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Abstract

The work in this thesis primarily adresses the e�ect of disorder in certain condensed mat-

ter systems. Disorder itself leads to the phenomenon of Anderson localization where the

wavefunction due to disorder is con�ned in a �nite region of space characterized by an expo-

nential decay of its amplitude. First, we study the midgap state at energy E = 0 in a lattice

with hopping disorder in one and two dimensions. Using the well established methods of

energy and wavefunction statistics, we show an even-odd system size asymmetry and the

multifractal behavior of the special E = 0 state. Second, we examine the doubly degenerate

Majorana states at E = 0 for the case of a topological superconductor in one dimension.

In the absence of disorder, the two states are localized at the two ends of the chain. We

ask how the disorder a�ects their behavior for this kind of system proposed for quantum

computation. In the presence of disorder, a spreading of the Majorana states in the lattice

occurs. Third, we show the interplay of disorder and interactions in a many-body system,

namely the quantum XXZ Heisenberg anti-ferromagnet. The motivation is to study how

disorder leads to the phenomenon of Many-Body Localization. The energy level statistics

shows a distinction between an ergodic and a many-body localized phase and the eigenstate

statistics reveals a multifractal behavior near the critical regime. For strong disorder the

many-body localized states can be used as potential quantum memories. The signi�cance

of this work is that the ubiquitous presence of disorder in quantum systems has not always

a negative impact and can lead to a better manipulation of quantum information.
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Εκτεταμένη Περίληψη

΄Ενα από τα πιο ενδιαφέροντα θέματα της σύγχρονης Φυσικής είναι η κατανόηση των κβαν-

τικών ιδιοτήτων της ύλης παρουσία αταξίας όταν η τοπολογία αλλά και οι αλληλεπιδράσεις

παίζουν σημαντικό ρόλο. Η ισχυρή αταξία W οδηγεί στο φαινόμενο του εντοπισμού Ander-

son και μονωτική συμπεριφορά. Οι καταστάσεις περιορίζονται σε μία πεπερασμένη περιοχή του

χώρου ενώ εκτός αυτής χαρακτηρίζονται από εκθετική μείωση. Από την άλλη, η παρουσία

της τοπολογίας υποδηλώνει ανοσία ως ένα βαθμό στις τοπικές διαταραχές ενώ ο συνδυασ-

μός αταξίας και αλληλεπιδράσεων οδηγεί στο φαινόμενο του Εντοπισμού Πολλών Σωματίων

(Many-Body Localization ή MBL) και την απουσία εργοδικότητας στο σύστημα. Τα κβαν-

τικά φαινόμενα παρουσία αταξίας, τοπολογίας και αλληλεπιδράσεων εμφανίζονται σε νανοδομές

-τάξη μεγέθους του 1nm- από την κατασκευή των οποίων αναμένεται νέα φυσική αλλά και

τεχνολογική πρόοδος. Η σύνδεση των παραπάνω συστημάτων με την κβαντική πληροφορική

και την κατασκευή ανθεκτικών κβαντικών υπολογιστών με πλήθος qubits αποτελεί ένα από τα

πιο σπουδαία επιστημονικά θέματα των ημερών.

Η παρούσα διδακτορική διατριβή έχει ως στόχο να ερευνήσει το ρόλο της αταξίας σε συγ-

κεκριμένα συστήματα συμπυκνωμένης ύλης. Η κβαντική περιγραφή των ηλεκτρονίων στα

στερεά παρουσία αταξίας γίνεται στην προσέγγιση ισχυρής δέσμευσης (tight binding). Στη

διακριτή βάση του πλέγματος η κυματοσυνάρτηση ενός ηλεκτρονίου γράφεται ως κβαντική

υπέρθεση στη βάση των πλεγματικών θέσεων ισχυρά εντοπισμένων ατομικών τροχιακών σε

κάθε πλεγματική θέση. Η αντιμετώπιση των συστημάτων γίνεται με συνδυασμό αναλυτικών

και αριθμητικών τεχνικών στη μία και στις δύο διαστάσεις όπου ξεκινώντας από συστήματα
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μικρού μεγέθους προσεγγίζουμε τα μεγαλύτερα συστήματα με μια τεχνική γνωστή ως �nite

size scaling (FSS).

Ειδικότερα, εξετάζεται η στατιστική των ενεργειών και των καταστάσεων τυχαίων πινάκων

(random matrices). Η θεωρία τυχαίων πινάκων (Random Matrix Theory) είναι το κατάλληλο

μαθηματικό εργαλείο για να εξετάσουμε τη στατιστική των ενεργειών. Ανάλογα με την υπ-

άρχουσα συμμετρία οι τυχαίοι πίνακες κατατάσσονται σε 10 κλάσεις συμμετρίας. Η κατάταξη

γίνεται με βάση τη συμμετρία χρονικής αναστροφής (time reversal), τη συμμετρία σωματίου-

οπής (particle-hole) και τη συμμετρίας χειρός (chiral). Η ορθογώνια κλάση για παρουσία

τυχαίου δυναμικού, η μοναδιαία για παρουσία μαγνητικού πεδίου που παραβιάζει τη συμμετρία

χρονικής αναστροφής και η συμπλεκτική για παρουσία σπιν με σύζευξη σπιν-στροφορμής

(spin-orbit coupling). Από τις συνολικά 10 συμμετρίες έχουμε 3 βασικές (Wigner-Dyson),

3 που διατηρούν την συμμετρία χειρός (chiral) και 4 που σχετίζονται με την υπεραγωγιμότητα

(Bogoliubov-de Gennes ή BdG).΄Ενα στατιστικό μέτρο για τη μελέτη των ενεργειών είναι η

κατανομή P(S) των διαστημάτων μεταξύ των διαδοχικών ενεργειών. Στην περίπτωση μεταλλικής-

εκτεταμένης συμπεριφοράς οι ιδιοτιμές ενέργειας είναι συσχετισμένες, εμφανίζουν άπωση και

ακολουθούν την κατανομή Wigner. Από την άλλη, στη μονωτική-εντοπισμένη συμπεριφορά

οι αντίστοιχες ιδιοτιμές ενέργειας είναι μη-συσχετισμένες, τυχαίες και εμφανίζουν έλξη υπ-

ακούοντας στην κατανομή Poisson. Οι κατανομές Wigner και Poisson αποτελούν τις δύο

οριακές περιπτώσεις.

Εκτός από τις κβαντικές ενέργειες εξετάζεται η στατιστική των κβαντικών καταστάσεων. Μία

χαρακτηριστική ποσότητα για τη μέτρηση της χωρικής έκτασης των καταστάσεων είναι ο δείκ-

της IPR. Για μία πλήρως εκτεταμένη-μεταλλική κατάσταση σε N πλεγματικές θέσεις έχουμε

IPR = N−1
ενώ για μία πλήρως εντοπισμένη κατάσταση σε μία πλεγματική θέση έχουμε

IPR = 1. Ακόμα, γίνεται διευρεύνηση σχετικά με τις μορφοκλασματικές (fractal) ιδιότητές

των ιδιοκαταστάσεων. Είναι γνωστό ότι ακριβώς στο κρίσιμο σημείο της μετάβασης μετάλλου-

μονωτή οι ιδιοκαταστάσεις δεν είναι ούτε εκτεταμένες ούτε εντοπισμένες αλλά χαρακτηρίζονται
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από μια κρίσιμη-πολυμορφοκλασματική συμπεριφορά. ΄Ενα πολυμορφοκλασματικό (multifrac-

tal) είναι ένα μη-ομογενές μορφοκλασματικό του οποίου η διάσταση δεν χαρακτηρίζεται από

έναν αριθμό αλλά έχουμε ένα ολόκληρο φάσμα μορφοκλασματικών διαστάσεων Dq. Πρόκειται

για ένα γενικευμένο μέτρο για τον προσδιορισμό της χωρικής έκτασης των ιδιοκαταστάσεων.

Στην ειδική περίπτωση που ο δείκτης q ισούται με 2, η αντίστοιχη μορφοκλασματική διάσ-

ταση είναι η D2. Σε ένα μονοδιάστατο σύστημα (1D), μία πλήρως εκτεταμένη, μεταλλική

κατάσταση έχει D2 = 1 ενώ μία πλήρως εντοπισμένη κατάσταση σε μία πλεγματική θέση έχει

D2 = 0. Τέλος, η διάσταση D2 για μία πολυμορφοκλασματική κατάσταση παίρνει ενδιάμεσες

τιμές μεταξύ του 0 και του 1.

Η διατριβή χωρίζεται σε τρία κύρια μέρη. Στο πρώτο μέρος θεωρούμε την παρουσία αταξίας

στους δεσμούς μεταξύ των ατόμων σε ένα στερεό με σκοπό να διατηρείται η υποπλεγματική

συμμετρία (sublattice ή chiral). Αυτή η περίπτωση είναι γνωστή ως μη-διαγώνια αταξία (o�-

diagonal disorder). Επικεντρωνόμαστε στη συμπεριφορά της κατάστασης με ενέργεια E = 0

η οποία εμφανίζεται μόνο σε συστήματα με περιττό αριθμό ατόμων N και την υπολογίζουμε

αναλυτικά και αριθμητικά. Η συγκεκριμένη κατάσταση παρουσιάζει υπο-εκθετική μείωση σε

αντίθεση με το φαινόμενο του εντοπισμού Anderson όπου μία κατάσταση χαρακτηρίζεται από

εκθετική μείωση. Η κλιμάκωση της ποσότητας ln〈IPR〉 με το λογάριθμο του αριθμού N

οδηγεί στον υπολογισμό της μορφοκλασματικής διάστασης D2 η οποία μετρά τη χωρική έκ-

ταση της κατάστασης στο E = 0 και αποκαλύπτει το πολυμορφοκλασματικό χαρακτήρα της.

Για ασθενή αταξία (W → 0) η κατάσταση εμφανίζει πιο εκτεταμένη συμπεριφορά (D2 → 1) και

για πολύ ισχυρή αταξία έχει μία πιο εντοπισμένη εικόνα (D2 → 0). Για ενδιάμεσες τιμές της

αταξίας, η διάσταση D2 είναι μεταξύ 0 και 1 αναδεικνύοντας το πολυμορφοκλασματικό προφίλ

της κατάστασης για E = 0. Επιπλέον μελετήθηκε η στατιστική των ενεργειών κοντά στην

ενέργεια E = 0 και βρέθηκε μία ταχύτερη προσέγγιση στο όριο της κατανομής Poisson για

συστήματα άρτιου N σε σύγκριση με συστήματα περιττού N .

Για ένα τετραγωνικό πλέγμα στις δύο διαστάσεις (2D) η κατάσταση για ενέργεια E = 0 εμ-
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φανίζει πολυμορφοκλασματικά χαρακτηριστικά για συστήματα μικρότερα από το πολύ υψηλό

μήκος εντοπισμού. Για ασθενή αταξία (W → 0) η κατάσταση για E = 0 εμφανίζει πιο εκ-

τεταμένη συμπεριφορά (D2 → 2) και για πολύ ισχυρή αταξία έχει μία πιο εντοπισμένη εικόνα

(D2 → 0). Για ενδιάμεσες τιμές της αταξίας, η διάσταση D2 είναι μεταξύ 0 και 2. Ακόμα,

υπολογίστηκε η στατιστική των ενεργειών κοντά στην ενέργεια E = 0. Για τα περιττά συστή-

ματα εμφανίζεται η κατανομήWigner αναλλοίωτη υπό αλλαγή κλίμακας ενώ τα άρτια συστήματα

χαρακτηρίζονται από μία κατανομή ενδιάμεση των Wigner και Poisson.

Στο δεύτερο μέρος δείχνουμε το συνδυασμό μεταξύ αταξίας και τοπολογίας. Θεωρούμε

έναν μονοδιάστατο p-wave υπεραγωγό παρουσία αταξίας στους δεσμούς μεταξύ των ατόμων.

Το συγκεκριμένο μοντέλο έχει προταθεί για χρήση στους κβαντικούς υπολογιστές. Απουσία

αταξίας, το σύστημα έχει δύο καταστάσεις Majorana για ενέργεια E = 0 που είναι εντοπισ-

μένες στα δύο άκρα του συστήματος και προστατεύονται από την τοπολογία. Στην περίπτωση

αυτή υπολογίστηκε ο αριθμός περιέλιξης (winding number). Το βασικό κίνητρο εδώ είναι η

μελέτη των ειδικών καταστάσεωνMajorana υπό την επίδραση της αταξίας. Λόγω της εγγενούς

συμμετρίας σωματίου-οπής στους υπεραγωγούς το σύστημα αποτελείται από δύο μονοδιάστατα

συστήματα, ένα για ηλεκτρόνια και ένα για οπές. Αρχικά βρίσκουμε μία άρτια-περιττή ασυμ-

μετρία μεταξύ των συστημάτων άρτιου και περιττού μεγέθους L. Τα συστήματα περιττού L

εμφανίζουν διπλό εκφυλισμό στην ενέργεια E = 0. Επομένως έχουμε δύο καταστάσεις στην

ενέργεια E = 0 που αντιστοιχούν στα δύο οιωνεί-σωμάτια Majorana. Από την άλλη, τα άρ-

τια συστήματα χαρακτηρίζονται από την ύπαρξη ενεργειακού χάσματος. Ο υπολογισμός της

στατιστικής των ιδιοτιμών της ενέργειας έδειξε και πάλι μία ταχύτερη προσέγγιση στο όριο της

κατανομής Poisson για τα άρτια συστήματα σε σύγκριση με τα περιττά. Τα αποτελέσματα αυτά

είναι παρόμοια με αυτά που βρέθηκαν στο πρώτο μέρος για την περίπτωση της μη-διαγώνιας

αταξίας και απουσία υπεραγωγιμότητας. Επιπλέον, παράγεται μία αναλυτική σχέση για την

κατασταση στο E = 0 μέσω της μεθόδου των πινάκων μεταφοράς (transfer matrix method).

