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Introduction

A fundamental concept in submanifold theory is the notion of the relative nullity
distribution that was introduced by Chern and Kuiper [13]. The relative nullity of
a submanifold in a space form is defined as the kernel of the second fundamental
form. The index of relative nullity at a point of the submanifold is just the dimension
of the kernel of the second fundamental form at that point. The kernels form an
integrable distribution along any open subset where the index is constant and the
leaves of the foliation are (part of) affine subspaces in the ambient space. Moreover,
if the submanifold is complete then the leaves are also complete along the open subset
where the index reaches its minimum; see [14].

A frequent theme in submanifold theory is to find geometric conditions for a
complete isometric immersion f : Mm → Rn with positive index of relative nullity
ν ≥ k to be a k-cylinder. This means that Mm splits as a Riemannian product
Mm = Mm−k × Rk and there is an isometric immersion g : Mm−k → Rn−k such that
f = g × idRk . The theory of the relative nullity distribution is an important tool
for the characterization of cylindrical submanifolds. In order to conclude that f is a
cylinder one has to show that the images under f of the leaves of relative nullity are
parallel in the ambient space.

A fundamental result asserting that a complete isometric immersion f : Mm → Rn

with positive index of relative nullity must be a k-cylinder is Hartman’s theorem [40]
that requires the Ricci curvature of Mm to be nonnegative; see also [52]. A key
ingredient for the proof is the famous Cheeger-Gromoll splitting theorem [10], which
is used to conclude that the leaves of the minimum relative nullity split intrinsically
as a Riemannian factor. Even for hypersurfaces, the same conclusion does not hold
if instead we assume that the Ricci curvature is nonpositive. Notice that the latter is
always the case if f is a minimal immersion. Counterexamples easy to construct are
the complete irreducible ruled hypersurfaces of any dimension discussed in [19, p. 409].
Some of the many papers containing characterizations of submanifolds as cylinders
without the requirement of minimality are [15,17,38,40,52,54,58]. When adding the
condition of being minimal we have [1, 24, 35,36,38,41,64,66].
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2 CONTENTS

In this thesis, we aim to extend the aforementioned results for the class of complete
minimal immersions f : Mm → Qn

c with rank at most two, or equivalently, with index
of relative nullity at least m − 2. We would like to mention that the hypersurface
case was treated in [41–43,59,60].

The structure of this thesis is as follows: After some background material in
submanifold theory introduced in Chapter 1, we present the original results of the
thesis in Chapters 2,3,4 and 5.

More precisely, in Chapter 2 we prove a crucial lemma concerning three dimen-
sional minimal submanifolds in space forms with index of relative nullity one. As it
turns out, the three dimensional case is the most interesting one.

In Chapter 3, we investigate complete minimal submanifolds f : Mm → Rn with
positive index of relative nullity ν ≥ m− 2. We prove that the submanifold must be
a cylinder over a minimal surface, under the mild assumption that the Omori-Yau
maximum principle for the Laplacian holds on Mm; see [21]. The category of complete
Riemannian manifolds for which the Omori-Yau maximum principle is valid is quite
large. For instance, it contains the manifolds whose Ricci curvature does not decay
too fast to −∞. It also contains the class of properly immersed submanifolds in a
space form whose norm of the mean curvature vector is bounded [56, Example 1.14].
Our result is truly global in nature, since there are plenty of non complete minimal
submanifolds of dimension m having constant index of relative nullity m − 2 that
are not part of a cylinder on any open subset. They can all locally be parametrized
in terms of a certain class of elliptic surfaces; see [15, Theorem 22]. Consequently,
what remains a challenging open problem is the existence of minimal complete and
noncylindrical three dimensional submanifolds with ν ≥ 1.

In Chapter 4, we study complete minimal immersions f : Mm → Sn in Euclidean
spheres with positive index of relative nullity at least m− 2 at any point. These are
austere submanifolds in the sense of Harvey and Lawson [44] and were studied by
Bryant [7]. For any dimension and codimension there is an abundance of examples
of non-complete submanifolds which are fully described by Dajczer and Florit [15]
in terms of a class of surfaces, called elliptic, for which the ellipse of curvature of a
certain order is a circle at any point. Under the assumption of completeness, it turns
out that any minimal submanifold in Euclidean sphere is either totally geodesic or
has dimension three. In the latter case, there are plenty of examples, even compact
ones. Moreover, under the mild assumption that the Omori-Yau maximum principle
holds on Mm we provide a complete local parametric description of such submanifolds
in terms of 1-isotropic surfaces in Euclidean space. These are the minimal surfaces
for which the standard ellipse of curvature is a circle at any point; see [22]. For these
surfaces, there exists a Weierstrass type representation that generates all simply-
connected ones.



CONTENTS 3

Chapter 5 is devoted to minimal submanifolds in the hyperbolic space Hn and will
be divided in three parts. In the first part, we study complete minimal submanifolds
f : Mm → Hn having index of relative nullity at least m−2 at any point. In contrast
to Euclidean and spherical case already being studied, the condition that the index
of relative nullity is at least m − 2 is now quite less restrictive. Nevertheless, we
have reasons to believe that the three-dimensional case is still quite special and this
is why we obtain a characterization of a class of submanifolds that is contained in
the following description. We prove that any complete three dimensional minimal
submanifold f : M3 → Hn having index of relative nullity at least one at any point,
is either totally geodesic or a generalized cone over a complete minimal surface lying
in an equidistant submanifold of Hn, under the assumption that the scalar curvature
is bounded from below; see [23].

The second part of Chapter 5 is devoted to minimal submanifolds f : Mm → Hn

in arbitrary codimension, whose index of relative nullity is m − 2 [49]. Our goal
is to parametrically describe these submanifolds as subbundles of the normal bun-
dle of certain elliptic spacelike surfaces in the Lorentzian space or in the de Sitter
space. Therefore, the assumption of completeness in the characterization of three
dimensional manifolds in hyperbolic space in essential, since there exist local exam-
ples other than generalized cones. Moreover, using this parametrization, one can
construct an abundance of complete submanifolds of any dimension other than gen-
eralized cones, as can been seen from the results in [9], [32] and [47]. Another way
of constructing complete minimal submanifolds in the hyperbolic space, via regular
fibers of harmonic morphisms to Riemann surfaces, was obtained by Gudmundsson
in [39].

In the third and last part of the thesis, we introduce a new class of minimal im-
mersions F : Mn → Hn+2, n ≥ 3, that are (n − 2)-ruled [49]. This means that they
carry an integrable tangent distribution of dimension n−2, whose leaves are mapped
diffeomorphically by F onto open subsets of totally geodesic (n−2)-hyperbolic spaces
of Hn+2. Furthermore, we provide a characterization for them among (n − 2)-ruled
minimal submanifolds of rank 4 (if n ≥ 4) or 3 (if n = 3). If the manifold is simply
connected, we show that it allows a one-parameter family of equally ruled minimal iso-
metric deformations that are genuine. The deformations are obtained while keeping
fixed the normal bundle and the induced connection, but now the second fundamen-
tal form relates to the initial one in a much more complex form; in particular, no
orthogonal tensor in involved. It is an interesting question if the above associated
family of complete ruled minimal submanifolds exhausts all examples in the same
class that admit genuine deformations. Of course, a much more challenging classifi-
cation problem for submanifolds of rank 4 would be to drop one of the conditions,
for instance being minimal or ruled.
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The notion of genuine rigidity was introduced by Dajczer and Florit [16]. This is
the right setting to study rigidity problems for higher codimension submanifolds. This
concept relies on the idea that, as we discard congruent submanifolds when analyzing
rigidity, we should also discard deformations that are induced by deformations of a
bigger dimensional submanifold containing the original one. An isometric immersion
f̂ : Mn → Hn+p is called a genuine deformation of a given isometric immersion
f : Mn → Hn+p, with p ≥ 2, if there is no open subset U ⊂ Mn along which f |U
and f̂ |U extend isometrically. That f : Mn → Hn+p and f̂ : Mn → Hn+p extend
isometrically means that there is an isometric embedding j : Mn 7→ Nn+q, 1 ≤ q ≤ p,
into a Riemannian manifold Nn+q and there are isometric immersions F : Nn+q →
Hn+p and F̂ : Nn+q → Hn+p such that f = F ◦ j and f̂ = F̂ ◦ j, i.e., the following
diagram commutes:

Mn Nn+q

Hn+p

Hn+p

f

f̂

F

F̂

j �
��

@
@R

��
��
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CHAPTER 1

Background material on submanifold
theory

In this chapter, we set up the notation and give a brief overview of the background
material needed for the rest of the thesis.

Let (Mm, 〈· , ·〉) be a Riemannian manifold with Levi-Civita connection ∇ and let
X(M) denote the set of smooth local vector fields of Mm.

The (1, 3)-curvature tensor R : X(M)× X(M)× X(M)→ X(M) is defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

The sectional curvature K(X ∧ Y ) at the point x ∈ Mm and along the plane
spanned by the orthonormal vectors X, Y ∈ TxM is defined by

K(X ∧ Y ) = 〈R(X, Y )Y,X〉.

A complete and simply-connected n-dimensional Riemannian manifold with con-
stant sectional curvature c is called a space form and is denoted by Qn

c . It is well
known that Qn

c is the Euclidean space Rn, the Euclidean sphere Sn or hyperbolic
space Hn according to c being 0, 1 or −1, respectively. In the sequel, we denote by
∇̃ the Levi-Civita connection of Qn

c .

A differentiable map f : Mm → Qn
c is called an immersion if the differential

f∗(x) : TxM
m → Tf(x)Qn

c is injective for any point x ∈ Mm. An immersion f is said
to be an isometric immersion if, moreover,

〈X, Y 〉Mm = 〈f∗(x)X, f∗(x)Y 〉Qnc ,

for all x ∈ Mm and X, Y ∈ TxM. The number p = n −m is called the codimension
of f and for simplicity we refer to f as a submanifold of Qn

c .

5



6 1.1. THE GAUSS AND WEINGARTEN FORMULAS

Given an isometric immersion f : Mm → Qn
c we denote by f ∗TQn

c the induced
bundle over Mm whose fiber at x ∈ Mm is Tf(x)Qn

c . Moreover, we denote by ∇̃ the
induced connection on f ∗TQn

c . The orthogonal complement of f∗(x)TxM
m in Tf(x)Qn

c

is called the normal space of f at x and is denoted by NfM(x). The normal bundle
NfM of f is the vector subbundle of f ∗TQn

c whose fiber at x ∈ Mm is NfM(x).
In the sequel, the set of smooth sections of the normal bundle NfM is denoted by
Γ(NfM). Given vector fields X, Y ∈ X(M) we decompose

∇̃Xf∗Y =
(
∇̃Xf∗Y

)>
+
(
∇̃Xf∗Y

)⊥
(1.1)

with respect to the orthogonal decomposition

f ∗TQn
c = f∗TM ⊕NfM.

One can easily verify that (
∇̃Xf∗Y

)>
= f∗(∇XY ),

where ∇ is the Levi-Civita connection of Mm. Moreover, the map

α : X(M)× X(M)→ Γ(NfM)

defined by

α(X, Y ) =
(
∇̃Xf∗Y

)⊥
is called the second fundamental form of f .

1.1 The Gauss and Weingarten formulas

From (1.1) we obtain the following first basic formula of the theory of submanifolds,
known as the Gauss formula

∇̃Xf∗Y = ∇XY + α(X, Y ). (1.2)

For every normal vector field ξ ∈ Γ(NfM), the endomorphism Aξ : TM → TM
defined by

〈AξX, Y 〉 = 〈α(X, Y ), ξ〉

is called the shape operator of f in the direction ξ. Now, the second basic formula,
known as the Weingarten formula, is

∇̃Xξ = −f∗AξX +∇⊥Xξ,

where ∇⊥ is the normal connection of f .
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The mean curvature vector of f at x ∈Mm is the normal vector defined by

H(x) =
1

m

m∑
i=1

α(Xi, Xi)

where X1, . . . , Xm is an orthonormal basis of TxM . The immersion f is called minimal
at x ∈Mm if H(x) = 0. We say that f is a minimal immersion if the mean curvature
vector vanishes identically, everywhere on Mm. It is well known that any minimal
immersion in a space form is real analytic; see [55, Theorem 2.2].

1.2 Gauss-Codazzi-Ricci equations

Using the Gauss-Weigarten formulas and projecting into tangent and normal compo-
nents we derive the compatibility equations of an isometric immersion f : Mm → Qn

c .
These fundamental equations, called the Gauss-Codazzi-Ricci equations are listed
below:

〈R(X, Y )Z,W 〉 = c〈(X ∧ Y )Z,W 〉+ 〈α(X,W ), α(Y, Z)〉 − 〈α(X,Z), α(Y,W )〉,
(∇YAξ)X − A∇⊥Y ξX = (∇XAξ)Y − A∇⊥XξY,

〈R⊥(X, Y )ξ, η〉 = 〈[Aξ, Aη]X, Y 〉,
where (X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y and R⊥ denotes the curvature tensor of the
normal bundle NfM .

The Ricci tensor Ric : X(M)× X(M)→ C∞(M) is defined by

Ric(X, Y ) = trace (Z 7→ R(Z,X)Y ) .

The Ricci curvature in the direction of a unit vector field X ∈ X(M) is defined by

Ric(X) = Ric(X,X).

Finally, the scalar curvature s ∈ C∞(M) is defined by

s = trace Ric .

Let {e1, . . . , em} be a local orthonormal tangent frame. Using the Gauss equation
we derive for X, Y ∈ X(M) that

Ric(X, Y ) =
m∑
i=1

〈R(ei, X)Y, ei〉

= c(m− 1)〈X, Y 〉+
m∑
i=1

(
〈α(ei, ei), α(X, Y )〉 − 〈α(X, ei), α(Y, ei)〉

)
= c(m− 1)〈X, Y 〉+m〈α(X, Y ), H〉 −

m∑
i=1

〈α(X, ei), α(Y, ei)〉. (1.3)



8 1.3. UMBILICAL ISOMETRIC IMMERSIONS

Taking traces in (1.3) yields

s = m(m− 1)c+m2‖H‖2 − ‖α‖2, (1.4)

where

‖α‖2 =
m∑

i,j=1

‖α(ei, ej)‖2

is the square of the norm of the second fundamental form.

1.3 Umbilical isometric immersions

An isometric immersion f : Mm → Qn
c is said to be umbilical at x ∈ Mm if there

exists η ∈ NfM(x) such that

α(X, Y ) = 〈X, Y 〉η, for all X, Y ∈ TxM.

Then, η is the mean curvature vector H(x) of f at x. Notice, that f being umbilical
at x is equivalent to

Aξ = 〈H(x), ξ〉I, for all ξ ∈ NfM(x),

where I is the identity endomorphism on TxM . A submanifold is called totally um-
bilical if it is umbilical at every point.

Using the Codazzi and Ricci equations, one can show that an umbilical isometric
immersion f : Mm → Qn

c has parallel mean curvature vector field with respect to
the normal connection ∇⊥, i.e., ∇⊥XH = 0 for all X ∈ TM , and flat normal bundle,
i.e., R⊥ = 0. Moreover, the Gauss equation yields that Mm has constant sectional
curvature c+ ‖H‖2.

We view the hyperbolic space Hn inside the Lorentz space (Ln+1, 〈· , ·〉) equipped
with the indefinite metric 〈· , ·〉 of signature (1, n). Moreover, we denote by Sn1 the
Lorentzian sphere inside Ln+1, called de Sitter space. It is well known that every
totally umbilical hypersurface Qn−1 of Hn arises as the intersection of Hn with a
hyperplane

P (v, d) =
{
x ∈ Ln+1 : 〈x, v〉 = d

}
,

with 〈v, v〉+ d2 > 0. Its unit normal vector field is

ξ =
1

〈v, v〉+ d2
(v + dx), x ∈ Qn−1.

Using the Gauss and Weingarten formulas if follows that the sectional curvature of
Qn−1 is given by

K = − 〈v, v〉
〈v, v〉+ d2

.
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Observe that if d = 0, then the hypersurface Qn−1 is totally geodesic, i.e., α(X, Y ) = 0
for X, Y ∈ TQn−1. Moreover, Qn−1 is a geodesic sphere if K > 0, a horosphere if
K = 0 and an equidistant hypersurface if K < 0.

The classification of totally umbilical submanifolds of Hn reduces to the classifica-
tion of totally umbilical hypersurfaces, see [61, Lemma 25]. Namely, if Qk is a totally
umbilical submanifold of Hn, then Qk is contained in a totally geodesic submanifold
of dimension k + 1 of Hn. Similar conclusions hold true for totally umbilical sub-
manifolds of de Sitter space. More precisely, if Qk is a totally umbilical submanifold
of Sn1 , then Qk is contained in the subspace arising as the intersection of Sn1 with a
hyperplane of dimension k+ 1 of Ln+1. If in addition this hyperplane passes through
the origin of Ln+1, then Qk is a totally geodesic submanifold.

1.4 Relative nullity distribution

Let Mm be a Riemannian manifold and f : Mm → Qn
c be an isometric immersion.

The relative nullity subspace D(x) of f at any point x ∈Mm is the tangent subspace
given by

D(x) = {X ∈ TxM : α(X, Y ) = 0 for all Y ∈ TxM} ,
i.e., is the kernel of its second fundamental form α : TM × TM → NfM with values
in the normal bundle. The dimension ν(x) of D(x) is called the index of relative
nullity of f at x ∈ Mm. This notion was introduced by Chern and Kuiper [13] and
turned out to be a fundamental concept in the theory of isometric immersions. For
simplicity, we call ρ(x) = m− ν(x) the rank of f at x ∈Mm. Notice that ρ(x) is the
rank of the Gauss map of f at x ∈Mm.

A smooth distribution E of Mm is called totally geodesic if∇XY ∈ Γ(E) whenever
X, Y ∈ Γ(E). We recall in the following proposition some well-known results for the
relative nullity distribution.

Proposition 1.1. Let U ⊂Mm be an open subset where the index of relative nullity
ν = s > 0 is constant. Then

(i) The index of relative nullity ν is upper semicontinuous. In particular, the subset

M0 = {x ∈Mm : ν(x) = ν0}

where ν attains its minimum value ν0 is open.

(ii) The relative nullity distribution x 7→ D(x) is smooth on U .

(iii) The kernels form a totally geodesic and hence integrable distribution D along
U . The leaves of D are totally geodesic submanifolds of Mm and their images
under f are (part of) affine subspaces in the ambient space.
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(iv) If γ : [0, b] → Mm is a geodesic curve such that γ([0, b)) is contained in a leaf
of relative nullity contained in U , then ν(γ(b)) = s.

(v) If Mm is complete then the leaves are also complete along M0.

Proof: See [14, Proposition 5.2 and 5.3]

1.5 Splitting tensor

In this section we define the notion of the splitting tensor which measures how the
conullity distribution is twisting along the tangent bundle of our manifold.

The conullity subspace of f at x ∈ Mm is the orthogonal complement D⊥(x) of
D(x) in the tangent space TxM . We write

X = Xv +Xh

according to the orthogonal splitting TM = D ⊕D⊥ and denote

∇h
XY = (∇XY )h and ∇v

XY = (∇XY )v.

In the sequel we work on the open subset U of Mm where the index of relative nullity
in constant. In order to investigate how D⊥ is twisting along the tangent space TM
we introduce the so-called splitting tensor C : Γ(D)× Γ(D⊥)→ Γ(D⊥) defined by

C(T,X) = −∇h
XT

for any T ∈ Γ(D) and X ∈ Γ(D⊥). It is immediate that C is C∞(M)-linear with
respect to the second variable. That is also C∞(M)-linear with respect to the first
variable follows from

C(φT,X) = −∇h
X(φT ) = −φ∇h

XT = φC(T,X), φ ∈ C∞(M).

Therefore, the value of C(T,X) at a point x ∈Mm depends only on the values of T
and X at x. We will write CTX instead of C(T,X), and also regard C as a map

C : Γ(D)→ Γ(End(D⊥)).

Recall that a distribution E is integrable if for every X, Y ∈ Γ(E) the Lie bracket
[X, Y ] lies in Γ(E). Hence, the distribution D⊥ is integrable if and only if CT is self
adjoint. This follows from

〈CTX, Y 〉 − 〈X,CTY 〉 = −〈∇h
XT, Y 〉+ 〈X,∇h

Y T 〉
= −〈∇XT, Y 〉+ 〈X,∇Y T 〉
= 〈∇XY −∇YX,T 〉
= 〈[X, Y ], T 〉,



1.5. SPLITTING TENSOR 11

for X, Y ∈ Γ(D⊥) and T ∈ Γ(D). In this case, CT coincides with the shape operator
of the leaves of D⊥ in Mm with respect to the normal direction T .

Moreover, using the fact that the distribution D is totally geodesic we obtain that

〈∇TX,S〉 = −〈X,∇TS〉 = 0,

where T, S ∈ Γ(D) and X ∈ Γ(D⊥). Thus, ∇TX ∈ Γ(D⊥) and one can define the
covariant derivative of CT by

(∇SCT )X = ∇S(CTX)− CT (∇SX).

The next proposition will play a key role in the sequel.

Proposition 1.2. The following differential equations for the splitting tensor hold:

(i) ∇SCT = CTCS + C∇ST + c〈S, T 〉I. (1.5)

In particular, the operator Cγ′ along a geodesic γ contained in a leaf of D
satisfies the differential equation

D

dt
Cγ′ = C2

γ′ + cI.

(ii) (∇h
XCT )Y − (∇h

YCT )X = C∇vXTY − C∇vY TX (1.6)

and

(iii) ∇TAξ = AξCT + A∇⊥T ξ (1.7)

for any S, T ∈ Γ(D), X, Y ∈ Γ(D⊥) and ξ ∈ Γ(NfM), where I stands for the identity
endomorphism on D⊥. In particular, the endomorphism AξCT of D⊥ is symmetric,
i.e.,

AξCT = Ct
TAξ.

Proof: The equations (1.5) and (1.6) are derived using the Gauss equation and the
fact that D is totally geodesic, whereas equation (1.7) is an easy consequence of the
Codazzi equation. For further details see [14] or [19].
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1.6 Submanifolds with umbilical conullity

Let U be and open subset of Mm where the index of relative nullity of the isometric
immersion f : Mm → Qn

c is constant. The simplest possible structures of the splitting
tensor occur when either C vanishes identically or ImC is spanned by the identity
endomorphism I of D⊥.

A smooth distribution E ⊂ TM is called umbilical if there exists a smooth section
V of the orthogonal complement E⊥ of E, called the mean curvature vector field of
E, such that

〈∇XY, T 〉 = 〈X, Y 〉〈V, T 〉,

for all X, Y ∈ Γ(E) and T ∈ Γ(E⊥). An umbilical distribution is always integrable
and its leaves are umbilical sumbanifolds of Mm.

