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Abstract

Panagiotis Georgiou, Ph.D., Department of Computer Science and Engineering, Uni-
versity of Ioannina, Greece, October 2019.
System-On-Chip Testing.
Advisor: Chrysovalantis Kavousianos, Professor.

We already live in the era of Internet of Things. The common devices we use daily
are connected together and are getting ”smarter” rapidly. In every device belonging
in IoT, there is an SoC. In order to satisfy the continuous increased requirements of
the new era, SoCs are constantly evolving.

3D-ICs is a promising solution to satisfy the demands of the new era and seem to
secure the continuation of Moore’s Law for the near future. 3D-ICs achieve higher
packing density and higher performance than 2D-ICs and reduce the cost of wiring
and power consumption. Recently, the semiconductor companies released products
based on 3D-ICs.

This research focuses in the development of new TAM architectures and test-
scheduling methods for 3D-SoCs, which exploit the high speed offered by TSVs, while
power and thermal constraints are met. We introduce a new TAM architecture for 3D
SoCs, which minimizes the test-time, the number of TSVs, and TAM lines used for
transferring test-data to the cores. The test schedule is calculated by a very effective
TDM method, and a highly efficient optimization method based on rectangle-packing
and simulated-annealing. Experiments have shown that as much as 9.6× better test
time can be achieved using the proposed method, especially under strict power and
thermal constraints.

The previous method is compatible only with bus-based TAMs, which require
long interconnection wires and many buffers at each die of the stack, therefore they
fail to fully exploit the high frequencies of the global channels. In order to overcome

xiii



the limitations of the previous method, we propose a new TDM-based 3D TAM archi-
tecture, which uses daisy-chains and offers higher test-time benefits and significantly
lower interconnection overhead.
This research also focuses in the improvement of the defect screening of processor-

based devices. The continually increasing demands of the market for higher com-
putational performance at lower cost and power consumption drive processor ven-
dors to develop new microprocessor generations, which introduce new challenges
on processor-based device testing. The need to test the processor-based devices at
the normal mode of operation, impose the complementary use of non-intrusive test
methods, such as SBST.
Most SBST techniques often target only the stuck-at fault model, which is in-

adequate for detecting many defects. SBST methods also require extensive human
intervention and long development times. Moreover, they involve the CPU-intensive
process of fault-simulating multi-million gate designs for multi-million clock cycles
using multiple fault models and specialized functional (non-scan) simulators.
We introduce the first fault-independent SBST method, which offers short test-

program generation time under strict test-application-time and test-program-size con-
straints. The test-programs are evaluated by means of a novel and very effective
SBST-oriented probabilistic metric, which considers both the architectural model and
the synthesized gate-level netlist of the DUT. The proposed metric, which is based
on output deviations, can be calculated very quickly as it omits the time-consuming
functional fault-simulation, and it can be applied to any SBST-based method.

xiv



Ε Π

Παναγιώτης Γεωργίου, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστή-
μιο Ιωαννίνων, Οκτώβριος 2019.
Έλεγχος Ορθής Λειτουργίας Ολοκληρωμένων Συστημάτων.
Επιβλέπων: Χρυσοβαλάντης Καβουσιανός, Καθηγητής.

Διανύουμε ήδη την εποχή του ”Ίντερνετ των Πραγμάτων”. Οι κοινές συσκευές που
χρησιμοποιούμε καθημερινά, συνδέονται μεταξύ τους και γίνονται ”εξυπνότερες” με
ραγδαίους ρυθμούς. Σε κάθε τέτοια συσκευή βρίσκεται ένα Σύστημα σε Ολοκληρω-
μένο (Systems-On-Chip ή SoC). Το SoC εξελίσσεται συνεχώς, για να ικανοποιηθούν
οι συνεχώς αυξανόμενες απαιτήσεις της νέας εποχής.
Τα τρι-διάστατα ολοκληρωμένα κυκλώματα (three-dimensional integrated cir-

cuits - 3D-ICs) είναι μια υποσχόμενη λύση για να ικανοποιήσουν τις απαιτήσεις τις
νέας εποχής και φαίνεται να εξασφαλίζουν τη συνέχιση του Νόμου του Moore στο
άμεσο μέλλον. Τα 3D-ICs πετυχαίνουν υψηλότερη πυκνότητα πυλών και καλύτερη
απόδοση από τα συμβατικά SoC και μειώνουν το κόστος διασύνδεσης και κατα-
νάλωσης. Πρόσφατα, οι κατασκευαστικές εταιρείες ολοκληρωμένων συστημάτων
κυκλοφόρησαν προϊόντα βασισμένα σε 3D-ICs.
Η έρευνα αυτή εστιάζει στην ανάπτυξη νέων αρχιτεκτονικών μηχανισμού πρό-

σβασης ελέγχου (Test Access Mechanisms - TAMs) και νέων μεθόδων χρονοπρογραμ-
ματισμού ελέγχου ορθής λειτουργίας για 3D-SoCs, οι οποίες εκμεταλλεύονται την
υψηλή ταχύτητα που προσφέρουν οι ειδικές κάθετες διασυνδέσεις μέσω-πυριτίου
(Through Silicon Vias - TSVs), ενώ η κατανάλωση ισχύος και η θερμότητα πρέπει
να διατηρηθούν κάτω από ορισμένα επίπεδα. Εισάγουμε μία νέα αρχιτεκτονική
TAM για 3D SoCs, η οποία ελαχιστοποιεί το χρόνο ελέγχου ορθής λειτουργίας, το
πλήθος των TSVs και τις γραμμές της αρχιτεκτονικής TAM που χρησιμοποιούνται
για να μεταφερθούν τα δεδομένα ελέγχου. Ο χρονοπρογραμματισμός του ελέγχου
ορθής λειτουργίας υπολογίζεται από μία αποδοτική μέθοδο χρονικής πολυπλεξίας
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και μία πολύ αποδοτική μέθοδο βελτιστοποίησης που βασίζεται στους αλγορίθ-
μους rectangle-packing και simulated-annealing. Πειραματικά αποτελέσματα δεί-
χνουν έως και 9.6 φορές εξοικονόμηση στο χρόνο ελέγχου με την προτεινόμενη
μέθοδο, ειδικά κάτω από αυστηρά όρια για την κατανάλωση ισχύος και τη θερμό-
τητα.

Η προηγούμενη μέθοδος είναι συμβατή μόνο με TAMs που βασίζονται σε αρτη-
ρίες (buses), οι οποίες απαιτούν διασυνδέσεις μεγάλου μήκους και πολλά buffers σε
κάθε επίπεδο του 3D-IC, επομένως δεν καταφέρνουν να εκμεταλλευτούν πλήρως τις
υψηλές συχνότητες των TSVs. Προτείνουμε μία νέα αρχιτεκτονική TAM βασισμένη
στη χρονική πολυπλεξία, που χρησιμοποιεί σειριακές αλυσίδες (daisy-chains) για
να ξεπεράσουμε τους περιορισμούς της προηγούμενης μεθόδου. Η μέθοδος αυτή
προσφέρει μεγαλύτερα κέρδη όσον αφορά το χρόνο ελέγχου ορθής λειτουργίας και
το κόστος διασύνδεσης.

Η έρευνα αυτή εστιάζει στη βελτίωση ανίχνευσης σφαλμάτων συσκευών βασι-
ζόμενων σε επεξεργαστή. Οι ολοένα αυξανόμενες απαιτήσεις της αγοράς για υψη-
λότερη υπολογιστική απόδοση σε μικρότερο κόστος και χαμηλότερη κατανάλωση
ισχύος, οδηγεί τους κατασκευαστές στην ανάπτυξη νέων μικροεπεξεργαστών, που
εισάγουν νέες προκλήσεις στον έλεγχο συσκευών βασιζόμενων σε επεξεργαστή. Η
ανάγκη ελέγχου των συσκευών αυτών κατά τη διάρκεια της κανονικής τους λειτουρ-
γίας, επιβάλλουν τη συμπληρωματική χρήση μεθόδων ελέγχου που δεν επηρεάζουν
τη λειτουργία, όπως ο «αυτοέλεγχος βασισμένος σε λογισμικό» (Software-Based
Self-Test - SBST).

Οι περισσότερες τεχνικές SBST στοχεύουν μόνο το μοντέλο σφαλμάτων stuck-
at, που δεν αρκεί για την ανίχνευση πολλών σφαλμάτων. Επίσης, οι τεχνικές SBST
απαιτούν εκτενή ανθρώπινη ενασχόληση με μεγάλους χρόνους ανάπτυξης των προ-
γραμμάτων ελέγχου. Επιπλέον, περιλαμβάνουν την κοστοβόρα, από άποψη υπολο-
γιστική ισχύος, εξομοίωση σφαλμάτων SoCs με εκατομμύρια πύλες για εκατομμύρια
κύκλους ρολογιού, χρησιμοποιώντας πολλαπλά μοντέλα σφαλμάτων και εξειδικευ-
μένους λειτουργικούς εξομοιωτές.

Εισάγουμε την πρώτη μέθοδο που δεν μεροληπτεί υπέρ κάποιου συγκεκριμέ-
νου μοντέλου σφαλμάτων. Η μέθοδος αυτή προσφέρει σύντομο χρόνο δημιουργίας
προγραμμάτων ελέγχου, υπό αυστηρό περιορισμό στο χρόνο ελέγχου ορθής λει-
τουργίας και στο μέγεθος των προγραμμάτων ελέγχου. Τα προγράμματα ελέγχου
αξιολογούνται από μία νέα αποδοτική πιθανοτική μέθοδο SBST, εκμεταλλευόμενη
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την αρχιτεκτονική του επεξεργαστή, καθώς και τη netlist του επεξεργαστή σε επί-
πεδο πυλών που έχει προκύψει από σύνθεση. Η προτεινόμενη μετρική που βασίζεται
στα output deviations είναι πολύ γρήγορη καθώς δεν απαιτεί τη χρονοβόρα διαδικα-
σία της εξομοίωσης σφαλμάτων και μπορεί να εφαρμοστεί σε οποιαδήποτε μέθοδο
που βασίζεται στην τεχνική SBST.
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Chapter 1

Introduction

1.1 System On Chip

1.2 VLSI Testing

1.3 SoC Testing

1.4 Software-Based Self-Testing

1.5 3D-SoCs

1.6 Thesis Organization

1.1 System On Chip

The vision of Internet of Things (IoT) promises billions of devices equipped with
processing, memory and Internet connection abilities. Nowadays, this vision is be-
ing realized, as many common objects that people use are getting ”smarter”. IoT
applies on various aspects of life, like housekeeping, transportation, medical health,
agriculture, energy management etc. In Figure 1.1 IoT is presented as a Network of
Networks.
The heart of every device belonging in IoT is a System on Chip (SoC). The viability

of IoT depends on simple SoCs that need to be inexpensive and able to operate under
strict performance, power and area constraints.
An SoC is more of a system, rather than a chip, as it integrates all components into

a single chip. An SoC may consist of processor cores (including DSPs, microprocessors,
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Figure 1.1: IoT as a network of networks [1].

Figure 1.2: ARM based SoC architecture [2].

micro-controllers), on-chip interconnection, Intellectual Property (IP) cores (on-chip
memory, peripherals, power management etc.), application specific hardware modules,
analog circuits, ASICs logics, firmware, software. In Figure 1.2 an Advanced-RISC-
Machines-(ARM)-based-SoC architecture is presented.

The complexity of SoC design is high, because of the communications between
its different components. In SoC design, the density integration is high, in order to
include many different components in small size. As the number of different com-
ponents increases, there is the need to maintain the power low. Also, verification is
necessary at different levels. All these aspects of SoC design are taken into account
accompanied with the high time-to-market pressure.

The power consumption of a device is composed by the dynamic power con-
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sumption PD created by the switching activity and the static power consumption PL,
created by the leakage currents. Therefore, total power consumption is:

Ptotal = PD + PL (1.1)

In traditional systems, the dynamic power consumption is the most important
component of power consumption, but lately, the static power has become signifi-
cant due to the deep sub-micron process technology. The heat produced during the
operation of a circuit is proportional to the dissipated power. Therefore, there is a re-
lationship between die temperature and power dissipation, which can be formulated
by the laws of thermodynamics as follows [19]:

Tdie = Tair + θ × PD, (1.2)

where Tdie is the die temperature, Tair is the surrounding air temperature, θ is the
package thermal impedance, and PD is the average power dissipated by the circuit. It
is clear that if the dissipated power is increased, the circuit temperature will be high.
If the temperature becomes too high even for a short period, it may cause irreversible
structural degradations, called hot spots, or affect circuit’s performance and ageing.

1.2 VLSI Testing

1.2.1 Why Testing?

The stage of testing very-large-scale integration (VLSI) circuits is one of the most
important part of their production line. The scale of integrated circuits (ICs) doubles
every 18 months according to the famous Moore’s law. The constant decrease of
the transistor dimensions allows the packing of a huge amount of transistors in a
single IC as well as increased operating frequencies. Given these, it is clear that the
probability of a defect in the IC increases and, therefore, the semiconductor industry
dedicates a lot of effort in order to avoid faulty chips.
There are two main causes of digital circuit malfunction, manufacturing defects

and soft errors. In order to produce an electronic system, we must produce ICs,
then assemble the ICs into printed circuit boards (PCBs), and finally use the PCBs
to assemble the system. It is necessary to test components at every stage of the
manufacturing process. Manufacturing defects are physical defects that may happen
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Figure 1.3: Basic testing approach [3].

at any step of the manufacturing process and may result in static or timing faults.
The general rule of ten, declares that the cost of detecting a faulty device increases
by an order of magnitude as we move through each stage of manufacturing [3]. The
production of faulty ICs is inevitable, therefore testing is useful to improve production
yield by analyzing the cause of defects when faults are encountered. Environmental
conditions, such as α - particle radiation, may cause a fault-free circuit to malfunction
during operation [20]. This situation is defined as a transient fault, resulting in a soft
error. Unfortunately, transient faults cannot be detected in the manufacturing process,
as they are not repeatable.

1.2.2 The Basics

A typical test procedure consists of applying a set of test stimuli to the inputs of
the circuit under test (CUT), while analyzing the output responses, as it is illustrated
in Figure 1.3 [3]. The circuits that produce the expected output responses for all
input stimuli pass successfully the test and are considered fault-free, otherwise are
considered faulty.

In Figure 1.4, the VLSI development process is illustrated. The first step is to
specify the design specifications for the VLSI circuit. Afterwards, the synthesis of
the circuit that satisfies the specifications and the design verification follows. The
verification stage is necessary to ensure that the synthesized design will perform the
required functions that are described in the specifications. If a design error is found,
then the design is modified and the verification is repeated.

After successful verification, the VLSI design goes to fabrication. The testing per-
formed during the manufacturing process tests the fabricated ICs on the wafer in
order to determine which devices are defective. A defect is a flaw or physical imper-
fection that may lead to a fault.

All the chips that pass wafer-level testing are packaged. The packaged devices are
once again tested in order to detect any devices that have been damaged during the
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Figure 1.4: VLSI development process.

packaging process or put into defective packages.
Finally, another test procedure follows including the measurements of various

parameters like input/output, timing, specifications, voltage and current. In this way,
the final quality is assured before going to market.
Additionally, burn-in or stress testing is often performed where chips are subjected

to high temperatures and supply voltage. The purpose of burn-in testing is to accel-
erate the effect of defects that could lead to failures in the early stages of operation
of the IC.

1.2.3 The Standards

Some percentage of the manufactured ICs is expected to be faulty due to manufac-
turing defects. The yield of a manufacturing process is defined as the percentage of
acceptable parts among all parts that are fabricated (# stands for Number):

Y ield =
# of acceptable parts

Total # of parts fabricated
(1.3)

There are two types of yield loss: catastrophic and parametric. Catastrophic yield
loss is due to random defects, and parametric yield loss is due to process variations.
When ICs are tested, the following two undesirable situations may occur:

• A faulty chip may pass the test.
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• A good chip may fail the test and appear as faulty.

These two outcomes are often due to a poorly designed test or the lack of design
for testability (DFT).

The ratio of field-rejected parts to all parts passing quality assurance testing is
referred to as reject rate or defect level:

Reject rate =
# of faulty parts passing final test

Total # of parts passing final test
(1.4)

It is clear that the reject rate provides an indication of the overall quality of the
VLSI testing process [21]. Generally speaking, a reject rate of 500 parts per million
(PPM) chips may be considered to be acceptable, while 100PPM or lower represents
high quality.

As it is already mentioned, to test a circuit, a set of input patterns is applied to
the CUT, and its responses are compared to the known good responses of a fault-free
circuit. Each input pattern is called a test vector. We can use exhaustive approach in
order to completely test a circuit, by applying all possible input patterns for testing. If
a circuit passes exhaustive testing, we might assume that the circuit does not contain
functional faults, regardless of its internal structure. Furthermore, this example of
applying all possible input test patterns also illustrates the basic idea of functional
testing, where every entry in the truth table for the combinational logic circuit is
tested to determine whether it produces the correct response. However, exhaustive
and functional testing, are not practical for large circuits. In addition, they lack of a
quantitative measure of the defects that will be detected by the set of functional test
vectors.

Structural testing is an efficient approach, where specific test patterns are selected
based on the structural information of the circuit and a set of fault models. Using
this approach, time is saved and test efficiency is improved. The total number of test
patterns is decreased, because the test vectors target specific faults that would result
from defects in the manufactured circuit. Structural testing cannot guarantee detection
of all possible manufacturing defects, as the test vectors are generated based on specific
fault models. However, the use of fault models provides a quantitative measure of
the fault-detection capabilities of a given set of test vectors for a targeted fault model.
This measure is called fault coverage and is defined as:
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Fault coverage =
# of detected faults

Total # of faults
(1.5)

It may be impossible to obtain 100% fault coverage because of the existence of
undetectable faults. An undetectable fault means there is no test to distinguish the
fault-free circuit from a faulty circuit containing that fault. As a result, the fault
coverage can be modified and expressed as the fault detection efficiency, also referred
to as the effective fault coverage, which is defined as:

Fault detection efficiency =
# of detected faults

Total # of faults− # of undetectable faults
(1.6)

Fault coverage is linked to the yield and the defect level by the following expression
[22]:

Reject rate = 1− yield(1−fault coverage) (1.7)

Overall, the goal of test generation is to find an efficient set of test vectors that will
succeed the maximum fault coverage. The later is evaluated using fault simulation,
which in turn requires fault models to emulate behavior of defects. As a result, fault
models are needed for fault simulation as well as for test generation.

1.2.4 Fault Models

In general, a good fault model should satisfy two criteria [23]:

• It should accurately reflect the behavior of defects.

• It should be computationally efficient in terms of the time required for fault
simulation and test pattern generation.

For a given fault model there will be k different types of faults that can occur
at each potential fault site (k = 2 for most fault models). A given circuit contains n
possible fault sites, depending on the fault model. Assuming that there can be only
one fault in the circuit, then the total number of possible single faults, referred to as
the single-fault model or single-fault assumption, is given by:

# of single faults = k × n (1.8)

7



In reality, of course, multiple faults may occur in the circuit. The total number of
possible combinations of multiple faults, referred to as the multiple-fault model, is
given by:

# of multiple faults = (k + 1)n − 1 (1.9)

While the multiple-fault model is more accurate than the single-fault assump-
tion, the number of possible faults becomes impractically large. In addition, it has
been shown that high fault coverage obtained under the single-fault assumption will
result in high fault coverage for the multiple-fault model; therefore, the single-fault
assumption is typically used for test generation and evaluation. However, it should be
noted that no single fault model accurately reflects the behavior of all possible defects
that can occur. As a result, a combination of different fault models is often used in
the generation and evaluation of test vectors and testing approaches developed for
VLSI devices.
In the single-fault model, equivalent faults may happen, when two or more faults

result in identical faulty behavior for all possible input patterns. These faults can
be represented by any single fault from the set of equivalent faults. Therefore, we
may consider much less single faults than k × n for test generation. This reduction
of the entire set of single faults by removing equivalent faults is referred to as fault
collapsing. Fault collapsing reduces both test generation and fault simulation times.
A stuck-at fault affects the state of logic signals on lines in a logic circuit. It

transforms the correct value on the faulty signal line to appear to be stuck at a
constant logic value, either a logic 0 or a logic 1, referred to as stuck-at-0 (SAO) or
stuck-at-1 (SAl), respectively. Consider the example in Figure 1.5 [3]. There are 18

(2 × 9) possible faulty circuits under the single-fault assumption. Table 1.1 [3] gives
the truth table for the fault-free circuit and the faulty circuits for all possible single
stuck-at faults. It should be noted that, rather than a direct short to a logic 0 or logic
1 value, the stuck-at fault is emulated by disconnection of the source for the signal
and connection to a constant logic 0 or 1 value. The truth table entries where the
faulty circuit produces an output response different from that of the fault-free circuit
are highlighted in gray. As a result, the input values for the highlighted truth table
entries represent valid test vectors to detect the associated stuck-at faults. With the
exception of line d SAl, line e SAO, and line f SAl, all other faults can be detected
with two or more test vectors; therefore, test vectors 011 and 100 must be included in
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Figure 1.5: Example circuit [3].

any set of test vectors that will obtain 100% fault coverage for this circuit. These two
test vectors detect a total of ten faults, and the remaining eight faults can be detected
with test vectors 001 and 110. Therefore, this set of four test vectors obtains 100%
single stuck-at fault coverage for this circuit.
Four sets of equivalent faults can be observed in Table 1.1. One fault from each

set can be used to represent all of the equivalent faults in that set. Because there is a
total of ten unique faulty responses to the complete set of input test patterns, then ten
faults constitute the set of collapsed faults for the circuit. Fault collapsing typically
reduces number of stuck-at faults by 50% - 60%.
Defects in VLSI devices can include opens and shorts in the wires that interconnect

the transistors in a circuit. Opens in wires interconnecting transistors to form gates
behave like transistor stuck-open faults. Opens in wires interconnecting gates to form
circuit behave like stuck-at faults. Therefore, a set of test vectors that provide high
stuck-at fault coverage and high transistor fault coverage will also detect open faults.
It should be noted that resistive opens do not behave the same as a transistor or
stuck-at fault but instead affect the propagation delay of the signal path. A short
between two wires is known as a bridging fault. There are various bridging fault
models as shown in Figure 1.6 [3].
In the first bridging fault model proposed, the logic value of the shorted nets

was modeled as a logical AND or OR of the logic values on the shorted wires. This
model is referred to as the wired-AND/wired-OR bridging fault model. The wired-
AND/wired-OR bridging fault model was originally developed for bipolar VLSI and
does not accurately reflect the behavior of bridging faults typically found in CMOS
devices. Therefore, the dominant bridging fault model was proposed for CMOS VLSI
where one driver is assumed to dominate the logic value on the two shorted nets.
The dominant bridging fault model does not accurately reflect the behavior of a
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Table 1.1: Truth table for fault-free and faulty circuits of Figure 1.5 [3].

x1x2x3 000 001 010 011 100 101 110 111
y 0 1 0 0 0 1 1 1

a SA0 0 1 0 0 0 1 0 0
a SA1 0 1 1 1 0 1 1 1
b SA0 0 1 0 1 0 1 0 1
b SA1 0 0 0 0 1 1 1 1
c SA0 0 0 0 0 0 0 1 1
c SA1 1 1 0 0 1 1 1 1
d SA0 0 1 0 0 0 1 0 0
d SA1 0 1 0 0 1 1 1 1
e SA0 0 1 0 1 0 1 1 1
e SA1 0 0 0 0 0 0 1 1
f SA0 0 0 0 0 0 0 1 1
f SA1 0 1 0 1 0 1 1 1
g SA0 0 1 0 0 0 1 0 0
g SA1 1 1 1 1 1 1 1 1
h SA0 0 0 0 0 0 0 1 1
h SA1 1 1 1 1 1 1 1 1
i SA0 0 0 0 0 0 0 0 0
i SA1 1 1 1 1 1 1 1 1
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Figure 1.6: Bridging fault models [3].

resistive short in some cases. Thus, a new bridging fault model has been proposed,
referred to as the dominant-AND/dominant-OR bridging fault. In this case, one driver
dominates the logic value of the shorted nets but only for a given logic value. While
there are four fault types to evaluate for this fault model, as opposed to only two for
the dominant and wired-AND/wired-OR models, a set of test vectors that detect all
four dominant-AND/dominant-OR bridging faults will also detect all dominant and
wired-AND/wired-OR bridging faults at that fault site.

At the switch level, a transistor can be stuck-open or stuck-short, also referred to
as stuck-off or stuck-on, respectively. Consider the two-input CMOS NOR gate shown
in Figure 1.7 [3] and suppose that transistor N2 is stuck-open. When the input vector
AB = 01 is applied, output Z should be a logic 0, but the stuck-open fault causes Z
to be isolated from ground V ss. Because transistors P2 and N1 are not conducting at
this time, Z keeps its previous state, either a logic 0 or 1. In order to detect this fault,
an ordered sequence of two test vectors AB = 00→ 01 is required. For the fault-free
circuit, the input 00 produces Z = 1 and 01 produces Z = 0.

But, for the faulty circuit, while the test vector 00 produces Z = 1, the subsequent
test vector 01 will retain Z = 1. Thus, a stuck-open fault requires a sequence of two
vectors for detection rather than a single test vector for a stuck-at fault. Stuck-short
faults, on the other hand, will produce a conducting path between VDD and VSS . For
example, if transistor N2 is stuck-short, there will be a conducting path between VDD

and VSS for the test vector 00. This creates a voltage divider at the output node Z
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Figure 1.7: 2-input CMOS NOR gate [3].

Table 1.2: Truth table for fault-free and faulty circuits of Figure 1.7 [3].

AB 00 01 10 11

Z 1 0 0 0
N1 stuck-open 1 0 Last Z 0
N1 stuck-short IDDQ 0 0 0
N2 stuck-open 1 Last Z 0 0
N2 stuck-short IDDQ 0 0 0
P1 stuck-open Last Z 0 0 0
P1 stuck-short 1 0 IDDQ 0
P2 stuck-open Last Z 0 0 0
P2 stuck-short 1 IDDQ 0 0

where the logic level voltage will be a function of the resistances of the conducting
transistors. This voltage may or may not be interpreted as an incorrect logic level
to the output node Z. However, stuck-short transistor faults may be detected by
monitoring the power supply current during steady state, referred to as IDDQ. This
technique of monitoring the steady-state power supply current to detect transistor
stuck-short faults is referred to as IDDQ testing.

