 

(75

%) 

5 

(56

%) 

6 

(50

%) 

16 

(59

%) 

20 

(67

%) 

36 

(68

%) 

32 

(54

%) 

56 

(58

%) 

51 

(50

%) 

20 

(47

%) 

0.1 
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Table 3.3. Statistical models used for evidence synthesis. The number of articles and percentages.  

 

 

 

 

 

 

3.4 Discussion  

The number of published NMAs increased substantially over the years. The importance of 

multiple treatment comparisons has now well known among researchers in various fields of 

health and education.  

Reporting quality was also improved as we found all articles published in 2015 to include a 

description of the statistical methods used. The PRISMA (Preferred Reporting Items for 

Systematic reviews and Meta-analysis) statement was published only recently and we expect 

to have an impact on the improvements in reporting quality for NMA applications. 

All pairwise effects are 

presented 
234 

1 

(17

%) 

3 

(25

%) 

2 

(22

%) 

4 

(33

%) 

15 

(56

%) 

17 

(57

%) 

31 

(58

%) 

29 

(49

%) 

54 

(56

%) 

55 

(53

%) 

23 

(53

%) 

0.0

2 

Available outcome data 308 

4 

(67

%) 

8 

(67

%) 

8 

(89

%) 

10 

(83

%) 

23 

(85

%) 

24 

(80

%) 

36 

(68

%) 

38 

(64

%) 

55 

(57

%) 

71 

(69

%) 

27 

(63

%) 

0.0

3 

Use only Pbest for 

ranking 
137 

1 

(17

%) 

2 

(17

%) 

3 

(33

%) 

1  

(8

%) 

10 

(37

%) 

13 

(43

%) 

16 

(30

%) 

20 

(34

%) 

33 

(34

%) 

32 

(31

%) 

6 

(14

%) 

0.8

6 

Use SUCRA 39 

0 

 

(0%

) 

0 

 

(0%

) 

0 

 

(0

%) 

0  

(0

%) 

0  

(0

%) 

0 

 

(0%

) 

1  

(2

%) 

4  

(7

%) 

10 

(10

%) 

9  

(9

%) 

14 

(33

%) 

<0.

01 

Number of NMAs 

published 
456* 6 12 9 12 27 30 53 59 96 103 43 

0.0

4** 

*There are 6 networks published before 2005 and are included in the total NMA group. ** In the test for trend for the 

total number of published NMAs we excluded the year 2015 as it is not complete. ***Here the denominator is the 

number of articles with at least one closed-loop (number of NMAs published minus the star-shaped NMA). P-values 

from a trend test. 

Characteristics of NMAs Number of NMAs (%) 

Bayesian hierarchical model 302 (64.5%)  

Bucher method 88 (18.8 %)  

Meta-regression 44 (9.4 %) 

Not reported or unclear 25 (5.4 %) 

Multivariate meta-analysis or meta-regression 5 (1.1 %) 

Indirect synthesis method 3 (0.6 %)     

NMA from graph theory  1 (0.2 %) 
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Improvements might be due to statisticians becoming more experienced with the NMA 

methodology. There are several educational published articles for NMA methodology that 

might provide some impact for the improvement of NMA methodology and the reporting 

quality [2], [12], [67], [81], [82]. Suggestions for accompanied detailed protocols on which 

authors should base their NMAs have started to be applied [2], [12]. NMA protocol registration 

can improve the reporting quality of NMAs and it can help to define a priori the assessment of 

transitivity, inconsistency and several methodologies used for the NMA analysis. 

It is notable that the Bayesian hierarchical model found to be the most popular approach for 

NMA model synthesis as only five articles employed NMA using frequentist approaches. The 

use of new methodological frequentist developments is expected to be increased after 2015, 

such as the NMA model from graph theory with netmeta R package [35], Stata routines for 

the multivariate random-effects meta-analysis model [3], [74], and design-by-treatment 

interaction model to test the consistency assumption [4]. 

Many NMAs in this database provide important methodological limitations. Accordingly, the 

use of appropriate methods improved over the years. For example, an increasing number of 

NMAs addressed transitivity or inconsistency, as three-quarters of networks published in 2015 

used appropriate methods to test the plausibility of the consistency assumption. It was not 

noticed a change regarding the discussion of the transitivity assumption but it is a need to 

change that aiming to take valid NMA results.  

To the best of our knowledge, this is the largest collection of published NMAs up to date. It 

includes nearly three times the data included in Bafeta et al. [47], more than twice the data 

included in Nikolakopoulou et al. [49] and about 40% more data compared to the collection by 

Chambers et al. [83]. This is also the first study to formally investigate the changes in 

methodology and reporting quality of NMAs over time. 

This empirical evidence could inform simulation scenarios (e.g. median number of studies or 

treatments) conducted in the NMA field. Based on this database of NMAs, several empirical 

projects can be conducted in several aspects of NMA methodology. For the aim of the research 

of this dissertation, the extracted data of NMA database could be used to provide a description 

on how often outliers are provided in NMA datasets and how their existence biased the final 

results.  

 



 

 

 

 

4 Methods to detect outliers in meta-analysis  

 

4.1 Introduction  

There are many definitions for outliers in the literature and several methods to detect outliers 

in regression models have been provided. Meta-analysis is actually a weighted regression 

model. Assumption that no outliers exist in the data is the basis for weighted least squares 

estimation or for normal likelihood maximization. Outlier detection is crucial as weighted least 

squares estimates are sensitive to outliers and their existence may be bias the model parameter 

estimation. Several outlier detection methods have been extended from regression models to a 

pairwise meta-analysis.  

Οutlier diagnostics measures fitted in the fixed-effect meta-analysis were firstly provided in a 

Chapter by Hedges [84]. Viechtbauer and Cheung offered outlier diagnostics measures 

considering the effect deletion of study have on fixed- and random-effects meta-analysis [85].  

The detection of outliers is not an integral part of NMA. Outlier detection in NMA is much 

more challenging compared to a pairwise meta-analysis as outlying studies may have an impact 

on the underlying model and may not be easily identified visually. In addition, data are 

multivariate and an effect can be suspicious not only by its mere size but also by its size 

conditional on the comparison of the study and/or the corresponding effect derived from 

indirect evidence.  

As Zhang et al. [86] and Zhao et al. [87] remarked previously, outliers may be the primary 

source of heterogeneity or inconsistency and may affect the validity of NMA results. Only four 

methodological papers have addressed how to detect outliers in NMA evidence structures up 

to date. Lu and Ades proposed the use of residual deviance to detect outliers in the Bayesian 

hierarchical model [41]. Zhang et al. [86] provided four measures for the detection of outliers 

in the Bayesian hierarchical model while Zhao et al. [87] offered outlier detection measures 

for generalized Bayesian hierarchical models to detect outliers at observation data and not at 
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aggregated data. Noma et al. [88] have recently provided four measures to detect outliers in 

frequentist NMA model based on multivariate random-effects meta-regression method.   

In this Chapter, we provide a brief synopsis of the several outlier detection strategies that have 

been proposed in regression and meta-analytical context. We propose and evaluate several 

measures and graphical tools that seek to accomodate influential studies and outliers in network 

meta-analysis. These procedures are logical extensions from pairwise meta-analysis and 

regression to the NMA model. The proposed outlier and influential detection measures and 

visual tools can be implemented to any NMA dataset with our developed R package 

NMAoutlier [28]. 

This Chapter is organized as follows: Section 4.2 provides an overview of outlying 

identification in the meta-analytical context; Section 4.3 outlines the proposed measures 

extended from pairwise meta-analysis to network meta-analysis; Section 4.4 provides an 

application of the several outlier and influential measures in real datasets of networks of 

interventions and Section 4.5 discusses the main findings and provides conclusions.  

4.2 Outlying detection strategies in meta-analysis 

Outliers can affect model parameters possibly causing bias. For example, the arithmetic mean, 

is known to be particularly sensitive to outlying observations and the presence of even one 

outlier unduly influences the results derived. 

There are two different ways to interpret outliers; geometrically and probabilistically. With the 

former interpretation, outliers are extreme values that lie far away from the other observations 

while with the latter, outliers are those observations that are most unlikely to occur under the 

hypothesized model [89]. Fitting of the model should be based on a clean dataset. 

There are two interpretation mistakes if characterizing a study as an outlier or not; the masking 

effect and the swamping effect. If there is a cluster of outliers, it is likely that results would be 

affected to such a degree that outliers will not be identified. This is known as masking effect 

and it is similar to a false negative. Barnett and Lewis define the masking effect as the inability 

to identify even a single outlier in the presence of several suspected values [90]. Thus, the 

presence of a single outlier masks the appearance of other outliers. Moreover, we may have a 

false-positive result. Outliers may affect the summary effect to a such a degree that non-

outlying values may falsely appear to be outlying. This is known as the swamping effect. 
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Based on our bibliographic knowledge, we outline a synopsis of the strategies to accommodate 

outliers in meta-analysis. The several strategies to detect and adjust for outliers in meta-

analytical models can be classified in five general categories: A. Use of distribution other than 

normal (alternative distributions) for random effects; B. Robust heterogeneity measures; C. 

Likelihood methods; D. Deletion/backward methods; E. Forward methods and F. Robust 

estimation. 

 

A. Alternative distributions for the random-effects model 

Meta-analysis typically assumes a normal distribution for the random-effects model. Jackson 

and White provided several situations in which normality is questioned [91]. It has been 

suggested that more flexible distributions should be taken more frequent in practice. 

Alternative long-tailed random effects distributions reduce the weight given to more extreme 

study effects (outliers). Lee and Thompson argued that normality might be a restrictive 

assumption for the random-effects model and they provided alternative distributions with 

heavier tails [92]. They suggested the 𝑡 distribution for random effects 𝑢𝑗  with density function  

𝑝(𝑢𝑗 𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒, 𝑑𝑓⁄ ) =
𝛤((𝑑𝑓 + 1) 2⁄ )

𝛤(𝑑𝑓 2)√𝜋𝑑𝑓⁄
(1 +

(𝑢𝑗 −𝑚𝑒𝑎𝑛)
2

𝑑𝑓𝑠𝑐𝑎𝑙𝑒
)

−(𝑑𝑓+1) 2⁄

 

where 𝑚𝑒𝑎𝑛 is the mean, 𝑠𝑐𝑎𝑙𝑒 is the scale parameter and 𝑑𝑓 degrees of freedom and they 

offered skewed extensions for normal and 𝑡 distribution. Baker and Jackson suggested 

alternative distributions to downweigh outlying studies such as long-tailed distributions, arcsin 

distribution, beta distribution, Subbotin distribution and alternative vague priors in Bayesian 

analysis [93]. Baker and Jackson proposed two new marginal distributions with additional 

parameters to model skewness and heavier tails [94].  

B. Robust heterogeneity measures 

Outliers can have an impact on the estimation of heterogeneity causing bias to meta-analytical 

results. Lin et al. proposed alternative heterogeneity measures in the meta-analysis that are 

robust in the presence of outliers [95]. They provided two alternative Dersimonian and Laird 

heterogeneity estimators using the weighted average and the weighted median instead of the 

standard weighted mean. Yu et al. proposed a robust to outliers version of maximum likelihood 

(ML) estimation method based on two loss functions for log-likelihood; Huber’s rho function 

and Tukey’s biweight function [96].  
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C. Likelihood methods 

Gumedze and Jackson, based on the likelihood function, proposed a model that shifts the 

random-effects variance of each included study, separately [97]. A random-effects shift 

variance model is capable to identify and downweigh studies with inflated variance (outliers) 

[97]. Monitoring is deemed helpful as sharp changes in detection measures can be an indication 

for outliers. Beath [98] proposed a method that considers two classes of outlying and non-

outlying studies and based on a finite mixture approach can detect and downweigh the outlying 

cases.  

D. Backward/Deletion methods 

Viechtbauer and Cheung extended several outlying and influence diagnostic measures 

developed for the linear regression model in the context of meta-analysis [85] and included 

them in the R package metafor [99]. The diagnostic measures provided the influence of a study 

to model parameters considering its deletion [85]. Deleted residuals, Cook’s distance, the 

change in the variance-covariance matrix of the parameter estimates when a study deleted and 

𝑅𝑖 statistic are some of the measures provided [85]. Shi et al. provided an updating formula of 

the measures using case deletion diagnostic method and local influence analysis under the 

DerSimonian and Laird and maximum likelihood estimation, respectively [100]. Backward 

algorithms have been developed for outlier diagnosis in meta-analysis [101]. This type of 

algorithm removes observations according to some criterion (e.g. the largest residual) and stops 

when some criterion is met (e.g. all residuals are smaller than a threshold value) [100]. The 

main drawback of backward methods is that may have masking and swamping effects due to 

the fact that all observations, including outliers, are used and conclusion may be affected. 

E. Forward methods 

Forward Search algorithm is an outlying identification method and it has recently been 

implemented in meta-regression [101]. It starts with an initial subset of studies that is ideally 

assumed to be outlier-free and it gradually adds the remaining studies according to their 

closeness to the set of selected studies under the hypothesized model. In each iteration, 

parameter estimates, measures of fit and test statistics can be monitored. Sharp changes in 

monitoring measures can indicate potential outlying studies. In contrast to deletion methods, 

forward methods are unaffected of masking and swamping effects and this is the main 

advantage of their implementation.  
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F. Robust estimation 

The classical least squares regression is sensitive in the presence of outliers. The robust 

estimation has been developed for regression models and several methods have been suggested. 

Yu et al. provided a review of robust estimation methods that have been proposed in regression 

and conducted a simulation comparison of the detection methods [96]. Huber [102] introduced 

the M-estimator which is a solution of the normal equation with appropriate weight functions. 

Rousseeuw provided the least trimmed squares (LTS) estimates [103] which minimize the 

trimmed sum of squared residuals. Rousseeuw [104] also introduced the least median squares 

(LMS) estimation which minimize the median sum of squares. Extension of robust statistics to 

meta-analytical models is innovative as there is no methodological work up to date. It can be 

an area for future work in the view that there is large bibliographic research for robust 

estimation statistics in regression models and it is not sensitive in the presence of outliers.  

4.3 Outlier and influential case diagnostics measures for NMA 

This Section provides the extension of the several outlying and influential detection measures 

from regression or pairwise meta-analytical models to the frequentist random-effects NMA 

model [5].  Details about the fitted model and useful notation can also be found in Chapter 2 

of this dissertation. 

4.3.1 Outlier detection measures 

Table 4.1 provides an overview of the proposed outlier detection measures; contribution to the 

Q statistic (Mahalanobis distance), residuals, and leverage. 

Contribution to the 𝑄𝑖 (Mahalanobis distance) 

The most commonly used tool to assess the presence of outliers for multivariate data is the 

Mahalanobis distance. Αn analogy to Mahalanobis distance for a pairwise comparison (or two-

arm study) is the contribution of the study 𝑖 to Cochran’s Q statistic [105]. More specifically, 

the formula is give by 

𝐷𝑄𝑖,𝑘
2 = 𝑄𝑖,𝑘 = 𝑤𝑖,𝑘,𝐹𝐸(𝑦𝑖,𝑘 − �̂�𝑖,𝑘)

2
 

where 𝑤𝑖,𝑘,𝐹𝐸 = 1 𝑠𝑖,𝑘
2  , 𝑖 = 1,… . , 𝛮⁄ , 𝑘 𝜖 𝑆𝑖  is the fixed-effect weight of pairwise comparison 

of a study.  

In the case of multi-arm study, the squared of contribution to the Q for a study 𝑖 with 𝑘  pairwise 

comparisons is given by the arithmetic average 
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𝐷𝑄𝑖
2 = 𝑄𝑖 =

1

𝑛𝑆𝑖 
∑ 𝑄𝑖,𝑘
𝑘∈𝑆𝑖 

=
1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘,𝐹𝐸(𝑦𝑖,𝑘 − �̂�𝑖,𝑘)

2

𝑘∈𝑆𝑖 

 

where 𝑛𝑆𝑖 the cardinality of 𝑆𝑖 and in matrix form 

𝐷𝑄𝑖,𝑘
2 = 𝑸𝑖,𝑘 = (𝒚𝒊 − �̂�𝒊)

′(𝐶𝑜𝑣(𝒚𝒊 ))
−1
(𝒚𝒊 − �̂�𝒊) 

                                                    = (𝒚𝒊 − 𝑿𝑖�̂�)
′(𝐒𝒊,𝒂𝒅𝒋)

−1
(𝒚𝒊 − 𝑿𝑖�̂�) 

                                                    = (𝒚𝒊 − 𝑿𝑖�̂�)
′𝐖𝑖(𝒚𝒊 − 𝑿𝑖�̂�) 

where 𝐖𝑖 is the fixed-effect weight matrix of a study 𝑖 with 𝐖𝑖 = (𝑺𝒊,𝒂𝒅𝒋)
−1

, with 𝑺𝒊,𝒂𝒅𝒋 a 

matrix with adjusted squares of standard errors for a study 𝑖. 

