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Chapter 1

Introduction

A basic problem in surface theory is to understand the role and the importance of the mean
curvature. Bonnet [8] raised the problem to what extent a surface in a complete simply-
connected 3-dimensional space form Q3

c of curvature c, is determined (up to congruence)
by the metric and the mean curvature. Generically, a surface in Q3

c is uniquely determined
by these data. The exceptions are the Bonnet surfaces that include the constant mean
curvature (CMC) surfaces.

There has been a lot of interest in the following natural problem: given an isometric
immersion f : M → Q3

c of a 2-dimensional Riemannian manifold M , how many noncon-
gruent isometric immersions of M into Q3

c can exist with the same mean curvature with
f? Any noncongruent to f such surface is called a Bonnet mate of f . This problem has
been studied locally or globally by Bonnet [8], Cartan [10], Lawson [53], Tribuzy [64],
Chern [18], Roussos-Hernandez [60] and Kenmotsu [47] among others. It turns out that if
f : M → Q3

c is a non-compact, simply connected surface then it admits either at most one
Bonnet mate, or infinitely many. In the latter case the surface f is called proper Bonnet.
Bonnet [8] showed that a proper Bonnet surface is isothermic away from its umbilics.
Moreover, Graustein [34] proved that a Bonnet isothermic surface is proper Bonnet. Re-
cently, it has been shown in [43] that a non-compact simply-connected surface which is
totally non isothermic, admits a unique Bonnet mate. Lawson and Tribuzy [54] proved
that a compact oriented 2-dimensional Riemannian manifold admits at most two noncon-
gruent isometric immersions in Q3

c , with the same non-constant mean curvature. Their
result was strengthened recently in [44], under additional assumptions on the isothermicity
of the immersion. On the other hand, Lawson [53] proved that if M is simply-connected
and f is a CMC surface in Q3

c , then the space of isometric immersions with the same mean
curvature is the circle S1, unless f is totally-umbilical. The case of non-simply-connected
CMC surfaces has been studied in [2, 6, 62].

Surfaces of constant mean curvature have been extensively studied. Hopf [42] showed
the existence of a holomorphic quadratic differential on every CMC surface in R3, and
he proved that a CMC surface of genus zero is a round sphere. His result was extended
to nonflat 3-dimensional space forms by Chern [17]. Abresch and Rosenberg [1] proved
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2 1. Introduction

that every CMC surface in the Riemannian products S2 × R and H2 × R possesses a
holomorphic quadratic differential, and they extended Hopf’s theorem for such surfaces of
genus zero. Their work and an extension of Bonnet’s fundamental theorem (cf. [25]), led
to the study of the Bonnet problem for surfaces in these spaces (cf. [33]). In codimension
greater than one, a generalization of CMC surfaces are the surfaces whose mean curvature
vector field is parallel in the normal connection. Existence of holomorphic quadratic
differentials, classification results and Hopf-type theorems have been proved for parallel
mean curvature surfaces in several ambient spaces, especially in codimension two (cf.
[3, 14, 30, 31, 40, 55, 63, 69]). In particular, in [48, 49] has been proved the existence of
parallel mean curvature surfaces in CH2 that admit non-trivial isometric deformations
preserving the length of the mean curvature vector field.

As a step towards deciphering the role of the mean curvature in codimension two
and inspired by Bonnet’s question for surfaces in Q3

c , we are interested in the following
problem: given an isometric immersion f : M → Q4

c of a 2-dimensional Riemannian
manifold M , how many noncongruent isometric immersions of M into Q4

c can exist with
the same mean curvature with f? Two isometric immersions f, f̃ : M → Q4

c are said to
have the same mean curvature if there exists a parallel vector bundle isometry between
their normal bundles that preserves the mean curvature vector fields. A large part of the
results of this dissertation is included in [59].

In Chapter 2, we fix the notation and give some preliminaries concerning surfaces
in 4-dimensional space forms. For any surface f : M → Q4

c , we introduce two quadratic
differentials with values in the complexified normal bundle of f and we study their relation
with the Gauss lifts of f to the twistor bundle of Q4

c . It is worth noticing that the Gauss
lifts will play an important role in the study of the Bonnet problem for surfaces in Q4

c .
In Chapter 3, we introduce two differential 1-forms associated to a surface in Q4

c ,
called the mixed connection forms. For compact surfaces, we prove an index theorem
and we provide some applications. We introduce the notion of isotropically isothermic
and strongly isotropically isothermic surfaces in 4-dimensional space forms, by requiring
the co-closeness either of the one, or both of the mixed connection forms, respectively. A
surface is called half totally non isotropically isothermic, if one of the mixed connection
forms is nowhere co-closed. It turns out that isotropic isothermicity is a conformally in-
variant property with a similar effect on the Bonnet problem for surfaces in 4-dimensional
space forms, with that of isothermicity on the classical Bonnet problem. The class of
isotropically isothermic surfaces in Q4

c includes all isothermic surfaces lying in totally um-
bilical hypersurfaces of Q4

c , all minimal surfaces in Q4
c , as well as the higher-codimensional

analogues in Q4
c of CMC surfaces in 3-dimensional space forms, apart from the totally

umbilical ones. These results indicate that isotropic isothermicity is the natural gener-
alization of the notion of isothermicity for surfaces in Q3

c , to surfaces in Q4
c with not

necessarily flat normal bundle. However, it is definitely worth mentioning that the class
of isotropically isothermic surfaces in Q4

c does not seems to contain isothermic surfaces
in the sense of Palmer [57] in great abundance; simple examples show that there exist
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isothermic surfaces in R4 which are strongly totally non isotropically isothermic, i.e., both
mixed connection forms are nowhere co-closed.

In Chapter 4, we set up the framework for the study of the Bonnet problem for non-
minimal surfaces in 4-dimensional space forms. We point out that the case of minimal
surfaces has been studied in [21, 67]. For a surface f : M → Q4

c we denote by M(f) the
moduli space of congruence classes of all isometric immersions of M into Q4

c , that have
the same mean curvature with f . Any nontrivial such class is called a Bonnet mate of f .
The surface f is called either a Bonnet, or a proper Bonnet surface, if it admits either at
least one, or infinitely many Bonnet mates, respectively.

In Chapter 5, we study the Bonnet problem for non-compact simply-connected surfaces
in Q4

c . We first determine the possible structure of the moduli space of such a surface.

Theorem. Let f : M → Q4
c be a non-compact simply-connected, oriented surface.

(i) If f is not proper Bonnet, then it admits either at most one Bonnet mate, or exactly
three.

(ii) If f is proper Bonnet, then the moduli space M(f) is a space diffeomorphic to a
manifold. Moreover, f is characterized according to the structure ofM(f) as follows:

Tight: The moduli space is 1-dimensional with at most two connected components
diffeomorphic to S1 ' R/2πZ.

Flexible: The moduli space is diffeomorphic to the torus S1 × S1.

In the sequel, we investigate the effect of isotropic isothermicity on the structure of
the moduli space and we obtain the following result.

Theorem. Let f : M → Q4
c be a non-compact simply-connected oriented surface.

(i) If f is half totally non isotropically isothermic, then f admits at least one Bonnet
mate and it is not flexible. In particular, if f is strongly totally non isotropically
isothermic, then it admits exactly three Bonnet mates.

(ii) If f is proper Bonnet, then it is isotropically isothermic on an open, dense and
connected subset of M . In particular, if f is flexible, then it is strongly isotropically
isothermic away from its isolated pseudo-umbilic points.

As an application of the first part of the above result, we provide examples of isothermic
surfaces in R4 that admit exactly three Bonnet mates. We also prove that a Bonnet surface
lying in a totally geodesic hypersurface of Q4

c with non-constant mean curvature, always
admits at least two Bonnet mates that do not lie in any totally umbilical hypersurface
of Q4

c . In particular, such a surface either admits exactly three Bonnet mates, or it is
flexible proper Bonnet.

In Chapter 6, we study the Bonnet problem for compact surfaces in Q4
c . For such a

surface f : M → Q4
c , we show that the structure of the moduli space is controlled by the

behavior of the Gauss lifts G+ : M → Z+ and G− : M → Z− of f to the twistor bundle
of Q4

c . Here, Z+ and Z− stand for the two connected components of the twistor bundle
Z of Q4

c .
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Theorem. Let f : M → Q4
c be a compact oriented surface. If both Gauss lifts G+ and G−

of f are not vertically harmonic, then f admits at most three Bonnet mates. In particular,
f admits at most one Bonnet mate, if M is homeomorphic to S2.

This result implies that compact surfaces in Q4
c whose both Gauss lifts are not ver-

tically harmonic, do not allow nontrivial global isometric deformations that preserve the
mean curvature. Moreover, in contrast to the results of the previous chapter, we show
that additional assumptions involving isotropic isothermicity of a compact surface, turns
out to impose strong obstructions for the existence of Bonnet mates.

Theorem. Let f : M → Q4
c be a compact oriented surface. If both Gauss lifts G+ and G−

of f are not vertically harmonic and f is either isotropically isothermic, or half totally
non isotropically isothermic, on an open dense and connected subset V of M , then f
admits at most one Bonnet mate. In particular, f does not admit any Bonnet mate, if it
is either strongly isotropically isothermic, or strongly totally non isotropically isothermic
on V .

In the last part of this chapter we provide some applications of our results, including
a short proof of the theorem of Lawson-Tribuzy [54].

In Chapter 7, we study surfaces in Q4
c with a vertically harmonic Gauss lift. Such

surfaces have holomorphic mean curvature vector field and they constitute a broader class
than parallel mean curvature surfaces. This class contains also non-minimal surfaces
with nonflat normal bundle. Extensively studied surfaces with a vertically harmonic
Gauss lift are the Lagrangian surfaces in R4 with conformal or harmonic Maslov form (cf.
[12,13,39]). Non-minimal superconformal surfaces in the aforementioned class generalize
totally umbilical surfaces. We prove that surfaces in Q4

c with a vertically harmonic Gauss
lift that are neither minimal, nor superconformal, satisfy Ricci-like conditions that extend
the Ricci condition for CMC surfaces in 3-dimensional space forms (cf. [53]). We show that
non-minimal surfaces in Q4

c with a vertically harmonic Gauss lift possess a holomorphic
quadratic differential that vanishes identically on superconformal surfaces, yielding thus
the following Hopf-type theorem.

Theorem. Let f : M → Q4
c be a non-minimal surface. If the Gauss lift G± of f is ver-

tically harmonic and M is homeomorphic to S2, then f is superconformal. In particular,
f is totally umbilical if the Euler number of its normal bundle vanishes.

We also prove that a non-minimal simply-connected surface in Q4
c with a vertically

harmonic Gauss lift allows a 1-parameter associated family of isometric deformations with
the same mean curvature. This family is trivial only if the surface is superconformal.

Theorem. Let f : M → Q4
c be a non-minimal, simply-connected surface. If the Gauss

lift G± of f is vertically harmonic, then:
(i) There exists a one-parameter family of isometric immersions f±θ : M → Q4

c, θ ∈
S1 ' R/2πZ, which have the same mean curvature with f±0 = f .
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(ii) If f is superconformal, then f±θ is congruent to f for any θ.
(iii) If there exist θ 6= θ̃ ∈ S1 such that f±θ is congruent to f±

θ̃
, then f is superconformal.

For compact surfaces with a vertically harmonic Gauss lift, we determine the possible
structure of the moduli space, under appropriate geometric or topological assumptions.

Theorem. Let f : M → Q4
c be a compact oriented surface with vertically harmonic Gauss

lift G±.
(i) If the mean curvature vector field of f is non-parallel, then the moduli space M(f)

is the disjoint union of two sets, each one being either finite, or the circle S1.
(ii) If c = 0 and the Euler numbers χ and χN of the tangent and normal bundles satisfy

χ 6= ∓χN , then M(f) is a finite set.

In Chapter 8, we study locally proper Bonnet surfaces in Q4
c . A surface f : M → Q4

c is
called locally proper Bonnet if every point of M has a simply-connected neighbourhood,
restricted to which f is proper Bonnet. We first show that if M is homeomorphic to
the sphere S2, then f cannot be globally proper Bonnet. We prove that if a locally
proper Bonnet surface is non-minimal, then around a point p ∈ M , any continuous
isometric deformation that preserves the mean curvature is described by a submanifold
Ln(p), 1 ≤ n ≤ 2, of the torus S1 × S1. We focus on surfaces for which there exists a
submanifold Ln, 1 ≤ n ≤ 2, of the torus that gives rise to such a local deformation around
every point of M . We call these surfaces uniformly locally proper Bonnet. In particular,
such a surface is called locally flexible, if this submanifold is the torus itself. We show that
the compact surfaces in Q4

c , which have a vertically harmonic Gauss lift without being
superconformal, are characterized as the only uniformly locally proper Bonnet compact
surfaces in Q4

c . More precisely, we obtain the following result.

Theorem. Let f : M → Q4
c be a non-minimal, compact oriented surface. Then, f is

uniformly locally proper Bonnet if and only if it has a vertically harmonic, non-conformal
Gauss lift.

We also show that there do not exist compact superconformal surfaces in Q4
c that

are locally proper Bonnet. Finally, we prove that compact surfaces with parallel mean
curvature vector field in Q4

c that are not totally umbilical, are characterized as the only
locally flexible compact surfaces in Q4

c .
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Chapter 2

Surfaces in 4-Dimensional Space
Forms

The aim of this chapter is to set up the notation and to present some aspects of the theory
of surfaces in 4-dimensional space forms, which turns out to be special. A consequence of
the equality between the dimension and the codimension of a surface in a 4-dimensional
space form Q4

c , is that the twistor theory of Q4
c can be used in order to handle the

complexity of the normal bundle of the surface, arising by the non-triviality of the Ricci
equation. Most of the material presented in this chapter was already known, except from
two quadratic differentials associated to a surface in Q4

c and their relation with the Gauss
lifts of the surface to the twistor bundle.

2.1 Preliminaries
Throughout the manuscript, M is a connected, oriented 2-dimensional Riemannian man-
ifold. A surface f : M → Qn

c , n = 3, 4, is an isometric immersion into the complete
simply-connected n-dimensional space form of curvature c.

Let f : M → Q4
c be a surface. Denote by NfM the normal bundle of f and by ∇⊥, R⊥

the normal connection and its curvature tensor, respectively. Let α : TM × TM → NfM
be the second fundamental form of f . The shape operator Aξ of f with respect to ξ ∈ NfM
is the symmetric endomorphism of TM defined by 〈AξX, Y 〉 = 〈α(X, Y ), ξ〉, where 〈·, ·〉
stands for the Riemannian metric of Q4

c . The Gauss, Codazzi and Ricci equations for f
are respectively

(K − c)〈(X ∧ Y )Z,W 〉 = 〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉,
(∇⊥Xα)(Y, Z) = (∇⊥Y α)(X,Z),

R⊥(X, Y )ξ = α(X,AξY )− α(AξX, Y ),

where K is the Gaussian curvature, X, Y, Z,W ∈ TM , (X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y
and ξ ∈ NfM .

7



8 2. Surfaces in 4-Dimensional Space Forms

The orientations of M and Q4
c induce an orientation on the normal bundle. The normal

curvature KN of f is given by

KN = 〈R⊥(e1, e2)e4, e3〉, (2.1)

where {e1, e2} and {e3, e4} are positively oriented orthonormal frame fields of TM and
NfM , respectively. Notice that if τ is an orientation-reversing isometry of Q4

c , then f and
τ ◦ f have opposite normal curvatures. The surface f is said to have flat normal bundle,
if KN ≡ 0 on M . This is equivalent to the existence for every p ∈ M of an orthonormal
basis of TpM that diagonalizes simultaneously all shape operators of f at p. The Gauss
and the normal curvatures satisfy the equations

dω12 = −Kω1 ∧ ω2, dω34 = −KNω1 ∧ ω2, (2.2)

where {ωj} is the dual frame field of {ej}, 1 ≤ j ≤ 4, and the connection forms ωkl, 1 ≤
k, l ≤ 4, are given by

dωk =
4∑

m=1
ωkm ∧ ωm, 1 ≤ k ≤ 4. (2.3)

If M is compact, the Euler-Poincaré characteristics χ, χN of TM and NfM , are given
respectively, by

2πχ =
∫
M
K, 2πχN =

∫
M
KN .

For a symmetric section β ∈ Γ(Hom(TM ×TM,NfM)), the ellipse associated to β at
each p ∈M is defined by

Eβ(p) = {β(X,X) : X ∈ TpM, ‖X‖ = 1} .

It is indeed an ellipse on NfM(p) centered at traceβ(p)/2, which may degenerate into a
line segment or a point. In particular, the ellipse associated to the second fundamental
form is denoted by Ef , is centered at the mean curvature vector H and is called the
curvature ellipse of f . It is parametrized by

α(Xθ, Xθ) = H(p) + cos 2θ α11 − α22

2 + sin 2θ α12, (2.4)

where Xθ = cos θe1 + sin θe2, αij = α(ei, ej), i, j = 1, 2, and {e1, e2} is an orthonormal
basis of TpM . The Ricci equation is written equivalently at p as

R⊥(e1, e2) = (α11 − α22) ∧ α12. (2.5)

Clearly, the ellipse degenerates into a line segment or a point if and only if the vectors
(α11 − α22)/2 and α12 are linearly dependent, or equivalently, if R⊥ = 0 at p. At a point
where the curvature ellipse is nondegenerate, KN is positive if and only if the orientation
induced on the ellipse as Xθ traverses positively the unit tangent circle, coincides with
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the orientation of the normal plane (cf. [35]). Let λ1, λ2 be the length of the semiaxes of
Ef . Using the Gauss equation and (2.5), we have that (cf. [56])

λ2
1 + λ2

2 = ‖H‖2 − (K − c), λ1λ2 = 1
π
A(Ef ) = 1

2 |KN | (2.6)

at any point, where A(Ef ) is the area of the curvature ellipse. Therefore,

‖H‖2 − (K − c) ≥ |KN |.

A point p ∈M is called pseudo-umbilic if the curvature ellipse is a circle at p. A pseudo-
umbilic point is called umbilic if the circle degenerates into a point. From (2.6) it follows
that the set M0(f) of pseudo-umbilic points of f is characterized as

M0(f) =
{
p ∈M : ‖H‖2 − (K − c) = |KN |

}
.

A surface for which any point is pseudo-umbilic is called superconformal. By setting

M±
0 (f) = {p ∈M0(f) : ±KN ≥ 0},

it is clear that M0(f) = M+
0 (f) ∪M−

0 (f) and the set M1(f) of umbilic points is

M1(f) = M+
0 (f) ∩M−

0 (f) = {p ∈M : ‖H‖2 = K − c}.

For later use we need the following elementary fact.

Lemma 2.1. Let f : M → Q4
c be a surface and γ ∈ Γ(Hom(TM × TM,NfM)) a sym-

metric section. Assume that the ellipse Eγ associated to γ is not a circle at a point
p ∈ M . Then, there exist positively oriented orthonormal frame fields {e1, e2} of TM ,
{e3, e4} of NfM , on a neighbourhood U of p, and κ, µ ∈ C∞(U) with κ > |µ|, such that
γ11 − γ22 = 2κe3 and γ12 = µe4, where γij = γ(ei, ej), j = 1, 2.

Proof: Let {ẽ1, ẽ2} be a positively oriented orthonormal tangent frame field around p
and set Xt = cos te1 + sin te2, t ∈ R. The ellipse Eγ(q) is parametrized by

γ(Xt(q), Xt(q)) = traceγ(q)/2 + cos 2tu(q) + sin 2tv(q),

where u = (γ̃11 − γ̃22)/2, v = γ̃12 and γ̃ij = γ(ẽi, ẽj), i, j = 1, 2. Our assumption implies
that at least one of the quantities ‖u‖ − ‖v‖, 〈u, v〉 is non-zero at p. By continuity,
we have that either ‖u‖ 6= ‖v‖, or 〈u, v〉 6= 0 everywhere on a neighbourhood U of p.
Let q ∈ U . The function r(t) = ‖̊γ(Xt(q), Xt(q))‖2, where γ̊ is the traceless part of γ,
attains its maximum at t0. Clearly, γ̊(Xt0(q), Xt0(q)) is a major semiaxis of Eγ(q) and
γ̊(Xt0(q), Xt0+π/2(q)) is a minor semiaxis. From r′(t0) = 0 and r′′(t0) ≤ 0, we obtain that

sin 4t0
(
‖u‖2 − ‖v‖2

)
(q) = 2 cos 4t0 〈u, v〉 (q)
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and
cos 4t0

(
‖u‖2 − ‖v‖2

)
(q) + 2 sin 4t0 〈u, v〉 (q) ≥ 0.

Define the function ω ∈ C∞(U) by

ω = 1
4 arctan

(
2 〈u, v〉

‖u‖2 − ‖v‖2

)
modulo 2π,

if ‖u‖ 6= ‖v‖ on U , where the branch of arctan is such that cos 4ω
(
‖u‖2 − ‖v‖2

)
≥ 0. If

〈u, v〉 6= 0 on U , then ω is defined by

ω = 1
4 arccot

(
‖u‖2 − ‖v‖2

2 〈u, v〉

)
modulo 2π,

where the branch of arccot is such that sin 4ω 〈u, v〉 ≥ 0. We consider the frame field
e1 = cosωẽ1 + sinωẽ2, e2 = − sinωẽ1 + cosωẽ2 and the positively oriented orthonormal
frame field {e3, e4} in the normal bundle such that γ̊(e1, e1) = ‖̊γ(e1, e1)‖ e3. By the
choice of ω, we have that γ̊(e1, e1) is a major semiaxis of Eγ. Then, the proof follows with
κ = ‖̊γ(e1, e1)‖ and µ = 〈̊γ(e1, e2), e4〉.

2.2 Complexification and Associated Differentials
The complexified tangent bundle TM ⊗C of a 2-dimensional oriented Riemannian mani-
fold M , decomposes into the eigenspaces of the complex structure J , denoted by T (1,0)M
and T (0,1)M , corresponding to the eigenvalues i and −i, respectively (cf. [50]).

The second fundamental form of a surface f : M → Q4
c can be C-bilinearly extended

to TM⊗C with values in the complexified normal bundle NfM⊗C and then decomposed
into its (k, l)-components α(k,l), k+l = 2, which are tensors of k many 1-forms vanishing on
T (0,1)M and l many 1-forms vanishing on T (1,0)M . For a positively oriented orthonormal
frame field {e1, e2} of TM , the Hopf invariant H(e1, e2) of f with respect to {e1, e2} is
the local section of NfM ⊗ C defined by

H(e1, e2) = 1
2α(e1 − ie2, e1 − ie2) = α11 − α22

2 − iα12, αij = α(ei, ej), i, j = 1, 2. (2.7)

Let J⊥ be the complex structure of NfM defined by the metric and the orientation.
The complexified normal bundle decomposes as

NfM ⊗ C = N−f M ⊕N+
f M

into the eigenspaces N−f M and N+
f M of J⊥, corresponding to the eigenvalues i and −i,

respectively. Any section ξ ∈ NfM ⊗ C is decomposed as ξ = ξ− + ξ+, with

ξ± = π±(ξ),
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where π± : NfM ⊗ C→ N±f M is given by

π±(ξ) = 1
2(ξ ± iJ⊥ξ), ξ ∈ NfM ⊗ C.

A section ξ of NfM ⊗C is called isotropic if at any point of M , either ξ = ξ−, or ξ = ξ+.
This is equivalent to 〈ξ, ξ〉 = 0, where 〈·, ·〉 is the C-bilinear extension of the metric.
Notice that 〈ζ, η〉 = 0 for ζ ∈ N−f M and η ∈ N+

f M , implies that ζ = 0 or η = 0.
According to the above decomposition, the Hopf invariant of f with respect to {e1, e2}
splits as H(e1, e2) = H−(e1, e2) +H+(e1, e2), where H±(e1, e2) is given by

H±(e1, e2) = 1
2

(
α11 − α22

2 ± J⊥α12 ± iJ⊥
(
α11 − α22

2 ± J⊥α12

))
. (2.8)

The length of H±(e1, e2) is independent of the frame field {e1, e2}, and the function ‖H±‖
given by

‖H±‖ =
√

2
∥∥∥H±(e1, e2)

∥∥∥ =
√
‖H‖2 − (K − c)∓KN (2.9)

vanishes precisely on M±
0 (f).

Let E be a complex vector bundle over M equipped with a connection ∇E. An E-
valued differential Ψ of r-order is an E-valued r-covariant tensor field onM of holomorphic
type (r, 0). The r-differential Ψ is called holomorphic (cf. [7]) if its covariant derivative
∇EΨ has holomorphic type (r + 1, 0). Let (U, z = x + iy) be a local complex coordinate
on M . The Wirtinger operators are defined on U by ∂ = ∂z = (∂x − i∂y)/2, ∂̄ = ∂z̄ =
(∂x + i∂y)/2, where ∂x = ∂/∂x and ∂y = ∂/∂y. On U , the differential Ψ has the form
Ψ = ψdzr, where ψ : U → E is given by ψ = Ψ(∂, . . . , ∂). Then Ψ is holomorphic if and
only if

∇E
∂̄ ψ = 0,

i.e., ψ is a holomorphic section. For later use we need the following result (cf. [7, 16]).