The fault equivalence associated with the transistors can be seen in table in Table
1.2 [3], which gives the behavior of the fault-free circuit and each of the 8 possible
faulty circuits under the single-fault model. Note that table entries labeled ”last Z”
indicate that the output node will retain its previous value and would require a two-
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Figure 1.8: Path-delay fault test [3].

test vector sequence for detection. Similarly, entries labeled IDDQ indicate steady-state
power supply current monitoring. Because both N1 and N2 stuck-short faults as well
as P1 and P2 stuck-open faults can be tested by the same test set, the collapsed fault
count is 6. Fault collapsing typically reduces number of transistor faults by 25% to
35%.

Fault-free operation of a logic circuit requires not only correct logic function but
also propagation of a signal along a given path in specific time limit. In case of
excessive delay, a delay fault should be considered. There are different delay fault
models. In the gate-delay and the transition-delay fault models, a delay fault occurs
when the time interval taken for a transition from the gate input to its output exceeds
its specified range. The other model is the path-delay fault model, which considers
the cumulative propagation delay along a signal path through the CUT. The path
delay comprises from the sum of all gate delays along the path. Thus, the path-delay
fault model seems to be more practical for testing than the gate-delay fault or the
transition fault model. A critical problem encountered when dealing with path-delay
faults is the large number of possible paths in practical circuits. As with transistor
stuck-open faults, delay faults require an ordered pair of test vectors to sensitize a
path through the logic circuit and to create a transition along that path in order to
measure the path delay.

For example, consider the circuit in Figure 1.8 [3]. The two test vectors, V1 and
V2 , shown in the figure are used to test the path delay from input x2 . Assuming the
transition between the two test vectors occurs at time t = 0, the resulting transition
propagates to the output y, through the circuit with the fault-free delays at time t = 7.
A delay fault along this path would create a transition at some later time, t > 7. Note
that such a measurement could require a high-speed, high-precision test machine.
With decreasing feature sizes and increasing signal speeds, the problem of modeling
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gate delays becomes more difficult. When the deep submicron technologies are used,
the portion of delay contributed by gates reduces while the delay due to interconnect
becomes dominant. In addition, if the operating frequencies also increase with scaling,
then the on-chip inductances can play a role in determining the interconnect delay
for long wide wires, such as those in clock trees and buses.
The use of nanometer technologies increases cross-coupling capacitance and in-

ductance between interconnects, leading to severe crosstalk effects that may result in
improper functioning of a chip. Crosstalk effects can be separated into two categories:

• Crosstalk glitch is a pulse that is provoked by coupling effects among intercon-
nect lines.

• Crosstalk delay is a signal delay that is provoked by the same coupling ef-
fects among interconnect lines, but it may be produced even if line drivers are
balanced but have large loads.

These fault models target high density RAMs. A pattern sensitivity fault means
that the content of a memory cell is affected by contents of neighboring cells. A
coupling fault results when a transition in one cell causes the content of another cell
to change. It is necessary when testing memories to add tests for pattern sensitivity
and coupling faults in addition to other fault models.
The improvement of fault coverage for structural tests can improve the yield, but

there are still practical limits that do not allow a process completely without defects.
Even if we could test against all known fault models, there would be still defects.
The set of these remaining defects are called non-modeled defects.

1.2.5 Design for Testability

Automatic test equipment (ATE) is a computer-controlled equipment used in Wafer
level, Package level and PCBs. Test patterns are applied to the CUT and the output
responses are compared to stored responses for the fault-free circuit.
Automatic Test Pattern Generation (ATPG) refers to algorithms able to generate a

sequence of test vectors for a given circuit based on specific fault models. A common
approach, adopted by many ATPG tools, is to start from a random set of test patterns.
Fault simulation then determines how many of the potential faults are detected.
With the fault simulation results used as guidance, additional vectors are generated
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Figure 1.9: Ad hoc DFT test points using multiplexers [3].

for hard-to-detect faults to obtain the desired or reasonable fault coverage. Fault
simulation time can be proved significant, due to large number of faults to emulate.
However, it can be reduced by implementing parallel, deductive, and concurrent fault
simulation.
When testing is considered early in the design flow, then the resulting design is

called ”Design for Testability (DFT)”. It helps to approach those parts of a digital
circuit that will be most difficult to test and assists in test pattern generation for fault
detection. DFT improves the controllability and/or observability of internal nodes of
a chip or PCB. DFT techniques fall into one of the following three categories:

• Ad hoc DFT techniques.

• Scan design techniques.

• Built-in self-test (BIST).

The goal of Ad hoc DFT techniques is to target only those portions of the circuit
that would be difficult to test and to add circuitry to improve the controllability and/or
observability. Ad hoc techniques typically use test point insertion to access internal
nodes directly. An example of a test point is a multiplexer inserted to control or
observe an internal node, as illustrated in Figure 1.9 [3].
In a flip-flop-based scan design, testability is improved by adding extra logic to

each flip-flop in the circuit to form a shift register, or scan chain, as illustrated in
Figure 1.10 [3]. During the scan mode, the scan chain is used to scan in a test vector
to be applied to the combinational logic. During one clock cycle in the system mode
of operation, the test vector is applied to the combinational logic and the output
responses are clocked into the flip-flops. The scan chain is then used in the scan
mode to shift out the combinational logic output response to the test vector, while
shifting in the next test vector to be applied.
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Figure 1.10: Transforming a sequential circuit for scan design [3].

Figure 1.11: Basic BIST architecture [3].

Built-in self-test integrates a test-pattern generator (TPG) and an output response
analyzer (ORA) in the VLSI device to perform testing internal to the IC, as shown in
Figure 1.11 [3]. Since the test circuitry has been incorporated into the CUT, BIST can
be used at all levels of testing, from wafer through system-level testing.

1.3 SoC Testing

1.3.1 The Basics

As the technology improves and the transistors are becoming constantly smaller,
many new nanotechnologies and circuit design techniques are developed and adopted,
which introduce new test challenges. These challenges are composed of a full spec-
trum of test technology trends crucial for nanometer designs, such as:

• Developing new DFT.

• Developing Design for Manufacturability (DFM) methods for digital and analog
circuits, Microelectromechanical Systems (MEMS) and sensors.

• Developing the means to reduce manufacturing test costs.
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• Enhance device reliability and yield.

• Developing techniques to facilitate defect and failure analysis.

The design of SoCs permits to apply modular testing on them. Test time is reduced
and the power consumption is controlled, as the cores of the SoCs are only activated
during their test. The test designer has the ability to plan the test order of the cores,
in order to meet the test time and power constraints. Each embedded core in an SoC
must be transformed to a testable unit, by using a core test wrapper. The wrapper
isolates the core so that it can act as a stand-alone test unit and defines the interface
between the core and the TAM, so that test access can be efficient.

The SoC industry mainly uses the core test wrapper described by IEEE 1500
Standard for Embedded Core Test (SECT) [24]. IEEE 1500 Standard is similar to
1149.1 [25], but it also provides parallel access capability for a core. As a result, test
time for an SoC can be improved. Additionally, in contrast to 1149.1, where control
signals are mainly generated by a finite state machine that is controlled by a single
input, the 1500 Standard allows the direct application of the control signals directly
to a core, thus providing more test flexibility.

The testable units (wrapped cores) in an SoC do not have direct access to SoC pins.
In order to transport test data (test vectors) and test responses, to and from embedded
cores, TAMs are necessary (Figure 1.14). Typically, the TAM resources are shared
among different cores, in order to reduce the DFT structures cost. TAM resources
sharing may lead to test conflicts, which are resolved by using TAM optimization and
test scheduling techniques. The scan chains at each wrapper core are formed into
wrapper chains, and given the test vectors, each wrapper core is associated with a
test time. The objective of test scheduling is to maintain the overall test time as low
as possible.

1.3.2 Test Wrapper

Cores can be deeply or hierarchically embedded in the SoC requiring a TAM for each
core [4]. The diversity of the cores, provided by different vendors, results to different
types of tests and test requirements. In the case of intellectual property (IP) cores,
there may be little, if any, detailed information about the internal structure of the
core. As a result, boundary scan alone does not provide a complete solution to the
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Figure 1.12: Overall architecture of a system per the IEEE 1500 standard [4].

problem of testing the cores in an SoC. Therefore, the IEEE 1500 standard [24] was
introduced to address the problems associated with testing SoCs.

The architecture of an SoC with N cores, each one wrapped by an IEEE 1500
wrapper, is shown in Figure 1.12, and the structure of a 1500 wrapped core is pre-
sented in Figure 1.13. The wrapper serial port (WSP) is a set of I/O terminals of the
wrapper for serial operations, which consists of the wrapper serial input (WSI), the
wrapper serial output (WSO), and several wrapper serial control (WSC) terminals.
Each wrapper has a wrapper instruction register (WIR) to store the instruction to be
executed in the corresponding core, which also controls operations in the wrapper
including accessing the wrapper boundary register (WBR), the wrapper bypass reg-
ister (WBY), or other user-defined function registers. The WBR consists of wrapper
boundary cells (WBCs) that can be as simple as a single storage element (flip-flop for
observation only) or a complex cell with multiple storage elements on its shift path.
The WSP supports the serial test mode (TM) similar to that in the boundary-scan
architecture, but without using a Test Access Port (TAP) controller. In addition to the
serial TM, the IEEE 1500 standard also provides an optional parallel TM with a user-
defined, parallel TAM. Each core can have its own Wrapper Parallel Input (WPI),
Wrapper Parallel Output (WPO), and Wrapper Parallel Control (WPC) signals.
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Figure 1.13: A core with the IEEE 1500 wrapper [4].

1.3.3 Test Access Mechanism

The testable units (wrapped cores) in an SoC do not have direct access to SoC pins. In
order to transport test data (test vectors) and test responses, to and from embedded
cores, TAMs are necessary. In Figure 1.14 are presented the basic types of TAMs. In
the multiplexing and daisy-chain architectures, all cores get access to the total available
TAM width, while in the distribution architecture, the total available TAM width is
distributed over the cores. In the multiplexing architecture, only one core wrapper
can be accessed at a time, resulting to only serial schedules. In the multiplexing
architecture it is also hard to test the circuitry and wiring in between cores, as the
interconnect test requires simultaneous access to multiple wrappers. On the other
hand, daisy-chain and distribution TAMs allow both serial and parallel test schedules,
and they also support interconnect testing.

The test bus architecture [26] (Figure 1.15) is a combination of the multiplexing
and distribution architectures. A single test bus is the same as what is described by
the multiplexing architecture, where cores connected to the same test bus can only be
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Figure 1.14: The (a) multiplexing, (b) daisy-chain, and (c) distribution architectures
[5].

Figure 1.15: Test bus architecture [4].

tested sequentially. The test bus architecture allows for multiple test buses on one SoC
that operate independently, as in the distribution architecture. Cores connected to the
same test bus suffer from the same drawback as in the multiplexing architecture (their
wrappers cannot be accessed simultaneously) making core-external testing difficult or
impossible.

1.4 Software-Based Self-Testing

1.4.1 The Basics

It is clear that SoC has become the only solution for modern chip manufacturing as
it meets the demands of the market for devices with rich functionalities, high porta-
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bility, and low power consumption. As the trend of limited accessibility to individual
components, increased operating frequencies, and shrunken feature sizes continues,
testing will face a whole new set of challenges [4].

The difficulties in generating functional test patterns to reduce a chip’s defect
level and test cost contribute to the increasing cost of testing. DFT and BIST are two
approaches which target to reduce the test cost. BIST empowers the IC by enabling at-
speed test signals to be analyzed on-chip using an embedded hardware tester. BIST
achieves greater testing accuracy and eliminates the need for high-speed external
testers.

Existing BIST techniques are based on structural BIST. Although the most com-
mon scan-based BIST techniques [27, 28, 29, 3] achieve high test quality, the required
circuitry to realize the embedded hardware tester bring along nontrivial area, per-
formance, and design time overheads. Structural BIST also suffers from the problem
of elevated test power consumption as test patterns are less correlated spatially or
temporally than functional patterns, resulting in higher switching activity. Existing
structural BIST suffers from various complex timing issues related to multiple clock
domains, multiple frequencies, and test clock skews that must be resolved for timing
related testing to be effective.

Software-Based Self-Testing (SBST) is a promising test solution. In SBST, memory
blocks that facilitate SBST are tested first. Then, processors, DSPs and other on-chip
programmable components are self-tested. Finally, these programmable components
are configured as an embedded software tester to test on-chip global interconnects and
other nonprogrammable components [4]. SBST is sometimes referred to as functional
self-testing, instruction-based self-testing, or processor-based self-testing.

The SBST concept is presented in Figure 1.16 [4] using a bus-based SoC. The
central processing unit (CPU) accesses the system memory via a shared bus, and all
IP cores are connected to the system bus via a virtual component interface (VCI) [30].
The VCI simply acts as the standard communication interface between the core and
the shared bus. Each core is surrounded by a test wrapper, in order to support the
self-test methodology, which contains the required test support logic to control scan
chain shifting as well as buffers to store scan data and support at-speed testing.

21



Figure 1.16: A software-based self-testable SoC [4].

1.4.2 SBST Flow

The SBST flow consists of the following steps:

1. Memory self-testing: The memory block (system or processor cache memory)
that stores the test programs, test responses, and signatures is tested and repaired
if necessary.

2. Processor self-testing: During processor self-testing, the external tester first
loads the memory with the test program and the signatures. Then, the pro-
cessor tests itself by executing the test program, aiming at the fault models
of interest. The test program responses are written to the memory and later
compared to the stored signatures to make the pass/fail decision.

3. Global interconnect testing: Predetermined patterns that activate the defects of
interest are transmitted between pairs of cores among which data or address
transmission exists. The responses captured in the destination cores are then
compared to the stored signatures.

4. Testing nonprogrammable cores: The embedded processor controls the test
pattern generation, test data transportation, and response analysis programs.
For analog/mixed-signal cores, processor and DSP cores may be employed to
perform the required pre- and postprocessing DSP procedures.
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1.4.3 SBST vs BIST

SBST handles testing as a system application, while structural BIST places the system
in nonfunctional test mode. SBST has the following advantages [4]:

1. The need for DFT circuitry is minimized. Structural BIST needs wrapper cells
and necessary logic to control or observe the system’s external input/output (I/O)
ports that are not connected to low-cost testers. On the other hand, additional
DFT techniques can be employed if SBST does not achieve the desired fault
coverage.

2. The performance requirement for the external tester is reduced as all high-speed
transactions occur on-chip and the tester’s main responsibility is to upload the
test program to the system memory and download test responses after self-
testing.

3. Performing test pattern application and response capture on-chip achieves greater
accuracy than that obtainable with a tester.

4. Because the system is operated in functional mode while executing the test
programs, there is no excessive test power consumption and potential overkill
problems as in structural BIST.

One major concern of SBST is its fault detection efficiency. If a fault can be de-
tected only by test patterns that cannot be realized by any instruction sequence, then
the fault is redundant and there is no need to test for this type of fault during manu-
facturing test, even though we may still want to detect and locate these faults during
silicon debug and diagnosis for manufacturing process improvement. For an IP core
that is not self-testable, structural BIST may be used to reach the desired level of
fault coverage. In this case, using the processor as the TPG and ORA gives the flexi-
bility of combining multiple test strategies to achieve the desired fault coverage. This
is achieved by just altering the corresponding programs or parameters without any
hardware modification. In [31], the authors discuss mixed-mode pattern generation
for random and deterministic patterns using embedded processors. After identify-
ing the best pattern generation scheme the test program is synthesized accordingly
without the need to alter any BIST hardware.
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1.5 3D-SoCs

Three-Dimensional Integrated Circuits (3D-ICs) is a popular research field for the
hardware and testing community. 3D-ICs overcome the limitations of traditional 2D-
ICs and seem to secure the continuation of Moore’s Law for the near future. 3D-ICs
prevail over traditional 2D integration techniques on various aspects [32]:

1. Reduction on global interconnect.

2. Higher packing density and smaller footprint due to the addition of a third
dimension to the conventional two-dimensional layout.

3. Higher performance due to reduced average interconnect length.

4. Lower interconnect power consumption due to the reduction in total wiring
length.

5. Support for realization of mixed-technology chips.

However, we have to address a variety of design, manufacturing, packaging, and
testing issues before cost-effective, high-volume production can be achieved.

1.5.1 Manufacturing

There are two broad categories of 3D-IC manufacturing techniques, monolithic and
die stacking (Figure 1.17). For the monolithic manufacturing process using epitaxy,
multiple device layers are grown on the same wafer in a serial manner. Once a
layer of devices and their associated interconnect are completed, an isolation inter-
level dielectric layer can be deposited and polished to allow another layer of devices
and interconnect to continue to grow vertically. To electrically connect devices across
separate processed layers, 3D vias are etched through the isolation layer, and metal
fillings are deposited. The same process is repeated to fabricate a 3D-IC consisting of
multiple layers of devices.
The other 3D integration technique is to stack individual 2D die layers vertically,

minimizing the impact of altering existing manufacturing technology and equipment.
With 3D die stacking, the candidate dies to be integrated onto the same package can
be designed and manufactured separately, just as they are with a regular, existing 2D
planar process, with additional manufacturing processes of substrate thinning and
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Figure 1.17: 3D-IC fabrication methods: (a) monolithic, (b) face-to-face, (c) face-to-
back [6].

through-silicon via (TSV) filling, if needed. Note that some times TSVs are referred
as elevators in the bibliography. Then they are bonded together by precise alignment
of inter-die vias and the application of thermo-compression. In general, die stacking
presents three integration alternatives: wafer to wafer, die on wafer, and die on die,
each with their respective pros and cons from a cost or yield perspective [6]. Die
stacking seems to have more advantages than monolithic technique and therefore we
will focus on this area.

A number of methods have been proposed for the interconnection of the stacked
dies, including wire bonding, microbump, contactless approaches, and TSVs [33].
Wire bonding makes connections between the board and stack or between dies them-
selves, though wires can only be on the periphery of the stack. Wire bonding thus
suffers from low density, a limit on the number of connections that can be made, and
the need for bonding pads across all metal layers due to the mechanical stresses of the
external wires. Microbumps are small balls of solder or other metals on the surface
of the die that are used to connect dies together. They have both higher density and
lower mechanical stress than wire bonding. Microbumps do not, however, reduce
parasitic capacitances because of the need to route signals to the periphery of the
stack to reach destinations within it. Contactless approaches include both capacitive
and inductive coupling methods. Though resulting in fewer processing steps, other
manufacturing difficulties and insufficient densities limit these methods. TSVs hold
the most promise as they have the greatest interconnect density, even though they
require more manufacturing steps [32]. In Figure 1.18 a 3D-IC with silicon interposer
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Figure 1.18: 3D-IC with silicon interposer layer, TSVs and 6 dies.

Figure 1.19: Foveros packaging.

layer, TSVs and 6 dies is presented, where the Inter-die communication is realized
by TSVs.

In 2019, Intel has introduced Foveros, an advanced 3D face-to-face die stacking
packaging process technology, which uses TSVs. Foveros packaging is designed to
incorporate two or more chiplets assembled together. It comprises a base logic die
on top of which sit additional active components such as another logic die, memory,
FPGA, or even analog/RF (Figure 1.19). Intel announced Lakefield SoC (Figure 1.20)
in January 2019 at CES, which is built using Intel’s Foveros. Lakefield combines a
powerful Sunny Cove core with four, lower-power Atom processor cores. Its design
aimed at efficiency and physical space saving, allowing Lakefield to reside in smaller
devices [34].

Despite various advantages, TSV-based 3D-ICs are subject to severe thermo-mecha-
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Figure 1.20: Lakefield.

nical reliability hazards due to the coefficients of thermal expansion mismatch between
TSV and silicon substrate. Under normal operations, the 3D-IC experiences heavy
thermal cycles and thus induces large thermo-mechanical stress. Consequently, the
stress may initiate micro cracks from the interface between a TSV and its dielec-
tric liner, and further propagates them on the silicon substrate. To eliminate critical
cracks, the simplest solution would be to make the keep-out-zone (KOZ) of TSVs
large enough to cover the maximal possible length any crack might grow. However,
the length a crack can grow from an originating TSV depends heavily on the loca-
tions of the nearby TSVs due to the superposition of thermo-mechanical stress, and
its value can be large or even difficult to calculate when complicated TSV placement
structures present. On the other hand, as the probability of crack initiation is low, it
would be a waste of chip area to set the KOZ to the extreme value for every TSV.
Alternatively, it is more economical to make the TSV KOZ reasonably small and filter
out those chips with critical cracks during testing [35].

1.5.2 3D Testing

The usual testing sequence for 3D-ICs is pre-bond, mid-bond and post-bond testing.
In the first stage, we have to test the individual 2D die layers, before stacking them
together. Pre-bond testing can be performed either before and/or after wafer thinning.
Afterwards, we start stacking dies on top of each other and we test the partial stack
that is created. It is not necessary to test after every added die, but we can choose
the stages we want to test, depending on our goal on test cost. In the end, after the
stack is completed, the last part of testing follows, post-bond testing, to find out if
any defects were caused during the stacking process. External test access is achieved
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through probing, typically at wafer level. Once the stack is packaged, a final packaged
test can be performed. External test access for the final test is typically via a test socket
through the package pins.

A pre-bond test should primarily focus on defects in the die-internal (CMOS,
DRAM, etc.) circuitry, and only optionally be extended for TSV defects. If performed
on an original (still thick) wafer, the pre-bond test has the benefit of conventional
wafer handling, but possible wafer-thinning defects are not covered. Moreover, testing
for TSV defects on not-yet-thinned wafers is imperfect, as one side of the TSV is still
buried in thick substrate. Therefore, there is only single-sided test access and this
requires dedicated DFT and test methods. On the other hand, pre-bond testing on
thinned-down wafers, which allows to cover defects induced by wafer thinning and
actually test through TSVs, requires probe access on thinned wafers, which brings
about a whole new set of challenges [36].

Mid- and post-bond tests should primarily focus on testing the newly formed TSV-
based interconnects and only re-test that die-internal circuitry if stacking operations
are likely to damage it. The final test is the last safety net before the packaged die
stack is shipped to the customer. Hence, the test infrastructure should be such that
all components and interconnects of the die stack can be (re-)tested if required.
There is not a unique test flow, as testing should provide sufficient product quality
at affordable costs for the application market addressed. The general desire is to
detect defects as early as possible, in order to prevent faulty components to move
forward in the production flow. However, early tests have the drawback that passing
components might get damaged afterwards due to downstream (thinning, stacking,
packaging) operations and hence require re-testing. The manufacturing costs and
yields are in complex ways related with test flows and associated costs, and hence
test cost modeling is required to determine the best test flow for a given product.

1.6 Thesis Organization

Chapter 2 presents the state of art in 3D SoC testing and SBST, two topics that are
closely related to this research work. Various aspects of 3D SoC testing are presented,
such as pre-bond, post-bond, TSVs testing etc., by describing existing works in detail.
Concerning the Software-Based Self-Testing test scheduling, the basic principles are
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analyzed initially, and existing methodologies are described.
Chapter 3 presents thoroughly and in depth the research work. It starts with the

research directions and then, the main research objectives are defined. Afterwards,
each proposed method is presented in detail, accompanied by explanatory examples.
Chapter 4 presents the tools and the work-flows that have been developed during

this research work. This framework provided with test environments that enabled
the efficient and reliable deployment and execution of experiments upon the methods
discussed in Chapter 3.
Chapter 5 includes a set of carefully selected, evaluation-based experimental pro-

cedures that prove the innovation and the added value of the proposed methods.
Finally, Chapter 6 provides conclusions and directions for future work. The con-

tributions outlined in Chapters 3, 4 and 5 resulted in original work published, which
is itemized in the end of the dissertation.
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Chapter 2

Background

2.1 3D SoCs Testing

2.2 Software-Based Self-Testing

2.1 3D SoCs Testing

2.1.1 Pre-Bond Testing

Pre-bond testing is necessary in order to identify the Known-Good-Dies (KGD). If a
defected die was stacked and the defect was detected after the bonding, the whole
stack would be useless. There is a large number of TSVs in a 3D-IC, one end of them
is buried at the thick substrate and they have small pitch and density, making their
pre-bond testing difficult. There are various TSV defect types and five of them can
be detected at post-bond testing from errors in alignment, bonding or stress, while
the rest should be explored prior to bonding [37]. BIST methods may be used for
pre-bond testing as well as TSV probing. The partitioning of a circuit design among
multiple layers of a 3D stack makes pre-bond testing difficult. There is the need to
deal with partial logic and structures without complete functionality by innovations
in DFT layout.

There are several key hardware components necessary to realize structural test of
individual die layers pre-bond. These include a general test architecture, specialized
scan registers, the necessary support nets (power, ground, and clocks), and an in-
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(a) (b)

(c)

Figure 2.1: DFT technique for enabling pre-bond testability for 3D die stacked mi-
croprocessors [7].

terface to the outer world. In [7], Lewis & Lee propose and evaluate an applicable
methodology to enable pre-bond testability for 3D die-stacked microprocessors for the
first time, considering each layer as an isolated test island (Figure 2.1). TSVs cannot
be tested by a scan chain, especially before wafer thinning and back metal patterning.
In [38], Chen, Wu & Kwai proposed a method utilizing the parasitic capacitance of
the TSV in order to detect the faulty TSVs with little area overhead from the testing
circuit. Each TSV is treated as a DRAM cell and tested before bonding using sense
amplification. In [39], the same team extended the previous proposal, developing two
testing schemes while taking the effects of process variations into account. Panth &
Lim in [40] were the first to explore the impact of scan chain TSVs on wirelength,
power and voltage drop of 3D-ICs. They also explored the design options and re-
quirements for power delivery during pre-bond testing, concluding that an increase
at the number of scan TSVs up to a certain point, reduces both wirelength and power
consumption.

