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Abstract

Aristidis Chronarakis, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, 2019.
A Study of Incremental Checkpointing in Distributed Stream Processing Systems.
Advisor: Kostas Magoutis, Assistant Professor.

Cost-efficient fault-tolerance approaches for distributed stream processing systems rely
on state checkpointing to recover continuous queries featuring stateful operators after
a crash. Incremental checkpointing reduces the overhead of state checkpointing by
continuously logging state updates in an incremental fashion. This thesis conducts
an experimental study of incremental checkpointing in a distributed stream process-
ing system, focusing on the performance and recovery-time characteristics as well as
tradeoffs in this approach. The experimental analysis is supported by load-generating
tools and benchmarks featuring stateful operators such as aggregate and join, devel-
oped in the context of this thesis. Experimental results validate the low overhead of
incremental checkpointing and expose a recovery-time vs. compaction-cost tradeoff
that allows tuning the system to the desired performance-availability operating point.
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Ε Π

Αριστείδης Χροναράκης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, 2019.
Μελέτη προοδευτικής παραγωγής σημείων ελέγχου στην κατανεμημένη επεξεργα-
σία ροών δεδομένων.
Επιβλέπων: Κωνσταντίνος Μαγκούτης, Επίκουρος Καθηγητής.

Τα συστήματα επεξεργασίας ροών δεδομένων βασίζονται σε τελεστές οι οποίοι
υπολογίζουν ενδιάμεσα αποτελέσματα ενός μεγαλύτερου υπολογισμού. Καθώς τα
ενδιάμεσα αποτελέσματα μπορεί να συσσωρεύονται επί μεγάλα χρονικά διαστή-
ματα, τα συστήματα επεξεργασίας ροών δεδομένων πρέπει να προσφέρουν ανοχή
σε σφάλματα και ανάκαμψη της αποθηκευμένες κατάστασης. Οικονομικά αποδοτι-
κές προσεγγίσεις ανοχής σε σφάλματα σε συστήματα επεξεργασίας ροών δεδομένων
βασίζονται στην δημιουργία σημείων ελέγχου της κατάστασης του συνόλου των τελε-
στών που υλοποιούν την συνεχή επεξεργασία των δεδομένων. Μια κλασική τεχνική
βασίζεται στην ιδέα της περιοδικής καταγραφής όλης της κατάστασης των τελεστών,
η οποία όμως δεν ενδείκνυται σε περιπτώσεις που πρέπει να καταγράψουμε με-
γάλο όγκο κατάστασης. Εναλλακτικά μια τεχνική που έχει προταθεί βασίζεται στη
περιοδική δημιούργια σημείων ελέγχου που περιέχουν μόνο τις διαφορές σε σχέση
με το προηγούμενο σημείο ελέγχου, με την προϋπόθεση ότι ο σχηματισμός της κα-
τάστασης του συνόλου των τελεστών χρειάζεται το συνδυασμο επιμέρους σημείων
ελέγχου. Μια τρίτη τεχνική βασίζεται στη προοδευτική παραγωγή σημείων ελέγχου
με συνεχή καταγραφή των αλλαγών κατάστασης. Η τεχνική αυτή έχει αποδειχθεί
ότι μπορεί να μειώσει την επιβάρυνση στην απόδοση κατά τη διαδικασία παραγω-
γής τους. Η παρούσα διπλωματική εργασία διεξάγει μια πειραματική μελέτη της
προοδευτικής παραγωγής σημείων ελέγχου στο κατανεμημένο σύστημα επεξεργα-
σίας ροών δεδομένων Apache Samza το οποίο κάνει χρήση ενός τοπικού και ενός
απομακρυσμένου μέσου για την αποθήκευση της κατάστασης του συνόλου των τε-
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λεστών. Μάλιστα εστιάζουμε στα χαρακτηριστικά απόδοσης σχετικά με το τοπικό
μέσο αλλα και στο χρόνο ανάκτησης απο το το απομακρυσμένο μέσο σε περιπτώ-
σεις που το τοπικό μέσο δεν είναι διαθέσιμο. Για να υποστηριχθεί η πειραματική
μελέτη αναπτύχθηκαν εργαλεία παραγωγής συνθετικού φόρτου και τυπικές εφαρ-
μογές βασισμένες σε βασικούς τελεστές συσσώρευσης κατάστασης όπως οι aggre-
gate και join. Τα πειραματικά αποτελέσματα υποδεικνύουν χαμηλή επιβάρυνση των
προοδευτικών σημείων ελέγχου στην απόδοση του συστήματος και αναδεικνύουν
την σχέση μεταξύ του κόστους συμπίεσης της δομής των σημείων ελέγχου και του
χρόνου ανάκαμψης, η οποία επιτρέπει ρύθμιση του συστήματος στο επιθυμητό ση-
μείο λειτουργίας-απόδοσης. Η παρούσα διπλωματική εργασία συγκρίνει θεωρητικά
την προσέγγιση που υλοποιεί το Apache Samza με μια προγενέστερη προσέγγιση
προοδευτικής παραγωγής σημείων ελέγχου, την continuous eventual checkpointing
(CEC), αναδεικνύοντας τις ομοιότητες και διαφορές των δύο προσεγγίσεων. Τέλος
στα πλαίσια μελλοντικής δουλείας προτείνονται σε θεωρητικό επίπεδο δύο υλοποι-
ήσεις με την πρώτη να έχει να κάνει με έναν πράκτορα ο οποίος θα βελτιστοποιεί
τη λειτουργία της συμπίεσης με βάση περιορισμούς του χρήστη όσον αφορά είτε το
επιθυμητό μέγεθος της δομής των σημείων ελέγχου είτε τους επιθυμητούς υπολο-
γιστικούς πόρους που είναι διατεθειμένος να διαθέσει για τη συμπίεση. Η δεύτερη
προτεινόμενη υλοποίηση έχει να κάνει με την παροχή εγγυήσεων για την επεξεργα-
σία των δεδομένων ακριβώς μια φορά (exactly once) στο Apache Samza κατά την
ανάκαμψη από σφάλματα.
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Chapter 1

Introduction

1.1 Objectives

1.2 Structure of this dissertation

This thesis studies incremental state management in a distributed stream process-
ing setting. State can be defined as “a sequence of values in time that contain the
intermediate results of a desired computation” [3, 4]. The main example is operator
state, but there are others (e.g., input or output queues). State takes the form of win-
dows, hashmaps, or sets of key-value pairs (tables) maintained by an operator (or
each partition of an operator). Previous work proposed using data structures, such as
key-value pairs to externalize various types of internal operator state [5], an approach
that is followed by several contemporary distributed stream-processing systems. Fault
tolerance is typically achieved by periodically checkpointing operator state, and re-
covery performed by loading checkpointed operator state and replaying tuples from
upstream queues from a specific point in the input streams and on.

In this thesis we are focusing on incremental state checkpointing, a technique known
to reduce checkpointing overhead. Rather than periodically performing full check-
points of the entire state, known to incur significant overhead to stream-processing
performance, incremental checkpointing maintains a continuous log of updates to
state. We study the Apache Samza distributed stream-processing system, a robust
prototype that implements a sequential changelog that can be used to recover the
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state of a local key-value store reflecting operator state. Samza is a new (and rapidly
evolving) system with little published information about its internal operation.

We are especially interested to contrast and compare the Samza approach to an
earlier proposal for incremental state checkpointing, continuous eventual checkpointing
(CEC) [1], and point out their similarities and differences. CEC was showcased for
single-node deployments and aggregation operators. Samza provides the opportunity
to project CEC principles to multi-node deployments and to a richer set of stateful
operators.

In this thesis, we develop streaming applications and use them for benchmarking
and evaluation purposes, taking into account recent work in the field [6]. We also
describe a stream-processing application that we designed for a real-world use case
featuring the joining of parallel indoor-localization and application-click streams for
understanding the interaction of museum visitors with their environment.

Our evaluation metrics for Samza application execution focus on the overhead
of incremental checkpointing in streaming performance and of recovery times under
different streaming benchmarks under different compaction policies for the changelog.

Finally, we contribute a novel design for achieving exactly-once semantics in Samza
(a system that currently supports at-least once semantics) through propagation of
input-tuple information and by leveraging transactional support when logging state
updates at the level of its underlying log management system (Apache Kafka) and
the idea of an agent that performs automatic tuning of log compaction based on
appropriate control parameters.

1.1 Objectives

This thesis has the following objectives

• Gain insight into how the Apache Samza distributed stream processing system
performs state-management operations, with special focus on incremental state
checkpointing

• Develop streaming analytics involving stateful operators (aggregate and join)
and use them to stress-test and benchmark these distributed deployments

• Evaluate performance and reliability aspects of Samza in distributed deploy-
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ments

• Contrast and compare Samza to an earlier incremental checkpointing approach,
CEC

1.2 Structure of this dissertation

This dissertation consists of 6 chapters. Chapter 2 provides background to distributed
stream processing, incremental checkpointing, and Apache Samza. Chapter 3 de-
scribes our insight into the Apache Samza internal operations regarding state manage-
ment and incremental checkpointing, gained through extensive code instrumentation
and experimentation. It also describes the stateful streaming applications developed
in the context of this thesis and used for stress testing and benchmarking Samza in
distributed deployments. Chapter 4 outlines the evaluation of Samza’s incremental
checkpointing support, the impact of various parameters on performance, and the
achieved recovery time. Chapter 5 discusses related work. Chapter 6 summarizes our
conclusions and discusses future work.

