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Abstract

My thesis deals with modern cosmological models and their observational predictions. Nowadays, Cos-
mology is one of the most interesting branch of Physics due to many significant recent discoveries and
challenges in this area of science. Its evolution over the past 100 years has been very fast. We are
interested in the study of the Universe and more specifically, where it came from, how it evolves, which
will be its fate. This purpose demands a theory which can describe the Universe and fit the observational
data from small to large scales. Also, we want to respond to modern cosmological questions, which arise
through the cosmological observations and probes.

The most prevalent theory for the beginning of the Universe is the Big Bang theory, which included in
the Standard Model (the most acceptable cosmological model) and explains very accurately the current
cosmological observations. After this point, the Universe has begun to expand with different rhythm
during the cosmological epochs. Almost two decades ago, it was observed that the expansion of the
Universe is accelerating. Observations of the expansion rate are made from supernova explosions, from
fluctuations in cosmic microwave background CMB radiation (remnant of the Big Bang) and from baryon
acoustic oscillations (BAO).

The most likely cause for the accelerating expansion is the Dark Energy, which is about 70% of the
Universe, or extensions and modifications of the theory of General Relativity, while Dark Matter appears
to play an important role, such as in the formation of the structures in the Universe or in the rotational
motion of stars in galaxies. The Dark Energy is probably induced due to the cosmological constant which
acts as a repulsive force (Einstein had introduced it in his equations in order to describe a static Universe,
but later abandoned it), or due to scalar fields which are subject to coupling with gravity. Dark matter
consists of particles such as WIMPs or axions and the scientific community seeks through experiments to
detect them. Recently, the detection of gravitational waves has attracted the interest of scientists, since
their existence was predicted by the Theory of General Relativity.

The fate of the Universe depends mostly on the percentage of its components (visible matter, Dark
matter and Dark energy) and there are three basic possibilities/theories. The first theory predicts that
the Universe in the future will expand rapidly and will tear apart (known as Big Rip singularity). The
second theory predicts that the Universe will begin to shrink until it crashes (known as Big Chill or Big
Crunch singularity), while the third theory predicts that the Universe will continue to expand at a similar
rate as today (is called de Sitter Universe).

The main objective of the present Thesis is to explore the modern and more acceptable cosmological
models and their observational predictions. We investigate with details the ΛCDM model and we focus
on deviations from this model. Since the accuracy of the cosmological data increases, occur statistically
significant deviations from the ΛCDM model, such as the Hubble tension. Also, our purpose is the study
of the Universe and more specifically, where it came from, how it evolves, which will be its fate. Finally,
we want to response to many modern cosmological questions, such as the ones we have mentioned above.

In Chapter 1, we describe analytically the current status in Cosmology. More precisely, we begin
from the Einstein field equations and we end up with alternative theories of ΛCDM model (Concordance
model). In this Chapter, we describe the features of the components of the Universe, the observational
expansion of the Universe, the acceptable and non acceptable cosmological models and the methods
to measure distances in Cosmology. Also, we present a thorough guide for the accelerating expansion,
which we observe today and the possible interpretations of this kind of expansion. Finally, we address

xv



the formation of gravitational waves, as tensor perturbations, since the recent discovery of the existence
of gravitational waves, an issue which is a milestone in modern Cosmology, gives a new observational
instrument and opens a new window to explore the Universe.

In Chapter 2, we test the isotropy of the Universe through the data of the Union2 Supernova Ia (SnIa)
compilation. Using the hemisphere comparison method, we have found that the distribution of Union2
data have a preferred axis in the Universe. We have indications that there is a preferred cosmological axis
of maximum asymmetry, since many other cosmological observations such as CMB multipoles, quasar
alignment and velocity flows indicate almost the same direction as SnIa Union2 compilation and we have
checked how possible this evidence is to be random with statistical methods.

In Chapter 3, we investigate the stability of the ’t Hooft-Polyakov monopoles with a dilatonic coupling
to electromagnetism in the presence of a magnetic field and the consequences of their possible existence
in Cosmology. Monopoles are a kind of topological defect (the others are cosmic strings, textures and
domain walls), which were formed during the expansion of the early Universe, when a symmetry broke up.
In particular, monopoles can play a role in variation of fundamental constants, such as the fine structure
constant.

In Chapter 4, we explore signatures of a scalar particle which is known as axion like particle from
experiments which try to detect it. Possibly, this particle interacts with photons and theoretically the
interaction is described through a coupling to electromagnetism. No experiment has detected this particle
and thus the researchers estimate an upper bound for the energy (or mass) of this particle. Similar
experiments aiming to detect chameleons, which are candidate scalar particles as components of dark
energy, but the results until now are not satisfactory. Through these experiments the research teams
estimate bounds for the energy of the chameleons.

In Chapter 5, we process the data from Stanford optically levitated experiment. They include distance
and interaction (force) in a very small distance scale (bellow 𝑚𝑚). We have a significant signal that the
sub-𝑚𝑚 forces obey oscillating form with characteristic wavelength, thus the Newtonian gravity seems
to be modified in small scales or this signal may come from the Dark energy density scale. Also, we
propose a chameleon model as a possible explanation of this signal, since the hypothetical fifth force can
be mediated by the chameleons.

In Chapter 6, we explore the effects on the behavior of gravitational waves in the vicinity of a large
mass, where the gravity is strong, such as a black hole or a neutron star. We solve the wave equation
and we investigate the changes in the characteristics of the wave due to the presence of the mass. We
found that the amplitude and the period increase as the wave approaches the mass. The increasing of the
period is a well known effect, the gravitational time dilation. Also, the power spectrum which contains
the contribution of each frequency in the waveform changes (if we compare it with the wave which has
been propagated in empty space).

In Chapter 7, we estimate the time of dissociation of bound systems in a phantom cosmological
background. We solve the geodesic equations taking into account relativistic effects and we compare the
time of dissociation (Big Rip) with the corresponding well known Newtonian time of dissociation. For
large and massive cosmological structures the dissociation occurs earlier in the relativistic consideration.

In Chapter 8 we deal with the influence of spin on the orbits of spinning particles in a curved spacetime
around a much bigger mass, such as a black hole. We consider the Mathisson-Papapetrou equations and
we solve these equations for a spinning particle in a static and an expanding Universe, when the geometry
of the background is the post-Newtonian limit of McVittie spacetime. For any spinning particle the
orbits deviate from geodesics, due to the coupling between spin and curvature which induces repulsive
or attractive force in the particle. In the absence of expansion the spinning particle orbits between a
minimum and a maximum radius, depending on the magnitude and the orientation of the spin, but in
most cases it remains bounded. If the radius of the orbit becomes less than 3𝑅𝑠 which is the innermost
stable circular orbit (ISCO), the particle begins to merge with the black hole. In an expanding Universe
the orbits are affected by the rate of the expansion and the orientation of the spin angular momentum.

In Chapter 9, we summarize the main results and the extracted conclusions of the present Thesis
and we discuss further the applications and the cosmological consequences. Our present results offer
significant contribution to deeply understand the fundamental Physics of our observable Universe.



Εκτεταμένη Περίληψη

Η Κοσμολογία είναι μία επιστήμη που η απαρχή της βρίσκεται στα βάθη των αιώνων. Οι πρώτες παρατη-

ρήσεις του σύμπαντος προέρχονται από τους αρχαίους Αιγύπτιους και αργότερα από τους αρχαίους ΄Ελληνες.

Τότε εμφανίστηκαν και οι πρώτες θεωρίες που προέβλεπαν ποια θα μπορούσαν να είναι τα συστατικά του

σύμπαντος. Στο κέντρο του τότε γνωστού σύμπαντος, οι αστρονόμοι της εποχής είχαν τοποθετήσει την

Γη (γεωκεντρικό σύστημα), αν και ο Πτολεμαίος είχε διαφορετική απόψη θεωρώντας πως το κέντρο του

σύμπαντος είναι ο ΄Ηλιος (ηλιοκεντρικό σύστημα). Η άποψη του Πτολεμαίου έμεινε στο παρασκήνιο μέχρι

την εποχή του Τύχο Μπραχέ και του Κοπέρνικου.

Οι συστηματικές, για πρώτη φορά, παρατηρήσεις του Κοπέρνικου, οι νόμοι του Κέπλερ, οι απόψεις του

Γαλιλαίου για την κίνηση της Γης και ο νόμος της βαρύτητας του Νεύτωνα αντικατέστησαν τις εσφαλμένες

θεωρίες του παρελθόντος και έβαλαν τις βάσεις για την δημιουργία της σύγχρονης Κοσμολογίας. Στις

αρχές του εικοστού αιώνα η Ειδική και Γενική θεωρία της Σχετικότητας του Αϊνστάιν οδήγησαν στα πρώτα

σύγχρονα κοσμολογικά μοντέλα.

Η παρούσα διδακτορική διατριβή διαπραγματεύεται τα πιο μοντέρνα, ελπιδοφόρα και σύγχρονα κοσμολο-

γικά μοντέλα καθώς και τις παρατηρησιακές τους προβλέψεις. Η Κοσμολογία αποτελεί έναν από τους πιο

ενδιαφέροντες κλάδους της Φυσικής εξαιτίας της ραγδαίας εξέλιξής της τα τελευταία 100 χρόνια, των πολύ

σημαντικών ανακαλύψεων των τελευταίων ετών και των προκλήσεων που αυτές δημιουργούν. Οι αναζητήσεις

του ανθρώπου για το ¨τι υπάρχει εκεί επάνω’ ξεκινούν από την εμφάνιση του ανθρώπινου είδους, αλλά μόνο

την τελευταία εκατονταετία μπορούν να δοθούν πολλές απαντήσεις στα ερωτήματα αυτά. Μας ενδιαφέρει η

μελέτη του σύμπαντος και πιο συγκεκριμένα από πού προήλθε, πως εξελίχθηκε και ποια θα είναι η τύχη του

(το πιθανό του μέλλον), ποια είναι τα συστατικά του, πως αλληλεπιδρούν μεταξύ τους, πως τα ανιχνεύουμε

και πως αυτά καθορίζουν την κίνηση των σωμάτων. Επίσης, θέλουμε να απαντήσουμε και σε άλλα σύγχρονα

κοσμολογικά ερωτήματα που προκύπτουν κατά την μελέτη των κοσμολογικών συστημάτων και των ιδιοτήτων

τους.

Η επικρατέστερη θεωρία για την δημιουργία του σύμπαντος είναι η Μεγάλη ΄Εκρηξη, που εξηγεί με μεγάλη

ακρίβεια και απλότητα τις περισσότερες από τις σημερινές κοσμολογικές παρατηρήσεις. Εδώ και σχεδόν

δύο δεκαετίες παρατηρήθηκε από την μελέτη υπερκαινοφανών αστέρων πως η διαστολή του Σύμπαντος είναι

επιταχυνόμενη, μία παρατήρηση που άλλαξε εντελώς τον τρόπο προσέγγισης της μελέτης του Σύμπαντος, μιας

και μέχρι τότε οι επιστήμονες πίστευαν πως η διαστολή του Σύμπαντος, που ξεκίνησε με την Μεγάλη ΄Εκρηξη

ήταν επιβραδυνόμενη λόγω της καταλυτικής παρουσίας της βαρύτητας. Μέχρι σήμερα, οι παρατηρήσεις

του ρυθμού διαστολής γίνονται από εκρήξεις σουπερνόβα ή από διαταραχές στην κοσμική μικροκυματική

ακτινοβολία υποβάθρου (απομεινάρι από την μεγάλη έκρηξη).

Οι πιο πιθανές αιτίες για την επιταχυνόμενη διαστολή είναι η ύπαρξη της σκοτεινής ενέργειας που αποτελεί

περίπου το 70% του Σύμπαντος ή επεκτάσεις και τροποποιήσεις της Γενικής Θεωρίας της Σχετικότητας, ενώ

σημαντικό ρόλο στη διαστολή φαίνεται να διαδραματίζει και η σκοτεινή ύλη. Η σκοτεινή ενέργεια πιθανόν να

οφείλεται στην κοσμολογική σταθερά που λειτουργεί ως απωστική δύναμη και την είχε εισάγει ο Einstein
στις εξισώσεις του αλλά την απέρριψε αργότερα γιατί δεν οδηγούσε σε στατικό Σύμπαν όπως πίστευε ο ίδιος

πως είναι το Σύμπαν, ή σε βαθμωτά πεδία όπως τα σωματίδια χαμαιλέοντες που υπόκεινται σε σύζευξη με

την βαρύτητα. Η σκοτεινή ύλη αποτελείται από σωματίδια που η επιστημονική κοινότητα έχει υποθέσει πως

υπάρχουν και ψάχνει αποδείξεις μέσω πειραμάτων για την ύπαρξή τους. Τέτοια σωματίδια μπορεί να είναι τα

αξιόνια, τα ασθενώς αλληλεπιδρώντα μαζικά σωματίδια (WIMP) και πολλά άλλα.

xvii



Πρόσφατα, η ανίχνευση των βαρυτικών κυμάτων έχει προσελκύσει το ενδιαφέρον των επιστημόνων, μιας

και η ύπαρξή τους προβλεπόταν από την Γενική Θεωρία της Σχετικότητας. Προς το παρόν, λόγω της περιορ-

ισμένης ευαισθησίας των ανιχνευτικών διατάξεων, μπορούμε να ανιχνεύσουμε βαρυτικά κύματα που παράγον-

ται από την συγχώνευση δύο μελανών οπών ή αστέρων νετρονίων. Οι αναζητήσεις για συνεχή βαρυτικά

κύματα από αστέρες νετρονίων που έχουν ελλειπτική περιστροφή δεν είχαν επιτυχές αποτέλεσμα. Οι συγ-

χωνεύσεις αστέρων νετρονίων διαρκούν αρκετά δευτερόλεπτα, ενώ των μαύρων τρυπών μερικά κλάσματα του

δευτερολέπτου. Αρκετές συγχωνεύσεις αστέρων νετρονίων συνοδεύονται από έκλυση ηλεκτρομαγνητικής

ακτινοβολίας. Τα βαρυτικά κύματα προσφέρουν ένα ακόμη παρατηρησιακό εργαλείο για το Σύμπαν, μέσω

του οποίου μπορούμε να υπολογίσουμε διάφορα μεγέθη, όπως μάζα, διαστάσεις, απώλεια ενέργειας κτλ του

σώματος που τα εκπέμπει.

Η μελλοντική εξέλιξη του Σύμπαντος εξαρτάται σε μεγάλο βαθμό από το ποσοστό του κάθε συστατικού

του (ορατή ύλη, σκοτεινή ύλη και σκοτεινή ενέργεια). Από τους κοσμολόγους έχουν αναπτυχθεί πρόσφατα

τρεις βασικές θεωρίες για το πως θα εξελιχθεί το Σύμπαν μας στο μέλλον. Η πρώτη προβλέπει ότι το

Σύμπαν κάποια στιγμή στο μέλλον θα διασταλεί απότομα και θα διαλυθεί (γνωστή ως μεγάλο σχίσιμο ή

Big Rip). Η δεύτερη θεωρία προβλέπει ότι το Σύμπαν δεν θα διαστέλεται για πάντα αλλά από ένα σημείο

και μετά θα αρχίσει να συρρικνώνεται μέχρι να συνθλιβεί (γνωστή ως μεγάλη ψύξη ή Big Crunch), ενώ

η τελευταία θεωρία προβλέπει πως το Σύμπαν θα συνεχίσει να διαστέλλεται με παρόμοιο ρυθμό όπως και

σήμερα (αποκαλείται Σύμπαν de Sitter). Στην παρούσα κοσμολογική χρονική περίοδο βρισκόμαστε πάνω

στο μεταίχμιο του χωροχρόνου από το οποίο διέρχονται τα τρία πιθανά σενάρια, συνεπώς δεν μπορούμε να

ξεχωρίσουμε ποιό είναι το επικρατέστερο. Εν κατακλείδι και τα τρία μοντέλα είναι αποδεκτά και αυτό το

γεγονός μας οδηγεί σε ένα μεγάλο πλήθος θεωρητικών κυρίως επιστημονικών εργασιών.

Στόχος της παρούσας διδακτορικής διατριβής είναι η περαιτέρω διερεύνηση και απάντηση μερικών από

τα συγχρονα κοσμολογικά προβλήματα. Από την στιγμή που το καθιερωμένο κοσμολογικό μοντέλο έχει

εδραιωθεί ως η βάση της σύγχρονης Κοσμολογίας, το ενδιαφέρον επικεντρώνεται στην αναζήτηση πιθανών

αποκλίσεων από αυτό. Με την πάροδο του χρόνου οι κοσμολογικές παρατηρήσεις γίνονται με μεγαλύτερη

ακρίβεια και τα σφάλματα μειώνονται. ΄Ετσι οι έλεγχοι για πιθανές ανωμαλίες ή αποκλίσεις γίνονται πιο

ακριβείς.

Στο κεφάλαιο 1, γίνεται μία εκτενής αναφορά στην σύγχρονη Κοσμολογία και τις βασικές έννοιές της.

Ξεκινάμε από τις εξισώσεις πεδίου του Einstein ο οποίος υπέδειξε ότι η βαρύτητα δεν είναι ιδιότητα των

σωμάτων, αλλά ιδιότητα του χώροχρόνου. Η παρουσία ενός σώματος καμπυλώνει τον χωροχρόνο και αυτή

η καμπύλωση επηρεάζει την κίνηση των γειτονικών σωμάτων και όσων πλησιάζουν σε κοντινή απόσταση. Η

βασική αρχή για το Σύμπαν είναι η κοσμολογική αρχή δηλαδή η υπόθεση πως το Σύμπαν είναι ομογενές και

ισότροπο, η οποία έχει ελεγχθεί επιτυχώς με πάρα πολλά πειράματα.

Οι τροχιές που ακολουθούν τα σώματα όταν δέχονται μόνο την βαρυτική αλληλεπίδραση των άλλων

σωμάτων λέγονται γεωδαισιακές. Στην Νευτώνεια Φυσική η τροχιά αυτή είναι ευθεία γραμμή, αλλά σε έναν

καμπύλο χωροχρόνο η γεωδαισιακή μπορεί να έχει οποιοδήποτε σχήμα. Λόγω της διαστολής του Σύμπαντος,

η ακτινοβολία που φτάνει στη Γη από κάθε ουράνιο σώμα είναι μετατοπισμένη προς μεγαλύτερα μήκη κύματος.

΄Ετσι για κάθε σώμα ορίζουμε την ερυθρή μετατόπιση που εκφράζει την απόστασή του από εμάς. Η ερυθρή

μετατόπιση συνδέεται με τον παράγοντα κοσμικής διαστολής που δείχνει τον ρυθμό διαστολής του Σύμπαντος

σε κάθε κοσμολογική εποχή. Η μέτρηση των αποστάσεων στην Κοσμολογία γίνεται με διάφορους τρόπους

και ανάλογα με τον ορισμό της απόστασης έχουμε και διαφορετική πληροφορία για το ουράνιο σώμα.

Σήμερα είναι ευρέως αποδεκτό πως το Σύμπαν είναι γεμάτο με ένα ρευστό άγνωστης σύστασης που

αποκαλείται κοσμολογικό ρευστό, ενώ οι ιδιότητες του ρευστού αυτού περιγράφονται από τον τανυστή

ενέργειας-ορμής. Η ενέργεια του Σύμπαντος είναι σταθερή, δηλαδή ισχύει η διατήρησή της. Επίσης, η

πίεση και η πυκνότητα του ρευστού συνδέονται με μία καταστατική εξίσωση, όπου τα μεγέθη αυτά είναι

ανάλογα. Το Σύμπαν χαρακτηρίζεται από έναν αριθμό κοσμολογικών παραμέτρων, όπως η παράμετρος

πυκνότητας ενέργειας, η σταθερά Hubble ή η χωρική καμπυλότητα, οι οποίες προσδιορίζουν τις ιδιότητές

του. Οι παράμετροι αυτές γενικά δεν είναι σταθερές και μπορεί να εξελίσσονται με τον χρόνο.

΄Επειτα από την διατύπωση της θεωρίας της Σχετικότητας (Ειδικής και Γενικής) εμφανίστηκαν και τα

πρώτα απλά κοσμολογικά μοντέλα, όπως το μοντέλο του Einstein, του de Sitter και πολλών άλλων. Αρκετά

από αυτά είναι βιώσιμα, δηλαδή μπορούν να υποστηρίξουν τις τιμές των κοσμολογικών παραμέτρων που

προσδιορίζουμε μέσω παρατηρήσεων, ενώ άλλα έχουν μόνο θεωρητικό και ιστορικό ενδιαφέρον. ΄Ενα από



τα πιο σημαντικά μοντέλα που εμφανίστηκαν στα πρώτα χρόνια είναι το μοντέλο του Friedmann, το οποίο

θεωρεί ότι το Σύμπαν αποτελείται από ύλη και ακτινοβολία. Το μοντέλο αυτό προβλέπει την ύπαρξη της

Μεγάλης ΄Εκρηξης και ένα τέτοιο Σύμπαν θα μπορούσε να είναι ανοιχτό, κλειστό ή επίπεδο. Βέβαια, σχεδόν

όλες οι παρατηρησιακές ενδείξεις οδηγούν στο συμπέρασμα πως το Σύμπαν στο οποίο ζούμε είναι επίπεδο ή

σχεδόν επίπεδο.

Σε αντίθεση με το κοσμολογικό μοντέλο του Friedmann το κοσμολογικό μοντέλο του Lemaitre που

αποτελεί γενίκευση του μοντέλου του Friedmann, ενσωματώνει την κοσμολογική σταθερά Λ. Το μοντέλο de
Sitter είναι μία ειδική περίπτωση του μοντέλου Lemaitre και θεωρεί πως μοναδικό συστατικό του Σύμπαντος

είναι η κοσμολογική σταθερά. Λόγω αυτής της ιδιαιτερότητας δεν είναι βιώσιμο και το μελετάμε κυρίως για

την σύνδεσή του με τον κοσμικό πληθωρισμό (ένα στάδιο πολύ έντονης διαστολής του χωροχρόνου στο πολύ

αρχικό Σύμπαν) και για ιστορικούς λόγους. ΄Ενα ακόμη μοντέλο που αναφέρουμε στο κεφάλαιο 1 είναι το

μοντέλο του Einstein το οποίο είναι στατικό, προβλέπει την τιμή της κοσμολογικής σταθεράς αρκετά κοντά

στα απαιτούμενα από τις παρατηρήσεις όρια, αλλά είναι ασταθές. Οποιαδήποτε προσθήκη μάζας μπορεί να το

αποσταθεροποιήσει.

Το πιο ευρέως αποδεκτό κοσμολογικό μοντέλο από το επιστημονικό κόσμο είναι το ΛCDM επειδή

είναι εξαιρετικά απλό αλλά ταυτόχρονα μπορεί να υποστηρίξει τις περισσότερες κοσμολογικές παρατηρήσεις.

Αποδέχεται πως τα συστατικά του Σύμπαντος είναι ψυχρή μη σχετικιστική σκοτεινή ύλη, ορατή ύλη και

σκοτεινή ενέργεια που εκφράζεται μέσω της κοσμολογικής σταθεράς. Πολύ συχνά αναφέρεται και ως πρότυπο

μοντέλο (standard model) ή μοντέλο αρμονίας (concordance model) επειδή ερμηνεύει πολλές ιδιότητες του

Σύμπαντος, όπως την ύπαρξη και δομή της κοσμικής ακτονοβολίας υποβάθρου, την κατανομή των γαλαξιών

σε μεγάλη κλίμακα, την αφθονία του υδρογόνου, του ηλίου και του λιθίου καθώς και την επιταχυνόμενη

διαστολή του Σύμπαντος. Επίσης προβλέπει με πολύ μεγάλη ακρίβεια την ηλικία του Σύμπαντος, η οποία

είναι περίπου 13.7 δισεκατομμύρια χρόνια.

Το μοντέλο αυτό αποδέχεται την ομοιογένεια και ισοτροπία του χωροχρόνου, καθώς και την επιπεδότητά

του. Προσθέτοντας διάφορα συστατικά όπως κοσμικό πληθωρισμό ή πεμπτουσία, το ΛCDM μοντέλο μπορεί

να επεκταθεί στην κατεύθυνση ερμηνείας και άλλων κοσμολογικών ιδιοτήτων, που μέχρι σήμερα παραμένουν

αναπάντητες. Ταυτόχρονα, όπως σε κάθε θεωρία, έχουν προταθεί εναλλακτικές προτάσεις που μπορούν να

αντικαταστήσουν ή να επεκτείνουν το ΛCDM μοντέλο. Στις προτάσεις αυτές περιλαμβάνονται τροποποιη-

μένες θεωρίες βαρύτητας, θεωρίες μεγάλης κλίμακας μεταβολών στην πυκνότητα ύλης του Σύμπαντος, αναλ-

λοίωτη κλίμακα του κενού χώρου και τροποποιημένες Νευτώνειες δυναμικές (MOND).
Στο τέλος του κεφαλαίου γίνεται αναφορά στον συνδετικό κρίκο των ενοτήτων της παρούσας διατριβής.

Ο συνδετικός κρίκος δεν είναι άλλος από την αναζήτηση πιθανών αποκλίσεων από το καθιερωμένο μοντέλο και

ο στατιστικός έλεγχος των βασικών υποθέσεων του μοντέλου αυτού. Επίσης γίνεται μελέτη των βαρυτικών

κυμάτων, που παρότι δεν αποτελούν απόκλιση από το καθιερωμένο μοντέλο, είναι ένα εξαιρετικά επίκαιρο

και ενδιαφέρον θέμα. Μέσω των βαρυτικών κυμάτων μπορεί να γίνει έλεγχος για πιθανές αποκλίσεις από το

καθιερωμένο μοντέλο μιας και μπορούμε να μετρήσουμε τον ρυθμό διάσπασης του Σύμπαντος, να ελέγξουμε

τον βαθμό ισοτροπίας και να τεστάρουμε την Γενική Σχετικότητα σε περιοχές με ισχυρή βαρύτητα, όπως

είναι το περιβάλλον μιας μελανής οπής. Στο ίδιο πλαίσιο με τα βαρυτικά κύματα εντάσσεται και η μελέτη

τροχιών σωματιδίων με σπιν γύρω από μία κατανομή μάζας σε διαστελλόμενο σύμπαν, η οποία παρουσιάζεται

στο προτελευταίο κεφάλαιο της διατριβής.

Στο κεφάλαιο 2, ελέγχουμε την ισοτροπία του Σύμπαντος με δεδομένα από εκρήξεις υπερκαινοφανών

αστέρων τύπου Ια, οι οποίοι θεωρούνται στην Κοσμολογία ως πρότυπα κεριά. Παράγουν την ίδια σχεδον

φωτεινότητα όταν εκρήγνυνται και για τον λόγο αυτό χρησιμοποιούνται για την μέτρηση αποστάσεων στο

Σύμπαν. Από τις υπάρχουσες συλλογές υπερκαινοφανών Ια επιλέξαμε την συλλογή Union2 που περιέχει 557

υπερκαινοφανείς και αποτελούσε τη μεγαλύτερη συλλογή όταν αρχίσαμε την μελέτη μας. Σήμερα υπάρχει

η συλλογή PANTHEON που περιέχει 1048 υπερκαινοφανείς. Χρησιμοποιήσαμε την μέθοδο σύγκρισης

ημισφαιρίων, κατά την οποία χωρίσαμε τους υπερκαινοφανείς σε δύο ουράνια ημισφαίρια, το ΄πάνω΄ και το

΄κάτω΄ και υπολογίσαμε την διεύθυνση στην οποία η κατανομή τους παρουσιάζει τη μέγιστη επιτάχυνση.

Η μελέτη μας οδήγησε στο συμπέρασμα πως το Σύμπαν είναι ομογενές ως προς την κατανομή των

υπερκαινοφανών, αλλά η κατανομή των υπερκαινοφανών δείχνει μία προτιμητέα διεύθυνση στην οποία

παρουσιάζουν μέγιστη ανισοτροπία και μέγιστη επιτάχυνση. Σε γαλαξιακές συντεταγμένες, η διεύθυνση

της μέγιστης ανισοτροπίας είναι (𝑙, 𝑏) = (309∘, 18∘). Για τον έλεγχο του μεγέθους της ανισοτροπίας



χρησιμοποιήσαμε την μέθοδο Μόντε Κάρλο, συγκρίνοντας τα δεδομένα από την συλλογή Union2 με ισο-

τροπικά δεδομένα που παράγει τυχαία η μέθοδος αυτή. Βρήκαμε ότι το επίπεδο της ανισοτροπίας είναι κάτω

από 1σ, γεγονός που υποδεικνύει πως είναι στατιστικά αμελητέο, χωρίς περαιτέρω ενδιαφέρον. Συνεπώς δεν

εντοπίσαμε κάποια απόκλιση από το καθιερωμένο μοντέλο.

Διεύθυνση μέγιστης ανισοτροπίας στην κατανομή τους δεν παρουσιάζουν μόνο οι υπερκαινοφανείς, αλλά

όπως συλλέξαμε από την βιβλιογραφία και άλλες κοσμικές δομές όπως η διπολική, τετραπολική και οκταπολική

ροπή της κοσμικής μικροκυματικής ακτινοβολίας υποβάθρου, ο άξονας περιστροφής των κβάζαρ (πολύ ενεργοί

γαλαξίες) στο χώρο και η ταχύτητα με την οποία ρέουν στο κοσμικό ρευστό οι δομές του σύμπαντος, όπως

οι γαλαξίες. Η ταχύτητα αυτή δεν σχετίζεται με την διαστολή του σύμπαντος. Παρατηρώντας πως αυτές

οι διευθύνσεις είναι σχετικά κοντά στην ουράνια σφαίρα, εκτιμήσαμε πόσο πιθανό είναι αυτό το φαινόμενο

να είναι τυχαίο. Χρησιμοποιήσαμε πάλι αντίστοιχη μέθοδο Μόντε Κάρλο και εκτιμήσαμε πως η πιθανότητα

να είναι τυχαίο το φαινόμενο αυτό είναι περίπου 1%. Αν αγνοήσουμε τις πολυπολικές ροπές της κοσμικής

ακτινοβολίας υποβάθρου μιας και αναφέρονται στο ίδιο φαινόμενο, τότε η πιθανότητα σύμπτωσης γίνεται 7%,

αλλά και πάλι είναι πολύ χαμηλή. Συνεπώς, μία τόσο μεγάλη συμφωνία στην κατανομή τους είναι φυσικό να

μας οδηγεί στο να σκεφτούμε πως κάποια άγνωστη μέχρι σήμερα φυσική σχέση υπάρχει μεταξύ τους.

Στο κεφάλαιο 3, ασχοληθήκαμε με τις τοπολογικές ανωμαλίες και τον ρόλο που μπορεί να έχουν στην

μεταβολή σταθερών της Φυσικής, όπως η σταθερά της λεπτής υφής η οποία σύμφωνα με αρκετές παρατηρήσεις

μεταβάλλεται χρονικά και χωρικά. Στις τοπολογικές ανωμαλίες ανήκουν οι κοσμικές χορδές, τα μονόπολα

και άλλες μορφές οι οποίες παράγονται κατά την διαστολή του Σύμπαντος, όταν σπάνε συμμετρίες και

ενδεχομένως αποτελούν συστατικά της σκοτεινής ύλης. Το Σύμπαν αρχικά ήταν υπερσυμμετρικό, αλλά μέχρι

σήμερα από εκείνες τις συμμετρίες έχουν μείνει ελάχιστες. Τοπολογικές ανωμαλίες δεν έχουν παρατηρηθεί

εώς τώρα σε πειράματα ή σε φυσικά κοσμικά συστήματα. Η ανίχνευσή τους είναι μία ακόμη πρόκληση για

την σύγχρονη Κοσμολογία.

Ειδικότερα, τα μονόπολα όταν υπόκεινται σε σύζευξη με τον ηλεκτρομαγνητικό τανυστή, αυτή εκφράζεται

στην Λαγκρατζιανή με μία συνάρτηση σύζευξης. Επιλέξαμε μία γραμμική συνάρτηση που περιγράφει την

παραπάνω σύζευξη ως την πιο απλή περίπτωση, χρησιμοποιήσαμε κατάλληλο δυναμικό και υπολογίσαμε την

ενέργεια που περικλείει ένα τέτοιο μονόπολο. Ελαχιστοποιώντας την ενέργεια, υπολογίσαμε τα πεδία-σωμάτια

που σχετίζονται με το βαθμωτό και το ηλεκτρομαγνητικό πεδίο. Στην συνέχεια εξάγαμε τα αντίστοιχα

αποτελέσματα σε εκθετική συνάρτηση σύζευξης. Τα πεδία αυτά σχετίζονται με την μεταβολή θεμελιωδών

σταθερών της Φυσικής και προβλέψαμε τον βαθμό που μπορούν να επηρεάσουν τις σταθερές αυτές. Εάν

το μονόπολο εισαχθεί σε χωροχρόνο με επιπλέον συμμετρία και ύπαρξη μαγνητικού πεδίου, τότε καθίσταται

ασταθές για όλες τις παραμέτρους, ενώ οι κοσμικές χορδές εξακολουθούν να είναι σταθερές.

Στο κεφάλαιο 4, μελετήσαμε δεδομένα από πειράματα που έχουν γίνει και γίνονται σε διάφορα εργαστήρια

ανά τον κόσμο και επιδιώκουν την ανίχνευση βαθμωτών σωματιδίων που σχετίζονται με την σκοτεινή ύλη

και σκοτεινή ενέργεια. Μέχρι σήμερα έχουν εκτελεστεί πολλά πειράματα που στοχεύουν στην ανίχνευση

τέτοιων σωματιδίων που εικάζεται πως αλληλεπιδρούν πολύ ασθενικά με την ύλη. Επίσης σχεδιάζονται και

άλλα πειράματα για το μέλλον με όργανα που θα έχουν βελτιωμένη ανιχνευτική ικανότητα σε σχέση με την

σημερινή. Στα σωματίδια αυτά ανήκουν βαθμωτά πεδία που συμπεριφέρονται ως αξιόνια και έχουν πάριτυ

περιττό αριθμό (ALPs) και σχετίζονται με την σκοτεινή ύλη και τα σωματίδια χαμαιλέοντες που σχετίζονται

με την σκοτεινή ενέργεια. Τα σωματίδια αυτά αλληλεπιδρούν με τα φωτόνια και προκαλούν διάφορα οπτικά

φαινόμενα στο φως όπως οπτική περιστροφή, διχρωισμό, ελλειπτικότητα και διπλή διάθλαση. Πάνω σε αυτά

τα φαινόμενα στηρίζονται τα πειράματα ανίχνευσης που γίνονται από διάφορες ερευνητικές ομάδες σε όλο τον

κόσμο, ενώ η ύπαρξη τους δεν προβλέπεται από την γενική θεωρία της σχετικότητας. Συνεπώς, αποτελούν

μία ακόμη πιθανή απόκλιση από το καθιερωμένο μοντέλο.

Ειδικότερα για την ανίχνευση των σωματιδίων που συμπεριφέρονται ως αξιόνια και είναι βαθμωτά, στα

πειράματα γίνεται υπόθεση πως ένα ζεύγος φωτονίων αλληλεπιδρά και υπάρχει πιθανότητα, μικρή ή μεγάλη

να παραχθεί ένα βαθμωτό σωμάτιο. Στην συνέχεια, αυτό το σωμάτιο λόγω αστάθειας διασπάται σε δύο νέα

φωτόνια (αναγέννηση φωτονίων) που πιθανόν έχουν κάποια διαφορετική οπτική ιδιότητα σε σχέση με τα

αρχικά φωτόνια. Δυστυχώς μέχρι σήμερα δεν έχει ανιχνευτεί κάποιο σωματίδιο και κάθε πείραμα με βάση

τις ανιχνευτικές του δυνατότητες θέτει κάποιο άνω όριο για την ενέργεια-μάζα αυτού του σωματιδίου. Τα

πιο αυστηρά όρια προέρχονται από πειράματα που σχετίζονται με την πέμπτη δύναμη και τα οποία είναι πολύ

μακριά από τις ανιχνευτικές δυνατότητες των οργάνων των εργαστηρίων στη Γη.



Στην συνέχεια του κεφαλαίου αυτού παρουσιάσαμε τα ενεργειακά όρια που έχουν τεθεί από πειράματα αν-

ίχνευσης σωματιδίων χαμαιλεόντων, των οποίων η μάζα εξαρτάται από την πυκνότητα της μάζας του περιβάλ-

λοντος χώρου. Μέσω ενός μηχανισμού που αποκαλείται μηχανισμός-χαμαιλέων, τα σωμάτια αυτά σε περιοχές

με μεγάλη πυκνότητα έχουν μεγάλη μάζα, ενώ σε περιοχές με μικρή πυκνότητα συμβαίνει το αντίστροφο.

Αυτή η ιδιότητα καθιστά την ανίχνευσή τους εξαιρετικά δύσκολη. ΄Ετσι, τα πειράματα ανίχνευσης γίνονται

σε συνθήκες κενού και δεν στηρίζονται στο φαινόμενο της αναγέννησης φωτονίων, αλλά στο φαινόμενο

της αναπήδησης. Κατά το φαινόμενο αυτό τα σωμάτια χαμαιλέοντες παράγονται από ταλαντώσεις φωτονίων,

παγιδεύονται σε κενό δοχείο και καθώς ανακλώνται στα τοιχώματά του, αναπηδούν (μετατρέπονται) πάλι

σε φωτόνια. Στην περίπτωση αυτή, όπως και στα βαθμωτά σωμάτια η σύζευξη με τον ηλεκτρομαγνητισμό

γίνεται με μία συνάρτηση γραμμική ή εκθετική. Τα πειράματα αυτά όπως και τα προηγούμενα, δεν οδήγησαν

στην ανίχνευση των σωματιδίων που αναζητούσαν οι ερευνητικές ομάδες. ΄Ομως απέκλεισαν κάποιες περιοχές

ενέργειας στις οποίες θα μπορούσε να βρίσκεται η μάζα ηρεμίας του σωματιδίου χαμαιλέοντας. Παρ΄όλα αυτά,

η αναζήτηση συνεχίζεται μιας και η ύπαρξη των σωματιδίων αυτών μπορεί να υποστηρίξει την πυκνότητα

ενέργειας της σκοτεινής ενέργειας, αφού αναμένεται να έχουν την ίδια τάξη μεγέθους.

Η συνάρτηση σύζευξης που χρησιμοποιήσαμε παραπάνω, μπορεί να εμφανιστεί ως επέκταση στην εξ-

έλιξη του πεδίου πεμπτουσίας, μέσω μίας σύζευξης με τον ηλεκτρομαγνητικό τανυστή στην Λαγκρατζιανή.

Σε αυτό το κοσμολογικό μοντέλο προβλέπεται πως όταν το δυναμικό είναι γραμμικό, το βαθμωτό πεδίο

αυξάνει σταδιακά με τον χρόνο αλλά από ένα σημείο και μετά υπόκειται σε βίαιη αύξηση. Αντίστοιχα, ο

παράγοντας κοσμικής διαστολής αυξάνει αλλά όταν το πεδίο αυξηθεί απότομα, τότε αυτός μειώνεται ραγδαία

μέχρι που μηδενίζεται. Το φαινόμενο αυτό αποκαλείται μεγάλο σπάσιμο (Big Crunch) ή μεγάλο πάγωμα

(Big Freeze) γιατί στην ουσία το Σύμπαν θα συρρικνωθεί σε μία μοναδικότητα (ένα σημείο). Ορίσαμε την

ηλεκτρομαγνητική παράμετρο (𝜁𝑚) ως τον λόγο της ηλεκτρομαγνητικής ενεργειακής πυκνότητας του χώρου

προς την πυκνότητα ύλης του, η οποία εκφράζει το ποσοστό της ηλεκτρομαγνητικής ενέργειας σε σχέση με

την πυκνότητα ύλης στο σύμπαν. Σε κάθε περίπτωση η πυκνότητα ύλης παραμένει κυρίαρχη. Μελετήσαμε

την περίπτωση που στο χώρο κυριαρχεί η ηλεκτροστατική ενέργεια (𝜁𝑚 > 0) και όχι η μαγνητοστατική

(𝜁𝑚 < 0). Καθώς αυξάνει η ηλεκτροστατική ενέργεια του χώρου μέσω της παραμέτρου 𝜁𝑚, το βαθμωτό

πεδίο απειρίζεται σε μεταγενέστερη χρονική στιγμή και το μεγάλο πάγωμα εμφανίζεται επίσης πιο αργά.

Αυτό σημαίνει πως το σύστημά μας, λόγω της συνεχώς αυξανόμενης ηλεκτροστατικής ενέργειας έναντι της

μη σχετικιστικής ύλης που εξακολουθεί να είναι κυρίαρχη, αποκτά σταθερότητα για μεγαλύτερο χρονικό

διάστημα. Το μεγάλο σπάσιμο καθυστερεί να συμβεί και τα κοσμικά συστήματα έχουν μεγαλύτερη διάρκεια

ζωής.

Στη συνέχεια υπολογίσαμε τον τρόπο μεταβολής της παραμέτρου 𝑤 της καταστατικής εξίσωσης σε συν-

άρτηση με τον χρόνο. Διαπιστώσαμε πως αυτό το μοντέλο αντιστοιχεί στο κοσμολογικό μοντέλο της πεμπτ-

ουσίας, αφού η τιμή της παραμέτρου καταστατικής εξίσωσης είναι ελάχιστα πάνω από την τιμή 𝑤 = −1, αλλά
με πολύ μικρή μεταβολή. Μάλιστα, όταν περάσει αρκετά μεγάλο χρονικό διάστημα, φαίνεται ότι η τιμή της

ηλεκτρομαγνητικής παραμέτρου 𝜁𝑚, δεν επηρεάζει ιδιαίτερα την τιμή της παραμέτρου καταστατικής εξίσωσης.

Παρόμοια συμπεράσματα εξάγονται και από την μεταβολή της παραμέτρου της καταστατικής εξίσωσης σε

σχέση με την μετατόπιση στο ερυθρό. Αμελητέες διακυμάνσεις παρατηρούνται, λίγο πάνω από την τιμή

𝑤 = −1.
Οι μεταβολές στην τιμή της σταθεράς λεπτής υφής 𝛼 μπορούν να περιγραφούν και μέσω της σταθεράς

σύζευξης 𝑔 που προσπαθούν να ανιχνεύσουν και να μετρήσουν τα προαναφερθέντα πειράματα με βαθμωτά

σωματίδια ή χαμαιλέοντες. Η ύπαρξη ενός θετικού σήματος θα μας επιτρέψει να ελέγξουμε αν οι σημερινές

παρατηρούμενες μεταβολές στην σταθερά λεπτής υφής, θα μπορούσαν να οφείλονται σε βαθμωτά σωματίδια

ή σωματίδια-χαμαιλέοντες (η μεταβολή των σταθερών της Φυσικής, δεν αποτελεί μέρος του κοσμολογικού

μοντέλου) . Στο τέλος αυτού του κεφαλαίου συλλέξαμε αρκετά όρια για την σταθερά σύζευξης 𝑔 από παρα-

τηρήσεις στον μακρόκοσμο και τον μικρόκοσμο και τα συγκρίναμε με τις θεωρητικές τιμές των πειραμάτων,

εκτιμώντας ότι οι ενδείξεις συσχέτισης θεωρίας και παρατηρήσεων είναι αξιοσημείωτες και ελπιδοφόρες.

Υπάρχουν ισχυρές ενδείξεις πως οι αλληλεπιδράσεις των σωμάτων σε πολύ μικρές αποστάσεις (κάτω από

1 χιλιοστό) δεν ακολουθούν τον νόμο της βαρύτητας του Νεύτωνα (νόμος αντιστρόφου τετραγώνου) αλλά

έχουν ταλαντωτική μορφή. Αυτό μας οδηγεί στην σκέψη πως ο νόμος του Νεύτωνα ίσως χρειάζεται κάποια

τροποποίηση, ή μπορεί να μην ισχύει σε τόσο μικρή απόσταση. Πολύ πιθανόν είναι επίσης, αυτή η συμπεριφορά

να αποτελεί σημάδι εμφάνισης κάποιας νέας αλληλεπίδρασης και το μήκος κύματος που εμφανίζεται στην



ταλάντωση να σχετίζεται με την ενέργεια του νέου σωματίου, που είναι φορέας αυτής της δύναμης. Σε κάθε

περίπτωση, αν τα πράγματα έχουν έτσι όπως εκτιμάμε, μιλάνε για ενδείξεις νέας Φυσικής σε πολύ μικρές

αποστάσεις. Στο κεφάλαιο 5, προσπαθήσαμε να ανιχνεύσουμε ένα τέτοιο μήκος κύματος χρησιμοποιώντας

δεδομένα απόστασης και δύναμης από ένα πείραμα με αιωρούμενες μικρόσφαιρες που έγινε στο πανεπιστήμιο

του Stanford και είχε ως στόχο την ανίχνευση νέων αλληλεπιδράσεων. Η διάταξη που χρησιμοποιήθηκε

έχει τέτοια ευαισθησία ώστε μπορεί να μετρήσει δυνάμεις αρκετά μικρότερες από 10−18
Ν, ενώ στο πείραμα

χρησιμοποιήθηκαν 3 πανομοιότυπες μικρόσφαιρες.

Ορίσαμε ως υπόλοιπο δύναμης την διαφορά του ηλεκτροστατικού υποβάθρου από την μετρούμενη δύναμη

για τις μικρόσφαιρες και με την μέθοδο ελαχίστων τετραγώνων εκτιμήσαμε το πλάτος, το μήκος κύματος

και την αρχική φάση υιοθετώντας ταλαντωτικό μοντέλο για το υπόλοιπο δύναμης. Στην συνέχεια ελέγξαμε

στατιστικά το αποτέλεσμα με δύο διαφορετικούς τρόπους. Αρχικά συγκρίναμε το αποτέλεσμα με την περ-

ίπτωση να μην υπάρχουν καθόλου υπόλοιπα δύναμης και αποδείξαμε με αρκετά μεγάλο βαθμό αξιοπιστίας πως

αυτή η υπόθεση δεν είναι σωστή. ΄Επειτα, με την μέθοδο Μόντε Κάρλο επειλέξαμε τυχαία υπόλοιπα δύναμης

που ακολουθούν κανονική κατανομή με μέση τιμή μηδέν και βρήκαμε πως μόνο σε ένα μικρό ποσοστό της

τάξης του 5% μπορεί να εμφανιστεί ένα τέτοιο σήμα. Συνεπώς, το επίπεδο σημαντικότητας του σήματος που

βλέπουμε στα δεδομένα είναι στα 2𝜎 και θεωρείται αρκετά ισχυρό.

Το σήμα που εντοπίσαμε στα δεδομένα έχει μήκος κύματος 𝜆 ≃ 35𝜇𝑚 και θα μπορούσε να ερμηνευτεί

ως ένδειξη για νέα αλληλεπίδραση (γνωστή ως πέμπτη δύναμη) που συνδέεται με τροποποιημένες θεω-

ρίες βαρύτητας ή να σχετίζεται με την σκοτεινή ενέργεια. Μπορεί όμως και να οφείλεται σε συστηματικό

σφάλμα του πειράματος, κάτι που θεωρεί πιθανότερο η ερευνητική ομάδα του Stanford. Η εκτίμηση αυτή

διατυπώθηκε έπειτα από επικοινωνία μαζί τους. Στην περίπτωση που αυτή η ερμηνεία είναι σωστή, εκ-

τιμήσαμε ένα άνω όριο για το πλάτος της αλληλεπίδρασης και αποκλείσαμε το ενδεχόμενο η δύναμη να είναι

βαρυτική. Δοκιμάσαμε να προσαρμόσουμε και άλλες παραμετροποιήσεις στα δεδομένα, όπως πολυωνυμική ή

Yukawa αλλά τα αποτελέσματα ήταν αποτρεπτικά, μιας και το αντίστοιχο σήμα ήταν αμελητέο. Η ερευνητική

ομάδα, που εκτέλεσε το πείραμα, προσάρμοσε στα δεδομένα ένα μοντέλο που αντιστοιχεί σε δυναμικό που

θα μπορούσαν να ακολουθούν τα σωματίδια χαμαιλέοντες.

Σε θεωρητικό επίπεδο αυτές οι αποκλίσεις είναι ενδείξεις για ένα μεγάλο εύρος επεκτάσεων της Γενικής

Θεωρίας της Σχετικότητας όπως θεωρίες f(R), μοντέλα συμπιεσμένων επιπλέον διαστάσεων, συμπαγείς βα-

θμοτανυστικές θεωρίες Brans-Dicke και μη τοπικές θεωρίες βαρύτητας. Οι τρεις πρώτες θεωρίες περιέχουν

αστάθειες. Αντίθετα, οι μη τοπικές θεωρίες βαρύτητας, έχουν αρκετά πλεονεκτήματα μιας και δεν έχουν

αστάθειες ή μοναδικότητες, δεν χρειάζονται την κοσμολογική σταθερά για την ερμηνεία κοσμολογικών

παρατηρήσεων και προκύπτουν με φυσικό τρόπο από το κβαντικό επίπεδο.

Στο κεφάλαιο 6, μελετήσαμε τις επιπτώσεις στη συμπεριφορά των βαρυτικών κυμάτων όταν πλησιάζουν

ένα συμπαγές αστρικό αντικείμενο, όπως μία μελανή οπή ή έναν αστέρα νετρονίων όπου το βαρυτικό πεδίο

είναι ισχυρό. Αρχικά εξαγάγαμε την κυματική εξίσωση, εισάγοντας διαταραχές με την μορφή συναρτήσεων

στην μετρική FRW σε καρτεσιανές συντεταγμένες. Στην περίπτωση αυτή, η διαφορική εξίσωση που έχει ως

λύση την κυματοσυνάρτηση, λύνεται αναλυτικά. Στην συνέχεια, θέλοντας να επεκτείνουμε την ήδη γνωστή

λύση, εισάγαμε την μετρική McVittie που περιγράφει τον καμπύλο χωροχρόνο γύρω από μία μεγάλη μάζα,

στο Νευτώνειο όριό της (ασθενής βαρύτητα, μικρές ταχύτητες). Στην περίπτωση αυτή η κυματική εξίσωση

δεν λύνεται αναλυτικά, αλλά μόνο αριθμητικά. Για να ελέγξουμε την ορθότητα του φορμαλισμού μας λύσαμε

την εξίσωση αυτή απουσία μάζας και διαπιστώσαμε πως είναι ακριβώς ίδια με την γνωστή λύση σε FRW
χωροχρόνο. Αυτή η ταύτιση αποτέλεσε ένα κριτήριο ορθότητας της ανάλυσής μας.

Καθώς το επίπεδο βαρυτικό κύμα πλησιάζει μία μεγάλη μάζα, κάποια από τα χαρακτηριστικά του κύματος

αλλάζουν λόγω της έντονης καμπύλωσης του χωροχρόνου. Συγκεκριμένα, η περίοδος ταλάντωσης αυξάνει

και αυτή η αύξηση είναι αναμενόμενη, καθώς αντιστοιχεί σε ένα γνωστό κοσμολογικό φαινόμενο που ονομάζ-

εται βαρυτική χρονική καθυστέρηση, αλλά είναι η πρώτη φορά που προβλέπεται θεωρητικά σε βαρυτικό κύμα.

Προφανώς η συχνότητα του κύματος μειώνεται μιας και τα βαρυτικά κύματα διαδίδονται με σταθερή ταχύτητα,

ίση με την ταχύτητα του φωτός. Επίσης, το πλάτος ταλάντωσης αυξάνει που σημαίνει πως η ενέργεια που

μεταφέρει το κύμα αυξάνει. Η αύξηση ενέργειας πιθανόν να οφείλεται στην μεταφορά ενέργειας από τον

χωροχρόνο στο κύμα με μηχανισμό που είναι άγνωστος μέχρι σήμερα. Η αύξηση που παρατηρούμε είναι

σχετικά μικρή, αλλά μεγαλώνει με την αύξηση της καμπυλότητας του χωροχρόνου. Ακόμη βρήκαμε πως το

φάσμα συχνοτήτων του κύματος αλλοιώνεται με την παρουσία της μάζας, καθώς συμετέχουν περισσότερο οι



χαμηλές αρμονικές και λιγότερο οι υψηλές στη διαμόρφωση του κύματος, σε σχέση με το κύμα που διαδίδεται

σε κενό χώρο.

Από τα παραπάνω φαινόμενα που περιγράψαμε, εκείνο που μπορούμε να δούμε σε κοσμολογικές παρατη-

ρήσεις είναι οι αλλαγές στο φάσμα συχνοτήτων. Στο ηλιακό μας σύστημα, όσον αφορά την μεταβολή της

περιόδου είναι πολύ μικρή, άρα πολύ δύσκολα μετρήσιμη. Αντίθετα, σε γαλαξιακή κλίμακα, το φαινόμενο

είναι αρκετά πιο ισχυρό, συνεπώς πιο εύκολα ανιχνεύσιμο. Τέλος, στα δεδομένα μας φαίνεται να υπάρχει μία

συσχέτιση μεταξύ της πυκνότητας ενέργειας του κύματος και του πλάτος του κύματος, όπου η πυκνότητα

είναι ανάλογη με το τετράγωνο του πλάτους.

Οι γεωδαισιακές αποτελούν τροχιές σωματιδίων ή φωτονίων υπό την επίδραση μόνο της βαρυτικής αλλη-

λεπίδρασης. Είναι τροχιές που αντιστοιχούν στην μικρότερη χρονική απόσταση δύο σημείων σε έναν

χωροχρόνο. Σε έναν κοσμολογικό χωροχρόνο, που η παράμετρος της καταστατικής εξίσωσης 𝑤 είναι

μικρότερη από −1, αν προσεγγίσουμε το φαινόμενο μη σχετικιστικά, οι γεωδαισιακές τροχιές των σωματιδίων

σε κάποια χρονική στιγμή υφίστανται διάλυση και το σύστημα διασπάται. Το φαινόμενο αυτό είναι γνωστό ως

Μεγάλο Σχίσιμο και όσο μεγαλύτερη είναι η κοσμική δομή σε μάζα και διαστάσεις, τόσο νωρίτερα προβλέ-

πεται να συμβεί το φαινόμενο αυτό. Πρώτα προβλέπεται να διαλυθούν τα σμήνη γαλαξιών, μετά οι γαλαξίες

και στην συνέχεια τα πλανητικά συστήματα.

Στο κεφάλαιο 7, μελετήσαμε το φαινόμενο διαχωρισμού των δέσμιων συστημάτων γύρω από μία μεγάλη

μάζα όπως μαύρη τρύπα, επιβάλλοντας σχετικιστική προσέγγιση. Συγκεκριμένα θεωρήσαμε, όπως είναι

ευρέως αποδεκτό, ότι ένας τέτοιος χωροχρόνος περιγράφεται ακριβέστερα με την μετρική McVittie. Ως

κριτήριο διάσπασης του συστήματος ορίσαμε τη χρονική στιγμή που φτάνει σε μέγεθος αυξημένο κατά 20%
σε σχέση με το αρχικό του ακτινικό μέγεθος. Ο χρόνος αποχωρισμού των συστημάτων εξαρτάται από το

μέγεθός τους, αλλά και από την ταχύτητα περιστροφής.

Αν δύο συστήματα έχουν ίδια γωνιακή ταχύτητα περιστροφής, τότε αυτό που έχει το μεγαλύτερο μέγεθος

θα διασπαστεί πιο γρήγορα. Διαπιστώσαμε πως σε σχέση με την Νευτώνεια προσέγγιση του φαινομένου ο

χρόνος πραγματοποίησης της διάσπασης είναι μικρότερος αν το φαινόμενο μελετηθεί σχετικιστικά. Μάλιστα,

όσο μεγαλύτερο είναι το μέγεθος, τόσο πιο γρήγορα γίνεται ο διαχωρισμός. Για συστήματα που έχουν το ίδιο

μέγεθος, όταν αυξάνει η γωνιακή ταχύτητα περιστροφής, παρατείνεται η σταθερότητα του συστήματος, οπότε

αργεί ο διαχωρισμός. Γενικά, για να είναι ένα σύστημα σταθερό για μεγάλο χρονικό διάστημα θα πρέπει να

έχει μικρό μέγεθος και μεγάλη γωνιακή ταχύτητα περιστροφής. Στο τέλος εκτιμήσαμε για διάφορα κοσμικά

συστήματα, όπως το ηλιακό σύστημα και τον γαλαξία μας, την χρονική διαφορά στην εμφάνιση του διαχωρισ-

μού μεταξύ Νευτώνειας και σχετικιστικής θεώρησης. Εδώ πρέπει να τονίσουμε πως οι χρονικές διαφορές

είναι πολύ μικρές και έχουν ουσιαστικό ενδιαφέρον όταν αναφέρονται σε μεγάλα και εκτενή κοσμολογικά

συστήματα, όπως υπερσμήνη γαλαξιών.

Στο Κεφάλαιο 8, ασχοληθήκαμε με τις τροχιές που ακολουθεί ένα σώμα όταν περιστρέφεται γύρω από

μία μεγάλη μάζα όπου η βαρύτητα είναι ισχυρή, όπως μία μαύρη τρύπα ή έναν αστερα νετρονίων και το οποίο

έχει ιδιοπεριστροφή (σπιν), θεωρώντας ότι ο χωροχρόνος περιγράφεται από την μετρική McVittie στο μέτα-

Νευτώνειο όριο. Η περιστροφή μιας μάζας (που έχει και ιδιοπεριστροφή) γύρω από μία πολύ μεγαλύτερη

περιγράφεται από τις εξισώσεις Mathisson-Papapetrou (MP) και έχει μελετηθεί πλήρως σε χωροχρόνο

Schwarzschild όπως και σε άλλους χωροχρόνους. Το σώμα όταν έχει σπιν δεν κινείται σε γεωδαισιακή

τροχιά, λόγω της επιπλέον δύναμης που προκαλείται από την ύπαρξη του σπιν, αλλά σε μία κοσμική γραμμή.

Λόγω της σύζευξης μεταξύ σπιν και ταχύτητας του σωματιδίου, αυτή η δύναμη μπορεί να είναι ελκτική ή

απωστική, ανάλογα με την φορά περιστροφής του σωματιδίου.

Το σύστημα των MP εξισώσεων έχει άπειρες λύσεις αφού οι άγνωστοι είναι περισσότεροι από τις εξ-

ισώσεις. Για να έχει το σύστημα μοναδική λύση εισάγουμε στο σύστημα μία συμπληρωματική συνθήκη που

προσδιορίζει το κεντροειδές του συστήματος (το σημείο αναφοράς για την μέτρηση του σπιν). Επιλέξαμε

την Τ συνθήκη, η οποία περιγράφει με πιο φυσικό τρόπο το σύστημα και χρησιμοποιείται ευρέως στην βιβ-

λιογραφία. Λόγω αυτής της συνθήκης, το σπιν του σώματος διατηρείται σταθερό σε όλη τη διάρκεια της

κίνησης. Επίσης, κατά την κίνηση του σώματος διατηρείται η συνολική στροφορμή, ενώ θεωρήσαμε πως

η κίνηση πραγματοποιείται στο ισημερινό επίπεδο. Υποθέτοντας πως το περιστρεφόμενο σώμα έχει στρο-

φορμή μόνο σε έναν άξονα, που είναι παράλληλος προς τον άξονα του σπιν, τα αποτελέσματα έδειξαν ότι οι

τροχιές των σωματιδίων εξαρτώνται από τον παράγοντα κοσμικής διαστολής που ακολουθεί το κοσμολογικό

υπόβαθρο, τις τιμές που μπορεί να πάρει το σπιν, την φορά ιδιοπεριστροφής του σώματος (δεξιόστροφη ή



αριστερόστροφη) καθώς και από την ακτίνα του κεντρικού σώματος.

Στην δική μας μελέτη, υιοθετήσαμε την μετρική McVittie στο μέτα-Νευτώνειο όριο και λάβαμε υπόψιν

την διαστολή του Σύμπαντος με διάφορους ρυθμούς. ΄Οταν το Σύμπαν είναι στατικό και το σώμα δεν

έχει σπιν, θα εκτελεί συνεχώς κυκλική τροχιά. ΄Οταν όμως εισάγουμε την ύπαρξη σπιν, τότε οι κυκλικές

τροχιές διαταράσσονται και το σώμα πλησιάζει το κεντρικό σώμα όταν το σπιν είναι ομόρρροπο με την

γωνιακή ταχύτητα περιστροφής ή απομακρύνεται από αυτό όταν το σπιν είναι αντίρροπο από την γωνιακή

ταχύτητα περιστροφής (παραμένοντας δέσμιο του κεντρικού σώματος), γιατί η σύζευξη σπιν και ταχύτητας

δημιουργεί ελκτική ή απωστική δύναμη αντίστοιχα. Αν η ακτίνα της τροχιάς γίνει μικρότερη από τρεις

ακτίνες Schwarzschild που είναι το εσωτερικότερο όριο σταθερής τροχιάς, τότε το σώμα συλλαμβάνεται από

την ισχυρή βαρύτητα του πεδίου και συγχωνεύεται με την μαύρη τρύπα.

Στην περίπτωση που η διαστολή του κοσμικού υποβάθρου είναι επιβραδυνόμενη, το σώμα για μικρές τιμές

του σπιν πλησιάζει το κεντρικό σώμα και συλλαμβάνεται από αυτό, ενώ για μεγαλύτερες τιμές απομακρύνεται.

Τέλος, στην περίπτωση που η διαστολή είναι επιταχυνόμενη όπως το Σύμπαν de Sitter, το περιστρεφόμενο

σώμα σε όλες σχεδόν τις περιπτώσεις που μελετήσαμε απομακρύνεται από το κεντρικό σώμα, έχοντας κυρίως

μεταφορική ταχύτητα, χωρίς να περιστρέφεται σημαντικά. Εξαίρεση αποτελεί η περίπτωση ελκτικής δύναμης

λόγω της σύζευξης του σπιν στην περίπτωση που το σπιν έχει πολύ μεγάλες τιμές. Η ελκτική δύναμη

κυριαρχεί της απωστικής διαστολής και το σώμα οδηγείται στην μαύρη τρύπα. Στο τέλος αυτού του κεφαλαίου

εκτιμήσαμε το χρονικό διάστημα που απαιτείται σε ένα κοσμολογικό σύστημα ώστε να γίνουν αντιληπτά τα

φαινόμενα διαστολής στις τροχιές των περιστρεφόμενων σωματιδίων. Ο χρόνος αυτός μπορεί να είναι από

μερικά χρόνια (ηλιακό σύστημα) μέχρι μερικά εκατομμύρια χρόνια (σμήνος γαλαξιών). Σε περιβάλλον μαύρης

τρύπας ο χρόνος αυτός είναι ακόμη μεγαλύτερος, λόγω της πολύ ισχυρής βαρύτητας.

Στο Κεφάλαιο 9, που αποτελεί και το τελευταίο κεφάλαιο του παρόντος πονήματος, παραθέτουμε τα

σημαντικότερα συμπεράσματα που εξάχθηκαν από την έρευνα που πραγματοποιήθηκε στο πλαίσιο της

παρούσας Διδακτορικής Διατριβής. Επιπλέον παραθέτουμε τις βασικές προοπτικές επέκτασης και εξέλιξης

των υπό θεωριών που μελετήθηκαν, τα οποία ενθαρρύνονται από την υλοποίηση της παρούσας εργασίας,

περιλαμβάνοντας ενδιαφέροντα ανοιχτά θέματα των συναφών αντικειμένων της εκπονηθείσας έρευνας.

Κλείνοντας, στα Παραρτήματα περιέχονται συμπληρωματικές πληροφορίες, απαραίτητες για την πλήρη

κατανόηση των θεμάτων που αναπτύχθηκαν σε αυτό το πόνημα, όπως μερικοί υπολογιστικοί κώδικες, πειραμ-

ατικά δεδομένα, ο τανυστής Riemann και τα σύμβολα Christoffel που απαιτούνται για τον προσδιορισμό των

τροχιών των σωματίων με σπιν. Τέλος, παρατίθεται μία σύγχρονη και εκτεταμένη Βιβλιογραφία που αναφέρε-

ται σε όλα τα θέματα που μελετήσαμε, η οποία αποτέλεσε το βασικό υπόβαθρο καθώς και το κίνητρο της

Διδακτορικής Διατριβής.
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Chapter 1

Introduction

1.1 The first steps of Modern Cosmology
At the beginning of twentieth century, the publication of the theory of General Relativity (GR) by Albert
Einstein putt the foundations of the Modern Cosmology. It is important to underline that, according to
this theory, the gravity is not a property of each mass, but a geometric property of the space. A large
concentration of mass, such as the Earth, significantly distorts space-time in its vicinity. Bodies moving
through a region of distorted spacetime move differently from the way they would have moved in an
undisturbed spacetime. The central ideas of GR have been neatly summarized by the American physicist
John Archibald Wheeler. In his famous phrase, Wheeler said

’Matter tells space how to curve. Space tells matter how to move.’

In contrast, the previous Newtonian theory of gravity, which considers the gravity as an interaction
between the masses, is summarized in the words

’Matter tells matter how to move’

General relativity is a field theory of gravity. Until today, all astronomical and cosmological observations
such as the light bending towards a big mass or the existence of gravitational waves show that the theory
is correct. At its heart there is a set of equations called the Einstein field equations and if we use ’natural’
units with ~ = 𝑐 = 𝑘𝐵 = 1, they have the compact form

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅+ 𝑔𝜇𝜈Λ = 8𝜋𝐺𝑇𝜇𝜈 (1.1)

The Einstein’s tensor 𝐺𝜇𝜈 , which describes the geometry of spacetime, is proportional to the energy
momentum tensor 𝑇𝜇𝜈 that provides the matter distribution at each event in spacetime. The tensor 𝑔𝜇𝜈
denotes the metric of the spacetime, 𝑅𝜇𝜈 stands for the Ricci tensor and 𝑅 is the Ricci scalar. Also, 𝐺 is
the Gravitational constant and Λ is the cosmological constant, first introduced by Einstein. The indices
𝜇, 𝜈 are the coordinates of the spacetime, namely 𝑡, 𝑥, 𝑦, 𝑧 in Cartesian system or 0,1,2,3 respectively.
If in Eq. (1.1), the tensors are diagonal (the non diagonal terms are equal to zero), then only four field
equations remain. Every solution of the system of equations (1.1) potentially is a cosmological model.

