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Abstract

The work in this thesis primarily adresses the effect of disorder in certain condensed mat-
ter systems. Disorder itself leads to the phenomenon of Anderson localization where the
wavefunction due to disorder is confined in a finite region of space characterized by an expo-
nential decay of its amplitude. First, we study the midgap state at energy £ = 0 in a lattice
with hopping disorder in one and two dimensions. Using the well established methods of
energy and wavefunction statistics, we show an even-odd system size asymmetry and the
multifractal behavior of the special E = 0 state. Second, we examine the doubly degenerate
Majorana states at F = 0 for the case of a topological superconductor in one dimension.
In the absence of disorder, the two states are localized at the two ends of the chain. We
ask how the disorder affects their behavior for this kind of system proposed for quantum
computation. In the presence of disorder, a spreading of the Majorana states in the lattice
occurs. Third, we show the interplay of disorder and interactions in a many-body system,
namely the quantum XXZ7 Heisenberg anti-ferromagnet. The motivation is to study how
disorder leads to the phenomenon of Many-Body Localization. The energy level statistics
shows a distinction between an ergodic and a many-body localized phase and the eigenstate
statistics reveals a multifractal behavior near the critical regime. For strong disorder the
many-body localized states can be used as potential quantum memories. The significance
of this work is that the ubiquitous presence of disorder in quantum systems has not always

a negative impact and can lead to a better manipulation of quantum information.
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Extetouevn Ilepiindmn

‘Eva ané ta mo evouagpépovta Yéuata g olyypeovng Puoixic eivon 1 xatavonon twv xBav-
TIXOY WBOTATLY TN UANG mapoucia atadiag 6tay 1 Tomoloyior ahhd xon ol ahAnAemdpdoeLS
natlouv onuavtixd poro. H woyuer| atalio W odnyel oto gouvéyevo tou eviomioyol Ander-
son xou POV TXT ouuTeptpopd. O xatactdoelc neploptlovTal oe Uio TETEPUOUEVT TEQLOYT| TOU
YOEOU eVK exTOC auThc Yapoxtnellovtar amd exdetin elworn. Amo tnv dhin, n mopoucio
TN¢ TomoAoYlog UTOONA@YVEL avooia w¢ eva Podud OTIC TOTUIXES OLUTURUYES EVG O CUVOUNO-
uog atagiog xon ahAnAemdEdcEwY 0dNYel 6To Qouvouevo Tou Eviomopol Hohhov Xwpotiwy
(Many-Body Localization # MBL) xo tnv amoucio epyodixétntac oto obotnue. To xPBov-
T pouvoueva topoucio ataiog, Totohoyiag xou AAANAETLOEACEWY Upavi{oVTaL GE VAVOBOUES
-T4€n peyédoug Tou Inm- amd TV XATACHELY| TWY OTOIY AVOUEVETOL VEA QUOLXT] AhASL %ol
TEYVOhOYWT| TEH000G. H oUVOEoT TwV Topamdvey CUCTNUATLY UE TNV X(BAvVTiny| TANEOPOEIXTY)
X0 TNV XUTOUOKEVY| avIEXTIXGY XBavTinwy uTohoylo TV e Thdog qubits anotehel Eva amd To
O GTOLONLOL ETLG TNHOVIXE VEUAT TWV NUERKV.

H rmapoldoa didaxtopixr dlatpldr| el wg otodyo Vo epeuvioeL To pdlo Tng atallug oc ouy-
XEXPWEVA oLoTHUOTO ouUTLXVLUEVNS OAng.  H »Bovteh meprypagpr twv nhextpoviov ota
oteped mopousio ataliug yivetar oty Tpocéyyion woyvphc déopeuone (tight binding). ¥t
OtoxELTr) BAon TOU TAEYUATOC 1) XUPATOCLUVAETNOT EVOC NAEXTEOVIOU YRAPETIL ¢ XBavTixy
utépieon ot Bdon TwV TAEYUATIXOY VECEWY LoYVEA EVIOTIOUEVKY UTOULXMY TEOYLIXWDY OF
xdde mheypotiny) Veon. H avtetdmion 1ov cuoTnudtony YIvETon Ue GUVOUNOUO oVOAUTIXGY

X0 oEEIUNTIXWY TEYVIXGY TN Wio xon 0TI 600 BLUCTACEL OTOU LEXVOVTUC UTO CUGC THUNTY
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ol peyédoug mpooeyyilouue o UEYUADTEQO CUCTHUOTO UE Lol TEYVIXT YVWoTH wc finite
size scaling (F'SS).

Ewdwotepa, e€etdleton 1 OTATIOTIXT TWV EVEQYELMY X0 TWV XATUOTACEWY TUYAwY TVAXWY
(random matrices). H dewpla tuyaiwy mvéxwv (Random Matrix Theory) eivar to xotdhinio
podnuaTxd epyaheio yio var €EETACOUPE TN OTATIOTIXY TWV EVEQYELOV. AVIAOYO YE TNV UT-
deyovoa cuppeTela ol Tuyalol Tivaxeg xotatdocovtar o 10 xhdoec ouupetpiog. H xotdradn
yiveton pe Bdon tn ouypeTpio ypovixnc avootpoghc (time reversal), tn ouppetpla owyatiou-
omfc (particle-hole) xou tn ouyuetploc yewpde (chiral). H opdoydvio xhdon yio mapousio
TUY o BuVOD, 1 povadtata Yo Tapousio uayvnTixoL Tediou Tou tapaBldlel T cupueTela
YEOVIXNG VOO TEOPNG XL 1) CUUTAEXTXY| Yiot Tapousia omv e oUCEUEn OTV-0TEOPoPUNS
(spin-orbit coupling). Ané tic cuvolxd 10 cuyuetpiec éyouue 3 Paowéc (Wigner-Dyson),
3 mou dtotneoly TV ouppetpela yewpde (chiral) xaw 4 tov oyetilovton ye Ty unepaywydTHTOL
(Bogoliubov-de Gennes ¥ BdG).Eva otatiotixd pétpo yio ) HEAETN TwV EVEPYELDY elvor 1
xorrovour) P(S) tov Stoo tnudtey uetad Tomv BLaboyixmy EVERYEWMY. DTNV NERINTon HETUAMXC-
EXTETAUEVNG CUUTERLPORAS OL WOLOTWES EVERYELXS Efval GUOYETIONEVES, EUpaviCouy dmwon xaL
axohovdoly v xotavouy) Wigner. And tny dAAN, OTN UOVOTIXT-EVTIOTUIOUEVY, GUUTERLPOOS
oL avtloTolyec WTIES EVEPYELNS Efval UN-OUCYETIONEVES, Tuyalee xou eugaviCouv ENEN uT-
axovovtag otny xatavour Poisson. Ou xatavouec Wigner xou Poisson amoteholv tic 600
OPLAXEC TIEQLTTAOELS.

Extoc amd Tic xBavtinég evépyeteg e€eTAlEToL 1 G TATIO T TWV XBavTiX®Y xatactdoewmy. Mio
YUEAXTNELO TIXT) TOCOTNTA Yol TN METENOT TNG YWELXNS EXTAOTS TV XATUCTACEWY lval 0 Oelx-
¢ IPR. T plo mhpwe extetopévn-uetalhin xatdotaon o N nAeyuatixéc VEoelg €youue
IPR = N7! evo yur plo mhpog evitomiopévn xatdotoon ot plo mheypaticd| 9éon éyoupe
IPR = 1. Axdya, ylvetar BIEUpEVYNOT) OYETIXA UE TIC LOPPOXNACUATIXES (fractal) OLOTNTES
TV WoxaTaoTdoswy. Eivar yvwotd 6t axpog oto xplowo onuelo tng pyetdBoong petdirou-

HOVOTT) OL IBLOXUTAC TAGELS OV Efval OUTE EXTETUUEVEC OUTE EVTOTIOUEVES AhAd yopoxTneilovTo
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ond pa xplown-tokupopgoxiaopotix cuuteptpopd. Eva molupoppoxhacpotind (multifrac-
tal) etvou évor un-opoyevée popgpoxhacuatixd tou omolou 1 didotoon dev yopaxtnelletou and
Evay optdud oAAG EYouUE EVa OAOXANRO PACUA LORPOXAACUATIXGDY OlacTdoewy D,. [Tpdxeito
YLOL EVOL YEVIXEUUEVO UETPO YLOL TOV TROGOLOPLOUS TNG YWEWMNG EXTUOTNG TOV LOLOXATUO TUCEWY.
YNy e Teplntwon mou o delxtng ¢ wolton pe 2, 1 avtioTolyn Hop@oXAAcUNTIXY| Btdo-
toon ebvor 1 Dy, Xe éva povodidotato alotnue (1D), uio mAfpnc extetapévn, petohhixy
xatdotaon €yet Dy = 1 eve pla TAfpng eviomouévn xatdotao oc plo mheyuatixr 9éon €yel
Dy = 0. Tehog, 1 ddotaon Dy yio pla TOAUULORQPOXAACUATINY XAUTAC TAOY) TAHLOVEL EVOLIUETES
Tipéc petagd tou 0 xou tou 1.

H SuwteiBn yoplleton ot tela xbpla péen. Xto mpmTto pépog Yewpolue TNy Tapoucio atadiug
0T0UC BP0V UETAED TOV ATOUWY OF €VO OTEPEG UE OXOTO VoL DLATNPEEITOL 1) UTOTASYHOTIXY)
ouppetpla (sublattice X chiral). Auth n nepintwon eivan Yvoot o¢ un-drorydvia atadio (off-
diagonal disorder). Emxevtpwvéuacte ot CUUTERLPORG TNE XaTdoTaoNg U evepyeta B = 0
1 omolo eupaviCetar pévo o CUGTAUAT U TEPLTTO aptdud atouwy N xou v urtoloyiCoupe
avahuTied xou oprduntxd. H ouyxexpyévn xoatdotaon napouctdlel umo-exdetiny Uelwon o€
avtideon pe to gouvouevo tou evtomouol Anderson émou plo xatdo ooy yapaxtnelleton and
exetinn pelwon. H xhwdxwon tne tocdtnrog In(IPR) pe to Aoydprduo tou apripod N
odnyel oTov LToAOYLOUS NG HoPPOXAUCUUTIXNG OtdoTaong Dy 1 onola YeTEd TN yweLxh Ex-
Toon TS XatdoTacng oto B = 0 xan amoxoAUTTEL TO TOAUUOPQPOXNAGUATIXG YAURUX TR TNG.
[Mo aoBevh atadio (W — 0) 1 xotdotoon eupoviCer mo extetopévn cuunepipopd (D — 1) xou
Yo TORD toyven atodion Exel pla mo evromopévn exéva (Dy — 0). Do evdidueoes Tyée tne
atodiag, 1 6idotacn Dy eivor Yetadd 0 xon 1 avadevhoviag 10 TOAUHORPOXNACUTING TEOPIA
¢ xatdotoong yio B = 0. Emmhéov yehetAUnxe 1 0TUTIOTIN TV EVEQYELWY XOVTH OTNV
evépyelr B = 0 xau Beédnxe ula toytepn mpocéyylon oto dpto Tng xoatavouric Poisson yua
ocuoTHuaTa deTiou N o cUYXELoY PE GUC THUoTa TepttTol V.

[ évar tetporywvixd mAéyua otic dvo Swotdoele (2D) n xatdotaon yio evépyelnr B = 0 ep-



pavilel TONULOPPOXNACHUATIXG YAUPUXTNELO TIXGL YIol CUC THUATY UIXPOTERA ol TO TOAD LPMAS
unxog evromiopo. I acVevi| atadia (W — 0) N xatdotoon Yy F = 0 cugavilel mo ex-
TETOUEVY ouuneplpopd (D — 2) xou yior TohD toyuen atoio €xel pla o EVIOTIOPEVT ExXdVa
(D2 — 0). T evdidpeoee twée e atodiog, 1 didotaon Dy ebvar petadd 0 xon 2. Axdua,
UTONOYICTNXE 1) GTATIOTIXNY| TV EVEQYELWY XovTd otny evepyela = 0. T to mepittd cuoTh-
ot epgoviCeton 1 xatovoury Wigner oavohholewtn umd adhory | xA{Uonag evey Tar GETLo GUC THUNTY
yopoxtneiCovtar and pla xatavour) eviidueon twv Wigner xou Poisson.

