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CHAPTER 1

Introduction

A basic problem in surface theory is to understand the role and the importance of the mean
curvature. Bonnet [8] raised the problem to what extent a surface in a complete simply-
connected 3-dimensional space form Q? of curvature c, is determined (up to congruence)
by the metric and the mean curvature. Generically, a surface in Q? is uniquely determined
by these data. The exceptions are the Bonnet surfaces that include the constant mean
curvature (CMC) surfaces.

There has been a lot of interest in the following natural problem: given an isometric
immersion f: M — Q2 of a 2-dimensional Riemannian manifold M, how many noncon-
gruent isometric immersions of M into Q2 can exist with the same mean curvature with
f? Any noncongruent to f such surface is called a Bonnet mate of f. This problem has
been studied locally or globally by Bonnet [8], Cartan [10], Lawson [53], Tribuzy [64],
Chern [18], Roussos-Hernandez [60] and Kenmotsu [47] among others. It turns out that if
f: M — @Q? is a non-compact, simply connected surface then it admits either at most one
Bonnet mate, or infinitely many. In the latter case the surface f is called proper Bonnet.
Bonnet [8] showed that a proper Bonnet surface is isothermic away from its umbilics.
Moreover, Graustein [34] proved that a Bonnet isothermic surface is proper Bonnet. Re-
cently, it has been shown in [43] that a non-compact simply-connected surface which is
totally non isothermic, admits a unique Bonnet mate. Lawson and Tribuzy [54] proved
that a compact oriented 2-dimensional Riemannian manifold admits at most two noncon-
gruent isometric immersions in Q3, with the same non-constant mean curvature. Their
result was strengthened recently in [44], under additional assumptions on the isothermicity
of the immersion. On the other hand, Lawson [53] proved that if M is simply-connected
and f is a CMC surface in Q2, then the space of isometric immersions with the same mean
curvature is the circle S, unless f is totally-umbilical. The case of non-simply-connected
CMC surfaces has been studied in [2,6,62].

Surfaces of constant mean curvature have been extensively studied. Hopf [42] showed
the existence of a holomorphic quadratic differential on every CMC surface in R3, and
he proved that a CMC surface of genus zero is a round sphere. His result was extended
to nonflat 3-dimensional space forms by Chern [17]. Abresch and Rosenberg [1] proved
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that every CMC surface in the Riemannian products S? x R and H? x R possesses a
holomorphic quadratic differential, and they extended Hopf’s theorem for such surfaces of
genus zero. Their work and an extension of Bonnet’s fundamental theorem (cf. [25]), led
to the study of the Bonnet problem for surfaces in these spaces (cf. [33]). In codimension
greater than one, a generalization of CMC surfaces are the surfaces whose mean curvature
vector field is parallel in the normal connection. Existence of holomorphic quadratic
differentials, classification results and Hopf-type theorems have been proved for parallel
mean curvature surfaces in several ambient spaces, especially in codimension two (cf.
3,14, 30, 31, 40, 55,63, 69]). In particular, in [48,49] has been proved the existence of
parallel mean curvature surfaces in CH? that admit non-trivial isometric deformations
preserving the length of the mean curvature vector field.

As a step towards deciphering the role of the mean curvature in codimension two
and inspired by Bonnet’s question for surfaces in Q?, we are interested in the following
problem: given an isometric immersion f: M — Q% of a 2-dimensional Riemannian
manifold M, how many noncongruent isometric immersions of M into Q} can exist with
the same mean curvature with ¢ Two isometric immersions f, f: M — Q! are said to
have the same mean curvature if there exists a parallel vector bundle isometry between
their normal bundles that preserves the mean curvature vector fields. A large part of the
results of this dissertation is included in [59].

In Chapter 2, we fix the notation and give some preliminaries concerning surfaces
in 4-dimensional space forms. For any surface f: M — Q2 we introduce two quadratic
differentials with values in the complexified normal bundle of f and we study their relation
with the Gauss lifts of f to the twistor bundle of Q2. It is worth noticing that the Gauss
lifts will play an important role in the study of the Bonnet problem for surfaces in Q.

In Chapter 3, we introduce two differential 1-forms associated to a surface in Q2
called the mixed connection forms. For compact surfaces, we prove an index theorem
and we provide some applications. We introduce the notion of isotropically isothermic
and strongly isotropically isothermic surfaces in 4-dimensional space forms, by requiring
the co-closeness either of the one, or both of the mixed connection forms, respectively. A
surface is called half totally non isotropically isothermic, if one of the mixed connection
forms is nowhere co-closed. It turns out that isotropic isothermicity is a conformally in-
variant property with a similar effect on the Bonnet problem for surfaces in 4-dimensional
space forms, with that of isothermicity on the classical Bonnet problem. The class of
isotropically isothermic surfaces in Q! includes all isothermic surfaces lying in totally um-
bilical hypersurfaces of Q2 all minimal surfaces in Q?, as well as the higher-codimensional
analogues in Q! of CMC surfaces in 3-dimensional space forms, apart from the totally
umbilical ones. These results indicate that isotropic isothermicity is the natural gener-
alization of the notion of isothermicity for surfaces in Q?, to surfaces in Q! with not
necessarily flat normal bundle. However, it is definitely worth mentioning that the class
of isotropically isothermic surfaces in Q? does not seems to contain isothermic surfaces
in the sense of Palmer [57] in great abundance; simple examples show that there exist



isothermic surfaces in R* which are strongly totally non isotropically isothermic, i.e., both
mixed connection forms are nowhere co-closed.

In Chapter 4, we set up the framework for the study of the Bonnet problem for non-
minimal surfaces in 4-dimensional space forms. We point out that the case of minimal
surfaces has been studied in [21,67]. For a surface f: M — Q* we denote by M(f) the
moduli space of congruence classes of all isometric immersions of M into Q! that have
the same mean curvature with f. Any nontrivial such class is called a Bonnet mate of f.
The surface f is called either a Bonnet, or a proper Bonnet surface, if it admits either at
least one, or infinitely many Bonnet mates, respectively.

In Chapter 5, we study the Bonnet problem for non-compact simply-connected surfaces
in Q. We first determine the possible structure of the moduli space of such a surface.

Theorem. Let f: M — Q2 be a non-compact simply-connected, oriented surface.

(i) If f is not proper Bonnet, then it admits either at most one Bonnet mate, or exactly
three.

(i) If f is proper Bonnet, then the moduli space M(f) is a space diffeomorphic to a
manifold. Moreover, f is characterized according to the structure of M(f) as follows:

Tight: The moduli space is 1-dimensional with at most two connected components
diffeomorphic to S* ~ R/2nZ.

Flexible: The moduli space is diffeomorphic to the torus St x S*.

In the sequel, we investigate the effect of isotropic isothermicity on the structure of
the moduli space and we obtain the following result.

Theorem. Let f: M — Q% be a non-compact simply-connected oriented surface.

(i) If f is half totally non isotropically isothermic, then f admits at least one Bonnet
mate and it is not flexible. In particular, if f is strongly totally non isotropically
isothermic, then it admits exactly three Bonnet mates.

(i) If f is proper Bonnet, then it is isotropically isothermic on an open, dense and
connected subset of M. In particular, if f is flexible, then it is strongly isotropically
isothermic away from its isolated pseudo-umbilic points.

As an application of the first part of the above result, we provide examples of isothermic
surfaces in R* that admit exactly three Bonnet mates. We also prove that a Bonnet surface
lying in a totally geodesic hypersurface of Q! with non-constant mean curvature, always
admits at least two Bonnet mates that do not lie in any totally umbilical hypersurface
of Q1. In particular, such a surface either admits exactly three Bonnet mates, or it is
flexible proper Bonnet.

In Chapter 6, we study the Bonnet problem for compact surfaces in Q. For such a
surface f: M — Q2. we show that the structure of the moduli space is controlled by the
behavior of the Gauss lifts G, : M — Z, and G_: M — Z_ of f to the twistor bundle
of Q. Here, Z, and Z_ stand for the two connected components of the twistor bundle
Z of Q4.
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Theorem. Let f: M — Q2 be a compact oriented surface. If both Gauss lifts G and G_
of f are not vertically harmonic, then f admits at most three Bonnet mates. In particular,
f admits at most one Bonnet mate, if M is homeomorphic to S?.

This result implies that compact surfaces in Q} whose both Gauss lifts are not ver-
tically harmonic, do not allow nontrivial global isometric deformations that preserve the
mean curvature. Moreover, in contrast to the results of the previous chapter, we show
that additional assumptions involving isotropic isothermicity of a compact surface, turns
out to impose strong obstructions for the existence of Bonnet mates.

Theorem. Let f: M — Q2 be a compact oriented surface. If both Gauss lifts G and G_
of f are not vertically harmonic and f is either isotropically isothermic, or half totally
non isotropically isothermic, on an open dense and connected subset V' of M, then f
admits at most one Bonnet mate. In particular, f does not admit any Bonnet mate, if it
is either strongly isotropically isothermic, or strongly totally non isotropically isothermic

onV.

In the last part of this chapter we provide some applications of our results, including
a short proof of the theorem of Lawson-Tribuzy [54].

In Chapter 7, we study surfaces in Q! with a vertically harmonic Gauss lift. Such
surfaces have holomorphic mean curvature vector field and they constitute a broader class
than parallel mean curvature surfaces. This class contains also non-minimal surfaces
with nonflat normal bundle. Extensively studied surfaces with a vertically harmonic
Gauss lift are the Lagrangian surfaces in R* with conformal or harmonic Maslov form (cf.
[12,13,39]). Non-minimal superconformal surfaces in the aforementioned class generalize
totally umbilical surfaces. We prove that surfaces in Q? with a vertically harmonic Gauss
lift that are neither minimal, nor superconformal, satisfy Ricci-like conditions that extend
the Ricci condition for CMC surfaces in 3-dimensional space forms (cf. [53]). We show that
non-minimal surfaces in Q! with a vertically harmonic Gauss lift possess a holomorphic
quadratic differential that vanishes identically on superconformal surfaces, yielding thus
the following Hopf-type theorem.

Theorem. Let f: M — Q! be a non-minimal surface. If the Gauss lift G1 of f is ver-
tically harmonic and M is homeomorphic to S%, then f is superconformal. In particular,
[ is totally umbilical if the Euler number of its normal bundle vanishes.

We also prove that a non-minimal simply-connected surface in Q! with a vertically
harmonic Gauss lift allows a 1-parameter associated family of isometric deformations with
the same mean curvature. This family is trivial only if the surface is superconformal.

Theorem. Let f: M — Q! be a non-minimal, simply-connected surface. If the Gauss

lift G+ of f is vertically harmonic, then:

(i) There exists a one-parameter family of isometric immersions fi: M — Q% 6§ €
St ~ R/2nZ, which have the same mean curvature with i = f.



(ii) 1If f is superconfotmal, then fi is congruent to f for any 0.
(idi) If there exist 0 # 0 € S* such that fi is congruent to feit, then f is superconformal.

For compact surfaces with a vertically harmonic Gauss lift, we determine the possible
structure of the moduli space, under appropriate geometric or topological assumptions.

Theorem. Let f: M — Q2 be a compact oriented surface with vertically harmonic Gauss

lift G.

(i) If the mean curvature vector field of f is non-parallel, then the moduli space M(f)
is the disjoint union of two sets, each one being either finite, or the circle S.

(i) If c =0 and the Euler numbers x and xn of the tangent and normal bundles satisfy
X # Fxn, then M(f) is a finite set.

In Chapter 8, we study locally proper Bonnet surfaces in Q1. A surface f: M — Q? is
called locally proper Bonnet if every point of M has a simply-connected neighbourhood,
restricted to which f is proper Bonnet. We first show that if M is homeomorphic to
the sphere S?, then f cannot be globally proper Bonnet. We prove that if a locally
proper Bonnet surface is non-minimal, then around a point p € M, any continuous
isometric deformation that preserves the mean curvature is described by a submanifold
L"(p),1 < n < 2, of the torus S* x S'. We focus on surfaces for which there exists a
submanifold L",1 < n < 2, of the torus that gives rise to such a local deformation around
every point of M. We call these surfaces uniformly locally proper Bonnet. In particular,
such a surface is called locally flexible, if this submanifold is the torus itself. We show that
the compact surfaces in Q%, which have a vertically harmonic Gauss lift without being
superconformal, are characterized as the only uniformly locally proper Bonnet compact
surfaces in Q!. More precisely, we obtain the following result.

Theorem. Let f: M — Q! be a non-minimal, compact oriented surface. Then, f is
uniformly locally proper Bonnet if and only if it has a vertically harmonic, non-conformal
Gauss lift.

We also show that there do not exist compact superconformal surfaces in Q! that
are locally proper Bonnet. Finally, we prove that compact surfaces with parallel mean
curvature vector field in Q? that are not totally umbilical, are characterized as the only
locally flexible compact surfaces in Q2.
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CHAPTER 2

Surfaces in 4-Dimensional Space
Forms

The aim of this chapter is to set up the notation and to present some aspects of the theory
of surfaces in 4-dimensional space forms, which turns out to be special. A consequence of
the equality between the dimension and the codimension of a surface in a 4-dimensional
space form Q?, is that the twistor theory of Q? can be used in order to handle the
complexity of the normal bundle of the surface, arising by the non-triviality of the Ricci
equation. Most of the material presented in this chapter was already known, except from
two quadratic differentials associated to a surface in Q? and their relation with the Gauss
lifts of the surface to the twistor bundle.

2.1 Preliminaries

Throughout the manuscript, M is a connected, oriented 2-dimensional Riemannian man-
ifold. A surface f: M — QI n = 3,4, is an isometric immersion into the complete
simply-connected n-dimensional space form of curvature c.

Let f: M — Q! be a surface. Denote by N;M the normal bundle of f and by V*, R+
the normal connection and its curvature tensor, respectively. Let a: T'M x T'M — Ny M
be the second fundamental form of f. The shape operator A¢ of f with respect to{ € NyM
is the symmetric endomorphism of T'M defined by (A:X,Y) = (a(X,Y),€), where (-, )
stands for the Riemannian metric of Q. The Gauss, Codazzi and Ricci equations for f
are respectively

(K - C)<(X /\Y)Z> W> = <Oé(X, W),Oé(lf, Z)) - <a(X7 Z>7O‘<Yv W)>7
(Vxa)(Y, Z) = (Vya)(X, 2),
RHX,Y)E = a(X, AY) — a(A:X,Y),

where K is the Gaussian curvature, X, Y, Z W € TM, (X ANY)Z = (Y, Z2)X — (X, Z)Y
and f S NfM



8 2. Surfaces in 4-Dimensional Space Forms

The orientations of M and Q? induce an orientation on the normal bundle. The normal
curvature Ky of f is given by

Ky = (R (e1, e2)eq, €3), (2.1)

where {e1,e2} and {es, e4} are positively oriented orthonormal frame fields of TM and
N M, respectively. Notice that if 7 is an orientation-reversing isometry of QZ, then f and
7 o f have opposite normal curvatures. The surface f is said to have flat normal bundle,
if Ky =0 on M. This is equivalent to the existence for every p € M of an orthonormal
basis of T,M that diagonalizes simultaneously all shape operators of f at p. The Gauss
and the normal curvatures satisfy the equations

dwlg = —le A wWa, dw34 = —KNw1 AN Wa, (22)

where {w,} is the dual frame field of {e;},1 < j <4, and the connection forms wy;, 1 <
k,l < 4, are given by
4
dwy, = Z Wem A\ W, 1 < k < 4. (2.3)
m=1
If M is compact, the Euler-Poincaré characteristics x, xy of TM and NyM, are given
respectively, by

27TX:/ K, 27TXN:/ Ky.
M M

For a symmetric section 8 € I'(Hom(T'M x T'M, N¢M)), the ellipse associated to [ at
each p € M is defined by

Es(p) = {B(X, X) - X e T,M, || X]| = 1}.

It is indeed an ellipse on NyM (p) centered at tracef(p)/2, which may degenerate into a
line segment or a point. In particular, the ellipse associated to the second fundamental
form is denoted by &, is centered at the mean curvature vector H and is called the
curvature ellipse of f. It is parametrized by

a(Xg, Xg) = H(p) + cos 20 w + 8in 20 oo, (2.4)

where Xy = cosfe; + sinfey, ;; = ale;,e;), i,j = 1,2, and {e1, e2} is an orthonormal
basis of T, M. The Ricci equation is written equivalently at p as

RL(€1, 62) == (0111 — a22) A a19. (25)

Clearly, the ellipse degenerates into a line segment or a point if and only if the vectors
(11 — @92)/2 and s are linearly dependent, or equivalently, if Rt = 0 at p. At a point
where the curvature ellipse is nondegenerate, K is positive if and only if the orientation
induced on the ellipse as Xy traverses positively the unit tangent circle, coincides with
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the orientation of the normal plane (cf. [35]). Let A;, Ay be the length of the semiaxes of
&s. Using the Gauss equation and (2.5), we have that (cf. [56])

1 1
NA+X = [H = (K =), Mo = —A() = 5| K| (2.6)
at any point, where A(&y) is the area of the curvature ellipse. Therefore,
|H[]* = (K —¢) > |Kn].

A point p € M is called pseudo-umbilic if the curvature ellipse is a circle at p. A pseudo-
umbilic point is called umbilic if the circle degenerates into a point. From (2.6) it follows
that the set My(f) of pseudo-umbilic points of f is characterized as

Mo(f)={peM:|H|*— (K —c)=|Kyl}.
A surface for which any point is pseudo-umbilic is called superconformal. By setting
Mg (f) = {p € Mo(f) : £Ky = 0},
it is clear that My(f) = M (f) U My (f) and the set M;(f) of umbilic points is
M(f) =My (/)N Mg (f) ={pe M: |H| = K —c}.
For later use we need the following elementary fact.

Lemma 2.1. Let f: M — Qf be a surface and v € T'(Hom(TM x TM,N;M)) a sym-
metric section. Assume that the ellipse &, associated to v is not a circle at a point
p € M. Then, there exist positively oriented orthonormal frame fields {e1,es} of T M,
{es,es} of NyM, on a neighbourhood U of p, and k,pu € C(U) with k > |u|, such that
Y11 — Vo2 = 2Ke3 and Y12 = preq, where v = y(e;,€5), j=1,2.

Proof:  Let {é1,¢é>} be a positively oriented orthonormal tangent frame field around p
and set X; = coste; +sintey, t € R. The ellipse &,(q) is parametrized by

v(Xi(q), Xi(q)) = tracey(q)/2 + cos 2tu(q) + sin 2tv(q),

where u = (11 — 22)/2, v = Y12 and 7;; = Y(€;,€;),4,7 = 1,2. Our assumption implies
that at least one of the quantities ||u|| — ||[v]|, (u,v) is non-zero at p. By continuity,
we have that either ||u|| # ||v]|, or (u,v) # 0 everywhere on a neighbourhood U of p.
Let ¢ € U. The function (t) = ||5(X,(q), Xi(¢))||*, where % is the traceless part of ~,
attains its maximum at t,. Clearly, (X, (¢), Xi,(¢)) is a major semiaxis of £,(¢) and
Y( Xt (q), Xig+n/2(q)) is @ minor semiaxis. From 7/(ty) = 0 and " (ty) < 0, we obtain that

sin 4o (|[ul® — [|v])”) (@) = 2cos4to (u,v) (q)
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and
cos 4tg (||u”2 — ||U||2) (q) + 2sindty (u,v) (q) > 0.

Define the function w € C*(U) by

1 2
w = —arctan <2<U’U>2> modulo 27,
[l " = ]l

if ||u|| # ||v|| on U, where the branch of arctan is such that cos 4w (||u||2 - ||v||2) >0. If
(u,v) # 0 on U, then w is defined by

1 > —lvlI?
w = — arccot M modulo 27,
2 (u,v)

where the branch of arccot is such that sin4w (u,v) > 0. We consider the frame field
€1 = COSWeEy + sinwéy, ey = —sinweé; + coswés and the positively oriented orthonormal
frame field {es,e,} in the normal bundle such that Y(ej,e;) = ||¥(e1,e1)|les. By the
choice of w, we have that J(eq, e1) is a major semiaxis of £,. Then, the proof follows with

k= ||’oy(elael>|| and H= </3/(61762)a64>- [ |

2.2 Complexification and Associated Differentials

The complexified tangent bundle TM ® C of a 2-dimensional oriented Riemannian mani-
fold M, decomposes into the eigenspaces of the complex structure .J, denoted by T M
and TV M| corresponding to the eigenvalues i and —i, respectively (cf. [50]).

The second fundamental form of a surface f: M — Q? can be C-bilinearly extended
to T'M ® C with values in the complexified normal bundle N;M ® C and then decomposed
into its (k, [)-components a'®)| k41 = 2, which are tensors of k many 1-forms vanishing on
TODM and [ many 1-forms vanishing on T M. For a positively oriented orthonormal
frame field {ey, eo} of TM, the Hopf invariant H(ey,es) of f with respect to {ey, e} is
the local section of NyM ® C defined by

1 Q11 — Qigg

7‘[(61, 62) = 50&(61 — i€2,€1 — i@g) = — ’L'Oém, Oéij = Oé(@i, 6j)7i j = ]., 2. (27)

Let J* be the complex structure of NyM defined by the metric and the orientation.
The complexified normal bundle decomposes as

N{M®C =Ny M & NfM

into the eigenspaces N, M and N;FM of J*, corresponding to the eigenvalues ¢ and —i,
respectively. Any section £ € NyM ® C is decomposed as & = £~ +£F, with

& =m5(9),
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where 7: NyM ® C — Nj M is given by
1
THE) = g€ FiTTE), L€ NM@C.

A section £ of NyM ® C is called isotropic if at any point of M, either { = ¢, or { = ¢
This is equivalent to (£,£) = 0, where (-,-) is the C-bilinear extension of the metric.
Notice that ((,n) = 0 for ¢ € N; M and n € Nfﬂ\/[, implies that ( = 0 or n = 0.
According to the above decomposition, the Hopf invariant of f with respect to {ej, es}
splits as H(eq, e2) = H (€1, ea) + HT (e1, e2), where HE(ey, e2) is given by

Q11 — Qg

1
Hi(el,eg) = — ( 5

. + T, +iJt <O‘“_O‘22 + Jiam)) . (2.8)

2

The length of H*(ey, e;) is independent of the frame field {e, es}, and the function ||H*||
given by

[HE]| = V2 [HE (er, e0)|| = VIIHI2 = (K = 0) F K (2.9)

vanishes precisely on M (f).

Let E be a complex vector bundle over M equipped with a connection V¥. An E-
valued differential U of r-order is an E-valued r-covariant tensor field on M of holomorphic
type (r,0). The r-differential ¥ is called holomorphic (cf. [7]) if its covariant derivative
VEW has holomorphic type (r + 1,0). Let (U, 2z = x + iy) be a local complex coordinate
on M. The Wirtinger operators are defined on U by 0 = 0, = (9, — i0,)/2, 0 = 0; =
(0 + 10,)/2, where 0, = 0/0x and 0, = 0/0y. On U, the differential ¥ has the form
U = 4)dz", where ¢: U — F is given by v = U(0,...,0). Then VU is holomorphic if and
only if

Viv =0,

i.e., ¢ is a holomorphic section. For later use we need the following result (cf. [7,16]).

