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Abstract

This study investigates empirically the price situation of the European beef mar-
ket. Specifically, it utilizes weekly wholesale beef average carcass price data for fif-
teen European markets and applies the method of hierarchical clustering. In the
frame of this application, some of the most fundamental concerns of cluster analysis
are presented and discussed thoroughly, while the results of the empirical analy-
sis suggest: First, the DTW distance measure and the choice of the ward linkage
method seemed to fit better in the hierarchical agglomerative algorithm concerning
our dataset. Second, there is fragmentation and weak connection among the coun-
tries of the EU concerning the beef price characteristics. Third, countries playing
a major role in the beef market have the highest prices in Europe, while countries
less powerful facing lower prices. Fourth, most of the same countries constituting a
significant part in the European beef sector face smaller variability concerning their
prices. These results relate to the integration and increasing competitiveness which
the European Union has set as its goals. However, these are some first indications by
simply using hierarchical analysis and further analysis to verify them is necessary.
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1
The beef market in the European Union

1.1 Introduction

Although the economic significance of agriculture within the European Union
economy had been on a steady decline for the last 50 years, it remains an essential
sector and has grown rapidly as a concept in the last years, playing a strategic
role in the process of economic development. Νonetheless, agriculture products’
importance goes far beyond their simple economic function since they contribute to
Europe’s regional, cultural and gastronomic identity.

If we go back over some decades, agriculture was connected mostly with the
production of basic crops, but nowadays includes other important factors such as
forestry, fruit cultivation, poultry and dairy farming. The meat sector is one of the
most important in the European Union agriculture and encompasses four main meat
types; beef and veal, pig meat, poultry meat and sheep meat/goat meat. Half of all
EU farms have livestock and a great number of farmers with ruminant animals are
specialist livestock producers.

Meat is a major source of protein and constitutes an important part of the
European diet. EU policies in the meat sector are designed to encourage the pro-
duction of safe, nutritious and affordable meats. Policies, as we shall see, are geared
increasingly towards meeting the needs of consumers, livestock producers and the
environment in a balanced way.

Following a deductive method of organization, the rest of this section is developed
from a general-to-specific order. We start with meat as a commodity and end up
in the cattle commodity, studying the rank of meat and bovine market in the world
and conclude to the beef market within the European Union, which is our main
interest. This will help us understand the European Union’s ranking in the world
in terms of the main economic sectors and what is happening in the internal.
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1.2 Meat-The product

Meat is an important meal and commodity in many parts of the world which
constitutes a significant share of a typical diet and has long formed an important
part of the European diet.

Meat contains a wide variety of nutrients, including high-value proteins, complex
B vitamins, and especially vitamin B12, vitamin D, and iron, zinc, phosphorus and
selenium. Meat protein is of high biological value as it contains a complete and
well-balanced variety of amino acids, which are the cornerstone for growth and
development of the body. Meat is a rich source of iron and although iron is found in
all types of white and red meat (beef, pork, chicken, turkey, fish), veal has the highest
iron content and is essential for the production of healthy blood, in which oxygen is
transported bound to a protein. As with iron, zinc is more readily absorbed from
meat than from vegetable foods, thus making meat a necessary source for the intake
of this trace element. Zinc is essential for growth and reproduction, as well as for
the defense of the body, but also wound healing. Another mineral present in meat
is phosphorus. Phosphorus contributes to good dental and bone health, is involved
in the burning of sugar for energy production, is an important component of DNA
and RNA, plays a role in hormonal and enzymatic regulation, is a component of
cell walls and contributes to its maintenance Blood pH. Meat is particularly rich
in B vitamins (B1, B3, B6), but mainly in vitamin B12. Vitamin B12 is needed
to structure our genetic material, DNA, and thus has many functions in the body,
some of which are the production of healthy blood and its contribution to the proper
functioning of the nervous system (1),(25).

The so-called ‘red meats’ (beef/veal and sheepmeat/goatmeat) and ‘white meats’
(pigmeat and poultrymeat) offer a variety of positive properties and a choice of tastes
and textures. Also, meat is a very versatile culinary product and has become a vital
element of European cuisine and culture.

Due to a diversity of species, traditions of livestock production and terrain, the
EU has a wide variety of livestock types and meat products derived from them
and increases the choices for the consumers. Meat products are major beneficiaries
of the EU’s quality mark schemes and great efforts have been made by the meat
production chain to improve the quality of products as well as their labeling and
marketing.

The most common sources of meat as mentioned above are domesticated animal
species such as cattle, pigs and poultry and to a lesser extent buffalo, sheep and
goats. For thousands of years, poultry supplied meat and eggs, cattle, sheep and
goats provided meat and milk, and pigs provided a source of meat. These species
are the main sources of animal protein for humans.

The meat derived from cattle is known as beef and this is the main market that
we will be dealing with throughout this study.
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1.3 Beef Cattle

Cattle are domesticated bovine farm animals that are raised as livestock for
meat (beef or veal) and for their milk or hides, which are used to make leather.
The animals most often included under the term are the Western or European
domesticated cattle as well as the Indian and African domesticated cattle. In the
terminology used to describe the sex and age of cattle, the male is first a bull calf
and if left intact becomes a bull; if castrated he becomes a steer and in about two
or three years grows to an ox. The female is first a heifer calf, growing into a heifer
and becoming a cow. Males retained for beef production are usually castrated to
make them more docile on the range or in feedlots; with males intended for use as
working oxen or bullocks, castration is practiced to make them more tractable at
work 1.

Cattle farming is usually dependent on the areas offered for grazing but is often
found in areas where farming uses new methods, mainly for their high working
capacity and their natural fertilization. Breeding occurs extensively in sparsely
populated areas and where the climate is dry and intense on fertile, humid and
often densely populated areas, such as in the Netherlands, Denmark, etc., where
agriculture gives its place to cattle breeders.

The number of bovine animals in the world is constantly increasing and this is
due not only to the ever-increasing demand for meat but also to the development
of technology, which contributes to the facilitation of transport and the growth of
refrigeration facilities which allow for more efficient exchange of products. The use
of cattle as commodities has been a point of philosophical controversy, particularly
regarding the raising of animals for food. Such issues are compounded by mod-
ern concerns about the ethics of industrial factory farming and the contribution of
commercial meat production to global warming.

Beef is the meat from the slaughter of mature cattle of at least one year old,
while veal is distinguished as meat from bovine animals younger than one year old,
which is the flesh of calves.

In Europe, there are mainly two farming methods, the pasture-based or "ex-
tensive" production systems and the cereal-based systems. The first takes place
generally in the pastoral regions of Europe, where cereal cultivation is more difficult
and in the mountainous areas throughout Europe. According to this method, the
animals grow at a slower rate, often reaching higher weights and their meat is more
mature with a greater taste. The latter is more common in southern and central Eu-
rope, where the climate is hotter and there are plenty of cereals respectively. In this
method on the contrary, beef animals grow much faster and reach their slaughter
weight quicker 2.

Animal diseases are a constant threat to livestock. In particular, this issue
disordered the European Union’s beef markets in the early 21st century, following

1https://www.britannica.com/topic/agriculture
2The meat sector in the Europian Union - https://ec.europa.eu/agriculture/publi/fact/

meat/2004_en.pdf
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the crises caused by the bovine spongiform encephalopathy (BSE) and foot-and-
mouth disease, a fact that had a wider impact on beef consumption. However, the
bouts had been successfully managed and led Europe to step up with supportive
policies and actions for agriculture and mechanisms to control such cases, providing
support to the beef producers.

1.4 Production

1.4.1 World Market

Meat production plays a significant part in the world’s economy and contributes
to the local, nation and international trade. In recent decades, among many reasons,
but mainly because of the growing population, rising urbanization and technolog-
ical progress, there is an increased demand for livestock products, particularly in
developing countries. Consumers there also gain more purchasing power, a fact that
increased the demand for meat substantially. Purchasing power is also directly re-
lated to consumers’ preferences, who require more options in the meat marketplace.
As a result, meat production faces many challenges which may lead to multiple
paths in the future.

The world meat production for 2018 containing bovine, pig, poultry and ovine
meat was estimated to 336.4 million tones, while the corresponding value for 2017
was 332.4. This means that there was an increase of 1.2 %, the fastest growth since
2014. The main countries that are leading the meat production and contributed to
this increase are the USA, EU and Russia. India, Mexico and Argentina also play an
important role and increased their product to a certain extent. On the contrary, a
decrease occurred in Brazil and China, who also have a leading role, with the latter
producing the largest meat output worldwide. Figure (1.1) shows the share of each
country in world production. As we see, the EU ranks behind China, constituting
a major meat producer in global terms accounting for over 14 % of world meat
production. Concerning now the various meat categories, bovine stands in second
place of the Global meat output. In 2018, the bovine world total meat production
was 8.03 million tonnes and recorded the highest rise (+2.1), while poultry meat
followed with an increase of (+1.3). Ovine and pigmeat, with the latter holding the
largest share, remained almost stable. The USA is the biggest player in the bovine
market, while EU28 also owns a remarkable share and it is third in the world ranking
3 (see Figure 1.2).

3The numbers and figures (1.1, 1.2) can be found in the Food and Agriculture Organisation of the
United Nations (FAOSTAT) and more specifically in the MEAT MARKET REVIEW: Overview
of global meat market developments in 2018 - http://www.fao.org/3/ca3880en/ca3880en.pdf
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Figure 1.1: World production of meat (2018)

Source: FAO

Figure 1.2: World production of bovine meat (2018)

Source: FAO
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Figure 1.3: Pie chart of bovine meat world production (2018)

Source: FAO(calculated from figure 1.2)

1.4.2 Europian Union market

From the foregoing mentioned, it becomes apparent that the European Union,
thanks to its temperate climate and the heterogeneity of its territories, presents a
variety of areas for agricultural production. Meat production represents, on average,
40% of the final agricultural production and consists mainly of the four types (pigs,
bovine animals, sheep, goats). The main meat output in the EU-28 is pork (23.8
million tonnes in 2018), which produced almost three times the weight of beef/veal
(7.9 million tonnes in 2018).

The beef sector is characterised by a diversity of production systems and breeds.
As well as specialized livestock farming, there are combined forms of farming which
include extensive farming, indoor fattening, specialized meat and veal production,
etc., with long production cycles, low income and high production costs. EU pro-
duced 7.9 million tonnes of bovine meat (beef and veal), a slightly bigger quantity
from 2016 and 2017, when it remained the same (7.8 million tonnes). Almost half of
the total beef production in the EU came from France (18.3 %), Germany (15.2 %)
and the United Kingdom (13.2 %). The next important countries in beef production
were Italy (10.3 %) and Ireland (9 %), while Poland’s 8.1 % and Spain’s 6 % were
also noteworthy 4.

4Calculated from table 1.1
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Table 1.1: Production of beef 1000(t) in the EU-28

Countries 2011 2012 2013 2014 2015 2016 2017 2018

EU-28 6.861,18 6.548,32 6.271,03 6.353,92 6.596,19 6.776,22 6.775,78 6.911,36
Belgium 219,40 209,66 195,55 202,16 208,93 215,62 216,81 216,16
Bulgaria 4,11 4,63 4,91 4,28 4,66 5,90 6,69 6,65
Czechia 71,33 64,91 64,12 64,78 67,55 71,21 67,04 70,86

Denmark 102,20 96,90 97,40 99,40 93,10 100,30 93,00 96,60
Germany 1.105,00 1.080,00 1.050,00 1.073,00 1.071,00 1.092,00 1.068,00 1.053,00
Estonia 8,15 7,75 7,70 8,64 9,21 9,05 8,63 8,24
Ireland 545,44 494,60 516,69 580,65 563,26 587,38 615,36 620,47
Greece 47,56 46,99 42,34 37,24 34,14 31,86 34,73 30,61
Spain 359,38 342,10 338,65 340,97 388,00 388,64 386,41 415,52
France 1.340,32 1.266,44 1.201,97 1.219,30 1.251,57 1.262,17 1.244,60 1.267,45
Croatia 47,50 40,90 41,50 39,30 37,50 39,80 37,80 39,41

Italy 880,43 853,81 745,15 607,74 684,25 700,63 651,66 715,93
Cyprus 3,92 4,53 3,71 3,91 4,01 3,88 4,23 4,45
Latvia 16,09 15,32 14,61 15,92 16,31 16,58 15,72 14,96

Lithuania 40,61 39,50 36,32 38,84 43,64 41,75 40,31 39,75
Luxembourg 8,68 8,29 7,78 8,32 8,91 9,25 9,39 9,70

Hungary 25,55 24,11 22,05 22,52 25,75 27,45 26,57 28,45
Malta 1,11 1,11 1,13 1,13 1,03 1,13 1,09 1,04

Netherlands 162,84 158,86 156,68 158,97 157,50 177,73 203,16 197,32
Austria 213,38 213,89 220,12 214,77 222,31 221,37 220,36 227,82
Poland 370,41 362,90 332,91 409,08 467,47 497,72 555,25 561,74

Portugal 73,04 68,70 62,60 59,92 68,09 68,90 68,97 72,01
Romania 22,64 21,92 22,15 22,74 34,94 45,91 46,17 37,66
Slovenia 33,26 31,00 30,28 29,79 31,94 33,84 33,79 32,96
Slovakia 11,19 9,67 9,42 8,73 8,30 8,16 7,68 8,02
Finland 82,28 80,05 80,12 81,95 85,37 85,64 85,07 86,15
Sweden 133,45 120,82 121,66 127,55 129,65 128,59 129,67 134,34

United Kingdom 931,90 878,97 843,52 872,34 877,81 903,77 897,64 914,14

Source: Eurostat (online data code: apro_mt_pann)
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Figure 1.4: Beef production in the EU-28 1000(t), 2018

Source: Eurostat (calculations based on the online data code: apro_mt_pann)

Concerning now the three main producers, Germany is a dairy country with a
high share of dairy cows among the total number of cows. More than forty different
cattle breeds reflect the regional, climatic and gastronomic differences between the
Bavarian Alps in the South and the North and Baltic Seas. Fleckvieh and Braunvieh
are the main breeds in the south of Germany, while in the north, German Holsteins
predominate. The bovine production system in southern Germany is more extensive
than in the north, where production is more concentrated and integrated. The
French beef sector is made up of diverse production systems including both dairy
herd and suckler herd, and both specialized and mixed breeding systems. The cattle
sector in the United Kingdom is typical for its large number of producers; many are
either Micro or Small to Medium Enterprises (SME’s) and, while the concentration in
the sector is changing due to modifications in the subsidy structure, consolidation is
still limited. The dairy sector is an important supplier of animals for beef production,
but there has been a steady decline in the number of United Kingdom holdings with
dairy cows 5.

5Evaluation of EU beef labelling rules - https://ec.europa.eu/agriculture/
sites/agriculture/files/evaluation/market-and-income-reports/2015/
eu-beef-labelling-rules/fullrep_en.pdf
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1.5 Consumption

In Europe, meat consumption is inseparably linked to economic, environmental
and social issues. More specifically, purchasing power and price levels are classic
among the key areas that consumers take into account, with strong expectations on
issues such as food quality, health value of meat, animal welfare and other traditional
features. Various social concerns have been highlighting recent years and seem
to be more and more important over time, while environmental matters such as
environmentally friendly meat production have a significant role and will continue
to do so in the near future (10). Total per capita meat consumption in the EU
has barely changed since 2000. What has evolved is the proportion of the basic
meats consumed in the Union. Although bovine demand was doing well in the
2000s and having recovered from the crises, there was a decline in consumption
stemming from a decline in supply due to the economic crisis. In the latest years,
EU meat consumption dominated by pigmeat and beef and veal consumption comes
in the third place, having lost a market share from poultry meat, whose demand has
almost doubled concerning cattle. As a result, the consumption of beef has declined
to about 10% in these two decades (10).

