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Περίληψη

Στην παρούσα διατριβή παράγονται εξισώσεις ισορροπίας και ικανές συνθήκες ευστά-

θειας στάσιμων καταστάσεων μαγνητικά περιορισμένου πλάσματος, μέσω Χαμιλτονιανών
μεθόδων. Αυτές πηγάζουν από τη Χαμιλτονιανή δομή της γενικευμένης Μαγνητοϋδρο-
δυναμικής (ΓΜΥΔ), ενός απλοποιημένου, οιονεί ουδέτερου μοντέλου δύο ρευστών που
περιλαμβάνει συνεισφορές λόγω ιοντικών ολισθήσεωνHall και ηλεκτρονίων πεπερασμένης
αδράνειας. Πιο συγκεκριμένα, ο μη κανονικός Χαμιλτονιανός φορμαλισμός της ΓΜΥΔ
προσαρμόζεται για την περιγραφή συστημάτων με συνεχή χωρική συμμετρία καθώς η

τρισδιάστατη αγκύλη Poisson ανάγεται στην αντίστοιχη ελικοειδώς συμμετρική αγκύλη.
Η ελικοειδής συμμετρία αποτελεί μία γενικευμένη περίπτωση η οποία περιέχει τόσο τη

μεταφορική όσο και την αξονική συμμετρία ως υποπεριπτώσεις. Η τελευταία παρουσιάζει
ιδιαίτερο ενδιαφέρον για τη μελέτη του πλάσματος σε τοροειδή συστήματα μαγνητικού

περιορισμού, όπως το Tokamak, αλλά και του αστροφυσικού πλάσματος. Μέσω της
ελικοειδώς συμμετρικής αγκύλης υπολογίζουμε τα αντίστοιχα συναρτησιακά Casimir, τα
οποία μετατίθενται με κάθε αυθαίρετο συναρτησιακό των δυναμικών μεταβλητών και ως εκ

τούτου αποτελούν αναλλοίωτες ποσότητες. Τα Casimirs και το συναρτησιακό της Χαμιλ-
τονιανής χρησιμοποιούνται για την εφαρμογή της παραλλακτικής αρχής energy-Casimir
απο την οποία προκύπτουν γενικευμένες εξισώσεις ισορροπίας που στη συνέχεια γρά-

φονται στη μορφή ενός συστήματος τύπου Grad-Shafranov-Bernoulli. Επίσης μελετών-
ται ειδικές περιπτώσεις, όπως το αντίστοιχο αξονικά συμμετρικό σύστημα, για το οποίο
παράγεται η συνθήκη ελλειπτικότητας. Επιπρόσθετα, αμελώντας την αδράνεια των ηλεκ-
τρονίων υπολογίζουμε μια αριθμητική, αξονικά συμμετρική ισορροπία σε συνάρτηση με
τους λεγόμενους βελτιωμένους τρόπους περιορισού που παρατηρούνται στο Tokamak.
΄Οσον αφορά την ευστάθεια, στα πλαίσια της μη κανονικής Χαμιλτονιανής περιγραφής,
εξάγουμε ικανές συνθήκες ευστάθειας χρησιμοποιώντας τόσο τη μέθοδο energy-Casimir
όσο και τη μέθοδο των δυναμικά προσβάσιμων διαταραχών. Η πρώτη εφαρμόζεται για
τη μελέτη της ευστάθειας ισορροπιών Tokamak με τοροειδή ροή, στο όριο της μαγν-
ητοϋδροδυναμικής Hall. Επιπλέον, εφαρμόζοντας τη Λαγκρανζιανή περιγραφή για τη
δυναμική των ρευστών παράγονται ικανά κριτήρια ευστάθειας, κάτω από Λαγκρανζιανές
μετατοπίσεις, για το γενικό, οιονεί ουδέτερο μοντέλο δύο ρευστών και για τη μαγνητοϋ-
δροδυναμική Hall. Τα χαρακτηριστικά της κάθε μεθόδου συζητούνται εμβριθώς. Τέλος,
προτείνουμε μια εναλλακτική περιγραφή της ασυμπίεστης ΓΜΥΔ μέσω τριγραμμικών

αγκυλών και μια ευρετική μέθοδο για την κατασκευή διδιάστατων δυναμικών μοντέλων

επιβάλλοντας εκ των προτέρων τη διατήρηση της Χαμιλτονιανής και των αναλλοίωτων

Casimir.





Abstract

In this thesis, equilibrium equations and sufficient stability criteria for stationary states
of magnetically confined plasmas are derived via Hamiltonian methods. These meth-
ods originate from the Hamiltonian structure of extended Magnetohydrodynamics
(XMHD) a simplified, quasineutral, two-fluid model that takes into account contribu-
tions due to ion Hall drifts and finite electron inertia. More specifically, the noncanon-
ical Hamiltonian formulation of XMHD is adapted for the description of systems with
continuous spatial symmetry upon reducing the three-dimensional Poisson bracket to
the corresponding helically symmetric bracket. Helical symmetry is a generic case
including both translation and axial symmetry as special cases. The latter is partic-
ularly interesting for the study of toroidal systems for magnetic confinement, such as
the Tokamak, and also for astrophysical plasmas. By the helically symmetric Poisson
bracket, we compute the corresponding Casimir functionals, that Poisson-commute
with any arbitrary functional of the dynamical variables, thus being invariant quanti-
ties. The Casimirs, along with the Hamiltonian, are then used to employ the energy-
Casimir variational principle resulting in a set of equilibrium equations that are cast in
the form of a Grad-Shafranov-Bernoulli (GSB) system. Special cases are considered,
e.g., the corresponding axisymmetric system of equations, whose ellipticity condition is
derived. Moreover, neglecting electron inertia, we compute a numerical, axisymmetric
equilibrium in connection with the so-called improved confinement modes observed in
Tokamaks. Regarding stability, within the noncanonical Hamiltonian framework, we
obtain sufficient stability criteria using the energy-Casimir and the dynamically acces-
sible stability methods. The former is exploited for assessing the stability of Tokamak,
Hall MHD (HMHD) equilibria with toroidal rotation. In addition, employing the La-
grangian description for fluid dynamics, sufficient stability criteria under Lagrangian
displacements are derived for the generic, quasineutral, two-fluid model and also for
HMHD. The characteristics of each method are thoroughly discussed. Lastly, we pro-
pose an alternative description of incompressible XMHD in terms of trilinear brackets
and a heuristic procedure for constructing two-dimensional dynamical models upon
imposing a priori the conservation of the Hamiltonian and Casimir invariants.
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Chapter 1

Introduction

1.1 Plasma Physics, thermonuclear fusion and magnetic
confinement

As it is well known from classical electrodynamics, the electromagnetic field is de-
scribed by the electromagnetic tensor, which is computed upon solving Maxwell’s
equations. A prerequisite for this computation though, is the knowledge of the four-
current, i.e. the electric charge and current densities. Therefore, we need to know
how the various particle motions generate this four-current. Here the problem of
self-consistency arises, that is the motions of the charged particles (sources) must be
followed in the fields they generate and also in those that are imposed externally.
Hence, it becomes quite clear that one needs a self-consistent theory of interaction be-
tween matter and electromagnetic fields. In nature it is rather unusual to find systems
of charged particles simple enough so as this theory to be provided by electrodynamics
and ordinary dynamics alone, since we usually have to deal with collections of many
particles and tracking the motion of every single particle is practically impossible.
In extraterrestrial environments and laboratory experiments, these sources are often
found in media being in plasma state, i.e. media consisting of collections of many
charged particles of different species, exhibiting collective behavior while being influ-
enced mainly by the electromagnetic forces. Plasma Physics provides a framework for
describing the interaction between such sources and electromagnetic fields, employing
several theories and methodologies, which differentiate with respect to their assump-
tions and the level of refinement aiming to provide closures to Maxwell’s equations.

Beyond this fundamental role of plasma physics, which renders it the natural frame-
work for astrophysical studies since most of the baryonic matter in the Universe is in
plasma state, there are a lot of practical reasons to study the bizarre behavior of the
plasmas. The most important reason is thermonuclear fusion, since under thermonu-
clear conditions the matter is in plasma state. After the development of the hydrogen
bomb, the pursuit for a controlled release and exploitation of fusion energy was in-
tensified. Peaceful applications of fusion energy can potentially provide the necessary
energy for mankind’s prosperity, surmounting crucial environmental, economical and
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geopolitical problems related to the increasing energy needs and consumption. De-
spite the remarkable progress that has been made from the 1950’s to nowadays, fusion
energy remains still an unaccomplished goal. However, its important comparative ad-
vantages with respect to other energy sources still push the research forward with a lot
of experimental fusion devices running all over the world. The main advantages of fu-
sion is the large fuel reserves (Deuterium can be found in sea water) and the reduced
environmental impact, because of the very limited amount of radioactive disposals
with comparatively short-lived radioactivity and the elimination of the possibility of
severe nuclear accidents since no fissile materials are used. Any accident in a fusion
reactor will provoke just the reactor shutdown. Over the last seven decades of fusion
research however, it has been understood that achieving controlled thermonuclear fu-
sion is a rather difficult task. The reason is the bizarre and many times unpredictable
behavior that plasma exhibits, especially when we try to keep it confined.

To achieve self-sustained fusion, plasma confinement is crucial. To have a Deu-
terium - Tritium (D-T) nuclear fusion process

2
1D + 3

1T → 4
2He (3.5MeV ) + n (14.1MeV ) ,

we need to heat the fuel up to 150×106 K, a temperature that exceeds the temperature
at the center of the sun. Moreover, the plasma has to be confined for sufficient time.
However, such a hot material is difficult to be confined effectively, i.e. to reduce the
loss of mass and thermal energy so as the Lawson criterion [1] nτe ≥ 1.5× 1020s/m3,
where n is the particle density and τe is the confinement time, to be satisfied. The
Lawson criterion essentially states that the rate of energy production must exceed the
rate of energy loss. To establish effective confinement, appropriate configurations of
strong magnetic fields are utilized to hold and compress the plasma. The difficulty
is that confinement should be sustained for sufficient amount of time at sufficiently
high temperatures. This challenge is the main force behind the flourishing of Plasma
Physics and the development of a variety of models for describing the plasmas.

Research in magnetic confinement is nowadays focused in two main directions. The
first and most promising is the Tokamak concept. The Tokamak is a toroidal config-
uration which enrolls large coils to produce a toroidal magnetic field and a solenoid
in order to induce a toroidal current thus establishing a poloidal magnetic field. The
poloidal field produces a rotational transform of magnetic field lines, which is neces-
sary for canceling grad-B and curvature drifts of particles to the wall. The second
important device is the Stellarator, which is also toroidal but has continuous opera-
tion since the rotational transform is produced via appropriately bending the external
coils. Despite its pulse operation the Tokamak remains the best candidate for a fusion
reactor due to its simplicity and the observed improved confinement modes character-
ized by high plasma beta, i.e. high ratio of plasma pressure over magnetic pressure
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β = 2µ0P/(B
2), that indicates good quality of confinement.

These high confinement modes, achieved via the so-called L-H (Low-High) transi-
tions occur when the plasma heating power exceeds a critical value [2]. It has been
observed that those transitions are accompanied with an increase of the sheared E×B

flow and the formation of transport barriers. It is believed that there is a relation be-
tween improved confinement and sheared flows because the latter effectively reduces
radial turbulent transport, which is the main mechanism behind heat conduction and
therefore the loss of energy. For many years in fusion research, flows where disre-
garded. For example, the main tool for almost every study on Tokamak equilibria,
the Grad-Shafranov equation (e.g. see [3]), was employed in its simplest form, i.e.
neglecting macroscopic flows. Over the last decades though, due to the important role
of macroscopic mass flows, which can be externally driven or self-generated, there is
an increasing interest for the study of flows in fusion experiments, from constructing
stationary states to the study of stability, turbulence and dynamics in general. The
aims of the present study are oriented in this direction, incorporating not only flow
effects but additionally effects that emerge due to the existence of different species of
particles. To value the importance of such a description we need to understand the
framework within which fusion research takes place. For this reason in the section
below we present some plasma models, from kinetic theory to single fluid Magne-
tohydrodynamics [4], which are important not only for fusion research but also for
Astrophysics.

1.2 Plasma modeling

1.2.1 From kinetic to multi-fluid description

The plasmas consist of a very large number of charged particles which move upon in-
teracting with electromagnetic fields, imposed externally and generated by the plasma
itself. It is clear therefore that keeping track of every single particle motion is practi-
cally impossible. Also, the initial conditions cannot be known with sufficient accuracy.
For these reasons we often adopt a statistical description in terms of distribution func-
tions for each particle species, which change while the plasma interacts with the EM
fields. The evolution of the distribution function for each particle species is described
by Boltzmann’s equation

∂tfs + v · ∇xfs +
es
ms

(E + v ×B) · ∇vfs = (∂tfs)c , (1.1)

where es and ms and are the species charge and mass, respectively; B and E are
the magnetic and electric fields, respectively and (∂tfs)c represents the change of the
distribution functions due to binary Coulomb collisions. Note that v refers to particle
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velocity. For an ideal, collisionless plasma the rhs of (1.1) can be neglected result-
ing in the so-called Vlasov equation. We are interested in the ideal case not only
because it is a simplification which allows for the nice conservation and Hamiltonian
properties to emerge, but also because this case is physically justified by Spitzer’s law
of conductivity which states that the collision frequency between particles scales as
T−3/2. Hence, for the extremely hot Tokamak plasmas for example, the importance of
collisional effects is significantly degraded at least in the framework of some particular
applications.

Even the statistical description though can become very complicated since the evo-
lution of the distribution functions takes place in a six-dimensional phase space. Also
there are phenomena for which a kinetic description provides excessive information
which is not really needed for an adequate description. Hence, it is very common to
resort to simpler models such as the multi-fluid model and the ordinary Magnetohy-
drodynamics. The ideal, multi-fluid equations are derived upon taking the velocity
moments of Vlasov’s equation, in view of the following definitions

ns(x, t) =

∫
d3vfs(x,v, t) , (1.2)

vs(x, t) = n−1
s (x, t)

∫
d3v vfs(x,v, t) , (1.3)

Ps = ms

∫
d3v (v − vs)(v − vs)fs(x,v, t) = psI + πs , (1.4)

Qs =
ms

2

∫
d3v|v − vs|2(v − vs)fs(x,v, t) , (1.5)

where ns are the species particle densities and Ps represent the species pressure ten-
sors. Here, ps = (1/3)Tr(Ps) and πs are the scalar pressures and generalized viscosity
tensors, respectively and Qs the species energy flux density. Taking the zeroth order
velocity moment of Vlasov’s equation we can easily find the continuity equation

∂tns +∇ · (nsvs) = 0 . (1.6)

Similarly, if we consider the first order velocity moment of the collisionless counter-
part of (1.1), multiplying with velocity and integrating in velocity space, then upon
exploiting (1.6) we end up with the following momentum equations

msns (∂tvs + vs · ∇vs) = esns (E + v ×B)−∇ ·Ps , s = i, e . (1.7)

Finally, the contracted second moment gives the energy conservation equation

3

2

dps
dt

+
5

2
ps∇ · vs + πs : ∇vs +∇ ·Qs = 0 . (1.8)
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If the distribution functions fs are isotropic, e.g. Maxwellians, then the non-diagonal
elements in the pressure tensors Ps vanish and the diagonal terms are equal, therefore
the tensors can be replaced by the scalar pressures ps, s = i, e. In addition, if we
assume that there is no heat transfer between the fluid elements then Eq. (1.8) becomes

dps
dt

+
5

3
ps∇ · vs = 0 . (1.9)

If the internal energies of the fluids depend only on the particle density (barotropic
fluids) then (1.9) is satisfied for ps = cn

5/3
s , whereas if they depend also on the entropy

(baroclinic fluids) then (1.9) yields

ps = As(ss)n
5/3
s , (1.10)

dss
dt

= 0 , (1.11)

where ss are the species specific entropies. In this thesis we consider barotropic fluids,
i.e. ss = const. Note that in general, ps = A(ss)n

Γ
s , where Γ is the adiabatic index.

Before proceeding to the derivation of our fluid model we need to make some
remarks regarding the fluid description of the plasmas. The fluid equations are suitable
for describing the macroscopic behavior of the plasmas, i.e. the microscopic motions
are eliminated by averaging the physical quantities. This is a sufficient approximation
when collisions are prominent, providing a physical mechanism for the averaging of the
physical quantities. As mentioned earlier though, in a hot plasma, collisions are rather
rare and therefore this “fluidifying” mechanism is provided by the strong magnetic
fields, which affect the motion of the charged particles perpendicular to the magnetic
field lines. This is indeed the case in a plethora of applications concerning fusion or
astrophysical plasmas where strong magnetic fields are present. However, when we
are dealing with rarefied or high temperature plasmas embedded in weak magnetic
fields or when considering the parallel dynamics, then a kinetic description should be
employed.

1.2.2 Extended Magnetohydrodynamics

The two-fluid equations can be written in the simplified form of single-fluid equations
upon assuming quasineutrality and changing variables from the two fluid velocities to
a center of mass velocity and the current density. Ordinary Magnetohydrodynamics
(MHD) [4] is the most widely employed fluid model, which neglects the existence of
multi-fluid components. Despite the boldness of its fundamental assumptions, MHD
is a very successful theory for describing astrophysical and laboratory plasmas, since
in many cases it provides an adequate framework. This is indeed the case if
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• the length scale of the system is much larger than the Debye length (quasineu-
trality) and the ion and electron gyroradii and skin depths i.e. L � λD, ρs, λs,
s = i, e.

• the characteristic time scale is much longer than the inverses of the plasma and
cyclotron frequencies: τ � ω−1

ps ,Ω
−1
s , s = i, e.

• the Alfvén speed is small compared to the speed of light vA � c, therefore the
displacement current in the Ampere’s law can be neglected.

The assumption L � λD is necessary for quasineutrality, while L � ρs, λs and the
second assumption are necessary so as two-fluid effects can be neglected. It is not
immediately obvious but the third assumption is related also to quasineutrality, which
turns out to be a necessary condition for a nonrelativistic fluid theory to be compatible
with Maxwell’s equations (see [5]). This is because nonrelativistic fluid equations
are Galilean invariant, whereas Maxwell’s equations are Lorentz invariant. To be
consistent with a nonrelativistic fluid description, Maxwell’s equations must become
Galilean invariant as well. This is done upon considering a nonrelativistic limit by
assuming that the characteristic speed is very small compared to the speed of light,
which has as a consequence the displacement current to be negligible. However, this
assumption also implies quasineutrality. To see this let us write the Gauss law for the
electric field in Alfvén units

∇ ·E =
L

λi

c2

v2
A

(ni − ne) , (1.12)

where λi is the ion skin depth. In the limit vA/c � 1 the rhs diverges unless the
particle density difference is at least ni − ne ∼ O(v2

A/c
2) that is the very definition of

quasineutrality.
The MHD model is described by the following equations

∂tρ = −∇ · (ρv) , (1.13)

ρ(∂tv + v · ∇v) = −∇p+ J×B , (1.14)

∂tB = ∇× (v ×B) , (1.15)

an equation of state e.g. adiabatic (1.16)

However, if the time scales or/and length scales become comparable to the character-
istic time or/and lengths of the charged particle motions then the single fluid MHD
becomes clearly inadequate. This could indeed be the case when there exist fast os-
cillating modes propagating into the plasma or small length scale structures, such as
current sheets. Even in the absence of such characteristics, small length scale struc-
tures are indeed present since in general, due to the particle drifts, the ions and even
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the much lighter electrons get separated from the magnetic field lines. This separation
distance is important for transport phenomena and consequently it would be prefer-
able to work within a context which provides estimates of this length. Such a context
is the two-fluid theory. The first step towards a generalization of ordinary MHD so as
to include two fluid effects is the inclusion of the Hall term in the MHD Ohm’s law.
This leads to the so-called Hall MHD (HMHD), which assumes however massless elec-
trons. Incorporating electron inertia into the HMHD model leads to extended MHD
(XMHD) [6]. It must be emphasized here that the key assumption for the derivation of
both HMHD and XMHD is quasineutrality. Indeed, if the first of the three conditions
described above is satisfied, that is the length scales are much larger than the Debye
length, which is characteristic of the screening of electric fields into the plasma, we are
allowed to assume quasineutrality, ni ≈ ne ≈ n. In general, for a single ion - electron
plasma, we can define a center of mass velocity as follows

v :=
minivi +meneve
mini +mene

, (1.17)

which upon assuming ni = ne = n reduces to

v :=
mivi +meve
mi +me

. (1.18)

With this definition one can start from the two-fluid system to derive the simplified
versions of HMHD and XMHD. Multiplying the continuity equations with the corre-
sponding masses, then adding the results and using Eq. (1.18), one deduces a single
fluid continuity equation of the form

∂tρ+∇ · (ρv) = 0 , (1.19)

where ρ := (mi +me)n. In addition, upon identifying that

ve = v − mi

m

J

en
, (1.20)

vi = v +
me

m

J

en
, (1.21)

which can easily be corroborated combining Eq. (1.18) with J = en(vi − ve) and
adding the two momentum equations, we deduce a single fluid momentum equation
which reads as follows

∂tv = v ×∇× v +
mime

m2

J

en
×∇× J

en

−∇

[
h+
|v|2

2
+
mime

2m2

∣∣∣∣ Jen
∣∣∣∣2
]

+ (mn)−1J×B . (1.22)
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If we multiply the ion momentum equation with me and the corresponding electron
equation by mi and then subtract the resulting equations, we find a generalized Ohm’s
law. Essentially it is a momentum equation for the difference of the ion and electron
momenta. However, it plays the role of an Ohm’s law since it relates the electric field
E with the current density J. One can show that this equation is of the form

E + v ×B∗ =
mime

em

{
∂t

(
J

en

)
− J

en
×∇× v +∇

(
v · J
en

+
m2
e −m2

i

2m2

∣∣∣∣ Jen
∣∣∣∣2
)}

−m
2
e −m2

i

m2

(
J

en
×B∗

)
+

1

men
∇(mepi −mipe) , (1.23)

where B∗ is a generalized “magnetic field", modified by electron inertia

B∗ = B +
mime

me

(
∇× J

en

)
. (1.24)

From Faraday’s law of induction, ∂tB = −∇ × E, we can find a dynamical equation
governing the evolution of this field

∂tB
∗ = ∇×

[
v ×B∗ +

mime

em

J

en
× (∇× v) +

me −mi

m

J

en
×B∗

]
+

1

emn2
∇n× (me∇pi −mi∇pe) . (1.25)

We showed that the quasineutral two-fluid model can be written as a dynamical system
with characteristics similar to MHD, that is a single continuity equation (1.19), a
momentum equation for a center-of-mass velocity (1.22) and an induction equation
governing the evolution of a magnetic-like field (1.25). In most of the studies employing
extended MHD, a reduced version of the quasineutral model derived above is utilized.
This reduction involves an expansion in the smallness of the electron over the ion mass
ratio µ := me/mi and keeping terms of O(µ0). For this expansion to be performed,
one needs to write the dynamical equations in dimensionless form. This is effected
through the so-called Alfvén normalization

n̄ = n/n0 , t̄ = t/τA , B̄ = B/B0 ,

J̄ = J
/

(B0/`µ0) , ∇̄ = `∇ , Ā = A/(`B0) ,

Ē = E/(vAB0) , Φ̄ = Φ/(`vAB0) , p̄s = ps
/

(B2
0/µ0) , (1.26)

where A and Φ are the electromagnetic vector and scalar potentials; `, n0 and B0 are
reference length, particle density and magnetic field, respectively; vA = B0/

√
µ0min0
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is the Alfvén speed and τA = `/vA is the Alfvén time. Henceforth, to simplify nota-
tion, the bars will be omitted on the understanding that all appearing quantities are
normalized as described above. Upon normalizing Eqs. (1.22)–(1.23) and neglecting
O(µ) terms we find

∂tv = −∇
(
h+
|v|2

2
− d2

e

2

|J|2

ρ2

)
+ v ×∇× v + J×B∗ , (1.27)

E + v ×B = −di
∇pe
ρ

+ di
J×B∗

ρ

+d2
e

[
∂t

(
J

ρ

)
− ρ−1J×∇× v +∇

(
v · J
ρ
− di

2

|J|2

ρ2

)]
. (1.28)

Considering a barotropic plasma i.e. the specific enthalpy h and the pressures p, pe
are functions of the particle density only, the induction equation becomes

∂tB
∗ = ∇×

(
v ×B∗ − di

J×B∗

ρ
+ d2

e

J×∇× v

ρ

)
, (1.29)

where

B∗ := B + d2
e∇×

J

ρ
, (1.30)

and di = c/(ωpiL), de = c/(ωpeL) are the normalized ion and electron skin depths,
respectively.

1.3 Hamiltonian description of ideal fluid models

1.3.1 Canonical and noncanonical Hamiltonian mechanics

In the framework of canonical Hamiltonian mechanics, conservative dynamical systems
with N degrees of freedom are described by a set of generalized coordinates qi, i =

1, ..., N and a set of generalized momenta πi, i = 1, ...N , which are associated with
the time derivatives of qi’s via

πi =
∂L
∂q̇i

, (1.31)

where L = L[q, q̇, t] is the Lagrangian of the system. The dynamics is then described
by the Hamilton’s equations which read as

q̇i =
∂H
∂πi

π̇i = −∂H
∂q̇i

, (1.32)
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where H[q, π, t] := πiq̇
i − L[q, q̇, t] is the Hamiltonian of the system. Defining the

phase-space coordinates

zi =

qi, i = 1, ..., N

πi−N , i = N + 1, ..., 2N
. (1.33)

Hamilton’s equations (1.32) assume the following compact, covariant form

żi = J ijc
∂H
∂zj

, (1.34)

where Jc is the Poisson operator given by the co-symplectic form

Jc =

(
0N IN

−IN 0N

)
, (1.35)

with IN being the N ×N identity matrix. The canonical Poisson bracket between two
arbitrary functionals f [z], g[z] is defined as follows

[f, g] =
∂f

∂zi
J ijc

∂g

∂zj
. (1.36)

Poisson brackets satisfy certain rules, they are bilinear, antisymmetric, they obey the
Leibniz rule and furthermore satisfy the Jacobi identity, which reads as follows

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0 . (1.37)

These ingredients more or less consist the standard canonical Hamiltonian formulation
of mechanics, as is described in textbooks, for example [7]. However, when dealing with
continua, e.g. fluids (their phase space is infinite dimensional), the natural framework
for the description of their dynamics is the so-called Eulerian viewpoint, describing the
fluid motion by measuring the change of physical quantities at fixed point. Eulerian
variables in continuum models are in general noncanonical in the sense that they do
not constitute canonical pairs and the transformation that connects them with the
material variables, that are canonical, introduce into the Poisson operator an explicit
dependence on the phase space variables. This means that the co-symplectic form
(1.35) ceases to be an appropriate Poisson operator in the Eulerian framework. To see
how this transpires (see [8]) it is sufficient to stick in the finite dimensional treatment
and consider a coordinate transformation zi → ui = ui(z). Hamilton’s equations
(1.34) become

u̇m =
∂um

∂zi
J ijc

∂un

∂zj
∂H̃[u]

∂un
=: Jmn∂H̃[u]

∂un
, (1.38)
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thus it becomes clear that the new Poisson operator J in general depends on the phase
space variables i.e. J = J [u]. It retains however the property of antisymmetry and
satisfies Jacobi identity, which in tensorial form read as follows

J ij = −J ji ,

J im∂J
jk

∂um
+ J jm∂J

ki

∂um
+ J km∂J

ij

∂um
= 0 . (1.39)

The noncanonical Hamilton’s equations are given by

u̇i = J ij(u)
∂H̃[u]

∂uj
, (1.40)

and the noncanonical Poisson bracket is

[f, g] =
∂f

∂ui
J ij(u)

∂g

∂uj
. (1.41)

The temporal evolution of a functional F is then given by

∂tF = [F ,H] , (1.42)

A straightforward generalization to infinite dimensions is possible

{F,G} =

∫
dµ

δF

δui
J ij δG

δuj
, (1.43)

where µ are spatial or in general Eulerian coordinates and δF/δu denotes the functional
derivative defined via the variation of the functional F

δF = lim
ε→0

F [u+ εδu]− F [u]

ε
=

∫
dµ
δF

δu
δu . (1.44)

In view of (1.43) the fundamental properties (1.39) take the form

{F,G} = −{G,F} , (1.45)

{F, {G,H}}+ {H, {F,G}}+ {H, {F,G}} = 0 . (1.46)

1.3.2 Casimir invariants and the energy-Casimir variational princi-
ple

A characteristic of noncanonical Poisson operators is that they are degenerate and
inhomogeneous, that is, the kernel, ker(J ), contains nonzero elements and its dimen-
sion may depend on the position in the phase space. The nonzero elements of the
Poisson kernel are phase space gradients of topological invariants called Casimirs, i.e.

J ij(u)
∂Ck
∂uj

= 0 , (1.47)
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hence, {C,F} = 0 ∀F ; in other words they commute with every arbitrary functional
F defined on the phase space P. From (1.47) one can easily see that the quantities C
are constants of motion since

Ċk = {C,H} =
∂Ck
∂ui
J ij(u)

∂H
∂uj

= 0 , (1.48)

for every Hamiltonian H. Equation (1.47) implies that there are surfaces onto which
the phase space trajectories of the noncanonical Hamiltonian system are confined.
These surfaces are the level sets of the Casimir invariants i.e. surfaces defined by
C = const.. We understand therefore that the Casimir invariants play an important
role in dynamical evolution, since they restrict the phase space trajectories. Their role
is also important for the evaluation of equilibrium points for which ∂tF = 0 ∀F . From
(1.42) one deduces that ∂tF = 0 is equivalent to

J ij ∂H
∂uj

= 0 . (1.49)

However, due to (1.47) we understand that (1.49) does not give all the possible equi-
libria since

J ij ∂

∂uj

(
H+

∑
k

Ck

)
= 0 , (1.50)

as well. In the infinite dimensional case, where {F,G} =
∫
dµ δF

δui
J ij δG

δuj
, the partial

derivatives are replaced by functional derivatives, i.e.

J ij δ

δuj

(
H+

∑
k

Ck

)
= 0 , (1.51)

It is evident then that phase space points, ue, satisfying

δ

(
H+

∑
k

Ck

)
[ue] = 0 , (1.52)

are equilibrium points. Note thought that the converse is not true, i.e. not all equi-
librium points are solutions to Eq. (1.52) (see [8, 9]). Equation (1.52) is the math-
ematical expression of the so-called energy-Casimir (EC) variational principle and
the equilibrium states derived by this are called energy-Casimir equilibria. This varia-
tional principle is the core concept of the present thesis, since in the following chapters
equilibrium equations for the XMHD model are derived upon extremizing XMHD EC
functionals.
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1.3.3 Second variation of the EC functional - EC stability

Employing the EC principle for computing equilibria has an undeniable advantage:
the variational principle can be utilized for studying the stability of the EC equilibria
as well. This can be done upon computing the second order variation of the EC
functional, HC := H −

∑
i Ci, at the corresponding equilibrium and investigating if

it is of definite sign. If so, then the equilibrium is linearly stable. To see how this
transpires we need to examine the linear dynamics of a noncanonical Hamiltonian
system. Since C is a constant of motion for the general nonlinear dynamics, we can
freely write

u̇i = J ij δHC
δuj

, (1.53)

without changing the dynamics. The linearized equations of motion, around an equi-
librium ue are obtained upon expanding in Taylor series (up to first order) the equation
above, in view of u = ue + εδu, where ε is a small parameter. By doing so we find

δu̇i = J ij(ue)
δ2HC(ue)

δujδuk
δuk , (1.54)

where we have used u̇ei = 0 and δHC(ue) = 0. Now let us consider the time derivative
of δ2HC at ue

d

dt
δ2HC =

d

dt

∫
dµ

δ2HC
δujδuk

(ue)δu
jδuk

=

∫
dµ

δ2HC
δujδuk

(ue)(δu̇
jδuk + δujδu̇k) . (1.55)

In view of (1.54), Eq. (1.55) becomes

d

dt
δ2HC =

∫
dµ
δ2HC(ue)

δujδuk
×

×
(
J jme

δ2HC(ue)

δumδu`
δu`δuk + J kme

δ2HC(ue)

δumδu`
δu`δuj

)
, (1.56)

which is equal to zero due to the antisymmetry of J . Another way to see that
δ2HC(ue) is a constant of motion for the linearized dynamics is to identify the Hamil-
tonian in (1.54) by rewriting this equation as

δu̇i = J ij(ue)
δ

δuj

(
1

2

δ2HC(ue)

δu`δuk
δu`δuk

)
. (1.57)

This means that 1
2δ

2HC(ue) is the Hamiltonian of the linearized dynamics, and there-
fore is a constant of the respective motion. Additionally, if it is definite in sign then
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either δ2HC(ue) or −δ2HC(ue) would be positive definite and consequently will pro-
vide a conserved norm on the space of perturbations. Therefore, any perturbation
with initial energy δ2HC(ue) will stay on surface defined by δ2HC(ue) = const. and
the energy-Casimir equilibrium ue is Lyapunov stable.

After this analysis we are now in position to summarize the steps to study linear
stability using the Casimir invariants arising in noncanonical Hamiltonian systems (see
also [10] for an algorithmic presentation of this procedure containing also considera-
tions concerning nonlinear stability):

1. Identify the noncanonical Hamiltonian structure underlying the equations of
motion, which requires the identification of a Hamiltonian functional H and a
Poisson bracket {F ,G} describing dynamics by dF

dt = {F ,H}.

2. From the Casimir-determining equation {C,F} = 0 ∀F determine the complete
set of the Casimir invariants C.

3. Construct the energy-Casimir variational principle δ(H +
∑

k Ck) = 0 by which
equilibrium solutions can be derived.

4. Compute the second order variation of HC = H +
∑

k Ck at the equilibrium
point found in the previous step. Since δ2HC(ue) is conserved by the linearized
dynamics, its sign definiteness implies linear stability.

1.3.4 Casimir preserving variations - Dynamical accessibility

Different notions for the stability of fluid flows under variations that conserve various
properties of the dynamical model were invented over the past decades. For example
the so-called “isovortical” variations that conserve the local Kelvin circulation invari-
ants resulting in “equivorticity” flows, were introduced by Arnold [11]. Later on, a
similar notion was introduced within the mathematically rigorous framework of non-
canonical Hamiltonian formalism by Morrison and Pfirsch in [12]. They applied this
method in studying the stability of the Maxwell-Vlasov system under variations called
dynamically accessible (DAVs), that are generated by the model dynamics and pre-
serve the Casimir invariants. Also the method was exploited for plasma fluid models
e.g. for ideal MHD by Hameiri [13] and later on for Hall MHD in [14] and [15]. The
main advantages of this method are: 1) DAVs are generated by the Hamiltonian struc-
ture of the system, that provides a systematic algorithm leading to stability criteria,
(as was also the case in EC stability method) in view of Dirichlet’s theorem, 2) it is
applicable to generic equilbria and not only for those resulting from the EC principle
and 3) it leads to sufficient stability criteria in cases where the EC method fails due
to the lack of Casimirs.

The main idea behind DAVs is that they constrain the phase space trajectory on
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the symplectic leaves. Such kind of motion can be generated by the noncanonical
Poisson bracket using some Hamiltonian that is responsible for the dynamics of the
perturbations, usually called generating Hamiltonian functional W,

δuida = J ij δW
δuj

= {ui,W} . (1.58)

Evidently these variations are Casimir preserving

δCda =

∫
dµ

δC
δui

δuida =

∫
dµ

δC
δuj
J ij δW

δuj
= 0 . (1.59)

The second order variation of the Hamiltonian is needed for establishing dynamically
accessible stability. Starting with the first order variation we have

δHda =

∫
dµ
δH
δui

δuida =

∫
dµ
δH
δui
J ij δW

δuj
, (1.60)

which vanishes at u = ue. Therefore condition {H,W} = 0 provides us with the
equilibrium equations. Furthermore, upon considering the second order variation of
H we take

δ2Hda =

∫
dµ

(
1

2

δ2H
δuiδuj

δuidaδu
j
da +

δH
δui

δ2uida

)
, (1.61)

where

δ2uida = {ui,W(2)}+
1

2
{{ui,W(1)},W(1)} =

J ij δW
(2)

δuj
+

1

2

(
J j`∂J

ik

∂uj
δW(1)

δuk
δW(1)

δu`
+ J ijJ `k δ

2W(1)

δujδu`
δW(1)

δuk

)
. (1.62)

Here W(2) is a second order generating functional, which is irrelevant though in com-
puting δ2Hda because when the second term in the rhs of (1.61) is multiplied with the
first term in the rhs of (1.62), vanishes in view of the equilibrium condition. Eventually
one has

δ2Hda[ue; δuda] =
1

2

∫
dµ

(
δ2H
δuiδuj

J i`J jk δW
(1)

δu`
δW(1)

δuk

+
δH
δui
J j`∂J

ik

∂uj
δW(1)

δuk
δW(1)

δu`
+
δH
δui
J ijJ `k δ

2W(1)

δujδu`
δW(1)

δuk

)
, (1.63)

where the Poisson operator and the variational derivatives of the Hamiltonian are
computed at the equilibrium point. Usually the functional generating the DAVs is
formed as follows

W =

∫
dµuigi , (1.64)
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with gi being components of arbitrary vectors which encapsulate the arbitrariness of
the variations. Notice that since the variables ui are involved linearly in W(1) the last
term in (1.63) vanishes. After these calculations a sufficient stability criterion can be
readily established: An equilibrium point ue is stable if δ2Hda is definite in sign.

