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Abstract 

Photoionization Microscopy (PM) is an experimental technique aiming at the observation 

of the squared modulus of the wave function of electrons emitted during the photoionization of 

neutral atoms in the presence of a uniform static electric field. This is achieved by imaging the 

two-dimensional flux of these slow (meV) photoelectrons. The present work is devoted to the 

magnesium atom (Z=12), ionized by two-photon absorption out of its ground state. Particularly, in 

this thesis the following three directions have been examined:  

The first direction concerns the recording and characterization of Mg resonant images. 

Indeed, images exhibiting resonant features are recorded just above the saddle point energy. 

Although these manifestations are found to be rather faint, they have been achieved for the heaviest 

atom so far, since all other resonant images were observed in small-size atoms (Z≤3). 

In the second direction, the aim is the detailed recording of the (primarily non-resonant) 

momentum distributions of the outgoing electron transversely to the static electric field. The 

purpose here is the exploration of the global (i.e. of that met in any atom and irrespective of 

excitation conditions) information these distributions may provide through the analysis of their 

rich interference patterns. Particularly, it is shown that the oscillations of the signal at the center 

of the images as a function of energy, is closely related to the dynamics of the electron motion 

towards the detector. 

Finally, in the third direction we explore the effects observed in slow photoelectron images 

when the linear polarization vector of the ionizing-laser is rotated with respect to the static field 

axis. It is shown that two-photon ionization out of the Mg m=0 initial state allows for the population 

of |m|=0,1,2 final Stark states, causing observable m-beating effects. Additionally, based on these 

observations, we discuss the challenges posed on the applicability of tomographic reconstruction 

techniques when meV electrons are involved. 

In all of the above directions, experimental results are supported and verified by our 

hydrogenic non-perturbative calculations. 

 

 

 

 



 

 

  



 

 

Περίληψη 

Η κβαντική περιγραφή των φυσικών συστημάτων είναι βασισμένη στην έννοια της 

κυματοσυνάρτησης. Νέες τεχνικές στοχεύουν στην ανακατασκευή ή την παρατήρηση αυτής μέσω 

τομογραφικών τεχνικών ή της χρήσης «ασθενών» μετρήσεων αντίστοιχα. Επιπλέον άλλες 

τεχνικές όπως η ηλεκτρονική μικροσκοπία σήραγγας και η τεχνική που αφορά την παρούσα 

εργασία, Μικροσκοπία Φωτοϊονισμού (ΜΦ), στοχεύουν στην απευθείας καταγραφή του 

τετραγωνισμένου μέτρου της ηλεκτρονιακής κυματοσυνάρτησης (πυκνότητα πιθανότητας). Πιο 

συγκεκριμένα η ΜΦ είναι μια απεικονιστική τεχνική που έχει ως στόχο την καταγραφή της ροής 

του ηλεκτρονιακού ρεύματος, το οποίο εκπέμπεται κατά την διαδικασία φωτοϊονισμού ουδετέρου 

ατόμου, υπό την παρουσία στατικού και ομογενούς πεδίου. Υπό αυτές τις συνθήκες η 

κυματοσυνάρτηση του εκπεμπόμενου ηλεκτρονίου είναι δέσμια στην διεύθυνση κάθετα στο πεδίο 

ενώ εκτείνεται σε μακροσκοπικές αποστάσεις στην διεύθυνση παράλληλα με αυτό, εξ ού και ο 

όρος μικροσκοπία. Η καταγραφή της ροής του ηλεκτρονιακού ρεύματος επιτυγχάνετε με χρήση 

ανιχνευτή υψηλής χωρικής διακριτικής ικανότητας. Στην περίπτωση όπου τα ηλεκτρόνια είναι 

μικρής κινητικής ενέργειας την στιγμή του φωτοϊονισμού («αργά» ηλεκτρόνια), στην οθόνη  

παρατηρείται η εμφάνιση κροσσών κβαντικής συμβολής. Αυτό το μοτίβο συμβολής συνδέεται 

άμεσα με την πυκνότητα πιθανότητας της ηλεκτρονιακής κυματοσυνάρτησης του 

φωτοηλεκτρονίου και έτσι η ΜΦ είναι μια από τις λίγες τον αριθμό πειραματικές τεχνικές που 

στοχεύουν στην άμεση μέτρηση του τετραγωνισμένου μέτρου της ηλεκτρονιακής 

κυματοσυνάρτησης, δηλαδή  χωρίς την χρήση ανακατασκευαστικών τεχνικών ή άλλων 

υποθέσεων. 

Η περιγραφή του μη-διαταρατικού φαινομένου Stark βασίζεται στο ημι-παραβολικό (ή 

ισοδύναμα στο παραβολικό και το μικτό) σύστημα συντεταγμένων (χ,υ,φ). Η παρουσία του 

ηλεκτρικού πεδίου σε συνδυασμό με την χρήση αργών ηλεκτρονίων είναι  υπεύθυνα για την 

εμφάνιση μοναδικών χαρακτηριστικών στις εικόνες των φωτοηλεκτρονίων. Ενδιαφέρον είναι το 

γεγονός πως για ενέργειες μικρότερες της ενέργειας ιονισμού απουσία πεδίου και μεγαλύτερες 

από την ενέργεια σαγματικού σημείου, συνυπάρχουν καταστάσεις του συνεχούς και συντονισμοί 

(ιονισμός μέσω του φαινομένου σήραγγας). Τα πρώτα πειράματα στο άτομο του Ξένου (Xe, Z=54) 

αποτύπωσαν μια ομαλή συμπεριφορά της θέσης και του αριθμού των κόμβων των εικόνων ΜΦ 

ως συνάρτηση της ενέργειας. Αυτή η συμπεριφορά δείχνει να αγνοεί την ύπαρξη συντονισμών, 



 

 

γεγονός που οφείλεται στο ότι οι καταστάσεις Stark στα πολυηλεκτρονιακά άτομα μπορούν να 

γραφούν ως γραμμικός συνδυασμός υδρογονικών συντονιστικών καταστάσεων και καταστάσεων 

του συνεχούς. Με άλλα λόγια, λόγω των αλληλεπιδράσεων μεταξύ του διεγερμένου ηλεκτρονίου 

και του ιόντος, ο πληθυσμός που βρίσκεται στην κατάσταση συντονισμού μεταφέρεται στις 

ενεργειακά εκφυλισμένες καταστάσεις του συνεχούς. 

Οι θεωρητικές προβλέψεις για τα χαρακτηριστικά των εικόνων συντονισμού 

επαληθεύτηκαν από πειράματα στο υδρογόνο  (H, Z=1) και τα μικρά άτομα του ήλιου (He, Z=2) 

και λίθου (Li, Z=3). Η εμφάνιση αυτών των χαρακτηριστικών επιτεύχθηκε λόγο του μικρού 

ατομικού αριθμού και την επιλογή της ενεργειακής περιοχής κοντά σε αλληλοαπωθούμενους 

συντονισμούς στα πειράματα του λιθίου και ηλίου αντιστοίχως. Στην προσπάθεια επέκτασης της 

μεθόδου σε μεγαλύτερα άτομα, θεωρητικές μελέτες έδειξαν ότι υπό την παρουσία βέλτιστων 

συνθηκών (αρκούντος στενό φασματικό εύρος, κατάλληλη επιλογή της έντασης του στατικού 

πεδίου) η παρατήρηση συντονισμών είναι εφικτή ακόμα και στην περίπτωση του ξένου, δηλαδή 

ατόμων με μεγάλο ατομικό αριθμό. 

Εξαιρετικής σημασίας είναι οι πρόσφατες μελέτες που έδειξαν ότι η ενεργειακή 

συμπεριφορά των εικόνων του συνεχούς και οι αντίστοιχες ακτινικές κατανομές των εικόνων 

αυτών (τουλάχιστον στην περίπτωση εικόνων με κέντρο συμμετρίας το κέντρο της εικόνας, 

αζιμουθιακά συμμετρικές εικόνες) συνδέονται με την δυναμική των ηλεκτρονίων. Συγκεκριμένα, 

αναζητάται η διαφορά χρόνων πτήσης μεταξύ συγκεκριμένου ζεύγους ηλεκτρονιακών τροχιών 

από το άτομο στόχο έως και τον ανιχνευτή. Για τυπικές τιμές του πεδίου ~1 kV/cm οι 

χαρακτηριστικοί χρόνου του συστήματος Coulomb-Stark αφορούν χρόνους τάξης μεγέθους 

μερικών picosecond. Τέτοιου είδους μελέτες βασίζονται στην αντιστοίχιση χρονικών διαφορών 

σε διαφορές φάσης όπως αυτές αποτυπώνονται στο μοτίβο συμβολής των εικόνων.  

Ακόμα, είναι γνωστό πως ο άξονας του στατικού ηλεκτρικού πεδίου επιβάλει μια 

προτιμητέα διεύθυνση στον χώρο. Τότε ο άξονας κβάντωσης αυτού του συστήματος είναι ο 

άξονας του στατικού ηλεκτρικού πεδίου όπως έχει αποδειχθεί θεωρητικά και πειραματικά. 

Αντιθέτως, σε εφαρμογές ηλεκτρονίων υψηλής κινητικής ενέργειας την στιγμή του φωτοϊονισμού, 

η κατανομή ταχυτήτων «χτίζεται» γύρο από το διάνυσμα της πόλωσης. Δηλαδή, ο άξονας 

κβάντωσης είναι το διάνυσμα της πόλωσης μιας δέσμης laser ενώ το στατικό πεδίο προβάλει την 

τρισδιάστατη κατανομή ταχυτήτων στο επίπεδο του ανιχνευτή. Έτσι, η περιστροφή της πόλωσης 

περιστρέφει την τρισδιάστατη κατανομή η οποία παραμένει αναλλοίωτη. Οι παραπάνω παραδοχές 



 

 

χρησιμοποιούνται στην τομογραφική ανακατασκευή της τρισδιάστατης γωνιακής κατανομής ενώ 

η εφαρμογή των τεχνικών αυτών στις περιπτώσεις όπου αφορούν αργά ηλεκτρόνια είναι υπό 

μελέτη.   

Η παραπάνω συζήτηση αποτέλεσε πηγή έμπνευσης της παρούσης εργασίας της οποίας ο 

στόχος είναι η απάντηση στα εξής ερωτήματα, όπως αυτά χωρίζονται σε τρεις επιμέρους άξονες: 

(i) Η χρησιμότητα της μεθόδου της ΜΦ είναι περιορισμένη εξαιτίας του γεγονότος ότι 

εικόνες συντονισμού έχουν παρατηρηθεί μόνο σε μικρά άτομα. Έτσι εγείρεται το ερώτημα του 

εάν είναι δυνατόν να παρατηρηθούν συντονιστικές καταστάσεις σε άτομα μεγαλύτερα του λιθίου 

χωρίς την χρήση κάποιας εξειδικευμένης τεχνικής, π.χ. όπως η χρήση αλληλοαπωθούμενων 

συντονισμών. 

(ii) Ποια είναι η συμπεριφορά των εικόνων και των αντίστοιχων ακτινικών τους 

κατανομών ως συνάρτηση της ενέργειας; Ποια τα κοινά χαρακτηριστικά μεταξύ 

πολυηλεκτρονιακών και υδρογονικών δεδομένων και ποια πληροφορία που σχετίζεται με την 

δυναμική του συστήματος μπορεί να εξαχθεί από αυτά; 

και τέλος 

(iii) Τι πληροφορία μπορούμε να εξάγουμε από την περιστροφή του διανύσματος 

γραμμικής πόλωσης της δέσμης laser σε σχέση με την διεύθυνση του στατικού ηλεκτρικού πεδίου; 

Επιπλέον, ποιες είναι προκλήσεις που αντιμετωπίζουν οι τεχνικές τομογραφικής ανακατασκευής 

σε πειράματα όπου εμπλέκονται αργά ηλεκτρόνια; 

Με σκοπό την εξερεύνηση των παραπάνω ερωτημάτων, η εργασία αυτή αφορά στην 

μικροσκοπία φωτοϊονισμού στο άτομο του μαγνησίου με χρήση διφωτονικού σχήματος διέγερσης 

ξεκινώντας από την βασική κατάσταση. Τα πειραματικά δεδομένα υποστηρίχθηκαν από 

θεωρητικούς υπολογισμούς που περιγράφουν τον φωτοϊονισμό του υδρογόνου υπό την παρουσία 

στατικού πεδίου. Οι υπολογισμοί αυτοί αναφέρονται σε κλασικούς, ημι-κλασικούς και 

αριθμητικούς κβαντικούς υπολογισμούς στο ημι-παραβολικό σύστημα συντεταγμένων. Πέρα από 

την άμεση ποιοτική σύγκριση με τα δεδομένα του μαγνησίου, οι υπολογισμοί αυτοί προβλέπουν 

επί της αρχής τα φαινόμενα που παρατηρούνται σε αυτή την εργασία. 

Πιο συγκεκριμένα, η κλασική περιγραφή επιτρέπει τον χαρακτηρισμό των τροχιών σε 

άμεσες (direct) και έμμεσες (indirect) τροχιές καθώς και την εξαγωγή ποσοτήτων όπως ο χρόνος 

πτήσης. Αυτές οι εξισώσεις κίνησης σε συνδυασμό με στοιχεία από την θεωρία σκέδασης 



 

 

προβλέπουν τα γενικά χαρακτηριστικά του φωτοϊονισμού αργών ηλεκτρονίων με έναν 

διαισθητικό τρόπο. Στην ημι-κλασική περιγραφή το κινούμενο ηλεκτρόνιο συνδέεται με μια φάση 

που υπολογίζεται από το ολοκλήρωμα δράσης στην πορεία της κλασικής διαδρομής. Αυτή η 

επέκταση του μοντέλου προβλέπει φαινόμενα συμβολής και μπορεί να προβλέψει τα γενικά 

χαρακτηριστικά των εικόνων μικροσκοπίας φωτοϊονισμού. 

Το κυρίως θεωρητικό εργαλείο σε αυτή την εργασία αποτελεί η κβαντική περιγραφή του 

υδρογονικού συστήματος Coulomb-Stark. Η εξίσωση Schrödinger λύνεται στο ημι-παραβολικό 

σύστημα συντεταγμένων, γεγονός που επιτρέπει την ανάπτυξη ενός αποδοτικού και σχετικά 

γρήγορου κώδικα. Σε αυτή την πιο πλήρη περιγραφή το συγκεκριμένο σχήμα διέγερσης και η 

αρχική κατάσταση περιγράφονται από στοιχεία πίνακα που συνδέουν τις αρχικές με τις τελικές 

καταστάσεις μέσω ενός διπολικού τελεστή. Το παραπάνω γεγονός καθώς και η συνεισφορά 

συντονιστικών καταστάσεων επηρεάζει το τελικό ρεύμα πιθανότητάς (εικόνα ΜΦ). Μελετώντας 

πιο γενικά διφωτονικά σχήματα διέγερσης όπου το διάνυσμα της πόλωσης είναι στραμμένο κατά 

μια γωνία σε σχέση με τον άξονα διεύθυνσης του πεδίου, εξάγουμε υδρογονικές εκφράσεις για το 

ρεύμα πιθανότητας που αποτυπώνεται στις εικόνες ΜΦ και επιπλέον υδρογονικές και 

πολυηλεκτρονιακές εκφράσεις για την ολική ενεργό διατομή. 

Η πειραματική διάταξη που χρησιμοποιήθηκε για τις ανάγκες των μετρήσεων αποτελείται 

από ένα laser χρωστικής, το σύστημα βαθμονόμησης της συχνότητας της ακτινοβολίας, ένα 

φασματόμετρο απεικόνισης ταχυτήτων των σωματιδίων (VMI) και τέλος τα διάφορα συστήματα 

ανίχνευσης και καταγραφής δεδομένων. Η ακτινοβολία του ορατού βαθμονομείται με την χρήση 

κροσσών συμβολής από συμβολόμετρο τύπου Fabry-Perot και φασματικές γραμμές γνωστής 

ενέργειας με χρήση του οπτογαλβανικού φαινομένου στο αέριο μιας λυχνίας εκκένωσης. Η 

δεύτερη αρμονική της βαθμονομημένης ακτινοβολίας χρησιμοποιείται στις μετρήσεις και 

αναφέρεται σε παλμούς χρονικής διάρκειας μερικών ns (1ns = 10-9 s) στην φασματική περιοχή του 

υπεριώδους ~300 nm (1 nm = 10-9 m). Η δέσμη αυτή εισέρχεται σε κατάλληλα οπτικά στοιχεία με 

σκοπό την χειραγώγηση της γραμμικής της πόλωσης και έπειτα εστιάζεται σε στο θάλαμο κενού 

(10-6 mbar) στον οποίο περιέχεται το  φασματόμετρο. 

Η ατομική δέσμη μαγνησίου παράγεται από φούρνο εξάχνωσης και κατευθύνεται στον 

χώρο αλληλεπίδραση, εντός του φασματομέτρου, όπου και αλληλοεπιδρά με την δέσμη laser υπό 

την παρουσία στατικού ηλεκτρικού πεδίου. Η διεύθυνση της δέσμης laser είναι κάθετη στον άξονα 



 

 

του φασματομέτρου και την ατομική δέσμη. Η κατασκευή του φασματομέτρου βασίζεται στην, 

τυπική σε φασματόμετρα απεικόνισης ταχυτήτων, γεωμετρία τριών ηλεκτροδίων. Η περιοχή 

αλληλεπίδρασης βρίσκεται ανάμεσα από τα πρώτα δυο ηλεκτρόδια. Το μη ομογενές ηλεκτρικό 

πεδίο, που δημιουργείται λόγο της μορφής των ηλεκτροδίων (το πρώτο εκ των οποίων είναι 

συμπαγές ενώ τα άλλα δυο έχουν κυκλική οπή) και έπειτα  από κατάλληλη επιλογή των τάσεων, 

οδηγεί στον σχηματισμό εικόνας στον ανιχνευτή (συνθήκη απεικόνισης ταχυτήτων). Επιπλέον το 

φασματόμετρο περιλαμβάνει ηλεκτροστατικό φακό τύπου Einzel με την χρήση του οποίου 

επιτυγχάνεται η μεγέθυνση της αρχικής εικόνας έως και 20 φορές. Το φασματόμετρο καλύπτεται 

από προστατευτικά φύλλα φερρομαγνητικού κράματος τύπου μ-metal με σκοπό την 

ελαχιστοποίηση του μαγνητικού πεδίου στο εσωτερικό του. Η ανίχνευση των ιόντων/ηλεκτρονίων 

γίνεται από σειρά μικροκαναλικών πλακιδίων και οθόνη φωσφόρου/ανόδου. Μια ccd κάμερα 

καταγράφει και ολοκληρώνει το σήμα σε χρόνο μερικών χιλιάδων παλμών του laser και μεταφέρει 

τις εικόνες σε ηλεκτρονικό υπολογιστή. 

Τα αποτελέσματα αυτής της εργασίας απαντούν στα ερωτήματα των τριών ερευνητικών 

αξόνων που καθορίστηκαν παραπάνω. Αρχικά, η αναζήτηση των συντονισμών επικεντρώθηκε 

στην ενεργειακή περιοχή ακριβώς επάνω από την ενέργεια σαγματικού σημείου όπου ο αριθμός 

των διαθέσιμων καταστάσεων του συνεχούς είναι μικρός. Ως πρώτο βήμα, το κβαντικό 

υδρογονικό μας μοντέλο μπόρεσε να αναπαράγει τα πειραματικά δεδομένα της βιβλιογραφίας. Σε 

αυτές τις πειραματικές υδρογονικές εικόνες, και αντίστοιχα στις θεωρητικά υπολογισμένες, 

καταγράφεται μια εικόνα συντονισμού. Τα χαρακτηριστικά που παρατηρούνται είναι η αύξηση 

του αριθμού των σκοτεινών κροσσών της εικόνας (που αντιστοιχούν σε κόμβους της 

κυματοσυνάρτησης) καθώς και το επαυξημένο μέγεθος της εικόνας σε σχέση πάντα με τις 

γειτονικές εικόνες που αντιστοιχούν σε μη-συντονιστικές καταστάσεις. Το τελευταίο 

χαρακτηριστικό μεταφράζεται σε μια μη-μονότονη συμπεριφορά στα γραφήματα των έξωθεν 

σημείων καμπής των ακτινικών κατανομών ως συνάρτηση της ενέργειας. Επιπλέον οι εικόνες των 

καταστάσεων του συνεχούς βρέθηκαν να παρουσιάζουν ενδιαφέρον λόγο της μονότονης μεν αλλά 

ασυνεχούς δε συμπεριφοράς του μεγέθους των εικόνων ως συνάρτηση της ενέργειας, γεγονός που 

χαρακτηρίζει τα ενεργειακά κατώφλια των μετατροπών των καναλιών σε συνεχή.   

Με τα παραπάνω υδρογονικά αποτελέσματα ως οδηγό, αναλύσαμε πειραματικές εικόνες  

ΜΦ του μαγνησίου που αφορούν διφωτονικό ιονισμό καταστάσεων με μαγνητικούς κβαντικούς 



 

 

αριθμούς |m|=0 και 2 (πόλωση κάθετη στο στατικό πεδίο). Λόγω  της ταυτόχρονης παρουσίας 

καταστάσεων πολλαπλών αριθμών |m| έγινε δυνατή μια εκτίμηση των δυο ενεργειών σαγματικών 

σημείων για |m|=0 και 2. Τα γραφήματα των έξωθεν σημείων καμπής των ακτινικών κατανομών 

ως συνάρτηση της ενέργειας βρέθηκαν να χαρακτηρίζουν κάποια από τα ενεργειακά κατώφλια 

των μετατροπών των καναλιών σε συνεχή, σε συμφωνία με τα υδρογονικά αποτελέσματα. Επίσης, 

στο μέγιστο μιας φασματικής γραμμής παρατηρήθηκε μη-μονότονη συμπεριφορά του μεγέθους 

των εικόνων εξαιτίας μιας εξωτερικής αχλής στις εικόνες. Αυτό το χαρακτηριστικό μπορεί να 

ερμηνευτεί ότι προέρχεται από τον μερικό σχηματισμό ενός επιπλέον κροσσού στην εικόνα λόγω 

της ταυτόχρονης παρουσίας συνεχών και μιας συντονιστικής κατάστασης. Με αυτή την μελέτη 

έγινε δυνατή η παρατήρηση χαρακτηριστικών συντονισμού στο μαγνήσιο. Τα χαρακτηριστικά 

αυτά είναι λιγότερο εμφανή από ότι στο λίθιο, πιθανώς λόγω της ταυτόχρονης διέγερσης 

καταστάσεων με πολλαπλούς μαγνητικούς κβαντικούς αριθμούς και το σχετικά μεγάλο ατομικό 

αριθμό του μαγνησίου (σε σχέση με αυτόν του λιθίου). 

Όσον αφορά στον δεύτερο ερευνητικό άξονα, μελετήθηκαν οι ακτινικές κατανομές 

εικόνων ως συνάρτηση της ενέργειες στην περιοχή –1≤ ε ≤1 (ε: η ενέργεια εκφρασμένη σε μονάδες 

απόλυτης ενέργειας σαγματικού σημείου). Οι εικόνες ΜΦ αφορούν διφωτονικό ιονισμό 

καταστάσεων με μαγνητικό κβαντικό αριθμό m=0 (πόλωση παράλληλη στο στατικό πεδίο). Οι 

δισδιάστατες απεικονίσεις των ακτινικών κατανομών, R(ρ,ε), παρουσιάζουν έντονα φαινόμενα 

κβαντικής συμβολής όπως μοτίβα που στην βιβλιογραφία αναφέρονται ως μοτίβα σκακιέρας. Τα 

πειραματικά δεδομένα αντιπαραβάλλονται με αντίστοιχα γραφήματα της υδρογονικής θεωρίας 

στην περίπτωση της μονοφωτονικής και διφωτονικής διέγερσης τελικών καταστάσεων m=0 από 

την βασική κατάσταση του υδρογόνου. Με αυτό τον τρόπο μελετήθηκαν τόσο τα φαινόμενα 

συμβολής που είναι καθολικά και μπορούν να περιγραφούν αρκούντος από ημι-κλασικά μοντέλα, 

όσο και φαινόμενα που εξαρτώνται από την αρχική κατάσταση, το σχήμα διέγερσης και το άτομο-

στόχο. Η δουλειά αυτή αποτελεί έναν οδηγό των φαινομένων συμβολής στην περιοχή ασθενών 

ηλεκτρικών πεδίων (~1 kV/cm) και χαμηλών ενεργειών. 

Ιδιαίτερα αναλύθηκε η ταλαντωτική συμπεριφορά της σκέδασης τύπου δόξης (glory) και 

τόξου (bow) δηλαδή, το σήμα στο κέντρο του ανιχνευτή και το έντονο σήμα στα άκρα των 

δακτυλίων των εικόνων ΜΦ. Πιο συγκεκριμένα το σήμα τύπου glory στο μαγνήσιο παρουσιάζει 

μια απλή συμπεριφορά στις θετικές ενέργειες που χαρακτηρίζεται από μια ταλάντωση μιας 

κάποιας φέρουσας συχνότητας και κάποια ελάχιστα ή μέγιστα συμβολής. Έπειτα έγινε σύγκριση 



 

 

με τα φάσματα της υδρογονικής θεωρίας τα οποία παρουσιάζουν ταλαντωτική συμπεριφορά λόγω 

της παρουσίας καταστάσεων που επάγονται από το στατικό ηλεκτρικό πεδίο σε θετικές ενέργειες. 

Επίσης, κατ’ αναλογία με προηγούμενες μελέτες της βιβλιογραφίας, έγινε μια προσπάθεια 

σύνδεσης της ταλάντωσης glory με τους χρόνους πτήσης (όπως υπολογίζονται κλασικά) των 

άμεσων τροχιών που καταλήγουν στο κέντρο του ανιχνευτή. Η εξαγόμενη πληροφορία αφορά 

στην δυναμική των ηλεκτρονίων στο δυναμικό Coulomb-Stark και δείχνει να επηρεάζεται 

ασθενώς από την ηλεκτρονιακή δομή του ατόμου-στόχου. 

Τέλος, όσον αφορά τον τρίτο άξονα, εκμεταλλευόμενοι το περίπλοκο (σχέση με το 

μονοφωτονικό) διφωτονικό σχήμα διέγερσης έγινε ένας ενδελεχής έλεγχος των προβλέψεων του 

θεωρητικού μοντέλου. Στην περίπτωση τυχαίου προσανατολισμού του διανύσματος πόλωσης σε 

σχέση με τον άξονα του στατικού πεδίου οι εικόνες ΜΦ παρουσιάζουν περίπλοκη ακτινική 

κατανομή και φαινόμενα συμβολής λόγω της ταυτόχρονης παρουσίας καταστάσεων με 

μαγνητικούς αριθμούς  |m|=0,1,2. Αυτό το γεγονός και ειδικά η μη-τετριμμένη παρουσία του 

χαρακτήρα |m|=1 αποδεικνύεται και από την ανάλυση των πειραματικών φασμάτων. Με χρήση 

των βασικών στοιχείων πολυηλεκτρονιακών θεωριών και μιας σειράς πειραματικών φασμάτων, 

μπορούν να εξαχθούν τα αποσυντεθειμένα φάσματα μιας τιμής του κβαντικού αριθμού |m|. 

Παραδείγματος χάριν, οι φασματικές γραμμές του αποσυντεθειμένου φάσματος |m|=1 

υποδηλώνουν συντονισμούς του συγκεκριμένου κβαντικού αριθμού των οποίων τα 

χαρακτηριστικά είναι εμφανή και στις αντίστοιχες εικόνες ΜΦ. 

Η παραπάνω ανάλυση οδήγησε στην ανάπτυξη μεθοδολογίας η οποία μπορεί να 

χαρακτηρίσει στοιχεία της γεωμετρίας της διάταξης, όπως οι διευθύνσεις της διάδοσης της 

ακτινοβολίας laser σε σχέση  με το στατικό ηλεκτρικό πεδίο και το διάνυσμα της πόλωσης σε 

σχέση με τον άξονα της ανίχνευσης (κάμερα). Ενδιαφέρον παρουσιάζει ακόμα, η σύγκριση με 

μελέτες που αφορούν στην τομογραφική ανακατασκευή των τρισδιάστατων τροχιακών. Στην 

περίπτωση της ΜΦ, υπάρχει συνεισφορά συνιστωσών διαφορετικού κβαντικού αριθμού |m| οι 

οποίες μπορεί να περιέχουν ακόμα και συντονισμούς επαυξημένου αριθμού κόμβων της ακτινικής 

κατανομής. Επίσης, η περιστροφή του διανύσματος της πόλωσης μεταβάλει την συνεισφορά των 

διαφόρων συνιστωσών διαφορετικού |m| και επακόλουθα το εξερχόμενο ρεύμα πιθανότητας 

μεταβάλλεται αναλόγως. Αντιθέτως στην τομογραφική ανακατασκευή η κατανομή ταχυτήτων 

των ηλεκτρονίων θεωρείται ως το αντικείμενο το οποίο περιστρέφεται μαζί με το διάνυσμα της 

πόλωσης και κατά τα άλλα παραμένει αναλλοίωτο. 
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Introduction 

The quantum description of physical systems at the atomic scale is heavily based on the 

concept of the wave function, which is obtained by solving the Schrödinger equation. 

Traditionally, however, experimental information on the wave function is only inferred by 

comparing theoretically calculated and experimentally measured observables, such as absorption 

or emission spectra. The wave function itself is generally not measured directly, while it is quite 

evident that access to it would allow for much more insight into the structure of the quantum 

systems under study. This reasoning explains the considerable recent achievements towards the 

development of experimental approaches aiming to the observation of the wave function itself. On 

the one hand, microscopy techniques, such as Scanning Tunneling and Atomic Force microscopies 

(STM and AFM, respectively), were employed for the detection of photoemission from a single 

molecule deposited on a surface [1,2] and allowed for the reconstruction of its molecular orbitals 

[3]. In another approach, the interaction of atoms and small molecules with strong laser fields, in 

conjunction with imaging methods, permitted the tomographic reconstruction of the electron 

density of their ground states [4,5]. Furthermore, the application of weak measurements concepts 

[6,7] led to the complete (amplitude and phase) determination of the wave function of the photon 

[8]. 

The work of the present thesis concerns another imaging technique, so-called 

photoionization microscopy (PM), capable of experimentally observing the squared modulus of 

the wave function of an electron emitted from an atom. This is achieved by measuring the two-

dimensional flux of slow (meV) electrons ejected during the photoionization of neutral atoms in 

the presence of a uniform static electric field. The term “microscopy” is justified by the fact that 

the wave function of the outgoing photoelectrons in the direction of the field extends over 

macroscopically large distances. Transversely to the field, however, the wave function is bound. 

The electron current probability density is imaged by a position sensitive detector (PSD) and the 

low energy of the liberated electrons allows for the observation of quantum interferences on the 

recorded images. In turn, it can be shown [9,10,11] that, indeed, these interference structures are 

directly related to the squared modulus of the electronic wave-function. Although the wave 

function’s phase cannot be measured, PM appears nowadays to be the only method where the 
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squared modulus of the wave function is directly projected on the surface of the detector without 

any requirements for further hypotheses or reconstruction processes. 

The concept of PM was introduced during the early 1980s [9,12] and analyzed in detail 

over the whole decade by Kondratovitch and Ostrovsky [10,11] within the framework of the 

hydrogenic Stark effect, which was described semi-classically and in terms of so-called parabolic 

wave functions [13,14]. In fact, the role of the static electric field is not to just guide the free 

electrons towards the detector. On the one hand, experimental measurements [15] and predictions 

based on classical trajectory calculations for an electron in the combined Coulomb-Stark field [16] 

showed that slow photoelectron images present interesting features and striking differences with 

respect to high-electron-energy images. On the other hand, and perhaps more importantly, just 

above the field-induced ionization threshold and up to the zero-field threshold, the field presence 

leads to the coexistence of continuum and quasi-bound Stark states (resonances). PM may provide 

access to the wave function of one or the other, but its inventors where particularly interested for 

resonant wave function imaging. Nevertheless, the first partial experimental realization was 

achieved in studies dealing with photodetachment [17], the latter characterized by the presence of 

purely continuum states, but not resonances. 

On the quest for resonant images, the first PM experiments were performed with xenon 

atoms [18,19,20]. Remarkably, in these experiments, the number and position of nodes of the 

recorded wave function evolved smoothly with photon energy, and remained to a large extent 

insensitive to the presence of resonances. These observations were explained by the fact that non-

hydrogenic atoms are characterized by the emergence of short-range interactions induced by the 

penetration of the excited electron’s wave-function into the residual ionic core. As a consequence, 

their Stark states are expressed as mixtures of hydrogenic quasi-bound and continuum parabolic 

states. Then, a significant portion of an initially prepared resonant state population spreads out 

over several degenerate continua (i.e. a form of autoionization), while resonant and continuum 

excitation amplitudes out of a given initial state become comparable. Thus, the image resonant 

features may be rather weak and hard to observe and these difficulties grow with increasing ionic 

core size. Hence, the absence of resonant effects in Xe (atomic number Z=54) may be explained 

by the large ionic core size. 

As a next step towards the search of resonant signatures, experiments on the light Li (Z=3) 

[21,22] and He (Z=2) [23] atoms, as well as on Hydrogen atom [24] itself were performed almost 
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during the same period. The Hydrogen experiment fully verified the first 30-year old predictions 

[10,11], as well as very recent ones [25,26,27]. The resonant signatures were also clearly observed 

in the Li experiment, despite the fact that they were found to be fairly weaker than the hydrogenic 

ones. As for the He experiment, resonant manifestations were found to be almost equally intense 

with the hydrogenic, because the recording were performed near avoided crossings between pairs 

of interacting resonances [28], with the resonance of interest being effectively decoupled from the 

continua. The observations of the above experiments on light non-hydrogenic atoms were fully 

compatible with accompanying theoretical predictions [22,23,29]. In fact, some theoretical work 

was devoted even to Xe itself [30], and predicted that under favorable conditions (spatial resolution 

spectral resolution excitation laser line-width, proper choice of field strength, etc.) it would be 

possible to record resonant images even for this heavy atom. Other theoretical work on non-

hydrogenic atoms concerned the Alkali metal atoms such as Na [31,32]. One of the interesting 

predictions in that work is that the dominance of resonances on PM images depends nontrivially 

on and varies with the field strength [33], which then should be chosen carefully. 

