
A Prefix-based Hybrid Solution for Main
Memory Indexing

A Thesis

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

George Christodoulou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

February 2020

Examining Committee:

• Nikolaos Mamoulis, Professor, Computer Science and Engineering Department,
University of Ioannina (Supervisor)

• Panagiotis Vasiliadis, Associate Professor, Computer Science and Engineering
Department, University of Ioannina

• Apostolos Zarras, Associate Professor, Computer Science and Engineering De-
partment, University of Ioannina

Dedication

I would like to dedicate this thesis to my family.

Acknowledgements

First and foremost, I would like to express my graditude to my advisor, Nikos
Mamoulis, for giving me this opportunity, the support, the guidance, and the patience
he offered me through all the time we have worked together. I am deeply grateful
to my family for their unconditional support on any level that a human being can
imagine. Their encouragement and faith in me were eternal through all these years. I
would like to thank my friends who supported and believed in me even when it was
not rational and for often giving me good reasons not to work. Last but definitely not
least, I would like to thank Evangelos Papapetrou for all the influential discussions,
knowledge and advice he gave me through the years about Computer Science and
life as well.

Table of Contents

List of Figures ii

List of Algorithms iii

Abstract iv

Εκτεταμένη Περίληψη v

1 Introduction 1
1.1 Contributions . 4
1.2 Outline . 4

2 Related Work 5

3 Pot Implementation 9
3.1 POT Construction . 10
3.2 POT Search . 14
3.3 POT Construction and search complexity analysis 15
3.4 POT Comparative advantages . 16

4 Experimental Evaluation 17

5 Conclusions 25
5.1 Summary . 25
5.2 Future Work . 25

Bibliography 27

i

List of Figures

3.1 Example of a POT instance . 12
3.2 Example of a POT instance . 13
3.3 Example of a POT search . 15

4.1 Our dataset distributions . 18
4.2 Best bucket size for Prefix 4 . 19
4.3 Best bucket size for Prefix 8 . 20
4.4 Best bucket size for Prefix 16 . 21
4.5 Best POT without Binary Search . 22
4.6 Random existing and non existing queries 23
4.7 Random existing queries . 23
4.8 Memory size of trees . 24

ii

List of Algorithms

3.1 Construction algorithm . 13
3.2 Search algorithm . 14

iii

Abstract

George Christodoulou, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, February 2020.
A Prefix-based Hybrid Solution for Main Memory Indexing.
Advisor: Nikolaos Mamoulis, Professor.

Efficient retrieval in main memory is becoming increasingly important in modern
applications that manage huge amounts of data (e.g. IoT and social network data).
This is especially relevant for key-value stores which handle numerous key-value
pairs which should be accessed in nanoseconds.

In this thesis, we introduce POT (Performance Optimized Tree), a novel hybrid
tree, combining bucketing with data prefixes. We design a tree, which supports fast
search operations. The tree consists of levels depending on segments of the data
representation called prefixes and the leaf nodes point to ranges of the indexed data
values, called buckets. We construct the tree so that we can hop through its levels
without comparisons and then use binary search for the last mile accuracy. Our tree
can easily adapt to any type of data and data distribution as we consider the binary
representation of the indexed values. The layout of each node is carefully constructed
for compactness and fast search. POT supports point and range queries.

We evaluate the performance of the tree on two real and one synthetic dataset
and compare the results with other popular index structures. Our results indicate
that our approach can perform much better than existing techniques. We also study
the problem of tuning the index, depending on the data size and distribution.

iv

Ε Π

Γεώργιος Χριστοδούλου, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2020.
Υβριδικό Ευρετήριο Κύριας Μνήμης με βάση τα Προθέματα.
Επιβλέπων: Νικόλαος Μαμουλής, Καθηγητής.

Η αποδοτική ανάκτηση στην κύρια μνήμη καθίσταται όλο και πιο σημαντική στις
σύγχρονες εφαρμογές που διαχειρίζονται τεράστιους όγκους δεδομένων (π.χ. δεδο-
μένα IoT και κοινωνικών δικτύων). Αυτό είναι ιδιαίτερα σημαντικό για αποθήκες
δεδομένων κλειδιών-τιμών που χειρίζονται πολλά ζεύγη κλειδιών-τιμών τα οποία
θα πρέπει να προσφέρουν πρόσβαση σε νανοδευτερόλεπτα.

Σε αυτή τη διατριβή, παρουσιάζουμε το POT (Performance Optimized Tree), ένα
νέο υβριδικό δέντρο, που συνδυάζει το bucketing με τα προθέματα δεδομένων.
Σχεδιάζουμε ένα δέντρο το οποίο υποστηρίζει λειτουργίες γρήγορης αναζήτησης.
Το δέντρο αποτελείται από επίπεδα που εξαρτώνται από τα τμήματα της ανα-
παράστασης δεδομένων τα οποία ονομάζονται προθέματα και οι κόμβοι φύλλων
υποδεικνύουν εύρη τιμών των ευρεθέντων δεδομένων, που ονομάζονται “κάδοι“ δε-
δομένων. Κατασκευάζουμε το δέντρο έτσι ώστε να μπορούμε να προσπελάσουμε
τα επίπεδα του δέντρου χωρίς συγκρίσεις και στη συνέχεια να χρησιμοποιήσουμε
δυαδική αναζήτηση για να καταλήξουμε με ακρίβεια στην τιμή που αναζητάμε.
Το δέντρο μας μπορεί εύκολα να προσαρμοστεί σε οποιοδήποτε τύπο δεδομένων
και κατανομή δεδομένων, καθώς χρησιμοποιεί τη δυαδική αναπαράσταση των κλει-
διών αναζήτησης. Οι κόμβοι του δέντρου είναι προσεκτικά κατασκευασμένοι ώστε
να είναι συμπαγείς και να υποστηρίζουν γρήγορη αναζήτηση. Το POT υποστηρίζει
ερωτήματα σημείων και εύρους.