We call an isometric immersion f : Mm → Rn a k-cylinder over g : Mm−k → Rn−k

if Mm = Mm−k × Rk and f = g × IdRk , where IdRk : Rk → Rk is the identity map.
The following proposition gives a sufficient condition for an isometric immersion to
reduce codimension.

Proposition 1.3. Let f : Mm → Qn
c be an isometric immersion. If there exists

a parallel subbundle E of the normal bundle NfM with rank p < n − m such that

N f
1 (x) ⊂ E(x) for each point x ∈Mm, then there exists a totally geodesic submanifold

Qm+p
c in Qn

c such that f(M) ⊂ Qm+p
c , i.e., f admits reduction of codimension to p.

Proof: See [14, Proposition 4.1].

Proposition 1.4. Let f : Mm → Qn
c be an isometric immersion with constant index

of relative nullity ν(x) = ν0 > 0. If the conullity distribution is totally geodesic, then
c = 0 and f is locally a k-cylinder over an isometric immersion g : Mm−ν0 → Rm−ν0 .

Proof: Since the splitting tensor vanishes identically, it follows from (1.5) that c = 0.
The distribution D⊥ being totally geodesic yields

∇̃Xf∗(T ) = f∗(∇XT ) + αf (X,T ) = f∗(∇XT ) ∈ f∗(D)

for all X ∈ Γ(D⊥) and T ∈ Γ(D). Thus, f∗(D) is constant in Rn along any leaf L of
D⊥. Set Mm−ν0 = L and g = f ◦ i, where i : L → Mm is the inclusion. Then, due
to Proposition 1.3 the immersion g reduces codimension to n − ν0 and f coincides
locally with the cylinder over g.

Corollary 1.5. Let f : Mm → Rn be an isometric immersion with constant index
of relative nullity ν = s > 0 and complete leaves of relative nullity. If the splitting
tensor C vanishes, then f is a s-cylinder.
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Proof: That C = 0 is equivalent to D being parallel in Mm. Consequently, the images
via f of the leaves of D are also parallel in Rn.

Let Qn−k
c̃ denote a complete connected submanifold of Qn

c . For c = −1, it is well
known that Qn−k

c̃ is either a totally geodesic submanifold of a geodesic sphere, or an
equidistant hypersurface, or a horosphere, according to whether c̃ > 0, c̃ < 0 or c̃ = 0,
respectively.

Consider an isometric immersion g : Lm−k → Qn−k
c̃ and i : Qn−k

c̃ → Qn
c the umbili-

cal inclusion. Then, the normal bundle of h = i ◦ g : Lm−k → Qn
c splits orthogonally

as

NhL = i∗NgL⊕NiQ
n−k
c ,

where L = Lm−k and NiQ
n−k
c is regarded as a subbundle of NhL.

Let G : NiQ
n−k
c → Qn

c be defined by

G(x,w) = expg(x)w,

where exp denotes the exponential map of Qn
c . We denote by Mm the open subset

of NiQ
n−k
c where G is an immersion, endowed with the metric induced by the map

G. The generalized cone in Qn
c over g : Lm−k → Qn−k

c̃ is the isometric immersion
Fg : Mm → Qn

c , defined by Fg = G|Mm .

Proposition 1.6. Let f : Mm → Qn
c be an isometric immersion with constant index

of relative nullity ν(x) = ν0 > 0. If the conullity distribution is umbilical, then f
coincides locally with the generalized cone over g : Mm−ν0 → Qn−ν0

c̃ into an umbilical
submanifold Qn−ν0

c̃ of Qn
c . Moreover, the submanifold is globally a generalized cone if

the relative nullity leaves are complete.

Proof: Let j : L→Mm be the inclusion of a leaf L of D⊥ into Mm and let h = f ◦ j.
Then, the normal bundle NhL of h splits as

NhL = f∗(NjL)⊕NfM = f∗(D)⊕NfM.

By assumption, there exists S ∈ Γ(D) such that

CT = 〈T, S〉I,

for all T ∈ Γ(D). Hence,

∇̃Xf∗(T ) = f∗(∇XT ) + αf (X,T )

= −f∗(CTX) + f∗(∇v
XT )

= −〈T, S〉f∗(X) + f∗(∇v
XT )
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for all T ∈ Γ(D), where ∇̃ is the induced connection on f ∗TQn
c . It follows that

the subbundle L = f∗(D) of NhL is parallel with respect to the normal connection
and that the shape operator of h with respect to any section η = f∗(T ) of L, where
T ∈ Γ(D), is given by

Ahη = 〈T, S〉I.

Hence, h(L) is contained in an umbilical submanifold Qn−ν0
c̃ of Qn

c . This means
that there exists an umbilical inclusion i : Qn−ν0

c̃ → Qn
c and an isometric immersion

g : Mm−ν0 = L → Qn−ν0
c̃ such that h = i ◦ g. Moreover, at any point x ∈ L the

fiber L(x) = f∗(D)(x) coincides with the normal space of i at i(x). Therefore the
generalized cone over g coincides locally with f . The global statement is immediate.

1.7 Elliptic surfaces

Denote by Qn
c,ε the space form of constant sectional curvature c with index (signature)

ε = 0, 1. If ε = 0 then the metric on Qn
c,0 is Riemannian, meaning that all eigenvalues

of the real symmetric matrix gij of the metric tensor are positive, whereas if ε = 1
then the metric gij has one negative eigenvalue and the rest positive. Hence, Qn

c,1 is
either the Lorentz space Ln or the de Sitter space Sn1 according to c = 0 or c = 1
respectively, whereas Qn

c,0 = Qn
c stands for the Euclidean space, the n-sphere or the

hypebolic space, with respect to the sectional curvature c being 0, 1 or −1.

Throughout this section let g : L2 → Qn
c,ε be a substantial isometric immersion

of a 2-dimensional Riemannian manifold L2, where by substantial we mean that the
codimension cannot be reduced.

We recall from [61] the notion of the sth-osculating space Oscsxg of an immersion
g at a point x ∈ L2. It is the subspace of the tangent space Tg(x)Qn

c,ε defined as

Oscsxg = span
{
g∗X1|x, ∇̃X2g∗X1|x, . . . , ∇̃Xs · · · ∇̃X2g∗X1|x : X1, . . . , Xs ∈ X(L2)

}
,

where ∇̃ stands for the induced connection on g∗TQn
c,ε. Hence, the first osculating

space Osc1xg coincides with the tangent space g∗(TxL).

An isometric immersion g : L2 → Qn
c,ε is called k-regular if all osculating spaces

Oscsxg for s ≤ k + 1 have constant dimension and the metric induced from Qn
c,ε is

Riemannian. We call g regular if all osculating spaces have constant dimension and
Riemannian induced metric.

The sth-normal space N g
s (x) of a k-regular immersion g at x ∈ L2 is defined as

the orthogonal complement of Oscsxg in Oscs+1
x g, i.e.,

Oscs+1
x g = Oscsxg ⊕N g

s (x) for 1 ≤ s ≤ k + 1.
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Notice that the sth-normal space can be interpreted as the subspace

N g
s (x) = span

{
αs+1
g (X1, . . . , Xs+1) : X1, . . . , Xs+1 ∈ TxL

}
.

Here α2
f = αf and for s ≥ 3 the symmetric tensor αsg : TL× · · · × TL→ NgL, called

the sth-fundamental form, is defined inductively by

αsg(X1, . . . , Xs) = πs−1
(
∇⊥Xs · · · ∇

⊥
X3
αg(X2, X1)

)
,

where πs denotes taking the projection onto the normal subspace (N g
1 ⊕· · ·⊕N

g
s−1)

⊥.

Following [15], a surface g : L2 → Qn
c,ε is called elliptic if there exists a (necessary

unique up to a sign) almost complex structure J : TL → TL such that the second
fundamental form satisfies

αg(X,X) + αg(JX, JX) = 0

for all X ∈ TL. Notice that J is orthogonal if and only g is minimal, i.e., has zero
mean curvature.

Minimal surfaces are elliptic, but the class of elliptic surfaces is much larger.
Equivalently, that a surface h : L2 → Rn is elliptic means that given a basisX, Y of the
tangent plane TxL at any x ∈ L2 the second fundamental form αh : TL×TL→ NhL
of h satisfies

aαh(X,X) + 2bαh(X, Y ) + cαh(Y, Y ) = 0,

where a, b, c ∈ R verify ac− b2 > 0. Equivalently, in any local system of coordinates
(u, v) of L2, any coordinate function of h is a solution of the elliptic PDE of the type

a
∂2

∂u2
+ 2b

∂2

∂u∂v
+ c

∂2

∂v2
+ d

∂

∂u
+ e

∂

∂v
= 0,

where the smooth functions a, b, c, d, e satisfy ac−b2 > 0. The reason that are named
elliptic surfaces is exactly because they satisfy the latter elliptic PDE.

Assume from now on that g : L2 → Qn
c,ε is a k-regular elliptic surface. We consider

the bundle
Λg
k =

(
N g

1 ⊕ · · · ⊕N
g
k

)⊥
and the corresponding timelike unit bundle

U1Λ
g
k =

{
(x,w) ∈ Λg

k : 〈w,w〉 = −1
}
.

The normal bundle decomposes orthogonally as

NgL = N g
1 ⊕ · · · ⊕N

g
k ⊕ Λg

k,
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where all N g
s are plane bundles for 1 ≤ s ≤ k. The induced bundle g∗TQn

c,ε splits as

g∗TQn
c,ε = N g

0 ⊕N
g
1 ⊕ · · · ⊕N

g
k ⊕ Λg

k,

with N g
0 = g∗(TL). The almost complex structure J on TL induces an almost

complex structure Js on each N g
s , 0 ≤ s ≤ k, defined by

Jsα
s+1
g (X1, . . . , Xs, Xs+1) = αs+1

g (X1, . . . , Xs, JXs+1),

where α1
g = g∗ stands for the differential of the immersion g. The sth-order ellipse of

curvature Egs (x) ⊂ N g
s (x) of g at x ∈ L2 for 0 ≤ s ≤ k is

Egs (x) =
{
αs+1
g (Zθ, . . . , Zθ) : Zθ = cos θZ + sin θJZ and θ ∈ [0, π)

}
,

where Z ∈ TxL has unit length and satisfies 〈Z, JZ〉 = 0. From ellipticity assumption
such a Z always exists.

We say that the curvature ellipse Egs of a k-regular elliptic surface g is a circle for
some 0 ≤ s ≤ k if all ellipses Egs (x) are circles. Notice that Eg0 is a circle if and only
if g is minimal. Furthermore, a surface g : L2 → Qn

c,ε will be called k-isotropic if all
ellipses of curvature Egs for 0 ≤ s ≤ k, are circles.

Moreover, there exists a Weierstrass type representation from [20] that genera-
tes all simply-connected k-isotropic surfaces h : U ⊂ C → R2k+4. Start with any
nonzero holomorphic map α0 : U → C2 in a simply-connected domain U . Assuming
inductively that αr : U → C2r+2 has been defined, for 0 ≤ r ≤ k, set

αr+1 = βr+1

(
1− φ2

r, i(1 + φ2
r), 2φr

)
(1.8)

where φr =
∫ z
αr(z)dz and βr+1 6= 0 is any holomorphic function. Then, we have

that h = Re {αk+1} is a k-isotropic surface in R2k+4.

1.8 Elliptic submanifolds and polar surfaces

In this section, we recall from [27] the notion of elliptic submanifolds into a space
form as well as several of their basic properties.

Let f : Mm → Qn
c be a rank two isometric immersion of a Riemannian manifold

Mm. The relative nullity subspaces D ⊂ TM form a tangent subbundle of codimen-
sion two. We can assume that f is locally the saturation of a fixed cross section
L2 ⊂Mm to the relative nullity foliation.

An isometric immersion f : Mm → Qn
c of rank two is called elliptic if there exists

a (necessary unique up to a sign) almost complex structure J : D⊥ → D⊥ such that

αf (X,X) + αf (JX, JX) = 0 for each X ∈ Γ(D⊥).
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Notice that J is orthogonal if and only f is minimal.

The sth-normal space N f
s (x) of f at x ∈Mm for s ≥ 1 is defined as

N f
s (x) = span

{
αs+1
f (X1, . . . , Xs+1) : X1, . . . , Xs+1 ∈ TxM

}
,

where α2
f = αf and for s ≥ 3 the symmetric tensor αsf : TM × · · · × TM → NfM is

given by
αsf (X1, . . . , Xs) = πs−1

(
∇⊥Xs · · · ∇

⊥
X3
αf (X2, X1)

)
and πs being the projection onto (N f

1 ⊕ · · ·⊕N
f
s−1)

⊥. Notice that due to Proposition
1.7 the normal spaces N f

s form subbundles of the normal bundle, along connected
components of an open and dense subset of Mm. Then, along that subset the normal
bundle splits orthogonally as

NfM = N f
1 ⊕ · · · ⊕N f

τf
,

where all N f
s ’s have rank two, except possibly the last one N f

τf
that has rank one in

the case the codimension is odd.

We call an elliptic submanifold f : Mm → Qn
c nicely curved if all normal sub-

spaces N f
` ’s have constant dimension and thus form normal subbundles. According

to the following proposition, any elliptic immersion is nicely curved along connected
components of an open and dense subset of Mm.

Proposition 1.7. Let f : Mm → Qn
c be a substantial, elliptic immersion. Denote

by Uk the set of points where the dimension of N f
k is maximal, except the last one

Uτf that may have dimension one if the codimension is odd. Then, the subsets Uk,
1 ≤ k ≤ τf are open and dense in Mm.

Proof: Let f : Mm → Qn
c be a substantial elliptic immersion. At first, we are going

to prove that the subset

U1 =
{
x ∈Mm/dimN f

1 = 2
}

is open and dense inMm. Due to ellipticity of f , there exists a unit tangent vector field
Z such that 〈Z, JZ〉 = 0 and {e1 = Z, e2 = JZ/‖JZ‖} constitute a local orthonormal
frame of N f

1 . Set for simplicity α11 = αf (Z,Z) and α12 = αf (Z, JZ).
Since α11 and α12 are linearly independent at a point x ∈ U1, they stay linearly

independent in a neighborhood of x. This shows that U1 is open.
To prove that the set U1 is dense, suppose to the contrary that is not. Then, its

complement V1 = U c
1 has non empty interior. Hence, there exists and open subset W

of Mm such that dimN f
1 ≤ 1 on W , that is,

α12 = λα11, λ ∈ C∞(W ).
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We aim to prove that N f
1 is parallel and because is has dimension less than its

maximum it reduces codimension in view of Proposition 1.3. We compute using the
symmetric of the third fundamental form α3

f that

α3
f (e1, e1, e2) =

(
∇⊥e1α12

)
(Nf

1 )
⊥

=
(
∇⊥e1λα11

)
(Nf

1 )
⊥

=
(
e1(λ)α11 + λ∇⊥e1α11

)
(Nf

1 )
⊥

= λα3
f (e1, e1, e1),

and using the ellipticity of f we obtain

α3
f (e1, e1, e1) = −α3

f (e2, e2, e1)

= −
(
∇⊥e2α12

)
(Nf

1 )
⊥

= −
(
e2(λ)α11 + λ∇⊥e1α11

)
(Nf

1 )
⊥

= −λα3
f (e1, e1, e2)

= −λ2α3
f (e1, e1, e1).

Hence
α3
f (e1, e1, e1) = α3

f (e1, e1, e2) = 0.

This means that N f
1 is a parallel subbundle of the normal bundle and dimN f

1 =1 hence
by Proposition 1.3 it reduces codimension. We have reached a contradiction in view
of f being substantial. The results for higher normal spaces are obtained similarly
by showing that N f

1 ⊕ · · · ⊕N
f
k are parallel for 2 ≤ k ≤ τf . Thus, by Proposition 1.3

f reduces codimension which contradicts the assumption of f being substantial.

From the last proposition it is immediate that the normal bundle of f can be
decomposed orthogonally as

NfM = N f
1 ⊕ · · · ⊕N f

τf
, (1.9)

where all N f
` ’s have rank 2, except possibly the last one N f

τf
that has rank 1 in case

the codimension is odd. Thus, the induced bundle f ∗TQn
c splits as

f ∗TQn
c = f∗D ⊕N f

0 ⊕N
f
1 ⊕ · · · ⊕N f

τf
,

where N f
0 = f∗D⊥. Set

τ of =

{
τf if n−m is even
τf − 1 if n−m is odd.
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It turns out that the almost complex structure J on D⊥ induces an almost complex
structure J` on each N f

` , 0 ≤ ` ≤ τ of , defined by

J`α
`+1
f (X1, . . . , X`, X`+1) = α`+1

f (X1, . . . , X`, JX`+1),

where α1
f = f∗. Moreover it holds, see [15],

Js
(
∇̃Xξ

)
Nf
s

=
(
∇̃XJs−1ξ

)
Nf
s

=
(
∇̃JXξ

)
Nf
s
, ∀ξ ∈ N f

s−1, X ∈ D⊥

and

J ts−1
(
∇̃Xη

)
Nf
s−1

=
(
∇̃XJ

t
sη
)
Nf
s−1

=
(
∇̃JXη

)
Nf
s−1
, ∀η ∈ N f

s , X ∈ D⊥,

where J ts−1 denotes the transpose of Js−1.

The `th-order curvature ellipse Ef` (x) ⊂ N f
` (x) of f at x ∈Mm for 0 ≤ ` ≤ τ of is

Ef` (x) =
{
α`+1
f (Zθ, . . . , Zθ) : Zθ = cos θZ + sin θJZ and θ ∈ [0, π)

}
,

where Z ∈ D⊥(x) has unit length and satisfies 〈Z, JZ〉 = 0. From ellipticity such a
Z always exists.

We say that the curvature ellipse Ef` of an elliptic submanifold f is a circle for

some 0 ≤ ` ≤ τ of if all ellipses Ef` (x) are circles. That the curvature ellipse Ef` is a
circle is equivalent to the almost complex structure J` being orthogonal. Notice that
Ef0 is a circle if and only if f is minimal.

An elliptic submanifold f is called `-isotropic if all curvature ellipses up to order `
are circles. Then f is called isotropic if the curvature ellipses of any order are circles.

Substantial isotropic surfaces in R2n are holomorphic curves in Cn ≡ R2n. Isotropic
surfaces in spheres are also referred to as pseudoholomorphic surfaces. For this class
of surfaces a Weierstrass type representation was given in [28].

Let f : Mm → Qn−c
c , c = 0, 1, be a substantial and nicely curved elliptic subman-

ifold. Assume that Mm is the saturation of a fixed cross section L2 ⊂ Mm to the
relative nullity foliation. The subbundles in the orthogonal splitting (1.9) are parallel
in the normal connection (and thus in Qn−c

c ) along D. Hence each N f
` can be seen as

a vector bundle along the surface L2.

A polar surface to an elliptic immersion f is an immersion g of a cross section L2 to
the relative nullity foliation defined as follows:

(a) If n − c − m is odd, then the polar surface g : L2 → Sn−1, c = 0, 1 (resp.
g : L2 → Sn+1

1 if c = −1) is the spherical image of the unit normal field spanning
the last normal bundle N f

τf
.
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(b) If n − c − m is even, then the polar surface g : L2 → Rn, c = 0, 1 (resp.
g : L2 → Ln+2 if c = −1) is any surface such that g∗TxL = N f

τf
(x) up to parallel

identification in Rn (resp. Ln+2).

Polar surfaces always exist since, in case (b), any elliptic submanifold admits
locally many polar surfaces.

Since our work is local, we may assume that an elliptic submanifold f is the
saturation of a fixed cross section L2 ⊂ Mm to the relative nullity foliation. The
almost complex structure J on D⊥ induces an almost complex structure J̃ on TL
defined by

P J̃ = JP,

where P : TL→ D⊥ is the orthogonal projection.

The following proposition ensures that associated to any elliptic submanifold of
rank two, there is an elliptic surface that “integrates” its k-th normal space and
relates the complex structure and normal spaces between them.

Proposition 1.8. Any elliptic submanifold f : Mm → Qn
c admits locally a polar

surface. Moreover, in substantial codimension, any polar surface g to f is k-regular
for appropriate k and elliptic with respect to Jg0 = J̃ such that

N g
s = N f

k−s and Jgs = J tk−s, (1.10)

for each 0 ≤ s ≤ k and x ∈ L2, up to parallel identification in Rn+1 if c = 0, 1, or in
Ln+1 if c = −1.

Proof: See Proposition 8 in [15].

A bipolar surface to f is any polar surface to a polar surface to f . In particular,
if we are in case f : M3 → Sn−1, then a bipolar surface to f is a nicely curved elliptic
immersion g : L2 → Rn.

1.9 Omori-Yau maximum principle

A main ingredient in the proof of our results is the Omori-Yau maximum principle.
The Omori-Yau maximum principle is said to hold on a complete Riemannian mani-
fold Mm if for any function ϕ ∈ C2(M) bounded from above there exists a sequence
of points {xj}j∈N such that

ϕ(xj) > supϕ− 1/j, ‖∇ϕ‖(xj) ≤ 1/j and ∆ϕ(xj) ≤ 1/j,
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for any j ∈ N. The category of complete Riemannian manifolds for which the principle
is valid is quite large. For instance, it contains the complete manifolds whose Ricci
curvature satisfies Ric ≥ −K(1 + r2 log2(r + 2)), where r is the geodesic distance
function from a fixed point of the manifold and K is a non negative constant. It also
contains the class of properly immersed submanifolds in a space form whose norm of
the mean curvature vector is bounded; see [3] or [56, Example 1.14].

In the sequel, we recall the elementary strong maximum principle and two results
that are consequences of the Omori-Yau maximum principle and will be crucial in
the proof of our main results.

Proposition 1.9. If a harmonic function attains maximum value in an interior point
of M then it must be constant.

Proof: See [57, Theorem 5 in Chapter 2].

The following proposition is a consequence of a result due to Cheng and Yau [11].

Proposition 1.10. Let Mm be a Riemannian manifold for which the Omori-Yau
maximum principle holds. If ϕ ∈ C∞(M) satisfies that ∆ϕ ≥ 2ϕ2 then supϕ = 0.

Proof: See [3] or [42, Lemma 4.1].

The next proposition was proved by Yau in his attempt to generalize the classic
Liouville Theorem of complex analysis to complete Riemmanian manifolds.

Proposition 1.11. Let Mm be a Riemannian manifold with Ricci curvature bounded
from below by −K for some constant K ≥ 0. If ϕ ∈ C∞(M) is a harmonic function
which is bounded from below, then

‖∇ϕ‖ ≤
√

(m− 1)K(ϕ− inf ϕ).

Proof: See [67, Theorem 3′′].

1.10 Removable singularities of harmonic maps

In this section, we state some well known results, regarding extensions of harmonic
maps between Riemannian manifolds.

