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Dedication

H mapodoa epeguvntikn epyacio ekmoviOnke oto Epyoacthiplo ATOUIKNAG KOl HOPLOKNG
dvowkng (ATOMOL) tov Tunuatog ®vcikng, tov Iavemiompiov loavvivov kol oe cuvepyacio
ue to F'oAlkd Ivotitovto Institut Lumicre Matiere, CNRS, Université Claude Bernard, Lyon 1.
Mépn ¢ épevvag ypnuatodotnnkay and Evpomaikodc kot kpatikovg mopove. H mapodoa
dwtppn amoterel mpoidv GuAAoYIKOL HOYBov TpocsdTWV oto. omoio Bo MBela va avaeepOd
OTOLUKA.

Evyapiotd ta péAn e tpipedods cUUPOLAEVTIKNG EXTPOTNG, ONANOT|

...Tov emPAEmovTa KaBnynt, K. ZapovnA Koév yio tnv vropovn Kot v EUmeTocvVY| TOV
£0e1le o€ guéva ta S5 ypovia s cvvepyasio pag. YmpEe o kHplog KaBodnynge Ko EUTVELGTNG
T0V KGBe PrLaTog TG Epevvag KaBMG Kot TPOTLTO EPYATIKOTNTOG Yo EUEVAL.

...7ov K. Kootavtivo Koopion yia Bepun tov vwodoyn 610 epyactnplo Kot TNV EUTIGTOGUV
7oV pov £dg1Ee amd Vv TpmTn pépa. Emiong, iyo v apépiotn ompién Tov g OAeC TG TTUYEG
oV Biov Hov ®G LITOYNPLOG OAKTOPOC.

...Tov K. Zmopidov Kaltbvvn yio v ompiEn tov kot v 0épun mov enédeile oty
AVTILETOTIGT OA®V T®V OVGKOAMMDV TOV AVILETDOTICO GTO EPYUCTIP1O.

®a MBela emiong vo evYOPICTICW,

...TOV K. Zompto Ntovakao yio Tov Gyoyo €mOyYEALOTICHO TOL KOl TNV KoOnUeptvi] Tov
YUYOAOYIKN VTOGTNPIEN GE EPEVAL.

...7tov¢ k.k. Christian Bordas kot Franck Lépine ywa thv €noikodountikn Kot evydpiot
ocvvepyosio pog kabmg kol tnv eriocevia tovg otny TOAN TS Avdv.

...Tov K. Eppavound Mzevn| yuo tnv cuvepyasio Log Kot TNV GUUUETOYY] TOV OTNV EEETOGTIKN
EMTPOTN QLTS TS daTpPre.

...7ov K. [Tapackevd TEAALO Yo TNV CUUUETOYN TOL GTNV EEETOCTIKT EMTPOTMY AVTNG TNG
dwatpprs.

Evyapiotd axdpn toug kadnyntéc A. Owiadn kot K. Povvid, kabng kot o pérn Tov te)viKon
npoconikod E. Anuntpiadn ko 1. TpravtagdAlov. Xtnv 0ovAEld avTh| YpMCLULOTOMONKE
eEomMopog otov omoiov éxovv Paciotel Tponyodueveg epyacies: petafh dAlmv Kot Tov K.K. A.
Anuntpiov kot E. ITavAov. Katd v didpketo g pedétng eiya v toyxn va epydlopon mAdt 6Toug
ddakToptkovs eottntés Kot epidovg K. depevtivov, E. Keydoyiov kat A. Znacdénovro. Evyopiotd
toug [Nwpyo Zrapartiov ko KEAn Kovpydkn kot 6Aovg Toug gilovg pov, mov otddnikoy mAdt pov
oe autv TV mpoomdBeta. I[dtaitepa gvyaplot® ™V cHVTPoPo pov AleEdvopa Zivhvn Yo Tig
VIEPOYEG OTIYUEG oV Tepdoape pall and to TpdTa £I1 ToL TTVYiov pog. Télog, evyaploTd TV
OKOYEVELDL LoV Yol TNV 0AOTAELPN otpién Tovg. ‘Hrtov ko Oa givon yio mdvto o1 pmeg pHov.
I'vopilo 6t Ba £y Tovg £x® oTo TAELPS LoV, G KAOE pov Priua.

AQlep®VO o TN TNV 00VAELL GTO ayoTnTad pov Eadépeia, Eppiovn kot I'avvn.

Eipoote pealotés, emOIOKOVE TO AdVVATO.






Abstract

Photoionization Microscopy (PM) is an experimental technique aiming at the observation
of the squared modulus of the wave function of electrons emitted during the photoionization of
neutral atoms in the presence of a uniform static electric field. This is achieved by imaging the
two-dimensional flux of these slow (meV) photoelectrons. The present work is devoted to the
magnesium atom (Z=12), ionized by two-photon absorption out of its ground state. Particularly, in
this thesis the following three directions have been examined:

The first direction concerns the recording and characterization of Mg resonant images.
Indeed, images exhibiting resonant features are recorded just above the saddle point energy.
Although these manifestations are found to be rather faint, they have been achieved for the heaviest
atom so far, since all other resonant images were observed in small-size atoms (Z<3).

In the second direction, the aim is the detailed recording of the (primarily non-resonant)
momentum distributions of the outgoing electron transversely to the static electric field. The
purpose here is the exploration of the global (i.e. of that met in any atom and irrespective of
excitation conditions) information these distributions may provide through the analysis of their
rich interference patterns. Particularly, it is shown that the oscillations of the signal at the center
of the images as a function of energy, is closely related to the dynamics of the electron motion
towards the detector.

Finally, in the third direction we explore the effects observed in slow photoelectron images
when the linear polarization vector of the ionizing-laser is rotated with respect to the static field
axis. It is shown that two-photon ionization out of the Mg m=0 initial state allows for the population
of [m|=0,1,2 final Stark states, causing observable m-beating effects. Additionally, based on these
observations, we discuss the challenges posed on the applicability of tomographic reconstruction
techniques when meV electrons are involved.

In all of the above directions, experimental results are supported and verified by our

hydrogenic non-perturbative calculations.






[TepiAnyn

H kBoviin) mepypagn t@v @uokdv cvotnudtov eivar Paciopévn ommv €vvolo g
KOUOTOGLVAPTNONG. NEEC TEXVIKEG GTOYEVOLV GTNV OVAKOATOGKELT 1] TNV TAPATNPTGT AVTNG LECW
TOLOYPAPIKOV TEYVIKOV M TG ¥pNomng «oacbevovy petpnoemv ovtiotoyo. EmmAéov GAleg
TEYVIKEG OMMOG 1 NAEKTPOVIKY HKPOCGKOTIO, GPAYYOS KOL 1 TEYVIKY TOV aPOpPd TNV TOpOLGH
epyaoia, Mikpookonioa Pwtoiovicpod (M®D), octoygvovv oty omevbeiag KOTOYpaPn TOV
TETPAYOVIGUEVOL HETPOL TNG NAEKTPOVIOKNG KLpaTooLVApTNoNg (mukvotnta mbavotntag). [To
cvykekpeva n MO givor pio OTEKOVIGTIKY] TEXVIKT] TTOV £XEL WG GTOYO TNV KOTAYPOQT| TNG POTG
TOV NAEKTPOVIOKOD PEVUATOG, TO OO0 EKTEUTETOL KATA TNV J1001KAGI0 PMOTOIOVIGHOD OVOETEPOL
atopov, vwd TNV TOPovcio oTATIKOD Kol opoyevoug mediov. YO avtég T cuvOnkeg m
KULLOTOGLVAPTNGT TOV EKTEUTOUEVOL NAEKTPOVIOV givar déopia oty d1evBvvon Kabeta 610 TEdio
EVD EKTEIVETOL GE LOKPOOGKOTIKES OMOGTAGES TNV d1evBvven mapdiinia pe avtd, €& oV kol o
opo¢ pikpookomio. H kataypaen tg pong Tov NAEKTPOVIAKOD PEVUOTOG ETTVYXAVETE [LE XPNOM
AVIVELTN VYNANG YOPIKNG OLOKPITIKNG IKOVOTNTOS. TNV TEPITTMON OTOL TO NAEKTPOVIL givol
LIKPNG KIWVNTIKNG EVEPYELNS TNV OTLYUN TOV QOTOIOVICUOD («apyd» MAeKTpoOvia), oty 08ovn
TopaTNPEITAL N ELEAVIOT KPOGSHV KPOVTIKNG GVUPOANS. Avtd 10 potifo cuppoAing cvvdéetan
dueca pe v mwokvotnto  mOAVOTNTOG NG  MAEKTPOVIOKNG KLUOTOGLVAPTNONG  TOL
eoToniektpoviov Kot £€tol 1 MO givor po amd T1g Ayeg tov aplud TEPAUATIKEG TEXVIKES TOV
OTOXEVOLV  OTNV  AQUECT] HETPNON TOL  TETPAYOVICUEVOL  UETPOVL  TNG  MAEKTPOVIOKNG
KOUHOTOGLVAPTNONG, ONAodn  yopic TV YPNON OVOKOTOUCKEVOCTIKOV TEYVIKOV 1 OGAA®V
vroBécemv.

H zmeprypagn tov un-diatapatikod eoawvopévov Stark Baciletar oto nui-moapafoikd (1
160d0vope 6T0 TOPAPOAlKO Kol To HIKTO) cvotnuo cvvietayuévov (y,0,¢). H mapovcia tov
NAEKTPIKOL eSOV GE GLVOLOGUO HE TV XPNON OPYDV NAekTpovimv glvar vrevBuva Yo v
EULPAVIOT] LOVOIIKADV YOPOKTNPIOTIKAOV OTIG EIKOVEG TV poToniekTpovinv. Evitaepépov gival to
YEYOVOG TG Y10 EVEPYELES UIKPOTEPES TNG EVEPYELNS LOVICUOD OToVGio eSOV Kol LEYOADTEPES
amd TNV EVEPYELD GOYLLOTIKOD GNUEIOD, GLVLTAPYOVY KATAGTAGELS TOL GLVEYOVS KOl GUVTOVIGHOT
(1oVIGHOG HEGM TOV PaVOpEVOD oTpayYos). Ta TpdTa TEWPapaTa 6TO ATopo TOV Zévov (Xe, Z=54)
OTOTUTTMOGCOV U0 OLOAY] CUUTEPLPOPE TNG BEoNG Kat Tov apBpod TV KOUPwV Tev ewdvov MO

MG GLVAPTNON TNG EVEPYELNG. AVTH 1 GLUTEPLPOPA OETYVEL VO ayvOel TNV VTTAPEN GLVTOVIGUADV,



yeYOVOG mov ogeidetal oto 0Tl 01 kataotdoelc Stark oto moAvnAekTpoviakd Gtope HTopovy va,
YPOPOVV MOC YPUUUIKOS GUVOIVAG OGS VOPOYOVIKDV GUVTOVIGTIKMV KOTAGTAGEMVY KOl KATAGTACEMY
TOV GLVEXOVG. Me AL AdY1a, AdY® TV aAANAETIOPAGE®V HETAED TOV JIEYEPUEVOL NAEKTPOVIOV
KOl TOV 10VT0G, 0 TANOBLGUOG oV PPIoKETAL GTNV KOTAGTOOT, GUVIOVIGHOD UETAPEPETAL OTIG
EVEPYELONKA EKPVMGIEVEG KATAGTAGELS TOL GLVEYOVG,.

Ot Beopntikéc TPOPAEYEIS YL TO  YOPOKINPIOTIKA TGV EKOVOV  GUVIOVIGHOD
emaAnevTnKov amd mepdpata 6to vopoyovo (H, Z=1) kar ta pukpd dropo tov Hiov (He, Z=2)
kot AiBov (Li, Z=3). H epodvion avtdv TV ¥apoaKTnploTiK®v enttevydnke A0yo Tov HiKpov
aTOMKOD aplBuol Kot TV EMAOYN TNG EVEPYELNKNG TEPLOYNG KOVTA G OAANAOAT®OOVUEVOVC
GULVTOVIGLOVG 6Ta TtEpdptata Tov ABiov kot nAiov avTioToiyms. TNy mpoomdbelo ENEKTAGNS TG
nebddov oe peyaddtepa atopn, BempnTikég peiéteg £de1Eav 0Tl LLO TV TOPOLGia PEATICTOV
ocuvOnKdV (apKoVVTOg 6TEVO PUGHATIKO €0POG, KATAAANAN €MAOYN NG £VIOONG TOV GTOTIKOV
nedlov) M TOPATIPNOT CLVTOVIGUAV Eival EPIKTY] KON KOl GTNV TEPITTMOT TOL EEVov, dniadn
aTOp®V LE peydAo atoptkd aptOpd.

EEapetikng onuaociag ivar ot mpdéoeateg peAdéteg mov €0elov OTL 1 EVEPYELOK
CUUTEPIPOPE TOV EIKOVAOV TOV GUVEXOVS KOl Ol OVTIGTOLYEG OKTIVIKES KATAVOUEG TV EKOVOV
aVTAOV (TOLAGYIGTOV GTNV TMEPIMTMOOT EKOVOV UE KEVIPO GLUUETPIOG TO KEVIPO TNG EKOVOG,
alovB10kd GUUUETPIKEG EIKOVEG) GUVOEOVTOL LLE TV OLUVOULKY] TOV NAEKTPOVI®V. ZVYKEKPUEVAL,
avalntdror n 0Popd YPOvVeV TTNoNG HETAED GLYKEKPIUEVOL (EDYOVE NAEKTPOVIOK®V TPOYIDV
amd T0 ATopo oTOYO €mG Kot Tov avyvevth. o tumikég tég tov mediov ~1 kV/em ot
YOPOKTNPLOTIKOL XpOvov Tov cvothuatog Coulomb-Stark agopodv ypdvovg taéng peyébovg
uepwkov picosecond. Tétoov idovg peléteg Paciloviarl 6TV AVTIGTOINION YPOVIKOV SLPOPDV
o€ JPOPES PACN G OTMG AVTEG ATOTLTTMOVOVTOL 6TO HOTIPO GLUPOANG TV EKOVOV.

Axopa, elval yvootd mwg 0 AEovoc TOL OTATIKOV MAEKTPKoD mediov emPdiel o
npoTnTén d1evbuvvon otov ywpo. Tote o dEovag KPAvimong avtov Tov GLGTHUATOS £ivol O
dEovag Tov oTATIKOD MAEKTPIKOL Tediov Ommc €xel amoderyBel BewpnTikd Kot TEPUUATIKA.
AVTIBETOC, 08 EQAPLOYEC NAEKTPOVIOV DYNANG KIVITIKNG EVEPYELNG TNV GTIY LT TOV POTOIOVIGLOV,
N Katavoun tayvtNTeV «tiletay yopo amd To Odvocua TG TOAwonS. AnAadn, o dfovoag
KBavtwong eivat o didvocpa e TOAmong oG déoung laser evd to otatikd medio mpoPdiet v
TPIGOLAGTOTY KOTOVOLLY TOXLTHTOV GTO EMIMESO TOV aviyvevTh. Etot, n meptotpopn e mOA®oNg

TEPLOTPEPEL TNV TPLCOLAGTOTN KATAVOUN 1) 07010 TAPAUEVEL AVOALOT®T. Ol TOPATAV® TOPAOOYES



YPNOUOTOLOVVTOL GTNV TOLOYPOPIKT] OVOKATOUGKELT] TNG TPLGOAGTOTNG YOVINKNG KATOVOUNG EVOD
N EPOPUOYN TOV TEYVIKOV OUTOV OTIS TEPITTMOGELS OOV APOPOVV apYd NAEKTPOVIOL Eivar VIO
HEAETY).

H mopandveo culntmon amotélece mnyn EUmvevong g Tapovong EPYAciog Tng omoiag o
o01oY0¢ €lvorl n amdvtnon ota eENG EpOTAHATA, OT®S aLTd Ywpiloviol o€ TPEIS EMUEPOVS AEOVEG:

(1) H ypnowdmra g pebddov g M eivar mepropiopévn e€ontiog Tov yeyovotog 0Tt
EIKOVEG GLVTOVIoHOD &xovv Tapatnpnbetl poévo ce pikpd dropa. ‘Etot gyeipeton 10 epdO TOL
eaqv givar SuvaTdV va TapaTNPNBOVV GLVTOVIGTIKEG KATOGTAGELS GE ATOMO LEYOADTEPA TOV ABiov
YOPig TV ¥pNomn Kamolag eEeldkevpévng TeXVIKNG, m.y. Om®g N xpnon oAinioammboduevmv
GUVTOVIGLLOV.

(if) TIow elvor 1 oLUTEPIPOPE TOV EKOVOV KOl TOV OVIIGTO®V OKTIVIKOV TOLG
KOTOVOU®MV  ®G ovvaptnon ¢ evépyelag, Ilown to kowvd  yopoaktnplotikd petald
TOAVNAEKTPOVIOKAOV KOl VOPOYOVIKMOV SEOOUEVMV KOl TTola. TANPoeopia mov oyetileton pe v

duvapkT Tov cuotnpatog puropet va e&ayBel and avtd;
KoL TEAOG

(iii) Tv mnpogopia umopodue va eEdyovpe amd TNV TEPIGTPOPN TOL OLAVOGUOTOC
YPOUUIKN G TOAmONG TG d0éaung laser o oxéon pe v d1e0Bvuven Tov 6TATIKOD NAEKTPIKOD TESIOV;
EmumAéov, moteg etvar mpokAncelg mov avtiet@nilovy ot TEYVIKES TOUOYPUPIKNG AVOKATOUCKEVNG

o€ MEPANATO OOV EUTAEKOVTOL 0PYE NAEKTPOVIO,

Me okomd TV €EEPEDVION TOV TAPUTAVED EPOTNUATOV, 1 £PYAcio. ALT APOPE GTNV
LKPOGKOTIO POTOTOVIGLLOV GTO GTOLO TOV LOyVNGIov LE ¥pNoN O1p®TOVIKOD GYNLOTOS J1EYEPOTG
Eexvovtag and v Pacwkn katdotaon. Ta mepapoatikd dedopéva vrootnpiydnkav omd
BemPNTIKOVG VTTOAOYIGLOVG TTOV TTEPTYPAPOVY TOV PMOTOIOVIGHO TOV DOPOYOVOL LTO TV TOPOLGIN
otatikoy 7ediov. Ot vmoloyiopol ovtol avaEEPOVIOL GE KAOGIKOVG, MU-KAOGIKOVS Kot
apOuNTIKOLG KPOVTIKOVG VTOAOYIGHOVS 6TO NUL-TaPAPOoAKS choT U cuvteTtaypévov. [Tépa and
TNV QUECT) TOLOTIKN GVYKPLOT LE TO SEGOUEVO TOV LLOyVIGIOoV, 01 VTOAOYIGHOT avTol TPoPAémovy

EML TNG OPYNS TO POLVOLEVO TTOV TTAPOTPOVVTOL GE QTN TV EPYUGIAL.

[T ocvykekpéva, 1 KAAGIKN TEPLYPAPT EMTPENEL TOV YOPUKTNPIOUO TOV TPOYIDV GE
aueoeg (direct) ko éppeoeg (indirect) Tpoyiég Kabmg Kot v e£ay®yn TOGOTHTOV OTMS O YPOVOG

nmons. Avtég or e§lomoelg kiviong oe cvvovacud pe ototyeia amd v Bewpia oxédaong



TPOPAETOVY TOL YEVIKA YOPOKTNPLOTIKA TOL (QOTOIOVICHOD 0py®V MAEKTPOVIOV HE Evav
doueOnTikd TPOTO. TNV NUL-KAOGIKT TEPLYPOPT] TO KIVOUUEVO NAEKTPOVIO GUVOEETOL LLE UL PACT
oV VIOAOYILeTOL AO TO OAOKANPWUA OPAoNG OTNV TOPEin. TG KAUGIKNG Oldpouns. Avti 1
EMEKTACT] TOV HOVTEAOL TPoPAEmel pavopeva GLUPBOANG Kol pmopel va TpoPAEyel Ta YEVIKA

YOPOKTNPLOTIKA TOV EIKOVOV UKPOGKOTIOG POTOIOVIGHOD.

To xvping Bewpntikd epyaieio oe avt ™V epyocio amoteAel n KPAVTIKY TEPLYPAPT TOV
vopoyovikov cvotiuatog Coulomb-Stark. H e€iocmon Schrodinger Avetan oto nu-topoafoiikd
OUCTNO GLVTETOYUEV®V, YEYOVOG OV EMITPEMEL TNV OVATTVEN EVOG OTOJOTIKOD KO GYETIKA
YPNYOPOL KMIIKO. XE OLTH TNV O TANPN TEPLYPOAPY] TO GVYKEKPIUEVO GYNUOL SEYEPONC KAl 1|
PYIKN KOTACTOON TEPLYPAPOVTAL OO GTOLXEIN TIVOKO TOV GUVOEOLV TIC OPYIKES LUE TIG TEMKEG
KOTOOTACELS PECW €VOG OmoAMKoV Tehesty|. To mopamdve yeYovog KaBdG Kol 1 GLVEICEOPA
GUVTOVIGTIK®OV KOTAoTAGE®MV emnpedlel To TehMKO pevpa mhavotntag (ewova M), Meletmvrag
O YEVIKA SUPMOTOVIKA GYNUATO O1EYEPOTG OOV TO SIUVLGLA TNG TOAMGONG £IvOl GTPAUUEVO KOTA
pa yovio oe oxéon pe tov d&ova d1evbuvong Tov mediov, e£AyovE VOPOYOVIKEG EKQPAGELS Y10 TO
pevpo THOVOTNTOC 7OV OMOTVIMOVETAL OTIS €KOvee MO kot emmAEoV VOPOYOVIKEG Kot

TOAVNAEKTPOVIOKES EKPPAGELS YOl TNV OAIKT EVEPYO dtaTtop).

H nerpoapotiky d1dtaén mov xpnoyomomonKe yio Tig avAayKkeg TV LETPNOEMY ATOTEAEITOL
and éva laser ypwotikng, to cvomua Babpovounong g ovyvomTog TG aktvoPoriog, éva
QOGUOTOUETPO OMEKOVIONS TaYLTHTOV TV copaTiov (VMI) kot téhog Ta didpopa cuotioTa
aviyvevong Kot kotaypaeng ocdopévev. H axtivoBoiia tov opatod Pabuovopeiton pe v xpnon
Kpooo®V cLpPoAnc and cvuPoropetpo tomov Fabry-Perot kot @oouatikéc ypoupés yvmothg
EVEPYELOG WE YPNOT| TOL OMTOYOUABOVIKOD (QOIVOUEVOL GTO a€plo puag Avyviag ekkévoons. H
dgvtepn apuovikny ¢ Poabuovopmuévng oktivoBoiiog ypnoUOTOlEiTOl OTIG UETPNOES KOl
OVOPEPETOL GE TOALLOVG XPOVIKNG ddpketac peptcdv NS (1ns = 1079s) otnv pacpoTiky meployy Tov
veptddoug ~300 Nm (1 nm = 10 m). H §éoun ot s166pyeton 68 KATAAANAO OTTIKE GTOUXE [LE
OKOTO TNV YEPAYDYNON TNG YPAUUIKNG TNG TOA®ONG Kot Emelta £6TIdleTan o€ 610 BAAMLO KEVOD

(10 mbar) otov omoio TEPIEYETONL TO POGUATOUETPO.

H atopun 0éoun payvnoiov mopdystor and @ovpvo e£dyvmoong Kol KatevbiveTtol oTov
YOPO OAANAETIPOGT), EVTOG TOV PAGHOTOUETPOV, OOV KOl AAANAOETIOPE e TV déoun laser vio

NV TaPOoVGia 6Tatikod NAeKTPKoD mediov. H dievbuven g 6éoung laser eivar kabet otov dEova



TOV POCUOTOUETPOL Kol TNV atopukn oéoun. H kataokevn tov pacpatouétpov Paciletoan oy,
TUTTIKY] G€ (QOGLOTOUETPO OMEIKOVIONG TOYVTNTOV, YEMUETPia TPV NAekTpodiwv. H meproym
aAAnienidpaong Ppioketar avapesa and ta TpmdTa Svo NAekTpdda. To un opoyevég nAekTpikd
nedio, mov dnuovpyeital AOYo TG HOPPNG TV NAEKTPOSI®V (TO TPAOTO €K TV OmoimV givol
CUUTOYEC EVA TO GAL OLO £XOVV KUKAIKT OTY]) KO £TELTO. OO KATAAANAT EMAOYN TOV TACEWMV,
00MNYEL GTOV GYNUATIGUO EIKOVOC GTOV aviyVeELTY| (GLVONKT amelkdviong TayuTtev). Emniéov to
QaopatoueTpo meplapPavel niektpootatikd @okd tomov Einzel pe v yprion tov omoiov
emtuyydvetal n peyéBuvon g apykng ewkovag £og kot 20 eopés. To pacUatOUETPO KOADTTETOL
amd TMPOOTUTELTIKG (QVANO  QEppopOyvyNTIKOD Kpduatog tomov u-metal pue oxomd v
EAOL(1OTOTOIN G TOV HayVNTIKOV TGOV 6TO £6mTEPIKO TOV. H aviyvevon tav 1dvtovimiektpoviov
yivetal amd oelpd PIKPOKaVOAMKOY TAaKISiov kot 006vn eocpdpov/avodon. Mia ccd kauepa
KOTOYPAPEL Kot OLOKANPAOVEL TO GNLL0L OE XPOVO UEPIKMDV YIAMAS®V TOAU®Y TOV laser kot petapépet

T1G EIKOVEG GE NAEKTPOVIKO VITOAOYIGTY.

To amwoteAéGHOTO QVTNG TNG EPYONCING OTAVTOVY GTO EPMTNUOTO TOV TPIDV EPEVLVNTIKAOV
a&ovav mov kabopiotTnrayv moparave. Apykd, N avalnTnon T®V GUVIOVIGU®V ETIKEVIPMONKE
OTNV EVEPYELNKN TTEPLOYN OKPPDOG EXAV® Ad TNV EVEPYELD CAYLLATIKOL oTpeiov 6mov o apBpog
TV OBECIUOV KOTACTACE®Y TOV oLVEYOVS elvarl pkpdc. Qg mpdto Prna, T0 KPavtikd
VOPOYOVIKO LOG LOVTEALD UITOPEGE VAL OVOTTAPAYEL TA TEWPOUOTIKA dedopéva TG PiAoypagiog. Xe
OUTEG TIG TEPOUOTIKEG VOPOYOVIKEG EIKOVEC, Kl OVTIOTOWO OTIG Be®@pNTIKA VTOAOYIGUEVEC,
KOTOYPAQETOL 1o, EIKOVO GLVTOVIGHOV. Ta ¥apoaKTNPIETIKA TOL TapATNPOVVTOL Etvat 1 avénon
T00 oplBpod TOV OKOTEWAV KPOGGHOV TNG EKOVAG (oL avTioToyoLv o6& KOUPovg NG
Kopoatoovuvaptnong) kabmg Ko 1o emovénuévo péyefog g €KOVOG € GYECT TAVTO UE TIC
YEUTOVIKEG  €WKOVEG TOL  OVTICTOLOLV GE  UN-CUVIOVIOTIKEG KOTAGTAGES. 1o TeAgvTaio
YOPOKTNPIOTIKO PETAPPALETOL GE L0 UN-LOVOTOVI] GUUTEPIPOPA GTO YpoenpatTo TV £Ewbev
ONUEI®V KOUTNG TOV OKTIVIKOV KOTAVOUMV G GLVAPTNOT TG evEPYELNS. EmumAéov o1 eikoveg tav
KATOGTACEWDY TOL GLVEYOVG PPEnKay vo Tapovctdlovy volagépov AOY0 TG LOVOTOVNG LEV OAAG
OACLVEYOVG OE GLUTEPLPOPAS TOV HEYEDOLG TV EIKOVMOV MG GLVAPTNOT TNG EVEPYELAS, YEYOVOS TTOL

YOpOKTNPILEL TO EVEPYELNKA KATMOPALO TV LETATPOTAOV TOV KAVOAIDV GE GUVEXN.

Me ta Tapamdved vOPOYOVIKE ATOTEAECUATO OC 0ONYO, AVOADCOUE TEIPAUATIKEG EIKOVEG

MO 10V payvnoiov Tov a@opoHv SIPMOTOVIKO 1OVICUO KATOGTAGE®V HE LayvnTiKoO KPovTikog



apBuovg Im|=0 kot 2 (mOAwon kébetn 610 oTOTIKO TESI0). AdY® NG TAVTOYPOVNG TOPOVLGIOG
KOTAGTAGEDV TOAAATADVY optOp®dv M| £ytve Suvath o, EKTIUNGT TOV GVO EVEPYEIDV GOYUATIKMV
onueiov yo [m|=0 kot 2. Ta ypaenuata Tov EEnOev oNUEI®V KOUTAG TOV OKTIVIKOV KATAVOUDV
®¢ oVVApTNoN TG evépyelag Ppédniay va yopaktpilovy Kdmolo amd To EVEPYELNKE KATMPALN
TOV LETATPOTMOV TWV KOVOAIDV GE GUVEYY], GE CUUPMVI LLE TAL VOPOYOVIKE amoteléspata. Emiong,
0TO UEYIOTO UIOG QOCUOTIKNG YPOUUNG TapatnpnOnkKe un-povotovn cuumeptpopd tov peyédoug
TOV €IKOVOV eEantiog pog eEmTEPIKNG OYANG OTIC EIKOVEC. AVTO TO YOPOKTNPLOTIKO Umopel va
EPUNVELTEL OTL TPOEPYETOL OO TOV UEPIKO GYNUOTIGUO EVOC EMTAEOV KPOGGOV GTNV EIKOVA AOY®
NG TOVTOYPOVNG TOPOVGIONG GUVEXDV KOl OGS GUVTOVICTIKNG KATAGTAONG. Me autn TV HeAET
£ywve duvatn 1 TOPATNPNON YOPOKINPIOTIKAOV GUVTOVIGUOD 6TO payviolo. Ta yopaxtnpiotikd
avtd elvar Aydtepo gpgovi and 0Tt oto AlBo, mMBAvDg AOY® NG TOLTOXPOVNG OLEYEPOTG
KOTOOTACEWDV LE TOAAATAOVG LoryvnTIKOUG KPOvTIKOUG aptOpons Kot TO GYETIKA LEYAAO OTOMKO

apBud Tov poyvnoiov (o€ oxéon pe avtodv Tov Abiov).