Η κλιμάκωση της ποσότητας ln〈IPR〉 με το μέγεθος του συστήματος L οδήγησε στον υπ-
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ολογισμό της μορφοκλασματικής διάστασης D2. Απουσία αταξίας οι καταστάσεις Majorana

είναι εντοπισμένες στα άκρα και έχουμε D2 = 0. Καθώς αυξάνουμε την ισχύ της αταξίας W

οι καταστάσεις αρχίζουν να διαχέονται μέσα στο σύστημα και να εμφανίζουν πολυμορφοκλασ-

ματική εικόνα με 0 < D2 < 1.

Το τρίτο μέρος αφορά το συνδυασμό αταξίας και αλληλεπιδράσεων. Μελετάμε ένα πρόβλημα

πολλών σωματίων (many-body problem) σε ένα πλέγμαN τυχαία αλληλεπιδρώντων φερμιονίων

παρουσία τυχαίου δυναμικού στη μία διάσταση. Το συγκεκριμένο πρόβλημα μέσω του μετασχη-

ματισμού Jordan-Wigner είναι ισοδύναμο του μονοδιάστατου κβαντικού μοντέλου Heisenberg

που αποτελείται από N spins-1/2 παρουσία τυχαίου μαγνητικού πεδίου ισχύος W και τυχαίων

αλληλεπιδράσεων ισχύος δ. Το βασικό κίνητρο εδώ είναι η μελέτη του φαινομένου που είναι

γνωστό ως Εντοπισμός Πολλών Σωματίων (MBL) το οποίο εμφανίζεται παρουσία αταξίας και

αλληλεπιδράσεων. Λόγω του εκθετικά μεγάλου μεγέθους του many-body χώρου Hilbert το

πρόβλημα αποτελεί μία δύσκολη υπολογιστική διαδικασία. Εκτελούμε ακριβή διαγωνοποίηση

(exact diagonalization) και εξετάζουμε το κέντρο του many-body ενεργειακού φάσματος όπου

η πυκνότητα ενέργειας είναι μεγαλύτερη. Αρχικά, υπολογίστηκε η στατιστική των many-body

ιδιοτιμών της ενέργειας και βρέθηκε μια μετάβαση μεταξύ δύο ξεχωριστών φάσεων. Μίας

εργοδικής-εκτεταμένης φάσης που χαρακτηρίζεται από την κατανομή Wigner και μίας many-

body εντοπισμένης (MBL) φάσης που χαρακτηρίζεται από την κατανομή Poisson. Για τις

τιμές της αταξίας που χρησιμοποιήθηκαν στις δύο παραμέτρους W και δ έγινε μία εκτίμηση

των δύο κρίσιμων σημείων μεταβάλλοντας το μέγεθος του συστήματος (scaling). Στη μία

περίπτωση για δ = 1 και μεταβάλλοντας το W το κρίσιμο σημείο εκτιμήθηκε στο Wc ≈ 2.4.

Στη δεύτερη περίπτωση για W = 0.5 και μεταβάλλοντας το δ το κρίσιμο σημείο εκτιμήθηκε

στο δc ≈ 7. Επιπλέον, μελετήθηκε η στατιστική των many-body καταστάσεων. Η κλιμάκ-

ωση της ποσότητας 〈lnIPR〉 με το μέγεθος του συστήματος συμφωνεί στην εκτίμηση των

κρίσιμων σημείων με τη στατιστική των ενεργειών. Ακόμα, στα κρίσιμα σημεία μελετήθηκαν

οι κατανομές P (lnIPR) οι οποίες είναι σχεδόν αναλλοίωτες υπό αλλαγή κλίμακας. Τέλος, υπ-
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ολογίστηκε η μορφοκλασματική διάσταση D2. Για ασθενή αταξίαW , οι καταστάσεις βρέθηκαν

πλήρως εργοδικές-εκτεταμένες με D2 = 1 ενώ κοντά στο κρίσιμο σημείο είναι πολυμορφοκλασ-

ματικές με ενδιάμεση διάσταση D2 μεταξύ 0 και 1. ΄Ομοια, για ασθενή αταξία δ οι καταστάσεις

εμφανίζουν και πάλι εργοδική-εκτεταμένη συμπεριφορά ενώ κοντά στο κρίσιμο σημείο είναι

πολυμορφοκλασματικές. Για ισχυρή αταξία και στις δύο περιπτώσεις οι καταστάσεις είναι πιο

εντοπισμένες (MBL) και μπορούν να χρησιμοποιηθούν δυνητικά για κβαντικές μνήμες.

viii



Acknowledgments

I would like to take this opportunity to thank the people who have been involved with

my PhD life during my years in Ioannina. First and foremost, I would like to thank my

supervisor, Professor S.N.Evangelou. The seemingly countless hours of our meetings have

broadened my knowledge and made my PhD experience an interesting process. I also

appreciate that he discussed with me all these fascinating problems and made available

his earlier theoretical and numerical work in the many-body Heisenberg chain. I would also

like to thank Professor K.Magoutis and Dr.S.Athanasopoulos for their help with the HPC

systems during the last two years. In addition, I thank the HPC system "ARIS" in Athens

who gave me the opportunity to complete a great amount of my computational work. I also

thank D.Manolas for allowing me to have a part of his early stage work prior to publication.

At a personal level, my life in Ioannina will not be full�lled without the companionship of

Kelly who was always near me. Also, I thank my friends inside and outside the academic

circle for our light-hearted discussions and their unconditional support. Finally, I literally

cannot describe with words the contribution of my parents Theofanis and Eleni. Being my

main psychological and my only �nancial supporters, they helped me to pursue my dream

for a PhD in Physics during those di�cult years. This work is dedicated to them.

ix



x



Contents

1 Introduction 1

1.1 Anderson Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Random Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Multifractality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 One-electron Disordered Systems 13

2.1 Chiral Disordered Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 1D O�-Diagonal Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 2D O�-Diagonal Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Topological Disordered Systems 33

3.1 1D p-wave Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Disordered 1D p-wave Superconductor . . . . . . . . . . . . . . . . . . . . . 41

3.3 Level Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Majorana Mode Multifractality . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



Contents

4 Many-Body Localization 53

4.1 Thermalization .vs. Localization . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Level Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Statistics of Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Participation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Multifractality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conclusions 75

Bibliography 79

xii



Chapter 1

Introduction

1.1 Anderson Localization

It is known since several decades ago that the presence of disorder in quantum systems

drives interesting phenomena. In 1958, P.W.Anderson studied the behavior of electrons in

disordered crystals [1]. The Anderson model of localization is the foundation over which

our knowledge for the e�ect of disorder on electronic systems has been established. The

quantum mechanics allows electrons to hop from one atom to its neighbors. In a disordered

lattice a single electron at each lattice site can feel a random potential. In the second

quantization formalism, the Hamiltonian is

H0 =
N∑
n=1

Vnc
†
ncn + t

N−1∑
n=1

(c†ncn+1 + c†n+1cn), (1.1)

where c†n and cn are fermionic creation and annihilation operators for the electron on site

n, the total number of lattice sites is denoted by N and the on-site potential Vn is an

independent random variable uniformly distributed in the interval [−W
2
, W

2
] where W is the

strength of disorder. The hopping parameter t is assumed to have non-zero values only for

1



Chapter 1. Introduction

nearest neighbors and we set t = 1 de�ning the energy scale. The tight-binding model with a

random on-site potential has been subject of extensive studies also in higher dimensions (see

[2] and references therein). It is known that a critical disorder Wc exists and if the strength

W exceeds this value, W > Wc, then all the states are exponentially localized. This means

that the wavefunction amplitude decays exponentially outside a localization length ξ. The

phenomenon of Anderson localization constrains the wavefunction to a �nite region of space

of the order of ξ. For W > Wc in the localized phase, the system loses all of its conductivity

properties and becomes an insulator. This implies the absence of di�usion and the states

cannot transport current having zero conductivity. This is a completely di�erent behavior

from ideal crystals which are always conductors and have a �nite conductivity. From the

scaling theory of localization [3], in 1D and 2D all states are localized (Wc = 0) whereas in

3D we have a metal-insulator transition at Wc ∼ 16.5.

The quantum motion of an electron in dimension D can be represented in the discrete

basis of lattice sites {|n〉, n = 1, 2, 3, ..., N}. The so-called Tight-Binding approximation

e�ectively describes the motion of electrons in solids and can be used to calculate the

electronic band structure for W = 0. The main assumption is that each atomic orbital is

strongly localized on its corresponding lattice site |n〉 and the wavefunction of an electron

can be expressed as a linear combination in the discrete basis of lattice sites {|n〉}

|Ψ〉 =
N∑
n=1

ψn|n〉, (1.2)

where N is the total number of sites and ψn, n = 1, 2, ...N are the corresponding probability

amplitudes.

Figure 1.1: 1D chain

2
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For the disordered chain (Fig.1.1) with Hamiltonian of Eq(1.1) the hoppings t = 1 and

Vn ∈ [−W
2
, W

2
] is an independent random variable following a uniform distribution. Open

boundary conditions are considered. The Hamiltonian in 1D is represented as a simple

tridiagonal matrix

H =



V1 1 . . . 0 0

1 V2 1 . . . 0

... 1
. . . . . .

...

0 . . .
. . . VN−1 1

0 0 . . . 1 VN


.

The Density of States describing the number of states for a speci�c energy for W = 0 is

ρ(ε) =
1

π

1√
4t2 − (ε− V )2

. (1.3)

For �nite small disorder W = 1 and system size N = 1000 ρ(ε) is plotted in Fig.1.2(a) along

with the relation of Eq.1.3. A corresponding localized wavefunction at ε ≈ 0 can be seen in

Fig.1.2(b).

(a) (b)

Figure 1.2: (a) ρ(ε) for a disordered 1D lattice of size N = 1000,W = 1 and t = 1. The solid
black line represents W = 0. (b) The wavefunction for ε = 0.006 and W = 1 is localized.
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For a quantum lattice system in the presence of a random potential of strength W we can

explore the correlations between the eigenvalues En. A concise statistical measure which

highlights the degree of level correlation is the statistical distribution P (S) of consecutive

energy level spacings, where Sn = En+1 − En. The distribution should be normalized with

〈S〉 = 1 and
∫ inf

0
P (S)dS = 1. The eigenvalues of a localized system are uncorrelated ran-

domly distributed and exhibit attraction. This limit denotes the Poisson Statistics and

characterizes the insulating behavior and integrability. The Poisson distribution of consec-

utive level spacings

P (S) = e−S (1.4)

is plotted in Fig.1.3. For S → 0 we observe the level attraction with e−S → 1.

Figure 1.3: The P (S) Poisson distribution.

The tridiagonal matrix representing a 1D lattice shows localization as electrons can hop

to nearest neighbors only. This picture fails to describe extended behavior and this is where

Random Matrix Theory takes in with the matrix becoming full as shown in the following

section.
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1.2 Random Matrix Theory

Since the work of E.Wigner [4] and F.Dyson [5], there was a strong interest in studying the

energy correlations of quantum spectra for systems with many degrees of freedom such as in

complex atomic nuclei. Random matrix theory (RMT) is the appropriate mathematical tool

which explores the statistical properties of eigenvalue spectra of N × N random matrices

which are full with every site connected to all others. In the system we consider only

inherent symmetries such as time-reversal and spin rotation. This combination gives the

three random ensembles with Gaussian disorder, namely GOE, GUE and GSE.

A N-dimensional lattice with "all to all" random couplings Hij can be realized by a

random NxN Hamiltonian

H =



H1,1 H1,2 . . . H1,N−1 H1,N

H2,1 H2,2 H2,3 . . . H2,N

... H3,2
. . . . . .

...

HN−1,1 . . .
. . . HN−1,N−1 HN−1,N

HN,1 HN,2 . . . HN,N−1 HN,N


.

In the limit N →∞ the density of states is the Wigner semi-circle distribution

ρ(ε) =
1

2π

√
4− ε2 , −2 ≤ ε ≤ 2. (1.5)

For uniformly (not Gaussian) distributed random variables with W = 1, the ρ(ε) for matrix

size N = 1000 is plotted in Fig.1.4(a) along with the Eq.1.5. An example of the wavefunction

for an energy near the band centre can be seen in Fig.1.4(b). The wavefunctions as opposed

to tridiagonal matrices are extended in all available space.
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(a) (b)

Figure 1.4: (a) ρ(ε) for a random matrix of dimension N = 1000 and W = 1 uniform. The
solid black line represents the Wigner semi-circle. (b) The wavefunction for ε = 0.017 and
W = 1 is extended.