Let F : M → M̃ be a C2 mapping between smooth Riemannian manifolds M, M̃
with Levi-Civita connections ∇ and ∇̃ respectively. Pick a local orthonormal tangent
frame field {e1, . . . , em} around a point x ∈M . We define the tension field of F at a
point x ∈M to be

τ(F )(x) =
m∑
j=1

(
∇̃F∗ejF∗ej − F∗∇ejej

)
(x)
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We say that F is a harmonic map if the tension field vanishes identically.

The following proposition allows us to extend analytically a harmonic map between
Riemannian manifolds. For a proof, we refer to Eells-Sampson [30, Proposition p.
117].

Proposition 1.12. Every harmonic map F : M → M̃ of class C2, where M and
M̃ are complete Riemannian manifolds, is smooth. If M and M̃ are both analytic
Riemannian manifolds, then every such map is analytic.

In order to state the next theorem, we need to introduce the notion of the relative
2-capacity of a compact set K of Rn. We denote by Br0(0) the open ball of center 0
and radius r0 > 0 in Rn. If K ⊂ Br0(0), then Cap2,r0(K) is defined by

Cap2,r0(K) = inf

{∫
Rn
‖Dψ‖2dx : ψ ∈ C∞c (Br0(0),R), ψ ≥ 1 on K

}
.

By C∞c (Br0(0),R) we denote the space of smooth functions ψ : Br0(0) → R with
compact support. For n ≥ 3, we set Cap2(K) =Cap2,∞(K). If B is open subset of
Rn then

Cap2(B) = sup {Cap2(K) : for each K ⊂ B, K compact} .

If E is an arbitrary subset of Rn then

Cap2(E) = inf {Cap2(B) : for each E ⊂ B, B open} .

If M is a Riemannian manifold and Σ ⊂ M then by Cap2(Σ) = 0 we mean that
Cap2

(
φ(Σ∩U)

)
= 0 for each chart (U, φ) of M . It is well known that if K is a smooth

curve, then its 2-capacity is zero, see (cf. [33, Theorem 3]) or (cf. [45, p. 37]).

Let M be a connected Riemannian manifold and let M̃ be a complete Riemannian
manifold without boundary. Let A be a relatively closed subset of M . Meier proved
in [53, Theorem 1] the following removable singularity result:

Theorem 1.13. Let F : M rA→ M̃ be a bounded harmonic map and Cap2(A) = 0.
Suppose F (M rA) is contained in some closed geodesic ball Br(x̃0) of M̃ which does
not meet the cut locus of its center x̃0, and for which r ≤ π/(2

√
κ), where κ ≥ 0 is

an upper bound for the sectional curvature of M̃ on Br(x̃0). If r = π/(2
√
κ), assume

in addition that F (M r A) is not completely contained in the boundary of Br(x̃0).
Then F extends to a harmonic map of class C2 in all of M .

Using Proposition 1.12 and Theorem 1.13 we obtain the following lemma:

Lemma 1.14. Let F : M3 r A → M̃ be a bounded harmonic map, where A is a
smooth curve and M, M̃ are complete Riemannian manifolds. If F has continuous
extension over A, then F can be extended analytically over A.
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1.11 Real analytic subvarieties

A function H(x1, . . . , xk−1;xk) of k real variables is called a distinguished polynomial
or Weierstrass polynomial if it has the form

H(x1, . . . , xk−1;xk) = xmk + A1(x1, . . . , xk−1)x
m−1
k + · · ·

+Am−1(x1, . . . , xk−1)xk + Am(x1, . . . , xk−1),

where each Ai vanishes at (x1, . . . , xk−1) = (0, . . . , 0). It is an important fact that any
analytic function is locally, up to an invertible factor, a distinguished polynomial, see
for instance Weierstrass preparation theorem [50, Theorem 6.3.1].

Every distinguished polynomial H admits a unique decomposition into irreducible
distinguished polynomials. The discriminant D(H)(x1, . . . , xk−1) of a distinguished
polynomial H vanishes if and only if H(x1, . . . , xk−1;xk) has a repeated irreducible
factor, see [6].

Recall that a closed set X ⊂ M is called a real analytic subvariety of M , if for
each point p ∈ X there exists a neighborhood V and a set F of real analytic functions
defined in V such that

X ∩ V =
{
p ∈ V

/
f(p) = 0 for all f ∈ F

}
.

By a careful analysis of symmetric functions of the roots of a distinguished polynomi-
als, Lojasiewicz was able to prove in [50, Theorem 6.3.3], the following stratification
theorem for real analytic subvarieties.

Theorem 1.15. Let Φ(x1, . . . , xn) be a real analytic function in a neighborhood of
the origin. After a rotation of the coordinates x1, . . . , xn−1 one has that there exist
numbers δj > 0, j = 1, . . . , n, and a system of distinguished polynomials

Hk
` (x1, . . . , xk;x`), 0 ≤ k ≤ n, k + 1 ≤ ` ≤ n,

defined on Qk = {|xj| < δj, 1 ≤ j ≤ k}, such that the discriminant Dk
` of Hk

` does
not vanish on Qk and the following properties are satisfied:

(i) Each root ζ of Hk
` (x1, . . . , xk; ·) on Qk satisfies ‖ζ‖ < δ`.

(ii) The set

Z := {x = (x1, . . . , xn) : ‖xj‖ < δj for each j ∈ {1, . . . , n} and Φ(x) = 0}

has a decomposition
Z = V 0 ∪ · · · ∪ V n−1.
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The set V 0 is either empty or consists of the origin alone. For 1 ≤ k ≤ n− 1,
we may write V k as a finite, disjoint union

V k = ∪jΓkj

of k-dimensional subvarieties which have the following explicit description:

(a) (Analytic Parametrization) Each Γkj is defined by a system of n− k equa-
tions

xk+1 = φkj,k+1(x1, . . . , xk),

...

xn = φkj,n(x1, . . . , xk),

where each function φkj,` is real analytic on an open subset Ωk
j ⊂ Qk ⊂ Rk,

Hk
` (x1, . . . , xk;φ

k
j,`) ≡ 0,

and

Dk
` (x1, . . . , xk) 6= 0

for all (x1, . . . , xk) ∈ Ωk
j , ` = k + 1, . . . , n.

(b) (Non-Redundancy) For any integers k, i, j, either Ωk
i = Ωk

j or Ωk
i ∩Ωk

j = ∅.
In the second instance one has, for any ` = k + 1, . . . , n, either φki,` ≡ φkj,`
on Ωk

i or φki,`(x1, . . . , xk) 6= φkj,`(x1, . . . , xk) for all x = (x1, . . . , xk) ∈ Ωk
i .

(c) (Stratification) For each k the closure of V k contains all the subsequent
V m’s, that is, V 0 ∪ · · · ∪ V k−1 ⊂ Q ∩ V k. The lower dimensional varieties
V m, m < n − 1, do not occur as isolated sets; they are in fact the zero
sets of certain discriminants and (in a sence) form the boundaries of the
components Γm+1

j of V m+1, . . . , V n−1.

A point x0 ∈ Z is called a regular point of dimension d if there is a neighborhood
Ω of x0 such that Ω∩Z is a d-dimensional real analytic submanifold of Ω. If otherwise
x0 is said to be a singular point. The set of singular points is locally a finite union
of submanifolds.

We now turn our attention to the Cauchy-Kowalewski theorem. It concerns the
existence and uniqueness of a real analytic solution of a Cauchy problem, given real
analytic initial data on a hypersruface S. Before we state this theorem, we introduce
some notation and definitions.
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An n-tuple a = (a1, . . . , an) of nonnegative integers will be called a multi-index.
We define

|a| =
n∑
j=1

aj, a! = a1!a2! · · · an!,

and for x = (x1, . . . , xn) ∈ Rn,

xa = xa11 x
a2
2 · · ·xann .

We will use the shorthand

∂xj =
∂

∂xj

for derivatives in Rn and for higher order derivatives we use the following convention:

∂a =
∂|a|

∂xa11 · · · ∂xann
.

If ν is a vector field on an open set Ω ⊂ Rn we define the directional derivative ∂ν by

∂ν = 〈ν,∇〉,

where 〈· , ·〉 is the standard inner product in Rn. For any differentiable function f in
Ω, we have that

∂νf(x) = 〈ν(x),∇f(x)〉 =
n∑
i=1

νj(x)∂xif(x).

Let
L =

∑
|a|≤k

λa∂
a

be a linear differential operator of order k on Ω ⊂ Rn. Then, its characteristic form
at x ∈ Ω is the homogeneous polynomial of degree k on Rn defined by

Q(x, ζ) =
∑
|a|=k

λa(x)ζa, ζ ∈ Rn.

A nonzero vector ζ is called characteristic for L at x if Q(x, ζ) = 0 and the set of all
such ζ is called the characteristic variety of L at x and is denoted by charx(L). Thus,
the condition ζ ∈ charx(L) means that, in some sence, L fails to be “genuinely kth
order” in the direction ζ at x. The operator L is said to be elliptic at x if charx(L) = ∅
and elliptic on Ω if it is elliptic at every point x ∈ Ω.

A hypersurface S in Ω is called characteristic for L at a point x ∈ S, if the
unit normal vector ~η(x) to S at x is in charx(L). The hypersurface S is called non-
characteristic if it is not characteristic at any point.
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Theorem 1.16. Consider the Cauchy problem{
L(u) = F

(
x, (∂au)|a|≤k

)
= 0,

∂ j~η u = φj on S for 0 ≤ j < k,
(1.11)

where the functions F, φ0, . . . , φk−1 are near analytic near the origin. If the hypersur-
face S is non-characteristic, then there exists a neighborhood of the origin on which
the Cauchy problem (1.11) has a unique analytic solution.

Proof: See [37, Theorem 1.25].



CHAPTER 2

A fundamental lemma

The ideas in this chapter will play a crucial role in the proofs of our main results in
Chapters 3,4 and 5.

Let f : M3 → Qn
c be a substantial minimal isometric immersion with index of

relative nullity ν(x) ≥ 1 at any point of M3, that is, the index is either 1 or 3. Let
U ⊂M3 be an open subset where ν = 1 and the line bundle of relative nullity is trivial.
Fix a smooth unit section e spanning the relative nullity distribution along U and
let J denote the unique, up to sign, almost complex structure acting on the conullity
distribution D⊥ = {e3}⊥ = span{e1, e2}, where e3 = e and e1, e2 are orthonormal.
Moreover, set for simplicity C = Ce3 . The following lemma is of crucial importance.

Lemma 2.1. There are harmonic functions u, v ∈ C∞(U) such that

C = vI − uJ (2.1)

where I stands for the identity map on the conullity distribution. Moreover, the
integral curves of e are geodesics and the functions u and v satisfy the following
differential equations:

e(v) = v2 − u2 + c, e(u) = 2uv (2.2)

and

e1(u) = e2(v), e2(u) = −e1(v). (2.3)

Proof: We may assume that the immersion f is substantial, that is, it does not reduce
codimension. Let Aξ be the shape operator of f with respect to the normal direction
ξ, i.e.,

〈Aξ · , ·〉 = 〈α( · , ·), ξ〉.
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From the Codazzi equation for Aξ|D⊥ restricted to D⊥ we have that

∇eAξ|D⊥ = Aξ|D⊥ ◦ C + A∇⊥e ξ|D⊥

for any normal vector field ξ ∈ Γ(NfM). Thus Aξ|D⊥ ◦ C has to be symmetric, and
hence

Aξ|D⊥ ◦ C = Ct ◦ Aξ|D⊥ . (2.4)

On the other hand, the minimality condition is equivalent to

Aξ|D⊥ ◦ J = J t ◦ Aξ|D⊥ . (2.5)

First we consider the hypersurface case n = m + 1. Take a local orthonormal
tangent frame e1, e2, e3 that diagonalizes the shape operator of f such that

Je1 = e2 and e3 = e

and let ξ be a unit normal along the hypersurface. Set

u = 〈∇e2e1, e〉 and v = 〈∇e1e1, e〉.

From the Codazzi equation

(∇eiAξ)e = (∇eAξ)ei,

where 1 ≤ i ≤ 2, we have that 〈∇e2e2, e〉 = v and 〈∇ee, e1〉 = 〈∇ee, e2〉 = 0. The
latter shows that the integral curves of e are geodesics, i.e., ∇ee = 0. Moreover, from

〈(∇e1Aξ)e2, e〉 = 〈(∇e2Aξ)e1, e〉,

we obtain that 〈∇e1e2, e〉 = −u. Now we can readily see that (2.1) holds true.
Assume now that f does not reduce codimension to one. Due to minimality

assumption, we have that dimN f
k ≤ 2. If dimN f

k = 1 on an open subset V ⊂ M3, a

simple argument using the Codazzi equation shows that N f
1 is parallel in the normal

bundle along V and thus according to Proposition 1.3, f |V reduces codimension to
a hypersurface. Due to real analyticity the same would hold globally, and that has
been excluded. Hence, there is an open dense subset W of M3 where dimN f

1 = 2.
We conclude from (2.4) and (2.5) that C ∈ span{I, J} on U ∩W . By continuity, we
then get that C ∈ span{I, J} on U . Therefore, also in this case there are functions
u, v ∈ C∞(U) such that (2.1) holds.

It remains to show that u, v are harmonic. From (1.5) and (1.6) we have

∇h
eC = C2 + cI (2.6)
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and (
∇h
XC
)
Y =

(
∇h
Y C
)
X (2.7)

for any X, Y ∈ Γ(D⊥). For a local orthonormal tangent frame e1, e2, e3 such that
Je1 = e2 and e3 = e, it follows from (2.1) that

v = 〈∇e1e1, e〉 = 〈∇e2e2, e〉 (2.8)

and
u = −〈∇e1e2, e〉 = 〈∇e2e1, e〉. (2.9)

It is easily seen that (2.6) is equivalent to (2.2), whereas (2.7) is equivalent to (2.3).
The Laplacian of v is given by

∆v =
3∑
j=1

ejej(v) + ω12(e2)e1(v)− ω12(e1)e2(v)− (ω13(e1) + ω23(e2))e(v), (2.10)

where ωij(ek) = 〈∇ekei, ej〉, for 1 ≤ i, j, k ≤ 3. Using (2.9) and (2.3), we have that

e1e1(v) + e2e2(v) = −e1e2(u) + e2e1(u) = [e2, e1](u)

= ∇e2e1(u)−∇e1e2(u)

= ω12(e1)e1(u) + ω12(e2)e2(u) + (ω13(e2)− ω23(e1))e(u)

= ω12(e1)e2(v)− ω12(e2)e1(v) + 2ue(u).

Inserting the last equality into (2.10) and using (2.8) and (2.2) yields

∆v = ee(v) + 2ue(u)− 2ve(v) = 0.

Also, that the function u is harmonic is proved in a similar manner.
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CHAPTER 3

Minimal immersions with relative nullity
in Euclidean space

A frequent theme in submanifold theory is to find geometric conditions for an isome-
tric immersion of a complete Riemannian manifold into Euclidean space f : Mm → Rn

with index of relative nullity ν ≥ k > 0 at any point to be a k-cylinder. This means
that the manifold Mm splits as a Riemannian product Mm = Mm−k × Rk and there
is an isometric immersion g : Mm−k → Rn−k such that f = g × idRk .

A fundamental result asserting that an isometric immersion f : Mm → Rn with
positive index of relative nullity must be a k-cylinder is Hartman’s theorem [40] that
requires the Ricci curvature of Mm to be nonnegative; see also [52]. A key ingredient
for the proof of this result is the famous Cheeger-Gromoll splitting theorem [10]
used to conclude that the leaves of minimum relative nullity split intrinsically as a
Riemannian factor. Even for hypersurfaces, the same conclusion does not hold if
instead we assume that the Ricci curvature is nonpositive. Notice that the latter is
always the case if f is a minimal immersion. Counterexamples easy to construct are
the complete irreducible ruled hypersurfaces of any dimension discussed in [19, p.
409].

Some of the many papers containing characterizations of submanifolds as cylinders
without the requirement of minimality are [15,17,38,40,52,54,58]. When adding the
condition of being minimal we have [1, 24, 35,36,38,41,64,66].

3.1 The main result

In this section, we extend a result for hypersurfaces due to Savas-Halilaj [60] to the
situation of arbitrary codimension.
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Theorem 3.1. Let Mm be a complete Riemannian manifold and f : Mm → Rn be a
minimal isometric immersion with index of relative nullity ν ≥ m− 2 at any point of
Mm. If the Omori-Yau maximum principle holds on Mm, then f is a cylinder over
a minimal surface.

Corollary 3.2. Let Mm be a complete Riemannian manifold and f : Mm → Rn be
a minimal isometric immersion with index of relative nullity ν ≥ m− 2 at any point
of Mm. Assume that either the scalar curvature s of Mm satisfies s ≥ −c(d log d)2

outside a compact set, where c > 0 and d = d(·, o) is the geodesic distance to a
reference point o ∈ Mm, or that f is proper. Then f is a cylinder over a minimal
surface.

Theorem 3.1 is truly global in nature since there are plenty of examples of non-
complete minimal submanifolds of any dimension m with constant index ν = m− 2
that are not part of a cylinder on any open subset. They can be all locally parametri-
cally described in terms of a certain class of elliptic surfaces; see Theorem 22 in [15].
In particular, there is a Weierstrass type representation for these submanifolds when
the manifold possesses a Kähler structure; see Theorem 27 in [15]. On the other
hand, after the results of this chapter what remains as a challenging open problem
is the existence of a minimal complete noncylindrical submanifold f : M3 → Rn with
index of relative nullity ν ≥ 1.

The main difficulty in the proof of Theorem 3.1 arises from the fact that the index
of relative nullity ν is allowed to vary. Consequently, one has to fully understand the
structure of the set of points A ⊂Mm where f is totally geodesic in order to conclude
that the relative nullity foliation on Mm rA extends smoothly to A.

Recently Jost, Yang and Xin [48] proved various Bernstein type results for com-
plete m-dimensional minimal graphical submanifolds in Euclidean space with index
ν ≥ m − 2. We observe that from a result in [19] it follows that the submanifolds
considered in [48, Theorem 1.1] are cylinders over 3-dimensional complete minimal
submanifolds with ν ≥ 1. Moreover, from Corollary 3.2 it follows that the sub-
manifolds considered in [48, Theorem 1.2] are just cylinders over complete minimal
surfaces, since entire graphs are proper submanifolds. Thus, to prove a Bernstein
theorem for such submanifolds is equivalent to show a Bernstein theorem for entire
minimal 2-dimensional graphs in Euclidean space.

3.2 The proofs

Let Mm be a Riemannian manifold. An isometric immersion f : Mm → Rn is called
ruled if M admits a continuous codimension one foliation such that f maps each
leaf (ruling) onto an open subset of an affine subspace of Rn. We say that f is
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completely ruled if all rulings are complete. Observe that in this case, the leaves in
each connected component of M (called a ruled strip) form an affine vector bundle
over a curve with or without endpoints. We then say f is a cylinder if M = L1×Rm−1

and f = f1 × id splits.

The possible structures of an isometric immersion f : Mm → Rn when Mm is
complete and the index of relative nullity of f satisfies ν ≥ m − 2 at any point was
completely described by Dajczer and Gromoll in [19, Proposition 2.1]. Among other
results they proved the following:

Proposition 3.3. Let f : Mm → Rn, m ≥ 3, be an isometric immersion of a com-
plete Riemannian manifold which does not contain an open set L3 × Rm−3 with L3

unbounded, and ρ the rank of the Gauss map. Suppose that ρ ≤ 2 everywhere, and
let M∗ be the open subset of all points in M with ρ = 2. Then the following hold:

(i) M∗ is a union of smoothly ruled strips.

(ii) If f is completely ruled on M∗, then it is completely ruled everywhere, and a
cylinder on each component of the complement of the closure of M∗.

Consequently, if f is real analytic, then either M = L3×Rm−3 and f = f1× id splits,
or f is completely ruled.

In the case of minimal (hence elliptic) submanifolds, Dajczer and Florit proved
in [15, Theorem 16] the following:

Theorem 3.4. Let f : Mm → Rn be a complete submanifold elliptic on a dense subset
of Mm. Then, each connected component of an open dense subset of Mm is isometric
to L3 × Rm−3 and f splits accordingly. Moreover, the splitting is global if Mm is
simply connected and does not contain an open subset L2 × Rm−2.

From the latter it is obvious that the interesting case occurs when m = 3. Hence,
we only have to consider the case of a nontrivial minimal f : M3 → Rn with ν ≥ 1
at any point of M3.

Let A denote the set of totally geodesic points of f . From Proposition 1.1(iv) the
relative nullity foliation D is a line bundle on M3 r A. Due to the real analyticity
of the submanifold, the square of the norm of the second fundamental form is a real
analytic function. It follows that A is a real analytic set. According to Lojasewicz’s
structure Theorem 1.15 the set A locally decomposes as

A = V0 ∪ V1 ∪ V2 ∪ V3,

where each Vd, 0 ≤ d ≤ 3, is either empty or a disjoint finite union of d-dimensional
real analytic subvarieties.
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Our goal now is to show that A = V1, unless f is just an affine subspace in Rn

in which case Theorem 3.1 trivially holds. After excluding the latter trivial case, we
have from the real analyticity of f that V3 is empty.

Lemma 3.5. The set V2 is empty.

Proof: We only have to show is that there is no regular point in V2. Suppose to
the contrary that such a point do exist. Let Ω ⊂ M3 be an open neighborhood
of a regular point x0 ∈ V2 such that L2 = Ω ∩ A is an embedded surface. Let
e1, e2, e3, ξ1, . . . , ξn−3 be an orthonormal frame adapted to M3 along Ω near x0. The
coefficients of the second fundamental form are

haij = 〈α(ei, ej), ξa〉,

where from now on 1 ≤ i, j, k ≤ 3 and 1 ≤ a, b ≤ n− 3.
The Gauss map γ : M3 → Gr(3, n) of f as a map into the Grassmannian of

oriented 3-dimensional linear subspaces in Rn is defined by γ(x) = f∗(TxM
3) ⊂ Rn,

up to parallel translation in Rn to the origin. Regarding Gr(3, n) as a submanifold
in ∧3Rn via the map for the Plücker embedding, we have that γ = f∗e1 ∧ f∗e2 ∧ f∗e3.
Then

γ∗ei =
∑
j,a

haijeja, (3.1)

where eja is obtained by replacing f∗ej with ξa in f∗e1 ∧ f∗e2 ∧ f∗e3. Then∑
i

〈γ∗ei, γ∗ei〉 =
∑
i,j,a

(haij)
2 = ‖α‖2,

where the inner product of two simple 3-vectors in ∧3Rn is defined by

〈a1 ∧ a2 ∧ a3, b1 ∧ b2 ∧ b3〉 = det
(
〈ai, bj〉

)
.

For a fixed simple 3-vector A = a1∧a2∧a3 in ∧3Rn, let wA : M3 → R be the function
defined by

wA = 〈γ,A〉.