Remarkably, quite recent experimental and theoretical work on either hydrogen or more 

complex atoms [34,35,36,37] implied that the scope of PM is not limited to the recording of 

resonant images. Instead, it was also demonstrated that the evolution of images and corresponding 

radial distributions as a function of energy may be related to the dynamics characterizing the 

Coulomb-Stark problem. Particularly, the main quantity of interest here is the time delay between 

the arrivals on the detector, when selected pairs of electron trajectories are considered. Despite the 

fact that the typical time scales of the Stark effect fall within the picosecond range [38], this kind 

of information, as well as the methods that may be used to extracted it, is central in the frontier 

atto-physics science [39,40]. The recent proposals deal with the encoding of time-delays into phase 

differences associated with the aforementioned trajectory pairs, and the extraction of these phase 

differences from the energy dependence of the radial distributions. Additionally, it appears that the 

positive energy range is the best suited for such studies, while the presence of resonances would 

complicate the analysis. Nevertheless, this picture did not always provide meaningful results and 

left some unanswered questions. Particularly, it was not known if this picture is global enough to 

be obtained by performing relevant experiments in non-hydrogenic atoms, or it is strictly restricted 

to the hydrogenic case. 
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Last but not least, it is long ago known and proved experimentally that the presence of an 

electric field imposes a quantization axis, i.e. a preferable direction in space [41,42]. This seems 

to be particularly true when meV electrons are involved. On the other hand, imaging spectrometers 

make use of an electric field to guide the ionized electrons to the detector. When, however, 

electrons of fairly high energy are involved, the analysis of photoelectron angular distributions 

(PADs) is based on the assumption that they are built with respect to the linear laser polarization 

vector (see for example [43,44,45,46]). In other words, it is accepted that the polarization vector 

is the quantization axis and the possible implication of the static extraction field is ignored. It is, 

furthermore, assumed that rotation of the polarization vector will rotate the whole PAD, which 

will remain otherwise unaffected. This is reminiscent of the recording of PADs with electron 

spectrometers other than the imaging ones and where electric fields in the laser/atoms intersection 

point are practically absent [47]. The above postulations allowed the tomographic reconstruction 

of the 3D PADs from the 2D images on the PSD [48,49]. Nevertheless, many questions on the 

limits of applicability of such tomographic methods remained open. 

 

Motivated by the above discussion, the purpose of the present work is to provide a number 

of answers into the following three directions: 

(i) Evidently, the fact that resonant images were recorded so far solely in small complex 

atoms poses some limits on the usefulness of PM. Is it possible to record resonant images in non-

hydrogenic atoms considerably heavier than Li and without applying any particular strategy (such 

as recordings near avoided crossings, etc.)? 

(ii) How do non-resonant images and radial distributions evolve with energy in a non-

hydrogenic atom, what are the common characteristics with the hydrogenic data and what can be 

learned or extracted from such data? 

and 

(iii) What can be learned from the rotation of the linear laser polarization vector with 

respect to the static electric field? Particularly, what are the challenges that tomographic PAD 

reconstruction techniques face when slow photoelectrons are involved? 

 

In order to deal with the above directions, the present work is devoted to the 

photoionization microscopy of the magnesium atom via a two-photon excitation scheme out of its 
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ground state [Ne]3s2. The singly and highly excited [Ne]3snk configurations of Mg are composed 

by an outer electron in an |𝑛𝑘⟩ Stark state with principal quantum number n≈30, outside of a 

[Ne]3s Mg+ ionic core which is open but spherically symmetric. Thus, in a first approximation the 

magnesium atom resembles the Alkali atoms (which possess a valence electron outside closed 

spherically symmetric subshells). Additionally, due to its middle size (Z=12) it stands between the 

two limiting cases of He (Z=2)/Li(Z=3) and Xe (Z=54). 

Our experimental study is supported by a robust and efficient resolution method of the 

quantum hydrogenic Coulomb-Stark problem, where Schrödinger equation is separated in semi-

parabolic coordinates. This coordinate system appears to be quite advantageous, easily dealing 

with the wave function’s macroscopic extension as well as its peculiarities at small distances. 

Depending on the question at hand, these results are occasionally accompanied with the insightful 

predictions of a classical [16,34,50] and semi-classical [11,18,34,51] formulation that are 

presented here in a simple and dense format. In fact, in the course of this work it was also found 

insightful to connect the classical description of slow photoelectron imaging with notions 

borrowed from classical scattering theory [52]. Finally, quantum and semi-classical descriptions 

provide a global PM theoretical framework that will be used to decode our experimental PM 

results. 

Briefly commenting on the achieved goals, we mention first that we made use of the well-

established information [21,22], that the resonant character of the recorded images is more 

prominent in the energy range just above the ionization threshold, where the number of continua 

is small. In fact, in order to avoid any misinterpretations, the characteristics of the continuum 

images were additionally studied in more detail than before within this energy range. As a result, 

we have indeed recorded a number of resonant manifestations in Mg atom. 

Second, the experimental exploration of the specificities of the differential (radial and 

angular distribution) as well as of the total photoionization cross-sections in a wide energy range, 

revealed new phenomena that were known up to now mainly at a theoretical level [15,34,53]. We 

particularly focused on the structure of the electron’s momentum distribution transversely to the 

field and as a function of energy. These 2D-maps offer a complete landscape of the relevant 

quantum interference effects whose gross features remain unnoticed on single images. A 

qualitative comparison between experimental magnesium and calculated hydrogenic observables 

corresponding to different initial states and excitation schemes helped identifying the features of 
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“universal” nature while, highlighted the possible differences. Moreover, these momentum 

distribution maps where employed for extracting information on electron dynamics. More 

specifically, we focused on the critical effect of glory scattering, i.e. the signal at the center of the 

photoelectron momentum distribution, which is a dominant feature of the images when the laser 

polarization vector is parallel to the static electric field vector. It will be shown that indeed, while 

this observable is easy to record and analyze, it incorporates important information about the 

electron dynamics in the Coulomb-Stark potential. 

Finally, we have experimentally (in Mg) and theoretically (in H) demonstrated the 

simultaneous excitation of different m (azimuthal quantum number) final states, after two-photon 

excitation from an m=0 ground state. It is proved that the rotation of the linear ionizing-laser-beam 

polarization with respect to the electric field direction gives rise to m-beating effects, due to the 

coherent contributions of multiple-m states in the outgoing electron flux. In fact, our set-up and 

experiment are similar to those employed in tomographic techniques, but the presence of the static 

electric field in addition to the Coulomb attraction is shown to pose new challenges for 

tomographic reconstruction techniques involving slow (meV) electrons. 
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Chapter 1: Theoretical Framework of 

Photoionization Microscopy 

1.1 Classical and Semi-Classical Treatment of the Hydrogenic Stark 

Effect 

Many important aspects of the simultaneous interaction of slow electrons with a Coulomb 

field and with a homogeneous static electric field are of classical origin. The following section is 

devoted to the description of these aspects and their manifestation on the recorded images. Special 

attention is paid to the description of basic concepts and definitions along with important 

connections to classical scattering theory. The mathematical tools necessary for calculating the 

main classical features of a Photoionization Microscopy (PM) image are also presented here. 

Finally, this section ends with a brief semi-classical treatment of quantum interference effects that 

will allow a more comfortable connection with the fully quantum mechanical framework presented 

in the next section. 

 

1.1.1 Classical Description  

Let a negatively charged particle (electron) move under the influence of both, a 

homogenous static electric field directed along the positive z axis and an attractive Coulombic 

center located at the origin. The relevant combined potential is presented in Figure 1 and is written 

in atomic units (a.u., ℏ=me=e=(4πєo)
-1=1) as: 

 𝑉 = −
Z

𝑟
+ 𝐹𝑧 (1) 

where F is the strength of the uniform field, Z is equal to the charge of a structureless ion (Z=1 for 

the hydrogen atom) and r = (x2+ y2+ z2)1/2. Two characteristic energies are marked on the z-(x,y) 

potential surface of Figure 1 namely, the zero-field ionization threshold in the absence of the static 
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field (F=0) which is set at energy E=0 and the field-induced ionization limit i.e. the classical saddle 

point energy which is written as: 

 𝐸𝑠𝑝
𝑐𝑙  = −2(𝑍𝐹)1/2 (2) 

or 𝐸𝑠𝑝
𝑐𝑙 [cm−1] ≈ −6.1212 × √𝐹[V/cm]  in spectroscopic units. 

 

 

Figure 1. Schematic representation of the combined Coulomb and Stark field potential energy in Cartesian 

coordinates. Equipotential curves (black lines) exhibit open bottleneck-like shape. The saddle point energy 

Esp is a function of the uniform static field strength. Classically, for E >Esp the electron can escape the 

Coulomb well. The unique shape of the potential leads to complicated classical trajectories. 

 

Interestingly, the electron motion in this potential is equivalent to the motion of a celestial 

object orbiting a mass center (e.g. Earth) while a constant force is acted upon it (e.g. solar pressure 

or constant thrust) [54,55]. Due to the axial symmetry of the potential the general three-

dimensional classical motion is separable in either the semi-parabolic coordinate system (χ,υ,φ) 

[41,51,55] defined by, 

 

𝜒 = √𝑟 + 𝑧 ≥ 0

𝜐 = √𝑟 − 𝑧 ≥ 0

𝜑 = tan−1(𝑦/𝑥)

 (3) 
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or the parabolic coordinate system (ξ=χ2,η=υ2,φ) [10,11,16,41] or even the mixed parabolic system 

(χ,η,φ). For the sake of consistency between classical and the quantum formulation to be discussed 

later on, semi-parabolic coordinates are used throughout this thesis and we also provide here the 

inverse relations 

 

𝑥 = 𝜒𝜐 cos(𝜑)

𝑦 = 𝜒𝜐 sin(𝜑)

𝑧 = (𝜒2 − 𝜐2) 2⁄

 (4) 

while 𝑟 = (𝜒2 + 𝜐2) 2⁄ . The angle φ is the azimuthal angle measured from the x axis. Following 

the coordinate system transformation of Eq. (3), the Hamiltonian is written as [55]: 

 𝛨 =
1

2 
[

 (𝑝𝜒
2+𝑝𝜐

2)

2 (𝜒2+𝜐2)
+

 𝑝𝜑
2

𝜒2𝜐2
] −

2𝛧

𝜒2+𝜐2
+ 𝐹

(𝜒2−𝜐2)

2
= 𝛦 (5) 

where the quantities (pχ, pυ, pφ) are reduced generalized momenta, related to the ordinary momenta 

(dqi/dt =𝑞�̇�) as follows: 

 

𝑝𝜒 =
d𝑡

d𝜏1
�̇� = (𝜒2+𝜐2)�̇�

𝑝𝜐 =
d𝑡

d𝜏1
�̇� = (𝜒2+𝜐2)�̇�

𝑝𝜑 =
d𝑡

d𝜏2
�̇� = 𝜒2𝜐2�̇�

 (6) 

These generalized momenta involve two reduced “time” variables (𝜏1, 𝜏2), which connect the 

physical time t with the spatial coordinates χ,υ: 

 
𝑑𝜏1 =

𝑑𝑡

𝜒2+𝜐2
=

𝑑𝑡

2 r

𝑑𝜏2 =
d𝑡

𝜒2𝜐2
 

 (7) 

The azimuthal angular momentum is not present in the Hamiltonian of Eq. (5), while the azimuthal 

momentum pφ is conserved [10,16,55]. This is related to the quantum number m(=pφ) being a 

“good” quantum number [14] discussed in section 1.2. 

After appropriate manipulations, the Hamiltonian (5) can be separated into the following 

three uncoupled equations describing the electron motion: 
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𝑝𝜒
2

2
+ 𝑈𝜒

𝑐𝑙 = 2 𝑍1 , 𝑈𝜒
𝑐𝑙 =

𝐹

2
 𝜒4 − 𝐸 𝜒2 +

𝑝𝜑
2

2 𝜒2
 (8) 

  𝑝𝜐
2

2
+ 𝑈𝜐

𝑐𝑙 = 2 𝑍2 , 𝑈𝜐
𝑐𝑙 = −

𝐹

2
 𝜐4 − 𝐸 𝜐2 +

𝑝𝜑
2

2 𝜐2
 (9) 

 𝑝𝜑 =
𝜑−𝜑0

𝜏2
 .  (10) 

The conservation of mechanical energy applies in the pseudo-form of “K”+“V” =“E”, 

where “K”= 
𝑝𝜒
2

2
 or 

𝑝𝜐
2

2
, “V”= 𝑈𝜒

𝑐𝑙 or 𝑈𝜐
𝑐𝑙 and “E”= 2𝑍1 or 2𝑍2 for the χ and υ coordinates respectively. 

The two separation constants Z1 and Z2 are related through the relation [16]: 

 𝑍1 + 𝑍2 = 𝑍 . (11) 

In what follows the discussion will be limited to the case of zero-azimuthal momentum 

pφ=0. This condition leads to a planar electron motion restricted to a plane defined by the initial 

azimuthal angle φ0 (see Eq.(10)) and allows for numerous simplifications; concerning particularly 

the initial electron launch conditions. As a result, one obtains fairly simple mathematical 

expressions that predict the majority of the classical features of a PM image. On the other hand, 

those features which are attributed to a non-zero momentum and are somehow connected to the 

present work are briefly commented at the end of this subsection. 

Before proceeding further, it is convenient to define the reduced energy variable, 

 𝜀 ≡
𝐸

2√𝑍 𝐹
=

𝐸

|𝐸𝑠𝑝
𝑐𝑙 |

 . (12) 

with the help of which the solutions are more clearly expressed. As we already mentioned, 

the major consequence of the external static electric field is to lower the ionization limit by an 

amount equal to the saddle point energy. 𝐸𝑠𝑝
𝑐𝑙 , which separates the energy range into two regions: 

(i) the E< 𝐸𝑠𝑝
𝑐𝑙  (ε<–1) one, where the electron is classically trapped and can never escape the 

attractive Coulomb center and (ii) the E>𝐸𝑠𝑝
𝑐𝑙  (ε>–1) one, where the electron is energetically 

allowed to escape (i.e. to ionize) towards infinity (z→–∞). Therefore, in photoionization studies 

we are primarily interested for the ε>–1 energy range. We assume next that the electron is initially 

at the axes origin and that it is “launched” with an angle β with respect to the positive z axis. Uphill 

or downhill ejection with respect to the field direction corresponds to β=0 or β=π, respectively. 
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This initial ejection angle β is connected to the separation constants of Eqs. (8,9) through the 

relations [10,16]: 

 
𝑍1 = 𝑍cos2 (

𝛽

2
)

𝑍2 = 𝑍sin
2 (

𝛽

2
)

 (13) 

Within the –1<ε<0 energy range the motion may be bound or unbound according to a reduced-

energy-dependent critical ejection angle 𝛽𝑐 = 2sin−1(|𝜀|) [16]. For β<βc the electron is trapped 

and does not ionize (although this is energetically possible), while for β>βc the electron escapes 

towards a detection plane perpendicular to the z-axis and placed at some large distance zdet<0. For 

positive energies βc loses its meaning and the electron can reach the detector’s plane for all launch 

angles β within the full [0,π] range. 

The classical trajectories can be calculated analytically [11,16,50,54,55]. Integration of 

Eqs. (8,9) for pφ=0 provides the equation of motion for χ and υ as a function of the reduced time 

variable τ1 (the derivation of the general pφ≠0 equations of motion and the arbitrary-initial-point 

ejection equations of motion can be found in Ref. [55]). Specifically, the motion along the χ 

potential is described by [55] 

 𝜒(𝐭) = 𝜒+|CN[K[𝑚𝜒](2𝐭 − 1),𝑚𝜒]| , (14) 

where CN is the Jacobi elliptic cosine function and K the complete elliptic integral of the first kind, 

while the elliptic modulus mχ and the oscillation amplitude 𝜒+ are given by 

 

𝑚𝜒 =
1 

2 
[1 +

𝜀

[𝜀2+cos2[
𝛽

2
]]

1
2
 

]

𝜒+ = 21/2 [
𝑍

𝐹
]
1/4

[𝜀 + [𝜀2 + cos2 [
𝛽

2
]]

1

2
]

1

2

 (15) 

As it turns out from Eq. (14) the function 𝜒(𝐭) is always bound and periodic with a period of 2Tχ 

where 

 𝑇𝜒 =
K[𝑚𝜒]

(𝐹 𝑍)1/4(𝜀2+cos2[
𝛽

2
])

1
4

 (16) 
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In fact, the reduced time t above is measured in half-period Tχ units, i.e. t≡τ1/Τχ (note in passing 

that for pφ=0 the reduced time 𝑑𝜏2 is irrelevant and does not enter to the problem). 

 As for the υ-equations of motion for β>βc, there are two classes of solutions. Assuming that 

the electron transfer from υ=0 up to υ→∞ (z→-∞) is achieved within a reduced time τ1=Tυ, the first 

type of solution is 

a) the so-called Type I solution, 

 𝜐(t) = 𝜐+ |
𝐶 –SC[F[tan−1[𝐶],𝑚𝜐](1−

2t

R
),𝑚𝜐]

𝐶 +SC[F[tan−1[𝐶],𝑚𝜐](1−
2t

R
),𝑚𝜐]

| , holding for  sin (
𝛽

2
) > |𝜀| and ε>–1 (17) 

where SC is the Jacobi elliptic tangent function and F the incomplete elliptic integral of the first 

kind. The elliptic modulus mυ, the oscillation amplitude υ+ and the parameter C are given by, 

 

𝑚𝜐 = 1 −
1

𝐶4

𝜐+ = 2
1/2 [

𝑍

𝐹
]
1/4

[sin [
𝛽

2
]]
1/2

𝐶 = [
2sin[

𝛽

2
]

sin[
𝛽

2
]−𝜀
]

1/2

 (18) 

while the dimensionless ratio 

 R ≡
𝑇𝜐

𝑇𝜒
 (19) 

counts the number of oscillations in the χ coordinate until the electron reaches infinity in the υ 

direction. Note that, this quantity is closely connected to the quantity “N+/-” originally introduced 

in Refs. [11,19]. The second type of solution is 

b) the so-called Type II one, 

 𝜐(t) = 𝜐+ |SC [K[𝑚𝜐]
t

R
, 𝑚𝜐]| , holding for  sin (

𝛽

2
) < 𝜀 and ε>0 (20) 

where now, 
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𝑚𝜐 = 1 − (
𝜀−(𝜀2−sin2[

𝛽

2
])

1
2

𝜀+(𝜀2−sin2[
𝛽

2
])

1
2

)

𝜐+ = 2
1/2 (

𝑍

𝐹
)
1/4

[𝜀 − (𝜀2 − sin2 [
𝛽

2
])

1

2
]

1

2

 . (21) 

Note that 0<t<R. Finally, the ratio R is equal to, 

 

RI = 2
[𝜀2+cos2[

𝛽

2
]]

1
4

[2sin[
𝛽

2
]]
1/2

+[sin[
𝛽

2
]−𝜀]

1/2

|F[tan−1[𝐶],𝑚𝜐]|

K[𝑚𝜒]

RII =
[𝜀2+cos2[

𝛽

2
]]

1
4

21/2[𝜀+(𝜀2−sin2[
𝛽

2
])

1
2
]

1
2

K[𝑚𝜐]

K[𝑚𝜒]
 

 (22) 

for the Type I and Type II solution, respectively. 

The analysis of the above equations shows that for the examined planar motion, the form 

of the trajectories depends on the physical time t only through the reduced time τ1 or alternatively 

through t. On the other hand, the actual time of flight is of importance for a number of studies and 

it should then be explicitly computed. This is achieved by introducing the equations of motion in 

Eq. (7) that relates the reduced and physical time and then integrating either numerically or 

analytically this so-called Stark equation [55], i.e. 

 𝑡 = ∫ {𝜒2(𝜏1
′ ) + 𝜐2(𝜏1

′ )}𝑑𝜏1
′𝜏1

0
 (23) 

Figure 2(a) shows the effective potentials 𝑈𝜒
𝑐𝑙, 𝑈𝜐

𝑐𝑙 (see Eqs. (8,9) and the discussion 

therein) for some selected ε, F, β values. The pseudo-energy values 2Z1, 2Z2 determine the range 

of motion i.e. from the origin to their crossing point with the effective potentials. In addition, 

Figure 2(b) shows the semi-parabolic equations of motion for β=61 >βc=60 degrees.  
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Figure 2. Calculated potentials, 2Z1, 2Z2 values and equations of motion for Z=1, ε=–0.5, F=10-7 a.u. and 

β=61 degrees (βc=60 degrees). For these parameters R≈2.259. Atomic units are used for all quantities. (a) 

Potentials in the, χ coordinate (black solid line) and υ coordinate (blue solid line) determine the bound and 

the unbound nature of the χ and υ motion respectively. 2Z1 (black short dashed line) and 2Z2 (blue short 

dashed line) are also shown. For β<βc, 2Z2 lies below the potential maximum and the motion becomes 

bound in both directions. (b) Motion equations χ(t) (black solid line) and υ(t) (blue solid line). The χ(t) 

function performs R oscillations until υ(t) reaches infinity. 

 

Since the semi-parabolic coordinate system is not particularly useful for visual inspection, Figure 

3 presents a selection of trajectories for different ejection angles β but fixed ε and F. All presented 

trajectories are parallel to each other at large distances. In other words, for υdet →∞ they cross at 

the point ρ=χdet∙υdet with χdet=10.  
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Figure 3. Calculated trajectories relevant to photoionization with ε=–0.5 and F=10-7. The plane of motion 

is the x,z plane. The selected ejection angles are β≈: 161.6 (black line), 113.7 (red line), 94.8 (green line), 

62.8 (blue line), 61.9 (purple line), 61.1 (dark yellow line). In the particular example of the figure, the 

detector distance is set to infinity and asymptotically these trajectories approach the limit ρ→10∙υdet. Note 

that trajectories of R<1 never cross the z axis while for R>1 they cross one, two, three etc. with the z axis. 

 

It is interesting to note that a value of the ratio R equal to 1,2,3 etc. implies that by the time 

the electron reaches infinity in the υ direction, it crosses the z-axis (i.e. returns to the axis origin in 

the χ direction) one, two, three etc. times. Even more, the ratio R may be employed for classifying 

the trajectories and we may, in fact, distinguish first between two major classes [11,16]: 

(a) The direct trajectories (R<1), (see black and red lines of Figure 3), which never intersect with 

the z axis and are almost parabolic. The existence of direct trajectories is possible only above a 

critical energy εdir≈–0.755 [16,19,50] and 

(b) Those trajectories that intersect at least once with the z axis (R>1), hereafter called indirect 

trajectories (see green, blue, purple and dark yellow lines of Figure 3). The electron in this case is 

re-scattered by the attractive core once or multiple times before it finally escapes to infinity. 
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In general, many trajectories can reach a given point on the detector. They may be further 

classified in pairs, the first direct pair corresponds to R values within the range (0,1) (for energies 

above εdir), the second within the range (1,2), etc. Trajectories exhibit Mtp turning points in the χ 

coordinate, where, 

 𝑀𝑡𝑝 =
2𝑁+1– (–1)𝑁

4
    with    𝑁 ≡ Integer Quotient [R/0.5] (24) 

The above classification is related to the one proposed in [11]. Note that R refers to electron paths 

reaching infinity, while for calculations performed for a detector placed at some finite distance, it 

should be redefined accordingly. 

The motion of an electron in the Stark-plus-Coulomb potential is relevant to the case of 

photoionization while, in the absence of the Coulombic attraction the motion is relevant to 

photodetachment [17,52,56]. In the latter case a negative ion interacts with a light field in the 

presence of a homogenous static electric field. The outer electron is ejected with a kinetic energy 

equal to the photon energy minus the electron affinity and it moves under the influence of the static 

electric field. Then influence of the neutral atomic core can, to a first approximation, be neglected 

(this is simulated by setting Z=0 to the Hamiltonian of Eq. (5)). It follows that the electron 

trajectory is purely parabolic and is identical to the free fall of an object in a gravitational field 

[52]. Theoretical and experimental studies on photodetachment microscopy are closely related to 

the work of the present study, since for ε>>1 PM trajectories do not deviate significantly from their 

photodetachment counterparts [16,52]. On the other hand, for ε<1 the PM trajectories depend 

strongly on β and are found to be quite complex due to the influence of the Coulomb field.  

 

1.1.2 Connection with the Classical Scattering Theory 

The photoionization “experiment” described above can be considered as a half-collision 

process between a particle of mass m (electron) and a scattering center (residual ion) with no 

incident particle flux. The previously presented equations of motion can be used to calculate the 

classically predicted differential cross section of this scattering problem i.e. the spatially resolved 

electron impact distribution on a detector. 
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 Here we deal with the two-dimensional motion case (pφ=0) for electrons classically 

allowed to reach arbitrary large distances (β>βc) and detectors placed at finite distances ∼103 a.u. 

For practical convenience, the detector (z=zdet<0) can be replaced by a paraboloid surface of 

constant 𝜐 = 𝜐𝑑𝑒𝑡 = √−2𝑧𝑑𝑒𝑡. The surface of the paraboloid and the plane detector differ in the z 

direction by Δz=–ρ2/(4zdet), where ρ=χυdet is the distance between the point of impact and the 

detector center. For the typically used field (∼1000 V/cm), detector choice and energy values of 

the present study, to an excellent approximation it holds that Δz≈0 [27]. 

The classical differential scattering cross section – or in our case, equivalently, the radial 

distribution R(ρ) – is defined as [50]: 

 𝑅(𝜌) ≡
𝑑𝜎

𝑑𝐴
(𝜌) = ∑

sin𝛽𝑖

𝜌
|
𝑑𝜌

𝑑𝛽𝑖
|
−1

𝑖  (25) 

where dA is the elementary surface on the detector dA=2πρdρ and the summation runs over all 

ejection angles that reach the same impact point on the detector. Note that, this relation closely 

resembles the classical scattering differential cross section relation of a particle scattered by a 

central potential [52], 
𝑑𝜎

𝑑𝛺
(𝜃) = ∑

𝑏𝑖

sin𝜃
|
𝑑𝜃

𝑑𝑏
|
−1

𝑖 , where now the summation runs over the impact 

parameters bi, that lead to the same scattering angle θ. Within this context, the deflection function 

Θ(b) incorporates all the short-range interactions governing the scattering process but is not 

experimentally accessible. It is connected, however, with the scattering angle through the relation, 

Θ+2π κ =±θ, with integer κ.  

The above-mentioned resemblance implies that the problem is apparently reduced to the 

calculation of the impact point radius ρ as a function of the ejection angle β i.e. the generalized 

deflection function ρ(β). Unfortunately, for the case of PM no analytical expression can be derived. 

Instead, R(ρ) needs to be computed numerically. On the other hand, the photodetachment dynamics 

provide an analytical expression, R(ρ)sin(β) [52,56]. 

In Figure 4 we present the deflection functions for a typical field value and different 

reduced energies. For the lower energy that lies below εdir (Figure 4(a)) the series of lobes are 

formed solely by indirect trajectories while the existence of a critical angle βc which separates the 

bound from the unbound motion is clearly visible (dashed red line). For higher energies an 

additional lobe is formed by the direct paths. For ε=0 there are an infinite series of lobes whose 

width decreases as β tends to zero. Each lobe is related to an energy and field dependent maximum 
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radius labeled as ρI, ρII,ρIII …,etc. For extremely high energies (e.g. ε=10) the indirect contribution 

becomes insignificant and the deflection function gradually approaches the corresponding 

photodetachment function [52]. In Figure 4(b,c,d) the angle of the first zero crossing is labeled as 

βo, effectively separating the direct from the indirect contributions. This angle is found by setting 

Eq. (22) equal to unity (R=1) and solving for β. 

 

 

Figure 4. Photoionization deflection function in the case of photoionization for selected reduced energies 

ε. F=10-7 a.u. Vertical axis is scaled to the maximum classical radius for ε=0, 𝜌𝑚𝑎𝑥
𝑐𝑙 (0) (see Eq. (26)main 

text). (a) The direct contribution is absent for ε=–0.8 while no impact is recorded for β<βc. (b,c) Direct 

trajectories form the lobe whose maximum radius is ρI (primary bow). Note that for positive energy βc=0 

and that ρΙΙ>ρΙ. Several zero radii crossings are also visible. (d) Strong resemblance to the photodetachment 

case where the indirect contribution is practically negligible. 
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As it is evident from Eq. (25) the classical cross section exhibits divergences when the 

generalized deflection function either becomes zero, ρ(β)=0, or it reaches an extremum. These 

types of divergences are named glory and rainbow scattering, respectively, after their light-

scattering counterparts, encountered in atmospheric optics [57]. As is evident from Figure 4, the 

several zeros of ρ(β) give rise to an intense peak at the center of the image i.e. the glory signal. It 

is important to realize that the glory signal is a feature that dominates the slow electron images 

(Figure 6) even at larger electron kinetic energies and may be misinterpreted as “zero” energy 

electrons in spectroscopy data recorded in velocity map imaging (VMI) setups [50]. As for the 

rainbows, the most intense is the one formed by the direct trajectories and appears at the ρI radius, 

hereafter called direct bow. Higher-order bows appear at ρII , ρIII, … radii with progressively lower 

intensity. Practically, apart from the always visible primary bow, only ρII i.e. the secondary bow, 

can be resolved experimentally while higher order bows are extremely faint. All maximum radii 

are smaller or equal to the maximum radius of impact written as [11,16,52]: 

 
𝜌𝑚𝑎𝑥
𝑐𝑙 = 2 [

𝑍

𝐹
]
1/4

|𝑧𝑑𝑒𝑡|
1/2[𝜀 + 1]1/2, 𝜀 < 0

𝜌𝑚𝑎𝑥
𝑐𝑙 = 2 [

𝑍

𝐹
]
1/4

|𝑧𝑑𝑒𝑡|
1/2[𝜀 + [𝜀2 + 1]1/2]

1/2
, 𝜀 > 0

 (26) 

The energy evolution of the bow scattering radii 𝜌𝑚𝑎𝑥
𝑐𝑙 , 𝜌𝛪, and 𝜌𝐼𝐼 as well as the detachment 

bow 𝜌0  as a function of the reduced energy ε is shown in Figure 5. Note that for every ε it holds 

that 𝜌𝑚𝑎𝑥
𝑐𝑙 > ⋯ > 𝜌𝛪𝐼 > 𝜌𝛪 > 𝜌0 and that practically all bows higher than the secondary bow (ρΙΙ) 

are indistinguishable from 𝜌𝑚𝑎𝑥
𝑐𝑙 . Moreover, the direct bow manifests itself for ε>εdir and 

progressively approaches the maximum classical radius as ε increases. The photodetachment bow 

radius presents a similar behavior, having an energy onset at the zero-field ionization energy (ε=0).  
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Figure 5. Classical bow maximum radii, in the cases of photoionization and photodetachment, as a function 

of the reduced energy ε. The classical maximum radius is also shown (bold solid line). Primary bow radius 

ρΙ start at the energy εdir and is denoted as a solid line. Secondary bow radius ρII is denoted as a dotted line. 

Photodetachment bow radius (short dashed line) starts at the zero-field ionization energy (ε=0). The radius 

axis is scaled to 𝜌𝑚𝑎𝑥
𝑐𝑙 (𝜀 = 0). All radii progressively merge for increased energy. 

 

As we already mentioned, the discussion is limited to pφ=0, then the physical information 

observed in a photoelectron imaging experiment – or a PM experiment – is an angularly symmetric 

image with a radial distribution proportional to R(ρ) ( Eq. (25)) with respect to the detectors center. 
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Figure 6. Radial distributions R(ρ) and calculated images for ε=0 and ε=1. F=10-7 a.u. The calculations are 

performed by ejecting uniformly a large number of particles within the  full β range (0,π). Thus, the 

predicted divergences at the center of the image and at the classical bow radii, e.g. ρΙ, ρΙΙ are avoided. 

 

Figure 6 presents two classically calculated slow photoelectron images for ε=0 and ε=1 

along with their radial distributions. According to the classical model the indirect trajectories 

contribution spans the 0 ≤ ρ ≤ ρΙΙ range and form the secondary bow, visible as an outer bright ring. 

Furthermore, the radii of the direct trajectories extend over the 0 ≤ ρ ≤ ρΙ range and form the 

primary bow bright ring. We briefly remind that when the coulomb attraction can be safely ignored 

(extremely high energies), each ring of the VMI image (bow) of a given radius is associated with 

a photoelectron group of different energy, which is clearly not the case of PM. As for the glory 

signal, it is important to realize that it is a feature stemming from a critical scattering effect 

encountered in slow photoelectron imaging and it should not be confused with the simple 

maximum signal obtained with very high energy electrons in cases when the polarization vector is 

parallel to the field axis and perpendicular to the detector. 

Let us finally make a brief discussion on the non-zero angular momentum case and present 

the form of the relevant trajectories and a number of predictions regarding the scattering 

observables. One of the major differences of the pφ≠0 case is the manifestation of a different saddle 

point energy which, for Z=1, may be written as [58], 

 𝐸sp,|𝑝𝜑|
cl ≈ −2√𝐹 (1 −

|𝑝𝜑|

2
𝐹
1

4 −
3

32
𝑝𝜑
2√𝐹 +⋯) . (27) 

Moreover, the previous selection of initial conditions no longer applies because the axes origin lies 

now within the classically forbidden region due to the centripetal term of Eqs. (8,9). Thus, the 

electron is ejected near the coulomb center but not from the point χ=υ=0. The work of [59] tackles 

this problem by ejecting electrons radially from a sphere of some fixed radius. Despite the initial 

conditions selection, implications of major interest are extracted just by examining the form of the 

χ equation of motion. It turns out that for pφ≠0, it holds that χ(τ)>0 for every β value, from which 

it is deduced that ρ(β)>0 and the electron never crosses the z axis. Indeed, due to the non-zero 

angular momentum the electron does not move in a fixed plane and always dodges the z axis. This 

fact has a major consequence, namely the disappearance of the glory scattering and its replacement 

by an additional bow (this time due to emerging minima in the deflection function). The latter bow, 
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could be termed as g-bow (glory-bow) and is a typical feature to images of non-zero pφ motion. 