Leverage 

Influential studies are observations that have a large impact on the model parameters. The study 

with extreme value and moderate to large weight in the model parameters is called the leverage 

point. Detection of such observations in regression can easily be observed with the leverage 

score. For the  𝑘𝑡ℎ pairwise comparison in the 𝑖𝑡ℎ study, the leverage score is the 𝑘𝑡ℎ diagonal 

of the hat matrix, defined as 

ℎ𝑖,𝑘 = (𝐇)𝑖,𝑘𝑘 

where 𝐇 is the block diagonal hat matrix of random-effects model 𝐇 = 𝐗(𝐗′𝐖𝐗)−𝟏𝐗′𝐖 with 

blocks referring to different studies. Large leverage points indicate the existence of influential 

studies. 

Raw residuals 

A more formal approach is to examine the residuals. The raw pairwise residual for the  𝑘𝑡ℎ 

pairwise comparison in 𝑖𝑡ℎ the study is the difference between the observed effect size 𝑦𝑖,𝑘 and 

the predicted effect size based on the random-effects model �̂�𝒊 = {�̂�𝑖,𝑘 = 𝑿𝒊�̂�, 𝑘 𝜖 𝑆𝑖 } given by 

𝜀�̂�
 𝑘,𝑝𝑎𝑖𝑟,𝑟𝑎𝑤 = 𝑦𝑖,𝑘 − �̂�𝑖,𝑘 

                            = 𝑦𝑖,𝑘 − 𝑿𝒊�̂�  

For each two-arm study, the raw residual (raw study residual) is the same with its raw pairwise 

residual. In case of a multi-arm study 𝑖 with 𝑘𝜖 𝑆𝑖 pairwise comparisons, we define the raw 
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study residual to be equal to the square root of the average of squared raw residuals within the 

trial. 

𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑟𝑎𝑤

= √
1

𝑛𝑆𝑖 
∑(𝑦𝑖,𝑘 − �̂�𝑖,𝑘)

2

𝑘∈𝑆𝑖 

 

Standardized residuals 

The standardized pairwise residual (equivalent to the squared of Mahalanobis distance with 

random-effects weights) for the  𝑘𝑡ℎ pairwise comparison in 𝑖𝑡ℎ study is the standardized 

difference between the observed effect size 𝑦𝑖,𝑘 and the predicted effect size �̂�𝑖,𝑘 given by 

𝜀�̂�
 𝑘,𝑝𝑎𝑖𝑟,𝑠𝑡𝑎𝑛𝑑 =

𝑦𝑖,𝑘 − �̂�𝑖,𝑘

√𝑠𝑖,𝑘
2 + �̂�2

 

where �̂�2 is the Generalized DerSimonian and Laird heterogeneity estimator. For each two-arm 

study, the standardized residual (standardized study residual) is the same with its standardized 

pairwise residual. In case of a multi-arm study 𝑖 with  𝑘𝜖 𝑆𝑖  pairwise comparisons, we define 

the standardized study residual to be the squared root of the average of squared standardized 

pairwise residuals 

𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦𝑖,𝑘 − �̂�𝑖,𝑘

√𝑠𝑖,𝑘
2 + �̂�2

)

 

𝑘∈𝑆𝑖 

2

 

where 𝑛𝑆𝑖 represents the cardinality of  𝑆𝑖 . 

Studentized residuals 

The studentized pairwise residual for the 𝑘𝑡ℎ pairwise comparison in 𝑖𝑡ℎ study is given by 

𝜀�̂�
𝑘,𝑝𝑎𝑖𝑟,𝑠𝑡𝑢𝑑 =

𝑦𝑖,𝑘 − �̂�𝑖,𝑘

√(1 − ℎ𝑖)(𝑠𝑖,𝑘
2 + �̂�2)

 

where ℎ𝑖,𝑘 = (𝐇)𝑘𝑘 is the 𝑖𝑡ℎ diagonal of hat matrix 𝐇 = 𝐗(𝐗′𝐖𝐗)−𝟏𝐗′𝐖 in the NMA model. 

For each two-arm study, the studentized residual (studentized study residual) is the same with 

its studentized pairwise residual. In case of a multi-arm study 𝑖 with 𝑘 pairwise comparisons, 
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we define the studentized study residual to be the squared root of the average of squared 

studentized pairwise residuals 

𝜀�̂�
𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑢𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦𝑖,𝑘 − �̂�𝑖,𝑘

√(1 − ℎ𝑖)(𝑠𝑖,𝑘
2 + �̂�2)

)

 

𝑘∈𝑆𝑖 

2

 

We can use a boundary of 1.96 or 2 for the value of standardized and studentized study 

residuals. 

Table 4.1 Overview of outlier detection measures in NMA. 

Outlier detection 

measures 

Formula Cut-offs 

Contribution to the Q 

(Mahalanobis distance) 
𝐷𝑄𝑖
2 =

1

𝑛𝑆𝑖 
∑ 𝑄𝑖,𝑘
𝑘∈𝑆𝑖 

 

𝐷𝑄𝑖
2 =

1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘,𝐹𝐸 (𝑦𝑖,𝑘 − �̂�𝑖,𝑘)

2

𝑘∈𝑆𝑖 

 

 

 

Leverage ℎ𝑖,𝑘 = (𝐇)𝑖,𝑘𝑘 

𝐇 = 𝐗(𝐗′𝐖𝐗)−𝟏𝐗′𝐖 

large value 

Raw study residual 
𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑟𝑎𝑤

= √
1

𝑛𝑆𝑖 
∑ (𝑦

𝑖,𝑘 
− �̂�

𝑖,𝑘
)
2

𝑘∈𝑆𝑖 

 

 

 

Standardized study 

residual 
𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦
𝑖,𝑘 
− �̂�

𝑖,𝑘

√𝑠𝑖,𝑘
2 + �̂�2

)

 

𝑘∈𝑆𝑖 

2

 

1.96 or 2 

Studentized study residual 

𝜀�̂�
𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑢𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦
𝑖,𝑘 
− �̂�

𝑖,𝑘

√(1 − ℎ𝑖) (𝑠𝑖,𝑘
2 + �̂�2)

)

 

𝑘∈𝑆𝑖 

2

 

1.96 or 2 
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4.3.2 Outlier detection measures considered deletion 

 

“Leave one out” parameters for NMA model 

Viechtbauer and Cheung suggested using residuals after study deletion [85]. We provide by 

analogy the corresponding measures in ΝΜΑ context. Table 4.2 summarizes the notation for 

“leave one out” model parameters. We denote the NMA model parameters excluding study 𝑖; 

the summary estimate of treatment effects “leave one out” �̂�(−𝒊) and the between-study 

variance estimator �̂�(−𝑖)
2  termed as heterogeneity estimator “leave one out”. 𝑿𝒊 is the raw of the 

design matrix for study 𝑖 from the whole network that provides the treatment comparison of 

the study 𝑖. Based on model estimation, let us define the predicted value “leave one out” for 

study 𝑖 (that is actually excludes the study 𝑖) in the 𝑘𝑡h pairwise comparison �̂�𝑖,𝑘(−𝑖) = 𝑿𝑖
′�̂�(−𝒊). 

We define the random-effects weight “leave one out” to be the weight excluding the study 𝑖 of 

the 𝑘𝑡h pairwise comparison 

𝑤𝑖,𝑘(−𝑖) =  
1

𝑠𝑖,𝑘
2 +  �̂�(−𝑖)

2  

The weight “leave one out” for a multi-arm study is given with the arithmetic mean by  

𝑤𝑖(−𝑖) =
1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘(−𝑖)
𝑘∈𝑆𝑖 

 

Having 𝑤𝑖,𝑘(−𝑖) in a diagonal for the 𝑘𝑡ℎ pairwise comparison in 𝑖𝑡ℎ study, we denote the weight 

matrix 𝐖(−𝑖) to be a diagonal with 𝑤𝑖,𝑘(−𝑖) entries. Then, the hat matrix “leave one out” can be 

defined as 𝐇(−𝒊) = 𝐗𝑖(𝐗𝑖
′𝐖(−𝑖)𝐗𝑖)

−1
𝐗𝑖

′𝐖(−𝑖) with the leverage “leave one out” to be the 𝑘𝑡h 

diagonal of the hat matrix ℎ(−𝑖) = (𝐇(−𝒊))𝑘𝑘
.  

Table 4.2. “Leave one out” parameters for the NMA model. 

“leave one out” model parameters Symbol or Formula 

Summary estimate of treatment effects “leave one out” �̂�(−𝒊) 

Heterogeneity estimator “leave one out” �̂�(−𝑖)
2  

Predicted value “leave one out”  

Weight “leave one out” 
𝑤𝑖(−𝑖) =

1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘(−𝑖)

𝑘∈𝑆𝑖 
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𝑤𝑖,𝑘(−𝑖) =  
1

𝑠𝑖,𝑘
2 +  �̂�(−𝑖)

2  

 

Leverage “leave one out” ℎ(−𝑖) = (𝐇(−𝒊))𝑘𝑘 

𝐇(−𝒊) = 𝐗𝑖(𝐗𝑖
′𝐖(−𝑖)𝐗𝑖)

−1
𝐗𝑖

′𝐖(−𝑖)  

𝐖(−𝑖) = 𝑑𝑖𝑎𝑔(
1

𝑠𝑖,𝑘
2 + �̂�(−𝑖)

2  ) 

 

Raw, Standardized, Studentized residuals considered deletion 

The raw study deleted residual 𝜀�̂�(−𝑖)
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑟𝑎𝑤

can be provided as  

𝜀�̂�(−𝑖)
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑟𝑎𝑤

= √
1

𝑛𝑆𝑖 
∑(𝑦𝑖,𝑘 − �̂�𝑖,𝑘(−𝑖))

2

𝑘∈𝑆𝑖 

 

and the standardized study deleted residual is given by 

𝜀�̂�(−𝑖)
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦𝑖,𝑘 − �̂�𝑖,𝑘(−𝑖)

√𝑠𝑖,𝑘
2 + �̂�(−𝑖)

2

)

 

𝑘∈𝑆𝑖 

2

 

where �̂�(−𝑖)
2  is the heterogeneity “leave one out” and studentized study deleted residual is 

provided by 

𝜀�̂�(−𝑖)
𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑢𝑑

= √
1

𝑛𝑆𝑖 
∑ 𝜀�̂�(−𝑖)

𝑘,𝑝𝑎𝑖𝑟,𝑠𝑡𝑢𝑑

𝑘∈𝑆𝑖 

2

 

                                          = √
1

𝑛𝑆𝑖 
∑

(

 
𝑦𝑖,𝑘 − �̂�𝑖,𝑘(−𝑖)

√𝑉𝑎𝑟(𝑦𝑖,𝑘 − �̂�𝑘(−𝑖)))

 

𝑘∈𝑆𝑖 

2

 

                                                          =

√
  
  
  
  
  
  
 

1

𝑛𝑆𝑖 
∑

(

 
 
 

𝑦𝑖,𝑘 − �̂�𝑖,𝑘(−𝑖)

√𝑠𝑖,𝑘
2 + �̂�2 +  ℎ(−𝑖)

1
𝑠𝑖,𝑘
2 +  �̂�(−𝑖)

2

)

 
 
 

𝑘∈𝑆𝑖 

2
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where 𝑛𝑆𝑖 represents the cardinality of 𝑆𝑖.  

We can use a boundary of 1.96 or 2 for the value of standardized and studentized study deleted 

residuals. 

Cook’s distance 

To examine the influence of the deletion of study 𝑖, Viechtbauer and Cheung provided an 

analogy to Cook’s statistic in meta-analytical context [85]. Let us consider again the relative 

treatment estimates �̃�𝒊 compared with the reference for study 𝑖 with dimensions (𝑛 − 1) as 

introduced in Chapter 2. We denote with �̃�𝑖(−𝑖) the relative treatment estimates after considered 

deletion of study 𝑖. Based on the formula that Viechtbauer and Cheung provided for Cook’s 

statistic in meta-analytical context. Noma et al. [88] extended the Cook’s distance measure in 

a multivariate meta-regression model. The analogy for the Cook’s distance or Cook’s statistic 

for study 𝑖 in NMA model from graph theory is given by 

𝐶𝑖 = (�̃�𝑖  − �̃�𝑖(−𝑖))
′
(�̃�𝐋+ �̃�′)

−1
(�̃�𝑖 − �̃�𝑖(−𝑖)) 

where �̃� is the reduced design matrix and �̃�𝐋+ �̃�′ is the (𝑛 − 1) × (𝑛 − 1) variance-covariance 

matrix of (𝑛 − 1) relative treatment estimates �̃�𝒊 as introduced in Chapter 2.  A general rule 

provided in the bibliography for a cut off value for Cook’s statistic is that the study 𝑖 is 

considered outlier and/or influential if 𝐶𝑖 > 1 [106], [107]. It has been suggested that 𝐶𝑖 larger 

than the 50% of 𝐹 distribution with 𝑛 and 𝑚 − 𝑛 degrees of freedom, 𝐹(𝑛,  𝑚 − 𝑛), can 

indicates an influential study [106]. According to Chatterjee and Hadi, a graphical plot with all 

Cook’s distance values can be examined rather than using a cut off value [106]. 

COVRATIO 

Viechtbauer and Cheung propose the ratio of the determinants of the variance-covariance 

matrix of treatment estimates (COVRATIO) when excluding the 𝑖𝑡ℎ study from model fitting 

[85]. Noma et al. [88] extended the COVRATIO measure in a multivariate meta-regression 

model. 

For graph-theoretical NMA model is given by 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂𝑖 =
𝑑𝑒𝑡(Cov(�̃�(−𝒊)))

𝑑𝑒𝑡(Cov(�̃�))
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where 𝑑𝑒𝑡 denotes the determinant of a matrix. More analytically, the ratio of the determinant 

of the variance-covariance matrix of treatment estimates is defined as 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂𝑖 =
𝑑𝑒𝑡(�̃�(−𝑖) 𝐋(−𝑖)

+  �̃�(−𝑖)
′ )

𝑑𝑒𝑡(�̃�𝐋+ �̃�′)
 

where �̃�(−𝑖) is the reduced design matrix and 𝐋(−𝑖)
+  the Laplacian matrix “leave one out” by 

fitting the model without the study 𝑖. When the ratio of determinants of the variance-covariance 

matrix of treatment estimates is lower than the value 1 indicates that the removal of study 𝑖 

yields to more precise treatment estimates [85]. 

𝑅𝑖 statistic 

Large changes in the estimate of between-study heterogeneity can prοvιde the presence of a 

potential outlier. Viechtbauer and Cheung provided the 𝑅𝑖 statistic is given by 

𝑅(�̂�2)𝑖 = 100 ×
�̂�2 − �̂�(−𝑖)

2

�̂�2
 

𝑅(�̂�2)𝑖 statistic quantifies the change in the estimate of the heterogeneity estimator with the 

exclusion of the study. 

Hedges and Olkin suggested also to examine changes in Cochran’s 𝑄 statistic [84].  We provide 

the 𝑅𝑖  statistic for monitoring changes for generalized Cochran’s 𝑄 (𝑄𝑡𝑜𝑡𝑎𝑙) defined as  

𝑅(𝑄𝑡𝑜𝑡𝑎𝑙)𝑖 = 100 ×
𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄(−𝑖)

𝑡𝑜𝑡𝑎𝑙

𝑄𝑡𝑜𝑡𝑎𝑙
 

The analogy of 𝑅𝑖  statistic for 𝑄 statistic within designs (𝑄ℎ𝑒𝑡) as the presence of outlier can 

influence the amount of heterogeneity 

𝑅(𝑄ℎ𝑒𝑡)𝑖 = 100 ×
𝑄ℎ𝑒𝑡 − 𝑄(−𝑖)

ℎ𝑒𝑡

𝑄ℎ𝑒𝑡
 

and the analogy of 𝑅𝑖  statistic for 𝑄 statistic between designs (𝑄𝑖𝑛𝑐) as the presence of outlier 

can influence the inconsistency 

𝑅(𝑄𝑖𝑛𝑐)𝑖 = 100 ×
𝑄𝑖𝑛𝑐 − 𝑄(−𝑖)

𝑖𝑛𝑐

𝑄𝑖𝑛𝑐
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Large positive values of 𝑅𝑖 statistics indicate that the removal of study 𝑖 provides large changes 

in heterogeneity or inconsistency measures which we expect it when study 𝑖 is outlier and/or 

influential study [85]. 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆 statistic 

The influence of deletion of study 𝑖 can also be examined with the 𝐷𝐹𝐵𝐸𝑇𝐴𝑆 statistic that is 

given in NMA by 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖 = �̃�𝑖  − �̃�𝑖(−𝑖) = (�̃�𝑖  − �̃�𝑖(−𝑖))√
1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘(−𝑖)
𝑘∈𝑆𝑖 

 

Where 𝑤𝑖,𝑘(−𝑖) = 1 (𝑠𝑖,𝑘
2 + �̂�(−𝑖)

2 )⁄ . When 𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖 > 1 then the study 𝑖 is considered 

influential for small to medium datasets [85], [108]. Table 4.3 summarizes the “leave one out” 

detection measures. 