Lemma 2.2. Assume that the E-valued differential ¥ is holomorphic and let p € M be
such that W(p) = 0. Let (U, z) be a local complex coordinate with z(p) = 0. Then either
V=0 onU; orV =_2z2"U* where m is a positive integer and V*(p) # 0.

Of particular importance for our results are two quadratic differentials associated to
a surface in Q?, as well as their relation with the Gauss lifts of the surface to the twistor
bundle. Let f: M — Q! be an oriented surface. In terms of a local complex coordinate
(U,z = = + 1y), the metric ds* of M is written as ds* = A\?|dz|?, where A > 0 is the
conformal factor. Setting e; = 0,/ and e; = 9,/ the components of « are given by

a0 = 0(9,0)dz?, a®? = a0, oY = (9,0)(dz @ dz + dzZ @ dz),

where
A2 = A2
a(0,0) = ?’H(el, es), and «(0,0) = ?H. (2.10)
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The Hopf differential of f is the quadratic NyM ® C-valued differential ® = (20 with
local expression ® = (9, d)dz*. According to the decomposition of NyM ® C, the Hopf
differential splits as

d =P + &t where dF =7t o0 D,

On (U, z) the differential ®* has the expression
dF = ¢p*d? (2.11)
and the compatibility equations for f can be written as
2 2 - o= + 7T N 2
(Gauss)  (log \*):z — 5 ({67.07) +(67.67)) + T(IH[* + ) =0, (212)
Nl i Moo
?VaH‘, Vit = ?Va]-ﬁ, (2.13)

(Ricci)  R-(0,8) — ;(¢— NG+ AT, (2.14)

(Codazzi) Vz¢~ =

where Rt is the C-trilinear extension of the normal curvature tensor and (£ A {)n =
(¢,m¢& — (&,m)¢, for £,(,n € NyM ® C. It follows from (2.11) and (2.13) that & is
holomorphic if and only if the mean curvature vector field H is parallel in the normal
connection.

Lemma 2.3. (i) The zero-sets of ®* and ®, are M (f) and M, (f), respectively.

(ii) The surface f is superconformal with normal curvature +Ky > 0 if and only if
O+ = 0. In particular, if f is superconformal, then Ky vanishes precisely on Mi(f).

Proof: In terms of a local complex coordinate z around a point p, from (2.11), (2.10) and
(2.9) it follows that ®*(p) = 0 if and only if ||H*|(p) = 0, or equivalently, if p € Mz (f).
Obviously, ® vanishes precisely at the points where both ®~ and ®* vanish, i.e., the
umbilic points. This proves part (i), and the first assertion of part (ii) follows immediately.
If f is superconformal, then the second equation in (2.6) implies that the normal curvature
vanishes precisely at the umbilic points. 1

2.3 Absolute Value Type Functions

We will need some facts about absolute value type functions (cf. [27] or [28]). Let M be
a 2-dimensional oriented Riemannian manifold. A smooth function u: M — [0, 4+00) is
called of absolute value type, if for all p € M and any complex coordinate z around p, there
exists a non-negative integer m and a smooth positive function uy on a neighbourhood U
of p such that

u=|z—z(p)|"ug, on U.
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If m > 0 then p is called a zero of u of multiplicity m. It is clear that if an absolute
value type function u does not vanish identically, then its zeros are isolated and they have
well-defined multiplicities. Furthermore, the Laplacian Alogw is still defined and smooth
at the zeros. If u does not vanish identically, then we denote by N(u) the number of its
zeros, counted with multiplicities. The following has been proved in [27].

Lemma 2.4. Let M be a compact oriented 2-dimensional Riemannian manifold and u
an absolute value type function on M. If u does not vanish identically, then

/ Alogu = =27 N (u).
M

A smooth complex function ¢t on M is called of holomorphic type if locally it is expressed
as t = tot1, where ty is holomorphic and ¢; is smooth without zeros. Clearly, if ¢ is of
holomorphic type then u = |t is of absolute value type.

2.4 Twistor Spaces and Gauss Lifts

Let f: M — R* be an oriented surface. We recall that the Grassmannian Gr(2,4) of
oriented 2-planes in R*, is isometric to the product S% x 2 of two spheres of radius 1/ V2
(we refer to Section 7.3.3 for details). Accordingly, the Gauss map g: M — Gr(2,4) of
f, decomposes into a pair of maps as g = (g4,9-): M — S% x S2. For surfaces in not
necessarily flat space forms Q2, the geometric information encoded in the components g,
and ¢g_ of the Gauss map of a surface in R*, is encoded in the Gauss lifts of the surface
to the twistor bundle of Q2.

We recall some known facts about the twistor theory of 4-dimensional space forms.
The reader may consult [26,32], although the paper of Jensen and Rigoli [45] is closer
to our approach. Let O(Q?) be the principal O(4)-bundle of orthonormal frames in Q?,
which has two connected components denoted by O, (Q%) and O_(Q%), corresponding to
the two connected components of O(4). The twistor bundle Z of Q! is defined as the
set of all pairs (p, J ), where p € Q? and J is an orthogonal complex structure on 7. »Qs.
The twistor projection g: Z — QZ is defined by o(p, J) = p, and Z is an O(4)/U(2)-fiber
bundle over Q?, which is associated to O(Q%). Indeed, at a point p € Q! and for any
orthonormal frame e = (ey, €2, €3, €4) of T,Q2, define an orthogonal complex structure J,
by

7 7 72
Je€1 = €9, Je€3 = €4, Je =—1.

Any orthogonal complex structure on 7,Q% is equal to J, for some orthonormal frame e of
T,Q% and J. = J: if and only if & = eA for some A € U (2). Thus, the set of all orthogonal
complex structures on T,Q% is O(4)/U(2) and has two connected components isomorphic
to SO(4)/U(2) = {J. : e is a = oriented frame of T,Q*}. Hence, the twistor bundle is

2 = 0(QY) %o OW)/U(2) = 0(Q4)/U(2)
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and its two connected components are denoted by Z, and Z_. Each projection o4 : Z. —
Q% is a PY(C) ~ S*fiber bundle over Q.

A one-parameter family of Riemannian metrics ¢g;, ¢ > 0, is defined on Z in a nat-
ural way, making o, and ¢_ Riemannian submersions. With respect to the (common)
decomposition of the tangent bundle of Z, induced by the Levi-Civita connection of g,

TZ. =T'Z. aT"Z,

into horizontal and vertical subbundles, the metric g; is given by the pull-back of the
metric of Q? to the horizontal subspaces and by adding the ¢2-fold of the metric of the
fibers.

Denote by Gro(TQ?) the Grassmann bundle of oriented 2-planes tangent to Q%. There
are projections

I, : Gry(TQY) — Z, and II_: Gry(TQY) — Z_

defined as follows; if ¢ C T,Q% is an oriented 2-plane, then II.(p,() is the complex
structure on 7,Q? corresponding to the rotation by +m/2 on ¢ and the rotation by +/2
on ¢*+. The Gauss lift G;: M — Gro(TQ?), of an oriented surface f: M — Q2 is defined
by Gf(p) = (f(p), £ T,M). The Gauss lifts of f to the twistor bundle are the maps

GiM— Z, and G_: M — Z_, where G4 =11, o Gy.

At any point p € M, we obviously have G4 (p) = (f(p), J=(f(p))), where

. fioJ(p), on f.T,M,
J=(f(p)) = { iJL(i), on N;yM(p).

Let {e;},1 < j < 4, be a + oriented, local adapted orthonormal frame field of QZ,
where {e1, ez} is in the orientation of 7M. Denote by {w;},1 < j < 4, the corresponding
coframe and by wy;, 1 < k,I < 4, the connection forms given by (2.3). The pull-back of
g on M under G, is related to the metric ds? of M as follows

t2
Gige) = ds® + 1 ((W13 —wa) + (wia — w23)2) :

The covariant differential of the mean curvature vector field H = H3e5 + H%e, is given by

4 2

4 4
VIH = Y (dH*+ > H'wi) @ ea =Y. > Hiw; ® e, (2.15)
b=3

a=3 j=la=3

The Gauss lift G.: M — (2., g;) is called conformal if the metric G% (g;) is conformal
to ds®. The following has been proved in [45].
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Proposition 2.5. Let f: M — Q2 be an oriented surface. The Gauss lift Go: M —
(Z+,9:) of f is conformal if and only if either f is minimal, or superconformal with
normal curvature =K > 0.

The Gauss lift GL: M — (Z4,¢9;) is called vertically harmonic if its tension field
(cf. [68]) has vanishing vertical component with respect to the decomposition T2, =
ThZ, @ TZ,. The squared length of the vertical component of the tension field of G
is computed in the following proposition. Its proof is a slight modification of the proof of
Theorem 8.1. in [45] for space forms, where the scalar curvature of Q? is normalized to
be equal to c.

Proposition 2.6. Let f: M — Q2 be an oriented surface with mean curvature vector
field H. Then, the squared length of the vertical component 7V(G<) of the tension field of
the Gauss lift G M — (Z4,g1) of f is given by

(G I? = 4 ((H} F Hy)? + (H} £ H})?),

where {e1,es} and {e3, e} are positively oriented orthonormal frame fields of TM and
Ny M, respectively, and HY, j = 1,2, a = 3,4, is given by (2.15).

Proof: Let H = H**ef + H**ef, where {e3,e7} is a + oriented orthonormal frame
field of NyM. The tension field of G, in terms of an appropriate orthonormal frame field
{Ef, 1 <k <6} of (24,4, is given by (cf. [45])

6
7(G) ZZBZ'EEi

where

Bf = Oforj=1,2; Bf =2H"*(1 — ct?) for a = 3,4,

Bf = 2u(Hy* — H{*), Bf = —2t(H{* + HJ").
Its vertical component is given by
m°(Gy) = BfEF + BFEf.
By setting e = es, er = ey, it follows that
g (r°(Ge), 7"(Gy)) = 4> ((H} F Hy)* + (H3 £ HY)?) (2.16)

and this completes the proof.

The following proposition relates the vertical harmonicity of the Gauss lift G+ with
the holomorphicity of the differential ®* and the holomorphicity of the section H*. The
equivalence of (i) and (iv) below, was proved by Hasegawa [36] who studied surfaces with
a vertically harmonic Gauss lift.
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Proposition 2.7. Let f: M — Q2 be a surface with mean curvature vector field H. The
following are equivalent:

(i) The Gauss lift G: M — (24, g;) of [ is vertically harmonic.

(ii) The differential ®* is holomorphic.

(iii) The section H* of NfiM is anti-holomorphic.

(iv) ViyH = +J+V%H, for any X € TM.

Proof:  The equivalence of (ii), (iii) and (iv) is an immediate consequence of the Codazzi
equation (2.13). By virtue of (2.16), it follows that (i) is equivalent to (iv). n

From the proof of Proposition 2.6 it follows that if 2 = 1/c¢, then G is vertically
harmonic if and only if it is harmonic.

It is clear from Proposition 2.7 that both Gauss lifts are vertically harmonic if and
only if the surface has parallel mean curvature vector field in the normal connection. For
surfaces in R* this result is due to Ruh and Vilms [61].

Proposition 2.7 and Lemma 2.3(ii) imply that any superconformal surface f: M — Q?
with £ Ky > 0 has vertically harmonic Gauss lift G4.. The Gauss lift G4 of such surfaces is
holomorphic with respect to a complex structure J on Z, that makes (Z, g;) a Hermitian
manifold (cf. [26,45]). The following proposition shows that the converse is also true for
non-minimal superconformal surfaces.

Proposition 2.8. Let f: M — Q! be a non-minimal superconformal surface. If the
Gauss lift G4 of f is vertically harmonic, then ®* = 0.

Proof: Arguing indirectly, assume that ®* # 0. From Proposition 2.7, we know that ®*
is holomorphic and Lemma 2.2 implies that its zeros are isolated. From Lemma 2.3(ii)
it follows that ®T = 0 and consequently ® is holomorphic. Then, the mean curvature
vector field of f is parallel. Hence, Ky = 0 on M and Lemma 2.3(ii) implies that f is
totally umbilical, a contradiction.

Remark 2.9. In the case of R?, (Z4,¢;) is isometric to the product R* x S%*(¢). The
Grassmann bundle is trivial Gre(R?) ~ R* x Gr(2,4) and the Gauss lift of f to the
Grassmann bundle is given by G = (f, g), where g = (g4,9-): M — S% xS? is the Gauss
map of f. The Gauss lift G- of f to the twistor bundle is then given by G = (f, v/2tgs)
and it is vertically harmonic if and only if g+ is harmonic.



CHAPTER 3

The Mixed Connection Forms on
Surfaces in Q*

In this chapter, we introduce two differential 1-forms Q~ and Q7 associated to an oriented
surface in Q% called the mixed connection forms. Both forms are defined away from
pseudo-umbilic points and at least one of them is defined away from umbilics. It turns
out that the mixed connection forms on surfaces in Q? generalize the connection form
corresponding to principal frame fields of surfaces in Q2. This allows us to obtain an index
theorem that extends the Poincaré-Hopf index theorem for surfaces with isolated umbilic
points in @2, which will be used for our results in the last chapter. We also introduce
the notion of isotropically isothermic surfaces in Q! as a generalization of the notion
of isothermic surfaces in Q2. The notion of isothermicity for surfaces in Q3 has been
extended for surfaces with flat normal bundle in arbitrary codimension by Palmer [57], and
also for discrete surfaces in R? (cf. [5,52]). It turns out that in any case, isothermicity is a
conformally invariant property. We show that isotropic isothermicity is also a conformally
invariant property that extends the notion of isothermicity for surfaces in Q?2, to surfaces
in Q! with not necessarily flat normal bundle.

3.1 An Index Theorem

Let f: M — Q! be an oriented surface with Mg (f) = ) and consider a local orthonormal
frame field {ej,e; = Je;} on an open U C M. By virtue of (2.8) and (2.9), the frame
field {e1, €2} determines a unique orthonormal frame field {e3, ey} of N;U such that

1
H* (e, e2) = §||7Lli|!(6§t +iey), (3.1)
where

ot = [ (2 kS an ), ef = Jhed (32)

17
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and «;; = a(e;, e;),1,j = 1,2. Define the 1-form Q* (e, e5) on U by
Qi(el, 62) = 2&)12 + wi, (33)

where the connection forms wi and w3, correspond to the dual frame field of {ey, e, ex, eff}
and are given by (2.3).

Proposition 3.1. Let f: M — Q* be an oriented surface with M (f) isolated. Then:
(i)  There exists a 1-form Q* on M ~ M (f) such that

QilU = Qi<€1, 62) (34)

for every positively oriented orthonormal frame field {e1,es} defined on an open
U C M~ ME(f).

(ii) The exterior derivative of QF is globally defined on M and satisfies
dO* = —(2K + Ky)dM, (3.5)

where dM is the volume element of M.
(iii) For every point p € M (f) the limit

I*(p) = lim L OF (3.6)

=0 27 J s, (p)
exists, where S,(p) is a positively oriented geodesic circle of radius r centered at p.

Proof: (i) Let {e1, ez} and {é1, €5} be positively oriented orthonormal frame fields on an
open, simply-connected U C M ~. M (f). Since U is simply-connected, it follows that

él — Zég = 6”(61 — ieg), (37)
for some 7 € C>°(U). This implies that
W1 = wig + dr. (38)

Consider the frame fields {e3, e5 } and {5, &7 } of N;U determined by {e, €5} and {éy, &},
respectively, from (3.2). From (2.7), (3.7) and (3.2) it follows that &5 +iéf = e*7(e3 +ief).
Therefore,

QF, = wsy F 2dT. (3.9)

Using (3.8) and (3.9), from (3.3) we obtain that
Qi(él, ég) = Qi(el, 62).

By virtue of the above, we define QF by (3.4), for an arbitrary positively oriented or-
thonormal frame field {e1,es} on a simply-connected U € M ~ Mg (f). Clearly, QF is
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globally defined on M ~. M§"(f). From the definition of Q% it follows that (3.4) also holds
for frame fields defined on non-simply-connected subsets U C M ~. M (f).
(ii) Using part (i) and (2.2), exterior differentiation of (3.3) yields that (3.5) holds on
M~ M (f). Since the right-hand side of (3.5) is defined globally on M, the proof follows.
(iii) Let p € M (f). Consider positively oriented geodesic circles S, (p), Sy, (p),
r9 < 11, centered at p, and denote by D the annular region bounded by S, (p) and S,., (p).
Stokes’” theorem implies that

/ Qi—/ Qi:/dfzi.
S7 (p) ST‘Q(p) D

From part (ii) it follows that the right hand side of the above tends to zero as ry,ry — 0.
This implies that any sequence |, S () OF with r, — 0, is a Cauchy sequence and thus, it
converges. The proof now follows. &

"1

Remark 3.2. Let F: M — Q2 be an umbilic-free oriented surface with shape operator
A and corresponding principal curvatures ki, ko, with k; > ko. Every point p € M has
a neighbourhood U at which there exists a principal frame field {ej,es} of F, ie., a
positively oriented orthonormal frame field of TU such that Ae; = kje;, 1 = 1,2. Since a
principal frame field of F' is unique up to sign in its domain, it follows that there exists
a 1-form Q on M such that Q|y = w2, where wys is the connection form corresponding
to the dual coframe of a principal frame field {e;,e2} of FF on U C M. We call Q the
principal connection form of F.

The following proposition shows that the mixed connection forms Q= and QT are
the natural generalizations to surfaces in 4-dimensional space forms, of the principal
connection form 2 of surfaces in 3-dimensional space forms.

Proposition 3.3. Let f: M — Q% be the composition of an umbilic-free oriented surface
F: M — Q2,¢> c, with a totally umbilical inclusion j: Q3 — Q. Then, Q= = QT = 2Q,
where 2 is the principal connection form of F.

Proof: Let & be the unit normal vector field of F' in Q2 and A be the shape operator of
F with respect to £&. As in the Remark 3.2, let kq, ko, with k; > k5 be the corresponding
principal curvatures of F' and consider a principal frame field {ej,es} of F on U C M.
Proposition 3.1(i) and (3.3) imply that Q*|; = Q% (e, e5) = 2w £wi;. Moreover, for the
second fundamental form « of f we have that oy — ey = (k1 — k2)j.€ and a9 = 0, where
ay = aleg, e), k,l = 1,2. Then, from (3.2) it follows that e; = e5 = j.£. Since 5. is
parallel in the normal connection of f, we obtain that w3, = w3; = 0. Then, Proposition
3.1(i) and Remark 3.2 imply that Q™ |y = QF|y = 29|y and this completes the proof. §

Assume that f: M — Q! is a surface with M (f) isolated. Proposition 3.1(i) allows
us to express locally the mixed connection form QF by (3.3), for an orthonormal frame
field of the tangent bundle. In the sequel such a frame field will often arise from the
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basic vectors fields corresponding to a complex coordinate. Let (U,z = x + iy) be a
local complex coordinate on M and set e; = 0/, e2 = 0,/\, where A > 0 is the
conformal factor. Then, the connection form wys of the corresponding coframe is given by
wip = *dlog A, where « is the Hodge star operator. In particular, exterior differentiation
gives dwis = Alog \wi A ws, where A = 4X\~290 is the Laplacian on M, and (2.2) implies
that the Gaussian curvature is given by K = —Alog A. Moreover, for the Hopf differential
® of f, from (2.11), (2.10) and (3.1) it follows that

)\2

)\2
= 57%*(61762) = ZH?‘FH(@,t +iey) on U~ Mg(f), (3.10)

gbi

where €3, €5 are given by (3.2). Therefore, by virtue of Proposition 3.1(i), the expression

of OF in terms of the complex coordinate z is
QFf = xdlog\> + w3, on U~ MF(f). (3.11)

Proposition 3.4. Let f: M — Q! be an oriented surface with M (f) isolated. Let
p € MF(f) and (U,z) a simply-connected complex chart with U N M (f) = {p} and
z(p) = 0. If there exists a positive integer m such that the differential ®* is written as

OF = 2T on U, dF(p) £0, (3.12)
then I%(p) = —m.

Proof: Let ®* = ¢*dz? on U, where ¢ is given by (3.10) on U~ {p}. For r > 0, consider
a positively oriented geodesic circle S,.(p) = 0B,.(p) C U. Stokes’ theorem implies that
s,y ¥d1log A = — [ () Kwi Aws, and since the Gaussian curvature is bounded on B,(p),
from (3.11) we obtain that

lim QF = 4+ lim Wi (3.13)
r—0 Sr(p) r—0 Sr(p)

Assume that ®* is given by Pt = Qgidzz on U. Since ggi € N}'EU and QASi # 0
everywhere on U, there exist R € C*(U; (0, +00)) and an orthonormal frame field {es, e4}
of N;U, such that ¢* = R(e3 + ies). Then, from (3.10) and (3.12) it follows that

)\2
EHHiH(e% +iet) = 2" R(es £ies), on U~ {p}. (3.14)

Let ¢(s),s € [0,27], be a parametrization of S,(p) as a simple closed curve. Then, there
exists a smooth function 7(s), s € [0, 27], such that

e (s) £ief(s) = T (es(s) £ ieq(s)) (3.15)

along ¢, and therefore

1 n 1/ 1/
— = —— [ 3.16
2 /sma) T o Jew T 2m s (3.16)
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We argue that the right hand side of (3.16) is equal to Fm. From (3.14) and (3.15) it
follows that along ¢ we have

(A())2IHEI(s)

Gy = ()

Let k(s) be the function at the left hand side of the above. Then k(s) > 0,s € [0, 27],
and k(0) = k(27). Hence, we have

log k(s) = log(((s))"e*"),

Differentiating the above with respect to s and then integrating from 0 to 27 we obtain

27 Z/(S) . 2 ,
0 = log k(2m) — log k(0) = m/ ds + z/ 7'(s)ds,
o z(s) 0
or, equivalently
1 m dw
il dr = 71— — = ) 3.17
27 /Sr(p) ’ ]F2m' 2(Sr(p)) W m ( )
Since way is defined everywhere on U and K is bounded on B, (p), by using (2.2) we
obtain lim,_, fST»(p) w3y = lim,_o [ By (p) dwss = — lim, 0 / B(p) Knw1 Awa = 0. The proof

follows by taking limits in (3.16) and using (3.13), (3.17) and (3.6). &

Theorem 3.5. Let f: M — Q2 be a compact oriented surface with MG (f) isolated. Then,

2xtxn= Y. I*(p).
pEME (f)

Proof: Let My (f) = {p1,...,px}, where k is a nonnegative integer. For a sufficiently
small 7 > 0, let M, = M ~ (B.(p1) U---U B,(px)), where B,(p;) is the geodesic ball of
radius 7, centered at p;,7 = 1,..., k. Stokes’ theorem implies that

- - -

d0F = — / 0F
My ]Z:; r(pj)

where QF is the form of Proposition 3.1(i), and S,(p;) = 9B, (p;) is positively oriented
with respect to its interior. The above and (3.5) imply that

1 |
2 £ xn = 5 lim dQE = Z — lim 0*

T =0 J M, = 21 r—=0 S (pj)

and the proof follows from (3.6). 1

In the sequel, we provide some applications of Theorem 3.5. The first one is a short
proof of the following result due to Asperti [4].
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Theorem 3.6. If a compact 2-dimensional Riemannian manifold immerses isometrically
into QF with everywhere non-vanishing normal curvature, then it is homeomorphic either
to the sphere S%, or to the real projective space RP2.