In 3D technology, test pads occupy a much larger area when compared to TSVs
and hence we can only fabricate a limited number of test pads for pre-bond testing.
Therefore, it is necessary to take the pre-bond test-pin-count constraint into consider-
ation during test planning. In [41], Jiang et al. design test architectures for pre-bond
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tests and post-bond test separately so that this constraint can be satisfied in pre-bond
tests. They propose optimization methods that allow us to share routing resources
between pre-bond tests and post-bond test as much as possible and they show how
to optimize test architectures to further reduce test access mechanism (TAM) routing
cost with little impact on testing time. In [42], Li & Xiang propose a DFT scheme in
order to reduce the number of wrapper cells needed for providing testability at the
TSVs and the corresponding test data volume during pre-bond testing by reusing the
Primary/Pseudo-Primary Inputs and Primary/Pseudo-Primary Outputs for different
ends of the TSVs, respectively. In [43], Kumar et al. propose a DFT method for pre-
bond testing of 3D-ICs using a hypergraph [44] based netlist partitioning scheme,
achieving a significant reduction in the hardware required for scan-island based pre-
bond testing. In [45], Agrawal & Chakrabarty showed that the general problem of
minimizing the wrapper-cell count is NP-hard and they have shown how timing and
layout information can be incorporated in the graph model to address the problem
of increased capacitive load and delay on critical paths due to multiple flop reuse.

In [37], Noia & Chakrabarty presented a new technique for pre-bond TSV testing
that is compatible with current probe technology and leverages the on-die scan ar-
chitecture that is used for post-bond testing. It utilizes many single probe needle tips,
each to make contact with multiple TSVs, shorting them together to form a single
network, allowing the concurrent testing of many TSVs to reduce overall test time.
Based on [37], the same authors presented an efficient algorithm, in [46], for design-
ing parallel TSV test sessions such that test time is reduced and a given number of
faulty TSVs within the TSV network can be uniquely identified under parallel test,
resulting in the highest test cost reduction. In [47] Noia et al. extend the work on
pre-bond TSV testing through probing [37], [46] by utilizing scan chains that can
be reconfigured for full-scan pre-bond die logic test to allow scan-in and scan-out
through TSVs.

2.1.2 Post-Bond Testing

New test architectures and optimization methods are required for post-bond testing.
The stack may need to be tested multiple times during the bonding process to ensure
that defects were not introduced to the stack during manufacturing steps between
pre-bond testing and final test. When a test architecture already exists on each die
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Figure 2.2: Example of a test architecture in a 3D-SIC including die-external tests
[8].

of a 3D-IC, then we call them hard dies. Otherwise, we call them soft dies. IEEE
1500 wrapper is called thin wrapper, while a fat wrapper allows for core-external
test (EXTEST) and core-internal test (INTEST) to run in parallel.

In [48], Jiang et al. proposed a TAM wire length minimization technique based
on simulated annealing, allowing both pre-bond and post-bond tests. In [49], the
authors propose a wrapper for entire die as opposed to only the embedded cores on
a die, providing a uniform test interface for each die, supporting pre-bond die testing,
post-bond stack testing and final packaged-product testing. Their architecture, based
on IEEE 1500, reuses commonly encountered design-for-test structures within the
various dies as much as possible. Noia, Chakrabarty & Marinissen, in [8], presented
generalized optimization methods to minimize test time for a 3D-IC with hard dies,
either for the final stack test or for any number of multiple test insertions during
bonding. They presented optimization techniques that consider both die-internal and
die-external (Figure 2.2) test for both fat and thin die wrappers, taking into account
constraints on both test bandwidth and the number TSVs per die. The same people
presented in [50], [51] and [52], including hard, soft and firm (a test architecture
already exists for the die, but serial/parallel conversion hardware may be added to
the die in order to reduce test-pin and TSV use and achieve better test resource
allocation for stack testing) dies. In these works Integer Linear Programming (ILP)
models were presented for test architecture optimization.

Working on 3D-IC with passive silicon interposer, Chi et al. presented in [53] a
modular post-bond test strategy that enables testing of dies, interposer, and the micro-
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bump interconnects in between them. A special constraint in this problem setting is
that the passive silicon interposer does not contain active circuitry and therefore for
DFT, they are restricted to adding interconnects only, as sparsely as possible, in order
to keep the cost of the interposer low. In [54], Lin et al.presented a parametric delay
test method. First, they approximate the propagation delay across a TSV with a
resistive open fault and then make a test decision either based on a test threshold or
through outlier analysis. The key of the method is a novel technique called variable
output thresholding (VOT), implemented with an Ring Oscillator (RO) architecture
consisting of two TSVs and a number of logic gates. In [55], Rajski & Tyszer introduce
a new scan-based test infrastructure for TSVs and the corresponding post-bond test
generation techniques capable of detecting and accurately identifying variety of single
and multiple faults for TSVs in 3D stacked ICs. The proposed DFT environment
is easy to automate and standardize, and offers quickly achievable complete fault
coverage for a comprehensive list of failures even when using pseudo-random test
patterns.

2.1.3 TSVs

In a 3D-IC the dies must be interconnected to one another. A number of methods
have been proposed for this interconnection, including wire bonding, microbump,
contactless approaches, and TSVs [33]. TSVs hold the most promise as they have
the greatest interconnect density, even though they require more manufacturing steps
[32]. TSVs are vertical metal interconnects that can be integrated into a substrate
during manufacturing. In all TSV manufacturing approaches, the TSVs are initially
buried in the substrate and need to be exposed, through a process called thinning,
in which the substrate is ground away until the TSVs are exposed in a subsequent
step. This step results in dies that are much thinner than conventional 2D substrates,
and they are thus fragile and are commonly attached to carrier wafers during 3D
integration. In order to be attached to other dies in a 3D stack, a die must go through
alignment and bonding. During alignment, the dies are carefully placed such that
their TSVs make direct connections to one another. The processes of alignment and
bonding continue until all thinned dies are integrated into the 3D-IC [56].

Early in 2008, Loi et al. described the design of a defect-tolerant TSV-based multi-
bit vertical link which enables significant yield improvement with respect to random
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Figure 2.3: TSV recovery mechanism [9].

(complete or partial) open defects at an extremely low cost [57]. Their technique relies
on redundancy and has minimal impact on the overall integrated system design and
production test flows. In [58] Tsai et al. presented four self-test circuits capable of
detecting pinholes in TSVs. In [9] Hsie et al. proposed a redundant TSV architecture
with reasonable cost for ASICs, which can successfully recover most of the failed chips
and increase the yield to 99.99% based on probabilistic models (Figure 2.3). In [59],
another technique based on TSV redundancy was proposed in order to improve the
yield of 3D-ICs. Zhao, Khursheed and Al-Hashimi partitioned regular and redundant
TSVs into groups, where each group can have multiple spare TSVs and multiplexers
are used to reroute signals through good TSV path, if the group has a defective TSV.
They also model clustering defects (defects tend to cluster together to some extent
rather than randomly distributed) in order to analyze their effect on yield.

Deutsch, Chakrabarty, Panth and Lim, in [60] focused on post-bond delay-fault
testing of internal die logic in 3D-ICs and studied the impact of timing variations due
to TSV stress on the quality of test patterns generated to screen small-delay defects.
The impact of TSV stress on pattern effectiveness is quantified using the statistical
delay quality level (SDQL) metric. One of the conclusions of [60] was that smaller
KOZs are not an issue, as the ATPG flow with stress-aware models will still create
high-quality tests, even though the circuitry is more affected in that case. Huang et al.
in [61] proposed an on-chip measurement technique about small delay testing. Their
technique, Variable Output Thresholding (VOT) is implemented on an RO architecture
consisting of two TSVs and some logic gates. Metzler et al. proposed in [62] exploited
mathematical models to express path delays as a function of physical and electrical
factors to devise a relationship between delay variation and defect size. This metric
computes a probability of detection for resistive open TSVs and allows us to sort
defect sizes as detectable or not. Recently, Kuo et al. presented a novel test technique
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for TSV-induced small delay faults for 3D-ICs, considering two effects of a defective
TSV on nearby logic gates, mechanical stress and pinhole leakage.

In [63], Cheng et al. reduced testing TSVs as much as possible while keep testing
time minimal, by converting the 3D wrapper optimization problem to its correspond-
ing 2D one and adopt existing research efforts to tackle it. They proposed novel
algorithms to determine how these wrapper chain components are connected to min-
imize the amount of TSVs. Kannan, Kim and Ahn presented in [64] an equivalent
electrical circuit model for TSV in 3D-ICs, identified different defects that can affect
their functional electrical performance and developed fault model for each one of
them. They developed the multi-tone dither test technique to detect these faults in
TSVs by integrating the fault models with the electrical model of TSV before mea-
suring the peak-to-average ratio. Pasca et al. proposed in [65] an interconnect yield
improvement solution based on Configurable fault-tolerant Serial Links (CSL). CSLs
do not rely only on spares to achieve high interconnect yield, but on serialization and
signal remapping on fault-free TSVs. Rashidzadeh presented three coupling tech-
niques (inductive, radiative and capacitive) that can be utilized for contactless TSV
probing [66]. He implemented and used a microscale probe as a contactless probe for
TSV, supporting the small pitch and the high density requirements for TSV probing.

The TSV leakage test problem decides if there is excessive leakage current from the
TSV to the substrate, degrading the TSV performance and maybe causing reliability
issues. The leakage fault (most references in literature call it open or short fault) is
often parametric and its detection involves a Leakage Test Threshold (LTT), defined
as the leakage current value beyond which a TSV will be declared as faulty [67].
Open defects can be classified into hard open defects and soft open ones. In case of a
hard open defect, an interconnect is divided into two parts completely and they are
not connected each other. In case of a soft open defect, the parts are connected each
other in part electrically [68].

Lin et al. presented a CAF-WAS (Charge-and-Float, Wait-and-Sample) technique,
adapting to a wide range of die-to-die connections [67]. Their technique has the ability
to perform leakage binning, by which one can approximate the leakage currents
of the TSVs when the direct measurement by external ATEs may not be possible
due to the too small size of the TSV. Huang et al. in [69] presented a self-timed
timing control scheme in order to alleviate the timing skew problem, caused by
imbalanced routing wire lengths extending the work presented in [67]. Resistive-
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open defects cause unintended signal propagation delays, while open defects with
high resistance lead to a floating end for a TSV, both of them affect chip functionality
[70]. Therefore, Ye and Chakrabarty [70] used the Elmore delay model to model
TSVs and analyzed the delay for TSVs, with or without defects. They presented a
new method for detecting open and short defects using technique estimating the
additional delay introduced due a resistive open defect as well as due to re-routing
based on spare TSVs. To recover from open defects and increase the yield for TSV
stacks, they presented an optimization method based ILP that allocates spares to
functional TSVs.

Chi et al. in [71] proposed a novel DFT architecture, which focused on 3D-IC
interconnects supporting testing, diagnosis, and repair. Their method can detect open
and short defects and identify the faulty interconnects by applying proper test patterns
and can repair faulty interconnects caused by open defects. Hashizume et al. proposed
the electrical test method and a DFT method in [68]. They also examined feasibility
of their electrical tests by Spice simulation and some experiments for a PCB circuit
made of our prototyping IC that had been designed by the DFT method. Shih et
al. presented a defect simulation and test generation flow to detect path delay faults
induced by defective power TSV in [72].

We have already mentioned Ring Oscillators (ROs) in Subsection 2.1.2. The con-
nection of two TSVs with some peripheral circuit to form an oscillation ring is a
technique frequently used in TSV testing. You et al. in [73] proposed a method that
can characterize the propagation delay across each TSV by enhancing existing RO
based test concept with a new technique called sensitivity analysis. You et al. pre-
sented an improved method of [73] in [74]. Pai et al. proposed a unified RO-based
horizontal/vertical interconnects test methodology for 3D-ICs to achieve interconnect
reliability and yield with targets of interconnect faults under stuck-at and open fault
models [75]. Deutsch and Chakrabarty proposed a method for non-invasive pre-bond
TSV test using ROs and multiple voltage levels, without the need of TSV probing [76].
With their method, it is possible to detect resistive opens and leakage faults by mea-
suring variations in the delay of nets connected to TSVs.
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Figure 2.4: VIA3D approach [10].

2.1.4 TAM Architectures

In order to test every IC, we have to develop efficient TAMs. The same deal stands,
also, for the 3D-ICs. The most common techniques are the wrapper cells (commonly
based on IEEE Std 1500) and the scan chains, used in the 2D-IC technology, adapted
to the 3D-IC conditions. These TAMs create area overhead, so there is the need to
keep them as small as possible. Keep in mind that wrapper chains begin and end on
the lowest layer, as all of the chip pins are at lowest layer.

Beginning from the work in [10], where Wu, Falkenstern and Xie first approached
and investigated 3D scan chain design (Figure 2.4), many techniques were pro-
posed on this direction. Lewis and Lee, in [77], investigated test strategies for circuit-
partitioned 3D designs in which a functional unit can be partitioned into incomplete
circuits across different die layers. They presented standard scan registers that can be
integrated into the layer scan chains, allowing the ATE to directly test the circuit or
initialize the registers for BIST. Noia, Chakrabarty and Xie studied the test-wrapper
design for 3D SoC systems with true 3D cores [78]. The goal of wrapper optimization
is to minimize the test time for each core and, therefore, they developed two faster
heuristic approaches to produce near-optimal solutions.

In [79] proposed a test integration methodology for 3D-ICs with two test interfaces
(compatible with the IEEE 1149.1) for supporting the pre-bond, known-good stack,
and post-bond tests of 3D-ICs. Marinissen et al. proposed a 3D DFT architecture
(based on a die-level test wrapper that should be included by the various die makers
in the designs of the respective dies that together make up the stack) that services
the test needs of die maker(s), stack maker, and stack user alike [11] (Figure 2.5).
Their architecture supports pre-bond, post-bond and board-level interconnect testing,
enabling a modular test approach. Chi et al. working on the same area, presented a
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Figure 2.5: 3D-SIC DfT architecture for dies based on IEEE 1500 [11].

DFT architecture, using die-level wrappers, but for 3D-ICs with multiple towers [53].
We say that a 3D-IC consists of a single tower, when each layer contains exactly one
die, otherwise it consists of multiple towers. Papameletis et al. also considered 3D-ICs
with multiple towers, when they extended a DFT architecture and implemented in
Cadence EDA tools [80].

Lewis et al. have made another step forward presenting a methodology for de-
signing 3D test wrappers for embedded 3D IP cores [81]. They used the Best Fit
Decreasing and Kernighan-Lin Partitioning heuristics to design flexible test wrappers
that can adjust to varying test modes, achieving lower total test time for the circuit
under test. Liao et al. proposed a flow for fast scan-chain ordering (formulated into
a traveling salesman problem (TSP)) taking into account TSV constraints [82]. Noia
and Chakrabarty move in a more algorithmic fashion using retiming techniques to
recover the latency added by boundary scan cell bypass paths in a 3D-IC [83].

2.1.5 TAM Optimization

As it is already clear from the previous sections, TAMs are an important part of
the testing process of the 3D-ICs. TAMs and test wrappers (a layer of DFT logic
that connects a TAM to a core for the purpose of testing), like IEEE 1500 Standard
Wrapper, are frequently used as a modular testing approach on 3D-ICs. A 3D-IC
test architecture must be able to support testing of individual dies as well as testing
of partial and complete stacks. Furthermore, test architecture optimization must not
only minimize the test time, but also minimize the number of dedicated test TSVs
used to route the 3D TAM, as each TSV has area costs associated with it and is a
potential source of defects. It is important to note that all the chip pins on a 3D-IC
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are at the lowest die and taking into account that the number of TSVs is limited, the
test access to the higher layers should be dealt carefully. In [84] Wu et al. presented
a modular testing approach, based on a combination of integer linear programming,
LP-relaxation, and randomized rounding, for minimizing the test time for 3D core-
based SoCs under constraints on the number of TSVs and the TAM width. Lo et al,
in [85], proposed a test architecture for pre-bond and post-bond tests in core-based
3D-ICs, optimizing control signals and TAM in test pins and TSVs.

Deutsch & Chakrabarty, in [86], formulated a robust optimization problem for SoC
testing for the first time. The main idea of robust optimization is to find a solution that
may not be optimal for the nominal values of the input parameters but that remains
close to the optimum in the presence of parameter variations. Previous works, like
[41, 50, 51], based on exact optimization techniques such as ILP and heuristics (such
as rectangle packing) consider known (constant) values for input parameters, which
may differ from the actual values, leading to non-optimal decisions made at the
design stage, increasing the test time. In [12], Deutsch, Chakrabarty and Marinissen
formulated the problem of robust TAM optimization and test scheduling for 3D-ICs
in the presence of variations in input parameters and developed an ILP model in the
presence of variations in input parameters for the test architecture, such as power and
available bit-width (Figure 2.6). They also proposed an efficient heuristic for robust
optimization for dies in a 3D stack that have a large number of embedded cores,
using the simulated annealing algorithm.

2.1.6 Self Test & Repair

BIST is present for years at conventional 2D-ICs, but the extend of these techniques to
3D-ICs is not trivial. BIST doesn’t need external intervention and reuses the available
area. In 3D-ICs, however, there are many possible test insertions, so there is a need
for a distributed BIST framework to work at every step of the stacking process.
Such a framework was presented by Agrawal, Chakrabarty and Eklow in [87]. Their
framework is distributed, reusable and reconfigurable and its components interact
with each other through handshaking protocols.

Before that, various works were published for self test and repair, usually focused
on a specific part of the testing process. Cho et al. first presented an on-line test and
self-repair structure to characterize TSVs at pre-bond testing in [88]. Their structure
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Figure 2.6: A method for robust optimization of 3D test architecture and test schedul-
ing in the presence of input parameter variations [12].

reconfigures itself to compensate TSV defects and improves the fidelity of the passing
signals. Huang et al. also focused on TSV testing with a BIST scheme at post-bond
stage [13] (Figure 2.7) and in [89] Huang and Li added a TSV redundancy scheme
with spare TSV row to repair the defective TSVs. Pasca, Angel and Benadbenbi pro-
posed in [90] a TSV Interconnect BIST (IBIST) technique, based on Kth-Aggressor
Fault (KAF) model, to deal with open, short and delay faults due to crosstalk.

SenGupta, Ingelsson and Larsson proposed a power constrained test scheduling
for TSV based 3D-ICs for the first time in [91]. They proposed two test scheduling
approaches (Partial Overlapping and ReScheduling) that minimize test application
time while taking power constraints and the need to route JTAG and Test Data
Registers into account. Hou and Li proposed a built-in self-repair (BISR) allocation
scheme for RAMs in the SoC die of 3D-ICs under the constraints of the pre-bond and
post-bond test sequences and the distance between the BISR circuit and served RAMs
[92]. Jiang et al. presented the first in-field TSV repair framework for 3D-IC lifetime
reliability enhancement [93]. They didn’t focus only on faulty TSV replacement, but
they find the set of signal-TSV pairs that satisfy the timing requirement of every
signal. Yang, Chou and Li proposed a repair scheme based on a typical test access
architecture, by reusing registers of wrapper cells [94].
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Figure 2.7: Proposed test architecture for a 4× 4 TSV array [13].

2.1.7 Clock Tree

Early works in 3D-IC testing assumed that proper clock signals for both the prebond
and post-bond operations had already existed. Every die needs a complete 2-D clock
network for the pre-bond test and the final 3D-IC needs a complete 3D low power
clock network for the post-bond test and normal operation after stacking. The tem-
perature has important impact on clock trees in 3D-ICs, the different temperature
zones may lead to significant clock skew. In 2-D circuits, symmetric interconnect
structures, such as H- and X-trees, are widely utilized to distribute the clock signal
across a circuit [95]. These symmetric structures allow the clock signal to arrive at
the leaves of the tree simultaneously, achieving synchronous data processing. This
kind of symmetry is difficult to achieve in 3D-ICs.

Mondal et al. in [96] attempted for the first time to reduce the clock skew for
3D-ICs, by proposing a new circuit technique that dynamically adjusts the driving
strengths of the clock buffers according to the spatial and temporal temperature
profile of the chip. Their technique uses only modified clock buffers that reduces the
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design complexity and does not assume any fixed temperature profile. An important
contribution to relevant area is the work of Minz, Zhao and Lim, who presented the
Balanced Skew Theorem in [97]. The theorem provides a theoretical background on
the efficient construction of a buffered 3D clock tree that perfectly balances the skew
values under two distinct non-uniform thermal profiles. Zhao et al. in presented a
pre-bond testable clock routing for the first time in [98]. They also proposed a new
circuit element called TSV-buffer, which supports zero-skew pre-bond testing for the
clock trees that use multi-TSVs and introduced redundant tree, which supports the
pre-bond testing of dies. Buttrick and Kundu used a Delay Lock Loop (DLL) in
testing while allowing for separate scan and test clock frequencies in [99]. Since a
DLL cannot change operating frequencies or be turned on and off during testing,
the proposed work is essential to the testing of incomplete clock networks in 3D-ICs
using DLLs.

Arunachalam and Burleson proposed a global clock distribution network consist-
ing of tree driven grids [100]. The clock generators and the buffers that drive the
clock grids form the clock layer, which drives the clock grids in the other logic layers
using TSVs. Pavlidis, Savidis and Friedman evaluated three topologies (H-trees, local
meshes and global rings) to globally distribute a clock signal in 3D-ICs [101]. Kim
and Kim in [102] formulated zero skew clock tree embedding problem in 3D-ICs and
proposed the zero skew clock tree embedding algorithm ZCTE-3D, which is shown
that optimally allocates TSVs for a given tree topology. They also proposed an com-
plete flow of clock tree synthesis by proposing a new 3D aware topology generation
algorithm MMM-3D and integrating it into ZCTE-3D. The same people proposed a
new tree topology generation technique MMM-3D-cap to minimize potentially ‘un-
stable’ TSV-buffers, and a novel circuit element SCCTG to completely remove the
pre-bond test control signal in [103]. They also proposed three key algorithms for
synthesizing clock trees in TSV-based 3D-ICs: NN-3D, which is a cost-effective (in
terms of TSVs, wirelength, and clock power) 3D clock tree topology generation al-
gorithm, DLE-3D, which is a TSV-optimal layer embedding algorithm of tree nodes
and DME-3D, which is a 3D clock tree routing algorithm with buffer insertion [104].
Kim and Kim improved their previous works in [105].

Lung et al. presented in [14] a fault-tolerant 3D clock network which utilizes the
existing 2D redundant clock trees for pre-bond testing (Figure 2.8). A TSV fault-
tolerant unit (TFU) is proposed to automatically reroute the clock signal using the
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Figure 2.8: (a) The proposed TSV fault-tolerant unit (TFU). (b) The fault-tolerant
3D clock network using TFUs [14].

2D redundant tree in the presence of TSV failure. This work is the first that considers
the fault tolerance of a 3D clock network. Zhao et al. in [106] extended their work
[98] for both pre-bond and post-bond testing of 3D-ICs. They have shown that
by allocating the clock source in a middle die in the stack, the pre-bond testable
clock tree will use fewer TSVs, while they saved power and wirelength. They also
analyzed the impact of the parasitic TSV capacitance on pre-bond testable clock trees
in terms of wirelength, buffer count, and clock power. Zhao, Minz and Lim in [107]
explored design optimization techniques for reliable low-power and low-slew 3D
clock network design and they studied the impact of the TSV count and the TSV
capacitance on clock power trends. They also developed a low-power 3D clock tree
synthesis algorithm called 3D-MMM-ext. Park and Kim formulated the TSV pairing
problem into a minimum-cost maximum matching problem in a graph and proposed
an efficient solution while satisfying all constraints [108]. They designed a new circuit,
called Slew-Controlled TSV Fault-tolerant Unit (SC-TFU) and implemented it for each
TSV pair by taking into account both the slew problem and delay control problem
caused by the increased load capacitance. The insertion of SC-TFUs causes clock skew
variation and therefore they proposed a global skew timing technique to refine it.

2.1.8 Thermal

The thermal issue is always a concern for the conventional chips, but it is even worse
in 3D-ICs, mainly because the upper layers have a less direct heat dissipation path
[109]. Overheating during manufacturing test may lead to permanent chip damage.
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Figure 2.9: Overall flow of [15].

Therefore, it is essential to take thermal issues into account during 3D test architecture
design and optimization, in order to avoid the yield loss problem. Thermal imaging
is an established technique for fault diagnosis in regular integrated circuits.

Juan, Garg and Marculescu proposed in [15] a methodology to perform statistical
thermal evaluation for 3D-ICs and an accurate learning-based regression model to
predict the maximum temperature in the steady state (Figure 2.9). It may also used
as a design exploration environment in order to improve thermal yield. Jiang et al.
proposed a novel thermal-aware test scheduling algorithm to reduce the hotspot tem-
perature of the SoC during post-bond test, while they designed different test architec-
tures for pre-bond and post-bond tests in order to tackle the pre-bond test-pin-count
constraint problem. In [110], Xiang, Shen and Deng proposed a novel thermal-driven
scheme to reduce high temperature hotspots created by the test process. They used
a scan tree architecture, minimizing the connection overhead and effectively reduc-
ing test application time. A test vector ordering scheme is developed in order not to
worsen the hotspots and a new test application scheme applies the ordered test set
reducing the test frequency, while it doesn’t increase the test application cost. Dev,
Woods and Reda proposed in [111] a new paradigm for pre-bond TSV testing and
characterization using thermal imaging to test the electrical connectivity of TSVs. They
analyzed the thermal signatures from a device, by establishing a reference thermal
map and classified the status of TSVs (functional or defective) based on the thermal
signatures from the device under test and the thermal reference map.
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2.1.9 Memories

3D integration has been envisioned as a solution for future micro-architecture design
to mitigate the interconnect crisis and the ”memory wall” problem. Approaches of
memory stacking on top of core layers do not have the design complexity problem as
demonstrated by the fine-granularity design approaches, which require re-designing
all processor components for wire length reduction [112]. There are three integration
technologies used in 3D-IC fabrication including 3D RAM: wafer-to-wafer (W2W),
die-to-wafer (D2W), and die-to-die (D2D). Wafers with the same size of dies are
directly bonded together in the W2W integration method. The W2W offers the highest
throughput, the thinnest wafers, and high TSV density. However, the W2W can incur
a low yield because the bad die can be stacked to another good die, which results in
a bad 3D-IC. On the other hand, the D2W and D2D integration methods allow the
use of different wafer and die seizes because the dies are bonded after dicing. The
D2W and D2D can improve the yield of 3D-ICs due to its high flexibility that the dies
are diced and tested in advance and only the good dies are stacked. However, these
methods require a more complex manufacturing process that the dies must be aligned
and integrated each other. This results in low throughput and low TSV density [113].
In general, a large memory is normally equipped with redundancy, which is used to
repair (replace) defective parts of the memory and improve the yield.