1.4 Lagrangian stability

For the description of fluids there are two different viewpoints which result in canonical
and noncanonical Hamiltonian formalisms, respectively: the Lagrangian picture and
the Eulerian picture. The Lagrangian formulation describes the fluid as consisting
of many small fluid elements and tracks the motion of every single element during
the dynamical evolution. Within the Eulerian viewpoint the fluid motion is described
by means of fields, both scalar and vector ones, measured at fixed point in space; as
a result this latter viewpoint is natural for describing fluid motion in the observer’s
frame. So, the equations of motion for fluid dynamics are usually expressed in Eule-
rian variables. However, the Lagrangian picture provides a more natural framework
for action and variational principles, since the generalization of the well known ac-
tion principles to infinite dimensions is straightforward within the well established
canonical Lagrangian/Hamiltonian description of dynamics. Lagrangian description
provides a quite general method for stability analysis, since there are no geometric
or dynamical restrictions on the permissible perturbations like in the two methods
described previously.

In the Lagrangian framework the fluids are described in terms of Lagrangian or ma-
terial variables suitable for tracking the motion of the individual fluid elements. The
material variables are the positions of the fluid elements at a given instant qs(a, t)

(s = i, e standing for the ion and electron species) where a ∈ R3 is the fluid element
label, usually taken as the element’s position at t = 0. The two viewpoints are con-
nected through the so-called Lagrange-Euler map, which has to be consistent in the
sense that an action written in the Lagrangian framework is mapped to an action writ-
ten exclusively in terms of Eulerian variables, a requirement called Eulerian Closure
Principle (ECP) [16, 17]. For an ideal fluid theory, the fluid part of the Eulerian dy-
namics is described by n, v, s, (here s is the specific entropy) and the Lagrange-Euler
map, presented in detail in [8], is given by the following relations

n(x, t) =
n0(a)

J (a, t)

∣∣∣∣
a=q−1(x,t)

, (1.65)

v(x, t) = q̇(a, t)
∣∣
a=q−1(x,t)

, (1.66)

s(x, t) = s0(a)
∣∣
a=q−1(x,t)

, (1.67)
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where J (a, t) = det(∂qi/∂aj).
A standard approach to perform stability analysis within this framework is to write

the Hamiltonian of our ideal fluid theory in terms of material variables q, π. To do so
we construct the Lagrangian functional describing fluid dynamics in material variables.
Then one has to expand the Lagrangian up to second order upon considering small
perturbations around a reference trajectory i.e.

q(a, t) = Q(a, t) + ζ(a, t) , (1.68)

where ζ is the so-called Lagrangian displacement vector. The reference trajectory
need not to correspond to a Lagrangian equilibrium. Actually for a flowing Eulerian
equilibrium the reference state is necessarily time dependent in the Lagrangian frame-
work because from (1.67) we understand that if we consider a Lagrangian equilibrium
trajectory, i.e. q̇ = 0, then the Eulerian velocity will vanish v(x, t) = 0. In view of
(1.68) we expand the Lagrangian as follows

L = L0 + δLla + δ2Lla + ... , (1.69)

where L0 is a constant, δLla vanishes at equilibrium and δ2Lla governs the linearized
dynamics. Applying the Lagrange-Euler map one has to find a Lagrangian completely
expressible in terms of Eulerian variables which moreover produces the correct Euler-
Lagrange equations. Then from the Eulerian counterpart of δ2Lla one can construct
the Hamiltonian δ2H upon employing a Legendre transform. Then the infinite dimen-
sional version of Dirichlet’s stability theorem provides the sufficient stability condition
δ2H > 0.

1.5 Hamiltonian description of XMHD

It has been recognized recently that the dynamical equations of barotropic XMHD in
Eulerian description, i.e. (1.27), (1.29) and (1.19), possess a noncanonical Hamiltonian
structure [18]. According to the previous section, this means that the dynamics can
be described by a set of generalized Hamiltonian equations

∂tu = {u,H} , (1.70)

where u is a member of (ρ,v,B∗), which are noncanonical dynamical variables (they
do not form canonical conjugate pairs), H[ρ,v,B∗] is a real valued Hamiltonian func-
tional, and {F,G} is a noncanonical Poisson bracket (see [8, 19]). which is bilinear,
antisymmetric, and satisfies the Jacobi identity. The appropriate Hamiltonian for our
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system is the following:

H =
1

2

∫
D
d3x

[
ρ|v|2 + 2ρU(ρ) +B2 + d2

e

|∇ ×B|2

ρ

]
,

=
1

2

∫
D
d3x

[
ρ|v|2 + 2ρU(ρ) + B ·B∗

]
, (1.71)

where D ⊆ R3 and U is the internal energy function (p = ρ2dU/dρ), while the corre-
sponding noncanonical Poisson bracket is

{F,G} =

∫
D
d3x

{
Gρ∇ · Fv − Fρ∇ ·Gv + ρ−1 (∇× v) · (Fv ×Gv)

+ρ−1B∗ · [Fv × (∇×GB∗)−Gv × (∇× FB∗)]

−diρ−1B∗ · [(∇× FB∗)× (∇×GB∗)]

+d2
eρ
−1 (∇× v) · [(∇× FB∗)× (∇×GB∗)]

}
, (1.72)

where Fu := δF/δu denotes the functional derivative of F with respect to the dy-
namical variable u, defined by δF [u, δu] =

∫
D d

3x δu · (δF/δu) . For the computation
of the functional derivatives of the field variables we make use of δui(x′)/δuj(x) =

δijδ(x
′ − x).

For the general 3D version of the model described by means of (1.71) and (1.72),
the Casimir invariants i.e. the functionals C that satisfy {C,F} = 0 ∀F , are

C1 =

∫
D
d3x ρ , (1.73)

C2,3 =

∫
D
d3x (A∗ + γ±v) · (B∗ + γ±∇× v) , (1.74)

withB∗ =∇×A∗ and γ± being the two roots of the quadratic equation γ2−diγ−d2
e =

0, i.e. γ± =
(
di ±

√
d2
i + 4d2

e

)
/2.

Remarkably, in [20] the authors derived (1.72) starting from a Lagrangian-Action
formulation and taking the Lagrange-Euler map of the canonical Poisson bracket.
Also, in [21] the authors discovered an interesting property of (1.72), that is, if the
bracket is expressed in terms of generalized vorticity fields given by

B± = B∗ + γ±∇× v , (1.75)

then it assumes the form of the Hall MHD Poisson bracket with di → di − 2γ±, i.e.
the following identity holds

{F,G}xmhd[di, d2
e;B

∗] = {F,G}hmhd[ν±;B±] , (1.76)
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where ν± = di − 2γ±. This result is exploited in this thesis in order to obtain sim-
plifications of the spatially reduced brackets that facilitate the computation of the
corresponding Casimir invariants.

1.6 Motivation and aim

The study of equilibrium and stability of plasmas is very important for fusion and
astrophysical research. Especially for fusion applications, equilibrium and stability
are crucial factors for the attainment of long lived states in magnetic confinement de-
vices, such as the Tokamak and the Stellarator, with sufficient confinement of thermal
energy for the self-sustained operation of thermonuclear reactors. In general the most
drastic way to lose the confinement of plasma energy is the development of either
macro-instabilities, e.g. the current driven kink and the pressure driven ballooning
instability associated with plasma disruption (effectively they put upper limits on
the attainable current and pressure), or micro-instabilities that result in enhanced
turbulence and anomalous transport. Stability analyses are usually performed using
the standard MHD energy principle [22] that was generalized for flowing equilbria in
[23]. The equilibrium and stability analysis of stationary plasma states with macro-
scopic sheared flows, albeit a tough problem from the mathematical point of view,
is important since it is believed that plasma rotation, either being self-generated or
driven externally, may have beneficial effects in terms of confinement. Indeed plasma
flows are associated with the suppression of turbulence [24] and the L-H transitions [2]
observed in Tokamaks. Also there are many studies proposing that plasma sheared ro-
tation variously affects the stability properties of Tokamak equilibria in several cases,
either inducing stabilization or destabilization (e.g. [25, 26, 27, 28, 29]), with the main
destabilizing mechanism being the Kelvin-Helmholtz instability [30].

Furthermore, many astrophysical phenomena, such as the development of tur-
bulence in various stages of the solar wind and in magnetized accretion disks, are
consequences of flow-driven instabilities, such as the Kelvin-Helmholtz (e.g. see [31])
and the Magneto-rotational instability (MRI) [32]. It is evident that plasma instabil-
ity is the reason for the emergence of new structures but most importantly for fusion
physics, they are also the main mechanisms behind the undesirable interchange of
energy, which should be sufficiently reduced in fusion experiments. This pursuit is the
main reason for performing stability studies for over sixty years, trying to refine the
resulting stability or instability criteria and incorporate as many physics as possible.

It is widely agreed that ordinary MHD, despite being a successful model for de-
scribing macroscopic phenomena, provides a rather rough description of plasmas since
it neglects the presence of multi-fluid components. This is especially true when there
exist characteristic length scales comparable to the ion and electron skin depths, e.g.,
due to the presence of current sheets or thin boundary layers. In such cases multi-fluid
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models are needed to describe phenomena arising due to the coexistence of different
particle species and the decoupling of their respective motions, even on macroscopic
level. Regarding stability, when mode frequencies comparable to the particle gyro-
frequencies are present then MHD becomes clearly an insufficient framework. This
intuitive reasoning about the insufficiency of the MHD model, is corroborated when
MHD theory fails to predict adequately the experimental observations: the observed
stability of elongated Field Reversed Configurations (FRC) [33, 34] and the high mag-
netic reconnection rates (for example see [35, 36]) are examples where two-fluid models
work significantly better than MHD. Moreover, there exist recent views on Tokamak
physics suggesting that the Hall drift term cannot be neglected both in equilibrium
and dynamics computations; also it has been suggested that Hall effects may be asso-
ciated with the pressure pedestals, formed in the L-H transitions [37, 38].

For the reasons described above, very often we need to invoke multi-fluid descrip-
tions since they capture finer dynamical effects, taking place in shorter length and
temporal scales. Regarding stability analysis of flowing plasmas though, a two-fluid
treatment is an even tougher problem. If rotation is neglected the two fluid effects
are incorporated more easily through the multi-fluid pressure (e.g. see [14]) because
no decoupling of electron and ion motion occurs. However, as was stressed earlier,
plasma flows are consequential and therefore it is important to take them into ac-
count. A characteristic consequence of including flows in stability methods based on
energy functionals is the non-separability of the kinetic and potential energy contri-
butions rendering the resulting stability criteria sufficient but not necessary. A typical
example is the MHD energy principle, which for static equilibria provides a necessary
and sufficient condition [22], while for stationary states [23] it provides only sufficient
conditions. These are, respectively, the Lagrange and Dirichlet conditions of Hamil-
tonian dynamics, as pointed out in [8].

In this thesis we deal with formal stability. By this term we mean an analysis
based on an energy-like quantity that is conserved by the full nonlinear dynamics of
the system. For formal stability, the first variation of this quantity must vanish and the
second variation must be positive (or negative) definite at the equilibrium. When this
is the case, the second variation serves as a Lyapunov functional for linear dynamics.
Formal stability is important because it implies linearized and spectral stability and is
a step forward to nonlinear stability that requires additional convexity estimates [10,
8]. Thus far, only a limited number of studies have led to appropriate Lyapunov func-
tionals and ultimately to rigorous conclusions within the two-fluid context, primarily
in the Hall MHD (HMHD) limit [39, 40, 14, 41, 15], and a few of them employing the
complete two-fluid model [42, 43].

A very useful apparatus for conducting equilibrium and especially stability studies
is the Hamiltonian description of the ideal fluids. Undoubtedly, the identification of a
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Hamiltonian structure underlying the dynamics of ideal MHD [44] was of fundamen-
tal importance for the utilization and the correct interpretation of several variational
methods that had been used for equilibrium and stability since the early days of
theoretical plasma physics, e.g., [45, 46, 47, 48]. These variational principles were
introduced in an ad hoc manner, based on physical arguing and conjectures. It was
only with the development of the noncanonical Hamiltonian theory, that a rigorous
mathematical justification was attributed to these methods. Also this formalism fa-
cilitated stability analyses due to the fact that a Hamiltonian description directly
suggests good candidates for Lyapunov functionals, whose very existence is closely
related with the noncanonical nature of the dynamics e.g. the second variation of
the EC functional. In particular the knowledge of the MHD Poisson bracket enables
a correct and straightforward derivation of the dynamically accessible (DA) stability
criterion [13, 49]. Some of these advantages of the Hamiltonian formulation were also
exploited for Hall MHD (HMHD) but even less transfer of methodologies took place
for two-fluid models containing also electron inertial physics.

XMHD is perhaps the simplest consistent, in terms of energy conservation [50],
fluid plasma model containing both Hall drift and electron inertial effects. These ef-
fects, arising due to the existence of at least two particle species consisting the plasma,
are neglected by the well known and widely employed ideal MHD model. Although it
was introduced a long time ago [6], its complicated general form was a limiting factor
for the identification of its Hamiltonian structure. Recently this identification came
into existence in [18] for the barotropic version of the model and it was corroborated in
[21], where similarities with the Hamiltonian structures of HMHD (e.g. [51]), Inertial
MHD (IMHD) [50, 52] and ordinary MHD, were identified. In addition the Hamil-
tonian structure of XMHD served as the starting point for a subsequent paper that
dealt with the application of its translationally symmetric counterpart to magnetic
reconnection [53].

The facts and the developments described above were the driving force behind
the conception and the realization of the present study, since with the noncanonical
Hamiltonian structure of the model at hand, Hamiltonian variational principles can
be employed both for the study of equilibrium and stability within the framework
of a model able to describe much more physical processes than ordinary MHD. More
specifically, in the present thesis the Hamiltonian formulation of the barotropic XMHD
model with continuous helical symmetry, a general case of continuous spatial symme-
try that contains both the cases of axial and translation symmetry, is presented. A
helically symmetric formulation can be easily reduced to an axially symmetric one that
enables the description of the Tokamak plasmas and Reversed Field Configurations
or astrophysical plasmas e.g. Pulsar magnetospheres. On the other hand, helically
symmetric formulation itself is interesting because purely or nearly helical structures
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are very common in plasma systems. For example, 3D equilibrium states with inter-
nal helical structures, e.g., helical cores, have been observed experimentally [54, 55]
and simulated [56, 57] in Tokamaks and RFPs (e.g. [58, 59, 60, 61]). Also, helical
structures emerge due to plasma instabilities, such as the resistive or collisionless tear-
ing modes, or as a result of externally imposed symmetry-breaking perturbations are
magnetic islands [62]. In addition the helix may serve as a rough approximation of
helical non-axisymmetric devices [63] and can be useful to investigate some features of
stellarators [64, 65], the second major class of magnetic confinement devices alongside
the Tokamak, in the large aspect-ratio limit. Also, helical magnetic structures are
common in astrophysics, e.g., in astrophysical jets [66, 67]. Therefore, it is of interest
to derive a joint tool for two-fluid equilibrium and stability studies of systems with
helical symmetry, with the understanding that for most cases of laboratory application
helical symmetry is an idealized approximation to the large aspect ratio limit of the
above mentioned toroidal systems.

Aim of this thesis is to transfer the Hamiltonian variational methods for evaluat-
ing equilibrium and stability to the uncharted waters of XMHD and also to a variety
of two-fluid models with quasineutrality, such as the complete quasineutral two fluid
model, Hall MHD and Inertial MHD, staying though conceptually and formalistically
as close as possible to MHD. Given the historical precedent, it would appear desirable
to employ equilibrium and stability analysis methods similar to those originating from
the MHD Grad-Shafranov-Bernoulli equilibrium system and the MHD energy princi-
ple, respectively, because this framework is already well known and also because this
would facilitate comparisons with the MHD results.

Another aim is to reveal some of the consequences stemming from the introduction
of the two-fluid contributions with the help of certain instructive applications and also
to highlight and provide solutions to the formalistic challenges emerging when work-
ing within this framework. For example, the derivation of the helically symmetric
Poisson bracket and of the ellipticity condition for the axisymmetric XMHD equilib-
rium equations, and also the computation of second order variations of the Hamilto-
nian functionals, under DA and Lagrangian perturbations, become transparent. The
methodologies, developed to address these challenges, can be exploited in other studies
where similar models are used.

1.7 Thesis outline

The results of this thesis are presented in four main chapters, namely

1. Hamiltonian formulation of symmetric XMHD (Chapter 2).

2. Extended MHD equilibria (Chapter 3).

3. Stability analysis of XMHD equilibria (Chapter 4).
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4. Alternative bracket formulations of incompressible XMHD (Chapter 5).

More specifically, in Chapter 2 the helically symmetric, noncanonical Poisson bracket
is derived by spatially reducing the three dimensional one in view of a symmetric rep-
resentation of the field variables. In addition, the Casimir invariants corresponding to
this bracket are computed upon solving the Casimir determining equations and their
Hall MHD and MHD limits are obtained. In Chapter 3 the EC variational principle
is employed to obtain equilbrium equations describing generic three dimensional, heli-
cally symmetric and axially symmetric equilibria. Also special cases are discussed and
two particular applications are presented. The first concerns the numerical solution
of the axisymmetric Hall MHD equilibrium equations and the second concerns the
derivation of an analytic double-Beltrami solution for the helically symmetric incom-
pressible HMHD. Moreover, the ellipticity condition for the axisymmetric, barotropic
XMHD equilibrium equations is derived and special cases are discussed. Chapter 4
deals with the stability analysis of XMHD equilibria where the EC, the DA and the
Lagrangian stability methods are exploited. An application of a special EC stabil-
ity criterion for equilibria with toroidal rotation is also presented. Moreover, in the
framework of Lagrangian stability, the special case of HMHD is thoroughly worked
out. In Chapter 5 an alternative formulation of XMHD dynamics is proposed in terms
of trilinear brackets. In addition, a heuristic method for the construction of the model
equations from the conservation laws is proposed using the simpler reduced MHD
(RMHD) model. In Chapter 6 the results contained in the aforementioned chapters
are summarized and the conclusions are presented. Also we propose future research
plans and topics which could potentially emerge from this thesis.





Chapter 2

Hamiltonian formulation of
helically symmetric XMHD

This is the first chapter that contains original results, published in [68]. It is devoted
to the derivation of the helically symmetric formulation of XMHD dynamics, and the
corresponding Poisson bracket and Casimir invariants.

The aforementioned results are presented in two sections: in Section 2.1 the heli-
cally symmetric Poisson bracket is derived, providing the helically symmetric XMHD
dynamical equations. Also, the transformation (1.76) is performed for the helically
symmetric bracket. In Section 2.2 we exploit the transformed bracket to compute
the helically symmetric Casimir invariants. In addition the HMHD, IMHD and MHD
limits of the Casimirs are obtained.

2.1 Helical symmetry and Poisson bracket reduction

Helical symmetry can be imposed by assuming that in a cylindrical coordinate system
(r, φ, z) all quantities and equations of motion depend spatially on r and on the helical
coordinate u = `φ + nz, where ` = sin(a) and n = − cos(a), with a being the helical
angle. For a = 0 and a = π/2 we obtain the axisymmetric and the translationally
symmetric cases, respectively. The contravariant unit vector in the direction of the u
coordinate is

eu =
∇u
|∇u|

= `keφ + nkrez , (2.1)

where k is
k :=

1√
`2 + n2r2

. (2.2)

The tangent to the direction of the helix r = const. u = const. is given by

eh = er × eu , (2.3)
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and one can prove that the following relations hold:

∇ · h = 0 , ∇× h = −2n`k2h , (2.4)

where

h = keh =
`∇z − nr2∇φ
`2 + n2r2

, (2.5)

with h·h = k2. Helical symmetry means that h·∇f = 0, where f is an arbitrary scalar
function. Relations (2.4) enable us to introduce the so-called poloidal representation
for the divergence-free magnetic field and also a poloidal representation for the velocity
field with a potential field contribution accounting for the compressibility of the flow,
i.e.,

B∗ = k−1B∗h(r, u, t)h +∇ψ∗(r, u, t)× h , (2.6)

v = k−1vh(r, u, t)h +∇χ(r, u, t)× h +∇Υ(r, u, t) . (2.7)

For incompressible flows Υ is harmonic or constant. In view of (2.4), the divergence
and the curl of (2.6) and (2.7) are given by

∇ · v = ∆Υ , ∇ ·B∗ = 0 , (2.8)

∇× v =
[
k−2Lχ− 2n`kvh

]
h +∇(k−1vh)× h , (2.9)

∇×B∗ =
[
k−2Lψ∗ − 2n`kB∗h

]
h +∇(k−1B∗h)× h , (2.10)

where ∆ := ∇2 and L := −∇ · (k2∇(·)) is a linear, self-adjoint differential operator.
For convenience we define the following quantities: w := ∆Υ or Υ = ∆−1w and
Ω = Lχ or χ = L−1Ω.

Having introduced representation (2.6)–(2.7) for the helically symmetric fields, in
order to derive the helically symmetric Hamiltonian formulation we need to express
the Hamiltonian (1.71) and the Poisson bracket (1.72) in terms of the scalar field
variables uhs = (ρ, vh, χ,Υ, B

∗
h, ψ

∗). This can be accomplished upon expressing the
fields u3D = (ρ,v,B∗) in terms of the scalar field variables and also upon transforming
the functional derivatives with respect to u3D to functional derivatives with respect to
the scalar fields uHS . As in [69, 70, 71], we perform this transformation by employing
a chain rule reduction. The chain rule for functional derivatives (see [69]) is obtained
by equating the first variations of arbitrary functionals in terms of the 3D variables
to the corresponding variations in terms of the helically symmetric variables. The
variation of a functional F [ρ,v,B∗] is

δF [u3D ] =

∫
V
d3x (Fρδρ+ Fv · δv + FB∗ · δB∗) , (2.11)
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while that in terms of helically symmetric variables is

δF [uhs] =

∫
D
d2x

[
Fρδρ+ Fvhδvh + Fχδχ+ FΥδΥ

+FB∗hδB
∗
h + Fψ∗δψ

∗
]
, (2.12)

where D ⊆ R2 is a restriction of V to R2. It is evident that δvh = k−1h · δv,
δB∗h = k−1h · δB∗ and δΥ = ∆−1δw = ∆−1 (∇ · δv). Also it is not difficult to see,
upon taking the vector product of (2.6) with h, that δψ∗ = −∆−1

[
∇
(
k−2δB× h

)]
.

Finally, in order to find the relation connecting δχ to δv we project the vorticity along
h to obtain

h · ∇ × v = L(χ)− 2n`k2v · h , (2.13)

hence, one has δχ = L−1 (h · ∇ × δv)+2n`L−1
(
k−2h · δv

)
. In view of these relations

(2.12) can be rewritten as

δF [uhs] =

∫
D
d2x

{
Fρδρ+ k−1Fvhh · δv + FχL−1

(
h · ∇ × δv + 2n`k2h · δv

)
+FΥ∆−1 (∇ · δv) + k−1FB∗hh · δB

∗ − Fψ∗∆−1
[
∇
(
k−1δB∗ × h

)] }
. (2.14)

Then, from the self-adjointness of the operators ∆−1 and L−1 and for appropriate
boundary conditions, such that the boundary terms arising from integrations by parts
vanish, we obtain

δF =

∫
D
d2x (Fρδρ+ Fv · δv + FB∗ · δB∗) (2.15)

=

∫
D
d2x

{
Fρδρ+

[
k−1Fvhh +∇L−1Fχ × h−∇

(
∆−1FΥ

)]
· δv

+
[
k−1FB∗hh− k

−2∇
(
∆−1Fψ∗

)
× h

]
· δB∗

}
. (2.16)

Thus, for arbitrary variations the following relations can be deduced

Fρ = Fρ , Fv = k−1Fvhh +∇FΩ × h−∇Fw , (2.17)

FB∗ = k−1FB∗hh− k
−2∇

(
∆−1Fψ∗

)
× h , (2.18)

where
Fw = ∆−1FΥ , FΩ = L−1Fχ , (2.19)

which follow from ∫
D
d3xFχδχ =

∫
D
d3 xFΩδΩ , (2.20)
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∫
D
d3xFΥδΥ =

∫
D
d3xFwδw , (2.21)

upon introducing the relations δΩ = Lδχ, δw = ∆δΥ and exploiting the self-adjointness
of the operators ∆ and L. Also, we observe that in (1.72) there exist bracket blocks
which contain the curl of FB∗ , which is

∇× FB∗ =
(
k−2Fψ∗ − 2n`kFB∗h

)
h +∇

(
k−1FB∗h

)
× h . (2.22)

The helically symmetric Poisson bracket is found by substituting (2.6), (2.9), (2.17)
and (2.22) into (1.72) and assuming that any surface-boundary terms which emerge due
to integrations by parts, vanish due to appropriate boundary conditions, for example
periodic conditions or for field variables uHS vanishing on ∂D, except for the mass
density ρ, which has to be finite on the boundary, or to vanish approaching zero
slower than the other quantities, otherwise various terms would diverge, as is evident
even from (1.72). Let us now see how the various terms in (1.72) are reduced to their
helically symmetric counterparts starting with the compressional part

{X1, X2}comp = εjm

∫
d3xXm

ρ ∇ ·Xj
v = εjm

∫
d3xXj

ρX
m
Υ , (2.23)

where εjm is the antisymmetric permutation symbol and X1,2 are arbitrary functionals
e.g. X1 = F , X2 = G (the superscript is merely an index). Note that we have used
∇ · Fv = −FΥ that can be easily deduced by (2.17). For the vortical part Eqs. (2.9)
and (2.17) have to be invoked

{X1, X2}vort =
εjm
2

∫
d3xρ−1(∇× v) ·

(
Xj

v ×Xm
v

)
. (2.24)

Employing straightforward vector analysis manipulations we can show that

εjm
2

(
Xj

v ×Xm
v

)
=

=
εjm
2

(
k−1Xj

vh
h +∇Xj

Ω × h−∇Xj
w

)
×
(
k−1Xm

vh
h +∇Xm

Ω × h−∇Xm
w

)
= εjm

{
kXj

vh
∇Xm

Ω − k−1Xj
vh
h×∇Xm

w +
1

2
[Xj

Ω, X
m
Ω ]h

+
1

2
∇Xj

w ×∇Xm
w + (∇Xj

w · ∇Xm
Ω )h

}
. (2.25)

where [f, g] := (∇f ×∇g) · h is the helical Jacobi-Poisson bracket. Taking the scalar
product of (2.25) with ∇× v =

(
k−2Ω− 2n`kvh

)
h +∇(k−1vh)× h we find that the

vortical part of {X1, X2} is given by

εjm

∫
d3xρ−1

{
k2
(
k−2Ω− 2n`kvh

)(1

2
[Xj

Ω, X
m
Ω ] +∇Xj

w · ∇Xm
Ω +

1

2k2
[Xj

w, X
m
w ]

)
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+kXj
vh

(
[Xm

Ω , k
−1vh] +∇(k−1vh) · ∇Xm

w

)}
, (2.26)

One may prove that with appropriate boundary conditions, e.g. such those mentioned
above so as boundary integrals to vanish, the identity∫

D
d3x [f, g]h =

∫
D
d3x [h, f ]g =

∫
D
d3x [g, h]f , (2.27)

holds for arbitrary functions f, g, h. Making use of this identity we may write

{X1, X2}vort = εjm

∫
d3x ×

×
{
ρ−1

(
k−2Ω− 2n`kvh

)(k2

2
[Xj

Ω, X
m
Ω ] +

1

2
[Xj

w, X
m
w ] + k2∇Xj

w · ∇Xm
Ω

)
+κ−1vh

(
[ρ−1kXj

vh
, Xm

Ω ]−∇(ρ−1kXj
vh

) · ∇Xm
w − ρ−1kXj

vh
Xm

Υ

)}
. (2.28)

Now let us similarly analyze the reduction of the flow-magnetic field interaction part
using (2.6), (2.17) and (2.22) to get after some analysis

{X1, X2}int = εjm

∫
d3x ρ−1B∗ ·

[
Xj

v × (∇×Xm
B∗)
]

= εjm

∫
d3x ρ−1

{(
k−1B∗hh +∇ψ∗ × h

)
·
[
kXj

vh
∇(k−1Xm

B∗h
)

−(Xm
ψ∗ − 2n`k3Xm

B∗h
)∇Xj

Ω + [Xj
Ω, k

−1Xm
B∗h

]h− k−2Xm
ψ∗∇Xj

w × h

+2n`kXm
B∗h
∇Xj

w × h +∇Xj
w · ∇(k−1Xm

B∗h
)h

]}
= εjm

∫
d3x ρ−1

{
kB∗h[Xj

Ω, k
−1Xm

B∗h
] + kB∗h∇Xj

w · ∇(k−1Xm
B∗h

)

−kXj
vh

[ψ∗, k−1Xm
B∗h

] +
(
Xm
ψ∗ − 2n`k3Xm

B∗h

)(
[ψ∗, Xj

Ω]−∇ψ∗ · ∇Xj
w

)}
. (2.29)

Integrating by parts and omitting surface integrals we find

{X1, X2}int = εjm

∫
d3x

{
kρ−1B∗h

(
[Xj

Ω, k
−1Xm

B∗h
] +∇(k−1Xm

B∗h
) · ∇Xj

w

)
+ψ∗

(
[ρ−1kXj

vh
, k−1Xm

B∗h
] + [Xj

Ω, ρ
−1Xm

ψ∗ ] +∇ · (ρ−1Xm
ψ∗∇Xj

w)

−2n`[Xj
Ω, ρ

−1k3Xm
B∗h

]− 2n`∇ · (ρ−1k3Xm
B∗h
∇Xj

w)
)}

. (2.30)

Proceeding with the Hall part, Eqs. (2.6) and (2.22) are invoked to obtain

{X1, X2}hall = −di
εjm
2

∫
d3xρ−1B∗ ·

[
(∇×Xj

B∗)× (∇×Xm
B∗)
]
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= −diεjm
∫
d3xρ−1

(
k−1B∗hh +∇ψ∗ × h

)
·
{1

2
[k−1Xj

B∗h
, k−1Xm

B∗h
]h

+
(
Xj
ψ∗ − 2n`k3Xj

B∗h

)
∇
(
k−1Xm

B∗h

)}
= −diεjm

∫
d3x

{
kB∗h
2ρ

[k−1Xj
B∗h
, k−1Xm

B∗h
] + ψ∗

(
[ρ−1Xj

ψ∗ , k
−1Xm

B∗h
]

−2n`[ρ−1k3Xj
B∗h
, k−1Xm

B∗h
]
)}

. (2.31)

Lastly, we compute the electron inertial part

{X1, X2}inertial = d2
e

εjm
2

∫
d3x ρ−1(∇× v) ·

[
(∇×Xj

B∗)× (∇×Xm
B∗)
]

= d2
eεjm

∫
d3x ρ−1

[(
k−2Ω− 2n`kvh

)
h +∇(k−1vh)× h

]
·

·
{1

2
[k−1Xj

B∗h
, k−1Xm

B∗h
]h +

(
Xj
ψ∗ − 2n`k3Xj

B∗h

)
∇
(
k−1Xm

B∗h

)}
= d2

eεjm

∫
d3x

{
k

2ρ

(
k−2Ω− 2n`kvh

)
[k−1Xj

B∗h
, k−1Xm

B∗h
]

+k−1vh

(
[ρ−1Xj

ψ∗ , k
−1Xm

B∗h
]− 2n`[ρ−1k3Xj

B∗h
, k−1Xm

B∗h
]
)}

. (2.32)

Putting all these terms together, and expanding the contracted summations, writing
the result in terms of F = X1 and G = X2, we take the complete expression for the
helically symmetric XMHD Poisson bracket

{F,G}hs =

∫
D
d3x

{
Fρ∆Gw −Gρ∆Fw + ρ−1

(
Ω− 2n`k3vh

)
×

×
(

[FΩ, GΩ] + k−2[Fw, Gw] +∇Fw · ∇GΩ −∇FΩ · ∇Gw
)

+k−1vh
(
[FΩ, ρ

−1kGvh ]− [GΩ, ρ
−1kFvh ]

+∇ · (ρ−1kGvh∇Fw)−∇ · (ρ−1kFvh∇Gw)
)

+ρ−1kB∗h
(
[FΩ, k

−1GB∗h ]− [GΩ, k
−1FB∗h ]

+∇Fw · ∇
(
k−1GB∗h

)
−∇Gw · ∇

(
k−1FB∗h

) )
+ψ∗

(
[FΩ, ρ

−1Gψ∗ ]− [GΩ, ρ
−1Fψ∗ ] + [k−1FB∗h , ρ

−1kGvh ]

−[k−1GB∗h , ρ
−1kFvh ] +∇ ·

(
ρ−1Gψ∗∇Fw

)
−∇ ·

(
ρ−1Fψ∗∇Gw

) )
−2n`ψ∗

(
[FΩ, ρ

−1k3GB∗h ]− [GΩ, ρ
−1k3FB∗h ]

+∇
(
ρ−1k3GB∗h∇Fw

)
−∇

(
ρ−1k3FB∗h∇Gw

) )
−diρ−1kB∗h[k−1FB∗h , k

−1GB∗h ]

−diψ∗
(
[ρ−1Fψ∗ , k

−1GB∗h ]− [ρ−1Gψ∗ , k
−1FB∗h ]

)
+2n`diψ

∗([ρ−1k3FB∗h , k
−1GB∗h ]− [ρ−1k3GB∗h , k

−1FB∗h ]
)

+d2
eρ
−1
(
Ω− 2n`k3vh

)
[k−1FB∗h , k

−1GB∗h ]
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+d2
ek
−1vh

(
[ρ−1Fψ∗ , k

−1GB∗h ]− [ρ−1Gψ∗ , k
−1FB∗h ]

)
−2n`d2

ek
−1vh

(
[ρ−1k3FB∗h , k

−1GB∗h ]− [ρ−1k3GB∗h , k
−1FB∗h ]

)}
. (2.33)

It’s not difficult to show that if we set a = π/2 the bracket (2.33) reduces to the trans-
lationally symmetric XMHD bracket derived in [71]. The corresponding axisymmetric
bracket can be obtained upon setting a = 0. In this case the purely helical terms,
which contain a coefficient 2n` vanish and the scale factor k becomes 1/r.