Ocov agopd otov de0TepO gpevvnTiKd AEova, HEAETNONKAY Ol OKTIVIKEG KOTOVOUEG
EIKOVOV G GLVAPTNON TNG eVEPYELES otV Tteptoyn —1< e <1 (&: 1 evépyela EKPPAGHEV GE LOVADES
amoOALTNG eVEPYEWS oaypatikoy onpeiov). Ov ewdvee MO a@opodv SPOTOVIKO 10VIGUO
KATAoTACEOV HE poyvnTikd kBovtued apOpod m=0 (mdéiworn mapdAAnin oto otatikd nedio). Ot
S1OBAOTATEG AMEIKOVIGEIS TOV AKTIVIKOV Kotavoumv, R(p,e), mapovoidlovv évtova govopeva
KkBavtikng cvpPoing onwg potifa mov oty Piroypagio avapiépovror og potifa okaxiEpag. Ta
TEPANATIKE dedopéva avtimapaaiiovtot e avtioTolyo Ypaenpato g vOPoyovikng Bewpiog
OTNV TEPITTOON TNG LOVOPOTOVIKNG Kol SIPMTOVIKNG SEYEPOTG TEMKDV Katactdoewv M=0 and
mv Pocikn KoTdotoon Tov VOPoydvov. Me avtd Tov TPOTO pEAETNONKOV TOGO TO. PAVOUEVA
SLUPOANG oL glvarl KOBOAIKA Ko LITOpovV Vo TEPTYPAPOVY OPKOVVTOS OO NUI-KAUCTKE LOVTEA,
0G0 KoL PUVOLEVO TTOV €EQPTMOVTOL OO TNV OPYIKT KATAGTOGT), TO GYNLLOL O1EYEPONG KOt TO ATOLO-
010)0. H dovAeld avtr| amotekel Evav odnyo TV Qovopévemv cuUBoAng oty meployr achevav
niextpikav mediov (~1 KV/cm) kat younAov evepyeimv.

Id1aitepa avolvONKe 1 TOAGVTOTIKY GVUTEPLPOPA TG okEdacNG TOTOL d6ENG (glory) kat
10&ov (bow) dnAadr|, To oNUa 6TO KEVTIPO TOL GVIXVELTH KOl TO £VIOVO GNLO. OTO GKPO TMV
daxtuliov tov eikdvov M. TTo cuykekpipéva o ofjpa Tomov glory 6to payvioilo mapovctalet
Ho oA cLUTEPLPOPA OTIS OeTikég evépyeleg mov yopakTnpiletar amd Mol TOAGAVTOON H0G

KATOL0G PEPOVOAG GLYVOTNTAG Kol KAmola eAdyiota 1) péyiota cupfPoAns. ‘Enetta éyve chykpion



LE TOL GAGLLOLTA TG VOPOYOVIKNG Bempiag Ta omoio TapovslAlovV TOANVTIMTIKY GUUTEPLUPOPA AOY®
NG TOPOVGING KOTAGTACEWY TOV EMAYOVTOL ATO TO GTOTIKO NAEKTPIKO TEdi0 oE OeTIKEG EVEPYELES.
Emiong, xat’ avoioyio pe mponyodueveg peiéteg g Piproypagiog, €ywe pio mpoomdOeia
obvdeong ¢ Tahavioong glory pe tovg ypdvovg ntiong (6nmg vroloyilovial KAAGIKE) TV
AUECHOV TPOYUDY TOV KATOANYOUV GTO KEVIPO TOL aviyvevutr. H eayduevn minpogopia apopd
otV dLVOIKA TOV NAekTpoviov oto dvvapukd Coulomb-Stark xoai deiyver vo. ennpedleton
ac0evadc amd TV NAEKTPOVIOKT dOUT| TOV ATOLOV-GTOHYOV.

Téhog, 6Gov agopd tov Tpito AEova, EKUETOAAELOUEVOL TO TEPITAOKO (OYECM WE TO
LOVOP®TOVIKO) SUPMOTOVIKO GYNUO O1EYEPONG E£YvE Evag eVOEAENS EAEYYOG TV TPOPAEYEWV TOV
BepnTIKOL PHOVTEAOV. ZTNV TEPITTMON TLYOIOL TPOGAVATOAMGLOV TOV SUVOGUOTOS TOAWGNG GE
oxéon pe tov d&ova Tov otatikoy mediov ot ewkodveg MO mopovctdlovy TEPITAOKT) OKTIVIKY
KOTOVOUN Kot QOvOUEVH GUUPBOANG AOY® NG TOLTOYPOVNG TAPOVLGINC KATUOTACEWDV LE
poyvntikovg aptuovg |m|=0,1,2. Avtd to yeEYovOog Kot E1IKA 1 UN-TETPLUUEVT] TOPOLGIC TOV
yapaktnpa M|=1 amodeikvheTal Kot amd TV avAaADGY TOV TEPUUATIKOV GOoHaTmv. Me xpron
TOV POCIKOV GTOLEIOV TOAVNAEKTPOVIOKDV BEDPLOV KOl HOG GEPAG TEPOUATIKOV QUCUATOV,
umopovv va e&ayxfovv to amocvviedeipéva paopata o TS Tov KRoviikov aptBuov |m|.
[Mapadeiypotog yapv, ol QUCUOTIKEG YPOUMES TOL amocuvviedeévov @dopotog |m|=1
VTOONAMVOVY  GUVTOVICHOVS TOL  GLYKEKPLUEVOL  KPovTukod apBpod Tov omoiwv T
YOPOKTNPLOTIKG €Vl ELPAVT KOl OTIG avTioToryeg ekdveg MO.

H mopardveo ovdivon odnynoce oty avdmrtuén pebodoroyiog m omoio pmopel va
yopokmnpicel otoyyeio g yemuetpiog e OdToEng, OnTMG ot d1evBvVoEg TG O1Ad0oNG NG
axtwvoPoliog laser g oyéon pe o oTATIKO NMAEKTPIKO TEDIO KON TO SLAVLGUA TNG TOAWONG GE
oyxéom pe tov d&ova g aviyvevong (kdpepa). Evolapépov mapovoialel axopa, n cOykpion pe
UEAETEC WOV OPOPOVV GTNV TOUOYPOUPIKT OVOKATOUCKELT] TOV TPLGOACTUATOV TPOYIOKADV. XTIV
nepintowon ™me M@, vdpyel GUVEIGPOPH CLVIGTOOHV SAPOPETIKOD KPavTikoh apdpov |m| ot
omoieg UTOPEl va TEPLEYOVV OKOLLOL KOl GUVTOVIGLOVG EMAVENUEVOL aplOOV KOUPBMV TNG OKTIVIKNG
katavounc. Eniong, n meptotpo@r| Tov d10vOGHTOG TNG TOAMONG LETARAAEL TNV GLVEIGPOPE TV
SAPOPOV CLVIGTOCHOV daPopetikod M| kot erakoiovBa to e€epyouevo peduo TOavVOTNTOG
peTafaAreTal ovadlOYmMS. AVTIOETMG GTNV TOLOYPOPIKT OVOKOTOGKELT 1 KOTOVOUY TOYVLTHTMOV
TV NAeKTpovimv Bewpeital og To avtikeipevo 10 onoio mepioTpépetol pall Le To VLG TG

TOA®ONG KO KATA TAL GAAN TOAPAUEVEL AVOAAOIMTO.
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Introduction

The quantum description of physical systems at the atomic scale is heavily based on the
concept of the wave function, which is obtained by solving the Schrodinger equation.
Traditionally, however, experimental information on the wave function is only inferred by
comparing theoretically calculated and experimentally measured observables, such as absorption
or emission spectra. The wave function itself is generally not measured directly, while it is quite
evident that access to it would allow for much more insight into the structure of the quantum
systems under study. This reasoning explains the considerable recent achievements towards the
development of experimental approaches aiming to the observation of the wave function itself. On
the one hand, microscopy techniques, such as Scanning Tunneling and Atomic Force microscopies
(STM and AFM, respectively), were employed for the detection of photoemission from a single
molecule deposited on a surface [1,2] and allowed for the reconstruction of its molecular orbitals
[3]. In another approach, the interaction of atoms and small molecules with strong laser fields, in
conjunction with imaging methods, permitted the tomographic reconstruction of the electron
density of their ground states [4,5]. Furthermore, the application of weak measurements concepts
[6,7] led to the complete (amplitude and phase) determination of the wave function of the photon
[8].

The work of the present thesis concerns another imaging technique, so-called
photoionization microscopy (PM), capable of experimentally observing the squared modulus of
the wave function of an electron emitted from an atom. This is achieved by measuring the two-
dimensional flux of slow (meV) electrons ejected during the photoionization of neutral atoms in
the presence of a uniform static electric field. The term “microscopy” is justified by the fact that
the wave function of the outgoing photoelectrons in the direction of the field extends over
macroscopically large distances. Transversely to the field, however, the wave function is bound.
The electron current probability density is imaged by a position sensitive detector (PSD) and the
low energy of the liberated electrons allows for the observation of quantum interferences on the
recorded images. In turn, it can be shown [9,10,11] that, indeed, these interference structures are
directly related to the squared modulus of the electronic wave-function. Although the wave

function’s phase cannot be measured, PM appears nowadays to be the only method where the

1
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squared modulus of the wave function is directly projected on the surface of the detector without
any requirements for further hypotheses or reconstruction processes.

The concept of PM was introduced during the early 1980s [9,12] and analyzed in detail
over the whole decade by Kondratovitch and Ostrovsky [10,11] within the framework of the
hydrogenic Stark effect, which was described semi-classically and in terms of so-called parabolic
wave functions [13,14]. In fact, the role of the static electric field is not to just guide the free
electrons towards the detector. On the one hand, experimental measurements [15] and predictions
based on classical trajectory calculations for an electron in the combined Coulomb-Stark field [16]
showed that slow photoelectron images present interesting features and striking differences with
respect to high-electron-energy images. On the other hand, and perhaps more importantly, just
above the field-induced ionization threshold and up to the zero-field threshold, the field presence
leads to the coexistence of continuum and quasi-bound Stark states (resonances). PM may provide
access to the wave function of one or the other, but its inventors where particularly interested for
resonant wave function imaging. Nevertheless, the first partial experimental realization was
achieved in studies dealing with photodetachment [17], the latter characterized by the presence of
purely continuum states, but not resonances.

On the quest for resonant images, the first PM experiments were performed with xenon
atoms [18,19,20]. Remarkably, in these experiments, the number and position of nodes of the
recorded wave function evolved smoothly with photon energy, and remained to a large extent
insensitive to the presence of resonances. These observations were explained by the fact that non-
hydrogenic atoms are characterized by the emergence of short-range interactions induced by the
penetration of the excited electron’s wave-function into the residual ionic core. As a consequence,
their Stark states are expressed as mixtures of hydrogenic quasi-bound and continuum parabolic
states. Then, a significant portion of an initially prepared resonant state population spreads out
over several degenerate continua (i.e. a form of autoionization), while resonant and continuum
excitation amplitudes out of a given initial state become comparable. Thus, the image resonant
features may be rather weak and hard to observe and these difficulties grow with increasing ionic
core size. Hence, the absence of resonant effects in Xe (atomic number Z=54) may be explained
by the large ionic core size.

As a next step towards the search of resonant signatures, experiments on the light Li (Z=3)

[21,22] and He (Z=2) [23] atoms, as well as on Hydrogen atom [24] itself were performed almost
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during the same period. The Hydrogen experiment fully verified the first 30-year old predictions
[10,11], as well as very recent ones [25,26,27]. The resonant signatures were also clearly observed
in the Li experiment, despite the fact that they were found to be fairly weaker than the hydrogenic
ones. As for the He experiment, resonant manifestations were found to be almost equally intense
with the hydrogenic, because the recording were performed near avoided crossings between pairs
of interacting resonances [28], with the resonance of interest being effectively decoupled from the
continua. The observations of the above experiments on light non-hydrogenic atoms were fully
compatible with accompanying theoretical predictions [22,23,29]. In fact, some theoretical work
was devoted even to Xe itself [30], and predicted that under favorable conditions (spatial resolution
spectral resolution excitation laser line-width, proper choice of field strength, etc.) it would be
possible to record resonant images even for this heavy atom. Other theoretical work on non-
hydrogenic atoms concerned the Alkali metal atoms such as Na [31,32]. One of the interesting
predictions in that work is that the dominance of resonances on PM images depends nontrivially
on and varies with the field strength [33], which then should be chosen carefully.

Remarkably, quite recent experimental and theoretical work on either hydrogen or more
complex atoms [34,35,36,37] implied that the scope of PM is not limited to the recording of
resonant images. Instead, it was also demonstrated that the evolution of images and corresponding
radial distributions as a function of energy may be related to the dynamics characterizing the
Coulomb-Stark problem. Particularly, the main quantity of interest here is the time delay between
the arrivals on the detector, when selected pairs of electron trajectories are considered. Despite the
fact that the typical time scales of the Stark effect fall within the picosecond range [38], this kind
of information, as well as the methods that may be used to extracted it, is central in the frontier
atto-physics science [39,40]. The recent proposals deal with the encoding of time-delays into phase
differences associated with the aforementioned trajectory pairs, and the extraction of these phase
differences from the energy dependence of the radial distributions. Additionally, it appears that the
positive energy range is the best suited for such studies, while the presence of resonances would
complicate the analysis. Nevertheless, this picture did not always provide meaningful results and
left some unanswered questions. Particularly, it was not known if this picture is global enough to
be obtained by performing relevant experiments in non-hydrogenic atoms, or it is strictly restricted

to the hydrogenic case.
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Last but not least, it is long ago known and proved experimentally that the presence of an
electric field imposes a quantization axis, i.e. a preferable direction in space [41,42]. This seems
to be particularly true when meV electrons are involved. On the other hand, imaging spectrometers
make use of an electric field to guide the ionized electrons to the detector. When, however,
electrons of fairly high energy are involved, the analysis of photoelectron angular distributions
(PADs) is based on the assumption that they are built with respect to the linear laser polarization
vector (see for example [43,44,45,46]). In other words, it is accepted that the polarization vector
is the quantization axis and the possible implication of the static extraction field is ignored. It is,
furthermore, assumed that rotation of the polarization vector will rotate the whole PAD, which
will remain otherwise unaffected. This is reminiscent of the recording of PADs with electron
spectrometers other than the imaging ones and where electric fields in the laser/atoms intersection
point are practically absent [47]. The above postulations allowed the tomographic reconstruction
of the 3D PADs from the 2D images on the PSD [48,49]. Nevertheless, many questions on the

limits of applicability of such tomographic methods remained open.

Motivated by the above discussion, the purpose of the present work is to provide a number
of answers into the following three directions:

(i) Evidently, the fact that resonant images were recorded so far solely in small complex
atoms poses some limits on the usefulness of PM. Is it possible to record resonant images in non-
hydrogenic atoms considerably heavier than Li and without applying any particular strategy (such
as recordings near avoided crossings, etc.)?

(if) How do non-resonant images and radial distributions evolve with energy in a non-
hydrogenic atom, what are the common characteristics with the hydrogenic data and what can be
learned or extracted from such data?

and

(iti) What can be learned from the rotation of the linear laser polarization vector with
respect to the static electric field? Particularly, what are the challenges that tomographic PAD

reconstruction techniques face when slow photoelectrons are involved?

In order to deal with the above directions, the present work is devoted to the

photoionization microscopy of the magnesium atom via a two-photon excitation scheme out of its



P. Kalaitzis Introduction

ground state [Ne]3s?. The singly and highly excited [Ne]3snk configurations of Mg are composed
by an outer electron in an |nk) Stark state with principal quantum number n=30, outside of a
[Ne]3s Mg ionic core which is open but spherically symmetric. Thus, in a first approximation the
magnesium atom resembles the Alkali atoms (which possess a valence electron outside closed
spherically symmetric subshells). Additionally, due to its middle size (Z=12) it stands between the
two limiting cases of He (Z=2)/Li(Z=3) and Xe (Z=54).

Our experimental study is supported by a robust and efficient resolution method of the
quantum hydrogenic Coulomb-Stark problem, where Schrodinger equation is separated in semi-
parabolic coordinates. This coordinate system appears to be quite advantageous, easily dealing
with the wave function’s macroscopic extension as well as its peculiarities at small distances.
Depending on the question at hand, these results are occasionally accompanied with the insightful
predictions of a classical [16,34,50] and semi-classical [11,18,34,51] formulation that are
presented here in a simple and dense format. In fact, in the course of this work it was also found
insightful to connect the classical description of slow photoelectron imaging with notions
borrowed from classical scattering theory [52]. Finally, quantum and semi-classical descriptions
provide a global PM theoretical framework that will be used to decode our experimental PM
results.

Briefly commenting on the achieved goals, we mention first that we made use of the well-
established information [21,22], that the resonant character of the recorded images is more
prominent in the energy range just above the ionization threshold, where the number of continua
is small. In fact, in order to avoid any misinterpretations, the characteristics of the continuum
images were additionally studied in more detail than before within this energy range. As a result,
we have indeed recorded a number of resonant manifestations in Mg atom.

Second, the experimental exploration of the specificities of the differential (radial and
angular distribution) as well as of the total photoionization cross-sections in a wide energy range,
revealed new phenomena that were known up to now mainly at a theoretical level [15,34,53]. We
particularly focused on the structure of the electron’s momentum distribution transversely to the
field and as a function of energy. These 2D-maps offer a complete landscape of the relevant
quantum interference effects whose gross features remain unnoticed on single images. A
qualitative comparison between experimental magnesium and calculated hydrogenic observables

corresponding to different initial states and excitation schemes helped identifying the features of
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“universal” nature while, highlighted the possible differences. Moreover, these momentum
distribution maps where employed for extracting information on electron dynamics. More
specifically, we focused on the critical effect of glory scattering, i.e. the signal at the center of the
photoelectron momentum distribution, which is a dominant feature of the images when the laser
polarization vector is parallel to the static electric field vector. It will be shown that indeed, while
this observable is easy to record and analyze, it incorporates important information about the
electron dynamics in the Coulomb-Stark potential.

Finally, we have experimentally (in Mg) and theoretically (in H) demonstrated the
simultaneous excitation of different m (azimuthal quantum number) final states, after two-photon
excitation from an m=0 ground state. It is proved that the rotation of the linear ionizing-laser-beam
polarization with respect to the electric field direction gives rise to m-beating effects, due to the
coherent contributions of multiple-m states in the outgoing electron flux. In fact, our set-up and
experiment are similar to those employed in tomographic techniques, but the presence of the static
electric field in addition to the Coulomb attraction is shown to pose new challenges for

tomographic reconstruction techniques involving slow (meV) electrons.
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Chapter 1: Theoretical Framework of

Photoionization Microscopy

1.1 Classical and Semi-Classical Treatment of the Hydrogenic Stark

Effect

Many important aspects of the simultaneous interaction of slow electrons with a Coulomb
field and with a homogeneous static electric field are of classical origin. The following section is
devoted to the description of these aspects and their manifestation on the recorded images. Special
attention is paid to the description of basic concepts and definitions along with important
connections to classical scattering theory. The mathematical tools necessary for calculating the
main classical features of a Photoionization Microscopy (PM) image are also presented here.
Finally, this section ends with a brief semi-classical treatment of quantum interference effects that
will allow a more comfortable connection with the fully quantum mechanical framework presented

in the next section.

1.1.1 Classical Description

Let a negatively charged particle (electron) move under the influence of both, a
homogenous static electric field directed along the positive z axis and an attractive Coulombic
center located at the origin. The relevant combined potential is presented in Figure 1 and is written

in atomic units (a.u., A=me=e=(4me,)1=1) as:

V=-"+Fz 1)

where F is the strength of the uniform field, Z is equal to the charge of a structureless ion (Z=1 for
the hydrogen atom) and r = (x?+ y>+ z2)*2, Two characteristic energies are marked on the z-(x,y)
potential surface of Figure 1 namely, the zero-field ionization threshold in the absence of the static
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field (F=0) which is set at energy E=0 and the field-induced ionization limit i.e. the classical saddle

point energy which is written as:
ES = —2(ZF)Y/? ()

or ES[cm™] ~ —6.1212 X \/F[V/cm] in spectroscopic units.

Figure 1. Schematic representation of the combined Coulomb and Stark field potential energy in Cartesian
coordinates. Equipotential curves (black lines) exhibit open bottleneck-like shape. The saddle point energy
Esp is a function of the uniform static field strength. Classically, for E >Es, the electron can escape the
Coulomb well. The unique shape of the potential leads to complicated classical trajectories.

Interestingly, the electron motion in this potential is equivalent to the motion of a celestial
object orbiting a mass center (e.g. Earth) while a constant force is acted upon it (e.g. solar pressure
or constant thrust) [54,55]. Due to the axial symmetry of the potential the general three-
dimensional classical motion is separable in either the semi-parabolic coordinate system (y,v,¢)
[41,51,55] defined by,

X=Vr+z=0
v=+r—z=0 3
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or the parabolic coordinate system (&=y2,7=v%,¢) [10,11,16,41] or even the mixed parabolic system
(¢,n,0). For the sake of consistency between classical and the quantum formulation to be discussed
later on, semi-parabolic coordinates are used throughout this thesis and we also provide here the

inverse relations

x = yv cos(¢p)
y = xv sin(¢) (4)
z=(x*-v?)/2

while r = (% + v?)/2. The angle ¢ is the azimuthal angle measured from the x axis. Following

the coordinate system transformation of Eg. (3), the Hamiltonian is written as [55]:

_ 1@’ pwz] _ 2z (rP-v?) _
T2 [2()(2+v2) x2vzl x2+o? tEES—=E ()

where the quantities (p,, p», py) are reduced generalized momenta, related to the ordinary momenta
(dgi/dt =q,) as follows:
at . .
Py =g X = P+v)yx
Py = —v = (x*+v?) (6)
Pp = d—Tsz = x*v%¢

These generalized momenta involve two reduced “time” variables (z4,t,), which connect the

physical time t with the spatial coordinates y,v:

dp. =t _at
I7 y2402 7 27
dt (7)
de = =2
x%v

The azimuthal angular momentum is not present in the Hamiltonian of Eq. (5), while the azimuthal
momentum p, is conserved [10,16,55]. This is related to the quantum number m(=p,) being a
“good” quantum number [14] discussed in section 1.2.

After appropriate manipulations, the Hamiltonian (5) can be separated into the following

three uncoupled equations describing the electron motion:
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Px cl — 9 ct _F 4 2, Po’ 8
?+UX_ Zy UX_;X —Ey +ﬁ (8)
p3 _ _F Pp?

7+Uy_2zz, Uﬂ-—;v*—EM+E% 9)
p(pzm_ (10)

T2
The conservation of mechanical energy applies in the pseudo-form of “K”+<“V” =“E”,

2 2
where “K”= %)‘ or %“, V= U;l or Ut and “E”= 2Z, or 2Z, for the y and v coordinates respectively.

The two separation constants Z; and Z are related through the relation [16]:

In what follows the discussion will be limited to the case of zero-azimuthal momentum
p,=0. This condition leads to a planar electron motion restricted to a plane defined by the initial
azimuthal angle ¢o (see Eq.(10)) and allows for numerous simplifications; concerning particularly
the initial electron launch conditions. As a result, one obtains fairly simple mathematical
expressions that predict the majority of the classical features of a PM image. On the other hand,
those features which are attributed to a non-zero momentum and are somehow connected to the
present work are briefly commented at the end of this subsection.

Before proceeding further, it is convenient to define the reduced energy variable,

E E

E=E—=1—1.
2ZF  |ES

(12)

with the help of which the solutions are more clearly expressed. As we already mentioned,
the major consequence of the external static electric field is to lower the ionization limit by an

amount equal to the saddle point energy. E&}

sp» Which separates the energy range into two regions:

(i) the E< EE, (e<-1) one, where the electron is classically trapped and can never escape the
attractive Coulomb center and (ii) the E>E§{, (e>-1) one, where the electron is energetically

allowed to escape (i.e. to ionize) towards infinity (z——o). Therefore, in photoionization studies
we are primarily interested for the £>—1 energy range. We assume next that the electron is initially
at the axes origin and that it is “launched” with an angle £ with respect to the positive z axis. Uphill
or downhill ejection with respect to the field direction corresponds to =0 or f=x, respectively.

10
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This initial ejection angle g is connected to the separation constants of Egs. (8,9) through the
relations [10,16]:
Z; = Zcos? (g)
2, = zsin? (%) &
2
Within the —1<e<0 energy range the motion may be bound or unbound according to a reduced-
energy-dependent critical ejection angle 5. = 2sin~1(|¢|) [16]. For p<f. the electron is trapped
and does not ionize (although this is energetically possible), while for f>4. the electron escapes
towards a detection plane perpendicular to the z-axis and placed at some large distance zqet<0. For
positive energies f. loses its meaning and the electron can reach the detector’s plane for all launch
angles g within the full [0,z] range.
The classical trajectories can be calculated analytically [11,16,50,54,55]. Integration of
Egs. (8,9) for p,=0 provides the equation of motion for y and v as a function of the reduced time
variable 71 (the derivation of the general p,#0 equations of motion and the arbitrary-initial-point
ejection equations of motion can be found in Ref. [55]). Specifically, the motion along the y

potential is described by [55]

x(®) = x4 |CN[K[m, |2t — 1),m, ]|, (14)

where CN is the Jacobi elliptic cosine function and K the complete elliptic integral of the first kind,

while the elliptic modulus m, and the oscillation amplitude y, are given by

&

m,==|1+——
roe [£2+cosz[§”

N -

(15)

N |

1
2

xe =22 [

£+ [52 + cos? [g”

|

As it turns out from Eq. (14) the function y(t) is always bound and periodic with a period of 2T,

where

T, = Kmy] (16)
(F 2)1/4 (52 +cos? [51)4

| =

11
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In fact, the reduced time t above is measured in half-period T, units, i.e. t=r1/T, (note in passing
that for p,=0 the reduced time dz, is irrelevant and does not enter to the problem).

As for the v-equations of motion for >4, there are two classes of solutions. Assuming that
the electron transfer from »=0 up to v—o0 (z—-) is achieved within a reduced time 71=T,, the first
type of solution is

a) the so-called Type I solution,

c —SC[F[tan‘l[C],mv](l—i—;),mv]
c +SC[F[tan—1[C],mv](1—;—:),mv]

u(t) = v, holding for sin (£) > |e|ande>-1  (17)

where SC is the Jacobi elliptic tangent function and F the incomplete elliptic integral of the first
kind. The elliptic modulus m,, the oscillation amplitude v+ and the parameter C are given by,

_ g _]”‘* [sin ]

)’

sinlZ]

(18)

while the dimensionless ratio

_Tv
R=r (19)

counts the number of oscillations in the y coordinate until the electron reaches infinity in the o
direction. Note that, this quantity is closely connected to the quantity “N*- originally introduced
in Refs. [11,19]. The second type of solution is

b) the so-called Type Il one,

v(t) = v, |SC [K[mv] %,mv]

. holding for sin (£) < £ and £>0 (20)

where now,

12
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1
I e )

s+(sz—sin2[§])

N[ R

. (21)
oy =2 ()" e (et -t 2]
Note that O<t<R. Finally, the ratio R is equal to,
R =2 LBl jelanticim
fosnfg] ofsnfg]- K]
: (22)
Ry = [82+COSZ[§” K[my]

1 % K[my]
2

2fes(cr-sm[2)

for the Type I and Type Il solution, respectively.

The analysis of the above equations shows that for the examined planar motion, the form
of the trajectories depends on the physical time t only through the reduced time z; or alternatively
through t. On the other hand, the actual time of flight is of importance for a number of studies and
it should then be explicitly computed. This is achieved by introducing the equations of motion in
Eq. (7) that relates the reduced and physical time and then integrating either numerically or
analytically this so-called Stark equation [55], i.e.

t=[T{2@) + v (T}dr (23)

Figure 2(a) shows the effective potentials U;’, USt (see Egs. (8,9) and the discussion

therein) for some selected ¢, F, § values. The pseudo-energy values 2Z1, 2Z, determine the range
of motion i.e. from the origin to their crossing point with the effective potentials. In addition,

Figure 2(b) shows the semi-parabolic equations of motion for f=61 >£.=60 degrees.

13
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Figure 2. Calculated potentials, 2Z1, 2Z, values and equations of motion for Z=1, e&=-0.5, F=10" a.u. and
[=61 degrees (8:=60 degrees). For these parameters R~2.259. Atomic units are used for all quantities. (a)
Potentials in the, y coordinate (black solid line) and » coordinate (blue solid line) determine the bound and
the unbound nature of the y and » motion respectively. 2Z; (black short dashed line) and 2Z, (blue short
dashed line) are also shown. For g<f, 2Z; lies below the potential maximum and the motion becomes
bound in both directions. (b) Motion equations y(t) (black solid line) and o(t) (blue solid line). The y(t)
function performs ‘R oscillations until o(t) reaches infinity.

Since the semi-parabolic coordinate system is not particularly useful for visual inspection, Figure
3 presents a selection of trajectories for different ejection angles g but fixed ¢ and F. All presented
trajectories are parallel to each other at large distances. In other words, for vget —o0 they cross at

the point p=ydet-vdet With ydet=10.

14
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Figure 3. Calculated trajectories relevant to photoionization with e=—0.5 and F=10". The plane of motion
is the x,z plane. The selected ejection angles are p~: 161.6 (black line), 113.7 (red line), 94.8 (green line),
62.8 (blue line), 61.9 (purple line), 61.1 (dark yellow line). In the particular example of the figure, the
detector distance is set to infinity and asymptotically these trajectories approach the limit p—210-v4et. Note
that trajectories of R<1 never cross the z axis while for ZR>1 they cross one, two, three etc. with the z axis.

It is interesting to note that a value of the ratio R equal to 1,2,3 etc. implies that by the time
the electron reaches infinity in the v direction, it crosses the z-axis (i.e. returns to the axis origin in
the y direction) one, two, three etc. times. Even more, the ratio R may be employed for classifying
the trajectories and we may, in fact, distinguish first between two major classes [11,16]:

(a) The direct trajectories (R<1), (see black and red lines of Figure 3), which never intersect with

the z axis and are almost parabolic. The existence of direct trajectories is possible only above a
critical energy &qir=—0.755 [16,19,50] and

(b) Those trajectories that intersect at least once with the z axis (R>1), hereafter called indirect

trajectories (see green, blue, purple and dark yellow lines of Figure 3). The electron in this case is
re-scattered by the attractive core once or multiple times before it finally escapes to infinity.

15
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In general, many trajectories can reach a given point on the detector. They may be further
classified in pairs, the first direct pair corresponds to R values within the range (0,1) (for energies

above &dir), the second within the range (1,2), etc. Trajectories exhibit Mg turning points in the y

coordinate, where,

__ 2N+1- (DN

My = —— with N = Integer Quotient [R/0.5] (24)

The above classification is related to the one proposed in [11]. Note that R refers to electron paths

reaching infinity, while for calculations performed for a detector placed at some finite distance, it
should be redefined accordingly.

The motion of an electron in the Stark-plus-Coulomb potential is relevant to the case of
photoionization while, in the absence of the Coulombic attraction the motion is relevant to
photodetachment [17,52,56]. In the latter case a negative ion interacts with a light field in the
presence of a homogenous static electric field. The outer electron is ejected with a Kinetic energy
equal to the photon energy minus the electron affinity and it moves under the influence of the static
electric field. Then influence of the neutral atomic core can, to a first approximation, be neglected
(this is simulated by setting Z=0 to the Hamiltonian of Eq. (5)). It follows that the electron
trajectory is purely parabolic and is identical to the free fall of an object in a gravitational field
[52]. Theoretical and experimental studies on photodetachment microscopy are closely related to
the work of the present study, since for e>>1 PM trajectories do not deviate significantly from their
photodetachment counterparts [16,52]. On the other hand, for <1 the PM trajectories depend

strongly on £ and are found to be quite complex due to the influence of the Coulomb field.