Because the immersion f is minimal, the height function wA satisfies

∆wA = −‖α‖2wA +
∑

i,a 6=b,j 6=k

haijh
b
ik〈eja,kb, A〉,

where eja,kb is obtained by replacing f∗ej with ξa and f∗ek with ξb in f∗e1∧f∗e2∧f∗e3
(cf. [65, p. 36]). Let ε1, . . . , εn be an orthonormal basis of Rn . The set

{εj1 ∧ εj2 ∧ εj3 : 1 ≤ j1 < j2 < j3 ≤ n}
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of 3-vectors is an orthonormal basis of ∧3Rn by means of which identify ∧3Rn with

R(n3) = RN . Denoting by {AJ}J∈{1,...,N} the corresponding base in RN , we have

γ =
N∑
J=1

wJAJ where wJ = 〈γ,AJ〉.

From haij = 〈γ∗ei, eja〉, we obtain

haij =
∑
J

〈eja, AJ〉ei(wJ). (3.2)

Moreover, for any J ∈ {1, . . . , N}, it holds

∆wJ = −‖α‖2wJ +
∑

i,a6=b,j 6=k

haijh
b
ik〈eja,kb, AJ〉. (3.3)

Take a local chart φ : U → R3 of coordinates x = (x1, x2, x3) on an open subset U of
Ω and set

ei =
∑
j

µij∂xj . (3.4)

Setting θJ = wJ ◦ φ−1, we obtain the map θ : φ(U) ⊂ R3 → RN given by

θ =
∑
J

θJAJ = (θ1, . . . , θN).

Note that θ = γ ◦φ−1, i.e., θ is just the representation of the Gauss map with respect
to the above mentioned charts. From (3.2) and (3.4) we have

haij =
∑
k,J

µik〈eja, AJ〉(θJ)xk (3.5)

and

‖α‖2 =
∑
i,j,a

(∑
k,J

µik〈eja, AJ〉(θJ)xk

)2
. (3.6)

The Laplacian of M3 is given by

∆ =
1
√
g

∑
i,j

∂xi

(√
ggij∂xj

)
where gij are the components of inverse of the metric gij of M3 and g = det(gij).
Using (3.5) and (3.6) we see that (3.3) is of the form∑

i,j

gij(θJ)xixj + CJ
(
x, θ, θx1 , θx2 , θx3

)
= 0,
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where CJ : φ(U)× R4N → R is given by

CJ(x, y, z1, z2, z3) =
1
√
g

∑
i,j

(
√
ggij)xizjJ + yJ

∑
i,j,a

(∑
k,I

µik〈eja, AI〉zkI
)2

−
∑
I,K

∑
i,l,m

a 6=b,j 6=k

µilµim〈eja,kb, AJ〉〈eja, AK〉〈ekb, AI〉zmIzlK

with y = (y1, . . . , yN), zi = (zi1, . . . , ziN), i,m, l ∈ {1, 2, 3} and I, J,K ∈ {1, . . . , N}.
Therefore, we have that the vector valued map θ = (θ1, . . . , θN) satisfies the elliptic
equation

Lθ =
∑
i,j

Aij(x)θxixj + C
(
x, θ, θx1 , θx2 , θx3

)
= 0,

where Aij = gijIN , IN being the identity N × N matrix and C = (C1, . . . , CN).
Moreover, we have from (3.1) that θ is constant on φ(L2) and ~n(θ) = 0 on φ(L2)
where ~n is a unit normal field to the surface φ(L2) in R3.

Consider the Cauchy problem Lθ = 0 with the following initial conditions: θ is
constant on φ(L2) and ~n(θ) = 0 on φ(L2). According to the Cauchy-Kowalewsky
theorem (cf. [62]) the problem has a unique solution if the surface φ(L2) is nonchara-
cteristic. This latter is satisfied if Q(~n) 6= 0, where Q is the characteristic form given
by

Q(ζ) = det(Λ(ζ)),

where ζ = (ζ1, ζ2, ζ3) and

Λ(ζ) =
∑
i,j

gijζiζjIN

is the symbol of the differential operator L. That the surface φ(L2) is noncharacteri-
stic follows from

Q(ζ) =
(∑

i,j

gijζiζj

)N
.

Because C(x, y, 0, 0, 0) = 0 the constant maps are solutions to the Cauchy problem.
From the uniqueness part of the Cauchy-Kowalewsky theorem we conclude that the
Gauss map γ is constant on an open subset of M3, and that is not possible.

Lemma 3.6. The set V0 is empty.

Proof: Suppose that x0 ∈ V0 and let Ω be an open neighborhood around x0 such that
ν = 1 on Ω r {x0}. Let {xj}j∈N be a sequence in Ω r {x0} converging to x0. Let
ej = e(xj) ∈ TxjM be the sequence of unit vectors contained in the relative nullity
distribution of f . By passing to a subsequence, if necessary, there is a unit vector
e0 ∈ Tx0M such that lim ej = e0. By continuity, the geodesic tangent to e0 at x0 is a
leaf of relative nullity outside x0. But this is clearly impossible in view of Proposition
1.1(iv).
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Lemma 3.7. The foliation F of the nullity distribution extends analytically over the
regular points of A.

Proof: First observe that the relative nullity distribution extends continuously over
the regular points of A. In fact, by the previous lemmas it remains to consider the
case when Ω is an open subset of M3 such that Ω∩A is a open segment in a straight
line in the ambient space. But in this situation the result follows by a argument of
continuity similar than in the proof of Lemma 3.6.

Let Ω be an open subset of M3 rA and let {e1, e2, e3 = e} be a local frame on Ω
as in the proof of Lemma 2.1. Consider the map F : Ω → Sn−1 into the unit sphere
given by F = f∗e. A straightforward computation using (2.8), (2.9) and (2.3) gives
that its tension field

τ(F ) =
3∑
j=1

(
∇F∗ejF∗ej − F∗∇ejej

)
vanishes, where ∇ denotes the Levi-Civita connection of Sn−1. Hence F is a harmonic
map. Since A = V1 we obtain that F is real analytic in view Lemma 1.14.

Lemma 3.8. The set A has no singular points.

Proof: According to Lemmas 3.5 and 3.6 the set A only contains subvarieties of
dimension one with possible isolated singular points. Thus, by Lemma 3.7, the set of
regular points of A just contains segments of straight lines.

Assume that the set S of singular points of A is not empty. Then, a singular
point x0 ∈ S ⊂ A should be the intersection of transversal regular arcs γ1, γ2 of A.
We know from previous lemmas that the line bundle D|MrA extends to a line bundle
on M r S which we denote again by D. Take a local section e of the extended line
bundle D on an open subset U of M r S.

We claim that the integral curves of e are geodesics. Indeed, we know that the
integral curves of e on U ∩ (M rA) are geodesics, hence by continuity we have that
∇ee = 0 on U ∩ (M r S). Now we claim that e is tangent to the regular arcs of A.
Assume to the contrary that there exists a point x on a regular arc c such that e(x)
is transversal to c at that point x and let γ be the geodesic passing through x with
speed e(x). Since A = V1, there exists ε > 0 such that γ(s) ∈ M rA, for s ∈ (0, ε].
This means that ν

(
γ(s)

)
= 1, for s ∈ (0, ε]. On the other hand ν

(
γ(0)

)
= ν(x) = 3,

that contradicts Proposition 1.1(iv).

In this way, we obtain a geodesic flow tangent to D on M rS, hence U r {x0} fo-
liates by geodesics having e as tangent vector field. Therefore, there exists a geodesic
γ that intersects either γ1 or γ2 at a point y and the image γ r {y} lies in M r A.
This contradicts again with Proposition 1.1(iv).
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The proof of our main result relies heavily on Proposition 1.10 that is a conse-
quence of the Omori-Yau maximum principle; see [3, Theorem 28] or [42, Lemma
4.1].

Proof of Theorem 3.1: Without loss of generality we may assume that M3 is oriented
by passing to the oriented double cover if necessary, see for details see [59, pp. 95-101].
It follows from Lemma 3.7 and 3.8 that the almost complex structure J is globally
defined and that ‖C‖2 = u2 + v2 is real analytic on M3. From Lemma 2.1 and (2.2)
it follows that

∆(u2 + v2) = 2‖∇u‖2 + 2‖∇v‖2

≥ 2
(
e(u)

)2
+ 2
(
e(v)

)2
= 8u2v2 + 2(u2 − v2)2

= 2(u2 + v2)2.

Hence, the following differential inequality holds

∆‖C‖2 ≥ 2‖C‖4.

Using Proposition 1.10 we derive that C = 0 and from Corollary 1.5 we obtain the
desired splitting result.

Proof of Corollary 3.2: The Omori-Yau maximum principle holds on Mm under the
assumption on the scalar curvature (see [2] or [3, Theorem 2.4]) or if the immersion
f is proper (see [3, Theorem 2.5]). Hence we can apply the same arguments as in the
proof of Theorem 3.1, due to the validity of the Omori-Yau maximum principle on
Mm.



CHAPTER 4

Minimal immersions with relative nullity
in Euclidean spheres

In this chapter, we investigate minimal isometric immersions f : Mm → Sn, m ≥ 3,
into Euclidean spheres with index of relative nullity at least m−2 at any point. These
are austere submanifolds in the sense of Harvey and Lawson [44] and were studied by
Bryant [7]. Austerity is a pointwise algebraic condition on the second fundamental
form. It requires that the nonzero principal curvatures in any normal direction occur
in oppositely signed pairs, hence, the austerity condition is, aside from surfaces, much
stronger than minimality.

For any dimension and codimension there is an abundance of examples of non-
complete minimal isometric immersions f : Mm → Sn fully described by Dajczer and
Florit [15] in terms of a class of surfaces, called elliptic, for which the ellipse of curva-
ture of a certain order is a circle at any point. Under the assumption of completeness,
it turns out that any submanifold is either totally geodesic or has dimension three.
In the latter case there are plenty of examples, even compact ones. Under the mild
assumption that the Omori-Yau maximum principle holds on the manifold, a trivial
condition in the compact case, we provide a complete local parametric description of
the submanifolds in terms of 1-isotropic surfaces in Euclidean space. These are the
minimal surfaces for which the standard ellipse of curvature is a circle at any point.
For these surfaces, there exists a Weierstrass type representation that generates all
simply-connected ones.

39
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4.1 The main result

The completeness of Mm imposes f to be totally geodesic unless m = 3. On the
other hand, it follows from the subsequent results of this chapter that any example
for m = 3 can locally be constructed as follows:

Let g : L2 → Rn+1, n ≥ 4, be an elliptic surface whose first curvature ellipse is a
circle. Then, the map ψg : T 1L→ Sn defined on the unit tangent bundle of L2

T 1L = {(x,w) : x ∈ L, w ∈ TL, ‖w‖ = 1}

and given by
ψg(x,w) = g∗w (4.1)

parametrizes (outside singular points) a minimal immersion f : M3 → Sn with index
of relative nullity at least one at any point. More precisely, we prove the following:

Theorem 4.1. Let f : Mm → Sn, m ≥ 3, be a minimal isometric immersion with
index of relative nullity at least m − 2 at any point. If Mm is complete, then f is
totally geodesic unless m = 3. Moreover, if the Omori-Yau maximum principle holds
on M3, then, along an open dense subset, f is locally parametrized by (4.1) where
g : L2 → Rn+1 is a minimal surface whose first curvature ellipse is always a circle.

A minimal surface g : L2 → Rn whose first curvature ellipse is a circle at any
point is called a 1-isotropic surface. The above result should be complemented by
the fact that there is a Weierstrass type representation, see (1.8), that generates all
simply-connected 1-isotropic surfaces.

Examples: There are plenty of compact examples of three-dimensional minimal
submanifolds in spheres with index of relative nullity at least one at any point:

(i) Hopf lifts: If g : L2 → CPn, n ≥ 2, is a substantial holomorphic curve, then the
Hopf fibration H : S2n+1 → CPn induces a circle bundle M3 over L2. This lifting
induces an immersion f : M3 → S2n+1 such that g ◦ π = H ◦ f , where π : M3 → L2

is the projection map. Such submanifolds (called Hopf lifts) are minimal with index
of relative nullity at least 1 if n = 2 (see [29]) or n = 3 (see [51]). Moreover, if L2 is
compact, then M3 is also compact.

(ii) Tubes over minimal 2-spheres : Due to the work of Calabi, Chern, Barbosa and
others, see [8], [12], [4], it is known that minimal 2-spheres in spheres are pseudoholo-
morphic (isotropic) in substantial even codimension. Calabi [8] proved that any such
surface in S2n is nicely curved if its area is 2πn(n+1), and Barbosa showed [4] that the
space of these surfaces is diffeomorphic to SO(2n+1,C)/SO(2n+1,R). According to
Proposition 4.4 below such surfaces produce examples of compact three-dimensional
minimal submanifolds in S2n with index of relative nullity one.
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Recall that a triple (M, 〈· , ·〉, J) is called almost Hermitian if (M, 〈· , ·〉) is an even
dimensional Riemannian manifold and J is an almost complex structure on M that
is orthogonal with respect to the metric, i.e.,

〈X, Y 〉 = 〈JX, JY 〉, for X, Y ∈ X(M).

An almost Hermitian manifold (M2m, 〈· , ·〉, J) is called nearly Kähler if ∇J is a skew
bilinear form with values on TM , i.e.,

(∇XJ)X = 0, for X ∈ TM.

The 6-sphere S6 inherits a nearly Kähler structure from its natural inclusion to imagi-
nary Octonions. It is thus endowed with an almost symplectic structure, given by a
non-degenerate 2-from ω which is not closed. The canonical almost complex structure
J on S6, is compatible with ω in the sence that

〈X, Y 〉 = ω(X, JY ).

We define Lagrangian submanifolds of S6 as 3-dimensional submanifolds on which ω
vanishes.

Among the second family of examples given above in (ii), there are the submani-
folds produced from pseudoholomorphic surfaces g : S2 → S6 with area 24π which are
holomorphic with respect to the nearly Kähler structure in S6. For instance, this is
the situation of the Veronese surface in S6. In this case, the compact submanifolds
M3 are Lagrangian (also called totally real) in S6; see [29].

Corollary 4.2. Let f : M3 → S6 be an isometric immersion with index of relative
nullity at least one at any point. Assume that f is Lagrangian with respect to the
nearly Kähler structure in S6. If M3 is complete and the Omori-Yau maximum prin-
ciple holds, then f is locally parametrized by (4.1) along an open dense subset of M3

where g is a 2-isotropic surface in R6 (respectively, R7) and f is substantial in S5

(respectively, S6).

That the surface g is 2-isotropic means that it is 1-isotropic and that the second
ellipse of curvature is also a circle at any point. Hence, in the case of R6 we have
that g is congruent to a holomorphic curve in C3 ≡ R6.

It follows from the results in [27] that the universal cover of any of the complete
three-dimensional submanifolds considered in Theorem 4.1 admits a one-parameter
associated family of isometric immersions of the same type. Moreover, that family
is trivial if and only if the (local) generating minimal surface is congruent to a holo-
morphic curve. We refer to Lotay [51] for a discussion about the existence of such an
associated family in the case of yet another family of examples.
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4.2 The local case

We discuss next two alternative ways to parametrically describe, at least locally,
all spherical three-dimensional minimal submanifolds of rank two in spheres. This
follows from the results in [15] bearing in mind that a submanifold is minimal in a
sphere if and only if the cone shaped over it is minimal in the Euclidean space.

Let g : L2 → Rn+1, n ≥ 4, be an elliptic surface and let T 1L denote its unit
tangent bundle.

Proposition 4.3. If the ellipse Eg1 is a circle, then the map ψg : T 1L→ Sn given by

ψg(x,w) = g∗w

is a minimal immersion with index of relative nullity ν ≥ 1 outside the subset of
singular points, which correspond to points where dimN g

1 = 0. Moreover, a regular
point (x,w) ∈ T 1L is totally geodesic for ψg if and only if dimN g

2 (x) = 0. Conversely,
any three-dimensional minimal submanifold in the sphere with ν = 1 at any point can
be at least locally parametrized in this way.

The above parametrization (used for Theorem 4.1) is called the bipolar parametri-
zation in [15] because g is a bipolar surface to ψg. The parametrization in the sequel
(used for the examples discussed above) was called in [15] the polar parametrization.

Let g : L2 → Q2n+2c
1−c (c = 0, 1), n ≥ 2, be a nicely curved elliptic surface and let

M3 = UN g
τg stand for the unit bundle of N g

τg .

Proposition 4.4. If the ellipse Egτg−1 is a circle, then φg : M3 → S2n+c given by
φg(x,w) = w is a minimal immersion of rank two and polar surface g. Conversely,
any minimal submanifold M3 in S2n+c of rank two can locally be parametrized in this
way.

4.3 The complete case

We first observe that for complete submanifolds of rank at most two the interesting
case is the three-dimensional one. The remaining of the section is devoted to the
study of the latter case.

Proposition 4.5. Let f : Mm → Sn, m ≥ 3, be a minimal isometric immersion with
index of relative nullity ν ≥ m− 2 at any point. If Mm is complete, then f is totally
geodesic unless m = 3.
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The above is an immediate consequence of the following result due to Ferus [34]
(see [14, Lemma 6.16] where the proof holds regardless the codimension) since due
to minimality we cannot have points with index of relative nullity m − 1. For the
sake of completeness we will provide an alternative proof of this but first we need the
following result.

Lemma 4.6. Let f : Mm → Sn be an isometric immersion and let U ⊂ Mm be an
open subset where the index of relative nullity is constant and the leaves of the relative
nullity distribution D are complete. Then, for any x0 ∈ U and T0 ∈ D(x0) the only
possible real eigenvalue of CT0 is zero.

Proof: If CT0 has nonzero real eigenvalues λ1, . . . , λk, set

tanφ = min
1≤j≤k

|λ−1j |,

where φ ∈ (−π/2, π/2). Let γ : R → Mm be the geodesic such that γ(0) = x0 and
γ′(0) = T0. From Proposition 1.2(i) we have that

∇γ′Cγ′ = C2
γ′ + I. (4.2)

The endomorphism I−tan t CT0 is invertible for any t ∈ (−φ, φ). The unique solution
of the differential equation (4.2) for t ∈ (−φ, φ) with initial data Cγ′(0) = CT0 is

Cγ′(t) = P0(t)(tan t I + CT0)(I − tan t CT0)
−1P−10 (t),

where P0(t) denotes the parallel transport along γ from the point γ(0) = x0 to γ(t).
If follows that either 1/ tan(φ−t) or −1/tan(φ+ t) must be an eigenvalue of Cγ′(t) for
t ∈ (−φ, φ). On one hand, these quantities become unbounded when the parameter t
tends to φ and −φ, respectively. On the other hand, by our completeness assumption
Cγ′(t) is well defined for any t ∈ R, and this is a contradiction.

Proof of Proposition 4.5: Let U ⊂ Mm be the open subset where f has rank two.
Clearly, if U is empty the minimality condition implies that f is totally geodesic.
Thus, we may assume that f is not totally geodesic in which case the leaves of
relative nullity in U are complete.

The codimension of kerC in D satisfies codim kerC ≤ 1. If otherwise, we have
from dim End(D⊥) = 4 and dim Sym(D⊥) = 3 that the image Im(C) ⊂ End(D⊥)
contains a non trivial self-adjoint endomorphism, in contradiction to Lemma 4.6.
From (1.5) we obtain

∇SCS = C2
S + C∇SS + I. (4.3)

In particular, it follows that codim kerC = 1.
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Suppose that m > 3. By the above there exists a unit vector field T0 ∈ D spanning
(kerC)⊥. This implies that dim kerC = m− 3 > 0. Hence, the tangent bundle splits
as

TM = D⊥ ⊕ span{T0} ⊕ kerC.

Moreover there exists a unit vector field S ∈ kerC. Then (4.3) takes the form

〈∇SS, T0〉CT0 + I = 0

which contradicts Lemma 4.6.

Let A denote the set of totally geodesic points of f . By Proposition 1.1(iv) the
relative nullity distribution D is a line bundle on M3 r A. Being f real analytic,
the square of the norm of the second fundamental form is a real analytic function
and hence A is a real analytic set. According to Theorem 1.15 the set A locally
decomposes as

A = V0 ∪ V1 ∪ V2 ∪ V3

where each Vd, 0 ≤ d ≤ 3, is either empty or a disjoint finite union of d-dimensional
real analytic subvarieties.

We want to show that A = V1 unless f is just a totally geodesic three-sphere in
Sn. After excluding the latter case, we have from the real analyticity of f that V3 is
empty. We will proceed now following ideas as the ones developed in Euclidean case.
In fact, we only sketch the proof of the following fact, which is similar to the proof
of Lemma 3.5.

Lemma 4.7. The set V2 is empty.

Proof: We only have to show that there are no regular points in V2. Suppose that a
regular point x0 ∈ V2 exists. Let Ω ⊂ M3 be an open neighborhood of x0 such that
L2 = Ω ∩ A is an embedded surface. Let e1, e2, e3, ξ1, . . . , ξn−3 be an orthonormal
frame adapted to M3 along Ω near x0. The coefficients of the second fundamental
form are

haij = 〈αf (ei, ej), ξa〉,
where 1 ≤ i, j, k ≤ 3 and 1 ≤ a, b ≤ n− 3.

The Gauss map γ : M3 → Gr(4, n + 1) of f is a map into the Grassmannian of
oriented 4-dimensional subspaces in Rn+1 defined by

γ = f ∧ f∗e1 ∧ f∗e2 ∧ f∗e3.

We can regard Gr(4, n+ 1) as a submanifold in ∧4Rn+1 via the map for the Plücker
embedding. Then

γ∗ei =
∑
j,a

haijf ∧ eja,
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where eja is taken by replacing f∗ej with ξa in e1 ∧ e2 ∧ e2. Moreover, it easy to see
that the Gauss map satisfies the partial differential equation

∆γ + ‖αf‖2γ =
∑

i,a6=b,j 6=k

haijh
b
ikf ∧ eja,kb,

where eja,kb is obtained by replacing f∗ej with ξa and f∗ek with ξb in f∗e1∧f∗e2∧f∗e3.
Hence, we may write the latter equation in the form

∆γ(x) + ‖γ∗(x)‖2γ(x) +G(x, γ∗) = 0,

where G is real analytic with G(· , 0) = 0. Clearly, we have that γ is constant along
L2 and γ∗(~η) = 0 on L2, where ~η is a unit normal of L2 ⊂ M3. Then, from the
uniqueness part of the Cauchy-Kowalewsky theorem (cf. [62]) we deduce that the
Gauss map γ must be constant. This would imply that f(M) is a three-dimensional
totally geodesic sphere which contradicts our assumption.

Lemma 4.8. The set V0 is empty.

Proof: The proof is identical to the one give in Euclidean space, see Lemma 3.6.

Lemma 4.9. The foliation of relative nullity extends analytically over the regular
points in the set A.

Proof: Observe that the distribution D extends continuously over the regular points
of A. In fact, by the previous lemmas it remains to consider the case when Ω is an
open subset of M3 such that Ω ∩ A is a open piece of a great circle in the ambient
space. But in this situation the result follows by a argument of continuity similar
than in the proof of Lemma 4.8. The rest of the proof is similar to Euclidean case,
see Lemma 3.7 for details.