To complete the Hamiltonian description of helically symmetric XMHD dynamics
we need to express the Hamiltonian (1.71) in terms of the scalar fields uHS , leading to

H =

∫
D
d3x

{
ρ

2

(
v2
h + k2|∇χ|2 + |∇Υ|2

)
+ρ ([Υ, χ] + U(ρ)) +

B∗hBh
2

+ k2∇ψ∗ · ∇ψ
2

}
. (2.34)

Also, from the definition of the generalized magnetic field B∗ (1.30) and the helical
representation (2.6) one can derive the following relations for the generalized variables
B∗h and ψ∗:

B∗h = (1 + 4n2`2d2
eρ
−1k4)Bh + d2

e

[
ρ−1k−1L(k−1Bh)

−2n`ρ−1kLψ − k∇ρ−1 · ∇(k−1Bh)
]
, (2.35)

ψ∗ = ψ + d2
e

[
ρ−1k−2Lψ − 2n`ρ−1kBh

]
, (2.36)

where Bh is the helical component and ψ the poloidal flux function of the magnetic
field B. Note that terms containing the product n` are purely helical, i.e., they vanish
in the cases of axial and translational symmetry. Also, the last term of (2.35) is purely
compressible, i.e., it vanishes if we consider incompressible plasmas. Another interest-
ing observation is that due to the non-orthogonality of the helical coordinates, there
is a poloidal magnetic field contribution in the helical component of the generalized
magnetic field B∗h and helical magnetic contribution Bh in the poloidal flux function
ψ∗. This mixing makes the subsequent dynamical and equilibrium analyses appear
much more involved than in [71], however it can be simplified upon observing that∫

D
d3x [B∗hδBh + L(ψ∗)δψ]

=

∫
D
d3x

[
BhδB

∗
h + L(ψ)δψ∗ +

d2
e

ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
δρ

]
, (2.37)

where Jh = k−1Lψ−2n`k2Bh is the helical component of the current density. Relation
(2.37) can be easily found from the following procedure

δ

∫
d3xB∗ ·B =

∫
d3x (B∗ · δB + δB∗ ·B)
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=

∫
d3x

(
2B∗ · δB− d2

e

ρ2
|J|2δρ

)
, (2.38)

where the definition of B∗ (1.30) has been used. From the second equality one has∫
d3xB∗ · δB =

∫
d3x

(
B · δB∗ +

d2
e

ρ2
|J|2δρ

)
. (2.39)

Therefore, the variation of the magnetic part of the Hamiltonian can be written as

δHm =

∫
D
d3x

[
1

2
B∗hδBh +

1

2
BhδB

∗
h +

1

2
L(ψ∗)δψ +

1

2
L(ψ)δψ∗

]
=

∫
D
d3x

[
BhδB

∗
h + L(ψ)δψ∗ +

d2
e

2ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
δρ

]
=

∫
D
d3x

[
B∗hδBh + L(ψ∗)δψ − d2

e

2ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
δρ

]
, (2.40)

leading to the following relations for the functional derivatives of the Hamiltonian:

δH
δBh

= B∗h ,
δH
δψ

= Lψ∗ , (2.41)

δH
δB∗h

= Bh ,
δH
δψ∗

= Lψ , (2.42)

δH
δρ

∣∣∣∣
B∗h,ψ

∗
=
|v|2

2
+ [ρU(ρ)]ρ +

d2
e

2ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
, (2.43)

δH
δρ

∣∣∣∣
Bh,ψ

=
|v|2

2
+ [ρU(ρ)]ρ −

d2
e

2ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
. (2.44)

In addition, the functional derivatives with respect to the velocity related variables
are given by

δH
δvh

= ρvh ,
δH
δχ

= −∇ · (ρk2∇χ) + [ρ,Υ] , (2.45)

δH
δΥ

= −∇ · (ρ∇Υ) + [χ, ρ] ,
δH
δΩ

= L−1 δH
δχ

,
δH
δw

= ∆−1 δH
δΥ

. (2.46)

2.1.1 Helically symmetric dynamics

The helically symmetric dynamics is described by means of the Hamiltonian (2.34)
and the Poisson bracket (2.33) via ∂tuHS = {uHS ,H}

XMHD

HS
. Due to helical symmetry

and compressibility, the equations of motion appear much more involved than the
corresponding equations of motion in [53]. In view of (2.33) and (2.34) we have:

∂tρ = −∇ · (ρ∇Υ) + [χ, ρ] , (2.47)

∂tvh = ρ−1k
(
[HΩ, k

−1vh] + [k−1Bh, ψ
∗] +∇(k−1vh) · ∇Hw

)
, (2.48)

∂tΩ = [HΩ, ρ
−1Ω]− 2n`[HΩ, ρ

−1k3vh] +∇ · (ρ−1Ω∇Hw)
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−2n`∇ · (ρ−1k3vh∇Hw) + [kvh, k
−1vh] + [k−1Bh, ρ

−1kB∗h]

+[ρ−1Lψ,ψ∗]− 2n`[ρ−1k3Bh, ψ
∗] , (2.49)

∂tw = −∆Hρ + [Hw, ρ−1k−2Ω]− 2n`[Hw, ρ−1kvh]−∇ · (ρ−1Ω∇HΩ)

+2n`∇ · (ρ−1k3vh∇HΩ) +∇ ·
(
kvh∇(k−1vh)

)
−∇ · (ρ−1kB∗h∇(k−1Bh))

+∇ · (ρ−1Lψ∇ψ∗)− 2n`∇ · (ρ−1k3Bh∇ψ∗) , (2.50)

∂tB
∗
h = k−1

(
[HΩ, ρ

−1kB∗h] +∇ · (ρ−1kB∗h∇Hw) + [kvh, ψ
∗]− 2n`ρ−1k4[HΩ, ψ

∗]

−2n`ρ−1k4∇ψ∗ · ∇Hw + di[ρ
−1kB∗h, k

−1Bh]− di[ρ−1Lψ,ψ∗]

−2n`diρ
−1k4[ψ∗, k−1Bh] + 2n`di[ρ

−1k3Bh, ψ
∗] + d2

e[k
−1Bh, ρ

−1Ω]

−2n`d2
e[k
−1Bh, ρ

−1k3vh] + d2
e[ρ
−1Lψ, k−1vh]

−2n`d2
eρ
−1k4[k−1Bh, k

−1vh]− 2n`d2
e[ρ
−1k3Bh, k

−1vh]
)
, (2.51)

∂tψ
∗ = ρ−1

(
[HΩ, ψ

∗] +∇ψ∗ · ∇Hw + di[ψ
∗, k−1Bh] + d2

e[k
−1Bh, k

−1vh]
)
, (2.52)

where Hρ is given by (2.43) while HΩ and Hw are given by (2.46). Incompressible
equations of motion are obtained from the corresponding Hamiltonian and Poisson
bracket with ρ = 1 and w = 0, or equivalently by equations (2.47)–(2.52), upon
neglecting the dynamical equations for ρ and w and substituting Hw = 0 and HΩ = χ

in the rest, leading to the following system

∂tvh = k
(
[χ, k−1vh] + [k−1Bh, ψ

∗]
)
, (2.53)

∂tΩ = [χ,Ω]− 2n`[χ, k3vh] + [kvh, k
−1vh]

+[k−1Bh, kB
∗
h] + [Lψ,ψ∗]− 2n`[k3Bh, ψ

∗] , (2.54)

∂tB
∗
h = k−1

(
[χ, kB∗h] + [kvh, ψ

∗]− 2n`k4[χ, ψ∗] + di[kB
∗
h, k
−1Bh]

−di[Lψ,ψ∗]− 2n`dik
4[ψ∗, k−1Bh] + 2n`di[k

3Bh, ψ
∗]

+d2
e[k
−1Bh,Ω]− 2n`d2

e[k
−1Bh, k

3vh] + d2
e[Lψ, k−1vh]

−2n`d2
ek

4[k−1Bh, k
−1vh]− 2n`d2

e[k
3Bh, k

−1vh]
)
, (2.55)

∂tψ
∗ = [χ, ψ∗] + di[ψ

∗, k−1Bh] + d2
e[k
−1Bh, k

−1vh] . (2.56)

Equations (2.53)–(2.56) differ from the corresponding dynamical equations of refer-
ence [53] owing to the presence of the scale factor k and the purely helical terms with
the coefficients n`. Setting n = 0 we recover the equations of motion for incompress-
ible, translationally symmetric plasmas, whereas for ` = 0 we restrict the motion to
respect axial symmetry.

2.1.2 Bracket transformation

As mentioned in Chapter 1, in [21] the authors proved that the XMHD bracket (1.72)
can be simplified to a form identical to the HMHD bracket by introducing a generalized
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vorticity variable
B± = B∗ + γ±∇× v , (2.57)

inducing transformation (1.76). This transformation was utilized in [53, 71] in order to
simplify the bracket and consequently the derivation of the corresponding symmetric
families of Casimir invariants. For this reason, we perform this transformation also
for the helically symmetric bracket (2.33), rendering the subsequent analysis more
tractable. One can see that the corresponding scalar field variables, necessary for the
poloidal representation of B±, are connected to variables uHS as follows:

B±h = B∗h + γ±(k−1Ω− 2n`k2vh) , (2.58)

ψ± = ψ∗ + γ±k
−1vh . (2.59)

Transforming the bracket requires the expressions of functional derivatives in the new
representation (vh, χ,Υ, B

±
h , ψ

±). Following an analogous procedure to that employed
in [21, 53, 71] we find

F̄vh = Fvh + γ±k
−1Fψ± − 2n`γ±k

2FB±h
, (2.60)

F̄Ω = FΩ + γ±k
−1FB±h

, F̄w = Fw , (2.61)

F̄ψ∗ = Fψ± , F̄B∗h = FB±h
, (2.62)

where F̄ denotes the functionals depending on the original variables. Upon inserting
the transformation of the functional derivatives given by (2.60)–(2.62) into (2.33) and
expressing B∗h and ψ∗ in terms of B±h and ψ±, we obtain the following bracket:

{F,G}XMHD

HS
=

∫
D
d3x

{
Fρ∆Gw −Gρ∆Fw + ρ−1(Ω− 2n`k3vh)×

×
(

[FΩ, GΩ] + k−2[Fw, Gw] +∇Fw · ∇GΩ −∇FΩ · ∇Gw
)

+k−1vh
(
[ρ−1kFvh , GΩ]− [ρ−1kGvh , FΩ]

+∇ · (ρ−1kGvh∇Fw)−∇ · (ρ−1kFvh∇Gw)
)

+ρ−1kB±h

(
[FΩ, k

−1GB±h
]− [GΩ, k

−1FB±h
]

+∇Fw · ∇(k−1GB±h
)−∇Gw · ∇(k−1FB±h

)
)

+ψ±
(
[FΩ, ρ

−1Gψ± ]− [GΩ, ρ
−1Fψ± ]

+[ρ−1kFvh , k
−1GB±h

]− [ρ−1kGvh , k
−1FB±h

]

+∇ · (ρ−1Gψ±∇Fw)−∇ · (ρ−1Fψ±∇Gw)
)

−2n`ψ±
(
[FΩ, ρ

−1k3GB±h
]− [GΩ, ρ

−1k3FB±h
]

+∇ · (ρ−1k3GB±h
∇Fw)−∇ · (ρ−1k3FB±h

∇Gw)
)

−ν±ρ−1kB±h [k−1FB±h
, k−1GB±h

]
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−ν±ψ±
(

[ρ−1Fψ± , k
−1GB±h

]− [ρ−1Gψ± , k
−1FB±h

]
)

+2n`ν±ψ
±
(

[ρ−1k3FB±h
, k−1GB±h

]− [ρ−1k3GB±h
, k−1FB±h

]
)}

, (2.63)

where ν± := di−2γ±. Note that the helically symmetric XMHD dynamics is described
correctly by either using the parameter ν+ or the parameter ν−.

2.2 Helically symmetric Casimir invariants

2.2.1 Casimir determining equations

As mentioned in the Introduction, the Casimir invariants are functionals that satisfy
{F, C} = 0, ∀F . For bracket (2.63) this condition is equivalent to∫
D
d3x

(
FρR1 + FwR2 + ρ−1kFvhR3 + FΩR4 + k−1FB±h

R5 + ρ−1Fψ±R6

)
= 0 , (2.64)

whereRi , i = 1, ..., 6 are expressions obtained by manipulating the bracket {F, C} so as
to extract as common factors the functional derivatives of the arbitrary functional F .
Requiring (2.64) to be satisfied for arbitrary variations is equivalent to the independent
vanishing of the expressions Ri, i.e.,

Ri = 0 , i = 1, 2, ..., 6 . (2.65)

The expressions for Ri , i = 1, ...6, read as

R1 = ∆Cw = CΥ , (2.66)

R2 = −∆Cρ − [ρ−1k−2Ω, Cw] + 2n`[ρ−1kvh, Cw]

+∇ · (ρ−1Cψ±∇ψ±)− 2n`∇ · (ρ−1k3CB±h ∇ψ
±)

+∇ · (ρ−1kCvh∇(k−1vh))−∇ · (ρ−1Ω∇CΩ)

+2n`∇ · (ρ−1k3vh∇CΩ)−∇ · (ρ−1kB±h ∇(k−1CB±h )) , (2.67)

R3 = [CΩ, k
−1vh] +∇(k−1vh) · ∇Cw − [ψ±, k

−1CB±h ] , (2.68)

R4 = ∇ · (ρ−1Ω∇Cw)− 2n`∇ · (ρ−1k3vh∇Cw)

−[ρ−1Ω, CΩ] + 2n`[ρ−1k3vh, CΩ]− [k−1vh, ρ
−1kCvh ]

−[ψ±, ρ−1Cψ± ]− [ρ−1kB±h , k
−1CB±h ] + 2n`[ψ±, ρ−1k3CB±h ] , (2.69)

R5 = [ρ−1kCvh , ψ
±] + [CΩ, ρ

−1kB±h ] +∇ · (ρ−1kB±h ∇Cw)− 2n`ρ−1k4[CΩ, ψ
±]

−2n`ρ−1k4∇ψ± · ∇Cw + ν±[ψ±, ρ
−1Cψ± ] + ν±[ρ−1kB±h , k

−1CB±h ]

−2n`ν±ρ
−1k4[ψ±, k−1CB±h ] + 2n`ν±[ρ−1k3CB±h , ψ

±] , (2.70)

R6 = [CΩ, ψ±] +∇ψ± · ∇Cw + ν±[ψ±, k
−1CB±h ] . (2.71)
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Equation R1 = 0, i.e. CΥ = 0, implies that the Casimirs are independent of Υ, or
equivalently Cw is equal either to a constant or to a harmonic function. In the former
case the resulting Casimir is C =

∫
d3x∆Υ =

∫
d3x∇ · v =

∮
v ·dS = 0, hence it does

not contribute to the subsequent variational principles. In the latter case, where a
harmonic function comes into play, the remaining Casimir determining equations will
introduce constraints between the field variables and this harmonic function. Hence,
we conclude that the most general case corresponds to Cw = 0. In addition, we
observe that (2.65) are satisfied automatically for Cρ=const., which amounts to the
conservation of mass density,

Cm =

∫
D
d3x ρ . (2.72)

For the rest of the Casimirs we follow a similar procedure as in Section IIIB of [71].
To set a starting point for our derivation we observe that we can obtain simplified

determining equations by taking linear combinations of R3 with R6, and R4 with R5.
More specifically we have

R6 + ν±R3 = ρ−1[CΩ, ψ
± + ν±k

−1vh] = 0 , (2.73)

which immediately indicates solutions of the form

C± =

∫
d3xΩZ±(ψ± + ν±k

−1vh) +

∫
d3xK±(ρ, vh, ψ

±, B±h ] , (2.74)

where Z± and K± are arbitrary functions. Substituting (2.74) to R6 = 0 alone we
have

[Z± − ν±k−1 ∂K±
∂B±h

, ψ±] = 0 , (2.75)

with solution

K± =
k

ν±
B±h

[
Z± − f±(ψ±)

]
+ g±(ρ, vh, ψ

±) , (2.76)

where f±, g± are new arbitrary functions. Therefore, up to now the solution of the
Casimir determining equations is of the form

C± =

∫
d3x

[ (
kB±h + ν±Ω

)
Z±(ψ± + ν±k

−1vh)

−kB±h f±(ψ±) + g±(ρ, vh, ψ
±)
]
, (2.77)

where Z±, f± have been rescaled. Now taking the linear combination R5 + ν±R4 we
have

[CΩ, ρ
−1(kB±h + ν±Ω)] + [ρ−1kCvh , (ψ

± + ν±k
−1vh)] + 2n`ν±[ρ−1k3vh, CΩ]
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−2n`ν±ρ
−1k4[ψ±, k−1CB±h ] + 2n`ρ−1k4[ψ±, CΩ] = 0 . (2.78)

Upon substituting (2.77), Eq. (2.78) yields

[ρ−1k
∂g±
∂vh

, (ψ± + ν±k
−1vh)] + 2n`ν2

±[ρ−1k3vh,Z±] = 0 , (2.79)

which is solved by

g± = −2n`ν±k
3vhZ± + 2nlk4

∫ ψ±+ν±k−1vh

0
Z±(s)ds . (2.80)

Therefore, the solution up to this point takes the form

C± =

∫
d3x

[ (
kB±h + ν±Ω− 2n`ν±k

3vh
)
Z±(ψ± + ν±k

−1vh)

+2n`k4

∫ ψ±+ν±k−1vh

0
Z±(s)ds− kB±h f±(ψ±)

]
. (2.81)

Considering either R4 = 0 or R5 = 0 with C± given by (2.81) the following result
occurs

f±[ρ−1k4, ψ±] = 0 , (2.82)

which holds either if f± = 0 or if [ρ−1k4, ψ±] = 0. The latter condition though, inserts
a restriction in the dynamics connecting the flux functions ψ± with the mass density,
therefore the more general case is given by f± = 0. In view of this condition our
solution takes the form

C± =

∫
d3x

[ (
kB±h + ν±Ω− 2n`ν±vh

)
Z±(ψ± + ν±k

−1vh)

+2n`k4

∫ ψ±+ν±k−1vh

0
Z±(s)ds

]
. (2.83)

One can easily corroborate that (2.83) satisfies also R2 = 0, and thus (2.83) is a
solution to the complete set of the Casimir determining equations, that is C± are truly
helically symmetric XMHD Casimir invariants, however, they are not the only ones.
Recall that our derivation started from Eq. (2.73), which is trivially satisfied if CΩ = 0,
i.e. this equation is a good starting point for finding Casimirs that depend on Ω, but
cannot provide any information about Casimirs that are Ω-independent. To consider
such a class of invariants let us assume that there exist solutions to the Casimir
determining equations, that do not dependent on Ω. We have also to assume that
they are B±h -independent because the B±h -dependent case is included in the previous
calculation. Thus, we consider a class of Casimirs which depend on ρ, vh and ψ±.
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Equations R3 = 0, R6 = 0 are trivially satisfied, while from Eq. (2.78) we take

[ρ−1kCvh , (ψ
± + ν±k

−1vh)] = 0 , (2.84)

with solution

C± =

∫
d3x ρX±(ψ± + ν±k

−1vh) , (2.85)

where X± are arbitrary functions. One can easily see that R4 = 0, R5 = 0 and R2 = 0

are satisfied as well, which means that (2.85) represents two additional families of
helically symmetric XMHD Casimirs.

Therefore, using Eqs. (2.58)–(2.59) and ν± = di−2γ±, the complete set of Casimirs
in terms of the original generalized magnetic field variables (B∗h, ψ

∗) can be written as

C1 =

∫
D
d3x

[
(kB∗h + γΩ− 2n`γk3vh)F(ψ∗ + γk−1vh)

+2n`k4

∫ ψ∗+γk−1vh

0
F(s)ds

]
, (2.86)

C2 =

∫
D
d3x

[
(kB∗h + µΩ− 2n`µk3vh)G(ψ∗ + µk−1vh)

+2n`k4

∫ ψ∗+µk−1vh

0
G(s)ds

]
, (2.87)

C3 =

∫
D
d3x ρM(ψ∗ + γk−1vh) , (2.88)

C4 =

∫
D
d3x ρN (ψ∗ + µk−1vh) , (2.89)

where the parameters γ and µ are (γ, µ) = (γ+, γ−), F = Z−, G = Z+,M = X−, N =

X+ are arbitrary functions. We introduce this new notation because in the subsequent
analysis, when taking the HMHD and MHD limits, the origin of ± subscripts will seem
inexplicable.

Obviously Cm is just a special case of the functionals C3, C4. The interesting new
feature of these Casimirs is the presence of two purely helical terms appearing in C1

and C2, which vanish for either n = 0 or ` = 0. An analogous helical term, that depend
on ψ, also having a coefficient 2n`, appears in the Casimirs of ordinary MHD [70]. In
the case of XMHD the helical terms depend on ψ∗ and on the helical velocity vh, this
additional dependence on vh emerges due to the presence of the vorticity in (1.74).

2.2.2 Inertial MHD limit

Inertial MHD (IMHD) arises in the limit di → 0 with de 6= 0, which might be the case
for processes with time scales shorter than the electron gyro-period and has appli-
cations in electron magnetic reconnection where very often spatially reduced models
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are considered. Hence, it is of interest to consider the IMHD limit of the Casimirs
(2.86)–(2.89). For di = 0, γ = de and µ = −de, therefore the helically symmetric
IMHD Casimirs are given by CIMHD

1 = C1|γ→de , C
IMHD

2 = C2|µ→−de , C
IMHD

3 = C3|γ→de
and CIMHD

4 = C4|µ→−de .

2.2.3 Hall MHD and MHD limits

Here, to validate once more that the computed invariants are correct, we take the
MHD limit, anticipating the recovery of the invariants found in [70]. For the MHD
limit we set de = 0 (Hall MHD) and then di = 0. Setting only de = 0 we exclude
electron inertial contributions and we obtain the Hall MHD Casimirs

CHMHD

1 =

∫
D
d3x

[
(kBh + diΩ− 2n`dik

3vh)F(ψ + dik
−1vh)

+2n`k4F̃(ψ + dik
−1vh)

]
, (2.90)

CHMHD

2 =

∫
D
d3x

[
kBhG(ψ) + 2n`k4G̃(ψ)

]
, (2.91)

CHMHD

3 =

∫
D
d3x ρM(ψ + dik

−1vh) , (2.92)

CHMHD

4 =

∫
D
d3x ρN (ψ) . (2.93)

where F̃(ψ + dik
−1vh) =

∫ ψ+dik
−1vh

0 F(s)ds and G̃(ψ) =
∫ ψ

0 G(s)ds. For the corre-
sponding MHD families of invariants we additionally require di → 0 in (2.90)–(2.93).
From the resulting set of Casimirs, those related to the cross-helicity and the helical
momentum are absent since in this limit C1 and C3 represent the same families of
Casimir invariants with C2 and C4, respectively. This is a characteristic peculiarity,
encountered when the MHD limit of models with Hall physics contributions is con-
sidered (e.g. see [71, 72, 18, 73]). This peculiarity is related to the fact that the Hall
MHD equilibrium equations consist a singular perturbation problem [74, 75, 76], that
requires special treatment when the MHD limit is considered. We can resolve this
problem [71] by considering di as a small perturbation parameter and consequently
performing perturbative expansions of the Casimirs CHMHD

1 and CHMHD

3

C1 =

∫
d3x

[
(kBh + diΩ)F(ψ) + diBhvhF ′(ψ)

+2n`k4F̃(ψ) +O(d2
i )
]
, (2.94)

C3 =

∫
d3x

[
ρM(ψ) + dik

−1ρvhM′(ψ) +O(d2
i )
]
. (2.95)

Rescaling the arbitrary functions F ,M by a factor of di we get

C1 =

∫
d3x d−1

i

[
(kBh + diΩ)F(ψ) + diBhvhF ′(ψ)
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+2n`k4F̃(ψ) +O(d2
i )
]
, (2.96)

C3 =

∫
d3x d−1

i

[
ρM(ψ) + dik

−1ρvhM′(ψ) +O(d2
i )
]
. (2.97)

The terms that seem to diverge when di → 0 are already Casimirs so they can be
subtracted. The zeroth order terms translate to the absent MHD Casimirs while the
higher order ones vanish in the limit di → 0, leading to the following complete set of
invariants

CMHD

1 =

∫
D
d3x

[
BhvhF ′(ψ) + ΩF(ψ)

]
, (2.98)

CMHD

2 =

∫
D
d3x

[
kBhG(ψ) + 2n`k4G̃(ψ)

]
, (2.99)

CMHD

3 =

∫
D
d3x ρk−1vhM(ψ) , (2.100)

CMHD

4 =

∫
D
d3x ρN (ψ) . (2.101)

Functionals (2.98)–(2.101) are indeed the correct helically symmetric MHD Casimir
invariants [70].

In the next chapter we exploit invariants (2.86)–(2.89) in order to derive equi-
librium equations which describe XMHD equilibria with helical and axial symmetry
employing the energy-Casimir variational principle (1.52). Analogous variational prin-
ciples have been utilized by many authors over the last several decades for MHD and
later on for Hall MHD. Usually the three dimensional counterparts of the Casimirs
were considered. This is not the case however in more recent works e.g. [69] and
[70] where the symmetric versions are used, leading to more general Grad-Shafranov
equations. The merit of using the symmetric versions of the Casimirs instead of the
spatially reduced three-dimensional versions, when dealing with symmetric problems,
is that the former constitute infinite families of invariants due to the presence of arbi-
trary functions in their integral expressions. This allows for the construction of infinite
sets of equilibria including those corresponding to the spatially reduced 3-D Casimirs,
which are obtained by the symmetric ones upon choosing only linear free functions
appearing in their integrands. The difference between the two settings can be easily
understood upon comparing a simpler model, e.g. static axisymmetric MHD equilibria
that is governed by the well known Grad-Shafranov equation [3]

∆∗ψ + r2p′(ψ) + II ′(ψ) = 0 , (2.102)

where I = rBφ, p(ψ) is the pressure function and ∆∗ := r2∇ ·
(
∇/r2

)
the Shafranov

operator. If we try to determine the static MHD equilibrium equations by the 3D
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variational principle

δ

∫
d3x

1

2

(
|B|2 − λA ·B

)
= 0 , (2.103)

with λ being a Lagrangian multiplier, we end up with a Beltrami magnetic field

∇×B = λB , (2.104)

associated with the so-called Taylor’s relaxed states [47]. Upon imposing axial sym-
metry this equation leads to

∆∗ψ + λ2ψ + λI0 = 0 , (2.105)

where I0 = rB0, (B0 is the vacuum field), which is different from (2.102), since it
corresponds to I = λψ + I0 and p′(ψ) = 0. If on the other hand we impose axial
symmetry in the MHD Poisson bracket and dismiss the flow variables we will find two
families of Casimir invariants of the form

C1 =

∫
d3x r−1BφI(ψ) , C2 =

∫
d3x p(ψ) . (2.106)

In this case the energy-Casimir variational principle will lead us to (2.102), i.e. it is
capable of describing general classes of equilibria and not only linear ones correspond-
ing to the relaxed state. This simple example justifies the utilization of symmetric
formulations like those employed in the present thesis.





Chapter 3

Extended MHD Equilibria

In this chapter, results published in [68], [71] and [77] are presented as follows: In
Section 3.1 the energy-Casimir variational principle (1.52), is applied for 3D and he-
lically symmetric barotropic XMHD. In Section 3.2, we cast the resulting equilibrium
equations in the form of a Grad-Shafranov-Bernoulli system and special cases are dis-
cussed. In addition, we present a numerical solution for the axisymmetric HMHD
equilibrium equations. Section 3.3 deals with the incompressible case and an analytic
double-Beltrami solution is constructed. Finally, in Section 3.4 the ellipticity condition
for axisymmetric, barotropic XMHD equilibrium equations is derived.

3.1 The Energy-Casimir variational principle

3.1.1 Three-dimensional equilibrium and the triple-Beltrami states

Let us briefly recapitulate some of the basic ingredients which are introduced and
discussed in Chapter 1. These are the EC equilibrium variational principle

δ

H−∑
j

Cj

 [ue] = 0 , (3.1)

and the XMHD Hamiltonian and Casimir invariants, given by

H =

∫
d3x

[
1

2
ρ|v|2 + ρU(ρ) +

B ·B∗

2

]
, (3.2)

and

C =
1

2

∫
d3x (A∗ + γ±v) · (B∗ + γ±∇× v) , Cm =

∫
d3x ρ , (3.3)
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respectively, where A∗ = A + d2
e
∇×B
ρ , B∗ = ∇ × A∗. From these ingredients,

we can find in a variational manner, equilibrium equations governing general three-
dimensional XMHD equilibria. The EC variational principle reads as

δ

∫
d3x

[ρ
2
|v|2 + ρU(ρ) +

B∗ ·B
2
−
∑
±
λ±(A∗ + γ±v) · (B∗ + γ±∇× v)− βρ

]
=

∫
d3x

{[
|v|2

2
+ h(ρ) +

d2
e

2

|J|2

ρ2
− β

]
δρ+ ρv · δv + (∇×B) · δA∗

−
∑
±

[λ±(B∗ + γ±∇× v) · δA∗ + λ±γ±(B∗ + γ±∇× v) · δv]

}
= 0 , (3.4)

where we have introduced the Lagrangian multipliers λ±, β and the standard boundary
conditions, δA∗|∂V = δv|∂V = 0, have been assumed. From (3.4) we obtain the
following equilibrium equations

h(ρ) = β − |v|
2

2
− d2

e

2

|J|2

ρ2
, (3.5)

∇×B = λ+(B∗ + γ+∇× v) + λ−(B∗ + γ−∇× v) , (3.6)

ρv = λ+γ+(B∗ + γ+∇× v) + λ−γ−(B∗ + γ−∇× v) . (3.7)

If we consider incompressible plasma i.e. ρ = 1 and δρ = 0, then the variational
principle (3.4) leads to

∇×B = α1B + d2
eα1∇×∇×B + α2∇× v , (3.8)

v = α2B + d2
eα2∇×∇×B + α3∇× v , (3.9)

α1 = λ+ + λ− , α2 = λ+γ+ + λ−γ− , α3 = λ+γ
2
+ + λ−γ

2
− . (3.10)

For α2 6= 0, combining (3.8) with (3.9) we find

d2
e(α

2
2 − α1α3)∇×∇×∇×B + (α3 + α1d

2
e)∇×∇×B

+(α2
2 − α1α3 − 1)∇×B + α1B = 0 , (3.11)

which can be solved by a linear combination of Beltrami fields such as

B =

3∑
j=1

cjwj , ∇×wj = κjwj , j = 1, 2, 3 . (3.12)

Here, cj are constants and the Beltrami parameters κj are solutions to the cubic
equation

d2
e(α

2
2 − α1α3)κ3 + (α3 + α1d

2
e)κ

2 + (α2
2 − α1α3 − 1)κ+ α1 = 0 . (3.13)
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Similarly one can find a corresponding triple-Beltrami equation for the velocity field,
or can express the velocity in terms of the magnetic field solution as follows

v =
α2

2 − α1α3

α2
B∗ +

α3

α2
∇×B , (3.14)

for α2 6= 0. If the Lagrangian multipliers are chosen so as α2 = 0 then the system (3.8)–
(3.9) decouples and the magnetic field equation can be solved by a double-Beltrami
field while the velocity satisfies a single Beltrami condition. This singular behavior
indicates that electron inertia can be the reason for the emergence of significantly
different steady-state structures upon changing the generalized helicity content. Also,
note that if de = 0 both B and v admit double-Beltrami solutions as it is well known
within the HMHD context, e.g. see [78].

3.1.2 Equilibrium variational principle with helical symmetry

As mentioned in the previous chapter, the helically symmetric formulation includes
both the translationally symmetric and axisymmetric cases being a more generic case
for which a poloidal representation of the magnetic field is possible. By poloidal
representation we mean a global description in terms of a component parallel to a
symmetry direction and a flux function describing the field that lies on the plane
perpendicular to this direction (poloidal plane), leading to configurations with well
defined magnetic surfaces. In a series of papers this symmetry was employed for de-
riving equilibrium equations of the Grad-Shafranov type, i.e. PDEs with poloidal
magnetic flux functions as dependent variables, [70, 79, 80, 81, 82, 83] in the context
of standard MHD theory. Particularly in [70], the helically symmetric Grad-Shafranov
or Johnson-Frieman-Kulsrud-Oberman (JFKO) (see [79, 81]) equation was derived us-
ing a Hamiltonian variational principle. The same approach is adopted also for our
derivation, however, for the more complicated XMHD theory.

With the helically symmetric Casimirs at hand, we can build the EC variational
principle to obtain equilibrium conditions. For analogous utilizations of this method-
ology for symmetric or 2D plasmas the reader is referred to [10, 17, 71, 84, 69, 70, 85,
86, 87]. As explained in Chapter 1, the EC principle states that phase space points
that nullify the first variation EC functional HC correspond to equilibria. In our case,
requiring the vanishing of δHC amounts to

δ

∫
D
d3x

{
ρ

(
v2
h

2
+
k2

2
|∇χ|2 + [Υ, χ] +

|∇Υ|2

2
+ U(ρ)

)
+
B∗hBh

2
+
k2

2
∇ψ∗ · ∇ψ − (kB∗h + γΩ− 2n`γk3vh)F(ϕ)

−2n`k4F̃(ϕ)− (kB∗h + µΩ− 2n`µk3vh)G(ξ)

−2n`k4G̃(ξ)− ρM(ϕ)− ρN (ξ)

}
= 0 , (3.15)
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where ϕ := ψ∗ + γk−1vh, ξ := ψ∗ + µk−1vh and recall that

F̃ :=

∫ ϕ

F(g)dg and G̃ :=

∫ ξ

G(g)dg . (3.16)

Since the variations of the field variables are independent, (3.15) is satisfied if the
coefficients of the field variable variations vanish. This requirement, upon exploiting
the relations (2.41)–(2.46), leads to the following equilibrium conditions:

δρ : [ρU(ρ)]ρ +
|v|2

2
−M(ϕ)−N (ξ)

+
d2
e

2ρ2

(
J2
h + k2|∇(k−1Bh)|2

)
= 0 , (3.17)

δΥ : −∇ · (ρ∇Υ) + [χ, ρ] = 0 , (3.18)

δχ : −∇ · (ρk2∇χ) + [ρ,Υ]− γLF(ϕ)− µLG(ξ) = 0 , (3.19)

δvh : ρvh − ρk−1
[
γM′(ϕ) + µN ′(ξ)

]
−B∗h

[
γF ′(ϕ) + µG′(ξ)

]
−k−1(Ω− 2n`k3vh)

[
γ2F ′(ϕ) + µ2G′(ξ)

]
= 0 , (3.20)

δB∗h : Bh − k [F(ϕ) + G(ξ)] = 0 , (3.21)

δψ∗ : Lψ − kB∗h
[
F ′(ϕ) + G′(ξ)

]
− 2n`k4 [F(ϕ) + G(ξ)]

−(Ω− 2n`k3vh)
[
γF ′(ϕ) + µG′(ξ)

]
− ρ

[
M′(ϕ) +N ′(ξ)

]
= 0 . (3.22)

Note that the lhs of (3.17)–(3.22) are the coefficients of the variations
(δρ, δΥ, δχ, δvh, δB

∗
h, δψ

∗) in δHC . In addition to these terms, some surface boundary
terms emerged in δHC due to integration by parts. We assumed that those terms
vanish, something which is true if δΥ, δχ, δψ∗ vanish on the boundary ∂D. Equation
(3.17) represents a Bernoulli law

p̃(ρ) = ρ [M(ϕ) +N (ξ)]− ρ |v|
2

2
− d2

e

2ρ

[
J2
h + k2|∇(k−1Bh)|2

]
, (3.23)

where p̃ := ρ[ρU(ρ)]ρ = ρh(ρ) where h(ρ) is the total specific enthalpy (p̃ = Γp/(Γ− 1)

if we adopt the equation of state p ∝ ρΓ with Γ being the adiabatic constant). Equa-
tion (3.23) describes the effect of macroscopic equilibrium flow including the electron
inertial effects (expressed via the magnetic terms), in the total pressure.