Proof:  Let M be a compact 2-dimensional Riemannian manifold and f: M — Q! an
isometric immersion with Ky # 0 everywhere. Assume that M is oriented and that
+Ky > 0. Then, M (f) = 0 and Theorem 3.5 implies that 2y = +y . Since £xy > 0,
it follows that y > 0 and thus, M is homeomorphic to S2. If M is non-orientable, then
we apply the previous procedure to the lift of f to the orientable double covering of M,
and the proof follows. &

We mention here that a long-standing open problem posed by S.S. Chern [15, p. 45]
is to investigate the existence of compact surfaces of negative Gaussian curvature in R%.
In this direction, we obtain the following result.

Theorem 3.7. Let M be a compact oriented 2-dimensional Riemannian manifold and
f: M — Q! an isometric immersion. If ¢ > 0 and the normal curvature of f does not
change sign, then the Gaussian curvature K of M satisfies max K > 0.

Proof: ~ Arguing indirectly, suppose that max K < 0. Since ¢ > 0, this implies that
M (f) = 0. Since Ky does not change sign, we may assume that =Ky > 0. Then
M (f) = 0 and as in the proof of Theorem 3.6 we obtain that M is homeomorphic to
S2. The theorem of Gauss-Bonnet then implies that there exist points of M with positive
Gaussian curvature and this is a contradiction. i

Immediate consequences of the above theorem are the following corollaries. The first
one has been proved by Peng and Tang [58] for surfaces in R%.

Corollary 3.8. Let M be a compact oriented 2-dimensional Riemannian manifold and
f: M — Qc >0, an isometric immersion. If the normal curvature of f is constant,
then there exists a point of M with nonnegative Gaussian curvature.

Corollary 3.9. Let M be a compact oriented 2-dimensional Riemannian manifold with
Gaussian curvature K < 0. If there exists an isometric immersion f: M — Qi ¢ > 0,
then its normal curvature satisfies min Ky < 0 < max Ky.

3.2 Isotropically Isothermic Surfaces

We introduce here the notion of isotropically isothermic surfaces in 4-dimensional space
forms, as a generalization of the notion of isothermic surfaces in 3-dimensional space
forms. We recall that an umbilic-free surface F': M — Q? is called isothermic if it admits
conformal curvature line parametrization around every point. This is equivalent (see for
instance [43]) with the co-closeness of the principal connection form € of F. Inspired by
Proposition 3.3 we give the following definitions.
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Let f: M — Q! be an oriented surface with Mg (f) = 0. A point p € M is called a
+ isotropically isothermic point for f if d x Q*(p) = 0. The surface f: M — Q% is called
+ (totally non) isotropically isothermic if every point is £+ (non) isotropically isothermic.
Moreover, f is called strongly (totally non) isotropically isothermic if it is both + and —
(totally non) isotropically isothermic. In the sequel, a £ isotropically isothermic surface
is simply called #sotropically isothermic in every case that we do not need to distinguish
between the signs. In such a case, a 4 totally non isotropically isothermic surface is called
half totally non isotropically isothermic.

The following lemma provides a characterization of + isotropically isothermic points
in terms of a complex coordinate. Notice that if f: M — Q% is a surface with M (f) = 0,
then for every complex chart (U, z) on M there exists a smooth complex function h* on
U such that the Hopf differential ® of f satisfies

V5™ = h*¢™, (3.18)
where ¢* is given by (2.11) on U.

Lemma 3.10. Let f: M — Q! be an oriented surface with M (f) = 0. A point p € M
is a £ isotropically isothermic point for f if and only if

Im 3 (p) = 0
for every complex chart (U, z) around p.

Proof: Let (U,z = z + iy) be a complex chart around p and set e; = 0,/A, ea = 0,/ A,
where A > 0 is the conformal factor. Consider the frame field {e3, e5 } of N;U determined
by {e1, ez} from (3.1). Then (3.10) and (3.11) hold on U. From (3.18) and (3.10) it follows
that

)\2
Vipt = ZH’HiHhi(eg‘E +ief) on U. (3.19)
By differentiating (3.10) with respect to 0 in the normal connection, we obtain
1 /= _ 5 ,
V0¥ = (OOCIHE]) F i IHF w3 (D)) (65 + ie).

The above and (3.19) yield
ht = 0log(M?||H™|) T iwz, (0). (3.20)
By differentiating (3.20) with respect to z, and taking the imaginary part yields

4
N2 im hE = 7F (er(log i (er) + ealog Nwi(e2) + €1 (wify(e1)) + ea(wii(€2)) ) -
From (3.11) and the above we obtain that
4
dxQF = —Flmhfwl A wo
and the proof follows. &
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Proposition 3.11. Let f: M — Q* be an oriented surface with My (f) = 0. Then, f is
+ isotropically isothermic if and only if for every simply-connected complex chart (U, z),
the section ¢= given by (2.11) has the form

¢F = D*eE, (3.21)

where D* is a smooth positive function on U and £ is a nowhere vanishing holomorphic
local section.

Proof: Let (U, z) be a simply-connected complex chart. Appealing to Proposition 3.1(i),
we express 0 on U in terms of z as in (3.11).

Assume that f is & isotropically isothermic. By virtue of (3.11) we have that dxwi; = 0
and thus, there exists a smooth positive function 7+ on U such that

wi, = Fxdlogr®. (3.22)
We define D* and £* by
2|+
D* = sl !71 H and &* = r¥(eF +ie}), (3.23)
r

respectively. By differentiating ¢+ with respect to 0 in the normal connection yields

Vit — Tli ((log r%): T i (9)) (e + ie). (3.24)

From the above and (3.22), it follows that £* is holomorphic.

Conversely, assume that (3.21) holds on U. By setting 7+ = ||¢*||/v/2, from (3.21) it
follows that &% is given by (3.23). Therefore, (3.24) holds. Since £* is holomorphic, from
(3.24) we obtain (3.22). Hence, w3 is co-closed and (3.11) implies that Q% is closed on
U. Since U is arbitrary, it follows that f is £ isotropically isothermic. n

It is clear that the characterization of + isotropic isothermicity provided by Propo-
sition 3.11 also makes sense for oriented surfaces immersed in orientable 4-dimensional
Riemannian manifolds of not necessarily constant sectional curvature.

Proposition 3.12. Let N be a Riemann surface and F: N — Q* a conformal immer-
sion. The property of F' equipped with its induced metric being isotropically isothermic is
invariant under conformal changes of the metric of Q1. In particular, if F is & isotropi-
cally isothermic and 7: Q* — Q% is an orientation-preserving conformal transformation,
then the surface T o F' is also £ isotropically isothermic.

Proof: Let f: M — Q! be the isometric immersion induced by F', where M = (N, ds?)
and ds*> = F*(-,-). Consider the Riemannian manifold Q?, obtained from Q! by the

c?

conformal change (-,-), = p*(-,) of its metric, where u € C>®(Q%; (0,400)), equipped
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with the same orientation with Q!. Then, F induces an isometric immersion f: M — Q?,
where M = (N,d3?) and d&* = F*(-,-), = j’ds>.

Assume that f is £ isotropically isothermic. We argue that f is also + isotropically
isothermic. It is clear that the normal bundles of f and f coincide as vector bundles over
N and they differ only in their bundle metric. In particular, they have the same complex
structure J=. Tt follows easily (see for instance [23]) that the second fundamental forms
o, & and the normal connections V-, VL, of f, f, respectively, are related by

a(X,Y)=a(X,Y) - ;(X, Y)(grad p)*, (3.25)

and .
Vxn = Vxn+ | (erad s, X)n, (3.26)

forall X,Y € TN andne€ NyJM = N fj\7[ , where grad denotes the gradient with respect

to (-,-). Let (U, z) be a complex chart on M with conformal factor X\. Then, (U, z) is also
a complex chart on M with conformal factor A = A/u. From (3.25) it follows that the
Hopf differentials @, @ of f, f, respectively, coincide. In particular, if d* is given by (2.11)
and &+ = ¢Fdz2 on U, then ¢* = ¢=. Proposition 3.11 implies that ¢= = D*¢*, where
D7 is a smooth positive function on U and é* a nowhere vanishing V+-holomorphic local
section. Then, we have that

3 g - L1
(bi = (bi = Dié‘i, where l)i = I[,Ll)i and fi — ifi_
1

Since ¢* is V+-holomorphic, from (3.26) we obtain that ¢+ is V+-holomorphic. Therefore,
Proposition 3.11 implies that f is & isotropically isothermic. The rest of the proof follows
immediately. n

3.2.1 Examples

We provide here some classes of isotropically isothermic surfaces in Q2. When a surface
f: M — Q! in some of the following classes is & isotropically isothermic, it is always
assumed that M (f) = 0.

1. Non-superconformal surfaces with a vertically harmonic Gauss lift are isotropically
isothermic.

Let f: M — Q! be a surface with M (f) = 0. If the Gauss lift G4 of f is vertically
harmonic, then Proposition 2.7 implies that ®* is holomorphic. From Proposition 3.11 it
follows that f is 4 isotropically isothermic. Moreover, Proposition 3.12 implies that the
composition of f with an orientation-preserving conformal transformation of Q! which is
not an isometry, gives rise to a =+ isotropically isothermic surface f whose corresponding
Gauss lift G is not vertically harmonic.
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2. Minimal superconformal surfaces are isotropically isothermic.

Let f: M — Q! be a minimal superconformal surface with M (f) = 0. Then, for the
Hopf differential ® of f we have ®T = 0 and thus, ® = ®*. The Codazzi equation
implies that ® is holomorphic and from Proposition 3.11 it follows that f is £ isotropi-
cally isothermic. Moreover, Proposition 3.12 implies that the composition of f with an
orientation-preserving conformal transformation of Q2 which is not an isometry, gives rise
to a =+ isotropically isothermic surface f which is clearly non-minimal. In particular, since
the property of the ellipse of curvature being a circle is conformally invariant, it follows
that f is superconformal.

3. Non-superconformal minimal surfaces are strongly isotropically isothermic.

Let f: M — Q! be a minimal surface with My(f) = 0. The Codazzi equation implies that
the Hopf differential of f is holomorphic and Proposition 3.11 yields that f is strongly
isotropically isothermic. From Proposition 3.12 it follows that the composition of f with
an orientation-preserving conformal transformation of Q! which is not an isometry, de-
termines a non-minimal, strongly isotropically isothermic surface f. Moreover, since the
flatness of the normal bundle of a surface in Q? is a conformally invariant property, it
follows that if f has non-flat normal bundle, then the normal bundle of f is also non-flat.

We recall that a surface f: M — Q% is called isothermic (cf. [57]) if around every point
of M there exists a complex chart (U, z = x+iy) with the property that its corresponding
basic vector fields 0,, 0, diagonalize at every point of U all shape operators. By setting
e1 = 0y / A, e2 = 0,/ A, where X is the conformal factor, it is straightforward to show that
such a complex chart is characterized by the property that (e, es) = 0 at every point of
U, where « is the second fundamental form of f.

4. Isothermic surfaces lying in totally umbilical hypersurfaces of Q* are strongly isotrop-
ically isothermic.

Let f: M — Q! be an umbilic-free isothermic surface lying in Q2,é > c¢. Clearly, f is
the composition of an isothermic surface F: M — Q2 with a totally umbilical inclusion.
Proposition 3.3 then implies that f is strongly isotropically isothermic.

5.  Ezamples of isothermic surfaces in R* that are strongly totally mon isotropically
isothermic.

Let v; : I; — R? be a smooth curve parametrized by its arc length s;, where I; is an
open interval, j = 1,2. We denote by n; the normal vector of ~, such that {t; = ¥;,n;}
is positively oriented, where the dot denotes the derivative with respect to s;, j = 1, 2.
By setting M = I; X I, and z = sy + 159, it is clear that z is a global complex coordinate
on M with basic vector fields ey, e2, where e; = 9/0s;, j = 1,2. Moreover, the connection
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form of the corresponding coframe of {e;, ey} satisfies wio = 0. We consider the product
surface f: M — R* f =~ x 7. Then the adapted to f frame field

{f*el = (tl,O),Nl = (nl,O),f*eg = (O,tg),NQ = (O,TLQ)}

is positively oriented in R*. Therefore, J-N; = —N,. Let k; be the curvature of ;,
7 =1,2. Then, for the second fundamental form « of f we have ay; = k1 N1, oy = ko No
and ajp = 0, where o;; = a(e;, €5),4,j = 1,2. Since oy = 0 it follows that f is isothermic.

Assume furthermore that f is umbilic-free, or equivalently, that there do not exist
points (s1, s2) on M such that ki(s;) = ka(s2) = 0. We set

Q1 — Qg2 1

lan —agf| \VE? + k3

Then, (3.2) implies that e3 = e5 = e3. Since wip = 0, from Proposition 3.1 and (3.3) it
follows that f is strongly isotropically isothermic if and only if wsy is co-closed. An easy
computation shows that d x w3y, = 0 is equivalent to the differential equation

(k1)? = (ko)?
ki + k3

€3 (klNl — k‘QNQ), €4 = JL€3.

kiko — kyko + 2k1 ko =0, (3.27)

for the curvatures of v; and 7, at every point of M, where each dot denotes a derivative of
k; with respect to s;,j = 1,2. Clearly, if k;(s;) = ¢;s5,¢; # 0,7 = 1,2, and ¢; # ¢, then
for s1s9 > 0 it follows from (3.27) that f is strongly totally non isotropically isothermic.



28

3. The Mixed Connection Forms on Surfaces in Q?




CHAPTER 4

Surfaces with the Same Mean
Curvature

We develop here the required theory for the study of the Bonnet problem for non-minimal
surfaces in 4-dimensional space forms. The case of minimal surfaces has been studied
in [21] and [67]. In this chapter, we assume that all surfaces under consideration are
non-minimal.

4.1 The Distortion Differential

Let M be a 2-dimensional oriented Riemannian manifold and f, f: M — Q? be isometric
immersions with second fundamental forms «, & and mean curvature vector fields H, H,
respectively. The surfaces f, f are said to have the same mean curvature, if there exists a
parallel vector bundle isometry T': NyM — NyM such that TH = H.

Suppose that f, f : M — Q2 have the same mean curvature and let T: N;M — N M
be a parallel vector bundle isometry satisfying TH = H. After an eventual composition of
one of the surfaces with an orientation-reversing isometry of Q?, we may hereafter suppose
that T is orientation-preserving. To such a pair (f, f ) we assign a holomorphic differential
which is going to play a fundamental role in the sequel. The section of Hom(T'M X
TM,N¢M) given by

D?f:@—Tilod
T

measures how far the surfaces deviate from being congruent. Since D iF is traceless, its

C-bilinear extension decomposes into its (k,l)-components, k + [ = 2, as
D ;= (D7 p®Y 4+ (D} ), where (D} ;)% = (D ).
We are interested into the (2,0)-part which is given by

T _(pT 20 _ & _ 71 &
= D) =0T 02,

29
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where @, ® stand for the Hopf differentials of f, f, respectively.

Lemma 4.1. Let f,f: M — Q? be non-minimal surfaces and T: NyM — NiM an

orientation-preserving, parallel vector bundle isometry satisfying TH = H. Then:
(i) The quadratic differential Q;ff is holomorphic and independent of T

(1t) The normal curvatures of the surfaces are equal and the curvature ellipses &y, Ef are
congruent at any point of M. In particular, ME(f) = ME(f).

Proof: (i) From our assumption it follows that the section 77! o & of Hom(T'M x
TM,N¢M) satisfies the Codazzi equation for the data on NyM and thus, ?f is holo-
morphic by (2.13). 7

Suppose that there exists another orientation-preserving parallel vector bundle isom-
etry S: NyM — NyM with SH = H. We argue that Q?f = ?,f' Set L=T"10S and
U={pe M: H(p) #0}. On N;U, L preserves both of H and J*H and thus, 7' = S
on N;U. Therefore, the holomorphic differential QCJQ P ;f 7 vanishes identically on the

open subset U of M. Then by Lemma 2.2, we obtain that Q}'F,f = if on M.

(ii) The vector bundle isometry 7" preserves the normal curvature tensors. Since it
is orientation-preserving, (2.1) implies that the normal curvatures of f, f are equal. The
fact that the curvature ellipses are congruent, now follows from (2.6) and this completes

the proof. n

Lemma 4.1(i) allows us to assign to each pair of surfaces (f, f) with the same mean
curvature, a holomorphic differential denoted by @, 7, which is called the distortion dif-
ferential of the pair and is given by

Qj=®-T"'od

Obviously, Q7 = 0 if and only if f and f are congruent. To simplify the notation,

we denote the distortion differential associated to the pair (f, f ) by @, whenever there
is no danger of confusion. A pair (f, f ) of noncongruent surfaces with the same mean
curvature is called a pair of Bonnet mates. In this case, the zero-set of () is denoted by
Z and according to Lemmas 2.2 and 4.1(i), consists of isolated points only.

With respect to the decomposition NyM @ C = N, M @ NJTM , the distortion differ-
ential () splits as

Q=0Q +QF, where Q¥ =71F0Q.
It follows from Lemma 4.1(i) that each differential
Q¥ =0T —T1od* (4.1)

is holomorphic. According to Lemma 2.2, either Q* = 0, or its zero-set Z* consists of
isolated points only.
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4.2 The Decomposition of the Moduli Space

Let f: M — Q! be a non-minimal oriented surface. We denote by M(f) the moduli space
of congruence classes of all isometric immersions of M into Q2. that have the same mean
curvature with f. Since the distortion differential of a pair of Bonnet mates does not
vanish identically, the moduli space can be written as

M(f) =N (HUNT(f)u{f},
where
NE(f) = {F : QF; # 0}/Isom™ (QY),

{f} is the trivial congruence class and Isom™ (Q?) is the group of orientation-preserving
isometries of Q4. Moreover, the moduli space decomposes into disjoint components as

M(f) =M (HuM(HHu M (fHu{f},

where 3
ME(f) = N5(F) S NF(f) = 1+ Q7= @} /lsom™* (@),
and

M) =N"(H)NNF(f) ={f: Q;;#0 and Q] ; # 0}/Isom™(Q3).

In order to simplify the notation in the sequel, we set M*(f) = M*(f) U {f}.

Hereafter, whenever we refer to a surface in the moduli space we mean its congruence
class. A surface f: M — Q! is called a Bonnet surface if M(f) ~ {f} # 0. Any
fe M(f)~{f} is called a Bonnet mate of f. A Bonnet surface f is called proper Bonnet
if it admits infinitely many Bonnet mates.

4.3 Bonnet Mates

In view of Lemma 4.1(ii), we denote by My = My UM, and M; the set of pseudo-umbilic
and umbilic points of a pair of Bonnet mates, respectively.

Proposition 4.2. If f € N*(f), then there exists 6= € C™°(M ~ MG (0,2n)), such that
the distortion differential of the pair (f, f) satisfies on M ~ Mg the relation

Q* = (1— ™)+, (4.2)
Moreover, ME = Z* consists of isolated points only.

Proof: ~ We first prove that there exists 6% € C*(M ~ Z*;(0,27)) such that (4.2) is
valid on M \ Z%. Since f € NE(f), it follows that Z* is isolated. Lemma 4.1(ii)
and (4.1) imply that M C Z* and thus, M is isolated. We set 3 = T~' o &, where
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T: NyM — NgM is an orientation and mean curvature vector field-preserving, parallel
vector bundle isometry.

If int(My) # 0, then since My is isolated, we obtain that int(M,) C M. Lemma
2.3(ii) implies that =Ky < 0, ®F = 0 and ®* # 0 on int(My ~ Z*). Let z be a local
complex coordinate defined on a simply-connected neighbourhood V' C int(My ~ Z%).
From Lemma 4.1(ii), it follows that the isotropic sections (9, 0) and (9, 0) have the
same length. Hence, there exists 7 € C>°(V') with values in (0, 27), such that

B(aa a) = Jia(av 8),

where the rotation J* = cos7I 4 sin7J* satisfies J* = 77T on Nf M. Since * # 0 on
int(My \ Z%), the function 7 is well-defined modulo 27 on int(My ~\ Z*). Moreover, it is
non-vanishing modulo 27 on int(My~ Z*) and thus, there exists a branch in C*(int (Mg~
Z*)) with values in (0, 27). By setting 6+ = 7, we have that (4.2) holds on int(My~ Z%).
In particular, the assertion is obvious if M = M,.

Assume that M # M, and let p € M ~ M,. According to Lemma 2.1, there exist
smooth frame fields {ey, s, €3, €4}, {€1, €2, €3, 4} on a neighbourhood U C M ~\ M of p,
such that

Q11 — Qo = 2Ke3, Qg = ey, Wwhere Q5 = a(eiyej)7 J=12,

and
Bi1 — Pa2 = 2Ré3, P2 = fi€s, where f;; = ((&;,€;), j=1,2.

Lemma 4.1(ii) yields that the ellipses £¢(¢) and £5(q) are congruent at any point ¢ € U and
consequently, x = &. Using (2.1) and (2.14), we obtain that Ky = 2xpu and Ky = 27/i.
Then, Lemma 4.1(ii) implies that u = fi. Setting é3 — i€, = €“(e3 — iey) for some
0 € C*(U), we have that

ng (11 — a2) = B11 — Pz and JgLOéu = f12 on U,
where J;- = cos 01 + sin 6.J+. This gives
B(E1 — 16y, 61 — i63) = J; (aer — ey, e1 — iey)).
Setting &, — i€y = €' (e — ieq) for some o € C*(U), the above is written equivalently as
Tlod=e & +e ™ dF, where 6F =6+ 20.
Since ®~ and ®* are everywhere non-vanishing on M ~ My, the functions 6~ and 67 are
well-defined modulo 27 on M ~ My. From the assumption f € N=(f), it follows that

6% is non-vanishing modulo 27 on M ~\ (M, U Z%) and thus, there exists a branch in
C>®(M ~\ (MU Z*)) with values in (0,27). Obviously, (4.2) holds on M ~ (MyU Z%).
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Lemma 4.1(ii) implies that for a point ¢ € My~ (int(My) U Z%), there exists a unique
number [(q) € (0,27) such that

T~ o d(q) = Jiy®(q),

where the rotation is given by Jl%q) = T since ¢ € MF. We extend 6 on M ~ Z*
by setting 6% (q) = I(g). Then, (4.2) holds on M ~\. Z*. Since QF and ®* are everywhere
non-vanishing on M ~\ Z%, from (4.2) it follows that #* is smooth.

It remains to prove that M = Z*. Arguing indirectly, assume that there exists
p € Z* ~ M. From Lemma 2.3(i) it follows that ®*(p) # 0. Since Q* and ®* are
smooth, (4.2) implies that the function k = eFi* can be smoothly extended at p, with
k(p) = 1.

We claim that 6% can be continuously extended at p. Assume to the contrary that
there exist sequences p,,q, € M ~ Z* n € N, converging at p, such that =(p,) — 0 and
6%(q,) — 2m. Since 6% is continuous on M ~. Z¥, it follows that for every » > 0 there
exists s, € B,(p) \ {p} such that §%(s,) = m, or equivalently, k(s,) = —1. On the other
hand, since k is continuous at p, there exists ' > 0 such that |k — 1| < 1/2 on B, (p),
which is a contradiction. Therefore, the limit of 6% at p exists and the claim follows.
Since 6F is continuous and k is smooth on M ~. M, it follows that #* is also smooth on
on M ~ M.