1.6 Trade

International trade for beef has grown remarkably in recent years. The main
exporters are Brazil; which leads the ranking of the largest exporter of beef in the
world since 2008, the United States, Australia, India and New Zealand 6. The
increase in beef consumption in various Asian countries helps these markets, with
China being the largest importer in the world for 2018, mainly due to the increasing
demand of its consumers. The rapid growth in Chinese beef imports has dramatically
altered global beef flows with several countries now exporting a significant share
of total exports to China. It’s increasing demand for bovine meat is expected to
continue for the next years and as a result, the trade flows are expected to continue
to increase. The European Union, although it ranks third in terms of world meat
exports behind the United States and Brazil, plays no significant role in the specific
sector concerning beef.

However, there is also the sector of beef trade within the European Union, called
intra-EU trade, which is the sum of all the quantities sold by all the Member States
to the other Member States. More specifically, intra-EU refers to all transactions
occurring within the EU and the term is used in the context of external trade, the
balance of payments and other similar statistical areas. On the contrary, extra-EU
refers to transactions with all countries outside of the EU, which is the rest of the
world except for the EU Member States 7. Internal trade development is a significant
subject toward the Europian Union. Volumes traded across borders within the EU
market decreased sharply in 1996 and 2000, two years marked by the BSE crisis.

6MEAT MARKET REVIEW: Overview of global meat market developments in 2018 - http:
//www.fao.org/3/ca3880en/ca3880en.pdf

7https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Extra-EU
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Total intra-EU trade increased between and after the end of the crisis and continued
in the following years with a gradual increase also due to the entry of brand-new
members into the Union and the enlargement of the market for internal trade 8. The
extra-EU trade in beef is much lower than the internal trade between the Member
States in the most recent years, mainly due to the also reduced production and
the significant rise of other world markets over the same period. The European
countries playing a major role in the consumption and production of beef within the
European Union as mentioned above, also hold a leading part in the internal trade
market. Germany, Italy and the United Kingdom are large importers of beef while
France and Spain also receive a remarkable share. Ireland stands out with a good
percentage in this economic index, as it possesses a special relationship with Great
Britain, with a large number of exchanges being taken place from one country to
another 9.

1.7 Common Agriculture Policy (CAP)

As stated earlier, the EU tries to set conditions for farmers to fulfill multiple
functions, including the principal aim of producing high-quality, safe food. Launched
in 1962, the Common Agricultural Policy (CAP) is its unified agricultural policy, a
partnership between agriculture and society and between Europe and its farmers 10.
It describes a set of laws and regulations related to agriculture, livestock breeding,
movement of agricultural products and all resulting outcomes, such as price stability,
product quality, product selection, land use and employment in the agricultural
sector. Its main aims are to improve agricultural productivity so that consumers
have a stable supply of affordable food and to ensure that EU farmers can make a
reasonable living. The CAP is a common policy for all the Member States of the
European Union and it is managed and funded at European level from the resources
of the EU’s budget.

Significant reforms of the CAP have taken place in recent years, most notably
in 2003 (the CAP provides income support), 2008 and 2013 (the CAP is reformed
to strengthen the competitiveness of the sector, promote sustainable farming and
innovation, support jobs and growth in rural areas and move financial assistance
towards the productive use of land), which have sought to make EU’s agricultural
sector more market-oriented and ensure that safe and affordable food continues to
be produced while respecting environmental and sustainability concerns 11.

CAP policies relating to meat have also evolved over many years and are in-

8Evaluation of EU beef labelling rules - https://ec.europa.eu/agriculture/
sites/agriculture/files/evaluation/market-and-income-reports/2015/
eu-beef-labelling-rules/fullrep_en.pdf

9Evaluation of EU beef labelling rules - https://ec.europa.eu/agriculture/
sites/agriculture/files/evaluation/market-and-income-reports/2015/
eu-beef-labelling-rules/fullrep_en.pdf

10https://ec.europa.eu/info/food-farming-fisheries/key-policies/
common-agricultural-policy/cap-glance_en

11https://ec.europa.eu/info/food-farming-fisheries/key-policies/
common-agricultural-policy/cap-glance_en

19

https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2015/eu-beef-labelling-rules/fullrep_en.pdf
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en


creasingly focused specifically on improving the quality of the product, on giv-
ing farmers confidence in their future income prospects and on encouraging more
environmentally-sustainable farming practices. Reforms specifically in the beef and
veal market aim to contribute to market stability, strengthen the competitiveness
of the sector, stabilize farm incomes and provide further incentives for producers to
move towards more extensive methods of production.

In the past, due to its importance, CAP had occasionally been the subject of
much controversy and has received pressure from various sources that led to its major
changes-reforms during the length of time. Therefore it has evolved over the years to
meet these citizens’ requirements and expectations as well as the changing economic
circumstances and will continue to evolve, securing benefits to all EU citizens.

20



2
Literature Review

In this chapter, we present briefly some literature review based on two points.
The first is the question of the European integration of the countries, which is of
great importance since the results of our empirical analysis are part of this. In the
following, we are more specific about the beef sector and what happens mainly to
the production hierarchy of the countries and the price index.

The integration of the EU Member States is a major concept and a significant
number of papers dealing with Member State price relationships (6). Specifically, the
literature focuses on the prices of agricultural products, with some concluding that
there is integration in the spatial markets and some concluding the opposite. Meat is
our field of interest among the many agricultural products that have been examined
so we will focus here. Beef ranks third in the European Union concerning pork,
which has been the subject of many studies. Fousekis and Grigoriadis (2019) (6)
utilized a sample for the pork market corresponding to ours as it will be described
further below, and applying some tools from the Graph theory, they found that
prices were related to the natural distance between the Member States and that
large countries in significant pork sectors such as production and intra-trade tend
to format the prices. Similar conclusions are being sought by the present study
too. In another example, Sanjuán and Gil (2001) (11) examined spatial pork and
lamb prices relationships in 7 Member States and using multivariate co-integration
analysis found a high degree of integration in both markets.

A specific application of the hierarchical analysis method to the European beef
market similar to ours from the methodology perspective is the study of Buleca,
Kováč and Kočanová (2018) (4), who applied hierarchical analysis to beef production
statistics using the euclidean distance as the distance measure and the ward method
as the linkage criterion. Once again it is verified that Germany, France, the United
Kingdom and Italy account for half of the gross production value of the EU cattle
sector. According to Ihle et al., (2017) (13), two are the main attributes of beef
prices. The first concerns the fact that beef prices at the consumer level are generally
higher than those for other types of meat and secondly that they remain steadily
high in recent years. Cattle slaughter prices of different cattle types (steers, young
bulls, cows, heifers) increased on average from 2.5 euros in 1991 to almost 3.8 euros
per kg in 2015, especially from 2010 to 2015 (13). Probably they will continue to
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increase to reach 4.0 euros per kg, so that beef meat and sheep meat will have
the same farm prices. This means that beef meat is likely to become even more
expensive than pig and poultry meats. The European Union is thus called upon to
address this problem, as consumer preferences are matched by the purchasing power
and the price level. Also, the emergence of new markets in the world trade of beef
makes the market more competitive and the European Union cannot properly repay
these high prices. That is why there is an urgent need for market competitiveness
and integration in the European Union.

The literature review on the application of the hierarchical algorithm we will use
and the different stages of which it consists, is of major importance in this study
and it is combined together with the methodology in the next chapter.
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3
Data and Methodology

3.1 Data

All data used in the current study are weekly wholesale beef average carcass
prices (expressed in Euros per 100kg of carcass weight) for the period 2011-01-03
to 2019-08-26. They have been obtained from the European Commission 1, whose
task is to provide EU with statistics at a European level that enable among other
comparisons between countries and regions. Agricultural statistics are an important
part of its publication and livestock and meat statistics are collected, which includes
bovine, pig, sheep and goat livestock; slaughtering statistics on bovine animals, pigs,
sheep, goats and poultry; and production forecasts for beef, veal, pig meat, sheep
meat and goat meat. The dataset, named "Beef historical weekly prices - 2011
onwards" can be found in the "EU historical series" subsection from the general
category "Beef".

As processing the data, we observe that there is a classification of carcasses of
bovine animals and price recording 2. The purpose of the classification is, on the one
hand, to pay the producer according to the quality of the carcasses he produces and
on the other hand the buyer to choose the quality he wishes and to pay according
to the quality he buys. Marketing based on classification contributes substantially
to market transparency and its introduction in the market is a major incentive for
improving the quality of carcasses. The Community-scale for the classification of
carcasses of bovine animals applies to carcasses of bovine animals aged eight months
and over and the implementation of this scale is obligatory in all EU Member States.
The way of capturing the quality of the carcass is to classify it based on the animal’s
category, the carcass shape; meaning the degree of muscle mass growth and finally
the degree of fattening; indicating the deposition of fat in the carcass.

Starting with the initial, carcasses are classified depending on sex and age of the
animal into six categories denoted by the letters Z, A, B, C, D, and E and defined
as follows:

1https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/
markets/overviews/market-observatories/meat_en

2https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/
documents/methodology-carcase-remainders_en.pdf
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• Z: ("Young cattle"): Carcasses of animals aged from 8 months to less than 12
months.

• A: ("Young bulls"): Carcasses of uncastrated male animals aged from 12
months to less than 24 months.

• B: ("Bulls"): Carcasses of uncastrated male animals aged from 24 months.

• C: ("Steers"): Carcasses of castrated male animals aged from 12 months.

• D: ("Cows"): Carcasses of female animals that have calved.

• E: ("Heifers"): Carcasses of other female animals aged from 12 months.

The shape is defined based on the development of the sides of the carcass, and
in particular of the sides of it’s most important parts (thigh, back, shoulder blade)
in the following categories:

• S: ("Superior"): All profiles extremely convex; exceptional muscle development
(double-muscled carcass type).

• E: ("Excellent"): All profiles convex to super-convex; exceptional muscle de-
velopment.

• U: ("Very Good"): Profiles on the whole convex, very good muscle develop-
ment.

• R: ("Good"): Profiles on the whole straight; good muscle development.

• O: ("Fair"): Profiles straight to concave; average muscle development.

• P: ("Poor"): All profiles concave to very concave; poor muscle development.

The latter includes five fat classes 1, 2, 3, 4, 5 based on the amount of fat on the
outside of the carcass and the inside of the thoracic cavity:

• 1: ("Low"): None up to low-fat cover.

• 2: ("Slight"): Slight fat cover, flesh visible almost everywhere.

• 3: ("Average"): Flesh except for the round and shoulder, almost everywhere
covered with fat, slight deposits of fat in the thoracic cavity.

• 4: ("High"): Flesh covered with fat, but on the round and shoulder still partly
visible, some distinctive fat deposits in the thoracic cavity.

• 5: ("Very High"): Entire carcass covered with fat; heavy deposits in the tho-
racic cavity.

Carcass classification applies to all carcasses, all types of shapes and all categories
of fat. However, the recording of producer prices for carcasses classified only concerns
certain categories of carcasses, namely:
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• (Cat Z): U2, U3, R2, R3, O2, O3

• (Cat A): U2, U3, R2, R3, O2, O3

• (Cat B): R3

• (Cat C): U2, U3, U4, R3, R4, O3, O4

• (Cat D): R3, R4, O2, O3, O4, P2, P3

• (Cat E): U2, U3, R2, R3, R4, O2, O3, O4

The market price requested based on the Community grading scale is the price
without the value-added tax paid by the supplier of the animal and relates to 100
kg of the carcass, weighed and classified on the hook of the slaughterhouse. The
combination we chose for our empirical analysis is ΕR3 as explained above, in order
to consider an animal belonging to the beef category and, with respect to the other 2
categories (carcass shape and degree of fattening), to be of "medium" characteristics.

• E: ("Heifers"): Carcasses of other female animals aged from 12 months.

• R: ("Good"): Profiles on the whole straight; good muscle development.

• 3: ("Average"): Flesh except for the round and shoulder, almost everywhere
covered with fat, slight deposits of fat in the thoracic cavity.

Considering then this combination, the data come from 15 member-states; namely,
Austria (AT), Belgium (BE) Czechia (CZ), Germany (DE), Denmark (DK), Spain
(ES), France (FR), Ireland (IE), Italy (IT), Lithuania (LT), Poland (PL), Portugal
(PT), Sweden (SE), Slovenia (SI) and United Kingdom (UK). Τhe selection of the
countries was based on two criteria, to include as many countries as possible and to
have a sufficient number of observations.

The data were downloaded as a Microsoft Excel file and imported to the pro-
gramming language R (22). The empirical analysis, as well as data visualization in
this study, were exported from the RStudio (24) programming environment. The
R coding that was utilized for has been contained as supplementary material in
Appendix B.

3.2 Methodology

3.2.1 Clustering

Data mining, also called knowledge discovery, knowledge extraction, data/pat-
tern analysis, information harvesting, etc., is defined as a method used to extract
usable data from a larger set of any raw data (5). In particular, data mining is
all about discovering unsuspected or previously unknown relationships amongst the
data and has applications in multiple fields, like science and research. The invention
dates back many decades ago and the area of knowledge mining has been developed
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in recent years to address the problem of large volumes of data. It is an important
research area with a significant impact on the real world. It involves a set of methods
that automate the process of scientific discovery and its uniqueness lies in solving
problems with large volumes of data that contain complex and hidden relationships.
Tasks performed during data mining are divided into tasks for description and fore-
casting. Forecasting presupposes the use of various known variables to estimate
future unknown values while the description focuses mainly on discover patterns in
data that can easily be interpreted and describe them. The contribution of data
mining to the science of economics lies in understanding data collections and in the
creation and evaluation of a model and its development for any predictions that may
be necessary.

Because time series are a ubiquitous and increasingly prevalent type of data,
there has been much research effort devoted to time series data mining in recent
years. Since data mining has the potential to reveal hidden patterns, the data
mining techniques of time series further improve data analysis. Investigations for
time series mining focuses on the following processes (5),(16):

• Clustering: Grouping the time series found in the database, based on some
similarity or non-similarity measures.

• Classification: Defining a model that can categorize new data.

• Forecasting: Forecasting the n + 1 value of a given time series all of its previous
points.

• Segmentation: The construction of a model divided into k segments (with k «
n) to approximate a time series.

• Summarization: Including methods for describing a subset of data.

• Anomaly Detection: Identification of unusual data records or observations,
which raise suspicions by differing significantly from the majority of the data
and require further investigation.

In the past few years, tasks such as regression, classification, clustering or seg-
mentation have been extended and modified successfully for time-series databases
(Fu, 2011 (7); Bagnall et al., 2016 (2)) . Of the above methods, in this study we are
interested in implementing clustering. In many real applications, clustering must be
performed on time-series data (LIAO, 2005 (17) ; Fu, 2011 (7)), since it is a common
type of dynamic data that naturally arise in many different circumstances, such as
economics, finance, medical data, ecology, environmental studies or engineering, just
to name a few. The main features of this type of data are its high dimensionality,
dynamism, auto-correlation and noisy nature, all of which complicate the study and
pattern extraction to a large extent.