Αξιολογούμε την απόδοση του δέντρου σε ένα συνθετικό και δύο πραγματικά
σύνολα δεδομένων και τη συγκρίνουμε με τις αποδόσεις άλλων δημοφιλών δομών

v

ευρετηρίου. Τα αποτελέσματά μας δείχνουν ότι η προσέγγισή μας μπορεί να απο-
δώσει πολύ καλύτερα από τις υπάρχουσες τεχνικές. Επίσης, μελετάμε το πρόβλημα
της προσαρμογής της δομής ευρετηρίου, ανάλογα με το μέγεθος και τη κατανομή
των δεδομένων.

vi

Chapter 1

Introduction

1.1 Contributions

1.2 Outline

Databases are constructed to store information. When a user approaches the
database in search of data, he provides a search key which corresponds to his target.
Obviously, a user does not want to search the whole database in order to retrieve
the query result. Therefore, databases are enhanced with indexes to speed up the
retrieval of interesting information. From the user’s point of view, it is desirable that
the index supports search keys of different data types (e.g. numbers, strings) and that
the search time is as low as possible. At the same time, it is desirable that the index
will serve the user’s needs for high speed search while it is economical in space,
easily maintainable and can be modified to support additions and deletions from
the database. The performance of the tree comes at the cost of space consumption.
Many existing indexing solutions are focusing on the right balance between space
requirements and look up performance.

The accessing and processing of data, in a fast and efficient way (i.e. the storing and
querying of any type of data) is especially important for many popular applications
(e.g. information retrieval and social networks), mainly in the fields of Big Data or
IoT, which require the handling of very large and complex amount of data (index,
search etc.). Memories are becoming larger and cheaper, hence, the focus has turned
recently to the design of efficient main-memory indexes.

1

There are many algorithms and data structures used to index and search, including
tries. Tries are multi-way tree structures, designed for organizing data in the main
memory. The word trie emerges from the word “re-trie- val”, because the trie can
retrieve a word in a dictionary using a prefix of the word. Tries are efficient data
retrieval structures. Using a trie, the search time of a stored value can be minimized
by partitioning the corresponding key. Trie-based data structures have been successful
in multiple applications such as text compression and dictionary management. Some
specific examples are:

• Insert, delete and search for a word in a dictionary.

• Find out if a string is a prefix of another string.

• Find out how many strings have a common prefix.

• Suggestion of contact names in our phones depending on the prefix we enter.

In terms of implementation, tries -which are basically trees- are represented as
a set of linked nodes, starting from a root node. Usually, the number of nodes at
every level of the tree depends on the total number of possible prefixes up to a length
corresponding to the level. For example, if we want to represent Greek words in a trie
with one letter as the substring length used per level, there will be 24 children nodes
at every level because there are 24 different letters (available options) in the Greek
alphabet. So, the size of a trie depends completely on the data that it contains. Tries
are used to index data, so the nodes at the lowest level, called leaves, end up pointing
to values. Thus, every node contains a reference to children nodes that can be null
and a value that can be null as well. The time to do a search is typically O(length of
key) if the length of the prefix used is 1, like in our example. In general, the search
time is O(length of key / prefix size). Insertions have the same complexity. The main
drawback of tries is their large memory requirements for storing the key strings. For
each level a large number of node pointers (equal to the number of possible words
or characters, used to decide the next level).

Tries have some properties which makes them interesting:

• The height -and therefore also the complexity- of tries depends generaly on the
length of the keys and not on the number of elements in the tree.

2

• Tries require no rebalancing operations and the tree construction is independent
from the insertion order.

• The path to a leaf node represents the key of that leaf. Therefore, keys are
stored implicitly and can be reconstructed from paths.

• Tries offer O(1) complexity for searching every level without the need of com-
parisons.

While memory consumption is important, main memory becomes larger and
cheaper and the performance of main-memory databases is crucial, thus we need
fast index structures. Therefore, we focus on optimizing the performance of the index
and not on minimizing its space consumption.

Recently, Kraska et al. [1] introduced the interesting approach of replacing (at least
partially) the principled and structured mechanisms of B-trees (and other classic in-
dexes) by machine learning models. In a nutshell, a database index can be considered
as a model which, given a search key value, predicts the position of the record that
holds this value. However, finding an accurate single model for the entire domain
of the key values might be hard. Motivated by this, our first steps of research have
generated some thoughts for new indexing approaches based on a hybrid approach.
The partitioning that the current implementations of trees define is based on the
old (and obsolete) tree structure which demands that each node occupies the space
of a disk block, and the (obsolete) objective is to minimize the I/O cost. Currently,
however, we typically use main memory storage and main memory indexing. Hence,
it is no longer a requirement that all partitions occupy the same space and we can
seek for optimization in a different direction. Alternative partitioning and search ap-
proaches could be defined. In this thesis, we will investigate the design and use of a
data-adaptive tree for main memory indexing. Originally, trees have been used with
restrictions in node sizes and available span. On the other hand, the learned-index
approach inserts multiple types of overhead in the solution. Specifically, an approxi-
mation of value distributions can be used to determine (very fast) the number of keys
that are contained in a particular value range. In our context, an approximation of
the data distribution could be used to determine node represenations and span. In
conclusion, our problem is to find the position of a given key value as fast as possible
and therefore we aim at designing a performance optimized tree.

