[TANEIIIXTHMIO IQANNINOQN

YXOAH OETIKOQN EIIXTHMON
TMHMA OTXIKHY

Kataoxeur| »o @atvopsvokoymﬁ Avdiuon
Meyohoevormoinuévey Xvupeteioyv Baduldag anod
Tl Oewpleg TwV Tepy0opddY xo
IToAO-MepBpavav

AUavdaoiog Kapdlacg

Awdaxtoptnt| olatelh

IQANNINA 2019






UNIVERSITY OF IOANNINA

SCHOOL OF NATURAL SCIENCES
DEPARTMENT OF PHYSICS

Construction and Phenomenological Analysis of
GUTSs in Superstring and D-brane Theories

Athanasios Karozas

Ph.D. Thesis

IOANNINA 2019






Three-member advisory committee:

Georgios Leontaris (Supervisor), Professor, Department of Physics, University of loannina,

Greece
Toannis Rizos, Professor, Department of Physics, University of loannina, Greece

Kyriakos Tamvakis, Emeritus Professor, Department of Physics, University of loannina,

Greece

Seven-member Assessment Committee:

Ignatios Antoniadis, Professor, Laboratory of Theoretical Physics and High Energies-
LPTHE, Sorbonne University, France

Nikolaos Vlachos, Professor, Department of Physics, Aristotle University of Thessaloniki,

Greece
Panagiota Kanti, Professor, Department of Physics, University of Ioannina, Greece

Georgios Leontaris, Professor, Department of Physics, University of Ioannina, Greece (The-

sis Supervisor)
Ioannis Rizos, Professor, Department of Physics, University of loannina, Greece

Kyriakos Tamvakis, Emeritus Professor, Department of Physics, University of loannina,

Greece

Nikolaos Tracas, Professor, School of Applied Mathematical & Physical Scienes, National

Technical University of Athens, Greece






Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Professor George
Leontaris, for his continuous academic and moral support and all guidance and motivation he

has given me throughout these years during my graduate studies.

I am specially thankful to Professor Kyriakos Tamvakis for the financial support through
the program " THALIS” during the first years of my PhD research studies.

All these years I had the opportunity to met and collaborate with great people in theoretical
physics society. 1 am deeply grateful to Stephen F. King, Andrew K. Meadowcroft and Miguel
Crispim Romao for the collaboration in various projects and with whom we had countless of
online meetings and discussions which led to a very productive collaboration. I would like to
acknowledge them for their important contributions on various parts of this work. I am also
thankful to Professor Qaisar Shafi for the collaboration and his contributions on the final project
of the present thesis. I would like also to thank Waqas Ahmed for the great collaboration we

had on a parallel project and for sharing his passion for physics with me.

A special thank to all my childhood friends and all those I have met in Ioannina, who are
too many to be named individually. Thank you for all the great times we had together and for

making my life better every day.

To all my family, specially my parents, Kostas and Eleni, my sister Machie, my uncles Chris-
tos and Eleni and my cousin Despina — thank you for your support and encouragement and for

always being there for me. Without your support I could not have reached this stage.

At the end, I would like to thank my Sevasti, for being my companion and for always believing

in me.






OPERATIONAL PROGRAMME ,
EDUCATION AND LIFELONG LEARNING y 2N0[§ ZRUE
investing in knowée ta‘ngl =

MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS  EUROPEAN SOCIAL FUND

EuropeanUnion MANAGING AUTHORITY
European Social Fund

Co-financed by Greece and the European Union

Parts of the research presented in this thesis has been co-financed by the European Union (Euro-
pean Social Fund - ESF) and Greek national funds through the Operational Program ” Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Fund-
ing Program: "THALIS”. Investing in the society of knowledge through the European Social
Fund.

Mépog tng épeuvag mou Tapouctdleton oty Topoloa ddaxToplxn dlateBr) €xel cuyyenuatodotniel
ond v Bupomndixr Evwon (Evpwndixé Kowwvixd Topelo—EKT) xou and edvixois ntdpoug péow
Tou Emyeipnotaxod Ipoypdupoatoc «Exnaidevon xar Aw Biov Mddnons tou Edvixol Ytpatnyixol
[Mouoiov Avagopde (EXIIA) — Epeuvnuxd Xpnuoatodotoluevo Epyo: ©AAHYE. Erévduon otny

xowvwvia g Yvoong péow tou Eupnmaixold Kowvwvixol Tauelou, MIS:375734






..... dedicated to my famaly






Abstract

In this thesis, we present string theory models and we study their phenomenological conse-
quences. We focus on the non-perturbative version of type IIB superstring theory, known as
F-theory, where non-Abelian gauge symmetries are linked to the singularities of the elliptically
fibred compactification manifold. These singularities are of the ADFE type and as a result the Eg
exceptional group is the highest one. Hence, popular grand unified theories (GUTs) based on the
groups Fg, SO(10) and SU(5), can be naturally realised as effective F-theory models. Within
this framework we derive and study the low energy implications of several models. Firstly, an
F-theory supersymmetric SU(5) model accompanied by V; Klein monodromy and a Zs geomet-
ric parity is derived. At low energies, the model leads to the MSSM spectrum extended by two
right-handed neutrinos seesaw mechanism. Next,a model based on SU(5), together with the
non-Abelian family symmetry D4 plus an Abelian family symmetry is presented. The model
produces a realistic low energy spectrum and is capable to explain the neutrino mixing effects
predicted by neutrino oscillation experiments. Due to a Z5 geometric parity the model is shown
to exhibit baryon violating processes, without proton decay. A systematic study on R-parity
violation (RPV) effects in semi-local and local F-theory constructions follows, where we have
shown that RPV is a generic feature, but may occur without proton decay, due to flux effects.
The values of RPV Yukawa couplings are also computed in an F-theory local background and
compared with their corresponding values from field theory results. Next, we explore the low-
energy implications of F-theory inspired Eg models, in which a light Z’ neutral gauge boson
survives at low energies. The breaking to SO(10) and then to SU(5) is performed with the
help of Abelian fluxes. The low-energy spectrum is then chosen to be part of this high-energy
spectrum and consists of MSSM plus some vectorlike exotics. A renormalisation group analysis
at two-loop level for gauge and Yukawa couplings is performed and it is shown to be compatible
with the high-energy predictions coming from the computation of Yukawa couplings in F-theory.
We also identify points in the parameter space of the flux densities where the top, bottom and

tau Yukawa couplings unify.
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Extetauérn IlepiAniyn

(Extended Summary in Greek)

H ohpotoddne avdntun tng obyyeovne YewpentinAc QUoXAC LPNADY EVERYELWY 00HYNoE OTN
YeueAlwon wag eviaiag xaL ETTUYOVUE TEQLYPUPHS TWV UAANAETOPACEWY XAl WBIOTATWY TWV CTOLYEL-
00WV cuuatdiny. H xBavtiny Yewmplo nediou tou neprypdpet ta pouvoueva autd ovoudleton “Kalhep-
wpévo Ipdruro” (KII) xou Paciletar otnv opdda cupuetploc Baduidac SU(3)c x SU(2)L x U(1)y
1 omolo evomolel T TeeElC Un-Paputinég Yepuelwdelg olnhemdpdoelc tng @lone. H mpdogotn
avaxdhun tou uroloviov Higgs oto Meydho Emtoyuvth Adpoviwy (Large Hadron Collider, LHC)
oto BEupwmnaixé Hupnvind Kévipo Egeuvav (CERN), ftav xatohutiny| yior Ty opto txy| enBefoiwon
e opBétntoc tou KII. ‘Ouwe, map’ého mou 1 emituyio tou KII oty evepyelaxn nepioyt| toyvog
Tou elvor TAEOV BEBOUEVT), TOANG ONUOVTIXG EpOTHUOTA ToEoéVoLY avamdvtnta. Metalld dhhwy,
optouéva TeoBhAuaTa xou epwTAUAT ToL dev amaviwvTor oto mhaioto Tou KII eivon o) n xBdvtwon
Tou goptiov, B) 1 un evonoinomn twv Teidv culeliewy Paduidoc, v) mpoPAiuata epapyias xon n
xatovonon tne péloc tou urnoloviou Higgs, 8) ot udleg tomv tpuidv vetpivey, €) 1 @lon tng oxotewvic
UANC TOU GUUTVTOC X0l OL GUVAPEIC XOOUONOYIXES ETTMOELS, {) 1 duvatdTnta evoToinone Tne té-
TUPTNG YVWOTHS d0vaung, dnhady| tne BopldtnTog.

Ta mapamdve meofiiuota xatadexviouy 6Tt to KII dev anotehel pla mhieng meptypapr tng
PUOIXAC TWV CTOLYELWOWY COUATIOIWY Yia OO TO @doua evepyeldv. Lo var amavthcoupe e 600
TO BUVITOV TEQLOGOTEPX A0 T TORATAVG EpwTHUNT Yo TpEnel va avalnticovue Oewples I1épa
aré to KII ov onoleg otnpllovton oe mo Yepehddn Jewentixd xou yadnuatixd mpdtunoe. Tétow
npéTuna amoteholy 1 Tepovppetpia (Supersymmetry, SUSY) xodde xar Yewpleg mou Booilovton
oe Meyadoevoromnuéves Xvpuetpies Bauidas (Grand Unified Theories, GUTs). T mopdderyua,
oty Eddxiotn Trepovupetpxr) Enéktaon tov KII (Minimal Supersymmetric SM, MSSM), urné
CLYXEXPIEVES GUVIXES, 1) EVOTIOINGT TWV TELOY cuvTEleaTwY oV euing Poduidoc elvan QT X
emTUYYdveTon o€ evépyeiec TN T8Eng ~ 100 GeV. To udtepo autd anotéheoua, odnyel oy 1déa
nwe 1o KII anotehel v younhoevepyelomy| EXpovor eVOS UTEROUUUETEIXOU LoVTENOL To orolo Yo
Baolletan oe yior yeyohltepn opdda cuppeTplac. Mepixée amd Tig To YVWOTES UEYUNOEVOTOINUEVES
ovupetpieg Boduidac eivar n SU(5), SO(10) xou 1 edixry oudda (exceptional group) Eg.

To npdTuTa UEYAANG EVOTOINGTE ToEOUGIALOUY XATOLA EVOLUPELOVTOL YURAUXTNELO TIXE XAl UTOPOVY
Vo 8cdcouv Aooelg oe pepid and Tta tpofifuata tou KII. To mapdderyya, e€nyodv Tic Tée Twy
poptiwv mou €youv Ta media oto KII, npoPAénouv tnv evomoinon twv cuvieAeoTOV cLLEVENG

X0l EUTEQIEYOUV ETUTAEOV AVIUTURACTACELS Ol OToleg Umopolv va TawTtioTolv e Poapud Majorana
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vetpiva T ontolor Yéow tou unyariopol s adpas (seesaw mechanism) unopolv vor Epunvelcouy
TN pxet| ualo Twyv vetpivov. 201600, 0TNY amholGTERY TOUC HoR®T, OL UEYUAOEVOTOINUEVES Vewpleg
Tapouctdlouy xdmota onpavTixd tpoBAfuata. Tétow efvar To pouvopeva didonacng Tou TpwTtoviou,
o draywptoude dimhétoc-tpimhétoc (doublet-triplet splitting problem) xodde xar aouvenic oyéoelc
(xvpinx Yo Tic ehapplTEPES YEVIEC) UETAED TWV CUVTEAEGTMV o0uleuéne Yukawa yio evépyeleg xovtd
otny xhipoaxa evoroinong. Ta mpoAfuata autd umopoly va UG TOOY ETEXTEVWVTAS TN GUUMETElN
HEYdANc evontoinone pe emmiéov U(1) f/xou Swxpitéc ouppetpiec. Xtnv nepintwon auth, yiveto
xaTavonTy 1 avdyxn €0pecng VS o yevxol VewpnTixol mhaiciou, to onoto Yo gpunvelel Ty
TEOEAEUCT) TWV CUUUETELOY auTwv. Tétoln mpdTuma elvon o1 Ocwples Twr Trepyopdwy, 6To TAACLO
TOV 0TolwY BIVETAL 1) BUVATOTNTA EVOWUATWOTNE Xt TNG BapdTnTac O EVEQYEIEC GLUYXPIOTUES UE TNV
y\poxe Tou Planck (Mp; =~ 2.4 x 10*® GeV).

Y1 Yewpleg Twv uepy0EdMY, To VeUEALDOT Souxd cUCTATIXG OEV Elvol OTUELIXd CWUATLY,
OANG exTETOEVL LOVOBLAGTOTO avTXe(ueva Tar omolor ovopdlovtar xopdés. Autéc dlaxpivovtal o
AVOLY TEC Xl XAELOTESG Y0pDEC, Ue Tig TeAeuTaieg va oyeTilovta pe Tov Touéa Bapitntag tng Yewplag.
Mio podnuotixd cuvenhc TepLlypay) TS QUOIXAC TV YoedwY Teolnovétel TNy UToedn emTAEOV
dtaotdoewy mépa and Tic (34+1) yvwotéc daotdoec tou KII. Ot emmiéov diaotdoeic Yewpolvon
Hikpég xon ouuma yoroinuéves (compactified). Mia oxxdun onuavtind teéBredn tne Yewplag yopdnv
elvan 1 unepouppeTela 1 omola eacpoilel Ty Evtaln peputovidy Boduwy ehevdepioc otn Yewplo.
Emniéov, 1 perétn tne Yewploc mépa and Tic yopdéc mpolAénct TNy Onopdn xol GANWY EXTETAUEVRY
avTxelévewy Tou ovopdlovion toAv-ueppodres f Dp-Bpdves (Dp-Branes), étou to p yopoxtneilet
TG Ywewég dwotdoelg g Bedvng. Ou mohu-ueufedveg eivon Suvoxd avTiXElUeEV Xo UTopoLY Vo
ovoyetiotoly pe U(1) nedio Baduidoc. Kat'enéxtaom, uioa ouotoryio and N Dp-Bpedveg (stack of
branes) Yo yopaxtneiletar oand wa U(N) ovppetpla Baduidoc, éve SU(N) ocuyuetpiec mpoxintouy
ond CUOTAPOTA TEUVOPEVKDY Bpavdy (intersecting branes).

Yruepa utdpyouy 5 BlapopeTés Pewpleg UTERY0EdWY. AuTéC elval YVWOTEC we TUTou-I, TOnou-
ITA xon tOmou-1IB, xodde xou 800 Vewplec etepotikdy xopddv (Heterotic strings) nou Booilovto
otic opddec ouppetpiog SO(32) xou Eg x Eg. Eivaw onuovtixd to yeyovoc 6tt, oL topamndve Yewmpleg
¥0pdwv oyetilovtar YeTal Toug Uéow ueTaoyNuatiopmy dvikétntas (Dualities). H w8idtnta outi
XATAOUXVELEL OTL OL BLapope TS TUTOL Vewpleg amoTeEA0UV UEpOg Wlag UEYURDTERPNC XOL TLO EVIOLAS
Yewplag. Ailer vo onuewwdel 611 1 Yewpla tOmou-1IB elvon étepn npog tov eawtd tne (self dual)
UECW UETACYNUATIOUMY S-0UixOTNTOC, WOLOTNTO Tou 08NYEl 0TN 12-81doToTy YEWUETEWXN EXBOYT| TNC,
YVwoth g Ocwpia-F (F-theory) xou n onola anotekel to Pooind avuxeiuevo pehétng tne mopoloos
oLmAwUaTIXNG epyaoiog.

H Yewplo-F eiorydel yio vo meptypdiper tor un-0totoipax Tind Qouvoueva Tou TEOXOTTOUY ond TNV
napovcioa D7-Beavey oty dewpla IIB. O cowtepnds cupnayonomuévos yweog tng VYewploc-F
neptypdpetan w¢ pio eAdartiky) fvwon (elliptic fibration) xau amoteel éva Calabi- Yau tetpdn-
tuyo (Calabi-Yau fourfold). "Eva onuavtixdé mheovéxtnua tne dewpioc-F oe oyéon pe ta ouy-
Botixd cuCTAUATA TEUVOUEVLY Beovmy amoTehel To YEYOVOS OTL, oL un-Afehiavéc UeyahoevomoLn-
uévee ouppetpieg Paduidoc cuvdéovton UE TIC aVOUOMES TG eAhetnTixnc vwong. Autéc ou av-
wuoiieg Tagvopolvton oe opddeg oupuetplag ADE timou xou xotd cuvénelo 1 ediny) ouddo Eg

aroteAel TNV avwtepn cupeTplo 1) onola umopel va cuoyetioTel ue TN Vewpla. Katd cuvénel,



YVWoTéG Yeyohoevonoinuéveg Yewpleg umopolv va mpoxldouy og evepyd woviéha tng dewplog-
F, xadde n Eg onotehel matpikn ouddo twv cuuguetplwy avtodv: Eg = Ggur x SU(N)L, pe
Geur = SU(5), SO(10), Eg yoo N =5, 4, 3 avtictotyo.

Yy nui-tomxry meogyyion tng Yewploc-F, dewpolye 6Tl oL peyaloevonoinuévee GUUHETPLES
Gaur mpoépyovton amd tnyv oudda Eg eved onuavtind poho nadlet 1 cuuminpopatixy ouddo SU(N) |
n omnota cuvodelel v GUT ocuypetpla. Ta mopandve mepiypdpovion Ye xopdd Teomo Yéow tng
rohuwvupic egiowone spectral cover (SC). Ou cuvteheotéc Tou ToAuwvipou SC euneptéyouy
OEXETEC OO TIC TOMOAOYXES LOLOTNTEC TOU ECMTEPIXOL YWEOL eV ol pllec Tou towtilovtal pe
Ta Bdpn e dhyefpac Cartan tne SU(N) | ouvppetpioc. H avanapaotdoe Uing tou GUT pov-
Téhou TepLypdpovToL and eEIGHOOELS TV EILOY AUTOV X0 XUTA CUVETELN UTOPOVY VoL EXPEIC TOUV (G
CUVIPTACELS TV GUVTEAEGT®Y ToL ToAUwVOUoU SC. EmmAéoy, onuavtixd pdAo GTNY XUTACKELT pE-
OO TIXOY LoVTEA®Y Dtadpapatilouv oyéoelc oupuetpiac (monodromies) puetoll twv pllov Tou SC
TOAUWVOUOU. LUYEXQWEVA, UEAETOVTOS TIS WLOTNTES X0 TOUS TPOTOUE ToparywvTomoinong tou SC
ToAUWVOUoU BUvaton 1 cucyétion tou SU (V) | pe Bloxpltéc ouuueTplec 6mwe 1 ouddo Twy mdavdy
uetodéoewy N otolyelwyv Sy xodde xou UTooUddES oUTHC.

Me Bdon ta nopamdve, 1 mopodon SlatEBr) SLUmEaYATEDETOL TNV XUATAOXEUT) XOU UEAETH TWV
YUUNAOEVEQYELAXODY ETUTTOOEWY OLAPORKY LOVTEAWY TIOU TEOXUTTOUY amd To Thaiclo tTng Vewplog-F.
Apyd, mopovaidletar évo utepouuueteixd povtého SU(5) o onolo cuvodeletan omd plo Klein Vy
monodromy xadwg pio Zo parity YEOUETEAC TEOEAEUOC. LTIC YOUNAES EVEQYELES, TO CWUATLOXO
pdoua Tou hovtélou Tautileton Ye auté Tou MSSM extetduevo and dUo de€looTpoa VETEivo. TN
ouvéyeta, pehetdte éva SU(5) povtého to omolo auth Tn popd cuvodedetar amd TNy un-ABehiovi
Srooeprt ouppeteion Dy xou évay ABehovd napdyovta U(1). Xt younhéc evépyeleg To ovtélo mpof-
AETEL EVOL PEAAIG TIXO PACUN COUATIOXDY XATACTACEWY X0l EVOL LXAVO VoL EQUNVEVCEL Tl (PULVOUEVAL
AVIULENS TWV VETPIVOY OTIC oUTE TEOXUTTOLY amd Ta MEWUUATIXd dedouéva. Emmiéov, Aoyw tng
Omopéng plog yewuetpixic Zo parity, To povtého mpofiénel Swodixaciec napaPioong Tou Papuovixol
oErIUo0 OTKE TUAAVTWOELS VETPOVIOU-AVTIVETEOVIOU, EVEK TAUTOYEOVA ATOUGIALOUY QPOUVOUEVA OLdo-
Taong Tou TewmToviou. Axohoulel plo cucTuaTx UEAETN gotvopévwy mopaBiaong tne R-parity
OTNY NU-TOTXY X0t TOTUXY TRooEYYion Tne Vewplac-F, and tny omola mpoxlntel 6TL Tar pouvouevol
AUTE AMOTEAOLY YEVIXO YORoXTNEICTXG TNE Vewplag, Umopoly OUmS Vo UTHEYOLY Y0elC QoVOUEVL
OldoTaoNS TOU TEWTOoVIou AOYw TNg UMaEdng Moy WNTX®OY powv. Emmhéov, ol TWwég Twv cuvTe-
heotwyv o0leuéne Yukawa twv dpwv mapaficone tne R-parity unoloyilovtar otnv tomixy| npocéy-
yion e Yewplag-F xan ouyxpivovton pe Tic avtioToryee Tiéc mou mpoxUTTouv amd Tty Vemplia
nedlou. Téhog, yivetan yerétn Eg poviéhwv and tn dewpla-F, 1o onola mpofAénouy tnv Onapin
evoc ehagplol unoloviou Baduidac Z' otic youniéc evépyeec. H pRin tne ouvppetploc Eg otny
SO(10) xou énerta otnv SU(H) emtuyydvetor péow APehavdv poryvntixdyv powyv. To cwpottdi-
oax6 QAcUa TV YOVTEAWY anoTeleiton amd To MSSM xau emimhéov Slavuouatinol TOTou eEwTIXEG
xataotdoeg. Ipayyortonoeiton avdlucy e ouddoug eELOMOENMY avaXaVOVIXOTOINoNE O ETUNEDO
0VO-BROY YWYV Yl Toug cuvteleoTég o0 euing Baduidag xou Yukawa xou detyveton 6TL 0TI LPNAEG
evépyeleg Ta amoTEAEopaTa elvon cLYxplowa e TIC TEOPBAEYEIC ToU TEOEPYOVTOL UTd TOV UTOAOYIOUO
ocuvteheatOv oUlevine Yukawa otnyv Vewplo-F. Télog, npocdlopilovtar onuelar Tou TapoeTEIX00

X WeoL TNg Yewplag 6Tou ot cuvteleoTé Yukawa tov geputoviony top, bottom xau tau evormolodvto.
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Chapter 1

Theories Beyond the Standard
Model

In this introductory chapter, we present theories beyond the Standard Model (SM) of particle
physics, such as Supersymmetry (SUSY) and Grand Unified Theories (GUTSs). Next, we give a
basic introduction in F-theory, which is a geometric version of II-B superstring theory and we
present how GUT models can be realized in this framework. Since any supersymmetric GUT
model at low energies must be consistent with the successful predictions of SM, we present a

short overview of its features first.

1.1 Overview of the Standard Model

The Standard Model of particle physics has been tested experimentally in many different ways
and to high precision during the last decades. It turned out that this elegant theory provides
a very good description of particle physics at low energies. This successful theory describes the
properties and the interactions of particles based on only a few simple symmetry principles |8,
9, 10]. The framework behind it is a quantum field theory in which the fundamental interactions
are represented by gauge symmetries and the force carriers are the corresponding gauge bosons.
The particles are described by fields transforming non-trivially under the representations of
these symmetries. The SM describes only the non-gravitational fundamental forces, which are
the electromagnetic, the weak and the strong force; there is so far no theory of gravity compatible

with a gauged quantum field theory.

SM gauge group and field content

The various particles observed in nature show very similar properties thus suggesting the
existence of symmetries in the world of elementary particles. Modern particle physics is strongly
related with symmetry principles. The basic principle which guides the construction of models

of particle physics is that of local gauge invariance. The full gauge symmetry group of the SM
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Name Particles SM reps
G (8,1)o
Gauge Bosons w (1,3)0
B (11 1)0
U & t
; ; 3,2
<d> L <8> L <b> L (3:2)ise
Quarks u%, ck, tk (3,1)_9/3
Ay, 5§ b (3, 1)us
(Ve> ) <VM) ) (VT) (17 2)71/2
e/ \K/L \T/L
Leptons
eJ]r{v :uTRa T}T{ (1a 1)1
Higgs field H (1,2)1)2

Table 1.1: Field content of the SM. The last column shows the representations under the SM gauge
group which is given in the order (SU(3)c, SU(2)1)u (1), -

is the direct product of three simple groups:

Gsp = SUBB)e x SU(2)L xU(1)y. (1.1)

The strong interaction is described by the unbroken color gauge group SU(3)c. This group
acts on the quarks which are the elementary constituents of matter and the interaction force
is mediated by the gluons G which are embedded in the (adjoint) octet representation of the
group. The quarks and the gluons are colored fields.

The remaining part of the SM gauge group, SU(2); x U(1)y, is the gauge group of the
unified weak and electromagnetic interactions. More analytical, SU(2)y, is the weak isospin
group, acting on left-handed fermions, and U(1)y is the hypercharge group. At low energies the
SU(2)r x U(1)y symmetry is spontaneously broken and the residual group is U(1)ga whose
generator is a linear combination of the U(1)y hypercharge generator and a generator of SU(2) .
This generator corresponds to a massless gauge boson, the photon.

Every particle of the SM can be embedded in a representation with certain symmetry prop-
erties under SU(3)¢c, SU(2)r and U(1l)y transformations. The fermions of the SM can be
separated in two classes, the quarks and the leptons. Quarks transform in the triplet repre-
sentation under the strong interaction whereas the leptons do not carry a color charge, so they
are singlets under the strong interaction. The charged leptons and quarks come in pairs of left-
and right- handed fermions. An exception holds for the neutral leptons, the neutrinos, which

are purely left-handed, theres is no right-handed neutrinos in the SM. In Table 1.1 we classify
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the fields according to the dimension of their representation of SU(3)¢ and SU(2)r and their
hypercharge which gives the transformation properties under the U(1)y group. In addition the
table shows that the fermions (quarks and leptons) appear in each case in three copies, the
so-called families or generations. In the next sections of this thesis we will use the following

notation for the fermion fields:

UL, ViL
Qir = < > , Lip = < )
d;r, €iL
wr » iR . €R

where ¢ = 1,2,3 denotes the generations and we have labeled with Q;; (L;z) any left-handed
quark (lepton) doublet and with w;r (d;r) the right-handed up(down)-type quark singlet. Finally
e;r represents the right-handed charged lepton singlets.

The SM Lagrangian

For a proper definition of the SM Lagrangian density it is necessary to introduce a few more

objects. One of these objects is the covariant derivative which is given by:
— . . 1 . AmA
D, =0, +ig1Y B, +igoaW,S5" +ig3G, T (1.2)

Here, ST (with I =1,2,3) and T4 (with A = 1...8) are the fundamental representations genera-
tors of the SU(2) and SU(3) groups respectively and Y is the hypercharge of the corresponding
field where the covariant derivative acts.

In addition we define the field-strength tensors of the SM gauge fields as:

SUB):  Ga, =0,Gf —0,G — gsf*PCGEGY (1.3)
SUQ2): Wi, =0W)—0,Wl— g "w/wk (1.4)
UQ1): B, =8,B, —8,B,. (1.5)

Introducing also the isodoublet of the Higgs doublet as H = iooH*, we have all the necessary
ingredients in order to write down the SM Lagrangian density:
_ 1 A ~Apv 1 1 Tuv 1 uv
ESM — _ZG'LLUG - ZW'LLUw - ZBMVB
+i(LIDL +erler + QIPQ + urlPur + drPdr) (1.6)
+ (D, H)(D'"H) — V (H)
—[(LYeer)H + (QYwur)H 4+ (QYqdr)H + h.c.

In this shorthand version of the SM Lagrangian the first and second lines contain kinetic terms
for the gauge bosons and fermion fields respectively. The first term on the third line is the kinetic
term of the Higgs-boson field while V(H) is the Higgs scalar potential which we will analyse
next. Finally the last line is the Yukawa sector of the Lagrangian and as we will describe next

the fermion masses originate from these terms.
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Spontaneous EW Symmetry Breaking

The SM Lagrangian introduced above describes all the gauge bosons and fermion fields as mass-
less particles. Writing down explicit mass terms in the Lagrangian spoils the gauge invariance,
and is the gauge symmetry that ensures renormalisabililty. This is not a problem for massless
particles, like the photon and the gluons. On the other hand, W* and Z bosons for the weak
interaction, are among the heaviest elementary particles in nature. Giving masses to these gauge
bosons was one of the main reasons to introduce the concept of Spontaneous Symmetry Breaking
(SSB) in particle physics which triggers what is known as the Higgs mechanism [11, 12, 13, 14].
A symmetry is broken when the Lagrangian of a theory respects the symmetry but the vacuum
of the theory is not invariant. In the SM, the Higgs field (a complex-valued SU(2) doubled),
adds the scalar potential V(H) in (1.6) which has the following form:

V(H)=p’H'H + \(HTH)2 (1.7)

The potential is invariant under SU(2), x U(1)y transformations, however its ground state is
not. The shape of the potential depends on the sign of the parameters x? and \. For p? < 0
and A > 0 the potential have a set of minima. However, if we select one of the minima, the
symmetry will be broken. More precisely, the neutral component of the Higgs doublet will

develop a vacuum ezxpectation value (VEV):

1 /0
< 0|H|0 >= ﬁ(v) (1.8)
where v can be computed to be : v = \/TZ/)\ In addition, the scalar potential is still invariant
under a change of the phase of the scalar field H. As a result, the vacuum state spontaneously
breaks the EW symmetry down to U(1)gas which is still a good symmetry of the theory. The
physical Higgs field h°, arises as an expansion around the VEV. We can expand the Higgs
doublet as:

H—1< G ) (1.9)
T V2 \w 40 4o '

where h? is the physical Higgs field, a real scalar field with zero spin. Here G and G° are Gold-
stone modes [15], [16] which absorbed on the definition of the W+ and Z° bosons respectively.
By consider the four massless fields W!{ and B, and their interaction with H, after substi-

tuting the VEV from (1.8) ones finds the tree-level masses

2 2
Myys = %, My = Uivgl;g?, My =0. (1.10)

where Z,, and A, are the mass eigenstates of Wﬁ’ and By,. The new field A, will be massless,
corresponding to the photon, while the Z, field will be a neutral, massive boson mediating
neutral current processes of the weak interaction. As we can see, the mass of the Z boson is

different from the mass of the W gauge bosons. This inequality of the weak boson masses can
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be parametrised using the weak mixing angle (or Weinberg angle) between Wj’ and B, and the

physical mass eigenstates:

cos by = —— (1.11)

or in terms of the gauge couplings, tanfy = g1/ge. Similarly, the mass of the physical Higgs
boson (h°) at tree-level is given by mjo = 2v2)\ and strongly depends on A and quantum
corrections. The measured values of the weak force gauge boson masses and the gauge couplings
imply that v ~ 246 GeV.

Fermion masses and mixing

Up to now, we have discussed only the generation of gauge boson masses. In fact, not only
the W* and Z° bosons acquire mass via the Higgs mechanism. Also the fermion mass terms
originate from their Yukawa interaction with H. To illustrate the point, let us study for example

the charged lepton Yukawa term:

- 1 i 0 Y v
}/g]LiHejR — 7}/;] (viL éiL) ( >€jR = _ €,LER + LhoéiLejR (1.12)

V2 v+ A V2 V2

Observing the first term it is clear that when the Higgs field receives a VEV, the Yukawa term
in the Lagrangian generates a fermion mass term. We obtain similar results for the up- and
down-type quarks and collectively we can write: m}] = Yfij v/v/2, whith f = u,d, e. Because of
the 3 generations described in the SM, m,, 4. are 3 X 3 matrices and as a result there is a mixing
between generations. Since these mass matrices are not diagonal in generation space, one has

to rotate the fermion felds to the mass eigenbasis using unitary matrices as follows

Yy = Vihy,  abpe = Viethye (1.13)

where the matrices V; and Ve satisfy,

V.I'Y, Ve = diagonal and positive. (1.14)

Since now V,, and Vj; are not required to be the same, they will in general not cancel out in
the weak interaction changing vertex of W+ vector bosons to fermions. This implies that the

mentioned vertices will transform under eq. (1.13) as
gu;rdj‘/VJr + h.c— guI(VJVd)ijdjWJr + h.c. (1.15)
The unitary matrix formed in the parenthesis of the above relation is called the Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix [17],

Verwr = ViV

This 3 x 3 matrix parametrises the mixing between the three generations in each interaction

vertex of fermions with the weak charged bosons.
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In general, Vo has nine degrees of freedom consisting by three mixing angles and six
phases. However, since V,c and Ve are not physical, one can reduce the number of parameters
from nine to four. That way we receive the standard parametrisation of Vogas which is given
by

€12€13 $12€13 s13e™ "
Verm = | —s12c03 — 125235136 c1aco3 — S12523513¢”°  sazcrs (1.16)

)

; i
512523 — C€12€23513€"°  —C12523 — $12C23513€"  C23C13

where § = §¢KM Ccij = cos HgKM and s;; = sin GgKM . The angle Q%KM is also known as the
Cabibbo mixing angle c. Of course, at this stage, there is no analogue to Vog s matrix for
the lepton sector since the SM describe the neutrinos as massless particles. This changes if we
introduce right-handed neutrino fields v§ as we will see next in this chapter.

Regarding the second term in (1.12) describes the coupling between the Higgs field and the
left- and right-handed charged fermions. These type of interactions are important because can be
tested experimentally. However, since Yu”d . = mZ] d, e\/§ /v, the coupling is small for the lighter
generations. On the other hand, the heaviest generations (top, bottom, tau) and especially the
top quark (the heaviest of all fermions in the SM with mass about m; ~ 173.3 GeV) couples

strongly to the Higgs boson [18], [19].

Anomaly cancellation

It is well known that when a classical Lagrangian is invariant under a gauge symmetry, a direct
consequence is the existence of a conserved current. While a current may be conserved at tree-
level, when we include high order loop corrections due to quantum effects, it is possible that
that current may no longer be conserved. Generically, this occurs if the action of a theory is
invariant under a symmetry, but the measure of the path integral, is not. In gauge field theory,
this type of inconsistencies are known as gauge anomalies. The consequence of this would be
that observable quantities depend on the gauge, and therefore the theory makes no sense. Thus,
such anomalies should not occur.

In a chiral gauge theory like the SM, gauge anomalies appear. In terms of Feynman diagrams
the existence of an anomaly can be calculated by evaluating the triangle diagram like the one
presented in Fig. 1.1. For a general gauge group G of a 4-dimensional theory the final result !
is proportional to a group theoretical factor

AT, = R, R, (1.17)

abc

R
where the tmb,c

diagram and R denotes the representation under which the fermions contributing to the anomaly,

are the group generators correspond to the external currents in the triangle

transforms. Equation (1.17) is the anomaly cancellation condition that we have to check when we
build a new model. However, since the existence of an anomaly clearly depends on a pure group

theory factor, some general model independent conclusions can be extracted. More precisely,

'For a complete analysis on the subject see [20] and references there in.
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Figure 1.1: Triangle Feynman diagram leading to gauge anomalies. Here, each external leg may be any
gauge boson of the theory, while the internal propagators are due to all fermionic fields to which those
bosons couple.

R

2be all vanish

one can show that if a group G has only real or pseudoreal representations, its A
and there cannot be any anomalies for a gauge theory with such a gauge group G. This implies
that all the SO(2n + 1) groups with n > 1 (including SU(2) ~ SO(3)) and SO(4n) with n > 2
have Ay = 0.

In the case of the SM the gauge group is SU(3) x SU(2) x U(1) and according to the above
discussion we have contributions to Ay for the following different anomalies:
SU(3)—-SU(3)—-SU(3), SU(3)—SU(3)—-U(1), SU((2)—SU((2)—U(1) and U(1)-U(1)-U(1).

In order to illustrate the point, we will study in some detail the "U(1)3.” anomaly. In this
particular example the three external legs of the diagram correspond to U(1)y currents. The
condition leads to a polynomial like equation involves the hypercharge of all the SM fermions
that can couple with the U(1)y gauge boson. Then, using Table 1.1 the condition reads:

Uy : A~ {2 « (%)3 F1x (-%)3 F1x (;)3} X e

+ {2 < (—%)3 4 (1)3}
where n. is the number of quark colors. Performing the computation ones find that A ~ %( —5e).
Clearly, for n. = 3 we find that, A = 0, as we wanted. The interesting point here is that
cancellation of the anomalies seems to support the concept of colour in the SM as well as the
fact that we have complete number of generations, since for n. # 3 or for an incomplete fermion
family, the result is different than zero. Similarly, we can show that the anomaly factor in (1.17)
vanishes for all the other cases in the SM.

In summary, we see that in the SM the anomaly A.. vanishes as it should be to keep the
gauge symmetries unbroken. However, we have to clarify that this happens only due to the fact
that the anomalies from all the loop contributions with quarks and leptons cancel. This is a
surprising result and seems to be connected with the problem of charge quantization in the SM.
Charge quantization is just one of a long list of SM open questions and limitations that we will

discuss in some detail in what follows.
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1.2 Troubles with the SM

The SM is an extremely successful theory to explain most of elementary particle properties and
interactions. Masses of the W+ and Z weak gauge bosons as predicted by the SM theory are
very close to those suggested by the experiments. In addition, SM also predicted the existence
of the charm quark [21] from the requirement to suppress flavour changing neutral currents
(FCNC) before it was actually discovered in 1974. In a similar fashion the SM also predicted
the mass of the heavy top quark in the right region before its discovery. In 2012 the success of
the SM was established with the discovery of the Higgs particle by ATLAS [22, 23] and CMS
[24, 25] experiments at CERN’s Large Hadron Collider (LHC). Up today the Higgs particle is
the only experimentally observed elementary scalar field.

Despite all the successes of the SM, there are experimental and theoretical reasons to consider
models beyond the Standard Model (BSM). Most of these issues motivate us to think the SM
as the low energy remmant of a theory based on a higher symmetry group. In the following we

briefly discuss some of these problems.