Back in 2005, Tsai et al. explored the architectural design of cache memories us-
ing 3D structures [114]. They examined possible partitioning techniques for caches
designed using 3D structures and presented a delay and energy model to explore
different options for partitioning a cache across different device layers. Jiang et al.
conducted extensive simulations to study the faulty behavior of TSV open defects
and map them to functional fault models of the memory circuits, which serves as the
first step to tackle the test and repair problem for 3D DRAMs [115]. Jiang, Ye and Xu
proposed to conduct redundancy sharing across neighboring dies for yield enhance-
ment of 3D-stacked memory circuits. They developed a repair strategy that enables
redundancy sharing for any given pair and presented novel solutions that selectively
match memory dies together for yield maximization [116]. Taouil and Hamdioui, in
[117], investigated layer redundancy as a mean for compound yield improvement for
3D W2W stacked memories. Kang et al., in [113] proposed a new die selection and
matching method with two stages, along with a new redundancy analysis (RA) algo-
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Figure 2.10: Block diagram of proposed BIST [16].

rithm, that holds other repair solutions for two stages of the proposed die selection
and matching method. The proposed die selection and matching method consists of
two stages.
Yu et al. have proposed a programmable BIST scheme for the 3D RAMs in [16].

The BIST scheme supports the selection of RAMs in 3D RAM for test in addition
to the selection of test algorithms and enables that the BIST circuit in one die can
evaluate the read data using the comparator in another one. The proposed BIST also
has the feature of high programmability to support thermal management during the
test. In [118], Lin, Lee and Wu proposed a tool, Raisin-C to help memory design-
ers find suitable redundancy architecture and to repair the 2D and 3D memories
efficiently. Taouil and Marinissen proposed a post-bond Memory Based Intercon-
nect Test methodology cable to test interconnects between memory and logic dies by
performing read and write operations from the logic die (CPU) to the memory dies
[119]. They also provided a classification of interconnect defects, compiled them into
fault models, and discussed the test pattern generation for these faults and used the
proposed methodology to implement them.

2.1.10 Cost Modeling

Test cost has been the most serious concern in the adoption of 3D integration. The
choice of test flow, i.e., what tests are used and when they are applied during 3D
integration affects test cost. 3D stacking involves many possible test insertions. Due
to multiple yield and test cost parameters corresponding to different dies and tests,
such as for pre-bond, post-bond, and partial stack, an exponentially large number of
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test flows must be evaluated. Therefore, analysis methods and tools are required for
test-cost optimization and automated test-flow selection [17]. There are several works
on various aspects of test-cost modeling and optimization for 3D-ICs, which attempt
to hand-pick a test flow or select a test flow based on explicit enumeration of a few
candidate test flows. Agrawal and Chakrabarty have presented the most complete, for
now, cost model for various stages of the process in [17].

Earlier, in [120], Chen et al. proposed a testing cost analysis methodology with a
break-down of testing cost for different integration strategies. With their model proved
that the design choices could be different after testing cost is taken into account. The
same year, Taouil et al. investigated the impact of several 3D test flows on the total cost
in die-to-wafer stacking. Their framework is based on a combination applied at pre-
bond wafer test, intermediate stack test, pre-package test and post-package test [121].
In [122], Hamdioui and Tamouil overviewed wafer matching and layer redundancy
and showed how these schemes can significantly improve the overall yield. They also
presented an analysis of different test flows and showed how different test flows can
result into different cost and that the cheapest test flow does not necessarily results
in lower overall 3D-SIC cost.

Chen, Huang and Li, in [123], focused on pre-pond testing and they proposed a
test cost optimization technique for that part of the 3D-IC testing. Their technique
attempts to minimize the number of required pads (additional test pads increase area
cost) of each die in a wafer and takes the advantage of test parallelism to minimize
the overall test time of the wafer. Chou et al. moved in a different direction in [124],
as they focused on interposer-based 3D-ICs and proposed cost models for both the
die-to-wafer and die-to-die stacking, which include manufacturing cost and test cost.
They also proposed a tool based on proposed cost models for the cost analysis of
test flows, that are likely to be used in the industry, they investigated impacts of
different test flows on the total cost and analyzed the critical points of adopting the
test operations.

The most recent work in this area is the model of Agrawal and Chakrabarty, which
is generic and flexible and may be adapted for wafer-to-wafer, die-to-wafer and die-
to-die stacking [17]. They explored test cost optimization for 3D-ICs by taking into
account various test costs at every step of the stacking process (Figure 2.11), they
defined a variety of parameters affecting test cost and presented a heuristic procedure,
guided by a matrix-partitioning problem.
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Figure 2.11: A generic and flexible cost model to account for various test costs incurred
during 3D integration [17].

2.2 Software-Based Self-Testing

2.2.1 Processor Functional Fault Self-Testing

The processors are extremely hard to test because of their complexity and the limited
accessibility of their internal logic. The situation is even worse for the test engineers
who apply SBST as the processors’ internal design details are usually unavailable and
difficult to understand. Processor functional-level fault models and test generation
methods have been proposed in [125] and [126] to resolve these problems. These
techniques can provide a testing solution for general-purpose processors, because
there is only need for knowledge of the processor’s instruction set and its functions.
In [125] fault models and test generation methods were proposed for functional faults
associated with register decoding, instruction decoding & control, data storage, data
transfer and data manipulation. In the following paragraphs we are going to describe
the aforementioned methods of [125].
The processor is modeled at RTL by a system graph (S-graph), based on its

instruction set and the functions it performs. Each register which can be explicitly
modified by an instruction is represented by a node in the S-graph. The S-graph also
contains two additional nodes, IN and OUT, which represent the main memory and
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Figure 2.12: An example S-graph [4].

I/O devices. The nodes of the S-graph are connected by directed edges. If data flow
occurs from node A to node B during the execution of any instruction, then a labeled
directed edge exists from A to B. In Figure 2.12 [4] an example is presented. For
convenience, only a subset of instructions and those registers in the processor that
are directly involved in carrying out these instructions are presented in Table 2.1.

There are three classes of instructions in Table 2.1 as in [127]. Instructions I4

and I11 belong to manipulation class (M), instruction I9 belongs to branch class (B)
and the rest belong to transfer class (T). Note that multiple edges may be associated
with one instruction. However, an instruction is allowed to have multiple destination
registers only if it involves a data transfer between the main memory or an I/O device
and if it registers this transfer during its execution. We define the destination registers
of an instruction as the set of registers that are changed by that instruction during
its execution. Also, it is assumed that any register can be written or read using a
sequence of either class T or B instructions.

After the construction of S-graph, integer labels are assigned to the nodes by
the node labeling algorithm in Algorithm 2.1. The node label indicates the shortest
distance of a node to the OUT node in the S-graph. On a processor, the node label
corresponds to the minimum number of class T or B instructions that need to be
executed in order to read the contents of the specific register. The nodes of the
example of Figure 2.12 are labeled as follows: the OUT node is labeled 0, while R1,
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Table 2.1: Summary of the registers & instructions in Figure 2.12.

R1 Accumulator (ACC)
R2 General Purpose Register
R6 Program Counter (PC)

I1 Load R1 from the main memory using immediate addressing. (T)
I2 Load R2 from the main memory using immediate addressing. (T)
I4 Add the contents of R1 and R2 and store the results in R1. (M)
I7 Store R1 into the main memory using implied addressing. (T)
I8 Store R2 into the main memory using implied addressing. (T)
I9 Jump instruction. (B)
I11 Left shift R1 by one bit. (M)

Algorithm 2.1 The node labeling algorithm.
1: assign label 0 to the OUT node;
2: K ← 0;
3: while there exist unlabeled nodes do
4: assign K + 1 to unlabeled nodes whose contents can be transferred to any

register(s) labeled K by executing a single class T or B instruction;
5: K ← K + 1;
6: end while

R2, and R6 are labeled 1. Node and edge labels are used during the test generation
process.

Fault models of processor functional-level are developed at a higher level of ab-
straction independent of the details of their implementation. The functional-level fault
models are the following:

• Register decoding fault model. Under the register decoding fault, the decoded
address of the register(s) is incorrect. Consequently, the wrong register(s) may
be accessed, or no register is accessed at all. In this case, the outcome retrieved
is technology dependent.

• Instruction decoding and control fault model. The processor may execute a
wrong instruction, execute some other instructions (including the original one),
or execute no instruction at all.
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• Data storage fault model. Single stuck-at faults may occur in any number of
cells in any number of registers.

• Data transfer fault model. A line in the data transfer path may be stuck at 1
or 0. Also, two lines in the data transfer path may be coupled.

• Data manipulation fault model. No specific fault models are proposed for data
manipulation units. Instead, it is assumed that the required test patterns can be
created according to the implementation.

• Processor functional-level fault model. The processor may possess any number
of faults that belong to the same fault model.

The goal of the test generation targeting the register decoding faults is to validate
that the register mapping function (fD : R → R, where R is the set of all registers)
is correct. The test generation flow is presented in Algorithm 2.2. Initially, the FIFO
queue Q is initialized with the set of all registers such that registers with smaller
labels are in the front of Q. Set A contains the processed registers, consisting of the
first elements of Q. Afterwards, test generation is performed in two phases (write
and read), one register at a time. In the write phase, all the registers in set A are
written with ONE (all ones), and the first register in Q, denoted by Rnext, is written
with ZERO (all zeros). The required write operation for each register is the shortest
sequence of class T or class B instructions required to write the target register. In
the read phase, registers in set A are read in the order of ascending labels. Then, the
content of Rnext is read out. Similarly, the required read operation for each register
denotes the shortest sequence of class T or class B instructions required to read the
targeted register.
The test generation algorithm in Algorithm 2.2 assures that all the registers have

disjoint image sets under the register mapping function, thus achieving its one-to-
one correspondence. The generated test program is capable of finding any detectable
fault in the fault model for the register decoding function. One example of a possible
undetectable fault is the concurrent occurrence of fD(Ri) = Rj and fD(Rj) = Ri.
For the detection of instruction decoding and control faults, let Ij be the in-

struction to be executed. To simplify the test generation, we assume that the labels
of class M instructions are no greater than 2 and that all class B instructions have
the label 1. Only class T instructions can have labels greater than 2. The faults in
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Algorithm 2.2 Test generation for register decoding faults.
1: Q← sort(R);
2: Rnext ← dequeue(Q);
3: A← {Rnext};
4: while Q ̸= ∅ do
5: for all Ri ∈ A do
6: append write (Ri, ONE) to test program;
7: end for
8: Rnext ← dequeue(Q);
9: append write (Rnext, ZERO) to test program;
10: Q′ ← sort(A);
11: while Q ̸= ∅ do
12: append read (dequeue(Q′)) to test program;
13: end while
14: append read (Rnext) to test program;
15: A← A ∪Rnext

16: end while
17: repeat steps 1-16 with complementary data;

which no instruction is executed at all is denoted by f(Ij/∅). The faults in which the
wrong instruction Ik is executed instead of the instruction Ij is denoted by f(Ij/Ik).
The faults in which some other instruction Ik is also executed along with Ij are each
denoted by is denoted by f(Ij/Ij + Ik).

Algorithm 2.3 shows the order of tests appliance. The order of the faults detec-
tion is highly important in order to ensure fault coverage. Tests are applied so that
the knowledge gained from testing instructions of lower labels is utilized for testing
instructions with higher labels.

Let Ij with label(Ij) = 2. In order to detect the f(Ij/∅) fault, O1 is written to
destination register Rd of instruction Ij using a class T or class B instruction. Then,
proper operand(s) are written to Ij’s source registers, such that when Ij is executed,
it produces O2 (O2 ̸= O1) in Rd. Afterwards, Ij is executed and Rd is read with the
expected output is O2. We define the set of source registers for an instruction as the
set of registers that provide the operands for that instruction during its execution.

In order to detect the f(Ij/Ik) faults consider that label(Ij) = label(Ik) = K ≥ 3
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Algorithm 2.3 The order of test generation for instruction decoding and control
function.
1: K ← 1;
2: for K = 1 to Kmax do
3: apply tests to detect f(Ij/∅), f(Ij/Ik) and f(Ij/Ij + Ik), where label(Ij) =

label(Ik) = K;
4: apply tests to detect f(Ij/Ij + Ik), where 1 ≤ label(Ij) ≤ K, label(Ik) = K + 1,

and K < Kmax;
5: apply tests to detect, where K + 1 ≤ label(Ij) ≤ K, label(Ik) = K;
6: end for

and that instructions Ij and Ik have the same destination register. Then, instructions
Ij and Ik are class T instructions, and they have only one destination register each.
Initially, O1 and O2 (O1 ̸= O2) are written to the source registers of instructions
Ij and Ik, respectively. Then, Ij is executed, and Rd is read for K times with the
expected output being O1. In the end, Ik is executed and Rd is read with the expected
output being O2. If O2 is really stored in the source register of Ik at the beginning of
the procedure, f(Ij/Ik) will be detected during the first execution of Ij read of Rd.
However, because of the faults involved in instructions used to write O2 in Ik’s source
register, O1 may have been stored in the source register of Ik. In this case, f(Ij/Ik)
will not be detected. In the worst case scenario, instruction Ij will be executed K

times to achieve the detection of f(Ij/Ik).
In order to detect f(Ij/Ij + Ik) faults, an example is when:

1 ≤ label(Ij) ≤ K,

label(Ik) = K + 1,

K ≥ 2.

Ik is a class T instruction, and the destination registers Rj and Rk of Ij and Ik, re-
spectively, are different. When the label of Ik’s source register is less than K , different
operands O1 and O2 are first written to Ik’s source and destination registers, respec-
tively. Then, Ik’s source register is read, and the expected output is O1. Finally, Ij is
executed and Ik’s destination register is read, and the expected output is O2.
For the detection of data storage and storage function faults, there are different

test generation procedures depending on the class which the involved instruction
belongs.
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For instructions that belong to class T, let’s assume a sequence of instructions
Ij1, Ij1, . . . , Ijk. Their associated edges form a directed path in S-graph from node IN
to node OUT. All paths of this kind should be tested. In the specific path, initially Ij1

is executed with operand O1. Afterwards, the remaining instructions are executed and
the expected output is O1. If the data transfer path width is 8, then the test procedure is
repeated for the following O1 configurations: 11111111, 11110000, 11001100, 10101010.

For instructions that belong to class M, we will use instruction I4 of Table 2.1
as an example. See Figure 2.12 for the involved edges of I4. For I4, the paths from
ALU to R1 and from R1, R2 to ALU should be tested. For the first path, we use I1

and I2 to load R1 and R2 with O1 and all zeros. Afterwards, I4 is executed, followed
by instruction I7. The result is read and stored in R1. If the processor is an 8-bit
processor, to fully test the path, the procedure is repeated for the same following O1

configurations of the previous paragraph (complemented and uncomplemented). For
the paths from R1 to ALU, the register is loaded with O1, and R2 with all zeros. Then,
instructions I4 and I7 are executed and the expected output is O1. The procedure is
repeated for the following O1 configurations: 00000001, 00000010, . . . , 10000000. The
testing of the path from R2 to ALU is similar and not repeated here.

For instructions that belong to class B, we take as example the instruction I9. If
the address bus width is 8, instruction I9 should be executed with the following jump
addresses (in both complemented and uncomplemented forms): 11111111, 11110000,
11001100, 10101010.

No specific fault model is proposed for the data manipulation functions. In-
stead, given the test patterns for a data manipulation unit (ALU, shifter, etc.), the
desired operands and the results can be delivered to its input(s) and the output(s),
respectively, using class T instructions.

2.2.2 Processor Structural Fault Self-Testing

Processor Structural Fault Self-Testing techniques target structural faults, including
stuck-at and delay faults. These techniques are composed of two phases, the test
preparation phase and the self-testing phase.

In the test preparation phase, instruction sequences that deliver structural test
patterns to the inputs of the processor component under test and transport the output
responses to observable outputs are generated. A challenge for this test generation
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Figure 2.13: Processor self-testing setup [4].

is the I/O constraint imposed by instructions. The input constraints define the input
space of the component allowed or realizable by processor instructions. A fault is
undetectable, if none of its test patterns belongs in the input space. The output con-
straints define the subset of component outputs observable by instructions. A fault is
undetected at the chip level if its resulting errors fail to propagate to any observable
outputs. When the test generation doesn’t take into account these constraints, it may
produce test patterns that cannot be created by the processor’s instructions.

There are methods ([128, 129, 130, 131, 132]), where the extracted component I/O
constraints are expressed in the form of Boolean expressions or HDL descriptions
and are fed to ATPG for constrained component test generation. Afterwards, the
test program synthesis procedure maps the constrained test patterns to processor
instructions. Additionally to the test application instruction sequence, test supporting
instruction sequences may be added to set up the required processor state and to
transport the test responses to main memory.

In Figure 2.13 [4] the processor self-testing setup is presented. The test program
and its responses are stored in on-chip or cache memory. Therefore, the memory has
to be tested with standard techniques as memory BIST and repaired if necessary to
keep being functional. Then, an external tester loads the test program and data to
the on-chip memory. The processor is set up to execute the loaded test program and
then the test signatures are downloaded to the external tester for the test decision or
diagnosis.

2.2.3 Global Interconnect Testing

In modern SoC designs, a device must be able to perform core-to-core communi-
cations across long interconnects. The gate delay is constantly decreasing and as a
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result the interconnects must have also high performance in to order to achieve high
overall performance. As the cross-coupling capacitance and mutual inductance are
increased, the signals on neighboring wires may interfere with each other. This re-
sults at excessive delay or even loss of signal integrity. Many techniques have been
proposed to reduce crosstalk, but there are limited design margins and unpredictable
process variations. Therefore, crosstalk must also be addressed during manufacturing
test.
Testing for crosstalk effects should be performed at the rated speed of the CUT,

because of their impact on circuit timing. However, this may result to unacceptable
cost for high-speed testers. In [133], a BIST technique has been proposed in which an
SoC tests its own interconnects for crosstalk defects with the use of on-chip hardware
pattern generators and error detectors. However, the amount of relative area overhead
may be unacceptable for small systems. Because this method is a structural BIST
technique, utilizing this technique may cause overtesting and yield loss, because not
all test patterns generated are valid when the system is operated in normal mode.
Using the processor itself in order to execute self-test programs for its intercon-

nections is a viable solution for SoCs with embedded processors, as most of the
system-level interconnects are accessible to the embedded processor cores. During
the execution of these test programs, test vector pairs can be applied to the appro-
priate bus in normal functional mode of the system. If there are crosstalk-induced
glitches or delay effects, the 2nd vector of the pair becomes distorted at the receiver
end of the bus. This distortion can be stored by the processor in memory as a test
response. This can be unloaded by an external tester and used for off-chip analysis.
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Chapter 3

Research work

3.1 Research Directions

3.2 Research Objectives

3.3 Testing 3D-SoCs Using 2-D Time-Division Multiplexing

3.4 K3 TAM Optimization for Testing 3D-SoCs Using Non-Regular Time-Division-

Multiplexing

3.5 Fault-Independent Test-Generation for Software-Based Self-Testing

3.1 Research Directions

3.1.1 3D SoCs Testing

This research targets the reduction in test application time of 3D SoCs by exploiting
the high speed offered by TSVs. In Section 1.5, we have already described how 3D-ICs
prevail over traditional 2D integration techniques on various aspects. Therefore, the
effective testing of 3D SoCs under strict time and power constraints with the minimum
interconnection overhead is of high importance.

In Subsection 1.5.1 we explained why TSVs are the most promising choice for
3D-ICs. In the same subsection, we also described their disadvantages, which must
be taken into account while designing a 3D SoC. Therefore, only a limited number of
TSVs are used in any 3D design, and very few of them are available for test purposes.
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The low number of test TSVs creates a serious bottleneck for the TAM of the 3D-
ICs, which delivers high volume of test-data using a small number of horizontal
and vertical interconnects. In addition, the scan-chains of the cores support low shift
frequencies because they are not optimized for timing. Therefore, the highest rate at
which test-data can be transferred through the TAM is very low. On top of that, the
lower thermal conductivities of inter-tier and inter-metal dielectrics used in 3D-ICs
block the heat generated inside the stacks from reaching the heat sink [134]. As a
result, the scan shift frequencies are often further reduced to avoid violating power
and thermal limitations of 3D-ICs. Since the test-time for a 3D-IC is dominated by
the time needed for transporting test-data to various layers of the stack, the limited
number of TSVs adversely affects the test-time of 3D-ICs.

3.1.2 Processor-Βased Devices Testing

This research also targets the improvement of the defect screening of processor-based
devices. The deep sub-micron semiconductor technologies combined with advanced
architectural innovations have significantly improved the performance of SoCs. The
continually increasing demands of the market for higher computational performance
at lower cost and power consumption drive processor vendors to develop new mi-
croprocessor generations.

These technology advancements, however, introduce new challenges on processor-
based device testing. Especially when used in safety-critical applications, SoCs require
advanced testing techniques for screening defective devices. However, the strict design
constraints and the need to test the target devices at the normal mode of operation
impose the use of non-intrusive test methods [135]. In addition, any test applied in-
the-field should not compromise the internal state of the Device Under Test (DUT)
[136]. Therefore, design-for-testability solutions are complemented with functional
solutions, such as SBST for processor-based ICs and SoCs.

SBST concept was presented in Figure 1.16. SBST is completely autonomous, as
it does not require the assistance of any ATE. Moreover, it is applied exactly at the
operating conditions, while at the same time it does not excite any redundant faults
avoiding thus over-testing the core under test. Finally, SBST facilitates the periodic
monitoring in-the-field with limited intrusiveness with respect to the normal-mission
operation [137, 138], and it does not compromise the internal state of the circuit [136].
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Despite their benefits, SBST methods suffer from several drawbacks. At first they
often target only the stuck-at fault model, which is inadequate for detecting many
defects. In addition, most SBST techniques are not systematic, therefore they require
extensive human intervention and long development times. Moreover, they involve the
CPU-intensive process of fault-simulating multi-million gate designs for multi-million
clock cycles using multiple fault models and specialized functional (non-scan) simula-
tors. Besides these deficiencies, the shrinking process technologies, the physical limits
of photo-lithographic processes and new materials introduce new defects that are
not always accurately modeled even by the most commonly used fault models [139].
Therefore, fast, low-cost and highly effective SBST-based techniques are required to
improve the defect screening of processor-based devices.
The organization of the chapter is as follows. Section 3.2 lists the main objectives

of this research work. Section 3.3 describes in detail a new TAM architecture and an
effective TDM-based test scheduling technique for 3D SoCs. Section 3.4 presents a
3D test architecture which overcomes the limitations of the previous method. Finally,
Section 3.5 presents the first fault-independent SBST method for processor-based
SoCs.

3.2 Research Objectives

Based on the research directions presented in Section 3.1, the following research
objectives were targeted in for this work:

• Introduce TAM improvements for 3D-ICs in order to:

– Reduce the test time.

– Minimize the interconnection overhead.

– Satisfy power and thermal constraints.

• Increase the defect coverage of processors, which are hard to test because of:

– Their complexity.

– The limited accessibility of their internal logic.

– The lack of test structures due to performance constraints.
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• Avoid time-consuming fault-simulations using multiple fault-models for testing
of processors.

3.3 Testing 3D-SoCs Using 2-D Time-Division Multiplexing

3.3.1 Background & Motivation

The 3D scan-chain design problem was investigated for the first time in [10], and
various wrapper designs were proposed in [78, 81, 140, 141]. In [79], a test method-
ology for pre-bond, known-good stack, and post-bond tests of 3D-ICs was proposed.
In [82], the authors presented a flow for fast scan-chain ordering under TSV con-
straints, while in [85, 11] test architectures for pre-bond and post-bond tests were
proposed. In [83] re-timing techniques were proposed and in [84] a modular testing
approach was presented for 3D-SoCs. In [142] a unicast-based multicast approach
for testing 3D Networks-on-Chips (NoCs) was presented. Various TAM optimization
methods were proposed in [48, 50, 51, 52, 143] and 3D-ICs with multiple towers were
considered in [80]. In [8], generalized test-time optimization methods were presented,
and a modular post-bond test strategy was presented in [144].

TSVs can transfer test-data in the GHz range, and they have been exploited in 3D
NoCs to create fast vertical communication interfaces between different dies in the
stack [145, 146, 147]. However, the test data are transferred using a small number of
TAM lines and test TSVs, while the shift frequencies are very low due to scan-chain
constraints (usually a few hundred MHz). This large gap between the maximum TSV
frequency and the shift frequencies prevents test engineers from exploiting the high
speed offered by TSVs to minimize test-time in 3D-ICs.

In order to bridge this gap we propose a 3D TAM that uses a small number of
TSVs and TAM lines to transfer big volumes of test-data to the various dies at a high
rate. This is achieved by the means of global test channels that start at the bottom
die and end at the topmost die. Global channels consist of TSVs in the passive layers
of the dies, and metal vias and buffers in the active layers of the dies. Test-data is
time-multiplexed at each global channel at the bottom die, and it is transferred to the
dies of the stack at the frequency supported by the TSVs. At each die the test-data
is time-demultiplexed and distributed at every core using the slow shift-frequency
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Figure 3.1: An example test-schedule with 8 TSVs.

permitted by the wrapper chain of the core and the TAM of the die.

The proposed TDM approach is applied in two dimensions, vertical and horizontal,
and it gives a new perspective for testing 3D SoCs. In the vertical dimension, the test-
data is time-multiplexed in a round-robin fashion and it is transferred through the
TSVs; at the 1st clock cycle, the test-data of the 1st die is transferred; at the 2nd
cycle, the test-data of the 2nd die is transferred, etc. In the horizontal dimension,
the test-data for different cores is time-multiplexed at the specific clock cycles that
the global channel transfers test-data for the die, and it is transferred horizontally to
reach the cores of that die. The vertical TDM depends on the frequency supported
by TSVs, while the horizontal TDM depends on the shift-frequency supported by the
scan-chains of each core.