1.1.2 Connection with the Classical Scattering Theory

The photoionization “experiment” described above can be considered as a half-collision
process between a particle of mass m (electron) and a scattering center (residual ion) with no
incident particle flux. The previously presented equations of motion can be used to calculate the
classically predicted differential cross section of this scattering problem i.e. the spatially resolved

electron impact distribution on a detector.

16
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Here we deal with the two-dimensional motion case (p,=0) for electrons classically
allowed to reach arbitrary large distances (8>4c) and detectors placed at finite distances ~10° a.u.

For practical convenience, the detector (z=zqe&<0) can be replaced by a paraboloid surface of

constant v = v,y = \/Tdet. The surface of the paraboloid and the plane detector differ in the z
direction by Az=—p?/(4z4er), Where p=yvqet is the distance between the point of impact and the
detector center. For the typically used field (~1000 V/cm), detector choice and energy values of
the present study, to an excellent approximation it holds that Az=0 [27].

The classical differential scattering cross section — or in our case, equivalently, the radial
distribution R(p) — is defined as [50]:

d ing; | dp |71
R(p) = Z(p) = L= |2 (25)

where dA is the elementary surface on the detector dA=2zpdp and the summation runs over all
ejection angles that reach the same impact point on the detector. Note that, this relation closely
resembles the classical scattering differential cross section relation of a particle scattered by a

ag|~1 . .
e where now the summation runs over the impact

central potential [52], 2—3(9) = Zii

sin@

parameters b, that lead to the same scattering angle 6. Within this context, the deflection function
©(b) incorporates all the short-range interactions governing the scattering process but is not
experimentally accessible. It is connected, however, with the scattering angle through the relation,
O+27 k =+0, with integer «.

The above-mentioned resemblance implies that the problem is apparently reduced to the
calculation of the impact point radius p as a function of the ejection angle £ i.e. the generalized
deflection function p(5). Unfortunately, for the case of PM no analytical expression can be derived.
Instead, R(p) needs to be computed numerically. On the other hand, the photodetachment dynamics
provide an analytical expression, R(p)ocsin(f) [52,56].

In Figure 4 we present the deflection functions for a typical field value and different
reduced energies. For the lower energy that lies below eqir (Figure 4(a)) the series of lobes are
formed solely by indirect trajectories while the existence of a critical angle Sc which separates the
bound from the unbound motion is clearly visible (dashed red line). For higher energies an
additional lobe is formed by the direct paths. For =0 there are an infinite series of lobes whose

width decreases as £ tends to zero. Each lobe is related to an energy and field dependent maximum

17
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radius labeled as pi, pu,pii ... etc. For extremely high energies (e.g. e=10) the indirect contribution
becomes insignificant and the deflection function gradually approaches the corresponding
photodetachment function [52]. In Figure 4(b,c,d) the angle of the first zero crossing is labeled as
Po, effectively separating the direct from the indirect contributions. This angle is found by setting
Eqg. (22) equal to unity (R=1) and solving for .

(a) 03 (b)
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0.8
~~ ~~
203 < P
- g ' _ 506
= =
S 0.2 8
= = 0.4
0.1 ﬁ 02 [:))o
0.0 T T T T T T T T T T 0.0 T T : T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p/r p/n
c) 20 d) s- 7
( 8: l ( ) B . jl_) max p 8: IO
cf ] pH !
‘.".".f-)).’lln‘.\' 4_
1.5 p.’.’ pi
— —
o =] 3]
~ ~%
S 2
2 3 2
QU QU ]
0-5 llﬁu 1 _-/))0
0.0 T T LI 07.' L S S S S S | | —
00 ° 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
B /n B/

Figure 4. Photoionization deflection function in the case of photoionization for selected reduced energies
e. F=107 a.u. Vertical axis is scaled to the maximum classical radius for £=0, pS',.(0) (see Eq. (26)main
text). (a) The direct contribution is absent for e=—0.8 while no impact is recorded for p<g.. (b,c) Direct
trajectories form the lobe whose maximum radius is pi (primary bow). Note that for positive energy f.=0

and that p;>p,. Several zero radii crossings are also visible. (d) Strong resemblance to the photodetachment
case where the indirect contribution is practically negligible.
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As it is evident from Eq. (25) the classical cross section exhibits divergences when the
generalized deflection function either becomes zero, p(5)=0, or it reaches an extremum. These
types of divergences are named glory and rainbow scattering, respectively, after their light-
scattering counterparts, encountered in atmospheric optics [57]. As is evident from Figure 4, the
several zeros of p(f) give rise to an intense peak at the center of the image i.e. the glory signal. It
is important to realize that the glory signal is a feature that dominates the slow electron images
(Figure 6) even at larger electron kinetic energies and may be misinterpreted as “zero” energy
electrons in spectroscopy data recorded in velocity map imaging (VMI) setups [50]. As for the
rainbows, the most intense is the one formed by the direct trajectories and appears at the p; radius,
hereafter called direct bow. Higher-order bows appear at pui , pu, ... radii with progressively lower
intensity. Practically, apart from the always visible primary bow, only py i.e. the secondary bow,
can be resolved experimentally while higher order bows are extremely faint. All maximum radii

are smaller or equal to the maximum radius of impact written as [11,16,52]:

cl z)M/* 1/2 1/2
Pmax = 2 [E] |Zgee | [e+1]Y%, <0

12 (26)

/
pgmlax =2 [g]l ' IZdetll/Z[g +[e* + 1]1/2] , €>0

The energy evolution of the bow scattering radii pS,,., p;, and p;; as well as the detachment
bow p, as a function of the reduced energy ¢ is shown in Figure 5. Note that for every ¢ it holds
that pSl,, > -+ > p;; > p; > po and that practically all bows higher than the secondary bow (o)
are indistinguishable from p¢,,. Moreover, the direct bow manifests itself for e>egir and
progressively approaches the maximum classical radius as ¢ increases. The photodetachment bow

radius presents a similar behavior, having an energy onset at the zero-field ionization energy (¢=0).
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Figure 5. Classical bow maximum radii, in the cases of photoionization and photodetachment, as a function
of the reduced energy . The classical maximum radius is also shown (bold solid line). Primary bow radius
pi Start at the energy eqir and is denoted as a solid line. Secondary bow radius p is denoted as a dotted line.
Photodetachment bow radius (short dashed line) starts at the zero-field ionization energy (¢=0). The radius
axis is scaled to p&,, (e = 0). All radii progressively merge for increased energy.

As we already mentioned, the discussion is limited to p,=0, then the physical information

observed in a photoelectron imaging experiment — or a PM experiment — is an angularly symmetric

image with a radial distribution proportional to R(p) ( Eq. (25)) with respect to the detectors center.
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Figure 6. Radial distributions R(p) and calculated images for =0 and e=1. F=10" a.u. The calculations are
performed by ejecting uniformly a large number of particles within the full g range (0,z). Thus, the
predicted divergences at the center of the image and at the classical bow radii, e.g. p,, pu are avoided.

Figure 6 presents two classically calculated slow photoelectron images for =0 and =1
along with their radial distributions. According to the classical model the indirect trajectories
contribution spans the 0 < p < pyy range and form the secondary bow, visible as an outer bright ring.
Furthermore, the radii of the direct trajectories extend over the 0 < p < p; range and form the
primary bow bright ring. We briefly remind that when the coulomb attraction can be safely ignored
(extremely high energies), each ring of the VMI image (bow) of a given radius is associated with
a photoelectron group of different energy, which is clearly not the case of PM. As for the glory
signal, it is important to realize that it is a feature stemming from a critical scattering effect
encountered in slow photoelectron imaging and it should not be confused with the simple
maximum signal obtained with very high energy electrons in cases when the polarization vector is
parallel to the field axis and perpendicular to the detector.

Let us finally make a brief discussion on the non-zero angular momentum case and present
the form of the relevant trajectories and a number of predictions regarding the scattering
observables. One of the major differences of the p,#0 case is the manifestation of a different saddle
point energy which, for Z=1, may be written as [58],

B, ~—2VF(1-Pelp 2paEy ) (27)
sp.|py| 2 32 P )

Moreover, the previous selection of initial conditions no longer applies because the axes origin lies
now within the classically forbidden region due to the centripetal term of Egs. (8,9). Thus, the
electron is ejected near the coulomb center but not from the point y=0=0. The work of [59] tackles
this problem by ejecting electrons radially from a sphere of some fixed radius. Despite the initial
conditions selection, implications of major interest are extracted just by examining the form of the
x equation of motion. It turns out that for p,#0, it holds that y(z)>0 for every f value, from which
it is deduced that p(5)>0 and the electron never crosses the z axis. Indeed, due to the non-zero
angular momentum the electron does not move in a fixed plane and always dodges the z axis. This
fact has a major consequence, namely the disappearance of the glory scattering and its replacement

by an additional bow (this time due to emerging minima in the deflection function). The latter bow,
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could be termed as g-bow (glory-bow) and is a typical feature to images of non-zero p, motion.
Calculations show that the g-bow radius approaches the center of the detector as the energy

increases.

1.1.3 Semi-Classical Description

As seen in the previous discussion the classical description of an electron moving in the
combined Coulomb plus a static homogenous electric field reproduces the gross features of a PM
image (bow and glory scattering, radial distribution etc.). However, the particle dualism that leads
to the formation of interference effect is completely ignored. This problem is tackled here, before
the introduction of the fully quantum formulation. In the semi-classical picture, a moving particle
along a trajectory accumulates a phase that is equal to the action integral along that trajectory
[11,19,51]. Here, we account for the most important paths, that is, the classical trajectories. Then
the manifestation of quantum effects in a PM image is interpreted as interferences among various
classical trajectories that reach the same point on the detector. In semi-parabolic coordinates, the
action is defined as [19]:

Sy = f:d"t p,dv+ N f(f(m‘”‘ pydx + ;(‘:\sz) pydx (28)

where N is defined in Eq. (24), x(N/2)=0 or ymax for even or odd N values respectively, ydet, vdet are
the impact point coordinates and p,,, the reduced generalized momenta (see Egs. (8,9)).

The deflection functions of Figure 4 show that a large number of trajectories corresponding
to different ejection angles £ can reach the same point on the detector. Subsequently, these phases
provide the contribution of the corresponding trajectories to the final electron wave function
[19,51],

-1 .
| eisie (29)

ORI

p

where, as in Eq. (25), the summation runs over all ejection angles leading to the same PSD radius
and the radial distribution is proportional to |#5¢[>. The most frequent choice of equal weights i
is employed for the semi-classical calculation of Figure 7. Apart from the gross energy dependence

which is common with its classical counterpart, the semi-classical curve is additionally
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characterized by undulations of appreciable amplitude and intense beating effects. Despite the fact
that the phases of each trajectory can be calculated analytically [11,16,50], Eq. (29) has no trivial
solution. Detailed calculations of semi-classical PM images were previously presented in [19] and
in the subsequent refined work of [51] which introduced the open orbit theory formulation for the
PM case. For the purposes of this thesis we limit ourselves to the presentation of numerical
calculations to be compared to quantum calculations and experimental results and then formulate
approximate models in order to extract an intuitive explanation of the quantum modulations

manifested in the scattering observables.
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Figure 7. Classical (black line) and semi-classical radial distribution calculations. e= —0.5 and F=1000
V/cm. Divergences are not treated for the purposes of this general presentation. The high “frequency” fringe
system is called indirect fringe system and is visible in the p; <p< p; radius range. The direct fringe system
is located in the 0 <p< p, radius range together with the beating effect. The later, can be viewed as the
beating effect between the two fringe systems, arising from the simultaneous direct and indirect
contribution.

Figure 7 presents the classical and semi-classical radial distribution calculations for the
selected energy e= —0.5>¢qir and F=1000 V/cm. The divergences on the bow radii can be treated

by the introduction of the Airy approximation [51]. The pr<p<ps radius range can only be reached
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by indirect trajectories and the radial distribution is dominated by a fringe system that reflects
interferences solely amongst this type of trajectories. On the contrary, the 0 <p< p; radius range is
characterized by the contribution of both direct and indirect trajectories. Indeed, the strong
modulation corresponds to the direct fringe system but the existence of indirect trajectories
modulates the interferogram giving rise to a noticeable beating effect. This pattern is manifested
in radial distribution maps R(e,p) as a checkerboard-like structure [27,34].

Let us now turn our attention to the positive energy range which is characterized by the so-
called Static Field Induced States (SFIS), having no counterpart in the absence of the static electric
field. These states may be modeled by a classical picture where the electron becomes “trapped”
between the upfield direction (towards the positive z axis), which is dominated by the static field
potential, and the coulombic center that acts as a hard wall [64]. Indeed, as classical calculations
show, when the electron approaches the Coulomb center it is re-scattered in a highly elliptical orbit
i.e. it is effectively reflected back to the upfield direction [64,60]. In other words, the Coulomb
attractive center and the static field potential form a cavity in which the electron may be partially
trapped [61].

The energy locations of SFIS were quantum-mechanically predicted for the hydrogen atom
by [53,62,63]. They, however, can be accurately reproduced using a one-dimensional semi-
classical model [64,65,66]. Specifically, one-dimensional motion is imposed by setting =0 which
implies Z1=1 (see Eqg. (11)). Then, in semi-parabolic coordinates the y-coordinate motion is limited
between »=0 and y=ymax and the SFIS energy positions are predicted by the Bohr-Sommerfeld

quantization condition,
25,(e) =2kn+m (30)

where k=0,1,2,..., and the action integral S is given by:

Sy(e) = [{m py(e 2, = dy (31)

The above predictions of Egs. (30) and (31) were verified by experimental atomic photoionization
Stark spectra that, under certain conditions (polarization vector parallel to the electric field),
revealed a series of positive energy broad resonances [42,64,67,68]. Note that the effect appears
to be analogous to the quasi Landau levels observed in the presence of magnetic fields [14].
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Interestingly, SFIS-like effects are also present for -1<e<0 and are manifested in the Stark spectrum
as broad intensity envelopes [68,69,70,71].

The semi-classical treatment is capable of formulating intuitive approximate models for
the scattering observables e.g. the glory signal. The glory critical effect is a complex effect that

originates from trajectories of finite weight (8=f.{ R=1}, p=p1{ R=2}, ...) that contribute to an

infinitesimally small volume (p=0). However, our calculations show that for =1 two trajectories
contribute dominantly to the signal on the center of the detector, namely the trajectories with f==
and S=p, (see the discussion of Figure 4). This allows for the formulation of a simple model of the
glory signal that is presented here. In section 3.2.2, this model is compared to the experimental
glory signal (for the magnesium atom) and shows a good agreement. The quasi-analytic relation
giving the corresponding phase difference between the two paths (namely == and f=p,) is written

as,

f(;)det pU(Zz -7 Zl(ﬁo))dv + 2 fo?fmax pX(Zl = Z1(ﬁo))d)(

+§ - f(;hm py(Z; = Z)dv

and predicts the interference maxima of the glory signal (Sc=27k, k=0,1,2,). This result, however,
hides many more consequences. For example, phase and time of flight differences of the involved
electrons trajectories are connected by following the results of [34] through the Eisenbud-Wigner
definition of time delay [72]:

_as

At—£

(33)

Then Eqg. (32) allows for the calculation (in a continuous manner) of the time of flight
difference between the two direct electron paths that impact the center of the detector. As a
verification method, one can actually compute the classical paths and times of flight and
subsequently calculate the time difference of these time of flights. Note that for ¢~0 the time of
flight differences between the other glory trajectories pairs f=fo and f1, are almost equal to the
aforementioned ones. Hence the above calculations call for a more complete study within the
classical and the semi-classical framework in this e~0 low energy range, where three or more

trajectories may dominantly contribute to the glory signal.
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1.2 Quantum Mechanical Treatment of the Hydrogenic Stark Effect

Here we summarize the Quantum mechanical theoretical framework of the Stark effect and
subsequently the Photoionization Microscopy technique. Our development is based on the
computationally more convenient semi-parabolic coordinate system. The properly normalized
parabolic wave functions are introduced as solutions to the Coulomb-Stark Hamiltonian. Then,
hydrogenic matrix elements are explicitly derived for the special cases of = or ¢ single photon
excitation. However, the reader is not introduced to the general expression of the linear polarization
transition operator (a subject of the forthcoming subchapter) for the sake of clarity. Electron
current probability density is defined in the case of Photoionization Microscopy after the
introduction of the used approximations. Finally, the non-hydrogenic case is briefly discussed by
introducing the core strategies towards the multielectron PM description.

1.2.1 Hydrogenic Coulomb-Stark Wave Functions & Density of States

Let us now follow the work of [27] and formulate the quantum mechanical treatment of the
Coulomb-Stark problem, which is the basis of the Photoionization Microscopy framework. As a
first step our purpose is to examine the relevant hydrogenic wave functions and the so-called
Density of States (DoS). Extending the earlier [13,14,63,73,74,75,76] as well as more recent
studies [61,77,78] we present a purely numerical treatment which appears to be more efficient,
practical and suitable for extending the formulation to non-hydrogenic systems. On the other hand,
the analytical results of theoretical works [10,11,78] are truly insightful. By employing the
Hamiltonian separability in semi-parabolic coordinates, we introduce the solution to the Coulomb-
Stark problem similarly to [73,79] rather than the works that employed parabolic [10,11,13,53,62,
63,61,75,77,78,80] or mixed parabolic coordinates [25,26,74,76]. Moreover, the numerical
techniques used are based on an array of robust variable-step integration methods that are both
efficient and simple in their implementation. The description is kept brief for the quantities that
were introduced in the previous subchapter.

The time independent Schrodinger equation describing the hydrogen atom in the presence
of a homogenous and static electric field of strength F>0 and pointing towards the z direction is

written as:
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|-3v2 =24 Fz—E|p@) =0 (34)

where r is the radial spherical coordinate, Z the nuclear charge and E the energy of the system.
Atomic units are used throughout unless stated otherwise and spin orbit effects are not considered.
The need to compute w(r) at large (practically macroscopic) distances justifies the use of semi-
parabolic coordinates, e.g. for a distance of |z| ~ 10 um from the origin one needs to compute y up
to o~ 6x102 a.u. Thus, time consuming calculations up to the parabolic coordinate 7= v? ~ 4x10°
a.u. are avoided and, additionally, the numerical computational errors that are most frequently
accompanying such extensive ranges are minimized.

The Laplacian is separable in semi-parabolic coordinates

Pe el ) 1O R e

and the wave function writes

V() = Cryv) Y2 X()Y (v)e™? (36)

where m=0, +1, £2, ...is the azimuthal quantum number analogous to p,, introduced in the classical
discussion. Notice that the states of different m are orthogonal, i.e. (¥; m[y’; m’) < &, ..

By plugging Eq. (36) in the Schrodinger equation, Eq. (34), and after some manipulations,
the following set of decoupled differential equations is obtained:

1 d2 F 4m?—1
—sagt U§ff]X()() =22XQ0) , U Q0 =+3x" —Ex*+ o (37)
1 d? F 4m?-1
it oo =2zv@) U ) = -Tvt - B+ (38)

where the separation constants are related through Eq. (11), Z1+Z>=Z. The effective potentials
ug’, ug’’ differ only in the field strength sign. The separations constants (Z1,Z2) act as
eigenvalues to the corresponding equations. The field strength, the azimuthal momentum value
and the energy are predetermined and the equations are solved for fixed F, m and E values i.e. the
problem is a scattering one.

For small y values the X(y) function writes [27]:

27



P. Kalaitzis Chapter 1

1
Xyo = Ax X2 (1 4+ 0(x?)) (39)

where Ax is an energy dependent normalization constant which is by definition positive. On the
other, y—o, extreme the form of U)?ff enforces the bound electron motion along y. The large-y

asymptotic form of X(y) is written as [73],

F1/2 E

X - x3+ 73 X (40)

1
X0 - ;exp [_

This asymptotic behavior ensures the quantization of the eigenvalue Z;. Quantization provides a
set of values of ZIll'lml, with n1=0,1,2,... being the number of nodes of X, m (x). These wave

functions are orthogonal to each other and normalized to unity according to:

fo X”1r|m|XTl’1.|m|dX = 6”1’71’1 (41)

Each given eigenvalue ZJ™! also fixes the corresponding Z2+™ = z — 2™l one through Eq.
(10).

The small-v behavior of the Y(v) is written similarly to the y coordinate as:

1
Yyoo = Ay ™2(1 + 0(02)) (42)

where Ay>0 is an energy dependent normalization constant. On the other hand, the v—o

asymptotic form of Y(v) may be written as,

Yisw = CyM()sin[6(v) + @] (43)

where M>0 is the so-called Milne function [81], ¢ a constant phase that depends on the lower

integration limit om [27] and 6, is a monotonically increasing phase:

W) = [ ——dv’ (44)

Um M2(v')

1/2
The constant Cy = E] is obtained by energy normalizing the Y-wave function

[13,14,25,63]. The description through the Milne function is suitable for highly oscillating wave
functions. The problem is separated in the calculation of a varying phase introduced in the sine
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argument and a smooth envelop which describes the wave function’s maximum-minimum

amplitude [81]. As a drawback one has to solve a nonlinear Milne equation:

n 1
M + kM —— =0 (45)

where the squared wavenumber is obtained with the use of the effective potential and the

eigenvalues of Eq. (38):

K? = 2(22, — {~Fv* - Ev? + ] (46)
Asymptotically the Milne function is practically equal to the WKB form,
1
MU_)OO(U) = kl/—z(v) . (47)
and then
c . / !
Vyseo = s sin [ [} k@)dv' + #|. (48)

For these large-o distances k? ~2Fuv* which is independent of the quantum number ni1. This reveals

that, in our formulations the form of Y, is fixed and acts as a starting point.
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Figure 8. Semi-parabolic “effective potentials” U;ff()(), U}fff(v) (black line) along the y and o
coordinates respectively, together with X;, |, Yn, |m| Wave functions normalized as described in the text

(orange lines). Also shown the z/"™ | z2vI™l eigenvalues (blue lines). F= 808 V/cm, &= —0.9565 and m=0.
For ni1=0 ((a),(b)), z§-° is located above the potential barrier thus Yoo is a continuum wave function.

However, for n1=2 ((c),(d)), Zzz’O is located slightly below the potential barrier and Y, is a quasi-bound
state with n=27. Note that the amplitude of Y, , within the inner well is large, signifying a resonant state.
A typical selection of matching points ym and vm is noted in (a) and (b) respectively, while the smooth Milne
function is also drawn (brown dashed line).

Figure 8 shows the “effective potentials” in the y, » coordinates and the corresponding wave
functions for two selected n values. The reduced energy value, the field strength and the azimuthal

quantum number values are fixed, i.e. £&=-0.9565, F=808 V/cm and m=0. The “eigenvalues”

2z71m 277 1Mare also shown. Note that the Y-wave function is a continuum function (see
Figure 8 (b)) or a quasi-bound function (see Figure 8 (d)) according to the n; quantum number that
characterizes this specific channel. In the latter case a third quantum number, namely n, can be

defined as the number of Y-wave function nodes in the inner side of the potential barrier. In the

case where the Z;“"m' value lies lower than the potential barrier (tunneling state) the electron is

trapped and can only escape via the tunneling mechanism but the wave function amplitude may be
almost zero or exhibit a large amplitude (resonance (ni1, n2, m)). It is useful to remember that
27/ < 2zt ang that ZJv™! eigenvalues follow the reverse order 2z7*I™! >

272" That leads to the conclusion that despite the fact that the Z/"*I™ set is infinite, some

of the 22;‘1"’"' become arbitrarily negative thus the Y-wave function is located well below the
effective potential maximum (see Figure 8 (b, d)). These states are practically bound and irrelevant
to photoionization.

The Density of States (DoS) is defined by the probability of finding the electron near the
nucleus (axes origin). This probability is written with the help of the asymptotic forms of Egs.
(39,42) [63,76],

2
[X)(—>0] [Yv—>0]2
X2|m|+1 v2lml+1

DoS,, jm|(F,E) = = AZA% (49)

Note that the normalization constants are functions of Z;, F and E. The total density of

states is defined as the incoherent sum of A2 AZ over all n; channels, DoS(F, E) = Yiny,mDOSy. |m|-

30



P. Kalaitzis Chapter 1

In order to show the importance of this quantity let us consider the energy evolution of a single
channel DoS,,, . The energy evolution of 22;“""1I for F=1000 V/cm, n1=38 and m=0 is shown
in Figure 9(a) as a monotonous decreasing function. A% (shown in Figure 9(b)) is also a slowly-
varying decreasing function of energy and becomes negligible for Zfl"m'(E) < 0. This
phenomenon is referred as channel closing and is a common feature of all channels at some n:-
dependent energy. The physical picture of this effect is shown in Figure 9(e). The potential
Uﬁff()() for e=+0.99 presents a negative minimum and as a result a number of 2Z; eigenvalues
will be negative. Then the X-wave function is “pushed” to large distances and A% becomes
negligible therefore, the DoS,, |, Will also be negligible (see Figure 9(c)). As the energy evolution
of DoS3g, implies, AZ is negligible for Z2*1™! () < 0 that is, for "™ (¢) > Z (Figure 9(d)).
Indeed, for ¢e=+0.01, the Y-wave function can only approach »=0 region via tunneling and the
channel not considered open yet, Figure 9(d). Note that the U{;’f ! (v) potential for >0 does not
exhibit any local minima, thus it does not support resonant states. In conclusion, for this particular
n1 channel, the channel opens at some positive energy and is a continuum channel (characterized
by two quantum numbers (n1, m)) until the channel closing occurs at even higher energies. This,
is consistent with the classical limits 0<Z;<Z, due to the interpretation of Z; for positive energies
i.e. in the absence of a critical angle f..

As a more complicated example we present the DoS,,_ |, for F=1000 V/cm, n;=20 and
m=0 in Figure 10. The behavior of Z?l"m'(e) and A% Figure 10(a,b) is similar to the previous

example. On the other hand, 22;12"""(F, €) may lie above or below the v-potential barrier. This

introduces a channel threshold written as:

g™ = =2 [zp™ (F, B F]l/z (50)

31



P. Kalaitzis Chapter 1
004 L 1 1 1 " n
(c)
| = 2750 — 22,
% 0.02 . (e) £=+0.99 Uty au) £=+0.99 Ui (a)
A ! Xagopy+22 | Yig (022,
0.00 T - —
] (b)
0.05 G
o b 4 — = 22, _— 07,0
§ ( d) =+0.01 U () | =+0.01 Uil ()
] Kug o022, - rlf,cun»zzj‘”‘
0.00 5 T T
1.0 '
; @) \—
N 0.5 — —
0.0 — . ——
0.0 0.2 0.4 0.6 0.8 1.0

Figure 9. (a) Energy evolution of Z>%°(¢) for the energy range 0< & <+1 and a field value F=1000 V/cm.
(b) Energy evolution of the normalization factor A%(s) for the n;=38 channel. (c) Energy evolution
of DoS3g as defined in the main text. (d) Effective potentials U§f T, U,ff T (v), effective eigenvalues

38,0 38,0
VAR A

and wavefunctions Xsg ¢, Y35 for e=+0.01 slightly before the channel opening. Note that the

inner well in the » coordinate is absent for positive energies. (e) Same as (d) but for e=+0.99, slightly above
the channel closing. The X-wave function is pushed to large y values and obtains negligible values near the

origin.
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Figure 10. (a) Energy evolution of Z2%°(¢) for the energy range —1< ¢ <+0.7 and a field value F=1000

V/cm. (b) Energy evolution of the normalization factor A% (<) for the n;=20 channel. (c) Energy evolution
of DoS,0,0. The DoS form exhibits a resonant behavior and then a smooth evolution in contrast to the DoS
shown in Figure 9(c). The inset shows the DoS in the energy range of the last sharp resonance and marks

the energy position of Figures 10(d,e). (d) U{;’ff(v) and Y5 o for e= —0.531 that corresponds to a resonance

with n,=10. (e) U,ff ! (v) and Y54 o for e= —0.528, slightly above the resonant energy, that exhibits a small
amplitude inside the well.

For E > Et"hlr"mI the electron escapes over the barrier in the v-coordinate and the total

electronic state is a continuum state (only two quantum numbers (n1, m) are required for its

ny,|lm|

characterization and labeling). For E < E,.;""" the electron can escape solely via tunneling. For

certain energies Z;“"m'(F, &) coincides with the inner well eigenvalues and A% acquires large
values, implying that the electron is trapped within the barrier and the state exhibits an appreciable
lifetime (see Figure 10(d)). These gquasi-bound resonant states are characterized by the enlarged
set of three quantum numbers (n1, nz, m). This is not the case for energies slightly above or below
a resonance as it is shown in Figure 10(e) where the Y-wave function has almost zero amplitude
inside the inner well. In conclusion, the channel opens at some negative energy (Z:~1), then the
single-channel DoS exhibits a resonant structure and then the channel is transformed to a
continuum one (near the root of Eq. (50)) with a slowly varying DoS amplitude (see Figure 10(c))
until it finally closes (Z1~0). Note that for positive energies there is no energy threshold imposed
by Eg. (50) and all channels correspond to continuum states. Moreover, due to the fact that channel
openings and closings are not abrupt, the quantum calculations should include channels

corresponding to classically forbidden Z; values, i.e. values that slightly violate 0< Z1<Z range.

1.2.2 Photo-Excitation Dipole Transition Matrix Elements

Having described the characteristics of the Xy, ,,,|(x) and Y, jm (v) components of a given
excited Stark state,

we now turn to its radiative excitation out of an initial state i (of energy Ei and azimuthal quantum

number m;). The single-photon dipole operator responsible for the transition writes,
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T=¢-r (52)

and the matrix element connecting initial and final states is written as,

dn, jml = (W, i€ - T[Y0) (53)

The small field strengths employed throughout this work allows for neglecting the static electric
field in the cases of the low-lying atomic states such as the ground or the first, low lying, excited
states. Recalling that field-free hydrogenic Hamiltonian in separable in semi-parabolic
coordinates, the initial state wave functions are also written in the form of Eq. (36), y;(r) =
myv)~Y2 X;(x)Y;(v)e!™i®. The X; and Y; components turn out to be the well-known harmonic
oscillator solutions [75]. Initial states will be labeled hereafter as |n, n,, n,, m) where the principal
quantum number n=ng+nz+|m|+1 [13,14,75]. In the present work we employ solely mi=0 initial

state wave functions, given by [27],

_ Zx? Zx?

Xi =Xnn, 0= Nxnno0X 1/2eXp [_ Z] Lp, [T
-1/2 Zv? Zv? (54)

Yi = Yan,0 = Nymm,o ¥ exp [_ E] Ln, [T

where the functions L, denote the n-th Laguerre polynomials and Nxy are normalization factors.
The factor Ny, ,, o is found by normalizing X,, ,. o as in Eq. (41), while the factor Ny ,,,, o by
normalizing the bound y; state to unity. Finally, the energy of a given |n, n,, n,, m) state is given

by the well-known hydrogen energy level formula,

E, = -2 (55)

2n2

By employing the volume element

dv = yv(x? + v®)dydvde (56)

and when the linear polarization vector is parallel to F = FZ , that is €1 = z = (y*-0%)/2 (z-

polarization), the resulting matrix element is written as,

dnl,m = 6m,ml- 1T1[1,|m| (57)

where,
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:lrlrlml = %ffooo Xl'anlll:YTll (X4 - U4)d)(dv (58)

is a (real) “radial” matrix element, while the &, »,, factor emerges from the angular ¢-integration
and leads to the selection rule Am=m — m;=0. The integrals converge to a finite value due to the
bound character if the initial state, despite the oscillatory large-v behavior of Y, m).