Let (U, z) be a complex chart with U N Z* = {p}. From Lemmas 4.1(i) and 2.2 it
follows that there exists a positive integer m such that Q* = 2™¥* on U, and ¥*(p) # 0.
Using (4.2), this is equivalent to

(1= eF)pt = 2mp*, ¥ (p) #0, (4.3)

where ¢* is given by (2.11), and U* = ¢)=dz? on U. By differentiating (4.2) with respect
to 0 in the normal connection and using the holomorphicity of QF yields

(h*(1 = e77") £ieT 0F) ot =0,
where h¥* is given by (3.18). Since ¢* # 0 everywhere on U, the above implies that
0F = Fih*(1 — ), 6F = £ihF(1 — 7).

Since 6% (p) = 0, or 2, from the above we obtain that all derivatives of §* vanish at p.
Then, by differentiating (4.3) m-times with respect to 9 in the normal connection, we
obtain that m!y*(p) = 0, which is a contradiction. Therefore, Mi = Z* and the proof
follows. 1

The following lemma is essential for our results.
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Lemma 4.3. Let M be a simply-connected oriented, 2-dimensional Riemannian manifold
with a global complex coordinate z, and f: M — Q* an isometric immersion with M (f)
isolated. We consider the system

0F = Fih® (1 — %), 6F = £ihF(1 — 77, (4.4)

where h* is given by (3.18) on M ~ ME(f), and 6= € C®(M ~ Mg (f):R). Then, the
graph of any solution of (4.4) is an integral surface of the 2-dimensional distribution D*
on R x (M ~ M{(f)), defined by the 1-form

pt = doF FihE(1 — 7)) dz + ih*(1 — 97 dz. (4.5)

We have that:
(i) A function 6% € C®(M ~ M (f);R) satisfies (4.4) if and only if

A0S 0j(Im AF)eF _ AF = 0, (4.6)

where

A =i (hE = [p*]?) = —ImhE +i(Re b — [W*]?). (4.7)
Moreover, if 0% satisfies (4.4) then

0L = FAT(1 — ). (4.8)

(ii) Assume that h* can be smoothly extended on M. Then, D* is involutive on R x M
if and only if A* =0 on M. If D* is involutive then its maximal integral surfaces
are graphs of solutions of (4.4) on M. In particular, any solution of (4.4) on M is
equivalent modulo 27, either to a harmonic function 6% € C>®(M;(0,27)), or to the
constant function 6 = 0, and the space of the distinct modulo 2m solutions can be
smoothly parametrized by S* ~ R /27 7Z.

(iii) If (4.4) has a harmonic solution 0% € C*®(M ~ M (f);(0,27)), then h* can be
smoothly extended on M and A* = 0.

Proof: Tt is clear that the graph of any solution of (4.4) is an integral surface of D*.

(i) Assume that 6% € C>(M ~ M (f);R) satisfies (4.4). Since its graph ¥ C R x (M~
ME(f)) is an integral surface of D*, the Frobenius condition yields that p* A dp* = 0 on
%, or equivalently, 02 = 0% on M ~ M (f). From (4.4) it follows that

0L = FAF(1 - eﬂei) and 0L = FAE(1 - ewi),
where A* is given by (4.7). The above implies (4.6) and (4.8). Conversely, if 6% satisfies

(4.6), then we have that p= A dpT = 0 on its graph 3. Therefore, X is an integral surface
of D* and thus, (4.5) implies that 0 satisfies (4.4) on M ~ M (f).
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(ii) From (4.5) and (4.7) it follows that p* and A* can be smoothly extended on R x M
and M, respectively. The Frobenius Theorem implies that D¥ is involutive if and only if
p= AdpT =0 on R x M, or equivalently, A* =0 on M.

Assume that D¥ is involutive on R x M and let ¥ be a maximal integral surface. Then
pt =0 on X. Since M is simply-connected and p* is defined globally on R x M, from
(4.5) it follows that ¥ is the graph of a solution of (4.4) on M.

Let 0% € C®°(M;R) be a solution of (4.4) on M. Since A* =0 on M, from (4.8) it
follows that #* is harmonic. It is clear that 6 + 2k also satisfies (4.4) for every k € Z.
Therefore, if 6* £ 0 mod 27, we may assume that = (p) € (0, 27) at some p € M. Then,
the graph of §* must lie between the graphs of the constant solutions 0 and 27 and thus,
6* takes values in (0,27). Therefore, any solution of (4.4) on M is equivalent modulo 2,
either to a harmonic function 6% € C>(M:; (0,27)), or to the constant function §* = 0.

Since R x M is foliated by maximal integral surfaces of D*, which are graphs over
M of solutions of (4.4), it follows that the space of these surfaces can be parametrized
by a smooth curve y(t) = (t,p),t € R, where p € M is an arbitrary point. Obviously,
the space of the distinct modulo 27 solutions of (4.4) can be smoothly parametrized by
S! ~ R/27Z.

(iil) Let 6% € C(M ~ M (f); (0,27)) be a harmonic function satisfying (4.4). Since
6* is bounded with isolated singularities, it can be extended to a harmonic function
6= € C*(M;|0,27]). We claim that 6 does not attain the values 0 and 27 on M.
Arguing indirectly, assume that there exists a point at which 6% attains the value 0 or
27. Then 6% has an interior minimum or maximum, respectively, and the maximum
principle implies that % = 0 or 27, respectively, on M. This is a contradiction, since
0+ (p) € (0,27) for every p € M ~ M (f). Therefore, * € C>®(M;(0,27)). From (4.4), it
follows that ~* can be smoothly extended at every point of M (f). Since #* is harmonic,
from (4.8) it follows that A* =0 on M. §

Lemma 4.4. (’L) ]f f1 S M_(fg) and fg € M+(f3), then f1 € M*(fz)

(it) If f1, f2 € M*(f3), then fi € M*(fs).

Proof:  Let Tj: NyM — Ny M, 1 < j,k < 3, j # k, be orientation and mean
curvature vector field-preserving, parallel vector bundle isometries. Denote by @, and

®; the distortion differential of the pair (f;, fz) and the Hopf differential of f;, respectively.
From Lemma 4.1(i), we know that Q) is independent of T};. Hence,

Quz = 1 — T,' 0 By = Oy — (T 0 Ty, ) 0 By,

or equivalently,
Tyl oQuz =Ty 0@ — Tyl 0Py = Qa1 — Q.
Therefore,
Qia = T 0 (Q3 — Q) (4.9)

and the results follow immediately. B
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Proposition 4.5. If f € NE(f), then the function 6% of Proposition 4.2 satisfies (4.4)
on U~ Mg for every complex chart (U, z) on M. Moreover, if one of the following holds,
then it extends to a harmonic function 6* € C*>°(M; (0, 2m)).

(i) There exists f € N=(f) N NE(f).

(i) The surface f is & isotropically isothermic on M ~ M.

Proof: Let (U, z) be a complex chart on M. In the proof of Proposition 4.2 it was shown
that 6% satisfies (4.4) on U ~. M§. We claim that if (i) or (ii) holds, then #* is harmonic
on U~ M.

(i) To unify the notation, set f; = f, 0F = 6= and f, = f. Proposition 4.2 implies
that there exists HJ‘J»E € C®°(M ~ M¢; (0,27)) such that the distortion differential Q; of the
pair (f, f;),7 = 1,2, satisfies

QF = (1—™)d* on M~ M, (4.10)

where @ is the Hopf differential of f. On the other hand, (4.9) implies that the distortion
differential @ of the pair (f1, f2) satisfies

Qi :TO(Q?:_Q?),

where T': NyM — Ny M is an orientation and mean curvature vector field-preserving,
parallel vector bundle isometry. Therefore, from (4.10) and the above, it follows that

Q* = (ew2i - e:Fie%)T o®* on M~ M.

Since fo € NE(f1), it is clear that f; € N*(fs). Proposition 4.2 implies that Q* vanishes
precisely on M and from the above it follows that #f # 65 everywhere on M ~ M.
Since 07, j = 1,2, satisfies (4.4) on U \ My, from Lemma 4.3(i) it follows that it also
satisfies (4.6). At every point of U\ M", equation (4.6) viewed as a polynomial equation,
has the distinct roots 1, T , eFily Hence, A* =0 on U ~ M and the claim follows by
virtue of (4.8).

(ii) Arguing indirectly, assume that 6% is not harmonic on U ~. M. Appealing to
Lemma 4.3(i), equation (4.8) implies that there exists p € U ~. Mg such that A%(p) # 0.
On the other hand, Lemma 3.10 and (4.7) yield that Re A* = 0 on U . M. Therefore
Re A% (p) = 0 # Im A*(p). Then, (4.6) implies that e¥#*® = 1. This is a contradiction,
since 6% takes values in (0, 27), and this proves the claim.

Since #* is a harmonic function satisfying (4.4) on U ~ Mg, Lemma 4.3(iii) implies
that h* extends smoothly on U and A* = 0 on U. From Lemma 4.3(ii) it follows that 0+
extends to a harmonic function on U with values in (0, 27), satisfying (4.4) on U. Since
U was arbitrary, this completes the proof. §



CHAPTER 5

Simply-Connected Surfaces

In this chapter, we study the Bonnet problem for surfaces f: M — Q?, where M is a
non-compact, simply-connected and oriented 2-dimensional Riemannian manifold. From
the Uniformization Theorem it follows that M is conformally equivalent either to the
complex plane, or to the unit disk. Therefore, in what follows in this chapter, M always
admits a global complex coordinate z.

We point out that the non-compactness assumption is not restrictive for the most of
our results at all. This will become clear in Chapter 8.

5.1 The Structure of the Moduli Space

The following theorem determines the possible structure of the moduli space M(f) for
non-compact simply-connected surfaces f: M — Q2.

Theorem 5.1. Let f: M — Q% be a non-compact simply-connected, oriented surface.
(i) If f is not proper Bonnet, then it admits either at most one Bonnet mate, or exactly
three.

(i) If f is proper Bonnet, then the moduli space M(f) is a space diffeomorphic to a
manifold. Moreover, f is characterized according to the structure of M(f) as follows:

Tight: The moduli space is 1-dimensional with at most two connected components
diffeomorphic to S' ~ R/27Z.

Flexible: The moduli space is diffeomorphic to the torus S x St.
For the proof of the above theorem, we need some auxiliary results.

Proposition 5.2. Let M be a simply-connected oriented, 2-dimensional Riemannian

manifold with a global complex coordinate z, and f: M — Q* a non-minimal surface
with M (f) isolated.

37
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(i) If f € ME(f) and M*(f) ~ {f} # 0, then there exists a harmonic function §* €
C>(M; (0,27)) satisfying (4.4) on M, such that the distortion differential of the pair
(f, f) is given by (4.2) on M.

(ii) If h* can be smoothly extended on M, then the distinct modulo 2w solutions of
(4.4) on M determine noncongruent surfaces in M*(f). In particular, any solution
0+ € C®(M;(0,2n)) determines a unique Bonnet mate f € M*(f) such that the
distortion differential of the pair (f, f) is given by (4.2) on M.

Proof: (i) Propositions 4.2 and 4.5 imply that there exists 6% € C=(M ~ Mg; (0, 27))
satisfying (4.4) on M ~. M, such that the distortion differential Q of the pair (f, f) is
given by (4.2) on M ~ Mg. Let f € M*(f) ~ {f}. Lemma 4.4(ii) yields that f €
ME(f)NM*(f). From Proposition 4.5 it follows that §* extends to a harmonic function
6 € C=(M;(0,27)). In particular, from the proof of Proposition 4.5 it follows that 6=
satisfies (4.4) on M. Proposition 4.2 implies that @ vanishes precisely on M. Then,
from Lemma 2.3(i) it follows that @ is given by (4.2) on M.

(i) Assume that h* can be smoothly extended on M. For a solution 6F of (4.4),
consider the quadratic differential

U = &F 4 ¥ o, (5.1)

By using (2.11), it is straightforward to check that W satisfies equations (2.12) and (2.14)
with respect to V*+, R, H. Since 6% satisfies (4.4), by using (2.11) it follows that ® — W is
holomorphic. Therefore, ¥ satisfies the Codazzi equation. By the fundamental theorem of
submanifolds, there exists a unique (up to congruence) isometric immersion f:M— Q4
and an orientation-preserving parallel vector bundle isometry T': NyM — NgM, such
that the Hopf differential ® and the mean curvature vector field H of f are given by
® =T oW and H = TH, respectively. Clearly, f is congruent to f if and only if 6+ = 0
mod 27. Furthermore, if f is noncongruent to f then the distortion differential of the pair
(f, f) satisfies QF = 0 and thus, f € M*(f). In particular, if * € C>°(M; (0,27)) then
f e M*(f) and (5.1) implies that the distortion differential of the pair (f, f) is given by
(4.2) on M. &

Theorem 5.3. Let M be a non-compact simply-connected oriented, 2-dimensional Rie-

mannian manifold, and f: M — Q* a non-minimal surface. Then:

(i)  Either there exists at most one Bonnet mate of f in M*(f), or the space M*(f) is
diffeomorphic to S* ~ R/27Z.

(ii) We have that M*(f) # 0 if and only if M~(f) # 0 # M (f). If M*(f) # 0, then
there is a one-to-one correspondence between Bonnet mates f € M*(f) and pairs
=, T with f* € M*(f), such that the distortion differential of the pair (f, f) is
given by

Q= Qs+ Qys+,

where Q= is the distortion differential of the pair (f, f*).
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(iii) The surface f is proper Bonnet if and only if either M~ (f) =S, or M*(f) =S".
(iv) The moduli space M(f) can be parametrized by the product M~ (f) x M*(f). In
particular, if f is proper Bonnet then M(f) is a smooth manifold.

Proof: Let z be a global complex coordinate on M.

(i) Assume that f admits at least two Bonnet mates in M*(f) and let f € M*(f).
Proposition 4.2 implies that Mg is isolated. Since ME(f) ~ {f} # 0, from Proposition
5.2(i) it follows that (4.4) has a harmonic solution #* € C®(M ~ M ;(0,27)). Then,
Lemma 4.3(iii) yields that h* can be smoothly extended on M and A* = 0. From
Lemma 4.3(ii) it follows that the space of the distinct modulo 27 solutions of (4.4) can
be smoothly parametrized by S'. The proof follows by virtue of Proposition 5.2(ii).

(ii) Assume that there exists fe M*(f) and consider the quadratic differentials

U =0 —-Q and Uy =P —QF,

where @ is the Hopf differential of f and @ is the distortion differential of the pair (f, f ).
We argue that ;- and VU ;+ satisfy the compatibility equations with respect to V+ RY H.
From Lemma 4.1(i), it follows that Q* is holomorphic and thus, the differential W+
satisfies the Codazzi equation. Lemma 2.3(i) and Proposition 4.2 yield that ®* and Q*
vanish precisely on M. Hence, ¥ s+(p) = ®(p) at any point p € M and therefore ¥ o
satisfies the algebraic equations (2.12) and (2.14) on M. Moreover, since f € M*(f),
Proposition 4.2 implies that there exist §~, 0 with 8% € C>°(M ~ M;"; (0,2n)) such that
Q* is given by (4.2) on M ~ Mg. Using (4.2) and (2.11) it follows that W« satisfies
the equations (2.12) and (2.14) on M ~. M. The fundamental theorem of submanifolds
implies that there exist unique Bonnet mates f=, f*: M — Q? of f, such that the Hopf
differential @+ of f* is given by @+ = TF o Uy, where T*: NyM — Nyt M is an
orientation-preserving parallel vector bundle isometry. From Lemma 4.1(i), it follows
that the distortion differential of the pair (f, f*) is Q* and thus, f* € M*(f).

Conversely, assume that there exist f~, f* with f* € M=*(f) and consider the
quadratic differential ¥ with

Y~ = — Qf}f— and \I/+ = q)+ — Qf7f+,

where Q) s+ is the distortion differential of the pair (f, f*). Lemma 4.1(i) implies that
Q- and Qg s+ are both holomorphic and thus, ¥ satisfies the Codazzi equation. From
Lemma 2.3(i) and Proposition 4.2 it follows that W* vanishes precisely on M. Further-
more, Proposition 4.2 implies that there exist 6=, §% with 6% € C>(M ~ M; (0,27))
such that

Qe = (1—e™)D* on M~ M.

Using the above and (2.11) it follows that U satisfies (2.12) and (2.14) on M ~\ M,. Taking
into account that W*(p) = 0 at any point p € Mg, from the above and (2.11) we obtain
that ¥ also satisfies (2.12) and (2.14) at any point of My. The fundamental theorem of



40 5. Simply-Connected Surfaces

submanifolds and Lemma 4.1(i) imply that there exists a unique Bonnet mate f of f, such
that the distortion differential of the pair (f, f) is Q = Q- +Qj s+. Clearly, fe M*(f).

If M*(f) # 0, the above correspondence is obviously one-to-one.

(iii) Assume that f is proper Bonnet. Then at least one of the disjoint components
of M(f) is infinite. From part (ii) it follows that at least one of M~ (f) and M™(f) is
infinite. If M*(f) is infinite, then part (i) implies that M*(f) = S'. The converse is
obvious.

(iv) From Proposition 4.5 and the proof of part (i) it follows that M*( f) is parametrized
by the space of the distinct modulo 27 solutions of (4.4). Then, Proposition 4.2 and part
(ii) imply that the moduli space can be parametrized by pairs of functions (6~,607),
where 6% € C°(M ~ My, [0,27)) satisfies (4.4). Moreover, according to this parametriza-
tion, 0T = 0 correspond to M*(f). It is now clear that M(f) can be parametrized by
M=(f) x M*(f). In particular, if f is proper Bonnet then parts (iii) and (i) imply that
the moduli space is a smooth manifold. §

Remark 5.4. From the proof of Theorem 5.3(i) it follows that if M*(f) can be smoothly
parametrized by S', then its parametrization is induced by the parametrization of the
space of the distinct modulo 27 solutions of (4.4). In the proof of Lemma 4.3(ii) the
parametrization 0, ¢t € S', of these solutions is such that

0 (p)=t, teS (5.2)

at a point p € M. Obviously, this parametrization depends on p and is not unique, unless
the solutions of (4.4) are constant. In this case from (4.4) it follows that h* = 0 on M.
Then, (3.18) and Proposition 2.7 imply that the Gauss lift G+ of f is vertically harmonic.

Proof of Theorem 5.1: Assume that f is non-minimal.

(i) If f is not proper Bonnet, then Theorem 5.3(iii) and (i) imply that f admits at
most one Bonnet mate in each one of M~(f) and M*(f). If M~(f) # 0 # MT(f), then
Theorem 5.3(ii) yields that f admits exactly three Bonnet mates.

(ii) If f is proper Bonnet, then Theorem 5.3(iii) implies that either M~(f) = S, or
M*F(f) = S'. Assume that M*(f) = S'. From Theorem 5.3(i) and (iv) it follows that
f is either tight, or flexible, if there exist either at most one, or infinitely many Bonnet
mates of f in M¥(f), respectively.

If f is minimal then it is known that (cf. [20]) either M(f) = {f}, or M(f) =S'. 1

5.2 Proper Bonnet Surfaces
We study here non-minimal proper Bonnet surfaces f: M — Q. By virtue of Theorem

5.3(iii-iv), we focus on surfaces with M*(f) = S'. For such a surface, Proposition 4.2
implies that M (f) consists of isolated points only.
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Proposition 5.5. Let f: M — Q% be a simply-connected surface with M*(f) = S'. Let
p € M (f) and consider a complex chart (U, z) with U N M{(f) = {p} and z(p) = 0.
Then:

(i) The differential ®* is written as

Ot = 2Pt on U, F(p) £0, (5.3)

where m s a positive integer.

(ii) The function ||HE| is of absolute value type on M. The multiplicity of its zero
p € M§(f) is the integer m given by (5.3).

Proof: (i) Let f € M*(f). From Proposition 5.2(i) it follows that there exists 8+ €

C>(U; (0,27)) such that the distortion differential @) of the pair (f, f) is given by
Q=(1- eﬂei)@i on M.

Proposition 4.2 implies that p is the only zero of @ in U. From Lemmas 4.1(i) and 2.2 it
follows that there exists a positive integer m such that

Q=:"U% on U, \Tfi(p) # 0.

The proof follows from the above expressions of Q, by setting ®* = (1 — ¥ )~ 1=,

(ii) Let z = x + iy and set e; = 0,/\, e2 = 0,/ A, where X is the conformal factor. Let
&t = ¢*dz? on U. Part (i) implies that ¢* = 2mE, where ¢F is given by (2.11) on U.
Then, from (3.10) it follows that

|7 = |2|™u, where u= \/§A*2\|$i|\ is smooth and positive.

Clearly, the multiplicity of p is m. &

Lemma 5.6. Let M be an oriented, 2-dimensional Riemannian manifold with a global
complex coordinate z, and f: M — Q* a surface with M (f) = 0. Then, the I-forms
atf,af on M given by

af = dlog |HE|| — xQF, af = xaT, (5.4)

vanish precisely at the points where the Gauss lift Gi of f is vertically harmonic. More-
over:

(i)

4
dai = (Alog | H*|| - 2K F Ky) dM = 13 RehZdM,
(ii)
o TGO 4
a; /\(12 _WdM_ﬁ“L ‘ dM,
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where X is the conformal factor and h* is given by (3.18) on M.

Proof: Let z = x + iy and set e; = 0,/), ex = 9,/\. Consider the frame field {e3, ef}
of N;U determined by {ej, ez} from (3.1). Then (3.10) and (3.11) hold on M and as in
the proof of Lemma 3.10 we obtain (3.19) and (3.20). Using (3.11), from (3.20) it follows
that

2
ot = N (Re h*w; + Tm h*w,) (5.5)

where {wy,ws} is the dual frame field of {e;, es}.

Proposition 2.7 and (3.18) imply that h*(p) = 0 if and only if the Gauss lift G+ of f
is vertically harmonic at p. Therefore, from (5.5) it follows that ai vanishes precisely at
the points where G is vertically harmonic.

(i) Appealing to Proposition 3.1(ii), exterior differentiation of (5.4) gives

daf = (Alog |H*|| — 2K ¥ Ky) dM.

Differentiating the relation w3, = wi;(e1)w; 4+ wi;(e2)ws and using (2.2) and the fact that
wiy = *dlog A\, we obtain

Ky=F (el(log MNwii(e2) — ea(log Nwiy(e1) + e1(wii(e2)) — 62(W?,i4(€1>)) .