3



Chapter 2

Background

2.1 General concepts

2.2 Checkpoint-rollback methodology

2.3 Continuous eventual checkpointing (CEC)

2.4 Apache Samza

2.5 Benchmarking stream-processing systems

2.1 General concepts

Data streams are possibly unbounded append-only sequences of data items (also
called tuples) composed of attribute values based on a schema [7]. Figure 2.1 out-
lines an example where input tuples conform to a schema featuring three fields: time,
item ID, item price. Stream processing is performed in a graph of operators, each of
which can be classified as either stateless or stateful. An example of a stateless op-
erator is the filter operator (φ in Figure 2.1, defined to select all tuples where (item
ID=X)). An example of a stateful operator is the aggregate operator (Σ in Figure 2.1,
defined to compute the average price of each item ID over last hour). Section 2.4.6
provides a comprehensive list of the built-in operators supported by the Samza dis-
tributed stream processing system studied in this thesis. An important concept for
accumulating state in a stateful operator is the a window of tuples, typically defined
to store incoming tuples satisfying a certain predicate, e.g., based on the value of a
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tuple key field. Windows can be defined either based on a time specification (e.g.,
window open for a certain amount of time), a count specification (e.g., window open
until a certain amount of tuples enters it), or other specification (e.g., session win-
dows in Samza, which close after a certain amount of inactivity). Certain parts of the
state, such as output queues or operator state can be stored reliably in durable local
or remote storage, as shown in Figure 2.1. The advantage of using local storage is
higher performance compared to remote storage. The advantage of remote storage
is the ability to fail independently from the node maintaining the state being per-
sisted. The approach of using a remote store (Figure 2.2) is nowadays extended with
a combination of local and remote store (Figure 2.3) to combine the advantages of
both approaches. An objective of this thesis is the study a specific state checkpointing
technique based on incrementally storing state updates to achieve fault tolerance.

Figure 2.1: General concepts

The first generation of distributed stream processing systems emerged off of re-
search projects in the Stanford STREAM [8] and Aurora/Borealis [9, 10] projects.
The stringent demands of Internet companies such as LinkedIn, Facebook, Twitter,
etc. gave rise to a new generation of scalable and highly available stream process-
ing systems such as Apache Storm1, Apache Kafka2 Streams, Apache Flink3, Apache

1https://storm.apache.org/
2https://kafka.apache.org/
3https://flink.apache.org/
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Spark Streaming4, Apache Samza5. In the following sections we discuss fault-tolerance
in stream processing systems through the checkpoint-rollback methodology (Sec-
tion 2.2), the related (incremental) continuous eventual checkpointing (CEC) method-
logy (Section 2.3), an overview of Apache Samza (Section 2.4), the system we use to
perform our experimental study in this thesis, and finally (Section 2.5) an overview
of benchmarking approaches for stream processing systems.

Figure 2.2: Checkpoint on a remote store

Figure 2.3: Checkpoint on both local and remote stores.

4https://spark.apache.org/streaming
5https://samza.apache.org/

6



2.2 Checkpoint-rollback methodology

Approaches to fault-tolerance [11, 12] include active standby (where operator state is
actively replicated in another node’s memory), passive standby (where operator state is
replicated in backup storage), and upstream backup where recovery is achieved simply
by replaying tuples from upstream operators and/or queues, which log tuples until
explicitly receiving acknowledgment to drop them. Passive standby and upstream
backup are rollback-recovery approaches [12]. Active standby is expensive in terms
of memory requirements, while upstream backup results in high recovery time when
reconstructing state requires replay of a large number of tuples. An instance of the
passive backup approach is the checkpoint-rollback (CRB) methodology described
here. In the following discussion we assume a distributed stream processing setup
such as described in Figure 2.2, where operators receive tuples in their input queues,
process those tuples possiby accumulating state, and preserve results in their output
queues until receiving an acknowledgment from all downstream nodes.

CRB is a common approach used on many fault-tolerant systems. In a stream-
processing setting, CRB periodically constructs a checkpoint of each operator’s state
and stores it in durable storage. The constructed checkpoint could include the entire
state (full checkpointing) or the ”diff” (delta) from the previous checkpoint for the
same state (incremental periodic checkpointing). On a failure, the operator first loads
its latest checkpoint and then replays messages from the input stream past the last
tuple that has contributed to the latest checkpoint at the time of the failure. The time
difference between the checkpoints affects the number of input messages that must be
replayed after recovering the latest checkpoint. Full periodic checkpointing involves
high overhead in preparing a full checkpoint. To implement CRB efficiently, avoiding
freezing the operator during checkpoint production and saving, the use of copy-on-
write [13] or adaptive checkpointing [14] variants have emerged. However, another
approach to reduce checkpointing overhead is incremental periodic checkpointing, which
computes and stores state deltas (or diffs). Incremental continuous checkpointing goes
even further by storing all updates in a continuous log as an evolving checkpoint.

7



2.3 Continuous eventual checkpointing (CEC)

Figure 2.4: CEC operation [1]

Aiming to reduce the checkpointing overhead in CRB, Sebepou and Magoutis [1]
proposed continuous eventual checkpointing (CEC) [1], an incremental checkpointing
approach for fault tolerance on stateful stream operators. The key idea in CEC is
to consider a checkpoint as a continuously growing entity. In CEC, operator state
is split into parts that can be checkpointed independently. For example when we
have a window operator with multiple windows as in Figure 2.4, state state of each
window at some point in time is considered partial state that can be checkpointined
independently through control tuples (Gcheck

k , N , t) where Gcheck is the state of window
wk, N is the number of open windows, and t is the timestamp of the last input tuple
that affected the state of the window. While the production of a Gcheck

k is a matter of
policy, the opening of a window is always logged using a Gopen

k control tuple.
A nice feature of CEC is that partial checkpoints can be sequentially logged along

with regular output tuples (such as the tuple Rk in Figure 2.4, rendering previous
checkpoints of that window obsolete). After a crash, a recovery process reconstructs
the operator state by going over the output stream in reverse and loading in memory
the last footprint of all active windows, their number inferred from the last successfully
persisted control tuple (Gcheck

k or Gopen
k ) logged. Recovery is then followed by replay

of tuples starting at the timestamp of the oldest window checkpoint. Tuple replay
affects only windows whose checkpoint time is earlier than the tuple being replayed.

The incremental checkpoint approach pursued in CEC reduces the long checkpoint
capture time necessary when performing a full or partial (but large) checkpoints in
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traditional CBR. Recovery time can be adjusted depending on how frequently partial
checkpoints are performed, highlighting a trade-off between overhead and recovery
speed. CEC was evaluated [1] using a continuous query with an aggregate operator
in the context of the Borealis distributed stream processing system, validating the low
overhead of the mechanism using either long or short duration windows.

2.4 Apache Samza

Apache Samza [15] is a widely used distributed data processing framework character-
ized by its flexibility and scalability. Samza supports both bounded and unbounded
data sources, supporting batch and stream processing with the same data processing
model (termed lamda-less). Streaming applications process data from one or more data
sources in the form of a stream and create output data for one or more data sinks.
Key concepts in Samza, including streams, applications, tasks, containers, as well as
state and fault-tolerance properties, are described below.

Figure 2.5: Stream application Overview

2.4.1 Streams

Samza can plug into a variety of data sources. It can read one or more stream(s)
from a data source if the latter fulfills a set of requirements. First, the source should
be able to shard streams in a number of partitions. Each partition must maintain its
own order for messages, which cannot be changed, and each message must have its
own identifier (offset) indicating the position of the message in its partition. There
is no requirement for global ordering of messages across partitions.A stream should
be able to receive messages from many producers and serve multiple simultaneous
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consumers. Currently Samza is integrated with a variety of consumers such as Kafka,
Microsoft Azure, AWS Kinesis, Hadoop Filesystem; and producers, such as Kafka,
Microsoft Azure, Hadoop Filesystem, and Elasticsearch.

Figure 2.6: Samza’s supported stream

2.4.2 Applications, Tasks, Containers

For distribution and scalability, Samza breaks each application into a number of tasks
that can be deployed in different machines. Each task handles a different partition
(thus there is not need for global order on the messages from all partitions) and the
number of all the tasks is the same with the number of the partitions of the input
stream. Thus tasks could be considered as the logical unit of parellelism on Samza.
All the tasks that consist the application are being handled by Samza’s containers.
Each container could possibly hanlde many tasks. Except from the containers that
handle the tasks there is a special container (Job Coordinator) responsible for monitor
containers’ health and also responsible for the assignment of tasks across the available
machines on starting and on failure conditions. On distributed deployments most of
the time a cluster manager is used for management of these containers like Apache
YARN. Each container till is alive has an event loop for checking for input messages
and informing about them the tasks, for communicating with producers about the
output of handled messages, for the commit procedure etc. Each task periodically
(can be configured how often) does a ”commit”. This procedure writes durably the
checkpoints for the latest processed message of the input stream and flush the task’s
store.
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Figure 2.7: Samza’s container Overview

2.4.3 State

Samza supports stateless and stateful operators. There are many options for keep-
ing the state. Two common approaches are in-memory checkpointing and the use of
an external means, such as a key-value store or a remote database. The in memory
checkpointing option has the weakness of the limited memory resources along with
the need for checkpointing (full or diff from previous), which make this option un-
suitable for large production use cases. The use of an external database or key-value
store has the weakness that we should overcome challenges related with perfomance,
scalability, isolation, fault-tolerance of the means etc. Samza’s developers has realized
that in order to provide scalability and good throughput rates their implementation
should be based on a local storage solution.