Next, consider the quite common experimental arrangement of a laser beam propagating
perpendicularly to the field along the x-axis and the linear polarization is perpendicular to the field
along the y axis (o-polarization). Then, &:r =y = yv sing and the resulting matrix element writes,

d — 6m,mi+1_8m,mi—1 o
ny,m 2i ny,|m|

(59)
where

Dgplml = ffooo Xanlinnl)(U(Xz + v%)dydv (60)

m,ml-+1 _5m,mi—

: ) . . .
Here again the factor ~ stems from the angular integration and leads to the selection

rule Am==1.

In the present thesis we also consider a two-identical-photon excitation out of the ground
state wi =yg =|1,0,0,0). Assuming there is no one-photon resonant intermediate state, the two-
photon transition is described by a single-photon one out of a virtual state yy. The latter is
calculated within the perturbative Dalgarno-Lewis method [82,83] i.e. by solving the

inhomogeneous equation:

[—%Vz—é—Ev]zpv=—s-r¢i (61)

where the virtual state energy Ev = (E + Eg)/2. The solution is written as:

Yy (r) = (27T)(U)_1/2 ZNl,M[XNl,IMI(X)YNl,M(U)eiM(p] (62)

and where the M summation runs over positive and negative values of M and its values are
determined by selection rules applied to the yg— wv transition. Hence, the problem is reduced to
the calculation of the bound-like X,Y-wave functions of the virtual state and more details about the
numerical solution of Eq. (61) are given in [27]. The general two-photon matrix element is given

by,
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ffooo XN1r|M|Xn1'|m|YN1'MYn1 (XZ + UZ)dXdU
27 elM-m)e (63)
X[ er

21

2
d‘r(ll),m = ZNl,M

and incorporates additional selection rules applied to the yyv—y, ., transition. Finally, the

imposed condition OSZf'l"Mlgz, leads to an energy dependent maximum value for Ni, while

N1,max=0 for the energy range of our interest.

1.2.3 Electron Current Probability Density

In scattering experiments, the total information is projected in the electron current density
J < i[YyVyY* —yY*Vy]. Since the electron can escape (reach arbitrary large distances) solely
through the » coordinate, the probability current density is defined on paraboloid of constant v=vet.
The projection of the electron current probability density vector on the »-unit vector e, has the

general form of [12,27]:

Jo =" €y = rasrs [Waue 35 (Wiue)” = W) 35 Wie| (64)
where o denotes the fine structure constant and w is the frequency corresponding to the energy
difference between the initial and the final states of the considered transition. The outgoing wave
function vy}, is the solution to the Time Dependent Schrodinger Equation (TDSE). Within the
first-order perturbation theory that is for a weak laser field of constant amplitude and for long
laser-atom interaction times the TDSE is reduced to the following Dalgarno-Lewis-like equation,

typically referred as the Schrodinger equation with a source [25,84,85],

vt~ By, = -7y, ©

where i is the (physical or virtual) initial state wave function. The solutions of the above equation

are put to the form,

Yaur (1) = @ryv) ™2 T, m Xy jmi (0 ity m (@)™ (66)
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where X;, |, are the previously calculated solutions of the homogenous problem of Eq. (37) and
the v, ., wave function are to be determined. Plugging the above ansatz into Eqg. (65) and

following the derivation of Ref. [25,27] it turns out that asymptotically (large » values),
yr;,m(v) = - Ci dnl,mMn1,|m|(U)ei[9"1'|m|(U)+¢n1.IMI] (67)
Y

while the calculation of all components has been already discussed i.e. the Milne functions My, |,
the Y-wave function phases 6, (V) + ¢p, | and the relevant matrix elements d,, ,. Then the
asymptotic form of the electron current probability density of Eq. (64) is written as,

4Cy2
2m yv[x2+v2]1/2

. . 2
]U ((p,X) = 2”1,m {dnl,anL'ml(X)elm(Pel[9n1.|m|(v)+¢n1.lm|]}| (68)

and incorporates the angular distribution of the outgoing electron flux. In fact, the angular
distribution is incorporated exclusively in the d,, , and e'™ terms. The detector plane differs from
the paraboloid surface by Az=0 (see section 1.1.2).

Integration over the whole paraboloid surface (0<y<w) and (0<p<2x) provides the total

Cross section oot i.€. the total electron signal,

2
Otot = f]v((p' x)ds = 4 aw an,mldnl,ml (69)

where dS=yv[y? + v?]"2dyd¢ is the surface element on the detector. For deriving Eq. (69) we used
the orthogonality properties of the X-wave functions (Eg. (41)) and states of different m.

Obviously, ot is proportional to the incoherent sum of the squared matrix elements.
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Figure 11. (a) Total cross section ot for positive energies and F=1000 V/cm. The final states are excited
out of the ground state via one photon z polarization. Note that the total electron signal is characterized by
oscillations which are attributed to SFIS. The contrast of these oscillations depends on the initial state and

excitation scheme. (b) Single channel matrix elements |dn1,m|2 for m=0 and for various nz values (n1=33 —
48). The channel openings are associated to the oscillations observed in oot

The polar coordinate on the detector is p=yvdetccy while, for vger—o, [x? + vﬁet]l/ ? % Vger

and Eq. (68) is simplified,

2

1 . .
Joder (p,p) x ~ |Zn1,m {dnl’anL,m (x)eime el[9n1.|m|(vdet)+¢>n1.|m|]}| (70)

A quantity of primary interest in this thesis is the radial distribution obtained after angularly
integrating J,
27
R(0) = [, Juge, (0, X)do (71)

and can be regarded as the electron’s transverse (to the field) momentum distribution [27,53]. In
the case where solely m=0 states contribute to the current density the radial distribution

incorporates all the available information of the image in a one-dimensional curve. For avoiding
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misinterpretations, note that the term “radial distribution” is more frequently employed for
P(p)=pR(p), which is proportional to the number of electrons hitting the detector within the [p, p
+ dp] interval.

Figure 12 shows the electron current probability density of m=0 final states out of the
hydrogen ground state for a single photon transition. Also shown is the corresponding radial
distribution that reproduces the interference pattern of the image, arising from the coherent

summation of the X-wave functions.

20 40 60
p (a.u.)

Figure 12. (a) Electron current probability density for e= —0.5>¢qir and F=1000 V/vm. The color scale is
linear while white color denotes intensity cuts. The horizontal and vertical axes refer to the x and y
coordinates of the detector, respectively. The detector is placed at z4:=2000 (a.u.). The final states are single
photon excited out of the ground state with = polarization. Notice that the image shows no angular
distribution (m=0). (b) Radial distribution R(p) of the image of (a).

The image features all the relevant structures of classical and semi-classical origin such as
the Bow and Glory scattering. Due to the small y asymptotic form of the X-wave functions Eq.

(39), the glory signal is formed solely by the m=0 terms of Eq. (70),

. 2
]vdet,Glory X |Zn1{dn1,0AX,n1,0 e' [9n1,0 (vdet)+¢n1'0]} | (72)

The phase factors and the normalization constants Ay, o, characterize the final Stark

states. On the other hand, the excitation matrix elements depend strongly on the initial state and
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excitation scheme. Finally, note that the current density as well as all the other observables

presented above exhibit a pronounced dependence on the electron excitation energy E.

1.2.4 Extensions to the non-hydrogenic case

The Hamiltonian of a (static-field free) multi-electron atom may be written as the sum of
kinetic energy operators for each electron, plus a potential energy term composed mainly by all
electron-nucleus attractions and all electron-electron repulsions. In addition, the potential energy
also contains other fine structure interactions, such as the spin-orbit one, that may, to a first
approximation, be ignored when highly excited atomic states of a valence electron are of interest.
Assuming further that we deal with a single highly excited electron outside of a closed subshell
ionic core of charge Zess (or at least outside of a partially open but spherically symmetric core, as
for example the Mg* [Ne]3s one), all electrostatic attractions and repulsions concerning all
electrons but the outer valence one may be replaced by a spherically symmetric parametric
potential U(a; r) [86,87,88,89], with a={ai,az,...,an} a parameter vector. In fact, experience shows
that for obtaining energy level positions and wave-functions of highly excited states with good
accuracy, all the parameters should depend on the angular momentum quantum number | of the
outer electron [88]. Further, we can put U(a;r) in the form,

Zofs+AZ(a;r)
T

U(a;r) = (73)

where for r—0, AZ(a;r)—Z— Zess and the electron “sees” the full nuclear charge. On the other hand,
for r—o0, AZ(a;r)—0 and the electron moves in the hydrogenic potential. The presence of the non-
coulombic short-range part AZ(a;r) emerging from the existence of the core, results to highly
excited (Rydberg) energy levels given by the Rydberg formula [13,14],

Zés

Eni = =30 (74)

with s being the so-called quantum defects [13,14,86]. The latter are a measure of the penetration
of the excited electron’s wave function to the ionic core and they are nearly constant with energy

[86] but decrease rapidly with 1. In fact, the quantum defects reflect the dephasing of the electron’s
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wave function with respect to its hydrogenic |n,l) counterpart and this phase shift is given by
[86,90]

51 =71 - U . (75)

Adopting the above description where the outer-valence-electron is subjected to the action

of the parametric potential U(a;r), the additional presence of a static field leads to the following
Schrodinger equation,

|-3V2 + Ua;r) + Fz — E| () = 0 (76)

In a first attempt to solve Eq. (76) we follow Refs. [29,86] and we introduce the single-m ansatz

(m s still a good quantum number in the absence of the electron spin and spin-orbit coupling [29]),

Y(r) = Qrxv) ™2 Lot Xot 1t O Yt @)™ (77)
where the wave functions X! jm) re the hydrogenic ones, i.e. they are solutions of Eq. (37) and

they are associated with the eigenvalues Zfl"m'. As for the functions Y- ..., they need to be

determined. After appropriate manipulations and by making use of the orthonormality of the wave

functions Xol jmi (see Eq. (41)) we arrive at the coupled system of equations,

-3+ v ) -2 (zg»'m' - vn':;il(v))] Yoyl @) = 2 Tt o, Vs 0¥t g @) = 0 (78)
where the hydrogenic potential U’/ (v) is defined in Eq. (38),

Z;Llrlml — Zeff _ Z;ll,lml (79)

and

[e} 2 2
Vfllrlrrlflli @) = fO X”1'|m|(X)AZ (a; "= %) Xnﬂllml()()d)( (80)

It is evident from Eq. (80) that the coupling between channels is due to the short range non-
coulombic part AZ of U(a; r) and disappears if AZ=0. The involved coupled hydrogenic channels

may refer to solely closed channels, open channels, or open and closed ones. The latter is of

particular importance in PM since it implies that any initially prepared resonant population will be
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eventually spread out over many continua and the resonant features of the image may be obscured.
Also, of importance is the case of the coupling between at least two closed channels (in addition
perhaps to the coupling with other degenerate open ones). In fact, even in the absence of continua,
this coupling has been proved to produce interesting effects such as the so called “avoided
crossings” between pairs of resonances [28], where one of them is effectively decoupled from the
continua in the vicinity of the crossing [23].

Despite the appealing form of the coupled system Eq. (78), in practice its solution is
difficult and suffers from several limitations. For example, the function AZ(a;r) can be complicated

and consequently the functions VTLTL, (v), can be difficult to compute. Moreover, the form of the
ot

coupled system does not allow for the beneficial employment of an I-dependent parameter vector
ai. For the above reasons, we introduce the reader to the so-called Frame Transformation Theory
(FTT) developed by Fano [91] and Harmin [62,92] and recently reformulated and adapted to PM
by Giannakeas et all [32]. We shall not introduce the theory in detail here but we shall restrict
ourselves to a recapitulation of its results. Let us first mention that, in FTT the core presence and
the mixing it induces are introduced solely via the non-zero quantum defects (see Eq. (75) above).
This emerges from a semi-parabolic to spherical coordinate transformation at short distances
where the interaction between the ionic core and the excited valence electron dominates over the
interaction between the electron and the static field. Due to this dominance, the electric field term
may be neglected in the core region and the fairly simple form of the zero-field transformation can
be used, implicating, however, static field-dependent normalization factors [32,91]. Additionally,
the application of this transformation has yet another virtue, namely it allows for the calculation
of excitation matrix elements at zero-field. This, in turn, allows for the employment of the far more
accurate I-dependent parametric potentials. With the above discussion in mind we note that the
form of the current probability density of Eq. (68) remains formally unchanged (along with the

form of all other related observables) and involves hydrogenic, X, ;n(x) functions and
On, im| (V) + ¢n, im| Phases. The differences concern exclusively the matrix elements which

acquire different absolute values and phases reflecting the ni—channel mixing. Namely, they are

now given by

g = 54 S (P W, B (81)

42



P. Kalaitzis Chapter 1

where d;"* are zero-field excitation matrix elements for all | values permitted by the relevant

selection rules. The matrices W, B are given by,

Bm = [1— iRIm| ™" (82)

and

W™ = cos81UTM[I - coty™IKIm] ™" | wm = (—1)miwiml, (83)
where | is the identity matrix,

RIml = KImi[1 - coty|m|K|m|]_1 (84)

is the reactance matrix and

K™ = U™tansd [U™]T . (85)

is the so-called K matrix. Note that the reactance matrix R is not to be confused with the Wigner-
Eisenbud R-matrix [32]. The frame transformation matrix U (with U™ = (—1)mlgiml)
essentially maps the Stark parabolic channels into their spherical zero-field counterparts
[32,62,91,92]. The diagonal matrices cosé and tané are constructed by means of the phases given
by Eqg. (75) that can be determined by the quantum defects extracted from spectroscopic data.
Finally, the coty matrix is of hydrogenic origin. Specifically, it is defined as the ni-specific relative
phase between the regular and irregular hydrogenic Y-wave functions. In other words, by imposing
y=nl2 for v—0 one gets y = y,,, for v—co. This definition differs from the typical one employed
in scattering theory, were the regular and irregular functions are phase-lagged by #/2 at large
distances. Eqg. (81) shows clearly the ni—channel mixing while it is evident that by setting all
quantum defects equal to zero (hydrogen atom) this mixing disappears (R=K=0). Furthermore, the
form of Eq. (82) shows that the matrix elements d,, ,,, become necessarily complex. Thus, apart
from the atom specific magnitude differences with respect to the hydrogenic matrix elements of

the same n;, atom-specific phase-shifts are also added to the hydrogenic phases 6,, (V) +

Pyl
In the present thesis we shall make a limited use of FTT relations, in order to compare with

our experimental results for the magnesium atom. Note that for the excitation energies employed
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here, the zero-field matrix elements d;* connect the Mg ground state to Rydberg states with a
principal quantum number of n~30. Finally, since the current density along with the form of all
other related observables remain formally unchanged, non-resonant effects in Mg afford a

qualitative comparison with the hydrogenic theory [27].
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1.3 Polarization Effects in Photoionization Microscopy

1.3.1 Linear Polarization Rotation Effects in Photoionization Microscopy

Images

Let us now examine a two-photon excitation scheme out of the hydrogenic ground state
that will be useful in the analysis of the experimental results. According to this scheme the linear
polarization vector of the exciting radiation forms an angle ® with respect to F. More specifically,
as shown in Figure 13, the polarization vector ¢ lies in the y—z plane and the laser beam propagates
in the x direction. This scheme addresses all the important physical excitation mechanisms and
corresponds to the majority of experiments conducted in the present thesis. More complex
geometries, considering possible experimental misalignments, as shown in Figure 15, are
considerably more difficult to handle while they do not introduce any additional excitation
pathways. Therefore, they are discussed later on, in order to propose a self-consistent alignment
procedure in section 3.3.1.

In the geometry presented in Figure 13, the relevant single-photon transition operator T of
Eq. (52) writes,

)(2—1)2 eizp_e—izp

+ sin® yv

T = cosOz + sin@y = cosO (86)

21

in Cartesian and semi-parabolic coordinates respectively.

X X

Figure 13. Schematic representation of the laser-spectrometer configuration. The laser beam propagates
towards the x axis. The radiation polarization lies in the y-z plane while the static electric field point toward
the z direction. The polarization vector and the static electric field form an angle ®. The detector’s
coordinates (X, y) or (p, @) are also shown.
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Plugging the transition operator in Eq. (61) provides the virtual state yy in the form,

. ip_,—ip
Y (r) = myv)~Y/? XN, [COSG)XNl,Ole,O + sin®Xy, 1Yn, 1 (e - )] (87)

21

and the yy, 1n(v) wave functions are connected to the Yy, » (v) wave functions of Eq. (62) by the

sm@

=7 YNy and Yy, 4 =——=yy, 1. By using Egs.

. (¢)
relations Yy, o = cos®@yy, o, Yn,1 = =

(51,86,87), the general two-photon matrix element of Eq. (63) writes:

—ime

|” dvYr, ) [ o (2 +v2) [ dop® 1|
d1(121)m - ZNlI X [cos@x — + sin® yv el-e w)] I (88)

[COS@szl,OYNl,o +sinOXy, 1Yn, 1 ( = e_w)]

After some manipulations, the insertion of the matrix elements to Eq. (68) and the collection of

terms of equal |m, the electron current density J, . is written as,

s 2
( (Cos (E)D”(2)+Slrl GDJ(Z)) lanl’oxnl,o()() )

nq,0

Jugee (@) X) )l( Y, ! +c0s0 sin® sm(p(D”(Z) + DG(Z)) iefll'anl,l()() L (89)

sm 0 COS(ZQD)D;{(ZZ)BLBM ZXn1,2 (X)

where the notation e ®numi = eilfnyim@aed+ényiml js introduced for simplicity. Despite being
lengthy, the above formula clearly demonstrates the simultaneous excitation of all |m|=0,1,2 final
states. Each m-term is comprised by the corresponding, angular weights depending on the angle
0, the X, ;m(x) wave functions, the veet-dependent phase factors, the involved matrix element

integrals and, last but not least, the angular distributions through the angle ¢.
n/o(2)

The notation of the matrix element integrals Dn1 m]

characterizes the two-photon

pathway. The superscripts = or ¢ denote the polarization of the second absorbed photon,
responsible for the transition to the final m-state out of the virtual one of given |M| (=0 or 1). The

possible excitation pathways may be visualized in Figure 14.
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0 D77

Figure 14. The two-photon pathways schematically. According to the radiation polarization (z or o) the
final m-state is excited out of the virtual state of an azimuthal quantum number M. We solely consider the
my=0 ground state as our initial state.

Photoionization microscopy images « J, . (x,®), present a complicated distribution
because a different radial fringe system is formed for each angle ¢ (e.g. J,,.,(x, ¢ = 0) may
present a different behavior than J,,_ (x, ¢ = m/2)). Moreover, the coherent superposition of
different |m|-states in Eq. (89) gives rise to the so-called m-beating effect [30]. The latter is
manifested in the form of intensity modulations along the ¢ coordinate. Interestingly, the
expression providing the glory signal, which is defined in Eqg. (72) and in which only m=0 states
contribute, is quite simple,

(90)

2o nT@ 4 sin?0 Jo(2) 05 o
JogenGlory & |Zn1 (cos 0D, o + > D, o ) Axn0€ ™

and yet incorporates quite rich information.

Let us now extend the above modeling and consider a more general geometry, shown in
Figure 15. The static field vector F points towards the positive z direction and the detection plane
is set at zqet. This case corresponds to the propagation of a misaligned laser beam which no longer
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propagates perpendicularly to the field. This misalignment is introduced by the additional angle
®, which is defined as the angle between the laser beam propagation vector and the x axis. The
angle ® is now formed between the polarization vector and the horizontal z-x plane. In other words,
as compared to Figure 13 (®=0), the z and x axes of the misaligned geometry have been rotated by

an angle @ with respect to the fixed y axis.

Y y

h A

X k1 X

ascr

Figure 15. Same as Figure 13 but now the laser propagates in the k(# ) direction that lies within the x—z
plane. The laser propagation vector and the x axis form the ® angle. It is advantageous to separate the
polarization vector into two components, one parallel and one perpendicular to the z axis. The polarization
vector ¢ has a z component of ¢-cos®-cos®. The y and x components are combined to form a new y’ axis
which is normal to the z axis. The angle 3 between y and y’ axes depends on ® and @ (see main text).

The transition operator now writes, T = cos@cos®z + sin@y + cos@sindx. Following

the steps that were described before, the electron current density J,,, . is written in the form of Eqg.

(89) with the substitutions ®—>0" and ¢p— ¢'=¢—3 where the angle ®" is defined through the

expression,
cos®’ = cosO - cos® (91)

and the angle 3 is defined as,

sin®
tand = . (92)

This implies that the detection reference frame has been rotated for an angle $ which varies with

©. However, apart from these substitutions, all expressions (such as Eq. (89) and Eq. (90)) keep
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their prior form. The above relations and angular variable substitutions are justified because the
selection rules are sensitive solely to whether the polarization vector is parallel or perpendicular
to the static field axis. For the alternative simpler geometry where the polarization vector lies in
the y’—z plane where the y and x axes have been rotated by an angle 8 with respect to the fixed z
axis, it holds that the detection reference frame has been rotated by a constant angle 8. The single-
photon transition operator may again be kept in the form Eq. (86) after the sole substitution is p—
»'=p—6.

Let us also introduce the first moment of the electron current density distribution i.e. the
barycenter of the image intensity which is defined as,

Co = > [[ Joge PAS = CEX + Gy . (93)
where, as it turns out,

C¥ = c,c0s%0cosPsin®(cos?0cos?d + ¢;) (94)
and

C} = c,cos0sinBcos®(cos?Ocos?d + cy) . (95)

The constants Co, C1 are integrals that depend on the matrix elements, the wave functions X, |

and the phases e'%nviml Note that for a given @, C§ and C are symmetric and antisymmetric with

respect to ®=x/2, respectively. Interestingly, the ratio of the two barycenter coordinates reproduces
Eq.(92),

C§ _ sin®
5=
Cp tan®

= tand . (96)

As shown above the barycenter of a PM image monitors the linear polarization vector orientation
in all possible misalignments and system rotation geometries. This seems to be expected also for
different excitation schemes (single-photon excitation etc.). Here, the barycenter position of two-
photon PM images is presented in a compact form and allows for correcting misalignments with
respect to the static electric field. In addition, this is an experimentally easy to extract quantity that
doesn’t require any particular spatial resolution and is insensitive to small defects in the detector’s

efficiency.
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1.3.2 m-Decomposition of Total Cross Section

The electron current density of Eq. (89) refers to the two-photon ionization of hydrogenic
final Stark states out of an m=0 initial state. Plugging this equation to see Eq. (69) leads to the two-

photon total excitation hydrogenic cross section which then writes,

2

n10

\|
cos? @ sin? G(Dn(z) +Da(2) 2} (97)
|

nq,1
(o)

(cos @D”(Z) +— sin®© 0(2))
+

(
Gt(()zt) « 2711 {
I
\

This incoherent sum of the different-|m| cross sections presents an interesting dependence on @, in
contrast to the field-free case. In the latter case, the quantization axis is always parallel to the
rotating linear polarization and that polarization rotation has zero effect to the total cross section

[43,48,89]. As an example, Figure 16 shows the hypothetical case of equal matrix elements i.e.
D(Z)

nojml = 1 and single n1 excitation. The |m|=1 character is obviously present for ®=+0,7 , while

the |[m|=2 character is present for ®+0 and exhibits a maximum for ®=z. Note, that in the presence
of misalignments discussed in the previous subsection, the total cross section formula of Eq. (97)
still holds, but with the substitution ®—®" according to Eq. (91).
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Figure 16. The three different m-components of the two-photon total cross section (at(ft)) as functions of

©. Here we have made the substitutions Dr(am' = 1 and we have ignored the summation over multiple n.

The |m|=1and 2 excitations exhibit maxima for ®=45° and 90° respectively. On the other hand, the behavior

of m=0 depends strongly on the value of D,(l?o’s.

Let us now treat the same two-photon excitation scenario out of the ground state of a

multielectron atom, by making use of the LFT theory [32]. The zero-field final and initial states
are ), = r‘lPlle’:f and ¥, = r~ P, Yy respectively. The two-photon spherical matrix elements

write

d"® = (e[ T@i) = (| Tl (98)
where the single-photon transition operator is defined as in Eg. (86) and the virtual state obeys the
following Dalgarno-Lewis equation [82,83],

-2 +Uu@r) - B |, =Ty, (99)

with Ev=(E+Eg)/2 (strictly speaking, for E lower than the ionization potential the energy should

correspond to a bound atomic p-state). The solution of the above equation is written as,

Yy =r71h [\/% cos® Y + \/igsin(a (Yt + Y{l)] (100)
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where Plv is the radial part of the virtual state, which depends on the atom-specific U(a;r) but it

does not depend on the angular factors. Plugging the virtual state of Eq. (100) into the spherical
matrix elements of Eq. (98) and using the Stark multi-electron matrix elements of Eq. (81) we

finally arrive at,
0ot (0) o 4243, + A= (3 cos? © — 1)A, + 2 (3 cos? @ — 1)24%, +
15—2 cos? @sin? 0 43, + Zsin4 043, . (101)
where the dimensionless parameter,

00 ~
N Py, 1 Py dr

A= (102)

00 o .
N Pypr Py dr

measures the relative strength of the radial matrix elements corresponding to the transitions p—s

and p—d, respectively. As for the quantities Am

L they are given by,

Aml = 5., Re [ods™ (k)] (103)

with the factors o™ defined as,

Lim| _ |m| pIm|
ai™ = 3, {wimBIT 1. (104)
The quantities A'l’?,' carry much of the information about the Stark structure and were named after

Harmin as the non-hydrogenic “density of states” in the presence of a static field [92]. Further, it
is interesting to note in Eqg. (101), that there are terms depending on the angular factor
(3 cos® ® — 1). These terms are eliminated when cos?@p,gic = 1/3, i.e. at the so-called “magic
angle” Omagic=54.7°. Furthermore, as a rule of thumb the p—s radial matrix elements are much
weaker than the p—d ones [87]. In fact, experimental results for Mg [93] showed that this is indeed
the case and provided an estimate for 4<0.1. Then, the term in Eq. (101) which is proportional to
A% can be safely neglected and, to a first approximation, the same holds also for the term

proportional to 4. Under these approximations, the total cross section simplifies to,

at(jt)(@, E) « %(3 cos? 0 — 1)24%,(E) + 1?zcos2 ®sin? 0 A3, (E) + %sin4 ©4%,(E) (105)

52



P. Kalaitzis Chapter 1

and the three |m|-spectra 49, (E), A3, (E) and 43, (E) can be determined by measuring at(ozt) (6,E)
for three values of ® (that can conveniently be ®=0°, Omagic and 90°). Finally, the validity of the
approximation made on 4 can be examined by employing the determined functions 4%, (E),
AL, (E) and 43, (E) in order to compute “synthetic spectra” at different angles ® and compare with
their experimental counterparts. This procedure is applied to our analysis presented in the third

Chapter.
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Chapter 2: Experimental Setup & Procedure

2.1 Experimental Setup

2.1.1 General Description of the Experimental Setup

A full schematic view of the experimental set-up is given in Figure 17. We provide here a
general overview while each individual subsystem will be subsequently presented in more detail.
The excitation and ionization of magnesium atoms is accomplished by a commercial dye laser
system (Lambda Physik ScanMate 2EC-400). The dye laser is pumped by the frequency doubled
(532 nm) radiation of a neodymium-doped yttrium aluminum garnet — Y3Als012 — (Nd:YAG)

Doubling CCD Camera
Crystal

DD . .. F
Laser I\ +To calibration 1
s system :
I
f I

Filter
lllV |
I

7

[ 1 1) 1omog

Polarizer Ailr 'Vacuum
I
Retarder A/2 h
Mirror |_| ;o
' I
Focusing lens | Spectrometer Oven

mu-metal
shield

Figure 17. Schematic representation of the experimental setup (not to scale). The fundamental and the
ultraviolet beams are denoted with red and purple color respectively. The optics for guiding the beams and
manipulating the polarization are shown, namely the right-angle prisms, filter (UG5), polarizer, \/2 retarder,
mirror and lens. The pulse energy is monitored after the exit window. The focusing lens is positioned either
in front of the spectrometer’s entrance window or in-vacuum, in between the mu-metal shield and the
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electrodes (enclosed within the dashed rectangle). Mg vapor atoms interact with the uv beam in the
interaction region. The spectrometer exhibits a typical three-electrode VMI geometry, with the addition of
an Einzel lens and a detector placed at the end of the field free tube. A CCD camera captures the bright
spots on the phosphor screen.

pulsed laser operating at 10 Hz and delivers fundamental-radiation pulses in the 610670 nm
spectral range. This visible dye laser output is frequency-doubled by a potassium dihydrogen
phosphate (KDP) crystal and the resulting ultraviolet (UV) radiation pulses (305-335 nm) are
linearly polarized, they have ~5 ns duration, ~1 mJ maximum pulse energy and an estimated
spectral width of ~0.4 cm™.

The two beams (fundamental and frequency-doubled) are separated by a bandpass filter
(UGb) placed almost perpendicularly to the propagating beams. The reflected visible radiation is
guided towards a wavelength calibration system consisting of a Fabry-Perot interferometer of well-
known free spectral range (FSR) that provides relative energy calibration and a discharge lamp
offering absolute calibration via the optogalvanic effect. The transmitted UV beam is guided
towards the experiment. It first passes through an alpha barium-borate (alpha-BBO) Rochon prism
linear polarizer and a double-Fresnel rhomb (acting as an achromatic A/2 retarder) for purifying
and rotating its linear polarization, respectively. Subsequently, it is focused to a vacuum chamber
either via an f~20 cm focal length lens or an in-vacuum f~5 cm lens. The laser beam enters and
exits from the chamber through UV-grade fused silica flat windows of 2 mm width.

Magnesium vapor is produced in a water-cooled and electrically heated stainless-steel oven
reaching a maximum temperature of ~1100 K. The oven is mounted at the top of the vacuum
chamber which is separated from the interaction chamber by a 1 mm hole. The achieved
background pressure with the oven turned off is ~7x10~7 mbar. On the other hand, when the oven
is turned on the pressure in the laser-atom interaction region (LAIR) is found to be ~107° mbar.
The thermal beam consists of ground-state Mg atoms, which interact with the focused laser beam
inside an electron spectrometer and in the presence of a static electric field. The laser propagation,
atomic beam and spectrometer (electric field) axes are perpendicular to each other. The final 3sEk
Stark states of Mg atom (with Ek denoting the |k) Rydberg electron Stark state excited at energy
E), are two-photon excited out of the 3s? Sy ground state with no near-resonant single-photon
intermediate levels. The UV two-photon excitation scheme leads to an expected overall spectral

width of about ~0.8 cm™!. For z-polarization, i.e. linear laser polarization along the direction of
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the static electric field, solely m = 0 final states are excited. For o-polarization, i.e. for laser
polarization normal to the field, the selection rule |[Am|=1 per photon applies and we excite final
states of both |m|=0, 2 [27,70].

