The Effect of the Global Market on Investor's Behaviour

Theodosia Papachristodoulou

Supervisor: Spyros Symeonides

Contents

Abstract 1
Introduction 2
1 The investor 5
1.1 Investor's Utility 5
1.2 Investor's Expected Utility 6
1.3 Investor's Quadratic Utility Function 7
1.4 Expected Quadratic Utility Function 11
1.5 Indifference Curve of an Investor with Quadratic Utility Function 11
1.6 The slope of the Indifference Curve of a Quadratic Utility Function 12
2 The Typical Portfolio 13
2.1 The Typical Portfolio 13
2.2 Vector and matrix notation 16
2.3 Capital Market Line (Efficient Frontier) 19
2.4 The slope of the Capital Market Line 21
2.5 The Market Portfolio (M) 21
2.6 The Portfolio Separation Formula 25
3 Investor's Equilibrium 29
3.1 Equilibrium Portfolio weights (\boldsymbol{w}_{E}) 30
4 The Equilibrium Portfolio in the Home Market 31
5 The Equilibrium Portfolio in the Abroad Market 35
6 The Equilibrium Portfolio in the Global Market 39
7 Comparisons 47
7.1 Home VS Abroad 47
7.2 Home VS Global 50
7.3 Abroad VS Global 51
Conclusion 51
References 53

Abstract

An investor, with a Quadratic Utility Function, can invest in three markets: the Home, the Abroad, and the Global Market. The Global-Market portfolio can be expressed either as a weighted average of the risky assets of the Global Market, or as a weighted average of the Home- and the Abroad-Market portfolios. Defining the 2×2 variance-covariance matrix of the returns on the Home- and Abroad-Market portfolios, enables us to take into account the sign of the correlation of the returns on the two market-portfolios. We examine under what conditions the investor decides to invest in each market. The investor's decision depends on the slope of the Capital Market Line (Capital Market Effect), as well as on the measurement of risk undertaken in the equilibrium (Optimization Effect).

Introduction

In this study we examine an investor with a Quadratic Utility Function, who has the opportunity to invest in three markets: the Home, the Abroad, and the Global Market. We assume that there are N_{H} assets in the Home Market, N_{A} assets in the Abroad Market and $N_{G}=N_{H}+N_{A}$ in the Global Market. Also, we assume that there is a risk-free asset, which is the same in all three markets. Under these assumptions, the Global-Market portfolio can be alternatively expressed using the Home-Market and the Abroad-Market portfolios.

The structure of this study is as follows:
In Chapter 1, we prove that whichever the type of the investor's utility function, it can be approximated by the quadratic one. According to that we present the investor's indifference curve.

In Chapter 2, we analyse thoroughly the typical portfolio in any Market with n risky assets and one risk-free asset. We find the Capital Market Line and its slope and we express the typical portfolio using the Portfolio Separation Formula.

In Chapter 3, we use the results from Chapters 1 and 2 to calculate the equilibrium of an investor with quadratic utility function and a Market with n risky assets and a risk-free asset.

In Chapters 4 and 5, we describe (i) the typical portfolios in the Home and the Abroad Market and (ii) the Home-Market and Abroad-Market portfolios, that follow the properties of the typical portfolio and the market portfolio assumed in Chapter 2, respectively. We, also, find the investor's equilibrium in each Market, and we rewrite the two typical portfolios using the Portfolio Separation Formula.

In Chapter 6, we express the typical portfolio in the Global Market in accordance with the typical portfolio assumed in Chapter 2. Moreover, we find the investor's equilibrium and, using the Portfolio Separation Formula, we rewrite the typical portfolio in the Global Market as a function of the risk-free asset and the typical portfolios in the Home and the Abroad Market. Also, we express the Global-Market portfolio using two alternative methods: On the one hand, we write its equation as in Chapter 2; and on the other hand, we represent it as a weighted average of only two risky assets, the Home-Market and the Abroad-Market portfolios.

In Chapter 7, we make comparisons on where the investor will choose to invest, based on the Capital Market Effect and the Optimization Effect.

Chapter 1

The investor

1.1 Investor's Utility

Without loss of generality, we assume a one-period investment horizon. Let K_{t} be the initial capital invested at time t in a portfolio P, and K_{t+1} be the final capital at the end of the investment period. Then, the return, r_{P}, on portfolio P satisfies the equation:

$$
\begin{equation*}
x=1+r_{P} \tag{1.1}
\end{equation*}
$$

Using the above assumptions, the investor's final capital can be expressed as follows:

$$
\begin{align*}
K_{t+1} & =\left(1+r_{P}\right) K_{t} \tag{1.2}\\
\Longrightarrow\left(1+r_{P}\right) & =\frac{K_{t+1}}{K_{t}} \\
\Longrightarrow x & =\frac{K_{t+1}}{K_{t}} \tag{1.3}
\end{align*}
$$

where $K_{t}>0 \& K_{t+1} \geq 0$. Therefore,

$$
\begin{equation*}
x=\frac{K_{t+1}}{K_{t}} \geq 0 \tag{1.4}
\end{equation*}
$$

In that case, we assume r_{P}, x to be normally distributed random variables, and:

$$
\begin{equation*}
r_{P} \sim \mathrm{~N}\left(\mu_{P}, \sigma_{P}^{2}\right) \tag{1.5}
\end{equation*}
$$

We also know that:

$$
\begin{align*}
x & =1+r_{P} \sim \mathrm{~N}\left(\mu_{x}, \sigma_{x}^{2}\right) \tag{1.6}\\
\text { where: } \mu_{x} & =1+\mu_{P} \tag{1.7}\\
\sigma_{x}^{2} & =\sigma_{P}^{2} \tag{1.8}
\end{align*}
$$

Equation (1.6) implies the following:

$$
\begin{align*}
\mathrm{E}\left(x-\mu_{x}\right) & =0 \tag{1.9a}\\
\mathrm{E}\left[\left(x-\mu_{x}\right)^{2}\right] & =\sigma_{x}^{2} \tag{1.9b}\\
\mathrm{E}\left[\left(x-\mu_{x}\right)^{3}\right] & =0 \tag{1.9c}\\
\mathrm{E}\left[\left(x-\mu_{x}\right)^{4}\right] & =3 \sigma_{x}^{4} \tag{1.9d}\\
\mathrm{E}\left[\left(x-\mu_{x}\right)^{n}\right] & =0, \forall n>4 \tag{1.9e}
\end{align*}
$$

1.2 Investor's Expected Utility

We assume that the investor's expected utility function is

$$
\begin{equation*}
v(., .)=\mathrm{E}\{u(x)\}=\mathrm{E}\left\{u\left(1+r_{P}\right)\right\} \tag{1.10}
\end{equation*}
$$

Let

$$
\begin{align*}
u^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\{u(x)\} \tag{1.11a}\\
u^{\prime \prime}(x) & =\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\{u(x)\} \tag{1.11b}\\
u^{\prime \prime \prime}(x) & =\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}\{u(x)\} \tag{1.11c}\\
u^{\prime \prime \prime \prime}(x) & =\frac{\mathrm{d}^{4}}{\mathrm{~d} x^{4}}\{u(x)\} \tag{1.11d}
\end{align*}
$$

be the first-, second-, third- and forth-order derivatives of $u($.$) with respect to x$. Then, the investor's utility function can be approximated by the following Taylor Series expansion around μ_{x} :

$$
\begin{equation*}
u(x)=u\left(\mu_{x}\right)+u^{\prime}\left(\mu_{x}\right)\left(x-\mu_{x}\right)+\frac{1}{2!} u^{\prime \prime}\left(\mu_{x}\right)\left(x-\mu_{x}\right)^{2}+\frac{1}{3!} u^{\prime \prime \prime}\left(\mu_{x}\right)\left(x-\mu_{x}\right)^{3}+\frac{1}{4!} u^{\prime \prime \prime \prime}\left(\mu_{x}\right)\left(x-\mu_{x}\right)^{4}+\ldots \tag{1.12}
\end{equation*}
$$

By using Equation (1.11), the investor's expected utility can be written as:

$$
\begin{align*}
v(., .)= & \mathrm{E}\{u(x)\} \\
= & u\left(\mu_{x}\right)+u^{\prime}\left(\mu_{x}\right) \mathrm{E}\left(x-\mu_{x}\right)+\frac{1}{2} u^{\prime \prime}\left(\mu_{x}\right) \mathrm{E}\left\{\left(x-\mu_{x}\right)^{2}\right\} \\
& +\frac{1}{6} u^{\prime \prime \prime}\left(\mu_{x}\right) \mathrm{E}\left\{\left(x-\mu_{x}\right)^{3}\right\}+\frac{1}{24} u^{\prime \prime \prime \prime}\left(\mu_{x}\right) \mathrm{E}\left\{\left(x-\mu_{x}\right)^{4}\right\}+\ldots \\
= & u\left(\mu_{x}\right)+u^{\prime}\left(\mu_{x}\right) \cdot 0+\frac{1}{2} u^{\prime \prime}\left(\mu_{x}\right) \sigma_{x}^{2}+\frac{1}{6} u^{\prime \prime \prime}\left(\mu_{x}\right) \cdot 0+\frac{1}{24} u^{\prime \prime \prime \prime}\left(\mu_{x}\right) 3 \sigma_{x}^{4}+\ldots \\
= & v\left(\mu_{x}, \sigma_{x}\right) \\
= & v\left(1+\mu_{P}, \sigma_{P}^{2}\right) \\
\Rightarrow v(., .)= & v\left(\mu_{P}, \sigma_{P}^{2}\right) \tag{1.13}
\end{align*}
$$

The investor's expected utility function, $v\left(\mu_{P}, \sigma_{p}^{2}\right)$, has the following properties:

$$
\begin{align*}
& \frac{\partial}{\partial \mu_{P}}\left\{v\left(\mu_{P}, \sigma_{P}^{2}\right)\right\}>0 \tag{1.14a}\\
& \frac{\partial}{\partial \sigma_{P}}\left\{v\left(\mu_{P}, \sigma_{P}^{2}\right)\right\}<0 \tag{1.14b}
\end{align*}
$$

Equations (1.14a), (1.14b) imply that the marginal rate of substitution of μ_{P} for σ_{P}, is:

$$
\begin{equation*}
\frac{\mathrm{d} \mu_{P}}{\mathrm{~d} \sigma_{P}}=-\frac{\frac{\partial v\left(\mu_{P}, \sigma_{P}^{2}\right)}{\partial \sigma_{P}}}{\frac{\partial v\left(\mu_{P}, \sigma_{P}^{2}\right)}{\partial \mu_{P}}}>0 \tag{1.14c}
\end{equation*}
$$

1.3 Investor's Quadratic Utility Function

The Moment Generating Function of $\mathrm{N}\left(\mu, \sigma^{2}\right)$
The Moment Generating Function of the normal distribution is [1, p.71]:

$$
\begin{equation*}
M(t)=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} \tag{1.15}
\end{equation*}
$$

The first-, second-, third-, forth-order derivatives of $M(t)$ are:

$$
\begin{align*}
M^{\prime}(t)= & e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right) \tag{1.16a}\\
M^{\prime \prime}(t)= & e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right)^{2}+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\sigma^{2}\right) \tag{1.16b}\\
M^{\prime \prime \prime}(t)= & e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right)^{3}+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} 2\left(\mu+\sigma^{2} t\right)\left(\sigma^{2}\right)+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right)\left(\sigma^{2}\right) \tag{1.16c}\\
M^{\prime \prime \prime \prime}(t)= & e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right)^{4}+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} 3\left(\mu+\sigma^{2} t\right)^{2}\left(\sigma^{2}\right)+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} 2\left(\mu+\sigma^{2} t\right)^{2}\left(\sigma^{2}\right) \\
& +e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}} 2\left(\sigma^{2}\right)^{2}+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\mu+\sigma^{2} t\right)^{2}\left(\sigma^{2}\right)+e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\left(\sigma^{2}\right)^{2} \tag{1.16d}
\end{align*}
$$

Raw Moments of $\mathrm{N}\left(\mu, \sigma^{2}\right)$

By using Equations (1.16) with $t=0$, we can calculate the first four raw momonets of $\mathrm{N}\left(\mu, \sigma^{2}\right)$ [1, p.67]:

$$
\begin{align*}
& \mu_{1}^{\prime}=M^{\prime}(0)=\mu \tag{1.17a}\\
& \mu_{2}^{\prime}=M^{\prime \prime}(0)=\mu^{2}+\sigma^{2} \tag{1.17b}\\
& \mu_{3}^{\prime}=M^{\prime \prime \prime}(0)=\mu^{3}+2 \mu \sigma^{2}+\mu \sigma^{2}=\mu^{3}+3 \mu \sigma^{2} \tag{1.17c}\\
& \mu_{4}^{\prime}=M^{\prime \prime \prime \prime}(0)=\mu^{4}+3 \mu^{2} \sigma^{2}+2 \mu^{2} \sigma^{2}+2 \sigma^{4}+\mu^{2} \sigma^{2}+\sigma^{4}=\mu^{4}+6 \mu^{2} \sigma^{2}+3 \sigma^{4} \tag{1.17d}
\end{align*}
$$

Equations (1.17) imply that for any random variable $r \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ we have:

$$
\begin{align*}
\mathrm{E}(r) & =\mu_{1}^{\prime} \tag{1.18a}\\
\mathrm{E}\left(r^{2}\right) & =\mu_{2}^{\prime} \tag{1.18b}\\
\mathrm{E}\left(r^{3}\right) & =\mu_{3}^{\prime} \tag{1.18c}\\
\mathrm{E}\left(r^{4}\right) & =\mu_{4}^{\prime} \tag{1.18d}
\end{align*}
$$

The Central Moments

For any random variable $r \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, the $i^{\text {th }}$-order central moment can be calculated as [1, p.64]

$$
\begin{equation*}
\mu_{i}=\mathrm{E}\left\{[r-\mathrm{E}(r)]^{i}\right\}, \tag{1.19}
\end{equation*}
$$

which implies that the first four central moments are:

$$
\begin{aligned}
& \mu_{1}=\mathrm{E}(r-\mu)=0 \\
& \mu_{2}=\mathrm{E}\left\{(r-\mu)^{2}\right\}=\sigma^{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2} \\
& \mu_{3}=\mathrm{E}\left\{(r-\mu)^{3}\right\}=0=\mu_{3}^{\prime}-3 \mu_{2}^{\prime} \mu_{1}^{\prime}+2\left(\mu_{1}^{\prime}\right)^{3} \\
& \mu_{4}=\mathrm{E}\left\{(r-\mu)^{4}\right\}=3 \sigma^{3}=\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu_{1}^{\prime}+6 \mu_{2}^{\prime}\left(\mu_{1}^{\prime}\right)^{2}-3\left(\mu_{1}^{\prime}\right)^{4}
\end{aligned}
$$

Note that for any random variable $r \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, the fifth-, sixth-, etc central moment are all equal to zero.