3.2 The JFKO-Bernoulli system

System (3.17)–(3.22) can be cast into a JFKO-Bernoulli PDE form that describes
completely helically symmetric XMHD equilibria. This can be done by exploiting
(3.18), (3.19), (3.21) and (2.35) in order to turn (3.20) and (3.22) into a coupled
system for the flux functions ϕ and ξ. These equations, except of their coupling to
Bernoulli equation, are additionally coupled to the definition (2.36) given in terms of
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ϕ and ξ, which essentially is the helical component of Ampere’s law. The derivation
of this system requires some tedious manipulations, whose main steps are presented
here. A good starting point is to observe that (3.18) and (3.19) can be written as

h · ∇ ×Q = 0 and ∇ · (k2Q) = 0 , (3.24)

respectively, with

Q := ρ∇χ− ρk−2∇Υ× h− γ∇F − µ∇G . (3.25)

Therefore, the mutual solution of (3.18) and (3.19), should satisfy

ρ∇χ− ρk−2∇Υ× h = γ∇F + µ∇G , (3.26)

by which we can easily deduce

Ω = −γ∇ ·
(
ρ−1k2F ′∇ϕ

)
− µ∇ ·

(
ρ−1k2G′∇ξ

)
. (3.27)

Now, Eq. (3.27) can be inserted into (3.20) resulting in

ρvh + 2n`k2vh
(
γ2F ′ + µ2G′

)
= B∗h

(
γF ′ + µG′

)
+ ρk−1

(
γM′ + µN ′

)
−k−1

(
γ2F ′ + µ2G′

) [
γ∇ ·

(
k2F ′

ρ
∇ϕ
)

+ µ∇ ·
(
k2G′

ρ
∇ξ
)]

. (3.28)

Note that the helical component of the flow can be easily expressed in terms of ϕ and
ξ as

vh = k
ϕ− ξ
γ − µ

, (3.29)

while for the helical component of the generalized magnetic field we have to invoke
Eqs. (2.35) and (3.21) to write

B∗h = (1 + ς)k(F + G)− d2
ek
−1∇

[
ρ−1k2∇(F + G)

]
− 2n`d2

eρ
−1kLψ , (3.30)

where ς := 4n2`2d2
eρ
−1k4. Substituting Eqs. (3.29), (3.30) into Eq. (3.28) and after

some manipulations, we end up with

k2ϕ− ξ
γ − µ

[
ρ+ 2n`k2(γ2F ′ + µ2G′)

]
= ρ(γM′ + µN ′)

+(1 + ς)k2(F + G)(γF ′ + µG′)− 2n`d2
eρ
−1k2(γF ′ + µG′)Lψ

−γ(γ2 + d2
e)F ′∇ ·

(
k2

ρ
∇F

)
− µ(µ2 + d2

e)G′∇ ·
(
k2

ρ
∇G
)
, (3.31)
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where γµ = −d2
e has been used. Now, upon inserting (3.27), (3.30) and (3.29) into

(3.22) we can find

[
1 + 2n`d2

eρ
−1k2(F ′ + G′)

]
Lψ + 2n`k4ϕ− ξ

γ − µ
(γF ′ + µG′)

= (1 + ς)k2(F + G)(F ′ + G′) + 2n`k4(F + G) + ρ(M′ +N ′)

−(γ2 + d2
e)F ′∇ ·

(
k2

ρ
∇F

)
− (µ2 + d2

e)G′∇ ·
(
k2

ρ
∇G
)
. (3.32)

Equations (3.31) and (3.32) can be combined to a system for which within each equa-
tion appears the differential of ϕ or ξ only; by doing so, after some algebra we find

(γ2 + d2
e)F ′∇ ·

(
k2

ρ
∇F

)
= (1 + ς)k2(F + G)F ′ +

(
µ

γ − µ
− 2n`

d2
e

ρ
k2F ′

)
Lψ

+ρM′ − 2n`
µ

γ − µ
k4(F + G)− k2

[
ρ

(γ − µ)2
+ 2n`

γ

γ − µ
k2F ′

]
(ϕ− ξ) , (3.33)

(µ2 + d2
e)G′∇ ·

(
k2

ρ
∇G
)

= (1 + ς)k2(F + G)G′ −
(

γ

γ − µ
+ 2n`

d2
e

ρ
k2G′

)
Lψ

+ρN ′ + 2n`
γ

γ − µ
k4(F + G) + k2

[
ρ

(γ − µ)2
− 2n`

µ

γ − µ
k2G′

]
(ϕ− ξ) . (3.34)

To close the system, let us consider the definitions of ϕ and ξ and also Eqs. (2.36) and
(3.21). All these can be combined to give

Lψ = k2 ρ

d2
e

[
µϕ− γξ
µ− γ

− ψ + 2n`d2
eρ
−1k2(F + G)

]
. (3.35)

Equations (3.33)–(3.35) coupled to Bernoulli equation (3.23) describe completely the
equilibria in terms of the flux functions ψ, ϕ, ξ and mass density ρ, for given free
functions F(ϕ), G(ξ), M(ϕ), N (ξ) and a thermodynamic closure p = p(ρ), since all
physical quantities of interest can be expressed in terms of ψ, ϕ, ξ and ρ. Namely,
the helical component of the magnetic field is given by (3.21), the poloidal field is
simply ∇ψ × h; the helical component of the velocity is given by (3.29) and for the
corresponding poloidal component we take the cross product of (3.26) with h, to
obtain

vp = ρ−1 (γ∇F + µ∇G)× h . (3.36)

Due to the three coupled PDEs, which have to be solved simultaneously, and the im-
posed helical symmetry that inserts some additional terms because of the nonorthog-
onality of the basis vectors, the solution of this system in conjunction with Bernoulli
relation (3.23), consists a rather complicated problem. For this reason we present
below special cases of equilibria including, axisymmetric XMHD and HMHD, incom-
pressible XMHD and barotropic and incompressible Hall MHD equilibria with helical
symmetry presenting the corresponding system of Grad-Shafranov or JFKO equations



3.2. The JFKO-Bernoulli system 49

for each of the aforementioned cases.

3.2.1 Hall MHD equilibria

The Hall MHD limit is effected by setting de = 0 and thereby neglecting electron
inertial effects. Thus, γ = di, µ = 0, and the flux functions become ϕ = ψ + dik

−1vh

and ξ = ψ. In this model, only ion drift effects are considered and the electron surfaces
coincide with the magnetic ones. The JFKO system for computing the poloidal ion
and magnetic fluxes is

d2
iF ′∇ ·

(
k2

ρ
∇F

)
= k2(F + G)F ′ + ρM′ − k2

[
ρ

d2
i

+ 2n`k2F ′
]

(ϕ− ψ) , (3.37)

Lψ = k2(F + G)G′ + ρN ′ + 2n`k4(F + G) + k2ρ
(ϕ− ψ)

d2
i

. (3.38)

Helically symmetric Hall MHD equilibria are completely determined by the above
equations coupled to a Bernoulli law, which can be deduced from (3.23) for de = 0,
allowing for the self-consistent computation of the mass density ρ for a given equation
of state p = p(ρ) ∝ ρΓ. The HMHD Bernoulli equation is

Γp

Γ− 1
= ρ

[
M+N − k2 (ϕ− ψ)2

2d2
i

]
− d2

i k
2 (F ′)2

2ρ
|∇ϕ|2 . (3.39)

Also from (3.29) and (3.36) we have

vh = k
ϕ− ψ
di

and vp = di
F ′

ρ
∇ϕ× h . (3.40)

For ` = 0, (3.37), (3.38) and (3.39) reduce to the axisymmetric Grad-Shafranov-
Bernoulli system of [88] that is presented below. For the baroclinic version of the
axisymmetric HMHD equilibrium equations the reader is referred to [89, 90].

3.2.2 Axisymmetric barotropic XMHD and HMHD

The axisymmetric equilibrium equations are obtained by setting the helical angle a
to zero, i.e., ` = 0 and n = −1, so the parameter ς is zero and the scale factor
k = 1/r and h = r−1êφ. With these parameters, (3.33)–(3.35) reduce to the following
Grad-Shafranov system:

(γ2 + d2
e)F ′r2∇ ·

(
F ′

ρ

∇ϕ
r2

)
= F ′(F + G) + r2ρM′ − µ

γ − µ
∆∗ψ − ρ ϕ− ξ

(γ − µ)2
, (3.41)

(µ2 + d2
e)G′r2∇ ·

(
G′

ρ

∇ξ
r2

)
= G′(F + G) + r2ρN ′ + γ

γ − µ
∆∗ψ + ρ

ϕ− ξ
(γ − µ)2

, (3.42)

∆∗ψ =
ρ

d2
e

(
ψ − µϕ− γξ

µ− γ

)
, (3.43)
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where ∆∗ := r2∇·
(
∇/r2

)
is the so-called Shafranov operator. Equation (3.23) assumes

the form:

Γp

Γ− 1
= ρ [M(ϕ) +N (ξ)]− ρ |v|

2

2
− d2

e

2ρ

[
J2
φ + r−2|∇(rBφ)|2

]
, (3.44)

where Jφ = −r−1∆∗ψ is the toroidal current density. For de = 0 we obtain the
axisymmetric Hall MHD Grad-Shafranov-Bernoulli system [88], which reads as follows

d2
iF ′r2∇ ·

(
F ′

ρ

∇ϕ
r2

)
= F ′(F + G) + r2ρM′ − ρϕ− ψ

d2
i

, (3.45)

∆∗ψ + G′(F + G) + r2ρN ′ + ρ
ϕ− ψ
d2
i

= 0 , (3.46)

ρh(ρ) =
Γp

Γ− 1
= ρ [M(ϕ) +N (ψ)]− ρ(ϕ− ψ)2

2d2
i r

2
− d2

i

(F ′)2

2ρr2
|∇ϕ|2 , (3.47)

3.2.3 Numerical Hall MHD equilibria

In this subsection the axisymmetric barotropic Hall MHD equilibrium system is solved
numerically. It should be stressed here that in order to perform this computation, con-
sulting previous studies concerned with the numerical integration of two-fluid equilib-
rium systems such as [90, 91, 92] was particularly instructive. Our computation is
realized using a Successive Over-Relaxation (SOR) iterative solver with Red-Black
ordering and Chebyshev acceleration for faster convergence. The grid Nr ×Nz is uni-
form with different spacing in r and z directions. Brent’s method is utilized to find the
roots of the Bernoulli equation. Brent’s algorithm is a hybrid, failsafe method that
combines inverse quadratic interpolation with the Secant and bisection methods to de-
termine bracketed roots. For further information on the aforementioned methods one
can consult [93] and also Appendix A. To apply Brent’s algorithm we need somehow
to bracket the root within an interval. To do so we first evaluate two characteristic
density values, one corresponding to the maximum possible root and the other to the
local minimum of the Bernoulli function

b(ρ) =
p1Γ

Γ− 1
ρΓ−1 − b1 +

b2
ρ2
, (3.48)

where b1 =M(ϕ) +N (ψ) − v2
φ/2 and b2 = d2

i (F ′(ϕ))2|∇ϕ|2/2, the specific enthalpy
term results from p(ρ) = p1ρ

Γ and we choose Γ = 5/3. Bernoulli equation is given
by b(ρ) = 0. Necessarily b1 > 0 because otherwise the pressure will be negative due
to the positiveness of the last term in (3.48). Within the domain (0,∞), b(ρ) has a
global minimum if b2 6= 0, which corresponds to a density ρe evaluated upon solving
the following equation

db(ρ)/dρ = p1ΓρΓ−2 − 2b2
ρ3

= 0 . (3.49)
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Therefore, b(ρ) possess from zero up to two real roots. To assess that real roots exist
we evaluate b(ρe) which has to be zero or negative. In the former case ρe is the single
root whereas in the latter there exist two roots and then one limit of the bracketing
interval will be ρe. If ρe is the upper limit then Brent’s method will evaluate the
“lighter” (lower) root of b(ρ). To find the “heavier” (larger) root we need a ρmax which
is the maximum possible root of the Bernoulli function. This can be found considering
ρ� 1. In this limit the last term in (3.48) is negligible and therefore we can directly
solve for ρ to find

ρmax =

(
Γ− 1

p1Γ
b1

)1/(Γ−1)

. (3.50)

Therefore, the heavier root is bracketed within the search interval [ρe, ρmax]. Both
bracketing options can be considered, however, in the particular example presented
below, the heavier root is used to represent the mass density at the interior points,
while for the boundary points, ρ = 0 is imposed. Note that mathematically ρ is
allowed to go to zero because b2 is selected to vanish on the boundary.

For the solution of Eqs. (3.45), (3.46), following the references [90, 91, 92], we start
solving Eq. (3.46) for ψ iteratively, i.e. the next approximation ψ(n+1) is obtained
using the previous approximations ψ(n), ϕ(n), and ρ(n). The initial condition for ψ,
i.e. ψ(0) is taken to be the corresponding static HMHD equilibrium, obtained upon
solving Eq. (3.46) with ϕ = ψ, therefore ϕ(0) = ψ(0). Knowing ψ(n+1) and ϕ(n) we
solve Eq. (3.47) for ρ(n+1) and then Eq. (3.45) is considered as an algebraic equation
for (ϕ − ψ)(n+1) which allows the evaluation of the next approximation for ϕ. The
procedure is repeated until the residual error of (3.46) and also the maximum difference
from the previous computed values, are smaller than predefined tolerances. For more
details the reader is referred to Appendix A.

Another feature incorporated to this solver is that it allows the computation on
up-down poloidally asymmetric domains with diverted boundaries having a lower x-
point, which are prescribed analytically. Prescription of the boundary is made upon
using the analytic formulas of [94]. More specifically, the boundary is described by

r = 1 + ε0 cos(τ + sin−1(δu) sin(τ)) , (3.51)

z = kuε0 sin(τ) , (3.52)

for its upper part (z > 0) where ε0 = a0/R0 is the inverse aspect ratio of the torus with
a0 and R0 being the minor and major radii, respectively. Also, δu and ku are the upper
triangularity and elongation of the poloidal cross section, respectively. Parameter τ is
expressed in terms of the poloidal angle θ as

τ(θ) = τ0θ
2 + τ1θ

n ,
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τ0 =
θnδu − 0.5πn

πθnδu − θ
2
δu
πn−1

,

τ1 =
−θ2

δ + 0.5π2

πθnδu − θ
2
δu
πn−1

,

θδu = π − tan−1(ku/δu) . (3.53)

The lower part is given by the following formulas

r = 1 + ε0 cos(θ) ,

z = −[2q1ε0(1 + cos(θ))] .

q1 =
(kdε0)2

2ε0(1 + cos θδd)
, π ≤ θ ≤ 2π − θδd , (3.54)

for the left part of the boundary and

r = 1 + ε0 cos(θ) ,

z = −
√

2q2ε0(1− cos(θ)) .

q2 =
(kdε0)2

2ε0(1− cos θδd)
, 2π − θδd ≤ θ ≤ 2π , (3.55)

for the right part of the boundary. The construction of the computational boundary is
based on the identification of the grid points that are nearest neighbors to the analytic
boundary curve. We take the boundary condition on these points to be ψ = ϕ = 0.
The particular class of equilibria considered here corresponds to the following ansatz
for the free functions F , G M:

F = f0 + f1ϕ+
1

2
f2ϕ

2 +
1

3
f3ϕ

3 ,

G = g0 + g1ψ +
1

2
g2ψ

2 +
1

3
g3ψ

3 ,

M = m0 +m1ϕ+
1

2
m2ϕ

2 +
1

3
m3ϕ

3 , (3.56)

with f1 = 0 because we want the poloidal velocity to vanish on the boundary. For the
free function N we make a different choice which allows the computation of equilibria
with mass density and pressure pedestal, namely we assume

N (ψ) = (n0 + n1ψ
2)
(

1− e−ψ2/n2

)
. (3.57)

However, for the computation of the initial static equilibrium we used a polynomial
ansatz for N , which results in a typical pressure profile without pedestal. That is, our
computation starts from an L-mode equilibrium without flow and iteratively relaxes to
an H-mode-like equilibrium with mass density and pressure pedestal, steep gradients
and localized sheared flows.



3.2. The JFKO-Bernoulli system 53

For the equilibrium presented in Fig. 3.1 the free parameters appearing in (3.56)–
(3.57) are selected so as the values of the characteristic physical quantities to be con-
sistent with the experimental results in big Tokamaks and also with what is expected
for the International Thermonuclear Reactor (ITER). Also, the parameters appearing
in (3.51)–(3.55) are selected in connection with the ITER design. Specific details on
this particular equilibrium are presented in Figs. 3.1–3.7. The cylindrical coordinates
r, z are normalized with respect to the major radius R0 = 6.2 m i.e. r = R/R0

and z = Z/R0 where R,Z are the dimensional coordinates in connection with the
poloidal plane. The dimensions in various dimensional quantities are restored upon
multiplying with the corresponding Alfvén normalization constants. Also, in table ??
the main geometric parameters, characteristic figures of merit and values of various
equilibrium quantities are summarized. In addition, two figures of merit for the numer-
ical computation are presented in Fig. 3.8; these are the maximum local convergence
rate and the maximum local residual error of ψ in each iteration. Both converge to
sufficiently small values within the first 300 iterations and then they exhibit a slightly
convergent-stagnation behavior for at least 200 iterations, which indicates that the
algorithm reached to a “good” numerical solution. The computational domain was
created on a 200 × 200 grid and the SOR parameter was relaxed by the Chebyshev
procedure to the value 1.969.

The equilibrium results show that the Hall contribution has a small influence on
the pressure, the mass and current density, and magnetic field profiles. However, as
becomes evident from Figs. 3.3 this contribution strongly affects the flow profiles.
Also, it is responsible for the separation of the magnetic and ion surfaces as shown in
Fig. 3.9. These are the level sets of ψ and ϕ, respectively. Note, that this separation
does not imply violation of quasineutrality, it merely means that two nearby fluid ele-
ments, an ionic and an electronic one, follow different paths lying on different surfaces
as they travel within the plasma. We understand that this has consequences when it
comes to the study of transport phenomena and therefore Hall MHD equilibria or even
better XMHD equilibria should be preferred over MHD equilibria when further inves-
tigations involving such micro-motions are going to be performed. One of the aims
of this thesis is to delineate the employment of a concise and powerful methodology,
i.e. the EC principle, in order to obtain useful equilibrium equations for models that
contain such physics, no matter how complicated the equations of motion appear to
be. Apart from the results presented here, with specific values of di i.e. di = 0.01 and
di = 0.05, we computed also equilibria with values up to di = 0.20 and corroborated
that the various profiles change accordingly, in a way consistent with the results shown
in figures 3.2–3.7.

The flow and current density profiles are consistent with the high mode phe-
nomenology, where highly sheared flows and high bootstrap current, caused due to
strong pressure gradients, are observed in the edge transport barrier region. In the
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Figure 3.1: The poloidal cross section of ion (dashed blue) and mag-
netic surfaces (solid red) for a numerical, ITER-like equilibrium, in
connection with ansatz (3.56), (3.57) and Hall parameter di = 0.05.

table below some characteristic geometric parameters and values of physical quantities
of interest are summarized. Note that the speed of sound is one order of magnitude
larger than the flow velocity all over the plasma volume, hence the equilibrium problem
is elliptic (see Section 3.4).

minor radius a (m) 2.0
inverse aspect ratio ε0 0.32
elongation ku = kd 1.70
triangularity δu = δd 0.40

βmax 0.031
Norm. Shafranov shift ∆s 0.062

Jtmax (A/m2) 1.519× 106

Jta (A/m2) 2.720× 105

pmax (Pa) 1.216× 105

|vt|max (m/s) 1.596× 105

vpmax (m/s) 7.026× 103

csmax (m/s) 2.489× 106
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Figure 3.2: Up: the magnetic flux function ψ on the plane z = za,
where za corresponds to magnetic axis, for two different values of the
Hall parameter. Down: the corresponding diagrams for the ion stream

function ϕ.
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Figure 3.3: Up: the toroidal velocity field on the plane z = za for
di = 0.01 and di = 0.05. Down: the corresponding diagrams for
the z component of the velocity field. We observe that strong flow
shear accumulated towards the boundary, in the edge transport barrier

region.
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Figure 3.4: Up: the toroidal magnetic field is slightly lower than
the vacuum field in the plasma core, revealing a diamagnetic behavior.

Down: the z component of the magnetic field on z = za.
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Figure 3.5: Up: the toroidal current density profile showing that
strong currents are accumulated in the transport barrier region. This
behavior is typical for plasmas with edge bootstrap current. Down: the
z component of the current density on the plane z = za. The influence
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tion of pedestal and steep gradients associated with H-mode operation.
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3.2. The JFKO-Bernoulli system 61

0 100 200 300 400 500 600

iterations

0

1

2

3

4

5

6

7
10

-4 convergence

0 100 200 300 400 500 600

iterations

0

10

20

30

40

50

60

70

80
error

Figure 3.8: Up: The convergence diagram showing the behavior of
max(max(ψ(n+1) − ψ(n)),max(ϕ(n+1) − ϕ(n))). Down: the maximum
residual error for ψ. The optimal relaxation parameter for a 200× 200

grid was found to be ω = 1.969.
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3.3 Incompressible equilibria

To obtain the equilibrium system for incompressible plasmas with uniform mass den-
sity, we set ρ = 1. Note that incompressibility may refer also to the kind of the
flows, that is, flows with divergence-free velocity fields that renders the mass den-
sity a Lagrangian invariant, which means that ρ is advected by the flow. Here, we
address the simpler case where the mass density is constant. One should be careful
when adopting this assumption because it has to be imposed a priori, i.e., before vary-
ing the EC functional. This is because, if we use the barotropic version of the EC
functional to derive equilibrium equations and then impose the uniformity of mass
density, then Bernoulli equation (3.23) will act as an additional constraint on the per-
missible equilibria. However, for uniform mass density, no Bernoulli equation occurs
via the variational principle and the computation of the pressure decouples from the
PDE problem. Ultimately, the resulting equilibrium equations will be given by (3.19)–
(3.22) with ρ = 1. This system leads to the equilibrium system of (3.33)–(3.35) with
ρ = 1, that is, the differential operators on the lhs of (3.33) and (3.34) reduce to the
elliptic operator −L acting on F and G, respectively. The pressure can be computed
from (1.27) upon setting ∂tv = 0, taking the divergence of the resulting equation and
acting with the inverse of the Laplacian operator leading to the following relation

p = ∆−1∇ · (v ×∇× v + J×B∗)− |v|
2

2
− d2

e

2
|J|2 . (3.58)

If we employ the helically symmetric representation (2.6), (2.7) for the fields B∗, v
and B and use the equilibrium equations (3.19)-(3.22) with ρ = 1, then we can prove
that

v ×∇× v + J×B∗ = ∇M(ϕ) +∇N (ξ) . (3.59)

Therefore, from (3.58) and (3.59), we deduce that the incompressible pressure is given
by

p =M(ϕ) +N (ξ)− |v|
2

2
− d2

e

2
|J|2 . (3.60)

Below we consider the incompressible Hall MHD equilibrium problem with helical
symmetry and derive a special solution describing the so-called Double-Beltrami equi-
librium. For an alternative verification of this result obtained upon taking projections
of the stationary XMHD equations of motion see Appendix B.

3.3.1 Incompressible Hall MHD equilibria

For incompressible plasmas the HMHD equilibrium system reduces to (3.37)–(3.38)
with ρ = 1, i.e., we have

d2
iF ′LF = −k2(F + G)F ′ −M′ + k2

(
d−2
i + 2n`k2F ′

)
(ϕ− ψ) , (3.61)
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Lψ = k2(F + G)G′ +N ′ + 2n`k4(F + G) + k2(ϕ− ψ)d−2
i . (3.62)

The pressure can be computed using (3.60) with de = 0. To obtain solutions for the
fluxes ϕ and ψ, we need to specify the free functions F , G, M and N . There exist
a particular ansatz for the free functions, for which the system (3.61)–(3.62) permits
an analytic solution. In this case the magnetic and velocity fields are superpositions
of two Beltrami fields and the functions ϕ and ψ are expressed as linear combinations
of the corresponding poloidal flux functions of the Beltrami fields. The generic linear
ansatz, for the system (3.61)–(3.62) is

F = f0 + f1ϕ , G = g0 + g1ψ , M = m0 +m1ϕ , N = n0 + n1ψ , (3.63)

where f0, f1, g0, g1, m0, m1, n0, n1 are constant parameters, leads to the following
equations for helically symmetric HMHD equilibria:

k−2L

(
ϕ

ψ

)
=

(
W1 W2

W3 W4

)(
ϕ

ψ

)
+

(
R1

R2

)
, (3.64)

where

W1 =
1 + 2n`d2

i f1k
2

d4
i f

2
1

− 1

d2
i

,

W2 = − g1

d2
i f1
− 1 + 2n`d2

i f1k
2

d4
i f

2
1

W3 = g1f1 +
1 + 2n`f1d

2
i k

2

d2
i

,

W4 = g2
1 −

1− 2n`g1d
2
i k

2

d2
i

,

R1 = −f0 + g0

f1d2
i

− m1

d2
i f

2
1k

2
,

R2 = g1(f0 + g0) +
n1

k2
+ 2n`k2(f0 + g0) . (3.65)

For n , ` 6= 0 we can find a solution to this system assuming m1 = n1 = f0 = g0 = 0:

ϕ =
λ+ − g1

f1
ψ+ +

λ− − g1

f1
ψ− , ψ = ψ+ + ψ− , (3.66)

where ψ± are solutions of the equation

k−2Lψ± = λ2
±ψ± + 2n`λ±k

2ψ± , (3.67)
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Figure 3.9: The magnetic (solid red) and the ion (dashed blue)
surfaces of the analytic DB equilibria with helical symmetry in con-
nection with (3.66) and (3.69) in six different sections, namely z =
(0, π/12, ..., 5π/12). The values of the parameters ` and n are ` = 1
and n = 5 corresponding to five helical windings for distance 2π cov-
ered in the z-direction. The contours have been plotted on the (x, y)

plane (perpendicular to z-direction).
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and the parameters λ± are given by

λ± =
1

2

 1

d2
i f1

+ g1 ±

√(
1

d2
i f1

+ g1

)2

− 4
f1 + g1

d2
i f1

 . (3.68)

Either solving (3.67) directly or following the construction of [95] (see also [96]) we
can obtain the following analytic solutions ψ±:

ψ± = c± [`J0(λ±r)− nrJ1(λ±r)]

+
∑
m

a±m

[
`λ±I`m(σ±r) + nr

d

dr
I`m(σ±r)

]
cos(mu) , (3.69)

where σ± :=
√
m2n2 − λ2

± and I`m denotes the modified Bessel function of the first
kind with order `m. Parameters c± and a±m can be specified in connection with the
desirable boundary conditions. Functions ψ± are poloidal flux functions of helically
symmetric Beltrami fields with Beltrami parameters λ±. Since the solution is a linear
combination of two Beltrami fields and the resulting velocity and magnetic fields sat-
isfy conditions that involve the double curl operator, the resulting solution is called
double-Beltrami (DB). Such states, are not only natural solutions of the incompress-
ible Hall MHD equilibrium equations (see [78]) but they occur also as relaxed states
via minimization principles [97]. They have been used to construct high-beta equi-
libria with flows for 1D [78, 98] and axisymmetric systems [99] but not for helically
symmetric ones. Here we present a helical DB equilibrium computed by means of
(3.66)–(3.69) with di = 0.09, f1 = 4.0, g1 = 2.0, depicted in figure 3.9. This configura-
tion, possessing closed surfaces, is obtained upon imposing the vanishing of ψ on a set
of predetermined points, yielding the values of the free parameters in the truncated
series (3.69). We observe that the ion surfaces depart from the electron-magnetic sur-
faces in a manner similar to the numerical computation of the previous section and
also in other studies such as [71] and [90], resulting in a configuration with distinct
helical structures for the ions and the electrons.

3.4 Ellipticity condition for the XMHD equilibrium equa-
tions

In this section we show how the quasineutrality condition, although it reduces the
system of equations that have to be considered for a fully self-consistent description,
inserts a peculiarity into the system of equilibrium equations derived in this chapter:
the two flux functions representing the electron and the ion contributions are con-
nected through a single Bernoulli equation and a single mass density function. This
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feature, that is not typical for the complete two-fluid theory, introduces a complica-
tion in deriving ellipticity conditions for the XMHD equilibrium system of equations,
rendering the condition more involved than those for the two-fluid system. However,
there are special cases where the ellipticity condition is reduced to more convenient
forms leading to interesting conclusions. Such a case is static equilibria, where we
prove that ellipticity is not always the case, despite the fact that if we neglect electron
inertia, then the absence of macroscopic flow implies ellipticity, as it is well known in
the case of MHD and HMHD.

We are concerned with the problem of ellipticity because the classification of PDEs
and systems of PDEs into elliptic, parabolic and hyperbolic ones, is fundamental in the
theory of differential equations (e.g. [100]). It is known that boundary value problems
(BVPs) with elliptic equations or systems of equations under Dirichlet, Neumann,
or Robin boundary conditions are well-posed. For this reason ellipticity is gener-
ally desired for equilibrium studies because they rely on solving such boundary value
problems. On the other hand hyperbolic equations are usually related to evolutionary
problems. It is also known that solutions to elliptic equations have no discontinu-
ous derivatives. Such discontinuities are related to jumps in equilibrium profiles and
shock formation, which certainly introduce additional numerical challenges. When
describing axisymmetric plasmas within the framework of ordinary MHD, the bound-
aries between elliptic and hyperbolic regimes are determined by the magnitude of the
poloidal flow. Weak poloidal flows render the equilibrium problem elliptic and thus its
solution can be attained by standard methods for boundary value problems; however,
when poloidal flows have larger magnitudes, then mixed elliptic-hyperbolic regimes,
i.e., situations for which the equilibrium system is hyperbolic in one part of the domain
and elliptic in the other part, emerge. This implies the existence of discontinuities and
jumps in the profiles of quantities such as the plasma density [101]. The connection of
strong poloidal sheared flows with the formation of internal transport barriers that are
associated with the transition to high confinement modes and whose emergence comes
with the formation of steep gradients in equilibrium profiles, establishes a link between
mixed elliptic-hyperbolic equilibria with transonic flows and high-mode confinement.

Hence, we understand that it is important to know where the boundaries between
elliptic and hyperbolic regimes are located. The ellipticity conditions for single fluid
MHD have been derived in several instances e.g. [102, 103, 104]. For the complete two-
fluid Grad-Shafranov-Bernoulli equilibrium system, ellipticity conditions are provided
in [103], while there are analogous conditions for simplified versions, e.g., in [105] for
two-fluid equilibria with massless electrons, in [76, 106, 107] for the Hall MHD model
with scalar and anisotropic electron pressure.

For reasons of comparison and completeness we first give below the well-known
ellipticity conditions for axisymmetric MHD and HMHD equations and in addition
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the respective two-fluid conditions. In the context of MHD the axisymmetric Grad-
Shafranov-Bernoulli system is elliptic if

0 ≤
v2
p

v2
Ap

<
c2
s

c2
s + v2

A

, v2
s < v2

p < v2
A , v2

A < v2
p < v2

f , (3.70)

where vp is the poloidal plasma velocity, cs is the speed of sound, vA the poloidal
Alfvén speed, while vs and vf correspond to the slow and fast magnetosonic wave
speeds, respectively. We can see that within the framework of ordinary MHD there
exist two elliptic regions; the second one, which involves stronger flows, is interrupted
by the so-called Alfvén singularity, which occurs when the poloidal flow speed coincides
with the poloidal Alfvén speed. This makes the Grad-Shafranov equation singular and
a global equilibrium solution cannot be constructed. It is interesting that the speed
of sound is not a transition point, the transition points being defined by the trailing
cusp speed in the wave-front diagram, c2

s/(c
2
s + v2

A), and the characteristic speeds of
the slow and fast magnetosonic waves.

The ellipticity conditions for two-fluid equilibria acquire a much simpler form and
only one elliptic region exists, viz

v2
ip < c2

is , and v2
ep < c2

es , (3.71)

where c2
js = Γpj/(mjnj), j = i, e for polytropic gases with adiabatic index Γ, de-

duced by reversing the hyperbolicity conditions in [103]. In the case of Hall MHD the
ellipticity condition, derived in [76], becomes

v2
p < c2

s , (3.72)

where c2
s = c2

is + c2
es holding true for HMHD and XMHD due to the quasineutrality

condition.
Conditions (3.71) and (3.72) show hydrodynamic behavior within the two-fluid

context, with transitions to hyperbolicity when the poloidal speed reaches the corre-
sponding sound speed. One would expect that since the XMHD model is essentially a
quasineutral two-fluid model, would exhibit a similar behavior. However, as we show
below, the quasineutrality condition introduces complication in the XMHD formalism.
We reveal this complication by deriving the ellipticity condition for the most generic
system of axisymmetric XMHD equilibrium equations and later on we discuss some
special cases.

Typically, ellipticity is defined for systems of linear PDEs (e.g. for the specific case
of second order systems see [108]) because it is a property defined pointwise and is
completely depended on the principal symbol of the differential operator; hence, the
definition can be extended in order to include quasilinear systems as it is done below.
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Consider a second order system of M quasilinear partial differential equations in N

independent and M dependent variables of the following form:

M∑
j=1

N∑
`,n=1

τ `nij (x, u, ux)
∂2uj
∂x`∂xn

− fi(x, u, ux) = 0 , i = 1, ...,M (3.73)

where x = (x1, ..., xN ) ∈ D ⊂ RN , u = (u1, ..., uM ) ∈ U ⊂ RM , τ `nij are the coeffi-
cients of the second order derivatives in (3.73) and by ux we denote the first order
derivatives of the dependent variables. The classification of the system depends only
upon its principal symbol, or characteristic matrix, which for arbitrary, real scalars
λ = (λ1, ..., λN ), is defined as

τ [λ] =

 N∑
`,n=1

τ `nij (x, u, ux)λ`λn

 , (3.74)

that is an M ×M matrix with rows and columns labeled by i and j, respectively.
Definition: The second order quasilinear system (3.73) is called elliptic if ∀x ∈ D,

det (τ [λ]) 6= 0 ∀λ 6= 0. That is det (τ [λ]) has to be positive or negative definite ∀λ 6= 0.
This definition allows the classification of systems like (3.41)–(3.44), describing

axisymmetric barotropic XMHD equilibria. According to this, for the classification of
the aforementioned system we are interested in knowing the principal symbol, which
depends only on the coefficients of second order derivatives of (3.41)–(3.43). An inter-
esting property of such Grad-Shafranov-Bernoulli (GSB) systems is that the second
order derivatives in the flux functions are not only those that appear explicitly in the
Grad-Shafranov (GS) equations, but additional terms coming from the involvement
of the mass density ρ in the differential operators. This is because partial derivatives
of the flux functions are contained in Bernoulli equation due to the presence of the
poloidal flow and current density according to the following equations

h(ρ) =M(ϕ) +N (ξ)−
v2
φ

2
−
v2
p

2
− d2

e

2ρ2
(J2
φ + J2

p ) , (3.75)

vφ =
1

r

ϕ− ξ
γ − µ

, vp = ρ−1∇ (γF + µG)×∇φ , (3.76)

Jφ = −∆∗ψ

r
, Jp = ∇(F + G)×∇φ , (3.77)

therefore, the Bernoulli equation takes the form

h(ρ) =M(ϕ) +N (ξ)− 1

2r2

(ϕ− ξ)2

(γ − µ)2
− d2

e

2ρ2r2
(∆∗ψ)2

− 1

2ρ2r2

[
(γ2 + d2

e)(F ′)2|∇ϕ|2 + (µ2 + d2
e)(G′)2|∇ξ|2

]
, (3.78)
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where we have used the relation γµ = −d2
e. It is clear now that ρ = ρ(r, ϕ, ξ,

|∇ϕ|2, |∇ξ|2) so ∇ρ will contain second order derivatives.
To compute the principal symbol of the system let us first expand the differential

expressions in the lhs of Eqs. (3.41), (3.42) as follows

∇ ·
(
F ′

ρ

∇ϕ
r2

)
=
F ′

ρr2

(
∆ϕ− ρ−1∇ρ · ∇ϕ

)
+ lower order terms ,

∇ ·
(
G′

ρ

∇ξ
r2

)
=
G′

ρr2

(
∆ξ − ρ−1∇ρ · ∇ξ

)
+ lower order terms . (3.79)

By denoting

ρ′ :=
∂ρ

∂|∇ϕ|2
, ρ̇ :=

∂ρ

∂|∇ξ|2
, (3.80)

we can write Eqs. (3.79) as

∇ ·
(
F ′

ρ

∇ϕ
r2

)
=
F ′

ρr2

[
∆ϕ− ρ−1

(
ρ′∇|∇ϕ|2 + ρ̇∇|∇ξ|2

)
· ∇ϕ

]
+lower order terms ,

∇ ·
(
G′

ρ

∇ξ
r2

)
=
G′

ρr2

(
∆ξ − ρ−1

(
ρ′∇|∇ϕ|2 + ρ̇∇|∇ξ|2

)
· ∇ξ

)
+lower order terms . (3.81)

After some simple analysis, the XMHD GS equations, i.e. Eqs. (3.81), together with
(3.43) can be written as

(γ2 + d2
e)
F ′2

ρr2

[ (
1− αϕ2

r

)
∂rrϕ (3.82)

+
(
1− αϕ2

z

)
∂zzϕ− 2αϕrϕz∂rzϕ− βϕrξr∂rrξ

−βϕzξz∂zzξ − β(ϕrξz + ϕzξr)∂rzξ
]

+ lower order terms = 0 ,

(µ2 + d2
e)
G′2

ρr2

[ (
1− βξ2

r

)
∂rrξ (3.83)

+
(
1− βξ2

z

)
∂zzξ − 2βξrξz∂rzξ − αϕrξr∂rrϕ

−αϕzξz∂zzϕ− α(ϕrξz + ϕzξr)∂rzϕ
]

+ lower order terms = 0 ,

∂rrψ + ∂zzψ + lower order terms = 0 , (3.84)
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where α := 2ρ′/ρ and β := 2ρ̇/ρ. According to definition (3.74), the principal symbol
of (3.82)–(3.84) is

τ [λ1, λ2] =


T11 T12 0

T21 T22 0

0 0 λ2
1 + λ2

2

, (3.85)

where

T11 = C1

[
(1− αϕ2

r)λ
2
1 + (1− αϕ2

z)λ
2
2 − 2αϕrϕzλ1λ2

]
, (3.86)

T12 = −C1β
[
ϕrξrλ

2
1 + ϕzξzλ

2
2 + (ϕrξz + ϕzξr)λ1λ2

]
, (3.87)

T21 = −C2α
[
ϕrξrλ

2
1 + ϕzξzλ

2
2 + (ϕrξz + ϕzξr)λ1λ2

]
, (3.88)

T22 = C2

[
(1− βξ2

r )λ2
1 + (1− βξ2

z )λ2
2 − 2βξrξzλ1λ2

]
, (3.89)

with C1 := (γ2 + d2
e)F ′2/(ρr2) and C2 := (µ2 + d2

e)G′2/(ρr2). The determinant of the
characteristic matrix is

det(τ)(λ1, λ2) = C1C2(λ2
1 + λ2

2)2
[
λ2

1(1− αϕ2
r − βξ2

r ) + λ2
2(1− αϕ2

z − βξ2
z )

−2λ1λ2(αϕrϕz + βξrξz)
]

=: C1C2(λ2
1 + λ2

2)2P (λ1, λ2) . (3.90)

For free functions F(ϕ) and G(ξ) with F ′ 6= 0 and G′ 6= 0 ∀x ∈ D, the coefficient
C1C2 can be ignored since it is strictly positive. Clearly for F ′,G′ 6= 0 and λ1, λ2 6= 0

the determinant can be zero if and only if the homogeneous polynomial P (λ1, λ2) has
real roots. Thus the ellipticity condition for XMHD equilibrium equations can be
summarized as follows:

P (λ1, λ2) 6= 0 , ∀λ1, λ2 6= 0 . (3.91)

We can prove, by directly computing the roots of P (λ1, λ2) with respect to either λ1

or λ2, that no real roots exist if

1− α|∇ϕ|2 − β|∇ξ|2 (3.92)

+αβ
(
|∇ϕ|2|∇ξ|2 − (∇ϕ · ∇ξ)2

)
> 0 .