The electron spectrometer geometry is based on a standard three-electrode velocity-map
imaging (VMI) spectrometer design [94]. The LAIR lies between the first two electrodes, i.e. a
solid repeller plate and an extractor plate with a hole in its center. These electrodes are biased at
voltages Vr and VE, respectively. The following grounded third electrode is identical to the
extractor plate. The holes of the last two electrodes create an inhomogeneous electric field
necessary for the spectrometer to meet the VMI focusing conditions for a given Ve/Vr ratio
[94,95]. Nevertheless, in the limited laser-atom interaction volume, the field may be considered as
nearly constant within +0.1% but its actual value is rather difficult to estimate accurately based on
the applied voltage values. More accurate and self-consistent field estimations are obtained via the
experimental measurements through procedures that will be exposed in detail in the discussion
Chapter.

Photoelectrons are accelerated by the field towards the end of a field-free drift tube. An
electrostatic magnifying Einzel lens is placed about midway the tube [95,96,97]. The lens consists
of three identical and equally-spaced electrodes with holes at their centers. The two outer
electrodes are grounded, while the middle one is biased to a voltage V. (typically the lens operates
in deceleration mode and, therefore, for electrons V. <0).

At the end of the tube, the electrons are detected by a two-dimensional position-sensitive
detector (PSD) consisting of a tandem microchannel plate assembly followed by a phosphor
screen/anode. A CCD camera records the two-dimensional (2D) distribution of light spots on the
phosphor screen. Recorded images are transferred to a computer, where they are accumulated over
several-thousand laser shots. The entire spectrometer is shielded by a double mu-metal (nickel-
iron ferromagnetic alloy) layer, while special attention has been given to the shielding of the
vicinity of LAIR. These precautions are estimated to result to a residual magnetic field <1 pT in

its interior, which is considered as low enough for our purposes.
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2.2 Instrumentation: Detailed Description

2.2.1 Dye Laser System

Coherent radiation pulses are delivered by the Lambda Physik ScanMate 2EC-400 dye
laser pumped by a Q-switched Nd:YAG laser (Quantel-BrilliantB LPY-400). For the latter,
pumping of the active medium (YAG rod) is accomplished by two intracavity flashlamps which
are triggered by a high—voltage pulse. After a certain time delay from that pulse -and within the
duration of the medium fluorescence- another electrical Q-switching pulse is applied to an
intracavity Pockels cell [98,99] allowing for the production of a 1064 nm laser output pulse of 5-
6 ns temporal width. The laser operates at 10 Hz while its pulse energy may be varied by adjusting
the aforementioned flashlamp/Q-switch time delay (At~280-370 pus). Moreover,a TTL (+5V, 25
us duration) replica of the Q-switch pulse (synchronous to the light pulses) is available via an
output BNC connector located at its Power Supply and it is used for synchronization purposes, i.e.
as the “clock” of our experiment.

The Nd:YAG laser infrared pulses are frequency-doubled by a highly deuterated Potassium
Dihydrogen Phosphate DKDP crystal (Second Harmonic Generation module [98]). The resulting
doubled 532 nm radiation is employed for pumping the dye laser, a schematic diagram of which
is given in Figure 18. The wavelength band of operation of the dye laser is chosen by selecting the
appropriate active medium (dye and solvent) [100]. In our experiment we were interested in
producing pulses in the 610-670 nm spectral range and we used the dye DCM (4-
Dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran) diluted to methanol. The 532
radiation is distributed to two active medium cells (cuvettes) via appropriate beamsplitters and
dichroic mirrors. The dye solution flows in these two cells, namely the oscillator and pre-Amplifier
cell (PreAmp-cell) and the Amplifier cell (Amp-cell). Typical concentrations of the dye solution
are: (i) 0.15 gr/L in 300 mL methanol for the PreAmp-cell and (ii) 0.05 gr/L in 900 mL methanol
for the Amp-cell.

58



P. Kalaitzis Chapter 2

Polarizer KDP
Crystal
Amp Cell : _‘::
R (e ] (\ gﬁ :
Oscillator Compensator
Output Window End Mirror WiI;dow

Figure 18. Schematic representation of the Lambda Physik dye laser. The SCANMATE oscillator
components are: the end mirror, the PreAmp-cell (containing the active medium) and the encircled within
the dashed box elements [98]. The prism expander system consists of several prisms that achieve the
illumination of the whole grating and simultaneous outcoupling the output beam. The pumping radiation is
focused by cylindrical lenses on the cells (green regions). The radiation is amplified in the PreAmp-cell,
expanded and re-Amplified in the Amp-cell. Second harmonic generation is achieved by a KDP doubling
crystal.

Apart from the PreAmp-cell, the SCANMATE oscillator consists mainly [98] of a grating
for wavelength selection placed in the retroreflective, Littrow, position, an achromatic prism beam
expander system necessary for increasing the number of illuminated lines on the grating and
narrowing the laser line spectral width and an appropriately coated highly reflective end mirror.
By coupling out the light after it has been filtered by the grating and before it passes through the
active medium again, this particular outcoupling scheme (Lambda Super Pure®) eliminates a great
part of the broadband amplified spontaneous emission (ASE) [98,101].

Under usual pumping conditions the out-coupled coherent oscillator radiation has pulse
energy of about 100 pJ and is polarized perpendicularly to the grating groove orientation (i.e. it is
vertically polarized with respect to the horizontal optical table plane).

The PreAmp-cell is used both as part of the oscillator and as a Pre-Amplifier simply by
pumping the cell in a different region. This leads to pulses of ~1 mJ pulse energy. Subsequently,
for further elimination of the un-polarized ASE (Amplified Spontaneous Emission) parasitic
radiation, the beam passes through a linear polarizer and it is coupled in size to the Amp-cell via a
two-lens beam expander before it is further amplified in the Amp cell. The final output pulse has
~5 ns duration, ~10 mJ energy and a diameter of ~3 mm (its repetition rate, is, of course,
determined by the 10 Hz rate of the Nd:YAG laser). Finally, a 0.2 cm™' spectral width has been

estimated as explained in the next “Laser Frequency Calibration System” subsection.
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The fundamental dye laser beam passes through a potassium dihydrogen phosphate (KDP)
crystal and it is frequency doubled (305-335 nm). The crystal is mounted on a rotation stage that
is controlled by the SCANMATE software. Pulse energy maximization (via phase matching [102])
is achieved by the proper rotation of the crystal for a number of selected wavelengths. Lateral
beam displacement is eliminated by the simultaneous rotation of a compensator window in the
opposite direction. The UV pulses have <5 ns duration, a maximum pulse energy of ~1 mJ and
an estimated spectral width of ~0.4 cm™'.

The overall laser performance is found to depend on the good condition of the cuvettes that
should be frequently checked for damages which are almost invisible. Moreover, the Second
Harmonic Generation (SHG) setup was also frequently checked because it is not thermally isolated
and consequently the UV-output could vary with time due to non-constant thermal conditions

affecting the phase matching optimization.

2.2.2 Laser Frequency Calibration System

After the beam (fundamental and frequency-doubled) separation by the filter (UG5) the
reflected visible radiation is guided toward the wavelength calibration system, shown in Figure 19.
A part of the visible radiation enters a discharge lamp (Ne buffer gas) and the remaining radiation
passes through an Fabry-Perot interferometer, placed perpendicular to the incident beam. Finally,
a photodiode records the transmitted light signal which is guided towards the boxcar together with
the optogalvanic element (OGE) signal.

The optogalvanic effect refers to the voltage changes, typically observed in gaseous
discharge lamps, followed after the irradiation of the buffer gas [103]. These changes correspond
to electronic transitions for species in the discharge thus provide a one to one correspondence
between the radiation wavelength and the energy levels difference. In our case, the discharge lamp
voltage is either enhanced or decreased when our visible beam color matches an Ne electronic
transition which is identified in the catalog of Ref. [104] and thus provides absolute energy
calibration of the radiation wavelength. For example, a frequently used Ne line observed for
A~650.65 nm corresponds to the transition [He]2s23p®(2P°312)3s 2[3/2]°, J=1 — [He]2523p°(*P°312)3p
2[5/2]°, J=2 (lv=650.65281 nm).
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Figure 19. Schematic representation of the calibration experimental setup. The visible beam is guided
towards the optogalvanic lamp and a Fabry-Perot interferometer. The Ne optogalvanic spectrum and the
intensity modulation of the photodiode signal are recorded as the wavelength is scanned. Due to the high
reflectivity of the interferometer surfaces only a small percentage of the beam is transmitted towards the
photodiode.

Relative laser calibration is achieved with the use of a highly reflecting Fabry-Perot
interferometer. The transmitted beam exhibits intensity maxima, as the radiation photon energy o
varies. Within the paraxial approximation, the photon energy o values that correspond to maxima

are predicted by,

he

2L ngir ()| 1]

, hs=0.5,15.25, .. (106)
where L is the distance between the interferometer windows in cm units, 9, is the laser angle of
incidence, ¢ is measured in cm™ and h, a, typically large, half-integer that labels successive
transmission intensity maxima. In practice, we ensure that the angle of incidence is almost zero
(below 3 mrad) and employ the fact that the air wavelength nair is slowly varying [105] for limited
photon energy ranges. Then, the successive maxima are almost equidistant and equal to the free

spectral range FSR = o(h, + 1) — a(h,) = Experimentally, we employ three neon

OGE lines that lie near the energy range of interest (~15500 cm™) and have a maximum energy
separation of =300 cm™ (visible radiation). Then by scanning the laser wavelength and recording
the OGE and the Fabry-Perot interferometer signal, the local FSR is calculated to be 0.4729(2)

61



P. Kalaitzis Chapter 2

cm !, Note that this value corresponds to an effective FSR of 1.8916(8) cm™! for the final energy
of the two-photon excitation of a system with the UV radiation. The intermediate energies are
calculated by interpolation between maxima.

In conclusion, the calibration system provides the wavelength estimation within the accuracy of
~0.4 cm~! in the final energy which is more accurate than the wavelength calibration offered by
the laser system itself (accuracy of ~2 cm™" in the final energy).

The interferometer transmitted intensity signal also provides an estimation of the laser
spectral width. Indeed, the maxima profiles and width depend on the spectral width in addition to
the intrinsic interferometer characteristics that define the finesse [99]. Assuming that our
interferometer has infinite finesse and for a purely monochromatic radiation the intensity maxima
should have a Dirac comb intensity distribution as the energy is scanned. In this case, the maxima
spectral width is solely attributed to the laser beam spectral context. On the other hand, in the more
realistic non-infinite finesse case, maxima spectral width provides an estimated upper limit for the

laser spectral width, which for the used dye lase is found to be =0.2 cm™ for the visible radiation.

2.2.3 Velocity Map Imaging Spectrometer (Photoionization Microscope)

The study of atomic/molecular systems has been revolutionized by the emergence of
imaging techniques [106] that can provide a more complete set of observables than the previously
used techniques. Imaging refers to the measurement of the position of a particular product created
after the process under study. The apparatus which is typically used, namely the Velocity Map
Imaging Spectrometer (VMIS) [94] presents several advantages to previous imaging setups
[107,108]. The ejected species after the photoionization, photodissociation etc. process will impact
a position sensitive detector (PSD) at the point (p,p) while p is given by the simple formula,

T

where Vg the voltage of the first electrode T is the initial kinetic energy and q is the particle
charge. In the case of photoionization, the electronic 3-dimensional velocity distribution is
extracted by the 2-dimensional intensity distribution (transverse momentum) on the PSD by

several techniques [48,109,110,111]. For the low electron kinetic energies employed in this study,
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the observed quantity is proportional to the transverse momentum with respect to the
spectrometer’s axis [53] but the formula of Eq. (83) no longer applies due to the strong Coulomb
effect on the electron trajectory. Thus, the use of the aforementioned techniques in the search of
the initial 3D velocity distribution is limited.

Figure 20. Velocity map imaging spectrometer capture. The inner mu-metal foils are shown but the outer
shield is not yet plugged in. A vacuum flange holds the VMIS on stainless steel rods. VVoltages are applied
with cables that are connected to Safe High Voltage feedthroughs on the flange. Separate parts of the VMIS
are also shown from left to right: (i) The flange with the window and the connectors as vied from the outer
side. (ii) Same VMIS part captured from the interior side. The mounted detector and its connections are
visible. (iii) Einzel lens electrodes. Inspecting the aperture reveals the other two electrodes (iv) Three
electrodes setup, separated by ceramic cylinders. Small holes are formed between the first and second
electrodes to facilitate the laser and/or atomic beam insertion into the center of the spectrometer.

In our study we employ a VMIS in its original variant [94] with the addition of an
electrostatic Einzel lens for image magnification. This setup has been described in some detail in
[22,27,95] and is shown in Figure 20.

Let us first deal with the three-electrode structure comprising the laser-atom interaction
region without considering the peculiarities introduced by the Einzel lens. It is reminded that the
LAIR is located between the first two electrodes and is defined by the laser beam and the atomic
beam cross section. The solid Repeller and the annular (the hole diameter is ~20 mm) Extractor
and Ground electrodes are placed 19 mm apart from each other. Each electrode is biased at the
constant voltages Vr, VE and V=0 respectively with the use of a series of power supplies
(Stanford Research Systems, PS350).
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Figure 21(a) shows the equipotential curves formed by the electrode geometry. Under these
conditions, the inhomogeneous electric field that acts as an electrostatic lens for the charged
particles [95]. The curvature of the equipotential lines is determined by the applied voltages and
more specifically by the ratio Ve/Vr and for some specific ratio, all charged particles
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Figure 21. (a) Schematic three-electrode VMI setup similar to the used one. The equipotential curves form
a lens and collimate particles of same velocity vector on the detector plane. (b) Optical analogue of the VMI
operation. An ensemble of rays of three different inclinations with respect to the horizontal axis
(spectrometer axis) and emitted from different initial points, is shown. The Fourier plane coincides with the
detectors plane.

that have the same initial velocity vector will form a spot on the detector irrespective of their initial
position. This ratio is defined by the electrodes geometrical characteristics and the length of the
spectrometer and is referred as the VMI condition [95,112]. In addition, the VMI condition is
altered by the LAIR displacement in the direction of the VMIS axis. In our setup Ve/Vr = 0.68.
Using geometrical optics terminology, when the VMI condition is met, the focal length is exactly
equal to the lens-detector distance. This operation is shown schematically in Figure 21(b) where,
rays emitted from different locations of the LAIR zone but same orientation with respect to the
VMIS optical axis, are collimated on the focal plane. Taking the optical analogy one step further,
the detector plane intensity distribution (Image) is equal to the Fourier transform of the initial
ejection position distribution [95].

We should note however that the above described VMI conditions derives from first order

particle optics and it insufficient for compensating for extreme large LAIR extensions of very large
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kinetic energy bandwidths. In any case the LAIR must be kept as small as possible (a task that will
be addressed in the next subsection) and the VMI condition must be (experimentally) found in the
energy range of interest. Note that the VMI conditions are independent of the particle mass and
apply to both electrons or ions. Retaining the VMI condition but for increased field values (or
equivalently for increased Vr values) the acquired image will be scaled down without any
alteration of its characteristics. As we already mentioned the primary lens focal length depends on
the applied voltage ratio Ve/Vr. When this ratio approaches unity the focal length becomes smaller
than the interaction region distance from the center of the electrostatic lens. This operation mode
is called spatial map imaging [106] and allows for the projection and magnification of the LAIR
spatial profile on the detector [112].
Finally, the same spectrometer can be used for ToF measurements,

m

thus, allowing for atomic spectra acquisition or in related applications e.g. species distinction with
gated detection [94].

One of PM’s requirements is that the electron excitation energy is low enough so that the
De Broglie wavelength, the moment of its liberation, is compatible with the spatial resolution of
the spectrometer (or microscope). This is typically achieved for reduced energies lower than unity
(e<1), or for energies less than 25 meV (when typical field values ~1000 V/cm are used). These
so called almost “zero” energy electrons cannot be resolved in typical VMI setups and form a
bright spot on the center of the detector. Figure 22(a,b) shows the effect of the Einzel lens
magnification on our images. These slow photoelectron images correspond to photoelectrons of
about ~43 meV above the zero-field ionization energy, that is for an excitation energy well above

the requirements of PM.
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Figure 22. Slow photoelectron images after two-photon excitation out of the magnesium ground state.
Images are presented in linear color-scale. For a fixed repeller voltage (Vr), we achieve VMI focusing
conditions without (Figure 22(a)) and with the use of the Einzel lens (Figure 22(b)). The outer dimensions
of our detector are visible on both images. The high excitation energy (~43 meV above the zero-field
energy) does not allow for the observation of interference fringes.

The additional use of the Einzel lens, by applying appropriate voltages, can achieve up to

a 20-fold magnification of the original image without introducing any severe errors [95].
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Figure 23. Optical analogue of the VMI spectrometer (as in Figure 21(b)) with the additional use of an
Einzel lens. All rays of the same inclination with respect to the spectrometer axis are focused on the Fourier
plane. This image is magnified by the “Einzel” lens and is projected on the detector plane. and imaged on
the PSD detector.

This lens is located midway the field free space and consists of three identical annular

electrodes (the hole diameter is 10 mm) that are placed 7.5 mm from each other and are biased to
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voltages 0, V. and O respectively. The preferable mode of operation is the decelerating mode
meaning the polarity of V. is the same as Ve and Vr thus, the electrons are first decelerated and
then accelerated [95,96]. Then the VMI condition depends on both ratios Ve/Vr and Vi/Vr. In
practice we first set V./Vr and then adjust Ve to ensure focusing on the detector plane. The
typically employed ratio values are: Ve/Vr=0.73 and V/Vr=1. The optical analogue is shown in
Figure 23. Note that, it is extremely important to properly align the first three electrodes and the
Einzel lens electrodes because a small tilt leads to image formation away from the detectors center.

The entire VMIS is covered with two 1.5 mm mu-metal tubes in order to shield the interior
from the Earth’s or stray magnetic fields. An additional tube and a top hat of 3 layers (0.5 mm) of
mu-metal foils were added to shield the upper part (near the LAIR) of the VMIS. All the mu-metal
parts were treated in order to retain their magnetic properties by placing them near a radio
frequency source and pulling them away while the source was operating.

2.2.4 Atomic beam & Pumping System

The oven system is located above the main experimental chamber. Magnesium chips
(Aldrich 99.98%) are inserted inside the stainless-steel tube (see Figure 24) which is heated above
the Mg melting point (580 — 600 °C). During the heating process, the Mg vapor exits the thin
magnesium oxide (melting point of 2852 °C) coating that surrounds the chips which are collected
at the bottom of the oven. Heating is achieved by induction via an external oven (0.3 kWatt, 7A
max current) and the temperature is monitored externally by a thermocouple. The temperature
indication is several degrees lower than the achieved maximum temperature inside the steel tube
and is only used for reference purposes between experiments. An external closed water loop cools
the system near the top and bottom flanges and the oven reaches thermal equilibrium without
controlling the electric current through feedback loops. The cooling is efficient enough (<100 °C
near the flanges), allowing for the use of fluoroelastomer (FPM/FKM) O-rings which are easier to
install than copper ones. Generally, our oven produces a temporal stable thermal Mg atom flux for

large timescales, while being simple in design as compared to other atomic sources [113].
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Figure 24. Schematic oven system. Magnesium chips are inserted at the bottom of a stainless-steel tube.
The upper part of the tube is sealed with a flange, while the bottom part is connected to the spectrometer.
High vacuum is achieved via rubber O-rings. The dimensions of the external oven are marked by the dashed
line. A thermocouple measures the temperature at the outer side of the steed tube. The cooling tubes
surround the tube near the flanges and are connected to an external water loop.

Magnesium vapor enters the main experiment chamber that hosts the electron spectrometer
through an 1mm hole and forms a thermal beam that propagates downward. The atom velocity
distribution follows the cosine law [113] and this leads to an enlarged cross section with the laser
beam. This is apparent in Figure 25, where VMI images of the Mg* velocity distribution exhibits
a class of homogenous velocity orientation overlaid to a downstream velocity class. The former is
attributed to the formation of a local Mg vapor cloud inside the spectrometer that is responsible
for defects in our images. Nevertheless, the low density of atoms in the LAIR does not produce
any space charge effects. Different collimation techniques have been tried such as inserting plates
with apertures just above the spectrometer or after the oven hole but were not used for our

measurements due to the expense of extremely low flux in addition to the still poor collimation.

68



P. Kalaitzis Chapter 2

+
Local Mg vapor

Mg vapor
x~  directly from oven

Figure 25. Experimental image of the velocity distribution of Mg*ions. The static field vector is parallel to
the z axis. The oven system is located towards the positive y axis and provides the atomic beam. The laser
beam propagates toward the positive x axis. The center of the detector coincides with the center of the
presented image. Atoms that do not collide with any part of the spectrometer form a downstream velocity
class. On the other hand, scattered atoms form a local atomic cloud that exhibits a uniform velocity
orientation. Note that the velocity distribution is connected to the temperature via the Maxwell-Boltzmann
relation [99], thus the atomic class that is not scattered exhibit a higher temperature that the scattered one.

The pumping system consists of a turbomolecular pump (Leybold Turbovac TW 250S)
backed up by a rotary pump. Additional pumping is provided by a liquid-nitrogen cold trap placed
on top of the turbo pump. We achieve high vacuum (O-rings seals) i.e. ~5x1077 mbar when the
oven is not operating and ~2x10° mbar when the oven is hot and Mg vapor is produced
(experimental working conditions). The system is almost oil free (UV spectra with cold oven
suggest the presence of oil species that are not detectable under working conditions) while a
pneumatic valve (Leybold) has been placed in the turbo pump output to ensure good working
conditions after sudden power breakdowns.

2.2.5 Detection & Data Acquisition Systems

The produced ions/electrons are detected with a 2-dimensional position sensitive detector
placed at the end of the field free tube (electron spectrometer). The detector consists of an array of
two Micro-Channel Plates (MCPs) followed by a phosphor screen/anode. The MCPs are made out

of highly resistive material (~0.5 mm) with small apertures (channels) of ~10 um in diameter, that
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have some pitch angle (6—12 degrees). When an electron enters a channel, it strikes the wall thus
multiple secondary electrons are produced. These electrons are accelerated by the applied voltage
difference on the two faces of the plate and strike the opposite wall again producing further
secondary electrons. The two 50 mm diameter, tandem (i.e. opposite pitch angle directions) MCPs
plates (of either Hamamatsu, Tectra or Baspik suppliers) are placed in contact since they have the
same resistance (resistance matched). The input side of the first plate is grounded and the output
face of the second plate is set to some voltage (Vwmce, typically 1600 — 2000 V, Stanford Research
Systems PS350), thus a uniform voltage gradient is applied to the MCP set and a gain of ~10° is
finally achieved.

The screen/anode consists of a glass window coated with phosphor (the used phosphor type
has moderately slow fluorescence lifetime e.g. P46 type) overlaid by a thin aluminum coating.
Then the electrons produced by the MCPs are accelerated toward the screen. The anode coating is
biased to a higher voltage, Ven — Vmce ~400 V or ~2200 V, for ToF or imaging measurements

respectively. The detector is shown in Figure 26.

Mount Phosphor Ceramic Microchannel Metalic ring Ground
Ceramic screen/Anode Vv, "barrels" Vicrs plates  Ceramic in contact to the electrode
insulation electrode electrode "barrels" ground electrode

Figure 26. The figure shows the detector, captured at different stages of assembly, starting from left to
right. The phosphor screen rests on the ceramic ring and is overlaid by its electrode. Note that the voltages
are applied through the visible electrode pins. Four ceramic pillars and the ceramic “barrels” ensure that
there is no electrical connection between the anode, the MCPs and the grounded electrodes. The last ground
electrode is in contact to the front face of the MCPs. This detector has an effective area of =~4.5 cm in
diameter.

In the case of ToF measurements, a homemade decoupler module (E. Dimitriadis) is
inserted on the anode supply line and is shown schematically in Figure 27. The capacitor decouples
the electronic pulse signal from the high voltage dc offset and delivers the signal through a BNC
connector cable towards an analog gated integrator (Stanford Research Systems SR250). Then the

signal is integrated in the range of an adjustable time-window (gate) and exponentially averaged
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over the selected number of shots. The output signal is a slow varying dc voltage that is fed to an
oscilloscope and recorded by a homemade pc Labview program. The boxcar system is triggered
by the YAG laser Q-switch TTL output pulse. Note that the cable internal resistances greatly affect
the signal delivered by the decoupler. A visible ringing effect is observed in the ToF signal which
is attributed to the poor cabling choice but this does not affect our spectra due to the proper gating

on the signal maximum.

To Anode From power supply
Vpn -5 MQ Vpn
10 nF Capacitor
GkV) T

Zener diodes

~50kQ | ~60 pF

Output signal (—10 V)

Figure 27. Here is shown decoupler module circuit that was used for ToF measurements. The anode is
biased from the power supply through a large resistance for safety purposes. The connections are of safe-
high-voltage type for the power supply input and the anode output and BNC type for the output signal. The
capacitor separates the ~4 kV dc voltage from the electronic pulse signal which is guided towards an analog
gated integrator. The Zener diodes ensure that the absolute value of the output signal is less than 15 V.

For imaging measurements, the aforementioned decoupler is removed and the anode
voltage is inserted directly into the spectrometer (in principle the decoupler can be present even
when high voltage ~5000 V is applied to the anode but is removed for safety purposes). The
activated phosphor produces fluorescent bright spots that are recorded with a CCD camera and
transferred to a pc via a firewire cable. We use a Black&White (Allied Vision Technologies, F-
201B) camera equipped with a 1:2.8 zoom lens of maximum focal length of 50 mm (Tamron Japan,
C200915). The camera is mounted on a x-y-z translation stage with rotation capabilities in the
horizontal plane and is covered to minimize ambient light. Camera triggering is offered by a home-
made delay module (E. Dimitriadis) that is triggered by the Q-switch pulse and produces a delayed
pulse of adjustable width. This delayed pulse (delay~99.97 us) opens the camera shutter and
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controls the exposure time (exposure time~60 us) thus recording the phosphor fluorescence of the
subsequent laser pulse (10 Hz). The small pulse to pulse timing jitter is estimated to be of the order

of a few ns, thus it is negligible for the typically used exposure time.

2.2.6 Data Acquisition & Analysis Software

SCANMATE: The dye laser is operated through the SCANMATE (Lambda Physik) program.

The SHG crystal position must be calibrated before each experimental run by adjusting the crystal

angle for four or five equidistant wavelength values within the selected wavelength range. By
monitoring the SHG output intensity with a photodiode and controlling the crystal angle the UV
pulse energy is optimized at each selected wavelength. Then the SHG module is calibrated and
during a scan the computer interpolates the selected calibration points to rotate the crystal at the
correct angle.

During the scan, the wavelength is tuned within the selected spectral range (Start, Stop) in
selected increments (Step). After each wavelength increment the laser emits the selected number

of pulses (Counts) and subsequently moves to the next wavelength. Lower step values (0.001 nm

minimum) increase the resolution while higher count values (1000 maximum) improves the
statistical confidence but both introduce a time toll (e.g. for a 2.5 nm scan with a 0.001 nm step
and for 100 counts for each step a 7 hours scan is required).

Laser scan and data acquisition is asynchronous thus, it is important to be temporarily
matched. The delay time between steps is almost negligible for small Step values (<0.1 s).
However, this is not the case for the initial wavelength value (Start) where the grating and the
crystal may need some time to move to the correct position. For this we employ the capabilities
offered by the dye control system by selecting the initial grating position in order to correspond to
the starting wavelength and then start the scan together with the data acquisition.
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Figure 28. SCANMATE dialog window for scanning operation. The used doubling is of the KDP | type
(Figure shows the BBO-2 type). The initial and the final wavelengths are scanned in the 610 — 670 nm
range. Typical step and count values are shown. Note that the scanning mode is available after the
calibration of the crystal, which is performed in the Init submenu.

VMI ACQUIRE (Camera Driving Software): The image acquisition program “VMI Acquire”

(Per Johnsson 2009). Figure 29 shows the initialization window and the program environment.
The Trigger is provided externally (see camera triggering in the previous discussion). Two
acquisition modes are available namely the imaging and the counting mode. Imaging mode records
the intensity distribution of the phosphor bright spots which is distributed in several pixels. On the
other hand, in the counting mode and for each bright spot a single count is assigned to the pixel
that corresponds to the maximum of the intensity distribution of the bright spot. The latter mode
slightly increases resolution when a sufficiently large acquisition >10,000 is used. For our
measurements imaging mode was used, providing a good enough resolution in conjunction to

lower acquisition ~1-5x103,
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Figure 29. Camera driving software settings are shown in the upper dialog window. The lower window
shows a part of the acquisition program front face. The two display windows of the front face, show the
captured image (left large display window) and a selected part of it (right small display window). We use
the external triggering provided by the custom-made delay module (E. Dimitriadis). The number of
accumulated images is controlled by the Acquisition Control submenu.

Throughout our experiments we used two measurement types after selecting the number of
shots to be acquired (typically ~1000 shots): (i) Single images are obtained by selecting Acquire
and then pressing Save button. Images are saved in Raw format. (ii) Series of images are captured
sequentially by checking the Autosave box and selecting the Live acquisition mode. This mode
enables us to manually synchronize with the laser scanning and obtain an image on every laser
step. For a laser scan of 1000 counts and a step of 0.004 nm we set 1001 image shots Acquisition
and then monitor the synchronization (we may need to reduce the camera acquisition to 1000 shots

for some images during the scan).

IMAGEJ: Image processing and analysis is performed with the open source program ImagelJ
developed in Java programing language. Importing the raw images uses the parameters shown in

Figure 30. A major advantage of this program is the ability to perform the same operation to a
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series of images (Stacks). Below, we present a few examples that have been used for the analysis

of the magnesium experimental data.
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Figure 30. The figure shows some of the ImageJ software dialog windows and used plugins. Images in raw
format are imported be selecting the options shown here. The Process submenu contains useful build-in
commands such as the Image Calculator. This operation allows for subtracting (/adding/averaging/...e.t.c)
images. The Radial Profile Angle plugin settings may vary according to the image center position and the
desired radius of integration. Finally, the ROl Manager submenu is shown to highlight the Multi Measure
option that allows for measuring quantities on a Stack of images.

Images exhibit a fixed pattern noise (background) that can be eliminated by subtracting an
image obtained in the absence of signal. The background image is acquired at 2 — 5 times the
normal acquisition shots and then divided by that factor. Total integrated signal, center of mass or
maximum pixel value can be measured by the build-in analyze menu. The same quantities can be
computed for limited regions of interest (ROIs) that are defined in the ROI manager submenu
instead of the entire image.

The intensity profile as a function of the radius from a selected center namely the radial
profile, of a PM image is calculated by the “Radial Profile Extended” by Philippe Carl plugin. The
plugin produces a profile plot of normalized integrated intensities around concentric circles as a

function of distance from the center, with the addition that the script lets you choose the starting
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angle and the integration angle. This is also applicable to Stack images. A variety of ImageJ plugins
are accessible in Ref. [114].