Clustering or cluster analysis, which is a descriptive task as explained above,
is the main technique used to divide data into groups based on internal and priori
unknown schemes inherent of the data (9). In more detail, clustering is the task
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aiming to group or classify a set of objects in such a way that objects in the same
group (called a cluster) have the same kind of characteristics compared to those in
other groups (clusters). In other words, in each group, we want as much as possible
internal homogeneity and a great relationship between its elements, while between
groups as much as possible heterogeneity and minimum relationship. The original
view one has when given multivariate data is unclear and it is very difficult to draw
conclusions about them, so with the help of clustering, we try to gain some extra
knowledge about our data, such as similarities, presence or absence of features and
find out if there are any relationships that characterize them.

3.2.2 Distance Measures

Since clustering is the grouping of similar objects, the choice of how to calculate
the similarity/dissimilarity between the two objects is a crucial subject. Most clus-
tering algorithms use metric spaces or distance measures to determine the similarity
or dissimilarity between any pair of objects. We consider similarity as the measure
that establishes an absolute value of resemblance between two vectors, in principle
isolated from the rest of the vectors and without assessing the location inside the
solution space (12).

It is useful to denote the distance between two points x and y as: d(x, y). A
valid distance measure should be symmetric and obtains its minimum value (usually
zero) in case of identical vectors. The distance measure is called a metric distance
measure if it also satisfies the following properties:

d(x, y) ≥ 0

d(x, y) = 0

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

There exists a broad range of measures to compare time series and the choice
of the proper dissimilarity measure depends largely on the nature of the clustering,
i.e., on determining what the purpose of the grouping is. Many dissimilarity mea-
sures between time series have been proposed in the literature. Following Montero
and Vilar et al. (2014) (19), they can be grouped into four categories: model-free
measures, model-based measures, complexity-based measures and prediction-based
measures. This study uses two model-free measures, which include metrics based on
the closeness of their values at specific points of time and they are described further
below.

3.2.2.1 Euclidean distance

Scientists initially, aiming to objectively determine the similarity between time
series, suggested the use of Minkowski distance metric, the general type of which is:
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d(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

The most common distance which is used is the Euclidean distance which oc-
curs of the general type of Minkowski distance, for p = 2. Mathematically, the
definition of Euclidean distance between two n-dimensional vectors x(x1, ..., xn) and
y(y1, ..., yn) is:

d(x, y) =

(
n∑

i=1

|xi − yi|2
)1/2

Some other widely used measures of dissimilarity or otherwise distance measures
that occur for different values of p are the Manhattan (p = 1) and Chebyshev
(p =∞)

Euclidean distance, although it works well, does not always produce accurate
results when the sequences shift with respect to the time axis. In this case another
more efficient metric called Dynamic Time Warping can be used and it is discussed
in more detail below

From the preceding, it is understood that the Euclidean distance calculates the
point by point distance. As a result, its utilization in trying to calculate time
series distances requires that they have exactly the same number of observations.
Thus, Euclidean distance, although it works well, does not always produce expensive
results when the sequences shift with respect to the time axis. This disadvantage
has resulted in the invention and implementation of a new method that supports
the comparison and calculation of distances between time series of independent
dimensions, called Dynamic Time Warping distance.

3.2.2.2 Dynamic Time Warping distance

According to Montero and Vilar (2014) (19), the dynamic time warping (DTW)
distance was studied in depth by Sankoff and Kruskal (1983) (26) and proposed to
find patterns in time series by Berndt and Clifford (1994) (3). Given the time series
Q and C of dimension n and m respectively, to calculate the DTW distance, the
warping path must be calculated first. This path consists of a set of consecutive
elements of the table, which defines a non-linear matching match between Q and
C. That is W = w1, ..., w2, with max(m,n) ≤ K < m + n − 1 and wk(i, j) the k
element of W . This path can be dynamically found through the following iteration
(21):

w(i, j) = d(qi, ci) +min{w(i− 1, j − 1), w(i− 1, j), w(i, j − 1)},

To align the time series with DTW, a dimension table is formed (mxn) where
the item (i,j) contains the distance d(qi, cj) between the two points qi and cj (where
d(qi, cj) = (qi − cj)

2). Each item (i,j) in the register corresponds to the alignment
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between the two points qi and cj. The distortion length is a parameter that calculates
the optimum distance specifying the permitted distortion.

Basic restrictions on the Warping Function 3 :

• Boundary Conditions: i1 = 1, ik = n and j1 = 1, jk = m : The alignment path
starts at the bottom left and ends at the top right. This restriction guarantees
that the alignment does not consider partially one of the sequences.

• Monotonicity: is−1 ≤ i and js−1 ≤ j : The alignment path does not go back
in “time” index. This restriction guarantees that features are not repeated in
the alignment.

• Continuity: is − is−1 ≤ 1 and js − js−1 ≤ 1 : The alignment path does not
jump in “time” index. This restriction guarantees that the alignment does not
omit important features.

• Warping Window: |is − js| ≤ r where r > 0 is the window length : A good
alignment path is unlikely to wander too far from the diagonal. This restriction
guarantees that the alignment does not try to skip different features and gets
stuck at similar features.

Many warp paths meet these conditions, but the preferred path is the one that
minimizes the cost of distortion:

DTW (Q,C) = min


√∑k

k=1Wk

K


The different approach of the metric DTW compared to that of Euclidean dis-

tance, but also of the other point-to-point metrics mentioned above, plays a decisive
role in the results obtained from data mining processes. The latter is a special case of
DTW, where the sequences are aligned point by point, that is, the i-th point of time
series C corresponds to its i-th point of time series Q. Keogh and Ratanamahatana
(2005) (15) concluded that the error frequencies in the case of clustering of the time
series to be analyzed based on metric DTW, are much lower than those transpiring
in the case of time series analysis clustering with the application of the Euclidean
distance. The disadvantage of DTW exists in the time and cost of computing, and
according to these features may not be the best choice for large databases. The
complexity of computing DTW is computationally costly with complexity O(m*n)
where m and n represent the length of each sequence.

3http://www.mathcs.emory.edu/~lxiong/cs730_s13/share/slides/searching_
sigkdd2012_DTW.pdf
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3.2.3 Hierarchical Clustering

Perhaps the most popular clustering algorithm, hierarchical clustering, is a method
that tries to create a hierarchy of groups/clusters in which, as the level in the hi-
erarchy increases, clusters are created by merging the clusters from the next lower
level, such that an ordered sequence of groupings is obtained (9). To decide how
the merging is performed, a (dis)similarity measure between groups should be spec-
ified, in addition to the one that is used to calculate pairwise similarities (as those
mentioned above). The partitions represent nonoverlapping clusters and have the
property that once two elements become members of the same cluster, they are never
again seperated. The researcher has the option of using the entire hierarchy as the
solution or selecting a level representing the specific number of clusters of interest.

Algorithms for hierarchical clustering can be agglomerative or divisive (9). In the
first method, which is also known as Hierarchical Agglomerative Clustering (HAC),
we consider each member of the data as a cluster. Then, more similar memebers
are selected and merged based on the similarity measure, creating a new cluster.
The process is repeated until all members are contained in a single cluster. Divisive
clustering method, also called DIANA, which is an acronym for Divisive Analysis,
follows a pattern that is the reverse of the agglomerative technique. It starts with all
data in one single cluster and then divide them into two least similar clusters. This
is repeated recursively on each cluster until there is one cluster for each member.
In this study, we will proceed with Agglomerative Clustering for the rest of the
study, since HAC accounts for the majority of hierarchical clustering algorithms
while Divisive methods are rarely used.

After selecting a distance metric, it is necessary to determine from where distance
is computed. The inter-group dissimilarity is also known as linkage. There are
certain approaches which are used to calculate the similarity between two clusters:

• SINGLE LINKAGE: It is also known as minimum method. Here, the distance
between one cluster and another cluster is taken to be equal to the shortest
distance from any data point of one cluster to any data point in another.
That is, distance will be based on similarity of the closest pair of data points.
Mathematically, the linkage function – the distance D(A,B) between clusters
A and B – is described by the expression :

D(A,B) = min
a∈A,b∈B

d(a, b)

where A and B are any two sets of elements considered as clusters, and d(a, b)
denotes the distance between the two elements a and b. An advantage of
this approach is that it can separate non-elliptical shapes as long as the gap
between two clusters is not small. However, it can cause premature merging
of groups with close pairs, even if those groups are quite dissimilar overall.

• COMPLETE LINKAGE: This method is also called the diameter or maximum
method. In this method, we consider similarity of the furthest pair. That is,
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the distance between one cluster and another cluster is taken to be equal to
the longest distance from any member of one cluster to any member of the
other cluster. Similarly, mathematically, the linkage function – the distance
D(A,B) between clusters A and B – is described by the expression :

D(A,B) = max
a∈A,b∈B

d(a, b)

where A and B are any two sets of elements considered as clusters, and d(a, b)
denotes the distance between the two elements a and b. This approach does
well in separating clusters if there is noise between clusters but a disadvantage
is that outliers can cause close groups to be merged later than what is optimal.

• AVERAGE LINKAGE: In average linkage, we take the distance between one
cluster and another cluster to be equal to the average distance from any mem-
ber of one cluster to any member of the other cluster. For example, the distance
between clusters A and B to the left is equal to the average length each arrow
between connecting the points of one cluster to the other. Here, the linkage
function – the distance D(A,B) between clusters A and B – is described by
the expression :

D(A,B) =
1

nAnB

nA∑
i=1

nB∑
j=1

d(a, b)

where A and B are any two sets of elements considered as clusters, and d(a, b)
denotes the distance between the two elements a and b. The advantage of the
method is that it does not create large length clusters nor do we have such a
severe problem with extreme observations. Cons, is that because we have to
calculate the average distance between the clusters, it has bigger computational
cost. It is also biased towards globular clusters.

• AVERAGE CENTROID: Being a less popular technique, it computes the cen-
troids of two clusters A andB and take the similarity between the two centroids
as the similarity between two clusters.

• WARD’S METHOD: Ward’s method aims to minimize the total within-cluster
variance. At each step the pair of clusters with minimum between-cluster dis-
tance are merged. In other words, it forms clusters in a manner that minimizes
the loss associated with each cluster. At each step, the union of every pos-
sible cluster pair is considered and the two clusters whose merger results in
minimum increase in information loss are combined. Here, information loss is
defined by Ward in terms of an error sum-of-squares criterion (ESS). Ward’s
method approach also does well in separating clusters if there is noise between
clusters and it is also biased towards globular clusters.
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Finaly, the created hierarchy can be visualized as a binary tree of clusters created
based on the connection criterion. Such a plot is called a dendrogram and it is in the
form of an inverted tree. Dendrograms begin with each object in a separate cluster.
At each step, the two most similar clusters are joined into a single new cluster. Once
fused, objects are never separated. Usually, the horizontal axis of the dendrogram
represents the objects and clusters while the vertical axis the distance or dissimilarity
between clusters. The dendrogram is fairly simple to interpret and the reverse
visualization can also happen. The dendrogram does not directly imply a certain
number of clusters, but one can be induced. One option is to visually evaluate the
dendrogram to assess the height at which the largest change in dissimilarity occurs,
consequently cutting the dendrogram at said height and extracting the clusters that
are created. Another option is to specify the number of clusters that are desired,
and cut the dendrogram in such a way that the chosen number is obtained. In the
latter case, several cuts can be made, and validity indices can be used to decide
which value yields better performance.

3.2.4 Tools for time series clustering

Although hierarchical clustering provides a fully connected dendrogram repre-
senting the cluster relationships, sometimes we need to choose the preferred number
of clusters to extract. The optimal number of clusters is somehow subjective and
depends on the method used for measuring similarities and the parameters used
for partitioning. So defining different methods for determining the optimal number
of clusters in hierarchical clustering is necessary to complete the process. These
methods include direct methods such as the elbow and silhouette method or other
statistical testing methods. An example of the latter is the gap statistic. In addition
to elbow, silhouette and gap statistic methods, there are more than thirty other in-
dices and methods that have been published, but we will remain from now to these
three 4 :

• ELBOW METHOD: It is probably the most well-known method, in which
the sum of squares at each number of clusters is calculated and graphed.
After that, we look for a change of slope from steep to shallow (an elbow) to
determine the optimal number of clusters. More specific, the Elbow method
looks at the total WSS (within-cluster sum of square) as a function of the
number of clusters. One should choose a number of clusters so that adding
another cluster doesn’t improve much better the total WSS.

• SILHOUETTE METHOD (23): Another illustration that can help determine
the optimal number of clusters is called the silhouette method. The mean
silhouette method calculates the average silhouette of observations for different
values of k. The optimal number of k groups is the one that maximizes the
mean silhouette over a range of possible values.

4https://towardsdatascience.com/10-tips-for-choosing-the-optimal-number-of-clusters-
277e93d72d92
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• GAP STATISTIC (28): The gap statistic compares the total within intra-
cluster variation for different values of k with their expected values under null
reference distribution of the data. The estimate of the optimal clusters will be
a value that maximizes the gap statistic.
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4
Empirical Analysis and Discussion

4.1 Descriptive Statistics

In this section, we give a brief presentation of our sample, describe the basic
features of our observations that will lead to some initial results and together with
some helpful presentation of diagrams, give them a visual comprehensible form.
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4.1.1 Raw data

Figure 4.1: Raw prices over time (weeks) for the fifteen EU beef markets.

Figure (4.1) shows the evolution of the time series for the 15 EU markets. We
observe that prices in some countries fluctuate similarly while in others the opposite
happens. In almost all countries, prices are increasing until 2012-2013, reflecting the
steady increase in the following ten years after the price drop in 2001-2003, due to
the mad cow and foot-and-mouth disease crises. Over the period 2014 to 2018 beef
prices stay relatively firm despite the Russian import ban and the restructuring in
the EU dairy sector.

Table (4.1) presents some useful descriptive statistics, concerning the measures
of location, the measures of dispersion and the coefficients of skewness and kurtosis.
These are very significant variables since check for normality can be done if compare
the mean and the median values or estimate the coefficient of skewness and kurtosis.
Other ways to examine normality are the use of graphs (histograms, normal Q-Q
plots and boxplots) and the application of appropriate statistical tests.
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Table 4.1: Descriptive Statistics for the raw prices

Country N Mean Median Min Max Range SD Skewness Kurtosis

DE 452 365.630 370.480 307.020 393.720 86.700 17.625 -1.237 1.297
FR 452 395.199 394.000 329.000 466.000 137.000 27.195 -0.162 0.740
UK 452 422.124 420.783 325.340 509.013 183.673 36.615 -0.323 0.426
IT 452 409.798 409.805 351.040 465.390 114.350 15.783 -0.100 0.295
IE 452 392.817 394.850 329.330 467.940 138.610 24.697 -0.073 0.751
PL 452 304.205 305.490 244.192 340.261 96.069 18.957 -1.008 1.008
ES 452 386.605 386.750 330.531 430.412 99.881 18.316 -0.311 -0.179
AT 452 351.443 355.560 302.180 379.000 76.820 15.212 -1.522 1.755
PT 452 367.804 368.250 326.200 389.000 62.800 11.082 -0.567 0.304
SI 452 329.434 331.295 289.620 352.570 62.950 11.120 -1.024 1.001
SE 452 415.774 409.301 321.131 517.025 195.894 42.084 0.107 -0.525
BE 447 321.068 322.000 270.000 359.500 89.500 19.340 -0.424 0.102
CZ 452 274.670 272.340 241.563 309.219 67.656 12.916 0.205 -0.981
DK 452 363.406 364.737 310.762 395.328 84.566 15.769 -0.307 -0.709
LT 446 256.064 254.030 205.103 339.570 134.467 25.152 0.524 -0.047

Firstly, we observe that 13 countries have a complete set of observations (N =
452), while 2 countries contain missing values. These are Belgium (NAs = 5) and
Lithuania (NAs = 6). The coefficients of mean and median of a continuous variable
can be used for an initial assessment of normality. In particular, the closer the mean
and the median are, the more it is likely that the quantitative variable will follow the
normal distribution. Then, the standard deviation shows how much variation from
the mean exists. It represents a "typical" deviation from the mean. A low standard
deviation indicates that the data points tend to be very close to the mean while a
high standard deviation indicates that the data points are spread out over a large
range of values. From the table (4.1), the time series with the smallest (SD) are the
most predictable and follow the flattest course among the European countries.