At this point it remains to compute α and β in terms of the equilibrium quantities.
This can be done by performing implicit differentiation of equation (3.78) with respect
to |∇ϕ|2 and |∇ξ|2 (e.g. see [102, 76]),

dh

dρ
ρ′ = −γ

2 + d2
e

2ρ2r2
(F ′)2
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+
ρ′

ρ3r2

[
(γ2 + d2

e)(F ′)2|∇ϕ|2 + (µ2 + d2
e)(G′)2|∇ξ|2

]
, (3.93)

dh

dρ
ρ̇ = −µ

2 + d2
e

2ρ2r2
(G′)2

+
ρ̇

ρ3r2

[
(γ2 + d2

e)(F ′)2|∇ϕ|2 + (µ2 + d2
e)(G′)2|∇ξ|2

]
, (3.94)

and rearranging we find

α = − (γ2 + d2
e)(F ′)2

ρ2r2
(
c2
s −

(γ2+d2e)(F ′)2|∇ϕ|2+(µ2+d2e)(G′)2|∇ξ|2
ρ2r2

) ,
β = − (µ2 + d2

e)(G′)2

ρ2r2
(
c2
s −

(γ2+d2e)(F ′)2|∇ϕ|2+(µ2+d2e)(G′)2|∇ξ|2
ρ2r2

) , (3.95)

where c2
s := ρdh/dρ = c2

is + c2
es the Alfvén normalized speed of sound. These expres-

sions can be rewritten in terms of physical quantities as follows

α =
−(γ2 + d2

e)F ′2

ρ2r2
(
c2
s − v2

p −
d2e
ρ2r2
|∇(rBφ)|2

) ,
β =

−(µ2 + d2
e)G′2

ρ2r2
(
c2
s − v2

p −
d2e
ρ2r2
|∇(rBφ)|2

) . (3.96)

Substituting (3.96) into (3.92) we find

(γ2 + d2
e)(µ

2 + d2
e)F ′2G′2

[
|∇ϕ|2|∇ξ|2 − (∇ϕ · ∇ξ)2

]
ρ4r4

(
v2
p + d2e

ρ2r2
|∇(rBφ)|2 − c2

s

)2

+
1

1−
(
v2
p + d2e

ρ2r2
|∇(rBφ)|2

)
/c2
s

> 0 . (3.97)

This is the ellipticity condition for the complete system of axisymmetric XMHD equi-
librium equations. We observe that since the first term is always non-negative a
sufficient (but not necessary) condition for ellipticity is

v2
p +

d2
e

ρ2r2
|∇(rBφ)|2 < c2

s . (3.98)

Observe in (3.97) that setting de = 0, i.e. neglecting electron inertia, we recover the
Hall MHD ellipticity condition v2

p < c2
s. Now let us assume that our equations describe

macroscopically static equilibria i.e. v ≡ 0. Then from the expression for vφ in (3.76),
we conclude that ϕ = ξ. Thus (3.97) reduces to

d2
e

ρ2r2
|∇(rBφ)|2 < c2

s . (3.99)
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Therefore, in principle, elliptic-hyperbolic transitions are possible even for zero macro-
scopic flow, something that cannot happen within the framework of the MHD and
HMHD. This is indeed plausible because static XMHD equilibrium does not imply
that the ion and electron fluids are strictly static as well – if that were the case, there
would be no current at all, and in addition electron mass is not neglected. However, we
need to clarify that the violation of the ellipticity condition (3.99) would require rather
peculiar conditions, i.e. very high current density, since |∇(rBφ)|2/r2 is the poloidal
current density squared and very low mass density, because the speed of sound de-
creases, if for example a polytropic equation of state is adopted (p ∝ ρΓ), while the
lhs of (3.99) increases with density decrease. Therefore, a transition to the hyperbolic
regime requires sufficiently small mass density or/and sufficiently high poloidal current
density.

In addition, we point out that (3.99) holds also for purely toroidal flows (vp = 0),
because in that case ϕ = f(ξ) (see Eq. (3.36)), so again the first term of (3.97) van-
ishes. Another case that admits a simplified version of the ellipticity condition (3.97)
is when one of the two free functions F , G is constant, say G′ = 0. In this case poloidal
flow is present and the flow surfaces coincide with the level sets of the stream function
ϕ. For G′ = 0, Eq. (3.97) reduces to Eq. (3.98) that represents now both a necessary
and sufficient ellipticity condition.

As a final point we address the following reasonable question: why does the more
generic case of two-fluid equilibria possesses an ellipticity condition simpler in form?
As stated before, the quasineutrality condition combined with the finite electron inertia
(which is absent in the quasineutral HMHD model) is the source of the complication,
for it causes the two stream functions to be related through a single Bernoulli equation.
In the two-fluid case there exist two Bernoulli equations for the two mass densities,
each one of which contains a dependence on the gradient of the corresponding stream
function and each GS equation contains only the corresponding mass density function.
As a consequence the principal symbol has only diagonal elements and the ellipticity
condition for each fluid becomes trivial because it results from the requirement that
the diagonal elements must have no real roots. This requirement leads eventually to
the pair of inequalities (3.71) instead of the single inequality (3.97).



Chapter 4

Stability Analysis of extended
MHD equilibria

In this chapter we construct and examine three different functionals, representing the
energy of different kinds of perturbations, in order to derive sufficient stability con-
ditions for generalized MHD models. First, δ2HC [ue, δu] and δ2Hda[ue, δuda], which
represent the second variation of the EC functional and the energy of the DA per-
turbations, respectively, are constructed. Both are expressed in Eulerian variables
(the subscript e denoting equilibrium). The third functional, δ2Hla[qe,πe,Ae,Φe;

δq, δπ, δA, δΦ], is the second order variation of the Hamiltonian within a mixed
Eulerian-Lagrangian description, where the fluid variables are described in the La-
grangian picture while the electromagnetic field in the Eulerian picture. The results
of this chapter can be found in [109].

The chapter is organized as follows: Section 4.1 is devoted to a brief comparison
between the three approaches. In Section 4.2 we employ the energy-Casimir method
for studying the stability of axisymmetric XMHD equilibria by computing the second
order variation of the EC functional. Several sufficient stability criteria are derived,
concerning either special equilibria or special perturbations. In this way we fulfill
the four step procedure described in Section 1.3.3. In Section 4.3 we find the dy-
namically accessible variations for the XMHD model. In addition the second order,
DAV of the Hamiltonian is computed and used to establish a stability criterion for
generic equilibria. Finally, in Section 4.4 we compute the second order variation of
the Lagrangian in a mixed Eulerian-Lagrangian framework and furthermore we em-
ploy a Lagrange-Euler map to express the Lagrangian completely in terms Eulerian
coordinates. These results are used to construct the Hamiltonians for the linearized
dynamics of the quasineutral two-fluid model and for the Hall MHD model in Section
4.5.
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4.1 Comparison of stability methods

Although the basics and the underlying theory of these three methods have been de-
scribed in Chapter 1 we briefly delineate in this section and also throughout the whole
chapter some characteristic features of each method.

In general, Lagrangian stability, being applicable for all possible equilibria and
also considering perturbations that are not dynamically restricted or constrained by
spatial symmetry, appears to be in practice the most generic method. Lagrangian
variations are expressed in terms of Lagrangian displacement vectors ζ which simply
represent the displacement of a perturbed fluid trajectory with respect to its station-
ary counterpart, no matter what is the mechanism or the cause of this displacement.
However, the variations of the fields are generated through certain relations involving
the Lagrangian displacements. Thus from a dynamical point of view, they are not
completely arbitrary like the EC variations.

The EC method inserts certain restrictions because its applicability is not always
guaranteed, since it requires a sufficient number of Casimir invariants in order to be
established. This is the reason why in 3D systems EC stability is usually not feasible
other than special cases when there exist some kind of Ertel’s invariants providing
additional Casimirs [10]. If a continuous spatial symmetry is present, the usual helic-
ity Casimirs are converted to infinite families of invariants in view of the symmetric
decomposition of the fields, thus rendering the EC method applicable, as for example
in [49, 85, 87, 110] for the MHD model. This decomposition restricts the variations to
respect the system’s geometric symmetry as well. Also EC method is applicable only
for assessing the stability of EC equilibria, which do not contain all possible steady
states. However, despite these setbacks the EC method exhibits some advantages: it
is easy to implement, especially when the study of equilibrium has been carried out
within the EC framework, like in the present study, it is easier to prove the positive
definiteness of the corresponding Lyapunov functionals, and the dynamics of the vari-
ations is arbitrary.

As mentioned in Chapter 1, within the noncanonical Hamiltonian framework one
can consider also the so-called dynamically accessible variations (DAVs) (e.g. [8, 12,
111]). Recall that the main advantages of this approach are, that it is valid for generic
equilibria and not only for EC ones and also it allows three dimensional perturba-
tions. On the other hand, dynamical accessibility restricts the perturbed trajectories
onto the symplectic leaves, which are essentially the level sets of the Casimirs. Note
however that DAVs are perhaps the most probable kind of perturbations when no
external interventions or dissipative processes that violate the ideal dynamics and the
closedness of the system take place. This is because, in the absence of such agents,
any perturbed state should be accessible by the ideal dynamics of the model under
consideration, which preserve the Casimirs. If perturbations away from symplectic
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leaves occur, these must come from physics outside the dynamical model. Viewed this
way, DAV stability is quite natural to consider.

In terms of dynamics only, if all three methods are applied under the same condi-
tions, then the EC can be regarded as the most general and DA as the most restricted
one.

4.2 Energy-Casimir stability of axisymmetric equilibria

4.2.1 Axisymmetric XMHD energy-Casimir functional

In the previous chapter the equilibrium equations for helically symmetric and axisym-
metric barotropic plasmas described by XMHD, were derived upon using the energy-
Casimir principle. Here, we compute the second order variation of the EC functional
restricting our analysis to the axisymmetric case. From (2.6)–(2.7), setting ` = 0

and n = −1, one can see that the axisymmetric velocity and magnetic fields can be
Helmholtz-decomposed as follows

v = rvφ∇φ+∇χ×∇φ+∇Υ , (4.1)

B = rBφ∇φ+∇ψ ×∇φ , (4.2)

inducing a similar form for the generalized magnetic field B∗. From Eqs. (2.86)–(2.89)
with ` = 0 we can easily obtain the following axisymmetric Casimirs

C1 =

∫
D
d2x (r−1B∗φ + γΩ)F(ψ∗ + γrvφ) , (4.3)

C2 =

∫
D
d2x (r−1B∗φ + µΩ)G(ψ∗ + µrvφ) , (4.4)

C3 =

∫
D
d2x ρM(ψ∗ + γrvφ) , (4.5)

C4 =

∫
D
d2x ρN (ψ∗ + µrvφ) , (4.6)

(4.7)

where Ω := (∇× v⊥) · ∇φ with v⊥ := ∇χ×∇φ+∇Υ and

ψ∗ = ψ − d2
eρ
−1∆∗ψ , (4.8)

B∗φ = Bφ − d2
er∇ ·

[
r−2ρ−1∇(rBφ)

]
, (4.9)

which are the axisymmetric limits of (2.36) and (2.35), respectively. Also from (2.34)
one can find that the axisymmetric Hamiltonian is given by

H =

∫
D
d2x

(
ρ
v2
φ

2
+ ρ
|∇χ|2

2r2
+ ρ
|∇Υ|2

2
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+ρ[Υ, χ] + ρU(ρ) +
B∗φBφ

2
+
∇ψ∗ · ∇ψ

2r2

)
=

∫
D
d2x

(
ρ
v2
φ

2
+ ρ
|v⊥|2

2
+ ρU(ρ) +

B∗φBφ

2
+
∇ψ∗ · ∇ψ

2r2

)
. (4.10)

Requiring the vanishing of δHC = δ(H−
∑

i Ci), yields the EC equilibrium equations,
given by (3.17)–(3.22) with ` = 0, n = −1 therein, which can be written in the
Grad-Shafranov-Bernoulli form (3.41)–(3.44). To proceed with stability analysis it is
convenient having the first-order variation of the axisymmetric Hamiltonian written
down as

δHC =

∫
D
d2x

{[
h(ρ)−M−N +

v2
φ

2
+
|v⊥|2

2

+
d2
e

2r2ρ2

(
(∆∗ψ)2 + |∇(rBφ)|2

) ]
δρ+

[
Bφ − r−1(F + G)

]
δB∗φ

+
[
ρvφ − γr(r−1B∗φ + γΩ)F ′ − µr(r−1B∗φ + µΩ)G′ − γrρM′ − µrρN ′

]
δvφ

−
[
r−2∆∗ψ + (r−1B∗φ + γΩ)F ′ + (r−1B∗φ + µΩ)G′ + ρM′ + ρN ′

]
δψ∗

+ [ρv⊥ − γ∇F ×∇φ− µ∇G ×∇φ] · δv⊥

}
, (4.11)

which will be used for a straightforward computation of the second order variation.

4.2.2 Second order variation

The expressions into the square brackets in (4.11) vanish on the EC equilibrium solu-
tion, therefore the second order variation would involve only first order variations of
the field variables. After some simple manipulations we can show that δ2HC [ue, δu]

can be written in the following form:

δ2HC [ue; δu] =

∫
D
d2x

{
d2
e

ρr2
|∇(rδBφ)|2 +

|∇δψ|2

r2

+
d2
er

2

ρ

[
∇ ·
(
r−2∇δψ

)]2
+ ρ

(
δvφ + ρ−1vφδρ

)2
+ρ
∣∣δv⊥ + ρ−1v⊥δρ

∣∣2 − 2
d2
e

r2ρ
∇(δF + δG) · ∇(rδBφ)

+2
d2
e

r2ρ2
∇(δF + δG) · ∇(rBφ)δρ

−2[(γ∇δF + µ∇δG)×∇φ] · δv⊥
}

+Q , (4.12)

where
Q =

∫
D
d2x (δBφ δϕ δξ δρ)A (δBφ δϕ δξ δρ)T , (4.13)
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with

A =


1 AϕBφ AξBφ 0

AϕBφ Aϕϕ 0 Aϕρ

AξBφ 0 Aξξ Aξρ

0 Aϕρ Aξρ Aρρ

 . (4.14)

The elements of A are given explicitly by

Aϕϕ = −
(
r−1B∗φ + γΩ

)
F ′′ − ρM′′ (4.15)

Aξξ = −
(
r−1B∗φ + µΩ

)
G′′ − ρN ′′ (4.16)

AϕBφ = −r−1F ′ , AξBφ = −r−1G′ , (4.17)

Aϕρ = −M′ , Aξρ = −N ′ (4.18)

Aρρ = ρ−1

[
c2
s − v2

φ − |v⊥|2

−d
2
e

ρ2

(
r2
[
∇ ·
(
r−2∇ψ

)]2
+ r−2

∣∣∇(rBφ)
∣∣2)] , (4.19)

where c2
s := ρh′(ρ). In deriving (4.12) we performed integrations by parts, omitted

the surface integrals and completed squares in terms involving the mass density and
velocity field variations. Also we used the following expressions for δψ∗ and δB∗φ

δψ∗ = δψ − d2
e

∆∗δψ

ρ
+ d2

e

∆∗ψ

ρ2
δρ , (4.20)

δB∗φ = δBφ − d2
er∇ ·

[
∇(rδBφ)

r2ρ

]
+ d2

er∇ ·
[
∇(rBφ)

r2ρ2
δρ

]
, (4.21)

which can easily deduced from Eqs. (4.8) and (4.9), respectively.
For Q alone to be positive definite, matrix A has to be positive definite as well,

which is equivalent to the requirement that the principal minors of A satisfy

Aϕϕ −A2
ϕBφ

> 0 , (4.22)

Aξξ(Aϕϕ −A2
ϕBφ

)−AϕϕA2
ξBφ

> 0 , (4.23)

Aρρ

[
Aξξ(Aϕϕ −A2

ϕBφ
)−AϕϕA2

ξBφ

]
+(AϕBφAξρ −AξBφAϕρ)

2 −AξξA2
ϕρ −AϕϕA2

ξρ > 0 . (4.24)

For conditions (4.22)–(4.23) to hold, it is necessary that Aϕϕ > 0 and Aξξ > 0. How-
ever, Q > 0 does not imply stability because there are several indefinite terms in
δ2HC . More precisely, the first five terms in δ2HC are always non-negative, with
the magnetic terms expressing the magnetic field line bending while the remaining
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two terms contain kinetic energy and compressional contributions of the perturba-
tion. These kinetic-compressional terms constitute an example of the typical non-
separability between the kinetic and potential energies in systems with macroscopic
flows, rendering the resulting stability conditions sufficient but not necessary (see 1).
The non-separability is even more severe, since kinetic and potential energy contri-
butions are intertwined also via additional terms in δ2HC reflecting the fact that in
the two fluid framework the coupling between flows and magnetic fields is more com-
plicated. In particular, what really makes life difficult, are the last three terms into
the curly bracket in (4.12) because they are clearly sources of indefiniteness, a charac-
teristic which has been detected also in previous energy-Casimir stability analyses of
similar models e.g. [84, 112], and can potentially be related to linear instability or the
presence of Negative Energy Modes (NEMs). Both can lead to disastrous destabiliza-
tion and loss of confinement. In order to remove the indefiniteness, we can eliminate or
conflate these “problematic” terms into others in view of certain constraints imposed
on the variations δB∗φ and δΩ or by considering special equilibria.

4.2.3 Special equilibria

Extended MHD

For purely toroidal flow and current i.e. F ′ = G′ = 0, it is clear that Q > 0 im-
plies δ2HC > 0. For our special class of equilibria, we have AϕBφ = AξBφ = 0 and
consequently conditions (4.22)–(4.24) yield

M′′ < 0 , N ′′ < 0 , (4.25)

M′′N ′′
[
c2
s − v2

φ −
d2
e

ρ2

(
r2
[
∇ ·
(
r−2∇ψ

)]2)]
+M′′(N ′)2 +N ′′(M′)2 > 0 . (4.26)

The first two conditions imply thatM and N , have to be concave functions, then for
condition (4.26) to be satisfied, the quantity inside the square bracket must be neces-
sarily positive, that is the toroidal velocity, modified by an electron inertial correction,
has to be lower than the speed of sound, thus preventing shock formation.

Hall MHD

In the limit de → 0, µ → 0 as well and there is only one indefinite term in (4.12)
which can be removed upon selecting F ′ = 0. In this case the flow is purely toroidal,
but there is poloidal current created by the electrons. From (4.22)–(4.24) we obtain
the following sufficient stability conditions

M′′ < 0 , (4.27)
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r−2GG′′ + ρN ′′ + r−2(G′)2 < 0 , (4.28)[
M′′(c2

s − v2
φ) + (M′)2

] [
r−2GG′′ + ρN ′′ + r−2(G′)2

]
+ρM′′(N ′)2 > 0 . (4.29)

The conditions above necessarily entail c2
s − v2

φ > 0. This special case is interesting
because the stability condition is expressed explicitly in terms of equilibrium quantities
and, furthermore, it allows us to study the stability of nontrivial equilibria. For
this reason we proceed by constructing a Hall MHD equilibrium with purely toroidal
rotation and applying the criterion (4.27)–(4.29). From δHc = 0 (see (4.11)), setting
de = 0 and imposing v⊥ = δv⊥ = 0 we can easily extract the equilibrium equations
of interest. These are

∆∗ψ + GG′(ψ) + ρ
ϕ− ψ
d2
i

+ r2ρN ′(ψ) = 0 , (4.30)

h(ρ) =M(ϕ) +N (ψ)−
v2
φ

2
, (4.31)

Bφ = r−1G(ψ) , vφ = dirM′(ϕ) , (4.32)

ϕ− d2
i r

2M′(ϕ) = ψ , (4.33)

where we have used the definition of ϕ to write vφ = ϕ−ψ
dir

. Additionally, we consider
the following nonlinear ansatz for the free functions G,M and N

G = g0 + g1ψ +
1

2
g2ψ

2 +
1

3
g3ψ

3 ,

M = m0 +m1ϕ+
1

2
m2ϕ

2 +
1

3
m3ϕ

3 ,

N = n0 + n1ψ +
1

2
n2ψ

2 +
1

3
n3ψ

3 , (4.34)

in which case Eq. (4.33) assumes the following solutions

ϕ± =
1− d2

im2r
2 ±

√
(1− d2

im2r2)2 − 4d2
im3r2(ψ + d2

im1r2)

2d2
im3r2

, (4.35)

and we choose m1 = 0. This implies that there exists a solution for which the stream
function ϕ vanishes wherever ψ = 0, therefore ψ and ϕ can satisfy the same boundary
condition. We consider an adiabatic equation of state i.e. h(ρ) = Γ/(Γ − 1)p1ρ

Γ−1,
where Γ = 5/3 is the adiabatic index and p1 is a constant. Then Eq. (4.30) was solved
numerically using a modification of the solver that was created for the computation
of the numerical equilibrium in the previous chapter. The computational domain is
the same up-down poloidally asymmetric domain with prescribed diverted boundary
having a lower x-point. It is not difficult to adjust the free parameters in (4.34) to make
conditions (4.27)–(4.28) be satisfied everywhere in the plasma. However, when it comes
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Figure 4.1: Stability diagrams for two ITER-like equilibria with max-
imum β ∼ 2% (left) and ∼ 20% (right). In the coloured regions all
three conditions (4.27)–(4.29) are satisfied. The Hall parameter is
di = 0.04 in both cases. Solid red lines represent the magnetic sur-
faces (ψ = const.), while the dashed blue ones are surfaces of constant

angular velocity (ϕ = const.) (see Eq. (4.32)).

Figure 4.2: Stability diagrams for equilibria with maximum β ∼ 0.8%
with di = 0.04 (left) and di = 0.24 (right). While for di = 0.04 there
is a hole within which (4.29) is not satisfied, increasing di results in a

completely stable configuration, under EC variations.
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to (4.29) we observe that for beta values relevant to Tokamak plasmas, i.e. β > 1%,
the condition is satisfied only within a narrow annular region, wider on the high field
side and narrower on the low field side. For β > 10% this region is even narrower
forming a thin layer spreading across the high field side (Fig. 4.1). We were able to
find equilibria that satisfy all three conditions (4.27)–(4.29) all over the computational
domain, only for β < 1%. This indicates that condition (4.29) is potentially related
with the stabilization of pressure driven modes. To capture the influence of the Hall
parameter di on stability, we considered an equilibrium with di = 0.04 where all
three stability conditions are satisfied everywhere outside a small region near the
core. Then we increased gradually di observing that this region was continuously
shrinking until it disappeared for di = 0.24. Thereby, we conclude that increasing
di the stability properties may be improved (see Fig. 4.2). We also corroborated
that if we include the linear term inM, related to rigid rotation and therefore being
intrinsically destabilizing, shrinks the “stable” region towards the high field side. In
closing we underline that an equilibrium that fails to satisfy the stability conditions
is not necessarily unstable since the criteria we derived are only sufficient.

4.2.4 Conditional stability (constrained variations)

As mentioned earlier, the indefiniteness in δ2HC comes from the terms in (4.12) con-
taining δF and δG and multiplied by ∇ × δv⊥, δBφ and δρ. Hence, a simple way
to get rid of the indefiniteness is to assume δρ = δBφ = ∇ × δv⊥ = 0. However,
such a severe restriction of the permitted perturbations should be justified on physical
grounds. Another possibility is to eliminate or conflate these terms by other means.
A way to do so is to partially minimize the functional (4.12) with respect to δv⊥

and δBφ. This is a standard procedure to obtain simplified forms of the Lyapunov
functional and improved stability criteria e.g. see [113, 114, 13, 49]. The minimization
can be realized upon considering δ2HC as a functional of the variations δu and set its
variation with respect to δBφ and δv⊥ equal to zero. The resulting Euler-Lagrange
equations

δBφ = r−1(δF + δG) , (4.36)

δv⊥ = −v⊥δρ+ (γ∇δF + µ∇δG)×∇φ , (4.37)

are indeed minimizers of the functional, since the second variation with respect to δBφ
and δv⊥ is positive definite. Upon substituting Eqs. (4.36)–(4.37) into (4.12) we find

δ2H̃C =

∫
d2x

{
|∇δψ|2

r2
+
d2
er

2

ρ

[
∇ ·
(
r−2∇δψ

)]2
+ ρ

(
δvφ + ρ−1vφδρ

)2
+

[
h′(ρ)− |v|

2

ρ
− d2

e

ρ3
|J|2

]
(δρ)2 − 2M′(ϕ)δρδϕ− 2N ′(ξ)δρδξ



82 Chapter 4. Stability Analysis of extended MHD equilibria

−
[
(r−1B∗φ + γΩ)F ′′(ϕ) + ρM′′(ϕ)

]
(δϕ)2

−
[
(r−1B∗φ + µΩ)G′′(ξ) + ρN ′′(ξ)

]
(δξ)2

−r−2(δF + δG)2 − d2
e

r2ρ
|∇δF +∇δG|2 − |γ∇δF + µ∇δG|2

r2ρ

+
2

ρ
v⊥ · [(γ∇δF + µ∇δG)×∇φ] δρ+

2d2
e

r2ρ2
∇(rBφ) · ∇(δF + δG)δρ

}
. (4.38)

Using the following equations

v⊥ = ρ−1∇ (γF + µG)×∇φ , (4.39)

Bφ =
F + G
r

, (4.40)

which can be deduced from (4.11), we find

δ2H̃C =

∫
d2x

{
|∇δψ|2

r2
+
d2
er

2

ρ

[
∇ ·
(
r−2∇δψ

)]2
+ ρ

(
δvφ + ρ−1vφδρ

)2
−
[
r−2(F ′)2 +

γ2 + d2
e

ρr2
|∇F ′|2

]
(δϕ)2 −

[
r−2(G′)2 +

µ2 + d2
e

ρr2
|∇G′|2

]
(δξ)2

−2
F ′G′

r2
δϕδξ + 2

γ2 + d2
e

ρ2r2
F ′F ′′|∇ϕ|2δρδϕ+ 2

µ2 + d2
e

ρ2r2
G′G′′|∇ξ|2δρδξ

+2
γ2 + d2

e

ρ2r2
(F ′)2δρ∇ϕ · ∇δϕ+ 2

µ2 + d2
e

ρ2r2
(G′)2δρ∇ξ · ∇δξ

−γ
2 + d2

e

ρr2

[
(F ′)2|∇δϕ|2 + δϕ∇(F ′)2 · ∇δϕ

]
−µ

2 + d2
e

ρr2

[
(G′)2|∇δξ|2 + δξ∇(G′)2 · ∇δξ

]}
+Q . (4.41)

with Q given by

Q =

∫
d2x (δϕ δξ δρ)A (δϕ δξ δρ)T , (4.42)

where

A =

Aϕϕ 0 Aϕρ

0 Aξξ Aξρ

Aϕρ Aξρ Aρρ

 . (4.43)

As regards the non-diagonal term, −2r−2F ′G′δϕδξ, we choose to incorporate it into
the purely positive and the diagonal parts of the functional, upon completing squares
to reduce complexity in the subsequent analysis. By doing so we can write

δ2H̃C =

∫
D
d2x

{
|∇δψ|2

r2
+
d2
er

2

ρ

[
∇ ·
(
r−2∇δψ

)]2
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+ρ
(
δvφ + ρ−1vφδρ

)2
+ r−2(δF − δG)2

}
+ Q̃ (4.44)

and therefore Q̃ > 0 suffices for stability. We have

Q̃ = Q−
∫
D
d2x

{
γ2 + d2

e

r2ρ

[
(F ′)2|∇δϕ|2

+2F ′
(
δϕ∇F ′ ·∇δϕ− ρ−1δρ∇F ·∇δϕ

) ]
+
µ2 + d2

e

r2ρ

[
(G′)2|∇δξ|2 + 2G′

(
δξ∇G′ ·∇δξ − ρ−1δρ∇G ·∇δξ

) ]
+

[
2r−2(F ′)2 +

γ2 + d2
e

ρr2
|∇F ′|2

]
(δϕ)2 − 2

γ2 + d2
e

ρ2r2
F ′F ′′|∇ϕ|2δρδϕ

+

[
2r−2(G′)2 +

µ2 + d2
e

ρr2
|∇G′|2

]
(δξ)2 − 2

µ2 + d2
e

ρ2r2
G′G′′|∇ξ|2δρδξ

}
.(4.45)

Following [10], let us define the vectors kϕ := ∇δϕ/δϕ, kξ := ∇δξ/δξ. In view of this
definition we can write (4.45) in the form (4.42) but in terms of a stability matrix Ã
whose elements are given by

Ãϕϕ = −
(
r−1B∗φ + γΩ

)
F ′′ − ρM′′ − 2r−2(F ′)2

−γ
2 + d2

e

ρr2

[
|∇F ′|2 + (F ′)2|kϕ|2 + kϕ · ∇(F ′)2

]
, (4.46)

Ãξξ = −
(
r−1B∗φ + µΩ

)
G′′ − ρN ′′ − 2r−2(G′)2

−µ
2 + d2

e

ρr2

[
|∇G′|2 + (G′)2|kξ|2 + kξ · ∇(G′)2

]
, (4.47)

Ãϕρ = −M′ + γ2 + d2
e

r2ρ2
F ′
(
F ′′|∇ϕ|2 + kϕ · ∇F

)
, (4.48)

Ãξρ = −N ′ + µ2 + d2
e

r2ρ2
G′
(
G′′|∇ξ|2 + kξ · ∇G

)
, (4.49)

Ãρρ = ρ−1

[
c2
s − v2

φ − |v⊥|2

−d
2
e

ρ2

(
r2
[
∇ ·
(
r−2∇ψ

)]2
+ r−2

∣∣∇(rBφ)
∣∣2)] . (4.50)

Invoking the Cauchy-Schwartz inequality kϕ · ∇(F ′)2 ≤ |kϕ||∇(F ′)2| (and similarly
for kξ) it is clear that the following conditions

−
(
r−1B∗φ + γΩ

)
F ′′ − ρM′′ − 2r−2(F ′)2

−γ
2 + d2

e

ρr2

[
|∇F ′|2 + (F ′)2|kϕ|2 + |kϕ||∇(F ′)2|

]
≡ aϕ|kϕ|2 + bϕ|kϕ|+ cϕ > 0 , (4.51)

−
(
r−1B∗φ + µΩ

)
G′′ − ρN ′′ − 2r−2(G′)2
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−µ
2 + d2

e

ρr2

[
|∇G′|2 + (G′)2|kξ|2 + |kξ||∇(G′)2|

]
≡ aξ|kξ|2 + bξ|kξ|+ cξ > 0 , (4.52)

are sufficient for Ãϕϕ > 0 and Ãξξ > 0 which are necessary for Q̃ > 0. The two
polynomials in |kϕ| and |kξ| must have at least one real positive root each. Given
that aϕ < 0, bϕ < 0 and aξ < 0, bξ < 0, we understand that one root will be always
negative; thus, in order for the second one to be positive, the products of the roots
given by cϕ/aϕ, cξ/aξ, must be negative. Therefore we conclude that the conditions
under which there exist exactly one real positive root for each polynomial are

cϕ := −
(
r−1B∗φ + γΩ

)
F ′′ − ρM′′

−2r−2(F ′)2 − γ2 + d2
e

ρr2
|∇F ′|2 > 0 , (4.53)

cξ := −
(
r−1B∗φ + µΩ

)
G′′ − ρN ′′

−2r−2(G′)2 − µ2 + d2
e

ρr2
|∇G′|2 > 0 . (4.54)

Now in view of (4.53)–(4.54) the two polynomials are also positive for 0 ≤ |kϕ| < k+
ϕ ,

0 ≤ |kξ| < k+
ξ , where k

+
ϕ and k+

ξ are the real roots of the polynomials in (4.51) and
(4.52), respectively. This is true since the polynomials do not change sign within this
domain and furthermore they are positive for |kϕ| = 0, |kξ| = 0. We thereby conclude
that conditions (4.53) and (4.54) are sufficient for Ãϕϕ > 0 and Ãξξ > 0, if |kϕ| < k+

ϕ

and |kξ| < k+
ξ . On the other hand there is a topological lower bound on the admissible

values of kϕ, kξ due to the Poincaré inequality,∫
D
d2x |kϕ|2(δϕ)2 =

∫
D
d2x |∇δϕ|2 ≥ C−1

∫
D
d2x (δϕ)2 , (4.55)

where C is the Poincaré constant depending on the geometry of the domain D. Note
that for smooth and bounded domains, the smallest eigenvalue of the Laplacian is
an optimal value for C−1 since it minimizes the Rayleigh quotient. Lastly, inequality
ÃϕϕÃξξÃρρ − ÃϕϕÃ2

ξρ − ÃξξÃ2
ϕρ > 0 introduces additional restrictions e.g. condition

|v|2 + d2
e|J|2/ρ2 < c2

s emerges as a necessary but not sufficient condition. Although
we may possibly use similar manipulations with those employed above to arrive at
sufficient conditions. Such a treatment will introduce additional constraints on the
admissible equilibria and the values of |kx|, restricting the range of applicability of
the resulting stability criterion, which will diverge even more from necessity. For this
reason this analysis will not be pursued. Considering incompressible perturbations
(δρ = 0), which are considered to be the most dangerous, the stability matrix is a
2× 2 diagonal matrix with diagonal elements given by Ãϕϕ and Ãξξ, thus leading to
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the following sufficient conditional stability criterion

cϕ > 0 , cξ > 0 ,

for |kϕ| < k+
ϕ , |kξ| < k+

ξ , 〈
(
|kx|2 − C−1

)
(δx)2〉 ≥ 0 , (4.56)

where

k+
x =

1

2ax
(−bx −

√
b2x − 4axcx) , x = ϕ, ξ . (4.57)

Note that the last inequality in (4.56) is satisfied for sure if min(|kx|2) ≥ C−1 and
hence, cx > 0 , x = ϕ, ξ, are sufficient stability conditions if C−1 ≤ |kx|2 < k+

x .
As a final point we stress that this stability criterion is general enough to capture a
large variety of modes as long as k+’s are large enough. Hence, it is practically useful
to assess the stability of equilibria, when the equilibrium states under consideration
render k+’s as large as possible.