By differentiating (3.20) with respect to z, taking the real part, using the above and that
Alog A = — K yields

4

3 Rehf = Alog|H*| - 2K ¥ Ky

and the proof follows.
(ii) Let H = H**e3 + H**ef be the mean curvature vector field. Then,

1 1
H* = S(H £ 0] H) = S (H* il (e + iey). (5.6)

By differentiating (5.6) with respect to 0 in the normal connection, we obtain from (2.13)
that

2
Vigt = 1 (OCH™ T iH™) F ik (0) (H** F 1H™)) (e % ieF).

From (3.19) and the above it follows that

A H?):t H4:t H3:t :|:H4:t
hi:< 1 :F:t 2 _Z 2 — 1 )7 (57)
2\ [[HA [H=|
where H]C»”i, j=1,2, a=3,4,1is given by (2.15). Then, (5.5) implies that
HSi H4i H3i :i:H4i
af = utw, + vFw,y,  where ut = g, pE=—-2_ 1 (5.8)

I#H=] [#H=]
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From (5.7) and (5.8) it follows that

4
af Ay = ((b)? + (v5)?) dM = 13 1h* P,

where dM = w; A wy. On the other hand, from Proposition 2.6 we obtain
17 (G ? = 1(7(Gx), 7°(G2)) = 4| HE|* (uF) + (vF)?)
and the proof follows. &

Theorem 5.7. Let f: M — Q* be a simply-connected surface. If M*(f) =S!, then:

(i) The Gauss lift G+ of f is vertically harmonic at any point of ME(f).

(ii) The surface f is £ isotropically isothermic on M ~ M (f), and the differential
equation

Alog |HE|| - 2K F K 27”” = 5.9

is valid on M.
(iii) The forms af,a3 of Lemma 5.6 satisfy on M ~ M (f) the relations

daf = 0, (5.10)
daf = af Naif. (5.11)

Conversely, if My (f) =0 and (i) or (iii) holds, then M*(f) = S'.

Proof: Let f € ME(f). Proposition 4.2 yields that M is isolated. From Proposition
5.2(i) it follows that there exists a harmonic function 8+ € C>(M; (0,27)) satisfying (4.4)
on M. Lemma 4.3(iii) implies that h* can be smoothly extended on M and A* = 0.
Then, from (4.7) it follows that

Imhf =0 and |h*|?=Rehf on M. (5.12)

(i) Since h* extends smoothly on M, it follows that (3.18) holds on M. From Lemma
2.3(i) and (3.18) we obtain that

V5¢=(p) =0 forany pe My (f).

Appealing to Proposition 2.7, this is equivalent with the vertical harmonicity of G at p.

(ii) By virtue of Lemma 3.10, the first equation in (5.12) implies that f is & isotrop-
ically isothermic on M ~ M. Using Lemma 5.6, the second equation in (5.12) yields
that (5.9) holds on M ~ M. From Proposition 5.5(ii) it follows that the left-hand side
of (5.9) can be smoothly extended on M. Therefore, (5.9) is valid on M.

(iii) From (5.4) it follows that (5.10) is equivalent with the fact that f is £ isotropically
isothermic on M ~. M, and Lemma 5.6 implies that (5.11) is equivalent with the second
equation in (5.12) on M ~. Mg .
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Conversely, assume that Mg (f) = (). As in the proofs of (ii) and (iii), we obtain that
(ii) and (iii) are both equivalent to (5.12). Then, from (4.7) it follows that A* = 0 on
M and Lemma 4.3(ii) implies that the space of the distinct modulo 27 solutions of (4.4)
on M is parametrized by S'. From Proposition 5.2(ii) and Theorem 5.3(i) it follows that

ME(f) =S n

Corollary 5.8. Let f: M — QF be a simply-connected surface. If M*(f) = S' and
TY(G4) # 0 everywhere, then the conformal metric

_ I (Go)IP

ds® = ds® 1
3 TH s (5.13)

has Gaussian curvature K = —1.

Proof: By virtue of Theorem 5.7(i), it follows that Mg (f) = (). Consider the forms
ai, a3 of Lemma 5.6. Proposition 2.6 and (5.8) yield that

di* =af ®af +af ®af on M.
et a e the connection form associated to the coframe {a7, a5 }. en
Let a3, be th tion f ted to the cof T.a5}. Then,
daf = af Nai, and daj, = —Kaf Aaj.

Since M*(f) = S', the first equation of the above and (5.11) yield that ai, = ay. Using
the second equation of the above, this implies that daf = —Kaf A af, and the proof
follows by virtue of (5.11). 1

Remark 5.9.

(i) Theorems 5.3(i) and 5.7(i) imply that a surface f admits at most one Bonnet mate
in ME(f), if there exists a point p € M (f) at which the Gauss lift G+ of f is not
vertically harmonic. By virtue of Theorem 5.3(iv), it follows that f admits at most
three Bonnet mates if there exists an umbilic point at which H is not parallel. This
extends a result of Roussos-Hernandez [60, Thm. 1B].

(i) For umbilic-free surfaces in R?, integrability conditions similar to (5.10) and (5.11)
are due to Chern [18] and the analogue of equation (5.9) is due to Colares and
Kenmotsu [19].

5.3 The Effect of Isotropic Isothermicity

The structure of the moduli space M(f) is seriously affected by the property of isotropic
isothermicity for f, as the following theorem shows.

Theorem 5.10. Let f: M — Q! be a non-compact simply-connected oriented surface.
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(i) If f is half totally non isotropically isothermic, then f admits at least one Bonnet
mate and it is not flexible. In particular, if f is strongly totally non isotropically
isothermic, then it admits exactly three Bonnet mates.

(i) If f is proper Bonnet, then it is isotropically isothermic on an open, dense and
connected subset of M. In particular, if f is flexible, then it is strongly isotropically
isothermic away from its isolated pseudo-umbilic points.

Proof: (i) Assume that f is totally non + isotropically isothermic. From the examples
2 and 3 of Section 3.2.1, it follows that f is non-minimal. Let z be a global complex
coordinate on M. Lemma 3.10 implies that Im hE # 0 everywhere on M and therefore,
from (4.7) it follows that A* # 0 everywhere on M. Then, Lemma 4.3(i) yields that
the solution e*#* = —AF /A% of equation (4.6), determines the unique solution 6% €
C>®(M;(0,27)) of (4.4) on M. Proposition 5.2(ii) implies that there exists a unique
Bonnet mate of f in M*(f). From Theorem 5.3(iv) it follows that f is not flexible. In
particular, if f is strongly totally non isotropically isothermic, then it admits a unique
Bonnet mate in each one of M~ (f) and M™(f). Then, from Theorem 5.3(iii) it follows
that there exists exactly one Bonnet mate of f in M*(f), and the proof follows.

(ii) Assume that f is non-minimal and appealing to Theorem 5.3(iii), let M*(f) = S'.
Proposition 4.2 implies that M (f) is isolated. From Theorem 5.7(ii) it follows that f is
+ isotropically isothermic on M . M (f), which is an open, dense and connected subset
of M. In particular, if f is flexible, then Theorem 5.3(i) and (iv) implies that M~ (f) = S!
and M*(f) = S'. Then, from Theorem 5.7(ii) it follows that f is strongly isotropically
isothermic on M ~ My(f). If f is minimal, the proof follows from the examples 2 and 3
of Section 3.2.1. g

The following proposition shows that a Bonnet, strongly isotropically isothermic sur-
face is proper Bonnet.

Proposition 5.11. Let f: M — Q? be a non-compact, simply-connected oriented sur-
face. If f is % isotropically isothermic and non-minimal, then either M*(f) = {f}, or
M*E(f) = S'. In particular, if f is Bonnet and strongly isotropically isothermic then
either M(f) =S, or M(f) =S! x S™.

Proof: Assume that there exists f € M*(f). Proposition 4.2 implies that there exists
0+ € C>*(M; (0,27)), such that the distortion differential of the pair (f, f) is given by (4.2)
on M. Let z be a global complex coordinate on M. From Proposition 4.5 it follows that
6= is harmonic and satisfies (4.4) on M. Then, Lemma 4.3(iii-ii) implies that the space of
the distinct modulo 27 solutions of (4.4) is parametrized by S'. From Proposition 5.2(ii)
it follows that M*(f) = S'. In particular, if f is non-minimal, Bonnet and strongly
isotropically isothermic, the proof follows from Theorem 5.3(iv). If f is Bonnet and
minimal, the proof follows from [21]. 1

Example 5.12. Isothermic surfaces in R* that admit exactly three Bonnet mates.
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By virtue of example 5 of Section 3.2.1, there exist isothermic surfaces in R* that are
strongly totally non isotropically isothermic. Then, Theorem 5.10(ii) implies that every
simply-connected such surface admits exactly three Bonnet mates.

5.4 Bonnet Surfaces in Q° C Q!

The following theorem shows that there exist Bonnet surfaces lying fully in Q?, arising as
Bonnet mates of surfaces lying in totally geodesic hypersurfaces of Q.

Theorem 5.13. Let f: M — QF be a simply-connected oriented surface, which is the
composition of a non-minimal Bonnet surface F: M — Q2, with a totally geodesic inclu-
sion. Then, any Bonnet mate of F in Q3, determines two Bonnet mates f=, f* of f in
Q2. The surface f* lies in some totally umbilical Q2 C Q& > ¢, if and only if F has
constant mean curvature. Moreover, either f admits exactly three Bonnet mates, or it is
a flexible proper Bonnet surface.

For the proof of the above theorem we need the following lemma.

Lemma 5.14. Let f: M — Q! be an oriented surface which is the composition of a

non-minimal Bonnet surface F: M — Q2 with a totally geodesic inclusion j: Q — QL
Then, for every Bonnet mate F' of F in Q? we have that f —joF e M* (f).

Proof: Let F': M — Q? be a Bonnet mate of F. Denote by ¢ and ¢ the unit normal
vector fields of F and F in Q3, respectively, and by h their common mean curvature
function. Then, the mean curvature vector fields of f and f, are given by H = hj,£ and
H = hj,£, respectively. The parallel vector bundle isometry T: N M — NiM given by

Tj.§ = 3 T(J45.6) = J+3,.€ preserves the mean curvature vector fields, where J+ and
J+ are the complex structures of the normal bundles of f and f, respectively. Therefore,
fe M(f). Since the image of the second fundamental form of f, f is contained in the
line bundle spanned by 7,&, j.€, respectively, from Lemma 4.1(i) and the definition of T it
follows that the zeros of the distortion differential of the pair (f, f) satisfy Z~ = Z+ = Z.
Hence, f € M*(f). &

Proof of Theorem 5.13: Let f = jo F, where j: Q2 — Q2 is a totally geodesic inclusion
and denote by ¢ the unit normal of F in Q3. Since M is simply-connected and F' is a
Bonnet surface, the theorem of Lawson-Tribuzy [54] implies that M is non-compact. Let
F: M — @ be a Bonnet mate of F. From Lemma 5.14 it follows that jo F' € M*(f) and
Theorem 5.3(ii) implies that there exist Bonnet mates f~ and f* of f with f* € M*(f).
In particular, since any Bonnet mate of f lying in some totally geodesic Q@ C Q?* belongs
to M*(f), the surface f* does not lie in any totally geodesic hypersurface of Q.
Assume that f* lies in some totally umbilical Q2 C Q¢ > ¢. Proposition 4.2 implies
that M is isolated. Let (U, z2) be a complex chart on M with U N M; = (). Then, there
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exist ¢, p* € C*°(U) such that the Hopf differentials ® and @+ of f and f*, respectively,
are given by

2

A2 A s N
¢ = Te PVIH|? = Kegdz®, ®pe = e VIH|? — Kézdz?, on U, (5.14)

where ) is the conformal factor, es = j,&, and éf € N s+ M is a smooth unit vector
field, parallel to the line segment that the ellipse of curvature of f* degenerates. Let
Ty: Ny M — Ny= M be an orientation and mean curvature vector field-preserving, parallel
vector bundle isometry. Appealing to Lemma 4.1(i) and using (5.14), it follows that the
distortion differential Q; s+ of the pair (f, f*) is given by

22 . )
Qrrx = Qfpe = TVIHI? - K (€% (es Eies) — €7 (éF £ié}))dz* on U, (5.15)

where ey = Jles, é5 = T;lég)i,éjf = JtéF. Proposition 4.2 implies that there exists
0+ € C>=(U;(0,2n)) such that Q; s+ is given by (4.2) on U. Substituting ®* from (5.14)
into (4.2), and using (5.15) we obtain that

&f +ier = ei(“"_‘pieri)(eg +ieq) on U.
On the other hand, since QF ;+ =0, from Lemma 4.1(i) and (5.14) it follows that
&5 Fiey = ei(“’"”i)(eg Fiey) on U.

From the last two equations we obtain that 6= = £2(p — ) mod 27. Then, the above
implies that

1
(I):i = §d9i + w3y, (516)

where wsy and &F; are the connection forms associated to the dual frame fields of {es, e4}
and {&5,é7}, respectively. Since f and f* lie in totally umbilical hypersurfaces and T
is parallel, it follows that the vector fields e3 and &5 are parallel in the normal connection
of f. Therefore, (5.16) yields that 6% is constant on U. Proposition 5.2(i) implies that 0%
satisfies (4.4) on U. From (4.4) it follows that h* = 0 on U. Then, (3.18) and Proposition
2.7 yield that the section H* is anti-holomorphic on U. Since H = hes, where h is the
mean curvature function of F', this implies that h is constant on U. Since U is arbitrary
and M, is isolated, it follows that the mean curvature function of F' is constant on M.

Conversely, if F' has constant mean curvature function, then f and its Bonnet mates
have non-vanishing parallel mean curvature vector field. From [14,69] it follows that f=*
lies in some totally umbilical hypersurface of Q?.

Moreover, from Theorem 5.3(i) and (iv) it is clear that either f admits exactly three
Bonnet mates, or it is flexible proper Bonnet. 1
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Remark 5.15. If the surface F' in Theorem 5.13 is proper Bonnet with non-constant
mean curvature then f is flexible and both of its Gauss lifts are not vertically harmonic.
Moreover, every surface in M=*(f) is flexible and does not lie in any totally umbilical
hypersurface of Q?. From Theorem 5.10(ii) it follows that every such surface is strongly
isotropically isothermic away from its isolated umbilic points. Therefore, there exist
strongly isotropically isothermic surfaces in Q! with flat normal bundle, that do not lie
in any totally umbilical hypersurface of Q! and whose both Gauss lifts are not vertically
harmonic.



CHAPTER 6

Compact Surfaces

In this chapter, we study compact oriented surfaces f: M — Q2. We show that there are
obstructions on the structure of the moduli space M(f), imposed by the behavior of the
Gauss lifts of f to the twistor bundle. Moreover, stronger obstructions are imposed by
additional assumptions involving isotropic isothermicity. Our main results are presented
in the second section and they concern surfaces whose both Gauss lifts are not vertically
harmonic. In the third section we show that the theorem of Lawson-Tribuzy [54] follows
as a consequence of our results, and we give some applications concerning superconformal
surfaces in Q! and Lagrangian surfaces in R*.

6.1 Obstructions on the Structure of the Moduli Space

The following theorem shows that the structure of the moduli space M(f) is controlled
by the behavior of the Gauss lifts of f.

Theorem 6.1. Let f: M — Q! be a compact oriented surface.

(i) If the Gauss lift G+ of f is not vertically harmonic, then there exists at most one
Bonnet mate of f in M*(f). Moreover, if f € M*(f) then M*(f) U ME(f) =
MF(f).

(i) If both Gauss lifts of f are not vertically harmonic, then there exists at most one
Bonnet mate of f in M*(f). In particular, M*(f) =0 if M is homeomorphic to S.

Proof:  We claim that if there exist fi, f» € N*(f) with fi € N*(f,), then the Gauss
lift G+ of f is vertically harmonic. From Proposition 4.2, it follows that there exists
0F € C®°(M ~ Mg;(0,27)) such that the distortion differential @ of the pair (f, f1)
satisfies (4.2) on M ~ Mg . Since fo € N*&(f) N N*(f1), Proposition 4.5(i) implies that
6* extends to a bounded harmonic function on M, which has to be constant by the
maximum principle. From Lemma 4.1(i) and (4.2) it follows that ®* is holomorphic.
Then, Proposition 2.7 implies that the Gauss lift G4 is vertically harmonic and this
proves the claim.

49
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(i) Arguing indirectly, assume that there exist Bonnet mates fi, fo € M=(f) C NE(f).
From Lemma 4.4(ii), we have that f; € M*(f2) C N=(f2). Therefore, the Gauss lift G+
is vertically harmonic, a contradiction.

For the second assertion, assume that there exists f; € MT(f). If f; € MF(f), then

Lemma 4.4(ii) implies that f € MT(f), which is a contradiction. Therefore, f; & MT(f)
and thus, MT(f) € N*(f), which obviously holds if M¥(f) = ). The converse inclusion
is obvious if N (f) = {f}. Assume that there exists fi € N*(f) ~ {f}. From the claim
proved above, it follows that f; € M¥(f) and thus, N*(f) € M7 (f).

(ii) Arguing indirectly, assume that there exist Bonnet mates fi, fo € M*(f). Since
both G, and G_ are not vertically harmonic, from the above claim we obtain that f; &
N*(f2) UN(f2), which is a contradiction since f; is a Bonnet mate of fs.

If M is homeomorphic to the sphere, then for any f € M(f) ~ {f}, the fourth-order
differential (Q~, Q") is holomorphic with zero-set Z~ U Z*, where @ is the distortion
differential of the pair (f, f). From the Riemann-Roch theorem we have that (Q~,QT) =

0. Hence, either @~ =0 or Q1 = 0 and consequently M*(f) = 0. n

Theorem 5.10 shows that for non-compact simply-connected surfaces, the property of
half totally non isotropic isothermicity implies the existence of Bonnet mates, whereas
isotropic isothermicity characterizes proper Bonnet surfaces. The following result implies
that both properties are very obstructive for the existence of Bonnet mates for compact
surfaces.

Theorem 6.2. Let f: M — Q! be a compact oriented surface and V' an open and dense

subset of M. If one of the following holds, then N*(f) = 0.

(i) The Gauss lift Gx of f is not vertically harmonic and f is £ isotropically isothermic
onV.

(ii) The set V is connected and f is totally non + isotropically isothermic on V.

Proof: Arguing indirectly, assume that there exists f € N*(f). Proposition 4.2 implies
that Mg is isolated and that there exists 6% € C*(M ~ M;";(0,2)), such that the
distortion differential Q of the pair (f, f) satisfies (4.2) on M ~ M.

(i) Since V is dense, it follows that f is % isotropically isothermic on M ~ M. Then,
Proposition 4.5(ii) implies that §* extends to a bounded harmonic function on M, which
has to be constant by the maximum principle. By virtue of Lemma 4.1(i), from (4.2) it
follows that the differential ®* is holomorphic. Then, Proposition 2.7 implies that the
Gauss lift G4 of f is vertically harmonic, a contradiction.

(ii) From the definition of non = isotropically isothermic points it follows that M C
M ~\ V. Therefore, 0% is defined everywhere on V. Let (U, z) be a complex chart with
U C V. Proposition 4.5 implies that 6% satisfies (4.4) on U. From Lemma 3.10 it follows
that Im h¥ # 0 everywhere on U. Appealing to Lemma 4.3(i), (4.7) and (4.8) yield that
AG* is nowhere vanishing on U. Since V is connected and U is an arbitrary subset of
V, we deduce that either A#* > 0, or AG* < 0 on V. Since V is dense in M ~ M,
it follows by continuity that either AG* > 0, or AG* < 0 on M ~ M. As in the proof
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of [44, Thm.(2)], it can be shown that either %, or —6* can be extended to a subharmonic
function on M which attains a maximum and thus, it has to be constant by the maximum
principle for subharmonic functions. As in the proof of part (i), it follows that the Gauss
liftt G1 of f is vertically harmonic. Then, the first example of Section 3.2.1 implies that
f is £ isotropically isothermic on V', which is a contradiction. &

6.2 Surfaces whose both Gauss Lifts are not Verti-
cally Harmonic

The following result is a Lawson-Tribuzy type theorem [54], and implies that compact
surfaces in Q? whose both Gauss lifts are not vertically harmonic, do not allow nontrivial
global isometric deformations that preserve the mean curvature.

Theorem 6.3. Let f: M — Q* be a compact oriented surface. If both Gauss lifts G
and G_ of f are not vertically harmonic, then f admits at most three Bonnet mates. In
particular, f admits at most one Bonnet mate, if M is homeomorphic to S?.

Proof: Theorem 6.1 implies that f admits at most three Bonnet mates. Assume that
M is homeomorphic to S?. Theorem 6.1 shows that M*(f) = () and that there exists
at most one Bonnet of f in each one of M*(f) and M~(f). Suppose that there exist
fi € M*(f) and fo € M~(f). From Lemma 4.4(i) it follows that f; € M*(fs), which

contradicts Theorem 6.1(ii). Therefore, f admits at most one Bonnet mate. §

In the particular case of surfaces f: M — R*, the above theorem can be stated in
terms of the Gauss map g = (g4,9-): M — S2 x S2 of the surface f.

Corollary 6.4. Let f: M — R* be a compact oriented surface. If both components g.
and g_ of the Gauss map of f are not harmonic, then f admits at most three Bonnet
mates. In particular, f admits at most one Bonnet mate, if M is homeomorphic to S?.

Proof: Follows immediately from Theorem 6.3, by virtue of Remark 2.9.

The following theorem extends a recent result due to Jensen, Musso and Nicolodi
[44]. Tt shows that the conclusion of Theorem 6.3 can be strengthened, under additional
assumptions involving isotropic isothermicity.

Theorem 6.5. Let f: M — Q% be a compact oriented surface. If both Gauss lifts G
and G_ of f are not vertically harmonic and f is either isotropically isothermic, or half
totally non isotropically isothermic, on an open dense and connected subset V' of M, then
f admits at most one Bonnet mate. In particular, f does not admit any Bonnet mate, if it
is either strongly isotropically isothermic, or strongly totally non isotropically isothermic

onV.
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Proof:  Since G4 is not vertically harmonic and f is either £ isotropically isothermic,
or totally non =+ isotropically isothermic, on an open dense and connected subset V' of
M, Theorem 6.2 implies that N=(f) = §). On the other hand, since G+ is not vertically
harmonic, from Theorem 6.1(i) it follows that there exists at most one Bonnet mate of
f in M¥F(f). Therefore, f admits at most one Bonnet mate. In particular, if f is either
strongly isotropically isothermic, or strongly totally non isotropically isothermic, on V/,
Theorem 6.2 implies that N~ (f) = N7(f) = 0 and thus, f does not admit any Bonnet
mate.

Remark 6.6. In the proof of Theorem 6.1, compactness is only required for the use of
the maximum principle. This theorem and also Theorem 6.3 and Theorems 6.7, 6.9 and
6.11 of the next section still hold true if M is parabolic. In particular, this includes the
case where M is complete with non-negative Gaussian curvature.

6.3 Applications to Certain Classes of Surfaces

The theorem of Lawson-Tribuzy [54], follows as an application of Theorem 6.1.

Theorem 6.7. Let M be a compact oriented 2-dimensional Riemannian manifold and
h € C®(M). If h is not constant, then there exist at most two congruence classes of
isometric immersions of M into Q> with mean curvature h. In particular, there exists at
most one congruence class if M is homeomorphic to S.

Proof:  Assume that there exists an isometric immersion F: M — Q2 with mean
curvature function A unit normal vector field £&. Consider a totally geodesic inclusion
j: Q3 — Q! and set f = jo F. Then, f has non-parallel mean curvature vector field
hj.§ and Proposition 2.7 implies that both Gauss lifts of f are not vertically harmonic.
Assume that there exists a Bonnet mate F: M — Q3 of F and set f=joF. Lemma
5.14 implies that f € M*(f) and the proof follows from Theorem 6.1(ii).