In order to calculate for a chosen metric the Ricci tensor and the Ricci scalar for any line element,
one must begin from the Christoffel symbols

Γ𝑎𝑏𝑐 = 1
2𝑔

𝑎𝑑

(︂
𝜕𝑏𝑔𝑑𝑐 + 𝜕𝑐𝑔𝑏𝑑 − 𝜕𝑑𝑔𝑏𝑐

)︂
(1.2)

1



then, one must calculate the components of the Ricci tensor 1

𝑅𝑎𝑏 ≡ 𝑅𝑐𝑎𝑏𝑐 = 𝜕𝑏Γ𝑖𝑎𝑖 − 𝜕𝑖Γ𝑖𝑎𝑏 + Γ𝑗𝑎𝑖Γ
𝑖
𝑗𝑏 − Γ𝑗𝑎𝑏Γ

𝑖
𝑗𝑖 (1.3)

and finally one obtains the Ricci scalar (curvature scalar)

𝑅 ≡ 𝑔𝑎𝑏𝑅𝑎𝑏 = 𝑅𝑎𝑎 (1.4)

which is a construction of the Ricci tensor.
In a homogeneous and isotropic universe, which is filled with a perfect fluid 2 with density 𝜌 and

pressure 𝑃 , we consider the Friedmann-Robertson-Walker (FRW) metric (in spherical coordinates) and
the line element

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(︂

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2
)︂

(1.5)

The non vanishing components of the metric tensor are

𝑔00 = −1, 𝑔11 = 𝑎2(𝑡)
1 − 𝑘𝑟2 , 𝑔22 = 𝑎2(𝑡)𝑟2, 𝑔33 = 𝑎2(𝑡)𝑟2 sin2 𝜃

A very important quantity which is connected with the geometry of the spacetime is the spatial
curvature 𝑘 which determines the shape of the universe. A maximally symmetric space is specified by
just one number (the curvature 𝑘), which is independent of the coordinates. There are three allowable
values for the spatial curvature which correspond to different shape of the universe

1. 𝑘 = −1 which corresponds to an open hyperboloid shape,

2. 𝑘 = 0 which describes a flat universe (i.e. Euclidean space)

3. 𝑘 = +1 for a closed 3-sphere universe

The vast majority of the cosmological observations indicates that, the shape of our universe is flat. Thus,
I adopt this evidence and assume 𝑘 = 0, except the present Chapter, dealing with general Introduction
of Cosmology.

When 𝑘 = ±1, the coefficient of 𝑑𝑟2 in FRW metric (1.5) becomes singular as 𝑟 → 1. Thus, in order
to remove the singularity, it is convenient to introduce a function 𝑟 = 𝑆(𝜒), defined as

𝑆(𝜒) =

⎧⎪⎨⎪⎩
sin𝜒, if 𝑘 = +1,
𝜒, if 𝑘 = 0,
sinh𝜒, if 𝑘 = −1,

(1.6)

In this case, the FRW metric takes the more convenient form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(︂
𝑑𝜒2 + 𝑆2(𝜒)𝑑𝜃2 + 𝑆2(𝜒) sin2 𝜃𝑑𝜑2

)︂
(1.7)

1The Riemann, or curvature tensor is defined as

𝑅𝑑
𝑎𝑏𝑐 = 𝜕𝑏Γ𝑑

𝑎𝑐 − 𝜕𝑐Γ𝑑
𝑎𝑏 + Γ𝑒

𝑎𝑐Γ𝑑
𝑒𝑏 − Γ𝑒

𝑎𝑏Γ𝑑
𝑒𝑐

2A perfect fluid is defined as one for which there are no forces between the particles, and no heat conduction or viscosity
in the inertial rest frame.
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1.1.1 Cosmological Principle
A basic assumption of the theory of GR is the Cosmological Principle, which states that, the universe
is homogeneous and isotropic to a high level of accuracy. Homogeneity demands that all points on a
particular spacelike hypersurface are equivalent, whereas isotropy demands that all directions on the
hypersurface are equivalent for fundamental observers 3. Thus, at any particular time the universe looks
the same from all positions in space at a particular time and all directions in space at any point are
equivalent. The Cosmological Principle

∙ is motivated by extending the Copernican principle to the whole universe

∙ is the simplest principle in order to solve Einstein’s equations

∙ is initially supported by few observations due to limitations in observational instruments

The acceptable theory for the origin of the universe is the Big Bang (a singularity with infinite density
and temperature) which took place before almost 13.7 billion years. The universe started to expand and
the temperature to decrease. The degree of expansion depends on the components of the universe. Today
we know that the universe consists of ordinary (baryonic) visible matter (∼ 5%), dark matter (almost
25%) which is invisible and dark energy ( roughly 70%) whose origin and composition is unknown.

1.2 Geodesics
Geodesic is the trajectories followed by a particle in the absence of any forces, i.e. that experiencing only
the ‘background’ gravitational field of the cosmological fluid. Examples of such particles might include a
projectile shot out of a galaxy or a photon travelling through intergalactic space. When the particle has
some mass the geodesic is called timelike, while for massless particles such as photons, the geodesic is
called null. Also, geodesic is defined as the path of shortest distance between two points, or a line along
which the tangent vector is parallel transported. The tangent vector to a path 𝑥𝜇(𝜆) is defined as 𝑑𝑥𝜇

𝑑𝜆 .
In Newtonian Physics the geodesics are straight lines. Geodesics generalize the notion of a "straight line"
to curved spacetime.

In General Relativity, where generally the spacetime is curved and the line element is

𝑑𝑠2 =
3∑︁

𝜇,𝜈=0
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 (1.8)

the geodesic equations correspond to particle’s motion which interacts only gravitationally. It can be
derived from the minimization of the action as

𝑑2𝑥𝜇

𝑑𝜆2 + Γ𝜇𝛼𝛽
𝑑𝑥𝛼

𝑑𝜆

𝑑𝑥𝛽

𝑑𝜆
= 0 (1.9)

where 𝜆 is a parameter which monotonically increases along the particle’s path. For timelike geodesics, 𝜆
is called affine parameter and it is actually the proper time 𝜏 (the time which is measured by the moving
particle). In that case, the path 𝑥𝜇(𝜏) is the worldline and the tangent vector is the 4-velocity

𝑢𝜇 ≡ 𝑑𝑥𝜇

𝑑𝜏
(1.10)

3An observer is called fundamental when is assumed to have no motion in relation to the overall cosmological fluid. It is
common practice to identify fundamental observers with individual galaxies (that are assumed to be pointlike). However,
we must neglect the small peculiar velocities of real individual galaxies.
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Thus, the worldlines 𝑥𝜇(𝜏) are geodesics and hence can describe particles (observers) moving only under
the influence of gravity. A significant part of my thesis deals with geodesics in an expanding universe
(specifically in McVittie spacetime). It is useful to rewrite the Eq. (1.9) in the form

𝑑𝑢𝜇
𝑑𝜏

= 1
2

(︂
𝜕𝜇𝑔𝑎𝑏

)︂
𝑢𝑎𝑢𝑏 (1.11)

which shows, as expected, that if the metric is independent of a particular coordinate 𝑥𝜇, then 𝑑𝑢𝜇

𝑑𝜏 = 0.
Consequently, the corresponding velocity 𝑢𝜇 is conserved along the geodesic.

1.3 Scale factor and expansion
In 1929, Edwin Hubble discovered that distant galaxies are in fact receding from us and their velocity
increases with distance. In an expanding universe the physical distance 𝑅(𝑡), where 𝑡 is the cosmic time
and the comoving distance 𝑟 (distance without expansion) between two galaxies, are related as

𝑅(𝑡) = 𝑎(𝑡)𝑟 (1.12)

The degree of expansion is determined by the scale factor 𝑎(𝑡). In the absence of any peculiar velocity
which means 𝑟̇ = 0 the differentiation of Eq. (1.12) gives 𝑅̇ = 𝑎̇𝑟, where dot stands for cosmic time
derivative. Since 𝑅̇ is the relative velocity 𝜐 of the galaxies, we conclude that 𝑅̇ = 𝑎̇

𝑎𝑎𝑟 = 𝐻(𝑡)𝑅, where

𝐻(𝑡) =
˙𝑎(𝑡)

𝑎(𝑡) (1.13)

is the Hubble rate. Thus, we derive the Hubble law in the form

𝜐 = 𝐻(𝑡)𝑅 (1.14)

The Hubble law indicates that the relative velocity of celestial objects is proportional to their distance
from us. Also, it implies that the universe started off at high density at some finite time in the past
(prediction for the existence of Big Bang singularity). Edwin Hubble in his work plotted the velocity
of a few decades of nearby galaxies as a function of their distance from us, the corresponding diagram
is called the Hubble diagram (see Fig. 1.1) and constitutes historically a first proof that the universe is
expanding.

1.3.1 Redshift
Another way to observe the expansion of the universe is through the spectroscopy with the aid of Doppler
effect. When a celestial body emits light with wavelength 𝜆𝑒, due to expansion, when this light arrives
to our detectors we observe a wavelength 𝜆𝑜 which is bigger, or in other words red shifted (see Fig. 1.2).
Thus, for any celestial body which emits electromagnetic waves, we define the redshift 𝑧 through the
simple relation

1 + 𝑧 = 𝜆𝑜
𝜆𝑒

= 𝑓𝑒
𝑓𝑜

(1.15)

It is clear that the redshift is a stretching factor. Actually, the redshist expresses the distance of any
celestial body which emits any kind of electromagnetic radiation. When the redshift is bigger, the body
is farther. For an expanding universe the photon is redshifted by an amount 𝑧, for a static universe there
is no frequency shift, while if the universe were contracting, the photon would be blueshifted.
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Figure 1.1: The Hubble diagram which presents the velocities of distant galaxies vs their distance (units
should be 𝑀𝑝𝑐). Solid (dashed) line is the best fit to the filled (open) points which are corrected
(uncorrected) for the sun’s motion. Adopted from [8].

The scale factor is connected with the redshift of the light emitting bodies, atoms or molecules,
through the simple relation

𝑎(𝑡) = 𝑎(𝑡0)
1 + 𝑧

= 1
1 + 𝑧

(1.16)

where 𝑡0 is the present time and for simplicity reasons, we normalize the scale factor setting 𝑎(𝑡0) = 1 by
definition. We can prove the formula (1.16) if we set the distances equally [10], which we will describe
right now. If an emitter sends a photon at time 𝑡𝑒 which is received at time 𝑡𝑜 the distance between
emitter and observer is ∫︁ 𝑡𝑜

𝑡𝑒

𝑑𝑡

𝑎(𝑡)
Now, if the emitter sends a second light pulse at time 𝑡𝑒 + 𝛿𝑡𝑒, which is received at time 𝑡𝑜 + 𝛿𝑡𝑜, then
the second photon travels the same distance as the first, so∫︁ 𝑡𝑜+𝛿𝑡𝑜

𝑡𝑒+𝛿𝑡𝑒

𝑑𝑡

𝑎(𝑡) =
∫︁ 𝑡𝑜

𝑡𝑒

𝑑𝑡

𝑎(𝑡) ⇒

∫︁ 𝑡𝑒

𝑡𝑒+𝛿𝑡𝑒

𝑑𝑡

𝑎(𝑡) +
∫︁ 𝑡𝑜

𝑡𝑒

𝑑𝑡

𝑎(𝑡) +
∫︁ 𝑡𝑜+𝛿𝑡𝑜

𝑡𝑜

𝑑𝑡

𝑎(𝑡) =
∫︁ 𝑡𝑜

𝑡𝑒

𝑑𝑡

𝑎(𝑡) ⇒∫︁ 𝑡𝑜+𝛿𝑡𝑜

𝑡𝑜

𝑑𝑡

𝑎(𝑡) =
∫︁ 𝑡𝑒+𝛿𝑡𝑒

𝑡𝑒

𝑑𝑡

𝑎(𝑡)
Assuming that 𝛿𝑡𝑜 and 𝛿𝑡𝑒 are small, so that 𝑎(𝑡) can be taken as constant in both integrals, we have

1
𝑎(𝑡𝑜)

∫︁ 𝑡𝑜+𝛿𝑡𝑜

𝑡𝑜

𝑑𝑡 = 1
𝑎(𝑡𝑒)

∫︁ 𝑡𝑒+𝛿𝑡𝑒

𝑡𝑒

𝑑𝑡 ⇒ 𝛿𝑡𝑜
𝑎(𝑡𝑜)

= 𝛿𝑡𝑒
𝑎(𝑡𝑒)

Considering the successive pulses to be wavecrests of an electromagnetic wave, we conclude that

1 + 𝑧 = 𝑓𝑒
𝑓𝑜

= 𝛿𝑡𝑜
𝛿𝑡𝑒

= 𝑎(𝑡𝑜)
𝑎(𝑡𝑒)

(1.17)
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Figure 1.2: As universe expands, the spacetime which is presented as a balloon, stretches and the density
goes down. Also, the wavelength of light increases and hence it is redshifted. Note that there is no single
point on the balloon’s surface that is the “center”, but rather all points see the same thing: all the other
points recede from them, with the far distant points receding faster. Adopted from [9].

The original Hubble diagram contains only nearby galaxies. In order to check the Hubble law at
bigger distances, we must extend the Hubble diagram at bigger redshifts. For this reason, we use data
from observations of type Ia Supernova. Type Ia Supernovae are known as standard candles due to their
same intrinsic brightness. If two Supernova Ia have different brightness, this means that they are located
at different distances. Also, the extension of the Hubble diagram is necessary in order to estimate with
great precision the present value of Hubble rate 𝐻0.

Since the redshift is an observable quantity, it is useful to derive general expressions for the look-back
time interval 𝑑𝑡 = 𝑡0 − 𝑡 (𝑡 is the time of emission from a galaxy or a particle and 𝑡0 the time of arrival).
First, we calculate the time interval 𝑑𝑡 as a function of interval 𝑑𝑧. We have,

𝑑𝑧 = 𝑑(1 + 𝑧) = 𝑑

(︂
1
𝑎(𝑡)

)︂
= − 𝑎̇(𝑡)

𝑎2(𝑡)𝑑𝑡 = −(1 + 𝑧)𝐻(𝑧)𝑑𝑡 ⇒

𝑑𝑡 = − 𝑑𝑧

(1 + 𝑧)𝐻(𝑧) (1.18)

Since 𝑡0 corresponds to 𝑧 = 0 and 𝑡 to 𝑧, we can write the look-back time as

𝑡0 − 𝑡 =
∫︁ 𝑡0

𝑡

𝑑𝑡 =
∫︁ 𝑧

0

𝑑𝑧

(1 + 𝑧)𝐻(𝑧) (1.19)

and the 𝜒 coordinate of the galaxy, which is a function of the redshift 𝑧 as

𝜒 =
∫︁ 𝑡0

𝑡

𝑑𝑡

𝑎(𝑡) =
∫︁ 𝑧

0
(1 + 𝑧) 𝑑𝑧

(1 + 𝑧)𝐻(𝑧) ⇒ 𝜒 =
∫︁ 𝑧

0

𝑑𝑧

𝐻(𝑧) (1.20)

The Cosmic Microwave Background (CMB) radiation is the remnant of the Big Bang, the point
which our universe began to expand. This radiation is (to a very high degree of accuracy) uniformly
distributed throughout the universe and has a blackbody form. The energy of the photons is proportional
to temperature (𝐸 ∼ 𝑘𝐵𝑇 ) and inversely proportional to wavelength (𝐸 = ℎ𝑐

𝜆 ). If we equate these energies
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and take into account the redshift of the wavelength from Eq. (1.15) we conclude that the temperature
of the plasma is inversely proportional to the scale factor as

𝑇 (𝑡) = 𝑇0

𝑎(𝑡) = (1 + 𝑧)𝑇0 (1.21)

where 𝑇0 ≃ 2.725𝐾 is the present temperature of the CMB radiation. The Planck missions include
observations of temperature and polarization anisotropies of the CMB radiation. The latest estimation
[12] for the present value 𝐻0 ≡ 𝐻(𝑡0) of the Hubble rate is

𝐻0 = (67.8 ± 0.9) 𝐾𝑚 𝑠𝑒𝑐−1 𝑀𝑝𝑐−1 (1.22)
We must notice that as results from (1.14), the Hubble ‘constant’ has the dimensions of inverse time. For
this reason, the quantity 1/𝐻0 gives the age of the universe within a factor of order unity.

1.3.2 Energy-momentum tensor
The dynamics of the spacetime geometry is characterized entirely by the scale factor 𝑎(𝑡), which can
be determined if we solve the gravitational field equations in the presence of matter. In order to solve
the equations (1.1), we need a model for the energy–momentum tensor 𝑇𝜇𝜈 of the matter that fills the
universe. We shall consider that this matter is a perfect fluid, which is characterized at each point by
its density 𝜌 and the pressure 𝑃 . In this formulation the energy momentum tensor 𝑇𝜇𝜈 is given by the
formula

𝑇𝜇𝜈 = (𝜌+ 𝑃 )𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 (1.23)
The density 𝜌 and pressure 𝑃 must be functions of cosmic time 𝑡 only, so that the solutions will describe
a homogeneous and isotropic universe.

We adopt the FRW metric (1.5) with comoving coordinates (𝑡, 𝑟, 𝜃, 𝜑), in order to simplify the required
algebra. The 4-velocity of the cosmic fluid is now

[𝑢𝜇] = (−1, 0, 0, 0) (1.24)
The non-vanishing components of the Ricci tensor are

𝑅𝑡𝑡 = −3𝑎̈
𝑎

𝑅𝑟𝑟 = 𝑎𝑎̈+ 2𝑎̇2 + 2𝑘
1 − 𝑘𝑟2

𝑅𝜃𝜃 = (𝑎𝑎̈+ 2𝑎̇2 + 2𝑘)𝑟2

𝑅𝜑𝜑 = (𝑎𝑎̈+ 2𝑎̇2 + 2𝑘)𝑟2 sin2 𝜃

while the Ricci scalar 𝑅 reads
𝑅 = 6

(︂
𝑎̈

𝑎
+ 𝑎̇2

𝑎2 + 𝑘

𝑎2

)︂
Combining these expressions with those for the components of the energy momentum tensor, we

expect to derive four equations (𝜇 = 𝜈 = 𝑡, 𝑟, 𝜃, 𝜑). Nevertheless, due to the homogeneity and isotropy of
the FRW metric, the spatial equations are equivalent and thus the extracted equations are

𝑎̇2

𝑎2 = 8𝜋𝐺
3 𝜌− 𝑘

𝑎2 + 1
3Λ (1.25)

and
𝑎̈

𝑎
= −4𝜋𝐺

3

(︂
𝜌+ 3𝑃

)︂
+ 1

3Λ (1.26)

These differential equations are known as the Friedmann–Lemaitre equations and their solution is the
time evolution of the scale factor 𝑎(𝑡). If we set Λ = 0, they are often called the Friedmann equations,
since in the Friedmann cosmological model the cosmological term is absent.
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1.3.3 Cosmological parameters
It is common practice to rewrite the above equations (1.25) and (1.26) in terms of the Hubble rate and
its first derivative with respect to coordinate time. Thus, the Friedmann equation (1.25), which defines
the way that the energy of the universe determines the rhythm of expansion takes the form

𝐻2 = 8𝜋𝐺
3 𝜌− 𝑘

𝑎2 (1.27)

while the Friedmann acceleration equation (1.26) becomes

𝐻̇ +𝐻2 = −4𝜋𝐺
3

(︂
𝜌+ 3𝑃

)︂
(1.28)

The above equations (1.27) and (1.28) are independent. The Friedmann equation can be derived
from the 00 (or tt) component of the Einstein equations (1.1) as we saw above, or by the fundamental
Newtonian gravity.

We consider a spherical distribution mass 𝑀 where the fundamental law of gravity is

𝑑2𝑅

𝑑𝑡2
= 𝐺𝑀

𝑅2 (1.29)

with 𝑅(𝑡) = 𝑎(𝑡)𝑟 and 𝑀 = 4𝜋
3 𝑅

3𝜌. By replacing these quantities in Eq. (1.29) we derive the Eq. (1.27)
for a flat universe (𝑘 = 0). Also, the acceleration equation can be derived from the Friedmann equation
if we use the trace of Einstein’s field equations during the procedure.

The energy density 𝜌, which appears in the Friedmann equations, is composed of a matter part 𝜌𝑚,
a radiation part 𝜌𝑟 and an energy density 𝜌Λ ≡ Λ

8𝜋𝐺 due to the presence of the cosmological constant Λ,
which was first introduced by Einstein in the theory of GR. If the above energy density components do
not interact 4 except through their mutual gravitation, the multicomponent fluid can itself be modelled
as a single perfect fluid with density

𝜌 =
∑︁
𝑖

𝜌𝑖 = 𝜌𝑟 + 𝜌𝑚 + 𝜌Λ (1.30)

and pressure
𝑃 =

∑︁
𝑖

𝑃𝑖 (1.31)

The matter density 𝜌𝑚(𝑡) consists of ordinary baryonic matter (such as protons and neutrons) with
density 𝜌𝑏(𝑡) and invisible dark matter 𝜌𝑑𝑚(𝑡), which interacts only electromagnetically and very weakly.
Dark matter may be relativistic and is called hot dark matter (HDM), or non-relativistic and it is called
cold dark matter (CDM). Thus, the sum

𝜌𝑚(𝑡) = 𝜌𝑏(𝑡) + 𝜌𝑑𝑚(𝑡)

represents the total matter density at any particular cosmic time 𝑡. Since matter density represents
energy per volume and the volume is proportional to 𝑅3, or equivalently to 𝑎3(𝑡), the matter density in
terms of the redshift scales as

𝜌𝑚(𝑡) = 𝜌0𝑚

(︂
1 + 𝑧

)︂3
(1.32)

where 𝜌0𝑚 = 𝜌𝑚(𝑡0) is the present value of the matter density (𝑧 = 0). It is clear that the matter density
at earlier times was smaller and as the time evolves it gets bigger.

4although matter and radiation did interact in the early universe, this is a reasonable approximation.
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The radiation energy consists of photons which mainly make up the cosmic microwave background
but also other particles with very small or zero rest masses, for example neutrinos, which they move
relativistically today. The sum of the photon 𝜌𝛾(𝑡) and neutrino 𝜌𝜈(𝑡) energy density contributions
represents the total radiation density in the universe at some cosmic time 𝑡

𝜌𝑟(𝑡) = 𝜌𝛾(𝑡) + 𝜌𝜈(𝑡)

The energy of the photons is proportional to their temperature (𝐸 ∼ 𝑘𝐵𝑇 ). Since temperature is
inversely proportional to the scale factor (see Eq. (1.21)), the radiation density in terms of the redshift
𝑧 scales as

𝜌𝑟(𝑡) = 𝜌0𝑟

(︂
1 + 𝑧

)︂4
(1.33)

where 𝜌0𝑟 = 𝜌𝑟(𝑡0) is the present value of the radiation density. If we take into account the Eq. (1.21),
it is easy to conclude that the radiation density is proportional to 𝑇 4 (𝜌𝑟(𝑡) ∝ 𝑇 4) from which we derive
that the universe must have not only been denser in the past, but also ‘hotter’.

The last, but not least component of the universe is the Dark Energy, which is suggested from
observations from distant supernovae. The modern interpretation of Λ is in terms of the energy density
of the vacuum, which may also be modelled as a perfect fluid with negative pressure. With a great
possibility, dark energy is constant with time, that’s why we set 𝜌Λ0 = 𝜌Λ = Λ

8𝜋𝐺 . Taking into account
the above consideration, the Eq. (1.30) takes the form

𝜌 = 𝜌Λ + 𝜌0𝑚

𝑎3 + 𝜌0𝑟

𝑎4 (1.34)

From expression (1.34) it is clear that the relative contributions of matter, radiation and the vacuum
to the total density vary as the universe evolves. During the expansion of the universe, the radiation
energy density decreases more quickly than matter. Due to this reason, after some cosmological time,
the matter becomes the dominant component. The epoch which radiation and matter density were equal
is called recombination epoch. Finally, if the universe continues to expand, then the matter density dies
away and the vacuum ultimately dominates the energy density.

From the Friedmann equation (1.27) we can define the critical density 𝜌𝑐𝑟𝑖𝑡 as

𝜌𝑐𝑟𝑖𝑡(𝑡) = 3𝐻2(𝑡)
8𝜋𝐺 (1.35)

which is the required energy density for a flat universe. Generally, critical density changes with time.
However, it is common to define 𝜌𝑐𝑟𝑖𝑡 to be a constant, because it evolves negligible with time. The
present value of the critical density is

𝜌𝑐𝑟𝑖𝑡,0 = 3𝐻2
0

8𝜋𝐺 ≈ 9 × 10−27𝐾𝑔/𝑚3

and determines the shape of the Universe. For example, if the present value of the matter density is equal
to the critical density (𝜌0 = 𝜌𝑐𝑟𝑖𝑡,0), the spacetime is flat. Most of the cosmological observations converge
to this scenario. Nevertheless, the present critical density corresponds to 𝜌𝑐𝑟𝑖𝑡,0 ≈ 5.5𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑚3, which
is extremely low by laboratory standards.

It is common and useful in cosmology to express the energy densities in dimensionless quantities,
which are usually called density parameters and are defined as

Ω𝑖(𝑡) ≡ 8𝜋𝐺
3𝐻2(𝑡)𝜌𝑖(𝑡) (1.36)

Also, the density parameters Ω𝑖 can be derived if we divide each energy density with the critical density.
Thus, for the dark energy we have ΩΛ = 𝜌Λ

𝜌𝑐𝑟𝑖𝑡
, for the matter component Ω𝑚 = 𝜌𝑚

𝜌𝑐𝑟𝑖𝑡
, while for the
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radiation Ω𝑟 = 𝜌𝑟

𝜌𝑐𝑟𝑖𝑡
. The total density parameter Ω0 is defined as Ω0 = 𝜌

𝜌𝑐𝑟𝑖𝑡
and thus the Eq. (1.30) is

modified as
Ω0 = ΩΛ + Ω𝑚 + Ω𝑟 (1.37)

The entire history of the universe is determined by a few cosmological parameters. If we specify these
parameters at some particular cosmic time, then we can determine the scale factor 𝑎(𝑡) at all cosmic
times. The best naturally choice is this time to be the present time and the needed parameters are the
below energy densities

𝜌0𝑚, 𝜌0𝑟 and 𝜌0Λ

or equivalently the energy parameters and the Hubble rate

Ω0𝑚, Ω0𝑟, Ω0Λ and 𝐻0 (1.38)

The density parameter of each component is estimated by cosmological observations and the present
acceptable rate for the radiation is Ω𝑟 ≈ 5 × 10−5, for the baryonic and dark matter Ω𝑚 ≈ 0.3, for the
dark energy ΩΛ ≈ 0.7, while the Hubble rate is 𝐻0 ≈ 70 𝑘𝑚 𝑠𝑒𝑐−1 𝑀𝑝𝑐−1 or 𝐻0 ≈ 2.2 × 10−18 𝑠𝑒𝑐−1.
Also, cosmological observations suggest that the present density parameter of the baryonic matter is
Ω0𝑏 ≈ 0.05, of the dark matter is Ω0𝑑𝑚 ≈ 0.25, while of the neutrinos is Ω0𝜈 ≈ 0. For determining the
overall expansion history of the universe however, only the quantities (1.38) need to be specified.

Figure 1.3: The possible rates of the spatial curvatures of the universe. Positive curvature (top), negative
curvature (center), and a flat, zero-curvature Universe (bottom) correspond to different evolution of the
universe (recollapsing, expanding forever, and a critical Universe, respectively), but also lead to different
geometries, which can be measured. Adopted from [9].

In addition, we can express the total energy parameter Ω𝑖 through the Friedmann equation (1.27).
Dividing by 𝐻2 we find that

Ω𝑚 + Ω𝑟 + ΩΛ − 𝑘

𝑎2𝐻2 = 1 (1.39)

where, for notational simplicity we have dropped the explicit time dependence of the variables. It is clear
that the last term on the left hand side is an energy density parameter, which is known as the curvature
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density parameter Ω𝑘(𝑡)
Ω𝑘(𝑡) ≡ − 𝑘

𝑎2𝐻2 (1.40)

Consequently, the Eq. (1.39) becomes

Ω𝑚 + Ω𝑟 + ΩΛ + Ω𝑘 = 1 (1.41)

and with the aid of Eq. (1.37) it is easy to conclude that

Ω0 = 1 − Ω𝑘

It should be noted that Ω𝑘 is positive in cosmological models with negative spatial curvature. The
parameters Ω𝑚 and Ω𝑟 are always positive, while ΩΛ may be positive or negative (it depends on the sign
of Λ). Also, the sum Ω𝑚 + Ω𝑟 + ΩΛ cannot change sign, which means that the universe cannot evolve
from one form of the FRW geometry to another. It will be closed or open or flat throughout the cosmic
time. The universe has, in the entire time, the same sign of curvature. For the geometry of the universe,
we distinguish the following cases

Ω𝑚 + Ω𝑟 + ΩΛ > 1 ⇔ 𝑘 = +1 ⇔ closed universe

Ω𝑚 + Ω𝑟 + ΩΛ < 1 ⇔ 𝑘 = −1 ⇔ open universe

Ω𝑚 + Ω𝑟 + ΩΛ = 1 ⇔ 𝑘 = 0 ⇔ flat universe

as someone can notice in Fig. 1.3.
These three cases correspond to three different shapes for the fabric of spacetime and determines

when the gravity dominates expansion and when expansion dominates gravity. The first case, where
gravitation wins and the universe recollapses in a Big Crunch, corresponds to a closed universe with
positive curvature, similar to the surface of a sphere. The second case, where the expansion wins and
continues forever, culminating in a Big Freeze, corresponds to an open universe with negative curvature,
similar to the surface of a saddle, which curves downwards along a horse’s flanks but upwards along a
horse’s spine. And the final case, the critical, or “Goldilocks” case, corresponds to a flat universe, with
exactly zero curvature.

1.3.4 Conservation of energy
The conservation of energy is a general principle which is valid in every field of Physics. In General
Relativity, it is expressed through the zeroing of the covariant derivative of the energy momentum tensor
𝑇𝜇𝜈 . Assuming energy–momentum tensor conservation, the covariant derivative must be equal to zero,
namely

𝑇 𝜈𝜇;𝜈 = 0

From this formula it is easy to obtain through the time component, the continuity equation

𝜌̇+ 3𝐻
(︀
𝜌+ 𝑃

)︀
= 0 (1.42)

We can trivially obtain the condition for energy and momentum conservation in arbitrary coordinates
replacing 𝜕𝜇 by ∇𝜇, so we conclude that

∇𝜇𝑇
𝜇𝜈 = 0 (1.43)

If we replace the energy momentum tensor (1.23), the equation (1.43) gives

∇𝜇(𝜌𝑢𝜇) + 𝑃∇𝜇𝑢
𝜇 = 0 ⇒

11



(𝜕𝜇𝜌)𝑢𝜇 + (𝜌+ 𝑃 )(𝜕𝜇𝑢𝜇 + Γ𝜇𝜈𝜇𝑢𝜈) = 0

Since the density is a function of time alone, only the value 𝜇 = 0 is acceptable and we end up in the
continuity equation (1.42).

Although, in Minkowski spacetime Eq. (1.43) represents the conservation of energy and momentum,
in a curved spacetime the situation is quite different. Energy and momentum of the matter alone is not
conserved. In this case, Eq. (1.43) represents the equation of motion of the matter under the influence
of the gravitational field.

Moreover, we can prove the density functions through the energy momentum tensor. Since we are
assuming that the fluid components are non-interacting, conservation of energy and momentum requires
that the condition

∇𝜇(𝑇𝜇𝜈)𝑖 = 0

holds separately for each component. If the equation of state is 𝑤𝑖 = 𝑃𝑖/𝜌𝑖 for each component, the
continuity equation gives

𝜌𝑖 ∝ 𝑎−3(1+𝑤𝑖)

Setting the values of 𝑤, we can find each density component as a function of the scale factor, or the
redshift 𝑧.

1.3.5 Equation of state
The isotropic pressure and the energy density are the only variables of a perfect fluid which fills the
spacetime and they are connected through the equation of state

𝑃 = 𝑤𝜌 (1.44)

where 𝑤 is constant 5 and characteristic for different cosmic fluids. Some representative values of the
parameter 𝑤 are the following:

∙ 𝑤 = −1, for cosmological constant Λ (dark energy), or vacuum energy

∙ 𝑤 = − 2
3 , for domain walls which are a class of topological defects

∙ 𝑤 = − 1
3 , for cosmic stings which are another class of defects or ’curvature’

∙ 𝑤 = 0, for pressureless dust (a set of massive particles with negligible relative velocities)

∙ 𝑤 = 1
3 , for radiation, or relativistic matter

∙ 𝑤 = 1, for stiff fluid

In this chapter, we will refer to quintessence models where −1 < 𝑤 < −1/3 and phantom cosmological
models with 𝑤 < −1.

For a universe which is dominated by a single form of perfect fluid energy, where 𝑤 is constant, the
speed of sound 𝑐𝑠 in the fluid is defined through the formula 𝑐𝑠 =

√︁
𝜕𝑃
𝜕𝜌 =

√
𝑤. In many cases (𝑤 < 0),

the sound speed becomes imaginary. This effect may exist only on small scales and may not affect the
large scale nature of the universe. Also, in phantom cosmologies a phenomenological problem occurs, the
speed of sound is unphysically greater than the speed of light.

5In more exotic cosmological models one sometimes allows 𝑤 to be a function of redshift 𝑧 such as the Chevallier-Polarski-
Linder (CPL) parametrization

𝑤 = 𝑤0 + 𝑤𝑎
𝑧

1 + 𝑧

where 𝑤0 and 𝑤𝑎 are parameters which must be determined from cosmological data.
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1.3.6 Evolution of the scale factor
The system of equations (1.27), (1.28) and (1.42) implies three unknown variables (a(t), 𝜌 and P), but
these equations are not all linearly independent, just two of them. The system, in order to give a physical
solution, closes with the equation of state (1.44). As a first step, it is easy to solve the Eq. (1.42) which
determines the energy density as a function of time. When 𝑤 ̸= 1, the result is

𝜌(𝑡) = 𝜌*𝑎(𝑡)−3(1+𝑤) (1.45)

If 𝑤 = −1, which corresponds to the de Sitter model (we will describe this model below), the energy
density scales as

𝜌(𝑡) = 𝜌**𝑒
𝐻𝑡 (1.46)

with 𝐻 =
√︁

Λ
3 . The quantities 𝜌* and 𝜌** are constants of integration. From the Friedmann equation

(1.27), it is easy to derive the scale factor as a function of time and of the parameter 𝑤𝑖

𝑎(𝑡) = ±
(︂

3
2(1 + 𝑤𝑖)

√︀
Ω0𝑖

)︂ 2
3(1+𝑤𝑖)

𝑡
2

3(1+𝑤𝑖) = 𝑎*𝑡
𝛼 (1.47)

where the plus and minus signs correspond to the Big Bang and Big Crunch respectively, 𝛼 = 2
3(1+𝑤𝑖)

and 𝑎* = ±
(︁

3
2 (1 + 𝑤𝑖)

√
Ω0𝑖

)︁ 2
3(1+𝑤𝑖) .

1.3.7 Observation of Expansion
Soon after the expansion of the universe was firmly established, observational cosmologists were already
trying to detect a modification of the expansion speed as a function of redshift. They were so confident
that the expansion had to decelerate due to gravitational interaction of galaxies that they introduced
the so-called deceleration parameter 𝑞, which thought to be positive. The expansion of the universe is
said to be "accelerating" if 𝑎̈ > 0 (recent measurements suggest that), and in this case the deceleration
parameter will be negative. The deceleration parameter is defined as [13]

𝑞(𝑧) ≡ − 𝑎̈𝑎

𝑎̇2 = 1
2
∑︁
𝑖

Ω𝑖(𝑧)
(︂

1 + 3𝑤𝑖(𝑧)
)︂

(1.48)

where Ω𝑖(𝑧) is the fraction of critical density of component 𝑖 at redshift 𝑧 and 𝑤𝑖(𝑧) = 𝑃𝑖(𝑧)
𝜌𝑖(𝑧) the equation

of state of component 𝑖 at redshift 𝑧.
With the aid of equation of state (1.44) we write the Eq. (1.28) in the form

𝑎̈

𝑎
= −4𝜋𝐺

3
(︀
1 + 3𝑤

)︀
𝜌

and the Eq. (1.48) can be rewritten as

𝑞 = 1
2(1 + 3𝑤)

(︂
1 + 𝑘

𝑎2𝐻2

)︂
(1.49)

For some time, the main cosmological parameters accessible to measurement were the deceleration
parameter 𝑞 and the present value of the Hubble rate 𝐻0. Nowadays, one prefers to describe the variation
of the expansion of the universe in terms of the energy density of its constituents and their equation of
state. First expansion tests involved measuring brightness of galaxies, but astronomers started looking
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for a better standard candle because the brightness of galaxies evolves quickly. These standard candles
are the supernova Ia, which have almost the same brightness and they are a pure geometrical test of
expansion.

The deceleration parameter can be extracted in terms of the density parameters Ω𝑖, from Eq. (1.48).
We consider the corresponding parameter 𝑤 for each component of the universe and thus,

𝑞 = 1
2

(︂
Ω𝑚(1 + 3 × 0) + Ω𝑟(1 + 31

3) + ΩΛ(1 + 3(−1))
)︂

𝑞 = 1
2

(︂
Ω𝑚 + 2Ω𝑟 − 2ΩΛ

)︂
(1.50)

where, the density parameters as a function of cosmic time are

Ω𝑖 = Ω0𝑖

(︂
𝐻0

𝐻

)︂2
𝑎−3(1+𝑤) (1.51)

Generally, this equation holds for matter, radiation and vacuum. In conclusion, the Eq. (1.50) and the
Hubble rate as a function of the scale factor 𝑎(𝑡)

𝐻(𝑎) = 𝐻0
√︀

Ω0𝑚𝑎−3 + Ω0𝑟𝑎−4 + Ω0Λ + Ω0𝑘𝑎−2 (1.52)

or a function of the redshift 𝑧

𝐻(𝑧) = 𝐻0
√︀

Ω0𝑚(1 + 𝑧)3 + Ω0𝑟(1 + 𝑧)4 + Ω0Λ + Ω0𝑘(1 + 𝑧)2 (1.53)

are important field equations for the investigation of the universe.

1.3.8 Evolution of the density parameters
Although we usually consider that the energy parameters are stable, it is clear from Eq. (1.36) that they
evolve with time. Thus, the time derivative of the energy densities is

Ω̇𝑖 = 8𝜋𝐺
3𝐻2

(︂
𝜌̇𝑖 − 2𝐻̇

𝐻
𝜌𝑖

)︂
Then, with the aid of energy conservation equation, we substitute the term 𝜌̇𝑖, while we replace the
fraction of the last term through the deceleration parameter as

𝐻̇

𝐻2 = 𝑎𝑎̈

𝑎̇2 − 1 = −𝑞 − 1

and the time derivative Ω̇𝑖 reads

Ω̇𝑖 = −Ω𝑖𝐻
(︂

3 + 3𝑤𝑖 − 2(𝑞 + 1)
)︂

Finally, using Eq. (1.50) we derive the final differential equation

Ω̇𝑖 = Ω𝑖𝐻
(︂

Ω𝑚 + 2Ω𝑟 − 2ΩΛ − 1 − 3𝑤𝑖
)︂

(1.54)

for 𝑖 = 𝑚, 𝑟,Λ. For example, in the case of matter, Eq. (1.54) reads

Ω̇𝑚 = Ω𝑚𝐻
(︂

Ω𝑚 + 2Ω𝑟 − 2ΩΛ − 1
)︂
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1.3.9 Evolution of the spatial curvature
The curvature density parameter is a function of time (1.39), even if we usually consider it to be constant.
The time derivative Ω̇𝑘 can be easily derived from the Eq. (1.39) as

Ω̇𝑘 = 2Ω𝑘𝐻𝑞 = Ω𝑘𝐻
(︂

Ω𝑚 + 2Ω𝑟 − 2ΩΛ

)︂
(1.55)

We must distinguish the cases with ΩΛ = 0 and ΩΛ ̸= 0. The first case refers to the absence of the
cosmological term (the Friedmann models). In this case, the right hand side of Eq. (1.55) is always
positive, which means that Ω𝑘 grows with time. In early cosmic time, if Ω𝑘 is not equal to zero, then the
spatial curvature evolves away from the flat universe. In second case, the cosmological term is present
(Lemaitre models) and the behaviour of Ω𝑘 is very different. The term 2ΩΛ dominates at some cosmic
time and Ω𝑘 tends to zero, indicating flat geometry. This is a more interesting case than the first, since
our universe is filled with vacuum energy (Λ > 0) which can give an explanation why the universe is close
to spatially flat at the present epoch.

It is more convenient to derive the curvature density as a function of the redshift 𝑧, because the
cosmological observations often include the redshift of the celestial object. From Eq. (1.39) we have that
Ω0𝑘 = − 𝑘

𝐻2
0

and if we replace the parameter 𝑘 in Eq. (1.39) we find that

Ω𝑘(𝑧) =
(︂

(1 + 𝑧)𝐻0

𝐻(𝑧)

)︂2
Ω0𝑘 (1.56)

where 𝐻(𝑧) is given by Eq. (1.53). The final form which describes the evolution of the curvature density
parameter in terms of redshift 𝑧 and the current energy density parameters Ω0𝑖 is

Ω𝑘(𝑧) = Ω0𝑘

Ω0𝑚(1 + 𝑧) + Ω0𝑟(1 + 𝑧)2 + Ω0Λ(1 + 𝑧)−2 + Ω0𝑘
(1.57)

In the distant past or at high redshift, since the denominator of Eq. (1.57) gets to infinity, Ω𝑘(𝑧) was
almost equal to zero with small deviations. Modern cosmological measurements determine the value of
the curvature density parameter in the range

−0.5 < Ω0𝑘 < 0.5

which means that at very early epochs Ω𝑘 must have been very finely tuned to near zero. Generally, some
of the initial conditions of the universe appear to be fine-tuned to very ’special’ values and that small
deviations from these values would have extreme effects on the appearance of the universe at the current
time. This fine tuning of the initial conditions of the universe constitutes the famous flatness problem in
cosmology (how the initial curvature density parameter came to be so closely fine-tuned to this ’special’
value;) and there has not been a solution within standard cosmological models. The problem was first
mentioned by Robert Dicke in 1969. The most commonly accepted solution among cosmologists is cosmic
inflation, the idea that the universe went through a brief period of extremely rapid expansion in the first
fraction of a second after the Big Bang.

1.3.10 Basic cosmological models
The general dynamical behaviour of the universe and the spatial geometry can be determined by the
field equations (1.50) and (1.52) for any set of the cosmological parameters Ω0𝑚, Ω0𝑟 and Ω0Λ. The
observations suggest that the radiation density is significantly smaller than the matter and vacuum
densities. It is therefore natural to neglect the radiation density Ω0𝑟 so, we parametrise the universe
in terms of Ω0𝑚 and Ω0Λ, since we can substitute Ω0𝑘 from Eq. (1.41). In Fig. 1.4 we summarize the
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Figure 1.4: The parameter space (Ω0𝑚,Ω0Λ) describes the dynamic of the universe for any given present
value of the parameters Ω0𝑚 and Ω0Λ. The circle is centred on the spatially flat model (0.3,0.7), consistent
with recent cosmological observations and excludes the possibility of a zero cosmological constant Λ at
high significance. Adopted from [10].

properties of FRW universes for any given value of Ω0𝑚 and Ω0Λ as a function of its position in parameter
space (Ω0𝑚,Ω0Λ). These universes are known as Lemaitre models.

As a next step, we aim to explain how we can determine the dividing lines between the various regions
of Fig. 1.4. This may be realized through the Eqs. (1.41), (1.50) and (1.52).

∙ The ‘open–closed’ line can be derived from Eq. (1.41) if we set Ω0𝑘 equal to zero. We end up in
the linear relationship

Ω0Λ = 1 − Ω0𝑚

which is plotted in Fig. 1.4 (the straight line with negative slope).

∙ The ‘accelerating–decelerating’ line can be derived from Eq. (1.50) if we erase the deceleration
parameter 𝑞 at the present cosmic time. We find that

Ω0Λ = 1
2Ω0𝑚

which describes a proportional relationship between Ω0Λ and Ω0𝑚. The present energy destiny
parameter is half of the present matter density parameter. Along the line, the acceleration is equal
to zero.

∙ The ‘expand-forever–recollapse’ line and the ‘big-bang–no-big-bang’ line can be derived from Eq.
(1.52) with a more complicated way, where we must distinguish the following cases.
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1. Ω0Λ < 0
In this case the deceleration parameter 𝑞 of Eq. (1.50) is always positive which means that the
𝑎(𝑡) graph is always convex, because 𝑎̈ < 0. Since at the present epoch we observe redshifts
which correspond to 𝑎̇ > 0, we conclude that the universe started with a big bang at 𝑎 = 0.
As the universe expands the term ΩΛ dominates on the right hand side of Eq. (1.50) and the
deceleration parameter takes the approximate form 𝑞 ≃ −ΩΛ. Since 𝑎̈ doesn’t tend to zero,
the universe must eventually recollapse in a Big Crunch singularity as 𝑎 → 0 once more.

2. Ω0Λ = 0
In this case there is a single turning point for which 𝐻(𝑎) = 0 at some cosmic time 𝑡. At this
point the scale factor becomes

𝑎* = Ω0𝑚

Ω0𝑚 − 1
which is not physically meaningful when Ω0𝑚 < 1, since 𝑎(𝑡) is negative. Therefore, over this
range, the ‘expand-forever–recollapse’ line is simply given by Ω0Λ = 0.

3. Ω0Λ > 0
In this case the detection of the turning point can be determined if we require 𝐻(𝑎) = 0 and
𝐻 ′(𝑎) = 0. There is a single positive turning point at

𝑎* =
(︂

Ω0𝑚

2Ω0Λ

)︂1/3

which may be bigger or less that 1. Since the universe is expanding, if 𝑎* < 1 it corresponds
to a turning point in the past (i.e. no big bang) whereas 𝑎* > 1 corresponds to a turning point
in the future (i.e. recollapse).

Summarizing, it is worth mentioning that when Ω0Λ = 0, there is a direct correspondence between
the geometry of the universe and its eventual fate (open universe expands forever, while closed universe
recollapses). When Ω0Λ ̸= 0 any combination of spatial geometry and eventual fate is possible. However,
the recent cosmological observations indicate that Ω0𝑚 ≃ 0.3 and Ω0Λ ≃ 0.7. This region is shown in
Fig. 1.4 with a circle, which corresponds to a universe with acceleration and excludes the possibility of
a zero cosmological constant at high significance. It also requires the universe to have been started at a
big bang at some finite cosmic time in the past and to expand forever in the future.

1.4 The Friedmann-Lemaitre cosmological models
Now, we will discuss the way to find the form of the scale factor curve in any cosmic time for a given set of
(present-day) cosmological parameter values. This behaviour is entirely determined by the cosmological
field equation (1.52) if we rewrite it in the form

(︂
𝑑𝑎

𝑑𝑡

)︂2
= 𝐻2

0

(︂
Ω0𝑚𝑎

−1 + Ω0𝑟𝑎
−2 + Ω0Λ𝑎

2 + 1 − Ω0𝑚 − Ω0𝑟 − Ω0Λ

)︂
(1.58)

Generally, this equation can be solved numerically. However, for some particular simple values of the
density parameters Ω0𝑖 can be solved analytically. Some of these cases, each of them corresponding to a
particular cosmological model, will be presented bellow.

1.4.1 The Friedmann models
We call Friedmann models the cosmological models with a zero cosmological constant i.e. ΩΛ = 0 and
strictly a non-zero matter or/and radiation density. These models have the general following features:
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1. they have a big-bang origin at a finite cosmic time in the past.

2. the age of the universe must be less than the Hubble time, i.e.

𝑡0 < 𝐻−1
0

3. The evolution of the scale factor 𝑎(𝑡) depends crucially on the curvature density parameter

Ω0𝑘 = 1 − Ω𝑜𝑚 − Ω0𝑟

and hence on the sign of the curvature parameter 𝑘 so, we can distinguish the cases Ω0𝑘 = 0,
Ω0𝑘 > 0 and Ω0𝑘 < 0 (for details, one can see Fig. 1.5).

Figure 1.5: The evolution of the scale factor in closed, open and spatially flat Friedmann models (Ω0Λ = 0).
Note that, each model begins from the big bang singularity, but the evolution of the universe depends on
its geometry. Adopted from [10].

It is obvious from Fig. 1.5 that the dynamics of the universe is directly linked to its geometry. For
example, the Friedmann models have the origin at the big bang singularity, but if the universe is closed
(with 𝑘 = +1), the evolution of the universe drives to the Big Crunch at some cosmic time in the future.
For a flat or open universe, the expansion is perpetual.

As a next step, we investigate some particular cases of Friedmann cosmological models and we derive
the function of the corresponding scale factor in a spatially flat universe.

∙ Dust only universe
In this case we apply the condition Ω0𝑟 = 0, the Eq. (1.58) can be integrated for flat, open or closed
universe and if Ω0𝑚 = 1 the scale factor is

𝑎(𝑡) =
(︂

3
2𝐻0𝑡

)︂2/3

This particular case is known as the Einstein–de-Sitter model. In each case one can also obtain
expressions for 𝜌𝑚(𝑡), 𝐻(𝑡) and Ω𝑚(𝑡).
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∙ Radiation only universe
In this case the Friedmann universe is empty of matter (Ω0𝑚 = 0) and the Eq. (1.58) can be
integrated for each value of the radiation density. If the universe is assumed spatially flat (𝑘 = 0),
the radiation density is equal to unit and the scale factor evolves as

𝑎(𝑡) =
(︂

2𝐻0𝑡

)︂1/2

In each case one may also obtain expressions for 𝜌𝑟(𝑡), 𝐻(𝑡) and hence Ω𝑟(𝑡).

∙ Spatially flat Friedmann models
In the final case, we consider both matter and radiation as components of the Friedmann universe,
but we demand that Ω0𝑚 + Ω0𝑟 = 1. Integrating Eq. (1.58) we derive the function 𝑡(𝑎) as

𝑡 = 2
3𝐻0Ω2

0𝑚

(︂
(Ω0𝑚𝑎+ Ω0𝑟)1/2(Ω0𝑚𝑎− 2Ω0𝑟) + 2Ω3/2

0𝑟

)︂
Unfortunately, this expression cannot be easily inverted to give the function 𝑎(𝑡), but agrees with
the previous results when the universe is filled only with matter (Ω0𝑟 = 0), or only with radiation
(Ω0𝑚 = 0).

1.4.2 The Lemaitre models
The generalization of the Friedmann models with non-zero cosmological constant are known as Lemaitre
models. For simplicity, we will consider the case where the universe is empty of radiation (Ω0𝑟 = 0) and
we will focus on determining the scale factor 𝑎(𝑡) in models that have a big-bang origin and will expand
forever. We begin by considering the general case of arbitrary spatial curvature and then specialize to
the spatially flat case.

∙ Matter-only Lemaitre models with arbitrary spatial curvature
In this case we assume that the radiation density is equal to zero. For small 𝑎(𝑡) the first term on
the right-hand side of Eq. (1.58) dominates and the equation is easily integrated. Thus

𝑎(𝑡) =
(︂

3
2𝐻0𝑡

√︀
Ω0𝑚

)︂2/3
(for small t)

However, as the universe expands, the matter energy density decreases and the vacuum energy
eventually dominates. Once again the equation is then easily integrated to give

𝑎(𝑡) ∝ 𝑒

(︂
𝐻0𝑡

√
Ω0Λ

)︂
(for large t)

Since the early universe was decelerating while for long time it is accelerating, there must be some
time in the past where this transition took place. This occurs when 𝑑2𝑎

𝑑𝑡2 = 𝑎̈ = 0, in the turning
point of the scale factor. If we differentiate Eq. (1.58) we can easily derive that at the point of
inflection the scale factor was

𝑎* =
(︂

Ω0𝑚

2Ω0Λ

)︂1/3
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∙ Spatially flat matter-only Lemaitre models
In this case we assume that the universe is filled with matter and vacuum energy the sum of which
is equal to unit (Ω0𝑚 + Ω0Λ = 1), while the radiation energy is absent (Ω0𝑟 = 0). This model of
sort appears to provide a reasonable description of our own universe, if one neglects its radiation
energy density. The Eq. (1.58) may be integrated analytically and the result is

𝑡 = 2
3𝐻0

√︀
|Ω0Λ|

⎧⎪⎪⎨⎪⎪⎩
sinh−1

(︂√︁
𝑎3Ω0Λ
1−Ω0Λ

)︂
, if Ω0Λ > 0

sin−1
(︂√︁

𝑎3|Ω0Λ|
1−Ω0Λ

)︂
, if Ω0Λ < 0

which may be inverted to give the scale factor 𝑎(𝑡) in each case. Then, one can extract the functions
of 𝜌𝑚(𝑡), 𝐻(𝑡) and the energy densities Ω𝑚(𝑡) and ΩΛ(𝑡).

1.4.3 The de Sitter model
A particular case of Lemaitre models is the de Sitter model, where we assume that the universe is filled
only with vacuum energy ie Ω0Λ = 1 and Ω0𝑚 = Ω0𝑟 = 0. It constitutes a model which describes a flat
universe, but due to the above assumptions is not a real cosmological model. However, it is interesting in
its own right both for historical reasons and of its close connection with the theory of inflation. Locally,
it is possible that cosmological backgrounds exist and are filled with dark energy. The scale factor is
derived from Eq. (1.58) as

𝑎(𝑡) = 𝑒𝐻0𝑡

where 𝐻0 =
√︁

Λ
3 is the present value of the Hubble rate. The scale factor increases exponentially, but

this model has no big bang origin at a finite time in the past.

1.4.4 Einstein’s static universe
Einstein presented his static model (𝑎̇ = 0 and 𝑎̈ = 0) well before the discovery of the expansion of the
universe and he was worried that he could not find static cosmological solutions. For this reason, he
introduced the cosmological term in the field equations (1.1) in order to balance the gravity. From the
field equations we conclude that

4𝜋𝐺𝜌0𝑚 = Λ

which means that 𝜌0𝑚 = 2𝜌0Λ. The parameters of this model do not fit well with cosmological obser-
vations, since it has matter density two orders of magnitude bigger than the observed matter density.
From the matter density we estimate the size of the universe approximately at 6000𝑀𝑝𝑐. However, the
estimated value of the cosmological constant is Λ = 2.5 × 10−53𝑚−2 which is in the expected region, as
it can be arisen by cosmological observations. Thus, the Einstein static universe was not immediate and
obviously wrong.

Aside from the fact that the model disagreed with later observations indicating an expanding universe,
the great disadvantage of Einstein’s static universe is the feature of being unstable. The cosmological
constant must be fine-tuned to match the density of the universe. With addition or subtraction of each
massive particle such as a proton in this universe, we destroy the balance between gravity and cosmological
term and the universe will begin to expand or contract.

1.5 Age of the universe
A very important parameter for the cosmological models, whose origin is the big bang singularity is the
time interval between the point when 𝑎(𝑡) = 0 and the present epoch 𝑡 = 𝑡0 which is actually the age
of the universe. It is a look back time (1.19) from 𝑡 = 0 until 𝑡 = 𝑡0, or in terms of the redshift the
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time interval between 𝑧 → ∞ (big bang) until 𝑧 = 0 (present epoch). If we assume the radiation density
negligible, Eq. (1.19) with the aid of equation (1.53) reads

𝑡0 = 1
𝐻0

∫︁ ∞

0

𝑑𝑧

(1 + 𝑧)
√︀

Ω0𝑚(1 + 𝑧)3 + Ω0Λ + Ω0𝑘(1 + 𝑧)2
(1.59)

and it is of order of the Hubble time 1/𝐻0. The result depends on the values of model parameters Ω0𝑖,
but since the age of the oldest stars in globular clusters is

𝑡𝑠𝑡𝑎𝑟𝑠 ≈ (11.5 ± 1.3) 𝐺𝑦𝑟𝑠

one requires 𝑡0 > 𝑡𝑠𝑡𝑎𝑟𝑠 for a viable cosmology.
Previously, we investigated some cosmological models (Friedmann and Lemaitre) for several values of

the parameters Ω0𝑖. For each of them with a Big Bang origin, for which we have derived analytical form
for the scale factor 𝑎(𝑡), or the inverse function 𝑡(𝑎), we can estimate the age of the universe by setting
𝑎 = 1 and 𝑡 = 𝑡0. For example, the age of Einstein–de-Sitter universe is 𝑡0 = 2

3𝐻0
. This would be a

criterion for the rejection of a cosmological model, if it can not support the observed limit of the age of
universe.

1.6 Distances
The measure of distances in Cosmology is of great significance in order to complete the cosmological
observations and to estimate cosmological parameters which are part of the corresponding cosmological
models [14]. The unifying aspect is that all distance measures somehow measure the separation between
events on radial null trajectories, i.e. trajectories of photons which terminate at the observer. In an
expanding universe there are two possible ways to measure distances. The first is the comoving distance
which remains fixed despite the expansion of the universe (we consider the same peculiar velocity for
every cosmological object). The second is the physical distance which takes into account the expansion
and thus always grows. In this case Earth-bound observers look back in time as they look out in distance.

Important comoving distance is the distance between a distant cosmological object or event at redshift
𝑧 and us. The comoving distance 𝑆(𝜒) as it has been defined in Eq. (1.6), remains constant with epoch
if the two objects are comoving with the Hubble flow. Only for these observers in comoving coordinates
the universe is isotropic. From the definition of 𝜒(𝑧) (see Eq. (1.20)) we must replace the Hubble rate
as a function of the redshift 𝑧. When the cosmological fluid contains matter, radiation, curvature and
vacuum the Hubble rate as a function of the redshift 𝑧 is given by Eq. (1.53).

Each of the components of the universe decreases during the expansion of the universe (decreasing
redshift), except the dark energy term. Physicists use the values of these cosmological parameters to
determine the acceleration of the universe. As it will be shown below, other distances are quite simply
derived in terms of the comoving distance 𝑟 = 𝑆(𝜒) and in some sense 𝑆(𝜒) is the fundamental distance
in cosmography.

1.6.1 Angular diameter distance
When a distant object has physical transverse size 𝑙 and angular size in radians Δ𝜃, we can define the
angular diameter distance in a static universe as

𝑑𝐴 = 𝑙

Δ𝜃

where, we use the approximation tan Δ𝜃 ≃ Δ𝜃 because Δ𝜃 → 0. For a better understanding, one can see
the geometrical definition in Fig. 1.6. This distance is used to convert angular separations in telescope
images into proper separations at the source.
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Figure 1.6: Specification of the coordinates in the definition of angular diameter distance. Since Δ𝜃 → 0,
we can define the angular diameter distance as 𝑑𝐴 = 𝑙

Δ𝜃 . Adopted from [10].

If we take into account the expansion of the Universe, where Δ𝜃 = 𝑙
𝑎(𝑡𝑒)𝑆(𝜒) , the above definition of

𝑑𝐴 in a FRW spacetime takes the form

𝑑𝐴 = 𝑆(𝜒)
1 + 𝑧

(1.60)

In Fig. 1.7 we present a geometrical definition of the angular diameter distance. The size of the object ℓ
looks larger at the time of light emission (𝑡𝑒) than the time of observation (𝑡0), since the universe expands.
Also, it is obvious that the expansion increases the distance between the observer and the emitter, since
the worldlines of the emitter and the observer diverge.

At low redshift, where 𝑎 ≃ 1, or 𝑧 ≪ 1 the comoving and angular diameter distance are equal, but at
larger redshifts the comoving distance is bigger. At high redshift, the angular diameter distance is such
that 1 𝑎𝑟𝑐𝑠𝑒𝑐 is on the order of 5 𝑘𝑝𝑐.

Figure 1.7: The geometrical definition of angular diameter distance 𝑑𝐴 with one spatial dimension sup-
pressed, for a cosmological object with size ℓ. It is obvious that the expansion increases the distance
between the observer and the emitter, since the worldlines of the emitter and the observer diverge.
Adopted from [10].
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1.6.2 Luminosity distance
We can also measure distances through the flux-luminosity relationship whose definition for a static
universe is

𝑑𝐿 =
(︂

𝐿

4𝜋𝐹

)︂1/2
(1.61)

where 𝐹 is the observed flux from a source with known luminosity 𝐿, which is constant in a spherical
shell with radius the luminosity distance 𝑑𝐿. In an expanding universe, since the luminosity is smaller by
a factor of 𝑎2, the flux we observe in a comoving spherical shell with radius 𝑆(𝜒) is

𝐹 = 𝐿𝑎2

4𝜋𝑆2(𝜒)

If we replace the flux 𝐹 in Eq. (1.61) it is easy to conclude that the luminosity distance 6 in an expanding
universe is given by the relation

𝑑𝐿 = 𝑆(𝜒)(1 + 𝑧) (1.62)

which describes an increasing cosmological distance as a function of the redshift.

Figure 1.8: The geometrical definition of the luminosity distance 𝑑𝐿 with one spatial dimension suppressed
between an observer O and an emitter E. It is clear that as the universe expands, the luminosity distance
increases, since 𝑑𝐿(𝑡0) > 𝑑𝐿(𝑡𝑒). The worldlines of the emitter and the observer diverge. Adopted from
[10].

This is an important relation which can be used practically, but note that it depends on the time
history of the scale factor through the dependence on 𝜒. Therefore, we can find the luminosity distance
𝑑𝐿 if we multiply the angular diameter distance 𝑑𝐴 by a factor of (1 + 𝑧)2, or

𝑑𝐿 = 𝑑𝐴(1 + 𝑧)2

6The comoving distance in a curved universe with density parameter Ω𝑘 = 1 − Ω0, where Ω0 is the ratio of total to
critical distance today and measures the “curvature of space” is

𝑑𝐴 =
1

(1 + 𝑧)𝐻0
√

Ω𝑘

sinh
(︁√︀

Ω𝑘𝐻0𝜒

)︁
, Ω𝑘 > 0

or
𝑑𝐴 =

1
(1 + 𝑧)𝐻0

√
−Ω𝑘

sin
(︁√︀

−Ω𝑘𝐻0𝜒

)︁
, Ω𝑘 < 0
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emphasizing again that ‘distance’ depends on definition. The latter is known as the distance duality rela-
tion. The luminosity distance and the angular diameter distance measures form the basis for observational
tests of the geometry of the universe.

A very high redshift galaxy looks large, dim and ghostly in the sky. This is expected, since the
observed light from the galaxy has been emitted when the universe was younger. This reason, coupled
with gravitational focussing of the light rays by the intervening matter in the universe, means that the
galaxy looks bigger. Geometry associated with the definition of luminosity distance with one spatial
dimension suppressed, is presented in Fig. 1.8.

In order to test the relation between the luminosity distance 𝑑𝐿(𝑧) and the angular diameter distance
𝑑𝐴(𝑧), we need a standard candle (to test the 𝑑𝐿(𝑧) function) which is a sample of supernova type Ia and
a standard ruler (to test the 𝑑𝐴(𝑧) function) which are anisotropies on the cosmic microwave background
radiation. Almost all the cosmological observations indicate that we live in a flat universe, the components
of which are ≈ 70% vacuum energy and ≈ 30% matter.

The luminosity distance 𝑑𝐿(𝑧) and the angular diameter distance 𝑑𝐴(𝑧) depend on the cosmological
model which we have adopted. Different values of the energy densities Ω0𝑖 give a different value of 𝑆(𝜒)
and consequently different distances for the same comoving celestial object. Thus, it is of extremely
importance to determine through observations the exact value of each energy density Ω0𝑖.

We can also define the luminosity distance in terms of the relationship between the absolute magnitude
𝑀 and apparent magnitude 𝑚 of an astronomical object, such as supernova or a quasar. Absolute
magnitude is a measure (with a volometer) of the luminosity of a celestial object, which is defined to be
equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly
10 𝑝𝑎𝑟𝑠𝑒𝑐𝑠 (this was once thought to be the distance to star Vega), while the apparent magnitude is a
number that is a measure of its brightness as seen by an observer on Earth.

The measurement of apparent magnitude or brightness of a celestial object is known as photometry,
quantifies the brightness of sources at ultraviolet, visible, and infrared wavelengths and is usually meas-
ured in a specific passband corresponding to some photometric system. The relationship between apparent
and absolute magnitude is

𝑚−𝑀 = 5 log10

(︂
𝑑𝐿

10𝑝𝑐

)︂
+ 𝐶 (1.63)

where C is a correction term for the shifting of the spectrum due to expansion.

1.6.3 Cosmological horizons
Any comoving observer at a particular cosmic time has a viable region. The extent of this region depends
on its definition and is called horizon [15]. Someone, can distinguish two different horizons, the particle
horizon and the event horizon.

First, we will define the comoving distance light which determines the 𝜒 coordinate of the particle
horizon. It is the distance which a photon could have traveled (with 𝑐 = 1) from the big bang (where we
assume 𝑡 = 0) to a time t, the particle horizon, so is therefore

𝜒𝑝(𝑡) ≡
∫︁ 𝑡

0

𝑑𝑡′

𝑎(𝑡′) (1.64)

The importance of the particle horizon 𝜒𝑝(𝑡) is the fact that, under the standard cosmological model, the
portions of the sky on our comoving horizon which are separated by more than 𝜒𝑝(𝑡), are not causally
connected. As every distance can be expressed in units of time, the comoving distance light corresponds
to comformal time, which is useful in perturbation theory and in the formulation of gravitational waves.
The corresponding proper distance to the particle horizon is

𝑑𝑝(𝑡) = 𝑎(𝑡)𝜒𝑝(𝑡)

Any universe with continually decelerating expansion up to cosmic time 𝑡 has a finite particle horizon
at that time. Finite particle horizon also exists in other cosmological models, such as the Friedmann
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models or in the flat Lemaitre model with Ω0Λ ≈ 0.7 and Ω0𝑚 ≈ 0.3. These parameter values seems to
provide a reasonable description of our universe. The time derivative of the particle horizon is equal to
𝜒̇𝑝(𝑡) = 1/𝑎, always positive, which means that increases with time. Also, the particle horizon at any
given cosmic time is the surface of infinite redshift (𝑧 → ∞) beyond which we cannot see, but once an
object lies within an observer’s particle horizon it remains so.

In some cosmological models it is easy from Eq. (1.64) to derive the particle horizon. For example,
in a matter dominated model at early time the scale factor obeys the relation 𝑎(𝑡) ∼ 𝑡2/3, which means
that the particle horizon is 𝑑𝑝(𝑡) = 3𝑡. Also, in a radiation dominated model with 𝑎(𝑡) ∼ 𝑡1/2, the
corresponding particle horizon is 𝑑𝑝(𝑡) = 2𝑡.

The horizon problem is another cosmological fine-tuning problem within the Big Bang model of the
universe. It arises due to the difficulty in explaining the observed homogeneity, such as nearly uniform
temperature of the CMB, of causally disconnected regions of space in the absence of a mechanism that
sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956. This
problem, like the flatness problem, is an important challenge to standard cosmology, that can only be
resolved by invoking the theory of inflation.

In Cosmology, the event horizon, or commonly cosmic event horizon, of the observable universe is
the largest comoving distance from which light emitted now can reach the observer in the future. This
definition differs from the concept of particle horizon, which represents the largest comoving distance
from which light emitted in the past could have reached the observer at a given time. It is a region in
spacetime beyond which events cannot affect an outside observer (we never see them). In the case where
the integral of Eq. (1.64) converses, the event horizon is defined as

𝜒𝑒(𝑡) ≡
∫︁ 𝑡𝑚𝑎𝑥

𝑡1

𝑑𝑡′

𝑎(𝑡′) (1.65)

where 𝑡1 is the time at which the light is emitted and 𝑡𝑚𝑎𝑥 is the infinity or the time where the scale
factor gets equal to zero (the time of Big Crunch). Examples of cosmological models without an event
horizon are universes which are dominated by matter or by radiation. An example of a cosmological
model with an event horizon is a universe which is dominated by the cosmological constant (a de Sitter
universe).