Lemma 4.10. The set A has no singular points.

Proof: Let x0 ∈ A be a singular point. From Lemmas 4.7 and 4.8 the set A contains
subvarieties of dimension one. It is well known that the singular points of such curves
are isolated. Moreover, according to Lemma 4.9 the set of regular points of A contains
geodesic curves of the relative nullity foliation. Hence x0 is an intersection of such
geodesic curves. The rest of the proof is carried out as in Lemma 3.8.

4.4 The proofs

Proof of Theorem 4.1: By Proposition 4.5 we only have to consider the case m = 3.
We distinguish two cases.
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Case A = ∅. At first suppose that the line bundle D is trivial with e a unit global
section. By Lemma 2.1 there exist harmonic functions u, v ∈ C∞(M) such that
C = vI − uJ.

We claim that u is nowhere zero. To the contrary suppose that u(x0) = 0 at
x0 ∈ M3. Let γ : R → M3 the maximal integral curve of e emanating from x0. The
second equation in (2.2) gives that u must vanish along γ. Thus the first equation
in (2.2) reduces to v′(s) = v2(s) + 1, where v(s) = v(γ(s)) is an entire function. But
this is a contradiction since this equation has no entire solutions. In the sequel, we
assume that u > 0. Using (2.2) and u > 0, one can easily see that

∆
(
(u− 1)2 + v2

)
= 2(‖∇u‖2 + ‖∇v‖2) ≥ 2((e(u))2 + (e(v))2)

≥ 2
(
(u− 1)2 + v2

)2
,

where in the last inequality we used that u > 0. Hence, from Proposition 1.10 we
obtain

C = −J.

Let U ⊂M3 be the open dense subset where f is nicely curved. Let U ⊂ U be an
open connected subset U that is the saturation of a simply connected cross section
L2 ⊂ U to the relative nullity foliation. Hereafter we work on U where f is nicely
curved. Hence polar and bipolar surfaces of f |U are well defined.

Let h be a polar surface to f |U . We have seen that the almost complex structure
J on D⊥ induces an almost complex structure J̃ on TL defined by P J̃ = JP , where
P : TL → D⊥ is the orthogonal projection. Moreover, h is elliptic with respect to J̃
and (1.10) holds. In addition, it follows from Proposition 4.4 that Ehτh−1 is a circle.

We claim that the last curvature ellipse Ehτh of h is also a circle. In that case the
bipolar surface g : L2 → Rn+1 to f is 1-isotropic, and we are done. Observe that

Nh
τh

= span{ξ, η},

where ξ = f∗e|L2 and η = f |L2 . Using C = −J , we obtain that

ξ∗ = f∗|D⊥ ◦ J ◦ P. (4.4)

Consider vector fields X1, . . . , Xτh , Y ∈ TL. Since Nh
τh−1 = N f

0 = f∗(D⊥), we have

ατhh (X1, . . . , Xτh) = f∗Z

for some Z ∈ D⊥. Keeping in mind the bundle isometries, we obtain that

ατh+1
h (X1, . . . , Xτh , Y ) =

(
∇h⊥
Y ατhh (X1, . . . , Xτh)

)
Nh
τh

=
(
∇̃Y f∗Z

)
Nh
τh

.
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Taking into account (4.4) we see that

ατh+1
h (X1, . . . , Xτh , Y ) = 〈∇̃Y f∗Z, ξ〉ξ + 〈∇̃Y f∗Z, η〉η

= −〈f∗Z, ξ∗Y 〉ξ − 〈f∗Z, η∗Y 〉η
= −〈Z, JPY 〉ξ − 〈Z, PY 〉η.

Recall that the almost complex structure Jhτh on Nh
τh

is given by

Jhτhα
τh+1
h (X1, . . . , Xτh , Y ) = ατh+1

h (X1, . . . , Xτh , J̃Y ).

Since

ατh+1
h (X1, . . . , Xτh , Y ) = −〈Z, JPY 〉ξ − 〈Z, PY 〉η

and

ατh+1
h (X1, . . . , Xτh , J̃Y ) = 〈Z, PY 〉ξ − 〈Z, JPY 〉η,

we have that ατh+1
h (X1, . . . , Xτh , Y ) and ατh+1

h (X1, . . . , Xτh , J̃Y ) are perpendicular of
the same length. Thus Jhτh is orthogonal, and proves the claim.

Finally, if the line bundle D is not trivial, it suffices to argue for a 2-fold covering
Π: M̃3 →M3 such that the nullity distribution D̃ of f̃ = f ◦Π is a trivial line bundle
and Π∗D̃ = D, see [59, pp. 95-101] for details.

Case A 6= ∅. We have seen that the relative nullity distribution D can be extended
analytically to a line bundle on M3, denoted again by D, over the set of totally
geodesic points A. Without loss of generality, we may assume that there is a global
unit section e spanning D, since otherwise we can pass to the 2-fold covering space

M̃3 =
{

(x,w) : x ∈M3, w ∈ D(x) and ‖w‖ = 1
}

and argue as in the previous case. From Lemma 2.1, we know that there exist
harmonic functions u, v ∈ C∞(M3rA) such that (2.1) holds on M3rA. By previous
results the functions u and v can be extended analytically to harmonic functions on
the entire M3. Moreover, since u is positive on M3 r A and A consists of geodesic
curves, by continuity we get that u ≥ 0 on M3. Then ‖C+J‖2 is globally well defined
and, arguing as in the previous case, we conclude again that C = −J on M3. The
remaining of the proof now goes as before.

Proof of Corollary 4.2: By a result of Ejiri [31, Theorem 1] we have that f is minimal.
Let e1, e2, e3 be a local orthonormal tangent frame such that e3 ∈ D. Since f is
Lagrangian, we have that Je1, Je2, Je3 is an orthonormal frame in the normal bundle
of f . Moreover, it is well known that the 3-linear tensor h given by

h(ei, ej, ek) = 〈αf (ei, ej), Jek〉, i, j, k ∈ {1, 2, 3},
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is fully symmetric. Away from the totally geodesic points, using the symmetry of h
and the minimality of f we obtain that αf (e1, e1) and αf (e1, e2) are perpendicular to

each other and have the same length. Hence the ellipse Ef1 is a circle.
Suppose at first that f is substantial in S6. Assume that the submanifold is

the saturation of a fixed cross section L2 to the relative nullity foliation and denote
by h : L2 → S6 the polar surface to f . From Proposition 1.8 we obtain that h is
1-isotropic. Proceeding as in the proof of Theorem 4.1, we deduce that the second
ellipse of h is also a circle. Therefore, h is pseudoholomorphic and any bipolar surface
g to f is 2-isotropic in R7.

Now we consider the case where f is substantial in S5. Consider a fixed cross
section L2 to the relative nullity foliation and let h : L2 → R6 be a polar surface to f .
As in the previous case, we obtain that h must be isotropic. Therefore, any bipolar
surface g to f is an isotropic surface in R6.



CHAPTER 5

Minimal immersions with relative nullity
in hyperbolic space

This chapter will be divided in three parts.

At first, we study complete minimal isometric immersions f : Mm → Qn
c in space

forms initiated in [21] for sectional curvature c = 0 and continued in [22] for c > 0
(see Chapters 3 and 4). The basic hypothesis is that the index of relative nullity
satisfies ν ≥ m− 2 everywhere. The goal is to conclude that under some reasonable
assumption the submanifold has to be of a simple geometric type other than totally
geodesic. For instance, under the hypothesis that the Omori-Yau maximum principle
holds on the manifold, we showed in Chapter 3 that the Euclidean submanifold has
to be a (m− 2)-cylinder.

In the second section, we provide a parametrization of all minimal submanifolds
Mm of rank two lying in hyperbolic space Hn through k-regular elliptic surfaces.
Using this parametrization, and the results in [9], [32] and [47] one can construct
many complete examples of any dimension other than generalized cones.

The last section, is devoted to minimal submanifolds in hyperbolic space with rank
three or four. Explicit examples of minimal submanifolds in the hyperbolic space are
rare and new examples are certainly welcome. In this direction, we introduce a new
class of minimal submanifolds F : Mn → Hn+2, n ≥ 3, in the hyperbolic space that
are (n − 2)-ruled. If in addition the manifold is simply connected, then we prove
that F allows a one-parameter associate family of equally ruled minimal isometric
deformations that are genuine.

49
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5.1 Minimal immersions of three dimensional sub-

manifolds

In any of the two cases already studied, namely the Euclidean and spherical case,
the proofs reduce to analyze the situation of the three dimensional submanifolds.
In fact, for submanifolds in spheres only this case turned out to be possible. For
complete minimal immersions f : Mm → Hn the condition that the index of relative
nullity satisfies ν ≥ m− 2 turns out to be quite less restrictive than in the previously
studied cases. Nevertheless, we have reasons to believe that the manifold being three-
dimensional is still quite special and this is why this case allows a characterization
of a class of submanifolds that is contained in the following description. In fact, in
this section we prove the following result for complete minimal three dimensional
submanifolds in hyperbolic space f : M3 → Hn under the assumption that ν ≥ 1.

Theorem 5.1. Let f : M3 → Hn be a minimal isometric immersion with index of
relative nullity at least ν ≥ 1 at any point. Assume that M3 is complete with scalar
curvature bounded from below. Then f is either totally geodesic or a generalized cone
over a complete minimal surface with bounded Gauss curvature lying in an equidistant
submanifold of Hn.

Notice that generalized cones over minimal surfaces contained in the other two
types of umbilical submanifolds are not part of the theorem. In fact, if the surface
lies inside a geodesic sphere then the generalized cone is never complete, whereas if
it lies in a horosphere then the scalar curvature of the cone is unbounded.

Like it happens for c ≥ 0, in the present case where c < 0 there are plenty of local
examples other than generalized cones. As a matter of fact, a local parametrization
of all minimal submanifolds f : Mm → Hn with index of relative nullity ν = m − 2
was given in [49] in terms of certain elliptic spacelike surfaces in either the de Sitter
space or the Lorentzian flat space according to n−m being even or odd, respectively
(see section 5.2). Moreover, from the results in [9], [32] and [47] it is clear that this
parametrization can be used to construct complete examples of any dimension other
than generalized cones.

5.1.1 Generalized cones

In this section, we find sufficient conditions for an isometric immersion into the hy-
perbolic space to be globally a generalized cylinder. First, we recall from Subsection
1.6 the definition of generalized cone.

Let g : Lm−k → Qn−k
c be an isometric immersion into a totally umbilical submani-

fold Qn−k
c of the hyperbolic space and i : Qn−k

c → Hn the umbilical inclusion. The
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normal bundle of h = i ◦ g : Lm−k → Hn splits orthogonally as

NhL = i∗NgL⊕NiQ
n−k
c ,

where L = Lm−k andNiQ
n−k
c is regarded as a subbundle ofNhL. ConsiderG : NiQ

n−k
c →

Hn the map defined by

G(x,w) = expg(x)w,

where exp denotes the exponential map of Hn. We denote by Mm the open subset
of NiQ

n−k
c where G is an immersion, endowed with the metric induced by the map

G. The generalized cone in Hn over g : Lm−k → Qn−k
c is the isometric immersion

Fg : Mm → Hn, defined by Fg = G|Mm .

The following proposition characterizes generalized cones over a minimal surface
lying into an umbilical submanifold.

Proposition 5.2. Let g : L2 → Qn−ν
c be a minimal surface into an umbilical submani-

fold Qn−ν
c of Hn. Then

(i) The generalized cone Fg : Mm → Hn, m = 2 + ν, over g is a minimal immersion
with index of relative nullity at least ν at any point.

(ii) The map G is an immersion if and only if Qn−ν
c is a totally geodesic submanifold

of either an equidistant hypersurface or a horosphere in Hn. In that case Mm is com-
plete if and only if L2 is complete. Moreover, if Qn−ν

c is contained in an equidistant
(respectively, horosphere) hypersurface then the scalar curvature of Mm is bounded
(respectively, unbounded) along each fiber of the normal bundle of the umbilical in-
clusion i : Qn−ν

c → Hn.

Proof: Let i : Qn−ν
c → Hn be a complete simply connected umbilical submanifold.

Then let η1, η2, . . . , ην be a global orthonormal frame of the normal bundle of i such
that η1 points in the direction of the mean curvature vector field H.

Since the normal bundle NiQ
n−ν
c is a trivial vector bundle we have that the map

G : L2 × Rν → Hn, is given parametrically by

G(x, t1, t2, . . . , tν) = cosh tν fν−1(x) + sinh tν ην(x),

where fj are defined inductively by f0 = g and

fj = cosh tjfj−1 + sinh tjηj, 1 ≤ j ≤ ν.

Set

hj =
ν∏

k=j+1

cosh tk, 1 ≤ j ≤ ν − 1
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and
r = h1(cosh t1 − ‖H‖ sinh t1).

A straightforward computation gives

G∗(X) = rg∗(X), X ∈ TL,
G∗(∂tj) = hj(sinh tj fj−1 + cosh tj ηj), 1 ≤ j ≤ ν − 1,

G∗(∂tν ) = sinh tν fν−1 + cosh tν ην .

It is clear that the map G is an immersion if and only if ‖H‖ ≤ 1, which in turn
is equivalent to Qn−ν

c being a totally geodesic submanifold of either an equidistant
hypersurface or a horosphere in Hn. Moreover, its second fundamental form is given
by

αG(X, Y ) = rαg(X, Y )

if X, Y ∈ TL, and the fact that the vectors ∂t1 , . . . , ∂tν belong to the relative nullity
subspace. This proves part (i).

The induced metric on L2 × Rν is given by

〈· , ·〉G = r2 〈· , ·〉g + 〈· , ·〉0,

where the Euclidean space Rν is equipped with the complete Riemannian metric

〈· , ·〉0 = h21dt
2
1 + · · ·+ h2ν−1 dt

2
ν−1 + dt2ν .

It follows from Lemma 7.2 in [5] that the manifold Mm is complete if and only if L2

is complete.
Finally, the Gauss equation yields that the scalar curvature s of Mm is given by

s = −m(m− 1)− 1

r2
‖αg‖2.

This implies that the scalar curvature of Mm is bounded (respectively, unbounded)
along each fiber of the normal bundle of the umbilical inclusion i : Qn−ν

c → Hn if
Qn−ν
c is a totally geodesic submanifold of an equidistant hypersurface (respectively,

horosphere).

5.1.2 The proofs

Next we make use of the real analytic structure of a minimal submanifold in order to
extend smoothly the relative nullity distribution to the totally geodesic points.

Let A denote the set of totally geodesic points of f . By Proposition 1.1, the
relative nullity distribution D is a line bundle on M3 r A. Since f is real analytic
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we have that A is a real analytic set. According to Theorem 1.15, it follows that A
locally decomposes as

A = V0 ∪ V1 ∪ V2 ∪ V3,

where each set Vk, 0 ≤ k ≤ 3, is either empty or a disjoint finite union of k-
dimensional real analytic subvarieties.

We can assume that V3 is empty since, otherwise, we already have by real ana-
lyticity that f is a totally geodesic submanifold.

Lemma 5.3. The set V0 is empty.

Proof: The proof goes as in Euclidean case, see Lemma 3.6.

Lemma 5.4. The set V2 is empty.

Proof: The proof is similar to the spherical case. All we have to show is that V2

does not contain regular points. Suppose to the contrary and let Ω ⊂ M3 be an
open neighborhood of a regular point x0 ∈ V2 such that L2 = Ω ∩A is an embedded
surface. Let e1, e2, e3, ξ1, . . . , ξn−3 be an orthonormal frame adapted to M3 along Ω
near x0.

The Gauss map γ : M3 → Gr(4, n + 1) takes values into the Grassmannian of
oriented spacelike 4-dimensional subspaces in the Lorentzian space Ln+1. Regarding
Gr(4, n+ 1) as a submanifold in ∧4Ln+1 via the map for the Plücker embedding, we
have that

γ = f ∧ f∗e1 ∧ f∗e2 ∧ f∗e3.

The coefficients of the second fundamental form are

haij = 〈α(ei, ej), ξa〉,

where from now on 1 ≤ i, j, k ≤ 3 and 1 ≤ a, b ≤ n− 3. It is easy to see that

γ∗ei =
∑
j,a

haijf ∧ eja, (5.1)

where eja is obtained by replacing f∗ej with ξa in f ∧ f∗e1 ∧ f∗e2 ∧ f∗e3. Then∑
i

〈γ∗ei, γ∗ei〉 =
∑
i,j,a

(haij)
2〈f ∧ eja, f ∧ eja〉 = −‖α‖2,

where the inner product of two simple 4-vectors in ∧4Ln+1 is defined by

〈a1 ∧ a2 ∧ a3 ∧ a4, b1 ∧ b2 ∧ b3 ∧ b4〉 = det
(
〈ai, bj〉

)
.
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A long but straightforward computation using the Codazzi equation yields

∆γ = −‖α‖2γ +
∑

i,a 6=b,j 6=k

haijh
b
ik f ∧ eja,kb, (5.2)

where eja,kb is obtained by replacing f∗ej with ξa and f∗ek with ξb in f∗e1∧f∗e2∧f∗e3.
We identify ∧4Ln+1 with LNS where N =

(
n+1
4

)
and S =

(
n
3

)
and regard γ as a

map from M3 into LNS . Denoting by {AJ}J∈{1,...,N} the corresponding base in LNS ,
where A1, . . . , AS are timelike and the remaining vectors spacelike, we have that

γ =
N∑
J=1

wJAJ ,

where wJ = −〈γ,AJ〉 for 1 ≤ J ≤ S and wJ = 〈γ,AJ〉 for S + 1 ≤ J ≤ N .
We obtain from (5.2) that

∆wJ = −‖α‖2wJ − εJ
∑

i,a 6=b,j 6=k

haijh
b
ik〈f ∧ eja,kb, AJ〉, (5.3)

where

εJ =

{
+1, 1 ≤ J ≤ S

−1, S + 1 ≤ J ≤ N.

Take a local chart φ : U → R3 of coordinates x = (x1, x2, x3) on an open subset
U of Ω and set

ei =
∑
j

µij∂xj . (5.4)

Setting θJ = wJ ◦ φ−1, we obtain the map θ : φ(U) ⊂ R3 → LNS given by

θ =
N∑
J=1

θJAJ = (θ1, . . . , θN).

Thus θ = γ ◦ φ−1 is the representation of the Gauss map with respect to the above
mentioned charts. From (5.4) and

haij =
∑
J

〈f ∧ eja, AJ〉ei(wj)

we derive that

haij =
∑
k,J

µik〈f ∧ eja, AJ〉(θJ)xk . (5.5)
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Thus

‖α‖2 =
∑
i,j,a

(∑
k,J

µik〈f ∧ eja, AJ〉(θJ)xk

)2
. (5.6)

The Laplacian of M3 is given by

∆ =
1
√
g

∑
i,j

∂xi

(√
ggij∂xj

)
,

where gij are the components of the inverse of the metric gij of M3 and g = det(gij).
Using (5.5) and (5.6), we see that (5.3) is of the form∑

i,j

gij(θJ)xixj + CJ
(
x, θ, θx1 , θx2 , θx3

)
= 0,

where CJ : φ(U)× R4N → R is given by

CJ(x, y, z1, z2, z3) =
1
√
g

∑
i,j

(
√
ggij)xizjJ + yJ

∑
i,j,a

(∑
k,I

µik〈f ∧ eja, AI〉zkI
)2

+ εJ
∑
I,K

∑
i,l,m

a6=b,j 6=k

µilµim〈f ∧ eja,kb, AJ〉〈f ∧ eja, AK〉〈f ∧ ekb, AI〉zmIzlK

with y = (y1, . . . , yN), zi = (zi1, . . . , ziN), i,m, l ∈ {1, 2, 3} and I, J,K ∈ {1, . . . , N}.
Let Aij = gijIN , IN being the identity N×N matrix, C = (C1, . . . , CN) and ~η the unit
normal field to the surface φ(L2) in R3. Then, the vector valued map θ = (θ1, . . . , θN)
satisfies the elliptic equation

Lθ =
∑
i,j

Aij(x)θxixj + C
(
x, θ, θx1 , θx2 , θx3

)
= 0

with initial conditions: θ is constant on φ(L2) and θ∗(~η) = 0 on φ(L2), where ~η is a
unit normal of φ(L2) ⊂ R3.

According to the Cauchy-Kowalewsky theorem (cf. [62]) the above system has
a unique solution if the surface φ(L2) is noncharacteristic. This latter condition is
satisfied if Q(~η) 6= 0, where Q is the characteristic form given by

Q(ζ) = det(Λ(ζ))

with ζ = (ζ1, ζ2, ζ3) and

Λ(ζ) =
∑
i,j

gijζiζjIN
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is the symbol of the differential operator L. That the surface φ(L2) is noncharacte-
ristic follows from

Q(ζ) =
(∑

i,j

gijζiζj

)N
.

Since C(x, y, 0, 0, 0) = 0 the constant maps satisfy the system. Due to uniqueness of
solutions to the Cauchy problem, we deduce that the Gauss map γ is constant on an
open subset of M3 and that is not possible.

Lemma 5.5. The relative nullity distribution can be extended analytically over the
regular points of the set A.

Proof: Clearly D extends continuously over the regular points of A. Let e1, e2, e3 = e
be a local orthonormal tangent frame on an open subset U of M3 rA as in Lemma
2.1. We view e as a map F : U → T 1M into the unit tangent bundle of M3 endowed
with the Riemannian metric inherited from the Sasaki metric on TM . We argue that
the map F = e is harmonic. In fact, from (2.8), (2.9), (2.2) and (2.3) we obtain that

∆F =
3∑
i=1

(
∇ei∇eie−∇∇eieie

)
= −2

(
u2 + v2

)
e

= −
(
‖∇e1e‖2 + ‖∇e2e‖2

)
e.

Hence the map F satisfies the differential equation

∆F + ‖∇F‖2F = 0,

which is precisely the Euler-Lagrange equation for the energy functional of F (cf.
[63, Proposition 1.1]). Thus F : U → T 1M is harmonic. Since A = V1 we obtain that
F is real analytic in view Lemma 1.14.

Lemma 5.6. The set A has no singular points.

Proof: The proof is the same as in Lemma 3.8.

Proof of Theorem 5.1: We have seen that the relative nullity distribution D extends
to a global line bundle, also denoted by D. By passing to the 2-fold covering, if
necessary, we have that this line bundle is trivial. Thus it is spanned by a globally
defined unit section e. Hence, there is a unique, up to sign, orthogonal almost complex
structure J : D⊥ → D⊥. By Lemma 2.1 there are harmonic functions u, v ∈ C∞(M)
such that

C = vI − uJ.
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To obtain the proof of the theorem all we have to show is that u vanishes. In fact,
if that is the case then the result will follow from Propositions 1.6 and 5.2.