A quadratic approach of the investor's utility function

By using Equation (1.11), the investor's utility function can be approximated by the following Taylor expansion around 1:

$$
\begin{aligned}
u(x) & =u(1)+u^{\prime}(1)(x-1)+\frac{1}{2!} u^{\prime \prime}(1)(x-1)^{2}+\frac{1}{3!} u^{\prime \prime \prime}(1)(x-1)^{3}+\frac{1}{4!} u^{\prime \prime \prime \prime}(1)(x-1)^{4}+\ldots \\
& =u(1)+u^{\prime}(1) x-u^{\prime}(1)+\frac{1}{2} u^{\prime \prime}(1) x^{2}-\frac{1}{2} 2 u^{\prime \prime} x+\frac{1}{2} u^{\prime \prime}(1) x^{2}+\ldots \\
& =\left[u(1)-u^{\prime}(1)+\frac{1}{2}\right]+\left[u^{\prime}(1)-u^{\prime \prime}(1)\right] x+\frac{1}{2} u^{\prime \prime}(1) x^{2}+\ldots
\end{aligned}
$$

We define the scalars:

$$
\begin{aligned}
& \gamma_{0}=u(1)-u^{\prime}(1)+\frac{1}{2} u^{\prime \prime}(1) \\
& \gamma_{1}=u^{\prime}(1)-u^{\prime \prime}(1) \\
& \gamma_{2}=-u^{\prime \prime}(1)
\end{aligned}
$$

Then, following Markowitz [2, p.346] we conclude that the investor's utility function can be approximated by a quadratic utility of the form:

$$
\begin{equation*}
u(x)=\gamma_{0}+\gamma_{1} x-\frac{1}{2} \gamma_{2} x^{2} \tag{1.20}
\end{equation*}
$$

where:

$$
\begin{array}{r}
\gamma_{1}>0, \\
\gamma_{2}>0 \\
0 \leq x \leq \frac{\gamma_{1}}{\gamma_{2}} \tag{1.21c}
\end{array}
$$

Since, by definition, $\mu_{P}=\mathrm{E}\left(r_{P}\right)>0 \Rightarrow 1+\mu_{P}>1$

$$
\begin{align*}
& \Rightarrow \quad \mu_{x}>1 \\
& \Rightarrow \quad \frac{\gamma_{1}}{\gamma_{2}}>1 \\
& \Rightarrow \quad \gamma_{1}>\gamma_{2} \tag{1.21d}
\end{align*}
$$

The general form of the utility function can be rewritten as follows:

$$
\begin{align*}
u(x) & =u\left(1+r_{P}\right) \\
& =\gamma_{0}+\gamma_{1}\left(1+r_{P}\right)-\frac{1}{2} \gamma_{2}\left(1+r_{P}\right)^{2} \\
& =\gamma_{0}+\gamma_{1}+\gamma_{1} r_{P}-\frac{1}{2} \gamma_{2}\left(1+2 r_{P}+r_{P}^{2}\right) \\
& =\gamma_{0}+\gamma_{1}+\gamma_{1} r_{P}-\frac{1}{2} \gamma_{2}-\gamma_{2} r_{P}-\frac{1}{2} \gamma_{2} r_{P}^{2} \\
& =\gamma_{0}+\gamma_{1}-\frac{1}{2} \gamma_{2}+\left(\gamma_{1}-\gamma_{2}\right) r_{P}-\frac{1}{2} \gamma_{2} r_{P}^{2} \\
\Rightarrow u(x) & =\alpha_{0}+\alpha_{1} r_{P}-\frac{1}{2} \alpha r_{P}^{2} \tag{1.22}
\end{align*}
$$

where:

$$
\begin{align*}
& \alpha_{0}=\gamma_{0}+\gamma_{1}-\frac{1}{2} \gamma_{2} \tag{1.23a}\\
& \alpha_{1}=\gamma_{1}-\gamma_{2} \tag{1.23b}\\
& \alpha_{2}=\gamma_{2} \tag{1.23c}
\end{align*}
$$

Equation (1.23) implies that:

$$
\begin{align*}
\alpha_{1} & =\gamma_{1}-\alpha_{2} \\
\Rightarrow \gamma_{1} & =\alpha_{1}+\alpha_{2} \tag{1.24}\\
\alpha_{0} & =\gamma_{0}+\alpha_{1}+\alpha_{2}-\frac{1}{2} \alpha_{2} \\
& =\gamma_{0}+\alpha_{1}+\frac{1}{2} \alpha_{2} \\
\Rightarrow \gamma_{0} & =\alpha_{0}-\alpha_{1}-\frac{1}{2} \alpha_{2} \tag{1.25}
\end{align*}
$$

Equations (1.21b), (1.21d), (1.23b), (1.23c) imply that:

$$
\begin{align*}
& \alpha_{1}>0 \tag{1.26a}\\
& \alpha_{2}>0 \tag{1.26b}
\end{align*}
$$

Equations (1.1), (1.21c), (1.23c), (1.24) imply that:

$$
\begin{align*}
& 0 \leq x \leq \frac{\gamma_{1}}{\gamma_{2}} \\
\Rightarrow & 0 \leq 1+r_{P} \leq \frac{\gamma_{1}}{\gamma_{2}} \\
\Rightarrow & -1 \leq r_{P} \leq \frac{\gamma_{1}}{\gamma_{2}}-1 \\
\Rightarrow & -1 \leq r_{P} \leq \frac{\alpha_{1}+\alpha_{2}}{\alpha_{2}}-1 \\
\Rightarrow & -1 \leq r_{P} \leq \frac{\alpha_{1}}{\alpha_{2}} \tag{1.27}
\end{align*}
$$

Equation (1.22) implies that:

$$
\begin{equation*}
u(x)=u\left(1+r_{P}\right)=U\left(r_{P}\right)=\alpha_{0}+\alpha_{1} r_{P}-\frac{1}{2} \alpha_{2} r_{P}^{2} \tag{1.28}
\end{equation*}
$$

where:

$$
\begin{gather*}
\alpha_{1}>0 \tag{1.29}\\
\alpha_{2}>0 \tag{1.30}\\
-1 \leq r_{P} \leq \frac{\alpha_{1}}{\alpha_{2}} \tag{1.31}
\end{gather*}
$$

Since, in general, r_{P} may not be restricted only to values less than 1 , it follows that $\frac{\alpha_{1}}{\alpha_{2}}>1$.

$$
\begin{align*}
\alpha_{1} & >\alpha_{2} \tag{1.32}\\
\alpha_{1}+\alpha_{2} & >2 \alpha_{2} \tag{1.33}\\
\gamma_{1} & >2 \gamma_{2} \tag{1.34}
\end{align*}
$$

1.4 Expected Quadratic Utility Function

Equations (1.17), (1.18), (1.28) imply that the expected quadratic utility function is:

$$
\begin{align*}
v(., .) & =\mathrm{E}\{u(x)\} \\
& =\mathrm{E}\left\{u\left(1+r_{P}\right)\right\} \\
& =\mathrm{E}\left\{\alpha_{0}+\alpha_{1} r_{P}-\frac{1}{2} \alpha_{2} r_{P}^{2}\right\} \\
& =\alpha_{0}+\alpha_{1} \mathrm{E}\left(r_{P}\right)-\frac{1}{2} \alpha_{2} \mathrm{E}\left(r_{P}^{2}\right) \\
& =\alpha_{0}+\alpha_{1} \mu_{P}-\frac{1}{2} \alpha_{2}\left(\sigma_{P}^{2}+\mu_{P}^{2}\right) \\
\Rightarrow v\left(\mu_{P}, \sigma_{P}^{2}\right) & =\alpha_{0}+\alpha_{1} \mu_{P}-\frac{1}{2} \alpha_{2}\left(\sigma_{P}^{2}+\mu_{P}^{2}\right) \tag{1.35}
\end{align*}
$$

1.5 Indifference Curve of an Investor with Quadratic Utility Function

Let \mathcal{J} be a set of indices and let $j \in \mathcal{J}$ be an index of utility level such that $j=\mathrm{I}, \mathrm{II}, \ldots$

For any specific expected utility level, that is for any specific and constant value of the expected utility function, $\overline{\bar{v}_{\mathrm{I}}}$, we have:

$$
\begin{equation*}
\overline{\bar{v}}_{\mathrm{I}} \equiv \overline{\bar{v}}_{\mathrm{I}}\left(\mu_{P}, \sigma_{P}^{2}\right)=\left[\alpha_{0}+\alpha_{1} \mu_{P}-\frac{1}{2} \alpha_{2} \mu_{P}^{2}-\frac{1}{2} \alpha_{2} \sigma_{P}^{2}\right]_{\mathrm{I}} \tag{1.36}
\end{equation*}
$$

Equation (1.36) can be solved either with respect to σ_{P}^{2} or with respect to μ_{P}, as follows:

1. For any given value of μ_{P}, we solve Equation (1.36) with respect to σ_{P}^{2} as follows:

$$
\begin{align*}
\frac{1}{2} \alpha_{2} \sigma_{P_{(\mathrm{I})}}^{2} & =\alpha_{0}+\alpha_{1} \mu_{P}-\frac{1}{2} \alpha_{2} \mu_{P}^{2}-\overline{\overline{v_{\mathrm{I}}}} \\
\Rightarrow \sigma_{P_{(\mathrm{I})}}^{2} & =\frac{2}{\alpha_{2}}\left[\alpha_{0}+\alpha_{1} \mu_{P}-\frac{1}{2} \alpha_{2} \mu_{P}^{2}-\overline{\overline{v_{\mathrm{I}}}}\right] \\
& =\frac{2 \alpha_{0}+2 \alpha_{1} \mu_{P}-\alpha_{2} \mu_{P}^{2}-2 \overline{\overline{v_{\mathrm{I}}}}}{\alpha_{2}} \\
& =\frac{2 \alpha_{1} \mu_{P}-\alpha_{2} \mu_{P}^{2}+2\left(\alpha_{0}+\overline{\overline{v_{\mathrm{I}}}}\right)}{\alpha_{2}} \\
\Rightarrow \sigma_{P_{(\mathrm{I})}} & =\left[\frac{2 \alpha_{1} \mu_{P}-\alpha_{2} \mu_{P}^{2}+2\left(\alpha_{0}+\overline{v_{(\mathrm{II}}}\right)}{\alpha_{2}}\right]^{1 / 2}=\sigma_{P_{(\mathrm{I})}}\left(\mu_{P}, \overline{\overline{v_{\mathrm{I}}}}\right) \tag{1.37}
\end{align*}
$$

2. For any given value of σ_{P}^{2}, we solve Equation (1.36) with respect to μ_{P} as follows:

$$
\begin{aligned}
-\frac{1}{2} \alpha_{2} \mu_{P_{\mathrm{I}}}^{2}+\alpha_{1} \mu_{P_{\mathrm{I}}}+\left(\alpha_{0}-\frac{1}{2} \alpha_{2} \sigma_{P}^{2}-\overline{\overline{v_{\mathrm{I}}}}\right) & =0 \\
\Rightarrow-\alpha_{2} \mu_{P_{\mathrm{I}}}^{2}+2 \alpha_{1} \mu_{P_{\mathrm{I}}}-\left[\alpha_{2} \sigma_{P}^{2}+2\left(\overline{\overline{v_{\mathrm{I}}}}-\alpha_{0}\right)\right] & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
\Delta & =4 \alpha_{1}^{2}-4\left(-a_{2}\right)\left\{-\left[a_{2} \sigma_{P}^{2}+2\left(\overline{\overline{v_{\mathrm{I}}}}-\alpha_{0}\right)\right]\right\} \\
& =4 \alpha_{1}^{2}-4 \alpha_{2}^{2} \sigma_{P}^{2}-8 \alpha_{2}\left(\overline{\overline{\bar{v}_{\mathrm{I}}}}-\alpha_{0}\right) \\
& =4 \alpha_{1}^{2}-4 \alpha_{2}^{2} \sigma_{P}^{2}-8 \alpha_{2} \overline{\overline{\bar{v}_{\mathrm{I}}}}+8 \alpha_{0} \alpha_{2} \\
\Rightarrow \Delta & =4\left(\alpha_{1}^{2}-\alpha_{2}^{2} \sigma_{P}^{2}-2 \alpha_{2} \overline{\overline{\bar{v}_{\mathrm{I}}}}+2 \alpha_{0} \alpha_{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\mu_{P_{\mathrm{I}}} & =\frac{-2 \alpha_{1} \pm 2 \sqrt{\alpha_{1}^{2}-\alpha_{2} \sigma_{P}^{2}-2 \alpha_{2} \overline{\overline{\bar{I}_{\mathrm{I}}}+2 \alpha_{0} \alpha_{2}}}}{-2 \alpha_{2}} \\
\Rightarrow \mu_{P_{\mathrm{I}}} & =\frac{-\alpha_{1} \pm \sqrt{\alpha_{1}^{2}-\alpha_{2} \sigma_{P}^{2}-2 \alpha_{2} \overline{\overline{\bar{I}_{\mathrm{I}}}+2 \alpha_{0} \alpha_{2}}}}{-\alpha_{2}}=\mu_{P_{\mathrm{I}}}\left(\sigma_{P}^{2}, \overline{\overline{v_{\mathrm{I}}}}\right) \tag{1.38}
\end{align*}
$$

1.6 The slope of the Indifference Curve of a Quadratic Utility Function

By differentiating Equation (1.37) we can calculate the slope of the $i_{t h}$-indifference curve of the expected quadratic utility function as follows:

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{P_{(\mathrm{I})}}}{\mathrm{d} \mu_{P}} & =\frac{\mathrm{d}}{\mathrm{~d} \mu_{P}}\left[\sigma_{P_{(\mathrm{II}}}^{2}\right]^{1 / 2} \\
& =\frac{1}{2}\left[\sigma_{P_{(\mathrm{I})}}^{2}\right]^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} \mu_{P}}\left[\sigma_{P_{(\mathrm{II}}}^{2}\right] \\
& =\frac{1}{2}\left[\sigma_{P_{(\mathrm{II}}}^{2}\right]^{-1 / 2} \frac{1}{\alpha_{2}}\left[2 \alpha_{1}-2 \alpha_{2} \mu_{P}\right] \\
& =\left[\sigma_{P_{(\mathrm{II}}}^{2}\right]^{-1 / 2} \frac{1}{\alpha_{2}}\left[\alpha_{1}-\alpha_{2} \mu_{P}\right] \\
\Rightarrow \frac{\mathrm{d} \sigma_{P_{(\mathrm{I})}}}{\mathrm{d} \mu_{P}} & =\frac{1}{\sigma_{P_{(\mathrm{II}}}} \frac{\alpha_{1}-\alpha_{2} \mu_{P}}{\alpha_{2}} \tag{1.39}
\end{align*}
$$

Chapter 2

The Typical Portfolio

Basic Statistical Properties

Let M be a market with n risky assets and a risk-free asset. Also, let r_{i} and r_{f} be the return on the $i^{\text {th }}$ risky asset and on the risk-free asset, respectively. In general, r_{i} is a random variable with the following statistical properties:

$$
\begin{align*}
\mathrm{E}\left(r_{i}\right) & =\mu_{i}, \forall i=1,2, \ldots \tag{2.1}\\
\operatorname{var}\left(r_{i}\right) & =\mathrm{E}\left(r_{i}^{2}\right)=\sigma_{i}^{2}, \forall i=1,2, \ldots, n \tag{2.2}\\
\operatorname{cov}\left(r_{i}, r_{j}\right) & =\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}, \forall i, j=1,2, \ldots, n \text { with } i \neq j \tag{2.3}\\
\rho_{i j} & =\operatorname{corr}\left(r_{i}, r_{j}\right), \text { with }-1 \leq \rho_{i j} \leq 1 \tag{2.4}
\end{align*}
$$

Moreover, r_{f} can be thought of as a degenerate random variable such that:

$$
\begin{align*}
\mathrm{E}\left(r_{f}\right) & =r_{f} \tag{2.5}\\
\operatorname{var}\left(r_{f}\right) & =\sigma_{f}^{2}=0 \tag{2.6}\\
\operatorname{cov}\left(r_{i}, r_{f}\right) & =\sigma_{i f}=0, \forall i=1,2, \ldots, n \tag{2.7}
\end{align*}
$$

2.1 The Typical Portfolio

The typical portfolio P can be written as:

$$
\begin{equation*}
P=w_{0} f+w_{1} \mathbf{a}_{1}+w_{2} \mathbf{a}_{2}+\ldots+w_{n} \mathbf{a}_{n} \tag{2.8}
\end{equation*}
$$

where f is the risk-free asset, and $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ are risky asset. We assume that all the initial capital is invested, that is:

$$
\begin{equation*}
w_{0}+w_{1}+w_{2}+\ldots+w_{n}=1 \tag{2.9}
\end{equation*}
$$

Moreover, the portfolio can be divided into two parts, the risk-free portfolio P_{F} and the risky portfolio P_{R}. Therefore, the portfolio can be expressed as follows:

$$
\begin{equation*}
P=P_{F}+P_{R} \tag{2.10}
\end{equation*}
$$

Where:

$$
\begin{align*}
P_{F} & =w_{0} f \tag{2.10a}\\
P_{R} & =w_{1} \mathbf{a}_{1}+w_{2} \mathbf{a}_{2}+\ldots+w_{n} \mathbf{a}_{n} \tag{2.10b}
\end{align*}
$$

The return on portfolio P is:

$$
\begin{align*}
r_{P} & =w_{0} r_{f}+w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n} \tag{2.11}\\
\Rightarrow r_{P} & =r_{P_{F}}+r_{P_{R}} \tag{2.12}
\end{align*}
$$

where,

$$
\begin{align*}
r_{P_{F}} & =w_{0} r_{f} \tag{2.12a}\\
r_{P_{R}} & =w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n} \tag{2.12b}
\end{align*}
$$

Equations (2.1), (2.3), (2.10) imply that:

$$
\begin{align*}
\mathrm{E}\left(r_{P}\right)=\mu_{P} & =\mathrm{E}\left(w_{0} r_{f}+w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n}\right) \\
& =w_{0} \mathrm{E}\left(r_{f}\right)+w_{1} \mathrm{E}\left(r_{1}\right)+w_{2} \mathrm{E}\left(r_{2}\right)+\ldots+w_{n} \mathrm{E}\left(r_{n}\right) \\
& =w_{0} r_{f}+w_{1} \mu_{1}+w_{2} \mu_{2}+\ldots+w_{n} \mu_{n} \\
\Longrightarrow \mathrm{E}\left(r_{P}\right) & =\mu_{P_{f}}+\mu_{P_{R}}, \tag{2.13}
\end{align*}
$$

where,

$$
\begin{align*}
\mu_{P_{F}} & =\mathrm{E}\left(r_{P_{F}}\right) \\
& =\mathrm{E}\left(w_{0} r_{f}\right) \\
& =w_{0} \mathrm{E}\left(r_{f}\right) \\
\Longrightarrow \mu_{P_{F}} & =w_{0} r_{f}, \tag{2.14}
\end{align*}
$$

and,

$$
\begin{align*}
\mu_{P_{R}} & =\mathrm{E}\left(r_{P_{R}}\right) \\
& =\mathrm{E}\left(w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n}\right) \\
& =w_{1} \mathrm{E}\left(r_{1}\right)+w_{2} \mathrm{E}\left(r_{2}\right)+\ldots+w_{n} \mathrm{E}\left(r_{n}\right) \\
\Longrightarrow \mu_{P_{R}} & =w_{1} \mu_{1}+w_{2} \mu_{2}+\ldots+w_{n} \mu_{n} \tag{2.15}
\end{align*}
$$

Using Equations (2.2), (2.4), (2.6), (2.10), we find:

$$
\begin{align*}
\sigma_{P}^{2} & =\operatorname{var}\left(r_{P}\right) \\
& =\operatorname{var}\left(w_{0} r_{f}+w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n}\right) \\
& =w_{0}^{2} \operatorname{var}\left(r_{f}\right)+\sum_{i=1}^{N} w_{i}^{2} \operatorname{var}\left(r_{i}\right)+2 \sum_{i=1}^{N} w_{0} w_{1} \operatorname{cov}\left(r_{f}, r_{i}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \operatorname{cov}\left(r_{i}, r_{j}\right) \\
& =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\Longrightarrow \sigma_{P}^{2} & =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \rho_{i j} \sigma_{i} \sigma_{j} \tag{2.16}
\end{align*}
$$

where,

$$
\begin{align*}
\sigma_{P_{R}}^{2} & =\operatorname{var}\left(r_{P_{R}}\right) \\
& =\operatorname{var}\left(w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n}\right) \\
& =\operatorname{var}\left(r_{f}\right)+\sum_{i=1}^{n} w_{i}^{2} \operatorname{var}\left(r_{i}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \operatorname{cov}\left(r_{i}, r_{j}\right) \\
& =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\Longrightarrow \sigma_{P_{R}}^{2} & =\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \rho_{i j} \sigma_{i} \sigma_{j} \tag{2.17}
\end{align*}
$$

and,

$$
\sigma_{p_{F}}^{2}=\operatorname{var}\left(r_{P_{F}}\right)=\operatorname{var}\left(w_{0} r_{f}\right)=w_{0}^{2} \operatorname{var}\left(r_{f}\right)=0 .
$$

Equation (2.9) implies that:

$$
\begin{equation*}
w_{0}=1-w_{1}-w_{2}-\ldots-w_{n} \tag{2.18}
\end{equation*}
$$

Using Equations (2.11), (2.18), we can write r_{P} as follows:

$$
\begin{align*}
r_{P} & =\left(1-w_{1}-w_{2}-\ldots-w_{n}\right) r_{f}+w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n} \\
& =r_{f}-w_{1} r_{f}-w_{2} r_{f}-\ldots-w_{n} r_{f}+w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n} \\
\Longrightarrow r_{P} & =r_{f}+w_{1}\left(r_{1}-r_{f}\right)+w_{2}\left(r_{2}-r_{f}\right)+\ldots+w_{n}\left(r_{n}-r_{f}\right) \tag{2.19}
\end{align*}
$$

Using Equations (2.1), (2.19):

$$
\begin{align*}
\mu_{P} & =\mathrm{E}\left(r_{P}\right) \\
\Longrightarrow \mu_{P} & =r_{f}+w_{1}\left(\mu_{1}-r_{f}\right)+w_{2}\left(\mu_{2}-r_{f}\right)+\ldots+w_{n}\left(\mu_{n}-r_{f}\right)=\mathrm{E}\left(r_{P}\right) \tag{2.20}
\end{align*}
$$

2.2 Vector and matrix notation

We define the $n \times 1$ vectors $\boldsymbol{w}, \boldsymbol{r}, \mathbf{1}$ and \bar{r} as follows:

$$
\begin{align*}
\boldsymbol{w} & =\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right] \\
\boldsymbol{r} & =\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right] \\
\mathbf{1} & =\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \\
\overline{\boldsymbol{r}} & =\left[\begin{array}{c}
r_{1}-r_{f} \\
r_{2}-r_{f} \\
\vdots \\
r_{n}-r_{f}
\end{array}\right]=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \tag{2.21d}
\end{align*}
$$

Using Equations (2.11b), (2.21a), (2.21b):

$$
\begin{align*}
r_{P_{R}} & =w_{1} r_{1}+w_{2} r_{2}+\ldots+w_{n} r_{n} \\
& =\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right] \\
\Longrightarrow r_{P_{R}} & =\boldsymbol{w}^{\prime} \boldsymbol{r} \tag{2.22}
\end{align*}
$$

Then, using Equations (2.19), (2.21a), (2.21b) we can write:

$$
\begin{align*}
r_{P} & =r_{f}+w_{1}\left(r_{1}-r_{f}\right)+w_{2}\left(r_{2}-r_{f}\right)+\ldots+w_{n}\left(r_{n}-r_{f}\right) \\
& =r_{f}+\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
r_{1}-r_{f} \\
r_{2}-r_{f} \\
\vdots \\
r_{n}-r_{f}
\end{array}\right] \\
\Longrightarrow r_{P} & =r_{f}+w^{\prime} \overline{\boldsymbol{r}} \tag{2.23}
\end{align*}
$$

We define the $n \times n$ positive definite matrix Σ as follows:

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 n} \tag{2.24}\\
\sigma_{12} & \sigma_{2}^{2} & \ldots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \ldots & \sigma_{n}^{2}
\end{array}\right]=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{22} & \ldots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \ldots & \sigma_{n n}
\end{array}\right]
$$

where $\sigma_{i i}=\sigma_{i}^{2}$ and $\Sigma=\Sigma^{\prime}$. Since $\operatorname{det}(\Sigma) \neq 0$, the inverse matrix Σ^{-1} exists and can be written as:

$$
\Sigma^{-1}=\left[\begin{array}{cccc}
\sigma^{11} & \sigma^{12} & \ldots & \sigma^{1 n} \tag{2.25}\\
\sigma^{12} & \sigma^{22} & \ldots & \sigma^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma^{1 n} & \sigma^{2 n} & \ldots & \sigma^{n n}
\end{array}\right] \Longrightarrow\left(\Sigma^{-1}\right)^{\prime}=\Sigma^{-1}
$$

Using Equation (2.17), (2.21a), (2.24), we can express $\sigma_{P_{R}}^{2}$ as a function of w and Σ as follows:

$$
\begin{align*}
\sigma_{P_{R}}^{2}= & \sigma_{P}^{2}=\sum_{i=1}^{n} w_{i}^{2} \sigma_{i}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
= & w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+\ldots+w_{n}^{2} \sigma_{n}^{2} \\
& +2 w_{1} w_{2} \sigma_{12}+2 w_{1} w_{3} \sigma_{13}+\ldots+2 w_{1} w_{n} \sigma_{1 n}+\ldots+2 w_{n-1} w_{n} \sigma_{n-1, n} \\
= & w_{1}\left(w_{1} \sigma_{1}^{2}+w_{2} \sigma_{12}+\ldots+w_{n} \sigma_{1 n}\right)+w_{2}\left(w_{1} \sigma_{12}+w_{2} \sigma_{2}^{2}+\ldots+w_{n} \sigma_{2 n}\right)+\ldots \\
& +w_{n}\left(w_{1} \sigma_{1 n}+w_{2} \sigma_{2 n}+\ldots+w_{n} \sigma_{n}^{2}\right) \\
= & {\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1}^{2} w_{1}+\sigma_{12} w_{2}+\ldots+\sigma_{1 n} w_{n} \\
\sigma_{12} w_{1}+\sigma_{2}^{2} w_{2}+\ldots+\sigma_{2 n} w_{n} \\
& \vdots \\
\sigma_{1 n} w_{1}+\sigma_{2 n} w_{2}+\ldots+\sigma_{n}^{2} w_{n}
\end{array}\right] } \\
= & {\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 n} \\
\sigma_{12} & \sigma_{2}^{2} & \ldots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{2 n} & \ldots & \sigma_{n}^{2}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right] } \\
\Longrightarrow \sigma_{P_{R}}^{2}= & w^{\prime} \Sigma w \tag{2.26}
\end{align*}
$$