Table 4.3. Overview of outlying detection measures considered study deletion “leave one out” 

measures. 

Leave one out detection 

measure 

Formula Cut-offs 

Raw study deleted residual 
𝜀�̂�(−𝑖)
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑟𝑎𝑤

= √
1

𝑛𝑆𝑖 
∑ (𝑦

𝑖,𝑘 
− �̂�

𝑖,𝑘(−𝑖)
)
2

𝑘∈𝑆𝑖 

 

 

 

Standardized study deleted 

residual 
𝜀�̂�(−𝑖)
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

= √
1

𝑛𝑆𝑖 
∑

(

 
𝑦
𝑖,𝑘 
− �̂�

𝑖,𝑘(−𝑖)

√𝑠𝑖,𝑘
2 + �̂�(−𝑖)

2

)

 

𝑘∈𝑆𝑖 

2

 

1.96 or 2 

Studentized study deleted 

residual 

𝜀�̂�(−𝑖)
𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑢𝑑

=

√
  
  
  
  
  
  
 

1

𝑛𝑆𝑖 
∑

(

 
 
 𝑦

𝑖,𝑘 
− �̂�

𝑖,𝑘(−𝑖)

√𝑠𝑖,𝑘
2 + �̂�2 +  ℎ(−𝑖)

1

𝑠𝑖,𝑘
2 +  �̂�(−𝑖)

2

)

 
 
 

𝑘∈𝑆𝑖 

2

 

 

1.96 or 2 

Cook’s distance 𝐶𝑖 𝐶𝑖 = (�̃�𝑖  − �̃�𝑖(−𝑖))
′
(�̃�𝐋+ �̃�′)

−1
(�̃�𝑖 − �̃�𝑖(−𝑖)) 

𝐶𝑖 > 1 
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4.4 Illustrative examples with outlier and influential diagnostics measures  

4.4.1 Dataset comprises four interventions to aid smoking cessation  

We performed an outlier detection analysis based on several proposed outlying and influential 

detection measures in the dataset comprises four interventions to aid smoking cessation [41], 

[42] (details for dataset is given provided in Chapter 2). Figure 4.1 indicates the contribution 

to the Q statistic (Mahalanobis distance) for each study computed with function 

NMAoutlier_measures()and plotted with plot_NMAoutlier_measures(). We 

monitored that study 3 has the largest contribution to the Q statistic with value 117.39 while 

the rest values ranged from 0.34 to 26.40. Hence, study 3 is potential an outlying study.  

Ratio of the determinants of 

the variance-covariance 

matrix (𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂𝑖) of 

treatment estimates 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂𝑖 =
𝑑𝑒𝑡(�̃�(−𝑖) 𝐋(−𝑖)

+  �̃�(−𝑖)
′ )

𝑑𝑒𝑡(�̃�𝐋+ �̃�′)
 

 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂𝑖

< 1 

𝑅𝑖 statistic for heterogeneity 
𝑅(�̂�2)𝑖 = 100 ×

�̂�2 − �̂�(−𝑖)
2

�̂�2
 

 

Large positive 

values 

𝑅𝑖 statistic for relative 

treatment estimates 
𝑅(�̃�𝑖)𝑖 = 100 ×

�̃�𝑖 − �̃�𝑖(−𝑖)

�̃�𝑖
 

 

Large positive 

values 

𝑅𝑖 statistic for generalized 

Cochran’s 𝑄 (𝑄𝑡𝑜𝑡𝑎𝑙) 

 

𝑅(𝑄𝑡𝑜𝑡𝑎𝑙)𝑖 = 100 ×
𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄(−𝑖)

𝑡𝑜𝑡𝑎𝑙

𝑄𝑡𝑜𝑡𝑎𝑙
 

Large positive 

values 

𝑅𝑖 statistic for 𝑄 statistic 

within designs (𝑄ℎ𝑒𝑡) 
𝑅(𝑄ℎ𝑒𝑡)𝑖 = 100 ×

𝑄ℎ𝑒𝑡 − 𝑄(−𝑖)
ℎ𝑒𝑡

𝑄ℎ𝑒𝑡
 

 

Large positive 

values 

𝑅𝑖 statistic for 𝑄 statistic 

between designs (𝑄𝑖𝑛𝑐)  
𝑅(𝑄𝑖𝑛𝑐)𝑖 = 100 ×

𝑄𝑖𝑛𝑐 − 𝑄(−𝑖)
𝑖𝑛𝑐

𝑄𝑖𝑛𝑐
 

 

Large positive 

values 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖 statistic 
𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖 = (�̃�𝑖  − �̃�𝑖(−𝑖))√

1

𝑛𝑆𝑖 
∑ 𝑤𝑖,𝑘(−𝑖)
𝑘∈𝑆𝑖 

 

 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖 > 1 

for small to 

medium 

datasets 
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Figure 4.1. Contribution to the Q (Mahalanobis distance) for each study for the smoking cessation 

dataset. 

Figure 4.2 shows the standardized study deleted residuals for each study. For all included 

studies in the network, standardized study deleted residuals values range inside the (0, 2) 

interval except study 3 that is far away with a large value (4.14) and study 7 that is close to the 

boundary of two with value (2.11) (Figure 4.2).  

 

Figure 4.2. Standardized study deleted residuals for the smoking cessation dataset. 

Figure 4.3 depicts that study 3 has the largest Cook’s distance (value 1.51) and is the only study 

that exceeds the cut off value and satisfies 𝐶3 > 1, 𝑖 = 3 . All the included studies have 
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𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂3, 𝑖 = 3, close to 1 or larger but study 3 is the only one that provides the smallest 

𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂3 with value 0.06 satisfying 𝐶𝑂𝑉𝑅𝐴𝑇𝐼𝑂3 < 1 (Figure 4.3, right-hand side).  

 

Figure 4.3. Cook distance (left-hand side) and COVRATIO (right-hand side) for the smoking 

cessation dataset. 

Leaving the study 3 out of the NMA model fitting, “leave-one-out” model parameters 

providing a large change. Study 3 provides a large impact in model parameters as its deletion 

creates a large change to “leave-one-out” model parameters. We monitored the heterogeneity 

“leave-one-out” for study 3 to be dramatically decreased affecting the weight “leave one out” 

to be increased and the relative treatment effects to be influenced (Figure 4.4).  

 

Figure 4.4. Heterogeneity (left-hand side) and weight “leave-one-out” (right-hand side) for smoking 

cessation dataset. 
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Figure 4.5 shows the 𝐷𝐹𝐵𝐸𝑇𝐴𝑆 statistic for each treatment considering the deletion of a study. 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆3, 𝑖 = 3 statistic (deletion of study 3) has the largest change for each treatment B, C, 

and D. 

 

Figure 4.5. 𝐷𝐹𝐵𝐸𝑇𝐴𝑆 statistic for each treatment considering deletion of a study for smoking 

cessation dataset. 

Table 4.4 provides the changes in 𝑅𝑖  statistic  

𝑅(�̂�2) for heterogeneity estimator �̂�2, total 𝑄 statistic 𝑄𝑡𝑜𝑡𝑎𝑙,  𝑄 statistic within designs 𝑄ℎ𝑒𝑡 

and between designs 𝑄𝑖𝑛𝑐 .  We monitored large changes in 𝑅𝑖  statistic for 𝑄𝑡𝑜𝑡𝑎𝑙, 𝑄ℎ𝑒𝑡 and 

𝑅(�̂�2) as values for 𝑅𝑖, 𝑖 = 3 statistic has been increased  

(𝑅3(𝑄
𝑡𝑜𝑡𝑎𝑙) = 69.79, 𝑅3(𝑄

ℎ𝑒𝑡) =  75.89,  𝑅3(�̂�
2) = 74.20). The deletion of study 3 reduced 

heterogeneity.  Large changes provided also in 𝑅𝑖 statistic for 𝑄𝑖𝑛𝑐 with a large decreased 

(𝑅3(𝑄
𝑖𝑛𝑐) = −105.29) can provide us that the deletion of study 3 increased the inconsistency. 

Hence, “leave one out” measures providing large changes when removing study 3 from NMA 

model fitting. Based on several outliers and influential detection measures conducted, we can 

conclude that study 3 is an influential study and outlier.  

Table 4.4 “Leave one out” detection measures for 𝑅(𝑄𝑡𝑜𝑡𝑎𝑙), 𝑅(𝑄𝑖𝑛𝑐), 𝑅(𝑄ℎ𝑒𝑡), 𝑅(�̂�2). 

Study 

deletion 

𝑅(𝑄𝑡𝑜𝑡𝑎𝑙) 𝑅(𝑄𝑖𝑛𝑐) 𝑅(𝑄ℎ𝑒𝑡) 𝑅(�̂�2) 

1 3.82 42.52 0.00 -0.95 

2 0.57 3.74 0.00 -5.30 

3 69.79 -105.29 75.89 74.20 
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4 0.03 0.57 0.03 -1.11 

5 1.33 8.29 1.52 -14.42 

6 1.03 -0.77 1.11 0.43 

7 5.37 -4.53 5.77 4.59 

8 1.43 -1.15 1.53 0.71 

9 0.08 1.25 0.09 -1.85 

10 1.76 4.52 1.42 -5.44 

11 0.20 2.68 0.41 -4.37 

12 1.36 7.21 1.55 -12.28 

13 0.41 0.96 0.46 -1.14 

14 0.02 2.91 0.03 -4.79 

15 1.76 53.61 0.00 1.24 

16 0.63 -1.06 0.90 -2.10 

17 0.38 10.44 0.46 -19.02 

18 3.01 0.97 3.31 -0.73 

19 14.73 -2.21 16.24 5.51 

20 5.87 3.11 6.50 -4.08 

21 1.08 6.89 0.00 -1.79 

22 0.84 10.14 0.00 -1.64 

23 1.40 -3.94 0.92 -1.08 

24 0.22 -5.12 0.92 -1.08 

 

4.4.2 Dataset with thrombolytic drugs 

We applied the proposed outlier detection measures in a network of interventions of eight 

thrombolytic drugs for acute myocardial infarction [44] provided in Chapter 2. We selected 

this dataset partly because inconsistency has been detected by others due to studies 22 and 23 

and partly because Zhao et al. [87] have provided an outlying diagnosis and concluded that the 

above studies are indeed outliers. We are interested to investigate if outliers are responsible for 

this inconsistency and if this can be detected with our proposed detection measures.  

Figure 4.6 depicts that studies 22 and 23 have the largest values in the contribution to the Q 

statistic (Mahalanobis distance) plot. Study 22 has the largest contribution to the Q statistic 

followed by study 23. Based on our detection outlier analysis, we can conclude that studies 22 

and 23 are indeed outliers which comes in agreement with Zhao et al. [87]. 
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Figure 4.6. Contribution to the Q for each study in the thrombolytic drugs dataset. 

4.5 Discussion  

We propose and extend several measures and visual tools to detect outlier and influential cases 

in NMA. The outlier and influential diagnostics presented are logical extensions from 

regression or pairwise meta-analysis to the NMA context. Several graphical methods provided 

in this Chapter can be used to figure out studies that are far away for the rest of the data and to 

find the studies that are responsible for large changes in model parameters, heterogeneity and 

inconsistency measures.  

Conclusions for outlying and influential cases can be made if there are sharp changes and/or if 

the proposed cut-offs no satisfied. Following bibliographic recommendations, several cut-offs 

for the detection measures are provided but this should not strictly be used as this offered as 

empirical rules to make conclusions for outlyingness and influential cases. For example, 

Viechtbauer and Cheung [85] provided values 1.96 and 2 for the absolute studentized residuals 

while Noma et al. [88] following a parametric bootstrap method to obtain the sampling 

distribution for studentized residual. Τhere is no subjective rule in the diagnosis of outlyingness 

as conclusions made due to sharp changes or empirical cut-offs in proposed measures. The 

proposed measures and visual tools can detect and visualize extreme study effects that are 

outliers and influential studies and studies responsible for heterogeneity and inconsistency 

existence.  

Meta-analytical models are sensitive to outliers and identification of such cases needs further 

investigation. Deletion of studies should not be routinely done in meta-analyses as this may be 
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problematic to omit nonoutlier extreme study effects due to their large sampling errors [109]. 

Following the recommendation in systematic reviews, potential outliers can be excluded in 

sensitivity analyses to explore the robustness of results [110], [85]. Results should be stated 

with caution when outlier analysis provides different conclusions than the primary analysis 

[85]. If outlier analysis does not alter the results, we can be more confident that conclusions 

are robust to outliers [85]. In the smoking cessation example, there is enough evidence that 

studies 3 and 7 are potential outliers. However, results from these studies can be valid and 

genuine. It could be the case that characteristics of these trials may explain the differences in 

observed effect sizes. Generally, caution is needed in deleting outliers and hereby extension in 

methodological aspects for downweighing the effects of influential and outlying studies may 

be an alternative choice for future work and motivate us to provide the proposed research 

provided in Chapter 6. 

The proposed measures fitted in the frequentist framework with NMA model from graph theory 

but they can also be implemented in Bayesian framework. To date, Zhang et al. [86] have 

provided some outlier detection measures for the Bayesian NMA model. Matsushima et al. 

fitted also some measures to detect outliers in the meta-analysis of diagnostic accuracy studies 

[111]. The proposed measures and visual tools in this Chapter can also be extended in the meta-

analysis of diagnostics accuracy studies or in meta-analysis with individual participant data. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

5 Forward Search Algorithm to detect outliers in network meta-

analysis  

 

 

5.1 Introduction  

The Forward Search (FS) algorithm was initially developed for the estimation of covariance 

matrices [112] and regression models [113], [114]. It was subsequently extended for outlier 

detection to multivariate data methods [115], factor analysis and item response theory models 

[116], [117]. Mavridis et al. recently extended the FS algorithm in meta-regression [101]. This 

algorithm starts with an initial subset of studies that is ideally assumed to be outlier-free and it 

gradually adds the remaining studies according to their closeness to the set of selected studies 

under the hypothesized model. Parameter estimates, measures of fit and test statistics can be 

monitored during the search. During the search, sharp changes denote the existence of 

influential studies and/or outliers and can detect studies responsible for heterogeneity and 

inconsistency existence.  

This Chapter provides the methodological extension of the FS algorithm in network meta-

analysis. As part of this research, the R package NMAoutlier [28] was developed to perform 

FS to any NMA evidence datasets. The structure of this Chapter is organized as follows: 

Section 5.2 outlines the methodological extension of the FS algorithm to NMA model; Section 

5.3 presents applications of the proposed FS methodology in real and simulated datasets of 

networks of interventions and Section 5.4 discusses the main findings and provides directions 

of the proposed diagnostic methodology in NMA applications.  

5.2 Methodological extension of the forward search algorithm in NMA  

The FS algorithm is a diagnostic iterative method for outlier detection. It starts with a small 

subset of the included studies that is ideally considered to be outlier-free. The initial subset of 

studies constitutes the basic set. The studies not included in this basic set constitute the non-

basic set. These two sets are not constant throughout the search but they are continuously 
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changed. In each iteration, the method adds a study from the non-basic set to the basic set. The 

study from the non-basic set was chosen based on how close the study is to the hypothesized 

model fitted to the basic set. The process is repeated until all studies are included in the basic 

set. We monitored model parameter estimates and other statistics of interest during the search. 

Monitoring is helpful to identify the studies that have an impact on model parameters or/and in 

statistics measurements and are responsible for heterogeneity and inconsistency. We 

categorized the FS procedure in three steps: (1) the choice of the initial subset; (2) the 

processing of search and (3) monitoring. The steps in relation to NMA and details are presented 

as follow: 

5.2.1 Choice of the initial subset 

The choice of the initial subset is the first crucial point of the FS. Network meta-analysis is a 

regression model with the number of treatments defining the number of columns of the design 

matrix. During the search, the number of columns of the design matrix may increase if a new 

treatment is added to the basic set. Hence, when contrasting the basic to the non-basic set we 

may compare different models. Also, we need to make sure that there is a path between each 

pair of vertices in the network. In a nutshell, the requirements for the initial subset are: 

• to include all 𝑛 treatments, otherwise, the design matrix 𝐗 will not have the same 

number of columns throughout the search and 

• the network to be connected. 

For the choice of the initial subset, we need to define how to select the size of the initial 

subset and how to select the studies that constitute the initial subset. 