4.3 Dynamically accessible variations

Dynamical accessibility is concerned with variations that lie on symplectic leaves.
Therefore, DAVs conserve the Casimirs, that is, δCda = 0, regardless the equilibrium
conditions. Also, as seen in Chapter 1 the first order DAVs nullify the Hamiltonian
on generic equilibrium points, including the energy-Casimir ones; thus

δH[ue; δuda] = 0 , (4.58)

is a variational principle for generic equilibria. The sufficient stability criterion is
provided by the positive definiteness of perturbation energy

δ2Hda[ue] =

∫
d3x

(
δ2H
δuiδuj

∣∣∣∣
ue

δuidaδu
j
da +

δH
δui

∣∣∣∣
ue

δ2uida

)
(4.59)

where δuda and δ2uda are, respectively, first and second order projections of arbitrary
variations onto the symplectic leaves. The most efficient and rigorous methodology of
producing these perturbations is upon using the Poisson bracket (see [12, 111, 8, 13]).
Note that in the works of Arnold [11] and Isichenko [115] who used similar variations
to study hydrodynamic and MHD stability, respectively, (called by them “isovortical”
variations) they do not make use of the Poisson bracket approach. As described in
the first chapter, this construction requires the introduction of a generating functional
given by W =

∫
d3xuig

i, where g is a state vector embodying the arbitrariness of the
perturbations of the various dynamical variables. In view of these objects the DAVs
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to first order are given by δuda = {u,W}. In our case one has

W =

∫
V
d3x (g0ρ+ g1 · v + g2 ·B∗) , (4.60)

generating the following variations

δρda = {ρ,W} = −∇ · g1 , (4.61)

δvda = {v,W} = −∇g0 + ρ−1g1 × ω + ρ−1(∇× g2)×B∗ , (4.62)

δB∗da = {B∗,W} = ∇×
[
ρ−1(g1 − di∇× g2)×B∗

+d2
eρ
−1(∇× g2)× ω

]
. (4.63)

To show that the dynamically accessible variation of the Hamiltonian vanishes at
general equilibria, we consider

δHda =

∫
V
d3x

[
ρv · δvda +

(
h+
|v|2

2
+ d2

e

|J|2

2ρ

)
δρda + B · δB∗da

]
. (4.64)

Substituting the expressions (4.61)–(4.63), performing integrations by part and omit-
ting the surface integrals, we find

δHda = −
∫
V
d3x

{
− g0∇ · (ρv)

+g1 ·
[
v × ω −∇

(
h+
|v|2

2
+ d2

e

|J|2

2ρ

)
+

J×B∗

ρ

]
+g2 · ∇ ×

[
v ×B∗ − di

J×B∗

ρ
+ d2

e

J× ω
ρ

]}
. (4.65)

It is apparent that the coefficients of g0,g1,g2 vanish in view of generic XMHD equi-
librium conditions and consequently δHda[ue] = 0.

To proceed with stability analysis we need to calculate the second order variation
of the Hamiltonian, which in view of Eq. (4.59) is

δ2Hda =

∫
V
d3x

{
ρ|δvda|2 +

(
h+
|v|2

2
+ d2

e

|J|2

2ρ2

)
δ2ρda

+

[
h′(ρ)− d2

e

|J|2

ρ3

]
(δρda)

2 + 2v · δvdaδρda + ρv · δ2vda

+δBda · δB∗da + B · δ2B∗da +
d2
e

ρ2
J · δJdaδρda

}
, (4.66)

where δJda = ∇×Bda. From the definition of B∗ one has

δB∗da = δBda − d2
e∇×

(
J

ρ2
δρda

)
+ d2

e∇×
(
δJda
ρ

)
. (4.67)
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Upon inserting Eq. (4.67) into (4.66), the second term of (4.67) cancels out the last
term in (4.66), leading to

δ2Hda =

∫
V
d3x

{
ρ
∣∣δvda + ρ−1vδρda

∣∣2 + |δBda|2

+d2
e

|δJda|2

ρ
+ ρ−1

(
c2
s − |v|2 − d2

e

|J|2

ρ2

)
(δρda)

2 + ρv · δ2vda

+B · δ2B∗da +

(
h+
|v|2

2
+ d2

e

|J|2

2ρ2

)
δ2ρda

}
. (4.68)

Now, the second order variations of the field variables are given by

δ2ρda = 0, (4.69)

δ2vda = ρ−1g1 ×∇× δvda + ρ−1(∇× g2)× δB∗da
−ρ−2[g1 × ω + (∇× g2)×B∗]δρda

= ρ−1(ζ × ω + η ×B∗)∇ · (ρζ) + ζ ×∇× (ζ × ω + η ×B∗)

+η ×∇×
[
(ζ − diη)×B∗ + d2

eη × ω
]
, (4.70)

δ2B∗da = ∇×
{
ρ−1(g1 − di∇× g2)× δB∗da + d2

eρ
−1(∇× g2)×∇× δvda

−ρ−2[(g1 − di∇× g2)×B∗ + d2
e(∇× g2)× ω]δρda

}
= ∇×

{
(ζ − diη)×∇×

[
(ζ − diη)×B∗ + d2

eη × ω
]

+d2
eη ×∇× (ζ × ω + η ×B∗)

+ρ−1[(ζ − diη)×B∗ + d2
eη × ω]∇ · (ρζ)

}
, (4.71)

where ζ := ρ−1g1 and η := ρ−1∇ × g2, introduced to facilitate comparisons with
previous MHD and HMHD results [13, 15, 49]. Evidently equation ∇ · (ρη) = 0

holds by definition of η. After inserting expressions (4.69)–(4.71) into Eq. (4.66), and
performing some straightforward manipulations we end up with

δ2Hda =

∫
V
d3x

{
ρ
∣∣−∇g0 + ζ × ω + η ×B∗ − v

ρ
∇ · (ρζ)

∣∣2
+|δBda|2 + d2

eρ
−1|∇ × δBda|2 + ρ−1

(
c2
s − |v|2 − d2

e

|J|2

ρ2

)
[∇ · (ρζ)]2

−ζ · ∇
(
h+
|v|2

2
+ d2

e

|J|2

2ρ2

)
∇ · (ρζ)− η · (v ×B∗)∇ · (ρζ)

−ρ−1η · (−diJ×B∗ + d2
eJ× ω)∇ · (ρζ)− ρ(ζ × v) · ∇ × (ζ × ω)

−ρ(ζ × v) · ∇ × (η ×B∗)− ρ(η × v) · ∇ × [(ζ − diη)×B∗]

− [(ζ − diη)× J] · ∇ × [(ζ − diη)×B∗]− d2
eρ(η × v) · ∇ × (η × ω)

−d2
e[(ζ − diη)× J] · ∇ × (η × ω)− d2

e(η × J) · ∇ × (ζ × ω)

−d2
e(η × J) · ∇ × (η ×B∗)

}
. (4.72)
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The first term in the third line of (4.72), emerges from the substitution of −ζ ·(J×B∗)
using the equilibrium momentum equation

−J×B∗ = v × ω −∇
(
h− |v|

2

2
− d2

e

|J|2

2ρ2

)
. (4.73)

We can obtain the Hall and the Inertial MHD limits of (4.72) by setting de = 0

and di = 0, respectively. The Dirichlet stability theorem, the condition δ2Hda > 0

∀ ζ, η, g0, with δ2Hda given by (4.72), ensures the stability of generic XMHD equilibria
under dynamically accessible perturbations. As long as the variation of the magnetic
field is treated as arbitrary, i.e., independent of ζ and η, even though it is not, the
criterion is based on the positiveness of the terms that do not contain δBda. Thus,
we understand that an improvement of this stability criterion can be obtained upon
relating δBda with ζ and η by solving the differential equation that connects δBda

with δB∗da(ζ,η) and δρda(ζ) and follows from definition (1.30). The solution can be
effected by introducing a tensorial Green’s function as follows

δBda =

∫
V ′
d3x′G(x′,x) · ∇ ×

×
[
(ζ − diη)×B∗ + d2

eη × ω − d2
e

J

ρ2
∇ · (ρζ)

]
, (4.74)

with G(x′,x) being the solution of[
1 + d2

e∇×
(
∇×
ρ

)]
Gi(x

′,x) = eiδ(x
′ − x) , i = 1, 2, 3 . (4.75)

For ρ = const. things are simpler since the operator in the lhs of (4.75) becomes the
Helmholtz operator (because ∇· δBda = 0) and if Cartesian coordinates are employed
then the equation splits into a set of three independent differential equations, one for
each spatial component, so the Green’s tensor can be replaced by a scalar Green’s
function which can be written as an infinite sum of Helmholtz basis functions. The
problem remains though highly dependent on the particular boundary conditions.

As a simple application of the stability condition described above, let us consider
a stationary axisymmetric equilibrium with purely toroidal flow, v = rvφ∇φ, and
variations with perturbation vectors that never leave the surfaces ψ∗ = const., i.e.
ζ · ∇ψ∗ = 0 and η · ∇ψ∗ = 0, In this case the Lyapunov functional is reduced to (see
Appendix C.1),

δ2Hda =

∫
V
d3x

{
ρ
∣∣δvda +

rvφ
ρ
δρda∇φ

∣∣2 + |δBda|2

+d2
eρ
−1|∇ × δBda|2 + ρ−1

(
c2
s − v2

φ − d2
e

|J|2

ρ2

)
[∇ · (ρζ)]2

}
, (4.76)
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and as a result, c2
s− v2

φ−d2
e
|J|2
ρ2

> 0 is sufficient for stability and also for the ellipticity
of the equilibrium Grad-Shafranov-Bernoulli equations. Actually for the ellipticity of
the equilibrium system, condition c2

s − d2
e
|Jp|2
ρ2

> 0 is sufficient, as was shown in the
previous chapter (see Eqs. (3.98) and (3.99)).

Having δ2Hda in form (4.72), it is difficult to compare with the corresponding
HMHD and MHD expressions derived in [15] and [13] respectively. For this reason we
reformulate the functional in (4.72) through some tedious but straightforward manip-
ulations to obtain

δ2Hda =

∫
V
d3x

{
ρ
∣∣−∇g0 + ζ × ω + η ×B∗ + ζ · ∇v − v · ∇ζ

∣∣2
+
∣∣δBda

∣∣2 − ρζ · ∇[h′(ρ)∇ · (ρζ)]− (ζ · ∇h)∇ · (ρζ)− ζ · (v · ∇v)∇ · (ρζ)

−(ζ × J) · ∇ × (ζ ×B∗)− ρζ · [(ζ · ∇v − v · ∇ζ) · ∇v]

−ρζ · (v · ∇)(ζ · ∇v − v · ∇ζ) + 2di(ζ × J) · ∇ × (η ×B∗)

−diρ(η ×B∗) · [η · ∇(v − diJ/ρ)− (v − diJ/ρ) · ∇η]

+d2
eρ
−1
∣∣∇× δBda

∣∣2 − d2
eζ · ∇

(
|J|2

2ρ2

)
∇ · (ρζ) + d2

eρζ · ∇
[
|J|2

ρ3
∇ · (ρζ)

]
−d2

e(η × J) · ∇ × (η ×B∗)− d2
e [(2ζ − diη)× J] · ∇ × (η × ω)

−d2
eρ(η × v) · ∇ × (η × ω)

}
. (4.77)

For obtaining (4.77) from (4.72) the vector identity ∇× (a× b) = a∇ · b− b∇ · a +

b · ∇a− a · ∇b has been used. In addition the following relation was exploited∫
d3x ρ(ζ × b) · (a · ∇η − η · ∇a) =

∫
d3x ρ(η × b) · (a · ∇ζ − ζ · ∇a)

+

∫
d3x {(η × ζ) · [ρ∇× (a× b)− ρa∇ · b− b∇ · (ρa)]} . (4.78)

A proof for this relation is provided in Appendix C.2.
It becomes clear that the case de = 0 corresponds to the barotropic counterpart

of the HMHD δ2Hda given in [15], while if we further impose di = 0 we find δ2Hda =∫
V d

3x ρ
∣∣δvda+ζ ·∇v−v ·∇ζ|2 +δW , where δW is the Frieman-Rotenberg expression

for potential energy [23], consistent with the results found in [13, 49]. The correct
MHD limit of (4.77) reveals an important advantage of the dynamically accessible
method compared to the energy-Casimir one. As it has been highlighted in Chapter
2 and also in [71, 73, 89], the MHD limit of the Casimirs and variational functionals
(e.g. the Lagrangian) of XMHD and HMHD, presents certain peculiarities because the
Hall term gives rise to singular perturbations, making the derivation of their MHD
counterparts rather not straightforward. As regards the Casimirs, a detailed analysis
leading to their correct MHD limit is presented in Chapter 2. One can also consult
the references [71] and [89]. Hence, it is natural that this complication is inherited
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by the variational principles involving the Casimirs, e.g. the energy-Casimir method.
However, in deriving δ2Hda we did not make use of the Casimirs, and therefore their
problematic MHD limit does not affect the corresponding limit of the dynamically
accessible stability criterion.

4.4 Perturbations in mixed Eulerian-Lagrangian
framework

As mentioned in Sec. 1.4, within tthe Lagrangian framework the fluids are not de-
scribed in terms of vector fields measured at fixed position x ∈ R3 as in the Eulerian
framework adopted above, but in terms of Lagrangian (or material) variables suitable
for tracking the motion of the individual fluid elements. The material variables are
the positions of fluid elements at given instant: qs(as, t) (s = i, e standing for the ion
and electron species) where as ∈ R3 are the fluid element labels, usually taken as the
element’s position at t = 0. For a two-fluid theory, which is the starting point of the
XMHD model, the Lagrange-Euler map (1.67), written for each one of the constituent
fluids is

vs(x, t) = q̇s(as, t)

∣∣∣∣
as=q−1

s (x,t)

, (4.79)

ns(x, t) =
ns0(as)

Js(as, t)

∣∣∣∣
as=q−1

s (x,t)

, (4.80)

ss(x, t) = ss0(as)
∣∣
as=q−1

s (x,t)
, (4.81)

where ss are the specific entropies of the fluids and Js (s = i, e), are the Jacobians
of qs with respect to as, i.e. Js := det(∂qis/∂a

j
s). For barotropic fluids, ss are just

constants. The difference between the single-fluid MHD and the two-fluid case is
that in the former model the magnetic field can be expressed in terms of Lagrangian
variables, due to the frozen-in property of the magnetic field lines. In the case of
HMHD and XMHD one can find similar frozen-in properties [20] as well. However,
in XMHD this property concerns generalized magnetic-vorticity fields and as a result
only the field B∗ can be explicitly expressed in terms of the Lagrangian variables. This
means that similar expressions for B can be found only implicitly through a relation
similar to (4.74). This makes a fully Lagrangian description of the XMHD model more
involved and less universal than the corresponding description for the MHD, since it
requires the solution of a differential equation for B, which depends on the specific
boundary conditions. Another peculiarity is that in a fully Lagrangian description the
usual Legendre transform cannot be performed and therefore one need to start with
a phase-space Lagrangian [20]. One way to get rid of those peculiarities is to sacrifice
some information about the relationship of the magnetic field with the fluid motion,
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describing the former as an independent Eulerian variable. Despite this compromise,
the resulting mixed Eulerian-Lagrangian description [116], is still sufficient in order to
perform stability analyses and make comparisons with other stability methods.

To perform a stability analysis in terms of Lagrangian displacements, within a
fully Lagrangian framework, as in the work of Newcomb [117] for MHD or a mixed
Eulerian-Lagrangian framework as was done by Vuilemin [118] for the complete two-
fluid model (without quasineutrality), we need to start with the Lagrangian of the
model and compute its second order variation induced by small perturbations. The
two-fluid Lagrangian with Maxwell’s term being neglected in view of the assumption
vA � c (vA and c are the Alfvén speed and the speed of light, respectively) [116] is

L =
∑
s

∫
d3as

{
1

2
msns0(as)

∣∣q̇s(as, t)∣∣2 −msns0(as)Us

(
ss,

msns0(as)

Js(as, t)

)
+

∫
d3x δ(x− qs(as, t))esns0(as) [q̇s(as, t) ·A(x, t)− Φ(x, t)]

}
− 1

2µ0

∫
d3x
∣∣∇×A(x, t)

∣∣2 , (4.82)

where A and Φ are the vector and electrostatic potentials, respectively. Let us im-
pose Lagrangian particle density homogeneity, i.e. the assumption that any fluid
element, belonging to either the ion or the electron fluid, contains the same number
of particles, that is ni0(ai) = ne0(ae) = n0 = constant. In view of (4.80), the assump-
tion of Lagrangian homogeneity along with the imposition of Eulerian quasineutrality
ni(x, t) = ne(x, t) leads to

Ji
∣∣
ai=q−1

i (x,t)
= Je

∣∣
ae=q−1

e (x,t)
. (4.83)

Now, since the trajectories qi, qe of the ion and electron fluid elements are in general
different, then at time t > 0 they will be located at different positions x, x′ unless
the fluid elements ai and ae are chosen appropriately to make x′ = x. Therefore,
in general, if we try to write down a single fluid version of (4.82) and then take
the Lagrange-Euler map, we will end up with a nonlocal Lagrangian in the Eulerian
description. Locality on the Eulerian level has to be imposed. This is equivalent
to matching up the ion and electron fluid elements on the basis of the map ae =

q−1
e (qi(ai, t), t), as it is schematically shown in Fig. 4.3 (see also the corresponding

explanation in [20]). The final step for obtaining an XMHD action is to substitute the
ion and electron Lagrangian variables with XMHD-like variables, which would play
the role of Lagrangian analogues for v and J/(en). In this regard we define two new
Lagrangian quantities Q and D through the following relations:

Q(ai,ae, t) :=
mi

m
qi(ai, t) +

me

m
qe(ae, t) , (4.84)

framework
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Figure 4.3: The flow trajectories of a random pair of electron and ion
fluid elements labeled by a′e and ai, respectively, end up at different
locations at time t > 0. However, if the electron label is chosen so as

ae = q−1e (qi(ai, t)) then the trajectories intersect at time t > 0.

D(ai,ae, t) := qi(ai, t)− qe(ae, t) . (4.85)

The inverse transformation reads as follows:

qs(as, t) := Q(as,as′ , t)
∣∣
as′=q−1

s′ (qs(as,t),t)

+αsD(as,as′ , t)
∣∣
as′=q−1

s′ (qs(as,t),t)
, s′ 6= s , (4.86)

where αi = me/m and αe = −mi/m. Now we are in position to write down the
XMHD Lagrangian in (Q,D) variables and imposing locality

L =

∫ ∫
d3aid

3aeδ(ae − q−1
e (qi(ai, t), t))×

×n0

∑
s=i,e

[
ms

2

∣∣Q̇(as,as′ , t)
∣∣2 +

ms

2
α2
s

∣∣Ḋ(as,as′ , t)
∣∣2

+esQ̇(as,as′ , t) ·A(qs(as, t), t)− esΦ(qs(as, , t), t)

+esαsḊ(as,as′ , t) ·A(qs(as, t), t)−msUs

(
ss,

msn0

Js(as, t)

)]
− 1

2µ0

∫
d3x
∣∣∇×A(x, t)

∣∣2 , s′ 6= s. (4.87)

In general we are interested in examining the stability of stationary equilibria in the Eu-
lerian picture. It is well known [8, 49, 117] that not all Eulerian equilibria correspond
to Lagrangian ones e.g. for an Eulerian equilibrium state with flow an infinite number
of fluid elements have to be in motion for the realization of this flow. However, in the
Lagrangian framework, moving fluid elements correspond to time dependent material
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variables. Therefore, we conclude that stationary Eulerian states correspond to time
dependent Lagrangian trajectories qs0 = qs0(as, t). So, we expand the material vari-
ables around time dependent reference trajectories considering a small perturbation,
Hence the fields should be decomposed as follows

Q(ai,ae, t) = Q0(ai,ae, t) + ζ(ai,ae, t) , (4.88)

D(ai,ae, t) = D0(ai,ae, t) + η(ai,ae, t) , (4.89)

A(x, t) = A0(x) + A1(x, t) , (4.90)

Φ(x, t) = Φ0(x) + Φ1(x, t) , (4.91)

where the quantities with subscript 0 define an equilibrium state, those with sub-
script 1 represent the perturbed electromagnetic field and ζ, η are Lagrangian dis-
placements accounting for the perturbation of the fluid element trajectories. The q’s
in the delta function in (4.87) need not be expanded because the ion and electron
fluid elements can be paired at equilibrium; δ(ae−q−1

e (qi(a, t), t)) can be replaced by
δ(ae−q−1

e0 (qi0(a, t), t)). Since we have a continuum, every perturbed position qs(as, t)

always correspond to the unperturbed position of another pair and all pairs are taken
into account because the integrals run over the whole fluid domain. Hence, in view of
(4.88)–(4.91) we find, using (4.87), a perturbed Lagrangian, i.e. L = L0 +L1 +L2 + ....
For stability we are interested in L2 because it describes the linearized dynamics, while
L0 is merely a constant and L1 vanishes at equilibrium. To write down the second or-
der perturbation of the Lagrangian we need to expand the electromagnetic potentials
and the internal energies. The magnetic and electric potentials are computed on the
fluid trajectories, thus, up to second order, they are

A(qs0 + ζ + αsη, t) = A0(qs0) + A1(qs0, t) + (ζ + αsη) · ∇qsA0(qs0)

+(ζ + αsη) · ∇qsA1(qs0, t) +
1

2
(ζ + αsη)(ζ + αsη) : ∇qs∇qsA0(qs0) , (4.92)

Φ(qs0 + ζ + αsη, t) = Φ0(qs0) + Φ1(qs0, t) + (ζ + αsη) · ∇qsΦ0(qs0)

+(ζ + αsη) · ∇qsΦ1(qs0, t) +
1

2
(ζ + αsη)(ζ + αsη) : ∇qs∇qsΦ0(qs0) , (4.93)

where ab : cd := aibjc
jdi. The second order perturbative expansion of the internal

energy terms is performed along lines similar to those of the single fluid case (see [8]).
The difficulty in this expansion is that the Jacobians contain a dependence on the
gradients of the fluid trajectories, therefore we need to know how to differentiate the
J ’s, since the expansion of the internal energy is effected through

Js = Js0 +
∂Js
∂qis,j

∂ζis

∂ajs
+

1

2

∂2Js
∂qis,k∂q

j
s,`

∂ζis
∂aks

∂ζjs
∂a`s

, (4.94)

4.4. Perturbations in mixed Eulerian-Lagrangian framework
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where qis,j := ∂qis
∂ajs

. The derivatives of the Jacobian are ∂Js
∂qis,j

= C j
si , where C j

si =

1
2εi`kε

jmn ∂q`s
∂ams

∂qks
∂ans

are the cofactors of ∂qis/∂a
j
s in Js. Following the procedure in [8]

and [117] we find

Js1 = Js0
∂ζis
∂qis

, Js2 =
Js0
2

[(
∂ζis
∂qis

)2

− ∂ζis

∂qjs

∂ζjs
∂qis

]
. (4.95)

With the second order perturbative expansion of the Jacobians at hand we can find
the second order perturbation of the internal energies in terms of the displacement
vectors as follows

Us2 =
n0

2Js0

{
∂Us
∂n

[(
∂ζi

∂qis
+ αs

∂ηi

∂qis

)2

+

(
∂ζi

∂qjs
+ αs

∂ηi

∂qjs

)(
∂ζj

∂qis
+ αs

∂ηj

∂qis

)]
+
n0

Js0
∂2Us
∂n2

(
∂ζi

∂qis
+ αs

∂ηi

∂qis

)2}
. (4.96)

This expression can be deduced upon expanding Us as follows:

Us = Us

(
ss,

msn0

Js0

)
− n0

(Js0)2

∂Us
∂n
Js1 −

n0

(Js0)2

∂Us
∂n
Js2

+
n0

(Js0)3

∂Us
∂n

(Js1)2 +
1

2

n2
0

(Js0)4

∂2Us
∂n2

(Js1)2 , (4.97)

and then substituting (4.95). Henceforth, the subscript 0 will be dropped on the
understanding that from now on A,Φ, Q, D, qs and Js correspond to equilibrium.
Using the results (4.92)–(4.93) and (4.96) we are able to construct L2

L2 =

∫ ∫
d3aid

3aeδ(ae − q−1
e (qi(ai, t), t))n0

∑
s

{
ms

2

∣∣ζ̇∣∣2 + α2
s

ms

2

∣∣η̇∣∣2
+es

(
Q̇ + αsḊ

)
·
[

(ζ + αsη) · ∇qsA1(qs, t)

+
1

2
(ζ + αsη) (ζ + αsη) : ∇qs∇qsA(qs)

]
+es(ζ̇ + αsη̇) ·

[
A1(qs, t) + (ζ + αsη) · ∇qsA(qs)

]
−es (ζ + αsη) · ∇qsΦ1(qs, t)−

es
2

(ζ + αsη) (ζ + αsη) : ∇qs∇qsΦ(qs)

− n2
0

2J 2
s

∂2Us
∂n2

(∇qs · ζ + αs∇qs · η)2 − n0

2Js
∂Us
∂n

[
(∇qs · ζ + αs∇qs · η)2

+∇qs (ζ + αsη) : ∇qs (ζ + αsη)
]}
− 1

2µ0

∫
d3x
∣∣∇×A1(x, t)

∣∣2 , (4.98)

where Us = msUs and ∇qs ≡ ∇qs0 . Result (4.98) is not very different from the result
of Vuilemin [118]; actually, it is the quasineutral counterpart of his second order per-
turbed Lagrangian, written however in terms of the XMHD Lagrangian displacements
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ζ, η instead of the two-fluid ones ξi, ξe. Moreover, (4.98) is applicable for generic
thermodynamic closures with scalar pressure, not only for fluids obeying the adiabatic
ideal-gas law as in [118]. The most important advantage of our formulation can be
seen though, after employing the Lagrange-Euler map: firstly because (4.98) explicitly
dictates how the labels of the fluid elements are related so that the Lagrange-Euler
map will result in a local Lagrangian and secondly because its Eulerian counterpart
will be expressed in terms of the MHD-like variables, namely v and J.

To employ the Lagrange-Euler map we need to “Eulerianize” the displacement vec-
tors. Let us begin with the Lagrange-Euler map and its inverse in order to understand
how Q, D and the displacements ζ, η are mapped in the Eulerian coordinates. From
(4.79) and (4.84)–(4.86) we can effectively construct every map we need. For example

Q̇(ai,ae, t) =
mi

m

(
v +

me

men
J
) ∣∣∣∣

x=qi(ai,t)

+
me

m

(
v − mi

men
J
) ∣∣∣∣

x=qe(ae,t)

,

Ḋ(ai,ae, t) =
(
v +

me

men
J
) ∣∣∣∣

x=qi(ai,t)

−
(
v − mi

men
J
) ∣∣∣∣

x=qe(ae,t)

. (4.99)

If these expressions are computed at ae = q−1
e (qi(ai, t), t) as in the Lagrangian (4.87)

at equilibrium we have

Q̇0(ai, t) = v(x)
∣∣
x=qi0(ai,t)

, and Ḋ0(ai, t) = e−1n−1(x)J(x)
∣∣
x=qi0(ai,t)

.

For the Eulerianization of the displacement vectors we define their Eulerian displace-
ments ζ̃ and η̃ by

ζ(ai,ae, t) =
mi

m

[
ζ̃(x, t) +

me

m
η̃(x, t)

]
x=qi0(ai,t)

+
me

m

[
ζ̃(x, t)− mi

m
η̃(x, t)

]
x=qe0(ae,t)

,

η(ai,ae, t) =
[
ζ̃(x, t) +

me

m
η̃(x, t)

]
x=qi0(ai,t)

−
[
ζ̃(x, t)− mi

m
η̃(x, t)

]
x=qe0(ae,t)

. (4.100)

Taking the time derivatives of (4.100) with ai and ae held constant, we find

ζ̇(ai,ae, t) = ∂tζ̃(x, t) + v · ∇ζ̃(x, t) +
mime

m2
w · ∇η̃(x, t) ,

η̇(ai,ae, t) = ∂tη̃(x, t) + v · ∇η̃(x, t)

+w · ∇ζ̃(x, t) +
m2
e −m2

i

m2
w · ∇η̃(x, t) , (4.101)

where w := J/(en). In this calculation we have made use of v(x) +αsJ(x)/(en(x)) =

q̇s0(as, t)
∣∣
as=q−1

s0 (x,t)
= vs(x). We can also compute the variations of the Eulerian

fields in terms of the Lagrangian displacements, which enables us to compare them

4.4. Perturbations in mixed Eulerian-Lagrangian framework
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with the dynamically accessible variations. Taking the first variation of (4.99) and
identifying

δQ̇ = ζ̇ , δḊ = η̇ , δqs(as, t)
∣∣
as=q−1

s (x,t)
= ζ̃ + αsη̃ , (4.102)

after some manipulations we find

ζ̇ = δv + ζ̃ · ∇v +
mime

m2
η̃ · ∇w ,

η̇ = δw + η̃ · ∇v + ζ̃ · ∇w +
m2
e −m2

i

m2
η̃ · ∇w . (4.103)

Next, combining Eqs. (4.101) with (4.103) the Eulerian variations of the fields v, w

δv = ∂tζ̃ + v · ∇ζ̃ − ζ̃ · ∇v +
mime

m2
(w · ∇η̃ − η̃ · ∇w) , (4.104)

δw = ∂tη̃ + v · ∇η̃ − η̃ · ∇v +w · ∇ζ̃ − ζ̃ · ∇w

+
m2
e −m2

i

m2
(w · ∇η̃ − η̃ · ∇w) . (4.105)

Using the maps (4.99) and (4.101), and also relations (4.80) together with d3x =

Jsd3as, we can compute the Eulerian expression for L2. Note that the role of the
delta function in (4.87) is to ensure that x = x′, i.e. the trajectories qi and qe meet
each other at t > 0. Upon inserting the inverse Lagrange-Euler maps (4.99)–(4.101)
into the Lagrangian (4.98) we find

L2 =

∫
d3x

{
mn

2

∣∣∂tζ∣∣2 +
mime

2m
n
∣∣∂tη∣∣2

+∂tζ ·
[
mn

(
v · ∇ζ +

mime

m2
w · ∇η

)
+ enη · ∇A

]
+∂tη ·

[mime

m
n

(
v · ∇η +w · ∇ζ +

m2
e −m2

i

m2
w · ∇η

)
+en

(
A1 + ζ · ∇A +

m2
e −m2

i

m2
η · ∇A

)]
+ W(ζ,η,A1,Φ1)

}
,(4.106)

where

W(ζ,η,A1,Φ1) = − 1
2µ0

∣∣∇×A1

∣∣2 + mn
2

∣∣v · ∇ζ + mime
m2 w · ∇η

∣∣2
+mimen

2m

∣∣v · ∇η +w · ∇ζ +
m2
e−m2

i
m2 w · ∇η

∣∣2
+en

(
v · ∇ζ + mime

m2 w · ∇η
)
· (η · ∇A)

+en
(
v · ∇η +w · ∇ζ +

m2
e−m2

i
m2 w · ∇η

)
·
(
A1 + ζ · ∇A +

m2
e−m2

i
m2 η · ∇A

)
+en

[
v · (η · ∇A1) +w · (ζ · ∇A1) + v · (ζη : ∇∇A) + 1

2w · (ζζ : ∇∇A)

+
m2
e−m2

i
m2 w · (η · ∇A1) +

m2
e−m2

i
m2 w · (ζη : ∇∇A) +

m2
e−m2

i
2m2 v · (ηη : ∇∇A)
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+
m3
e+m

3
i

2m3 w · (ηη : ∇∇A)− ζη : ∇∇Φ− m2
e−m2

i
2m2 ηη : ∇∇Φ− η · ∇Φ1

]
−p

2

[
∇ζ : ∇ζ − (∇ · ζ)2

]
− 1

2n
∂p
∂n(∇ · ζ)2

− [∇ζ : ∇η − (∇ · ζ)(∇ · η)]
(
me
m pi − mi

m pe
)
− n

(
me
m

∂pi
∂n −

mi
m

∂pe
∂n

)
(∇ · ζ)(∇ · η)

−1
2

[
∇η : ∇η − (∇ · η)2

] [(
me
m

)2
pi +

(
mi
m

)2
pe

]
−1

2n
[(

me
m

)2 ∂pi
∂n +

(
mi
m

)2 ∂pe
∂n

]
(∇ · η)2 . (4.107)

Here we have used ps = n2∂Us/∂n, the Dalton’s law p = pi + pe and in addition
n3∂2Us/∂n2 = n∂ps/∂n − 2ps. The tildes have been dropped since we are working
now in a completely Eulerian framework and there is no need to distinguish from the
Lagrangian displacements. We should stress here that the XMHD model we use in
the previous sections was derived upon expanding the quasineutral two-fluid equations
and keeping terms up to zeroth order in µ := me/mi in the Alfvén normalized equa-
tions of motion. In this section however we have not performed such an expansion and
therefore up to now the results are fully two-fluid with quasineutrality. Hence, they
can be used either to describe an ion-electron plasma or a positron-electron plasma,
just by replacing the ion mass by the positron mass.
The Euler-Lagrange equations that correspond to (4.106) are obtained upon minimiz-
ing the action

S2 =

∫ t2

t1

dtL2 , (4.108)

with boundary conditions ζ · n̂ = η · n̂ = 0, where n̂ is the unit vector normal to the
boundary, and ζ(x, t = t1) = ζ(x, t = t2) = η(x, t = t1) = η(x, t = t2) = 0. These
equations describe the linearized dynamics; more specifically, from the ζ-variation one
would take the linearized momentum equation while from η-variations a generalized
Ohm’s law occurs. However, there are two redundant variables, namely A1 and Φ1,
which do not appear in pairs of generalized coordinates and velocities. In some way
we need to express them in terms of the generalized coordinates so as to eliminate
this redundancy. As regards Φ1 one can express it by selecting a particular gauge.
Alternatively we can minimize the action with respect to these variables only and find
the respective “Euler-Lagrange equations” which can be used either to eliminate Φ1

and A1 or as side conditions. Accordingly, minimizing the action with respect to the
electromagnetic field variables we find

δΦ1 : e∇ · (nη) = 0 , (4.109)

δA1 : en
[
∂tη + v · ∇η − η · ∇v +w · ∇ζ − ζ · ∇w

+
m2
e −m2

i

m2
(w · ∇η − η · ∇w)

]
− J

n
∇ · (nζ)− J1 = 0 , (4.110)

4.4. Perturbations in mixed Eulerian-Lagrangian framework



98 Chapter 4. Stability Analysis of extended MHD equilibria

where for the derivation of (4.110) we need to assume (A1×δA1)
∣∣
∂D
· n̂ = 0. Equation

(4.109) expresses charge neutrality for the perturbed state and is also a manifestation
of gauge invariance of Lagrangian (4.106). In view of this condition the term that
contains Φ1 in W can be eliminated upon integrating by parts. Also, combining
Eq. (4.110) with (4.105) we find the expression for the Eulerian variation of the particle
density to be

n1 = −∇ · (nζ) , (4.111)

which is of the form of the dynamically accessible variation δρda (see Eq. (4.61)).
To arrive at a sufficient stability condition we need to calculate the Hamiltonian of

the linearized dynamics. To this end the standard procedure of Legendre transform-
ing the Lagrangian (4.106) can be applied. The departing point for performing this
transformation is to define the generalized momenta πζ , πη as follows

πζ :=
δL2

δζ̇
= mn

(
∂tζ + v · ∇ζ +

mime

m2
w · ∇η

)
+ enη · ∇A , (4.112)

πη :=
δL2

δη̇
=
mime

m
n

(
∂tη + v · ∇η +w · ∇ζ +

m2
e −m2

i

m2
w · ∇η

)
+en

(
A1 + ζ · ∇A +

m2
e −m2

i

m2
η · ∇A

)
. (4.113)

With Eqs. (4.112)–(4.113) at hand, employing the usual Legendre transform

H2 =

∫
D
d3x (πζ · ∂tζ + πη · ∂tη)− L2 ,

we find

H2 =

∫
D
d3x

[
1

2mn

∣∣∣∣πζ −mn(v · ∇ζ +
mime

m2
w · ∇η

)
− enη · ∇A

∣∣∣∣2
+

m

2mimen

∣∣∣∣πη − mime

m
n

(
v · ∇η +w · ∇ζ +

m2
e −m2

i

m2
w · ∇η

)
−en

(
A1 + ζ · ∇A +

m2
e −m2

i

m2
η · ∇A

) ∣∣∣∣2 −W(ζ,η)

]
. (4.114)

From (4.114) we deduce that

−
∫
d3xW(ζ,η) ≥ 0 (4.115)

with W(ζ,η) given by (4.107) implies stability.
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4.5 Hall MHD

The HMHD case has an interesting peculiarity: to derive the HMHD perturbed La-
grangian we assume massless electrons i.e. me = 0, as a result, ∂tη appears linearly in
L2 and therefore the definition of the canonical momentum πη results in a constraint
instead of an equation that can be used to express ∂tη in terms of πη. But before
addressing this peculiarity we Alfvén normalize the HMHD Lagrangian, term by term,
so as to facilitate the comparisons with already known results in this framework. The
Alfvén normalization is effected by

n̄ = n/n0 , t̄ = t/τA , B̄ = B/B0 ,

J̄ = J
/

(B0/`µ0) , ∇̄ = `∇ , Ā = A/(`B0) ,

Ē = E/(vAB0) , Φ̄ = Φ/(`vAB0) , p̄s = ps
/

(B2
0/µ0) , (4.116)

where `, n0 and B0 are reference length, particle density and magnetic field, respec-
tively; vA = B0/