210 6eUTEPO UEPOC DElyvoupe To cuVdLaoud uetadl atoliug xou Tomoloyloc. Ocwpolue
€VaY LOVOOLAOTATO P-wave UTEpaywyd Topoucio ataling oToug BeoHoUE PETAE)D TWY ATOUWY.
To cuyxexpwévo yovtého éyel mpotadel yio yerion otoug xPavtixols utohoyiotéc. Anoucia
ataglog, To chotnua €yel 6o xataotdoes Majorana yua evépyeio £ = 0 nou elvon evtomio-
MEVES oTa 500 EXEA TOU CUCTAUATOS XU TEOC TUTEVOVTAL aitd TNV Tonohoyla. Xtny meplntwon
auTy) utoloyiotnxe o aprdudc meptéhing (winding number). To Baowd xlvnteo €06 elvan 1)
HEAETY TV EWBWOY xaTaoTdoewy Majorana unéd tny enldpact tng atadiog. Adyw tng eyyevoic
ouupeTplag cwuatiov-omig 6TOUG LTEPAY®YO0US TO GUCTYUN ATOTEAE(THL amtd BLO PLOVODLIC TAUTH
CUCTAUOTA, EVOL Yiot NAEXTEOVIA ot €var yiar oTéC. Apywd Peloxoude ula dpTio-TepltTy| douy-
uetpior uETAE) TWY CUCTNUATLY deTou xou epLttol ueyédoug L. Ta custhuata meptttod L
epgaviCouv BIMASG expuAlold otny evépyeta = 0. Enopévwg €youue 800 xatacTdoeic otny
evépyela I/ = 0 mou avtiotoryoly ota 0Uo owwvel-cwudtia Majorana. Amd tnv dAAT, To de-
Tioe oo ThpaTa yopaxtnetlovton and Ty Unapln evepyetoxol ydouatoc. O UTOAOYIOUOS NG
CTATIOTIXNG TV LOLOTIIWY TNG EVEQYELACS €DELEE xou AL ol Tory UTERY TEOGEYYLOT GTO 6PLO TNG
xatavouric Poisson yuo to dptior custhpata oe olyxplon ue ta teptttd. To anotehéopoto autd
elvon mopdpoLa e auTd oL BeElnxay 0TO TEWTO UEEOS YLoL TNV TEQIMTMWON TNG UN-OLaty VLG
ataglog xou amoucio unepaywyuoTTac. Emmhéov, mapdyetan plo ovadutig oyéon yior Ty
xotootoon 610 B = 0 yéow tne uedddou twv mvixwy yetagopdc (transfer matrix method).

H »updxwon tng nocdmtac In(IPR) pe to péyedoc tou cuothuatoc L odfynoe otov un-

vi



oloyloud TNg poppoxiacuotixic didotaone Do, Anoucia atoliog ot xotactdoelc Majorana
elvor evtomouéveg ota dxpa xou €youpe Dy = 0. Kaddg auidvouue tnv oyl tne atadiog W
ol xatao tdoele apyilouv vo dlayéovton YEco 6TO GUOTNUN XaL Vo EUGoVi{ouV TOAUULOPPOXAAC-
potixr) ewxova he 0 < Dy < 1.

To tpito uépog agopd o cuvduaoud ataliog xal oANAeTdpdoewY. Meletdue évar TEOBANUOL
TOAM®GY owpotiov (many-body problem) oe évo théyua N Tuyaior oAANAETLEPOVTWY PEPULOVIWY
Tapovota Tuyaiou duvouixol ot plo didotac. To cuyxexpyévo TEOBATU UEGW TOU UETACY N
uotiopol Jordan-Wigner eivon 16od0vapo tou wovodidc totou xPBavtixol poviéhou Heisenberg
mou amoteheiton omd N spins-1/2 napoucio Tuyaiou yayvntixod nedlou woybog W xon tuyoiwy
aAMnAemdpdoeny oybog d. To Baocwd xivntpo €8¢ elvar 1 UEAETN TOU Qarvouévou Tou elval
YVwo 6 w¢ Evromiouog [lodov Yoyotioy (MBL) to onoio epgavileTon Topousta atadiog xon
aMnAembpdoenmy. Adyw tou extdetind yeydhou ueyédoug tou many-body yweou Hilbert 1o
TeOBANUa anotelel pla 50ox0AN uToloyio Ty Sladxacio. Extelodue axpi3r dwrywvoroinon
(exact diagonalization) xou e&etdloupe 10 xévtpo Tou many-body evepyeloxol @douatog 6ToU
1 TUXVOTN T EVEPYELNG Elval PEYOAUTERT. Apyixd, utohoyioTnxe 1 oTaTio TixY| Twv many-body
WoToOY TS evépyelag xo Beédnxe wor yetdBaon petalld 800 Ceyweiotiv gdoewy.  Miog
EQYOONC-EXTETUUEVNS oS Tou Yapoaxtneileton and tny xatavour; Wigner xou ploc many-
body evtomiouevrg (MBL) pdong mou yapaxtneiletor and v xatovour; Poisson. Ia g
Twéc tne atadiag mou yenowomolinxay oTic 600 mopouétpouc Woxon § €ytve plo extiunon
TV 000 xplowny onueinv petafdirovtag to péyedog Tou GUOTHUNTOS (scaling). X o
mepintwon Yo § = 1 xou yetafBdriovtac 1o W to xplowo onueio extwhinxe oto W, ~ 2.4.
Y devtepn mepintwon v W= 0.5 xau petofdirovtag 10 0 to xplowo onueio extiuinxe
ot0 0, ~ 7. Emmiéov, yerethdnxe n otatiotnr) Tov many-body xataoctdoswy. H xAudx-
WOT TNG TOGHTNTOG (InIPR) UE TO U€yedog TOU GUOTAUNTOC CUUQWVEL GTNY EXTIUNOT TV
xploWwwy oNUelwY UE TN OTATICTIXY TWV EVERYELWWY. Axoua, ota xploya onuela ueAetridnxoy

ot xatavopéc P(Inl PR) ol omoleg eivar oyedbv avarholwtee und alhory| xhipaxac. Télog, un-
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oloyiotnxe 1 poppoxiacuotixd dtdotact Dy. T acdevi| atalio W, ot xatac tdoeig Bpédnxay
TAPOG EPYOOEC-EXTETUPEVEG U Do = 1 evid x0vTtd 670 xplowo onueio elvon ToAvpopoxAao-
Hotixéc Ue evotdueo ddotoor Dy uetald 0 xou 1. ‘Opota, yio actevi| atadio § ot xotac TeoELS
ep@avilouv xal TIAL EQYOBH-EXTETUUEVT CUUTERLPOEE £V XOVTA 010 xployo onucio etvan
Tolupopgoxhacuatés. T woyver atadio xou 6TIg 600 TEPITTOOELS Ol XATUACTAGELS Efvol TLO

evtomopévee (MBL) xou pnopolv va yenotponomdolyv Suvntind yior xBovTinés UvAuec.
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Chapter 1

Introduction

1.1 Anderson Localization

It is known since several decades ago that the presence of disorder in quantum systems
drives interesting phenomena. In 1958, P.W.Anderson studied the behavior of electrons in
disordered crystals [1]. The Anderson model of localization is the foundation over which
our knowledge for the effect of disorder on electronic systems has been established. The
quantum mechanics allows electrons to hop from one atom to its neighbors. In a disordered
lattice a single electron at each lattice site can feel a random potential. In the second

quantization formalism, the Hamiltonian is
N N-1
Hy = Z Vnchn +1 Z(lecn+1 + CLch), (1.1)
n=1 n=1

where ¢/ and ¢, are fermionic creation and annihilation operators for the electron on site
n, the total number of lattice sites is denoted by N and the on-site potential V,, is an
independent random variable uniformly distributed in the interval [—%, %] where W is the

strength of disorder. The hopping parameter ¢ is assumed to have non-zero values only for



Chapter 1. Introduction

nearest neighbors and we set ¢ = 1 defining the energy scale. The tight-binding model with a
random on-site potential has been subject of extensive studies also in higher dimensions (see
[2] and references therein). It is known that a critical disorder W, exists and if the strength
W exceeds this value, W > W.,, then all the states are exponentially localized. This means
that the wavefunction amplitude decays exponentially outside a localization length &. The
phenomenon of Anderson localization constrains the wavefunction to a finite region of space
of the order of £&. For W > W, in the localized phase, the system loses all of its conductivity
properties and becomes an insulator. This implies the absence of diffusion and the states
cannot transport current having zero conductivity. This is a completely different behavior
from ideal crystals which are always conductors and have a finite conductivity. From the
scaling theory of localization [3], in 1D and 2D all states are localized (W, = 0) whereas in
3D we have a metal-insulator transition at W, ~ 16.5.

The quantum motion of an electron in dimension D can be represented in the discrete
basis of lattice sites {|n),n =1,2,3,...,N}. The so-called Tight-Binding approximation
effectively describes the motion of electrons in solids and can be used to calculate the
electronic band structure for W = 0. The main assumption is that each atomic orbital is
strongly localized on its corresponding lattice site |n) and the wavefunction of an electron

can be expressed as a linear combination in the discrete basis of lattice sites {|n)}
N
) =3 guln), (1.2
n=1

where N is the total number of sites and ,,,n = 1,2, ...N are the corresponding probability

amplitudes.

Figure 1.1: 1D chain



Chapter 1. Introduction

For the disordered chain (Fig.1.1) with Hamiltonian of Eq(1.1) the hoppings ¢t = 1 and
WoW
Voel=%:%

| is an independent random variable following a uniform distribution. Open

boundary conditions are considered. The Hamiltonian in 1D is represented as a simple
tridiagonal matrix

The Density of States describing the number of states for a specific energy for W = 0 is

1 1
Pl =2 VA = (e — V)2

(1.3)

For finite small disorder W = 1 and system size N = 1000 p(¢) is plotted in Fig.1.2(a) along

with the relation of Eq.1.3. A corresponding localized wavefunction at € ~ 0 can be seen in
Fig.1.2(b).

04 B N=1000, W=1 0.04 €=0.006
0.3 0.03
) =
L2 Cal 0.02
o1 0.01
0 00 200 400 600 800
-3 -2 -1 1 2 3
(a)

1000
n

Figure 1.2: (a) p(e) for a disordered 1D lattice of size N = 1000, W = 1 and ¢t = 1. The solid
black line represents W = 0. (b) The wavefunction for € = 0.006 and W = 1 is localized.



Chapter 1. Introduction

For a quantum lattice system in the presence of a random potential of strength W we can
explore the correlations between the eigenvalues F,. A concise statistical measure which
highlights the degree of level correlation is the statistical distribution P(S) of consecutive
energy level spacings, where S,, = E, 11 — E,,. The distribution should be normalized with
(S) =1 and foinf P(S)dS = 1. The eigenvalues of a localized system are uncorrelated ran-
domly distributed and exhibit attraction. This limit denotes the Poisson Statistics and

characterizes the insulating behavior and integrability. The Poisson distribution of consec-

utive level spacings

P(S) =¢3 (1.4)

is plotted in Fig.1.3. For S — 0 we observe the level attraction with e™° — 1.

1.0
0.8 — Poisson

0.6

P(S)

0.4

0.2

S
Figure 1.3: The P(S) Poisson distribution.

The tridiagonal matrix representing a 1D lattice shows localization as electrons can hop
to nearest neighbors only. This picture fails to describe extended behavior and this is where
Random Matrix Theory takes in with the matrix becoming full as shown in the following

section.
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1.2 Random Matrix Theory

Since the work of E.Wigner [4] and F.Dyson |5], there was a strong interest in studying the
energy correlations of quantum spectra for systems with many degrees of freedom such as in
complex atomic nuclei. Random matrix theory (RMT) is the appropriate mathematical tool
which explores the statistical properties of eigenvalue spectra of N x N random matrices
which are full with every site connected to all others. In the system we consider only
inherent symmetries such as time-reversal and spin rotation. This combination gives the
three random ensembles with Gaussian disorder, namely GOE, GUE and GSE.

A N-dimensional lattice with "all to all' random couplings H;; can be realized by a

random NxN Hamiltonian

Hi; Hiy, ... Hy Ny H n
Hj, Hyy Hj3 . Hj n
H = H3’2
HN71,1 e HN71,N71 HNfl,N
Hyy  Hyp ... Hy Ny Hy N

In the limit N — oo the density of states is the Wigner semi-circle distribution

p(e):i\/él—e2 , —2<e<2. (1.5)

2T

For uniformly (not Gaussian) distributed random variables with W = 1, the p(e) for matrix
size N = 1000 is plotted in Fig.1.4(a) along with the Eq.1.5. An example of the wavefunction
for an energy near the band centre can be seen in Fig.1.4(b). The wavefunctions as opposed

to tridiagonal matrices are extended in all available space.
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0.020
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0.015
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2 50010
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0
0 0 200 400 600 800
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(a) (b)

Figure 1.4: (a) p(e) for a random matrix of dimension N = 1000 and W = 1 uniform. The
solid black line represents the Wigner semi-circle. (b) The wavefunction for ¢ = 0.017 and
W =1 is extended.