Charge Quantization

It is well known that the electric charge of the proton it is equal with the absolute value of
the charge of the electron, @) = —Q. = e. In addition, the proton (uud) and the (neutral)
neutron (udd) are composite particles of up and down type quarks. With this information in
mind one can easily find fractional charges Q4 = %16 and Q, = %26 for the down and up quarks
respectively. Lets define the smallest charge as € = e/3, then for the absolute values of the up
and down quark charges we see that: |Qq| = €, |Qu| = 2€ and |Q.| = 3€. It is clear that a charge
assignment like this must have a deeper theoretical explanation, but in the SM chosen that way
in order to match with the experimental observations. However, most GUTs do provide an

explanation for this issue as they embed the U(1)y into a larger non-Abelian group.

Gauge coupling (non) Unification

It is a well known feature of quantum field theories that the coupling constants and the masses
depend on the energy scale of interaction. This dependency on the energy scale of the theory can
be described in the framework of renormalisation. The evolution of gauge, scalar and Yukawa
couplings in the SM is described by the Renormalisation Group (RG) equations. The one-loop
RG equations for the SM gauge couplings g1, g2, g3 are
d 1

ﬁga = %ga = @
where t = In Q/Qo, with Qg the input scale and @ the RG scale. The b’s coefficients depend on
the gauge group and the field content of the model. In the case of the SM these coefficients are:
(b1, b2, b3)sp = (41/10,—19/6,—7). In terms of the quantities o, = g2/47, the RG equations

(1.18) receive an elegant, linear form:

bagl, with a=1,2,3 (1.18)
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Figure 1.2: Running of the inverse gauge couplings a; *(Q) on one-loop level in the SM. As input scale
we took Qo = Myep = 173.4 GeV while the input values of the gauge couplings at this scale was received
from [26].

R L (1.19)

The one-loop RG evolution of these quantities is presented in Figure 1.2. As we can see, the
three gauge couplings approach each other with increasing energy. They nearly meet at high
energies, close to the Planck scale (~ 10'® GeV), which motivate us to unify the gauge symme-
tries at this scale. Actually unification of gauge couplings can be realised in the framework of
Supersymmetry. More precisely, in the minimal supesymmetric extension of the SM the gauge

couplings actually meet at the so-called GUT scale Moyt ~ 106 GeV.

Hierarchy Problems

In the SM, the Higgs boson mass is not protected by any symmetry. Thus, there is no natural
scale for the Higgs boson mass, mp, in the theory. Consequently, when radiative corrections
are taken into account, there is nothing to stopped Higgs boson from receiving a mass as large
as the the Planck scale. This is the so called gauge hierarchy problem. The most significant
contribution to the Higgs boson mass arises from one-loop interactions of the Higgs boson with
fermions, like the one presented in Figure 1.3. From the diagram it is clear that the contribution
from the fermion loop is proportional to the squared Yukawa couplings (yj%) As a result these

contributions became important when heavy quarks (like the top) are running in the loop.

Figure 1.3: One-loop radiative corrections to the Higgs boson mass from interactions with fermions.
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Suppose the theory of the SM is valid up to the Planck scale and the cut-off scale A lies

there, then the correction to the Higgs boson mass is proportional to that scale?

2
Sm2y r — 2172 (1.20)
h 872

The renormalized Higgs boson squared mass is then given by
mio = m%LO,bare + 6mgL0 (121)

and looking at eq. (1.20) the requirement of fine tuning for a EW scale Higgs mass is necessary,
since the scales of M0 and A differ by many orders of magnitude.

Another type of hierarchy problem, arises from the Yukawa sector of the SM and is known as
the Fermion mass hierarchy problem. There are large hierarchies between the fermion masses.
For example, the top quark mass is approximately 174 GeV while the mass of the lightest
quark (up), lies in the range of few MeV’s. This translates in hierarchies between the Yukawa

couplings and are as large as ~ 106.

Neutrino masses

According to the SM, neutrinos should be massless. But they aren’t. Various types of ex-
periments have provided clear evidence of a phenomenon known as Neutrino Oscillations [27].
Simply put it, neutrino oscillation is the phenomenon whereby a neutrino created with a specific
flavor (electron, muon, or tau) can later be observed to have a different flavor. This phenomenon
is only possible because neutrinos are not massless after all. Hence, a modification to the SM
of particle physics is required. This is the first direct experimental evidence of physics BSM so
far [28].

In terms of quantum field theory, the lepton flavor v, , . eigenstates of neutrinos are the

linear combinations of the mass eigenstates of neutrinos 123 :

3
np(z) =Y Uyvjn(e) (1.22)
Jj=1

where | = e, u, 7. Here U is the 3 x 3 unitary neutrino mixing matrix, commonly known as
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and is the analogue of the CKM matrix
describing the mixing on the quark sector. Similar, this matrix can be parameterized by 3
angles, and, depending on whether the massive neutrinos v; are Dirac or Majorana particles, by

1 or 3 CP violation phases.

€12€13 $12€13 s13e”"
o 5 5 . i%42L ;231
U= —si12c23 — c12523513€"°  c12C23 — S12523513€" 593C13 x diag(l,e'2 ,e"27) (1.23)
i i
512823 — C12C23813€"°  —C12523 — $12C23513€"  €23C13

where ¢;; = cos0;;, s;j = sinb;;, the angles 6;; = [0,7/2],6 = [0, 27] is the Dirac CP violation
phase and ag1, a3y are two Majorana CP violation (CPV) phases.
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Parameter | Best fit value (£10) 30 range
e 7.401021 (6.80 — 8.02)
2.49475:0%%  NH (2.399 — 2.593) NH
Am%l '
10—3[eV?]
—2.465T0 05 TH (—2.562 — —2.369) IH
sin? 09 0.30770055 (0.272 — 0.346)
0.53875:0%%  NH (0.418 — 0.613) NH
sin2 923
0.55470 05 TH (0.435 — 0.616) TH
0.022010-9007  NH | ((0.01981 — 0.02436) NH
sin2 913
0.022210 0007 TH (0.0206 — 0.02452) TH

Table 1.2: The best-fit values and allowed ranges of the neutrino oscillation parameters, derived from a

2 - m?. There are two types of

possible mass hierarchy: normal hierarchy (m; < mq < mgs) and inverted hierarchy (ms < mi < ma).

global fit of the current neutrino oscillation data [29]. Here Amfj =m

In most of the cases, the parameters that we are more interested when we construct a model for
the description of the neutrinos, are the 3 mixing angles 019, 613,023 and the neutrino masses
mq, mo, m3. The best-fit values and ranges of these parameters, derived from a global fit analysis

of the neutrino oscillation data are given in Table 1.2. Notice that the experiments are sensitive
2

only on the mass squared differences Am?j =m; — m? of the 3-neutrino states. There are only
two independent neutrino mass squared differences, say Am3; > 0 and Am3; # 0. Since the sign
of the latter remains unknown there are two possibilities of mass ordering. Normal hierarchy
refers to the case where m; < mo < mg and inverted hierarchy implies m3 < m; < mo.
As we observe from the data, |Am3;| (|JAm2,|) and |Am3,|, in the case of m; < mg < mg
(m3 < m1 < mg), differ by approximately a factor of ~ 34.

There are also experimental bounds coming from cosmological measurements. According
to the latest results of the Planck Collaboration [30], the following bound for the sum of the
neutrino masses was obtained:

> mi <012 eV (1.24)

The origin of neutrino mass is one of the most well kept secrets of Nature. SM Lagrangian

2There are additional contributions from one-loop corrections that are logarithmically divergent but are well

under control due to the behaviour of the log function.
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lacks a term which can generate neutrino mass at renormalizable level. The mechanism of this
mass generation is unknown. In addition since the neutrinos are the only charge neutral particle
in the SM there is a possibility, that a neutrino is a Majorana particle. Thus, by introducing

right-handed neutrinos vg in the spectrum, we can have two possible neutrino mass terms :

L =mpvpvr + Mrvrvr + h.c (1.25)

where in general mp and Mp are 3 x 3 matrices. The first term arise from a usual Dirac type
operator, (Y},);; L;H vRj, when the Higgs field receives a VEV. In this operator the coefficient Y, is
the Dirac neutrino Yukawa coupling and demanding a neutrino mass ~ 1 eV one gets Y;, ~ 10711,
This value is extremely small compared to the electron Yukawa coupling, Y, ~ 1076,

The second term in (1.25) can be generated in a general model independent way as was
suggested by Weinberg [31], who noted that one can form a dimension five (d = 5) operator, by
using the SM doublets:

(LiH)(HL;)
TS

Here )\ are coupling constant coefficients and A is the mass scale where new physics occurs.

Lg—s =\ (1.26)

This turns into a Majorana neutrino mass once the electroweak symmetry breaks through the
nonzero VEV of the Higgs doublet. Note that majorana mass terms violate the total lepton
number by two units®, AL = 2. There is an elegant way to generate the d = 5 operator at the
treelevel. This is commonly known as the see-saw mechanism and depending on further details
is classified on three categories: Type-I [32], Type-II [33] and Type-III [34] see-saw mechanism.

In Type-I seesaw mechanism the right-handed neutrino fields are pure gauge singlets. Hence,
they can have Majorana mass terms, Mp, themselves even before electroweak SSB. Thus the
magnitude of these masses are not directly constrained and we can assume that they are large
enough that the new fields can be integrated out for calculations around the EW scale. Then,

equation (1.25) can be expressed by a mixing matrix between Dirac masses and Majorana masses:

M,,:< 0 mD) (1.27)
mp MR

and the light neutrino mass is given by

m, =mpMzgtm], (1.28)

Here Mp often corresponds to the scale of new physics mentioned in (1.26) and for Mg > mp,
the light neutrino mass is a natural outcome. By consider m, at eV scale and mp ~ mye, ~ 100
GeV we can estimate that Mg ~ 10'* GeV. For a complete review on the theory of neutrino

masses and mixing see [35].

30n theoretical level, a similar phenomenon which violates Baryon number by two units, AB = 2, is neutron-
antineutron oscillations.
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Problems of cosmological origin

Finally, there are additional problems with the SM that are of cosmological origin. One of
that is the problem of dark matter. There is nothing in the SM spectrum that could take
into account the observed presence of dark matter [36], [37], [38]. Despite that the current
experiments searching for dark matter signals have advanced significantly, so far no clear sign of
its origin has been reported. Moreover, there are several other cosmological phenomena, of both
theoretical and experimental nature that are not explained by the SM, such as the mystery of
baryon-antibaryon asymmetry in the universe [39], the cosmological constant problem [40] and
inflation which are not discussed further in the present thesis.

Because of all these issues the SM cannot be a complete theory for the description of particle
physics. One needs to search for extensions of the SM that address one or as many as possible
of the problems listed above. On the other hand, the predictions of the SM are surprisingly
accurate. Consequently, any model or more a generic theory attempting to extend it must make
sure that it contains the SM as a low energy effective theory. Several BSM approaches have been
proposed during the last decades. SUSY and GUTSs together provide an attractive framework
which can explain most of the above mentioned open questions. Next we discuss some aspects

of these approaches.

1.3 Aspects of Supersymmetry

Supersymmetry is one of the most attractive concepts in theoretical physics. Despite the lack
of experimental evidence so far, a number of theoretical arguments can be given in support
of this elegant theory. For example, is the only possible extension of the Poincare algebra in
four dimensions [11]-[19]. SUSY is a spacetime symmetry mapping particles of integer spin
(bosons) into particles of half-integer spin (fermions) and wice versa. Different said, unifies
matter (fermions) and forces (bosons). In addition, SUSY is one of the main predictions of
String Theory. From the phenomenological point of view, SUSY under certain conditions gives
an elegant solution to the hierarchy problem and predicts unification of gauge couplings. At the
same time, suitable dark matter candidates can be found on the extended field content of SUSY
models.

The generators Q of this symmetry act as:

Q|Fermion) = |Boson) and vice versa. (1.29)

From this schematic definition it is obvious that this operator changes the spin of a particle.
Hence, affects also its space time properties. In a SUSY framework, each particle state has (at
least) one superpartner. Since now two different type of particles are connected, in a SUSY
theory instead of single particle states, one has to deal with supermultiplets of particle states. In
addition, one can have theories with different number of SUSY generators Q: o with I = 1..N.
The number of SUSY generators, however, cannot be arbitrarily large but is constrained from

the spacetime dimensions and the maximal spin of the theory. For theories in the convetional
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Superfields | spin 1 | spin 1/2 | Gsus
Ga Ga Ga 8,1,0
W, W, W, |1,3,0
B B B 1,1,0

Table 1.3: Vector supermultiplets of the MSSM along with their boson and fermion content. Notice that
the hypercharge of the new fermions (gauginos) is zero and consequently they not contribute to gauge

anomalies.

4-dim spacetime, any supermultiplet must contains particles with spin at least as large as N'/4.
This implies that for local gauge theories with maximal spin 1 (like the SM), A/ can be as large
as 4. For more formal aspects on the subject we refer to standard reviews [50]-[52] and textbooks
[53]-[56].

1.3.1 The Minimal Supersymmetric Standard Model

The most economic (N = 1) SUSY extension of the SM is known as Minimal Supersymmetric
Standard Model (MSSM) [50], [52], [57]. There are two types of supermultiplets in the MSSM,
chiral and vector supermultiplets. The spin-1 gauge bosons of the SM and their spin-1/2 super-
partners, the gauginos (the eight gluinos G1.s, three winos W, and the bino B) are in vector
supermultiplets. More details about the vector superfield content of the MSSM are presented
in Table 1.3. Notice that gauginos have zero hypercharge and hence do not introduce gauge
anomalies in the theory. Concerning the fermions of the SM, left- and right-handed fields belong
to chiral superfields together with their spin-0 superpartners, the squarks and sleptons. The
Higgs is now interpreted as the scalar part of a chiral superfield and in the MSSM we need to
introduce two Higgs chiral superfields [50], [58], H, and H, with opposite hypercharge, % and
—% respectively, see Table 1.4. This way the fermionic states of the Higgs superfields, known
as higgsinos, do not introduce anomalies due to the opposite hypercharge assignment. There is
an additional explanation behind this extension on the Higgs sector. In the language of SUSY,
interaction and mass terms for the various superfields are described by a function known as the
superpotential. The superpotential must be an analytic function only of the superfields, and not
their conjugates. As a result, we can not use the Higgs isodoublet as we have done in the SM in
order to construct a gauge invariant top-Yukawa term, but instead we introduce an extra Higgs
superfield.

The rich particle spectrum of SUSY models like the MSSM and its extensions, provides
solutions to some of the well known SM puzzles. It seems that SUSY is the symmetry that
Higgs boson desperately needs to protect its mass. More precisely, the scalar partners of the
SM fermions contribute to the Higgs boson mass via one-loop diagrams like the one presented
in Figure 1.4. If S is a SUSY scalar particle and Ag is the coupling coefficient to the Higgs
boson, then for yj% = —M\g the one-loop contribution from fermion loops (1.20) cancels with the

one-loop contribution from the scalar particle. Furthermore, if the mass of the scalar is equal
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Superfields spin 0 spin 1/2 Gsum
Q | (ar,dr) | (urdp) | 3,2,1/6
Quark sector | a° ﬁ~L ~ il | ag ~ (up)e | 3, 1,-2/3
de | dp~dly | dp~ (dg)° | 3,1,1/3
L | (Zers€r) | (Yerer) |1,2,-1/2
Lepton sector | - _t B
é er ~ép | er ~ (er)® 1,1,1
. H, | (HFHY) | (HfHY) | 1,2,1/2
Higgs sector . 0 17— ~0
Hy (Hded ) (Hd)Hd ) 1,2, _1/2

Table 1.4: Chiral supermultiplet fields of the MSSM along with their spin-0 and spin-1/2 content.

Phenomenological reasons and anomaly cancellation requires the existence of two Higgs supermultiplets.

ho - "‘,‘. ..... . -“"",'....- h:(f

Figure 1.4: One-loop radiative corrections to the Higgs boson mass from scalar particles.

to the fermion mass (ms = mg), which means that SUSY is an exact symmetry, then even the
logarithmic divergences disappear.

However, there is no experimental evidence of scalar particles having the same mass as
the well-known fermions of the SM. This implies that SUSY is a broken symmetry in nature.
Although many options have been discussed in the literature [59]-[64], up to now there is no
an sufficient dynamical way to break SUSY. A possibility is to introduce by hand terms that
break SUSY explicitly. These SUSY breaking terms must be soft [65, 66], which means we
introduce by hand super-renormalizable breaking terms to distinquish the mass of the scalar
SUSY particles. The mass of the scalars and the SUSY breaking scale must not be much heavier
than the EW scale. Otherwise, the problem of naturalness is reintroduced in the theory. A more
detailed analysis of the naturlness problem proves that the mass of the new SUSY particles
must be around the TeV scale. At the same time, gauge coupling unification is not affected
for a SUSY scale (Mgygy) in the TeV range, Mgsysy ~ O(TeV). Indeed, MSSM predicts
unification of the three gauge couplings at high energies. Running of the gauge couplings in
the MSSM at one-loop level is described again by equations (1.18) and (1.19) where now the
b coefficients have different values with: (b1, b2,b3)pssm = (33/5,1,—3). In Figure 1.5 we
present the evolution of the inverse gauge couplings in the MSSM. We have assume a SUSY
decouple scale at Mgysy = 1 TeV and as we observe the three gauge couplings join together
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Figure 1.5: Unification of the inverse gauge couplings o !(Q) on one-loop level in the MSSM for a
SUSY scale at the TeV range, Msysy = 1 TeV. The three gauge couplings unify at an energy scale with
Mgyt ~ 1016 GeV. For comparison we have also include the evolution of the gauge couplings in the case
of the SM (dashed lines). As input scale we took Qo = Myep ~ 173.4 GeV and the values of the gauge

couplings at this scale was received from [26].

at a unification scale with Mgpr ~ 2 x 10'® GeV. This is an astonishing result which supports
the idea of a supersymmetric grand unified theory [67], [68].
The superpotential should be invariant under SUSY and gauge transformations and for a

chiral superfield ® has the general form

1 1
W = 5 Mij®i®; + 514iju Pi®; P (1.30)

where M% is the mass matrix and Yijk is the Yukawa coupling. The tree-level scalar potential

is a sum of the so-called F-terms and D-terms,
» 1
B nEYS Al - a
V=F Fl+2 Ea DD, (1.31)

where F; = % and D* = ). gaq);rTaq)i with 7% and ¢ being the generators and coupling
constants of the corresponding gauge groups.

In the case of MSSM the superpotential is:

Warssay = y7usQ; - Hy, — ydSQ; - Hy — y9eL; - Hy + pH, - Hy (1.32)

where the parameters y,, yq4 and y. are Yukawa couplings of up type quarks, down type quarks
and charged leptons respectively. The VEVs v, and vq of the Higgs doublets H,, and H,; provide
masses for the up and down quarks/charged leptons respectively. Between the quark and lepton
masses My, My, Mme and the yukawa couplings v, ¥4, ¥ we have the following relations:

muV/2 mav'2 meV/2

= s = 5 = 133
Yu vsin 8 Yd vcos Ye v cos 3 ( )
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Figure 1.6: Proton decay (p — 7° 4 e*) via A};5 and A};, RPV operators.

where v = y/v2 + v2 and 0 < 8 < 7/2 with tan 8 = v,/vq. From these relations it is clear that
the predictions of the model strongly depends on the value of the § angle.

The last term in superpotential (1.32) describes the mixing between the Higgs superfields
and is commonly known as the p-term. The parameter p has dimensions of mass and for
phenomenological reasons its value has to be of the order of the SUSY breaking scale. The
question of how a SUSY mass parameter p can assume a value of the order of Mgy gy is known
as the p-problem [69]. The term can be generated in a dynamical way by extending the MSSM
spectrum with a singlet superfield? S in what is known as the Next-to-Minimal Supersymmetric
Standard Model (NMSSM) [70] (see also [71]). In this model when the new scalar S receives a
VEV (S5), the p-term is generated via the invariant trilinear coupling ASH, Hg. Since u = A(S),

by tuning the values of A and (S) one can end up with a u term at the desired energy scale.

1.3.2 R-parity violation

In the most popular version of MSSM described by the superpotential in (1.32), a new symmetry

called R-parity [72] is assumed to be an exact symmetry. This symmetry is defined as

P = (_1)3(B—L)+2s (1.34)

where L and B are the lepton and baryon numbers and s is the spin quantum number. An
alternative to Pr but with the same physical results, is known as Matter parity. Under the matter
parity, MSSM superfields have the following assignments: Py; = —1 for matter superfields while
Py = +1 for the Higgs superfields H, and Hy. In other words matter parity discriminates
the fermion superfields (matter) from the Higgs superfields. According to matter parity, the
product of Py; in a possible candidate term in the superpotential must be equal to +1. Thus
forbids all terms with an odd power of matter fields. This has the implication that the lightest
superpartner is absolutely stable and can be identified as the dark matter of the universe. This,
along with other attractive properties of MSSM prompted most of the LHC searches for SUSY

to focus on R-parity conserving version of the MSSM. However, in the absence of R-parity (or

4From now on we drop the "hat” superfield notation
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any other 'protecting’ symmetry) the following gauge invariant terms are exist

B-violation

1 1
Wgrpv = piHy,Li + QAijkLiLjez + X LiQjdj, + 5)\%1@“5 Sdgs (1.35)

L-violation

where the last term leads to baryon number violation while all the other terms do not respect
lepton number conservation. In total, (4.2) adds 48 new couplings in the theory. As a result, the
presence of R-parity violation (RPV) terms in the superpotential introduces a whole new sector
of interactions in the model [73], [74]. Due to these new interactions, the lightest supersymmetric
particle its no longer stable and as a result loses its precious title of dark matter candidate®. In
addition, the simultaneous presence of RPV terms in the superpotential can lead to dangerous
nucleon decay phenomena, like the one presented in Figure 1.6. The graph describes the decay
of a proton (p) into a pion (7°) and a positron (e*) due to the presence of \j;o and Aj;, RPV
terms. Taking into account bounds of the proton lifetime® and the fact that, I'(p — 7Ve™t) ~

5 - 2
|A112 /1’12|2mp7%‘g"", we can estimate that: |[\jjoA\] 5] < 5 x 10727 (1;;1;‘/) . This is a very strict
bound suggesting that at least one of the RPV couplings is extremely small. As a result, partial
conversation of R-parity (only baryon number conversation or only lepton number conversation)

keeps the proton stable and at the same time allow for RPV terms in the superpotential [77].

1.4 Grand Unified Theories

We have already discussed some of the reasons why the SM is not the ultimate theory of nature.
The problem of charge quantization in the SM strongly suggests that Ggjs must be a subgroup
of a larger gauge symmetry. Another problem of the SM is the large number of free parameters
~ O(20). If the SM is the low energy descent of a larger unified theory then certain relations
between these parameters (for example relations between the fermion masses) can reduce this
arbitrariness. In addition the explanation of the tiny but non-zero neutrino masses via the
seesaw-mechanism involves heavy particles and provides some hint of high scale physics.

Historically, the first attempt for a unified theory was the Pati-Salam model [78] with gauge
group SU(4)c x SU(2)r, x SU(2)r. This model has well-known attractive features (see for
example the recent review [79]) and has been succesfully rederived from superstring and D-
brane frameworks [80]-[84]. The Pati-Salam model unifies the fermion content of the SM in
an elegant way and explains charge quantisation. However, the gauge group of the model is
not simple (it is the direct product of three gauge factors) and thus it does not predict gauge
coupling unification.

A first attempt to unify all the SM interactions in a single group was done by Georgi and
Glashow [85] with the smallest gauge group which can embed the Ggys, the Lie group SU(5).

The SM fermion content fits nicely in SU(5) representations and the SM charges arise naturally.

°In this case, there is a viable escape in the form of the gravitino [75].
5The latest super-Kamiokande results sets the following limit on the lifetime of the proton: 7(p — 7T06+) >
1.6 x 10%* years [76].
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Despite its elegance, the model in its minimal non-supersymmetric version does not lead to
unification of the gauge couplings, returns inappropriate relations between the fermion masses
at the GUT scale and predicts unacceptably fast proton decay effects. Some of these problems
are solved with the inclusion of SUSY to the model. However, in both cases the minimal SU (5)
does not include RH-neutrinos in its standard fermion representations. One of the most common
GUT groups which unifies all the fermions including RH-neutrinos is the SO(10) group. The
SO(10) contains the Pati-Salam as well as SU(5) x U(1) as a maximal subgroups. Similarly,
SO(10) x U(1) is a subgroup of the exceptional group Fs.

Next, we review the basic features of SU(5), SO(10) and Eg GUTs. Since SUSY predicts
unification of gauge couplings at a certain grand unified scale in the vicinity of the Planck scale,

we will mostly concentrate on the SUSY version of these models.

1.4.1 SU(5) theory

We consider first the GUT gauge group SU(5) which is rank 4, as the Ggps. Any SU(N) group
has (N? — 1)-generators and as a result SU(5) has 24 gauge bosons which transform under the
maximal subgroup SU(3) x SU(2) x U(1) as:

SM gauge sector

24 — (1,1)0+ (8, 1) + (1,3)0 + (3, 2)_5/6 + (3, 2)+5/6. (1.36)

New gauge bosons
Twelve of them are identified with the SM gauge bosons while the remaining states, ((3,2)_5/6+
(3,2)45/6), are new, usually named X and Y gauge bosons. Spontaneous breaking of SU(5) to
the Gsas can be achieved with the introduction of a Higgs field () in the 24 adjoint represen-
tation, by developing a VEV in the direction of the hypercharge generator.
Each family of lepton and quark MSSM superfields fits nicely in the 5 and 10 multiplet of
the SU(5) as:

5 M, o3, 01 +L(1,2) (1.37)
10 2, Q(3,2)1 +u(3,1)_2 + (1, 1)1. (1.38)

Regarding the Higgs sector, the H, and Hy superfields of the MSSM descend from a pair of 5
and 5 respectively:
5H — (Hu)D)a 5H — (HdaDc)a (139)

where D and D¢ constitute a vector pair of exotic color triplets. The Higgs superfields are
introduced to break the EW symmetry and give masses to the fermions of the model via Yukawa
interaction terms, therefore we must keep these states at low energies. The invariant SU(5)

Yukawa terms are the following:

up type: Y,10; x 10; X 55 — Y,QiujH,, (1.40)
down type/charged leptons:  Y;,.10; x 5; X 55 — Yy/.(Qid;Hg + Lje Hy), (1.41)
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where as we can see the down type and charged lepton Yukawa couplings arise from a common

SU(5) invariant operator. This implies the following relation for the Yukawa matrices:

Y,=Y! (1.42)

meaning that the Yukawa couplings of the down type quarks and charged leptons are equal, at
least at the GUT scale. Some of the predictions follow from this relation are good, especially for
the heaviest generations, Y; = Y, known as b-7 unification. However this same relation predicts
that ms = m, and mgq = m, at the GUT scale. These GUT conditions fail to reproduce the
correct masses for the lightest generations at low energies

This can be corrected e.g. by adding high order ( 1/Mp;) terms. An alternative solution
to the problem has been suggested by Georgi and Jarlskog [36]. They pointed out that suitable
relations between the Yukawa couplings at the GUT scale can be produced by extending the
Higgs sector with a 45y Higgs field. Then the SU(5) invariant operator ~ 10 x 5 x (45p)
modifies the Yukawa matrices and leads to the well-known Georgi-Jarlskog mass relations

1

ms=my , My =3Mms , Me= 3Md (1.43)

at the GUT scale. Applying RG analysis it turns out that these relations are in a better
agreement with the low-energy observations.

The SU(5) gauge group provides a nice framework for theorists to study unification of the
SM interactions. However, in its minimal (SUSY or not) form it suffers from a variety of
technical issues, like the wrong GUT Yukawa relations described above. Since we put leptons
and quarks in the same irreducible representation of the GUT gauge group, there must be an
interaction between them which can lead to undesired interaction phenomena. As a consequence
the most important problem in the construction of GUT theories is the prediction of rapid proton
decay [87], [88].

In non-SUSY SU(5) models the main contribution to proton decay comes from effective
dimension-6 operators generated by the exchange of the extra SU(5) gauge bosons X and Y.
Suppression of these effects implies that the X and Y gauge bosons must be heavy with masses
> 10'6 GeV. This is intriguingly close to the predicted unification scale predicted from SUSY
models. However, even with the fusion of SUSY and GUTS, fast proton decay is still there. The
minimal SUSY SU(5) model leads to quite fast proton decay through dimension-5 operators
generated by the exotic colored triplet Higgs supermultiplets D and D€ [89, 90]. Suppresion of
the effect requires these Higgs triplets to be heavy, with masses of order the GUT scale [91],
[92], [93]. Since the EW Higgs doublets and the extra colored triplets descend from common
55 and 5y representations the requirement for heavy color triplets introduces another technical
problem in the theory. The question of how we keep the Higgs doublets light while the triplets
are heavy, known as the doublet-triplet splitting problem.

Another problem of the minimal SU(5) models is the absence of RH neutrinos. One has to
add SU(5) singlets 1 = v or other suitable SU(5) representations separately in order to explain

the small neutrino masses (see for example [94], [95]). A single, rank-5 group which unifies all



CHAPTER 1. THEORIES BEYOND THE STANDARD MODEL 21

the fermions (including RH-neutrinos) under a common representation and contains SU(5) as

well Pati-Salam as a subgroup, is the special orthogonal group SO(10) to which we now turn.

1.4.2 SO(10) unification

In particle physics, SO(10) is a popular GUT group candidate [99]. Special orthogonal groups
SO(N) have N(N — 1)/2 generators and as a result SO(10) GUT predicts 45 gauge bosons
which transform as the 45 adjoint representation. There are two maximal subgroups of SO(10).
One is the Pati-Salam gauge group Gpg, while the other one corresponds to the breaking pattern
SO(10) — SU(5) x U(1)y. Regarding the latter, symmetry breaking of SU(5) x U(1)y to the
Gsyr can happen in two different ways. One option consists in breaking SU(5) directly into
Gsar as in the case of the minimal SU(5) GUT. Alternatively, one can indentify the hypercharge
of the SM as a linear combination of a diagonal generator of SU(5) and the generator of the
U(1)y. This second option is known as the flipped SU(5) model [96],[97], [98] which has some
very interesting properties but we will not discussed it here. In order to understand the basic
properties of the SO(10) model we will follow the decomposition SO(10) D SU(5).

A complete family of SM fermions fits perfectly into a single 16 spinorial representation of
S0O(10). Indeed, 16-plet has the following decomposition under SU(5):

16 2" 104541, (1.44)

where the 5 and 10 multiplets accommodate the full set of one generation of quarks and leptons
and in addition one has the singlet field which can accommodate RH-neutrinos.

In minimal SO(10) constructions, the two MSSM Higgs multiplets descend from the funda-
mental representation of SO(10),

105 22 5, 4 5, (1.45)

and as we know from SU(5) theory this also includes an extra pair of color triplet fields. We
note that in contrast with the SU(5) models where the down Higgs Hy and L descend from the
same SU(5) representation, SO(10) distinguishes the Higgs from matter representations.

The product of two spinor 16 representations produces the 10, while the product 10 x 10
contains the singlet. That way, all the Yukawa interactions descent from the following invariant

operator:

where the last term is a neutrino Dirac operator. It is clear from eq. (1.46) that SO(10) predicts
unification of all Yukawa couplings at the GUT scale:
Y=Y, =Y. =Y,. (1.47)

Under specific conditions Yukawa unification can be supported for the heaviest generations (t-
b-7) in SO(10) models [100]-[104]. On the other hand, this result has to be modified for the



CHAPTER 1. THEORIES BEYOND THE STANDARD MODEL 22

lightest generations as in the case of the minimal SU(5) model. An alternative way to deal with

these flavour puzzles is to combine the GUT gauge group with a discrete flavour symmetry [105].

1.4.3 FEs models

The next largest anomaly-free group in which we can embed SO(10) is the exceptional Lie group
Eg [106], [107], [108]. Most of the appeal of Fg models arises from the fact that String theory
compactifications lead to the gauge group Fg or its subgroups in the observable sector [109],
[110]. In addition, Eg is one of only five exceptional groups, in contrast with the infinity class
of SU(N) and SO(N) groups. An easy way to describe the MSSM embedding into Eg is by
considering the breaking pattern £6 D SU(5) where two abelian factors appear:

Es — SO(10) x U(1)y — SU(5) x U(1)y x U(1)y. (1.48)

The SM fermions within each generation can transform under the 27 irreducible representation
of Eg which decomposes as follows under the breaking to SO(10) x U(1)y:

27 — 167 +10_2 + 14, (1.49)

where the index denotes the U(1), charges. Further breaking of the SO(10) according to (1.48)

leads to the following decomposition:

16,
27 — 10 _1) + 5(13) + 1(1,5) +5(—22) + B(—2,—2) +1(4,0); (1.50)

10_o

where the two indices refer to the (un-normalised) charges (Q, Q) under the two abelian
factors U(1), x U(1)y, respectively.

The fermion families are accommodated in three 16-plets of SO(10). The ordinary quark
triplets, the RH electron and lepton doublets comprise the 10(; 1) and 5(1,3) of SU(5), and
in the standard description, the singlet 1(; _5) is identified with the RH neutrino. The pair
5(—2,2) +5(—2,—2) consists of color triplet exotic pairs along with a pair of MSSM doublets which
can be the either the Higgs doublets of the MSSM or exotic lepton doublets. In order to restore
gauge coupling unification, an extra pair of exotic Higgs-like doublets must be introduced to the
spectrum’. There are also SO(10) singlets with charges (4,0) which can be used for a dynamical
realization of a TeV scale p-term. Furthermore, there are also additional Eg multiplets, except
of the fundamental 27(27) representations, that can be used to extend the matter or symmetry
breaking sector of the theory, like the 78 adjoint representation or the two index symmetric
representation 351’-351’ [112]. In the case that we discuss here, Yukawa couplings descent

from the following Ejg invariant operator:

27 x 27 x 27.

"It is well-known that perturbative gauge coupling unification is maintained when we extend the MSSM

spectrum with vectorlike pairs that transform as complete SU(5) multiplets [111]
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Of course, the same operator contains the necessary Dirac neutrino term as well as mass terms
for the extra vectorlike pairs.

As we see so far, a special characteristic of the Eg models is that they contain plethora of
new states, like extra scalar singlets and exotic vectorlike pairs. All these new states have huge
impact on the low energy phenomenology of the model. The precise low energy spectrum of
the Fg models strongly depend on the breaking path down to the SM gauge group that we
choose and consequently on the symmetry breaking sector of the model. Among the many low
energy descendants of the Eg gauge group, U(1) extensions of the MSSM (UMSSM) have very
interesting consequences both at the theoretical and low energy phenomenological level [113].
Noting that SU(5) in (1.48) contains the SM gauge group and the breaking of Eg directly into
Gsm+U(1)y +U(1)y is a possible scenario [114], [115]. The extra U(1) group of the UMSSM

now is a linear combination of U(1), and U(1), parametrised by a mixing angle ¢ as

U1) =U(1)ycos¢p+U(1)ysing (1.51)

with ¢ € [0,5]. Consequently, the U(1)" symmetry will be associated with a heavy Z' gauge
boson that could have profound implications for particle physics and cosmology [116].

We can follow the same logic by which Ggyy is a maximal subgroup of SU(5), which extended
with a U(1) factor turns into a maximal subgroup of SO(10) and so on. That way we end up

to the largest exceptional group:
Eg D E; D Eg D SO(10) D SU(5) D Gsur

From the group theory point of view, Eg acts as a ”parent” symmetry for all the GUT groups that
we have discussed so far. However, due to the complicated structure of these large exceptional
groups, it is not easy to construct a realistic 4 dimensional model at the field theory level. This
is necessarily outside the 4d GUT framework and one has to look into more generic structures.
Indeed, the Eg group plays a special role in superstring compactifications, especially in heterotic
string theories (Eg x Eg) and more recently in the non-perturbative version of IIB superstring

theory, known as F-theory.

1.5 GUTs from F-theory

The quest for a unified theory of elementary particles has led to numerous extensions of the
successful SM of electroweak and strong interactions. Supersymmetric GUTs described in the
previous section provide some nice features, like charge quantization, gauge coupling unification,
RH neutrino candidates and more. However, due to the presence of extra gauge bosons and
exotic states, these models usually suffer from proton decay effects and other technicalities like
the doublet-triplet splitting problem. These problems are in sharp conflict with the requirement
for gauge coupling unification. A way to deal with these issues is realised by extending the
GUT group with a suitable extra symmetry. This can be for example, a continues U(1) factor

(like in the case of the flipped SU(5)) or a discrete symmetry. Many GUT models accompanied



CHAPTER 1. THEORIES BEYOND THE STANDARD MODEL 24

by continuous as well as discrete symmetries have been proposed as realistic extensions of the
MSSM. Since there are plethora of choices on the construction of an extended GUT model, we
need a consistent and motivated guide when constructing such models. String theories have
a rich group structure embodying both continuous as well as discrete symmetries at the same
time.

During the last decades, string theory has been proven to be a powerful approach to describ-
ing gravity, which also enforces restrictions on the particle physics theory. In addition GUTs
may be embedded in string constructions, while supersymmetry is also incorporated in a con-
sistent way. Although string theory does not provide a unique prediction for the precise GUT
symmetry and matter content, it enables a classification of possible solutions in a well defined
and organized way. Moreover, it provides computational tools for various parameters such as
the Yukawa couplings and potentials which would otherwise be left unspecified in more arbitrary

extensions of the SM.

1.5.1 F-theory basics

F-theory [117], was discovered about two decades ago during the era of the second string rev-
olution. Technically, provides a more accessible description of the non-perturbative aspects
originating from the type II-B superstring theory. In what follows we present some of the
generic features of F-theory following mainly the works of [118, 119] and [120, 121]. See also the
reviews [122]-[128].

F-theory is a 12-dimensional theory which arises from the geometrization of the type II-B
string theory. So we discuss some properties of type II-B superstring theory first.