Although RMT was originally intended for modelling systems with many degrees of free-

dom, it is also proved useful for systems with few degrees of freedom as well. Moreover,

energy-level statistics provides an indication of the type of motion for a quantum system. In

the �eld of quantum chaos we are interested in the spectral statistics of a quantum Hamilto-

nian whose classical analogue is chaotic. As Berry-Tabor conjectured [6], the level statistics

of a quantum system is in its integrable domain follows the Poisson distribution. This is

also seen in 1D disordered systems (Section 1.1) which correspond to integrable motion. On

the other hand, Bohigas, Giannoni and Schmidt [7] conjectured that if the system is chaotic

then its level statistics follows the Wigner distribution and we have a chaotic behavior.

We consider random N ×N full matrices with Hij elements taken from a Gaussian distri-

bution. The three statistical ensembles with the corresponding symmetries of time-reversal

and spin-rotation are classi�ed as:

• Gaussian Orthogonal (GOE) for real and symmetric random matrices.

The time-reversal symmetry (TRS) is preserved and we can derive the P (S) level

spacing distribution beginning with a 2× 2 random matrix. We have

6
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HGOE =

H11 H12

H12 H22

 .
The di�erence between the eigenvalues is

S = E2 − E1 =
√

(H11 −H22)2 + 4H2
12. (1.6)

If we set x = H11 − H22 and y = 2H12, then S =
√
x2 + y2. Considering the nor-

malization conditions
∫∞

0
P (S)dS = 1 and 〈S〉 =

∫∞
0
SP (S)dS = 1, the probability

distribution of the spacing S is

PGOE(S) =
π

2
Se−

π
4
S2

. (1.7)

• Gaussian Unitary (GUE) for complex Hermitian random matrices. The time-reversal

symmetry is broken (e.g. by the presence of a magnetic �eld) and the 2× 2 complex

random matrix is

HGUE =

H11 H12

H∗12 H22

 .
The diagonal elements are real and the o�-diagonal elements are complex. We have

H12 = HRe
12 + iHIm

12 . The di�erence between the eigenvalues is

S = E2 − E1 =
√

(H11 −H22)2 + (2HRe
12 )2 + (2HIm

12 )2. (1.8)

If we set x = H11 − H22, y = 2HRe
12 and z = 2HIm

12 then S =
√
x2 + y2 + z2. In this

case, we obtain

PGUE(S) =
32

π2
S2e−

4
π
S2

. (1.9)
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• Gaussian Symplectic (GSE) for quaternion self-dual matrices. In this case time-

reversal symmetry is preserved but the spin-rotation is not, e.g. in the presence of

spin-orbit interaction. The 4× 4 quaternion random matrix is

HGSE =



a 0 X Y

0 a −Y ∗ X∗

X∗ −Y b 0

Y ∗ X 0 b


,

where the diagonal elements a, b ∈ R, X = XRe + iXIm, Y = Y Re + iY Im and

X∗,Y ∗ are their complex conjugate. By diagonalizing HGSE we obtain 4 eigenvalues

degenerate by two (Kramers pairs). The di�erence between the two pairs is

S = E2 − E1 =
√

(a− b)2 + (2XRe)2 + (2XIm)2(2Y Re)2 + (2Y Im)2. (1.10)

If we set x = a − b, y = 2XRe, z = 2XIm, w = 2Y Re and k = 2Y Im, then S =√
x2 + y2 + z2 + w2 + k2. The probability distribution of the spacing S is

PGSE(S) =
218

36π3
S4e−

64
9π
S2

. (1.11)

The above universality classes constitute the Wigner-Dyson ensemble (or 3-fold way)

and the universal index β = 1, 2, 4 characterizes the level repulsion for each class such as

P (S) ∼ Sβ, for S → 0. The 3 distributions are plotted in Fig.1.5

8
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Figure 1.5: The distributions of neighboring energy levels P(S) for the standard Wigner-
Dyson ensembles according to the universal index β. GOE (β = 1) in blue, GUE (β = 2) in
red, GSE (β = 4) in black. They show level repulsion which is a characteristic of quantum
chaos.

1.3 Multifractality

At a metal-insulator transition we have a critical behavior and the eigenvalues follow an

intemediate distribution between Wigner and Poisson. At the critical point the eigenstates

are neither extended nor localized and exhibit a multifractal behavior [8, 9, 10, 11, 12, 13,

14, 15]. A multifractal is a non-homogeneous fractal where the fractal dimension Df has a

di�erent value if we choose a di�erent starting point [16, 17]. Multifractal measures are used

to study distributions of quantities on a geometric support. In a quantum lattice model the

geometric support of the wavefunctions is a lattice (e.g. square, honeycomb, kagome etc.)

and there is a systematic way to calculate the continuous spectrum of in�nite multifractal

dimensions. They are de�ned as

Dq = − 1

q − 1
lim
L→∞

ln
∑N

i=1 P
q
i

lnL
, q ∈ (−∞,∞), (1.12)

where Pi = |Ψi|2 is the probability density of an electron to be found on site i of the

9
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supporting lattice and is the basic measure of the multifractal formalism. N and L are the

total number of sites and the linear length scale, respectively. For q = 1 the generalized

fractal dimension is

D1 = −
∑N

i=1 Pi lnPi
lnL

=
S

lnL
, Pi = |Ψi|2, (1.13)

and measures the scaling of the Shannon entropy (S) with the length scale L. The dimension

D1 is called information dimension. For q = 2 the generalized fractal dimension is

D2 = −
∑N

i=1 P
2
i

lnL
, Pi = |Ψi|2, (1.14)

and is called correlation dimension. D2 describes the scaling with size L of the quantity∑N
i=1 P

2
i known as Inverse Participation Ratio (IPR), where

IPR =
N∑
i=1

P 2
i =

N∑
i=1

|Ψi|4 ∼ L−D2 . (1.15)

This measure is used to characterize the localization properties of a wavefunction. A per-

fectly extended (ballistic) Bloch wavefunction has probability amplitudes Ψi = 1√
N

over

all lattice sites N , has IPR =
∑N

i=1( 1√
N

)4 =
∑N

i=1
1
N2 = 1

N
, whereas a perfectly localized

wavefunction on just one lattice site has IPR = 1. For disordered states IPR takes values

between 0 and 1.

To summarize, the scaling of IPR (or PR = IPR−1) with the system size gives us

information about the multifractal character of a wavefunction and its degree of localization.

For an equally distributed wavefunction over all lattice sites N, all generalized dimensions

Dq are represented by the fractal dimension D0 of the supporting lattice. The wavefunction

is fully extended when Dq = D0, completely localized when Dq = 0 and has a multifractal

behavior for 0 < Dq < 1.

10
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1.4 Interactions

The non-interacting Hamiltonians considered previously are simple but e�ective. However,

almost all systems in nature contain interactions as they are complex having many con-

stituents coupled to each other. The general Hamiltonian which includes interactions is

H = H0 + U
∑
i

(
ni −

1

2

)(
ni+1 −

1

2

)
, (1.16)

H0 is the non-interacting Hamiltonian, U is the strength of interaction and ni = c†ici is

the number operator. In the last 15 years, Basko, Aleiner and Altshuler [18] have carried

an extemely challenging and still ongoing research in the �eld of the so called Many-Body

Localization (MBL). This interesting phenomenon can be considered at �rst as an extension

of the single-particle Anderson Localization to interacting systems. An interacting disor-

dered system can be in two possible states, localization (no ergodicity) or thermalization

(ergodicity). A quantum phase transition to MBL with the absence of ergodicity means

that in this phase the system fails to thermally equilibrate. This feature is of fundamental

importance as it is closely related to the foundations of statistical mechanics and the notion

of information transfer [19, 20].

A closed quantum system, isolated from the environment and initially in a single (pure)

quantum state |Ψ0〉 will evolve unitary in time according to the Schrödinger equation ex-

pected to reach a thermal Gibbs state, invariant under future evolution of the system. In

order for this to happen, the system has to be able to act as its own reservoir. The thermal

state contains no information about the initial state |Ψ0〉 but information itself cannot be

erased. The system has no memory and in a sense hides the quantum information. This

is not always the case, because the Anderson localized systems cannot act as their own

reservoirs and therefore do not exhibit thermalization [21, 22, 23, 24].

11
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1.5 Outline

We study the energy and wavefunction statistics in three kinds of disordered systems. First,

a lattice with nearest neighbor bond disorder which preserves lattice chiral symmetry. The

second case is a superconductor with bond disorder supporting the elusive Majorana modes.

Third, a many-body system of qubits with both random potentials and interactions is stud-

ied. Our main motivation is to examine the statistics of the energy levels and wavefunctions

over the random ensemble near the Fermi level (E = 0). Our approach is to initially consider

small sizes and reach larger ones in a �nite size scaling spirit. The statistical properties of

the energy levels can show the ergodic or localized behavior. Moreover, we �nd at what

degree the states have fractal characteristics. We address the following questions. For chiral

disordered systems is there an even-odd distinction and what are its rami�cations? In the

presence of non-trivial topology are the Majorana modes robust to disorder and is there any

indication of their multifractality? Finally, how the many-body localization appears and

what are its characteristics ?

In Chapter 2, we discuss the presence of o�-diagonal disorder in a one and two dimensional

lattices. We speci�cally stress the presence of chiral (or sublattice) symmetry and explore

the nature of the special E = 0 state which signi�es the even-odd asymmetry in both 1D

and 2D. Moreover, we show results for the level statistics and multifractality for this case.

In Chapter 3, we explore the interesting case of a topological superconductor. We introduce

the Kitaev toy model for a superconductor in one dimension and study its topological as-

pects. We show what happens in the presence of o�-diagonal disorder.

In Chapter 4, we examine a prototype interacting system. More speci�cally, we study the

XXZ Heisenberg quantum spin anti-ferromagnetic chain with disorder. The disorder com-

bined with interactions gives a new many-body localized phase.

In Chapter 5, we give an overall description of our results and discuss possibilities of future

work.
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One-electron Disordered Systems

2.1 Chiral Disordered Systems

Our motivation is to study the localization peculiarities which arise with the presence of

o�-diagonal disorder at the band center [25, 26, 27, 28] and to explore the nature of the

E = 0 state. We consider a 1D chain with nearest neighbor (NN) hopping t of random

strength and without on-site potential. We assume open boundary conditions in 1D and

the Hamiltonian with no diagonal disorder is

H =
∑
n

t(c†ncn+1 + c†n+1cn). (2.1)

We conviently choose the hoppings t = eV , where V = lnt are taken from the uniform (box)

distribution so that V ∈ [−W
2
, W

2
] with constant probability density function P (V ) = 1

W
.

The mean value is 〈V 〉 =
∫W/2
−W/2 V P (V )dV = 0 and the variance is σ2

V = 〈V 2〉 − 〈V 〉2 = W 2

12
.

The random distribution function P̃ (t) will be

P̃ (t) = P (V )
dV

dt
⇔ P̃ (t) =

1

Wt
, (2.2)
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since t = eV ∈ [e−W/2, eW/2]. The mean value is 〈t〉 =
∫ eW/2
e−W/2

tP̃ (t)dt = 2
W
sinh(W

2
) and

the variance is σ2
t = 〈t2〉 − 〈t〉2 = 1

W 2 (2 + Wsinh(W ) − 2cosh(W )). The logarithmic dis-

tribution is chosen to ensure that all hoppings t will take positive non-zero values, which

can become arbitrarily strong. For comparison, the uniform and logarithmic distributions

alongside with the Gaussian(0,1) are plotted in Fig.2.1 for disorder strength W = 1.

Figure 2.1: The random hopping distributions for W = 1, uniform (blue), logarithmic (red)
and Gaussian (black). The mean is 0 and the variance is 1.

In order to illustrate the major features of even and odd lattice sizes, analytical results

are presented for N = 2 and N = 3. We found ρ(E), IPR(E) and level statistics P (S)

near E = 0. For both cases, we choose the logarithmic distribution for the hoppings with

W = 1.

(a) (b)

Figure 2.2: (a) N=2 and (b) N=3.
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For N = 2 (Fig.2.2(a)), in the discrete basis |n〉 the Hamiltonian matrix is

HN=2 =

0 t

t 0

 .

The matrix has eigenvalues E± = ±t and normalized eigenvectors |ΨE±〉 = 1√
2

( 1
±1 ).

The Inverse Participation Ratios are IPRΨE+
= IPRΨE−

=
∑N

i=1 |Ψi|4 = ( 1√
2
)4 +( 1√

2
)4 = 1

2
.

(a) (b)

(c)

Figure 2.3: N = 2. (a) ρ(E) has a gap, (b) IPR(E) and (c) P (S). In black is the analytic
curve. IPR = 0.5 means that the support of the states are on both the N = 2 sites.
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Considering many realizations, the density of states ρ(E) and IPR(E) are plotted in

Fig.2.3(a),(b) and the level spacing distribution P (S) is plotted in Fig.2.3(c) with S =

E2 − E1 = 2t. The black line denotes the analytic curve which is P (S) = P̃ (t) dt
dS
⇔

⇔ P (S) = 1
2t

= 1
S
.

For N = 3 (Fig.2.10(b)) in the discrete basis |n〉 the Hamiltonian matrix is

HN=3 =


0 t1 0

t1 0 t2

0 t2 0

 .