Making use of the equations (2.2) and that the functions u, v are harmonic, we
obtain that

∆(u2 + v2 − 1) = 2‖∇u‖2 + 2‖∇v‖2

≥ 2(e(u))2 + 2(e(v))2

= 8u2v2 + 2(v2 − u2 − 1)2

≥ 2(u2 + v2 − 1)2.

Since the Ricci curvature of M3 is bounded from below, then Proposition 1.10 applies
and gives that u2 + v2 ≤ 1. Hence u and v are bounded functions.

We claim that v2 < 1. Suppose to the contrary that there is x0 ∈ M3 such that
|v(x0)| = 1. The maximum principle for harmonic functions (see Proposition 1.9)
yields that v = 1 or v = −1 everywhere. Hence C = ±I. We have using (1.7) that

e(‖α‖2) = e
( n−3∑
j=1

tr(A2
ξj

)
)

=
n−3∑
j=1

tr(∇eA
2
ξj

) = 2
n−3∑
j=1

tr(Aξj ◦ C ◦ Aξj) = ±2‖α‖2,

where ξ1, . . . , ξn−3 is an orthonormal normal frame parallel along a geodesic integral
curve γ of e. Thus

‖α(γ(t))‖2 = ce±t

where c > 0 is a constant. Therefore ‖α‖ is unbounded along γ. Using equation (1.4)
and the minimality of f we derive that the scalar curvature is given by

s = −6− ‖α‖2.

This clearly contradicts the assumption on the scalar curvature and proves the claim.
Let γ : R→M3 be a unit speed geodesic contained in a leaf of the relative nullity

foliation. Since v2 < 1, we have from the first equation in (2.2) that

(v ◦ γ)′ = (v ◦ γ)2 − (u ◦ γ)2 − 1 ≤ (v ◦ γ)2 − 1.

Hence the function v ◦γ : R→ (−1, 1) is strictly decreasing and satisfies sup v ◦γ = 1
and inf v ◦ γ = −1. Thus the function v changes sign only once along each leaf of the
relative nullity foliation. From the first equation in (2.2) and v2 < 1 it follows that

e(v) = v2 − u2 − 1 < 0.

Since 0 is a regular value of v, the level set L2 = v−1(0) is a 2-dimensional connected
submanifold of M3 and the map ρ : L2 × R→M3 defined by

ρ(x, t) = expxte(x)
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is a diffeomorphism. Notice that for x ∈ v−1(0) the integral curve of e, passing
through x = ρ(x, 0), is given by ρ(x, t), t ∈ R. Thus, ρ∗

(
d
dt

)
= e.

Consider the smooth function φ : L2 × R→ R given by

φ ◦ ρ−1 =
−2v

1 + u2 + v2 +
√

(1 + u2 + v2)2 − 4v2
·

Setting ψ = φ ◦ ρ−1, we have that

ψ

1 + ψ2
=

−v
1 + u2 + v2

· (5.7)

Differentiating (5.7) using (2.2) yields

e(ψ)(1− ψ2)

(1 + ψ2)2
=

(1 + u2 + v2)2 − 4v2

(1 + u2 + v2)2

= 1− 4

(
−v

1 + u2 + v2

)2

= 1− 4

(
ψ

1 + ψ2

)2

.

Hence,
e(ψ) = 1− ψ2. (5.8)

Since φ vanishes on L2 we obtain that φ(x, t) = tanh t. Thus ψ is bounded on M3.
Hence θ ∈ C∞(M) given by

θ = u2 + (v + ψ)2

is also bounded. Using (2.2) and (5.8) we readily see that

e(θ) = 2ue(u) + 2(v + ψ)(e(v) + e(ψ))

= 4u2v + 2(v + ψ)(v2 − u2 − ψ2)

= 2(v − ψ)θ. (5.9)

Since u and v are harmonic functions, we obtain that

∆θ = 2‖∇u‖2 + 2(v + ψ)∆ψ + 2‖∇(v + ψ)‖2

≥ 8u2v2 + 2(v + ψ)∆ψ + 2(e(v) + e(ψ))2

= 8u2v2 + 2(v + ψ)∆ψ + 2(v2 − u2 − ψ2)2. (5.10)

On the other hand, it follows from (5.7) that

(1− ψ2)(1 + u2 + v2)2

(1 + ψ2)2
∇ψ = 2uv∇u− (1 + u2 − v2)∇v. (5.11)
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Using the harmonicity of u and v again, a straightforward computation gives

1− ψ2

2(1 + ψ2)2
∆ψ =

v(1− 3u2 + v2)

(1 + u2 + v2)3
‖∇u‖2 +

2u(1 + u2 − 3v2)

(1 + u2 + v2)3
〈∇u,∇v〉

+
v(3 + 3u2 − v2)
(1 + u2 + v2)3

‖∇v‖2 +
3ψ − ψ3

(1 + ψ)3
‖∇ψ‖2. (5.12)

Since θ is bounded, by the Omori-Yau maximum principle there is a sequence
{xj}j∈N of points in M3 such that

(i) lim θ(xj) = sup θ, (ii) ‖∇θ(xj)‖ ≤ 1/j and (iii) ∆θ(xj) ≤ 1/j. (5.13)

Taking a subsequence, we have that limu(xj) = u0, lim v(xj) = v0 and limψ(xj) = ψ0.
Estimating at xj and letting j →∞, we obtain from (i) and (ii) of (5.13) and (5.9)
that

(v0 − ψ0) sup θ = 0.

We conclude that u has to vanish unless v0 = ψ0.
Suppose now that v0 = ψ0. We have from (5.7) that v0 = ψ0 = 0. On the

other hand, since the Ricci curvature of M3 is bounded from below it follows from
Proposition 1.11 that ‖∇u‖ and ‖∇v‖ are bounded. Hence, from (5.11), (5.12) and
since ψ0 = 0, we have that ∆ψ(xj) is bounded. Passing to the limit and using part
(iii) of (5.13), we obtain from (5.10) that u0 = 0. It follows using part (i) of (5.13)
that sup θ = 0. Thus the function u vanishes, and this concludes the proof.



60 5.2. LOCAL PARAMETRIZATION

5.2 Local parametrization

In this section, we locally parametrize all minimal submanifolds Mm of rank two lying
in hyperbolic space Hn through k-regular elliptic surfaces. It turns out that rank two
minimal submanifolds of odd codimension are parametrized via timelike bundles over
k-regular elliptic surfaces lying in de Sitter space, whereas the ones lying in even
codimension are parametrized by k-regular elliptic surfaces lying in Lorentz space.

Theorem 5.7. Let g : L2 → Qn
c,1, c = 0, 1, be a k-regular elliptic surface. Assume

that the ellipse Egk is circular. Then, the map ψg : U1Λ
g
k → Hn+c−1 given by

ψg(x, v) = v,

parametrizes at regular points, a rank two minimal submanifold in Hn+c−1. The con-
verse is also true, i.e., any nicely curved rank two minimal submanifold of hyperbolic
space can be parametrized in this way at least locally.

We can construct k-regular elliptic surfaces in de Sitter space by the following
procedure: Start with a substantial minimal isometric immersion g : L2 → Q2k+3

lying into an umbilical submanifold Q2k+3 of hyperbolic space H2k+4. Clearly, the
last normal space of g is a line bundle. Consider the polar surface h : L2 → S2k+4

1

associated with g. According to Proposition 1.8, h is k-regular elliptic surface and
the ellipse of curvature Ehk is circular.

Proof of Theorem 5.7: We first deal with the direct statement. Let g : L2 → Qn
c,1 be

a k-regular elliptic surface with circular curvature ellipse Egk .
We assume that n = 2m+ 2 and set ` = m− k > 0. For a unit Z ∈ TL satisfying

〈Z, JZ〉 = 0, consider the local tangent orthonormal frame {e1 = Z, e2 = JZ/‖JZ‖}.
Let {ξ1, . . . , ξ2`} be a local orthonormal frame of Λg

k, such that 〈ξ1, ξ1〉 = −1 and
〈ξj, ξj〉 = 1 for 2 ≤ j ≤ 2`. We denote by ∇̃ the connection on the induced bundle

g∗TQn
c,1 = N g

0 ⊕ · · · ⊕N
g
k ⊕ Λg

k,

with N g
0 = g∗TL. We define recursively the following sequence of normal vector fields

f0 = ξ1,

fj = cosh tj fj−1 + sinh tj ξj+1 for 1 ≤ j ≤ 2`− 1.

Then, the map ψg : U1Λ
g
k → H2m+c+1 can be parametrized by

ψg(x, t1, . . . , t2`−1) = f2`−1 = cosh t2`−1 f2`−2 + sinh t2`−1 ξ2`.

We set
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hj =
2`−1∏
s=j+1

cosh ts for 1 ≤ j ≤ 2`− 2

and h2`−1 = 1. We can readily verify that the differential of ψg satisfies

ψg∗(∂/∂tj) = hj(sinh tj fj−1 + cosh tj ξj+1) for 1 ≤ j ≤ 2`− 1.

Notice that due to dimension reasons Λg
k is spanned by the linearly independent

vector fields
{
f2`−1, ψg∗(∂/∂t1), . . . , ψg∗(∂/∂t2`−1)

}
. We consider for 1 ≤ s ≤ ` − 1,

the orthogonal projections

Ps : g∗TQn
c,1 → N g

0 ⊕ · · · ⊕N g
s ,

P⊥s−1 : g∗TQn
c,1 →

(
N g

0 ⊕ · · · ⊕N
g
s−1
)⊥
.

Set also for simplicity w = f2`−1. Using that P⊥k (∇̃Xw) and ψg∗(∂/∂ti)’s are both
perpendicular to w for 1 ≤ i ≤ 2`−1 and X ∈ TL, we obtain that there exist 1-forms
λi such that

P⊥k (∇̃Xw) =
2`−1∑
i=1

λi(X)ψg∗(∂/∂ti).

For any X ∈ TL we have

ψg∗(X) = ∇̃Xw = Pk(∇̃Xw) + P⊥k (∇̃Xw)

= (∇̃Xw)Ng
k

+
2`−1∑
i=1

λi(X)ψg∗(∂/∂ti),

where (∇̃Xw)Ng
k

denotes the orthogonal projection of ∇̃Xw to N g
k . Hence,

ψg∗
(
X −

2`−1∑
i=1

λi(X)∂/∂ti
)

= (∇̃Xw)Ng
k
.

Assume that ` ≤ m−2. At regular points, ψg parametrizes a (2`+1)-dimensional
submanifold of hyperbolic space whose normal bundle is given by

Nψg = span {cg} ⊕N g
0 ⊕ · · · ⊕N

g
k−1.

Choose a local orthonormal frame {η1, . . . , η2k} such that

N g
s = span {η2s−1, η2s} , 1 ≤ s ≤ k.
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Since the ellipse Egk is circular, the vector fields αk+1
g (Z, . . . , Z) and αk+1

g (JZ, Z, . . . , Z)
are perpendicular to each other and they have the same non-zero length ρ. Hence,
{η2k−1, η2k} can be chosen such that

η2k−1 =
1

ρ
αk+1
g (Z, . . . , Z) and η2k =

1

ρ
αk+1
g (JZ, Z, . . . , Z).

For any X ∈ TL we have

(∇̃Xw)Ng
k

= 〈∇̃Xw, η2k−1〉η2k−1 + 〈∇̃Xw, η2k〉η2k
= −〈w, ∇̃Xη2k−1〉η2k−1 − 〈w, ∇̃Xη2k〉η2k

= −1

ρ
〈w, αk+2

g (X,Z, . . . , Z)〉η2k−1 −
1

ρ
〈w, αk+2

g (X, JZ, Z, . . . , Z)〉η2k.

Using the ellipticity of g and the above, we derive that (∇̃Zw)Ng
k

and (∇̃JZw)Ng
k

are perpendicular to each other and they have the same non-zero length, say r.
Consequently, the vector fields

X1 =
1

r

(
Z −

2`−1∑
i=1

λi(Z)∂/∂ti
)
,

X2 =
1

r

(
JZ −

2`−1∑
i=1

λi(JZ)∂/∂ti
)
,

are orthonormal with respect to the induced metric of ψg and perpendicular to
ψg∗(∂/∂ti)’s for 1 ≤ i ≤ 2` − 1. The vector fields {∂/∂t1, . . . , ∂/∂t2`−1} belong
to the relative nullity distribution of ψg in view of

∇̃∂/∂tiψg∗(∂/∂tj) ∈ Λg
k for 1 ≤ i, j ≤ 2`− 1

and
〈∇̃Xsψg∗(∂/∂ti), η〉 = −〈ψg∗(∂/∂ti), ∇̃Xsη〉 = 0, s = 1, 2,

for η ∈ Nψg , where in the last equality we have used that

∇̃Xsη ∈ N
g
0 ⊕ · · · ⊕N

g
k .

Notice that for ξ ∈ span{cg} ⊕ N g
0 ⊕ · · · ⊕ N

g
k−2, the shape operators Aξ of ψg

vanish since

〈AξXi, Xj〉ψg = 〈αψg(Xi, Xj), ξ〉
= 〈∇̃Xiψg∗(Xj), ξ〉 (5.14)

= 〈∇̃Xi(∇̃Xjw)Ng
k
, ξ〉 = 0, i, j = 1, 2,
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where in the last equality we have used that

∇̃Xi(∇̃Xjw)Ng
k
∈ N g

k−1 ⊕N
g
k ⊕N

g
k+1.

We compute now the shape operators of ψg with respect to η2k−3 = αkg(Y1, . . . , Yk)
and η2k−2 = αkg(Z1, . . . , Zk), where Yi, Zi ∈ TL, i = 1, . . . , k.

〈A η2k−3
X2, X2〉ψg = 〈ψg∗A η2k−3

X2, ψg∗X2〉

= − 1

r2
〈∇̃JZ η2k−3, (∇̃JZw)Ng

k
〉

=
1

r2
〈∇̃JZ∇̃JZ η2k−3, w〉

=
1

r2
〈∇̃JZ∇̃JZ α

k
g(Y1, . . . , Yk), w〉

=
1

r2
〈αk+2

g (JZ, JZ, Y1, . . . , Yk), w〉

= − 1

r2
〈αk+2

g (Z,Z, Y1, . . . , Yk), w〉

= − 1

r2
〈∇̃Z∇̃Z α

k
g(Y1, . . . , Yk), w〉

=
1

r2
〈∇̃Z η2k−3, (∇̃Zw)Ng

k
〉

= −〈A η2k−3
X1, X1〉ψg .

Similarly for η2k−2 we derive

〈A η2k−2
X2, X2〉ψg = − 1

r2
〈∇̃JZ η2k−2, (∇̃JZw)Ng

k
〉

=
1

r2
〈∇̃JZ∇̃JZ α

k
g(Z1, . . . , Zk), w〉

=
1

r2
〈αk+2

g (JZ, JZ, Z1, . . . , Zk), w〉

= − 1

r2
〈αk+2

g (Z,Z, Z1, . . . , Zk), w〉

=
1

r2
〈∇̃Z η2k−2, (∇̃Zw)Ng

k
〉

= −〈A η2k−2
X1, X1〉ψg .

Hence,

traceAη2k−3
= traceAη2k−2

= 0.
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If ` = m − 1, then the normal bundle of ψg is Nψg = span{cg} ⊕ N g
0 . If c = 1 it

follows from (5.14) that Ag = 0. Moreover for i = 1, 2 we have that

〈Ag∗eiX2, X2〉ψg = − 1

r2
〈αg(JZ, ei), (∇̃JZw)Ng

1
〉

=
1

r2
〈∇̃JZαg(JZ, ei), w〉

=
1

r2
〈α3

g(JZ, JZ, ei), w〉

= − 1

r2
〈∇̃Zαg(Z, ei), w〉

=
1

r2
〈∇̃Zg∗ei, (∇̃Zw)Ng

1
〉

= −〈Ag∗eiX1, X1〉ψg

The latter imply that
traceAg∗e1 = traceAg∗e2 = 0.

As for the case where ` = m and c = 1, we have that Nψg = span{g} and

〈AgX2, X2〉ψg = − 1

r2
〈g∗JZ, (∇̃JZw)Ng

0
〉

=
1

r2
〈αg(JZ, JZ), w〉

= − 1

r2
〈αg(Z,Z), w〉

= − 1

r2
〈∇̃Zg∗Z,w〉

=
1

r2
〈g∗Z, (∇̃Zw)Ng

0
〉

= −〈AgX1, X1〉ψg .

The proof for the case where n = 2m + 1 is carried out in a similar manner,
the only difference being that Λg

k is now spanned locally by an orthonormal frame
{ξ1, . . . , ξ2`−1}.

The proof of the converse will be divided in two parts, according to the parity
of the codimension. At first let f : Mm → Hm+2k+1 be a substantial and nicely
curved minimal isometric immersion with index of relative nullity ν = m − 2. Let
L2 be a cross section to the relative nullity foliation and consider the polar surface
g : L2 → Sm+2k+1

1 to f given by g = ξ2k+1, where ξ2k+1 is a unit section of the last
normal bundle of f . Then,

g∗(X) = ∇⊥Xξ2k+1, X ∈ TL.
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Moreover, according to Proposition 1.8, g is k-regular elliptic with respect to the
almost complex structure Jg0 = Jfk . The Lorentzian bundle Λg

k is given by

Λg
k = span{f} ⊕ f∗(D).

We parametrize locally the manifold Mm via the map

T : Mm → U1Λ
g
k

given by
T (x) =

(
π(x), f(x)

)
,

where π : Mm → L2 is the natural projection. Since

ψg : U1Λ
g
k → Hm+2k+1

is given by
ψg(x, v) = v,

it follows that
f = ψg ◦ T.

It remains to consider the case of a substantial and nicely curved minimal isometric
immersion f : Mm → Hm+2k with index of relative nullity ν = m−2. Let L2 be a cross
section to the relative nullity foliation and consider a polar surface g : L2 → Lm+2k+1

to f given by g∗TxL = N f
τf

(x) up to parallel identification in Ln+1, where N f
τf

(x)
stands for the last normal plane bundle of f . From Proposition 1.8 we have that
Jgk = Jf0 . Using the minimality of f we deduce that the ellipse Egk is a circle. Moreover
the Lorentzian bundle Λg

k is given by

Λg
k = span{f} ⊕ f∗(D).

Define the maps
T : V ⊂Mm → U1Λ

g
k

T (x) =
(
π(x), f(x)

)
and

ψg : U1Λ
g
k → Hm+2k

ψg(x, v) = v.

Then, f = ψg ◦ T completing the proof.
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5.3 Minimal submanifolds with rank three or four

In this section, we introduce a new class of minimal submanifolds F : Mn → Hn+2,
n ≥ 3, in the hyperbolic space that are (n − 2)-ruled. This means that they carry
an integrable tangent distribution of dimension n − 2, whose leaves are mapped
diffeomorphically by F onto open subsets of totally geodesic (n−2)-hyperbolic spaces
of Hn+2. Furthermore, we provide a characterization for them among (n − 2)-ruled
minimal submanifolds of rank 4 (n ≥ 4) or 3 (n = 3). If the manifold is simply
connected we show that it allows a one-parameter associate family of equally ruled
minimal isometric deformations that are genuine. These results may be considered
as a continuation of those in [25] and [26].

The notion of genuine rigidity was introduced in [16] and it is the proper setting
to study rigidity problems for submanifolds of higher codimension. This concept
relies on the idea that, as we discard congruent submanifolds when analyzing rigidity,
we should also discard deformations that are induced by deformations of a bigger
dimensional submanifold containing the original one.

An isometric immersion f̂ : Mn → Hn+p is a genuine deformation of a given
isometric immersion f : Mn → Hn+p, p ≥ 2, if there is no open subset U ⊂Mn along
which f |U and f̂ |U extend isometrically. That f : Mn → Hn+p and f̂ : Mn → Hn+p

extend isometrically means that there is an isometric embedding j : Mn ↪→ Nn+q,
1 ≤ q < p, into a Riemannian manifold Nn+q and there are isometric immersions
F : Nm → Hn+q and F̂ : Nm → Hn+q such that f = F ◦ j and f̂ = F̂ ◦ j, i.e., the
following diagram commutes:

Mn Nn+q

Hn+p

Hn+p

f

f̂

F

F̂

j �
��

@
@R

��
��

��1

PPPPPPq

-��

5.3.1 A class of ruled submanifolds

Let g : L2 → Hn+2 be a substantial surface whose first normal space N g
1 is a plane

bundle. Let π : Σg → L2 denote the vector bundle of rank n− 2 whose fibers are the
orthogonal complement in the normal bungle NgL of g of its first normal bundle N g

1 .
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Define Fg : Σg → Hn+2 to be the submanifold of Hn+2 associated to g constructed
by attaching at each point of the surface g the totally geodesic hyperbolic space Hn−2

whose tangent space at that point is the fiber of Σg, that is,

(x, v) ∈ Σg 7→ Fg(x, v) = expg(x) v, (5.15)

where exp is the exponential map of the hyperbolic space. By definition Fg is a
(n− 2)-ruled submanifold.

Consider the map G : Nn+1 = R× Σg → Ln+3 given by

G(s, x, v) = sg(x) + v. (5.16)

It is clear now that Fg = G|Mn , where

Mn =
{

(s, x, v) ∈ R× Σg : − s2 + ‖v‖2 = −1
}
.

We can locally parametrize Mn with L2 × Rn−2 via the map Fg : L2 × Rn−2 → Hn+2

given by
Fg(x, ϕ, t1, . . . , tn−3) = coshϕ g(x) + sinhϕw, (5.17)

where w = w(x, t1, . . . , tn−3) is a parametrization of the unit sphere inside the fiber
of Σg at x.

If in addition g is 1-isotropic, then L2 r L0 consists of isolated points, where
L0 is the open subset of L2 where the first normal space N g

1 is a plane bundle. It
was shown in [25] that the vector bundle N g

1 |L0 extends smoothly to a plane bundle
over L2 that will be denoted by the same symbol N g

1 . Moreover, from the results
in [46], there exists a method for constructing isotropic (superconformal) surfaces in
hyperbolic space. In the sequel denote by V the vertical bundle of π : Σg → L2 given
by V = kerπ∗.

Lemma 5.8. Let g : L2 → Hn+2, n ≥ 3, be a substantial oriented minimal surface.
Then, Fg : Σg → Hn+2 is an immersion. In addition Σg, equipped with the induced
metric, is complete if and only if L2 is complete. Moreover for any (x, v) ∈ Σg we
have that

Fg∗(V)|(x,v) = d(expg(x))v
(
Σg(x)

)
holds up to parallel identification in Ln+3.