The effective theory is described by the type II-B supergravity whose bosonic field spectrum
splits in two sectors. From the nature of the stringy origin of these two sectors, are referred to
as Ramond-Ramond (R-R fields) and Neveu-Schwarz (NS-NS fields) [129]:

NS —NS: gun (metric), ¢ (dilaton), By (a 2-form potential)

R—-R: C, with p=0,2,4

where the 2-form potential on the NS-NS sector gives rise to the field-strength, Hs = dB>.
Similar, from the exterior derivatives of the p-form potentials, C),, we will have also the corre-
sponding field strengths Fj,;1 = dC),. In particular, the 5-form F5 has to respect the self-duality
condition F5 = xF5 where x denotes the Hodge star operation. Furthermore, the fields Cy and

¢ are combined together into the following complex modulus

T = CO + ieﬂb = CO + i (152)
s

which is known as the complex azion-dilaton and has a central role on the definition of F-theory.

In addition, it is also useful to introduce the following field combinations
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Gs = Fy—1Hs (1.53)

- 1 1
Fs = F5— 5G2/\H3— 532AF3 (1.54)

and by definition the 5-form Fy has also to fulfill the self-duality condition. We are now well
equipped to write down the bosonic part of the type II-B supergravity action [122], [129]:

S1rB m/dlox\/—gR
(1.55)

1 1 1 — 1 - -
—/ dr AN *dT + ——G3 AN xG3 + =F5 AN xF5 + Cy AN H3 N\ F3
2 ) (Imr)? Im7 2

where we set the string length Is, which is related with slope parameter o/ equal to unity,
ls = 2mvVo/ = 1. The type II-B supergravity action is invariant under a SL(2,R) symmetry
group, which is reduced to SL(2,Z) in the quantum level [130]. Indeed, the action is invariant

under the following SL(2, Z) transformations:

H H. d
BN b , ¥ - M ’ with M = “)e SL(2,7) (1.56)
cT +d F3 F3 b a
Fy— F5 gMN > gMN- (1.57)

In the sense of mathematics, the transformation (1.56) of the axion-dilaton field 7 under
an SL(2,Z) duality transformation is identical to the behaviour of the complex structure of an
elliptic curve, say E;, under a modular transformation. The idea now is to use the value of the
string coupling-related axion-dilaton 7 to describe the shape of a torus [117]. An interpreta-
tion like this, converts the 10 dimensional space-time of type IIB theory into a 12 dimensional
elliptically fibered total space which leads in what is known as F-theory.

In F-theory 7 is interpreted as the complex structure modulus of an elliptic curve generating
a complex fourfold which constitutes the elliptic fibration over the Calabi-Yau (CY) threefold.
Since the fibration relies on the 7 = Cy+1/gs, this means that the gauge coupling is not a constant
and the resulting compactification is not perturbative. In addition, for N = 1 supersymmetry
to be conserved, the elliptic fibration has to be Calabi-Yau. Hence, according to the above
discussion, the total space of F-theory is defined on a background R>! x X with R*! our usual
space-time and X an elliptically fibered Calabi-Yau fourfold with a section over a complex
three-fold base Bs. This graphically is illustrated in Figure 1.7.

Consider now three complex coordinates (x,y, z) corresponding to the three spatial dimen-
sions of the base space Bs. Then the elliptic fibration is described mathematically by the

Weierstraf3 equation,
y? = 23+ f(2)x+g(2) (1.58)

where f(z) and g(z) are eighth and twelfth degree polynomials in z. For each point of the base

Bs, the equation describes a torus labeled by the coordinate z.
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Figure 1.7: Schematic representation of the total space (R*! x &) in F-theory. The top/left part of
the figure represents a Calabi-Yau foufold (X) constituting an elliptic fibration over a threefold base, Bs.
Every point in the base is represented with a 2-torus (fibre), as shown. The modular parameter of the

torus at each point is related to the axion-dilaton profile, 7 = Cy + i/gs.

There are two important quantities characterising the elliptic fibration : the discriminant A
of Equation (1.58) and the j-invariant modular function.

The discriminant classifies the singularities of the elliptic curve and is given by the formula,
Az) =4 f(2)° +27g(2)*. (1.59)

For A # 0, the curve described by (1.58) is non-singular. On the other hand, at the zeroes of
the discriminant (A = 0) the elliptic curve becomes singular with one cycle shrinking to zero
size and the fiber degenerates. There are 24-roots z; of the discriminant which corresponds to
24 T-branes located at z; with ¢ = 1,...,24. We can see this by study the j-invariant function.
The SL(2,Z) modular invariant function j(7) relates the modular of the torus (7) with the

discriminant,
_A(24f)3  4(24f)°

= = 1.60
i(7) A 413 + 2742 (1.60)
where j(7) = e 2™ + 744 4+ O(e?™7).
In the vicinity of a singular point-z;, using (1.60) one can write [131]
(r(2)) ~ ——— — 7(2) & g In(z — 2) (1.61)
z)) ~ ~—In(z — z )
AT z—z T\ 211 s

up to SL(2, Z) transformations. Further, since In(z — z;) = In|z — 2;| + ¢ 6, as one encircle the

position z;, 7 undergoes a monodromy 7 — 7 + 1, or in terms of Cy

Co—>00+1,—>%F1:de():1
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Since Cj is sensitive on the dynamics of the brane, this implies the existence of a 7-brane at z;,
while totally there are 24 such branes in the compact transverse space.

In summary, the idea of F-theory states that the physics of Type II-B compacitifications
with 7-branes on a complex threefold Bs is encoded in the geometry of a fourfold X which is
elliptically fibered over Bs. The elliptic fiber itself is not part of the physical spacetime but
serves as a tracking device that accounts for the variation of the axion-dilaton 7. As seen from
the solution (1.61), at the location of 7-branes the axion-dilaton field diverges. If the complex
structure of an elliptic curve diverges, this indicates that a one-cycle of the torus is pinched and
consequently the elliptic curve is degenerate. Thus, 7-branes appear at points in the base Bs at
which the fibration becomes singular, corresponding to 4-cycles S wrapped by the 7-brane.

It is well known from constructions with intersecting D-branes that gauge symmetries emerge
when more than one D-branes coincide. While a single D-brane is associated to a U(1) symmetry,
when we consider the possibility of having N D-branes of the same kind on top of each other
(a stack of branes), then this gauge symmetry will be U(N). In a similar logic, in F-theory
when 7 branes coincide at a certain point, there is a gauge symmetry associated to these branes.
Since at this point there is a singularity of the elliptic fibration, we expect that there is a
connection between elliptic singularities and gauge symmetries. Indeed, a systematic analysis

of these singularities has started long time ago with the work of Kodaira [133].

1.5.2 Tate’s Algorithm and Gauge Symmetries

According to the discussion above, in F-theory the gauge symmetry is connected with the singu-
larities of the internal compact manifold. Thanks to Kodaira we have a systematic classification
of these singularities in ADF type groups. The Kodaira classification depends on the vanishing
order of the discriminant A and the polynomials f, g of the Weirstral equation given in (1.58).
The results can be found in many recent works [134], [135], [136],[137]. Here are summarized in
Table 1.5 and as we can see the classification contains also the exceptional groups Eg, E7 and
Es.

In the present thesis we will focus mostly in local F-theory constructions. A useful description
which emphasizes the local properties of the singularities under discussion is given in terms of
Tate’s algorithm [138]. Tate’s procedure is based in a local coordinate redefinition that brings

the Weierstrafl equation in to the following form
v+ arzy + asy = 2% + ag 2% + asx + ag. (1.62)

This is known as the inhomogeneous Tuate form. The a;’s are functions of the complex coordinate
z of the base Bs and as we expected are related with the f and g polynomials of the initial
Weirstrass equation. In particular, the polynomials f, g and consequently the discriminant A,
can be expressed as functions of the a;’s. In order to see this we have to convert the Tate’s
equation (1.62) in to the Weirstral form (1.58). This can be achieved by complete the square
on the left hand side and the cube on the right hand side of equation (1.62) and then comparing
with the Weirstral equation. That way we find that:
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ord(f) | ord(g) | ord(A) | fiber type | Singularity
0 0 n I, A,_q
>1 1 2 II none

1 > 2 3 111 Aq

>92 |2 4 v Ay

2 >3 | n+6 I Dia
>2 |3 n+6 I Dia
>3 |4 8 v+ Es

3 >5 9 11r* E~

>4 5 10 1r* FEg

Table 1.5: Kodaira’s classification of elliptic singularities [133].

1
=15 (85— 24B4) , (1.63)
9=~ (~B1+ 365260 — 2165) (164

and replacing f, g in (1.59), the discriminant takes the form

A= % (BsB3 — 9B2B41PBs + 863 + 2753) (1.65)

where for shorthand we made the redefinitions

B2 = af + 4a, (1.66)
B4 = araz + 2ay, (1.67)
B = a3 + 4ag , (1.68)
B = 3 (265 — 53). (1.69)

Now all the symmetry properties of the singularities on the elliptic fibration are encoded on
the vanishing degree of the polynomials a; ~ b;z" and the discriminant A. The discriminant
will factorize with each factor describing the location of a 7-brane on a divisor S in Bs. The
results are presented in Table 1.6 and the various cases have been analysed in detail in [134].
Here we are interested in some specific cases, like the popular GUT groups SU(5), SO(10) and
Eg. Since most of the work presented in this thesis deals with SU(5) GUT constructions, lets
discuss this case in more detail.

Let’s assume that a; receives the following forms

a] = —b5, ag = b4Z, a3 = —b322, ag = b223, ag — Z5b0 (1.70)

where b;’s are independent of z. This choice returns the following Tate equation

y? = 2% + bpz® + boxz® + byyz? + bax’z + bsay (1.71)
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which as can be seen from Table 1.6 (9"

row on the Table) implies an SU(5) singularity. The
coefficients by are in general non-vanishing and can be seen as sections of line-bundles on S.

Their homology classes are given by

[br] =n— ke (1.72)

where 17 = 6¢; — t with ¢; the 1%° Chern class of the tangent bundle to S and -t the 1% Chern
class of the normal bundle to S.
Substituting the relations (1.70) in to the fi’s defined in (1.66)-(1.69) , we find

By = b2 + 4byz, (
B4 = bgbsz? + 2by23 (1.74
Bs = b2zt + 4bg2® (
Bs = 25(R + z(4bobs — b3)) (

where
R = b3by — babsbs + bob? (1.77)

Further substitution of the above relations in the discriminant (1.65), returns that A ~ 12°

8 as

required for an SU(5) singularity described in Table 1.6.

The matter representations of the effective theory model, reside at the intersections of the 7
branes wrapping the SU(5) divisor .S, with other 7 branes spanning different dimensions of the
internal space. In the language of F-theory these intersections are called matter curves, but in
fact are Riemann surfaces along which symmetry is further enhanced.

We can check how the symmetry is enhanced for certain choices. For example, choosing
bs = 0 we see that the discriminant becomes A o z7. Comparing with Tate’s results in Table 1.6,
we see that this corresponds to an SO(10) singularity. Thus, a matter curve is defined along
the intersection with another brane where we expect to find the 10 of SU(5) in the adjoint

decomposition of SO(10), therefore we write
Y10 ={bs =0}. (1.78)

Similar by putting R = 0, we see that A ~ 2% and this translates in to an SU(6) singularity.
The SU(6) adjoint induces the 5 of SU(5), therefore we define the matter curve for the fiveplet
as

Y5 = {R = b3by — babsbs + bob? = 0} . (1.79)

Further enhancements are obtained setting additional coefficients equal to zero. This time we
receive triple intersections of branes which define points in the internal space where the Yukawa
couplings are formed. Choosing by = bs = 0, we see that A ~ z® which corresponds to an Eg
symmetry enhancement. This implies the existence of the top Yukawa coupling. Similarly, the
choice b = bs = 0 implies an SO(12) point of enhancement which is the origin of the bottom/tau

Yukawa coupling. Collectively we have:

Y = {bs =by =0}, Y}, = {b5 = b3 =0}.
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Type Group ai | as as a4 ag A
Iy 0 010 0 0 0 0
I - 010 1 1 1 1
I SU(2) 00| 1 1 2 2
I3® — 010 2 2 3 3
I - 01| 1 2 3 3
133 Sp(n) 01]0 n n 2n 2n
I, SU(2n) 011 n n 2n 2n
I3 - 010 + +1|2n+1|2n+1
I3, 1 | SU2n+1) | 0 | 1 n +1|2n+1|2n+1
11 — 1] 1 1 1 1 2
111 SU(2) 11 1 1 2 3
vnse — 1] 1 1 2 2 4
Ivs SU(3) 11 1 2 3 4
I Gs 11| 2 2 3 6
Izss SO(7) 1 1] 2 2 4 6
Iz SO(8) 1 1] 2 2 4 6
s SO(9) 1] 1] 2 3 4 7
I SO(10) | 1|1 2 3 5 7
e | soal) | 11| 3 3 5 8
15° SO(12) 1|1 3 3 5 8
e | SO(4n+1) | 1 | 1 n +1 2n 2n+3
Iy 5| SOM4n+2) | 1 |1 n +1|2n+1|2n+3
ey | SO(M4n+3) | 1 | 1 + +1|2n+1|2n+4
Iy 5| SOM4n+4) | 1 |1 + +1|2n+1|2n+4
Tv=ns Fy 1|2 2 3 4 8
v Eg 112 2 3 ) 8
117" Er 112 3 3 5 9
I1r* Eg 112 3 4 5 10

Table 1.6: Results from Tate’s algorithm. (For a detailed description see [134, 138].) The order
of vanishing of the coefficients a; ~ 2", the discriminant A and the corresponding gauge group.

The highest singularity allowed in the elliptic fibration is the exceptional group FEs.
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SO(10) or SU(B) %/ Singularity

S@
)

/4
<

Figure 1.8: Graphic illustration of matter curves and Yukawa points in F-theory SU(5) GUT. The grey
region represents the SU(5) GUT surface of the internal space wrapped by 7-branes. Matter curves
(colored lines) are defined at the intersection with other 7-branes. A Yukawa coupling is defined at the
point where three matter curves intersect. Since the singularity is further enhanced at these points we
can find that the bottom/tau coupling is defined at an SO(12) point while the top coupling corresponds

to an Fg symmetry enhancement.

The concepts of matter curves and Yukawa points described above graphically presented in
Figure 1.8.

In the vincinity of the Yukawa points, F-theory allows for the computation of the Yukawa
couplings something that have been studied extensively in the literature [139]-[154]. We will
return on this interesting topic on Chapter 4 where we use known techniques in order to compute

the strength of trilinear RPV couplings.

1.5.3 Semi-local approach and the Spectral cover

In the so called semi-local approach in F-theory we assume that a parent Eg symmetry (which
is the maximum singularity allowed in the elliptic fibration) is broken by a position dependent
VEV for an adjoint Higgs field [121]. In this picture we concentrate in the vicinity of the chosen
surface S associated to the GUT group Gg, while its neighborhood is described by a spectral
cover surface which is associated to the commutant group of Gg with respect to FEg.

Of particular interest are the cases where GGg is one of the well known GUT groups Eg,
SO(10) or SU(5). We recall that these gauge groups are embedded in Eg:

Es © Gg x SU(N), (1.80)

with Gg = Eg, SO(10), SU(5) for N = 3,4, 5 respectively. From these specific cases we see that
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the commutant group is the SU(N), factor where the subscript ” L” is used here mostly to
discriminate the case with Gg = SU(5) from its commutant group. However sometimes we will
refer to the commutant group also as the perpendicular group.

We focus again in the case with Gg = SU(5). Matter resides in the adjoint representation

of Fg which in this case decomposes as

248 — (24,1) + (1,24) + (5,10) + (5,10) + (10,5) + (10,5) . (1.81)
The decomposition appears under SU (5)gyr x SU(5) L where the SU(5) | is the group describing
the bundle in the vicinity.
The corresponding spectral cover equation is obtained by defining the homogeneous coordi-
nates

z—=U 22—V y—o V3

so that the SU(5) singularity of the Tate equation (1.71) becomes
0 = boU® + boV2U? + b3V3U? + by VAU + b5V?

Then we can bring this equation to the form of a fifth degree polynomial by introduce the affine

parameter s = U/V:

5
Cs =) bps"F = bs+bys + bgs” + bas® + bys® + bos”. (1.82)
k=0

This is the spectral cover equation (or spectral cover polynomial) in the case of SU(5).
Furthermore, the roots of the spectral cover equation are identified [155] as the weights of the
SU(5) 1 group. Lets denote this weights as t; with i = 1,2, 3,4,5, then we write

5
0 = b5 + bys + b3s® + bas® + bys® H(s +ti) (1.83)
i=1

Using the above relation then it is a trivial task to express the b;’s as functions of the
roots t;. Then one can see that the coefficient b; is taken to be zero since it corresponds to
the sum of the roots which for SU(N) groups is always zero, » ¢; = 0. Furthermore, it can
be seen that the s = 0 part of the spectral cover polynomial is equal to the product of the
roots: bs = titatstyts. We recall now from (1.78) that b5 define the 31y matter curves where
the corresponding matter multiplets are localised. Then, in the spectral cover description the
tenplets of the SU(5) correspond to the five zeros:

5
Ti,: Puo=bs=][ti=0-t=0, i=1,2345. (1.84)
i=1

Similar, since the fiveplets of SU(5) are defined by the equation (1.77) we can use the
functions by (t;) with respect to (1.83) and translate (1.77) in terms of ¢;’s. Then we derive that:

Bg, i Ps =R =b3bs — babsbs + bob3 o [ (ti +1¢;) =0 (1.85)
tiFt;
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which implies that we have ten fiveplets. This can be read also from the decomposition of the
Eg adjoint as displayed in (1.81). There the 10 matter of SU(5)gur is paired with the 5, of
SU(5), while the 5 GUT matter is paired with 10, . Furthermore, we see that the GUT singlets
are paired with adjoint of SU(5).. Thus, in general there are 24 singlet curves X1, defined as:

Bi, 0 Po=]J(ti—t;))=0 (1.86)

which is actually the discriminant of the spectral polynomial.
In general, the model effectively appears with a symmetry SU(5)gur x U(1)*. Then, any
possible Yukawa term should be invariant under this symmetry. Thus, writing the coupling

involving the up quark masses
W D104 10, 5, —¢;

would appear to involve two different generations. On the other hand, phenomenological reasons
requires a rank-1 mass matrix at tree-level to account for the heavy top quark mass. A similar
conclusion holds for the bottom mass term. More generally, the known hierarchical fermion mass
spectrum and the heaviness of the third generation in particular, is compatible with rank-1 mass
matrices at tree-level. This requires a solution where at least two of the curves are identified
through some (discrete) symmetry acting on the weights ¢;.

The above idea of matter curves identification is supported also by the following fact. In
the spectral cover approach, the properties of the internal compact space are encoded into
the coefficients b,. Matter curves on the other hand are associated to the roots t; which are

polynomial solutions with factors combinations of b;’s, thus

by, = by ()

However, the inversion of these equations is not an easy task and usually lead to branchcuts.
The solutions t; = t;(b;) are then subject to monodromy actions between the t; roots.

To get a feeling of described above we present a simple example (given in [156]). Consider
the simplest case of the Zy monodromy and suppose that two of the roots in (1.83) do not

factorize. This implies that the second degree polynomial
ai + azs + a382 =0

cannot be expressed in simple polynomials of the base coordinates. The roots can be written

—ag—l-ﬂ 82_—0,2—\/@
—_— == V-

S1 —
2a3 2@3

with w = a% — 4aqa3. These exhibit branchcuts and since
Vw = e?2\/|w|
under a 27 rotation around the brane configuration § — 6 + 27 we get /w — —y/w and

S1 < S92
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This means that the two branes interchange locations s = s; and s = so. This is equivalent
of taking the quotient of the parent theory with a Zy symmetry. If this is among ¢; <> to the
coupling now reads

W D 104 104, 5t —t, — 104 104, 59,

providing a diagonal mass term since the two curves are identified.
Since the SU(5) spectral cover is described by the 5-degree polynomial C5, the various mon-
odromy actions on the roots will be associated to the possible ways of splitting the polynomial.

All the possible factorisations of the C5 polynomial are listed bellow:

Oy x Cy x Cy x C :(a1 + ass + azs®)(as + ass)(ag + ars)(as + ags) ,
Cy x Cy x Cy :(ay + ans + a332)(a4 + ass + a632)(a7 + ags) ,

:(
:(
C3 x Cy x C1 (a1 + ags + azs® + ays)(as + ags)(ar + ags) ,
C3 x Cy (a1 + azs + ass® + a4s3)(a5 + ags + a782) ,
(

Cy x O1 (a1 + ass + azs® + ass® + azs*)(ag + ars) .

In the simplest case the roots of Cy, C3 and Cj polynomials can be related with Z,, discrete
monodromies. For the SU(5) case at hand, under specific circumstances (related mainly to the
properties of the internal manifold and flux data) the monodromies can be described by any
possible subgroup of the Weyl group S5 of SU(5),. In the following Chapter we discuss some

interesting cases of non-trivial monodromies.



Chapter 2

F-theory SU(5) GUT with Klein

monodromy action

2.1 Introduction

Over the last decades string theory GUTs have aroused considerable interest. Recent progress
has been focused in F-theory effective models [157]-[177] which incorporate several constraints
attributed to the topological properties of the compactified space. Indeed, in this context the
gauge symmetries are associated to the singularities of the elliptically fibred compactification
manifold. As such, GUT symmetries are obtained as a subgroup of Fg and the matter content
emerges from the decomposition of the Fg-adjoint representation.

In the present Chapter we will revisit a class of SU(5) SUSY GUT models which arise in the
semi-local approach of the spectral cover surface. The reason is that the recent developments
in F-theory provide now a clearer insight and a better perspective of these constructions. For
example, developments on computations of the Yukawa couplings[139]-[148] have shown that a
reasonable mass hierarchy and mixing may arise even if more than one of the fermion families
reside on the same matter curve. This implies that effective models left over with only a few
matter curves after certain monodromy identifications could be viable and it would be worth
reconsidering them. More specifically, among the many possible monodromy groups here we
will study the case of the Klein Group monodromy Vy = Zy x Zy [156, 157, 158, 159, 162].
Interestingly, with this particular spectral cover, there are two main ways to implement its
monodromy action, depending on whether Vj is a transitive or non-transitive subgroup of Sy.
A significant part of the present analysis will be devoted to the viability of the corresponding
two kinds of effective models. Another ingredient related to the predictability of the model, is
the implementation of R-parity conservation, or equivalently a Zo Matter Parity, which can be
realised with the introduction of new geometric symmetries [143] respected from the spectral
cover.

The Chapter is organised as follows. In section 2.2 we describe the action of monodromies
and their importance in F-theory model building. We focus on the Klein Group monodromy and

the corresponding spectral cover factorisations which is the main topic of the present chapter.

35
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In section 2.3 we review a few well known Galois theory results and theorems which will be
used in model building of the subsequent sections. In section 2.4 we discuss effective field theory
models with Klein Group monodromy and implement the idea of matter parity of geometric
origin. Section 2.5 deals with the particle content, the Yukawa sector and other properties and
predictions of the effective model obtained from the above analysis. Finally a discussion for

possible further applications of the results is given in section 2.6.

2.2 The Importance of Monodromy

In the case of F-theory SU(5)cur model we study here, we have seen that any possible remnant
symmetries (embedable in the Eg singularity) must be contained in SU(5) | of the spectral cover.
We have already explained that in the spectral cover approach we quotient the theory by the
action of a finite group [156] which is expected to descend from a geometrical symmetry of the
compactification. Starting from an Cy spectral cover, the local field theory is determined by the
SU(5) GUT group and the Cartan subalgebra of SU(5); modulo the Weyl group W (SU(5) ).
This is the group Ss, the permutation symmetry of five elements which in the present case
correspond to the Cartan weights ¢ 5.

Depending on the geometry of the manifold, C5 may split to several factors
Cs=]]¢
J

In the present chapter, we will focus in two cases where the compactification geometry implies

the splitting of the spectral cover to:

C5—>O4><Cl or 05—>02XC£X01.

Assuming the first splitting, C5 — C4 x C1, the permutation takes place between the four roots,
say t1,2,3,4 of the Cy polynomial and the corresponding Weyl group is S4. Notwithstanding, under
specific conditions to be discussed in what follows, the monodromy action may be described by
the Klein group V4 € S4, which might be either transitive or non transitive. As we will show,
the second case implies the spectral cover factorisation Cy — C2 x C%. As a result, there are
two non-trivial identifications acting on the pairs (¢1,t2) and (¢, t4) respectively while both are
described by the Weyl group W (SU(2),) ~ Ss. Since So ~ Z3, we conclude that in the second
case of spectral cover factorisation (C2 x C} x C1.) the monodromy action is the non-transitive
Klein group Z; x Z5. Next section describes the basic features of these two spectral cover

factorisations.

2.2.1 S, Subgroups and Monodromy Actions

The group of all permutations of four elements, Sy, has a total of 4! = 24 elements. These
include 2,3,4 and 2+42-cycles, all of which are presented in Table 2.1. These cycles form a web
of 30 subgroups of Sy, graphically presented in Figure 2.1. These subgroups can be classified
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(1)
S3

1

Figure 2.1: Pictorial summary of the subgroups of Sy, the group of all permutations of four elements.

Sy cycles Transitive A4 | Transitive V,
d-cycles (1234), (1243), (1324), (1342), (1423), (1432) No No
3-cycles | (123), (124), (132), (134), (142), (143), (234), (243) Yes No

2+2-cycles (12)(34), (13)(24), (14)(23) Yes Yes
2-cycles (12), (13), (14), (23), (24), (34) No No
1-cycles e Yes Yes

Table 2.1: A summary of the permutation cycles of Sy, categorised by cycle size and whether or not those
cycles are contained within the transitive subgroups A4 and Vj. This also shows that Vj is necessarily a

transitive subgroup of Ay, since it contains all the 2 4+ 2-cycles of A4 and the identity only.

in two main categories, transitive and non-transitive subgroups of S;. For example the whole
group, A4, D4, Z4 and the Klein group Vj are transitive subgroups.

In this Chapter we focus only in compactification geometries consistent with the Klein group
monodromy V; = Zs X Zs. From Table 2.1 we observe that there are three non-transitive Vy
subgroups within Sy and only one (non-trivial) transitive subgroup. This transitive Klein group
is the subgroup of the A4 subgroup of S;. Considering Table 2.1, one can see that A, is the group
of all even permutations of four elements and the transitive Vj is that group excluding 3-cycles.
The significance of this is that in the case of Galois theory, to be discussed in Section 2.4, the
transitive subgroups A4 and Vj are necessarily connected with irreducible quartic polynomials,
while the non-transitive V4 subgroups of S; should be the Galois group of a reducible quartic

polynomial.
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In terms of group elements, the Klein group that is transitive in Sy has the elements:

{(1), (12)(34), (13)(24), (14)(23)} (2.1)

which are the 2+2-cycles shown in Table 2.1 along with the identity. On the other hand, the

non-transitive Klein groups within Sy are isomorphic to the subgroup containing the elements:

Va={(1),(12),(34), (12)(34)}. (2.2)

The distinction here is clear. In the first case (2.1) the group elements are all 2-2 cycles while in
the second case (2.2) the group elements are not all within one cycle, since we have two types
of cycles in the non-transitive case (2-cycles and one 2+42-cycle). These types of subgroup must
lead to a factorisation of the quartic polynomial, as we shall discuss in Section 2.4. Regarding
the Figure 2.1, the non-transitive Klein groups are those disconnected from the web, while the

central Vj is the transitive group.

2.2.2 Spectral cover factorisation

In this section we will discuss the two possible factorisations of the spectral surface compatible
with a Klein Group monodromy, in accordance with the previous analysis. In particular, we
shall be examining the implications of a monodromy action that is a subgroup of 54 - the most
general monodromy action relating four weights. In particular we shall be interested in the chain

of subgroups Sy — A4 — Vi, which we shall treat as a problem in Galois theory.

The C4 x C7 spectral cover

This set of monodromy actions implies that the spectral cover polynomial of Equation (1.83)

should be factorise in the following way:

C5—>C4><Cl:

(2.3)
(ass® + ays® + azs® + azs + a1)(ag + ars)

which implies the ’breaking’ of the SU(5); to the monodromy group Sy, or one of its subgroups

such as Vj, associated with the fourth degree polynomial,

5
Cy: Zaksk_l =0 (2.4)
k=1

along with a perpendicular U(1) connected with the linear part C;. New and old polynomial
coefficients satisfy trivial relations of the form, by = by(a;), which can be easily extracted
comparing same powers of (1.82) and Equation (2.3) with respect to the parameter s. Then we
have the following relations between the coefficients of the unfactorised spectral cover and the

a; coefficients:
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bo = asary
by = asag + agar
by = asae + asar
b3 = asae + asaz
by = azas + arar
b5 — a10¢.

Since the homologies of the b-coefficients are known (see 1.72) we can easily derive the homologies

of the a-coefficients using the relations (2.5). These homologies are:

la;] =n+(j —6)cr — x ,
[ae] = x , (2.6)
la7] =c1 + X

with 7 =1,2,3,4,5. Because there are more a-coefficients than the number of relations in (2.5)
(the system is over-defined) the homology class [ag] = x stands as an unspecified parameter of
the model. In addition, we have to take into account the SU(5) tracelessness condition, b; = 0.
In terms of a’s the condition reads

asag + asar = 0 (2.7)

and can be solved by the following ansatz:

ay = :anaﬁ
’ (2.8)
as = Fapay
where we have introduced a new unspecified holomorphic section ag. The homology class of the

new section can be computed from the above ansatz by using the relations (2.6), as follows:

lao] = [aa] — [as] =1 — 2(c1 + X)-

In a last step, the relations (2.5) has to be enforced with the above ansatz solution and
further substitution of them into the defining equations for the tenplets (1.84) and fiveplets
(1.85) gives:

Pio 1 =a1 X ag, (2.9)

Ps = (a%cw + asazag F aoalag) X (agag + (agag + arar)ar) (2.10)

which is the most general, pertaining to an S; monodromy action on the roots. Hence, this
spectral cover factorisation defines two matter curves for the tenplets and two matter curves for

the fiveplets.



CHAPTER 2. F-THEORY SU(5) GUT WITH KLEIN MONODROMY ACTION 40

The C3 x C) x Cy case

If the V4 actions are not derived as transitive subgroups of Sy, then the Klein group is isomorphic

to:
Ay 2 Ve {(1),(12), (12)(34), (34)}. (2.11)
This is not contained in A4, but is admissible from the spectral cover in the form of a monodromy

05—>02><Cé><01.

In this case the spectral cover polynomial (1.82) splits into three factors as follows:

C5—>CQ><Cé><Clt

(2.12)
(a1 + azs + azs?)(as + azs + ags®)(ar + ags).

We may now match the coefficients of this polynomial in each order in s to the ones of the

spectral cover with the by coefficients. This trivial task returns the following relations:

bo = azes

b1 = aser + asss + azes

by = ass7 + age7 + azss + azss + aies (2.13)
b3 = asa7 + ags7 + aie7 + a24s + a1s8 .

by = aza7 + a157 + aiss

bs = a147

where for simplicity we follow the notation a;j;, = a;ajay in [157].

We turn now to the computation of the homology classes of the a; coeflicients. Comparing
to the homologies of the unsplit spectral cover, a solution for the [a;] can be found by using the
relations (2.13). Notice, though, that we have 8 a;-coefficients and only 6 relations with well
defined homology classes for b;, therefore the homologies of a; are defined up to two homology

classes:

[an=123] = x1 + (n — 3)c1,
[an=456] = x2 + (n — 6)c1, (2.14)
[an=78] =n+ (n—8)c1 — x1 — X2

We have also to enforce the SU(5) tracelessness condition, by = 0. An ansatz for the solution
was put forward in [157],
as = —clagay + asasg
( ) (2.15)
as = cagas
which again introduces a new section, c¢. The homology class of this new secton is completely
defined by
[c] = —n+2x1. (2.16)
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Using (2.13) along with the ansatz (2.15) we derive the defining equations of the tenplets
and fiveplets in terms of the a-coefficients and the new section c¢. In particular, for the tenplets

we receive that

Pio = a1asary (2.17)
while the Ps splits into five factors as follows:

Ps =as(asar + asag)(aga? + ag(asay + aqag))(ay — asarc) (2.18)

(a7 — a1(asar + 2a4ag)c + aq(asa? + ag(asay + asag))c?).
So this specific factorization predicts more matter curves in comparison with the previous case.
In particular, we receive three tenplets and five fiveplets. A more detailed analysis of this

interesting case will be presented in the subsequent sections.

2.3 A little bit of Galois theory

So far, we have discussed the basic properties of the most general spectral cover with a mon-
odromy action acting on four of the roots of the SU(5); group. This monodromy action is the
Weyl group Sy, however a subgroup is equally admissible as the action. Transitive subgroups
are subject to the theorems of Galois theory, which will allow us to determine what properties
the a; coefficients of the quartic factor of Equation (2.3) must have in order to have roots with a
particular symmetry [171]-[1]. In the present Chapter emphasis is given on the case of the Klein
group, Vi & Zs X Z3. As already mentioned, the transitive V4 subgroup of Sy is contained within
the A4 subgroup of Sy, and so shall share some of the same requirements on the coefficients.
Galois theory is a field of Mathematics with an extensive literature. A brief introduction
into the subject is given in Appendix A. Here we need only reference a handful of key theorems.
Proofs for these theorems will be omitted as they are readily available in the literature and are

not relevant for the purpose at hand.

Theorem 1. Let K be a field with characteristic different than 2, and let f(X) be a separable,
polynomial in K(X) of degree n.

o If f(X) is irreducible in K(X) then its Galois group over K has order divisible by n.

o The polynomial f(X) is irreducible in K(X) if and only if its Galois group over K is a

transitive subgroup of Sy,.

This first theorem offers the key point that any polynomial of degree n, that has non-
degenerate roots, but cannot be factorised into polynomials of lower order with coefficients
remaining in the same field must necessarily have a Galois group relating the roots that is .S,

or a transitive subgroup thereof.

Theorem 2. Let K be a field with characteristic different than 2, and let f(X) be a separable,
polynomial in K(X) of degree n. Then the Galois group of f(X) over K is a subgroup of A, if

and only if the discriminant of f is a square in K.
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As already stated, we are interested specifically in transitive V; subgroups. Theorem 2 gives
us the requirement for a Galois group that is A4 or its transitive subgroup Vj - both of which are
transitive in S4. Note that no condition imposed on the coefficients of the spectral cover should
split the polynomial (Cy — C5 x C3), due to Theorem 1. We also know by Theorem 2 that both
V4 and A4 occur when the discriminant of the polynomial is a square, so we necessarily require

another constraint in order to distinguish the two.

2.3.1 The Cubic Resolvent polynomial

In Galois theory, the so-called Cubic Resolvent, is an auxiliary polynomial defined in terms of
the roots of the original quartic polynomial we are attempting to classify. The roots of the cubic
resolvent are defined as symmetric functions of the ¢; roots of the initial quartic polynomial, as
follows

Ty = (tltg + t3t4), To = (751753 + t27f4), Tr3 = (t1t4 + tgtg) (2.19)

and one can easily check that the initial quartic and the cubic resolvent polynomial share the
same discriminant. Furthermore, under any permutation of the S4 group, the x;-roots transform
between one another. However, this is not always true when the Galois group relation is a

subgroup of Sy. The cubic resolvent itself is defined trivially as:
(@ — (trta + t3ta)) (2 — (tit3 + t1ta)) (x — (trta + tat2)) = g32” + go2® + g1z + go (2.20)

The coefficients g; of the above equation can be determined by relating them to the original Cy4

coefficients through the the ¢; roots. The procedure returns the following expression:

g(x) = a3z — aza22® + (asay — 4aras) asx — adas + 4ayazas — ara’ (2.21)

and can be further simplified by making the replacement y = asz. In this case we receive the

simplest form:
g(y) = v* — asy® + (agas — 4ayas) y — a3as + 4ajazas — aral (2.22)

If the cubic resolvent is factorisable in the field K, then the Galois group does not contain
any three cycles. For example, if the Galois group is Vy, then the roots will transform only under
the 2+2-cycles:

Vi€ Ay ={(1),(12)(34), (13)(24), (14)(23)} . (2.23)

Each of these actions leaves the first of the roots in Equation (2.19) invariant, thus implying that
the cubic resolvent is reducible in this case. If the Galois group were Ay, the 3-cycles present
in the group would interchange all three roots, so the cubic resolvent is necessarily irreducible.
This leads us to a third theorem, which classifies all the Galois groups of an irreducible quartic

polynomial (see also Table 2.2).

Theorem 3. The Galois group of a quartic polynomial f(z) € K, can be described in terms of
whether or not the discriminant of f is a square in K and whether or not the cubic resolvent of
f is reducible in K.
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Group Discriminant A Cubic Resolvent
Sy A # 52 Irreducible
Ay A = §2 Irreducible
Dy or Zy A £ 52 Reducible
V4 A = §? Reducible

Table 2.2: A summary of the conditions on the partially symmetric polynomials of the roots

and their corresponding Galois group.

2.3.2 The Discriminant

According to the previous analysis, classification of the Galois groups of a quartic polynomial
depends also on the properties of the discriminant. From the effective model point of view, all
the useful information is encoded in the properties of the polynomial coefficients a; and if we
wish to distinguish the various cases further assumptions for the latter coefficients have to be
made.

We focus now on the cases where the symmetry acting on roots is the subgroup A4 or the
transitive Vy, then the coefficients a; must respect certain conditions in order to distinguish the
various cases. Such constraints emerge from the study of partially symmetric functions of roots.
In the present case in particular, we recall that the A4 discrete symmetry is associated only
to even permutations of the four roots ¢;. Further, we note now that the partially symmetic
function

0= (t1 —ta)(t1 — t3)(t1 — ta)(ta — t3)(ta — tq)(t3 — t4)

is invariant only under the even permutations of roots. The quantity § is the square root of the

discriminant,

A =42 (2.24)

and as such ¢ should be written as a function of the polynomial coefficients a;. The discriminant

is computed easily by applying standard formulas and is turn out to be

A(ay) = 256a3a; — (27a3 — 144araza3 + 192aiasas + 128aia3) a3
-2 (2 (ag — 4a1a3) ag — (9a§ - 40a1a3) asaqasz + 3 (a% — 24a1a3) alai) as (2.25)
— ai (4a4a§’ + a%ag — 18ajasaqas + (4a§ + 27a1ai) al) .