An event horizon is commonly associated with black holes, but differs from the event horizon which
we discussed earlier. Light which is emitted from inside the event horizon of a black hole can never reach
the outside observer. Likewise, any object approaching the horizon from the observer’s side appears to
slow down and never quite pass through the horizon with its image becoming more and more redshifted
as time elapses. This means that the wavelength of the light which is emitted from the object is getting
longer as the object moves away from the observer. The travelling object however, experiences no strange
effects and does, in fact, pass through the horizon in a finite amount of proper time.

Extremely important distance in cosmology is the Hubble distance

𝑑𝐻(𝑡) = 𝐻−1(𝑡) (1.66)

since it represents the typical length scale at a cosmic time 𝑡. The Hubble distance would be the distance
between the Earth and the galaxies which are currently receding from us at the speed of light. We can
also define the comoving Hubble distance as

𝜒𝐻(𝑡) = 𝑑𝐻(𝑡)
𝑎(𝑡) = 1

𝑎̇(𝑡)
Some characteristic properties of the Hubble distance are

1. in this length scale the relativistic effects become important, so we can not ignore them.

2. in standard cosmological models it is of the same order as the particle horizon 𝑑𝑝(𝑡). They differ
significantly in inflationary cosmologies.

3. an object can be within an observer’s Hubble distance at one time, lie outside it at some later time
and even come back within it, at a far later epoch.
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1.7 Accelerating Expansion
At the end of twentieth century (1998), the observation that the universe appears to be expanding at
an increasing rate is a milestone of modern Cosmology. It is one of the most profound discoveries,
pointing to a universe in which ∼ 70% of the mass-energy density has an unknown form spread uniformly
across the universe. Cosmologists at that time, expected that the expansion would be decelerating due
to the gravitational attraction of the matter in the universe. Two independent projects, the Supernova
Cosmology Project [16] and the High-z Supernova Search Team [17], which both used distant type Ia
supernovae (SNe Ia) to measure the acceleration, discovered the accelerating expansion. Using SNe Ia
as standard candles, they measured the distance of the supernovae through their brightness, and they
compared the result with the distance from redshift, which measures how fast the supernovae are receding
from us. Both teams independently determined that high-redshift SNe were fainter than expected in a
matter-dominated universe, implying the need for a cosmological constant or more generally the need of
dark energy to accelerate the expansion of the universe. Later, the accelerating expansion was confirmed
from baryon acoustic oscillations (BAO) and from temperature fluctuations in CMB.

The main challenge of modern cosmology is the understanding of the nature of cosmic late-time
acceleration, which has been confirmed by a large number of observations [18] such as

∙ measurements of Type Ia supernovae (SNe Ia) distances,

∙ peaks of baryon acoustic oscillations (BAO) in the large-scale correlation function of galaxies,

∙ studies of the weak lensing signal for source galaxies binned by photometric redshift (one can probe
the history of structure growth)

∙ analyses of the clustering of galaxies

∙ the power spectrum of fluctuations in the cosmic microwave background (CMB), and

∙ the detection of gravitational waves of a binary neutron star inspiral

Up to now, to describe this accelerated mechanism theoretical physicists propose two main classes of
models, i.e.,

1. the so-called dark energy (DE), which maintains the correctness of the general relativity and
introduces an exotic matter source in the Einstein equations or

2. modified theories of gravity, which modify the standard Lagrangian of GR based on some
reasonable physical consideration.

1.8 Dark Energy
A crucial question in modern Cosmology is what induces the accelerating expansion which, until now is
an open question. Cosmic acceleration could arise from the repulsive gravity of dark energy, the quantum
energy of the vacuum, or it may be a signal that General Relativity breaks down on cosmological scales
and must be replaced. Dark energy has a negative pressure with 𝑤 less than −1/3. According to
indications and theories, the dark energy dominated era begun since almost 5 billion years. The simplest
explanation for the dark energy is the consideration of a positive cosmological constant Λ. While, as we
will see below, there are alternative possible explanations, this description for dark energy is used in the
current standard model of cosmology, which also includes cold dark matter (CDM) and is known as the
Lambda-CDM model (ΛCDM) [19].

The nature of dark energy is more hypothetical than that of dark matter, and many things about it
remain matters of speculation [19]. Dark energy is thought to be very homogeneous and not very dense,
and is not known to interact through any of the fundamental forces other than gravity. It is very difficult
to be detectable in laboratory experiments, since the dark energy density is very small (∼ 10−27𝑘𝑔/𝑚3).
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Dark energy (as well as dark matter) is identified via gravitational probes, such as data from distant
supernova Ia, density fluctuations of CMB or the growth rate of cosmological perturbations on a range
of redshifts and scales. The measurements of the growth rate are determined by the product

𝑓(𝑎)𝜎8(𝑎) (1.67)

where 𝑎 is the scale factor,
𝑓(𝑎) = 𝑑 ln 𝛿(𝑎)

𝑑 ln 𝑎
is the growth rate of cosmological perturbations, 𝛿(𝑎) = 𝛿𝜌/𝜌 is the linear matter overdensity growth
factor and 𝜎8 is the matter power spectrum normalization on scales of 8 ℎ−1 𝑀𝑝𝑐.

Independently of its actual nature, dark energy would need to have a strong negative pressure (repuls-
ive action), to explain the observed acceleration of the expansion of the universe. According to general
relativity, the pressure within a substance contributes to its gravitational attraction for other objects just
as its mass density does. In the FLRW metric, it can be shown that a strong constant negative pressure,
which fills the universe, causes an acceleration in the expansion if the universe is already expanding, or
a deceleration in contraction if the universe is already contracting. This accelerating expansion effect is
sometimes labeled as "gravitational repulsion".

There are many suggested proposals about the nature of dark energy. The models for dark en-
ergy range from a cosmological constant (Λ) term to quintessence, Chaplygin gas, topological defects,
chameleon particles, etc. Subsequently, first we will mention the basic triumphs and challenges of the
ΛCDM model and then we will discuss in brief the most important of the alternative suggestions about
the nature of dark energy. The biggest part of the present thesis deals with these model aspects about
the dark energy.

1.9 ΛCDM model: triumphs and challenges
A large and diverse variety of cosmological observations during the past twenty years have established
a standard cosmological model (ΛCDM) which is based on the cosmological principle (homogeneity,
isotropy, general relativity, cold dark matter and baryonic matter), flatness of space, the existence of a
cosmological constant and Gaussian scale invariant matter perturbations generated during inflation.

Parameter Symbol Value
Physical baryon density parameter Ω𝑏ℎ2 0.02230 ± 0.00014

Physical dark matter density parameter Ω𝑐ℎ2 0.1188 ± 0.0010
Scalar spectral index 𝑛𝑠 0.9667 ± 0.0040

Reionization optical depth 𝜏 0.066 ± 0.012
Age of the universe 𝑡0 (13.799 ± 0.021) × 109 years

Curvature fluctuation amplitude, 𝑘0 = 0.002𝑀𝑝𝑐−1 Δ2
𝑅 2.441+0.088

−0.092 × 10−9

Table 1.1: The simplest viable cosmological model is the ΛCDM model. It is based on 6 independent
or free cosmological parameters, which are presented in this Table. The values have been estimated by
the Planck Collaboration [12]. The independent parameters of this model have been pinned down to
extraordinary accuracy by the Planck mission.

The ΛCDM is the simplest cosmological model, which is consistent with current cosmological observa-
tions. It includes only 6 independent parameters, which are presented in Table 1.1. These parameters are
the physical baryon density parameter (Ω𝑏ℎ2), the physical dark matter density parameter (Ω𝑐ℎ2), the
age of the universe (𝑡0), the scalar spectral index (𝑛𝑠), the curvature fluctuation amplitude (Δ2

𝑅) and the
reionization optical depth (𝜏). The symbol ℎ denotes the reduced Hubble constant. The ΛCDM model
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includes fixed parameters, such as the equation of state 𝑤 or the total density Ω0 and calculated paramet-
ers, such as the critical density 𝜌𝑐𝑟𝑖𝑡, or the Hubble constant 𝐻0. The observed accelerating expansion of
the universe is attributed to a cosmological constant which introduces repulsive properties to gravity at
large distances [20–25]. Crucial assumptions of this model are the validity of GR on cosmological scales,
flatness, homogeneity, isotropy and the invariance of dark energy, both space and time (cosmological
constant). The independent parameters of this model have been pinned down to extraordinary accuracy
by the Planck mission [12]. The model uses the Friedmann–Lemaître–Robertson–Walker metric, the
Friedmann equations and the cosmological equations of state to describe the observable universe from
right after the inflationary epoch to present and future. The cosmological constant may be described as
a homogeneous dark energy perfect fluid with constant energy density, negative pressure and constant
equation of state parameter

𝑤 = 𝑃

𝜌
= −1. (1.68)

This cosmological model makes clear and well defined predictions which have withstood the continuous
and rapid improvement of cosmological observational tests. It is frequently referred to as the standard
model of Big Bang cosmology because it is the simplest model that provides a reasonably good account
of many properties of the cosmos. Prominent successes of the standard cosmological model include the
following:

∙ The Cosmic Microwave Background (CMB) angular power spectrum of perturbations [26] is overall
in excellent agreement with the predictions of the standard model (existence and structure of CMB).
However, a few issues related to the orientation and magnitude of low multipole moments (CMB
anomalies) constitute remaining puzzles for the standard model [27–34].

∙ The statistics of the CMB temperature perturbation maps [35] are consistent with the prediction
of gaussianity of the standard model.

∙ Observations of the recent accelerating expansion history of the universe [36] in the light from distant
galaxies and supernovae are consistent with the existence of a cosmological constant. Despite of the
continuously improved data no need has appeared for more complicated models based on dynamical
dark energy or modified gravity. The likelihood of the cosmological constant vs more complicated
models has been continuously increasing during the past decade [37].

∙ Observations of large scale structure are in good agreement with ΛCDM [38] (basic statistics such
as the distribution of galaxies [39], or halo power spectrum [40]).

∙ The predicted abundances of hydrogen (including deuterium), helium and lithium during the Big
Bang (also known as primordial) nucleosynthesis are in excellent agreement with the cosmological
observations.

Despite of the above major successes, the standard model is challenged by a few puzzling large
scale cosmological observations [41] which may hint towards required modifications of the model. These
challenges of ΛCDM may be summarized as follows:

1. Large Scale Velocity Flows
ΛCDM predicts significantly smaller amplitude and scale of flows than what observations indicate.
It has been found that the dipole moment (bulk flow) of a combined peculiar velocity sample
extends [42] on scales up to 100 ℎ−1𝑀𝑝𝑐 (𝑧 ≤ 0.03) with amplitude larger than 400 𝑘𝑚/𝑠𝑒𝑐.
The direction of the flow has been found approximately in the direction 𝑙 ≃ 282∘, 𝑏 ≃ 6∘. Other
independent studies have also found large bulk velocity flows on similar directions [43] on scales of
about 100 ℎ−1𝑀𝑝𝑐 or larger [44]. The expected root mean square (𝑟𝑚𝑠) bulk flow in the context
of ΛCDM normalized with WMAP5 (Ω0𝑚, 𝜎8) = (0.258, 0.796) on scales larger than 50 ℎ−1𝑀𝑝𝑐 is
approximately 110 𝑘𝑚/𝑠𝑒𝑐. The probability that a flow of magnitude larger than 400 𝑘𝑚/𝑠𝑒𝑐 is
realized in the context of the above ΛCDM normalization (on scales larger than 50 ℎ−1𝑀𝑝𝑐) is less
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than 1%. A possible connection of such large scale velocity flows and cosmic acceleration may be
found in Ref. [45].

2. Alignment of low multipoles in the CMB angular power spectrum
The normals to the octopole and quadrupole planes are aligned with the direction of the cosmological
dipole at a level inconsistent with Gaussian random, statistically isotropic skies at 99.7% [28]. The
corresponding directions are: octopole plane normal (𝑙, 𝑏) = (308∘, 63∘) [27, 46], quadrupole plane
normal (𝑙, 𝑏) = (240∘, 63∘) [27, 47], CMB dipole moment (𝑙, 𝑏) = (264∘, 48∘) [48]. A related effect
has also been recently observed [49] by considering the temperature profile of ’rings’ in the WMAP
temperature fluctuation maps. It was found that there is a ring with anomalously low mean
temperature fluctuation with axis in the direction (𝑙, 𝑏) = (276∘,−1∘) which is relatively close to
the above directions (particularly that corresponding to the bulk velocity flows).

3. Large scale alignment in the Quasi-stellar objects (QSOs) or quasars optical polarization data
Quasar polarization vectors are not randomly oriented over the sky with a probability often in
excess of 99.9%. The alignment effect seems to be prominent along a particular axis in the direction
(𝑙, 𝑏) = (267∘, 69∘) [50].

4. Profiles of Cluster Haloes: ΛCDM predicts shallow low concentration and density profiles in contrast
to observations which indicate denser high concentration cluster haloes [51, 52].

5. Missing power on the low 𝑙 multipoles of the CMB angular power spectrum
which leads to a vanishing correlation function 𝐶(𝜃) on angular scales larger than 60∘ [28, 33, 53]

In addition to the above large scale effects there are issues on galactic scales (missing satellites problem
[54–56] and the cusp/core nature of the central density profiles of dwarf galaxies [57–60]).

The ΛCDM model can be extended by adding cosmological inflation, quintessence and other elements
that are current areas of speculation and research in cosmology. Some alternative models challenge the
assumptions of the ΛCDM model. Examples of these are modified Newtonian dynamics, modified gravity,
theories of large-scale variations in the matter density of the universe and scale invariance of empty space
[61].

1.9.1 Evidence for a preferred cosmological axis
Three of the above five large scale puzzles are large scale effects related to preferred cosmological directions
(CMB multipole alignments, QSO polarization alignment [62] and large scale bulk flows) which appear
to be not far from each other. Their direction is approximately normal to the axis of the ecliptic poles
(𝑙, 𝑏) = (96∘, 30∘) and lies close to the ecliptic plane and the equinoxes. This coincidence has triggered
investigations for possible systematic effects related to the CMB preferred axis but no significant such
effects have been found [28].

Thus, unless there is a hidden common systematic [63], the existence of a cosmological preferred axis
may be attributed to physical effects. An incomplete list of these effects is the following:

∙ An anisotropic dark energy equation of state [64–66] due perhaps to the existence of vector fields
[67, 68].

∙ Dark Energy and/or Dark matter perturbations on scales of the order of the horizon scale [69, 70].
For example an off center observer in a 1 𝐺𝑝𝑐 void would experience the existence of a preferred
cosmological axis through the Lematre-Tolman-Bondi metric [71–75].

∙ Deviations from the isotropic cosmic expansion rate are induced by a fundamental violation of
the cosmological principle eg through a multiply connected non-trivial cosmic topology [76, 77],
rotating universe coupled to an anisotropic scalar field [78], non-commutative geometry [79] or
simply a fundamental anisotropic curvature [80].
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∙ Statistically anisotropic primordial perturbations [81–83], such as inflationary perturbations induced
by vector fields [84–87]. Note, however, that inflationary models with vector fields usually suffer
from instabilities due to the existence of ghosts. [88–90]

∙ The existence of a large scale primordial magnetic field [91–93]. Evidence for such a magnetic field
has recently been found in CMB maps [94].

Some anomalies in the background radiation (CMB) have been reported which are aligned with the
plane of the Solar System, which contradicts the Copernican principle by suggesting that the Solar
System’s alignment is special. Specifically, with respect to the ecliptic plane the "bottom half" of the
CMB is slightly hotter than the "top half". Also, the quadrupole and octupole axes are only a few degrees
apart, and these axes are aligned with the top/bottom divide. Land and Magueijo in 2005 dubbed this
alignment the "axis of evil", although several later studies have shown systematic errors in the collection
of that data and the way it has been processed.

1.10 Topological Defects
A few moments after the big bang singularity the universe was super-symmetric, but as it was expanded
these symmetries gradually broke through phase transitions. In the context of standard cosmology,
topological defects are stable configurations of matter which are formed at phase transitions in the very
early universe through the Kibble mechanism. These configurations are in the original, symmetric or
old phase, but nevertheless they persist after a phase transition to the asymmetric or after a new phase
is completed. In a symmetry breaking phase transition, different regions of the universe will choose to
fall into different minima in the set of possible states (this set is known as the vacuum manifold) and
topological defects are the boundaries between these regions. Spontaneous symmetry breaking is induced
by an order parameter 𝜑, which is usually a scalar field. Scalar fields participate at phase transitions and
contain vacuum energy. A plethora of scalar fields survive until today, but they are ’inactive’. A typical
symmetry breaking potential, which is known as the Mexican hut is of the form

𝑉 (𝜑) = 1
4𝜆
(︂
𝜑2 − 𝜂2

)︂2
(1.69)

where 𝜆 is a positive coupling constant very close to zero and 𝜂 > 0 is the symmetry breaking scale.
When the temperature of the cosmic plasma is above the critical value 𝑇𝑐 ∼ 𝜂, the symmetry is unbroken
because the minimum 𝜑 = 0 is stable, but as the universe cools below the critical value, the symmetry
breaks since the point 𝜑 = 0 becomes unstable.

We consider the existence of the following types of topological defects, although they have not been
observed directly until today

∙ monopoles: they are zero dimensional (point-like) objects which are formed when a spherical
symmetry is broken. It seems to be supermassive, but their existence is one of the puzzles of the
standard cosmology, which is known as the monopole problem.

∙ cosmic strings: they are objects with one dimension and they are formed when an axial or
cylindrical symmetry is broken. They are very thin and may stretch across the visible universe.

∙ domain walls: they are two dimensional objects that are formed when a discrete symmetry is
broken at a phase transition. They have some strange properties, such as the gravitational field of
a domain wall which is repulsive rather than attractive.

∙ textures: they are formed when larger more complicated symmetry groups are completely broken.

Theories giving rise to domain walls are ruled out by cosmological constraints, since they are cos-
mologically catastrophic. Those producing cosmic strings, monopoles and textures are quite attractive,
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since they can crucially affect the evolution of the universe. If the scale of symmetry breaks, at which the
defects that are produced is about 1016 𝐺𝑒𝑉 , then defects can act as the seeds that led to the formation
of the large-scale structures we observe today, as well as the anisotropies in the CMB. Also, topological
defects may play a crucial role in baryogenesis. Finally, they could be at the origin of some of the ‘dark
matter’ of the universe. In conclusion, topological defects can be connected with many cosmological
theories and observations.

1.11 Chameleons
The existence of chameleons [95–98] could support the accelerating expansion of the universe (as a
component of dark energy) and the time evolution of the fine structure constant 𝛼. Time-variation of
coupling constants are generally modeled with rolling scalar fields and the recent evidence for a time-
varying 𝛼 requires the mass of the corresponding scalar field to be of order 𝐻0 [11]. Chameleons are scalar
particles [99, 100] the effective mass of which is a function of its local environment. Just like a chameleon
changes color in different environments, the magnitude of the mass of a cosmological chameleon particle
depends on the density of the location. In regions with high density, such as Earth, the mass is large
in order to evade the fifth force searches, which are excluded by experiments on a wide range of scales.
In regions with low density, such as our solar system, the mass is lower and in cosmological scales is of
order of the present Hubble value [101, 102]. The chameleon screening mechanism lies in the fact that the
effective mass 𝑚𝑒𝑓𝑓 of the scalar field is calculated at the minimum value 𝜑𝑚𝑖𝑛 of the potential 𝑉𝑒𝑓𝑓 (𝜑)
by evaluating the second derivative of the potential as

𝑚𝑒𝑓𝑓 ≡

⎯⎸⎸⎷𝑑2𝑉𝑒𝑓𝑓
𝑑𝜑2

⃒⃒⃒⃒
⃒
𝜑𝑚𝑖𝑛

(1.70)

where 𝑉𝑒𝑓𝑓 is the effective potential which contains terms of chameleon, matter and radiation potential,
as

𝑉𝑒𝑓𝑓 (𝜑, 𝑥⃗) = 𝑉 (𝜑) + 𝑒
𝛽𝑚𝜑
𝑀𝑃 𝑙 𝜌𝑚(𝑥⃗) + 𝑒

𝛽𝛾 𝜑

𝑀𝑃 𝑙 𝜌𝛾(𝑥⃗) (1.71)

where 𝛽𝑚 and 𝛽𝛾 are parameters which describe the strength of the chameleon to matter and radiation
coupling respectively.

It is clear that, the effective mass depends on the electromagnetic fields and the local matter density
[103], since the effective potential depends on the matter density of the environment (see Fig. 1.9). The
convexity of the curve 𝑉𝑒𝑓𝑓 when the density is small (right panel), is less than the curve of the potential
which describes region with large density (left panel). Thus, the second derivative of 𝑉𝑒𝑓𝑓 , which is
proportional to (𝑚𝑒𝑓𝑓 )2, is smaller. A possible potential for chameleons is the Ratra-Peebles inverse
power-law form potential

𝑉 (𝜑) = 𝑀4(︀1 + 𝑀𝑛

𝜑𝑛
)︀

(1.72)

where 𝑛 is an integer and 𝑀 = 𝑀𝑃 𝑙

𝛽 is a model parameter (in the case of dark matter, 𝑀 ≃ 3 𝑚𝑒𝑉 ).
The term 1

𝜑𝑛 is responsible for the non-linear scalar interactions which are required for the chameleon
mechanism to be operational while the constant piece can drive cosmic acceleration at the present time
[104]. When the local matter density is high, the chameleon becomes invisible due to its mixing with
the environment in order to evade current constraints on equivalence principle violations and fifth force.
For this reason experiments, which have the purpose to detect chameleons in laboratory are performed
in almost absolute vacuum where the chameleons have interesting cosmological effects.

Chameleons can couple to all forms of matter and can also couple to photons [105]. Coupling to
matter leads to fifth force which acts only on large scales and is negligible on small scales. We have
not observed any fifth force or modification of gravity in the laboratory or in the Solar System. The

31



Figure 1.9: The effective potential as a function of the scalar field (chameleon) in regions with large density
and small density. It is obvious that the denser the environment, the more massive the chameleon. Larger
values of 𝜌 correspond to smaller 𝜑𝑚𝑖𝑛 and larger 𝑚𝑒𝑓𝑓 . Adopted from [11].

chameleon mechanism has exactly the above properties, because it suppresses the fifth force mediated
by the new degree of freedom without killing the modification on all scales. The environment dependent
mass (1.70) is enough to hide the fifth force in dense media such as the atmosphere. The chameleon force
[11, 106] is only sourced by a thin shell near the surface of dense objects, which reduces its magnitude
significantly. In other words, in chameleon-type models the scalar field acquires a very large mass within
a massive object and consequently decouples due to the Yukawa suppression. Thus, essentially only a
fraction of the total mass (in circumference) contributes to the fifth force.

1.12 Modified Theories of Gravity
Alternatives to general relativity are physical theories that attempt to describe the gravitation in com-
petition to Einstein’s theory of general relativity. Thus, once one meets difficulties in the explanation of
dark energy, it is a natural idea to step back and question if the current gravity theory can be applied to
cosmological scales (or even galactic scales). A vast range of modified theories now exists in literature.
Some of these have extra scalar, vector or tensor fields in their gravitational sector, variation of the
Newton constant 𝐺𝑒𝑓𝑓 as a function of the scale factor or the redshift.

Measurements of the growth of structure (1.67) at redshifts of 𝑧 ≃ 0.8 can be used as a test key for
a plethora of modified theories of gravity. With these measurements one can test and reject, a large
number of proposals for modified gravity. This work carefully considers the impact of modifications to
gravity on the CMB, weak lensing and a variety of other cosmological probes. As a result, testing gravity
has become one of the core tasks of many current and future cosmological missions and surveys.

1.13 Extended to ΛCDM models: quintessence and phantom
cosmology

Extended models allow one or more of the fixed parameters of ΛCDM model to vary, in addition to
the basic six parameters. So these models join smoothly to the basic six-parameter model in the limit
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that the additional parameter(s) approach the default values. For example, possible extensions of the
simplest ΛCDM model allow for spatial curvature (Ω0 may be different from 1) or quintessence rather
than a cosmological constant where the parameter of equation of state of dark energy is allowed to
differ from the value 𝑤 = −1. Also, cosmic inflation predicts tensor fluctuations which are the origin of
gravitational waves. Their amplitude is parameterized by the tensor-to-scalar ratio which is determined
by the unknown energy scale of inflation. Allowing additional variable parameter(s) will generally increase
the uncertainties in the standard six parameters quoted in Table 1.1 and may also shift the central values
slightly.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field 𝜑 postulated
as an explanation of the observation of an accelerating expansion of the universe. The first example of this
scenario was proposed by Ratra and Peebles (1988). The concept was expanded to more general types
of time-varying dark energy and the term "quintessence" was first introduced in a paper by Caldwell,
Dave and Steinhardt [107]. It has been proposed by some physicists to be a fifth fundamental force.
Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic.
That is, it changes over time, unlike the cosmological constant which by definition, does not change. It is
suggested that quintessence can be either attractive or repulsive depending on the ratio of its kinetic and
potential energy. Those working with this postulate believe that quintessence became repulsive about
ten billion years ago, almost 3.7 billion years after the Big Bang. Many models of quintessence have a
tracker behavior, which partly solves the cosmological constant problem.

The pressure of the quintessence fluid is given by the relation 𝑃 = 1
2 𝜑̇

2 − 𝑉 (𝜑), while the density is
defined as 𝜌 = 1

2 𝜑̇
2 + 𝑉 (𝜑). The first term is the kinetic energy and the second term is the potential

energy. The parameter of equation of state, which differs from 𝑤 = −1 since 𝑉 (𝜑) ̸= 0, is

𝑤 =
1
2 𝜑̇

2 − 𝑉 (𝜑)
1
2 𝜑̇

2 + 𝑉 (𝜑)
(1.73)

A special case of quintessence models is the phantom energy, where the kinetic energy is negative.
The parameter of equation of state is 𝑤 < −1 and if this type of energy existed, it would cause a Big
Rip singularity. In this scenario the scale factor increases rapidly and the bound systems get dissociated
due to the growing energy density of dark energy which would cause the expansion of the universe to
increase at a faster than exponential rate. This acceleration passes the speed of light, since it involves
expansion of the universe itself, not particles moving within it. As a result, more and more objects leave
our observable universe faster than the expansion and will be unable to interact with each other via
fundamental forces. Eventually the expansion will prevent any action of forces between any particles,
even within atoms.

1.14 Gravitational waves
The theoretical prediction of gravitational waves (GWs) originated in 1893 when Heaviside first discussed
the possibility of their existence. More than 100 years ago, Einstein predicted that something special
happens when two bodies, such as planets or stars, orbit each other [108, 109]. He believed that this
kind of movement could cause ripples in space. These ripples would spread out like the ripples in a
pond when a stone is tossed in and these ripples are called space gravitational waves. GWs are invisible
and incredibly fast, since they travel at the speed of light. Also, GWs transport energy as gravitational
radiation, a form of radiant energy similar to electromagnetic radiation and squeeze and stretch anything
in their path as they pass by.

The most powerful GWs are created when massive objects move at very high speeds. Some examples
of events that could cause a GW are the following

∙ when a star explodes asymmetrically (such as supernova)

∙ when two big stars (such as neutron stars) orbit each other and merge
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∙ when two black holes orbit each other and merge

Since these types of objects that create GWs are far away and sometimes, these events only cause small,
weak gravitational waves, the waves are then very weak by the time they reach Earth. This feature
makes GWs incredibly hard to detect. Nonetheless, until now 11 events of detection of GW have been
announced (10 from merge of black holes and 1 from merge of neutron stars).

In theoretical level, in the linearized weak-field approximation, Einstein found that his equations had
transverse wave solutions travelling at the speed of light [110] produced by the time dependence of the
mass quadrupole moment of the source [111]. He realized that GW amplitudes would be small and up
until 1957, there had been a debate about the physical relevance of their existence [112].

Nevertheless, the discovery of the binary pulsar system PSR B1913+16 by Hulse and Taylor [113]
and subsequent observations of its energy loss by Taylor and Weisberg [114] demonstrated indirectly the
existence of GWs. This discovery, along with subsequent related analysis [115] led to the recognition that
a possible direct detection and analysis of GWs could reveal interesting properties of various relativistic
systems and could also provide new tests of general relativity, especially in the strong-field regime.

Recently, Abbot et al [116, 117] have reported the first direct detection of GWs emitted by a binary
black hole (BBH) system merging to form a single black hole (BH). Their observation provides a direct
window to the properties of space time in the strong-field limit and is consistent with predictions of GR
for the nonlinear dynamics of highly disturbed BHs. The announced beautiful discovery is the result of
great efforts for a century by several scientists [117] (and references therein). It is a great investigation,
because it constitutes one more window to the Universe and one more confirmation of the theory of GR.
Such GW observations can be used to check many cosmological indications and observations, such as

∙ to test the equivalence principle [118–121]

∙ to test the propagation of GWs [121–128]

∙ to test the validity of general relativity [129–131]

∙ to constrain early cosmological phase transitions [132, 133]

∙ to probe the quantum structure of black holes [134]

∙ to probe the connection between dark matter and primordial black holes [135–137]

∙ signatures from evolving scalar fields in GR and in Modified Gravity [138].

For these reasons, during the last years the Gravitational-wave astronomy has been developed, which
uses gravitational waves to collect observational data about sources of detectable gravitational waves such
as binary star systems which are composed of white dwarfs, neutron stars and black holes. Also, uses
events such as supernovae and the formation of the early universe shortly after the Big Bang.

1.15 Deviations from the ΛCDM Standard Model
The flat ΛCDM model (the Standard model of the Big Bang cosmology) is the most acceptable cosmo-
logical model, since it is very simple and many cosmological observations can be supported theoretically
from this model. Some basic components of this model are the cosmological constant Λ, the law of gravity
which is Einstein’s General Relativity and the cosmological principle. In the course of this Chapter we are
discussing its defining principles and the possible ways that these principles can be evaded in the context
of various extended models. Such deviations constitute the main focus of this thesis. Despite the large
increase in data volume and accuracy, the ΛCDM model seems to be extremely successful at describing
all these data and provide us with a better understanding of the Universe. Although it is considered a
successful model, there are some observations which indicate deviations from the ΛCDM model. As data
has been improved, some inconsistencies or deviations from the ΛCDM model have been appeared, which
do not seem to be statistically significant, since the level of these deviations is at ≃ 2𝜎 [139].
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Results from Planck satellite mission of the European Space Agency (ESA) [140], demonstrate that
the Standard model of cosmology remains an excellent description of the Universe. However, when
the Planck data are combined with other astronomical observations, several deviations emerge. The
most significant deviation is the Hubble tension [141] which refers to one detail in the current model for
the evolution of the universe that has not been resolved: the rate at which the universe is expanding.
Scientists can arrive at the rate of expansion 𝐻0 in two different ways and the two techniques result
in slightly different rates. Local measurements of the Hubble parameter, from supernovae [142] and
lensing time delays [143], disagree with the value inferred from a ΛCDM fit to the cosmic microwave
background [140], with local measurements suggesting a higher value 7. The uncertainties in both the
supernova and CMB measurements are small enough that the disagreement between the two is statistically
significant. This long-standing deviation has become stronger with time and is currently at 4.4𝜎 [144].
The authors of Ref. [141] suggest that an exotic form of dark energy which is known as early dark energy is
responsible for the Hubble tension, the discrepancy between the predicted and measured rates of universe
expansion. Early dark energy behaves like a cosmological constant at early times and then decays away
like radiation or faster at later times. Further studies must determine whether these anomalies are due to
measurement uncertainties or undiscovered physical correlations, which would also challenge Einstein’s
theory of gravitation. The lack of a fully satisfactory model gives rise to alternatives to the cosmological
Standard model.

In the present Thesis we look beyond the Standard model and we test the existence of possible
deviations from the ΛCDM model. If the concordance model is correct, then these tests will provide a
useful way to quantify how confident we are in a more absolute way than we can at present. On the
other hand, possible deviations for any of these tests, will help point us in other directions. The bulk of
the present thesis is devoted to the study of gravity theories, which mainly are based on deviations from
ΛCDM model. In particular, these issues are

1. The Standard model of Cosmology is based on the cosmological principle, which states that our
observational location in the universe is not unusual or special. On a large enough scale, the universe
looks the same in all directions (isotropy) and from every location (homogeneity). In Chapter 2,
we test the validity of the cosmological principle through the Union2 dataset of Supernova Ia,
searching for deviations. Also, we search for a preferred cosmological axis in this dataset, which is
the direction of maximum acceleration (the direction of the minimum value of Ω0𝑚).

2. The standard model assumes that all fundamental constants do not change in time and space. Also
it assumes that no topological defects are present. In Chapter 3, we promote the fine structure con-
stant to a scalar field and discuss its effects on the stability of particular types of topological defects
(dilatonic gauged monopoles). Monopoles can affect the formation of the large scale structure or
the anisotropies of the CMB. Since the Planck data predict some deviations from the ΛCDM model,
especially in the low multipole moments of the CMB, it is important to study some properties of
these monopoles. In Chapter 3, we investigate the stability of monopoles in the case of a coupling
to electromagnetism and the consequences of their possible existence in Cosmology. In particular,
we focus our interesting on the role of monopoles in some physical effects, such as the variation of
the fine structure constant.

3. Scalar particles are an enigma from the point of view of General Relativity. In Cosmology, some
scalar particles can contribute to dark matter. A cosmological classical background due to a scalar
field can cause maximally positive or negative pressure. A negative pressure is most probably
responsible for the present observed acceleration of the expansion of the universe. This approach
for the interpretation of the observed type of expansion consists a deviation from the ΛCDM model.
In Chapter 4, we explore signatures of some scalar particles which are known as axion like particles
and chameleons, from experiments which try to detect them. Axion like particles are connected with

7Scientists who infer the rate of expansion from observations of the cosmic microwave background, conclude that we’re
expanding at a rate of 𝐻0 = 67.7 𝐾𝑚

𝑠𝑒𝑐 𝑀𝑝𝑐
which is approximately 3 million light-years. Those who observe stellar explosions,

or supernovae, in the nearby universe and study how they move in relation to Earth come up with 𝐻0 = 73.5 𝐾𝑚
𝑠𝑒𝑐 𝑀𝑝𝑐

35



dark matter, while chameleons are connected with dark energy. Possibly, these particles interact
with photons and the interaction is described through a coupling to electromagnetism. Until now,
no experiment has detected these particles and for this reason, bounds have been estimated for the
energy (or mass) of the corresponding particles. Also, we focus on a case of quintessence models
where scalar fields which couple to electromagnetism can stabilize the cosmological structures for
longer time than the ΛCDM model.

4. The ΛCDM model is based on the validity of General Relativity and thus the Newtonian law of
gravity at all distance scales. However, there are indications that at sub-mm scale, appear deviations
from the Newtonian gravity. For this reason, we need to perform a detailed check on experimental
data which contain interactions below mm. In Chapter 5, we analyze data from an experiment
which took place at the University of Stanford. According to our analysis, oscillating model for the
residual force fits the data better than other models. This could be an indication for deviations
from the law of gravity. However, most probably, this signal is due to systematic errors of the
experiment.

5. The spacetime in the flat ΛCDM model is described by the FRW metric. In the vicinity of a mass
concentration, this expanding background gets modified to different types of metrics. One of them
is the McVittie metric which contains expansion and describes an expanding spacetime around a
mass concentration, such as a black hole, where the gravity is strong. In such background, it is
important to investigate the geodesics or the behaviour of a gravitational wave. In Chapter 6, we
adopt the Newtonian limit of a McVittie spacetime and we focus on the evolution of a gravitational
wave in the vicinity of a point mass and the corresponding effects, while in 7 we focus on geodesics
in a phantom cosmological background in the presence of a mass concentration.

6. One of the basic concepts of the ΛCDM model is that the accelerating expansion is due to the
presence of the cosmological constant Λ, where the equation of state parameter 𝑤 is equal to −1.
However, cosmological models with different values of the parameter 𝑤 have been proposed as
deviations from the concordance model, aiming to improve the understanding of cosmos and to
describe the cosmological observations with a better way than the ΛCDM model. In phantom
cosmology we have 𝑤 < −1, while in quintessence models 𝑤 > −1. In Chapter 7, we focus
on geodesics of bound systems in a phantom cosmological background which is described by the
McVittie metric. In this case the bound systems get dissociated in the future, since the scale factor
becomes infinite. This singularity is known as Big Rip.

7. Chapter 8 is distinct from the other chapters since we do not consider deviations from the standard
model. Instead we stay in the context of General Relativity and we focus on the effects of spin on
the trajectories of particles in the vicinity of black holes. If we consider the spin of the particle,
since many astrophysical systems have spin, the motion is described by the MP equations and the
orbits are not geodesics, since the existence of spin induces an additional interaction. In Chapter
8, we consider the Mathisson Papapetrou Dixon equations in the post Newtonian limit of McVittie
metric and we focus on the orbits of a particle in such a spacetime, where the gravitational effects
are strong. We are interested in the deviations of the orbits which are circular in a static universe for
a spinless particle. Deviations appear due to spin-orbit coupling and due to expanding background.

In conclusion, the principle that unifies and connects most of the contents of this thesis is the directions
of deviation from the standard ΛCDM model. In this subsection we kept the exposition of the material of
the present Thesis brief and focused onto the introduction of notions which are relevant to the subsequent
chapters of this Thesis.
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Chapter 2

Testing the isotropy of the Universe
with Union2 data.

One of the most profound discoveries in Modern Cosmology is that the universe appears to be expanding
at an increasing rate. Thus, the Universe either it is dominated by dark energy which is gravitationally
repulsive, or General Relativity is inadequate and needs to be replaced by a modified theory of gravity.
This discovery was made through the investigation of distant type Ia supernovae (SNe Ia), which are
used as standard candles. In the upcoming decade, with improved distance precision, SNe Ia will provide
measurements of the inhomogeneous motions of structures in the Universe that will provide an unmatched
test of whether dark energy or modified gravity is responsible for the accelerating expansion of the
Universe.

The cosmological principle which includes isotropy and homogeneity is a basic component of the
ΛCDM model. Since it constitutes an assumption, it is tested by many cosmological observations. These
observations come from the cosmic microwave background radiation [145–147], from the distribution of
supernovae type Ia [1, 148, 149], using photometric and spectroscopic data [150], from highest energy
cosmic rays [151] or from large scale structures [152–154]. The tests are carried out from data in local
universe and large scales. Although the results are consistent with the cosmological principle, there
are some indications for possible deviations (anomalies) from this principle in local and in large scales
[1, 28, 152, 155].

In the course of this Chapter we estimate the cosmological parameter Ω0𝑚 through the Union2 data-
set of Supernova Ia. We search for possible deviations from the isotropy and homogeneity through the
Union2 dataset and we prove that it is consistent with the Cosmological principle. Using the hemisphere
comparison method, we find that this dataset has a direction with maximum acceleration, which corres-
ponds to the minimum value of the parameter Ω0𝑚. As pointed out in section 1.15 such a study is one
of the main directions of deviations from the ΛCDM standard model and is the one of the main focuses
of this thesis. Since there are some different cosmological observations, such as CMB low multipole mo-
ments, quasar alignment, supernova Ia and bulk velocity flow of galaxies with a preferred cosmological
axis in the same region of the celestial sphere, we estimate how possible is this coincidence to be random.
The probability that the above independent six axes directions would be so close in the sky is less than
1%. Thus, either the relative coincidence is a very large statistical fluctuation or there is an underlying
physical or systematic reason that leads to their correlation.

A type Ia supernova (SnIa) occurs in binary systems (two stars orbiting one another) in which one
of the stars is a white dwarf with mass below the Chandrasekhar limit (1.44𝑀⊙). The other star can
be anything from a giant star to an even smaller white dwarf. When a slowly-rotating white dwarf
accretes matter from the companion, it can exceed the Chandrasekhar limit, beyond which it can no
longer support its gravity with electron degeneracy pressure. Then, the white dwarf explodes causing
the companion star to be ejected away. This type Ia category of supernovae produces consistent peak
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luminosity because of the uniform mass of white dwarfs that explode via the accretion mechanism. The
stability of this value allows these explosions to be used as standard candles to measure the distance
to their host galaxies because, as we can see from Eq. (1.63), the visual magnitude of the supernovae
depends primarily on the distance.

Until today, have emerged many compilations of supernova Ia datasets, such as Constitution, Union,
Union2 and Union 3, ESSENCE, SNLS, Gold06, SDSS-II and most recently Pantheon (Pan-STARRS1
Medium Deep Survey). More analytically, type Ia supernovae are used as standard candles

∙ to check the isotropy of the universe,

∙ to search for hints of existence of preferred axes in cosmos

∙ to investigate the recent expansion history of the universe.

Most previous studies searching for anisotropies in SnIa datasets have found no statistically significant
evidence for anisotropies [156–161]. The authors of Ref. [157] used the Union2 dataset [36] consisting
of 557 SnIa, to derive the angular covariance function of the standard candle magnitude fluctuations
searching for angular scales where the covariance function deviates from null in a statistically significant
manner. No such angular scale was found. However, this is a useful and ambitious approach which
aims at identifying not only the existence of a possible anisotropy but also, its detailed angular scale
dependence despite of relatively small number of data in most angular scales considered.

An alternative approach is found in Ref. [162] where a statistically significant preferred axis was
detected using the hemisphere comparison method. This method amounts to fitting the ΛCDM para-
metrization for Ω0𝑚 on several pairs of opposite hemispheres and comparing the maximally asymmetric
pair with the corresponding maximally asymmetric pair of isotropized similar datasets. The advantage
of this method is that it optimizes the statistics since there is a large number of SnIa in each hemisphere.
This is achieved at the cost of loosing all information about the detailed structure of the anisotropy.

The method was applied to four SnIa datasets [162]. The most prominent axis of maximal hemispheric
asymmetry (𝑙, 𝑏) = (123∘, 27∘) was found to be close to the axis of the equatorial poles (𝑙, 𝑏) = (96∘, 30∘).
This alignment between maximally asymmetric hemispheric Hubble diagrams and the equatorial frame
was attributed to a systematic error by the authors of Ref. [162]. A second direction of maximum
asymmetry (𝑙, 𝑏) = (235∘, 15∘) in one of the datasets (the Gold04 [163]) was considered in Ref. [162]
which was closer to the preferred axes of other observations discussed above but it was also discarded
because the maximum asymmetry between the hemispheres coincided with the maximal asymmetry in
the number of degrees of freedom.

In this Chapter we apply a variation of the hemisphere comparison method to the Union2 dataset. Our
aim is to identify the direction of the axis of maximal asymmetry for the Union2 dataset [36] (directions
to the SnIa provided in Ref. [157]) and evaluate its statistical significance by comparing with a large
number of similar Monte Carlo isotropized datasets. We also compare the obtained direction of maximal
asymmetry axis with the directions of preferred axes obtained from other cosmological observations
discussed in Chapter 1. In particular, we estimate the probability these axes would have the observed
angular separation if they are uncorrelated.

2.1 Hemisphere comparison method
The Union2 SnIa dataset [36] is a sample consisting of 557 SNe Ia covering the redshift range 𝑧 =
[0.015, 1.400]. It extends the Union dataset [164] by adding SnIa data at low and intermediate redshifts
discovered by the CfA3 [165] and SDSS-II Supernova Search [166], respectively. It also includes six new
SnIa discovered by the Hubble Space Telescope at high 𝑧. In this Chapter we use the directions to the
SnIa provided in Ref. [157]. The angular distribution of the Union2 dataset in galactic coordinates is
shown in Figure 2.1. The color of each point provides information about the redshift according to the
legend on the right.
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Hemisphere Comparison Method

Z=0

Z=1.4

1. Select Random Axis

2. Evaluate Best Fit Ωm in each Hemisphere

m
ΔΩ
Ω

3.Evaluate

4. Repeat with several random axes 
and find max

ΔΩ
Ω

Union2 Data
Galactic Coordinates

(view of sphere from opposite directions

Figure 2.1: The Union2 data in galactic coordinates and the Hemisphere Comparison Method in four
steps. The color of each datapoint provides information about the redshift according to the legend on the
right. Two opposite hemispheres are shown. The viewpoints are along the axis of maximum asymmetry
which we discuss in this Chapter.

The Union2 data along with directions as presented in Ref. [157] include the name of the SnIa,
the redshift in the CMB rest frame, the distance modulus and its uncertainties (which include both
the observational and the intrinsic magnitude scatter). They also include the equatorial coordinates
(right ascension and declination) of each SnIa. It is straightforward to convert these coordinates to
galactic coordinates or to usual spherical coordinates (𝜃, 𝜑) in the equatorial or galactic systems [167].
This dataset may be analyzed in the usual manner by applying the maximum likelihood method. The
apparent magnitude 𝑚(𝑧) is related to the Hubble-free luminosity distance 𝐷𝐿(𝑧) through

𝑚𝑡ℎ(𝑧,Ω0𝑚) = 𝑀̄(𝑀,𝐻0) + 5𝑙𝑜𝑔10

(︁
𝐷𝐿(𝑧)

)︁
(2.1)

where, in a flat cosmological model

𝐷𝐿(𝑧) = (1 + 𝑧)
∫︁ 𝑧

0
𝑑𝑧′ 𝐻0

𝐻(𝑧′; Ω0𝑚) (2.2)

is the Hubble-free luminosity distance assumed here to be parameterized by ΛCDM as

𝐻(𝑧)2 = 𝐻2
0

(︂
Ω0𝑚(1 + 𝑧)3 + (1 − Ω0𝑚)

)︂
(2.3)

Also 𝑀̄ is the magnitude zero point offset which depends on the absolute magnitude 𝑀 and on the
present Hubble parameter 𝐻0 = 100ℎ 𝑘𝑚

𝑠𝑒𝑐 𝑀𝑝𝑐 as

𝑀̄ = 𝑀 + 5𝑙𝑜𝑔10(𝐻
−1
0

𝑀𝑝𝑐
) + 25 = 𝑀 − 5𝑙𝑜𝑔10ℎ+ 42.38 (2.4)
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The parameter 𝑀 is the absolute magnitude which is assumed to be constant. The data points of the
Union2 compilation are given in terms of the distance modulus

𝜇𝑜𝑏𝑠(𝑧𝑖) ≡ 𝑚𝑜𝑏𝑠(𝑧𝑖) −𝑀 (2.5)

The theoretical model parameter (Ω0𝑚) is determined by minimizing the quantity 𝜒2(Ω0𝑚, 𝜇0), which is
defined as

𝜒2(Ω0𝑚, 𝜇0) =
𝑁∑︁
𝑖=1

(︁
𝜇𝑜𝑏𝑠(𝑧𝑖) − 𝜇𝑡ℎ(𝑧𝑖,Ω0𝑚, 𝜇0)

)︁2

𝜎2
𝜇 𝑖

(2.6)

where 𝜎2
𝜇 𝑖 are the distance modulus uncertainties which include both the observational and the intrinsic

magnitude scatter. These uncertainties are assumed to be Gaussian and uncorrelated (we assume a
diagonal covariance matrix and ignore systematics). The theoretical distance modulus is defined as

𝜇𝑡ℎ(𝑧𝑖,Ω0𝑚, 𝜇0) ≡ 𝑚𝑡ℎ(𝑧𝑖,Ω0𝑚) −𝑀 = 5𝑙𝑜𝑔10

(︁
𝐷𝐿(𝑧)

)︁
+ 𝜇0 (2.7)

where
𝜇0 = 42.38 − 5𝑙𝑜𝑔10ℎ (2.8)

As a test we have checked that our full sky analysis reproduces the results of Ref. [36] for the cases of
no systematics. For example we obtain a full sky best fit value Ω0𝑚 = 0.27 which is almost, the current
acceptable rate for the visible and dark matter and we reproduce the contour Fig. 10a of Ref. [36].

Anisotropies for Random Axes (Union2 Data)
View from above Maximum Asymmetry Axis

Galactic Coordinates

Minimum Acceleration: 
(l,b)=(129o,-18o)

max
0.43

ΔΩ
=

Ω

Maximum Acceleration Direction: 
(l,b)=(309o,18o)

max
0.43

ΔΩ
= −

Ω

ΔΩ/Ω=
0.43

ΔΩ/Ω=
‐0.43

Figure 2.2: The directions of the random axes considered are shown as dots on the unit sphere colored

according to the sign and magnitude of the anisotropy level
(︂

ΔΩ0𝑚

Ω̄0𝑚

)︂𝑈2
. The hemisphere shown on the

left (right) is the one corresponding to maximum (minimum) acceleration. The corresponding best fit
values of Ω0𝑚 are Ω0𝑚 = 0.19 with (𝑙, 𝑏) = (309∘, 18∘) and Ω0𝑚 = 0.30 with (𝑙, 𝑏) = (129∘,−18∘).
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The hemisphere comparison method, which implemented in this Chapter and in Fig. 2.1 involves the
following steps [162]:

1. Generate a random direction in the celestial concave with the aid of the unit vector

𝑟𝑟𝑛𝑑 = (cos𝜑
√︀

1 − 𝑢2, sin𝜑
√︀

1 − 𝑢2, 𝑢) (2.9)

where 𝜑 ∈ [0, 2𝜋) and 𝑢 ∈ [−1, 1] are random numbers with uniform probability distribution.

2. Split the dataset under consideration into two subsets according to the sign of the inner product
𝑟𝑟𝑛𝑑 · 𝑟𝑑𝑎𝑡 where 𝑟𝑑𝑎𝑡 is a unit vector describing the direction of each SnIa in the dataset. Thus, one
subset corresponds to the hemisphere in the direction of the random vector (defined as ’up’) while
the other subset corresponds to the opposite hemisphere (defined as ’down’).

3. Find the best fit values on Ω0𝑚 in each hemisphere (Ω0𝑚,𝑢 and Ω0𝑚,𝑑) and use these values to
obtain the anisotropy level quantified through the normalized difference

ΔΩ0𝑚

Ω̄0𝑚
≡ 2Ω0𝑚,𝑢 − Ω0𝑚,𝑑

Ω0𝑚,𝑢 + Ω0𝑚,𝑑
(2.10)

4. Repeat for 400 random directions 𝑟𝑟𝑛𝑑 and find the maximum standardized difference for the Union2
data (︂

ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2

We also obtain the corresponding direction of maximum anisotropy.

Maximum Acceleration Directions
for Different Redshift Cutoffs

Zmax=0.2

Zmax=1.4

Maximum Acceleration Direction: 
(l,b)=(309o,18o)  (full sample)

Maximum Acceleration Direction: 
(l,b)=(341o,-17o)  (Zmax=0.2)

Figure 2.3: The directions of maximum acceleration which correspond to the redshift cutoffs of Table 1.

Instead of the above algorithm involving random directions of the axes, we could have implemented
a uniform coverage of the sphere, utilizing equal area pixels along the lines of Healpix [168]. In that
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case each axis would have a fixed direction in the center of each equal area pixel. However, we find the
use of axes with random directions simpler to implement in practice without any specific disadvantage
compared to the Healpix approach. In order to maximize efficiency, the number of axes should be
approximately equal to the number of data points (SnIa) on each hemisphere. The reason for this is
that changing the direction of an axis, does not change the corresponding ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚
until a data point is

crossed by the corresponding equator line. Such a crossing is expected to occur when the direction of an
axis changes by approximately the mean angular separation between data points. Thus, using more axes
than the number of datapoints in a hemisphere does not improve the accuracy of the determination of
the maximum anisotropy direction. Given that the number of datapoints per hemisphere for the Union2
dataset is about 280 it becomes clear that using 280 test axes is close to the optimal number of axes to
use. We have used 400 axes in our analysis, well above the value of 280.

In order to derive the 1𝜎 error in the maximum anisotropy direction, we first obtain the 1𝜎 error 𝜎ΔΩ
associated with ΔΩ0𝑚,𝑚𝑎𝑥

Ω𝑚
. This is of the form

𝜎ΔΩ =

√︁
𝜎2

Ω0𝑚,𝑢
+ 𝜎2

Ω0𝑚,𝑑

Ω0𝑚,𝑢 + Ω0𝑚,𝑑
= 0.06 (2.11)

Notice that this is the error due to the uncertainties of the supernova distance moduli propagated to the
best fit Ω0𝑚 on each hemisphere and thus to ΔΩ0𝑚,𝑚𝑎𝑥

Ω𝑚
. Then, we identify the test axes that correspond

to an anisotropy level within 1𝜎 from the maximum anisotropy level i.e.

ΔΩ0𝑚

Ω̄0𝑚
= ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚
± 𝜎ΔΩ

These axes apparently cover an angular region corresponding to the 1𝜎 range of the maximum anisotropy
direction.

2.2 Axis of maximum asymmetry
Using a run with 400 test axes we find the 1𝜎 angular region for the hemisphere of maximum acceleration
is in the direction (︃

𝑙 = 309∘+23∘

−3∘ , 𝑏 = 18∘+11∘

−10∘

)︃
and the best fit value is Ω0𝑚 = 0.19, while the hemisphere with the minimum acceleration is in the
opposite direction (︂

𝑙 = 129∘+3∘

−23∘ , 𝑏 = −18∘+10∘

−11∘

)︂
with best fit value Ω0𝑚 = 0.30. The corresponding maximum anisotropy level is

(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2
= 0.43 ± 0.06 (2.12)

Our results are shown in Fig. 2.2 where we present the directions of the random axes considered as dots

on the unit sphere colored according to the sign and magnitude of the anisotropy level
(︂

ΔΩ0𝑚

Ω̄0𝑚

)︂𝑈2
. The

view point is on top of the hemisphere of maximum (left) and minimum (right) acceleration.
In an effort to identify possible redshift dependence of the above anisotropy, we have implemented a

redshift tomography of the Union2 data and have identified the maximum anisotropy directions (with
their errors) for the following redshift ranges: (0 − 0.2), (0 − 0.4), (0 − 0.6), (0 − 0.8), (0 − 1.0), (0 − 1.2),
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(0 − 1.4). This tomography presented in Table 2.1 and Fig. 2.3. We have found that with the exception
of the nearest supernovae (0 − 0.2 redshift range) whose maximum anisotropy direction is about 40∘

away from the maximum anisotropy direction of the full dataset, all the other redshift ranges have an
anisotropy direction which is within about 20∘ from the anisotropy direction of the full Union2 dataset.

2.2.1 Maximum anisotropy level and cosmological isotropy
Subsequently, we wish to address the question whether the maximum anisotropy level (2.12) for the
Union2 data is consistent with statistical isotropy. In order to address this question we have constructed
simulated isotropic datasets by replacing the 𝑖𝑡ℎ distance modulus of the Union2 dataset by a random
number with a Gaussian distribution with mean value and standard deviation determined by the best
fit value of 𝜇𝑡ℎ(𝑧𝑖,Ω0𝑚, 𝜇0) (Eq. (2.7) with the best fit values Ω0𝑚 = 0.27, 𝜇0 = 43.16) and by 𝜎𝜇 𝑖 of
the corresponding Union2 data-point respectively. We then compare a simulated isotropic dataset with
the real Union2 dataset by splitting each dataset into hemisphere pairs using 10 random directions. This
part of the present analysis is not aimed at identifying the maximum anisotropy direction neither at
comparing with the result of the search in N=400 directions. Instead, it only aims at comparing the real
data with the isotropic simulated data with respect to the level of anisotropy.

In the context of this comparison, it is not important to identify the level of absolute maximum
anisotropy. What is more important is to repeat the comparison a relatively large number of times (40 in
our case) in order to have acceptable statistics. Given the limitations of computing time we had to reduce
the number of axes directions (10) in order to increase the number of Monte Carlo experiments performed.
Clearly the level of anisotropy identified in this case ( ΔΩ𝑚

Ω𝑚
≃ 0.29) is significantly smaller compared to

the case of 400 axes directions ( ΔΩ𝑚

Ω𝑚
≃ 0.43) but this is not important for our purposes which do not

include in this case the identification of the maximum anisotropy. Then we find the maximum levels of

anisotropy
(︂

ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2
(Union2) and

(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝐼
(Isotropic) and compare them. We repeat this

comparison experiment 40 times with different simulated isotropic data and axes each time. We found
the following results:

∙ In about 1/3 of the numerical experiments (14 times out of 40) we have that(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝐼
>

(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2

i.e. the anisotropy level was larger in the isotropic simulated data. In the rest 2/3 of the numerical
experiments the anisotropy level was larger in the Union2 data. This is a clear indication that
the anisotropy level, which found in the Union2 data, is not significant and it is consistent with
statistical isotropy.

∙ The mean value and standard deviation of the maximum anisotropy level for the Union2 data are(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2
= 0.29 ± 0.05 (2.13)

and for the simulated isotropic data(︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝐼
= 0.24 ± 0.07 (2.14)

The error region which is described by equation (2.13) is not the error associated with the uncer-
tainties of the supernova magnitudes as are the error regions of the 4𝑡ℎ and 5𝑡ℎ columns of Table
2.1. It corresponds to the range of the anisotropy level obtained when using 10 test axes to find the
maximum anisotropy. Given the relatively small number of axes directions (10) considered in this
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Figure 2.4: The distribution of the anisotropy levels
(︂

ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂
in the Union2 (front histogram) and

simulated Isotropic datasets (back) using 10 random directions in each dataset. They show significant
overlap which is a sign of consistency of the Union2 data with statistical isotropy.

part of the analysis, there is a significant variation of the level of maximum anisotropy identified
in each run. This variation is described by the result of Eq. (2.13). In this case what we call ‘the
error’ corresponds to the range of values ΔΩ0𝑚,𝑚𝑎𝑥

Ω𝑚
that is expected to be obtained in about 68%

of the trials when our approach is implemented using 10 axes with random directions. In view of
the fact that this variation is large enough to overlap significantly with the corresponding results
obtained with the isotropic Monte Carlo data, it becomes clear that the anisotropy of the real data
is consistent with statistical isotropy. It is clear from Eqs. (2.13) and (2.14) that there is a clear
overlap at the 1𝜎 level which also implies that the maximum anisotropy level of the Union2 data is
consistent with statistical isotropy.

∙ The histograms indicating the distribution of ΔΩ0𝑚,𝑚𝑎𝑥

Ω𝑚
in each case are shown in Fig. 2.3 and they

clearly show a significant overlap confirming also the consistency of the Union2 data with statistical
isotropy.

Thus we have identified a direction of maximum anisotropy in the Union2 data and the level of this
anisotropy is larger than about 70% of isotropic simulated datasets. However this level is clearly not
enough to indicate inconsistency with statistical isotropy. Signals bellow 2𝜎 are statistically negligible.

2.3 Preferred Axes from Other Observations and correlation
In this section we proceed to compare the direction of the identified maximum anisotropy with correspond-
ing directions obtained with different, independent cosmological observations. The potential consistency
among these independent anisotropy directions can dramatically increase the statistical significance of
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Redshift Range l b
(︂

ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2 (︂
ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝐼
0-0.2 341∘+9

−22 −17∘+28
−6 2.08 ± 0.22 4.28 ± 0.22

0-0.4 301∘+16
−2 −1∘+21

−15 1.81 ± 0.27 1.23 ± 0.15
0-0.6 301∘+43

−14 −4∘+23
−26 0.6 ± 0.1 0.48 ± 0.08

0-0.8 327∘+22
−21 37∘+4

−19 0.46 ± 0.07 0.36 ± 0.06
0-1.0 301∘+35

−0 −4∘+31
−0 0.45 ± 0.07 0.35 ± 0.06

0-1.2 310∘+8
−4 16∘+16

−11 0.43 ± 0.07 0.35 ± 0.06

0-1.4 (all data) 309∘+23
−3 18∘+11

−10 0.43 ± 0.06 0.36 ± 0.06

Table 2.1: Directions of maximum anisotropy for several redshift ranges of the Union2 data (see also Fig.
2.3). The level of maximum anisotropy for a typical isotropic simulated dataset is also shown in the 5𝑡ℎ
column. The asymmetry of errors is largely due to the non-uniform distribution of the SnIa on the sky.

each one of them. In what follows we focus only on the kind of anomalies that appear to be related
with the possible existence of a preferred axis. It is possible, a single mechanism could be responsible
for seemingly unrelated anomalies. After all, before inflation it would be hard to imagine that the same
mechanism could be responsible for both the generation of primordial fluctuations on all scales and for
the horizon problem (two seemingly unrelated issues).

As discussed in the Chapter 1, there is a range of independent cosmological observations which
indicate the existence of anisotropy axes. The consistency of these directions may be interpreted as
a hint of the existence of an underlying physical or systematic cause which is common in all of these
apparently independent axes. These cosmological observations along with their preferred directions and
the corresponding references are summarized in Table 2.2. In what follows we focus on the preferred axes
and ignore the information about the directionality of each axis. Had we considered also information
about the directionality of axes the likelihood of the observed coincidence would be even smaller given
that the directions of the bulk velocity flow, faster accelerating expansion and CMB dipole all appear to
be towards the North Galactic Hemisphere.

Cosmological Obs. l b Reference
SnIa Union2 309∘ 18∘ This Study
CMB Dipole 264∘ 48∘ [48]

Velocity Flows 282∘ 6∘ [169] [42]
Quasar Alignment 267∘ 69∘ [50]

CMB Octopole 308∘ 63∘ [46]
CMB Quadrupole 240∘ 63∘ [47] [46]

Mean 278∘ ± 26∘ 45∘ ± 27∘ -

Table 2.2: Directions of Preferred axes from different cosmological observations.The precise directions
may vary by a few degrees across the literature but our results are insensitive to such small variations.

The six axes corresponding to the observations of Table 2.2 are shown in Fig. 2.5 in galactic coordin-
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Six Preferred Axes in Galactic Coordinates
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Figure 2.5: The coordinates of the preferred axes of Table 2.2 are located in a region less than a quarter
of the North Galactic Hemisphere (left). The south galactic hemisphere (right) is also shown for com-
pleteness. The bulk flow direction is also visible in the south galactic hemisphere because it is close to
the equator. The mean direction obtained in Table 2.2 with coordinates (𝑙, 𝑏) = (278∘, 44∘) is also shown.

ates. Clearly all coordinates are located in a relatively small part of the North Galactic Hemisphere (less
than a quarter of it). It is straightforward to estimate the probability that six random points would
lie in such a small region on a hemisphere. To obtain this estimate we evaluate the mean value of the
inner product between all pairs of unit vectors corresponding to the preferred directions of Table 2.2 and
compare with the corresponding mean value of six random directions on a hemisphere.

Thus we evaluate the quantity

< |𝑐𝑜𝑠𝜃𝑖𝑗 | >=< |𝑟𝑖 · 𝑟𝑗 | >=
𝑁∑︁

𝑖,𝑗=1,𝑗 ̸=𝑖

|𝑟𝑖 · 𝑟𝑗 |
𝑁(𝑁 − 1) (2.15)

where in our case 𝑁 = 6 and we take the absolute value in order to ignore the directionality of the axes.
We apply Eq. (2.15) to both the real data of Table 2.2 and to 1000 realizations of six random points on
the sphere obtained using Eq. (2.9). For the real data we find

< | cos 𝜃𝑖𝑗 | >= 0.72 (2.16)

while from the Monte Carlo uncorrelated data we obtain

< | cos 𝜃𝑖𝑗 | >= 0.5 ± 0.072 (2.17)

Clearly, the value of < | cos 𝜃𝑖𝑗 | > of the real data is about 3𝜎 away from the expected value if there were
no correlation among the axes of Table 2.2. This is also seen in Fig. 2.6 which shows a histogram of the
distribution of < | cos 𝜃𝑖𝑗 | > as obtained from the Monte Carlo data superposed with the value obtained
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Figure 2.6: A histogram of the distribution of < |𝑐𝑜𝑠𝜃𝑖𝑗 | > as obtained from the Monte Carlo data,
superposed with the value obtained from the real data of Table 2.2 (Eq. (2.16)). Less than 1% of the
Monte Carlo data exceed the value corresponding to the real data.

from the real data (Eq. (2.16)). Clearly, less than 1% (0.8%) of the simulated data exceed the value of
< |𝑐𝑜𝑠𝜃𝑖𝑗 | > obtained with the real data. Thus, the coincidence of these independent preferred axes in
such a small angular region is a highly unlikely event.

Even if we ignore the axes related to the CMB, the coincidence of the three remaining axes in such a
small angular region is still a relatively unlikely event with probability about 7% (Fig. 2.7). In fact for
the three remaining axes of Table 2.2 we find

< |𝑐𝑜𝑠𝜃𝑖𝑗 | >= 0.76 (2.18)

while the Monte Carlo simulation gives

< |𝑐𝑜𝑠𝜃𝑖𝑗 | >= 0.5 ± 0.16 (2.19)

i.e. the real data are about 1.5𝜎 away from the Monte Carlo mean value.
Therefore, we conclude that even though each of the axes of Table 2.2 does not by itself constitute

statistically significant evidence for a cosmological anisotropy, their coexistence in a relatively small
angular region is a very unlikely event which is most probably attributed to either an undiscovered
physical effect or to a common basic systematic error that has so far escaped attention.

2.4 Conclusions
The main conclusions of the study in this Chapter may be summarized as follows:

∙ The hemisphere of maximum accelerating expansion of the universe according to the Union2 data
has a pole in the direction (𝑙, 𝑏) = (309∘+23

−3 , 18∘+11
−10) while the hemisphere of minimum acceleration

is in the opposite direction.
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Distribution of Mean Inner Product of Three
Preferred Directions (CMB excluded)
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Figure 2.7: A histogram of the distribution of < |𝑐𝑜𝑠𝜃𝑖𝑗 | > as obtained from the Monte Carlo data,
superposed with the value obtained from the real data of Table 2.2 excluding the axes related to the
CMB (Eq. (2.18)). About 7% of the Monte Carlo data exceed the value corresponding to the real data.

∙ The level of anisotropy of the Union2 dataset is larger than about 70% of simulated datasets but it
is still consistent with statistical isotropy.

∙ The coincidence of the anisotropy axes of Table 2.2 in a relatively small angular region is statistically
a highly unlikely event that hints towards a physical or systematic connection among the axes of
Table 2.2.

The combination of these cosmological observations may involve some a posteriori reasoning in the sense
that there are other observations that show no hint of a preferred axis. However, most large scale
cosmological observations may be analyzed in the context of a monopole, a dipole term (and higher
moments) even if the significance level of a preferred direction is low and consistent with statistical
isotropy. A real a posteriori reasoning would select some of these observations and points out that they
point in similar directions. On the other hand, we have analyzed all large scale cosmological observations
that we could find in the literature which involve a preferred cosmological direction (even if it is of low
significance by itself) and point out that these directions are abnormally close to each other.

The confirmation of the existence of a cosmological preferred axis would constitute a breakthrough in
cosmological research. Given the present status of cosmological observations such a confirmation is one
of the most probable directions from which new physics may emerge.