The matrix has eigenvalues E1 =
√
t21 + t22 , E2 = 0 and E3 = −

√
t21 + t22. The corresponding

normalized eigenvectors are

|ΨE1〉 =
t2√

2t21 + 2t22


t1/t2√
t21+t22
t2

1

 , |ΨE2〉 =
t2√

2t21 + 2t22


1

0

−t1/t2

 , |ΨE3〉 =
t2√

2t21 + 2t22


t1/t2

−
√
t21+t22
t2

1


The corresponding Inverse Participation Ratios are

IPRΨE1
= IPRΨE3

=
N∑
i=1

|Ψi|4 =
t41 + t42 + t21t

2
2

2(t21 + t22)2
, IPRΨE2

=
t41 + t42

(t21 + t22)2

Considering many realizations, the calculated density of states ρ(E) and IPR(E) are plotted

in Fig.2.4(a),(b).

For the level spacing distribution P (S) we have S = E3−E2 =
√
t21 + t22. We use the Dirac

Delta Transformation of random variables to compute the analytic relation as

P (S) =
∫ √e

1√
e

∫ e 1
2

e− 1
2

1
t1t2

δ(S −
√
t21 + t22) dt1dt2 ⇔

16
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⇔ P (S) =


ln(eS2−1)

S
, 0.57 < S < 1.168

1−ln(S2−e)
S

, 1.168 < S < 1.55

0 , otherwise

(2.3)

The resulting piecewise curve for the P(S) distribution is plotted in Fig.2.4(c) with the two

branches in blue and red color, respectively.

(a) (b)

(c)

Figure 2.4: N = 3. (a) ρ(E), (b) IPR(E), (c) The piecewise P (S) function consists of two
branches in blue and red color, respectively.
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The crucial di�erence between the two cases is apparent. For the odd size N = 3 the

E = 0 eigenstate has amplitudes only on odd sites. This E = 0 state is not present in even

size N = 2. This distinction also holds for larger system sizes and is closely related to an

underlying even-odd symmetry even for large-N.

Chiral symmetry is one of the basic discrete symmetries which has to do with the mirror

symmetry [29, 30]. The prerequisite for chiral symmetry is the presence of a bipartite lattice

(Fig.2.5), which contains two sublattices A and B where the hopping terms connect sites

of sublattice A with sites of sublattice B [31, 32, 33]. The A's and B's may represent two

di�erent kinds of atoms. A typical example is a disordered lattice with random hopping

connecting A to B and without on-site potentials. The diagonal disorder breaks chiral

symmetry. The chiral Hamiltonian can be written in an o�-diagonal block symmetric form

in the A-B sublattice basis as

H =
∑
i,j

ti,j(c
†
icj + h.c.) =

 0 HAB

H†AB 0

 ,

where the matrix HAB contains the hoppings which connect the two sublattices.

The Hamiltonian H satis�es the anticommutation relation {H, σz} = Hσz + σzH = 0,

where σz = ( 1 0
0 −1 ) is the Pauli matrix, and can be written as H = −σzHσz.

The state with energy E has a wavefunction |Ψ〉 =
(

ΨA
ΨB

)
and the Schrödinger equation is

H|Ψ〉 = E|Ψ〉

⇔ −σzHσz|Ψ〉 = E|Ψ〉

⇔ H(σz|Ψ〉) = −E(σz|Ψ〉).

(2.4)
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Figure 2.5: An example of a square lattice represented as a bipartite lattice, consisting of
two interconnected sublattices, A with black and B with red.

From Eq.(2.4) the state with energy E and wavefunction |Ψ〉 =
(

ΨA
ΨB

)
is accompanied by

a state with energy −E and wavefunction σz|Ψ〉 = ( 1 0
0 −1 )

(
ΨA
ΨB

)
=
(

ΨA
−ΨB

)
. The eigenvalues

come in pairs E,−E around E = 0 and the wavefunctions have the same amplitude in the

sites of the A sublattice and opposite amplitudes in the B sublattice. The density of states

is an even function of E, ρ(E) = ρ(−E). For an odd lattice of size N at least one E = 0

state is always present. Moreover, if NA are the number of sites for sublattice A and NB for

sublattice B then |NA −NB| zero modes exist.

Moreover, the presence of chiral symmetry e�ciently reduces the size of corresponding

matrices for diagonalization by half allowing less computational time. We have

H2 =

 0 HAB

H†AB 0


 0 HAB

H†AB 0

⇔ H2 =

HABH
†
AB 0

0 H†ABHAB


since we can simply diagonalize the matrix HABH

†
AB or the H†ABHAB giving the squared

eigenvalues E2
j , j = 1, ..., N .
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2.2 1D O�-Diagonal Disorder

The simplest model which is guaranteed to have a eigenstate at E = 0 (zero mode) is an

odd-size N bipartite chain with o�-diagonal disorder (Fig.2.6).

Figure 2.6: An example of a 1D bipartite lattice with two interconnected sublattices, A
(black) and B (red) and random hoppings tn

The structure of the wavefunction for this state is calculated exactly. The Schrödinger

equation for E = 0 is HΨ = 0 and at

even sites : Ψ2n = 0, n = 1, 2, ..., N−1
2

,

odd sites : Ψ2n+1 = (−1)n
∏n

m=1( t2m−1

t2m
)Ψ1, n = 1, 2, ..., N−1

2
.

(2.5)

We assume tn = eVn ⇔ lntn = Vn, where Vn are random numbers from a uniform distribution

with 〈Vn〉 = 0 and 〈V 2
n 〉 = W 2

12
. The odd site ampitudes are

Ψ2n+1 = (−1)n
n∏

m=1

eV2m−1−V2mΨ1.

The exponents can be written

Xn =
n∑

m=1

(V2m−1 − V2m) =
n∑

m=1

(lnt2m−1 − lnt2m), (2.6)

whereXn is an example of a random walk (discrete Brownian motion) so that the amplitudes

become

Ψ2n+1 = (−1)neXnΨ1
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Assuming independent random variables, the mean of Xn is

〈Xn〉 = 〈
n∑

m=1

(V2m−1 − V2m)〉 =
n∑

m=1

〈(V2m−1 − V2m)〉 =
n∑

m=1

(〈V2m−1〉 − 〈V2m〉) = 0

and the variance is

V ar(Xn) = 〈X2
n〉 − 〈Xn〉2 = 〈(

n∑
m=1

(V2m−1 − V2m))2〉 =

=
n∑

m=1

〈(V2m−1 − V2m)2〉 =
n∑

m=1

(〈V 2
2m−1〉+ 〈V 2

2m〉) = n
W 2

6
= n(2σ2

V ).

The standard deviation is
√
〈X2

n〉 = (
√

2σV )
√
n and setting Ψ1 = 1 the wavefunction

becomes

|Ψ2n+1| ∼ e±(
√

2σV )
√
n.

The E = 0 wavefunction typically grows (decays) sub-exponentially as opposed to Anderson

Localization exponential growth (decay) ∼ e±γ|n|, γ = 1
ξ
is the Lyapunov exponent or the

inverse localization length [34, 35].

The Inverse Participation Ratio (IPR) for the E = 0 state is given by

IPRΨ(E=0)
=

1 +
∑(N−1)/2

n=1 |Ψ2n+1|4

(1 +
∑(N−1)/2

n=1 |Ψ2n+1|2)2
. (2.7)

The scaling of IPR with the system size N indicates its multifractal behavior. We �rst

calculate the 〈IPR〉 over many realizations and then plot the ln〈IPR〉 as a function of

lnN . The result is shown in Fig.2.7 for di�erent values of disorder strength W .
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For small sizes there is a linear scaling and a fractal dimension D2 exists. For small W

we see a dimension close to 1. As we increase the disorder W the D2 clearly has non-integer

values. For strong enough disorder the dimension would eventually approach 0 and the

multifractal behavior will vanish.

Figure 2.7: The scaling of 〈IPR〉 with system size N at E = 0. A linear behavior can be
observed for small sizes. An ensemble of 105 random realizations is considered.

(a) (b)

Figure 2.8: The probability distribution of (a) lnIPR and (b) ln|Ψ|max at E = 0 for di�erent
sizes N , disorder strength W = 1 and an ensemble of 105 realizations.

In Fig.2.8 (a) we plot the probability distribution of lnIPR for di�erent sizes N . The

disorder strength is W = 1. As we increase the size a fast convergence is apparent after

about N = 101. The correlation dimension D2 exists only for small enough sizes.
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In order to further check the convergence we calculated ln|Ψ|max and its scaling with

the logarithm of size N . The result is shown in Fig. 2.8 (b). We clearly observe that the

distribution of ln|Ψ|max is approaching a Gaussian with mean -1 and standard deviation of

about 0.24. The result is in accordance to the random walk process exhibited by ln|Ψ| (see

Eq.2.6). Another measure that shows a similar behavior at E = 0 is the Shannon Entropy

S = −
N∑
n=1

|Ψn|2ln|Ψn|2.

As we increase the system size N we also see a convergence of S to a Gaussian after N = 101

and the existence of an information dimension D1 is obtained for small sizes. The result is

plotted in Fig.2.9 for disorder strength W = 1.

Figure 2.9: The probability distribution of the Shannon Entropy (S) at E = 0 for di�erent
sizes N , disorder strength W = 1 and an ensemble of 105 realizations.

A picture of the E = 0 wavefunction in 1D can be seen in Fig.2.10 (a) where the proba-

bility density is plotted versus a number of middle lattice sites for N = 5001 and W = 0.5.

In Fig.2.10 (b) the log-linear plot is presented and we can clearly see extreme �uctuations

as they are revealed via the fractal structure.
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(a) (b)

Figure 2.10: (a) The probability density |Ψ|2 for the E = 0 state versus size, for N = 5001
and W = 0.5. The range of sites is [2200, 4000] (b) The log-linear plot of (a).

We also study the e�ect of disorder on the correlation dimension D2 which is plotted as

a function of W in Fig.2.11. For small values of W the D2 begins from 1 and approaches

asymptotically to zero as W becomes larger. Besides the arithmetic mean ln〈IPR〉, we

also provide results for the geometric mean e〈lnIPR〉 from the linear scaling of which D̃2 is

calculated. The two curves are not the same and this is an implication that the E = 0

state undergoes a "freezing" transition [36, 37]. For both cases, the fractal nature occurs

for small sizes N .

Figure 2.11: The correlation dimensions D2 and D̃2 as a function of disorder strength W
for the E = 0 state.
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Multifractal analysis is an essential tool to study the wavefunction �uctuations near a

critical regime [38, 13], e.g. at the critical point of the metal-insulator transition. In Fig.2.12

(a), we calculate the positive multifractal dimensions for q ∈ [0, 10] and a− f(a) spectra.

(a) (b)

Figure 2.12: (a) The multifractal spectrum of dimensions Dq, q ∈ [0, 10] for the E = 0 state
and W=0.5 (red), 1 (blue), 1.5 (green). (b) The corresponding f(a) spectrum. It can also
be seen how the position of the maxima a0 is a�ected by disorder.

For q = 0, we obtain the Hausdor� dimension D0 = 1 as expected for a 1D system.

For q = 2 we have the correlation dimension D2 we have already calculated explicitly. For

larger values of q, we observe a decay towards Dq = 0. This behavior is more apparent when

the disorder is further increased. We also describe the statistical properties of multifractal

measures in terms of their singularity spectrum f(a) in Fig.2.12 (b) [39]. We de�ne

τq = (q − 1)Dq. The f(a) and τq are related by a Legendre transformation as

τq = qa− f(a) , a =
dτq
dq

, q =
df(a)

da
, (2.8)

where a is the Lipschitz-Hölder exponent and f(a0) = D0. For W = 1, the resulting

exponent is a0 ≈ 1.45.
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The level statistics at E1, the closest energy near E = 0, is presented in the log-linear plot

of Fig.2.13 (a),(b) for odd and even system sizes respectively. For odd sizes the consecutive

level di�erence is S = E1 and for even sizes S = 2E1. The Wigner curve is the dashed line

whereas the Poisson is the solid black one. We observe that for the given disorder strength

W = 1 the system seems to follow the Wigner curve for N = 81 and for N = 121 ultimately

reaches Poisson. Interestingly, a faster approach to localization and the Poisson limit is

found for even sizes at N = 80. The system also passes from the Wigner curve at N = 20.

This result indicates that the system brie�y exhibits a quantum chaotic behavior (Wigner)

for small sizes before reaching localization (Poisson). This crossover clearly is distinct for

even and odd sizes N .

(a) (b)

Figure 2.13: The distribution P (S) of the consecutive level spacing of the �rst positive
energy E1 and W = 1 in a log-linear plot for (a) odd sizes and (b) even sizes. An ensemble
of 50000 realizations was considered.
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2.3 2D O�-Diagonal Disorder

We now extend our model to a 2D square lattice [40, 41, 42, 43, 44] for two sublattices A

and B and consider the vertical and horizontal random hoppings logarithmically distributed

(Fig.2.5). The linear size of the lattices is L and N = L2. When N is odd an E = 0 mode

always exists at the middle of the energy spectrum and the wavefunction has zero amplitude

at the sites of B sublattice. A picture of a 2D wavefunction at E = 0 is shown in Fig.2.14

where the logarithm of the wavefunction ln|Ψ| is plotted for size N = 1212 = 14641 and

various disorder strengths W = 0.1, 1, 2, 10.

It is apparent that the typical pictures of the 2D wavefunctions display fractal charac-

teristics. For weak disorder (W = 0.1), we observe an almost periodic distribution. For

the intermediate values (W = 1, W = 2) a fractal structure is obvious. For higher values

of disorder (W = 10) the amplitudes are extremely small and the wavefunction strongly

decays. Moreover, these amplitudes are not concentrated in a small region of space but they

seem scattered randomly over the lattice.