Lemma 2.2. Assume that the E-valued differential Ψ is holomorphic and let p ∈ M be
such that Ψ(p) = 0. Let (U, z) be a local complex coordinate with z(p) = 0. Then either
Ψ ≡ 0 on U ; or Ψ = zmΨ∗, where m is a positive integer and Ψ∗(p) 6= 0.

Of particular importance for our results are two quadratic differentials associated to
a surface in Q4

c , as well as their relation with the Gauss lifts of the surface to the twistor
bundle. Let f : M → Q4

c be an oriented surface. In terms of a local complex coordinate
(U, z = x + iy), the metric ds2 of M is written as ds2 = λ2|dz|2, where λ > 0 is the
conformal factor. Setting e1 = ∂x/λ and e2 = ∂y/λ, the components of α are given by

α(2,0) = α(∂, ∂)dz2, α(0,2) = α(2,0), α(1,1) = α(∂, ∂̄)(dz ⊗ dz̄ + dz̄ ⊗ dz),

where
α(∂, ∂) = λ2

2 H(e1, e2), and α(∂, ∂̄) = λ2

2 H. (2.10)
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The Hopf differential of f is the quadratic NfM ⊗ C-valued differential Φ = α(2,0) with
local expression Φ = α(∂, ∂)dz2. According to the decomposition of NfM ⊗ C, the Hopf
differential splits as

Φ = Φ− + Φ+, where Φ± = π± ◦ Φ.

On (U, z) the differential Φ± has the expression

Φ± = φ±dz2 (2.11)

and the compatibility equations for f can be written as

(Gauss) (log λ2)zz̄ −
2
λ2

(
〈φ−, φ−〉+ 〈φ+, φ+〉

)
+ λ2

2 (‖H‖2 + c) = 0, (2.12)

(Codazzi) ∇⊥∂̄ φ
− = λ2

2 ∇
⊥
∂H

−, ∇⊥∂̄ φ
+ = λ2

2 ∇
⊥
∂H

+, (2.13)

(Ricci) R⊥(∂, ∂̄) = 2
λ2 (φ− ∧ φ− + φ+ ∧ φ+), (2.14)

where R⊥ is the C-trilinear extension of the normal curvature tensor and (ξ ∧ ζ)η =
〈ζ, η〉ξ − 〈ξ, η〉ζ, for ξ, ζ, η ∈ NfM ⊗ C. It follows from (2.11) and (2.13) that Φ is
holomorphic if and only if the mean curvature vector field H is parallel in the normal
connection.

Lemma 2.3. (i) The zero-sets of Φ± and Φ, are M±
0 (f) and M1(f), respectively.

(ii) The surface f is superconformal with normal curvature ±KN ≥ 0 if and only if
Φ± ≡ 0. In particular, if f is superconformal, then KN vanishes precisely on M1(f).

Proof: In terms of a local complex coordinate z around a point p, from (2.11), (2.10) and
(2.9) it follows that Φ±(p) = 0 if and only if ‖H±‖(p) = 0, or equivalently, if p ∈M±

0 (f).
Obviously, Φ vanishes precisely at the points where both Φ− and Φ+ vanish, i.e., the
umbilic points. This proves part (i), and the first assertion of part (ii) follows immediately.
If f is superconformal, then the second equation in (2.6) implies that the normal curvature
vanishes precisely at the umbilic points.

2.3 Absolute Value Type Functions

We will need some facts about absolute value type functions (cf. [27] or [28]). Let M be
a 2-dimensional oriented Riemannian manifold. A smooth function u : M → [0,+∞) is
called of absolute value type, if for all p ∈M and any complex coordinate z around p, there
exists a non-negative integer m and a smooth positive function u0 on a neighbourhood U
of p such that

u = |z − z(p)|mu0, on U.
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If m > 0 then p is called a zero of u of multiplicity m. It is clear that if an absolute
value type function u does not vanish identically, then its zeros are isolated and they have
well-defined multiplicities. Furthermore, the Laplacian ∆ log u is still defined and smooth
at the zeros. If u does not vanish identically, then we denote by N(u) the number of its
zeros, counted with multiplicities. The following has been proved in [27].

Lemma 2.4. Let M be a compact oriented 2-dimensional Riemannian manifold and u
an absolute value type function on M . If u does not vanish identically, then∫

M
∆ log u = −2πN(u).

A smooth complex function t onM is called of holomorphic type if locally it is expressed
as t = t0t1, where t0 is holomorphic and t1 is smooth without zeros. Clearly, if t is of
holomorphic type then u = |t| is of absolute value type.

2.4 Twistor Spaces and Gauss Lifts
Let f : M → R4 be an oriented surface. We recall that the Grassmannian Gr(2, 4) of
oriented 2-planes in R4, is isometric to the product S2

+×S2
− of two spheres of radius 1/

√
2

(we refer to Section 7.3.3 for details). Accordingly, the Gauss map g : M → Gr(2, 4) of
f , decomposes into a pair of maps as g = (g+, g−) : M → S2

+ × S2
−. For surfaces in not

necessarily flat space forms Q4
c , the geometric information encoded in the components g+

and g− of the Gauss map of a surface in R4, is encoded in the Gauss lifts of the surface
to the twistor bundle of Q4

c .
We recall some known facts about the twistor theory of 4-dimensional space forms.

The reader may consult [26, 32], although the paper of Jensen and Rigoli [45] is closer
to our approach. Let O(Q4

c) be the principal O(4)-bundle of orthonormal frames in Q4
c ,

which has two connected components denoted by O+(Q4
c) and O−(Q4

c), corresponding to
the two connected components of O(4). The twistor bundle Z of Q4

c is defined as the
set of all pairs (p, J̃), where p ∈ Q4

c and J̃ is an orthogonal complex structure on TpQ4
c .

The twistor projection % : Z → Q4
c is defined by %(p, J̃) = p, and Z is an O(4)/U(2)-fiber

bundle over Q4
c , which is associated to O(Q4

c). Indeed, at a point p ∈ Q4
c and for any

orthonormal frame e = (e1, e2, e3, e4) of TpQ4
c , define an orthogonal complex structure J̃e

by
J̃ee1 = e2, J̃ee3 = e4, J̃

2
e = −I.

Any orthogonal complex structure on TpQ4
c is equal to J̃e for some orthonormal frame e of

TpQ4
c and J̃e = J̃ẽ if and only if ẽ = eA for some A ∈ U(2). Thus, the set of all orthogonal

complex structures on TpQ4
c is O(4)/U(2) and has two connected components isomorphic

to SO(4)/U(2) = {J̃e : e is a± oriented frame of TpQ4
c}. Hence, the twistor bundle is

Z = O(Q4
c)×O(4) O(4)/U(2) = O(Q4

c)/U(2)
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and its two connected components are denoted by Z+ and Z−. Each projection %± : Z± →
Q4
c is a P 1(C) ' S2-fiber bundle over Q4

c .
A one-parameter family of Riemannian metrics gt, t > 0, is defined on Z in a nat-

ural way, making %+ and %− Riemannian submersions. With respect to the (common)
decomposition of the tangent bundle of Z± induced by the Levi-Civitá connection of gt

TZ± = T hZ± ⊕ T vZ±

into horizontal and vertical subbundles, the metric gt is given by the pull-back of the
metric of Q4

c to the horizontal subspaces and by adding the t2-fold of the metric of the
fibers.

Denote by Gr2(TQ4
c) the Grassmann bundle of oriented 2-planes tangent to Q4

c . There
are projections

Π+ : Gr2(TQ4
c)→ Z+ and Π− : Gr2(TQ4

c)→ Z−

defined as follows; if ζ ⊂ TpQ4
c is an oriented 2-plane, then Π±(p, ζ) is the complex

structure on TpQ4
c corresponding to the rotation by +π/2 on ζ and the rotation by ±π/2

on ζ⊥. The Gauss lift Gf : M → Gr2(TQ4
c), of an oriented surface f : M → Q4

c is defined
by Gf (p) = (f(p), f∗TpM). The Gauss lifts of f to the twistor bundle are the maps

G+ : M → Z+ and G− : M → Z−, where G± = Π± ◦Gf .

At any point p ∈M , we obviously have G±(p) = (f(p), J̃±(f(p))), where

J̃±(f(p)) =
{
f∗ ◦ J(p), on f∗TpM,
±J⊥(p), on NfM(p).

Let {ej}, 1 ≤ j ≤ 4, be a ± oriented, local adapted orthonormal frame field of Q4
c ,

where {e1, e2} is in the orientation of TM . Denote by {ωj}, 1 ≤ j ≤ 4, the corresponding
coframe and by ωkl, 1 ≤ k, l ≤ 4, the connection forms given by (2.3). The pull-back of
gt on M under G±, is related to the metric ds2 of M as follows

G∗±(gt) = ds2 + t2

4
(
(ω13 − ω24)2 + (ω14 − ω23)2

)
.

The covariant differential of the mean curvature vector field H = H3e3 +H4e4 is given by

∇⊥H =
4∑

a=3

(
dHa +

4∑
b=3

Hbωba
)
⊗ ea =

2∑
j=1

4∑
a=3

Ha
j ωj ⊗ ea. (2.15)

The Gauss lift G± : M → (Z±, gt) is called conformal if the metric G∗±(gt) is conformal
to ds2. The following has been proved in [45].
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Proposition 2.5. Let f : M → Q4
c be an oriented surface. The Gauss lift G± : M →

(Z±, gt) of f is conformal if and only if either f is minimal, or superconformal with
normal curvature ±KN ≥ 0.

The Gauss lift G± : M → (Z±, gt) is called vertically harmonic if its tension field
(cf. [68]) has vanishing vertical component with respect to the decomposition TZ± =
T hZ± ⊕ T vZ±. The squared length of the vertical component of the tension field of G±
is computed in the following proposition. Its proof is a slight modification of the proof of
Theorem 8.1. in [45] for space forms, where the scalar curvature of Q4

c is normalized to
be equal to c.

Proposition 2.6. Let f : M → Q4
c be an oriented surface with mean curvature vector

field H. Then, the squared length of the vertical component τ v(G±) of the tension field of
the Gauss lift G± : M → (Z±, g1) of f is given by

‖τ v(G±)‖2 = 4
(
(H3

1 ∓H4
2 )2 + (H3

2 ±H4
1 )2
)
,

where {e1, e2} and {e3, e4} are positively oriented orthonormal frame fields of TM and
NfM , respectively, and Ha

j , j = 1, 2, a = 3, 4, is given by (2.15).

Proof: Let H = H3±e±3 + H4±e±4 , where {e±3 , e±4 } is a ± oriented orthonormal frame
field of NfM . The tension field of G±, in terms of an appropriate orthonormal frame field
{E±k , 1 ≤ k ≤ 6} of (Z±, gt), is given by (cf. [45])

τ(G±) =
6∑

k=1
B±k E

±
k ,

where

B±j = 0 for j = 1, 2; B±a = 2Ha±(1− ct2) for a = 3, 4,
B±5 = 2t(H4±

2 −H3±
1 ), B±6 = −2t(H4±

1 +H3±
2 ).

Its vertical component is given by

τ v(G±) = B±5 E
±
5 +B±6 E

±
6 .

By setting e±3 = e3, e
±
4 = ±e4, it follows that

gt (τ v(G±), τ v(G±)) = 4t2
(
(H3

1 ∓H4
2 )2 + (H3

2 ±H4
1 )2
)

(2.16)

and this completes the proof.
The following proposition relates the vertical harmonicity of the Gauss lift G± with

the holomorphicity of the differential Φ± and the holomorphicity of the section H±. The
equivalence of (i) and (iv) below, was proved by Hasegawa [36] who studied surfaces with
a vertically harmonic Gauss lift.
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Proposition 2.7. Let f : M → Q4
c be a surface with mean curvature vector field H. The

following are equivalent:
(i) The Gauss lift G± : M → (Z±, gt) of f is vertically harmonic.
(ii) The differential Φ± is holomorphic.
(iii) The section H± of N±f M is anti-holomorphic.
(iv) ∇⊥JXH = ±J⊥∇⊥XH, for any X ∈ TM .

Proof: The equivalence of (ii), (iii) and (iv) is an immediate consequence of the Codazzi
equation (2.13). By virtue of (2.16), it follows that (i) is equivalent to (iv).

From the proof of Proposition 2.6 it follows that if t2 = 1/c, then G± is vertically
harmonic if and only if it is harmonic.

It is clear from Proposition 2.7 that both Gauss lifts are vertically harmonic if and
only if the surface has parallel mean curvature vector field in the normal connection. For
surfaces in R4 this result is due to Ruh and Vilms [61].

Proposition 2.7 and Lemma 2.3(ii) imply that any superconformal surface f : M → Q4
c

with±KN ≥ 0 has vertically harmonic Gauss lift G±. The Gauss lift G± of such surfaces is
holomorphic with respect to a complex structure J on Z, that makes (Z, gt) a Hermitian
manifold (cf. [26, 45]). The following proposition shows that the converse is also true for
non-minimal superconformal surfaces.

Proposition 2.8. Let f : M → Q4
c be a non-minimal superconformal surface. If the

Gauss lift G± of f is vertically harmonic, then Φ± ≡ 0.

Proof: Arguing indirectly, assume that Φ± 6≡ 0. From Proposition 2.7, we know that Φ±
is holomorphic and Lemma 2.2 implies that its zeros are isolated. From Lemma 2.3(ii)
it follows that Φ∓ ≡ 0 and consequently Φ is holomorphic. Then, the mean curvature
vector field of f is parallel. Hence, KN ≡ 0 on M and Lemma 2.3(ii) implies that f is
totally umbilical, a contradiction.

Remark 2.9. In the case of R4, (Z±, gt) is isometric to the product R4 × S2(t). The
Grassmann bundle is trivial Gr2(R4) ' R4 × Gr(2, 4) and the Gauss lift of f to the
Grassmann bundle is given by Gf = (f, g), where g = (g+, g−) : M → S2

+×S2
− is the Gauss

map of f . The Gauss lift G± of f to the twistor bundle is then given by G± = (f,
√

2tg±)
and it is vertically harmonic if and only if g± is harmonic.



Chapter 3

The Mixed Connection Forms on
Surfaces in Q4

c

In this chapter, we introduce two differential 1-forms Ω− and Ω+ associated to an oriented
surface in Q4

c , called the mixed connection forms. Both forms are defined away from
pseudo-umbilic points and at least one of them is defined away from umbilics. It turns
out that the mixed connection forms on surfaces in Q4

c generalize the connection form
corresponding to principal frame fields of surfaces in Q3

c . This allows us to obtain an index
theorem that extends the Poincaré-Hopf index theorem for surfaces with isolated umbilic
points in Q3

c , which will be used for our results in the last chapter. We also introduce
the notion of isotropically isothermic surfaces in Q4

c as a generalization of the notion
of isothermic surfaces in Q3

c . The notion of isothermicity for surfaces in Q3
c , has been

extended for surfaces with flat normal bundle in arbitrary codimension by Palmer [57], and
also for discrete surfaces in R3 (cf. [5,52]). It turns out that in any case, isothermicity is a
conformally invariant property. We show that isotropic isothermicity is also a conformally
invariant property that extends the notion of isothermicity for surfaces in Q3

c , to surfaces
in Q4

c with not necessarily flat normal bundle.

3.1 An Index Theorem

Let f : M → Q4
c be an oriented surface with M±

0 (f) = ∅ and consider a local orthonormal
frame field {e1, e2 = Je1} on an open U ⊂ M . By virtue of (2.8) and (2.9), the frame
field {e1, e2} determines a unique orthonormal frame field {e±3 , e±4 } of NfU such that

H±(e1, e2) = 1
2‖H

±‖(e±3 ± ie±4 ), (3.1)

where
e±3 = ‖H±‖−1

(
α11 − α22

2 ± J⊥α12

)
, e±4 = J⊥e±3 , (3.2)

17
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and αij = α(ei, ej), i, j = 1, 2. Define the 1-form Ω±(e1, e2) on U by

Ω±(e1, e2) = 2ω12 ± ω±34, (3.3)

where the connection forms ω12 and ω±34, correspond to the dual frame field of {e1, e2, e
±
3 , e

±
4 }

and are given by (2.3).

Proposition 3.1. Let f : M → Q4
c be an oriented surface with M±

0 (f) isolated. Then:
(i) There exists a 1-form Ω± on M rM±

0 (f) such that

Ω±|U = Ω±(e1, e2) (3.4)

for every positively oriented orthonormal frame field {e1, e2} defined on an open
U ⊂M rM±

0 (f).
(ii) The exterior derivative of Ω± is globally defined on M and satisfies

dΩ± = −(2K ±KN)dM, (3.5)

where dM is the volume element of M .
(iii) For every point p ∈M±

0 (f) the limit

I±(p) = lim
r→0

1
2π

∫
Sr(p)

Ω± (3.6)

exists, where Sr(p) is a positively oriented geodesic circle of radius r centered at p.

Proof: (i) Let {e1, e2} and {ẽ1, ẽ2} be positively oriented orthonormal frame fields on an
open, simply-connected U ⊂M rM±

0 (f). Since U is simply-connected, it follows that

ẽ1 − iẽ2 = eiτ (e1 − ie2), (3.7)

for some τ ∈ C∞(U). This implies that

ω̃12 = ω12 + dτ. (3.8)

Consider the frame fields {e±3 , e±4 } and {ẽ±3 , ẽ±4 } ofNfU determined by {e1, e2} and {ẽ1, ẽ2},
respectively, from (3.2). From (2.7), (3.7) and (3.2) it follows that ẽ±3 ±iẽ±4 = e2iτ (e±3 ±ie±4 ).
Therefore,

ω̃±34 = ω34 ∓ 2dτ. (3.9)
Using (3.8) and (3.9), from (3.3) we obtain that

Ω±(ẽ1, ẽ2) = Ω±(e1, e2).

By virtue of the above, we define Ω± by (3.4), for an arbitrary positively oriented or-
thonormal frame field {e1, e2} on a simply-connected U ⊂ M rM±

0 (f). Clearly, Ω± is
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globally defined on M rM±
0 (f). From the definition of Ω± it follows that (3.4) also holds

for frame fields defined on non-simply-connected subsets U ⊂M rM±
0 (f).

(ii) Using part (i) and (2.2), exterior differentiation of (3.3) yields that (3.5) holds on
MrM±

0 (f). Since the right-hand side of (3.5) is defined globally on M , the proof follows.
(iii) Let p ∈ M±

0 (f). Consider positively oriented geodesic circles Sr1(p), Sr2(p),
r2 < r1, centered at p, and denote by D the annular region bounded by Sr1(p) and Sr2(p).
Stokes’ theorem implies that∫

Sr1 (p)
Ω± −

∫
Sr2 (p)

Ω± =
∫
D
dΩ±.

From part (ii) it follows that the right hand side of the above tends to zero as r1, r2 → 0.
This implies that any sequence

∫
Srn (p) Ω± with rn → 0, is a Cauchy sequence and thus, it

converges. The proof now follows.

Remark 3.2. Let F : M → Q3
c be an umbilic-free oriented surface with shape operator

A and corresponding principal curvatures k1, k2, with k1 > k2. Every point p ∈ M has
a neighbourhood U at which there exists a principal frame field {e1, e2} of F , i.e., a
positively oriented orthonormal frame field of TU such that Ael = klel, l = 1, 2. Since a
principal frame field of F is unique up to sign in its domain, it follows that there exists
a 1-form Ω on M such that Ω|U = ω12, where ω12 is the connection form corresponding
to the dual coframe of a principal frame field {e1, e2} of F on U ⊂ M . We call Ω the
principal connection form of F .

The following proposition shows that the mixed connection forms Ω− and Ω+ are
the natural generalizations to surfaces in 4-dimensional space forms, of the principal
connection form Ω of surfaces in 3-dimensional space forms.

Proposition 3.3. Let f : M → Q4
c be the composition of an umbilic-free oriented surface

F : M → Q3
c̃ , c̃ ≥ c, with a totally umbilical inclusion j : Q3

c̃ → Q4
c. Then, Ω− = Ω+ = 2Ω,

where Ω is the principal connection form of F .

Proof: Let ξ be the unit normal vector field of F in Q3
c̃ and A be the shape operator of

F with respect to ξ. As in the Remark 3.2, let k1, k2, with k1 > k2 be the corresponding
principal curvatures of F and consider a principal frame field {e1, e2} of F on U ⊂ M .
Proposition 3.1(i) and (3.3) imply that Ω±|U = Ω±(e1, e2) = 2ω12±ω±34. Moreover, for the
second fundamental form α of f we have that α11−α22 = (k1−k2)j∗ξ and α12 = 0, where
αkl = α(ek, el), k, l = 1, 2. Then, from (3.2) it follows that e−3 = e+

3 = j∗ξ. Since j∗ξ is
parallel in the normal connection of f , we obtain that ω−34 = ω+

34 = 0. Then, Proposition
3.1(i) and Remark 3.2 imply that Ω−|U = Ω+|U = 2Ω|U and this completes the proof.

Assume that f : M → Q4
c is a surface with M±

0 (f) isolated. Proposition 3.1(i) allows
us to express locally the mixed connection form Ω± by (3.3), for an orthonormal frame
field of the tangent bundle. In the sequel such a frame field will often arise from the
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basic vectors fields corresponding to a complex coordinate. Let (U, z = x + iy) be a
local complex coordinate on M and set e1 = ∂x/λ, e2 = ∂y/λ, where λ > 0 is the
conformal factor. Then, the connection form ω12 of the corresponding coframe is given by
ω12 = ?d log λ, where ? is the Hodge star operator. In particular, exterior differentiation
gives dω12 = ∆ log λω1 ∧ ω2, where ∆ = 4λ−2∂∂̄ is the Laplacian on M , and (2.2) implies
that the Gaussian curvature is given by K = −∆ log λ. Moreover, for the Hopf differential
Φ of f , from (2.11), (2.10) and (3.1) it follows that

φ± = λ2

2 H
±(e1, e2) = λ2

4 ‖H
±‖(e±3 ± ie±4 ) on U rM±

0 (f), (3.10)

where e±3 , e±4 are given by (3.2). Therefore, by virtue of Proposition 3.1(i), the expression
of Ω± in terms of the complex coordinate z is

Ω± = ?d log λ2 ± ω±34 on U rM±
0 (f). (3.11)

Proposition 3.4. Let f : M → Q4
c be an oriented surface with M±

0 (f) isolated. Let
p ∈ M±

0 (f) and (U, z) a simply-connected complex chart with U ∩ M±
0 (f) = {p} and

z(p) = 0. If there exists a positive integer m such that the differential Φ± is written as

Φ± = zmΦ̂± on U, Φ̂±(p) 6= 0, (3.12)

then I±(p) = −m.

Proof: Let Φ± = φ±dz2 on U , where φ± is given by (3.10) on Ur{p}. For r > 0, consider
a positively oriented geodesic circle Sr(p) = ∂Br(p) ⊂ U . Stokes’ theorem implies that∫
Sr(p) ?d log λ = −

∫
Br(p) Kω1 ∧ω2, and since the Gaussian curvature is bounded on Br(p),

from (3.11) we obtain that

lim
r→0

∫
Sr(p)

Ω± = ± lim
r→0

∫
Sr(p)

ω±34. (3.13)

Assume that Φ̂± is given by Φ̂± = φ̂±dz2 on U . Since φ̂± ∈ N±f U and φ̂± 6= 0
everywhere on U , there exist R ∈ C∞(U ; (0,+∞)) and an orthonormal frame field {e3, e4}
of NfU , such that φ̂± = R(e3 ± ie4). Then, from (3.10) and (3.12) it follows that

λ2

2 ‖H
±‖(e±3 ± ie±4 ) = zmR(e3 ± ie4), on U r {p}. (3.14)

Let c(s), s ∈ [0, 2π], be a parametrization of Sr(p) as a simple closed curve. Then, there
exists a smooth function τ(s), s ∈ [0, 2π], such that

e±3 (s)± ie±4 (s) = e∓iτ(s)(e3(s)± ie4(s)) (3.15)

along c, and therefore
1

2π

∫
Sr(p)

ω±34 −
1

2π

∫
Sr(p)

ω34 = 1
2π

∫
Sr(p)

dτ. (3.16)
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We argue that the right hand side of (3.16) is equal to ∓m. From (3.14) and (3.15) it
follows that along c we have

(λ(s))2‖H±‖(s)
2R(s) = (z(s))me±iτ(s).

Let k(s) be the function at the left hand side of the above. Then k(s) > 0, s ∈ [0, 2π],
and k(0) = k(2π). Hence, we have

log k(s) = log((z(s))me±iτ(s)).