Calculations show that the g-bow radius approaches the center of the detector as the energy 

increases. 

 

1.1.3 Semi-Classical Description 

As seen in the previous discussion the classical description of an electron moving in the 

combined Coulomb plus a static homogenous electric field reproduces the gross features of a PM 

image (bow and glory scattering, radial distribution etc.). However, the particle dualism that leads 

to the formation of interference effect is completely ignored. This problem is tackled here, before 

the introduction of the fully quantum formulation. In the semi-classical picture, a moving particle 

along a trajectory accumulates a phase that is equal to the action integral along that trajectory 

[11,19,51]. Here, we account for the most important paths, that is, the classical trajectories. Then 

the manifestation of quantum effects in a PM image is interpreted as interferences among various 

classical trajectories that reach the same point on the detector. In semi-parabolic coordinates, the 

action is defined as [19]: 

 𝑆𝑁 = ∫ 𝑝𝜐𝑑𝜐
𝜐𝑑𝑒𝑡
0

+ 𝑁∫ 𝑝𝜒𝑑𝜒
𝜒𝑚𝑎𝑥

0
+ ∫ 𝑝𝜒𝑑𝜒

𝜒𝑑𝑒𝑡
𝜒(𝛮/2)

 (28) 

where N is defined in Eq. (24), χ(Ν/2)=0 or χmax for even or odd N values respectively, χdet, υdet are 

the impact point coordinates and pχ,υ the reduced generalized momenta (see Eqs. (8,9)). 

The deflection functions of Figure 4 show that a large number of trajectories corresponding 

to different ejection angles β can reach the same point on the detector. Subsequently, these phases 

provide the contribution of the corresponding trajectories to the final electron wave function 

[19,51], 

 𝛹𝑠𝑐(𝜌) = ∑
sin𝛽𝑖

𝜌
|
𝑑𝜌

𝑑𝛽𝑖
|
−1

𝑖 𝑐𝑖𝑒
𝑖𝑆𝑖(𝜌) (29) 

where, as in Eq. (25), the summation runs over all ejection angles leading to the same PSD radius 

and the radial distribution is proportional to |𝛹𝑠𝑐 |2. The most frequent choice of equal weights ci 

is employed for the semi-classical calculation of Figure 7. Apart from the gross energy dependence 

which is common with its classical counterpart, the semi-classical curve is additionally 
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characterized by undulations of appreciable amplitude and intense beating effects. Despite the fact 

that the phases of each trajectory can be calculated analytically [11,16,50], Eq. (29) has no trivial 

solution. Detailed calculations of semi-classical PM images were previously presented in [19] and 

in the subsequent refined work of [51] which introduced the open orbit theory formulation for the 

PM case. For the purposes of this thesis we limit ourselves to the presentation of numerical 

calculations to be compared to quantum calculations and experimental results and then formulate 

approximate models in order to extract an intuitive explanation of the quantum modulations 

manifested in the scattering observables. 

 

 

Figure 7. Classical (black line) and semi-classical radial distribution calculations. ε= –0.5 and F=1000 

V/cm. Divergences are not treated for the purposes of this general presentation. The high “frequency” fringe 

system is called indirect fringe system and is visible in the ρΙ <ρ< ρΙI radius range. The direct fringe system 

is located in the 0 <ρ< ρI radius range together with the beating effect. The later, can be viewed as the 

beating effect between the two fringe systems, arising from the simultaneous direct and indirect 

contribution. 

 

Figure 7 presents the classical and semi-classical radial distribution calculations for the 

selected energy ε= –0.5>εdir and F=1000 V/cm. The divergences on the bow radii can be treated 

by the introduction of the Airy approximation [51].  The ρΙ <ρ< ρΙI radius range can only be reached 
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by indirect trajectories and the radial distribution is dominated by a fringe system that reflects 

interferences solely amongst this type of trajectories. On the contrary, the 0 <ρ< ρΙ radius range is 

characterized by the contribution of both direct and indirect trajectories. Indeed, the strong 

modulation corresponds to the direct fringe system but the existence of indirect trajectories 

modulates the interferogram giving rise to a noticeable beating effect. This pattern is manifested 

in radial distribution maps R(ε,ρ) as a checkerboard-like structure [27,34]. 

Let us now turn our attention to the positive energy range which is characterized by the so-

called Static Field Induced States (SFIS), having no counterpart in the absence of the static electric 

field. These states may be modeled by a classical picture where the electron becomes “trapped” 

between the upfield direction (towards the positive z axis), which is dominated by the static field 

potential, and the coulombic center that acts as a hard wall [64]. Indeed, as classical calculations 

show, when the electron approaches the Coulomb center it is re-scattered in a highly elliptical orbit 

i.e. it is effectively reflected back to the upfield direction [64,60]. In other words, the Coulomb 

attractive center and the static field potential form a cavity in which the electron may be partially 

trapped [61]. 

 The energy locations of SFIS were quantum-mechanically predicted for the hydrogen atom 

by [53,62,63]. They, however, can be accurately reproduced using a one-dimensional semi-

classical model [64,65,66]. Specifically, one-dimensional motion is imposed by setting β=0 which 

implies Ζ1=1 (see Eq. (11)).  Then, in semi-parabolic coordinates the χ-coordinate motion is limited 

between χ=0 and χ=χmax and the SFIS energy positions are predicted by the Bohr-Sommerfeld 

quantization condition, 

 2𝑆𝜒
′ (𝜀) = 2𝑘𝜋 + 𝜋 (30) 

where k=0,1,2,…, and the action integral 𝑆𝜒
′  is given by: 

 𝑆𝜒
′ (𝜀) = ∫ 𝑝𝜒(𝜀; 𝛧1 = 1)𝑑𝜒

𝜒𝑚𝑎𝑥

0
 (31) 

The above predictions of Eqs. (30) and (31) were verified by experimental atomic photoionization 

Stark spectra that, under certain conditions (polarization vector parallel to the electric field), 

revealed a series of positive energy broad resonances [42,64,67,68]. Note that the effect appears 

to be analogous to the quasi Landau levels observed in the presence of magnetic fields [14]. 
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Interestingly, SFIS-like effects are also present for -1<ε<0 and are manifested in the Stark spectrum 

as broad intensity envelopes [68,69,70,71]. 

The semi-classical treatment is capable of formulating intuitive approximate models for 

the scattering observables e.g. the glory signal. The glory critical effect is a complex effect that 

originates from trajectories of finite weight (β=βo{R=1}, β=β1{R=2}, …) that contribute to an 

infinitesimally small volume (ρ=0). However, our calculations show that for ε≥1 two trajectories 

contribute dominantly to the signal on the center of the detector, namely the trajectories with β=π 

and β=βo (see the discussion of Figure 4). This allows for the formulation of a simple model of the 

glory signal that is presented here. In section 3.2.2, this model is compared to the experimental 

glory signal (for the magnesium atom) and shows a good agreement. The quasi-analytic relation 

giving the corresponding phase difference between the two paths (namely β=π and β=βo) is written 

as, 

 𝑆𝐺 = {
∫ 𝑝𝜐(𝛧2 = 𝑍 − 𝛧1(𝛽o))𝑑𝜐
𝜐𝑑𝑒𝑡
0

+ 2∫ 𝑝𝜒(𝛧1 = 𝛧1(𝛽o))𝑑𝜒
𝜒𝑚𝑎𝑥
0

+
𝜋

4
− ∫ 𝑝𝜐(𝛧2 = 𝑍)𝑑𝜐

𝜐𝑑𝑒𝑡
0

} (32) 

and predicts the interference maxima of the glory signal (SG=2πk, k=0,1,2,). This result, however, 

hides many more consequences. For example, phase and time of flight differences of the involved 

electrons trajectories are connected by following the results of [34] through the Eisenbud–Wigner 

definition of time delay [72]: 

 𝛥𝑡 =
𝜕𝑆

𝜕𝐸
 (33) 

Then Eq. (32) allows for the calculation (in a continuous manner) of the time of flight 

difference between the two direct electron paths that impact the center of the detector. As a 

verification method, one can actually compute the classical paths and times of flight and 

subsequently calculate the time difference of these time of flights. Note that for ε~0 the time of 

flight differences between the other glory trajectories pairs β=β0 and β1, are almost equal to the 

aforementioned ones. Hence the above calculations call for a more complete study within the 

classical and the semi-classical framework in this ε~0 low energy range, where three or more 

trajectories may dominantly contribute to the glory signal. 
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1.2 Quantum Mechanical Treatment of the Hydrogenic Stark Effect 

Here we summarize the Quantum mechanical theoretical framework of the Stark effect and 

subsequently the Photoionization Microscopy technique. Our development is based on the 

computationally more convenient semi-parabolic coordinate system. The properly normalized 

parabolic wave functions are introduced as solutions to the Coulomb-Stark Hamiltonian. Then, 

hydrogenic matrix elements are explicitly derived for the special cases of π or σ single photon 

excitation. However, the reader is not introduced to the general expression of the linear polarization 

transition operator (a subject of the forthcoming subchapter) for the sake of clarity. Electron 

current probability density is defined in the case of Photoionization Microscopy after the 

introduction of the used approximations. Finally, the non-hydrogenic case is briefly discussed by 

introducing the core strategies towards the multielectron PM description. 

 

1.2.1 Hydrogenic Coulomb-Stark Wave Functions & Density of States 

Let us now follow the work of [27] and formulate the quantum mechanical treatment of the 

Coulomb-Stark problem, which is the basis of the Photoionization Microscopy framework. As a 

first step our purpose is to examine the relevant hydrogenic wave functions and the so-called 

Density of States (DoS). Extending the earlier [13,14,63,73,74,75,76] as well as more recent 

studies [61,77,78] we present a purely numerical treatment which appears to be more efficient, 

practical and suitable for extending the formulation to non-hydrogenic systems. On the other hand, 

the analytical results of theoretical works [10,11,78] are truly insightful. By employing the 

Hamiltonian separability in semi-parabolic coordinates, we introduce the solution to the Coulomb-

Stark problem similarly to [73,79] rather than the works that employed parabolic [10,11,13,53,62, 

63,61,75,77,78,80] or mixed parabolic coordinates [25,26,74,76]. Moreover, the numerical 

techniques used are based on an array of robust variable-step integration methods that are both 

efficient and simple in their implementation. The description is kept brief for the quantities that 

were introduced in the previous subchapter. 

The time independent Schrödinger equation describing the hydrogen atom in the presence 

of a homogenous and static electric field of strength F>0 and pointing towards the z direction is 

written as: 
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 [−
1

2
∇2 −

𝑍

𝑟
+ 𝐹𝑧 − 𝐸]𝜓(𝒓) = 0 (34) 

where r is the radial spherical coordinate, Z the nuclear charge and E the energy of the system. 

Atomic units are used throughout unless stated otherwise and spin orbit effects are not considered. 

The need to compute ψ(r) at large (practically macroscopic) distances justifies the use of semi-

parabolic coordinates, e.g. for a distance of |z| ∼ 10 μm from the origin one needs to compute ψ up 

to υ∼ 6×102 a.u. Thus, time consuming calculations up to the parabolic coordinate η= υ2 ∼ 4×105 

a.u. are avoided and, additionally, the numerical computational errors that are most frequently 

accompanying such extensive ranges are minimized.  

The Laplacian is separable in semi-parabolic coordinates 

 ∇2=
1

𝜒2+𝜐2
[
1

𝜒

𝜕

𝜕𝜒
(𝜒

𝜕

𝜕𝜒
) +

1

𝜐

𝜕

𝜕𝜐
(𝜐

𝜕

𝜕𝜐
)] +

1

𝜒2𝜐2
𝜕2

𝜕𝜑2
 (35) 

and the wave function writes 

 𝜓(𝒓) = (2𝜋𝜒𝜐)−1 2⁄  𝑋(𝜒)𝑌(𝜐)𝑒𝑖𝑚𝜑 (36) 

where m=0, ±1, ±2, …is the azimuthal quantum number analogous to pφ introduced in the classical 

discussion. Notice that the states of different m are orthogonal, i.e. ⟨𝜓;𝑚|𝜓′; 𝑚′⟩ ∝ 𝛿𝑚,𝑚′ . 

By plugging Eq. (36) in the Schrödinger equation, Eq. (34), and after some manipulations, 

the following set of decoupled differential equations is obtained: 

 [−
1

2

𝑑2

𝑑𝜒2
+ 𝑈𝑋

𝑒𝑓𝑓
] 𝑋(𝜒) = 2𝑍1𝑋(𝜒) , 𝑈𝑋

𝑒𝑓𝑓(𝜒) = +
𝐹

2
𝜒4 − 𝐸𝜒2 +

4𝑚2−1

8𝜒2
 (37) 

 [−
1

2

𝑑2

𝑑𝜐2
+ 𝑈𝑌

𝑒𝑓𝑓
] 𝑌(𝜐) = 2𝑍2𝑌(𝜐) , 𝑈𝑌

𝑒𝑓𝑓(𝜐) = −
𝐹

2
𝜐4 − 𝐸𝜐2 +

4𝑚2−1

8𝜐2
 (38) 

where the separation constants are related through Eq. (11), Z1+Z2=Z. The effective potentials 

𝑈𝑋
𝑒𝑓𝑓

, 𝑈𝑌
𝑒𝑓𝑓

 differ only in the field strength sign. The separations constants (Z1,Z2) act as 

eigenvalues to the corresponding equations. The field strength, the azimuthal momentum value 

and the energy are predetermined and the equations are solved for fixed F, m and E values i.e. the 

problem is a scattering one. 

For small χ values the X(χ) function writes [27]: 
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 𝑋𝜒→0 → 𝐴𝑋 𝜒
|𝑚|+

1

2(1 + 𝑂(𝜒2)) (39) 

where AX is an energy dependent normalization constant which is by definition positive. On the 

other, χ→∞, extreme the form of 𝑈𝑋
𝑒𝑓𝑓

 enforces the bound electron motion along χ. The large-χ 

asymptotic form of X(χ) is written as [73], 

 𝑋𝜒→∞ →
1

𝜒
exp [−

𝐹1 2⁄

3
𝜒3 +

𝐸

𝐹1 2⁄ 𝜒] (40) 

This asymptotic behavior ensures the quantization of the eigenvalue Z1. Quantization provides a 

set of values of 𝑍1
𝑛1,|𝑚|, with n1=0,1,2,… being the number of nodes of 𝑋𝑛1,|𝑚|(𝜒). These wave 

functions are orthogonal to each other and normalized to unity according to: 

 ∫ 𝑋𝑛1,|𝑚|𝑋𝑛1′ ,|𝑚|𝑑𝜒
∞

0
= 𝛿𝑛1,𝑛1′  (41) 

Each given eigenvalue 𝑍1
𝑛1,|𝑚| also fixes the corresponding 𝑍2

𝑛1,|𝑚| = 𝑍 − 𝑍1
𝑛1,|𝑚| one through Eq. 

(11). 

The small-υ behavior of the Y(υ) is written similarly to the χ coordinate as: 

  𝑌𝜐→0 → 𝐴𝑌 𝜐
|𝑚|+

1

2(1 + 𝑂(𝜐2)) (42) 

where AY>0 is an energy dependent normalization constant. On the other hand, the υ→∞ 

asymptotic form of Y(υ) may be written as, 

 𝑌𝜐→∞ → 𝐶𝑌𝑀(𝜐)sin[𝜃(𝜐) + 𝜙] (43) 

where M>0 is the so-called Milne function [81], ϕ a constant phase that depends on the lower 

integration limit υm [27] and θυ is a monotonically increasing phase: 

 𝜃(𝜐) = ∫
1

𝑀2(𝜐′)

𝜐

𝜐𝑚
𝑑𝜐′ (44) 

The constant 𝐶𝑌 = [
2

𝜋
]
1 2⁄

 is obtained by energy normalizing the Y-wave function 

[13,14,25,63]. The description through the Milne function is suitable for highly oscillating wave 

functions. The problem is separated in the calculation of a varying phase introduced in the sine 
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argument and a smooth envelop which describes the wave function’s maximum-minimum 

amplitude [81]. As a drawback one has to solve a nonlinear Milne equation: 

 𝑀′′ + 𝑘2𝑀 −
1

𝑀3 = 0 (45) 

where the squared wavenumber is obtained with the use of the effective potential and the 

eigenvalues of Eq. (38): 

 𝑘2 = 2 [2𝑍2 − {−𝐹𝜐
4 − 𝐸𝜐2 +

4𝑚2−1

8𝜐2
}] (46) 

Asymptotically the Milne function is practically equal to the WKB form, 

 𝑀𝜐→∞(𝜐) ≈
1

𝑘1 2⁄ (𝜐)
 . (47) 

and then 

 𝑌𝜐→∞ →
𝐶𝑌

𝑘1 2⁄ (𝜐)
sin [∫ 𝑘(𝜐′)

𝜐

𝜐𝑚
𝑑𝜐′ + 𝜙] . (48) 

For these large-υ distances k2 ≈2Fυ4 which is independent of the quantum number n1. This reveals 

that, in our formulations the form of Yυ→∞ is fixed and acts as a starting point. 
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Figure 8. Semi-parabolic “effective potentials” 𝑈𝑋
𝑒𝑓𝑓(𝜒), 𝑈𝑌

𝑒𝑓𝑓(𝜐) (black line) along the χ and υ 

coordinates respectively, together with 𝑋𝑛1,|𝑚|, 𝑌𝑛1,|𝑚| wave functions normalized as described in the text 

(orange lines). Also shown the 𝑍1
𝑛1,|𝑚|, 𝑍2

𝑛1,|𝑚| eigenvalues (blue lines). F= 808 V/cm, ε= –0.9565 and m=0. 

For n1=0 ((a),(b)), 𝑍2
0,0

 is located above the potential barrier thus Y0,0 is a continuum wave function. 

However, for n1=2 ((c),(d)), 𝑍2
2,0

 is located slightly below the potential barrier and Y2,0 is a quasi-bound 

state with n2=27. Note that the amplitude of 𝑌2,0 within the inner well is large, signifying a resonant state. 

A typical selection of matching points χm and υm is noted in (a) and (b) respectively, while the smooth Milne 

function is also drawn (brown dashed line). 

 

Figure 8 shows the “effective potentials” in the χ, υ coordinates and the corresponding wave 

functions for two selected n1 values. The reduced energy value, the field strength and the azimuthal 

quantum number values are fixed, i.e. ε=–0.9565, F=808 V/cm and m=0. The “eigenvalues” 

2𝑍1
𝑛1,|𝑚|, 2𝑍2

𝑛1,|𝑚|are also shown. Note that the Y-wave function is a continuum function (see 

Figure 8 (b)) or a quasi-bound function (see Figure 8 (d)) according to the n1 quantum number that 

characterizes this specific channel. In the latter case a third quantum number, namely n2, can be 

defined as the number of Y-wave function nodes in the inner side of the potential barrier. In the 

case where the 𝑍2
𝑛1,|𝑚| value lies lower than the potential barrier (tunneling state) the electron is 

trapped and can only escape via the tunneling mechanism but the wave function amplitude may be 

almost zero or exhibit a large amplitude (resonance (n1, n2, m)). It is useful to remember that 

2𝑍1
𝑛1,|𝑚| < 2𝑍1

𝑛1+1,|𝑚| and that 𝑍2
𝑛1,|𝑚| eigenvalues follow the reverse order 2𝑍2

𝑛1,|𝑚| >

2𝑍2
𝑛1+1,|𝑚|. That leads to the conclusion that despite the fact that the 𝑍1

𝑛1,|𝑚| set is infinite, some 

of the 2𝑍2
𝑛1,|𝑚| become arbitrarily negative thus the Y-wave function is located well below the 

effective potential maximum (see Figure 8 (b, d)). These states are practically bound and irrelevant 

to photoionization. 

The Density of States (DoS) is defined by the probability of finding the electron near the 

nucleus (axes origin). This probability is written with the help of the asymptotic forms of Eqs. 

(39,42) [63,76], 

 DoS𝑛1,|𝑚|(𝐹, 𝐸) =
[𝑋𝜒→0]

2
[𝑌𝜐→0]

2

𝜒2|𝑚|+1 𝜐2|𝑚|+1
= 𝛢𝛸

2𝛢𝑌
2  (49) 

Note that the normalization constants are functions of Z1, F and E. The total density of 

states is defined as the incoherent sum of 𝛢𝛸
2𝛢𝑌

2  over all n1 channels, DoS(𝐹, 𝐸) = ∑ DoS𝑛1,|𝑚|𝑛1,𝑚 . 
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In order to show the importance of this quantity let us consider the energy evolution of a single 

channel DoS𝑛1,|𝑚|. The energy evolution of 2𝑍1
𝑛1,|𝑚| for F=1000 V/cm, n1=38 and m=0 is shown 

in Figure 9(a) as a monotonous decreasing function. 𝛢𝛸
2  (shown in Figure 9(b)) is also a slowly-

varying decreasing function of energy and becomes negligible for 𝑍1
𝑛1,|𝑚|(𝐸) < 0. This 

phenomenon is referred as channel closing and is a common feature of all channels at some n1-

dependent energy. The physical picture of this effect is shown in Figure 9(e). The potential 

𝑈𝑋
𝑒𝑓𝑓(𝜒) for ε=+0.99 presents a negative minimum and as a result a number of 2Z1 eigenvalues 

will be negative. Then the X-wave function is “pushed” to large distances and 𝛢𝛸
2  becomes 

negligible therefore, the DoSn1,|𝑚| will also be negligible (see Figure 9(c)). As the energy evolution 

of DoS38,0 implies, 𝛢𝑌
2  is negligible for 𝑍2

𝑛1,|𝑚|(𝜀) < 0 that is, for 𝑍1
𝑛1,|𝑚|(𝜀) > 𝑍 (Figure 9(d)). 

Indeed, for ε=+0.01, the Y-wave function can only approach υ=0 region via tunneling and the 

channel not considered open yet, Figure 9(d). Note that the 𝑈𝑌
𝑒𝑓𝑓(𝜐) potential for ε>0 does not 

exhibit any local minima, thus it does not support resonant states. In conclusion, for this particular 

n1 channel, the channel opens at some positive energy and is a continuum channel (characterized 

by two quantum numbers (n1, m)) until the channel closing occurs at even higher energies. This, 

is consistent with the classical limits 0<Z1<Z, due to the interpretation of Z1 for positive energies 

i.e. in the absence of a critical angle βc. 

As a more complicated example we present the DoSn1,|𝑚| for F=1000 V/cm, n1=20 and 

m=0 in Figure 10. The behavior of 𝑍1
𝑛1,|𝑚|(𝜀) and 𝛢𝛸

2   Figure 10(a,b) is similar to the previous 

example. On the other hand, 2𝑍2
𝑛2,|𝑚|(𝐹, 𝜀) may lie above or below the υ-potential barrier. This 

introduces a channel threshold written as: 

 𝐸𝑡ℎ𝑟
𝑛1,|𝑚| = −2 [𝑍2

𝑛1,|𝑚| (𝐹, 𝐸𝑡ℎ𝑟
𝑛1,|𝑚|)𝐹]

1 2⁄

 (50) 
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Figure 9. (a) Energy evolution of 𝑍1
38,0(𝜀) for the energy range 0≤ ε ≤+1 and a field value F=1000 V/cm. 

(b) Energy evolution of the normalization factor 𝛢𝛸
2(𝜀) for the n1=38 channel. (c) Energy evolution 

of 𝐷𝑜𝑆38,0 as defined in the main text. (d) Effective potentials 𝑈𝑋
𝑒𝑓𝑓(𝜒), 𝑈𝑌

𝑒𝑓𝑓(𝜐), effective eigenvalues 

𝑍1
38,0

, 𝑍2
38,0

 and wavefunctions 𝑋38,0, 𝑌38,0 for ε=+0.01 slightly before the channel opening. Note that the 

inner well in the υ coordinate is absent for positive energies. (e) Same as (d) but for ε=+0.99, slightly above 

the channel closing. The X-wave function is pushed to large χ values and obtains negligible values near the 

origin. 
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Figure 10. (a) Energy evolution of 𝑍1
20,0(𝜀) for the energy range –1≤ ε ≤+0.7 and a field value F=1000 

V/cm. (b) Energy evolution of the normalization factor 𝛢𝛸
2 (𝜀) for the n1=20 channel. (c) Energy evolution 

of 𝐷𝑜𝑆20,0. The DoS form exhibits a resonant behavior and then a smooth evolution in contrast to the DoS 

shown in Figure 9(c). The inset shows the DoS in the energy range of the last sharp resonance and marks 

the energy position of Figures 10(d,e). (d) 𝑈𝑌
𝑒𝑓𝑓(𝜐) and 𝑌20,0 for ε= –0.531 that corresponds to a resonance 

with n2=10. (e) 𝑈𝑌
𝑒𝑓𝑓(𝜐) and 𝑌20,0 for ε= –0.528, slightly above the resonant energy, that exhibits a small 

amplitude inside the well. 

 

For 𝐸 > 𝐸𝑡ℎ𝑟
𝑛1,|𝑚| the electron escapes over the barrier in the υ-coordinate and the total 

electronic state is a continuum state (only two quantum numbers (n1, m) are required for its 

characterization and labeling). For 𝐸 < 𝐸𝑡ℎ𝑟
𝑛1,|𝑚| the electron can escape solely via tunneling. For 

certain energies 𝑍2
𝑛1,|𝑚|(𝐹, 𝜀) coincides with the inner well eigenvalues and 𝛢𝑌

2  acquires large 

values, implying that the electron is trapped within the barrier and the state exhibits an appreciable 

lifetime (see Figure 10(d)). These quasi-bound resonant states are characterized by the enlarged 

set of three quantum numbers (n1, n2, m). This is not the case for energies slightly above or below 

a resonance as it is shown in Figure 10(e) where the Y-wave function has almost zero amplitude 

inside the inner well. In conclusion, the channel opens at some negative energy (Z1≈1), then the 

single-channel DoS exhibits a resonant structure and then the channel is transformed to a 

continuum one (near the root of Eq. (50)) with a slowly varying DoS amplitude (see Figure 10(c)) 

until it finally closes (Z1≈0). Note that for positive energies there is no energy threshold imposed 

by Eq. (50) and all channels correspond to continuum states. Moreover, due to the fact that channel 

openings and closings are not abrupt, the quantum calculations should include channels 

corresponding to classically forbidden Z1 values, i.e. values that slightly violate 0≤ Z1≤Z range. 

 

1.2.2 Photo-Excitation Dipole Transition Matrix Elements 

Having described the characteristics of the 𝑋𝑛1,|𝑚|(𝜒) and 𝑌𝑛1,|𝑚|(𝜐) components of a given 

excited Stark state, 

 𝜓𝑛1,𝑚
𝐹 (𝐫) = (2𝜋𝜒𝜐)−1 2⁄  𝑋𝑛1,|𝑚|(𝜒)𝑌𝑛1,|𝑚|(𝜐)𝑒

𝑖𝑚𝜑 (51) 

we now turn to its radiative excitation out of an initial state ψi (of energy Ei and azimuthal quantum 

number mi). The single-photon dipole operator responsible for the transition writes, 
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 T̂ = 𝛆 · 𝐫 (52) 

and the matrix element connecting initial and final states is written as, 

 𝑑𝑛1,|𝑚| = ⟨𝜓𝑛1,|𝑚|
𝐹 |𝛆 · 𝐫|𝜓𝑖⟩ (53) 

The small field strengths employed throughout this work allows for neglecting the static electric 

field in the cases of the low-lying atomic states such as the ground or the first, low lying, excited 

states. Recalling that field-free hydrogenic Hamiltonian in separable in semi-parabolic 

coordinates, the initial state wave functions are also written in the form of Eq. (36), 𝜓𝑖(𝐫) =

(2𝜋𝜒𝜐)−1 2⁄  𝑋𝑖(𝜒)𝑌𝑖(𝜐)𝑒
𝑖𝑚𝑖𝜑. The Xi and Yi components turn out to be the well-known harmonic 

oscillator solutions [75]. Initial states will be labeled hereafter as |𝑛, 𝑛1, 𝑛2, 𝑚⟩ where the principal 

quantum number n=n1+n2+|m|+1 [13,14,75]. In the present work we employ solely mi=0 initial 

state wave functions, given by [27], 

 
𝑋𝑖 = 𝑋𝑛,𝑛1,0 = 𝑁𝑋,𝑛,𝑛1,0 𝜒

−1 2⁄ exp [−
𝑍𝜒2

2𝑛
] L𝑛1 [

𝑍𝜒2

𝑛
]

𝑌𝑖 = 𝑌𝑛,𝑛2,0 = 𝑁𝑌,𝑛,𝑛2,0 𝜐
−1 2⁄ exp [−

𝑍𝜐2

2𝑛
] L𝑛2 [

𝑍𝜐2

𝑛
]

 (54) 

where the functions Ln denote the n-th Laguerre polynomials and NX,Y are normalization factors. 

The factor 𝑁𝑋,𝑛,𝑛1,0 is found by normalizing 𝑋𝑛,𝑛1,0 as in Eq. (41),  while the factor 𝑁𝑌,𝑛,𝑛2,0 by 

normalizing the bound ψi state to unity. Finally, the energy of a given |𝑛, 𝑛1, 𝑛2, 𝑚⟩ state is given 

by the well-known hydrogen energy level formula, 

 𝐸𝑛 = −
𝑍2

2𝑛2
 (55) 

By employing the volume element  

 𝑑𝑉 = 𝜒𝜐(𝜒2 + 𝜐2)𝑑𝜒𝑑𝜐𝑑𝜑 (56) 

and when the linear polarization vector is parallel to 𝑭 = 𝐹�̂� , that is ε·r = z = (χ2−υ2)/2 (π-

polarization), the resulting matrix element is written as, 

 𝑑𝑛1,𝑚 = 𝛿𝑚,𝑚𝑖
𝐷𝑛1,|𝑚|
π  (57) 

where, 
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 𝐷𝑛1,|𝑚|
π =

1

2
∬ 𝑋𝑖𝑋𝑛1𝑌𝑖𝑌𝑛1(𝜒

4 − 𝜐4)𝑑𝜒𝑑𝜐
∞

0
 (58) 

is a (real) “radial” matrix element, while the 𝛿𝑚,𝑚𝑖
 factor emerges from the angular φ-integration 

and leads to the selection rule Δm=m – mi=0. The integrals converge to a finite value due to the 

bound character if the initial state, despite the oscillatory large-υ behavior of 𝑌𝑛1,|𝑚|. 

Next, consider the quite common experimental arrangement of a laser beam propagating 

perpendicularly to the field along the x-axis and the linear polarization is perpendicular to the field 

along the y axis (σ-polarization). Then, ε·r = y = χυ sinφ and the resulting matrix element writes, 

 𝑑𝑛1,𝑚 =
𝛿𝑚,𝑚𝑖+1−𝛿𝑚,𝑚𝑖−1

2𝑖
𝐷𝑛1,|𝑚|
𝜎  (59) 

where 

 𝐷𝑛1,|𝑚|
𝜎 = ∬ 𝑋𝑖𝑋𝑛1𝑌𝑖𝑌𝑛1𝜒𝜐(𝜒

2 + 𝜐2)𝑑𝜒𝑑𝜐
∞

0
 (60) 

Here again the factor 
𝛿𝑚,𝑚𝑖+1−𝛿𝑚,𝑚𝑖−1

2𝑖
 stems from the angular integration and leads to the selection 

rule Δm=±1. 

In the present thesis we also consider a two-identical-photon excitation out of the ground 

state ψi =ψg =|1,0,0,0⟩. Assuming there is no one-photon resonant intermediate state, the two-

photon transition is described by a single-photon one out of a virtual state ψv. The latter is 

calculated within the perturbative Dalgarno-Lewis method [82,83] i.e. by solving the 

inhomogeneous equation: 

 [−
1

2
∇2 −

𝑍

𝑟
− 𝐸v] 𝜓v = −𝛆 · 𝐫 𝜓𝑖 (61) 

where the virtual state energy Ev = (E + Eg)/2. The solution is written as: 

 𝜓v(𝐫) = (2𝜋𝜒𝜐)−1 2⁄  ∑ [𝑋𝑁1,|𝑀|(𝜒)𝑌𝑁1,𝑀(𝜐)𝑒
𝑖𝑀𝜑]𝑁1,𝑀  (62) 

and where the M summation runs over positive and negative values of M and its values are 

determined by selection rules applied to the ψg→ ψv transition. Hence, the problem is reduced to 

the calculation of the bound-like X,Y-wave functions of the virtual state and more details about the 

numerical solution of Eq. (61) are given in [27]. The general two-photon matrix element is given 

by, 
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 𝑑𝑛1,𝑚
(2)

= ∑ [
∬ 𝑋𝑁1,|𝑀|𝑋𝑛1,|𝑚|𝑌𝑁1,𝑀𝑌𝑛1(𝜒

2 + 𝜐2)𝑑𝜒𝑑𝜐
∞

0

× ∫ 𝛆 · 𝐫
𝑒𝑖(𝑀−𝑚)𝜑

2𝜋

2𝜋

0

]𝑁1,𝑀  (63) 

and incorporates additional selection rules applied to the ψv→𝜓𝑛1,𝑚
𝐹  transition. Finally, the 

imposed condition 0≤𝑍1
𝑁1,|𝑀|≤Z, leads to an energy dependent maximum value for N1, while 

N1,max=0 for the energy range of our interest.  

 

1.2.3 Electron Current Probability Density 

In scattering experiments, the total information is projected in the electron current density  

𝐉 ∝ 𝑖[𝜓𝛁𝜓∗ − 𝜓∗𝛁𝜓]. Since the electron can escape (reach arbitrary large distances) solely 

through the υ coordinate, the probability current density is defined on paraboloid of constant υ=υdet. 