Next, we have estimated the coefficients of skewness and kurtosis, which offer
valuable information on whether or not a continuous variable follows the normal
distribution. In more detail, the skewness coefficient takes values from -3 to 3, with
values from [-1,1] denote the existence of a normal distribution and values from [-
1,-3] or from [1,3] denote no normal distribution. According to the table, most of
the countries seem to be in the [-1,1] interval. Sweden, Czechia, and Lithuania have
positive skewness, meaning the mass of the distribution is concentrated on the left.
The rest countries on the contrary have left-skewed distributions, so the left tail of
their distributions is longer.

As we stated before, diagrams are essential tools that communicate information
and explain statistical data. Figure (4.2) shows classic horizontal boxplots contain-
ing all the countries, where a nice summary of our variables is presented. Note that
the white marks on the boxplot represent the mean of the beef prices so that we
have a good visualization of the previous mention about the measures of location
and their comparison.

36



Figure 4.2: Boxplots of the raw prices

Figures (4.3) and (4.4) depict the histograms and density plots (a smoothed
version of the histograms) for our variables respectively to have a graphical repre-
sentation of the distribution and to assist our briefly description above for coefficients
such as standard deviation, skewness and kurtosis.
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Figure 4.3: Histograms of the raw prices
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Figure 4.4: Density plots of the raw prices

Last but not least, we use the correlation coefficient as a measure of association
to help us take a first look and quickly identify the most correlated variables. The
correlation coefficient (also known as the Pearson correlation coefficient) measures
how well two variables are related in a linear (straight line) fashion. It is usually
called r and lies between -1 and +1. A value of r = -1 means that the two variables
are exactly negatively correlated and a value of r = +1 means that the two variables
are exactly positively correlated. A value of r = 0, means that the two variables
are not linearly related. There are several ways for visualizing a correlation matrix.
A good way to quickly check correlations among our variables is by visualizing the
correlation matrix as a heatmap (figure 4.5). There are also other different methods
for correlation analysis such as Spearman (figure A5) and Kendall (figure A6), which
are non-parametric rank-based correlation tests and presented in the same way in
the Appendix A.
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Figure 4.5: Correlation heatmap (pearson) of the raw prices

4.1.2 Log-Returns

For practical purposes, as price series in levels are mostly non-stationary and
price differences are stationary, the bibliography always concentrates on log price-
returns because they simply eliminate the non-stationary properties of the data,
making them more stable. The price change (Pct) is calculated as Pct = log(Pt/Pt−1),
where Pt and Pt-1 are current and one period lagged weekly spot prices respectively.
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Figure 4.6: Log-return (prices) over time (weeks) for the fifteen EU beef markets.

An interesting analysis is to plot once again the weekly log return prices of the
fifteen time series. It is verified that the log-return graphs (figure 4.6) present an
oscillation around the value of zero. It is also possible to observe the presence of
volatility clustering at some moments and periodic clustering of high and low returns,
suggesting that maybe the log return process is not completely independent.

Table (4.2) shows the main descriptive statistics of the weekly log return series.
As we can see, the mean of log returns is zero and the min and max are also ap-
proximately around zero. Some countries present greater volatility, as perceived by
the greater standard deviation mean (SD) they have (e.g., Ιtaly, Sweden, Lithuania).
The skewness values showed in the table indicate that the distributions of the return
prices are more symmetrical than earlier and from figures (4.7) and (4.8), we under-
stand that we now have more bell-shaped density distributions. However, excess of
kurtosis is being presented in some variables, as we expected, which in the literature
are conventionally known as ‘narrow peak’ and ‘fat tails’, being characterized as
leptokurtic distributions.
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Table 4.2: Descriptive Statistics for the log-return prices

Country N Mean Median Min Max Range SD Skewness Kurtosis

DE 451 0.000 0.000 -0.046 0.053 0.099 0.006 0.198 17.960
FR 451 0.000 0.000 -0.023 0.022 0.045 0.006 -0.206 1.310
UK 451 0.000 0.001 -0.056 0.028 0.085 0.010 -0.459 1.988
IT 451 0.000 0.000 -0.139 0.221 0.360 0.027 0.631 10.887
IE 451 0.000 0.001 -0.024 0.024 0.048 0.008 -0.389 0.656
PL 451 0.000 0.001 -0.048 0.048 0.096 0.012 0.105 1.597
ES 451 0.000 0.000 -0.080 0.050 0.130 0.017 -0.171 0.977
AT 451 0.000 0.000 -0.037 0.032 0.069 0.011 0.020 0.155
PT 451 0.000 0.000 -0.059 0.055 0.114 0.010 -0.395 8.910
SI 451 0.000 0.000 -0.076 0.085 0.161 0.019 -0.083 1.977
SE 451 0.000 0.000 -0.153 0.172 0.325 0.039 0.119 1.451
BE 443 0.000 0.000 -0.030 0.012 0.042 0.003 -1.682 20.936
CZ 451 0.000 0.000 -0.062 0.078 0.140 0.019 0.281 0.786
DK 451 0.000 0.000 -0.105 0.088 0.193 0.018 -0.032 4.657
LT 439 0.000 0.003 -0.255 0.286 0.541 0.109 0.063 -0.432

Figure 4.7: Histograms of the log-return prices
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Figure 4.8: Density plots of the log-return prices.
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Figure 4.9: Boxplot of the log-return prices

As previously in the raw prices subsection, the boxplots (figure 4.9) are listed
above. Once again, the white marks correspond to the means of the log-return
prices. Ιn addition, in Appendix A, there are also other graphs such as Q-Q plots,
which completely satisfy the descriptive statistics and data visualization sectors for
the variables, both for the raw and log-return prices.

4.2 Empirical analysis

For the empirical analysis, to find the similarities in observations and group the
selected beef markets in the European Union, we illustrated hierarchical agglom-
erative clustering as described in chapter 3. We chose this method because it is
mainly used in the bibliography and other empirical studies compared to the divi-
sive hierarchical clustering. From now on, and for the rest of this study, we will
refer to the hierarchical agglomerative clustering simple as hierarchical clustering.
Since this method is not automated but is subject to some degree of subjectivity in
its process, we endeavor to make a comprehensive presentation and through some
methods, extract conclusions about how the countries are grouped.

Concerning data transformations, among the different practices that can be im-
plemented and taking into account the type of data we have, we demonstrated
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hierarchical clustering to three different data sets. The first concerns raw data, that
is, basically non transformed data, as presented in detail in the descriptive statis-
tics. Then the data needed to be standardized and so we have the second set of
data. To perform cluster analysis in R, generally, the data should be standardized to
make variables comparable. Standardization consists of transforming the variables
such that they have mean zero and standard deviation one. Thus, our clustering
algorithm won’t depend on an arbitrary variable unit. The third and last set of
data includes a logarithmic transformation and more specifically the log-returns as
previously described in the descriptive statistics. For each data type, we converted
the data sets into a format that can be quickly inspected by R and removed all the
NA values present in the data, since the distances require that at least one variable
have non-missing values for each pair of rows. Conclusively, that left us with 441
observations for both raw and scaled data and 431 for the log-returns.

Once we have defined the type of algorithm and the data sets, the next crucial
parameter is the choice of the distance measure. The choice of distance measures is
very important, as it has a strong influence on the clustering results. Several different
distance measures could be used and one must consider the data at hand and the
assumptions of each measure to select the appropriate method. In the present
study, we applied the Euclidean and Dynamic Time Warping (DTW) distances
as previously described in the methodology section. The first was chosen because
it is the most commonly used distance measure for clustering and since our time
series are of equal length, we overcome euclidean distance limitations. DTW, whose
advantages have been described above, is also often used since it groups time series
according to their patterns or shapes even if these patterns are not synchronized.

In the next phase, after selecting the distance metric, it is necessary to determine
the linkage criterion. Many linkage criteria have been developed and as with distance
measures, the choice should be made based on theoretical considerations from the
domain of application. Where there are no clear theoretical justifications for the
choice of linkage criterion, ward’s method is the sensible default. However, we will
include and test all four main linkage criteria namely Average, Single, Complete and
Ward.

To summarize, the hierarchical algorithm was implemented with all possible
combinations of data sets, distance measures and linkage criteria as they selected
and already explained. This means we demonstrated 3 (data sets) x 2 (distance
measures) x 4 (linkage criteria) = 24 different dendrograms, from which we tried to
come up with an ideal dendrogram for each set of data and through some methods,
extract the appropriate number of clusters in each case. Remember once again
the subjectivity that underlies the whole process. There are different packages and
functions available in R for computing hierarchical clustering. For this study, we
used the stats (22) and cluster (18) packages, while factoextra (14) package was very
useful for the clustering visualization. Other papers related to R which were also
helpful to this study were (20), (8), (27), (19).
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4.2.1 Raw data scenario

In this section, we present all the results of the hierarchical clustering for the raw
dataset. Starting by taking into consideration the euclidean distance, table (4.10)
shows an initial visualization of the dissimilarity matrix. In this plot, the blue color
corresponds to the small distance while the red color indicates the large distance
between the countries. Observing the heatmap, we see that similar observations
are close to one another and a first conclusion as it seems is that 3 or 4 clusters
of countries will be created. In Appendix Α, it is also cited the distance matrix
presenting the dissimilarity values which we feed into the algorithm. Specifying
then all four agglomerative methods as described above (i.e. “ward”, “complete”,
“average”, “single”), we plotted the four corresponding dendrograms (figures 4.11,
4.12, 4.13, 4.14).

Figure 4.10: Heatmap based on the euclidean dissimilarity matrix, raw data
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Figure 4.11: Dendrogram of the raw dataset, euclidean distance and ward linkage

Figure 4.12: Dendrogram of the raw dataset, euclidean distance and complete linkage
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Figure 4.13: Dendrogram of the raw dataset, euclidean distance and average linkage

Figure 4.14: Dendrogram of the raw dataset, euclidean distance and single linkage

Having a first look at the figures (4.11, 4.12, 4.13, 4.14), we observe that the ward
and complete methods seem to create more accurate clusters of the European Union
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countries, while the other two do not work so well. A way to measure the amount of
clustering structure found is the agglomerative coefficient, using the agnes function.
This coefficient takes values from 0 to 1, with values closer to 1 indicate a strong
clustering structure. As we computed it for the four different agglomerative meth-
ods assessed (table 4.3), ward’s method seems to identify the strongest clustering
structure.

Table 4.3: Agglomerative coefficient results for the four linkage criteria (raw data,
euclidean distance)

Average Single Complete Ward

0.7299530 0.4619372 0.8516763 0.8785674

Next, we present the corresponding graphs obtained using the DTW distance
in the algorithm. Figure (4.15) depicts the similar heatmap representation of the
dissimilarity matrix (also indicated in Appendix A), while figures (4.16, 4.17, 4.18,
4.19) are the four diagrams derived from the same four different linkage criteria.
Having calculated once again the agglomerative coefficients (see table 4.4), the ward
method seems to be the most fitting again, while complete method exported almost
the same results. Single linkage criterion is once again the least appropriate for our
data set.

Figure 4.15: Heatmap based on the DTW dissimilarity matrix, raw data
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Figure 4.16: Dendrogram of the raw dataset, DTW distance and ward linkage

Figure 4.17: Dendrogram of the raw dataset, DTW distance and complete linkage
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Figure 4.18: Dendrogram of the raw dataset, DTW distance and average linkage

Figure 4.19: Dendrogram of the raw dataset, DTW distance and single linkage
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Table 4.4: Agglomerative coefficient results for the four linkage criteria (raw data,
DTW distance)

Average Single Complete Ward

0.8811299 0.4261642 0.9427119 0.9571770

From the preceding estimates, it becomes clear that for the both different dis-
tance measures, the ward method seems as partly expected to be the most suitable to
proceed further in our calculations. Once we have extracted the trees and selected
those that apply to us (4.11, 4.16), the next step is to calculate the appropriate
number of clusters. The height of the cut to the dendrogram controls the number
of clusters obtained. Determining the optimal number of clusters in a data set is
a fundamental issue that requires us to specify the number of clusters (k) to be
generated. The following figures (4.20, 4.21, 4.22) show the results provided by the
elbow, silhouette, and gap statistic methods as explained in the methodology. As
we observe, there is no definitively clear optimal number of clusters in this case; the
first suggests k = 4, the second k = 3 and the last k = 1. We continued our analysis
for k = 4 as proposed by the 1st method, which is the most popular among the
three and for k = 3 as suggested by the silhouette method. We suspected according
to the trees and the heatmaps above that one of the two is the right choice but we
performed a complete diagrammatic presentation for both.

Figure 4.20: Elbow method results based on the raw dataset
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Figure 4.21: Silhouette method results based on the raw dataset

Figure 4.22: Gap stat method results based on the raw dataset

Summarizing our results so far, the ward method turned out to be the most
suitable for use in the algorithm. Figure (4.23) compares side by side hierarchical
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clustering with the ward’s linkage and the euclidean distance versus hierarchical
clustering with the ward’s linkage and the DTW distance, with their labels connected
by lines. The quality of the alignment of the two trees can be measured using the
function entanglement. Entanglement is a measure between 1 (full entanglement)
and 0 (no entanglement). A lower entanglement coefficient such as 0.13 in our case
corresponds to very good alignment.