3

In our implementation, we use a combination of trie logic and bucketing. We
create a trie with multiple prefix lengths. The available prefix lengths are 4, 8 and
16. We consider the binary representation of each entry before insertion. So, the keys
that we actually store are considered to be binary strings. Every level contains pieces
of binary strings with length of 4, 8 or 16. The main difference with other trie-like
indexes is that the keys in our approach are not stored until their full length. In that
way, our trie avoids to expand in height and therefore minimizes the overhead in
search that comes with it. In order to achieve that, we use buckets with a certain size
as leaves, which contain multiple keys with a common prefix. Thus, when a search is
executed, the trie is traversed until the corresponding bucket is found. Then, inside
the bucket, we use binary search for the last mile accuracy.

1.1 Contributions

In summary, this thesis makes the following contributions:

• We propose the novel concept of a hybrid trie with data buckets. To our knowl-
edge, this is the first work that defines this combination as a data structure for
indexing.

• We propose an overall efficient indexing solution targeting low look-up times.

• We evaluate our approach using three real datasets, which have different dis-
tributions and sizes, and demonstrate that it operates well and fast.

1.2 Outline

This dissertation consists of 5 chapters. Chapter 2 provides related work by reviewing
existing indexing solutions. Chapter 3 describes the structure of our proposed index.

It describes in detail every part in the tree and the algorithms used for tree
construction and searching. Chapter 4 contains an experimental evaluation of our
solution, where it is compared to other indexing solutions. Chapter 5 contains our
conclusions and provides directions for future work.

4

Chapter 2

Related Work

The Adaptive Radix Tree (ART) is a trie-based data structure for main-memory
indexing. The main idea of ART [4] is that each inner node adapts to reduce space
consumption. Two key practices in ART are: path compression and lazy expansion.
In lazy expansion the inner nodes are created only to distinguish two or more leaf
nodes. In path compression, nodes with a single child are removed. ART aims at
using a large span for performance enhancement, without the space inefficiency as a
trade off. So the key idea is to use different nodes with a different span. Each inner
node maps partial keys to child pointers. There are nodes with a span of size 4,
16, 48 and 256. Also, the leaves can be: single valued, multi valued and combined
pointer-value. However, the use of string data forces ART to a lower fanout because
of the sparse distribution.

Wormhole [3] is an ordered index structure with O(logL) worst case time for look
up of keys with L length. Thus, it is fully depended on the length of the keys. It is a
main memory index which uses a trie for its non-leaf part and then a hash table. It
does not support range queries, or inserts of new keys in the leaflist. The supported
search continues until the searched key is smaller than the key in the list which is
compared to, if the key is not in the list. Each item in wormhole has a bitmap for
the existence of children. The space efficiency of the index depends on the similarity
of the keys. Also, concurrency is supported with locks.

Mass tree [5] is a storage system specialized for key-value data (all in-memory)
which must persist across server restarts. It uses variable-length keys and supports

5

range queries. It uses a wide fanout to reduce depth, prefetches nodes from DRAM
and data is stored for cache awareness. Logs are kept in batches for cache recovery
and are periodically checkpointed. Mass tree comprises one or more layers of B+-
trees and each layer is indexed with a 8-byte slice of key. The tree has the same query
complexity as B+-trees. For range queries, it has higher worst-case complexity than
the B+-tree. It also bounds the number of none-node memory references to find a
key in at-most one look-up. For concurrent accesses, the system uses writer-writer
and writer-reader coordination. Furthermore, it syncs cores with ports to support fast
operations through the network.

HOT [6] (Height optimized tree) aims at having high average fanout. The bits that
are considered at each node are not fixed but chosen depending on the data distribu-
tion. This helps with the sparsity and the consistent high fanout. For a given span s
there are 2s pointers at each node. The downside is the increased space consumption
for sparse data where the actual fanout will be much smaller than 2s. HOT combines
multiple nodes of binary Patricia trees with maximum node fanout of predefined
value k. Each node of the tree uses custom span. In order to consume less memory
adaptive node sizes are used. Each patricia trie has exactly n-1 nodes for n keys so a
HOT node needs to store at most k-1 binary inner nodes (k maximum fanout). The
maximum fanout consists of 32 bits for fast SIMD operations. There are available
representations of 8, 16, 32 bits. Furthermore, instructions from BMI2 instruction set
are used for key extraction speed up. The node layout has two dimensions of adap-
tivity:the size of the partial keys and the representation of the bit position (single or
multi mask). The physical node layout consists of: (1) node header, (2) bit positions,
(3) partial keys, (4) values. Also, any given set of keys results to the same structure
regardless of the insertion order. Finally, there is a sync protocol, which locks the
affected nodes by the action performed until the action is performed with safety.