The projection of the electron current probability density vector on the υ-unit vector eυ has the 

general form of [12,27]: 

 Jυ = 𝐉 ∙ 𝐞𝝊 =
𝑖 𝜋𝛼𝜔

[𝜒2+𝜐2]1 2⁄ [𝜓𝑜𝑢𝑡
+ ∂

∂𝜐
(𝜓𝑜𝑢𝑡

+ )∗ − (𝜓𝑜𝑢𝑡
+ )∗

∂

∂𝜐
𝜓𝑜𝑢𝑡
+ ] (64) 

where α denotes the fine structure constant and ω is the frequency corresponding to the energy 

difference between the initial and the final states of the considered transition. The outgoing wave 

function 𝜓𝑜𝑢𝑡
+  is the solution to the Time Dependent Schrodinger Equation (TDSE). Within the 

first-order perturbation theory that is for a weak laser field of constant amplitude and for long 

laser-atom interaction times the TDSE is reduced to the following Dalgarno-Lewis-like equation, 

typically referred as the Schrödinger equation with a source [25,84,85], 

 [−
1

2
∇2 −

𝑍

𝑟
− 𝐸]𝜓𝑜𝑢𝑡

+ = −T̂ 𝜓𝑖 (65) 

where ψi is the (physical or virtual) initial state wave function. The solutions of the above equation 

are put to the form, 

 𝜓𝑜𝑢𝑡
+ (𝒓) = (2𝜋𝜒𝜐)−1 2⁄  ∑ 𝑋𝑛1,|𝑚|(𝜒) 𝑦𝑛1,𝑚

+ (𝜐)𝑒𝑖𝑚𝜑𝑛1,𝑚  (66) 
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where 𝑋𝑛1,|𝑚| are the previously calculated solutions of the homogenous problem of Eq. (37) and 

the 𝑦𝑛1,𝑚
+  wave function are to be determined. Plugging the above ansatz into Eq. (65) and 

following the derivation of Ref. [25,27] it turns out that asymptotically (large υ values), 

 𝑦𝑛1,𝑚
+ (𝜐) = −

2

𝐶𝑌
𝑑𝑛1,𝑚𝑀𝑛1,|𝑚|

(𝜐)𝑒𝑖[𝜃𝑛1,|𝑚|(𝜐)+𝜙𝑛1,|𝑚|] (67) 

while the calculation of all components has been already discussed i.e. the Milne functions 𝑀𝑛1,|𝑚|, 

the Y-wave function phases 𝜃𝑛1,|𝑚|(𝜐) + 𝜙𝑛1,|𝑚| and the relevant matrix elements 𝑑𝑛1,𝑚. Then the 

asymptotic form of the electron current probability density of Eq. (64) is written as, 

 J𝜐(𝜑, 𝜒) =
4 𝐶𝑌

−2

2𝜋 𝜒𝜐[𝜒2+𝜐2]1 2⁄ |∑ {𝑑𝑛1,𝑚𝛸𝑛1,|𝑚|(𝜒)𝑒
𝑖𝑚𝜑𝑒𝑖[𝜃𝑛1,|𝑚|(𝜐)+𝜙𝑛1,|𝑚|]}𝑛1,𝑚 |

2

 (68) 

and incorporates the angular distribution of the outgoing electron flux. In fact, the angular 

distribution is incorporated exclusively in the 𝑑𝑛1,𝑚 and eimφ terms. The detector plane differs from 

the paraboloid surface by Δz≈0 (see section 1.1.2).  

Integration over the whole paraboloid surface (0<χ<∞) and (0<φ<2π) provides the total 

cross section σtot i.e. the total electron signal, 

 𝜎tot = ∫ J𝜐(𝜑, 𝜒)𝑑𝑆 = 4𝜋2𝛼𝜔∑ |𝑑𝑛1,𝑚|
2

𝑛1,𝑚  (69) 

where dS=χυ[χ2 + υ2]1/2dχdϕ is the surface element on the detector. For deriving Eq. (69) we used 

the orthogonality properties of the X-wave functions (Eq. (41)) and states of different m. 

Obviously, σtot is proportional to the incoherent sum of the squared matrix elements. 
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Figure 11. (a) Total cross section σtot for positive energies and F=1000 V/cm. The final states are excited 

out of the ground state via one photon π polarization. Note that the total electron signal is characterized by 

oscillations which are attributed to SFIS. The contrast of these oscillations depends on the initial state and 

excitation scheme. (b) Single channel matrix elements |𝑑𝑛1,𝑚|
2
 for m=0 and for various n1 values (n1=33 – 

48). The channel openings are associated to the oscillations observed in σtot. 

 

The polar coordinate on the detector is ρ=χυdet∝χ while, for υdet→∞, [𝜒2 + 𝜐det
2 ]

1/2
≈ 𝜐det 

and Eq. (68) is simplified, 

 J𝜐𝑑𝑒𝑡 (𝜑, 𝜌) ∝
1

𝜒
|∑ {𝑑𝑛1,𝑚𝛸𝑛1,|𝑚|(𝜒)𝑒

𝑖𝑚𝜑𝑒𝑖[𝜃𝑛1,|𝑚|(𝜐𝑑𝑒𝑡)+𝜙𝑛1,|𝑚|]}𝑛1,𝑚 |
2

 . (70) 

Α quantity of primary interest in this thesis is the radial distribution obtained after angularly 

integrating J, 

 𝑅(𝜌) ≡ ∫ J𝜐𝑑𝑒𝑡(𝜑, 𝜒)𝑑𝜑
2𝜋

0
 (71) 

and can be regarded as the electron’s transverse (to the field) momentum distribution [27,53]. In 

the case where solely m=0 states contribute to the current density the radial distribution 

incorporates all the available information of the image in a one-dimensional curve. For avoiding 
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misinterpretations, note that the term “radial distribution” is more frequently employed for 

P(ρ)=ρR(ρ), which is proportional to the number of electrons hitting the detector within the [ρ, ρ 

+ dρ] interval. 

Figure 12 shows the electron current probability density of m=0 final states out of the 

hydrogen ground state for a single photon transition. Also shown is the corresponding radial 

distribution that reproduces the interference pattern of the image, arising from the coherent 

summation of the X-wave functions. 

 

 

Figure 12. (a) Electron current probability density for ε= –0.5>εdir and F=1000 V/vm. The color scale is 

linear while white color denotes intensity cuts. The horizontal and vertical axes refer to the x and y 

coordinates of the detector, respectively. The detector is placed at zdet=2000 (a.u.). The final states are single 

photon excited out of the ground state with π polarization. Notice that the image shows no angular 

distribution (m=0). (b) Radial distribution R(ρ) of the image of (a). 

 

The image features all the relevant structures of classical and semi-classical origin such as 

the Bow and Glory scattering. Due to the small χ asymptotic form of the X-wave functions Eq. 

(39), the glory signal is formed solely by the m=0 terms of Eq. (70), 

 J𝜐det,Glory ∝ |∑ {𝑑𝑛1,0𝐴𝑋,𝑛1,0𝑒
𝑖[𝜃𝑛1,0(𝜐det)+𝜙𝑛1,0]}𝑛1 |

2

 (72) 

The phase factors and the normalization constants 𝐴𝑋,𝑛1,0, characterize the final Stark 

states. On the other hand, the excitation matrix elements depend strongly on the initial state and 
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excitation scheme. Finally, note that the current density as well as all the other observables 

presented above exhibit a pronounced dependence on the electron excitation energy E. 

 

1.2.4 Extensions to the non-hydrogenic case 

The Hamiltonian of a (static-field free) multi-electron atom may be written as the sum of 

kinetic energy operators for each electron, plus a potential energy term composed mainly by all 

electron-nucleus attractions and all electron-electron repulsions. In addition, the potential energy 

also contains other fine structure interactions, such as the spin-orbit one, that may, to a first 

approximation, be ignored when highly excited atomic states of a valence electron are of interest. 

Assuming further that we deal with a single highly excited electron outside of a closed subshell 

ionic core of charge Zeff (or at least outside of a partially open but spherically symmetric core, as 

for example the Mg+ [Ne]3s one), all electrostatic attractions and repulsions concerning all 

electrons but the outer valence one may be replaced by a spherically symmetric parametric 

potential 𝑈(𝐚; 𝑟) [86,87,88,89], with a={a1,a2,…,aN} a parameter vector. In fact, experience shows 

that for obtaining energy level positions and wave-functions of highly excited states with good 

accuracy, all the parameters should depend on the angular momentum quantum number l of the 

outer electron [88]. Further, we can put 𝑈(𝐚; 𝑟) in the form, 

 𝑈(𝐚; 𝑟) = −
𝑍eff+Δ𝑍(𝐚;𝑟)

𝑟
 (73) 

where for r→0, ΔZ(a;r)→Z– Zeff and the electron “sees” the full nuclear charge. On the other hand, 

for r→∞, ΔZ(a;r)→0 and the electron moves in the hydrogenic potential. The presence of the non-

coulombic short-range part ΔZ(a;r) emerging from the existence of the core, results to highly 

excited (Rydberg) energy levels given by the Rydberg formula [13,14], 

 𝐸𝑛,𝑙 = −
𝑍eff
2

2(𝑛−𝜇𝑙)
2
 , (74) 

with μl being the so-called quantum defects [13,14,86]. The latter are a measure of the penetration 

of the excited electron’s wave function to the ionic core and they are nearly constant with energy 

[86] but decrease rapidly with l. In fact, the quantum defects reflect the dephasing of the electron’s 
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wave function with respect to its hydrogenic |𝑛, 𝑙⟩ counterpart and this phase shift is given by 

[86,90] 

 𝛿𝑙 = 𝜋 · 𝜇𝑙 . (75) 

Adopting the above description where the outer-valence-electron is subjected to the action 

of the parametric potential U(a;r), the additional presence of a static field leads to the following 

Schrödinger equation, 

 [−
1

2
∇2 + 𝑈(𝐚; 𝑟) + 𝐹𝑧 − 𝐸]𝜓(𝒓) = 0 (76) 

In a first attempt to solve Eq. (76) we follow Refs. [29,86] and we introduce the single-m ansatz 

(m is still a good quantum number in the absence of the electron spin and spin-orbit coupling [29]), 

 𝜓(𝒓) = (2𝜋𝜒𝜐)−1 2⁄  ∑ 𝑋𝑛1′ ,|𝑚|(𝜒) Ɣ𝑛1′ ,|𝑚|(𝜐)𝑒
𝑖𝑚𝜑

𝑛1
′  (77) 

where the wave functions 𝑋𝑛1′ ,|𝑚| are the hydrogenic ones, i.e. they are solutions of Eq. (37) and 

they are associated with the eigenvalues 𝑍1
𝑛1
′ ,|𝑚|

. As for the functions Ɣ𝑛1′ ,|𝑚|, they need to be 

determined. After appropriate manipulations and by making use of the orthonormality of the wave 

functions 𝑋𝑛1′ ,|𝑚| (see Eq. (41)) we arrive at the coupled system of equations, 

 [−
1

2

𝑑2

𝑑𝜐2
+ 𝑈𝑌

𝑒𝑓𝑓(𝜐) − 2 (𝑍2
𝑛1,|𝑚| + 𝑉𝑛1,𝑛1

|𝑚| (𝜐))] Ɣ𝑛1,|𝑚|(𝜐) − 2∑ 𝑉
𝑛1,𝑛1

′
|𝑚| (𝜐)Ɣ𝑛1′ ,|𝑚|(𝜐)𝑛1

′≠𝑛1
= 0  (78) 

where the hydrogenic potential 𝑈𝑌
𝑒𝑓𝑓(𝜐) is defined in Eq. (38), 

  𝑍2
𝑛1,|𝑚| = 𝑍eff − 𝑍1

𝑛1,|𝑚|  (79) 

and 

 𝑉
𝑛1,𝑛1

′
|𝑚| (𝜐) = ∫ 𝑋𝑛1,|𝑚|(𝜒)Δ𝑍 (𝐚; 𝑟 =

𝜒2+𝜐2

2
)𝑋𝑛1′ ,|𝑚|(𝜒)𝑑𝜒

∞

0
  (80) 

It is evident from Eq. (80) that the coupling between channels is due to the short range non-

coulombic part ΔZ of ( )rU ;a  and disappears if ΔZ=0. The involved coupled hydrogenic channels 

may refer to solely closed channels, open channels, or open and closed ones. The latter is of 

particular importance in PM since it implies that any initially prepared resonant population will be 
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eventually spread out over many continua and the resonant features of the image may be obscured. 

Also, of importance is the case of the coupling between at least two closed channels (in addition 

perhaps to the coupling with other degenerate open ones). In fact, even in the absence of continua, 

this coupling has been proved to produce interesting effects such as the so called “avoided 

crossings” between pairs of resonances [28], where one of them is effectively decoupled from the 

continua in the vicinity of the crossing [23]. 

Despite the appealing form of the coupled system Eq. (78), in practice its solution is 

difficult and suffers from several limitations. For example, the function ΔZ(a;r) can be complicated 

and consequently the functions 𝑉
𝑛1,𝑛1

′
|𝑚| (𝜐), can be difficult to compute. Moreover, the form of the 

coupled system does not allow for the beneficial employment of an l-dependent parameter vector 

al. For the above reasons, we introduce the reader to the so-called Frame Transformation Theory 

(FTT) developed by Fano [91] and Harmin [62,92] and recently reformulated and adapted to PM 

by Giannakeas et all [32]. We shall not introduce the theory in detail here but we shall restrict 

ourselves to a recapitulation of its results. Let us first mention that, in FTT the core presence and 

the mixing it induces are introduced solely via the non-zero quantum defects (see Eq. (75) above). 

This emerges from a semi-parabolic to spherical coordinate transformation at short distances 

where the interaction between the ionic core and the excited valence electron dominates over the 

interaction between the electron and the static field. Due to this dominance, the electric field term 

may be neglected in the core region and the fairly simple form of the zero-field transformation can 

be used, implicating, however, static field-dependent normalization factors [32,91]. Additionally, 

the application of this transformation has yet another virtue, namely it allows for the calculation 

of excitation matrix elements at zero-field. This, in turn, allows for the employment of the far more 

accurate l-dependent parametric potentials. With the above discussion in mind we note that the 

form of the current probability density of Eq. (68) remains formally unchanged (along with the 

form of all other related observables) and involves hydrogenic, 𝑋𝑛1,|𝑚|(𝜒) functions and 

𝜃𝑛1,|𝑚|(𝜐) + 𝜙𝑛1,|𝑚| phases. The differences concern exclusively the matrix elements which 

acquire different absolute values and phases reflecting the n1–channel mixing. Namely, they are 

now given by 

 𝑑𝑛1,𝑚 = ∑ ∑ {𝑑𝑙
𝑚𝑊𝑙,𝑛1

′
𝑚 𝐵𝑛1′ ,𝑛1

𝑚 }𝑛1
′𝑙  (81) 
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where 𝑑𝑙
𝑚 are zero-field excitation matrix elements for all l values permitted by the relevant 

selection rules. The matrices W, B are given by, 

 𝐁|𝑚| = [𝐈 − 𝑖𝐑|𝑚|]
−1

 (82) 

and 

 𝐖𝑚 = cos𝛅−1𝐔T,𝑚[𝐈 − cotγ|𝑚|𝐊|𝑚|]
−1

, 𝐖−𝑚 = (−1)|𝑚|𝐖|𝑚| , (83) 

where I is the identity matrix, 

 𝐑|𝑚| = 𝐊|𝑚|[𝐈 − cotγ|𝑚|𝐊|𝑚|]
−1

 (84) 

is the reactance matrix and 

 𝐊|𝑚| = 𝐔𝑚tan𝛅 [𝐔𝑚]T . (85) 

is the so-called K matrix. Note that the reactance matrix R is not to be confused with the Wigner-

Eisenbud R-matrix [32]. The frame transformation matrix U (with 𝐔−𝑚 = (−1)|𝑚|𝐔|𝑚|) 

essentially maps the Stark parabolic channels into their spherical zero-field counterparts 

[32,62,91,92]. The diagonal matrices cosδ and tanδ are constructed by means of the phases given 

by Eq. (75) that can be determined by the quantum defects extracted from spectroscopic data. 

Finally, the cotγ matrix is of hydrogenic origin. Specifically, it is defined as the n1-specific relative 

phase between the regular and irregular hydrogenic Y-wave functions. In other words, by imposing 

γ=π/2 for υ→0 one gets 𝛾 = 𝛾𝑛1  for υ→∞. Τhis definition differs  from the typical one employed 

in scattering theory, were the regular and irregular functions are phase-lagged by π/2 at large 

distances. Eq. (81) shows clearly the n1–channel mixing while it is evident that by setting all 

quantum defects equal to zero (hydrogen atom) this mixing disappears (R=K=0). Furthermore, the 

form of Eq. (82) shows that the matrix elements 𝑑𝑛1,𝑚 become necessarily complex. Thus, apart 

from the atom specific magnitude differences with respect to the hydrogenic matrix elements of 

the same n1, atom-specific phase-shifts are also added to the hydrogenic phases 𝜃𝑛1,|𝑚|(𝜐) +

𝜙𝑛1,|𝑚|. 

In the present thesis we shall make a limited use of FTT relations, in order to compare with 

our experimental results for the magnesium atom. Note that for the excitation energies employed 
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here, the zero-field matrix elements 𝑑𝑙
𝑚 connect the Mg ground state to Rydberg states with a 

principal quantum number of n∼30. Finally, since the current density along with the form of all 

other related observables remain formally unchanged, non-resonant effects in Mg afford a 

qualitative comparison with the hydrogenic theory [27]. 

  



 P. Kalaitzis Chapter 1 

 

45 

 

1.3 Polarization Effects in Photoionization Microscopy 

1.3.1 Linear Polarization Rotation Effects in Photoionization Microscopy 

Images 

Let us now examine a two-photon excitation scheme out of the hydrogenic ground state 

that will be useful in the analysis of the experimental results. According to this scheme the linear 

polarization vector of the exciting radiation forms an angle Θ with respect to F. More specifically, 

as shown in Figure 13, the polarization vector ε lies in the y–z plane and the laser beam propagates 

in the x direction. This scheme addresses all the important physical excitation mechanisms and 

corresponds to the majority of experiments conducted in the present thesis. More complex 

geometries, considering possible experimental misalignments, as shown in Figure 15, are 

considerably more difficult to handle while they do not introduce any additional excitation 

pathways. Therefore, they are discussed later on, in order to propose a self-consistent alignment 

procedure in section 3.3.1.  

In the geometry presented in Figure 13, the relevant single-photon transition operator T̂ of 

Eq. (52) writes, 

 T̂ = cosΘ𝑧 + sinΘ𝑦 = cosΘ
𝜒2−𝜐2

2
+ sinΘ 𝜒𝜐

𝑒𝑖𝜑−𝑒−𝑖𝜑

2𝑖
 (86) 

in Cartesian and semi-parabolic coordinates respectively.  

 

Figure 13. Schematic representation of the laser-spectrometer configuration. The laser beam propagates 

towards the x axis. The radiation polarization lies in the y-z plane while the static electric field point toward 

the z direction. The polarization vector and the static electric field form an angle Θ. The detector’s 

coordinates (x, y) or (ρ, φ) are also shown. 
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Plugging the transition operator in Eq. (61) provides the virtual state ψv in the form, 

 𝜓v(𝐫) = (2𝜋𝜒𝜐)−1 2⁄  ∑ [cosΘ𝑋𝑁1,0𝑦𝑁1,0 + sinΘ𝑋𝑁1,1𝑦𝑁1,1 (
𝑒𝑖𝜑−𝑒−𝑖𝜑

2𝑖
)]𝑁1  (87) 

and the 𝑦𝑁1,|𝑀|(𝜐) wave functions are connected to the 𝑌𝑁1,𝑀(𝜐) wave functions of Eq. (62) by the 

relations 𝑌𝑁1,0 = cosΘ𝑦𝑁1,|0|, 𝑌𝑁1,1 =
sinΘ

2𝑖
𝑦𝑁1,|1| and 𝑌𝑁1,−1 = −

sinΘ

2𝑖
𝑦𝑁1,|1|. By using Eqs. 

(51,86,87), the general two-photon matrix element of Eq. (63) writes: 

 𝑑𝑛1,𝑚
(2)

= ∑

[
 
 
 
 ∫ 𝑑𝜐𝑌𝑛1,|𝑚|
∞

0
∫ 𝑑𝜒𝑋𝑛1,|𝑚|
∞

0
(𝜒2 + 𝜐2) ∫ 𝑑𝜑

𝑒−𝑖𝑚𝜑

2𝜋

2𝜋

0

× [cosΘ
𝜒2−𝜐2

2
+ sinΘ 𝜒𝜐

𝑒𝑖𝜑−𝑒−𝑖𝜑

2𝑖
]

× [cosΘ𝑋𝑁1,0𝑦𝑁1,0 + sinΘ𝑋𝑁1,1𝑦𝑁1,1 (
𝑒𝑖𝜑−𝑒−𝑖𝜑

2𝑖
)] ]
 
 
 
 

𝑁1  (88) 

 After some manipulations, the insertion of the matrix elements to Eq. (68) and the collection of 

terms of equal |m|, the electron current density J𝜐det is written as, 

 J𝜐det(𝜑, 𝜒) ∝
1

𝜒 |
|∑

{
 
 

 
 (cos2 Θ𝐷𝑛1,0

𝜋(2)
+
sin2Θ

2
𝐷𝑛1,0
𝜎(2)

) 𝑒𝑖𝜃𝑛1,0
∗
𝛸𝑛1,0(𝜒)

+cosΘ sinΘ sin𝜑(𝐷𝑛1,1
𝜋(2)

+ 𝐷𝑛1,1
𝜎(2)

)𝑒𝑖𝜃𝑛1,1
∗
𝛸𝑛1,1(𝜒)

−
sin2Θ

2
cos(2𝜑)𝐷𝑛1,2

𝜎(2)
𝑒𝑖𝜃𝑛1,2

∗
𝛸𝑛1,2(𝜒) }

 
 

 
 

𝑛1 |
|

2

 (89) 

where the notation 𝑒𝑖𝜃𝑛1,|𝑚|
∗

= 𝑒𝑖[𝜃𝑛1,|𝑚|(𝜐det)+𝜙𝑛1,|𝑚|] is introduced for simplicity. Despite being 

lengthy, the above formula clearly demonstrates the simultaneous excitation of all |m|=0,1,2 final 

states. Each m-term is comprised by the corresponding, angular weights depending on the angle 

Θ, the 𝛸𝑛1,|𝑚|(𝜒) wave functions, the υdet-dependent phase factors, the involved matrix element 

integrals and, last but not least, the angular distributions through the angle φ. 

The notation of the matrix element integrals 𝐷𝑛1,|𝑚|
𝜋/𝜎(2)

, characterizes the two-photon 

pathway. The superscripts π or σ denote the polarization of the second absorbed photon, 

responsible for the transition to the final m-state out of the virtual one of given |M| (=0 or 1). The 

possible excitation pathways may be visualized in Figure 14. 
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Figure 14. The two-photon pathways schematically. According to the radiation polarization (π or σ) the 

final m-state is excited out of the virtual state of an azimuthal quantum number M. We solely consider the 

mg=0 ground state as our initial state. 

 

Photoionization microscopy images ∝ J𝜐det(𝜒, 𝜑), present a complicated distribution 

because a different radial fringe system is formed for each angle φ (e.g. J𝜐det(𝜒, 𝜑 = 0) may 

present a different behavior than J𝜐det(𝜒, 𝜑 = 𝜋/2)). Moreover, the coherent superposition of 

different |m|-states in Eq. (89) gives rise to the so-called m-beating effect [30]. The latter is 

manifested in the form of intensity modulations along the φ coordinate. Interestingly, the 

expression providing the glory signal, which is defined in Eq. (72) and in which only m=0 states 

contribute, is quite simple, 

 J𝜐det,Glory ∝ |∑ (cos2 Θ𝐷𝑛1,0
𝜋(2)

+
sin2Θ

2
𝐷𝑛1,0
𝜎(2)

) 𝐴𝑋,𝑛1,0 𝑒
𝑖𝜃𝑛1,0
∗

𝑛1 |
2

 (90) 

and yet incorporates quite rich information.  

Let us now extend the above modeling and consider a more general geometry, shown in 

Figure 15. The static field vector F points towards the positive z direction and the detection plane 

is set at zdet. This case corresponds to the propagation of a misaligned laser beam which no longer 
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propagates perpendicularly to the field. This misalignment is introduced by the additional angle 

Φ, which is defined as the angle between the laser beam propagation vector and the x axis. The 

angle Θ is now formed between the polarization vector and the horizontal z-x plane. In other words, 

as compared to Figure 13 (Φ=0), the z and x axes of the misaligned geometry have been rotated by 

an angle Φ with respect to the fixed y axis. 

 

 

Figure 15. Same as Figure 13 but now the laser propagates in the �̂�(≠ 𝑥) direction that lies within the x–z 

plane. The laser propagation vector and the x axis form the Φ angle. It is advantageous to separate the 

polarization vector into two components, one parallel and one perpendicular to the z axis. The polarization 

vector ε has a z component of ε·cosΘ·cosΦ. The y and x components are combined to form a new yʹ axis 

which is normal to the z axis. The angle ϑ between y and yʹ axes depends on Θ and Φ (see main text). 

 

The transition operator now writes, T̂ = cosΘcosΦ𝑧 + sinΘ𝑦 + cosΘsinΦ𝑥. Following 

the steps that were described before, the electron current density J𝜐det is written in the form of Eq. 

(89) with the substitutions Θ→Θʹ and φ→ φʹ=φ–ϑ where the angle Θʹ is defined through the 

expression, 

 cosΘ′ = cosΘ · cosΦ (91) 

and the angle ϑ is defined as, 

 tan𝜗 =
sinΦ

tanΘ
 . (92) 

This implies that the detection reference frame has been rotated for an angle ϑ which varies with 

Θ. However, apart from these substitutions, all expressions (such as Eq. (89) and Eq. (90)) keep 
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their prior form. The above relations and angular variable substitutions are justified because the 

selection rules are sensitive solely to whether the polarization vector is parallel or perpendicular 

to the static field axis. For the alternative simpler geometry where the polarization vector lies in 

the yʹ–z plane where the y and x axes have been rotated by an angle ϐ with respect to the fixed z 

axis, it holds that the detection reference frame has been rotated by a constant angle ϐ. The single-

photon transition operator may again be kept in the form Eq. (86) after the sole substitution is φ→ 

φʹ=φ–ϐ. 

Let us also introduce the first moment of the electron current density distribution i.e. the 

barycenter of the image intensity which is defined as,  

 𝐂B =
1

𝜎tot
∬J𝜐det𝛒𝑑𝑆 = 𝐶B

𝑥𝐱 + 𝐶B
𝑦
𝐲 . (93) 

where, as it turns out, 

 𝐶B
𝑥 = 𝑐ocos

2ΘcosΦsinΦ(cos2Θcos2Φ+ 𝑐1) (94) 

and 

 𝐶B
𝑦
= 𝑐ocosΘsinΘcosΦ(cos

2Θcos2Φ+ 𝑐1) . (95) 

The constants co, c1 are integrals that depend on the matrix elements, the wave functions 𝛸𝑛1,|𝑚| 

and the phases 𝑒𝑖𝜃𝑛1,|𝑚|
∗

. Note that for a given Φ, 𝐶B
𝑥 and 𝐶B

𝑦
 are symmetric and antisymmetric with 

respect to Θ=π/2, respectively. Interestingly, the ratio of the two barycenter coordinates reproduces 

Eq.(92), 

 
𝐶B
𝑥

𝐶B
𝑦 =

sinΦ

tanΘ
= tan𝜗 . (96) 

As shown above the barycenter of a PM image monitors the linear polarization vector orientation 

in all possible misalignments and system rotation geometries. This seems to be expected also for 

different excitation schemes (single-photon excitation etc.). Here, the barycenter position of two-

photon PM images is presented in a compact form and allows for correcting misalignments with 

respect to the static electric field. In addition, this is an experimentally easy to extract quantity that 

doesn’t require any particular spatial resolution and is insensitive to small defects in the detector’s 

efficiency. 
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1.3.2 m-Decomposition of Total Cross Section 

 

 

The electron current density of Eq. (89) refers to the two-photon ionization of hydrogenic 

final Stark states out of an m=0 initial state. Plugging this equation to see Eq. (69) leads to the two-

photon total excitation hydrogenic cross section which then writes, 

 𝜎tot
(2)
∝ ∑

{
 
 

 
 (cos2 Θ𝐷𝑛1,0

𝜋(2) +
sin2Θ

2
𝐷𝑛1,0
𝜎(2))

2

+ 
cos2Θsin2Θ

2
(𝐷𝑛1,1

𝜋(2) +𝐷𝑛1,1
𝜎(2))

2

+
sin4Θ

8
(𝐷𝑛1,2

𝜎(2))
2

}
 
 

 
 

𝑛1  . (97) 

This incoherent sum of the different-|m| cross sections presents an interesting dependence on Θ, in 

contrast to the field-free case. In the latter case, the quantization axis is always parallel to the 

rotating linear polarization and that polarization rotation has zero effect to the total cross section 

[43,48,89]. As an example, Figure 16 shows the hypothetical case of equal matrix elements i.e. 

𝐷𝑛1,|𝑚|
(2) ≡ 1 and single n1 excitation. The |m|=1 character is obviously present for Θ≠0,π , while 

the |m|=2 character is present for Θ≠0 and exhibits a maximum for Θ=π. Note, that in the presence 

of misalignments discussed in the previous subsection, the total cross section formula of Eq. (97) 

still holds, but with the substitution Θ→Θʹ according to Eq. (91). 
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Figure 16. The three different m-components of the two-photon total cross section (𝜎𝑡𝑜𝑡
(2)

)  as functions of 

Θ. Here we have made the substitutions 𝐷𝑛1,|𝑚|
(2) ≡ 1 and we have ignored the summation over multiple n1. 

The |m|=1and 2 excitations exhibit maxima for Θ=45o and 90o respectively. On the other hand, the behavior 

of m=0 depends strongly on the value of 𝐷𝑛1,0
(2)

’s. 

 

Let us now treat the same two-photon excitation scenario out of the ground state of a 

multielectron atom, by making use of the LFT theory [32]. The zero-field final and initial states 

are 𝜓𝑓 = 𝑟
−1𝑃𝑙𝑓𝑌𝑙𝑓

𝑚𝑓
 and 𝜓𝑔 = 𝑟−1𝑃𝑔𝑌0

0 respectively. The two-photon spherical matrix elements 

write 

 𝑑𝑙
𝑚(2) = ⟨𝜓𝑓|T̂

(2)|𝜓𝑖⟩ = ⟨𝜓𝑓|T̂|𝜓v⟩ (98) 

where the single-photon transition operator is defined as in Eq. (86) and the virtual state obeys the 

following Dalgarno-Lewis equation [82,83], 

 [−
1

2
𝛻2 + 𝑈(𝐚; 𝑟) − 𝐸v ] 𝜓v = −T̂ 𝜓𝑔 , (99) 

with Ev=(E+Eg)/2 (strictly speaking, for E lower than the ionization potential the energy should 

correspond to a bound atomic p-state). The solution of the above equation is written as, 

 𝜓v = 𝑟
−1�̃�1v [

1

√3
cosΘ 𝑌1

0 +
𝑖

√6
sinΘ (𝑌1

1 + 𝑌1
−1)] (100) 
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where �̃�1v is the radial part of the virtual state, which depends on the atom-specific U(a;r) but it 

does not depend on the angular factors. Plugging the virtual state of Eq. (100) into the spherical 

matrix elements of Eq. (98) and using the Stark multi-electron matrix elements of Eq. (81) we 

finally arrive at, 

 𝜎tot
(2)(Θ) ∝ 𝛬2𝛥00

0 + 𝛬
2

√5
(3 cos2 Θ − 1)𝛥02

0 +
1

5
(3 cos2 Θ − 1)2𝛥22

0 +

12

5
cos2 Θ sin2 Θ𝛥22

1 +
3

5
sin4 Θ𝛥22

2  . (101) 

where the dimensionless parameter, 

 𝛬 =
∫ 𝑃0𝑓  𝑟 �̃�1v𝑑𝑟
∞
0

∫ 𝑃2𝑓  𝑟 �̃�1v𝑑𝑟
∞
0

 . (102) 

measures the relative strength of the radial matrix elements corresponding to the transitions p→s 

and p→d, respectively. As for the quantities 𝛥
𝑙,𝑙′
|𝑚|

, they are given by, 

 𝛥
𝑙,𝑙′
|𝑚| = ∑ Re [α𝑛1

𝑙,|𝑚| (α𝑛1
𝑙′,|𝑚|)

∗

]𝑛1  . (103) 

with the factors α𝑛1
𝑙,|𝑚|

 defined as, 

 α𝑛1
𝑙,|𝑚| = ∑ {𝑊

𝑙,𝑛1
′

|𝑚|𝐵
𝑛1
′ ,𝑛1

|𝑚| }𝑛1  . (104) 

The quantities 𝛥
𝑙,𝑙′
|𝑚|

 carry much of the information about the Stark structure and were named after 

Harmin as the non-hydrogenic “density of states” in the presence of a static field [92]. Further, it 

is interesting to note in Eq. (101), that there are terms depending on the angular factor 

(3 cos2 Θ − 1). These terms are eliminated when cos2Θmagic = 1/3, i.e. at the so-called “magic 

angle” Θmagic=54.7o. Furthermore, as a rule of thumb the p→s radial matrix elements are much 

weaker than the p→d ones [87]. In fact, experimental results for Mg [93] showed that this is indeed 

the case and provided an estimate for Λ<0.1. Then, the term in Eq. (101) which is proportional to 

Λ2 can be safely neglected and, to a first approximation, the same holds also for the term 

proportional to Λ. Under these approximations, the total cross section simplifies to, 

 𝜎tot
(2)(Θ, 𝐸) ∝

1

5
(3 cos2 Θ − 1)2𝛥22

0 (𝐸) +
12

5
cos2 Θ sin2 Θ𝛥22

1 (𝐸) +
3

5
sin4 Θ𝛥22

2 (𝐸)  (105) 
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and the three |m|-spectra 𝛥22
0 (𝐸), 𝛥22

1 (𝐸) and 𝛥22
2 (𝐸) can be determined by measuring 𝜎tot

(2)(Θ, 𝐸) 

for three values of Θ (that can conveniently be Θ=0o, Θmagic and 90o). Finally, the validity of the 

approximation made on Λ can be examined by employing the determined functions 𝛥22
0 (𝐸), 

𝛥22
1 (𝐸) and 𝛥22

2 (𝐸) in order to compute “synthetic spectra” at different angles Θ and compare with 

their experimental counterparts. This procedure is applied to our analysis presented in the third 

Chapter. 
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Chapter 2: Experimental Setup & Procedure 

2.1 Experimental Setup 

2.1.1 General Description of the Experimental Setup 

A full schematic view of the experimental set-up is given in Figure 17. We provide here a 

general overview while each individual subsystem will be subsequently presented in more detail. 