In order to examine the implications of (2.24) we write the discriminant as a polynomial of the

coefficient ag [172]
4
A = f(az) = Z cpasy (2.26)
n=0

where the ¢, are functions of the remaining coefficients ax, k # 3 and can be easily computed
by comparison with (2.25). We may equivalently demand that f(as) is a square of a second
degree polynomial

flag) = (ka3 + Aaz + p)*.



CHAPTER 2. F-THEORY SU(5) GUT WITH KLEIN MONODROMY ACTION 44

A necessary condition that the polynomial f(as3) is a square, is its own discriminant A to be

zero. By computing the discriminant of f(a3) we find that has the following form
A, x DiD3

where

D, = a§a5 — alai

(2.27)
Dy = (27@%@4 - a%) a3 — 6ajasasal + 3as (Qa% — 256a%a4) a2 + 409643 a3

Consequently there are two ways to eliminate the discriminant of the polynomial, either putting
Dy =0 or by demanding Dy = 0 [172].

In the first case, we can achieve A = 62 if we solve the constraint D; = 0 as follows

2
ay = 2aia3
: (2.28)
aj = 2asas.
Substituting the solutions (2.28) in the discriminant one finds
A= 4§ = [a2a4 (ag — 2a2a4) (a% — a2a4) /ag]2 . (2.29)

The above constitute the necessary conditions to obtain the reduction of the symmetry [172]
down to the Klein group Vj. Indeed, as we can see the conditions (2.28) elliminates the constant
term of the cubic resolvent and made it reducible.

On the other hand, the second condition Dy = 0, implies a non-trivial relation among the
coefficients

-1 3
(a3a5 — aiar)? = (W) (2.30)

If we further apply the b; = 0 solution, the constraint (2.65) receives the form

asa6 + 16a1a7>3 (231)

(a%cw + aoala%)2 = ag ( 3

which is just the condition on the polynomial coefficients to obtain the transition Sy — Ajy.

2.4 Klein monodromy and the origin of matter parity

In this section we will analyse a class of four-dimensional effective models obtained under the
assumption that the compactification geometry induces a Z5 X Zs monodromy. As we have seen
in the previous section, there are two distinct ways to realise this scenario, which depends on
whether the corresponding Klein group is transitive or non-transitive.

There are significant differences in the phenomenological implications of these models since
in a factorised spectral surface matter and Higgs are associated with different irreducible com-

ponents L

'Further phenomenological issues concerning proton decay and unbroken U(1) factors beyond a local spectral

cover can be found in [159, 160]
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In the present work we will choose to explore the rather promising case where the monodromy
Klein group is non-transitive. In other words, this essentially means that the spectral cover
admits a Cy x CY) x C] factorisation. As was shown above by analyzing the properties of the
discriminant, the case of a transitive Klein group is more involved due to the non-trivial relations
among the coefficients (Eq: 2.28), hence it is not an easy task to obtain a viable effective model.
This requires further investigation.

Hence, turning our attention to the non-transitive case, the basic structure of the model
obtained in this case corresponds to one of those initially presented in [156] and subsequently
elaborated by other authors [157]-[162]. This model possesses several phenomenologically inter-

esting features and we consider it is worth elaborating it further.

2.4.1 Analysis of the Z; x Z; model

To set the stage, we first present a short review of the basic characteristics of the model following
mainly the notation of [157]. The Z3 x Z; monodromy case implies a 2 + 2 + 1 splitting of the
spectral cover equation which has already been given in (2.12). Under the action (2.11), for each
element, either x9 and x3 roots defined in (2.19) are exchanged or the roots are unchanged.

As was analyzed explicitly, the model will be characterized by three distinct 10 matter curves,
while we have two more matter curves for the fiveplets. The defining equations along with their

t; charges and the corresponding homologies of the matter curves are presented in Table 2.3.

Curve | U(1) Charge Defining Equation Homology Class
104 21 ay —2c1 +x1

103 t3 ay —2c1 + X2

105 ts ar n—C1— X1 — X2
51 =2t asa7 + asag n—Cc1— X1

513 —t1 — 13 a% —a1(asar + 2a4ag)c + a4(a6a$ + ag(asar + asag))c? —4c1 + 2x1

515 —t1 —t5 ay — asamc —2c1+x1

935 —t3 — 15 asa? + ag(asar + asas) 20 —2c1 — 2x1 — X2
53 —2t3 as —c1 + X2

Table 2.3: Matter curves along with their perpendicular charges, the defining equations and the corre-

sponding homology classes

Now we turn our attention to the symmetry breaking procedure. Knowing the homology
classes associated with each matter curve allows us to determine the spectrum of the theory
through the units of abelian fluxes that pierce the matter curves [120], [119]. Indeed, one of
the advantages of F-theory model building toolbox, is the fact that the properties of its internal
space allows the implementation of alternative symmetry breaking mechanisms. Namely, by
turning on a magnetic flux in the U(1)x directions, we can endow our spectrum with chirality

and break the perpendicular group. In order to retain an anomaly free spectrum we need to
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allow for [157], [161]

Z Ms + Z M =0, (2.32)

where Ms (Mig) denote U(1)x flux units piercing a certain 5 (10) matter curve.

A non-trivial flux can also be turned on along the direction of the Hypercharge generator.
This will allow us to split the SM states into the GUT representations providing that way an
elegant solution for the doublet-triplet splitting problem. In order for the Hypercharge to remain
ubroken, the flux configuration should not allow for a heavy Green-Schwarz mass. This problem

can be avoided if the following conditions hold [120]
Fy - ¢y =0, Fy -n=0. (2.33)

For the new, unspecified, homology classes, x1 and 2 we let the flux units piercing them to
be
Fy -x1 = N1, Fy - x2 = No, (2.34)

where N1 and Ns are flux integer units, and are treated as free parameters of the model.

For a fiveplet 5 one can use the above construction as

n(3,1) 173 —n(3,1)13 = M5,

(2.35)
n(1,2)12 —n(1,2) 19 = M5 + N,

where for N # 0 the doublet-triplet splitting problem is easily evaded. Similar, for a 10 of SU(5)

we have

n(3, 2)1/6 — n(3, 2)—1/6 = Ml(),
n(3,1)_9/3 — n(3,1)2/3 = M1o — N, (2.36)
n(l, 1)1 — n(l, 1)_1 = M10 + N.

In the end, by choosing appropriate values for the flux parameters (Ms, Mo, N1, N3) the
spectrum of the theory is fully defined as can be seen in Table 2.4. Note also that well known
problems with unappropriate fermion mass relations at the GUT scale, may can be easily avoided

here since the fluxes piercing matter generations in to different matter curves.

2.4.2 Matter Parity from geometry

In the first Chapter we saw that a crucial problem of SUSY GUTs is the presence of dangerous
terms leading to fast proton decay and other unwanted processes at unacceptable rates. These
issues can be evaded by introducing the concept of R-parity /Matter parity. In early F-theory
model building[157, 173], such matter parity symmetries where introduced by hand. Here, in
the present approach, the conjecture is that as in the case of the GUT symmetries which are
associated with the manifold singularities, R-parity can also be connected to the geometric

properties of the manifold?.

2 Another way to deal with the annihilation of unwanted Yukawa terms is to introduce new symmetries emerging
from specific elliptic fibrations with rational sections. Indeed, these imply the existence of new U(1) symmetries
of Mordell-Weil type [178, 168]. These type of symmetries may prevent unwanted couplings.
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Curve | Weight Homology Ny Nx Spectrum

10, t1 —2c1 +x1 Ny Mo, | Mo, Q@ + (Mo, — N1)u’ + (Mio, + N1)e®
103 t3 —2c1 + X2 N Mo, | M10,Q + (Mo, — No)u® + (Mig, + Na)et
105 i5 n—c1—X1— X2 —N1— Ny | Myo; | Mio;Q + (Mio, + N)u® + (Mig; — N)e®
51 -2t n—c1—x1 -N; M3, M3, d¢ + (M5, — Ny)L

513 —t; — 3 —4cy + 2x1 2N, Ms,, M, ,d¢ + (Ms,, +2N1)L

515 —t1 —t5 —2c1 +x1 N Ms, Ms,.d¢ + (Ms,, + N1)L

535 7253 — t5 277 — 201 — 2X1 — X2 72N1 — N2 M535 M535$ + (M535 — 2N1 — NQ)Z

53 —2ts —c1 + X2 Ny Ms, Ms,d¢ + (Ms, + Na)L

Table 2.4: Matter curve spectrum parametrized by the integer flux parameters M; and N7 2. Note that
N = Nj + N5 has been used as short hand.

Given the fact that the GUT symmetries in F-theory are linked to geometric singularities of
the internal space, it is also worth exploring the possibility whether matter parity can be of a
similar nature.

It was first proposed before [143], in local F-Theory constructions there are geometric discrete
symmetries of the spectral cover that manifest on the final field theory. To understand this, note
that the spectral cover equation is invariant, up to a phase, under the phase transformation

o : s — os of the fibration coordinates

s(a(p)) = s(p) €, bi(o(p)) = by(p) XO=H9),

Under this action, each term in the spectral cover polynomial transforms the same way
bsP Tk — etx—)p, 5K

It can be readily observed that a non-trivial solution accommodates a Zx symmetry for ¢ = QW”

Thus, for N = 2, we have ¢ = 7 and the transformation reduces to
s — —s, b = (=1)FeiX by, (2.37)

We may now assume that this symmetry is communicated from the Cs theory to the split
spectral cover geometry. Further, for curves accommodating MSSM matter fields we will assume
that matter parity is defined by the corresponding ‘parity’ of its defining equation, which is fixed
through its relation with the b; coefficients of the initial Cs spectral equation.

For the specific models presented here, we can use [162] the equations relating

by X ajmay, with k+1+m+n =17 (2.38)

to find the transformation rules of the a; such that the spectral cover equation respects the
symmetry of Equation (2.38). Consistency with Equation (2.38) implies that the coefficients a,,
should transform as

ap — eVnet1/3=mog (2.39)
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We now note that the above transformations can be achieved by a Zx symmetry if ¢ = 3%”.

In that case one can find, by looking at the equations (2.13) for by x a;ama, that we have

Y1 =12 =13 (2.40)
Yy =15 = e (2.41)
Y7 =1 (2.42)

meaning that there are three distinct cycles, and

X =1+ s+ Y. (2.43)

Furthermore, the section ¢ introduced to solve the tracelness condition (2.15) has to transform
as
c— e, (2.44)

with

¢c=w3—¢6—¢7+(—131+11>¢ : ¢c:¢2—¢5—¢8+<—131+11)¢- (2.45)

We can now deduce what would be the matter parity assignments for Zy with ¢ = 3(27/2).
Let p(x) be the parity of a section (or products of sections), x. We notice that there are relations

between the parities of different coefficients, for example one can easily find

pla1)
p(a2)

-1 (2.46)

amongst others, which allow us to find that all parity assignments depend only on three inde-

pendent parities

p(a1) = —p(az) = p(az) =i (2.47)
plas) = —plas) = p(as) = j (2.48)
par) = —plas) = k, (2.49)

where we note that p(c) = ijk and the trivial condition i?> = j2 = k? = 4. With the analysis
above in hand we are ready to write down all the parities for each matter curve as a function of
1,7, k. This, along with all the possible parity assignments, are presented in the table 2.5.

As such, F-theory SU(5) models with a Z3 x Z3 monodromy are completely specified by the

information present in table 2.6.

2.4.3 The Singlets

In the context of F-theory GUTs, the local geometry cannot tell us everything about the singlets
of the theory. A definite and reliable consideration of this issue would require an analysis of the
model in terms of global geometry but this goes beyond the scope of the present work. Bearing

in mind the limitations of the spectral cover approach, we will take a conservative point of view
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Curve | Charge | Parity All possible assignments

104 t i ===+ -
103 t3 J S e I B I e
105 ts k el B R e e e B e
51 —2t L e B e e I e
513 —t1 —t3 + S i e o A A o A S S
535 —t3 — 15 J e el Nl ol ol Bl e
53 —2t3 —J — =+ |+ |- -]+ ]+

Table 2.5: All the possible matter parity assignments for the matter curves of the model under consid-

eration.
Curve | Charge | Matter Parity Spectrum
104 t1 i Mo, Q + (Mo, — N1)u® + (Mg, + Np)e€
103 t3 J My0,Q + (Mio; — No)u® + (Mo, + No)e¢
105 ts k M105Q+(M105 + Ny +N2)uc+(M105 — Ny — Ny)e©
51 —2t ik Ms, d° + (Ms, — Ny)L
513 —t; —t3 + M3, ,d¢ + (Ms,, + 2N1)L
515 —t — t5 i Ms,.d° + (Ms,, + N1)L
Bas | —ts —ts j M, d° + (Ms,, — 2Ny — N,)L
53 —2t3 —j M3, d¢ + (Ms, + No)L

Table 2.6: All the relevant information for model building with Z; X Z3 monodromy in F-theory SU(5)

semi-local constructions. The exact spectrum of the model is specified by the flux parameters M; and

N;.

and present a discussion of these fields focusing only on a less general case where the spectral

cover analysis is reliable.

For the singlets on the GUT surface we start by looking at the splitting equation for singlet

states, Py. For SU(5) case we study here, these are found to be

Py = 3125b3b3 4 256b565 — 3750b2b3b3b3 + 2000b9b3b2b3 + 2250b3b4b2b3
— 1600b3b3bsb3 — 128b3b1b3 + 144byb3b3b2 — 27b3bTb2 + 82562620213

— 900b3b4b2b2 4 108b3b5b3 + 560b3b3b3bsbs — 630b2b3babsba + 16b3b3bo
— 4b3b3b3bo 4 108b5b2bg + 16b3b3bsby — T2b3bsbabsbg -

(2.50)

Applying the solution for the Zy x Z3 monodromy from Eq.(2.13,2.15) we end up with 13

factors
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2
Py = a%a%c (a% — 4a4a6) (ag(a4a8 —asazr) + a6a$)

(2.51)

(c(a5a8 + agar)? — 4a1a6a8) (arag + arc(asag + 2aar))?

(a%af; +aqc (—2a4a6a8 + 2a2ag + a5a6a7) + ayc? (a6a8(a4a8 + 3asar) + 2a2a2 + a%a%))Q :
Their homologies and geometric parities can be founded by applying the techniques from the
previous section for the fiveplets and tenplets. The results are presented in Table 2.7. Note that
not all the factors of Equation (2.51) appear to be singlets incident at points on the GUT surface.
In particular, the fields associated to the factors c, ag —...and c(asag + ... are uncharged under
the perpendicular group weights. As such these cannot be incident upon the GUT surface and

we shall not include them to participate in any coupling for the rest of the analysis.

Name | Equation Power Charge Homology Class Matter Parity
61 ag 2 +(t1 —t3) X2 J

62 as 2 +(t1 — t5) 7—X1— X2 —k

03 ag(agag — ... 2 +(tg —t5) | 20— 2¢1 — 2x1 — X2 j

04 (arag + ... 2 +(t1 — t5) n—2c1 — X2 —ik

05 (a2ag + ... 2 +(t1 — t3) —4er +2x1 + X2 J

Table 2.7: Defining equations, multiplicity, perpendicular (¢; —¢;)-charges, homology classes and matter

parity of the singlet spectrum. Note that the properties of the singlet fields described by the factors c,

a2 — ... and c(asag + ... cannot be deduced in this approach (see text) and as a result have not included

here.

Finally, in the construction of a realistic model we have also to take into account the geo-
metric parity signs of these singlet states. All possible geometric parities of the singlets can be
seen in Table 2.8, where the charge conjugated partner is included in the same row - i.e. 6; has

the same parity as 6;.

2.5 Deriving the MSSM with two right-handed neutrinos

The number of possible models that can be constructed is very large as we can see from the
analysis so far. Because of the plethora of reasonable combinations of fluxes, multiplicities
and choices of geometric parities we need some model building guiding principles. There are a
number of ways to narrow the parameter space of any search, for example requiring that there be
no exotics present in the spectrum, or contriving there to be only one tree-level Yukawa coupling

to enable a heavy top quark. Furthermore, the observed large hierarchy of the up-quark mass
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Name | Charge All possible assignments

0, tty—ty) |+ |+ | — | —|+|+]| |-
6 ttr—ts) | — | = | = | = |+ |+ ]|+ ]|+
03 E(tg—ts) |+ |+ | — | — |+ |+ |- |-
04 (i —ts) [~ |+ |- |+ |+ || +]|—
0 ity —t3) |+ |+ |~ | —|+|+]| |-

Table 2.8: All the possible geometric parities of the singlets participating to the model.

spectrum emerges naturally from a rank one mass matrix and this means that the associated
gauge invariant term 10;10¢,5_¢, ¢, can account for it only under a monodromy action such
that two matter curves are identified ¢; = ;.

We note however that in general monodromies allow more than one tree-level coupling in
the superpotential and therefore it is necessary to implement some form of R-parity or matter
parity in F-theory GUT models.

Using the Mathematica package presented in [179], it is easy to produce the spectrum of
operators up to an arbitrary mass dimension for various choices of the parameters involved in
to the analysis. In most of the models with a tree level top quark operator, there is a conflict
between dangerous bilinear R-parity violation terms and the mass of exotics. So, in order to
proceed we relax the requirement for a tree level top quark term and we search for models with
conventional MSSM matter parity and no exotics.

That way we make a choice for the flux parameters and phases that enables the implemen-

tation of a standard matter parity:

{N; =1, Ny =0},

{Myo, = —M5,, = 2,

Mg, = —Ms, = 1, (2.52)
Moy = M5, = M5,; = Ms,; = 0},

fi=—j=k=-}.

The matter spectrum of this model is summarised in Table 2.9. With this choice, Table 2.8 will
select the column with only the singlets 6, and 8, having a negative matter parity. Provided this
singlet does not acquire a vacuum expectation it will then be impossible for Bilinear R-parity
violating terms due to the nature of the parity assignments. This will also conveniently give us

candidates for right-handed neutrinos, 6, and 6.

2.5.1 Quarks and Charged Leptons Yukawas

Having written down a spectrum that has the phenomenologically preferred R-parity, we must
now examine the allowed couplings of the model. The model only allows Yukawa couplings to

arise at non-renormalisable levels, however the resulting couplings give rise to rank three mass
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Curve Charge | Matter Parity Spectrum
104 t1 — Q3 + Q2 + u§ + 3¢
103 t3 + _

105 t5 - Q1 + u§ + us
51 —2t — —IL

513 —t; —t3 + 2H,

515 —t; —t5 - —dy —dy — Lo
935 —t3 — 15 + —2H,

53 —2t5 — —dy — L3
Lis =0y | t; —t5 - NG

lsg =04 | ts—t - N

Table 2.9: Matter content for a model with the standard matter parity arising from a geometric parity

assignment .

matrices. This is because the perpendicular group charges must be canceled out in any Yukawa
couplings. For example, the Yukawa arising from 107 - 10; - 513 has a charge t; — t3, which may

be canceled by the ;5 singlets. Consider the Yukawas of the Top sector,

101 - 101 - 513 - (01 + 05) — (@3 + Q2)uzH, (01 + 05)
101 - 105 - 513 - 03 — ((Q3 + Q2)(u1 + u2) + Qrus)H,05 (2.53)
105 - 105 - 513 - 02 - 03 — Q1 (u1 + uz) H, 0203

where the numbers indicate generations (1, 2 and 3). The resulting mass matrix should be rank
three, however the terms will not all be created equally and the rank theorem [141] should lead

to suppression of operators arising from the same matter curve combination:

Oy0s Os05 By
Mu,c,t ~ Uy 6293 €ls 6(91 + 95) (2.54)
€f3 03 51 + 95

where each element of the matrix has some arbitrary coupling constant. We use here € to
denote suppression due to the effects of the computation of Yukawa couplings [141] for Yukawas
arising from the same GUT operators. The lightest generation will have the lightest mass due
to an extra GUT scale suppression arising from the second singlet involved in the Yukawa term.
There are a large number of corrections at higher orders from singlet VEVs, which we have not
included here for brevity. These corrections will also be less significant compared to the lowest
order contributions.

In a similar way, the Down-type Yukawa couplings arise as non-renormalisable operators,
coming from four different combinations. The operators for this sector often exploit the trace-
lessness of SU(5), so that the sum of the GUT charges must vanish. The leading order Yukawa
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operators are,

101 - 53 - 535 - (01 + 05) — (Q3 + Q2)d3Ha(01 + 65)
101 - 515 - 535 - 03 — (Q3 + Q2)(d1 + d2) Habs (2.55)
105 - 53 - 535 - (61 + 05)02 — Q1d3H, (61 + 05)02
105 - 515 - 535 - 02 - 05 — Q1(d1 + da) Hy 6205

and like in the case of the Top sector, the above terms return a rank three mass matrix which
has the following form:
€205 0205 (01 + 05)02
Mysp~va| €03 €3 €(01+05) |- (2.56)
€l 03 01+ 05
The structure of the Top and Bottom sectors appears to be quite similar in this model, which
should provide a suitable hierarchy to both sectors.
Usually the Charged Lepton and the the Bottom sector shares a similar structure, but this
is not the case in the present model, due primarily to the fact the ef matter is localised on one
GUT tenplet. The Lepton doublets however all reside on different 5 representations, which will

fill out the matrix in a non-trivial way, with the operators:
101 - 53 - B35 - (91 +§5) — L3(ef + €5+ eg)Hd@l —1-55)
10q - 515 . 535 -3 —> Lg(ef + 65 + eg)HdQ;», (2.57)
104 '51 '535 . (091 + 95) — Ll(ef + 65 + eg)Hd(Ql + (95)

The mass matrix for the Charged Lepton sector will be subject to suppressions arising due to

the effects discussed above. Next we discuss the Neutrino sector of the model.

2.5.2 Neutrino Masses

The spectrum contains two singlets that do not have VEV’s, which protects the model from
certain classes of unwanted terms. These singlets, 04/0,, also serve as candidates for RH-
neutrinos. Let us make the assignment 64 = N% and 0, = N%. This gives Dirac masses from
two sources, the first of which involve all lepton doublets and N:
53 : 513 : 04 . 53 — LgNI%LHugg
515 - 51304 - (51 +§5) — LQNEHu(él +§5) (2.58)
51 513+ 04 - (51 +§5) <y —> Lle?iHu(?l +§5)92.
This generates a hierarchy for neutrinos, however the effect will be mitigated by the operators
arising from the ng singlet:
5351304 (01 +05) - 0o — LyNyH, (01 + 05)02
515 . 513 -54 . (92 . (93 — LQN_%HuGQHig (2.59)
51 : 513 -54 : 93 — LlN%Hueg).
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If all these Dirac mass operators are present in the low energy spectrum, then the neutrino sector
should have masses that mix greatly. This is compatible with our understanding of neutrinos
from experiments, which requires large mixing angles compared to the quark sector.

A light mass scale for the neutrinos can be generated using the standard seesaw mechanism,
which requires large right-handed Majorana masses to generate light physical left-handed Ma-
jorana neutrino mass at low scales. The singlets involved in this scenario has perpendicular
charges that must be canceled out, similar to the quark and charged lepton operators of the
model. Fortunately, this can be achieved, in part due to the presence of 63/0s, which have the
same charge combinations as Nz’b. The leading contribution to the mass term will come from

the off diagonal 640, term, however there are diagonal contributions:

2 n\2
<éi> 0+ <éi> 07 + M640,. (2.60)

Two RH neutrinos are capable to generate the observed physical light neutrinos masses as

suggested by the experiments [180, 181].

2.5.3 Other Features
p-term(s)

The model is free from heavy exotic colour triplets, however an extra pair of Higgs doublets
fields appear in the spectrum. Because of the flux choices and the requirement for a realistic
doublet-triplet splitting mechanism, it is necessary to have two copies of the up and down-type
Higgs supermultiplets. This insures that the model is free of exotic colour triplets, D,, /Dy and
at the same time allowing for a positive parity assignment to matter curves accommodating
the Higgs doublets. As a result, the u-term for the Higgs mass would seem to give four Higgs
operators of the same mass: MinZHé, with 4,5 = 1,2. However, since for both the up and
down-types there are two copies on the same matter curve, we can call upon the rank theorem

[141]. Consider the operator for the p-term:

%5w@%%m%%M<%%><%><%1ﬁ) (2.61)
ep, 1 H:

This operator will give a mass that is naturally large for one generation of the Higgs, while the
second mass should be suppressed due to non-perturbative effects. This is parameterised by
€n, which represents here the effects of local F-theory effects and is required to be sufficiently
small in order to allow for a Higgs to be present at low energy scales, while the leading order
Higgs must be heavy enough to remain at a reasonably high scale and not create conflict with
unification of gauge couplings. Thus we should have a light Higgs boson as well as a heavier

copy which is undetected from the present days experiments.

Proton decay

The spectrum is free of the Higgs colour triplets D,, /D4, however we must still consider operators

of the types QQQL and d°u‘u‘e®, since the colour triplets may appear in the spectrum at the
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Figure 2.2: Proton decay effects due to extra color triplets.

string scale. Of these types of operator, most are forbidden at leading order thanks to the
t;-charges of the perpendicular group. However, one operator is allowed and we must consider

this process:
10110110553 — (Q3 + Q2)(Q3 + Q2)Q1 L3 + (u5 + uf)usds(ef + €5 + €f). (2.62)

None of the operators arising are solely first generation matter, however due to mixing they may
contribute to any proton decay rate. The model in question only has one of each type of Higgs
matter curve, which means any colour triplet partners must respect the perpendicular charges
of those curves. The result of this requirement is that the vertex between the initial quarks
and the D, colour triplet must also include a singlet to balance the ¢; charges, with the same
requirement for the final vertex. The resulting operator should be suppressed by some high scale
where the colour triplets are appearing in the spectrum - A;. The most dangerous contribution
of this operator can be assume to be the QQ2Q1Q2 L3 component, which will mix most strongly
with the lightest generation. It can be estimated that, given the quark mixing and the mixing
structure of the charged Leptons in particular, the suppression scale should be in the region
~ 10%6A,. This estimate seems to place the suppression of proton decay at too small a value,
though not wildly inconsistent.

However, by considering Figure 2.2, one can see that while the sum of the t;-charges of the
external legs is zero, the inner vertices require singlet contributions. For example, the first vertex
is Q2Q1D,, and returns a non-zero perpendicular charge equals to (t3 — t5) which is canceled by
the 03 singlet. That way we have the nonrenormalisable operator Q2Q1 D03 contribute to the
process and we cannot write down a series of renormalisable operators to mediate this effective
operator. This is because the combination of perpendicular group and GUT charges constrain
heavily the operators we can write down, which means proton decay can be seen to be suppressed
here by the dynamics as well as the symmetries required by the F-theory formalism. The full
determination of the coupling strengths of any process of this type in F-theory should be found

through computing the overlap integral of the wavefunctions involved [148].

2.6 Discussions and outlook

Before closing this chapter, we briefly comment on some alternatives spectral cover constructions

where the techniques that have been presented in this chapter can also be applied.
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First, we mention that a cubic polynomial is also subject to Galois theory, which means that
Galois knowledge is also applicable in cases where the spectral cover splitting contains a cubic
factor. In the case of SU(5) GUT with a spectral cover description, there are two such possible

cases:

(Z) C3 X C2 and (ZZ) Cg X Cl X Cll

Just for illustrating reasons we focus on the first case where we assume that the spectral

cover polynomial factors into a cubic and a quadratic term:

Cs = Z bps®F =P, P, = (ap + a1s + ass® + a333) (ag + azs + a632). (2.63)
k

The equations connecting by’s with a;’s are of the form by ~ Y anag_pn—j, the sum referring
to appropriate values of n which can be read off from (2.63). We recall that the by coefficients
are characterised by homologies [by] = n — kc;. Using this fact as well as the corresponding
equations by (a;), we can determine the corresponding homologies of the a;’s in terms of only one
arbitrary parameter which we may take to be the homology [ag] = x. Furthermore the constraint
b1 = asag + azas; = 0 is solved by introducing a suitable section A such that a3 = —Aag and
as = Aas.

The Galois group of a cubic polynomial is completely determined by its discriminant. The
permutation action of the Galois group of a cubic polynomial on its roots turns the Galois group
into a transitive subgroup of S3. The only transitive subgroups of S3 are As and S3, and we
can decide when the Galois group is in As or not using the discriminant. More precisely, if the
discriminant of the cubic polynomial is a square in the field of the coefficients of the polynomial
then the Galois group of the polynomial is As. In a different case (the discriminant it’s not a
square) the Galois group is Ss.

Returning in to our case, apart from the constraint by = 0, there are no other restrictions
on the coefficients a; in the case of the S3 symmetry. If, however, we wish to reduce the S
symmetry to As (which from the point of view of low energy phenomenology is essentially Z3),
additional conditions should be imposed. As in the case of A4 discussed previously, in order to
derive the constraints on ag’s for the symmetry reduction S3 — Z3 we compute the discriminant

which turns out to be

A= —4a3a§’ + a%a% + 18apazaza; — 4a0a§ - 27@%“3 (2.64)
= (a% — 4a0a2) a% — 27a(2)a§ + 2aq (9610(12 - 20%) as .

and demand A = §2. In analogy with the method followed in the case of the quartic polynomial

we re-organise the terms in powers of the ficticious variable z = a;

A = f(z) = —4dazz® + az? + 18apazazzr — ag (4a§ + 27a0a§) (2.65)
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First, we observe that in order to write the above expression as a square, the product a;as must
be positive definite sign(ajas) = —. Provided this condition is fulfilled, then we require the

vanishing of the discriminant Ay of the cubic polynomial f(z), namely:
Ay = —64agas (27a0a§ — ag) 3=0

This can occur if the non-trivial relation aj = 27aga3 holds. Substituting back to (2.64) we find
that the condition is fulfilled for a3 oc ajaz. The two constraints can be combined to give the
simpler ones

apas + ajaz = 0, a% + 27a1a3 = 0.

The details concerning the spectrum, homologies and flux restrictions of this model can be
found in [157, 162]. Identifying ¢ 23 = t, and t4 5 = t; ( due to monodromies) we distribute the

matter and Higgs fields over the curves as follows
102 = 104, Shy = Btatty> Ohy = D—2t5, D21, = DM,
and the allowed tree-level couplings with non-trivial SU(5) representations are
W = yy, 1007 1007 5p, + ya 1007 5as 5y (2.66)

where the second term survives due to the SU (5) traceless condition, ) t; = 3t,+2¢, = 0. Due to
the limited number of matter curves, this specific example of spectral cover factorisation does not
lead to a suitable effective model. From the point of view of model building and phenomenology,
novel interesting features are found in C3 x C; x C’q splitting which an S3 variant of the model
have been analysed in our previous work [1].

Another interesting scenario is the case of F-theory SO(10) models. In this case our effec-
tive theory has a GUT group Gg = SO(10), then the spectral cover group corresponds to its

commutant with respect to Fg under the decomposition:

Eg — SO(lO) X SU(4)J_ (267)

Similar to the SU(5) case, important properties of the local model are also encoded in the

spectral cover equation which for the SU(4), is described by the quartic polynomial

4
Cy = Z bk8471g = b084 + b183 + b282 + b1s+ by (2.68)
k=1
with roots t;—1 2,34 the weights of the SU(4) which implies that by = Y t; = 0. A realistic low
energy model implies the existence of monodromies along the t;’s and the most interesting cases

correspond to the following spectral cover factorizations?:

szcl XC{, CQXC&, CgXCl.

3A study of the various F-theory SO(10) models is given in [162].
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The first case implies the existence of a Zo monodromy while for the other two cases we expect
that they are subject to the analysis presented in this chapter so far. Most precisely, without
further investigation, we can conclude that the Cy x C) spectral factorisation corresponds to the
Klein group Zs x Zs which is transitive subgroup of S4. Similar the case with a C3 x C; spectral
cover split will be subject to the Galois theory of a cubic polynomial described previously. In
this specific scenario, a study of a S3 variant of the model presented in [162] will be interesting
for further investigation. Indeed, explanation of results of the neutrino oscillations experiments
strongly suggests the existence of a discrete family symmetry.

In [1], the emergence of discrete symmetries in semi-local F-theory models have been dis-
cussed and realistic models based on the cases of A4 and S3 combined with SU(5) GUT have
been analysed. Notice that from the possible discrete monodromies listed in Table 2.2 we didn’t
consider so far the case of the dihedral group Dy in the spectral cover equation. This is the sub-
ject of the next chapter where we threat the discrete monodromy as a discrete symmetry of the

effective theory and we present a model with some interesting phenomenological consequences.



Chapter 3

D, discrete symmetry from F-theory
SU(5)

3.1 Introduction

This Chapter focus on non-Abelian discrete symmetries emerging in the context of the spectral
cover equation, accompanied by continuous Abelian symmetry. It is well known that the discrete
symmetries play an important role in model building, since they lead to suppression of undesired
nucleon decay effects and generate a hierarchical fermion mass spectrum '. Furthermore, non-
Abelian discrete groups were introduced to interpret the observed mixing properties of the
neutrino sector. Indeed the results of the neutrino oscillation experiments are in agreement with
an almost maximal atmospheric mixing angle f»3, a large solar mixing 612, and a non-vanishing
reactor angle 613, all of which could be explained by an underlying non-Abelian discrete family
symmetry [194, 195, 196, 197].

Here, we continue our analysis of the previous chapter to investigate further the grid of
discrete symmetries emerging as subgroups of the SU(5), spectral cover group. Motivated by
the successful implementation of a class of such symmetries to the neutrino sector, we focus on
the subgroups of Sy and especially on the dihedral group Dy. Again, we show how a geometric
discrete Zs symmetry can additionally emerge, leading to matter parity which can protect the
effective models from dangerous proton decay terms. However, due to the geometric origin
and the flux mechanism, this time matter parity does not completely coincide with the well
known matter parity of the MSSM. In the particular example we develop, based on Dy x U(1)
family symmetry, with an SU(5) GUT group, broken by fluxes, the geometric Z matter parity,
while suppressing proton decay, allows neutron-antineutron oscillations, providing a distinctive
signature of the model. To be precise, while QLd¢ is forbidden, the baryon violating operator
u€dcd® is present leading to neutron-antineutron oscillations at a calculable rate.

The Chapter is organised as follows. In section 3.2 we study the conditions on the coefficients

of the spectral cover polynomial for the implementation of a Dy symmetry in F-theory SU(5)

'For discussions in a wider framework of discrete symmetries in String Theory see references [182]-[193].
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semi-local approach. We further introduce the basic ingredients of the set-up by defining its
matter curves the corresponding homologies and geometric parity assignments. In section 3.3
a specific model is analysed. We compute the quark and lepton mass matrices of the effective
model while special attention is given on the neutrino sector where the neutrino observables can
be explained through the implementation of the see-saw mechanism. Finally, in section 3.4 we
discuss baryon violation effects, like neutron-antineutron oscillations that appear in our model

due to the presence of the geometric parity.

3.2 D, symmetry from the spectral cover

The techniques and approaches presented in the subsequent sections will rely mainly on the
analysis of the previous Chapter and the work of ref [156] as well as in [171] and especially [172]
where non-Abelian fluxes are conjectured to give rise to non-Abelian discrete family symmetries
in the low energy effective theory. The origin of such a symmetry is the non-Abelian SU(5)
which paired up with the SU(5)gur at the Eg point of enhancement. The existence of such a
non-Abelian symmetry in the low energy theory will strongly depend on the geometry of the
internal compact space and the fluxes present. The usual assumption is that the SU(5), is first
broken to a product of U(1), groups which are then further broken by the action of discrete
symmetries associated with the monodromy action group. Instead here we are following the
conjecture in [172] that non-Abelian flures can break SU(5), first to a non-Abelian discrete
group Sy then to a smaller group such as Dy which acts as a family symmetry group in the
low energy effective theory. It is emphasised that this is a conjecture since there is no proof
that non-Abelian fluxes can do this. In the aforementioned works, discrete symmetries were
used to deal with fundamental problems of the effective model, such as the fermion mixing and
especially the neutrino sector, the p term etc.

In the context of F-theory in particular, the Dj symmetry was suggested in [156] for a
successful implementation of a consistent effective model. This was considered in the context of
a model where all Yukawa hierarchies emerge from a single Fg enhancement point. It was further
shown that the Dy symmetry is one of the few possible monodromy groups accommodating just
only the minimal matter, and at the same time being compatible with viable right-handed
neutrino scenarios. In the present Chapter, we will try to exploit the non-abelian nature of this
discrete group in order to construct realistic fermion mass textures which interpret the neutrino
data and make possible predictions for other interesting processes of our effective model.

Since we are interested in D4 symmetry we can approach the above picture using the spectral
cover description and in particular the C4 x C; case. The basic properties (number of matter
curves, t; charges and homology classes) of the C4 x C; spectal cover split have been analysed in
Section 2.3.

In the context of F-theory with an SU(5) GUT group, if the remaining discrete group is
Dy, then the four of the roots of the original SU(5), group are permuted in accordance to the
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specific Dy rules and the overall symmetry structure is:

Eg —)SU(5)GUT X SU(5)J_
—>SU(5)GUT X D4 X U(l)l .

In order to have a D, symmetry relating the four roots t1—1234 of the Cy spectral factor,
rather the general Sy case, we must appeal again to Galois theory. From Table 2.2, we can see
that this means the discriminant of the quartic part of the spectral cover split must not be a
square, while the cubic resolvent of the C4 polynomial must be reducible.

If we assume the roots t;—1 2 3.4, then the C4 part of the spectral equation has a cubic resolvent
of the form given in (2.21) where the roots z; are the symmetric polynomials of the weights ¢;
given in (2.19).

It can be shown that the discriminant (Ay) of Equation (?7?) is:

2TAy =4 (a% — 3agaq + 12a1a5) 3 (2a§ — 9 (agaq + 8ayas) asz + 27 (a5a§ + alai)) 2 (3.1)

which is also equal to the discriminant of the quartic polynomial relating the four roots given

by Equation 2.25 - this is a standard property of all cubic resolvents?.