Figure 4.23: Side by side comparison between hierarchical clustering with the ward’s
linkage and the euclidean distance, raw data (left) versus hierarchical clustering with
the ward’s linkage and the DTW distance, raw data (right)

Finally, concerning the agglomerative and entanglement coefficients as well as
the dendrograms’ results, we present the final trees based on the DTW distance
measure for k = 3, 4 (figures 4.24, 4.25) which seems to be the most appropriate in
this raw dataset. Both distances seem to work very well in our case, but DTW stands
out a bit more since the euclidean is a special case of the first. The corresponding
dendrograms for the euclidean distance are cited in Appendix A.
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(a) Customization

(b) Customization

Figure 4.24: Final hierarchical clustering for k = 3 based on DTW distance and
ward linkage method, raw data
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(a) Customization

(b) Customization

Figure 4.25: Final hierarchical clustering for k = 4 based on DTW distance and
ward linkage method, raw data
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Figure 4.26: Line graphs grouped in their own clusters, k = 3

Figure 4.27: Line graphs grouped in their own clusters, k = 4

Figures (4.26, 4.27) show how the time series are categorized after the definition
of clusters. Considering k = 3, the largest cluster (blue) contains 6 countries namely
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{ United Kingdom(UK), Sweden (SE), Italy (IT), Espania (ES), France (FR) and
Ireland (IE) }. Apart from Sweden, which is somewhere in the middle regarding
beef production, the rest of the countries are some of those having a leading role
in the European market in economic sectors such as production, consumption and
intra-trade. Besides, figure (4.26) shows that this cluster contains the countries
with the highest weekly average carcass prices. The central group (green) consists
of 4 countries namely { Portugal (PT), Austria (AU), Germany (DE) and Denmark
(DK) }. Germany, as we see, has a central position in the tree which is expected
as it is one of the largest producers and consumers in the EU and also plays a
significant role in international trade. The other two countries in the group, despite
their smaller size, appear to be directly linked to Germany since they also have a
significant share in the beef production against many other countries in the Union,
but also maybe because of their geographical connection. Together with Portugal,
their price index seems to be somewhere in the middle and smaller than the cluster’s
that includes the big markets (blue). The last cluster contains the last five countries
namely { Poland (PL), Slovenia (SI), Belgium (BE), Czechia (CZ) and Lithuania
(LT) }. Poland is one of the seven largest producers but seems to have the lowest
price index among them. Belgium is also an important market which seems to have
differences concerning its neighboring and leading markets in Europe, while the
other three are countries with less or insignificant production. The only difference
we have when cutting the tree to a height which creates 4 clusters is the creation
of a fourth cluster that separates Czechia and Lithuania from the previous group to
which they used to belong.

4.2.2 Scaled data scenario

The second set of data that was studied in the same way, relates to the first
used above in the analysis but applying scaling to it. Remember once again that
scaling/standardization means each variable has a mean zero and standard deviation
one. This is done to avoid the clustering algorithm to depend on an arbitrary variable
unit. Our goal anew is to come up with a tree diagram with a specific distance
measure and a specific linkage criterion and ultimately export the number of clusters
that best categorize the countries. Following the same line of reasoning, starting with
the euclidean distance, we extracted the four diagrams for the four different linkage
criteria (see 4.29, 4.30, 4.31, 4.32), which are accompanied by the representation
of the dissimilarity matrix in the form of a heatmap (4.28) and the calculation of
the agglomerative coefficient (table 4.5). The diagrammatic representation of the
trees combined with this coefficient again suggests the ward method as the ideal link
criterion for our scaled dataset.
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Figure 4.28: Heatmap based on the euclidean dissimilarity matrix, scaled data

Figure 4.29: Dendrogram of the scaled dataset, euclidean distance and ward linkage
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Figure 4.30: Dendrogram of the scaled dataset, euclidean distance and complete
linkage

Figure 4.31: Dendrogram of the scaled dataset, euclidean distance and average
linkage
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Figure 4.32: Dendrogram of the scaled dataset, euclidean distance and single linkage

Table 4.5: Agglomerative coefficient results for the four linkage criteria (scaled data,
euclidean distance)

Average Single Complete Ward

0.7266208 0.4310072 0.8462735 0.8874635

Following are the same graphs that correspond to using DTW as the distance
measure. The ward method seems to be the ideal one to use and even has the highest
agglomerative coefficient (4.6) we have encountered so far. On the contrary, the use
of single method seems to cluster the observations in a weaker way, which is to be
expected according to its disadvantage of creating many successive clusters.
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Figure 4.33: Heatmap based on the DTW dissimilarity matrix, scaled data

Figure 4.34: Dendrogram of the scaled dataset, DTW distance and ward linkage
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Figure 4.35: Dendrogram of the scaled dataset, DTW distance and complete linkage

Figure 4.36: Dendrogram of the scaled dataset, DTW distance and average linkage
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Figure 4.37: Dendrogram of the scaled dataset, DTW distance and single linkage

Table 4.6: Agglomerative coefficient results for the four linkage criteria (scaled data,
DTW distance)

Average Single Complete Ward

0.9094206 0.5437331 0.9503966 0.9664953

Applying the elbow, silhouette and gap stat methods, we note that for the first,
the suggested number of clusters is 4, for the second 2 and for the last 1. The only
difference concerning the previous set (raw) lies in the fact that the silhouette method
proposes minus one number of clusters. When comparing the two dendrograms
for the two different distance measures in terms of the ward linkage method, the
entanglement coefficient and the graph visualization indicate that both measures are
quite reliable to be used and suggest very similar clusters. If we take into account
figure (4.34) including the DTW distance and compare it to the tree we ended up
in the raw set (figure 4.16), we also see that both extract related results. Since
we have again ambiguous results concerning the appropriate number of clusters,
we present further below the final trees based on the DTW distance measure and
the ward method for k = 2, 4. The two resulting trees conclude in almost the
same structures as those we analyzed earlier in the raw dataset. If we consider the
number of clusters to be 2, the first (red) consists of { Poland, Slovenia, Belgium,
Chechia and Lithuania }, while the second (green) includes { Portugal, Austria,
Germany, Denmark, France, Ireland, Espania, Italy, United Kingdom and Sweden
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}. In essence, the two left clusters for the previous tree in the raw data for k = 4,
merge into one as also the two on the right. For k = 4, their clusters are the same as
we ended up with for the same number in the raw dataset, with the only difference
being that there is simply a rearrangement of places in the right bigger cluster. In
conclusion, both datasets yield similar results, with the latter slightly improving the
predictive accuracy, due to its purpose of not allowing a particular feature to be
affected by a large numerical value range.

Figure 4.38: Elbow method results based on the scaled dataset
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Figure 4.39: Silhouette method results based on the scaled dataset

Figure 4.40: Gap stat method results based on the scaled dataset
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Figure 4.41: Side by side comparison between hierarchical clustering with the ward’s
linkage and the euclidean distance, scaled data (left) versus hierarchical clustering
with the ward’s linkage and the DTW distance, scaled data (right)

Figure 4.42: Side by side comparison between hierarchical clustering with the ward’s
linkage and the DTW distance, raw data (left) versus hierarchical clustering with
the ward’s linkage and the DTW distance, scaled data (right)
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(a) Customization 1

(b) Customization 2

Figure 4.43: Final hierarchical clustering for k = 2 based on DTW distance and
ward linkage method, scaled data
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(a) Customization 1

(b) Customization 2

Figure 4.44: Final hierarchical clustering for k = 4 based on DTW distance and
ward linkage method, scaled data
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4.2.3 Log-returns data scenario

The last hierarchical analysis was applied to the dataset with the logarithmic
returns we created and discussed in the descriptive statistics. The previous two
have returned similar results and we wanted to see if any of them are confirmed here
as well. Anyway, this study is all about a general presentation, testing many cases
to come to some conclusions. Observing the heatmap displaying the diagrammatic
representation of the Euclidean dissimilarity matrix, we can already picture some
first conclusions. More specifically, we see that Lithuania is a cluster of its own since
it differs completely from all other countries. Also, we note that Sweden and Italy
also have longer distances from the rest countries, whose distances among them are
close to zero. Figures (4.46, 4.47, 4.48, 4.49) present the four trees for the euclidean
distance concerning the four different linkage methods. In this case, all the methods
seem to generate related results, but the ward method appears to stand out a little
more like the most appropriate one. The matrix once again is cited in the Appendix
A.

Figure 4.45: Heatmap based on the euclidean dissimilarity matrix, log-returns
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Figure 4.46: Dendrogram of the log-returns, euclidean distance and ward linkage

Figure 4.47: Dendrogram of the log-returns, euclidean distance and complete linkage
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Figure 4.48: Dendrogram of the log-returns, euclidean distance and average linkage

Figure 4.49: Dendrogram of the log-returns, euclidean distance and single linkage
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Table 4.7: Agglomerative coefficient results for the four linkage criteria (log-returns,
euclidean distance)

Average Single Complete Ward

0.7914302 0.8032368 0.7809020 0.8084142

The corresponding diagrams for the DTW distance are being presented below
and they suggest the same things as when using the euclidean distance. The elbow
method (4.55) indicates once again the number of clusters to be 4, the silhouette
method (4.56) to be 2 and the gap stat method (4.57) is the one that differs, sug-
gesting the number to be 8. Figures (4.59, 4.60) show the final trees for k = 2, 4 for
the DTW distance and the ward linkage criteria.

Figure 4.50: Heatmap based on the DTW dissimilarity matrix, log-returns
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Figure 4.51: Dendrogram of the log-returns, DTW distance and ward linkage

Figure 4.52: Dendrogram of the log-returns, DTW distance and complete linkage
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Figure 4.53: Dendrogram of the log-returns, DTW distance and average linkage

Figure 4.54: Dendrogram of the log-returns, DTW distance and single linkage
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Table 4.8: Agglomerative coefficient results for the four linkage criteria (log-returns,
DTW distance)

Average Single Complete Ward

0.8172778 0.8198719 0.8127533 0.8342533

Figure 4.55: Elbow method results based on the log-returns

76



Figure 4.56: Silhouette method results based on the log-returns

Figure 4.57: Gap stat method results based on the log-returns
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Figure 4.58: Side by side comparison between hierarchical clustering with the ward’s
linkage and the euclidean distance, log-returns (left) versus hierarchical clustering
with the ward’s linkage and the DTW distance, log-returns (right)
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(a) Customization

(b) Customization

Figure 4.59: Final hierarchical clustering for k = 2 based on DTW distance and
ward linkage method, log-returns
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(a) Customization

(b) Customization

Figure 4.60: Final hierarchical clustering for k = 4 based on DTW distance and
ward linkage method, log-returns

For this particular dataset, we observe that we do not have the same results as
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in the two previous samples which were considerably similar. This is to be expected
and is due to the character of the transformation, which makes the time series more
stationary and gives them this wiggly shape we examined in the descriptive statistics.
The characteristic confirmed and indicated by the hierarchical analysis relates to the
volatility and variability of the selected countries of the European Union. In every
tree we take into account, Lithuania is the most isolated object, a fact that we have
also discovered from the heatmap. This means that the country in question shows
the greatest variability in the relative price changes. For k = 4, Sweden is the next
followed by similar features, also constituting a single cluster and to a lesser degree
accompanies Italy, which is however grouped with { Slovenia, Chechia, Espania and
Denmark }. The rest of the countries are distinguished by less volatility and are
mainly the countries that have a leading role in the European beef market. Finally,
the two distance measures do not yield so similar results here as figure (4.58) argues,
since the Euclidean distance for k = 4 isolates Italy into a separate cluster on its
own and mixes slightly the rest time series.
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5
Conclusion

The European Union is the third-largest producer of beef in the world, but it is at
crossroads in terms of prospects. The appearance of modern consumption features,
different social reforms and the prevalence of new beef export markets (e.g. Brazil,
USA, Australia, India) are bringing Europe up with key decisions to make about
its future. From an economic point of view, a major problem of this sector is the
heterogeneity across countries in multiple sectors such as production, consumption,
farm size, as well as costs and prices. The present study attempts to take a prime
look at the weekly wholesale carcass prices distribution and group fifteen countries
by applying hierarchical agglomerative analysis. This method was chosen among
others such as the k-means, because it does not need to specify the number of
clusters in advance and also produces a distinct hierarchical representation of the
clusters. One major disadvantage is that it is not extremely suitable for a large
number of observations, a fact that we did not encounter in our sample. However,
by applying this method, we come across the different components of the algorithm
which are subjectively controlled to their choice, with the testing of different cases
being necessary. In particular, we need to concern about:

• What kind of transformation do we need to perform in the data?

• What dissimilarity measure should be used?

• What type of linkage should be used?

• Where should we cut the dendrogram to determine the efficient number of
clusters?

The above queries are required to be resolved as efficiently as possible by anyone
who is called upon to apply hierarchical analysis. Each hypothesis has an impact
on the final outcome and the conclusions we reach, as well as each hypothesis may
indicate data aspects. For this reason, we did various examinations that were pre-
sented in the empirical part, but also wanted to come to the one that best describes
our data and draws the best conclusions. The conclusions and results for each step
of the algorithm are presented respectively:
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• For the data transformation, the raw data showed highly similar results to the
corresponding sample in the standardized form. According to the literature,
the scaled dataset is the one that stands out and is also proposed in this
study for more accurate results, since standardization transforms observations
to a comparable scale and does not reflect samples that may be dominated
by variables with large values. The log-returns also yielded useful conclusions,
after classifying the data according to the variability in the relative changes of
the prices.

• It is always better to choose a distance measure based on accurate observation
of the data and the purposes of the analysis. The euclidean and DTW dis-
tances used here also showed similar results, especially in the raw and scaled
scenarios, mainly because our time series were of the same length. DTW was
slightly better in the analysis since euclidean is a special case of the first. Fi-
nally, transforming the prices to log-returns removes the nonstationarity of
the originals series by taking differences and therefore other dissimilarity mea-
sures constructed under the stationarity assumption can be used for further
investigation.

• The hierarchical algorithm is also sensitive to the chosen linkage criterion
since each linkage method has different systematic biases in the way it groups
observations. Out of the four criteria described and used in the study, the
ward’s method returned stronger clustering structures and was used in the
algorithm while the single linkage criterion yielded the weakest.

• The most important problem that exists in hierarchical clustering, and also
in this particular application, is that the number of clusters that we have to
present is not clear. However, an attempt was made to find it in conjunction
with heatmaps visualizing the distance measure matrices. The ideal number
seems to range from 2 to 4 clusters, with 4 appearing to probably be the ideal
fit. However, all cases are presented in the analysis for a complete comparison.

After comparing all possible interconnections according to the above characteris-
tics and presenting a complete view, empirical analysis of the distribution of carcass
prices of the selected beef markets suggest:

• The diagrammatic representation of the trees with or without the clusters in
which the countries are classified demonstrates the similarity between each
pair of the comprised countries, since the tree itself can propose results in
combination with heatmaps.

• Heterogeneity seems to be confirmed and fragmentation also appears to be
prevalent in the European Union beef market as prices in European countries
are unevenly distributed.

• Prices vary between countries and appear to be related to the countries’ market
share in production and intra-trade. More specifically, countries with a leading
role and high levels of production in Europe were ranked together having the
highest prices, while more distant markets had lower prices (Poland being the
exception).
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• The leading countries appear to be more stable according to their prices and
seem to present a less important variability, with their time series being more
predictable compared to other more insignificant countries in the market.

• With less certainty, the physical distance between spatial markets may be
related to price similarity. We think this might be the case by looking at Ger-
many for example being categorized and associated with Denmark and Austria
or Ireland also being categorized with England since they are also significant
strategic partners. However, we cannot be sure and it would be better to have
more markets that were not included due to lacking observations, so that we
can have a better perspective.

The application of cluster analysis to time series data can lead to very useful
conclusions. It would be interesting for further analysis to consider:

• The use of the specific variables recommended in this study in the rest meat
markets in Europe or further study of this sample through different sophis-
ticated techniques that will probably overcome the missing values and will
include more countries.

• The use of additional distance measures.

• The use of additional clustering algorithms such as partitioning algorithms,
since some initial conclusions are presented in this study and so the reader can
proceed in further calculations and tests.