To provide local disk state storage, Samza developers followed a design where
each task has its own local state store. The store that is created on the disk for
a task, can be managed with different storage engines which strengthen Samza’s
pluggability and integration features. By default Samza comes with a key-value based
store implementation built on RocksDB. This approach has certain benefits. First of
all, since each task has its own state store locally, the reads/writes to the store are
faster and we have some kind of isolation considering that each task has to deal only
with its state store. Also this approach with the collocation of task with a state store
makes easier the migration when needed (for failure/recovery or scaling out) since
each stateful task needs to has only each state to be able to run on a new machine.
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2.4.4 Fault tolerance of stateful applications

The use of the local state store on the disk gives Samza support for fault tolerance
under task failures. When a task restarts after a failure, it can be placed on anyone
of the available machines. To take advantage of the fact that on conditions like task
failure etc., the state store may have survived from the failure, Samza uses a host-affinity
mechanism [15]. In support of this feature, Samza periodically persists information
(on a Kafka stream) about which machine a task is being run on. Local storage
however may be lost due to disk failures or may not be available following a crash.
To overcome the challenge and offer full fault tolerance support, Samza proposes
a mechanism with which the state of a task store can be restored on a different
machine after a failure. To achieve this, a special (Kafka) stream called changelog is
used. Each Task replicates all the changes (writes) of the state store’s, on a partition
of this changelog stream associated with the specific task. In case of a disk failure
where the state is lost or on general machine failure condition, the restarted task on
the machine reconstructs its state store using changelog partition information. Log
compaction is performed by Kafka on the changelog stream to delete records that have
been overwritten or deleted, allowing faster state recovery when needed. Finally, the
fact that a Kafka stream can be replicated increases durability. Figure 2.8 provides a
better understanding of the sate and fault-tolerance mechanism.

Figure 2.8: State management on Samza

2.4.5 Message (tuple) replay and semantics

When a task is restarted after a failure, besides recovering task state (from RocksDB
or the changelog), it should also be possible to recover information about the last
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message processed from input streams before the failure so that messages can be
replayed from that point on. Samza periodically could persists in Kafka stream the
offset of the last processed message for the input streams of a task. This periodic
procedure (termed an incremental checkpoint in Samza) is performed as part of flushing
the state store on the disk in the task commit procedure. Commit and state flush are
associated and the frequency of task’s commit procedure affects the range of input
messages that must be replayed after task’s restart. Since the last-message-processed
and state flushing are not performed atomically, it is possible that messages may
be processed more than once, a condition termed at-least-one semantics. Figure 2.9
provides a representation of the Samza incremental checkpointing mechanism.

Figure 2.9: Incremental checkpointing

2.4.6 APIs

Samza provides multiple APIs to support application development. It supports two
Java APIs, an SQL-related API, the Table API, and an API related with Apache
Beam. Both Java-based APIs (High Level, Low Level) are aimed for the development
of stream-processing applications. In these two APIs, along with the application logic
one has to declare input/output data sources and various configuration parameters.
The main difference between the high and the low-level API is on how the processing
of the input data is perceived. If it is perceived in term of messages then the Low-Level
API should be used since one must describe the logic for each incoming message. If
processing is perceived in terms of a stream then the High-Level API should be used.
Samza provides built-in support for standard operators and allows the combination
of multiple such operators. Application developers can express complicated stream-

13



processing applications as Directional Acyclic Graphs combining different operators.
The Table API provides easily integration with data sources on which random

access by key is supported where the SQL API gives benefit to Samza since some-
one using this can describe the application logic on SQL format. Beam’s goal is to
provide the option of running the same developed application with Beam on various
processing systems and the provided API comes for the running support of Beam’s
applications on Samza.

The built-in operators of Samza’s High Level API are:

• Map, FlatMap : Apply a function to transform the data of a stream

• Filter : Filter data of an input stream

• PartitionBy : Partition input data of a stream based on an attribute (a key) of
the data

• Merge : Merge two input streams into a single output stream

• Broadcast : Broadcast on multiple data processors

• SendTo, Sink : Send data to output destinations

• Join : Join two input data sources based on some common attribute. Although
there is a time period associated with the specification of a join, a tuple is emitted
each time a result (a match) is found, rather than waiting for that time to expire

• Window : Aggregate tuples from an input stream over time. Samza windows
can be either tumbling (lasting for a fixed-size time interval, without overlap
between different window instances) or sliding window (where there may be
overlap between contiguous window instances). An output tuple may be emitted
when the window closes, or before that if an early trigger condition is defined.
The state of a window may comprise all messages (tuples)that enter that window
since its opening, or value that accumulates the impact of all such tuples (defined
using a FoldLeftFunction)

Overall, Samza features scalability, fault-tolerance, and ease of application devel-
opment through rich APIs. It has been used in production by many companies such
as LinkedIn (where it was originally developed), eBay, Slack, TripAdvisor, and others.
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2.5 Benchmarking stream-processing systems

Validating and comparing the various frameworks that support stream processing
requires solid benchmarks. In the streaming domain, benchmarks are modeled off of
typical streaming applications evaluating various streaming-related metrics. One of
the early benchmarks on stream-processing systems, Linear Road [16] simulates a toll
system for the motor vehicle expressways of a large metropolitan area and requires
maintaining tables of historical data whose update patterns are determined by the
values of streaming data. A more recent streaming benchmark is the Yahoo Stream-
ing Benchmark [17] modeling a simple advertising use case, where advertisement
events arrive and parsed to a usable format, filtered for the ad view events of interest
(removing unneeded fields), adding new fields by joining the event with campaign
data stored in a key-value store (Redis). The ad views are finally aggregated by cam-
paign and by time window and stored back into Redis, along with a timestamp to
indicate when they are updated. The Yahoo Streaming Benchmark aimed to evaluate
and compare Storm, Spark and Flink, using Kafka for data ingest. Later work [6]
pointed out that the ingest system and the key-value store are often bottlenecks in
this benchmark.

Karimov et al. [6] contribute benchmarks for Storm, Flink, and Spark in which
data on the operators are not ingested by a broker such as Kafka but instead, created
on the fly (likewise, the output data are not stored in Kafka). This design decision
has led to a better understanding about the appropriate metrics related with the
throughput and latency. It has also led to better accuracy results for the proposed
metrics since the streaming framework being tested is separated from the other sys-
tems. They have proposed that relative to the latency someone has to separate the
latency on processing time and event time latency where the first is the processing
time and the second is the processing time plus the time from creation and before
being processed. As the throughput they have selected that should be the highest load
that can be handled from the operator without a continuously increasing event-time
latency.

The load could be handled from benchmark with two different streaming appli-
cations, the first one plays the role of an windowed aggregation query on the created
data based on a key and the second which plays the role of join query in which
created data from two different sources” combined into one output based on the in-
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dividual keys. Both of the streaming applications are common processing use cases,
used on the real world and the workload that they used on their scenarios for their
experiments are also from the real world load.
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Chapter 3

Implementation

3.1 Stateful stream-processing applications

3.2 Introspection on Samza state management

3.3 Comparison between Samza and CEC on fault-tolerance

3.4 A real-world use case

In this chapter we describe implementation aspects of our work taking a top-down
approach. We start by describing in Section 3.1 a set of stateful stream-processing
applications that we developed in order to stress distributed deployments of Samza
and understand its performance and availability aspects. Since we use Samza as a ref-
erence stream processing system, we also want to understand how Samza internally
manages operator state and supports recovery in case of failures. Thus in Section 3.2
we describe the results of our empirical (experimental) introspection, through ap-
propriate code instrumentation, of how state management and fault tolerance are
implemented internally in Samza. Our in-depth look at the implementation of Samza
allows us to compare and contrast it to continuous eventual checkpointing (CEC) in
Section 3.3. Finally, in Section 3.4 we briefly describe a real-world application that
we developed to support a digital personal tour-guide use case.
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3.1 Stateful stream-processing applications

The user-level stateful streaming applications that we developed to support our work,
are implemented using the high-level Samza API 2.4.6. These applications cover the
main types of stateful operators (aggregate, join) used in streaming applications and
are in line with other distributed streaming benchmarks. More specifically, following
standard practice in recently proposed benchmarks [6], there are two input streams.
The first stream conveys purchases and the second one advertisements.

Each purchase object on the stream of purchases has 3 attributes:

• the userId for the user who makes the purchase

• the gemPackId i.e the id for the purchased bundle (gemPack), and finally

• the price of this bundle

Each advertisement object on the stream of advertisements (ads) has 2 attributes:

• the gemPackId of the gemPack which is being advertised and

• the userId which indicates the user who will see this advertisement for this
gemPack.

For both of the implementations the built-in stream operators that are used from
the Samza’s high level API have a set of parameters that can be configured. The full
code implementation can be found in Appendix A.

3.1.1 Application 1: Window-based aggregator over an input stream

Using the stream of purchases we implement a windowed aggregation query in or-
der to construct a tumbling window of revenue made from each gemPack. In terms
of configuration parameters, the window operator has attributes that indicate when
windows close, the window’s output tuple structure, etc. Each purchase tuple is a
combination of a key (gemPackId) and the full purchase object and thus tuples of the
same key are routed to same stream partition and then to the same task and its win-
dow operator. If the input tuples have not a key, then they can be explicitly partitioned
using the built-in partitionBy operator and information from the purchase object. We
configure the duration a window remains open. For each incoming purchase on a
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window we add up the purchase price to the previous sum for this gemPackId (using
a FoldLeftFunction) avoiding the need to store all purchase objects.