Differentiating the above with respect to s and then integrating from 0 to 2π we obtain

0 = log k(2π)− log k(0) = m
∫ 2π

0

z′(s)
z(s) ds± i

∫ 2π

0
τ ′(s)ds,

or, equivalently
1

2π

∫
Sr(p)

dτ = ∓ m

2πi

∫
z(Sr(p))

dw

w
= ∓m. (3.17)

Since ω34 is defined everywhere on U and KN is bounded on Br(p), by using (2.2) we
obtain limr→0

∫
Sr(p) ω34 = limr→0

∫
Br(p) dω34 = − limr→0

∫
Br(p) KNω1 ∧ ω2 = 0. The proof

follows by taking limits in (3.16) and using (3.13), (3.17) and (3.6).

Theorem 3.5. Let f : M → Q4
c be a compact oriented surface with M±

0 (f) isolated. Then,

2χ± χN =
∑

p∈M±0 (f)

I±(p).

Proof: Let M±
0 (f) = {p1, . . . , pk}, where k is a nonnegative integer. For a sufficiently

small r > 0, let Mr = M r (Br(p1) ∪ · · · ∪Br(pk)), where Br(pj) is the geodesic ball of
radius r, centered at pj, j = 1, . . . , k. Stokes’ theorem implies that

∫
Mr

dΩ± = −
k∑
j=1

∫
Sr(pj)

Ω±,

where Ω± is the form of Proposition 3.1(i), and Sr(pj) = ∂Br(pj) is positively oriented
with respect to its interior. The above and (3.5) imply that

2χ± χN = − 1
2π lim

r→0

∫
Mr

dΩ± =
k∑
j=1

1
2π lim

r→0

∫
Sr(pj)

Ω±

and the proof follows from (3.6).
In the sequel, we provide some applications of Theorem 3.5. The first one is a short

proof of the following result due to Asperti [4].
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Theorem 3.6. If a compact 2-dimensional Riemannian manifold immerses isometrically
into Q4

c with everywhere non-vanishing normal curvature, then it is homeomorphic either
to the sphere S2, or to the real projective space RP 2.

Proof: Let M̃ be a compact 2-dimensional Riemannian manifold and f : M̃ → Q4
c an

isometric immersion with KN 6= 0 everywhere. Assume that M̃ is oriented and that
±KN > 0. Then, M∓

0 (f) = ∅ and Theorem 3.5 implies that 2χ = ±χN . Since ±χN > 0,
it follows that χ > 0 and thus, M̃ is homeomorphic to S2. If M̃ is non-orientable, then
we apply the previous procedure to the lift of f to the orientable double covering of M̃ ,
and the proof follows.

We mention here that a long-standing open problem posed by S.S. Chern [15, p. 45]
is to investigate the existence of compact surfaces of negative Gaussian curvature in R4.
In this direction, we obtain the following result.

Theorem 3.7. Let M be a compact oriented 2-dimensional Riemannian manifold and
f : M → Q4

c an isometric immersion. If c ≥ 0 and the normal curvature of f does not
change sign, then the Gaussian curvature K of M satisfies maxK ≥ 0.

Proof: Arguing indirectly, suppose that maxK < 0. Since c ≥ 0, this implies that
M1(f) = ∅. Since KN does not change sign, we may assume that ±KN ≥ 0. Then
M∓

0 (f) = ∅ and as in the proof of Theorem 3.6 we obtain that M is homeomorphic to
S2. The theorem of Gauss-Bonnet then implies that there exist points of M with positive
Gaussian curvature and this is a contradiction.

Immediate consequences of the above theorem are the following corollaries. The first
one has been proved by Peng and Tang [58] for surfaces in R4.

Corollary 3.8. Let M be a compact oriented 2-dimensional Riemannian manifold and
f : M → Q4

c , c ≥ 0, an isometric immersion. If the normal curvature of f is constant,
then there exists a point of M with nonnegative Gaussian curvature.

Corollary 3.9. Let M be a compact oriented 2-dimensional Riemannian manifold with
Gaussian curvature K < 0. If there exists an isometric immersion f : M → Q4

c , c ≥ 0,
then its normal curvature satisfies minKN < 0 < maxKN .

3.2 Isotropically Isothermic Surfaces
We introduce here the notion of isotropically isothermic surfaces in 4-dimensional space
forms, as a generalization of the notion of isothermic surfaces in 3-dimensional space
forms. We recall that an umbilic-free surface F : M → Q3

c is called isothermic if it admits
conformal curvature line parametrization around every point. This is equivalent (see for
instance [43]) with the co-closeness of the principal connection form Ω of F . Inspired by
Proposition 3.3 we give the following definitions.
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Let f : M → Q4
c be an oriented surface with M±

0 (f) = ∅. A point p ∈ M is called a
± isotropically isothermic point for f if d ? Ω±(p) = 0. The surface f : M → Q4

c is called
± (totally non) isotropically isothermic if every point is ± (non) isotropically isothermic.
Moreover, f is called strongly (totally non) isotropically isothermic if it is both + and −
(totally non) isotropically isothermic. In the sequel, a ± isotropically isothermic surface
is simply called isotropically isothermic in every case that we do not need to distinguish
between the signs. In such a case, a ± totally non isotropically isothermic surface is called
half totally non isotropically isothermic.

The following lemma provides a characterization of ± isotropically isothermic points
in terms of a complex coordinate. Notice that if f : M → Q4

c is a surface with M±
0 (f) = ∅,

then for every complex chart (U, z) on M there exists a smooth complex function h± on
U such that the Hopf differential Φ of f satisfies

∇⊥∂̄ φ
± = h±φ±, (3.18)

where φ± is given by (2.11) on U .
Lemma 3.10. Let f : M → Q4

c be an oriented surface with M±
0 (f) = ∅. A point p ∈ M

is a ± isotropically isothermic point for f if and only if

Im h±z (p) = 0

for every complex chart (U, z) around p.
Proof: Let (U, z = x + iy) be a complex chart around p and set e1 = ∂x/λ, e2 = ∂y/λ,
where λ > 0 is the conformal factor. Consider the frame field {e±3 , e±4 } of NfU determined
by {e1, e2} from (3.1). Then (3.10) and (3.11) hold on U . From (3.18) and (3.10) it follows
that

∇⊥∂̄ φ
± = λ2

4 ‖H
±‖h±(e±3 ± ie±4 ) on U. (3.19)

By differentiating (3.10) with respect to ∂̄ in the normal connection, we obtain

∇⊥∂̄ φ
± = 1

4
(
∂̄(λ2‖H±‖)∓ iλ2‖H±‖ω±34(∂̄)

)
(e±3 ± ie±4 ).

The above and (3.19) yield

h± = ∂̄ log(λ2‖H±‖)∓ iω±34(∂̄). (3.20)

By differentiating (3.20) with respect to z, and taking the imaginary part yields
4
λ2 Im h±z = ∓

(
e1(log λ)ω±34(e1) + e2(log λ)ω±34(e2) + e1(ω±34(e1)) + e2(ω±34(e2))

)
.

From (3.11) and the above we obtain that

d ? Ω± = − 4
λ2 Im h±z ω1 ∧ ω2

and the proof follows.
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Proposition 3.11. Let f : M → Q4
c be an oriented surface with M±

0 (f) = ∅. Then, f is
± isotropically isothermic if and only if for every simply-connected complex chart (U, z),
the section φ± given by (2.11) has the form

φ± = D±ξ±, (3.21)

where D± is a smooth positive function on U and ξ± is a nowhere vanishing holomorphic
local section.

Proof: Let (U, z) be a simply-connected complex chart. Appealing to Proposition 3.1(i),
we express Ω± on U in terms of z as in (3.11).

Assume that f is± isotropically isothermic. By virtue of (3.11) we have that d?ω±34 = 0
and thus, there exists a smooth positive function r± on U such that

ω±34 = ∓ ? d log r±. (3.22)

We define D± and ξ± by

D± = λ2‖H±‖
4r± and ξ± = r±(e±3 ± ie±4 ), (3.23)

respectively. By differentiating ξ± with respect to ∂̄ in the normal connection yields

∇⊥∂̄ ξ
± = 1

r±

(
(log r±)z̄ ∓ iω±34(∂̄)

)
(e±3 ± ie±4 ). (3.24)

From the above and (3.22), it follows that ξ± is holomorphic.
Conversely, assume that (3.21) holds on U . By setting r± = ‖ξ±‖/

√
2, from (3.21) it

follows that ξ± is given by (3.23). Therefore, (3.24) holds. Since ξ± is holomorphic, from
(3.24) we obtain (3.22). Hence, ω±34 is co-closed and (3.11) implies that ?Ω± is closed on
U . Since U is arbitrary, it follows that f is ± isotropically isothermic.

It is clear that the characterization of ± isotropic isothermicity provided by Propo-
sition 3.11 also makes sense for oriented surfaces immersed in orientable 4-dimensional
Riemannian manifolds of not necessarily constant sectional curvature.

Proposition 3.12. Let N be a Riemann surface and F : N → Q4
c a conformal immer-

sion. The property of F equipped with its induced metric being isotropically isothermic is
invariant under conformal changes of the metric of Q4

c. In particular, if F is ± isotropi-
cally isothermic and τ : Q4

c → Q4
c is an orientation-preserving conformal transformation,

then the surface τ ◦ F is also ± isotropically isothermic.

Proof: Let f : M → Q4
c be the isometric immersion induced by F , where M = (N, ds2)

and ds2 = F ∗〈·, ·〉. Consider the Riemannian manifold Q̃4
c , obtained from Q4

c by the
conformal change 〈·, ·〉µ = µ2〈·, ·〉 of its metric, where µ ∈ C∞(Q4

c ; (0,+∞)), equipped
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with the same orientation with Q4
c . Then, F induces an isometric immersion f̃ : M̃ → Q̃4

c ,
where M̃ = (N, ds̃2) and ds̃2 = F ∗〈·, ·〉µ = µ2ds2.

Assume that f is ± isotropically isothermic. We argue that f̃ is also ± isotropically
isothermic. It is clear that the normal bundles of f and f̃ coincide as vector bundles over
N and they differ only in their bundle metric. In particular, they have the same complex
structure J⊥. It follows easily (see for instance [23]) that the second fundamental forms
α, α̃ and the normal connections ∇⊥, ∇̃⊥, of f, f̃ , respectively, are related by

α̃(X, Y ) = α(X, Y )− 1
µ
〈X, Y 〉(gradµ)⊥, (3.25)

and
∇̃⊥Xη = ∇⊥Xη + 1

µ
〈gradµ,X〉η, (3.26)

for all X, Y ∈ TN and η ∈ NfM = Nf̃M̃ , where grad denotes the gradient with respect
to 〈·, ·〉. Let (U, z) be a complex chart on M̃ with conformal factor λ̃. Then, (U, z) is also
a complex chart on M with conformal factor λ = λ̃/µ. From (3.25) it follows that the
Hopf differentials Φ, Φ̃ of f, f̃ , respectively, coincide. In particular, if Φ± is given by (2.11)
and Φ̃± = φ̃±dz2 on U , then φ± = φ̃±. Proposition 3.11 implies that φ± = D±ξ±, where
D± is a smooth positive function on U and ξ± a nowhere vanishing ∇⊥-holomorphic local
section. Then, we have that

φ̃± = φ± = D̃±ξ̃±, where D̃± = µD± and ξ̃± = 1
µ
ξ±.

Since ξ± is∇⊥-holomorphic, from (3.26) we obtain that ξ̃± is ∇̃⊥-holomorphic. Therefore,
Proposition 3.11 implies that f̃ is ± isotropically isothermic. The rest of the proof follows
immediately.

3.2.1 Examples
We provide here some classes of isotropically isothermic surfaces in Q4

c . When a surface
f : M → Q4

c in some of the following classes is ± isotropically isothermic, it is always
assumed that M±

0 (f) = ∅.

1. Non-superconformal surfaces with a vertically harmonic Gauss lift are isotropically
isothermic.

Let f : M → Q4
c be a surface with M±

0 (f) = ∅. If the Gauss lift G± of f is vertically
harmonic, then Proposition 2.7 implies that Φ± is holomorphic. From Proposition 3.11 it
follows that f is ± isotropically isothermic. Moreover, Proposition 3.12 implies that the
composition of f with an orientation-preserving conformal transformation of Q4

c which is
not an isometry, gives rise to a ± isotropically isothermic surface f̃ whose corresponding
Gauss lift G̃± is not vertically harmonic.
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2. Minimal superconformal surfaces are isotropically isothermic.

Let f : M → Q4
c be a minimal superconformal surface with M±

0 (f) = ∅. Then, for the
Hopf differential Φ of f we have Φ∓ ≡ 0 and thus, Φ = Φ±. The Codazzi equation
implies that Φ is holomorphic and from Proposition 3.11 it follows that f is ± isotropi-
cally isothermic. Moreover, Proposition 3.12 implies that the composition of f with an
orientation-preserving conformal transformation of Q4

c which is not an isometry, gives rise
to a ± isotropically isothermic surface f̃ which is clearly non-minimal. In particular, since
the property of the ellipse of curvature being a circle is conformally invariant, it follows
that f̃ is superconformal.

3. Non-superconformal minimal surfaces are strongly isotropically isothermic.

Let f : M → Q4
c be a minimal surface with M0(f) = ∅. The Codazzi equation implies that

the Hopf differential of f is holomorphic and Proposition 3.11 yields that f is strongly
isotropically isothermic. From Proposition 3.12 it follows that the composition of f with
an orientation-preserving conformal transformation of Q4

c which is not an isometry, de-
termines a non-minimal, strongly isotropically isothermic surface f̃ . Moreover, since the
flatness of the normal bundle of a surface in Q4

c is a conformally invariant property, it
follows that if f has non-flat normal bundle, then the normal bundle of f̃ is also non-flat.

We recall that a surface f : M → Q4
c is called isothermic (cf. [57]) if around every point

of M there exists a complex chart (U, z = x+ iy) with the property that its corresponding
basic vector fields ∂x, ∂y diagonalize at every point of U all shape operators. By setting
e1 = ∂x/λ, e2 = ∂y/λ, where λ is the conformal factor, it is straightforward to show that
such a complex chart is characterized by the property that α(e1, e2) = 0 at every point of
U , where α is the second fundamental form of f .

4. Isothermic surfaces lying in totally umbilical hypersurfaces of Q4
c are strongly isotrop-

ically isothermic.
Let f : M → Q4

c be an umbilic-free isothermic surface lying in Q3
c̃ , c̃ ≥ c. Clearly, f is

the composition of an isothermic surface F : M → Q3
c̃ with a totally umbilical inclusion.

Proposition 3.3 then implies that f is strongly isotropically isothermic.

5. Examples of isothermic surfaces in R4 that are strongly totally non isotropically
isothermic.

Let γj : Ij → R2 be a smooth curve parametrized by its arc length sj, where Ij is an
open interval, j = 1, 2. We denote by nj the normal vector of γj such that {tj = γ̇j, nj}
is positively oriented, where the dot denotes the derivative with respect to sj, j = 1, 2.
By setting M = I1 × I2 and z = s1 + is2, it is clear that z is a global complex coordinate
on M with basic vector fields e1, e2, where ej = ∂/∂sj, j = 1, 2. Moreover, the connection
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form of the corresponding coframe of {e1, e2} satisfies ω12 = 0. We consider the product
surface f : M → R4, f = γ1 × γ2. Then the adapted to f frame field

{f∗e1 = (t1, 0), N1 = (n1, 0), f∗e2 = (0, t2), N2 = (0, n2)}

is positively oriented in R4. Therefore, J⊥N1 = −N2. Let kj be the curvature of γj,
j = 1, 2. Then, for the second fundamental form α of f we have α11 = k1N1, α22 = k2N2
and α12 = 0, where αij = α(ei, ej), i, j = 1, 2. Since α12 = 0 it follows that f is isothermic.

Assume furthermore that f is umbilic-free, or equivalently, that there do not exist
points (s1, s2) on M such that k1(s1) = k2(s2) = 0. We set

e3 = α11 − α22

‖α11 − α22‖
= 1√

k2
1 + k2

2

(k1N1 − k2N2), e4 = J⊥e3.

Then, (3.2) implies that e3 = e−3 = e+
3 . Since ω12 = 0, from Proposition 3.1 and (3.3) it

follows that f is strongly isotropically isothermic if and only if ω34 is co-closed. An easy
computation shows that d ? ω34 = 0 is equivalent to the differential equation

k1k̈2 − k̈1k2 + 2k1k2
(k̇1)2 − (k̇2)2

k2
1 + k2

2
= 0, (3.27)

for the curvatures of γ1 and γ2, at every point of M , where each dot denotes a derivative of
kj with respect to sj, j = 1, 2. Clearly, if kj(sj) = cjsj, cj 6= 0, j = 1, 2, and c1 6= c2, then
for s1s2 > 0 it follows from (3.27) that f is strongly totally non isotropically isothermic.
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Chapter 4

Surfaces with the Same Mean
Curvature

We develop here the required theory for the study of the Bonnet problem for non-minimal
surfaces in 4-dimensional space forms. The case of minimal surfaces has been studied
in [21] and [67]. In this chapter, we assume that all surfaces under consideration are
non-minimal.

4.1 The Distortion Differential

Let M be a 2-dimensional oriented Riemannian manifold and f, f̃ : M → Q4
c be isometric

immersions with second fundamental forms α, α̃ and mean curvature vector fields H, H̃,
respectively. The surfaces f, f̃ are said to have the same mean curvature, if there exists a
parallel vector bundle isometry T : NfM → Nf̃M such that TH = H̃.

Suppose that f, f̃ : M → Q4
c have the same mean curvature and let T : NfM → Nf̃M

be a parallel vector bundle isometry satisfying TH = H̃. After an eventual composition of
one of the surfaces with an orientation-reversing isometry of Q4

c , we may hereafter suppose
that T is orientation-preserving. To such a pair (f, f̃) we assign a holomorphic differential
which is going to play a fundamental role in the sequel. The section of Hom(TM ×
TM,NfM) given by

DT
f,f̃ = α− T−1 ◦ α̃

measures how far the surfaces deviate from being congruent. Since DT
f,f̃

is traceless, its
C-bilinear extension decomposes into its (k, l)-components, k + l = 2, as

DT
f,f̃ = (DT

f,f̃ )
(2,0) + (DT

f,f̃ )
(0,2), where (DT

f,f̃ )
(0,2) = (DT

f,f̃
)(2,0).

We are interested into the (2, 0)-part which is given by

QT
f,f̃ = (DT

f,f̃ )
(2,0) = Φ− T−1 ◦ Φ̃,

29
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where Φ, Φ̃ stand for the Hopf differentials of f, f̃ , respectively.

Lemma 4.1. Let f, f̃ : M → Q4
c be non-minimal surfaces and T : NfM → Nf̃M an

orientation-preserving, parallel vector bundle isometry satisfying TH = H̃. Then:
(i) The quadratic differential QT

f,f̃
is holomorphic and independent of T .

(ii) The normal curvatures of the surfaces are equal and the curvature ellipses Ef , Ef̃ are
congruent at any point of M . In particular, M±

0 (f) = M±
0 (f̃).

Proof: (i) From our assumption it follows that the section T−1 ◦ α̃ of Hom(TM ×
TM,NfM) satisfies the Codazzi equation for the data on NfM and thus, QT

f,f̃
is holo-

morphic by (2.13).
Suppose that there exists another orientation-preserving parallel vector bundle isom-

etry S : NfM → Nf̃M with SH = H̃. We argue that QT
f,f̃
≡ QS

f,f̃
. Set L = T−1 ◦ S and

U = {p ∈ M : H(p) 6= 0}. On NfU , L preserves both of H and J⊥H and thus, T = S
on NfU . Therefore, the holomorphic differential QT

f,f̃
− QS

f,f̃
vanishes identically on the

open subset U of M . Then by Lemma 2.2, we obtain that QT
f,f̃
≡ QS

f,f̃
on M .

(ii) The vector bundle isometry T preserves the normal curvature tensors. Since it
is orientation-preserving, (2.1) implies that the normal curvatures of f, f̃ are equal. The
fact that the curvature ellipses are congruent, now follows from (2.6) and this completes
the proof.

Lemma 4.1(i) allows us to assign to each pair of surfaces (f, f̃) with the same mean
curvature, a holomorphic differential denoted by Qf,f̃ , which is called the distortion dif-
ferential of the pair and is given by

Qf,f̃ = Φ− T−1 ◦ Φ̃.

Obviously, Qf,f̃ ≡ 0 if and only if f and f̃ are congruent. To simplify the notation,
we denote the distortion differential associated to the pair (f, f̃) by Q, whenever there
is no danger of confusion. A pair (f, f̃) of noncongruent surfaces with the same mean
curvature is called a pair of Bonnet mates. In this case, the zero-set of Q is denoted by
Z and according to Lemmas 2.2 and 4.1(i), consists of isolated points only.

With respect to the decomposition NfM ⊗ C = N−f M ⊕N+
f M , the distortion differ-

ential Q splits as

Q = Q− +Q+, where Q± = π± ◦Q.

It follows from Lemma 4.1(i) that each differential

Q± = Φ± − T−1 ◦ Φ̃± (4.1)

is holomorphic. According to Lemma 2.2, either Q± ≡ 0, or its zero-set Z± consists of
isolated points only.
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4.2 The Decomposition of the Moduli Space
Let f : M → Q4

c be a non-minimal oriented surface. We denote byM(f) the moduli space
of congruence classes of all isometric immersions of M into Q4

c, that have the same mean
curvature with f . Since the distortion differential of a pair of Bonnet mates does not
vanish identically, the moduli space can be written as

M(f) = N−(f) ∪N+(f) ∪ {f},

where
N±(f) = {f̃ : Q±

f,f̃
6≡ 0}/Isom+(Q4

c),

{f} is the trivial congruence class and Isom+(Q4
c) is the group of orientation-preserving

isometries of Q4
c . Moreover, the moduli space decomposes into disjoint components as

M(f) =M∗(f) ∪M−(f) ∪M+(f) ∪ {f},

where
M±(f) = N±(f) rN∓(f) = {f̃ : Qf,f̃ ≡ Q±

f,f̃
}/Isom+(Q4

c),

and
M∗(f) = N−(f) ∩N+(f) = {f̃ : Q−

f,f̃
6≡ 0 and Q+

f,f̃
6≡ 0}/Isom+(Q4

c).

In order to simplify the notation in the sequel, we set M̄±(f) =M±(f) ∪ {f}.
Hereafter, whenever we refer to a surface in the moduli space we mean its congruence

class. A surface f : M → Q4
c is called a Bonnet surface if M(f) r {f} 6= ∅. Any

f̃ ∈M(f)r{f} is called a Bonnet mate of f . A Bonnet surface f is called proper Bonnet
if it admits infinitely many Bonnet mates.

4.3 Bonnet Mates

In view of Lemma 4.1(ii), we denote by M0 = M−
0 ∪M+

0 and M1 the set of pseudo-umbilic
and umbilic points of a pair of Bonnet mates, respectively.

Proposition 4.2. If f̃ ∈ N±(f), then there exists θ± ∈ C∞(M rM±
0 ; (0, 2π)), such that

the distortion differential of the pair (f, f̃) satisfies on M rM±
0 the relation

Q± = (1− e∓iθ±)Φ±. (4.2)

Moreover, M±
0 = Z± consists of isolated points only.

Proof: We first prove that there exists θ± ∈ C∞(M r Z±; (0, 2π)) such that (4.2) is
valid on M r Z±. Since f̃ ∈ N±(f), it follows that Z± is isolated. Lemma 4.1(ii)
and (4.1) imply that M±

0 ⊂ Z± and thus, M±
0 is isolated. We set β = T−1 ◦ α̃, where
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T : NfM → Nf̃M is an orientation and mean curvature vector field-preserving, parallel
vector bundle isometry.

If int(M0) 6= ∅, then since M±
0 is isolated, we obtain that int(M0) ⊂ M∓

0 . Lemma
2.3(ii) implies that ±KN < 0, Φ∓ ≡ 0 and Φ± 6= 0 on int(M0 r Z±). Let z be a local
complex coordinate defined on a simply-connected neighbourhood V ⊂ int(M0 r Z±).
From Lemma 4.1(ii), it follows that the isotropic sections α(∂, ∂) and β(∂, ∂) have the
same length. Hence, there exists τ ∈ C∞(V ) with values in (0, 2π), such that

β(∂, ∂) = J⊥τ α(∂, ∂),

where the rotation J⊥τ = cos τI + sin τJ⊥ satisfies J⊥τ = e∓iτI on N±f M . Since Φ± 6= 0 on
int(M0 rZ±), the function τ is well-defined modulo 2π on int(M0 rZ±). Moreover, it is
non-vanishing modulo 2π on int(M0rZ±) and thus, there exists a branch in C∞(int(M0r
Z±)) with values in (0, 2π). By setting θ± = τ , we have that (4.2) holds on int(M0 rZ±).
In particular, the assertion is obvious if M = M0.