Given the preliminary evidence for anisotropy discussed above, it is important to extend and intensify
efforts for the possible confirmation of this evidence. Such confirmation may be achieved by extending
the SnIa compilations towards larger datasets and deeper redshifts, such as the Pantheon sample (1048
spectroscopically confirmed SnIa) that span as uniformly as possible all directions in the sky. This is
important in view of the fact that the Union2 compilation is less uniform and detailed in the south galactic
hemisphere. In addition it is important to extend other cosmological data related to CMB low multipole
moments, bulk velocity flows and quasar polarization to confirm the present existing evidence for preferred
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axes in these datasets. Finally, alternative probes of cosmological anisotropies may be considered like
higher CMB multipole moments, non-Gaussian features and polarization in the CMB maps, alignments
of geometric features of various structures on large scales (there is already some preliminary evidence for
alignment of handedness of spiral galaxies [170] along an axis not far from the directions of the other
preferred axes of Table 2.2), alignment of optical polarization from various cosmological sources or studies
based on cosmic parallax [171]. It is also important to derive observational signatures that can clearly
distinguish between the various different origins of the preferred axes discussed in the introduction.
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Chapter 3

Dilatonic Monopoles in 3+1
Dimensions and their Embeddings

According to ΛCDM model, the accelerating expansion of the universe can be explained by the presence
of dark energy which fills the universe. Although the nature of dark energy is unknown, it is possible that
consists of a scalar field. Generally, scalar fields can describe the variation of some cosmological constants,
such as the fine structure constant or inhomogeneities in dark energy. Due to non-trivial configurations
of the scalar fields, emerging topological defects, such as monopoles, are formed in a symmetry breaking
phase transition during the evolution and expansion of the Universe. In this Chapter we investigate some
properties of a dilatonic ’t Hooft-Polyakov monopole, such as the stability in the presence of an external
gauge field, through the minimization of its self energy. This is a special type of monopole where the
scalar field couples directly to the gauge field tensors and thus fine structures constant is allowed to
vary in space. The variation of the fine structure constant is a deviation of the standard model. Thus,
this Chapter mentions to another direction of deviation from the Standard ΛCDM model as discussed in
section 1.15.

We consider the ’t Hooft-Polyakov monopole ansatz which contains a couple of radial functions 𝑋(𝑟)
and 𝑊 (𝑟). The function 𝑋(𝑟) is a part of the dilatonic function 𝐵(Φ𝑎) which couples with the elec-
tromagnetic term in Lagrangian and the function 𝑊 (𝑟) is a part of the electromagnetic field. At small
distances the scalar field 𝑋(𝑟) increases rapidly with distance, but the electromagnetic field 𝑊 (𝑟) domin-
ates, since it is much bigger. At bigger distances (far away from the monopole) the scalar field dominates
and the gauge field tends to zero. Also, we consider the case where the monopole is embedded in a model
with 𝑂(4) symmetry. In order to determine the scalar and the gauge field, we minimize the perturbative
energy of the monopole in a presence of a Gaussian external magnetic field. In this case, the monopole is
unstable in every case. The existence of a dilatonic coupling in field theories, which predicts the existence
of topological defects implies the presence of new properties for the defects.

3.1 Variation of fundamental constants through scalar fields
The spacetime variation of fundamental constants [172–174] like the gravitational constant [175] or the
charges of gauge field interactions [176] is usually implemented at the Lagrangian level by promoting
these constants to scalar fields [175–177]. Their dynamics are determined by potential and kinetic terms
properly chosen to make the allowed variations consistent with current experiments and cosmological
observations. For example in order to allow spacetime variation of the gravitational constant 𝐺 and the
fine structure constant 𝛼 = 𝑒2/~𝑐 we may consider the replacement of the Einstein-Maxwell action

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔
(︂

𝑐4

16𝜋𝐺0
𝑅− 1

4𝛼0
𝐹𝜇𝜈𝐹

𝜇𝜈 + ℒ𝑚
)︂

(3.1)
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by a generalization

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔
(︂
𝜑𝑅− 𝜔𝜑

𝜑,𝜇𝜑
,𝜇

𝜑
− 𝑉𝜑(𝜑) − 𝑒−2𝜓 1

4𝛼0
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝜔𝜓
2 𝜓,𝜇𝜓

,𝜇 − 𝑉𝜓(𝜓)
)︂

(3.2)

inspired from the Brans-Dicke (BD) theory [175] (gravitational part) and the Bekenstein, Sandvik, Barrow
and Magueijo [177, 178] BSBM (electromagnetic part) actions. For free fields, the potentials take the
forms

𝑉 (𝜑) = 1
2𝑚

2
𝜑𝜑

2, 𝑉 (𝜓) = 1
2𝑚

2
𝜓𝜓

2

In this action the gravitational constant 𝐺0 is replaced by the dynamical BD field 𝜑 as 𝜑 = 16𝜋𝐺
𝑐4 and the

fine structure constant is replaced by the dynamical BSBM field 𝜓 as

𝛼 = 𝛼0𝑒
2𝜓

Laboratory experiments and astrophysical/cosmological observations impose limits on the allowed
spacetime variations of 𝐺 [179] and 𝛼 [180]. These limits can be translated into constraints on the
parameters 𝜔𝜑, 𝜔𝜓 and on the masses of the corresponding scalar fields. In the limit of infinite values of
these parameters, the dynamics of the scalar fields freeze and the dynamics of the action (3.2) reduces
to the Einstein-Maxwell action dynamics. The scalar fields 𝜑 and 𝜓 emerge naturally in the context of
string theory as dilatons [181, 182].

The BD parameter 𝜔𝜑 is dimensionless while the BSBM parameter 𝜔𝜓 has dimensions of energy
squared 𝑚2 ∼ 𝑙−2 (in units where ~ = 𝑐 = 1). If the potentials are ignored (𝑚𝜑 = 𝑚𝜓 = 0) then the
experimental/observational constraints on 𝜔𝜑, 𝜔𝜓 are [179, 180, 183]

𝜔𝜑 > 4 × 104 (3.3)
(100𝑀𝑒𝑉 )2 < 𝜔𝜓 < 𝑀2

𝑃𝑙 (3.4)

These constraints are based mainly on tests of the equivalence principle and fifth force search experiments
as well as on solar system tests (for 𝜔𝜑). When the field masses are non-equal to zero, the above constraints
are significantly relaxed [184].

In a cosmological setup both fields 𝜑 and 𝜓 have been considered as possible dark energy candidates
[24, 183, 185–190]. In the context of the recent possible detection of temporal [191–193] and spatial [194]
variation of the fine structure constant 𝛼 on cosmological scales (the 𝛼 dipole [194, 195]), the field 𝜓 has
the potential to play a dual role: the role of inhomogeneous dark energy and the cause of 𝛼 variation
[24, 183, 185–189]. Cosmological models based on inhomogeneous dark energy are motivated by CMB
and other cosmic anomalies [196] which may hint towards deviations from the cosmological principle on
large cosmic scales [196–198].

Negative pressure and large sound velocity would tend to wipe out any inhomogeneities of this scalar
field on all scales. Topologically non-trivial field configurations however have the potential to sustain
such field inhomogeneities on cosmological scales. Such configurations have been considered as a possible
mechanism to sustain inhomogeneous dark energy (topological quintessence [197–199]) possibly combined
with correlated spatial variation of fine structure constant (extended topological quintessence [196, 200]).
The later possibility is amplified by the observational fact that a dipole fit of the dark energy distribution
using Type Ia supernovae leads to a dipole whose direction is only about 10∘ away from the 𝛼 dipole
direction [195]. Therefore, topological defects emerging due to topologically non-trivial configurations of
the field 𝜓 (dilatonic defects) have the potential to play an interesting role in cosmology [196, 201–205]. It
is therefore interesting to investigate their field configuration properties which emerge as generalizations
of the corresponding ordinary defects where there is no coupling between the scalar field and the gauge
field kinetic term. These properties can be summarized as follows:

∙ The dilatonic coupling induces spatial variation of the gauge charge and a spatial variation of the
effective mass of the scalar field. This can lead to modification of the scale of the gauged topological
defect core.
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∙ The stability of the gauged embedded defects [206–211] is significantly affected by the dilatonic
coupling due to the spatial variation of the effective mass of the scalar field [204].

∙ The dilatonic coupling can lead to the formation of a scalar field condensate in the core of embedded
defects because it can induce a local instability which is confined in the core region where the gauge
fields are excited.

∙ Global embedded defects are unstable without the dilatonic coupling. However, in the presence of
a dilatonic coupling and an external gauge field they can be locally stabilized in their core region.

The aim of the analysis in this Chapter is to demonstrate the existence of dilatonic defect solutions and
investigate in some detail the above properties in the case of dilatonic monopoles.

3.2 Monopoles
3.2.1 Dilatonic ’t Hooft-Polyakov Monopole
Monopoles are formed in field theories involving symmetry breaking phase transitions where the vacuum
manifold is 𝑀 ∼= 𝑆2 [212]. This is the case for example, when an 𝑆𝑂(3) symmetry gets spontaneously
broken to 𝑈(1). Consider for example the Lagrangian density

ℒ = 1
2 (𝐷𝜇 Φ𝑎) (𝐷𝜇 Φ𝑎) − 𝑉 (Φ𝑎) − 𝐵(Φ𝑎)

4𝑒2
0

𝐹 𝑎𝜇𝜈 𝐹
𝑎𝜇𝜈 , (3.5)

describing an 𝑂(3) → 𝑂(2) symmetry breaking which accepts magnetic ’t Hooft-Polyakov monopole
solutions [213] with a dilatonic coupling 𝐵(Φ𝑎) to the gauge kinetic term of the Lagrangian. The dilatonic
function 𝐵(Φ𝑎) describes a possible variation of the gauge charge and thus for the effective charge we
have

𝑒2 = 𝑒2
0/𝐵(Φ𝑎)

where 𝑎 = 1, 2, 3 are internal indices. As usual, we define the non-Abelian gauge field strength by

𝐹 𝑎𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑒0𝜖

𝑎 𝑏 𝑐𝐴𝑏𝜇𝐴
𝑐
𝜈 , (3.6)

The covariant derivatives are written in the usual form

𝐷𝜇Φ𝑎 = 𝜕𝜇Φ𝑎 + 𝑒0 𝜖
𝑎 𝑏 𝑐𝑎𝑏𝜇 Φ𝑐, (3.7)

where 𝜖𝑎 𝑏 𝑐 is the Levi-Civita tensor. The symmetry breaking potential 𝑉 (Φ𝑎) is of the usual form

𝑉 (Φ𝑎) = 𝜆

4
(︀
Φ𝑎 Φ𝑎 − 𝜂2)︀2 (3.8)

The ’t Hooft-Polyakov monopole ansatz [213] is of the form

Φ𝑎(𝑟) = 𝑋(𝑟) 𝑥
𝑎

𝑟
, (3.9)

𝑎𝑎0(𝑟) = 0, (3.10)

𝑎𝑎𝑖 (𝑟) = 𝜖𝑖𝑎𝑘
𝑥𝑘
𝑒0 𝑟2

(︁
𝑊 (𝑟) − 1

)︁
, (3.11)

where 𝑥𝑎 are the Cartesian coordinates and 𝑟2 = 𝑥𝑘 𝑥𝑘. The radial functions 𝑋(𝑟) and 𝑊 (𝑟) are obtained
by minimization of the self-energy, i.e. the mass of the monopole which is defined as

𝐸 = 4𝜋
∫︁ ∞

0
𝑑𝑟 𝑟2 𝜌 (3.12)

53



or by solving the field equations. The energy density is obtained from the Lagrangian (3.5) as

𝜌 = 𝑇00 = −𝑔00ℒ (3.13)

After a rescaling of the form

𝑋 → 𝑋̄ = 𝜂𝑋 (3.14)

𝑟 → 𝑟 = 𝑟

𝜂𝑒0
(3.15)

the energy density becomes (we omit the bar)

𝜌 = 𝜂

𝑒0

[︂
𝐵(𝑋)

[︃(︂
𝑊 ′

𝑟

)︂2
+ 1

2

(︂
1 −𝑊 2

𝑟2

)︂2]︃
+ (𝑋 ′)2

2 +
(︂
𝑊𝑋

𝑟

)︂2
+ 𝛽

2 (1 −𝑋2)2
]︂

(3.16)

where the prime denotes a derivative with respect to the dimensionless coordinate 𝑟. Using (3.12) we
obtain the self energy

𝐸 = 4𝜋𝜂
𝑒0

∫︁ ∞

0
𝑑𝑟{𝑟

2

2

(︂
𝑑𝑋

𝑑𝑟

)︂2
+𝑋2𝑊 2 + 𝛽𝑟2

2 (1 −𝑋2)2 +𝐵(𝑋)
[︃(︂

𝑑𝑊

𝑑𝑟

)︂2
+ (1 −𝑊 2)2

2𝑟2

]︃
} (3.17)

The dimensionless parameter 𝛽 is defined as

𝛽 ≡
(︀𝑚Φ

𝑚𝐴

)︀2 (3.18)

where 𝑚Φ =
√
𝜆𝜂√
2 and 𝑚𝐴 = 𝑒0 𝜂 are the masses of the scalar and gauge fields respectively. It is

straightforward to find that
𝛽 = 𝜆

2𝑒2
0

.
In order to find the solution of the field equations we minimize the energy (3.17) using the boundary

conditions 𝑋(𝑟 → ∞) = 1, 𝑋(𝑟 → 0) = 0, 𝑊 (𝑟 → ∞) = 0 and 𝑊 (𝑟 → 0) = 1. Without loss of generality
we normalize the effective charge 𝑒 so that 𝐵(𝑟 → 0) = 1.

In this section we parameterize the dilatonic coupling as

𝐵(𝑋) = 𝑒𝑞𝑋
2

(3.19)

In order to obtain the dilatonic ’t Hooft-Polyakov monopole solution, we minimize the energy (3.17) using
the above boundary conditions, for several values for the parameters 𝛽 and 𝑞. In Fig. 3.1 we show the
resulting fields 𝑋(𝑟) and 𝑊 (𝑟) when (𝑞 = 0, 𝛽 = 0.1), (𝑞 = 0, 𝛽 = 1), (𝑞 = 1, 𝛽 = 0.1), (𝑞 = 1, 𝛽 = 1).
For each pair of the fields 𝑋(𝑟) and 𝑊 (𝑟) we use the same color for the plot in order to be easily visible.
As we observe, decreased value of 𝛽 and increased value of 𝑞 leads to a dilatonic monopole with larger
core scale.

We have verified that a polynomial form of 𝐵(𝑋), such as

𝐵(𝑋) = 1 + 𝑞𝑋2

leads to similar results, which we present in Fig. 3.2.
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Figure 3.1: Solutions for the radial fields 𝑋(𝑟) (continuous lines) and 𝑊 (𝑟) (dotted lines) for the dilatonic
magnetic monopole when the dilatonic function is 𝐵(𝑋) = 𝑒𝑞𝑋

2 , for several values of the parameters 𝛽
and 𝑞. The same color in the fields corresponds to the same values of 𝛽 and 𝑞. At small distances the
scalar field increases rapidly, while the gauge field decreases rapidly. At big enough distances the fields
are stabilized, the scalar field 𝑋(𝑟) dominates, while the gauge field 𝑊 (𝑟) is negligible. Notice that,
when q is constant, as 𝛽 increases the slope of the curves increases and the fields acquire their vacuum
expectation values at smaller distance 𝑟.

3.2.2 Embedded Dilatonic Monopole
We now consider the embedding of the gauge monopole [213] in a model with 𝑂(4) symmetry [210, 214].
This is achieved by adding in the scalar Φ one more component (becomes a four-vector) as

Φ4(𝑟) = 𝑔(𝑟) (3.20)

The embedded monopole potential (semilocal monopole) takes the form

𝑉 (Φ𝑎) = 𝜆

4

(︂
𝑋(𝑟)2 + 𝑔(𝑟)2 − 𝜂2

)︂2
(3.21)

Using the methods and arguments of Ref. [210] it is straightforward to show that the embedded dilatonic
monopole solution in this model is unstable for all values of parameters. The instability persists because
the embedded gauge group 𝑂(3) acts trivially on the additional field component Φ4(𝑟) = 𝑔(𝑟). In this
case it may be shown that there is a smooth sequence of field configurations parametrized by a parameter
𝜉 with energy monotonically decreasing with 𝜉 that starts from the embedded monopole configuration
for 𝜉 = 0 and ends at the vacuum for 𝜉 = 𝜋/2. In view of this simple and powerful result we omit
presenting the perturbative energy minimization analysis of the embedded dilatonic monopole which
involves minimization of the embedded gauged monopole energy corresponding to the energy density

𝜌 = 𝜂

𝑒0
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𝐵(𝑋)
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𝑊 ′

𝑟

)︂2
+ 1

2
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1 −𝑊 2

𝑟2
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𝑊𝑋

𝑟
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(3.22)
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Figure 3.2: Solutions for 𝑋(𝑟) (continuous lines) and 𝑊 (𝑟) (dotted lines) for the dilatonic embedded
monopole when the dilatonic function is 𝐵(𝑋) = 1 + 𝑞𝑋2, for the same values of the parameters 𝛽 and
𝑞 as in Fig. 3.1. The same color in the fields corresponds to the same parameter values of 𝛽 and 𝑞.
Qualitatively, the fields have the same behaviour, as in Fig. 3.1. The fields stabilized to their vacuum
expectation values and as 𝛽 increases the fields acquire their vacuum expectation values for smaller 𝑟.

Such an analysis simply verifies the anticipated instability for all values of the parameters 𝛽 and 𝑞. The
corresponding analysis for the embedded dilatonic monopole also leads to instability either using the
approach of Ref. [210], or through direct energy minimization of the density

𝜌 = 𝜂

𝑒0

[︁
𝐵(𝑋)(𝑒

− 𝑟2
𝑟2
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𝑟
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+ (𝑔′)2
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2 (1 −𝑋2 − 𝑔2)2
]︁

(3.23)

where we have assumed a similar external gauge field as in the previous section. The field configurations
that minimize the above energy using boundary conditions at 𝑟 = 10 (𝑋(𝑟 = 10) = 1) are shown in Fig.
3.3.

Notice that as expected the instability tends to expand outwards leading to the vacuum in regions
away from the external field region. However, for 𝑟 < 𝑟0 where the external field is significant, the field
remains out of the vacuum due to the effects of the external field which stabilizes locally the embedded
global monopole.

3.3 Physical Effects
In the presence of a large enough dilatonic coupling the corresponding stability region increases arbitrarily
as discussed in section 3.2. We anticipate that this stability improvement will persist even for the
experimentally measured parameter value of 𝛽. It is therefore important to identify the required value of
the dilatonic coupling 𝑞 for stability of the dilatonic monopole for the measured values of 𝛽. We point
out that if the required value of 𝑞 for stability is consistent with current experiments, then the possibility
of formation of metastable topological defects in accelerators and/or in the early universe arises. In this
case, we anticipate the existence of interesting signatures and effects in both accelerator and cosmological
setups. In particular, such effects include:
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Figure 3.3: The energy minimizing fields 𝑔(𝑟) and 𝑋(𝑟) as a function of distance 𝑟 for embedded dilatonic

monopole, in the presence of a Gaussian external “magnetic” field 𝑒
− 𝑟2

𝑟2
0 for several values of the parameter

𝑞, when 𝛽 = 1 and 𝑟0 = 2. We assume an exponential dilatonic coupling 𝐵(𝑋) = 𝑒𝑞𝑋
2 . It is clear that the

fields always change, which means that the fields are not stabilized and the embedded dilatonic monopole
is always unstable. Only in small distances, near the core, where the external field is significant, the
embedded dilatonic monopole is locally stable.

∙ Primordial Magnetic Fields: A gas of metastable electroweak segments formed during the
electroweak phase transition is necessarily accompanied by a gas of electroweak monopoles. The
eventual collapse and disappearance of electroweak strings removes all the electroweak monopoles
but the long range magnetic field emanating from the monopoles is expected to remain trapped in
the cosmological plasma. This will then lead to a residual primordial magnetic field in the present
universe. An estimate of the average flux of this primordial magnetic field was obtained in [215, 216].

∙ Generation of Baryon Number-Cosmic Rays: A gas of metastable electroweak string segments
and loops would in general, contain some helicity density of the Z-field. So when the electroweak
strings eventually annihilate, it is possible that the helicity gets converted into baryon number
[216]. In more exotic models (such as this), strings at the electroweak scale that were stable and
had superconducting properties, could also be responsible for baryogenesis [217] and the presence
of primary antiprotons in cosmic rays [218].

∙ Variation of Fine Structure Constant: A dilatonic coupling in models involving electromag-
netism like the electroweak model, leads naturally to the possibility of variation of the fine structure
constant 𝛼. In the presence of a metastable dilatonic electroweak string this variation is anticipated
to be spatial on the scale of the core of the dilatonic defect. Such microscopic localized variation
of 𝛼 could be detectable in accelerators where either metastable dilatonic electroweak strings or
dilaton-Higgs particles are produced and decay. This effect becomes more interesting in view of the
recent claim for a 4𝜎 detection of spatial variation of 𝛼 on cosmological scales obtained from careful
analysis of quasar absorption spectra [194].

∙ Signatures in accelerators: Dilatonic Dumbells The production of solitonic states in particle
accelerators as well as their experimental signatures constitute open issues that become particularly
important in the context of the existence of metastable electroweak strings. A rotating electroweak
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monopole-antimonopole pair connected by a Z-string and stabilized by a centrifugal barrier is known
as a dumbbell. The decay signature of such a metastable system was first studied by Nambu [219]
who estimated the energy and angular momentum of such a system as well as its lifetime and decay
products. In the context of a dilatonic coupling such a system may get stabilized not only due to its
angular momentum but also at the field theoretic level. Thus, we anticipate an increased lifetime
and a cleaner signature in accelerators.

The role of topological defects such as electroweak strings in Cosmology depends on their abundance
during and after the electroweak phase transition. If this abundance is negligible, electroweak strings
may at best only be relevant in future accelerator experiments. Such relevance is expected to increase
significantly in the presence of a dilatonic coupling which is anticipated to improve their stability.

3.4 Conclusions-Discussion
Topological defects are formed in theories where the scalar field couples to the gauge field strength tensor
(dilatonic defects) and have significant novel properties. In particular, some of them are

∙ Their core scales can be significantly larger than the corresponding ordinary defects with minimal
coupling.

∙ The corresponding embedded defects have modified stability properties.

∙ The instability of dilatonic defects in the presence of an external gauge field does not proceed towards
the vacuum. Instead it proceeds towards a field configuration which deviates from the vacuum in
the region where the external gauge field is excited. This configuration may be interpreted as a
local stabilization of the global embedded defects.

∙ The instability of the gauged embedded vortex may proceed (for certain parameter values) towards a
scalar field condensate where the instability is excited but is confined to the region of the embedded
defect core.

In conclusion, the existence of a dilatonic coupling in field theories predicting the existence of topo-
logical defects implies the presence of interesting new properties for the predicted defects which makes
these models worth of further investigation.
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Chapter 4

Bounds from scalar coupling to
electromagnetism

In the course of this Chapter we review a possible non-minimal coupling (dilatonic) of a scalar field (axion
like particle) to electromagnetism, through experimental and observational constraints. Such a coupling
is motivated from recent quasar spectrum observations that indicate a possible spatial and/or temporal
variation of the fine-structure constant. We consider a dilatonic coupling of the form 𝐵𝐹 (𝜑) = 1 + 𝑔𝜑.
The strongest bound on the coupling parameter 𝑔 is derived from weak equivalence principle tests, which
impose 𝑔 < 1.6×10−17𝐺𝑒𝑉 −1. This constraint is strong enough to rule out this class of models as a cause
for an observable cosmological variation of the fine structure constant unless a chameleon mechanism is
implemented. We argue that a similar coupling occurs in chameleon cosmology, a candidate dark energy
particle and we estimate the cosmological consequences of both effects. It should be clarified that this
class of models is not necessarily ruled out in the presence of a chameleon mechanism which can freeze
the dynamics of the scalar field in high density laboratory regions.

Since the cosmological constant problem remains unsolved, scalar field models have been proposed in
the past either to adjust dynamically the value of the vacuum energy in different versions or to endow the
dark energy of a convenient dynamics with the notion of quintessence [220]. Quintessence models make
use of a homogeneous, time dependent minimally coupled scalar field 𝜑 whose dynamics is determined by
a specially designed potential 𝑉 (𝜑) inducing the appropriate time dependence of the field equation of state
𝑤(𝑧) = 𝑃 (𝜑)

𝜌(𝜑) [20]. Recent analyses reveals that scalar field models fit better the cosmological data than
the ΛCDM model at a confidence level of around 4𝜎 [221]. In particular, in Section 4.4 of this Chapter we
consider a quintessence dark energy model with scalar field. We find that, in the presence of a scalar field
which is coupled with the electromagnetism, when electrostatic energy dominates against magnetostatic
energy, the Big Crunch singularity occurs later. Finally, we connect theoretically these models with the
variation of the fine structure constant and we compare them with the current observational status.

The contexts of this chapter consist a deviation from the Standard ΛCDM model as we have pointed
in section 1.15, since it assumes variation of the fine structure constant and its constraints. Deviation
from the ΛCDM model is any research on the quintessence model, since the parameter of equation of
state is different than 𝑤 = −1. We have discussed these aspects of Standard model in section 1.15.

4.1 Variation of fine structure constant through scalar fields
There are recent observational indications that the fine structure constant may be varying spatially
and/or temporally [180, 222–227] on cosmological scales. Such a variation could be due to a scalar field 𝜑
non-minimally coupled to electromagnetism. This field could also play the role of quintessence inducing
the observed accelerating expansion of the universe [228–231]. The possible spatial variation of the fine
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structure constant 𝛼 would require a corresponding spatial variation of the scalar field which could be
supported by non-trivial topological properties of the field configuration [2, 196, 200, 232]. The variation
of the fine structure constant is given by the relation

Δ𝛼
𝛼

= 𝛼− 𝛼0

𝛼0

where 𝛼0 is the present value. For a spatial variation, the value of Δ𝛼
𝛼 is of order 𝑂(10−5) [194].

We focus on cases where scalar particles or chameleons are subject to coupling with the electromagnetic
tensor [233]. We consider a Lagrangian interaction term of the form

𝐿𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = −1
4𝐵𝐹 (𝜑)𝐹𝜇𝜈𝐹𝜇𝜈 (4.1)

where the coupling function 𝐵𝐹 (𝜑) is known as the gauge kinetic function. We consider that 𝐵𝐹 (𝜑)
evolves linearly with the scalar field as

𝐵𝐹 (𝜑) = 1 + 𝑔𝜑 (4.2)

The scalar field can be a axion-like particle (ALP), chameleon or quintessence, while 𝑔 (which has units
of inverse energy) is the coupling constant, which must be constrained experimentally.

Axions are particles, whose existence helps to solve the strong CP (Charge+Parity) problem 1. Also,
they are dark matter candidate particles [234, 235] because they interact at most gravitationally and can
induce the required dark matter density of the universe. Their mass and their coupling to electromag-
netism is constrained by laboratory, cosmological and astrophysical bounds [236]. For consistency with
the observed accelerating expansion rate, the required magnitude of the coupling 𝑔 of the scalar field is
described for example in Ref. [190, 237]. It is therefore interesting to inquire if such values of the coupling
are consistent with local experiments and astrophysical observations.

4.2 Electromagnetism and optical properties of light
We focus on the class of experiments which have been designed to constrain or detect the interaction
between scalar ALPs and photons. Generally, a positive signal from these experiments can determine
mass, parity and coupling strength to electromagnetism of the hypothetical scalar particle. If ALPs are
scalar, this coupling is described by the Lagrangian term [238]

𝐿𝑠𝑐𝑎𝑙𝑎𝑟 = −𝑔

4𝜑𝐹𝜇𝜈𝐹
𝜇𝜈 (4.3)

where the product 𝐹𝜇𝜈𝐹𝜇𝜈 is equal to

𝐹𝜇𝜈𝐹
𝜇𝜈 = 2

(︀
B2 − E2)︀ (4.4)

If we compare the relations (4.1), (4.2) and (4.3), it is easy to derive that

𝐿𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝐿𝑠𝑐𝑎𝑙𝑎𝑟 − 1
4𝐹𝜇𝜈𝐹

𝜇𝜈 (4.5)

If ALPs are pseudoscalar, the corresponding Lagrangian term is

𝐿𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑐𝑎𝑙𝑎𝑟 = −𝑔

4𝜑𝐹𝜇𝜈
̃︀𝐹𝜇𝜈 (4.6)

1According to quantum chromodynamics there could be a violation of CP symmetry in the strong interactions. However,
no violation of the CP-symmetry is known to have occurred in experiments.The strong CP problem is sometimes regarded as
an unsolved problem in physics. The most acceptable solution for this problem is the Peccei–Quinn theory, which includes
the existence of axions.
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where the product 𝐹𝜇𝜈 ̃︀𝐹𝜇𝜈 is
𝐹𝜇𝜈 ̃︀𝐹𝜇𝜈 = −2E · B (4.7)

The tensor ̃︀𝐹𝜇𝜈 is the dual electromagnetic tensor which violates parity and time reversal invariance. It
conserves charge conjugation invariance, so it violates CP symmetry and solves the CP problem. In both
cases (scalar and pseudoscalar), the expression for the coupling between ALPs and photons is given by
the formula [239]

𝑔 ≡ 1
𝑀

≈ 𝛼

2𝜋
𝑚

𝑓𝛼
(4.8)

where 𝛼 ≃ 1/137 is the fine structure constant, 𝑚 the mass of the scalar or pseudoscalar particle and
𝑓𝛼 the symmetry breaking scale (or decay constant). As the decay constant increases, the coupling
parameter 𝑔 decreases. However, it must be less than 𝑓𝛼 ∼ 10−16𝐺𝑒𝑉 [240], because this would lead to
closed universe, which disagrees with recent cosmological observations.

ALPs can have odd parity (for pseudoscalar particles), which have their sign flipped by spatial inversion
or even parity (for scalar particles), which do not change upon spatial inversion and can couple to photons.
There are four classes of experiments attempting to detect such particles. The first class is based on the
so-called haloscope [241]. In this experiment, ALPs from galactic halo are converted to photons in a
cavity with a powerful magnetic field. The second category comes from the so-called helioscope [242],
which corresponds to weakly interacting slim particles (WISPs) which are emitted by the Sun. The third
class involves searches for ALPs which couple to photos and induce in a laser beam, which propagates in
a magnetic field, optical dichroism and birefringence [243]. The fourth class includes photon regeneration
experiments [244], such as GammeV [238], BFRT [245], OSCAR [246] and others which are described
bellow. A possible signal currently exists from the third class of experiments (PVLAS). For a brief but
not complete review, the reader can see Ref. [247].

Most of these experiments are based on fundamental optical properties of the materials affecting their
interaction with polarized light, such as [248, 249]

∙ optical rotation (activity), which is the turning of the plane of linearly polarized light about
the direction of motion as the light travels through materials. It is due to a selective attenuation
of one polarization component [243].

∙ birefringence, which is the optical property of a material having a refractive index that depends
on the polarization and direction of light propagation [250]. The birefringence is often quantified
as the maximum difference between refractive indices exhibited by the material.

∙ dichroism, where someone can distinguish two related but distinct meanings [251]. Dichroism is
the phenomenon where light rays, having different polarizations are absorbed by different amounts,
or where a visible light can be split up into distinct beams of different wavelengths [252, 253].

∙ ellipticity, which is the phenomenon where the polarization of electromagnetic radiation, such that
the tip of the electric field vector, describes an ellipse in any fixed plane intersecting the direction of
propagation [254]. It is due to selective retardation of one polarization component. In that case the
direction of the rotation and the specified polarization, may be either clockwise or counterclockwise.

4.3 Constrains on scalar coupling from experiments
4.3.1 PVLAS experiment
The PVLAS experiment takes place at the INFN Legnaro National Laboratory, near Padua in Italy. In
the year 2006, the scientific team reported a positive signal for a zero-spin particle [243]. This experiment
is based on the fact that vacuum in the presence of the scalar field becomes birefringent and dichroic
[255], when applying an external magnetic field [256]. So, when a linear polarized beam is propagated in
a Fabry-Perot cavity with strong magnetic field, the plane of polarization is rotated by an angle 𝛼.
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The polarized laser beam has wavelength 𝜆 = 1064 𝑛𝑚 or 𝜆 = 532 𝑛𝑚 and enters in a high transverse
magnetic field of order 5𝑇 , in a cavity. It passed 44000 times through a 1 𝑚 long magnet. The components
of the laser polarization had a slight weakening. This effect is observed at varying levels if the polarization
is transverse or parallel to the external magnetic field. The rotation angle was found to be

𝛼 = (3.9 ± 0.5) × 10−12 𝑟𝑎𝑑/𝑝𝑎𝑠𝑠

The signal was associated to a neutral, light boson which is produced by a two-photon vertex. The
amplitude of the dichroism, which depends on the coupling constant 𝑔, was estimated as [238]

𝑔 ∼ 2.5 × 10−6 𝐺𝑒𝑉 −1

The mass of the particle was estimated as 𝑚𝜑 ∼ 1.2𝑚𝑒𝑉 but its parity was undetermined, although the
sign of the phase shift hints towards even parity, which is evidence for the existence of a scalar particle.

Also, this signal could be explained by assuming the existence of millicharged particles [257]. They
are light particles with electric charge 𝑞 ≪ 𝑒, where 𝑒 is the elementary (electron/proton) charge and
appear in field theories, but they aren’t part of the Standard Model [258]. The PVLAS experiment was
repeated without detection of any signal [259]. Thus, its results are currently under question.

4.3.2 GammeV experiment
The GammeV experiment [238] takes place at Fermilab and is divided into two similar experiments. They
are ’light shining through a wall’ experiments which are based on the Primakoff effect 2, where a couple
of photons with high energy interact and produce ALP. One photon is real from the laser field and the
other one is virtual from an external magnetic field.

The GammeV experiment is a gamma (𝛾) to milli-eV ALP search. The mass of this particle is expected
to be of order 𝑚𝑒𝑉 . A scalar particle couples to photons with a polarization orthogonal to the magnetic
field [244, 260]. The photon beam is blocked by the wall, but the ALP hardly interact with the wall
and passes through the wall. The particles are converted again to photons in the magnetic field and
the regenerated photons are counted with an appropriate detector. The primary and the regenerated
photons have the same properties. The photon regeneration experiment is based on different effects of
light, compared to the optical rotation experiment. In the first, the appearance of light beyond the wall
is detected, while in the second, perturbations of the initial beam are detected.

The photon to scalar particle conversion probability (and the reverse process) is given by the relation

𝑃𝛾↔𝑠 = 1
4𝑢

(︂
𝑔𝐵𝐿 sin 𝜃

)︂2(︂ 2
𝑞𝐿

sin 𝑞𝐿2

)︂2
(4.9)

where the transverse magnetic field 𝐵 has length 𝐿, while 𝜃 is the angle between the laser polarization and
the magnetic field. It is obvious from Eq. (4.9) that the direction of polarization must be perpendicular
to magnetic field for optimum conversion. For pseudoscalar particles it must be parallel to magnetic
field, because the probability (4.9) includes the term cos 𝜃 instead of sin 𝜃. In Eq. (4.9) the coupling
constant is denoted with 𝑔, while 𝑢 is the velocity of the scalar particle and 𝑞 the momentum transfer.
The probability becomes maximum when 𝑞 ·𝐿 → 0, i.e. when the particle has very little mass compared
to its energy (𝑚 ≪ 𝜔). In order to increase the convention probability we must use strong, long range
magnetic fields. The momentum transfer is proportional to the square mass of the particle

𝑞 =| 𝜔 −
√︀
𝜔2 −𝑚2 |≃ 1

2
𝑚2

𝜔
(4.10)

2The Primakoff effect is the production of bosons, when high energy photons interact with an atomic nucleus. Also,
include the rotation of the plane of polarization when a linearly polarized beam passes through a magnetic field. The beam
has many directions of polarization. The Primakoff effect reduces the parallel component of polarised light to the magnetic
field and leaves the perpendicular component to the magnetic field unchanged. This phenomenon can occur in a reverse
manner (a particle can decay to a couple of photons).
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We can split the above probability (4.9) in two phases. The first one is the probability in the production
region

𝑃𝛾→𝑠 = (2𝑔𝐵𝜔𝑠𝑖𝑛𝜃)2

𝑚4
𝛼

(︂
sin 𝐿1𝑚

2
𝛼

4𝜔

)︂2
(4.11)

where the photons are converted to scalar particles [261]. The probability increases with the number of
passes through the wall. The second is the probability in the regeneration region

𝑃𝑠→𝛾 = (2𝑔𝐵𝜔𝑠𝑖𝑛𝜃)2

𝑚4
𝛼

(︂
sin 𝐿2𝑚

2
𝛼

4𝜔

)︂2
(4.12)

where the scalars are reconverted to photons. This probability increases by using a resonant cavity in
the regeneration region. The expected counting rate of photons in the detector is of the form

𝑑𝑁𝛾
𝑑𝑡

= 𝑃

𝜔
𝜂

(︂
𝑃𝛾↔𝑠

)︂2
(4.13)

where 𝜂 is the detector efficiency and 𝑃 is the optical power.
Short laser pulses of wavelength 𝜆 = 532 𝑛𝑚 were used in the experiment and the external magnetic

field was 5𝑇 [238]. The weakly-interacting ALP interpretation of the PVLAS data was excluded at more
than 5𝜎 by the GammeV data for scalar particles. No events were found above the background and thus
a bound is defined for the coupling [238] which is

𝑔 ≤ 3.1 × 10−7𝐺𝑒𝑉 −1

This limit is the mean value of two configurations for the magnetic field and it is valid for small values
of the mass 𝑚𝜑 (bellow 𝑚𝑒𝑉 ). Generally, the coupling depends on the mass of the scalar particle, but
when the mass is small (bellow few 𝑚𝑒𝑉 ), the coupling is almost unchanged.

4.3.3 Fifth force experiments
The coupling between a scalar particle and a couple of photons 𝜑𝛾𝛾 [262], which can be described with
the Lagrangian term (4.3) leads to the existence of long-range non-Newtonian forces (fifth force). These
forces are bounded by Eötvös type experiments and they don’t violate the Equivalence Principle 3. The
relative difference between inertial and gravitational mass is less than 10−12 [263] and drives to constrains
on the coupling constant. The Lagrangian contains a interaction term of the form

𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −𝑔𝜑

4 𝐹𝜇𝜈𝐹
𝜇𝜈 − 𝐿2 (4.14)

The above term of the Lagrangian density induces radiatively a coupling to charged particles, such
as electrons or protons. The additional term in Lagrangian density is 𝐿2 = 𝑦𝜑ΨΨ where 𝑦 is the
Yukawa coupling and Ψ is the field of the charged particle. The authors of Ref. [262] used existing
experimental limits to constrain the coupling constant 𝑔 as a function of the mass of the scalar field 𝑚𝜑.
These limits emerge from a micromechanical resonator which measures the Casimir force between parallel
plates [264, 265] (two mirrors in a vacuum will be attracted to each other) placed a few nanometers apart
from experiments with torsion pendulum and a rotating attractor [266] and from experiments which
use torsion-balance [267]. Using the last class of experiments, the authors of Ref. [262] reached very
stringent results when the field satisfies the condition Λ ≫ 𝑚𝑝 (Λ is the cosmological constant and 𝑚𝑝

the proton-mass). When 𝑚𝜑 ∼ 𝑚𝑒𝑉 , they found that [267]

𝑔 < 1.6 × 10−17𝐺𝑒𝑉 −1

3The equivalence principle is any of several related concepts dealing with the equivalence of gravitational and inertial
mass. Albert Einstein observed that the gravitational "force" as experienced locally while standing on a massive body (such
as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference.
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This is a stringent limit and the terrestrial experiments don’t have until now, the sensitivity to detect
some event of this order.

Scalar particles with almost zero mass can lead not only to long-range forces (in the same manner
as quintessence), but also to variation of fundamental constants [189]. Bekenstein type models with a
scalar field 𝜑 that affects the electromagnetic permeability, lead to variations of the effective fine structure
constant up to very high red-shifts. The coupling between scalar field and electromagnetic tensor of the
form

𝛽𝐹 2(𝜑/𝑀)𝐹𝜇𝜈𝐹𝜇𝜈 ≡ 𝑔

4𝜑𝐹𝜇𝜈𝐹
𝜇𝜈 (4.15)

can lead to a time variation [268] of the fine structure constant due to the time variation of the scalar
field. The scalar field 𝜑 is expected to have a variation at the present time (in cosmological timescales) of
order 𝑀𝑃𝑙 and there are several observations to bound such variation. From the Oklo natural reactor in
Gabon [269], the researchers analyzed the isotope ratios of 149𝑆𝑚/147𝑆𝑚 in the natural uranium fission
reactor (mine) that operated 1.8 billion years ago. The isotopic abundances lead to |𝛼̇/𝛼| < 10−15 𝑦𝑟−1

over the last 1.8 billion years and constrains the coupling as

𝑔 ≤ 4 × 10−6
(︂
𝐻0

⟨𝜑̇⟩

)︂
(4.16)

where 𝐻0 ∼ 10−33𝑒𝑉 and ⟨𝜑̇⟩ is the mean rate of change of 𝜑 in the above range of time.

4.3.4 BFRT experiment
One of the first photon regeneration experiments took place in Brookhaven National Laboratory [245].
In this experiment the beam had wavelength 𝜆 = 514 𝑛𝑚 and the magnetic field was 3.7𝑇 . The search
for scalar particles requires the laser polarization to be perpendicular to the magnetic field. The photons
are produced during the regeneration and detected by sensitive photocathode of a photomultiplier tube
(PMT) [270]. For 220 minutes the laser was on and subsequently for 220 minutes the laser was off.
They didn’t observe significant difference between laser on and laser off states. Thus, the authors of Ref.
[245, 271] in the absence of any signal estimated an upper bound for the coupling constant 𝑔, which is

𝑔 < 6.7 × 10−7𝐺𝑒𝑉 −1

at 90% confidence level. This limit is applicable when the scalar particle is very light with mass 𝑚 <
10−3 𝑒𝑉 . If we assume the mass of the scalar particle in the range 1 𝑚𝑒𝑉 ≤ 𝑚𝜑 ≤ 1.5 𝑚𝑒𝑉 we can
combine the PVLAS signal and the BFRT constraint as [271]

1.7 × 10−6𝐺𝑒𝑉 −1 ≤ 𝑔 ≤ 5 × 10−6𝐺𝑒𝑉 −1

4.3.5 OSCAR experiment
The OSCAR experiment takes place at LHC and it is a photon regeneration experiment which uses
two LHC dipole magnets. The laser beam has wavelength 𝜆 = 514 𝑛𝑚 and the dipole superconducting
magnets are cooled down to 1.9𝐾 [246]. The innovation in this experiment is that they use a buffer of
neutral gas as a resonant amplifier medium. The conversion probability, is divided by the refractive index
𝑛 =

√
𝜀 as

𝑃𝛾↔𝑠 = 1
4𝑢

√
𝜀

(𝑔𝐵𝐿)2
(︂

2
𝑞𝐿

sin 𝑞𝐿2

)︂2
(4.17)

while the expected counting rate is given by Eq. (4.13). The device of the OSCAR experiment has not
recorded any signal and the upper limit of the coupling constant is estimated as [272]

𝑔 < 1.15 × 10−7𝐺𝑒𝑉 −1
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experiment g(×𝐺𝑒𝑉 −1) 𝑚𝜑 effect
PVLAS [238] ∼ 2.5 × 10−6 ∼ 1.2𝑚𝑒𝑉 birefrigence

GammeV [238] ≤ 3.1 × 10−7 ≤ 1𝑚𝑒𝑉 LSW
Fifth force [267] < 1.6 × 10−17 ∼ 𝑚𝑒𝑉 Casimir force

BFRT [271] < 6.7 × 10−7 ≤ 1𝑚𝑒𝑉 LSW
OSCAR [273] < 5.76 × 10−8 massless LSW
ALPS [276] < 7 × 10−8 massless LSW
LIPSS [277] < 1 × 10−6 ∼ 𝑚𝑒𝑉 LSW

Table 4.1: Bounds from coupling between photons and scalar particles from all known experiments. Each
limit is valid for the corresponding range of the mass of the scalar particle, which is shown in the third
column. In the fourth column we present the basic physical effect on which each experiment is based
(LSW means light shinning through a wall experiment).

An updated result [273] is currently the lowest limit from such experiments. In the case of massless
scalar particle the coupling parameter is constrained as

𝑔 < 5.76 × 10−8𝐺𝑒𝑉 −1

at 95% confidence limit.

4.3.6 ALPS experiment
The ALPS (Any Light Particle Search) is another experiment of the same class, which is based on the
effect "light shining through the wall". The experiment takes place in Deutsches Electronen Synchrotron
(DESY), in Germany [274, 275]. The researchers use a HERA superconducting dipole magnet where the
magnetic field is 5𝑇 . The photons have wavelength 𝜆 = 1024 𝑛𝑚, or 𝜆 = 512 𝑛𝑚. The data are collected
in vacuum and in low pressure gas inside a tube, but in the absence of any positive signal for photon
regeneration, they estimated [276] the coupling constant at the range

𝑔 < 7 × 10−8𝐺𝑒𝑉 −1

in the case of massless scalar particle in vacuum.

4.3.7 LIPSS experiment
The Light Pseudoscalar and Scalar Particle Search (LIPSS) collaboration [277] was another similar ex-
periment, which searches for photons who coupled to light neutral particles. It took place in Jefferson
Lab in the Spring of 2007 and was based on the light shining through the wall effect. The magnetic field
was 1.77𝑇 for both generation and regeneration regions. The wall was a mirror and the wavelength of
the photons was 𝜆 = 935 𝑛𝑚. The innovation of this approach was that data were taken for longer time
(almost 1 hour), than previous similar experiments. No signal was recorded above background and the
constraint [277] on the corresponding coupling strength is

𝑔 < 10−6𝐺𝑒𝑉 −1

assuming a mass of the scalar particle of order 𝑚𝑒𝑉 .
In Table 4.1 we present the bounds for the coupling between scalar particles and photons from all

known experiments in order to compare them and identify the most stringent. For small masses of the
scalar particle (bellow 𝑚𝑒𝑉 ), the coupling 𝑔 is mass independent, because the oscillation length between
ALPs and photons far exceeds the length of the magnet. As we see, the controversial result of PVLAS
leads to a weak constraint. The other experiments give more stringent bounds, which in fact are not
consistent with the PVLAS result.
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Figure 4.1: Constrains on scalar coupling to electromagnetism from all known experiments, except PVLAS
experiment. The vertical axis shows the common logarithm of the coupling 𝑔, in dimensionless form.

Also, the data of Table 4.1 are presented through a histogram in Fig. 4.1, where the vertical axis
corresponds to the coupling constant 𝑔 in common logarithmic scale. In order the values of vertical axis
to be dimensionless, we have multiplied the values of 𝑔 with energy units (𝐺𝑒𝑉 ). We have neglected
the PVLAS experiment, because the Italian collaboration does not defend it. Thus, the most stringent
bound is obtained from the fifth force experiments.

4.4 Bounds from Chameleon experiments
Chameleon theories are intriguing and lead to new physics. Hints of such theories have been observed
in active galactic nuclei’s (AGNs), which exist in the center of quasars and in the structure of starlight
polarization. As we have underline in Chapter 1, chameleon mechanism make this class of models cosmo-
logically interesting despite of the strong laboratory constrains imposed by the fifth force experiments.

There are two classes of laboratory experiments which aim to detect chameleons

∙ experiments in empty, closed container or jar, such as GammeV and CHASE.

∙ experiments in microwave cavity, such as ADMX.

They are based on the coupling between photons and chameleons, where the coupling to electromag-
netism is dominant. These experiments are not photon regeneration experiments [278] because the mass
of the chameleons depends on the local density and thus they can’t pass through the wall. Inside the
wall the density is high compared to the vacuum and the chameleons get reflected by the wall. These
experiments are based on the afterglow effect [279], which we describe below. In both cases the coupling
to electromagnetism may be described by a dilatonic function

𝐵𝐹 (𝜑) = 𝑒𝑔𝜑 ≃ 1 + 𝑔𝜑 (4.18)

because 𝑔 is very small (𝑔 ≪ 1). This coupling allows photon-chameleon oscillations in the presence of
an external strong magnetic field. The scalar field 𝜑 with mass 𝑚𝜑 is expected of order 𝑚𝑒𝑉 . Such a
mass could explain the dark energy density, which is of order ∼ (𝑚𝑒𝑉 )4.

4.4.1 GammeV experiment
As we have seen in section 4.3.2 of this Chapter, the GammeV collaboration includes experiments search-
ing for ALPs but also experiments for chameleons [278, 280], which coupled to photons. The GammeV
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experiment constitutes the first test of dark energy models in laboratory. Chameleons are produced
inside a optical transparent jar from photon oscillations (Primakoff effect [281]) and are trapped there,
if its total energy is less than its effective mass. Then, the chameleons get reflected by the walls and
they are detected via their afterglow as they are slowly converted to photons. The afterglow is possible
if the mixing time between scalars and photons is larger than the travelling time of photons into the
chamber. An afterglow photon can be observed by a photomultiplier tube (PMT) at the exit window,
when the original photon source (laser) is tuned off. The pressure in the chamber is 𝑃 ≈ 10−7𝑇𝑜𝑟𝑟 and
the probability per photon to chameleon production is

𝑃𝑝𝑟 = 4𝑔2𝐵2𝜔2

𝑚4
𝑒𝑓𝑓

𝑠𝑖𝑛2
(︂
𝑚2
𝑒𝑓𝑓𝐿

4𝜔

)︂̂︀𝑘 × (̂︀𝑥× ̂︀𝑘) (4.19)

proportional to the square of coupling parameter 𝑔.
The magnetic field lies in the ̂︀𝑥 direction, while ̂︀𝑘 is the direction of motion of the particle. If we want

to have the maximum probability, the photons must propagate in a direction perpendicular to magnetic
field. The photons have energy 2.33 𝑒𝑉 , production rate ∼ 1019 photons per second and the magnetic
field is 5𝑇 . In this case, the action which describes the coupling between photons and chameleons is

𝑆 =
∫︁
𝑑4𝑥

(︂
− 1

2𝜕𝜇 𝜑𝜕
𝜇 𝜑− 𝑉 (𝜑) − 𝑒𝜑/𝑀𝛾

4 𝐹𝜇𝜈𝐹
𝜇𝜈 + ℒ𝑚(𝑒2𝜑/𝑀𝑚𝑔𝜇𝜈 , 𝜓

𝚤
𝑚)
)︂

(4.20)

where 𝑉 (𝜑) is the chameleon potential and ℒ𝑚 the Lagrangian density for the matter. The coupling to
matter is defined as

𝛽𝑚 = 𝑀𝑃𝑙/𝑀𝑚

while the coupling to electromagnetism is the dimensionless parameter

𝛽𝛾 = 𝑀𝑃𝑙/𝑀𝛾 ≡ 𝑔𝑀𝑃𝑙

Data were taken for one hour after the laser turned off, but there wasn’t detection of any significant
signal in the highly sensitive PMT. The upper and lower bound of the parameter 𝑔 are estimated as [278]

2.1 × 10−7𝐺𝑒𝑉 −1 < 𝑔 < 2.7 × 10−6𝐺𝑒𝑉 −1

This limit is valid for coherent oscillations and therefore the effective mass must be quite small (𝑚𝑒𝑓𝑓 ≪
0.98 𝑚𝑒𝑉 ).

4.4.2 ADMX experiment
The Axion Dark Matter experiment has two parts, just as the GammeV experiment. The first part is the
search for ALPs, while the second part is the detection of chameleons. In both cases the particles interact
with photons inside a cavity and the range of the coupling is estimated. The advantage of the microwave
cavity is that, the resonance is stronger than the case where laser is used. This effect increases the
conversion probability and the expected counting rate of photons in the detector. A microwave receiver
amplifies the excitation of the resonance. The mixing is maximum when photons and chameleons have the
same energy (𝜔𝑐ℎ𝑎𝑚. = 𝜔𝛾). It is crucial to emphasize that if the coupling is very weak, the chameleons
don’t have enough energy to be detected, while if the coupling is very strong the chameleons immediately
decay. Thus, a fine tunning of the coupling parameter is necessary.

As discussed in Ref. [282], this experiment used a magnetic field 7𝑇 , while the cavity had volume
220ℓ𝑡. It was hold under vacuum at 2 Kelvin. No significant signal was observed and the excluded region
for the coupling constant was estimated as [282]

3.75 × 10−9𝐺𝑒𝑉 −1 < 𝑔 < 2.1 × 10−4𝐺𝑒𝑉 −1

at 90% confidence level. This bound is valid for a very small range of the effective mass, between
1.9510 𝜇𝑒𝑉 and 1.9525 𝜇𝑒𝑉 . It is clear that, the above limit overlaps with the corresponding limit of the
GammeV experiment.
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4.4.3 CHASE experiment
The Chameleon Afterglow Search Experiment (CHASE) is a continuation of the GammeV experiment
in the same laboratory [283]. The excluded region for the chameleon-photon coupling in this case, is
significantly improved. Also, the results smooth out the differences between the two previous experiments
[284].

The novelty of this experiment is twofold. First, it uses a couple of glasses into the cavity. Thus,
the magnetic field is divided in three parts with different ranges. The shorter part has sensitivity to
chameleons with high mass. Second, in order to improve the sensitivity for large 𝑔, they used several
magnetic fields, with values lower than 5𝑇 . Finally, in order to improve the sensitivity for small 𝑔, a shutter
(chopper) is used to modulate any possible signal from afterglow. The data didn’t show any signal of a
photon-chameleon coupling and the excluded region for the coupling parameter (when 𝑚𝑒𝑓𝑓 ≤ 1 𝑚𝑒𝑉 )
was estimated as [283]

4 × 10−6𝐺𝑒𝑉 −1 < 𝑔 < 1.3 × 10−3𝐺𝑒𝑉 −1

at 90% confidence level.

experiment excluded 𝑔(×𝐺𝑒𝑉 −1) 𝑚𝑒𝑓𝑓

GammeV [278] (2.1 × 10−7, 2.7 × 10−6) ≪ 0.98𝑚𝑒𝑉
ADMX [282] (3.75 × 10−9, 2.1 × 10−4) [1.9510𝜇𝑒𝑉, 1.9525𝜇𝑒𝑉 ]
CHASE [283] (4 × 10−6, 1.3 × 10−3) ≤ 1𝑚𝑒𝑉

Table 4.2: Bounds of excluded regions for the coupling parameter 𝑔 between photons and chameleons
from all known afterglow experiments. In third column, we record the corresponding effective mass for
the chameleons.

4.5 Quintessence Dark Energy model with scalar field
We can extend the Bekenstein theory if we introduce the dilatonic function

𝐵𝐹 (𝜑) = 𝑒−2𝜑 (4.21)

in Eq. (4.1). This function induces effects on the cosmological evolution of a quintessence scalar field
[186] and effects of multidimensional gravity [285]. We discuss these effects in some detail.

We aim to investigate the cosmological evolution and the effects of the new coupling on the Big
Crunch singularity [286–288], that is present in linear potentials. In Ref. [186] the authors introduced
the Lagrangian density

𝐿 = 𝑅

2 − 𝜔(𝜑)
2 𝜕𝑎𝜑𝜕

𝑎𝜑− 𝑉 (𝜑) − 1
4𝑒

−2𝜑𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝐿𝑚 (4.22)

where 𝐿𝑚 denotes the Lagrangian for the other matter fields in the theory and the fine structure constant
varies through the relation (due to variable electric charge)

𝛼 = 𝛼0𝑒
2𝜑

The coupling function 𝜔(𝜑) and the potential 𝑉 (𝜑) are both arbitrary functions of the scalar field, which
is assumed massless. In order to stabilize the theory, we must demand the above functions of 𝜑 to be not
negative. We consider FRW flat spacetime with 𝜔(𝜑) = 1 and 𝑉 (𝜑) = −𝑠𝜑, where the parameter 𝑠 is a
constant. We introduce new dimensionless variables as 𝐻 = 𝐻̄𝐻0, 𝑡 = 𝑡

𝐻0
, 𝑉 = 𝑉 𝐻2

0 , 𝜌𝑚 = 𝜌𝑚𝐻
2
0 and

𝜌𝑟 = 𝜌𝑟𝐻
2
0 , (𝐻0 is the present value of the Hubble constant) in the dynamic equations of Ref. [186] and
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from now on we omit the bar. The scalar field equation of motion takes the form

𝜑+ 3𝐻𝜑̇+ 𝑉 ′(𝜑) = −6𝜁𝑚Ω0𝑚𝑒
−2𝜑

𝑎3
(︂

1 + |𝜁𝑚|𝑒−2𝜑0

)︂ (4.23)

where 𝜑0 is the present value of the scalar field and the dimensionless electromagnetic parameter 𝜁𝑚,
which occurs in Eq. (4.23) is defined as

𝜁𝑚 = 𝐿𝑒𝑚/𝜌𝑚 (4.24)

and describes the ratio between the electromagnetic energy density 𝐿𝑒𝑚 and the non relativistic energy
density 𝜌𝑚. The cosmological value 𝜁𝑚 should be approximately constant, but it is not easy to be
appreciated for several reasons (for details see Ref. [186]). One of the interesting consequences of theories
like (4.22) is that they generically predict violations of the weak equivalence principle, since the force on a
particle falling in a gravitational potential will have an additional contribution term which is proportional
to |𝜁𝑚|. Thus, for different 𝜁𝑚 the particles falls with different way, since the force is not the same.

The usual electromagnetic Lagrangian term 𝐿𝑒𝑚, which is defined as

𝐿𝑒𝑚 = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 (4.25)

is equal to

𝐿𝑒𝑚 = 1
2

(︂
𝐸2 −𝐵2

)︂
When the configuration is dominated by electrostatic energy, the electromagnetic parameter 𝜁𝑚 is positive,
while 𝜁𝑚 is negative when the system is dominated by its magnetostatic energy. The matter density is
always dominant, since 𝜌𝑚 ≫ 𝐿𝑒𝑚. In this work we consider the case where 𝜁𝑚 > 0. In a radiation epoch,
variations of fine structure constant are driven only by the electromagnetic energy of non-relativistic
matter, since 𝐿𝑒𝑚 = 0.

In our consideration, the acceleration equation for the scale factor respectively becomes [186]

𝑎̈

𝑎
= −

Ω0𝑚

(︂
1 + |𝜁𝑚|𝑒−2𝜑

)︂
2𝑎3
(︂

1 + |𝜁𝑚|𝑒−2𝜑0

)︂ − Ω0𝑟𝑒
−2(𝜑−𝜑0)

𝑎4 − 1
3

(︂
𝜑̇2 − 𝑉 (𝜑)

)︂
(4.26)

We have solved the system of the cosmological dynamical equations for the scalar field and for the
scale factor (4.23) and (4.26). We assume Ω0𝑟 = 10−4, Ω0𝑚 = 0.3 and initial conditions deep in the
radiation era where the scalar field 𝜑𝑖 was almost constant (𝜑̇(𝑡𝑖) = 0). Due to rescaling, the acceptable
solutions must satisfy the conditions 𝑎(𝑡0) = 1, 𝐻(𝑡0) = 1 and Ω0𝜑 = 0.7, where 𝑡0 is the present time. In
Fig. 4.2 we present the scalar field as a function of time when 𝑉 (𝜑) = −0.1𝜑, while in Fig. 4.3 we have
plot the logarithm of the scale factor 𝑙𝑛(𝑎(𝑡)) as a function of time, for several values of the parameter
𝜁𝑚.

It is clear from Fig. 4.3 that, when the scalar field increases rapidly, the effective force becomes
attractive, the scale factor decreases rapidly and the universe is driven to the Big Crunch singularity.
When the rate of the electrostatic energy density increases and consequently 𝜁𝑚 increases, the effect
occurs later. This is an expected result, if we carefully observe the equation (4.23). The right hand side
is a function of 𝜁𝑚 and as 𝜁𝑚 increases, the r.h.s decreases (bellow zero). Thus, the scalar field needs
more time to begin increasing rapidly. In other words, the increasing rate of electromagnetic energy as
a fraction of non relativistic matter in the system can stabilize the system for longer time (before Big
Crunch).
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Figure 4.2: The scalar field 𝜑(𝑡) as a function of time 𝑡 when 𝜁𝑚 = 0, 𝜁𝑚 = 10−8, 𝜁𝑚 = 10−7 and
𝜁𝑚 = 10−6 where the linear potential is of the form 𝑉 (𝜑) = −0.1𝜑. The present time 𝑡0 is derived from
the solution of Eqs. (4.23) and (4.26) and must be almost equal to 1. As we see, the field 𝜑(𝑡) after some
time increases rapidly and the effective force becomes attractive. The rate of electromagnetic energy as
a fraction of non-relativistic matter density 𝜁𝑚 in the configuration can stabilize the system for longer
time.

Subsequently, using the solution of the system, we calculated the scalar field dark energy (DE) equation
of state parameter

𝑤𝐷𝐸 = 𝑃𝐷𝐸
𝜌𝐷𝐸

as a function of redshift 𝑧 through the relation

𝑤(𝑧) = 0.5𝜑̇2 + 𝑉 (𝜑)
0.5𝜑̇2 − 𝑉 (𝜑)

(4.27)

and we have plot the results in Fig. 4.4. The model corresponds to quintessence cosmology, since 𝑤 > −1
but negative and as we see (magenta or green line), the dilatonic function induces small fluctuations
in the equation of state parameter 𝑤(𝑧), if we compare with the case where 𝜁𝑚 = 0 (red line, absence
of electrostatic energy). Specifically, when the parameter 𝜁𝑚 increases, the equation of state parameter
𝑤(𝑧) also increases in the context of quintessence cosmology. In order to distinguish the small differences
between the 𝜁𝑚 = 0 curve and the 𝜁𝑚 = 10−8, we have plot these functions in Fig. 4.5 using more
precise values in vertical axis. It is clear that the dilatonic coupling induces fluctuations in the equation
of state parameter above the value 𝑤 = −1 and describes quintessence model. Also, in Fig. 4.6, we
have plot the parameter 𝑤, as a function of time. Initially, the parameter 𝑤 varies oscillating with time
when 𝜁𝑚 = 10−8, but as the time evolves the equation of state parameter increases, in the context of
quintessence cosmology.

The dilatonic function 𝐵𝐹 (𝜑) = 𝑒−2𝜑 can also describe spatial variations of the fine structure constant
in nonlinear multidimensional theories of gravity [285, 289, 290]. This term arises naturally from the
metric determinant, by taking into account spatial perturbations (of order of the cosmological horizon
scale) of the scalar field and the metric, when the system is reduced to four dimensions. The observational
data of variations of 𝛼 depend on the size of the extra factor space and define the model parameters.
In this cosmological model, the values of the fine structure constant changes slightly or remain almost
constant in all cosmological epochs (radiation epoch, matter epoch or accelerating expansion epoch due to
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Figure 4.3: The common logarithm of the scale factor 𝑙𝑛(𝑎(𝑡)) as a function of time 𝑡, for several values of
the dimensionless parameter 𝜁𝑚, when the linear potential is of the form 𝑉 (𝜑) = −0.1𝜑 and the present
time is 𝑡0 ≃ 1. After some time interval, the system begins to shrink due to attractive force caught by the
scalar field. As 𝜁𝑚 (the rate of electromagnetic energy in the configuration as a fraction of non-relativistic
matter density) increases, the system is stable for longer time and the Big Crunch singularity occurs later.

a cosmological constant). This process can be used for the research of variations and other fundamental
constants, such as the gravitational constant 𝐺 [291].

Large scale inhomogeneity of the scalar field 𝜑 of multidimensional origin can induce spatial variations
of 𝛼. The variations of 𝛼 are very small (of order 10−6), as we have mentioned in the introduction [222]
and have been observed from Very Large Telescope (VLT) in Chile [292] and Keck telescope in Hawaii
[293, 294]. The results are obtained from spectra of distant quasars and shows a smaller value for fine
structure constant when 𝑧 < 1.8 from both telescopes. When 𝑧 > 1.8, the Keck data shows that Δ𝛼

𝛼 < 0,
but the VLT data drives to Δ𝛼

𝛼 > 0. The combined dataset fits a spatial dipole for the variation of 𝛼,
which is unlikely to be caused by systematic effects.

4.6 Cosmological and Astrophysical Effects
There are many cosmological and astrophysical observations, which could be explained by the existence
of scalar ALPs or chameleons and their coupling with photons. One of them is the dark energy density
of the universe [295–297], which is of order 𝜌Λ ∼ (𝑚𝑒𝑉 )4. If the scalar ALPs or chameleons exist and
have masses of order of 𝑚𝑒𝑉 , the vacuum energy density has the cosmologically required value.

Scalar dark radiation with a sector 𝜑 of spin-0, can be tightly coupled to thermal plasma of hydrogen,
𝛼 particles, baryons, photons and electrons. Such a particle can be scattered from the plasma. The full
Lagrangian [298] in this case has the form

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑣𝑖𝑠𝑠𝑖𝑏𝑙𝑒 + 𝐿𝑑𝑎𝑟𝑘 𝑚𝑎𝑡𝑡𝑒𝑟 + 𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (4.28)

where 𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 contains the coupling between ALPs and plasma. This term includes Yukawa-type and
dilaton-like operators and obeys the relation [298]

𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = −𝑔𝜑

4 𝐹𝜇𝜈𝐹
𝜇𝜈 −

∑︁
𝑖

𝑚𝑖

Λ4𝑖
𝜑𝜓𝑖𝜓𝑖 (4.29)
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Figure 4.4: The equation of state parameter 𝑤(𝑧) as a function of redshift 𝑧 when the electromagnetic
parameter 𝜁𝑚 takes the values 𝜁𝑚 = 0, 𝜁𝑚 = 10−8 and 𝜁𝑚 = 10−7 in the case where the linear potential
is of the form 𝑉 (𝜑) = −0.1𝜑 and the present time is 𝑡0 ≃ 1. It is obvious that the model describes
quintessence cosmology since 𝑤 > −1, but it is close to a cosmological constant model where 𝑤 = −1,
with negligible deviations.

Astronomical observations [271, 299] from the duration of the red giant phase and the population of
Helium Burning stars 4 in globular clusters [300], require

𝑔 < 6.25 × 10−11𝐺𝑒𝑉 −1

This constraint isn’t as stringent as experimental constraints due a couple of uncertainty effects. First,
the ALPs may be emitted with less energy than they are produced, due to stellar medium diffusion and
second, there may be much less ALPs which are produced due to a possible stellar suppression mechanism.
Scattering rate of scalar dark radiation near the above bound of 𝑔, will be too small to significantly distort
the CMB blackbody spectrum. Stronger limits on 𝑔 can be extracted by considering the cosmological
evolution of the vacuum expectation value of 𝜑.

There are many cosmological sources, such as quasars [301], X-rays from the Sun [302], cosmic rays
with ultra high energy (of order 1018𝑒𝑉 ) [303] which produce photons. These photons can be converted
to scalar particles due to magnetic fields around their sources. They travel to Earth and are reconverted
back to photons due to magnetic fields from our galaxy, or due to intergalactic or intracluster magnetic
fields (’cosmic photon regeneration’). The photons can be detected through experiments on Earth. The
required mass [304] for the ALPs is situated in the range 𝑚𝑎 ≪ (1 𝑝𝑒𝑉 −1 𝑛𝑒𝑉 ) and the required coupling
is in the range

𝑔 ∼ (10−12 − 10−11) 𝐺𝑒𝑉 −1

The existence of such particles could explain the alignment of the polarization from distant quasars
[305], the variations in luminosity of active galactic nuclei [304], the Sun activity in X-rays [306], the
unexpected existence of ultra high energy cosmic rays [307] and the detection of 𝑇𝑒𝑉 gamma rays [308]
from very distant cosmological sources on Earth (usually they are absorbed high).