Example 1. Consider an example 3D-IC with 3 dies and 5 IWLS [148] cores: tv80,
ac97, aes_core (die-1), mem_ctrl (die-2) and usb_funct (die-3). In Tables 5.3, 5.4 (see
Section 5.1.2) we report the total average power consumption P and the test-time
T for different shift frequencies SF and different number of wrapper chains (WC)
WC = 8, 16, 32. The first shift-frequency reported for each core is the maximum
shift-frequency supported by the scan and wrapper chains of the core. All 5 cores are
connected to a single TAM structure consisting of three 8-bit input and three 8-bit
output buses, one pair at each die, which are vertically connected using 8+8 TSVs.
With any conventional (non-TDM) method and without any power constraints, test-
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Figure 3.2: An example test-schedule with 16 TSVs.

data will be transferred at 222 MHz, which is the highest shift-frequency supported
by every core. The total test-time is equal to almost 1 ms, as it is shown in Figure 3.1
(each block corresponds to a single test for one core with height proportional to the
shift-frequency used and length proportional to the time taken by the corresponding
test). Let us now assume that the TSVs can transfer test-data at 600 MHz. With the
two-dimensional TDM technique, the test-data is vertically multiplexed at 600 MHz
(each die receives test-data at 200 MHz). The test-data of the cores at each die is
horizontally multiplexed by further dividing the frequency of 200 MHz. Therefore,
the core mem_ctrl is tested in parallel with the other cores and the total time drops to
0.45 ms (see Figure 3.1). The results are similar when the number of TSVs increases
to 16, as it is shown in Figure 3.2. Note that TDM reduces by a factor of 2x the
number of TSVs and the routing resources (number of TAM lines) compared to the
non-TDM case for the same test time, or alternatively it reduces by a factor of 2x the
test time compared to the non-TDM case for the same number of TSVs and similar
routing resources. �

TDM permits a flexible control of the shift-frequency in order to maintain paral-
lelism under power constraints. For example, when the average power constraint for
testing each die is 6.8 mW, aes_core and usb_funct violate the power constraint for any
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Figure 3.3: An example test-schedule with 8 TSVs and power constraints.

shift-frequency above 110 MHz. Therefore, with the traditional non-TDM approach,
the maximum shift-frequency drops to 110 MHz, and the corresponding test-time is
equal to 2 ms as shown in Figure 3.3. However, by using the two-dimensional TDM,
the shift-frequency for each core can be set independently of the other cores. There-
fore, mem_ctrl is tested at 200 MHz, usb_funct, aes_core, ac97 are tested at 100 MHz
and tv80 is tested at 50 MHz without violating power constraints. As a result, the
test-time is much lower than the Non-TDM case (0.72 ms), while there is available
space to schedule additional tests.

3.3.2 Two-Dimensional Time-Division Multiplexing

The proposed TAM architecture is shown in Figure 3.4. Let NDies be the number
of dies in the stack. The ATE channels are partitioned into groups, and each group
loads one parallel-to-serial register of length L at the bottom die of the stack with
frequency FATE. This register transmits serially the test-data through the Global TAM
line using Global Test Clock (GTC). W parallel global TAM lines form a global channel
of widthW , which distributes the test-data at the local TAMs. GTC is a periodic signal
with frequency FGTC = FATE × L, L ≥ 1, which is divided into NDies local test-clocks
LTC1, LTC2, . . . , one for each layer (vertical TDM). The frequency of LTC , FLTC , is
lower or at most equal to the highest frequency supported by the TAM of the layer.
FLTC is divided at the local TAM at each layer (horizontal TDM) in order to shift
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Figure 3.4: Global TAM circuitry of TDM architecture.

test-data into each core at the frequencies supported by the scan-chains under the
power constraints of the core.

Example 2. Figure 3.5 shows one instance of a local TAM for the first tier of
the 3D SoC used in Example 1. Each layer is assigned one cyclical shift-register of
length NDies, which divides FGTC by the number NDies. Specifically, the pattern “001”
rotates inside the register and it drives LTC1 (die-1), LTC2 (die-2) and LTC3 (die-3)
with one active edge every NDies active edges of GTC. Then, each core is assigned
one cyclical shift-register with length equal to 2N , which divides FLTC by a value
equal to 20, 21, 22, . . . 2N . The scan shift-frequency for every core is set by loading
appropriate non-overlapping patterns into the registers. All shift-registers of dies 1,
2, 3 are clocked using LTC1, LTC2, LTC3 respectively (with frequency FLTC) and
provide clock signals with frequencies equal to FLTC , FLTC/2 and FLTC/4. At every
cycle of LTC, W test bits are available at the common global and local bus. Since the
patterns loaded into the registers are non-overlapping, only one layer is active at each
GTC cycle and only one core loads the test-data from the bus at each LTC cycle. As
shown in Figure 3.6, FLTC = FGTC/3 and the shift-frequency for Cores A, B and C
is set equal to FLTC/4 (FGTC/12) with patterns 0001 and 0100, and FLTC/2 (FGTC/6)
with pattern 1010, respectively. �
Figure 3.7a shows the structure of a global channel carrying one test-bit in the 3D
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Figure 3.5: Local TAM structure of TDM architecture.

Figure 3.6: Clock frequency division of TDM architecture.

stack of Examples 1-2. All dies face downwards and they are connected face-to-back
(other stacking orientations can be used as well). The global channel begins from
the first metal layer of the bottom die, and it goes through a TSV and two micro-
bumps to reach the top metal layer of the middle die. Then, through successive metal
vias it reaches the first metal layer and the transistor layer of this die, where it is
connected to the local TAM structure. Then through the next TSV and micro-bumps
it is connected to the top metal layer of the third die. At each die, the signal of the
global channel is transmitted both upwards and to the local TAM using buffers. The
global channel ends at the first metal layer of the top-most die, where it is connected
to the local TAM structure. The reverse direction is used for global channels carrying
test responses out of the IC.
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Figure 3.7: Global channel: (a) structure, (b) electrical model.

FGTC can be as high as 3.45 GHz for stacks with 3 dies, 2.70 GHz for stacks with
4 dies and 2.27 GHz for stacks with 5 dies. This was determined through electrical
simulations using the RC model and RC parameters reported in [149, 150] for TSVs of
diameter 5 µm, and micro-bumps of 10 µmwidth as shown in Figure 3.7b. The digital
gates are implemented in 45 nm technology and buffers with 6x driving strength are
used. Rtot = 136 mΩ, Ctot = 60 fF represent the total resistance and capacitance of
the TSV and the micro-bumps. The inductance of the TSV and the micro-bump
can be ignored because the global channels operate in the low-GHz frequency range
and very short die-to-die interconnects are considered (50 µm) [151]. The maximum
shift-frequency for the IWLS cores was found using timing simulation to be in the
range of [222, 400] MHz (see Tables 5.3, 5.4).

The proposed TAM architecture is modular and it can be used for testing both
partial and complete stacks. In the particular case of partial stacks, each global test
channel ends at the die that is at the top of the stack. For pre-bond testing the circuit
at the bottom die that multiplexes test-data from the ATE must be replicated at each
die of the stack. This circuit is very small, and it can be easily bypassed during post-
bond testing. Finally, for 3D-ICs with their clock network split across different tiers
the redundant pre-bond clock tree is used [106] for connecting each core with the
clock generated by the TDM scheme. If the pre-bond clock tree is not available then
the test clock inputs stemming from the other tiers must be bypassed and driven by
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Table 3.1: Test times for Example 3.

SF A B C D

F 250 150 200 180
F/2 500 300 400 360
F/4 1000 600 800 720

Figure 3.8: 1st test schedule for Example 3.

the TDM clock signal.

3.3.3 Test Scheduling Method

The proposed test-scheduling method is based on rectangle-packing (RP) enhanced
with simulated annealing (SA). For every core Ci and every shift-frequency Fk we
consider one candidate test τCiFk

, which is modeled as a rectangle RCiFk
with width

Fk and height TCiFk
(TCiFk

is the test-time corresponding to shift frequency Fk). Ge-
ometrically, the set of candidate tests for each core correspond to a set of rectangles
with equal areas, and widths below a certain limit that corresponds to the maximum
allowed shift-frequency in the scan-chains of the core. Every global channel is as-
signed one virtual bin for every local bus at each die. The width of each bin is set
equal to FLTC to ensure that rectangles with aggregate frequency higher than the
frequency-capacity of the bus cannot be placed in parallel in the bin. The overall
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Figure 3.9: 2nd test schedule for Example 3.

occupied height in a virtual bin represents the test-time for the corresponding global
channel, therefore the maximum of the derived test times, TST, per TAM bus is the
SoC test-time. The selection of the shift frequency of each core affects the total test
time.

Example 3. Table 3.1 presents the test times of cores A, B, C and D for Shift
Frequency (SF) F, F/2 and F/4. If every core is tested with shift frequency F/4 the
total test time is 1000 (Figure 3.8). In Figure 3.9 we present a different test schedule,
where each core using a different shift. The total test time of the 2nd schedule is 810,
achieving 19% reduction on 1st schedule. �

The objective of RP is to pack a predetermined set of rectangles (one for each
core) into the virtual bins, such that the occupied height in each bin is minimum.
The packing of the rectangles is based on the Bottom-Left rule (BL) [152], where each
rectangle is placed at the bottommost and leftmost position in the bin. Each rectangle
is assigned a score for each possible placement of that rectangle in the virtual bin; the
lower the y-coordinate of the top side of the rectangle at each position, the higher is
the score for this particular placement. The rectangle with the highest score is placed
in the bin and this procedure is repeated for the remaining rectangles.

The RP approach is very effective in minimizing the test-time for any given set
of rectangles. However, different shift frequencies correspond to differently shaped
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Figure 3.10: An example test-schedule.

rectangles for every test and they greatly affect the packing of the rectangles inside
the bins. Unfortunately, this aspect is not addressed by RP. One very effective approach
for identifying the best shift-frequency for each core is simulated annealing [153]. At
first, one set SCi

with all candidate tests τCiFk
is formed per core Ci by varying Fk

according to the frequencies provided by TDM. From each set SCi
one test is selected

in order to form a state for the SA approach. The initial state sinit includes from each
set SCi

the test with the maximum rated scan-frequency. The SA algorithm proceeds
with the generation of a neighboring state s1 for sinit, then a neighboring state s2 for
s1, etc. Each such state corresponds to a different combination of shift frequencies for
the various cores, and thus it better exploits the potential of RP to minimize test-time.

To create a neighboring state sp+1 for state sp, r randomly selected candidate
tests from state sp are substituted with new differentiated candidate tests taken from
the correspondent sets SCi

. The SA algorithm is driven by the “acceptance probability
function, AP”, which is derived from the Maxwell-Boltzmann distribution [154] and
determines if a state s will be accepted or not. AP depends on the test-time TST (sp)
of the previous state sp, the test-time TST (sp+1) of the next state sp+1, and the process
temperature THP . We note that THP is not related to any thermal activity of the IC
and it determines the likelihood of accepting states that are inferior to the previous
states [153]. THP is calculated by the expression THP = THInit

P · CR, where THInit
P

is the initial temperature and CR is the cooling rate (CR < 1) used to reach a final
temperature THFinal

P , (THInit
P > THFinal

P ). A new solution is always accepted if it
is better than the previous one. The AP value of a solution that is worse than the
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Table 3.2: Power consumption for Example 5.

SF A B C D

F 400 260 380 320
F/2 200 130 190 160
F/4 100 65 85 80

previous one decreases a) with time (cooling process), and b) with the “distance”
between the new (worse) solution and the old one. When THP reaches the value
of THFinal

P the SA algorithm ends and the final state is considered as the one that
enables the RP algorithm to provide the lowest possible TST. Similar to [155, 156]
we set THInit

P = 400, CR = 0, 999, r = 3 and THFinal = 0, 001, because they provide
consistently good results in short computational times.

Example 4. Figure 3.10 shows the representation of the test-schedule shown in
Figure 3.1. Three virtual bins are used, one for each die, and the width of each bin
corresponds to shift-frequency equal to 200 MHz. The left bin corresponds to die-1,
the middle bin corresponds to die-2 and the right bin corresponds to die-3. The
rectangles below the virtual bins represent the set of tests for each core for 200 MHz,
100 MHz and 50 MHz. Note that the test for any core at 200 MHz has the double
(quadruple) width and the half (quarter) height of the test for the same core at 100
(50) MHz. The SA algorithm selects a combination of rectangles that best fit into the
bins, and the RP algorithm places these rectangles inside each bin as shown in Figure
3.10. The height of the topmost rectangle among all virtual bins corresponds to the
test-time of the 3D SoC. �
When the dies of the stack are very unbalanced in terms of test data, the test-time

can be minimized by dividing the TDM frequency among the dies in a non-uniform
way. For example, when the volume of test data for the top die in Figures 3.4, 3.5,
3.6 is much larger than the volume of test data for the middle and bottom dies, then
the 600 MHz of the TDM frequency can be split as follows: 300 MHz to the top die,
and 150 MHz to each one of the middle and bottom dies. Such an approach increases
the utilization of the bandwidth of the global TAM. Note that we use one local TAM
at each die in the stack because it has been shown in [155, 156] that the test time is
minimized when the TAM bus is connected to large numbers of cores.

The test operation of 3D-ICs is limited by power and thermal constraints to avoid
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Figure 3.11: Test schedule for Example 5 under power constraints.

IR drop and high temperatures [157]. To this end we propose a power- and thermal-
aware variation of the test-scheduling approach. At first, before we place rectangle
RCiFk

in the bin we ensure that it does not increase the average power consumption
beyond the specified bounds. Let STCiFk

be the potential start time of test τCiFk
and let

TCiFk
be the length of τCiFk

. Then, the average power consumption of every test τCjFl

that is already scheduled during the period [STCiFk
, STCiFk

+ TCiFk
] is added to the

average power consumption of τCiFk
at the execution interval [STCiFk

, STCiFk
+ TCiFk

]

of τCjFl
. If the tests scheduled during this interval violate the power consumption

limit, the period [STCiFk
, STCiFk

+ TCiFk
] is rejected for test τCiFk

.

Example 5. We use the same cores of Example 3 and we present in Table 3.2 the
power consumption of cores A, B, C and D for Shift Frequency (SF) F, F/2 and F/4.
If the power consumption is constrained in 170mW for the die, then an acceptable
test schedule is presented in Figure 3.11. In this test schedule, the total test time is
2160, which is 2.6× the test time of the test schedule presented n Figure 3.9. The
shaded area represents the frequency that is not exploited at all. �
Furthermore we exploit the capability of the shift-frequency to control the ther-

mal activity of each core. Specifically, by reducing the shift frequency the switching
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activity at the internal nodes and the scan-chains (which is independent of the shift-
frequency) is spread over a long period of time and the thermal activity of the core
reduces. Even though the testing process is prolonged for those cores, TDM exploits
the frequency released on the TAM to increase the shift-frequency and reduce the
test-time of other cores. Additional test-time reductions can be achieved by the means
of low-power DFT techniques, which reduce the power dissipated at each core during
testing and increase thus the number of cores tested in parallel under predetermined
power and thermal constraints.

Initially, the scheduler runs with power constraints and the generated schedule is
evaluated using a thermal simulator. Thermal constraints are introduced for cores that
violate thermal limits, by removing all the candidate tests corresponding to the highest
(remaining) shift-frequency for these cores. Then the scheduler is being invoked again
using the reduced set of tests for the thermally constrained cores, and the same process
is repeated. For example, if core ac97 (see Figure 3.10) is thermally constrained then
the test for ac97 at 200 MHz is removed from the set of candidate tests for this core.
If it violates the thermal constraint again then the test at 100 MHz is also removed.
This process terminates when the test-schedule generated does not violate the thermal
constraint of any core.

Even though this heuristic is very efficient it does not guarantee optimality. Con-
sequently there are cases where the proposed heuristic will not be able to minimize
the test time. In such cases the test time can be further reduced by considering also
the shift frequency of the cores at the vicinity of the hot cores. In that way the power
dissipation and the thermal activity of the nearby cores will drop, and the temper-
ature of the hot cores will further reduce. At the same time, the TDM scheme will
exploit the available bandwidth in order to schedule more tests in parallel and reduce
the overall test time.
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3.4 K3 TAM Optimization for Testing 3D-SoCs Using Non-Regular

Time-Division-Multiplexing

3.4.1 Introduction

In this work, daisy-chains are utilized to efficiently connect the various cores to the
global channels, instead of using the long, expensive and slow bus interconnections.
In order to overcome the inherent incompatibility of TDM and daisy-chains, a novel
TAM architecture is proposed to deliver the benefits of TDM to the cores of each
layer, and a fully automated design process is proposed to minimize the total in-
terconnection overhead of the TAM structure and the time required for testing each
layer. The proposed K3 optimization process is based on two very effective heuristics,
the Kruskal algorithm [158] and the Complete Karmarkar-Karp heuristic [159], and
it supports non-regular division of the frequency among the layers of the stacks. The
proposed design-automation process eliminates the need for complex test-scheduling
algorithms, and it is suitable for tight time-to-market constraints.

The organization of the rest of the section is as follows. Section 3.4.2 presents
background material and motivation. Section 3.4.3 presents the 3D TAM architecture,
while the Sections 3.4.4, 3.4.5 present the TAM optimization. In Section 5.1.3 an
evaluation of the proposed method is presented.

3.4.2 Background & Motivation

TSVs serve as fast vertical communication interfaces between different dies in 3D
stacks [145, 146, 147]. 2D-TDM [18] uses global test channels that extend from the
bottom to the topmost die by using TSVs in the passive layers and metal vias-buffers
in the active layers of the dies. Global channels support frequencies in the range
of 2.27 GHz for stacks with 5 dies, up to 3.45 GHz for stacks with 3 dies [18].
Test-data are time-multiplexed and they are transferred to the dies in a round-robin
fashion, using the frequency supported by the TSVs i.e. the 1st, 2nd, etc die receives
the test data at the 1st, 2nd, etc clock cycle respectively. At each die the test-data are
time-demultiplexed and distributed to the cores using the slow shift-frequency of the
scan-chains.

Unfortunately, time-division-multiplexing requires a bus-based TAM infrastruc-
ture to support the direct connections between a) the input global channels and the

75



Local TAM
(die 2)

From Input Global 
TAM Channel

LTC2

Core A1

Wrapper A1

Core A2

Wrapper A2

Core A3

Wrapper A3

Core B1

Wrapper B1

Core B2

Wrapper B2

Core B3

Wrapper B3

0 1 0 1

1 0 1 0

To Output Global 
TAM Channel

IR2 Daisy Chain

W
W

W

CR2
1

CR2
2

clk2
1

clk2
2

DC2
1

Daisy Chain DC2
2

W
PI

-A
1

W
PI

-A
2

W
PI

-A
3

W
PI

-B
2

W
PI

-B
1

W
PI

-B
3

W
PO

-A1

W
PO

-A2

W
PO

-A3

W
PO

-B2

W
PO

-B1

W
PO

-B3

W

W

W

Figure 3.12: Local TAM structure of 3D TAM architecture.

WPIs, and b) the output global channels and the WPOs of the cores. Such long inter-
connections impose high routing overhead and excessive delays over the long metal
lines and they require many buffers in order to travel through the entire die. More-
over, as shown in [18] global channels are more effective when they are time-shared
by large numbers of cores (higher bandwidth-utilization is achieved), which further
increases the routing overhead and the interconnection delays of the buses. As a
result, the shift frequencies at the local TAMs are much lower than the frequencies
supported by the global channels.

The proposed TAM architecture uses short and fast daisy-chains instead of the
long and slow buses. The test-data are time-multiplexed at the global channels,
and they are transferred with high frequencies to the dies, where they are time-
demultiplexed and distributed to the daisy-chains. Every daisy-chain uses a divided
version of the test clock to shift the test-data. At every time instance one core is
selected at every daisy-chain to operate in test mode. At the same time instance the
rest of the cores operate in bypass mode to transfer test-data from the input global
channel to the selected core under test, as well as the responses of this core to the out-
put global channel, where they are time-multiplexed with test responses from other
layers. The time for testing the stack is equal to the maximum test-time among the
layers, which is usually the test time of the most heavily-loaded layer. Therefore, the
frequency of the global channels is divided non-regularly among the different layers
(vertical direction) and the different daisy-chains (horizontal direction), in order to
minimize the overall test-time.
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3.4.3 3D TAM Architecture

The global TAM circuitry of the proposed TAM architecture is shown in Figure 3.4
for a 3D-SoC consisting of three dies (Ndies = 3). At the lower level the test-data enter
the stack and they are transferred through a small number of TSVs to the various dies
using high frequency. At every level of the stack the test-data are demultiplexed and
they are shifted into the die using a division of the global-channel frequency. Then,
they are distributed to multiple daisy chains using a second level of demultiplexing,
and they are shifted into the cores by further dividing the shift frequency. During the
shift/capture operations the daisy chains at every die are independently controlled
using separate test clock and shift enable signals.

The ATE channels load one parallel-to-serial register at the bottom die of the
stack with frequency FATE , which transmits serially the test-data through the Global
TAM line synchronously with Global Test Clock, GTC (note that when FATE ≥ FGTC

the parallel-to-serial register can be omitted and each ATE channel drives directly
one global TAM line). W parallel global TAM lines form a global channel of width
W , which distributes the test-data to the local TAMs using the local test-clocks LTCl

generated for layers l = 1, 2, . . . , Ndies. The local test clocks are divided versions of
GTC generated by the global circular shift registers GCR1, GCR2, . . . , GCRNdies

. These
registers circulate non-overlapping bit patterns that permit each clock cycle of GTC

to be applied at a single die each time.

At every cycle of GTC W test bits are transmitted over the global channel, and
they are distributed among the interface-registers IR by using the local test clocks.
These W test bits are stored into one selected interface register IRl upon the active
clock edge of LTCl. Let NDl be the number of the daisy-chains DC l

1, DC l
2, . . . , DC l

NDl

at layer l. The test-data stored into IRl are distributed among these daisy-chains by
further dividing the clock LTCl into clock signals clkl

1, clk
l
2, . . . , clk

l
NDl

(clkl
j is used to

shift the test-data from IRl into DC l
j). Similar to the division of GTC , the division of

LTCl is achieved by using circular shift registers with non-overlapping bit patterns,
which enable LTCl to be applied on one daisy-chain at a time. For example, in
Figure 3.12 the test-data are alternatively shifted into DC2

1 , DC2
2 by the means of two

non-overlapping clocks clk2
1 and clk2

2 generated using circular registers CR2
1 and CR2

2

(similar register are used at every layer). Both of these registers shift non-overlapping
patterns with the frequency of LTC2, and generate two periodic signals with half the
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frequency of LTC2. Each logic value equal to ‘1’ that reaches the rightmost cell of
every circular register CRl

j enables the test-data stored at IRl to be shifted into DC l
j.

DC l
j connects a number of cores at layer l as follows: the WPI of the first core

is driven by the local demultiplexing mechanism of the die, the WPO of the last
core drives the output multiplexing mechanism of the die, and the WPIs (WPOs)
of every intermediate core are connected to the WPOs (WPIs) of their predecessors
(successors) cores. At every DC l

j one core is tested at each time instance, and the
test-data are shifted into this core by configuring the wrappers of the rest of the
cores (at the same chain) in bypass mode according to the IEEE 1500 standard [24]
(both the parallel and serial ports of the wrappers are connected in daisy chains in
order to support compatibility with the IEEE 1500 standard). The test-time T (DC l

j)

for shifting all test-data into DC l
j is equal to the aggregate test-time of all the cores

connected on chain DC l
j. The design objectives of the TAM are the following:

• GTC must be divided among the die-layers and the daisy-chains in a non-
regular manner, which depends on the test load and the constraints of each
layer/daisy-chain.

• Multiple daisy-chains must be used at each layer in order to exploit the high
TDM frequency of the global channels.

• The aggregate test-times of the cores at all daisy chains must be as balanced as
possible.

• The interconnections of the daisy-chains among the cores must be as short as
possible.

Since these objectives are conflicting, we propose an optimization approach to resolve
them and optimize the TAM structure.

3.4.4 Layer-oriented 3D TAM Optimization

Let NCl be the number of cores C l
1, C

l
2, . . . , C

l
NCl

at layer l, and their test-times
TC(C l

1), TC(C l
2), . . . , TC(C l

NCl
) for a specific shift-frequency. The time TD(DC l

j) for
testing the cores of DC l

j is equal to the sum of their test-times. Since all daisy-chains
of layer l shift test-data in parallel (in a time-multiplexed manner) the test-time
TT (l) is equal to the highest test-time among all the NDl daisy-chains of layer l, i.e.
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TT (l) = max
j∈[1,NDl]

{TD(DC l
j)}. TT (l) is minimized when the NDl daisy-chains are as

balanced, in terms of test-times TD(DC l
j), as possible. This problem is equivalent to

the partitioning of the set of numbers TC(C l
1), TC(C l

2), . . . , TC(C l
NCl

) into NDl sub-
sets, with the sum of the numbers in each subset be as nearly equal as possible to the
sum of each of the other subsets (each subset corresponds to a set of cores connected
in a separate chain).

The partitioning of the numbers into a) two, b) more than two sets can be tack-
led by the Karmarkar-Karp [160] and the Complete Karmarkar-Karp (K2) [159]
algorithms respectively. Specifically, the numbers TC(C l

1), TC(C l
2), . . . , TC(C l

NCl
) are

sorted in decreasing order, and a search following a k-ary tree is applied (k = NDl).
At each level of this tree a different number is assigned, and at each branch point
one number is alternately assigned to one among the subsets. Each leaf of this tree
corresponds to a complete partition. Let t be the sum of all the numbers, s the current
largest subset sum, and d the difference of the best complete partition found so far.
If s− (t− s)/(k− 1) ≥ d then the current branch is terminated. In order to minimize
the time to find a good solution, at each branch the next number is put in one of the
subsets by following increasing order of their sums. Every complete partition with a
difference of zero or one is selected and the search is terminated. The K2 algorithm
is fast and provides very well balanced (in terms of test-time) daisy-chains, as it
optimally solves the general number-partitioning problem [159].