We study the multifractality of the E = 0 state by scaling the 〈IPR〉 with the linear

size L. In Fig.2.15 (a) we plot the probability distribution of lnIPR for various sizes and

disorder W = 1. In contrast to the 1D case, we observe no convergence for the considered

sizes.
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(a) W=0.1 (b) W=1

(c) W=2 (d) W=10

Figure 2.14: N = 1212 = 14641. The logarithm of the E = 0 wavefunction ln|Ψ| for a
2D square lattice with random hopping and various disorder strengths, (a) W = 0.1, (b)
W = 1, (c) W = 2 and (d) W = 10. The purple areas represent the higher values and the
dark yellow the lower values.
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(a) (b)

Figure 2.15: (a) The distribution P (lnIPR) and (b) the logarithm of the E = 0 wavefunc-
tion, for disorder strength W = 1 and di�erent sizes linear lengths L.

In Fig.2.15 (b) we plot the distribution of the logarithm of the E = 0 wavefunction. For

the sizes considered, it is not decisive whether we have convergence to a known distribu-

tion as in the 1D case. We also compute the scaling of arithmetic mean 〈lnIPR〉 and of

geometric mean e〈lnIPR〉 with system size lnN . From their linear scaling, we obtain the

fractal dimensions D2, D̃2. The two curves are shown in Fig.2.16. Their di�erence again

implies the existence of a "freezing" transition. We observe that for small values of W , the

fractal dimension is almost 2 which means that the E = 0 is a completely extended state

covering all the available 2D space. For very large disorder (W > 10) the D2, D̃2 → 0 and

the wavefunction becomes localized. For intermediate values of disorder the dimension D2,

D̃2 acquire non-integer values and E = 0 states exhibits a multifractal behavior.
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Figure 2.16: The fractal dimension D2 as a function of disorder strength W for the 2D
E = 0 wavefunction of the random hopping square lattice.

We further analyze the multifractal properties by calculating the multifractal spectrum

Dq. We consider only positive multifractal dimensions with q ∈ [0, 10]. The results can be

seen in Fig.2.17 (a).

(a) (b)

Figure 2.17: (a) The multifractal spectrumDq for the E = 0 state of the 2D random hopping
model for W = 0.5 (red), 1 (blue), 1.5 (green). (b) The corresponding f(a) spectrum.

For q = 0, the Hausdor� dimension D0 = 2 is obtained as expected for a 2D system. For

q = 2 we get the correlation dimension D2 as calculated before. For larger values of q a

decay of Dq is observed. As W increases this behavior is even more quicker. We perform

the Legendre transformation (Eq.2.8) to calculate the f(a) spectrum in Fig.2.17 (b). We
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present how the multifractal spectrum scales with disorder and how the position of maxi-

mum is a�ected. For W = 1, the resulting exponent is a0 ≈ 2.6.

The level statistics of the E1, the energy closest to E = 0, is presented in the log-linear

plot of Fig.2.18.

(a) (b)

Figure 2.18: (a) The distribution P (S) of the consecutive level spacing for odd system sizes.
(b) The distribution of the consecutive level spacing for even system sizes. In both cases
the strength of disorder is W = 1 and about 104 realizations are considered.

For odd sizes the consecutive level di�erence is S = E1 and for even sizes we have

S = 2E1. The Wigner curve is the dashed line whereas the Poisson is the solid black one.

It is clear that P (S) follows closely the Wigner distribution in a scale-invariant way. For

even sizes the behavior is rather di�erent and neither Wigner nor Poisson is obtained. We

have an intermediate behavior. The localization length in 2D is very large and a quantum

chaotic behavior is expected for sizes way smaller than the localization length. For the sizes

considered here, a clear distinction between even and odd sizes N exists.
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2.4 Summary

In summary, we presented an analytical and numerical study for the e�ect of o�-diagonal

disorder in 1D and 2D systems. We focused mostly at the E = 0 midband state which exists

for �nite lattices of odd size N .

In 1D, for even size N systems the corresponding level statistics of the �rst positive energy

exhibits a faster approach to localization. On the contrary for odd size lattices Anderson

localization occurs for larger values of N . The wavefunction of the random hopping chain

is analytically calculated and is shown to be multifractal for small sizes (e.g. N < 100 for

W = 1). More speci�cally, the correlation dimension D2 varies strongly with disorder as it

ranges from space �lling extended behavior (D2 = 1) for very weak disorder to point-like

localized behavior (D2 → 0) for very strong disorder. For intermediate values of disorder

0 < D2 < 1. The f(a) spectrum is also calculated and the position of the maximum for

W = 1 is found a0 = 1.45.

In 2D, the level statistics for the �rst positive energy with odd size N is found to exhibit

strong level repulsion and follow a scale-invariant Wigner distribution. For even sizes, we

also �nd an invariance for the distribution which becomes intermediate to Wigner and

Poisson. In 2D the E = 0 wavefunction exhibits multifractal characteristics for sizes below

the localization length. However, it is not decisive if a convergence to a known distribution

exists as found in 1D. For small values of disorder D2 = 2 and the wavefunction is fully

extended to the available space. For intermediate values disorder, 0 < D2 < 2 and for very

strong disorder D2 → 0. The calculated f(a) spectrum for W = 1 shows a maximum at

a0 = 2.59.

In general, for large scales, chiral disordered systems behave like ordinary disordered systems

except for the E = 0 mode which shows a critical behavior. Recent experiments [45, 46, 47,

48, 49] concerning even-odd symmetry and zero modes are conducted with cold atoms, so it

is of great importance to understand the nature of disorder and also how topological e�ects

and interactions shape the features of such disordered systems.
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Topological Disordered Systems

Novel phases of matter and fascinating properties of materials have always been a main

subject of research in condensed matter physics. In the last few decades, the role of topol-

ogy in solid-state systems has attracted a lot of research interest. Topology is the branch

of mathematics which studies abstract shapes and concerns quantities that remain intact

invariant under continuous transformations, e.g. when we have a number of holes which

remain although the shape might change. The topological phases are characterized by inte-

ger numbers which are called topological invariants, e.g. Chern numbers, winding numbers,

etc. Two objects are topologically equivalent when they have the same topological invariant

and can be continuously transformed into each other. A change in the topological invariant

indicates a topological phase transition, e.g. by closing the holes or making the energy gap

vanish for our systems.

Topological insulators are electronic materials that have insulating behavior in their in-

terior (bulk) but conduct electricity on their surface. In other words, in the bulk the states

can be Anderson localized due to disorder and in the surface conducting. In 3D we may

have surface states, in 2D edge states and in 1D point-like states known as Majorana states.

The topological states are robust and insensitive to smooth changes or small disorder. The

�rst example of a topological insulator was the 2D Integer Quantum Hall E�ect (IQHE)
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discovered in the 1980's [50]. The Hall conductivity σxy for potential in the y-direction and

current in the x-direction is quantized to integer values νe2

h
, ν is an integer with an accuracy

of 10−9. The IQHE describes electrons moving on a 2D plane subjected to strong perpendic-

ular magnetic �eld B and very low temperatures. According to classical mechanics electrons

will follow circular orbits with radius ∼ 1
B
and quantum mechanics replaces these orbits by

quantized orbitals called Landau discrete energy levels En = (n + 1
2
)~ωc, ωc = eB

mc
is the

cyclotron frequency. At the edges of a �nite sample the electrons do not have enough space

to complete a full circle and bounce o�. This leads to "skipping orbits" which propagate

along the edge in the direction determined by the magnetic �eld. These edge states are

known to be chiral (one-way) and are responsible for the quantized Hall conductivity. The

number of edge states de�nes the topological invariant called Chern number.

The theory developed for topological insulators can be generalized to topological super-

conductors. A superconductor is a material which below a very low critical temperature can

conduct electricity without resistance. A topological superconductor has superconducting

behavior in the bulk but hosts conducting states on the surface. In one-dimension the two

point-like edge states corresponding to Majorana fermions are like particles being their own

antiparticles [51, 52]. In a sense, they are halves of ordinary fermions and a fermionic state

can be obtained as a superposition of two Majorana fermions. The Majorana fermions are

well separated at the two ends of the chain and can be used to encode non-local quantum

bits which perform error-resilient computation. The controlling and manipulating of these

emergent properties of qubits poses a signi�cant challenge as they are very fragile and prone

to loss of their behavior via decoherence [53, 54, 55, 56].

In mid 90's, with the growing level of activity in disordered mesoscopic physics and

superconductivity, an extension of the standard Wigner-Dyson universality classes was found

by Altland and Zirnbauer [57] who introduced an expanded classi�cation scheme based on

generic symmetries which includes superconductors.

34



Chapter 3. Topological Disordered Systems

The time-reversal symmetry (TRS), the particle-hole symmetry (PHS) and their product

chiral/sublattice symmetry (SLS) give the 10 universality classes shown in Table 1.1.

TRS PHS SLS

standard
(WD)

A (unitary) 0 0 0
AI (orthogonal) +1 0 0
AII (symplectic) -1 0 0

chiral
(sublattice)

AIII (chiral unitary) 0 0 1
BDI (chiral orthogonal) +1 +1 1
CII (chiral symplectic) -1 -1 1

BdG

D 0 +1 0
C 0 -1 0

DIII -1 +1 1
CI +1 -1 1

Table 3.1: Ten symmetry classes of single particle quantum Hamiltonian classi�ed in terms
of time-reversal symmetry (TRS), particle-hole symmetry (PHS) and chiral (or sublattice)
symmetry (SLS).

The �rst 3 universality classes are the standard "Wigner-Dyson" classes used in quantum

chaotic systems. The next 3 classes have the addition of chiral symmetry. A paradigmatic

model with chiral symmetry is a bipartite lattice with o�-diagonal disorder discussed in Ch.2.

The last 4 classes are relevant to superconductors for Bogoliubov-deGennes quasi-particles

in the presence of disorder [58, 59, 60, 61].

In the following sections we study the topological properties of one-dimensional super-

conducting chain with p-wave pairing and show how the presence of disorder a�ects the

behavior of the E = 0 Majorana modes. This work initiated in [62] where the e�ect of

disorder in the Kitaev chain was considered.
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3.1 1D p-wave Superconductor

We consider the toy model introduced by A.Kitaev [63, 64] which describes a 1D spinless

p-wave superconductor supporting Majorana fermions. The spinless Hamiltonian is

H = µ
L∑
j=1

c†jcj + t

L−1∑
j=1

(c†jcj+1 + c†j+1cj) + ∆
L−1∑
j=1

(c†jc
†
j+1 + cj+1cj), (3.1)

where c†j(cj) are the electron creation (annihilation) operator at site j, t is the hopping, µ

the chemical potential and ∆ is the p-wave pairing amplitude. We assume µ, t,∆ to acquire

real and positive values, L denotes the system size and we set the lattice constant equal to 1.

We note that the p-wave pairing is unconventional in that the electrons pair in a triplet state

with parallel spins in contrast to the conventional s-wave pairing of the Bardeen-Cooper-

Schrie�er (BCS) mean-�eld theory [65] which only couples electrons with opposite spins in

a singlet state [66, 67]. Nevertheless, in the p-wave model we consider each site to be either

occupied or empty by an e�ectively spinless fermion and the superconducting term creates

Cooper pairs in adjacent lattice sites. The Pauli exclusion principle forbids a site to be

doubly occupied.

Due to the inherent particle-hole symmetry in superconducting systems, we can conve-

niently split the chain into two interconnected chains one for electrons and one for holes

(see Fig.3.1).

Figure 3.1: 1D chain with real p-wave pairing ∆. The electron(hole) chain sites are depicted
by full(empty) circles, j denotes the site.
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The Schrödinger di�erence equations for the j-th unit cell are

EΨe
j = µΨe

j + tΨe
j+1 + tΨe

j−1 + ∆Ψh
j+1 −∆Ψh

j−1

EΨh
j = −µΨh

j − tΨh
j+1 − tΨh

j−1 −∆Ψe
j+1 + ∆Ψe

j−1.