Although RMT was originally intended for modelling systems with many degrees of free-
dom, it is also proved useful for systems with few degrees of freedom as well. Moreover,
energy-level statistics provides an indication of the type of motion for a quantum system. In
the field of quantum chaos we are interested in the spectral statistics of a quantum Hamilto-
nian whose classical analogue is chaotic. As Berry-Tabor conjectured [6], the level statistics
of a quantum system is in its integrable domain follows the Poisson distribution. This is
also seen in 1D disordered systems (Section 1.1) which correspond to integrable motion. On
the other hand, Bohigas, Giannoni and Schmidt [7] conjectured that if the system is chaotic
then its level statistics follows the Wigner distribution and we have a chaotic behavior.

We consider random N x NN full matrices with H;; elements taken from a Gaussian distri-
bution. The three statistical ensembles with the corresponding symmetries of time-reversal

and spin-rotation are classified as:

e Gaussian Orthogonal (GOE) for real and symmetric random matrices.
The time-reversal symmetry (TRS) is preserved and we can derive the P(S) level

spacing distribution beginning with a 2 x 2 random matrix. We have

1000
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Hyi Hip
Hgor =
Hyy Ha
The difference between the eigenvalues is
S =Ey— By = \/(Hu — Hp)? +4H},. (1.6)

If we set © = Hy; — Hyy and y = 2Ho, then S = /22 + y2. Considering the nor-
malization conditions [~ P(S)dS =1 and (S) = [ SP(S)dS = 1, the probability

distribution of the spacing S is

Poor(S) = gse—gs{ (1.7)

e Gaussian Unitary (GUE) for complex Hermitian random matrices. The time-reversal
symmetry is broken (e.g. by the presence of a magnetic field) and the 2 x 2 complex

random matrix is

Hll H12
Hovp =
HYy Hi

The diagonal elements are real and the off-diagonal elements are complex. We have

Hyy = HI + iH]3". The difference between the eigenvalues is

S — E2 — E1 — \/(HH — H22)2 —|— (zng)Q + (2H1]§n)2 (18)

If we set © = Hyy — Hoy, y = 2H{ and 2z = 2HL" then S = /22 + y2 + 22. In this
case, we obtain

32 4 g2
PGUE(S) = PSQG_;S . (19)
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e Gaussian Symplectic (GSE) for quaternion self-dual matrices. In this case time-
reversal symmetry is preserved but the spin-rotation is not, e.g. in the presence of

spin-orbit interaction. The 4 x 4 quaternion random matrix is

Hegse = )

where the diagonal elements a,b € R, X = X%f 4 XM Y = YFe L iyI™ and
X*Y* are their complex conjugate. By diagonalizing Hggp we obtain 4 eigenvalues

degenerate by two (Kramers pairs). The difference between the two pairs is

S=E,—E = /(a— b2+ (2XF)2 1 (2X1m)2(2Y Fe)2 4 (2yTm)2, (1.10)

If weset v =a—0b, y=2XF 2 =2X" w=2Y" and k = 2Y'™ then S =

V22 + y% + 22 + w? + k2. The probability distribution of the spacing S is

218
~ 36,3

_ 64 g2

Pase(S) Stemon (1.11)

The above universality classes constitute the Wigner-Dyson ensemble (or 3-fold way)
and the universal index § = 1, 2,4 characterizes the level repulsion for each class such as

P(S) ~ 8P, for S — 0. The 3 distributions are plotted in Fig.1.5
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
S

Figure 1.5: The distributions of neighboring energy levels P(S) for the standard Wigner-
Dyson ensembles according to the universal index 5. GOE (5 = 1) in blue, GUE (5 = 2) in
red, GSE (8 = 4) in black. They show level repulsion which is a characteristic of quantum
chaos.

1.3 Multifractality

At a metal-insulator transition we have a critical behavior and the eigenvalues follow an
intemediate distribution between Wigner and Poisson. At the critical point the eigenstates
are neither extended nor localized and exhibit a multifractal behavior [8, 9, 10, 11, 12, 13,
14, 15]. A multifractal is a non-homogeneous fractal where the fractal dimension Dy has a
different value if we choose a different starting point [16, 17]. Multifractal measures are used
to study distributions of quantities on a geometric support. In a quantum lattice model the
geometric support of the wavefunctions is a lattice (e.g. square, honeycomb, kagome etc.)
and there is a systematic way to calculate the continuous spectrum of infinite multifractal
dimensions. They are defined as
1 In sz\il b

Dq:_q—th—{Eo 3 , q € (—00,00), (1.12)

where P, = |¥,;|? is the probability density of an electron to be found on site i of the
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supporting lattice and is the basic measure of the multifractal formalism. N and L are the
total number of sites and the linear length scale, respectively. For ¢ = 1 the generalized

fractal dimension is
> PP _ S
InL InL

D, = . P = |U,]?, (1.13)

and measures the scaling of the Shannon entropy (S) with the length scale L. The dimension

Dy is called information dimension. For ¢ = 2 the generalized fractal dimension is

S, 2
Dy = =171 po_ g2, 1.14
2 n L ) | | ( )

and is called correlation dimension. Dy describes the scaling with size L of the quantity

SV P2 known as Inverse Participation Ratio (IPR), where

N N
IPR=Y B Y~ L e
=1

i=1

This measure is used to characterize the localization properties of a wavefunction. A per-

fectly extended (ballistic) Bloch wavefunction has probability amplitudes ¥, = \/LN over

all lattice sites N, has IPR = Ef;l(\/%)‘* =, +7 = 7, whereas a perfectly localized
wavefunction on just one lattice site has PR = 1. For disordered states IPR takes values
between 0 and 1.

To summarize, the scaling of IPR (or PR = IPR™!) with the system size gives us
information about the multifractal character of a wavefunction and its degree of localization.
For an equally distributed wavefunction over all lattice sites N, all generalized dimensions
D, are represented by the fractal dimension Dy of the supporting lattice. The wavefunction

is fully extended when D, = Dy, completely localized when D, = 0 and has a multifractal

behavior for 0 < D, < 1.

10
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1.4 Interactions

The non-interacting Hamiltonians considered previously are simple but effective. However,
almost all systems in nature contain interactions as they are complex having many con-

stituents coupled to each other. The general Hamiltonian which includes interactions is

H:H0+U; (n—%) (niﬂ—%), (1.16)

1

Hj is the non-interacting Hamiltonian, U is the strength of interaction and n; = c/¢; is
the number operator. In the last 15 years, Basko, Aleiner and Altshuler [18| have carried
an extemely challenging and still ongoing research in the field of the so called Many-Body
Localization (MBL). This interesting phenomenon can be considered at first as an extension
of the single-particle Anderson Localization to interacting systems. An interacting disor-
dered system can be in two possible states, localization (no ergodicity) or thermalization
(ergodicity). A quantum phase transition to MBL with the absence of ergodicity means
that in this phase the system fails to thermally equilibrate. This feature is of fundamental
importance as it is closely related to the foundations of statistical mechanics and the notion
of information transfer [19, 20].

A closed quantum system, isolated from the environment and initially in a single (pure)
quantum state |Wo) will evolve unitary in time according to the Schrodinger equation ex-
pected to reach a thermal Gibbs state, invariant under future evolution of the system. In
order for this to happen, the system has to be able to act as its own reservoir. The thermal
state contains no information about the initial state |¥q) but information itself cannot be
erased. The system has no memory and in a sense hides the quantum information. This

is not always the case, because the Anderson localized systems cannot act as their own

reservoirs and therefore do not exhibit thermalization |21, 22, 23, 24].

11
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1.5 Outline

We study the energy and wavefunction statistics in three kinds of disordered systems. First,
a lattice with nearest neighbor bond disorder which preserves lattice chiral symmetry. The
second case is a superconductor with bond disorder supporting the elusive Majorana modes.
Third, a many-body system of qubits with both random potentials and interactions is stud-
ied. Our main motivation is to examine the statistics of the energy levels and wavefunctions
over the random ensemble near the Fermi level (£ = 0). Our approach is to initially consider
small sizes and reach larger ones in a finite size scaling spirit. The statistical properties of
the energy levels can show the ergodic or localized behavior. Moreover, we find at what
degree the states have fractal characteristics. We address the following questions. For chiral
disordered systems is there an even-odd distinction and what are its ramifications? In the
presence of non-trivial topology are the Majorana modes robust to disorder and is there any
indication of their multifractality? Finally, how the many-body localization appears and
what are its characteristics 7

In Chapter 2, we discuss the presence of off-diagonal disorder in a one and two dimensional
lattices. We specifically stress the presence of chiral (or sublattice) symmetry and explore
the nature of the special £ = 0 state which signifies the even-odd asymmetry in both 1D
and 2D. Moreover, we show results for the level statistics and multifractality for this case.

In Chapter 3, we explore the interesting case of a topological superconductor. We introduce
the Kitaev toy model for a superconductor in one dimension and study its topological as-
pects. We show what happens in the presence of off-diagonal disorder.

In Chapter 4, we examine a prototype interacting system. More specifically, we study the
XXZ Heisenberg quantum spin anti-ferromagnetic chain with disorder. The disorder com-
bined with interactions gives a new many-body localized phase.

In Chapter 5, we give an overall description of our results and discuss possibilities of future

work.

12
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One-electron Disordered Systems

2.1 Chiral Disordered Systems

Our motivation is to study the localization peculiarities which arise with the presence of
off-diagonal disorder at the band center [25, 26, 27, 28] and to explore the nature of the
E = 0 state. We consider a 1D chain with nearest neighbor (NN) hopping ¢ of random
strength and without on-site potential. We assume open boundary conditions in 1D and

the Hamiltonian with no diagonal disorder is
H = Z chenin el i) (2.1)

We conviently choose the hoppings t = eV, where V = Int are taken from the uniform (box)

distribution so that V' € [%, %] with constant probability density function P(V) = %
The mean value is ( fmé[//% VP(V)dV = 0 and the variance is o3 = (V?) — (V)2 = V1V—2
The random distribution function P(t) will be
- dV ~ 1
t)=P(V)— & P(t) = — 2.2
(1) = POV)S & Plt) = o (22

13



Chapter 2. One-electron Disordered Systems

since t = €” € [e7"/2,e"/2]. The mean value is (t) = :_M;éjQ tP(t)dt = Zsinh(*¥) and
the variance is 07 = (1?) — (t)*> = 7= (2 + Wsinh(W) — 2cosh(W)). The logarithmic dis-
tribution is chosen to ensure that all hoppings ¢ will take positive non-zero values, which

can become arbitrarily strong. For comparison, the uniform and logarithmic distributions

alongside with the Gaussian(0,1) are plotted in Fig.2.1 for disorder strength W = 1.

2.0
Uniform
1.5 Logarithmic
Gaussian
= 1.0 —
0.5
0 /-\
-3 -2 -1 0 1 2 3

Figure 2.1: The random hopping distributions for W = 1, uniform (blue), logarithmic (red)
and Gaussian (black). The mean is 0 and the variance is 1.

In order to illustrate the major features of even and odd lattice sizes, analytical results
are presented for N = 2 and N = 3. We found p(E), IPR(E) and level statistics P(95)
near &/ = 0. For both cases, we choose the logarithmic distribution for the hoppings with

W =1.

Figure 2.2: (a) N=2 and (b) N=3.

14
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For N = 2 (Fig.2.2(a)), in the discrete basis |n) the Hamiltonian matrix is

Hy—s =

The matrix has eigenvalues Fy = 4t and normalized eigenvectors |V g, ) = \/Li (&)

The Inverse Participation Ratios are IPRy, = IPRy, = Zf\il |* = (F5)*+ (%) = 1.

1.0
0.8
0.6
[a'
=]
0.4
0.2
0
0 -2 -1 0 1
E E
(a) (b)
1.5}
@ 1.0
[aW
0.5
0

2.0

(©)

Figure 2.3: N =2. (a) p(F) has a gap, (b) IPR(FE) and (c) P(S). In black is the analytic
curve. /PR = 0.5 means that the support of the states are on both the N = 2 sites.

15
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Considering many realizations, the density of states p(E) and IPR(E) are plotted in
Fig.2.3(a),(b) and the level spacing distribution P(S) is plotted in Fig.2.3(c) with § =

E> — Ey = 2t. The black line denotes the analytic curve which is P(S) = P(t)% <

& P(S) =4 =

1
2t — S°
For N = 3 (Fig.2.10(b)) in the discrete basis |n) the Hamiltonian matrix is

0 ¢ O
HN:3: t1 0 t

0 ty O

The matrix has eigenvalues E'y = \/t? + 13, E5 = 0 and E3 = —/t3 + ¢3. The corresponding

normalized eigenvectors are

t1/ta 1 t1/ta
to NG to to NG
Vg )= ——— 172 | g = 0 Ve = ———— | T
Vi) N ES R ) V213 + 212 [Ve,) V283 + 2t3 t2
1 —t1/ts 1
The corresponding Inverse Participation Ratios are
t+ 18 + 1342 1+ 5

N
IPRy, =IPRy, =Y |¥|'= IPRy,, =
=1

2(t7 +13)% (t] +13)?