Scalar particles can also be produced inside the stars [309] and their properties depend on the density
of the environment [271]. They can be produced in stellar plasma, only if their mass is tuned to be
resonant with the frequency of the plasma [310].

4A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the
triple-alpha process in the core of low mass stars (between 0.8 𝑀⊙ and 2.0𝑀⊙) during their red giant phase (the Sun is
predicted to experience a flash 1.2 billion years after it leaves the main sequence). Helium burning generates enough energy
to prevent further contraction of the star core.
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Figure 4.5: The equation of state parameter 𝑤(𝑧) as a function of redshift 𝑧 when 𝜁𝑚 = 0 (absence of
electromagnetic energy density) and 𝜁𝑚 = 10−8 (presence of electromagnetic energy, mainly electrostatic)
when the linear potential is of the form 𝑉 (𝜑) = −0.1𝜑 and 𝑡0 ≃ 1. The model describes quintessence
cosmology since 𝑤 > −1, even if it is very close to a cosmological constant model (𝑤 = −1). This figure
focus on the left side of Fig. 4.4, but we have use more accurate scale in the vertical axis, in order to
distinguish the slight differences of these curves.

Also, scalar fields can change the energy of the bound states in atoms [309]. The nuclear electric
field, in and around the atom, induces a perturbation to scalar field and the corresponding energy levels
of hydrogenic atoms are shifted. Thus, the gap between the energy levels increases. These shifts (for
example Lamb shift), can be used to constrain the parameter 𝑔. The energy gap between the levels
2𝑆1/2-2𝑃1/2 requires

𝑔 ≤ 10−3𝐺𝑒𝑉 −1

so, it is easier to detect scalar couplings in laboratory experiments from photon regeneration experiments
than from atomic measurements [271].

ALPs maybe emitted by explosion of Supernovae. They could be produced by the Primakoff effect
with energy 𝐸 ∼ 100𝑀𝑒𝑉 and finally are converted into high energy photos in the magnetic field of
our Galaxy. For example, at a distance 50 𝑘𝑝𝑐 of Milky Way lies the remnant of 𝑆𝑁1987𝐴, in Large
Magellanic Cloud. The authors of Ref. [311] used the current models for the Supernova magnetic field
and the Milky Way magnetic field and they obtained a bound for the coupling between photons and
ALPs. In the future, any supernova core-collapse could be used to detect this process.

The coupling between photons and chameleons can be observed through effects in light from astro-
physical sources [312]. This coupling can induce linear and circular polarization which can be detected
on Earth. The intergalactic region has very low density [313], where the chameleons behave as ALPs.
They must have mass 𝑚𝜑 . 10−11𝑒𝑉 , the range of the chameleon force is 𝜆𝜑 & 20 𝐾𝑚 and the required
coupling is

𝑔 & 10−11𝐺𝑒𝑉 −1

The dilatonic function
𝐵𝐹 (𝜑) = 1 + 𝑔(𝜑− 𝜑0)

can describe variations of the fine structure constant [313]. The evolution of 𝛼 is given by the relation
[203]

Δ𝛼
𝛼

=
(︂
𝐵𝐹 (𝜑)

)︂−1
− 1 (4.30)
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Figure 4.6: The equation of state parameter 𝑤(𝑡) as a function of time 𝑡 for several values of the electro-
magnetic parameter 𝜁𝑚, when the linear potential is of the form 𝑉 (𝜑) = −0.1𝜑 and 𝑡0 ≃ 1. Note that,
in the quintessence model only small deviations from 𝑤 = −1 occur and when the time is big enough
(𝑡 > 10), the rate of the electrostatic energy affects negligible the evolution of the parameter 𝑤, since the
curves are almost the same.

Assuming that 𝜑0 = 0, scalar particles or chameleons would change the value of this constant, when they
interact with photons. If we determine the order of coupling 𝑔, then we would check if this value could
support the observed variation of the fine structure constant.

4.7 Conclusions
The existence of scalar (or pseudoscalar) ALPs and chameleons can play the role of dark matter or can
induce the accelerating expansion of the universe, respectively. The detection of these light particles
(with masses in the sub-eV range) is a challenge for modern cosmology [314]. In this direction, many
experiments until today have been designed and executed. They are laboratory experiments and as-
trophysical or cosmological observations based on light shining through the wall effect or optical effects
in laser polarization [315], which have the purpose to detect the coupling between scalar particles and
photons through effects, that are induced in light. Until now, these experiments haven’t recorded any
positive signal, because the coupling, as it seems from the results, is very weak, beyond the present
detection sensitivity of observational instruments on Earth.

In this Chapter, we examined the case where the coupling is described by a dilatonic function and
varies linearly with the scalar field 𝜑 (4.2). Due to the shift symmetry of scalar field, quadratic terms of
𝜑 are excluded. Experiments are being conducted, which try to detect optical effects from these particles
in polarized laser beam, or photon regeneration inside a strong magnetic field. The detection sensitivity
of these experiments is restricted by the technical features of each apparatus. In these experiments there
isn’t currently any positive signal for the existence of ALPs, so we currently have an upper bound. The
most stringent bound comes from the fifth force experiments where long range forces are induced by the
scalar field (Casimir force).

An alternative way to explain the accelerating expansion of the universe is the chameleon scalar
particles, a kind of particles whose mass depends on the local density. In dense environment, the
chameleon becomes massive (mediate a short range force), but in sparse environment becomes very
light (mediate a long range force) [316]. This feature makes chameleons consistent with local experi-
ments but still effective on the cosmological dynamics beyond the cosmological constant. They coupled
to photons and this coupling can approximately be described with the same dilatonic function, as scalar
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ALPs. The experiments are based on different effects because the chameleons get reflected by the wall due
to their mass, so they cannot induce photon regeneration. Chameleons are consistent with cosmological
constraints on the existence of non-minimally coupled scalars.

In quintessence models, if we consider linear potential of a scalar field 𝜑, the Big Crunch singularity
occurs in the future. The universe stops to expand and begins rapidly to compressed. The rate of the
electromagnetic energy density in the configuration can stabilize the system for longer time, since we
shown that the Big Rip singularity occurs later. The equation of state parameter 𝑤 varies negligible,
with values bigger than −1, but very close to the rate 𝑤 = −1.

In many astrophysical, astronomical and cosmological effects, light travel from one distant cosmolo-
gical source, such as a galaxy, to our planet. It passes through several magnetic fields and it is possible
to detect changes in light, when we observe it in laboratory. This is the purpose of a wide range of
laboratory experiments on the Earth.

Many extensions of the standard model of particle physics predict the existence of new light bosons,
such as ALPs. Astrophysical environments offer the possibility of strong magnetic fields on long baselines
and thus consist promising targets in the search for ALPs. In contrast with laboratory experiments,
magnetic fields in astrophysical environments are usually not coherent.

Axion-like particles (ALPs) belong to a class of new scalar or pseudoscalar particles that generically
couple to photons, opening the possibility of oscillations from photons into ALPs in an external
magnetic field. Having witnessed the turbulence of their magnetic fields, these oscillations are expec-
ted to imprint irregularities in a limited energy range of the spectrum of astrophysical sources. Thus,
it is more possible to detect these particles from astrophysical observations, such as direct light or spectra.
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Chapter 5

Theoretical Models for Spatially
Oscillating Sub-mm Forces

Recently have appeared in literature analyses, which indicate the presence of a 2𝜎 signal of spatially
oscillating new force residuals, such as in the torsion balance data of the Washington experiment [317].
At the theoretical level such deviations from the Newtonian potential are generic predictions in a wide
range of extensions of General Relativity including f(R) theories [318, 319], massive Brans-Dicke scalar
tensor theories [184, 320], compactified extra dimension models [321, 322] and non-local extensions of
GR [323, 324]. In the latter, oscillating deviations occur naturally on sub-millimeter scales without any
instabilities. In this Chapter, we extend previous studies and analyze the data of the Stanford Optically
Levitated Microsphere Experiment (SOLME) [325] searching for sub-mm spatially oscillating new force
signals.

We find a statistically significant oscillating signal for a force residual of the form 𝐹 (𝑧) = 𝛼 cos( 2𝜋
𝜆 𝑧+

𝑐) where 𝑧 is the distance between the macroscopic interacting masses (levitated microsphere and can-
tilever). The best fit parameter values are 𝛼 = (1.1 ± 0.4) × 10−17𝑁 and 𝜆 = (35.2 ± 0.6)𝜇𝑚. Monte
Carlo simulation of the SOLME data under the assumption of zero force residuals has indicated that the
statistical significance of this signal is at about 2𝜎 level. The improvement of the 𝜒2 fit compared to the
null hypothesis (zero residual force) corresponds to Δ𝜒2 = 13.1. Therefore, this Chapter contents is a
deviation from the Standard ΛCDM model since it investigates the effects of deviations from Newton’s
constant and thus from General Relativity at sub-mm scales in short range gravity experiments. We have
emphasized this point in the section 1.15.

Private communication with the authors of Ref. [325] has indicated that this previously unnoticed
signal is indeed in the data but is most probably induced by a systematic effect caused by diffraction of
non-Gaussian tails of the laser beam. Thus, the amplitude of this detected signal can only be useful as
an upper bound to the amplitude of new spatially oscillating forces on sub-mm scales. In the context of
gravitational origin of the signal emerging from a fundamental modification of the Newtonian potential
of the form 𝑉𝑒𝑓𝑓 (𝑟) = −𝐺𝑀

𝑟

(︀
1 + 𝛼𝑂 cos( 2𝜋

𝜆 𝑟 + 𝜃)
)︀

≡ 𝑉𝑁 (𝑟) + 𝑉𝑜𝑠𝑐(𝑟), we evaluate the source integral of
the oscillating macroscopically induced force. If the origin of the SOLME oscillating signal is systematic,
the parameter 𝛼𝑂 is bounded as 𝛼𝑂 < 107 for 𝜆 ≃ 35𝜇𝑚. Thus, the SOLME data can not provide useful
constraints on the modified gravity parameter 𝛼𝑂. However, the constraints on the general phenomen-
ological parameter 𝛼 (𝛼 < 0.3 × 10−17𝑁 at 2𝜎) can be useful in constraining other fifth force models
related to dark energy (for example, chameleon oscillating potentials).

The physical scale associated with the accelerating expansion of the universe is the dark energy scale
which is obtained from the dark energy density 𝜌𝑑𝑒 ≃ 10−29𝑔/𝑐𝑚3 ≃ (2.4𝑚𝑒𝑉 )4. This scale corresponds
to an energy scale of Λ = 2.4𝑚𝑒𝑉 and a length scale of about

𝜆𝑑𝑒 = ~𝑐
Λ ≃ 80𝜇𝑚
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It is therefore plausible that the physical cause of the cosmological expansion on cosmological scales may
also produce experimental signatures in the form of new forces that manifest themselves on sub-mm
scales. Chameleon scalar field screened interactions [3, 11, 95, 106, 326–329], modified gravity Yukawa
forces [330, 331] and vacuum energy Casimir forces [332–334] are some examples of new sub-mm forces
that could also be connected with the observed cosmological accelerating expansion.

A wide range of experiments have been performed searching for signatures of new forces on sub-mm
scales. They include torsion balance experiments [335–348], Casimir force experiments [349, 350] or
levitating microsphere experiments [325, 351–353]. These experiments fit particular parametrizations to
datasets that usually involve force or torque residuals as function of distance between interacting bodies.

Parametrizations that are commonly used to model the spatial dependence of new forces on sub-mm
scales are monotonic and include Yukawa and power law parametrizations [267]. Yukawa parametrizations
generalize the gravitational potential generated by a mass 𝑀 to the form

𝑉𝑒𝑓𝑓 = −𝐺𝑀
𝑟

(︂
1 + 𝛼𝑌 𝑒

−𝑟/𝜆
)︂

(5.1)

where 𝛼𝑌 , 𝜆 are parameters to be constrained by the data. The effective potential (5.1) includes the
Newtonian term and the Yukawa term. Power law parametrizations generalize the gravitational potential
generated by a mass 𝑀 to the form

𝑉𝑒𝑓𝑓 = −𝐺𝑀
𝑟

(︂
1 + 𝛽𝑘

(︀𝜆
𝑟

)︀𝑘−1
)︂

(5.2)

where 𝛽 and 𝑘 are parameters. These parametrizations are motivated by viable extensions of GR such as
Brans-Dicke and scalar-tensor theories [184, 320, 354], brane world modes [355–360], 𝑓(𝑅) theories [318,
319, 361] and compactified extra dimension models [321, 322, 362–365]. Alternative more complicated
parametrizations which may not appear in closed analytic form are obtained in the context of non-
relativistic, steady-state chameleon fields, that couple directly to matter density and can mediate screened
new forces between macroscopic objects [104, 325, 366, 367] which may even be significantly larger than
gravity [366].

Recent studies [317, 368–370] have pointed out that a new class of parametrizations describing spatially
oscillating new forces on sub-mm scales is well motivated theoretically and viable experimentally. Such
oscillating parametrizations may describe deviations of the gravitational force from the Newtonian force
or may drive to extensions of theory of GR

∙ in a wide range of modified gravity theories [317], such as 𝑓(𝑅) theories,

∙ in theories involving small scale granularity of dark energy [371, 372]

∙ in massive scalar tensor theories Brans-Dicke [184] and most importantly

∙ in non-local (infinite derivative) gravity theories [317, 331, 368–370, 373–378]

The main advantages of these theories are the following

1. they are free from singularities [375, 376, 379, 380] (such as black holes)

2. they are free from instabilities [377, 378, 381]

3. they can naturally emerge from quantum effects [374] (such as light particle loops)

4. they do not need the existence of the cosmological constant Λ to interpret the cosmological obser-
vations [382]
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They constitute a viable physical mechanism for the observed accelerating expansion of the universe
[383–386] while they predict specific signatures in the gravitationally light bending angle [387] testable
by the Chandra X-ray Observatory1.

Oscillating force residuals are experimentally viable and mildly favored [317] according to current
torsion balance experiments searching for new forces on sub-mm scales [335]. These parametrizations
also emerge as analytic continuations of the Yukawa parametrization (5.1) and generalize the Newtonian
gravitational potential as

𝑉𝑒𝑓𝑓 = −𝐺𝑀
𝑟

(︂
1 + 𝛼𝑂 cos

(︀2𝜋
𝜆
𝑟 + 𝜃

)︀)︂
≡ 𝑉𝑁 (𝑟) + 𝑉𝑜𝑠𝑐(𝑟) (5.3)

where 𝛼𝑂, 𝜆, 𝜃 are free parameters and the spatial wavelength 𝜆 is assumed to be of sub-mm scale for
consistency with current experimental constraints. This type of parametrization leads to oscillating new
forces of sub-mm wavelength of the form

𝐹 = −𝑟𝐺𝑀𝑚

𝑟2

[︂
1 + 𝛼𝑂 cos

(︂
2𝜋
𝜆
𝑟 + 𝜃

)︂
+ 𝛼𝑂

2𝜋
𝜆
𝑟 sin

(︂
2𝜋
𝜆
𝑟 + 𝜃

)︂]︂
(5.4)

In the case of interacting macroscopic bodies the gravitational potential energy (and therefore the grav-
itational force) can be obtained by integration of the oscillating potential energy correction term (source
integral obtained from the potential 𝑉𝑜𝑠𝑐 of Eq. (5.3)) over the volumes of the interacting bodies. As-
suming macroscopic interacting masses 𝑀 and 𝑚 with a common density 𝜌, the corresponding potential
energy source integral may be written as

𝑉𝑜𝑠𝑐(𝑟) = −𝐺𝛼𝑂
∫︁
𝑉𝑚

𝑑3𝑟𝑚𝜌(𝑟⃗𝑚)
∫︁
𝑉𝑀

𝑑3𝑟𝑀𝜌(𝑟⃗𝑀 )
cos
(︂

2𝜋
𝜆 |𝑟⃗𝑚 − 𝑟⃗𝑀 | + 𝜃

)︂
|𝑟⃗𝑚 − 𝑟⃗𝑀 |

(5.5)

The effective force obtained from the potential source integral (5.5) macroscopic cylinder of mass 𝑀
interacting with a small mass 𝑚 located at a distance 𝑧 from one of its bases along its symmetry axis is
well approximated for intermediate to large 𝑧 as

𝐹 (𝑧) = 𝐴 cos(2𝜋
𝜆
𝑧 + 𝑐)𝑧 (5.6)

where 𝑐 is a phase parameter. Oscillating sub-mm force residuals like (5.6) were shown in Ref. [317] to
be consistent with current torsion balance experiments [335] and in fact to provide a somewhat better fit
than the null hypothesis of zero force residuals.

In this Chapter we fit the spatially oscillating force residual (5.6) to the dataset of Stanford Optically
Levitated Microsphere Experiment (SOLME) [325] involving force measurements on optically levitated
microspheres as a function of its distance 𝑧 from a gold coated silicon cantilever. The residual force
obtained after the subtraction of a best fit electrostatic background from the total measured force in
units of 𝑓𝑁 for 𝑧 ∈ [25, 235]𝜇𝑚 is fit to the oscillating force residual parametrization of Eq. (5.6) and
the quality of fit is compared to the null hypothesis of zero force residual. The analytic expression of
the source integral (5.5) is also investigated and its quality of fit to the SOLME data is compared to the
corresponding quality of fit of the simpler approximate form (5.6) and other monotonic parametrizations.

5.1 Bounds for a Phenomenological Oscillating Parametriza-
tion from SOLME

The SOLME [325] uses optically levitated dielectric microspheres supported by the radiation pressure
from a single upward pointing laser beam. The laser traps the microsphere in a high vacuum thus

1http://chandra.harvard.edu/
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counterbalancing Earth gravity. Any additional force is assumed to be due to a gold-coated silicon
cantilever, located in the same height with the microsphera. In order to minimize electrostatic background
forces the trap and cantilever are shielded in a cubic container consisting of six gold-plated electrodes
which are set to approximately equal potential as the cantilever. Despite of this shielding, the main
background force remains of electrostatic origin. It emerges due to the interaction of the small but non-
zero permanent electric dipole moment of the micro-spheres which couples to the electric field due to
the small but non-zero potential difference fluctuations (< 30𝑚𝑉 ) between the cantilever and shielding
electrodes. Thus, the best fit electrostatic background may be used to obtain the residual force data as
the difference between the measured total force and the best fit electrostatic background force at a given
microsphere-cantilever distance 𝑧. The magnitude of the residual force 𝑑𝐹 defined as

𝑑𝐹 ≡ 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐹𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (5.7)
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Figure 5.1: The value of the minimized 𝜒2 as a function of the wavelength 𝜆 for the full dataset (96
points). The red straight line corresponds zero residual force 𝑑𝐹 = 0. The depth of the minimum is
𝛿𝜒2 = 13.1.

The dataset analyzed in this Chapter corresponds to the data shown in Fig. 3 of Ref. [325]. The data
and the best fit electrostatic background were kindly provided by the members of the SOLME [325] after
our request. This dataset was obtained using three silica microspheres with the same radius 𝑟 = 2.5𝜇𝑚
and mass 𝑚 = 0.13𝑛𝑔, but different polarizabilities. Each microsphera was trapped in a high vacuum
with pressure 𝑃 < 10−6𝑚𝑏𝑎𝑟 and its position was measured by a position-sensitive photodiode using a
laser beam.

The small unshielded electrostatic background forces are monotonic with the distance 𝑧 between
cantilever and microsphera and have been modelled and fit by the members of the SOLME as functions
of the distance 𝑧 between the cantilever and the microsphere. We have found that this background is
very well fit by a parametrization of the form

𝐹𝐵 = 𝑎+ 𝑏

𝑟3/2

where 𝑎, 𝑏 are appropriate parameters that depend on the polarizabity of the interacting micropshere.
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Figure 5.2: The 1𝜎 and 2𝜎 contours in the parameter space (𝛼, 𝜆) for the oscillating parametrization
with 𝑐 = 7𝜋/4. For the combined dataset (96 datapoints) there is a well defined high quality fit at
(𝛼, 𝜆) = (0.011, 35.2𝜇𝑚) corresponding to a wavelength 𝜆 = 35.2𝜇𝑚. This best fit is about 3𝜎 away from
the zero force residual value 𝛼 = 0.

Any new type of force would manifest itself as a statistically significant nonzero residual force beyond
the modelled electrostatic background.

For each one of the three silica microsphere the residual force of Eq. (5.7) was obtained for 32 distances
𝑧 between cantilever and microsphere in the distance range 𝑧 from 25𝜇𝑚 up to 235𝜇𝑚. The total of 96
values of these residual forces along with the corresponding distances 𝑧 and their 1𝜎 error is shown in
Table B.1 in the Appendix B (32 values for each one of the three microsphere).

We fit the residual forces of the SOLME data derived from equation (5.7) using the oscillating para-
metrization of the form

𝑑𝐹 (𝛼, 𝜆, 𝑐, 𝑧) = 𝛼 𝑐𝑜𝑠

(︂
2𝜋
𝜆
𝑧 + 𝑐

)︂
(5.8)

where 𝛼, 𝜆 and 𝑐 are parameters to be fit. We have used the parametrization (5.8) to minimize 𝜒2(𝛼, 𝜆, 𝑐)
defined as

𝜒2(𝛼, 𝜆, 𝑐) =
𝑁∑︁
𝑗=1

(︂
𝑑𝐹 (𝑗) − 𝑑𝐹 (𝛼, 𝜆, 𝑐, 𝑧𝑗)

)︂2

𝜎2
𝑗

(5.9)

where 𝑗 refers to the 𝑗𝑡ℎ datapoint as resulted from Eq. (5.7) and 𝑑𝐹 (𝛼, 𝜆, 𝑐, 𝑧𝑗) is the residual force
parametrized by Eq. (5.8) for the same distance 𝑧𝑗 between cantilever and microsphera, that corresponds
to measured residual force 𝑑𝐹 (𝑗). Also 𝑁 is the number of datapoints which is 96 for the full dataset.

We found that, for the full dataset, 𝜒2(𝛼, 𝜆, 𝑐) is minimized for

𝛼 = (0.011 ± 0.004)𝑓𝑁 (5.10)
𝜆 = (35.2 ± 0.6)𝜇𝑚 (5.11)
𝑐 = (5.47 ± 0.06)𝑟𝑎𝑑 ≃ 7𝜋/4 (5.12)
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Figure 5.3: The residual force SOLME data with error bars along with the best fit oscillating paramet-
rization (thin red line) for the full dataset. The best fit harmonic parametrization has spatial wavelength
𝜆 = 35.2𝜇𝑚.

This value of the best fit phase 𝑐 differs by about 𝜋 from the corresponding best fit phase obtained in Ref.
[317] when fitting the Washington experiment data to the same parametrization. The minimum value of
𝜒2 is 𝜒2(𝛼, 𝜆, 𝑐) = 85.2 compared to 𝜒2(0, 𝜆, 𝑐) = 98.3 corresponding to zero residual force (𝑑𝐹 = 0). In
Fig. 5.1 we show the (minimized with respect to 𝛼, 𝑐) 𝜒2(𝛼, 𝜆, 𝑐) for the full dataset as a function of the
spatial wavelength 𝜆. Clearly, there is a well pronounced minimum at the spatial wavelength 𝜆 = 35.2𝜇𝑚.

The red horizontal line corresponds to the value of 𝜒2 of zero residual force 𝑑𝐹 (𝛼 = 0, 𝜆, 𝑐, 𝑟𝑗) = 0.
The difference between zero force residual and best fit oscillating parametrization is 𝛿𝜒2 = 13.1. The 1𝜎
and 2𝜎 contours for the two parameters 𝛼, 𝜆 (fixing 𝑐 = 7𝜋/4) are shown in Fig. 5.2. These contours
indicate that the zero residual 𝛼 = 0 line is about 3𝜎 away from the best fit 𝛼 = 0.01. In Fig. 5.3 we
show the full dataset (residual force in 𝑓𝑁 vs distance in 𝜇𝑚) along with the best fit oscillating model
(5.8). The oscillating signal in the data is clearly visible.

5.2 Testing the Signal with Monte Carlo Simulations
In view of the presence of other less deep 𝜒2 minima at different spatial wavelengths, this 3𝜎 estimate is
an overestimate of the true significance of the oscillating signal. In order to estimate the correct statistical
significance of the signal we have performed a Monte Carlo simulation. The goal of such a Monte Carlo
simulation is to estimate how often would such a deep 𝜒2 minimum occur in SOLME simulated data
derived under the assumption of an underlying zero residual force.

In order to verify the level of significance of the identified oscillating signal we have generated Gaussian
Monte Carlo datasets under the assumption of zero residual force. In particular, we used the Normal
Distribution to take random values for the residual forces (with mean value equal to zero) for each
datapoint distance 𝑧 with the same standard deviation as the experimental data. We processed multiple
datasets of random datapoints with the same method as the measured data. A typical form of

𝛿𝜒2(𝜆) ≡ 𝜒2
𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 − 𝜒2

𝛼=0

after minimization with respect to 𝛼, 𝑐 at each value of 𝜆, is shown in Fig. 5.4. Clearly, the depth of the
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Figure 5.4: The value of the minimized difference 𝛿𝜒2 = 𝜒2
𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 − 𝜒2

𝛼=0 as a function of the spatial
wavelength 𝜆 for the experimental data and a random Monte-Carlo dataset simulating the SOLME data
under the assumption of zero residual force and Gaussian errors. The depth of the 𝛿𝜒2 deepest minimum
is significantly larger when the real data are fit to the oscillating parametrization.

deepest minimum of the Monte Carlo dataset (red line) is significantly smaller than the maximum depth
obtained with the real dataset (blue line).

We considered a hundred (100) Monte Carlo zero residual force datasets and we calculated for each
Monte-Carlo dataset the deepest 𝜒2 minimum in the range 𝜆 ∈ [10−100]𝜇𝑚 and subtracted this minimum
𝜒2 from the corresponding of zero residual force 𝜒2 obtained from the Monte-Carlo data. Thus we
calculated the difference

𝛿𝜒2 = 𝜒2
𝑧𝑒𝑟𝑜 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 − 𝜒2

𝑚𝑖𝑛−𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (5.13)

For the real data this corresponds to the difference 𝛿𝜒2 between the 𝛼 = 0 red line of Fig. 5.1 and
the deepest minimum of the blue line. This is the horizontal line in Fig. 5.5 at 𝛿𝜒2 = 13.1. For the
Monte Carlo datasets this difference corresponds to the difference between the deepest minimum of the
red line and the horizontal red line of Fig. 5.4. Each one of the red dots of Fig. 5.5 corresponds to such
Monte Carlo difference. Clearly if all the 100 red dots were found below the horizontal line of Fig. 5.5
(𝛿𝜒2 < 13.1) then there would be less than 1% probability that the deep 𝜒2 minimum of Fig. 5.1 is due to
a statistical fluctuation. Instead we find that about 5% of the zero residual simulated data lead to deeper
𝜒2 minima (five red dots in Fig. 5.5 are above the horizontal line). Thus, the true level of significance of
the oscillating signal is at about 2𝜎. A similar effect leading to reduced level of significance compared to
the one indicated by the 𝜒2 contour plot was observed and discussed in Ref. [317].

We conclude that there is evidence for an oscillating signal at the 2𝜎 level in the SOLME data. Since
there is only about 5% probability that this signal is due to a statistical fluctuation, most likely it is due
either to a systematic effect that was not discussed in Ref. [325] or it is due to new physics. Private
communication with the authors of Ref. [325] has indicated that the signal is most probably due to a
systematic effect caused by a background due to non-Gaussian tails of the laser beam whose pressure
levitates the microsphere. Due to diffraction, the intensity of these non-Gaussian tails has a periodic
oscillation, which can mimic a spatially oscillating force signal. Thus, the amplitude of this detected
signal can only be useful as an upper bound to the amplitude of new spatially oscillating forces on sub-
mm scales. In addition to the oscillating parametrization (5.8) we have tried to fit the data using various
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Figure 5.5: The maximum 𝛿𝜒2 depth in the range 𝜆 ∈ [10, 100] for 100 Monte Carlo datasets assuming
zero residual force (red dots). The horizontal line corresponds to the maximum 𝛿𝜒2 depth for the actual
SOLME dataset.

monotonic parametrizations like a Yukawa parametrization of the form

𝑑𝐹 (𝛼, 𝜆, 𝑧) = 𝛼 𝑒𝑧/𝜆 (5.14)

However, in all cases the improvement of the quality of fit was minor with 𝛿𝜒2 < 1 and thus we will not
discuss these cases further.

The oscillating parametrization (5.8) is a phenomenological parametrization which can not be used as
to impose constraints on fundamental parameters. In order to impose such constraints the macroscopic
residual force parametrization must be derived starting from a fundamental theory. For example we may
assume a gravitational origin of the signal and derive the macroscopically induced residual force starting
from a modified Newtonian potential of the form (5.3). Thus, we may derive the predicted macroscopic
residual force between cantilever and microsphere in terms of the fundamental parameters 𝛼𝑂 and 𝜆 of
Eq. (5.3) by evaluating the source integral (5.5) over the cantilever. This derived effective residual force
may then be fit to the SOLME data leading to constraints on the fundamental parameters 𝛼𝑂 and 𝜆
rather than the corresponding phenomenological parameters of Eq. (5.8). This task is undertaken in the
next section.

5.3 Constraints on Fundamental Parameters: Source Integral
We approximate the orthogonal cantilever of the SOLME by a cylindrical one of the same base area and
height as the one used in the experiment. This approximation allows for analytical evaluation of the source
integral and of the macroscopic gravitational forces of the cantilever on the small microsphere located at
a distance 𝑧 along the symmetry axis from the center of the base of the cylindrical cantilever. Such a
cantilever would have a radius 𝑅 ≃ 40𝜇𝑚, height 𝐷 = 2000𝜇𝑚 (see Fig. 5.6) and density 𝜌 = 2.3𝑔𝑟/𝑐𝑚3.
As stated above, the mass of the microsphere was 𝑚 = 0.13𝑛𝑔 and its radius 𝑟 = 2.5𝜇𝑚.
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Figure 5.6: The cantilever approximated as a cylinder and a point mass 𝑚 at distance 𝑧 from its surface.

5.3.1 Newtonian Force between a Cylindrical Cantilever and a Microsphere
First, we calculate the Newtonian gravitational force between the cantilever and the microsphere. The
gravitational potential energy between the cantilever and a point mass 𝑚 at distance 𝑧 from its surface
is of the form

𝑉𝑁 (𝑧) = −2𝜋𝜌𝐺𝑚
∫︁ 𝑅

0
𝑟𝑑𝑟

∫︁ 𝑧+𝐷

𝑧

𝑑𝑧′
√
𝑟2 + 𝑧′2

(5.15)

We now introduce a rescaling to dimensionless length dividing all lengths by the cantilever radius 𝑅
and denote with a ‘bar’ the new dimensionless quantities. Under this rescaling the potential (5.15) takes
the form

𝑉𝑁 (𝑧) = − 2𝜋𝜌𝐺𝑚𝑅2⏟  ⏞  
𝑉1

∫︁ 1

0
𝑟′𝑑𝑟′

∫︁ 𝑧+𝐷̄

𝑧

𝑑𝑧′′
√
𝑟′2 + 𝑧′′2⏟  ⏞  

𝑉𝑁 (𝑧)

(5.16)

where the definitions of the potential unit 𝑉1 and of the dimensionless gravitational potential 𝑉𝑁 are
shown in Eq. (5.16). The corresponding 𝑧 component of the interaction force is

𝐹𝑧𝑁 (𝑧) = − 2𝜋𝐺𝑚𝜌𝑅⏟  ⏞  
𝐹1

𝜕𝑉𝑁 (𝑧)
𝜕𝑧⏟  ⏞  

𝐹𝑧𝑁 (𝑧)

(5.17)

It is straightforward to calculate the dimensionless part of the force 𝐹𝑧𝑁 (𝑧) ≡ 𝜕𝑉𝑁 (𝑧)
𝜕𝑧 as

𝐹𝑧𝑁 (𝑧, 𝐷̄) = −𝐷̄ −
√︀

1 + 𝑧2 +
√︁

1 + (𝐷̄ + 𝑧)2 (5.18)

For small 𝑧 (𝑧 ≪ 1) the dimensionless part of the force 𝐹𝑧𝑁 is constant as expected

𝐹𝑧𝑁 (𝑧, 𝐷̄) ≃
√︀

1 + 𝐷̄ − (1 + 𝐷̄) (5.19)
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while, for 𝑧 ≫ 1 it also has the anticipated asymptotic behavior as an inverse square of the distance

𝐹𝑧𝑁 (𝑧, 𝐷̄) ≃ − 𝐷̄

2𝑧2 (5.20)

The dimensions corresponding to the SOLME are 𝑅 = 40𝜇𝑚, 𝐷̄ = 50, 𝑟1 = 0.0625, 𝑧𝑚𝑖𝑛 = 0.5,
𝑧𝑚𝑎𝑥 = 6.25 where 𝑟1 ≡ 𝑟1

𝑅 is the dimensionless form of the radius of the microsphere which is clearly
much smaller than all the other dimensions of the experiment. In view of this fact we may approximate
the microsphere as a point mass and assume that the predicted Newtonian force on it, is provided to a
good approximation by Eqs. (5.17) and (5.18).

An improved approximation for the calculation of the Newtonian force on the microsphere is the
averaging of the force through the evaluation of the integral

𝐹𝑧𝑁,𝑡𝑜𝑡𝑎𝑙(𝑧, 𝐷̄, 𝑟1) = 1
2𝑟1

∫︁ 𝑧0+𝑟1

𝑧0−𝑟1

𝑑𝑧′𝐹𝑧𝑁 (𝑧′, 𝐷̄) (5.21)

We have found that this improved approximation has a minor effect (less than 1%) on the estimated
force on the micropshere. Thus, in what follows we approximate the micropshere as a point mass that is
subject to a Newtonian force from the cantilever provided by Eqs. (5.17) and (5.18) as

𝐹𝑧𝑁 (𝑧, 𝐷̄) = 𝛼𝑁 × 2𝜋𝐺𝑚𝜌𝑅⏟  ⏞  
𝐹1

×𝐹𝑧𝑁 ( 𝑧40 , 50) (5.22)

where 𝑧 is measured in 𝜇𝑚 and 𝐹1 = 2𝜋𝐺𝑚𝜌𝑅 ≃ 5 × 10−9𝑓𝑁 for the geometry and the objects used in
the SOLME. We have allowed for a short range amplification factor 𝛼𝑁 to the Newtonian force. Since
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Figure 5.7: The minimized 𝜒2 using the SOLME data as a function of the parameter 𝜆 of the Yukawa
force ansatz including the effects of the source integral. The improvement of the fit is marginal despite
the additional two parameters 𝛼𝑌 , 𝜆.

𝐹𝑧𝑁 ( 𝑧40 , 50) < 1 for the distances considered in the SOLME (𝑧 > 20𝜇𝑚) it is clear that the Newtonian
force is much smaller than the residual forces measured in the SOLME which are of 𝑂(10−2)𝑓𝑁 and an
amplification by a factor 𝛼𝑁 ≃ 107 on these scales would be required for such a force to be observable
by the SOLME.
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Figure 5.8: The best fit form of the the source integral for the Yukawa residual force is practically
indistinguishable from the zero force residual.

5.3.2 Yukawa Residual Force between a Cylindrical Cantilever and a Micro-
sphere

Deviations from the Newtonian potential on sub-millimeter scales can be parameterized through a Yukawa
interaction, an oscillating model or a power law parametrization. In the case of the Yukawa deviation,
the potential energy of a point mass 𝑀 interacting with a point mass 𝑚 at a distance 𝑟 gets generalized
as 𝑉 (𝑟) = 𝑉𝑁 (𝑟) + 𝑉𝑌 (𝑟) with

𝑉𝑌 (𝑟) = −𝐺𝑀𝑚

𝑟
𝛼𝑌 𝑒

− 𝑟
𝜆 (5.23)

where 𝛼𝑌 and 𝜆 are appropriate parameters to be constrained. In this case, the Yukawa rescaled dimen-
sionless interaction potential energy, as defined in Eq. (5.15), between a cylinder of dimensionless height
𝐷̄ (the cantilever) and a point mass 𝑚 (the microsphere) located at a distance 𝑧 from the center of one
of the cylinder bases is

𝑉𝑌 (𝑧) = −𝛼𝑌
∫︁ 1

0
𝑟′𝑑𝑟′

∫︁ 𝑧+𝐷̄

𝑧

𝑑𝑧′ 𝑒
−

√
𝑟′2+𝑧′2

𝜆̄

√
𝑟′2 + 𝑧′2

(5.24)

The corresponding 𝑧 component of the force 𝐹𝑧𝑌 (𝑧) ≡ 𝜕𝑉𝑌 (𝑧)
𝜕𝑧 induced on the mass 𝑚 can be analytically

evaluated by first obtaining the source integral (5.24). The result is

𝐹𝑧𝑌
(︀
𝑧, 𝐷̄, 𝜆̄

)︀
= 𝛼𝑌 𝜆

(︂
𝑒− 𝐷̄+𝑧

𝜆̄ + 𝑒−
√

1+𝑧2
𝜆̄ − 𝑒− 𝑧

𝜆̄ − 𝑒−
√

1+(𝐷̄+𝑧)2
𝜆̄

)︂
(5.25)

with 𝜆̄ = 𝜆
𝑅 . The asymptotic behaviour of the macroscopic Yukawa force is expected, namely it is

exponentially suppressed for 𝑧 >> 1, while for small 𝑧 it is constant approximated as

𝐹𝑧𝑌 (𝑧, 𝐷̄, 𝜆̄) = 𝛼𝑌 𝜆̄

(︂
− 1 + 𝑒− 1

𝜆̄ + 𝑒− 𝐷̄
𝜆̄ − 𝑒−

√
1+𝐷̄2

𝜆̄

)︂
(5.26)
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For the SOLME the full residual Yukawa force may be expressed as

𝐹𝑧𝑌,𝑡𝑜𝑡 = 𝐹𝑧𝑌,𝑡𝑜𝑡(
𝑧

40 , 50, 𝜆40) × 5 × 10−9 × 𝛼𝑌⏟  ⏞  
𝛼𝑌 9

(5.27)

where 𝑧, 𝜆 must be substituted in 𝜇𝑚 and the force is calculated in 𝑓𝑁 . We have found that as in
the case of the simple phenomenological Yukawa parametrization discussed in the previous section, the
source integral Yukawa force (5.27) is unable to improve the fit of the SOLME residual force data by
more than 1 (𝛿𝜒2 < 1) compared to the zero residual force parametrization. This is demonstrated in Fig.
5.7 where we show the minimum value of 𝜒2 as a function of 𝜆 for the macroscopic Yukawa force residual
(5.27) and for the zero force residual (red line). Clearly we have 𝛿𝜒2 < 1 for all values of 𝜆 considered.
The Yukawa potential does not provide a more efficient macroscopic residual force parametrization for
fitting the force residuals of the SOLME data compared to null hypothesis of the zero force residual. This
is also demonstrated in Fig. 5.8 where we show the best fit Yukawa residual force for 𝛼𝑌 = 1 which is
achieved for 𝜆 = 5.6𝜇𝑚 and is practically indistinguishable from the zero residual force for most of the
range of the force residual SOLME data.

5.3.3 Power Law Residual Force between a Cylindrical Cantilever and a Mi-
crosphere

A similar conclusion is obtained for other monotonic residual force parametrizations like power law
deviations from the Newtonian potential. In this case, the generalized gravitational potential would be
of the form 𝑉 (𝑟) = 𝑉𝑁 (𝑟) + 𝑉𝑃 (𝑟) with

𝑉𝑃 (𝑟) = −𝛼𝑃𝐺𝑀𝑚

𝑟𝑛
(5.28)

The rescaled dimensionless source integral may be written as

𝑉𝑃 (𝑧) = −𝛼𝑃
∫︁ 1

0
𝑟′𝑑𝑟′

∫︁ 𝑧+𝐷̄

𝑧

𝑑𝑧′(︂
𝑟′2 + 𝑧′2

)︂𝑛/2 (5.29)

leading to the 𝑧 component of the rescaled dimensionless force 𝐹𝑧𝑃 (𝑧) ≡ 𝜕𝑉𝑃 (𝑧)
𝜕𝑧 in the analytic form

𝐹𝑧𝑃 (𝑧, 𝐷̄, 𝑛) = 𝛼𝑃
𝑧−𝑛(𝐷̄ + 𝑧)−𝑛

𝑛− 2

[︂
(1 + 𝑧2)

[︀
1 + (𝐷̄ + 𝑧)2]︀ ]︂−𝑛

2
{︃

− 𝑧𝑛(𝐷̄ + 𝑧)𝑛(1 + 𝑧2) 𝑛
2
[︀
1 + (𝐷̄ + 𝑧)2]︀

+
[︀
1 + (𝐷̄ + 𝑧)2]︀𝑛

2

[︂
𝑧𝑛(𝐷̄ + 𝑧)𝑛(1 + 𝑧2) + (1 + 𝑧2) 𝑛

2
[︀
𝑧𝑛(𝐷̄ + 𝑧)2 − 𝑧2(𝐷̄ + 𝑧)𝑛

]︀ ]︂}︃
(5.30)

Introducing the parameters of the SOLME, the dimensionfull force in 𝑓𝑁 takes the form

𝐹𝑧𝑃,𝑡𝑜𝑡 = 𝐹𝑧𝑃,𝑡𝑜𝑡(
𝑧

40 , 50, 𝑛) × 5 × 10−9 × 𝛼𝑃⏟  ⏞  
𝛼𝑃 𝑔

(5.31)

It is straightforward to show that the quality of fit of this power law source integral force residual is
similar to that of the corresponding Yukawa residual and thus it is not of particular interest since it is
not favoured over the zero residual hypothesis. Thus, we will not pursue this case further.
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5.3.4 Oscillating Force Residual between a Cylindrical Cantilever and a Mi-
crosphere

We now consider an oscillating gravitational residual potential of the form 𝑉 (𝑟) = 𝑉𝑁 (𝑟) + 𝑉𝑂(𝑟) with

𝑉𝑂(𝑟) = −𝐺𝑀𝑚

𝑟
𝛼𝑂 cos

(︂
2𝜋
𝜆
𝑟 + 𝜃

)︂
(5.32)

The macroscopic dimensionless form of the potential energy between a cylindrical cantilever and a mi-
crosphere on the cantilever’s axis of symmetry is expressed in terms of the dimensionless source integral
as

𝑉𝑂(𝑧) = −𝛼𝑂
∫︁ 1

0
𝑟′𝑑𝑟′

∫︁ 𝑧+𝐷̄

𝑧

𝑑𝑧′
cos
(︁

2𝜋
√
𝑟′2+𝑧′2

𝜆 + 𝜃
)︁

√
𝑟′2 + 𝑧′2

(5.33)

The corresponding 𝑧 component of the rescaled dimensionless force 𝐹𝑧𝑂(𝑧) ≡ 𝜕𝑉𝑂(𝑧)
𝜕𝑧 can be obtained

αO9=1

Harmonic Ansatz

Oscillating Source Integral
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Figure 5.9: Comparison between the source integral signal for oscillating force with the naive constant
amplitude cosine oscillator. On scales 𝑧 larger than the disk radius (𝑅 = 40𝜇𝑚) they both behave like
harmonic functions with very similar wavelength,while on small scales the signal is not periodic. Also,
we have plot the Newtonian ansatz (blue line), the Yukawa ansatz (gray line) and a power law force with
𝑛 = 1.5 (magenta line). For the oscillating source integrals we have set 𝛼𝑂9 = 1 which implies 𝛼𝑂 = 109.

analytically as

𝐹𝑧𝑂(𝑧, 𝐷̄, 𝜆̄, 𝜃) = 𝛼𝑂𝜆̄

2𝜋

[︃
sin
(︂

2𝜋𝑧
𝜆̄

+ 𝜃

)︂
− sin

(︂
2𝜋(𝐷̄ + 𝑧)

𝜆̄
+ 𝜃

)︂
+

+ sin

⎛⎝2𝜋
√︁

1 + (𝐷̄ + 𝑧)2

𝜆̄
+ 𝜃

⎞⎠− sin
(︃

2𝜋
√

1 + 𝑧2

𝜆̄
+ 𝜃

)︃]︃
(5.34)

For large 𝑧, the residual force (5.34) is oscillating with an amplitude that decreases as 1/𝑧 and is of the
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Figure 5.10: Left panel: The 𝜒2 value as a function of the wavelength 𝜆 for plain harmonic ansatz. Right
panel: The 𝜒2 value for the source integral oscillating ansatz. In both cases the fit improvement to the
data is significant compared to a null residual fit. The difference in 𝜒2 is more than 13 units and the
minimum appears in almost the same wavelength (about 35𝜇𝑚).

form

𝐹𝑧𝑂
(︀
𝑧, 𝐷̄, 𝜆̄, 𝜃

)︀
= cos

(︂
2𝜋𝑧
𝜆̄

)︂cos
(︁

2𝜋𝐷̄
𝜆̄

+ 𝜃
)︁

− cos 𝜃

2𝑧 − sin
(︂

2𝜋𝑧
𝜆̄

)︂ sin
(︁

2𝜋𝐷̄
𝜆̄

+ 𝜃
)︁

− sin 𝜃

2𝑧 (5.35)

For small 𝑧 we find

𝐹𝑧𝑂
(︀
𝑧, 𝐷̄, 𝜆̄, 𝜃

)︀
= 𝜆̄

2𝜋

[︃
sin 𝜃 − sin

(︂
2𝜋
𝜆̄

+ 𝜃

)︂
− sin

(︂
2𝜋𝐷̄
𝜆̄

+ 𝜃

)︂
+ sin

(︃
2𝜋
√︀

1 + 𝐷̄2

𝜆̄
+ 𝜃

)︃]︃
(5.36)

For the case of the SOLME the oscillating residual force on the microsphere located at a distance 𝑧 𝜇𝑚
from the cantilever it would be of the form

𝐹𝑧𝑂,𝑡𝑜𝑡 = 𝐹𝑧𝑂,𝑡𝑜𝑡(
𝑧

40 , 50, 𝜆40 , 𝜃) × 5 × 10−9 × 𝛼𝑂⏟  ⏞  
𝛼𝑂9

(5.37)

where 𝑧, 𝜆 in 𝜇𝑚 and the force is measured in 𝑓𝑁 . In Fig. 5.9 the force source integral (5.37) with
𝜆 = 30𝜇𝑚 and 𝛼𝑂9 = 1 (thick black dotted line) is compared with the plain harmonic residual force
(5.8) with the same 𝜆 and 𝛼 = 1 (continuous red line), with the Newtonian source integral force (5.18)
(long dashed line), with a power law source integral (𝑛 = 1.5, Eq. (5.30), blue dashed line) and with a
Yukawa source integral force with 𝜆 = 10𝜇𝑚 (gray line). Notice that the oscillating force source integral
for the particular parameters is an oscillating non-periodic function with initially increasing amplitude
which reaches a maximum and subsequently decreases at large distances in accordance with the predicted
asymptotic behaviour (5.35).

It is straightforward to fit the SOLME data using the macroscopic oscillating residual force (5.37)
obtained from the source integral. In this case, as in the case of the plain harmonic residual force (5.8) we
have a significant improvement of the quality of fit compared to the zero residual hypothesis by 𝛿𝜒2 > 13.
This is demonstrated in Fig. 5.10 (right panel) where we show the minimized 𝜒2 as a function of the
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Figure 5.11: Left panel: The best fit plain harmonic ansatz with 𝜆 = 35𝜇𝑚. Right panel: The best fit
source integral oscillating ansatz with 𝜆 = 33𝜇𝑚. As we see, in both cases the waveform is practically
the same even though the amplitude for the best fit source integral decreases slowly with distance.

spatial wavelength 𝜆 of the macroscopic oscillating force (5.37). The depth of the best fit 𝜒2 minimum is
𝛿𝜒2 > 13 and is obtained for 𝜆 ≃ 33𝜇𝑚 which is almost the same value 𝜆 ≃ 35𝜇𝑚 of the plain harmonic
force parametrization (5.8) shown on the left panel2.

In Fig. 5.11 (right panel) we show the best fit macroscopic oscillating force parametrization (5.37)
superposed with the SOLME residual force data. For comparison we also show the corresponding best
fit of the plain harmonic parametrization (5.8). The quality of fit (value of 𝜒2) is almost identical despite
the fact that the right panel shows the full source integral best fit parametrization where the oscillation
amplitude decreases slowly with 𝑧.

5.3.5 Oscillating Source Integral in Cartesian Coordinates
In order to make the evaluation of the source integral analytically tractable we have approximated the
orthogonal cantilever used in the SOLME by a cylindrical one of the same base area. The orthogonal
cantilever used in the SOLME had dimensions 𝑎 × 𝑏 × 𝐷 = 10𝜇𝑚 × 500𝜇𝑚 × 2000𝜇𝑚. Had we kept
the orthogonal geometry in the evaluation of the oscillating force source integral and rescaled with the
dimension 𝑎 = 10𝜇𝑚 of the cantilever we would have to calculate the following source integral

𝐹𝑂𝑧
(︀
𝑧0, 𝜆̄, 𝜃

)︀
= 𝐺𝑚𝜌𝑎× 𝛼𝑂 × 𝜕

𝜕𝑧0

∫︁ 1

−1
𝑑𝑥̄

∫︁ 𝑏̄

−𝑏̄
𝑑𝑦

∫︁ 𝑧0+𝐷̄

𝑧0

cos
(︂√

𝑥̄2+𝑦2+𝑧2

𝜆̄
+ 𝜃

)︂
√︀
𝑥̄2 + 𝑦2 + 𝑧2

𝑑𝑧 (5.38)

which in contrast to the cylindrical geometry is not analytically tractable. Using a numerical approach
we have evaluated the source integral (5.38) at the distances of the datapoints and confirmed that a
similar quality of fit can be obtained using the orthogonal source integral (5.38) as with the cylindrical
analytic source integral (5.37) for the same spatial wavelength. Thus, our result for the existence of the
oscillating signal is robust and insensitive to the particular geometry used for the evaluation of the source
integral. This is demonstrated in Fig. 5.12 where we show the best fit source integrals for cylindrical

2The left panel of Fig. 5.10 is identical with Fig. 5.1 but we show it here again for easier comparison with the
corresponding figure obtained using the full source integral (5.37) rather than the simple parametrization (5.8).
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(5.37) and orthogonal (5.38) cantilever along with the best fit plain harmonic force residual ansatz (5.8).
Clearly the three best fit parametrizations are very similar leading to practically the same quality of fit
(𝜒2 ≃ 85) compared to the much lower quality of fit for the zero residual hypothesis and the Yukawa or
power law residuals (𝜒2 ≃ 98).
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Figure 5.12: The best fit source integrals for cylindrical (5.37) and orthogonal (5.38) cantilever along
with the best fit plain harmonic force residual ansatz (5.8).The three best fit parametrizations are very
similar leading to practically the same quality of fit.

5.4 Oscillating Chameleon Model
If the origin of the oscillating signal (5.11) is assumed to be gravitational through a modified Newtonian
potential of the form of Eq. (5.3) the bounds obtained on the parameter 𝛼𝑂 are particularly weak
(𝛼𝑂 < 107) due to the partially shielded electrostatic backgrounds that limit the sensitivity of the
experiment in measuring gravitational forces between the cantilever and the microsphere.

More interesting bounds on fundamental fifth force parameters could be obtained if the origin of
the signal is assumed to be non-gravitational. In particular, it is plausible that a chameleon potential
with multiple extrema can lead to a spatially oscillating fifth force which is screened in regions of high
density via the chameleon mechanism. Consider for example [11] the chameleon field profile around a
large spherical object (e.g., the Earth) of radius 𝑅𝑐 and density 𝜌(𝑟). The profile of the chameleon field
which acts also as a potential for the chameleon fifth force is determined by the equation

𝑑2𝜑

𝑑𝑟2 + 2
𝑟

𝑑𝜑

𝑑𝑟
= 𝑉,𝜑 + 𝛽

𝑀𝑃𝑙
𝜌(𝑟)𝑒𝛽𝜑/𝑀𝑃 𝑙 , (5.39)

where 𝛽 is a coupling parameter, 𝑀𝑃𝑙 is the Planck mass scale, 𝑉 (𝜑) is the chameleon field self-interaction
potential and 𝑉,𝜑 ≡ 𝑑𝑉

𝑑𝜑 the first derivative of the potential with respect to 𝜑. The density profile may be
approximated as

𝜌(𝑟) =
{︂
𝜌𝑐 for 𝑟 < 𝑅𝑐
𝜌∞ for 𝑟 > 𝑅𝑐

. (5.40)

Let 𝜑𝑐 and 𝜑∞ be the chameleon field values that minimizes the effective potential 𝑉𝑒𝑓𝑓 defined as

𝑉𝑒𝑓𝑓 (𝜑) ≡ 𝑉 (𝜑) + 𝜌(𝑟)𝑒𝛽𝑖𝜑/𝑀𝑃 𝑙 (5.41)
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Figure 5.13: The thin shell effect suppresses the chameleon force, because only a thin shell (shaded region)
of a dense object with radius 𝑅𝑐 contributes to the 𝜑 field outside the object. All the other infinitesimal
volumes within the object have not significant contribution, due to exponential reduction. Thus, the
magnitude of the force is significantly reduced. Adopted from [11].

for 𝑟 < 𝑅𝑐 and 𝑟 > 𝑅𝑐, respectively. Well within the object, one finds that the chameleon nearly minimizes
the effective potential at the value 𝜑 ≃ 𝜑𝑐 and the mass of the chameleon is large 3. The contribution
from a volume element 𝑑𝑉 within the core is exponentially suppressed and it contributes negligibly to
the 𝜑 field outside. This result valid for all infinitesimal volume elements within the object, except for
those lying within a thin shell near the surface, as we present in Fig. 5.13 (thin-shell effect). For these
field values we have [11]

𝑉,𝜑(𝜑𝑐) + 𝛽

𝑀𝑃𝑙
𝜌𝑐𝑒

𝛽𝜑𝑐/𝑀𝑃 𝑙 = 0

𝑉,𝜑(𝜑∞) + 𝛽

𝑀𝑃𝑙
𝜌∞𝑒

𝛽𝜑∞/𝑀𝑃 𝑙 = 0 (5.42)

The screened chameleon fifth force is obtained from the profile solution of Eq. (5.39) with boundary
conditions

𝑑𝜑

𝑑𝑟
= 0 at 𝑟 = 0

𝜑 → 𝜑∞ as 𝑟 → ∞ (5.43)

It can be shown from the chameleon field action that the chameleon fifth force on a test particle of mass
𝑀 is of the form

𝐹𝜑 = − 𝛽

𝑀𝑃𝑙
𝑀∇⃗𝜑 (5.44)

It is obvious that the field 𝜑 plays the role of a potential for the chameleon induced fifth force.
3The mass of the chameleon field inside or outside the large object is the mass of small fluctuations about 𝜑𝑐 and 𝜑∞,

respectively. It is obvious from Fig. 1.9 in Chapter 1 that, as density decreases, the minimum of the potential shifts to
larger values of 𝜑 and the mass of small fluctuations decreases.
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If the chameleon self interaction potential is monotonic between the central value 𝜑𝑐 and the asymp-
totic field value 𝜑∞ then 𝜑(𝑟) varies monotonically between its value 𝜑𝑐 in the center of the massive
object and its asymptotic value 𝜑∞ which is approached exponentially fast in the exterior of the massive
body. We obtain the usual screened fifth force obtained from the gradient of 𝜑(𝑟) which is maximized
around a thin shell at the borderline of the massive object and goes rapidly to zero in the interior and in
the exterior of the object with significantly larger mass in the interior (screened region).

If on the other hand, there are multiple extrema of the potential 𝑉 (𝜑) in the range between the central
value 𝜑𝑐 and the asymptotic field value 𝜑∞, then Eq. (5.39) implies that these extrema may be inherited
to the chameleon field profile around the massive object. Thus, from Eq. (5.44) these multiple extrema
may induce localized sub-mm spatial oscillations of the chameleon induced screened fifth force. A similar
behavior may be obtained if the exponential conformal coupling to the density 𝑒𝛽𝜑/𝑀𝑃 𝑙 is replaced by an
oscillating function.

5.5 Conclusions
We have analyzed and fit the Stanford Optically Levitated Microsphere Experiment (SOLME) [325]
force residual data using a wide range of parametrizations including plain phenomenological ones and
parametrizations obtained by evaluating source integrals based on simple functional forms. We have
shown that monotonic parametrizations, such as Yukawa and power laws are unable to improve the
quality of fit of the null hypothesis (zero force residuals) at any significant level despite the introduction
of a number of parameters (𝛿𝜒2 < 1). However, oscillating parametrizations at the plain phenomenological
level and at the level of source integral can improve significantly the quality of fit compared to the null
hypothesis (𝛿𝜒2 > 13). The statistical significance of this oscillating signal is at about 2𝜎 level.

The most probable cause of this signal is a systematic effect caused by the non-Gaussian tails of
the laser beam whose pressure levitates the microsphere. Due to diffraction, the intensity of these non-
Gaussian tails has a periodic oscillation, which can mimic a spatially oscillating force signal. Thus the
detected signal can only be used as an upper bound to physically interesting new forces of sub-mm
oscillating nature. The amplitude 𝛼 of such an oscillating force background with spatial wavelength
𝜆 ≃ 35𝜇𝑚 is bounded at the 2𝜎 level as

𝛼 < 0.3 × 10−17𝑁

This bound is phenomenological and applicable to the conditions and geometry of the SOLME.
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Chapter 6

Effects on gravitational waves in an
expanding Universe

In the course of this Chapter we solve the Laplace equation �ℎ𝑖𝑗 = 0 describing the propagation of
gravitational waves in an expanding background metric with a power law scale factor in the presence of
a point mass in the weak field approximation (Newtonian limit of McVittie background). We can use
gravitational waves to investigate and check some deviations of the Standard model, such as the isotropy
of the universe [388], the expansion rate 𝐻0 [389] and thus the Hubble tension and the General Relativity
in strong gravitational fields [390]. However, I point out that this Chapter is an exception compared to
the other chapters as it assumes validity of General Relativity and the Standard ΛCDM model.

We use boundary conditions at large distance from the mass corresponding to a standing spherical
gravitational wave in an expanding background which is equivalent to a linear combination of an incoming
and an outgoing propagating gravitational wave. We compare the solution with the corresponding solution
in the absence of the point mass and show that the point mass increases the amplitude of the wave and
also decreases its frequency (as observed by an observer at infinity) in accordance with gravitational time
delay. Also, the power spectrum of the spherical wave contains the low frequencies in bigger degree than
the corresponding frequencies of the wave spectrum in the absence of mass.

The direct discovery of the GWs has been achieved by the LIGO/Virgo collaboration associating the
GW150914 event [116, 117, 391] to the coalescence of a Binary Black Hole (BBH). This binary detection
suggests that BBH masses and merging rates may be higher than estimated previously. The rates however,
are in agreement with more recent estimates obtained with a population synthesis approach predicting
the early formation of detectable BBH [392, 393]. Thus, the stochastic gravitational waves background
(SGWB) produced by merging cosmological BBH sources could be larger than previously assumed [391]
(and references therein) and may be detectable by advanced detectors [394]. Recent direct searches for
continuous gravitational waves (CGW) from 15 well localized candidate neutron stars assuming none of
the stars has a binary companion and an extrasolar planet candidate which has been suggested to be a
nearby old neutron star failed to find any astrophysical signal [395].

A stochastic background of relic gravitational waves (RGWs) is predicted by inflationary models
[396, 397] and has been well studied [398, 399]. The power spectrum of relic gravitational wave background
reflects the physical conditions in the early Universe thus providing valuable information for cosmology
[400]. This spectrum is determined by the early stage of inflation as well as by the expansion properties
of the subsequent epochs, including the current one. The calculation of the spectrum [401, 402] was
initially performed for a currently decelerating universe. However, it is now well known that the universe
expansion is currently accelerating [16, 403] and since the evolution of RGWs depends on the expanding
background space time, the spectrum of RGWs should be modified accordingly. This modification was
confirmed and studied in Refs [404, 405] using the well-known formulation of GWs in an expanding
Universe [406] and an approximation of the scale factor 𝑎(𝜏) in the context of a sequence of successive
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expansion epochs, including the current stage of accelerating expansion. It was found that the current
accelerating expansion induces modifications in both the shape and the amplitude of the RGW spectrum.

Since existence of RGWs is a key prediction of the inflationary models, their detection could provide
evidence that inflation actually took place. Thus, it is important to accurately calculate the expected
detailed form of the RGW spectrum. Calculations related to RGWs in an accelerating Universe have
been performed [407] and a numerical method has been developed to calculate the power spectrum of the
RGWs. Late evolution of RGWs in coupled dark energy models has been examined extensively in Ref.
[408].

Even though the effects of cosmological expansion on GWs have been investigated mainly in the
context of RGWs, these effects are relevant in all cases when the source is located at cosmologically large
distances from the observer (redshift 𝑧 ≥ 0.1). The GW150914 (𝑧 = 0.09) event is in the limit of such
distances and therefore, the effects of cosmic expansion may be relevant. Thus, a wide range of studies
have investigated the effects of cosmological expansion of GWs from a variety of viewpoints such as

∙ the effects of expansion on the GW group and phase velocities [409, 410]

∙ mathematical aspects and exact solutions [411–415]

∙ quantum and thermodynamic properties of GWs [124, 416]

∙ general properties [414, 417, 418]

∙ nonlinear effects [419]

∙ properties of the GW energy momentum tensor [420]

∙ collision of GWs with electromagnetic waves [421]

∙ evolution of GWs in gravitational plasma [422]

Even though these studies have properly taken into account the expansion of the background metric,
they have not taken into account the effects of the gravitational field of mass distributions on the evol-
ution of the GWs. Such a gravitational field combined with the expanding background may induce new
observable effects on the spectrum of propagating gravitational waves affecting the amplitude and the
frequency of such waves, due to gravitational time delay [423].

Assuming spherical symmetry, the background metric around a point mass embedded in an expanding
Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological background is well approximated by the
McVittie [424, 425] spacetime. Such a metric is further simplified in the Newtonian limit and has been used
as the background metric for the investigation of bound system geodesics in phantom and quintessence
cosmologies [4, 229, 426, 427]. This metric can also be used as a background for the propagation of
GWs in order to investigate the influence of a mass distribution of a GW propagating in an expanding
cosmological background.

In the present Chapter we address the following question: ’What are the weak field effects of a
point mass on a multipole component of a GW evolving in an expanding background in the vicinity of
the mass?’. In particular we numerically solve the dynamical equation for the evolution of GWs in the
background of the Newtonian McVittie metric and identify the effects induced by the point mass on the
amplitude and frequency of the evolving GW as a function of the parameters, determining the mass and
the background expansion rate. As a test of our analysis in the zero mass limit, our numerical solution
reduces to the well known analytic solution of a GW evolving in an expanding background.