We take into account the periodicity of the lattice via the Bloch's theorem by assuming

plane wave solutions Ψe
j = Ψee

ikj , Ψh
j = Ψhe

ikj for electrons and holes, respectively. We

obtain

(E − µ− teik − te−ik)Ψe −∆(eik − e−ik)Ψh = 0

∆(eik − e−ik)Ψe + (E + µ+ teik + te−ik)Ψh = 0

and we �nd the eigenvalues

∣∣∣∣∣∣∣
E − 2tcosk − µ −2i∆sink

2i∆sink E + 2tcosk + µ

∣∣∣∣∣∣∣ = 0⇔ (E−2tcosk−µ)(E+2tcosk+µ)−4∆2sin2k = 0

⇔ E±(k) = ±
√

(2tcosk + µ)2 + (2∆sink)2, k ∈ [−π, π]. (3.2)

The energy dispersion relation for the 1D p-wave superconductor (Eq.3.2) consists of two

energy bands, one for the electron and one for the hole. The Hamiltonian of spinless electrons

in the momentum space can be written in the Bogoliubov-deGennes (BdG) form

H =
1

2

∑
k∈[−π,π]

Ψ†kH(k)Ψk , H(k) =

−2tcosk − µ −2i∆sink

2i∆sink 2tcosk + µ

 , (3.3)

where Ψ†k =
(
c†k c−k

)
is the two-component Nambu vector [68, 69]. The matrix H(k) is a

2x2 Hermitian matrix written as
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H(k) = ~d(k) · ~σ =

= (−2tcosk − µ)σz + (2∆sink)σy, (3.4)

in terms of the identity matrix I and Pauli matrices ~σ = (σx, σy, σz), where the vector

~d(k) = (dx, dy, dz) = (0, 2∆sink,−2tcosk−µ). The diagonalization of H(k) gives the energy

dispersion E±(k) we have found, and the corresponding normalized eigenvectors which are

|±〉 =
dy√

d2
y +

(√
d2
z + d2

y ± dz
)2

±i
(√

d2z+d2y±dz
)

dy

1

 (3.5)

In terms of the components of the vector ~d(k) the energy dispersion can be rewritten as

E±(k) = ±
√
d2
z + d2

y. The gap closes when both

dz = 2tcosk + µ = 0

dy = 2∆sink = 0

are satis�ed. This happens at k = 0 for µ = −2t and at k = π for µ = 2t. Thus, we

have 3 quantum phases, µ < −2t, −2t < µ < 2t, µ > 2t. Since we initially assumed

that µ, t,∆ > 0, the phase diagram (∆
t
, µ

2t
) of the 1D p-wave superconductor is plotted

in Fig.3.2(a). In Fig.3.2(b-e), we show the energy dispersions E(k) at the exact points

denoted with the red stars in Fig.3.2(a). When µ varies from 0 to 3, the energy gap closes

and reopens showing the band inversion mechanism characteristic to topological insulators

and superconductors.
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(a)

(b) (c)

(d) (e)

Figure 3.2: (a) The phase diagram (∆
t
, µ

2t
) of the 1D p-wave superconducting chain. The red

stars indicate the special points for the energy dispersion (b) µ = 0, (c) µ = 1, (d) µ = 2
and (e) µ = 3. In Fig.3.2(b)-(e) we have t = 1 and ∆ = 0.5.
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The topological aspects of this model are obtained by calculating the winding number

ν ∈ Z which is an example of a topological invariant [70, 71]. The winding number de�nes the

total number of times that a curve winds counterclockwise around a given point. In our case

the curve follows the movement of the tip of the vector ~d(k) = (0, 2∆sink,−2tcosk−µ) when

k changes from −π to π. The tip moves around an ellipse on y-z plane with center at −µ. For

µ = 0 < 2t, the origin of ~d(k) is inside the elliptic loop and ν = 1 (Fig.3.2(b)). For µ = 2t,

the loop crosses the origin, the energy gap vanishes and ν cannot be de�ned (Fig.3.2(d)).

Finally, for µ = 3 > 2t, the origin is outside the loop and ν = 0 (Fig.3.2(e)). The three

cases are shown in the parametric plot of Fig.3.3. in blue, red and green, respectively.

Figure 3.3: The winding number for the (a) non-trivial topological case µ = 0 (blue), (b)
the topological phase transition point µ = 2 (red), (c) the trivial topological case µ = 3
(green). We set t = 1 and ∆ = 0.5.
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3.2 Disordered 1D p-wave Superconductor

Our aim is to study the Kitaev model in the presence of disorder. We focus our attention to

systems of �nite size L. The hopping t is a random variable from the uniform distribution

[−W
2
, W

2
], W is the strength of the disorder. The pairing ∆ is a real positive number and

µ = 0. The Hamiltonian matrix for electrons and holes has dimension dim(H) = 2L and

open boundary conditions are considered. First, we study the sizes L = 2 and L = 3 which

have the even-odd distinction.

(a) (b)

Figure 3.4: (a) Linear size L=2 even and (b) L=3 odd.

For L = 2 (Fig.3.4 (a)), in the discrete basis {|j〉, j = 1e, 2e, 1h, 2h} the Hamiltonian

matrix is

HL=2 =



0 t 0 ∆

t 0 −∆ 0

0 −∆ 0 −t

∆ 0 −t 0


.

The matrix has eigenvalues E1 = −t − ∆, E2 = −t + ∆, E3 = t − ∆, E4 = t + ∆ and

normalized eigenvectors

41



Chapter 3. Topological Disordered Systems

|ΨE1〉 =
1

2



−1

1

1

1


, |ΨE2〉 =

1

2



1

−1

1

1


, |ΨE3〉 =

1

2



−1

−1

−1

1


, |ΨE4〉 =

1

2



1

1

−1

1


(3.6)

The Inverse Participation Ratios of the corresponding eigenstates are IPRΨE1
= IPRΨE2

==

IPRΨE3
= IPRΨE4

=
∑N

i=1 |Ψi|4 = 4(1
2
)4 = 0.25. For many realizations with disorder

W = 1 we calculated the density of states ρ(E) and IPR(E). The plots are shown in

Fig.3.5(a),(b).

(a)

(b)

Figure 3.5: L = 2. (a) Density of states ρ(E) and (b) Inverse Participation Ratio IPR(E).
The pairing ∆ = 1.
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For L = 3 (Fig.3.4(b)), in the discrete basis {|j〉, j = 1e, 2e, 3e, 1h, 2h, 3h} the Hamiltonian

matrix is

HL=3 =



0 t 0 0 ∆ 0

t 0 t −∆ 0 ∆

0 t 0 0 −∆ 0

0 −∆ 0 0 −t 0

∆ 0 −∆ −t 0 −t

0 ∆ 0 0 −t 0


The matrix has 3 doubly degenerate eigenvalues E1,2 = −

√
2(t2 + ∆2), E3,4 = 0, E5,6 =

√
2(t2 + ∆2) and the normalized eigenvectors are

|ΨE1〉 =
1

N



t/∆

−
√

2(t2+∆2)

∆

t/∆

−1

0

1


, |ΨE2〉 =

1

N



−
√
t2+∆2√

2∆

t/∆

∆2−t2

∆
√

2(t2+∆2)
√

2t√
t2+∆2

1

0


, |ΨE3〉 =

1

N



t
2∆
− ∆

2t

0

− t2+∆2

2t∆

0

0

1



|ΨE4〉 =
1

N



t2+∆2

2t∆

0

− t
2∆

+ ∆
2t

1

0

0


, |ΨE5〉 =

1

N



t/∆
√

2(t2+∆2)

∆

t/∆

−1

0

1


, |ΨE6〉 =

1

N



√
t2+∆2√

2∆

t/∆

t2−∆2

∆
√

2(t2+∆2)

−
√

2t√
t2+∆2

1

0


,

N is the normalization. Considering many realizations with disorderW = 1 we calculated

the density of states ρ(E) and IPR(E) shown in Fig.3.6(a),(b).
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(a) (b)

Figure 3.6: L = 3. (a) Density of states ρ(E) and (b) Inverse Participation Ratio IPR(E).
The pairing ∆ = 1.

We observe an important di�erence between the two cases in analogy to the ∆ = 0 case

studied in Ch.2. For odd linear size L = 3 degenerate E = 0 modes exist (Fig.3.6(a)) which

are not present in even L = 2 system (Fig.3.5(a)). The E = 0 states are the Majorana

modes. This even-odd distiction which is apparent in very small sizes also holds true for

larger L. In Fig.3.7 we show the E = 0 doubling for L = 20 (even) and L = 21 (odd) where

W = 1.

(a) (b)

Figure 3.7: The E = 0 doubling for sizes (a) L = 20 and (b) L = 21 for ∆ = 1 and W = 1.
The index j numbers the eigenvalues.
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3.3 Level Statistics

In order to further study the Kitaev model near E = 0 we plot the density of states ρ(E)

for size L = 1001 with �xed o�-diagonal disorder W = 1. We vary ∆ from smaller than 1

to larger than 1 values. The two limits are shown in Fig.3.8.

(a)

(b)

Figure 3.8: The density of states ρ(E) for W = 1 and (a) ∆ < 1 and (b) ∆ > 1. The
linear size is L = 1001. The solid black curve is the density of states ρ(E) in 1D for W = 0
(Ch.1.1).
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We observe a peak at E = 0 when ∆ approaches zero in the "localization" limitW >> ∆.

On the contrary, when ∆ increases W << ∆ and the density of states behaves much more

like the 1D system in the absence of disorder represented by a solid black curve in Fig.3.8(b).

(a)

(b)

Figure 3.9: The distribution P (S) of the consecutive level spacing of the �rst positive energy
E1,W = 1 and ∆ = 1 for (a) even sizes and (b) odd sizes. An ensemble of 50000 realizations
is considered. The dashed curve is the Wigner distribution and the solid line is the Poisson
distribution.
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In order to study the energy level statistics near E = 0, we employ the spacings between

consecutive levels S = 2E1 for even L and S = E1 for odd L. We set W = 1 and ∆ = 1

�xed. The resulting log-linear plots are shown in Fig.3.9(a),(b). We �nd a faster approach

to Poisson limit for even size systems than for odd sizes in accordance with 1D lattices with

∆ = 0 studied in Ch.2.

3.4 Majorana Mode Multifractality

We now focus on the wavefunction statistics of the E = 0 Majorana modes in the presence

of disorder. For W = 0 (t = 1), ∆ 6= 0 and odd linear size L, we �nd two Majorana modes

localized at the two edges of the 1D chain. They are shown in Fig.3.10 with blue and red

color respectively.

Figure 3.10: The two Majorana modes localized at the edges for the linear size L = 1001.

For W 6= 0 (t random) the situation changes. The two Majorana modes become delocal-

ized and spread inside the whole lattice. In Fig.3.11 we show the structure of one Majorana

mode (blue) for various values of disorder W and �xed ∆ = 1. The linear size is L = 1001.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: The spread of the 1D Majorana mode for various values of disorder W (a)-(f).
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The E = 0 Majorana mode in the presence of o�-diagonal disorder can be treated via

a recursive relation without diagonalizing the Hamiltonian. The amplitude on each site is

calculated by a product of transfer matrices. The �rst iteration is shown in Fig.3.12. The

system size is denoted by L and M = L+1
2

is the number of e-h pairs.

Figure 3.12: The representation of the transfer matrix for L = 3. The E = 0 wavefunction
has non-zero amplitudes at the �lled circles and zero at the empty ones.

The Schrödinger di�erence equations for the e-h pair 1′ are

t1Ψe
1 + t2Ψe

2 −∆Ψh
1 + ∆Ψh

2 = 0

−t1Ψh
1 − t2Ψh

2 + ∆Ψe
1 −∆Ψe

2 = 0

⇔

 t1 −∆

∆ −t1


 Ψe

1

Ψh
1

 =

 −t2 −∆

∆ t2


 Ψe

2

Ψh
2



⇔

 Ψe
2

Ψh
2

 =

 −t2 −∆

∆ t2


−1 t1 −∆

∆ −t1


 Ψe

1

Ψh
1



⇔

 Ψe
2

Ψh
2

 =
1

∆2 − t22

 ∆2 + t1t2 −∆(t1 + t2)

−∆(t1 + t2) ∆2 + t1t2


 Ψe

1

Ψh
1

 .
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The recursive relation is expressed as

⇔

 Ψe
M

Ψh
M

 =
1∏

j=M−1

1

∆2 − t22j

 ∆2 + t2j−1t2j −∆(t2j−1 + t2j)

−∆(t2j−1 + t2j) ∆2 + t2j−1t2j


 Ψe

1

Ψh
1


We calculate the 〈IPR〉 for large L over many realizations and plot the ln〈IPR〉 as a

function of lnN . The result is shown in Fig.3.13(a) for di�erent values of disorder W .

(a)

(b)

Figure 3.13: (a) The scaling of 〈IPR〉 with system size L at E = 0 for ∆ = 1. The ensemble
consists of 105 realizations. An almost linear behavior is observed for small sizes and small
values of disorder. (b) For W = 1 and ∆ = 1 the probability distribution of lnIPR for
several sizes L approaches a Gaussian as found in Ch.2.
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We observe a linear scaling for small values of disorder W so that a fractal dimension D2

can be de�ned. As we increase W the slope becomes constant with the size and D2 → 0

which implies localized states. In Fig.3.13(b) we plot the probability distribution of lnIPR

for di�erent sizes L and disorder strengthW = 1. As we increase the size, a fast convergence

is apparent for sizes larger than L = 101. This gives a correlation dimension D2 only for

small enough sizes since the linear �t vanishes for larger L.

The e�ect of disorder on the correlation dimension D2 is shown in Fig.3.14. We highlight

that for W = 0 the D2 = 0. This is because the Majorana mode is strongly localized

and it has no fractal dimension. As we increase W the D2 acquires non-integer values

and for strong enough disorder D2 → 0. The geometric mean e〈lnIPR〉 from the linear scal-

ing gives the dimension D̃2. The D2 and D̃2 di�er so that a kind of freezing transition exists.

Figure 3.14: The correlation dimension D2 and D̃2 of the Majorana mode with ∆ = 1 as a
function of disorder W .
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3.5 Summary

The p-wave superconductor in one dimension without disorder demostrates interesting topo-

logical properties via the appearance of two Majorana modes localized at the two ends of

the chain. We add hopping disorder in the chain to examine the fate of the Majorana topo-

logical modes. We �nd an even-odd asymmetry as in Ch.2. A double degeneracy at E = 0

occurs only for odd systems. At the vicinity of E = 0 the calculation of level statistics

shows a faster approach to localization for even L sizes in comparison to odd L systems, as

in the case of disorder only (∆ = 0) studied in Ch.2. We have derived a recurrence relation

for the E = 0 state by using the product of transfer matrices. The scaling of the ln〈IPR〉

and the 〈lnIPR〉 with the logarithm of the system size gives the correlation dimension D2

and D̃2, respectively. For W = 0 the Majorana mode is localized and has D2 = D̃2 = 0. For

W 6= 0, the state spreads inside the lattice and acquires non-zero D2,D̃2 which indicate a

multifractal character. For very strong disorder, the state becomes localized with correlation

dimensions D2, D̃2 → 0.
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Many-Body Localization

4.1 Thermalization .vs. Localization

We have seen how the presence of disorder and topology a�ect the behavior of quantum

condensed matter systems. The addition of interactions makes the problem highly com-

plicated due to the required exponentially large Hilbert space. In general, a disordered

many-body system can either thermalize (ergodic) or become many-body localized (MBL).