The result of Jensen, Musso and Nicolodi [44] follows from Theorem 6.5.

Theorem 6.8. Let F: M — Q3 be a compact oriented surface with not constant mean
curvature. If F is either isothermic, or totally non isothermic, on an open dense and
connected subset V' of M, then it does not admit any Bonnet mate.

Proof: Let j: Q3 — Q? be a totally geodesic inclusion and set f = jo F. Proposition 3.3
implies that F' is (totally non) isothermic on V' if and only if f is strongly (totally non)
isotropically isothermic on V. By virtue of Theorem 6.5, our assumption implies that f
does not admit any Bonnet mate. Then, the proof follows from Lemma 5.14. g

Theorem 6.9. Let f: M — Q! be a compact oriented superconformal surface. Then f
admits at most one Bonnet mate.
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Proof:  Assume that f is non-minimal and let f be a Bonnet mate of f. Then either
feN-(f),or f e NT(f). Since My = My N M, in any case from Proposition 4.2
it follows that M; is isolated. Then, Lemma 2.3(ii) yields that the normal curvature is
everywhere non-vanishing on M ~ M;. Assume that =Ky > 0 on M ~ M;. Therefore,
+Ky >0 on M. Lemma 2.3(ii) implies that ®* = 0 and thus, f € MF(f).

We claim that G is not vertically harmonic. Arguing indirectly, assume that G is
vertically harmonic. Then, Proposition 2.8 yields that ¥ = 0 and Lemma 2.3(ii) implies
that f is totally umbilical. This contradicts the fact that M; is isolated, and the proof
of the claim follows. Hence, from Theorem 6.1(i) we obtain that M¥(f) = {f} and
consequently, M(f) = {f, f}. In the case where f is minimal, the result follows from [46]
or [66]. m

We give an application to Lagrangian surfaces in RY. Let J be a canonical complex
structure on R* which is compatible with the orientation, i.e., for orthonormal vectors
e1, e € R, the oriented orthonormal basis {ey, €2, jel, jeg} is in the orientation of R%.
Denote by Q(-,-) = (-,J - ) the associated Kéhler form. A surface f: M — R* is called
Lagrangian if f*(2 = 0. In such a case, from (Jof)oV =Vto(Jo f.) we have that
J; = r=Jofi: TM — NyM is a parallel vector bundle isometry and the second fundamental
form of f satisfies a(X,Y) = JfA <Y, X, Y € TM. Thus, the trilinear map Cy on TM
given by

Of<X’YuZ) = Q<a(X7 Y)7f*Z)

is symmetric. Associated to f are its mean curvature form Yy and the cubic differential
Oy, given by

T; =Q(H, f.0)dz, O;=Q(a(0,0), f.0)dz*

in terms of a local complex coordinate z, where Q and J, + have been extended C-linearly.
Since .J is compatible with the orientation, J;: i TM®C — Ny M ® C satisfies

JTOM = Ny M and J;TOYM = NFM.

The Maslov form wy of f, is the 1-form on M defined by w;(X) = (1/7)Q(f.X, H).
The Gauss map of a Lagrangian surface is ¢ = (g4,9-): M — S2 x St i.e., its second
component lies in a great circle of S*. Lagrangian surfaces with conformal (respectively,
harmonic) Maslov form provide examples of surfaces in R* with harmonic g, (respectively,
g-). Indeed, the following was proved in [12].

Proposition 6.10. Let f: M — (R4,j) be a Lagrangian surface. The following are
equivalent:

(1) The Maslov form wy is conformal (respectively, harmonic).

(it) The differential O (respectively, Y ) is holomorphic.

(7ii) The component g, (respectively, g_) is harmonic.



54 6. Compact Surfaces

Using Theorem 6.1, we are able to give a short proof of the following result due to He,
Ma and Wang [38].

Theorem 6.11. Let f: M — (R4,j) be a compact, oriented Lagrangian surface with
mean curvature form Y. If its Maslov form is not conformal, then there exists at most
one nontrivial congruence class of Lagrangian isometric immersions of M into (R*, j),
with mean curvature form Y.

Proof- Suppose that f, f: M — (R4, J ) are noncongruent Lagrangian surfaces with mean
curvature forms Y = Y. It follows that 7' = .J. jo J 7 LN fM — N7M is an orientation
and mean curvature vector field-preserving, parallel vector bundle isometry. Let (U, z) be
a complex chart. From our assumption, we have that C;(9, 0, ) = C#0,0, ). Hence,

(7 — T 'o ¢7, Jd) =0 on U,

where ¢, and gb}? are given by (2.11). Since ¢} — T !o ¢J§ € N, U and jf5 € N]TU, it
follows that ¢; — T~ "o ¢; =0 on U. Therefore, f e M*(f) and the proof follows from
Theorem 6.1(i) and Proposition 6.10. &

In [12] it was proved that if f: M — R* is a compact, oriented Lagrangian surface
with conformal (respectively, harmonic) Maslov form, then genus(M) < 1 (respectively,
genus(M) > 1). The classification of compact oriented Lagrangian surfaces in R* with
conformal Maslov form, was given in [12]. It turns out that there exist Lagrangian tori in
R* with non-parallel mean curvature vector field and conformal Maslov form. Lagrangian
surfaces with harmonic Maslov form are Hamiltonian minimal. Examples of Hamiltonian
minimal Lagrangian tori in R*, with non-parallel mean curvature vector field, were con-
structed in [13] and the complete classification was given in [39]. Furthermore, it was
proved in [11] that the only compact, orientable superconformal Lagrangian surface in
R* is the Whitney sphere. Therefore, there exist compact, oriented non-superconformal
surfaces in R*, whose only one of the components g, g_ of their Gauss map is harmonic.



CHAPTER 7

Surfaces with a Vertically Harmonic
Gauss Lift

The results of the previous chapter indicate that it is interesting to study surfaces in
Q? with a vertically harmonic Gauss lift. It turns out that such surfaces share common
properties both with minimal surfaces in Q? and with CMC surfaces in 3-dimensional
space forms.

7.1 A Hopf-type Theorem

In the following proposition, we show that surfaces with a vertically harmonic Gauss lift
possess a holomorphic quadratic differential and they satisfy Ricci-like conditions that
extend the well-known Ricci condition (cf. [53]) for CMC surfaces in 3-dimensional space
forms.

Proposition 7.1. Let f: M — Q* be a non-minimal surface with mean curvature vector

field H and vertically harmonic Gauss lift GL. Then:

(i) The quadratic differential ¢ = (®* HF) is holomorphic with zero-set Z(¥*) =
My (f)U{pe M : H(p) = 0}.

(ii) The functions |H| and ||[H*|| are of absolute value type.

(iii) We have that

Alog||H|| = FKn, (7.1)
Alog |HE|| = 2K £ Ky if UE £0. (7.2)

Proof: (i) The holomorphicity of ¥+ follows from Proposition 2.7. The zeros of U+ are

precisely the points where (®*, H) = 0, which is equivalent to ®* = 0 at points where
H #0.
(ii) Let (U, z) be a complex chart. From Proposition 2.7(iv) we have

V5H = +iJ"V5H.

25
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This is equivalently written as
(H? £iH*); = Fiwsy(0)(H® +iH?),

where H = H3e3 + H'ey, and {e3, e, = J1es} is a local orthonormal frame field of N M.
From [27, Lemma 9.1.] it follows that the function H? +iH* is of holomorphic type and
this proves our claim for ||H||.

From part (i), the function (¢*, HT) is holomorphic, where ¢+ is given by (2.11).
Moreover,

)\4
(" HO)P = S IH PR, (7.3)
where A is the conformal factor. Clearly, the function
A6 )
 \2(H3 £ iHY)

can be smoothly extended to the zeros of H as a holomorphic type function. Since
t| = ||H*||, this completes the proof.

(iii) Away from the zeros of H, we consider the local orthonormal frame field {e; =
H/||H||,es = Jtes} of the normal bundle. Using Proposition 2.7(iv), we find that the
normal connection form is given by

w3y = £ *xdlog ||H||.

Then (7.1) follows from (2.2) and the above.
We choose a complex chart with coordinate z, away from the zeros of ¥*. From the
holomorphicity of U* we have that

Alog |{¢*, HF)[2 = 0.

Equation (7.2) follows from (7.3) and the fact that Alog\ = —K. 1

Proposition 7.2. Let f: M — Q% be a compact surface with mean curvature vector field
H and vertically harmonic Gauss lift G+.
(i) If [ is non-minimal, then

xv = £N([[H]).

(ii) If f is neither minimal nor superconformal, then
2x £ xv = —N ([H*]).

Proof: ~ By virtue of Lemma 2.4, the proofs of (i) and (ii) follow immediately from
Proposition 7.1(ii), by integrating (7.1) and (7.2), respectively. 1
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The following result is a Hopf-type theorem for non-minimal surfaces with a vertically
harmonic Gauss lift.

Theorem 7.3. Let f: M — Q! be a non-minimal surface. If the Gauss lift G+ of
f is vertically harmonic and M is homeomorphic to S?, then f is superconformal. In
particular, f is totally umbilical if the Fuler number of its normal bundle vanishes.

Proof: From the assumption and Proposition 7.1(i) we obtain that ¥+ = 0. Since f is
non-minimal, Proposition 7.1(i-ii) implies that ®* = 0. From Lemma 2.3(ii) it follows
that f is superconformal with normal curvature +=Kx > 0. Therefore, the Euler number
of the normal bundle of f satisfies &y > 0, and it vanishes if and only if Ky =0 on M.
If xy =0, then Lemma 2.3(ii) implies that f is totally umbilical. §

Clearly, the theorem of Hopf-Chern [17,42] is an immediate consequence of the above
theorem. This result can be also seen as an extension to the case of non-minimal surfaces,
of the well-known theorem of Calabi [9] that a minimal surface of genus zero in the 4-sphere
is superminimal. For surfaces in R, an alternative proof was given by Hasegawa [37], with
essential use of the Hyperkahler structure of R*.

7.2 The Associated Family

Dajczer and Gromoll [20] proved that any simply-connected minimal surface admits a
1-parameter associated family of isometric deformations through minimal surfaces. This
family is trivial if and only if the surface is superconformal. Extending their result, we
are able to produce a new 1-parameter family of isometric deformations that preserve the
mean curvature, for any non-minimal surface in Q* with a vertically harmonic Gauss lift.
It is worth noticing that the second fundamental form of any surface in this family relates
to the initial one in a more involved way than in [20].

Theorem 7.4. Let f: M — Q? be a non-minimal, simply-connected surface. If the Gauss

lift G+ of f is vertically harmonic, then:

(i) There exists a one-parameter family of isometric immersions fif: M — Q% 6 €
St ~ R/2nZ, which have the same mean curvature with fi = f.

(ii) If f is superconformal, then f; is congruent to f for any 6.

(7ii) If there exist 6 # 0 € S' such that fi£ is congruent to fgt, then f is superconformal.

In particular, f; € M*(f),0 € S*, and M*(f) =S if f is not superconformal.

Proof: (i) For any 6 € R define the symmetric section 85 € I'(Hom(TM x TM, N;M))
by

B (X,Y) = s (a(Jz0/aX, JzopaY) — (X, Y)H) + (X, V) H,
where X,Y € TM, J;- = cosOI +sinfJ* and Jy = cosfI + sinf.J. We argue that S5
satisfies the Gauss, Codazzi and Ricci equations. Clearly, we have that

(B =07 + 70t (87)30 = PP 4 T (7.4)
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and
(BE) D = (D),

In terms of a local complex coordinate z with conformal factor A, by using (2.11) and (7.4)
it is straightforward to check that 8; satisfies the Gauss, Codazzi and Ricci equations
(2.12)-(2.14). By the fundamental theorem of submanifolds, for every 6 € R there exists
an isometric immersion fei: M — Q% and an orientation-preserving parallel vector bundle
isometry Ty: NyM — N f;tM such that « = Tho ﬁgt. Clearly, Ty H is the mean curvature

vector field of fejc7 for any 6 € S' ~ R/27Z and fi = f.

(ii) From Proposition 2.8 it follows that ®* = 0. Then, (7.4) yields that (5;)®? = &
for any 6 € S!. This implies that each Ty preserves the Hopf differential and the mean
curvature vector field and consequently, it preserves the second fundamental form as well.
This shows that the family is trivial.

(iii) Without loss of generality, we may assume that 0 = 0. The distortion differential
of the pair (f, fi) vanishes identically. Lemma 4.1(i) implies that any orientation and
mean curvature vector field-preserving parallel vector bundle isometry 7': NyM — N fétM
preserves the Hopf differential, and consequently the second fundamental form as well.
Hence, 85 = T, ' oay, = a and (7.4) implies that (1 — eT¥)®* = 0. Since 6 # 0, the last
relation yields ®* = 0 and thus, f is superconformal.

In particular, if f is not superconformal, then from (7.4) it follows that the distortion
differential Qg of the pair (f, fi), 6 # 0, satisfies Qf = 0 and therefore f; € M*(f).
The proof now follows. &

The following proposition determines the moduli space of simply-connected surfaces
with parallel mean curvature vector field. The two-parameter family given here, coincides
up to a parameter transformation, with the one given by Eschenburg-Tribuzy [29].

Proposition 7.5. Let f: M — Q! be a simply-connected surface with parallel mean

curvature vector field H # 0. Then:

(i) There exists a two-parameter family of isometric immersions fo,: M — Q2, (0, ¢) €
S' x S, which have the same mean curvature with foo = f.

(ii) The family is trivial if and only if f is totally umbilical.

(iii) If f is not totally umbilical, then M(f) =S' x S’

Proof: (i) Since both Gauss lifts are vertically harmonic, from Theorem 7.4 we may
consider the two-parameter family fo, = (f;)5,0,¢0 € S'. Clearly, fy, has the same
mean curvature with f.

(ii) From Theorem 7.4, it is clear that fp, is congruent to f; ; for (6, ) # 0,0) €
St x St if and only if f is superconformal. Since H is parallel, this can only occur if f is
totally umbilical.

(iii) Since f is not superconformal, Theorem 7.4 implies that M~(f) = S! and
M*E(f) =S!. The proof follows by virtue of Theorem 5.3(iv). 1
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Remark 7.6. We recall (cf. [14,69]) that any surface with parallel mean curvature vector
field H # 0 splits as f = j o f/, where j: Q% — Q¢ > ¢, is a totally umbilical inclusion
and f': M — Q3 is a CMC-h/ surface with h' = £(||H||?> — (¢ — ¢))"2. Tt is known
that there exists locally a bijective correspondence (the so-called Lawson correspondence
53, Theorem 8]) between CMC surfaces in 3-dimensional space forms. Since fp, = jo fo.,
and [|Hy, || = ||H]|, the surfaces f’ and fo., are in Lawson correspondence for any 6, ¢ €
S'. In particular, fya,_g is congruent to j o fj, where f§, 6 € S, is the associated family
of f/in Q% as a CMC surface.

Example 7.7. Tight proper Bonnet surfaces in R* with a vertically harmonic Gauss lift,
that are strongly isotropically isothermic.

We consider the product in R* of two plane curves v;, 72, as in the example 5 of Section
3.2.1 and we adopt the notation used there. Assume that the curvature of the curve v;
is kj(s;) = esj,j = 1,2, with ¢ # 0, and we restrict the product surface f such that
f: M — R* is simply-connected and umbilic-free. Clearly, f has flat normal bundle and
does not lie in any totally umbilical hypersurface of R%. Moreover, from (3.27) it follows
that f is strongly isotropically isothermic.

Hasegawa [36] proved that the Gauss lift G_ of f is vertically harmonic. Since f
is neither minimal, nor superconformal, from Theorem 7.4 it follows that M~ (f) = S'.
Therefore, f is proper Bonnet.

Moreover, since f is + isotropically isothermic, from Proposition 5.11 it follows that
either M*(f) = {f}, or M*(f) =S'. We claim that M*(f) = {f}. Arguing indirectly,
assume that M*(f) = S'. Then, Theorem 5.7 implies that

I (GO
AP

On the other hand, since M~(f) = S!, Theorem 5.7 yields that
Alog||H™ || — 2K = 0.

Alog |[Ht]| — 2K =

Since Ky = 0 everywhere, it follows that [|H~|| = ||H || and the above two relations imply
that the Gauss lift G of f is vertically harmonic. Then, the mean curvature vector field
of f is parallel and thus, f lies in some totally umbilical hypersurface of R*. This is a
contradiction and the claim follows. Then, Theorem 5.3(iv) implies that M(f) = S'.

7.3 The Structure of the Moduli Space

7.3.1 Compact Surfaces: The Main Result

Although non-minimal surfaces in Q* with a vertically harmonic Gauss lift share common
properties with both minimal surfaces in Q! and CMC surfaces in 3-dimensional space
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forms, an essential difference between them is that the associated family of Theorem 7.4
does not necessarily coincide with the whole moduli space M(f). However, for compact
surfaces with a vertically harmonic Gauss lift, we are able to determine the structure of
the moduli space under appropriate geometric or topological assumptions.

Theorem 7.8. Let f: M — Q! be a compact oriented surface with vertically harmonic

Gauss lift G+.

(i) If the mean curvature vector field of f is non-parallel, then the moduli space M(f)
is the disjoint union of two sets, each one being either finite, or the circle S'.

(i) If c =0 and the Euler numbers x and xn of the tangent and normal bundles satisfy
X # Fxn, then M(f) is a finite set.

For the proof of the above theorem, we need a series of auxiliary results, that we
present in the following two subsections.

7.3.2 Non-Simply-Connected Surfaces

Let M be a 2-dimensional oriented Riemannian manifold with nontrivial fundamental
group and f: M — Q! a non-minimal surface. Consider the universal cover (M,7)
of M, equipped with metric and orientation that make the covering map 7: M — M
an orientation-preserving local isometry. Then, f = fo#: M — Q! is an isometric
immersion. It is clear that the Gauss lift G4 of f is vertically harmonic if and only if the
Gauss lift G4 of f is vertically harmonic.

If (f = fi, f2) is a pair of Bonnet mates, then ( fi, f2) is also a pair of Bonnet mates,
where f; = fjo#, j = 1,2. Moreover, fo € N*(f1), if and only if fo € N*(f)).
If G4 is vertically harmonic and fo € M*(f;), then from Theorem 7.4 it follows that
f> is congruent to some f(, in the associated family of f;. Therefore M*E(f) can be
parametrized by the set

{9 € S' : there exists fg: M — Q! such that fei = fpo 7?} :

In particular, if H is parallel, then by Proposition 7.5, the moduli space M(f) can be
parametrized by the set

{(9, ¢) € S' x S : there exists fp,: M — Q} such that ﬁw = fop0 7”%} .

The following is essential for the proof of Theorem 7.8. For its proof we adopt tech-
niques used in [24,62,67].

Proposition 7.9. Let f: M — Q% be a non-minimal surface with mean curvature vector

field H.

(i) If the Gauss lift G+ of f is vertically harmonic, then M*(f) is either a finite set, or
the circle S.
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(ii) If H is parallel, then either M(f) = S' x S, or it locally decomposes as M(f) =
Vo U V1, where each Vg, d = 0,1, is either empty, or a disjoint finite union of d-
dimensional real-analytic varieties.

Proof: (i) We claim that for any ¢ € D in the group of deck transformations of the
universal cover 7: M — M, the surfaces fa M — Q! in the associated family of f=for
and fe oo are congruent for any f € S'. It is sufficient to show the existence of a parallel
vector bundle isometry between the normal bundles of f(jt and f(jt o o that preserves the
second fundamental forms. Let Ty be the parallel vector bundle isometry between the
normal bundles of f and fei such that

Oéf'ei(X, Y)=T, (j;h(af(jq;gﬂx, j:,:g/4Y) — (X, Y>Hf> + (X, Y>Hf)

for any X,Y € T'M, where J}Nz cos Hf—i—sin 0J+, Jy = cos0I +sin0J and J*, J stand for
the complex structures of NyM and T'M, respectively. Since o is a deck transformation,
we have that f oo = f and thus, the normal spaces satisfy N;M(p) = N;M(o(p)) at
any p € M. We define the vector bundle isometry ¥g: N f‘gzM — N f‘eioaM which is given
pointwise by

Zolp(&) = Tolow) © (Tuly) ™ (€), € € Ny, M(p).
The second fundamental forms of f(jt and fgi o o are related at p € M by
Ao p(X,Y) = aptlep)(0.X,0.Y)
= Tilow) (Jia(flot) (Tr0/a00 X, Traa0.Y) = (X, YV Hf|o(r))
+(X, Y>Hf|cr(p)>
= Tolot) (a2 (@fuoln (Tro/a X, TgopaY) = (X, V) Hpo, )
+HX,Y) Hy,,ly)

= Tilot) (Jia(lp(Tropa X, JropaY) = (X, Y)Hl, ) + (X, V) Hl,)
= Yolpoaplp(X,Y)

forany X,Y €T M and thus, 2y preserves the second fundamental forms. For any section
¢ of NfoiM we have ¥y = Ty(no o 1) oo, where & = Tyn for a section 7 of N;M. Using

the fact that for any section 6 of N fM and any deck transformation ¢ we have that
V(6 00) =V 0 00, we obtain
(VxZg)é = Vx (Tg(?’] oo Mo 0) — 1Ty (V)L(n o 0_1) oo
= (Vi‘ XTg(noafl)) oo —Ty (V)l(noafl) ey
= Tg(VUX(noa )—V§noa_1)oa,
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where, by abuse of notation, V* stands for the normal connection of f, f(,i and fgt oo.
Observe that
Vox(noo™)=Vxnoo™,
and thus Xy is parallel and the claim has been proved.
This allows us to define a homomorphism Sy: D — Isom(Q?) for each 6 € [0, 27], such
that

fioo="54(0)o f, o€D.

Thus, € M™*(f) if and only if Sp(D) = {I}. Assume that M*(f) is infinite and let
{6,,} be a sequence in M*(f) which converges to some € [0, 27]. From Sy, (D) = {I}
for all m € N we obtain that Sy, (D) = {I}. Let 0 € D. By the mean value theorem
applied to each entry (Sy(o));i of the corresponding matrix, we have

d .
o (80(0)) () = 0 (75)

for some 6,, which lies between 6, and 6,,. By continuity it follows that

S (Su())l00) =0,

Consider the sequence {Qm} that converges to #y and observe that in view of (7.5), a
similar argument gives

o (Soe)elt) =

Repeating the argument yields

o (5u())e(60) = 0

for any integer n > 1. From the definition of the associated family, it is clear that f;"
depends on the parameter 6 in a real-analytic way. Since Sp(o) is an analytic curve in
Isom(Q?), we conclude that Sy(c) = I for each o € D, and thus M*(f) = S'.

(i) We claim that for any o € D, the surfaces fp,: M — Q* and fy, 0 0 in M(f)
are congruent for any (6, ¢) € S' x Sl Let Ty, be the parallel vector bundle isometry
between the normal bundles of f and fg#, such that

ag, (X,Y) =Ty, (J(ew )/2 (af(je /X Jo—gyaY) — (X, Y)Hf) + (X, Y>H];)

for any X,Y € TM. We define the vector bundle isometry Yot Ny, M — N; M

fo,p00
which is given pointwise by

E9,w|p(§) = T07w|0(p) © (T97w|p)_1 (f), £ € NfewM(p)-
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As in the proof of part (i) above, it can be shown that ¥ , is parallel and preserves the sec-
ond fundamental forms, and the claim follows. This allows us to define a homomorphism
Spp: D — Isom(Q2) for each 0, ¢ € [0, 27], such that

f(hp oo = Sp,(0)0 fe,w, oeD.