Proof: Fix a point (x0, v0) ∈ Σg and take V ∈ T(x0,v0)Σg. Let V = γ′(0), where
γ(t) =

(
c(t), v(t)

)
is a curve in Σg with γ(0) = (x0, v0). Then,

Fg ◦ γ(t) = expg◦c(t) v(t) =

g ◦ c(t), if v(t) = 0,

cosh ‖v(t)‖ g ◦ c(t) + sinh ‖v(t)‖ v(t)

‖v(t)‖
, if v(t) 6= 0.
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Observe that

dv

dt
(t) =

∇̃v
dt

(t)− 〈g∗c′(t), v(t)〉 g ◦ c(t)

= −g∗Av(t)c′(t) +
∇⊥v
dt

(t) =
∇⊥v
dt

(t), (5.18)

where ∇̃ stands for the induced connection on the induced bundle on g.
We claim that

Fg∗(V ) =


g∗x0c

′(0) +
∇⊥v
dt

(0), if v0 = 0,

cosh ‖v0‖ g∗x0c
′(0) + d(expg(x0))v0

(
∇⊥v
dt

(0)

)
, if v0 6= 0.

(5.19)

To prove this claim we distinguish two cases.

Case a: We assume that v0 6= 0. Then v(t) 6= 0 for all t ∈ (−ε, ε), where ε > 0 is
small enough. Using (5.18) and

d

dt

∣∣∣
0

(
‖v‖
)

=
1

‖v0‖
〈v0,
∇⊥v
dt

(0)〉,

we obtain that

(Fg ◦ γ)′(0) =
sinh ‖v0‖
‖v0‖

〈v0,
∇⊥v
dt

(0)〉 g(x0) + cosh ‖v0‖ g∗c′(0) (5.20)

+
‖v0‖ cosh ‖v0‖ − sinh ‖v0‖

‖v0‖3
〈v0,
∇⊥v
dt

(0)〉v0 +
sinh ‖v0‖
‖v0‖

∇⊥v
dt

(0).

For any w ∈ Tg(x0)Hn+2, we set

W (t) = v0 + tw, t ∈ (−ε, ε).

Then, (
expg(x0) ◦W

)
(t) = cosh ‖v0 + tw‖ g(x0) +

sinh ‖v0 + tw‖
‖v0 + tw‖

(v0 + tw).

Hence,

d
(

expg(x0)
)
v0

(w) =
d

dt

∣∣∣
0

(
expg(x0) ◦W

)
=

sinh ‖v0‖
‖v0‖

〈v0, w〉 g(x0)

+
(
‖v0‖ cosh ‖v0‖ − sinh ‖v0‖

)〈v0, w〉
‖v0‖3

v0 +
sinh ‖v0‖
‖v0‖

w.
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Our claim now follows from (5.20) and the above.

Case b: We assume that v0 = 0. If v(t) = 0 for all t ∈ (−ε, ε), then Fg∗(V ) = g∗c
′(0).

Suppose now that v(t) 6= 0 for t 6= 0 and t small enough. Then we obtain

(
Fg ◦ γ)′(0) = lim

t→0

1

t

{
cosh ‖v(t)‖ g

(
c(t)
)

+
sinh ‖v(t)‖
‖v(t)‖

v(t)− g
(
c(0)

)}
= lim

t→0

{
cosh ‖v(t)‖ g

(
c(t)
)
− cosh ‖v(0)‖ g

(
c(0)

)
t

+
sinh ‖v(t)‖
‖v(t)‖

v(t)

t

}
=

d

dt

∣∣∣
0

(
cosh ‖v‖ g ◦ c

)
+
dv

dt
(0)

= g∗x0c
′(0) +

d

dt

∣∣∣
0

(
cosh ‖v‖

)
g(x0) +

∇⊥v
dt

(0).

However, we have that

d

dt

∣∣∣
0

(
cosh ‖v‖

)
= lim

t→0

cosh ‖v(t)‖ − 1

t

= lim
t→0

sinh ‖v(t)‖
‖v(t)‖

〈v(t),
∇⊥v
dt

(t)〉

= 〈v0,
∇⊥v
dt

(0)〉 = 0.

Hence, our claim follows.
Observe that g∗x0c

′(0) is perpendicular to d(expg(x0))v0
(∇⊥v

dt
(0)
)
. Then, we have

that V ∈ kerFg∗|(x0,v0) if and only if

c′(0) = 0 and ∇⊥d/dtv(0) = 0.

This proves that Fg is an immersion.
For any local section η of N g

1 we have

〈dv
dt

(0), η(x0)〉 = −〈v0,
∇⊥(η ◦ c)

dt
(0)〉 = −〈v0,∇⊥c′(0)η〉.

In particular, for any V ∈ V(x0, v0) it follows from (5.19) that

Fg∗|(x0,v0)(V ) = d(expg(x0))v0
(∇⊥v
dt

(0)
)
,

with ∇⊥v
dt

(0) ∈ Σg(x0). Hence, Fg∗(V)|(x0,v0) ⊂ d(expg(x0))v0
(
Σg(x0)

)
and the proof

follows by dimension reasons.
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The tangent bundle of the manifold Σg splits orthogonally as

TΣg = H⊕ V ,

where H is the horizontal bundle and V the vertical bundle. In addition, V can
be orthogonally decomposed as V = V1 ⊕ V0 where V1 denotes the plane bundle
determined by

Fg∗(V
1)|(x,v) = d(expg(x))v

(
N g

2 (x)
)
.

Hereafter, we assume that g : L2 → Hn+2 is a substantial and nicely curved mini-
mal surface. We choose positively oriented local orthonormal frames {e1, e2 = Je1},
where J is the complex structure of L2 induced by orientation in TL and {e3, e4} of
N g

1 such that
αg(e1, e1) = κ e3 and αg(e1, e2) = µ e4,

where κ, µ are the semi-axis of the first ellipse of curvature. Let {e5, . . . , en+2} be a
local orthonormal frame of Σg such that {e2s+1, e2s+2} spans N g

s for 1 ≤ s ≤ τg − 1,
and the last normal bundle Nτg is spanned by {en+1, en+2} for n even, whereas for
odd n it holds N g

τg = span{en+2}. We refer to {e1, . . . , en+2} as an adapted frame of
g and consider the 1-forms ωij by

ωij(X) = 〈∇̃Xei, ej〉 X ∈ TL,

for 1 ≤ i, j ≤ n + 2, where ∇̃ stands for the connection on the induced bundle
g∗THn+2. To simplify the notation we set ωkij = ωij(ek), k = 1, 2.

Using the minimality of g and the symmetry of the third fundamental form α3
g,

we obtain
α3
g(e1, e1, e1) = −α3

g(e2, e1, e2).

This implies that

ω45 = −1

λ
∗ ω35 and ω46 = −1

λ
∗ ω36, (5.21)

where the quantity λ = µ/κ measures how much g deviates from being 1-isotropic and
∗ denotes the Hodge operator, i.e., ∗ω(X) = −ω(JX), X ∈ TL. Set for simplicity

ai = ωi35 and bi = ωi36 for i = 1, 2.

In the sequel, we provide several proofs for n ≥ 4, but similar arguments take
care of the case n = 3. We choose a parametrization for the unit sphere in the fibers
of Σg with parameters t1, . . . , tn−4 ∈ (0, π), tn−3 ∈ (0, 2π), as follows

w =
n−2∑
j=1

ujej+4, (5.22)
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where

u1 = sin t1, ui =
i−1∏
j=1

cos tj sin ti for i = 2, . . . , n− 3,

and

un−2 =
n−3∏
j=1

cos tj.

Then, we have the following parametrization for Fg

Fg(x, ϕ, t1, . . . , tn−3) = coshϕ g(x) + sinhϕw, (5.23)

with ϕ 6= 0. The differential of Fg satisfies

Fg∗(∂/∂ϕ) = sinhϕ g + coshϕw,

Fg∗(∂/∂tj) = sinhϕ
n−2∑
i=1

∂ui
∂tj

ei+4, 1 ≤ j ≤ n− 3.

Notice that

gij = 〈Fg∗(∂/∂ti), Fg∗(∂/∂tj)〉 =


sinh2 ϕ, if i = j = 1

sinh2 ϕ

j−1∏
k=1

cos2 tk, if i = j ≥ 2

0, if i 6= j.

Denote by P1 : NgL→ N g
1 the orthogonal projection onto the first normal bundle

and by P2 : NgL→ Σg the orthogonal projection onto Σg. We define the functions

φi = sin t1ω
i
35 + cos t1 sin t2ω

i
36 and λj(ei) =

1

gjj
〈∇⊥eiw,

∂w

∂tj
〉 (5.24)

for i = 1, 2 and 1 ≤ j ≤ n− 3. From

P1(∇⊥eiw) = sin t1∇⊥eie5 + cos t1 sin t2∇⊥eie6
= −(sin t1ω

i
35 + cos t1 sin t2ω

i
36)e3 − (sin t1ω

i
45 + cos t1 sin t2ω

i
46)e4,

we obtain

P1(∇⊥e1w) = −φ1e3 −
φ2

λ
e4, P1(∇⊥e2w) = −φ2e3 +

φ1

λ
e4

and

P2(∇⊥eiw) =
n−3∑
j=1

λj(ei)
∂w

∂tj
.
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Consequently, from

Fg∗(ei) = coshϕ g∗(ei) + sinhϕP1(∇⊥eiw) + sinhϕP2(∇⊥eiw),

we derive that

r1F∗(X1) = coshϕ g∗(e1)− φ1 sinhϕ e3 −
φ2

λ
sinhϕ e4,

r2F∗(X2) = coshϕ g∗(e2)− φ2 sinhϕ e3 +
φ1

λ
sinhϕ e4,

where

Xi =
1

ri
(ei −

n−3∑
j=1

λj(ei)∂/∂tj), i = 1, 2, (5.25)

and

r21 = cosh2 ϕ+ (φ2
1 +

φ2
2

λ2
) sinh2 ϕ, r22 = cosh2 ϕ+ (

φ2
1

λ2
+ φ2

2) sinh2 ϕ.

If g is 1-isotropic, then we have r1 = r2 = r. We set

hi =


(sinhϕ)−1, if i = 1

(sinhϕ
i−1∏
j=1

cos tj)
−1, if 2 ≤ i ≤ n− 3.

The vector fields {X1, X2, ∂/∂ϕ, h1 ∂/∂t1, . . . , hn−3 ∂/∂tn−3} constitute a local or-
thonormal frame with respect to the induced metric of Fg. Moreover, the normal
space NFg of Fg is spanned by the orthogonal vector fields

ξ = φ1 sinhϕ g∗(e1) + φ2 sinhϕ g∗(e2) + coshϕ e3, (5.26)

η =
φ2

λ
sinhϕ g∗(e1)−

φ1

λ
sinhϕ g∗(e2) + coshϕ e4. (5.27)

Denote by H the distribution H = span{X1, X2}. Observe that

Fg∗(H)⊕NFgM = span {g∗e1, g∗e2, e3, e4}

and

Fg∗(V)⊕ span{Fg} = Σg ⊕ span{g}.
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Lemma 5.9. Let g : L2 → Hn+2 be a 1-isotropic surface. Then the second funda-
mental form of Fg vanishes on spanV ⊕ span{∂/∂t3, . . . , ∂/∂tn−3}, where

V = (ψ1χ2 − ψ2χ1)∂/∂ϕ+ (φ1χ2 − φ2χ1)h1 ∂/∂t1 + (φ1ψ2 − φ2ψ1)h2 ∂/∂t2,

and
ψi = coshϕ(bi sin t1 sin t2 − ai cos t1), χi = bi coshϕ cos t2.

Moreover, the second fundamental form of Fg restricted to H⊕ span{∂/∂ϕ} ⊕ V1 is
given by

rAξ =


r(κ+ ζ1) r ζ2 −φ1 ψ1 −χ1

r ζ2 −r(κ+ ζ1) −φ2 ψ2 −χ2

−φ1 −φ2 0 0 0
ψ1 ψ2 0 0 0
−χ1 −χ2 0 0 0

 ,

rAη =


r ζ2 r(κ− ζ1) −φ2 ψ2 −χ2

r(κ− ζ1) −r ζ2 φ1 −ψ1 χ1

−φ2 φ1 0 0 0
ψ2 −ψ1 0 0 0
−χ2 χ1 0 0 0

 ,
with respect to the frame {X1, X2, ∂/∂ϕ, h1∂/∂t1, h2∂/∂t2}, where

ζi =
sinh 2ϕ

2r2
(

sin t1(−ei(a1) + a2Bi + b1ω
i
56) + cos t1 sin t2(−ei(b1) + b2Bi − a1ωi56)

− cos t1 cos t2 sin t3(a1ω
i
57 + b1ω

i
67)− cos t1 cos t2 cos t3 sin t4(a1ω

i
68 + b1ω

i
68)
)
,

and Bi = ωi12 + ωi34, i = 1, 2.

Proof: By a straightforward computation, we can verify that the Ricci equations

〈R⊥(e1, e2)ea, eb〉 = 〈[Aea , Aeb ]e1, e2〉 = 0 (5.28)

for a = 3, 4 and b = 5, 6 are equivalent to

e1(a1) + e2(a2)− a2B1 + a1B2 − b1ω1
56 − b2ω2

56 = 0,

e1(a2)− e2(a1) + a1B1 + a2B2 − b2ω1
56 + b1ω

2
56 = 0,

e1(b1) + e2(b2)− b2B1 + b1B2 + a1ω
1
56 + a2ω

2
56 = 0,

e1(b2)− e2(b1) + b1B1 + b2B2 + a2ω
1
56 − a1ω2

56 = 0,

whereas for a = 3, 4 and b = 7, 8, are equivalent to

a1ω
1
57 + a2ω

2
57 + b1ω

1
67 + b2ω

2
67 = 0,

a2ω
1
57 − a1ω2

57 + b2ω
1
67 − b1ω2

67 = 0,

a1ω
1
58 + a2ω

2
58 + b1ω

1
68 + b2ω

2
68 = 0,

a2ω
1
58 − a1ω2

58 + b2ω
1
68 − b1ω2

68 = 0.
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The vector fields {∂/∂t3, . . . , ∂/∂tn−3} belong to the relative nullity distribution
of Fg since

∇̃TFg∗(∂/∂ts) ∈ Γ(Σg)

for 3 ≤ s ≤ n− 3 and T ∈ TM .
Furthermore, a direct computation shows that

αFg(∂/∂ϕ, ∂/∂tj) = αFg(∂/∂ti, ∂/∂tj) = αFg(∂/∂ϕ, ∂/∂ϕ) = 0 (5.29)

for 1 ≤ i, j ≤ n− 3 and

αFg(∂/∂ϕ,X1) = −φ1

r
ξ − φ2

r
η, αFg(∂/∂ϕ,X2) = −φ2

r
ξ +

φ1

r
η.

Moreover, using the Gauss and Weingarten formula’s we obtain

αFg(h1 ∂/∂t1, X1) =
ψ1

r
ξ +

ψ2

r
η, αFg(h1 ∂/∂t1, X2) =

ψ2

r
ξ − ψ1

r
η,

αFg(h2 ∂/∂t2, X1) = −χ1

r
ξ − χ2

r
η, αFg(h2 ∂/∂t2, X2) = −χ2

r
ξ +

χ1

r
η,

whereas, using the Ricci equations (5.28) we have that

αFg(X1, X1) = (κ+ ζ1)ξ + ζ2η,

αFg(X1, X2) = ζ2ξ + (κ− ζ1)η,
αFg(X2, X2) = −(κ+ ζ1)ξ − ζ2η.

Observe that
αFg(V,Xj) = 0, j = 1, 2.

Combining the latter with (5.29), we have that the relative nullity distribution of Fg
is spanV ⊕ span{∂/∂t3, . . . , ∂/∂tn−3}. The result is a direct consequence of the latter
computations.

For a (n − 2)-ruled submanifold F : Mn → Hn+2 we denote by H the tangent
distribution orthogonal to the rulings. An embedded surface j : L2 → Mn is called
an integral surface of H if j∗(TxL) = H(j(x)) at every point x ∈ L2. The following
theorem describes locally all rank three or four minimal submanifolds Mn of the
hyperbolic space Hn+2 that are (n− 2)-ruled.

5.3.2 Main results and proofs

Theorem 5.10. Let g : L2 → Hn+2, n ≥ 3, be a 1-isotropic substantial surface. Then
the map Fg : Σg → Hn+2 parametrizes a (n− 2)-ruled minimal submanifold Mn with
rank ρ = 4 (unless n = 3 = ρ) on an open and dense subset of Σg.
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Conversely, let F : Mn → Hn+2 be a (n − 2)-ruled minimal immersion with
rank ρ = 4 (unless n = 3 = ρ) on an open and dense subset of Mn. Assume that
j : L2 →Mn is a totally geodesic integral surface of the 2-dimensional distribution H
which is a global cross section to the rulings. Then the surface g = F ◦ j : L2 → Hn+2

is 1-isotropic and F can be parametrized by (5.15).

Proof: We first deal with the direct statement. Let g : L2 → Hn+2 be a 1-isotropic and
substantial surface. Notice that g = Fg ◦ j, where j : L2 → Σg is the inclusion given
by j(x) = (x, 0). Clearly, we have that j is an integral surface of the distribution
orthogonal to the rulings that is totally geodesic and a global cross section to the
rulings. The rest of the proof is an immediate consequence of Lemma 5.9.

We now prove the converse statement. Let F : Mn → Hn+2, n ≥ 4 be a (n − 2)-
ruled minimal immersion with Gauss map of rank four everywhere. Denote by H the
distribution which is orthogonal to the rulings and V the orthogonal complement of
H in TM , i.e., TM = H ⊕ V . The distribution V splits as V = V1 ⊕ V0, with the
fibers of V0 being the (n− 4)-dimensional relative nullity leaves.

The normal space of g = F ◦ j at a point x ∈ L2 is given by

NgL(x) = F∗(j(x))V ⊕NFM(j(x)).

Using the Gauss equation and the fact that j is totally geodesic, we obtain

αg(X, Y ) = αF
(
j∗(Y ), j∗(X)

)
(5.30)

for any X, Y ∈ TL. The latter and our assumptions imply that g is minimal.
Consider the subbundle π : Σg → L2 of the normal bundle NgL, whose fiber at

x ∈ L2 is F∗(j(x))V , and introduce the cone CF : R×Mn → Ln+3 given by

CF (t, p) = tF (p).

Pick p ∈Mn, x = π(p) and define

u(t, p) = −t〈F (p), g ◦ π(p)〉.

Then,

CF (t, p)− CF
(
u(t, p), j(x)

)
= CF (t, p)− u(t, p)g ◦ π(p) ∈ F∗(j(x))V ,

because p and j(x) belong to the same leaf of V . Since CF maps locally diffeomor-
phically the leaves of the vertical bundle V onto affine subspaces, it follows that the
map T : R×Mn → R× Σg, given by

T (t, p) =
(
u(t, p), π(p), CF (t, p)− u(t, p)g ◦ π(p)

)
,
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is a local diffeomorphism. Therefore, the immersion G = CF ◦ T−1 satisfies

G(s, x, v) = sg(x) + v,

i.e., G is of the form (5.16). The horizontal and vertical bundles satisfy

G∗(s,x,v)V =
(
N g

1 (x)
)⊥ ⊂ NgL(x), G∗(s,x,v)HG ⊂ g∗(TxL)⊕

(
Σg(x)

)⊥
,

NGR× Σg(s, x, v) ⊂ g∗(TxL)⊕
(
Σg(x)

)⊥
and (5.30) yields N g

1 = Σ⊥g . It is clear now that F = G|Mn , where

Mn =
{

(s, p, v) ∈ R× Σg : − s2 + ‖v‖2 = −1
}
,

through the local identification of R×Mn with R×Σg via the map T . Consequently,
j is the zero section of Σg and F can be parametrized as Fg : L2×Rn−2 → Hn+2 given
by (5.17).

It remains to prove that g is 1-isotropic. Let {e1, e2, e3, . . . , en+2} be an adapted
orthonormal frame along g and denote by

gij = 〈F∗(Xi), F∗(Xj〉, i, j = 1, 2,

the metric components of Mn, where Xi given by (5.25). Let

βξij = 〈∇̃Xiξ, F∗(Xj)〉, βηij = 〈∇̃Xiη, F∗(Xj)〉,
be the components of the second fundamental form of F , with respect to the normal
directions ξ and η given by (5.26) and (5.27). Then, we have that

g11 = cosh2 ϕ+ sinh2 ϕ (φ2
1 +

φ2
2

λ2
),

g12 = φ1φ2 sinh2 ϕ (1− 1

λ2
),

g22 = cosh2 ϕ+ sinh2 ϕ (φ2
2 +

φ2
1

λ2
).

Define for i = 1, 2 the functions

Gi = cos t1 sin t2ω
i
56 + cos t1 cos t2 sin t3ω

i
57 + cos t1 cos t2 cos t3 sin t4ω

i
58,

Hi = sin t1ω
i
56 + cos t1 cos t2 sin t7ω

i
57 + cos t1 cos t2 cos t3 sin t4ω

i
58.

Using the Ricci equations we compute

2βξ11 = sinh 2ϕ
(
e1(φ1)− φ2ω

1
12 −

φ2

λ
ω1
34 + a1G1 + b1H1

)
− κ
(
(φ2

1 + φ2
2) sinh2 ϕ+ cosh2 ϕ

)
,

2βξ12 = sinh 2ϕ
(
e1(φ2) + φ1ω

1
12 +

φ1

λ
ω1
34 + a2G1 + b2H1

)
,

2βξ21 = sinh 2ϕ
(
e2(φ1)− φ2ω

2
12 −

φ2

λ
ω2
34 + a1G2 + b1H2

)
,

2βξ22 = sinh 2ϕ
(
e2(φ2) + φ1ω

2
12 +

φ1

λ
ω2
34 + a2G2 + b2H2

)
+ κ(φ2

1 + φ2
2) sinh2 ϕ
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and

2βη11 = sinh 2ϕ
(
e1(ψ1)− ψ2ω

1
12 + φ1ω

1
34 +

1

λ
a2G1 +

1

λ
b2H1

)
,

2βη12 = sinh 2ϕ
(
e1(ψ2) + ψ1ω

1
12 + φ2ω

1
34 −

1

λ
a1G1 −

1

λ
b1H1

)
− µ cosh2 ϕ− κ

λ
(φ2

1 + φ2
2),

2βη21 = sinh 2ϕ
(
e2(ψ1)− ψ2ω

2
12 + φ1ω

2
34 +

1

λ
a2G2 +

1

λ
b2H2

)
− µ cosh2 ϕ− κ

λ
(φ2

1 + φ2
2),

2βη22 = sinh 2ϕ
(
e2(ψ2) + ψ1ω

2
12 + φ2ω

2
34 −

1

λ
a1G2 −

1

λ
b1H2

)
.

Since F is minimal, we obtain

g11β
ξ
22 − g12(β

ξ
12 + βξ21) + g22β

ξ
11 = 0 and g11β

η
22 − g12(β

η
12 + βη21) + g22β

η
11 = 0.