5.2.1.1 Selecting the size of the initial subset 

In a network meta-analysis with 𝑛 treatments, the number of model parameters to estimate is 

𝑛 (𝑛 − 1 effect estimates and heterogeneity – assumed equal heterogeneity estimator across 

treatment comparisons). Also, a minimum of 𝑛 − 1 two-arm studies is necessary to create a 

connected network graph with 𝑛 treatments (nodes). We require the size 𝑙 of the initial subset 

to include all 𝑛 treatments, 𝑙 = 𝑛 studies. 

For networks with a large number of trials, a bigger size 𝑙 of the initial subset can be considered 

to save time and allow the search to start with a more robust initial subset. We chose to start 

with a size equal to the maximum between the number of treatments and the 20% of the total 

number of studies, 𝑙 = max (𝑛 𝑠𝑡𝑢𝑑𝑖𝑒𝑠, 0.2 × 𝑁 𝑠𝑡𝑢𝑑𝑖𝑒𝑠) aiming to have better parameter 

estimation in the early iterations of the search. 
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5.2.1.2 Selecting the studies to include in the initial subset 

Search a large number (𝑃) of candidate initial subsets of size 𝑙 (e.g. 𝑃 = 100). Ideally, the 

initial subset is clean of outliers. Following the typical strategy of literature in the FS algorithm 

[113], we fit an objective function to each candidate's initial subset. We choose to minimize 

the median of the absolute standardized residuals. We can also assume other objective 

functions such as maximizing the median of the absolute log-likelihood contributions. The 

candidate subset that optimizes the objective function (minimize the median of standardized 

residuals or maximize the median of the absolute log-likelihood contributions) is considered to 

be the initial subset.  

Let us denote with 𝐷𝑝
𝑙  each candidate initial subset 𝑝 = 1, . . , 𝑃 of 𝑙 studies, then we obtain the 

subset-specific estimates (�̂�𝐷𝑝𝑙 , �̂�𝐷𝑝𝑙
2 ) of each subset 𝐷𝑝

𝑙  and we calculate the objective 

function 𝑓 (𝒚𝑖, 𝒔𝑖 , 𝜲𝑖 , �̂�𝐷𝑝𝑙 , �̂�𝐷𝑝𝑙
2  ) with observations 𝒚𝑖, 𝒔𝑖, 𝜲𝑖, 𝑖 = 1,… . , 𝛮 of all entire data set. 

Objective functions of the median of the absolute standardized residuals and of the median of 

the absolute log-likelihood contributions are provided with the equations (1) and (2), 

respectively: 

𝑓 (𝒚𝒊, 𝒔𝒊, 𝑿𝒊, �̂�𝐷𝑝𝑙 , �̂�𝐷𝑝𝑙
2 ) = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝜀

�̂�,𝐷𝑝
𝑙

 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑
|)        (1) 

𝑓 (𝒚𝒊, 𝒔𝒊, 𝑿𝒊, �̂�𝑫𝒑𝒍 , �̂�𝐷𝑝𝑙
2 ) = 𝑚𝑒𝑑𝑖𝑎𝑛 (|− log(𝒘𝑖)− (𝜀�̂�,𝐷𝑝𝑙

 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑)
2

|)     (2) 

where 𝒘𝒊 = 1 (𝒔𝒊
𝟐 + �̂�

𝐷𝑝
𝑙

2 )⁄  and 𝜀
�̂�,𝐷𝑝

𝑙
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

  the standardized residual of study 𝑖 as 

introduced in Chapter 4 by replacing �̂� with �̂�𝑫𝒑𝒍  and �̂�2 with �̂�
𝐷𝑝
𝑙

2 ; 𝜀
�̂�,𝐷𝑝

𝑙
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

=

√ 1

𝑛𝑆𝑖 
∑ (

𝒚𝑖 −𝑿𝑖 �̂�𝑫𝒑
𝒍

√𝒔𝒊
𝟐+�̂�

𝐷𝑝
𝑙

2
)𝑘∈𝑆𝑖 

2

 

5.2.2 Processing in the search 

Let us denote the initial basic set (for 𝑗 = 1) with 𝐷𝑙 and the complementary non-basic set as 

(𝐷𝑙)𝑐. For each study in non-basic set 𝒚𝑖 , 𝒔𝑖 , 𝑿𝑖 ∊ (𝐷
𝑙)𝑐, calculate the objective function 

𝑓(𝒚𝑖, 𝒔𝑖 , 𝑿𝑖 , �̂�𝐷𝑙 , �̂�𝐷𝑙
2 ) that measures the closeness between 𝐷𝑙 and (𝐷𝑙)𝑐, where �̂�𝐷𝑙 , �̂�𝐷𝑙

2   are 

estimated from the basic set 𝐷𝑙. The study lies closer to the basic set is the next to enter it. Bear 
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in mind that if a 𝑆𝑖 - arm study enters the FS algorithm, all (
𝑆𝑖 
2
) possible treatment comparisons 

enter at once. 

Proceed with the algorithm for 𝑗 = 2,… .𝑁 − 𝑙 iterations until all studies are included in the 

basic set. For each iteration define the basic set 𝐷𝑗
𝑙 and the non-basic (𝐷𝑗

𝑙)
𝑐
. Compute the 

objective function 𝑓 (𝒚𝑖, 𝒔𝑖 , 𝑿𝑖 , �̂�𝐷𝑗
𝑙 , �̂�

𝐷𝑗
𝑙

2 ), where (�̂�
𝐷𝑗
𝑙 , �̂�

𝐷𝑗
𝑙

2 ) are subset-specific estimates for the 

basic set 𝐷𝑗
𝑙 with observations 𝒚𝑖, 𝒔𝑖, 𝑿𝑖 𝜖 (𝐷𝑗

𝑙)
𝑐
. Then, re-define the basic set and the non-

basic, order studies during the FS procedure by monitoring parameter estimates, outlier and 

influential diagnostics, ranking measures, heterogeneity and inconsistency measures (as 

described in Section 4.2.3). Forward plots for statistical measures are developed during the 

procedure aiming to monitor changes in the statistical measures. Table 5.1 summarizes the 

notation for the methodology of the FS algorithm in NMA. 

Table 5.1. Notation for the methodology of the FS algorithm in NMA. 

FS algorithm notation: 

𝑙 the size of the initial subset  

𝑃 a large number of candidate initial subsets of size 𝑙 (e.g. 𝑃 = 100) 

𝑝 = 1, . . , 𝑃 each candidate initial subset of 𝑙 studies 

𝑗 = 1,… . , 𝑁 − 𝑙 each iteration of the FS algorithm 

Steps of FS algorithm: 

For the initial subset: 

𝐷𝑝
𝑙  each candidate initial subset 𝑝 of 𝑙 studies 

(�̂�𝐷𝑝𝑙 , �̂�𝐷𝑝𝑙
2 ) subset-specific estimates of each subset 𝐷𝑝

𝑙  

𝑓 (𝒚𝑖 , 𝒔𝑖, 𝜲𝑖, �̂�𝐷𝑝𝑙 , �̂�𝐷𝑝𝑙
2  ) objective function with observations 𝒚𝑖, 𝒔𝑖 , 𝜲𝑖 of all entire data set. 

 

For the first iteration 𝑗 = 1: 

𝐷1
𝑙  initial basic set, (𝐷1

𝑙)
𝑐
non-basic set 

(�̂�𝐷1𝑙
, �̂�
𝐷1
𝑙

2 ) subset-specific estimates for the initial basic set 𝐷1
𝑙  

𝑓 (𝒚𝑖 , 𝒔𝑖, 𝑿𝑖, �̂�𝐷1𝑙
, �̂�
𝐷1
𝑙

2  ) objective function with observations 𝒚𝑖, 𝒔𝑖, 𝑿𝑖 𝜖 (𝐷1
𝑙)
𝑐
. 

 

For iterations 𝑗 = 2,… .𝑁 − 𝑙: 

 𝐷𝑗
𝑙 basic set, (𝐷𝑗

𝑙)
𝑐
 non-basic set 
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 (�̂�
𝐷𝑗
𝑙 , �̂�

𝐷𝑗
𝑙

2 ) subset-specific estimates for the basic set 𝐷𝑗
𝑙 

 𝑓 (𝒚𝑖, 𝒔𝑖, 𝑿𝑖, �̂�𝐷𝑗
𝑙 , �̂�

𝐷𝑗
𝑙

2 ) objective function with observations 𝒚𝑖, 𝒔𝑖 , 𝑿𝑖 𝜖 (𝐷𝑗
𝑙)
𝑐
. 

 

5.2.3 Monitor the search 

5.2.3.1 Outlier and influential case diagnostics measures 

During the forward search algorithm, several outlier and influential case diagnostics measures 

are monitored. Standardized residual for 𝑖 study 𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

 (provided in Chapter 4) is 

calculated in each iteration. We monitored the Cook’s statistic for NMA introduced in Chapter 

4 at 𝑗 − 1 iteration to 𝑗 iteration by replacing �̃�𝒊 with the relative treatment estimates �̃�
𝐷𝑗
𝑙  at 𝐷𝑗

𝑙 

basic set and the relative treatment estimates after considered deletion of study �̃�𝑖(−𝑖) with the 

relative treatment estimates at the basic set 𝐷𝑗−1
𝑙 , 𝜇

𝐷𝑗−1
𝑙 . For Cook’s statistic, we denote 

the (𝑛 − 1) × (𝑛 − 1) variance-covariance matrix �̃�
𝐷𝑗
𝑙  𝐋

𝐷𝑗
𝑙

+  �̃�
𝐷𝑗
𝑙

′  of (𝑛 − 1) relative treatment 

estimates 𝜇
𝐷𝑗
𝑙  compared with the reference. The ratio of determinants of the variance-

covariance matrix of treatment estimates (provided in Chapter 4) was also calculated at 

iteration 𝑗 to iteration 𝑗 − 1 denoting the variance-covariance matrix with �̃�
𝐷𝑗
𝑙  𝐋

𝐷𝑗
𝑙

+  �̃�
𝐷𝑗
𝑙

′  and 

�̃�
𝐷𝑗−1
𝑙 𝐋

𝐷𝑗−1
𝑙

+ �̃�
𝐷𝑗−1
𝑙

′ for basic sets 𝐷𝑗
𝑙 and 𝐷𝑗−1

𝑙  respectively. 

5.2.3.2 Ranking measures 

We monitored P-scores [7] to identify potential studies that influence the ranking of treatments. 

The P-score (𝑃𝐴) of a treatment 𝐴 can be interpreted as the proportion of treatments inferior to 

treatment 𝐴. That is, a large P-score indicates a good treatment option for treatment 𝐴 instead 

of the other competing treatments. 

5.2.3.3 Heterogeneity and inconsistency measures 

Large heterogeneity will challenge the interpretation of summary results whereas inconsistency 

may lead to biased treatment estimates. During the FS procedure, we calculated the generalized 

Cochran’s 𝑄 (𝑄𝑡𝑜𝑡𝑎𝑙), 𝑄 statistic within designs (𝑄ℎ𝑒𝑡) and 𝑄 statistic between-designs with 

full design-by-treatment interaction model (𝑄𝑖𝑛𝑐) [39] as provided in Chapter 2. The 

assumption of consistency can be tested by comparison of direct and indirect evidence [118]. 

König et al. introduced a back-calculation method to derive indirect estimates from direct 
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pairwise comparisons and network estimates [119]. We monitored the 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 of 

disagreement between direct and indirect evidence for each comparison. 

5.3 Illustrative examples 

5.3.1 Artificial simulated outlier 

For illustration, we simulated a single NMA data set with four treatments (A, B, C, and D) and 

eight pairwise comparisons (studies), 𝑖 = 1,… . .8. Treatment A is chosen as reference 

treatment, the true effects are chosen with values 𝜇𝛢𝛣 = 0.3, 𝜇𝛢𝐶 = 0.4, 𝜇𝛢𝐷 = 0.5 and the 

between-study variance is 𝜏2 = 0.12. Following Kontopantelis and Reeves [120] and 

Brockwell and Gordon [121], we generated the study variances from 𝜎𝑖
2~𝑋1 

2 4⁄ , 𝑖 = 1,… . .8 

with values restricted to the interval (0.009,0.6). Seven effect sizes are generated from 

𝑦𝑖,𝑡1𝑡2~𝑁(𝜇𝑡1𝑡2, 𝜎𝑖
2 + 𝜏2), 𝑖 = 1,… . ,7 where 𝑡1𝑡2 are the treatment comparisons 𝑡1𝑡2 =

(𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐵𝐷, 𝐴𝐷, 𝐶𝐷, 𝐶𝐷), 𝜇𝑡1𝑡2 the true effects generated from consistency equations for 

𝑡1𝑡2 ≠ (𝐴𝐵, 𝐴𝐶, 𝐴𝐷), i.e 𝜇𝐵𝐶 = 𝜇𝐴𝐶 − 𝜇𝐴𝐵. Following Filzmoser [122], Knight and Wang 

[123], and Hardin and Rocke [124], we artificially generated a shift outlier for the eighth study 

(𝑖 = 8) with treatment comparison C versus D and with observed effect size to follow the 

formula 𝑦8,𝐶𝐷~𝑁(𝜇𝐶𝐷 + 4SD(𝑦), 𝜎8
2 + 𝜏2), where SD(𝑦) is the sample standard deviation of 

values 𝑦 = (𝑦1,𝐴𝐵, … . . , 𝑦7,𝐶𝐷). 

Study 8 provides a markedly different intervention effect compared to the rest of the simulated 

data (Table 5.2). The artificial simulated dataset is provided in Table 5.2. We used R function 

NMAoutlier from R package NMAoutlier [28] with the criterion of the smallest absolute 

standardized residuals; see equation (1). We considered 𝑃 = 100 candidate initial subsets and 

the size 𝑙 to be equal with the number of treatments, 𝑙 = 𝑚𝑎 𝑥(4, 0.2 × 8) =  4 studies. The 

subset with studies 3, 5, 1 and 7 minimized the criterion (the median of the absolute 

standardized residuals) among the candidate subsets and set as initial set. Then, forward search 

gradually added the study that minimized the median of the absolute standardized residuals, 

until all studies entered after four iterations. FS algorithm was completed after a total of five 

iterations.  

Table 5.2. Effect size 𝒚𝑖, standard error 𝒔𝑖 and treatment comparisons for each study of the artificial 

simulated dataset. 
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Figure 5.1 provides the forward plot of standardized residuals for each iteration produced with 

fwdplot from R package NMAoutlier [28]. Study 8 entered last in the forward selection 

procedure. Figure 5.1 shows that study 8 has a very large standardized residual in comparison 

with other studies and, thus, clearly detected as outlying.  

 

Figure 5.1. Forward plot for standardized residuals of basic set in each iteration of the FS algorithm.  

5.3.2 Dataset comprises four interventions to aid smoking cessation 

5.3.2.1 Assessing outlying cases 

Figure 5.2 provides the comparison-adjusted funnel plot [78] for the smoking cessation data by 

choosing the order from least effective to most effective treatment, (1) no contact (A), (2) self-

help (B), (3) group counseling (D) and (4) individual counseling (C). We can see that study 3 

lies far away from the bulk of the data. This is because study 3 has a large effect size given its 

size. We conducted the FS algorithm starting with 𝑃 = 100 candidate initial subsets of size 

Effect size 𝒚𝑖 Standard error 𝒔𝑖 treat1 treat2 study label 

-0.0820 0.5091 A B 1 

0.3198 0.0125 A C 2 

0.2171 0.2437 B C 3 

0.2100 0.0153 B D 4 

0.4926 0.1928 A D 5 

-0.8612 0.4800 C D 6 

0.4115 0.1007 C D 7 

2.7639 0.4604 C D 8 
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𝑙 = 5 and used the criterion of the smallest absolute residual. The FS steps were completed in 

27 seconds. Table 5.3 summarizes the studies constitute the initial set and which study entered 

each iteration of the FS algorithm but also heterogeneity and inconsistency measures. We 

noticed that study 3 entered in the last iteration.  

 

Figure 5.2. Comparison-adjusted funnel plot [78] for smoking cessation data. Comparison-adjusted 

funnel plot produced in R [76] from netmeta package [35]. 𝑦 − 𝑎𝑥𝑖𝑠 provides the standard error and 

the 𝑥 − 𝑎𝑥𝑖𝑠 provides the odds ratio centered at comparison-specific effect. 

 

Table 5.3. Initial set and study entered into the basic set of FS algorithm. Q statistics (𝑄𝑡𝑜𝑡𝑎𝑙, 𝑄𝑖𝑛𝑐, 𝑄ℎ𝑒𝑡) 

and heterogeneity estimator �̂�2 for each iteration of the FS algorithm. 