Assume that M 6= M0 and let p ∈ M rM0. According to Lemma 2.1, there exist
smooth frame fields {e1, e2, e3, e4}, {ẽ1, ẽ2, ẽ3, ẽ4} on a neighbourhood U ⊂ M rM0 of p,
such that

α11 − α22 = 2κe3, α12 = µe4, where αij = α(ei, ej), j = 1, 2,

and
β11 − β22 = 2κ̃ẽ3, β12 = µ̃ẽ4, where βij = β(ẽi, ẽj), j = 1, 2.

Lemma 4.1(ii) yields that the ellipses Ef (q) and Eβ(q) are congruent at any point q ∈ U and
consequently, κ = κ̃. Using (2.1) and (2.14), we obtain that KN = 2κµ and K̃N = 2κ̃µ̃.
Then, Lemma 4.1(ii) implies that µ = µ̃. Setting ẽ3 − iẽ4 = eiθ(e3 − ie4) for some
θ ∈ C∞(U), we have that

J⊥θ (α11 − α22) = β11 − β22 and J⊥θ α12 = β12 on U,

where J⊥θ = cos θI + sin θJ⊥. This gives

β(ẽ1 − iẽ2, ẽ1 − iẽ2) = J⊥θ (α(e1 − ie2, e1 − ie2)) .

Setting ẽ1 − iẽ2 = eiσ(e1 − ie2) for some σ ∈ C∞(U), the above is written equivalently as

T−1 ◦ Φ̃ = eiθ
−Φ− + e−iθ

+Φ+, where θ± = θ ± 2σ.

Since Φ− and Φ+ are everywhere non-vanishing on M rM0, the functions θ− and θ+ are
well-defined modulo 2π on M rM0. From the assumption f̃ ∈ N±(f), it follows that
θ± is non-vanishing modulo 2π on M r (M0 ∪ Z±) and thus, there exists a branch in
C∞(M r (M0 ∪ Z±)) with values in (0, 2π). Obviously, (4.2) holds on M r (M0 ∪ Z±).



4.3. Bonnet Mates 33

Lemma 4.1(ii) implies that for a point q ∈M0 r (int(M0)∪Z±), there exists a unique
number l(q) ∈ (0, 2π) such that

T−1 ◦ Φ̃(q) = J⊥l(q)Φ(q),

where the rotation is given by J⊥l(q) = e∓il(q)I, since q ∈ M∓
0 . We extend θ± on M r Z±

by setting θ±(q) = l(q). Then, (4.2) holds on M r Z±. Since Q± and Φ± are everywhere
non-vanishing on M r Z±, from (4.2) it follows that θ± is smooth.

It remains to prove that M±
0 = Z±. Arguing indirectly, assume that there exists

p ∈ Z± rM±
0 . From Lemma 2.3(i) it follows that Φ±(p) 6= 0. Since Q± and Φ± are

smooth, (4.2) implies that the function k = e∓iθ
± can be smoothly extended at p, with

k(p) = 1.
We claim that θ± can be continuously extended at p. Assume to the contrary that

there exist sequences pn, qn ∈M rZ±, n ∈ N, converging at p, such that θ±(pn)→ 0 and
θ±(qn) → 2π. Since θ± is continuous on M r Z±, it follows that for every r > 0 there
exists sr ∈ Br(p) r {p} such that θ±(sr) = π, or equivalently, k(sr) = −1. On the other
hand, since k is continuous at p, there exists r′ > 0 such that |k − 1| < 1/2 on Br′(p),
which is a contradiction. Therefore, the limit of θ± at p exists and the claim follows.
Since θ± is continuous and k is smooth on M rM±

0 , it follows that θ± is also smooth on
on M rM±

0 .
Let (U, z) be a complex chart with U ∩ Z± = {p}. From Lemmas 4.1(i) and 2.2 it

follows that there exists a positive integer m such that Q± = zmΨ± on U , and Ψ±(p) 6= 0.
Using (4.2), this is equivalent to

(1− e∓iθ±)φ± = zmψ±, ψ±(p) 6= 0, (4.3)

where φ± is given by (2.11), and Ψ± = ψ±dz2 on U . By differentiating (4.2) with respect
to ∂̄ in the normal connection and using the holomorphicity of Q± yields(

h±(1− e∓iθ±)± ie∓iθ±θ±z̄
)
φ± = 0,

where h± is given by (3.18). Since φ± 6= 0 everywhere on U , the above implies that

θ±z̄ = ∓ih±(1− e±iθ±), θ±z = ±ih±(1− e∓iθ±).

Since θ±(p) = 0, or 2π, from the above we obtain that all derivatives of θ± vanish at p.
Then, by differentiating (4.3) m-times with respect to ∂ in the normal connection, we
obtain that m!ψ±(p) = 0, which is a contradiction. Therefore, M±

0 = Z± and the proof
follows.

The following lemma is essential for our results.
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Lemma 4.3. Let M be a simply-connected oriented, 2-dimensional Riemannian manifold
with a global complex coordinate z, and f : M → Q4

c an isometric immersion with M±
0 (f)

isolated. We consider the system

θ±z̄ = ∓ih±(1− e±iθ±), θ±z = ±ih±(1− e∓iθ±), (4.4)

where h± is given by (3.18) on M rM±
0 (f), and θ± ∈ C∞(M rM±

0 (f);R). Then, the
graph of any solution of (4.4) is an integral surface of the 2-dimensional distribution D±

on R× (M rM±
0 (f)), defined by the 1-form

ρ± = dθ± ∓ ih±(1− e∓iθ±)dz ± ih±(1− e±iθ±)dz̄. (4.5)

We have that:
(i) A function θ± ∈ C∞(M rM±

0 (f);R) satisfies (4.4) if and only if

A±e±2iθ± − 2i(ImA±)e±iθ± − A± = 0, (4.6)

where
A± = i

(
h±z − |h±|2

)
= − Im h±z + i(Reh±z − |h±|2). (4.7)

Moreover, if θ± satisfies (4.4) then

θ±zz = ∓A±(1− e±iθ±). (4.8)

(ii) Assume that h± can be smoothly extended on M . Then, D± is involutive on R×M
if and only if A± ≡ 0 on M . If D± is involutive then its maximal integral surfaces
are graphs of solutions of (4.4) on M . In particular, any solution of (4.4) on M is
equivalent modulo 2π, either to a harmonic function θ± ∈ C∞(M ; (0, 2π)), or to the
constant function θ± ≡ 0, and the space of the distinct modulo 2π solutions can be
smoothly parametrized by S1 ' R/2πZ.

(iii) If (4.4) has a harmonic solution θ± ∈ C∞(M r M±
0 (f); (0, 2π)), then h± can be

smoothly extended on M and A± ≡ 0.

Proof: It is clear that the graph of any solution of (4.4) is an integral surface of D±.
(i) Assume that θ± ∈ C∞(MrM±

0 (f);R) satisfies (4.4). Since its graph Σ ⊂ R×(Mr
M±

0 (f)) is an integral surface of D±, the Frobenius condition yields that ρ± ∧ dρ± = 0 on
Σ, or equivalently, θ±zz = θ±zz on M rM±

0 (f). From (4.4) it follows that

θ±zz = ∓A±(1− e±iθ±) and θ±zz = ∓A±(1− e∓iθ±),

where A± is given by (4.7). The above implies (4.6) and (4.8). Conversely, if θ± satisfies
(4.6), then we have that ρ± ∧ dρ± = 0 on its graph Σ. Therefore, Σ is an integral surface
of D± and thus, (4.5) implies that θ± satisfies (4.4) on M rM±

0 (f).
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(ii) From (4.5) and (4.7) it follows that ρ± and A± can be smoothly extended on R×M
and M , respectively. The Frobenius Theorem implies that D± is involutive if and only if
ρ± ∧ dρ± ≡ 0 on R×M , or equivalently, A± ≡ 0 on M .

Assume that D± is involutive on R×M and let Σ be a maximal integral surface. Then
ρ± = 0 on Σ. Since M is simply-connected and ρ± is defined globally on R ×M , from
(4.5) it follows that Σ is the graph of a solution of (4.4) on M .

Let θ± ∈ C∞(M ;R) be a solution of (4.4) on M . Since A± ≡ 0 on M , from (4.8) it
follows that θ± is harmonic. It is clear that θ± + 2kπ also satisfies (4.4) for every k ∈ Z.
Therefore, if θ± 6≡ 0 mod 2π, we may assume that θ±(p) ∈ (0, 2π) at some p ∈M . Then,
the graph of θ± must lie between the graphs of the constant solutions 0 and 2π and thus,
θ± takes values in (0, 2π). Therefore, any solution of (4.4) on M is equivalent modulo 2π,
either to a harmonic function θ± ∈ C∞(M ; (0, 2π)), or to the constant function θ± ≡ 0.

Since R ×M is foliated by maximal integral surfaces of D±, which are graphs over
M of solutions of (4.4), it follows that the space of these surfaces can be parametrized
by a smooth curve γ(t) = (t, p), t ∈ R, where p ∈ M is an arbitrary point. Obviously,
the space of the distinct modulo 2π solutions of (4.4) can be smoothly parametrized by
S1 ' R/2πZ.

(iii) Let θ± ∈ C∞(M rM±
0 (f); (0, 2π)) be a harmonic function satisfying (4.4). Since

θ± is bounded with isolated singularities, it can be extended to a harmonic function
θ± ∈ C∞(M ; [0, 2π]). We claim that θ± does not attain the values 0 and 2π on M .
Arguing indirectly, assume that there exists a point at which θ± attains the value 0 or
2π. Then θ± has an interior minimum or maximum, respectively, and the maximum
principle implies that θ± ≡ 0 or 2π, respectively, on M . This is a contradiction, since
θ±(p) ∈ (0, 2π) for every p ∈M rM±

0 (f). Therefore, θ± ∈ C∞(M ; (0, 2π)). From (4.4), it
follows that h± can be smoothly extended at every point of M±

0 (f). Since θ± is harmonic,
from (4.8) it follows that A± ≡ 0 on M .

Lemma 4.4. (i) If f1 ∈M−(f3) and f2 ∈M+(f3), then f1 ∈M∗(f2).
(ii) If f1, f2 ∈M±(f3), then f1 ∈M±(f2).

Proof: Let Tjk : NfjM → NfkM, 1 ≤ j, k ≤ 3, j 6= k, be orientation and mean
curvature vector field-preserving, parallel vector bundle isometries. Denote by Qjk and
Φj the distortion differential of the pair (fj, fk) and the Hopf differential of fj, respectively.
From Lemma 4.1(i), we know that Qjk is independent of Tjk. Hence,

Q12 = Φ1 − T−1
12 ◦ Φ2 = Φ1 − (T31 ◦ T−1

32 ) ◦ Φ2,

or equivalently,
T−1

31 ◦Q12 = T−1
31 ◦ Φ1 − T−1

32 ◦ Φ2 = Q31 −Q32.

Therefore,
Q±12 = T31 ◦ (Q±31 −Q±32) (4.9)

and the results follow immediately.
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Proposition 4.5. If f̃ ∈ N±(f), then the function θ± of Proposition 4.2 satisfies (4.4)
on U rM±

0 for every complex chart (U, z) on M . Moreover, if one of the following holds,
then it extends to a harmonic function θ± ∈ C∞(M ; (0, 2π)).
(i) There exists f̂ ∈ N±(f) ∩N±(f̃).
(ii) The surface f is ± isotropically isothermic on M rM±

0 .

Proof: Let (U, z) be a complex chart on M . In the proof of Proposition 4.2 it was shown
that θ± satisfies (4.4) on U rM±

0 . We claim that if (i) or (ii) holds, then θ± is harmonic
on U rM±

0 .
(i) To unify the notation, set f1 = f̃ , θ±1 = θ± and f2 = f̂ . Proposition 4.2 implies

that there exists θ±j ∈ C∞(M rM±
0 ; (0, 2π)) such that the distortion differential Qj of the

pair (f, fj), j = 1, 2, satisfies

Q±j = (1− e∓iθ
±
j )Φ± on M rM±

0 , (4.10)

where Φ is the Hopf differential of f . On the other hand, (4.9) implies that the distortion
differential Q of the pair (f1, f2) satisfies

Q± = T ◦ (Q±1 −Q±2 ),

where T : NfM → Nf1M is an orientation and mean curvature vector field-preserving,
parallel vector bundle isometry. Therefore, from (4.10) and the above, it follows that

Q± = (e∓iθ
±
2 − e∓iθ

±
1 )T ◦ Φ± on M rM±

0 .

Since f2 ∈ N±(f1), it is clear that f1 ∈ N±(f2). Proposition 4.2 implies that Q± vanishes
precisely on M±

0 and from the above it follows that θ±1 6= θ±2 everywhere on M rM±
0 .

Since θ±j , j = 1, 2, satisfies (4.4) on U rM±
0 , from Lemma 4.3(i) it follows that it also

satisfies (4.6). At every point of UrM±
0 , equation (4.6) viewed as a polynomial equation,

has the distinct roots 1, e∓iθ±1 , e∓iθ±2 . Hence, A± ≡ 0 on U rM±
0 and the claim follows by

virtue of (4.8).
(ii) Arguing indirectly, assume that θ± is not harmonic on U rM±

0 . Appealing to
Lemma 4.3(i), equation (4.8) implies that there exists p ∈ U rM±

0 such that A±(p) 6= 0.
On the other hand, Lemma 3.10 and (4.7) yield that ReA± ≡ 0 on U rM±

0 . Therefore
ReA±(p) = 0 6= ImA±(p). Then, (4.6) implies that e±iθ±(p) = 1. This is a contradiction,
since θ± takes values in (0, 2π), and this proves the claim.

Since θ± is a harmonic function satisfying (4.4) on U rM±
0 , Lemma 4.3(iii) implies

that h± extends smoothly on U and A± ≡ 0 on U . From Lemma 4.3(ii) it follows that θ±
extends to a harmonic function on U with values in (0, 2π), satisfying (4.4) on U . Since
U was arbitrary, this completes the proof.



Chapter 5

Simply-Connected Surfaces

In this chapter, we study the Bonnet problem for surfaces f : M → Q4
c , where M is a

non-compact, simply-connected and oriented 2-dimensional Riemannian manifold. From
the Uniformization Theorem it follows that M is conformally equivalent either to the
complex plane, or to the unit disk. Therefore, in what follows in this chapter, M always
admits a global complex coordinate z.

We point out that the non-compactness assumption is not restrictive for the most of
our results at all. This will become clear in Chapter 8.

5.1 The Structure of the Moduli Space

The following theorem determines the possible structure of the moduli space M(f) for
non-compact simply-connected surfaces f : M → Q4

c .

Theorem 5.1. Let f : M → Q4
c be a non-compact simply-connected, oriented surface.

(i) If f is not proper Bonnet, then it admits either at most one Bonnet mate, or exactly
three.

(ii) If f is proper Bonnet, then the moduli space M(f) is a space diffeomorphic to a
manifold. Moreover, f is characterized according to the structure ofM(f) as follows:

Tight: The moduli space is 1-dimensional with at most two connected components
diffeomorphic to S1 ' R/2πZ.

Flexible: The moduli space is diffeomorphic to the torus S1 × S1.

For the proof of the above theorem, we need some auxiliary results.

Proposition 5.2. Let M be a simply-connected oriented, 2-dimensional Riemannian
manifold with a global complex coordinate z, and f : M → Q4

c a non-minimal surface
with M±

0 (f) isolated.

37
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(i) If f̃ ∈ M±(f) and M±(f) r {f̃} 6= ∅, then there exists a harmonic function θ± ∈
C∞(M ; (0, 2π)) satisfying (4.4) on M , such that the distortion differential of the pair
(f, f̃) is given by (4.2) on M .

(ii) If h± can be smoothly extended on M , then the distinct modulo 2π solutions of
(4.4) on M determine noncongruent surfaces in M̄±(f). In particular, any solution
θ± ∈ C∞(M ; (0, 2π)) determines a unique Bonnet mate f̃ ∈ M±(f) such that the
distortion differential of the pair (f, f̃) is given by (4.2) on M .

Proof: (i) Propositions 4.2 and 4.5 imply that there exists θ± ∈ C∞(M rM±
0 ; (0, 2π))

satisfying (4.4) on M rM±
0 , such that the distortion differential Q of the pair (f, f̃) is

given by (4.2) on M r M±
0 . Let f̂ ∈ M±(f) r {f̃}. Lemma 4.4(ii) yields that f̂ ∈

M±(f)∩M±(f̃). From Proposition 4.5 it follows that θ± extends to a harmonic function
θ± ∈ C∞(M ; (0, 2π)). In particular, from the proof of Proposition 4.5 it follows that θ±
satisfies (4.4) on M . Proposition 4.2 implies that Q vanishes precisely on M±

0 . Then,
from Lemma 2.3(i) it follows that Q is given by (4.2) on M .

(ii) Assume that h± can be smoothly extended on M . For a solution θ± of (4.4),
consider the quadratic differential

Ψ = Φ∓ + e∓iθ
±Φ±. (5.1)

By using (2.11), it is straightforward to check that Ψ satisfies equations (2.12) and (2.14)
with respect to ∇⊥, R⊥, H. Since θ± satisfies (4.4), by using (2.11) it follows that Φ−Ψ is
holomorphic. Therefore, Ψ satisfies the Codazzi equation. By the fundamental theorem of
submanifolds, there exists a unique (up to congruence) isometric immersion f̃ : M → Q4

c ,
and an orientation-preserving parallel vector bundle isometry T : NfM → Nf̃M , such
that the Hopf differential Φ̃ and the mean curvature vector field H̃ of f̃ are given by
Φ̃ = T ◦ Ψ and H̃ = TH, respectively. Clearly, f̃ is congruent to f if and only if θ± ≡ 0
mod 2π. Furthermore, if f̃ is noncongruent to f then the distortion differential of the pair
(f, f̃) satisfies Q∓ ≡ 0 and thus, f̃ ∈ M±(f). In particular, if θ± ∈ C∞(M ; (0, 2π)) then
f̃ ∈M±(f) and (5.1) implies that the distortion differential of the pair (f, f̃) is given by
(4.2) on M .

Theorem 5.3. Let M be a non-compact simply-connected oriented, 2-dimensional Rie-
mannian manifold, and f : M → Q4

c a non-minimal surface. Then:
(i) Either there exists at most one Bonnet mate of f in M±(f), or the space M̄±(f) is

diffeomorphic to S1 ' R/2πZ.
(ii) We have that M∗(f) 6= ∅ if and only if M−(f) 6= ∅ 6=M+(f). If M∗(f) 6= ∅, then

there is a one-to-one correspondence between Bonnet mates f̃ ∈ M∗(f) and pairs
f−, f+ with f± ∈ M±(f), such that the distortion differential of the pair (f, f̃) is
given by

Q = Qf,f− +Qf,f+ ,

where Qf,f± is the distortion differential of the pair (f, f±).
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(iii) The surface f is proper Bonnet if and only if either M̄−(f) = S1, or M̄+(f) = S1.
(iv) The moduli space M(f) can be parametrized by the product M̄−(f) × M̄+(f). In

particular, if f is proper Bonnet then M(f) is a smooth manifold.

Proof: Let z be a global complex coordinate on M .
(i) Assume that f admits at least two Bonnet mates in M±(f) and let f̃ ∈ M±(f).

Proposition 4.2 implies that M±
0 is isolated. Since M±(f) r {f̃} 6= ∅, from Proposition

5.2(i) it follows that (4.4) has a harmonic solution θ± ∈ C∞(M rM±
0 ; (0, 2π)). Then,

Lemma 4.3(iii) yields that h± can be smoothly extended on M and A± ≡ 0. From
Lemma 4.3(ii) it follows that the space of the distinct modulo 2π solutions of (4.4) can
be smoothly parametrized by S1. The proof follows by virtue of Proposition 5.2(ii).

(ii) Assume that there exists f̃ ∈M∗(f) and consider the quadratic differentials

Ψf− = Φ−Q− and Ψf+ = Φ−Q+,

where Φ is the Hopf differential of f and Q is the distortion differential of the pair (f, f̃).
We argue that Ψf− and Ψf+ satisfy the compatibility equations with respect to∇⊥, R⊥, H.
From Lemma 4.1(i), it follows that Q± is holomorphic and thus, the differential Ψf±

satisfies the Codazzi equation. Lemma 2.3(i) and Proposition 4.2 yield that Φ± and Q±

vanish precisely on M±
0 . Hence, Ψf±(p) = Φ(p) at any point p ∈ M±

0 and therefore Ψf±

satisfies the algebraic equations (2.12) and (2.14) on M±
0 . Moreover, since f̃ ∈ M∗(f),

Proposition 4.2 implies that there exist θ−, θ+ with θ± ∈ C∞(M rM±
0 ; (0, 2π)) such that

Q± is given by (4.2) on M rM±
0 . Using (4.2) and (2.11) it follows that Ψf± satisfies

the equations (2.12) and (2.14) on M rM±
0 . The fundamental theorem of submanifolds

implies that there exist unique Bonnet mates f−, f+ : M → Q4
c of f , such that the Hopf

differential Φf± of f± is given by Φf± = T± ◦ Ψf± , where T± : NfM → Nf±M is an
orientation-preserving parallel vector bundle isometry. From Lemma 4.1(i), it follows
that the distortion differential of the pair (f, f±) is Q± and thus, f± ∈M±(f).

Conversely, assume that there exist f−, f+ with f± ∈ M±(f) and consider the
quadratic differential Ψ with

Ψ− = Φ− −Qf,f− and Ψ+ = Φ+ −Qf,f+ ,

where Qf,f± is the distortion differential of the pair (f, f±). Lemma 4.1(i) implies that
Qf,f− and Qf,f+ are both holomorphic and thus, Ψ satisfies the Codazzi equation. From
Lemma 2.3(i) and Proposition 4.2 it follows that Ψ± vanishes precisely on M±

0 . Further-
more, Proposition 4.2 implies that there exist θ−, θ+ with θ± ∈ C∞(M rM±

0 ; (0, 2π))
such that

Qf,f± = (1− e∓iθ±)Φ± on M rM±
0 .

Using the above and (2.11) it follows that Ψ satisfies (2.12) and (2.14) on MrM0. Taking
into account that Ψ±(p) = 0 at any point p ∈ M±

0 , from the above and (2.11) we obtain
that Ψ also satisfies (2.12) and (2.14) at any point of M0. The fundamental theorem of
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submanifolds and Lemma 4.1(i) imply that there exists a unique Bonnet mate f̃ of f , such
that the distortion differential of the pair (f, f̃) is Q = Qf,f−+Qf,f+ . Clearly, f̃ ∈M∗(f).

If M∗(f) 6= ∅, the above correspondence is obviously one-to-one.
(iii) Assume that f is proper Bonnet. Then at least one of the disjoint components

of M(f) is infinite. From part (ii) it follows that at least one of M−(f) and M+(f) is
infinite. If M±(f) is infinite, then part (i) implies that M̄±(f) = S1. The converse is
obvious.

(iv) From Proposition 4.5 and the proof of part (i) it follows that M̄±(f) is parametrized
by the space of the distinct modulo 2π solutions of (4.4). Then, Proposition 4.2 and part
(ii) imply that the moduli space can be parametrized by pairs of functions (θ−, θ+),
where θ± ∈ C∞(M rM±

0 , [0, 2π)) satisfies (4.4). Moreover, according to this parametriza-
tion, θ∓ ≡ 0 correspond to M̄±(f). It is now clear that M(f) can be parametrized by
M̄−(f)× M̄+(f). In particular, if f is proper Bonnet then parts (iii) and (i) imply that
the moduli space is a smooth manifold.

Remark 5.4. From the proof of Theorem 5.3(i) it follows that if M̄±(f) can be smoothly
parametrized by S1, then its parametrization is induced by the parametrization of the
space of the distinct modulo 2π solutions of (4.4). In the proof of Lemma 4.3(ii) the
parametrization θ±t , t ∈ S1, of these solutions is such that

θ±t (p) = t, t ∈ S1, (5.2)

at a point p ∈M . Obviously, this parametrization depends on p and is not unique, unless
the solutions of (4.4) are constant. In this case from (4.4) it follows that h± ≡ 0 on M .
Then, (3.18) and Proposition 2.7 imply that the Gauss lift G± of f is vertically harmonic.

Proof of Theorem 5.1: Assume that f is non-minimal.
(i) If f is not proper Bonnet, then Theorem 5.3(iii) and (i) imply that f admits at

most one Bonnet mate in each one ofM−(f) andM+(f). IfM−(f) 6= ∅ 6=M+(f), then
Theorem 5.3(ii) yields that f admits exactly three Bonnet mates.

(ii) If f is proper Bonnet, then Theorem 5.3(iii) implies that either M̄−(f) = S1, or
M̄+(f) = S1. Assume that M̄±(f) = S1. From Theorem 5.3(i) and (iv) it follows that
f is either tight, or flexible, if there exist either at most one, or infinitely many Bonnet
mates of f in M∓(f), respectively.