We define the scalars b_{0}, b_{1}, b_{2} and b as follows:

$$
\begin{align*}
b_{0} & =\mu^{\prime} \Sigma^{-1} \mu \tag{2.27}\\
b_{1} & =\mu^{\prime} \Sigma^{-1} \mathbf{1}=\mathbf{1}^{\prime} \Sigma^{-1} \mu \tag{2.28}\\
b_{2} & =\mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1} \tag{2.29}\\
b & =\bar{\mu}^{\prime} \Sigma^{-1} \bar{\mu}, \tag{2.30}
\end{align*}
$$

where Equation (2.21d) implies that $\bar{\mu}=\mathrm{E}(\bar{r})=\mathrm{E}\left(r-1 r_{f}\right)=\mu-1 r_{f}$.
Using Equations (2.27), (2.28), (2.29), (2.30) we can write:

$$
\begin{align*}
b & =\bar{\mu}^{\prime} \Sigma^{-1} \bar{\mu} \\
& =\left(\mu-\mathbf{1} r_{f}\right)^{\prime} \Sigma^{-1}\left(\mu-\mathbf{1} r_{f}\right) \\
& =\left(\mu^{\prime}-\mathbf{1}^{\prime} r_{f}\right) \Sigma^{-1}\left(\mu-\mathbf{1} r_{f}\right) \\
& =\left(\mu^{\prime} \Sigma^{-1} \mu\right)-\left(\mu^{\prime} \Sigma^{-1} \mathbf{1}\right) r_{f}-\left(\mathbf{1}^{\prime} \Sigma^{-1} \mu\right) r_{f}+\left(\mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1}\right) r_{f}^{2} \\
& =\left(\mu^{\prime} \Sigma^{-1} \mu\right)-2\left(\mu^{\prime} \Sigma^{-1} \mathbf{1}\right) r_{f}+\left(\mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1}\right) r_{f}^{2} \\
\Longrightarrow b & =b_{0}-2 b_{1} r_{f}+b_{2} r_{f}^{2} \tag{2.31}
\end{align*}
$$

Since $\Sigma, \Sigma^{-1} \stackrel{d}{>} 0$ and $\mu \neq 0, \mathbf{1} \neq 0 \Longrightarrow$

$$
\begin{align*}
b_{0} & >0 \tag{2.32a}\\
b_{2} & >0 \tag{2.32b}\\
b & >0 \tag{2.32c}
\end{align*}
$$

2.3 Capital Market Line (Efficient Frontier)

We know that the typical portfolio can be expressed as: $P=w_{0} f+w_{1} \mathbf{a}_{1}+w_{2} \mathbf{a}_{2}+\ldots+w_{n} \mathbf{a}_{n}$

Then, following the assumption that the investor invests all his capital, Equations (2.9), (2.21c) imply that:

$$
\begin{align*}
w_{0}+w_{1}+w_{2}+\ldots+w_{n} & =1 \Longrightarrow \\
w_{0}+\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right] & =1 \Longrightarrow \\
w_{0}+w^{\prime} \mathbf{1} & =1 \tag{2.33}
\end{align*}
$$

From Equation (2.23), we know that the return on the portfolio P is: $r_{P}=r_{f}+w^{\prime} \bar{r}$

Using the above equation and Equations (2.20), (2.21a), we can express the expected returns on the portfolio P as:

$$
\begin{align*}
\mathrm{E}\left(r_{P}\right)=\mu_{P} & =r_{f}+w_{1}\left(\mu_{1}-r_{f}\right)+w_{2}\left(\mu_{2}-r_{f}\right)+\ldots+w_{n}\left(\mu_{n}-r_{f}\right) \\
& =r_{f}+\left[\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
\mu_{1}-r_{f} \\
\mu_{2}-r_{f} \\
\vdots \\
\\
\mu_{n}-r_{f}
\end{array}\right] \\
& =r_{f}+w^{\prime}\left(\mu-\mathbf{1} r_{f}\right) \\
\Longrightarrow \mathrm{E}\left(r_{P}\right)=\mu_{P} & =r_{f}+w^{\prime} \bar{\mu} \tag{2.34}
\end{align*}
$$

Equation (2.16), (2.17), (2.26) imply that:

$$
\begin{equation*}
\sigma_{P}^{2}=w^{\prime} \Sigma w \Longrightarrow \operatorname{var}\left(r_{P}\right)=\sigma_{P}^{2}=w^{\prime} \Sigma w \tag{2.35}
\end{equation*}
$$

The Problem

In order to find the Capital Market Line, we need to minimize the variance of the typical portfolio subject to the linear restriction of Equation (2.34).
$\min _{w} \sigma_{P}^{2}=w^{\prime} \Sigma w$
s.t. $\mu_{P}=r_{f}+w^{\prime} \bar{\mu}$

The Lagrange function is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} w^{\prime} \Sigma w+\lambda\left(\mu_{P}-r_{f}-w^{\prime} \bar{\mu}\right) \tag{2.36}
\end{equation*}
$$

The first-order conditions imply that:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial w}=0 \Longrightarrow \frac{1}{2} 2 \Sigma w-\lambda \bar{\mu}=0 \Longrightarrow \Sigma w=\lambda \bar{\mu} \tag{2.37}\\
& \frac{\partial \mathcal{L}}{\partial \lambda}=0 \Longrightarrow \mu_{P}-r_{f}-w^{\prime} \bar{\mu}=0 \Longrightarrow \mu_{P}=r_{f}+w^{\prime} \bar{\mu}
\end{align*}
$$

From Equation (2.37) we find:

$$
\begin{equation*}
w=\lambda \Sigma^{-1} \bar{\mu} \Longrightarrow w^{\prime}=\lambda \bar{\mu}^{\prime} \Sigma^{-1} \tag{2.38}
\end{equation*}
$$

Using Equations (2.30), (2.35), (2.37), (2.38), (2.39):

$$
\begin{align*}
\mu_{P} & =r_{f}+\lambda \bar{\mu}^{\prime} \Sigma^{-1} \bar{\mu} \Longrightarrow \\
\mu_{P}-r_{f} & =\lambda\left(\bar{\mu}^{\prime} \Sigma^{-1} \bar{\mu}\right) \Longrightarrow \\
\mu_{P}-r_{f} & =\lambda b \Longrightarrow \\
\lambda & =\frac{\mu_{P}-r_{f}}{b}=\frac{\bar{\mu}_{P}}{b} \tag{2.39}
\end{align*}
$$

where $\bar{\mu}_{P}=\mu_{P}-r_{f}$.
Using Equations (2.35), (2.37), (2.38), (2.39)

$$
\begin{align*}
\sigma_{P}^{2} & =\boldsymbol{w}^{\prime} \lambda \bar{\mu} \\
& =\lambda\left(w^{\prime} \bar{\mu}\right) \\
& =\frac{\mu_{P}-r_{f}}{b}\left(\mu_{P}-r_{f}\right) \\
& =\frac{\left(\mu_{P}-r_{f}\right)^{2}}{b} \Longrightarrow \\
\sigma_{P} & =\frac{\mu_{P}-r_{f}}{\sqrt{b}} \Longrightarrow \tag{2.40}\\
\sigma_{P} \sqrt{b} & =\mu_{P}-r_{f}
\end{align*}
$$

Therefore, the Capital Market Line (CML) is given by the following equation:

$$
\begin{equation*}
\mu_{P}=r_{f}+\sigma_{P} \sqrt{b} \tag{2.41}
\end{equation*}
$$

and its slope is given by:

$$
\begin{equation*}
\sqrt{b}=\frac{\mu_{P}-r_{f}}{\sigma_{P}} \tag{2.42}
\end{equation*}
$$

To be certain that the above solution is the minimum, we calculate the second-order condition. Since

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{L}}{\partial w \partial w^{\prime}}=\frac{\partial}{\partial w^{\prime}}\left(\frac{\partial \mathcal{L}}{\partial w}\right)=\frac{\partial}{\partial w^{\prime}}(\Sigma w-\lambda \bar{\mu})=\Sigma \stackrel{d}{>} 0 \tag{2.43}
\end{equation*}
$$

the weights in Equation (2.38) give the minimum σ_{P}^{2}.
Moreover, Equation (2.40) implies that:

$$
\begin{align*}
\mu_{P}-r_{f} & =\sigma_{P} \sqrt{b} \Longrightarrow \\
\bar{\mu}_{P} & =\sigma_{P} \sqrt{b} \Longrightarrow \\
\sqrt{b} & =\frac{\bar{\mu}_{P}}{\sigma_{P}} \Longrightarrow \\
b & =\left(\frac{\bar{\mu}_{P}}{\sigma_{P}}\right)^{2} \Longrightarrow \\
b & =\bar{\mu}_{P}^{2} \sigma_{P}^{-2} \tag{2.44}
\end{align*}
$$

Equation (2.44) is a very useful result, which enables us to compare Home-, Abroad- and Global-equilibrium portfolios, as we shall see in Chapter 7.

2.4 The slope of the Capital Market Line

By differentiating Equation (2.42) we can calculate the slope of the CML:

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{P}}{\mathrm{~d} \mu_{P}} & =\frac{d}{\mathrm{~d} \mu_{P}}\left(\sigma_{P}^{2}\right)^{1 / 2} \\
& =\frac{1}{2}\left(\sigma_{P}^{2}\right)^{-1 / 2} \frac{\mathrm{~d} \sigma_{P}^{2}}{\mathrm{~d} \mu_{P}} \\
& =\frac{1}{2}\left(\sigma_{P}^{2}\right)^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} \mu_{P}}\left[\frac{1}{b}\left(\mu_{P}-r_{f}\right)^{2}\right] \\
& =\frac{1}{2}\left(\sigma_{P}^{2}\right)^{-1 / 2} 2 \frac{1}{b}\left(\mu_{P}-r_{f}\right)(-1) \\
\Longrightarrow \frac{\mathrm{d} \sigma_{P}}{\mathrm{~d} \mu_{P}} & =\frac{1}{\sigma_{P}} \frac{1}{b}\left(\mu_{P}-r_{f}\right) \tag{2.45}
\end{align*}
$$

2.5 The Market Portfolio (M)

If

$$
\begin{equation*}
w_{0}=0 \tag{2.46}
\end{equation*}
$$

then the investor's constraint, from Equation (2.8), implies that:

$$
\begin{align*}
w_{1}+w_{2}+\ldots+w_{n} & =1 \Longrightarrow \\
w_{1 M}+w_{2 M}+\ldots+w_{n M} & =1, \tag{2.47}
\end{align*}
$$

where:

$$
\begin{aligned}
w_{1 M} & =w_{1} \\
w_{2 M} & =w_{2} \\
& \vdots \\
w_{n M} & =w_{n} .
\end{aligned}
$$

Therefore, according to Equation (2.8), we can write the market portfolio M as follows:

$$
\begin{equation*}
M=w_{1 M} \mathbf{a}_{1}+w_{2 M} \mathbf{a}_{2}+\ldots+w_{n M} \mathbf{a}_{n} \tag{2.48}
\end{equation*}
$$

We define the $n \times 1$ vector \boldsymbol{w}_{M}, as follows:

$$
\boldsymbol{w}_{M}=\left[\begin{array}{c}
w_{1 M} \tag{2.49}\\
w_{2 M} \\
\vdots \\
w_{n M}
\end{array}\right]
$$

Then, using Equations (2.47), (2.49) we take:

$$
\begin{align*}
{\left[\begin{array}{llll}
w_{1 M} & w_{2 M} & \ldots & w_{n M}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] } & =1 \Longrightarrow \tag{2.50}\\
\boldsymbol{w}_{M}^{\prime} \mathbf{1} & =1
\end{align*}
$$

Using Equations (2.11), (2.21b), (2.46), (2.49), we can calculate the return on portfolio M as follows:

$$
\begin{align*}
r_{M} & =w_{1 M} r_{1}+w_{2 M} r_{2}+\ldots+w_{n M} r_{n M} \\
& =\left[\begin{array}{llll}
w_{1 M} & w_{2 M} & \ldots & w_{n M}
\end{array}\right]\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right] \\
\Longrightarrow r_{M} & =\boldsymbol{w}_{M}^{\prime} \boldsymbol{r} \tag{2.51}
\end{align*}
$$

Alternatively, using Equations (2.11), (2.21d), (2.46), (2.49), r_{M} can be written as:

$$
\begin{align*}
r_{M} & =r_{f}+w_{1 M}\left(r_{1}-r_{f}\right)+w_{2 M}\left(r_{2}-r_{f}\right)+\ldots+w_{n M}\left(r_{n}-r_{f}\right) \\
& =r_{f}+\left[\begin{array}{llll}
w_{1 M} & w_{2 M} & \ldots & w_{n}
\end{array}\right]\left[\begin{array}{c}
r_{1}-r_{f} \\
r_{2}-r_{f} \\
\vdots \\
r_{n}-r_{f}
\end{array}\right] \\
\Longrightarrow r_{M} & =r_{f}+w_{M}^{\prime} \bar{r} \tag{2.52}
\end{align*}
$$

Using Equations (2.1), (2.51), we can calculate the expected return of the portfolio M as:

$$
\begin{align*}
\mu_{M} & =\mathrm{E}\left(\boldsymbol{r}_{M}\right) \\
& =\mathrm{E}\left(\boldsymbol{w}_{M}^{\prime} \boldsymbol{r}\right) \\
& =\boldsymbol{w}_{M}^{\prime} \mathrm{E}(r) \\
\Longrightarrow \mu_{M} & =\boldsymbol{w}_{M}^{\prime} \boldsymbol{r} \tag{2.53}
\end{align*}
$$

Alternatively, using Equations (2.1), (2.52), μ_{M} can be written as:

$$
\begin{align*}
\mu_{M} & =\mathrm{E}\left(\boldsymbol{r}_{M}\right) \\
& =\mathrm{E}\left(r_{f}+\boldsymbol{w}_{M}^{\prime} \overline{\boldsymbol{r}}\right) \\
& =\mathrm{E}\left(\boldsymbol{r}_{f}\right)+\boldsymbol{w}_{M}^{\prime} \mathrm{E}(\bar{r}) \\
\Longrightarrow \mu_{M} & =r_{f}+\boldsymbol{w}_{M}^{\prime} \bar{r} \tag{2.54}
\end{align*}
$$

Equations (2.26), implies that:

$$
\begin{equation*}
\sigma_{M}^{2}=w_{M}^{\prime} \Sigma w_{M} \tag{2.55}
\end{equation*}
$$

Using Equations (2.38), (2.50) we find that:

$$
\begin{align*}
\boldsymbol{w}_{M} & =\lambda_{M} \Sigma^{-1} \bar{\mu} \\
& =\frac{\lambda_{M} \Sigma^{-1} \bar{\mu}}{1} \\
& =\frac{\lambda_{M} \Sigma^{-1} \bar{\mu}}{w_{M}^{\prime}} \\
& =\frac{\lambda_{M} \Sigma^{-1} \bar{\mu}}{\lambda_{M} \bar{\mu}^{\prime} \Sigma^{-1} 1} \\
\Rightarrow \boldsymbol{w}_{M} & =\frac{\Sigma^{-1} \bar{\mu}}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \tag{2.56}
\end{align*}
$$