Symmetrization of images is performed for visual purposes (no quantity has been measured
from a symmetrized image). First each image quadrature, with respect to the center, is duplicated
to create 4 new images. We flip the quadrature images appropriately with respect to the image axis
of symmetry and then average them. This final averaged quadrature is then used to reform a

symmetrized image by employing the combine submenu.

LabView® ION SPECTRA ACQUISITION PROGRAM: The boxcar signal is inserted into an
oscilloscope (LeCroy 9310C, 400MHz) and recorded via a LabView® homemade program [115].

The interface is presented in Figure 31. The program averages the two signals over the selected
sweeps and appends them into two columns on the final name given. The signals should not exceed
the maximum visible value on the oscilloscope screen. The acquisition starts and pauses after

pressing the start/stop buttons.
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Figure 31. The interface of the custom-mage LabView program (A. Koulouklidis). The program integrates
the signal over the gate shown in the bottom of the interface (our signal is slowly varying dc signal provided
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by the analog integrator). Note that the button Store Values 1 is checked and only one gate is used (generally
three gates are possible). The number of sweeps and the laser repetition rate (10 Hz) determines the delay
time (an additional time delay of 0.1 s is required for the program to store the values to the data file).
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2.3 Experimental procedure

Experimental measurements require the preliminary steps listed below and then we proceed
to the actual measurements. The preliminary experimental steps consist of: Raising the oven
voltage (>6 mA) gradually and wait about 1 hour for the temperature to be stabilized. Initiate the
laser following a given protocol and wait for the ultraviolet output to stabilize (total 2 hours). A
constant stream of Mg vapor and the laser radiation are ready to be used. In general, experimental
runs were time consuming due to the waiting time towards thermal stabilization of the systems and

the low acquisition rate determined by the laser repetition rate.

2.3.1 Mg" lon Spectra

The total cross section of the laser atom interaction is obtained by collecting the positive
ion signal (Vr, Ve >0) for the selected field value F. The voltage ratio is typically chosen near the
VMI condition(s) 0.68 or 0.73 in order for the measurements to be compatible with acquired image
sets. The ions travel in the field free tube and reach the detector at the time of flight. The typical
detector voltage values are: Vmcp=1600-1800 V and Vpy=2000-2200 V. Both OGE (Ne lamp) and
ions signal are inserted into a boxcar module (Stanford Research Systems, SR235) allowing for
outputting either the latter or the former signal.

We simultaneously start the laser scan and the LabView acquisition program and record
the OGE/lons signal together with the Fabry-Perot intensity fringes. After a strong Ne reference
line is recorded, we change the output to the ions and record the rest of the spectral range. The
used calibration lines lie below the Esp for the typically used static field values and the ions spectra
is not affected. The laser beam is blocked at the end of each scan for the determination of the zero
signal. Calibration is performed offline by using the recorded Ne line and the Fabry-Perot fringes.

2.3.2 Alignment Procedures: Imaging the Laser-Atom Interaction Region

The voltages applied to the Repeller/Extractor electrodes of the VMI spectrometer greatly
affect the focusing conditions of the spectrometer. In the special case of almost identical voltages
Ve/Vr~1 the detector images the position of the interaction [106,112], instead of the initial particle

velocity. In fact, the LAIR is magnified according to the applied voltages and the laser position
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along the spectrometer axis (z axis). However, this technique of spatial map imaging is used for
alignment purposes and the exact dimensions are not of importance in the present study.

Setting the ratio Ve/Vr =0.998 for either positive or negative voltages, we observe a bright
line on the detector that is moved in the vertical direction as the laser beam is vertically displaced.
Figure 32 presents a series of overlaid images (electron imaging, negative voltages) as the beam
is displaced vertically. Note that the bright lines form a round disc-shaped shadow, that is attributed
to the projection of the geometrical shadow of the Einzel lens electrodes. This is visible for both
electrons or ions imaging. The beam is considered aligned when the bright line is formed in the

center of the Einzel lens shadow in the vertical direction.

Figure 32. Laser-Atom interaction region electron imaging. Each horizontal line corresponds to a single
LAIR imaging for a fixed laser position. The laser beam is then displaced vertically and the all images are
overlaid together. Note the formation of disc-shaped shadow, that is attributed to the geometrical shadow
of the Einzel lens electrodes.

2.3.3 Imaging — Photoionization Microscopy

In order for the electrons to form fluorescent spots on the phosphor screen, the detector
voltages are set within the ranges: Vmcp=1600-1800 V and Vpn=4000-4200 V. Then for a
predetermined Vr<0 value and V=0, we search for sharp images by adjusting the extractor voltage

near the Ve ~0.68 Vr. The correct ratio is a function of the laser position along the spectrometer
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axis, thus it must be adjusted after each beam alignment. A sharp image without magnification is
shown in Figure 22(a). Then the Einzel lens voltage is gradually increased until the maximum
predetermined value V<0 that determines the magnification of the original image. At each step
the extractor voltage is adjusted (for low lens voltages images cannot be formed on the detector
[95]) until we finally observe a sharp magnified image near the extractor voltage Ve ~0.73 Vr
(Figure 22(b)).

Images for different polarization orientations are obtained by fixing the laser radiation
wavelength. Then an image is acquired for each A/2 rotation angle (minimum step 2 degrees
leading to 4 degrees of polarization vector rotation). These sets also provide an absolute calibration
of the polarization angle e.g. by examining the glory signal or/and the barycenter of the images
with respect to the image center (see polarization discussion).

Series of images were recorded as the laser wavelength was scanned, after “synchronizing”
it with the camera (see the discussion on section 2.2.6). The polarization orientation is kept fixed
during the image series acquisition. For extremely large energy ranges, the KDP crystal was
recalibrated whenever the pulse energy dropped. The Fabry-Perot intensity fringes were recorded
simultaneously and the absolute calibration is based on an OGE spectrum after the last scan of

each experimental set.

Figure 33. (a) Slow photoelectron image for the two-photon excitation out of the magnesium ground state.
The laser field polarization is parallel to the static electric field. The focusing lens is placed outside of the
spectrometer (f=25 cm). (b) Slow photoelectron image for the four-photon excitation out of the magnesium
ground state with z-polarization. Again, the focusing lens is placed outside of the spectrometer. (c) Slow
photoelectron image for the two-photon excitation out of the magnesium ground state with z-polarization.
The used in-vacuum lens has a focal length of f =5 cm. Both the four-photon excitation scheme and the
stronger focusing by using an in-vacuum lens eliminate the coma-like defect of the images by effectively
reducing the extension of the LAIR.
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Let us finally address the defects observed in the experimental images of Figure 33(a). The
first refers to the intensity deficiencies caused by scratches on the MCPs surfaces that were
introduced during the detector’s assembly by the users. It was found that this defect has little to no
effect on the radial profile obtained from the images due to the fact that radial profiles are
insensitive to small deficiencies extending to different radii with respect to the image center. In
measurements concerning images for different polarization orientations (where the radial profile
is less relevant) the surface of the detector used was in perfect condition.

The most striking error is a coma-like extension of the intensity [116]. This is attributed to
the large spatial extension of the LAIR in the direction of the laser propagation, at least compared
to the suitable one for the “first order” VMI condition to apply. The electrons produced far from
the electrode aperture center cannot be focused efficiently and produce a blurred copy of the
focused image [94]. Three approaches can treat this issue namely the reduction of the LAIR by:
collimating the atomic beam, selecting higher order multiphoton process and finally strongly focus
the laser radiation. The first approach is the most suitable because it provides the best
determination of the LAIR but it is not used due to lack of appropriate equipment. The second
approach is not suitable for the particular study which is devoted to the non-resonant two-photon
excitation. For example, in Figure 33(b) a four-photon excitation is employed to demonstrate the
achieved minimization of the error. Finally, the third approach i.e. the introduction of an in-
vacuum lens of 5 cm focal length, is employed to reduce the error. The LAIR is assumed to be
almost equal to beam waist that — for a nearly Gaussian beam profile — is proportional to the
squared focal length of the lens. Figure 33(c) presents a two photon PM image using this setup. In
general, the laser beam diameter reduction via pinholes (selecting the central part of the beam and
subsequently reducing the pulse energy) produces better quality images. The radiation pulse
energy was continuously monitored with a joulemeter and its value was within the range 0.2-0.1
mJ/pulse in the LAIR.
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Chapter 3: Results & Analysis

3.1 Near-Saddle-Point Images of H and Mg Stark States

3.1.1 Magnesium lon Spectra & Stark Maps

The discussion on the effects exhibited by PM images near the saddle point energy would
be greatly facilitated by a preceding brief presentation of the two photon Mg Stark spectra recorded
in the vicinity of Esp and above for the static fields F~700 V/cm of interest (principal quantum
number n~30 and well beyond the I-mixing range). In fact, our aim here is not a detailed
spectroscopic study devoted on energy level positions and lineshapes but, instead, the
identification of the gross near-saddle-point spectral features. Typical two-photon Mg+ spectra out
of the Mg ground state for z- and o-polarization are presented in Figure 34 (a,b,c). These schemes
populate m=0 and |m|=0,2 states, respectively. The laser pulse energy was reduced in order to avoid
saturation effects. Under such conditions, the Mg" signal (black solid line) is proportional to the
total ionization cross section otwt. The latter typically exhibits a negligible signal below the saddle
point energy, while above it we observe a series of almost equidistant spectral lines build upon a
slowly varying background signal [68,71]. This background is attributed to the simultaneous
presence of continuum states along with the resonances. The profile of the background is
apparently different for the z- and o- spectra. The smallest recorded Stark resonance linewidth is
~0.5 cm™, but in the spectra of Figure 34 the majority of observed spectral lines exhibit linewidths
of ~1 cm™ (or even higher). This fact, in conjunction with theoretical calculations of ot [92] imply
the presence of several unresolved resonances within each spectral line. Furthermore, the - and
o- spectra exhibit resonant lines at almost the same locations, but with occasionally different line
profiles. This quasi-degeneracy of |m|=0 and 2 resonances has been predicted by earlier semi-
classical theoretical works and occurs for either hydrogenic or multielectron atom near-threshold
Stark spectra [62,65,117]. The observed spectral lines are affected by the inhomogeneity of the
electric field within the LAIR volume that introduces an additional spectral broadening.

83



P. Kalaitzis Chapter 3

2
| @ polarization | & polarization
Mg" Mg’
_ -
l_ »
=] = 1+
s . i &
.'-.
1 -~ (b)
0+ 7 01— 7
-170 -165 -160 -155 -150 -170 -165 -160 1—155 -150
Ecm’ Ecm
4
3
s 27
o2
1 -
(a)
o +r—-_4r—11—T——T—1
-160 -150 -140 -130 -120 -110 -100 -90 -80
E (cm™)

Figure 34. (a) Mg* signal (black line) for the z-polarization two-photon excitation scheme. This m=0
spectrum exhibits a series of narrow spectral lines overlaid on a slow varying but oscillating background.
(b) Yet another two-photon ion spectrum near the Es, energy range, obtained by employing the same
excitation scheme as in (a). Also shown, the integrated electron signal (red points) of PM images recorded
with identical conditions but reversed polarity of the spectrometer electrodes. (c) Mg* signal and integrated
electron signal recorded by using a o-polarization two-photon excitation scheme.

Reversing the polarity of the voltages applied to the spectrometer and retaining otherwise
identical conditions allows for obtaining electron images. Then the (angularly and radially)
integrated electron signal of the images (red points in Figure 34(b,c)) provides the total
ionization cross section oot i.€. the obtained information is equivalent and apparently identical to
that obtained by the Mg* signal. In fact, differences occur solely for the weak resonances extremely
near the Esp, where the line intensities of electron signals are higher than their Mg* counterparts.
This is probably attributed to the low sensitivity of our ions detection method when extremely low
electric signals are involved.

More information can be obtained by studying the total cross section by means of the so-
called Stark maps [14,28,92,118], consisting of E-F representations of oot revealing the evolution

of energy levels as a function of the static field strength. Stark maps occasionally uncover striking
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effects which are otherwise hindered in single spectra. Building the Stark map requires the
recording of the Mg* signal as a function of the excitation energy for different values of F.
Although Stark maps were more frequently employed for the E<Esp range [28], in this work we
have studied the E>Esp range which is, at least presently, the only relevant one for PM studies. The
resulting map for two-photon excitation out of the magnesium ground state and with z-polarization

is presented in Figure 35.
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Figure 35. Stark map for the two-photon excitation out of the magnesium ground state and with z-
polarization. The contour plot includes Mg* spectra for twenty field values in the shown field range. Also
shown are the classical saddle point energy (black dashed line) and the positions of the SFIS (red dashed
line).

The energy calibration of the spectra is performed as discussed in section 2.3.1. and the
energy step for all scans is the lowest available by our laser system (~0.1 cm™). The field strength
is varied by changing the electrode voltages. The voltage Vr is varied within the (3500 — 4500 V)
range while the voltage ratio is retained constant Ve /Vr=0.72 (near to the VMI condition for
magnified images). The absolute field calibration is based on the fitting of the p&.,, (E) function

(Eq. (26)) to the outer radius of images acquired under the same conditions for selected Vr values.
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The relative field calibration between adjacent spectra is based solely on the applied voltage
differences [118].

The examination of Figure 35 reveals that, the transition from negligible to strong ion signal
is fairly well described by the classical Esp curve (dashed black line). It is interesting to note,
however, that the resonances which are just below Esp (i.e. in the absence of any continuum) ionize
necessarily via tunneling, like the hydrogenic resonances.

Further, the energy positions of the observed sharp lines generally evolve in a complex
manner. These maxima appear almost on the same energy for some field ranges while for others
their behavior shows evidence of the existence of avoided crossings [28]. Additionally, the map
clearly displays the formation of envelopes that modulate the intensities of these sharp spectral
lines. This behavior was also observed in the Mg-Stark spectra of Ref. [68,71]. Interestingly, the
envelopes are blue-shifted with increasing F and their centers are very well predicted by the
guantization condition Eq. (30) that in turn is connected to the energy positions of the SFIS. This
is a rather unexpected result because up to now SFIS were mainly studied within the positive
energy range. Thus, the present results imply that the notion may still exist at negative energies
where static field induced structure could coexist with TS. Alternatively, the aforementioned
quantization condition could simply characterize the ni-channel openings. This is not very
probable however, because the envelope formation characterizes solely the m=0 spectra while it is
difficult to observe in the |m|=2-dominated ones obtained with o-polarization (as is the case for the
positive energy SFIS [63,64]).

3.1.2 Near threshold Photoionization Microscopy Images

3.1.2.a Hydrogen Atom

Having presented the characteristics of Mg-Stark spectra near the saddle point energy, we
now proceed to the discussion of the corresponding near-threshold PM images of Mg and
particularly those showing resonant characteristics. For comparison purposes, however, it would
be instructive to expose first the structure and energy evolution of the relevant hydrogenic near-

threshold PM images. To this purpose, we begin here our discussion by a presentation of an ex-
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ample concerning the resonant and non-resonant effects emerging in the vicinity of the hydrogenic
quasi-bound (n1,n2,m)=(2,27,0) Stark state. The latter state was studied fairly recently, both
experimentally [24] and theoretically [26], while we have already presented the relevant wave-
functions in Figure 8 of section 1.2.1.

Experimentally this state was reached via a single photon transition out of an n=2, m=0
excited state using z-polarized light. In our theoretical modeling, I-mixing in the initial state due
to the presence of the static field [14,24] is simulated by the use of the semi-parabolic states
namely, we employ either the state (2,0,1,0) = 27%2[|2s) + |[2pm=0)] Or the (2,0,1,0) =
271/2[|2s) — |2pm=0)] ONe. In fact, the latter state led to PM images that did hardly exhibit any
resonant effects because the excitation strength of the resonance proved to be comparable with that
of the continua [27]. This observation implies a strong dependence of the resonant manifestations
on the initial state.
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Figure 36. (a) Hydrogenic total cross section for one-photon excitation out of the |2,0,1,0) initial state to
m=0 final states. F=808 V/cm. The spectral line located at e=—0.9564 corresponds to the (2,27,0) Stark
resonance. (b) J,,,, images computed for v4=1000 au, below, on, and above the resonant energy. The
resonant image shows an additional dark fringe and an enlarged image size as compared to the non-resonant
images. (c) Linear scale contour map of the radial distribution R(e,p) in the vicinity of the resonance.
Hatched areas denote intensity cuts. Also shown are the maximum classical radius pS,, (White dashed line)
and the secondary bow radius pi (white dotted line), calculated under the same conditions used for R(e,p).
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Therefore, in accord to [26], we discuss below the results obtained using the (2,0,1,0) state
for F=808 V/cm and v4et=1000 a.u. (zder=—25 pm). The total ionization cross section ot IS shown
in Figure 36(a) and consists of a strong spectral line, corresponding to the (2,27,0) resonance, build
upon a weak background. Figure 36(b) presents images for energies below, on and above the
resonant energy. These images accurately reproduce the corresponding experimental data of Ref.
[24] that are presented in Figure 37. The experimental images show no angular dependence as
expected for the m=0 final states. The enlarged number of nodes and the increased size of the on-

resonance image is striking.
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Figure 37. The authors of Ref. [24] kindly allowed for their figure to be presented in this thesis. “Evidence
for on-resonance ionization by tunneling through the Coulomb + static field potential. A comparison is
shown between a measurement carried out for the (n,n,,m) = (2,27,0) resonance (b) and two non-
resonant measurements performed 1.8 cm™ below (a) and 1.1 cm™ above (¢) this resonance.”. “The
normalized radial distribution of the on- resonance measurement containing three maxima extends
significantly further outward than the two off-resonance measurements which show only a single maximum
(d). The inset in (d) shows a comparison of the radial extension of the experimental images, defined as the
position of the outer maximum (color triangles) and the theoretical radial extension (blue, solid line)
according to the classical formula ...” More details are given in FIG. 4 of [24].

Let us now examine the contour plot of Figure 36(c) that shows the radial distribution
R(e,p) of Eq. (71) in the neighborhood of the resonance. The channel thresholds (see Eqg. (50)) of

. Eg) .
interest are: ) = | thr = 0.99, gy = -0.97 and g7 = ~0.95. Let us first assume the absence
ESpl r r

of resonances and consider a given energy ¢, for which there are solely continua with quantum
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0 ; nf,m nY+1,m .
numbers 0<n<n7. Then it holds that, &, < & < &, and the summation of the electron

current probability density (Eg. (70)) runs only up to n? and the corresponding X, (x) wave

functions  contribute  to  the image  with  comparable  weights, ¢, , =

dnl,meim‘/)ei[gnlrlml(“def“‘l’nl'lml]. Then the interferogram exhibits up to n{ dark fringes and for

large p values is dominated by X0 (x) [22]. For example, the first and the last image of Figure

36(b) and their corresponding radial distributions lies in the range ;> < & < &2 and exhibits 0

and 1 nodes (<n?=1), respectively.

Consider now the presence of a quasi-bound state with quantum number ni®®, as in our
case where ni®® = 2 for the (2,27,0) resonance. It turns out that for the chosen initial state the
weight |Cn{es'mres| of the quasi-bound state is about an order of magnitude larger than the weights

of the continua and this is also evident in otwot. Thus, the on-resonance image and radial distribution
of Figure 36 exhibit the resonant features, i.e. n]®® dark fringes and an increased image size due

to the dominance of X,,res(y) in /.. Note that, by definition n7*® > n{ and this condition leads

always to an increased number of dark fringes and outer image radii due to the dominance of

Xyres(x) in Eq. (70). From another perspective, these effects are attributed to the electron escape

via tunneling, which is the only ionization mechanism of the hydrogenic quasi-bound states
[11,25,30].

Turning now our attention to the non-resonant radial distributions, it is interesting to note
that the contour plot reveals that outer radii of non-resonant R(e,p) distributions increases

monotonously but in a stepwise manner. Indeed, the distribution increases abruptly just above each

n{,m

channel threshold (at the energy ¢,

+Ag, with Ae=0.005) and subsequently its extension remains
almost constant.

This constant outer radius between channel transformations to continua and the stepwise
non-resonant energy evolution of the outer radius are features typically characterizing the e~-1
range. It is noted, however, that in some other calculations the constant radius effect still persists
while the sudden jumps are not always observed. In any case the behavior of the outer image radius
differs radically from the classical predictions. For example, Figure 36(c) also shows the classical
secondary bow radius pu(e) (white dotted line) and the classical maximum radius pS..(e) (white

dashed line), for the same F and vdet. These classical curves don’t exhibit the aforementioned

89



P. Kalaitzis Chapter 3

stepwise evolution. Moreover, pSl.. systematically overestimates the non-resonant outer radii

ng’m+Ae

while p; matches the R(e,p) outer turning point at the beginning of each step, i.e. e=¢;

3.1.2.b Magnesium Atom

With the above discussion in mind, let us now turn our attention to our experimental data
concerning the magnesium atom. Our measurements are summarized in Figure 38. Figure 38(a)
shows a selection of non-resonant experimental images that display the well-known monotonous
increase of the number of dark fringes with energy (intensity radial nodes (zero signal) are
displayed with white color in the image color-scale). The o-polarization, two-photon excitation
scheme (Am =x1 per photon) populates [m|=0,2 Mg states. Note the clear difference in the angular
distribution between the lowest energy image and the images at higher energy. Indeed, the lowest-
energy images are disc shaped and show no angular dependence, signaling the exclusive excitation
of m=0 states. However, for energies higher than E~—155.5 cm™!, all images exhibit a cos?(2¢)
(cross-like) angular distribution that is distinctive of the |m|= 2 character [27,30]. In an attempt to

quantify this transition phenomenologically, we employ the angular function,

s(@) = J, Joge: (@:)dp . (109)

More specifically, in Figure 38(b) we present the ratio s(45°)/s(90°) which is expected to
be equal to unity for pure m=0 states and zero for pure |m|=2 states. The curve is equal to unity for
energies lower than =~~155.5 cm™!, and subsequently exhibits a rapid decrease. This observation is
consistent with Eq. (27) predicting Es, = ESCII)_m=0 < Eg,_m:z and a well-defined (but field
dependent) energy difference. These criteria, together with a first estimate of Esp based on the
energy of the first image where a quantifiable signal could be obtained, lead to a field
determination of F=680+10 V/cm. The corresponding saddle point energies ESC%,'O, E;E,'Z, for this
field, are shown with dashed-dotted lines. Thus, Eq. (27) is validated on the basis of angular
distributions. This compares well with the results of earlier methods based on m-dependent field
ionization thresholds of individual Rydberg states [58,119]. Finally, the m-beating arising from

multiple-m excitation (see section 1.3.1) is manifested as a difference in the fringe contrast along
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the vertical and the horizontal orientation [27,30]. Apart from this weak beating effect, however,

the recorded images show a dominance of the |m|=2 character over the m=0 one.
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Figure 38. (a) Near-threshold symmetrized images recorded with o-polarization (Jm|= 0,2 final Stark states)
at selected energies, marked with arrows. Symmetrization is applied for signal-to-noise ratio improvement
and is described in section 2.2.6. The gray scale is stretched from zero (white) to 100% (black) for each
image. (b) Ratio s(p=45)/s(p=90") of the angular factor defined in Eq. (109). (c) Near-threshold total
integrated electron signal (o-polarization). Each point corresponds to a recorded image. (d) Outermost
deflection point of P¥?(p) (defined in the main text) for o-polarization (black circles, solid line) and 7-
polarization (crosses, dashed line). The open triangle denotes the energy location of a quasi-bound state
whose image and radial distribution R(p) are given in Figure 39. Vertical dash-dotted lines denote the
estimated m-dependent saddle point energies.
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Images are acquired with an energy step of ~~0.3 cm™ and the total integrated signal (<atot)
is plotted in Figure 38(c). The spectrum shows a series of broad spectral lines overlaid upon a
slowly varying background (see section 3.1.1). The apparent resonant-to-background ratio is about
~ 2:1. The corresponding z-polarization spectrum obtained from disk shaped images (only m=0
final states), presents resonances at almost the same locations to those of Figure 38(c) but with a
slightly lower resonant-to-background ratio. These degeneracies are also to be expected for the,

EN™=2and £+ ™=0 channel thresholds [70]. Note that several minima of the ratio shown in
Figure 38(b), characterize |m|=2 resonances and lie very close to the resonant maxima (more
accurately, on the blue side of maxima) of the spectrum.

Having that in mind, let us quantify the extension of the images in fashion similar to that
followed in Ref. [70]. Thus, in the present work the radial extension of each image is defined as

?[p2(p)]

the outermost deflection point of PY2(p), that is, the outermost radius for which d Froa 0.

This choice is based on the fact that for p—co, and consequently y—ow, PY?(p) —)|anlnax,|m||, where
n"®* denotes the larger value of n1 for which the corresponding wave function contributes to the
interferogram with a significant weight |Cn1,m|- Therefore, the outermost inflection point
corresponds to the outer turning point pyp of Xp,max ... It is noted that in [22] a different definition
was employed that was based on the outermost deflection point of P(p) instead of P¥2(p).
Irrespective of the exact definition, however, the inflection points are independent of the
magnitude of P(p) and consequently of otwt. Following the earlier discussion of this section on
hydrogenic near-threshold images, in the absence of resonances n®®*(E) = n?(E) and the py
curve may probe ni-channel openings. However, in the case of the presence of a fairly strong
resonance, n"®* =ni®**(>n7) and consequently pyp should correspond to the extension of
Xpres ;) Wave function, expected to be larger than the extension of the continuum states.

The pyp is plotted in Figure 38(d) for the o-polarization case (black solid points), which, as
already mentioned, is dominated by the |m|=2 states. The ni-channel mixing of the latter states, is
expected to be weaker than in the m=0 ones, due to the weaker penetration of the excited electron
to the ionic core (see section 1.2.4). In other words, the conditions are rather favorable for the
magnitude |Cn{es‘mres| of some resonant weight, to be higher than the magnitude of the non-
resonant weights, in order for the resonant signatures to be observed even in the presence of the

“parasitic” m=0 electron signal. The pt energy evolution is generally monotonous (within error
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bars) but occasionally discontinuous (see the evident steps at =155 and ~~149cm™!). This steplike
behavior is resolved due to the small energy step employed in our study and seems to persist with
increasing energy. However, the reduced contrast at higher energies makes it difficult to analyze
and comment each separate step. As mentioned above in the hydrogenic example, the occasional
occurrence of py may probe ni-channel openings which occur in the neighborhood of each E&lr'm
threshold. For example, the abrupt increase of pyp, located at =—155 cm™! corresponds to the opening
of the |m|= 2, n1 = 0 channel (and also of the quasi-degenerate |m|= 0, n1 = 1 one). On the other
hand, the |m|= 2, ny = 1 channel opening that, according to the hydrogenic trends, would be
expected at ~153cm™! is not observed. Apparently, the particular initial state and excitation
scheme determines which of the jumps will be resolved, a statement that is also true to the
hydrogen atom [27].

More interesting are the few cases where the turning point radius evolves non-
monotonously and peaks near the maxima of the spectral lines of owt. Experimental [21,22,23,70]
as well as theoretical studies [11,25,30,33] in addition to the hydrogenic example presented above
links this behavior to the presence of quasibound states ionizing mostly by tunneling (resonances).
For clarity we do not deal with the cases of Figure 38(d) where the turning point modulation
amplitude is rather small as compared with the estimated error bars. Instead, we comment on the
clearly manifested peak of py located at ~—146.4 cm™! lying between the estimated locations of
the ny =2 and ny = 3, (J/m|= 2) channel openings. This maximum occurs slightly on the blue side of
the corresponding resonance of ot and it is absent in the py curve recorded with z-polarization (x
points in Figure 38(d)). This curve exhibits a weak local maximum around —147 cm™! and a dip
around the energy of interest. This structure could stem from the ni-channel openings and/or the
presence of an m = 0 resonance located at =~147 cm™!, but the inspection of the corresponding m
= 0 images is inconclusive. In any case, we confidently conclude that the non-monotonous
behavior of the o-polarization pip(E) curve at =—146.4 cm™! probes an |m|= 2 resonance based on
the absence of a strong pt, peak and the clear minimum observed in Figure 38(b) at this energy in

the z-polarization spectrum.
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Figure 39. (a) Symmetrized images and (b), their corresponding radial distributions recorded with o-
polarization in the vicinity of the quasi-bound state at —146.4 cm™' (see main text and Figure 38). For each
image in (a), the gray scale is stretched from zero (white) to 100% (black). On the other hand, the y-axes of
(b) are meaningful and denote the relative magnitudes of R(p). Also shown in (b), the derivatives dR/dp
(dashed line) and the relevant n7®® and n{ numbers. The derivative of the resonant energy exhibits an outer
turning point at p~57 arbitrary length (white-head arrow). This signifies the presence of a weak outer
“bump” in the radial distribution and an outer halo in the corresponding image. Note that the n; = 3 channel
opening (E =—145.0 cm™) is characterized by the onset of appearance of an additional fringe at p< 50
arbitrary length units.

Figure 39 shows images (Figure 39(a)) and their corresponding radial distributions (Figure
39(b)) in the vicinity of the resonance. Starting from bottom to top we present the images below
(—147.1 cm™), on (—146.4 cm™!) and above (—145.5 cm™!, —145 cm™!) the resonant energy. Note

that the resonant image exhibits an outer halo that is translated into an outer bump in R(p). This
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feature effectively “pushes” the outer turning point to higher distances and is responsible for the
pp peak in Figure 38(d) near the resonant energy. Nevertheless, the expected appearance of
additional bright fringes, (typically one, implying ni"® = ni®® = n? + 1) is not apparent by
visually examining the radial distributions. For that purpose, in Figure 39(b) we also plot the

derivatives d[Z—po)], denoted with black dashed line. Note that these curves exhibit roots

corresponding to extrema of R(p). Interestingly, the derivatives also exhibit an extremum at p~57
arbitrary length units (alu). This is marked with an arrow and is attributed to the partial formation
of an additional node of R(p). This extremum is present in the whole —147< E<—145.5 cm™ range,
but it is clearly visible for E= —146.4 cm™ while it is hardly visible in non-resonant derivatives.

Apparently, the resonant character, as quantified by the weight |Cn{es,mres|, is spread across the

spectral line and peaks at the resonant energy. This result is in accord with earlier studies where a
similar resonant spread was reported [22]. For E > —145 cm™!, the aforementioned derivative
extremum disappears and instead we evidence the appearance of an additional fringe located at
p<50 alu (more apparent in subsequent images at higher energies) together with the accompanying
increased radial extension which signals the next ni-channel opening. Apparently, the observed
resonance corresponds to n1® = 3 and it is the last quasi-bound state before the n1=3 channel is
transformed to a continuum channel.

The above, rather faint, resonance manifestation was also traced as a function of the field
strength. Specifically, we recorded similar image sets for field values up to £5 V/cm apart from
the field employed in Figures 38 and 39. These measurements showed a greatly reduced outer halo
and this observation implies a strong dependence of the resonant-continuum coupling on F, as

already predicted by the earlier theoretical work of Ref. [33].
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3.2 Radial distribution Maps of Magnesium & Related Observables

3.2.1 Radial Distribution Maps

Here we study the energy evolution of the radial distributions R(e,p) as defined in Eq. (71),
for the experimental magnesium images and subsequently compare them to hydrogenic
calculations. The linear laser polarization is parallel to the direction of the static electric field and
we excite m = 0, magnesium final Stark states via a two-photon scheme, out of the ground state.
The used VMI conditions achieve a ~20-fold magnification of the images that have the size of few
mm (~20 mm for &=0). Figure 40 shows a series of typical high acquisition non-resonant PM
images within the whole energy range of interest. The observed energy evolution is in accord with
the earlier studies [18,22,24]. This single image presentation, however, is not truly demonstrative
of the rapid variations exhibited by its different image parts as a function of energy. Moreover, the
full set of experimental data consists of about 1000 images and it is meaningless to be presented
in this form. For these reasons, the radial distribution of each image is plotted as function of energy
in a common contour plot, which is referred to as the radial distribution map.