Clearly, (0,¢) € M(f) if and only if Sy (D) = {I}. Since fp, is real-analytic with
respect to (0, ), it follows that M(f) is a real-analytic set. According to Lojacewisz’s
structure theorem [51, Theorem 6.3.3.], M(f) locally decomposes as

M(f) =Vo UV U,

where each V;,0 < d < 2, is either empty, or a disjoint finite union of d-dimensional
real-analytic subvarieties. If M(f) # S' x S!, then V, = () and this completes the proof. 1

7.3.3 Surfaces in R*

In the sequel, we deal with surfaces in R* whose one component of the Gauss map is har-
monic. We regard the Grassmannian Gr(2,4) of oriented 2-planes in R* as a submanifold
in A2R* via the Pliicker embedding. The inner product of two simple 2-vectors in A2R*
is given by

({(v1 A g, w1 A wa)) = det((v;, wy)).

Then, A?R* splits orthogonally into the eigenspaces of the Hodge star operator %, denoted
by AZR* and A2R*, corresponding to the eigenvalues 1 and —1, respectively. An element
a Abof Gr(2,4), where a,b are orthonormal vectors in R*, decomposes as

1
aNb=(aAb);+ (aND)_, where (a/\b)i:§(a/\b:|:*(a/\b)).

Therefore, Gr(2,4) can be identified with the product S% x S?, where S3 is the sphere of
radius 1/v/2 in A2ZR*, centered at the origin.

Let f: M — R* be a non-minimal surface, with mean curvature vector field H and
Gauss map g = (g4,9-): M — S% x S2. In terms of a local complex coordinate z away
from the zeros of H, the components of the Gauss map are given by

l

H  ANHT, (7.6)
IH]*

1 _
g+ = _pf*a/\f*aq:

where ) is the conformal factor. The differential U+ is written as

U* = p*dz?, where ¢* = (¢, H) (7.7)
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and ¢* is given by (2.11). The Gauss and Weingarten formulas become respectively,

= 2= 297

Vofid = (log ), f.0+ H + HT, 7.8
*’ (o X)= L0+ e+ e (7:8)
N _ 2

Vold = (H +HY), (7.9)
o o lHE, . 2wF - viHEHT)

Vol* = TG0 = Sy f0 b S (7.10)

where V is the induced connection on the induced bundle f*TRY.

Lemma 7.10. Let f: M — R* be a non-minimal surface. If the component g+ of the
Gauss map of f is harmonic, then its height functions in A2R* are eigenfunctions of the
elliptic operator A+ 2 (|H||? + ||H*|]?), corresponding to the zero eigenvalue.

Proof:  Let z be a local complex coordinate away from the isolated zeros of H (see
Proposition 7.1(ii)). By using (7.8)-(7.10), equation (7.6) yields

dinp*

= )\QHHHQf*é/\Hi—z’f*&/\HjF. (7.11)

(gi)z

Differentiating (7.11) with respect to z, we obtain that the normal component of (g+).z
with respect to S% is given by

((92):) = =5 (IHIP? +1#1P) 0

For an arbitrary vector v+ € AZR* we have

A{gava)) = (lrlgs) + 15 ((g):e) 0,

where 7(g+) is the tension field of g4. The result follows from the above and the har-
monicity of g+. I

Lemma 7.11. Let f: M — R* be a surface, which is neither minimal nor superconformal.
Assume that g+ is harmonic and that there exist surfaces f; € M*(f) with fgf = fjom,
and vectors vl € AZR*\ {0}, j =1,...,n, such that the Gauss maps ¢/ = (gi,g];) of f;
satisfy

({gh,vl)) = 0. (7.12)
=1

J

Then:
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(i) The differential U* = u*dz is holomorphic, where
ut = ((f50 AHT L)) (7.13)
j=1
and H; is the mean curvature vector field of f;.

(ii) If U* = 0, then
> efi{(gh, vh)) = 0. (7.14)
=1

Proof:  From (7.4) and since by definition \I/]jfj = <<I>]j5j, HF), we have that

\Ili =Tyt j=1,... n

Let (U, z) be a complex chart. On U ~\ Z(¥%), (7.11) yields

; . diE = : .
(gh). = ™ )‘2||H||2fj*a/\ H;E —ifiONHT, j=1,... n (7.15)

Differentiating (7.12) with respect to z and using (7.15), we find that

n

o~ o |
+_ v Fi0; ) :I: J +
ut = AQHHHZZG (f10 A HE vL)) on U~ Z(W%). (7.16)

7=1
From Proposition 2.7 it follows that H ]i is an anti-holomorphic section. Hence,
VyH: =0 and (|H|").=2(V3H/, H), j=1,...,n. (7.17)

Differentiating (7.16) with respect to z, and using (7.9), (7.10), (7.17), (7.6) and (7.16),
we obtain that

+ n o

up =ut (10g A2r|bH||2> + 20 T ((gh,vh)) on U\ Z(¥%). (7.18)
z 7j=1

On the other hand, differentiating (7.13) with respect to z, and using (7.8), (7.10), (7.17),

(7.6) and (7.13), we find that

z

ut = u* (log ()\ZHHH2>>z — 2ip* Zn: eF (gl v])) on U~ Z(T%). (7.19)
j=1

(i) From (7.9), (7.10), (7.17) and (7.6), we have that
)\2 H 2 n ) )
= A S () on v (7.20

j=1

+
Uz
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and the claim follows from (7.12).
(i) Using (7.18) and (7.19), we obtain that

n 0 . ) Z'ui wi
ZI€¥ 9J<<gg|:7 ’Uzt>> = 4:1#7:‘: (].Og XLHI{H4> on U AN Z(\Ij:t) (721)
J= z

and (7.14) follows from (7.21). &

Theorem 7.12. Let f: M — R* be a non-superconformal isometric immersion of a
compact, oriented 2-dimensional Riemannian manifold, with mean curvature vector field
H and Gauss map g = (9+,9-): M — S2 x S%.

(i) If g+ is harmonic and x # Fxn, then ME(f) is a finite set.

(i) If H is parallel and x # 0, then M(f) is a finite set.

Proof: (i) Suppose that M*(f) is infinite and consider surfaces f; € M*(f) such that
f;;:fjofr,jzl,...,n,with0<6’1 < o< <morm<by <--- <6, <2m. Weprove
that the height functions of the A2R*-component of the Gauss maps of f; are linearly
independent. Suppose to the contrary that (7.12) holds for vectors v} € AZR* \ {0},
j=1...,n.

We claim that U* = 0. Arguing indirectly, assume that 4* # 0. From Lemmas 2.2

and 7.11(i), it follows that its zero-set Z(U®) is isolated. Let 2 be a complex coordinate
in a connected neighbourhood U C M \ (Z(V*)U Z(U*)). From (7.18) and (7.19), we

obtain o

Using Proposition 7.1(i) and Lemma 7.11(i), we have

(1 (Qﬂ)) —o.

P = c(u™)? (7.22)

on U, for a non-zero constant ¢ € C. It is easy to see that c is independent of the complex
coordinate and thus, ¥ = ¢ U* @ U* on M. We argue that Z(V*) = Z(UF) # 0.
Indeed, if Z(¥*) = ), then the holomorphic differential U is everywhere nonvanishing
and by the Riemann-Roch theorem we obtain that y = 0. On the other hand, Proposition
7.1(i) implies that H is everywhere nonvanishing and Proposition 7.2(i) gives xy = 0.
This contradicts our assumption. Let Z(¥%) = {p1,...,pr} and consider a complex chart
(U, z) around p,,r = 1,...,k, with z(p,) = 0. Since U* = u*dz is holomorphic, there
exists a positive integer m, such that around p, we have

Therefore,

u* = 2™ @, where 4 is holomorphic with @(0) # 0. (7.23)
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Hence, from (7.22) we have that |¢%|? = |z|*™|c|?|a|*, or equivalently, bearing in mind
(7.3) and (7.7)

| H|?|HE||? = |2|*™u;, where u; is smooth and positive.

Proposition 7.1(ii) implies that there exist non-negative integers [,, s, such that

H[{H2 = |z 2l7-u2 and HHﬂ:HQ _ |Z 28"’&3,

where uy, ug are smooth and positive. It is clear that s, = 2m, —1[,.. From (7.21), by using
(7.22), (7.23) and the above, on U \ Z(¥*) we have that

Z”: %0 i) iz H|? ut iN2 b 2l 2™
(& == =
= 2c(u®)? \N||H|? ),  2cz?™a? \N220Zlruy )

or equivalently

1 iXu a a
:FZG 2 _
Ze ((gh, o)) = Smetl 9002 <(mr l?“))\QUQ + z()\zu)z) '

If m, # [, for some r = 1,..., k, then the right-hand side of the above has a pole at z = 0,
whereas the left-hand side is bounded. Hence, m, = [, = s, for any r = 1,... k. Then,
Proposition 7.2 implies that y = Fyx, which is a contradiction. Therefore, Y* = 0 and
this proves the claim.

According to Lemma 7.11(ii), (7.14) is valid, or equivalently

> cosfi{{gh,vh)) =0 and Y sind;{{gh,vi)) = 0.

=1
Eliminating ({g’,v})), we obtain
1

(g, wh)) =0,

S
|

<.
Il

where w, = sin(f, — Qj)vi # 0,7 =1,...,n— 1. By induction, we finally find that
{{g",wx)) = 0 for some non-zero vector wy € ALR?*. Therefore, g% takes values in a
great circle of S2 and thus, its Jacobian Jyp vanishes. On the other hand, we know that
(cf. [41, Proposition 4.5.])

K:jgi +jgﬁ and KN:jg:’f_—jgﬁ'

Hence, we conclude that K = K, which contradicts our topological assumption. There-
fore, we have proved that the height functions of the A2 R*-component of the Gauss maps
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of f; are linearly independent. This contradicts Lemma 7.10, since the eigenspaces of an
elliptic operator are finite dimensional. Hence, M*(f) is a finite set.

(ii) Assume that M(f) is infinite. Then there exists a sequence f, € M(f) such that
fgk,% = fr o, for which (0}, ;) # (0, om) for I # m. Without loss of generality, we
may assume that either 0 < 6, < 0,, < m, or 7 < 6, < 0,, < 2m, for I,m € N with
[ < m. We prove that the height functions of the A% R*-component of the Gauss maps of
fj» 7 =1,...,n, are linearly independent. Suppose to the contrary that (7.12) holds for
vectors v/ € A2R*~ {0}, j =1,...,n. From the construction of the associated family
in Proposition 7.5 it follows that \IJ e W~ Consequently, the relations (7.15)-(7.21)
are valid and thus, the conclusion of Lemma 7.11 also holds. Taking into account that
Kx = 0, we can prove as in the proof of part (i) that our topological assumption implies
U~ = 0. The remaining of the proof is the same with the one of part (i). n

7.3.4 Proof of the Main Result

We are now ready to give the proof of our result for compact surfaces.

Proof of Theorem 7.8: (i) From Proposition 7.9(i) we know that M*(f) is either finite,
or the circle S'. We show that the same holds true for the set M*(f) U MT(f).

Suppose that M*(f) U MT(f) is infinite. Since Gz is not vertically harmonic, from
Theorem 6.1(i) it follows that there exists at most one Bonnet mate in MT(f) and thus,
M*(f) is infinite. For f € M*(f), Theorem 6.1(i) implies that M*(f)UMT(f) = M*(f)
and the proof follows from Proposition 7.9(i) applied to the surface f.

(ii) By virtue of Theorem 6.9, we assume that f is non-superconformal. The case
where H is parallel has been proved in Theorem 7.12(ii). Assume that H is non-parallel
and suppose to the contrary that M(f) is infinite. From Theorem 7.12(i) it follows that
M=(f) is finite. Since g+ is not harmonic, Theorem 6.1(i) implies that there exists at
most one Bonnet mate in M¥(f) and therefore, M*(f) is infinite. Theorem 6.1(i) yields
that M*(f) U MT(f) = M*(f) for any f € M*(f), which contradicts Theorem 7.12(i)
for f. 1
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Locally Proper Bonnet Surfaces

An oriented surface f: M — Q% is called locally proper Bonnet, if every point of M
has a simply-connected neighbourhood U such that f|y is proper Bonnet. The following
proposition shows that there do not exist compact simply-connected surfaces in Q! that
are globally proper Bonnet.

Proposition 8.1. Let f: M — Q! be an oriented surface. If M is homeomorphic to S?,
then f admits at most one Bonnet mate.

Proof:  If both Gauss lifts of f are not vertically harmonic, then Theorem 6.3 implies
that f admits at most one Bonnet mate. Assume that f has a vertically harmonic Gauss
lift. We claim that f is superconformal. Indeed, if f is non-minimal then Theorem 7.3
yields that it is superconformal. If f is minimal, the claim follows by a well-known result
of Calabi [9]. Then, Theorem 6.9 implies that f admits at most one Bonnet mate. &

Remark 8.2. From the above proposition it follows that Theorem 5.1 holds for any
simply-connected surface. Moreover, for our results in Chapter 5 concerning proper Bon-
net surfaces, the non-compactness assumption is not restrictive at all.

In order to state the following proposition, we recall that if f: M — Q! is a non-
minimal, simply-connected proper Bonnet surface, then Theorem 5.3(iv) implies that
M(f) is a smooth manifold.

Proposition 8.3. Let f: M — Q% be a locally proper Bonnet surface. Then:

(i) FEither f is minimal, or int{p € M : H(p) =0} = 0.

(i) If f is non-minimal, then for every p € M there exists a submanifold L"(p),1 <
n < 2, of the torus S' x St, St ~ R/27Z, with the property that L™(p) is also a
submanifold of M(f|y) for every sufficiently small simply-connected neighbourhood
U of p. In particular, for every point of M, a submanifold of the torus with this
property is either St = S' x {0}, or S} = {0} x S".

69



70 8. Locally Proper Bonnet Surfaces

Proof: (i) Arguing indirectly, assume that f is locally proper Bonnet, non-minimal and
int{p € M : H(p) = 0} # 0. Let p be a boundary point of {p € M : H(p) = 0}.
Then, there exists a simply-connected complex chart (U, z) around p such that f|y is
proper Bonnet and non-minimal. By virtue of Theorem 5.3(iii), we may assume that
M=(fly) = S'. Let f € M*(f|y). From Proposition 4.2 it follows that M (f|y) is
isolated. Since M (f|y) = MF(f) N U, we may assume that p and U are such that
M (f|) = 0. Then, the Codazzi equation and (3.18) imply that

h*=0 on Unint{pe€ M : H(p) = 0}. (8.1)

Appealing to Proposition 5.2(i), there exists a harmonic function 0 € C*(U; (0,27))
satisfying (4.4) on U, such that the distortion differential of the pair (f|y, f) is given by
(4.2) on U. From (8.1) and (4.4) it follows that the harmonic function 6% is constant on
Unint{p € M : H(p) = 0} and thus, constant on U. Then, (3.18) and Proposition 2.7
imply that the Gauss lift G+ of f is vertically harmonic on U. From Proposition 7.1(ii)
it follows that ||H|| is an absolute value type function on U. Since ||H|| vanishes on an
open subset of U, this implies that H = 0 on U. This is a contradiction, since f|y is
non-minimal.

(ii) Assume that f is non-minimal and let p € M. There exists a simply-connected
complex chart (V, z) around p such that f|y is proper Bonnet. From part (i) it follows that
f|v is non-minimal and Theorem 5.3(iii) implies that either M~ (f|y) = S', or M*(f|y) =
S'. Assume that M*(f|) = S'. By virtue of Remark 5.4, we parametrize M*(f|y) such
that (5.2) is valid at p and we write ME(f|y) = S'. For every sufficiently small simply-
connected neighbourhood U of p we have that U C V and therefore, ME(f|y) = S
Appealing to Theorem 5.3(iv), it is clear that S. is a submanifold of M(f|y). 1

Let f: M — Q! be a non-minimal locally proper Bonnet surface. By virtue of Proposi-
tion 8.3(ii) we give the following definition; the surface f is called uniformly locally proper
Bonnet if there exists a submanifold L™ 1 < n < 2, of the torus S' x S, S ~ R/277Z,
with the property that for every p € M, L™ is also a submanifold of M(f|y) for every
sufficiently small simply-connected neighbourhood U of p. In this case, L™ is called a
deformation manifold for f. Moreover, f is called locally flexible proper Bonnet if the
torus S! x St is a deformation manifold for f.

Lemma 8.4. A surface f: M — Q% is uniformly locally proper Bonnet with deformation
manifold SL if and only if every point of M has a simply-connected neighbourhood U such
that M*(f|y) = S'. Moreover, if Sk is a deformation manifold for f, then the set M (f)
is isolated.

Proof:  Assume that S} is a deformation manifold for f. Then, every point of M has
a simply-connected neighbourhood U such that SL is a submanifold of M(f|y). From
Theorem 5.3(iv) it follows that M*(f|;) = S'. The converse follows in a similar manner
with the proof of Proposition 8.3(ii).
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Suppose now that that Si is a deformation manifold for f and arguing indirectly,
assume that M (f) has an accumulation point p. Then, there exists a neighbourhood U
of p such that M*(f|y;) = S'. Proposition 4.2 implies that Mg (f|y) is isolated. This is
a contradiction, since Mg (f|y) = M5 (f)NU. a

From Theorem 7.4 and the above lemma, it follows that surfaces in Q! that are
neither minimal, nor superconformal and whose Gauss lift G is vertically harmonic, are
uniformly locally proper Bonnet with deformation manifold SL. The following theorem
shows that the converse is also true for compact surfaces.

Theorem 8.5. Let f: M — Q% be a non-minimal compact oriented surface. Then, f is
uniformly locally proper Bonnet with deformation manifold SL if and only if the Gauss
lift G+ of f is vertically harmonic and non-conformal.

Proof: Assume that S} is a deformation manifold for f. Lemma 8.4 implies that Mg (f)
is isolated. From Lemma 2.3(ii) and Proposition 2.5 it follows that the Gauss lift G+ of
f is non-conformal. By virtue of Lemma 8.4 and Theorem 5.7, it follows that equation
(5.9) is valid at every point of M. By integrating (5.9) on M yields

/Mmognﬂin —/M(QKiKN) - /Mw. (8.2)

Moreover, Lemma 8.4 and Proposition 5.5(ii) imply that ||H*|| is an absolute value func-
tion on M. Therefore, from Lemma 2.4 it follows that

| Alog[#5]] = —2nN (3=,
On the other hand, Theorem 3.5 and Propositions 3.4 and 5.5(i) yield that
| (2K £ Ky) = —2mN (7).

From the above two relations it follows that the left hand side of (8.2) vanishes and thus
|IT"(G+)|| = 0 on M. Therefore, the Gauss lift G+ of f is vertically harmonic.

Conversely, assume that the Gauss lift G4 of f is vertically harmonic and non-
conformal. By virtue of Lemma 2.3(ii), Proposition 2.5 implies that f is non-minimal
and M # Mg (f). From Proposition 7.1(ii) it follows that Mg (f) is isolated. Then, The-
orem 7.4 implies that every point in M has a simply-connected neighbourhood U such
that M*(f|y) = S!. The proof now follows from Lemma 8.4. §

Theorem 8.6. Let f: M — Q! be a non-minimal, compact oriented surface. Then, f is
uniformly locally proper Bonnet if and only if it has a vertically harmonic, non-conformal

Gauss lift.
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Proof: By virtue of Lemma 8.3, either S, or S, is a deformation manifold for f. The
proof follows immediately from Theorem 8.5.

Theorem 8.7. There do not exist compact oriented superconformal surfaces in Q! that
are locally proper Bonnet.

Proof: For superminimal surfaces, the proof follows from [46,67]. Let f: M — Q! be
a non-minimal, compact superconformal surface. Arguing indirectly, assume that f is
locally proper Bonnet.

We claim that the normal curvature of f does not change sign. By virtue of Lemma
8.3(ii) and Theorem 5.3(iii), every point of M has a neighbourhood U such that either
M= (fly) = S', or M*(f|y) = S'. Then, Proposition 4.2 implies that either M, (f|v),
or My (f|y) is isolated. Since M (f|y) = M (f) N U and M,(f) = My (f) N M (f), we
deduce that M;(f) is isolated. From Lemma 2.3(ii) it follows that the normal curvature
of f vanishes at isolated points only, and this proves the claim.

Assume that + Ky > 0. Lemma 2.3(ii) implies that ®* = 0. Therefore, M*(f|y) =0
for every U C M. Since f is locally proper Bonnet, from Theorem 5.3(iii) and Lemma 8.4
it follows that f is uniformly locally proper Bonnet with deformation manifold SljF. Then,
Theorem 8.5 implies that the Gauss lift G+ is vertically harmonic and non-conformal.
On the other hand, since ®* = 0, from Proposition 2.7 it follows that G is vertically
harmonic. Since both Gauss lifts of f are vertically harmonic, the mean curvature vector
field of f is parallel in the normal connection. Therefore, Ky = 0 on M. Proposition 2.5
then implies that G is conformal, which is a contradiction. §

Corollary 8.8. There do not exist uniformly locally proper Bonnet surfaces in Q} of
genus zero.

Proof: Arguing indirectly, assume that M is homeomorphic to S? and let f: M — Q¢
be a uniformly locally proper Bonnet surface. By virtue of Lemma 8.3(ii), assume that
SL is a deformation manifold for f. Theorem 8.5 implies that the Gauss lift G1 of f is
vertically harmonic. Then, from Theorem 7.3 it follows that f is superconformal. This
contradicts Theorem 8.7. 1

In Chapter 5, we have shown the existence of flexible proper Bonnet surfaces in Q?
that do not lie in any totally umbilical hypersurface of Q? (see Remark 5.15). The
following theorem shows that for compact surfaces, local flexibility characterizes surfaces
with parallel mean curvature vector field. Therefore, from [14,69] it follows that a compact
locally flexible proper Bonnet surface lies in some totally umbilical hypersurface of the
ambient space.

Theorem 8.9. A compact oriented surface f: M — Q is locally flexible proper Bonnet
if and only if it has non-vanishing parallel mean curvature vector field and genus(M) > 0.
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Proof:  Assume that f is locally flexible proper Bonnet. Then, f is non-minimal and
both of S! and S} are deformation manifolds for f. Theorem 8.5 implies that both Gauss
lifts of f are vertically harmonic. Therefore, f has non-vanishing parallel mean curvature
vector field. Moreover, Corollary 8.8 yields that genus(M) > 0.

Conversely, assume that f has non-vanishing parallel mean curvature vector field and
genus(M) > 0. Since M is not homeomorphic to S?, it follows that f is not totally
umbilical. Then, Lemma 2.3(i) yields that the Hopf differential ® of f does not vanish
identically on M. On the other hand, the Codazzi equation implies that ® is holomor-
phic. Therefore, from Lemmas 2.2 and 2.3(i) it follows that the umbilic points of f are
isolated. Then, Proposition 7.5(iii) implies that every point of M has a simply-connected
neighbourhood U such that M(f|y) = S' x S!. Therefore, f is locally flexible proper
Bonnet. g

An immediate consequence of Theorems 5.13 and 8.9 is the following result due to

Umehara [65].