• The use of further statistical tests to determine the appropriate number of
clusters so that we can confidently conclude at a specific number that efficiently
cuts the dendrogram.
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A
Αdditional descriptive and empirical results

Table A2: Production of meat: cattle 1000(t) in the EU-28

Countries 2012 2013 2014 2015 2016 2017 2018

EU-28 7.579,52 7.267,97 : 7.585,17 7.800,02 7.802,83 7.931,69
Belgium 262,28 249,91 257,67 267,88 278,36 281,54 277,31
Bulgaria 5,32 5,68 4,80 5,29 6,66 7,44 7,22
Czechia 65,71 64,83 65,53 68,29 71,93 67,72 71,58

Denmark 125,40 125,20 125,60 120,60 129,40 124,00 129,20
Germany 1.140,00 1.106,00 1.128,00 1.124,00 1.148,00 1.124,00 1.102,00
Estonia 7,96 7,88 : 9,62 9,43 9,00 8,56
Ireland 495,40 517,57 581,81 564,14 588,36 617,02 622,54
Greece 56,16 50,12 46,04 41,92 40,17 44,11 39,63
Spain 591,38 580,84 578,60 626,10 637,01 643,86 669,01
France 1.477,69 1.404,49 1.419,16 1.452,77 1.464,15 1.442,18 1.460,00
Croatia 46,78 47,27 44,42 42,26 44,43 42,20 43,78

Italy 981,12 855,32 709,43 788,28 809,66 756,42 809,22
Cyprus 5,31 4,57 4,60 5,74 7,04 8,31 5,28
Latvia 16,37 15,67 17,00 17,36 17,70 16,75 15,87

Lithuania 39,95 36,77 39,26 44,13 42,29 40,88 40,28
Luxembourg 8,47 7,95 8,48 9,08 9,42 9,54 9,87

Hungary 24,71 22,64 23,11 26,39 28,07 27,21 29,15
Malta 1,11 1,13 1,13 1,03 1,15 1,12 1,07

Netherlands 373,44 379,10 376,18 382,52 416,06 438,87 459,21
Austria 221,12 227,20 221,64 228,75 227,44 226,09 233,46
Poland 371,00 339,02 412,66 471,01 501,46 558,58 564,72

Portugal 92,99 84,09 79,84 88,62 91,10 91,09 93,79
Romania 28,82 29,28 29,20 44,47 57,53 59,14 49,92
Slovenia 33,09 32,10 31,57 33,58 35,66 35,79 34,87
Slovakia 9,76 9,53 8,83 8,40 8,29 7,79 8,11
Finland 80,37 80,42 82,32 85,76 86,37 85,39 86,48
Sweden 135,25 135,73 141,95 143,98 131,25 132,07 136,87

United Kingdom 882,56 847,66 877,58 883,21 911,66 904,73 922,70

Source: Eurostat (online data code: apro_mt_pann)
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Table A3: Bovine livestock in the EU-28 (1.000 heads)

Countries 2011 2012 2013 2014 2015 2016 2017 2018

EU-28 87.054,22 87.296,95 87.734,43 88.405,62 89.138,27 89.134,16 88.818,84 87.400,29
Belgium 2.471,60 2.438,18 2.441,32 2.477,24 2.503,26 2.501,35 2.385,99 2.398,09
Bulgaria 567,53 535,32 585,55 562,36 561,04 570,14 552,92 542,12
Czechia 1.339,48 1.321,06 1.332,08 1.373,07 1.366,33 1.339,60 1.366,36 1.365,24

Denmark 1.612,00 1.607,00 1.583,00 1.553,00 1.566,00 1.554,00 1.558,00 1.530,00
Germany 12.527,84 12.506,77 12.685,99 12.742,19 12.635,46 12.466,59 12.281,20 11.949,09
Estonia 238,30 246,00 261,40 264,70 256,20 248,20 250,90 251,90
Ireland 5.925,32 6.253,24 6.309,05 6.243,05 6.422,23 6.613,43 6.673,59 6.593,49
Greece 681,00 685,00 653,00 659,00 582,00 554,00 556,00 542,00
Spain 5.923,11 5.812,61 5.802,22 6.078,73 6.182,91 6.317,64 6.465,75 6.510,59
France 19.129,00 19.052,00 19.129,00 19.271,00 19.406,00 19.004,00 18.975,48 18.563,23
Croatia 446,50 452,00 442,00 441,00 441,00 444,00 451,00 414,00

Italy 6.251,93 6.251,93 6.249,29 6.125,42 6.155,81 6.314,89 6.349,81 6.311,16
Cyprus 56,92 56,92 57,08 59,54 58,86 63,14 67,03 70,82
Latvia 380,61 393,10 406,49 422,02 419,08 412,31 405,82 395,33

Lithuania 752,40 729,20 713,50 736,60 722,60 694,80 676,90 653,50
Luxembourg 188,09 188,30 198,24 201,15 200,64 202,41 198,07 194,39

Hungary 697,00 760,00 782,00 802,00 821,00 852,00 870,00 885,00
Malta 15,07 15,59 15,22 14,88 15,02 14,36 14,18 14,12

Netherlands 3.912,00 3.985,00 4.090,00 4.169,00 4.315,00 4.294,00 4.030,00 3.690,00
Austria 1.976,53 1.955,62 1.958,28 1.961,20 1.957,61 1.954,39 1.943,48 1.912,81
Poland 5.500,94 5.520,35 5.589,54 5.660,27 5.762,50 5.970,20 6.035,70 6.183,30

Portugal 1.519,11 1.497,55 1.470,50 1.548,61 1.605,86 1.635,01 1.670,02 1.632,42
Romania 1.988,90 2.009,10 2.022,40 2.068,90 2.092,40 2.049,70 2.011,10 1.977,20
Slovenia 462,30 460,06 460,58 468,25 484,19 488,60 479,61 476,81
Slovakia 463,36 471,08 467,82 465,54 457,46 446,11 439,83 438,86
Finland 902,68 901,39 903,36 907,40 903,41 887,25 874,52 859,38
Sweden 1.449,73 1.443,58 1.443,52 1.436,49 1.428,40 1.436,05 1.448,59 1.435,45

United Kingdom 9.675,00 9.749,00 9.682,00 9.693,00 9.816,00 9.806,00 9.787,00 9.610,00

Source: Eurostat (online data code: apro_mt_lscatl)
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Figure A2: Bovine livestock in the EU-28, 2018

Source: Eurostat (calculations based on the online data code: apro_mt_lscatl)
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Figure A3: Q-Q plots of the raw prices
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Figure A4: Q-Q plots of the log-return prices
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Figure A5: Correlation heatmap (Spearman) of the raw prices
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Figure A6: Correlation heatmap (Kendall) of the raw prices
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(a) Customization

(b) Customization

Figure A7: Final hierarchical clustering for k = 3 based on euclidean distance and
ward linkage method, raw data
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(a) Customization

(b) Customization

Figure A8: Final hierarchical clustering for k = 4 based on euclidean distance and
ward linkage method, raw data
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(a) Customization

(b) Customization

Figure A9: Final hierarchical clustering for k = 2 based on euclidean distance and
ward linkage method, scaled data
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(a) Customization

(b) Customization

Figure A10: Final hierarchical clustering for k = 4 based on euclidean distance and
ward linkage method, scaled data
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(a) Customization

(b) Customization

Figure A11: Final hierarchical clustering for k = 2 based on euclidean distance and
ward linkage method, log-returns
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(a) Customization

(b) Customization

Figure A12: Final hierarchical clustering for k = 4 based on euclidean distance and
ward linkage method, log-returns
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B
R coding

B.1 Data downloading and cleaning

1 ############ Packages used in R ( l i b r a r i e s ) ############
2

3 l i b r a r y ( r eadx l )
4 l i b r a r y ( t i dyv e r s e )
5 l i b r a r y ( l ub r i d a t e )
6 l i b r a r y ( ggthemes )
7 l i b r a r y ( gg r epe l )
8 l i b r a r y ( w r i t e x l )
9 l i b r a r y ( s t r i n g r )

10 l i b r a r y ( goog l e sh e e t s )
11 l i b r a r y ( t s i b b l e )
12 l i b r a r y ( psych )
13 l i b r a r y ( p l o t l y )
14 l i b r a r y ( hrbrthemes )
15 l i b r a r y ( dplyr )
16 l i b r a r y ( readr )
17 l i b r a r y ( t i dy r )
18 l i b r a r y ( l ub r i d a t e )
19 l i b r a r y (DT)
20 l i b r a r y ( purrr )
21 l i b r a r y (broom)
22 l i b r a r y ( ggp lot2 )
23 l i b r a r y ( ggthemes )
24 l i b r a r y ( gg r epe l )
25 l i b r a r y ( xtab l e )
26 l i b r a r y ( qqp lo t r )
27 l i b r a r y ( hrbrthemes )
28 l i b r a r y ( v i r i d i s )
29 l i b r a r y ( ggExtra )
30 l i b r a r y ( TSdist )
31 l i b r a r y ( f o r c a t s )
32 l i b r a r y ( TSclust )
33 l i b r a r y ( c l u s t e r )
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34 l i b r a r y ( f a c t o ex t r a )
35 l i b r a r y ( dendextend )
36 l i b r a r y (dtw)
37 l i b r a r y ( ape )

1 ############ Inc e r t i n g the Data ############
2

3 u r l<− " https : // ec . europa . eu/ a g r i c u l t u r e / s i t e s / a g r i c u l t u r e / f i l e s /
4 market−observatory /meat/
5 bee f /doc/ beef−h i s t o r i c−weekly−pr i c e s −2011onwards_en . x l sx "
6

7 download . f i l e ( ur l , " . . /data/ beef −2011onwards . x l sx " )
8

9 DF <− read_exc e l ( " . . /data/ beef −2011onwards . x l sx " , shee t = "ER3" ,
10 sk ip = 4)

1 ############ Cleaning the Data ############
2

3 DF <− DF[−c (453 : 475 ) , ]
4

5 names (DF) [ 1 : 3 ] <− c ( "Year" , "Week" , "Date" )
6

7 zero_2_NA <− f unc t i on (x ) { x <− i f e l s e ( x == 0 , NA, x ) }
8

9 CNTRs <− c ( "DE" , "FR" , "UK" , "IT" , "IE" , "PL" , "ES" , "AT" , "PT" ,
10 "SI " , "SE" , "BE" , "CZ" , "DK" , "LT" )
11

12 DF <− s e l e c t (DF, c ( "Date" , CNTRs) )
13

14 l og_return <− f unc t i on (x ) {
15 x <− as . numeric ( x )
16 y <− c (NA, d i f f ( l og (x ) ) )
17 re turn (y )
18 }
19

20 bee f_pr i_spr <− DF %>%
21 mutate (Date = ymd(Date ) ) %>%
22 mutate_i f ( i s . numeric , ze ro_2_NA) %>%
23 f i l t e r ( i s . na (Date ) == FALSE)
24

25

26 bee f_pr i_gat <− bee f_pr i_spr %>%
27 gather ( country , pr i c e , −Date ) %>%
28 mutate ( p r i c e = as . numeric ( p r i c e ) )
29

30

31 bee f_r e t_spr <− bee f_pr i_spr %>%
32 mutate_i f ( i s . numeric , l og_return )
33

34
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35

36 bee f_r e t_gat <− bee f_r e t_spr %>%
37 gather ( country , ret , −Date )

B.2 Descriptive statistics

1 ############ Line graphs ( raw ) ############
2

3 ggp lot ( bee f_p r i_gat , aes ( x = Date , y = p r i c e ) ) +
4 geom_l i n e ( ) +
5 theme_bw( ) +
6 xlab ( "Date" ) +
7 ylab ( " Pr i ce " ) +
8 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e_y" )

1 ############ Boxplots ( raw ) ############
2

3 bee f_pr i_gat %>%
4 mutate ( country = reo rde r ( country , p r i c e ) ) %>%
5 ggp lot ( aes ( x = country , y = p r i c e ) ) +
6 l ab s ( x = "Countr ies " , y = "Pr i ce " ) +
7 geom_boxplot ( f i l l = "#69b3a2" )+
8 theme_bw( ) +
9 s t a t_summary( fun . y=mean , geom="point " , shape=18, s i z e =3,

10 c o l o r="white " ) +
11 coord_f l i p ( )

1 ############ Histograms ( raw ) ############
2

3 bee f_pr i_gat %>%
4 ggp lot ( aes ( x = p r i c e ) ) +
5 theme_bw( ) +
6 geom_histogram ( ) +
7 xlab ( " Pr i ce " ) +
8 s t a t_bin ( f i l l ="#69b3a2" , c o l o r="black " , alpha =0.9) +
9 ylab ( "Frequency" ) +

10 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e " )

1 ############ Density p l o t s ( raw ) ############
2

3 bee f_pr i_gat %>%
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4 ggp lot ( aes ( x = p r i c e ) ) +
5 theme_bw( ) +
6 xlab ( " Pr i ce " ) +
7 ylab ( "Density " ) +
8 geom_dens i ty ( f i l l ="#69b3a2" , c o l o r="#e9e c e f " , alpha =0.9) +
9 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e " )

1 ############ Heatmap( Pearson ) ############
2

3

4 corm <− round ( cor ( bee f_p r i_spr [ , s o r t ( c ( "UK" , "SI " , "SE" , "PT" , "PL" ,
5 "LT" , "IT" , "IE" , "FR" , "ES" , "DK" , "DE" , "CZ" , "BE" , "AT" ) )

] ,
6 method = "pearson " , use = " pa i rw i s e . complete . obs" ) ,2 )
7 corm [ lower . t r i ( corm) ] <− NA
8 corm
9

10

11 corm <− melt ( corm)
12 corm$Var1 <− as . cha rac t e r ( corm$Var1 )
13 corm$Var2 <− as . cha rac t e r ( corm$Var2 )
14 corm <− na . omit ( corm)
15 head ( corm , 10)
16 corm
17

18

19 corheatmap<−ggp lot ( corm , aes ( x = Var2 , y = Var1 ) ) +
20 geom_ra s t e r ( data = corm , aes ( f i l l = value ) ,
21 c o l o r = "white " ) +
22 s c a l e_ f i l l _grad i ent2 ( low = "blue " , high = " red " ,
23 mid = "white " ,
24 midpoint = 0 , l im i t = c (−1 , 1) ,
25 name = "Cor r e l a t i on \n( Pearson ) " ) +
26 theme ( ax i s . t ex t . x = element_text ( ang le = 45 ,
27 s i z e = 11 , v ju s t = 1 , h ju s t = 1) ,
28 ax i s . t i t l e . x = element_blank ( ) ,
29 ax i s . t i t l e . y = element_blank ( ) ,
30 panel . background = element_blank ( ) ,
31 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
32 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
33 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
34 gu ides ( f i l l = guide_co l o rba r ( barwidth = 7 ,
35 barhe ight = 1 ,
36 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) ) +
37 coord_equal ( )
38

39

40 corheatmap +
41 geom_text ( aes (Var2 , Var1 , l a b e l = value ) , c o l o r = " black " ,
42 s i z e = 4) +
43 theme (
44 ax i s . t i t l e . x = element_blank ( ) ,
45 ax i s . t i t l e . y = element_blank ( ) ,
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46 panel . g r i d . major = element_blank ( ) ,
47 panel . border = element_blank ( ) ,
48 panel . background = element_blank ( ) ,
49 ax i s . t i c k s = element_blank ( ) ,
50 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
51 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
52 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
53 gu ides ( f i l l = guide_co l o rba r ( barwidth = 10 , barhe ight = 1 . ,
54 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) )

1 ############ Line graphs ( logRet ) ############
2

3 ggp lot ( bee f_r e t_gat , aes ( x = Date , y = r e t ) ) +
4 geom_l i n e ( ) +
5 theme_bw( ) +
6 xlab ( "Date" ) +
7 ylab ( "LogReturn ( Pr i ce ) " ) +
8 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e_y" )