Considering many realizations, the calculated density of states p(E) and IPR(E) are plotted
in Fig.2.4(a),(b).
For the level spacing distribution P(S) we have S = E3 — Ey = /t? + t3. We use the Dirac

Delta Transformation of random variables to compute the analytic relation as

1
P(S) = f; ff_z 268 — B+ 8)dtidty &

16
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IS0 057 < 5 < 1.168
& P(S)=9q o 1168 <5 < 1.55 (2.3)
0 , otherwise

The resulting piecewise curve for the P(S) distribution is plotted in Fig.2.4(c) with the two

branches in blue and red color, respectively.

4 1.0
0.8
3
— 0.6
= e
QL2 &
0.4 _A A
1 0.2
0 __..-._ _.‘.._ 0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
E E
(a) (b)
1.5
2 1.0
v
0.5
0
0 2.0

(©)

Figure 2.4: N =3. (a) p(E), (b) IPR(E), (c) The piecewise P(S) function consists of two
branches in blue and red color, respectively.
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The crucial difference between the two cases is apparent. For the odd size N = 3 the
E = 0 eigenstate has amplitudes only on odd sites. This F = 0 state is not present in even
size N = 2. This distinction also holds for larger system sizes and is closely related to an

underlying even-odd symmetry even for large-N.

Chiral symmetry is one of the basic discrete symmetries which has to do with the mirror
symmetry [29, 30]. The prerequisite for chiral symmetry is the presence of a bipartite lattice
(Fig.2.5), which contains two sublattices A and B where the hopping terms connect sites
of sublattice A with sites of sublattice B [31, 32, 33]. The A’s and B’s may represent two
different kinds of atoms. A typical example is a disordered lattice with random hopping
connecting A to B and without on-site potentials. The diagonal disorder breaks chiral
symmetry. The chiral Hamiltonian can be written in an off-diagonal block symmetric form

in the A-B sublattice basis as

0  Hyp
— 1 —
H= Z ti,j(cz‘cj + hc) = HT 0 ,
irj AB
where the matrix H 4p contains the hoppings which connect the two sublattices.
The Hamiltonian H satisfies the anticommutation relation {H, 0.} = Ho, + 0.H = 0,
where o, = ({ %) is the Pauli matrix, and can be written as H = —o,Ho,.

The state with energy F has a wavefunction |¥) = (?P’g) and the Schrodinger equation is

H|U) = E|W)
& —0,Ho,|V) = E|T) (2.4)
& H(0:|V)) = —E(0.|V)).

18
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A B A B A
- —0—0—0—©

Figure 2.5: An example of a square lattice represented as a bipartite lattice, consisting of
two interconnected sublattices, A with black and B with red.

From Eq.(2.4) the state with energy F and wavefunction |¥) = (%g) is accompanied by

a state with energy —F and wavefunction o,|¥) = (§ %) (%;}) = (:II\I,AB ). The eigenvalues
come in pairs F, —F around F = 0 and the wavefunctions have the same amplitude in the
sites of the A sublattice and opposite amplitudes in the B sublattice. The density of states
is an even function of E, p(E) = p(—FE). For an odd lattice of size N at least one £ = 0
state is always present. Moreover, if N4 are the number of sites for sublattice A and Np for
sublattice B then |[N4 — Np| zero modes exist.

Moreover, the presence of chiral symmetry efficiently reduces the size of corresponding

matrices for diagonalization by half allowing less computational time. We have

9 O HAB 0 HAB 2
H\yy 0 Hyy 0 0 H'\ ,Hag

HupH', 0

since we can simply diagonalize the matrix HABHLB or the HLBHAB giving the squared

eigenvalues E% , j=1,..., N.

19
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2.2 1D Off-Diagonal Disorder

The simplest model which is guaranteed to have a eigenstate at £ = 0 (zero mode) is an

odd-size N bipartite chain with off-diagonal disorder (Fig.2.6).

A t Bt A t; B thg A
o @ @ @ .. —@
1 2 3 4 N

Figure 2.6: An example of a 1D bipartite lattice with two interconnected sublattices, A
(black) and B (red) and random hoppings ¢,

The structure of the wavefunction for this state is calculated exactly. The Schrédinger

equation for ¥ =0is HV = 0 and at

N—-1

even sites : Wy, =0, n=12,..., 5,

(2.5)

odd sites : Wo, 1 = (—1)" " (t%%l)\l’h n=1,2., 52

m=1 tom 2

We assume t,, = ' < Int,, = V,,, where V,, are random numbers from a uniform distribution

with (V) = 0 and (V2) = 22 The odd site ampitudes are

Uypiy = (=1)" [ ] "o Vomwy.
m=1

The exponents can be written

n = Z(%mfl - ‘/Qm) = Z(lntgm,l — lnt2m>, (26)
m=1 m=1

where X, is an example of a random walk (discrete Brownian motion) so that the amplitudes

become

\112n+1 = (—1)n€Xn\I/1

20
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Assuming independent random variables, the mean of X, is

(Xn) = O Vamer = Vam)) = D AVame1 = Vam)) = 3 ((Vam-1) = (Vo)) = 0

and the variance is

n

Var(X,) = (X2) = (Xa)? = (O (Va1 — Vam))?) =

3 (Vs — Vo)) = S (V2 + (V2 =0V (o).
§)

The standard deviation is 1/(X2) = (v20y)y/n and setting ¥, = 1 the wavefunction

becomes

|Wopi1| ~ et (V20v)vn

The E = 0 wavefunction typically grows (decays) sub-exponentially as opposed to Anderson

Localization exponential growth (decay) ~ e*/I"l ~ = % is the Lyapunov exponent or the
inverse localization length [34, 35].

The Inverse Participation Ratio (IPR) for the E = 0 state is given by

1+ Z(Nfl)ﬂ |q12n+1|4

n=1

14+ SN2 10,,,,02)2

[PRy,_, = (2.7)

The scaling of /PR with the system size N indicates its multifractal behavior. We first
calculate the (/PR) over many realizations and then plot the In(/PR) as a function of

InN. The result is shown in Fig.2.7 for different values of disorder strength W.

21



Chapter 2. One-electron Disordered Systems

For small sizes there is a linear scaling and a fractal dimension D exists. For small W
we see a dimension close to 1. As we increase the disorder W the Dy clearly has non-integer
values. For strong enough disorder the dimension would eventually approach 0 and the

multifractal behavior will vanish.

In<IPR>

InN

Figure 2.7: The scaling of (I PR) with system size N at £ = 0. A linear behavior can be
observed for small sizes. An ensemble of 10° random realizations is considered.

3.0
2.0 N=11 Nell
— N=21 — Gauss 2.5 — Gauss
2.0

P )
s &

o
3

Figure 2.8: The probability distribution of (a) in/ PR and (b) In|¥|,,.. at E = 0 for different
sizes N, disorder strength W = 1 and an ensemble of 10° realizations.

In Fig.2.8 (a) we plot the probability distribution of InI PR for different sizes N. The
disorder strength is W = 1. As we increase the size a fast convergence is apparent after

about N = 101. The correlation dimension D, exists only for small enough sizes.
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In order to further check the convergence we calculated (n|V|,., and its scaling with
the logarithm of size N. The result is shown in Fig. 2.8 (b). We clearly observe that the
distribution of in|W|,,,, is approaching a Gaussian with mean -1 and standard deviation of
about 0.24. The result is in accordance to the random walk process exhibited by In|¥| (see

Eq.2.6). Another measure that shows a similar behavior at £ = 0 is the Shannon Entropy
N
S==> |, in|T,.
n=1

As we increase the system size N we also see a convergence of S to a Gaussian after N = 101
and the existence of an information dimension D; is obtained for small sizes. The result is

plotted in Fig.2.9 for disorder strength W = 1.

4
N=11 — N=201
3 — N=21 N=501
— N=51 — N=1001
™ — N=101
»
5:2
1
0 1 2 3 4 5

S

Figure 2.9: The probability distribution of the Shannon Entropy (S5) at E = 0 for different
sizes N, disorder strength W = 1 and an ensemble of 10° realizations.

A picture of the £ = 0 wavefunction in 1D can be seen in Fig.2.10 (a) where the proba-
bility density is plotted versus a number of middle lattice sites for N = 5001 and W = 0.5.
In Fig.2.10 (b) the log-linear plot is presented and we can clearly see extreme fluctuations

as they are revealed via the fractal structure.
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0.05
0.100
0.04
0.001
c\]_0.03 ‘;?
<
- = 10—5
—0.02 -
-7
0.01 10
1079
n
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(a) (b)

Figure 2.10: (a) The probability density |¥|? for the E = 0 state versus size, for N = 5001
and W = 0.5. The range of sites is [2200,4000] (b) The log-linear plot of (a).

We also study the effect of disorder on the correlation dimension D, which is plotted as
a function of W in Fig.2.11. For small values of W the D, begins from 1 and approaches
asymptotically to zero as W becomes larger. Besides the arithmetic mean In{IPR), we
also provide results for the geometric mean e"’PR) from the linear scaling of which D, is
calculated. The two curves are not the same and this is an implication that the £ = 0
state undergoes a "freezing" transition [36, 37|. For both cases, the fractal nature occurs

for small sizes N.

1.0
—— D2
0.8 ~
— D,
~0.6
Q
N
Q0.4
0.2
0
0 1 2 3 4 5

Figure 2.11: The correlation dimensions D and D, as a function of disorder strength W
for the E = 0 state.
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Multifractal analysis is an essential tool to study the wavefunction fluctuations near a
critical regime [38, 13|, e.g. at the critical point of the metal-insulator transition. In Fig.2.12

(a), we calculate the positive multifractal dimensions for ¢ € [0, 10] and a — f(a) spectra.

1.0 1.0
0.8 0.5
0.6 0
S e
= —— W=0.5, gy=1.242
0.4 -0.5
— W=1 ,qy=1.448
02 1o — W=15, 2y=1.678
0 -15
0 2 4 6 8 10 0 0.5 1.0 1.5 2.0
q a
(a) (b)

Figure 2.12: (a) The multifractal spectrum of dimensions D, g € [0, 10] for the E' = 0 state
and W=0.5 (red), 1 (blue), 1.5 (green). (b) The corresponding f(a) spectrum. It can also
be seen how the position of the maxima aq is affected by disorder.

For ¢ = 0, we obtain the Hausdorff dimension Dy = 1 as expected for a 1D system.
For ¢ = 2 we have the correlation dimension D, we have already calculated explicitly. For
larger values of q, we observe a decay towards D, = 0. This behavior is more apparent when
the disorder is further increased. We also describe the statistical properties of multifractal
measures in terms of their singularity spectrum f(a) in Fig.2.12 (b) [39]. We define

7, = (¢ —1)D,. The f(a) and 7, are related by a Legendre transformation as

_ dr df (a)
=l =

Ty =qa— f(a) , a (2.8)

where a is the Lipschitz-Holder exponent and f(ag) = Do. For W = 1, the resulting

exponent is ag ~ 1.45.
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The level statistics at E, the closest energy near 2 = 0, is presented in the log-linear plot
of Fig.2.13 (a),(b) for odd and even system sizes respectively. For odd sizes the consecutive
level difference is S = FE; and for even sizes S = 2F;. The Wigner curve is the dashed line
whereas the Poisson is the solid black one. We observe that for the given disorder strength
W =1 the system seems to follow the Wigner curve for N = 81 and for N = 121 ultimately
reaches Poisson. Interestingly, a faster approach to localization and the Poisson limit is
found for even sizes at N = 80. The system also passes from the Wigner curve at N = 20.

This result indicates that the system briefly exhibits a quantum chaotic behavior (Wigner)

for small sizes before reaching localization (Poisson). This crossover clearly is distinct for

even and odd sizes N.