6.1 Wave equation as a result from Tensor Perturbations
We first briefly review the propagation evolution of a plane GW in the 𝑧 direction (the direction of the
wavevector 𝑘⃗) with tensor perturbations in the 𝑥−𝑦 plane. The perturbations to the metric are described
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by two functions, ℎ+ and ℎ×, assumed small. We use the FRW metric in cartesian coordinates with the
components 𝑔00 = 1, zero space-time components 𝑔0𝑖 = 0, spatial elements and set 𝑐 = 1. Thus, the
spatial part of the metric is of the form

𝑔𝑖𝑗 = −𝑎2(𝑡)

⎛⎝1 + ℎ+ ℎ× 0
ℎ× 1 − ℎ+ 0
0 0 1

⎞⎠ (6.1)

The perturbation tensor 𝐻𝑖𝑗 is symmetric, divergenceless, traceless and has the form

𝐻𝑖𝑗 =

⎛⎝ℎ+ ℎ× 0
ℎ× −ℎ+ 0
0 0 0

⎞⎠ (6.2)

From the Einstein equations for tensor perturbations, it is easy to derive a set of equations governing
the evolution of the tensor functions ℎ+ and ℎ×. We write the FRW metric in Cartesian coordinates and
in conformal time 𝜏 , which is defined by the relation

𝑑𝜏 = 𝑑𝑡/𝑎

as follows
𝑑𝑠2 = 𝑎2(𝜏)

(︂
𝑑𝜏2 − (𝛿𝑖𝑗 + ℎ𝑖𝑗)𝑑𝑥𝑖𝑑𝑥𝑗

)︂
(6.3)

The dynamical equation determining the evolution of the GWs is of the form

�𝐻𝑖𝑗 = 𝜕𝜇

(︂√
−𝑔𝜕𝜇𝐻𝑖𝑗(𝑟⃗, 𝜏)

)︂
= 0 (6.4)

Since all components of the tensor perturbations evolve in accordance with the same wave equation (6.4)
we may set 𝐻𝑘 ≡ 𝐻𝑖𝑗 . Without loss of generality we assume propagation in the 𝑧 direction and thus we
use the ansatz

𝐻𝑘(𝜏, 𝑧) = ℎ𝑘(𝜏)𝑒±𝑖𝑘𝑧 (6.5)

Substituting Eq. (6.5) in (6.4) it is straightforward to derive the dynamical equation for the evolution of
gravitational waves in conformal time in an FRW background as [428]

ℎ′′
𝑘 + 2𝑎

′

𝑎
ℎ′
𝑘 + 𝑘2ℎ𝑘 = 0 (6.6)

where the prime (′) denotes the derivative with respect to conformal time 𝜏 . Notice that both the
perturbation tensor components ℎ+ and ℎ× obey the same equation. Further, we introduce a rescaling
of conformal time as 𝜏 = 𝑘𝜏 and thus it becomes clear that

ℎ𝑘(𝜏) = ℎ(𝑘𝜏) (6.7)

The rescaling expressed by Eq. (6.7) can only be made in conformal time provided that the scale
factor is a power law 𝑎(𝜏) ∼ 𝜏𝛼. In the radiation dominated epoch we have 𝛼 = 1 and during the matter
dominated era 𝛼 = 2. We try to explore how the gravitational wave responds to all these modifications
of the spacetime dynamics. The wave solution (6.5) can be converted in spherical coordinates as

𝐻𝑖𝑗(𝜏, 𝜌, 𝜃) = ℎ(𝑘𝜏)𝑒±𝑖𝑘𝜌 cos 𝜃 (6.8)

The spectrum of the GWs may be obtained as [429]

𝑃 (𝑘, 𝜏) = 4𝑙𝑃𝑙√
𝜋
𝑘 | ℎ𝑘(𝜏) | (6.9)
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The plane wave of equation (6.8) can be expanded in spherical waves, since

𝑒𝑖𝑘𝜌 cos 𝜃 =
∞∑︁
𝑙=0

𝑖𝑙(2𝑙 + 1)𝑗𝑙(𝑘𝜌)𝑃𝑙(cos 𝜃) (6.10)

where 𝑗𝑙(𝑥) are the spherical Bessel functions and 𝑃𝑙(cos 𝜃) are the Legendre’s polynomials. Thus, the
partial spherical GW is (at order 𝑙)

𝐻𝑖𝑗(𝜏, 𝜌, 𝜃) ∼ ℎ(𝑘𝜏)𝑗𝑙(𝑘𝜌)𝑃𝑙(cos 𝜃) (6.11)

After rescaling, the dynamical equation (6.6) is written as

ℎ′′(𝑘𝜏) + 2𝑎
′

𝑎
ℎ′(𝑘𝜏) + ℎ(𝑘𝜏) = 0 (6.12)

where the prime (′) now denotes differentiation with respect to the rescaled conformal time 𝑘𝜏 .
Assuming a power law for the background scale factor as 𝑎(𝜏) ∼ 𝜏𝛼, the solution of the wave equation

(6.12) is of the form

ℎ(𝑘𝜏) = 1
𝑎(𝜏)

(︂
𝐴𝑘

√
𝑘𝜏𝐻

(1)
𝛼−1/2(𝑘𝜏) + 𝐵̃𝑘

√
𝑘𝜏𝐻

(2)
𝛼−1/2(𝑘𝜏)

)︂
(6.13)

where 𝐻(1), 𝐻(2) are the Hankel functions, while 𝐴𝑘 and 𝐵̃𝑘 are arbitrary constants which may depend
on 𝑘 and are determined by the initial conditions. The above solution (6.13) may also be written as

ℎ(𝑘𝜏) = (𝑘𝜏) 1
2 −𝛼

(︂
𝐴𝑘𝐽𝛼−1/2(𝑘𝜏) +𝐵𝑘𝑌𝛼−1/2(𝑘𝜏)

)︂
(6.14)

where 𝐽 and 𝑌 are the Bessel functions of first and second kind respectively and 𝐴𝑘 = 𝐴𝑘𝑘
𝛼, 𝐵𝑘 = 𝐵̃𝑘𝑘

𝛼.
For a power law scale factor the spherical GW is

𝐻𝑖𝑗(𝜏, 𝜌, 𝜃) = (𝑘𝜏) 1
2 −𝛼

(︂
𝐴𝑘𝐽𝛼−1/2(𝑘𝜏) +𝐵𝑘𝑌𝛼−1/2(𝑘𝜏)

)︂
𝑗𝑙(𝑘𝜌)𝑃𝑙(𝑐𝑜𝑠𝜃) (6.15)

As a warm up exercise before the introduction of a point mass in the metric, we now rederive the
solution (6.14), (6.15) starting from the FRW metric in spherical coordinates

𝑑𝑠2 = 𝑎(𝜏)2

(︃
𝑑𝜏2 −

(︂
𝑑𝜌2 + 𝜌2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2)

)︂)︃
(6.16)

Because of the azimuthal symmetry, the solution does not depend on the variable 𝜑 and we will seek
solutions of the Eq. (6.4) of the form

𝐻𝑖𝑗(𝜏, 𝜌, 𝜃, 𝜑) = 𝑓(𝜏)𝑅(𝜌)𝑃𝑙(𝑐𝑜𝑠𝜃) (6.17)

From the Eqs. (6.4), (6.17), after separation of variables we find

1
𝑅

(︂
𝑑2𝑅

𝑑𝜌2 + 2
𝜌

𝑑𝑅

𝑑𝜌
− 𝑙(𝑙 + 1)

𝜌2

)︂
= −𝑘2 (6.18)

and
1
𝑓

(︂
𝑑2𝑓

𝑑𝜏2 + 2𝑎′

𝑎

𝑑𝑓

𝑑𝜏

)︂
= −𝑘2 (6.19)

where 𝑘2 is arbitrary constant. As expected Eq. (6.19) is identical to Eq. (6.6) while Eq. (6.18) is the
spherical Bessel equation with acceptable solution

𝑅𝑙(𝜌) = 𝐴𝑙𝑗𝑙(𝑘𝜌) (6.20)

We thus reobtain the general solution in spherical coordinates (6.15).
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6.2 Gravitational waves in the vicinity of a point mass
We can now generalize the above analysis to investigate the behavior of GWs when they interact with a
point mass 𝑀 . In the presence of a point mass and cosmological expansion, the appropriate background
metric is the McVittie metric. In the Newtonian limit, using comoving coordinates the McVittie metric
is [4, 430]

𝑑𝑠2 =
(︂

1 − 𝑅𝑠
𝜌𝑎(𝑡)

)︂
𝑑𝑡2 − 𝑎(𝑡)2

(︂
𝑑𝜌2 + 𝜌2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2)

)︂
(6.21)

where
𝑅𝑠 = 2𝐺𝑀

is the Schwarzschild radius. The angular variable 𝜃 separates and thus we use the perturbation ansatz

𝐻𝑖𝑗(𝑡, 𝜌, 𝜃, 𝜑) = 𝑄(𝑡, 𝜌)𝑃𝑙(𝑐𝑜𝑠𝜃) (6.22)
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(a) A superposition of the analytic solution with the
numerical simulation initial condition taken at 𝜏 = 1.
The spherical wave with 𝑙 = 6 and scale factor 𝑎(𝜏) =
𝜏 is shown.

l=6, α=1, τ=16.5
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(b) The numerically evolved solution for the gravit-
ational wave 𝑄(𝜏, 𝜌) at 𝜏 = 16.5 with 𝑅𝑠 = 0, is in
excellent agreement with the corresponding analytic
evolved solution.

Figure 6.1: Comparison between the analytic solution of Eq. (6.17) with the numerical simulation of
(6.25), where the initial conditions taken at 𝜏 = 1 (the time which appeared the point mass). The
spherical wave with 𝑙 = 6 and scale factor 𝑎(𝜏) = 𝜏 is shown. We have plot the solutions for a couple of
randomly chosen times, namely 𝜏 = 1 and 𝜏 = 16.5 and the results are identical. This is a test of the
quality of the numerical solution.

Using the background metric (6.21) and the ansatz (6.22) in the gravitational wave equation (6.4) we
obtain the dynamical equation for 𝑄(𝑡, 𝜌) as

𝜕2𝑄

𝜕𝜌2 + 2
𝜌

(1 − 3𝑅𝑠
4𝑎𝜌 )(1 − 𝑅𝑠

𝑎𝜌
)−1 𝜕𝑄

𝜕𝜌
− 𝑙(𝑙 + 1)𝑄

𝜌2 = 𝑎2

1 − 𝑅𝑠

𝑎𝜌

(︂
𝜕2𝑄

𝜕𝑡2
+ 3𝑎̇

𝑎
(1 − 7𝑅𝑠

6𝑎𝜌 )(1 − 𝑅𝑠
𝑎𝜌

)−1 𝜕𝑄

𝜕𝑡

)︂
(6.23)

Assuming that
𝑅𝑠
𝑎𝜌

≪ 1 (6.24)
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and keeping terms 𝑅𝑠/𝑎𝜌 only in first order we can write Eq. (6.23) in conformal time as

(1 + 𝑅𝑠
𝑎𝜌

)𝜕
2𝑄

𝜕𝜏2 + 2𝑎′

𝑎
(1 + 3𝑅𝑠

4𝑎𝜌 )𝜕𝑄
𝜕𝜏

= 𝜕2𝑄

𝜕𝜌2 + 2
𝜌

(1 + 𝑅𝑠
4𝑎𝜌 )𝜕𝑄

𝜕𝜌
− 𝑙(𝑙 + 1)𝑄

𝜌2 (6.25)

The above Eq. (6.25) is not separable and it is not tractable analytically in a simple manner. As expected,
in the limit of zero mass (𝑅𝑠 = 0) it separates and reduces to Eqs. (6.18) and (6.19).

In the next section we integrate Eq. (6.25) numerically and investigate the dependence of the solution
on the values of the parameter 𝑅𝑠. It will be seen that as the wave approaches the point mass it
experiences two types of distortion

∙ gravitational time delay and increase of its period in conformal cosmological time.

∙ increase its amplitude in comparison with the amplitude it would have in the absence of the point
mass.

According to general relativity the expected period of the wave at a comoving distance 𝜌 from the
point mass, as measured by an observer at infinity, is

𝑇 = 𝑇0√︁
1 − 𝑅𝑠

𝑎𝜌

(6.26)

where 𝑇0 is the corresponding period at infinity (or in the absence of the mass). For small mass or large
distance from the source the increase of the period as a fraction of 𝑇0 is

Δ𝑇
𝑇0

= 1
2𝑎𝜌𝑅𝑠 (6.27)

where Δ𝑇 = 𝑇 −𝑇0 is the difference of the wave periods with and without the presence of the mass. The
validity of Eq. (6.27) for the GW in the vicinity of a point mass will be demonstrated numerically in the
next section.

6.3 Numerical Analysis and Results
In order to keep the analogy with the massless case 𝑅𝑠 = 0 we rescale the dynamical equation (6.25)
to dimensionless form, using the wavenumber 𝑘 defining 𝑘𝜌 = 𝜌 and 𝑘𝜏 = 𝜏 . In this case we have an
additional physical dimensionless parameter

𝑅𝑠 = 𝑘𝑅𝑠 (6.28)

In the numerical analysis which we present immediately we use only dimensionless quantities, even though
we will omit the bar in what follows.

We solve numerically Eq. (6.25) with initial conditions corresponding to a standing gravitational wave
evolving in a homogeneous FRW spacetime (𝑅𝑠 = 0) using Eq. (6.14) with 𝐵𝑘 = 0 starting the evolution
at 𝜏 = 1. This is equivalent to assuming that the point mass appears at 𝜏 = 1. For definiteness we
set 𝛼 = 1 or 𝑎(𝜏) ∼ 𝜏 corresponding to an expanding background in the radiation era. The boundary
conditions are imposed for 𝑄 and for its first derivative at large 𝜌 where the effects of the point mass are
negligible and also correspond to a standing GW evolving in a homogeneous FRW spacetime (𝑅𝑠 = 0)
using Eq. (6.14) with 𝐵𝑘 = 0.

We have used for the wave equation at large distance from the source the Bessel function boundary
conditions (6.14) and (6.15), which describe a standing GW and however can be expressed as a super-
position of two propagating modes (Hankel functions). The asymptotic behaviour of Hankel functions,
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(a) Initially (𝜏 = 1), both waves in the presence or the
absence of a point mass 𝑀 have the same behaviour,
since the waveforms are identical.
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(b) The free wave reaches its maximum first, while the
wave in the presence of the point mass shows a delay
in reaching its maximum due to gravitational redshift.
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(c) The wave in the presence of the point mass shows
a delay in reaching its maximum due to gravitational
time delay.
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(d) The phase difference increases with time in the
vicinity of the mass. This a obvious if we compare the
red and blue line.

Figure 6.2: The evolution of the profile of a partial spherical gravitational wave with 𝑙 = 6, 𝑅𝑠 = 5
(red dashed line) in comparison with the corresponding free solution (𝑅𝑠 = 0, blue continuous line),
which actually is a wave propagating in empty space. The wave in the presence of the mass has a higher
amplitude (compare Fig. 6.2b with Fig. 6.2c) in the vicinity of the mass.

which is proportional to 𝑒𝑖𝑘𝜏 , corresponds to a propagating GW, while the asymptotic behavior of Bessel
functions is proportional to cos(𝑘𝜏) and corresponds to a standing GW.

We stress that, since we have made the Newtonian approximation (weak gravity, low velocities) our res-
ults are reliable in regions where the weak field condition (6.24) is satisfied. We thus construct numerically
the solution 𝑄(𝜌, 𝜏, 𝑅𝑠, 𝑙, 𝛼) and compare with the corresponding analytical solution 𝑄(𝜌, 𝜏, 𝑅𝑠 = 0, 𝑙, 𝛼).
We have tested our numerical evolution by verifying that the numerical solution for 𝑅𝑠 = 0 agrees with
the corresponding analytical solution at a level better that 1% (Fig. 6.1).

Following the above comments about the boundary condition we fix 𝑄 (and its derivative with respect
to conformal time) at the boundary 𝑟𝑒𝑛𝑑 > 500 (far away from the point mass) as

𝑄(𝜏, 𝜌𝑏𝑜𝑢𝑛𝑑) = −𝑖𝑒−2𝑖
√
𝜏 (−1 + 𝑒4𝑖

√
𝜏 )

4
√
𝜏

𝑗𝑙(𝜌𝑏𝑜𝑢𝑛𝑑) (6.29)

Similarly, the initial conditions set at 𝜏𝑖 = 1 are

𝑄(𝜏𝑖, 𝜌) = −𝑖𝑒−2𝑖√𝜏𝑖(−1 + 𝑒4𝑖√𝜏𝑖)
4√

𝜏𝑖
𝑗𝑙(𝜌) (6.30)
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and
𝜕𝑄(𝜏𝑖, 𝜌)

𝜕𝜏
= 𝜕

𝜕𝜏

(︁−𝑖𝑒−2𝑖
√
𝜏 (−1 + 𝑒4𝑖

√
𝜏 )

4
√
𝜏

𝑗𝑙(𝜌)
)︁ ⃒⃒⃒⃒

𝜏=𝜏𝑖

(6.31)

In addition to the test of the validity of numerical solution presented in Fig. 6.1 we have performed other
tests including the verification of the independence of the numerical solution from the location of the
boundary for 𝑟𝑏𝑜𝑢𝑛𝑑 > 200.

We have solved the partial differential equation (6.25) for various values of 𝑙 with results that are
qualitatively similar. For definiteness we present in Fig. 6.2 the solution corresponding to 𝑙 = 6 for
𝑅𝑠 = 5 superposed with the corresponding solution for 𝑅𝑠 = 0 in order to identify the new features
introduced in the evolution of the GW by the presence of the point mass. There are three main features
to observe in Fig. 6.2.

1. the waves are practically identical far away from the point mass as expected.

2. there is a time delay for the wave in the presence and in the vicinity of the point mass (Fig. 6.2b).

3. the amplitude of the wave in the presence and in the vicinity of the mass increases (compare Fig.
6.2b with Fig. 6.2c).

The main effect of the expansion is to reduce the amplitude of the gravitational wave by a factor
proportional to the scale factor in the absence of the mass. This is shown in Fig. 6.3 which shows that
the amplitude multiplied by the scale factor remains constant in the absence of the mass (blue oscillating
line has constant amplitude) for the particular time dependence of the scale factor considered (𝑎(𝜏) ∼ 𝜏).
In the presence of the mass however, the increase of the amplitude due to the expansion is less efficient
(red line) and the product of the amplitude times the scale factor increases slowly with time.

In Fig. 6.3 we show the conformal time evolution of the metric perturbation multiplied by the scale
factor at 𝜌 = 7.9 (closest maximum amplitude to the mass for 𝑙 = 6) for 𝑅𝑠 = 5 (red dashed line)
superposed with the corresponding evolution for 𝑅𝑠 = 0 (blue continuous line). We multiply the wave
𝑄(𝜏, 𝜌) by the scale factor to eliminate the effects of the expansion that tend to decrease the gravitational
wave amplitude. This plot shows more clearly the relative (linear) increase of the amplitude with time,
as well as the increased period of the wave in the presence of the mass. It also demonstrates the well
known fact that the wave amplitude in the absence of the mass (𝑅𝑠 = 0) is inversely proportional with
the scale factor (the blue wave has a constant amplitude).

The effects of the gravitational time delay on the evolution of the wave may also be demonstrated
by plotting the power spectrum obtained by a Fourier series expansion of the evolving in conformal time
numerical solution at 𝜌 = 7.9 in harmonic waves.

6.3.1 Effects on Power spectrum of wavefunction
The finite time interval power spectrum may be defined through the expansion of the numerical solution

𝑄(𝜏, 𝜌) = 𝑎0

2 +
𝑛∑︁
𝑖=1

(𝑎𝑛 cos(𝑛𝜏) + 𝑏𝑛 sin(𝑛𝜏)) (6.32)

as
𝑃 (𝑛) ≡ log

√︀
𝑎2
𝑛 + 𝑏2

𝑛 (6.33)

where the coefficients 𝑎𝑛 and 𝑏𝑛 are determined by the Fourier expansion of the wavefunction 𝑄(𝜏, 𝜌).
We used a time interval of approximately two complete oscillations which corresponds to a time interval
[1, 20] (𝑡𝑖 = 1, 𝑡𝑚𝑎𝑥 = 20 as shown in Fig. 6.4. The exact form of the spectrum clearly depends on
the time interval considered, however the qualitative feature of higher amplitudes for lower frequencies
persists for all time intervals. This feature is more prominent for lower values of 𝜌.
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Figure 6.3: The time evolution of the first spatial maximum (at 𝜌 = 7.9) of the partial spherical wave
with 𝑙 = 6, 𝑅𝑠 = 5 (red line) in comparison with the corresponding free solution (𝑅𝑠 = 0, blue continuous
line) at the same spatial point. The free wave reaches its maximum first (Fig. 6.2b) while the wave in
the presence of the point mass shows a delay in reaching its maximum (Fig. 6.2c) due to gravitational
redshift. The wave in the presence of the mass has an amplitude that increases with time as indicated
with the dashed red line that in tangent to the gravitational wave maxima. As expected, the product
𝑎(𝜏)𝑄(𝜏) is constant for the free wave in an expanding background.
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Figure 6.4: The time power spectra of the gravitational wave in the presence (red line) and in the absence
(blue line) of the mass. Notice that lower frequencies have a higher amplitude for the wave in the presence
of the mass as expected due to the gravitational time delay.

6.3.2 Effects on Period and Amplitude
As shown in Fig. 6.4, the presence of the mass (red continuous line) leads to an increase of the amplitude
of low harmonics and to decrease of the amplitude of higher harmonics which is consistent with the effects
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of gravitational time delay.
In accordance with Eq. (6.27) the increase of the period of the wave at a given distance from the

mass is proportional to the mass in the weak field approximation. This is consistent with our numerical
solution as shown in Fig. 6.5 where we show the relative increase of the period of the wave Δ𝑇/𝑇0 at
given distances 𝜌 (𝜌 = 7.9 and 𝜌 = 15.89) from the mass for various values the parameter 𝑅𝑠 (points in
plot). In order to evaluate the relative change of the period Δ𝑇/𝑇0 we consider the time evolution of the
wave perturbation as shown in Fig. 6.3 to obtain the period of the wave in the presence of the mass and
the corresponding period in the absence of the mass. Superposed in Fig. 6.5 is the best fit straight line
in each case. As is theoretically expected there is a linear relationship in accordance with Eq. (6.27).
The correlation coefficients of the points with the corresponding best fit straight line are equal to 0.99
indicating an excellent quality of fit.

The theoretically predicted slope is 1
2𝑎𝜌 where the scale factor can be taken as approximately constant

and equal to its average value during a wave period.
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Figure 6.5: The relative difference of the wave periods Δ𝑇/𝑇0, where 𝑇 is the period in the presence of
mass and 𝑇0 is the period in the absence of mass, as a function of 𝑅𝑠. It is clear that as the value of
the variable 𝜌 increases, the statistical slope of the curve decreases. This is an anticipated result due to
theoretical slope of the curve, which is 1

2𝑎𝜌 .

In order to estimate the theoretical value of the scale factor, we calculate the mean value 𝑎̄(𝜏), in the
time interval 𝜏1 − 𝜏2 of a single period, through the formula

𝑎̄(𝜏) = 1
𝜏2 − 𝜏1

∫︁ 𝜏2

𝜏1

𝑎(𝜏)𝑑𝜏 = 𝜏2 + 𝜏1

2 (6.34)

For 𝜌 = 7.9 we considered the wave period starting from 𝜏1 = 3.15 and ending at 𝜏2 = 10.55. For this
range of conformal time, the mean value of scale factor is 𝑎̄ = 6.85. Thus, the theoretical slope is 9.2×10−3

and the best fit slope from the plot, obtained through the least squares method, is 7.6 × 10−3. Similarly,
when 𝜌 = 15.89 we considered the wave period starting from 𝜏1 = 3.15 and ending at 𝜏2 = 10.15. For this
range of conformal time, the mean value of scale factor is 𝑎̄ = 6.65, the theoretical slope is 4.7 × 10−3

and the best fit slope from Fig. 6.5, through the least squares method, is 5.6 × 10−3.
The observed deviations by about 20% between theoretically expected slope and numerically obtained

can be attributed to the approximations we have made which include, the weak field assumption (𝑅𝑠 ≪ 𝑎𝜌
while in the cases considered 𝑅𝑠

𝑎𝜌 ≤ 0.1), the assumed constant scale factor for the evaluation of the slope
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etc. As shown in Figs. 6.2 and 6.3 the amplitude of the wave also increases as the point mass is
approached. A quantitative estimate of this effect is shown in Fig. 6.6 where we show the ratio of the
amplitudes of the waves 𝐴/𝐴0 in the presence of a mass (𝐴) and in the absence of the mass (𝐴0) for various
values of the parameter 𝑅𝑠, when 𝜌 = 7.9 and 𝜌 = 15.89. The best fit straight line is also superposed
on the points showing that a linear relationship between 𝐴/𝐴0 and 𝑅𝑠 is a good approximation (the
correlation coefficients of the points with the best fir straight lines are equal to 0.99) .
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Figure 6.6: The ratio of the amplitudes of the waves 𝐴/𝐴0 in the presence of a mass (𝐴) and in the
absence of the mass (𝐴0) as a function of the parameter 𝑅𝑠, when 𝜌 = 7.9 and 𝜌 = 15.89. It is obvious
that as the mass 𝑀 increases and/or the distance 𝜌 is decreased, the amplitude grows.

The amplitude increases up to 10% when 𝜌 = 7.9 and 𝑅𝑠 = 10, while for 𝜌 = 15.89 the increase is
about 5%. Thus the amplitude increase appears to vary inversely proportional with 𝜌 which is consistent
with the fact that the GW gains energy as it enters regions of space with higher curvature.

6.4 Cosmological Consequences and Conclusions
The effects of a point mass on a GW evolving in an expanding universe are determined by the mass 𝑀
and the physical distance 𝑟 = 𝑎𝜌 of the wave from the mass through the expression 𝑅𝑠

𝑎𝜌 ≡ 2𝐺𝑀
𝑎𝜌 (𝑐 = 1).

In the context of a perturbative weak field analysis we have demonstrated that a point mass tends to
increase the amplitude and the period of the GW linearly with respect to 𝑅𝑠

𝑎𝜌 . This result is consistent
with expectations based on gravitational time delay and energy considerations.

Even though our numerical results were presented for the special case of a radiation dominated
cosmological background (𝑎(𝜏) ∼ 𝜏) and a specific multipole component of the wave (𝑙 = 6) we have
checked that their qualitative features persist for all multipole components and cosmological backgrounds
provided that the weak field condition (6.24) is respected. Thus, even though we have considered specific
spherical waves in this analysis, we anticipate that our results can also describe a plane wave when
expressed as a superposition of spherical waves.

The time slicing we considered corresponds to the coordinate time of the particular metric we used.
This coordinate time is particularly interesting and generic as it corresponds to the proper time of a static
observer located far away from the point mass or in the absence of the point mass. This is the standard
cosmic observer whose observations are consistent with the cosmological principle. Clearly a different
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choice of time slicing would correspond to a different observer and would lead to a different metric and
thus different results.

We know that the energy density of GWs is proportional to 𝜔2𝐴2. From the results shown in Fig. 6.5
and Fig. 6.6, we conclude that 𝑇 = 𝑇0(1+𝜇𝑅𝑠) and 𝐴 = 𝐴0(1+𝜈𝑅𝑠) where 𝜇 and 𝜈 are the slopes of the
curves which are approximately equal. Thus we have demonstrated that the energy density of GWs which
is proportional to 𝜔2𝐴2 has a weak dependence on 𝑅𝑠 in the context of our weak field approximation as
long as the slopes 𝜇 and 𝜈 are approximately equal.

Our result has interesting implications for the calculation of the RGW spectrum which currently
assumes [431–436] a smooth homogeneous cosmological background and ignores the presence of mass
concentrations which as shown in this Chapter would tend to modify both the magnitude and the shape
of this spectrum. A proper stochastic analysis including the effects of mass concentrations on the relic
GW spectrum is therefore an interesting extension of this work.

A distortion of the RGW spectrum is expected due to the presence of point masses on various scales
due to the increase of each mode amplitude and decrease of each mode frequency. The effect will be
stronger in regions of higher mass concentrations. On scales larger than the galactic scales the role of
the point mass could be played by a galaxy while on scales of the solar system the role of the point mass
could be played by a planet. In the solar system the effect is expected to be rather weak of the order

Δ𝑇/𝑇0 ≃ 10−6

Even though our numerical analysis has been well tested and provides detailed quantitative inform-
ation on the GW evolution in the presence of expansion and a point mass, an analytical perturbative
solution describing this evolution would provide further physical insight.
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Chapter 7

Dissociation of Bound Systems in a
Phantom Cosmological Background

In the course of this Chapter we investigate the geodesics in a Schwarzschild spacetime embedded in an
isotropic expanding cosmological background (McVittie metric). We focus on bound particle geodesics
in a background including matter and phantom dark energy with constant dark energy equation of state
parameter 𝑤 < −1, involving a future Big Rip singularity at a time 𝑡*. Such geodesics have been
previously studied in the Newtonian approximation and found to lead to dissociation of bound systems
at a time 𝑡𝑟𝑖𝑝 < 𝑡* which for fixed background 𝑤, depends on a single dimensionless parameter 𝜔̄0 related
to the angular momentum and depending on the mass and the size of the bound system. The contents of
this chapter are a deviation from the standard model since it investigates the effects of deviations from
the Standard ΛCDM expansion rate on bound systems and especially of their future evolution in the case
when the acceleration of the Universe increases rapidly in the future (phantom cosmologies) compared
to the Standard ΛCDM cosmic acceleration.

We extend this analysis to large massive bound systems where the Newtonian approximation is not
appropriate and we compare the derived dissociation time with the corresponding time in the context of
the Newtonian approximation. By identifying the time when the effective potential minimum disappears
due to the repulsive force of dark energy we find that the dissociation time of bound systems occurs
earlier than the prediction of the Newtonian approximation. Also, the systems become stable for longer
time when the mass of the system decreases and/or the angular velocity increases. However, the effect is
negligible for all existing cosmological bound systems and it would become important only in hypothetical
bound extremely massive (1020𝑀⊙) and large (100𝑀𝑝𝑐) bound systems. We verify this result by explicit
solution of the geodesic equations. This result is due to an interplay between the repulsive phantom dark
energy effects and the existence of the well known innermost stable orbits of Schwarzschild spacetimes.

A generalization of ΛCDM model where the cosmic acceleration is induced by a dark energy fluid
with constant equation of state introduces a new parameter 𝑤 in the models which is constrained by
cosmological observations at the 1𝜎 level to be in the range [437–440]

− 1.5 < 𝑤 < −0.7. (7.1)

Based on these constraints and in the context of the above minimal generalization of ΛCDM there is
a significant probability that 𝑤 < −1, which corresponds to Phantom Cosmology. For such a range of
𝑤, this class of models predicts the existence of a future singularity, which is known as the Big Rip
singularity, where the scale factor diverges at a finite future time.

This behavior emerges by solving the Friedmann equations in the presence of matter density 𝜌𝑚 and
dark energy density 𝜌𝑑𝑒 (negligible radiation density) which may be written as [229, 441]

𝑎̇2

𝑎2 = 8𝜋𝐺
3
(︀
𝜌𝑚 + 𝜌𝑑𝑒

)︀
= 𝐻2

0

(︂
Ω0
𝑚(𝑎0

𝑎
)3 + Ω0

𝑑𝑒(
𝑎0

𝑎
)3(1+𝑤)

)︂
(7.2)
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and

𝑎̈

𝑎
= −4𝜋𝐺

3

(︂
𝜌𝑚 + 𝜌𝑑𝑒(1 + 3𝑤)

)︂
= −4𝜋𝐺

3 𝜌𝑑𝑒
(︀
Ω−1
𝑑𝑒 + 3𝑤

)︀
= −4𝜋𝐺

3 𝜌𝑑𝑒

(︂
Ω0
𝑚

Ω0
𝑑𝑒

(𝑎0

𝑎
)−3𝑤 + 1 + 3𝑤

)︂
(7.3)

Solving the system of these equations (7.2) and (7.3), we derive the scale factor as

𝑎(𝑡) = 𝑎(𝑡𝑚)(︂
− 𝑤 + (1 + 𝑤) 𝑡

𝑡𝑚

)︂− 2
3(1+𝑤)

, 𝑡 > 𝑡𝑚 (7.4)

where 𝑡𝑚 is the time when the dark energy density becomes larger than the matter density. For 𝑤 < −1
the scale factor and its derivatives diverge, when the denominator vanishes at a finite time (the Big Rip
time) [442–445]. It is clear that the time 𝑡* of Big Rip singularity is

𝑡* = 𝑤

1 + 𝑤
𝑡𝑚 > 0 (7.5)

This divergence results in a diverging repulsive gravitational force which rips apart all bound systems at
times 𝑡𝑟𝑖𝑝 < 𝑡* that depend on their binding energies and forms of effective potentials.

An important question to address is: What is the physical mechanism that induces this dissociation
of bound systems and what is the time when the dissociation occurs as a function of 𝑤? In order to
address this question, a gravitationally bound system may be represented as a single test particle bound
in a circular orbit of radius 𝑟0 by the gravitational force of a central spherical massive object of mass 𝑚.
The features of the trajectory of the test particle may be obtained in any of the following ways

1. Using a rough comparison of the attractive gravitational force with the repulsive force induced by
the expansion [442].

2. By using a derivation of the particle trajectory using equations of motion in the Newtonian approx-
imation (weak gravity, low velocities) which take into account the attractive gravitational force, the
repulsive force due to the expansion as well as the centrifugal effects due to angular momentum
[229, 446–448].

3. Using the full relativistic geodesic equations obtained from a metric that is a solution of the Einstein
equations and interpolates between a Schwarzschild metric and an FRW metric. Such a metric is the
McVittie metric [424]. Other approaches to such an interpolation may be found in Refs. [449–451].

Previous studies have pursued the first two approaches with results that are in qualitative agreement
within a factor of 3. According to the approach of Ref. [229], the dissociation of the bound system is
associated with the disappearance of the minimum of the effective potential that determines the radial
motion of the test particle. This minimum disappears when the dynamics become dominated by the
effects of the accelerating expansion of the phantom cosmological background. Thus, the dissociation of
a bound system occurs at a time 𝑡𝑟𝑖𝑝 given by

𝑡* − 𝑡𝑟𝑖𝑝 = 16
√

3
9

𝑇
√︀

2|1 + 3𝑤|
6𝜋|1 + 𝑤|

(7.6)

where 𝑇 is the period of the gravitationally bound system with mass 𝑚, radius 𝑟0 and angular velocity
𝜔0 of the form

𝜔2
0 ≡ (2𝜋

𝑇
)2 = 𝐺𝑚

𝑟3
0

(7.7)

108



This result improves over the corresponding result of Ref. [442] by the factor 16
√

3/9 ≃ 3 because it
takes into account the effects of the centrifugal term and provides a clear definition of the dissociation
time as the time when the minimum of the effective potential disappears due to the domination of the
repulsive gravitational effects of the expansion. On the other hand, the analysis of Ref. [229] is limited
by the fact that it uses the Newtonian approximation for the dynamical equations of the particle orbits
and therefore it may not be applicable for the analysis of the dissociation of strongly bound systems like
accretion disks [452, 453].

In this Chapter we extend the analysis of Ref. [229] by going beyond the Newtonian approximation and
taking into account relativistic effects. In particular, we consider the full geodesics corresponding to the
McVittie metric in a phantom cosmological background. Using these geodesic equations we construct the
relativistic effective potential corresponding to bound particle orbits and derive the time of dissociation
(𝑡𝑟𝑖𝑝) when the minimum of the potential disappears due to expansion effects. These results are confirmed
by comparing with numerical solutions of the geodesic equations corresponding to initial circular bounded
orbits. We compare these results with the corresponding results of previous studies [229] obtained in the
Newtonian limit.

7.1 Geodesic equations in McVittie spacetime
An acceptable way to describe a bound system embedded in an expanding cosmological background is
provided by the McVittie metric [424]. For a flat cosmological background this metric is of the form

𝑑𝑠2 = −(𝑓 − 𝑟2𝐻2

𝑐2 )𝑑(𝑐𝑡)2 − 2𝑟𝐻𝑓−1/2𝑑𝑡𝑑𝑟 + 𝑓−1𝑑𝑟2 + 𝑟2𝑑Ω2 (7.8)

where 𝑚 > 0 is a constant,
𝑓 = 𝑓(𝑟) = 1 − 2𝐺𝑚/(𝑐2𝑟) > 0

and 𝐻 = 𝐻(𝑡) = 𝑎̇
𝑎 is the Hubble parameter of the cosmological background. In what follows we do not

set 𝑐 = 𝐺 = 1 in order to clearly show the Newtonian limit (𝑐 → ∞).
In Eq. (7.8) the physical spatial coordinate 𝑟 connected with the comoving spatial coordinate 𝜌 with

the relation 𝜌 = 𝑟
𝑎(𝑡) . Setting 𝑚 = 0 and using the comoving coordinate we obtain the flat background

FRW metric

𝑑𝑠2 = −(1 − 𝑟2𝐻2)𝑑(𝑐𝑡)2 − 2𝑟𝐻𝑑𝑡𝑑𝑟 + 𝑑𝑟2 + 𝑟2𝑑Ω2

= −𝑑𝑡2 + 𝑎2(𝑑𝜌2 + 𝜌2𝑑Ω2) (7.9)

Similarly, setting 𝐻 = 0 the metric (7.8) reduces to the Schwarzschild metric.
The Schwarzschild-de Sitter metric may also be obtained as a special case of the McVittie metric by

fixing the Hubble parameter to a constant 𝐻2 = 𝐻2
0 = Λ

3 and performing a coordinate transformation
[427]

𝑇 = 𝑡+ 𝑢(𝑟) (7.10)
with

𝑢′(𝑟) = 𝐻0𝑟

𝑐

(︂√︀
𝑓(𝑓 − 𝑟2𝐻2

𝑐2 )
)︂

(7.11)

leading to the Schwarzschild de Sitter (or Köttler) metric

𝑑𝑠2 = −(1 − 2𝐺𝑚
𝑐2𝑟

− Λ
3 𝑟

2)𝑑(𝑐𝑇 )2 − (1 − 2𝐺𝑚
𝑐2𝑟

− Λ
3 𝑟

2)−1𝑑𝑟2 + 𝑟2𝑑Ω2 (7.12)

In the Newtonian limit, using comoving coordinates, the McVittie metric may be written as [229, 426]

𝑑𝑠2 =
(︂

1 − 2𝐺𝑚
𝑐2𝑎(𝑡)𝜌

)︂
𝑑(𝑐𝑡)2 − 𝑎(𝑡)2

(︂
𝑑𝜌2 + 𝜌2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

)︂
(7.13)
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The Newtonian geodesics corresponding to the metric (7.13) are of the form [451, 454]

𝑟 − 𝑎̈

𝑎
𝑟 + 𝐺𝑚

𝑟2 − 𝑟𝜙̇2 = 0 (7.14)

and
𝑟2𝜙̇ = 𝐿 (7.15)

where 𝑟 is the physical coordinate (𝑟 = 𝑎𝜌) and 𝐿 is the angular momentum per unit mass (𝐿 = 𝜔𝑟2),
which is a constant of motion. Combining Eqs. (7.14) and (7.15) we find the radial dynamical equation
in the Newtonian limit

𝑟 = 𝑎̈

𝑎
𝑟 + 𝐿2

𝑟3 − 𝐺𝑚

𝑟2 (7.16)

Notice that 𝑐 does not appear in this equation since it is non-relativistic. If we ignore the term due to
the expansion (the first term in the R.H.S. of Eq. (7.16)), then the angular velocity of a test particle in
a bound circular orbit with radius 𝑟0 at an initial time 𝑡0 is obtained from Eq. (7.16) as

𝜙̇(𝑡0)2 = 𝜔2
0 = 𝐺𝑚

𝑟3
0

(7.17)

The radius of the circular orbit will be perturbed once the expansion is turned on but the above Eq.
(7.17) remains a good approximation close to the end of the era of matter domination (Eq. (7.16))
𝑡𝑚 = 𝑡0, when the expansion repulsive force is subdominant. It is convenient to rescale Eq. (7.16) to a
dimensionless form by defining the dimensionless quantities 𝑟 ≡ 𝑟

𝑟0
, 𝜔0 ≡ 𝜔0𝑡0 and 𝑡 ≡ 𝑡

𝑡0
. The choice of

this rescaling is made so that the effect of the expansion is initially small (at time 𝑡 = 1) and the initial
minimum of the effective potential is approximately at 𝑟 = 1. Typical values of 𝜔̄0 are obtained using
the scale and the mass of bound systems. Thus 𝜔̄0 is of order 𝑂(1) for a cluster of galaxies, about 200
for a galaxy and 106 for the solar system.

Assuming a constant 𝑤 and using the form of the scale factor in Eq. (7.4), the radial dynamical
equation (7.16) takes the form

𝑟̈ + 𝜔2
0
𝑟2 (1 − 1

𝑟
) + 2

9
(1 + 3𝑤)𝑟(︂

− 𝑤 + (1 + 𝑤)𝑡
)︂2 = 0 (7.18)

From Eq. (7.18) we derive the effective radial force

𝐹𝑒𝑓𝑓 = −𝜔2
0
𝑟2

(︂
1 − 1

𝑟

)︂
− 2

9
(1 + 3𝑤)𝑟(︂

− 𝑤 + (1 + 𝑤)𝑡
)︂2 (7.19)

and the corresponding effective potential

𝑉𝑒𝑓𝑓 = −𝜔2
0
𝑟

+ 𝜔2
0

2𝑟2 − 1
2𝜆(𝑡)2𝑟2 (7.20)

where (for 𝑤 < −1)

𝜆2(𝑡) = 2
9

(1 + 3𝑤)(︂
− 𝑤 + (1 + 𝑤)𝑡

)︂2 (7.21)

The repulsive term 1
2𝜆(𝑡)2𝑟2, which occurs in the effective force or potential describes the expansion of

the spacetime, is proportional to 𝜆2, increases with time and at a time 𝑡𝑟𝑖𝑝 given by Eq. (7.6), it destroys
the effective potential minimum induced by the interplay between the attractive gravity and centrifugal
terms. Thus a bound system gets dissociated by the expansion at time 𝑡 = 𝑡𝑟𝑖𝑝 [229].

110



This analysis, which made in the context of the Newtonian approximation, is inappropriate for some
massive large strongly bound systems where relativistic effects need to be taken into account. A proper
relativistic analysis requires the use of the geodesic equations obtained from the McVittie metric Eq.
(7.8). These dynamical equations are of the form [427]

𝑟 = 𝑟𝑓1/2𝐻 ′𝑡2 + (1 − 3𝐺𝑚
𝑐2𝑟

)𝐿
2

𝑟3 − 𝐺𝑚

𝑟2 + 𝑟𝐻2 (7.22)

and
𝑡 = −(1 − 3𝐺𝑚

𝑟𝑐2 )𝑓−1/2𝐻𝑡2 − 2𝐺𝑚
𝑟2 𝑓−1𝑡𝑟̇ + 𝑓−1/2𝐻 (7.23)

The overdot represents the derivative with respect to the proper time 𝜏 and the prime represents derivative
with respect to the coordinate time 𝑡. A first integral of these equations may also be obtained as

𝜒𝑡2 + 2𝛼𝑡𝑟̇
𝑐

− 𝑓−1𝑟̇2

𝑐2 − 𝐿2

𝑐2𝑟2 = 1 (7.24)

where
𝜒(𝑡, 𝑟) = 𝑓 − 𝑟2𝐻2

𝑐2 and 𝛼(𝑡, 𝑟) = 𝑟𝑓−1/2𝐻

𝑐
(7.25)

We may choose 𝑡 > 0 along causal geodesics and focus on the system of the radial geodesic Eq. (7.22)
coupled with the first integral (7.24).
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(a) Variation of the effective potential as a function of 𝑟
when 𝑚̄ = 0.15 < 1

6 . The bound system is stable, since
the potential has a minimum.
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(b) Variation of the effective potential as a function of 𝑟
when 𝑚̄ = 0.19 > 1

6 . The minimum is less than 𝑚̄ = 0.15,
but the system is stable.

Figure 7.1: The effective potential as a function of 𝑟 in a static universe when 𝜔̄0 = 300 for 𝑚̄ = 0.15 < 1
6

and 𝑚̄ = 0.19 > 1
6 (below and above the critical value 𝑚̄ = 1/6 respectively ). The bound systems are

stable, since the minimum remains. The mass of the system affects the position and the value of the
minimum.

As a first step towards the investigation of this system we use a proper rescaling. In particular we
assume a background expansion model corresponding to constant 𝑤 < −1 (Eq. (7.4)) and rescale the
system using the scales 𝑟0 (circular orbit radius in the absence of expansion) and 𝑡0 = 𝑡𝑚. We then
define the dimensionless quantities: 𝑡 ≡ 𝑡/𝑡0, 𝜏 ≡ 𝜏/𝑡0 (𝜏 is the proper time), 𝑟 ≡ 𝑟/𝑟0, 𝑚̄ ≡ 𝐺𝑚/𝑟0𝑐

2,
𝐻̄ ≡ 𝐻𝑡0, 𝜔̄0 ≡ 𝜔0𝑡0. Using the dimensionless coordinates, the radial geodesic (7.22) and the first integral
(7.24) take the form

¨̄𝑟 = 𝑟𝑓1/2𝐻̄ ′ ˙̄𝑡2 + (1 − 3𝑚̄
𝑟

) 𝜔̄
2
0
𝑟3 − 𝑚̄

𝑟2 (𝑐𝑡0
𝑟0

)2 + 𝑟𝐻̄2, (7.26)
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and (︂
𝑓 − ( 𝑟0

𝑐𝑡0
)2𝑟2𝐻̄2

)︂
˙̄𝑡2 + 2( 𝑟0

𝑐𝑡0
)2𝑟𝐻̄𝑓−1/2 ˙̄𝑡 ˙̄𝑟 −

˙̄𝑟2

𝑓
( 𝑟0

𝑐𝑡0
)2 − 𝜔̄2

0
𝑟2 ( 𝑟0

𝑐𝑡0
)2 = 1 (7.27)

where 𝑓 is expressed in terms of 𝑚̄ as
𝑓 = 1 − 2𝑚̄

𝑟
(7.28)
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Figure 7.2: The effective potential as a function of distance 𝑟, when 𝜔̄0 = 5, 𝑚̄ = 0 and 𝑚̄ = 0.05 with
the effects of expansion turned off. The relativistic effects tend to make the bound state weaker and
more susceptible to dissociation due to the effects of the expansion, while the minimum of the potential
changes slightly. The stronger effects of gravity in the relativistic case tend to destabilize rather than
stabilize bound systems.

We now determine the scale distance 𝑟0 for the relativistic case considered here and compare with
the corresponding Newtonian scale. The effective radial force in the absence of cosmological expansion
(𝐻 = 0) takes the form

𝐹𝑒𝑓𝑓 = (1 − 3𝑚̄
𝑟

) 𝜔̄
2
0
𝑟3 − 𝑚̄

𝑟2 (𝑐𝑡0
𝑟0

)2 (7.29)

which vanishes for (𝑟 = 1)

𝜔̄0 = 𝑐𝑡0
𝑟0

√︂
𝑚̄

1 − 3𝑚̄ (7.30)

Equation (7.30) constitutes also the definition of the scale 𝑟0 used for the rescaling of the geodesic
equations. From Eqs. (7.22) and (7.30) we obtain the dimensionless form of the radial geodesic equation

¨̄𝑟 = 𝑟𝑓1/2𝐻̄ ′ ˙̄𝑡2 + (1 − 3𝑚̄
𝑟

) 𝜔̄
2
0
𝑟3 − (1 − 3𝑚̄)𝜔̄2

0
𝑟2 + 𝑟𝐻̄2 (7.31)

Similarly, the dimensionless form of the first integral Eq. (7.24) is(︂
𝑟2𝑚̄𝐻̄2

𝜔̄2
0(1 − 3𝑚̄) − 𝑓

)︂
˙̄𝑡2 + 2𝑚̄

𝜔̄2
0(1 − 3𝑚̄)𝑟𝐻̄𝑓

−1/2 ˙̄𝑡 ˙̄𝑟 −
˙̄𝑟2

𝑓𝜔̄2
0

𝑚̄

1 − 3𝑚̄ − 𝑚̄

𝑟2(1 − 3𝑚̄) = 1 (7.32)

The Newtonian limit is obtained for 𝑐 → ∞ which corresponds to

𝑚̄ ≡ 𝐺𝑚

𝑐2𝑟0
→ 0 (7.33)
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(a) The effective potential with the effects of the expan-
sion have been turned on (𝐻 ̸= 0, 𝑤 = −1.2) but the
time shown is before the bound system dissociation time
𝑡𝑟𝑖𝑝.

m=0.05,ω0=5,t=3.5

Newtonian

relativistic

(b)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

r

V
e
ff
(r
)

(b) The form of the effective potential for 𝑡 = 3.5𝑡𝑚,
where the system has been dissociated according to the
full relativistic analysis but it remains bound according
to the Newtonian approximation.

Figure 7.3: The relativistic effective potential before (left) and after (right) the dissociation when 𝜔̄0 = 5
and 𝑚̄ = 0.05. Both cases, the Newtonian potential describes a bound system, since the minimum exists
(no dissociation). Clearly, the relativistic effects tend to dissociate the bound systems earlier.

As expected, in this limit we obtain ˙̄𝑡 = 1 from the integral equation (7.32) while the radial equation
reduces to the corresponding Newtonian equation (7.16). Similarly, in this limit the scale 𝑟0 (defined
through (7.30)) reduces to the corresponding Newtonian scale (Eq. (7.17)) since 𝑐2𝑚̄ = 𝐺𝑚

𝑟0
.

Therefore, assuming a fixed expanding cosmological background, the geodesics in the McVittie metric
are fully determined by two dimensionless parameters 𝑚̄ and 𝜔̄0 while the corresponding Newtonian
orbits are determined by a single parameter (𝜔̄0) and are obtained as the limit 𝑚̄ → 0 of the relativistic
orbits. The dimensionless parameters 𝑚̄ and 𝜔̄0 are obtained from the mass 𝑚 (measured in solar masses
𝑀⊙) and the scale 𝑟0 (measured in Mpc) of the physical system by the relations

𝑚̄ ≃ 5 × 10−20𝑚

𝑟0
(7.34)

and

𝜔̄0 ≃ 1780
𝑟0

√︂
𝑚̄

1 − 3𝑚̄ (7.35)

while the reverse relations (expressions for 𝑚 and 𝑟0) are

𝑚 ≃ 3.5 × 1022𝑚̄

𝜔̄0

√︂
𝑚̄

1 − 3𝑚̄ (7.36)

and

𝑟0 ≃ 1780
𝜔̄0

√︂
𝑚̄

1 − 3𝑚̄ (7.37)

In the Schwarzschild limit (𝐻 = 0) the radial geodesic equation becomes

¨̄𝑟 = (1 − 3𝑚̄
𝑟

) 𝜔̄
2
0
𝑟3 − (1 − 3𝑚̄)𝜔̄2

0
𝑟2 (7.38)
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The effective radial force (r.h.s. of Eq. (7.38)) has two roots given by the values

𝑟 = 1, 𝑟 = 3𝑚̄
1 − 3𝑚̄ (7.39)

The root 𝑟 = 1 is easily shown (by considering the derivative of the effective force) to correspond to
a stable circular orbit for 𝑚̄ < 1

6 while for 1
6 < 𝑚̄ < 1

3 the root 𝑟 = 3𝑚̄
1−3𝑚̄ > 1 corresponds to a weakly

stable circular orbit. We therefore recover the well known fact that the innermost stable circular orbit of
the Schwarzschild metric is obtained for 𝑚̄ = 1

6 which corresponds to a radius 𝑟0 = 6𝐺𝑚
𝑐2 = 3𝑅𝑠.

In Fig. 7.1 we show the effective potential obtained by integration of the effective force of Eq. (7.29)
for 𝑚̄ = 0.15 < 1

6 and for 𝑚̄ = 0.19 > 1
6 . The plot shows the development of the local maximum of the

effective potential at 𝑟 = 1 when 𝑚̄ > 1
6 and the development of a new minimum at 𝑟 > 1. Interestingly,

the new minimum is weaker and there is less restoring force for perturbations towards larger 𝑟. Thus,
as 𝑚̄ increases towards the limiting value of 1

3 (beyond this value there is no circular orbit) the circular
orbit becomes less stable and susceptible to destabilization by the repulsive effects of the accelerating
expansion.

We now turn on the expansion to investigate how affects the effective radial force and the potential
of the radial geodesics. For definiteness we set 𝑤 = −1.2 (where 𝑡* = 6) which corresponds to a phantom
background expansion consistent with current observational constraints [437]. The effective force may be
obtained in the general relativistic geodesics when expansion is present by solving the first integral Eq.
(7.32) for ˙̄𝑡

2
and substituting in the radial geodesic Eq. (7.31). Assuming a slow shift of the location

of the potential minimum with time, we ignore the terms proportional to ˙̄𝑟 in constructing the effective
force and the effective potential. This approximation is justified in the next section where we obtain the
numerical solution of the full system of the coupled geodesic equations (7.32) and (7.31). The effective
force thus obtained is of the form

𝐹𝑒𝑓𝑓 = 𝑟𝑓1/2𝐻̄ ′
(︂ 1 + 𝑚̄

𝑟2(1−3𝑚̄)

𝑓 − 𝑟2𝐻̄2𝑚̄
𝜔̄2

0(1−3𝑚̄)

)︂
+
(︂

1 − 3𝑚̄
𝑟

)︂
𝜔̄2

0
𝑟3 −

(︂
1 − 3𝑚̄

)︂
𝜔̄2

0
𝑟2 + 𝑟𝐻̄2 (7.40)

The corresponding effective potential may be obtained by integrating numerically the effective force
𝐹𝑒𝑓𝑓 through the relation

𝑉𝑒𝑓𝑓 (𝑟) = −
∫︁ 𝑟

1
𝐹𝑒𝑓𝑓 (𝑟′)𝑑𝑟′ (7.41)

In Fig. 7.2 we present a plot of the effective potential for 𝑚̄ = 0 and 𝑚̄ = 0.05 with the effects of
expansion turned off. The plot shows that the relativistic effects tend to make the bound state weaker
and more susceptible to dissociation due to the effects of the expansion. This effect is related to the
development of the local maximum (Fig. 7.1) of the relativistic potential for a radius smaller than the
radius of the stable orbit (potential minimum) which is also the reason for the existence of an innermost
stable circular orbit. Thus in contrast to naive intuition, the stronger effects of gravity in the relativistic
case tend to destabilize rather than stabilize bound systems.

This is also demonstrated in Fig. 7.3a where the effects of the expansion have been turned on (𝐻 ̸= 0,
𝑤 = −1.2) but the time shown is before the bound system dissociation time 𝑡𝑟𝑖𝑝. Clearly, the binding
power of the potential has been weakened on large scales in both the relativistic (lower curve) and the
Newtonian case (upper curve). At 𝑡 = 3.5𝑡𝑚 the bound system relativisticaly has dissociated, while
classically the system is stable. Fig. 7.3b shows the form of the effective potential for 𝑡 = 3.5𝑡𝑚.

At that time the system has been dissociated according to the full relativistic analysis but it remains
bound according to the Newtonian approximation.

It is therefore clear that relativistic effects tend to destabilize bound systems leading to an earlier
dissociation (smaller value of 𝑡𝑟𝑖𝑝) compared to the predictions in the context of the Newtonian approx-
imation. In the next section we verify this result by a full numerical solution of the geodesic equations
(7.31) and (7.32) and we present a quantitative analysis of the magnitude of the relativistic correction
required for various bound systems defined by the dimensionless parameters 𝜔̄0 and 𝑚̄.
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(a) The radius 𝑟 as a function of 𝑡 when 𝜔̄0 = 5 for several
values of 𝑚̄. If we take into account relativistic effects,
the system become less stable, since the Big Rip occurs
earlier.
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(b) The radius 𝑟 as a function of 𝑡 when 𝜔̄0 = 200 for
several values of 𝑚̄. Again, the relativistic effects are
significant and they reduce the needed time to dissocate
the system.

Figure 7.4: The dissociation time 𝑡𝑟𝑖𝑝 of a bound system is well represented by the time when the size
𝑟(𝑡) of the system has increased by about 20% compared to its equilibrium value. The black points
correspond to the time when the minimum of the effective potential disappears. Notice that, the scale of
the horizontal axis in Fig. 7.4b is different and therefore the agreement between red and black points is
much better. The trend for earlier dissociation in the relativistic treatment compared to the Newtonian
approach is clear. However, the difference of dissociation times decreases as 𝜔̄0increases.

7.2 Time of Dissociation for a typical bound system
In the previous section we defined the time of dissociation of a bound system, as the time when the
minimum of the effective potential disappears due to the effects of the expansion. In the context of
a numerical solution of the system of geodesic equations, this definition is not as useful because the
effective force and potential are only probed at the location of the solution 𝑟(𝑡) with no information
about neighboring values of 𝑟 which could determine the binding status and stability of the system.

System Mass(𝑀⊙) Size(𝑀𝑝𝑐) 𝜔̄0 𝑚̄ Δ𝑡𝑟𝑖𝑝
Solar System 1.0 2.3 × 10−9 3.5 × 106 2.1 × 10−11 < 10−8

Milky Way Galaxy 1.0 × 1012 1.7 × 10−2 1.8 × 102 2.9 × 10−6 2.4 × 10−7

Typical Cluster 1.0 × 1015 1.0 12 4.9 × 10−5 5.9 × 10−5

Accretion Disk (neutron star) 1.5 3.3 × 10−19 4.3 × 1021 0.22 < 10−8

Hypothetical Large Massive 3.0 × 1020 1.0 × 102 9.1 0.15 0.93

Table 7.1: The parameter values and the corresponding level of relativistic corrections to the dissociation
time for some typical bound systems. The last column shows the difference in 𝑡𝑟𝑖𝑝 between the Newtonian
approximation and the relativistic value 𝑡𝑛𝑟𝑟𝑖𝑝 − 𝑡𝑔𝑟𝑟𝑖𝑝 where 𝑡𝑛𝑟𝑟𝑖𝑝 is the value of 𝑡𝑟𝑖𝑝 in the Newtonian
approximation and 𝑡𝑔𝑟𝑟𝑖𝑝

the relativistic value.

By comparing the dissociation times predicted by the effective potential with the form of the tra-
jectories 𝑟(𝑡) we conclude that to within a good approximation the minimum of the effective potential
disappears when the solution 𝑟(𝑡) diverges by about 20% from its initial equilibrium value. We thus use
this as a criterion of dissociation when solving the system of geodesic equations numerically. Due to the
different nature of this criterion we expect only qualitative agreement between the values of 𝑡𝑟𝑖𝑝 obtained
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from the potential minimum and those obtained from the numerical trajectories 𝑟(𝑡). However, as will
be discussed below in most cases the agreement is good even in the quantitative level.

We solved the system of geodesic equations (7.31)-(7.32) with initial conditions corresponding to 𝑡𝑖 = 1
and 𝑟𝑖 corresponding to the minimum of the effective potential at 𝑡 = 𝑡𝑖 = 1, including the expansion of
the background. This value was in all cases considered, close to 𝑟 = 1 corresponding to the minimum
of the effective potential without the effects of the expansion. In Fig. 7.4 we show the solution 𝑟(𝑡)
for 𝜔̄0 = 5, 𝜔̄0 = 200 when 𝑚̄ = 0.1 superposed with the corresponding radial function obtained in
the Newtonian approximation (𝑚̄ = 0). The trend for earlier dissociation in the relativistic treatment
compared to the Newtonian approach is clear. However, the difference of dissociation times decreases as
𝜔0 increases.

As shown in Fig. 7.4 the bound system dissociation time 𝑡𝑟𝑖𝑝 is well represented by the time when
the size 𝑟(𝑡) of the system has increased by about 20% compared to its equilibrium value. Given the
rapid increase of the physical size of the system after dissociation, the assumed relative size increase for
dissociation does affect significantly the obtained value for 𝑡𝑟𝑖𝑝. This is less accurate for larger systems
(smaller 𝜔̄0 shown in Fig. 7.4a) when the dissociation proceeds more smoothly. Notice also that in all
cases ˙̄𝑟 is small before the dissociation which justifies the fact that we ignored it in the construction of
the effective potential.
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(a) The value of 𝑡𝑟𝑖𝑝 as a function of 𝜔̄0 for various values
of 𝑚̄. The curve for 𝑚̄ = 0 corresponds to the Newtonian
limit.
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(b) The value of 𝑡𝑟𝑖𝑝 as a function of 𝑚̄ for various values
of 𝜔̄0. The Newtonian limit corresponds to the point each
curve crosses the vertical axis of 𝑡𝑟𝑖𝑝.

Figure 7.5: The value of 𝑡𝑟𝑖𝑝 as a function of 𝜔̄0 in Fig. 7.5a and as a function of 𝑚̄ in Fig. 7.5b. The thick
dots correspond to dissociation times obtained using the numerical solution of the geodesic equations 𝑟(𝑡)
while the lines were obtained using the effective potential of Eq. (7.41) by finding the time when the
potential minimum disappears.

Figure 7.5a shows the value of 𝑡𝑟𝑖𝑝 as a function of 𝜔̄0 for various values of 𝑚̄. The curve for 𝑚̄ = 0
corresponds to the Newtonian limit. As 𝑚̄ increases, the relativistic correction to the value of 𝑡𝑟𝑖𝑝
increases dramatically for low values of 𝜔̄0 (large massive systems). Therefore, the dissociation of some
large and strongly bound systems due to the expansion, proceeds significantly earlier than anticipated in
the context of the Newtonian approach. This is also demonstrated in Fig. 7.5b where we have plot the
𝑡𝑟𝑖𝑝 as a function of 𝑚̄ for various values of 𝜔̄0. The Newtonian limit corresponds to the point each curve
crosses the vertical axis of 𝑡𝑟𝑖𝑝. Both figures 7.5a and 7.5b, the thick dots correspond to dissociation
times obtained using the numerical solution of the geodesic equations 𝑟(𝑡) while the lines were obtained
using the effective potential of Eq. (7.41) by finding the time when the potential minimum disappears.
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System Mass(𝑀⊙) Size(𝑀𝑝𝑐) 𝜔̄0 𝑚̄(×10−5) Δ𝑡𝑟𝑖𝑝 × (10−5)
Typical Cluster 1015 1.0 12.4 4.9 5.9

1015 0.8 17.4 6.1 5.6
1015 0.6 26.8 8.1 4.6
1015 0.4 49.2 12 3.8
1015 0.2 139 24 2.7

Table 7.2: The parameter values and the corresponding level of relativistic corrections to the dissociation
time for a typical cluster, when we introduce a rescale in the size of the system. In the last column we
have the difference of the Newtonian 𝑡𝑛𝑟−𝑟𝑖𝑝 minus the corresponding relativistic value. Notice that the
relativistic rip occurs slightly earlier as expected but the difference from the Newtonian value decreases
slowly with the rescaling to smaller sizes as the cosmological effects become less important.

Notice however that systems with 𝜔̄0 larger than about 104 (relatively small systems) have dissociation
times 𝑡𝑟𝑖𝑝 that are practically indistinguishable from the Newtonian approximation independent of the
value of 𝑚̄. An appreciable deviation of the value of 𝑡𝑟𝑖𝑝 from the Newtonian approximation occurs for
low values of 𝜔̄0 (5 − 100) and large values of 𝑚̄ (𝑂(10−1)). This range of parameters corresponds to
large and massive systems (eg size of about 10-100Mpc and mass 106 times larger than a typical cluster
of galaxies). Such systems where relativistic corrections are important need to fulfill two conditions

1. They need to be large so that the cosmological acceleration repulsive force to be important even at
early times. Thus 𝑡𝑟𝑖𝑝 is relatively small (early dissociation) even at the Newtonian level allowing
for significant change in the context of the relativistic correction.

2. They also need to be massive so that their Schwarzschild radius 𝑅𝑠 and the innermost stable orbit
to be comparable (a few times smaller) to their initial stable orbit radius.

We stress that in most cosmological bound systems correspond the parameter 𝑚̄ which is much smaller
than 1

3 . In particular some representative values are, for a cluster of galaxies 𝑚̄ ≃ 10−5, for a galaxy
𝑚̄ ≃ 10−6 and for the solar system 𝑚̄ ≃ 10−11. For such systems the Newtonian approach provides an
accurate approach for the dissociation time 𝑡𝑟𝑖𝑝, while the relativistic effects are negligible.

Even some systems that are considered strongly bound (𝑚̄ ≃ 0.1) such as an accretion disk around
a neutron star are not large enough to have appreciable difference of 𝑡𝑟𝑖𝑝 due to relativistic effects (they
have a very large 𝜔̄0). A system with appreciable relativistic corrections of the dissociation time would be
a hypothetical bound system with mass 1020 𝑀⊙ and size about 100𝑀𝑝𝑐 (about 106 times more massive
than a cluster of galaxies).

In Table 7.1 we show the parameter values and the corresponding level of relativistic corrections to
the dissociation time for some typical bound systems.

Figure 7.6a shows the mass of physical systems as a function of the dimensionless parameter 𝜔̄0 for
various values of 𝑚̄. Some physical bound systems are also indicated on the plot. Similarly Fig. 7.6b
shows the size of physical systems as a function of the dimensionless parameter 𝜔̄0 for various values of
𝑚̄. An accretion disk around a neutron star (𝑟 ≃ 50𝑘𝑚, 𝑀 ≃ 1.4𝑀⊙) is out of the range of these plots as
it has 𝑚̄ ≃ 0.1 but 𝜔̄0 ≃ 1020 (see also Eqs. (7.34) and (7.35)). As shown in Table 7.1, despite the relative
large value of 𝑚̄ of such a strongly bound system, its dissociation time would practically be identical to
the one derived in the context of the Newtonian approximation due to its relatively small size and large
value of 𝜔̄0.

Relativistic corrections tend to change slowly when the size of a given bound decreases. Such a
decrease implies an increase of both 𝑚̄ and 𝜔̄0. The parameter values and the corresponding relativistic
corrections as the scale of a typical cluster shrinks by a factor of 5 are shown in Table 7.2. Notice that
the increase of 𝜔̄0 appears to be more important during shrinking a system than the increase of 𝑚̄ and
therefore the relativistic corrections to 𝑡𝑟𝑖𝑝 decrease slowly as the size of the bound system is reduced.
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(a) The mass of some physical systems as a function of
the dimensionless parameter 𝜔̄0 for several values of 𝑚̄.
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Figure 7.6: In Fig. 7.6a we have plot the mass of some physical systems as a function of the dimen-
sionless parameter 𝜔̄0 for a few values of 𝑚̄, while the size of such physical systems as a function of the
dimensionless parameter 𝜔̄0 is presented in Fig. 7.6b.

7.3 Conclusion-Discussion
In this Chapter we investigated the dissociation of bound system in a phantom cosmological background
taking into account relativistic effects. We defined that the time momentum of dissociation occurs when
the size of a typical system increases up to 20% from its initial value. In Newtonian consideration the
definition is different, since the dissociation occurs when the minimum of the potential disappears.

We have demonstrated that when relativistic effects are taken into account, the dissociation of bound
systems in phantom cosmologies occurs earlier than it would have been predicted in the Newtonian
approximation used by previous studies. The correction in all known bound systems is small. However,
there are hypothetical cosmologically large and massive bound systems where the correction is significant.

It is interesting to analyze more general classes of geodesics like infalling radial geodesics with no
angular momentum which at the time of the Big Rip are close or even beyond the black hole horizon.
Also, it is worthwhile to use the McVittie geodesics to derive the relativistic corrections on the turnaround
radius which is the non-expanding shell furthest away from the center of a bound structure. In the context
of the Newtonian approximation the maximum possible value of the turnaround radius for 𝑤 = −1
(Λ𝐶𝐷𝑀) is equal to (3𝐺𝑀/Λ𝑐2) [455].
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Chapter 8

Spinning particle orbits around a
black hole in an expanding

background

In this Chapter we investigate analytically and numerically the orbits of spinning particles around a black
hole in the post Newtonian limit of McVittie spacetime and in the presence of cosmic expansion. This
chapter is also an exception as it assumes no deviation from the Standard model and GR, but it focuses
on a non-standard property of trajectories (its modification due to spin and due to cosmic expansion). We
show that orbits that are circular in the absence of spin and expansion, get deformed when the orbiting
particle has spin. We prove that the origin of this deformation is twofold:

(a). the background expansion rate which induces an attractive (repulsive) interaction due to the cosmic
background fluid when the expansion is decelerating (accelerating) and

(b). a spin-orbit interaction which can be attractive or repulsive depending on the relative orientation
between spin and orbital angular momentum and on the expansion rate.

We consider several rates of expansion, accelerating and decelerating, beyond the Standard ΛCDM ex-
pansion. Also, in this chapter we discuss concepts beyond the standard model since we investigate the
effects of various different expansion rates beyond the Standard ΛCDM accelerating expansion. Finally,
this chapter is associated with the effects of nonstandard expansion. We estimate for some cosmological
structures, the time interval after which the cosmological expansion effects become apparent on the orbits.

Even though most astrophysical bodies have spin and evolve in an expanding cosmological background,
their motion is described well by ignoring the cosmic expansion and under the nonspinning test particle
approximation for large distances from a central massive body and for relatively low spin values [456].
These approximations however become less accurate for large values of the spin and/or when the mass of
the cosmic fluid inside the particle orbit becomes comparable to the mass of the central massive object. For
such systems, new types of interactions appear which are proportional to the time derivatives of the cosmic
scale factor and the spin of the orbiting particle. For example, phantom dark energy models can lead to
dissociation of all bound systems in the context of a Big-Rip future singularity [4, 229, 427, 442]. Also,
the spin-curvature interaction [457] can modify the motion of the test particles in black hole spacetimes
[458–462] due to spin-spin or spin-orbit couplings [463–465], or can make the motion chaotic [466–468]
thus modifying significantly the orbit of the test body leading to the emission of characteristic forms of
gravitational waves [469–472].

Such interactions have been investigated previously for nonspinning test particles in an expanding
background around a massive body (McVittie background [473]) and it was shown that accelerating
cosmic expansion can lead to dissociation of bound systems in the presence of phantom dark energy with
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equation of state parameter 𝑤 < −1 [4, 229, 442]. In the absence of expansion but in the presence of spin
for the test particles, it has been shown that spin-orbit and spin-spin interactions in a Kerr spacetime
can lead to deformations of circular orbits for large spin values [465]. In view of these facts, the following
interesting questions emerge

1. Are there circular orbit deformations for spinning test particles embedded in the post Newtonian
limit of McVittie background (Schwarzschild metric embedded in an expanding background)? Such
deformations could be anticipated due to the coupling of the particle spin with its orbital angular
momentum.

2. What is the nature of such deformation and how do the corresponding deformations depend on the
orientation of the spin with respect to the angular momentum?

3. How do these deformations depend on the nature of the background expansion?

These questions are addressed in this chapter of the present dissertation.