HAT trie [7] structure is based on the reduction of the number of the trie nodes,
which are reducted by selectively collapsing chains of nodes in buckets. HAT trie
begins as an empty bucket which is populated until full. Although it is not cache
conscious, it is efficient in a setting where all memory accesses are of equal cost. HAT
uses linked list representation, although, traversing a linked list the address of a child
cannot be known until the parent is processed. It is a combination of trie index with
buckets which are cache-conscious hash tables. There are two main approaches: Pure
and hybrid. The difference between them is in how buckets are maintained and split.

6

In the first case, buckets that contain strings sharing only one prefix are removed and
in the second case buckets that share a single prefix are not removed (more than one
parent pointer).

Fast Architecture Sensitive Tree (FAST) [8] is a binary tree which is designed,
based on architecture features like page size, cache line size and SIMD width. FAST
aims to optimize those architecture features in order to eliminate memory latency
and takes full advantage of parallelism on thread and data level. As the tree grows,
the CPU search can be bound from memory bandwidth. Therefore, a key proposal
of FAST are compression techniques, which handles the length of string and integer
keys. Finally, Chankyu Kim et al. propose four search techniques: FAST, FAST with
compression, buffered scheme and sort-based scheme.

Another practice on indexing includes machine learning. Machine learrning pro-
vides various solutions for understanding the distribution of data. Kraska et al. [1]
suggested learned index structures which use machine learning to predict the location
of the queried keys. The basic idea is that if a machine learning model can learn the
CDF of the underlying data it can directly predict the value which is connected with
the queried key. However, ML models predictions are susceptible to errors and this is
a challenge that occurs. The learned index structure must calculate and overcome this
error with local search. Thus, if the prediction error is small enough, a learned model
can be competitive in look-up time. A little different practice is suggested by Ali Ha-
dian on Interpolation-friendly B-tress (IFB-trees) [9] . In this case, the algorithmic
data structure is not fully replaced by a learned model. So, the learned index ideas can
be embedded in a data structure (e.g. B-trees). IFB-trees keep the b- tree structure
and aim to optimize the search performance by using machine learning. ML is used
in order to minimize intra-node searching which is the main performance drawback
while keeping the theoretical guarantees of B-trees.

Another approach is to fit the index on the data distribution without machine
learning. FITing Tree’s implementation [2] fits an index to a dataset and workload
with a balance between look-up performance and space consumption. A cost model
is used to determine lookup latency requirement and storage budget. Also, it uses
piecewise linear functions to quickly approximate the position of an element. The
contributions of [2] are (1) an index structure (2) an efficient segmentation algo-
rithm with tunable error parameters (3) a cost model to tune the appropriate error
threshold.

7

FIT stores only the starting key of each linear segment and the slope of the linear
function in order to compute a key’s approximate position using linear interpolation.
Inner nodes are the same as in a B+ tree (lookup and insert operations) until the
leaf level where there is need for a local search.

Another index structure can be used for the inner nodes. It also supports non
clustered indexes. Adds a layer “key pages” with the sorted version of the index.
In order to execute an in-place insert the trie takes into account the error threshold,
shifts the values of the segment involved and re-approximates the segmentation.
Finally, each segment has a buffer for extra inserts, which is taken into account when
calculating the error.

8

Chapter 3

Pot Implementation

3.1 POT Construction

3.2 POT Search

3.3 POT Construction and search complexity analysis

3.4 POT Comparative advantages

This chapter presents the Performance Optimized Tree (POT). We begin with de-
scribing the POT construction procedure and the algorithms for search and insertion.
Next, we analyze the construction and search costs and discuss on the advantages of
our approach over other indexes.

The starting point of this thesis is to solve the indexing problem of an array with
sorted data in the main memory. In order to solve this problem, we design POT, a
hybrid trie which supports point and range queries.

Due to room for improvement of existing structures, we outline our so-called
performance optimized trie (POT) as a new in-memory data structure. It is a hydrid
solution based on the idea of prefix trees (tries) for indexing arbitrary data types of
fixed and variable length in the form of byte sequences. The novel characteristic of
our trie-based structure is the assembly of known and new techniques. In detail, we
use (1) a prefix size of variable length, (2) prefix-based trie expansion, (3) grouping
of values with common prefix.

Our trie consists of two types of nodes: inner nodes, which map partial keys to

9

nodes and leaf nodes that point to data that we index. The representation of an inner
node is an array of 2p pointers that can either point to a leaf node or point to a child
node, where p is the prefix length. We use the array of 2p size, so that every hop in
the path of finding a value will cost O(1) without comparisons. The main idea is that
we can use every part of the key as an indepedent number, matching the position of
the node in the array. This leads to 2p options, thus we need an array of 2p size in
every node that is not a leaf. Each leaf node contains two pointers on the sorted array
of the input data circumscribing the group of data with common prefix for which it
is responsible. We define these groups of data as buckets, in which a binary search
gives the key-value pair.

During tree traversal, a part of the key with determined length is used as the
array position in the children array of the node and determines the next child node
in the path without any comparisons. The length of the partial key used at every
level, which we call prefix length, is critical for the performance of our trie, because it
determines the height of the tree for a given key length. Our trie stores bit keys with
length k so a path can have at maximum k/p levels of nodes. The constraint of the
bucket size is directly connected to the tree height and the binary search time inside
the bucket, thus is crucial for the performance of the trie.