- N=11 - N=2 .
100 ) N=11 N=21 10| o i, . N=10 - N=20
Cl - N=41 - N=81 TR
3 & - N=40 - N=80
£ N=161 - N=321 T
v [
—~ IN ~ r
) N £ N
S T Y L . =10 .
1 --- Wigner z, 3 I- --- Wigner
. . ’ I .
L. — Poisson 1 — Poisson
| . N I “oNE L
S e aN. . TN
! : O 1 LINT .
10-2 I- e T ENE 10-2 [ N\
0 1 2 0 1 2 3
S

Figure 2.13: The distribution P(S) of the consecutive level spacing of the first positive
energy E) and W =1 in a log-linear plot for (a) odd sizes and (b) even sizes. An ensemble

of 50000 realizations was considered.
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2.3 2D Off-Diagonal Disorder

We now extend our model to a 2D square lattice |40, 41, 42, 43, 44| for two sublattices A
and B and consider the vertical and horizontal random hoppings logarithmically distributed
(Fig.2.5). The linear size of the lattices is I and N = L?. When N is odd an E = 0 mode
always exists at the middle of the energy spectrum and the wavefunction has zero amplitude
at the sites of B sublattice. A picture of a 2D wavefunction at £ = 0 is shown in Fig.2.14
where the logarithm of the wavefunction [n|¥| is plotted for size N = 121 = 14641 and

various disorder strengths W = 0.1, 1, 2, 10.

It is apparent that the typical pictures of the 2D wavefunctions display fractal charac-
teristics. For weak disorder (/W = 0.1), we observe an almost periodic distribution. For
the intermediate values (W = 1, W = 2) a fractal structure is obvious. For higher values
of disorder (W = 10) the amplitudes are extremely small and the wavefunction strongly
decays. Moreover, these amplitudes are not concentrated in a small region of space but they

seem scattered randomly over the lattice.

We study the multifractality of the E = 0 state by scaling the (/PR) with the linear
size L. In Fig.2.15 (a) we plot the probability distribution of InI PR for various sizes and
disorder W = 1. In contrast to the 1D case, we observe no convergence for the considered

sizes.
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Figure 2.14: N = 1212 = 14641. The logarithm of the £ = 0 wavefunction in|¥| for a
2D square lattice with random hopping and various disorder strengths, (a) W = 0.1, (b)
W =1, (¢) W=2and (d) W = 10. The purple areas represent the higher values and the
dark yellow the lower values.

28



Chapter 2. One-electron Disordered Systems

0.5
1.5 L=11 L=11
— L=21 04| — L=21
— L=31 — L=31
E 1.0 =41 §0.3 — L=5]
= )
= — L=51 = — L=
s £ 0.2 L=71
— L=71 _
0.5 L=91
L=91 — 1=
o1 L=111
— L=111
4
0.0 — 0.0
-8 -6 —4 =2 0 To-12 =10 -8 -6 -4 -2
InIPR In|¥|
(a) (b)

Figure 2.15: (a) The distribution P(In/PR) and (b) the logarithm of the £ = 0 wavefunc-
tion, for disorder strength W = 1 and different sizes linear lengths L.

In Fig.2.15 (b) we plot the distribution of the logarithm of the £ = 0 wavefunction. For
the sizes considered, it is not decisive whether we have convergence to a known distribu-
tion as in the 1D case. We also compute the scaling of arithmetic mean (In/PR) and of

UnIPR) with system size InN. From their linear scaling, we obtain the

geometric mean e
fractal dimensions Ds, Dy. The two curves are shown in Fig.2.16. Their difference again
implies the existence of a "freezing" transition. We observe that for small values of W, the
fractal dimension is almost 2 which means that the E' = 0 is a completely extended state
covering all the available 2D space. For very large disorder (W > 10) the Dy, Dy — 0 and

the wavefunction becomes localized. For intermediate values of disorder the dimension D,

D, acquire non-integer values and E = 0 states exhibits a multifractal behavior.
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Figure 2.16: The fractal dimension D, as a function of disorder strength W for the 2D
E = 0 wavefunction of the random hopping square lattice.

We further analyze the multifractal properties by calculating the multifractal spectrum
D,. We consider only positive multifractal dimensions with ¢ € [0,10]. The results can be

seen in Fig.2.17 (a).

2.0

1.5

—— W=0.5, 4y=2.496
— W=1 ,ay=2.594

0.5 —— W=1.5, ay=2.755

Figure 2.17: (a) The multifractal spectrum D, for the E = 0 state of the 2D random hopping
model for W = 0.5 (red), 1 (blue), 1.5 (green). (b) The corresponding f(a) spectrum.

For ¢ = 0, the Hausdorff dimension Dy = 2 is obtained as expected for a 2D system. For
q = 2 we get the correlation dimension Dj as calculated before. For larger values of q a
decay of D, is observed. As W increases this behavior is even more quicker. We perform

the Legendre transformation (Eq.2.8) to calculate the f(a) spectrum in Fig.2.17 (b). We
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present how the multifractal spectrum scales with disorder and how the position of maxi-

mum is affected. For W = 1, the resulting exponent is ag ~ 2.6.

The level statistics of the Ej, the energy closest to £ = 0, is presented in the log-linear

plot of Fig.2.18.
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Figure 2.18: (a) The distribution P(S) of the consecutive level spacing for odd system sizes.
(b) The distribution of the consecutive level spacing for even system sizes. In both cases
the strength of disorder is W = 1 and about 10* realizations are considered.

For odd sizes the consecutive level difference is S = FE; and for even sizes we have
S = 2F;. The Wigner curve is the dashed line whereas the Poisson is the solid black one.
It is clear that P(S) follows closely the Wigner distribution in a scale-invariant way. For
even sizes the behavior is rather different and neither Wigner nor Poisson is obtained. We
have an intermediate behavior. The localization length in 2D is very large and a quantum
chaotic behavior is expected for sizes way smaller than the localization length. For the sizes

considered here, a clear distinction between even and odd sizes N exists.
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2.4 Summary

In summary, we presented an analytical and numerical study for the effect of off-diagonal
disorder in 1D and 2D systems. We focused mostly at the £/ = 0 midband state which exists
for finite lattices of odd size .

In 1D, for even size N systems the corresponding level statistics of the first positive energy
exhibits a faster approach to localization. On the contrary for odd size lattices Anderson
localization occurs for larger values of N. The wavefunction of the random hopping chain
is analytically calculated and is shown to be multifractal for small sizes (e.g. N < 100 for
W =1). More specifically, the correlation dimension D, varies strongly with disorder as it
ranges from space filling extended behavior (Dy = 1) for very weak disorder to point-like
localized behavior (Dy — 0) for very strong disorder. For intermediate values of disorder
0 < Dy < 1. The f(a) spectrum is also calculated and the position of the maximum for
W =1 is found a¢ = 1.45.

In 2D, the level statistics for the first positive energy with odd size N is found to exhibit
strong level repulsion and follow a scale-invariant Wigner distribution. For even sizes, we
also find an invariance for the distribution which becomes intermediate to Wigner and
Poisson. In 2D the F = 0 wavefunction exhibits multifractal characteristics for sizes below
the localization length. However, it is not decisive if a convergence to a known distribution
exists as found in 1D. For small values of disorder Dy = 2 and the wavefunction is fully
extended to the available space. For intermediate values disorder, 0 < Dy < 2 and for very
strong disorder Dy — 0. The calculated f(a) spectrum for W = 1 shows a maximum at
ag = 2.59.

In general, for large scales, chiral disordered systems behave like ordinary disordered systems
except for the ' = 0 mode which shows a critical behavior. Recent experiments [45, 46, 47,
48, 49| concerning even-odd symmetry and zero modes are conducted with cold atoms, so it
is of great importance to understand the nature of disorder and also how topological effects

and interactions shape the features of such disordered systems.
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Topological Disordered Systems

Novel phases of matter and fascinating properties of materials have always been a main
subject of research in condensed matter physics. In the last few decades, the role of topol-
ogy in solid-state systems has attracted a lot of research interest. Topology is the branch
of mathematics which studies abstract shapes and concerns quantities that remain intact
invariant under continuous transformations, e.g. when we have a number of holes which
remain although the shape might change. The topological phases are characterized by inte-
ger numbers which are called topological invariants, e.g. Chern numbers, winding numbers,
etc. Two objects are topologically equivalent when they have the same topological invariant
and can be continuously transformed into each other. A change in the topological invariant
indicates a topological phase transition, e.g. by closing the holes or making the energy gap
vanish for our systems.

Topological insulators are electronic materials that have insulating behavior in their in-
terior (bulk) but conduct electricity on their surface. In other words, in the bulk the states
can be Anderson localized due to disorder and in the surface conducting. In 3D we may
have surface states, in 2D edge states and in 1D point-like states known as Majorana states.
The topological states are robust and insensitive to smooth changes or small disorder. The

first example of a topological insulator was the 2D Integer Quantum Hall Effect (IQHE)
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discovered in the 1980’s [50]. The Hall conductivity o, for potential in the y-direction and

V€2

-, v 1s an integer with an accuracy

current in the x-direction is quantized to integer values
of 107Y. The IQHE describes electrons moving on a 2D plane subjected to strong perpendic-

ular magnetic field B and very low temperatures. According to classical mechanics electrons

1

will follow circular orbits with radius ~ 5

and quantum mechanics replaces these orbits by
quantized orbitals called Landau discrete energy levels E, = (n + %)hwc, We = %Ei is the
cyclotron frequency. At the edges of a finite sample the electrons do not have enough space
to complete a full circle and bounce off. This leads to "skipping orbits" which propagate
along the edge in the direction determined by the magnetic field. These edge states are
known to be chiral (one-way) and are responsible for the quantized Hall conductivity. The
number of edge states defines the topological invariant called Chern number.

The theory developed for topological insulators can be generalized to topological super-
conductors. A superconductor is a material which below a very low critical temperature can
conduct electricity without resistance. A topological superconductor has superconducting
behavior in the bulk but hosts conducting states on the surface. In one-dimension the two
point-like edge states corresponding to Majorana fermions are like particles being their own
antiparticles |51, 52|. In a sense, they are halves of ordinary fermions and a fermionic state
can be obtained as a superposition of two Majorana fermions. The Majorana fermions are
well separated at the two ends of the chain and can be used to encode non-local quantum
bits which perform error-resilient computation. The controlling and manipulating of these
emergent properties of qubits poses a significant challenge as they are very fragile and prone
to loss of their behavior via decoherence |53, 54, 55, 56].

In mid 90’s, with the growing level of activity in disordered mesoscopic physics and
superconductivity, an extension of the standard Wigner-Dyson universality classes was found
by Altland and Zirnbauer [57] who introduced an expanded classification scheme based on

generic symmetries which includes superconductors.
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The time-reversal symmetry (TRS), the particle-hole symmetry (PHS) and their product

chiral /sublattice symmetry (SLS) give the 10 universality classes shown in Table 1.1.

TRS | PHS | SLS
A (unitary) 0 0 0
?1\3/2\1}1%;1)&1’(1 AT (orthogonal) +1 0 0
ATl (symplectic) -1 0 0
hiral ATII (chiral unitary) 0 0 1
E bi ttice) BDI (chiral orthogonal) | +1 | +1 1
Sublathice CII (chiral symplectic) | -1 -1 1
D 0 +1 0
C 0 -1 0
BdG DIII -1 +1 1
CI +1 -1 1

Table 3.1: Ten symmetry classes of single particle quantum Hamiltonian classified in terms
of time-reversal symmetry (TRS), particle-hole symmetry (PHS) and chiral (or sublattice)
symmetry (SLS).

The first 3 universality classes are the standard "Wigner-Dyson" classes used in quantum
chaotic systems. The next 3 classes have the addition of chiral symmetry. A paradigmatic
model with chiral symmetry is a bipartite lattice with off-diagonal disorder discussed in Ch.2.
The last 4 classes are relevant to superconductors for Bogoliubov-deGennes quasi-particles
in the presence of disorder [58, 59, 60, 61].

In the following sections we study the topological properties of one-dimensional super-
conducting chain with p-wave pairing and show how the presence of disorder affects the
behavior of the £ = 0 Majorana modes. This work initiated in [62| where the effect of

disorder in the Kitaev chain was considered.
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3.1 1D p-wave Superconductor

We consider the toy model introduced by A.Kitaev |63, 64] which describes a 1D spinless

p-wave superconductor supporting Majorana fermions. The spinless Hamiltonian is

L-1 L-1
H=upu Z c;r-cj +1 Z(c}cﬂl + c;r-ﬂcj) +A Z(c}c}H +¢jr1¢4), (3.1)
j=1 j=1 j=1

where c;(cj) are the electron creation (annihilation) operator at site j, ¢ is the hopping, u
the chemical potential and A is the p-wave pairing amplitude. We assume p, ¢, A to acquire
real and positive values, L denotes the system size and we set the lattice constant equal to 1.
We note that the p-wave pairing is unconventional in that the electrons pair in a triplet state
with parallel spins in contrast to the conventional s-wave pairing of the Bardeen-Cooper-
Schrieffer (BCS) mean-field theory [65] which only couples electrons with opposite spins in
a singlet state [66, 67]. Nevertheless, in the p-wave model we consider each site to be either
occupied or empty by an effectively spinless fermion and the superconducting term creates
Cooper pairs in adjacent lattice sites. The Pauli exclusion principle forbids a site to be
doubly occupied.