The excitation and ionization of magnesium atoms is accomplished by a commercial dye laser 

system (Lambda Physik ScanMate 2EC-400). The dye laser is pumped by the frequency doubled 

(532 nm) radiation of a neodymium-doped yttrium aluminum garnet – Y3Al5O12 – (Nd:YAG) 

 

 

Figure 17. Schematic representation of the experimental setup (not to scale). The fundamental and the 

ultraviolet beams are denoted with red and purple color respectively. The optics for guiding the beams and 

manipulating the polarization are shown, namely the right-angle prisms, filter (UG5), polarizer, λ/2 retarder, 

mirror and lens. The pulse energy is monitored after the exit window. The focusing lens is positioned either 

in front of the spectrometer’s entrance window or in-vacuum, in between the mu-metal shield and the 
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electrodes (enclosed within the dashed rectangle). Mg vapor atoms interact with the uv beam in the 

interaction region. The spectrometer exhibits a typical three-electrode VMI geometry, with the addition of 

an Einzel lens and a detector placed at the end of the field free tube. A CCD camera captures the bright 

spots on the phosphor screen. 

 

pulsed laser operating at 10 Hz and delivers fundamental-radiation pulses in the 610–670 nm 

spectral range. This visible dye laser output is frequency-doubled by a potassium dihydrogen 

phosphate (KDP) crystal and the resulting ultraviolet (UV) radiation pulses (305–335 nm) are 

linearly polarized, they have ∼5 ns duration, ∼1 mJ maximum pulse energy and an estimated 

spectral width of ∼0.4 cm−1. 

The two beams (fundamental and frequency-doubled) are separated by a bandpass filter 

(UG5) placed almost perpendicularly to the propagating beams. The reflected visible radiation is 

guided towards a wavelength calibration system consisting of a Fabry-Perot interferometer of well-

known free spectral range (FSR) that provides relative energy calibration and a discharge lamp 

offering absolute calibration via the optogalvanic effect. The transmitted UV beam is guided 

towards the experiment. It first passes through an alpha barium-borate (alpha-BBO) Rochon prism 

linear polarizer and a double-Fresnel rhomb (acting as an achromatic λ/2 retarder) for purifying 

and rotating its linear polarization, respectively. Subsequently, it is focused to a vacuum chamber 

either via an f∼20 cm focal length lens or an in-vacuum f∼5 cm lens. The laser beam enters and 

exits from the chamber through UV-grade fused silica flat windows of 2 mm width. 

Magnesium vapor is produced in a water-cooled and electrically heated stainless-steel oven 

reaching a maximum temperature of ∼1100 K. The oven is mounted at the top of the vacuum 

chamber which is separated from the interaction chamber by a 1 mm hole. The achieved 

background pressure with the oven turned off is ~7×10−7 mbar. On the other hand, when the oven 

is turned on the pressure in the laser-atom interaction region (LAIR) is found to be ∼10−6 mbar. 

The thermal beam consists of ground-state Mg atoms, which interact with the focused laser beam 

inside an electron spectrometer and in the presence of a static electric field. The laser propagation, 

atomic beam and spectrometer (electric field) axes are perpendicular to each other. The final 3sEk 

Stark states of Mg atom (with Ek denoting the |k⟩ Rydberg electron Stark state excited at energy 

E), are two-photon excited out of the 3s2 1S0 ground state with no near-resonant single-photon 

intermediate levels. The UV two-photon excitation scheme leads to an expected overall spectral 

width of about ∼0.8 cm−1. For π-polarization, i.e. linear laser polarization along the direction of 
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the static electric field, solely m = 0 final states are excited. For σ-polarization, i.e. for laser 

polarization normal to the field, the selection rule |Δm|=1 per photon applies and we excite final 

states of both |m|=0, 2 [27,70]. 

The electron spectrometer geometry is based on a standard three-electrode velocity-map 

imaging (VMI) spectrometer design [94]. The LAIR lies between the first two electrodes, i.e. a 

solid repeller plate and an extractor plate with a hole in its center. These electrodes are biased at 

voltages VR and VE, respectively. The following grounded third electrode is identical to the 

extractor plate. The holes of the last two electrodes create an inhomogeneous electric field 

necessary for the spectrometer to meet the VMI focusing conditions for a given VE/VR ratio 

[94,95]. Nevertheless, in the limited laser-atom interaction volume, the field may be considered as 

nearly constant within ±0.1% but its actual value is rather difficult to estimate accurately based on 

the applied voltage values. More accurate and self-consistent field estimations are obtained via the 

experimental measurements through procedures that will be exposed in detail in the discussion 

Chapter. 

Photoelectrons are accelerated by the field towards the end of a field-free drift tube. An 

electrostatic magnifying Einzel lens is placed about midway the tube [95,96,97]. The lens consists 

of three identical and equally-spaced electrodes with holes at their centers. The two outer 

electrodes are grounded, while the middle one is biased to a voltage VL (typically the lens operates 

in deceleration mode and, therefore, for electrons VL <0). 

At the end of the tube, the electrons are detected by a two-dimensional position-sensitive 

detector (PSD) consisting of a tandem microchannel plate assembly followed by a phosphor 

screen/anode. A CCD camera records the two-dimensional (2D) distribution of light spots on the 

phosphor screen. Recorded images are transferred to a computer, where they are accumulated over 

several-thousand laser shots. The entire spectrometer is shielded by a double mu-metal (nickel–

iron ferromagnetic alloy) layer, while special attention has been given to the shielding of the 

vicinity of LAIR. These precautions are estimated to result to a residual magnetic field <1 μT in 

its interior, which is considered as low enough for our purposes.  
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2.2 Instrumentation: Detailed Description 

2.2.1 Dye Laser System 

Coherent radiation pulses are delivered by the Lambda Physik ScanMate 2EC-400 dye 

laser pumped by a Q-switched Nd:YAG laser (Quantel-BrilliantB LPY-400). For the latter, 

pumping of the active medium (YAG rod) is accomplished by two intracavity flashlamps which 

are triggered by a high–voltage pulse. After a certain time delay from that pulse -and within the 

duration of the medium fluorescence- another electrical Q-switching pulse is applied to an 

intracavity Pockels cell [98,99] allowing for the production of a 1064 nm laser output pulse of 5-

6 ns temporal width. The laser operates at 10 Hz while its pulse energy may be varied by adjusting 

the aforementioned flashlamp/Q-switch time delay (Δt∼280-370 μs). Moreover, a TTL (+5 V, 25 

μs duration) replica of the Q-switch pulse (synchronous to the light pulses) is available via an 

output BNC connector located at its Power Supply and it is used for synchronization purposes, i.e. 

as the “clock” of our experiment.  

The Nd:YAG laser infrared pulses are frequency-doubled by a highly deuterated Potassium 

Dihydrogen Phosphate DKDP crystal (Second Harmonic Generation module [98]). The resulting 

doubled 532 nm radiation is employed for pumping the dye laser, a schematic diagram of which 

is given in Figure 18. The wavelength band of operation of the dye laser is chosen by selecting the 

appropriate active medium (dye and solvent) [100]. In our experiment we were interested in 

producing pulses in the 610–670 nm spectral range and we used the dye DCM (4-

Dicyanmethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran) diluted to methanol. The 532 

radiation is distributed to two active medium cells (cuvettes) via appropriate beamsplitters and 

dichroic mirrors. The dye solution flows in these two cells, namely the oscillator and pre-Amplifier 

cell (PreAmp-cell) and the Amplifier cell (Amp-cell). Typical concentrations of the dye solution 

are: (i) 0.15 gr/L in 300 mL methanol for the PreAmp-cell and (ii) 0.05 gr/L in 900 mL methanol 

for the Amp-cell. 
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Figure 18. Schematic representation of the Lambda Physik dye laser. The SCANMATE oscillator 

components are: the end mirror, the PreAmp-cell (containing the active medium) and the encircled within 

the dashed box elements [98]. The prism expander system consists of several prisms that achieve the 

illumination of the whole grating and simultaneous outcoupling the output beam. The pumping radiation is 

focused by cylindrical lenses on the cells (green regions). The radiation is amplified in the PreAmp-cell, 

expanded and re-Amplified in the Amp-cell. Second harmonic generation is achieved by a KDP doubling 

crystal. 

 

Apart from the PreAmp-cell, the SCANMATE oscillator consists mainly [98] of a grating 

for wavelength selection placed in the retroreflective, Littrow, position, an achromatic prism beam 

expander system necessary for increasing the number of illuminated lines on the grating and 

narrowing the laser line spectral width and an appropriately coated highly reflective end mirror. 

By coupling out the light after it has been filtered by the grating and before it passes through the 

active medium again, this particular outcoupling scheme (Lambda Super Pure®) eliminates a great 

part of the broadband amplified spontaneous emission (ASE) [98,101]. 

Under usual pumping conditions the out-coupled coherent oscillator radiation has pulse 

energy of about 100 μJ and is polarized perpendicularly to the grating groove orientation (i.e. it is 

vertically polarized with respect to the horizontal optical table plane). 

The PreAmp-cell is used both as part of the oscillator and as a Pre-Amplifier simply by 

pumping the cell in a different region. This leads to pulses of ∼1 mJ pulse energy. Subsequently, 

for further elimination of the un-polarized ASE (Amplified Spontaneous Emission) parasitic 

radiation, the beam passes through a linear polarizer and it is coupled in size to the Amp-cell via a 

two-lens beam expander before it is further amplified in the Amp cell. The final output pulse has 

∼5 ns duration, ∼10 mJ energy and a diameter of ∼3 mm (its repetition rate, is, of course, 

determined by the 10 Hz rate of the Nd:YAG laser). Finally, a 0.2 cm−1 spectral width has been 

estimated as explained in the next “Laser Frequency Calibration System” subsection. 
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The fundamental dye laser beam passes through a potassium dihydrogen phosphate (KDP) 

crystal and it is frequency doubled (305–335 nm). The crystal is mounted on a rotation stage that 

is controlled by the SCANMATE software. Pulse energy maximization (via phase matching [102]) 

is achieved by the proper rotation of the crystal for a number of selected wavelengths. Lateral 

beam displacement is eliminated by the simultaneous rotation of a compensator window in the 

opposite direction. The UV pulses have <5 ns duration, a maximum pulse energy of ∼1 mJ and 

an estimated spectral width of ∼0.4 cm−1. 

The overall laser performance is found to depend on the good condition of the cuvettes that 

should be frequently checked for damages which are almost invisible. Moreover, the Second 

Harmonic Generation (SHG) setup was also frequently checked because it is not thermally isolated 

and consequently the UV-output could vary with time due to non-constant thermal conditions 

affecting the phase matching optimization. 

 

2.2.2 Laser Frequency Calibration System 

After the beam (fundamental and frequency-doubled) separation by the filter (UG5) the 

reflected visible radiation is guided toward the wavelength calibration system, shown in Figure 19. 

A part of the visible radiation enters a discharge lamp (Ne buffer gas) and the remaining radiation 

passes through an Fabry-Perot interferometer, placed perpendicular to the incident beam. Finally, 

a photodiode records the transmitted light signal which is guided towards the boxcar together with 

the optogalvanic element (OGE) signal. 

The optogalvanic effect refers to the voltage changes, typically observed in gaseous 

discharge lamps, followed after the irradiation of the buffer gas [103]. These changes correspond 

to electronic transitions for species in the discharge thus provide a one to one correspondence 

between the radiation wavelength and the energy levels difference. In our case, the discharge lamp 

voltage is either enhanced or decreased when our visible beam color matches an Ne electronic 

transition which is identified in the catalog of Ref. [104] and thus provides absolute energy 

calibration of the radiation wavelength.  For example, a frequently used Ne line observed for 

λ≈650.65 nm corresponds to the transition [He]2s23p5(2P°3/2)3s 2[3/2]°, J=1 – [He]2s23p5(2P°3/2)3p 

2[5/2]°, J=2 (λv=650.65281 nm). 
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Figure 19. Schematic representation of the calibration experimental setup. The visible beam is guided 

towards the optogalvanic lamp and a Fabry-Perot interferometer. The Ne optogalvanic spectrum and the 

intensity modulation of the photodiode signal are recorded as the wavelength is scanned. Due to the high 

reflectivity of the interferometer surfaces only a small percentage of the beam is transmitted towards the 

photodiode. 

 

Relative laser calibration is achieved with the use of a highly reflecting Fabry-Perot 

interferometer. The transmitted beam exhibits intensity maxima, as the radiation photon energy σ 

varies. Within the paraxial approximation, the photon energy σ values that correspond to maxima 

are predicted by, 

 𝜎 =
ℎ𝜎

2𝐿 𝑛air(𝜎)[1−
𝜃𝜋
2

2
]
, ℎ𝜎 = 0.5,1.5,2.5,… (106) 

where L is the distance between the interferometer windows in cm units, θπ is the laser angle of 

incidence, σ is measured in cm-1 and hσ a, typically large, half-integer that labels successive 

transmission intensity maxima. In practice, we ensure that the angle of incidence is almost zero 

(below 3 mrad) and employ the fact that the air wavelength nair is slowly varying [105] for limited 

photon energy ranges. Then, the successive maxima are almost equidistant and equal to the free 

spectral range FSR = 𝜎(ℎ𝜎 + 1) − 𝜎(ℎ𝜎) ≈
1

2𝐿𝑛air(𝜎(ℎ𝜎))
. Experimentally, we employ three neon 

OGE lines that lie near the energy range of interest (∼15500 cm-1) and have a maximum energy 

separation of ≈300 cm-1 (visible radiation). Then by scanning the laser wavelength and recording 

the OGE and the Fabry-Perot interferometer signal, the local FSR is calculated to be 0.4729(2) 
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cm−1. Note that this value corresponds to an effective FSR of 1.8916(8) cm−1 for the final energy 

of the two-photon excitation of a system with the UV radiation. The intermediate energies are 

calculated by interpolation between maxima. 

In conclusion, the calibration system provides the wavelength estimation within the accuracy of 

∼0.4 cm−1 in the final energy which is more accurate than the wavelength calibration offered by 

the laser system itself (accuracy of ∼2 cm−1 in the final energy). 

The interferometer transmitted intensity signal also provides an estimation of the laser 

spectral width. Indeed, the maxima profiles and width depend on the spectral width in addition to 

the intrinsic interferometer characteristics that define the finesse [99]. Assuming that our 

interferometer has infinite finesse and for a purely monochromatic radiation the intensity maxima 

should have a Dirac comb intensity distribution as the energy is scanned. In this case, the maxima 

spectral width is solely attributed to the laser beam spectral context. On the other hand, in the more 

realistic non-infinite finesse case, maxima spectral width provides an estimated upper limit for the 

laser spectral width, which for the used dye lase is found to be ≈0.2 cm-1 for the visible radiation. 

 

2.2.3 Velocity Map Imaging Spectrometer (Photoionization Microscope) 

The study of atomic/molecular systems has been revolutionized by the emergence of 

imaging techniques [106] that can provide a more complete set of observables than the previously 

used techniques. Imaging refers to the measurement of the position of a particular product created 

after the process under study. The apparatus which is typically used, namely the Velocity Map 

Imaging Spectrometer (VMIS) [94] presents several advantages to previous imaging setups 

[107,108]. The ejected species after the photoionization, photodissociation etc. process will impact 

a position sensitive detector (PSD) at the point (ρ,φ) while ρ is given by the simple formula, 

 𝜌 ∝ √
𝑇

𝑞 VR
 (107) 

where VR the voltage of the first electrode T is the initial kinetic energy and q is the particle 

charge. In the case of photoionization, the electronic 3-dimensional velocity distribution is 

extracted by the 2-dimensional intensity distribution (transverse momentum) on the PSD by 

several techniques [48,109,110,111]. For the low electron kinetic energies employed in this study, 
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the observed quantity is proportional to the transverse momentum with respect to the 

spectrometer’s axis [53] but the formula of Eq. (83) no longer applies due to the strong Coulomb 

effect on the electron trajectory. Thus, the use of the aforementioned techniques in the search of 

the initial 3D velocity distribution is limited. 

 

 

Figure 20. Velocity map imaging spectrometer capture. The inner mu-metal foils are shown but the outer 

shield is not yet plugged in. Α vacuum flange holds the VMIS on stainless steel rods. Voltages are applied 

with cables that are connected to Safe High Voltage feedthroughs on the flange. Separate parts of the VMIS 

are also shown from left to right: (i) The flange with the window and the connectors as vied from the outer 

side. (ii) Same VMIS part captured from the interior side. The mounted detector and its connections are 

visible. (iii) Einzel lens electrodes. Inspecting the aperture reveals the other two electrodes (iv) Three 

electrodes setup, separated by ceramic cylinders. Small holes are formed between the first and second 

electrodes to facilitate the laser and/or atomic beam insertion into the center of the spectrometer. 

 

In our study we employ a VMIS in its original variant [94] with the addition of an 

electrostatic Einzel lens for image magnification. This setup has been described in some detail in 

[22,27,95] and is shown in Figure 20. 

Let us first deal with the three-electrode structure comprising the laser-atom interaction 

region without considering the peculiarities introduced by the Einzel lens. It is reminded that the 

LAIR is located between the first two electrodes and is defined by the laser beam and the atomic 

beam cross section. The solid Repeller and the annular (the hole diameter is ~20 mm) Extractor 

and Ground electrodes are placed 19 mm apart from each other. Each electrode is biased at the 

constant voltages VR, VE and VG≡0 respectively with the use of a series of power supplies 

(Stanford Research Systems, PS350).  
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Figure 21(a) shows the equipotential curves formed by the electrode geometry. Under these 

conditions, the inhomogeneous electric field that acts as an electrostatic lens for the charged 

particles [95]. The curvature of the equipotential lines is determined by the applied voltages and 

more specifically by the ratio VE/VR and for some specific ratio, all charged particles  

 

 

Figure 21. (a) Schematic three-electrode VMI setup similar to the used one. The equipotential curves form 

a lens and collimate particles of same velocity vector on the detector plane. (b) Optical analogue of the VMI 

operation. An ensemble of rays of three different inclinations with respect to the horizontal axis 

(spectrometer axis) and emitted from different initial points, is shown. The Fourier plane coincides with the 

detectors plane. 

 

that have the same initial velocity vector will form a spot on the detector irrespective of their initial 

position. This ratio is defined by the electrodes geometrical characteristics and the length of the 

spectrometer and is referred as the VMI condition [95,112]. In addition, the VMI condition is 

altered by the LAIR displacement in the direction of the VMIS axis. In our setup VE/VR ≈ 0.68. 

Using geometrical optics terminology, when the VMI condition is met, the focal length is exactly 

equal to the lens-detector distance. This operation is shown schematically in Figure 21(b) where, 

rays emitted from different locations of the LAIR zone but same orientation with respect to the 

VMIS optical axis, are collimated on the focal plane. Taking the optical analogy one step further, 

the detector plane intensity distribution (Image) is equal to the Fourier transform of the initial 

ejection position distribution [95]. 

We should note however that the above described VMI conditions derives from first order 

particle optics and it insufficient for compensating for extreme large LAIR extensions of very large 
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kinetic energy bandwidths. In any case the LAIR must be kept as small as possible (a task that will 

be addressed in the next subsection) and the VMI condition must be (experimentally) found in the 

energy range of interest. Note that the VMI conditions are independent of the particle mass and 

apply to both electrons or ions. Retaining the VMI condition but for increased field values (or 

equivalently for increased VR values) the acquired image will be scaled down without any 

alteration of its characteristics. As we already mentioned the primary lens focal length depends on 

the applied voltage ratio VE/VR. When this ratio approaches unity the focal length becomes smaller 

than the interaction region distance from the center of the electrostatic lens. This operation mode 

is called spatial map imaging [106] and allows for the projection and magnification of the LAIR 

spatial profile on the detector [112]. 

Finally, the same spectrometer can be used for ToF measurements, 

 𝑡 ∝ √
𝑚

𝑞 VR
 (108) 

thus, allowing for atomic spectra acquisition or in related applications e.g. species distinction with 

gated detection [94]. 

One of PM’s requirements is that the electron excitation energy is low enough so that the 

De Broglie wavelength, the moment of its liberation, is compatible with the spatial resolution of 

the spectrometer (or microscope). This is typically achieved for reduced energies lower than unity 

(ε<1), or for energies less than 25 meV (when typical field values ~1000 V/cm are used). These 

so called almost “zero” energy electrons cannot be resolved in typical VMI setups and form a 

bright spot on the center of the detector. Figure 22(a,b) shows the effect of the Einzel lens 

magnification on our images. These slow photoelectron images correspond to photoelectrons of 

about ~43 meV above the zero-field ionization energy, that is for an excitation energy well above 

the requirements of PM. 
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Figure 22. Slow photoelectron images after two-photon excitation out of the magnesium ground state. 

Images are presented in linear color-scale. For a fixed repeller voltage (VR), we achieve VMI focusing 

conditions without (Figure 22(a)) and with the use of the Einzel lens (Figure 22(b)). The outer dimensions 

of our detector are visible on both images. The high excitation energy (~43 meV above the zero-field 

energy) does not allow for the observation of interference fringes. 

 

 The additional use of the Einzel lens, by applying appropriate voltages, can achieve up to 

a 20-fold magnification of the original image without introducing any severe errors [95]. 

 

 

Figure 23. Optical analogue of the VMI spectrometer (as in Figure 21(b)) with the additional use of an 

Einzel lens. All rays of the same inclination with respect to the spectrometer axis are focused on the Fourier 

plane. This image is magnified by the “Einzel” lens and is projected on the detector plane. and imaged on 

the PSD detector. 

 

This lens is located midway the field free space and consists of three identical annular 

electrodes (the hole diameter is 10 mm) that are placed 7.5 mm from each other and are biased to 
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voltages 0, VL and 0 respectively. The preferable mode of operation is the decelerating mode 

meaning the polarity of VL is the same as VE and VR thus, the electrons are first decelerated and 

then accelerated [95,96]. Then the VMI condition depends on both ratios VE/VR and VL/VR. In 

practice we first set VL/VR and then adjust VE to ensure focusing on the detector plane. The 

typically employed ratio values are: VE/VR≈0.73 and VL/VR≈1. The optical analogue is shown in 

Figure 23. Note that, it is extremely important to properly align the first three electrodes and the 

Einzel lens electrodes because a small tilt leads to image formation away from the detectors center. 

The entire VMIS is covered with two 1.5 mm mu-metal tubes in order to shield the interior 

from the Earth’s or stray magnetic fields. An additional tube and a top hat of 3 layers (0.5 mm) of 

mu-metal foils were added to shield the upper part (near the LAIR) of the VMIS. All the mu-metal 

parts were treated in order to retain their magnetic properties by placing them near a radio 

frequency source and pulling them away while the source was operating. 

 

2.2.4 Atomic beam & Pumping System 

The oven system is located above the main experimental chamber. Magnesium chips 

(Aldrich 99.98%) are inserted inside the stainless-steel tube (see Figure 24) which is heated above 

the Mg melting point (580 – 600 oC). During the heating process, the Mg vapor exits the thin 

magnesium oxide (melting point of 2852 oC) coating that surrounds the chips which are collected 

at the bottom of the oven. Heating is achieved by induction via an external oven (0.3 kWatt, 7A 

max current) and the temperature is monitored externally by a thermocouple. The temperature 

indication is several degrees lower than the achieved maximum temperature inside the steel tube 

and is only used for reference purposes between experiments. An external closed water loop cools 

the system near the top and bottom flanges and the oven reaches thermal equilibrium without 

controlling the electric current through feedback loops. The cooling is efficient enough (<100 oC 

near the flanges), allowing for the use of fluoroelastomer (FPM/FKM) O-rings which are easier to 

install than copper ones. Generally, our oven produces a temporal stable thermal Mg atom flux for 

large timescales, while being simple in design as compared to other atomic sources [113]. 
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Figure 24. Schematic oven system. Magnesium chips are inserted at the bottom of a stainless-steel tube. 

The upper part of the tube is sealed with a flange, while the bottom part is connected to the spectrometer. 

High vacuum is achieved via rubber O-rings. The dimensions of the external oven are marked by the dashed 

line. A thermocouple measures the temperature at the outer side of the steed tube. The cooling tubes 

surround the tube near the flanges and are connected to an external water loop. 

 

Magnesium vapor enters the main experiment chamber that hosts the electron spectrometer 

through an 1mm hole and forms a thermal beam that propagates downward. The atom velocity 

distribution follows the cosine law [113] and this leads to an enlarged cross section with the laser 

beam. This is apparent in Figure 25, where VMI images of the Mg+ velocity distribution exhibits 

a class of homogenous velocity orientation overlaid to a downstream velocity class. The former is 

attributed to the formation of a local Mg vapor cloud inside the spectrometer that is responsible 

for defects in our images. Nevertheless, the low density of atoms in the LAIR does not produce 

any space charge effects. Different collimation techniques have been tried such as inserting plates 

with apertures just above the spectrometer or after the oven hole but were not used for our 

measurements due to the expense of extremely low flux in addition to the still poor collimation. 
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Figure 25. Experimental image of the velocity distribution of Mg+ ions. The static field vector is parallel to 

the z axis. The oven system is located towards the positive y axis and provides the atomic beam. The laser 

beam propagates toward the positive x axis. The center of the detector coincides with the center of the 

presented image. Atoms that do not collide with any part of the spectrometer form a downstream velocity 

class. On the other hand, scattered atoms form a local atomic cloud that exhibits a uniform velocity 

orientation. Note that the velocity distribution is connected to the temperature via the Maxwell-Boltzmann 

relation [99], thus the atomic class that is not scattered exhibit a higher temperature that the scattered one. 

 

The pumping system consists of a turbomolecular pump (Leybold Turbovac TW 250S) 

backed up by a rotary pump. Additional pumping is provided by a liquid-nitrogen cold trap placed 

on top of the turbo pump. We achieve high vacuum (O-rings seals) i.e. ∼5×10−7 mbar when the 

oven is not operating and ∼2×10−6 mbar when the oven is hot and Mg vapor is produced 

(experimental working conditions). The system is almost oil free (UV spectra with cold oven 

suggest the presence of oil species that are not detectable under working conditions) while a 

pneumatic valve (Leybold) has been placed in the turbo pump output to ensure good working 

conditions after sudden power breakdowns. 

 

2.2.5 Detection & Data Acquisition Systems 

The produced ions/electrons are detected with a 2-dimensional position sensitive detector 

placed at the end of the field free tube (electron spectrometer). The detector consists of an array of 

two Micro-Channel Plates (MCPs) followed by a phosphor screen/anode. The MCPs are made out 

of highly resistive material (∼0.5 mm) with small apertures (channels) of ∼10 μm in diameter, that 
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have some pitch angle (6–12 degrees). When an electron enters a channel, it strikes the wall thus 

multiple secondary electrons are produced. These electrons are accelerated by the applied voltage 

difference on the two faces of the plate and strike the opposite wall again producing further 

secondary electrons. The two 50 mm diameter, tandem (i.e. opposite pitch angle directions) MCPs 

plates (of either Hamamatsu, Tectra or Baspik suppliers) are placed in contact since they have the 

same resistance (resistance matched). The input side of the first plate is grounded and the output 

face of the second plate is set to some voltage (VMCP, typically 1600 – 2000 V, Stanford Research 

Systems PS350), thus a uniform voltage gradient is applied to the MCP set and a gain of ∼106 is 

finally achieved. 

The screen/anode consists of a glass window coated with phosphor (the used phosphor type 

has moderately slow fluorescence lifetime e.g. P46 type) overlaid by a thin aluminum coating. 

Then the electrons produced by the MCPs are accelerated toward the screen. The anode coating is 

biased to a higher voltage, VPH – VMCP ∼400 V or ∼2200 V, for ToF or imaging measurements 

respectively. The detector is shown in Figure 26. 

 

 

Figure 26. The figure shows the detector, captured at different stages of assembly, starting from left to 

right. The phosphor screen rests on the ceramic ring and is overlaid by its electrode. Note that the voltages 

are applied through the visible electrode pins. Four ceramic pillars and the ceramic “barrels” ensure that 

there is no electrical connection between the anode, the MCPs and the grounded electrodes. The last ground 

electrode is in contact to the front face of the MCPs. This detector has an effective area of ≈4.5 cm in 

diameter. 

 

In the case of ToF measurements, a homemade decoupler module (E. Dimitriadis) is 

inserted on the anode supply line and is shown schematically in Figure 27. The capacitor decouples 

the electronic pulse signal from the high voltage dc offset and delivers the signal through a BNC 

connector cable towards an analog gated integrator (Stanford Research Systems SR250). Then the 

signal is integrated in the range of an adjustable time-window (gate) and exponentially averaged 
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over the selected number of shots. The output signal is a slow varying dc voltage that is fed to an 

oscilloscope and recorded by a homemade pc Labview program. The boxcar system is triggered 

by the YAG laser Q-switch TTL output pulse. Note that the cable internal resistances greatly affect 

the signal delivered by the decoupler. A visible ringing effect is observed in the ToF signal which 

is attributed to the poor cabling choice but this does not affect our spectra due to the proper gating 

on the signal maximum. 

 

 

Figure 27. Here is shown decoupler module circuit that was used for ToF measurements. The anode is 

biased from the power supply through a large resistance for safety purposes. The connections are of safe-

high-voltage type for the power supply input and the anode output and BNC type for the output signal. The 

capacitor separates the ~4 kV dc voltage from the electronic pulse signal which is guided towards an analog 

gated integrator. The Zener diodes ensure that the absolute value of the output signal is less than 15 V. 

 

For imaging measurements, the aforementioned decoupler is removed and the anode 

voltage is inserted directly into the spectrometer (in principle the decoupler can be present even 

when high voltage ∼5000 V is applied to the anode but is removed for safety purposes). The 

activated phosphor produces fluorescent bright spots that are recorded with a CCD camera and 

transferred to a pc via a firewire cable. We use a Black&White (Allied Vision Technologies, F-

201B) camera equipped with a 1:2.8 zoom lens of maximum focal length of 50 mm (Tamron Japan, 

C200915). The camera is mounted on a x-y-z translation stage with rotation capabilities in the 

horizontal plane and is covered to minimize ambient light. Camera triggering is offered by a home-

made delay module (E. Dimitriadis) that is triggered by the Q-switch pulse and produces a delayed 

pulse of adjustable width. This delayed pulse (delay∼99.97 μs) opens the camera shutter and 
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controls the exposure time (exposure time∼60 μs) thus recording the phosphor fluorescence of the 

subsequent laser pulse (10 Hz). The small pulse to pulse timing jitter is estimated to be of the order 

of a few ns, thus it is negligible for the typically used exposure time. 

 

2.2.6 Data Acquisition & Analysis Software 

SCANMATE: The dye laser is operated through the SCANMATE (Lambda Physik) program. 

The SHG crystal position must be calibrated before each experimental run by adjusting the crystal 

angle for four or five equidistant wavelength values within the selected wavelength range. By 

monitoring the SHG output intensity with a photodiode and controlling the crystal angle the UV 

pulse energy is optimized at each selected wavelength. Then the SHG module is calibrated and 

during a scan the computer interpolates the selected calibration points to rotate the crystal at the 

correct angle. 

During the scan, the wavelength is tuned within the selected spectral range (Start, Stop) in 

selected increments (Step). After each wavelength increment the laser emits the selected number 

of pulses (Counts) and subsequently moves to the next wavelength. Lower step values (0.001 nm 

minimum) increase the resolution while higher count values (1000 maximum) improves the 

statistical confidence but both introduce a time toll (e.g. for a 2.5 nm scan with a 0.001 nm step 

and for 100 counts for each step a 7 hours scan is required). 

Laser scan and data acquisition is asynchronous thus, it is important to be temporarily 

matched. The delay time between steps is almost negligible for small Step values (<0.1 s). 

However, this is not the case for the initial wavelength value (Start) where the grating and the 

crystal may need some time to move to the correct position. For this we employ the capabilities 

offered by the dye control system by selecting the initial grating position in order to correspond to 

the starting wavelength and then start the scan together with the data acquisition. 
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Figure 28. SCANMATE dialog window for scanning operation. The used doubling is of the KDP I type 

(Figure shows the BBO-2 type). The initial and the final wavelengths are scanned in the 610 – 670 nm 

range. Typical step and count values are shown. Note that the scanning mode is available after the 

calibration of the crystal, which is performed in the Init submenu. 

 

VMI ACQUIRE (Camera Driving Software): The image acquisition program “VMI Acquire” 

(Per Johnsson 2009).  Figure 29 shows the initialization window and the program environment. 

The Trigger is provided externally (see camera triggering in the previous discussion). Two 

acquisition modes are available namely the imaging and the counting mode. Imaging mode records 

the intensity distribution of the phosphor bright spots which is distributed in several pixels. On the 

other hand, in the counting mode and for each bright spot a single count is assigned to the pixel 

that corresponds to the maximum of the intensity distribution of the bright spot. The latter mode 

slightly increases resolution when a sufficiently large acquisition >10,000 is used. For our 

measurements imaging mode was used, providing a good enough resolution in conjunction to 

lower acquisition ∼1–5×103. 
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Figure 29. Camera driving software settings are shown in the upper dialog window. The lower window 

shows a part of the acquisition program front face. The two display windows of the front face, show the 

captured image (left large display window) and a selected part of it (right small display window). We use 

the external triggering provided by the custom-made delay module (E. Dimitriadis). The number of 

accumulated images is controlled by the Acquisition Control submenu.  

 

Throughout our experiments we used two measurement types after selecting the number of 

shots to be acquired (typically ∼1000 shots): (i) Single images are obtained by selecting Acquire 

and then pressing Save button. Images are saved in Raw format. (ii) Series of images are captured 

sequentially by checking the Autosave box and selecting the Live acquisition mode. This mode 

enables us to manually synchronize with the laser scanning and obtain an image on every laser 

step. For a laser scan of 1000 counts and a step of 0.004 nm we set 1001 image shots Acquisition 

and then monitor the synchronization (we may need to reduce the camera acquisition to 1000 shots 

for some images during the scan). 

 

IMAGEJ: Image processing and analysis is performed with the open source program ImageJ 

developed in Java programing language. Importing the raw images uses the parameters shown in 

Figure 30. A major advantage of this program is the ability to perform the same operation to a 
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series of images (Stacks). Below, we present a few examples that have been used for the analysis 

of the magnesium experimental data. 