Results are given from NMAoutlier [35] package. 

iterations Study entering 𝑄𝑡𝑜𝑡𝑎𝑙 𝑄𝑖𝑛𝑐 𝑄ℎ𝑒𝑡 �̂�2 

1 9, 14, 17, 11, 15 

(initial set) 

0.06 0.00 0.06 0.00 

2 4 0.22 0.00 0.22 0.00 

3 16 0.50 0.00 0.50 0.00 

4 21 0.65 0.16 0.50 0.00 

5 13 1.16 0.13 1.03 0.00 

6 5 1.46 0.08 1.38 0.00 

7 12 1.69 0.06 1.64 0.00 

8 6 4.17 0.06 4.11 0.00 

9 18 7.42 0.03 7.38 0.00 

10 8 11.05 0.04 11.01 0.00 
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11 20 15.03 0.00 15.02 0.02 

12 10 18.46 0.42 17.69 0.03 

13 19 29.12 0.14 28.67 0.07 

14 7 43.96 0.21 43.42 0.13 

15 1 53.45 6.84 43.42 0.16 

16 24 53.45 6.85 43.42 0.15 

17 2 55.40 7.61 43.42 0.14 

18 23 58.44 7.92 45.17 0.15 

19 22 61.21 9.57 45.17 0.15 

20 3 202.62 4.66 187.40 0.59 

 

Confidence intervals of summary estimates for the treatments B and C broaden in the last 

iteration (Figure 5.3) because the between-study heterogeneity estimator increased 

substantially in this iteration (Table 5.3). As the forward plot (Figure 5.4, right panel) shows, 

the ratio of variances increased rapidly in the last iteration. We monitored a dramatic increase 

for heterogeneity estimator, 𝑄ℎ𝑒𝑡 and 𝑄𝑛𝑒𝑡 but a reduction for 𝑄𝑖𝑛𝑐 in this final iteration (Table 

5.3). Thus, inconsistency in the whole network is masked due to the large heterogeneity. 

 

Figure 5.3. Forward plots for summary estimates and their 95% confidence intervals for each 

treatment B, C, D versus control A. Forward plots produced in R [76] with function 

forwardest()from NMAoutlier package [28]. 

In conclusion, study 3 is considered an outlier and influential study. Study 3 entered the last 

FS iteration, produced sharp changes in outlying measures and influenced the model 

parameters (heterogeneity and summary estimates). Table 5.3 provides that the whole network 

has large values for heterogeneity estimator �̂�2 = 0.59 and 𝑄ℎ𝑒𝑡 = 187.40 (last iteration 20 of 
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the FS algorithm). Before adding study 3, at iteration 19, heterogeneity measures are decreased 

with values �̂�2 = 0.15, 𝑄ℎ𝑒𝑡 = 45.17 (Table 5.3). By entering of study 3, we monitored the 

95% confidence intervals of summary estimates to broaden (Figure 5.4). Inclusion of study 3 

provide different summary estimates with values (last iteration 18 of FS) �̂�𝐵 =

0.42 (−0.30, 1.13),  �̂�𝐶 = 0.73 (0.30, 1.16), �̂�𝐷 = 0.90 (0.09, 1.70) in comparison with 

summary estimates at iteration 19, �̂�𝐵 = 0.27 (−0.17, 0.71), �̂�𝐶 = 0.47(0.19, 0.73), �̂�𝐷 =

0.65 (0.12, 1.19). Moreover, study 7, a study that compares A versus C treatments, provides 

closer effect estimate with study 3 that the rest studies with treatment comparisons A versus C. 

It enters at iteration 14 and occurring an increase in heterogeneity but also a sharp change in 

Cook distance (Figure 5.4 and Table 5.3).  

 

Figure 5.4. Forward plots for cook distance (left) and the ratio of variances (right) for each iteration 

of the FS algorithm. Forward plots are provided by function fwdplot() in package NMAoutlier 

[28]. 

Repeating the process of FS algorithm for smoking cessation data for 100 times, conclusions 

about the robustness of study ordering indicates that study 3 entered in the last FS iteration in 

82 times, in the initial set 15 times and 3 times at an intermediate iteration. 

5.3.2.2 Assessing inconsistency in smoking cessation data 

Higgins et al. [40] initially applied the full design-by-treatment interaction model to the 

smoking cessation data. For the whole network, the full interaction model does not provide 

evidence for inconsistency (𝑄𝑖𝑛𝑐 = 4.66, 𝑝 = 0.7). Monitoring the full interaction model in 

each iteration of the FS algorithm, we noticed a sharp increase in 𝑄𝑖𝑛𝑐 when study 1 entered at 
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iteration 15 (Table 5.3). Searching for local inconsistency, entering of study 1 provides changes 

of differences between direct and indirect comparisons. Forward plot of 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 (Figure 

5.5) depicts that at iteration 15, differences between direct and indirect evidence are large for 

‘A versus D’ and ‘C versus D’ (𝑧𝐴 𝑣𝑒𝑟𝑠𝑢𝑠 𝐷 = 1.50, 𝑧𝐶 𝑣𝑒𝑟𝑠𝑢𝑠 𝐷 = 2.20). Study 1 is a triangle 

three-arm study with treatment arms A, C, and D. It was the first time that a study comparing 

interventions A, C and D enters the search. Conclusions from forward plot of 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 but 

also changes of 𝑄𝑖𝑛𝑐 show that study 1 is influential for the design inconsistency in ‘A versus 

B’ and ‘A versus D’ effect sizes between the two-arm and three-arm studies. We monitored 

also changes in inconsistency measures when the other three-arm, study 2 with treatment arms 

B, C and D, entered (iteration 17). This comes in agreement with the conclusion given by 

Higgins et al. [40] that there is a design inconsistency in effect sizes between two-arm and 

three-arm studies in smoking cessation data. 

 

Figure 5.5. The forward plot of 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 of disagreement between direct and indirect evidence for 

each comparison (back-calculation method) for each iteration of the FS algorithm. Forward plots are 

provided by function fwdplot()in package NMAoutlier [28]. 

5.3.3 Dataset comparing interventions for actinic keratosis 

We identified statistically significant inconsistency in the whole dataset for actinic keratosis 

[43] using the design-by-treatment interaction model (𝑄𝑖𝑛𝑐 = 23.05, 𝑑𝑓 = 7, 𝑝 = 0.001). 

Table 5.4 provides the between-designs 𝑄𝑖𝑛𝑐 statistic after detaching a single design for actinic 

keratosis dataset. The between-designs 𝑄𝑖𝑛𝑐 statistic indicates that the dataset satisfies the 

consistency assumption only when the design 1 versus 6 versus 8 was detached (𝑄𝑖𝑛𝑐 =

10.18, 𝑑𝑓 = 5, 𝑝 = 0.07) (Table 5.4). Study 28 is the unique study with treatment design 1 
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versus 6 versus 8. We are interested to investigate if study 28 is a potential source of 

inconsistency. Therefore, we are interested to check whether study 28 is outlying or influential. 

Table 5.4. Between-designs 𝑄𝑖𝑛𝑐  statistic after detaching of single designs for actinic keratosis dataset. 

Detached design Between-designs 𝑄 

statistic 

Degrees of freedom 

(df) 

p-value 

1 versus 3 103.72 6 <0.0001 

1 versus 4 86.80 6 <0.0001 

1 versus 5 93.89 6 <0.0001 

1 versus 6 98.61 6 <0.0001 

3 versus 6 103.72 6 <0.0001 

4 versus 5 101.94 6 <0.0001 

4 versus 7 95.78 6 <0.0001 

1 versus 5 versus 6 73.77 5 <0.0001 

1 versus 6 versus 8 10.18 5 0.0704 

4 versus 7 versus 8 73.52 5 <0.0001 

 

We conducted the FS algorithm starting with 𝑃 = 100 candidate initial subsets of size 𝑙 = 9 

using the criterion of the smallest absolute residual. Study 28 entered in the last step of the FS 

algorithm which can be the first indication that study 28 is outlying or influential. Fitting the 

full interaction model, we monitored a sharp increase in 𝑄𝑖𝑛𝑐 statistic (from 3.68 to 23.05) 

when study 28 entered (iteration 27) (Figure 5.6). Thus, the FS algorithm confirms that study 

28 is a source of inconsistency.  
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Figure 5.6. Forward plots for generalized Cochran’s 𝑄 (𝑄𝑡𝑜𝑡𝑎𝑙),  𝑄 statistic within designs (𝑄ℎ𝑒𝑡) 𝑄 

statistic between-designs with full design-by-treatment interaction model 𝑄𝑖𝑛𝑐. Forward plots produced 

in R [76] with function forwardplot() from NMAoutlier package [28]. 

Sharp changes in the last step of FS in forward plots for Cook distance and the ratio of variances 

lead to the conclusion that study 28 is an outlier (Figure 5.7). After removing the outlying study 

28, i.e., the source of inconsistency, from the dataset, the inconsistency problem was overcome 

(design-by-treatment interaction model, 𝑄 = 3.68, 𝑑𝑓 = 5, 𝑝 = 0.59).  

 

Figure 5.7. Forward plots for Cook distance (left) and ratio of variances (right). Forward plots produced 

in R [76] with function forwardplot()from NMAoutlier package [28]. 

5.4 Discussion  

We propose a diagnostic method with the FS algorithm that detects studies having a 

disproportionate effect on summary effects, heterogeneity, and inconsistency in NMA. The 

novel tool allows us to identify outlying and influential studies on the basis of observing sharp 

changes in the chosen monitoring measures.  

There are some limitations to the FS methodology in NMA. FS methodology can be a time-

consuming method as it requires a lot of time for very large NMAs. FS application in the real 

data sets indicated that computation time increased in accordance with the total number of 

studies in the network (27 seconds for 24 studies with smoking cessation outcome in 

comparison with 59 seconds for 35 studies with actinic keratosis outcome). FS methodology 
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should be used with caution as different criteria to initiate and progress in the search may result 

in a different ordering of studies.  

Even if the same criteria are selected, different ordering of studies can be provided, but sharp 

changes in monitoring measures conclude to the same conclusions. The initial subset is likely 

considered outlier-free but there is a possibility of outlier entering in the initial subset. For 

example, in smoking cessation data, we monitored 15 out of 100 times the entry of outlier 

(study 3) in the first FS iteration. Entering of an outlying study in the initial subset would be 

sure if this study is the only one with a specified treatment comparison in the network structure 

and therefore it will be entered in the initial subset due to the methodological requirements 

(connectivity of initial subset including all treatments) of FS procedure. Entering an outlier in 

the initial subset can cause abnormalities; that can be the larger heterogeneity estimator for the 

first iteration compared to other iterations.  

The FS algorithm may be impaired by abnormalities in the search and for this reason, we 

suggest to rerun the forward search 5-10 times from random starting points to explore the 

robustness of the ordering. Moreover, if abnormalities are still provided in the initial subset, 

even if some repeats of forward search conducted, we advise monitoring the FS methodology 

in accordance with simple measures, such as residuals or contribution to the Q statistic for each 

study (see Chapter 4 for measure details). 

Another issue is how to detect if a change in a statistic is due to the inclusion of an outlying 

study or can be attributed to random variation. For this reason, it has been suggested to 

accompany forward plots with simulation envelopes that set the boundaries of changes in fit 

statistics that can be attributed to random variation. These simulations envelopes can be 

generated from many forward searches applied to data sets generated using parameters, 

summary effects, and heterogeneity, equal to those observed in the dataset in question. Such a 

process is time-consuming and future research may find alternative methods of computing the 

acceptable changes in fit statistics that can be attributed to random variation. 

The forward search algorithm is a promising diagnostic tool for extreme study effects which is 

unaffected from masking and swamping effects. Robustness of results indicates that we get 

reliable conclusions by using different criteria and there is the robustness of ordering the 

studies. The FS algorithm can be extended to the meta-analysis of diagnostic accuracy studies, 

the meta-analysis with multiple outcomes or individual patient data meta-analysis.  
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In conclusion, we argue that the method should be employed as a diagnostic tool and may 

reveal important information about the data. It is particularly useful for detecting studies 

responsible for heterogeneity and inconsistency.  
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6 Random shift variance NMA model for outlier identification 

 

 

6.1 Introduction 

Several outlier detection measures, such as deletion measures, allow a shift in the mean for a 

single observation (study result) known as a mean shift. An outlier is typically observed as an 

inflated (shifted) effect variance [97]. Cook et al. [125], based on shift variance, introduced an 

alternative approach to detect outliers in which each data observation was considered with 

inflated variance (shift variance) in the fixed-effect linear model. All parameters were 

estimated with the maximum likelihood estimation method [125]. Cook and Weisberg [107] 

used the term variance shift for this model. Thompson [126] considered the same model using 

restricted maximum likelihood estimation instead of maximum likelihood. Harville [127] and 

Thompson [126] recommended to use the restricted maximum estimation method rather than 

the maximum estimation method. Gumedze and Jackson [97] extended the variance shift model 

in a random-effects meta-analysis model for identifying and downweighing outlying studies. 

For brevity, we denote the Random-effects Variance Shift Outlier Model with RVSOM. The 

shift variance model initially allows the identification of outliers and if any study or studies are 

identified as outliers, the RVSOM model allows their downweighing [97].  

In this Chapter, the extension of the RVSOM to detect outliers from pairwise meta-analysis to 

the NMA model is provided (RVSOM NMA). We provide the methodological challenges to 

extend the model in a network of interventions with the presence of multi-arm studies and we 

will discuss the technicalities of model fitting. As part of this research, R package NMAoutlier 

was developed for performing the RVSOM NMA model and offering visual tools with the 

proposed methodology to any NMA data. We implement the proposed outlier detection method 

to the smoking cessation dataset which was introduced in Chapter 2. 

The Chapter is organized as follows: Section 6.2 outlines the RVSOM model by generalizing 

the method from pairwise to network meta-analysis model [97]. Section 6.3 presents an 

application of the RVSOM NMA model in published data of networks of interventions; Section 
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6.4 outlines the main findings and provides guidance and advice for the use of RVSOM outlier 

detection methodology in NMA.  

 

6.2 Shift variance NMA model to downweigh outliers 

We employed the shift variance model to the NMA model presented by Rücker and used in R 

library netmeta [5] (details of the model provided also in Chapter 2). The shift variance model 

assumes three sources of variance; the within-study variance, the between-study variance, and 

the shift variance. Within-study variances are data and the two other sources of variance, 

between and shift variance of each study, need to be estimated based on likelihood methods. 

The RVSOM model is fitted using the restricted maximum estimation method. Restricted 

maximum estimation is widely used to estimate the variance as it provides estimates with less 

downwards bias than maximum estimation. RVSOM outlier detection method is a repeatable 

procedure. RVSOM model is fitted by shifting the variance for each included study 

sequentially in ΝΜΑ and therefore the number of RVSOM model fitting is equal to the number 

of studies. RVSOM provides an estimate of the shift in the error variance associated with that 

study [97]. A large shift may indicate a possible outlier and, if desired, can be downweighed 

[97].  

6.2.1 Shift variance NMA model (RVSOM NMA) 

The RVSOM model initially allows the identification of outliers [97]. It allows inflating 

variance for the study 𝑖. If the variance for a treatment effect 𝑦𝑖 needs to be inflated, that means 

that the standard variance considerations of the typical random effects model are not enough 

to explain the study treatment effect and this study probably gives an outlying effect estimate. 

The model RVSOM NMA takes the form  

𝒚 = 𝚾𝝁 + 𝒖𝒊 + 𝜹 + 𝜺, 𝜹~Ν(𝟎, 𝚫), 𝜺~Ν(𝟎, 𝐒), 𝒖𝒊~N(𝟎,𝛀𝒊) 

which adds an extra term 𝒖𝒊 compared to the standard NMA model. The term 𝒖𝒊 is an unknown 

random effect with 𝒖𝒊~N(𝟎,𝛀𝒊) that adds the additional variance term associated. 𝛀𝒊 denotes 

a 𝑚 ×𝑚 block diagonal shift variance-covariance matrix with shift variance estimators �̂�𝒊
2 of 

shift variances 𝒘𝒊
2 in its diagonal. For the study 𝑖, the vector  𝒘𝒊

2 has length 𝑚 and values 

𝒘𝒊
2 ≥ 0, with zero value to denote a non-inflated study variance and with 𝒘𝒊

2 > 0 to denote 

an inflated study variance in 𝑖𝑡ℎ position (or positions of pairwise comparisons in case of a 𝑆𝑖-
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arm study, 𝑖 (1), … . .,  𝑖 ((
𝑆𝑖
2
))). For a multi-arm study, the variance was shifted for all 

pairwise comparisons (
𝑆𝑖
2
) within the study. The vector 𝒘𝒊

2 = (𝑤𝑖
2 (1), … , 𝑤𝑖

2 (
𝑆𝑖
2
)
)
′

denotes 

the shift variance values for each pairwise comparison within a 𝑆𝑖-arm study. Assuming a 

common shift-variance within a study with 𝑑𝑖 arms, the block diagonal shift variance-

covariance sub-matrix 𝛀𝑆𝑖 with dimensions (
𝑆𝑖
2
) × (

𝑆𝑖
2
) of 𝛀𝒊 is given by 

𝛀𝑆𝑖 =

[
 
 
 
 �̂�𝑖

2 ⋯
�̂�𝑖
2 

2
⋮ ⋱ ⋮
�̂�𝑖
2 

2
⋯ �̂�𝑖

2 
]
 
 
 
 

(
𝑆𝑖
2
) ×(

𝑠𝑖
2
) 

 

The total variance for the study 𝑖 in RVSOM NMA model is decomposed to the within-study 

variance 𝒔𝑖
2, the shift variance 𝒘𝒊

2 and the between-study heterogeneity 𝜏2. The weight matrix 

for the RVSOM model is 𝐖𝑠ℎ𝑖𝑓𝑡 = (𝐒 + 𝚫 + 𝛀𝒊)
−𝟏. REML offers us estimates for the two 

unknown variance model parameters, the heterogeneity 𝜏2 and the shift variance 𝒘𝒊
2 as well 

as summary estimates �̂�𝒔𝒉𝒊𝒇𝒕 = 𝐗(𝐗′𝐖𝒔𝒉𝒊𝒇𝒕𝐗)
−𝟏
𝐗′𝐖𝒔𝒉𝒊𝒇𝒕𝒚 .  