Due to the inherent particle-hole symmetry in superconducting systems, we can conve-
niently split the chain into two interconnected chains one for electrons and one for holes

(see Fig.3.1).

e
A
A
h U U U U U
-u -t -1 -t -1 -t - -t -1
j1 j j+1

Figure 3.1: 1D chain with real p-wave pairing A. The electron(hole) chain sites are depicted
by full(empty) circles, j denotes the site.
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The Schrodinger difference equations for the j-th unit cell are

EVS = pWS4 10, + 105, + AU — AP |

BUS — Ul — oW, — W, - AU, 4 AT,

We take into account the periodicity of the lattice via the Bloch’s theorem by assuming
plane wave solutions W§ = W.e™ | Wh = W,e*/ for electrons and holes, respectively. We

obtain

(B —p—te* —te W, — Ale?* —e )W), = 0

A — e )W, + (B + p+te* +te ™ )W, = 0
and we find the eigenvalues

E — 2tcosk — —2iAsink
=0 & (E—2tcosk—p)(E+2tcosk+p) —4A%sin’k = 0
2iAsink E + 2tcosk +

& Fy(k) = £/ (2tcosk + p)2 + (2Asink)?, k€ [—m, 7). (3.2)

The energy dispersion relation for the 1D p-wave superconductor (Eq.3.2) consists of two
energy bands, one for the electron and one for the hole. The Hamiltonian of spinless electrons

in the momentum space can be written in the Bogoliubov-deGennes (BdG) form

; —2tcosk — . —2iAsink
> UH(E)Y , H(k) = : (3.3)
ke[—m,m] 2iAsink  2tcosk +

H =

N | —

where Ul = (cjC c_j,) 1 the two-component Nambu vector |68, 69]. The matrix H(k) is a

2x2 Hermitian matrix written as
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-

H(k) = dlk)- & =

= (—2tcosk — p)o, + (2Asink)o,, (3.4)

in terms of the identity matrix Z and Pauli matrices ¢ = (0,,0,,0,), where the vector
d(k) = (d, dy,d,) = (0,2Asink, —2tcosk — ). The diagonalization of H (k) gives the energy
dispersion E.(k) we have found, and the corresponding normalized eigenvectors which are

+i(\ /BT B+d. )
d e

|+) = .
VE+ (VETEEd.)’ |

(3.5)

—

In terms of the components of the vector d(k) the energy dispersion can be rewritten as

E.(k) = 4,/d2 + dZ. The gap closes when both

d, = 2tcosk+pu=20
dy, = 2Asink =10

are satisfied. This happens at £ = 0 for p = —2t and at £ = 7 for p = 2¢. Thus, we
have 3 quantum phases, p < —2t, =2t < p < 2t, p > 2t. Since we initially assumed
that u,t, A > 0, the phase diagram (%, &) of the 1D p-wave superconductor is plotted
in Fig.3.2(a). In Fig.3.2(b-e), we show the energy dispersions E(k) at the exact points
denoted with the red stars in Fig.3.2(a). When p varies from 0 to 3, the energy gap closes

and reopens showing the band inversion mechanism characteristic to topological insulators

and superconductors.
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Figure 3.2: (a) The phase diagram (£, £) of the 1D p-wave superconducting chain. The red

stars indicate the special points for the energy dispersion (b) =0, (¢) p =1, (d) p =2
and (e) p = 3. In Fig.3.2(b)-(e) we have t = 1 and A = 0.5.
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The topological aspects of this model are obtained by calculating the winding number
v € Z which is an example of a topological invariant [70, 71|. The winding number defines the
total number of times that a curve winds counterclockwise around a given point. In our case
the curve follows the movement of the tip of the vector d(k) = (0, 2Asink, —2tcosk— 1) when
k changes from — to w. The tip moves around an ellipse on y-z plane with center at —u. For
=0 < 2t, the origin of cf(k) is inside the elliptic loop and v = 1 (Fig.3.2(b)). For u = 2t,
the loop crosses the origin, the energy gap vanishes and v cannot be defined (Fig.3.2(d)).
Finally, for u = 3 > 2t, the origin is outside the loop and v = 0 (Fig.3.2(e)). The three

cases are shown in the parametric plot of Fig.3.3. in blue, red and green, respectively.

4
2 y=1

N 0
vy not defined

-2

v=0

-4

-4 -2 0 2 4

y

Figure 3.3: The winding number for the (a) non-trivial topological case u = 0 (blue), (b)
the topological phase transition point u = 2 (red), (c¢) the trivial topological case p = 3
(green). We set t = 1 and A = 0.5.
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3.2 Disordered 1D p-wave Superconductor

Our aim is to study the Kitaev model in the presence of disorder. We focus our attention to
systems of finite size L. The hopping t is a random variable from the uniform distribution

[—%, %], W is the strength of the disorder. The pairing A is a real positive number and
g = 0. The Hamiltonian matrix for electrons and holes has dimension dim(H) = 2L and
open boundary conditions are considered. First, we study the sizes L = 2 and L = 3 which

have the even-odd distinction.

1e t 2e 1, t 2. t 3e
ZA -A
A A
\/
1, -t 2 L, to2, t3

(a) (b)

Figure 3.4: (a) Linear size L=2 even and (b) L=3 odd.

For L = 2 (Fig.3.4 (a)), in the discrete basis {|j),j = le,2e,1h,2h} the Hamiltonian

matrix is

The matrix has eigenvalues £ = —t — A, By = —t+ A, B3 =t— A, E;, =t+ A and

normalized eigenvectors
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|\I}E1> = 5

The Inverse Participation Ratios of the corresponding eigenstates are [ PRy g, = PRy, ==

IPRy, = IPRy, = SVt = 4(3)* = 0.25. For many realizations with disorder

W = 1 we calculated the density of states p(F) and IPR(FE).

Fig.3.5(a),(b).
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IPR
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0.1

0.0

The plots are shown in

Figure 3.5: L = 2. (a) Deunsity of states p(F) and (b) Inverse Participation Ratio IPR(E).

The pairing A = 1.
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For L = 3 (Fig.3.4(b)), in the discrete basis {|7),j = le, 2¢, 3¢, 1h, 2h, 3h} the Hamiltonian

matrix is

The matrix has 3 doubly degenerate eigenvalues Ejy = —/2(t> + A?), F34 = 0, Esg =

> o o

0 0 A
t —-A 0
0 0 -A
0 0 -t
-A -t 0
0 0 —t

V2(t? + A?) and the normalized eigenvectors are

t/A
£/ 2(t2+A2)

A

1 t/A

N is the normalization. Considering many realizations with disorder W = 1 we calculated

VETA?

V2A
t/A
A2—t2
1 An/2(t2+A2)

V2t
VIZHAZ

1

o o > o

‘\IJE6>

the density of states p(E) and I PR(F) shown in Fig.3.6(a),(b).
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Figure 3.6: L = 3. (a) Density of states p(E) and (b) Inverse Participation Ratio IPR(E).

The pairing A = 1.

We observe an important difference between the two cases in analogy to the A = 0 case

studied in Ch.2. For odd linear size L = 3 degenerate E = 0 modes exist (Fig.3.6(a)) which

are not present in even L = 2 system (Fig.3.5(a)).

The E = 0 states are the Majorana

modes. This even-odd distiction which is apparent in very small sizes also holds true for

larger L. In Fig.3.7 we show the F = 0 doubling for L = 20 (even) and L = 21 (odd) where

W =1
2 L=20 eee?]
1 ..'....
=0 ,.'°.;0E=0
-1 ..,.".
) .,.".
0 10 20 30 40
j
(a)

2 L=21
1 *
0 ee E=0doubling
-1 Ve
-2 ...c..
0 10 20 30 40
j
(b)

Figure 3.7: The £ = 0 doubling for sizes (a) L =20 and (b) L =21 for A=1and W = 1.

The index j numbers the eigenvalues.
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3.3 Level Statistics

In order to further study the Kitaev model near £ = 0 we plot the density of states p(E)

for size L = 1001 with fixed off-diagonal disorder W = 1. We vary A from smaller than 1

to larger than 1 values. The two limits are shown in Fig.3.8.

3.0
”s L=1001, W=1
~— A=03
2.0 ~— A=05
g — A=0.7
1.
g 1o A=0.9
QU
1.0\
AV,WMVM
0s W
0.0 05 1.0 15 2.0 2.5
E/2A
(a)
35

0.0 0.2 0.4 0.6 0.8 1.0 1.2

E/2A

(b)

Figure 3.8: The density of states p(E) for W = 1 and (a) A < 1 and (b) A > 1. The
linear size is L = 1001. The solid black curve is the density of states p(F) in 1D for W =0

(Ch.1.1).
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We observe a peak at ¥ = 0 when A approaches zero in the "localization" limit W >> A.
On the contrary, when A increases W << A and the density of states behaves much more

like the 1D system in the absence of disorder represented by a solid black curve in Fig.3.8(b).
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Figure 3.9: The distribution P(.S) of the consecutive level spacing of the first positive energy
E;, W =1and A = 1 for (a) even sizes and (b) odd sizes. An ensemble of 50000 realizations
is considered. The dashed curve is the Wigner distribution and the solid line is the Poisson

distribution.
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In order to study the energy level statistics near Ef' = 0, we employ the spacings between
consecutive levels S = 2F; for even L and S = E; for odd L. Weset W =1and A =1
fixed. The resulting log-linear plots are shown in Fig.3.9(a),(b). We find a faster approach
to Poisson limit for even size systems than for odd sizes in accordance with 1D lattices with

A = 0 studied in Ch.2.

3.4 Majorana Mode Multifractality

We now focus on the wavefunction statistics of the £ = 0 Majorana modes in the presence
of disorder. For W =0 (t = 1), A # 0 and odd linear size L, we find two Majorana modes
localized at the two edges of the 1D chain. They are shown in Fig.3.10 with blue and red

color respectively.
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Figure 3.10: The two Majorana modes localized at the edges for the linear size L = 1001.

For W # 0 (¢ random) the situation changes. The two Majorana modes become delocal-
ized and spread inside the whole lattice. In Fig.3.11 we show the structure of one Majorana

mode (blue) for various values of disorder W and fixed A = 1. The linear size is L = 1001.
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Figure 3.11: The spread of the 1D Majorana mode for various values of disorder W (a)-(f).
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The E = 0 Majorana mode in the presence of off-diagonal disorder can be treated via
a recursive relation without diagonalizing the Hamiltonian. The amplitude on each site is

calculated by a product of transfer matrices. The first iteration is shown in Fig.3.12. The

system size is denoted by L and M = % is the number of e-h pairs.
t t
()
e A
“A A
A
h (S
-t -t
1 1’ 2

Figure 3.12: The representation of the transfer matrix for L = 3. The F = 0 wavefunction
has non-zero amplitudes at the filled circles and zero at the empty ones.

The Schrodinger difference equations for the e-h pair 1’ are

WS + 1,05 — AR + AUL = 0
—t, Ul — £ U 4 ATS — AT = 0

tl —A \Ifi _t2 —A ‘IIS
~ =
A —ty wr Aty wh
-1
v —t, —A t —A ve
< =
wh Aty A —t wh
\If; 1 A? + t1to —A(tl + tg) \IJT
= T Az g2
wh 2\ —A(ti+ta) A%+t yh
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The recursive relation is expressed as

we, ! 1
& = —_
\IJ% '11\_4[—1 A? — t%j

A%ty qty;  —A(tgj—1 +ta5) (4

—A(tgjfl + tzj) A2 + t2j71t2j \Ij?

We calculate the (IPR) for large L over many realizations and plot the In(IPR) as a

function of InN. The result is shown in Fig.3.13(a) for different values of disorder W.

w
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Figure 3.13: (a) The scaling of (/ PR) with system size L at £ = 0 for A = 1. The ensemble
consists of 10° realizations. An almost linear behavior is observed for small sizes and small
values of disorder. (b) For W = 1 and A = 1 the probability distribution of in/PR for
several sizes L approaches a Gaussian as found in Ch.2.
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We observe a linear scaling for small values of disorder W so that a fractal dimension D,
can be defined. As we increase W the slope becomes constant with the size and Dy — 0
which implies localized states. In Fig.3.13(b) we plot the probability distribution of In/ PR
for different sizes L and disorder strength W = 1. As we increase the size, a fast convergence
is apparent for sizes larger than L = 101. This gives a correlation dimension D, only for
small enough sizes since the linear fit vanishes for larger L.