Thermalization means that a state will cover all the available Hilbert space and the system

will achieve uniform temperature and equipartition of energy occurs. MBL, instead, means

that a state will be con�ned in a �nite region of the many-body Hilbert space. MBL is a

quantum phenomenon related with the absence of ergodicity in the system and denotes its

failure to thermally equilibrate.

A closed quantum system that is isolated from the environment will unitary evolve in

time according to the Schrödinger equation. If the system is initially in a quantum state

|Ψ0〉 it will reach a thermal Gibbs state. In order for this to happen the system has to

be able to act as its own reservoir. The thermal state contains no information about the

initial state, but according to the laws of Thermodynamics, information itself cannot be

erased. The system has no memory and in a sense hides the quantum information. On the
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contrary, the Anderson localized systems cannot act as their own reservoirs and therefore

do not exhibit thermalization. This raises the fundamental question whether a many-body

system thermalizes or not. The system with MBL avoids scrambling of stored quantum

information and can be used for quantum computing. A quantum manifestation of thermal

behavior is the Eigenstate Thermalization Hypothesis (ETH) [19, 20] which explains when

a quantum system can be described by equilibrium statistical mechanics. It states that the

mean value of the local observables at long times will follow the microcanonical ensemble.

MBL systems seem to violate the hypothesis of quantum thermalization.

Over the last few years [72], numerous works have revealed several interesting proper-

ties of MBL. For recent reviews, see [24, 73, 74]. The main result is the existence of a

disordered-induced dynamical transition between a thermal (ergodic) phase and a localized

(non-ergodic) phase [21, 75]. There is also evidence that for weak disorder the states are

ergodic and obey Wigner statistics, i.e. chaotic with level repulsion. For strong disorder the

MBL eigenstates are non-ergodic and obey Poisson statistics like integrable systems. In the

intermediate region the states can be extended non-ergodic [76].

The topic of MBL continues to attract much attention and experimental methods have

been developed, mostly with ultracold atoms. These atoms are well isolated from the en-

vironment exhibiting high level of quantum coherence. They are stored in optical lattices,

i.e. crystals made of light which are used to trap atoms at very low temperatures [77, 78].

The disorder is introduced by special modulated laser beams which can localize the spins in

space probing the features of MBL.

The problem presents a tedious computational task because of the exponentially large

dimension of many-body Hilbert space. We choose the method of exact diagonalization

[72] and we get the phase diagram for a many-body disordered system by examining level

statistics. We also pursue an eigenstate analysis. Several computational methods [79] are

also employed, such as decimation schemes [80] and machine learning techniques [81, 82]
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which help to distinguish many-body localized from ergodic eigenstates.

4.2 The Model

We study an isolated and static system of interacting spinless electrons at half-�lling [83].

The Hamiltonian of the system in a one-dimensional disordered lattice is

H = t
∑
j

(c†jcj+1 + c†j+1cj) +
∑
j

Vj

(
nj −

1

2

)
+
∑
j

Uj

(
nj −

1

2

)(
nj+1 −

1

2

)
, (4.1)

where t is the hopping matrix element, Vj is the on-site random potential, Uj is the random

interaction strength and nj = c†jcj is the occupation number operator. This fermionic model

can be exactly mapped to the Heisenberg XXZ quantum spin chain via the Jordan-Wigner

Transformation [84]

c†j = S+
j e
−iπ

∑j−1
m=1 S

+
mS
−
m , cj = eiπ

∑j−1
m=1 S

+
mS
−
mS−j . (4.2)

The spin-1/2 particles are fermions and we use the analogy that the spin "down" state can

be seen as an empty lattice site, whereas the spin "up" state can be seen as a site occupied

by a single fermion. We can now calculate each term of the Hamiltonian. The hopping term

between two neighbors j, j + 1 is

c†jcj+1 = S+
j e
−iπ

∑j−1
m=1 S

+
mS
−
meiπ

∑j
m=1 S

+
mS
−
mS−j+1 =

= S+
j e

iπS+
mS
−
mS−j+1

= −2S+
j S

z
jS
−
j+1

= −2(−1
2
S+
j )S−j+1

= S+
j S
−
j+1,

(4.3)
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where we have used the relation e±iπS
+
j S
−
j = e±iπ( 1

2
+Szj ) = −2Szj . Similarly, we have

c†j+1cj = S−j S
+
j+1 for the complex conjugate part.

The on-site j term is

c†jcj = S+
j e
−iπ

∑j
m=1 S

+
mS
−
meiπ

∑j
m=1 S

+
mS
−
mS−j =

= S+
j S
−
j

= 1
2

+ Szj .

(4.4)

The Hamiltonian of Eq.(4.1) becomes

H = t
∑
j

(S+
j S
−
j+1+S−j+1S

+
j )+

∑
j

Vj

(
S+
j S
−
j −

1

2

)
+
∑
j

Uj

(
S+
j S
−
j −

1

2

)(
S+
j+1S

−
j+1 −

1

2

)
.

We set t = Jxy
2
, Vj = hj, Uj = ∆j and we obtain

HXXZ =
Jxy
2

∑
j

(S+
j S
−
j+1 + S−j S

+
j+1) +

∑
j

hjS
z
j +

∑
j

∆jS
z
jS

z
j+1. (4.5)

The exchange interaction is Jxy, h is the transverse magnetic �eld and ∆ is the strength of

interaction. The interacting fermionic (spin independent) problem has been mapped to a

model of interacting spins. The number of sites N is equal to the number of spins.

The spin operators Sz, S± are expressed as

Sz|s,ms〉 = ~ms|s,ms〉 , S±|s,ms〉 = ~
√
s(s+ 1)−ms(ms ± 1)|s,ms〉. (4.6)

For s = 1
2
, m = ±1

2
and ~ = 1 we have

Sz|m〉 = m|m〉 , S+|m〉 = (
1

2
−m)|m+ 1〉 , S−|m〉 = (

1

2
+m)|m− 1〉. (4.7)
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In general, the matrix elements given in [72] are

J
2
〈mjmj+1|S+

j S
−
j+1|m′jm′j+1〉 =

= J
2
〈mj|S+

j |m′j〉〈mj+1|S−j+1|m′j+1〉

= J
2
(1

2
−m′j)(1

2
+m′j+1)δmj ,m′j+1δmj+1,m′j+1−1,

(4.8)

J
2
〈mjmj+1|S−j S+

j+1|m′jm′j+1〉 =

= J
2
〈mj|S−j |m′j〉〈mj+1|S+

j+1|m′j+1〉

= J
2
(1

2
+m′j)(

1
2
−m′j+1)δmj ,m′j−1δmj+1,m′j+1+1,

(4.9)

J〈mjmj+1|SzjSzj+1|m′jm′j+1〉 =

= J〈mj|Szj |m′j〉〈mj+1|Szj+1|m′j+1〉

= Jm′jm
′
j+1δmj ,m′j1δmj+1,m′j+1

,

(4.10)

where δ here is the Dirac Delta function.

As an example, we solve the case of N = 2 sites/spins. For simplicity, we set hj = 0 and

Jxy = ∆j = J . The total number of con�gurations is 2N = 4: {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}.

Working in the subsector where Sz = 0, the possible con�gurations are now reduced to

M = N !/(N/2)!2 = 2, namely: {| ↑↓〉, | ↓↑〉}.
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For the case of N = 2 spins we have m1 = m′1 = 1
2
and m2 = m′2 = −1

2
. The matrix

elements are

〈↑↓ |H| ↑↓〉 = −J
4

= H11

〈↓↑ |H| ↓↑〉 = −J
4

= H22

〈↑↓ |H| ↓↑〉 =
J

2
= H12

〈↓↑ |H| ↑↓〉 =
J

2
= H21.

The Hamiltonian in the spin con�guration basis becomes

H(N=2) =

H11 H12

H21 H22

 =
J

4

−1 2

2 −1

 ,

with eigenvalues Ej = {−0.75J, 0.25J}

In this work, to study MBL we explored the case where the magnetic �eld h and the

interaction strength ∆ are random variables [85, 86]. The �rst kind of disorder corresponds

to static magnetic �elds of amplitude hj, where hj are random numbers from a uniform

distribution [−W,W ], W is the strength of disorder. The second disorder corresponds to

varying interaction ∆j, where ∆j are random numbers from a distribution [0, δ], δ is the

strength of the interaction. The total spin in the z-direction is conserved, Sz =
∑

j S
z
j =

0 and we choose for our analysis the largest subsector, (Sz = 0) with dimension M =

N !/(N/2)!2. Open boundary conditions are considered for N sites and equal number of

spins.
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We perform exact diagonalization of the Hamiltonian for even sizes N , from N = 8 to

N = 16. We examine the full many-body spectrum at the "in�nite temperature limit" where

the energy density is higher. We keep the 10% of the states at the centre of the spectrum

to search for the existence of the transition. Table 4.1 contains the numerical data of our

calculations.

sites/spins N dim(H) = 2N dim(Hsubsector) = N !/(N/2)!2 Ekept realizations
8 256 70 8 14000
10 1024 252 24 4200
12 4096 924 92 1100
14 16384 3432 344 290
16 65536 12870 1288 77

Table 4.1: The numerical data including the system size N , the dimension of many-body
Hilbert space, the dimension M of the used subsector, the number of levels from the centre
of the spectrum and the number of realizations. The ensemble contains approximately 105

con�guration data.

4.3 Level Statistics

The �rst and more natural distinction between ergodicity and localization is to calculate

the spectral statistics between the energy eigenvalues. Instead of examining the many-body

energy spacings S and their distribution P (S), we focus on the recently proposed P (r)

distribution [87, 88]. The reason is that we need to perform an unfolding transformation for

the energies because their density is not everywhere the same. It is possible to circumvent

this di�culty by introducing a new quantity to describe the energy levels. Let {En} be the

set of the many-body energies in ascending order and Sn = En+1 − En ≥ 0, the nearest-

neighbor spacings. We de�ne the adjacent gap ratio as

rn =
Sn+1

Sn
. (4.11)
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This quantity requires no unfolding since the ratios of adjacent level spacings are inde-

pendent of the local density of states and therefore a practical measure of level �uctuations.

The P (r) distribution for the GOE matrix ensemble is

PGOE(r) =
27

8

r + r2

(1 + r + r2)5/2
, (4.12)

whereas for the Poisson distribution is

PPoisson(r) =
1

(1 + r)2
. (4.13)

The two distributions are plotted in Fig.4.1.

Figure 4.1: P(r) distributions for Wigner-Dyson (dashed line) and Poisson (solid line).
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In addition to rn, one can calculate the distribution of r̃n where:

r̃n =
min (Sn, Sn−1)

max (Sn, Sn−1)
= min

(
rn,

1

rn

)
. (4.14)

It is particularly useful to consider the averages of rn and r̃n. For GOE 〈rn〉 = 1.75 and

for Poisson 〈rn〉 = ∞. Moreover, we have 〈r̃n〉 = 4 − 2
√

3 = 0.536 for GOE and 〈r̃n〉 =

2ln2− 1 = 0.386 for Poisson.

We begin our analysis for the level statistics with the phase diagram of 〈r̃n〉 in Fig.4.2

when the disorder strengths W and δ are varying.

Figure 4.2: Phase diagram of 〈r̃n〉 as a function of W and δ for a spin chain of size N=12.
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Our simulations suggest the existence of two clearly distinct regions. The ergodic region

(purple color) and the MBL region (orange color). For the current system size (N=12), we

observe that the two regions separate at a disorder strength W ≈ 2 when moving across the

x-direction and a disorder stength δ ≈ 6 when moving across y-direction.

We then perform �nite size scaling in order to better locate the transition. The sizes

considered vary from N = 8 to N = 16. The latter is the "computational limit" of exact

diagonalization in these systems. In Fig.4.3(a) we show level statistics by setting δ = 1 and

varying W , whereas in Fig.4.3(b), W = 0.5 and δ varies.

The crossings in both cases give a rough estimate of the locations Wc and δc of the

transitions. As can be seen from the �gures, we get Wc ∈ [1.5, 2.5] and δc ∈ [5.5, 7.5]. We

observe a kind of drifting towards larger values of W and δ as the size N increases. At the

largest size considered N = 16, we clearly see the crossings around Wc ≈ 2.4 and δc ≈ 7

respectively.

The results are close to those calculated for the "standard model" of MBL [21]. In that

model, a 1D spin-1/2 chain is considered with random magnetic �elds hi ∈ [−W,W ]. The

strength of interaction is constant ∆ = 1 and periodic boundary conditions are imposed.