When we have a trigger for emitting an output tuple by the window (meaning
when the window duration has elapsed), the window emits an output tuple that is
mapped to a desired format output tuple using the map operator and then sent to the
final output stream from which can be consumed by consumers. Figure 3.1 provides
a better understanding of the tumbling window related implementation.

Figure 3.1: Tubling window aggregator

3.1.2 Application 2: Window-based joining of two input streams

Using the advertisements and purchases input streams described above, we joined
them on the combined (gemPackId, userId) key that both streams have. This join
can give an indication of the impact an advertisement campaign has on purchases.
In this implementation again the tuples on the purchases and the ads streams are
combinations of a key (gemPackId) and (purchase or ad) object and thus there is
no need to use the partitionBy operator. These two input streams are joined by the
Join operator based on the same combined key. On the Join operator we set also the
duration of the retention time in which we expect to have a matching. Final, the
output tuple from the Join operator, which has the joined result, is being sent to the
final output stream for consumption. Figure 3.2 depicts the join-based application
implementation over the Samza high-level API.
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Figure 3.2: The stream-stream join

3.2 Introspection on Samza state management

To support fault tolerance for stateful operators, Samza maintains operator state on
local disks to ensure that it can be recovered after failures such as task crash/restart,
assuming the failed task can be restarted on the same machine. To ensure that state is
recoverable even if this is not possible, Samza introduced the possibility of recovering
from a remote persistent mirror of local disk state maintained in Kafka, the changelog.

State in Samza is represented using a key-value store abstraction. When it is pre-
ferrable to store the state on the local disk, Samza uses a RocksDB instance (a storage
engine with a key-value interface) to provide fast persistent reads and writes, espe-
cially when SSDs are used as backing store.

3.2.1 Maintaining state on disk

When maintaining state on disk, Samza implements a simple cache in front of the
disk to benefit from accessing frequent state data without interacting each time with
the disk, while also avoiding serialize/deserialize costs. Samza further buffers writes
in order to apply them in batches on the underlying store on disk.

Samza achieves these objectives through a store management implementation that
consists of multiple stacked layers as seen in Figure 3.3. Storing the state of a window
operator starts with a put operation in the Timeseries store (top layer of Figure 3.3)
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followed by a put to the Key-value storage engine. Then there is a layer responsible
for checking that the state data (key-value pairs) that we want to store are not null
(Nullsafe store). After that, data are headed to an LRU cache with configurable size
and write-back batch size (Cache store). After the cache there is a layer responsible for
data serialization/deserialization (Serialized store), and following that is the Logged
store, which performs the writes to the local (RocksDB) and remote (Kafka) stores.
Samza disables the RocksDB write-ahead log (WAL) based on the assumption that
logging in the Kafka changelog renders the RocksDB WAL redundant [18]. Thus
writes are pushed to the local disk device as soon as a write buffer fills up. A write
buffer is by default 32MB and RocksDB provisions three such buffers for concurrent
use and I/O.

Figure 3.3: Stacked storage layers

An important policy is to decide when cached key-value pairs representing state
data are being written to the disk and to the changelog for fault-tolerance. Through
code instrumentation and extensive experimentation we determined the following
behavior: Each time that some state data are flushed on the disk, they are simulta-
neously written to the changelog (see Logged store in Figure 3.3). Cached state data
are written to the disk and the changelog in three cases:

• When their size exceed the batch size (default: 500 keys)

• When the task periodically performs the commit procedure (explained in Sec-
tion 2.4.5), part of which flushes cached state to disk, and
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• When stream application logic requests this. In this case, we examine how
stateful operators, such as window and join, could be affected:

3.2.1.1 Window

A window operator supports two options for maintaining accumulated state. To de-
scribe them we use the running example of a stream with purchases and an applica-
tion that wants to group together the purchase objects of the same user in a separate
window.

In the first option (the default), each emitted result from the operator (window
pane) must maintain all purchase objects needed to make the count, as indicated by the
trigger type. In this option all purchase objects must be kept on the store1.

The internal key-value store key used to store window tuples in this case is a
combination of

• the key of the purchase object

• the window’s opening timestamp, and

• a sequence number to identify individual tuples within a window (pane)

In the second option (FoldLeftFunction, see Section 3.1.1), each purchase for a
specific user can increment a counter in that window, and this counter is eventually
the emitted result from the operator. In this option, only the counter must be kept on
the store, however the procedure to get (read) the previous value in order to update
the counter still requires flushing the counter to the disk. This is to ensure that what
is read by the operator is reliably stored on disk prior to reading it (for consistency
after a crash)2.

The internal key-value store key used to store the window value in this case is
the combination of

• the key of the purchase object

• the window’s opening timestamp

An emission from an early trigger (Section 2.4.6) contains the object difference
from the previous emission of the same window or all objects since the opening of

1Use of batching in this case is likely to result to less frequent but larger writes to disk
2Use of batching should not have an effect in this case
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the window. In case of a discarding window, Samza discards old messages from the
store after the trigger, or else (in an accumulating window) it retains older tuples.

3.2.1.1.1 Discarding (overwriting or tombstoning) state

Through experimental observation, we determined that Samza overwrites the single-
valued state of a FoldLeftFunction window with a new version after each update to
it (e.g., incrementing a counter). When the FoldLeftFunction window closes, Samza
deletes that state by writing an explicit tombstone (null value for that key). In the
case of a regular window pane (where all window tuples are stored through separate
keys), closing a window results to deleting each individual key within that window,
i.e., writing tombstones (null values) for each individual key of that window pane.

3.2.1.2 Join

A join of two (or more) streams identifies related events in two different streams close
in time, and combines them into a single output event. The user can set a maximum
period of time over which related events in different streams can be spread out. To
perform a join between streams, a streaming job needs to buffer events for the time
window considered. The join operator buffers events in Samza’s state store (using the
TTL feature, described further in evaluation Section 4.6), which supports buffering
more messages than can fit in memory, and also automatically erases events when the
stated TTL expires. The efficiency of multi-stream joins has been studied by Zhuang
et al. [19]. We summarize this work in Section 5.2.

3.3 Comparison between Samza and CEC on fault-tolerance

The Samza changelog approach [15] features similarities and differences compared
to CEC [1] (Section 2.3). Recall that in CEC, partial checkpoints of individual win-
dow state (similar to the single-value accumulated state maintained per-window by
Samza’s LeftFoldFunction feature) in an operator are continuously being appended
(durably) in an operator’s output log, interspersed with standard operator output.
In CEC (Figure 3.4), recovery typically has to read q tuples (the extent) representing
parts of operator state from the output queue, and then replay u tuples from the
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input queue to fully bring operator state to a consistent state3.

Figure 3.4: CEC extent size (q tuples) [1]

3.3.1 Similarities

The first similarity is that both approaches serialize state updates in a log (output
stream in CEC, changelog in Samza) and can restore operator state from there. After
a failure, both approaches reconstruct the state by reading the log and replaying a
certain range of input tuples (those whose influence on the operator state has not
yet been recorded durably in the log). In both cases, the log may contain entries that
have been deleted through later activity, such as overwrites by more recent versions
of state, or explicit deletes, such as when throwing away the state accumulated in
the context of a window, after closing it. Both approaches may attempt to reduce the
state being maintained (size of changelog in Samza, extent size in CEC), though the
approaches to achieve this differ in each case as described in the following section.

Another similarity is that in both approaches each operator maintains its own log
and recontructs state from it. In particular, Samza maintains a separate changelog
topic per task.

3.3.2 Differences

A difference between Samza and CEC is that Samza additionally stores state in a local
key-value store (an embedded instance of RocksDB), whereas the (remote) log is the
sole checkpoint store used in CEC. Another difference is that in Samza, each operator
update potentially leads to a changelog append, whereas in CEC the frequency of
producing partial checkpoints may be configured to balance its costs and benefits.

3U, Q refer to control targets in previous work [1] and are not of interest in this thesis.
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Another important difference between CEC and Samza is the approach they follow
to keep checkpoint size small:

• CEC reduces the size of the extent (q in Figure 3.4) by performing more frequent
partial checkpoints: As the extent is laid out sequentially up to the oldest partial
window state (wk in Figure 3.4, last of the N windows that must be restored),
CEC can reduce the size of the extent by performing a newer checkpoint of wk

(the number of active/open windows is also atomically stored). A CEC extent
may still contain obsolete tuples (e.g. overwritten state), that should be skipped
when loading the checkpoint into memory.

• Samza, on the other hand, separates checkpoint tuples from output tuples
and stores the former in a changelog. Samza may occassionaly perform log-
compaction (supported by Kafka) on the changelog, reducing the amount of
overwritten or deleted state ( Figure 3.5) it goes over during recovery.

Figure 3.5: Samza changelog contents

3.3.3 Kafka compaction details

Samza is faced with a tradeoff in how aggressively to compact changelogs. Changelogs
are partitioned (since there is a separate changelog partition for each partition task
of an operator) and each partition has a number of segments, which contain records
with keys and values. Each log has a head, which the not-yet-compacted portion of
the log containing new appended records, and a tail, which is the part of the log that
gets compacted (records there maintain their original offset, but may be removed if
a tombstone or a more recent version of their key has been written to the log).