 

 

Figure 30. The figure shows some of the ImageJ software dialog windows and used plugins. Images in raw 

format are imported be selecting the options shown here. The Process submenu contains useful build-in 

commands such as the Image Calculator. This operation allows for subtracting (/adding/averaging/…e.t.c) 

images. The Radial Profile Angle plugin settings may vary according to the image center position and the 

desired radius of integration. Finally, the ROI Manager submenu is shown to highlight the Multi Measure 

option that allows for measuring quantities on a Stack of images. 

 

Images exhibit a fixed pattern noise (background) that can be eliminated by subtracting an 

image obtained in the absence of signal. The background image is acquired at 2 – 5 times the 

normal acquisition shots and then divided by that factor. Total integrated signal, center of mass or 

maximum pixel value can be measured by the build-in analyze menu. The same quantities can be 

computed for limited regions of interest (ROIs) that are defined in the ROI manager submenu 

instead of the entire image. 

The intensity profile as a function of the radius from a selected center namely the radial 

profile, of a PM image is calculated by the “Radial Profile Extended” by Philippe Carl plugin. The 

plugin produces a profile plot of normalized integrated intensities around concentric circles as a 

function of distance from the center, with the addition that the script lets you choose the starting 
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angle and the integration angle. This is also applicable to Stack images. A variety of ImageJ plugins 

are accessible in Ref. [114]. 

Symmetrization of images is performed for visual purposes (no quantity has been measured 

from a symmetrized image). First each image quadrature, with respect to the center, is duplicated 

to create 4 new images. We flip the quadrature images appropriately with respect to the image axis 

of symmetry and then average them. This final averaged quadrature is then used to reform a 

symmetrized image by employing the combine submenu. 

 

LabView® ION SPECTRA ACQUISITION PROGRAM: The boxcar signal is inserted into an 

oscilloscope (LeCroy 9310C, 400MHz) and recorded via a LabView® homemade program [115]. 

The interface is presented in Figure 31. The program averages the two signals over the selected 

sweeps and appends them into two columns on the final name given. The signals should not exceed 

the maximum visible value on the oscilloscope screen. The acquisition starts and pauses after 

pressing the start/stop buttons. 

 

 

Figure 31. The interface of the custom-mage LabView program (A. Koulouklidis). The program integrates 

the signal over the gate shown in the bottom of the interface (our signal is slowly varying dc signal provided 
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by the analog integrator). Note that the button Store Values 1 is checked and only one gate is used (generally 

three gates are possible). The number of sweeps and the laser repetition rate (10 Hz) determines the delay 

time (an additional time delay of 0.1 s is required for the program to store the values to the data file). 
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2.3 Experimental procedure 

Experimental measurements require the preliminary steps listed below and then we proceed 

to the actual measurements. The preliminary experimental steps consist of: Raising the oven 

voltage (>6 mA) gradually and wait about 1 hour for the temperature to be stabilized. Initiate the 

laser following a given protocol and wait for the ultraviolet output to stabilize (total 2 hours). A 

constant stream of Mg vapor and the laser radiation are ready to be used. In general, experimental 

runs were time consuming due to the waiting time towards thermal stabilization of the systems and 

the low acquisition rate determined by the laser repetition rate. 

 

2.3.1 Mg+ Ion Spectra 

The total cross section of the laser atom interaction is obtained by collecting the positive 

ion signal (VR, VE >0) for the selected field value F. The voltage ratio is typically chosen near the 

VMI condition(s) 0.68 or 0.73 in order for the measurements to be compatible with acquired image 

sets. The ions travel in the field free tube and reach the detector at the time of flight. The typical 

detector voltage values are: VMCP=1600-1800 V and VPH=2000-2200 V. Both OGE (Ne lamp) and 

ions signal are inserted into a boxcar module (Stanford Research Systems, SR235) allowing for 

outputting either the latter or the former signal. 

We simultaneously start the laser scan and the LabView acquisition program and record 

the OGE/Ions signal together with the Fabry-Perot intensity fringes. After a strong Ne reference 

line is recorded, we change the output to the ions and record the rest of the spectral range. The 

used calibration lines lie below the Esp for the typically used static field values and the ions spectra 

is not affected. The laser beam is blocked at the end of each scan for the determination of the zero 

signal. Calibration is performed offline by using the recorded Ne line and the Fabry-Perot fringes. 

 

2.3.2 Alignment Procedures: Imaging the Laser-Atom Interaction Region  

The voltages applied to the Repeller/Extractor electrodes of the VMI spectrometer greatly 

affect the focusing conditions of the spectrometer. In the special case of almost identical voltages 

VE/VR∼1 the detector images the position of the interaction [106,112], instead of the initial particle 

velocity. In fact, the LAIR is magnified according to the applied voltages and the laser position 
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along the spectrometer axis (z axis). However, this technique of spatial map imaging is used for 

alignment purposes and the exact dimensions are not of importance in the present study. 

Setting the ratio VE/VR ≈0.998 for either positive or negative voltages, we observe a bright 

line on the detector that is moved in the vertical direction as the laser beam is vertically displaced. 

Figure 32 presents a series of overlaid images (electron imaging, negative voltages) as the beam 

is displaced vertically. Note that the bright lines form a round disc-shaped shadow, that is attributed 

to the projection of the geometrical shadow of the Einzel lens electrodes. This is visible for both 

electrons or ions imaging. The beam is considered aligned when the bright line is formed in the 

center of the Einzel lens shadow in the vertical direction. 

 

 

Figure 32. Laser-Atom interaction region electron imaging. Each horizontal line corresponds to a single 

LAIR imaging for a fixed laser position. The laser beam is then displaced vertically and the all images are 

overlaid together. Note the formation of disc-shaped shadow, that is attributed to the geometrical shadow 

of the Einzel lens electrodes. 

 

2.3.3 Imaging – Photoionization Microscopy  

In order for the electrons to form fluorescent spots on the phosphor screen, the detector 

voltages are set within the ranges: VMCP=1600-1800 V and VPH=4000-4200 V. Then for a 

predetermined VR<0 value and VL=0, we search for sharp images by adjusting the extractor voltage 

near the VE ∼0.68 VR. The correct ratio is a function of the laser position along the spectrometer 
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axis, thus it must be adjusted after each beam alignment. A sharp image without magnification is 

shown in Figure 22(a). Then the Einzel lens voltage is gradually increased until the maximum 

predetermined value VL<0 that determines the magnification of the original image. At each step 

the extractor voltage is adjusted (for low lens voltages images cannot be formed on the detector 

[95]) until we finally observe a sharp magnified image near the extractor voltage VE ∼0.73 VR 

(Figure 22(b)). 

Images for different polarization orientations are obtained by fixing the laser radiation 

wavelength. Then an image is acquired for each λ/2 rotation angle (minimum step 2 degrees 

leading to 4 degrees of polarization vector rotation). These sets also provide an absolute calibration 

of the polarization angle e.g. by examining the glory signal or/and the barycenter of the images 

with respect to the image center (see polarization discussion). 

Series of images were recorded as the laser wavelength was scanned, after “synchronizing” 

it with the camera (see the discussion on section 2.2.6). The polarization orientation is kept fixed 

during the image series acquisition. For extremely large energy ranges, the KDP crystal was 

recalibrated whenever the pulse energy dropped. The Fabry-Perot intensity fringes were recorded 

simultaneously and the absolute calibration is based on an OGE spectrum after the last scan of 

each experimental set. 

 

 

Figure 33. (a) Slow photoelectron image for the two-photon excitation out of the magnesium ground state. 

The laser field polarization is parallel to the static electric field. The focusing lens is placed outside of the 

spectrometer (f ≈25 cm). (b) Slow photoelectron image for the four-photon excitation out of the magnesium 

ground state with π-polarization. Again, the focusing lens is placed outside of the spectrometer. (c) Slow 

photoelectron image for the two-photon excitation out of the magnesium ground state with π-polarization. 

The used in-vacuum lens has a focal length of f ≈5 cm.  Both the four-photon excitation scheme and the 

stronger focusing by using an in-vacuum lens eliminate the coma-like defect of the images by effectively 

reducing the extension of the LAIR. 

 



 P. Kalaitzis Chapter 2 

 

81 

 

Let us finally address the defects observed in the experimental images of Figure 33(a). The 

first refers to the intensity deficiencies caused by scratches on the MCPs surfaces that were 

introduced during the detector’s assembly by the users. It was found that this defect has little to no 

effect on the radial profile obtained from the images due to the fact that radial profiles are 

insensitive to small deficiencies extending to different radii with respect to the image center. In 

measurements concerning images for different polarization orientations (where the radial profile 

is less relevant) the surface of the detector used was in perfect condition. 

The most striking error is a coma-like extension of the intensity [116]. This is attributed to 

the large spatial extension of the LAIR in the direction of the laser propagation, at least compared 

to the suitable one for the “first order” VMI condition to apply. The electrons produced far from 

the electrode aperture center cannot be focused efficiently and produce a blurred copy of the 

focused image [94]. Three approaches can treat this issue namely the reduction of the LAIR by: 

collimating the atomic beam, selecting higher order multiphoton process and finally strongly focus 

the laser radiation. The first approach is the most suitable because it provides the best 

determination of the LAIR but it is not used due to lack of appropriate equipment. The second 

approach is not suitable for the particular study which is devoted to the non-resonant two-photon 

excitation. For example, in Figure 33(b) a four-photon excitation is employed to demonstrate the 

achieved minimization of the error. Finally, the third approach i.e. the introduction of an in-

vacuum lens of 5 cm focal length, is employed to reduce the error. The LAIR is assumed to be 

almost equal to beam waist that – for a nearly Gaussian beam profile – is proportional to the 

squared focal length of the lens. Figure 33(c) presents a two photon PM image using this setup. In 

general, the laser beam diameter reduction via pinholes (selecting the central part of the beam and 

subsequently reducing the pulse energy) produces better quality images. The radiation pulse 

energy was continuously monitored with a joulemeter and its value was within the range 0.2-0.1 

mJ/pulse in the LAIR. 

  



 P. Kalaitzis Chapter 2 

 

82 

 

 

 



 P. Kalaitzis Chapter 3 

 

83 

 

Chapter 3: Results & Analysis 

3.1 Near-Saddle-Point Images of H and Mg Stark States 

3.1.1 Magnesium Ion Spectra & Stark Maps 

The discussion on the effects exhibited by PM images near the saddle point energy would 

be greatly facilitated by a preceding brief presentation of the two photon Mg Stark spectra recorded 

in the vicinity of Esp and above for the static fields F~700 V/cm of interest (principal quantum 

number n∼30 and well beyond the l-mixing range). In fact, our aim here is not a detailed 

spectroscopic study devoted on energy level positions and lineshapes but, instead, the 

identification of the gross near-saddle-point spectral features. Typical two-photon Mg+ spectra out 

of the Mg ground state for π- and σ-polarization are presented in Figure 34 (a,b,c). These schemes 

populate m=0 and |m|=0,2 states, respectively. The laser pulse energy was reduced in order to avoid 

saturation effects. Under such conditions, the Mg+ signal (black solid line) is proportional to the 

total ionization cross section σtot. The latter typically exhibits a negligible signal below the saddle 

point energy, while above it we observe a series of almost equidistant spectral lines build upon a 

slowly varying background signal [68,71]. This background is attributed to the simultaneous 

presence of continuum states along with the resonances. The profile of the background is 

apparently different for the π- and σ- spectra. The smallest recorded Stark resonance linewidth is 

~0.5 cm-1, but in the spectra of Figure 34 the majority of observed spectral lines exhibit linewidths 

of ~1 cm-1 (or even higher). This fact, in conjunction with theoretical calculations of σtot [92] imply 

the presence of several unresolved resonances within each spectral line. Furthermore, the π- and 

σ- spectra exhibit resonant lines at almost the same locations, but with occasionally different line 

profiles. This quasi-degeneracy of |m|=0 and 2 resonances has been predicted by earlier semi-

classical theoretical works and occurs for either hydrogenic or multielectron atom near-threshold 

Stark spectra [62,65,117]. The observed spectral lines are affected by the inhomogeneity of the 

electric field within the LAIR volume that introduces an additional spectral broadening. 
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Figure 34. (a) Mg+ signal (black line) for the π-polarization two-photon excitation scheme. This m=0 

spectrum exhibits a series of narrow spectral lines overlaid on a slow varying but oscillating background. 

(b) Yet another two-photon ion spectrum near the Esp energy range, obtained by employing the same 

excitation scheme as in (a). Also shown, the integrated electron signal (red points) of PM images recorded 

with identical conditions but reversed polarity of the spectrometer electrodes. (c) Mg+ signal and integrated 

electron signal recorded by using a σ-polarization two-photon excitation scheme. 

 

Reversing the polarity of the voltages applied to the spectrometer and retaining otherwise 

identical conditions allows for obtaining electron images. Then the (angularly and radially) 

integrated electron signal of the images (red points in Figure 34(b,c)) provides the total 

ionization cross section σtot i.e. the obtained information is equivalent and apparently identical to 

that obtained by the Mg+ signal. In fact, differences occur solely for the weak resonances extremely 

near the Esp, where the line intensities of electron signals are higher than their Mg+ counterparts. 

This is probably attributed to the low sensitivity of our ions detection method when extremely low 

electric signals are involved. 

More information can be obtained by studying the total cross section by means of the so-

called Stark maps [14,28,92,118], consisting of E-F representations of σtot revealing the evolution 

of energy levels as a function of the static field strength. Stark maps occasionally uncover striking 
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effects which are otherwise hindered in single spectra. Building the Stark map requires the 

recording of the Mg+ signal as a function of the excitation energy for different values of F. 

Although Stark maps were more frequently employed for the E<Esp range [28], in this work we 

have studied the E>Esp range which is, at least presently, the only relevant one for PM studies. The 

resulting map for two-photon excitation out of the magnesium ground state and with π-polarization 

is presented in Figure 35. 

  

 

Figure 35. Stark map for the two-photon excitation out of the magnesium ground state and with π-

polarization. The contour plot includes Mg+ spectra for twenty field values in the shown field range. Also 

shown are the classical saddle point energy (black dashed line) and the positions of the SFIS (red dashed 

line). 

 

The energy calibration of the spectra is performed as discussed in section 2.3.1. and the 

energy step for all scans is the lowest available by our laser system (∼0.1 cm-1). The field strength 

is varied by changing the electrode voltages. The voltage VR is varied within the (3500 – 4500 V) 

range while the voltage ratio is retained constant VE /VR=0.72 (near to the VMI condition for 

magnified images). The absolute field calibration is based on the fitting of the 𝜌𝑚𝑎𝑥
𝑐𝑙 (𝛦) function 

(Eq. (26)) to the outer radius of images acquired under the same conditions for selected VR values. 
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The relative field calibration between adjacent spectra is based solely on the applied voltage 

differences [118]. 

The examination of Figure 35 reveals that, the transition from negligible to strong ion signal 

is fairly well described by the classical Esp curve (dashed black line).  It is interesting to note, 

however, that the resonances which are just below Esp (i.e. in the absence of any continuum) ionize 

necessarily via tunneling, like the hydrogenic resonances. 

Further, the energy positions of the observed sharp lines generally evolve in a complex 

manner. These maxima appear almost on the same energy for some field ranges while for others 

their behavior shows evidence of the existence of avoided crossings [28]. Additionally, the map 

clearly displays the formation of envelopes that modulate the intensities of these sharp spectral 

lines. This behavior was also observed in the Mg-Stark spectra of Ref. [68,71]. Interestingly, the 

envelopes are blue-shifted with increasing F and their centers are very well predicted by the 

quantization condition Eq. (30) that in turn is connected to the energy positions of the SFIS.  This 

is a rather unexpected result because up to now SFIS were mainly studied within the positive 

energy range. Thus, the present results imply that the notion may still exist at negative energies 

where static field induced structure could coexist with TS. Alternatively, the aforementioned 

quantization condition could simply characterize the n1-channel openings. This is not very 

probable however, because the envelope formation characterizes solely the m=0 spectra while it is 

difficult to observe in the |m|=2-dominated ones obtained with σ-polarization (as is the case for the 

positive energy SFIS [63,64]). 

 

3.1.2 Near threshold Photoionization Microscopy Images 

 

3.1.2.a Hydrogen Atom 

Having presented the characteristics of Mg-Stark spectra near the saddle point energy, we 

now proceed to the discussion of the corresponding near-threshold PM images of Mg and 

particularly those showing resonant characteristics. For comparison purposes, however, it would 

be instructive to expose first the structure and energy evolution of the relevant hydrogenic near-

threshold PM images. To this purpose, we begin here our discussion by a presentation of an ex-
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ample concerning the resonant and non-resonant effects emerging in the vicinity of the hydrogenic 

quasi-bound (n1,n2,m)=(2,27,0) Stark state. The latter state was studied fairly recently, both 

experimentally [24] and theoretically [26], while we have already presented the relevant wave-

functions in Figure 8 of section 1.2.1. 

Experimentally this state was reached via a single photon transition out of an n=2, m=0 

excited state using π-polarized light. In our theoretical modeling, l-mixing in the initial state due 

to the presence of the static field [14,24] is simulated by the use of the semi-parabolic states 

namely, we employ either the state (2,0,1,0) = 2−1/2[|2𝑠⟩ + |2𝑝𝑚=0⟩] or the (2,0,1,0) =

2−1/2[|2𝑠⟩ − |2𝑝𝑚=0⟩] one. In fact, the latter state led to PM images that did hardly exhibit any 

resonant effects because the excitation strength of the resonance proved to be comparable with that 

of the continua [27]. This observation implies a strong dependence of the resonant manifestations 

on the initial state.  

 

 

Figure 36. (a) Hydrogenic total cross section for one-photon excitation out of the |2,0,1,0⟩ initial state to 

m=0 final states. F=808 V/cm. The spectral line located at ε=−0.9564 corresponds to the (2,27,0) Stark 

resonance. (b) 𝐽𝜐𝑑𝑒𝑡 images computed for υdet=1000 au, below, on, and above the resonant energy. The 

resonant image shows an additional dark fringe and an enlarged image size as compared to the non-resonant 

images. (c) Linear scale contour map of the radial distribution R(ε,ρ) in the vicinity of the resonance. 

Hatched areas denote intensity cuts. Also shown are the maximum classical radius 𝜌𝑚𝑎𝑥
𝑐𝑙  (white dashed line) 

and the secondary bow radius ρII (white dotted line), calculated under the same conditions used for R(ε,ρ). 
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Therefore, in accord to [26], we discuss below the results obtained using the (2,0,1,0) state 

for F=808 V/cm and υdet=1000 a.u. (zdet≈–25 μm). The total ionization cross section σtot is shown 

in Figure 36(a) and consists of a strong spectral line, corresponding to the (2,27,0) resonance, build 

upon a weak background. Figure 36(b) presents images for energies below, on and above the 

resonant energy. These images accurately reproduce the corresponding experimental data of Ref. 

[24] that are presented in Figure 37. The experimental images show no angular dependence as 

expected for the m=0 final states. The enlarged number of nodes and the increased size of the on-

resonance image is striking. 

 

 

Figure 37. The authors of Ref. [24] kindly allowed for their figure to be presented in this thesis. “Evidence 

for on-resonance ionization by tunneling through the Coulomb + static field potential. A comparison is 

shown between a measurement carried out for the (𝑛1, 𝑛2,𝑚) = (2,27,0) resonance (b) and two non-

resonant measurements performed 1.8 cm-1 below (a) and 1.1 cm-1 above (c) this resonance.”. “The 

normalized radial distribution of the on- resonance measurement containing three maxima extends 

significantly further outward than the two off-resonance measurements which show only a single maximum 

(d). The inset in (d) shows a comparison of the radial extension of the experimental images, defined as the 

position of the outer maximum (color triangles) and the theoretical radial extension (blue, solid line) 

according to the classical formula …” More details are given in FIG. 4 of [24]. 

 

Let us now examine the contour plot of Figure 36(c) that shows the radial distribution 

R(ε,ρ) of Eq. (71) in the neighborhood of the resonance. The channel thresholds (see Eq. (50)) of 

interest are: 𝜀thr
0,0 =

𝐸thr
0,0

|𝐸𝑠𝑝
𝑐𝑙 |
= −0.99, 𝜀thr

1,0 = −0.97 and 𝜀thr
2,0 = −0.95. Let us first assume the absence 

of resonances and consider a given energy ε, for which there are solely continua with quantum 
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numbers 0≤n≤𝑛1
o. Then it holds that, 𝜀thr

𝑛1
o,𝑚

< 𝜀 < 𝜀thr
𝑛1
o+1,𝑚

  and the summation of the electron 

current probability density (Eq. (70)) runs only up to 𝑛1
o and the corresponding 𝛸𝑛1(𝜒) wave 

functions contribute to the image with comparable weights, 𝑐𝑛1,𝑚 =

𝑑𝑛1,𝑚𝑒
𝑖𝑚𝜑𝑒𝑖[𝜃𝑛1,|𝑚|(𝜐𝑑𝑒𝑡)+𝜙𝑛1,|𝑚|]. Then the interferogram exhibits up to 𝑛1

o dark fringes and for 

large ρ values is dominated by 𝛸𝑛1o(𝜒) [22]. For example, the first and the last image of Figure 

36(b) and their corresponding radial distributions lies in the range 𝜀thr
1,0 < 𝜀 < 𝜀thr

2,0
 and exhibits 0 

and 1 nodes (≤𝑛1
o=1), respectively. 

Consider now the presence of a quasi-bound state with quantum number 𝑛1
𝑟𝑒𝑠, as in our 

case where 𝑛1
𝑟𝑒𝑠 = 2 for the (2,27,0) resonance. It turns out that for the chosen initial state the 

weight |𝑐𝑛1𝑟𝑒𝑠,𝑚𝑟𝑒𝑠| of the quasi-bound state is about an order of magnitude larger than the weights 

of the continua and this is also evident in σtot. Thus, the on-resonance image and radial distribution 

of Figure 36 exhibit the resonant features, i.e. 𝑛1
𝑟𝑒𝑠 dark fringes and an increased image size due 

to the dominance of 𝛸𝑛1𝑟𝑒𝑠(𝜒) in 𝐽𝜐𝑑𝑒𝑡 . Note that, by definition 𝑛1
𝑟𝑒𝑠 > 𝑛1

𝑜 and this condition leads 

always to an increased number of dark fringes and outer image radii due to the dominance of 

𝛸𝑛1𝑟𝑒𝑠(𝜒) in Eq. (70). From another perspective, these effects are attributed to the electron escape 

via tunneling, which is the only ionization mechanism of the hydrogenic quasi-bound states 

[11,25,30]. 

Turning now our attention to the non-resonant radial distributions, it is interesting to note 

that the contour plot reveals that outer radii of non-resonant R(ε,ρ) distributions increases 

monotonously but in a stepwise manner. Indeed, the distribution increases abruptly just above each 

channel threshold (at the energy 𝜀thr
𝑛1
o,𝑚

+Δε, with Δε≈0.005) and subsequently its extension remains 

almost constant.  

This constant outer radius between channel transformations to continua and the stepwise 

non-resonant energy evolution of the outer radius are features typically characterizing the ε~–1 

range. It is noted, however, that in some other calculations the constant radius effect still persists 

while the sudden jumps are not always observed. In any case the behavior of the outer image radius 

differs radically from the classical predictions. For example, Figure 36(c) also shows the classical 

secondary bow radius ρΙΙ(ε) (white dotted line) and the classical maximum radius 𝜌max
cl (ε) (white 

dashed line), for the same F and υdet. These classical curves don’t exhibit the aforementioned 
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stepwise evolution. Moreover, 𝜌max
cl  systematically overestimates the non-resonant outer radii 

while ρΙΙ matches the R(ε,ρ) outer turning point at the beginning of each step, i.e. ε=𝜀thr
𝑛1
o,𝑚

+Δε. 

 

3.1.2.b Magnesium Atom 

With the above discussion in mind, let us now turn our attention to our experimental data 

concerning the magnesium atom. Our measurements are summarized in Figure 38. Figure 38(a) 

shows a selection of non-resonant experimental images that display the well-known monotonous 

increase of the number of dark fringes with energy (intensity radial nodes (zero signal) are 

displayed with white color in the image color-scale). The σ-polarization, two-photon excitation 

scheme (Δm =±1 per photon) populates |m|=0,2 Mg states. Note the clear difference in the angular 

distribution between the lowest energy image and the images at higher energy. Indeed, the lowest-

energy images are disc shaped and show no angular dependence, signaling the exclusive excitation 

of m=0 states. However, for energies higher than E≈−155.5 cm−1, all images exhibit a cos2(2φ) 

(cross-like) angular distribution that is distinctive of the |m|= 2 character [27,30]. In an attempt to 

quantify this transition phenomenologically, we employ the angular function, 

 𝑠(𝜑) = ∫ J𝜐det
∞

0
(𝜑, 𝜌)𝑑𝜌 . (109) 

More specifically, in Figure 38(b) we present the ratio s(45o)/s(90o) which is expected to 

be equal to unity for pure m=0 states and zero for pure |m|=2 states. The curve is equal to unity for 

energies lower than ≈−155.5 cm−1, and subsequently exhibits a rapid decrease. This observation is 

consistent with Eq. (27) predicting 𝐸sp ≡ 𝐸sp,𝑚=0
cl < 𝐸sp,𝑚=2

cl  and a well-defined (but field 

dependent) energy difference. These criteria, together with a first estimate of Esp based on the 

energy of the first image where a quantifiable signal could be obtained, lead to a field 

determination of F=680±10 V/cm. The corresponding saddle point energies 𝐸sp,0
cl , 𝐸sp,2

cl , for this 

field, are shown with dashed-dotted lines. Thus, Eq. (27) is validated on the basis of angular 

distributions. This compares well with the results of earlier methods based on m-dependent field 

ionization thresholds of individual Rydberg states [58,119]. Finally, the m-beating arising from 

multiple-m excitation (see section 1.3.1) is manifested as a difference in the fringe contrast along 
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the vertical and the horizontal orientation [27,30]. Apart from this weak beating effect, however, 

the recorded images show a dominance of the |m|=2 character over the m=0 one. 

 

 

Figure 38. (a) Near-threshold symmetrized images recorded with σ-polarization (|m|= 0,2 final Stark states) 

at selected energies, marked with arrows. Symmetrization is applied for signal-to-noise ratio improvement 

and is described in section 2.2.6. The gray scale is stretched from zero (white) to 100% (black) for each 

image. (b) Ratio s(φ=45◦)/s(φ=90◦) of the angular factor defined in Eq. (109). (c) Near-threshold total 

integrated electron signal (σ-polarization). Each point corresponds to a recorded image. (d) Outermost 

deflection point of P1/2(ρ) (defined in the main text) for σ-polarization (black circles, solid line) and π-

polarization (crosses, dashed line). The open triangle denotes the energy location of a quasi-bound state 

whose image and radial distribution R(ρ) are given in Figure 39. Vertical dash-dotted lines denote the 

estimated m-dependent saddle point energies. 
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Images are acquired with an energy step of ≈−0.3 cm-1 and the total integrated signal (∝σtot) 

is plotted in Figure 38(c). The spectrum shows a series of broad spectral lines overlaid upon a 

slowly varying background (see section 3.1.1). The apparent resonant-to-background ratio is about 

∼ 2:1. The corresponding π-polarization spectrum obtained from disk shaped images (only m=0 

final states), presents resonances at almost the same locations to those of Figure 38(c) but with a 

slightly lower resonant-to-background ratio. These degeneracies are also to be expected for the, 

𝐸thr
𝑛1,|𝑚|=2and 𝐸thr

𝑛1+1,𝑚=0 channel thresholds [70]. Note that several minima of the ratio shown in 

Figure 38(b), characterize |m|=2 resonances and lie very close to the resonant maxima (more 

accurately, on the blue side of maxima) of the spectrum. 

Having that in mind, let us quantify the extension of the images in fashion similar to that 

followed in Ref. [70]. Thus, in the present work the radial extension of each image is defined as 

the outermost deflection point of P1/2(ρ), that is, the outermost radius for which 
𝑑2[𝑃1/2(𝜌)]

𝑑𝜌2
= 0. 

This choice is based on the fact that for ρ→∞, and consequently χ→∞, P1/2(ρ) →|𝛸𝑛1max,|𝑚||, where 

𝑛1
max denotes the larger value of n1 for which the corresponding wave function contributes to the 

interferogram with a significant weight |𝑐𝑛1,𝑚|. Therefore, the outermost inflection point 

corresponds to the outer turning point ρtp of 𝛸𝑛1max,|𝑚|. It is noted that in [22] a different definition 

was employed that was based on the outermost deflection point of P(ρ) instead of P1/2(ρ). 

Irrespective of the exact definition, however, the inflection points are independent of the 

magnitude of P(ρ) and consequently of σtot. Following the earlier discussion of this section on 

hydrogenic near-threshold images, in the absence of resonances 𝑛1
max(𝐸) = 𝑛1

o(𝐸) and the ρtp 

curve may probe n1-channel openings. However, in the case of the presence of a fairly strong 

resonance, 𝑛1
max = 𝑛1

res(> 𝑛1
o) and consequently ρtp should correspond to the extension of 

𝛸𝑛1res,|𝑚| wave function, expected to be larger than the extension of the continuum states. 

The ρtp is plotted in Figure 38(d) for the σ-polarization case (black solid points), which, as 

already mentioned, is dominated by the |m|=2 states. The n1-channel mixing of the latter states, is 

expected to be weaker than in the m=0 ones, due to the weaker penetration of the excited electron 

to the ionic core (see section 1.2.4).  In other words, the conditions are rather favorable for the 

magnitude |𝑐𝑛1res,𝑚res| of some resonant weight, to be higher than the magnitude of the non-

resonant weights, in order for the resonant signatures to be observed even in the presence of the 

“parasitic” m=0 electron signal. The ρtp energy evolution is generally monotonous (within error 
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bars) but occasionally discontinuous (see the evident steps at ≈−155 and ≈−149cm−1). This steplike 

behavior is resolved due to the small energy step employed in our study and seems to persist with 

increasing energy. However, the reduced contrast at higher energies makes it difficult to analyze 

and comment each separate step. As mentioned above in the hydrogenic example, the occasional 

occurrence of ρtp may probe n1-channel openings which occur in the neighborhood of each 𝐸thr
𝑛1,𝑚 

threshold. For example, the abrupt increase of ρtp located at ≈−155 cm−1 corresponds to the opening 

of the |m|= 2, n1 = 0 channel (and also of the quasi-degenerate |m|= 0, n1 = 1 one). On the other 

hand, the |m|= 2, n1 = 1 channel opening that, according to the hydrogenic trends, would be 

expected at ≈−153cm−1 is not observed. Apparently, the particular initial state and excitation 

scheme determines which of the jumps will be resolved, a statement that is also true to the 

hydrogen atom [27]. 

More interesting are the few cases where the turning point radius evolves non-

monotonously and peaks near the maxima of the spectral lines of σtot. Experimental [21,22,23,70] 

as well as theoretical studies [11,25,30,33] in addition to the hydrogenic example presented above 

links this behavior to the presence of quasibound states ionizing mostly by tunneling (resonances). 

For clarity we do not deal with the cases of Figure 38(d) where the turning point modulation 

amplitude is rather small as compared with the estimated error bars. Instead, we comment on the 

clearly manifested peak of ρtp located at ≈−146.4 cm−1 lying between the estimated locations of 

the n1 = 2 and n1 = 3, (|m|= 2) channel openings. This maximum occurs slightly on the blue side of 

the corresponding resonance of σto and it is absent in the ρtp curve recorded with π-polarization (× 

points in Figure 38(d)). This curve exhibits a weak local maximum around −147 cm−1 and a dip 

around the energy of interest. This structure could stem from the n1-channel openings and/or the 

presence of an m = 0 resonance located at ≈−147 cm−1, but the inspection of the corresponding m 

= 0 images is inconclusive. In any case, we confidently conclude that the non-monotonous 

behavior of the σ-polarization ρtp(E) curve at ≈−146.4 cm−1 probes an |m|= 2 resonance based on 

the absence of a strong ρtp peak and the clear minimum observed in Figure 38(b) at this energy in 

the π-polarization spectrum. 
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Figure 39. (a) Symmetrized images and (b), their corresponding radial distributions recorded with σ-

polarization in the vicinity of the quasi-bound state at −146.4 cm−1 (see main text and Figure 38). For each 

image in (a), the gray scale is stretched from zero (white) to 100% (black). On the other hand, the y-axes of 

(b) are meaningful and denote the relative magnitudes of R(ρ). Also shown in (b), the derivatives dR/dρ 

(dashed line) and the relevant 𝑛1
𝑟𝑒𝑠 and 𝑛1

𝑜 numbers. The derivative of the resonant energy exhibits an outer 

turning point at ρ∼57 arbitrary length (white-head arrow). This signifies the presence of a weak outer 

“bump” in the radial distribution and an outer halo in the corresponding image. Note that the n1 = 3 channel 

opening (E =−145.0 cm−1) is characterized by the onset of appearance of an additional fringe at ρ< 50 

arbitrary length units. 

 

Figure 39 shows images (Figure 39(a)) and their corresponding radial distributions (Figure 

39(b)) in the vicinity of the resonance. Starting from bottom to top we present the images below 

(−147.1 cm−1), on (−146.4 cm−1) and above (−145.5 cm−1, −145 cm−1) the resonant energy. Note 

that the resonant image exhibits an outer halo that is translated into an outer bump in R(ρ). This 
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feature effectively “pushes” the outer turning point to higher distances and is responsible for the 

ρtp peak in Figure 38(d) near the resonant energy. Nevertheless, the expected appearance of 

additional bright fringes, (typically one, implying 𝑛1
max = 𝑛1

res = 𝑛1
o + 1) is not apparent by 

visually examining the radial distributions. For that purpose, in Figure 39(b) we also plot the 

derivatives 
𝑑[𝑅(𝜌)]

𝑑𝜌
, denoted with black dashed line. Note that these curves exhibit roots 

corresponding to extrema of R(ρ). Interestingly, the derivatives also exhibit an extremum at ρ∼57 

arbitrary length units (alu). This is marked with an arrow and is attributed to the partial formation 

of an additional node of R(ρ). This extremum is present in the whole –147≤ E≤ –145.5 cm-1 range, 

but it is clearly visible for E= −146.4 cm−1 while it is hardly visible in non-resonant derivatives. 