Theorem 8.10. Let F: M — Q2 be a compact oriented surface with genus(M) > 0. If
F is locally proper Bonnet, then it has constant mean curvature.

Proof: Let j: Q3 — Q! be a totally geodesic inclusion and set f = jo F. From Theorem
5.13 it follows that f is locally flexible. Theorem 8.9 implies that f has parallel mean
curvature vector field and therefore, the mean curvature of F' is constant. g
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Abstract

We study the Bonnet problem for surfaces in 4-dimensional space forms Q2. Two isometric
surfaces are said to have the same mean curvature if there exists a parallel vector bundle
isometry between their normal bundles that preserves the mean curvature vector fields.
Noncongruent surfaces with the same mean curvature are called Bonnet mates. A surface
in Q! is called a Bonnet, or a proper Bonnet surface, if it admits either at least one, or
infinitely many Bonnet mates, respectively.

We introduce the notions of isotropically isothermic and strongly isotropically isother-
mic surfaces in Q? as a generalization of the notion of isothermic surfaces in Q3 and we
show that isotropic isothermicity is a conformally invariant property.

We show that if a non-compact simply connected surface f: M — Q2 is not proper
Bonnet, then it admits either at most one Bonnet mate, or exactly three. If such a surface
is proper Bonnet, then the moduli space M(f) of congruence classes of all isometric
immersions of M into Q! that have the same mean curvature with f, is diffeomorphic
to a manifold. Proper Bonnet surfaces are distinguished in two categories: the tight
surfaces whose moduli space is 1-dimensional with at most two connected components
diffeomorphic to S' ~ R/277Z, and the flexible ones whose moduli space is diffeomorphic
to the torus S* x S'. We prove that isotropic isothermicity characterizes proper Bonnet
surfaces and in particular, strong isotropic isothermicity characterizes the flexible surfaces.
Moreover, we show that a half totally non isotropically isothermic surface is always a
Bonnet surface which in particular, admits exactly three Bonnet mates if it is furthermore
strongly totally non isotropically isothermic. We also prove that a Bonnet surface lying in
a totally geodesic hypersurface of Q* with non-constant mean curvature, admits at least
two Bonnet mates that do not lie in any totally umbilical hypersurface of Q2.

We prove that if both Gauss lifts of a compact surface to the twistor bundle are not
vertically harmonic, then the surface admits at most three Bonnet mates. In particular, we
show that such a surface admits at most one Bonnet mate, under additional assumptions
involving isotropic isothermicity.

We show that non-minimal surfaces with a vertically harmonic Gauss lift possess a
holomorphic quadratic differential, yielding thus a Hopf-type theorem. We prove that
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such surfaces allow locally a 1-parameter family of isometric deformations with the same
mean curvature. This family is trivial only if the surface is superconformal. For such
compact surfaces with non-parallel mean curvature, we prove that the moduli space is
the disjoint union of two sets, each one being either finite, or a circle. In particular, for
surfaces in R* we prove that the moduli space is a finite set, under a condition on the
Euler numbers of the tangent and normal bundles.

We study locally proper Bonnet surfaces in Q2. A surface f: M — Q% is called locally
proper Bonnet if every point of M has a simply-connected neighbourhood, restricted
to which f is proper Bonnet. We prove that if a locally proper Bonnet surface is non-
minimal, then around a point p € M, any continuous isometric deformation that preserves
the mean curvature is described by a submanifold L™(p), 1 < n < 2, of the torus S' x St.
We focus on surfaces for which there exists a submanifold L",1 < n < 2, of the torus that
gives rise to such a local deformation around every point of M. We call these surfaces
uniformly locally proper Bonnet. We prove that a compact surface in Q? is uniformly
locally proper Bonnet if and only if it has a vertically harmonic Gauss lift, without being
superconformal. We also show that there do not exist compact superconformal surfaces in
Q? that are locally proper Bonnet. Finally, we prove that compact surfaces with parallel
mean curvature vector field in Q? that are not totally umbilical, are characterized as the
only locally flexible compact surfaces in Q?.
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Mehetdpe to npdBhnuoa Bonnet yio enpdveie oe tetpadidiotatoug yopoug popehc Q. Alo
ICOUETEIXES ETULPAVELES AEYETAL OTL EYOLY TNV (Blor UECT) XOUTUAOTNTA, EQV UTIHEYEL ULl TaGA-
ANAT 1oopETEloL BLYUOUATIXOY BECUMY UETUED TV XETwY BECUWY Toug, 1| ontola dlatneel
T OLotVUOUOTLXG Tedlar pEoTg XaUTUAGTNTOC. M1 YEWUETEWE LoOTYES ETLPAVELES e TNV (OLat
uéom xoumUAGTNTA xoholvTor Bonnet mates. Mu emgdvera otov QF xadetton empdvero Bon-
net, 1| yvioua empdvela Bonnet, edv 8éyeton TouAdyioTov uia, 1| drepeg to Ao Bonnet
mates, avtioTotya.

Ewdyouue Tic €vvoleg TV LoOTROTUXE IGOVEQUIXMY X0l LoYUEE LOOTEOTUXA LIGOVEQULXMY
ETULPOVELDY GTOV @‘Cl, OC YEVIXELUOT) TNG EVVOLIG TV IGOVEQUIXMDY ETILPAVELDY G TOV Qg O
amOBELXVIOUUE OTL 1) LOOTEOTUXY) LGOVEQUIXOTNTAL EfVOL Lot GUUUOPQA OVIAAOLWTY LOLOTNTAL.

Anodevioupe 6T €8y o un-oupnoyhc, amhd ouvextixh emgdveto f: M — QF dev
elvon yvrola empdvela Bonnet, téte d€yeton eite 1o mohD pla, eite axpBng teeic Bonnet
mates. Edv po té€tota emupdveia etvon yvriota emupdvelor Bonnet, t6te o moduli space twv
ANACEWY YEWUETEIXNG LWOOTWIAG OAWY TWV LOOUETEXWY eUfountiocwy tou M cTov @‘C" OV
gyouv TNV Bl uéon xaumudoTnTa e TNV f, elvon dtapopopop@inds ue Eva ToAuTTUY . O
yvroteg emgdvelec Bonnet ywpeilovton oe 600 xatnyopiec: Ti¢ tight empdveiec tou o moduli
space eival LoVodLAcTATOS UE TO TOAD D)0 GUVEXTIXEC GUVICTMOES OLUPOQOUORYLXES UE TOV
xOxho St ~ R /277, o Tic flexible empdveleg mou o moduli space elvon SLaPOEOUOEPIXOS
UE TOV TOEO St x S Arnodewxvioupe 6Tl 1) Wootpomxy) tooepuixdTnTa Yapaxtnellet Tic
yVvrioleg empdveleg Bonnet xou ewdixdtepa, 1) 1oy e icoTpomxt| loolepuxdTna, Yopoxtneilet
Tic flexible empdveiec. Emmiéov, delyvouue 6TL war ohxd un nui-lootpomxd toepuixt
empdveta etvon mdvTo o emipdvela Bonnet 1 omolo eldidtepa, 6€yeTon axplBng teeic Bonnet
mates av elvor emTEOGVETWE oy UEd OAXE U looTpoTxd IooVepuxt|. Enlong, amodeixviouue
6t o empdvetor Bonnet mou xelton o€ ohixd yewdouotox urepemipdvelor tou QF pe un-
otadepr| uEom xopumuhoTNTa, OEYEToL TouldytoTov 600 Bonnet mates ou omoleg dev xelvton
ot xaplor ohxd ougakicr| utepemipdveta Tou Q.

Arnodetvioupe 6tL av xan ta 000 Gauss lifts pag ocuunayols em@dvelag otny twistor
bundle dev etvan vertically harmonic, tote 1 emgpdvela 6€yeton 10 TOA) Teelg Bonnet ma-



78 Iepidngn

tes. Ewixdtepa, delyvoupe OTL pior TETola Emigdvela OEYETon To ToAL uioe Bonnet mate, und
TpooUeTeC UTOVESELS TTOU APOPOUY TNV LGOTEOTUXT| LoOVEPUIXOTNTAL.

Aclyvoupe 6Tt oL un-ehayto Tixé empdveleg pe éva vertically harmonic Gauss lift 6€yov-
ToL £VOL OAOHOPYO TETEAYWVIXO BLopopixd, i €Tol TpoxUTTel Eva Yewprnuo TOtou Hopf. A-
TOOEWVUOUUE OTL TETOLEG ETULQPAVELEG OEYOVTOL TOTUXG UL LOVOTIUPUUETELXY| OLXOYEVELX LGO-
UETEIXWY TUEAUOPPWOEWY TOU OlaTNeoly TN Yot xoumuhotnta. H owoyévewn auth| ebvan
TETPWMEVN LOVO €8y 1) emipdvela ebvan superconformal. o t€toleg ouunoyelc empdveleg e
UN-ToedhAANAO BLavuoUaTING TEDD UECTIC XAUUTUAOTNTOG, amodevUoupe 6Tt o moduli space
ebvon 1 EEvn évwon 000 cuVOALY, To xadéva and ta omola eivon cite memepaouévo eite o
x0xhoc. Edindtepa, vyl emPAVEIEC GTOV R4 amodevvouue 6Tt o moduli space efvor €va
TENEQUOUEVO GUVOAO, TS pla cuvirnn Yo Toug apripolc Euler tne egamtouevng xon e
x&deTng dEounc.

Mehetolye eniong empdveieg mou elvon Tomxd yvhoia Bonnet. M emgdveio f: M —
Q2 Méyeton Tomixd yvhola Bonnet edv xdie orpeio tou M éyel pua neploy i, TEpLoplopév o TNy
ormola 1 f ebvan yviiolto Bonnet. Aelyvouue 61t av pia tomixd yviow emigpdvelor Bonnet eivon
un-ghayto tixy), TOTE YOpw amd xde ornueio p € M, xde GUVEYTC IGOPETELXT TAURPUUOEPHOT)
Tou BloTneel T Yéon xoumUAGTNTA TERLYEdpETOL amd évor utotohimTuyda L (p),1 <n < 2,
TOU TOPOU St x St EmxevtpwvouaoTte oTIC EMQPAVEIEG YLol TG OTOlEG UTEPYEL €val UTO-
mohOmtuyua L™ 1 < n < 2 tou tOpou TETOLO0 WOTE VO TEQLYPUPEL Lol TETOLN LOOUETEIXT
ToEOOEPWOT YVpw antd xdie onucio Tou M. Koholue auté TIC ETUPAVEIES OUOLOUORYI TO-
mxd yvholoe Bonnet. Arnodewvioupe 61t o oupmoryfic emipdveta otov QF etvan opotduoppa
Tomxd yvhiota Bonnet av xou puovo av €yel éva vertically harmonic Gauss lift, ywplc vo etvon
superconformal. Eniong, delyvouue oti dev undpyouv cuurayelc superconformal empdveteg
oTOV Qﬁ mou elvon Tomxd yvrota Bonnet. Telwxog, amodewvioupe 6tL ol cuunayeic emi-
PAVELES UE TaEAAANAO BlavuopoTixd TEGID UECTNC XOUTUAGTNTAS GTOV Q‘Cl, ol otolec dev elvon
ol ougaiixéc, yapoxtnpllovtal w¢ ol uoéveg ouunayeic Tomxd flexible emgdveiec otov

Q.



Bibliography

[1]

2]

3]

(4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in S* x R
and H? x R, Acta Math. 193 (2004), no. 2, 141-174.

R. Aiyama, K. Akutagawa, R. Miyaoka, and M. Umehara, A global correspondence between CMC-
surfaces in S and pairs of non-conformal harmonic maps into S?, Proc. Amer. Math. Soc. 128
(2000), no. 3, 939-941.

H. Alencar, M. do Carmo, and R. Tribuzy, A Hopf theorem for ambient spaces of dimensions higher
than three, J. Differential Geom. 84 (2010), no. 1, 1-17.

A.C. Asperti, Immersions of surfaces into 4-dimensional spaces with nonzero normal curvature, Ann.

Mat. Pura Appl. (4) 125 (1980), no. 1, 313—328.

A1 Bobenko and U. Pinkall, Discrete isothermic surfaces, J. Reine Angew. Math. 475 (1996),
187-208.

A.I. Bobenko and M. Umehara, Monodromy of isometric deformations of CMC' surfaces, Hiroshima
Math. J. 31 (2001), no. 2, 291-297.

J. Bolton, T.J. Willmore, and L.M. Woodward, Immersions of surfaces into space forms, Global
differential geometry and global analysis 1984 (Berlin, 1984), Lecture Notes in Math., vol. 1156,
Springer, Berlin, 1985, pp. 46-58.

0. Bonnet, Mémoire sur la théorie des surfaces applicables sur une surface donne, deuxieme partie,
J. Ec. Polyt. 42 (1867), 1-151.

E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967),
111-125.

E. Cartan, Sur les couples de surfaces applicables avec conservation des courbures principales, Bull.
Sci. Math. (2) 66 (1942), 55-72, 74-85.

1. Castro, Lagrangian surfaces with circular ellipse of curvature in complex space forms, Math. Proc.
Cambridge Philos. Soc. 136 (2004), no. 1, 239-245.

I. Castro and F. Urbano, Lagrangian surfaces in the complex Fuclidean plane with conformal Maslov
form, Tohoku Math. J. (2) 45 (1993), no. 4, 565-582.

, Exzamples of unstable Hamiltonian-minimal Lagrangian tori in C2, Compositio Math. 111

(1998), no. 1, 1-14.

79



80

Bibliography

[14]

[15]

[16]

[17]

[24]
[25]

[26]

B.-Y. Chen, On the surface with parallel mean curvature vector, Indiana Univ. Math. J. 22 (1972/73),
655—666.

S.S. Chern, La géometrié des sous-variétés d’'un espace euclidien a plusieurs dimensions, Enseign.
Math. 40 (1955), 26-46.

, On the minimal immersions of the two-sphere in a space of constant curvature, Problems in
analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J.,
1969), Princeton Univ. Press, Princeton, N.J., 1970, pp. 27-40.

, On surfaces of constant mean curvature in a three-dimensional space of constant curvature,
Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin,
1983, pp. 104-108.

, Deformation of surfaces preserving principal curvatures, Differential geometry and complex
analysis, Springer, Berlin, 1985, pp. 155-163.

A.G. Colares and K. Kenmotsu, Isometric deformations of surfaces in R® preserving the mean cur-
vature function, Pacific J. Math. 136 (1989), no. 1, 71-80.

M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Differ-
ential Geom. 22 (1985), no. 1, 13-28.

, Euclidean hypersurfaces with isometric Gauss maps, Math. Z. 191 (1986), no. 2, 201-205.

M. Dajczer and R. Tojeiro, All superconformal surfaces in R* in terms of minimal surfaces, Math.
Z. 261 (2009), no. 4, 869-890.

, Submanifold Theory: beyond an introduction, Universitext, Springer. To be published in

2019.

M. Dajczer and Th. Vlachos, Isometric deformations of isotropic surfaces, Arch. Math. (Basel) 106
(2016), no. 2, 189-200.

B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv.
82 (2007), no. 1, 87-131.

J. Eells and S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds,

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 4, 589-640 (1986).

J.H. Eschenburg, I.V. Guadalupe, and R. Tribuzy, The fundamental equations of minimal surfaces
in CP2, Math. Ann. 270 (1985), no. 4, 571-598.

J.H. Eschenburg and R. Tribuzy, Branch Points of Conformal Mappings of Surfaces, Math. Ann.
279 (1988), no. 4, 621-633.

, Constant mean curvature surfaces in 4-space forms, Rend. Sem. Mat. Univ. Padova 79
(1988), 185-202.

D. Fetcu, Surfaces with parallel mean curvature vector in complex space forms, J. Differential Geom.
91 (2012), no. 2, 215-232.

D. Fetcu and H. Rosenberg, Surfaces with parallel mean curvature in S* x R and H? x R, Michigan
Math. J. 61 (2012), no. 4, 715-729.

T. Friedrich, On surfaces in four-spaces, Ann. Global Anal. Geom. 2 (1984), no. 3, 257-287.

J.A. Gélvez, A. Martinez, and P. Mira, The Bonnet problem for surfaces in homogeneous 3-manifolds,
Comm. Anal. Geom. 16 (2008), no. 5, 907-935.



Bibliography 81

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

W.C. Graustein, Applicability with preservation of both curvatures, Bull. Amer. Math. Soc. 30 (1924),
19-23.

1.V. Guadalupe and L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math. 106
(1983), no. 1, 95-103.

K. Hasegawa, On surfaces whose twistor lifts are harmonic sections, J. Geom. Phys. 57 (2007), no. 7,
1549-1566.

, Surfaces in four-dimensional hyperKdhler manifolds whose twistor lifts are harmonic sec-
tions, Proc. Amer. Math. Soc. 139 (2011), no. 1, 309-317.

H. He, H. Ma, and E. Wang, Lagrangian Bonnet Problems in Complex Space Forms, Acta Math.
Sin. (Engl. Ser.), posted on 2019, DOT 10.1007/s10114-019-8102-5, (to appear in print).

F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space
using spinors and quaternions, Comment. Math. Helv. 75 (2000), no. 4, 668-680.

D.A. Hoffman, Surfaces of constant mean curvature in manifolds of constant curvature, J. Differential
Geometry 8 (1973), 161-176.

D.A. Hoffman and R. Osserman, The Gauss map of surfaces in R3 and R*, Proc. London Math.
Soc. (3) 50 (1985), no. 1, 27-56.

H. Hopf, Uber Flichen mit einer Relation zwischen den Hauptkrimmungen, Math. Nachr. 4 (1951),
232-249.

G.R. Jensen, E. Musso, and L. Nicolodi, Surfaces in classical geometries: a treatment by moving
frames, Universitext, Springer, Cham, 2016.

, Compact surfaces with no Bonnet mate, J. Geom. Anal. 28 (2018), no. 3, 2644—2652.

G.R. Jensen and M. Rigoli, Twistor and Gauss lifts of surfaces in four-manifolds, Recent develop-
ments in geometry (Los Angeles, CA, 1987), Contemp. Math., vol. 101, Amer. Math. Soc., Provi-
dence, RI, 1989, pp. 197-232.

G.D. Johnson, An intrinsic characterization of a class of minimal surfaces in constant curvature
manifolds, Pacific J. Math. 149 (1991), no. 1, 113-125.

K. Kenmotsu, An intrinsic characterization of H-deformable surfaces, J. London Math. Soc. (2) 49
(1994), no. 3, 555-568.

, Correction to “The classification of the surfaces with parallel mean curvature vector in
two-dimensional complex space forms”, Amer. J. Math. 138 (2016), no. 2, 395-402.

K. Kenmotsu and D. Zhou, The classification of the surfaces with parallel mean curvature vector in
two-dimensional complex space forms, Amer. J. Math. 122 (2000), no. 2, 295-317.

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. 1I, Wiley Classics Library,
John Wiley and Sons, Inc., New York, 1996.

S.G. Krantz and H.R. Parks, A primer of real analytic functions, 2nd ed., Birkhduser Advanced
Texts: Basler Lehrbiicher. [Birkhduser Advanced Texts: Basel Textbooks], Birkhduser Boston, Inc.,
Boston, MA, 2002.

W.Y. Lam and U. Pinkall, Isothermic triangulated surfaces, Math. Ann. 368 (2017), no. 1-2, 165—
195.

H.B. Lawson, Complete minimal surfaces in S®, Ann. of Math. (2) 92 (1970), 335-374.



82

Bibliography

[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]

[67]
[68]

[69]

H.B. Lawson and R. Tribuzy, On the mean curvature function for compact surfaces, J. Differential
Geom. 16 (1981), no. 2, 179-183.

J. De Lira and F. Vitério, Surfaces with constant mean curvature in Riemannian products, Q. J.
Math. 61 (2010), no. 1, 33-41.

J.A. Little, On singularities of submanifolds of higher dimensional Fuclidean spaces, Ann. Mat. Pura
Appl. (4) 83 (1969), 261-335.

B. Palmer, Isothermic Surfaces and the Gauss Map, Proc. Amer. Math. Soc. 104 (1988), no. 3,
876-884.

C. Peng and Z. Tang, On surfaces immersed in Euclidean space R*, Sci. China Math. 53 (2010),
no. 1, 261-335.

K. Polymerakis and Th. Vlachos, On the moduli space of isometric surfaces with the same mean
curvature in 4-dimensional space forms, J. Geom. Anal. 29 (2019), no. 2, 1320—1355.

I.M. Roussos and G.E. Hernandez, On the number of distinct isometric immersions of a Riemannian
surface into R® with given mean curvature, Amer. J. Math. 112 (1990), no. 1, 71-85.

E.A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970),
569-573.

B. Smyth and G. Tinaglia, The number of constant mean curvature isometric immersions of a
surface, Comment. Math. Helv. 88 (2013), no. 1, 163—183.

F. Torralbo and F. Urbano, Surfaces with parallel mean curvature vector in S? x S? and H? x H?,
Trans. Amer. Math. Soc. 364 (2012), no. 2, 785-813.

R. Tribuzy, A characterization of tori with constant mean curvature in space form, Bol. Soc. Brasil.

Mat. 11 (1980), no. 2, 259-274.

M. Umehara, A characterization of compact surfaces with constant mean curvature, Proc. Amer.
Math. Soc. 108 (1990), no. 2, 483-489.

Th. Vlachos, Congruence of minimal surfaces and higher fundamental forms, Manuscripta Math.
110 (2003), no. 1, 77-91.

, Isometric deformations of minimal surfaces in S*, Illinois J. Math. 58 (2014), no. 2, 369-380.

Y.L. Xin, Geometry of Harmonic maps, Progress in Nonlinear Differential Equations and Their
Applications, v.23, Birkhduser Boston, Inc., Boston, MA, 1996.

S.T. Yau, Submanifolds with constant mean curvature. I, II, Amer. J. Math. 96 (1974), 346-366;
ibid. 97 (1975), 76-100.



	Acknowledgements
	Introduction
	Surfaces in 4-Dimensional Space Forms
	Preliminaries
	Complexification and Associated Differentials
	Absolute Value Type Functions
	Twistor Spaces and Gauss Lifts

	The Mixed Connection Forms on Surfaces in Q4c
	An Index Theorem
	Isotropically Isothermic Surfaces
	Examples


	Surfaces with the Same Mean Curvature
	The Distortion Differential
	The Decomposition of the Moduli Space
	Bonnet Mates

	Simply-Connected Surfaces
	The Structure of the Moduli Space
	Proper Bonnet Surfaces
	The Effect of Isotropic Isothermicity
	Bonnet Surfaces in Q3cQ4c

	Compact Surfaces
	Obstructions on the Structure of the Moduli Space
	Surfaces whose both Gauss Lifts are not Vertically Harmonic
	Applications to Certain Classes of Surfaces

	Surfaces with a Vertically Harmonic Gauss Lift
	A Hopf-type Theorem
	The Associated Family
	The Structure of the Moduli Space
	Compact Surfaces: The Main Result
	Non-Simply-Connected Surfaces
	Surfaces in R4
	Proof of the Main Result


	Locally Proper Bonnet Surfaces
	Abstract
	Abstract in Greek ()
	Bibliography