The Kafka broker compacts logs through a configurable number of cleaner threads,
whose purpose is to search for the log with the highest dirty ratio (ratio of log head over
log tail, that is percentage of new uncompacted over previously compacted records)
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and, if that exceeds a configurable threshold, clean the log. Otherwise, cleaner threads
sleep for a configurable period of time. The higher the number of threads, the lower
the dirty-ratio threshold, and the shorter the sleep time, the more aggresive is the
compaction policy. The tradeoff is between compaction-cost overhead and time to
restore operator state.

In Section 4.5 of our evaluation, we demonstrate the impact of these Kafka con-
figuration parameters in adjusting changelog size, and through it, recovery time, and
point out that Samza could utilize these knobs in achieving explicity recovery-time
targets, similar to how this was achieved in CEC through adjusting the frequency of
writing window state to the log [1].

3.4 A real-world use case

Another contribution of this thesis is the design and implementation of a real-world
use case. Samza is used as part of a bigger platform for personalized touring, Proxi-
tour. The role of Samza is to detect events of interest, and feed them back to the Prox-
iTour platform for intelligent context-sensitive interaction with users. The real-world
use case is based on the common business logic pageview-adclick pattern with which
someone could correlate user clicks on advertisements which are represented on the
adclick stream, with the users’ views on pages that contain these advertisements from
the pageview stream. Proxitour’s suggestions to visitors for touring (pointers and di-
rections on the space) play the role of the pageviews, where visitors’ movements on
the space after the view of the suggestion, play the role of the adclicks. The value
of this use case is that could monitor the impact of the suggestions on the users,
feed follow-on real-time interaction or feed a machine learning related sub-system.
The implementation of the use-case is based on the stream-stream join operator of
Samza’s high level api, in which we join the two input streams to generate output
tuples with combined information from the two streams.
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Chapter 4

Evaluation

4.1 Experimental setup

4.2 Applications and deployment topologies

4.3 Incremental checkpointing I/O activity on a local store

4.4 Operator-state recovery from changelog

4.5 Changelog compaction policies: Log size vs. CPU

4.6 Join-based application

4.7 Summary of results

In this chapter we describe the evaluation of incremental checkpointing in Samza,
focusing first on the impact of state handling on performance with an SSD backing
store, for the stateful window operator using FoldLeftFunction (FLF) and retainALL
(RA) type windows. We also evaluate the impact of changelog size on restore time,
as well as the impact of compaction policy to changelog size and CPU requirements
of maintaining a bound on size, for FLF and RA window types.

4.1 Experimental setup

Our experimental testbed consists of four servers, each equipped with a Intel® Xeon
Bronze® 3106 8-core CPU clocked at 1.70GHz, 16GB DDR4 2666MHz DIMMs, and a
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256GB Intel SSD, running Ubuntu Linux 16.04.6 LTS. The nodes are interconnected
through a 10Gb/s Dell N4032 switch.

4.2 Applications and deployment topologies

Figure 4.1 depicts the physical layout of the aggregation benchmark based on the
stateful window operator, mapping Samza elements to 3 physical nodes.

Figure 4.1: Experimental setup for aggregation benchmark

Figure 4.2 depicts the physical layout of the stream-stream join benchmark and
mapping to 3 physical nodes. These deployments are meant to depict general de-
ployment principles; some of our experiments involve different deployments.
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Figure 4.2: Experimental setup for stream-stream join benchmark

The software versions used are Samza version 1.1.0 (latest stable version at the
time of this work), Kafka version 0.10.1.1, Zookeeper 3.4.3, and Yarn version 2.6.1.

4.3 Incremental checkpointing I/O activity on a local store

In this experiment we observe write I/O activity to the SSD backing store and CPU
usage during experiments1. We start with the window aggregation application (Sec-
tion 3.1.1) for both FLF and RA window operator options. The input stream had two
partitions and thus Samza constructed two tasks. Each of these tasks belonged to a
different Samza container and these two containers were located on the same machine
(node02). We fed the application with a moderate load of a single source emitting
a total of 3 million tuples or a heavier workload of 3 concurrent sources emitting a
total of 9 million tuples. Each tuple has a key whose value is drawn uniformly at
random from a set of 10 distinct keys. Window duration is one second.

We load our streaming application on Samza and monitor I/O activity at the
backing store for 1200 seconds (without load). After about 180 seconds we start the
feed of the topics from which our streaming application consumes tuples. The feeding
lasts about 8 minutes. From the end of processing of the tuples until the end of the
20-minute period we monitor only the baseline I/O activity, which is mainly the result

1The changelog is enabled in these experiments. Given that I/O is duplicated to both the local store
and the changelog, we expect similar I/O activity towards the changelog too.
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of periodic commits.
Figures 4.3 and 4.4 depict write I/O activity (write throughput in KB/sec) at the

backing store for the single source and the 3 concurrent sources, for an FLF type
window. Figures 4.5 and Figure 4.6 depict write I/O activity for RA type windows.
Write activity exhibits clear periodicity with spikes during flushes (commits) by the
window operators, increasing in size with heavier load and when using RA-type
windows, which produce more writes with tombstones when windows close. The
total number of bytes written to the backing store in the case of 1 producer was
about 4.7MB for FLF and 28.6MB for RA. For 3 producers, it was about 5.6MB for
FLF and 86.4MB for RA.

Figure 4.3: FLF window, 1 producer Figure 4.4: FLF window, 3 producers

Figure 4.5: RA window, 1 producer Figure 4.6: RA window, 3 producers

Table 4.1 depicts CPU busy on the machine that hosts the application using FLF
and RA type windows, with 1 and 3 concurrent sources respectively. CPU needs
increase with the higher load as expected. Final RA-type windows seem to consume
less CPU in comparison with the FLF-type.
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Table 4.1: CPU busy on the n

1 producer 3 producers

FLF 15% 22%

RA 4% 10%

4.4 Operator-state recovery from changelog

In this experiment we measure the time to reconstruct the local state of an operator
in RocksDB from the changelog. This is necessary after disk or container failure
requiring task restart at a new machine, in other words it is not possible to restart
the task on the machine it was executing before the failure. We used the window
aggregation application and an input load of 3M tuples (single producer), where
each tuple had the same key (and thus routed to a single window). The input stream
had only one partition and thus Samza constructed one task within a single Samza
container on machine node02.

We experiment with both options of handing the window state per key, FLF and
RA. These two options differ on how tuples are stored (Section 3.2.1.1) and on failure
handing. With FLF, each update on the changelog for the same window has the same
key (overwriting previous versions), whereas in RA each emitted record of window
state has a different key. This could play a significant role on restoration since in
the first case we need to restore the latest record of the aggregated value, but in
the second case, all records that belong to a window state need to be restored. It
is worth mentioning our observation that in the Samza implementation we worked
with, compaction is not enabled by default on the changelog (container on node02,
Kafka broker on node01).

Normally, after the closing of a window, Samza emits tombstones to the changelog
for records contained in the window. In experiments in this section, we use windows
with long duration (60 minutes), remaining open for the entire runtime of the ex-
periment (i.e., no closing of windows and emission of tombstones). We experiment
with an input of 3M records with FLF windows (same key for window in changelog
records), and 3M records with RA windows (different key per changelog record).
After the processing of the tuples and forming of the operator state, we kill the con-
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tainer hosting the window and disable access to the local store. This has as effect that
on restart, the container has no access to its (previously local) state and thus need to
restore from the changelog.

We measure the time to restore operator state using a timer at the restore code
path within the Samza implementation. We measure precisely the time to consume
changelog records and rebuild local state in RocksDB, excluding time related to other
activities such as creation of threads to consume the changelog, creation of the lo-
cal store, etc. Our results reported in Figures 4.7- 4.9 are averages of 3 runs with
negligible standard deviation.

Figure 4.7 (left bar, FLF) depicts results with FLF windows, restoring a changelog
of 3M records with all records having the same key (Section 3.2.1.1). Had log com-
paction been performed prior to the crash in this case, we would need much less time
to restore from the changelog, since compaction would eliminate most records but the
last. In the second use case (right bar in Figure 4.7, RA) all keys on the changelog
are distinct.

As the changelog has about the same number of records (3M) in both cases, we
should need the same time to restore state. The difference (8.41sec vs. 4.42sec) can
be explained by the fact that in FLF we have 3M updates for the same key whereas
in RA we have 3M inserts for 3M keys, resulting in different RocksDB per-key costs.

Figure 4.7: Time needed to restore local state (3M input tuples)

We performed additional experiments with lower and high number of tuples as
input (1 million and 6 million), with the results exhibiting a near linear relationship
between restore time and number of input tuples. Figures 4.8 and 4.9 are for FLF
and RA windows respectively. Consistent with our previous measurements, restore
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takes longer for FLF vs. RA windows for the same amount of state.

Figure 4.8: Time needed to restore local
state for increasing state size (FLF)

Figure 4.9: Time needed to restore local
state for increasing state size (RA)

Overall, our results indicate that restore time can differ based on changelog size
and type of window, demonstrating that it is important to configure log compaction
on the changelog. The following section evaluates the impact of specific compaction
settings on changelog size and on resource requirements.

4.5 Changelog compaction policies: Log size vs. CPU

Given the direct relationship between changelog size and recovery time, we are inter-
ested to evaluate policies for limiting changelog size and their cost. The experiments
in this section measure the impact of Kafka’s log compaction configuration param-
eters on changelog size and associated CPU usage on the node which is responsible
for log compaction (the Kafka broker is hosted on node01).