Apparently, the resonant character, as quantified by the weight |𝑐𝑛1res,𝑚res|, is spread across the 

spectral line and peaks at the resonant energy. This result is in accord with earlier studies where a 

similar resonant spread was reported [22]. For E ≥ −145 cm−1, the aforementioned derivative 

extremum disappears and instead we evidence the appearance of an additional fringe located at 

ρ<50 alu (more apparent in subsequent images at higher energies) together with the accompanying 

increased radial extension which signals the next n1-channel opening. Apparently, the observed 

resonance corresponds to 𝑛1
res = 3 and it is the last quasi-bound state before the n1=3 channel is 

transformed to a continuum channel. 

The above, rather faint, resonance manifestation was also traced as a function of the field 

strength. Specifically, we recorded similar image sets for field values up to ±5 V/cm apart from 

the field employed in Figures 38 and 39. These measurements showed a greatly reduced outer halo 

and this observation implies a strong dependence of the resonant-continuum coupling on F, as 

already predicted by the earlier theoretical work of Ref. [33]. 
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3.2 Radial distribution Maps of Magnesium & Related Observables 

3.2.1 Radial Distribution Maps 

Here we study the energy evolution of the radial distributions R(ε,ρ) as defined in Eq. (71), 

for the experimental magnesium images and subsequently compare them to hydrogenic 

calculations. The linear laser polarization is parallel to the direction of the static electric field and 

we excite m = 0, magnesium final Stark states via a two-photon scheme, out of the ground state. 

The used VMI conditions achieve a ∼20-fold magnification of the images that have the size of few 

mm (∼20 mm for ε=0). Figure 40 shows a series of typical high acquisition non-resonant PM 

images within the whole energy range of interest. The observed energy evolution is in accord with 

the earlier studies [18,22,24]. This single image presentation, however, is not truly demonstrative 

of the rapid variations exhibited by its different image parts as a function of energy. Moreover, the 

full set of experimental data consists of about 1000 images and it is meaningless to be presented 

in this form. For these reasons, the radial distribution of each image is plotted as function of energy 

in a common contour plot, which is referred to as the radial distribution map. 

The m=0 experimental total cross-section and radial distribution map recorded in 

magnesium atom in almost the full −1 ≤ ε ≤ 1 range is shown in Figure 41(a) and 41(b), 

respectively. Parts of the same map are given in greater detail in Figure 41(c) and 41(d). The 

images (an example of which is shown in the inset of Figure 41(c)) were recorded at a constant 

energy step of E ≈ 0.4 cm−1 (ε ≈ 2×10−3). The static electric field was estimated via a number of 

different methods. A first estimate was provided by the n1 = 0 and n1 = 1 channel openings. Next, 

at positive energies we have compared the observed “frequency” of glory oscillations to the one 

predicted by hydrogenic theory. Finally, the outermost turning point radius of the high energy (E 

> −50 cm−1) radial distributions were fitted to the analytical expression for 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε) [11,16,52] (Eq. 

(26)). All the methods converged to a field value of F = 680±10 V/cm, which is used for calculating 

the reduced energy ε, given in the upper x axes of Figures 41(a)–41(d). The radius ρ of all the maps 

is scaled to 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0). In fact, at ε ≈ 0 this radius is slightly larger than the classical secondary-

bow radius ρII (ε=0) by a factor of ≈ 1.01. By employing this ratio, we found a refined experimental 

value for 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0) and scaled our radius ρ to it. 

 

 



 P. Kalaitzis Chapter 3 

 

97 

 

 

 

Figure 40. Symmetrized PM images recorded with π-polarization within a large energy range. The static electric field strength is F~680 V/cm, leading to an 

estimated saddle point energy of 𝐸𝑠𝑝~ − 160 𝑐𝑚
−1. The linear color scale is stretched for each individual image from zero (black) to the maximum intensity 

value (white). The images exhibit a monotonously increasing size as a function of energy. Note that the indirect fringe system is barely visible but the direct fringe 

system manifest itself as the dominant feature of the image, along with the glory and bow signals. 
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Figure 41. (a) Experimental total two-photon excitation (π-polarization) cross section of Mg out of its 3s2 

ground state and under the presence of an F= 680 ± 10 V/cm static field. The scan covers the range −165 

cm−1≤E<+145 cm−1 (−1.03≤ε<+0.91, shown in the upper axis). Positive energy SFIS resonances are not 

observed, because their small modulation depth is comparable to the signal’s noise. (b) Scaled radial 

distribution contour map R(ε,ρ)/σtot(ε), in the energy range of (a). The noise of the radial distributions is 

enhanced near ε~–1 due to the quasi-zero σtot(ε) values, in the same energy range and the logarithmic color-

scale of the graph. The radius ρ (y axis) is scaled to 𝜌𝑚𝑎𝑥
𝑐𝑙 , in (b-d). (c) Negative energy detail of (b) featuring 

the checkerboard structure and the secondary-bow and glory signal oscillations. The inset shows an image 

at a given energy (vertical black dashed line) and the corresponding radial distribution, where beating 

effects leading to magnitude modulation of the finer fringes are clearly observed. (d) Positive energy detail 

of (b) where the secondary-bow and glory signal oscillations are again visible. 

 

Due to the small energy step employed for the measurements, the recording of the map was 

accomplished within several days. Each scan part overlaps with the previous by a number of ~3 

images for the same day or ~15 images for different days. The connection between two image 

series parts is based on the comparison between the images from these two parts. The Mg+ ions 

signal (Figure 41(a)) exhibits a series of almost equidistant spectral lines build upon a slowly 

varying background signal as expected (see discussion in 3.1.1). Special care was taken to record 

unsaturated electron and ion signals, by keeping the laser intensity to the lowest acceptable level 

(pulse energy <100 μJ, pulse intensity <1010 W/cm2). However, we were unable to avoid a small 

gradual decrease of pulse energy with time. For avoiding map magnitude variations attributed to 

this drift, each experimental radial distribution R(ε,ρ) is scaled by the total electron signal. Thus, 

Figures 41(b)–41(d) do not actually show R(ε,ρ), but the quantity R(ε,ρ)/σtot(ε). By comparing non-

scaled to scaled parts of the maps we have verified that this operation does not affect the details of 

the interference and beating patterns. This is also true for the calculated hydrogenic maps and an 

example will be given in the calculated hydrogenic maps (an example will be given below). 

The nature of quantum interferences differs for different parts of the maps. These parts, 

therefore, deserve a separate discussion. Let us first discuss the zone of Figure 41(b) defined by 0 

≤ ρ ≤ 𝜌𝑚𝑎𝑥
𝑐𝑙  ,−1 ≤ ε ≤ εdir≈ −0.775 and ρI ≤ ρ≤ 𝜌𝑚𝑎𝑥

𝑐𝑙  for ε ≥ εdir, for which the interference pattern 

is attributed exclusively to the indirect contribution. In this map zone, the faint and low contrast 

of inner bright fringes for the indirect contribution makes their observation difficult (also due to 

the logarithmic signal color-scale). This characterizes the m = 0 magnesium images recorded by 

two-photon excitation and cannot be generalized as was shown in the subsection 3.1.2, where the 

fringes were easily resolved for the |m|=2 final state case. However, channel transformations to 

continua, cause the variation of the outer turning point radii and they are also responsible for an 
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accompanying quasiperiodic intensity variation of the corresponding radial distributions. 

Moreover, the channel opening oscillations are quite apparent over the whole indirect contribution. 

Using scattering terminology [52], we may describe this effect as indirect-bow oscillations. 

Furthermore, this part of the map is characterized by a slanted quasi-nodal line (or surface) near 

−50 cm−1, which create some sort of discontinuity in the behavior of the outer distribution radius 

as a function of energy. 

Let us now turn our attention to the most interesting parts of the maps, ε ≥ εdir and ρ < ρI, 

which exhibit much more complicated quantum interference patterns. The latter reflect the 

coexistence and subsequent beating effects between direct and indirect contributions, each one 

characterized by its own fringe “frequencies.” Note first the strong quantum oscillations along the 

classical primary-bow radius ρI. Hence, there is no clear boarder between indirect-only and direct-

plus-indirect regions. One of the most striking feature is the intense beating pattern observed within 

the −100 cm−1 ≤ E ≤ −20 cm−1 (−0.6 ≤ ε ≤−0.1) range, which resembles a checkerboard. This range 

is shown in more detail in Figure 41(c). At higher energy the checkerboard structure is much less 

intense and evolves to various beating fringe systems (or lines—see Figs. 39(c) and 39(d)), which 

are expected to be atom-, initial state-, and excitation scheme-dependent. At ε > 0 we may identify 

in Figure 41(d) a typical system of slanted fringes. Another positive energy feature of the 

magnesium map concerns the strongly oscillating glory (ρ = 0) signal (see Figure 41(d)). Certainly 

these oscillations are related to SFIS resonances [53,61], despite the fact that the resonances 

themselves are not evident in σtot(ε) (Figure 41(a)), apparently due to their poor contrast. As 

mentioned above, the “frequency” of the glory signal has been employed for estimating the field 

strength. To that purpose we made use of the fact that the cross-section “frequency” is the same 

for either hydrogen or non-hydrogenic atoms [62,92] and additionally, that the (dephased) 

oscillations of the glory signal and the total cross section have about the same field-dependent 

“frequency” difference for either hydrogen or non-hydrogenic atoms in the positive energy range. 

Interestingly, however, the magnesium map shows an additional beating pattern of curved, quasi-

vertical beating lines, persisting also to positive energies. The visual effect of these fringes can be 

noticed in the image and corresponding radial distribution given in the inset of Figure 41(c). They 

are responsible for the amplitude modulation of the finer fringes of the image. 

To compare with the magnesium experimental map, theoretical maps were computed for a 

field F = 680 V/cm and within the energy range −1 ≤ ε ≤ +1. To facilitate the discussion, we 
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employ solely m = 0 initial and final states (π-polarization). The detector is placed at υdet = 1000 

a.u. Figure 42 and Figure 43 show the total cross sections σtot(ε) and maps R(ε,ρ) for, respectively, 

single-photon excitation out of the |1,0,0,0⟩ ground state (Figure 42) and two-photon excitation 

out of the ground state (Figure 43). As it is observed, for −1 < ε < 0, σtot(ε) is characterized by a 

non-resonant background exhibiting an occasional steplike increase and by superimposed 

resonances. These so-called tunneling states (TS) [53,61] are of various spectral widths, reflecting 

their lifetime and tunneling probability. On the contrary, for positive energies σtot(ε) is 

characterized by oscillations which are attributed to the static-field-induced-states (SFIS) (see Eq. 

(69) and the discussion therein). The contrast of these oscillations depends on the initial state and 

excitation scheme [27]. For example, it appears to be larger for the single-photon excitation than 

for the two-photon excitation out of the ground state. 

 

 

Figure 42. (a) Hydrogenic total cross section within the −1≤ε≤+1 range and F = 680 V/cm for single-photon 

excitation of the |1,0,0,0⟩ ground state to m = 0 final states. (b) Logarithmic-scale contour map of the radial 

distribution R(ε,ρ) computed for the above field and υdet = 1000 au. The classical maximum radius 𝜌𝑚𝑎𝑥
𝑐𝑙 , 

(white dashed line) and primary bow radius ρI (white dashed-dotted line), are also drawn. The map radius 

ρ is scaled to 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0). 
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Figure 43. (a) Hydrogenic total cross-section and (b) logarithmic-scale contour map of R(ε,ρ)for the same 

field and υdet as in Figure 42, but for two-photon excitation out of the |1,0,0,0⟩ ground state. (c) Detail of 

the map of (b) within the −1≤ε≤−0.7 range. The map radius ρ is scaled to 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0). (d) The scaled radial 

distribution map R(ε,ρ)/σtot(ε) for the same range of (c). The scaling slightly affects the n1-channel opening 

structures near ε∼−1 and reduces the strength of resonant manifestations. However, it leaves unaltered the 

non-resonant fringe patterns over the whole map. 

 

The radial distributions of TS exhibit much larger radial extensions as compared to 

continuum Stark states (see Figures 42(a) and 43(a)). The most intense of these negative-energy 

TS resonances are visible in the maps of Figures 42(b)–43(b). This is not so obvious for the weaker 

ones, due to the logarithmic false color magnitude scale of the maps, used to bring out all of their 

details without any intensity cuts. Apart from these resonances, the general energy evolution of 

the radial extensions of the maps evidently presents features of classical origin. This is shown in 

Figure 42(b) by drawing the maximum radius of impact 𝜌𝑚𝑎𝑥
𝑐𝑙  and the primary-bow radius ρI of 
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the direct contribution [16,50,52]. In fact, we also scale the radius ρ by employing the 

aforementioned 1.01 ratio between the outermost turning point (ρII) and 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0). However, the 

quasiperiodic stepwise increase of the non-resonant outer turning points of R(ε,ρ) exhibited also 

in the experimental map (Figure 41(b)) is seen to persist over the whole −1 ≤ ε ≤ 1 range. These 

oscillating outer-turning-point radii differ from ρII (ε≈0) or 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε≈0) by at most 0.5%. 

The indirect interference pattern is resolved in the hydrogenic map zone between 0 ≤ ρ ≤ 

𝜌𝑚𝑎𝑥
𝑐𝑙  for −1 ≤ ε ≤ εdir and ρI ≤ ρ≤ 𝜌𝑚𝑎𝑥

𝑐𝑙  for ε ≥ εdir. This pattern is rather simple and, excluding the 

resonant effects, it basically reflects the nodal structure of the dominant continuum n1 channel at 

a particular energy. This structure is further modulated by the aforementioned channel 

transformations to continua, which, as in the magnesium case, do not cause solely the variation of 

the outer turning point radii, but they are also responsible for an accompanying quasiperiodic 

intensity variation of the corresponding radial distributions. The indirect contribution is quite 

intense at ε ∼ −1 and gradually becomes fainter as energy increases. We may notice in Figure 

42(b) that there is a single ρ > ρI nodal line located within the −0.8 ≤ ε ≤ −0.6 range, while in 

Figure 43(b) we observe two nodal lines located at at ε≈ −0.8 and ε≈−0.3. The origin of this 

indirect-waves-only cancellation effect is at present not fully understood. Nevertheless, since all 

computed maps deal with the same final Stark states, it is obvious that it should be attributed 

entirely to the energy evolution of the magnitudes of the relevant excitation matrix elements [27]. 

This interpretation explains the absence of these quasi-nodal lines in semi-classical hydrogenic 

PM simulations where, as formulated so far [34], excitation matrix elements are not considered. 

Now we turn our attention to the inner, ε > εdir and ρ < ρI region of the map, which is 

dominated by complicated quantum interference patterns. The absence of a sharp ρI boarder is 

additionally noticeable and ρI serves merely for guiding the eye. Moreover, the gradual transition 

from the one map range to the other differs in the maps of Figures 42(b) and 43(b) i.e. for different 

excitations schemes. The same holds for the various fringe systems which are formed. Also 

observed, is the checkerboard structure within the −0.6 ≤ ε ≤ 0 range and as hydrogenic theory and 

magnesium experimental results imply, if the checkerboard structure is clearly formed, it always 

appears within the same ε range. Similar structures were observed in recent theoretical calculations 

[53] and were attributed mainly to the presence of SFIS states. Due, however, to the extreme static 

fields employed in that work (F = 0.03−0.1 a.u.), most of the presently revealed details were 

usually washed out. Nevertheless, the ε > 0, ρ = 0 oscillating glory signal (see Eq. (72)) persists 
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also in our weak fields and it is indeed related to the positive energy oscillations of σtot(ε) attributed 

to SFIS. However, although the quasi-periodicity of cross-section oscillations and glory 

oscillations is practically identical, a closer look reveals that the two signals are dephased and, 

moreover, that their phase difference varies with energy. This is easily explained by a comparison 

between Eqs. (69) and (72), which shows that, unlike σtot(ε), the glory signal is not simply related 

to the energy-varying transition matrix elements, but it additionally contains important information 

on the wave function phase. 

Finally, note that the scaling shown in Figure 43(c,d) (R(ε,ρ)→ R(ε,ρ)/σtot(ε)) slightly 

affects the n1-channel opening structures near ε ∼ −1 and reduces the strength of resonant 

manifestations. However, it leaves unaltered the nonresonant fringe patterns over the whole map. 

The scaling slightly diminishes the visibility of the steplike outer radius increase for ε ∼ −1 and 

reduces the importance of tunneling resonances. Yet, the manifestation of such resonances in 

magnesium is restricted to the vicinity of the saddle point energy. Thus, the experimental map of 

Figure 43(b–d) presents the main features of R(ε,ρ)  despite the division with the total cross section. 

 

3.2.2 Glory and Rainbow Signals 

Here we turn our attention to the critical effects of classical origin exhibited by the R(ε,ρ)  

maps presented in subsection 3.2.1. More specifically, we examine the oscillations of the glory 

intensity as compared to the appearance of Stark resonances and quantization in the ionization 

continuum. An atom placed in a static electric field appears to be one of the very few quantum 

systems where, an infinite series of resonances (quasi-discrete states) can be supported in principle 

at any arbitrarily large positive energy. Expectedly the intensity of the glory oscillations vanishes 

with increasing energy. However, glory undulations are visible in photoionization microscopy 

thanks to the concentration of a strong signal over a limited region, distinguishable even when 

SFIS resonances are no longer emerging from the background noise of the total ionization cross 

section. 
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Figure 44. (a) Magnesium experimental symmetrized images recorded for F=680 V/cm The m=0 final 

states are two-photon excited out of the Mg ground state. These images have been presented in Figure 41 

while these selected characteristic images show alternate maxima (images (a) and (c)) or minima (images 

(b) and (d)) at the center of the image (glory). (b) The variation of the glory intensity over the total electron 

signal in the corresponding energy range. For the glory the image intensity is integrated over a radius of 

2% of 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0). The graph reveals a maximum-to-minimum ratio of about ~2.. 

 

The above signatures of classical critical effects were experimentally observed at several 

instances [18,21,22,24,27,34]. They are also clearly imprinted in the presently acquired images, a 

sample of which is given in Figure 44(a) and concern near-threshold photoionization of Mg atoms 

in the presence of a static electric field. Apart from the quantum interference and beating 

phenomena that were previously discussed, quite noticeable is the intensity modulation of the glory 

signal as a function of the energy. In fact, this is more clearly observed in the plot of Figure 45(b) 

that includes the full set of measurements within the corresponding fraction of the full “glory 

spectrum”. It is also interesting to notice in Figure 44(a) the similar intensity modulation of the 

outer (rainbow) image ring, where at this energy range bright rainbow signals occur when the glory 

intensity exhibit minima and vise-versa (although this cannot be generalized). 
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Figure 45. Glory scaled signal JGlory/σtot as in Figure 44 but for the whole energy range −165 cm−1≤E<+145 

cm−1 (−1.03≤ε<+0.91, shown in the upper axis). The inset shows the positive energy detail of the curve. 

 

Experimental images from two-photon ionization of Mg atom were recorded with the linear 

laser polarization parallel to the direction of the static electric field and as described in subsection 

3.2.1. Consequently, only m=0 final Stark states can be excited, which allow for the emergence of 

the glory effect. The static field strength was estimated as described earlier [27] to be F=680±10 

V/cm (Esp ≈–159.6 cm-1). The two-photon excitation energy was scanned by increments of ΔE≈0.4 

cm-1 (Δε≈2×10-3), covering the full –1≤ ε ≤1 range. In fact, Figure 45 (a) (as well as Figure 44(b)) 

shows the energy evolution of the quantity JGlory/σtot, i.e. of integrated electron signal within a small 

circle, having a radius of 2% of the maximum image radius at ε=0, divided by the integral over the 

whole image. The use of JGlory/σtot , as well as its consequences, are described in the subsection 

3.2.1. Comparison between the Mg+ ion spectrum (Figure 45(b)) and the glory signal in the vicinity 

of the saddle point energy, shows that the glory signal is affected by the presence of tunnelling 

resonances, but the scaling helps in “decorrelating” the glory magnitude from this presence. On 

the contrary, it is obvious that the contrast of positive energy (SFIS) modulations is so low that it 

is hindered by noise and cannot be observed in σtot. Consequently, the shape and periodicity of the 
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ε ≥ 0 glory undulations with energy remain unaltered by the scaling operation. The experimental 

glory intensity (Figure 45(a)) shows local maxima around ε ≈ –1 and around ε ≈ –0.75 (≈εdir) and 

cancellations of the signal around ε ≈ –0.9, –0.6, 0.0 and +0.8. Moreover, strong oscillations are 

exhibited throughout the full energy range. For E > –50 cm-1 (see Figure 45(a) inset), we observe 

oscillations that are almost evenly spaced locally but with a spacing decreasing smoothly with 

energy. 

Our intention is to go beyond the classical description of critical scattering phenomena 

given in Ref. [52] and consider these additional features whose interpretation requires a quantum 

mechanical description. To this purpose we employ the hydrogenic expressions of Eq. (72) for the 

total cross section and Eq. (69) for the glory signal in order to qualitatively compare with 

experimental results regarding the non-hydrogenic Mg atom. Such a comparison is important 

because it allows for the distinction of those features which are of global nature from those which 

are specific to the examined atom and excitation scheme. Furthermore, because the rainbow radii 

vary with the energy and are difficult to accurately define and follow, the relevant signals are only 

partially discussed in connection with the glory ones. Therefore, here we focus mainly on the glory 

effect, because the signal at the image center is easy to define and record, its relative intensity near 

threshold dominates over all other image features and its observation does not require any 

particular performance from the imaging spectrometer. 

In order to have a smoother connection with the quantum description, Figure 46(a) shows 

the semi-classically calculated energy evolution of the glory signal (black solid line). Here we 

follow the discussion presented in the theoretical subsection 1.1.3, and calculate the electron wave-

function of Eq. (29) where the most frequent choice of equal weights cj is employed. Then, we 

integrate the electron signal within a small circle, having a radius of 1% of the maximum image 

radius at ε=0. Note that the overall behavior of this quantity is practically identical for smaller or 

slightly bigger radii. Also shown is the classical glory signal (black dashed line) (see Eq. (25) and 

the discussion therein), which presents a similar gross energy dependence with its semi-classical 

counterpart. Note that, the semi-classical curve is characterized by undulations of appreciable 

amplitude and intense beating effects, while the “carrier frequency” of these undulations is field 

strength- and energy-dependent. 
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Figure 46. (a) Classical and semi-classical calculations of the glory signal. Hydrogenic total cross-section 

(b) and glory signal (c) for the same field and υdet as in (a). (d) Signal of each image on the maximum 

classical radius Jdet(ε, ρ=𝜌𝑚𝑎𝑥
𝑐𝑙 ). The curves of (c,d) are extracted from the map given in Figure 43(b). 

 

Quantum calculations for the H atom are presented in Figure 46(b–d). We employ a two-

photon excitation scheme out of the ground state, for F=680 V/cm and the detector placed at 2000 
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a.u. Evidently, the quantum glory calculation (Figure 46(c)) shows local overall maxima around ε 

= –1 and (mainly) around ε = εdir and oscillations with practically the same “carrier frequency” as 

the semi-classical curve. The quantum beating structures, however, are apparently much more 

complicated and richer, occasionally comprising almost complete cancellations of the glory signal. 

As it may be understood by a simple comparison with the total cross section of Figure 46(b), this 

should be partly attributed to the inclusion of resonances which are absent in either the classical or 

semi-classical calculations. Nevertheless, even without the presence of tunneling states the 

differences would persist because of the non-equal weighting of the contributing waves (contrary 

to the semi-classical result). In fact, the weights in Eq. (72) are decomposed to the smooth 

normalization factors 𝐴𝑋,𝑛1,0 which are independent of the excitation process and the energy-

dependent transition matrix elements 𝑑𝑛1,0, which make the detailed structure of the glory signal 

initial state- and excitation scheme-dependent. This has been fully verified by quantum glory 

computations for single-photon excitation from the ground and low-lying hydrogenic states. 

Oscillations as a function of energy and rich beating structures may be also exhibited by 

the bow signals. This is evident in Figure 46(d), showing the computed secondary bow signal, 

which, it is here defined as JBOW=R(ε, 𝜌max
cl ) (see Figure 42(b)) instead of R(ε,ρII). Interestingly, 

the information provided by JBOW on quantum interferences appears to be as profound as to that of 

JGlory. It is also remarkable that the range –0.2< ε <+0.2 is characterized by an intensity beating 

maximum of JBOW and a beating minimum for JGlory, thus reproducing qualitatively the behavior 

noticed in Figure 44(a). As mentioned earlier, however, JBOW presents some drawbacks. First, it is 

difficult to define and follow the energy evolution of ρΙΙ. This is by-passed here by defining 

ρΙΙ≈𝜌max
cl . Note that the JBOW quantity probes intensity variations of the current density and is not 

to be confused with the the non-smooth energy evolution of ρtp [27,70]. Second, the secondary 

bow signal (as all bow signals) is quite weak as compared to the glory intensity. It is due to the 

above reasoning that we focus our attention here mainly to the glory signal and make only 

qualitative comparisons with the rainbow ones. 

Let us now focus on the most interesting energy range around Ε=0 (–60≤ Ε ≤+100 cm-1) 

and present our experimental Mg results together with the two photon hydrogenic calculations in 

Figure 47. Note first that the comparison of the total cross sections of Figure 47(a) is inconclusive. 

The resonances exhibited by the hydrogenic spectra within the negative energy range are not 

expected to be present in the multielectron data and vise-versa. Moreover, the positive energy SFIS 
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resonances are not observed in the Mg curve due to their small amplitude as compared to the 

experimental noise. Nevertheless, for non-hydrogenic atoms the periodicity of SFIS is predicted 

to be the same as for the hydrogenic case, but the modulation may be in- or out-of phase with 

respect to that of hydrogen, depending on the values of the quantum defects of the zero-field 

Rydberg states for the particular atom [62,92]. The small SFIS amplitude is also a characteristic 

feature in the case of the two-photon excitation scheme of the hydrogenic total cross section 

calculations (see also the discussion in subsection 3.2.1). 

 

 

Figure 47. Comparison between experimental measurements and hydrogenic quantum mechanical 

calculations. The experimental measurements concern the Mg PM images of m=0 final states, excited via 

a two-photon excitation scheme out of the Mg ground state. Hydrogenic calculations are performed for two-

photon excitation out of the H ground state. F=680 V/cm and υdet=2000 au. (a) Total cross sections in 

common arbitrary scale. The SFIS states are visible but with a low contrast on the calculations while they 

are hidden within the noise for the experimental data. (b) Glory signal normalized over σtot and obtained by 

following the same procedure in both experimental and calculated images (integration over the circle with 

radius ρ=2% of 𝜌𝑚𝑎𝑥
𝑐𝑙 (ε=0)). (c) Primary rainbow signal obtained by the R(ε,ρ) maps as Jtp(ε)=Jdet(ε, 

ρ=𝜌𝑚𝑎𝑥
𝑐𝑙 ). 
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On the other hand, the theory-experiment comparison is striking (apart from the hydrogenic 

resonant features on the negative energy range) for the glory and primary bow signals of Figure 

47(b,c) respectively. First, the cancelations/maximizations of the glory/rainbow signal occur 

around the same energy locations for both H and Mg and are qualitatively similar. In fact, Mg data 

exhibit those features at slightly lower energies that, considering our hydrogenic calculations for 

different excitation schemes, imply their matrix-element-dependence. The “carrier” frequencies of 

both Mg glory and bow intensity oscillations are almost equal to their hydrogenic counterparts 

apart an almost constant phase difference. More specifically this frequency for the Mg glory signal 

varies smoothly with energy and the spacing between maxima is ΔE≈4.5 cm-1 for E≈0 and ΔE≈3.0 

cm-1 for E≈100 cm-1. The magnesium-hydrogen frequencies similarity is indeed to be expected in 

the positive energy range where the PM observables present global and nearly-atom-independent 

features. 

As discussed above, the Mg experimental data do not allow for a comparison between the 

positive energy dependence of the total photoionization cross-section and the glory signal. 

Nevertheless, the hydrogenic calculations show that the evolutions of these two quantities at 

positive energy are highly correlated. Let us first try to firmly establish this correlation between 

the glory oscillations of JGlory and those of σtot within the semi-classical framework. Then, any 

departure from these semi-classical predictions should be attributed to atom-, initial state- and 

excitation scheme- specificities of these signals. We begin by simulating the periodicity of the total 

cross section using the phase relations of Eq. (31) and the quantization condition of Eq. (30). Then, 

the carrier phase of the SFIS signal may be defined as, 𝑆𝑇 = 2𝑆𝜒
′ (𝜀) − 𝜋. The carrier phase of the 

glory signal has already been defined in Eq. (32). Now by setting SGT=SG–ST we finally proceed to 

the definition of the number of additional oscillations A, exhibited by JGlory the with respect to the 

SFIS number of oscillations and within the energy interval [0,ε >0], 

 𝐴(𝜀) = (2𝜋)−1[𝑆𝐺𝑇(𝜀 ≫ 1) − 𝑆𝐺𝑇(𝜀 = 0)] . (110) 

In fact, as defined, A equals zero at ε=0. Figure 48 presents these excess of glory oscillations as a 

function of energy. Two y-scales have been employed in the graph, one directly given by the above 

definition of Eq. (110) and one scaled by the field strength, 𝐴𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹
1

4𝐴𝐹 . 
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Figure 48. Number of additional glory oscillations with respect to the number of SFIS states (A(ε)) for the 

positive energies, as given in Eq. (110). In fact, A is defined as the difference between the glory phase (SG 

of Eq.(32)) and the total cross section SFIS phase (2𝑆𝜒
′ (𝜀) − 𝜋, see Eq.(30)), after dividing each one of 

them by 2π. The values υdet→∞ and F=680 V/cm were adopted for the calculation. Nevertheless, the y-axis 

can be nominally scaled with the static field value as 𝐴𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹
1

4𝐴𝐹 (right side). The inset shows the 

number A(ε) of additional oscillations at extremely high positive energies. The maximum y-axis range of 

this inset is equal to 𝐴𝑠𝑐𝑎𝑙𝑒𝑑(ε→∞)≈ 0.508734. 

 

This relation is compatible with the coincidence of SFIS and Glory maxima observed in the work 

of [53] due to the extreme field strengths that were employed. Figure 48 in conjunction with the 

fully quantum calculations of Figures 46 and 47, show that the glory and total signal oscillations 

can be well predicted by a simple semi-classical description. Indeed, comparing with the fully 

quantum mechanical calculations of Figure 47 we see that the additional glory oscillations are are 

to a good approximation equal to the semi-classically predicted value AF=680 V/cm(ε=+1)=3.85. This 

fact proves that, for positive energies, the gross features of the glory and total signal oscillations 

can be calculated without considering matrix elements which bring excitation specificities into 

play. This result points towards more accurate descriptions that will identify atom specific effects 

due to additional phase shifts manifested in the intensity beating positions. 

As a final task, let us connect these findings with the electron dynamics of the system. 

Oscillations of the current density maps R(ε,ρ), were recently connected to time delays of arrival 

at the detector between pairs of electron trajectories, by using the Eisenbud-Wigner time delay 

definition (see Eq. (33)). The proposed treatment involves the selection of a given constant radius 

and the measurement of the energy difference ΔE between successive maxima observed at this 
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radius. Obviously, the phase difference between these two maxima is ΔS≡2π. Then, the resulting 

time delay Δt is compared with the classically calculated time delay of the most relevant pair of 

trajectories [34]. Here we extend these considerations to the ρ=0 case i.e. to the glory signal. This 

selection of ρ, apart from the practical advantages mentioned above, introduces an additional 

simplification to the calculations. Assume, for example, that one is interested in calculating the 

Eisenbud-Wigner time delay for F=680 V/cm, around ε=0 and for a scaled radius 

𝜌/𝜌𝑚𝑎𝑥
𝑐𝑙 (𝜀 = 0)=0.4. With the help of Figure 4(b) we could claim that for the chosen scaled radius 

the most relevant pair of trajectories corresponds to β1≈0.85π and β2≈0.4π. In fact, to a first 

approximation this is indeed the case. Nevertheless, a third trajectory corresponding to β3≈0.23π 

might also contribute with strength comparable to that of β2.  We remind that the trajectory strength 

is determined through Eq. (29) and involves the slope of ρ(β). This problem is absent for ρ=0 where 

indeed one pair with β1≈π and β2≈ βo, is dominant. 

In order to calculate the inverse energy spacing between adjastent glory maxima (see Eq. 

(33)) we employ the Fourier transformation of the signal within a limited energy window and 

repeat the calculation over an extended energy range. For this we employ the build-in capabilities 

of Origin® software. As compared to the simple measurement of ΔE between successive maxima 

described above, Fourier analysis provides a much more detailed view of the full frequency 

landscape involved. In Figure 49(a-c) we present the “short time” Fourier transform of the 

calculated hydrogenic and experimental Mg JGlory data respectively. The emerging y-(time) axis is 

expressed in picoseconds. The tradeoff between time and energy resolution implies that the 

employed energy window imposes a lower time uncertainty limit to the calculated time which, for 

our case is chosen to be ≈1.5 ps. 
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Figure 49. Linear color-scale map of the “short time” Fourier transform for the calculated hydrogenic (a) 

and the experimental magnesium (b) glory signals. The Fourier window (Blackman type [120]) has a width 

of ≈21 cm-1. The vertical axes are multiplied by the factor 4π to RydMg, where to the atomic unit of time in 

picoseconds and RydMg the mass-corrected Rydberg constant of magnesium (in cm-1). (c) The primary 

maximum of the experimental (blue points) and the calculated (red points) short time Fourier spectra, see 

(a), (b) respectively. The quantum calculations are compared with the semi-classical curve (black solid line) 

which is obtained by differentiating the number of glory oscillations as a function of energy and multiplying 

with the aforementioned factor. These graphs are directly connected to the time of flight of the trajectories 

β=β0 and β=π (see main text). 