8.1 The Equations of Motion of a Spinning Particle. The MP
Equations.

Consider a massive spinning test particle, in Mathisson-Papapetrou (MP) model [474, 475]. The equations
of motion of a spinning particle originally derived from Papapetrou (1951) and later on reformulated by
Dixon [476, 477] can be extracted through the corresponding Hamiltonian [478, 479] or through the
extremization of the corresponding action [480], whose variation is [481]

𝛿𝐿 = −𝑝𝜇𝛿𝜐𝜇 − 1
2𝑆

𝜇𝜈𝛿Ω𝜇𝜈 (8.1)

where 𝜐𝜇 = 𝑑𝑥𝜇

𝑑𝜏 is the four-velocity of the test particle tangent to the orbit 𝑥𝜇 = 𝑥𝜇(𝜏), 𝜏 is the
proper time across the worldline 𝑥𝜇(𝜏), 𝑝𝜇 is its four-momentum and 𝑆𝜇𝜈 are the components of the
antisymmetric spin tensor. Also, Ω𝜇𝜈 = 𝜂𝐼𝐽𝑒𝜇𝐼

𝐷𝑒𝜈𝐽

𝑑𝜏 is an antisymmetric tensor, 𝜂𝐼𝐽 = 𝑒𝜇𝐼 𝑒
𝜈
𝐽𝑔𝜇𝜈 and 𝑒𝜇𝐼

is a tetrad attached to each point of the worldline.
The MP equations are of the form [481–484]:

𝐷𝑝𝜇

𝑑𝜏
≡ 𝑑𝑝𝜇

𝑑𝜏
+ Γ𝜇𝜆𝜈𝜐

𝜆𝑝𝜈 = −1
2𝑅

𝜇
𝜈𝜆𝜌𝑆

𝜆𝜌𝜐𝜈 (8.2)

𝐷𝑆𝜇𝜈

𝑑𝜏
≡ 𝑑𝑆𝜇𝜈

𝑑𝜏
+ Γ𝜇𝜆𝜌𝜐

𝜆𝑆𝜌𝜈 + Γ𝜈𝜆𝜌𝜐𝜆𝑆𝜇𝜌 = 𝑝𝜇𝜐𝜈 − 𝑝𝜈𝜐𝜇 (8.3)

The dynamical equations imply spin-orbit coupling, i.e., spin couples to the velocity of the orbiting
spinning particle, thus deforming the geodesic. Therefore, the spin force deforms the geodesic.

The spin tensor keeps track of the intrinsic angular momentum associated with a spinning particle.
The term in the r.h.s. of Eq. (8.2) shows an interaction between the curvature of the spacetime and the
spin of the particle. Due to the coupling between curvature and spin, the four-momentum is not always
parallel to the 𝜐𝜇. This may be seen by multiplying Eq. (8.3) with 𝜐𝜈 . Then, leads to

𝑝𝜇 = 𝑚𝜐𝜇 − 𝜐𝜈
𝐷𝑆𝜇𝜈

𝑑𝜏
(8.4)

where 𝑚 = −𝑝𝜇𝜐𝜇 is the rest mass of the particle with respect to 𝜐𝜇.
Since 𝜏 is the proper time, the condition 𝜐𝜇𝜐

𝜇 = −1 applies. The measure of the four-momentum
𝑝𝜇𝑝

𝜇 = −𝜇2 provides the ‘total’ or ‘effective’ [459] rest mass 𝜇 (𝑝𝜇 = 𝜇𝑢𝜇) with respect to 𝑝𝜇 where 𝑢𝜇 is
the ‘dynamical four-velocity’ and is equal to 𝑚, only if 𝜐𝜇 coincides with the four-velocity 𝑢𝜇 (𝑢𝜇 = 𝜐𝜇).
In the linear approximation of the spin, 𝑝𝜇 and 𝜐𝜇 are parallel. Generally, since 𝑢𝜇 ̸= 𝜐𝜇 which means
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that 𝐷𝑆𝜇𝜈

𝑑𝜏 ̸= 0 (see Eq. (8.4)) a spinning particle does not follow the geodesics of the spacetime (the
r.h.s. of Eq. (8.2) is non zero, since 𝑆𝜇𝜈 ̸= 0). Therefore its motion is generalized on a worldline rather
than geodesics.

In the context of the MP equations the multipole moments of the particle higher than a spin dipole are
ignored [485]. This is the spin-dipole approximation, because the particle is described as a mass monopole
and spin dipole [486]. The equations in quadratic order of spin have also been derived [487]. The MP
equations can also get generalized in order to describe a test spinning particle in Modified theories of
Gravity [488].

The MP equations (8.2) and (8.3) have been discussed by many authors and solutions have been
presented. These solutions refer mainly to Schwarzschild background spacetime [472, 489–495], to Kerr
spacetime [472, 496–503], to de Sitter spacetime [504–507] and to FRW spacetime [508] for chargeless or
charged test spinning particles [509, 510]. The evolution of spinning particles in spacetimes with torsion
has also been investigated [511, 512].

Eqs (8.2) and (8.3) are the equations of motion for a spinning body which reduce to the familiar
geodesic equations when the spin tensor 𝑆𝜇𝜈 vanishes identically. However, they do not form a complete
set of equations and we need further equations to close the system [513]. The problem of the unclosed
set of equations in (8.2) and (8.3) can be physically understood by the requirement that the particle
must have a finite size which does not make the choice of the reference worldline uniquely defined 1.
The additional conditions which are used, are the spin supplementary conditions (SSC) [514]. When we
choose a SSC, we define the evolution of the test body in a unique worldline 𝑥𝜇(𝜏) and we fix the center
of mass (corresponds to the centre where the mass dipole vanishes), which is usually called centroid. The
centroid is a single reference point inside the body, with respect to which the spin is measured [515].

There are several SSC, but two of them are more commonly used
∙ The P condition (Mathisson-Pirani) [516]

𝜐𝜇𝑆
𝜇𝜈 = 0 (8.5)

so that the spin four-vector is perpendicular to the four-velocity and implies that 𝑑𝜇
𝑑𝜏 = 0 [517]. It

does not provides a unique choice of representative worldline, as it is dependent on the observer’s
velocity and therewith on the initial conditions. It is often referred to as the proper centre of mass
[514].

∙ The T condition (Tulczyjew-Dixon) [518]

𝑝𝜇𝑆
𝜇𝜈 = 0 (8.6)

so that the spin four-vector is perpendicular to the four-momentum and implies that 𝑑𝑚
𝑑𝜏 = 0 [513].

This condition is physically correct, since the trajectory of the extended body is determined by the
position of the center of mass of the body itself [519]. This constraint is a consequence of the theory,
i.e., the Tulczyjew constraint can derived from the Lagrangian theory [520] and restricts the spin
tensor to generate rotations only.

Analytic discussions and thorough reviews on different choices about the SSCs may be found in Refs
[521–523]. Generally, different SSC are not equivalent since every SSC defines a different centroid for the
system. The author of Ref. [456] point out that the difference between the two conditions (8.5) and (8.6)
is third order in the spin, so results for physically realistic spin values, are unaffected. In what follows
we use the T condition, which defines the centre of mass of the particle in the rest frame of the central
gravitating body.

The McVittie metric describes an expanding cosmological background with strong gravity, such as a
spacetime near a black hole or a neutron star. In a (𝑡, 𝑟, 𝜃, 𝜑) coordinate system, McVittie [424] found a
solution given by the equation (see Eq. (29) of Ref. [424] with 𝐺 = 𝑐 = 1)

𝑑𝑠2 = −
(︂

1 − 𝑚(𝑡)
2𝑟

)︂2(︂
1 + 𝑚(𝑡)

2𝑟

)︂−2
𝑑𝑡2 +

(︂
1 + 𝑚(𝑡)

2𝑟

)︂4
𝑎2(𝑡)

(︁
𝑑𝑟2 + 𝑟2𝑑Ω2

)︁
(8.7)

1https://d-nb.info/1098374932/34

121

https://d-nb.info/1098374932/34


where 𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜑2. The component 𝐺𝑡𝑟 of the Einstein tensor is

𝐺𝑡𝑟 = 8(2𝑟 +𝑚)
𝑎(2𝑟 −𝑚)3 (𝑎̇𝑚+ 𝑎𝑚̇) (8.8)

Imposing the "no-accretion" condition 𝐺𝑡𝑟 = 0 (there is no flux of relativistic mass across the equatorial
surface [424]) we find that 𝑎̇

𝑎 = − 𝑚̇
𝑚 or 𝑚 = 𝑚0

𝑎(𝑡) , where 𝑚0 is a constant of integration and is identified
with the mass of the central body at the origin [524]. Here, the curvature of space is assumed to be
asymptotically zero.

At any instant of time 𝑡1 the observer’s coordinate for measuring distance from the origin is 𝑟 = 𝑟𝑎(𝑡1).
If we write 𝑀 = 𝑚(𝑡1)𝑎(𝑡1), the metric (8.7) becomes

𝑑𝑠2 = −
(︁1 − 𝑀

2𝑟
1 + 𝑀

2𝑟

)︁2
𝑑𝑡2 +

(︁
1 + 𝑀

2𝑟

)︁4(︁
𝑑𝑟2 + 𝑟2𝑑Ω2

)︁
(8.9)

In the weak field limit we have 𝑀
2𝑟 ≪ 1, ie

𝑑𝑠2 = −
(︁

1 − 2𝐺𝑀
𝑟

)︁
𝑑𝑡2 +

(︁
1 + 2𝐺𝑀

𝑟

)︁(︁
𝑑𝑟2 + 𝑟2𝑑Ω2

)︁
(8.10)

which is the Newtonian limit of Schwarzschild’s spacetime. Setting 𝑟 = 𝑎(𝑡)𝜌 and 𝑅𝑠 = 2𝑀 the metric
(8.10) reads

𝑑𝑠2 = −
(︁

1 − 𝑅𝑠
𝑎𝜌

)︁
𝑑𝑡2 + 𝑎2

(︁
1 + 𝑅𝑠

𝑎𝜌

)︁(︁
𝑑𝜌2 + 𝜌2𝑑Ω2

)︁
(8.11)

For a static background (𝑎 = 1) the metric (8.11) becomes the Schwarzschild metric in isotropic
coordinates (the spacelike slices are as close as possible to Euclidean) as expected [525], while for 𝑅𝑠 = 0
becomes the FRW metric in spherical coordinates.

The ‘areal’ radius [526] of the metric (8.11) is equal to the square root of the modulus of the coefficient
of the angular part 𝑑Ω2 of the metric, namely

𝑅(𝑡, 𝜌) =
(︁

1 + 𝑅𝑠
𝑎𝜌

)︁1/2
𝑎𝜌 (8.12)

and the corresponding modulus of angular momentum, which is a constant of motion for a spinless
particle, is defined as

ℒ = 𝑅2(𝑡, 𝜌)𝜑̇ (8.13)

8.2 Spinning particle in McVittie spacetime-Post Newtonian
Limit

8.2.1 The MP equations in an expanding Universe
We consider the case where the spinning particle orbits on the equatorial plane, which means that
𝜃 = 𝜋/2. Also, on the equatorial plane valid 𝜐2 ≡ 𝜐𝜃 = 0 and 𝑝𝜃 = 0 since 𝑝𝜇 = 𝜇2

𝑚 𝜐
𝜇. The metric (8.11)

is independent of the 𝜑 coordinate, therefore admits a 𝜑-Killing vector e.g. 𝜉𝜇 = (0, 0, 0, 1) which gives

𝐽𝑧 = 𝑝𝜇𝜉
𝜇 − 1

2𝜉𝜇,𝜈𝑆
𝜇𝜈 (8.14)

or
𝐽𝑧 = 𝑝𝜑 − 1

2𝑔𝜑𝜇,𝜈𝑆
𝜇𝜈 (8.15)
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where 𝐽𝑧 is the 𝑧 component of the angular momentum, which is a conserved quantity of the motion
of a spinning particle. This constant of motion exists independently of the choice of the supplementary
condition and reflects the symmetry of the background spacetime.

The spin tensor has six independent components but since we demand equatorial planar motion, the
particle must have angular momentum only in 𝑧 axis (𝐽𝑧 ̸= 0). The conditions 𝐽𝑥 = 0, 𝐽𝑦 = 0 and 𝑝𝜃 = 0
(necessary conditions for motion in the equatorial plane) require that 𝑆𝑟𝜃 = 0 and 𝑆𝜃𝜑 = 0. Also, the
absence of acceleration perpendicular to the equatorial plane implies that 𝑆𝑡𝜃 = 0 [508]. Thus, planar
motion requires alignment of the spin with the orbital angular momentum and the motion characterized
only by three independent spin components. With these assumptions, the spin tensor becomes a vector
and the formulation will be simpler. From the T condition (8.6) we derive the spin components 𝑆03 and
𝑆13 in terms of 𝑆01 as

𝑆03 = −𝑝1

𝑝3
𝑆01,

𝑆13 = 𝑝0

𝑝3
𝑆01 (8.16)

In order to complete the system of Eqs. (8.2) and (8.3) we have to add two more equations, corres-
ponding to conserved quantities in the context of the T condition. The first is the dynamical mass 𝜇
[527] with respect to the four-momentum 𝑝𝜇 which defined as −𝜇2 = 𝑝𝜇𝑝

𝜇 and leads to

− 𝜇2 = 𝑔00(𝑝0)2 + 𝑔11(𝑝1)2 + 𝑔33(𝑝3)2 (8.17)

and the second is the particle’s total spin 𝑠 which is defined as the positive root of 𝑠2 = 1
2𝑆𝜇𝜈𝑆

𝜇𝜈 . The
first derivative of 𝑠2 with respect to 𝜏 is 𝑠2 = 2𝑝𝜇𝑆𝜇𝜈𝜐𝜈 [513] which is zero in the context of T condition.

With the use of expressions (8.16) for the spin components we find

𝑠2 = 𝑆01𝑆
01 + 𝑆03𝑆

03 + 𝑆13𝑆
13

= 𝑔00𝑔11(𝑆01)2 + 𝑔00𝑔33(𝑆03)2 + 𝑔11𝑔33(𝑆13)2

= 𝑔00𝑔11(𝑆01)2 + 𝑔00𝑔33(−𝑝1

𝑝3
)2(𝑆01)2 + 𝑔11𝑔33(𝑝0

𝑝3
)2(𝑆01)2 (8.18)

Let us define the useful parameters 𝜇0 and 𝜉 as

𝜇2
0 = (𝑝0)2 − 𝑎2(𝑝1)2 − 𝑎2𝜌2(𝑝3)2 (8.19)

and
𝜉 ≡ 𝑅𝑠

𝑎𝜌
≪ 1 (8.20)

respectively. If we combine the Eqs (8.17) and (8.19) we find

𝜇2 = 𝜇2
0 + 𝜉

(︁
𝜇2

0 − 2(𝑝0)2
)︁

(8.21)

while, from (8.18) we have

𝑠2 = (1 − 𝜉)(𝑆01)2

𝜌2(𝑝3)2 𝜇2 (8.22)

Using the Eqs (8.21) and (8.22) we define the parameter Ω2 as the ratio

Ω2 ≡ 𝑠2

𝜇2 = (𝑆01)2

𝜌2(𝑝3)2 (1 − 𝜉) (8.23)

which is a constant of motion, since 𝜇 and 𝑠 are conserved quantities. Then, from Eq. (8.23) it is easy
to calculate the spin component 𝑆01

𝑆01

𝑝3 = 𝜌Ω√
1 − 𝜉

(8.24)
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Summarizing, from Eqs. (8.16) and (8.24) the non zero spin components in our consideration are

𝑆01 = 𝜌Ω𝑝3
√

1 − 𝜉

𝑆03 = − 𝑝1

𝜌2𝑝3𝑆
01

𝑆13 = − (1 − 2𝜉)𝑝0

𝑎2𝜌2𝑝3 𝑆01 (8.25)

Using now the post Newtonian limit of McVittie metric (8.11), starting from the MP equation (8.2)
and setting the index 𝜇 = 1 = it is straightforward to derive the radial geodesic equation for the spinning
particle. We replace the distance 𝜌 as 𝜌 = 𝑟/𝑎 and the corresponding derivatives with respect to 𝑡,
𝜌̇ = 𝑑𝜌/𝑑𝑡 and 𝜌 = 𝑑2𝜌/𝑑𝑡2. Also, we ignore terms of order (𝑅𝑠)2 (post Newtonian limit) and the final
result is

𝑟 − 𝑎̈

𝑎
𝑟 − 𝑟𝜑̇2 = −𝑟Ω𝜑̇

(︂
𝑎̈

𝑎
− 𝑎̇2

𝑎2

)︂
+ 𝑅𝑠

2

(︂
− 1
𝑟2 − 𝜑̇2 − 𝑎̇2

𝑎2 + 𝑟̇2

𝑟2 − 3Ω𝜑̇
𝑟2

)︂
(8.26)

Similarly, from the MP equation (8.2) and setting 𝜇 = 3 = 𝜑 the geodesic equation for the azimuthal
angle 𝜑 is

𝑑
(︀
𝑟2𝜑̇
)︀

𝑑𝑡
= 𝑟̇𝜑̇𝑅𝑠 + Ω𝑟2

(︂
𝑟̇

𝑟
− 𝑎̇

𝑎

)︂(︂
𝑎̈

𝑎
− 𝑎̇2

𝑎2

)︂
(8.27)

which would lead to orbital angular momentum conservation in the absence of spin (Ω = 0). Indeed, the
first derivative of Eq. (8.13) with respect to time must be zero and gives the Eq. (8.27) for a spinless
particle [526].

Now, we introduce the rescalling through the variables 𝑡 ≡ 𝑡
𝑅𝑠

, 𝑟 ≡ 𝑟
𝑅𝑠

and Ω𝑠 ≡ Ω
𝑅𝑠

= 𝑠
𝜇𝑅𝑠

and from
now on we omit the bar. The radial equation (8.26) leads to

𝑟 − 𝑎̈

𝑎
𝑟 − 𝑟𝜑̇2 = −𝑟Ω𝑠𝜑̇

(︂
𝑎̈

𝑎
− 𝑎̇2

𝑎2 + 3
2𝑟3

)︂
+ 1

2

(︂
− 1
𝑟2 − 𝜑̇2 − 𝑎̇2

𝑎2 + 𝑟̇2

𝑟2

)︂
(8.28)

In the same way, the azimuthal equation (8.27) leads to

𝑑
(︀
𝑟2𝜑̇
)︀

𝑑𝑡
= 𝑟̇𝜑̇+ Ω𝑠𝑟2

(︂
𝑟̇

𝑟
− 𝑎̇

𝑎

)︂(︂
𝑎̈

𝑎
− 𝑎̇2

𝑎2

)︂
(8.29)

Equations (8.28) and (8.29) are the main results of the present analysis. They generalize the geodesic
equation of non-spinning particles in the post-Newtonian limit of McVittie metric and they reduce to
those equations for Ω𝑠 = 0. It is straightforward to solve numerically the system (8.28)-(8.29) and we
implement such solutions in what follows. The following comments can be made on Eqs. (8.28)-(8.29):

∙ It is clear from Eq. (8.29) that the orbital angular momentum is not conserved due to the presence
of the spin angular momentum. What is actually conserved is the 𝑧 component of the total angular
momentum 𝐽𝑧 which is expressed through Eq. (8.15) in terms of the angular and the spin angular
momenta.

∙ The driving force term proportional to Ω𝑠 and 𝜑̇ in the radial geodesic equation (8.28) has the form
of a spin-orbit coupling and changes sign when the spin angular momentum reverses its direction
with respect to the orbital angular momentum which is proportional to 𝜑̇. This term is responsible
for the deformation of the circular orbits and induces the well known chaotic behavior [528] of the
spinning particle orbits in the absence of background expansion.
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Figure 8.1: Spinning particle orbits in a static universe. The circular orbits that would be present for a
non-spinning particle get disrupted due to the spin-orbit coupling in the presence of spin. For Ω𝑠𝜑̇ > 0
the spin-orbit coupling force is attractive and the circular orbits are deformed inward. The left panel
corresponds to maximum (critical) value of Ω𝑠, for which the particle remains bounded. When Ω𝑠 > 0.6,
at some time the radius of the orbit becomes less than 3𝑅𝑠 (innermost stable orbit) and the particle is
captured by the black hole (right panel). For non-spinning particle (Ω𝑠 = 0) the circular orbit is shown
in right panel with blue color.

In what follows we solve the geodesic equations (8.28)-(8.29) for different forms of the expansion
(static, accelerating and decelerating and) of the cosmological background and various values of the
magnitude of the spin 𝑠 and consequently of the dimensionless parameter Ω𝑠. In the present analysis we
have focused on the distortion of orbits that would be circular in the absence of expansion and spin. In
order to solve the system of equations (8.28) and (8.29) we have assumed that initially the test particle
has zero radial velocity (𝑟̇(𝑡𝑖 = 1) = 0) and zero radial acceleration (𝑟(𝑡𝑖 = 1) = 0). The initial value of
the derivative 𝜑̇(1) can derived through the geodesic equation (8.28), if we choose the suitable values for
all the other functions and parameters. We set 𝑎(𝑡𝑖 = 1) = 1 and initial position for the particle 𝑟𝑖 = 6 in
units of 𝑅𝑠. Assuming a static Universe with 𝑎(𝑡) = 1 we compute the initial angular momentum from
Eq. (8.28). We set all the time derivatives of the scale factor equal to zero and thus we arrive at the
following quadratic equation

𝑟2
𝑖 (2𝑟𝑖 − 1)(𝜑̇(1))2 − 3Ω𝑠𝜑̇(1) − 1 = 0 (8.30)

Setting Ω𝑠 = 0, it is straightforward to derive the roots of the equation (8.30), which correspond to
circular motion for a spinless particle

𝜑̇(1) = ±
√

11
66 ≃ ±5 × 10−2 (8.31)

Since, the above equation (8.30) has two roots for 𝜑̇(1) which corresponds to initially opposite rotation,
it is clear that we must distinguish two cases. The positive value of 𝜑̇(1) corresponds to counterclockwise
rotation, while the value 𝜑̇(1) < 0 corresponds to clockwise rotation of the test particle. We set the same
positive root (

√
11

66 ) of Eq. (8.31) for counterclockwise rotation in all cases considered in this analysis
and the same negative root (−

√
11

66 ) for clockwise rotation. Finally, we assume that the initial azimuthal
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Figure 8.2: Same as Fig. 8.1 but the spinning particle orbits in the opposite direction. The circular
orbits that would be present for a non-spinning particle get disrupted due to the spin-orbit coupling in
the presence of spin. For Ω𝑠𝜑̇ < 0 the spin-orbit coupling force is repulsive and the circular orbits are
deformed outward. For non-spinning particle (Ω𝑠 = 0) the circular orbits shown in both panels remain
undisrupted. Notice that the Ω𝑠 = 0 circular orbit, which corresponds to the absence of spin, is an inner
bound for clockwise rotation. In any case the particle remains bound.

angle is equal to zero, namely 𝜑(1) = 0. Using these initial conditions we have estimate the influence of
the spin in the trajectories in an expanding background and the deviation these effects cause from the
otherwise circular orbit in a static universe.

8.2.2 Numerical Solutions
For a static universe (𝑎(𝑡) = 1) Eq. (8.28) reduces to

𝑟 = 𝑟𝜑̇2 + 1
2

(︁
− 1
𝑟2 − 𝜑̇2 + 𝑟̇2

𝑟2 − 3Ω𝑠𝜑̇
𝑟2

)︁
(8.32)

while the Eq. (8.29) becomes

𝑑(𝑟2𝜑̇)
𝑑𝑡

= 𝑟̇𝜑̇ ⇒ 𝑟2𝜑+ (2𝑟 − 1)𝑟̇𝜑̇ = 0 (8.33)

The effect of the spin-orbit coupling force is demonstrated in Figures 8.1 and 8.2 where we show
the circular orbits disrupted due to the spin-orbit coupling. For Ω𝑠𝜑̇ > 0 (see Fig. 8.1) the spin-orbit
coupling force is attractive, since the term − 3Ω𝑠𝜑̇

2𝑟2 in Eq. (8.28) is negative and the circular orbits (for a
spinless particle) are deformed inward. The orbit of the motion of the particle remains bounded if the
radius of the orbit is larger than 3𝑅𝑠. This is the well known effect of the ’innermost stable circular orbit’
(ISCO) [501, 529, 530]. It is defined as the smallest circular orbit in which a test particle can stably orbit
a massive object [531]. Since 𝑟𝐼𝑆𝐶𝑂 = 3𝑅𝑠 for a spinless central body in Schwarzschild spacetime, it is
obvious that only black holes have innermost radius outside their surface.

This minimum allowed radius for bounded motion corresponds to a critical value of the dimensionless
parameter Ω𝑠 = 0.6 (left panel). Generally, in the presence of spin the orbits are bounded between
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a minimum and a maximum radius (𝑅𝑠 = 6). As the spin increases (Ω𝑠 > 0.6), at some time the
orbit’s radius becomes less than 3𝑅𝑠 and the particle gets captured by the black hole (right panel). For
non-spinning particle (Ω𝑠 = 0) the circular orbits shown in right panel remain undisrupted.
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Figure 8.3: The spinning particle orbits in the presence of decelerating universe expansion 𝑎(𝑡) ∼ 𝑡2/3

for several values of the spin and initial clockwise (left panel with 𝜑̇(1) < 0) and counterclockwise (right
panel with 𝜑̇(1) > 0) rotation. For small values of Ω𝑠 the particle gets captured by the black hole, but
as the parameter Ω𝑠 increases the particle rapidly gets deflected to an unbounded orbit.

For Ω𝑠𝜑̇ < 0 (see Fig. 8.2) the spin-orbit coupling force is repulsive, since the term − 3Ω𝑠𝜑̇
2𝑟2 in Eq.

(8.28) is positive and the circular orbits (for 𝑠 = 0) are deformed outward. The orbits of the motion of
the spinning particle in all cases are bounded between a minimum (𝑅𝑠 = 6) and a maximum radius.

In the presence of a decelerating expansion with 𝑎(𝑡) ∼ 𝑡2/3 the orbits (solutions of Eqs. (8.28)-(8.29))
are shown in Fig. 8.3 for clockwise and counterclockwise rotation and initial conditions that would lead
to a circular orbit in the absence of spin and expansion. In this case the effects of the expansion combined
with the effects of the spin lead to rapid dissociation of the system or capture by the black hole. The
result depends on the magnitude of the attractive and repulsive terms in Eq. (8.28). Some orbits of the
spinning particles for this case are shown in Fig. 8.3.

In left panel of Fig. 8.3 the initial rotation is clockwise, since 𝜑̇(1) < 0. In this case, the term − 3Ω𝑠𝜑̇
2𝑟2

in Eq. (8.28) is repulsive and even if the cosmological background is decelerating, for large enough values
of spin, such as Ω𝑠 = 1 the particle rapidly gets deflected to an unbounded orbit. However, for small
values of spin, such as Ω𝑠 = 0.1 or Ω𝑠 = 0.5 the decelerating background dominates and at some time
the particle gets captured by the black hole.

Similar results are shown in the right panel of Fig. 8.3, where the initial rotation of the particle is
counterclockwise. In this case, the term − 3Ω𝑠𝜑̇

2𝑟2 in Eq. (8.28) which describes the spin-orbit interaction
is attractive. For small values of the dimensionless parameter Ω𝑠, such as Ω𝑠 = 0.1 the spinning particle
approaches the black hole and when the radius of the orbit becomes less than 3𝑅𝑠, the particle gets
captured by the strong gravity of the central body. However, when the spin takes larger values such as
Ω𝑠 = 0.5 or Ω𝑠 = 1 the particle gets deflected to an unbounded orbit, despite of the initially attractive
effective force induced on the spinning particle. The expansion effects lead to dissociation of the initially
bound system.

Now, we consider the effects of a de Sitter background expansion of the form

𝑎(𝑡) = 𝑒𝐻𝑡 (8.34)
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where 𝐻 =
√︁

Λ̄
3 and Λ̄ is the cosmological constant in dimensionless form . We solve the system of Eqs.

(8.28) and (8.29) with the same initial conditions (circular orbit in the absence of spin and expansion).
We set the cosmological constant equal to Λ̄ = Λ𝑅2

𝑠 = 3 × 10−2 [532] and we present the trajectories of
the particle in Fig. 8.4. We also show the corresponding orbit of a spinless particle in a static universe,
in order to observe the deviation of each orbit from the circular.

Setting a mass value of a typical black hole as 𝑀 = 10𝑀⊙ = 2 × 1031𝐾𝑔, we conclude that the
dimensionless value Λ𝑅2

𝑠 = 0.03 corresponds to Λ ≃ 3 × 106𝑠𝑒𝑐−2 or Λ ≃ 1.3 × 10−42𝐺𝑒𝑉 2 much
larger than the cosmological constant leading to the cosmic acceleration Λ ≃ 10−82𝐺𝑒𝑉 2. Due to this
normalization, orbit disturbances are much larger than the realistic form corresponding to a realistic
cosmological setup.

In left panel of Fig. 8.4 the initial rotation is clockwise, since 𝜑̇(1) < 0. In this case, the term (− 3Ω𝑠𝜑̇
2𝑟2 )

in Eq. (8.28) is positive and induces repulsion. In this case the repulsive effects of the accelerating cosmic
expansion are amplified by the effects of the spin.

For initial counterclockwise rotation (right panel in Fig. 8.4) the term − 3Ω𝑠𝜑̇
2𝑟2 in radial equation is

negative and induces attraction. However, for spinless particle or small values of spin and consequently
of the parameter Ω𝑠, such as Ω𝑠 = 10, the accelerating cosmological background dominates and the
particles get deflected to unbounded orbit. On the contrary, when the spin of the particle is large, such
as Ω𝑠 = 100, the attractive term − 3Ω𝑠𝜑̇

2𝑟2 in radial equation dominates the expansion and the spinning
particle gets captured by the black hole.
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Figure 8.4: Same as Fig. 8.3, but the scale factor obeys an accelerating expansion of the form 𝑎(𝑡) =
𝑒

√︀
Λ̄
3 𝑡 (de Sitter universe) with Λ̄ = Λ𝑅2

𝑠. Notice the strong repulsive effects on the trajectories of
the spinning/spinless particle for initial clockwise rotation (left panel) due to accelerating background
expansion. The term − 3Ω𝑠𝜑̇

2𝑟2 in radial equation (8.28) induces repulsion (left panel). However, for initial
counterclockwise rotation (right panel) and extremely large spin, the particle captured by the black hole
since the term − 3Ω𝑠𝜑̇

2𝑟2 in radial equation induces attraction and dominates.

A crucial question of our analysis is which are the cosmological time intervals after which the effects
of the expansion would become apparent. The answer can be easily obtained on dimensional grounds
by equating the dimensionless parameters relevant for gravitational attraction (𝑀/𝑟) and background
expansion 𝐻0Δ𝑡 where 𝐻0 is the Hubble parameter 𝑎̇/𝑎 at the present time and Δ𝑡 is the required
time interval for the expansion effects to be observable. By equating these two parameters we find that
the required time interval after which the cosmological expansion effects would become apparent on the
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trajectories is

Δ𝑡 ≃ 𝑀

𝐻0𝑟
(8.35)

where we have set 𝐺 = 1. The time interval Δ𝑡 can be easily derived in S.I. as

Δ𝑡 ≃ 𝐺𝑀

𝐻0𝑟𝑐2

and in Table 8.1 we give some estimates of the cosmological time intervals for a typical black hole, the
solar system, a typical galaxy and a typical cluster of galaxies. The time intervals are in years, since we
have consider that 1/𝐻0 ≃ 1.4 × 1010 years (the approximate age of the Universe).

structure distance r (𝑚) mass M (𝐾𝑔) Δ𝑡 (years)
solar system 5 × 1012 2 × 1030 ∼ 4 × 100

typical galaxy 9 × 1020 2 × 1041 ∼ 3 × 103

cluster of galaxies 3 × 1022 2 × 1045 ∼ 7 × 107

black hole 2 × 105 2 × 1031 ∼ 1 × 109

Table 8.1: In this table we present estimations for some cosmological structures for the required time
interval Δ𝑡 ≃ 1

𝐻0
𝐺𝑀
𝑟𝑐2 after which the cosmological expansion effects would become apparent on the

trajectories. For the Hubble rate we have set 𝐻−1
0 ≃ 1.4 × 1010years. In the case of black hole the have

consider the distance 𝑟 = 6𝑅𝑠, as in the present work.

The MP equations have also been generalized to the case of modified theories of gravity, in which the
matter energy-momentum tensor is not conserved. In modified gravity theories the Schwarzschild metric
gets modified and so does the weak field limit, as we can see e.g. from eq. (32) of ref. [533], which state
to 𝑓(𝑅) theories (𝐺 = 1)

𝜒(𝑟) = 1 − 2𝑀
𝑟

+ (1 + 𝑓 ′(𝑅0))𝑄2

𝑟2 − 𝑅0

12 𝑟
2 (8.36)

Here, 𝑄 = 𝑟𝑉 (𝑟) is the charge of a black hole, 𝑉 (𝑟) the potential and 𝑅0 the curvature of the
spacetime which we consider constant. An analysis along the line of the derivation of the McVittie metric
for General Relativity (as discussed in [427]) could generalize this metric to the case of 𝑓(𝑅) theories and
also lead to the derivation of its Newtonian limit (the generalization of eq. (8.11)). Alternatively, one
could directly include the scale factor 𝑎(𝑡) as a new factor along with the radial coordinate in Eq. (32)
of [533] and then take the Newtonian limit showing that it is a good approximation of the dynamical
field equations for 𝑓(𝑅) gravity. This task is beyond the scope of the present analysis but it should be
straightforward to implement in a future extension of our analysis.

8.3 Conclusions
We have constructed and solved numerically the MP equations in the post Newtonian limit of McVittie
background thus obtaining the orbits of spinning particles close to a massive object in an expanding
cosmological background. We have identified the effects of a spin-orbit coupling which can be repulsive
or attractive depending on the relative orientation between spin and orbital angular momentum. A static
universe (no expansion) was shown to lead to disrupted spinning particle orbits which are not closed and
are confined between a maximum and a minimum radius. This range increases with the value of the spin.
As expected for the spin values, for which the radius of the motion of the particle becomes less that 3𝑅𝑠,
the particle is captured by the black hole. This result is in agreement with previous studies that have
indicated the presence of such behavior of the orbits [482]. If we consider an expanding background and

129



the spin of the particle, the trajectories diverse or converse from the central mass. The result depends
on the rate of expansion and on the direction and magnitude of the spin.

Interesting extensions of our analysis include the construction and solution of the MP equations for
the strong field regime of the McVittie metric, or the consideration of different SSC like the P condition.
Also, it is interesting to consider the motion of the spinning particle in non equatorial plane, or to study
the case where both bodies (central and rotating) have spin.
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Chapter 9

Summary of Thesis and Outlook

9.1 Summary and Conclusions
In this chapter, we present the conclusions of the study performed in this dissertation and the potential
extensions. The present Thesis addresses interesting open questions of the current cosmological Physics,
which we discuss in detail below.

In Chapter 1, we review the basic principles of modern Cosmology. We discuss about the components
of the Universe, the basic cosmological models and many of their observational predictions. We describe
in detail the concordance model and some extensions, modifications and deviations of this model. In
section 1.15 we state the connecting principle of the Chapters of this Thesis: Deviation directions from
the Physics of the Standard ΛCDM model. Such deviations refer to Hubble tension, to cosmological
principle, to cosmological models for which applies 𝑤 ̸= −1 (quintessence and phantom models), to
existence of topological defects, to the validity of law of gravity or to the variation of the fine structure
constant and the gravitational constant.

In Chapter 2, we tested the cosmological principle through the analysis of the Union2 Supernova
Ia data. That principle is also known as the Copernican principle and assumes that the universe is
homogeneous and isotropic in large scales (larger than 100𝑀𝑝𝑐). The Union2 compilation had the larger
number of data when we worked with this project. Today, the largest compilation of Supernova Ia is
the PANTHEON, which contains 1048 data. To process the data we used the hemisphere comparison
method, which initially generates a random direction in the celestial concave. Then, we divided the data
in two hemispheres and found the best fit values on the parameter Ω0𝑚 in each hemisphere, through
the minimization of the quantity 𝜒2(Ω0𝑚, 𝜇0) of equation (2.6). Afterward, we obtained the anisotropy
level and we repeated the procedure 400 times in order to find the direction of maximum anisotropy.
Simultaneously, we derived the 1𝜎 error of the estimated direction. We obtained the best fit value as
Ω0𝑚 = 0.19 and the direction of maximum acceleration as

(︁
𝑙 = 129∘+3∘

−23∘ , 𝑏 = −18∘+10∘

−11∘

)︁
, while the

opposite direction corresponds to minimum acceleration. Finally, we obtained the maximum anisotropy

level of the data which is
(︂

ΔΩ0𝑚,𝑚𝑎𝑥

Ω̄0𝑚

)︂𝑈2
= 0.43 ± 0.06

As a next step, we divided the data in subsets of redshift and we repeated the procedure in order
to identify possible redshift dependence. The tomography showed that there is no redshift dependence,
since the most of the subsets had maximum anisotropy direction near the maximum anisotropy of the
full dataset (in a region of about 40∘).

Naturally, the question if the maximum anisotropy level of Union2 data is consistent with statistical
isotropy arises. To answer this question, we used the Monte Carlo method with simulated isotropic
data which followed a Gaussian distribution. We chose only 10 random directions, since our purpose
was to compare the anisotropy level between Union2 data and random data and we ran the data 40
times. We found that the level of anisotropy for the Union2 data is about 1𝜎, since only 1/3 of the
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experiments had anisotropy level larger than the isotropic simulated data. It is obvious that the level of
anisotropy is negligible. Thus, the Union2 data are consistent with statistical isotropy, which means that
the cosmological principle is valid and not violated by the distribution of Supernova Ia compilation.

An important result of our work is that the distribution of Supernova Ia in celestial concave has a
preferred direction. Also, from the bibliography, we observed that there are other cosmological effects
which have a preferred direction. These structures are the quasars alignment polarization, the bulk
velocity flows and the dipole, quadrupole and octopole moments of the CMB. Since all coordinates are
located in a small part of the North galactic hemisphere, it is straightforward to estimate the probability
that six random points would lie in such a small region. Using again the Monte Carlo simulation, we
found that the probability is less than 1%. Thus, the coincidence of these independent preferred axes
in such a small angular region is a highly unlikely event, even if we don’t take into account the CMB
multipole moments (the probability in this case is about 7%). We conclude that, there is a preferred
cosmological axis for these uncorrelated cosmological probes, but the reasons of this coincidence are not
obvious. It constitutes an open field in Cosmological Physics.

The confirmation of the cosmological preferred axis would constitute a breakthrough in Cosmology
and a region which new Physics may emerge. In order to check this direction, we need more Supernova
Ia data, especially in South hemisphere, in bigger redshifts and other cosmological probes with preferred
axis.

In Chapter 3, we dealt with some scalar fields and their role in Cosmology. Scalar fields occur
naturally in Lagrangian in order to describe variations of cosmological constants such as the gravitational
and the fine structure constant or inhomogeneities in dark energy. Due to non-trivial configurations of
the scalar fields, emerging topological defects are formed in a symmetry breaking phase transition during
the evolution and expansion of the Universe. Generally, topological defects can be used to describe the
large scale structures of the Universe. Even if, in a four dimensional spacetime there are four kinds of
topological defects (monopoles, strings, domain walls and textures), we dealt with monopoles which are
formed when a 𝑆𝑂(3) symmetry gets spontaneously broken to 𝑈(1), during the evolution of the Universe.

We considered the ’t Hooft-Polyakov monopole ansatz which contains two radial functions 𝑋(𝑟) and
𝑊 (𝑟). The function 𝑋(𝑟) is a part of the dilatonic coupling 𝐵(Φ𝑎) which couples to electromagnetic term
in Lagrangian and the function 𝑊 (𝑟) is a part of the electromagnetic field. The potential energy density
of the scalar field has some minima, each of them corresponds to a vacuum and determines the mass of
the scalar field. The lowest vacuum is the ’true’ vacuum, while the others are ’false’ vacuum. Any higher
energy vacuum is necessarily unstable, so a false vacuum has to decay by converting into true vacuum.
Symmetry can generally be broken in several different ways, and thus we expect to have a number of
vacuum states with different properties. Particle physicists refer to these states as different vacua.

The radial functions determined through the minimization of the self energy of the monopole, since
physical systems tend to minimize their energy. We investigated the cases where the potential is 𝑉 (Φ𝑎) =
𝜆
4 (Φ𝑎Φ𝑎 − 𝜂2) and the dilatonic function has polynomial Φ𝑎(𝑟) = 1 + 𝑞𝑋2 and exponential form Φ𝑎(𝑟) =
𝑒𝑞𝑋

2 . Since, the mass which develops the gauge field is 𝑚𝐴 and the mass of the Higgs field is 𝑚Φ, we
defined the ratio 𝛽 = 𝑚Φ

𝑚𝐴
. We derived the radial functions for a few values of the parameters 𝛽 and 𝑞.

The results shown that these functions have almost the same form for both dilatonic functions. At small
distances the scalar field increases fast with distance, but the electromagnetic field dominates since it is
much bigger. At bigger distances (far away from the monopole) the scalar field dominates and the gauge
field tends to zero.

As a next step, we considered that the monopole is embedded in a model with 𝑂(4) symmetry. For
this reason, we added one more component 𝑔(𝑟) in the scalar field Φ𝑎. In order to detect the scalar field
and the gauge field, we minimized the perturbative energy of the monopole in a presence of a Gaussian
external magnetic field. The dilatonic function obeys exponential form. We found that the fields always
vary (except the region very close to the core, inside and outside) and they are not stabilized. Thus, we
conclude that in this case the monopole is always unstable, for any value of the parameters 𝛽 and 𝑞.

More precisely, the scalar field increases almost proportional with distance, while the field 𝑔(𝑟) de-
creases. However, at small distances, where the external field is significant, the field remains out of the
vacuum (minimum) due to the effects of the external field which stabilizes locally the embedded mono-
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pole. As the dimensionless parameter 𝛽 increases, the slope of the curves increases and the fields acquire
their vacuum expectation value at smaller distances. Concluding, the existence of a dilatonic coupling in
field theories, which predicts the existence of topological defects, implies the presence of new properties
for the defects.

ALPs belong to a new class of scalar particles that generically couple to photons, opening the possib-
ility of oscillations from photons into ALPs in an external magnetic field. They can constitute a possible
component of the dark matter. The coupling between photons and ALPs, as we emphasize in Chapter 4,
described by the Lagrangian term − 1

4𝐵𝐹 (𝜑)𝐹𝜇𝜈𝐹𝜇𝜈 , where 𝐵𝐹 (𝜑) = 1+𝑔𝜑 is the coupling function and 𝑔
the coupling constant. The coupling constant connected with the mass of the ALP through the Eq. (4.8)
and the estimation of the coupling constant drives to estimation of the particle mass. Many experiments
around the world aim to estimate this coupling constant. They are photon regeneration experiments,
since the photons convert to ALPs and then the ALPs convert to photons. All the experiments failed to
detect any positive signal for this interaction and an upper bound for the coupling constant is estimated.
We found that the most stringent bound estimated from fifth force experiments and is so stringent, that
it is beyond the sensitivity of the current experimental apparatuses.

A similar coupling to electromagnetism occurs in chameleon Cosmology, when the coupling constant
is enough below unity (𝑔 << 1). The experiments which aim to detect chameleons based on the after-
glow effect because the chameleon mass depends on the density of the environment. Due to chameleon
mechanism, these dark energy candidate particles avoid the experimental detection. The experiments
which have been executed, failed to detect chameleon interactions and estimated energy bounds where
excluded the evidence of chameleons. Finally, in Chapter 4 we extended the Bekenstein theory introdu-
cing in Lagrangian a similar dilatonic function of the form 𝐵𝐹 (𝜑) = 𝑒−2𝜑, in order to investigate the
cosmological evolution and the effects of this coupling in Quintessence Cosmology. It is known that in
quintessence models, when the potential is linear, the Big Crunch singularity occurs which corresponds
to a phase of rapidly decreasing of the scale factor, since the effective force is strongly attractive, due
to increasing of the scalar field. This effect destabilize the cosmological systems. We solved the equa-
tion of motion for the scalar field and the acceleration equation for the scale factor in FRW spacetime
during a pure radiation epoch. We defined the electromagnetic parameter 𝜁𝑚 = 𝐿𝑒𝑚

𝜌𝑚
and we considered

the cases where this parameter is positive which corresponds to electrostatic energy domination against
magnetostatic energy. The non-relativistic energy density is big enough and dominates the system, since
𝜁𝑚 ≪ 1. We found that as the parameter 𝜁𝑚 increases the Big Crunch occurs later, since the scalar field
increases rapidly later. It is obvious that, as the rate of the electromagnetic energy increases as a fraction
of non-relativistic matter, the cosmological systems remain stable for longer time.

In Quintessence models the equation of state parameter 𝑤 is negative, but bigger than the rate
𝑤 = −1. We investigated the evolution of the state parameter as a function of redshift, when 𝜁𝑚 > 0. We
found that the dilatonic function 𝐵𝐹 (𝜑) = 𝑒−2𝜑 induces very small fluctuations in the equation of state
parameter 𝑤, very close and above the value 𝑤 = −1. As the electromagnetic parameter 𝜁𝑚 increases,
the degree of fluctuations is bigger. We found similar results, when we investigated the evolution of the
equation of state parameter as a function of time. When the time is big enough, the rate of electromagnetic
parameter 𝜁𝑚, negligibly affects the evolution of the parameter 𝑤, since the curves are almost the same.

The dilatonic function 𝐵𝐹 (𝜑) can describe variation of the fine structure constant 𝛼. Scalar fields and
chameleons would induce these variations, when they interact with photons and the order of the coupling
𝑔 can estimate the order of variation of 𝛼. Thus, the experimental estimation of the order of 𝑔 is of great
importance, since we can test if the experimental value of 𝑔 can support the observed variation of the
fine structure constant.

It is widely acceptable that the universal law of Newtonian gravity applies in every distance scale.
The gravitational force is proportional to the product of the two masses, and inversely proportional to the
square of the distance between them. However, there are indications from recent experiments that in sub-
mm distances, the interactions do not follow the inverse square law of gravity. In the work of Chapter
5 we used the data from the Stanford Optically Levitated Experiment (SOLME) in order to detect
deviations from Newtonian gravity or indications for new forces in sub-mm scale. In this experiment a
silica microsphera is trapped in a region with high vacuum, very close (the distance was from 25𝜇𝑚 to
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234𝜇𝑚) to a horizontal cantilever. A laser beam balances the gravity of the microsphera for a short time
and the force between microsphera and cantilever measured. The sensitivity of the apparatus is of order
of 10−18𝑁 and the experiment is repeated with 3 identical microspheres.

In our consideration, we calculated the residual force between the measured force and the electrostatic
background force and we found the best fit values for several interaction parameterisations minimizing
the quantity 𝜒2 of eq. (5.9). We fit the residual force using oscillating parameterization and we found
that the data have a strong minimum when the wavelength is 𝜆 ≃ 35𝜇𝑚. This wavelength is of order
of Dark energy density, since we expect that 𝜆𝑑𝑒 ≃ 80𝜇𝑚. In order to check the result statistically, we
found that if there is not residual force in data, the difference in 𝜒2 is more than 13 units. Then, we used
a Monte Carlo simulation with random residual force data which follows Gaussian distribution with zero
mean value and we found that the quantity 𝜒2 in most cases was bigger. As a last step, we repeated
the Monte Carlo simulation 100 times and we found that only at 5% of the probes, the quantity 𝜒2 was
smaller. Thus, we estimated that the oscillating signal is at 2𝜎 confidence level, which is strong enough.

The existence and verification of this signal through more experiments is of great importance, since
we can connect the signal with new interactions (fifth force), or modified theories of gravity, or extensions
of the theories of General Relativity and with Dark energy candidate particles. A wide range of exten-
sions of GR include 𝑓(𝑅) theories, massive Brans-Dicke (BD) and scalar tensor theories, compactified
extra dimension models. A theoretical model where stable spatial oscillations naturally occur for the
gravitational potential are non-local theories of gravity, where the action contains infinite derivatives.
These theories have many advantages since they are free from singularities and instabilities. Also, they
arise naturally from the quantum level and they are consistent with the cosmological observations with
no need of cosmological constant.

In order to find if another parametrization for the residual force induces a better best fit than oscillating
parametrization, we fit for the residual force Yukawa exponential and power law parametrization. These
parametrizations gave 𝛿𝜒2 < 1, which means that these fits are not good for the data.

After a communication with SOLMEs team, we mentioned to them our observation. They told us
that possibly the signal is a systematic effect caused by the non-Gaussian tails of the laser beam whose
pressure levitates the microsphere. The intensity of these tails has a periodic oscillation, which can mimic
oscillating force signal. In this case we can use the signal to estimate an upper bound for the amplitude
of the oscillating residual force. We estimated that the amplitude must be 𝛼 < 0.3 × 10−17𝑁 at 2𝜎
confidence level, when the wavelength is 𝜆 ≃ 35𝜇𝑚.

An alternative to ΛCDM model is the Phantom Cosmology, where the equation of state parameter
is less that −1 (𝑤 < −1). For such a range of 𝑤, this class of models predicts the existence of a future
singularity, where the scale factor increases rapidly, diverges and the bound systems get dissociated. It
is known as the Big Rip singularity and the time of Big Rip occurs according to previous studies with
Newtonian consideration, when the minimum of the effective potential disappears.

The recent direct discovery of gravitational waves from the LIGO/Virgo collaboration is a triumph
of the theory of GR. Many researchers have begun to study the effects of cosmological expansion on the
gravitational waves. In Chapter 6, we studied the effects on the wavefunction of a gravitational wave as
it approaches in a region with strong gravity, such as the neighborhood of a big mass, for example a black
hole. We consider that the spacetime expands and it is described by the McVittie metric in Newtonian
limit. We solved the wave equation numerically introducing boundary conditions far away from the big
mass.

As a test of our derivation, we found that in the absence of the mass (𝑅𝑠 = 0), which corresponds
to evolution of the wave in an empty space, the wavefunction describes a harmonic wave with constant
wavelength and amplitude. Also, in our investigation we found that both waves (that which corresponds
to evolution in the absence of the mass and that which corresponds to the presence of the mass) are
practically identical far away from the point mass.

Also, we found that the period of the wave increases (the frequency decreases) as it approaches the
central mass with strong gravity. This effect is known as gravitational time delay and this observation is
a goal of our work. The difference in time period 𝑇 −𝑇0, where 𝑇0 corresponds in the period of the wave
when propagated in empty space, is proportional to the mass of the central body (𝑅𝑠) when the distance
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is stable. As the wave approaches the central body, the difference in period increases, which means that
the gravitational time delay depends on the radial distance and the gravity of the central body.

The amplitude of the gravitational wave increases as the wave approaches the central mass. As it
seems, the increasing curvature and gravity of spacetime increases the amplitude since the energy of
the wave becomes bigger. The ratio 𝐴/𝐴0, where 𝐴0 is the constant amplitude of the wave in vacuum,
depends on the central mass 𝑅𝑠 and on the distance from the origin. As the wave approaches the origin
and the gravity gets more stronger, the amplitude increases and this effect is proportional to the mass.
Due to interaction between wave and strong gravity in the vicinity of the mass, the wave gains energy
from the spacetime.

The time power spectrum of a wave is the Fourier expansion of the wave. It contains information
about the harmonic frequencies, their amplitude and their degree of participation in the wavefunction.
We expended the wave for a time interval of approximately two complete periods. We found that in
the presence of a point mass with strong gravity, the lower frequencies have a higher amplitude than
the higher frequencies. Even if, this observation depends on the time interval, qualitatively is one more
evidence for the time delay gravitational effect. The above results are held for every multipole component
of a spherical or planar wave in the weak field condition. Thus, from a power spectrum of a gravitational
wave, we can find information for the gravity in the vicinity of the wave.

The point mass could be any celestial body such as a planet, a star, a neutron star or a galaxy. In
the case of the solar system we estimated that the difference in period is expected to be of the order of
1 part in 106 parts. It is negligible, but today this magnitude is measurable since the precision of the
measurement of the time is many orders bigger.

In Chapter 7 we take into account relativistic effects, since the Newtonian approximation is inappro-
priate for some massive large strongly bound systems, in order to estimate the time of Big Rip for a
bound system. We consider the full McVittie metric for the cosmological background and we solve the
geodesic equations in order to find if the time of Big Rip occurs earlier or latter than the Newtonian
consideration and which parameters of the system affect the time of Big Rip. For the gravitational bound
systems we define the parameters 𝑚̄ and 𝜔̄0 from the equations (7.34) and (7.35) respectively. We found
that in Schwarzschild limit which corresponds to 𝐻 = 0, when 𝑚̄ < 1/6 the system is stable and the
orbits are circular. When 1/6 < 𝑚̄ < 1/3 the orbits are also circular but weakly stable, while when
𝑚̄ > 1/3 there is no circular orbit. Thus, in contrast to naive intuition, the stronger effects of gravity in
the relativistic case tend to destabilize rather than stabilize bound systems.

Then, we analyze the case when the effects of the expansion have been turned on (𝐻 ̸= 0). The
system of geodesic equations can be solved only numerically. We define the time of dissociation (criterion
of dissociation) of a bound system as the time when the size of the system has increased by about 20%
compared to its equilibrium value. We found that relativistic effects tend to destabilize bound systems
leading to an earlier dissociation compared to the predictions in the context of the Newtonian approx-
imation. In particular, when the parameter 𝜔̄0 is stable, as the parameter 𝑚̄ increases, the dissociation
occurs earlier. Also, the time momentum of dissociation increases as the parameter 𝜔̄0 increases.

For completeness, we calculated for several cosmological bound systems the time difference of Big
Rip between the Newtonian approximation and relativistic consideration. We found that for the most
cosmological systems, the difference is negligible and the Newtonian approximation is sufficient to describe
the effect. Only for hypothetical very large massive systems, one must approach the effect relativically,
since the time difference is not negligible. Generally, systems with 𝜔̄0 bigger than 104, which are relatively
small have almost the same dissociation time, while systems with big values of the parameter 𝑚̄ and small
values of 𝜔̄0 have appreciated difference of 𝑡𝑟𝑖𝑝 due to relativistic effects. These hypothetical systems
must have mass 1020 𝑀⊙ and size about 100𝑀𝑝𝑐 (about 106 times more massive than a typical cluster
of galaxies).

A most commonly project in General Relativity is the investigation of the orbits of a particle in a
given cosmological background. If we consider that the motion evolves only with the influence of gravity
and ignore the spin of the particle, then the orbits are the geodesics in such a spacetime. In Chapter 8,
we considered the motion of a spinning particle in a background which is the post Newtonian limit of
the McVittie metric. The problem described from the MP equations which indicate that the coupling
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between spin and velocity induces additional force and the motion of the particle is a worldline, different
than geodesic. This force can be attractive or repulsive depending on the orientation of the spin.

The system of MP equations is under-defined, even if we consider the motion of the particle in the
equatorial plane. There are only 10 independent equations of motion for the 13 variables. Thus, in order
to define a unique worldline, we supplement the system with the SSC, which defines the centroid of the
system. We adopted the T condition where the magnitude of the spin 𝑠 and the dynamical mass 𝜇 are
constants of motion. In a static universe, the orbit of a spinless particle is circular. The presence of
spin deforms the orbits and the particle orbits between a minimum and a maximum radius. The radial
range of the motion depends on the magnitude of the spin, the dynamic mass 𝜇 of the particle and the
Schwarzschild radius 𝑅𝑠 of the black hole. In the case where the spin-orbit interaction is attractive, the
innermost stable circular orbit (ISCO) has radius 𝑟 = 3𝑅𝑠. The particle gets captured and merged with
the black hole when 𝑠

𝜇𝑅𝑠
> 0.6, since the radial distance becomes less than the ISCO.

The behaviour of a spinless particle depends on the expansion rate of the cosmological background and
it is crucial in order to understand the deformation of the orbits of a spinning particle. In a decelerating
universe with 𝑎(𝑡) = 𝑡2/3 the spinless particle gets captured by the black hole. In an accelerating universe
with a de Sitter type expansion 𝑎(𝑡) = 𝑒𝐻𝑡, where 𝐻 =

√︁
Λ
3 , the system gets dissolved, since the repulsive

background dominates against gravity.
Further, we investigate the influence of spin in the orbits. In a decelerating cosmological background,

where the scale factor is 𝑎(𝑡) = 𝑡2/3, when the magnitude of spin is less the particle gets captured by the
black hole, for attractive or repulsive coupling between spin and orbital angular momentum. The result
seems to be unexpected in the case of repulsive interaction. After a more careful observation of the orbits
we found that even if initially the particle rotates clockwise, after short time reserves his orientation of
rotation, approaches the central body, the interaction becomes attractive and with the aid of gravity the
particle gets captured by the black hole. For large enough values of spin, even if the initial rotation is
clockwise or counterclockwise, the orbit gets dissociated, mainly due to the domination of the expanding
cosmological background. The spin-orbit coupling is subdominant.

In an accelerating cosmological background such as a de Sitter spacetime with 𝑎(𝑡) = 𝑒𝐻𝑡, the expan-
sion rate dominates almost in all cases. The expansion effects lead to dissociation of the initially bound
system. An exception is the case of attractive coupling between spin and orbital angular momentum and
extremely large values of spin, where the particle gets captured by the black hole, since the attractive
coupling is strong and dominates the repulsive expansion rate. The time interval which is necessary to
observe expansion effects when we consider spinning particles in a cosmological structure, ranges between
a few years for our solar systems and a few decades of billion years for a cluster of galaxies.

9.2 Future perspectives
The present Thesis addresses interesting open questions of the current cosmological theories and obser-
vations, which we discuss below.

The validity of the cosmological principle is fundamental in General Relativity. Even if, all the
experiments until now indicate the validity of this principle, it is always necessary to check that the
Universe is homogeneous and isotropic. Thus, as the number and the accuracy of cosmological data
increases through more observations, the accuracy of the tests will become better. In Chapter 2 we test
the validity of the cosmological principle with the data from the Union2 compilation, which contains
557 supernova type Ia. Nowadays, the PANTHEON compilation consists of almost a double number
of supernova type Ia (1048) and we can use this compilation to test more accurately the cosmological
principle or to calculate the expansion rate 𝐻0 in order to estimate the statistical significance of the
Hubble tension. Also, we can check if the preferred axis, which we found in our work in Chapter 2, is in
the same direction, or how far from this direction it is.

The topological defects have formed in the early Universe and contain information about the first
moments of the Universe. In Chapter 3 we study the stability of the embedded monopoles. We can
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extend our research in the other kinds of topological defects, especially the cosmic stings since it seems
that they are more stable than monopoles. Thus, interesting extensions are the following:

∙ Investigation of the stability properties of more realistic embeddings like the electroweak vortex
[209, 211, 219, 534]. The possible formation of new electroweak vortices with core condensates
representing confinement of the instability is a particularly interesting prospect. In addition, the
possible stabilization of the electroweak vortex for realistic parameter values can be described by a
dilatonic coupling.

∙ Investigation of the core properties of other dilatonic defects like textures, skyrmions and domain
walls in the presence of external gauge fields.

∙ The presence of dilatonic defects with Hubble scale cores could naturally induce spatial variation of
the corresponding gauge charges and in particular of the fine structure constant. This prospect is
interesting in view of the claims of the existence of a fine structure constant dipole on cosmological
scales obtained from the absorption spectra of quasars on cosmological scales [194, 195]. This class
of models naturally predicts an alignment of the fine structure constant and dark energy dipoles.
Indications for such an alignment have been observed in a combination of type Ia data and quasar
absorption spectra data [195]. Thus, the detailed study of the cosmological properties of this class
of models (extended topological quintessence) constitutes an exciting extension.

In a quintessence model such as that we study in Chapter 4, we can change the potential of the scalar
field setting quadratic form 𝑉 (𝜑) = 𝛾𝜑2, where 𝛾 is a negative constant. For several values of the fraction
𝜁𝑚 of the electromagnetic density to matter density, we can observe the consequences at the time of Big
Crunch and the parameter 𝑤𝐷𝐸 of the equation of state.

Most previous studies analyzing sub-mm force data have consistently used Yukawa parameterizations
of the new forces. Such parameterizations are well motivated theoretically but they are not uniquely
favored especially in view of the fact that their analytic continuation is an oscillating parameterization.
The use of new and in particular oscillating parameterizations of sub-mm new forces to fit the data of
experiments searching for new forces on sub-mm scales is a novel quite promising approach, such as our
consideration in Chapter 5. If these oscillating improved fits are not statistical or systematic artifacts of
the data, they could be early hints of modified gravity with major impact on the scientific community.
It is therefore important to purse this line of research further using additional datasets, improved data
analysis methods and search for further theoretical support of the best fit parameterizations.

The detection of GWs by the Laser Interferometer Gravitational Wave Observatory (LIGO) Collabor-
ation and the Virgo Collaboration opens a new window for the investigation of strong gravitational fields
and exotic physics. New windows also open for testing extensions of GR. Of particular interest is the
recent detection of the GW170817 originating from the merger of a binary neutron star and the almost
simultaneous detection of its 𝛾-ray counterpart which laid the foundation of a new era of multi-messenger
GW astronomy and demonstrated the equality between the speed of GWs and the speed of light ruling
out a range of scalar-tensor extensions of GR. Until now they have announced 11 cosmological events
which accompanied by detection of GW.

The proposed investigation of field theoretical effects on the generation of GW bursts from cosmic
string cusps is original and novel since the field theoretical origin of GW bursts due to colliding scalar-
field configurations (e.g. cosmic strings) have not been considered in literature. All relevant previous
analyses have focused on a simplified version of the action or have considered field theoretical effects on
macroscopic stochastic GW background using preexisting software. Therefore the impact of the proposed
project on the scientific community will be significant as it may lead to non-trivial modifications in the
current bounds on cosmic string parameters as well as to predictions of very specific signatures in GW
detectors which may identify such possible future events.

In Chapter 8, of this Thesis we dealt with the dynamics of spinning particles in the pole-dipole approx-
imation as described by the Mathisson-Papapetrou equations. Since, the majority of the celestial bodies
has less or large spin angular momentum, it is necessary to investigate the influence of the spin in the
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orbits of each body, which rotates around a much bigger mass. The spin orbit coupling must be invest-
igated with more details in a relativistic consideration (McVittie background), since many cosmological
systems evolve with almost relativistic speed.

Also, interesting extensions of the work of Chapter 8 will be the behaviour of the systems in the
case where the spin of the particle is not parallel to the orbital angular momentum, the consideration of
another supplementary condition (such as the P condition), where the magnitude of the spin is also a
constant of motion, or the investigation of the motion in the non-equatorial plane.
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Appendix A

Riemann Tensor-McVittie
spacetime-Newtonian approximation

A.1 Christoffel symbols
The non-vanishing Christoffel symbols for the line element (6.21), which we have used in the present
dissertation (approximate McVittie spacetime for a moving test body) are the following

Γ0
00 = 𝑎̇𝑀

𝑎(𝑎𝜌− 2𝑀)

Γ0
01 = 𝑀

𝜌(𝑎𝜌− 2𝑀)

Γ0
11 = 𝑎2𝑎̇𝜌

𝑎𝜌− 2𝑀

Γ0
22 = 𝑎2𝑎̇𝜌3

𝑎𝑟 − 2𝑀

Γ0
33 = 𝑎2𝑎̇𝜌3 sin2 𝜃

𝑎𝜌− 2𝑀

Γ1
00 = 𝑀

𝑎3𝜌2

Γ1
01 = 𝑎̇

𝑎

Γ1
22 = −𝜌

Γ1
33 = −𝜌 sin2 𝜃

Γ2
12 = 1

𝜌

Γ2
02 = 𝑎̇

𝑎

Γ2
33 = − sin 𝜃 cos 𝜃

Γ3
03 = 𝑎̇

𝑎

Γ3
13 = 1

𝜌

Γ3
23 = cos 𝜃

sin 𝜃 (A.1)
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where the dot represents derivative with respect to coordinate time.

A.2 Riemann tensor
The corresponding non-vanishing components of the Riemann (curvature) tensor are:

𝑅0101 =
𝑎𝜌
(︁

2𝑀 + 𝜌2(︀− 𝑎̇2𝑀 + 𝑎𝑎̈(𝑎𝜌− 2𝑀)
)︀)︁

− 3𝑀2

𝑎𝜌3(𝑎𝜌− 2𝑀)

𝑅0202 =
2𝑀2 + 𝑎𝜌

(︁
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2𝑀2 + 𝑎𝜌

(︁
−𝑀 + 𝜌2(︀− 𝑎̇2𝑀 + 𝑎𝑎̈(𝑎𝜌− 2𝑀)
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𝑅0313 = −𝑎𝑎̇𝜌𝑀 sin2 𝜃
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𝑅1212 = − 𝑎3𝑎̇2𝜌3
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𝑅1313 = −𝑎3𝑎̇2𝜌3 sin2 𝜃
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𝑅2323 = −𝑎3𝑎̇2𝜌5 sin2 𝜃

𝑎𝜌− 2𝑀 (A.2)

When 𝜃 = 𝜋/2 and 𝑟 = 𝑎(𝑡)𝜌 the above components of the Riemann tensor are simplified as
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Appendix B

Data from SOLME

In Table B.1 we present the datapoints which we used to find the best fit for the oscillating paramet-
erization of the residual force 𝑑𝐹 in Chapter 5. The data contains the distance r between the center
of the microsphera and the origin of a cartesian coordinate system which located in the center of the
front size of the cantilever (see Fig. 1 of [325]), the residual force 𝐹 − 𝐹𝑁 (the difference between the
measured force F and the electrostatic background 𝐹𝑁 ), the corresponding error and the number of the
experiment (number of microsphera). These datapoints, kindly was provided by the authors of Ref. [325]
after request.