The m=0 experimental total cross-section and radial distribution map recorded in
magnesium atom in almost the full =1 < ¢ < 1 range is shown in Figure 41(a) and 41(b),
respectively. Parts of the same map are given in greater detail in Figure 41(c) and 41(d). The
images (an example of which is shown in the inset of Figure 41(c)) were recorded at a constant
energy step of E= 0.4 cm™' (¢ = 2x107%). The static electric field was estimated via a number of
different methods. A first estimate was provided by the n; = 0 and n; = 1 channel openings. Next,
at positive energies we have compared the observed “frequency” of glory oscillations to the one
predicted by hydrogenic theory. Finally, the outermost turning point radius of the high energy (E
>—50 cm 1) radial distributions were fitted to the analytical expression for pg 4, (¢) [11,16,52] (Eq.
(26)). All the methods converged to a field value of F =680+10 VV/cm, which is used for calculating
the reduced energy ¢, given in the upper x axes of Figures 41(a)—41(d). The radius p of all the maps
is scaled to p&,,(¢=0). In fact, at ¢ ~ 0 this radius is slightly larger than the classical secondary-
bow radius pi (¢=0) by a factor of = 1.01. By employing this ratio, we found a refined experimental

value for pg',,(¢=0) and scaled our radius p to it.
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Figure 40. Symmetrized PM images recorded with z-polarization within a large energy range. The static electric field strength is F~680 V/cm, leading to an
estimated saddle point energy of Eg,~ — 160 cm™1. The linear color scale is stretched for each individual image from zero (black) to the maximum intensity

value (white). The images exhibit a monotonously increasing size as a function of energy. Note that the indirect fringe system is barely visible but the direct fringe
system manifest itself as the dominant feature of the image, along with the glory and bow signals.
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Figure 41. (a) Experimental total two-photon excitation (z-polarization) cross section of Mg out of its 3s?
ground state and under the presence of an F= 680 + 10 V/cm static field. The scan covers the range —165
cm'<E<+145 cm™! (—1.03<¢<+0.91, shown in the upper axis). Positive energy SFIS resonances are not
observed, because their small modulation depth is comparable to the signal’s noise. (b) Scaled radial
distribution contour map R(e,p)/awi(€), in the energy range of (a). The noise of the radial distributions is
enhanced near e~—1 due to the quasi-zero owt(¢) values, in the same energy range and the logarithmic color-
scale of the graph. The radius p (y axis) is scaled to p&!,.., in (b-d). (c) Negative energy detail of (b) featuring
the checkerboard structure and the secondary-bow and glory signal oscillations. The inset shows an image
at a given energy (vertical black dashed line) and the corresponding radial distribution, where beating
effects leading to magnitude modulation of the finer fringes are clearly observed. (d) Positive energy detail
of (b) where the secondary-bow and glory signal oscillations are again visible.

Due to the small energy step employed for the measurements, the recording of the map was
accomplished within several days. Each scan part overlaps with the previous by a number of ~3
images for the same day or ~15 images for different days. The connection between two image
series parts is based on the comparison between the images from these two parts. The Mg* ions
signal (Figure 41(a)) exhibits a series of almost equidistant spectral lines build upon a slowly
varying background signal as expected (see discussion in 3.1.1). Special care was taken to record
unsaturated electron and ion signals, by keeping the laser intensity to the lowest acceptable level
(pulse energy <100 wJ, pulse intensity <10%° W/cm?). However, we were unable to avoid a small
gradual decrease of pulse energy with time. For avoiding map magnitude variations attributed to
this drift, each experimental radial distribution R(e,p) is scaled by the total electron signal. Thus,
Figures 41(b)-41(d) do not actually show R(e,p), but the quantity R(e,p)/ott(¢). By comparing non-
scaled to scaled parts of the maps we have verified that this operation does not affect the details of
the interference and beating patterns. This is also true for the calculated hydrogenic maps and an
example will be given in the calculated hydrogenic maps (an example will be given below).

The nature of quantum interferences differs for different parts of the maps. These parts,
therefore, deserve a separate discussion. Let us first discuss the zone of Figure 41(b) defined by 0
<p < pSlax 1 <e<edire —0.775 and pi < p< pSlay for & > eqir, for which the interference pattern
is attributed exclusively to the indirect contribution. In this map zone, the faint and low contrast
of inner bright fringes for the indirect contribution makes their observation difficult (also due to
the logarithmic signal color-scale). This characterizes the m = 0 magnesium images recorded by
two-photon excitation and cannot be generalized as was shown in the subsection 3.1.2, where the
fringes were easily resolved for the |m|=2 final state case. However, channel transformations to

continua, cause the variation of the outer turning point radii and they are also responsible for an
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accompanying quasiperiodic intensity variation of the corresponding radial distributions.
Moreover, the channel opening oscillations are quite apparent over the whole indirect contribution.
Using scattering terminology [52], we may describe this effect as indirect-bow oscillations.
Furthermore, this part of the map is characterized by a slanted quasi-nodal line (or surface) near
—50 cm !, which create some sort of discontinuity in the behavior of the outer distribution radius
as a function of energy.

Let us now turn our attention to the most interesting parts of the maps, & > eqir and p < pu,
which exhibit much more complicated quantum interference patterns. The latter reflect the
coexistence and subsequent beating effects between direct and indirect contributions, each one
characterized by its own fringe “frequencies.” Note first the strong quantum oscillations along the
classical primary-bow radius pi. Hence, there is no clear boarder between indirect-only and direct-
plus-indirect regions. One of the most striking feature is the intense beating pattern observed within
the =100 cm ' <E <—20 cm™! (0.6 <& <-0.1) range, which resembles a checkerboard. This range
is shown in more detail in Figure 41(c). At higher energy the checkerboard structure is much less
intense and evolves to various beating fringe systems (or lines—see Figs. 39(c) and 39(d)), which
are expected to be atom-, initial state-, and excitation scheme-dependent. At ¢ > 0 we may identify
in Figure 41(d) a typical system of slanted fringes. Another positive energy feature of the
magnesium map concerns the strongly oscillating glory (» = 0) signal (see Figure 41(d)). Certainly
these oscillations are related to SFIS resonances [53,61], despite the fact that the resonances
themselves are not evident in otwt(¢) (Figure 41(a)), apparently due to their poor contrast. As
mentioned above, the “frequency” of the glory signal has been employed for estimating the field
strength. To that purpose we made use of the fact that the cross-section “frequency” is the same
for either hydrogen or non-hydrogenic atoms [62,92] and additionally, that the (dephased)
oscillations of the glory signal and the total cross section have about the same field-dependent
“frequency” difference for either hydrogen or non-hydrogenic atoms in the positive energy range.
Interestingly, however, the magnesium map shows an additional beating pattern of curved, quasi-
vertical beating lines, persisting also to positive energies. The visual effect of these fringes can be
noticed in the image and corresponding radial distribution given in the inset of Figure 41(c). They
are responsible for the amplitude modulation of the finer fringes of the image.

To compare with the magnesium experimental map, theoretical maps were computed for a

field F = 680 V/cm and within the energy range —1 < ¢ < +1. To facilitate the discussion, we

100



P. Kalaitzis Chapter 3

employ solely m = 0 initial and final states (z-polarization). The detector is placed at vget = 1000
a.u. Figure 42 and Figure 43 show the total cross sections oot(¢) and maps R(e,p) for, respectively,
single-photon excitation out of the |1,0,0,0) ground state (Figure 42) and two-photon excitation
out of the ground state (Figure 43). As it is observed, for —1 <& <0, atwt(e) IS characterized by a
non-resonant background exhibiting an occasional steplike increase and by superimposed
resonances. These so-called tunneling states (TS) [53,61] are of various spectral widths, reflecting
their lifetime and tunneling probability. On the contrary, for positive energies otot(e) IS
characterized by oscillations which are attributed to the static-field-induced-states (SFIS) (see Eq.
(69) and the discussion therein). The contrast of these oscillations depends on the initial state and
excitation scheme [27]. For example, it appears to be larger for the single-photon excitation than
for the two-photon excitation out of the ground state.

.0
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Figure 42. (a) Hydrogenic total cross section within the —1<e<+1 range and F = 680 VV/cm for single-photon
excitation of the |1,0,0,0) ground state to m = 0 final states. (b) Logarithmic-scale contour map of the radial
distribution R(e,p) computed for the above field and vee = 1000 au. The classical maximum radius pgl,..
(white dashed line) and primary bow radius p, (white dashed-dotted line), are also drawn. The map radius
p is scaled to pgl,,(e=0).
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Figure 43. (a) Hydrogenic total cross-section and (b) logarithmic-scale contour map of R(e,p)for the same
field and vget as in Figure 42, but for two-photon excitation out of the |1,0,0,0) ground state. (c) Detail of
the map of (b) within the —1<¢<—0.7 range. The map radius p is scaled to p&,,(¢=0). (d) The scaled radial
distribution map R(e,p)/owi(€) for the same range of (c). The scaling slightly affects the n;-channel opening

structures near e~—1 and reduces the strength of resonant manifestations. However, it leaves unaltered the
non-resonant fringe patterns over the whole map.

The radial distributions of TS exhibit much larger radial extensions as compared to
continuum Stark states (see Figures 42(a) and 43(a)). The most intense of these negative-energy
TS resonances are visible in the maps of Figures 42(b)-43(b). This is not so obvious for the weaker
ones, due to the logarithmic false color magnitude scale of the maps, used to bring out all of their
details without any intensity cuts. Apart from these resonances, the general energy evolution of
the radial extensions of the maps evidently presents features of classical origin. This is shown in

Figure 42(b) by drawing the maximum radius of impact pS,, and the primary-bow radius p; of
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the direct contribution [16,50,52]. In fact, we also scale the radius p by employing the
aforementioned 1.01 ratio between the outermost turning point (pi) and p&,, (e=0). However, the
quasiperiodic stepwise increase of the non-resonant outer turning points of R(g,p) exhibited also
in the experimental map (Figure 41(b)) is seen to persist over the whole —1 < ¢ <1 range. These
oscillating outer-turning-point radii differ from pi (¢=0) or p&l,.(¢<0) by at most 0.5%.

The indirect interference pattern is resolved in the hydrogenic map zone between 0 < p <
PE s for —1 < & < egir and p1 < p< pSL,, for & > eqir. This pattern is rather simple and, excluding the
resonant effects, it basically reflects the nodal structure of the dominant continuum nz channel at
a particular energy. This structure is further modulated by the aforementioned channel
transformations to continua, which, as in the magnesium case, do not cause solely the variation of
the outer turning point radii, but they are also responsible for an accompanying quasiperiodic
intensity variation of the corresponding radial distributions. The indirect contribution is quite
intense at ¢ ~ —1 and gradually becomes fainter as energy increases. We may notice in Figure
42(b) that there is a single p > pi nodal line located within the —0.8 < ¢ < —0.6 range, while in
Figure 43(b) we observe two nodal lines located at at e~ —0.8 and ¢&~—0.3. The origin of this
indirect-waves-only cancellation effect is at present not fully understood. Nevertheless, since all
computed maps deal with the same final Stark states, it is obvious that it should be attributed
entirely to the energy evolution of the magnitudes of the relevant excitation matrix elements [27].
This interpretation explains the absence of these quasi-nodal lines in semi-classical hydrogenic
PM simulations where, as formulated so far [34], excitation matrix elements are not considered.

Now we turn our attention to the inner, & > &qir and p < pi region of the map, which is
dominated by complicated quantum interference patterns. The absence of a sharp pi boarder is
additionally noticeable and p serves merely for guiding the eye. Moreover, the gradual transition
from the one map range to the other differs in the maps of Figures 42(b) and 43(b) i.e. for different
excitations schemes. The same holds for the various fringe systems which are formed. Also
observed, is the checkerboard structure within the —0.6 <& <0 range and as hydrogenic theory and
magnesium experimental results imply, if the checkerboard structure is clearly formed, it always
appears within the same ¢ range. Similar structures were observed in recent theoretical calculations
[53] and were attributed mainly to the presence of SFIS states. Due, however, to the extreme static
fields employed in that work (F = 0.03—0.1 a.u.), most of the presently revealed details were

usually washed out. Nevertheless, the ¢ > 0, p = 0 oscillating glory signal (see Eq. (72)) persists
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also in our weak fields and it is indeed related to the positive energy oscillations of att(¢) attributed
to SFIS. However, although the quasi-periodicity of cross-section oscillations and glory
oscillations is practically identical, a closer look reveals that the two signals are dephased and,
moreover, that their phase difference varies with energy. This is easily explained by a comparison
between Eqgs. (69) and (72), which shows that, unlike ott(¢), the glory signal is not simply related
to the energy-varying transition matrix elements, but it additionally contains important information
on the wave function phase.

Finally, note that the scaling shown in Figure 43(c,d) (R(e,p)— R(e,p)lowt(c)) slightly
affects the ni-channel opening structures near ¢ ~ —1 and reduces the strength of resonant
manifestations. However, it leaves unaltered the nonresonant fringe patterns over the whole map.
The scaling slightly diminishes the visibility of the steplike outer radius increase for ¢ ~ —1 and
reduces the importance of tunneling resonances. Yet, the manifestation of such resonances in
magnesium is restricted to the vicinity of the saddle point energy. Thus, the experimental map of

Figure 43(b—d) presents the main features of R(e,p) despite the division with the total cross section.

3.2.2 Glory and Rainbow Signals

Here we turn our attention to the critical effects of classical origin exhibited by the R(¢,p)
maps presented in subsection 3.2.1. More specifically, we examine the oscillations of the glory
intensity as compared to the appearance of Stark resonances and quantization in the ionization
continuum. An atom placed in a static electric field appears to be one of the very few quantum
systems where, an infinite series of resonances (quasi-discrete states) can be supported in principle
at any arbitrarily large positive energy. Expectedly the intensity of the glory oscillations vanishes
with increasing energy. However, glory undulations are visible in photoionization microscopy
thanks to the concentration of a strong signal over a limited region, distinguishable even when
SFIS resonances are no longer emerging from the background noise of the total ionization cross

section.
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Figure 44. (a) Magnesium experimental symmetrized images recorded for F=680 V/cm The m=0 final
states are two-photon excited out of the Mg ground state. These images have been presented in Figure 41
while these selected characteristic images show alternate maxima (images (a) and (c)) or minima (images
(b) and (d)) at the center of the image (glory). (b) The variation of the glory intensity over the total electron
signal in the corresponding energy range. For the glory the image intensity is integrated over a radius of
2% of p§ 4, (¢=0). The graph reveals a maximum-to-minimum ratio of about ~2..

The above signatures of classical critical effects were experimentally observed at several
instances [18,21,22,24,27,34]. They are also clearly imprinted in the presently acquired images, a
sample of which is given in Figure 44(a) and concern near-threshold photoionization of Mg atoms
in the presence of a static electric field. Apart from the quantum interference and beating
phenomena that were previously discussed, quite noticeable is the intensity modulation of the glory
signal as a function of the energy. In fact, this is more clearly observed in the plot of Figure 45(b)
that includes the full set of measurements within the corresponding fraction of the full “glory
spectrum”. It is also interesting to notice in Figure 44(a) the similar intensity modulation of the
outer (rainbow) image ring, where at this energy range bright rainbow signals occur when the glory

intensity exhibit minima and vise-versa (although this cannot be generalized).
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Figure 45. Glory scaled signal Jeior/awt as in Figure 44 but for the whole energy range —165 cm ™ '<E<+145
cm! (—1.03<e<+0.91, shown in the upper axis). The inset shows the positive energy detail of the curve.

Experimental images from two-photon ionization of Mg atom were recorded with the linear
laser polarization parallel to the direction of the static electric field and as described in subsection
3.2.1. Consequently, only m=0 final Stark states can be excited, which allow for the emergence of
the glory effect. The static field strength was estimated as described earlier [27] to be F=680+10
V/cm (Esp =~159.6 cm™). The two-photon excitation energy was scanned by increments of AE~0.4
cm™ (Ae=2x10%), covering the full —1< ¢ <I range. In fact, Figure 45 (a) (as well as Figure 44(b))
shows the energy evolution of the quantity Jeiory/otet, i.€. Of integrated electron signal within a small
circle, having a radius of 2% of the maximum image radius at ¢=0, divided by the integral over the
whole image. The use of Jaiory/otot , as Well as its consequences, are described in the subsection
3.2.1. Comparison between the Mg* ion spectrum (Figure 45(b)) and the glory signal in the vicinity
of the saddle point energy, shows that the glory signal is affected by the presence of tunnelling
resonances, but the scaling helps in “decorrelating” the glory magnitude from this presence. On
the contrary, it is obvious that the contrast of positive energy (SFIS) modulations is so low that it

is hindered by noise and cannot be observed in atwt. Consequently, the shape and periodicity of the
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¢ > 0 glory undulations with energy remain unaltered by the scaling operation. The experimental
glory intensity (Figure 45(a)) shows local maxima around ¢ =~ —1 and around ¢ = —0.75 (=eqir) and
cancellations of the signal around ¢ =~ -0.9, 0.6, 0.0 and +0.8. Moreover, strong oscillations are
exhibited throughout the full energy range. For E > -50 cm™ (see Figure 45(a) inset), we observe
oscillations that are almost evenly spaced locally but with a spacing decreasing smoothly with
energy.

Our intention is to go beyond the classical description of critical scattering phenomena
given in Ref. [52] and consider these additional features whose interpretation requires a quantum
mechanical description. To this purpose we employ the hydrogenic expressions of Eq. (72) for the
total cross section and Eq. (69) for the glory signal in order to qualitatively compare with
experimental results regarding the non-hydrogenic Mg atom. Such a comparison is important
because it allows for the distinction of those features which are of global nature from those which
are specific to the examined atom and excitation scheme. Furthermore, because the rainbow radii
vary with the energy and are difficult to accurately define and follow, the relevant signals are only
partially discussed in connection with the glory ones. Therefore, here we focus mainly on the glory
effect, because the signal at the image center is easy to define and record, its relative intensity near
threshold dominates over all other image features and its observation does not require any
particular performance from the imaging spectrometer.

In order to have a smoother connection with the quantum description, Figure 46(a) shows
the semi-classically calculated energy evolution of the glory signal (black solid line). Here we
follow the discussion presented in the theoretical subsection 1.1.3, and calculate the electron wave-
function of Eq. (29) where the most frequent choice of equal weights c; is employed. Then, we
integrate the electron signal within a small circle, having a radius of 1% of the maximum image
radius at e=0. Note that the overall behavior of this quantity is practically identical for smaller or
slightly bigger radii. Also shown is the classical glory signal (black dashed line) (see Eqg. (25) and
the discussion therein), which presents a similar gross energy dependence with its semi-classical
counterpart. Note that, the semi-classical curve is characterized by undulations of appreciable
amplitude and intense beating effects, while the “carrier frequency” of these undulations is field

strength- and energy-dependent.
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Figure 46. (a) Classical and semi-classical calculations of the glory signal. Hydrogenic total cross-section
(b) and glory signal (c) for the same field and vqe as in (a). (d) Signal of each image on the maximum
classical radius Jaet(e, p=p&l,,). The curves of (c,d) are extracted from the map given in Figure 43(b).

Quantum calculations for the H atom are presented in Figure 46(b—d). We employ a two-

photon excitation scheme out of the ground state, for F=680 V/cm and the detector placed at 2000
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a.u. Evidently, the quantum glory calculation (Figure 46(c)) shows local overall maxima around ¢
= -1 and (mainly) around & = &qir and oscillations with practically the same “carrier frequency” as
the semi-classical curve. The quantum beating structures, however, are apparently much more
complicated and richer, occasionally comprising almost complete cancellations of the glory signal.
As it may be understood by a simple comparison with the total cross section of Figure 46(b), this
should be partly attributed to the inclusion of resonances which are absent in either the classical or
semi-classical calculations. Nevertheless, even without the presence of tunneling states the
differences would persist because of the non-equal weighting of the contributing waves (contrary
to the semi-classical result). In fact, the weights in Eqg. (72) are decomposed to the smooth
normalization factors Ay, o Which are independent of the excitation process and the energy-
dependent transition matrix elements d,,_ o, which make the detailed structure of the glory signal
initial state- and excitation scheme-dependent. This has been fully verified by quantum glory
computations for single-photon excitation from the ground and low-lying hydrogenic states.

Oscillations as a function of energy and rich beating structures may be also exhibited by
the bow signals. This is evident in Figure 46(d), showing the computed secondary bow signal,
which, it is here defined as Jsow=R(e, pSlax) (See Figure 42(b)) instead of R(e,pn). Interestingly,
the information provided by Jsow on quantum interferences appears to be as profound as to that of
Jalory. It is also remarkable that the range —0.2< ¢ <+0.2 is characterized by an intensity beating
maximum of Jsow and a beating minimum for Jaiory, thus reproducing qualitatively the behavior
noticed in Figure 44(a). As mentioned earlier, however, Jgow presents some drawbacks. First, it is
difficult to define and follow the energy evolution of pn. This is by-passed here by defining
pi=pS... Note that the Jsow quantity probes intensity variations of the current density and is not
to be confused with the the non-smooth energy evolution of py [27,70]. Second, the secondary
bow signal (as all bow signals) is quite weak as compared to the glory intensity. It is due to the
above reasoning that we focus our attention here mainly to the glory signal and make only
qualitative comparisons with the rainbow ones.

Let us now focus on the most interesting energy range around £=0 (-60< E <+100 cm™)
and present our experimental Mg results together with the two photon hydrogenic calculations in
Figure 47. Note first that the comparison of the total cross sections of Figure 47(a) is inconclusive.
The resonances exhibited by the hydrogenic spectra within the negative energy range are not

expected to be present in the multielectron data and vise-versa. Moreover, the positive energy SFIS
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resonances are not observed in the Mg curve due to their small amplitude as compared to the
experimental noise. Nevertheless, for non-hydrogenic atoms the periodicity of SFIS is predicted
to be the same as for the hydrogenic case, but the modulation may be in- or out-of phase with
respect to that of hydrogen, depending on the values of the quantum defects of the zero-field
Rydberg states for the particular atom [62,92]. The small SFIS amplitude is also a characteristic
feature in the case of the two-photon excitation scheme of the hydrogenic total cross section

calculations (see also the discussion in subsection 3.2.1).
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Figure 47. Comparison between experimental measurements and hydrogenic quantum mechanical
calculations. The experimental measurements concern the Mg PM images of m=0 final states, excited via
a two-photon excitation scheme out of the Mg ground state. Hydrogenic calculations are performed for two-
photon excitation out of the H ground state. F=680 V/cm and v4:=2000 au. (a) Total cross sections in
common arbitrary scale. The SFIS states are visible but with a low contrast on the calculations while they
are hidden within the noise for the experimental data. (b) Glory signal normalized over o and obtained by
following the same procedure in both experimental and calculated images (integration over the circle with
radius p=2% of pg,.(¢=0)). (c) Primary rainbow signal obtained by the R(e,p) maps as Jip(e)=Jaet(e,
P=Pirax)-
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On the other hand, the theory-experiment comparison is striking (apart from the hydrogenic
resonant features on the negative energy range) for the glory and primary bow signals of Figure
47(b,c) respectively. First, the cancelations/maximizations of the glory/rainbow signal occur
around the same energy locations for both H and Mg and are qualitatively similar. In fact, Mg data
exhibit those features at slightly lower energies that, considering our hydrogenic calculations for
different excitation schemes, imply their matrix-element-dependence. The “carrier” frequencies of
both Mg glory and bow intensity oscillations are almost equal to their hydrogenic counterparts
apart an almost constant phase difference. More specifically this frequency for the Mg glory signal
varies smoothly with energy and the spacing between maxima is AE~4.5 cm™ for Ex0 and AE~3.0
cm* for E=100 cm™. The magnesium-hydrogen frequencies similarity is indeed to be expected in
the positive energy range where the PM observables present global and nearly-atom-independent
features.

As discussed above, the Mg experimental data do not allow for a comparison between the
positive energy dependence of the total photoionization cross-section and the glory signal.
Nevertheless, the hydrogenic calculations show that the evolutions of these two quantities at
positive energy are highly correlated. Let us first try to firmly establish this correlation between
the glory oscillations of Jgiory and those of ot within the semi-classical framework. Then, any
departure from these semi-classical predictions should be attributed to atom-, initial state- and
excitation scheme- specificities of these signals. We begin by simulating the periodicity of the total
cross section using the phase relations of Eq. (31) and the quantization condition of Eq. (30). Then,
the carrier phase of the SFIS signal may be defined as, Sy = 25, (¢) — m. The carrier phase of the
glory signal has already been defined in Eq. (32). Now by setting Sct=Sc—St we finally proceed to
the definition of the number of additional oscillations A, exhibited by Jeiory the with respect to the

SFIS number of oscillations and within the energy interval [0,e >0],

A(e) = (2m) 7 [Ser(e » 1) — Ser(e = 0)] . (110)

In fact, as defined, A equals zero at ¢é=0. Figure 48 presents these excess of glory oscillations as a

function of energy. Two y-scales have been employed in the graph, one directly given by the above

definition of Eq. (110) and one scaled by the field strength, As¢4ted = FidF |
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Figure 48. Number of additional glory oscillations with respect to the number of SFIS states (A(g)) for the
positive energies, as given in Eqg. (110). In fact, A is defined as the difference between the glory phase (Sc
of Eq.(32)) and the total cross section SFIS phase (25, (e) — m, see Eq.(30)), after dividing each one of

them by 2z. The values vger—>o0 and F=680 V/cm were adopted for the calculation. Nevertheless, the y-axis

1
can be nominally scaled with the static field value as A5°#¢? = FiAF (right side). The inset shows the
number A(e) of additional oscillations at extremely high positive energies. The maximum y-axis range of
this inset is equal to A5¢%'¢4 (e—c0)~ 0.508734.

This relation is compatible with the coincidence of SFIS and Glory maxima observed in the work
of [53] due to the extreme field strengths that were employed. Figure 48 in conjunction with the
fully quantum calculations of Figures 46 and 47, show that the glory and total signal oscillations
can be well predicted by a simple semi-classical description. Indeed, comparing with the fully
quantum mechanical calculations of Figure 47 we see that the additional glory oscillations are are
to a good approximation equal to the semi-classically predicted value A™680V/eM(e=+1)=3.85. This
fact proves that, for positive energies, the gross features of the glory and total signal oscillations
can be calculated without considering matrix elements which bring excitation specificities into
play. This result points towards more accurate descriptions that will identify atom specific effects
due to additional phase shifts manifested in the intensity beating positions.

As a final task, let us connect these findings with the electron dynamics of the system.
Oscillations of the current density maps R(e,p), were recently connected to time delays of arrival
at the detector between pairs of electron trajectories, by using the Eisenbud-Wigner time delay
definition (see Eq. (33)). The proposed treatment involves the selection of a given constant radius

and the measurement of the energy difference AE between successive maxima observed at this
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radius. Obviously, the phase difference between these two maxima is AS=2z. Then, the resulting
time delay At is compared with the classically calculated time delay of the most relevant pair of
trajectories [34]. Here we extend these considerations to the p=0 case i.e. to the glory signal. This
selection of p, apart from the practical advantages mentioned above, introduces an additional
simplification to the calculations. Assume, for example, that one is interested in calculating the
Eisenbud-Wigner time delay for F=680 V/cm, around ¢=0 and for a scaled radius
p/pS. (e = 0)=0.4. With the help of Figure 4(b) we could claim that for the chosen scaled radius
the most relevant pair of trajectories corresponds to $1~0.85z and f>~0.4z. In fact, to a first
approximation this is indeed the case. Nevertheless, a third trajectory corresponding to £3~0.237
might also contribute with strength comparable to that of 5>. We remind that the trajectory strength
is determined through Eq. (29) and involves the slope of p(55). This problem is absent for p=0 where
indeed one pair with 1~z and S~ fo, is dominant.

In order to calculate the inverse energy spacing between adjastent glory maxima (see Eq.
(33)) we employ the Fourier transformation of the signal within a limited energy window and
repeat the calculation over an extended energy range. For this we employ the build-in capabilities
of Origin® software. As compared to the simple measurement of AE between successive maxima
described above, Fourier analysis provides a much more detailed view of the full frequency
landscape involved. In Figure 49(a-c) we present the “short time” Fourier transform of the
calculated hydrogenic and experimental Mg Jciory data respectively. The emerging y-(time) axis is
expressed in picoseconds. The tradeoff between time and energy resolution implies that the
employed energy window imposes a lower time uncertainty limit to the calculated time which, for

our case is chosen to be ~1.5 ps.
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Figure 49. Linear color-scale map of the “short time” Fourier transform for the calculated hydrogenic (a)
and the experimental magnesium (b) glory signals. The Fourier window (Blackman type [120]) has a width
of =21 cm™. The vertical axes are multiplied by the factor 4z t, Rydwmg, Where t, the atomic unit of time in
picoseconds and Rydwg the mass-corrected Rydberg constant of magnesium (in cm™). (c) The primary
maximum of the experimental (blue points) and the calculated (red points) short time Fourier spectra, see
(@), (b) respectively. The quantum calculations are compared with the semi-classical curve (black solid line)
which is obtained by differentiating the number of glory oscillations as a function of energy and multiplying
with the aforementioned factor. These graphs are directly connected to the time of flight of the trajectories
S=Po and p=x (see main text).

The Fourier transform of the Hydrogenic Jeiory 0f Figure 49(a) shows a complex behavior
for £<0 and a well-organized pattern for slightly negative and positive energies. In fact, the main
slanted and almost linear “moving frequency” ! comprises of two components and presents a series
of magnitude variations (minima-maxima), thus reproducing the glory beating effects. The
corresponding Fourier transform of the hydrogenic oot (not shown) exhibits a qualitatively similar
behavior. As implied by the A(e) fringe excess function of Eq. (110), however, the differences in
the £>0 range are non-negligible and measurable. This positive energy pattern is dominated by the
“moving frequency” of the SFIS oscillations, the latter found to be somewhat smaller than the one
corresponding to the glory signal. This is exactly what the function A(e) predicts. In fact, classical
calculations show that for ¢>>1 the SFIS and Glory periodicities coincide.

Probably the most interesting aspect of the present work is the fact that, we were able to
extract the same information discussed above from the experimental glory signal of Mg, the
corresponding Fourier transform of which is presented in Figure 49(b). The resolution is high
enough that not only the primary (the “frequency” line found near At~5 ps for E~0 and At~15 ps
for E~140), but also a secondary slanted (i.e. “moving”) “frequency” to be clearly observed. Our
theoretical and experimental results are summarized in Figure 49c. Each point refers to the
dominant “frequency” (“frequency” with the maximum amplitude, excluding the At<3 ps range)
of Figures 49(a,b) and for each energy window. The agreement between the H theory (red points)
and the Mg experiment (blue points) is striking.