 

The Fourier transform of the Hydrogenic JGlory of Figure 49(a) shows a complex behavior 

for ε<0 and a well-organized pattern for slightly negative and positive energies. In fact, the main 

slanted and almost linear “moving frequency” 1 comprises of two components and presents a series 

of magnitude variations (minima-maxima), thus reproducing the glory beating effects. The 

corresponding Fourier transform of the hydrogenic σtot (not shown) exhibits a qualitatively similar 

behavior. As implied by the A(ε) fringe excess function of Eq. (110), however, the differences in 

the ε≥0 range are non-negligible and measurable. This positive energy pattern is dominated by the 

“moving frequency” of the SFIS oscillations, the latter found to be somewhat smaller than the one 

corresponding to the glory signal. This is exactly what the function A(ε) predicts. In fact, classical 

calculations show that for ε>>1 the SFIS and Glory periodicities coincide. 

Probably the most interesting aspect of the present work is the fact that, we were able to 

extract the same information discussed above from the experimental glory signal of Mg, the 

corresponding Fourier transform of which is presented in Figure 49(b). The resolution is high 

enough that not only the primary (the “frequency” line found near Δt~5 ps for E~0 and Δt~15 ps 

for E~140), but also a secondary slanted (i.e. “moving”) “frequency” to be clearly observed. Our 

theoretical and experimental results are summarized in Figure 49c. Each point refers to the 

dominant “frequency” (“frequency” with the maximum amplitude, excluding the Δt<3 ps range) 

of Figures 49(a,b) and for each energy window. The agreement between the H theory (red points) 

and the Mg experiment (blue points) is striking. 

These results of the primary “moving frequencies” (time delays) are compared to the 

predictions (solid line) derived from the semi-classical model described in 1.1.3 and by taking into 

account only two trajectories, corresponding to β1≈π , β2≈ βo, respectively. In particular, the plotted 

                                                           
1 The reader should keep in mind that y-axis “frequencies” in Figure 49(a,b) are actually expressed in time units. 
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curve corresponds to the derivative of the glory phase of Eq. (32) divided by 2π, i.e. 
1

2𝜋

𝜕𝑆𝐺(𝐸)

𝜕𝐸
. 

Interestingly, the semi-classical model shows excellent agreement with the fully quantum 

calculations and the experimental results. Nevertheless, it cannot reproduce the full complexity of 

our observations, such as the manifestation of a double dominant “frequency” (e.g. see Figure 

49(a) within 0<E<10 cm-1. This implies that there may be more than two trajectories contributing 

to the dominant double “frequency”. 

Let us now make a connection between the above semi-classical analysis and the actual 

classically computed time of flight differences between the involved trajectories. To this purpose 

the arrival times (i.e. the times of flight) and their difference were calculated through Eq. (23) for 

the two classical trajectories corresponding to β1≈π and β2≈βo. These classical calculations 

completely validated our semi-classical (and quantum) findings. For example, for the employed 

field value of 680 V/cm, the two trajectories (β1≈π , β2≈ βo) have a time difference of Δt≈7.7 ps at 

E≈16 cm-1 and Δt≈13.8 ps at E≈157 cm-1. These numbers are to be compared to the corresponding 

semi-classical results extracted from Figure 49(c) Δt≈7.7 ps and Δt≈13.7 ps respectively. Finally, 

the classical calculations show that the observed higher order slanted “frequency” lines in Figure 

49(a,b) could be attributed to the time delay between other glory trajectory pairs, such as , β1 and 

β3 , and so on. Nevertheless, we have avoided here a more detailed treatment of those higher order 

slanted “frequencies”, as well as the study of the R(ε,ρ) map at constant but non-zero radii, ρ≠0. 

Certainly, such extensions of this kind of analysis are now in order.   

In conclusion, we believe that we have theoretically and experimentally established the 

importance of the study of the glory signal. Let us briefly comment on this conclusion. The 

information on the system dynamics through interferometric measurements is interesting per se. 

Of course, this interference persists even for high positive energies, while it can be fairly easily 

experimentally observed and resolved. Moreover, the Coulomb-Stark problem is one of the few 

that can exhibit level quantization within the continuum (SFIS) and, in principle, at arbitrarily high 

positive energy. The established connection between those two phenomena help us probe 

quantized levels to energies up to the classical limit (ℏ→0). 
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3.3 Polarization Effects 

3.3.1 Linear Laser Polarization Rotation Effects in Magnesium Images 

Here we discuss the rotation of the linear ionizing-laser-beam polarization with respect to 

the electric field direction. Evidently Eq. (89) reveals that two-photon ionization out of an m=0 

initial state allows for the population of |m|=0,1,2 Stark states. The resulting multiple |m|-presence 

and |m|-beating effects [30] in the PM images are demonstrated here theoretically for the hydrogen 

atom and experimentally for the magnesium atom. Note that Mg images involving |m|=0,2 Stark 

states have been presented in section 3.1.2. Our theoretical discussion as well as the analysis of 

subsection 3.2.1., suggests that non-resonant PM images produced by the hydrogenic theory near 

ε ≥ −1 could be compared, at least qualitatively, with those recorded on non-hydrogenic atoms. As 

a first example experimental images recorded after two-photon ionization of ground state 

magnesium atoms in the presence of a field F = 680 ± 10 V/cm and ε≈–0.76 are presented in Figure 

50. The angle between laser-ionizing-field polarization and the static field Θ is varied in the (0, π) 

range, since images recorded for Θ’=π–Θ are simply reversed with respect to the vertical direction. 

These experimental data are compared with the theoretical images of Figure 50(b), computed via 

two-photon excitation of hydrogen out of the ground state |1,0,0,0⟩. The slightly different reduced 

energies at which recorded and computed images better resemble to each other, are compatible 

with our field uncertainty. Let us first focus on the images for which we employ either π – (m = 0 

final Stark states, Θ=0ο) or σ-polarization (|m| = 0 and 2 final Stark states, Θ=90ο).  
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Figure 50. Comparison between non-resonant experimental magnesium images (a) and hydrogenic 

theoretical images (b). The horizontal and vertical axes refer to the x and y coordinates, respectively, of 

electron impact on the detector. The laser beam propagates along x axis. Mg final states were two-photon 

excited out of the 3s2 ground state for an estimated static field value F=680±10 V/cm and ε≈–0.76. The 

hydrogenic calculation refers to two-photon excitation from the 1s ground state, for the same field, υdet = 

1000 au and a slightly different reduced energy (ε≈–0.78), to reproduce as close as possible the experimental 

bright fringe intensity distribution. The light polarization vector forms an angle Θ with the static field. We 

have verified that the images are reversed with respect to the vertical direction for Θ’=π–Θ. 

 

In fact, despite the different characteristics of the initial states, the π-polarization images 

bear many similarities, namely (i) the disc-like shape that shows no angular distribution (ii) the 

very intense central glory spot, (iii) a quite intense outer bright (rainbow) fringe, and, more 

interestingly, (iv) the rather faint and low contrast inner bright fringes. Although this last 

observation may not be generalized, it characterizes the m=0 magnesium images recorded by two-

photon excitation, as long as the reduced energy is lower than the onset of the direct trajectories 

(εdir≈−0.755). As for the σ-polarization images, they also have many features in common. First of 

all, they both exhibit the expected cos2(2φ) angular dependence, which implies the dominance of 

the m=2 waves over the m=0 ones. Nevertheless, the m=0 contribution manifests itself in a number 

of ways. First, by the very bright glory signal at the center of each image, whose origin cannot be 

other than the m=0 waves (Eq. (72)). Second, by an m-beating effect [27,30] (see the coherent 

summation over different values of m in Eq. (89)), resulting to φ-dependent bright fringe intensities 

and radii. The effect is present in both experimental and theoretical images, but more evident in 

the latter ones. One may notice that for Θ=90ο, the fringe pattern in the horizontal direction is 

different and fainter than that in the vertical one. Since, the transition matrix elements may change 

sign and magnitude as a function of energy, the image direction where the fringes are brighter may 

also change. 

The m-beating effect is even more interesting for intermediate angles Θ≠0, π where the 

excitation of |m|=1 final Stark states is also permitted (see Eq.(89)) and the radial interference 

pattern presents a strong φ-dependence. Note that all images are symmetrical with respect to the 

vertical axis and only the Θ=0 images are symmetric with respect to the image center. Most of the 

Θ≠0, π experimental images of Figure 50(a) show a quasi-horizontal nodal axis signaling the 

strong |m|=1 contribution. These results are qualitatively similar to hydrogenic calculations of 

Figure 50(b). However, a fully quantitative comparison between theory and experiment is not 

possible due to the lower spatial resolution of the experimental images and the generally different 
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matrix elements expect for the multielectron case with respect to the hydrogenic one. This lower 

spatial resolution of the experimental image is to be expected since the computed data are not 

convoluted with the resolution of the detector. Such an operation was avoided because it is 

unnecessary for a qualitative comparison. 

 

3.3.2 |m|-Decomposition of Magnesium Total Cross Section 

In the previous section we studied the polarization rotation effects on the differential cross 

section, for a two photon transition out of a m=0 initial state. Those images exhibited the |m|-

beating effect, which follows from the simultaneous excitation of different-m final states. These 

observations show that the static field axis is the preferable direction in space (quantization axis). 

Here, for providing additional experimental evidence of this fact, we aim at measuring the non-

hydrogenic “densities of states” 𝛥
𝑙,𝑙′
|𝑚|(𝐸) in the presence of a static field (see Eq. (101)) (|m|=0,1,2) 

[32]. In other words, the recording of |m|-dependent “density of states” constitutes another direct 

proof that the static field axis is indeed the quantization axis. 

Let us begin by examining the energy dependence of the differential cross section, i.e. the 

energy dependence of the |m|-beating effect observed in the PM images. Figure 51(a,b) shows such 

images recorded as a function of the excitation energy for a constant angle Θ and for F~500 V/cm. 
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Figure 51. Experimental Mg images in the energy range ε:(–0.2, –0.7) (a) and ε:(–0.837, –0.883) (b). 

Magnesium final states were two-photon excited out of the 3s2 ground state for an estimated static field 

value F~500 V/cm and for Θ=45o. 

 

The Mg final states are excited out of the Mg ground state via a two-photon transition. 

Fixing the angle Θ, also fixes the angular factors of Eq. (89) and allows for monitoring the 

(collective) energy evolution of the matrix element integrals 𝐷𝑛1,|𝑚|
𝜋/𝜎(2)

 and the phase factors 𝑒𝑖𝜃𝑛1,|𝑚|
∗

. 

As we already mentioned, the form of the current density of Eq. (89) remains the same after 

substituting the hydrogenic integrals and phases with their non-hydrogenic counterparts. The 

choice of Θ is guided by the results of Figure 16, which shows that the relative contribution of 

|m|=1 states is maximized for Θ=45o. Figure 51(a) shows PM images separated by Δε~0.1 within 

a broad energy range. For ε>–0.4, all images exhibit almost the same angular distribution and they 

are characterized by a quasi-horizontal nodal curve. More specifically, the angular function of Eq. 

(109) has the same form but, of course, the φ-dependent radial distribution evolves with the energy. 

This shows that as the energy increases, new open channels contribute to the interferogram but 

have a small impact on the general angular distribution of the image. Thus, the differences should 

be carefully searched within the complex and φ-dependent radial interference pattern. On the other 

hand, for ε≤-0.5, the angular distribution of the images has a strong dependence on the excitation 

energy and especially for the images of Figure 51(b) for which ε ~ –0.8<εdir. For example, we seem 

to probe |m|=1 final states (resonances) at ε={–0.846, –0.862,–0.883} or |m|=2 ones in the rest of 

the given set of images. 

In either the multielectron or hydrogenic case the total cross section depends solely on the 

matrix element integrals and not the phase factors (see Eqs.(69,97,101)). It follows that the 

examination of σtot would conclude whether the energy dependence of |m|-dependent effects 

observed in PM images, could be attributed on the matrix element integrals or the phase factors. 

For this purpose, let us now focus on the most interesting energy range ε ~ –1 and record the total 

electron signal of PM images as a function of energy and for different angles Θ. Figure 52(a) shows 

the two-photon spectra out of the Mg ground state for, Θ=0 (π-polarization), Θ=90o (σ-

polarization) and Θ=Θmagic=54.7o, while F≈750 V/cm. The observed spectral lines have a width 

slightly greater than expected (1 cm-1). This is attributed to a weak power broadening effect which 

is induced by the high laser pulse energy of <200 μJ/pulse. 
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Based on the discussion of section 1.3.2 we ignore the p→s zero-field transitions [93] in 

our two-photon excitation model. Then we use the simplified Eq. (105) and the recorded spectra 

of Figure 52(a) in order to calculate the non-hydrogenic “density of states” 𝛥
𝑙=𝑙′=2

|𝑚| (𝐸), which are 

shown in Figure 52(b). Note first that the onset (first strong resonance) of each 𝛥2,2
|𝑚|

-spectrum is 

compatible with Eq. (27). The corresponding saddle point energies for the estimated field value, 

F≈750 V/cm, are: 𝐸sp,𝑚=0
cl = −167.6 cm-1, 𝐸sp,|𝑚|=1

cl = −166.0 cm-1 and 𝐸sp,|𝑚|=2
cl = −164.3 cm-

1. Note that 𝛥2,2
𝑚=0 is proportional to the experimental spectrum 𝜎𝑡𝑜𝑡

(2)(Θ = 0o, 𝐸). Moreover, the  

quasi-degeneracy of |m|=0 and 2 states [62,65,117] is again confirmed here by visually inspecting 

the m=0 (solid black line) and |m|=2 (dotted blue line) curves of Figure 52(b). More interestingly, 

the |m|=1 resonances manifest themselves between the |m|=0,2 ones. 

In order to verify the validity of the employed approximation Λ~0 (see Eq. (101)), we 

compute a “synthetic spectrum” for Θ=20o by employing the known 𝛥
𝑙,𝑙′
|𝑚|(𝐸) curves. This 

“synthetic” spectrum (dotted gray line) is constructed as 𝜎𝑡𝑜𝑡
(2)(Θ = 20o, 𝐸) ∝ 67.99% 𝛥2,2

|0| +

30.99% 𝛥2,2
|1| + 1.02% 𝛥2,2

|2|
 according to Eq. (105) and is shown together with an experimental one 

(solid black line), in Figure 52(c). The two curves are almost identical and this proves that the 

decomposition along these lines can be safely used for the magnesium near-saddle-point energy 

spectra. In fact, we also recorded Mg+ spectra (instead of the total electron signal) for the same Θ 

values. The analysis of these ion spectra gave the same results and reached the same conclusions, 

and, therefore, they are omitted here for the sake of clarity. Note that, the Θ=20o experimental 

spectra bears many similarities with the 𝛥2,2
|0|

 “density of states” but the spectral lines are not so 

sharp due to the presence of the 𝛥2,2
|1|

 resonances in-between of the m=0 ones. 
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Figure 52. (a) Total integrated electron signal of PM images for F=750 V/cm and Θ=0ο, Θmagic and 90o. (b) 

The decomposed |m|-contributions (non-hydrogenic “matrix elements”) obtained by employing the spectra 

of (a). (c) Recorded and “synthetic” spectra for Θ=20o. (d) PM images for the same conditions of (c) in the 

energy range around an |m|=1 resonance. 

 

Let us now examine the images of the Θ=20o data set in Figure 52(d). The majority of the 

images are almost spot-like and do present faint angular dependence. On the other hand, around 

E= –164.75 cm-1 the images exhibit a horizontal nodal curve which is typical of |m|=1 final states. 

Indeed, this energy coincides with a spectral line maximum of the 𝛥2,2
|1|

 “density of states”. This 

verifies that the PM images probe the complete Stark spectrum of the relevant accessible quantum 

numbers |m|. This fact has been proven here by comparing the PM images and the decomposed 

total cross section spectra. The above discussion shows that the study of the Stark structure 

(particularly near the saddle-point energy) is important for probing multiple-|m| excitation caused 

by the rotation of the laser polarization vector with respect to the static electric field. In turn, this 
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multiple-|m| excitation proves that the field axis is indeed the axis of quantization. As a 

consequence, the emergence of multiple-|m| excitation poses great challenges to the development 

of tomographic wave function reconstruction methods when dealing with slow electrons. We 

remind that the main goal of tomographic techniques is the reconstruction of the 3-dimensional 

electronic momentum distribution. In fact, these techniques typically assume the presence of a 

single electronic momentum distribution that is simply rotated in the three-dimensional space as 

the linear polarization vector is rotated [48,49]. Equivalently, the polarization vector is assumed 

to be the quantization axis. According to the above discussion, for the meV electrons energies and 

static field strengths considered in the present work, these typical tomographic assumptions appear 

to be not inapplicable. 

 

 

3.3.3 Detection and Characterization of Misalignments 

Generally speaking, quite complex radial patterns are not uncommon at higher energy, as 

evident in the maps of Figure 41. Such is the case for images recorded after two-photon ionization 

of ground state of magnesium ground state in the presence of a field F = 680±20 V/cm and ε ≈ –

0.4 >εdir (Figure 53(a)) Apart from the different excitation energy and the appearance of the direct 

fringe system as Θ is varied within the [0, π] range the images exhibit the aforementioned 

characteristics of Figure 50(a). On the other hand, most of the images do not show vertical axis 

symmetry, but they are “tilted” with respect to it. This tilt possibly stems from misalignment of 

the ionizing beam with respect to the plane normal to the static field. In fact, this image set is 

selected to highlight these features. Misalignment effects were already discussed in subsection 

1.3.1 and here we are able to calculate all the relevant angles via the use of the barycenter 

coordinates of Eqs. (94,95).  
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Figure 53. (a) Experimental non-resonant magnesium images for the two-photon excitation scheme out of 

the 3s2 ground state for an estimated static field value F=680±10V/cm and ε≈–0.4. The horizontal and 

vertical axes refer to the x and y coordinates but note that the positive y-axis points downwards (typical 

convention of image-handling software packages). The laser beam propagates along x axis. The light 

polarization vector forms an angle Θ with the static field. (b) Barycenter in the x-coordinate before (black 

dashed line) and after (black solid line) the correction of the camera misalignment. Also shown the fitted 

curve (red solid line). (c) Same as (b) but for the y-coordinate. Higher y values signify the image barycenter 

moves downwards with respect to the image center. (d) The barycenter position in the cartesian coordinate 

space as Θ is varied (points of increasing size as Θ increases). Also shown is the position as predicted by 

the fitted curves of (b) and (c).  We have verified that the images are reversed in the vertical direction for 

Θ'=π–Θ. 

 

More specifically the barycenter in cartesian coordinates 𝐶B
𝑥(Θ), 𝐶B

𝑦(Θ) and 𝐂B are 

presented in Figure 53(b–d) respectively. First, note that 𝐶B
𝑥 (black dashed line) of Figure 53(b) is 

asymmetric with respect to Θ=π/2 in contrast to the corresponding theoretical epectation (Eq. (94)). 

Experimentally, this effect is attributed to an additional misalignment between the detection 

reference frame and the laser beam. By employing this theoretically predicted symmetry of 𝐶B
𝑥, 

we found that the camera was tilted with respect to the laser beam by ϐ=1.4o ±0.3o degrees. After 

rotating all images by –ϐ we obtain the solid 𝐶B
𝑥 curve of Figure 53(b), which is symmetrical with 
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respect to Θ=π/2 (we do not present the rotated images because the visual effect is insignificant). 

Then we fit the 𝐶B
𝑥(Θ), 𝐶B

𝑦(Θ) curves using the forms of Eqs. (94,95) and additionally we allow 

the angle Θ to have an experimental uncertainty ΔΘ. The fit gives that ΔΘ=0.88±0.07o and Φ=–

1.8±0.1o degrees (see Figure 53(b,c)). The experimental data (points) and the fitted barycenter 

vector curve (red solid line) are shown in Figure 53(d). Note the huge difference in the scale of the 

vertical and horizontal axes. The experimental uncertainty ΔΘ is compatible with the λ/2 

waveplate rotation mount accuracy of 2o (which leads to an accuracy of 4o for the angle Θ). 

In most applications the laser beam is aligned with external geometric procedures. In other 

words, these procedures do not consider the laser beam alignment with respect to the geometry of 

the VMI spectrometer electrodes. Moreover, the inhomogenous electric field of the VMI 

spectrometer in addition to the inaccurate knowledge of the exact position of the focused laser 

beam inside the spectrometer, introduces an uncertainty of the direction of the electric field vector. 

These facts may lead to misalignment angles of |Φ|≤2o. A self-consistent alignment procedure as 

is the one shown here, that corrects the beam propagation vector with respect to the static electric 

field itself, could be very useful in typical VMI applications. 
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Outlook and Perspectives 

The work presented in this thesis is devoted to a comprehensive photoionization 

microscopy study along three main directions. The first direction (that initially provided our major 

motivation) concerned the recording and characterization of resonant images in atoms of 

appreciable size. The intermediate complexity Mg atom (Z=12) was chosen as the target atom that 

was excited/ionized by two-photon absorption out of its ground state. Furthermore, in the course 

of this project two other directions emerged, each of equal importance to the first. Therefore, the 

second direction concerned the detailed recording of the (primarily non-resonant) momentum 

distributions of the outgoing electron transversely to the static electric field. The purpose here was 

the exploration of the global (i.e. of that met in any atom and irrespective of excitation conditions) 

information these distributions may provide through the analysis of their interference patterns. 

Finally, the third direction concerned the recording of slow photoelectron images when the linear 

polarization vector of the ionizing-laser is rotated with respect to the static field axis. Of particular 

interest here were the implications of the observed phenomena in tomographic angular distribution 

reconstruction techniques. 

All the experimental data obtained in this work (and for any of the above directions) were 

fruitfully compared to relevant results of our theoretical calculations concerning the fundamental 

Coulomb-Stark problem. In fact, these calculations referred to all levels of rigor, beginning with 

the classical formulation of the hydrogenic Stark effect and proceeding to its semi-classical and 

fully quantum descriptions. Our theoretical modeling is based on the computationally 

advantageous semi-parabolic coordinate system and was found to support the experimental data. 

In addition, our theoretical treatment provided the proof-of-principle of several effects that may 

prove to be a guiding tool for future studies.  

 

Below we briefly discuss the outlook of the present thesis and the perspectives emerging 

by it. For clarity, each of the aforementioned directions is discussed separately. 

 

As a first step towards the search of non-hydrogenic resonant manifestations, we first 

employed our quantum hydrogenic theory to explore the most prominent energy range, lying just 
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above the saddle-point energy. Theoretically calculated electron current probability density 

distributions successfully reproduced the experimentally recorded hydrogenic resonant images 

[24]. These images present an additional dark fringe with respect to the nearby non-resonant 

images and a striking non-monotonic variation of the outer turning point. In fact, the energy 

evolution of the continuum images was found to be quite interesting as well. Consequently, their 

characteristics were additionally studied within this energy range around the resonances and in 

more detail than in earlier studies. As a main outcome, it was discovered that channel openings 

may frequently (but not always) lead to abrupt increases of the radial extensions of the images.  

 

Having analyzed the above theoretical hydrogenic results, we subsequently presented a 

quite detailed experimental photoionization microscopy study of the two-photon excited Stark 

states of Mg just above the saddle-point energy range. As a first result of this study, the evolution 

of the angular distributions of the recorded magnesium images as a function of energy confirmed 

the long-ago predicted [58] existence of m-dependent saddle-point energies (one for m=0 and one 

for |m|= 2 in the present case). Furthermore, the outer turning points of the radial distributions of 

the images were overall found to monotonically increase with energy. Occasionally, however, they 

increased discontinuously and each observed jump signaled the opening of an n1 channel, the latter 

becoming a continuum one. This behavior, therefore, was found to be in complete agreement with 

the aforementioned hydrogenic calculations in the energy range just above the saddle point limit. 

Interestingly, in the same energy range there were a number of cases where the outer turning points 

additionally showed a non-monotonic variation near the resonant maxima of the total ionization 

cross section. This variation was found to be due to an on-resonance appearance of an intensity 

halo at the outer part of the relevant images. The halo may be interpreted as an additional bright 

fringe, which is characteristic of the quasi- bound state participating non-negligibly to the 

photocurrent probability density. Moreover, resonant signatures on the recorded Mg images were 

apparently somewhat weaker than those in Li [21,22]. Leaving aside ionic-core size effects, this 

may be explained by the larger effective laser linewidth of the present study, as well as by the 

increased “parasitic” ionization signal stemming from the simultaneous excitation of the non-

resonant m=0 contribution, in addition to the |m|=2 resonant and non-resonant contributions. On 

the contrary, excitation of single-|m| Stark states was possible in the Li experiment. 
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On the perspectives side along this first direction, future experiments need to profit from 

the experience gained from the present as well as earlier studies. First, in order to unbury the 

resonant character from the recorded images, a number of precautions have to be taken and a 

number of special excitation strategies have to be devised. For example, it appears that the 

spectrally sharp Stark resonances require a spectral laser resolution much better than 0.8 cm−1.  

Ideally, cw lasers (possibly pulsed amplified [99]) could be employed in conjunction with single-

photon transitions, or, when necessary, multistep, multicolor, excitation schemes. In terms of the 

appropriate field strengths, the present study followed the earlier theoretical suggestions [33] and 

found indeed that there are values of F for which the resonant manifestations may be somewhat 

optimized. Nevertheless, the effect was much weaker than predicted. Clearly, working near 

avoided crossings, as in the He experiment [23], presents a quite promising direction, which 

appears to be potentially applicable to any non-hydrogenic atom. Finally, another interesting 

possibility is to achieve excitation near avoided crossings by means of bichromatic laser fields and 

apply phase-sensitive coherent control techniques. By employing such schemes, the continuum 

excitation could be minimized, in favor of the excitation of the quasi-bound states [121]. 

 

Along the second thesis direction, our attention was focused to m=0 transverse momentum 

distribution maps of the outgoing electron R(ε,ρ) within the –1≤ε≤+1 energy range. The two-

photon experimental maps revealed quite complex interference and beating patterns, particularly 

whenever the direct and indirect contributions to R(ε,ρ) overlap. Most noticeable is the emergence 

of the so-called “checkerboard” pattern, first observed in hydrogen quite recently [34]. Our 

quantum theoretical treatment allowed for computing R(ε,ρ) maps, for static electric fields whose 

strengths are small and compatible with current photoionization microscopy studies. Calculations 

included single- and two-photon excitation out of the ground state of hydrogen. The presented 

analysis suggested that near the ionization threshold a number of gross features of R(ε,ρ) are 

common to all Rydberg atoms in the presence of a static electric field, appear irrespective of the 

initial state and excitation scheme and may be predicted by fairly simple semi-classical theoretical 

treatments [27]. That latter work provided a first global classification of direct-indirect beating 

phenomena. Furthermore, in recent theoretical works [53], many important details of the R(ε,ρ) 

maps were washed out by the extreme static field strengths employed. These details have emerged 

in the present low-field work, revealing a much richer fringe structure, which depends fairly 
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strongly on the initial state, excitation scheme and the target atom (as the Mg experiment has 

shown). 

Subsequently, attention was focused on the glory and primary rainbow signals of the R(ε,ρ) 

maps and in particular, the quantum oscillations they exhibited. The –1≤ε≤+1 energy range was 

studied both experimentally and theoretically. These glory and bow signals present a rather 

complicated behavior in the negative energy range where resonances come also into play. On the 

contrary, in the positive energy range the absence of quasi-bound states range results to a fairly 

simple oscillatory pattern. As experimentally observed in the magnesium atom and also 

theoretically predicted for the hydrogen atom, this oscillatory pattern is characterized by a static-

field and energy dependent “carrier periodicity” as well as beating maxima and minima. The exact 

positions of the latter, however, are atom- and excitation-scheme-dependent. In fact, these features 

concern only a small part of the aforementioned maps, but their study provides a first step towards 

the extraction of the full information contained in these maps. Following the recent theoretical 

work of Ref. [53], the connection between the energy locations of the static-field-induced-states 

(SFIS) and glory oscillations has been established within the semi-classical framework. Moreover, 

in the quest of novel approaches towards encoding electron dynamics, the time delay 

corresponding to pairs of trajectories has been extracted from the glory signals. The semi-classical 

and hydrogenic quantum calculations are in excellent agreement to the classically calculated time 

of flights. More importantly, the time delays which are extracted from the experimental Mg data 

agree with the aforementioned times of flight at least within the experimental uncertainty. This last 

result implies that the electron dynamics for E>0 are dominated by the long-range Coulomb-Stark 

field and weakly influenced by the ionic core (note that the core introduces observable zero-field 

phase shifts to the excited/outgoing electron wave-functions). 

In future studies along this direction a multi-electron quantum mechanical theory should 

be able to predict the details of the glory and primary bow signals and particularly the beating 

maxima/minima. Semi-classical works that could calculate the electron time of flights, as modified 

by the non-hydrogenic core effects, could lead to very important results and could easily be tested 

with experimental data along the lines proposed here. Another interesting possibility is to study 

the energy range of doubly excited states. In that case, the electron dynamics of the ionized electron 

are expected to be greatly influenced by the inner excited electron thus, the glory signal may probe 

the electron-electron interactions. 
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Let us finally conclude with the third direction of the present work. Although the 

experimentally employed two-photon excitation/ionization scheme appears to slightly complicate 

the analysis of the recorded observables (as compared to a single-photon excitation one), it is 

proved to be more adequate for providing a solid testing ground for our theoretical study on the 

rotation of the linear laser polarization vector with respect to the static electric field axis. Indeed, 

the effects observed in non-resonant experimental images for the magnesium atom and for 

different polarization rotation angles Θ have been successfully reproduced theoretically. In the 

absence of misalignments, all images have vertical axis symmetry and show a complicated angular 

and radial distributions. The former distribution features a Θ-dependent m-beating effect due to 

the simultaneous excitation of |m|=0,1,2 final Stark states. 

The above conclusions were strengthened by our findings on the total ionization cross 

section measurements. Specifically, by employing relevant complex-atom expressions for the total 

cross section it was made possible to identify and isolate the m-character of each spectral line. To 

this purpose, we made use of the fact that for the magnesium atom the zero-field p→s transitions 

are suppressed as compared to p→d ones [93]. Under this (valid) approximation the total ionization 

cross section may be decomposed into different-m contributions by simply recording two-photon 

spectra for three different angles Θ. As a cross check of the correctness of the above data treatment, 

synthetic spectra for arbitrary angles Θ were produced and successfully compared to experimental 

ones, recorded at the same angles. One result of particular importance concerns the clear 

identification of |m|=1 resonances, in both the decomposed contributions and the corresponding 

images recorded under the same conditions. Note that, strictly speaking, the m-decomposition is 

only relevant to the magnesium atom. It is valid, however, in any situation where the zero-field 

p→s transitions are very weak (which is a quite frequently the case [87]). Nevertheless, ab initio 

calculations would be required in order to accurately estimate the exact excitation strength ratio 

(p→s/p→d), for the general case. 

As a byproduct application of our calculations we proposed (and successfully tested 

experimentally) a self-consistent method of laser beam and polarization alignment. The latter is 

based on the use of the image first moment and can be extended beyond the two-photon excitation 

scheme. The method may check the laser propagation axis and the angle Θ with high accuracy, a 

task that is of great interest in many applications other than slow photoelectron imaging. 
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Automatization of this method could provide a useful tool that could be integrated in imaging 

software. 

The present experimental procedure of image recording at different angles Θ is closely 

related to tomographic techniques aiming at reproducing the 3-dimensional electronic momentum 

distribution. However, the non-negligible effects caused by the static electric field presence 

(making its inclusion to relevant calculations absolutely necessary) sets new challenges to these 

techniques. In short, since the m-composition of the outgoing electron flux depends on Θ, the 

“object” changes with the polarization rotation. Hence, it cannot be reconstructed by standard 

tomographic methods which assume the rotation of just a single object. Instead, a slow 

photoelectron tomographic theory is required, that includes both the static electric field and the 

coulomb center.  

A possible, subsequent work on the subject could include the single photon excitation by 

employing elliptic polarization radiation. The π- and σ- selection rules will be the ones described 

for the simple single photon cases but the phase difference between the two orthogonal polarization 

vectors enters the interferogram. Experimentally controlling this phase difference (ellipticity) 

could provide phase information about the wave function.   

Newly developed computational techniques such as a deep neural network algorithm could 

also be implemented in conjunction to the presently developed multielectron theory.  The hybrid 

algorithm could be trained by computed images and then used to extract information of the 

experimental images. This is further aided by the form of the electron current density which is 

comprised by two unknown finite sets of non-hydrogenic matrix element magnitudes and phases 

(whose determination is an easy task for neural network codes). 

 

The strength of photoionization microscopy lies in the spatial resolution of electronic 

interference patterns. Thus, limiting its use solely in imaging of resonant Stark states hinders the 

rich capabilities of the method. At this point, the conjunction of PM with other experimental 

techniques seems to be the most prominent perspective. We believe that the present study shed 

new light upon previously unexplored features of both resonant and particularly non-resonant 

images and suggested a number of novel approaches that aim at extracting information from the 

photoionization microscopy interferogram. The discussed perspectives of the present work, along 

with earlier ones call for additional photoionization microscopy experiments. For example, one of 



 P. Kalaitzis Conclusion-Synopsis 

 

131 

 

the first applications of photoionization microscopy, as proposed by its inventors, was the study 

of the Bohm-Aharonov effect [11]. In fact, the authors concluded that the glory signal would act 

as a sensitive detector of magnetic fields. The effects of parallel electric and magnetic fields on the 

radial distributions were also theoretically studied by the authors of Ref. [122]. The PM setup 

could indeed be used for magnetic field sensing purposes but the sensitivity could be greatly 

affected by our accuracy in determining other parameters, such as the electric field strength and 

the excitation energy (assuming that atom-specific complexities are ignored). Photoionization 

microscopy of hydrogen atom in a non-uniform electrical field in the z coordinate was treated in 

Ref. [123]. Note that, the VMIS electrode geometry produces inhomogeneous electric fields but 

the gradient of the electric field should be high enough in order to have an impact on the trajectories 

near the Coulomb center, <5 μm, and on the same time the laser-atom interaction region should be 

kept smaller than this value, at least in the z coordinate. The substitution of the static electric field 

with a slow-varying time dependent one [53], is an interesting but experimentally challenging 

photoionization microscopy variant. The interest of such works lies in the characteristics of the 

low-lying states characteristics (position, width, lifetime etc.) which are strongly affected by the 

presence of a strong quasi-static electric field, a subject of great interest in strong field physics. 

Last but not least, PM near a metal [124] or dielectric surface [125] can be employed in the study 

of the surface characteristics (dielectric constant etc.) or manipulate the ionization time delays 

experimentally. 
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