The simplest way to make this polynomial reducible, is to demand the zero order term to vanish,
g(0) = 0. By setting g(0) = 0 and using the SU(5) tracelessness constraint (b; = 03) we take

the following known condition [172] between the a;’s :

a%a7 = al(aoa% + dasaz), (3.2)

Further substitution of this into the equation for the fiveplets of the GUT group, (2.10), returns

back an equation factorised into 3 parts,

Ps = as(azap + 4a1a7)(a3a% + ay(agag + aray)), (3.3)

which show us that we have at least 3 distinct matter curves by the usual interpretation. Thus,
it seems that in this simple approach the D, conditions introduce extra matter curves.

The so obtained splitings of the non-trivial SU(5) representations are collected in Table 3.1.
The first column indicates the SU(5) representation, while the defining equation of each corre-
sponding matter curve is shown in the second column. In the third column we designate the

associated homologies given by Equation (2.6).

3.2.1 Irreducible Representations

Thus far we have largely ignored how the group theory must be applied to matter curves in
this construction. We shall now examine this side of the problem, with a particular view being

taken to find the irreducible representations where possible. Given the earlier conjecture that

2 An alternative definition for the roots of the cubic resolvent is presented in Appendix A.
3Note that by = asas + asar = 0 is solved as shown in Equation (2.8)
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SU(5) Rep. Equation Homology
10, aq n—95c1 — X
10y ae X
5a as n—3c —Xx
5p azag + 4arar n—4a
5¢ aza? + az(asae + arar) | n—3c1 + x

Table 3.1: Summary of the default matter curve splitting from spectral cover equation in the
event of a Dy monodromy accompanying an SU(5) GUT group. Note that the D4 Galois theory
constraint introduces an extra fiveplet in comparison with the unconstraint spectarl cover split
04 X Cl.

non-Abelian fluzes can break SU(5), to Dy x U(1),, which acts as a family symmetry group
in the low energy effective theory, it then follows that the low energy states must transform
according to irreducible representations of D4. In Appendix B we show how reducible 4 and 6
dimensional representations of D4 decompose into irreducible representations. The argument in
Appendix B is summarised as follows.

Knowing that we have four weights ;-1 234, that have a relation under a D, symmetry,
we might exploit the nature of Dy. Specifically, since D4 can be physically interpreted as the
symmetries of a square, we might label the corner of such a square with our four weights (t1234)
and see how they must transform based on this. Similar to the symmetries of a square, it is clear
that there should be two generators: a rotation about the centre by 5 and a reflection along
one of the lines of symmetry, which we will call a and b respectively. Then these generators are
obey the following relations :

at=e, b¥=¢, bab=a""', (3.4)

where e is the identity.

It can be shown that this quadruplet of weights can be rotated into a basis with irreducible
representations of D4 - see Appendix B - by use of appropriate unitary transformations. It
transpires that the irreducible basis includes a trivial singlet, a non-trivial singlet and a doublet,
as summarised in Table 3.2. Note that we also have an extra singlet that is charged under the
fifth weight (105), which must logically be a trivial singlet since it is uncharged under the Dy

symimetry.

The fiveplets of the GUT group have a maximum of 10 weights before the reduction of
the SU(5) down to D4 symmetry. These have weights related to the 10’s of the GUT group:
+(t; + tj). By consistency these must transform in the same manner as the weights of the 10s,

allowing us to unambiguously write down the generators a and b.

Following the same procedure as previously, we may decompose this tenplet under D, into
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Curve | Dyrep. | t5
10, 144 0
105 1, 0
10, 2 0
10, Ly |1

Table 3.2: Summary of the representations of the tenplets of SU(5)gur along with their representations
under D4 and the corresponding perpendicular charges ;.

Curve | Dy rep. | t5 charge weight relation
5e 1yt 1 St
55 1, 1 (t1 +t3) — (t2 + ta)

_ t—t
5, 2 1 e
ty — 1y

55 Lyt 0 Yic ti
56 Loy 0 E?:l l;
5¢ Loy 0 Sy ti
577 1, 0 (t1 +t3) — (t2 + ta)
5o 2 0 ( 1= )
tg — 14

Table 3.3: Summary of the of the SU(5)guT fiveplets, their represantation under D4 and the corre-
sponding perpendicular t;-charges.

irreducible representations of the group. Referring to the Appendix once again, we may obtain
a total of eight representations, as shown in Table 3.3. However, we note that three of the rep-

4

resentations® are entirely indistinguishable as they are trivial singlets with only charges under

ti=1,2,34-

A full decomposition of the SU(5)gqur representations in terms of Dy is included in the
Appendix, including the decomposition of the GUT singlets, which will be important for model

building in what follows.

3.2.2 Reconciling Interpretations

It is clear at this point that there is some tension between the two angles of attack for this prob-
lem. Obviously we must be able to describe both the non-abelian discrete group representations
of the matter curves, while also being able to obtain them in some manner from the spectral
cover approach. In order to achieve this, we shall attempt some form of multifurcation of the

spectral cover by definition of new sections in a consistent manner.

455, 56, and 5(
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Constraints P, P, Pio

a1 = Kas
asz = \ay a3 (a7 + \pay — aoff,u2a2) asaz (kaz + (A + 1)paz) | kua3

ag = (a2

Table 3.4: A promising splitting option of the matter curves, respecting the Galois theory constraint

A # 62 as required for a D, symmetry action among the roots of the spectral cover polynomial.

We begin by defining two new sections x and A such that
as — Xag, a3 — Kay. (3.5)

It is clear that this approach has some similarity with the by = 0 tracelessness ansatz solution
usually employed. Furthermore, these definitions do not generate new unwanted sections. For

example, the by’s
by = —aoag, b1 =0,by = a%m + aoag, bs = (k + A)agay, by = )\ag + aya7, by = ajag, (3.6)
do not acquire an overall common factor, while the discriminant
A = 108ay ()\a% + 4a1a7) (K2CL$ + ag ()\ag + 4a1a7)) 252 (3.7)

is not a square - as required for the case of a D4 monodromy group. On the contrary, substitution

to equation for the fiveplets returns
P, = a2 ((k 4+ NAay — apay) (3.8)

and
Py =az ((k+ N)ag + araz) . (3.9)

This appears to generate extra matter curves by increasing the number of factors available,
with the added advantage that we can easily find the homologies of our matter curves and
consequently the flux restraints for each. We can interpret these results as a multifurcation to
irreducible representations of the Dy group.

If we further assume a; — pag, then
Py = agar (ag(k + ) + par) , (3.10)
and the tens of the GUT group now become:
Py — bs = pagag - (3.11)

So we add extra curves here as well.

This is not a unique choice of splitting, and in fact we have a number of possible options
that would be compatible with the requirement to prevent unwanted overall factors. A second
option is the splitting:

a; — \ag, ag — Kkag. (3.12)
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With this choice, the fiveplets are now
P, =as (a7 (agk + ag) — aoa%)\) (3.13)

and
Py, =ay (a%%z + a9 (a7)\ + ag)) . (3.14)

The tens now reads Pig = a1ag — Aagag.
In the same way we can find a number of available combinations that leads in suitable splits.

In Table 3.4 we show the most interesting case
a1 — Kaz, a3z — Aa7, and ag — pas. (3.15)

As we can see (3.15) leads in a maximal factorisation for the fiveplets (six factors) and the

tenplets (four factors). The discriminant is computed to be

A= —aga%(ag + 4a7/~§)2(4a0a2a6 — 16agasark — ag)\2) (3.16)

and as we can see it is not a square, while at the same time the b;’s do not asquire a common
factor. Very important for model building reasons are the homologies of the matter curves. Thus
we need to compute the homologies of the new coefficients x, A and u. These can be computed

easily from (3.15), since we already know the homologies of a;’s coefficients. We find that:

] = —c1, [l = =[A] = der +2x = (3.17)

Using the above, we can calculate the homologies of the all new factors of the tenplets and five-
plets. Notice that the distribution of the the tenplets and fiveplets on the various matter curves
has be done in an almost arbitrary way. This case is of particular interest because we have seen
that we have four tenplets of the GUT group, while we will also have six of the fiveplets provided
we interpret the trivial singlets as one representation. This last assumption seems reasonable

given that they are otherwise indistinguishable.

Flux Restrictions

In order to finally marry the two understandings present so far, we must appeal to flux restric-
tions. We summarise the homologies of the various matter curves in Table 3.5 and Table 3.6
with this in mind. Let us assume the usual flux restriction rules. We denote with Fy the U(1)y
flux which breaks SU(5) to the SM and at the same time generates chirality to the fermions.
In order to avoid a Green-Schwarz mass for the corresponding gauge boson we must require
Fy -n = Fy -c1 = 0. For the unspecified homology x we parametrise the corresponding flux

restriction with an arbitrary integer N = Fy - x, hence we have the constraints:

Fy-x=N, Fy-c1 =Fy -n=0. (3.18)
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Py = kpaj
Curve | factor Homology
104 K —C1
102 as n—4c —x
103 a n—4cy —x
104 1% —n+4ep + 2x

Table 3.5: Distribution of the tenplets of the model along with the corresponding homologies according

to the new factorisation, Pjg = rpa3.

Py = asar (kay + (A + 1) paz)

Curve | t5 charge factor Homology
5a 1 as n—4c1 —x
5 1 a7 c1+x
5¢ 1 ka7 + (Ap + 1)pas X
P, = a3 (a7 + Apay — apkpi’as)

Curve | t5 charge factor Homology
5d 0 as n—4dc —x
Be 0 as n—4c; —x
5f 0 a7 + A\par — agrpay 1+ x

Table 3.6: Distribution of the fiveplets into P, and P, along with their perpendicular charges, defining

factors and the corresponding homology classes. As we can see P, is related with the ¢5 charge.

We shall also assume the doublet-triplet splitting mechanism to be powered by this flux. Indeed,

assuming N units of hyperflux piercing a given matter curve, the 5/5 split according to:

n(3, 1)71/3 —n(3, 1)+1/3 =Ms,

(3.19)
n(l, 2)+1/2 — T'L(]., 2),1/2 = M5 + N .

Thus, as long as N # 0, for the fives residing on a given matter curved the number of dou-
blets differs from the number of triplets in the effective theory. Choosing M5 = 0 for a Higgs
matter curve the coloured triplet-antitriplet fields appear only in pairs which under certain
conditions [118, 155] form heavy massive states. On the other hand, the difference of the
doublet-antidoublet fields is non-zero and is determined solely from the hyperflux integer pa-
rameter N. Similarly, on a matter curve accommodating fermion generations, Equation (3.19)
implies different numbers of lepton doublets and down quarks on this particular matter curve.
As a consequence, the corresponding mass matrices are expected to differ, avoided that way
unwanted mass relations at the GUT scale.

Similarly, the 10s decompose under the influence of N hyperflux units to the following SM-
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GUT rep | Def. Eqn. | Parity: Matter content

101 K — MlQL—f—UEMl +6%M1

109 a9 a MQQL—i-uCL(MQ-i-N)—i-eCL(MQ—N)
103 a2 a M3Qr + u§(Mz+ N) + e (M3 — N)
104 [ perity(ae) | ppQp + u§ (My — 2N) + €5 (My + 2N)
5 as a M,d$ + (M, — N)L

Op ay b MyD, + (Md + N)Hu

5¢ Kar —b M.d$ + (M. + N)L

54 a2 a Mde—i- (Mb—N) _d

5e as a M.d$ + (M. — N)L

5f ay b Mfch—l—(Mf—l-N)L

Table 3.7: The generalized matter spectrum of the model. The table shows the GUT matter curves
along with their defining spectral cover equations, the geometric parity assignments and the flux data.

Here a = parity(az) and b = parity(ar), by convention.

representations:

n(37 2)+1/6 - n(37 2)71/6 = Mo,
n(i_’), 1)_2/3 — n(3, 1)+2/3 = MlO — N,
n(l, 1)+1 — n(l, 1),1 =M+ N.

(3.20)

Hence, similar to the fivplets above, the flux effects have analogous implications on the tenplets.
The first line in (3.20) in particular, generates the required up-quark chirality since for Mg # 0
the number of @ = (3,2)6 differs from Q= (3,2)_, /6 representations. Moreover, from the
second line it is to be observed that N # 0 leads to further splitting between the Q = (3,2); ¢
and u® = (3,1)_/3 multiplicities. This fact as we will see provides interesting non-trivial quark

mass matrix textures.

3.3 Constructing An N =1 Model

Referring to the aforementioned geometric symmetry discussed at length in previous Chapter
(see also the Appendix B for the implementation of a geometric parity on the Cy x C; case
discussed here), we may start out by assigning a Z, symmetry to our matter curves, Table 3.8.
We shall demand some doublet-triplet splitting in our model, so we take the liberty of setting

N =1, motivated by a desire to produce a spectrum free of Higgs colour triplets.

The Z; parity has arbitrary phases connecting the coefficients in two cycles: a1, 5 and ag,7,
which we must choose so that we can best fit the standard matter parity of the MSSM. The
generalised parities of the matter curves are presented in Table 3.7. If we start with a handful
of basic requirements it becomes quickly apparent how to do this and guides our assignments of

the Dy irreducible representations.
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GUT rep | Def. Equn. | Parity: | (—,—) | (+,—) | (—+) | (+,+) N =1 Matter spectrum

104 P — — — — - MiQp + u§ My + e§ My

109 ay a - + — + MoQp, + uf (Mz + 1) + e (M2 — 1)
103 as a - + - + | M3Qr +uf(Msz+1) + e (M3 — 1)
10, " parity(as) | _ + + — | MyQp +uf (Mg —2) + ¢f (My +2)
5a as a — + — + M,d$ + (M, — 1)L

Dy ay b — — + + MyD, + (Mg + 1)H,

5e Kay —b + + - - M.d5 + (M. +1)L

54 as a - + — + MyDq + (M, — 1)Hg

5 as a — + - + Medi + (M. - 1)L

5y az b - = + + Mydj, + (My + 1)L

Table 3.8: General properties of a model with flux parameter N = 1. All the possible parity options

are parametrized in two cycles (a = 4+,b = +). Any matter curve that has a D4-doublet must produce

doublets - i.e. split twice as fast.

e We must ensure the existence of a tree-level top Yukawa coupling.

e We wish to forbid all the dangerous dimension 4 proton decay terms- which may be

achieved if our Higgs have + parity and our matter — parity similar to the conventional
R-parity of the MSSM.

e We want a spectrum that resembles the MSSM.

If we examine Table 3.8, we can see that in order to be free from D, 4 matter, we should choose

the parity option a = b = +. The subtlety here is that the H, and Hy; must be on matter

curves that have different homologies so that if we set the multiplicity for those curves to zero

(preventing the D, 4 matter), the flux naturally pushes the H, to be on a 5 of the GUT group,
while it pushes the Hy to be a 5.

We now select our multiplicities M; as follows:

My =Ms = My = My = 0,

My =M, = M, = —Mj =1,

M, =2,
M, = — 4.

This returns a spectrum that has only a tree-level top Yukawa coupling, the desired number of

matter generations, and only u“d°d® dimension 4 parity violating operators, which should shield

us from the most dangerous proton decay effects. The spectrum is summarized in Table 3.9.
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GUT rep | Def. Eqn. | Parity | Matter content | Dy rep. | t5 charge
104 K - Qr +uf +ef 1y 0
102 as + Ui — 6% 1+_|_ 0
103 as + UCL — 62 1++ 1
104 I — 2Q1 + 4e§ 2 0
5a as - 2d5 2 0
5c Kag - —4d5 — 3L 1y 0
94 as + —ﬁd j -1
Be as + ds, 1o ~1
Sf ay + —QCZCL 2 —1

Table 3.9: Full spectrum for an SU(5) x Dy x U(1);, model from an F-theory background. Note that

the —t5 charge corresponds to the 5, while any representations that are a 5 will instead have t5.

Singlet | Parity | Dy rep. | t5 charge | Vacuum Expectation
Oa + j -1 (0a) = «

05 - Ly -1 (0p) = 5

Oy + 2 —1 (6y) = (11.72)

0, + 2 0 <0a> = (al,ag)

Uy — 14 0 —

VR — 2 0 —

Table 3.10: Spectrum and general properties of the require singlets to construct full Yukawa matrices
with the model outlined in Table 3.9.

3.3.1 Fermion Textures

Models of the form presented here allow for a large number of GUT operators, however we
must ensure that all symmetries are respected. This being the case, we find that the tree-level
operators found in Table 3.12, and constructed from the low energy spectrum summarised in

Table 3.11, form the basis for our model, assuming the D, algebra rules:

2%X2 = 1++ —+ 1+7 + 17+ + 1__ s
1a,lec,d = 1ac,bda
with: a,b,c,d ==+

As well as the expected Yukawas for the quarks and charged leptons, there are also a number of
parity violating operators that could lead to dangerous and unacceptable rates of proton decay.
However, provided the singlet spectrum is aligned correctly it is possible to avoid unacceptable
proton decay rates via dimension 4 operators. It will not be possible to remove all parity
violating operators from the spectrum though, and we will be left with u®d“d® operators that

may facilitate neutron-antineutron oscillations. It is also possible to remove vectorlike pairs
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Low Energy Spectrum | Dy rep | U(1)s, | Z2
Q37 Ug, eg 1+— 0 -
’LL% 1++ 1 -+
’U,i 1++ 0 =+
Q172’ 6?,2 2 0 -
L, dS 14— 0 —
I/§ 1+_ 0 —
Vig 2 0 -
H, 1oy 0 | +
H, - -1 +

Table 3.11: A summary of the low energy spectrum of the model considered. The charges include the
Standard Model matter content, the D, family symmetry, the remaining U(1);, from the commutant
SU(5) descending from Eg orthogonally to the GUT group, and finally the geometric Z; symmetry

assignments.

Operator— type D, irrep. | t5 charge | Zy parity
1011015, - QUH j 0 +
1011025, - QUH 14— 0 —
10,1035, - QUH 14— 1 —
104105, - QUH 2 0 +
1041025, - QUH 2 0

1041035, - QUH 2 1

1015.54 — QDH 1i4 1 +
1045.5¢4 = QDH 2 1 T
10,5.,54 - LEH 1y, 1 +
1045.55 — LEH 2 1 4
10,5.5. — UDD 14— 0 —
1025.5. — UDD Ty 0 +
1035.5. — UDD 14 1 +
10,5.5. — QLD 14 0

10455, — QLD 2 0 —
1015.5. — ELL 14— 0

10455, — ELL 2 0

Table 3.12: List of all the possible trilinear couplings available in the SU(5) x Dy x U(1) model presented.
At tree-level, these operators are not all immediately allowed, since the combined D4 x U(1) family

symmetry along with the geometric Z5 parity must be respected.

from the spectrum to insure a low energy matter content similar to the MSSM.
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Quark sector

The up-type quark sector have four operators which contribute to the corresponding Yukawa
matrix. Firstly, we have a tree level top quark coming from the operator 1011015, which is the
only tree level Yukawa operator found in the quark and charged Lepton sectors. The remaining
three terms are non-renormalisable operators subject to suppression. We shall assume that the
up-type Higgs gets a vacuum expectation value, (H,) = v,. The singlets involved must have

VEVs as summarised in Table 3.10. The following mass terms are generated

1011015, — y1vuQ3us
1041015600 — y2vu(Q2a2 + Qrar)u§
104103550005 — y3vuB(Q2a2 + Qrar)u§
1011035505 — y4vuSQ3us

giving rise to the following texture for the up-quark mass matrix

0 yza1B y20a1
Myct=vu | 0 yza2B yoaz
0 wmp Y1

The lightest generation does not get an explicit mass from this mechanism, but we can expect a
small correction to come from non-commutative fluxes or instanton effects [141, 147, 152], thus
generating a small mass for the first generation.

The down-type quarks contribute a further two operators to the model. These will be
symmetric across the right-handed d° since all three generations are found on the 5. matter
curve. We once again assume the down type Higgs to receive a VEV, (H;) = vg. Similar to the
up-sector, we also give the singlets a vacuum expectation value: (f,) = o and (6,) = (y1,72)7.

As a result, we get the following Yukawa contributions

10155400 — ya,ivaQ3d5c
1045c546~y — y5,iva(Q2v2 + Q1v1)d

and consequently, the down quark mass matrix form

Y5171 Y5271 Y5371
Masp=va| ys172 Us272 Y5372
Y41 Y4206 Y430

However, this mass matrix will be subject to the rank theorem, requiring that there be some

suppression factor between the copies of the operator, which we indicate by the second index,

yimj'
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Charged Leptons

The Charged Lepton Yukawas are determined by the same operators as the Down-type quarks,

subject to a transpose. As such their mass matrix is as follows:

101505d‘9a — y6,i’UdLi€§04
1045:540 — y7ivaLi(€5y2 + ef7)

Y7171 Yri1v2 Ys,1&
Meyr=vi| yram Y7272 V20
Y7371 Y372 Y6,3%

The mass relations between charged leptons and down-type quarks will not be constrained to
be exact as the operators can be assumed to be localized to different parts of the GUT surface.
Once again this is subject to the rank theorem, but will be able to produce a light first generation

through other mechanisms.

Neutrino sector

Various ideas and mechanisms have been proposed through the time for the description of light
neutrino masses m; and mixing angles 0;;. As we have discussed in the first chapter, perhaps
the most elegant choice is the classical see-saw mechanism, in which the observed smallness of
neutrino masses is explained due to the existence of heavy right-handed Majorana neutrinos
[32],

mV — _mDMIgl(mD)T7
where m” is the light effective Majorana neutrino mass matrix (i.e. the physical neutrino mass

D is the Dirac mass matrix and My is the (heavy) Majorana mass matrix. In

matrix), m
general, the see-saw mechanism predicts Majorana neutrinos, however has nothing to say about
the neutrinos “mass hierarchy”, nor does it yield any understanding of lepton mixing. In most of
the cases, in order to overcome these difficulties, the see-saw mechanism must be supplemented
by other ingredients (for reviews see e.g. [194, 7, 196, 197]).

In F-theory, neutrinos may admit both Dirac and Majorana mass terms due to the existence
of extra singlets states. As such, F-theory provides all the necessary ingredients to use the see-
saw mechanism in order to achieve small neutrino masses via a GUT scale Majorana type mass.
Any Dirac type mass comes from an operator of the form mp ~ 6,5,5., while the right-handed

Majorana mass terms are of the form M6,0,.

For the model at hand, the singlet representations and parities, as detailed in the Appendix
B, allow us up to nine singlets in the present model. Let us then match our right-handed

neutrinos to the representations 14_ and a doublet (under Dy), as allowed from our spectrum.
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This will then give the following Dirac-type operators for the neutrino sector:

01/1,,51756 — y&z"uul/?c)Li R

00156500 — yo,ivu(Viar + vsaz)L;

Yo, 1041 Y9,102 Ys,1

mp = Uy | Y9201 Y9202 Y2

Y9,3a1 Y9302 Ys3
It is trivial to check that the Dirac matrix above has zero determinant, which will cause one
neutrino to be massless. While this is not explicitly ruled-out by the experimental observations,
a small mass can be generated through some higher order operators from other singlets in the
spectrum if required. For example, a singlet of the type 1__ with + parity. This will allow an
explicit Dirac type mass, however similar analysis has been done in a previous work [1]), so we

omit in depth discussion here.

The Majorana terms corresponding to this choice of neutrino spectrum are simply calculated,

as one might expect:

0,,6,, — mvsvs |
c.C
000, — Mvivy

0,,0,,0q — yrsvsas + yvsviag ,

0 M yaq
M R = M 0 yas
yay yaz m
This may also be allowed corrections via extra singlets, though it will not be needed for the

present study.

Having write down both Dirac and Majorana mass matrices, then the effective neutrino

mass can be calculated from the see-saw mechanism via m, = —mpMp 1m:£). The resulting

mass matrix appears complicated, with elements given in full as:

mil :My8,12 + 2a1a2y9,1(Mmy91 — 2y8,1Y) ,
mig = ma1 =Mys1ys2 — 2a1a2(Ys 2yY,1 — MY9,2Y9.1 + Ys,1Y¥9,2)
miz = m31 =Mys 1ys 3 — 2a1a2(Ys 3YY9,1 — MY9,3Y9,1 + Ys,1YY9,3) »
mas =Mys2® + 2a1a2y9.2(mye 2 — 2ys 2y)
Moz = M3z =Mys 2ys 3 — 2a1a2(Ys 3YYo,2 — MY9,3Y9.2 + Ys 2YY9,3)

mas =Mys 3* + 2a1a2y0 3(mye 3 — 2ys3Y) ,
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with an overall scaling factor of mg = v2(Mm — 2aja2y?)~!.

In order to extract in an easiest way the mixing parameters and mass scales of the model,
we redefine the parameters of the matrix elements in the following way:

_ Y8 Zi _ Yo _ 2ayaz

ys1 M ysi’ - M?
with ¢ = 1,2,3. From the above definitions it is clear that X; = 1. Note that X3 and Zj,

are not always required to be order one due to the new parametrization. In addition, the

X; (3.21)

neutrino matrix is greatly simplified if we further assume that: m ~ M. With this reduction of

parameters, the elements of the mass matrix are given by:

miq :ﬁbo[—l + GZl(Qy — Zl)] R
—Xo+ G(yXeZi +yZo — Z125)] ,
mi3 = M31 — —Xg + G(ngZ1 + ng — ZlZg)] s

mig = Mgy =Mg|
[

mag =1mo[Xa + G(2yX2Zy — Z3)] ,
[
[

mo
mo

maz = ma3y =mo[—Xo X3 + G(yX32s +yXoZs — Z2Z3)] ,

mss =mo[—X3 + G(2yX3Z3 — X3)]

-1

where now the overall scale factor is mg = vgyg’lM “1(Gy? — 1)~ We this new matrix form

in hand, we proceed with the study of the neutrino mixing parameters. Firstly, we fit the
2
ij
allowing us to extract a reasonable mass scale for the neutrinos while at the same time fitting

mass squared differences Amy; in this model with the experimental constraints (see Table 1.2),
parameters to allow for acceptable mixing angles.

The results are shown in Figure 3.1. The plot on the left shows contours on the (X2, X3)
(black). Similar, the

plot on the right deals with the neutrino mixing angles sin? #;5 (red), sin? fo3 (blue) and sin? ;3

2 2
mz—mg
m2

plane, of the 30 ranges of Am3; (red), Am3, (blue) and R = ‘

2
may—my

(green). The plots show that there are overlap regions in the parameter space where the key vari-
ables describing the neutrino mixing, are allowed. For example, a typical set of input parameters
is:

Xo=10.345, X3=0.49, Z1 =1, Z =0.3, Z3=0.204, G =19, y = 0.7, yg1 = 0.15
which returns the following values for the mass squared differences and the neutrino mixing
angles

Am3; ~ 7.41 x 107%eV?, Am3; ~ 2.50 x 103eV?, R = 33.78, (322)
012 = 33.08, 013 = 8.63, fa3 = 46.6. '

This also allows us to extract the neutrino masses using the mass differences. Since the model
predicts a rank-2 Dirac mass matrix, one neutrino will be massless. So then the remaining two
masses are (within experimental errors) equal to the square root of the mass differences. For

the input parameters given above we find :

m1 =0 meV, ms ~ 2.72 meV, mg ~ 50.8 meV . (3.23)
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Figure 3.1: Plots of the neutrino mixing parameters of the model with respect to the experimental con-
straints presented in Table 1.2. The solid lines represent the best fit value (bfv) while the dashed/dotted
lines display the lower/upper bounds of the 30 range. Left: Plot of the mass square differences Am3;
(red), Am3, (blue) and the ratio R = |Am3,|/|Am3;| (black) for R = 30 (dashed), R = 34 (solid),
R = 38 (dotted). Right: Plot of the neutrino mixing angles sin? 65 (red), sin® a3 (blue) and sin® 63
(green). For comparison reasons with the plot on the left we have also include the ratio R (black lines).
Both figures show solutions on (X3, X3) plane while the remaining parameters are set at values that yield
consistent mixing parameters: (Z; ~ 1,725 ~ 0.3, 73 = 0.2,G ~ 1.9,y ~ 0.7,ys1 ~ 0.15).

Of course, at this scale we are consistent with cosmological constraints for the sum of the neutrino
masses (see Eq. (1.24)).

3.3.2 pu-Terms

In the model under consideration the standard Higgs sector u-term requires coupling to a singlet
in order to cancel the ts-charges under the remaining U(1), symmetry. The most suitable

(trilinear) coupling allowed by the singlet sector is the following:

MO H Hy (3.24)
and consequently the p-term is proportional to the VEV of the singlet ,:

w=A{0a). (3.25)

Since this singlet is also participating to the charged lepton and the bottoms quark Yukawa
matrices, the resulting VEV should allow a TeV scale u-term while not affecting these Yukawas
too strongly. Note that since the operators in the charged lepton and bottom quark sectors
are non-renormalisable, the coupling should be suppressed by a large mass scale, making this
possible. It is also shown in the D-flatness conditions (provided in the Appendix B) that we
have a deal of freedom when choosing the VEV for 4,.

A second non-renormalisable term of the type:
Ao040H, Hy (3.26)

will also contribute to the u-term. This term should be suppressed by some large mass scale.

Reffering to the flatness conditions and a cursory calculation of this coupling, we see that this
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contributes proportionally to the product of the VEVs of the 6, and 6, singlets. This again

seems acceptable.

3.4 Baryon number violation effects

3.4.1 Proton decay

As was discussed in the first chapter, in the absence of particular types of symmetries such
as R-parity, the MSSM as well as ordinary GUT symmetries are not adequate to ban rare
processes leading to baryon and/or lepton number violation. Moreover, specific SU(5) GUT
representations include additional states leading to similar problems. Such states are the Higgs
colour triplets being components of the very same fiveplets containing the up and down SM
Higgs doublets. If both Higgs fields localise on the same matter curve they generate graphs
contributing to proton decay from effective operators of the form M&IJT QQQL. Since their
Yukawa couplings are expected to be of order one, the suppression factor M&le is not sufficient
to reduce baryon number violating processes to acceptable rates.

In F-theory it is possible to turn on suitable fluxes so that the Higgs triplets are removed
from the low energy spectrum. However even in this case their associated Kaluza-Klein modes
generate the same type of non-renormalisable terms where now the suppression factor is replaced
by the KK scale M }_(}( Since the Mg mass scale is not expected to be substantially larger
that the Mgy scale, one would not expect a significant suppression of these operators. It is
possible to achieve further suppression however, if the parts of the colour triplet-antitriplet pair
emerge from different matter curves so that a direct tree-level mass term is not generated.

In practice, the realistic constructions are more complicated and the whole issue of baryon
and lepton number violation is more involved. Firstly, as we have been analysed so far, the
role of R-parity in this work is played by a Zs symmetry of geometric origin which does not
necessarily coincide with the standard R-parity imposed in field theory supersymmetric models.
Secondly, accompanying symmetries emerging from the SU(5) breaking affix additional quan-
tum numbers to the GUT representations and as such, they imply further restrictions on the
superpotential of the effective theory.

We pursue our investigation, elaborating the above for the present model. Clearly, in order
to establish the existence of a proton decay operator, we should pay heed to many more factors
than in ordinary field theory GUTSs, such as accompanying symmetries, geometric properties
and flux effects. In the present model, there is a combination of constraints associated to the
D, group, the Zs discrete symmetry of geometric origin as well as a U(1) factor that should be
respected. Although these symmetries eliminate a singificant number of unwanted operators,
yet there remain trilinear terms which are potentially dangerous, which we now discuss. We

start with the trilinear couplings, which take two forms,

10-5-5 — Qd°Hg+ QDL + ¢°LHy + u°d°d° (3.27)
10-10-5 — QuH, + u‘e“D" + QQD" (3.28)
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which in principle, give rise to dimension 5 proton decay provided the following coupling exists
for the Higgs colour triplet:
®55 — (®)D D¢ (3.29)

where ® a suitable singlet field acquiring a non-zero vev. However, our flux choice eliminates

the coloured triplets from Higgs fields (see Table 3.9) and as a result such terms do not exist.
In addition to the above type of operators, there are trilinear RPV terms that give rise to

proton decay through similar graphs. Checking Table 3.12 one can see that there is a potentially

dangerous baryon violating term, namely
1025.5. (3.30)

giving rise to a u°d“d® operator (because of flux effects 105 does not contain @), hence the operator
Qd°L does not exist). Thus, (3.30) contributes to proton decay only if analogous dimension-four
operators from terms of the type 10;10;5; are simultaneously present in the superpotential. In
the present model such terms do not exist, hence proton stability is ensured. Nevertheless, there
are other interesting implications of the above operator that could be the low energy imprint of

the present model, which is discussed next.

3.4.2 Neutron-Antineutron oscillations

As mention in the previous section, the model presented is free from proton decay at the lowest
orders. However, it is subject to operators which are classically considered to be parity violating.
Since these operators are all of the type u¢d®d®, they will instead facilitate neutron-antineutron
oscillations. While this is a seldom considered property of GUT models, work has been done to
calculate transmission amplitudes of such processes by Mohapatra and Marshak [198] and later
on by Goity and Sher [199] among others. The contributions to the process are generated from
tree-level and box type graphs (see [199], the reviews [200, 74] and references therein), with

typical cases shown in Figure 3.2.

In the paper of Goity and Sher, they argue that one can identify a competitive mechanism,
with a fully calculable transition amplitude, which sets a bound on Ag,. This mechanism is
based on the sequence of reactions urdg +dr, — 5}‘%+dL — (B*L +d; —dp + BL) — dp, + urdp,
where the intermediate transition in the parentheses, b7 + dy, — dy, + bz, is due to a W boson
and gaugino exchange box diagram . The choice of intermediate bottom squarks is the most
favourable one in order to maximise factors such as m?/m#,, which arise from the electroweak

interactions of d-quarks in the box diagram (see 3.2).

Calculation of the diagram gives the following relation for the decay rate,

394)\dbuM u,c,t

2 2 2 2
r—— SO Jff4 0)[? Z&MJ M2, My, M2, M2 ) (3.31)
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=

Figure 3.2: Feynman graphs for n—n oscillation processes. Top: oscillation via a gluino, Bottom:

box-graph process.

where the mass term M;)LR, which mixes by, and bg, is given by MBLR = Amy. Here A is the
soft SUSY breaking parameter and in [199] was taken as A = mg = 200GeV. Also §;; is a

combination of CKM matrix parameters,
&5 = Vou, Vi aVou, Vil g (3.32)

and the J functions are given by:

4 2

m; In(m7)
im1 Hk;éz(mzz —mj)

J(my, ma, mg, my) = (3.33)
The n-n oscillation time is 7 = 1/T" and the current experimental limits gives, 7 > 10%sec. [200].
Finally [¢(0)] is the baryonic wave function matrix element for three quarks inside a nucleon.
This parameter was calculated to be |1(0)|> = 107 and 0.8 x 107%*GeV % in MIT Bag models®.

Using the experimental limit on the neutron-antineutron oscillation time we can obtain
bounds for the Ag,, coupling. The results depend on CKM parameters and the squark masses.
In Figure 3.3 we reproduce the results of Goity and Sher. As one can observe the upper bound
on Agp, is between 0.005 and 0.1.

Next we use the equation (3.31) to recalculate the bounds on Ag, by consider the latest
experimental results for the SUSY mass parameters. In Figure 3.4 the curves correspond to

squark masses of 0.8, 1 and 1.2 TeV (solid, dashed and dotted curve accordingly). As we can

Goity and Sher used a slightly more stringent bound, 7 > 1.2 x 10%sec. and for the matrix element they took
[(0)]* = 3 x 107*GeVE.
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Figure 3.3: Goity and Sher bounds on the coupling Agy,. In their analysis they assumed that
up and bottom squark masses are degenerate. Blue: My = M; = 200GeV, Dashed: My =
Mz = 400GeV, Dotted: Mz = Mz = 600GeV . Also we took MEL = MER = 350GeV. The peaks

corresponds to GIM cancellation mechanism effects.
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Figure 3.4: New bounds on Mg, using updated experimental limits for the SUSY parameters.
Blue: My = Mz = 0.8TeV, Dashed: My = Mz = 1TeV, Dotted: Mz = Mz = 1.2TeV.
For the other parameters participating in to the computation, the following values was used:

M; = M; =05TeV, T =10%sec. and [¢(0)] = 0.9 x 10~*GeV 5.
L R
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see the value of Ag,, lies between 0.1 and ~ 0.5 for a stop mass in the range 0.5 and 1.6 TeV,

neglecting the peaks coming from cancellation mechanism (GIM) effects.

In F-theory there is an associated wavefunction [139]-[150] to the state residing on each
matter curve and it can be determined by solving the corresponding equations of motion [118].
The solutions show that each wavefunction is peaked along the corresponding matter curve.
Yukawa couplings are formed at the point of intersection of three matter curves where the
corresponding wavefunctions overlap. To estimate the corresponding Yukawa coupling we need
to perform an integration over the three overlapping wavefunctions of the corresponding states
participating in the trilinear coupling. Taking into account mixing effects this particular coupling
is estimated to be of the order \g, < 10~!. From the figure it can be observed that recent n—n
oscillation bounds on Ay, are compatible with such values.

On the next Chapter a more detailed analysis of RPV couplings in F-theory is presented.



Chapter 4

R-parity violation effects in F-theory

4.1 Introduction

In the previous Chapters we have analysed various phenomenological aspects of F-theory ef-
fective models using the spectral cover description. While in F-theory constructions, R-parity
conservation (RPC) can emerge either as a remnant symmetry of extra U(1) factors, or it can
be imposed by appealing to some geometric property of the internal manifold and the flux [143],
there is no compelling reason to assume this. Moreover, experimental bounds permit R-parity
violating (RPV) interactions at small but non-negligible rates, providing a generic signature of
F-theory models. In the field theory context, RPV proved to be the Achilles heel of many SUSY
GUTs. The most dangerous such couplings induce the tree-level operators QLd®, d°d“u®, e°LL
and in the absence of a suitable symmetry or some other kind of protecting mechanism, all of
them appearing simultaneously can lead to Baryon and Lepton (B and L) violating processes
at unacceptable rates [77]. On the other hand, in F-theory constructions, parts of GUT multi-
plets are typically projected out by fluxes, giving rise only to a part of the above operators. In
other cases, due to symmetry arguments, the Yukawa couplings relevant to RPV operators are
identically zero. As a result, several B/L violating processes, either are completely prevented or
occur at lower rates in F-theory models, providing a controllable signal of RPV. This observation
motivates a general study of RPV in F-theory, which is the subject of the present Chapter.