An issue that we want to investigate further is that the data that we want to
index may have many common segments in their binary representations. This leads
to reserved space which is not actually used, but still gives us the advantage of hops
through nodes with O(1) cost. Although we aim for performance, we cannot afford
large memory space misuse. In our future work, we will deal with this problem by
changing our approach for prefix handling.

3.1 POT Construction

Given an input of data as a sorted array, we construct our index tree on top of it.
The indexed values are considered binary strings with size of 32 bits (e.g. 4-byte
numbers). Longer elements can also be supported by our index. Then, we compute
the common prefix of the whole input and exclude from indexing the bit string up to
that point. For example, if the max common prefix of the whole input is the first 4-bit
part, we index the 28-bit part of the values. After that, we construct the first level

10

of the tree which consists of the root node pointing to its children nodes, an array
of 2p size. The prefix length is tunable and predefined. Then, we iterate the input
array while we compare the first segment of the data bit strings. We accumulate
the group of search keys that have the same (current) prefix and then we check
the size of the group. If the group of strings is smaller than the size constraint s
(which is a predefined parameter), the node becomes a leaf node and points on the
starting position and the ending position of the group in the data array. The node is
then stored in the children array of the root node. The position of the node in the
children array is calculated by converting the segment of the bitstring used as prefix
to an integer. If the group of strings is bigger than s the node expands to children
nodes which are represented as a next level array. In the corresponding position we
store a pointer to the children array. This procedure continues recursively until the
group of strings in every leaf node is smaller than s. As we can see in Figure 3.1, for
the construction procedure we need the input array. We initialize the root node along
with its children array. Then we group the data entries with common segment of key.
The segment of key is defined as the first part of the key bits with size p. In the next
level, the segment of the key is defined as the second part of the key bits with size
of p, and so on. If the groups are smaller than s we create a node and we place it
in the children array of the root node. Otherwise, we use the node expand function,
wherein we recursively apply the same procedure for the next level of nodes.

An example of POT is illustrated in Figure 3.1. In this example, the data that
we want to index are the numbers 4, 5, 7, 8, 9, 11. The bucket size constraint s is 4.
The prefix size is 2, so the size of the children array of the root node is 2p = 4. As
described before, all the values (4, 5, 7) with prefix 01 are assigned to the node in the
second position (children[1]) of the children array. All the values (8, 9, 11) with prefix
10 are assigned to the node in the third position (children[2]) of the children array.
So, the two nodes are leaf nodes and point to the start and the end of their indexed
group of values.

11

1001100001110101

11100100

children

Root node

nullnull

0100 1011

Figure 3.1: Example of a POT instance

In Figure 3.2 we observe the same example data as before, but in this case we
set the constraint of the bucket size 2. This means that the nodes, which both have
three entries, have to expand, in order to have a maximum of 2 entries. So, in the
positions where the leaf nodes were before, now we have pointers to the next nodes
which use the next segment of the data bit string to index the values. As we can see,
each bucket now contains one value because of the bucket size constraint and the bit
string size of the data.

12

1001100001110101

11100100
children

Root node

nullnull

0100 1011

11100100
children

null
11100100

children

null

Figure 3.2: Example of a POT instance

Algorithm 3.1 Construction algorithm
Require: Input array Input

1: Initialize root node
2: Define children array of root node with 2p size
3: for each entry e ∈ Input do
4: segmentOfKey = get part of e bit string
5: if segmentOfKey ̸= segmentOfPreviousKey then
6: create new node n with group of entries with common segmentOfKey
7: root → children[segmentOfKey] = n

8: else
9: add e in the group of entries with common segmentOfKey
10: end if
11: end for
12: for each child f of root node do
13: if f → entriesgroup > s then
14: f → expand()

15: end if
16: end for

13

3.2 POT Search

The index is designed such that search costs O(1) per level until we find the leaf
which containts the searched value. The tree is traversed by using successive parts
of the key as an index position until a leaf node or a null pointer is encountered.
The next child node at every level is found by casting the key part used on that level
to an integer, which is the position of the child node in the children index. While
the searched value is not found and the bitstring has not come to an end, iteratively
we select a part of the key and search the corresponding position in the array of the
node at each level. If a null pointer is encountered, the searched key is not in the data
index. If a leaf node is encountered, we use binary search on the data array between
the two index positions which are pointed by the leaf node. The search procedure is
defined in Section 3.1.

Algorithm 3.2 Search algorithm
Require: Key to search key

1: Define starting node as root
2: while next part of key is not last and we have not reached a leaf node do
3: segmentOfKey = get next part of key bit string to check
4: if node is leaf then
5: value = Binary Search(node → startingPoint , node → endingPoint , key)
6: return value

7: else if node is null then
8: return key is not in the index
9: end if
10: end while

In Figure 3.3 we show an example of search using POT. The searched value is
the number 11 and its binary representation is 1011. As the search is applied to the
tree shown in Figure 3.2, the prefix size used is 2. So, we use the first two bits of the
binary representation to determine the first branch to follow along the path that leads
to the searched value. The first two bits of the binary representation (10) correspond
to the number 2. Thus, the first node of the search path must be in the position 2

at the children array of the root node. The connection between the prefix and the
children array positions gives us the opportunity to iterate through the tree without
comparisons. The same procedure takes place in the next node which is a leaf node.