The restricted (residual) maximum log-likelihood function for RVSOM NMA model 

multiplied with −
1

2
  is given by 

𝐿𝑅(𝑖)(𝒚;  𝜏
2, 𝒘𝒊

2) 

= −
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐒 + 𝚫 + 𝛀𝒊|) 

−
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐗′(𝐒 + 𝚫 + 𝛀𝒊)

−1𝐗|) 

−
1

2
(𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕)

′

(𝐒 + 𝚫 + 𝛀𝒊 )
−1(𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕) 

=
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐖𝒔𝒉𝒊𝒇𝒕|) −

1

2
𝑙𝑜𝑔(𝑑𝑒𝑡|𝐗′𝐖𝒔𝒉𝒊𝒇𝒕𝐗|) 

−
1

2
(𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕)

′

𝐖𝒔𝒉𝒊𝒇𝒕(𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕) 
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where 𝐶𝑜𝑣(𝒚) = 𝐖𝑠𝒉𝒊𝒇𝒕
−1 = 𝐒 + 𝚫 + 𝛀𝒊  is the variance-covariance matrix for 𝒚 under the 

RVSOM NMA model. 

 

6.2.2 Monitoring measures  

Downweighing an outlying study may provide large changes in summary estimates and 

heterogeneity. For each RVSOM model fitted, model parameters, heterogeneity, inconsistency 

measures, ranking measures and likelihood ratio test are monitored. Sharp changes in 

monitoring measures can be an indication for outlier existence. Plotting the changes of the 

several monitoring measures visually conveys the possibility of each study to have an inflated 

variance or else the possibility to be an outlier.  

Summary estimates and their 95% confidence intervals for each treatment, REML 

heterogeneity estimator �̂�2 and shift variance estimator �̂�𝒊
2
 are monitored. Standardized 

residual 𝜀�̂�
 𝑘,𝑠𝑡𝑢𝑑𝑦,𝑠𝑡𝑎𝑛𝑑

 from the RVSOM model for 𝑖 study is calculated by replacing the 

standard NMA estimates with RVSOM NMA estimates in formula provided for standardized 

residual (see Chapter 4) and ranking measure with P-scores [7] are monitored.  

We monitored the generalized total of Cochran’s 𝑄 statistic 𝑄𝑡𝑜𝑡𝑎𝑙, Cochran’s 𝑄 statistic for 

heterogeneity 𝑄ℎ𝑒𝑡 and inconsistency 𝑄𝑖𝑛𝑐 [39] as provided in Chapter 2 by replacing the 

standard NMA estimates with RVSOM NMA estimates. Having the treatment estimates �̂�𝒔𝒉𝒊𝒇𝒕 

and the weight matrix 𝐖𝒔𝒉𝒊𝒇𝒕 for RVSOM NMA model, the total Cochran’s 𝑄 statistic is given 

by 𝑄𝑡𝑜𝑡𝑎𝑙 = (𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕)
′
𝐖𝒔𝒉𝒊𝒇𝒕(𝒚 − 𝐗�̂�𝒔𝒉𝒊𝒇𝒕) [39],[128], [129] [130]. We also monitored 

the 𝑧 − 𝑣𝑎𝑙𝑢𝑒𝑠 of disagreement between direct and indirect evidence for each comparison to 

derive the mixed estimates [118], [119]. 

 

6.2.3 Likelihood Ratio Test (LRT) 

Likelihood ratio test (LRT) can be an objective measure to evaluate if a study 𝑖 can be 

considered outlier and if downweighing is needed with the RVSOM model. Having the null 

hypothesis 𝐻0: 𝒘𝒊
2 = 0 against the alternative 𝐻𝑎: 𝒘𝒊

2 > 0, the 𝐿𝑅𝑇𝑖 statistic for study 𝑖 is 

given by  

𝐿𝑅𝑇𝑖 = 2{𝐿𝑅(𝒚;  𝜏2) − 𝐿𝑅(𝑖)(𝒚;  𝜏
2, 𝒘𝒊

2)} 
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and can evaluate if standard NMA model (when shift variance for study 𝑖 is zero) is fitted better 

for study 𝑖 than the RVSOM NMA model (when shift variance for study 𝑖 is larger than zero). 

If study 𝑖 is an outlier, the RVSOM NMA model provides a better fit and, in this case, the null 

hypothesis is rejected. Gumedze and Jackson [97] proposed an empirical distribution for the 

likelihood ratio test using a parametric bootstrap procedure following the steps: 

1) Under the assumption of no outlier exist, fit the standard NMA model and obtain the 

estimates �̂� and �̂�2. 

2) Generate new simulated data with the standard NMA, 𝒚∗~Ν(𝚾�̂�,  �̂�2I𝑚 +

𝑑𝑖𝑎𝑔(𝐒)), where 𝑚 denotes the pairwise comparisons. 

3) Compute the likelihood ratio test 𝐿𝑅𝑇𝑖 for each study fitting the RVSOM NMA model 

with the simulated data 𝒚∗ and save the order of 𝐿𝑅𝑇𝑖. 

4) For each order statistic, repeat the steps 2) and 3) for a large number of replications 

𝑅, (e.g. 𝑅 = 5000). 

5) For a level of significance 𝑎 (𝑎 = 0.05) compute an (1 − 𝑎)% percentile for each 

ordered likelihood statistic (e.g. the largest likelihood ratio test). 

The empirical distribution of likelihood ratio test statistic can provide the threshold for 

identifying outliers with the LRT test under the null hypothesis that no outliers are present. 

6.2.4 Extended RVSOM NMA  

The RVSOM model can be extended to detect more than one outlier. Having a subset of 𝛯 =

{1, 2, … . , 𝜉} studies considered as outliers, RVSOM model can be extended by allowing 

different inflated variances  𝒘𝛯
2 = (𝑤1

2 , … , 𝑤𝜉
2)
′
 for more than one study. Allowing for 𝛯 

inflated variances of studies, the vector  𝒘𝑖
2 has length 𝑚 with values 𝒘𝑖

2 ≥ 0, where zero 

values denoting the studies with non-inflated variances (𝑚− 𝜉 studies) and with 𝒘𝑖=𝛯
2 > 0 

the studies 𝑖 = 𝛯 = {1, 2, … . , 𝜉} with 𝛯 different inflated variances.  

6.3 Illustrative example of interventions to aid smoking cessation 

We implement the RVSOM NMA model to the smoking cessation dataset which was 

introduced in Chapter 2. We used R function NMAsvr() from R package NMAoutlier [5] to 

fit the RVSOM NMA model. Number of RVSOM model fitting is equal to the number of 

studies (𝛮 = 24). The variance is shifted for each study and 24 overdispersion parameter 

estimators were calculated (Figure 6.1). Study 3 has the largest overdispersion parameter 

estimator and this is an indication that study 3 is an outlier (Figure 6.1). Study 7 provides the 

second largest value of overdispersion parameter estimator when study 7 was shifted. 
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Figure 6.2 depicts the LRT test when fitting the RVSOM NMA model for each study. It is 

clearly provided that study 3 has the largest value for the LRT test and afterward study 7 

provides the second largest value of LRT. A large LRT value can claim that the null hypothesis 

of LRT test  𝐻0: 𝑤3
2 = 0 can be rejected and it can be a promise that study 3 is a potential 

outlier. A large LRT value for study 7 can also be evidence that study 7 is a potential outlier. 

 

Figure 6.1. Over-dispersion parameter of the random shift variance model for each study for smoking 

cessation data. 

We monitored a sharp decrease of the REML heterogeneity estimator by downweighing the 

study 3 (Table 6.2) with value �̂�2 = 0.16 compared to the rest REML heterogeneity estimator 

values ranging from 0.34 to 0.42. 

 

 

Figure 6.2 Likelihood ratio test (LRT) values of random shift variance model for each study for 

smoking cessation data. 
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Shifting the variance of study 3 has a large effect on the estimated summary odds-ratios. 

RVSOM NMA model resulted in �̂�𝐴𝐵 =1.32 (0.83, 2.09),  �̂�𝐴𝐶 = 1.62 (1.23, 2.15), �̂�𝐴𝐷 =

 1.96 (1.13, 3.39) with REML heterogeneity estimator �̂�2 = 0.16  when the variance of study 

3 is downweighed while the results from standard NMA model are �̂�𝐴𝐵 =

1.48 (0.79, 2.77), �̂�𝐴𝐶 =  2.02 (1.39, 2.93), �̂�𝐴𝐷 = 2.36 (1.15, 4.83) and REML 

heterogeneity estimator �̂�2 = 0.42. Shifting the variance of study 7 provides also a large effect 

on the estimated summary odds-ratios (Figure 6.3). We can conclude that study 3 is an outlier 

followed by study 7. Conclusion with RVSOM method for outlier detection is the same with 

the conclusion from the FS outlier detection method for smoking cessation data (see also 

Chapter 5). This can confirm that our proposed methods are reliable for outlier detection. Both 

methods are iterative with 27 seconds of completion for FS method and 29 seconds for RVSOM 

model.  

 

 

Figure 6.3 Summary estimates and their 95% confidence intervals for each treatment fitting the 

random shift variance model for each study in smoking cessation data. 

 

Table 6.2. Study downweighed fitting the RVSOM NMA model.  Q statistics (𝑄𝑡𝑜𝑡𝑎𝑙, 𝑄𝑖𝑛𝑐, 𝑄ℎ𝑒𝑡) and 

restricted maximum likelihood heterogeneity estimator �̂�
2
 for the RVSOM NMA model fitted by 

downweighed a study for each application. Results are given from NMAoutlier [35] package.  

Study downweighed 𝑄𝑡𝑜𝑡𝑎𝑙 𝑄ℎ𝑒𝑡 𝑄𝑖𝑛𝑐 �̂�2 

1 202.6188 187.3985 4.663504 0.4224061 
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2 202.6189 187.3985 4.663506 0.4225465 

3 62.45292 46.43391 9.504379 0.1688964 

4 202.6189 187.3985 4.663506 0.422459 

5 202.6189 187.3985 4.663505 0.4225125 

6 201.6597 186.4441 4.683338 0.4169078 

7 192.7938 177.6191 4.848289 0.3454409 

8 200.8982 185.6879 4.69686 0.4099748 

9 202.6189 187.3985 4.663506 0.422459 

10 202.6189 187.3985 4.663506 0.4225465 

11 202.6189 187.3985 4.663505 0.4225034 

12 202.6189 187.3985 4.663505 0.4225125 

13 202.6189 187.3985 4.663506 0.4224101 

14 202.6189 187.3985 4.663506 0.4224838 

15 200.1248 185.6879 3.087227 0.4101728 

16 202.6189 187.3985 4.663506 0.4225034 

17 202.6188 187.3985 4.663481 0.4221723 

18 198.3849 183.1005 4.647703 0.4135832 

19 174.4131 158.6404 4.778086 0.389938 

20 197.6053 182.2837 4.617336 0.4210417 

21 202.6189 187.3985 4.663506 0.4224417 

22 202.6189 187.3985 4.663506 0.4224379 

23 202.6188 187.3985 4.663505 0.4225674 

24 202.6189 187.3985 4.663506 0.4224101 

 

6.4 Discussion 

RVSOM model is an outlier diagnostic method that identifies and downweighs outliers in 

NMA. We fit an alternative model from standard random effects NMA that take into account 

outlyingness by shifting (downweighing) the variance of identified outliers. 

Based on observed sharp changes in monitoring measures, the novel RVSOM tool allows the 

identification of outlying studies. A large over-dispersion parameter estimator can be an 

indication of an outlier. Conclusions on outlyingness should be based on the LRT test. 

Following bibliographical suggestions, a threshold for outlyingness of the LRT test can be 

provided by an empirical distribution with the parametric bootstrap method. However, 

empirical distribution with the parametric bootstrap method requires a lot of iterations and 



| 71 

 

 

makes the RVSOM model be a computationally intensive method. This is a limitation for the 

RVSOM NMA model and our future research is to provide alternative methods to obtain a 

threshold for the LRT test.  

RVSOM method concluded to the same results with FS method after the application in smoking 

seccation data. This can confirm that both FS and RVSOM methods are reliable for outlier 

detection. Both methods indicated that computation time increased in accordance with the total 

number of studies in the network and thresolds with parametric bootstrap in RVSOM method 

and simulation envelopes in FS method can make the methods more computational intensive.  

Caution is needed in deleting/omitting outliers and hereby extension of downweighing outliers 

may be an alternative choice. Shifting (downweighing) the variance of an outlier is more 

conservative than a simple study deletion. Exploring the robustness of results with the proposed 

downweighing method may be an alternative choice, possibly reducing bias, compared to 

deletion methods. RVSOM NMA estimates can be provided by downweighing outlier as 

secondary or sensitivity analysis. In any case, primary analysis with standard NMA is on real 

importance and attention of outlyingness needed when results from primary analysis and 

sensitivity differed. In conclusion, we argue that the method can be employed as an outlier 

diagnostic tool.  
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7 Using the R package NMAoutlier  

 

 

7.1 Introduction 

In this Chapter, we provide a description of how to use the R package NMAoutlier [28] for 

the implementation of the proposed methodologies presented in Chapters 4-6.  

The aim of the package is to detect outliers in network meta-analysis. For transparency and 

reproducibility purposes, our proposed methods and visual tools have now offered in R 

statistical package NMAoutlier [28]. NMAoutlier [28] was developed with the aim to detect 

outlying and/or influential studies in NMA datasets with several outlier detection measures 

(such as Chapter 3) including the methods of the forward search algorithm and the shift 

variance random effects NMA model presented in Chapters 4 and 5 respectively. The package 

contains published NMA datasets that can be used for illustration issues of the detection 

methods. 

There are several approaches [85], [92]–[95], [97], [98], [101] that have been developed for 

outlier detection in a pairwise meta-analysis (see for more details Section 3). Viechtbauer 

provided deletion outlier diagnostic measures for meta-analysis [85] and offered with the R 

package metafor [99]. Viechtbauer and Cheung [85] and Hedges and Olkin [84] provided the 

function metaoutliers in package altmeta [131] for the calculation of standardized residuals for 

each study. Beath developed an R package metaplus [132] for the implementation of the outlier 

detection method of finite mixture method of outliers and non-outliers. 

To our knowledge, there does not exist any statistical software to offer the advantage of an 

outlier and influential detection in NMA. The need for the implementation of the outlier and 

influential diagnostical tools in NMA models motivating us to develop the R package 

NMAoutlier [28]. The Chapter is organized as follows: Section 7.2 outlines the NMAoutlier 

package description and Section 7.3 applies the package in R [76] with a real NMA dataset. 
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7.2 Software description 

R package NMAoutlier [28] implements several outlier detection measures, the FS algorithm 

and the random shift variance model in NMA datasets. NMAoutlier [28] package employs the 

following: 

• Outlying and influential detection measures  

- Several outlier detection measures (function: NMAoutlier_measures) are provided: 

(a) Raw, (b) Standardized, (c) Studentized residuals; (d) Contribution to the Q statistic 

(Mahalanobis distance) and (c) leverage. 

- Plots for outlier and influential measures (function: plot_NMAoutlier_measures): 

(a) Raw, (b) Standardized, (c) Studentized residuals; (d) contribution to the Q statistic 

(Mahalanobis distance) and (c) leverage 

- Several outlier and influential detection measures considered deletion (function: 

NMAoutlier_measures_deletion): (a) Raw, (b) Standardized, (c) Studentized 

deleted residuals; (d) Cook distance; (e) COVRATIO; (f) weight “leave one out”; (g) 

leverage “leave one out”; (h) heterogeneity “leave one out”; (i) R heterogeneity; (k) R 

Qtotal; (l) R Qheterogeneity (m);  R Qinconsistency; (n) DFBETAS. 