In the present Chapter, then, we study RPV in local F-theory constructions, trying to be
as general as possible, with the goal of making a bridge connection between F-theory and ex-
periment. An important goal of the chapter is to compute the strength of the RPV Yukawas
couplings, which mainly depend on the topological properties of the internal space and are more
or less independent of many details of a particular model, enabling us to work in a generic local
F-theory set-up. We focus on F-theory SU(5) constructions, where a displacement mechanism,
based on non-trivial fluxes, renders several GUT multiplets incomplete. This mechanism has
already been suggested as a solution for the doublet-triplet splitting problem, so that dangerous
dimension-5 proton decay operators are not present due to the elimination of the extra colour
Higgs triplets. However, it turns out that, in several cases, not only the Higgs but also other

matter multiplets are incomplete in a way that allows for trilinear RPV terms in the superpoten-
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tial. In this context, it is quite common that not all of the RPV operators appear simultaneously,
allowing observable RPV effects without catastrophic proton decay.

The goal here is twofold. Firstly, to present a detailed analysis of all possible combinations
of RPV operators arising from a generic semi-local F-theory spectral cover framework, assuming
an SU(5) GUT. This includes a detailed analysis of the classification of all possible allowed
combinations of RPV operators, originating from the SU(5) term 10-5-5, including the effect of
U(1) fluxes, with global restrictions, which are crucial in controlling the various possible multi-
plet splittings. Secondly, using F-theory techniques for the computation of Yukawa coefficients
developed in the last few years, we perform explicit computations of the bottom/tau and RPV
Yukawa couplings, assuming only local restrictions on fluxes, and comparing the results with the
present experimental limits on the coupling for each specific RPV operator. The ingredients for
this study have already appeared scattered through the literature, which we shall refer to as we
go along.

The structure of the Chapter splits into two parts: in the first part, we consider semi-local
F-theory constructions where global restrictions are imposed on the fluxes, which imply that
they take integer values. In Section 4.2 we show that RPV is a generic expectation of semi-local
F-theory constructions. In Section 4.2.1 we classify F-theory SU(5) models in the spectral cover
approach according to the type of monodromy which dictates the different curves on which the
matter and Higgs fields can lie, with particular attention of the possibility for RPV operators
in each case at the level of 10-5-5 operators, involving complete SU (5) multiplets, focussing on
which multiplets contain the Higgs fields H, and Hy. In Section 4.2.2 we introduce the notion
of flux, quantised according to global restrictions, which, when switched on, leads to incomplete
SU(5) multiplets in the low energy (massless) spectrum, focussing on missing components of the
multiplets projected out by the flux, and tabulating the type of physical process (RPV or proton
decay) can result from particular operators involving different types of incomplete multiplets.
Appendix C.1 details all possible sources of RPV couplings for all models classified with respect
to the monodromies in semi-local F-theory constructions.

In the second part, we relax the global restrictions of the semi-local constructions, and allow
the fluxes to take general values, subject only to local restrictions. In Section 4.3 we describe
the calculation of a Yukawa coupling originating from an operator 10 -5 -5 at an SO(12) local
point of enhancement in the presence of general local fluxes, with only local (not global) flux
restrictions. In Section 4.4 we apply these methods to calculate the numerical values of Yukawa
couplings for bottom, tau and RPV operators, exploring the parameter space of local fluxes. In
Section 4.5 we finally consider RPV coupling regions and calculate ratios of Yukawa couplings
from which the physical RPV couplings at the GUT scale can be determined and compared to

limits on these couplings from experiment.
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4.2 R-parity violation in F-theory semi-local approach

4.2.1 Multi-curve models in the spectral cover approach

In the present F-theory framework of SU(5) GUT, third generation fermion masses are expected
to arise from the tree-level superpotential terms 107 -57-55, 107-107 -5 and 55 -5 - 15, where

the index f stands for fermion, H for Higgs and we have introduced the notation
10 = (Q,u,e%), 55 = (d° L), 1y =v°, 5y = (D,H,), 5= (D, Hy) (4.1)

The lighter generations receive masses from higher order terms, involving the same invariants,
although suppressed by powers of (6;) /M, with 6; representing available singlet fields with non-
zero vacuum expectation values (vevs), while M is the GUT scale. The 4-d RPV couplings are
obtained similarly with the replacements 55 — 5; (provided that the symmetries of the theory
permit the existence of such terms). At the level of the minimal supersymmetric standard model
(MSSM) superpotential the RPV couplings read [74]:

_ 1 1
W D 10f . 5f . 5f — wiHyL; + i)w'jkLiLjez + )‘;jkLin 2 + 5 ;/jkulcdjdi (4.2)

¢

¢ where i = 1,2,3 is a flavour

in the conventional notation for matter multiplets Q;, u§, dS, L;, e

index. Notice that in the presence of vector-like pairs, 57+ 5, additional RPV couplings appear

from the following decompositions
_ _ 1 _
W 2105105 - 55 — kQu°L + s'u’d’e® + §n”QQdc (4.3)

where we have introduced the notation 5; = (d°, L) and dropped the flavour indices here for
shorthand. However, as we will analyse in detail, Abelian fluxes and additional continuous or
discrete symmetries which are always present in F-theory models, eliminate several of these
terms. We will perform the analysis in the context of the spectral cover equation. Then, a
crucial role on the RPV remaining terms in the effective superpotential is played by the specific
assignment of fermion and Higgs fields on the various matter curves and the remaining U(1) s
after the monodromy action.

A classification of the set of models with simple Z-monodromies that retain some perpen-
dicular U(1), charges associated with the weights t; has been put forward in [156, 171, 157]. In
the following, we categorize these models in order to assess whether tree-level, renormalizable,
perturbative RPV is generic if matter is allocated in different curves. More specifically, we
present four classes, characterised by the factorisation of the spectral cover polynomial. These

are:

e 2+ 141+ 1-splitting, which retains three independent perpendicular U(1) . These models
represent a Z monodromy (¢ <> t2), and as expected we are left with seven 5 curves, and

four 10 curves.

e 2 + 2 + 1l-splitting, which retains two independent perpendicular U(1);. These models
represent a Zo X Zs monodromy (t1 <> ta, t3 <> t4), and as expected we are left with five

5 curves, and three 10 curves.
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e 3 + 1 + 1-splitting, which retains two independent perpendicular U(1);. These models
represent a Z3 monodromy (t1 <> tg <> t3), and as expected we are left with five 5 curves,

and three 10 curves.

e 3 + 2-splitting, which retains a single perpendicular U(1),. These models represent a
Z3 X Zy monodromy (t1 <> to <> t3, t4 <> t5), and as expected we are left with three 5

curves, and two 10 curves.

In Appendix C.1 we develop the above classes of models, identifying which curve contains
the Higgs fields and which contains the matter fields, in order to show that RPV is a generic
phenomenon in semi-local F-theory constructions. Of course, if all the RPV operators are
present, then proton decay will be a direct consequence. In the next subsection we show that
this may be avoided in semi-local F-theory constructions when fluxes are switched on, which
has the effect of removing some of the RPV operators, while at the same time leaving some

observable RPV operators in the low energy spectrum.

4.2.2 Hypercharge flux with global restrictions and R-parity violating oper-
ators

In F-theory GUTs, the mechanism of flux breaking is introduced to reduce the GUT symmetry
down to the SM gauge group. In the case of SU(5) this can happen by turning on a non-
trivial flux along the hypercharge generator in the internal directions. At the same time, the
various components of the GUT multiplets living on matter curves, interact differently with the
hypercharge flux. As a result, in addition to the SU(5) symmetry breaking, on certain matter
curves we expect the splitting of the 10 and 5,5 representations into different numbers of SM
multiplets.

In a minimal scenario one might anticipate that the hyperflux is non-trivially restricted only
on the Higgs matter curves in such a way that the zero modes of the colour triplet components
are eliminated. This would be an alternative to the doublet-triplet scenario since only the
two Higgs doublets remain in the light spectrum. The occurrence of this minimal scenario
presupposes that all the other matter curves are left intact by the flux. However, in this section
we show that this is usually not the case. Indeed, the common characteristic of a large class of
models derived from the various factorisations of the spectral cover are that there are incomplete
SU(5) multiplets from different matter curves which comprise the three known generations and
eventually possible extraneous fields. Interestingly, such scenarios leave open the possibility of
effective models with only a fraction of RPV operators and the opportunity of studying exciting
new physics implications leading to suppressed exotic decays which might be anticipated in the
LHC experiments.

To analyse these cases, we assume that mqg, ms integers are units of U(1) fluxes, with ny
representing the corresponding hyperflux piercing the matter curves. The integer nature of these

fluxes originates from the assumed global restrictions [156, 171, 157]. Then, the tenplets and
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fiveplets split according to:

Representation flux units
n(3,2); 6 ~ ™3,2)_ = mio

T S s (4.4)
n(371)72/3 - n(?’:l)g/g = mlo - nY
N —(L)-, = Mot Ny
Representation flux units

Bt; = NEB1) 13 ~ B )43 = 6 (4.5)
N12) 110 ~2) . = M5 + ny

The integers m1o 5, ny may take any positive or negative value, leading to different numbers of
SM representations, however, for our purposes it is enough to assume the cases ' m,ny = +1,0.

Then, substituting these numbers in Eqgs. (4.4,4.5) we obtain the cases of Table 4.1.

10 Flux units 10 content | 5 Flux units 5 content
101 | mio=1,ny =0 | {Q,u e} |51 | ms=1,ny =0 {d°, L}
100 | mig=1,ny =1 | {Q,—,2e} | 52 | ms=1,ny =1 {d*, 2L}
103 | mo=1,ny = -1 | {Q,2u,~} | b3 | ms =1,ny = -1 | {d° —}
104 | mig=0,ny =1 | {— a%e} | b5y | ms=0,ny =1 {—,L}
105 | mio=0,ny = -1 | {—,u% e} |55 | ms=0,ny =—-1| {— L}

Table 4.1: Table of MSSM matter content originating from 10,10, 5,5 of SU(5) for various fluxes

Depending on the specific choice of m,ny integer parameters, we end up with incomplete
SU(5) representations. For convenience we collect all distinct cases of incomplete SU(5) multi-
plets in Table 4.1.

We now examine all RPV operators formed by trilinear terms involving incomplete repre-
sentations. Table 4.2 summarises the possible cases emerging form the various combinations
10,535, of the incomplete representations shown in Table 4.1.

In the last column of Table 4.2 we also show the dominant RPV processes, which lead to
baryon and /or lepton number violation. We notice however, that there exist other rare processes
beyond those indicated in the tables which can be found in reviews (see for example [74].) We
have already stressed, that in addition to the standard model particles, some vector-like pairs
may appear too. For example, when fluxes are turned on, we have seen in several cases that the

MSSM spectrum is accompanied in vector like states such as:

wW+a, L+ L,d+d,Q+0Q...

Of course they are expected to get a heavy mass but if some vector-like pairs remain in the
light spectrum they may have significant implications in rare processes, such as contributions to

diphoton events which are one of the primary searches in the ongoing LHC experiments [6].

LOf course there are several combinations of (m,ny) values which do not exceed the total number of three
generations. Here, in order to illustrate the point, we consider only the cases with m,ny = +1,0.
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SU (5)-invariant matter content operators Dominant R-process
101 - 51 - 5y (Q, us, e)(d°, L)? All proton decay
107 - 5g - 59 (Q, us, ) (d, 2L)? All proton decay
101 - 53 - b3 (Q,uf, e)(d¢, —)? uded® n — N-0SC.
101 - 54 - 54 (Q,uc ec)( L)? LLe* L. . r-violation
107 - 55 - 55 (Q,us,e)(—, L)? None None

105 - 51 - 51 (Q, —,e)(d, L)? QLd°, LLe" Le . r-violation
105 - 55 - 5 (@, —, €)(d", 2L) QLd,LLe¢ | L, violation
102 - 53 - 53 (Q, —,e%)(d¢, —)? None None

109 - 54 - 5y (Q,—,e)(—, L)? LLe¢ L., r-violation
102 - 55 - 55 (Q, —,e)(—, L)? None None

103 - 51 - 51 (Q,2u¢, —)(d®, L)? | QLd¢, d°d°u® proton decay
103 - 59 - 5o (Q,2u¢, —)(d%,2L)? | QLdC,d°d“u® proton decay
103 - 53 - 53 (Q,2u®, —)(d°, —)? ddu’ n — M-0ScC.
103 - 5y - 5y (Q,2u¢, —)(—, L)? None None

103 - 55 - 55 (Q,2u¢, —)(—, L)? None None

Table 4.2: Fluxes, incomplete representations and R-processes emerging from the trilinear coupling
10,545, for all possible combinations of the incomplete multiplets given in Table 4.1

4.3 Yukawa couplings in local F-theory constructions: formal-
ism

In what follows we relax the global constraints on fluxes, and consider the calculation of Yukawa
couplings, imposing only local flux constraints. The motivation for doing this is to calculate the
Yukawa couplings associated with the RPV operators in a rather model independent way, and
then compare our results to experimental limits. Flavour hierarchies and Yukawa structures in
F-theory have been studied in many works so far [139]-[154]. In this section we shall discuss
Yukawa couplings in F-theory, following mainly the approach of [144, 147, 150].

In the previous section we saw how chirality is realised on different curves due to flux effects.
These considerations take into account the global flux data and are therefore called semi-local
models. The flux units considered in the examples above are integer valued as they follow from

the Dirac flux quantisation contition

I (4.6)

21 Jscs

where n is an integer, ¥ a matter curve (two-cycle in the GUT divisor S), and F' the gauge field-

strength tensor, i.e. the flux. In conjugation with the index theorems, the flux units piercing

different matter curves ¥ will tell us how many chiral states are globally present in a model.
While the semi-local approach defines the full spectrum of a model, the computation of

localised quantities in a microscopic level, such as the Yukawa couplings, requires appropriate
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description of the local geometry. A key quantity in this ultra local approach is the notion of
local flux density, which is described below.
First we notice that the unification gauge coupling is related to the compactification scale

through the volume of the compact space [119], [140]

ag = mi/ wWAw= mi/dVolS = Vol(S)m? (4.7)
S

where ag is the unification gauge coupling, m, is an F-Theory characteristic mass, S the GUT
divisor with Kéhler form ‘
w = %(dzl ANdZzZ1 + dzo A dZQ) (4.8)

that defines the volume form
dVolg = 2w A w = dz1 Adzo A dz A dZzs. (4.9)
As the volume of ¥ is bounded by the volume of S, we assume that
Vol(X) =~ /vol(S), (4.10)

and if we now consider that the background of F' is constant, we can estimate the values that
F takes in S by
F ~ 21 /agm?n. (4.11)

This means that, in units of m,, the background F' is an O(1) real number. Since in the
computation of Yukawa couplings it’s the local values of F' — and not the global quantisation
constraints — that matter, we will from now on abuse terminology and refer to flux densities, F',
as fluxes. Furthermore, as we will see later, the local values of F' also define what chiral states
are supported locally. This will be crucial for the study of the behaviour of the various RPV
couplings in different parts of the flux parameter space.

Before dealing with the particular rare reaction, it is useful to recall a few basic facts about

the Yukawa couplings in F-Theory.

4.3.1 The SO(12) point of enhancement

In F-theory matter is localised along Riemann surfaces (matter curves), which are formed at
the intersections of D7-branes with the GUT surface S. Yukawa couplings are then realised
when three of these curves intersect at a single point on S. At the same time, due to the
tripe intersection, the gauge symmetry is further enhanced at this point. The computation
relies on the knowledge of the profile of the wavefunctions of the states participating in the
intersection. When a specific geometry is chosen for the internal space (and in particular for the
GUT surface) these profiles are found by solving the corresponding equations of motion [141]-
[150]. Their values are obtained by computing the integral of the overlapping wavefunctions at
the triple intersections.

In SU(5) two basic Yukawa terms are relevant when computing the Yukawa matrices and

interactions. These are y,10-10-5 and yq10-5-5. The first one generates the top Yukawa
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coupling while the symmetry at this intersection enhances to the exceptional group Eg. The
relevant couplings that we are interested in, are related to the second coupling. This one is
realised at a point where there is an SO(12) gauge symmetry enhancement?. To make this
clear, next we highlighted some of the basic analysis of [150].
The 4-dimensional theory can be obtained by integrating out the effective 8-dimensional one
over the divisor S
W = mft/ Tr(F A ®) (4.12)
S

where F' = dA —iA N\ A is the field-strength of the gauge vector boson A and ® is a (2, 0)-form
on S.
From the above superpotential, the F-term equations can be computed by varying A and .

In conjugation with the D-term
1
D:/w/\F+2[<I>,<I>], (4.13)
S

where w is the Kéhler form of S, a 4-dimensional supersymmetric solution for the equations of
motion of F' and ¢ can be computed.

Both A and @, locally are valued in the Lie algebra of the symmetry group at the Yukawa
point. In the case in hand, the fibre develops an SO(12) singularity at which point couplings of
the form 10 -5 -5 arise. Away from the enhancement point, the background ® breaks SO(12)
down to the GUT group SU(5). The role of (A) is to provide a 4d chiral spectrum and to break
further the GUT gauge group.

More systematically, the Lie-Algebra of SO(12) is composed of its Cartan generators H; with
t=1,...,6, and 60 step generators E,. Together, they respect the Lie algebra

[H;, Ep] = piE)p (4.14)

where p; is the " component of the root p. The E, generators can be completely identified by
their roots
(£1,+1,0,0,0,0,0) (4.15)

where underline means all 60 permutations of the entries of the vector, including different sign
combinations. To understand the meaning of this notation it is sufficient to consider a simpler

example:

(0,1,0,0,0,0,0) = {(0,1,0,0,0,0),(0,0,1,0,0,0),(0,0,0,1,0,0)} (4.16)
The background of ® will break SO(12) away from the SO(12) singular point. In order to
see this consider it takes the form

S =00, ,,dx Ndz (4.17)

where it’s now explicit that it parametrises the transverse directions to S. The background we

are considering is
<(I)Z1Z2> =m? (Zlel + ZQng) (4.18)

2For a general Eg point of enhancement that containing both type of couplings see [149, 152]. Similar, an E7

analysis is given in [153].
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where m is related to the slope of the intersection of 7-branes, and
Q: = —Hi (4.19)
1
Q=5 D Hi. (4.20)
1

The unbroken symmetry group will be the commutant of (®.,,,) in SO(12). The commutator

between the background and the rest of the generators is

(@z120), Epl = m2qq>(P)Ep (4.21)

where g3 (p) are holomorphic functions of the complex coordinates zj, zo. The surviving sym-
metry group is composed of the generators that commute with (®) on every point of S. With

our choice of background, the surviving step generators are identified to be
E,:(0,1,-1,0,0,0), (4.22)

which, together with H;, trivially commute with (®), generating SU(5) x U(1) x U(1).

When ¢3(p) = 0 in certain loci we have symmetry enhancement, which accounts for the
presence of matter curves. This happens as at these loci, extra step generators survive and
furnish a representation of SU(5) x U(1) x U(1). For the case presented we identify three curves
joining at the SO(12) point, these are

Yo = {z1 =0} (4.23)
S = {22 = 0} (4.24)
EC = {Zl = 22}, (425)

and defining a charge under a certain generator as

Qi Ep] = ai(p)Ep (4.26)

all the data describing these matter curves are presented in Table 4.3. Since the bottom and
tau Yukawas come from such an SO(12) point, in order to have such a coupling the point must
have the a™, b+, and c™.

In order to both induce chirality on the matter curves and break the two U(1) factors, we
have to turn on fluxes on S valued along the two Cartan generators that generate the extra
factors.

We first consider the flux

<F1> = i(ledzl ANdz + MZ2d22 VAN dZ_Q)QF, (4.27)

with .
1

=2
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Curve Roots qa SU(5) irrep | gz | ¢z
Y. | (£1,%1,0,0,0,0) T2 5/5 1| 0
Sye | (0,+£1,%1,0,0,0) Fzo 10/10 0 | +1
Ser | (F1,F1,0,0,0,0) | £(z1 — 20) 5/5 41| 71

Table 4.3: Matter curves and respective data for an SO(12) point of enhancement model with
a background Higgs given by Equation 4.18. The underline represent all allowed permutations
of the entries with the signs fixed

It’s easy to see that the SU(5) roots are neutral under Qp, and therefore this flux does not
break the GUT group. On the other hand, the roots on a, b sectors are not neutral. This implies
that this flux will be able to differentiate 5 from 5 and 10 from 10

/ Fy # 0= Induced Chirality. (4.29)
ZCL} 2b

+

This flux does not induce chirality in ¢* curves as ¢p = 0 for all roots in ¢*. To induce

+

chirality in ¢* one needs another contribution to the flux

<F2> = z'(d21 NdzZs + dzo N\ dil)(Nanl + Nsz2> (4.30)

that does not commute with the roots on the ¢* sectors for N, # Np.
Breaking the GUT down to the SM gauge group requires flux along the Hypercharge. Locally

we may define it as
<Fy> = z[(dz1 ANdz + dzo A dz_l)Ny + (dZQ ANdzy —dz1 A dZ’_l)Ny]QY (4.31)
and the Hypercharge is embedded in our model through the linear combination

1 1
Qy = g(HQ + Hs + H4) — §(H5 + HG). (4.32)

Since this contribution to the flux does not commute with all elements of SU(5), only with
its SM subgroup, distinct SM states will feel this flux differently. As we have see many times
so far, this known fact is used extensively in semi-local models as a mechanism to solve the
doublet-triplet splitting problem. As we will see bellow, it can also be used to locally prevent
the appearance of certain chiral states and therefore forbid some RPV in subregions of the
parameter space.

The total flux will then be the sum of the three above contributions. It can be expressed as

<F> :i(dZQ ANdzy —dz1 N dz_l)Qp
+ i(dzl ANdzZs + dzo N\ dz’l)Qs
+ i(dZQ ANdzy +dzy A dfl)le@Qp (433)



CHAPTER 4. R-PARITY VIOLATION EFFECTS IN F-THEORY 91

Sector Root SM qr | Gz | 9z qs qp

a (1,-1,0,0,0,0) | (3,1)_1 | 1 |1 0 —N, — Ny M — iNy
as (1,0,0,0,=1,0) | (1,2); | 1 |~1] 0 —N, + 1Ny M+ LNy
by (0,1,1,0,0,0) (3, D2 | -1} 0 |1 Ny + 2Ny —M + 2Ny
by (0,1,0,0,1,0) | (3,2)_1 | =1 | 0 | 1 Ny — &Ny ~M — iNy
bs (0,0,0,0,1,1) | (1,1)_1 | =1] 0 | 1 N, — Ny —M — Ny
cr (-1,-1,0,0,0,0) | (3,1)_1 | 0 | 1 | 1| Ny—Ny—§Ny —1Ny

¢ (=1,0,0,0,=1,0) | (1,2); | 0 | 1 | =1| Na=Ny+3Ny | 3Ny

Table 4.4: Complete data of sectors present in the three curves crossing in an SO(12) enhancement
point considering the effects of non-vanishing fluxes. The underline represent all allowed permutations of

the entries with the signs fixed

with the definitions

Qp =MQr + NyQy (4.34)
Qs =NoQ:, + NpQz, + Ny Qy (4.35)
and
M :%(le ) (4.36)
M, 2 %(M@ + M.,). (4.37)

As the Hypercharge flux will affect SM states differently, breaking the GUT group, we will
be able to distinguish them inside each curve. The full split of the states present in the different

sectors, and all relevant data, is presented in Table 4.4.

4.3.2 Wavefunctions and the Yukawa computation

In general, the Yukawa strength is obtained by computing the integral of the overlapping wave-
functions. More precisely, according to the discussion on the previous section one has to solve
for the zero mode wavefunctions for the sectors a, b and ¢ presented in Table (4.4). The physics
of the D7-Branes wrapping on S can be described in terms of a twisted 8-dimensional N' = 1
gauge theory on R'3 x S, where S is a Kihler submanifold of elliptically fibered Calabi-Yau
4-fold X. One starts with the action of the effective theory, which was given in [119]. The next
step is to obtain the equations of motion for the 7-brane fermionic zero modes. This procedure
has been performed in several of papers including [149, 147, 150] and will not repeat it here in

detail. In order for this Chapter to be self-contained we highlight the basic computational steps.
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The equations for a 4-dimensional massless fermionic field are of the Dirac form:

DAT =0 (4.38)
where
0 Dy Dy D3 —V/2n
-D 0 —-Ds D 7
Dy = ! 82 U=VUE, = Vi (4.39)
—Dy —=Ds 0 —Ds (&
—D3 —DQ Di 0 X12

The indices here are a shorthand notation instead of the coordinates z1, 29, 23. The com-
ponents of W are representing 7-brane degrees of freedom. Also the covariant derivatives are
defined as D; = 9; — i[(A;),...] for i = 1,2,1,2 and as D3 = —i[(®13),...] for the transverse
coordinate z3. It is clear from equations (4.38,4.39) that we have to solve the equations for each
sector. According to the detailed solutions in [150] the wavefunctions for each sector have the
general form

U ~ flaz + bzg)eMi®i (4.40)

where f(az1+bzz) is a holomorphic function and M;; incorporates flux effects. In an appropriate
basis this holomorphic function can be written as a power of its variables f; ~ (az1 + b22)3_i
and in the case where the generations reside in the same matter curve, the index-i can play
the role of a family index. Moreover the Yukawa couplings as a triple wavefunction integrals
have to respect geometric U(1) selection rules. The coupling must be invariant under geometric
transformations of the form: 212 — eiazl,g. In this case the only non-zero tree level coupling
arises for ¢ = 3 and by considering that, the index in the holomorphic function f; indicates the
fermion generation we obtain a non-zero top-Yukawa coupling. Hierarchical couplings for the
other copies on the same matter curve can be generated in the presence of non commutative
fluxes [141] or by incorporating non-perturbative effects [147]-[153].

The RPV couplings under consideration emerge from a tree level interaction. Hence, its
strength is given by computing the integral where now the role of the Higgs 5y is replaced by
5. We consider here the scenario where the generations are accommodated in different matter
curves. In this case the two couplings, the bottom/tau Yukawa and the tree level RPV, are
localised at different SO(12) points on Sgur, (see Figure 4.1). In this approach, at first approx-
imation we can take the holomorphic functions f as constants absorbed in the normalization
factors.

As a first approach, our goal is to calculate the bottom Yukawa coupling as well as the
coupling without hypercharge flux and compare the two values. So, at this point we write
down the wavefunctions and the relevant parameters in a more detailed form as given in [150]

but without the holomorphic functions. The wavefunctions in the holomorphic gauge have the
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Figure 4.1: Intersecting matter curves, Yukawa couplings and the case of RPV in F-theory. The

grey region represents the SU(5) GUT surface.

following form
b hol b hol (b b Mo 2o (50— (13
wEOM = i )XEO)M = )/ﬁgo)Me pz2(Z2—Cp21)

7(a)hol _ —»(a) (a)hol _ —»(a) (a) Aaz1(Z1—CaZ2)
Pl 5M€ 1(Z1 2

SM X5M

le)(c)hol —»(c) (c)hol —»(c) (c)e(Z1—z2)(Cc51—(>\c—Cc)52)

JlOhel _ ) <c>hol ) <)e(mzzxcczl—(xc—ccm).

where
~ gs(a)
Ca B )\a - QP(a)
G = — gs(b)
Ay +qp(b)

)\c(>\c - QP(C) - QS(C)
2(Ae — gs(c))

and A, is the smallest eigenvalue of the matrix

Cc =

—qp gs  im?q,
mp = qs qr im?qs,
—iquz1 —z'm2qz2 0

To compute the above quantities we make use of the values of ¢; from Table 4.4.

(4.46)

(4.47)

(4.48)

It is

important to note that the values of the flux densities in this table depend on the SO(12)

enhancement point. This means that one can in principle have different numerical values for the

strength of the interactions at different points.

The column vectors are given by

— i _idg _ BGe
= X | 0= g, |50 = | Mepo
1

(4.49)
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Finally, the & coefficients in equations (4.41-4.42) are normalization factors. These factors are
fixed by imposing canonical kinetic terms for the matter fields. More precisely, for a canoni-
cally normalized field y; supported in a certain sector (e), the normalization condition for the

wavefunctions in the real gauge is
1 = 2m3| |72 / (x(@reatyryfereal qyol (4.50)

(e)real

where y;

i are now in the real gauge, and in our convention TrEléEg = 20,3. The wavefunc-

tions in real and holomorphic gauge are related by [144]
wreal — 6i91/}h0l (451)
where
1 -
Q= 2 | (Mo 21 + Moy |22P) Qe = Ny (Ja1 = 22) Qv + (122 + 220) Qs| . (452)

which only transforms the scalar coefficient of the wavefunctions, , leaving the ¢ part invariant.

With the above considerations, one can find the normalization factors to be

s ap(@) @A+ gp(a)(1 + ()

(a))2 _
]m5M| = —4ngso (L4 C2) 4 8 , (4.53)
9 o ap(D)(—2X + qp(b)(1 + 7))
‘ 101M| = —477950' . )\b(l n CI?) n m4 , (454)
[ c Ac AC 2
’H5 ’ ‘2 = —47T9502 : 2(qP(C) * C )(ggif)(:\iz—éﬁc);-i- an (QS(C) i ) ’ (4.55)
KO P = _g,o? . 20P(0) +Cap(@) + 26 — 2) + (gs(c) + A" (4.56)

@G+ A =G> +mt

where we used the relation (mﬂ*)Q = (277)3/ 29;/ 20, making use of the dimensionless quantity
o = (m/mg)?, where mg the string scale. The expressions (4.53-4.56) above can be shown
numerically to be always positive.

The superpotential trilinear couplings can be taken to be in the holomorphic gauge. For
the bottom Yukawa, we consider that @DIOM and v5,, contain the heaviest down-type quark

generations. In this case the bottom and tau couplings can be computed:

ybﬁ :mfkl tabc/ det(l/l(b h017¢ h017¢ c)hol)dvols

10ps

—m tape det(a®), 50, 7)) / (Dol (@holy (hol gy . (4.57)
S

10y

The bottom and tau Yukawa couplings differ since they have different SM quantum numbers
and arise from different sectors, leading to different gs and ¢p as shown in Table 4.4.

A similar formula can be written down for the RPV coupling
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-, -

yRPV :m:% tabc /S det('[bflg?{;")l’ ﬁéijhol’ ¢é/c)h0l)dvols

M

SM

=m? tope det(ﬁ(b),z_}'(a),ﬁ(c))/ngy;dX(“)hdxgj&h"ldVolS. (4.58)
S

Here this RPV Yukawa coupling can in principle refer to any generations of squarks and sleptons,
and may have arbitrary generation indices (suppressed here for simplicity).

The factor tq. represents the structure constants of the SO(12) group. The integral in the last
term can be computed by applying standard Gaussian techniques. Computing the determinant
and the integral, the combined result of the two is a flux independent factor and the final result

reads:

4
Yy = 2 (%) tapers® K@ KO (4.59)

0p 5 5H
This is a standard result for the heaviest generations. As we observe the flux dependence is
hidden on the normalization factors.

We turn now our attention in the case of a tree-level RPV coupling of the form 1037 -517 5.
This coupling can be computed in a different SO(12) enhancement point p. As a first approach
we consider that the hypercharge flux parameters are zero in the vicinity of p. From a different
point of view, 5ys replaces the Higgs matter curve in the previous computation. The new
wavefunction (@béz ) can be found by setting all the Hypercharge flux parameters on wgg, equal

to zero. The RPV coupling will be given by an equation similar to that of the bottom coupling

4
Yrpv = LS (%) tabc’{(b) k() k() (4.60)

00 5p B

and we notice that family indices are understood and this coupling is the same for every type of
RPV interaction, depending on which SM states are being supported at the SO(12) enhancement
point. Notice that the £’s in equations (4.59, 4.60) are the modulus of the normalization factors
defined in equations (4.53-4.56).

In the next section, using equations (4.59) and (4.60), we perform a numerical analysis for
the couplings presented above with emphasis on the case of the RPV coupling. We notice that
in our conventions for the normalization of the SO(12) generators, the gauge invariant coupling

supporting the above interactions has tgp. = 2-.

4.4 Yukawa couplings in F-theory local approach: numerics

Using the mathematical machinery developed in the previous section, we can study the be-
haviour of SO(12) points in F-theory - including both the bottom-tau point of enhancement
and RPV operators. The former has been well studied in [150] for example. The coupling is
primarily determined by five parameters - N,, Ny, M, Ny and Ny. The parameters N, and
N, give net chirality to the c-sector, while Ny and Ny are components of hypercharge flux,
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parameterising the doublet triplet splitting. M is related to the chirality of the ¢ and b-sectors.
There is also the N, = N, — %Ny constraint, which ensures the elimination of Higgs colour
triplets at the Yukawa point. This can be seen by examining the text of the previous section,

based on the work found in [150].

For a convenient and comprehensive presentation of the results we make the following redef-

initions. In Eq. (4.59) and (4.60), one can factor out 4wgsc? from inside Eq. (4.53),(4.54), and

2
(4.55). In addition by noticing that <mﬂ*> = (277)3/29;/20, we obtain

Yy, = 2970y, (4.61)
Ynry = 20320 1. (4.62)

where y; _ and yppy are functions of the flux parameters. Furthermore, we set the scale m =1
and as such the remainder mass dimensions are given in units of m. The presented values for

the strength of the couplings are then in units of 29;/ %5.
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Figure 4.2: Ratio between bottom and tau Yukawa couplings, shown as contours in the plane
(M, Ny) of local fluxes. Plots on the left have N, = —1, while those on the right N, = 1.
Also Ny = 1.8M (upper) and Ny = 1.3M (lower). The parameter N is fixed by the condition
Ny = N, — :Ny.

Figure 4.2 shows the ratio of the bottom and tau Yukawa couplings at a point of SO(12)
in a region of the parameter space with reasonable values. These results are consistent with
those in [150]. Note that the phenomenological desired ratio of the couplings at the GUT scale
is Y;/Y, = 1.37+£ 0.1 £ 0.2 [201], which can be achieved within the parameter ranges shown in
Figure 4.2. Having shown that this technique reproduces the known results for the bottom to

tau ratio, we now go on to study the behaviour of an RPV coupling point in SO(12) models.
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Figure 4.3: Dependency of the RPV coupling (in units of 29;/ 20) on N, in the absence of
hypercharge fluxes, for different values of M and Nj,.

4.4.1 Behaviour of SO(12) points

The simplest scenario for an SO(12) enhancement generating RPV couplings, would be the
case where all three of the types of operator, QLD, UDD, and LLFE arise with equal strengths,
which would occur in a scenario with vanishing hypercharge flux, leading to an entirely “unsplit”
scenario. This assumption sets Ny and Ny to vanish, and we may also ignore the condition
Ny, = N, — %Ny. The remaining parameters determining are then N,, N, and M. Figure
4.3 shows the coupling strength in the N, plane for differing N, and M values. The general
behaviour is that the coupling strength is directly related to M, while the coupling vanishes at
the point where N, = N,. This latter point is due to the Ny = 0 which for N, = N, leads to
gs = 0 for the c-sector (see Table 4.4).

Figure 4.4 and Figure 4.5 also demonstrate this set of behaviours, but for contours of the
coupling strength. Figure 4.4, showing all combinations of the three non-zero parameters, shows
that in the N, — N, plane there is a line of vanishing coupling strength about the N, = Ny,
chirality switch point for the c-sector. The figure also reinforces the idea that small values of M
correspond to small values of the coupling strength, as close to the point of M = 0 the coupling
again reduces to zero. Figure 4.5 again shows this behaviour, with the smallest values of M
giving the smallest values of the coupling. From this we can infer that an RPV SO(12) point is
most likely to be compatible with experimental constraints if M takes a small value.

Figure 4.6(a) (and Figure 4.6(b)) shows the RPV coupling strength in the absence of flux for
the N, (N,) plane, along with the “bottom” coupling strength for corresponding values. The
key difference is that the Hypercharge flux is switched on at the bottom SO(12) point, with
values of Ny = 0.1 and Ny = 3.6. The figures show that for the bottom coupling, the fluxes

always push the coupling higher, similarly to increasing the M values.
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Figure 4.4: Dependency of the RPV coupling (in units of 2g; o) on different flux parameters,

in absence of Hypercharge fluxes. Any parameter whose dependency is not shown is set to zero.

Figure 4.5: Dependency of the RPV coupling (in units of 29;/20) on the (Ng, Np)-plane, in
absence of hypercharge fluxes and for different values of M. Top: left M = 0.5, right M = 1.0.
Bottom: left M = 2.0, right M = 3.0.

Figure 4.6(c) plots out the two couplings in the M-plane, showing that the bottom Yukawa
goes to zero for two values of M, while the RPV point has only one. Considering the form of
Equation (4.59), we can see that the factors k5,, and k19,, are proportional to the parameter g,.
Referring to Table 4.4, one can see which values these take for each sector - namely, g,(a1) =
M — %Ny and gp(b2) = —M — %Ny. Solving these two equations shows trivially that zeros
should occur when M = %Ny and —%Ny, which is the exact behaviour exhibited in Figure
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Figure 4.6: Dependency of the RPV and bottom Yukawa couplings (in units of 29;/ 20) on

different parameters at different regions of the flux parameter space
4.6(c).

4.5 RPYV Yukawa couplings: allowed regions and comparison to
data

In this section we focus on calculating the RPV Yukawa coupling constant at the GUT scale,
which may be directly compared to the experimental limits, using the methods and results of
the previous two sections. As a point of notation, we have denoted the RPV Yukawa coupling
at the GUT scale to be generically yrpy, independently of flavour or operator type indices.
This coupling may be directly compared to the phenomenological RPV Yukawa couplings at the
GUT scale Ajj, A, i, and )\;’]k as defined below.

Recall that, in the weak /flavour basis, the superpotential generically includes RPV couplings,
in particular those from Eq. 4.2:

1 1
W D ikijkLiLjez + )‘;jkLin z + 5 ;;kuf jdz (4.63)

In the local F-theory framework, each of the above Yukawa couplings (generically denoted as
yrpv) is computable through Eq. (4.60). What distinguishes different RPV couplings, say
A from X, are the values of the flux densities, namely the hypercharge flux. This is because
the normalization of matter curves depends on the hypercharge flux density. As such, different
SM states will have different hypercharges and consequently different respective normalization
coefficient.