If f is minimal then it is known that (cf. [20]) either M(f) = {f}, or M(f) = S1.

5.2 Proper Bonnet Surfaces

We study here non-minimal proper Bonnet surfaces f : M → Q4
c . By virtue of Theorem

5.3(iii-iv), we focus on surfaces with M̄±(f) = S1. For such a surface, Proposition 4.2
implies that M±

0 (f) consists of isolated points only.



5.2. Proper Bonnet Surfaces 41

Proposition 5.5. Let f : M → Q4
c be a simply-connected surface with M̄±(f) = S1. Let

p ∈ M±
0 (f) and consider a complex chart (U, z) with U ∩M±

0 (f) = {p} and z(p) = 0.
Then:
(i) The differential Φ± is written as

Φ± = zmΦ̂± on U, Φ̂±(p) 6= 0, (5.3)

where m is a positive integer.
(ii) The function ‖H±‖ is of absolute value type on M . The multiplicity of its zero

p ∈M±
0 (f) is the integer m given by (5.3).

Proof: (i) Let f̃ ∈ M±(f). From Proposition 5.2(i) it follows that there exists θ± ∈
C∞(U ; (0, 2π)) such that the distortion differential Q of the pair (f, f̃) is given by

Q = (1− e∓iθ±)Φ± on M.

Proposition 4.2 implies that p is the only zero of Q in U . From Lemmas 4.1(i) and 2.2 it
follows that there exists a positive integer m such that

Q = zmΨ̂± on U, Ψ̂±(p) 6= 0.

The proof follows from the above expressions of Q, by setting Φ̂± = (1− e∓iθ±)−1Ψ̂±.
(ii) Let z = x+ iy and set e1 = ∂x/λ, e2 = ∂y/λ, where λ is the conformal factor. Let

Φ̂± = φ̂±dz2 on U . Part (i) implies that φ± = zmφ̂±, where φ± is given by (2.11) on U .
Then, from (3.10) it follows that

‖H±‖ = |z|mu, where u =
√

2λ−2‖φ̂±‖ is smooth and positive.

Clearly, the multiplicity of p is m.

Lemma 5.6. Let M be an oriented, 2-dimensional Riemannian manifold with a global
complex coordinate z, and f : M → Q4

c a surface with M±
0 (f) = ∅. Then, the 1-forms

a±1 , a
±
2 on M given by

a±1 = d log ‖H±‖ − ?Ω±, a±2 = ?a±1 , (5.4)

vanish precisely at the points where the Gauss lift G± of f is vertically harmonic. More-
over:
(i)

da±2 =
(
∆ log ‖H±‖ − 2K ∓KN

)
dM = 4

λ2 Reh±z dM,

(ii)

a±1 ∧ a±2 = ‖τ
v(G±)‖2

4‖H±‖2 dM = 4
λ2 |h

±|2dM,
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where λ is the conformal factor and h± is given by (3.18) on M .

Proof: Let z = x + iy and set e1 = ∂x/λ, e2 = ∂y/λ. Consider the frame field {e±3 , e±4 }
of NfU determined by {e1, e2} from (3.1). Then (3.10) and (3.11) hold on M and as in
the proof of Lemma 3.10 we obtain (3.19) and (3.20). Using (3.11), from (3.20) it follows
that

a±1 = 2
λ

(
Reh±ω1 + Im h±ω2

)
, (5.5)

where {ω1, ω2} is the dual frame field of {e1, e2}.
Proposition 2.7 and (3.18) imply that h±(p) = 0 if and only if the Gauss lift G± of f

is vertically harmonic at p. Therefore, from (5.5) it follows that a±1 vanishes precisely at
the points where G± is vertically harmonic.

(i) Appealing to Proposition 3.1(ii), exterior differentiation of (5.4) gives

da±2 =
(
∆ log ‖H±‖ − 2K ∓KN

)
dM.

Differentiating the relation ω±34 = ω±34(e1)ω1 + ω±34(e2)ω2 and using (2.2) and the fact that
ω12 = ?d log λ, we obtain

KN = ∓
(
e1(log λ)ω±34(e2)− e2(log λ)ω±34(e1) + e1(ω±34(e2))− e2(ω±34(e1))

)
.

By differentiating (3.20) with respect to z, taking the real part, using the above and that
∆ log λ = −K yields

4
λ2 Reh±z = ∆ log ‖H±‖ − 2K ∓KN

and the proof follows.
(ii) Let H = H3±e±3 +H4±e±4 be the mean curvature vector field. Then,

H± = 1
2(H ± iJ⊥H) = 1

2(H3± ∓ iH4±)(e±3 ± ie±4 ). (5.6)

By differentiating (5.6) with respect to ∂ in the normal connection, we obtain from (2.13)
that

∇⊥∂̄ φ
± = λ2

4
(
∂(H3± ∓ iH4±)∓ iω±34(∂)(H3± ∓ iH4±)

)
(e±3 ± ie±4 ).

From (3.19) and the above it follows that

h± = λ

2

(
H3±

1 ∓H4±
2

‖H±‖
− iH

3±
2 ±H4±

1
‖H±‖

)
, (5.7)

where Ha±
j , j = 1, 2, a = 3, 4, is given by (2.15). Then, (5.5) implies that

a±1 = u±ω1 + v±ω2, where u± = H3±
1 ∓H4±

2
‖H±‖

, v± = −H
3±
2 ±H4±

1
‖H±‖

. (5.8)
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From (5.7) and (5.8) it follows that

a±1 ∧ a±2 =
(
(u±)2 + (v±)2

)
dM = 4

λ2 |h
±|2dM,

where dM = ω1 ∧ ω2. On the other hand, from Proposition 2.6 we obtain

‖τ v(G±)‖2 = g1(τ v(G±), τ v(G±)) = 4‖H±‖2
(
(u±)2 + (v±)2

)
and the proof follows.

Theorem 5.7. Let f : M → Q4
c be a simply-connected surface. If M̄±(f) = S1, then:

(i) The Gauss lift G± of f is vertically harmonic at any point of M±
0 (f).

(ii) The surface f is ± isotropically isothermic on M r M±
0 (f), and the differential

equation
∆ log ‖H±‖ − 2K ∓KN = ‖τ

v(G±)‖2

4‖H±‖2 (5.9)

is valid on M .
(iii) The forms a±1 , a±2 of Lemma 5.6 satisfy on M rM±

0 (f) the relations

da±1 = 0, (5.10)
da±2 = a±1 ∧ a±2 . (5.11)

Conversely, if M±
0 (f) = ∅ and (ii) or (iii) holds, then M̄±(f) = S1.

Proof: Let f̃ ∈ M±(f). Proposition 4.2 yields that M±
0 is isolated. From Proposition

5.2(i) it follows that there exists a harmonic function θ± ∈ C∞(M ; (0, 2π)) satisfying (4.4)
on M . Lemma 4.3(iii) implies that h± can be smoothly extended on M and A± ≡ 0.
Then, from (4.7) it follows that

Im h±z ≡ 0 and |h±|2 ≡ Reh±z on M. (5.12)

(i) Since h± extends smoothly on M , it follows that (3.18) holds on M . From Lemma
2.3(i) and (3.18) we obtain that

∇⊥∂̄ φ
±(p) = 0 for any p ∈M±

0 (f).

Appealing to Proposition 2.7, this is equivalent with the vertical harmonicity of G± at p.
(ii) By virtue of Lemma 3.10, the first equation in (5.12) implies that f is ± isotrop-

ically isothermic on M rM±
0 . Using Lemma 5.6, the second equation in (5.12) yields

that (5.9) holds on M rM±
0 . From Proposition 5.5(ii) it follows that the left-hand side

of (5.9) can be smoothly extended on M . Therefore, (5.9) is valid on M .
(iii) From (5.4) it follows that (5.10) is equivalent with the fact that f is ± isotropically

isothermic on M rM±
0 , and Lemma 5.6 implies that (5.11) is equivalent with the second

equation in (5.12) on M rM±
0 .
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Conversely, assume that M±
0 (f) = ∅. As in the proofs of (ii) and (iii), we obtain that

(ii) and (iii) are both equivalent to (5.12). Then, from (4.7) it follows that A± ≡ 0 on
M and Lemma 4.3(ii) implies that the space of the distinct modulo 2π solutions of (4.4)
on M is parametrized by S1. From Proposition 5.2(ii) and Theorem 5.3(i) it follows that
M̄±(f) = S1.

Corollary 5.8. Let f : M → Q4
c be a simply-connected surface. If M̄±(f) = S1 and

τ v(G±) 6= 0 everywhere, then the conformal metric

dŝ2 = ‖τ
v(G±)‖2

4‖H±‖2 ds2 (5.13)

has Gaussian curvature K̂ = −1.

Proof: By virtue of Theorem 5.7(i), it follows that M±
0 (f) = ∅. Consider the forms

a±1 , a
±
2 of Lemma 5.6. Proposition 2.6 and (5.8) yield that

dŝ2 = a±1 ⊗ a±1 + a±2 ⊗ a±2 on M.

Let a±12 be the connection form associated to the coframe {a±1 , a±2 }. Then,

da±2 = a±1 ∧ a±12 and da±12 = −K̂a±1 ∧ a±2 .

Since M̄±(f) = S1, the first equation of the above and (5.11) yield that a±12 = a±2 . Using
the second equation of the above, this implies that da±2 = −K̂a±1 ∧ a±2 , and the proof
follows by virtue of (5.11).

Remark 5.9.
(i) Theorems 5.3(i) and 5.7(i) imply that a surface f admits at most one Bonnet mate

in M±(f), if there exists a point p ∈ M±
0 (f) at which the Gauss lift G± of f is not

vertically harmonic. By virtue of Theorem 5.3(iv), it follows that f admits at most
three Bonnet mates if there exists an umbilic point at which H is not parallel. This
extends a result of Roussos-Hernandez [60, Thm. 1B].

(ii) For umbilic-free surfaces in R3, integrability conditions similar to (5.10) and (5.11)
are due to Chern [18] and the analogue of equation (5.9) is due to Colares and
Kenmotsu [19].

5.3 The Effect of Isotropic Isothermicity
The structure of the moduli spaceM(f) is seriously affected by the property of isotropic
isothermicity for f , as the following theorem shows.

Theorem 5.10. Let f : M → Q4
c be a non-compact simply-connected oriented surface.
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(i) If f is half totally non isotropically isothermic, then f admits at least one Bonnet
mate and it is not flexible. In particular, if f is strongly totally non isotropically
isothermic, then it admits exactly three Bonnet mates.

(ii) If f is proper Bonnet, then it is isotropically isothermic on an open, dense and
connected subset of M . In particular, if f is flexible, then it is strongly isotropically
isothermic away from its isolated pseudo-umbilic points.

Proof: (i) Assume that f is totally non ± isotropically isothermic. From the examples
2 and 3 of Section 3.2.1, it follows that f is non-minimal. Let z be a global complex
coordinate on M . Lemma 3.10 implies that Im h±z 6= 0 everywhere on M and therefore,
from (4.7) it follows that A± 6= 0 everywhere on M . Then, Lemma 4.3(i) yields that
the solution e±iθ

± = −A±/A± of equation (4.6), determines the unique solution θ± ∈
C∞(M ; (0, 2π)) of (4.4) on M . Proposition 5.2(ii) implies that there exists a unique
Bonnet mate of f in M±(f). From Theorem 5.3(iv) it follows that f is not flexible. In
particular, if f is strongly totally non isotropically isothermic, then it admits a unique
Bonnet mate in each one of M−(f) and M+(f). Then, from Theorem 5.3(iii) it follows
that there exists exactly one Bonnet mate of f in M∗(f), and the proof follows.

(ii) Assume that f is non-minimal and appealing to Theorem 5.3(iii), let M̄±(f) = S1.
Proposition 4.2 implies that M±

0 (f) is isolated. From Theorem 5.7(ii) it follows that f is
± isotropically isothermic on M rM±

0 (f), which is an open, dense and connected subset
of M . In particular, if f is flexible, then Theorem 5.3(i) and (iv) implies that M̄−(f) = S1

and M̄+(f) = S1. Then, from Theorem 5.7(ii) it follows that f is strongly isotropically
isothermic on M rM0(f). If f is minimal, the proof follows from the examples 2 and 3
of Section 3.2.1.

The following proposition shows that a Bonnet, strongly isotropically isothermic sur-
face is proper Bonnet.

Proposition 5.11. Let f : M → Q4
c be a non-compact, simply-connected oriented sur-

face. If f is ± isotropically isothermic and non-minimal, then either M̄±(f) = {f}, or
M̄±(f) = S1. In particular, if f is Bonnet and strongly isotropically isothermic then
either M(f) = S1, or M(f) = S1 × S1.

Proof: Assume that there exists f̃ ∈ M±(f). Proposition 4.2 implies that there exists
θ± ∈ C∞(M ; (0, 2π)), such that the distortion differential of the pair (f, f̃) is given by (4.2)
on M . Let z be a global complex coordinate on M . From Proposition 4.5 it follows that
θ± is harmonic and satisfies (4.4) on M . Then, Lemma 4.3(iii-ii) implies that the space of
the distinct modulo 2π solutions of (4.4) is parametrized by S1. From Proposition 5.2(ii)
it follows that M̄±(f) = S1. In particular, if f is non-minimal, Bonnet and strongly
isotropically isothermic, the proof follows from Theorem 5.3(iv). If f is Bonnet and
minimal, the proof follows from [21].

Example 5.12. Isothermic surfaces in R4 that admit exactly three Bonnet mates.
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By virtue of example 5 of Section 3.2.1, there exist isothermic surfaces in R4 that are
strongly totally non isotropically isothermic. Then, Theorem 5.10(ii) implies that every
simply-connected such surface admits exactly three Bonnet mates.

5.4 Bonnet Surfaces in Q3
c ⊂ Q4

c

The following theorem shows that there exist Bonnet surfaces lying fully in Q4
c , arising as

Bonnet mates of surfaces lying in totally geodesic hypersurfaces of Q4
c .

Theorem 5.13. Let f : M → Q4
c be a simply-connected oriented surface, which is the

composition of a non-minimal Bonnet surface F : M → Q3
c, with a totally geodesic inclu-

sion. Then, any Bonnet mate of F in Q3
c, determines two Bonnet mates f−, f+ of f in

Q4
c. The surface f± lies in some totally umbilical Q3

c̃ ⊂ Q4
c , c̃ ≥ c, if and only if F has

constant mean curvature. Moreover, either f admits exactly three Bonnet mates, or it is
a flexible proper Bonnet surface.

For the proof of the above theorem we need the following lemma.

Lemma 5.14. Let f : M → Q4
c be an oriented surface which is the composition of a

non-minimal Bonnet surface F : M → Q3
c with a totally geodesic inclusion j : Q3

c → Q4
c.

Then, for every Bonnet mate F̃ of F in Q3
c we have that f̃ = j ◦ F̃ ∈M∗(f).

Proof: Let F̃ : M → Q3
c be a Bonnet mate of F . Denote by ξ and ξ̃ the unit normal

vector fields of F and F̃ in Q3
c , respectively, and by h their common mean curvature

function. Then, the mean curvature vector fields of f and f̃ , are given by H = hj∗ξ and
H̃ = hj∗ξ̃, respectively. The parallel vector bundle isometry T : NfM → Nf̃M given by
Tj∗ξ = j∗ξ̃, T (J⊥j∗ξ) = J̃⊥j∗ξ̃ preserves the mean curvature vector fields, where J⊥ and
J̃⊥ are the complex structures of the normal bundles of f and f̃ , respectively. Therefore,
f̃ ∈ M(f). Since the image of the second fundamental form of f, f̃ is contained in the
line bundle spanned by j∗ξ, j∗ξ̃, respectively, from Lemma 4.1(i) and the definition of T it
follows that the zeros of the distortion differential of the pair (f, f̃) satisfy Z− = Z+ = Z.
Hence, f̃ ∈M∗(f).

Proof of Theorem 5.13: Let f = j ◦ F , where j : Q3
c → Q4

c is a totally geodesic inclusion
and denote by ξ the unit normal of F in Q3

c . Since M is simply-connected and F is a
Bonnet surface, the theorem of Lawson-Tribuzy [54] implies that M is non-compact. Let
F̃ : M → Q3

c be a Bonnet mate of F . From Lemma 5.14 it follows that j ◦ F̃ ∈M∗(f) and
Theorem 5.3(ii) implies that there exist Bonnet mates f− and f+ of f with f± ∈M±(f).
In particular, since any Bonnet mate of f lying in some totally geodesic Q3

c ⊂ Q4
c belongs

to M∗(f), the surface f± does not lie in any totally geodesic hypersurface of Q4
c .

Assume that f± lies in some totally umbilical Q3
c̃ ⊂ Q4

c , c̃ > c. Proposition 4.2 implies
that M1 is isolated. Let (U, z) be a complex chart on M with U ∩M1 = ∅. Then, there
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exist ϕ, ϕ± ∈ C∞(U) such that the Hopf differentials Φ and Φf± of f and f±, respectively,
are given by

Φ = λ2

2 e
iϕ
√
‖H‖2 −Ke3dz

2, Φf± = λ2

2 e
iϕ±
√
‖H‖2 −Kẽ±3 dz2, on U, (5.14)

where λ is the conformal factor, e3 = j∗ξ, and ẽ±3 ∈ Nf±M is a smooth unit vector
field, parallel to the line segment that the ellipse of curvature of f± degenerates. Let
T± : NfM → Nf±M be an orientation and mean curvature vector field-preserving, parallel
vector bundle isometry. Appealing to Lemma 4.1(i) and using (5.14), it follows that the
distortion differential Qf,f± of the pair (f, f±) is given by

Qf,f± ≡ Q±f,f± = λ2

4
√
‖H‖2 −K

(
eiϕ(e3 ± ie4)− eiϕ±(ê±3 ± iê±4 )

)
dz2 on U, (5.15)

where e4 = J⊥e3, ê
±
3 = T−1

± ẽ±3 , ê
±
4 = J⊥ê±3 . Proposition 4.2 implies that there exists

θ± ∈ C∞(U ; (0, 2π)) such that Qf,f± is given by (4.2) on U . Substituting Φ± from (5.14)
into (4.2), and using (5.15) we obtain that

ê±3 ± iê±4 = ei(ϕ−ϕ
±∓θ±)(e3 ± ie4) on U.

On the other hand, since Q∓f,f± ≡ 0, from Lemma 4.1(i) and (5.14) it follows that

ê±3 ∓ iê±4 = ei(ϕ−ϕ
±)(e3 ∓ ie4) on U.

From the last two equations we obtain that θ± = ±2(ϕ− ϕ±) mod 2π. Then, the above
implies that

ω̂±34 = 1
2dθ

± + ω34, (5.16)

where ω34 and ω̂±34 are the connection forms associated to the dual frame fields of {e3, e4}
and {ê±3 , ê±4 }, respectively. Since f and f± lie in totally umbilical hypersurfaces and T±
is parallel, it follows that the vector fields e3 and ê±3 are parallel in the normal connection
of f . Therefore, (5.16) yields that θ± is constant on U . Proposition 5.2(i) implies that θ±
satisfies (4.4) on U . From (4.4) it follows that h± ≡ 0 on U . Then, (3.18) and Proposition
2.7 yield that the section H± is anti-holomorphic on U . Since H = he3, where h is the
mean curvature function of F , this implies that h is constant on U . Since U is arbitrary
and M1 is isolated, it follows that the mean curvature function of F is constant on M .

Conversely, if F has constant mean curvature function, then f and its Bonnet mates
have non-vanishing parallel mean curvature vector field. From [14, 69] it follows that f±
lies in some totally umbilical hypersurface of Q4

c .
Moreover, from Theorem 5.3(i) and (iv) it is clear that either f admits exactly three

Bonnet mates, or it is flexible proper Bonnet.
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Remark 5.15. If the surface F in Theorem 5.13 is proper Bonnet with non-constant
mean curvature then f is flexible and both of its Gauss lifts are not vertically harmonic.
Moreover, every surface in M±(f) is flexible and does not lie in any totally umbilical
hypersurface of Q4

c . From Theorem 5.10(ii) it follows that every such surface is strongly
isotropically isothermic away from its isolated umbilic points. Therefore, there exist
strongly isotropically isothermic surfaces in Q4

c with flat normal bundle, that do not lie
in any totally umbilical hypersurface of Q4

c and whose both Gauss lifts are not vertically
harmonic.



Chapter 6

Compact Surfaces

In this chapter, we study compact oriented surfaces f : M → Q4
c . We show that there are

obstructions on the structure of the moduli space M(f), imposed by the behavior of the
Gauss lifts of f to the twistor bundle. Moreover, stronger obstructions are imposed by
additional assumptions involving isotropic isothermicity. Our main results are presented
in the second section and they concern surfaces whose both Gauss lifts are not vertically
harmonic. In the third section we show that the theorem of Lawson-Tribuzy [54] follows
as a consequence of our results, and we give some applications concerning superconformal
surfaces in Q4

c and Lagrangian surfaces in R4.

6.1 Obstructions on the Structure of the Moduli Space
The following theorem shows that the structure of the moduli space M(f) is controlled
by the behavior of the Gauss lifts of f .

Theorem 6.1. Let f : M → Q4
c be a compact oriented surface.

(i) If the Gauss lift G± of f is not vertically harmonic, then there exists at most one
Bonnet mate of f in M±(f). Moreover, if f̃ ∈ M∗(f) then M∗(f) ∪ M±(f) =
M̄∓(f̃).

(ii) If both Gauss lifts of f are not vertically harmonic, then there exists at most one
Bonnet mate of f in M∗(f). In particular, M∗(f) = ∅ if M is homeomorphic to S2.

Proof: We claim that if there exist f1, f2 ∈ N±(f) with f1 ∈ N±(f2), then the Gauss
lift G± of f is vertically harmonic. From Proposition 4.2, it follows that there exists
θ± ∈ C∞(M r M±

0 ; (0, 2π)) such that the distortion differential Q of the pair (f, f1)
satisfies (4.2) on M rM±

0 . Since f2 ∈ N±(f) ∩ N±(f1), Proposition 4.5(i) implies that
θ± extends to a bounded harmonic function on M , which has to be constant by the
maximum principle. From Lemma 4.1(i) and (4.2) it follows that Φ± is holomorphic.
Then, Proposition 2.7 implies that the Gauss lift G± is vertically harmonic and this
proves the claim.
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(i) Arguing indirectly, assume that there exist Bonnet mates f1, f2 ∈M±(f) ⊂ N±(f).
From Lemma 4.4(ii), we have that f1 ∈M±(f2) ⊂ N±(f2). Therefore, the Gauss lift G±
is vertically harmonic, a contradiction.

For the second assertion, assume that there exists f1 ∈ M∓(f̃). If f1 ∈ M∓(f), then
Lemma 4.4(ii) implies that f ∈M∓(f̃), which is a contradiction. Therefore, f1 6∈ M∓(f)
and thus, M̄∓(f̃) ⊂ N±(f), which obviously holds ifM∓(f̃) = ∅. The converse inclusion
is obvious if N±(f) = {f̃}. Assume that there exists f1 ∈ N±(f) r {f̃}. From the claim
proved above, it follows that f1 ∈M∓(f̃) and thus, N±(f) ⊂ M̄∓(f̃).

(ii) Arguing indirectly, assume that there exist Bonnet mates f1, f2 ∈ M∗(f). Since
both G+ and G− are not vertically harmonic, from the above claim we obtain that f1 6∈
N+(f2) ∪N−(f2), which is a contradiction since f1 is a Bonnet mate of f2.

If M is homeomorphic to the sphere, then for any f̃ ∈ M(f) r {f}, the fourth-order
differential 〈Q−, Q+〉 is holomorphic with zero-set Z− ∪ Z+, where Q is the distortion
differential of the pair (f, f̃). From the Riemann-Roch theorem we have that 〈Q−, Q+〉 ≡
0. Hence, either Q− ≡ 0 or Q+ ≡ 0 and consequently M∗(f) = ∅.

Theorem 5.10 shows that for non-compact simply-connected surfaces, the property of
half totally non isotropic isothermicity implies the existence of Bonnet mates, whereas
isotropic isothermicity characterizes proper Bonnet surfaces. The following result implies
that both properties are very obstructive for the existence of Bonnet mates for compact
surfaces.

Theorem 6.2. Let f : M → Q4
c be a compact oriented surface and V an open and dense

subset of M . If one of the following holds, then N±(f) = ∅.
(i) The Gauss lift G± of f is not vertically harmonic and f is ± isotropically isothermic

on V .
(ii) The set V is connected and f is totally non ± isotropically isothermic on V .

Proof: Arguing indirectly, assume that there exists f̃ ∈ N±(f). Proposition 4.2 implies
that M±

0 is isolated and that there exists θ± ∈ C∞(M r M±
0 ; (0, 2π)), such that the

distortion differential Q of the pair (f, f̃) satisfies (4.2) on M rM±
0 .