√
µ0min0 is the Alfvén speed and τA = `/vA is the Alfvén time. In

order to write the Lagrangian in dimensionless form we need also to introduce normal-
ized displacements ζ and η. Equations (4.104) and (4.105) suggest that an appropriate
normalization is

ζ̄ = ζ/` , η̄ = η
/√

mi/µ0n0e2 = η/λi , (4.117)

where λi is the ion skin depth (λi = di`). In view of (4.116) and (4.117) and setting
me = 0 Lagrangian (4.106) can be brought in the following dimensionless form

L2 =

∫
d3x

{
ρ

2

∣∣∂tζ∣∣2 + ρ (∂tζ) · (η · ∇A + v · ∇ζ)

+ρ(∂tη) · (A1 + ζ · ∇A− diη · ∇A) + Whmhd(ζ,η)

}
, (4.118)

where

Whmhd =
ρ

2

∣∣v · ∇ζ∣∣2 + ρ(v · ∇ζ) · (η · ∇A)

+ρ
(
v · ∇η + ρ−1J · ∇ζ − diρ−1J · ∇η

)
· (A1 + ζ · ∇A− diη · ∇A)

+ρv · (η · ∇A1) + ρv · (ζη : ∇∇A)− di
2
ρv · (ηη : ∇∇A)

+J · (ζ · ∇A1)− diJ · (η · ∇A1) +
1

2
J · (ζζ : ∇∇A)

−diJ · (ζη : ∇∇A) +
d2
i

2
J · (ηη : ∇∇A)− ρη · ∇Φ1

−ρ(ζη : ∇∇Φ) +
di
2
ρηη : ∇∇Φ− p

2
[∇ζ : ∇ζ − (∇ · ζ)2]

−ρ
2
c2
s(∇ · ζ)2 + dipe[∇ζ : ∇η − (∇ · ζ)(∇ · η)] + di

ρ

2
c2
se(∇ · ζ)(∇ · η)
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−d
2
i

2
pe[∇η : ∇η − (∇ · η)2]− d2

i

2
ρc2
se(∇ · η)2 − 1

2

∣∣B1

∣∣2} , (4.119)

and the bars have been dropped. In addition, the perturbation of the velocity field
and of the field J/ρ are given by

δv = ∂tζ + v · ∇ζ − ζ · ∇v , (4.120)

δ

(
J

ρ

)
= ∂tη + v · ∇η − η · ∇v +

J

ρ
· ∇ζ − ζ · ∇J

ρ

−di
(
J

ρ
· ∇η − η · ∇J

ρ

)
, (4.121)

while the generalized momenta πζ and πη are now computed as follows

πζ =
δL2

δζ̇
= ρ(∂tζ + v · ∇ζ) + ρη · ∇A , (4.122)

πη =
δL2

δη̇
= ρ (A1 + ζ · ∇A− diη · ∇A) , (4.123)

Note that Eq. (4.123) cannot be used in order to express ∂tη in terms of πη; therefore
it can be interpreted as a constraint between the dynamical variables, which helps us
though to express explicitly A1 in terms of canonical variables via A1 = ρ−1πη− (ζ−
diη) · ∇A. A consistency condition is that this equation holds for all time i.e. that it
is preserved by the dynamics

[πη − ρ (A1 + ζ · ∇A− diη · ∇A) ,H2] = 0 , (4.124)

where

[f, g] =

∫
d3x

(
δf

δζ
· δg
δπζ
− δg

δζ
· δf
δπζ

+
δf

δη
· δg
δπη
− δg

δη
· δf
δπη

)
(4.125)

is the canonical Poisson bracket and

H2 =

∫
d3x(πζ · ∂tζ + πη · ∂tη)− L2

=

∫
d3x

[
1

2ρ

∣∣πζ − ρv · ∇ζ − ρη · ∇A∣∣2 −Whmhd(ζ,η,πη)

]
, (4.126)

where A1 has been expressed via Eq. (4.123). From (4.124) (4.125) and (4.126) we
find

−∂Whmhd

∂η
= di∇A ·

{
J

ρ
∇ · (ρζ) +∇×∇×

[
ρ−1πη − (ζ − diη) · ∇A

]
+ρ

[
(ζ − diη) · ∇J

ρ
− v · ∇η + η · ∇v − J

ρ
· ∇ζ + di

J

ρ
· ∇η

]}
. (4.127)
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Now let us proceed by computing Hamilton’s equations of motion

∂tη =
δH2

δπη
= −v · ∇η + η · ∇v − J

ρ
· ∇ζ + ζ · ∇J

ρ
+

J

ρ2
∇ · (ρζ)

+di

(
J

ρ
· ∇η − η · ∇J

ρ

)
+ ρ−1∇×∇×

[
ρ−1πη − (ζ − diη) · ∇A

]
, (4.128)

∂tζ =
δH2

δπζ
= ρ−1(πζ − ρv · ∇ζ − ρη · ∇A) , (4.129)

∂tπη = −δH2

δη
= ∇A · (πζ − ρv · ∇ζ − ρη · ∇A)− ∂Whmhd

∂η
, (4.130)

∂tπζ = −δH2

δζ
= −

{
ρv · ∇[ρ−1πζ − v · ∇ζ − η · ∇A] + ρv · ∇(η · ∇A)

+ρv · ∇(v · ∇ζ) + J · ∇πη
ρ
− ρ∇A ·

[
(η · ∇v) + (ζ − diη) · ∇J

ρ

+
J

ρ
∇ · (ρζ) +∇×∇× (ρ−1πη − ζ · ∇A + diη · ∇A)

]
−ρ(η · ∇∇A) · v −∇

[
ρ−1πη − (ζ − diη) · ∇A

]
· J− (ζ · ∇∇A) · J

+di(η · ∇∇A) · J + ρη · ∇∇Φ +∇p∇ · ζ −∇ζ · ∇p−∇
(
ρ
∂p

∂ρ
∇ · ζ

)
−di∇pe∇ · η + di∇η · ∇pe + di∇

(
ρ
∂pe
∂ρ
∇ · η

)}
. (4.131)

Combining (4.128) with (4.123) and (4.121) gives

ρ1 = −∇ · (ρζ) . (4.132)

Equation (4.129) is merely the definition of the canonical momentum πζ . Exploiting
(4.122), (4.123) and relations (4.120) and (4.121) and also the stationary momentum
equation and Ohm’s law, which are given by

v · ∇v − ρ−1J×B + ρ−1∇p = 0 , (4.133)

−∇Φ +

(
v − di

J

ρ

)
×B + ρ−1∇pe = 0 , (4.134)

we can corroborate that (4.130) and (4.131) give the perturbed Ohm’s law and mo-
mentum equation, respectively. Therefore, Hamiltonian (4.126) describes correctly the
linearized HMHD dynamics. Note that Whmhd is not yet fully expressed in terms of
the displacement vectors ζ,η due to πη (or A1 through (4.123)) which appears explic-
itly in its expression. We can overcome this by combining the consistency condition
(4.127) with Hamilton’s equations (4.128) and (4.130) to find

∂tA1 = ∂t(ζ − diη)×B0 . (4.135)
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Integration of (4.135) introduces in general a time independent vector, which however
should vanish because otherwise time independent terms would appear in the per-
turbed equations of motion. ThereforeA1 = (ζ−diη)×B0 orB1 = ∇×[(ζ−diη)×B0]

which is well known solution of the perturbed induction equation (see [15]). This ex-
pression is similar with the corresponding expression in ideal MHD. The difference is
the appearance of the displacement vector η multiplied by di so the MHD result can
be recovered for di → 0. This is an anticipated result, since the fluid velocity in the
MHD induction equation is replaced by v−diJ in the HMHD case. After this analysis
we conclude that

−
∫
d3xWhmhd(ζ,η) ≥ 0 , (4.136)

where Whmhd(ζ,η) is given by (4.119) with A1 = (ζ − diη) × B0, is sufficient for
stability. Note that the term containing ∇Φ1 can be neglected in view of ∇ · (ρη) = 0

and η · n̂
∣∣
∂D

= 0.



Chapter 5

Alternative bracket formulations
for tsXMHD and RMHD

In this chapter, alternative brackets describing the dynamics of ideal incompressible
XMHD, translationally symmetric XMHD (tsXMHD) and reduced MHD (RMHD),
are presented. Also, we formulate a heuristic method to construct the dynamical
equations of 2D fluid models from the conservation of the corresponding Hamiltonian
and Casimir invariants. The findings of this second part are published in [119].

The above concepts are elaborated in two sections: in Section 5.1 a trilinear bracket
formulation and also an alternative bilinear bracket for XMHD and tsXMHD are found
while in Section 5.2 we present the inverse approach mentioned above.

5.1 Alternative bracket formulations for XMHD and
tsXMHD

It is known that the equations of hydrodynamics and magnetohydrodynamics can be
cast in a generalized Hamiltonian form in terms of trilinear, instead of bilinear brack-
ets (see [120] and [121]), called Nambu brackets. It should be stressed though that the
Nambu brackets discussed herein and in the references [120, 121] are different from
the finite dimensional brackets introduced in the classic paper of Nambu [122], since
they are infinite dimensional generalizations of the latter that may or may not not
satisfy generalized Jacobi identities for Nambu brackets e.g. [123]. Such an infinite
dimensional generalization of the Nambu bracket using Lie algebraic considerations
was introduced initially in [124] and applied to the Weyl-Wigner formalism of quan-
tum mechanics. Later on, similar formalisms emerged for fluid dynamics where they
proved to be practically useful for performing conservative numerical integration be-
cause they are fully antisymmetric. Namely one can construct conservative algorithms
in the context of 2D hydrodynamics [125, 126], exploiting the fact that the Hamilto-
nian and the Casimir invariant (Enstrophy) are conserved up to machine precision
if it is ensured that the discretization procedure retains the antisymmetry property.
Hence, it is of interest to derive such brackets as a step towards the construction of
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analogous Casimir preserving algorithms for plasma dynamics. In addition, once the
Nambu bracket is formulated one can derive an alternative bilinear bracket upon sub-
stituting the original Hamiltonian, which is now embedded into the very structure of
the resulting bracket, just as the Casimir invariant was embedded into the structure
of the original Poisson bracket. The new Hamiltonian is the Casimir invariant which
was initially used for the construction of the Nambu structure. However, proof of the
validity or not of this new bracket’s Jacobi identity is not pursued.

In the following analysis we adopt the convenient vorticity representation of in-
compressible XMHD dynamics obtained upon acting on the momentum equation with
the curl operator

∂tω = ∇× (v × ω + J×B∗) , (5.1)

∂tB
∗ = ∇×

(
v ×B∗ − diJ×B∗ + d2

eJ× ω
)
, (5.2)

where ω = ∇× v. The Poisson bracket in vorticity representation takes the following
form

{F,G} =

∫
d3x

{
(∇× v) · [(∇× Fω)× (∇×Gω)]

B∗ · [(∇× Fω)× (∇×GB∗)− (∇×Gω)× (∇× FB∗)]

−diB∗ · [(∇× FB∗)× (∇×GB∗)]

+d2
e(∇× v) · [(∇× FB∗)× (∇×GB∗)]

}
. (5.3)

5.1.1 Nambu bracket formulation

To find a trilinear bracket, equivalent to (5.3) we need somehow to incorporate a
Casimir invariant. Adding the Casimirs in (1.74) we obtain

C+ + C− =

∫
d3x

(
A∗ ·B∗ + div ·B∗ +

d2
i

2
v · ω + d2

ev · ω
)
, (5.4)

while taking their difference yields

C+ − C− =
√
d2
i + 4d2

e

∫
d3x

(
v ·B∗ +

di
2
v · ω

)
. (5.5)

Combining these two results we find that

C =
1

2

∫
d3x

(
A∗ ·B∗ + d2

ev · ω
)
, (5.6)



5.1. Alternative bracket formulations for XMHD and 105

is also a Casimir. Having this alternative Casimir, it is not difficult to identify that
(5.3) can be written as

{F,G, C} =

∫
d3x

{ 1

3d2
e

(∇× Fω) · [(∇×Gω)× (∇× Cω)]

+(∇× F ∗B) · [(∇×Gω)× (∇× CB∗)]

−di
3

(∇× F ∗B) · [(∇×GB∗)× (∇× CB∗)]
}

+ � (F,G, C) , (5.7)

where � denotes cyclic permutation. In view of (5.7) the dynamics is correctly de-
scribed by the following generalized Hamilton’s equation

∂tf = {f,H, C} , (5.8)

where f is an arbitrary functional. It is easy to corroborate that for f(x′) =
∫
d3xω(x)δ(x−

x′) and f(x′) =
∫
d3xB∗(x)δ(x− x′) we retrieve Eqs. (5.2).

5.1.2 Alternative bilinear form

The form (5.7), which designates that H and C can be interchanged and in addition is
immediately reducible to (5.3) upon substituting (5.6), suggests that substituting H,
then an alternative bilinear form will occur. By doing so, we find indeed an alternative
bracket {F,G}H which describes the dynamics correctly via

∂tf = {f, C}H . (5.9)

The explicit expression of this bilinear form is

{F,G}H = −
∫
d3x

{ 1

d2
e

v · [(∇× Fω)× (∇×Gω)]

+ [v − di(∇×B)] · [(∇× FB∗)× (∇×GB∗)]

+(∇×B) ·
[
(∇× Fω)× (∇×GB∗)

−(∇×Gω)× (∇× FB∗)
]}
. (5.10)

Immediately one can see that {F,H}H = 0 ∀F , that is H and C have changed roles
being now the Casimir and the Hamiltonian, respectively.

5.1.3 Translationally symmetric XMHD (tsXMHD)

Introducing a continuous spatial symmetry the description of the dynamics can be
reduced to a 4-field model [53] since considering, e.g. translational symmetry, amounts

tsXMHD
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to writing the 3D fields in the following 4-field representation

v = vz ẑ +∇χ× ẑ , (5.11)

ω = ωz ẑ +∇vz × ẑ , (5.12)

B∗ = B∗z ẑ +∇ψ∗ × ẑ , (5.13)

J = Jz ẑ +∇Bz × ẑ , (5.14)

where ωz = −∆χ and Jz = −∆ψ. The functional derivatives in the reduced represen-
tation can be found as done in Chapter 2 (see [53] and [71])

FB∗ = FB∗z ẑ −∇(∆−1Fψ∗)× ẑ , (5.15)

Fω = Fωz ẑ −∇(∆−1Fvz)× ẑ , (5.16)

and taking their curls yields

∇× Fω = Fvz ẑ +∇Fωz × ẑ , (5.17)

∇× FB∗ = Fψ∗ +∇FB∗z × ẑ . (5.18)

Substituting (5.17) and (5.18) into (5.7) one can readily find its translationally sym-
metric version to be

{F,G, I} =

∫
d2x

{ 1

d2
e

Fvz [Gωz , Iωz ]− diFψ∗ [GB∗z , IB∗z ]

+Fψ∗ [Gωz , IB∗z ] + Iψ∗ [FB∗z , Gωz ] +Gvz [IB∗z , FB∗z ]
}

+ � (F,G, I) , (5.19)

where [a, b] := (∇a×∇b) · ẑ. With the help of the symmetric counterparts of H and
C given by

H̃ =
1

2

∫
d2x

(
v2
z + χωz +BzB

∗
z +∇ψ∗ · ∇ψ

)
, (5.20)

C̃ =

∫
d2x

(
ψ∗B∗z + d2

evzωz
)
, (5.21)

respectively, we retrieve the translationally symmetric XMHD dynamics via ∂tf =

{f, H̃, C̃}, that is

∂tvz = [χ, vz] + [Bz, ψ
∗] , (5.22)

∂tψ
∗ = [χ, ψ∗]− di[Bz, ψ∗] + d2

e[Bz, vz] , (5.23)

∂tωz = [χ, ωz] + [ψ,∆ψ]− d2
e[Bz,∆Bz] (5.24)

∂tB
∗
z = [χ,B∗z ] + [vz, ψ]− di[ψ,∆ψ] + did

2
e[Bz,∆Bz] + d2

e[Bz, ωz] . (5.25)
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Similarly to the 3D case a reduced bilinear bracket can be constructed upon substi-
tuting H̃ into (5.19) to find

{F,G}H̃ = −
∫
d2x

{
d−2
e vz[Fωz , Gωz ] + d−2

e χ ([Fvz , Gωz ]− [Gvz , Fωz ])

+(χ− diBz)
(
[Fψ∗ , GB∗z ]− [Gψ∗ , FB∗z ]

)
+(vz − diJz)[FBz∗, GB∗z ] + Jz

(
[FB∗z , Gωz ]− [GB∗z , Fωz ]

)
Bz
(
[Fωz , Gψ∗ ]− [Gωz , Fψ∗ ] + [FB∗z , Gvz ]− [GB∗z , Fvz ]

)}
, (5.26)

with Eqs. (5.22)–(5.25) following from ∂tf = {f, C̃}H̃.

5.2 2D Magnetofluid models constructed via
a priori imposition of conservation laws

As stated in the first, introductory chapter, the Casimirs introduce dynamical con-
straints and together with the Hamiltonian they determine the manifold on which the
evolution of the dynamical system is restricted. In [127] and [128] the authors con-
structed Nambu-like brackets for the 2D ideal incompressible hydrodynamics and for
the shallow water equations respectively, using differential 2-forms to impose orthog-
onality conditions arising from the conservation laws (CLs) of the respective models.
To demonstrate the applicability of this idea to plasma fluid models we adopt an anal-
ogous approach in the context of the simple RMHD model that is essentially the 2D
incompressible MHD. In addition we ascertain that the imposition of the conservation
laws as orthogonality constraints, can be useful to derive models possessing Nambu-like
and Poisson structures with the a priori definition of two ingredients: 1) the dynamical
variables, 2) the functional quantities that are to be conserved by the dynamics. This
also provides the freedom to select a subset of the original orthogonality conditions,
so as to obtain models that do not conserve all of the ideal invariants, though they
are nondissipative. Such an idea could potentially be linked with the concept of selec-
tive decay in magnetohydrodynamic turbulence, which assumes that the total energy
is minimized, subject to the conservation of the helicities in the sense that one can
incorporate additional contributions that break the ideal conservation of a particular
invariant in order to regulate its decay individually, without affecting the remaining
invariants as the diffusive terms do. Also, as it is pointed out in Subsection 5.2.5
some classes of those models can serve as useful regularizations of the original RMHD
model in the sense that they prevent vorticity singularities having a nondissipative
structure. Similar regularizations were introduced in [129] for the three-dimensional
incompressible MHD equations.

We should clarify that we do not completely solve the inverse problem of conser-
vation laws for models of the MHD form. The complete determination of the full set

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws
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of models that respect given conservation laws would be a very tough task and so far
we are not aware of any suitable methodology in order to address this problem. As we
will see below, we shortcut by considering that the time derivatives of the dynamical
variables assume a specific form compatible with the Lie-Poisson brackets of Hamil-
tonian systems such as RMHD [130], which is practically convenient for performing
various manipulations.

5.2.1 Reduced MHD

Reduced MHD models are used to displace the usual 3D MHD equations when a strong
guiding magnetic field B0 is present, because they are much more simpler in form and
thus can be handled more conveniently. The Reduced MHD model can be rigorously
derived by performing asymptotic expansion of the MHD equations with the ordering
L⊥/L‖ ∼ B⊥/B0 ∼ v/vA ∼ ε and ε being a small parameter [131]. Here L⊥ and
L‖ are the characteristic length scales perpendicular and parallel to the guiding field
respectively, B⊥ and B0 are the corresponding magnetic field magnitudes, v is the
magnitude of the velocity and vA is the Alfvén velocity. Alternatively one can just
confine the dynamics to take place on the plane perpendicular to the guiding field
B0 = B0ẑ, i.e. to express B and v as

B = ∇ψ × ẑ , v = ∇χ× ẑ , (5.27)

where ψ is the magnetic flux function and χ is the velocity stream function. Assum-
ing that the plasma is incompressible, in the sense that the mass density is uniform
throughout the plasma volume, one can derive from the general momentum and in-
duction equations of the MHD model, the following dynamical equations, defined on
a bounded domain D ⊂ R2,

∂tω = [χ, ω] + [J, ψ] , (5.28)

∂tψ = [χ, ψ] , (5.29)

where J := −∆ψ and ω := −∆χ, are the magnitudes of the current density and vor-
ticity respectively and [a, b] := (∂xa) (∂yb)− (∂xb) (∂ya) is the Jacobi-Poisson bracket.
Here the subscripts z are omitted since J and ω have only z−components.

In [130] the authors proved that the RMHD model, and also its compressible
counterpart, possess a noncanonical Hamiltonian structure, since the dynamics can be
expressed in terms of a degenerate Poisson bracket and a Hamiltonian, as follows

∂tω = {ω,H} , ∂tψ = {ψ,H} , (5.30)



109

where the Hamiltonian H is

H[ω, ψ] =
1

2

∫
D
d2x

(
|∇χ|2 + |∇ψ|2

)
= −1

2

∫
D
d2x (ω∆−1ω + ψ∆ψ) , (5.31)

and the Poisson bracket is given by

{F,G} =

∫
D
d2x {ω[Fω, Gω] + ψ ([Fψ, Gω]− [Gψ, Fω])} . (5.32)

This bracket has two families of Poisson-commuted functionals, i.e. Casimir invariants,
given by

C =

∫
D
d2xωF(ψ) , M =

∫
D
d2xG(ψ) , (5.33)

where F and G are arbitrary functions. The Casimir C is a cross-helicity-like functional
while M expresses the conservation of magnetic flux. Therefore the incompressible
RMHD model has three general CLs, expressed through the preservation of the func-
tionals H, C and M. Here, the structure of the dynamical equations (5.28)-(5.29)
and of the Poisson bracket (5.32) indicate the conservation laws. In what follows we
try to reverse this procedure, i.e. with the CLs at hand, we construct the dynamical
equations that conserve the associated invariants.

5.2.2 Dynamics via orthogonality conditions

Let us assume that we have a continuous system bounded in a 2D domain D and
described by dynamical variables X = (X1, ..., XN ). Also, assume that the system
exhibits conservation of a set of M quantities Y1[X], ..., YM [X] expressed as functionals
defined on phase space. The conservation of Yi[X], i = 1, ...,M implies

c1 :
dY1[X]

dt
=

∫
D
d2x

δY1

δXi
∂tXi = 0 ,

...

cM :
dYM [X]

dt
=

∫
D
d2x

δYM
δXi

∂tXi = 0 . (5.34)

Equations (5.34) define a set of M orthogonality conditions ci, i = 1, ...,M , of the
vectors

µi =

(
δYi
δX1

, ...,
δYi
δXN

)
, i = 1, ...,M , (5.35)

with the vector

σ = (∂tX1, ..., ∂tXN )T . (5.36)

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws



110 Chapter 5. Alternative bracket formulations for tsXMHD and RMHD

Since µi are known, then in principle the orthogonality conditions (5.34) can be ex-
ploited in order to find the components of σ. In the case of 2D hydrodynamics the
orthogonality conditions correspond to the conservation of kinetic energy K and en-
strophy E . In [127] the authors imposed conveniently those conditions using differential
2-forms identifying Kω as a 0-form µ1 and Eω as a 0-form µ2. Then if ∂tω = dµ1∧dµ2

is assumed to be exact, then it is automatically orthogonal to µ1 and µ2.
Here, a similar approach is adopted, i.e. we start by considering the conservation

laws as orthogonality conditions like those in (5.34) that act as constraints on the
dynamics, in order to construct a 2D continuum model, with dynamical variables the
vorticity and the poloidal magnetic flux function, that conserves H, C andM as given
by (5.33). To do so let us define the following vectors

ξ := (ω, ψ) ,

f := (Hω, Hψ) = (χ, J) ,

g := (Cω, Cψ) =
(
F(ψ), ωF ′(ψ)

)
,

h := (Mω,Mψ) =
(
0, G′(ψ)

)
,

σ := ∂tξ
T = (∂tω, ∂tψ)T , (5.37)

The time invariance of H, C andM yields

c1 :
dH
dt

=

∫
D
d2x [Hω(∂tω) +Hψ(∂tψ)] = 0 ,

c2 :
dC
dt

=

∫
D
d2x [Cω(∂tω) + Cψ(∂tψ)] = 0 ,

c3 :
dM
dt

=

∫
D
d2x [Mω(∂tω) +Mψ(∂tψ)] = 0 , (5.38)

Those orthogonality conditions can be expressed with the use of Eqs. (5.37) as

c1 :

∫
D
d2x fiσi = 0 ,

c2 :

∫
D
d2x giσi = 0 ,

c3 :

∫
D
d2xhiσi = 0 , i = 1, 2 . (5.39)

In noncanonical Hamiltonian theories involving 2D Lie-Poisson brackets the dynamics
is governed by Hamilton’s equations of the form

∂tF = {F,H} , (5.40)



111

with {F,G} being a Lie-Poisson bracket with general form

{F,G} =

∫
D
d2x ξk[Fξm , Gξn ]Wm,n

k , (5.41)

where ξ is the set of the dynamical variables and Wm,n
k are constants. Note that

repeated indices imply summation. Equations (5.40) and (5.41) indicate that the time
independent parts of the evolution equations can be written as linear combinations of
Jacobi-Poisson brackets between the various dynamical variables and the functional
derivatives of the Hamiltonian. Therefore we assume that the building block of σ1,2 is
the Jacobian bracket i.e.

σi = γijk [fj , ξk] , i, j, k = 1, 2 . (5.42)

Note that this ansatz for σi possibly excludes models that do respect the given CLs.
However, it is a reasonable choice since it is consistent with the Lie-Poisson Hamilto-
nian framework and is convenient in order to carry out manipulations that easily result
in systems of equations that preserve the Casimirs. In fact exploiting the identity∫

D
d2x a[b, c] =

∫
D
d2x c[a, b] =

∫
D
d2x b[c, a] , (5.43)

which holds for appropriate boundary condition, e.g., periodic, we can find that con-
straints c1, c2 and c3 induce the following sets of conditions for the parameters γijk
with i, j, k = 1, 2, which have to hold true for the dynamical variables ψ and ω to be
independent,

c1 : {γ121 = γ211 , γ122 = γ212} ,

c2 : {γ111 = γ212 , γ121 = γ222} for F ′′(ψ) = 0 ,

{γ111 = γ212 , γ121 = γ222 , γ211 = 0 , γ221 = 0} for F ′′(ψ) 6= 0 ,

c3 : {γ211 = 0 , γ221 = 0} . (5.44)

The remaining parameters γijk are arbitrary. Constraint c3, stemming from magnetic
flux conservation, contributes in determining the parametric conditions only when
F(ψ) is linear in ψ. In all other cases, imposing the conservation of the cross helicity
functional ensures the conservation of the magnetic flux as well. Therefore, the tra-
jectory of RMHD dynamics is determined only by the intersection of the energy and
the cross helicity level sets in phase space if F ′′(ψ) 6= 0.

The above results imply that the conservation of the RMHD Casimirs require

γ111 = γ212 = γ122 ≡ ε1 , γ112 ≡ ε2 ,

γ121 = γ211 = γ221 = γ222 = 0, (5.45)

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws
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where ε1 and ε2 are arbitrary parameters, introduced to simplify notation. In view of
(5.45) and (5.42) we take

∂tω = ([Hψ, ψ] + [Hω, ω]) + ε[Hω, ψ] , (5.46)

∂tψ = [Hω, ψ] . (5.47)

where parameter ε1 was absorbed by rescaling the time variable, and ε2 was renamed.
Evaluating the functional derivatives we obtain

∂tω = ([J, ψ] + [χ, ω]) + ε[χ, ψ] , (5.48)

∂tψ = [χ, ψ] . (5.49)

It is easy to corroborate that model (5.48)-(5.49) conserves the energy H and the
Casimirs C and M as given in (5.33). This generalized model includes RMHD as a
special case since the latter is recovered for ε = 0. Note that conditions (5.45) can be
interpreted as follows: the inclusion of [J, ω] in any of the dynamical equations of the
model violates the conservation laws. In addition, the evolution of ψ is coerced to not
involve dependence on J and ω.

5.2.3 Poisson and Nambu bracket description

To construct the Poisson and Nambu brackets for (5.48)–(5.49) we have just to consider
the time evolution of an arbitrary functional F = F [ω, ψ]

∂tF =

∫
D
d2x [Fω(∂tω) + Fψ(∂tψ)] , (5.50)

and use equations (5.46), (5.47), with the arbitrary functional G replacing the Hamil-
tonian, to obtain

{F,G} = {F,G}RMHD + ε

∫
D
d2xψ[Fω, Gω] , (5.51)

where {F,G}RMHD is given by (5.32). Bracket (5.51) satisfies the Jacobi identity since
the matrices Wn, n = 1, 2 in (5.41) pairwise commute [132]. For deriving the Nambu
formalism of system (5.48)–(5.49) we need just to observe that ψ = C̄ω and ω = C̄ψ
where C̄ = C for F(ψ) = ψ. Making this substitution we convert the Lie-Poisson
bracket (5.51) to the following trilinear bracket

{F,G,Z} :=

∫
D
d2x

{
Fω[Gψ, Zω] + Fω[Gω, Zψ]

+Fψ[Gω, Zω] + εFω[Gω, Zω]
}
. (5.52)
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The dynamics can be described by ∂tF = {F,H, C̄}. The bracket is completely an-
tisymmetric in its three arguments in view of identity (5.43) and the antisymmetry
of the Jacobi-Poisson bracket [f, g] = −[g, f ]. As mentioned earlier, this property is
helpful in constructing numerical schemes that preserve to high precision the energy
and the cross helicity [125].

5.2.4 Canonical description

One may derive a canonical description of system (5.48)–(5.49) by expressing the vor-
ticity ω and the flux function ψ in terms of Clebsch potentials. Canonical descriptions
of the RMHD model were derived in [130] and in [133]. The former derivation needs
four Clebsch potentials while the latter only two and both assumed the vorticity to be
a Clebsch 2-form ω = [P,Q]. In [133] the authors found two suitable parametrization
schemes for ψ, namely ψ = PαQβ and ψ = Pα+Qβ . Following [133] we use ψ = PαQβ

for our generic model and also we make a necessary modification in parameterizing ω

ω = [P,Q] + εPαQβ ,

ψ = PαQβ . (5.53)

The Hamiltonian takes the form

H = −1

2

∫
d2x
{

[P,Q]∆−1[P,Q]

+εPαQβ∆−1[P,Q] + ε[P,Q]∆−1(PαQβ)

+ε2PαQβ∆−1(PαQβ) + PαQβ∆(PαQβ)
}
, (5.54)

and the canonical Hamilton’s equations are

∂t

(
P

Q

)
= Jc

(
HP
HQ

)
, (5.55)

where Jc represents the so-called cosymplectic operator (see Chapter 1)

Jc =

(
0 I

−I 0

)
. (5.56)

In view of (5.54), Hamilton’s equations (5.55) take the form

∂tP = [χ, P ] + βPαQβ−1J + εβPαQβ−1χ ,

∂tQ = [χ,Q]− αPα−1QβJ − εαPα−1Qβχ , (5.57)

where J = −∆(PαQβ) and χ = −∆−1[P,Q] − ε∆−1(PαQβ). Using Eqs. (5.53) and
(5.57) and exploiting the Jacobi identity, the original system (5.48)–(5.49) can be

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws
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recovered. The cross-helicity for F(ψ) = ψ is given by

C =

∫
D
d2x

(
εP 2αQ2β + PαQβ[P,Q]

)
. (5.58)

The first term is a conserved quantity due to the conservation of M, therefore the
second term, which is the RMHD cross helicity, is also conserved. A reason for writ-
ing the system (5.48)-(5.49) in terms of Clebsch potentials is to see how the addition
of the ε-term alternates the form of the Hamiltonian. The Clebsch-parameterized
Hamiltonian of our generic model is different from its RMHD counterpart (obtained
by setting ε = 0) albeit when expressed in noncanonical Eulerian variables they are
identical. This difference is a consequence of the fact that in canonical description any
complexity is removed from the Poisson bracket and is transfered into the Hamiltonian.
Note that although the Hamiltonian acquires an explicit dependence on the parameter
ε, the Casimirs do not contain this parameter. Another reason is that the canonical-
ization of a noncanonical Hamiltonian system may be useful for numerical studies as
well, because the symplectic and conservative algorithms for canonical Hamiltonian
mechanics are much more developed than those in the noncanonical framework.

5.2.5 Families of reduced models respecting two out of the three
original CLs

H, C̄ conserving models

From conditions (5.44) one deduces that for F ′′(ψ) 6= 0 the most general model that
conserves H and C is model (5.48)–(5.49). However for linear F(ψ) there are a lot
of new possibilities since there are two additional arbitrary parameters. Conditions
(5.44) imply that for a family of 2D hydromagnetic models, with dynamical variables
the vorticity ω and the magnetic flux ψ, that conserve only the Energy H and the
linear cross-helicity C̄, the coefficients in the expansions (5.42) should be

γ111 = γ122 = γ212 ≡ ε1 , γ112 ≡ ε2 ,

γ121 = γ211 = γ222 ≡ ε3 , γ221 ≡ ε4 . (5.59)

Conditions (5.59) with (5.42) lead to the following expansions

∂tω = ε1 ([Hω, ω] + [Hψ, ψ]) + ε2[Hω, ψ] + ε3[Hψ, ω] ,

∂tψ = ε1[Hω, ψ] + ε4[Hψ, ω] + ε3 ([Hω, ω] + [Hψ, ψ]) , (5.60)

which result in the generalized model

∂tω = ε1 ([χ, ω] + [J, ψ]) + ε2[χ, ψ] + ε3[J, ω] ,
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∂tψ = ε1[χ, ψ] + ε3 ([χ, ω] + [J, ψ]) + ε4[J, ω] . (5.61)

Ordinary RMHD is recovered for (ε1, ε2, ε3, ε4) = (1, 0, 0, 0). Setting ε1 = 1 (or rescal-
ing the time variable so as to absorb ε1) in order to retain the RMHD core, we can
build, apart from model (5.61), six extensions of RMHD that conserve the energy and
the linear cross-helicity. In the generic case represented by (5.61),M evolves as

dM
dt

=

∫
D
d2x (ε3χ+ ε4J)G′′(ψ)[ω, ψ] , (5.62)

while evolution of the rest members of the family of cross helicity invariants (5.33) is
given by

dC
dt

=

∫
D
d2x (ε3χ+ ε4J)ωF ′′(ψ)[ω, ψ] . (5.63)

Equation (5.63) indicates that the conservation of C is possible either if F ′′(ψ) = 0,
which is the case we discuss in this subsection, or if ε3 = ε4 = 0, which results in
system (5.48)–(5.49) of the previous section.

The generalized model (5.61) can be cast into a Hamiltonian form in terms of the
Hamiltonian (5.31) and a Lie-Poisson bracket with Hamilton’s equations stemming
from the substitution of (5.60) into (5.50). By this procedure we find that the Lie-
Poisson bracket is

{F,G} = ε1{F,G}RMHD +

∫
D
d2x

{
ε2ψ[Fω, Gω] + ε4ω[Fψ, Gψ]

+ε3ω ([Fω, Gψ]− [Gω, Fψ]) + ε3ψ[Fψ, Gψ]
}
. (5.64)

However, the Jacobi identity is satisfied only if ε1ε3 = ε2ε4. The Nambu description can
be obtained similarly with subsection 5.2.3, resulting into a completely antisymmetric
three-bracket. Note that the requirement ε1ε3 = ε2ε4 implies that there are only three
nontrivial Hamiltonian extensions of RMHD that conserve H and C. As an example
let us consider the model (1, 0, 0, ε4)

∂tω = [χ, ω] + [J, ψ] ,

∂tψ = [χ, ψ] + ε4[J, ω] . (5.65)

One can easily identify that (5.65), in addition toH and C, conserves also a generalized
enstrophy

Ẽ =

∫
D
d2x

(
ψ2 + ε4ω

2
)
, (5.66)

which is a Casimir of the Poisson bracket (5.64) with ε2 = ε3 = 0. The conservation
of this “enstrophy” functional implies that, if ε4 > 0, this model converts enstrophy

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws
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to magnetic flux and vice versa, which means that both
∫
D d

2xω2 and
∫
D d

2xψ2

are bounded during the evolution, since the maximum value they can attain is the
initial value of E . Therefore the addition of the term ε4[J, ω] with positive ε4 in
the induction equation, regularize the RMHD system at least in preventing possible
unbounded behavior of the vorticity. Usually such unbounded behavior is remedied
by the inclusion of dissipative terms. However dissipation destroys time reversibility
and the various conservation laws.