14

In the example, the bucket on which the leaf node points is of size 1, so there is no
need for binary search.

1001100001110101

11100100
children

Root node

nullnull

0100 1011

11100100
children

null
11100100

children

null

Search 11 (1011)

Search 11 (1011)

Figure 3.3: Example of a POT search

3.3 POT Construction and search complexity analysis

In this section we analyze the complexity of POT construction and search. For the
construction of our trie, at first we iterate through the whole array that is given as
input, which costs O(n) where n is number of the entries. Then groups of entries
are made, which depending on the size will make the nodes expand. In the worst
case, we will need to expand nodes for all the entries until the last segment of the
bit strings is checked. The maximum number of levels is ((N − p)/p). This leads to a
complexity of O(n ∗ ((N − p)/p) where N is the length of the bit strings.

For the search of a value in our trie, the worst case is to search a value that is
inserted in a bucket which is at the (N − p)/p-th level. Thus, (N − p)/p) hops will
be needed to access the bucket and then we use binary search with complexity of
O(log(s)) where s is the maximum number of entries in a bucket. In conclusion, the
complexity of a search in the worst case is O((N − p)/p) +O(log(s))

15

3.4 POT Comparative advantages

In the next chapter, we experimentally compare our approach with the Adaptive
Radix Tree (ART) and the B-Tree. In comparison to the B-Tree, our approach has
the advantage of a fast iteration through the levels of the index without comparisons.
In other words, we can hop through our trie with a cost of O(1) per hop before we
find a leaf. For the same reason POT has an advantage in comparison to a simple
binary search because with this practice we replace multiple comparisions in a binary
search by a single hop with cost O(1).

ART is not optimal in datasets of strings due to skewness and data sparsity. There
are examples like a case where multiple entries with common prefixes have long paths
until the leaf nodes. In such cases, our approach can perform better by adding all
these entries in a bucket, minimizing the height of the path and use binary search
inside the bucket.

16

Chapter 4

Experimental Evaluation

In this section, we experimentally evaluate POT and compare its performance to
other trees. The evaluation has three parts: First, we check the performance of POT
while tuning our parameters. In the second part we compare the performance of our
approach to other indexing solutions and finally we evaluate the space consumption
of our data structure.

We used a system with an Intel Core i5 7200U CPU which has 2 cores, 4 threads,
2.5 GHz clock rate and 3.1 GHz turbo frequency. The system has 8 GB LPDDR3 1066
RAM. We used Linux Ubuntu 18.04 in 64 bit mode as operating system and GCC 7.4
as compiler.

Bitcoin dataset: Bitcoin is a cryptocurrency, invented in 2009 by Satoshi Nakamoto
[11]. His goal was to create a completely decentralized electronic cash system, which is
not controlled by any central server or authority. Currency owners exchange money
using anonymized (public) addresses. We extracted the history of Bitcoin payments
since 2014. More specifically, we obtain the information from February 2014 to
November 2014 1.

Simply speaking, each bitcoin transaction includes a timestamp with, one or more
inputs, and one or more outputs. When a user sends money to another user, he specifies
in an output the address of the recipient and the amount of money to be sent. For
the needs of experimental analysis, we used as data the binary representations of the
timestamps. The dataset consists of 45588785 entries.

1https://bitcoin.org/en/

17

Taxi dataset: We processed trips of yellow taxis in NYC in February 2018.2.
Each record includes the pick-up and drop-off taxi zones (regions) the date/time
of the pick-up and drop-off, and the number of passengers inside the taxi. The
data used, were collected and provided to the NYC Taxi and Limousine Commission
(TLC) by technology providers authorized under the Taxicab and Livery Passenger
Enhancement Programs (TPEP/LPEP). For the needs of our work, we used the binary
representations of the timestamps. The dataset consists of 8491370 entries.

Network dataset: The CTU-13 is a dataset of botnet traffic [10] that was captured
in the CTU University, Czech Republic, in 2011. The goal of the dataset was to have a
large capture of real botnet traffic mixed with normal traffic and background traffic.
The CTU-13 dataset consists in thirteen captures (called scenarios) of different bot-
net samples. On each scenario a specific malware was executed, which used several
protocols and performed different actions. Each scenario was captured in a pcap file
that contains all the packets of the three types of traffic. These pcap files were pro-
cessed to obtain other type of information, such as NetFlows, WebLogs, etc. The first
analysis of the CTU-13 dataset used unidirectional NetFlows to represent the traffic
and to assign the labels. For the needs of our work, we kept the DateTime data of
the dataset which we converted to binary representations. The dataset consists of
2824637 entries.

Figure 4.1 shows the data distributions of the datasets that we used to evaluate
our method, as histograms, where for each range of values, the total number of key
values in the range are shown.

2obtained from http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

18

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Range of Values 1e7

0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f E
nt

rie
s

Bitcoin dataset

0 500000 1000000 1500000 2000000 2500000
Range of Values

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f E
nt

rie
s

Taxi dataset

0.0 0.5 1.0 1.5 2.0
Range of Values 1e7

0

10000

20000

30000

40000

Nu
m

be
r o

f E
nt

rie
s

Network dataset

Figure 4.1: Our dataset distributions

In order to evaluate the performance of our approach we selected random samples
of each dataset which were used as query values. We also created for every dataset
a set of query values by adding subsets of the datasets along with query values that
are not indexed. In that way we checked the behaviour of POT even with values that
did not exist. Every query value set contains 10000 query values.