The K2 algorithm does not optimize the routing of the daisy chains as it does
not consider the physical placement of the cores on the floorplan. For instance, in
the daisy-chain of Figure 3.12 core A1 should precede core A2 (A1 → A2) instead
of the opposite, because WPOA1 is physically closer to WPIA2 than WPOA2 is to
WPIA1. Therefore, the cores of every daisy chain must be properly ordered in order
to minimize the routing overhead of the TAM structure. To this end the interconnec-
tion overhead between any pair of cores A, B of the same daisy-chain is estimated
based on the XY-coordinates of the WPIs and the WPOs of cores A, B on the floor-
plan. Specifically, the wire-length WL(Ai, Bi) of the connection between the ith bit of
WPOA with coordinates XAi

, YAi
and the ith bit of WPIB with coordinates XBi

, YBi

is estimated as the half perimeter (height plus width) of the minimum rectangle
enclosing these two points, i.e., WL(Ai, Bi) = |YAi

− YBi
| + |XAi

−XBi
|. Depending

on the routing congestion between these two points, this estimation can be a very
close approximation due to the Manhattan routing adopted by all routers. The total
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wire-length WL(A,B) for connecting WPOA to WPIB (core A precedes core B) for
a w-bit wide TAM is equal to WL(A,B) =

∑w
i=1WL(Ai, Bi).

For every pair of cores A, B that belong to daisy-chain DC l
j the values WL(A,B)

and WL(B,A) are calculated and a full directed weighted graph is generated as
follows:

• every node corresponds to one core assigned to DC l
j ,

• every directed edge A→ B and B → A corresponds to the connection between
A, B where A precedes B and B precedes A respectively,

• the weight of the edge A→ B and B → A is set equal to WL(A,B), WL(B,A)

respectively.

The optimization objective is to identify the minimum-weight spanning-tree of this
graph by the means of the Kruskal (K1) algorithm [158]. Kruskal finds the minimum
spanning tree of undirected graphs by adding increasing cost edges at each step [158].
On directed graphs the Kruskal algorithm selects the minimum cost edges A → B

that do not form cycles, and for every directed edge A → B selected it discards all
the outgoing edges from A to other nodes as well as all the incoming edges into B

from other nodes. The complexity of Kruskal algorithm for E edges and V nodes is
equal to O(E logV ), which is very low for the problem at hand where |V | is in the
order of a few tens to a few hundreds at the most.

3.4.5 Stack-oriented (K3) 3D TAM optimization.

The first step of the TAM optimization at the stack level (K3) is to divide FGTC into
local test frequencies F1, F2, . . . , FNdies

in a non-regular manner that depends on the
specific test load and the test constraints of each layer. For example, let us assume
that the three layers of the 3D SoC shown in Figure 3.12 require (approximately)
4/7, 2/7 and 1/7 of the test data respectively (we assume that all TAM structures
have the same bit-width). Then, FGTC is divided as follows: the circular shift regis-
ters GCR1, GCR2, GCR3 are 7-bit wide (7 is the common denominator of the ratios
4/7, 2/7 and 1/7), and they are loaded with the non-overlapping patterns “0101011”,
“1000100” and “0010000” respectively (each pattern has as many logic ‘1’ values as
the number on the nominator of the respective ratio). However, despite the fact that
F1 = 4/7×FGTC , two successive clock edges of GTC are applied at LTC1 (the last two
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Figure 3.13: GTC division in layers.

bits of the pattern “0101011” are both equal to ‘1’), therefore F1 switches between
FGTC (during the last clock cycle) and FGTC/2 (during the rest of the clock cycles).
In Figure 3.13 we present how LTC1, LTC2, LTC3 are generated based on GTC

and GCR1, GCR2, GCR3. In the cases that the higher value of F1 (FGTC in the case
at hand) cannot be supported by the local TAM design then another approximate
division is selected, like for example 4/8, 3/8, 1/8 for the case at hand.
After dividing FGTC into F1, F2, . . . , FNdies

the number NDl of the daisy-chains for
each layer l is set equal to NDl ≥ ⌈Fl(max)/SFmax⌉, where Fl(max) is the maximum
shift frequency supported by the daisy-chains at layer l and SFmax is the max shift
frequency supported by the cores of layer l. Then, the frequency for each daisy-chain
is set equal to Fl/NDl, the cores of every layer l are partitioned into NDl daisy-
chains by applying the K2 algorithm, and the cores are ordered by applying the K1

algorithm. Every ratio Fl/FGTC for layer l must be nearly equal to the ratio of the
test-data volume of layer l to the test-data volume of the whole stack.
The selected ratios provide nearly equal test-times for the dies TT (1) ≈ TT (2) ≈

· · · ≈ TT (NDies) and minimize the test time of the stack TTStack due to the par-
allel application of the tests using TDM, i.e. TTStack = max

1≤l≤NDies

{TT (l)}. However,
these ratios are very often not practical for frequency division, while there are also
power constraints that prevent parallelization of certain tests. As a result, many values
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Figure 3.14: Cores layout for Example 1.

Table 3.3: Cores test time for Example 1.

Core Test Time

A 22 ms
B 23 ms
C 8 ms
D 1 ms
E 8 ms
F 5 ms
G 15 ms
H 4 ms
I 2 ms

TT (1), TT (2), . . . , TT (NDies) may deviate a lot from TTStack in practical applications.
Nevertheless, this deviation provides a tolerance range for the lower test times to be
increased without any impact on TTStack. This property is exploited to exchange cores
among the NDl daisy-chains with aim to shorten the long interconnections.

Let A → B be the longest daisy-chain connection of layer l. We begin from this
connection and we try to exchange one of the cores A,B with a core C of another
daisy-chain in order to replace this long connection with a short one. For all possible
permutations A↔ C and B ↔ C that do not violate the constraint TT (l) ≤ TTStack for
l = 1, 2, . . . , NDies, the new daisy-chains are generated by applying the K2 algorithm
and their total wire-length is evaluated as shown in Subsection 3.4.4. Among the
permutations that reduce the wire-length of layer l, the permutation that offers either
the highest wire-length reduction (criterion A) or the minimum increase of TT (l)
(criterion B) is selected, and the algorithm proceeds to the next permutation, until no
further permutations are possible.
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Example 1. In Figure 3.14 we present the layout of the cores composing a layer
of a 3D SoC and in Table 3.3 we present the test time of each core. When we apply
the K2 algorithm the two daisy chains are formed as presented in Figure 3.15 and
the total test time of each daisy chain is 44ms.
Afterwards, Kruskal algorithm is applied in order to define the sequence of the

cores in each daisy chain. In Figure 3.16, we represent the positions of WPIs and
WPOs on the layout with blue circles and red circles respectively. In Figure 3.17, we
present the full directed weight graph that is generated initially. Kruskal algorithm
selects the sequence of the cores step by step as presented through Figures 3.18-3.25.
In Figure 3.26 the sequence of the cores for both daisy chains is presented. At

the stack-oriented 3D TAM optimization, if we exchange cores C, D, as presented in
Figure 3.27 the total wirelength reduces, while the test time is increased from 44ms
to 51ms. �

Figure 3.15: K2 result for Example 1.

Figure 3.16: WPIs & WPOs of cores for Example 1.

The tests of the cores at each daisy-chain are scheduled in an order that adheres
to the power constraints of the layer. For example, in the case of a layer with two
daisy-chains the tests at each one of them are scheduled in reverse order of average
power dissipation, i.e., ascending order in one daisy-chain and descending order in
the other. If the power constraints are still violated, idle periods are inserted between
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Figure 3.17: Initial graph for Example 1.

Figure 3.18: 1st step of Kruskal algorithm for Example 1.

Figure 3.19: 1st edge selection of Kruskal algorithm for Example 1.

Figure 3.20: 2nd step of Kruskal algorithm for Example 1.
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Figure 3.21: 2nd edge selection of Kruskal algorithm for Example 1.

Figure 3.22: 3rd step of Kruskal algorithm for Example 1.

Figure 3.23: 3rd edge selection of Kruskal algorithm for Example 1.

tests, provided that TT (l) ≤ TTStack. If for a certain value of TTStack a solution that
adheres to both the wire-length and the power constraints of the design cannot be
found then TTStack increases by small steps and the K3 approach is applied repeatedly
until a solution is found. At each step the number of possible permutations among
the daisy-chains increases and the total wire-length drops. At the same time the
power violations are gradually resolved (more idle periods can be inserted between
the tests) thereby offering a trade-off between the test-time and the interconnection
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Figure 3.24: 4th step of Kruskal algorithm for Example 1.

Figure 3.25: 4th edge selection of Kruskal algorithm for Example 1.

Figure 3.26: Cores sequence generated by Kruskal algorithm for Example 1.

Figure 3.27: Daisy chains after permutation.
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Figure 3.28: Daisy chains without power constraints.

overhead under power constraints.

Example 2. The cores of the two daisy chains we presented in Figure 3.26 have
the power consumption presented in Figure 3.28. In Figure 3.28 there is no power
constraint for the layer. If we limit the power consumption of the die to 270mW, we
may change the order of the tests to satisfy the power constraint without increasing
the total test time (Figure 3.29). However, if the power consumption of the die is
further limited to 230 mW, we have to insert an idle period in the 2nd daisy chain
(Figure 3.30), which results to increase the total test time. �

The complexity of the optimization process is very low even for large stacks that
consist of thousands of cores (note that the optimization process is applied at every
layer separately and thus the running time of the proposed method depends on
the number of cores at each layer). The complexity is very low even for very large
future 3D stacks, because technology limitations favor the integration scaling at the
vertical instead of the horizontal dimension, limiting thus the potential number of
cores integrated at every layer of the stack.
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Figure 3.29: Daisy chains with power constrained to 270mW.

3.5 Fault-Independent Test-Generation for Software-Based Self-

Testing

3.5.1 Introduction

Based on the SBST paradigm, several semiconductor and IP companies provide nowa-
days self-test libraries with their products, which can be easily integrated by their cus-
tomer into the application code [161, 162, 163, 164, 165, 166]. The major challenge
in the development of these self-test libraries is the generation of small test-programs
that offer high fault coverage in short test-time [167, 168, 169]. SBST programs
can be generated manually [170], semi-automatically [171] or automatically, targeting
different processor architectures and fault models [172]. Various methods target mi-
croprocessors with caches [173], shared-memory schemes [174], floating-point units
[175] and dual-issue processors [176]. Deterministic techniques exploit the regularity
of sub-modules [177, 178, 179, 180, 181, 182, 183], while others use ATPG [184] and
evolutionary algorithms [184, 185, 186]. Several methods explore the application of
SBST to test peripheral modules [187, 188]. In [189] the effectiveness of SBST for a
given level of dependability is evaluated.

The organization of the rest of the section is as follows. Subsection 3.5.2 presents
background material and the motivation of this work. Subsection 3.5.3 presents the
basic test generation flow. Subsection 3.5.4 presents the test generation for high delay-
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Figure 3.30: Daisy chains with power constrained to 230mW.

defect coverage. In Section 5.2 the proposed method is evaluated.

3.5.2 Motivation

The large computational overhead, the long running times and the high test-generation
complexity prevent SBST methods from targeting other fault models than the stuck-at
fault model. As it is shown in Section 5.2, even the simple task of fault simulating
50Kbytes of test code on the OpenRISC OR1200 processor using commercial tools,
requires several days for stuck-at faults and even weeks for transition faults. By tak-
ing into account that test-generation is highly complex and even more CPU-intensive
than fault simulation, we understand why most SBST methods target only the stuck-
at fault model [136, 190, 172, 138, 169, 171, 175, 176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 189, 191].

Even though targeting multiple fault models is a rather unrealistic goal for SBST,
the defect coverage of the test programs can be enhanced by probabilistically evalu-
ating their potential to detect arbitrary defects without targeting any particular fault
model. Such an approach was proposed in [192, 193] for non-scan sequential cir-
cuits modeled at the register-transfer level (RTL). However, RTL models limit the
effectiveness of these methods for detecting silicon defects. Moreover, these methods

89



Figure 3.31: Logical circuit for Example 1.

Table 3.4: Signal probabilities for Example 1.

Input pattern z pe,0 pe,1 pf,0 pf,1 pz,0 pz,1

0000 0 0.1 0.9 0.2 0.8 0.886 0.114
0101 0 0.1 0.9 0.9 0.1 0.837 0.163
1111 1 0.8 0.2 0.9 0.1 0.396 0.604

require an ATE to apply the test sequences and to monitor the outputs at each clock
cycle, whereas SBST implies the observation of the content of the data memory at the
end of the test. Therefore, they are not suitable for SBST, which is by definition fully
autonomous and ready to be applied in-the-field without the need of any ATE.

Gate-level output-deviations were shown to be very effective in detecting silicon
defects in structural testing [194, 195, 196]. They are probability measures that reflect
the likelihood of error detection at circuit outputs and they are computed without
explicit fault grading, hence the computation is feasible for large circuits (the com-
putational cost grows linearly with the number of gates). Initially, a probability map,
the confidence-level (CL) vector, is assigned to every circuit gate. For every input
pattern, each gate output i is assigned signal probabilities p0i , p

1
i to be at logic 0

and 1, respectively. The CL vector Ri of gate Gi with m inputs has 2m components
r0...00i , r0...01i , . . . , r1...11i , each denoting the probability that the gate output is correct for
the respective input combination. For example, r11i denotes the probability that the
output y of the 2-input gate Gi is correct when the logic values at the inputs a, b of
the gate are set equal to ab = 11. Every 2-input logic gate Gi is assigned a CL vector
Ri = (r00i r01i r10i r11i ). Let Gi be a NAND gate. Then the CL vector can be used to
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define the probability that the output y is correct as follows:

p0y = p0ap
0
b(1− r00i ) + p0ap

1
b(1− r01i ) + p1ap

0
b(1− r10i ) + p1ap

1
br

11
i

p1y = p0ap
0
br

00
i + p0ap

1
br

01
i + p1ap

0
br

10
i + p1ap

1
b(1− r11i )

Note that p0y+p1y = 1. Signal probabilities can be computed for other gate types as well
[194]. The gate-level CL vectors can be generated from simple transistor-level failure
probabilities [194], or by using alternative ways, like layout information, inductive-
fault analysis [197], and failure-data analysis.

For any gate Gi let its fault-free output value for input pattern tj be d, with d ∈ 0, 1.
The output deviation ∆Gi,j of Gi for tj is defined as P d′

Gi
(d′ is the complement of

d), and it is a measure of the likelihood that the gate output is incorrect for input
pattern tj. The deviation values at the circuit outputs are indicative of the probability
for arbitrary defects to be detected at these outputs (the higher is the deviation value
at an output, the higher is the likelihood of observing an error at the corresponding
output).

Example 1. Figure 3.31 shows a circuit consisting of three gates G1, G2, and G3,
with two different confidence level vectors (R1 and R2) assigned to the NOR and
NAND gates [194].

R1(NOR) = (0.8 0.9 0.9 0.9)

R2(NAND) = (0.9 0.9 0.9 0.8)

The first column of the Table 3.4 presents three test patterns and their respective fault
free value at output z. The next six columns present the signal probabilities computed
at the internal circuit nodes using the aforementioned confidence level vectors.

For each input pattern, the output-deviation is the probability for the output z to
have incorrect value, which is shown in bold in the two last columns of the Table
3.4. Note that the deviation at output z is higher when the last test pattern is applied
(it is equal to 0.396) as compared to the other two patterns (it is equal to 0.114 and
0.163 respectively). Therefore, the last test pattern (a, b, c, d) = (1, 1, 1, 1) is the most
promising for detecting defects as it provides the highest output deviation value. �
A probabilistic-fault model F for a combinational circuit C is defined as follows:

1) Each gate Gi can fail independently of other gates and 2) the fault behavior of C
is defined by Ri [194].
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Table 3.5: Fault events for Example 1 under input pattern 0000.

Fault event Fault event description Event probability Output value

E0 G1, G2, G3 fault-free 0.9× 0.8× 0.9 = 0.648 0

E1 G1, G2 fault-free, G3 faulty 0.9× 0.8× 0.1 = 0.072 1

E2 G1, G3 fault-free, G2 faulty 0.9× 0.2× 0.9 = 0.162 0

E3 G2, G3 fault-free, G1 faulty 0.1× 0.8× 0.9 = 0.072 0

E4 G1, G2 faulty, G3 fault-free 0.1× 0.2× 0.8 = 0.016 1

E5 G1, G3 faulty, G2 fault-free 0.1× 0.8× 0.1 = 0.008 1

E6 G2, G3 faulty, G1 fault-free 0.9× 0.2× 0.1 = 0.018 1

E7 G1, G2, G3 faulty 0.1× 0.2× 0.2 = 0.004 0

The probabilistic-fault model implies that the expected output values of the cir-
cuit in response to an input pattern are given by the signal probabilities at primary
outputs. We should note that the circuit behavior is assumed to be deterministic after
manufacturing and the probabilistic-fault model is only used during test develop-
ment.

The circuit presented in Figure 3.31 can fail in a number of ways according to the
probabilistic-fault model. Each failure way is termed a fault event. In Table 3.5, we
list the various fault events E1, E2, . . . E7 and the fault free event E0. Also, in Table 3.5,
we compute the probability associated with each fault event and the corresponding
output for input pattern 0000. The specific input pattern detects only the fault events
E1, E4, E5 and E6. Let E be the event that the pattern 0000 detects a fault in the
circuit. Then, it is

P [E] = P [E1

∪
E4

∪
E5

∪
E6]

= P [E1] + P [E4] + P [E5] + P [E6]

= 0.114

as the fault events are mutually exclusive. Note that the output deviation for input
pattern in Table 3.4 is also 0.114. This shows that the probability that an input pattern
will produce an observable error at output for the probabilistic-fault model is directly
proportional to the corresponding output deviation.

In this work we propose the first output-deviation-based metric that exploits the
architectural and the gate-level models of the processor to evaluate SBST sequences.
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Even though this metric can enhance the non-modeled fault-coverage of any SBST
technique, we apply it on the particular case of test macros [171, 191] that have been
proven to be very effective for stuck-at faults. A test macro is a sequence of assembly-
level instructions, with one instruction executing a specific function and additional
instructions that set the macro parameters (i.e., the operand values) and propagate the
results to observable memory positions. At the architectural level, instruction-based
test macros are synthesized that exercise various modules of the processor and observe
the responses. Multiple instances of every test macro are generated by combining
instructions that maximize the probability of detecting non-modeled faults, and by
randomly varying their operands. Each test macro instance (TMI) is evaluated by
means of a novel output-deviation-based metric computed on the gate-level netlist
of the processor, and the most effective ones are selected to synthesize test programs,
according to specific test-time and test-program-size constraints.

3.5.3 Basic Test Generation Flow

The basic test generation method consists of five steps and it is shown in Figure 3.32.
Initially, one test macro is manually generated for every instruction of the processor
following the guidelines presented in [171], which apply in every processor. This
instruction is called hereafter the Central-Instruction (CI) of the macro and it exercises
specific units of the processor. For example, the instruction add rc, ra, rb of the
OpenRISC OR1200 processor [198] executes the arithmetic operation rc = ra + rb (ra,
rb, rc are general purpose registers), and it exercises both the ALU and the control
unit. If the result of the addition is observable, then this instruction constitutes a test
for these units. The quality of this test depends on the contents of ra, rb, which are
set by means of additional instructions, theWrapper-Instructions (WIs). The wrapper-
instructions assign specific values to the operands of the central-instruction, and store
the result at observable memory positions.

Example 2. The test macro generated for the instruction add rc, ra, rb is shown
in Figure 3.33. The first four instructions are wrapper-instructions that load the
high/low 16-bit parts of registers ra, rb with the 16-bit values XH , XL, YH , YL. The next
instruction is the central-instruction and the last instruction is a wrapper-instruction
that stores the result at the physical address obtained by combining the immediate
offset Z with register r0 that holds always the value 0. �
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Figure 3.32: Test flow.

Similar macros are generated for every instruction of the processor, with two excep-
tions. The first one is related to wrapper-instructions. Such instructions do not neces-
sarily become central-instructions, because the faults activated by them are observable
when they are executed as wrapper-instructions. Second, the central-instructions that
do not produce directly observable results (e.g. branch instructions) use wrapper-
instructions to provide the observable results. For example, upon correct execution
of a branch-based central-instruction, a wrapper-instruction stores a pre-determined
value at an observable memory position, thereby making the results of the branch
instruction observable. Even though the generation of the test macros requires some
knowledge of the instruction set and the architecture of the processor, it is an one-time
and rather simple task for every processor architecture.

The fault coverage of every test macro depends on the operands of the central and
wrapper-instructions. Unfortunately, there is no straightforward method to select the
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Figure 3.33: TMI example.

most effective operands for detecting non-modeled faults. To this end, we propose an
almost fully automated process to generate test macro instances (TMIs) with high
non-modeled fault coverage. Let K be the number of different macros TM1, TM2,
. . . , TMK generated at the first step (one for every CI). Then, N random instances
TMI1i , TMI2i , . . . , TMINi are generated for every TMi at the second step, by randomly
varying every operand of TMi. For the particular macro shown in Figure 3.33 the
TMIs are generated by varying registers ra, rb and the values for X , Y , and as a
result register rc and the value for Z also change (we note that whenever a TMI with
invalid values is generated it is discarded).
At the third step, we run logic simulation on the gate-level netlist of the processor

using the N×K TMIs generated at the previous step, and the logic values generated
at the inputs/outputs of selected units of the processor are recorded at the clock
cycles when these units are excited by each TMIji . For example, when the CI shown
in Figure 3.33 is executed, the inputs/outputs of the ALU are recorded during the
clock cycle when the arithmetic values stored into registers ra and rb are applied to the
inputs of the ALU (see Figure 3.35). These logic values constitute one functional test-
vector/response applied by the TMI. Every TMI generates a number of functional
test-vectors/responses that excite various units of the processor and propagate the
results to observable sites of the processor. These vectors are generated during the
clock cycles when their responses are observable either immediately (e.g. the output
of the ALU stored into register rC) or later through the wrapper-instructions.
One example is shown in Figure 3.34 for the test macro of Figure 3.33. The

first four instructions require two clock cycles to be executed and the functional test-
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Figure 3.34: Functional vectors.

Figure 3.35: ALU test.

vectors are generated at their second clock cycles. The last two instructions require
one clock cycle to be executed and the functional test-vectors are generated at both
clock cycles. The more effective are the functional test-vectors of TMIji in detecting
defects, the higher is the test-quality of TMIji . The potential of TMIji for detecting
non-modeled faults depends on the quality of the functional test-vectors/responses
generated by TMIji . When a functional test-vector generated by TMIji activates a
defect and propagates the error to the output of the exercised module, then there is a
high probability that this error will propagate to an observable site of the processor.

In order to evaluate the functional test-vectors of the TMIs we propose a new
output-deviation-based metric. Specifically, the combinational logic of every processor
unit exercised by a functional test-vector is used to calculate the deviations of its
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outputs for this test-vector, as it is shown in Subsection 3.5.2. For example, in Figure
3.35 we show the functional test-vector FV 5 generated during the execution of the
CI shown in Figure 3.33, where the ALU receives inputs from registers ra, rb and it
stores the result in register rc. The computation starts from the inputs to the outputs
of the ALU (note that, in the general case, the mapping between inputs and outputs
of every combinational block may not be trivial).

According to the theory of output-deviations the most effective test-vectors are the
test vectors that produce the highest deviation values at the outputs of the circuits
under test [194]. In order to identify those vectors, we apply first all the generated
functional vectors that excite one unit, and we calculate the maximum deviation value
that is generated at every output bit p of that unit. This process is applied separately
for every TMi, because different test macros exercise different parts of the units. Let
NVi be the number of functional test-vectors generated by TMi. In the particular
case of TMIji the functional vectors FV (TMIji , 1), FV (TMIji , 2), . . . , FV (TMIji , NVi)

are generated. The output deviations of FV (TMIji , k) are computed for j ∈ [1, N ],
k ∈ [1, NVi], and the proximity of each deviation value to the highest deviation value
found at every output among all the generated functional vectors is calculated. Let
Max(TMi, p, v) be the highest deviation value found for all functional test-vectors of
every instance TM j

i of TMi (j ∈ [1, N ]) at output p for logic response v (v = 0, 1). Then,
for each FV (TMIji , k) all the pairs (p, v) with deviation values Dev(FV (TMIji , k), p, v)

higher than a threshold value constitute the set MS(TMIji , k) (the rest of the pairs
are not further considered for this functional test-vector). This threshold value THR

is a percentage of the highest deviation value Max(TMi, p, v) at this output, i.e.,
Dev(FV (TMIji , k), p, v) ≥ THR × Max(TMi, p, v), with THR usually in the range
90%−100%. Note that the higher is the value of THR, the more strict is the selection
process towards pairs (p, v) with high deviation values.