For these parameters this model is supposed to exhibit an MBL transition at Wc ≈ 3.6. In

our work, additionally to random magnetic �eld, we choose the interaction strength random

and always positive with ∆ ∈ [0, δ]. In that sense, the system has two kinds of disorder and

thus we expect a more localized behavior.
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(a)

(b)

Figure 4.3: The �nite size scaling of the level statistics for (a) δ = 1, W varies and (b)
W = 0.5, δ varies. The dashed lines are the Wigner-Dyson limit (〈r̃n〉 = 0.536) and the
Poisson limit (〈r̃n〉 = 0.386) respectively.
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4.4 Statistics of Eigenstates

In addition to eigenvalue statistics, information about the system can be received from the

eigenstates and their structure [89, 90]. We consider a many-body wavefunction |Ψ〉 =∑M
j=1 ψj|j〉 expressed in the basis of the z components of each spin, |j〉 = |S1...SN〉 where

M is the dimension of the many-body Hilbert space. The central quantities of our research

are the Rényi entropies Sq for the wavefunction |Ψ〉 expressed as

Sq = − 1

q − 1
ln
( M∑
j=1

|ψj|2q
)
, q ∈ (−∞,∞). (4.15)

In the limit M →∞, we obtain the multifractal dimensions Dq de�ned in Eq.1.12.

For q = 2 the Rényi entropy S2 = −ln(IPR) includes the known inverse participation

ratio (IPR) de�ned in Eq.1.15 which measures the delocalization of a many-body state in

the many-body Hilbert space. In the case considered here, we observe states of 3 di�erent

kinds,

• Ergodic states : IPR ∝M−1

• Extended non-Ergodic states : IPR ∝M−D2 , D2 < 1

• Localized states : IPR ∝ O(1)

For the special case with q → 1, S1 is the Rényi entropy which coincides with the Shannon

Entropy (S or SSH)

SSH = −
M∑
j=1

|ψj|2ln|ψj|2, (4.16)

another measure for the localization.
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4.4.1 Participation Ratio

In this section we provide numerical results for the Participation Ratio (PR). For a fully

localized many-body eigenstate we have PR = 1 and if |Ψ〉 is a fully ergodic state, then

PR = M . In particular, we study the scaling of the quantity 〈lnPR〉
lnM

as a function of disorder

strength W and δ, respectively by varying the system size N . The results are shown in

Fig.4.4.

(a)

(b)

Figure 4.4: The �nite size scaling 〈lnPR〉
lnM

for (a) δ = 1, W varies and (b) W = 0.5, δ varies.
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We observe a crossing point around the neighborhood of the critical disordered strength

Wc = 2.4 and δ = 7 respectively which strongly supports our �ndings from the level statis-

tics. To better visualize and understand the behavior on both sides of the crossings we

studied the distribution of lnPR for W = 0.2 in the ergodic region and for W = 5 in the lo-

calization region. We also did the same for the argued critical disordered strength W = 2.4.

Disorder strength δ = 1 �xed. The results are shown in Fig.4.5.

The same procedure is repeated when δ varies andW = 0.5 �xed. We plot the distribution

of lnPR for δ = 1 in the ergodic region, for δ = 12 in the localized region and for δ = 7

at the second estimated critical point. The results are presented in Fig.4.6. From Fig.4.5

(a) and (c) we clearly observe a di�erent behavior between the ergodic and the localized

regions. For the critical region in Fig.4.5 (b) a somehow intermediate picture is obtained.

There also exist quantitive �nite size e�ects that may not be taken under consideration.

The same behavior is observed in Fig.4.6 where the �nite size e�ects also exist.

We also study the variance of lnPR given by the relation

V ar(lnPR) = 〈(lnPR)2〉 − 〈lnPR〉2. (4.17)

This quantity should vanish in a strongly delocalized or localized region but is expected

to have a peak near the crossover point due to the coexistence of ergodic and non-ergodic

states [91]. This is also true in our case where the peak is drifting closer to the critical point

as the size N increases. However, the variance does not completely vanishes at the localized

region up to the considered strengths W, δ.
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(a)

(b)

(c)

Figure 4.5: The distribution of lnPR for sizes N=8,10,12,14,16 and δ = 1. (a) ergodic
region for W = 0.2, (b) estimated critical point W ≈ 2.4, (c) localized region for W = 5
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(a)

(b)

(c)

Figure 4.6: The distribution of lnPR for sizes N=8,10,12,14,16 and δ = 1. (a) ergodic
region for δ = 1, (b) estimated critical point δ ≈ 7, (c) localized region for δ = 12

68



Chapter 4. Many-Body Localization

(a)

(b)

Figure 4.7: The V ar(lnPR) of Eq.4.17 for N=8,10,12,14,16 when (a) δ = 1, W varies and
(b) W = 0.5, δ varies.
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4.4.2 Shannon Entropy

In Fig.4.8(a) and (b) we present the numerical results for the scaled Shannon entropy 〈SSH〉
lnM

as a function of W and δ, respectively, for di�erent system sizes N . As it is stressed here

[76], the computational advantage of Shannon entropy makes it a preferable option giving

similar results as the von Neumann entanglement entropy which is widely used in the MBL

problem.

(a)

(b)

Figure 4.8: The scaled Shannon entropy 〈SSH〉
lnM

for N=8,10,12,14,16 when (a) δ = 1, W
varies and (b) W = 0.5, δ varies.
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The results are quite similar to those of the previously calculated participation ratio.

In Fig.4.8(a) the crossings happen at Wc ≈ 2.4. In Fig.4.8(b) we rather observe a slight

di�erence with the crossings taking place to value closer to δ ≈ 7.5. There is a small shift

of the previously argued crossing point of δ ≈ 7.

4.4.3 Multifractality

To further explore the e�ect of both kinds of disorder on the correlation dimension D2 we

plot it as a function of W and δ. The result is shown in Fig.4.9. The fractal dimension D2

will approach asymptotically to zero as W and δ becomes very large. Besides the 〈IPR〉,

we also calculate for the e〈IPR〉 from which the fractal dimension D̃2 is calculated. The two

curves are not the same and this is an implication that the system undergoes a "freezing"

transition. Moreover, in both cases it is apparent that the two dimensions D2 and D̃2 vary

the most at the neighborhood of the critical point. Therefore, we argue that the states in

this region are extended but non-ergodic, as they are not being able to cover the whole

many-body space.

In Fig.4.9(a) we observe that for W < 1 the two fractal dimensions are equal, D2 =

D̃2 = 1. For W > 1, as we leave the strongly ergodic phase, we reach the intermediate

critical region where D2 = D̃2 ≈ 0.5. For larger W , the values seem to decrease signi�cantly

but they do not vanish at least until the disorder value considered. In Fig.4.9(b), the

fully ergodic region exists for δ < 3 for both dimensions, whereas near the critical point

D2 = D̃2 = 0.4. For larger values of δ, the dimensions D2,D̃2 are getting closer to each

other both approaching zero.
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(a)

(b)

Figure 4.9: The multifractal dimension D2 and D̃2 (a) δ = 1, W varies and (b) W = 0.5, δ
varies.
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4.5 Summary

We have analyzed the static properties for a �nite 1D spin-1/2 chain with random magnetic

�elds and random interaction. For the random magnetic �eld, we identi�ed a critical disorder

strength Wc ≈ 2.4 and for the random interaction a critical disorder strength δc ≈ 7.

These points separate two totally distinct regions, the ergodic and the many-body localized,

respectively. The calculation of level statistics for di�erent sizes gives an indication of where

the ergodic and MBL phases separate. The ergodic phase is characterized by Wigner-Dyson

level statistics whereas the MBL phase has Poisson level statistics. We performed �nite

size scaling of the participation ratio and the Shannon entropy to better locate the crossing

points based on the structure of many-body wavefunctions. Our results support those from

the studied level statistics. We also examined the multifractal dimensions D2 and D̃2 of the

many-body wavefunctions. We observe that near the critical disorder strengths the states

are extended but non-ergodic with 0 < D2, D̃2 < 1.
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Conclusions

This thesis studies the e�ect of disorder in speci�c condensed matter systems. The work is

separated into three main parts.

The �rst part concerns the presence of bond disorder which preserves chiral (or sublat-

tice) symmetry. We focus on the behavior of the E = 0 state which exists only for odd

system sizes N . We treat it both analytically and numerically. The ΨE=0 state decays sub-

exponentially opposed to the phenomenon of Anderson localization where under disorder

a wavefunction shows an exponential decay. The scaling with the logarithm of the system

size N of the ln〈IPR〉 and 〈lnIPR〉 gives the correlation fractal dimensions D2 and D̃2,

respectively. The dimensions D2 and D̃2 measure the spatial extent of the wavefunction

and de�ne its multifractal character. For weak disorder (W → 0) E = 0 state is extended

(D2, D̃2 → 1) and for very strong disorder it is localized (D2, D̃2 → 0). For intermediate

values of disorder the correlation dimensions are intermediate to 0 and 1 and signify the

multifractality of the E = 0 state. The energy level statistics of the system near the speci�c

E = 0 energy is also studied. Interestingly, we �nd a faster approach to localization for even

N system sizes in comparison with the odd N sizes.

For a square lattice the ΨE=0 state exhibits multifractal characteristics for sizes below

the large localization length. For weak disorder (W → 0), the E = 0 state is extended
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(D2, D̃2 → 2) and for very strong disorder it is localized (D2, D̃2 → 0). For intermediate

values of disorder, we �nd 0 < D2, D̃2 < 2. We have also calculated the energy level statis-

tics near E = 0. For odd L system sizes a scale-invariant Wigner distribution is obtained

whereas for even N systems a distribution intermediate to Wigner and Poisson is found.

The even-odd asymmetry and zero modes in disordered systems are important for under-

standing the nature of the critical E = 0 mode.

The second part shows the interplay between disorder and topology. We consider a p-

wave superconductor with bond disorder in one dimension. This kind of system has been

proposed for use in quantum computing. In the absence of disorder, this system hosts

two topologically protected Majorana modes localized at the two ends of the chain. Our

motivation is to study the fate of the special Majorana states under disorder. Due to the

inherent particle-hole symmetry of the superconductor, the system consists of two chains,

one for electrons and one for holes. We �rst �nd an even-odd asymmetry between even L

and odd L chains. A double degeneracy at E = 0 exists for the odd case only and not

for the even case. The calculation of level statistics near the E = 0 again reveals a faster

approach to localization for even L and not for odd L systems. Our results resemble the

case of o�-diagonal disorder (∆ = 0) studied in Ch.2. Moreover, an analytical expression

for the wavefunction of the E = 0 state was derived via the transfer matrix method. The

scaling with the logarithm of the system size L of ln〈IPR〉 and 〈lnIPR〉 gives the correla-

tion dimension D2, D̃2. In the absence of disorder the Majorana modes are localized at the

two ends of the chain with D2 = D̃2 = 0. As disorder increases the Majorana states lose

their topological protection and spread into the lattice.

The third part is focused on the interplay of disorder and interactions. We study a many-

body problem in a lattice of randomly interacting fermions in the presence of a random
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potential. This problem is equivalent to a spin-1/2 chain with random magnetic �elds of

strength W and random interactions of strength δ. The motivation is to study the phe-

nomenon known as Many-Body Localization (MBL) which occurs in the presence of both

interactions and disorder. Due to the exponentially large Hilbert space of the many-body

system the problem poses a computational challenge. We perform exact diagonalization and

examine the centre of the many-body spectrum where the energy density of states is higher.

The level statistics is calculated. Our simulations suggest the existence of a transition be-

tween two clearly distinct phases. An ergodic phase characterized by Wigner statistics and

a many-body localized (MBL) phase characterized by Poisson statistics. In the considered

kinds of disorder we identify two critical points, one at Wc ≈ 2.4 for the random magnetic

�eld and another at δc ≈ 7 for the random interaction. We also study the statistics of the

many-body eigenstates. The �nite size scaling of the 〈lnIPR〉 supports the �ndings from

the eigenvalue statistics concerning the estimated values for the critical points. Moreover,

at the critical points we study the whole distributions P (lnIPR) which are almost scale-

invariant. Finally, we examine the correlation dimensions D2 and D̃2. For weak disorder

W the states are fully ergodic and near the critical point they are multifractal resulting in

intermediate correlation dimensions 0 < D2, D̃2 < 1. For weak disorder δ the states again

are fully ergodic and near the critical point they become multifractal with intermediate

correlation dimensions.

Future Outlook

First, it will be interesting to study the e�ect of disorder in other kinds of topological

systems involving di�erent symmetries e.g. in the presence of spin-orbit interaction. The

disordered systems this thesis dealt with are realized in the laboratory with ultracold atoms

and laser techniques which create the disorder with modulated beams [45, 46, 49, 47]. This

leads to the engineering of new materials for quantum information processing and technol-
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ogy. Moreover, the problem of many-body localization considered here can be generalized

in higher dimensions where the situation is currently unclear [92, 93, 94]. The questions

concerning the very nature and the existence of the ergodic to MBL transition remain unan-

swered. The many-body Hilbert space is exponentially large and there is a research interest

in statistical methods for spectra and wavefunctions to distinguish between ergodicity and

localization. Finally, we could explore other directions in the numerical part by developing

new and/or more e�cient algorithms in order to reduce the computational cost and improve

the current precision. In the last few years, novel techniques involving supervised/unsuper-

vised machine learning and neural network training have begun to contribute in the �eld by

exploring exotic phases of matter and predict di�erences between them [95, 96, 97, 98, 99].
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