In Figure 4.2 we compare mean search times for a query value of different versions
of POT with different bucket sizes. We use as prefix length 4 bits in this experiment.
In every dataset that we used, the best search time was accomplished with bucket
size 100, so we conclude that the best search time is granted with a bucket size of
100 data entries.

19

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

2

4

6

8

10

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Bitcoin Dataset

Best Bucket Size (Prefix 4)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.5

1

1.5

2

2.5

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Taxi Dataset

Best Bucket Size (Prefix 4)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.5

1

1.5

2

2.5

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Network Dataset

Best Bucket Size (Prefix 4)

Figure 4.2: Best bucket size for Prefix 4

In Figure 4.3 we repeat the experiment using as prefix length 8 bits. We can see
that in the bitcoin dataset the best bucketsize is equal to 100 entries. Then for the
taxi dataset, the best performance is accomplished with a bucket size of 200, but
other bucket sizes have similar performance. In conclusion, in the network dataset
our method performs good with any bucket size, except the case of 2000 entries.

20

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0.0

0.2

0.4

0.6

0.8

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Bitcoin Dataset

Best Bucket Size (Prefix 8)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.001

0.002

0.003

0.004

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Taxi Dataset

Best Bucket Size (Prefix 8)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.025

0.05

0.075

0.1

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Network Dataset

Best Bucket Size (Prefix 8)

Figure 4.3: Best bucket size for Prefix 8

In Figure 4.4 we repeat the experiment using a prefix length of 16 bits. In the
bitcoin dataset we see again that the best bucket is size of 100 entries, in the taxi
dataset we see the same behaviour between bucket sizes of 100, 200 and 500. The
same also holds for the taxi dataset. In conclusion, the best bucket size in all cases is
around 100-200.

21

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0.0

0.2

0.4

0.6

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Bitcoin Dataset

Best Bucket Size (Prefix 16)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.0005

0.001

0.0015

0.002

0.0025

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Taxi Dataset

Best Bucket Size (Prefix 16)

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.0025

0.005

0.0075

0.01

0.0125

bucket size
100

bucket size
200

bucket size
500

bucket size
1000

bucket size
2000

bucket size
5000

Network Dataset

Best Bucket Size (Prefix 16)

Figure 4.4: Best bucket size for Prefix 16

We can conclude that there are bucket sizes (e.g., 100) that can be applied in
a general approach for every dataset. In the rest of the experiments, we set as the
bucket size in each case the best possible depending on the prefix length and the
dataset.

In Figure 4.5 we compare our different prefix sizes in order to conclude which one
is the best in terms of search performance. As we can see, in every dataset the best
search time is accomplished with a prefix size of 16. This is an outcome that we could
forsee because with prefixes of 16 bits we get a tree with very few levels (usually one
level). This means that we need only one hop in order to get to the indexed data.
In constrast, with smaller prefix sizes we get bigger trees in height so we need more
hops to get to the indexed data. On the other hand, a large prefix length leads to a
larger index, as we show in the experiment that we illustrate in Figure 4.8.

22

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.001

0.002

0.003

0.004

Prefix 4 Prefix 8 Prefix 16

Bitcoin Dataset

Best POT Without Binary Search

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.0001

0.0002

0.0003

0.0004

0.0005

Prefix 4 Prefix 8 Prefix 16

Taxi Dataset

Best POT Without Binary Search

M
ea

n
S

ea
rc

h
Ti

m
e

(m
s)

0

0.05

0.1

0.15

Prefix 4 Prefix 8 Prefix 16

Network Dataset

Best POT Without Binary Search

Figure 4.5: Best POT without Binary Search

The experimental results that are shown in Figures 4.6 and 4.7 compare POT to
other existing solutions for indexing. Specifically, we compare our methods with the
B-tree [12] and ART [4] .

Figure 4.6 compares the different implementations of POT, B-tree and ART. The
queries used for testing are random thus they may contain values that are not present
in the datasets. As we observe, our approach always performs better than ART and
its version is always better than the B-tree. The best performance is accomplished
with the POT approach without binary search which however is space-inefficient in
contrast with our other approaches.

In Figure 4.7 we illustrate an experiment between our approach, B-tree and ART.
The queries used for testing are randomly chosen between existing values in the
datasets. As we observe, there is always at least one of our approaches that per-
forms better than either the B-Tree and ART. As before, the best performance is
accomplished with the POT approach without binary search.