Also:

$$
\begin{equation*}
\Sigma^{-1} \bar{\mu}=\Sigma^{-1}\left(\mu-1 r_{f}\right) \tag{2.57}
\end{equation*}
$$

Then, Equations (2.27), (2.28), (2.29), (2.57) imply that:

$$
\begin{align*}
\bar{\mu}^{\prime} \Sigma^{-1} \mu & =\left(\mu^{\prime}-\mathbf{1} r_{f}\right) \Sigma^{-1} \mu=\mu^{\prime} \Sigma^{-1} \mu-\left(\mathbf{1}^{\prime} \Sigma^{-1} \mu\right) r_{f}=b_{0}-b_{1} r_{f} \tag{2.58}\\
\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1} & =\left(\mu^{\prime}-\mathbf{1} r_{f}\right) \Sigma^{-1} \mathbf{1}=\mu^{\prime} \Sigma^{-1} \mathbf{1}-\left(\mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1}\right) r_{f}=b_{1}-b_{2} r_{f} \tag{2.59}
\end{align*}
$$

Therefore, by using Equations (2.53), (2.56), (2.58), (2.59) we find that:

$$
\begin{align*}
\mu_{M} & =\frac{\bar{\mu}^{\prime} \Sigma^{-1}}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \mu \\
& =\frac{\bar{\mu}^{\prime} \Sigma^{-1} \mu}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \\
\Longrightarrow \mu_{M} & =\frac{b_{0}-b_{1} r_{f}}{b_{1}-b_{2} r_{f}}, \tag{2.60}
\end{align*}
$$

and by using Equations (2.30), (2.55), (2.56), (2.59) we find that:

$$
\begin{align*}
\sigma_{M}^{2} & =\frac{\bar{\mu}^{\prime} \Sigma^{-1}}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \Sigma \frac{\Sigma^{-1} \bar{\mu}}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \\
& =\frac{\bar{\mu}^{\prime} \Sigma^{-1} \bar{\mu}}{\left(\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}\right)^{2}} \\
\Longrightarrow \sigma_{M}^{2} & =\frac{b}{\left(b_{1}-b_{2} r_{f}\right)^{2}} \tag{2.61}\\
\Longrightarrow \sigma_{M} & =\frac{\sqrt{b}}{b_{1}-b_{2} r_{f}} \tag{2.62}
\end{align*}
$$

2.6 The Portfolio Separation Formula

Equations (2.39), (2.40) imply that:

$$
\begin{align*}
\lambda_{P} & =\frac{\mu_{P}-r_{f}}{b} \\
& =\frac{\sigma_{P} \sqrt{b}}{b} \\
\Longrightarrow \lambda_{P} & =\frac{\sigma_{P}}{\sqrt{b}} \tag{2.63}
\end{align*}
$$

Also, Equations (2.39), (2.40) imply that:

$$
\begin{align*}
\lambda_{M} & =\frac{\mu_{M}-r_{f}}{b} \\
& =\frac{\sigma_{M} \sqrt{b}}{b} \\
\Longrightarrow \lambda_{M} & =\frac{\sigma_{M}}{\sqrt{b}} \tag{2.64}
\end{align*}
$$

By dividing Equation (2.63) by Equation (2.64) we find:

$$
\begin{equation*}
\frac{\lambda_{P}}{\lambda_{M}}=\frac{\frac{\sigma_{P}}{\sqrt{b}}}{\frac{\sigma_{M}}{\sqrt{b}}} \Longrightarrow \frac{\lambda_{P}}{\lambda_{M}}=\frac{\sigma_{P}}{\sigma_{M}}=\phi \tag{2.65}
\end{equation*}
$$

Using Equations (2.38), (2.50), (2.56) we can write w_{P} as follows:

$$
\begin{align*}
\boldsymbol{w}_{P} & =\lambda_{P} \Sigma^{-1} \bar{\mu} \\
& =\frac{\lambda_{P} \Sigma^{-1} \bar{\mu}}{1} \\
& =\frac{\lambda_{P} \Sigma^{-1} \bar{\mu}}{\boldsymbol{w}_{M}^{\prime} \mathbf{1}} \\
& =\frac{\lambda_{P} \Sigma^{-1} \bar{\mu}}{\lambda_{M} \bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \\
& =\frac{\lambda_{P}}{\lambda_{M}} \frac{\Sigma^{-1} \bar{\mu}}{\bar{\mu}^{\prime} \Sigma^{-1} \mathbf{1}} \\
\Longrightarrow \boldsymbol{w}_{P} & =\frac{\lambda_{P}}{\lambda_{M}} \boldsymbol{w}_{M} \tag{2.66}
\end{align*}
$$

which implies that:

$$
\begin{align*}
w_{1 P} & =\frac{\lambda_{P}}{\lambda_{M}} w_{1 M} \tag{2.67a}\\
w_{2 P} & =\frac{\lambda_{P}}{\lambda_{M}} w_{2 M} \tag{2.67b}\\
& \vdots \tag{2.67c}\\
w_{n P} & =\frac{\lambda_{P}}{\lambda_{M}} w_{n M}
\end{align*}
$$

Since:

$$
\begin{align*}
w_{0 P} & =1-w_{P}^{\prime} \mathbf{1} \\
& =1-\frac{\lambda_{P}}{\lambda_{M}} \boldsymbol{w}_{M}^{\prime} \mathbf{1} \\
\Longrightarrow w_{0 P} & =1-\frac{\sigma_{P}}{\sigma_{M}} . \tag{2.68}
\end{align*}
$$

Equations (2.8), (2.48), (2.65), (2.67), (2.68) imply that the typical portfolio P can be written as:

$$
\begin{align*}
P & =w_{0 P} f+w_{1 P} \mathbf{a}_{1}+w_{2 P} \mathbf{a}_{2}+\ldots+w_{N P} \mathbf{a}_{\mathrm{N}} \\
& =\left(1-\frac{\sigma_{P}}{\sigma_{M}}\right) f+\frac{\lambda_{P}}{\lambda_{M}} w_{1 M} \mathbf{a}_{1}+\frac{\lambda_{P}}{\lambda_{M}} w_{2 M} \mathbf{a}_{2}+. .+\frac{\lambda_{P}}{\lambda_{M}} w_{N M} \mathbf{a}_{\mathrm{N}} \\
& =\left(1-\frac{\sigma_{P}}{\sigma_{M}}\right) f+\frac{\lambda_{P}}{\lambda_{M}}\left(w_{1 M} \mathbf{a}_{1}+w_{2 M} \mathbf{a}_{2}+\ldots+w_{N M} \mathbf{a}_{\mathrm{N}}\right) \\
& =\left(1-\frac{\sigma_{P}}{\sigma_{M}}\right) f+\frac{\sigma_{P}}{\sigma_{M}}\left(w_{1 M} \mathbf{a}_{1}+w_{2 M} \mathbf{a}_{2}+\ldots+w_{N M} \mathbf{a}_{\mathrm{N}}\right) \\
& =\left(1-\frac{\sigma_{P}}{\sigma_{M}}\right) f+\frac{\sigma_{P}}{\sigma_{M}} M \\
\Rightarrow P & =(1-\phi) f+\phi M, \tag{2.69}
\end{align*}
$$

This means that any portfolio P is the weighted average of the risk-free portfolio f and the market portfolio M, with weights $(1-\phi)$ and ϕ, respectively, where $\phi=\frac{\sigma_{P}}{\sigma_{M}}$.

If $0<\phi<1$, the portfolio P is located on the CML between the risk-free portfolio f and the market portfolio M, and $0=\sigma_{f}<\sigma_{P}<\sigma_{M}$. On the other hand, if $\phi>1$ the portfolio P is located on the CML to the right of M, and $\sigma_{P}>\sigma_{M}$.

Equation (2.69) $\Longrightarrow r_{P}=(1-\phi) r_{f}+\phi r_{M}$, which implies that:

$$
\begin{align*}
& \mu_{P}=\mathrm{E}\left(\boldsymbol{r}_{P}\right)=\mathrm{E}\left[(1-\phi) r_{f}+\phi \boldsymbol{r}_{M}\right]=(1-\phi) \mathrm{E}\left(r_{f}\right)+\phi \mathrm{E}\left(\boldsymbol{r}_{M}\right) \Longrightarrow \\
& \mu_{P}=(1-\phi) r_{f}+\phi \mu_{M} \tag{2.70}
\end{align*}
$$

It also implies that:

$$
\begin{align*}
& \sigma_{P}^{2}=\operatorname{var}\left(\boldsymbol{r}_{P}\right)=\operatorname{var}\left[(1-\phi) r_{f}+\phi \boldsymbol{r}_{M}\right]=(1-\phi)^{2} \operatorname{var}\left(r_{f}\right)+\phi^{2} \operatorname{var}\left(\boldsymbol{r}_{M}\right)+2 \phi(1-\phi) \operatorname{cov}\left(r_{f}, \boldsymbol{r}_{M}\right) \Longrightarrow \\
& \sigma_{P}^{2}=\phi^{2} \sigma_{M}^{2} \tag{2.71}
\end{align*}
$$

Chapter 3

Investor's Equilibrium

In previous chapters we have assumed an investor with Quadratic Utility Function, and a market with n risky assets and one risk-free asset. Under those assumptions, we proved the following:

- The slope of the investor's indifference curve is:

$$
\frac{\mathrm{d} \sigma_{P}}{\mathrm{~d} \mu_{P}}=\frac{1}{\sigma_{P}} \frac{\alpha_{1}-\alpha_{2} \mu_{P}}{\alpha_{2}}
$$

- The slope of the CML is:

$$
\frac{\mathrm{d} \sigma_{P}}{\mathrm{~d} \mu_{P}}=\frac{1}{\sigma_{P}} \frac{1}{b}\left(\mu_{P}-r_{f}\right)
$$

At the equilibrium point E, the slope of the investor's indifference curve is equal to the slope of the CML, therefore, at point E we have the equilibrium portfolio E, with μ_{E} and σ_{E}. Using the above equations:

$$
\begin{align*}
\frac{1}{\sigma_{E}} \frac{\alpha_{1}-\alpha_{2} \mu_{E}}{\alpha_{2}} & =\frac{1}{\sigma_{E}} \frac{1}{b}\left(\mu_{E}-r_{f}\right) \\
\Rightarrow \alpha_{2}\left(\mu_{E}-r_{f}\right) & =b\left(\alpha_{1}-\alpha_{2} \mu_{E}\right) \\
\Rightarrow \alpha_{2} \mu_{E}-\alpha_{2} r_{f} & =\alpha_{1} b-b \alpha_{2} \mu_{E} \\
\Rightarrow \mu_{E} \alpha_{2}(1+b) & =\alpha_{1} b+\alpha_{2} r_{f} \\
\Rightarrow \mu_{E} & =\frac{\alpha_{1} b+\alpha_{2} r_{f}}{\alpha_{2}(1+b)} \\
\Rightarrow \mu_{E} & =\frac{1}{1+b}\left(\frac{\alpha_{1}}{\alpha_{2}} b+r_{f}\right) \tag{3.1}\\
\Rightarrow \mu_{E}-r_{f} & =\frac{1}{1+b}\left(\frac{\alpha_{1}}{\alpha_{2}} b+r_{f}\right)-r_{f} \\
\Rightarrow \mu_{E}-r_{f} & =\frac{1}{1+b}\left[\frac{\alpha_{1}}{\alpha_{2}} b+r_{f}-(1+b) r_{f}\right] \\
\Rightarrow \mu_{E}-r_{f} & =\frac{1}{1+b}\left[\frac{\alpha_{1}}{\alpha_{2}} b+r_{f}-r_{f}-b r_{f}\right] \\
\Rightarrow \mu_{E}-r_{f} & =\frac{b}{1+b}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \tag{3.2}
\end{align*}
$$

Using Equations (2.40), (3.2):

$$
\begin{align*}
\sigma_{E} & =\frac{1}{\sqrt{b}}\left(\mu_{E}-r_{f}\right) \\
& =\frac{1}{\sqrt{b}} \frac{b}{b+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \\
\Rightarrow \sigma_{E} & =\frac{\sqrt{b}}{b+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \tag{3.3}
\end{align*}
$$

Equation (1.37) implies that:

$$
\begin{align*}
\overline{\bar{v}}_{E} & =\alpha_{0}+\alpha_{1} \mu_{E}-\frac{1}{2} \alpha_{2} \mu_{E}^{2}-\frac{1}{2} \alpha_{2} \sigma_{E}^{2} \\
\Rightarrow \overline{\bar{v}}_{E} & =\alpha_{0}+\alpha_{1} \mu_{E}-\frac{1}{2} \alpha_{2}\left(\mu_{E}^{2}+\sigma_{E}^{2}\right) \tag{3.4}
\end{align*}
$$

3.1 Equilibrium Portfolio weights (w_{E})

Using Equations (2.38), (2.39), (3.2):

$$
\begin{align*}
\boldsymbol{w}_{E}=\left[\begin{array}{c}
w_{1 E} \\
w_{2 E} \\
\vdots \\
w_{N E}
\end{array}\right] & =\lambda_{E} \Sigma^{-1} \bar{\mu} \\
& =\frac{1}{b}\left(\mu_{E}-r_{f}\right) \Sigma^{-1} \bar{\mu} \\
& =\frac{1}{b} \frac{b}{b+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \Sigma^{-1} \bar{\mu} \\
& =\frac{1}{b+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \Sigma^{-1} \bar{\mu} \tag{3.5}
\end{align*}
$$

Chapter 4

The Equilibrium Portfolio in the Home Market

In the previous chapters we analysed a general market with n assets and one risk-free asset and we solved the optimization problem of an investor with a Quadratic Utility Function. In this chapter we apply those results on the assumed Home Market.