1 ############ Histograms ( logRet ) ############
2

3 bee f_pr i_gat %>%
4 ggp lot ( aes ( x = p r i c e ) ) +
5 theme_bw( ) +
6 geom_histogram ( ) +
7 xlab ( " Pr i ce " ) +
8 s t a t_bin ( f i l l ="#69b3a2" , c o l o r="black " , alpha =0.9) +
9 ylab ( "Frequency" ) +

10 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e " )

1 ############ Density p l o t s ( logRet ) ############
2

3 bee f_pr i_gat %>%
4 ggp lot ( aes ( x = p r i c e ) ) +
5 theme_bw( ) +
6 xlab ( " Pr i ce " ) +
7 ylab ( "Density " ) +
8 geom_dens i ty ( f i l l ="#69b3a2" , c o l o r="#e9e c e f " , alpha =0.9) +
9 f a c e t_wrap (~country , nco l=3, s c a l e s = " f r e e " )

1 ############ Boxplots ( logRet ) ############
2

3 bee f_r e t_gat %>%
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4 mutate ( country = reo rde r ( country , r e t ) ) %>%
5 ggp lot ( aes ( x = country , y = r e t ) ) +
6 l ab s ( x = "Countr ies " , y = "LogRet ( p r i c e ) " ) +
7 theme_bw( ) +
8 geom_boxplot ( f i l l = "#69b3a2" ) +
9 s t a t_summary( fun . y=mean , geom="point " , shape=18,

10 s i z e =3, c o l o r="white " ) +
11 coord_f l i p ( )

1 ############ Desc r i p t i v e s t a t i s t i c s t ab l e s ############
2

3 desraw<−de s c r i b e ( bee f_p r i_spr )
4 pr in t ( desraw , d i g i t s =3)
5

6 ########
7

8 des l og<−de s c r i b e ( bee f_r e t_spr )
9 pr in t ( des log , d i g i t s =3)

B.3 Empirical analysis (raw data)

1 ############ Creat ing the euc l i d ean matrix ############
2

3 bee f_pr i_spr_2<−na . omit ( bee f_p r i_spr )
4 t ab l e_raw <− t ( bee f_pr i_spr_2[−1])
5 d_raw_euc l<−d i s t ( t ab l e_raw , method = " euc l i d ean " , upper=TRUE)
6 d_raw_euc l

1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
2

3 f v i z_d i s t (d_raw_eucl , lab_s i z e = 8 , g rad i en t = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms ( Eucl idean ) ############
2

3 hc1 <− hc lu s t (d_raw_eucl , method="ward .D" )
4 hc1 = as . dendrogram ( hc1 )
5 p lo t ( hc1 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc2 <− hc lu s t (d_raw_eucl , method="complete " )
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9 hc2 = as . dendrogram ( hc2 )
10 p lo t ( hc2 , ylab="Height " , main="Complete l i nkage " )
11

12

13 hc3 <− hc lu s t (d_raw_eucl , method=" average " )
14 hc3 = as . dendrogram ( hc3 )
15 p lo t ( hc3 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc4 <− hc lu s t (d_raw_eucl , method=" s i n g l e " )
19 hc4 = as . dendrogram ( hc4 )
20 p lo t ( hc4 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t ( Eucl idean ) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_raw_eucl , method = x) $ac
7 }
8

9 map_dbl (m, ac )

1 ############ Creat ing the DTW matrix ############
2

3 d_raw_dtw<−d i s t ( t ab l e_raw , method = "dtw" , upper=TRUE)
4 d_raw_dtw

1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
2

3 f v i z_d i s t (d_raw_dtw , lab_s i z e = 8 , g rad i en t = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms (DTW) ############
2

3 hc5 <− hc lu s t (d_raw_dtw , method="ward .D" )
4 hc5 = as . dendrogram ( hc5 )
5 p lo t ( hc5 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc6 <− hc lu s t (d_raw_dtw , method="complete " )
9 hc6 = as . dendrogram ( hc6 )

10 p lo t ( hc6 , ylab="Height " , main="Complete l i nkage " )
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11

12

13 hc7 <− hc lu s t (d_raw_dtw , method="average " )
14 hc7 = as . dendrogram ( hc7 )
15 p lo t ( hc7 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc8 <− hc lu s t (d_raw_dtw , method=" s i n g l e " )
19 hc8 = as . dendrogram ( hc8 )
20 p lo t ( hc8 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t (DTW) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_raw_dtw , method = x) $ac
7 }
8

9 map_dbl (m, ac )

1 ############ Determing k methods ############
2

3 f v i z_nbc lus t ( t ab l e_raw , hcut , method = "wss" ) +
4 geom_v l i n e ( x i n t e r c ep t = 4 , l i n e t yp e = 2) +
5 l ab s ( s u b t i t l e = "Elbow method" ) +
6 theme_minimal ( )
7

8

9 f v i z_nbc lus t ( t ab l e_raw , hcut , method = " s i l h o u e t t e " ) +
10 l ab s ( s u b t i t l e = " S i l h ou e t t e method" ) +
11 theme_minimal ( )
12

13

14 s e t . seed (123)
15 f v i z_nbc lus t ( t ab l e_raw , hcut , n s t a r t = 25 , method = "gap_s t a t " ,
16 nboot = 50) +
17 l ab s ( s u b t i t l e = "Gap s t a t i s t i c method" ) +
18 theme_minimal ( )

1 ############ Comparing the t r e e s ############
2

3 dend_l i s t <− d end l i s t ( hc1 , hc5 )
4 tanglegram ( hc1 , hc5 , main = paste ( " entanglement =" ,
5 round ( entanglement ( dend_l i s t ) , 2) ) )
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1 ############ Fina l t r e e s (DTW, ward : k=3 ,4) ############
2

3 ##### k=3
4 hc5 <− hc lu s t (d_raw_dtw , method="ward .D" )
5 p lo t ( hc5 , ylab="Height " , main="Number o f c l u s t e r s = 3" )
6 r e c t . h c l u s t ( hc5 , k = 3 , border = 2 : 4 )
7

8

9 mypal = c ( " green " , " blue " , " red " )
10 c l u s1 = cut r e e ( hc5 , 3)
11 p lo t ( as . phylo ( hc5 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 1 ] ,
12 main="Number o f c l u s t e r s = 3" , use . edge . l ength = TRUE)
13

14 ##### k=4
15 hc5 <− hc lu s t (d_raw_dtw , method="ward .D" )
16 p lo t ( hc5 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
17 r e c t . h c l u s t ( hc5 , k = 4 , border = 2 : 5 )
18

19

20 mypal = c ( " blue " , "cyan1" , " red " , " green " )
21 c l u s2 = cut r e e ( hc5 , 4)
22 p lo t ( as . phylo ( hc5 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 2 ] ,
23 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)

1 ############ Grouped l i n e graphs k=3,4 ############
2

3 bee f_pr i_gat_2 <− bee f_pr i_spr_2 %>%
4 gather ( country , pr i c e , −Date ) %>%
5 mutate ( p r i c e = as . numeric ( p r i c e ) )
6

7

8 p1<−bee f_pr i_gat_2 %>%
9 f i l t e r ( country %in% c ( ’UK’ , "SE" , "IT" , "ES" , "FR" , "IE" ) ) %>%

10 ggp lot ( ) +
11 aes ( x = Date , y = pr i ce , co l our = country ) +
12 geom_l i n e ( s i z e = 0 . 8 ) +
13 theme_bw( ) +
14 ylab ( " Pr i ce " ) +
15 theme ( legend . t i t l e=element_blank ( ) ) +
16 theme ( text = element_text ( s i z e =15) )
17 p1
18

19

20 p2<−bee f_pr i_gat_2 %>%
21 f i l t e r ( country %in% c ( "PT" , "AT" , "DE" , "DK" ) ) %>%
22 ggp lot ( ) +
23 aes ( x = Date , y = pr i ce , co l our = country ) +
24 geom_l i n e ( s i z e = 0 . 8 ) +
25 ylab ( " Pr i ce " ) +
26 theme ( legend . t i t l e=element_blank ( ) ) +
27 theme ( text = element_text ( s i z e =15) )
28 p2
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29

30

31 p3<−bee f_pr i_gat_2 %>%
32 f i l t e r ( country %in% c ( ’PL ’ , "SI " , "BE" ) ) %>%
33 ggp lot ( ) +
34 aes ( x = Date , y = pr i ce , co l our = country ) +
35 geom_l i n e ( s i z e = 0 . 8 ) +
36 theme_bw( ) +
37 ylab ( " Pr i ce " ) +
38 theme ( legend . t i t l e=element_blank ( ) ) +
39 theme ( text = element_text ( s i z e =15) )
40 p3
41

42

43 p4<−bee f_pr i_gat_2 %>%
44 f i l t e r ( country %in% c ( ’CZ ’ , "LT" ) ) %>%
45 ggp lot ( ) +
46 aes ( x = Date , y = pr i ce , co l our = country ) +
47 geom_l i n e ( s i z e = 0 . 8 ) +
48 theme_bw( ) +
49 ylab ( " Pr i ce " ) +
50 theme ( legend . t i t l e=element_blank ( ) ) +
51 theme ( text = element_text ( s i z e =15) )
52 p4
53

54

55 p5<−bee f_pr i_gat_2 %>%
56 f i l t e r ( country %in% c ( ’PL ’ , "SI " , "BE" , "CZ" , "LT" ) ) %>%
57 ggp lot ( ) +
58 aes ( x = Date , y = pr i ce , co l our = country ) +
59 geom_l i n e ( s i z e = 0 . 8 ) +
60 theme_bw( ) +
61 ylab ( " Pr i ce " ) +
62 theme ( legend . t i t l e=element_blank ( ) ) +
63 theme ( text = element_text ( s i z e =15) )
64 p5
65

66 gr idExtra : : g r i d . arrange (p1 , p2 , p5 , nrow = 3)
67 gr idExtra : : g r i d . arrange (p1 , p2 , p3 , p4 , nrow = 4)

B.4 Empirical analysis (scaled data)

1 ############ Creat ing the euc l i d ean matrix ############
2

3 t ab l e_s c a l e <− s c a l e ( t ab l e_raw )
4 d_s c a l e_euc l<−d i s t ( t ab l e_sca l e , method = " euc l i d ean " , upper=TRUE)
5 d_s c a l e_euc l
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1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
2

3 f v i z_d i s t (d_s c a l e_eucl , lab_s i z e = 8 , g rad i ent = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms ( Eucl idean ) ############
2

3 hc9 <− hc lu s t (d_s c a l e_eucl , method="ward .D" )
4 hc9 = as . dendrogram ( hc9 )
5 p lo t ( hc9 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc10 <− hc lu s t (d_s c a l e_eucl , method="complete " )
9 hc10 = as . dendrogram ( hc10 )

10 p lo t ( hc10 , ylab="Height " , main="Complete l i nkage " )
11

12

13 hc11 <− hc lu s t (d_s c a l e_eucl , method="average " )
14 hc11 = as . dendrogram ( hc11 )
15 p lo t ( hc11 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc12 <− hc lu s t (d_s c a l e_eucl , method=" s i n g l e " )
19 hc12 = as . dendrogram ( hc12 )
20 p lo t ( hc12 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t ( Eucl idean ) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_s c a l e_eucl , method = x) $ac
7 }
8

9 map_dbl (m, ac )

1 ############ Creat ing the DTW matrix ############
2

3 d_s c a l e_dtw<−d i s t ( t ab l e_sca l e , method = "dtw" , upper=TRUE)
4 d_s c a l e_dtw

1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
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2

3 f v i z_d i s t (d_s c a l e_dtw , lab_s i z e = 8 , g rad i en t = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms (DTW) ############
2

3 hc13 <− hc lu s t (d_s c a l e_dtw , method="ward .D" )
4 hc13 = as . dendrogram ( hc13 )
5 p lo t ( hc13 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc14 <− hc lu s t (d_s c a l e_dtw , method="complete " )
9 hc14 = as . dendrogram ( hc14 )

10 p lo t ( hc14 , ylab="Height " , main="Complete l i nkage " )
11

12

13 hc15 <− hc lu s t (d_s c a l e_dtw , method="average " )
14 hc15 = as . dendrogram ( hc15 )
15 p lo t ( hc15 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc16 <− hc lu s t (d_s c a l e_dtw , method=" s i n g l e " )
19 hc16 = as . dendrogram ( hc16 )
20 p lo t ( hc16 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t (DTW) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_s c a l e_dtw , method = x) $ac
7 }
8

9 map_dbl (m, ac )

1 ############ Determing k methods ############
2

3 f v i z_nbc lus t ( t ab l e_sca l e , hcut , method = "wss" ) +
4 geom_v l i n e ( x i n t e r c ep t = 4 , l i n e t yp e = 2) +
5 l ab s ( s u b t i t l e = "Elbow method" ) +
6 theme_minimal ( )
7

8

9

10 f v i z_nbc lus t ( t ab l e_sca l e , hcut , method = " s i l h o u e t t e " ) +
11 l ab s ( s u b t i t l e = " S i l h ou e t t e method" ) +
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12 theme_minimal ( )
13

14

15 s e t . seed (123)
16 f v i z_nbc lus t ( t ab l e_sca l e , hcut , n s t a r t = 25 , method = "gap_s t a t " ,
17 nboot = 50) +
18 l ab s ( s u b t i t l e = "Gap s t a t i s t i c method" ) +
19 theme_minimal ( )

1 ############ Comparing the t r e e s ############
2

3 dend_l i s t <− d end l i s t ( hc9 , hc13 )
4 tanglegram ( hc9 , hc13 , main = paste ( " entanglement =" ,
5 round ( entanglement ( dend_l i s t ) , 2) ) )
6

7 dend_l i s t <− d end l i s t ( hc5 , hc13 )
8 tanglegram ( hc5 , hc13 , main = paste ( " entanglement =" ,
9 round ( entanglement ( dend_l i s t ) , 2) ) )

1 ############ Fina l t r e e s (DTW, ward : k=2 ,4) ############
2

3 ##### k=2
4 hc13 <− hc lu s t (d_s c a l e_dtw , method="ward .D" )
5 p lo t ( hc13 , ylab="Height " , main="Number o f c l u s t e r s = 2" )
6 r e c t . h c l u s t ( hc13 , k = 2 , border = 2 : 3 )
7

8

9 mypal = c ( " green " , " red " )
10 c l u s3 = cut r e e ( hc13 , 2)
11 p lo t ( as . phylo ( hc13 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 3 ] ,
12 main="Number o f c l u s t e r s = 2" , use . edge . l ength = TRUE)
13

14 ##### k=4
15 hc13 <− hc lu s t (d_s c a l e_dtw , method="ward .D" )
16 p lo t ( hc13 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
17 r e c t . h c l u s t ( hc13 , k = 4 , border = 2 : 5 )
18

19

20 mypal = c ( " blue " , "cyan1" , " red " , " green " )
21 c l u s4 = cut r e e ( hc13 , 4)
22 p lo t ( as . phylo ( hc13 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 4 ] ,
23 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)

B.5 Empirical analysis (log-returns)
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1 ############ Creat ing the euc l i d ean matrix ############
2

3 bee f_r e t_spr_2<−na . omit ( bee f_r e t_spr )
4 t ab l e_logRet <− t ( bee f_r e t_spr_2[−1])
5 d_logRet_euc l<−d i s t ( t ab l e_logRet , method = " euc l i d ean " , upper=TRUE)
6 d_logRet_euc l