We perform experiments on windows with small duration (1 second) with 3M
input tuples in which tuples had a key chosen uniformly at random from a set of 10
distinct keys. Frequently closing windows result in frequent emission of tombstone
tuples on the changelog, one tombstone for each different key. We perform experi-
ments for both FLF and RA window types. The input stream had a single partition
and thus Samza constructed one task within a Samza container residing on node02.

In terms of configuration parameters, we keep the number of compaction threads
fixed at two, and vary the dirty-ratio threshold (min.cleanable.dirty.ratio) and time
at which the currently active log segment closes, becoming available for compaction
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(log.segment.ms). The min.cleanable.dirty.ratio parameter indicates the minimum ra-
tio of dirty log to total log for a log to be eligible for compaction, in other words
indicates how frequent the log compaction’s threads will try to compact topic’s logs.
If there is no log with dirty ratio over than threshold then, the compaction threads
sleep for a specific time (default=15,000ms). The log.segment.ms parameter indicates
how often Kafka creates a new segment for the log, at which point a new segment
will be active (segment that receives new records and not eligible for compaction).

We perform experiments without the activation of log compaction to observe the
evolution of changelog size over time and the baseline CPU usage (without log com-
paction) on the machine otherwise responsible for compaction (node01). We also
performed experiments with the log compaction enabled, more specifically for seg-
ment.ms=100ms and segment.ms=1000ms, and for 3 different dirty ratio thresholds
(0.01, 0.33, 0.66). The higher the segment.ms the longer the active segment will re-
main locked, and the more uncompacted data will be available to be compacted when
discharged from being active. A higher dirty ratio will lead us to fewer compactions
but to compactions with a lot of compacted records. The deletion.retention.ms param-
eter (at the level of a topic, or log.cleaner.delete.retention.ms at the level of server),
the amount of time to retaintombstone markers (deletes) for log compacted topics, is
fixed at 100ms.

Starting with the study of FLF windows, Figures 4.10, 4.11 and 4.12 depict
the evolution of the changelog topic partition size (in KB) without compaction, us-
ing Agressive settings (dirty ratio: 0.01, segment.ms=100ms), and Relaxed settings
(dirty ratio: 0.66, segment.ms=1000ms), respectively. A lower segment.ms makes
dirty data available for compaction more frequently, allowing cleaning to proceed,
keeping changelog size low. We observe that the Aggressive approach keeps changelog
size low most of the time. With the Relaxed approach the maximum changelog size
occasionally (but not frequently) reaches 10MB. Without any compaction, changelog
size reaches 200MB at the end of experiment. CPU usage on the node that hosts
the Kafka broker is about 18% busy without compaction, about 20% busy with the
Relaxed policy, and about 42% busy with the Agressive policy. The results show that
the Relaxed policy manages to exercise some control over the size of changelog with
low overhead (about 2% more) over the baseline CPU usage without log compaction.
However, restore time can still be significant when the changelog reaches large sizes
(in the order of 5-10MB).
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Figure 4.10: FLF, No Compaction

Figure 4.11: FLF, Aggressive settings Figure 4.12: FLF, Relaxed settings

Moving to the study of RA type windows, Figures 4.13, 4.14 and 4.15 depict the
evolution of the changelog topic partition size (in KB) without compaction, and with
the Aggressive and Relaxed settings respectively. With RA type windows and with
frequently closing windows, we have more tombstones (null-value records, as many
as the tuples that entered the window pane) than on the FLF, resulting in a longer
changelog. As we increase the dirty ratio we get bigger size for the changelog with
much more data to be compacted. We observe that the Aggressive policy manages
to keep the size below 200MB for the entire experiment. With Relaxed settings,
changelog size exceeds this limit but when a compaction take place, the size is falling
back under 200MB. Without log compaction, changelog size reaches 600MB the end
of the experiment.
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Figure 4.13: RA, No Compaction

Figure 4.14: RA, Aggressive settings Figure 4.15: RA, Relaxed settings

Figure 4.16 depicts CPU utilization on the node hosting the Kafka broker for all
experiments. The CPU on the node hosting the Kafka broker was about 44% (busy)
with Aggressive compaction, about 20% (busy) for Relaxed compaction, and about
18% (busy) without compaction, indicating that again more work is being done with
the Aggressive compaction policy. The results also indicate that spending a little more
CPU (about 2%) we keep a smaller changelog in contrast with the the no-activation of
the log compaction approach. A general observation is that changelog size is generally
higher for RA compared to FLF for the same compaction settings, due to the more
tuples being produced in the former case. This indicates that more CPU would have
to be consumed for RA windows to achieve the same level of changelog size. In our
experiments we use the same compaction settings for each policy in the FLF and RA
cases, thus it is not surprising that we do not observe a measurable difference in CPU
usage between the two.
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Figure 4.16: CPU busy on the node hosting the Kafka broker

Given suitable tuning of the configuration parameters controlling compaction,
we can achieve specific recovery-time goals by taking advantage of understanding
(through experiments such as those described in this section) of the relationship
between compaction parameters, changelog size, and recovery time.

4.6 Join-based application

State management for the join-based application differs from the aggregate-based ap-
plication. The join operator specifies a TTL (time to live) during which tuples to be
joined are retained in the operator. That TTL maps to underlying capabilities of spe-
cific stores, namely the TTL feature of RocksDB, after which records are automatically
erased.

We observe that with a TTL of 3min and a checkpoint interval of 1min, tuples that
enter the join operator are written to RocksDB and the changelogs at each commit
(only the latest version of each key). We do not observe any tombstones (null values),
which is explained by the fact that with a TTL, deletes are implicitly performed by
the stores.

The implementation we used was throwing a warning that the “changelog is not
supported for TTL based stores”, thus we decided to not further pursue this case.
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4.7 Summary of results

Recovery in an incremental checkpointing system leveraging a local store (such as
Samza) is optimized for the case where a failed container/task restarts at the same
node where it was previously hosted (host affinity). A slower recovery path is fol-
lowed when the container/task cannot restart at the same node, and thus local-store
state has to be reconstructed from the changelog. In this thesis we determined that re-
covery time depends on the size of the changelog, as well as on the type of operations
the latter carries (FLF vs. RA). To ensure that changelogs do not grow indefinitely
leading to very long recovery times, compaction should be configured with appro-
priate settings to enforce a certain bound on changelog size (and thus restore time)
without significantly impacting the CPU of the node(s) hosting the Kafka broker.
A restore-time vs. overhead tradeoff (such as investigated in CEC [1]) can also be
exploited here, based on the results of this thesis.
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Chapter 5

Related Work

5.1 Asynchronous barrier snapshotting

5.2 Multi-stream joining

The purpose of this chapter is to discuss related work in the field of fault-tolerant
stream processing. Some key approaches, such as checkpoint roll-backward and
Continuous Eventual Checkpointing were discussed as background material in Sec-
tions 2.2 and 2.3 respectively.

5.1 Asynchronous barrier snapshotting

The checkpointing mechanism of Apache Flink builds on the notion of distributed
consistent snapshots [20] to achieve exactly-once-processing guarantees. Flink takes a
snapshot of the state of operators, including the current position of the input streams
at regular intervals. Flink injects barriers (control records) into the input streams to
separate the stream to tuples whose impact will be recorded in the current checkpoint
and those that will be checkpointed in the next checkpoint. Eventually all operators
will register a checkpoint of their state, making up a global checkpoint.
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Figure 5.1: Flink’s asynchronous barrier snapshotting [2]

Figure 5.1 provides a representation of Flink’s asynchronous barrier snapshot-
ting [2]. Snapshot t2 contains all operator states that are the result of consuming all
records before t2 barrier. ABS bears certain similarities resemblances to the Chandy-
Lamport algorithm for asynchronous distributed snapshots [20], without however
the need to checkpoint in-flight records. Recovery from failures reverts all operator
states to their respective states taken from the last successful snapshot and restarts
the input streams starting from the latest barrier for which there is a snapshot. The
maximum amount of tuples replayed after a crash is limited to the amount of input
records between two consecutive snapshots. Flink supports incremental checkpoint-
ing by using RocksDB as a local store, and asynchronously transferring RocksDB
LSM-tree SSTables (immutable parts of the LSM tree) to a remote DFS.

5.2 Multi-stream joining

One of the most common data flow on stream processing as it has previously referred
is the join. The use of a join could be a necessity on Big Data handing and handling
data from IoT infrastructure in order to combine two input streams into one. Apart
from combining two join streams maybe maybe we will need to combine more than
two. A real use case scenario is when we have a room and a set for IoT Sensors in order
to measure temperature, humidity and pressure every minute and we want to join the
individuals streams into one with the the full information about room’s conditions
on every minute. This is called Multi-Stream Joining and [19] has contributed to
this field by making a performance comparison between the two join models using
Apache Samza. The first join model is the All-In-One (AIO) and the second the Step-
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By-Step (SBS). On the AIO model Samza joins all the streams in one step on the same
container with the premise of course that all the corresponding messages from the
streams have arrived, for this purpose holds messages on memory buffers and scans
if the join could be made. On the SBS model, Samza joins the streams on multiple
cascading steps (N) using N containers and on each step we need to hold memory
buffers for the subset of the input streams of this step. It is easily understood that in
order to have the join result all corresponding messages from of the input streams of
this step must to have been arrived.