The typical portfolio in the Home Market is:

$$
\begin{equation*}
P_{H}=w_{H 0} f+w_{H 1} \mathbf{a}_{H 1}+w_{H 2} \mathbf{a}_{H 2}+\ldots+w_{H N_{H}} \mathbf{a}_{H N_{H}} \tag{4.1}
\end{equation*}
$$

where f is the risk-free asset, $\mathrm{a}_{H 1}, \mathrm{a}_{H 2}, \ldots, \mathrm{a}_{H N_{H}}$ are the risky assets of the Home Market, $w_{H 0}$ is the weight of the risk-free asset and $w_{H 1}, w_{H 2}, \ldots, w_{H N_{H}}$ are the weights of the risky assets. Moreover, the weights obey the following constraint:

$$
\begin{equation*}
w_{H 0}+w_{H 1}+w_{H 2}+\ldots+w_{H N_{H}}=1, \tag{4.2}
\end{equation*}
$$

For the Home-Market portfolio M_{H} we write:

$$
\begin{align*}
w_{H 0 M} & =w_{H 0} \tag{4.3a}\\
w_{H 1 M} & =w_{H 1} \tag{4.3b}\\
w_{H 2 M} & =w_{H 2} \tag{4.3c}\\
& \vdots \tag{4.3d}\\
w_{H N_{H} M} & =w_{H N_{H}}
\end{align*}
$$

Since, by definition, $w_{H O M}=w_{H 0}=0$, the above constraint in Equation (4.2) becomes:

$$
\begin{equation*}
w_{H 1 M}+w_{H 2 M}+\ldots+w_{H N_{H} M}=1 \tag{4.4}
\end{equation*}
$$

Therefore, the Home-Market Portfolio can be written as:

$$
\begin{equation*}
M_{H}=w_{H 1 M} \mathbf{a}_{H 1}+w_{H 2 M} \mathbf{a}_{H 2}+\ldots+w_{H N_{H} M} \mathbf{a}_{H N_{H}} \tag{4.5}
\end{equation*}
$$

According to Chapter 1, the investor's indifference curve is:

$$
\begin{equation*}
\overline{\bar{v}}_{H} \equiv \overline{\bar{v}}_{H}\left(\mu_{P_{H}}, \sigma_{P_{H}}^{2}\right)=\left[\alpha_{0}+\alpha_{1} \mu_{P_{H}}-\frac{1}{2} \alpha_{2} \mu_{P_{H}}^{2}-\frac{1}{2} \alpha_{2} \sigma_{P_{H}}^{2}\right]_{I} \tag{4.6}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{H}}}{\mathrm{~d} \mu_{P_{H}}}=\frac{1}{\sigma_{P_{H}}} \frac{\alpha_{1}-\alpha_{2} \mu_{P_{H}}}{\alpha_{2}} \tag{4.7}
\end{equation*}
$$

According to Chapter 2, the CML is:

$$
\begin{equation*}
\mu_{P_{H}}=r_{f}+\sigma_{P_{H}} \sqrt{b_{H}} \tag{4.8}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{H}}}{\mathrm{~d} \mu_{P_{H}}}=\frac{1}{\sigma_{P_{H}}} \frac{1}{b_{H}}\left(\mu_{P_{H}}-r_{f}\right) \tag{4.9}
\end{equation*}
$$

Equations (4.7), (4.9) imply that in the equilibrium:

$$
\begin{align*}
\mu_{E_{H}} & =\frac{1}{1+b_{H}}\left(\frac{\alpha_{1}}{\alpha_{2}} b_{H}+r_{f}\right) \tag{4.10}\\
\Rightarrow \mu_{E_{H}}-r_{f} & =\frac{b_{H}}{1+b_{H}}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right), \tag{4.11}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{E_{H}}=\frac{\sqrt{b_{H}}}{b_{H}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \tag{4.12}
\end{equation*}
$$

Therefore, the equilibrium investor's expected utility is:

$$
\begin{equation*}
v_{E_{H}}=\alpha_{0}+\alpha_{1} \mu_{E_{H}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{H}}^{2}+\sigma_{E_{H}}^{2}\right), \tag{4.13}
\end{equation*}
$$

and the equilibrium vector of weights is:

$$
\begin{equation*}
\boldsymbol{w}_{E_{H}}=\frac{1}{b_{H}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \Sigma_{H}^{-1} \bar{\mu}_{H} . \tag{4.14}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
b_{H} & =\bar{\mu}_{H}^{\prime} \Sigma_{H}^{-1} \bar{\mu}_{H} \tag{4.15a}\\
b_{H 0} & =\mu_{H}^{\prime} \Sigma_{H}^{-1} \mu_{H} \tag{4.15b}\\
b_{H 1} & =\bar{\mu}_{H}^{\prime} \Sigma_{H}^{-1} \mathbf{1} \tag{4.15c}\\
b_{H 2} & =\mathbf{1}^{\prime} \Sigma_{H}^{-1} \mathbf{1} \tag{4.15d}
\end{align*}
$$

and

$$
\begin{equation*}
b_{H}=b_{H 0}-2 b_{H 1} r_{f}+b_{H 2} r_{f}^{2} \tag{4.16}
\end{equation*}
$$

Portfolio Separation

The Portfolio Separation Theorem of Chapter 2 can also be applied in the case of the Home Market. More specifically, using Equations (2.69), (2.70), (2.71) we can write:

$$
\begin{align*}
P_{H} & =\left(1-\phi_{H}\right) f+\phi_{H} M_{H} \tag{4.17}\\
\mu_{P_{H}} & =\left(1-\phi_{H}\right) r_{f}+\phi_{H} \mu_{M_{H}}=r_{f}+\phi_{H}\left(\mu_{M_{H}}-r_{f}\right) \\
& \Rightarrow \bar{\mu}_{P_{H}}=\phi_{H}\left(\mu_{M_{H}}-r_{f}\right)=\phi_{H} \bar{\mu}_{M_{H}} \tag{4.18}\\
\sigma_{P_{H}}^{2} & =\phi_{H}^{2} \sigma_{M_{H}}^{2} \tag{4.19}
\end{align*}
$$

Chapter 5

The Equilibrium Portfolio in the Abroad Market

In the previous chapters we analysed a market with n risky assets and one risk-free asset and we solved the optimization problem of an investor with a Quadratic Utility Function. Here, we apply those results on the assumed Abroad Market.

The typical portfolio in the Abroad Market is:

$$
\begin{equation*}
P_{A}=w_{A 0} f+w_{A 1} \mathrm{a}_{A 1}+w_{A 2} \mathbf{a}_{A 2}+\ldots+w_{A N_{A}} \mathbf{a}_{A N_{A}} \tag{5.1}
\end{equation*}
$$

where f is the risk-free asset, $\mathrm{a}_{A 1}, \mathrm{a}_{A 2}, \ldots, \mathrm{a}_{A N_{A}}$ are the risky assets of the Abroad Market and $w_{A 0}$ is the weight of the risk-free asset and $w_{A 1}, w_{A 2}, \ldots, w_{A N_{A}}$ are the weights of the risky assets. Moreover, the weights obey the following constraint:

$$
\begin{equation*}
w_{A 0}+w_{A 1}+w_{A 2}+\ldots+w_{A N_{A}}=1 \tag{5.2}
\end{equation*}
$$

For the Abroad-Market portfolio M_{A} we can write:

$$
\begin{align*}
w_{A 0 M} & =w_{A 0} \tag{5.3a}\\
w_{A 1 M} & =w_{A 1} \tag{5.3b}\\
w_{A 2 M} & =w_{A 2} \tag{5.3c}\\
& \vdots \\
w_{A N_{A} M} & =w_{A N_{A}} \tag{5.3d}
\end{align*}
$$

Since, by definition, $w_{A 0 M}=w_{A 0}=0$, the constraint in Equation (5.2) becomes:

$$
\begin{equation*}
w_{A 1 M}+w_{A 2 M}+\ldots+w_{A N_{A} M}=1 \tag{5.4}
\end{equation*}
$$

Therefore, the Abroad-Market portfolio can be written as:

$$
\begin{equation*}
M_{A}=w_{A 1 M} \mathbf{a}_{A 1}+w_{A 2 M} \mathbf{a}_{A 2}+\ldots+w_{A N_{A} M} \mathbf{a}_{A N_{A}} \tag{5.5}
\end{equation*}
$$

According Chapter 1, the investor's indifference curve is:

$$
\begin{equation*}
\overline{\bar{v}}_{A} \equiv \overline{\bar{v}}_{A}\left(\mu_{P_{A}}, \sigma_{P_{A}}^{2}\right)=\left[\alpha_{0}+\alpha_{1} \mu_{P_{A}}-\frac{1}{2} \alpha_{2} \mu_{P_{A}}^{2}-\frac{1}{2} \alpha_{2} \sigma_{P_{A}}^{2}\right]_{I} \tag{5.6}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{A}}}{\mathrm{~d} \mu_{P_{A}}}=\frac{1}{\sigma_{P_{A}}} \frac{\alpha_{1}-\alpha_{2} \mu_{P_{A}}}{\alpha_{2}} \tag{5.7}
\end{equation*}
$$

According Chapter 2, the CML is:

$$
\begin{equation*}
\mu_{P_{A}}=r_{f}+\sigma_{P_{A}} \sqrt{b_{A}} \tag{5.8}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{A}}}{\mathrm{~d} \mu_{P_{A}}}=\frac{1}{\sigma_{P_{A}}} \frac{\alpha_{1}-\alpha_{2} \mu_{P_{A}}}{\alpha_{A}} \tag{5.9}
\end{equation*}
$$

Equations (5.7), (5.9) imply that in the equilibrium:

$$
\begin{align*}
\mu_{E_{A}} & =\frac{1}{1+b_{A}}\left(\frac{\alpha_{1}}{\alpha_{2}} b_{A}+r_{f}\right) \tag{5.10}\\
\Rightarrow \mu_{E_{A}}-r_{f} & =\frac{b_{A}}{1+b_{A}}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right), \tag{5.11}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{E_{A}}=\frac{\sqrt{b_{A}}}{b_{A}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \tag{5.12}
\end{equation*}
$$

Therefore, the equilibrium investor's expected utility is:

$$
\begin{equation*}
v_{E_{A}}=\alpha_{0}+\alpha_{1} \mu_{E_{A}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A}}^{2}+\sigma_{E_{A}}^{2}\right), \tag{5.13}
\end{equation*}
$$

and the equilibrium vector of weights is:

$$
\begin{equation*}
\boldsymbol{w}_{E_{A}}=\frac{1}{b_{A}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \Sigma_{A}^{-1} \bar{\mu}_{A} . \tag{5.14}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
b_{A} & =\bar{\mu}_{A}^{\prime} \Sigma_{A}^{-1} \bar{\mu}_{A} \tag{5.15a}\\
b_{A 0} & =\mu_{A}^{\prime} \Sigma_{A}^{-1} \mu_{A} \tag{5.15b}\\
b_{A 1} & =\bar{\mu}_{A}^{\prime} \Sigma_{A}^{-1} \mathbf{1} \tag{5.15c}\\
b_{A 2} & =\mathbf{1}^{\prime} \Sigma_{A}^{-1} \mathbf{1} \tag{5.15d}
\end{align*}
$$

and

$$
\begin{equation*}
b_{A}=b_{A 0}-2 b_{A 1} r_{f}+b_{A 2} r_{f}^{2} \tag{5.16}
\end{equation*}
$$

Portfolio Separation

The Portfolio Separation Theorem of Chapter 2 can also be applied in the case of the Abroad Market. More specifically, using Equations (2.69), (2.70), (2.71) we can write:

$$
\begin{align*}
P_{A} & =\left(1-\phi_{A}\right) f+\phi_{A} M_{A} \tag{5.17}\\
\mu_{P_{A}} & =\left(1-\phi_{A}\right) r_{f}+\phi_{A} \mu_{M_{A}}=r_{f}+\phi_{A}\left(\mu_{M_{A}}-r_{f}\right) \\
& \Rightarrow \bar{\mu}_{P_{A}}=\phi_{A}\left(\mu_{M_{A}}-r_{f}\right)=\phi_{A} \bar{\mu}_{M_{A}} \tag{5.18}\\
\sigma_{P_{A}}^{2} & =\phi_{A}^{2} \sigma_{M_{A}}^{2} \tag{5.19}
\end{align*}
$$

Chapter 6

The Equilibrium Portfolio in the Global Market

In the previous chapters we analysed a market with n risky assets and one risk-free asset and we solved the optimization problem of an investor with a Quadratic Utility Function. We can now apply those results on the assumed Global Market.