Besides the high deviation values, the potential of FV (TMIji , k) to detect defects
at the outputs p and logic response v with (p, v) ∈ MS(TMIji , k) depends on two
additional parameters. The first one is the number of faults that are observable at
output p, Faults(p), which is proportional to the size of the logic cone driving p. This
parameter is modeled by setting Faults(p) equal to the number of gates in the fan-in
cone size of p. The second one is the number of functional test-vectors generated by all
random instances of TMi that provide high deviation for each pair (p, v). The higher
is this number, the higher is the probability that, eventually, some of the selected
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TMIs will provide functional test-vectors with high deviation values for this pair.
Therefore, this output-logic value pair is considered as an easy pair, and it is given
low priority PR(TMi, p, v) to bias the selection towards TMIs that embed functional
test-vectors with high deviation values at more difficult pairs. PR(TMi, p, v) is set
equal to the inverse of the proportion of all functional test-vectors generated by every
random instance of TMi that offer high deviation value for (p, v). FV (TMIji , k) is
assigned a weight equal to

WFV (TMIji , k) =
∑

(p,v)∈MS(TMIji ,k)

Faults(p)× PR(TMi, p, v) (3.1)

Note that the weight increases as the fan-in cone-size of p and the priority of (p, v)
increase. Then, a weight is assigned to TMIji equal to the sum of the weights of its
functional test-vectors

W (TMIji ) =
∑

k=1...NVi

WFV (TMIji , k) (3.2)

The higher is the value of W (TMIji ), the more effective is the instance TMIji for
detecting non-modeled faults.
Every instance TMIji with high weight W (TMIji ) is expected to detect many

defects at the outputs p ∈ MS(TMIji , k), i.e., the outputs with high deviation values
at the functional test-vectors generated by TMIji . When this instance is selected, the
potential of the rest of the instances of the same test macro to detect defects at the
same outputs p ∈ MS(TMIji , k) decreases (less defects are anticipated to remain
undetected at the logic cones of these outputs). To reflect this fact the number of
faults Faults(p) at the logic cone of every output p ∈ MS(TMIji , k) is divided by a
constant factor F after TMIji is selected. This reduces the weight of all the functional
test-vectors that provide a high-deviation value at output p, since their effectiveness
for detecting defects drops after the selection of TMIji . The higher is the value of
F , the higher is the priority given to instances with high deviation values at other
outputs. Therefore, all the weights are re-computed by applying again eq. (3.1), (3.2)
and the next instance with the highest weight is selected. This process is iterated until
M instances are selected for every test macro.
The M most effective instances selected from every test macro maximize the defect

coverage at the particular processor units excited by the respective test macro un-
der test-program-size constraints. Therefore, in order to achieve high defect-coverage
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ramp-up for the whole processor, the test macro instances must be applied in the
specific order that maximizes the defect-coverage at all processor units at the same
time. To this end, after the M most effective instances of every test macro are selected,
all the M ×K instances are evaluated again and they are re-ordered by considering
the whole processor circuit. In particular, all the M ×K instances are evaluated to-
gether by considering all the targeted units of the processor. First, we reset the values
of Faults(p) at their initial values and the weights W (TMIji ) are re-computed. Then,
M × K iterations are applied, and at each iteration the instance with the highest
weight is selected as the next in the order, and the values of Faults(p) are updated
as shown before. We note that the final order of the test macro instances depends on
both the size of the excited units and the quality of the generated functional vectors,
as it is evaluated by the proposed output-deviation based metric.

Even though the test program generation is not fully automatic, it requires only
limited designer/test-engineer intervention, mostly during the development of the test
macro templates. However, this intervention is at the architectural level and it does
not require the specific gate-level or transistor-level model of the processor, which
decouples the proposed method from any implementation details. We note that, such
an intervention is an one-time task, while the rest of the test-generation method
(which is usually applied multiple times during the development process) is fully
automatic.

3.5.4 Test generation for High Delay-defect Coverage

Even though the test macros generated using the method proposed in Subsection
3.5.3 are very effective in detecting non-modeled faults, they offer limited detection
of delay-faults in execution units like the ALU. Detection of delay-faults requires pairs
of test-vectors to be applied to the inputs of the exercised units. Therefore, delay-fault
oriented test macros are developed that embed pairs of central instructions exercising
the processor units in successive clock cycles with different test-vectors. Such macros
are called Independent-Test Macros (I-TMs).

Even though I-TMs can be generated for most of the processor’s units, some
units are accumulator-type units (like the Multiply-Accumulate unit of the OR1200
processor), which are designed to execute successive operations of accumulator-type
only. Such operations require one operand of the second central instruction to be the
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Figure 3.36: (a) A-TM example (b) I-TM example.

result of the execution of the first central instruction. For such units I − TMs are
inapplicable, and Accumulated-Test Macros (A-TMs) are used instead. Each A − TM

embeds two similar successive central-instructions, where one operand of the second
CI is the result of the first CI.

Figure 3.36 presents an example of an A-TM and an I-TM. Since both CIs in
every A-TM instance (A-TMI) consist of the same instruction, the test-generation
flow is exactly the same with the flow shown in Figure 3.32 except of the additional
functional test-vector that is generated by the second CI. However, in the case of
I-TMs separate evaluation and selection of the first and second central-instructions
is required (note that both of them detect defects, but most of the delay-defects are
detected by the second central-instruction). To this end, different priority values PR

and sets MS of outputs with high deviation values are manipulated for the first and
the second central-instruction of all I-TMIs.

The generation of the I-TMIs is done as follows: multiple random instances of
regular TMIs with a single central-instruction are generated, but only the functional
test-vector of their central-instruction is evaluated using equations (3.1), (3.2). The
two central-instructions with the highest weights are combined to generate an I-TMI
(the central-instruction with the highest weight is used as second in the pair to favor
the detection of delay defects). Then, the selected central-instructions are removed and
the same process is repeated for generating the next N I-TMIs using the remaining
central-instructions.
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Even though A−TMs can be potentially used to test all the units of the processor,
I − TMs are conjectured to offer higher delay fault coverage than A− TMs because
they do not suffer from the correlation between the operands of the first and the
second central-instruction. Moreover, A− TMs can be considered as a specialization
of I − TMs, because every A − TMI can be substituted by an equivalent I − TMI

with one of the operands of the second CI be a value equal to the expected result of
the execution of the first CI. Therefore, A−TMs are used only for accumulator-type
units, and I − TMs are used for the rest of the units.
The synthesis of A − TMs and I − TMs is straightforward for computational

units like the ALU but there are various non-computational units that require the
synthesis of special test macros in order to detect delay faults. One such example is
the Load-Store unit of the OR1200 processor, which transfers the data between the
processor and the memory. Even though some delay faults of this unit are exercised
by the wrapper instructions of the test macros generated for other units, most of
them remain undetected unless specific test macros are synthesized for this unit. One
test macro example targeting delay-faults at this unit is presented in Figure 3.37a.
The main purpose of this macro is to exercise the Load-Store unit by the means
of different memory addresses and data transferred between the registers and the
memory. Specifically, the wrapper-instructions load the registers ra, rb with the 32-
bit values X(XH , XL) and Y (YH , YL), while the central instructions transfer these
data between the registers and the cache memory of the processor (the value X is
moved from register ra to a memory position defined by the contents of rb, then it is
transferred to register rc and finally from register rc to memory position 0).
Another unit that requires the synthesis of special test macros is the Control unit.

Similar to the Load-Store unit, the Control unit is also exercised by the wrapper and
central instructions of all test macros, but it cannot be sufficiently tested for delay
defects unless multiple combinations of different instructions targeting different units
are applied in consecutive clock-cycles. In Figure 3.37b, a test macro example for the
Control unit is presented. The first eight instructions are wrapper-instructions that load
the registers ra, rb, rc, rd with the 32-bit values X,Y,Q, P , then two arbitrary central-
instructions follow that apply an arithmetic and a logical computation using these
registers, and the last two wrapper-instructions store the results of the computations
at the physical addresses Z1, Z2. In a similar manner test macros can be synthesized
for every unit of the processor.
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l.movhi ra,XH

l.ori ra,ra,XL

l.movhi rb,YH

l.ori rb,rb,YL

l.sh Z(rb),ra

l.lhs rc, Z(rb)
l.sh 0(r0),rc
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l.movhi ra,XH

l.ori ra,ra,XL

l.movhi rb,YH

l.ori rb,rb,YL

l.movhi rc,QH

l.ori rc,rc,QL

l.movhi rd,PH

l.ori rd,rd,PL

l.add re,ra,rb

l.ror rf, rc, rd

l.sw Z1(r0),re

l.sw Z2(r0),rf
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Figure 3.37: Load-Store Unit & Control Unit TM example
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Chapter 4

Simulation Framework

4.1 Introduction

4.2 Design Flow for Benchmark Cores

4.3 Simulation Flow for 3D-SoCs Testing

4.4 Simulation Flow for SBST

4.1 Introduction

The simulation framework provides with an integrated 3D-IC design and test envi-
ronment. A comprehensive set of script- and program- based flows for commercial
and custom-made tools enable the efficient and reliable deployment and execution of
experiments of the test methods presented in Chapter 3. The simulation framework
consists of three main flows:

• The design flow for benchmark cores, that processes IWLS cores [148] and
produces the required core- design and test data for our experiments.

• The 3D-SoC testing flow, which allows a) creation of artificial 3D-SoC and TAM
configurations, b) execution of implementations of the proposed methods, and
c) evaluation of the proposed test methods.

• The SBST flow, which allows a) simulation of test programs for processor based
SoCs, b) reorder of the test programs by discovering the most effective test
patterns, and c) evaluation of the proposed method.
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Figure 4.1: General design flow.

4.2 Design Flow for Benchmark Cores

A design flow, in the domain of the VLSI IC, is a set of procedures that allows designers
to progress from chip specification to chip implementation. Figure 4.1 presents a
general design flow. Design starts at the behavioral level and then proceeds to the
structural level, by applying the RTL synthesis step. In RTL level the designs are
captured in a Hardware Description Language (HDL). Then, the physical synthesis
(or layout generation) step follows, where the HDL description is transformed to a
physical description suitable for chip fabrication. The basic design flow, presented in
Figure 4.1, applies to SoC design too, in the sense that the entire system needs to be
specified, debugged, modified for testability, validated, and mapped to a technology,
but in this case the whole flow needs to be done in an integrated framework.
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Figure 4.2: RTL flow.

In the case of a benchmark core, the behavioral level has already been imple-
mented, tested and verified. At the point of RTL synthesis, specialized tools are used
to directly transform the behavioral RTL description to a structural gate-level netlist.
The tools that have been used in this research for RTL synthesis were provided from
Synopsys and Cadence Design Systems.

The implemented RTL flow is shown in Figure 4.2. As it is presented, using an
RTL synthesizer such as the Design Compiler of Synopsys or the RTL Compiler of
Cadence, the verified RTL description of a IWLS core is transformed initially to a
generic circuit of gates and registers, optimized in terms of speed and area. Then, the
generic gates are mapped one-to-one to pre-designed cells of a standard cell library.
In this research, the 45nm process nangate standard cell library [199] is used. The
final result is a structural netlist of the benchmark core.

There are two main approaches to verify that the structural netlist performs the
same function as the verified HDL product, the functional and the formal verification.
In functional verification, a logic test bench is used to verify that exactly the same out-
put is produced for the behavioral and structural descriptions. In formal verification,
a formal verification program is created that compares the logical equivalence of the
two descriptions. Formal verification mathematically proves that both descriptions
have exactly the same Boolean functions [200], [201]. On the other hand, functional
verification is based on the efficiency of the test vectors. Formality from Synopsys
and Incisive Conformal from Cadence are examples of formal verifiers. Other types
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Figure 4.3: Automated layout generation.

of verification that can be run are semantic and structural checks on the HDL. For
example, in a semantic check, it should be ensured that all bus assignments match
in bit width, while in a structural check, it should be checked that all outputs are
connected.

The next step in the flow is a static timing analysis that evaluates all timing
paths in the core under scope. The inputs are derived from the basic timing of the
library gates, due to intrinsic gate delays, and routing loads. The routing loads are
estimated statistically or they are derived from floor-planning data. In this research,
the Encounter from Cadence has been used for timing analysis. The final result is a
report that includes timing information for the worst paths in the core.

At this point, to allow for efficient test, the DFT is implemented using specialized
procedures either in the Synopsys Design Compiler or the Cadence RTL Compiler.
Specifically, scannable registers are inserted and / or existing registers are modified
so that the state of the design can be set and monitored. Then, ATPG is performed
to generate tests for the scannable design. In this research, the required core test sets
are generated using the Synopsys Tetramax and the Cadence ET ATPG tools.

The RTL flow concludes with the estimation of the design’s normal and test
power consumption. Commercial power analysis tools that have been used are the
PrimePower from Synopsys.
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Layout generation is the process of turning a design into a manufacturable database.
Namely, it transforms a design from the structural to the physical domain. This pro-
cess is sometimes called physical synthesis. Figure 4.3 presents a standard place and
route layout generation design flow used in most ASICs and in this research too. The
commercial tool that has been used in this research for the layout generation of the
IWLS cores is the Encounter from Cadence.

The layout flow starts with the structural netlist describing gates, flip-flops, and
their interconnections. The netlist is provided in the Design Exchange Format (DEF)
as a Verilog netlist. Then, a semi-automated floor-planning step is performed, which
produces a file that describes the floor-plan of the design. The next step is the place-
ment process, where standard cells of constant-height and variable-width are arrayed
in rows across a chip. A standard cell library definition describing cell dimensions
and port locations, in the Library Exchange Format (LEF), summarizes the salient
physical details of cells. A simple placement algorithm is used to minimize the length
of wires. At the end of the placement phase, the used cells have been fixed in position
in the overall array. The placed design is saved in a standard format (e.g., DEF) for
routing.

After placement of standard cells, the signal nets in the design need to be routed.
There are two phases of routing: a) global and b) detailed routing. A global router
creates routes through channels according to a cost function. Wires can be changed
from channel to channel if the density of wires in a channel becomes too high. The
detailed router places the actual geometry required to complete signal connections.
The results are written to another DEF file.

The placed and routed design is then passed to the circuit parasitic extractor.
The placed and routed design is provided to the extractor in DEF format and the
output is a file in the Standard Parasitic Exchange Format (SPEF) that describes
the resistors and capacitors associated with all nets in the layout. The extractor uses
another technology file defining the interlayer capacitances and layer resistances.

Static timing analysis is rerun with the actual routing loads placed on the gates.
Multiple iterations of synthesis and placement/routing are usually necessary to con-
verge on timing requirements. In modern high-speed designs the clock distribution
strategy is the dominant strategy. To minimize skew, the clock and its buffers are
pre-route before the main logic placement and routing is completed. This task is
performed with a clock tree router. Normal and test power estimation is repeated for
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the complete design. Similar tools and techniques to those in the RTL level are used.

4.3 Simulation Flow for 3D-SoCs Testing

The simulation flow for 3D-SoCs testing uses artificial SoCs, which are defined by a
custom-made tool called SoCTDMScheduler [202]. This tool allows to a designer the
following:

• Select the embedded cores in an artificial SoC from a set of available benchmark
cores and/or user-defined cores.

• Define 3D-SoC layers and assign cores in each layer. Then, the SoCTDMSched-
uler using an external tool, the hotfloorplanner [203], derives the floorplan of the
artificial SoC taking into account proximity relations among the embedded cores
that belong to the same layer.

Then, the designer can proceed in the definition of the SoC test and TAM config-
uration files, which include:

• The cores in the 3D SoC.

• The layers of the 3D SoC.

• The assignment of the cores to the layers of the 3D SoC.

• The scan frequencies provided by the TDM scheme.

• The maximum TSV clock frequency.

• The maximum scan frequency that is allowed in each layer.

• The test time of each core per scan frequency used.

• The power consumption of each core per scan frequency used.

• The TDM-based TAM configuration, that is the number of the TAM buses, their
bit-length and the set of the cores that are connected to each bus.

For the method presented in Section 3.3, SoCTDMScheduler is used to derive the
test schedule, while we may impose or not power constraints per layer. For the method
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presented in Section 3.4, we implemented our algorithm in C#. Our implementation
uses as input the same configuration files as before, with the addition of the number
of daisy chains per layer and their frequencies.

4.4 Simulation Flow for SBST

The simulation flow for the proposed SBST method consists of the following steps:

• Create test programs for a processor-based SoC based on the TMIs presented in
Subsection 3.5.4 using custom-made Python scripts.

• Fault simulate the test programs, using Synopsys TetraMax.

• Select the most effective TMI instances, using a custom made tool, implemented
in C++.

• Reorder the initial programs, using custom-made Python scripts and rerun fault
simulation.

• Evaluate the results.
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Chapter 5

Evaluation of the research work

5.1 Evaluation of 3D-SoCs Testing Methods

5.2 Evaluation of SBST Approach

5.1 Evaluation of 3D-SoCs Testing Methods

5.1.1 Cores & Artificial 3D-SoCs Characteristics

In order to evaluate our proposed methods on 3D-SoCs, we selected ten cores from
the IWLS suite [148] and we synthesized them using the 45 nm Nangate technology
[199]. Their function is presented in Table 5.1 and their structural information is
presented in Table 5.2.

For testing each core, the full scan design methodology was adopted. The cores
were wrapped using commercial DFT synthesis tools with IEEE 1500 Std. wrappers
and 8, 16 and 32 wrapper and scan chains (denoted as WC in Tables 5.3, 5.4).
The input (output) parallel ports of the wrappers were connected to 8-bit, 16-bit
and 32-bit input (output) local buses. For each core, compacted test vectors targeting
complete coverage of all detectable transition faults were generated using a commercial
fault simulator and the Launch-on-Capture scheme. The number of test vectors for
the various cores varies between 25 test vectors for core pci_bridge up to 2443 test
vectors for core vga_lcd (the same test data are generated for identical cores, but
they are not delivered simultaneously to the cores). These test vectors were applied
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Table 5.1: Benchmark cores function.

Core Function

tv80 TV80 8-Bit Microprocessor Core
mem_ctrl WISHBONE Memory Controller
ac97 WISHBONE AC 97 Controller

usb_funct USB function core
pci_bridge PCI
aes_core AES Cipher

wb_conmax WISHBONE Conmax IP Core
ethernet Ethernet IP core
des_perf DES optimized for performance
vga_lcd WISHBONE rev.B2 compliant Enhanced VGA/LCD Controller

Table 5.2: Benchmark cores information.

Core Sequential Inverter Buffer Logic Tristate Unresolved Total

tv80 359 1101 97 5604 - - 7161
mem_ctrl 1083 1462 221 8674 - - 11440
ac97 2199 1525 111 8020 - - 11855

usb_funct 1746 1865 33 9164 - - 12808
pci_bridge32 3359 3095 100 10262 - - 16816
aes_core 530 5589 274 14402 - - 20795

wb_conmax 770 3366 86 24812 - - 29034
ethernet 10544 3404 234 32557 32 - 46771
des_perf 8808 28372 1489 59672 - - 98341
vga_lcd 17079 21397 2542 83013 - - 124031
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with increasing shift frequencies, until the timing simulation failed. This frequency
is the maximum shift-frequency supported by each core, and it is reported in the
first row for each core in Tables 5.3, 5.4. The next three rows show the test-time T

and the total average power P at lower shift frequencies of 200, 100 and 50 MHz.
The average leakage power is about 30% of the total average power at the minimum
shift-frequency. The full scan-tests were thermally characterized by providing to the
HotSpot thermal simulator the power trace of the test-schedule for each core for each
time step, and the floorplan of the 3D IC [204].

We created three artificial 3D-SoCs in order to evaluate our methods, SoC-A with
90 cores, SoC-B with 285 cores and SoC-C with 283 cores. For SoC-A the cores were
randomly placed in multiple copies in the three dies as follows: 36 cores at the bottom
die, 25 cores at the middle die and 29 cores at the top die. For SoC-B the cores were
placed into three dies using an unbalanced manner in terms of test-time and power
consumption. Specifically, 30 copies of the 3 largest and most test-time consuming
IWLS cores were placed in die-1, 170 copies of the 7 smallest and less time-consuming
ones were placed in die-2, and 85 copies of all IWLS cores were placed in die-3. For
SoC-C the cores were placed into three dies using an unbalanced manner in terms of
test-time and power consumption. Specifically, 30 copies of the three largest and most
test-time consuming IWLS cores (ethernet, des_perf, vga_lcd) were placed in die-1,
170 copies of the rest seven smallest and less-time consuming cores were placed in
die-3, and 83 copies of all ten cores were placed in die-2.

5.1.2 2-D Time-Division Multiplexing

To highlight the benefits of the proposed method, we run experiments on SoC-A and
SoC-B presented in Subsection 5.1.1, using 8, 16 and 32 wrapper and scan chains.
For these SoCs we set a) (FGTC , FLTC) = (600, 200) MHz, and b) (FGTC , FLTC) =

(1200, 400) MHz (the functional clock is used for the capture cycles). The average
power dissipated by an 1-bit wide global channel toggling at 600 MHz and 1.2 GHz
is equal to 0.31 mW and 0.60 mW, respectively.

The 2D TDM test-scheduling method was implemented in C and experiments were
conducted on a TAM configuration with one input and one output global channel
of 8, 16 and 32 TSVs. At each layer, one local input and one output bus were used
with 8, 16 and 32 lines. The vertical TDM frequency was set equal to a) 600 MHz,
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Table 5.3: Test Data (A) for the cores of the artificial 3D-SoCs (SF: Shift Frequency,
WC: Wrapper Chains).

SF 8 WC 16 WC 32 WC
(MHz) P (mW) T (µs) P (mW) T (µs) P (mW) T(µs)

tv
80

222 3.8 79.1 3.6 43.8 3.6 26.1
200 3.5 87.8 3.3 48.7 3.3 29.0
100 1.8 175.7 1.7 97.4 1.7 58.0
50 1.0 351.3 1.0 194.8 1.0 116.0

m
em
_c
tr
l 333 10.9 260.5 10.9 135.9 11.0 70.9

200 6.7 434.2 6.7 226.4 6.8 118.2
100 3.5 868.5 3.6 452.9 3.6 236.4
50 1.9 1736.9 1.9 905.8 2.0 472.7

ac
97

333 17.9 109.1 17.7 59.7 18.1 29.4
200 11.0 181.9 10.9 99.6 11.2 49.1
100 5.8 363.8 5.8 199.1 5.9 98.1
50 3.2 727.6 3.2 398.3 3.2 196.3

us
b_
fu
nc
t 400 23.0 112.9 22.9 54.5 23.1 27.8

200 12.1 225.8 12.1 109.0 12.2 55.6
100 6.4 451.7 6.3 218.0 6.4 111.3
50 3.5 903.4 3.5 435.9 3.5 222.5

pc
i_
br
id
ge

400 22.7 21.5 22.8 11.0 22.8 5.2
200 11.7 43.0 11.8 21.9 11.8 10.4
100 6.2 86.0 6.2 43.9 6.2 20.9
50 3.5 171.9 3.5 87.7 3.5 41.8
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Table 5.4: Test Data (B) for the cores of the artificial 3D-SoCs (SF: Shift Frequency,
WC: Wrapper Chains).

SF 8 WC 16 WC 32 WC
(MHz) P (mW) T (µs) P (mW) T (µs) P (mW) T (µs)

ae
s_
co
re

333 16.4 106.3 16.3 55.4 16.5 29.7
200 11.1 177.1 10.9 92.4 11.1 49.6
100 6.3 354.2 6.2 184.8 6.3 99.2
50 3.6 708.4 3.5 369.6 3.6 198.3

w
b_
co
nm
ax 400 50 241 50 120.4 49.9 60.8

200 26.6 482 26.7 240.7 26.6 121.6
100 14.2 963.3 14.2 481.5 14.2 243.3
50 7.8 1927.8 7.8 962.9 7.8 486.6

et
he
rn
et

333 76.6 5989.4 77.5 2628.8 79.1 1231.7
200 47.3 9982.3 47.8 4377 48.8 2050.9
100 25.0 19964.6 25.3 8754 25.8 4101.7
50 13.8 39929.2 13.9 17507.9 14.1 8203.4

de
s_
pe
rf

400 143.2 254.2 143.9 120.6 144.1 59.5
200 80.5 508.3 81 241.2 81.1 119
100 43.9 1016.6 44.1 482.4 44.2 238
50 23.8 2033.2 24 964.8 24 476.1

vg
a_
lc
d

333 119 17948.9 120.9 8317.6 122 4056.9
200 73.4 29884.9 74.5 13848.9 75.2 6754.7
100 38.6 59769.7 39.2 27697.7 39.5 13509.4
50 21.1 119539.5 21.4 55395.5 21.6 27018.7
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Figure 5.1: The effect of TDM on test-time.

b) 1.2 GHz, and the horizontal TDM frequency was set equal to a) 200 MHz and b)
400 MHz respectively. The horizontal TDM frequency is divided into 200, 100, 50
and 25 MHz. The run times for SoC-A were equal to 187 sec (no power constraints),
348 sec (50 mW power constraint per die) and 2.5 hours (with power and thermal
constraints). The run times for SoC-B were equal to 41 minutes, 2.44 hours and
8.2 hours respectively. Every intermediate schedule generated requires in average 15
minutes for SoC-A and 38 minutes for SoC-B.

We also developed a non-TDM baseline approach using the RP heuristic. This
approach was applied on multiple TAM configurations, and the result of the best
configuration was reported every time. In the case of 32 TAM-lines, the non-TDM
approach was applied to three different bus configurations: a) one 32-bit input and
one 32-bit output bus, b) two 16-bit input and two 16-bit output buses, and c) four 8-
bit input and four 8-bit output buses. In the non-TDM approach, the TAM frequency
is always set equal to the highest scan shift-frequency that does not violate the power
constraint for any of the dies of the 3D SoC (the SA optimization is not applicable
in this case). In both the non-TDM and the TDM cases the test clock and other
control signals for the 1500 standard are transferred to the cores. However, since the
overhead of these signals is similar in both the TDM and the non-TDM methods, we
do not consider this overhead for comparison purposes.

In Figure 5.1 we compare the TDM and the baseline approaches for various power
constraints. The x-axis shows the power constraint per die, and the y-axis shows the
test-time. At SoC-B the 600 MHz frequency supported by the global channels was
divided among the dies a) uniformly with 200 MHz at each die, and b) non-uniformly
with 300 MHz at the most loaded die and 150 MHz at each of the other dies. The TDM
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Figure 5.2: The effect of the vertical frequency on the test-schedule of SoC-A.

scheme clearly outperforms the baseline approach, and the improvement increases as
the power constraint per die becomes more strict (above each column group we report
the improvement for TDM over the best configuration for the non-TDM approach).
This happens because the power constraint prohibits the use of high shift frequencies
in many of the cores, and restricts the TAM frequency in the non-TDM case. TDM
overcomes this limitation by (a) using different shift frequencies for the various cores,
and (b) scheduling different tests in parallel with appropriate shift frequencies that
do not violate the power constraint of the die. Therefore, as the power constraint
becomes more tight, TDM is able to better exploit the higher frequency provided by
the global channels. As shown in Figure 5.1 the improvement in SoC-B when the
600 MHz are uniformly divided among the dies is not as high as the improvement
in SoC-A, because of the unbalanced placement of cores in SoC-B. However, when
the most time-consuming layer of SoC-B is assigned 300 MHz of frequency, and the
rest two layers are assigned 150 MHz each, then the improvement of the TDM over
the Non-TDM method improves even more.