The effect of disorder on the correlation dimension D5 is shown in Fig.3.14. We highlight
that for W = 0 the Dy = 0. This is because the Majorana mode is strongly localized
and it has no fractal dimension. As we increase W the D, acquires non-integer values

InIPR

and for strong enough disorder Dy — 0. The geometric mean e ) from the linear scal-

ing gives the dimension D,. The Dy and D, differ so that a kind of freezing transition exists.
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Figure 3.14: The correlation dimension Dy and D, of the Majorana mode with A =1 as a
function of disorder W.
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3.5 Summary

The p-wave superconductor in one dimension without disorder demostrates interesting topo-
logical properties via the appearance of two Majorana modes localized at the two ends of
the chain. We add hopping disorder in the chain to examine the fate of the Majorana topo-
logical modes. We find an even-odd asymmetry as in Ch.2. A double degeneracy at £ =0
occurs only for odd systems. At the vicinity of £ = 0 the calculation of level statistics
shows a faster approach to localization for even L sizes in comparison to odd L systems, as
in the case of disorder only (A = 0) studied in Ch.2. We have derived a recurrence relation
for the E' = 0 state by using the product of transfer matrices. The scaling of the In(IPR)
and the (In/PR) with the logarithm of the system size gives the correlation dimension D,
and DQ, respectively. For W = 0 the Majorana mode is localized and has Dy, = 132 = 0. For
W # 0, the state spreads inside the lattice and acquires non-zero D,, Dy which indicate a
multifractal character. For very strong disorder, the state becomes localized with correlation

dimensions Dy, Dy — 0.
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Many-Body Localization

4.1 Thermalization .vs. Localization

We have seen how the presence of disorder and topology affect the behavior of quantum
condensed matter systems. The addition of interactions makes the problem highly com-
plicated due to the required exponentially large Hilbert space. In general, a disordered
many-body system can either thermalize (ergodic) or become many-body localized (MBL).
Thermalization means that a state will cover all the available Hilbert space and the system
will achieve uniform temperature and equipartition of energy occurs. MBL, instead, means
that a state will be confined in a finite region of the many-body Hilbert space. MBL is a
quantum phenomenon related with the absence of ergodicity in the system and denotes its
failure to thermally equilibrate.

A closed quantum system that is isolated from the environment will unitary evolve in
time according to the Schrodinger equation. If the system is initially in a quantum state
|Wo) it will reach a thermal Gibbs state. In order for this to happen the system has to
be able to act as its own reservoir. The thermal state contains no information about the
initial state, but according to the laws of Thermodynamics, information itself cannot be

erased. The system has no memory and in a sense hides the quantum information. On the
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contrary, the Anderson localized systems cannot act as their own reservoirs and therefore
do not exhibit thermalization. This raises the fundamental question whether a many-body
system thermalizes or not. The system with MBL avoids scrambling of stored quantum
information and can be used for quantum computing. A quantum manifestation of thermal
behavior is the Eigenstate Thermalization Hypothesis (ETH) [19, 20] which explains when
a quantum system can be described by equilibrium statistical mechanics. It states that the
mean value of the local observables at long times will follow the microcanonical ensemble.
MBL systems seem to violate the hypothesis of quantum thermalization.

Over the last few years 72|, numerous works have revealed several interesting proper-
ties of MBL. For recent reviews, see [24, 73, 74]. The main result is the existence of a
disordered-induced dynamical transition between a thermal (ergodic) phase and a localized
(non-ergodic) phase [21, 75]. There is also evidence that for weak disorder the states are
ergodic and obey Wigner statistics, i.e. chaotic with level repulsion. For strong disorder the
MBL eigenstates are non-ergodic and obey Poisson statistics like integrable systems. In the
intermediate region the states can be extended non-ergodic [76].

The topic of MBL continues to attract much attention and experimental methods have
been developed, mostly with ultracold atoms. These atoms are well isolated from the en-
vironment exhibiting high level of quantum coherence. They are stored in optical lattices,
i.e. crystals made of light which are used to trap atoms at very low temperatures |77, 78|.
The disorder is introduced by special modulated laser beams which can localize the spins in
space probing the features of MBL.

The problem presents a tedious computational task because of the exponentially large
dimension of many-body Hilbert space. We choose the method of exact diagonalization
[72] and we get the phase diagram for a many-body disordered system by examining level
statistics. We also pursue an eigenstate analysis. Several computational methods [79] are

also employed, such as decimation schemes [80] and machine learning techniques [81, 82]
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which help to distinguish many-body localized from ergodic eigenstates.

4.2 The Model

We study an isolated and static system of interacting spinless electrons at half-filling [83].

The Hamiltonian of the system in a one-dimensional disordered lattice is
; ; 1 1 1
H=1tY (cleji+che)+> Vi(n— 5) T D Uy - 5)\m—5), (41
J J J

where ? is the hopping matrix element, Vj is the on-site random potential, U; is the random
interaction strength and n; = c}cj is the occupation number operator. This fermionic model
can be exactly mapped to the Heisenberg XX7 quantum spin chain via the Jordan-Wigner

Transformation [84]

i1 ot a— i1l gt a—
C;L' _ SJ+€ iy 1 SmSm , ¢ = emzmzl SmSmSj . (42)

The spin-1/2 particles are fermions and we use the analogy that the spin "down" state can
be seen as an empty lattice site, whereas the spin "up" state can be seen as a site occupied
by a single fermion. We can now calculate each term of the Hamiltonian. The hopping term
between two neighbors j,7 + 1 is

. i—1 —_ . i _
C‘-I].Cj+1 g S;»e_’”rz:?m:1 SjnSmeWZinzl Sj;LSmS;+1 =

_ Qt+imShSm o—
Sie Si

— —28+5:5- (4.3)

J i+l

- _2(_55;)5311
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where we have used the relation e=™5/ S — (3 +57) — —257. Similarly, we have
C;HCJ‘ = S{Sjtrl for the complex conjugate part.
The on-site j term is
clej = SFemim S ShSm i Tho S5, 6 —
_ otao-
=559 (4.4)

_ 1 z

The Hamiltonian of Eq.(4.1) becomes

1 _ 1 _ 1
H =t (578, +57,50)+ 3V, (s;sj - §>+§ U, <sj+sj - 5) (s;lsﬁ1 5) |
J J J

We set t = %, Vi = hj, U; = A; and we obtain

oy
Hxxz =50 ) (8] 8501 +5750) + § hyS? + § 'A;S3S7,). (4.5)
J

The exchange interaction is J,,, h is the transverse magnetic field and A is the strength of
interaction. The interacting fermionic (spin independent) problem has been mapped to a
model of interacting spins. The number of sites /V is equal to the number of spins.

The spin operators S?, ST are expressed as

S%|s,mg) = hmg|s,ms) , SE|s,ms) = hiy/s(s + 1) — mg(m, £ 1)|s, my). (4.6)

,m:j:% and h =1 we have

N |—

For s =
1 B 1
S*%|lm) =m|m) , S*!m>=(§—M)|m+1> , S7m) = (5 +m)lm —1). (4.7)
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In general, the matrix elements given in [72] are

g {mymg. |S] S lmyml ) =

= 5 {m| S [mf) (mja | S5 Im ) (4.8)

= %(% - mg)(% + m;’+1>5mj7m}+15mj+1vm}+1*1’

5 (mymyaa| S5 ST mim ) =
= 5 {m| S5 [mf) (mja | Sy Im ) (4.9)

= %(% + m;)(% - m;’+1)5mjvm3*15mj+1vm§+1+1’

J(mym;a] 585 [mimi, ) =
= J(m;|SEIml) (mya]S7,, |ml ) (4.10)

_ !/ !/
= S Oy 1 0m 1 m

where § here is the Dirac Delta function.

As an example, we solve the case of N = 2 sites/spins. For simplicity, we set h; = 0 and
Jwy = A; = J. The total number of configurations is 2V = 4: {| ™),| 14),| 41, 4}

Working in the subsector where §* = 0, the possible configurations are now reduced to

M = N/(N/2) = 2, namely: {| 1), ] 11)}.
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For the case of N = 2 spins we have m; = m| = 1 and my = m}, = —1. The matrix

elements are

(L 1H| 1) =~ = Huy
(V1 1H] 1) =~ = Han
(1 |H] 1) = 35 =
(W1 H| 1) = 5 = Hy.

The Hamiltonian in the spin configuration basis becomes

with eigenvalues E; = {—0.75.J,0.25.J }

In this work, to study MBL we explored the case where the magnetic field A and the
interaction strength A are random variables [85, 86]. The first kind of disorder corresponds
to static magnetic fields of amplitude h;, where h; are random numbers from a uniform
distribution [-W, W], W is the strength of disorder. The second disorder corresponds to
varying interaction A;, where A; are random numbers from a distribution [0,6], J is the
strength of the interaction. The total spin in the z-direction is conserved, §* = Zj S5 =
0 and we choose for our analysis the largest subsector, (§* = 0) with dimension M =
N!/(N/2)!?. Open boundary conditions are considered for N sites and equal number of

spins.
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We perform exact diagonalization of the Hamiltonian for even sizes N, from N = 8 to
N = 16. We examine the full many-body spectrum at the "infinite temperature limit" where
the energy density is higher. We keep the 10% of the states at the centre of the spectrum

to search for the existence of the transition. Table 4.1 contains the numerical data of our

calculations.
sites/spins N | dim(H) = 2" | dim(Hgupsector) = N/(N/2)? | Egepr | realizations
8 256 70 8 14000
10 1024 252 24 4200
12 4096 924 92 1100
14 16384 3432 344 290
16 65536 12870 1288 77

Table 4.1: The numerical data including the system size N, the dimension of many-body
Hilbert space, the dimension M of the used subsector, the number of levels from the centre
of the spectrum and the number of realizations. The ensemble contains approximately 10°
configuration data.

4.3 Level Statistics

The first and more natural distinction between ergodicity and localization is to calculate
the spectral statistics between the energy eigenvalues. Instead of examining the many-body
energy spacings S and their distribution P(S), we focus on the recently proposed P(r)
distribution [87, 88]. The reason is that we need to perform an unfolding transformation for
the energies because their density is not everywhere the same. It is possible to circumvent
this difficulty by introducing a new quantity to describe the energy levels. Let {E,} be the
set of the many-body energies in ascending order and S,, = E, 1 — F,, > 0, the nearest-

neighbor spacings. We define the adjacent gap ratio as

n

ntl (4.11)

Tn =
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This quantity requires no unfolding since the ratios of adjacent level spacings are inde-

pendent of the local density of states and therefore a practical measure of level fluctuations.

The P(r) distribution for the GOE matrix ensemble is

27 r—4r?

P, = — 4.12
con(r) = S T 4272 (4.12)
whereas for the Poisson distribution is
Proisson(r) = — (4.13)
oisson\T") = . .
P (1+r)2
The two distributions are plotted in Fig.4.1.
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_ 0.6 N
E? / AN
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r

Figure 4.1: P(r) distributions for Wigner-Dyson (dashed line) and Poisson (solid line).
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In addition to r,, one can calculate the distribution of 7,, where:

_ min(S,,Sn1) 1
L — G Boy) mm(rn, 7077,). (4.14)

It is particularly useful to consider the averages of r, and 7,. For GOE (r,) = 1.75 and
for Poisson (r,) = co. Moreover, we have (#,) = 4 — 2v/3 = 0.536 for GOE and (7,) =
2In2 — 1 = 0.386 for Poisson.

We begin our analysis for the level statistics with the phase diagram of (7,) in Fig.4.2

when the disorder strengths W and ¢ are varying.
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Figure 4.2: Phase diagram of (7,) as a function of W and ¢ for a spin chain of size N=12.
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Our simulations suggest the existence of two clearly distinct regions. The ergodic region
(purple color) and the MBL region (orange color). For the current system size (N=12), we
observe that the two regions separate at a disorder strength W ~ 2 when moving across the
x-direction and a disorder stength 0 ~ 6 when moving across y-direction.

We then perform finite size scaling in order to better locate the transition. The sizes
considered vary from N = 8 to N = 16. The latter is the "computational limit" of exact
diagonalization in these systems. In Fig.4.3(a) we show level statistics by setting § = 1 and
varying W, whereas in Fig.4.3(b), W = 0.5 and 0 varies.

The crossings in both cases give a rough estimate of the locations W, and . of the
transitions. As can be seen from the figures, we get W, € [1.5,2.5] and 6. € [5.5,7.5]. We
observe a kind of drifting towards larger values of W and ¢ as the size N increases. At the
largest size considered N = 16, we clearly see the crossings around W, =~ 2.4 and 6. =~ 7
respectively.