(i) Since V is dense, it follows that f is ± isotropically isothermic on M rM±
0 . Then,

Proposition 4.5(ii) implies that θ± extends to a bounded harmonic function on M , which
has to be constant by the maximum principle. By virtue of Lemma 4.1(i), from (4.2) it
follows that the differential Φ± is holomorphic. Then, Proposition 2.7 implies that the
Gauss lift G± of f is vertically harmonic, a contradiction.

(ii) From the definition of non ± isotropically isothermic points it follows that M±
0 ⊂

M r V . Therefore, θ± is defined everywhere on V . Let (U, z) be a complex chart with
U ⊂ V . Proposition 4.5 implies that θ± satisfies (4.4) on U . From Lemma 3.10 it follows
that Im h±z 6= 0 everywhere on U . Appealing to Lemma 4.3(i), (4.7) and (4.8) yield that
∆θ± is nowhere vanishing on U . Since V is connected and U is an arbitrary subset of
V , we deduce that either ∆θ± > 0, or ∆θ± < 0 on V . Since V is dense in M rM±

0 ,
it follows by continuity that either ∆θ± ≥ 0, or ∆θ± ≤ 0 on M rM±

0 . As in the proof
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of [44, Thm.(2)], it can be shown that either θ±, or −θ± can be extended to a subharmonic
function on M which attains a maximum and thus, it has to be constant by the maximum
principle for subharmonic functions. As in the proof of part (i), it follows that the Gauss
lift G± of f is vertically harmonic. Then, the first example of Section 3.2.1 implies that
f is ± isotropically isothermic on V , which is a contradiction.

6.2 Surfaces whose both Gauss Lifts are not Verti-
cally Harmonic

The following result is a Lawson-Tribuzy type theorem [54], and implies that compact
surfaces in Q4

c whose both Gauss lifts are not vertically harmonic, do not allow nontrivial
global isometric deformations that preserve the mean curvature.

Theorem 6.3. Let f : M → Q4
c be a compact oriented surface. If both Gauss lifts G+

and G− of f are not vertically harmonic, then f admits at most three Bonnet mates. In
particular, f admits at most one Bonnet mate, if M is homeomorphic to S2.

Proof: Theorem 6.1 implies that f admits at most three Bonnet mates. Assume that
M is homeomorphic to S2. Theorem 6.1 shows that M∗(f) = ∅ and that there exists
at most one Bonnet of f in each one of M+(f) and M−(f). Suppose that there exist
f1 ∈ M+(f) and f2 ∈ M−(f). From Lemma 4.4(i) it follows that f1 ∈ M∗(f2), which
contradicts Theorem 6.1(ii). Therefore, f admits at most one Bonnet mate.

In the particular case of surfaces f : M → R4, the above theorem can be stated in
terms of the Gauss map g = (g+, g−) : M → S2

+ × S2
− of the surface f .

Corollary 6.4. Let f : M → R4 be a compact oriented surface. If both components g+
and g− of the Gauss map of f are not harmonic, then f admits at most three Bonnet
mates. In particular, f admits at most one Bonnet mate, if M is homeomorphic to S2.

Proof: Follows immediately from Theorem 6.3, by virtue of Remark 2.9.

The following theorem extends a recent result due to Jensen, Musso and Nicolodi
[44]. It shows that the conclusion of Theorem 6.3 can be strengthened, under additional
assumptions involving isotropic isothermicity.

Theorem 6.5. Let f : M → Q4
c be a compact oriented surface. If both Gauss lifts G+

and G− of f are not vertically harmonic and f is either isotropically isothermic, or half
totally non isotropically isothermic, on an open dense and connected subset V of M , then
f admits at most one Bonnet mate. In particular, f does not admit any Bonnet mate, if it
is either strongly isotropically isothermic, or strongly totally non isotropically isothermic
on V .
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Proof: Since G± is not vertically harmonic and f is either ± isotropically isothermic,
or totally non ± isotropically isothermic, on an open dense and connected subset V of
M , Theorem 6.2 implies that N±(f) = ∅. On the other hand, since G∓ is not vertically
harmonic, from Theorem 6.1(i) it follows that there exists at most one Bonnet mate of
f in M∓(f). Therefore, f admits at most one Bonnet mate. In particular, if f is either
strongly isotropically isothermic, or strongly totally non isotropically isothermic, on V ,
Theorem 6.2 implies that N−(f) = N+(f) = ∅ and thus, f does not admit any Bonnet
mate.

Remark 6.6. In the proof of Theorem 6.1, compactness is only required for the use of
the maximum principle. This theorem and also Theorem 6.3 and Theorems 6.7, 6.9 and
6.11 of the next section still hold true if M is parabolic. In particular, this includes the
case where M is complete with non-negative Gaussian curvature.

6.3 Applications to Certain Classes of Surfaces
The theorem of Lawson-Tribuzy [54], follows as an application of Theorem 6.1.

Theorem 6.7. Let M be a compact oriented 2-dimensional Riemannian manifold and
h ∈ C∞(M). If h is not constant, then there exist at most two congruence classes of
isometric immersions of M into Q3

c with mean curvature h. In particular, there exists at
most one congruence class if M is homeomorphic to S2.

Proof: Assume that there exists an isometric immersion F : M → Q3
c with mean

curvature function h unit normal vector field ξ. Consider a totally geodesic inclusion
j : Q3

c → Q4
c and set f = j ◦ F . Then, f has non-parallel mean curvature vector field

hj∗ξ and Proposition 2.7 implies that both Gauss lifts of f are not vertically harmonic.
Assume that there exists a Bonnet mate F̃ : M → Q3

c of F and set f̃ = j ◦ F̃ . Lemma
5.14 implies that f̃ ∈M∗(f) and the proof follows from Theorem 6.1(ii).

The result of Jensen, Musso and Nicolodi [44] follows from Theorem 6.5.

Theorem 6.8. Let F : M → Q3
c be a compact oriented surface with not constant mean

curvature. If F is either isothermic, or totally non isothermic, on an open dense and
connected subset V of M , then it does not admit any Bonnet mate.

Proof: Let j : Q3
c → Q4

c be a totally geodesic inclusion and set f = j ◦F . Proposition 3.3
implies that F is (totally non) isothermic on V if and only if f is strongly (totally non)
isotropically isothermic on V . By virtue of Theorem 6.5, our assumption implies that f
does not admit any Bonnet mate. Then, the proof follows from Lemma 5.14.

Theorem 6.9. Let f : M → Q4
c be a compact oriented superconformal surface. Then f

admits at most one Bonnet mate.
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Proof: Assume that f is non-minimal and let f̃ be a Bonnet mate of f . Then either
f̃ ∈ N−(f), or f̃ ∈ N+(f). Since M1 = M−

0 ∩M+
0 , in any case from Proposition 4.2

it follows that M1 is isolated. Then, Lemma 2.3(ii) yields that the normal curvature is
everywhere non-vanishing on M rM1. Assume that ±KN > 0 on M rM1. Therefore,
±KN ≥ 0 on M . Lemma 2.3(ii) implies that Φ± ≡ 0 and thus, f̃ ∈M∓(f).

We claim that G∓ is not vertically harmonic. Arguing indirectly, assume that G∓ is
vertically harmonic. Then, Proposition 2.8 yields that Φ∓ ≡ 0 and Lemma 2.3(ii) implies
that f is totally umbilical. This contradicts the fact that M1 is isolated, and the proof
of the claim follows. Hence, from Theorem 6.1(i) we obtain that M∓(f) = {f̃} and
consequently,M(f) = {f, f̃}. In the case where f is minimal, the result follows from [46]
or [66].

We give an application to Lagrangian surfaces in R4. Let J̃ be a canonical complex
structure on R4 which is compatible with the orientation, i.e., for orthonormal vectors
e1, e2 ∈ R4, the oriented orthonormal basis {e1, e2, J̃e1, J̃e2} is in the orientation of R4.
Denote by Ω(·, ·) = 〈·, J̃ · 〉 the associated Kähler form. A surface f : M → R4 is called
Lagrangian if f ∗Ω = 0. In such a case, from (J̃ ◦ f∗) ◦ ∇ = ∇⊥ ◦ (J̃ ◦ f∗) we have that
Ĵf = J̃ ◦f∗ : TM → NfM is a parallel vector bundle isometry and the second fundamental
form of f satisfies α(X, Y ) = ĴfAĴfXY , X, Y ∈ TM . Thus, the trilinear map Cf on TM
given by

Cf (X, Y, Z) = Ω(α(X, Y ), f∗Z)

is symmetric. Associated to f are its mean curvature form Υf and the cubic differential
Θf , given by

Υf = Ω(H, f∗∂)dz, Θf = Ω(α(∂, ∂), f∗∂)dz3,

in terms of a local complex coordinate z, where Ω and Ĵf have been extended C-linearly.
Since J̃ is compatible with the orientation, Ĵf : TM ⊗ C→ NfM ⊗ C satisfies

ĴfT
(1,0)M = N−f M and ĴfT

(0,1)M = N+
f M.

The Maslov form $f of f , is the 1-form on M defined by $f (X) = (1/π)Ω(f∗X,H).
The Gauss map of a Lagrangian surface is g = (g+, g−) : M → S2

+ × S1
−, i.e., its second

component lies in a great circle of S2
−. Lagrangian surfaces with conformal (respectively,

harmonic) Maslov form provide examples of surfaces in R4 with harmonic g+ (respectively,
g−). Indeed, the following was proved in [12].

Proposition 6.10. Let f : M → (R4, J̃) be a Lagrangian surface. The following are
equivalent:
(i) The Maslov form $f is conformal (respectively, harmonic).
(ii) The differential Θf (respectively, Υf) is holomorphic.
(iii) The component g+ (respectively, g−) is harmonic.
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Using Theorem 6.1, we are able to give a short proof of the following result due to He,
Ma and Wang [38].

Theorem 6.11. Let f : M → (R4, J̃) be a compact, oriented Lagrangian surface with
mean curvature form Υ. If its Maslov form is not conformal, then there exists at most
one nontrivial congruence class of Lagrangian isometric immersions of M into (R4, J̃),
with mean curvature form Υ.

Proof: Suppose that f, f̃ : M → (R4, J̃) are noncongruent Lagrangian surfaces with mean
curvature forms Υ = Υ̃. It follows that T = Ĵf̃ ◦ Ĵ−1

f : NfM → Nf̃M is an orientation
and mean curvature vector field-preserving, parallel vector bundle isometry. Let (U, z) be
a complex chart. From our assumption, we have that Cf (∂, ∂, ∂̄) = Cf̃ (∂, ∂, ∂̄). Hence,

〈φ−f − T−1 ◦ φ−
f̃
, Ĵf ∂̄〉 ≡ 0 on U,

where φ−f and φ−
f̃

are given by (2.11). Since φ−f − T−1 ◦ φ−
f̃
∈ N−f U and Ĵf ∂̄ ∈ N+

f U , it
follows that φ−f − T−1 ◦ φ−

f̃
≡ 0 on U . Therefore, f̃ ∈ M+(f) and the proof follows from

Theorem 6.1(i) and Proposition 6.10.
In [12] it was proved that if f : M → R4 is a compact, oriented Lagrangian surface

with conformal (respectively, harmonic) Maslov form, then genus(M) ≤ 1 (respectively,
genus(M) ≥ 1). The classification of compact oriented Lagrangian surfaces in R4 with
conformal Maslov form, was given in [12]. It turns out that there exist Lagrangian tori in
R4 with non-parallel mean curvature vector field and conformal Maslov form. Lagrangian
surfaces with harmonic Maslov form are Hamiltonian minimal. Examples of Hamiltonian
minimal Lagrangian tori in R4, with non-parallel mean curvature vector field, were con-
structed in [13] and the complete classification was given in [39]. Furthermore, it was
proved in [11] that the only compact, orientable superconformal Lagrangian surface in
R4 is the Whitney sphere. Therefore, there exist compact, oriented non-superconformal
surfaces in R4, whose only one of the components g+, g− of their Gauss map is harmonic.



Chapter 7

Surfaces with a Vertically Harmonic
Gauss Lift

The results of the previous chapter indicate that it is interesting to study surfaces in
Q4
c with a vertically harmonic Gauss lift. It turns out that such surfaces share common

properties both with minimal surfaces in Q4
c and with CMC surfaces in 3-dimensional

space forms.

7.1 A Hopf-type Theorem
In the following proposition, we show that surfaces with a vertically harmonic Gauss lift
possess a holomorphic quadratic differential and they satisfy Ricci-like conditions that
extend the well-known Ricci condition (cf. [53]) for CMC surfaces in 3-dimensional space
forms.
Proposition 7.1. Let f : M → Q4

c be a non-minimal surface with mean curvature vector
field H and vertically harmonic Gauss lift G±. Then:
(i) The quadratic differential Ψ± = 〈Φ±, H∓〉 is holomorphic with zero-set Z(Ψ±) =

M±
0 (f) ∪ {p ∈M : H(p) = 0}.

(ii) The functions ‖H‖ and ‖H±‖ are of absolute value type.
(iii) We have that

∆ log ‖H‖ = ∓KN , (7.1)
∆ log ‖H±‖ = 2K ±KN if Ψ± 6≡ 0. (7.2)

Proof: (i) The holomorphicity of Ψ± follows from Proposition 2.7. The zeros of Ψ± are
precisely the points where 〈Φ±, H〉 = 0, which is equivalent to Φ± = 0 at points where
H 6= 0.

(ii) Let (U, z) be a complex chart. From Proposition 2.7(iv) we have

∇⊥∂̄H = ±iJ⊥∇⊥∂̄H.

55
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This is equivalently written as

(H3 ± iH4)z̄ = ∓iω34(∂̄)(H3 ± iH4),

where H = H3e3 +H4e4, and {e3, e4 = J⊥e3} is a local orthonormal frame field of NfM .
From [27, Lemma 9.1.] it follows that the function H3 ± iH4 is of holomorphic type and
this proves our claim for ‖H‖.

From part (i), the function 〈φ±, H∓〉 is holomorphic, where φ± is given by (2.11).
Moreover,

|〈φ±, H∓〉|2 = λ4

16‖H‖
2‖H±‖2, (7.3)

where λ is the conformal factor. Clearly, the function

t = 4〈φ±, H∓〉
λ2(H3 ± iH4)

can be smoothly extended to the zeros of H as a holomorphic type function. Since
|t| = ‖H±‖, this completes the proof.

(iii) Away from the zeros of H, we consider the local orthonormal frame field {e3 =
H/‖H‖, e4 = J⊥e3} of the normal bundle. Using Proposition 2.7(iv), we find that the
normal connection form is given by

ω34 = ± ∗ d log ‖H‖.

Then (7.1) follows from (2.2) and the above.
We choose a complex chart with coordinate z, away from the zeros of Ψ±. From the

holomorphicity of Ψ± we have that

∆ log |〈φ±, H∓〉|2 = 0.

Equation (7.2) follows from (7.3) and the fact that ∆ log λ = −K.

Proposition 7.2. Let f : M → Q4
c be a compact surface with mean curvature vector field

H and vertically harmonic Gauss lift G±.
(i) If f is non-minimal, then

χN = ±N(‖H‖).

(ii) If f is neither minimal nor superconformal, then

2χ± χN = −N
(
‖H±‖).

Proof: By virtue of Lemma 2.4, the proofs of (i) and (ii) follow immediately from
Proposition 7.1(ii), by integrating (7.1) and (7.2), respectively.
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The following result is a Hopf-type theorem for non-minimal surfaces with a vertically
harmonic Gauss lift.
Theorem 7.3. Let f : M → Q4

c be a non-minimal surface. If the Gauss lift G± of
f is vertically harmonic and M is homeomorphic to S2, then f is superconformal. In
particular, f is totally umbilical if the Euler number of its normal bundle vanishes.
Proof: From the assumption and Proposition 7.1(i) we obtain that Ψ± ≡ 0. Since f is
non-minimal, Proposition 7.1(i-ii) implies that Φ± ≡ 0. From Lemma 2.3(ii) it follows
that f is superconformal with normal curvature ±KN ≥ 0. Therefore, the Euler number
of the normal bundle of f satisfies ±χN ≥ 0, and it vanishes if and only if KN = 0 on M .
If χN = 0, then Lemma 2.3(ii) implies that f is totally umbilical.

Clearly, the theorem of Hopf-Chern [17,42] is an immediate consequence of the above
theorem. This result can be also seen as an extension to the case of non-minimal surfaces,
of the well-known theorem of Calabi [9] that a minimal surface of genus zero in the 4-sphere
is superminimal. For surfaces in R4, an alternative proof was given by Hasegawa [37], with
essential use of the Hyperkähler structure of R4.

7.2 The Associated Family
Dajczer and Gromoll [20] proved that any simply-connected minimal surface admits a
1-parameter associated family of isometric deformations through minimal surfaces. This
family is trivial if and only if the surface is superconformal. Extending their result, we
are able to produce a new 1-parameter family of isometric deformations that preserve the
mean curvature, for any non-minimal surface in Q4

c with a vertically harmonic Gauss lift.
It is worth noticing that the second fundamental form of any surface in this family relates
to the initial one in a more involved way than in [20].
Theorem 7.4. Let f : M → Q4

c be a non-minimal, simply-connected surface. If the Gauss
lift G± of f is vertically harmonic, then:
(i) There exists a one-parameter family of isometric immersions f±θ : M → Q4

c, θ ∈
S1 ' R/2πZ, which have the same mean curvature with f±0 = f .

(ii) If f is superconformal, then f±θ is congruent to f for any θ.
(iii) If there exist θ 6= θ̃ ∈ S1 such that f±θ is congruent to f±

θ̃
, then f is superconformal.

In particular, f±θ ∈ M̄±(f), θ ∈ S1, and M̄±(f) = S1 if f is not superconformal.
Proof: (i) For any θ ∈ R define the symmetric section β±θ ∈ Γ(Hom(TM × TM,NfM))
by

β±θ (X, Y ) = J⊥θ/2
(
α(J∓θ/4X, J∓θ/4Y )− 〈X, Y 〉H

)
+ 〈X, Y 〉H,

where X, Y ∈ TM , J⊥θ = cos θI + sin θJ⊥ and Jθ = cos θI + sin θJ . We argue that β±θ
satisfies the Gauss, Codazzi and Ricci equations. Clearly, we have that

(β+
θ )(2,0) = Φ− + e−iθΦ+, (β−θ )(2,0) = eiθΦ− + Φ+ (7.4)
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and
(β±θ )(1,1) = α(1,1).

In terms of a local complex coordinate z with conformal factor λ, by using (2.11) and (7.4)
it is straightforward to check that β±θ satisfies the Gauss, Codazzi and Ricci equations
(2.12)-(2.14). By the fundamental theorem of submanifolds, for every θ ∈ R there exists
an isometric immersion f±θ : M → Q4

c and an orientation-preserving parallel vector bundle
isometry Tθ : NfM → Nf±

θ
M such that αf±

θ
= Tθ◦β±θ . Clearly, TθH is the mean curvature

vector field of f±θ , for any θ ∈ S1 ' R/2πZ and f±0 = f .
(ii) From Proposition 2.8 it follows that Φ± ≡ 0. Then, (7.4) yields that (β±θ )(2,0) = Φ

for any θ ∈ S1. This implies that each Tθ preserves the Hopf differential and the mean
curvature vector field and consequently, it preserves the second fundamental form as well.
This shows that the family is trivial.

(iii) Without loss of generality, we may assume that θ̃ = 0. The distortion differential
of the pair (f, f±θ ) vanishes identically. Lemma 4.1(i) implies that any orientation and
mean curvature vector field-preserving parallel vector bundle isometry T : NfM → Nf±

θ
M

preserves the Hopf differential, and consequently the second fundamental form as well.
Hence, β±θ = T−1

θ ◦ αfθ = α and (7.4) implies that (1− e∓iθ)Φ± ≡ 0. Since θ 6= 0, the last
relation yields Φ± ≡ 0 and thus, f is superconformal.

In particular, if f is not superconformal, then from (7.4) it follows that the distortion
differential Qθ of the pair (f, f±θ ), θ 6= 0, satisfies Q∓θ ≡ 0 and therefore f±θ ∈ M±(f).
The proof now follows.

The following proposition determines the moduli space of simply-connected surfaces
with parallel mean curvature vector field. The two-parameter family given here, coincides
up to a parameter transformation, with the one given by Eschenburg-Tribuzy [29].

Proposition 7.5. Let f : M → Q4
c be a simply-connected surface with parallel mean

curvature vector field H 6= 0. Then:
(i) There exists a two-parameter family of isometric immersions fθ,ϕ : M → Q4

c, (θ, ϕ) ∈
S1 × S1, which have the same mean curvature with f0,0 = f .

(ii) The family is trivial if and only if f is totally umbilical.
(iii) If f is not totally umbilical, then M(f) = S1 × S1.

Proof: (i) Since both Gauss lifts are vertically harmonic, from Theorem 7.4 we may
consider the two-parameter family fθ,ϕ = (f−θ )+

ϕ , θ, ϕ ∈ S1. Clearly, fθ,ϕ has the same
mean curvature with f .

(ii) From Theorem 7.4, it is clear that fθ,ϕ is congruent to fθ̃,ϕ̃ for (θ, ϕ) 6= (θ̃, ϕ̃) ∈
S1 × S1 if and only if f is superconformal. Since H is parallel, this can only occur if f is
totally umbilical.

(iii) Since f is not superconformal, Theorem 7.4 implies that M̄−(f) = S1 and
M̄+(f) = S1. The proof follows by virtue of Theorem 5.3(iv).
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Remark 7.6. We recall (cf. [14,69]) that any surface with parallel mean curvature vector
field H 6= 0 splits as f = j ◦ f ′, where j : Q3

c′ → Q4
c , c
′ ≥ c, is a totally umbilical inclusion

and f ′ : M → Q3
c′ is a CMC-h′ surface with h′ = ±(‖H‖2 − (c′ − c))1/2. It is known

that there exists locally a bijective correspondence (the so-called Lawson correspondence
[53, Theorem 8]) between CMC surfaces in 3-dimensional space forms. Since fθ,ϕ = ĵ◦ f̂θ,ϕ
and ‖Hfθ,ϕ‖ = ‖H‖, the surfaces f ′ and f̂θ,ϕ are in Lawson correspondence for any θ, ϕ ∈
S1. In particular, fθ,2π−θ is congruent to j ◦ f ′θ, where f ′θ, θ ∈ S1, is the associated family
of f ′ in Q3

c′ as a CMC surface.

Example 7.7. Tight proper Bonnet surfaces in R4 with a vertically harmonic Gauss lift,
that are strongly isotropically isothermic.

We consider the product in R4 of two plane curves γ1, γ2, as in the example 5 of Section
3.2.1 and we adopt the notation used there. Assume that the curvature of the curve γj
is kj(sj) = csj, j = 1, 2, with c 6= 0, and we restrict the product surface f such that
f : M → R4 is simply-connected and umbilic-free. Clearly, f has flat normal bundle and
does not lie in any totally umbilical hypersurface of R4. Moreover, from (3.27) it follows
that f is strongly isotropically isothermic.

Hasegawa [36] proved that the Gauss lift G− of f is vertically harmonic. Since f
is neither minimal, nor superconformal, from Theorem 7.4 it follows that M̄−(f) = S1.
Therefore, f is proper Bonnet.

Moreover, since f is + isotropically isothermic, from Proposition 5.11 it follows that
either M̄+(f) = {f}, or M̄+(f) = S1. We claim that M̄+(f) = {f}. Arguing indirectly,
assume that M̄+(f) = S1. Then, Theorem 5.7 implies that

∆ log ‖H+‖ − 2K = ‖τ
v(G+)‖2

4‖H+‖2 .

On the other hand, since M̄−(f) = S1, Theorem 5.7 yields that

∆ log ‖H−‖ − 2K = 0.

Since KN = 0 everywhere, it follows that ‖H−‖ = ‖H+‖ and the above two relations imply
that the Gauss lift G+ of f is vertically harmonic. Then, the mean curvature vector field
of f is parallel and thus, f lies in some totally umbilical hypersurface of R4. This is a
contradiction and the claim follows. Then, Theorem 5.3(iv) implies that M(f) = S1.

7.3 The Structure of the Moduli Space

7.3.1 Compact Surfaces: The Main Result
Although non-minimal surfaces in Q4

c with a vertically harmonic Gauss lift share common
properties with both minimal surfaces in Q4

c and CMC surfaces in 3-dimensional space
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forms, an essential difference between them is that the associated family of Theorem 7.4
does not necessarily coincide with the whole moduli space M(f). However, for compact
surfaces with a vertically harmonic Gauss lift, we are able to determine the structure of
the moduli space under appropriate geometric or topological assumptions.

Theorem 7.8. Let f : M → Q4
c be a compact oriented surface with vertically harmonic

Gauss lift G±.
(i) If the mean curvature vector field of f is non-parallel, then the moduli space M(f)

is the disjoint union of two sets, each one being either finite, or the circle S1.
(ii) If c = 0 and the Euler numbers χ and χN of the tangent and normal bundles satisfy

χ 6= ∓χN , then M(f) is a finite set.