In Figure 5.2 we highlight the impact of the vertical TAM frequency on the test-
time improvement achieved by TDM over the non-TDM approach for SoC-A. The
x-axis shows again the power constraint set for each die, while the y-axis presents
the ratio of the test-time provided by the non-TDM method to the test-time provided
by the TDM method. When the power is not constrained, TDM fully exploits the
high speed of the TSVs and offers lower test-time for increasing frequency. As the
power constraints become more tight, TDM cannot derive the full benefit of the avail-
able frequency and the additional test-time benefits offered by increasing the vertical
frequency become very small. Nevertheless, TDM offers over 2x test-time reduction
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Figure 5.4: Test-time under power constraints on the whole stack of SoC-B.

even when only a part of the TSV frequency is exploited, which is very important in
3D SoCs with a large number of dies (thus long global channels).

In Figure 5.3 we vary the number of TSVs and the TAM-lines in the range 8+8,
16+16 and 32+32, and we apply both the non-TDM baseline and TDM at 600 MHz
vertical frequency on SoC-A as follows: a) without power constraints, and b) for 50
mW maximum average power consumption for each die. The test-time for TDM is
equal to the test-time for the non-TDM approach that uses double the number of
TSVs and TAM-lines in case (a), and almost quadruple the number of TSVs and
TAM-lines in case (b). The total TAM routing is reduced with TDM because half of
the TAM lines are required in case (a) and a quarter of the TAM lines are required
in case (b) for delivering the same test time. TAM routing is very expensive in 3D ICs
because: a) it involves long horizontal and vertical connections, b) it requires TSVs
that occupy silicon, and c) separate device pins are required to load the test data.
Therefore, TDM exploits the frequency offered by TSVs to considerably reduce the
total TAM cost and TSV count without any adverse impact on test-time.

In Figure 5.4 we present the test-time benefits of the TDM approach over the non-
TDM baseline for SoC-B for 32 TSVs, when the power constraint is set for the whole
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Figure 5.6: The effect of thermal constraint on test-time.

stack. The x-axis shows the total power constraint of the stack, and the y-axis shows
the test-time. The TDM approach clearly outperforms the baseline approach, and
the test-time improvement approaches 7.0x at 600 MHz, and 9.6x at 1.2 GHz. The
improvement is higher in this case because the test-scheduling method has higher
flexibility to schedule tests in parallel without violating the power constraints (some
of the dies dissipate more power than the rest of the dies).

Figure 5.5 presents the effect of power constraints on the maximum and average
temperature at each die of SoC-A. The highest temperature is observed when the
scheduling of tests is not constrained by power, and the frequency of the global
channels is relatively high at 1.2 GHz (note that a high frequency at the global
channels permits high frequencies at the local channels). The temperature drops
considerably as the power constraint becomes more strict. The same result is achieved
by using a lower TDM frequency at the global channels, but this compromises the
high frequency of TSVs.

Figure 5.6 shows the effect of the thermal-aware scheduling algorithm on the
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Figure 5.7: The efficiency of TDM for many-layer stacks (SoC-B).

maximum temperature of the dies of SoC-A for one 8-bit input and one 8-bit out-
put global channel operating at 600 MHz. The maximum temperature of the initial
thermally-unconstrained schedule was 38.91◦C. The thermal-aware scheduling algo-
rithm reduced the maximum temperature below 35.84◦C after 3 iterations, at the
expense of an increase in test-time. Further test-time gains can be achieved by tar-
geting only selected thermal-sensitive areas at dies that are far from the heat sink.

At the last experiment we partitioned the cores of SoC-B into 4 and 5 layers, and
we used 200 MHz and 400 MHz horizontal TDM frequency per layer. The TAM
consists of an 8-bit input and an 8-bit output global bus operated between 600 MHz
and 2.0 GHz. The test-time results, assuming no power constraints, are shown in
Figure 5.7. The test-time of the Non-TDM architecture remains the same, since the
test-time overhead does not change with the number of layers (note that the number
of cores remains the same in all cases). In contrast, each additional layer provides the
opportunity for more parallelism in TDM-based test-scheduling (for each TDM case,
Figure 5.7 reports also the improvement against the Non-TDM case). This happens
because the 2.27 GHz vertical frequency suffices to accommodate up to 5 layers with
400 MHz shift-frequency per layer, while in terms of test-scheduling, each additional
layer offers an additional level of parallelism. As a result the test-time drops, even
for stacks with many layers, which makes the two-dimensional TDM approach very
effective for testing 3D ICs.
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Table 5.5: Test time and routing overhead of the proposed TAM architecture without
power constraints.

Optimize Test-Time Optimize Routing
Ratio TT(w/o, w/) WL(w/o) WL(w/) TT(w/) WL(w/)

R1,1,1 767.2 ms 875.3 mm 754.7 mm 819.5 ms 735.1 mm

R2,1,1 605.5 ms 851.3 mm 725.3 mm 786.7 ms 689 mm

R2,2,1 639.4 ms 834.2 mm 727.1 mm 703.5 ms 702.4 mm

R3,2,1 511.5 ms 873.3 mm 740.7 mm 579.5 ms 723 mm

R4,2,1 529.9 ms 850.4 mm 729.2 mm 688.5 ms 692.9 mm

R3,3,1 596.6 ms 872.8 mm 743.4 mm 719.6 ms 714.2 mm

R5,2,1 605.5 ms 860.3 mm 721.5 mm 786.7 ms 685.2 mm

R3,3,2 682 ms 881.2 mm 738.8 mm 719.3 ms 672.8 mm

5.1.3 K3 TAM Optimization Results & Comparisons

We implemented the TAM optimization approach in C#, and we run experiments on
SoC-C using 8 wrapper and scan chains, and 8-bit wide daisy-chains at each layer.

In order to avoid the uniformity imposed by using a common test-set to test
multiple copies of each core, the test-set of each copy was extended using additional
N-detect test-vectors. Specifically, at the first die the test-set of each core was extended
by 20%, 40%, 60% . . . additional N-detect test-vectors to generate the test-set of each
copy, at the second die it was extended by 10%, 20%, 40% . . . and at the third die by
5%, 10%, 15% . . . additional test-vectors. The second and the third row of Tables 5.3
and 5.4 report the test time T and the total average power P at lower shift-frequencies
equal to 200 MHz, 100 MHz for the initial (not-extended) test-set of every core (the
average leakage power is about 30% of the total average power at the minimum
shift-frequency).

The 12/20, 7/20 and 1/20 of the total test-data volume are used for testing the first,
second and third die of the stack respectively. Therefore, beside the regular division
1/3, 1/3, 1/3 of FGTC we also applied non-regular division with ratios a1/b, a2/b, a3/b cor-
responding to die 1, 2 and 3, for a1 ≥ a2 ≥ a3, b = a1 + a2 + a3 and b = 4, 5, 6, 7, 8

(a1, a2, a3 are integer values in the range [1, 6]). Each ratio is reported as Ra1,a2,a3 (e.g.
R1,1,1 is the regular division of FGTC). The value of FGTC was set equal to 600 MHz,
1.2 GHz and 1.8 GHz.
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Table 5.6: Test time and routing overhead of the proposed TAM architecture with
power constraints.

Optimize Test-Time Optimize Routing
Ratio TT(w/o) WL(w/o) TT(w/) WL(w/) TT(w/) WL(w/)

R1,1,1 767.2 ms 875.3 mm 767.2 ms 754.7 mm 819.5 ms 735.1 mm

R2,1,1 770.0 ms 851.3 mm 762.2 ms 713.5 mm 819.5 ms 689 mm

R2,2,1 639.4 ms 834.2 mm 639.4 ms 727.1 mm 703.5 ms 702.4 mm

R3,2,1 770 ms 873.3 mm 762.2 ms 740.5 mm 740.4 ms 723 mm

R4,2,1 788 ms 850.4 mm 710.5 ms 692.9 mm 710.5 ms 692.9 mm

R3,3,1 596.6 ms 872.8 mm 596.6 ms 743.5 mm 719.6 ms 714.2 mm

R5,2,1 720.3 ms 860.3 mm 718.9 ms 684.4 mm 786.7 ms 685.2 mm

R3,3,2 682 ms 881.2 mm 682 ms 738.8 mm 719.3 ms 672.8 mm

In Tables 5.5, 5.6 we present the total test time (TT) and the wirelength (WL) of
the proposed architecture with and without power-constraints respectively for two dif-
ferent goals: (a) Optimize Test-Time and (b) Optimize Routing. The proposed architec-
ture was generated for every configuration Ra1,a2,a3 reported above using FGTC = 600

MHz (the best configurations are reported in Tables 5.5, 5.6). In the Optimize Test-
Time case we applied the K3 optimization approach in two steps. At the first step
two daisy-chains were generated at each die without (w/o) exchanging cores between
them (the test time TT is minimum in this case and it is reported in the first column).
At the second step we exchanged cores between the two daisy chains at each die (w/)
in order to further reduce the routing overhead, with TT limited below the minimum
value computed at the previous step. This limitation was removed in the Optimize
Routing case, where we allowed the value of TT to increase up to 50% in order to
enable additional core permutations between the daisy-chains at each die to further
reduce the routing overhead.

As it was expected, in the power unconstrained case (Table 5.5) the minimum
test-time (marked in bold) was provided by R3,2,1 (note that the ratios 3/6, 2/6, 1/6 are
closer to the ideal values 12/20, 7/20, 1/20 than the rest ones). Moreover, in the Optimize
Test-Time cases the wirelength of the ‘w/’ TAM is considerably smaller than the ‘w/o’
TAM even though they both offer the same test time. In the Optimize Routing case
the total wirelength reduces even further, while in most of the cases the additional
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Figure 5.8: Comparisons against 2D-TDM [18].

test-time overhead is in the range of 5%-23%.
In the power-constrained case the average power-dissipation for each layer is

limited below 175 mW (Table 5.6) and thus idle periods are inserted in the test-
schedule. As a result the minimum test-time increases by 17% as compared to the
power unconstrained case (the best configuration is R3,3,1 in this case). Moreover,
in the Optimize Routing case (last two columns in Table 5.6) the wirelength of the
daisy chains is not affected by the power constraints, while the test times increase
only marginally as compared to the Optimize Test Time case. Therefore, it is obvious
that despite the very strict power-constraints, the proposed approach exploits the
irregular division of the frequency among the dies in such a way as to optimize both
the test-time and the wirelength of the TAM.
In Figure 5.8 we compare the proposed method against the 2-D TDM approach

[18] assuming no power constraints. The 2-D TDM approach was applied on the 3D
stack and it was compared in terms of test time against the R3,2,1 configuration for
FGTC = 600 MHz, 1.2 GHz, 1.8 GHz (note that FGTC = 1.8 GHz was not applicable
in [18] due to timing violations). Besides the very large routing overhead of [18],
which is more than four times (4x) larger than that of the proposed method, a large
number of buffers is also required by 2D-TDM. At the same time the proposed TAM
optimization exploits the high bandwidth of the global channels, and it offers 2x-4x
reduction of the test-time compared to the 2D-TDM approach.
In Figure 5.9 we compare the proposed method against the conventional daisy-

chain-based method used for testing 3D-ICs denoted as Non-TDM. We generated
two TAM configurations for the Non-TDM method: Non-TDM(A), Non-TDM(B). In
Non-TDM(A) we used a single 8-bit wide daisy chain that spans the entire stack and
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Figure 5.9: Test-time comparisons against Non-TDM approach.

connects all the cores at all dies. This configuration requires roughly the same routing
overhead with the proposed TDM-based approach, as well as the same number of test
TSVs (2× (8+8) at the back side of the first and second layers) and the same number
of test-pins at the bottom die. In Non-TDM(B) we used two independent 8-bit wide
daisy-chains at each layer, which are connected using separate TSVs with dedicated
test pins at the bottom die. In this case 2 × (8 + 8) TSVs are required at the back
side of the 3rd layer and another 2× (8 + 8) + 2× (8 + 8) at the back side of the 2nd
layer (96 test-TSVs and 96 test-pins in total). This configuration offers comparable
test-time and wirelength with the proposed scheme because all daisy chains can
potentially shift test-data in parallel with the highest shift frequency supported by all
cores (this frequency is equal to 222 MHz as shown in Tables 5.3, 5.4). The proposed
method offers the lowest test time, which is almost 6x lower than Non-TDM(A). Non-
TDM(B) offers comparable test-time with the proposed method running at 1.2 GHz,
but it requires 3x more TSVs and 3x test-pins. Moreover, any increase of the number
of dies to 4 and 5 increases both the TSV and test-pin overhead of Non-TDM(B) to
4x and 5x respectively, rendering this approach very expensive and not scalable for
3D-ICs.

5.2 Evaluation of SBST Approach

The proposed method, presented in Section 3.5, was developed using C++ and
Python. Experiments were performed using the 32-bit scalar OpenRISC OR1200 RISC
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processor, which has a Harvard micro-architecture, 5-stage integer pipeline, virtual-
memory support (MMU) and basic DSP capabilities. The processor has one embedded
instruction cache and one embedded data cache of 8KB each. The gate level netlist of
the processor was synthesized using the NanGate 45nm technology and commercial
tools. The gate-level netlist (excluding the memories) consists of 17.6K cells. One in-
struction is fetched from the cache at every clock cycle, while additional clock cycles
are required when the data are fetched from the memory and/or conditional branch
instructions are executed. The clock frequency for the OpenRISC OR1200 processor
was set equal to 200 MHz.
Almost all units of the processor were targeted, i.e. the ALU, the Multiply-Accumu-

late (MAC), the Load-Store, the Program Counter Generator, the Instruction Fetcher, the
Operands Mux, theWrite-Back Mux and the Instruction-Decoder (the Exception-Handling
unit and the caches require special test generation mechanisms). 137 test-macros
(including A−TMIs, I−TMIs, Load-Store and Control unit TMIs) were generated,
each consisting of 3 to 17 instructions. For each test-macro 120 random instances
were generated (overall 16,440 TMIs) and 6 test-programs were semi-automatically
generated as follows:

• Baseline: 2, 4 and 8 instances were selected randomly out of the 120 instances
generated for every test-macro (overall 274, 548 and 1,096 TMIs).

• Proposed: 274, 548 and 1,096 TMIs were selected using the proposed method.

We note that the values of 2, 4 and 8 instances were intentionally chosen in order to
generate small, medium and large test-programs, respectively. The running time of
the proposed method on a single 64-bit CPU running at 1.2 GHz was less than one
day in the worst case.
All test-programs were evaluated for detecting non-modeled faults using two sur-

rogate fault models: the stuck-at and the transition-delay fault models. None of these
models were explicitly targeted by the test-macro generation process. Instead, they
were used to evaluate the potential of the proposed method to detect non-modeled
faults. Even though the proposed method does not involve any fault simulations,
such simulations were used to evaluate the generated test-programs and thus as-
sess the effectiveness of the proposed method. These simulations were applied using
commercial tools on a server with 48 CPUs running at 2.5 GHz. The stuck-at fault-
simulation time for each test-program was between 5 hours (for 274 TMIs on the
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Figure 5.10: I − TMs vs A− TMs for unit (ALU).

Write-Back Mux unit) up to 5 days (for 1,096 TMIs on the Multiply-Accumulate unit),
and the transition-delay fault-simulation time was between 6 hours and 6.5 days on
the respective cases. The stuck-at fault simulation and the transition-fault simulation
on the whole processor (for 1,096 TMIs) require 11.5 days and 2 weeks, respectively.
As it was explained in Subsection 3.5.4, both A − TMs and I − TMs can be

used for most of the processor-units, but the superiority of I − TMs in detecting
transition delay faults makes them more favorable as compared to A− TMs. As it is
shown in Figure 5.10, I − TMs are more effective than A− TMs on the ALU unit of
the OpenRISC OR1200 processor in both the proposed and the baseline approaches.
Therefore, all the test-programs were composed of I − TMs for every unit, except of
the Multiply − Accumulate unit, where only A− TMs are applicable.
In order to show that the efficiency of the proposed method only slightly depends

on the randomness of the initial set of TMIs, we generated (randomly) three different
initial sets of 16,440 TMIs, and we run the proposed method three times selecting
each time the 274, 548 and 1,096 most effective TMIs from each one of these sets. We
repeated the same approach for the baseline approach, and we generated 3 different
baseline test-programs for every different number of 274, 548 and 1,096 TMIs. Figure
5.11 and Figure 5.12 present the stuck-at and the transition fault-coverage for the
ALU unit for the three test-programs generated using the proposed approach, as well
as the three test-programs generated using the baseline approach. Figure 5.13 and
Figure 5.14 present the stuck-at and the transition fault-coverage for the MAC unit
for the respective cases. In every chart the x-axis presents the test-time (in msec)
and the y-axis presents the fault-coverage. It is obvious that there is no significant
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Figure 5.11: Stuck-at fault variation results of ALU.

variation on the fault coverage of the proposed test-programs, while in all cases the
proposed method clearly outperforms the baseline approach. The proposed method
offers very high coverage ramp-up, which can further reduce the test-time in strictly
constrained manufacturing and periodic-test applications.

We note that the proposed method cannot achieve complete stuck-at fault coverage
on the OpenRISC OR1200 processor, due to the existence of functionally untestable
faults, but it achieves a stuck-at fault coverage that is close to the one achieved by
the method in [179], which is based on manual test generation and represents one
of the highest reported values in the literature for the OpenRISC OR1200 processor.
Moreover, the use of a processor for specific applications may restrict the usage of
certain parts of the processor [205], thereby further reducing the maximum attainable
fault-coverage for these devices. For example, the stuck-at fault coverage for the MAC
unit is 99.0% in [179] and 95.67% in the proposed method. The results for the ALU
unit are 91.9% in [179] and 88.57% in the proposed method, and the results for the
Instruction Fetch unit are 23.5% and 74.19%, respectively. The number of instructions
composing the test according to [179] is equal to 31.728 while in the proposed method
it was equal to 8,487. We have to note that these results were obtained using different
synthesized netlists of the processors and different fault lists.

Table 5.7 presents the test-program size, the test-time, the stuck-at fault-coverage
and the transition fault-coverage of the baseline (BSL) and the proposed approaches
for each one of the three proposed and baseline test-programs. We note that the pro-
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Figure 5.12: Transition-fault variation results of ALU.
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Figure 5.13: Stuck-at fault variation results of MAC unit.

posed method offers the highest benefits when a small number of TMIs are selected
because the proposed output-deviation based metric is very effective in identifying
the TMIs with the highest non-modeled fault coverage (when the number of the
selected TMIs increases some less effective TMIs are inevitably selected and the
large gap between the proposed and the baseline approach reduces). Therefore, its
effectiveness depends mostly on the potential of the output-deviation based metric
to identify the most effective TMIs, and less on the amount of randomization (the
variation of the proposed method among the three test programs is less than 0.5%
in almost all cases). Moreover, the proposed method tends to select TMIs with large
numbers of WIs, therefore it generates test-programs slightly larger than the base-

128



5%

15%

25%

35%

45%

55%

65%

75%

0.26 0.28 0.30 0.32 0.34 0.36

Tr
an

si
ti

o
n

 F
au

lt
 C

o
ve

ra
ge

Time (msec)

Baseline 01 Baseline 02 Baseline 03

Proposed 01 Proposed 02 Proposed 03

Figure 5.14: Transition-fault variation results of MAC unit.

line method, even though they both select the same number of TMIs. Nevertheless,
the defect coverage of the proposed method remains higher even in cases that the
baseline test-programs contain more TMIs.

Table 5.8 compares the proposed method against BSL in terms of the average
(among the three test-programs) fault coverage achieved for every targeted unit of
the processor. The results on the various units are reported in descending order of
the size of the units (the large units are reported first). It is obvious that the proposed
method achieves higher stuck-at and transition fault coverage in almost all cases, but
the higher benefits are on the two largest units, the ALU and the Multiply-Accumulate
(MAC) unit. We note that the variation of the fault coverage of the proposed method
was very low (less than 1%) in all cases, while it was higher for the baseline method.
For example, the stuck-at fault coverage for the Multiply-Accumulate (MAC) unit for
274 TMIs was between 84.48% and 89.18% for the baseline method and between
94.48% and 95.17% for the proposed method. The corresponding ranges for theWrite-
Back Mux unit were 75.14%− 75.68% and 76.68%− 76.86% respectively.

In Figure 5.15 and Figure 5.16 we compare test-programs generated using the
proposed method with 274 TMIs against SBST programs P1 to P6 (details about
these test programs can be found in [206, 207]) in terms of stuck-at and transition-
fault coverage. Test programs P1 to P6 have been generated manually, requiring
several weeks of significant test-engineering effort. The proposed test-programs clearly
outperform the rest of the programs in terms of test-time and test-program size (the
test-program size is proportional to the test-time in most of the cases), while they offer
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Table 5.7: Software-Based Self-Testing results.

Test Program Test Time Stuck-At Transition
Size (KBytes) (msec) FC (%) FC (%)

TMIs # BSL Prop BSL Prop BSL Prop BSL Prop

2x
13
7 1

10.9 13.2 0.064 0.079
82.58 87.45 59.00 73.32

2 83.01 87.84 60.04 73.79
3 81.96 87.08 58.70 73.32

4x
13
7 1

19.8 23.5 0.109 0.122
86.39 88.92 66.85 75.89

2 86.53 88.91 66.91 76.06
3 86.44 88.86 66.84 76.04

8x
13
7 1

37.5 41.8 0.186 0.203
88.14 89.56 73.51 77.62

2 87.81 89.67 72.62 77.36
3 88.08 89.78 72.62 77.40

higher or similar (in some cases) stuck-at and transition fault-coverage. Nevertheless,
in every case the proposed test-programs offer considerably higher defect-coverage
ramp-up, and taking also into account that they were generated very fast and almost
fully systematically, the superiority of the proposed method becomes apparent.
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Table 5.8: Stuck-at & transition fault coverage per unit.

Stuck-At Transition Number
Faults (%) Faults (%) of Faults

TMIs BSL Prop BSL Prop per Unit

M
U
LT

2x137 87.60 94.92 63.79 86.14
32,8444x137 92.54 95.41 73.64 86.96

8x137 94.00 95.67 80.87 88.23

A
LU

2x137 76.90 80.78 47.64 57.46
12,3684x137 82.41 85.86 57.97 67.19

8x137 85.34 88.57 67.71 70.05

G
E
N
PC 2x137 57.78 58.84 31.71 33.56

4,0724x137 58.93 59.91 33.22 34.26
8x137 60.44 60.73 35.56 36.09

CT
RL

2x137 83.67 84.30 73.26 74.25
3,9824x137 83.94 84.80 74.14 74.40

8x137 84.19 84.87 75.03 75.11

O
PM

U
X 2x137 97.16 97.16 93.36 93.65

2,5744x137 97.16 97.16 93.64 93.71
8x137 97.16 97.16 93.73 93.73

IF

2x137 71.41 73.42 50.84 52.74
2,3224x137 72.69 73.90 52.58 54.08

8x137 73.57 74.19 53.55 54.51

LS
U

2x137 82.45 84.69 55.95 59.89
2,2824x137 84.87 85.91 58.05 60.51

8x137 85.37 85.97 58.75 61.09

W
B
M
U
X 2x137 75.28 76.78 53.81 56.30

1,8264x137 75.61 77.04 55.94 57.22
8x137 76.79 77.97 56.72 57.88
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Figure 5.15: Comparisons with other SBST programs (stuck-at faults).
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Figure 5.16: Comparisons with other SBST programs (transition faults).
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Chapter 6

Conclusions

This research has focused in the development of new TAM architectures and test-
scheduling methods for 3D-SoCs, which exploit the high speed offered by TSVs, while
power and thermal constraints are met. We presented a new TAM architecture for
3D SoCs, which minimizes the test-time, the number of TSVs, and TAM lines used for
transferring test-data to the cores [P.1], [P.3]. The proposed method exploits the high
speed offered by the TSVs by means of a very effective TDM method, and a highly
efficient optimization method based on rectangle-packing and simulated-annealing.
Experiment results on two artificial 3D-SoCs have shown that significant test-time
savings can be achieved using the proposed technique, especially under strict power
and thermal constraints.
Even though 2D-TDM exploits the high transmission frequency of TSVs, the pre-

vious method is compatible only with bus-based TAMs, which are slow and don’t
exploit the high frequencies of the global channels. We have presented a new TDM-
based TAM architecture for 3D SoCs, which supports non-regular division of the
frequency among the various layers of the stack [P.4]. The proposed architecture
reduces considerably the intra-die connections and permits very high test-time re-
ductions by the means of a very efficient K3 design-automation process. Experimental
results on a 3D-SoC have shown that significant test-time and routing savings are
achieved even under strict power-constraints.
This research also has focused on the improvement of the defect screening of

processor-based devices, where not-intrusive methods, such as SBST, complement
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the DFT solutions. We have presented a SBST test generation method that offers
high non-modeled fault coverage in a semi-automatic manner and with short com-
putational time [P.2], [P.5]. Instead of applying time-consuming fault-simulations
using multiple fault-models, the proposed method uses logic simulation and a novel
SBST-oriented probabilistic metric that exploits both the architectural and the gate-
level model of the processor. The proposed method is fast, it is almost fully auto-
mated, and it achieves high non-modeled fault-coverage ramp-up. Experiments on
the OR1200 processor demonstrate the advantages of the proposed SBST method.
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ATE Automatic Test Equipment.
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BL Bottom Left.
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DFT Design For Testability.
DLL Delay Lock Loop.
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IC Integration Circuit.
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KGD Known Good Die.
KOZ Keep-Out-Zone.
LTC Local Test Clock.
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SoC System on Chip.
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WBY Wrapper Bypass Register.
WC Wrapper Chain.



WIR Wrapper Instruction Register.
WL Wire-Length.
WPC Wrapper Parallel Control.
WPI Wrapper Parallel Input.
WPO Wrapper Parallel Output.
WSC Wrapper Serial Control.
WSI Wrapper Serial Input.
WSO Wrapper Serial Output.
WSP Wrapper Serial Port.
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