Even though a given SO(12) enhancement point can in principle support different types of
trilinear RPV interactions, the actual effective interactions arising at such point depend on the
local chiral spectrum present at each curve. For example, in order to have an LLe® interaction,
both ¥, and Y. curves need to have chiral L states, and the X; curve an e® state at the
enhancement point. In Figure 4.7 we show contours on the (N,,N;) plane for the different types

of trilinear RPV couplings.
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The local spectrum is assessed by local chiral index theorems [149]. In Appendix C.2 we
outline the results for the constraints on flux densities such that different RPV points are allowed
at a given SO(12) enhancement point. These results are graphically presented in Figure 4.8 and
may be compared to the operators presented in Table 4.2 in the semi-local approach. Thus, the
green coloured region is associated with the 1035151 operator of this Table, the blue colour with
1015353, the pink with 1095454 and so on. Thus different regions of the parameter space can
support different types of RPV interactions at a given enhancement point. We can then infer
that in F-theory the allowed RPV interactions can, in principle, be only a subset of all possible
RPYV interactions.

In the limiting cases where only one coupling is turned on, one can derive bounds on its
magnitude at the GUT scale from low-energy processes [202]. In order to do so, one finds the
bounds at the weak scale in the mass basis, performs a rotation to the weak basis and then
evaluates the couplings at the GUT scale with the RGE. Since the effects of the rotation to the
weak basis in the RPV couplings requires a full knowledge of the Yukawa matrices, we assume
that the mixing only happens in the down-quark sector as we are not making any considerations
regarding the up-quark sector in this work. Table 4.5 shows the upper bounds for the trilinear
RPV couplings at the GUT scale.

The bounds presented in Table 4.5 have to be understood as being derived under certain
assumptions on mixing and points of the parameter space [74, 203]. For example, the bound on

A12k can be shown to have an explicit dependence on

mek’R

100 Gev (4.64)

where e, , refers to a ‘right-handed’ selectron soft-mass. The values presented in Table 4.5,
as found in [202], were obtained by setting the soft-masses to 100 GeV, which are ruled out
by more recent LHC results [204, 205, 206, 207, 208, 209] . By assuming heavier scalars, for
example around 1 TeV, we would then get the bounds in Table 4.5 to be relaxed by one order
of magnitude.

The results show that the A type of coupling, corresponding to the LLe¢ interactions, is
bounded to be < 0.05 regardless of the indices taken. The red regions of Figures 4.11(a) and 4.9
show the magnitude of the coupling where it is allowed. A similar analysis can be carried out
for the remaining couplings. The A coupling, which measures the strength of the LQd° type of
interactions, can be seen in the yellow regions of Figure 4.10. Finally, the derived values for \”
coupling, related to the u®d®d® type of interactions, are shown in the blue regions of Figures 4.10

/2

and 4.11(b). However these couplings shown are all expressed in units of 2g; o, and so cannot

yet be directly compared to the experimental limits.

/ 25 coefficient. We do

/2

In order to make contact with experiment we must eliminate the 2951
this by taking ratios of the couplings computed in this framework where the 29; o coefficient
cancels in the ratio. The ratio between any RPV coupling and the bottom Yukawa at the GUT
scale is given by
_ Ynev _ Ynev (4.65)

- Y

r /
yb yb
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ijk | Aijk N N
111 - 1.5 x 1074 -

112 - 6.7 x 107* | 4.1 x 10710
113 - 0.0059 1.1 x 1078

121 | 0.032 0.0015 | 4.1 x 10710
122 | 0.032 0.0015 -
123 | 0.032 0.012 1.3 x 1077
131 | 0.041 0.0027 1.1 x 1078
132 | 0.041 0.0027 1.3 x 1077
133 | 0.0039 | 4.4 x 1074 -
211 | 0.032 0.0015 -

212 | 0.032 | 0.0015 (1.23)
213 | 0.032 0.016 (1.23)
21 | - 0.0015 (1.23)
222 | - 0.0015 -

223 | - 0.049 (1.23)
231 | 0.046 | 0.0027 (1.23)
232 | 0.046 | 0.0028 (1.23)

233 | 0.046 0.048 -
311 | 0.041 0.0015 -

312 | 0.041 0.0015 0.099
313 | 0.0039 0.0031 0.015
321 | 0.046 0.0015 0.099
322 | 0.046 0.0015 -

323 | 0.046 0.049 0.015
331 - 0.0027 0.015
332 - 0.0028 0.015
333 - 0.091 -

Table 4.5: Upper bounds of RPV couplings (ijk refer to flavour/weak basis) at the GUT scale under
the assumptions: 1) Only mixing in the down-sector, none in the Leptons; 2) Scalar masses m = 100
GeV; 3) tan 8(Mz) = 5; and 4) Values in parenthesis refer to non-perturbative bounds, when these are

stronger than the perturbative ones. This Table is reproduced from [202].
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Figure 4.7: Strength of different RPV couplings (in units of 294/ %5) in the (N,, N})-plane in the presence
of Hypercharge fluxes Ny = 0.1, Ny = 3.6, and with M = 1. The scripts a, b, ¢ refer to which sector
each state lives.

as defined in Equation (4.61) and Equation (4.62). This ratio can be used to assess the absolute
strength of the RPV at the GUT scale as follows.

First we assume that the RPV interaction is localised in an SO(12) point far away from
the bottom Yukawa point. This allows us to use different and independent flux densities at
each point. We can then compute y; at a point in the parameter space where the ratio y,/y-
takes reasonable values, following [150]. Finally we take the ratio, r. In certain regions of the
parameter space, r is naturally smaller than 1. This suppression of the RPV coupling in respect
to the bottom Yukawa is shown in Figures 4.12(a), 4.12(b), 4.12(c), and 4.12(d), for different
regions of the parameter space that allows for distinct types of RPV interactions.

Since r is the ratio of both primed and unprimed couplings, respectively unphysical and
physical, at the GUT scale, we can extend the above analysis to find the values of the physical
RPV couplings at the GUT scale. To do so, we use low-energy, experimental, data to set the
value of the bottom Yukawa at the weak scale for a certain value of tan 5. Next, we follow
the study in [201] to assess the value of the bottom Yukawa at the GUT scale through RGE
runnings.

In order to make a connection with the bounds in Table 4.5, we pick tan 8 = 5 and we
find y»(M,,,) =~ 0.03. The results for the value of the RPV couplings in different regions in
the parameter space at the GUT scale are presented in Figures 4.13(a), 4.13(b), 4.13(c), and
4.13(d). These results show that, for any set of flavour indices, the strength of the coupling
A related to an LLe€ interaction is within the bounds. This means that this purely leptonic

RPV operator, which violates lepton number but not baryon number, may be present with a
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Figure 4.8: Allowed regions in the flux parameter space for the various RPV couplings. In all cases
we have take for simplicity N, = 0. Black and Green regions must be avoided since the combination of
allowed RPV operators there can lead to proton decay effects. These figures should be seen in conjunction
with the operators presented in Table 4.2.

sufficiently suppressed Yukawa coupling, according to our calculations. Therefore in the future
lepton number violating processes could be observed.

By contrast, only for a subset of possible flavour index assignments for baryon number
violating (but lepton number conserving) u¢d®d® couplings are within the bounds in Table 4.5.
The constraint on the first family up quark coupling A/ ik for the ufdjdy, interaction is so stringent,
that this operator must only be permitted for the cases involving higher generation indices, like
usdidy and u§djdy (corresponding to the two heavy up-type quarks c¢, t¢), assuming no up-type
quark mixing. However, if up-type quark mixing is allowed, then such operators could lead to

an effective ufdidy operator suppressed by small mixing angles, in which case it could induce
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panel). We see that the RPV couplings receive large values at this region of the parameter space so the
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Figure 4.10: Allowed regions in the parameter space for different RPV couplings with Ny = —Ny = 1
and N, = 0. We have also include the corresponding contours for the u¢d°d® operator (left panel) and
QLd° (middle and right panel). The scripts a, b and ¢ refer to which sector each state lives. Again, for
this choice of parameters the Green and Black regions must be avoided since catastrophic proton decay

can take place at there.

n — 7 oscillations.
Finally the QLd¢ operator with Yukawa coupling \' apparently must be avoided, since ac-

cording to our calculations, there are regions with values of ) that exceeds the experimental
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Figure 4.11: Allowed regions in the parameter space for different RPV couplings.

limit, apart from Mj35 coupling corresponding to the L3Qsd§ operator. This implies that we
should probably eliminate such operators which violate both baryon number and lepton num-
ber, using the flux mechanism that we have described. However in some parts of parameter
space, for certain flavour indices, such operators may be allowed leading to lepton number vio-

lating processes such as KT — 77 eTe™ and DT — K~ eTe™.
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Chapter 5

Yukawa Unification in F-theory

inspired Eg models

5.1 Introduction

The existence of a neutral gauge boson Z’ associated with a new U(1) gauge symmetry sponta-
neously broken at a few TeV is an interesting possibility. It is well-motivated both experimen-
tally as well as theoretically, and its implications have been extensively discussed in the litera-
ture [116, 210, 211]. The experimental bound on the mass of a Z’ boson decaying only to ordinary
quarks and leptons with couplings comparable to the SM Z boson, is about 3 TeV [212, 213, 214].
Theoretically, several extensions of the Standard Model and their supersymmetric versions, pre-
dict the existence of additional U(1) symmetries. In the context of unified theories these are
embedded in gauge groups larger than SU(5) since the latter, which was the main GUT frame-
work of the previous Chapters, contains only the SM gauge group.

One of the most interesting unified groups containing additional abelian factors of phe-
nomenological interest is the exceptional group Eg [106, 107, 108]. This has been extensively
studied as a field theory unified model as well as in a string background. It emerges naturally in
many string compactifications and, in particular, in an F-theory framework where several inter-
esting features have been discussed [215, 216, 217, 218, 219, 220]. Under the breaking pattern
E¢ D SU(5), two abelian factors appear, usually dubbed U(1), and U(1)y. In general, after the
spontaneous symmetry breaking of Eg, some linear combination of these U(1)’s may survive at
low energies [113]. The corresponding neutral gauge boson receives mass at the TeV scale and
may be found at LHC or its future upgrates.

In this Chapter we examine the implications of a TeV scale neutral gauge boson correspond-
ing to various possible combinations of U(1), and U(1l),. In addition, motivated by string
and in particular F-theory effective models, we consider the existence of additional vectorlike
fields and neutral singlets at the TeV scale. We assume that the initial Fg symmetry is broken
by background fluxes which leave only one linear U(1) combination unbroken, commutant with
SU(5). In the present Chapter the zero mode spectrum of the effective theory is derived from the

decomposition of the 27 and 27 representations of Fg, and, we parametrise their multiplicities

108
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in terms of a minimum number of (integer) flux parameters. In addition, since the flux-breaking
mechanism splits the Eg representations into incomplete multiplets [218, 216, 215, 219, 220], one
may choose appropriately the flux parameters in order to retain only the desired components
from the 27 and 27 representations.

We also perform a two-loop renormalisation group equations (RGE) analysis of the gauge
and Yukawa couplings of the effective theory model for different choices of linear combinations
of the U(1) symmetries. Implementing the idea of incomplete Eg representations motivated
by F-theory considerations, we make use of zero mode spectra obtained from truncated Fjg
representations. We use known mathematical packages [221], to derive and solve numerically
the RGE’s in the presence of additional matter such as vectorlike triplets, doublets and singlet
fields with masses down to the TeV scale. Furthermore, we investigate possible gauge and
Yukawa coupling unification by considering four different cases with respect to the unbroken U(1)
combination after breaking Fg down to the SM. Finally, we perform an F-theory computation
of the Yukawa couplings at the GUT scale and express them in terms of the various local flux

parameters associated with the symmetry breaking.

5.2 FEg GUT in an F-theory perspective

We start with a short description of the Eg GUT breaking and the massless spectrum. The U(1)

symmetries we are interested in appear under the breaking pattern
Es — SO(10) x U(1)y = SU(B) x U(1)y x U(1)y. (5.1)

In an effective Eg model with an F-theory origin, matter fields, in general, arise from 27,27 and
78 representations. In the present work we restrict to the case where the three families, the
Higgses and other possible matter fields emerge from the decomposition of the 27(€ Eg) under
SO(10) x U(1)y,

27 — 161 + 109 + 14. (5.2)

The decompositions of the SO(10) multiplets in (5.2) under the breaking of SO(10) to SU(5)

are as follows
161 — 10(1,—1) + 5(1,3) + L(1,—5), 10—2 = 59y + 529y, 1a = (1,1) (4,0, (5.3)

where the two indices respectively refer to the charges under the two abelian factors U(1)y x
U(1)y.

The fermion families are accommodated in three 16-plets of SO(10). The ordinary quark
triplets, the right-handed electron and lepton doublets comprise the 10(; _1) and 5(173) of SU(5),
and in the standard description, the singlet 1(; _5) is identified with the right-handed neutrino.
There are also vectorlike multiplets 5(_5 9) + 5(_2,_9) and SO(10) singlets with charges (4,0).

The normalised charges Qo = N,Q, are defined so that Tr Qg = 3, and therefore Ny = ﬁ and

_ 1
NX = m
With the spontaneous breaking of U(1),, and U(1),, the corresponding neutral gauge bosons

receive masses of the order of their breaking scale. Depending on the details of the particular
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Es SO(10) SU(5) | vV24Q, V10Qn V15Q, SM
27 16 3Y; 1 1 : de, L
27 16 1001 1 : —-1 | Q,u, e
27 16 1, 1 0 -3 Ve
27 10 5k -2 —1 2 D, H,
27 10 55 -2 -3 3 D, Hy
27 1 1 4 2 -2 S

Table 5.1: 27 of Eg and its SO(10) and SU(5) decompositions and Qy, ., charges.

model, the breaking scale of these U(1)’s can be anywhere between Mgy and a few TeV, with
the latter determined by LHC. New Physics phenomena can be anticipated in the TeV range
and possible deviations of the SM predictions are associated with the existence of a new neutral
gauge boson in this range. In the present model, a Z’ boson that may appear at low energies
could be any linear combination of the form Z’ = Z, cos ¢ + Z; sin¢. The corresponding U(1)
charge is defined by

Q= Qx cos ¢ + Qw sin ¢. (5.4)

Several values of the mixing angle ¢ lead to models consistent with the data. The following
models are of our primary interest in the analysis presented in this Chapter.

e N-model [222, 223, 224]: We assign the right-handed neutrinos in 1(1,-5), and require
Q, = 0. Then, from (5.4), we fix tan ¢ = v/15 and as a result,

QN = i\/g <Qw + ;Qx> : (5.5)

e n-model: In this case the U(1), charge formula takes the form

1 /5 3
Qn - _8\/g (Qw - 5Qx> ) (5'6)

and motivated from string theory constructions [225].

e Finally, two trivial cases: y-model where ¢ = 0, and ¥-model where ¢ = 7/2.

The phenomenological implications of these models have recently been discussed in [226, 227,
228, 229], while an analysis with a general mixing angle, ¢, can be found in [230, 231, 232]. The
(v, N,m)-charges of the SU(5) representations are shown in Table 5.1. Details for the x-model
are presented separately in Table 5.2 since we use a different GUT origin for the SM spectrum.
(Notice that @, = —Qn and, as a result, the RGE analysis presented in the next sections is the
same.)

Having described the basic features of the models, we proceed now to the derivation of the

spectrum from F-theory perspective.
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Es | SO(10) | SU(5) | V/10Q, | SM particle content
27 10 B —1 de, L

27 16 100, -1 Q,u, e

27 1 1, 0 Ve

27 10 5 1 D, H,

27 16 5g 3 D, Hy

27 | 16 1 -3 S

Table 5.2: 27 of Eg and its SO(10) and SU(5) decompositions and @, charges.

5.3 F-theory motivated E; spectrum

In F-theory, the gauge symmetry is a subgroup of Fg, the latter being associated with the highest
singularity of the elliptically fibred internal space. Here we assume that the internal manifold

is equipped with a divisor possessing an FEg singularity, thus
Eg D Eg x SU(3) .. (5.7)
The representations of the effective theory model, arise from the decomposition of Eg adjoint
248 — (78,1) + (1,8) + (27,3) + (27, 3).

In the above decomposition, we are interested in the zero modes (27,3) + (27, 3) lying on the
Riemann surfaces formed on the intersections of seven branes with the Eg divisor. Restricting
to specific cases of GUT surfaces, such as del Pezzo or Hitzebruch, one can determine the
chirality 27 — 27 in terms of a topological index, the Euler characteristic [118, 119]. We assume
the breaking of Eg to the standard SO(10) model by a non-trivial flux along U(1),. Since
Eg D Eg x SU(3) 1, the 27’s reside on three matter curves corresponding to the Cartan roots ¢;
of SU(3)y, with t; + t3 + t3 = 0, and this implies that the only invariant Yukawa coupling is
274,274,27:,. We choose to accommodate the Higgs fields in 27;, = 27y and therefore the chiral
families are on the t1, to curves. However, in order to achieve a rank-one mass matrix and obtain
a tree-level Yukawa coupling for the third generation, two matter curves have to be identified,
and this can be achieved under the action of a Z monodromy such that ¢; = t5. Furthermore,
choosing appropriately the restrictions of the flux parameters on the matter curves, we can
arrange things so that the spectrum contains three families in 16(— 10+ 5+ 1), and three Higgs
pairs in 10(— 5 + 5) and several neutral singlets [220].

Indeed, if we generally assume that the topological characteristics of the chosen manifold
allow M copies of 27;, and My copies of 27, representations on the corresponding matter curves,
turning on a suitable U(1)y-flux of n and m units respectively, we get the splitting shown in
Table 5.3.
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Matter Higgs
SO(10) x U(1), # SO(10) x U(1), #
_ 16, — 16_ M _ 167 —16") M
27, /27y, #(161 = 16-1) 27y, /274, #(16; E—,}) a
#(10_2 —102) M +n #1059, — 105 ) My +m
#(ly —1_4) M —n #1H —1")) My —m

Table 5.3: Splitting of 27;, (27_¢,) and 27, (27_;,) representations by turning on a suitable U (1)-flux

of n and m units respectively.

Matter Higgs
SO(10) x U(1)y #1 #2 SO(10 x U(1)y #1 #2
_ 164 3 3 _ 164 0 0
274, /27 4,1 274, /27 _
n/2-u 10, 0 1 ta/ 2t 105 3 4
14 6 7 1_4 3 4

Table 5.4: Two different cases of Eg motivated models. The two cases labelled here as #1 and #2
correspond to the choice of flux parameters in equations (5.8) and (5.9) respectively.

The spectrum also includes singlets which descend from the SU(3), adjoint decomposition,
designated as
]‘ti_tj = 92']', Z,j == 1,2,3.

As an illustration, we present two cases with minimal spectra of Eg motivated models for
two specific choices of the fluxes.

1. An economical model emerges if we choose
M=3, Mg =0,n=—m=-3. (5.8)
2. An alternative possibility may arise if we choose

M=3, Mg=0,n=—m=—4. (5.9)

Both cases are shown in Table 5.4. The models differ with respect to the number of 10-plets
and singlets; however the number of 16-plets is always three. In the first choice, all 10-plets
reside on 27, Higgs curve, while in the second case there is an additional pair descending from
274, + 2Ty,

Similarly, further symmetry breaking of the SO(10) — SU(5) x U(1), will be achieved by

turning on suitable U (1), fluxes [220]. Thus, for the two 16’s, in general, we have

Rep  fluxunits Rep  fluxunits
10, 3 101 0
16, =4 - ;16 =¢ 1 , (5.10)
53 3+ ny 3 0+ my

1_5 3 — Ny 1_5 0 — my
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where the integers n,,m, represent the U(1), fluxes piercing the corresponding matter curves,
and the superscript 16 is used here to denote the origin from 274,. For the number of 10’s of
SO(10) in the second model, we find one 102 and 4 x 10%,, and assuming that one pair decouples
(see next section) we have

Rep flux units

107, =¢ 5 3+l (5.11)
5.9 3+ ngg
Choosing n, = —m, = 1, we find 3 x 10_; and 4 x 53 emerging from Y16, and 1 x 5_3 from

¥16,,- In addition, there are three singlet fields, 2 x 1_5 + 1 x 15. This implies a three family
SU(5) spectrum (supplemented by the right-handed neutrinos), accommodated in 10 + 5 + 1
representations, and an extra pair of 5 + 5. Furthermore, imposing 7}, = ny = 0 the three 10’s
of SO(10) lead to three pairs of 5_5 + 52. In a final step the breaking of SU(5) is achieved by
turning on hypercharge fluxes, so that the doublet-triplet spliting mechanism is realised. The
spectrum is summarised in Table 5.5. In the following sections we discuss the basic features of
the effective theory and the implications of the extra matter and the light boson Z’ on the gauge
and the Yukawa sector.

5.3.1 Yukawa couplings of the effective model

After the Fjg breaking, the tree-level superpotential at the SO(10) level contains the terms
Wi D A161161107 + 1107510 5 14 + pifsy 1417 (5.12)

The first term provides masses to fermion fields, while for (14) # 0, the second part gen-
erates a massive state of 10_o through a linear combination with 10%. It transpires that
at tree-level these are the only mass terms for the various 10-plets. Indeed, the couplings
(A510_210_9 + Aglofjéloifg) X 14, are not possible due to the t; charges. They only appear at
a non-renormalisable level when a certain number of singlets 1;, _;, are inserted. Furthermore,
we observe that if f3; acquires a vev (f31) ~ 107! Mgyr, then the two pairs of 141[_121 become
massive.

Next, let us discuss in brief possible sources of proton decay. Under further breaking of
SO(10) to SU(5) x U(1)y, the decomposition of 27/27 give 10/10’s and 5/5’s. The relevant
term for proton decay can be U(1l)y-invariant if a singlet is introduced, so that the term
WD 10{’,,151731_470 is gauge invariant with respect to SU(5) x U(1),. However, the t; charges
emanating from SU(3), spectral symmetry, do not match. In fact, two additional singlets 631

are required to generate the coupling:
A7) 1017_11017_1101,_151731_470951.

Therefore, this term is highly suppressed.
Finally, let us briefly discuss the possible contributions to the massless spectrum from the
Es adjoint, i.e. bulk states from the decomposition of 78. As has been previously shown [118],

in groups of rank 5 or higher not all bulk states are eliminated and therefore the zero mode
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Spectrum SU(5) SO(10)
3 x (Q,uf,e) 10 16
3 x (d°, L) 5 16
3 x v° 1 16/16
3xD,4x Hy 5 10/16
3x D,4x H, 5 10/16
S 1 1

Table 5.5: The spectrum of the effective model and its SO(10) origin used in the RGE analysis. In
addition to the H, and Hy; MSSM Higgs pair, three complete SU(5) multiplets in 5+ 5 are assumed to

remain in the low energy spectrum. The content of the Table refers to the N, 7, ¥ models.

spectrum is expected to contain components of 78. It is possible that some of these states
remain at low energies. Although there are some interesting phenomenological implications of
such states [218], in the present work we will assume that they become massive at some high
scale and will therefore not be included in our analysis. Some details about these states are

given in Appendix D.

5.4 RGE analysis for Gauge and Yukawa couplings

As we have seen, from the decomposition of the Fg representations there are always additional
fields, beyond those of the MSSM spectrum. For our RGE analysis we will consider an effective
model that contains the three families embedded in three 16-plets € SO(10), where the three
right-handed neutrinos decouple at a scale ~ 104 GeV. As shown in the previous section the
exact form of the low energy spectrum and the superpotential depends on specific choices of
fluxes, singlet vevs and other parameters. Here, we will focus on a single case where additional
matter comprises three complete SU(5) vectorlike 5 + 5 multiplets and a singlet S, and the
remaining singlets 14,1_4 are assumed to decouple from the light spectrum. The MSSM Higgs
fields H,, H; are accommodated in 5-plets arising from the SO(10) tenplets 10_2. We suppose
that all other components are removed from the spectrum either by appealing to fluxes or due
to a possible doublet-triplet splitting mechanism through couplings with the bulk states. Under
these assumptions, we have the particle content presented in Table 5.5.

The computation of the 2-loop RGE’s was performed with the use of the Mathematica code
SARAH-4.10.0 [221]. We consider only the Yukawa couplings of the third generation (called
here as Y;, Y}, and Y;) and for simplicity, we neglect the effects of U(1) kinetic mixing'. We
take Mgygy = 1 TeV, Mg = 8 TeV and a Majorana scale My = 10'* GeV, where the heavy
right-handed neutrinos decouple from the theory, while all the other extra particles decouple at
the scale Mg.

! An analysis of the effects of U(1) mixing at the 2-loop level is presented in [233].



CHAPTER 5. YUKAWA UNIFICATION IN F-THEORY INSPIRED Eg MODELS 115

- InQ/GeV) 5 L e IQ/GRY)

S INQ/GeY) b L b L n(Q/GeY.
n(Q/GeV) s P n(Q/GeV)

Figure 5.1: Gauge coupling unification in Eg models. In all cases Mgyr = 2.4 x 106 GeV with
gu ~ 1.09. Here Mgysy = 10° GeV, Mg = 8 x 10% GeV and My = 10'* GeV. Top: left U(1),, right
U(1)y. Bottom: left U(1)y, right U(1),,.

Using the mass scales and parameters as described above, we obtain values of the three
SM gauge couplings within the range constrained by the experimental results. In Figure 5.1 we
present their evolution together with the abelian factor corresponding to the U(1),, U(1)y, U(1)n,
and U(1), models respectively. As shown in the figure, the decoupling of U(1) is assumed at
the mass scale Mg = 8 TeV. The beta coefficient of the extra U(1) gauge coupling depends on

the corresponding charge as follows:
by =163/20, by =25/3, by =163/20, b, = 227/30. (5.13)

By assuming unification at Mgy = 2.4 x 1016 GeV we obtain the following values for the extra

gauge coupling at the scale Mg = 8 TeV :

gy (Msg) ~ 0.508,  gy(Msg) ~0.506, gn(Msg)~0.508, g,(Ms) ~ 0.506. (5.14)

Next we proceed with the Yukawa sector. In Figures 5.2 and 5.3 we present the evolution
of the third generation Yukawa couplings for tan 8 = 50. Figure 5.2 corresponds to |u| = 0.5
TeV and Figure 5.3 to |u| = 0.8 TeV. In both cases, the masses of the sfermions were taken in
the range of 2 — 3 TeV and the trilinear parameter A; = 2.2 TeV. We observe that, in contrast
to the minimal spectrum, in the presence of additional vectorlike matter, a moderate value of

the top Yukawa coupling at the GUT-scale can reproduce the top mass at the electroweak scale.
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Figure 5.2: Running of t-b-7 Yukawa couplings. The horizontal dashed line corresponds to Y = 0.3 and
is used here for guidance. Here tan$ = 50, || = 0.5 TeV and A, = 2.2 TeV. Top: left U(1),, right

U(1)y. Bottom: left U(1)y, right U(1),,.

Furthermore, comparing Figures 5.2 and 5.3, we see that an increment of the SUSY threshold

corrections [57], [234] and the value of |u|, implies larger GUT values of the Yukawa couplings.

Some representative values for the same SUSY parameters but two different values of p are

presented in Tables 5.6 and 5.7. Our findings show that the results are the same for y and N

models. For a discussion of sparticle spectroscopy with t-b-7 Yukawa unification see [235] and

references therein.

We close this section with a few observations. First, we notice that raising the scale Mg by

a few TeV increases slightly the value of the Yukawa couplings. At the same time we get a lower

value of the gauge coupling gy at Mayr.

FEg model Y: Y, Y Y Yp

U(1)y 0.305 0.257 0.361 0.336 0.306
U(1)y 0.300 0.262 0.370 0.330 0.300
Ul)n 0.305 0.257 0.361 0.336 0.306
U(l), 0.297 0.270 0.380 0.345 0.324

Table 5.6: Numerical values of the Yukawa couplings at Mgy for tan 8 = 50 and |u| = 0.5 TeV. The

last two columns refer to the Yukawa couplings of the vectorlike pairs.
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Figure 5.3: Running of t-b-7 Yukawa couplings. The horizontal dashed line corresponds to Y=0.3 and is
used here for guidance. Here tanf = 50, |p| = 0.8 TeV and A, = 2.2 TeV. Top: left U(1),, right U(1),.
Bottom: left U(1)y, right U(1),,.

If the mass of the Z’ boson is much heavier than My we can neglect mixing effects and the

mass of the extra neutral Z’' boson is given by the following formula [116]:

My =~ g/(Q582 + QHHU?L + QHdvg)l/Z

where Q);’s are refer to the charges under the extra U(1) and s is the VEV of the singlet field S.
Thus, using the values 5.14 for the extra gauge coupling ¢’, the masses for the various models

discussed so far are:
Mz, ~ 4.67 TeV, Mz, =~ 4.54 TeV, Mz, =~ 3.70 TeV. (5.15)

In all cases, the predicted mass of the Z’ boson lies just above the current experimental bounds
given by [212, 213, 214]
MZP > 34—41TeV .

Next we discuss the extra doublet and vectorlike color triplet fields. As an example, follow-
ing [229], we assume that the Yukawa couplings, Yz and Yp, of one pair H, + H, and one pair
D + D, unify asymptotically with the Yukawa couplings of the third generation at the GUT
scale. The values of these couplings at the GUT scale are also presented in Tables 5.6 and 5.7.
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FE¢ model Y; Y, Y, Yy Yp

U(1)y 0.350 0.326 0.374 0.361 0.350
U(1)y 0.342 0.333 0.383 0.372 0.358
Ul)n 0.350 0.326 0.374 0.361 0.350
U(l), 0.340 0.345 0.396 0.372 0.371

Table 5.7: Numerical values of the Yukawa couplings at the GUT scale for tan 8 = 50 and |u| = 0.8

TeV. The last two columns refer to the Yukawa couplings of the third family vectorlike pairs.

Using the RGE’s we predict the value at the scale Mg. We find that the masses of D + D and
the extra H, + H; doublets are:

mp ~5.92 TeV, (5.16)
mpg ~ 3.44 TeV. (5.17)

Finally, in our analysis we have found that in the presence of extra vectorlike pairs and singlet
fields at a few TeV scale, the third generation fermion masses and in particular the top-mass
can be correctly reproduced with moderate values of the Yukawa couplings at the GUT scale.

As we will show, this is in agreement with the predictions from F-theory computations.

5.4.1 Yukawa Couplings in F4 from F-Theory

In F-theory, the Yukawa couplings are realised when three Riemann surfaces accommodating
matter fields intersect at a single point on the GUT surface, S. Given the specific geometry of
the compact space, we can solve the appropriate equations of motion and determine the profile of
the wavefunctions of the states involved. The Yukawa couplings are then obtained by computing
the integral of the overlapping wavefunctions at the triple intersections. The final result of the
computation depends on local flux densities permeating the matter curves. In the present study,
we consider an Fg point of enhancement (which contains both top and bottom/tau type Yukawa
couplings) and follow the procedures described in a series of papers [145]-[152]. We should note
that the flux units considered in Section 5.3 are integer valued as they arise from the Dirac

quantisation

1

21 Jscs
where ny is an integer, X denotes a matter curve, and F' is the gauge field strength tensor, i.e.,

F:nf,

the flux. In the same section we also described how the flux units piercing different matter curves
> determine the chiral states which are globally present in a given model. However as described
in section 4.3 of the previous Chapter, while the flux units in Section 5.3 define the full spectrum
of the model, the study of the trilinear couplings involve the calculation of the wavefunctions
and their overlaps on a local, approximately flat patch around a point of intersection. In this
local approach it is the local values of flux -and not the global quantisation constraints- that
matter. The local fluxes determine the chiral states at the local point. Besides those, there

can be additional chiral fermions localised in other regions of the matter curve, with the total
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Figure 5.4: Values of the Yukawa couplings from the FEg point in F-theory without imposing any

constraint on the flux parameters. Green point corresponds to Y; = Y, =~ Y, = 0.35.

chirality determined by the integral of the magnetic flux along the matter curve. The relation
between local and global fluxes is not a clear issue since it requires a complete knowledge of the
geometry of the matter curve. A more sophisticated local vs. global analysis is given in [149].
In our present approach, we will consider ranges of flux densities corresponding to a wide range
of integer values encompassing also those flux parameters used in Section 5.3.

The procedure and the form of the wavefunctions is similar with those presented in Chapter
4. Here we follow the formulation of [152] and we deal with two types of flux density param-
eters. The first type is parametrised by the flux density numbers M;, N; where ¢ = 1,2, and
descend from a worldvolume flux which is necessary to induce chirality on the matter curves
accommodating the 10-plets, 5-plets and 5-plets of SU(5)gur. The second type parametrised
by Ny and Ny, is related to the hypercharge flux which breaks the SU (5) symmetry to the
Standard Model and in addition generates the observed chirality of the fermion families.

In Figure 5.4 we plot the bottom, tau and top Yukawa coupling at the local flux-density
parameter space M; and Ny. For the remaining flux density parameters involved in the compu-
tation we consider the values N; = 0.187, My = 1.23, Ny = 0.701, Ny = 0.09. For a reasonable
range of the My and Ny parameters, the values of Y} ; ; lie approximately between 0.3 and 0.4.
There is a single (M7, Ny) point (shown with green color bullet in Figure 5.4) where all Yukawa
couplings of the third generation attain the same value Y;; » = 0.35.

Before closing this Chapter, we make a few comments regarding the issues emerging from
supersymmetry breaking, such as soft masses and flavour changing neutral currents (FCNC).
The structure of the SUSY breaking soft terms have been studied for a large class of string
and flux compactifications with a MSSM-like spectrum [236]-[240]. In many cases the presence
of non-diagonal flavor dependent SUSY-breaking soft terms are generically induced. The pres-
ence of such terms can lead to dangerous FCNC effects which can create tension with other
phenomenological predictions of the low energy theory. In the case of F-theory generalisations,

SUSY breaking soft terms and its phenomenological implications have been extensively dis-
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cussed in the past [241]-[245], [148]. Especially in [244], [245], it is shown how SUSY breaking
soft terms for fields on matter curves are generated from closed string fluxes, applying the results
on F-theory local models and including contributions from magnetic fluxes. In the special case
of non-constant fluxes flavor dependent soft terms arise which must lie in the multi-TeV range
in order to avoid FCNC effects. However, the results strongly depend on the internal geometry,
the background fluxes and there is considerable uncertainty from model dependent factors. On
the other hand these flavor violating effects may be suppressed if the close string fluxes vary
slowly over S.

Gravity mediated SUSY breaking is also a possible source of FCNC after integrating out
heavy modes. In F-theory local models this scenario has been discussed in [148] where it is shown
that off-diagonal terms are not induced due to the presence of geometric U(1) symmetries, while
a full study of FCNC requires the study of the difference m3, — m?; of the soft scalar masses
m;j. We expect that this will be suppressed for a wide range of the parameter space while a

detailed computation is beyond the scope of this thesis.



Chapter 6
Summary and Conclusions

String theory is currently the best-known candidate for a theory of quantum gravity, having the
necessary ingredients to describe all known elementary particles and interactions. Supersym-
metry, grand unified theories, discrete family symmetries and alternative symmetry breaking
mechanisms arising from the additional compact dimensions. In the same direction, F-theory
as a non-perturbative version of II-B string theory, provides a unified perspective on various as-
pects of string model building. In this thesis, we have presented a systematic analysis of F-theory
models and their phenomenological implications. Below we summarize the main conclusions of
this dissertation.

In Chapter 2, a class of SU(5) SUSY GUT models which arise in the context of the spectral
cover with Klein Group monodromy Vy = Zs X Zs was studied. By investigating the symmetry
structures of the spectral cover equation and the defining equations of the matter curves it is
possible to understand the F-theory geometric origin of matter parity, which so far has been just
assumed in an ad hoc way. In particular, we have shown how the simplest Z> matter parities
can be realised via the new geometric symmetries respected by the spectral cover. By exploiting
the various ways that these symmetries can be assigned, there are a large number of possible
variants. A minimal example of this kind, where the low energy effective theory below the GUT
scale is just the MSSM with no exotics and standard matter parity was presented. Furthermore,
by deriving general properties of the singlet sector, we were able to identify two singlets, which
provide suitable candidates for a two right-handed neutrinos. We were thus able to derive the
MSSM extended by a two right-handed neutrino seesaw mechanism. In addition all baryon and
lepton number violating operators emerging from higher non-renormalisable operators are be
forbidden. The work presented in Chapter 2 has been published in Physical review D (PRD)
[3].

In the third Chapter an F-theory derived SU (5) model was constructed, with the implications
of the arising non-Abelian familiy symmetry being considered, following from work in [172] and
[1]. Using the spectral cover formalism, assuming a point of Fg enhancement descending to an
SU(5) GUT group, the corresponding maximal symmetry (also SU(5)) should reduce down to
a subgroup of the Weyl group, S5. By applying Galois theory knowledge the conditions on the

coefficients of the spectral cover polynomial in the case of the non-Abelian discrete group Dy
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were derived. This symmetry was assumed to play the role of a family symmetry in the low
energy effective model. Similar to the model presented in Chapter 2, a geometric symmetry was
also employed to produce an R-parity-like Zo symmetry. The combined effect of this framework
on the effective field theory has been examined, and the resulting model shown to exhibit parity
violation in the form of neutron-antineutron oscillations, while being free from dangerous proton
decay operators. The experimental constraints on this interesting process have been calculated,
using current data on the masses of supersymmetric partners. Detection of such baryon-violating
processes on the oncoming experiments, without proton decay, serve as a potential smoking gun
prediction for this type of model.

Due to the presence of the D, family symmetry, special attention was given on the neutrino
sector of the model and it was shown that at lowest orders this model predicts the lightest
neutrino to be massless. Correspondingly, the masses of the two other generations then equate
to the mass differences from experiment, with the hierarchy being normal ordered. The mixing
angles were also probed numerically, with results that are consistent with large mixing in the
neutrino sector and a small but non-zero reactor mixing angle. The work presented in Chapter
3 has been published in Journal of High Energy Physics (JHEP), [2].