These results of the primary “moving frequencies” (time delays) are compared to the
predictions (solid line) derived from the semi-classical model described in 1.1.3 and by taking into

account only two trajectories, corresponding to i1~z , 2= o, respectively. In particular, the plotted

1 The reader should keep in mind that y-axis “frequencies” in Figure 49(a,b) are actually expressed in time units.
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curve corresponds to the derivative of the glory phase of Eq. (32) divided by 2z, i.e. iasg—f)

Interestingly, the semi-classical model shows excellent agreement with the fully quantum
calculations and the experimental results. Nevertheless, it cannot reproduce the full complexity of
our observations, such as the manifestation of a double dominant “frequency” (e.g. see Figure
49(a) within 0<E<10 cm™. This implies that there may be more than two trajectories contributing
to the dominant double “frequency”.

Let us now make a connection between the above semi-classical analysis and the actual
classically computed time of flight differences between the involved trajectories. To this purpose
the arrival times (i.e. the times of flight) and their difference were calculated through Eq. (23) for
the two classical trajectories corresponding to fi~m and f2~f,. These classical calculations
completely validated our semi-classical (and quantum) findings. For example, for the employed
field value of 680 V/cm, the two trajectories (f1~x , 52~ fo) have a time difference of At=7.7 ps at
E~16 cm™ and At=13.8 ps at Ex157 cm™. These numbers are to be compared to the corresponding
semi-classical results extracted from Figure 49(c) At=7.7 ps and At=13.7 ps respectively. Finally,
the classical calculations show that the observed higher order slanted “frequency” lines in Figure
49(a,b) could be attributed to the time delay between other glory trajectory pairs, such as, f1 and
p3, and so on. Nevertheless, we have avoided here a more detailed treatment of those higher order
slanted “frequencies”, as well as the study of the R(e,p) map at constant but non-zero radii, p#0.
Certainly, such extensions of this kind of analysis are now in order.

In conclusion, we believe that we have theoretically and experimentally established the
importance of the study of the glory signal. Let us briefly comment on this conclusion. The
information on the system dynamics through interferometric measurements is interesting per se.
Of course, this interference persists even for high positive energies, while it can be fairly easily
experimentally observed and resolved. Moreover, the Coulomb-Stark problem is one of the few
that can exhibit level quantization within the continuum (SFIS) and, in principle, at arbitrarily high
positive energy. The established connection between those two phenomena help us probe

quantized levels to energies up to the classical limit (h—0).
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3.3 Polarization Effects

3.3.1 Linear Laser Polarization Rotation Effects in Magnesium Images

Here we discuss the rotation of the linear ionizing-laser-beam polarization with respect to
the electric field direction. Evidently Eq. (89) reveals that two-photon ionization out of an m=0
initial state allows for the population of |m|=0,1,2 Stark states. The resulting multiple |m|-presence
and |m|-beating effects [30] in the PM images are demonstrated here theoretically for the hydrogen
atom and experimentally for the magnesium atom. Note that Mg images involving |m|=0,2 Stark
states have been presented in section 3.1.2. Our theoretical discussion as well as the analysis of
subsection 3.2.1., suggests that non-resonant PM images produced by the hydrogenic theory near
¢ >—1 could be compared, at least qualitatively, with those recorded on non-hydrogenic atoms. As
a first example experimental images recorded after two-photon ionization of ground state
magnesium atoms in the presence of a field F = 680 + 10 VV/cm and e~0.76 are presented in Figure
50. The angle between laser-ionizing-field polarization and the static field @ is varied in the (0, 1)
range, since images recorded for ®’=z—@ are simply reversed with respect to the vertical direction.
These experimental data are compared with the theoretical images of Figure 50(b), computed via
two-photon excitation of hydrogen out of the ground state |1,0,0,0). The slightly different reduced
energies at which recorded and computed images better resemble to each other, are compatible
with our field uncertainty. Let us first focus on the images for which we employ either z — (m =0
final Stark states, ®=0°) or o-polarization (|m| = 0 and 2 final Stark states, ®=90°).

(a) -
. N + i 4 .
. . 4 E = =
S
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Figure 50. Comparison between non-resonant experimental magnesium images (a) and hydrogenic
theoretical images (b). The horizontal and vertical axes refer to the x and y coordinates, respectively, of
electron impact on the detector. The laser beam propagates along x axis. Mg final states were two-photon
excited out of the 3s? ground state for an estimated static field value F=680+10 V/cm and £~-0.76. The
hydrogenic calculation refers to two-photon excitation from the 1s ground state, for the same field, vget =
1000 au and a slightly different reduced energy (¢=~0.78), to reproduce as close as possible the experimental
bright fringe intensity distribution. The light polarization vector forms an angle ® with the static field. We
have verified that the images are reversed with respect to the vertical direction for ®’=z—.

In fact, despite the different characteristics of the initial states, the z-polarization images
bear many similarities, namely (i) the disc-like shape that shows no angular distribution (ii) the
very intense central glory spot, (iii) a quite intense outer bright (rainbow) fringe, and, more
interestingly, (iv) the rather faint and low contrast inner bright fringes. Although this last
observation may not be generalized, it characterizes the m=0 magnesium images recorded by two-
photon excitation, as long as the reduced energy is lower than the onset of the direct trajectories
(edir=—0.755). As for the o-polarization images, they also have many features in common. First of
all, they both exhibit the expected cos?(2¢p) angular dependence, which implies the dominance of
the m=2 waves over the m=0 ones. Nevertheless, the m=0 contribution manifests itself in a number
of ways. First, by the very bright glory signal at the center of each image, whose origin cannot be
other than the m=0 waves (Eg. (72)). Second, by an m-beating effect [27,30] (see the coherent
summation over different values of min Eq. (89)), resulting to ¢-dependent bright fringe intensities
and radii. The effect is present in both experimental and theoretical images, but more evident in
the latter ones. One may notice that for ®=90°, the fringe pattern in the horizontal direction is
different and fainter than that in the vertical one. Since, the transition matrix elements may change
sign and magnitude as a function of energy, the image direction where the fringes are brighter may
also change.

The m-beating effect is even more interesting for intermediate angles ®+0, = where the
excitation of |m|=1 final Stark states is also permitted (see Eq.(89)) and the radial interference
pattern presents a strong ¢-dependence. Note that all images are symmetrical with respect to the
vertical axis and only the ®=0 images are symmetric with respect to the image center. Most of the
®+0, = experimental images of Figure 50(a) show a quasi-horizontal nodal axis signaling the
strong |m|=1 contribution. These results are qualitatively similar to hydrogenic calculations of
Figure 50(b). However, a fully quantitative comparison between theory and experiment is not
possible due to the lower spatial resolution of the experimental images and the generally different
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matrix elements expect for the multielectron case with respect to the hydrogenic one. This lower
spatial resolution of the experimental image is to be expected since the computed data are not
convoluted with the resolution of the detector. Such an operation was avoided because it is

unnecessary for a qualitative comparison.

3.3.2 |m|-Decomposition of Magnesium Total Cross Section

In the previous section we studied the polarization rotation effects on the differential cross
section, for a two photon transition out of a m=0 initial state. Those images exhibited the |m|-
beating effect, which follows from the simultaneous excitation of different-m final states. These
observations show that the static field axis is the preferable direction in space (quantization axis).

Here, for providing additional experimental evidence of this fact, we aim at measuring the non-

hydrogenic “densities of states” A'ZT,' (E) in the presence of a static field (see Eq. (101)) (jm|=0,1,2)

[32]. In other words, the recording of |m|-dependent “density of states” constitutes another direct
proof that the static field axis is indeed the quantization axis.

Let us begin by examining the energy dependence of the differential cross section, i.e. the
energy dependence of the |m|-beating effect observed in the PM images. Figure 51(a,b) shows such

images recorded as a function of the excitation energy for a constant angle ® and for F~500 V/cm.

O=45°

£=-0.2 -0.3 -0.4 -0.5 -0.6 -0.7

(b)

-0.837 -0.846 -0.855 -0.862 -0.873 -0.883
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Figure 51. Experimental Mg images in the energy range &:(-0.2, -0.7) (a) and &:(-0.837, —-0.883) (b).
Magnesium final states were two-photon excited out of the 3s? ground state for an estimated static field
value F~500 V/cm and for ®=45°.

The Mg final states are excited out of the Mg ground state via a two-photon transition.

Fixing the angle ®, also fixes the angular factors of Eq. (89) and allows for monitoring the
n/o(2)

nq,|lm|

(collective) energy evolution of the matrix element integrals D and the phase factors e Onymi,

As we already mentioned, the form of the current density of Eqg. (89) remains the same after
substituting the hydrogenic integrals and phases with their non-hydrogenic counterparts. The
choice of @ is guided by the results of Figure 16, which shows that the relative contribution of
Im|=1 states is maximized for ®=45°. Figure 51(a) shows PM images separated by Ae~0.1 within
a broad energy range. For ¢>-0.4, all images exhibit almost the same angular distribution and they
are characterized by a quasi-horizontal nodal curve. More specifically, the angular function of Eq.
(109) has the same form but, of course, the p-dependent radial distribution evolves with the energy.
This shows that as the energy increases, new open channels contribute to the interferogram but
have a small impact on the general angular distribution of the image. Thus, the differences should
be carefully searched within the complex and ¢-dependent radial interference pattern. On the other
hand, for £<-0.5, the angular distribution of the images has a strong dependence on the excitation
energy and especially for the images of Figure 51(b) for which & ~ —0.8<eqir. For example, we seem
to probe |m|=1 final states (resonances) at e={-0.846, —0.862,-0.883} or |m|=2 ones in the rest of
the given set of images.

In either the multielectron or hydrogenic case the total cross section depends solely on the
matrix element integrals and not the phase factors (see EQs.(69,97,101)). It follows that the
examination of ot would conclude whether the energy dependence of |m|-dependent effects
observed in PM images, could be attributed on the matrix element integrals or the phase factors.
For this purpose, let us now focus on the most interesting energy range ¢ ~ —1 and record the total
electron signal of PM images as a function of energy and for different angles ®. Figure 52(a) shows
the two-photon spectra out of the Mg ground state for, ®=0 (z-polarization), ®=90° (o-
polarization) and ®=Bmagic=54.7°, while F~750 V/cm. The observed spectral lines have a width
slightly greater than expected (1 cm™). This is attributed to a weak power broadening effect which
is induced by the high laser pulse energy of <200 uJ/pulse.
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Based on the discussion of section 1.3.2 we ignore the p—s zero-field transitions [93] in

our two-photon excitation model. Then we use the simplified Eq. (105) and the recorded spectra

of Figure 52(a) in order to calculate the non-hydrogenic “density of states” A'l’:l',zz(E), which are

shown in Figure 52(b). Note first that the onset (first strong resonance) of each A'{g' -spectrum is
compatible with Eq. (27). The corresponding saddle point energies for the estimated field value,

F=750 V/cm, are: ES, -0 = —167.6 cm™, ES —166.0 cm™ and EC! —164.3 cm’

srln.|m|=1 = spm|=2 =
1. Note that 45'5° is proportional to the experimental spectrum at(fg (6 = 0° E). Moreover, the
quasi-degeneracy of [m|=0 and 2 states [62,65,117] is again confirmed here by visually inspecting
the m=0 (solid black line) and |m|=2 (dotted blue line) curves of Figure 52(b). More interestingly,
the |m|=1 resonances manifest themselves between the |m|=0,2 ones.

In order to verify the validity of the employed approximation A~0 (see Eg. (101)), we

compute a “synthetic spectrum” for @=20° by employing the known A|177’| (E) curves. This

“synthetic” spectrum (dotted gray line) is constructed as o2 (@ = 20°,E) o« 67.99% A} +
30.99% A'21'2 + 1.02% A'22'2 according to Eq. (105) and is shown together with an experimental one

(solid black line), in Figure 52(c). The two curves are almost identical and this proves that the
decomposition along these lines can be safely used for the magnesium near-saddle-point energy
spectra. In fact, we also recorded Mg* spectra (instead of the total electron signal) for the same ®
values. The analysis of these ion spectra gave the same results and reached the same conclusions,
and, therefore, they are omitted here for the sake of clarity. Note that, the ®=20° experimental

spectra bears many similarities with the Alz?lz “density of states” but the spectral lines are not so

sharp due to the presence of the Alzl_'z resonances in-between of the m=0 ones.
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Figure 52. (a) Total integrated electron signal of PM images for F=750 V/cm and ®=0°, Omagic and 90°. (b)
The decomposed |m|-contributions (non-hydrogenic “matrix elements”) obtained by employing the spectra
of (a). (¢) Recorded and “synthetic” spectra for ®=20°. (d) PM images for the same conditions of (c) in the
energy range around an |m|=1 resonance.

Let us now examine the images of the ®=20° data set in Figure 52(d). The majority of the
images are almost spot-like and do present faint angular dependence. On the other hand, around
E=-164.75 cm™ the images exhibit a horizontal nodal curve which is typical of |m|=1 final states.
Indeed, this energy coincides with a spectral line maximum of the A'21'2 “density of states”. This
verifies that the PM images probe the complete Stark spectrum of the relevant accessible quantum
numbers |m|. This fact has been proven here by comparing the PM images and the decomposed
total cross section spectra. The above discussion shows that the study of the Stark structure
(particularly near the saddle-point energy) is important for probing multiple-|m| excitation caused

by the rotation of the laser polarization vector with respect to the static electric field. In turn, this
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multiple-|m| excitation proves that the field axis is indeed the axis of quantization. As a
consequence, the emergence of multiple-|m| excitation poses great challenges to the development
of tomographic wave function reconstruction methods when dealing with slow electrons. We
remind that the main goal of tomographic techniques is the reconstruction of the 3-dimensional
electronic momentum distribution. In fact, these techniques typically assume the presence of a
single electronic momentum distribution that is simply rotated in the three-dimensional space as
the linear polarization vector is rotated [48,49]. Equivalently, the polarization vector is assumed
to be the quantization axis. According to the above discussion, for the meV electrons energies and
static field strengths considered in the present work, these typical tomographic assumptions appear

to be not inapplicable.

3.3.3 Detection and Characterization of Misalignments

Generally speaking, quite complex radial patterns are not uncommon at higher energy, as
evident in the maps of Figure 41. Such is the case for images recorded after two-photon ionization
of ground state of magnesium ground state in the presence of a field F = 680+20 V/cm and & ~ —
0.4 >&qir (Figure 53(a)) Apart from the different excitation energy and the appearance of the direct
fringe system as O is varied within the [0, xz] range the images exhibit the aforementioned
characteristics of Figure 50(a). On the other hand, most of the images do not show vertical axis
symmetry, but they are “tilted” with respect to it. This tilt possibly stems from misalignment of
the ionizing beam with respect to the plane normal to the static field. In fact, this image set is
selected to highlight these features. Misalignment effects were already discussed in subsection
1.3.1 and here we are able to calculate all the relevant angles via the use of the barycenter
coordinates of Egs. (94,95).
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Figure 53. (a) Experimental non-resonant magnesium images for the two-photon excitation scheme out of
the 3s? ground state for an estimated static field value F=680+£10V/cm and &~-0.4. The horizontal and
vertical axes refer to the x and y coordinates but note that the positive y-axis points downwards (typical
convention of image-handling software packages). The laser beam propagates along x axis. The light
polarization vector forms an angle ® with the static field. (b) Barycenter in the x-coordinate before (black
dashed line) and after (black solid line) the correction of the camera misalignment. Also shown the fitted
curve (red solid line). (c) Same as (b) but for the y-coordinate. Higher y values signify the image barycenter
moves downwards with respect to the image center. (d) The barycenter position in the cartesian coordinate
space as @ is varied (points of increasing size as ® increases). Also shown is the position as predicted by
the fitted curves of (b) and (c). We have verified that the images are reversed in the vertical direction for
O'=r-0.

More specifically the barycenter in cartesian coordinates CZ(©), C3(©) and Cg are
presented in Figure 53(b—d) respectively. First, note that C§ (black dashed line) of Figure 53(b) is
asymmetric with respect to ®=z/2 in contrast to the corresponding theoretical epectation (Eq. (94)).
Experimentally, this effect is attributed to an additional misalignment between the detection
reference frame and the laser beam. By employing this theoretically predicted symmetry of CZ,
we found that the camera was tilted with respect to the laser beam by 8=1.4° +0.3° degrees. After

rotating all images by —8 we obtain the solid C§ curve of Figure 53(b), which is symmetrical with
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respect to ®=x/2 (we do not present the rotated images because the visual effect is insignificant).
Then we fit the C5(©), C3 (©) curves using the forms of Eqgs. (94,95) and additionally we allow
the angle ® to have an experimental uncertainty A®. The fit gives that A®=0.88+0.07° and ®=—
1.8+0.1° degrees (see Figure 53(b,c)). The experimental data (points) and the fitted barycenter
vector curve (red solid line) are shown in Figure 53(d). Note the huge difference in the scale of the
vertical and horizontal axes. The experimental uncertainty A® is compatible with the A/2
waveplate rotation mount accuracy of 2° (which leads to an accuracy of 4° for the angle ©).

In most applications the laser beam is aligned with external geometric procedures. In other
words, these procedures do not consider the laser beam alignment with respect to the geometry of
the VMI spectrometer electrodes. Moreover, the inhomogenous electric field of the VMI
spectrometer in addition to the inaccurate knowledge of the exact position of the focused laser
beam inside the spectrometer, introduces an uncertainty of the direction of the electric field vector.
These facts may lead to misalignment angles of |®[<2°. A self-consistent alignment procedure as
is the one shown here, that corrects the beam propagation vector with respect to the static electric

field itself, could be very useful in typical VMI applications.
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Outlook and Perspectives

The work presented in this thesis is devoted to a comprehensive photoionization
microscopy study along three main directions. The first direction (that initially provided our major
motivation) concerned the recording and characterization of resonant images in atoms of
appreciable size. The intermediate complexity Mg atom (Z=12) was chosen as the target atom that
was excited/ionized by two-photon absorption out of its ground state. Furthermore, in the course
of this project two other directions emerged, each of equal importance to the first. Therefore, the
second direction concerned the detailed recording of the (primarily non-resonant) momentum
distributions of the outgoing electron transversely to the static electric field. The purpose here was
the exploration of the global (i.e. of that met in any atom and irrespective of excitation conditions)
information these distributions may provide through the analysis of their interference patterns.
Finally, the third direction concerned the recording of slow photoelectron images when the linear
polarization vector of the ionizing-laser is rotated with respect to the static field axis. Of particular
interest here were the implications of the observed phenomena in tomographic angular distribution
reconstruction techniques.

All the experimental data obtained in this work (and for any of the above directions) were
fruitfully compared to relevant results of our theoretical calculations concerning the fundamental
Coulomb-Stark problem. In fact, these calculations referred to all levels of rigor, beginning with
the classical formulation of the hydrogenic Stark effect and proceeding to its semi-classical and
fully quantum descriptions. Our theoretical modeling is based on the computationally
advantageous semi-parabolic coordinate system and was found to support the experimental data.
In addition, our theoretical treatment provided the proof-of-principle of several effects that may

prove to be a guiding tool for future studies.

Below we briefly discuss the outlook of the present thesis and the perspectives emerging

by it. For clarity, each of the aforementioned directions is discussed separately.

As a first step towards the search of non-hydrogenic resonant manifestations, we first

employed our quantum hydrogenic theory to explore the most prominent energy range, lying just
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above the saddle-point energy. Theoretically calculated electron current probability density
distributions successfully reproduced the experimentally recorded hydrogenic resonant images
[24]. These images present an additional dark fringe with respect to the nearby non-resonant
images and a striking non-monotonic variation of the outer turning point. In fact, the energy
evolution of the continuum images was found to be quite interesting as well. Consequently, their
characteristics were additionally studied within this energy range around the resonances and in
more detail than in earlier studies. As a main outcome, it was discovered that channel openings

may frequently (but not always) lead to abrupt increases of the radial extensions of the images.

Having analyzed the above theoretical hydrogenic results, we subsequently presented a
quite detailed experimental photoionization microscopy study of the two-photon excited Stark
states of Mg just above the saddle-point energy range. As a first result of this study, the evolution
of the angular distributions of the recorded magnesium images as a function of energy confirmed
the long-ago predicted [58] existence of m-dependent saddle-point energies (one for m=0 and one
for |m|= 2 in the present case). Furthermore, the outer turning points of the radial distributions of
the images were overall found to monotonically increase with energy. Occasionally, however, they
increased discontinuously and each observed jump signaled the opening of an ny channel, the latter
becoming a continuum one. This behavior, therefore, was found to be in complete agreement with
the aforementioned hydrogenic calculations in the energy range just above the saddle point limit.
Interestingly, in the same energy range there were a number of cases where the outer turning points
additionally showed a non-monotonic variation near the resonant maxima of the total ionization
cross section. This variation was found to be due to an on-resonance appearance of an intensity
halo at the outer part of the relevant images. The halo may be interpreted as an additional bright
fringe, which is characteristic of the quasi- bound state participating non-negligibly to the
photocurrent probability density. Moreover, resonant signatures on the recorded Mg images were
apparently somewhat weaker than those in Li [21,22]. Leaving aside ionic-core size effects, this
may be explained by the larger effective laser linewidth of the present study, as well as by the
increased “parasitic” ionization signal stemming from the simultaneous excitation of the non-
resonant m=0 contribution, in addition to the |m|=2 resonant and non-resonant contributions. On

the contrary, excitation of single-|m| Stark states was possible in the Li experiment.
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On the perspectives side along this first direction, future experiments need to profit from
the experience gained from the present as well as earlier studies. First, in order to unbury the
resonant character from the recorded images, a number of precautions have to be taken and a
number of special excitation strategies have to be devised. For example, it appears that the
spectrally sharp Stark resonances require a spectral laser resolution much better than 0.8 cm™.
Ideally, cw lasers (possibly pulsed amplified [99]) could be employed in conjunction with single-
photon transitions, or, when necessary, multistep, multicolor, excitation schemes. In terms of the
appropriate field strengths, the present study followed the earlier theoretical suggestions [33] and
found indeed that there are values of F for which the resonant manifestations may be somewhat
optimized. Nevertheless, the effect was much weaker than predicted. Clearly, working near
avoided crossings, as in the He experiment [23], presents a quite promising direction, which
appears to be potentially applicable to any non-hydrogenic atom. Finally, another interesting
possibility is to achieve excitation near avoided crossings by means of bichromatic laser fields and
apply phase-sensitive coherent control techniques. By employing such schemes, the continuum

excitation could be minimized, in favor of the excitation of the quasi-bound states [121].

Along the second thesis direction, our attention was focused to m=0 transverse momentum
distribution maps of the outgoing electron R(e,p) within the —1<e<+1 energy range. The two-
photon experimental maps revealed quite complex interference and beating patterns, particularly
whenever the direct and indirect contributions to R(e,p) overlap. Most noticeable is the emergence
of the so-called “checkerboard” pattern, first observed in hydrogen quite recently [34]. Our
quantum theoretical treatment allowed for computing R(e,p) maps, for static electric fields whose
strengths are small and compatible with current photoionization microscopy studies. Calculations
included single- and two-photon excitation out of the ground state of hydrogen. The presented
analysis suggested that near the ionization threshold a number of gross features of R(e,p) are
common to all Rydberg atoms in the presence of a static electric field, appear irrespective of the
initial state and excitation scheme and may be predicted by fairly simple semi-classical theoretical
treatments [27]. That latter work provided a first global classification of direct-indirect beating
phenomena. Furthermore, in recent theoretical works [53], many important details of the R(e,p)
maps were washed out by the extreme static field strengths employed. These details have emerged

in the present low-field work, revealing a much richer fringe structure, which depends fairly
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strongly on the initial state, excitation scheme and the target atom (as the Mg experiment has
shown).

Subsequently, attention was focused on the glory and primary rainbow signals of the R(¢,p)
maps and in particular, the quantum oscillations they exhibited. The —1<¢<+1 energy range was
studied both experimentally and theoretically. These glory and bow signals present a rather
complicated behavior in the negative energy range where resonances come also into play. On the
contrary, in the positive energy range the absence of quasi-bound states range results to a fairly
simple oscillatory pattern. As experimentally observed in the magnesium atom and also
theoretically predicted for the hydrogen atom, this oscillatory pattern is characterized by a static-
field and energy dependent “carrier periodicity” as well as beating maxima and minima. The exact
positions of the latter, however, are atom- and excitation-scheme-dependent. In fact, these features
concern only a small part of the aforementioned maps, but their study provides a first step towards
the extraction of the full information contained in these maps. Following the recent theoretical
work of Ref. [53], the connection between the energy locations of the static-field-induced-states
(SFIS) and glory oscillations has been established within the semi-classical framework. Moreover,
in the quest of novel approaches towards encoding electron dynamics, the time delay
corresponding to pairs of trajectories has been extracted from the glory signals. The semi-classical
and hydrogenic quantum calculations are in excellent agreement to the classically calculated time
of flights. More importantly, the time delays which are extracted from the experimental Mg data
agree with the aforementioned times of flight at least within the experimental uncertainty. This last
result implies that the electron dynamics for E>0 are dominated by the long-range Coulomb-Stark
field and weakly influenced by the ionic core (note that the core introduces observable zero-field
phase shifts to the excited/outgoing electron wave-functions).

In future studies along this direction a multi-electron quantum mechanical theory should
be able to predict the details of the glory and primary bow signals and particularly the beating
maxima/minima. Semi-classical works that could calculate the electron time of flights, as modified
by the non-hydrogenic core effects, could lead to very important results and could easily be tested
with experimental data along the lines proposed here. Another interesting possibility is to study
the energy range of doubly excited states. In that case, the electron dynamics of the ionized electron
are expected to be greatly influenced by the inner excited electron thus, the glory signal may probe

the electron-electron interactions.
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Let us finally conclude with the third direction of the present work. Although the
experimentally employed two-photon excitation/ionization scheme appears to slightly complicate
the analysis of the recorded observables (as compared to a single-photon excitation one), it is
proved to be more adequate for providing a solid testing ground for our theoretical study on the
rotation of the linear laser polarization vector with respect to the static electric field axis. Indeed,
the effects observed in non-resonant experimental images for the magnesium atom and for
different polarization rotation angles ® have been successfully reproduced theoretically. In the
absence of misalignments, all images have vertical axis symmetry and show a complicated angular
and radial distributions. The former distribution features a ®-dependent m-beating effect due to
the simultaneous excitation of |m|=0,1,2 final Stark states.

The above conclusions were strengthened by our findings on the total ionization cross
section measurements. Specifically, by employing relevant complex-atom expressions for the total
cross section it was made possible to identify and isolate the m-character of each spectral line. To
this purpose, we made use of the fact that for the magnesium atom the zero-field p—s transitions
are suppressed as compared to p—d ones [93]. Under this (valid) approximation the total ionization
cross section may be decomposed into different-m contributions by simply recording two-photon
spectra for three different angles ®. As a cross check of the correctness of the above data treatment,
synthetic spectra for arbitrary angles ® were produced and successfully compared to experimental
ones, recorded at the same angles. One result of particular importance concerns the clear
identification of |m|=1 resonances, in both the decomposed contributions and the corresponding
images recorded under the same conditions. Note that, strictly speaking, the m-decomposition is
only relevant to the magnesium atom. It is valid, however, in any situation where the zero-field
p—>s transitions are very weak (which is a quite frequently the case [87]). Nevertheless, ab initio
calculations would be required in order to accurately estimate the exact excitation strength ratio
(p—s/p—d), for the general case.

As a byproduct application of our calculations we proposed (and successfully tested
experimentally) a self-consistent method of laser beam and polarization alignment. The latter is
based on the use of the image first moment and can be extended beyond the two-photon excitation
scheme. The method may check the laser propagation axis and the angle ® with high accuracy, a

task that is of great interest in many applications other than slow photoelectron imaging.
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Automatization of this method could provide a useful tool that could be integrated in imaging
software.

The present experimental procedure of image recording at different angles @ is closely
related to tomographic techniques aiming at reproducing the 3-dimensional electronic momentum
distribution. However, the non-negligible effects caused by the static electric field presence
(making its inclusion to relevant calculations absolutely necessary) sets new challenges to these
techniques. In short, since the m-composition of the outgoing electron flux depends on ®, the
“object” changes with the polarization rotation. Hence, it cannot be reconstructed by standard
tomographic methods which assume the rotation of just a single object. Instead, a slow
photoelectron tomographic theory is required, that includes both the static electric field and the
coulomb center.

A possible, subsequent work on the subject could include the single photon excitation by
employing elliptic polarization radiation. The z- and o- selection rules will be the ones described
for the simple single photon cases but the phase difference between the two orthogonal polarization
vectors enters the interferogram. Experimentally controlling this phase difference (ellipticity)
could provide phase information about the wave function.

Newly developed computational techniques such as a deep neural network algorithm could
also be implemented in conjunction to the presently developed multielectron theory. The hybrid
algorithm could be trained by computed images and then used to extract information of the
experimental images. This is further aided by the form of the electron current density which is
comprised by two unknown finite sets of non-hydrogenic matrix element magnitudes and phases

(whose determination is an easy task for neural network codes).

The strength of photoionization microscopy lies in the spatial resolution of electronic
interference patterns. Thus, limiting its use solely in imaging of resonant Stark states hinders the
rich capabilities of the method. At this point, the conjunction of PM with other experimental
techniques seems to be the most prominent perspective. We believe that the present study shed
new light upon previously unexplored features of both resonant and particularly non-resonant
images and suggested a number of novel approaches that aim at extracting information from the
photoionization microscopy interferogram. The discussed perspectives of the present work, along

with earlier ones call for additional photoionization microscopy experiments. For example, one of
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the first applications of photoionization microscopy, as proposed by its inventors, was the study
of the Bohm-Aharonov effect [11]. In fact, the authors concluded that the glory signal would act
as a sensitive detector of magnetic fields. The effects of parallel electric and magnetic fields on the
radial distributions were also theoretically studied by the authors of Ref. [122]. The PM setup
could indeed be used for magnetic field sensing purposes but the sensitivity could be greatly
affected by our accuracy in determining other parameters, such as the electric field strength and
the excitation energy (assuming that atom-specific complexities are ignored). Photoionization
microscopy of hydrogen atom in a non-uniform electrical field in the z coordinate was treated in
Ref. [123]. Note that, the VMIS electrode geometry produces inhomogeneous electric fields but
the gradient of the electric field should be high enough in order to have an impact on the trajectories
near the Coulomb center, <5 pum, and on the same time the laser-atom interaction region should be
kept smaller than this value, at least in the z coordinate. The substitution of the static electric field
with a slow-varying time dependent one [53], is an interesting but experimentally challenging
photoionization microscopy variant. The interest of such works lies in the characteristics of the
low-lying states characteristics (position, width, lifetime etc.) which are strongly affected by the
presence of a strong quasi-static electric field, a subject of great interest in strong field physics.
Last but not least, PM near a metal [124] or dielectric surface [125] can be employed in the study
of the surface characteristics (dielectric constant etc.) or manipulate the ionization time delays

experimentally.
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