For the proof of the above theorem, we need a series of auxiliary results, that we
present in the following two subsections.

7.3.2 Non-Simply-Connected Surfaces
Let M be a 2-dimensional oriented Riemannian manifold with nontrivial fundamental
group and f : M → Q4

c a non-minimal surface. Consider the universal cover (M̃, π̃)
of M , equipped with metric and orientation that make the covering map π̃ : M̃ → M
an orientation-preserving local isometry. Then, f̃ = f ◦ π̃ : M̃ → Q4

c is an isometric
immersion. It is clear that the Gauss lift G̃± of f̃ is vertically harmonic if and only if the
Gauss lift G± of f is vertically harmonic.

If (f = f1, f2) is a pair of Bonnet mates, then (f̃1, f̃2) is also a pair of Bonnet mates,
where f̃j = fj ◦ π̃, j = 1, 2. Moreover, f2 ∈ N±(f1), if and only if f̃2 ∈ N±(f̃1).
If G± is vertically harmonic and f2 ∈ M±(f1), then from Theorem 7.4 it follows that
f̃2 is congruent to some f̃±θ in the associated family of f̃1. Therefore M̄±(f) can be
parametrized by the set{

θ ∈ S1 : there exists fθ : M → Q4
c such that f̃±θ = fθ ◦ π̃

}
.

In particular, if H is parallel, then by Proposition 7.5, the moduli space M(f) can be
parametrized by the set{

(θ, ϕ) ∈ S1 × S1 : there exists fθ,ϕ : M → Q4
c such that f̃θ,ϕ = fθ,ϕ ◦ π̃

}
.

The following is essential for the proof of Theorem 7.8. For its proof we adopt tech-
niques used in [24,62,67].

Proposition 7.9. Let f : M → Q4
c be a non-minimal surface with mean curvature vector

field H.
(i) If the Gauss lift G± of f is vertically harmonic, then M̄±(f) is either a finite set, or

the circle S1.
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(ii) If H is parallel, then either M(f) = S1 × S1, or it locally decomposes as M(f) =
V0 ∪ V1, where each Vd, d = 0, 1, is either empty, or a disjoint finite union of d-
dimensional real-analytic varieties.

Proof: (i) We claim that for any σ ∈ D in the group of deck transformations of the
universal cover π̃ : M̃ →M , the surfaces f̃±θ : M̃ → Q4

c in the associated family of f̃ = f ◦π̃
and f̃±θ ◦σ are congruent for any θ ∈ S1. It is sufficient to show the existence of a parallel
vector bundle isometry between the normal bundles of f̃±θ and f̃±θ ◦ σ that preserves the
second fundamental forms. Let Tθ be the parallel vector bundle isometry between the
normal bundles of f̃ and f̃±θ such that

αf̃±
θ

(X, Y ) = Tθ
(
J̃⊥θ/2

(
αf̃ (J̃∓θ/4X, J̃∓θ/4Y )− 〈X, Y 〉Hf̃

)
+ 〈X, Y 〉Hf̃

)
for any X, Y ∈ TM̃ , where J̃⊥θ = cos θĨ+sin θJ̃⊥, J̃θ = cos θĨ+sin θJ̃ and J̃⊥, J̃ stand for
the complex structures of Nf̃M̃ and TM̃ , respectively. Since σ is a deck transformation,
we have that f̃ ◦ σ = f̃ and thus, the normal spaces satisfy Nf̃M̃(p) = Nf̃M̃(σ(p)) at
any p ∈ M̃ . We define the vector bundle isometry Σθ : Nf̃±

θ
M̃ → Nf̃±

θ
◦σM̃ which is given

pointwise by
Σθ|p(ξ) = Tθ|σ(p) ◦ (Tθ|p)−1 (ξ), ξ ∈ Nf̃θ

M̃(p).

The second fundamental forms of f̃±θ and f̃±θ ◦ σ are related at p ∈ M̃ by

αf̃±
θ
◦σ|p(X, Y ) = αf̃±

θ
|σ(p)(σ∗X, σ∗Y )

= Tθ|σ(p)
(
J̃⊥θ/2

(
αf̃ |σ(p)(J̃∓θ/4σ∗X, J̃∓θ/4σ∗Y )− 〈X, Y 〉Hf̃ |σ(p)

)
+〈X, Y 〉Hf̃ |σ(p)

)
= Tθ|σ(p)

(
J̃⊥θ/2

(
αf̃◦σ|p(J̃∓θ/4X, J̃∓θ/4Y )− 〈X, Y 〉Hf̃◦σ|p

)
+〈X, Y 〉Hf̃◦σ|p

)
= Tθ|σ(p)

(
J̃⊥θ/2

(
αf̃ |p(J̃∓θ/4X, J̃∓θ/4Y )− 〈X, Y 〉Hf̃ |p

)
+ 〈X, Y 〉Hf̃ |p

)
= Σθ|p ◦ αf̃±

θ
|p(X, Y )

for any X, Y ∈ TM̃ and thus, Σθ preserves the second fundamental forms. For any section
ξ of Nf̃±

θ
M̃ we have Σθξ = Tθ(η ◦ σ−1) ◦ σ, where ξ = Tθη for a section η of Nf̃M̃ . Using

the fact that for any section δ of Nf̃M̃ and any deck transformation σ we have that
∇⊥X(δ ◦ σ) = ∇⊥σ∗Xδ ◦ σ, we obtain

(∇⊥XΣθ)ξ = ∇⊥X
(
Tθ(η ◦ σ−1) ◦ σ

)
− Tθ

(
∇⊥Xη ◦ σ−1

)
◦ σ

=
(
∇⊥σ∗XTθ(η ◦ σ

−1)
)
◦ σ − Tθ

(
∇⊥Xη ◦ σ−1

)
◦ σ

= Tθ
(
∇⊥σ∗X(η ◦ σ−1)−∇⊥Xη ◦ σ−1

)
◦ σ,
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where, by abuse of notation, ∇⊥ stands for the normal connection of f̃ , f̃±θ and f̃±θ ◦ σ.
Observe that

∇⊥σ∗X(η ◦ σ−1) = ∇⊥Xη ◦ σ−1,

and thus Σθ is parallel and the claim has been proved.
This allows us to define a homomorphism Sθ : D → Isom(Q4

c) for each θ ∈ [0, 2π], such
that

f̃±θ ◦ σ = Sθ(σ) ◦ f̃±θ , σ ∈ D.

Thus, θ ∈ M̄±(f) if and only if Sθ(D) = {I}. Assume that M̄±(f) is infinite and let
{θm} be a sequence in M̄±(f) which converges to some θ0 ∈ [0, 2π]. From Sθm(D) = {I}
for all m ∈ N we obtain that Sθ0(D) = {I}. Let σ ∈ D. By the mean value theorem
applied to each entry (Sθ(σ))jk of the corresponding matrix, we have

d

dθ
(Sθ(σ))jk(θ̊m) = 0 (7.5)

for some θ̊m which lies between θ0 and θm. By continuity it follows that

d

dθ
(Sθ(σ))jk(θ0) = 0.

Consider the sequence {θ̊m} that converges to θ0 and observe that in view of (7.5), a
similar argument gives

d2

dθ2 (Sθ(σ))jk(θ0) = 0.

Repeating the argument yields

dn

dθn
(Sθ(σ))jk(θ0) = 0

for any integer n ≥ 1. From the definition of the associated family, it is clear that f±θ
depends on the parameter θ in a real-analytic way. Since Sθ(σ) is an analytic curve in
Isom(Q4

c), we conclude that Sθ(σ) = I for each σ ∈ D, and thus M̄±(f) = S1.
(ii) We claim that for any σ ∈ D, the surfaces f̃θ,ϕ : M̃ → Q4

c and f̃θ,ϕ ◦ σ in M(f̃)
are congruent for any (θ, ϕ) ∈ S1 × S1. Let Tθ,ϕ be the parallel vector bundle isometry
between the normal bundles of f̃ and f̃θ,ϕ such that

αf̃θ,ϕ(X, Y ) = Tθ,ϕ
(
J̃⊥(θ+ϕ)/2

(
αf̃ (J̃(θ−ϕ)/4X, J̃(θ−ϕ)/4Y )− 〈X, Y 〉Hf̃

)
+ 〈X, Y 〉Hf̃

)
for any X, Y ∈ TM̃ . We define the vector bundle isometry Σθ,ϕ : Nf̃θ,ϕ

M̃ → Nf̃θ,ϕ◦σM̃
which is given pointwise by

Σθ,ϕ|p(ξ) = Tθ,ϕ|σ(p) ◦ (Tθ,ϕ|p)−1 (ξ), ξ ∈ Nf̃θ,ϕ
M̃(p).
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As in the proof of part (i) above, it can be shown that Σθ,ϕ is parallel and preserves the sec-
ond fundamental forms, and the claim follows. This allows us to define a homomorphism
Sθ,ϕ : D → Isom(Q4

c) for each θ, ϕ ∈ [0, 2π], such that

f̃θ,ϕ ◦ σ = Sθ,ϕ(σ) ◦ f̃θ,ϕ, σ ∈ D.

Clearly, (θ, ϕ) ∈ M(f) if and only if Sθ,ϕ(D) = {I}. Since f̃θ,ϕ is real-analytic with
respect to (θ, ϕ), it follows that M(f) is a real-analytic set. According to Lojacewisz’s
structure theorem [51, Theorem 6.3.3.], M(f) locally decomposes as

M(f) = V0 ∪ V1 ∪ V2,

where each Vd, 0 ≤ d ≤ 2, is either empty, or a disjoint finite union of d-dimensional
real-analytic subvarieties. IfM(f) 6= S1×S1, then V2 = ∅ and this completes the proof.

7.3.3 Surfaces in R4

In the sequel, we deal with surfaces in R4 whose one component of the Gauss map is har-
monic. We regard the Grassmannian Gr(2, 4) of oriented 2-planes in R4 as a submanifold
in Λ2R4 via the Plücker embedding. The inner product of two simple 2-vectors in Λ2R4

is given by
〈〈v1 ∧ v2, w1 ∧ w2〉〉 = det(〈vj, wk〉).

Then, Λ2R4 splits orthogonally into the eigenspaces of the Hodge star operator ?, denoted
by Λ2

+R4 and Λ2
−R4, corresponding to the eigenvalues 1 and −1, respectively. An element

a ∧ b of Gr(2, 4), where a, b are orthonormal vectors in R4, decomposes as

a ∧ b = (a ∧ b)+ + (a ∧ b)−, where (a ∧ b)± = 1
2
(
a ∧ b± ?(a ∧ b)

)
.

Therefore, Gr(2, 4) can be identified with the product S2
+× S2

−, where S2
± is the sphere of

radius 1/
√

2 in Λ2
±R4, centered at the origin.

Let f : M → R4 be a non-minimal surface, with mean curvature vector field H and
Gauss map g = (g+, g−) : M → S2

+ × S2
−. In terms of a local complex coordinate z away

from the zeros of H, the components of the Gauss map are given by

g± = − i

λ2f∗∂ ∧ f∗∂̄ ∓
i

‖H‖2H
− ∧H+, (7.6)

where λ is the conformal factor. The differential Ψ± is written as

Ψ± = ψ±dz2, where ψ± = 〈φ±, H∓〉 (7.7)
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and φ± is given by (2.11). The Gauss and Weingarten formulas become respectively,

∇̃∂f∗∂ = (log λ2)zf∗∂ + 2ψ−
‖H‖2H

− + 2ψ+

‖H‖2H
+, (7.8)

∇̃∂f∗∂̄ = λ2

2 (H− +H+), (7.9)

∇̃∂H
± = −‖H‖

2

2 f∗∂ −
2ψ∓
λ2 f∗∂̄ + 2〈∇⊥∂H±, H∓〉

‖H‖2 H±, (7.10)

where ∇̃ is the induced connection on the induced bundle f ∗TR4.

Lemma 7.10. Let f : M → R4 be a non-minimal surface. If the component g± of the
Gauss map of f is harmonic, then its height functions in Λ2

±R4 are eigenfunctions of the
elliptic operator ∆ + 2 (‖H‖2 + ‖H±‖2) , corresponding to the zero eigenvalue.

Proof: Let z be a local complex coordinate away from the isolated zeros of H (see
Proposition 7.1(ii)). By using (7.8)-(7.10), equation (7.6) yields

(g±)z = 4iψ±
λ2‖H‖2f∗∂̄ ∧H

± − if∗∂ ∧H∓. (7.11)

Differentiating (7.11) with respect to z̄, we obtain that the normal component of (g±)zz̄
with respect to S2

± is given by

((g±)zz̄)⊥ = −λ
2

2
(
‖H‖2 + ‖H±‖2

)
g±.

For an arbitrary vector v± ∈ Λ2
±R4 we have

∆〈〈g±, v±〉〉 = 〈〈τ(g±) + 4
λ2 ((g±)zz̄)⊥ , v±〉〉,

where τ(g±) is the tension field of g±. The result follows from the above and the har-
monicity of g±.

Lemma 7.11. Let f : M → R4 be a surface, which is neither minimal nor superconformal.
Assume that g± is harmonic and that there exist surfaces fj ∈ M±(f) with f̃±θj = fj ◦ π̃,
and vectors vj± ∈ Λ2

±R4 r {0}, j = 1, . . . , n, such that the Gauss maps gj = (gj+, gj−) of fj
satisfy

n∑
j=1
〈〈gj±, vj±〉〉 = 0. (7.12)

Then:
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(i) The differential U± = u±dz is holomorphic, where

u± =
n∑
j=1
〈〈fj∗∂ ∧H∓j , v

j
±〉〉 (7.13)

and Hj is the mean curvature vector field of fj.
(ii) If U± ≡ 0, then

n∑
j=1

eiθj〈〈gj±, vj±〉〉 = 0. (7.14)

Proof: From (7.4) and since by definition Ψ±fj = 〈Φ±fj , H
∓
j 〉, we have that

Ψ±fj = e∓iθjΨ±, j = 1, . . . , n.

Let (U, z) be a complex chart. On U r Z(Ψ±), (7.11) yields

(gj±)z = e∓iθj
4iψ±
λ2‖H‖2fj∗∂̄ ∧H

±
j − ifj∗∂ ∧H∓j , j = 1, . . . , n. (7.15)

Differentiating (7.12) with respect to z and using (7.15), we find that

u± = 4ψ±
λ2‖H‖2

n∑
j=1

e∓iθj〈〈fj∗∂̄ ∧H±j , v
j
±〉〉 on U r Z(Ψ±). (7.16)

From Proposition 2.7 it follows that H±j is an anti-holomorphic section. Hence,

∇⊥∂H±j = 0 and (‖H‖2)z = 2〈∇⊥∂H∓j , H±j 〉, j = 1, . . . , n. (7.17)

Differentiating (7.16) with respect to z, and using (7.9), (7.10), (7.17), (7.6) and (7.16),
we obtain that

u±z = u±
(

log ψ±

λ2‖H‖2

)
z

+ 2iψ±
n∑
j=1

e∓iθj〈〈gj±, vj±〉〉 on U r Z(Ψ±). (7.18)

On the other hand, differentiating (7.13) with respect to z, and using (7.8), (7.10), (7.17),
(7.6) and (7.13), we find that

u±z = u±
(
log

(
λ2‖H‖2

))
z
− 2iψ±

n∑
j=1

e∓iθj〈〈gj±, vj±〉〉 on U r Z(Ψ±). (7.19)

(i) From (7.9), (7.10), (7.17) and (7.6), we have that

u±z̄ = λ2‖H‖2

2i

n∑
j=1
〈〈gj±, vj±〉〉 on U (7.20)
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and the claim follows from (7.12).
(ii) Using (7.18) and (7.19), we obtain that

n∑
j=1

e∓iθj〈〈gj±, vj±〉〉 = iu±

4ψ±

(
log ψ±

λ4‖H‖4

)
z

on U r Z(Ψ±) (7.21)

and (7.14) follows from (7.21).

Theorem 7.12. Let f : M → R4 be a non-superconformal isometric immersion of a
compact, oriented 2-dimensional Riemannian manifold, with mean curvature vector field
H and Gauss map g = (g+, g−) : M → S2

+ × S2
−.

(i) If g± is harmonic and χ 6= ∓χN , then M±(f) is a finite set.
(ii) If H is parallel and χ 6= 0, then M(f) is a finite set.

Proof: (i) Suppose that M±(f) is infinite and consider surfaces fj ∈ M±(f) such that
f̃±θj = fj◦π̃, j = 1, . . . , n, with 0 < θ1 < · · · < θn < π or π < θ1 < · · · < θn < 2π. We prove
that the height functions of the Λ2

±R4-component of the Gauss maps of fj are linearly
independent. Suppose to the contrary that (7.12) holds for vectors vj± ∈ Λ2

±R4 r {0},
j = 1, . . . , n.

We claim that U± ≡ 0. Arguing indirectly, assume that U± 6≡ 0. From Lemmas 2.2
and 7.11(i), it follows that its zero-set Z(U±) is isolated. Let z be a complex coordinate
in a connected neighbourhood U ⊂ M \ (Z(Ψ±) ∪ Z(U±)). From (7.18) and (7.19), we
obtain (

log ψ±

(u±)2

)
z

= 0.

Using Proposition 7.1(i) and Lemma 7.11(i), we have(
log ψ±

(u±)2

)
z̄

= 0.

Therefore,
ψ± = c(u±)2 (7.22)

on U , for a non-zero constant c ∈ C. It is easy to see that c is independent of the complex
coordinate and thus, Ψ± = c U± ⊗ U± on M . We argue that Z(Ψ±) = Z(U±) 6= ∅.
Indeed, if Z(Ψ±) = ∅, then the holomorphic differential Ψ± is everywhere nonvanishing
and by the Riemann-Roch theorem we obtain that χ = 0. On the other hand, Proposition
7.1(i) implies that H is everywhere nonvanishing and Proposition 7.2(i) gives χN = 0.
This contradicts our assumption. Let Z(Ψ±) = {p1, . . . , pk} and consider a complex chart
(U, z) around pr, r = 1, . . . , k, with z(pr) = 0. Since U± = u±dz is holomorphic, there
exists a positive integer mr such that around pr we have

u± = zmr û, where û is holomorphic with û(0) 6= 0. (7.23)
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Hence, from (7.22) we have that |ψ±|2 = |z|4mr |c|2|û|4, or equivalently, bearing in mind
(7.3) and (7.7)

‖H‖2‖H±‖2 = |z|4mru1, where u1 is smooth and positive.

Proposition 7.1(ii) implies that there exist non-negative integers lr, sr such that

‖H‖2 = |z|2lru2 and ‖H±‖2 = |z|2sru3,

where u2, u3 are smooth and positive. It is clear that sr = 2mr− lr. From (7.21), by using
(7.22), (7.23) and the above, on U r Z(Ψ±) we have that

n∑
j=1

e∓iθj〈〈gj±, vj±〉〉 = iλ2‖H‖2

2c(u±)2

(
u±

λ2‖H‖2

)
z

= iλ2zlr z̄lru2

2cz2mr û2

(
zmr û

λ2zlr z̄lru2

)
z

,

or equivalently
n∑
j=1

e∓iθj〈〈gj±, vj±〉〉 = 1
zmr+1

iλ2u2

2cû2

(
(mr − lr)

û

λ2u2
+ z

( û

λ2u2

)
z

)
.

If mr 6= lr for some r = 1, . . . , k, then the right-hand side of the above has a pole at z = 0,
whereas the left-hand side is bounded. Hence, mr = lr = sr for any r = 1, . . . , k. Then,
Proposition 7.2 implies that χ = ∓χN , which is a contradiction. Therefore, U± ≡ 0 and
this proves the claim.

According to Lemma 7.11(ii), (7.14) is valid, or equivalently
n∑
j=1

cos θj〈〈gj±, vj±〉〉 = 0 and
n∑
j=1

sin θj〈〈gj±, vj±〉〉 = 0.

Eliminating 〈〈gn±, vn±〉〉, we obtain

n−1∑
j=1
〈〈gj±, wj±〉〉 = 0,

where wj± = sin(θn − θj)vj± 6= 0, j = 1, . . . , n − 1. By induction, we finally find that
〈〈gn±, w±〉〉 = 0 for some non-zero vector w± ∈ Λ2

±R4. Therefore, gn± takes values in a
great circle of S2

± and thus, its Jacobian Jgn± vanishes. On the other hand, we know that
(cf. [41, Proposition 4.5.])

K = Jgn+ + Jgn− and KN = Jgn+ − Jgn− .

Hence, we conclude that K = ∓KN , which contradicts our topological assumption. There-
fore, we have proved that the height functions of the Λ2

±R4-component of the Gauss maps
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of fj are linearly independent. This contradicts Lemma 7.10, since the eigenspaces of an
elliptic operator are finite dimensional. Hence, M±(f) is a finite set.

(ii) Assume thatM(f) is infinite. Then there exists a sequence fk ∈M(f) such that
f̃θk,ϕk = fk ◦ π̃, for which (θl, ϕl) 6= (θm, ϕm) for l 6= m. Without loss of generality, we
may assume that either 0 < θl < θm < π, or π < θl < θm < 2π, for l,m ∈ N with
l < m. We prove that the height functions of the Λ2

−R4-component of the Gauss maps of
fj, j = 1, . . . , n, are linearly independent. Suppose to the contrary that (7.12) holds for
vectors vj− ∈ Λ2

−R4 r {0}, j = 1, . . . , n. From the construction of the associated family
in Proposition 7.5 it follows that Ψ−fj = eiθjΨ−. Consequently, the relations (7.15)-(7.21)
are valid and thus, the conclusion of Lemma 7.11 also holds. Taking into account that
KN = 0, we can prove as in the proof of part (i) that our topological assumption implies
U− ≡ 0. The remaining of the proof is the same with the one of part (i).

7.3.4 Proof of the Main Result
We are now ready to give the proof of our result for compact surfaces.
Proof of Theorem 7.8: (i) From Proposition 7.9(i) we know that M̄±(f) is either finite,
or the circle S1. We show that the same holds true for the set M∗(f) ∪M∓(f).

Suppose that M∗(f) ∪M∓(f) is infinite. Since G∓ is not vertically harmonic, from
Theorem 6.1(i) it follows that there exists at most one Bonnet mate inM∓(f) and thus,
M∗(f) is infinite. For f̃ ∈M∗(f), Theorem 6.1(i) implies thatM∗(f)∪M∓(f) = M̄±(f̃)
and the proof follows from Proposition 7.9(i) applied to the surface f̃ .

(ii) By virtue of Theorem 6.9, we assume that f is non-superconformal. The case
where H is parallel has been proved in Theorem 7.12(ii). Assume that H is non-parallel
and suppose to the contrary that M(f) is infinite. From Theorem 7.12(i) it follows that
M±(f) is finite. Since g∓ is not harmonic, Theorem 6.1(i) implies that there exists at
most one Bonnet mate inM∓(f) and therefore,M∗(f) is infinite. Theorem 6.1(i) yields
that M∗(f) ∪M∓(f) = M̄±(f̃) for any f̃ ∈ M∗(f), which contradicts Theorem 7.12(i)
for f̃ .



Chapter 8

Locally Proper Bonnet Surfaces

An oriented surface f : M → Q4
c is called locally proper Bonnet, if every point of M

has a simply-connected neighbourhood U such that f |U is proper Bonnet. The following
proposition shows that there do not exist compact simply-connected surfaces in Q4

c that
are globally proper Bonnet.

Proposition 8.1. Let f : M → Q4
c be an oriented surface. If M is homeomorphic to S2,

then f admits at most one Bonnet mate.

Proof: If both Gauss lifts of f are not vertically harmonic, then Theorem 6.3 implies
that f admits at most one Bonnet mate. Assume that f has a vertically harmonic Gauss
lift. We claim that f is superconformal. Indeed, if f is non-minimal then Theorem 7.3
yields that it is superconformal. If f is minimal, the claim follows by a well-known result
of Calabi [9]. Then, Theorem 6.9 implies that f admits at most one Bonnet mate.

Remark 8.2. From the above proposition it follows that Theorem 5.1 holds for any
simply-connected surface. Moreover, for our results in Chapter 5 concerning proper Bon-
net surfaces, the non-compactness assumption is not restrictive at all.

In order to state the following proposition, we recall that if f : M → Q4
c is a non-

minimal, simply-connected proper Bonnet surface, then Theorem 5.3(iv) implies that
M(f) is a smooth manifold.

Proposition 8.3. Let f : M → Q4
c be a locally proper Bonnet surface. Then:

(i) Either f is minimal, or int{p ∈M : H(p) = 0} = ∅.
(ii) If f is non-minimal, then for every p ∈ M there exists a submanifold Ln(p), 1 ≤

n ≤ 2, of the torus S1 × S1, S1 ' R/2πZ, with the property that Ln(p) is also a
submanifold of M(f |U) for every sufficiently small simply-connected neighbourhood
U of p. In particular, for every point of M , a submanifold of the torus with this
property is either S1

− = S1 × {0}, or S1
+ = {0} × S1.