Table B.1: The 96 residual force datapoints from the Stanford Optical Levitated Experiment, which were
used for the 𝜒2 analysis. The data contains the distance r between the center of the microsphera and
the origin of a cartesian coordinate system which located in the center of the front size of the cantilever,
the residual force 𝐹 −𝐹𝑁 (the difference between the measured force F and the electrostatic background
𝐹𝑁 ), the corresponding error and the number of the experiment

𝑟 (𝑚𝑚) 𝐹 − 𝐹𝑁 (𝑓𝑁) 1𝜎 (𝐹 − 𝐹𝑁 ) Microsphera
0.228 -0.007 0.015 I
0.218 -0.015 0.017 I
0.208 0.006 0.018 I
0.198 -0.008 0.019 I
0.188 0.002 0.015 I
0.178 -0.001 0.015 I
0.173 0.013 0.015 I
0.168 0.005 0.015 I
0.162 -0.016 0.020 I
0.158 -0.002 0.017 I
0.152 0.007 0.015 I
0.142 0.013 0.016 I
0.136 -0.012 0.020 I
0.132 0.002 0.016 I
0.126 -0.055 0.017 I
0.122 -0.017 0.016 I
0.117 0.040 0.015 I
0.112 0.027 0.015 I
0.106 0.030 0.016 I
0.102 -0.012 0.014 I
0.097 -0.003 0.018 I
0.096 -0.034 0.017 I
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0.087 0.048 0.049 I
0.086 0.036 0.022 I
0.077 0.020 0.027 I
0.076 -0.022 0.068 I
0.066 -0.017 0.021 I
0.066 0.045 0.056 I
0.056 -0.026 0.035 I
0.047 0.041 0.034 I
0.037 0.027 0.023 I
0.027 -0.005 0.016 I
0.229 -0.014 0.020 II
0.219 0.005 0.023 II
0.209 -0.022 0.023 II
0.199 0.012 0.021 II
0.189 -0.021 0.020 II
0.179 0.003 0.020 II
0.176 0.016 0.018 II
0.169 -0.010 0.020 II
0.166 0.021 0.033 II
0.159 -0.048 0.021 II
0.156 0.007 0.033 II
0.146 0.018 0.041 II
0.136 -0.018 0.032 II
0.134 0.006 0.022 II
0.125 -0.015 0.020 II
0.125 -0.018 0.024 II
0.116 0.049 0.018 II
0.114 -0.003 0.025 II
0.106 -0.007 0.018 II
0.105 0.024 0.021 II
0.095 0.022 0.040 II
0.095 -0.004 0.036 II
0.085 -0.039 0.018 II
0.084 0.012 0.032 II
0.075 -0.040 0.024 II
0.075 -0.061 0.042 II
0.065 0.020 0.037 II
0.064 0.012 0.058 II
0.055 -0.025 0.033 II
0.045 0.023 0.032 II
0.035 0.040 0.030 II
0.025 -0.045 0.055 II
0.234 -0.030 0.020 III
0.224 -0.002 0.022 III
0.214 -0.003 0.029 III
0.204 -0.021 0.029 III
0.194 -0.003 0.024 III
0.184 -0.019 0.026 III
0.178 0.006 0.013 III
0.174 -0.014 0.020 III
0.168 -0.018 0.015 III
0.164 -0.004 0.020 III
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0.158 -0.023 0.024 III
0.148 0.008 0.026 III
0.137 -0.017 0.030 III
0.134 -0.001 0.027 III
0.128 0.014 0.038 III
0.123 -0.004 0.014 III
0.117 0.004 0.017 III
0.114 0.008 0.017 III
0.108 0.035 0.014 III
0.103 0.030 0.016 III
0.095 0.036 0.020 III
0.094 -0.002 0.016 III
0.086 -0.024 0.014 III
0.084 0.025 0.030 III
0.076 0.002 0.020 III
0.074 -0.005 0.014 III
0.066 -0.004 0.019 III
0.064 -0.013 0.016 III
0.055 -0.047 0.045 III
0.045 0.002 0.040 III
0.036 -0.010 0.057 III
0.025 -0.005 0.037 III
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Appendix C

Numerical Code for the Dissociation
of Bound Systems in a Phantom

Cosmological Background

C.1 Mathematica code
In this Appendix, we present the numerical code which we have developed in the context of Ref. [4]
and we used to derive the figures of Chapter 7 of this dissertation. In particular, we plot the effective
potential 𝑉𝑒𝑓𝑓 (𝑟) of a bound system in phantom cosmological background as a function of the rescalled
distance 𝑟, for several values of the parameters of the analysis 𝑚̄, 𝜔̄0 and 𝐻̄.

SetDirectory[“D:∖∖”];SetDirectory[“D:∖∖”];SetDirectory[“D:∖∖”];
Clear[om, 𝑤,𝑚]Clear[om, 𝑤,𝑚]Clear[om, 𝑤,𝑚]
am = 1;am = 1;am = 1;
𝑎[t_]:=am/(−𝑤 + (1 + 𝑤)𝑡)∧(−2/(3(1 + 𝑤)));𝑎[t_]:=am/(−𝑤 + (1 + 𝑤)𝑡)∧(−2/(3(1 + 𝑤)));𝑎[t_]:=am/(−𝑤 + (1 + 𝑤)𝑡)∧(−2/(3(1 + 𝑤)));
d2a = 𝐷[𝑎[𝑡], {𝑡, 2}];d2a = 𝐷[𝑎[𝑡], {𝑡, 2}];d2a = 𝐷[𝑎[𝑡], {𝑡, 2}];
ff = d2a/𝑎[𝑡]//FullSimplify;ff = d2a/𝑎[𝑡]//FullSimplify;ff = d2a/𝑎[𝑡]//FullSimplify;
𝑓 [𝑟[𝑡]] = 1 − 2𝑚/𝑟[𝑡];𝑓 [𝑟[𝑡]] = 1 − 2𝑚/𝑟[𝑡];𝑓 [𝑟[𝑡]] = 1 − 2𝑚/𝑟[𝑡];
𝐻[t_]:=0;𝐻[t_]:=0;𝐻[t_]:=0;
dH[t_]:=𝐷[𝐻[𝑡], 𝑡];dH[t_]:=𝐷[𝐻[𝑡], 𝑡];dH[t_]:=𝐷[𝐻[𝑡], 𝑡];
eq1 = 𝑟′′[𝑡] == dH[tt[𝑡]]

√︁
1 − 2𝑚

𝑟[𝑡]𝑟[𝑡]tt
′[𝑡]2 + (1 − 3𝑚/𝑟[𝑡])om∧2/𝑟[𝑡]∧3−eq1 = 𝑟′′[𝑡] == dH[tt[𝑡]]

√︁
1 − 2𝑚

𝑟[𝑡]𝑟[𝑡]tt
′[𝑡]2 + (1 − 3𝑚/𝑟[𝑡])om∧2/𝑟[𝑡]∧3−eq1 = 𝑟′′[𝑡] == dH[tt[𝑡]]

√︁
1 − 2𝑚

𝑟[𝑡]𝑟[𝑡]tt
′[𝑡]2 + (1 − 3𝑚/𝑟[𝑡])om∧2/𝑟[𝑡]∧3−

((1 − 3𝑚)om∧2/𝑟[𝑡]∧2 − 𝑟[𝑡]𝐻[tt[𝑡]]∧2);((1 − 3𝑚)om∧2/𝑟[𝑡]∧2 − 𝑟[𝑡]𝐻[tt[𝑡]]∧2);((1 − 3𝑚)om∧2/𝑟[𝑡]∧2 − 𝑟[𝑡]𝐻[tt[𝑡]]∧2);
alpha[tt[𝑡], 𝑟[𝑡]] = 𝑟[𝑡]𝑓 [𝑟[𝑡]]∧(−1/2)𝐻[tt[𝑡]];alpha[tt[𝑡], 𝑟[𝑡]] = 𝑟[𝑡]𝑓 [𝑟[𝑡]]∧(−1/2)𝐻[tt[𝑡]];alpha[tt[𝑡], 𝑟[𝑡]] = 𝑟[𝑡]𝑓 [𝑟[𝑡]]∧(−1/2)𝐻[tt[𝑡]];
eq2 = −(𝑓 [𝑟[𝑡]] −𝑚𝑟[𝑡]∧2𝐻[tt[𝑡]]∧2/(om∧2(1 − 3𝑚)))tt′[𝑡]∧2 − 2alpha[tt[𝑡], 𝑟[𝑡]]𝑚/(om∧2(1 − 3𝑚))eq2 = −(𝑓 [𝑟[𝑡]] −𝑚𝑟[𝑡]∧2𝐻[tt[𝑡]]∧2/(om∧2(1 − 3𝑚)))tt′[𝑡]∧2 − 2alpha[tt[𝑡], 𝑟[𝑡]]𝑚/(om∧2(1 − 3𝑚))eq2 = −(𝑓 [𝑟[𝑡]] −𝑚𝑟[𝑡]∧2𝐻[tt[𝑡]]∧2/(om∧2(1 − 3𝑚)))tt′[𝑡]∧2 − 2alpha[tt[𝑡], 𝑟[𝑡]]𝑚/(om∧2(1 − 3𝑚))
tt′[𝑡]𝑟′[𝑡] + 𝑓 [𝑟[𝑡]]∧(−1)𝑟′[𝑡]∧2𝑚/(om∧2(1 − 3𝑚)) +𝑚/((1 − 3𝑚)𝑟[𝑡]∧2) + 1 == 0; (*first integral*)tt′[𝑡]𝑟′[𝑡] + 𝑓 [𝑟[𝑡]]∧(−1)𝑟′[𝑡]∧2𝑚/(om∧2(1 − 3𝑚)) +𝑚/((1 − 3𝑚)𝑟[𝑡]∧2) + 1 == 0; (*first integral*)tt′[𝑡]𝑟′[𝑡] + 𝑓 [𝑟[𝑡]]∧(−1)𝑟′[𝑡]∧2𝑚/(om∧2(1 − 3𝑚)) +𝑚/((1 − 3𝑚)𝑟[𝑡]∧2) + 1 == 0; (*first integral*)
ttp = Part[Solve[eq2, tt′[𝑡]], 1, 1, 2]//FullSimplify; (*first derivative of coordinate time*)ttp = Part[Solve[eq2, tt′[𝑡]], 1, 1, 2]//FullSimplify; (*first derivative of coordinate time*)ttp = Part[Solve[eq2, tt′[𝑡]], 1, 1, 2]//FullSimplify; (*first derivative of coordinate time*)
lam2 = −2(1 + 3𝑤)/(3(−𝑤 + (1 + 𝑤)𝑡))∧2;lam2 = −2(1 + 3𝑤)/(3(−𝑤 + (1 + 𝑤)𝑡))∧2;lam2 = −2(1 + 3𝑤)/(3(−𝑤 + (1 + 𝑤)𝑡))∧2;
potpap = −om∧2/𝑟[𝑡] + om∧2/(2𝑟[𝑡]∧2) − 0.5lam2𝑟[𝑡]∧2;potpap = −om∧2/𝑟[𝑡] + om∧2/(2𝑟[𝑡]∧2) − 0.5lam2𝑟[𝑡]∧2;potpap = −om∧2/𝑟[𝑡] + om∧2/(2𝑟[𝑡]∧2) − 0.5lam2𝑟[𝑡]∧2;
forcepap = −𝐷[potpap, 𝑟[𝑡]]/.{𝑟[𝑡] → ar, 𝑡 → ti} //FullSimplify; (*Newtonian force*)forcepap = −𝐷[potpap, 𝑟[𝑡]]/.{𝑟[𝑡] → ar, 𝑡 → ti} //FullSimplify; (*Newtonian force*)forcepap = −𝐷[potpap, 𝑟[𝑡]]/.{𝑟[𝑡] → ar, 𝑡 → ti} //FullSimplify; (*Newtonian force*)
forcemm = Part[eq1, 2]/.{tt′[𝑡] → ttp}; (*relativistic force*)forcemm = Part[eq1, 2]/.{tt′[𝑡] → ttp}; (*relativistic force*)forcemm = Part[eq1, 2]/.{tt′[𝑡] → ttp}; (*relativistic force*)
forcemm1 = forcemm/.{𝑟[𝑡] → ar, tt[𝑡] → ti, 𝑟′[𝑡] → rp}forcemm1 = forcemm/.{𝑟[𝑡] → ar, tt[𝑡] → ti, 𝑟′[𝑡] → rp}forcemm1 = forcemm/.{𝑟[𝑡] → ar, tt[𝑡] → ti, 𝑟′[𝑡] → rp};
Off[FindMinimum::lstol,FindRoot::lstol,FindMinimum::cvmit,FindMinimum::sdprec];Off[FindMinimum::lstol,FindRoot::lstol,FindMinimum::cvmit,FindMinimum::sdprec];Off[FindMinimum::lstol,FindRoot::lstol,FindMinimum::cvmit,FindMinimum::sdprec];
forcemm1;forcemm1;forcemm1; Clear[forcet]Clear[forcet]Clear[forcet]
forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}
pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]
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omt = 300;omt = 300;omt = 300;
mbart = 0.15;mbart = 0.15;mbart = 0.15;
tit = 1;tit = 1;tit = 1;
rfin = 1.8;rfin = 1.8;rfin = 1.8;
plv1 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},plv1 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},plv1 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},
PlotStyle → {Hue[0.95],Dashing[0.025],Thickness[0.002]},PlotStyle → {Hue[0.95],Dashing[0.025],Thickness[0.002]},PlotStyle → {Hue[0.95],Dashing[0.025],Thickness[0.002]},
Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},
LabelStyle → {Bold, 12,FontFamily → “Helvetica”},LabelStyle → {Bold, 12,FontFamily → “Helvetica”},LabelStyle → {Bold, 12,FontFamily → “Helvetica”},
Axes → {False,False}];Axes → {False,False}];Axes → {False,False}];
grv1 = Graphics[{Text[Style["𝑚̄=0.15, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.6, 1900}, {2, 1}],grv1 = Graphics[{Text[Style["𝑚̄=0.15, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.6, 1900}, {2, 1}],grv1 = Graphics[{Text[Style["𝑚̄=0.15, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.6, 1900}, {2, 1}],
Text[Style[“(a)”, 12,Black], {1.7, 500}, {2, 1}]}];Text[Style[“(a)”, 12,Black], {1.7, 500}, {2, 1}]}];Text[Style[“(a)”, 12,Black], {1.7, 500}, {2, 1}]}];
plotvs = Show[plv1, grv1]plotvs = Show[plv1, grv1]plotvs = Show[plv1, grv1]
Export[“plotvs.pdf”,plotvs]Export[“plotvs.pdf”,plotvs]Export[“plotvs.pdf”,plotvs] Clear[forcet]Clear[forcet]Clear[forcet]

m=0.15, ω0=300, H=0

(a)

0.8 1.0 1.2 1.4 1.6 1.8

0

500

1000

1500

2000

r

V
ef
f(
r
)

forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}
pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]
omt = 300;omt = 300;omt = 300;
mbart = 0.19;mbart = 0.19;mbart = 0.19;
tit = 3.6;tit = 3.6;tit = 3.6;
rfin = 1.8;rfin = 1.8;rfin = 1.8;
plv2 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],plv2 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],plv2 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],
Thickness[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},Thickness[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},Thickness[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},
LabelStyle → {Bold, 12,FontFamily → “Helvetica”},LabelStyle → {Bold, 12,FontFamily → “Helvetica”},LabelStyle → {Bold, 12,FontFamily → “Helvetica”},
Axes → {False,False}];Axes → {False,False}];Axes → {False,False}];
grv2 = Graphics[{Text[Style["𝑚̄=0.19, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.7, 210}, {2, 1}],grv2 = Graphics[{Text[Style["𝑚̄=0.19, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.7, 210}, {2, 1}],grv2 = Graphics[{Text[Style["𝑚̄=0.19, 𝜔̄0=300, 𝐻̄=0",Bold, 12,Black], {1.7, 210}, {2, 1}],
Text[Style[“(b)”, 12,Black], {1.7,−400}, {2, 1}]}];Text[Style[“(b)”, 12,Black], {1.7,−400}, {2, 1}]}];Text[Style[“(b)”, 12,Black], {1.7,−400}, {2, 1}]}];
plotvsch = Show[plv2, grv2]plotvsch = Show[plv2, grv2]plotvsch = Show[plv2, grv2]
Export[“plotvsch.pdf”,plotvsch]Export[“plotvsch.pdf”,plotvsch]Export[“plotvsch.pdf”,plotvsch] Clear[forcet]Clear[forcet]Clear[forcet]
forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}
pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]
omt = 5;omt = 5;omt = 5;
mbart = 0;mbart = 0;mbart = 0;
tit = 3.6;tit = 3.6;tit = 3.6;
rfin = 2.5;rfin = 2.5;rfin = 2.5;
plv3 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],Thicknessplv3 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],Thicknessplv3 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.6],Dashing[0.02],Thickness
[0.002], }Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},LabelStyle → {Bold,[0.002], }Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},LabelStyle → {Bold,[0.002], }Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)"},LabelStyle → {Bold,
12,FontFamily → “Helvetica”},Axes → {False,False}]12,FontFamily → “Helvetica”},Axes → {False,False}]12,FontFamily → “Helvetica”},Axes → {False,False}] Clear[forcet]Clear[forcet]Clear[forcet]
forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}forcet[rr_, tit_, omt_,mt_]:=forcemm1/.{𝑤->− 1.2, rp → 0, ar → rr, ti → tit, om → omt,𝑚 → mt}
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pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]pott[rt_, tit_, omt_,mt_]:=NIntegrate[−forcet[rr, tit, omt,mt], {rr, 1, rt}]
omt = 5;omt = 5;omt = 5;
mbart = 0.05;mbart = 0.05;mbart = 0.05;
tit = 3.6;tit = 3.6;tit = 3.6;
rfin = 2.5;rfin = 2.5;rfin = 2.5;
plv4 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.8],Dashing[0.04],Thicknessplv4 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.8],Dashing[0.04],Thicknessplv4 = Plot[pott[rr, tit, omt,mbart], {rr, 0.8, rfin},PlotStyle → {Hue[0.8],Dashing[0.04],Thickness
[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)",LabelStyle → {Bold, 12,[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)",LabelStyle → {Bold, 12,[0.002]},Frame → True,PlotRange → All,FrameLabel → {"𝑟", "𝑉eff(𝑟)",LabelStyle → {Bold, 12,
FontFamily → “Helvetica”},Axes → {False,False}];FontFamily → “Helvetica”},Axes → {False,False}];FontFamily → “Helvetica”},Axes → {False,False}];
grvm = Graphics[{Text[Style[" 𝜔̄0=5, 𝐻̄=0",Bold, 13,Black], {1.9, 4.2}, {2, 1}],Text[Style["𝑚̄=0", 12,grvm = Graphics[{Text[Style[" 𝜔̄0=5, 𝐻̄=0",Bold, 13,Black], {1.9, 4.2}, {2, 1}],Text[Style["𝑚̄=0", 12,grvm = Graphics[{Text[Style[" 𝜔̄0=5, 𝐻̄=0",Bold, 13,Black], {1.9, 4.2}, {2, 1}],Text[Style["𝑚̄=0", 12,
Blue], {1.9, 3}, {2, 0}],Text[Style["𝑚̄=0.05", 12,Magenta], {2.3, 1.9}, {2, 0}]}];Blue], {1.9, 3}, {2, 0}],Text[Style["𝑚̄=0.05", 12,Magenta], {2.3, 1.9}, {2, 0}]}];Blue], {1.9, 3}, {2, 0}],Text[Style["𝑚̄=0.05", 12,Magenta], {2.3, 1.9}, {2, 0}]}];
plotvm = Show[plv3,plv4, grvm]plotvm = Show[plv3,plv4, grvm]plotvm = Show[plv3,plv4, grvm]
Export[“plotvm.pdf”,plotvm]Export[“plotvm.pdf”,plotvm]Export[“plotvm.pdf”,plotvm]
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Appendix D

Numerical Code for the Quintessence
Model with a Dilatonic coupling

In this appendix we present the Mathematica code, which we have used in Ref. [3] in order to describe
the dilatonic coupling 𝐵𝐹 (𝜑) = 𝑒−2𝜑 in quintessence models with linear potential and its influence in the
cosmological parameters and the time appearance of the Big Rip singularity. This analysis is presented
analytically in Chapter 4.

SetDirectory[“D:∖∖”];SetDirectory[“D:∖∖”];SetDirectory[“D:∖∖”];
Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];
fii = −7; fi0 = −2.11;fii = −7; fi0 = −2.11;fii = −7; fi0 = −2.11;
ti = 0.02; t0 = 74.973359824888284; (* fii = 𝜙i, ti = initial time deep in the radiation era,ti = 0.02; t0 = 74.973359824888284; (* fii = 𝜙i, ti = initial time deep in the radiation era,ti = 0.02; t0 = 74.973359824888284; (* fii = 𝜙i, ti = initial time deep in the radiation era,
t0 = time of Big Crunch*)t0 = time of Big Crunch*)t0 = time of Big Crunch*)
aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)
aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];
aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];
fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];
fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];
ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)
zem = 0;zem = 0;zem = 0;
om0m = 0.3;om0m = 0.3;om0m = 0.3;
om0r = 0.0001;om0r = 0.0001;om0r = 0.0001;
𝜔[fi] = 1;𝜔[fi] = 1;𝜔[fi] = 1;
eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);

eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss

𝜔[fi] + 𝐷[𝜔,fi]fid∧2
2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)

𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;

eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;
eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;
eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);
eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==
(︀ om0r

4 𝐸∧(−2(fii − fi0))
)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);
sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];
asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];
fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];
as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;
tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];
fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;
fis[tt];fis[tt];fis[tt];
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tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];
hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;
hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];
hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];
“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];
fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;
“=𝜙(z=0)”fi0n;“=𝜙(z=0)”fi0n;“=𝜙(z=0)”fi0n;
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
enf0 =

(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;
“=Ω_0Φ”enf0; “=t_0”tt;“=Ω_0Φ”enf0; “=t_0”tt;“=Ω_0Φ”enf0; “=t_0”tt;
dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;
asol/.𝑡 → tt;asol/.𝑡 → tt;asol/.𝑡 → tt;
om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;

om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;
asol/.𝑡 → t0;asol/.𝑡 → t0;asol/.𝑡 → t0;
dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];
Ht = dasol/asol;Ht = dasol/asol;Ht = dasol/asol;
dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];
enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)

ppf = (0.5dfsol∧2 + ssfsol); (*
(︁

1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);

wt = ppf/enf;wt = ppf/enf;wt = ppf/enf;
wt/.𝑡 → t0;wt/.𝑡 → t0;wt/.𝑡 → t0;
wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;
wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];
wfz[z_]:=wfa[1/(𝑧 + 1)];wfz[z_]:=wfa[1/(𝑧 + 1)];wfz[z_]:=wfa[1/(𝑧 + 1)];
w0 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,w0 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,w0 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,
FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}];
ddz = 0.00001;ddz = 0.00001;ddz = 0.00001;
imax = 250; zmax = 2; dz = zmax/imax;imax = 250; zmax = 2; dz = zmax/imax;imax = 250; zmax = 2; dz = zmax/imax;
ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];
Do[Do[Do[
ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]
plnum0 = ListPlot[ttable,PlotStyle → {Thick,Orange,PointSize[0.008],Dashing[0.02]},plnum0 = ListPlot[ttable,PlotStyle → {Thick,Orange,PointSize[0.008],Dashing[0.02]},plnum0 = ListPlot[ttable,PlotStyle → {Thick,Orange,PointSize[0.008],Dashing[0.02]},
Frame → True,FrameLabel → {z, “w(z)”}];Frame → True,FrameLabel → {z, “w(z)”}];Frame → True,FrameLabel → {z, “w(z)”}];
hupar = 0.1;hupar = 0.1;hupar = 0.1;
dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;
plf[ss1] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},Frameplf[ss1] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},Frameplf[ss1] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},Frame
→ True,PlotRange → All,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},→ True,PlotRange → All,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},→ True,PlotRange → All,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plfn[ss1] = Show[plf[ss1],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss1] = Show[plf[ss1],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss1] = Show[plf[ss1],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];
pla[ss1] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss1] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss1] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
planl[ss1] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss1] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss1] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plan[ss1] = Show[pla[ss1],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss1] = Show[pla[ss1],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss1] = Show[pla[ss1],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];
plw[ss1] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss1] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss1] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},
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LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plw1[ss1] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss1] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss1] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plwn[ss1] = Show[plw[ss1],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss1] = Show[plw[ss1],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss1] = Show[plw[ss1],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];
Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];
fii = −6.95; fi0 = −2.08; ti = 0.035; t0 = 77.12;fii = −6.95; fi0 = −2.08; ti = 0.035; t0 = 77.12;fii = −6.95; fi0 = −2.08; ti = 0.035; t0 = 77.12;
aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];
aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];
aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];
fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];
fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];
ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)
zem = 10∧(−7);zem = 10∧(−7);zem = 10∧(−7);
om0m = 0.3;om0m = 0.3;om0m = 0.3;
om0r = 0.0001;om0r = 0.0001;om0r = 0.0001;
𝜔[fi] = 1;𝜔[fi] = 1;𝜔[fi] = 1;
eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);

eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss

𝜔[fi] + 𝐷[𝜔,fi]fid∧2
2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)

𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;

eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;
eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;
eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);
eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==
(︀ om0r

4 𝐸∧(−2(fii − fi0))
)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);
sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];
asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];
fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];
as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;
tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];
fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;
fis[tt];fis[tt];fis[tt];
tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];
hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;
hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];
hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];
“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];
fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;
“=𝜙(z=0)”fi0n ;“=𝜙(z=0)”fi0n ;“=𝜙(z=0)”fi0n ;
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
enf0 =

(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;
“=Ω_0Φ”enf0;“=Ω_0Φ”enf0;“=Ω_0Φ”enf0;
“=t_0”tt;“=t_0”tt;“=t_0”tt;
dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;
asol/.𝑡 → tt;asol/.𝑡 → tt;asol/.𝑡 → tt;
om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;

om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;
asol/.𝑡 → t0;asol/.𝑡 → t0;asol/.𝑡 → t0;
dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];
Ht = dasol/asol;Ht = dasol/asol;Ht = dasol/asol;
dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];
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enf = (0.5dfsol∧2 − ssfsol); (*
(︁

1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)

ppf = (0.5dfsol∧2 + ssfsol); (*
(︁

1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);

wt = ppf/enf;wt = ppf/enf;wt = ppf/enf;
wt/.𝑡 → ti;wt/.𝑡 → ti;wt/.𝑡 → ti;
wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;
wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];
wfz[z_]:=wfa[1/(𝑧 + 1)];wfz[z_]:=wfa[1/(𝑧 + 1)];wfz[z_]:=wfa[1/(𝑧 + 1)];
w1 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];w1 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];w1 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];
ddz = 0.00001;ddz = 0.00001;ddz = 0.00001;
wz[z_]:=((2/3)(1 + 𝑧)((Log[hhz[𝑧 + ddz]] − Log[hhz[𝑧]])/ddz) − 1)/(1 − om0m(1 + 𝑧)∧3/hhz[𝑧]∧2);wz[z_]:=((2/3)(1 + 𝑧)((Log[hhz[𝑧 + ddz]] − Log[hhz[𝑧]])/ddz) − 1)/(1 − om0m(1 + 𝑧)∧3/hhz[𝑧]∧2);wz[z_]:=((2/3)(1 + 𝑧)((Log[hhz[𝑧 + ddz]] − Log[hhz[𝑧]])/ddz) − 1)/(1 − om0m(1 + 𝑧)∧3/hhz[𝑧]∧2);
imax = 250; zmax = 2.0; dz = zmax/imax;imax = 250; zmax = 2.0; dz = zmax/imax;imax = 250; zmax = 2.0; dz = zmax/imax;
ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];
Do[Do[Do[
ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]
plnum1 = ListPlot[ttable,PlotStyle → {Thick,Blue,PointSize[0.008],Dashing[0.03]},Frame → True,plnum1 = ListPlot[ttable,PlotStyle → {Thick,Blue,PointSize[0.008],Dashing[0.03]},Frame → True,plnum1 = ListPlot[ttable,PlotStyle → {Thick,Blue,PointSize[0.008],Dashing[0.03]},Frame → True,
FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}];
hupar = 0.6;hupar = 0.6;hupar = 0.6;
dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;
plf[ss2] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plf[ss2] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plf[ss2] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plfn[ss2] = Show[plf[ss2],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss2] = Show[plf[ss2],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss2] = Show[plf[ss2],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];
pla[ss2] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss2] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss2] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
planl[ss2] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss2] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss2] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plan[ss2] = Show[pla[ss2],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss2] = Show[pla[ss2],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss2] = Show[pla[ss2],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];
plw[ss2] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss2] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss2] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plw1[ss2] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss2] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss2] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];
fii = −6.77; fi0 = −1.1; ti = 0.035; t0 = 80.18;fii = −6.77; fi0 = −1.1; ti = 0.035; t0 = 80.18;fii = −6.77; fi0 = −1.1; ti = 0.035; t0 = 80.18;
aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];aa = 𝑎[𝑡]; fi = 𝑓 [𝑡];
aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];
aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];
fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];
fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];
ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)
zem = 10∧(−6);zem = 10∧(−6);zem = 10∧(−6);
om0m = 0.3;om0m = 0.3;om0m = 0.3;
om0r = 0.0001;om0r = 0.0001;om0r = 0.0001;
𝜔[fi] = 1;𝜔[fi] = 1;𝜔[fi] = 1;
eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);

eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss

𝜔[fi] + 𝐷[𝜔,fi]fid∧2
2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)

𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;

eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;
eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;
eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);
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eqb4 = 𝑎′[ti] ==
(︀ om0r

4 𝐸∧(−2(fii − fi0))
)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==
(︀ om0r

4 𝐸∧(−2(fii − fi0))
)︀ ∧(1/4) ti∧(−1/2);

sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];
asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];
fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];
as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;
tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];
fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;fis[t1_]:=fsol/.𝑡 → t1;
fis[tt];fis[tt];fis[tt];
tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];
hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;
hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];
hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];hhz[z_]:=hha[1/(𝑧 + 1)];
“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];“=H(z=0)”hhz[0];
fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;fi0n = fsol/.𝑡 → tt;
“=𝜙(z=0)”fi0n;“=𝜙(z=0)”fi0n;“=𝜙(z=0)”fi0n;
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
enf0 =

(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;
“=Ω_0Φ”enf0;“=Ω_0Φ”enf0;“=Ω_0Φ”enf0;
“=t_0”tt ;“=t_0”tt ;“=t_0”tt ;
dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;
asol/.𝑡 → tt;asol/.𝑡 → tt;asol/.𝑡 → tt;
om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;

om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;
asol/.𝑡 → t0;asol/.𝑡 → t0;asol/.𝑡 → t0;
dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];
Ht = dasol/asol;Ht = dasol/asol;Ht = dasol/asol;
dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];
enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)

ppf = (0.5dfsol∧2 + ssfsol); (*
(︁

1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);

wt = ppf/enf;wt = ppf/enf;wt = ppf/enf;
wt/.𝑡 → ti;wt/.𝑡 → ti;wt/.𝑡 → ti;
wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;wft[t1_]:=ppf/enf/.𝑡 → t1;
wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];wfa[a_]:=wft[tas[𝑎]];
wfz[z_]:=wfa[1/(𝑧 + 1)]wfz[z_]:=wfa[1/(𝑧 + 1)]wfz[z_]:=wfa[1/(𝑧 + 1)]
w2 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];w2 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];w2 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotStyle → Blue,FrameLabel → {z, “w(z)”}];
ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;
ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];
Do[Do[Do[
ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]
plnum2 = ListPlot[ttable,PlotStyle → {Thick,Gray,PointSize[0.008]},Frame → True,plnum2 = ListPlot[ttable,PlotStyle → {Thick,Gray,PointSize[0.008]},Frame → True,plnum2 = ListPlot[ttable,PlotStyle → {Thick,Gray,PointSize[0.008]},Frame → True,
FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}];FrameLabel → {z, “w(z)”}]; hupar = 0.2;hupar = 0.2;hupar = 0.2;
dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;dashpar = 0.001; thickpar = 0.007;
plf[ss3] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plf[ss3] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plf[ss3] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plfn[ss3] = Show[plf[ss3],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss3] = Show[plf[ss3],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss3] = Show[plf[ss3],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];
pla[ss3] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},pla[ss3] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},pla[ss3] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},
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LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
planl[ss3] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]}planl[ss3] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]}planl[ss3] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]}
,Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];,Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];,Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plan[ss3] = Show[pla[ss3],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss3] = Show[pla[ss3],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss3] = Show[pla[ss3],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];
plw[ss3] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plw[ss3] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plw[ss3] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plw1[ss3] = Plot[wt, {𝑡, ti, 250tt},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plw1[ss3] = Plot[wt, {𝑡, ti, 250tt},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},plw1[ss3] = Plot[wt, {𝑡, ti, 250tt},PlotStyle → {Green,Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plwn[ss3] = Show[plw[ss3],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss3] = Show[plw[ss3],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss3] = Show[plw[ss3],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];
Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];Clear[aa,fi, aad, aadd, tas,hht,hha];
fii = −6.98; fi0 = −2.16; ti = 0.035; t0 = 75.77;fii = −6.98; fi0 = −2.16; ti = 0.035; t0 = 75.77;fii = −6.98; fi0 = −2.16; ti = 0.035; t0 = 75.77;
aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)aa = 𝑎[𝑡]; fi = 𝑓 [𝑡]; (* 𝜙 function*)
aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];aad = 𝐷[aa, 𝑡];
aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];aadd = 𝐷[aa, {𝑡, 2}];
fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];fid = 𝐷[fi, 𝑡];
fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];fidd = 𝐷[fi, {𝑡, 2}];
ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)ss = 0.1; (*𝑉 (𝜙) = −s𝜙, 𝑠 = 0.1*)
zem = 10∧(−8);zem = 10∧(−8);zem = 10∧(−8);
om0m = 0.3; om0r = 0.0001;𝜔[fi] = 1;om0m = 0.3; om0r = 0.0001;𝜔[fi] = 1;om0m = 0.3; om0r = 0.0001;𝜔[fi] = 1;
eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);eq1 = aadd/aa == −om0m

2aa∧3
(1+Abs[zem]𝐸∧(−2fi))

(1+Abs[zem]𝐸∧(−2fi0)) − om0r
aa∧4𝐸

∧(−2(fi − fi0)) − 1
3 (𝜔[fi]fid∧2 + ssfi);

eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss

𝜔[fi] + 𝐷[𝜔,fi]fid∧2
2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)

𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;eq2 = fidd + 3 fid(aad/aa) − ss
𝜔[fi] + 𝐷[𝜔,fi]fid∧2

2𝜔[fi] == − 6zemom0m𝐸∧(−2fi)
𝜔[fi]aa∧3(1+Abs[zem]𝐸∧(−2fi0)) ;

eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;eqb1 = 𝑓 [ti]==fii;
eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;eqb2 = 𝑓 ′[ti] == 0;
eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);eqb3 = 𝑎[ti] == (4om0r𝐸∧(−2(fii − fi0)))∧(1/4) ti∧(1/2);
eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==
(︀ om0r

4 𝐸∧(−2(fii − fi0))
)︀ ∧(1/4) ti∧(−1/2);eqb4 = 𝑎′[ti] ==

(︀ om0r
4 𝐸∧(−2(fii − fi0))

)︀ ∧(1/4) ti∧(−1/2);
sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];sol2 = NDSolve[{eq1, eq2, eqb1, eqb2, eqb3, eqb4}, {aa,fi}, {𝑡, ti, t0},MaxSteps → 1000000];
asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];asol = Part[Evaluate[𝑎[𝑡]/.sol2], 1];
fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];fsol = Part[Evaluate[𝑓 [𝑡]/.sol2], 1];
as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;as[t1_]:=asol/.𝑡->t1;
tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];tt = Part[FindRoot[as[𝑡]==1, {𝑡, 1}], 1, 2];
fis[t1_]:=fsol/.𝑡 → t1; fis[tt];fis[t1_]:=fsol/.𝑡 → t1; fis[tt];fis[t1_]:=fsol/.𝑡 → t1; fis[tt];
tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];tas[a_]:=Part[FindRoot[as[𝑡] == 𝑎, {𝑡, 1}], 1, 2];
hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;hht[t1_]:=𝐷[asol, 𝑡]/asol/.𝑡->t1;
hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];hha[a_]:=hht[tas[𝑎]];
hhz[z_]:=hha[1/(𝑧 + 1)]; “=H(z=0)”hhz[0];hhz[z_]:=hha[1/(𝑧 + 1)]; “=H(z=0)”hhz[0];hhz[z_]:=hha[1/(𝑧 + 1)]; “=H(z=0)”hhz[0];
fi0n = fsol/.𝑡 → tt; “=𝜙(z=0)”fi0n;fi0n = fsol/.𝑡 → tt; “=𝜙(z=0)”fi0n;fi0n = fsol/.𝑡 → tt; “=𝜙(z=0)”fi0n;
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
enf0 =

(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;enf0 =
(︁
𝜔[fi]dfsol∧2

2 − ssfsol
)︁

/.𝑡 → tt;
“=Ω_0Φ”enf0; “=t_0”tt;“=Ω_0Φ”enf0; “=t_0”tt;“=Ω_0Φ”enf0; “=t_0”tt;
dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;dfsol/.𝑡 → tt;
asol/.𝑡 → tt;asol/.𝑡 → tt;asol/.𝑡 → tt;
om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;om0r

asol∧4𝐸
∧(−2(fsol − fi0))/.𝑡 → ti;

om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;om0m
2asol∧3 /.𝑡 → ti;
dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];dasol = 𝐷[asol, 𝑡];
Ht = dasol/asol;Ht = dasol/asol;Ht = dasol/asol;
dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];dHt = 𝐷[Ht, 𝑡];
dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];dfsol = 𝐷[fsol, 𝑡];
ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];ddfsol = 𝐷[dfsol, 𝑡];
enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)enf = (0.5dfsol∧2 − ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 − s𝜙

)︁
*)

154



ppf = (0.5dfsol∧2 + ssfsol); (*
(︁

1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);ppf = (0.5dfsol∧2 + ssfsol); (*

(︁
1
2
𝑑𝜙
𝑑𝑡 + s𝜙

)︁
*);

wt = ppf/enf; wt/.𝑡 → ti; wft[t1_]:=ppf/enf/.𝑡 → t1;wt = ppf/enf; wt/.𝑡 → ti; wft[t1_]:=ppf/enf/.𝑡 → t1;wt = ppf/enf; wt/.𝑡 → ti; wft[t1_]:=ppf/enf/.𝑡 → t1;
wfa[a_]:=wft[tas[𝑎]]; wfz[z_]:=wfa[1/(𝑧 + 1)]wfa[a_]:=wft[tas[𝑎]]; wfz[z_]:=wfa[1/(𝑧 + 1)]wfa[a_]:=wft[tas[𝑎]]; wfz[z_]:=wfa[1/(𝑧 + 1)]
w3 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,w3 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,w3 = Plot[wfz[𝑧], {𝑧, 0, 2},Frame → True,PlotRange → All,PlotStyle → Blue,
FrameLabel → {z, “w(z)”}]; ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;FrameLabel → {z, “w(z)”}]; ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;FrameLabel → {z, “w(z)”}]; ddz = 0.00001; imax = 250; zmax = 2; dz = zmax/imax;
ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];ttable = Table[{0, 0}, {𝑖, 1, imax}];
Do[Do[Do[
ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]ttable[[𝑖]] = {𝑖dz,wfz[𝑖dz]}, {𝑖, 1, imax}]
plnum3 = ListPlot[ttable,PlotStyle → {Thick,Magenta,PointSize[0.008]},FrameLabel → {z, “w(z)”}];plnum3 = ListPlot[ttable,PlotStyle → {Thick,Magenta,PointSize[0.008]},FrameLabel → {z, “w(z)”}];plnum3 = ListPlot[ttable,PlotStyle → {Thick,Magenta,PointSize[0.008]},FrameLabel → {z, “w(z)”}];
hupar = 0.8; dashpar = 0.001; thickpar = 0.007;hupar = 0.8; dashpar = 0.001; thickpar = 0.007;hupar = 0.8; dashpar = 0.001; thickpar = 0.007;
plf[ss4] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plf[ss4] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plf[ss4] = Plot[fsol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“𝜑(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plfn[ss4] = Show[plf[ss4],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss4] = Show[plf[ss4],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];plfn[ss4] = Show[plf[ss4],Graphics[{Dashed,Line[{{tt,−11.6}, {tt,−10.7}}]}]];
pla[ss4] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss4] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},pla[ss4] = Plot[Log[asol], {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“ln[𝛼(t)]”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
planl[ss4] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss4] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},planl[ss4] = Plot[asol, {𝑡, ti, t0},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “𝛼(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plan[ss4] = Show[pla[ss4],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss4] = Show[pla[ss4],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];plan[ss4] = Show[pla[ss4],Graphics[{Dashed,Line[{{tt,−1.5}, {tt, 1.5}}]}]];
plw[ss4] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss4] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw[ss4] = Plot[wt, {𝑡, ti, t0 − 3},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},Frame → True,FrameLabel → {Style[t,FontSize → 10],Style[“w(t)”,FontSize → 10]},
LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plw1[ss4] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss4] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},plw1[ss4] = Plot[wt, {𝑡, ti, 100tt},PlotStyle → {Hue[hupar],Dashing[dashpar],Thickness[thickpar]},
Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];Frame → True,FrameLabel → {t, “w(t)”},LabelStyle → {FontFamily → “Helvetica”},Axes → False];
plwn[ss4] = Show[plw[ss4],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss4] = Show[plw[ss4],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];plwn[ss4] = Show[plw[ss4],Graphics[{Dashed,Line[{{tt,−1}, {tt,−0.7}}]}]];
g0 = Graphics[{Orange,Line[{{15, 2}, {22, 2}}]}];g0 = Graphics[{Orange,Line[{{15, 2}, {22, 2}}]}];g0 = Graphics[{Orange,Line[{{15, 2}, {22, 2}}]}];
g1 = Graphics[{Magenta,Line[{{15, 0}, {22, 0}}]}];g1 = Graphics[{Magenta,Line[{{15, 0}, {22, 0}}]}];g1 = Graphics[{Magenta,Line[{{15, 0}, {22, 0}}]}];
g2 = Graphics[{Blue,Line[{{15,−2}, {22,−2}}]}];g2 = Graphics[{Blue,Line[{{15,−2}, {22,−2}}]}];g2 = Graphics[{Blue,Line[{{15,−2}, {22,−2}}]}];
g3 = Graphics[{Green,Line[{{15,−4}, {22,−4}}]}];g3 = Graphics[{Green,Line[{{15,−4}, {22,−4}}]}];g3 = Graphics[{Green,Line[{{15,−4}, {22,−4}}]}];
p3 = Show[plf[ss1],plf[ss2],plf[ss3], g0, g1, g2, g3,plf[ss4],PlotRange → {−7, 5},p3 = Show[plf[ss1],plf[ss2],plf[ss3], g0, g1, g2, g3,plf[ss4],PlotRange → {−7, 5},p3 = Show[plf[ss1],plf[ss2],plf[ss3], g0, g1, g2, g3,plf[ss4],PlotRange → {−7, 5},
Epilog → {Text["𝜁𝑚=0", {10, 2}],Text["𝜁𝑚 = 10−8", {10, 0}],Text["𝜁𝑚 = 10−7", {10,−2}],Epilog → {Text["𝜁𝑚=0", {10, 2}],Text["𝜁𝑚 = 10−8", {10, 0}],Text["𝜁𝑚 = 10−7", {10,−2}],Epilog → {Text["𝜁𝑚=0", {10, 2}],Text["𝜁𝑚 = 10−8", {10, 0}],Text["𝜁𝑚 = 10−7", {10,−2}],
Text["𝜁𝑚 = 10−6", {10,−4}],Text[“V(𝜙)=-0.1𝜙”, {40, 4.5}]}];Text["𝜁𝑚 = 10−6", {10,−4}],Text[“V(𝜙)=-0.1𝜙”, {40, 4.5}]}];Text["𝜁𝑚 = 10−6", {10,−4}],Text[“V(𝜙)=-0.1𝜙”, {40, 4.5}]}];
Export[“p3.pdf”,p3]Export[“p3.pdf”,p3]Export[“p3.pdf”,p3]

0 20 40 60 80

-6

-4

-2

0

2

4

t

ϕ
(t
)

ζm=0

ζm=10
-8

ζm=10
-7

ζm=10
-6

V(φ)=-0.1φ

155



ga0 = Graphics[{Orange,Line[{{70, 10}, {78, 10}}]}];ga0 = Graphics[{Orange,Line[{{70, 10}, {78, 10}}]}];ga0 = Graphics[{Orange,Line[{{70, 10}, {78, 10}}]}];
ga1 = Graphics[{Magenta,Line[{{70, 7}, {78, 7}}]}];ga1 = Graphics[{Magenta,Line[{{70, 7}, {78, 7}}]}];ga1 = Graphics[{Magenta,Line[{{70, 7}, {78, 7}}]}];
ga2 = Graphics[{Blue,Line[{{70, 4}, {78, 4}}]}];ga2 = Graphics[{Blue,Line[{{70, 4}, {78, 4}}]}];ga2 = Graphics[{Blue,Line[{{70, 4}, {78, 4}}]}];
ga3 = Graphics[{Green,Line[{{70, 1}, {78, 1}}]}];ga3 = Graphics[{Green,Line[{{70, 1}, {78, 1}}]}];ga3 = Graphics[{Green,Line[{{70, 1}, {78, 1}}]}];
p4 = Show[pla[ss1],pla[ss2],pla[ss4],pla[ss3], ga0, ga1, ga2, ga3,PlotRange → {−1, 26},p4 = Show[pla[ss1],pla[ss2],pla[ss4],pla[ss3], ga0, ga1, ga2, ga3,PlotRange → {−1, 26},p4 = Show[pla[ss1],pla[ss2],pla[ss4],pla[ss3], ga0, ga1, ga2, ga3,PlotRange → {−1, 26},
Epilog → {Text["𝜁𝑚=0", {65, 10}],Text["𝜁𝑚 = 10−8", {65, 7}],Text["𝜁𝑚 = 10−7", {65, 4}],Epilog → {Text["𝜁𝑚=0", {65, 10}],Text["𝜁𝑚 = 10−8", {65, 7}],Text["𝜁𝑚 = 10−7", {65, 4}],Epilog → {Text["𝜁𝑚=0", {65, 10}],Text["𝜁𝑚 = 10−8", {65, 7}],Text["𝜁𝑚 = 10−7", {65, 4}],
Text["𝜁𝑚 = 10−6", {65, 1}],Text[“V(𝜙)=-0.1𝜙”, {40, 25}]}];Text["𝜁𝑚 = 10−6", {65, 1}],Text[“V(𝜙)=-0.1𝜙”, {40, 25}]}];Text["𝜁𝑚 = 10−6", {65, 1}],Text[“V(𝜙)=-0.1𝜙”, {40, 25}]}];
Export[“p4.pdf”,p4]Export[“p4.pdf”,p4]Export[“p4.pdf”,p4]
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gb0 = Graphics[{Orange,Line[{{40,−0.991}, {44,−0.991}}]}];gb0 = Graphics[{Orange,Line[{{40,−0.991}, {44,−0.991}}]}];gb0 = Graphics[{Orange,Line[{{40,−0.991}, {44,−0.991}}]}];
gb1 = Graphics[{Magenta,Line[{{40,−0.994}, {44,−0.994}}]}];gb1 = Graphics[{Magenta,Line[{{40,−0.994}, {44,−0.994}}]}];gb1 = Graphics[{Magenta,Line[{{40,−0.994}, {44,−0.994}}]}];
gb2 = Graphics[{Blue,Line[{{40,−0.997}, {44,−0.997}}]}];gb2 = Graphics[{Blue,Line[{{40,−0.997}, {44,−0.997}}]}];gb2 = Graphics[{Blue,Line[{{40,−0.997}, {44,−0.997}}]}];
p5 = Show[plw1[ss1],plw1[ss2],plw1[ss4], gb0, gb1, gb2,p5 = Show[plw1[ss1],plw1[ss2],plw1[ss4], gb0, gb1, gb2,p5 = Show[plw1[ss1],plw1[ss2],plw1[ss4], gb0, gb1, gb2,
Epilog → {Text["𝜁𝑚=0", {37,−0.991}],Text["𝜁𝑚 = 10−8", {37,−0.994}],Epilog → {Text["𝜁𝑚=0", {37,−0.991}],Text["𝜁𝑚 = 10−8", {37,−0.994}],Epilog → {Text["𝜁𝑚=0", {37,−0.991}],Text["𝜁𝑚 = 10−8", {37,−0.994}],
Text["𝜁𝑚 = 10−7", {37,−0.997}],Text[“V(𝜙)=-0.1𝜙”, {21,−0.978}]}];Text["𝜁𝑚 = 10−7", {37,−0.997}],Text[“V(𝜙)=-0.1𝜙”, {21,−0.978}]}];Text["𝜁𝑚 = 10−7", {37,−0.997}],Text[“V(𝜙)=-0.1𝜙”, {21,−0.978}]}];
Export[“p5.pdf”,p5]Export[“p5.pdf”,p5]Export[“p5.pdf”,p5]
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p1 = Show[plnum0,plnum3,Epilog → {Text["𝜁𝑚=0", {0.4,−0.9998}],p1 = Show[plnum0,plnum3,Epilog → {Text["𝜁𝑚=0", {0.4,−0.9998}],p1 = Show[plnum0,plnum3,Epilog → {Text["𝜁𝑚=0", {0.4,−0.9998}],
Text["𝜁𝑚 = 10−8", {1.1,−0.9999}],Text[“V(𝜙)=-0.1𝜙”, {1,−0.99973}]}];Text["𝜁𝑚 = 10−8", {1.1,−0.9999}],Text[“V(𝜙)=-0.1𝜙”, {1,−0.99973}]}];Text["𝜁𝑚 = 10−8", {1.1,−0.9999}],Text[“V(𝜙)=-0.1𝜙”, {1,−0.99973}]}];
Export[“p1.pdf”,p1]Export[“p1.pdf”,p1]Export[“p1.pdf”,p1]
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gc0 = Graphics[{Orange,Line[{{0.5,−0.994}, {0.7,−0.994}}]}];gc0 = Graphics[{Orange,Line[{{0.5,−0.994}, {0.7,−0.994}}]}];gc0 = Graphics[{Orange,Line[{{0.5,−0.994}, {0.7,−0.994}}]}];
gc1 = Graphics[{Magenta,Line[{{0.5,−0.996}, {0.7,−0.996}}]}];gc1 = Graphics[{Magenta,Line[{{0.5,−0.996}, {0.7,−0.996}}]}];gc1 = Graphics[{Magenta,Line[{{0.5,−0.996}, {0.7,−0.996}}]}];
gc2 = Graphics[{Blue,Line[{{0.5,−0.998}, {0.7,−0.998}}]}];gc2 = Graphics[{Blue,Line[{{0.5,−0.998}, {0.7,−0.998}}]}];gc2 = Graphics[{Blue,Line[{{0.5,−0.998}, {0.7,−0.998}}]}];
p2 = Show[plnum0,plnum1,plnum3, gc0, gc1, gc2,PlotRange → {−1,−0.9877},p2 = Show[plnum0,plnum1,plnum3, gc0, gc1, gc2,PlotRange → {−1,−0.9877},p2 = Show[plnum0,plnum1,plnum3, gc0, gc1, gc2,PlotRange → {−1,−0.9877},
Epilog → {Text["𝜁𝑚=0", {0.35,−0.994}],Text["𝜁𝑚 = 10−8", {0.35,−0.996}],Epilog → {Text["𝜁𝑚=0", {0.35,−0.994}],Text["𝜁𝑚 = 10−8", {0.35,−0.996}],Epilog → {Text["𝜁𝑚=0", {0.35,−0.994}],Text["𝜁𝑚 = 10−8", {0.35,−0.996}],
Text["𝜁𝑚 = 10−7", {0.35,−0.998}],Text[“V(𝜙)=-0.1𝜙”, {1.7,−0.989}]}];Text["𝜁𝑚 = 10−7", {0.35,−0.998}],Text[“V(𝜙)=-0.1𝜙”, {1.7,−0.989}]}];Text["𝜁𝑚 = 10−7", {0.35,−0.998}],Text[“V(𝜙)=-0.1𝜙”, {1.7,−0.989}]}];
Export[“p2.pdf”,p2]Export[“p2.pdf”,p2]Export[“p2.pdf”,p2]
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Appendix E

Numerical code for the calculation of
the basic physical quantities in each

spacetime

E.1 Physical quantities in a cosmological spacetime
When someone deals with a spacetime in Cosmology, it is necessary to calculate some quantities about
the geometry of the spacetime, such as the Christoffel symbols, the Riemann tensor, geodesics and the
field equations of GR, such as the components of the Einstein tensor. During my doctoral studies I have
develop this code, which is useful and works in every spacetime.

Clear[coord,metric, inversemetric, affine, 𝑡, 𝜌, 𝜃, 𝜙]Clear[coord,metric, inversemetric, affine, 𝑡, 𝜌, 𝜃, 𝜙]Clear[coord,metric, inversemetric, affine, 𝑡, 𝜌, 𝜃, 𝜙]
𝑛 = 4;𝑛 = 4;𝑛 = 4;
coord = {𝑡, 𝜌, 𝜃, 𝜙}; (*Defining a list of coordinates*)coord = {𝑡, 𝜌, 𝜃, 𝜙}; (*Defining a list of coordinates*)coord = {𝑡, 𝜌, 𝜃, 𝜙}; (*Defining a list of coordinates*)
metric = {{−(1 − 2𝑀/(𝑎[𝑡]𝜌)), 0, 0, 0}, {0, 𝑎[𝑡]∧2, 0, 0}, {0, 0, (𝑎[𝑡]∧2𝜌∧2), 0},metric = {{−(1 − 2𝑀/(𝑎[𝑡]𝜌)), 0, 0, 0}, {0, 𝑎[𝑡]∧2, 0, 0}, {0, 0, (𝑎[𝑡]∧2𝜌∧2), 0},metric = {{−(1 − 2𝑀/(𝑎[𝑡]𝜌)), 0, 0, 0}, {0, 𝑎[𝑡]∧2, 0, 0}, {0, 0, (𝑎[𝑡]∧2𝜌∧2), 0},
{0, 0, 0, (𝑎[𝑡]∧2𝜌∧2(sin[𝜃])∧2)}}{0, 0, 0, (𝑎[𝑡]∧2𝜌∧2(sin[𝜃])∧2)}}{0, 0, 0, (𝑎[𝑡]∧2𝜌∧2(sin[𝜃])∧2)}}
(*Input the metric as a list of lists, i.e., as a matrix*)(*Input the metric as a list of lists, i.e., as a matrix*)(*Input the metric as a list of lists, i.e., as a matrix*)
metric//MatrixForm;metric//MatrixForm;metric//MatrixForm; inversemetric = Simplify[Inverse[metric]];inversemetric = Simplify[Inverse[metric]];inversemetric = Simplify[Inverse[metric]];
inversemetric//MatrixForm; (*The inverse metric is obtained through matrix inversion*)inversemetric//MatrixForm; (*The inverse metric is obtained through matrix inversion*)inversemetric//MatrixForm; (*The inverse metric is obtained through matrix inversion*)
(*Calculating the Christoffel symbols*)(*Calculating the Christoffel symbols*)(*Calculating the Christoffel symbols*)
affine:=affine:=affine:=
affine =affine =affine =
Simplify[Simplify[Simplify[
Table[(1/2) * Sum[(inversemetric[[𝑖, 𝑠]]) * (𝐷[metric[[𝑠, 𝑗]], coord[[𝑘]]] +𝐷[metric[[𝑠, 𝑘]], coord[[𝑗]]]Table[(1/2) * Sum[(inversemetric[[𝑖, 𝑠]]) * (𝐷[metric[[𝑠, 𝑗]], coord[[𝑘]]] +𝐷[metric[[𝑠, 𝑘]], coord[[𝑗]]]Table[(1/2) * Sum[(inversemetric[[𝑖, 𝑠]]) * (𝐷[metric[[𝑠, 𝑗]], coord[[𝑘]]] +𝐷[metric[[𝑠, 𝑘]], coord[[𝑗]]]
−𝐷[metric[[𝑗, 𝑘]], coord[[𝑠]]]), {𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}]],−𝐷[metric[[𝑗, 𝑘]], coord[[𝑠]]]), {𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}]],−𝐷[metric[[𝑗, 𝑘]], coord[[𝑠]]]), {𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}]],
listaffine:=Table[If[UnsameQ[affine[[𝑖, 𝑗, 𝑘]], 0], {ToString[Γ[𝑖, 𝑗, 𝑘]], affine[[𝑖, 𝑗, 𝑘]]}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛},listaffine:=Table[If[UnsameQ[affine[[𝑖, 𝑗, 𝑘]], 0], {ToString[Γ[𝑖, 𝑗, 𝑘]], affine[[𝑖, 𝑗, 𝑘]]}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛},listaffine:=Table[If[UnsameQ[affine[[𝑖, 𝑗, 𝑘]], 0], {ToString[Γ[𝑖, 𝑗, 𝑘]], affine[[𝑖, 𝑗, 𝑘]]}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛},
{𝑘, 1, 𝑗}],TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing → {2, 2}];{𝑘, 1, 𝑗}],TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing → {2, 2}];{𝑘, 1, 𝑗}],TableForm[Partition[DeleteCases[Flatten[listaffine],Null], 2],TableSpacing → {2, 2}];
(*Calculating the geodesic equations. The geodesic equations are calculated by asking Mathematica(*Calculating the geodesic equations. The geodesic equations are calculated by asking Mathematica(*Calculating the geodesic equations. The geodesic equations are calculated by asking Mathematica
to carry out the sum Γ𝛼𝛽𝛾𝑢𝛽𝑢𝛾 where 𝑢𝛼 are the components of the four velocity. This gives theto carry out the sum Γ𝛼𝛽𝛾𝑢𝛽𝑢𝛾 where 𝑢𝛼 are the components of the four velocity. This gives theto carry out the sum Γ𝛼𝛽𝛾𝑢𝛽𝑢𝛾 where 𝑢𝛼 are the components of the four velocity. This gives the
derivative of 𝑢𝛼 with respect to proper time t. This is replaced by s if the geodesics are spacelike.*)derivative of 𝑢𝛼 with respect to proper time t. This is replaced by s if the geodesics are spacelike.*)derivative of 𝑢𝛼 with respect to proper time t. This is replaced by s if the geodesics are spacelike.*)
geodesic:=geodesic = Simplify[Table[−Sum[affine[[𝑖, 𝑗, 𝑘]]𝑢[𝑗]𝑢[𝑘], {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}], {𝑖, 1, 𝑛}]]geodesic:=geodesic = Simplify[Table[−Sum[affine[[𝑖, 𝑗, 𝑘]]𝑢[𝑗]𝑢[𝑘], {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}], {𝑖, 1, 𝑛}]]geodesic:=geodesic = Simplify[Table[−Sum[affine[[𝑖, 𝑗, 𝑘]]𝑢[𝑗]𝑢[𝑘], {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}], {𝑖, 1, 𝑛}]]
listgeodesic:=Table[{“d/dt”ToString[𝑢[𝑖]], “=”, geodesic[[𝑖]]}, {𝑖, 1, 𝑛}];listgeodesic:=Table[{“d/dt”ToString[𝑢[𝑖]], “=”, geodesic[[𝑖]]}, {𝑖, 1, 𝑛}];listgeodesic:=Table[{“d/dt”ToString[𝑢[𝑖]], “=”, geodesic[[𝑖]]}, {𝑖, 1, 𝑛}];
TableForm[listgeodesic,TableSpacing->{2}];TableForm[listgeodesic,TableSpacing->{2}];TableForm[listgeodesic,TableSpacing->{2}]; (*Calculating and displaying the Riemann tensor*)(*Calculating and displaying the Riemann tensor*)(*Calculating and displaying the Riemann tensor*)
riemann:=riemann = Simplify[Table[riemann:=riemann = Simplify[Table[riemann:=riemann = Simplify[Table[
𝐷[affine[[𝑖, 𝑗, 𝑙]], coord[[𝑘]]] −𝐷[affine[[𝑖, 𝑗, 𝑘]], coord[[𝑙]]]+𝐷[affine[[𝑖, 𝑗, 𝑙]], coord[[𝑘]]] −𝐷[affine[[𝑖, 𝑗, 𝑘]], coord[[𝑙]]]+𝐷[affine[[𝑖, 𝑗, 𝑙]], coord[[𝑘]]] −𝐷[affine[[𝑖, 𝑗, 𝑘]], coord[[𝑙]]]+
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Sum[affine[[𝑠, 𝑗, 𝑙]]affine[[𝑖, 𝑘, 𝑠]] − affine[[𝑠, 𝑗, 𝑘]]affine[[𝑖, 𝑙, 𝑠]],Sum[affine[[𝑠, 𝑗, 𝑙]]affine[[𝑖, 𝑘, 𝑠]] − affine[[𝑠, 𝑗, 𝑘]]affine[[𝑖, 𝑙, 𝑠]],Sum[affine[[𝑠, 𝑗, 𝑙]]affine[[𝑖, 𝑘, 𝑠]] − affine[[𝑠, 𝑗, 𝑘]]affine[[𝑖, 𝑙, 𝑠]],
{𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑛}]]{𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑛}]]{𝑠, 1, 𝑛}], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑛}]]
(*Calculating and displaying the Riemann tensor*)(*Calculating and displaying the Riemann tensor*)(*Calculating and displaying the Riemann tensor*)
listriemann:=Table[If[UnsameQ[riemann[[𝑖, 𝑗, 𝑘, 𝑙]], 0], {ToString[𝑅[𝑖, 𝑗, 𝑘, 𝑙]], riemann[[𝑖, 𝑗, 𝑘, 𝑙]]}]listriemann:=Table[If[UnsameQ[riemann[[𝑖, 𝑗, 𝑘, 𝑙]], 0], {ToString[𝑅[𝑖, 𝑗, 𝑘, 𝑙]], riemann[[𝑖, 𝑗, 𝑘, 𝑙]]}]listriemann:=Table[If[UnsameQ[riemann[[𝑖, 𝑗, 𝑘, 𝑙]], 0], {ToString[𝑅[𝑖, 𝑗, 𝑘, 𝑙]], riemann[[𝑖, 𝑗, 𝑘, 𝑙]]}],
{𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑘 − 1}]{𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑘 − 1}]{𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}, {𝑘, 1, 𝑛}, {𝑙, 1, 𝑘 − 1}]
TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing → {2, 2}]//FullSimplify;TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing → {2, 2}]//FullSimplify;TableForm[Partition[DeleteCases[Flatten[listriemann],Null], 2],TableSpacing → {2, 2}]//FullSimplify;
(*Calculating and displaying the Ricci tensor*)(*Calculating and displaying the Ricci tensor*)(*Calculating and displaying the Ricci tensor*)
ricci:=ricci = Simplify[Table[Sum[riemann[[𝑖, 𝑗, 𝑖, 𝑙]], {𝑖, 1, 𝑛}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑛}]]ricci:=ricci = Simplify[Table[Sum[riemann[[𝑖, 𝑗, 𝑖, 𝑙]], {𝑖, 1, 𝑛}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑛}]]ricci:=ricci = Simplify[Table[Sum[riemann[[𝑖, 𝑗, 𝑖, 𝑙]], {𝑖, 1, 𝑛}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑛}]]
listricci:=Table[If[UnsameQ[ricci[[𝑗, 𝑙]], 0], {ToString[𝑅[𝑗, 𝑙]], ricci[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]listricci:=Table[If[UnsameQ[ricci[[𝑗, 𝑙]], 0], {ToString[𝑅[𝑗, 𝑙]], ricci[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]listricci:=Table[If[UnsameQ[ricci[[𝑗, 𝑙]], 0], {ToString[𝑅[𝑗, 𝑙]], ricci[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]
TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing → {2, 2}];TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing → {2, 2}];TableForm[Partition[DeleteCases[Flatten[listricci],Null], 2],TableSpacing → {2, 2}];
(*Calculating the scalar curvature*)(*Calculating the scalar curvature*)(*Calculating the scalar curvature*)
scalar = Simplify[Sum[inversemetric[[𝑖, 𝑗]]ricci[[𝑖, 𝑗]], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}]];scalar = Simplify[Sum[inversemetric[[𝑖, 𝑗]]ricci[[𝑖, 𝑗]], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}]];scalar = Simplify[Sum[inversemetric[[𝑖, 𝑗]]ricci[[𝑖, 𝑗]], {𝑖, 1, 𝑛}, {𝑗, 1, 𝑛}]];
(*Calculating the Einstein tensor 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1

2𝑔𝜇𝜈𝑅 *)(*Calculating the Einstein tensor 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 *)(*Calculating the Einstein tensor 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 *)

einstein:=einstein = Simplify[ricci − (1/2)scalar * metric]einstein:=einstein = Simplify[ricci − (1/2)scalar * metric]einstein:=einstein = Simplify[ricci − (1/2)scalar * metric]
listeinstein:=Table[If[UnsameQ[einstein[[𝑗, 𝑙]], 0], {ToString[𝐺[𝑗, 𝑙]], einstein[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]listeinstein:=Table[If[UnsameQ[einstein[[𝑗, 𝑙]], 0], {ToString[𝐺[𝑗, 𝑙]], einstein[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]listeinstein:=Table[If[UnsameQ[einstein[[𝑗, 𝑙]], 0], {ToString[𝐺[𝑗, 𝑙]], einstein[[𝑗, 𝑙]]}], {𝑗, 1, 𝑛}, {𝑙, 1, 𝑗}]
TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing->{2, 2}];TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing->{2, 2}];TableForm[Partition[DeleteCases[Flatten[listeinstein],Null], 2],TableSpacing->{2, 2}];
(*A vanishing table means that the vacuum Einstein equation is satisfied!*)(*A vanishing table means that the vacuum Einstein equation is satisfied!*)(*A vanishing table means that the vacuum Einstein equation is satisfied!*)
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Appendix F

Spinning particle in an expanding
Universe

F.1 Christoffel symbols
In order to derive the system of equations (8.26) and (8.27), we need the Christoffel symbols of the metric
(8.11). Assuming that (𝑅𝑠)𝑛 = 0 for 𝑛 > 1, the non-vanishing components are

Γ0
00 = 𝑎̇

2𝑎2𝜌
𝑅𝑠 +𝑂(𝑅2

𝑠)

Γ1
01 = 1

2𝑎𝜌𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ0
11 = 𝑎𝑎̇+ 3

2𝜌 𝑎̇𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ0
22 = 𝜌2𝑎𝑎̇+ 3

2𝜌𝑎̇𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ0
33 = 𝑎𝑎̇𝜌2 sin2 𝜃 + 3

2 𝑎̇𝜌 sin2 𝜃𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ1
00 = 1

2𝑎3𝜌2𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ1
01 = 𝑎̇

𝑎
− 𝑎̇

2𝑎2𝜌
𝑅𝑠 +𝑂(𝑅2

𝑠)

Γ1
11 = − 1

2𝜌2𝑎
𝑅𝑠 +𝑂(𝑅2

𝑠)

Γ1
22 = −𝜌+ 1

2𝑎𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ1
33 = −𝜌 sin2 𝜃 + sin2 𝜃

2𝑎 𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ2
02 = 𝑎̇

𝑎
− 𝑎̇

2𝑎2𝜌
𝑅𝑠 +𝑂(𝑅2

𝑠)

Γ2
12 = 1

𝜌
− 1

2𝑎𝜌2𝑅𝑠 +𝑂(𝑅2
𝑠)

Γ2
33 = − sin 𝜃 cos 𝜃

Γ3
03 = Γ2

02

Γ3
13 = Γ2

12

Γ3
23 = cot 𝜃 (F.1)
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where 𝑎̇ = 𝑑𝑎
𝑑𝑡 and 𝑅𝑠 = 2𝐺𝑀

𝑐2 in normal units.

F.2 Riemann tensor
Similarly, we assume that (𝑅𝑠)𝑛 = 0 for 𝑛 > 1 the non zero components of the Riemann tensor, which
are necessary for the derivation of the equations of motion (8.26) and (8.27), are

𝑅1
001 = 𝑎̈

𝑎
+ 1
𝑎3𝜌3 (1 − 1

2𝑎𝜌
2𝑎̈− 1

2𝜌
2𝑎̇2)𝑅𝑠 +𝑂(𝑅2

𝑠)

𝑅1
313 = 𝜌2 sin2 𝜃𝑎̇2 − sin2 𝜃

2𝑎𝜌 (1 − 2𝜌2𝑎̇2)𝑅𝑠 +𝑂(𝑅2
𝑠)

𝑅3
003 = 𝑎̈

𝑎
− 1

2𝑎3𝜌3 (1 + 𝑎𝜌𝑎̈+ 𝜌2𝑎̇2)𝑅𝑠 +𝑂(𝑅2
𝑠)

𝑅3
113 = −𝑎̇2 + 1

2𝑎𝜌3 (1 − 2𝜌2𝑎̇2)𝑅𝑠 +𝑂(𝑅2
𝑠)

(F.2)
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