The typical portfolio in the Global Market is:

$$
\begin{equation*}
P_{G}=w_{G 0} f+w_{G 1} \mathbf{a}_{G 1}+w_{G} 2 \mathbf{a}_{G 2}+\ldots+w_{G N} \mathbf{a}_{G N} \tag{6.1}
\end{equation*}
$$

where f is the risk-free asset, $\mathrm{a}_{G 1}, \mathrm{a}_{G 2}, \ldots, \mathrm{a}_{G N}$ are the risky assets of the Global Market, $w_{G 0}$ is the weight of the risk-free asset and $w_{G 1}, w_{G 2}, \ldots, w_{G N}$ are the weights of the risky assets. Moreover, the weights obey the following constraint:

$$
\begin{equation*}
w_{G 0}+w_{G 1}+w_{G 2}+\ldots+w_{G N}=1 \tag{6.2}
\end{equation*}
$$

For the Global-Market portfolio M_{G} we write:

$$
\begin{align*}
w_{\mathrm{G} 0 M} & =w_{\mathrm{G} 0} \tag{6.3a}\\
w_{\mathrm{G} 1 M} & =w_{\mathrm{G} 1} \tag{6.3b}\\
w_{\mathrm{G} 2 M} & =w_{\mathrm{G} 2} \tag{6.3c}\\
& \vdots \\
w_{\mathrm{GNM}} & =w_{\mathrm{GN}} \tag{6.3d}
\end{align*}
$$

Since, by definition, $w_{G O M}=w_{G 0}=0$, the constraint in Equation (6.2) becomes:

$$
\begin{equation*}
w_{G 1 M}+w_{G 2 M}+\ldots+w_{G N M}=1 \tag{6.4}
\end{equation*}
$$

Therefore, the Global-Market portfolio can be written as:

$$
\begin{equation*}
M_{G}=w_{G 1 M} \mathbf{a}_{G 1}+w_{G 2 M} \mathbf{a}_{G 2}+\ldots+w_{G N M} \mathbf{a}_{G N} \tag{6.5}
\end{equation*}
$$

According to Chapter 1, the investor's indifference curve is:

$$
\begin{equation*}
\overline{\bar{v}}_{G} \equiv \overline{\bar{v}}_{G}\left(\mu_{P_{G}}, \sigma_{P_{G}}^{2}\right)=\left[\alpha_{0}+\alpha_{1} \mu_{P_{G}}-\frac{1}{2} \alpha_{2} \mu_{P_{G}}^{2}-\frac{1}{2} \alpha_{2} \sigma_{P_{G}}^{2}\right]_{I} \tag{6.6}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{G}}}{\mathrm{~d} \mu_{P_{G}}}=\frac{1}{\sigma_{P_{G}}} \frac{\alpha_{1}-\alpha_{2} \mu_{P_{G}}}{\alpha_{2}} \tag{6.7}
\end{equation*}
$$

As proved in Chapter 3, the Global CML is:

$$
\begin{equation*}
\mu_{P_{G}}=r_{f}+\sigma_{P_{G}} \sqrt{b_{G}} \tag{6.8}
\end{equation*}
$$

And its slope is:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{P_{G}}}{\mathrm{~d} \mu_{P_{G}}}=\frac{1}{\sigma_{P_{G}}} \frac{1}{b_{G}}\left(\mu_{P_{G}}-r_{f}\right) \tag{6.9}
\end{equation*}
$$

Equations (6.7), (6.9) imply that in the equilibrium:

$$
\begin{align*}
\mu_{E_{G}} & =\frac{1}{1+b_{G}}\left(\frac{\alpha_{1}}{\alpha_{2}} b_{G}+r_{f}\right) \tag{6.10}\\
\Rightarrow \mu_{E_{G}}-r_{f} & =\frac{b_{G}}{1+b_{G}}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right), \tag{6.11}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{E_{G}}=\frac{\sqrt{b_{G}}}{b_{G}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \tag{6.12}
\end{equation*}
$$

Therefore, the equilibrium investor's expected utility is:

$$
\begin{equation*}
v_{E_{G}}=\alpha_{0}+\alpha_{1} \mu_{E_{G}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{G}}^{2}+\sigma_{E_{G}}^{2}\right) \tag{6.13}
\end{equation*}
$$

and the equilibrium vector of weights is

$$
\begin{equation*}
\boldsymbol{w}_{E_{G}}=\frac{1}{b_{G}+1}\left(\frac{\alpha_{1}}{\alpha_{2}}-r_{f}\right) \Sigma_{G}^{-1} \bar{\mu}_{G} \tag{6.14}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
b_{G} & =\bar{\mu}_{G}^{\prime} \Sigma_{G}^{-1} \bar{\mu}_{G} \tag{6.15a}\\
b_{G 0} & =\mu_{G}^{\prime} \Sigma_{G}^{-1} \mu_{G} \tag{6.15b}\\
b_{G 1} & =\bar{\mu}_{G}^{\prime} \Sigma_{G}^{-1} \mathbf{1} \tag{6.15c}\\
b_{G 2} & =\mathbf{1}^{\prime} \Sigma_{G}^{-1} \mathbf{1} \tag{6.15d}
\end{align*}
$$

and

$$
\begin{equation*}
b_{G}=b_{G 0}-2 b_{G 1} r_{f}+b_{G 2} r_{f}^{2} \tag{6.16}
\end{equation*}
$$

Portfolio Separation

The Portfolio Separation Theorem of Chapter 2 can also be applied in the case of the Global Market. More specifically, using Equations (2.63), (2.64), (2.65), (2.66) we can write:

$$
\begin{align*}
\lambda_{P_{G}} & =\frac{\sigma_{P_{G}}}{\sqrt{b_{G}}} \tag{6.17}\\
\lambda_{M_{G}} & =\frac{\sigma_{M_{G}}}{\sqrt{b_{G}}} \tag{6.18}\\
\phi_{G} & =\frac{\sigma_{P_{G}}}{\sigma_{M_{G}}}=\frac{\lambda_{P_{G}}}{\lambda_{M_{G}}} \tag{6.19}\\
\boldsymbol{w}_{P_{G}} & =\frac{\lambda_{P_{G}}}{\lambda_{M_{G}}} w_{M_{G}} \tag{6.20}
\end{align*}
$$

Therefore:

$$
\begin{align*}
\boldsymbol{w}_{H P_{G}} & =\frac{\lambda_{P_{G}}}{\lambda_{M_{G}}} \boldsymbol{w}_{H M_{G}} \tag{6.21a}\\
\boldsymbol{w}_{A P_{G}} & =\frac{\lambda_{P_{G}}}{\lambda_{M_{G}}} \boldsymbol{w}_{A M_{G}} \tag{6.21b}
\end{align*}
$$

Also, using Equation (2.68):

$$
\begin{equation*}
w_{0 P_{G}}=1-\frac{\sigma_{P_{G}}}{\sigma_{M_{G}}} \tag{6.22}
\end{equation*}
$$

The typical portfolio P_{G} on the Global CML can be expressed as follows:

$$
\begin{align*}
P_{G} & =\left(1-\frac{\sigma_{P_{G}}}{\sigma_{M_{G}}}\right) f+\frac{\sigma_{P_{G}}}{\sigma_{M_{G}}} M_{G} \\
\Rightarrow P_{G} & =\left(1-\phi_{G}\right) f+\phi_{G} M_{G} \tag{6.23}
\end{align*}
$$

The return on the portfolio P_{G} is:

$$
\begin{equation*}
r_{P_{G}}=\left(1-\phi_{G}\right) r_{f}+\phi_{G} r_{M_{G}} \tag{6.24}
\end{equation*}
$$

which implies that:

$$
\begin{align*}
\mu_{P_{G}} & =\left(1-\phi_{G}\right) r_{f}+\phi_{G} \mu_{M_{G}} \\
& =r_{f}+\phi_{G}\left(\mu_{M_{G}}-r_{f}\right) \\
\Rightarrow \bar{\mu}_{P_{G}} & =\phi_{G} \bar{\mu}_{M_{G}}, \tag{6.25}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{P_{G}}^{2}=\phi_{G}^{2} \sigma_{M_{G}}^{2} . \tag{6.26}
\end{equation*}
$$

Using Equations (2.44), (6.25), (6.26) we can write:

$$
\begin{align*}
b_{G} & =\bar{\mu}_{P_{G}}^{2}\left(\sigma_{P_{G}}^{2}\right)^{-1} \\
& =\left(\phi_{G} \bar{\mu}_{M_{G}}\right)^{2}\left(\phi_{G}^{2} \sigma_{M_{G}}^{2}\right)^{-1} \\
\Rightarrow b_{G} & =\bar{\mu}_{M_{G}}^{2} \sigma_{P_{G}}^{-2} . \tag{6.27}
\end{align*}
$$

The Global-Market portfolio can also be expressed as weighted average of two risky assets only, namely the Home-Market and the Abroad-Market portfolios, i.e.

$$
\begin{equation*}
M_{G}=w_{G H} M_{H}+w_{G A} M_{A} \tag{6.28}
\end{equation*}
$$

where M_{H} and M_{A} are the Home-Market and the Abroad-Market portfolios, respectively, and $w_{G H}$ and $w_{G A}$ are the corresponding weights of M_{H} and M_{A} in the Global Market; which implies that:

$$
\begin{equation*}
\mu_{M_{G}}=w_{G H} \mu_{M_{H}}+w_{G A} \mu_{M_{A}}, \tag{6.29}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma_{M_{G}}^{2} & =\operatorname{var}\left(r_{M_{G}}\right) \\
& =\operatorname{var}\left(w_{G H} r_{M_{H}}+w_{G A} r_{M_{A}}\right) \\
& =w_{G H}^{2} \sigma_{M_{H}}^{2}+w_{M_{G A}}^{2} \sigma_{M_{A}}^{2}+2 w_{G H} w_{G A} \sigma_{M_{H} M_{A}} \\
\Rightarrow \sigma_{M_{G H}}^{2} & =w_{G H}^{2} \sigma_{M_{H}}^{2}+w_{M_{G A}}^{2} \sigma_{M_{A}}^{2}+2 w_{G H} w_{G A} \rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}} \tag{6.30}
\end{align*}
$$

We define the 2×1 vector of weights:

$$
\boldsymbol{w}_{*}=\left[\begin{array}{c}
w_{\mathrm{GH}} \tag{6.31}\\
w_{\mathrm{GA}}
\end{array}\right]
$$

and the 2×2 variance-covariance matrix:

$$
\Sigma_{*}=\left[\begin{array}{cc}
\sigma_{M_{H}}^{2} & \sigma_{M_{H} M_{A}} \tag{6.32}\\
\sigma_{M_{H} M_{A}} & \sigma_{M_{A}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{M_{H}}^{2} & \rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}} \\
\rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}} & \sigma_{M_{A}}^{2}
\end{array}\right]
$$

Since Σ_{*} is positive definite, its inverse exists and can be calculated as follows:

$$
\begin{align*}
\Sigma_{*}^{-1} & =\frac{1}{\sigma_{M_{H}}^{2} \sigma_{M_{A}}^{2}-\rho_{M_{H} M_{A}}^{2} \sigma_{M_{H}}^{2} \sigma_{M_{A}}^{2}}\left[\begin{array}{cc}
\sigma_{M_{A}}^{2} & -\rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}} \\
-\rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}} & \sigma_{M_{H}}^{2}
\end{array}\right] \\
& =\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right) \sigma_{M_{H}}^{2} \sigma_{M_{A}}^{2}}\left[\begin{array}{cc}
\sigma_{M_{A}}^{2} & -\rho_{M_{H} M_{A} \sigma_{M_{H}} \sigma_{M_{A}}}^{-\rho_{M_{H} M_{A}} \sigma_{M_{H}} \sigma_{M_{A}}} \\
\Rightarrow \Sigma_{*}^{-1} & =\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}\left[\begin{array}{cc}
\left(\sigma_{M_{H}}^{2}\right)^{-1} & -\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} \\
-\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} & \left(\sigma_{M_{A}}^{2}\right)^{-1}
\end{array}\right]
\end{array} .\right.
\end{align*}
$$

Also, define the 2×1 vector:

$$
\begin{equation*}
\bar{\mu}_{*}=\mu_{*}-1 r_{f}, \tag{6.34}
\end{equation*}
$$

where:

$$
\mu_{*}=\left[\begin{array}{l}
\mu_{M_{H}} \tag{6.35}\\
\mu_{M_{A}}
\end{array}\right] .
$$

Then, by using Equations (2.30), (2.44), (6.33), (6.34), we can express b_{G} as:

$$
\begin{align*}
b_{G} & =\bar{\mu}_{*}^{\prime} \Sigma_{*}^{-1} \bar{\mu}_{*} \\
& =\left[\begin{array}{ll}
\bar{\mu}_{M_{H}} & \bar{\mu}_{M_{A}}
\end{array}\right] \frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}\left[\begin{array}{cc}
\left(\sigma_{M_{H}}^{2}\right)^{-1} & -\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} \\
-\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} & \left(\sigma_{M_{A}}^{2}\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
\bar{\mu}_{M_{H}} \\
\bar{\mu}_{M_{A}}
\end{array}\right] \\
& =\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}\left[\begin{array}{ll}
\bar{\mu}_{M_{H}} & \bar{\mu}_{M_{A}}
\end{array}\right]\left[\begin{array}{c}
\left(\sigma_{M_{H}}^{2}\right)^{-1} \bar{\mu}_{M_{H}}-\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} \bar{\mu}_{M_{A}} \\
-\rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1} \bar{\mu}_{M_{H}}+\left(\sigma_{M_{A}}^{2}\right)^{-1} \bar{\mu}_{M_{A}}
\end{array}\right] \\
& =\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}\left[\bar{\mu}_{M_{H}}\left(\sigma_{M_{H}}^{2}\right)^{-1} \bar{\mu}_{M_{H}}-2 \bar{\mu}_{M_{H}} \bar{\mu}_{M_{A}} \rho_{M_{H} M_{A}}\left(\sigma_{M_{H}} \sigma_{M_{A}}\right)^{-1}+\bar{\mu}_{M_{A}}\left(\sigma_{M_{A}}^{2}\right)^{-1} \bar{\mu}_{M_{A}}\right] \\
\Rightarrow b_{G} & =\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}\left(b_{H}+b_{A}-2 \rho_{M_{H} M_{A}} \sqrt{b_{H} b_{A}}\right), \tag{6.36}
\end{align*}
$$

where:

$$
\begin{align*}
b_{H} & =\bar{\mu}_{M_{H}}^{2} \sigma_{M_{H^{\prime}}}^{-2} \tag{6.37}\\
b_{A} & =\bar{\mu}_{M_{A}}^{2} \sigma_{M_{A}}^{-2} . \tag{6.38}
\end{align*}
$$

For Equation (6.36) we can discriminate four different cases according to the value of the correlation coefficient $\rho_{M_{H} M_{A}}$.