- Plots for outlier and influential detection measures considered deletion (function: 

plot_NMAoutlier_measures_deletion). In plots, the y-axis provides the 

monitoring outlier detection measure considered deletion (measures (a)-(n) in function 

NMAoutlier_measures_deletion) the x-axis provides the study deleted. 

•  The forward search algorithm in network meta-analysis (function NMAoutlier)  

•  Forward plots (fwdplot) for the monitoring statistics in each iteration of forward search 

algorithm: (a) P-scores, Rücker G & Schwarzer G (2015) [33]; (b) z-values for difference of 

direct and indirect evidence with back-calculation method, König (2013) [119], Dias (2010) 

[118]; (c) Standardized residuals; (d) heterogeneity variance estimator; (e) cook distance; (f) 

ratio of variances; (g) Q statistics, Krahn et al. (2013) [39] . 

•  Forward plot (fwdplotest) for summary estimates and their confidence intervals for each 

treatment in each iteration of the forward search algorithm.  

•  Random shift variance NMA model, RVSOM NMA (function: NMAsvr)  

•   Plots for the monitoring measures for random shift variance model (function: svrplot)  
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• Plots for the monitoring measures for random shift variance model (function: svrplotest)  

The package apart from the functions; NMAoutlier_measures, 

plot_NMAoutlier_measures, NMAoutlier_measures_deletion, 

plot_NMAoutlier_measures_deletion, NMAoutlier, fwdplot, 

fwdplotest, NMAsvr, svrplot, svrplotest. An overview of functions in 

NMAoutlier [28] package and a short description for the implementation of each function is 

provided in Table 7.1. 

Table 7.1. Overview of functions in NMAoutlier [28] package and a short description for the 

implementation of each function. 

Function Implementation 

NMAoutlier_measures Several outlier detection measures: 

(a) Raw residuals 

(b) Standardized residuals 

(c) Studentized residuals 

(d) Contribution to the Q statistic  

(c) leverage 

plot_NMAoutlier_measures Plots for outlier and influence measures 

provided with function 

NMAoutlier_measures  

NMAoutlier_measures_deletion Several outlier and influence detection 

measures considered deletion: 

(a) Raw deleted residuals 

(b) Standardized deleted residuals 

(c) Studentized deleted residuals 

(d) Cook distance 

(e) COVRATIO 

(f) weight “leave one out” 

(g) leverage “leave one out” 

(h) heterogeneity “leave one out” 

(i) R heterogeneity 

(k) R Qtotal 

(l) R Qheterogeneity  

(m) R Qinconsistency 

(n) DFBETAS 
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plot_NMAoutlier_measures_deletion Plots for outlier and influence measures 

provided with function 

NMAoutlier_measures_detetion 

NMAoutlier The forward search algorithm in network 

meta-analysis. 

fwdplot Forward plots for the monitoring statistics 

in each step of forward search algorithm: 

(a) P-scores, Rücker G & Schwarzer G 

(2015) [33];  

(b) z-values for difference of direct and 

indirect evidence with back-calculation 

method, König (2013) [119], Dias (2010) 

[118]; (c) Standardized residuals; 

(d) heterogeneity variance estimator; 

(e) cook distance;  

(f) ratio of variances; 

(g) Q statistics, Krahn et al. (2013) [39] 

fwdplotest Forward plot for summary estimates and 

their confidence intervals for each treatment 

in each step of the forward search algorithm. 

NMAsvr Random shift variance network meta-

analysis model. 

svrplot Plots for the monitoring measures for the 

random shift variance model. 

svrplotest Plot for summary estimates and their 

confidence intervals for each treatment for 

the random shift variance model. 

 

NMAoutlier_measures function provides several outlier and influential measures and 

NMAoutlier_measures_deletion offers the ability to compute several outliers and 

influential measures considered deletion. NMAoutlier function employs the forward search 

algorithm and NMAsvr function employs the random shift variance model. The proposed 

detection measures and methods can be diagnostic tools for detection outlying and/or 

influential studies. They can also be used to detect studies that are responsible for heterogeneity 

and inconsistency.  
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An overview of the arguments and their descriptions of the components of all functions in the 

NMAoutlier package is provided in the Appendix (Appendix Tables 4-14). A brief overview 

of the package can also be provided with help function by typing 

R> help(NMAoutlier) 

NMAoutlier_measures, NMAoutlier_deletion_measures, NMAoutlier, 

and NMAsvr functions calculate the outlier detection methodologies for network meta-

analysis model from graph theory [5] fitted (netmeta function) with R package netmeta 

[35]. The researcher can choose the reference treatment (reference) fitted in the NMA 

model. 

Monitoring is helpful to identify outlying and/or influential studies. Monitoring statistical 

measures for the basic set in each FS iteration and for RVSOM NMA model can be: 

- Likelihood statistics (for NMAsvr function only). The heterogeneity estimation method is 

conducted under the Restricted Maximum likelihood estimator and likelihood statistics offered 

from the calculation, the twice of maximum log-likelihood, the convergence diagnostic, and 

the Likelihood Ration test (LRT) test.  

- Outlier and influential case diagnostics measures. Standardized residuals (arithmetic mean 

in case of multi-arm studies); Cook statistic; Ratio of determinants of the variance-covariance 

matrix 

- Ranking measures (for NMAoutlier function only). P-scores for ranking of treatments 

[33] with implementation of (netrank function) from R package netmeta [35]. Therefore, 

argument small.values is an argument for function NMAoutlier with options “good” or 

“bad” if small values considered beneficial or harmful on the outcome, respectively. 

- Heterogeneity and inconsistency measures. Overall heterogeneity/inconsistency Q statistic 

(Q) is the design-based decomposition of Cochran Q as provided by Krahn et al. [39]; Overall 

heterogeneity Q statistic (Q); Between-designs Q statistic (Q), based on a random-effects 

model with square-root of between-study variance estimated embedded in a full design-by-

treatment interaction model. Implementation with (decomp.design function) from R 

package netmeta [35]; Z-values for comparison between direct and indirect evidence for each 

iteration of the forward search algorithm. 
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By monitoring the difference between direct and indirect evidence, potential sources of 

consistency can be detected with the implementation of (netsplit function) from R package 

netmeta [35]. Based on the methodology with the back-calculation method to derive indirect 

estimates from direct pairwise comparisons and network estimates (Dias et al. [118], König et 

al. [119]). 

The development version of the package is available on the GitHub repository: 

https://github.com/petropouloumaria/NMAoutlier. 

 

7.3 Application of NMAoutlier in practice with smoking cessation data 

This example comprises four interventions to aid smoking cessation [41], [42] introduced in 

Chapter 2. Smoking cessation data is part of netmeta [35] package with arm level data. We 

load the dataset by typing 

R> data(smokingcessation, package = "netmeta") 

Before conducting the analysis, the R packages netmeta and NMAoutlier should be installed. 

The function install.packages() can be used to install the packages that the user needs. 

The two above packages can be installed by typing 

R> install.packages(c(“netmeta”, “NMAoutlier”)) 

The function library can be used to make the library available  

R> library(netmeta) 

The NMAoutlier package performs outlier and influential detection methodologies to NMA 

datasets with contrast level data. The transformation is needed if arm level data provided and 

can be conducted with function pairwise from the netmeta package. 

We transform the dataset from arm to contrast level data with odds ratios using the function 

pairwise from the netmeta package [35] (the same information is also provided in 

Appendix A) (this is the reason that we load the netmeta package). 

R> p1 <- pairwise(list(treat1, treat2, treat3), 

+  list(event1, event2, event3), 

+  list(n1, n2, n3), 

https://github.com/petropouloumaria/NMAoutlier


| 79 

 

 

+  data=smokingcessation, 

+  sm="OR") 

We denoted with p1 the object that assigned the data with smoking cessation in contrast level.  

 

7.3.1 Part 1: Simply outlier detection measures 

We can calculate some simple outlier detection measures for NMA. The function 

NMAoutlier_measures calculate several outlier detection measures for each study.  

R> measures <- NMAoutlier_measures(p1) 

The object measures apart from the calculation of several measures for each study offered 

from function NMAoutlier_measures; raw residuals, standardized residuals, studentized 

residuals, contribution to the Q statistic, and leverage. We can see the contribution to the Q 

statistic (Mahalanobis distance) for each study by typing 

R> measures$ Mahalanobis.distance 

Function plot_NMAoutlier_measures generates plot(s) to monitor selected outlier and 

influential statistical measure(s). The function creates a plot of the selected outlier detection 

measure of each study in the network. An object of class function NMAoutlier_measures 

(for this example object measures) is mandatory for running this function. Candidate 

statistics to be monitored (argument stat) can be raw residuals; standardized residuals; 

studentized residuals; contribution to the Q statistic and leverage.  

We can plot the contribution to the Q statistic (Mahalanobis distance) measure. 

R> plot_NMAoutlier_measures(measures, stat = "mah") 
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Figure 7.1. Contribution to the Q statistic (Mahalanobis distance) values for each study for smoking 

cessation data. 

 

7.3.2 Part 2: Outlier detection measures considered deletion 

We can calculate some outlier detection measures considering the deletion of a study. The 

function NMAoutlier_deletion_measures calculates several outlier detection 

measures considering study deletion.  

R> deletion <- NMAoutlier_deletion_measures(p1) 

Measures that provided in this function are raw, standardized and studentized deleted residuals, 

Cook’s distance, COVRATIO, weight “leave one out” etc. We can see the standardized deleted 

residuals for each study 

R> deletion$stand.deleted 

We can see the values of COVRATIO when considering deletion for each study 

R> deletion$covratio 

Function plot_NMAoutlier_deletion_measures generates plot(s) to monitor 

selected outlier and influential statistical measure(s) after considered a deletion of a study. The 

function creates a plot of the selected outlier detection measure after the deletion of a study. 

An object of class function NMAoutlier_deletion_measures is mandatory (here 

object deletion) for running the function. Candidate statistics to be monitored (argument 
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stat) can be raw deleted residuals; standardized deleted residuals; studentized deleted 

residuals; COVRATIO; Cook distance; R statistic for heterogeneity; R statistic for Qtotal; R 

statistic for Qheterogeneity; R statistic for Qinconsistency.  

We can display the R statistic for Qinconsistency by typing 

R> plot_NMAoutlier_deletion_measures(deletion, stat = "rqinc") 

 

Figure 7.2. R statistic for Qinconsistency for smoking cessation data. 

7.3.3 Part 3: Forward Search Algorithm - Detection Method 

NMAoutlier function employs the forward search algorithm in network meta-analysis. 

During the search, several measures calculated and among them, P-scores can be monitored. A 

researcher should take into account outcome is beneficial or harmful as this is a need for P-

scores calculation. The default value considered a beneficial outcome and therefore small 

values specified to be “good”. In smoking cessation data, the outcome is harmful and we 

should specify the argument small.values with “bad”. 

We can conduct the forward search algorithm in this dataset with the criterion of the smallest 

absolute standardized residuals (default value that the researcher should not specify) as follows: 

R> FSresult1 <- NMAoutlier(p1, small.values = "bad") 

We can see the basic set for each iteration of the forward search algorithm 

R> FSresult1$basic  

We can conduct the forward search algorithm with function NMAoutlier by taking the 

criterion of the maximum of median absolute likelihood contributions to select the initial subset 

and the study entered from non-basic set to basic set. 
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R> FSresult2 <- NMAoutlier(p1, crit1 = "L", crit2 = "L", 

+  small.values = "bad") 

We can see the basic set for each iteration of the forward search algorithm 

R> FSresult2$basic  

Function fwdplot generates forward plot(s) to monitor selected statistic(s) and/or method(s). 

The function creates a plot of the selected statistic throughout the iterations of the forward 

search algorithm. An object of class function NMAoutlier is mandatory for running the 

function. Candidate statistics to be monitored (argument stat) can be P-score; z-values by 

back-calculation method to derive indirect estimates from direct pairwise comparisons and 

network estimates; standardized residuals; heterogeneity variance estimator; cook distance; 

ratio of variances; Q statistics (Overall heterogeneity/ inconsistency Q statistic (Q), overall 

heterogeneity Q statistic (Q), between-designs Q statistic (Q) based on a random-effects design-

by-treatment interaction model).  

We can see the forward plot to monitor z-values by the back-calculation method to derive 

indirect estimates from direct pairwise comparisons and network estimates 

R> fwdplot(FSresult1, stat = “dif”) 

 

Figure 7.3. Forward plot for z-values by the back-calculation method in smoking cessation data. 

The researcher has the choice to provide forward plots for a selected statistical measure 

(argument select.st) for P-scores/z-values by the back-calculation method to derive indirect 
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estimates from direct pairwise comparisons and network estimates/standardized residuals for 

selected treatment/comparisons/study, respectively. 

We can see the forward plot  

R> fwdplot(FSresult1, stat = “”, select.st) 

Function fwdplotest generates forward plots for summary estimates with a 95 percent 

confidence interval for each treatment. An object of class function NMAoutlier is the only 

argument and it is mandatory for running the function. 

We can see the forward plots for summary estimates with 95 percent confidence interval for 

each treatment 

R> fwdplotest(FSresult1) 

Figure 7.4. Forward plot for summary estimates with 95 percent confidence interval for each 

treatment in smoking cessation data. 

7.3.4 Part 4: Shift Variance Network Meta-analysis – Detection method and sensitivity 

analysis downweighing outlier 

NMAsvr function employs the RVSOM NMA model for the detection of outlying and 

influential studies. We can implementthe model for each study in smoking seccation dataset as 

follows: 

R> SVRresult1 <- NMAsvr(p1, small.values = "bad") 

Some measures for the random shift variance model are outlined, such as; the variance 

estimator of shift variance model (over-dispersion) and likelihood statistics such as the twice 

maximum log-likelihood, its convergence diagnostic, and the likelihood ratio test (LRT). 
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Moreover, values of statistical monitoring measures of random shift variance model are given, 

such as; standardized residuals, P scores, Q statistics, heterogeneity estimator, etc. 

We can see the LRT with random shift variance model of each study with  

R> SVRresult1$LRT  

We can see the over-dispersion with random shift variance model of each study with  

R> SVRresult1$over_disp 

Function svrplot generates plots for monitoring measures. An object of function NMAsvr 

is the first mandatory argument for running the function and the statistic to be monitored should 

be the second argument of the function. We can figure out a plot of LRT of the random shift 

variance model for each study with  

R> svrplot(SVRresult1, "LRT") 

 

Figure 7.5. Likelihood Ratio Test (LRT) of the random shift variance model for each study for 

smoking cessation data. 

We can draw a plot of the over-dispersion parameter of the random shift variance model for 

each study with  

R> svrplot(SVRresult1, "over_disp") 
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Figure 7.6. Over-dispersion parameter of the random shift variance model for each study for smoking 

cessation data. 

7.4 Discussion 

Network meta-analysis is the most popular evidence synthesis method and there are several 

statistical packages available for the implementation of meta-analytical models up to date. The 

R package netmeta implements the network meta-analysis model in a frequentist framework 

and it is the most comprehensive R package for NMA [35].  

The proposed package NMAoutlier [28] is the first package that implements outlier 

diagnostics measures, methods, and tools in NMA evidence structures. It offers the ability to 

calculate several outlier and influential measures for NMA but also two methods for outlier 

diagnosis; the FS algorithm and the RVSOM NMA model. In this Chapter, we described details 

about the R package NMAoutlier [28] and an overview of the methods offered. For illustration 

reasons, a working example of smoking cessation data is provided to give an insight on how to 

use the R package NMAoutlier [28].   
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8 Summary 

 

8.1 Summary 

Systematic reviews and meta-analyses have been established as an integral part of comparative 

effectiveness research. The increasing number of different educational and psychological 

interventions in the educational system has led to the need for comparative effectiveness 

research with the aim to identify the best intervention. Network meta-analysis synthesizes both 

direct and indirect evidence, gives more powerful results and provides estimates with increased 

precision compared to pairwise estimates. NMA has become a popular statistical tool in 

evidence synthesis. Based on a database of published NMA from the onset until 14 April 2015, 

the time trend indicates the increasing number of published NMAs and the tendency for the 

use of appropriate methods. Moreover, the overview of the characteristics of published NMAs 

is a useful resource of information for methodologists that aim to update the current knowledge 

on appraising NMA methods. This collection of 456 published NMAs indicates that many 

NMAs provide important methodological limitations, but the comprehensive use of appropriate 

methodologies and completeness of reporting (such as the description of the statistical methods 

used) improved over the years. For example, an increasing number of NMAs used appropriate 

methods to test the plausibility of the consistency assumption and in recent years around 90% 

of articles clearly reported whether a random-effects of the fixed-effect model was used.  