23

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

250

500

750

1000

POT 4 POT 8 POT 16 POT NBS BT ART

Bitcoin Dataset

E/NE Random Queries

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

250

500

750

1000

POT 4 POT 8 POT 16 POT NBS BT ART

Taxi Dataset

E/NE Random Queries

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

250

500

750

1000

POT 4 POT 8 POT 16 POT NBS BT ART

Network Dataset

E/NE Random Queries

Figure 4.6: Random existing and non existing queries

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

250

500

750

1000

POT 4 POT 8 POT 16 POT NBS BT ART

Bitcoin Dataset

Random Queries

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

25

50

75

100

POT 4 POT 8 POT 16 POT NBS BT ART

Taxi Dataset

Random Queries

M
ea

n
S

ea
rc

h
Ti

m
e

(μ
s)

0

200

400

600

POT 4 POT 8 POT 16 POT NBS BT ART

Network Dataset

Random Queries

Figure 4.7: Random existing queries

In the next experiment (Figure 4.8), we compare the memory consumption of POT

24

with the memory consumption of B-trees. It is reasonable to expect a bigger memory
consumption by POT as the prefix size rises, because the prefix size is equivalent to
the size that we need to reserve in every node for children nodes (2p) . Although the
memory consumption of POT is roughly less than the B-tree with p = 4 and exceeds
the memory consumption of the B-tree with p = 8. Then, with p = 16 the memory
consumption gets reasonably bigger as expected.

In conclusion,

si
ze

 (k
B

)

0

200

400

600

POT 4 POT 8 POT 16 BT

Bitcoin Dataset

Index Size in Memory

si
ze

 (k
B

)

0

200

400

600

POT 4 POT 8 POT 16 BT

Taxi Dataset

Index Size in Memory

si
ze

 (k
B

)

0

200

400

600

POT 4 POT 8 POT 16 BT

Network Dataset

Index Size in Memory

Figure 4.8: Memory size of trees

25

Chapter 5

Conclusions

5.1 Summary

5.2 Future Work

5.1 Summary

In this thesis, we introduced POT, a novel hybrid tree, combining bucketing with data
prefixes. To the best of our knowledge, we are the first to combine bucketing and data
prefixes in order to create a fast in-memory index. We tuned basic parameters of the
index, depending on the data size and distribution. We evaluated the performance of
the tree on two real and one synthetic dataset and compared the results with other
popular index structures. Our results indicated that our approach can perform much
better than existing techniques.

5.2 Future Work

As future work, we plan to experiment with alternative distributions of synthetic and
real networks and investigate in more depth the effect of data density and distribution
in the performance of POT. That will help us tune our parameters dynamic and our
tree can adapt by itself to the needs of the data that we plan to index. Also, we aim
at designing a variant of POT, which supports different prefix sizes at every level. In

26

addition, we will work in the direction of finding an efficient way to support online
inserts so that we can support dynamic data indexing. Finally, we will investigate the
design of POT-like index on spatial data.

To summarize, our goals for future work is:

• We aim at supporting dynamic updates (insertions,deletions) and concurrency
control.

• We plan to replace the static tuning of our parameters which are: the bucket
size and the prefix length. In order to accomplish that, we need to find a rule
of thumb that will apply by dynamic tuning approaches on the distributions of
the datasets.

• Last but not least, we also plan to expand our work in the territory of spatial
data.

27

Bibliography

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned
index structures,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD ’18, (New York, NY, USA), p. 489–504, Association for
Computing Machinery, 2018.

[2] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska, “Fiting-tree:
A data-aware index structure,” in Proceedings of the 2019 International Conference
on Management of Data, SIGMOD ’19, (New York, NY, USA), p. 1189–1206, As-
sociation for Computing Machinery, 2019.

[3] X. Wu, F. Ni, and S. Jiang, “Wormhole: A fast ordered index for in-memory data
management,” CoRR, vol. abs/1805.02200, 2018.

[4] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful index-
ing for main-memory databases,” in Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013), ICDE ’13, (USA), p. 38–49, IEEE
Computer Society, 2013.

[5] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore key-
value storage,” in Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, (New York, NY, USA), p. 183–196, Association for Com-
puting Machinery, 2012.

[6] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “Hot: A height optimized
trie index for main-memory database systems,” in Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD ’18, (New York, NY, USA),
p. 521–534, Association for Computing Machinery, 2018.

[7] N. Askitis and R. Sinha, “Hat-trie: A cache-conscious trie-based data structure
for strings,” in Proceedings of the Thirtieth Australasian Conference on Computer

28

Science - Volume 62, ACSC ’07, (AUS), p. 97–105, Australian Computer Society,
Inc., 2007.

[8] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, and P. Dubey, “Designing fast architecture-sensitive tree search on
modern multicore/many-core processors,” ACM Trans. Database Syst., vol. 36,
Dec. 2011.

[9] A. Hadian and T. Heinis, “Interpolation-friendly b-trees: Bridging the gap be-
tween algorithmic and learned indexes,” in EDBT, 2019.

[10] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods,” Comput. Secur., vol. 45, p. 100–123, Sept. 2014.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system
http://bitcoin.org/bitcoin.pdf,” 2007.

[12] D. Comer, “Ubiquitous b-tree,” ACM Comput. Surv., vol. 11, p. 121–137, June
1979.

29

Short Biography

George Christodoulou was born in Kos, Greece in 1993. George received his B.Sc.degree
from the CSE Department in 2017. At the same year, he became a MSc student M.Sc.
student at the Department of Computer Science and Engineering (CSE) of the Uni-
versity of Ioannina, Greece. His research interests revolve around data management
and Data Analytics (especially, time-series and network data).

	Table of Contents
	List of Figures
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Contributions
	Outline

	Related Work
	Pot Implementation
	POT Construction
	POT Search
	POT Construction and search complexity analysis
	POT Comparative advantages

	Experimental Evaluation
	Conclusions
	Summary
	Future Work

	Bibliography
	Short Biography