1. If $\rho_{M_{H} M_{A}}=0$, Equations (6.27), (6.36), (6.37), (6.38) imply that:

$$
\begin{equation*}
b_{G}=b_{H}+b_{A} \tag{6.39}
\end{equation*}
$$

and

$$
\begin{align*}
\bar{\mu}_{M_{G}}^{2} \sigma_{M_{G}}^{-2} & =\bar{\mu}_{M_{H}}^{2} \sigma_{M_{H}}^{-2}+\bar{\mu}_{M_{A}}^{2} \sigma_{M_{A}}^{-2} \\
\bar{\mu}_{M_{G}}^{2} & =\bar{\mu}_{M_{H}}^{2}\left(\frac{\sigma_{M_{G}}^{2}}{\sigma_{M_{H}}^{2}}\right)+\bar{\mu}_{M_{A}}^{2}\left(\frac{\sigma_{M_{G}}^{2}}{\sigma_{M_{A}}^{2}}\right) \tag{6.40}
\end{align*}
$$

2. If $0<\rho_{M_{H} M_{A}}<1$, we have:

$$
b_{H}+b_{A}-2 \rho_{M_{H} M_{A}} \sqrt{b_{H} b_{A}}<b_{H}+b_{A}
$$

and since,

$$
\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}>1
$$

we cannot derive any definitive conclusions about the direction of the inequality between $\left.b_{G}\right|_{0<\rho_{M_{H} M_{A}}<1}$ and $\left.b_{G}\right|_{\rho_{M_{H} M_{A}}=0}$
3. If $-1<\rho_{M_{H} M_{A}}<0$, we have:

$$
b_{H}+b_{A}+2\left|\rho_{M_{H} M_{A}}\right| \sqrt{b_{H} b_{A}}>b_{H}+b_{A}
$$

and,

$$
\frac{1}{\left(1-\rho_{M_{H} M_{A}}^{2}\right)}>1,
$$

which implies that

$$
\left.b_{G}\right|_{-1<\rho_{M_{H} M_{A}}<0}>\left.b_{G}\right|_{\rho_{M_{H} M_{A}}=0}
$$

4. If $\rho_{M_{H} M_{A}} \pm 1, b_{G}$ cannot be defined.

However, the typical portfolio of the Global Market portfolio is a weighted average of the typical portfolio of the Home and the Abroad Markets, together with the risk-free. Therefore, the equation of that portfolio can be written as follows:

$$
\begin{equation*}
P_{G}=w_{0} f+w_{H} P_{H}+w_{A} P_{A}, \tag{6.41}
\end{equation*}
$$

where from Equations (4.17), (5.17) we know that:

$$
\begin{align*}
& P_{H}=\left(1-\phi_{H}\right) f+\phi_{H} M_{H}, \tag{6.42a}\\
& P_{A}=\left(1-\phi_{A}\right) f+\phi_{A} M_{A} . \tag{6.42b}
\end{align*}
$$

Using Equations (6.41), (6.42a), (6.42b):

$$
\begin{align*}
P_{G} & =w_{0} f+w_{H}\left[\left(1-\phi_{H}\right) f+\phi_{H} M_{H}\right]+w_{A}\left[\left(1-\phi_{A}\right) f+\phi_{A} M_{A}\right] \\
\Rightarrow P_{G} & =\left[w_{0}+w_{H}\left(1-\phi_{H}\right)+w_{A}\left(1-\phi_{A}\right)\right] f+\left(w_{H} \phi_{H}\right) M_{H}+\left(w_{A} \phi_{A}\right) M_{A} \tag{6.43}
\end{align*}
$$

Using Equations (6.23), (6.28):

$$
\begin{align*}
P_{G} & =\left(1-\phi_{G}\right) f+\phi_{G}\left(w_{G H} M_{H}+w_{G A} M_{A}\right) \\
\Rightarrow P_{G} & =\left(1-\phi_{G}\right) f+\phi_{G} w_{G H} M_{H}+\phi_{G} w_{G A} M_{A} \tag{6.44}
\end{align*}
$$

Using Equations (6.43), (6.44) imply the following results:

$$
\begin{equation*}
w_{0}+w_{H}\left(1-\phi_{H}\right)+w_{A}\left(1-\phi_{A}\right)=1-\phi_{G} \tag{6.45}
\end{equation*}
$$

$$
\begin{align*}
w_{H} \phi_{H} & =\phi_{G} w_{G H} \\
& \Rightarrow w_{H}=\frac{\phi_{G}}{\phi_{H}} w_{G H} \tag{6.46}\\
w_{A} \phi_{A} & =\phi_{G} w_{G A} \\
& \Rightarrow w_{A}=\frac{\phi_{G}}{\phi_{A}} w_{G A} \tag{6.47}
\end{align*}
$$

Using Equation (6.41), (6.46), (6.47) we can write:

$$
\begin{equation*}
P_{G}=w_{0} f+\frac{\phi_{G}}{\phi_{H}} w_{G H} P_{H}+\frac{\phi_{G}}{\phi_{A}} w_{G A} P_{A} \tag{6.48}
\end{equation*}
$$

Chapter 7

Comparisons

In this chapters we shall compare the following four portfolios:

- Portfolio E_{H} on the $C M L_{H}$ is the Home Equilibrium Portfolio, with variance $\sigma_{E_{H}}$ and expected return

$$
\begin{equation*}
\mu_{E_{H}}=r_{f}+\sigma_{E_{H}} \sqrt{b_{H}} \tag{7.1}
\end{equation*}
$$

- Portfolio $E_{H *}$ on the $C M L_{A}$ with variance $\sigma_{E_{H}}$ and expected return

$$
\begin{equation*}
\mu_{E_{H *}}=r_{f}+\sigma_{E_{H}} \sqrt{b_{A}} \tag{7.2}
\end{equation*}
$$

- Portfolio E_{A} on the $C M L_{A}$ is the Abroad Equilibrium Portfolio, with variance $\sigma_{E_{A}}$ and expected return

$$
\begin{equation*}
\mu_{E_{A}}=r_{f}+\sigma_{E_{A}} \sqrt{b_{A}} \tag{7.3}
\end{equation*}
$$

- Portfolio $E_{A *}$ on the $C M L_{H}$ with variance $\sigma_{E_{A}}$ and expected return

$$
\begin{equation*}
\mu_{E_{A^{*}}}=r_{f}+\sigma_{E_{A}} \sqrt{b_{H}} \tag{7.4}
\end{equation*}
$$

When we move from the one CML to the other we can calculate the Capital Market Effect, and when we move on the same CML we calculate the Optimization Effect.

7.1 Home VS Abroad

The investor prefers to invest in the Home Market

Under the assumption that the investor prefers to invest in the Home Market the slope of the $C M L_{H}$ must be greater than the slope of $C M L_{A}$, i.e.,

$$
\begin{equation*}
b_{H}>b_{A} . \tag{7.5}
\end{equation*}
$$

This result can be proven by comparing the expected utilities of the investor in the Abroad Market at points $\left(E_{A}\right)$ and $\left(E_{A^{*}}\right)$. We know that

Figure 7.1: Efficient Frontiers

Figure 7.2: Equilibria

$$
\begin{align*}
\overline{\bar{v}}_{E_{A *}} & >\overline{\bar{v}}_{E_{A}} \\
\alpha_{0}+\alpha_{1} \mu_{E_{A *}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A *}}^{2}+\sigma_{E_{A}}^{2}\right) & >\alpha_{0}+\alpha_{1} \mu_{E_{A}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A}}^{2}+\sigma_{E_{A}}^{2}\right) \\
\alpha_{1}\left(\mu_{E_{A^{*}}}-\mu_{E_{A}}\right)-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A *}}^{2}-\mu_{E_{A}}^{2}\right) & >0 \\
\alpha_{1}\left(\mu_{E_{A *}}-\mu_{E_{A}}\right)-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A *}}-\mu_{E_{A}}\right)\left(\mu_{E_{A *}}+\mu_{E_{A}}\right) & >0 \\
\left(\mu_{E_{A *}}-\mu_{E_{A}}\right)\left[\alpha_{1}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A^{*}}}+\mu_{E_{A}}\right)\right] & >0 \tag{7.6}
\end{align*}
$$

In the previous chapters it is proven that:

$$
\begin{aligned}
r_{P} & \leq \frac{\alpha_{1}}{\alpha_{2}} \\
\Rightarrow \mu_{E_{A^{*}}} & \leq \frac{\alpha_{1}}{\alpha_{2}} \\
& \text { and } \\
\Rightarrow \mu_{E_{A}} & \leq \frac{\alpha_{1}}{\alpha_{2}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\mu_{E_{A *}}+\mu_{E_{A}} & \leq 2 \frac{\alpha_{1}}{\alpha_{2}} \\
\frac{1}{2} \alpha_{2}\left(\mu_{E_{A *}}+\mu_{E_{A}}\right) & \leq \alpha_{1} \\
\Rightarrow \alpha_{1}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A *}}+\mu_{E_{A}}\right) & \geq 0 \tag{7.7}
\end{align*}
$$

Equations (7.3), (7.4), (7.6), (7.7) imply that:

$$
\begin{aligned}
\mu_{E_{A *}}-\mu_{E_{A}} & >0 \Rightarrow \\
r_{f}+\sigma_{E_{A}} \sqrt{b_{H}}-r_{f}-\sigma_{E_{A}} \sqrt{b_{A}} & >0 \Rightarrow \\
\sqrt{b_{H}} & >\sqrt{b_{A}} \Rightarrow \\
b_{H} & >b_{A}
\end{aligned}
$$

This is the Capital Market Effect, since we move from $C M L_{A}$ to $C M L_{H}$.

Since the indifference curve is an increasing function of σ, and the slope of the indifference curve at point $\left(E_{H}\right)$ is greater than the slope of the indifference curve at point $\left(E_{A}\right)$, we can intuitively assume that

$$
\begin{equation*}
\sigma_{E_{H}}>\sigma_{E_{A}} . \tag{7.8}
\end{equation*}
$$

This result can be proven by comparing the expected utility of the investor at points $\left(E_{H}\right)$ and $\left(E_{A_{*}}\right)$. Since the investor prefers to invest in the Home Market,

$$
\begin{align*}
\overline{\bar{v}}_{E_{H}} & >\overline{\bar{v}}_{E_{A^{*}}} \\
\alpha_{0}+\alpha_{1} \mu_{E_{H}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{H}}^{2}+\sigma_{E_{H}}^{2}\right) & >\alpha_{0}+\alpha_{1} \mu_{E_{A^{*}}}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{A^{*}}}^{2}+\sigma_{E_{A}}^{2}\right) \\
\alpha_{1}\left(\mu_{E_{H}}-\mu_{E_{A^{*}}}\right)-\frac{1}{2} \alpha_{2}\left(\mu_{E_{H}}^{2}-\mu_{E_{A^{*}}}^{2}\right) & >0 \\
\alpha_{1}\left(\mu_{E_{H}}-\mu_{E_{A^{*}}}\right)-\frac{1}{2} \alpha_{2}\left(\mu_{E_{H}}-\mu_{E_{A^{*}}}\right)\left(\mu_{E_{H}}+\mu_{E_{A^{*}}}\right) & >0 \\
\left(\mu_{E_{H}}-\mu_{E_{A^{*}}}\right)\left[\alpha_{1}-\frac{1}{2} \alpha_{2}\left(\mu_{E_{H}}+\mu_{E_{A_{*}}}\right)\right] & >0 . \tag{7.9}
\end{align*}
$$

In the previous chapters it is proven that:

$$
\begin{aligned}
\quad r_{P} & \leq \frac{\alpha_{1}}{\alpha_{2}} \\
\Rightarrow \mu_{E_{H}} & \leq \frac{\alpha_{1}}{\alpha_{2}} \\
& \text { and } \\
\Rightarrow \mu_{E_{A *}} & \leq \frac{\alpha_{1}}{\alpha_{2}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\mu_{E_{H}}-\mu_{E_{A *}} & >0 \\
r_{f}+\sigma_{E_{H}} \sqrt{b_{H}}-r_{f}-\sigma_{E_{A}} \sqrt{b_{H}} & >0 \\
\sigma_{E_{H}} & >\sigma_{E_{A}} \tag{7.10}
\end{align*}
$$

This is the Optimization Effect, since we move on the $C M L_{H}$.

The investor prefers to invest in the Abroad Market

Similarly, the Capital Market Effect is:

$$
\begin{equation*}
b_{H}<b_{A} \tag{7.11}
\end{equation*}
$$

and the Optimization Effect is:

$$
\begin{equation*}
\sigma_{E_{H}}<\sigma_{E_{G}} \tag{7.12}
\end{equation*}
$$

7.2 Home VS Global

The investor prefers to invest in the Home Market
Similarly, the Capital Market Effect is:

$$
\begin{equation*}
b_{H}>b_{G} \tag{7.13}
\end{equation*}
$$

and the Optimization Effect is:

$$
\begin{equation*}
\sigma_{E_{H}}>\sigma_{E_{G}} \tag{7.14}
\end{equation*}
$$

The investor prefers to invest in the Global Market
Similarly, the Capital Market Effect is:

$$
\begin{equation*}
b_{H}<b_{G} \tag{7.15}
\end{equation*}
$$

and the Optimization Effect is:

$$
\begin{equation*}
\sigma_{E_{H}}<\sigma_{E_{G}} \tag{7.16}
\end{equation*}
$$

7.3 Abroad VS Global

The investor prefers to invest in the Abroad Market
Similarly, the Capital Market Effect is:

$$
\begin{equation*}
b_{A}>b_{G} \tag{7.17}
\end{equation*}
$$

and the Optimization Effect is:

$$
\begin{equation*}
\sigma_{E_{A}}>\sigma_{E_{G}} \tag{7.18}
\end{equation*}
$$

The investor prefers to invest in the Global Market
Similarly, the Capital Market Effect is:

$$
\begin{equation*}
b_{A}<b_{G} \tag{7.19}
\end{equation*}
$$

and the Optimization Effect is:

$$
\begin{equation*}
\sigma_{E_{A}}<\sigma_{E_{G}} \tag{7.20}
\end{equation*}
$$

Conclusion

In this study we examined an investor with a Quadratic Utility Function, who can invest in three markets: the Home, the Abroad, and the Global Market; with N_{H}, N_{A} and $N_{G}=N_{H}+N_{A}$ risky assets, respectively, and a risk-free asset.

However, we expressed the Global-Market portfolio, M_{G}, using two different techniques:

1. As a weighted average of the N_{G} risky assets that the Global Market consists of.
2. As a weighted average of only two risky assets, the Home-Market, M_{H}, and the Abroad-Market, M_{A}, portfolios.

In the first case, we followed the classic technique used to analyse such portfolios.

In the second case, we needed to define one new 2×1 vector of weights, \boldsymbol{w}_{*}, instead of the $N_{G} \times 1$ w_{G}.

Additionally, we defined a new 2×2 variance-covariance matrix, Σ_{*}, which consists of the σ of M_{H} and M_{A} and their covariance. This matrix was defined so as to substitute the $N_{G} \times N_{G}$ matrix Σ_{G}, which consists of all the σ of the N_{G} risky assets. This substitution gave us the opportunity to include in our analysis the sign of the correlation of the Home and the Abroad Market, which we could not do by using the off-diagonal elements of the original Σ_{G} matrix.

Finally, we examined under what conditions the investor decides to invest in each market.
We proved that the investor invests on the market with the greater b, that is the market which Capital Market Line has the greater slope; we named this effect Capital Market Effect.

Moreover, comparing the utility functions of the investor in each market we showed that the investor decides to invest in the market in which σ, in the equilibrium, is greater; we named this effect Optimization Effect.

References

2. Markowitz, H.M., 2014. Mean-variance approximations to expected utility, European Journal of Operational Research 234 (2), 346-355