1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
2

3 f v i z_d i s t (d_logRet_eucl , lab_s i z e = 8 , g rad i en t = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms ( Eucl idean ) ############
2

3 hc17 <− hc lu s t (d_logRet_eucl , method="ward .D" )
4 hc17 = as . dendrogram ( hc17 )
5 p lo t ( hc17 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc18 <− hc lu s t (d_logRet_eucl , method="complete " )
9 hc18 = as . dendrogram ( hc18 )

10 p lo t ( hc18 , ylab="Height " , main="Complete l i nkage " )
11

12

13 hc19 <− hc lu s t (d_logRet_eucl , method="average " )
14 hc19 = as . dendrogram ( hc19 )
15 p lo t ( hc19 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc20 <− hc lu s t (d_logRet_eucl , method=" s i n g l e " )
19 hc20 = as . dendrogram ( hc20 )
20 p lo t ( hc20 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t ( Eucl idean ) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_logRet_eucl , method = x) $ac
7 }
8

9 map_dbl (m, ac )
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1 ############ Creat ing the DTW matrix ############
2

3 d_logRet_dtw<−d i s t ( t ab l e_logRet , method = "dtw" , upper=TRUE)
4 d_logRet_dtw

1 ############ Eucl idean matrix v i z u a l i z a t i o n ############
2

3 f v i z_d i s t (d_logRet_dtw , lab_s i z e = 8 , g rad i en t = l i s t ( low = "#00AFBB" ,
4 mid = "white " , high = "#FC4E07" ) )

1 ############ Dendrograms (DTW) ############
2

3 hc21 <− hc lu s t (d_logRet_dtw , method="ward .D" )
4 hc21 = as . dendrogram ( hc21 )
5 p lo t ( hc21 , ylab="Height " , main="Ward l i nkage " )
6

7

8 hc22 <− hc lu s t (d_logRet_dtw , method="complete " )
9 hc22 = as . dendrogram ( hc22 )

10 p lo t ( hc22 , ylab="Height " , main="Complete l i nkage " )
11

12

13 hc23 <− hc lu s t (d_logRet_dtw , method=" average " )
14 hc23 = as . dendrogram ( hc23 )
15 p lo t ( hc23 , ylab="Height " , main="Average l i nkage " )
16

17

18 hc24 <− hc lu s t (d_logRet_dtw , method=" s i n g l e " )
19 hc24 = as . dendrogram ( hc24 )
20 p lo t ( hc24 , ylab="Height " , main=" S ing l e l i nkage " )

1 ############ Agglomerative c o e f f i c i e n t (DTW) ############
2

3 m <− c ( " average " , " s i n g l e " , " complete " , "ward" )
4 names (m) <− c ( " average " , " s i n g l e " , " complete " , "ward" )
5 ac <− f unc t i on (x ) {
6 agnes (d_logRet_dtw , method = x) $ac
7 }
8

9 map_dbl (m, ac )

1 ############ Determing k methods ############
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2

3 f v i z_nbc lus t ( t ab l e_logRet , hcut , method = "wss" ) +
4 geom_v l i n e ( x i n t e r c ep t = 4 , l i n e t yp e = 2)+
5 l ab s ( s u b t i t l e = "Elbow method" )+
6 theme_minimal ( )
7

8

9 f v i z_nbc lus t ( t ab l e_logRet , hcut , method = " s i l h o u e t t e " )+
10 l ab s ( s u b t i t l e = " S i l h ou e t t e method" )+
11 theme_minimal ( )
12

13

14 s e t . seed (123)
15 f v i z_nbc lus t ( t ab l e_logRet , hcut , n s t a r t = 25 , method = "gap_s t a t " ,

nboot = 50)+
16 l ab s ( s u b t i t l e = "Gap s t a t i s t i c method" )+
17 theme_minimal ( )

1 ############ Comparing the t r e e s ############
2

3 dend_l i s t <− d end l i s t ( hc17 , hc21 )
4 tanglegram ( hc17 , hc21 , main = paste ( " entanglement =" ,
5 round ( entanglement ( dend_l i s t ) , 2) ) )

1 ############ Fina l t r e e s (DTW, ward : k=2 ,4) ############
2

3 ##### k=2
4 hc21 <− hc lu s t (d_logRet_dtw , method="ward .D" )
5 p lo t ( hc21 , ylab="Height " , main="Number o f c l u s t e r s = 2" )
6 r e c t . h c l u s t ( hc21 , k=2, border = 2 : 3 )
7

8

9 mypal = c ( " green " , " red " )
10 c l u s5 = cut r e e ( hc21 , 2)
11 p lo t ( as . phylo ( hc21 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 5 ] ,
12 main="Number o f c l u s t e r s = 2" , use . edge . l ength = TRUE)
13

14 ##### k=4
15 hc21 <− hc lu s t (d_logRet_dtw , method="ward .D" )
16 p lo t ( hc21 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
17 r e c t . h c l u s t ( hc21 , k = 4 , border = 2 : 5 )
18

19

20 mypal = c ( " blue " , "cyan1" , " green " , " red " )
21 c l u s6 = cut r e e ( hc21 , 4)
22 p lo t ( as . phylo ( hc21 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 6 ] ,
23 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)
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B.6 Appendix figures

1 ########## Q−Q p l o t s ##########
2

3 ggp lot ( bee f_p r i_gat , aes ( sample = p r i c e ) ) +
4 geom_qq ( d i s t r i b u t i o n = qnorm , c o l = " s t e e l b l u e " ) +
5 geom_qq_l i n e ( l i n e . p = c ( 0 . 2 5 , 0 . 75 ) , c o l = " black " ) +
6 ylab ( " Pr i ce " ) +
7 f a c e t_wrap (~ country , nrow = 3) + ylab ( " Pr i ce " )
8

9

10

11 ggp lot ( bee f_r e t_gat , aes ( sample = r e t ) ) +
12 geom_qq ( d i s t r i b u t i o n = qnorm , c o l = " s t e e l b l u e " ) +
13 geom_qq_l i n e ( l i n e . p = c ( 0 . 2 5 , 0 . 75 ) , c o l = " black " ) +
14 ylab ( "LogRet ( Pr i ce ) " ) +
15 f a c e t_wrap (~ country , nrow = 3) + ylab ( "Logret ( Pr i ce ) " )

1 ############ Heatmap( Kendall ) ############
2

3

4 corm <− round ( cor ( bee f_p r i_spr [ , s o r t ( c ( "UK" , "SI " , "SE" , "PT" , "PL" ,
5 "LT" , "IT" , "IE" , "FR" , "ES" , "DK" , "DE" , "CZ" , "BE" , "AT" ) )

] ,
6 method = " kenda l l " , use = " pa i rw i s e . complete . obs" ) ,2 )
7 corm [ lower . t r i ( corm) ] <− NA
8 corm
9

10

11 corm <− melt ( corm)
12 corm$Var1 <− as . cha rac t e r ( corm$Var1 )
13 corm$Var2 <− as . cha rac t e r ( corm$Var2 )
14 corm <− na . omit ( corm)
15 head ( corm , 10)
16 corm
17

18

19 corheatmap<−ggp lot ( corm , aes ( x = Var2 , y = Var1 ) ) +
20 geom_ra s t e r ( data = corm , aes ( f i l l = value ) ,
21 c o l o r = "white " ) +
22 s c a l e_ f i l l _grad i ent2 ( low = "blue " , high = " red " ,
23 mid = "white " ,
24 midpoint = 0 , l im i t = c (−1 , 1) ,
25 name = "Cor r e l a t i on \n( Kendall ) " ) +
26 theme ( ax i s . t ex t . x = element_text ( ang le = 45 ,
27 s i z e = 11 , v ju s t = 1 , h ju s t = 1) ,
28 ax i s . t i t l e . x = element_blank ( ) ,
29 ax i s . t i t l e . y = element_blank ( ) ,
30 panel . background = element_blank ( ) ,
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31 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
32 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
33 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
34 gu ides ( f i l l = guide_co l o rba r ( barwidth = 7 ,
35 barhe ight = 1 ,
36 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) ) +
37 coord_equal ( )
38

39

40 corheatmap +
41 geom_text ( aes (Var2 , Var1 , l a b e l = value ) , c o l o r = " black " ,
42 s i z e = 4) +
43 theme (
44 ax i s . t i t l e . x = element_blank ( ) ,
45 ax i s . t i t l e . y = element_blank ( ) ,
46 panel . g r i d . major = element_blank ( ) ,
47 panel . border = element_blank ( ) ,
48 panel . background = element_blank ( ) ,
49 ax i s . t i c k s = element_blank ( ) ,
50 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
51 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
52 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
53 gu ides ( f i l l = guide_co l o rba r ( barwidth = 10 , barhe ight = 1 . ,
54 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) )
55

56

57 ############ Heatmap( Spearman ) ############
58

59 corm <− round ( cor ( bee f_p r i_spr [ , s o r t ( c ( "UK" , "SI " , "SE" , "PT" , "PL" ,
60 "LT" , "IT" , "IE" , "FR" , "ES" , "DK" , "DE" , "CZ" , "BE" , "AT" ) )

] ,
61 method = "spearman" , use = " pa i rw i s e . complete . obs" ) ,2 )
62 corm [ lower . t r i ( corm) ] <− NA
63 corm
64

65

66 corm <− melt ( corm)
67 corm$Var1 <− as . cha rac t e r ( corm$Var1 )
68 corm$Var2 <− as . cha rac t e r ( corm$Var2 )
69 corm <− na . omit ( corm)
70 head ( corm , 10)
71 corm
72

73

74 corheatmap<−ggp lot ( corm , aes ( x = Var2 , y = Var1 ) ) +
75 geom_ra s t e r ( data = corm , aes ( f i l l = value ) ,
76 c o l o r = "white " ) +
77 s c a l e_ f i l l _grad i ent2 ( low = "blue " , high = " red " ,
78 mid = "white " ,
79 midpoint = 0 , l im i t = c (−1 , 1) ,
80 name = "Cor r e l a t i on \n( Spearman ) " ) +
81 theme ( ax i s . t ex t . x = element_text ( ang le = 45 ,
82 s i z e = 11 , v ju s t = 1 , h ju s t = 1) ,
83 ax i s . t i t l e . x = element_blank ( ) ,
84 ax i s . t i t l e . y = element_blank ( ) ,
85 panel . background = element_blank ( ) ,
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86 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
87 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
88 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
89 gu ides ( f i l l = guide_co l o rba r ( barwidth = 7 ,
90 barhe ight = 1 ,
91 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) ) +
92 coord_equal ( )
93

94

95 corheatmap +
96 geom_text ( aes (Var2 , Var1 , l a b e l = value ) , c o l o r = " black " ,
97 s i z e = 4) +
98 theme (
99 ax i s . t i t l e . x = element_blank ( ) ,

100 ax i s . t i t l e . y = element_blank ( ) ,
101 panel . g r i d . major = element_blank ( ) ,
102 panel . border = element_blank ( ) ,
103 panel . background = element_blank ( ) ,
104 ax i s . t i c k s = element_blank ( ) ,
105 l egend . j u s t i f i c a t i o n = c (1 , 0) ,
106 l egend . p o s i t i o n = c ( 0 . 6 , 0 . 7 ) ,
107 l egend . d i r e c t i o n = " ho r i z on t a l " ) +
108 gu ides ( f i l l = guide_co l o rba r ( barwidth = 10 , barhe ight = 1 . ,
109 t i t l e . p o s i t i o n = "top" , t i t l e . h ju s t = 0 . 5 ) )

1 ##### Fina l t r e e s (Raw data , euc l idean , ward : k=3 ,4) #####
2

3 ##### k=3
4 hc1 <− hc lu s t (d_raw_eucl , method="ward .D" )
5 p lo t ( hc1 , ylab="Height " , main="Number o f c l u s t e r s = 3" )
6 r e c t . h c l u s t ( hc1 , k = 3 , border = 2 : 4 )
7

8

9

10 mypal = c ( " green " , " blue " , " red " )
11 c l u s7 = cut r e e ( hc1 , 3)
12 p lo t ( as . phylo ( hc1 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 7 ] ,
13 main="Number o f c l u s t e r s = 3" , use . edge . l ength = TRUE)
14

15 ##### k=4
16 hc1 <− hc lu s t (d_raw_eucl , method="ward .D" )
17 p lo t ( hc1 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
18 r e c t . h c l u s t ( hc1 , k = 4 , border = 2 : 5 )
19

20

21

22 mypal = c ( " blue " , "cyan1" , " green " , " red " )
23 c l u s8 = cut r e e ( hc1 , 4)
24 p lo t ( as . phylo ( hc1 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 8 ] ,
25 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)
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1 ##### Fina l t r e e s ( Sca led data , euc l idean , ward : k=2 ,4) #####
2

3 ##### k=2
4 hc9 <− hc lu s t (d_s c a l e_eucl , method="ward .D" )
5 p lo t ( hc9 , ylab="Height " , main="Number o f c l u s t e r s = 2" )
6 r e c t . h c l u s t ( hc9 , k = 2 , border = 2 : 3 )
7

8

9 mypal = c ( " green " , " red " )
10 c l u s9 = cut r e e ( hc9 , 2)
11 p lo t ( as . phylo ( hc9 ) , type = " fan " , t i p . c o l o r = mypal [ c l u s 9 ] ,
12 main="Number o f c l u s t e r s = 2" , use . edge . l ength = TRUE)
13

14

15 ##### k=4
16 hc9 <− hc lu s t (d_s c a l e_eucl , method="ward .D" )
17 p lo t ( hc9 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
18 r e c t . h c l u s t ( hc9 , k = 4 , border = 2 : 5 )
19

20

21

22 mypal = c ( " blue " , "cyan1" , " red " , " green " )
23 c lu s10 = cut r e e ( hc9 , 4)
24 p lo t ( as . phylo ( hc9 ) , type = " fan " , t i p . c o l o r = mypal [ c lu s10 ] ,
25 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)

1 ##### Fina l t r e e s (Log−returns , euc l idean , ward : k=2 ,4) #####
2

3 ##### k=2
4 hc17 <− hc lu s t (d_logRet_eucl , method="ward .D" )
5 p lo t ( hc17 , ylab="Height " , main="Number o f c l u s t e r s = 2" )
6 r e c t . h c l u s t ( hc17 , k = 2 , border = 2 : 3 )
7

8

9

10 mypal = c ( " green " , " red " )
11 c lu s11 = cut r e e ( hc17 , 2)
12 p lo t ( as . phylo ( hc1 ) , type = " fan " , t i p . c o l o r = mypal [ c lu s11 ] ,
13 main="Number o f c l u s t e r s = 2" , use . edge . l ength = TRUE)
14

15

16 ##### k=4
17 hc17 <− hc lu s t (d_logRet_eucl , method="ward .D" )
18 p lo t ( hc17 , ylab="Height " , main="Number o f c l u s t e r s = 4" )
19 r e c t . h c l u s t ( hc17 , k = 4 , border = 2 : 5 )
20

21 mypal = c ( "cyan1" , " blue " , " green " , " red " )
22 c lu s12 = cut r e e ( hc17 , 4)
23 p lo t ( as . phylo ( hc17 ) , type = " fan " , t i p . c o l o r = mypal [ c lu s12 ] ,
24 main="Number o f c l u s t e r s = 4" , use . edge . l ength = TRUE)
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