The results are close to those calculated for the "standard model" of MBL [21]. In that
model, a 1D spin-1/2 chain is considered with random magnetic fields h; € [—-W,W]. The
strength of interaction is constant A = 1 and periodic boundary conditions are imposed.
For these parameters this model is supposed to exhibit an MBL transition at W, ~ 3.6. In
our work, additionally to random magnetic field, we choose the interaction strength random
and always positive with A € [0,6]. In that sense, the system has two kinds of disorder and

thus we expect a more localized behavior.
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Figure 4.3: The finite size scaling of the level statistics for (a) 6 = 1, W varies and (b)
W = 0.5, § varies. The dashed lines are the Wigner-Dyson limit ((7,) = 0.536) and the
Poisson limit ((7,) = 0.386) respectively.
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4.4 Statistics of Eigenstates

In addition to eigenvalue statistics, information about the system can be received from the
eigenstates and their structure [89, 90]. We consider a many-body wavefunction |¥) =
Eﬁl 1;]7) expressed in the basis of the z components of each spin, |j) = |S;...5y) where
M is the dimension of the many-body Hilbert space. The central quantities of our research

are the Rényi entropies S, for the wavefunction |U) expressed as

M
Sg=— ! 1 In (Z |@Z)j\2q> , q € (—00,00). (4.15)
j=1

q_

In the limit M — oo, we obtain the multifractal dimensions D, defined in Eq.1.12.

For ¢ = 2 the Rényi entropy Se = —In(IPR) includes the known inverse participation
ratio (IPR) defined in Eq.1.15 which measures the delocalization of a many-body state in
the many-body Hilbert space. In the case considered here, we observe states of 3 different

kinds,

e Ergodic states: IPR oc M~!
e Extended non-Ergodic states: IPR oc M~P2, Dy < 1

o Localized states: IPR o O(1)

For the special case with ¢ — 1, 57 is the Rényi entropy which coincides with the Shannon

Entropy (S or Ssy)
M
Ssir = = 30 [ s, (416
=1

another measure for the localization.
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4.4.1 Participation Ratio

In this section we provide numerical results for the Participation Ratio (PR). For a fully

localized many-body eigenstate we have PR = 1 and if |¥) is a fully ergodic state, then

<lnPR>

PR = M. In particular, we study the scaling of the quantity as a function of disorder

strength W and 9, respectively by varying the system size N. The results are shown in
Fig.4.4.
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Figure 4.4: The finite size scaling - < ) for (a) 6 = 1, W varies and (b) W = 0.5, § varies.
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We observe a crossing point around the neighborhood of the critical disordered strength
W, = 2.4 and § = 7 respectively which strongly supports our findings from the level statis-
tics. To better visualize and understand the behavior on both sides of the crossings we
studied the distribution of InPR for W = 0.2 in the ergodic region and for W = 5 in the lo-
calization region. We also did the same for the argued critical disordered strength W = 2.4.

Disorder strength 6 = 1 fixed. The results are shown in Fig.4.5.

The same procedure is repeated when ¢ varies and W = 0.5 fixed. We plot the distribution
of InPR for 0 = 1 in the ergodic region, for 6 = 12 in the localized region and for § = 7
at the second estimated critical point. The results are presented in Fig.4.6. From Fig.4.5
(a) and (c) we clearly observe a different behavior between the ergodic and the localized
regions. For the critical region in Fig.4.5 (b) a somehow intermediate picture is obtained.
There also exist quantitive finite size effects that may not be taken under consideration.
The same behavior is observed in Fig.4.6 where the finite size effects also exist.

We also study the variance of InPR given by the relation

Var(InPR) = {((InPR)*) — (InPR)*. (4.17)

This quantity should vanish in a strongly delocalized or localized region but is expected
to have a peak near the crossover point due to the coexistence of ergodic and non-ergodic
states [91]. This is also true in our case where the peak is drifting closer to the critical point
as the size N increases. However, the variance does not completely vanishes at the localized

region up to the considered strengths W, .
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Figure 4.5: The distribution of InPR for sizes N=8,10,12,14,16 and 6 = 1. (a) ergodic
region for W = 0.2, (b) estimated critical point W =~ 2.4, (c¢) localized region for W =5
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Figure 4.6: The distribution of InPR for sizes N=8,10,12,14,16 and 6 = 1. (a) ergodic
region for § = 1, (b) estimated critical point 6 ~ 7, (c) localized region for 6 = 12
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Figure 4.7: The Var(inPR) of Eq.4.17 for N=8,10,12,14,16 when (a) 6 = 1, W varies and
(b) W = 0.5, § varies.
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4.4.2 Shannon Entropy

In Fig.4.8(a) and (b) we present the numerical results for the scaled Shannon entropy %

as a function of W and 4, respectively, for different system sizes N. As it is stressed here

[76], the computational advantage of Shannon entropy makes it a preferable option giving

similar results as the von Neumann entanglement entropy which is widely used in the MBL

problem.
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Figure 4.8: The scaled Shannon entropy % for N=8,10,12,14,16 when (a) 6 = 1, W
varies and (b) W = 0.5, § varies.
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The results are quite similar to those of the previously calculated participation ratio.
In Fig.4.8(a) the crossings happen at W, ~ 2.4. In Fig.4.8(b) we rather observe a slight
difference with the crossings taking place to value closer to 6 &~ 7.5. There is a small shift

of the previously argued crossing point of § ~ 7.

4.4.3 Multifractality

To further explore the effect of both kinds of disorder on the correlation dimension Dy we
plot it as a function of W and §. The result is shown in Fig.4.9. The fractal dimension D,
will approach asymptotically to zero as W and § becomes very large. Besides the (I PR),

we also calculate for the e!/PE

) from which the fractal dimension 152 is calculated. The two
curves are not the same and this is an implication that the system undergoes a "freezing"
transition. Moreover, in both cases it is apparent that the two dimensions Dy and Dy vary
the most at the neighborhood of the critical point. Therefore, we argue that the states in

this region are extended but non-ergodic, as they are not being able to cover the whole

many-body space.

In Fig.4.9(a) we observe that for W < 1 the two fractal dimensions are equal, Dy =
Dy, = 1. For W > 1, as we leave the strongly ergodic phase, we reach the intermediate
critical region where Dy = Dy &~ 0.5. For larger W, the values seem to decrease significantly
but they do not vanish at least until the disorder value considered. In Fig.4.9(b), the
fully ergodic region exists for § < 3 for both dimensions, whereas near the critical point
Dy = Dy = 0.4. For larger values of §, the dimensions D, D5 are getting closer to each

other both approaching zero.
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Figure 4.9: The multifractal dimension Dy and D, (a) § = 1, W varies and (b) W = 0.5, 0
varies.
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4.5 Summary

We have analyzed the static properties for a finite 1D spin-1/2 chain with random magnetic
fields and random interaction. For the random magnetic field, we identified a critical disorder
strength W, ~ 2.4 and for the random interaction a critical disorder strength . ~ 7.
These points separate two totally distinct regions, the ergodic and the many-body localized,
respectively. The calculation of level statistics for different sizes gives an indication of where
the ergodic and MBL phases separate. The ergodic phase is characterized by Wigner-Dyson
level statistics whereas the MBL phase has Poisson level statistics. We performed finite
size scaling of the participation ratio and the Shannon entropy to better locate the crossing
points based on the structure of many-body wavefunctions. Our results support those from
the studied level statistics. We also examined the multifractal dimensions Dy and DQ of the
many-body wavefunctions. We observe that near the critical disorder strengths the states

are extended but non-ergodic with 0 < D, f)g < 1.
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Conclusions

This thesis studies the effect of disorder in specific condensed matter systems. The work is
separated into three main parts.

The first part concerns the presence of bond disorder which preserves chiral (or sublat-
tice) symmetry. We focus on the behavior of the £ = 0 state which exists only for odd
system sizes N. We treat it both analytically and numerically. The Wg_, state decays sub-
exponentially opposed to the phenomenon of Anderson localization where under disorder
a wavefunction shows an exponential decay. The scaling with the logarithm of the system
size N of the In(IPR) and (InIPR) gives the correlation fractal dimensions D, and Ds,
respectively. The dimensions Dy and D, measure the spatial extent of the wavefunction
and define its multifractal character. For weak disorder (W — 0) E = 0 state is extended
(D3, Dy — 1) and for very strong disorder it is localized (Dy, Dy — 0). For intermediate
values of disorder the correlation dimensions are intermediate to 0 and 1 and signify the
multifractality of the F = 0 state. The energy level statistics of the system near the specific
E = 0 energy is also studied. Interestingly, we find a faster approach to localization for even
N system sizes in comparison with the odd N sizes.

For a square lattice the Wp_, state exhibits multifractal characteristics for sizes below

the large localization length. For weak disorder (W — 0), the E = 0 state is extended

75



Chapter 5. Conclusions

(Dy, Dy — 2) and for very strong disorder it is localized (Dy, Dy — 0). For intermediate
values of disorder, we find 0 < D, Dy < 2. We have also calculated the energy level statis-
tics near ¥ = 0. For odd L system sizes a scale-invariant Wigner distribution is obtained
whereas for even N systems a distribution intermediate to Wigner and Poisson is found.
The even-odd asymmetry and zero modes in disordered systems are important for under-

standing the nature of the critical £ = 0 mode.

The second part shows the interplay between disorder and topology. We consider a p-
wave superconductor with bond disorder in one dimension. This kind of system has been
proposed for use in quantum computing. In the absence of disorder, this system hosts
two topologically protected Majorana modes localized at the two ends of the chain. Our
motivation is to study the fate of the special Majorana states under disorder. Due to the
inherent particle-hole symmetry of the superconductor, the system consists of two chains,
one for electrons and one for holes. We first find an even-odd asymmetry between even L
and odd L chains. A double degeneracy at F = 0 exists for the odd case only and not
for the even case. The calculation of level statistics near the £ = 0 again reveals a faster
approach to localization for even L and not for odd L systems. Our results resemble the
case of off-diagonal disorder (A = 0) studied in Ch.2. Moreover, an analytical expression
for the wavefunction of the £ = 0 state was derived via the transfer matrix method. The
scaling with the logarithm of the system size L of In(IPR) and (InI PR) gives the correla-
tion dimension Do, DQ. In the absence of disorder the Majorana modes are localized at the
two ends of the chain with Dy = [?2 = 0. As disorder increases the Majorana states lose

their topological protection and spread into the lattice.

The third part is focused on the interplay of disorder and interactions. We study a many-

body problem in a lattice of randomly interacting fermions in the presence of a random
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potential. This problem is equivalent to a spin-1/2 chain with random magnetic fields of
strength W and random interactions of strength J. The motivation is to study the phe-
nomenon known as Many-Body Localization (MBL) which occurs in the presence of both
interactions and disorder. Due to the exponentially large Hilbert space of the many-body
system the problem poses a computational challenge. We perform exact diagonalization and
examine the centre of the many-body spectrum where the energy density of states is higher.
The level statistics is calculated. Our simulations suggest the existence of a transition be-
tween two clearly distinct phases. An ergodic phase characterized by Wigner statistics and
a many-body localized (MBL) phase characterized by Poisson statistics. In the considered
kinds of disorder we identify two critical points, one at W, ~ 2.4 for the random magnetic
field and another at . ~ 7 for the random interaction. We also study the statistics of the
many-body eigenstates. The finite size scaling of the (In/PR) supports the findings from
the eigenvalue statistics concerning the estimated values for the critical points. Moreover,
at the critical points we study the whole distributions P(InIPR) which are almost scale-
invariant. Finally, we examine the correlation dimensions D, and f)g. For weak disorder
W the states are fully ergodic and near the critical point they are multifractal resulting in
intermediate correlation dimensions 0 < Do, 152 < 1. For weak disorder ¢ the states again
are fully ergodic and near the critical point they become multifractal with intermediate

correlation dimensions.

Future Outlook
First, it will be interesting to study the effect of disorder in other kinds of topological
systems involving different symmetries e.g. in the presence of spin-orbit interaction. The
disordered systems this thesis dealt with are realized in the laboratory with ultracold atoms
and laser techniques which create the disorder with modulated beams [45, 46, 49, 47|. This

leads to the engineering of new materials for quantum information processing and technol-
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ogy. Moreover, the problem of many-body localization considered here can be generalized
in higher dimensions where the situation is currently unclear [92, 93, 94]. The questions
concerning the very nature and the existence of the ergodic to MBL transition remain unan-
swered. The many-body Hilbert space is exponentially large and there is a research interest
in statistical methods for spectra and wavefunctions to distinguish between ergodicity and
localization. Finally, we could explore other directions in the numerical part by developing
new and /or more efficient algorithms in order to reduce the computational cost and improve
the current precision. In the last few years, novel techniques involving supervised /unsuper-
vised machine learning and neural network training have begun to contribute in the field by

exploring exotic phases of matter and predict differences between them [95, 96, 97, 98, 99|.
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