Before proceeding to the next category of models let us make an additional remark:
the Poisson bracket (5.64) with ε2 = ε3 = 0 and ε1 = 1, incidentally has the same form
with the Poisson bracket of a generalized model with finite electron inertia and ion
sound Larmor radius effects in 2D geometry [134]. Although the bracket has the same
form, the evolution equations and the Hamiltonian in the above referenced model are
different from (5.65) and (5.31) respectively. One can see though that system (5.65)
can be converted to the model with electron inertial and ion sound Larmor radius
effects by performing the following transformation (ψ → ψ∗, χ→ χ∗, ω → ω, J → J),
where ψ∗ = ψ + d2

eJ , χ∗ = χ + ρ2
sω, and identifying ε4 = ρ2

sd
2
e. Here de is the

electron skin depth and ρs the ion sound Larmor radius. This transformation changes
the stream functions but not the corresponding “vorticities”, which means that the
fourth and higher order spatial derivatives (associated with very small length scales)
are neglected. Hence, bracket (5.64) remains identical in form when written in terms
of ω and ψ∗ but the Hamiltonian changes. It is also noted that a similar bracket has
been derived for describing the perpendicular dynamics in a 4-field gyrofluid model in
[135].

H,M− conserving models

To construct models that conserve H and M we need to employ conditions c1 and
c3. According to (5.44) the imposition of the aforementioned orthogonality conditions
leads to

γ111 ≡ ε1 , γ112 ≡ ε2 , γ122 = γ212 = ε3 ,

γ222 ≡ ε4 , γ211 = γ221 = γ121 = 0 , (5.67)

that is, the general model that conserves H andM is

∂tω = ε1[χ, ω] + ε2[χ, ψ] + ε3[J, ψ] ,

∂tψ = ε3[χ, ψ] + ε4[J, ψ] . (5.68)
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RMHD is recovered for (ε1, ε2, ε3, ε4) = (1, 0, 1, 0). For the general form of equations
(5.68), the evolution of cross-helicity is given by

dC
dt

= (ε1 − ε3)

∫
D
d2xF(ψ)[χ, ω] + ε4

∫
D
d2xF(ψ)[ω, J ] . (5.69)

As for the Hamiltonian description, employing the usual procedure of the previous
subsections for model (5.68) we identify that the dynamics is described by (5.30) with
the following Poisson bracket

{F,G} =

∫
D
d2x

{
(ε2ψ + ε1ω)[Fω, Gω]

+ε3ψ ([Fψ, Gω]− [Gψ, Fω]) + ε4ψ[Fψ, Gψ]
}
. (5.70)

Bracket (5.70) is clearly antisymmetric but it satisfies the Jacobi identity only if ε23 −
ε1ε3 − ε2ε4 = 0 with roots ε±3 =

(
ε1 ±

√
ε21 + 4ε2ε4

)
/2. Under this condition, model

(5.68) has a Hamiltonian structure, with Hamiltonian functional given by (5.31) and
a Poisson bracket given by (5.70), which possess apart fromM, an additional Casimir
having the form of a generalized cross helicity

C̃ =

∫
D
d2xω

(
ψ +

µ±
2
ω
)
, (5.71)

where µ± =
[(
ε1 ±

√
ε21 + 4ε2ε4

)
/(2ε4)

]−1
. It is known that the absolute value of

cross helicity has the total energy H as an upper bound1 therefore if µ± > 0 then the
enstrophy is prevented from exhibiting unbounded growth.

A trilinear bracket formulation is also possible upon recognizing that ω = C̃ψ and
ψ = C̃ω − µ±C̃ψ. Substituting ψ and ω in (5.70) by these relations, we can find a
completely antisymmetric trilinear bracket as in Subsection 5.2.3. The dynamics is
described by means of this bracket along with the Hamiltonian and the Casimir C̃.

C,M− conserving models

To abandon the requirement for the energy to be conserved, we impose the constraints
c2 and c3 only. From conditions (5.44) we take

γ111 = γ212 ≡ ε1 , γ112 ≡ ε2 , γ122 ≡ ε3 ,

γ121 = γ222 ≡ ε4 , γ211 = γ221 = 0 , (5.72)

that is we obtain the following generalized model

∂tω = ε1[χ, ω] + ε2[χ, ψ] + ε3[J, ψ] + ε4[J, ω] ,

1This can be proved by combining the Schwartz and the Poincaré inequalities to derive an inequal-
ity that relates the modulus of cross helicity with the sum of the magnetic and kinetic energies

5.2. 2D Magnetofluid models constructed via a priori imposition of conservation laws
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∂tψ = ε1[χ, ψ] + ε4[J, ψ] . (5.73)

RMHD corresponds to (ε1, ε2, ε3, ε4) = (1, 0, 1, 0). For the generic model (5.73) the
energy evolution is given by

dH
dt

= (ε3 − ε1)

∫
D
d2xχ[J, ψ] + ε4

∫
D
d2xχ[J, ω] . (5.74)

System (5.73) conserves the entire families of C and M as given by (5.33). As an
example of a 2D hydromagnetic model that exhibits a selective preservation of the
two Casimirs, consider the RMHD generalization (1, 0, 1, ε4), i.e.

∂tω = [(χ+ ε4J), ω] + [J, ψ] ,

∂tψ = [(χ+ ε4J), ψ] . (5.75)

The only difference of (5.75) compared to (5.28)–(5.29) is that the former involves in
the advection of ω and ψ the current density J . This means that small scale structures
intervene in the advection of ω and ψ, indicating that such or similar models may have
some practical implementations in parameterizing short length scale physics, which
cannot be described adequately by the RMHD equations.



Chapter 6

Summary, conclusions and future
prospects

6.1 Summary and conclusions

The main body of this thesis consists of an attempt to fulfill the four steps described
in Subsection 1.3.3 for the extended MHD model, in the presence of a continuous spa-
tial symmetry. These are i) the derivation of a noncanonical Poisson bracket {F,G},
governing the dynamics of the system with a Hamiltonian functional, ii) the compu-
tation of the corresponding Casimir invariants from {F, C} = 0, iii) the derivation of
equilibrium equations from the energy-Casimir variational principle and iv) the deriva-
tion of sufficient stability conditions. The first and second are fulfilled in Chapter 2,
where the three-dimensional Poisson bracket is reduced to a helically symmetric one
upon employing the chain rule for functional derivatives. The new bracket governs
the helically symmetric XMHD dynamics, which for incompressible plasmas can be
reduced to a 4-field model. The Casimirs are computed by a systematic procedure,
which is clearly presented. Also, their HMHD, IMHD and MHD limits are recovered.
Then in Chapter 3 the XMHD Casimirs and the Hamiltonian were used to derive, via
the energy-Casimir variational principle, the equilibrium equations of helically sym-
metric XMHD. This symmetry makes both the dynamical and equilibrium equations
more involved than the corresponding translationally symmetric equations, due to the
presence of a scale factor k = (`2 + n2r2)−1/2 and new terms stemming from helical
symmetry. The equilibrium equations were manipulated further for two simpler cases:
first was the axisymmetric, barotropic and incompressible XMHD and HMHD and
second the helically symmetric barotropic and incompressible HMHD. Both systems
with barotropic closures were cast in Grad-Shafranov-Bernoulli (GSB) forms, which
describe completely the respective equilibria.

The axisymmetric HMHD GSB equations are integrated numerically using a finite
difference solver which employs the iterative SOR method to solve the system resulting
from the discretization of the partial differential equation for ψ, while the differential
equation for ϕ and the Bernoulli equation are treated as algebraic equations. The
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solution was pursued on a D-Shaped domain, enclosed by a diverted boundary with
lower x-point and ITER-relevant geometric characteristics. A pressure-related free
function was chosen appropriately so as a pressure pedestal to be formed. The results
show accumulation of sheared poloidal flow and toroidal current density in the external
transport barrier region due to the steep density gradients therein. It is also observed
that despite the fact that the influence of the Hall contributions on several equilibrium
quantities of interest (pressure, mass density, current density, etc) is rather weak, it
strongly affects the flow profiles and results in separation of magnetic and ion flow sur-
faces. Therefore, we conclude that when computing equilibria with strong flows that
are to be used as initial conditions, for example in transport and turbulence studies,
one should probably employ two fluid models such as those used in the present thesis.
Even if the Hall parameter is small, strong flows may induce separation of the ionic
surfaces as predicted by the Hall MHD model.

In the incompressible case, Bernoulli’s equation can no longer be derived via the
standard EC principle but one has to return to the primary equations of the model.
The Bernoulli equation decouples from the equilibrium PDE system, becoming a sec-
ondary condition for the computation of the pressure. As an example, a particular
case of equilibria was studied by means of an analytical solution. The application con-
cerns an incompressible, helically symmetric plasma described by HMHD, for which
we derived an analytic double-Beltrami solution and constructed an equilibrium con-
figuration with nonplanar helical axis that can be regarded as a straight-stellarator-like
equilibrium.

The XMHD equilibrium equations are new in literature and therefore, their prop-
erties are not yet elucidated. One feature of particular importance is the classification
of the equilibrium PDEs. We examined this problem by deriving the ellipticity condi-
tion for the complete system and by further investigating some special cases. It turned
out that the quasineutrality assumption together with the inclusion of electron inertia
are of importance for the final form of the ellipticity condition. We derived a nec-
essary and sufficient ellipticity condition from which a simplified sufficient condition
can be deduced. The latter becomes necessary under certain assumptions, indicating
that electron inertia lowers the threshold of the maximum poloidal center of mass
velocity for the system to be elliptic. In particular, the electron inertial contribution
may become considerable within regions of low mass density. Also, we found that
in the context of XMHD, in principle, even static equilibrium equations can become
hyperbolic, a consequence of the finite electron inertia.

In Chapter 4 we derived sufficient stability criteria, exploiting the Hamiltonian
structure of the XMHD model via the EC and DA methods. In addition, Lagrangian
stability is studied within a mixed Lagrangian-Eulerian description. Using the EC
method we ascertained that indefinite terms appear in the second variation of the EC
functional, occurring due to the vorticity-magnetic field coupling induced by the form
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of the Casimir invariants. We side-stepped this problem by either considering axisym-
metric equilibria with purely toroidal flow or special perturbations, assumptions that
enable the removal of the indefiniteness. For the special case of axisymmetric HMHD
equilibria with purely toroidal flow, we implemented the corresponding stability crite-
rion for ITER-like Tokamak equilibria. It turned out that for our numerical equilibria,
the “compressible” part of the criterion is satisfied only within a narrow region in the
high field side of the configuration if β > 1%. Also, it is observed that increasing the
Hall parameter is beneficial for stability, improving the stability diagrams.

To study stability under three dimensional perturbations we employed the DA
method, which furthermore can be applied on the study of generic equilibria by re-
stricting the perturbations to be tangent on the Casimir leaves. We found that the
resulting criterion has a smooth MHD limit in contrast with the EC criteria. Also, its
HMHD and MHD limits are consistent with previous studies.

We applied also Lagrangian stability analysis for the quasineutral, two-fluid model
written in XMHD-like variables, namely the Lagrangian counterparts of the center of
mass velocity and current density. Subsequently employing the Lagrange-Euler map
and upon performing a Legendre transformation we found the governing Hamiltonian
for linear dynamics in the Eulerian viewpoint. Considering massless electrons, the def-
inition of one of the two canonical momenta led to a relation between the perturbed
magnetic potential and canonical variables. Requiring this relation to be preserved by
the dynamics, gave rise to a dynamical constraint; whence we found the solution to
the perturbed induction equation, namely B1 = ∇× [(ζ − diη) ×B]. To our knowl-
edge, this result has never been obtained by such methods before. In addition, by
this procedure we generalized the HMHD energy principle of [15] so as to include the
electron entropy and pressure contributions.

In Chapter 5, alternative bracket formulations for the incompressible XMHD equa-
tions were constructed, either using trilinear brackets, i.e. infinite dimensional gen-
eralizations of the classical Nambu bracket, or other bilinear forms, which reproduce
the dynamics correctly when they act on a generalized helicity functional, instead of
the Hamiltonian. Subsequently, a restriction of the dynamics to respect translational
symmetry was imposed in order to retrieve the useful 4-field model of [53]. Although
a proof of the existence or nonexistence of the corresponding Jacobi identities was
not pursued, it is argued that these formulations are useful from a practical point of
view for constructing conservative codes that avoid spurious dissipation of energy and
helicity and also instabilities due to energy accumulation in unresolved scales.

The chapter closes with an attempt to use the energy-Casimir ingredients, to recon-
struct the dynamics. For this purpose, the Hamiltonian and the Casimirs of the simple
RMHD model were considered in order to derive a generic 2D hydromagnetic model
that conserves the three ideal RMHD invariants by imposing a priori the RMHD con-
servation laws as orthogonality conditions. The dynamical equations are constructed in
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a heuristic way using the Jacobi-Poisson bracket as a building block. The Lie-Poisson
and the Nambu brackets, for this generic model follow as simple consequences of the
construction procedure. In addition, three families of hydromagnetic models that con-
serve any two out of the three RMHD invariants, were produced. It is proposed that
some of these, or similar models, could be candidates for incorporating small length
scale physics into the RMHD framework and as conservative regularizations of the
RMHD system, preventing the flow from forming vorticity singularities in numerical
simulations. Also, one can argue that some of these models could potentially be useful
in regulating the ruggedness of the helicities and the energy individually by introduc-
ing small nondissipative terms. It is though to be proved if the proposed approach
can potentially have other applications, and if some of the models presented here are
indeed of physical relevance or practical importance.

6.2 Future prospects

The variety of methods and approaches employed in this study gives rise to new ideas
on several potential future extensions, adaptations and developments. Some of these
ideas can be classified in four main categories. The first concerns the physics con-
tained in the models studied in this thesis, which can be enriched including additional
physical mechanisms and considering additional possibilities that pertain to fusion
and astrophysical plasmas. Second is the development of more versatile and robust
numerical schemes for the equilibrium problem, which will allow for the introduction
of additional contributions such as electron inertia and also for a more efficient rep-
resentation of shaped domains. Third is the implementation of the stability criteria
derived herein for practical applications and fourth, the development of conservative
numerical schemes based on the trilinear bracket descriptions of Chapter 5.

More specifically, kinetic effects could be incorporated into the XMHD framework
in future studies. For example hybrid fluid-kinetic Hamiltonian models have already
been employed in the framework of MHD forming EC principles for planar plasmas
[136] and deriving new stability criteria. The motivation is that the inclusion of kinetic
effects is important for a multiscale description, especially when energetic particle pop-
ulations exist within the plasma. Another possibility is the inclusion of anisotropic
pressure effects which is justified by the difference of the thermal conductivities par-
allel and perpendicular to the magnetic field lines when B is strong, as is the case in
Tokamaks.

Regarding equilibrium we can think of several new directions for obtaining novel
extensions. For example the inclusion of electron inertial effects can be effected upon
introducing into our numerical scheme the third flux function ξ and the corresponding
Grad-Shafranov equation. A second extension could be the utilization of conformal
mapping techniques in order to transform the physical domain in a computational
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domain of simpler shape, e.g. a disk. This will facilitate an accurate representation of
the boundary without the need of considering dense grids which are computationally
inconvenient. In addition, there are some particularly interesting recent developments
in the computation of MHD equilibria using relaxation methods, such as the simulated
annealing approach [137] and the relaxation via collision brackets [138]. Employing
these new methods and introducing additionally two fluid effects seems particularly
appealing.

Regarding stability, one can easily understand that the dynamically accessible and
Lagrangian stability criteria found in this thesis are difficult to be applied on practical
computations. One should resort to special cases, e.g. equilibria with purely toroidal
flows, to find integrals that can simplify the criteria and lead to explicit sufficient
stability conditions such as the MHD condition of reference [139]. Therefore, an in-
teresting future extension could be the pursuit of special, simplified explicit criteria
within the two fluid context or other approaches involving for example spectral anal-
ysis.

Finally, one of the most exciting prospects is the utilization of both structure
preserving and simpler conservative numerical algorithms for the simulation of the
nonlinear dynamics of models with electron inertia. For example, a variational inte-
grator approach such as the one employed in [140] could also be employed for spatially
reduced XMHD models for simulating collisionless reconnection mediated by both ion
and electron dynamics. As a final point, the trilinear brackets computed in Chapter
5 could be employed for constructing conservative numerical algorithms that will pre-
serve both the energy and an additional Casimir to high precision, thus improving the
stability and the fidelity of simulations.





Appendix A

Outline of the numerical scheme of
Chapter 3

The core of the solver that was constructed to compute barotropic HMHD equilibria
with axial symmetry is a discretized version of Eq. (3.46). For this discretization,
central finite difference approximations of the derivatives were employed yielding the
following discrete form of (3.46)

(∆∗ψ)i,j =
ψi+1,j − 2ψi,j + ψi−1,j

h2
r

− 1

ri

ψi+1,j − ψi−1,j

2hr

+
ψi,j+1 − 2ψi,j + ψi,j−1

h2
z

= rhsψ(ri, ρi,j , ψi,j , ϕi,j) , (A.1)

where hr and hz are the discretization lengths in the r and z direction, respectively
and rhsψ = −G′(F + G) − ρr2N ′ − ρ(ϕ − ψ)/d2

i . The system of algebraic equations
that results from (A.1) is solved iteratively using the SOR method, i.e. starting from
an initial iterate, which is a known initial state1, we compute the next iterate using
the formula

ψ
(n+1)
i,j = ωΨi,j + (1− ω)ψ

(n)
i,j , (A.2)

where 0 < ω < 2 is the relaxation parameter and

Ψi,j =
1

C11

[
rhsψ(ri, ρ

(n)
i,j , ψ

(n)
i,j , ϕ

(n)
i,j )− C21ψ

(n)
i+1,j

−C01ψ
(n+1)
i−1,j − C12ψ

(n)
i,j+1 − C10ψ

(n+1)
i,j−1

]
, (A.3)

1In our case this is a static HMHD state computed previously also using the SOR algorithm. The
initial condition for this static state was ψ = 0, ρ = 0.



126 Appendix A. Outline of the numerical scheme of Chapter 3

with

C11 = −2
h2
r + h2

z

h2
rh

2
z

, (A.4)

C12 = C10 =
1

h2
z

, (A.5)

C21 =
1

h2
r

− 1

2rihr
, (A.6)

C21 =
1

h2
r

+
1

2rihr
. (A.7)

We employ a red-black ordering which means that we have a “checkerboard” grid
that is sweeped in two steps: in the first half-sweep we compute the red points with
mod(i + j, 2) = 0 and subsequently in the second half-sweep the black points with
mod(i + j, 2) = 1. The iteration is repeated until we have a good convergence below
a predetermined small tolerance in the convergence rate and also in the residual error
of ψ defined as

reψ = max((∆ψ(n+1))i,j − rhsψ(ri, ρ
(n+1)
i,j , ψ

(n+1)
i,j , ϕ

(n+1)
i,j )) ,

i = 1, ..., Nr , j = 1, ..., Nz . (A.8)

The updated mass density ρ(n+1) is computed from the Bernoulli equation (3.48) using
Brent’s algorithm which is described below and ϕ(n+1) is computed upon solving the
discrete version of (3.45) for (ϕ− ψ), that is

ϕ
(n+1)
i,j = ψ

(n+1)
i,j +

d2
i

ρ
(n+1)
i,j

{[
F(ϕ(n)) + G(ψ(n+1))

]
F ′(ϕ(n)) + r2ρ(n+1)M′(ϕ(n))

−d2
i r

2F ′(ϕ(n))∇ ·

(
∇F(ϕ(n))

r2ρ(n+1)

)}
i,j

.(A.9)

Within the D-shaped domain the solution is initialized with a static HMHD (ϕ(0) =

ψ(0)) solution ψ(0) and a typical peaked-on-axis mass density ρ(0). The grid points
lying inside the boundary are labeled with an index = 1 while those lying outside have
index = 0. This assignment is done automatically upon comparing the distance of any
grid point with the corresponding distance of the boundary curve from the geometric
center. For index = 0 we set ψ = ϕ = ρ = 0 which are our boundary conditions and
subsequently the iterations are updating only the values of the inner points.
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Equilibrium solver pseudocode
input ψ(0) (initial iterate for ψ), ρ(0) (initial iterate for ρ), ω (relaxation parameter),
Nr, Nz, tol (tolerance)
for i = 1, ..., Nr

for j = 1, ..., Nz

ψi,j ←− 0

ϕi,j ←− 0

ρi,j ←− 0

if index = 1 then
ψi,j ←− ψ(0)

i,j

ϕi,j ←− ψ(0)
i,j

ρi,j ←− ρ(0)
i,j

end if
end for
end for
while (cr > tol) ∨ (re > tol) do
ψold ←− ψ
isw ←− 1

for hsw = 1, 2 (half-sweeps)
jsw ←− isw
for i = 2, Nr − 1

for j = jsw + 1, Nz − 1, 2

if index = 1 then
ψi,j ←− ωΨi,j + (1− ω)ψi,j (Ψ computed by (A.3))
ρi,j ←− brent(ρmin, ρmax, b(ρ))

ϕi,j ←− rhs of (A.9)
end if
end for
jsw ←− 3− jsw
end for
isw ←− 3− jsw
adapt ω to accelerate convergence
end for
cr ←− max(|ψ − ψold|)
re←− max(|∆∗ψ − rhsψ|)
end while
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Brent’s algorithm pseudocode
input a, b, f , tol (a = ρmin, b = ρmax, f = b(ρ) i.e. the Bernoulli function)
test if f(a)f(b) ≤ 0 otherwise exit
if |f(a)| < |f(b)| then
swap(a, b)

end if
c←− a
set mflag
while |b− a| > tol do
if f(a) 6= f(c) and f(b) 6= f(c) then
s←− af(b)f(c)

[f(a)−f(b)][f(a)−f(c)] + bf(c)f(a)
[f(b)−f(c)][f(b)−f(a)] + cf(a)f(b)

[f(c)−f(a)][f(c)−f(b)]

(inverse quadratic interpolation)
else
s←− b− f(b) b−a

f(b)−f(a) (secant)
end if
if (s /∈ [(3a+ b)/4, b]) ∨ (mflag set ∧ (|s− b| ≥ |b− c|/2)) ∨
∨(mflag cleared ∧ (|s− b| ≥ |c− d|/2)) ∨
∨ (mflag set ∧ (|b− c| < |δ|)) ∨ (mflag cleared ∧ |c− d| < |δ|) then
s←− a+b

2 (bisection)
set mflag
else
clear mflag
end if
d←− c
c←− b
if f(a)f(s) < 0 then
b←− s
else
a←− s
end if
if |f(a)| < |f(b)| then
swap(a, b)

end if
end while
return b



Appendix B

Direct derivation of incompressible,
helically symmetric XMHD
Grad-Shafranov equations

The direct derivation of the incompressible Grad-Shafranov system is effected upon
projecting appropriately the XMHD stationary equations obtained from (1.27)– (1.28)
with ∂tu = 0 and ρ = 1, i.e.

v × (∇× v) + (∇×B)×B∗ = ∇p̃ , (B.1)

[v − di(∇×B)]×B∗ + d2
e(∇×B)× (∇× v) = ∇Φ̃ , (B.2)

where p̃ := p+ |v|2/2 + d2
e|J|2/2 and Φ̃ := Φ− pe. From the helical representation for

the fields (2.6)–(2.7) and their curls (2.9)–(2.10) we find that the generalized vorticities

Bγ = B∗ + γ∇× v , (B.3)

Bµ = B∗ + µ∇× v , (B.4)

can be decomposed as

Bγ = k−1Bγ
hh +∇ϕ× h , (B.5)

Bµ = k−1Bµ
hh +∇ξ × h (B.6)

with

Bγ
h = B∗h + γk−1Lχ− 2n`γk2vh , (B.7)

Bµ
h = B∗h + µk−1Lχ− 2n`µk2vh , (B.8)

ϕ = ψ∗ + γk−1vh , (B.9)

ξ = ψ∗ + µk−1vh . (B.10)
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Performing the operation γ((B.1)) + (B.2) we find

v ×Bγ + (γ − di)J×B∗ + d2
eJ× (∇× v) = ∇f , (B.11)

where f := Φ̃+γp̃. Projecting the equation above along Bγ and exploiting the relation
d2
e = γ(γ − di) we find Bγ · ∇f = 0 which implies

Φ̃ + γp̃ = f(ϕ) . (B.12)

Similarly, forming µ((B.1)) + (B.2) and projecting along Bµ we find

Φ̃ + µp̃ = g(ξ) . (B.13)

Note that f and g represent arbitrary functions of ϕ and ξ, respectively. In view of
the above results we can write γ((B.1)) + (B.2) and µ((B.1)) + (B.2) as

(v − µJ)×Bγ = f ′∇ϕ , (B.14)

(v − γJ)×Bµ = g′∇ξ , (B.15)

where γ−di = −µ and µ−di = −γ have been used. Inserting the helically symmetric
fields (2.6)–(2.7) into (B.14) results in

k(vh − µJh)∇ϕ− kBγ
h∇(χ− µk−1Bh) + [χ− µk−1Bh, ϕ]h = f ′∇ϕ , (B.16)

where [a, b] = (∇a×∇b) · h. Projecting (B.16) along h yields

χ− µk−1Bh = K(ϕ) . (B.17)

Using this result, after projecting (B.16) along ∇ϕ we find

k(vh − µJh)− kBγ
hK
′(ϕ) = f ′(ϕ) . (B.18)

Following a similar procedure for (B.15) the following relations can be derived

χ− γk−1Bh = Λ(ξ) , (B.19)

k(vh − γJh)− kBµ
hΛ′(ξ) = g′(ξ) . (B.20)

From Eqs. (B.17) and (B.19) one can readily find that

Bh = k
K(ϕ)− Λ(ξ)

γ − µ
, (B.21)

χ =
γK(ϕ)− µΛ(ξ)

γ − µ
. (B.22)
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Substituting now Jh = k−1Lψ − 2n`k2Bh (see Chapter 2) and (B.7) in (B.18) yields

kvh − µk(k−1Lψ − 2n`k2Bh)− k(B∗h + γk−1Lχ− 2n`γk2vh)K ′(ϕ) = f ′(ϕ) . (B.23)

Upon defining

F(ϕ) :=
K(ϕ)

γ − µ
, G(ξ) :=

Λ(ξ)

µ− γ
, (B.24)

M(ϕ) :=
f(ϕ)

γ − µ
, N (ξ) :=

g(ξ)

µ− γ
, (B.25)

we have

Bh = k(F + G) , χ = γF + µG . (B.26)

In view of (2.35) and using (B.26), after some algebra Eq. (B.23) becomes

(γ2 + d2
e)F ′LF = −(1 + ς)k2F ′(F + G)−M′ −

(
µ

γ − µ
− 2n`d2

ek
2F ′
)
Lψ

+2n`
µ

γ − µ
k4(F + G) + k2

[
1

(γ − µ)2
− 2n`γk2

γ − µ
F ′
]

(ϕ− ξ) . (B.27)

Similarly, from (B.20) we can arrive at

(µ2 + d2
e)G′LG = −(1 + ς)k2G′(F + G)−N ′ +

(
γ

γ − µ
+ 2n`d2

ek
2G′
)
Lψ

−2n`
γ

γ − µ
k4(F + G)− k2

[
1

(γ − µ)2
− 2n`µk2

γ − µ
G′
]

(ϕ− ξ) . (B.28)

For the last calculations we have used (3.29) and γµ = −d2
e. The equations above are

simply Eqs. (3.33)–(3.34) with ρ = 1, as expected. Regarding the Bernoulli equation,
from

(γ − µ)M(ϕ) = Φ̃ + γp̃ , (µ− γ)N (ξ) = Φ̃ + µp̃ , (B.29)

we take

p̃ = M(ϕ) +N (ξ) , or (B.30)

p = M(ϕ) +N (ξ)− |v|
2

2
− d2

e

2
|J|2 , (B.31)

which is Eq. (3.60).
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Additional proofs for Chapter 4

C.1 XMHD equilibria with toroidal rotation

Let us consider equilibria with purely toroidal rotation. To find the equilbrium con-
ditions let us consider Eqs. (1.27), (1.29) with ∂t → 0 and v = rvφ∇φ. In this case
the XMHD equations reduce to

r−1vφ∇(rvφ)−∇
(
h+
|v|2

2
+ d2

e

|J|2

2ρ2

)
−ρ−1

[
∆∗ψ

r2
∇ψ∗ +

B∗φ
r
∇(rBφ)−∇(rBφ) · (∇ψ∗ ×∇φ)∇φ

]
= 0 , (C.1)

r−1vφ∇ψ∗ − ρ−1

{
di

[
−∆∗ψ

r2
∇ψ∗ −

B∗φ
r
∇(rBφ) +∇(rBφ) · (∇ψ∗ ×∇φ)∇φ

]
+d2

e

[
∆∗ψ

r2
∇(rvφ)−∇(rBφ) · (∇(rvφ)×∇φ)∇φ

]}
= ∇Φ̃ , (C.2)

where Φ̃ = Φ− dihe + d2
eρ
−1v · J− did2

eρ
−2|J|2, with Φ and he being the equilibrium

electrostatic potential and electron specific enthalpy, respectively. Projecting Eq. (C.1)
along ∇φ we find

∇(rBφ) · (∇ψ∗ ×∇φ) = 0 ,⇔ rBφ = F (ψ∗) . (C.3)

Projecting Eq. (C.2) along ∇φ and using result (C.3) we find

∇(rvφ) · (∇ψ∗ ×∇φ) = 0 ,⇔ rvφ = G(ψ∗) . (C.4)

Eqs. (C.3) and (C.4) imply J = −∆∗ψ∇φ+F ′(ψ∗)∇ψ∗×∇φ and ω = G′(ψ∗)∇ψ∗×
∇φ, respectively. Therefore J · ∇ψ∗ = ω · ∇ψ∗ = 0. This means that all three
vector fields v, B∗ and J lie on common flux surfaces labeled by ψ∗. This property of
common flux surfaces, was crucial for the derivation of a sufficient stability criterion in
the context of MHD [139] for a three-dimensional incompressible displacement vector
field. It is thus interesting to pursue the investigation of this possibility also in the
context of XMHD in the future. As regards the current application, we confine the
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perturbation vectors to be tangent to the characteristic surfaces. Also note that using
result (C.3) and projecting (C.1) along B∗ we find

∇h̃ · (∇ψ∗ ×∇φ) = 0 ,⇔ h̃ = h̃(ψ∗) . (C.5)

For equilibria with purely toroidal flows, subject to perturbations with displacement
vectors tangent to the common surfaces, it easy to understand that every product of
the form bi × cj where b = (ζ,η) and c = (v,B∗,J), will be parallel to the vector
∇ψ∗ at each surface point, i.e. bi × cj = gij(r, z)∇ψ∗. Therefore every vector of the
form ∇×(b×c) will be ∇g×∇ψ∗ and consequently every term (bi×cj) ·∇×(bk×c`)
in (4.72) will vanish. The same holds also for terms containing bi · (cj × ck), since
(cj×ck) is normal to the characteristic surfaces at each point, if not zero. In addition
the term containing ζ · ∇h̃ will vanish as well due to (C.5). A rigorous proof can be
carried out upon writing

ζ = rζφ∇φ+
(ζ ·B∗p)
|B∗p|2

B∗p , (C.6)

which is a general representation of vectors tangent to the surfaces ψ∗ = const.,
similarly for η and computing every single term in (4.72), leading eventually to (4.76).

C.2 Proof of relation (4.78)

To prove Eq. (4.78), one may start from the lhs and try to prove that it equals to the
rhs, upon performing some vector analysis manipulations and also using the divergence
theorem as follows ∫

d3x ρ(ζ × b) · (a · ∇η − η · ∇a)

=

∫
d3x ρ {a · ∇ [η · (ζ × b)]− η · (a · ∇)(ζ × b)− (ζ × b) · (η · ∇a)}

= −
∫
d3x

{
η · (ζ × b)∇ · (ρa) + ρ [(b× η) · (a · ∇ζ) + (η × ζ) · (a · ∇b)]

+(ζ × b) · (η · ∇a)
}
, (C.7)

where the last expression was obtained upon integrating by parts and omitting the
resulting surface integral. Now one can use the following vector formula

(a× b) · (c · ∇d) + (c× a) · (b · ∇d)

+(b× c) · (a · ∇d) = (a× b) · c(∇ · d) , (C.8)



C.2. Proof of relation (4.78) 135

to write the last term in (C.7) as

−
∫
d3x ρ(ζ × b) · (η · ∇a) = −

∫
d3x ρ

[
(ζ × b) · η(∇ · a)

−(η × ζ) · (b · ∇a)− (b× η) · (ζ · ∇a)
]
, (C.9)

therefore one has∫
d3x ρ(ζ × b) · (a · ∇η − η · ∇a) =

∫
d3x ρ(η × b) · (a · ∇ζ − ζ · ∇a)

−
∫
d3x (η × ζ) · [b∇ · (ρa) + ρ(b∇ · a + a · ∇b− b · ∇a)] . (C.10)

Using the following vector identity

∇× (a× b) = a∇ · b− b∇ · a + b · ∇a− a · ∇b (C.11)

(C.10) takes the form (4.78).
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Energy-Casimir stability of planar
XMHD equilibria

A simple case for which the Energy-Casimir stability analysis works without the need
of making a posteriori restrictive assumptions, is obtained upon considering a planar
XMHD model. That is, the plasma motion takes place on a plane perpendicular to a
magnetic field with straight field lines. Therefore, the appropriate field representation
is given by

B = Bz ẑ , (D.1)

v = ∇χ× ẑ +∇Υ , (D.2)

B∗z = Bz − d2
e∇ ·

(
∇Bz
ρ

)
. (D.3)

The corresponding Poisson bracket is given by bracket (39) of [71] with ψ∗ = vz =

Fvz = Fψ∗ = 0, i.e.

{F,G}planar =

∫
d2x
{
Fρ∆Gw −Gρ∆Fw + ρ−1Ω

(
[FΩ, GΩ] + [Fw, Gw]

+∇Fw · ∇GΩ −∇FΩ · ∇Gw
)

+ ρ−1B∗z
(
[FΩ, GB∗z ]− [GΩ, FB∗z ]

+∇Fw · ∇GB∗z −∇Gw · ∇FB∗z
)
− diρ−1B∗z [FB∗z , GB∗z ] + d2

eρ
−1Ω[FB∗z , GB∗z ]

}
, (D.4)

where Ω = −∆χ and w = ∆Υ. The Hamiltonian reads as follows

H =
1

2

∫
d2x

(
ρ|∇χ|2 + ρ|∇Υ|2 + 2ρ[Υ, χ] + 2ρU(ρ) +B∗zBz

)
. (D.5)

From the Poisson bracket (D.4) we can find that planar XMHD possess the following
two infinite families of Casimir invariants

C± =

∫
d2xρF±

(
B±z
ρ

)
, (D.6)
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where B±z := B∗z + γ±Ω with γ± = (di±
√
d2
i + 4d2

e)/2. Applying the Energy-Casimir
variational principle we have

∫
d2x

{[
h(ρ) +

v2

2
−
∑
±

[
F± − ρ−1B±z F ′±

]
+

d2
e

2ρ2
|∇Bz|2

]
δρ

+

(
Bz −

∑
±
F ′±

)
δB∗z +

(
ρv −

∑
±
γ±∇F ′± × ẑ

)
· δv

}
= 0 , (D.7)

from which the following equilibrium equations are deduced

h(ρ) =
∑
±

[
F± − ρ−1B±z F ′±

]
− v2

2
− d2

e

2ρ2
|∇Bz|2 , (D.8)

Bz =
∑
±
F ′± , v = ρ−1

∑
±
γ±∇F ′± × ẑ . (D.9)

Let us now take the second variation of the EC functional

δ2HC =

∫
d2x

{[
h′(ρ)− d2

e

ρ3
|∇Bz|2

]
(δρ)2 + 2v · δvδρ

+ρ|δv|2 + (δBz)
2 +

d2
e

ρ
|∇δBz|2 − ρ

∑
±
F ′′±
[
δ

(
B±z
ρ

)]2}
, (D.10)

where we have used the definitions for B∗z and B±z . Upon completing squares we find

δ2HC =

∫
d2x

{
ρ−1

[
c2
s − |v|2 −

d2
e

ρ2
|∇Bz|2

]
(δρ)2 + ρ|δv + ρ−1vδρ|2

+(δBz)
2 +

d2
e

ρ
|∇δBz|2 − ρ

∑
±
F ′′±
[
δ

(
B±z
ρ

)]2}
. (D.11)

Then for the quandratic form δ2HC to be positive definite we have the following
sufficient conditions

|v|2 +
d2
e

ρ2
|∇Bz|2 < c2

s , F ′′± < 0 . (D.12)
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