A common problem in the synthesis of studies is the existence of outlying or/and influential 

studies. Outlying and influential studies may bias the results but little work has been done for 

outlying identification in NMA. For this reason, this Thesis focuses on developing several 

methodologies for the identification of outliers and influential studies in network meta-

analysis. Heterogeneity and inconsistency can be seen as differences in the potential effect 

modifiers within and across the pairwise comparisons in a network of interventions. It is 

common that a potential source of heterogeneity and inconsistency is provided due to the 

existence of extreme study effects. Extreme study effects may be an outlier or influential study. 

A study that is far away from the rest of the data and does not explain by the assumed model 
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defined as an outlier and a study that influences the model parameters (network estimates and 

heterogeneity estimator) defined as influential. Several methods for outlier and influential 

identification have been developed in a pairwise meta-analysis considering addition or deletion 

of studies, based on the likelihood or by taking alternative distributions for heterogeneity. In 

this dissertation, several simple measures for outlier and influential studies detection are 

provided. Measures considering the deletion of a study for outlier and influential studies 

detection are extended in NMA. A forward search algorithm, considered the addition of studies, 

has recently been developed in meta-regression. This algorithm starts with a subset of studies 

that considered outlying-free and it gradually adds studies until all studies entered. Sharp 

changes in monitoring measures during the search are considered potential outlying and/or 

influential studies. In this Thesis, the methodology with the forward search algorithm for 

outlying identification has been developed in the NMA model. Additionally, a novel model 

with shifting the variance taking into account outlying studies from meta-analysis to network 

meta-analysis model is extended. The advantage of the random shift variance model is that it 

offers the ability of down-weighting studies and therefore can be used as a sensitivity analysis. 

The several outlier and influential measures and two proposed methods in NMA for outlying 

identification, forward search algorithm and shift random NMA model, applied in real and in 

simulated datasets. Results of measures and methods indicate the potential source of outlying 

and influential cases in datasets. The methods are promising tools for the identification of 

outlying and influential cases and sources of heterogeneity and/or inconsistency. For the 

implementation of the several detection measures and methods a flexible and user-friendly 

software, an R package, called NMAoutlier, was developed with a description and details to 

provide guidance on how to use the R package through real datasets. 

 

8.2 Περίληψη 

Οι συστηματικές ανασκοπήσεις και μετα-αναλύσεις έχουν καθιερωθεί ως αναπόσπαστο 

κομμάτι της έρευνας για τη σχετική αποτελεσματικότητα μεταξύ παρεμβάσεων. Σήμερα, η 

λήψη αποφάσεων και η ιεράρχηση μεταξύ ανταγωνιστικών παρεμβάσεων σε πολλούς τομείς, 

βασίζονται στην ανάπτυξη του μετα-ανάλυσης δικτύων (ΜΑΔ). Ο ολοένα αυξανόμενος 

αριθμός διαφορετικών εκπαιδευτικών και ψυχολογικών παρεμβάσεων στο εκπαιδευτικό 

σύστημα οδηγεί στην ανάγκη σύγκρισης τους με στόχο την εύρεση της καταλληλότερης 

παρέμβασης. Η μετα-ανάλυση δικτύων συνθέτει τόσο άμεσες όσο και έμμεσες πληροφορίες 
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έτσι ώστε να παρέχει πιο ισχυρά αποτελέσματα και εκτιμήσεις με αυξημένη ακρίβεια σε σχέση 

με τις εκτιμήσεις ανά ζεύγη. Η ΜΑΔ έχει γίνει ένα δημοφιλές στατιστικό εργαλείο στη 

σύνθεση στοιχείων. Βάσει μιας συλλογής δεδομένων με δημοσιευμένες ΜΑΔ από την αρχή 

έως τις 14 Απριλίου 2015, η τάση δείχνει τον αυξανόμενο αριθμό δημοσιευμένων της ΜΑΔ 

και της εφαρμογής ολοένα και καταλληλότερων μεθοδολογιών. Επιπλέον, η επισκόπηση των 

χαρακτηριστικών των δημοσιευμένων ΜΑΔ είναι μια χρήσιμη πηγή πληροφόρησης για 

ερευνητές που στοχεύουν να αναβαθμίσουν την υπάρχουσα γνώση σχετικά με την αξιολόγηση 

των μεθόδων ΜΑΔ. Αυτή η συλλογή από 456 δημοσιευμένων ΜΑΔ υποδεικνύει ότι πολλές 

ΜΑΔ παρέχουν σημαντικούς μεθοδολογικούς περιορισμούς, αλλά η εκτεταμένη χρήση των 

κατάλληλων μεθοδολογιών και της πληρότητας των εκθέσεων (όπως η περιγραφή των 

χρησιμοποιούμενων στατιστικών μεθόδων) έχει βελτιωθεί με την πάροδο των ετών. Για 

παράδειγμα, ένας αυξανόμενος αριθμός ΜΑΔ χρησιμοποίησε κατάλληλες μεθόδους για να 

ελέγξει την αξιοπιστία της υπόθεσης της συνέπειας και τα τελευταία χρόνια γύρω στο 90% 

των άρθρων ανέφερε σαφώς αν χρησιμοποιήθηκε το μοντέλο τυχαίων ή σταθερών 

επιδράσεων.  

Παρόλο που η βιβλιογραφική μελέτη έδειξε βελτιωμένη στατιστική μεθοδολογία, 

εξακολουθούν να υπάρχουν μεθοδολογικές πτυχές στα μοντέλα μετα-αναλύσεων δικτύων που 

χρειάζονται ακόμα περαιτέρω ανάπτυξη. Ένα κοινό πρόβλημα στη σύνθεση των μελετών είναι 

η ύπαρξη ακραίων και / ή επηρεάζουσων μελετών. Παρόλο που οι ακραίες και οι επηρεάζουσες 

μελέτες ενδέχεται να οδηγήσουν σε μεροληπτικά αποτελέσματα, ελάχιστη ερευνητική δουλειά 

έχει πραγματοποιηθεί για τη διερεύνηση τέτοιων μελετών στη ΜΑΔ. Για το λόγο αυτό, η 

παρούσα διδακτορική διατριβή επικεντρώνεται στην ανάπτυξη μεθοδολογίας για τη 

διερεύνηση ακραίων και επηρεάζουσων μελετών. Η ετερογένεια και η ασυνέπεια μπορούν να 

θεωρηθούν ως διαφορές στους τροποποιητές του αποτελέσματος σε ένα δίκτυο παρεμβάσεων. 

Μια πιθανή πηγή ετερογένειας και ασυνέπειας αποτελεί η ύπαρξη ακραίων ή επηρεάζουσων 

μελετών. Ως ακραία ορίζεται η μελέτη που απέχει πολύ από τα υπόλοιπα δεδομένα και δεν 

προβλέπεται ικανοποιητικά από το μοντέλο που έχουμε υποθέσει, ενώ ως επηρεάζουσα η 

μελέτη που επηρεάζει τις παραμέτρους του μοντέλου, δηλαδή τις εκτιμήσεις του δικτύου και 

την ετερογένεια. Αρκετές μεθοδολογίες για την εύρεση ακραίων και επηρεάζουσων μελετών 

έχουν αναπτυχθεί στη μετα-ανάλυση δύο παρεμβάσεων, μεθοδολογίες που θεωρούν την 

είσοδο ή έξοδο μελετών, μεθοδολογίες που στηρίζονται στη συνάρτηση πιθανοφάνειας ή 

μεθοδολογίες που βασίζονται στη λήψη εναλλακτικών κατανομών για ετερογένεια. Στη 

παρούσα διδακτορική διατριβή παρουσιάζονται πολλά απλά μέτρα εύρεσης ακραίων και 
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επηρεάζουσων μελετών. Μέτρα θεωρώντας τη διαγραφή μελέτης για την εύρεση ακραίων και 

επηρεάζουσων μελετών επεκτάθηκαν στο μοντέλο ΜΑΔ. Ο προς τα εμπρός αλγόριθμος 

αναζήτησης αναπτύχθηκε πρόσφατα στη μετα-παλινδρόμηση. Ο αλγόριθμος βασίζεται στη 

σταδιακή προσθήκη των μελετών, ξεκινά με ένα υποσύνολο μελετών που θεωρείται 

απαλλαγμένο από ακραίες μελέτες και προσθέτει σταδιακά τις μελέτες μέχρι να εισέλθουν 

όλες οι μελέτες. Οι έντονες αλλαγές των μέτρων παρακολούθησης κατά τη διάρκεια της 

αναζήτησης αποτελεί ένδειξη για πιθανές ακραίες ή / και επηρεάζουσες μελέτες. Στην 

διδακτορική διατριβή, η μεθοδολογία με τον προς τα εμπρός αλγόριθμο αναζήτησης για τη 

διερεύνηση ακραίων ή/και επηρεάζουσων μελετών αναπτύχθηκε στο μοντέλο ΜΑΔ από το 

μοντέλο της μετα-παλινδρόμησης. Επιπλέον, επέκτεινα ένα νέο μοντέλο τυχαίων επιδράσεων 

με τη μετατόπιση της διακύμανσης, λαμβάνοντας υπόψη τις ακραίες μελέτες από το μοντέλο 

της απλής μετα-ανάλυσης δύο παρεμβάσεων στο μοντέλο της ΜΑΔ. Το πλεονέκτημα του 

μοντέλου τυχαίων επιδράσεων με τη μετατόπιση της διακύμανσης είναι ότι προσφέρει την 

ικανότητα μείωσης του βάρους των ακραίων μελετών και συνεπώς μπορεί να χρησιμοποιηθεί 

ως ανάλυση ευαισθησίας. 

Τα διάφορα μέτρα και οι δύο προτεινόμενες μεθοδολογίες στη ΜΑΔ για διερεύνηση των 

ακραίων και επηρεάζουσων μελετών, με τον προς τα εμπρός αλγόριθμο αναζήτησης και το 

μοντέλο τυχαίων επιδράσεων με μετατόπιση της διακύμανσης, εφαρμόστηκαν σε 

δημοσιευμένα δίκτυα μετα-αναλύσεων και σε προσομοιωμένα δεδομένα. Τα αποτελέσματα 

από τι εφαρμογές υποδεικνύουν την εύρεση ακραίων και επηρεάζουσων μελετών στα 

δεδομένα. Οι προτεινόμενες μεθοδολογίες αποτελούν καλά υποσχόμενα εργαλεία για τον 

εντοπισμό ακραίων και επηρεάζουσων μελετών και την εύρεση πηγών δημιουργίας υψηλής 

ετερογένειας και / ή ασυνέπειας. Για την υλοποίηση των διάφορων μέτρων εύρεσης ακραίων 

και επηρεάζουσων μελετών αλλά και των δύο προτεινόμενων μεθοδολογιών σε ένα ευέλικτο 

και φιλικό προς το χρήστη λογισμικό, αναπτύχθηκε το στατιστικό πακέτο NMAoutlier στην 

R που περιγράφεται στη παρούσα διδακτορική διατριβή παρέχοντας λεπτομέρειες και οδηγίες 

για τον τρόπο χρήσης του πακέτου μέσω της εφαρμογής του σε πραγματικά δεδομένα. 

 

 



 

Appendix 

Appendix Tables. 

Appendix Table 1. Effect size 𝒚𝑖, standard error 𝒔𝑖 and treatment comparisons for each study 

of the smoking cessation dataset. 

Effect size 𝒚𝑖 Standard error 𝒔𝑖 treat1 treat2 study label 

-1.0513 0.4132 A C 1 

-0.1285 0.4760 A D 1 

0.9228 0.3998 C D 1 

-0.0012 0.4504 B C 2 

-0.2253 0.3839 B D 2 

-0.2241 0.3723 C D 2 

-2.2023 0.1430 A C 3 

-0.8704 0.7911 A C 4 

-0.4156 0.1557 A C 5 

-2.7797 1.4698 A C 6 

-2.7054 0.6252 A C 7 

-2.4252 1.0423 A C 8 

-0.4436 0.5220 A C 9 

0.0160 0.1699 A B 10 

-0.3935 0.3266 A B 11 

-0.3904 0.1680 A C 12 

-0.1063 0.5956 A C 13 

-0.5834 0.2983 A C 14 

-3.5225 1.4970 A D 15 

-0.6796 0.4411 A B 16 

-0.5397 0.1401 A C 17 

0.1255 0.3200 A C 18 

0.2400 0.1737 A C 19 

-0.0390 0.1874 A C 20 

0.1517 0.4290 B C 21 

-1.0435 0.4490 B D 22 

-0.6807 0.4092 C D 23 
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0.4055 0.7139 C D 24 

 

Appendix Table 2. Effect size 𝒚𝑖, standard error 𝒔𝑖 and treatment comparisons for each study 

of the actinic keratosis dataset. 

Effect size 𝒚𝑖 Standard error 𝒔𝑖 treat1 treat2 study label 

-0.7069 0.4287 1 2 1 

-1.2933 0.4227 1 2 2 

-1.6319 0.6076 1 2 3 

-0.8391 0.4543 1 2 4 

-5.1527 1.4500 1 3 5 

-4.0763 1.4747 1 4 6 

-3.2321 0.7862 1 3 7 

-1.1632 1.1247 1 4 8 

-1.6802 0.4443 1 2 9 

-2.4849 0.5381 1 5 10 

0.0000 0.8165 3 6 11 

-3.3998 1.4527 1 3 12 

-3.2241 0.4078 1 4 13 

-3.3266 0.6755 1 5 14 

-2.6210 0.5475 1 5 15 

-3.0888 0.5388 1 6 16 

-4.1017 0.6070 1 4 17 

-2.4902 0.2764 1 4 18 

-2.2548 1.5713 1 4 19 

-3.9478 0.6104 1 4 20 

0.1367 0.3700 1 4 21 

-0.2448 0.6159 4 7 22 

-2.1370 1.1131 7 8 22 

-2.3817 1.1078 4 8 22 

-2.7642 0.8146 4 7 23 

-2.1145 0.5023 1 5 24 

-2.2003 0.4821 1 9 25 

-6.4754 1.5717 1 4 26 

-3.1540 0.7690 1 6 27 
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-0.5564 0.2344 1 6 28 

2.5020 0.5005 6 8 28 

1.9456 0.4999 1 8 28 

-1.6112 0.6282 1 4 29 

-1.8099 0.6269 1 4 30 

-3.3759 0.5914 1 5 31 

-2.6507 0.5733 1 6 32 

-2.1698 0.3323 1 5 33 

-2.8571 0.3413 1 6 33 

-0.6873 0.2033 5 6 33 

-2.6659 0.2410 1 9 34 

-1.2164 0.6562 4 5 35 

 

Appendix Table 3. Effect size 𝒚𝑖, standard error 𝒔𝑖 and treatment comparisons for each study 

of the thrombolytics dataset. 

Effect size 𝒚𝑖 Standard error 𝒔𝑖 treat1 treat2 study label 

0.1575 0.0486 1 2 1 

0.04521 0.0471 1 4 1 

-0.1123 0.0558 2 4 1 

0.0260 0.0394 1 3 2 

0.0048 0.0392 1 8 2 

-0.0211 0.0394 3 8 2 

0.3718 0.5427 1 3 3 

0.8988 0.8571 1 3 4 

-0.0162 0.8361 1 3 5 

-0.0532 0.0491 1 3 6 

0.6096 0.6464 1 3 7 

0.5463 0.4908 1 3 8 

0.7323 0.5618 1 3 9 

-0.4054 0.6603 1 4 10 

0.0603 0.0891 1 6 11 

0.3976 0.7068 1 7 12 

-0.1013 0.9302 1 8 13 

-0.2816 0.7281 1 8 14 



94 | 

 

 

0.7672 0.7750 1 8 15 

-0.1818 0.4491 1 8 16 

-0.0054 0.0638 2 5 17 

-0.0341 0.0667 2 6 18 

0.7508 0.4826 2 6 19 

-0.5806 0.8401 2 7 20 

-0.0217 0.3908 2 7 21 

-1.2789 0.5185 2 8 22 

-1.4737 0.6520 2 8 23 

0 0.6318 3 7 24 

0.5490 0.5285 3 7 25 

0.1652 0.6194 3 7 26 

0.2623 0.4360 3 8 27 

0.3247 0.6051 3 8 28 

 

 

Appendix A. 

R code calculates odds ratios for smoking cessation data. The dataset is a part of  R package 

netmeta [35] that compared the relative effects of four smoking cessation counseling programs 

(𝑛 = 4): defined as no contact (A), self-help (B), individual counseling (C), and group 

counseling (D). The binary outcome was the number of events that successful stopped smoking 

at 6 to 12 months. Arm level data (number of events, total sample size in each arm and 

treatments compared) can be found in netmeta [35] package. Here is provided the code for 

calculating odds ratios. 

library(netmeta) 

data("smokingcessation") 

pm <- pairwise (list (treat1, treat2, treat3), 

               event = list (event1, event2, event3), 

               n = list (n1, n2, n3), 

               data = smokingcessation, 

               sm = "OR")
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