Figure 5.2: Μultijoin options

Figure 5.2 presents a graphic representation of the two models. Concerning the
comparison between the two models, AIO has easier deployment and administration
since we have only one container, with SBS we have the advantage of partial joining
results after each step and both of them have similar development complexity. The
joining latency i.e the time difference between the time that the first message from
one of the input streams arrives and the time in which the desired join result is
made, is smaller on the AIO model. Also the AIO model compared with SBS model
has a higher CPU usage and smaller (only one) memory footprint due to the fact
that needs only one container. The memory footprint includes memory space for
the memory buffers which hold the arrived messages from the input streams. In
addition they claimed that the joining throughput for the two models is a metric
which is derived from deployment’s capacity and thus is related with other metrics
such as the CPU and memory footprint. Thus they concluded that the best option
each time is determined by our needs.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.2 Future work

6.1 Conclusions

This thesis conducts an investigation of state management and in particular, incre-
mental checkpointing in the context of the Samza stream processing system. Our
investigation is driven by an introspection of internal Samza mechanisms and by
experimental work. To support our investigation, we develop streaming analytics
involving stateful operators (aggregate and join), taking into account modern best
practices in benchmarking stream-processing systems, and use them to stress-test and
benchmark these distributed deployments. Our experimental investigation evaluates
reliability and performance aspects of Samza in distributed deployments. Our find-
ings highlight that changelog-driven recovery is sensitive to the size of the changelog,
which in turn depends on log compaction / cleaning policies. Thus, depending on a
system’s priorities (performance or recovery time), a system can be tuned appropri-
ately. Another contribution of this thesis is a comparison of concepts of incremental
checkpointing in Samza to an earlier approach, continuous eventual checkpointing
(CEC), highlighting their similarities and differences.
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6.2 Future work

6.2.1 An agent for tuning log compaction

Based on the conclusion that a stream-processing system can tuned log compaction
depending on specific priorities (optimize for high performance or for rapid recovery),
there can be an agent that optimizes log compaction by adjusting parameters that
control compaction strategy, and by monitoring changelog size and CPU utilization.
Such an agent can take as parameteres specific goals for CPU usage and/or changelog
size, which would affect restore time. The agent could automatically select at runtime
which is the best possible strategy for the log compaction (in other words, select how
aggressive log compaction must be), respecting input (goal) parameters.

6.2.2 Exactly-once processing guarantees

Apache Samza currently supports at-least-once processing. This is because of the
way it performs checkpoints: At a specific period of time (when a task ”commits”,
by default per 60 seconds), Samza durably records the current offset (last processed
tuple) for the input streams of each task into a specific Kafka topic and then asks
operators to take also a local checkpoint (flush state into their RocksDB local stores).
When there is a failure and a task needs to be restarted, it loads the state from either
local or remote store and start consuming tuples from the last checkpointed offset.
As there may be a difference between the last checkpointed offset tuple and the offset
of the last tuple that contributed to a change in operator state before the failure.
This may lead us to record twice the effect of some tuples in operator state after the
restarting.

Exactly-once processing can be achieved by atomically storing both the offset and
all operator states on the changelog. Since both the input streams and changelog
streams are stored in Kafka, it is plausible that exactly-once guarantees can be
achieved by writing the Kafka offset along with the last changelog append opera-
tions in a single transaction. It would be interesting to investigate whether such an
approach has benefits over the distributed snapshot approach supported by Flink
(Section 5.1).
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Appendix A

Code

1 from kafka import KafkaProducer
2 import random
3 import numpy as np
4

5 INPUT_TOPIC=”window−purchases ”
6

7 # produce j son messages
8 producer = KafkaProducer ( boo t s t r ap_se rve r s =[ ’ l o c a l ho s t :9092 ’ ] )
9 s e l e c t i o n = np . random . uniform (1 ,10 ,3000000)
10 f o r ID in s e l e c t i o n :
11 ID=in t ( round ( ID) )
12 purchase_tuple= ’ {” userID ” : ” user ’+ s t r ( ID)+ ’ ” , ”gemPackID ” : ”gemPack ’+ s t r (

ID)+ ’ ” , ” p r i c e ” : ’+ s t r ( ID)+ ’} ’
13 producer . send (INPUT_TOPIC , key=(”gemPackID”+ s t r ( ID) ) , value=

purchase_tuple )
14

15 # block un t i l a l l async messages are sent
16 producer . f lush ( )
17 # conf igure mul t ip le r e t r i e s
18 producer = KafkaProducer ( r e t r i e s =10)

Listing A.1: producer.python
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1 package samza . benchmark ;
2 import org . codehaus . jackson . annotate . J sonProperty ;
3

4 publ i c c l a s s Purchase {
5

6 publ i c f i n a l S t r ing userID ;
7 publ i c f i n a l S t r ing gemPackID ;
8 publ i c f i n a l In t eger pr i c e ;
9

10 publ i c Purchase ( @JsonProperty ( ”userID” ) S t r ing userID , @JsonProperty ( ”
gemPackID” ) S t r ing gemPackID , @JsonProperty ( ” pr i c e ” ) In t eger pr i c e ) {

11 t h i s . userID = userID ;
12 t h i s . gemPackID = gemPackID ;
13 t h i s . p r i c e = pr i c e ;
14 }
15 }

Listing A.2: Purchase.java

1 package samza . benchmark ;
2 import org . codehaus . jackson . annotate . J sonProperty ;
3

4 publ i c c l a s s Ad {
5

6 publ i c f i n a l S t r ing userID ;
7 publ i c f i n a l S t r ing gemPackID ;
8

9 publ i c Ad( @JsonProperty ( ”userID” ) S t r ing userID , @JsonProperty ( ”gemPackID
” ) S t r ing gemPackID) {

10 t h i s . userID = userID ;
11 t h i s . gemPackID = gemPackID ;
12 }
13 }

Listing A.3: Ad.java
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1 package samza . benchmark ;
2 import org . apache . samza . system . SystemStreamMetadata ;
3 import org . apache . samza . app l i c a t i on . StreamApplicat ion ;
4 import org . apache . samza . app l i c a t i on . de s c r i p t o r s . S t reamAppl ica t ionDescr ip tor

;
5 import org . apache . samza . opera tors .KV;
6 import org . apache . samza . opera tors . MessageStream ;
7 import org . apache . samza . opera tors . OutputStream ;
8 import org . apache . samza . opera tors . windows .Windows ;
9 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaInputDescriptor ;
10 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaOutputDescriptor ;
11 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaSystemDescriptor ;
12 import org . apache . samza . s e r i a l i z e r s . In tegerSerde ;
13 import org . apache . samza . s e r i a l i z e r s . JsonSerdeV2 ;
14 import org . apache . samza . s e r i a l i z e r s . KVSerde ;
15 import org . apache . samza . s e r i a l i z e r s . S t r ingSerde ;
16 import com. google .common. c o l l e c t . ImmutableList ;
17 import com. google .common. c o l l e c t . ImmutableMap ;
18 import j ava . time . Duration ;
19 import j ava . u t i l . L i s t ;
20 import j ava . u t i l .Map;
21 import samza . benchmark . Purchase ;
22

23 publ i c c l a s s Window implements StreamApplicat ion {
24

25 @Override
26 publ i c void desc r ibe ( S t reamAppl ica t ionDescr ip tor appDescr iptor ) {
27 KafkaSystemDescriptor kafkaSystemDescriptor = new KafkaSystemDescriptor

( ” kafka ” ) . withConsumerZkConnect ( ImmutableList . o f ( ”node01 . prox i tour :2181 ”
) ) . withProducerBootstrapServers ( ImmutableList . o f ( ”node01 . prox i tour :9092”
) ) . withDefaul tStreamConfigs ( ImmutableMap . of ( ” r e p l i c a t i o n . f a c t o r ” , ”1” ) ) ;

28

29 KafkaInputDescriptor <KV<Str ing , Purchase >> purchasesDescr iptor =
kafkaSystemDescriptor . ge t InputDescr ip tor ( ”window−purchases ” , KVSerde . of
(new Str ingSerde ( ) , new JsonSerdeV2 <>(Purchase . c l a s s ) ) ) ;

30 KafkaOutputDescriptor <Windowed> windowedResultsDescriptor =
kafkaSystemDescriptor . ge tOutputDescr iptor ( ”window−purchases−output ” , new
JsonSerdeV2 <>(Windowed . c l a s s ) ) ;

31

32 appDescr iptor . withDefaultSystem ( kafkaSystemDescr iptor ) ;
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33 MessageStream <KV<Str ing , Purchase >> purchases = appDescr iptor .
getInputStream ( purchasesDescr ip tor ) ;

34 OutputStream <Windowed> windowedResults = appDescr iptor . getOutputStream
( windowedResultsDescriptor ) ;

35

36 / / FLF
37 purchases .window(Windows . keyedTumblingWindow(kp −> kp . key , Duration .

ofSeconds ( 1 ) , ( ) −> 0 , (m, prevRevenue ) −> prevRevenue + m. getValue ( ) .
pr ice , new Str ingSerde ( ) , new IntegerSerde ( ) ) , ” revenue ” ) .map(windowPane
−> { return new Windowed(windowPane . getKey ( ) . getKey ( ) , windowPane .
getMessage ( ) ) ; } ) . sendTo (windowedResults ) ;

38 / /RA
39 / / purchases .window(Windows . keyedTumblingWindow(kp −> kp . key , Duration .