Chapter 4 provides a first dedicated study of R-parity violation (RPV) in F-theory semi-local
and local constructions based on the SU(5) GUT. Within this framework, the analysis presented
is as general as possible, with the primary aim of making a connection between F-theory and
experiment. We have focussed on semi-local and local F-theory SU(5) constructions, where a
non-trivial hypercharge flux breaks the GUT symmetry down to the Standard Model and in
addition renders several GUT multiplets incomplete. Acting on the Higgs curves this novel
mechanism can be regarded as the surrogate for the doublet-triplet splitting of conventional
GUTs. However, from a general perspective, at the same time the hyperflux may work as a
displacement mechanism, removing certain components of GUT multiplets while accommodating
fermion generations on other matter curves.

In the first part of the Chapter we considered semi-local constructions, focussing on F-theory
SU(5)gur models which are classified according to the discrete symmetries — acting as identifi-
cations on the SU(5), representations — and appearing as a subgroup of the maximal SU(5)
Weyl group Ss5. Furthermore, we considered phenomenologically appealing scenarios with the
three fermion generations distributed on different matter curves and showed that RPV couplings
are a generic feature on this class of models. Upon introducing the flux breaking mechanism,
we classified all possible cases of incomplete GUT multiplets and examined the implications of
their associated RPV couplings. Then we focused on the induced MSSM plus RPV Yukawa
sector which involves only part of the MSSM allowed RPV operators as a consequence of the
missing components of the multiplets projected out by flux effects. Next, we tabulated all dis-
tinct cases and the type of physical process (baryon number violation, lepton number violation
or proton decay) that can arise from particular operators involving different types of incomplete
multiplets.

In the second part of Chapter 4 we computed the strength of the RPV Yukawa couplings,

which mainly depend on the topological properties of the internal space and are more or less
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independent of many details of a particular model, enabling us to study a generic local F-theory
setting. Due to their physical relevance, we paid special attention to those couplings originating
from the SU(5) operator 10-5-5 in the presence of general fluxes, which is realised at an SO(12)
point of enhancement. Then, we applied the already developed F-theory techniques for the
calculation of the strengths of Yukawa couplings in the case of RPV operators. Taking into ac-
count flux restrictions, which limit the types of RPV operators that may appear simultaneously,
we then calculated ratios of Yukawa couplings, from which the physical RPV couplings at the
GUT scale can be determined. We have explored the possible ranges of the Yukawa coupling
strengths of the 10 -5 - 5-type operators in a five-dimensional parameter space, corresponding to
the number of the distinct flux parameters/densities associated with this superpotential term.
Varying these densities over a reasonable range of values, we have observed the tendencies of the
various Yukawa strengths with respect to the flux parameters and, to eliminate uncertainties
from overall normalization constants, we have computed the ratios of the RPV couplings to the
bottom Yukawa one. This way, using the experimentally determined mass of the bottom quark,
we compared our results to limits on these couplings from experiment.

The results show firstly that, in semi-local F-theory constructions based on SU(5) GUTs,
RPV is a generic feature, but may occur without proton decay, due to flux effects. Secondly,
our calculations based on a local F-theory approach show that the value of the RPV Yukawa
couplings, at the GUT scale, may be naturally suppressed over large regions of parameter space.
Furthermore, we found that the existence of LLe¢ type of RPV interactions from F-Theory
are expected to be within the current bounds. This implies that such lepton number violating
operators could be present in the effective theory, but simply below current experimental limits,
and so lepton number violation could be observed in the future. Similarly, the baryon number
violating operators ccdﬁdi and tcdjdi could also be present, leading to n —n oscillations. Finally
some )Ld¢ operators could be present leading to lepton number violating processes such as
KT — 7 etet and DT — K etet. In conclusion, the results suggest that RPV SUSY
consistent with proton decay and current limits may be discovered future experiments, shedding
light on the nature of F-theory constructions. The work presented in Chapter 3 has been
published in Journal of High Energy Physics (JHEP) [4].

In the final Chapter of this thesis, we have presented effective field theory models embedded
in Fg with an extra neutral gauge boson (Z') and additional vectorlike fields in the low energy
spectrum. The extra matter fields (beyond the MSSM spectrum), assumed to remain at the
TeV region include triplets and doublets comprising three complete 5 + 5-plets of SU(5), as
well as neutral singlets. It is shown that this spectrum can be embedded naturally in an F-
theory scenario where abelian fluxes are used to break the Eg symmetry to SU(5). Using
renormalisation group analysis at two-loop level, we explore the implications of this spectrum
on the running of the gauge and Yukawa couplings. We perform this analysis by assuming a Z’
boson mass compatible with the LHC bounds and masses of the extra fields ~ 10 TeV, and we
take into account threshold corrections of SUSY particles and a right-handed neutrino scale 10
GeV. We find that moderate values at the GUT scale of the third generation Yukawa coulings in

the range Y; 4 ~ 0.3 — 0.4 and tan 3 ~ 50 can successfully reproduce their low energy masses.
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Finally, based on previous detailed work on Yukawa couplings in F-theory, we compute the third
generation Yukawa couplings generated by a configuration of intersecting seven-branes with the
GUT divisor. We assume a configuration with a single Fg point of enhancement and compute the
relevant integral taking into account non-trivial fluxes associated with the symmetry breaking.
We express the results in terms of the local flux densities and find that their values are in the
same range with those found by the renormalisation group analysis using as inputs the known
low energy masses of the charged fermions of the third family. We also find points in the F-
theory parameter space of the flux densities where t — b — 7 Yukawa couplings attain a common
value. This work has been published in Physics Letters B [5].
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Appendix A

Topics in (GGalois Theory

A.1 Basic Galois Theory

According to Galois theory if £ is the splitting field of a separable polynomial P € Fl[z], then
the Galois group Gal(L/F) is associated with the permutations of the roots of P. Let P has

degree n. Then in L[z] we can write the P as the product

Px)=clx —t1)...(x —t,) (A1)

where ¢ # 0 and the roots t1,...t, € L are distinct. In this situation we get a map

Gal(L)F) = Sy,

which is a one-to-one group homomorphism. Important role in the determination of the Galois
group of a polynomial plays the discriminant, which is a symmetric function of the roots ;. The
discriminant A(P) € F of a (monic) polynomial P € Flz| with P = (z —t;)...(z —t,) in a
splitting field £ of P is

AP) =[]t —t)* (A.2)

Another useful object is the square root of the discriminant:

VAP) =T]ti—t;) €L (A.3)
1<j

Note that while A is uniquely determined by P, the above square root depends on how the
roots are labeled. It is obvious that the \/A(P) controls the relation between Gal(L/F) and
the alternating group A4,, C S,. More precisely, the image of Gal(L/F) lies in A,, if and only if
VA(P) € F (i.e., A(P) is the square of an element of F). In our case we deal with a fourth
degree polynomial corresponding to the spectral surface Cy, hence our starting point is Sy and

Ay
To reduce further the Sy/A4 down to their subgroups (D4, Z4 and V) we need the service

of the so called resolvent cubic of P
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A(P)| RsinF | Gal(L/F)
=% [ | irreducible Sy
= [ | irreducible Ay
# [ reducible Dy or Z,
=04 reducible Vi

Table A.1: The Galois groups for the various cases of the discriminant and the reducibility of

the cubic resolvent Rj3.

Rs = (x —x1)(x — x2)(z — x3) (A4)

where now the x;’s are symmetric polynomials of the roots with

T1 = t1tg + taty, o =1T1t3 + toty, x3 =13ts + t1t4. (A.5)

A permutation of the indices carries x1 to one of the three polynomials x;, i=1,2,3. Since Sy
has order 24, the stabilizer of x1 is of order 8, it is one of the three dihedral groups D4. Also,
A(R3) = A(P), so when P is separable so is R3. Using the discriminant and the reducibility of
the cubic resolvent we can correlate the groups Sy, Dy, Z4, A4 and V4 with the Galois group of a
quartic irreducible polynomial. The analysis above with respect to A(P) and R3 is summarized
in Table A.1.

A.2 An Alternative Cubic Resolvent

Another resolvent cubic that shares its discriminant with the quartic polynomial can be built

using the following three roots:

Z1 = (tl + tz)(tg + t4), 29 = (tl + tg)(tz + t4), Z3 = (tl + t4)(t2 + t3) (A.ﬁ)

with the two symmetric polynomial set-ups related as follows :
21 =x2+x3, 29=2x1+T3, 23=2T1+ Ta. (A7)

To see that the two discriminants coincide, note that the differences for each set of symmetric

polynomials are related as:
Ty —Xj = —(Zi - Zj) (AS)

and since the discriminant can be expressed as products of these difference it is trivial to see

that the two must coincide:

A= H(z, — Zj) = H(.%', — :):j) . (A9)
i#j i#j

In the case of Cy x C spectral cover split, the cubic resolvent of C4 has the form:

g(s) = a;3/2[(a5s)3 — 2a3(ass)? + (a3 + asayq — 4ayas)ass + (a3as — asazas + aa?)].  (A.10)
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We can see that, by setting g(0) = 0 we obtain the following condition:
a%a5 — agasas + alai =0. (A.11)

Substituting the above condition in the equation of the fives the result is zero, which is not a
surprising result since the three symmetric functions of the roots, z;, can be used to rewrite the

equation of the GUT fives as:

4 4
P = H(t’ +t;) = 212923 H(tz +t5) = —g(0) H(tl +t5). (A.12)

If we substitute this new condition into the discriminant we find that it now reads:
A x 4 (4aras — asay) (ag + asaq — 4a1a5) 2 (A.13)

Combined with the constraint for tracelessness of the GUT group', b; = 0, the condition
becomes:

9(0) = 0 — aza3 + azagag = aga1ag - (A.14)

Correspondingly the fives of the GUT group now have an equation that factors into only two

parentheses,

P = (am% + azagas — aoalag) (aga% + a7 (agap + a1a7)) — P, Py, (A.15)
where, the first factor vanishes due to the constraint and corresponds to the roots z1z923 = 0.
In this relation it is clear that the trivial condition ¢g(0) = 0 automatically leads to Ps = 0. So

we need a more general factorisation for the cubic polynomial. In general a cubic is reducible if

it can be factorised as a linear and a quadratic part.

1{0,4 — aopQae, a5 — 7@0&7}



Appendix B

Details for the SU(5) x Dy x U(1)

model

B.1 Irreducible representations of D,

Since we have four weights related, the representation of the 10s of the GUT group will be

quadruplets of Dy: (t1,t2,t3,t4)". Physically we may take each of these weights to represent

a corner of a square (or an equivalent interpretation). These weights will transform in this

representation such that the two generators required to describe all possible transformations are

equivalent to a rotation about the center of the square of § and a reflection about a line passing

through the center - say the diagonal running between the top right and bottom left corners

(see Figure B.1).

Q-

®
3

Figure B.1: The diehedral group D, represents the symmetries of a square. The dashed line

shows a possible reflection symmetry, while it also has a rotational symmetry if rotated by “r.



APPENDIX B. DETAILS FOR THE SU(5) x Dy x U(1) MODEL 130

The two generators are:

0 001
10 00
a= , (B.1)
0100
0 010
1 0 00
0 001
b= (B.2)
0 010
0100

These generators must obey the general conditions for dihedral groups, which for Dy are:

at =b* =1 (B.3)
b-a-b=a"" (B.4)
It is trivial to see that these conditions are obeyed by our generators. In order to obtain the

irreducible representations we should put this basis into block-diagonal form, which is achieved

by applying the appropriate unitary matrices.
Since Dy is known to have a two-dimensional irreducible representation, we might assume
that our four-dimensional case can be taken to a block diagonal form including either a doublet

and two singlets or two doublets via a unitary transformation.

If we initially assume two doublets, then we may put some conditions on our unitary matrix:

- - 00

A=U-A-U" = ; ; 2 8 (B.5)
- -0

B =U-B-U" = 5 g E E (B.6)
00 — —

1=U-UT. (B.7)

If we make use of these conditions, there are a number of equivalent solutions for U, one of

which is:

(B.8)

—

o = O

= O = O
(@)
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This matrix will give a block diagonal form for the generators. Explicitly this is:

01 0 O
1 0 0 O
A = , (B.9)
0 0 0 -1
0 01 O
1 00 0
01 0 O
B = , (B.10)
0 01 0
0 0 0 -1
31 i1 +1t3
t 1 t t
S I IR (B.11)
t3 V2 |t —t3
ty to — 14

A cursory examination reveals that the conditions for Dy are still fulfilled by this new basis, and
it would seem that at a minimum we have two doublets of the group. However we shall now
examine if one of the doublets decomposes to two singlets.

The upper block of the B’ generator takes the form of the identity, so we might suppose that
the first of our two doublets could decompose into two singlets. Using the same conditions as

for the four-dimensional starting point, which can be enforced on the two-dimensional case, we

1 1 1
1 0
A" = ( 0 1 ) (B.13)
1
w3 1) (.11
V2 \ to+iy 2\ ti—ty+t3—ty ’

It would seem then in this case that the four-dimensional representation of D4 can be reduced to

can find easily that:

a doublet and two singlets forming an irreducible representation. The type of the singlets can be
determined by examination of the conjugacy classes of the group, which reveals that the upper
singlet is of the type 144, while the lower is 1, _. Table 3.2 summarising the representations of

the tens.

B.1.1 D, representations for GUT group Fundamental representation

In F-theory the fiveplets of the SU(5) GUT group are described in terms of the roots as:

ti+t; =0Vi#j. (B.16)
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which gives a total of ten solutions, though these will be subject discrete group actions. Under
the action of a D4 symmetry, we can see trivially that since the weight ¢5 is chosen to be the
invariant root, all the roots corresponding to the fiveplets of the form t¢; + t5 will transform
separately to the 7,5 # 5 roots. In fact, these will form a doublet and two singlets under Dy:

1++ and ].+7.

The remaining six roots (not related with t¢5) of P5 can be studied as a sextet, say:

t1 +13
to + 14
t t
Re=| T2 | (B.17)
ts + 14
11+ 14

to + 13

By construction, we have arranged that the array manifestly has block diagonal generators, A

and B, such that the first two lines have generators:

A:<01>B:<10>. (B.18)
10 0 1

We can again refer to the previous analysis for the tenplets in order to see that this reduces to

two singlets: 1,4 and 14_.

The remaining quadruplet has generators:

0010 00 01
00 01 0010
A= B = ) (B.19)
0100 0100
1 000 1 000
which we can block diagonalise using the unitary matrix:
1 10 0
1 0 01 1
U=— (B.20)
V2| -1 10 0
0 01 -1
This gives two blocks, which are distinguished principally by their A generators:
010 O 0100
1 00 O 1 000
A= B = (B.21)
0 00 -1 0 0 01
001 O 0010



APPENDIX B. DETAILS FOR THE SU(5) x Dy x U(1) MODEL 133

Dy rep. | t5 t; Type
].++ —1 tl + t2 + t3 + t4 904
1, —1 t1 —to+t3—14 95

tg —t
2 | -1 e 0,
t — t3
Liw | 41| —ti—to—ts—ts| 0
1y +1 | —ti+ta—t3+ts | O

by —t
9 +1 2 A
t3 —t1

1yg 0 | tit+ta+ts+1iy 01
14 0 t1 —to+1t3—14 0
14— 0 | —t1+ta—t3+ts| 0o
1__ 0 | —t1—to—1t3—1y O3

2 0 < =t ) 04

t3 —t1

1, 0 t1 —to+t3— 14 02
1__ 0 t1 +to+1t3+ 1y 03

th—t
9 0 1o 0,
b — t3

Table B.1: The complete list of the irreducible representations of D4 obtained by block diagonalizing

the singlets of the GUT group. Each of these GUT singlets is labeled as 6; to classify them, since some

appear to be in some sense degenerate.

The upper block can be further diagonalised to yield two singlets, using the unitary matrix:

1 1 1
1
A;;:B;;:<O ?) (B.23)

which, after consulting a character table for the group, returns two singlets of the type 144.
The lower block can be rotated into the usual doublet basis by the matrix:

1 1 1
Vd:ﬂ(—l ) ) . (B.24)

The full set of states arising from the fiveplets is given in main text, see Table 3.3. Similar we
can find the Dy Representations for GUT Group singlet spectrum forming by the roots ¢; — ;.
These are presented in Table B.1.
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B.2 Flatness Conditions

In the construction of the D4 model presented in Chapter 3 we used various singlet states in
order to obtain a phenomenological realistic model. These singlets acquire VEV’s and hence
should be consistent with the supersymmetric F and D flatness conditions. Singlets spectrum

in F-Theory is described by the equation

[[ti-t)=o0
i#]
where the product is the discriminant of the spectral cover polynomial. By calculating the

discriminant and enforcing the b; = 0 ansatz solution along with the splitting options we end

up with the following equation
agagag (—a?m - agcz%/\,u2 + 2a0a‘;,u,4 + aga%u) 2
(256a3a?a§m3 + 128apazazk® N + 144a2aa3k* \u® + 27@8(@/@2#4 + 192ada2ask?p + 16a$/£)\4
+dagada3r\®p* — 18aazasr u® — 144agada3k) — 6adarazkp® — 4azag)\® — aga?a3\?
+18agaZaz iy — 80apasaie\?p + dadasu® + 27a0a$a§) =0 (B.25)

As we observe we have nine factors, four of which correspond to a minus parity assignment. These

are the ag factor, the double factor (—a?m — aga%)\;ﬂ + 2a0a§’u4 + agagu) and 256aga§a%/<;3+. ..

B.2.1 F-flatness

In general the Superpotential for the massless singlet fields (0;; = Hti_tj) is

W = 1131001 Oki (B.26)
while the F-flatness conditions are given by :

ow
= 110000 = 0. B.2
391'3' HijkY5kVki 0 ( 7)

For the model presented in the main text, the invariant tree-level singlet operators are

Wi = 11161000, + 12010505 + 11361646/, + 114056-6,
+ A1040,6, + X200, 0 + N340, 05 + Nab0,6
+ )\5929049% + )\6929;95 + )\7929492 (B.28)

where all the singlets have positive parity except the 63, 9’5, 02 and 0. Here with 64 we mean
the 0, (0 which corresponds to right-handed neutrino states vg).
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Minimization of the superpotential leads to the following F-flatness conditions:

?;\1) = 111000, + 1205075 + 130,06, = 0

g?; = X500 + Xs0,05 + A7040; = 0

ZZ: = 1146,0., = 0

?)Z: = M6,0,, + X206, + A7620) = 0

?)Zz = 30,05 + Aa0,0)3 + A76204 = 0

gz: = 1116167, + X2046, + X502075 = 0

?9/: = (11010 + X046 + X030 = 0

gg\; = 1120107 + A3046., + N020;, = 0

gz}; = w20105 + A\400., + X5020, = 0

g?; = 136105 + 4038 + X648, + Aabyf5 = 0
?a/z = 13010 + 14030 + X040 + A30460, = 0

As we can see we have a system consist of 11-equations. Solving the system with the requirements
(0)) =0 — (1) = (1r9) = 0 and (f2) = 0 we end up with a large number of solutions. The most
palatable one gives the following relations between the VEV’s,

A
(0.)° = a® = ZA;Zj’yl’yg (B.29)

papz y2(0h)
= and a3 =
2)\1/\2 Y2 2 2)\1/\2 Y1

(B.30)

(83) = %w (B.31)

with all the other singlet VEV’s equal to zero, except the (f3) which will be subject to the
D-flatness condition. Notice that equation (B.29) gives a? = 2172 for A\jus = Aop1. We should

also observe that combining the equations in (B.30) we end up with the relation a1v2 = tas7y:.

B.2.2 D-flatness

In SUSY models with extra U(1) factors the D-flatness condition is given by

TrA
Z Qi (1(0:) > = [{6;0) ) = — 175 92 M2 (B.32)
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where Qf; here represents the singlet U (1) charges and the trace TrQ is over all singlet and non-
singlet states. The D-flatness conditions must be checked for all the U(1)’s participating in the
model. In our case we have the Dy symmetry and one U(1) descending from the perpendicular
SU(5). The trace in the case of SU(5) has the general form

TrQ* =5 nij(t; —t;) + 10 npty + > maj(ti — t;). (B.33)
The coefficients n;;, ny and m;; corresponds to the My (1) multiplicities. Only the curves with

a t5 charge contributes to the relation since the ¢;—1 234 are subject to the D, symmetry rules.

Using this information, the computation of the trace gives:

where the m;, m/ are the (unknown) multiplicities of the singlets 6; and 0}, with i = «, 3,7.

Inserting the trace in the relation (B.32) we end up with the following equation

1001 = 16al” + 10517 — 1051 + 16512 — 165> = (5 — e — 1705 — 2072) X (B.35)
where m; = m, —m; and X = fgé\fr % By using the results from the F-flatness analysis the we
end up with the relation

2 2 s ~ ~
a® + 37+ 2v172 = (M + Mg + 2my — 5)X (B.36)

which gives an estimation for the scale of 3 VEV ,

i1 A2
H3AL

In the above equation we make use of the equation (B.29) and the approach Ajpus ~ Agp; in

B = Mx — <1 + ) o =~ MX — 20> (B.37)

the last step. Finally for shorthand we have set M =g + mg + 2m~ — 5. Observing equation
(B.37) we see that M is positive and as a result i, + g + 27, > 5.

In summary, equations (B.29,B.30,B.31) and (B.37) show us that controlling the scale of 1 2
and (A1) we can have an estimation of the scale of all the other singlets participating in the

model. That way we have a freedom on the designation of the singlet VEV’s scales.

B.3 Geometric Parity for the (5 — (4 x C] spectral cover split

Here we apply the geometric parity approach described in Chapter 2 for the case where the
spectral cover is taken to split as C5 — C4 x Cj. The geometric symmetry is communicated
to the matter curves by consistency with the original spectral cover equation. It is trivial to

determine that the coefficients of Cs are related to the Cy x C coefficients by:

bh= Y aq (B.38)

n+m=12—k
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an |IN=2 | N=3| N=4| N=5
a1 o2 52 2
as + « I} ~y
as — 1 1 1

ay + a? B3 A
as - « /32 73
ag + 1 I} 72
ar - o? 1 vy

Table B.2: Zy parities coming from geometric symmetry of the spectral cover. In the case of
Cs5 — C4 x C1, a general phase relates the parities of a123 45, such that if we flip the parity of

a1 all the other a; in this chain must also change. A similar rule applies to ag 7.

where i # j. As such, we can directly write that if
ap — WG (B.39)
so that the product ana., picks up a total phase:

Ap O — ei(wn+wm)ei(6_n_m)¢anam = ei(wn+¢m)e_i(6_k)¢anam (B40)

then provided the phases of the a, coefficients satisfy x = ¢, + ¥, the symmetry is handed
down to the split spectral cover. This is trival to enforce since the phases are independent of the
index k. It can also be demonstrated that this consistency requires the coefficients of Cy x C to
have phases in two cycles: ¢; = 1)1 = 19 = --- = 15 and ¢; = 1)g = 1)7, in order to be consistent
with the Cs phase.

Table B.2 shows some examples of possible parities we might assign to the Cy x C; coefficients.
In most cases, the minimal N = 2 scenario will be the most appealing and manageable choice,

though this mechanism is not confined to it.



Appendix C

Various cases of RPV in F-theory

local set-ups

C.1 Spectral cover: RPV couplings for the various monodromies

In this Appendix we examine the semi-local F-theory models in detail in order to demonstrate

that RPV couplings are generic or at least common. To this end we note that:
1. We are interested in models with matter being distributed on different curves. We call

this class of models as multi-curve models. We note that

2. The models defined in this framework “choose” the H, assignment for us, since a tree-level,

renormalizable, perturbative top-Yukawa requires the existence of the coupling
10,10,5; (C.1)

such that the perpendicular charges cancel out. As such, all the models listed above will
have a definite assignment for the curve supporting H,,, and we do not assign the remaining
MSSM states to curves, i.e. all the remaining 5 curves will be called 5,, making clear that
they are either supporting some 5),; or Hy. Furthermore, we will refer to the 10 curve

containing the top quark as 10,;.
3. The indication for existence of tree-level, renormalizable, perturbative RPV is given by
the fact we can find two couplings of the form
10,55, (C.2)
1045.5¢ (C.3)
for (b,c) # (e, f), and a, d unconstrained. This happens as Hy cannot be both supported

in one of the 5, 5. and at the same time in one of the 5., 5.

4. We do not make any comment on flux data. The above criteria can be evaded by switching
off the fluxes such that the RPV coupling (once the assignment of Hy to a curve is realised)

disappears.

With this in mind we study the possible RPV realisations in multi-curve models.

138
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Cl1l 2+1+1+1

In this case the spectral cover polynomial splits into four factors, three linear terms and a
quadratic one. Also, due to the quadratic factor we impose a Zs monodromy. The bestiary of

matter curves and their perpendicular charges (t;) is given in Table C.1.1.

Curve : 5p, 51 9o 93 94 95 96 105, 105 103 104

Charge : —2t1 —t1—13 —t1—14 —t1—15 —t3—ta ts—1t5 —ta—15 t1 t3 ta ts

Table C.1: Matter curves and the corresponding U(1) charges for the case of a 2+ 1+ 1 + 1 spectral

cover split. Note that because of the Zs monodromy we have t1 «— to.

In this model RPV is expected to be generic as we have the following terms
1043132, 1033133, 10M31567 1023253, 10Mggg5, 10M5354 (04)

Cl2 2+2+1

Here the spectral cover polynomial splits into three factors, it is the product of two quadratic
terms and a linear one. We can impose a Zs X Zs monodromy which leads to the following
identifications between the weights,(t; <> t2) and (t3 <> t4) . In this case there are two possible

assignments for H, (and 10;/), as we can see in Table C.1.2 below.

case 1
Curve bp, 51 5o B3 54 105 102 103
Charge —2t; —ti—t3 —ti—t5 —ts—ts —2t3 —t3 s
case 2
Curve bp, 51 5o B3 54 105 102 103
Charge —2t3 —t1—t3 —ti—ts —tz—ts —2b ts —t ts

Table C.2: The scenario of a 2 + 2 + 1 spectral cover split with the corresponding matter curves and

U(1) charges. Note that we have two possible cases.

24241 casel

The bestiary of matter curves and their perp charges is given in the upper half table of Table
C.1.2.

In this model RPV is expected to be generic as we have the following terms
1023132, 10]\/[3153, 10]\/[5254, 1033151 <C5)

Notice that if 51 contains only one state, then the last coupling is absent due to anti-symmetry
of SU(5) contraction.
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24+2+1 case 2

The bestiary of matter curves and their perp charges is given in the lower half table of Table
C.1.2.

In this model RPV is expected to be generic as we have the following terms
10]\/[3152, 1023153, 10]\/[5354, 1033151 (CG)

Notice that if 51 contains only one state, then the last coupling is absent due to anti-symmetry
of SU(5) contraction.

Cl1l3 3+1+1

In this case spectral cover factorisation leads to a cubic and two linear factors. We can impose
a Z3 monodromy for the roots of the cubic part. The bestiary of matter curves and their

perpendicular charges is given in Table 77:

Curve 5g, 91 92 03 10p 102 103

Charge —2t1 —t1—14 —t1—15 —t4—15 t1 ta ts

Table C.3: Matter curves and the corresponding U(1) charges for the case of a 3 + 1 + 1 spectral cover

split. Note that we have impose a Z3 monodromy.

In this model R-parity violation is not immediately generic as we only have
1023132, 10]\/[3153 (07)

and as such assigning Hy to 57 avoids tree-level, renormalizable, perturbative RPV.

C1l4 3+2

These type of models are in general very constrained because of the large monodromies which
leads to a low number of matter curves.

In this case there are two possible assignments for H, (and 10);), as described in Table
C.14.

case 1
Curve 5p, 59 53 10ps 109
Charge —2t; —ti—t3 —2i3 t1 ts
case 2
Curve b5y, 59 53  10ps 109
Charge —2t3 —ti—t3 —2t1  t3 t

Table C.4: The two possible cases in the scenario of a 3 + 2 spectral cover split, the matter curves and
the corresponding U (1) charges.
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3+2casel

The matter curves content is given in the upper half of Table C.1.4 (case 1).
Possible RPV couplings are
10]\/[3253 , 1023252 (CS)

Notice that if 55 contains only one state, then the last coupling is absent due to anti-symmetry
of SU(5) contraction.

3+ 2 case 2

This second scenario is referred as case 2 in the lower half of Table C.1.4.
Only one coupling
101/5252 (C.9)

which is either RPV or is absent. Notice that if 55 contains only one state, then the last coupling

is absent due to anti-symmetry of SU(5) contraction.

C.2 Local chirality constraints on flux densities and RPV oper-
ators
The chiral spectrum of a matter curve is locally sensitive to the flux data. This is happens as

there is a notion of local chirality due to local index theorems [149, 151]. The presence of a

chiral state in a sector with root p is given if the matrix

—qp qs im?q,
m, = qs qap  imPqs,
—imzqz1 —im2qu 0

with g; presented in Table 4.4, has positive determinant
detm, > 0. (C.10)

As such, if we want a certain RPV coupling to be present, then the above condition has to be
satisfied for the three states involved in the respective interaction at the SO(12) enhancement
point. For example, in order for the emergence of an QQLd° type of RPV interaction, locally
the spectrum has to support a ), a L, and a d¢ states. The requirement that at a single point
Equation (C.10) hold for each of these states imposes constraints on the values of the flux density
parameters.

Therefore, while RPV effects in general include all three operators - QLd¢, u¢d‘d®, LLe¢
- there are regions of the parameter space that allow for the elimination of some or all of
the couplings. These are in principle divided into four regions, depending on the sign of the
parameters Ny and Ny. In the appendix we present the resulting regions of the parameter

space and which operators are allowed in each.
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C.2.1 Ny <0

For Ny < 0, the conditions on the flux density parameters for which each RPV interaction is

turned on are

N
QLd®: M > TY

N
Ny — Np > Y

2

N
wtd’d® s M > -

N
N,— N, > -2

3

LLeS: M > —Ny

N

N, — N, > ;

Depending on the sign of Ny, the above conditions define different regions of the flux density

parameter space. These are presented in Tables C.5 and C.6.

— M<fe | e cppe =Dy | =N o ppe Ny | —Ny <M
(N, — Np) < % None None None None
=Y < (N, — Np) < 2¥ | None None QLd* QLd°, LLee
N < (N, — Ny) None ucdede QLdS, utdcd® All

Table C.5: Regions of the parameter space and the respective RPV operators supported for
Ny <0, Ny >0

— M < & ]%Y<M<*,;Y ’(;Y<M<—Ny —Ny <M
(Ny — Np) < % None None None None
Y < (N, — N,) < =5 | None ucdede ucdede ucdede
—5% < (Ng — Np) None u¢d¢d*® QLd®, ucded° All

Table C.6: Regions of the parameter space and the respective RPV operators supported for
Ny <0, Ny <0
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C.2.2 Ny >0

143

For Ny > 0, the conditions on the flux density parameters for which each RPV interaction is

turned on are

N
QLf:A4>A§i

N
Ny — Np > Y
2
2N
uCded® - M > TY
N
N,— Ny > Y
3
-N
LLeS: M > TY
N
N, — Ny > ;

Depending on the sign of Ny, the above conditions define different regions of the flux density

parameter space. These are presented in Tables C.7 and C.8.

M<—=D | =Dy o My | Ny gy o 2 | 20y gy
(Ny — Ny) < % None None None None
=Y < (Ny = Ny) < X None LLe* QLd®, LLe® | QLdC, LLe®
N < (Ny — Ny) None LLe* QLd°, LLe* All

Table C.7: Regions of the parameter space and the respective RPV operators

Ny>0,Ny>0

supported for

- M<—*§Y —’]§Y<M<A~§Y AZ{<M<% %<M
(Ng — Np) < % None None None None
N—g < (Ny— Ny < % None None None ucded®
=Y < (N, — V) None LLe® QLd®, LLe* All

Table C.8: Regions of the parameter space and the respective RPV operators

Ny >0, Ny <0

supported for



Appendix D

Matter from the Fjg bulk

Up to now, we have assumed that the chiral fields of the effective theory originate from the
27,27 matter curves. In this appendix we would like to examine the posibility of obtaining the
MSSM spectrum from the bulk, i.e., the Eg adjoint. To ensure that there are no chiral states
from 27’s we may impose the condition (3c1(S) —t) - Fy1y = 0 [216] where Fy(qy is the flux
along the U(1) € SU(3) of (5.7), ¢1(5) is the first Chern class of the GUT surface and —t that
of the normal bundle.

We recall that the Eg GUT is broken to the Standard Model, with the use of instanton
configurations which take values along U(1) factors with respect to the particular symmetry

breaking. Under the breaking pattern
E¢— SUB) x SU2) xU(l)y x U(1)y x U(1)y
the decomposition of 78 reads as follows:

78 — (1,1)0,0,0 + {(1,1)0,00 + [(1,1)0,00 + (3, 1)0,00 + (8 1)0,0,0 + (3,2) 50,0 + (3,2)5,0,0]
+ [(1,1)6,40 + (3, 1) 440 + (3,2)1,4,0] + [(1,1)—6,-40 + (3,1)4,—a0 + (3,2) —1,-40]}
+{(1,1)0,—5,-3 + [(1,2)—33, -3 + (3,1)2,3—3] + [(1,1)6,—1,—3 + (3, 1) —4—1-3 + (3,2)1,—1,-3]}
+{(1,Dos3+[(1,2)3-33+ (3,1)—2—33] +[(1,1)=613+ (3, )a13+(3,2)-113]}. (D.1)

Matter arising from Eg bulk is subject to topological constraints. For a line bundle £; over
a del Pezzo S, the number of states n; is given in terms of the Euler character x(£;) = —n;,

where
X(8.£) = 1+ 3e1(£)) - e1(£) + 5ea(£5) - a(S) (02)

In (D.2), ¢1(£) denotes the first Chern number of the line bundle and ¢;(S) = —Kg, where Kg

is the canonical class of S. For the conjugate fields

, _ 1 1
—n; =x(8, ;) =1+ Jeu(Ly) - erlLy) = Ser(Ly) - ea(S) (D.3)
so the net number of chiral minus anti-chiral states is
n; — n; == *Cl(ﬁj) . Cl(S) (D4>

144
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Exotic Es SO(10) SU(5) Multiplicity

(SM) Origin  Origin  Origin n;

Qr = (3, 2)% 78 45 24 —x(£L1,S)

Q= (3’2)é 78 45 10 —x(£L2,5)
Ue=(3,1)_2| 78 45 10 (L7 ® £, 9)
EC=(1,1) 78 45 10 —x(£, © L5, 5)

S = (1,1) 78 16 1 —x(L3' @ L3, 9)
D = (g, 1)% 78 16 5 X(£2 ® £3, )
L= (1,2)_% 78 16 5 —X(LTP® Ly ® L3, S)
g=(1,1) 78 16 10 —X(£1® L3, 5)
Q= (3, 2)% 78 16 10 —x (L3, 9)
u=@31)_ | 78 16 10 n= —X(ﬁl ® L3, S)

Table D.1: Eg bulk states and their multiplicities

Next, we define the following three line bundles:
L1 =(5,0,0), L2=1(1,4,0), Lz=(1,—-1,-3) (D.5)
and express all the U(1) charges in (D.1) as linear combinations
(Y, x,¥) = kL1 + ALo + uLls = (5K + X+ p, 4N — p, —3p) (D.6)
Then, the multiplicity of the fields is given in terms of Euler characteristic:
nj=—x(£;,8)  where  L; — LY ® L)@ LY (D.7)

Table D.1 summarises all possible MSSM states, their origin with repsect to the Eg and SO(10)
as well as their multiplicities in terms of the corresponding Euler characters. The multiplicities of
the conjugate fields are: nj = (nj)* = x(ﬁ;l, S). In order to impose the appropriate constraints
to obtain the MSSM spectrum, we define

A= Cl(£1)2 A1 = Cl(ﬁl) . 61(8) (D.S)
B=c1(L2)? Ay =c1(L) - c1(S) (D.9)
Cc = Cl(ﬁg)Q Ag = Cl(ﬁg) . 61(8) (DlO)

First, we would like to eliminate the Qr/Qp exotics arising from the adjoint 24. This requires

n1 = n] = 0 which lead to the following two conditions

Al = Cl(ﬁl) . 61(5) = —Cl(ﬁl) . KS =0 (D.ll)
A= Cl(ﬁl) . Cl(ﬁl) =-2 (D.12)

Since ¢1(£1) belongs to the second homology group Ha (S, Z), the orthogonality condition (D.11)

implies that it is a vector in the orthogonal compliment of the canonical class, while the second
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one implies that ¢1(Ly) corresponds to a root of the exceptional symmetry associated with the
del Pezzo surface.

The multiplicities of the remaining bulk states given in Table D.1 are easily expressed in
terms of the As 3, B, C quantities. We note that there are MSSM states emerging from different

SO(10) representations, but their total number can be expressed only in terms of two quantities,

namely
a=As+ Ay, B=—(B+C) (D.13)
Then,
b —« B+«
= -2 5= -2 D.14
nQ 5 ng 5 (D.14)
-« b+ «
e = -1 e = -1 D.15
ng 5 ng 9 ( )
Nyc = Nec = N = —@ Nge = Nege = Ny = l8+a (D16)
2 2
From the above, it is easy now to determine the chiral states, since
ong = —a, a = Q,uc, e e, d°
There are two characteristic cases that we now examine. First, choosing @ = —3 we obtain

exactly the content of three chiral families. The second possibility arises for a = 0 where there

are only vectorlike states from the Eg adjoint. In this case we have the following content

nQ:’I’de—lzg—Q,nuc:nec:nlzg (Dl?)

while an equal number of conjugate fields is assumed.
From the requirement ng > 0, we infer that 3 > 4. Then, the minimal scenario would be

B8 =4, a =0, which can be realised for
01(52)2 + 01(£3)2 = —4, (Cl(ﬁg) + Cl(ﬁg)) -Kg=0

which implies ng = 0,4 = 1 and nye = nee = n; = 2 and similarly for their complex conjugates.
Possible model building and phenomenological implications of the spectrum requires further

analysis.
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