69
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Proof: (i) Arguing indirectly, assume that f is locally proper Bonnet, non-minimal and
int{p ∈ M : H(p) = 0} 6= ∅. Let p̄ be a boundary point of {p ∈ M : H(p) = 0}.
Then, there exists a simply-connected complex chart (U, z) around p̄ such that f |U is
proper Bonnet and non-minimal. By virtue of Theorem 5.3(iii), we may assume that
M̄±(f |U) = S1. Let f̃ ∈ M±(f |U). From Proposition 4.2 it follows that M±

0 (f |U) is
isolated. Since M±

0 (f |U) = M±
0 (f) ∩ U , we may assume that p̄ and U are such that

M±
0 (f |U) = ∅. Then, the Codazzi equation and (3.18) imply that

h± ≡ 0 on U ∩ int{p ∈M : H(p) = 0}. (8.1)

Appealing to Proposition 5.2(i), there exists a harmonic function θ± ∈ C∞(U ; (0, 2π))
satisfying (4.4) on U , such that the distortion differential of the pair (f |U , f̃) is given by
(4.2) on U . From (8.1) and (4.4) it follows that the harmonic function θ± is constant on
U ∩ int{p ∈ M : H(p) = 0} and thus, constant on U . Then, (3.18) and Proposition 2.7
imply that the Gauss lift G± of f is vertically harmonic on U . From Proposition 7.1(ii)
it follows that ‖H‖ is an absolute value type function on U . Since ‖H‖ vanishes on an
open subset of U , this implies that H ≡ 0 on U . This is a contradiction, since f |U is
non-minimal.

(ii) Assume that f is non-minimal and let p ∈ M . There exists a simply-connected
complex chart (V, z) around p such that f |V is proper Bonnet. From part (i) it follows that
f |V is non-minimal and Theorem 5.3(iii) implies that either M̄−(f |V ) = S1, or M̄+(f |V ) =
S1. Assume that M̄±(f |V ) = S1. By virtue of Remark 5.4, we parametrize M̄±(f |V ) such
that (5.2) is valid at p and we write M̄±

p (f |V ) = S1. For every sufficiently small simply-
connected neighbourhood U of p we have that U ⊂ V and therefore, M̄±

p (f |U) = S1.
Appealing to Theorem 5.3(iv), it is clear that S1

± is a submanifold of M(f |U).
Let f : M → Q4

c be a non-minimal locally proper Bonnet surface. By virtue of Proposi-
tion 8.3(ii) we give the following definition; the surface f is called uniformly locally proper
Bonnet if there exists a submanifold Ln, 1 ≤ n ≤ 2, of the torus S1 × S1, S1 ' R/2πZ,
with the property that for every p ∈ M , Ln is also a submanifold of M(f |U) for every
sufficiently small simply-connected neighbourhood U of p. In this case, Ln is called a
deformation manifold for f . Moreover, f is called locally flexible proper Bonnet if the
torus S1 × S1 is a deformation manifold for f .

Lemma 8.4. A surface f : M → Q4
c is uniformly locally proper Bonnet with deformation

manifold S1
± if and only if every point of M has a simply-connected neighbourhood U such

that M̄±(f |U) = S1. Moreover, if S1
± is a deformation manifold for f , then the set M±

0 (f)
is isolated.

Proof: Assume that S1
± is a deformation manifold for f . Then, every point of M has

a simply-connected neighbourhood U such that S1
± is a submanifold of M(f |U). From

Theorem 5.3(iv) it follows that M̄±(f |U) = S1. The converse follows in a similar manner
with the proof of Proposition 8.3(ii).
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Suppose now that that S1
± is a deformation manifold for f and arguing indirectly,

assume that M±
0 (f) has an accumulation point p. Then, there exists a neighbourhood U

of p such that M̄±(f |U) = S1. Proposition 4.2 implies that M±
0 (f |U) is isolated. This is

a contradiction, since M±
0 (f |U) = M±

0 (f) ∩ U .

From Theorem 7.4 and the above lemma, it follows that surfaces in Q4
c that are

neither minimal, nor superconformal and whose Gauss lift G± is vertically harmonic, are
uniformly locally proper Bonnet with deformation manifold S1

±. The following theorem
shows that the converse is also true for compact surfaces.

Theorem 8.5. Let f : M → Q4
c be a non-minimal compact oriented surface. Then, f is

uniformly locally proper Bonnet with deformation manifold S1
± if and only if the Gauss

lift G± of f is vertically harmonic and non-conformal.

Proof: Assume that S1
± is a deformation manifold for f . Lemma 8.4 implies that M±

0 (f)
is isolated. From Lemma 2.3(ii) and Proposition 2.5 it follows that the Gauss lift G± of
f is non-conformal. By virtue of Lemma 8.4 and Theorem 5.7, it follows that equation
(5.9) is valid at every point of M . By integrating (5.9) on M yields

∫
M

∆ log ‖H±‖ −
∫
M

(2K ±KN) =
∫
M

‖τ v(G±)‖2

4‖H±‖2 . (8.2)

Moreover, Lemma 8.4 and Proposition 5.5(ii) imply that ‖H±‖ is an absolute value func-
tion on M . Therefore, from Lemma 2.4 it follows that∫

M
∆ log ‖H±‖ = −2πN(‖H±‖).

On the other hand, Theorem 3.5 and Propositions 3.4 and 5.5(i) yield that∫
M

(2K ±KN) = −2πN(‖H±‖).

From the above two relations it follows that the left hand side of (8.2) vanishes and thus
‖τ v(G±)‖ ≡ 0 on M . Therefore, the Gauss lift G± of f is vertically harmonic.

Conversely, assume that the Gauss lift G± of f is vertically harmonic and non-
conformal. By virtue of Lemma 2.3(ii), Proposition 2.5 implies that f is non-minimal
and M 6= M±

0 (f). From Proposition 7.1(ii) it follows that M±
0 (f) is isolated. Then, The-

orem 7.4 implies that every point in M has a simply-connected neighbourhood U such
that M̄±(f |U) = S1. The proof now follows from Lemma 8.4.

Theorem 8.6. Let f : M → Q4
c be a non-minimal, compact oriented surface. Then, f is

uniformly locally proper Bonnet if and only if it has a vertically harmonic, non-conformal
Gauss lift.
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Proof: By virtue of Lemma 8.3, either S1
−, or S1

+, is a deformation manifold for f . The
proof follows immediately from Theorem 8.5.

Theorem 8.7. There do not exist compact oriented superconformal surfaces in Q4
c that

are locally proper Bonnet.

Proof: For superminimal surfaces, the proof follows from [46, 67]. Let f : M → Q4
c be

a non-minimal, compact superconformal surface. Arguing indirectly, assume that f is
locally proper Bonnet.

We claim that the normal curvature of f does not change sign. By virtue of Lemma
8.3(ii) and Theorem 5.3(iii), every point of M has a neighbourhood U such that either
M̄−(f |U) = S1, or M̄+(f |U) = S1. Then, Proposition 4.2 implies that either M−

0 (f |U),
or M+

0 (f |U) is isolated. Since M±
0 (f |U) = M±

0 (f) ∩ U and M1(f) = M−
0 (f) ∩M+

0 (f), we
deduce that M1(f) is isolated. From Lemma 2.3(ii) it follows that the normal curvature
of f vanishes at isolated points only, and this proves the claim.

Assume that ±KN ≥ 0. Lemma 2.3(ii) implies that Φ± ≡ 0. Therefore,M±(f |U) = ∅
for every U ⊂M . Since f is locally proper Bonnet, from Theorem 5.3(iii) and Lemma 8.4
it follows that f is uniformly locally proper Bonnet with deformation manifold S1

∓. Then,
Theorem 8.5 implies that the Gauss lift G∓ is vertically harmonic and non-conformal.
On the other hand, since Φ± ≡ 0, from Proposition 2.7 it follows that G± is vertically
harmonic. Since both Gauss lifts of f are vertically harmonic, the mean curvature vector
field of f is parallel in the normal connection. Therefore, KN ≡ 0 on M . Proposition 2.5
then implies that G∓ is conformal, which is a contradiction.

Corollary 8.8. There do not exist uniformly locally proper Bonnet surfaces in Q4
c of

genus zero.

Proof: Arguing indirectly, assume that M is homeomorphic to S2 and let f : M → Q4
c

be a uniformly locally proper Bonnet surface. By virtue of Lemma 8.3(ii), assume that
S1
± is a deformation manifold for f . Theorem 8.5 implies that the Gauss lift G± of f is

vertically harmonic. Then, from Theorem 7.3 it follows that f is superconformal. This
contradicts Theorem 8.7.

In Chapter 5, we have shown the existence of flexible proper Bonnet surfaces in Q4
c

that do not lie in any totally umbilical hypersurface of Q4
c (see Remark 5.15). The

following theorem shows that for compact surfaces, local flexibility characterizes surfaces
with parallel mean curvature vector field. Therefore, from [14,69] it follows that a compact
locally flexible proper Bonnet surface lies in some totally umbilical hypersurface of the
ambient space.

Theorem 8.9. A compact oriented surface f : M → Q4
c is locally flexible proper Bonnet

if and only if it has non-vanishing parallel mean curvature vector field and genus(M) > 0.
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Proof: Assume that f is locally flexible proper Bonnet. Then, f is non-minimal and
both of S1

− and S1
+ are deformation manifolds for f . Theorem 8.5 implies that both Gauss

lifts of f are vertically harmonic. Therefore, f has non-vanishing parallel mean curvature
vector field. Moreover, Corollary 8.8 yields that genus(M) > 0.

Conversely, assume that f has non-vanishing parallel mean curvature vector field and
genus(M) > 0. Since M is not homeomorphic to S2, it follows that f is not totally
umbilical. Then, Lemma 2.3(i) yields that the Hopf differential Φ of f does not vanish
identically on M . On the other hand, the Codazzi equation implies that Φ is holomor-
phic. Therefore, from Lemmas 2.2 and 2.3(i) it follows that the umbilic points of f are
isolated. Then, Proposition 7.5(iii) implies that every point of M has a simply-connected
neighbourhood U such that M(f |U) = S1 × S1. Therefore, f is locally flexible proper
Bonnet.

An immediate consequence of Theorems 5.13 and 8.9 is the following result due to
Umehara [65].

Theorem 8.10. Let F : M → Q3
c be a compact oriented surface with genus(M) > 0. If

F is locally proper Bonnet, then it has constant mean curvature.

Proof: Let j : Q3
c → Q4

c be a totally geodesic inclusion and set f = j ◦F . From Theorem
5.13 it follows that f is locally flexible. Theorem 8.9 implies that f has parallel mean
curvature vector field and therefore, the mean curvature of F is constant.
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Abstract

We study the Bonnet problem for surfaces in 4-dimensional space forms Q4
c . Two isometric

surfaces are said to have the same mean curvature if there exists a parallel vector bundle
isometry between their normal bundles that preserves the mean curvature vector fields.
Noncongruent surfaces with the same mean curvature are called Bonnet mates. A surface
in Q4

c is called a Bonnet, or a proper Bonnet surface, if it admits either at least one, or
infinitely many Bonnet mates, respectively.

We introduce the notions of isotropically isothermic and strongly isotropically isother-
mic surfaces in Q4

c as a generalization of the notion of isothermic surfaces in Q3
c and we

show that isotropic isothermicity is a conformally invariant property.
We show that if a non-compact simply connected surface f : M → Q4

c is not proper
Bonnet, then it admits either at most one Bonnet mate, or exactly three. If such a surface
is proper Bonnet, then the moduli space M(f) of congruence classes of all isometric
immersions of M into Q4

c that have the same mean curvature with f , is diffeomorphic
to a manifold. Proper Bonnet surfaces are distinguished in two categories: the tight
surfaces whose moduli space is 1-dimensional with at most two connected components
diffeomorphic to S1 ' R/2πZ, and the flexible ones whose moduli space is diffeomorphic
to the torus S1 × S1. We prove that isotropic isothermicity characterizes proper Bonnet
surfaces and in particular, strong isotropic isothermicity characterizes the flexible surfaces.
Moreover, we show that a half totally non isotropically isothermic surface is always a
Bonnet surface which in particular, admits exactly three Bonnet mates if it is furthermore
strongly totally non isotropically isothermic. We also prove that a Bonnet surface lying in
a totally geodesic hypersurface of Q4

c with non-constant mean curvature, admits at least
two Bonnet mates that do not lie in any totally umbilical hypersurface of Q4

c .
We prove that if both Gauss lifts of a compact surface to the twistor bundle are not

vertically harmonic, then the surface admits at most three Bonnet mates. In particular, we
show that such a surface admits at most one Bonnet mate, under additional assumptions
involving isotropic isothermicity.

We show that non-minimal surfaces with a vertically harmonic Gauss lift possess a
holomorphic quadratic differential, yielding thus a Hopf-type theorem. We prove that
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such surfaces allow locally a 1-parameter family of isometric deformations with the same
mean curvature. This family is trivial only if the surface is superconformal. For such
compact surfaces with non-parallel mean curvature, we prove that the moduli space is
the disjoint union of two sets, each one being either finite, or a circle. In particular, for
surfaces in R4 we prove that the moduli space is a finite set, under a condition on the
Euler numbers of the tangent and normal bundles.

We study locally proper Bonnet surfaces in Q4
c . A surface f : M → Q4

c is called locally
proper Bonnet if every point of M has a simply-connected neighbourhood, restricted
to which f is proper Bonnet. We prove that if a locally proper Bonnet surface is non-
minimal, then around a point p ∈M , any continuous isometric deformation that preserves
the mean curvature is described by a submanifold Ln(p), 1 ≤ n ≤ 2, of the torus S1 × S1.
We focus on surfaces for which there exists a submanifold Ln, 1 ≤ n ≤ 2, of the torus that
gives rise to such a local deformation around every point of M . We call these surfaces
uniformly locally proper Bonnet. We prove that a compact surface in Q4

c is uniformly
locally proper Bonnet if and only if it has a vertically harmonic Gauss lift, without being
superconformal. We also show that there do not exist compact superconformal surfaces in
Q4
c that are locally proper Bonnet. Finally, we prove that compact surfaces with parallel

mean curvature vector field in Q4
c that are not totally umbilical, are characterized as the

only locally flexible compact surfaces in Q4
c .



Περίληψη

Μελετάμε το πρόβλημα Bonnet για επιφάνειες σε τετραδιάστατους χώρους μορφής Q4
c . Δύο

ισομετρικές επιφάνειες λέγεται ότι έχουν την ίδια μέση καμπυλότητα, εάν υπάρχει μια παράλ-

ληλη ισομετρία διανυσματικών δεσμών μεταξύ των καθέτων δεσμών τους, η οποία διατηρεί

τα διανυσματικά πεδία μέσης καμπυλότητας. Μη γεωμετρικά ισότιμες επιφάνειες με την ίδια

μέση καμπυλότητα καλούνται Bonnet mates. Μια επιφάνεια στον Q4
c καλείται επιφάνεια Bon-

net, ή γνήσια επιφάνεια Bonnet, εάν δέχεται τουλάχιστον μία, ή άπειρες το πλήθος Bonnet
mates, αντίστοιχα.
Εισάγουμε τις έννοιες των ισοτροπικά ισοθερμικών και ισχυρά ισοτροπικά ισοθερμικών

επιφανειών στον Q4
c , ως γενίκευση της έννοιας των ισοθερμικών επιφανειών στον Q3

c και

αποδεικνύουμε ότι η ισοτροπική ισοθερμικότητα είναι μια σύμμορφα αναλλοίωτη ιδιότητα.

Αποδεικνύουμε ότι εάν μια μη-συμπαγής, απλά συνεκτική επιφάνεια f : M → Q4
c δεν

είναι γνήσια επιφάνεια Bonnet, τότε δέχεται είτε το πολύ μία, είτε ακριβώς τρεις Bonnet
mates. Εάν μια τέτοια επιφάνεια είναι γνήσια επιφάνεια Bonnet, τότε ο moduli space των
κλάσεων γεωμετρικής ισοτιμίας όλων των ισομετρικών εμβαπτίσεων του M στον Q4

c που

έχουν την ίδια μέση καμπυλότητα με την f , είναι διαφορομορφικός με ένα πολύπτυγμα. Οι
γνήσιες επιφάνειες Bonnet χωρίζονται σε δύο κατηγορίες: τις tight επιφάνειες που ο moduli
space είναι μονοδιάστατος με το πολύ δύο συνεκτικές συνιστώσες διαφορομορφικές με τον
κύκλο S1 ' R/2πZ, και τις flexible επιφάνειες που ο moduli space είναι διαφορομορφικός
με τον τόρο S1 × S1

. Αποδεικνύουμε ότι η ισοτροπική ισοθερμικότητα χαρακτηρίζει τις

γνήσιες επιφάνειες Bonnet και ειδικότερα, η ισχυρή ισοτροπική ισοθερμικότητα, χαρακτηρίζει
τις flexible επιφάνειες. Επιπλέον, δείχνουμε ότι μια ολικά μη ημι-ισοτροπικά ισοθερμική
επιφάνεια είναι πάντα μια επιφάνεια Bonnet η οποία ειδικότερα, δέχεται ακριβώς τρεις Bonnet
mates αν είναι επιπροσθέτως ισχυρά ολικά μη ισοτροπικά ισοθερμική. Επίσης, αποδεικνύουμε
ότι μια επιφάνεια Bonnet που κείται σε ολικά γεωδαισιακή υπερεπιφάνεια του Q4

c με μη-

σταθερή μέση καμπυλότητα, δέχεται τουλάχιστον δύο Bonnet mates οι οποίες δεν κείνται
σε καμία ολικά ομφαλική υπερεπιφάνεια του Q4

c .

Αποδεικνύουμε ότι αν και τα δύο Gauss lifts μιας συμπαγούς επιφάνειας στην twistor
bundle δεν είναι vertically harmonic, τότε η επιφάνεια δέχεται το πολύ τρεις Bonnet ma-
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tes. Ειδικότερα, δείχνουμε ότι μια τέτοια επιφάνεια δέχεται το πολύ μία Bonnet mate, υπό
πρόσθετες υποθέσεις που αφορούν την ισοτροπική ισοθερμικότητα.

Δείχνουμε ότι οι μη-ελαχιστικές επιφάνειες με ένα vertically harmonic Gauss lift δέχον-
ται ένα ολόμορφο τετραγωνικό διαφορικό, κι έτσι προκύπτει ένα θεώρημα τύπου Hopf. Α-
ποδεικνύουμε ότι τέτοιες επιφάνειες δέχονται τοπικά μια μονοπαραμετρική οικογένεια ισο-

μετρικών παραμορφώσεων που διατηρούν τη μέση καμπυλότητα. Η οικογένεια αυτή είναι

τετριμμένη μόνο εάν η επιφάνεια είναι superconformal. Για τέτοιες συμπαγείς επιφάνειες με
μη-παράλληλο διανυσματικό πεδίο μέσης καμπυλότητας, αποδεικνύουμε ότι ο moduli space
είναι η ξένη ένωση δύο συνόλων, το καθένα από τα οποία είναι είτε πεπερασμένο είτε ο

κύκλος. Ειδικότερα, για επιφάνειες στον R4
αποδεικνύουμε ότι ο moduli space είναι ένα

πεπερασμένο σύνολο, υπό μία συνθήκη για τους αριθμούς Euler της εφαπτόμενης και της
κάθετης δέσμης.

Μελετούμε επίσης επιφάνειες που είναι τοπικά γνήσια Bonnet. Μια επιφάνεια f : M →
Q4
c λέγεται τοπικά γνήσια Bonnet εάν κάθε σημείο τουM έχει μια περιοχή, περιορισμένη στην
οποία η f είναι γνήσια Bonnet. Δείχνουμε ότι αν μια τοπικά γνήσια επιφάνεια Bonnet είναι
μη-ελαχιστική, τότε γύρω από κάθε σημείο p ∈M , κάθε συνεχής ισομετρική παραμόρφωση
που διατηρεί τη μέση καμπυλότητα περιγράφεται από ένα υποπολύπτυγμα Ln(p), 1 ≤ n ≤ 2,
του τόρου S1 × S1

. Επικεντρωνόμαστε στις επιφάνειες για τις οποίες υπάρχει ένα υπο-

πολύπτυγμα Ln, 1 ≤ n ≤ 2 του τόρου τέτοιο ώστε να περιγράφει μια τέτοια ισομετρική
παραμόρφωση γύρω από κάθε σημείο του M . Καλούμε αυτές τις επιφάνειες ομοιόμορφα το-
πικά γνήσια Bonnet. Αποδεικνύουμε ότι μια συμπαγής επιφάνεια στον Q4

c είναι ομοιόμορφα

τοπικά γνήσια Bonnet αν και μόνο αν έχει ένα vertically harmonic Gauss lift, χωρίς να είναι
superconformal. Επίσης, δείχνουμε ότι δεν υπάρχουν συμπαγείς superconformal επιφάνειες
στον Q4

c που είναι τοπικά γνήσια Bonnet. Τελικώς, αποδεικνύουμε ότι οι συμπαγείς επι-
φάνειες με παράλληλο διανυσματικό πεδίο μέσης καμπυλότητας στον Q4

c , οι οποίες δεν είναι

ολικά ομφαλικές, χαρακτηρίζονται ως οι μόνες συμπαγείς τοπικά flexible επιφάνειες στον
Q4
c .
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Math. 40 (1955), 26–46.

[16] , On the minimal immersions of the two-sphere in a space of constant curvature, Problems in
analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J.,
1969), Princeton Univ. Press, Princeton, N.J., 1970, pp. 27–40.

[17] , On surfaces of constant mean curvature in a three-dimensional space of constant curvature,
Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin,
1983, pp. 104–108.

[18] , Deformation of surfaces preserving principal curvatures, Differential geometry and complex
analysis, Springer, Berlin, 1985, pp. 155–163.

[19] A.G. Colares and K. Kenmotsu, Isometric deformations of surfaces in R3 preserving the mean cur-
vature function, Pacific J. Math. 136 (1989), no. 1, 71–80.

[20] M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Differ-
ential Geom. 22 (1985), no. 1, 13–28.

[21] , Euclidean hypersurfaces with isometric Gauss maps, Math. Z. 191 (1986), no. 2, 201–205.

[22] M. Dajczer and R. Tojeiro, All superconformal surfaces in R4 in terms of minimal surfaces, Math.
Z. 261 (2009), no. 4, 869–890.

[23] , Submanifold Theory: beyond an introduction, Universitext, Springer. To be published in
2019.

[24] M. Dajczer and Th. Vlachos, Isometric deformations of isotropic surfaces, Arch. Math. (Basel) 106
(2016), no. 2, 189–200.

[25] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv.
82 (2007), no. 1, 87–131.

[26] J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 4, 589–640 (1986).

[27] J.H. Eschenburg, I.V. Guadalupe, and R. Tribuzy, The fundamental equations of minimal surfaces
in CP2, Math. Ann. 270 (1985), no. 4, 571–598.

[28] J.H. Eschenburg and R. Tribuzy, Branch Points of Conformal Mappings of Surfaces, Math. Ann.
279 (1988), no. 4, 621–633.

[29] , Constant mean curvature surfaces in 4-space forms, Rend. Sem. Mat. Univ. Padova 79
(1988), 185–202.

[30] D. Fetcu, Surfaces with parallel mean curvature vector in complex space forms, J. Differential Geom.
91 (2012), no. 2, 215–232.

[31] D. Fetcu and H. Rosenberg, Surfaces with parallel mean curvature in S3 ×R and H3 ×R, Michigan
Math. J. 61 (2012), no. 4, 715–729.

[32] T. Friedrich, On surfaces in four-spaces, Ann. Global Anal. Geom. 2 (1984), no. 3, 257–287.

[33] J.A. Gálvez, A. Mart́ınez, and P. Mira, The Bonnet problem for surfaces in homogeneous 3-manifolds,
Comm. Anal. Geom. 16 (2008), no. 5, 907–935.



Bibliography 81

[34] W.C. Graustein, Applicability with preservation of both curvatures, Bull. Amer. Math. Soc. 30 (1924),
19–23.

[35] I.V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106
(1983), no. 1, 95–103.

[36] K. Hasegawa, On surfaces whose twistor lifts are harmonic sections, J. Geom. Phys. 57 (2007), no. 7,
1549–1566.

[37] , Surfaces in four-dimensional hyperKähler manifolds whose twistor lifts are harmonic sec-
tions, Proc. Amer. Math. Soc. 139 (2011), no. 1, 309–317.

[38] H. He, H. Ma, and E. Wang, Lagrangian Bonnet Problems in Complex Space Forms, Acta Math.
Sin. (Engl. Ser.), posted on 2019, DOI 10.1007/s10114-019-8102-5, (to appear in print).
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