ofSeconds ( 1 ) , new Str ingSerde ( ) , KVSerde . of (new Str ingSerde ( ) , new
JsonSerdeV2 <>(Purchase . c l a s s ) ) ) , ” revenue ”) .map(windowPane −> { return
new Windowed(windowPane . getKey ( ) . getKey ( ) , windowPane . getMessage ( ) . s i z e
( ) ) ; } ) . sendTo (windowedResults ) ;

40

41 }
42

43 s t a t i c c l a s s Windowed {
44 publ i c S t r ing gemPackID ;
45 publ i c In t eger revenue ;
46

47 publ i c Windowed( S t r ing gemPackID , In teger revenue ) {
48 t h i s . gemPackID = gemPackID ;
49 t h i s . revenue = revenue ;
50 }
51 }
52 }

Listing A.4: Window.java is our streaming application for the window aggregation
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1 # Appl i ca t ion / Job
2 app . c l a s s=samza . benchmark .Window
3 j ob . f a c t o ry . c l a s s=org . apache . samza . job . yarn . YarnJobFactory
4 j ob . name=windower
5 j ob . conta iner . count=2
6 j ob . logged . s t o r e . base . d i r =/media / l o c a l d i s k / a r i s
7

8 # YARN
9 yarn . package . path=http : / / node01 . prox i tour :8000/ t a r g e t / ${ p r o j e c t . a r t i f a c t I d

}−${pom. vers ion}−d i s t . t a r . gz
10 c lu s t e r−manager . conta iner .memory .mb=3072
11 c lu s t e r−manager . conta iner . cpu . cores=2
12

13 # Metr i cs
14 metr i c s . r epor t e r s=snapshot
15 metr i c s . r epor t e r . snapshot . c l a s s=org . apache . samza . metr i c s . r epor t e r .

Metr icsSnapshotReporterFactory
16 metr i c s . r epor t e r . snapshot . stream=kafka . metr i c s
17 metr i c s . r epor t e r . snapshot . b l a c k l i s t = ^ ( ? ! . \ * ? ( ? : SamzaContainerMetrics ) ) .\* $
18 metr i c s . r epor t e r . snapshot . i n t e r v a l =1
19 s e r i a l i z e r s . r e g i s t r y . metr i c s . c l a s s=org . apache . samza . s e r i a l i z e r s .

Metr icsSnapshotSerdeFactory
20 systems . kafka . streams . metr i c s . samza .msg . serde=metr i c s

Listing A.5: window.properties
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1 package samza . benchmark ;
2 import org . apache . samza . app l i c a t i on . StreamApplicat ion ;
3 import org . apache . samza . app l i c a t i on . de s c r i p t o r s . S t reamAppl ica t ionDescr ip tor

;
4 import org . apache . samza . opera tors .KV;
5 import org . apache . samza . opera tors . MessageStream ;
6 import org . apache . samza . opera tors . OutputStream ;
7 import org . apache . samza . opera tors . func t ions . Jo inFunct ion ;
8 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaInputDescriptor ;
9 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaOutputDescriptor ;
10 import org . apache . samza . system . kafka . de s c r i p t o r s . KafkaSystemDescriptor ;
11 import org . apache . samza . s e r i a l i z e r s . JsonSerdeV2 ;
12 import org . apache . samza . s e r i a l i z e r s . KVSerde ;
13 import org . apache . samza . s e r i a l i z e r s . S t r ingSerde ;
14 import com. google .common. c o l l e c t . ImmutableList ;
15 import com. google .common. c o l l e c t . ImmutableMap ;
16 import j ava . time . Duration ;
17 import j ava . u t i l . L i s t ;
18 import j ava . u t i l .Map;
19 import j ava . io . S e r i a l i z a b l e ;
20 import samza . benchmark . Purchase ;
21 import samza . benchmark .Ad;
22

23 publ i c c l a s s Jo in implements StreamApplicat ion , S e r i a l i z a b l e {
24

25 @Override
26 publ i c void desc r ibe ( S t reamAppl ica t ionDescr ip tor appDescr iptor ) {
27 KafkaSystemDescriptor kafkaSystemDescriptor = new KafkaSystemDescriptor

( ” kafka ” ) . withConsumerZkConnect ( ImmutableList . o f ( ”node01 . prox i tour :2181 ”
) ) . withProducerBootstrapServers ( ImmutableList . o f ( ”node01 . prox i tour :9092”
) ) . withDefaul tStreamConfigs ( ImmutableMap . of ( ” r e p l i c a t i o n . f a c t o r ” , ”1” ) ) ;

28

29 KafkaInputDescriptor <KV<Str ing , Purchase >> purchasesDescr iptor =
kafkaSystemDescriptor . ge t InputDescr ip tor ( ” jo in−purchases ” , KVSerde . of (
new Str ingSerde ( ) , new JsonSerdeV2 <>(Purchase . c l a s s ) ) ) ;

30 KafkaInputDescriptor <KV<Str ing ,Ad>> adsDescr ip tor =
kafkaSystemDescriptor . ge t InputDescr ip tor ( ” jo in−ads” , KVSerde . of (new
Str ingSerde ( ) , new JsonSerdeV2 <>(Ad. c l a s s ) ) ) ;

31 KafkaOutputDescriptor <Joined > jo inedResu l t sDes c r ip to r =
kafkaSystemDescriptor . ge tOutputDescr iptor ( ” jo ined−purchases−ads” , new
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JsonSerdeV2 <>( Jo ined . c l a s s ) ) ;
32

33 appDescr iptor . withDefaultSystem ( kafkaSystemDescr iptor ) ;
34 MessageStream <KV<Str ing , Purchase >> purchases = appDescr iptor .

getInputStream ( purchasesDescr ip tor ) ;
35 MessageStream <KV<Str ing ,Ad>> ads = appDescr iptor . getInputStream (

adsDescr ip tor ) ;
36 OutputStream <Joined > jo inedResu l t s = appDescr iptor . getOutputStream (

jo inedResu l t sDes c r ip to r ) ;
37

38 JoinFunction <Str ing , Purchase , Ad, Joined > joinedFunct ion = new
JoinFunction <Str ing , Purchase , Ad, Joined >() {

39 @Override
40 publ i c Jo ined apply ( Purchase purchase , Ad ad) {
41 re turn new Joined ( purchase . userID , purchase . gemPackID , purchase .

pr ice , ad . userID ) ;
42 }
43

44 @Override
45 publ i c S t r ing getFirs tKey ( Purchase purchase ) {
46 re turn purchase . userID + purchase . gemPackID ;
47 }
48

49 @Override
50 publ i c S t r ing getSecondKey (Ad ad) {
51 re turn ad . userID + ad . gemPackID ;
52 }
53 } ;
54

55 MessageStream <Purchase > purchases J = purchases .map(KV: : getValue ) ;
56 MessageStream <Ad> adsJ = ads .map(KV: : getValue ) ;
57

58 purchases J . j o i n ( adsJ , jo inedFunction , new Str ingSerde ( ) , new
JsonSerdeV2 <>(Purchase . c l a s s ) , new JsonSerdeV2 <>(Ad. c l a s s ) , Duration .
ofMinutes (3) , ” j o i n ” ) . sendTo ( j o inedResu l t s ) ;

59 }
60

61 s t a t i c c l a s s Jo ined {
62 publ i c S t r ing userID ;
63 publ i c S t r ing gemPackID ;
64 publ i c In t eger pr i c e ;
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65 publ i c S t r ing userID2 ;
66

67 publ i c Jo ined ( S t r ing userID , S t r ing gemPackID , In teger pr ice , S t r ing
userID2 ) {

68 t h i s . userID = userID ;
69 t h i s . gemPackID = gemPackID ;
70 t h i s . p r i c e = pr i c e ;
71 t h i s . userID2 = userID2 ;
72 }
73 }
74 }

Listing A.6: Join.java is our streaming application for the stream-stream join
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1 # Appl i ca t ion / Job
2 app . c l a s s=samza . benchmark . Jo in
3 j ob . f a c t o ry . c l a s s=org . apache . samza . job . yarn . YarnJobFactory
4 j ob . name= j o i n e r
5 j ob . conta iner . count=2
6 j ob . logged . s t o r e . base . d i r =/media / l o c a l d i s k / a r i s
7

8 # YARN
9 yarn . package . path=http : / / node01 . prox i tour :8000/ t a r g e t / ${ p r o j e c t . a r t i f a c t I d

}−${pom. vers ion}−d i s t . t a r . gz
10 c lu s t e r−manager . conta iner .memory .mb=3072
11 c lu s t e r−manager . conta iner . cpu . cores=2
12

13 # Metr i cs
14 metr i c s . r epor t e r s=snapshot
15 metr i c s . r epor t e r . snapshot . c l a s s=org . apache . samza . metr i c s . r epor t e r .

Metr icsSnapshotReporterFactory
16 metr i c s . r epor t e r . snapshot . stream=kafka . metr i c s
17 metr i c s . r epor t e r . snapshot . b l a c k l i s t = ^ ( ? ! . \ * ? ( ? : SamzaContainerMetrics ) ) .\* $
18 metr i c s . r epor t e r . snapshot . i n t e r v a l =60
19 s e r i a l i z e r s . r e g i s t r y . metr i c s . c l a s s=org . apache . samza . s e r i a l i z e r s .

Metr icsSnapshotSerdeFactory
20 systems . kafka . streams . metr i c s . samza .msg . serde=metr i c s

Listing A.7: join.properties
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