Moreover, the coefficients of sin4 t1, cos4 t1 sin4 t2 and cos2 t1 sin2 t1 sin2 t2 must vanish,
thus we obtain

(λ2 − 1)(a21 − a22)(a21 + a22) = 0 = (λ2 − 1)(b21 − b22)(b21 + b22)

and
(λ2 − 1)a1a2(a

2
1 + a22) = 0 = (λ2 − 1)b1b2(b

2
1 + b22).

Consequently λ = 1 since, otherwise, the latter equations together with (5.21) would
imply ωi35 = ωi36 = ωi45 = ωi46 = 0 for i = 1, 2, which contradicts our assumption that
F has rank four.

We recall some well known results regarding the associated family of a substantial
simply connected oriented minimal surface g : L2 → Hn+2. The associated family is
obtained by rotating the second fundamental form while keeping fixed the normal
bundle and the induced normal connection. More explicitly, for θ ∈ S1 = [0, π)
consider the orthogonal parallel tensor field

Jθ = cos θI + sin θJ,

where I is the identity endomorphism and J denotes the complex structure on TL
determined by the metric and orientation. Define on the bundle Hom(TL×TL,NgL)
the symmetric section αg(Jθ·, ·) which satisfies the Gauss, Codazzi and Ricci equations
with respect to the same induced normal connection; see [18]. Then, according to the
fundamental theorem of submanifolds, there exists an isometric minimal immersion
gθ : L2 → Hn+2 whose second fundamental form is

αgθ(X, Y ) = φθ αg(JθX, Y ),

where φθ : NgL → NgθL is the parallel vector bundle isometry that identifies the
normal bundles as well as each of the normal subbundles N g

s with N gθ
s for 1 ≤ s ≤ τg.
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In the sequel, we assume without loss of generality that g is 2-regular, i.e., N g
1

and N g
2 are subbundles of the normal bundle. Then, the vertical bundle V = kerπ∗

of the submersion π : Σg → L2, can be orthogonally decomposed as

V = V0 ⊕ V1

on an open dense subset of L2, where V1 denotes the plane bundle determined by

Fg∗(V
1)|(x,v) = d(expg(x))v

(
N g

2 (x)
)
.

Furthermore, consider the orthogonal decomposition of the tangent bundle of Mn

given by
TM = H⊕ V ,

where we identify isometrically the subbundle V tangent to the rulings with the
corresponding normal subbundle of g. It is a direct consequence from the proof that
the relative nullity leaves of F can be identified with the fibers of V0.

Let J be the endormorphism of TΣg such that restricted to H is the almost
complex structure J |H : H → H determined by the orientation, whereas restricted to
V is the identity. Moreover, we set

Jθ = cos θI + sin θJ .

The next theorem ensures the existence of genuine deformations and describes the
relation between the second fundamental forms of the associated family members.

Theorem 5.11. Let g : L2 → Hn+2, n ≥ 3, be a simply-connected 1-isotropic sub-
stantial surface. Then Fg allows a smooth one-parameter family of genuine minimal
isometric deformations Fθ : Σg → Hn+2, θ ∈ S1, such that F0 = Fg and each Fθ
carries the same rulings and relative nullity leaves as Fg.

Moreover, there is a parallel vector bundle isometry Tθ : NFgΣg → NFθΣg such
that the relation between the second fundamental forms is given by

αFθ(X, Y ) = Tθ
(
R−θαFg(X, Y ) + 2κ sin(θ/2)B(J−θ/2X, Y )

)
, (5.31)

where Rθ is the rotation of angle θ on NFgΣg that preserves orientation, κ is the
radius of the ellipse of curvature of g and B is the traceless bilinear form defined by
(5.38).

Proof: Consider the one-parameter family Fθ : Mn → Hn+2 of isometric immersions,
defined by

Fθ(x, ϕ, v) = coshϕ gθ(x) + sinhϕ φθv,

where θ ∈ S1, (x, v) ∈ U1Σg and φθ : NgL → NgθL is the parallel vector bundle
isometry that identifies the normal subbundles of g and gθ.
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In the sequel, corresponding quantities of Fθ will be denoted by the same symbol
used for Fg marked with θ. Using the fact that φθ is a parallel vector bundle isometry
we can easily prove that Fθ is isometric to Fg. Let {e1, e2, e3, . . . , en+2} be an adapted
orthonormal frame along g. Then, for the adapted frames of gθ we have that

eθ3 = φθ ◦R1
θe3 and eθ4 = φθ ◦R1

θe4, (5.32)

where R1
θ is the rotation of angle θ on N g

1 . We complete the adapted frame for gθ by
choosing

eθj = φθej, 5 ≤ j ≤ n+ 2. (5.33)

We can readily verify that ωθ34 = ω34 and ωθij = ωij for i, j ≥ 5. Furthermore, we have
that

ωθ35 = ω35 ◦ Jθ and ωθ36 = ω36 ◦ Jθ,

which implies

aθ1 := ωθ35(e1) = a1 cos θ + a2 sin θ, aθ2 := ωθ35(e2) = a2 cos θ − a1 sin θ,

bθ1 := ωθ36(e1) = b1 cos θ + b2 sin θ, bθ2 := ωθ36(e2) = b2 cos θ − b1 sin θ.

We parametrize the unit sphere in the fiber of Σg as in (5.22). Then, we have the
following parametrization for Fθ

Fθ(x, ϕ, t1, . . . , tn−3) = coshϕ gθ(x) + sinhϕφθw,

where w given in (5.22). The differential of Fθ is given by

Fθ∗(∂/∂ϕ) = sinhϕ gθ + coshϕφθw,

Fθ∗(∂/∂tj) = sinhϕ
n−2∑
i=1

∂ui
∂tj

ei+4, 1 ≤ j ≤ n− 3.

Set gij = 〈Fθ∗(∂/∂ti), Fθ∗(∂/∂tj)〉. Then, we obtain

rFθ∗(X1) = coshϕ gθ∗(e1)− φθ1 sinhϕ eθ3 − φθ2 sinhϕ eθ4,

rFθ∗(X2) = coshϕ gθ∗(e2)− φθ2 sinhϕ eθ3 + φθ1 sinhϕ eθ4,

where

Xi =
1

r
(ei −

n−3∑
j=1

1

gjj
〈∇⊥eiw,

∂w

∂tj
〉∂/∂tj), for i = 1, 2,

r2 = cosh2 ϕ+ sinh2 ϕ
(
(φθ1)

2 + (φθ2)
2
)

= cosh2 ϕ+ sinh2 ϕ(φ2
1 + φ2

2),

gθ∗(X) = g∗(JθX) = cos θ g∗(X) + sin θ g∗(JX), X ∈ TL (5.34)
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and
φθ1 = φ1 cos θ + φ2 sin θ, φθ2 = −φ1 sin θ + φ2 cos θ, (5.35)

with φi, i = 1, 2 defined in (5.24).

The vector fields {X1, X2, ∂/∂ϕ, h1 ∂/∂t1, . . . , hn−3 ∂/∂tn−3} constitute a local
orthonormal frame with respect to the induced metric of Fθ. Moreover, the normal
space of Fθ is spanned by the vector fields

ξθ = φθ1 sinhϕ gθ∗(e1) + φθ2 sinhϕ gθ∗(e2) + coshϕ eθ3, (5.36)

ηθ = φθ2 sinhϕ gθ∗(e1)− φθ1 sinhϕ gθ∗(e2) + coshϕ eθ4. (5.37)

The map Ψθ : NFgΣg → NFθΣg given by

Ψθξ = ξθ and Ψθη = ηθ

is a parallel vector bundle isometry. The shape operators Aξθ , Aηθ of Fθ vanish on
V0 and restricted to the subspace H ⊕ span{∂/∂ϕ} ⊕ V1 spanned by the vectors
{X1, X2, ∂/∂ϕ, h1∂/∂t1, h2∂/∂t2}, are given by

rAξθ =


r(κ+ ζθ1) r ζθ2 −φθ1 ψθ1 −χθ1
r ζθ2 −r(κ+ ζθ1) −φθ2 ψθ2 −χθ2
−φθ1 −φθ2 0 0 0
ψθ1 ψθ2 0 0 0
−χθ1 −χθ2 0 0 0


and

rAηθ =


r ζθ2 r(κ− ζθ1) −φθ2 ψθ2 −χθ2

r(κ− ζθ1) −r ζθ2 φθ1 −ψθ1 χθ1
−φθ2 φθ1 0 0 0
ψθ2 −ψθ1 0 0 0
−χθ2 χθ1 0 0 0

 ,
where

ζθ1 = ζ1 cos θ + ζ2 sin θ. ζθ2 = −ζ1 sin θ + ζ2 cos θ,

and ζ1, ζ2 are defined in Lemma 5.9. This proves that there exists a one-parameter
family of minimal isometric immersions Fθ : Mn → Hn+2, θ ∈ S1, associated to Fg,
such that F0 = Fg and each Fθ carries the same (n−2)-dimensional rullings and same
(n − 4)-dimensional relative nullity leaves as Fg. Observe also that since the shape
operators of Fθ have rank 4, the isometric deformations Fθ of F are genuine.

Finally, consider the operator Lθ : TM → TM such that Lθ|span{∂/∂ϕ}⊕V = 0 and
Lθ|HFg : HFg → HFg is the reflection given by

Lθ|HFg =

[
− sin(θ/2) cos(θ/2)
cos(θ/2) sin(θ/2)

]
,
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with respect to the tangent frame {X1, X2}. It follows easily that

Aξθ = ARθξ − 2κ sin(θ/2)Lθ and Aηθ = ARθη − 2κ sin(θ/2)J ◦ Lθ.

A straightforward computation shows that

αFθ(X, Y ) = Ψθ

(
R−θαFg(X, Y )− 2κ

r2
sin(θ/2)(〈LθX, Y 〉ξ + 〈LθJX, Y 〉η)

)
.

Consider the symmetric section B of Hom(TM × TM,NFgΣg) with corresponding
nullity distribution V , defined by

B(X1, X1) =
1

r2
ξ = −B(X2, X2), B(X1, X2) = − 1

r2
η. (5.38)

Then, (5.31) follows immediately.
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Abstract

In this thesis, we investigate complete minimal isometric immersions f : Mm → Qn
c

into space forms with positive index of relative nullity. The index of relative nullity
was introduced by Chern and Kuiper [13] and turned out to be a fundamental concept
in submanifold theory. At a point of Mm the index is just the dimension of the kernel
of the second fundamental form of an isometric immersion f : Mm → Qn

c at that point.
The kernels form an integrable distribution, the so called relative nullity distribution
denoted by D, along any open subset where the index is constant and the images
under f of the leaves of the foliation are (part of) affine subspaces in the ambient
space.

At first, we consider complete minimal isometric immersions f : Mm → Qn
c into

space forms Qn
c , c = −1, 0, 1, with index of relative nullity at least m − 2. Our

technique for classifying the latter immersions consists of studing a tensor, the so
called splitting tensor C, that describes how the conullity distribution D⊥ is twisting
inside the manifold Mm. We employ tools from geometric analysis, among them is
the Omori-Yau maximum principle and the gradient estimate of Yau, in order to
describe the structure of the splitting tensor as an endomorphism of the conullity
distribution. The main difficulty arises from the fact that we allow the index of the
relative nullity to vary. In order to extend the splitting tensor over the real analytic
set A of totally geodesic points, it is essential to analyze the structure of the set A.
This is accomplished by employing regularity extension theorems for harmonic maps.

For minimal isometric immersions into Euclidean space Rn, we prove that the
immersion f must be a cylinder over a minimal surface, under the mild assumption
that the Omori-Yau maximum principle is satisfied for the Laplacian. The category
of complete Riemannian manifolds for which the Omori-Yau maximum principle is
valid is quite large. For instance, it contains the manifolds whose Ricci curvature is
bounded from below. It also contains the class of properly immersed submanifolds
in a space form whose norm of the mean curvature vector is bounded [56, Example
1.14]. The aforementioned result is truly global in nature, since there are plenty
of non complete minimal submanifolds of dimension m having constant index of
relative nullity m−2 that are not part of a cylinder on any open subset. They can all
locally be parametrized in terms of a certain class of elliptic surfaces [15, Theorem 22].
Consequently, what remains as a challenging open problem is the existence of minimal
complete and noncylindrical submanifolds with index of relative nullity ν ≥ m− 2.
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It is worth noticing that many authors where interested into finding geometric
conditions for an isometric immersion f : Mm → Rn of a complete Riemannian mani-
fold with positive index of relative nullity to be a cylinder. Some of the many papers
containing characterizations of submanifolds as cylinders without the requirement for
the immersion to be minimal are [15,17,38,40,52,54,58]. When adding the condition
of being minimal we have [1, 24, 35,36,38,41,64,66].

For complete minimal immersions f : Mm → Sn in Euclidean spheres, we prove
that any such submanifold Mm is either totally geodesic or has dimension three. In
the latter case, there are plenty of examples, even compact ones. For any dimension
and codimension there is an abundance of examples of non-complete submanifolds
fully described by Dajczer and Florit [15] in terms of a class of surfaces, called el-
liptic, for which the ellipse of curvature of a certain order is a circle at any point.
Under the mild assumption that the Omori-Yau maximum principle holds on the
manifold, a trivial condition in the compact case, we provide a complete local para-
metric description of the submanifolds in terms of 1-isotropic surfaces in Euclidean
space. These are the minimal surfaces for which the standard ellipse of curvature is a
circle at any point. For these surfaces, there exists a Weierstrass type representation
that generates all simply-connected ones.

In any of the two cases already studied, namely the Euclidean and spherical case,
the proofs reduced to analyze the situation of the three dimensional submanifolds. In
fact, for submanifolds in spheres only this case turned out to be possible. For minimal
immersions f : Mm → Hn in hyperbolic space of complete Riemannian manifoldsMm,
the condition that the index of relative nullity satisfies ν ≥ m−2 turns out to be quite
less restrictive than in the previously studied cases. Nevertheless, we have reasons
to believe that the manifold being three-dimensional is still quite special and this is
why this case allows a characterization of a class of submanifolds that is contained in
the following description. We prove that any three dimensional minimal submanifold
f : M3 → Hn having index of relative nullity at least one at any point, is either totally
geodesic or a generalized cone over a complete minimal surface lying in an equidistant
submanifold of Hn, under the assumption that the scalar curvature is bounded from
below, see [23].

Furthermore, we parametrically describe all minimal immersions f : Mm → Hn,
whose index of relative nullity is m−2, as subbundles of the normal bundle of certain
elliptic spacelike surfaces in the Lorentzian space or in the de Sitter space [49]. From
this parametrization it is straightforward than there exist a plethora of examples of
non-complete minimal submanifolds with index of relative nullitym−2 . Additionally,
using this parametrization, one can construct an abundance of complete minimal
submanifolds of any dimension other than generalized cones, as can been seen from
the results in [9], [32] and [47].



85

Finally we introduce a new class of minimal immersions F : Mn → Hn+2, n ≥ 3,
in the hyperbolic space that are (n − 2)-ruled [49]. This means that they carry an
integrable tangent distribution of dimension n−2, whose leaves are mapped diffeomor-
phically by F onto open subsets of totally geodesic (n−2)-hyperbolic spaces of Hn+2.
If the manifold is simply connected, we show that it allows a one-parameter family
of equally ruled minimal isometric deformations that are genuine. The deformations
are obtained while keeping fixed the normal bundle and the induced connection, but
now the second fundamental form relates to the initial one in a much more complex
form, in particular, no orthogonal tensor in involved. It is an interesting question
if the above associated family of complete ruled minimal submanifolds exhausts all
examples in the same class that admit genuine deformations. Of course, a much more
challenging classification problem of complete submanifolds of rank four would be to
drop one of the conditions, for instance being minimal or ruled.
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PerÐlhyh

Mia apì tic shmantikìterec ènnoiec sthn jewrÐa upopoluptugm�twn eÐnai aut  thc
mhdenokatanom c, h opoÐa eis qjh apì touc Chern kai Kuiper [13]. H mhdenokatanom 
enìc upopoluptÔgmatoc mèsa se ènan q¸ro stajer c kampulìthtoc orÐzetai wc o pu-
r nac thc deÔterhc jemeli¸douc morf c. O deÐkthc thc mhdenokatanom c se èna shmeÐo
tou upopoluptÔgmatoc orÐzetai wc h di�stash tou pur na thc deÔterhc jemeli¸douc
morf c sto shmeÐo autì. Oi pur nec autoÐ sunistoÔn mia oloklhr¸simh katanom  kat�
m koc k�je anoiktoÔ uposunìlou tou upopoluptÔgmatoc ìpou o deÐkthc eÐnai stajerìc
kai ta fÔlla thc mhdenokatanom c sunistoÔn olik� gewdaitik� upopoluptÔgmata ston
perib�llonta q¸ro. E�n epiplèon to upopolÔptugma eÐnai pl rec, tìte apodeiknÔetai
ìti ta fÔlla thc mhdenokatanom c eÐnai epÐshc pl rh sto anoiktì uposÔnolo ìpou o
deÐkthc lamb�nei thn el�qisth tim  tou (deÐte [14]).

Suqnì antikeÐmeno melèthc sthn jewrÐa upopoluptugm�twn eÐnai h eÔresh gewme-
trik¸n upojèsewn, ¸ste mia pl rhc isometrik  emb�ptish f : Mm → Rn me jetikì
deÐkth mhdenokatanom c ν ≥ k > 0 na eÐnai k-kÔlindroc. Autì shmaÐnei ìti to po-
lÔptuma Mm diasp�tai wc ginìmeno Riemann Mm = Mm−k × Rk kai h isometrik 
emb�ptish f diasp�tai wc f = g × idRk . H mhdenokatanom  apoteleÐ shmantikì er-
galeÐo gia ton qarakthrismì twn kulÐndrwn, diìti prokeimènou na apodeiqjeÐ ìti mia
isometrik  emb�ptish eÐnai k-kÔlindroc arkeÐ na deiqjeÐ ìti oi eikìnec twn fÔllwn thc
mhdenokatanom c mèsw thc f eÐnai par�llhlec ston perib�llonta q¸ro.

Shmantikì apotèlesma se aut  thn kateÔjunsh eÐnai to je¸rhma tou Hartman [40],
sÔmfwna me to opoÐo k�je isometrik  emb�ptish f : Mm → Rn me jetikì deÐkth mhde-
nokatanom c ν ≥ k > 0 kai mh-arnhtik  kampulìthta Ricci eÐnai k-kÔlindroc. Basikì
ergaleÐo sthn apìdeixh eÐnai to je¸rhma di�spashc twn Cheeger-Gromoll [10] to o-
poÐo qrhsimopoieÐtai gia na apodeiqteÐ ìti ta fÔlla pou antistoiqoÔn ston el�qisto
deÐkth mhdenokatanom c diasp¸ntai wc ginìmeno Riemann. To anwtèrw apotèlesma
den alhjeÔei sthn perÐptwsh ìpou h kampulìthta Ricci eÐnai mh-jetik , k�ti pou sum-
baÐnei p�nta gia elaqistikèc emb�ptiseic. AntiparadeÐgmata apoteloÔn oi eujeiogeneÐc
uperepif�neiec opoiasd pote sundi�stashc sto [19, sel. 409].

AxÐzei na shmeiwjeÐ ìti poll� �rjra qarakthrÐzoun thn kl�sh twn kulÐndrwn, ek
twn opoÐwn ta [15,17,38,40,52,54,58] den anafèrontai se elaqistik� upopoluptÔgmata,
en¸ ta [1,24,35,36,38,41,64,66] perigr�foun thn kl�sh twn kulÐndrwn ta opoÐa eÐnai
elaqistik� upopoluptÔgmata.
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Sthn paroÔsa diatrib  stìqoc mac eÐnai na epekteÐnoume ta anwtèrw apotelèsmata
sthn kl�sh twn elaqistik¸n isometrik¸n embaptÐsewn f : Mm → Qn

c me deÐkth mhde-
nokatanom c toul�qiston m−2. H teqnik  mac eÐnai na k�noume qr sh tou legìmenou
tanust  di�spashc, o opoÐoc perigr�fei pwc kampul¸netai to orjosumpl rwma thc
mhdenokatanom c entìc tou poluptÔgmatoc Mm. QrhsimopoioÔme ergaleÐa apì gew-
metrik  an�lush, ìpwc h arq  megÐstou Omori-Yau kai h ektÐmhsh klÐshc tou Yau
¸ste na katanohjeÐ h dom  tou tanust  di�spashc. Mia apì tic shmantikìterec teqni-
kèc duskolÐec sthn apìdeixh proèrqetai apì to gegonìc ìti epitrèpoume ston deÐkth
thc mhdenokatanom c na metab�lletai apì shmeÐo se shmeÐo. Epomènwc, prokeimènou
na epekteÐnoume ton tanust  di�spashc uper�nw tou analutikoÔ sunìlou A twn olik�
gewdaitik¸n shmeÐwn, qrhsimopoioÔme jewr mata epèktashc gia armonikèc apeikonÐseic.

H paroÔsa didaktorik  diatrib  diarjr¸netai wc ex c: Arqik� anafèroume meri-
kèc eisagwgikèc ènnoiec sto Kef�laio 1 kai sta Kef�laia 2,3,4 kai 5 perièqontai ta
prwtìtupa apotelèsmata thc diatrib c.

Pio sugkekrimèna, sto Kef�laio 2 meletoÔme thn dom  tou tanust  di�spashc gia
tridi�stata elaqistik� upopoluptÔgmata se q¸rouc morf c me deÐkth mhdenokatanom c
èna. AxÐzei na shmeiwjeÐ ìti h tridi�stath perÐptwsh eÐnai ousi¸douc shmasÐac gia ta
apotelèsmata thc paroÔsac diatrib c.

Sto Kef�laio 3, exet�zoume pl rh elaqistik� upopoluptÔgmataMm ston EukleÐ-
deio q¸ro me jetikì deÐkth mhdenokatanom c toul�qiston m − 2. ApodeiknÔoume ìti
k�je tètoio upopolÔptugma eÐnai kÔlindroc uper�nw miac elaqistik c epif�neiac, upì
thn asjen  upìjesh ìti isqÔei h arq  megÐstou Omori-Yau gia th Laplasian . H
kl�sh twn pl rwn poluptugm�twn gia ta opoÐa isqÔei h arq  megÐstou eÐnai eureÐa,
afoÔ perilamb�nei ta poluptÔgmata Riemann twn opoÐwn h kampulìthta Ricci den
fjÐnei taqèwc sto meÐon �peiro kaj¸c kai ta proper upopoluptÔgmata twn opoÐwn h
nìrma tou dianÔsmatoc mèshc kampulìthtac eÐnai fragmènh. To apotèlesm� mac eÐnai
olikì ek fÔsewc, kaj¸c up�rqei plhj¸ra paradeigm�twn mh-pl rwn elaqistik¸n upo-
poluptugm�twn se opoiasd pote sundi�stash, me stajerì deÐkth mhdenokatanom c,
ta opoÐa den eÐnai tm mata kulÐndrou se kanèna anoiktì uposÔnolì touc. 'Ola aut�
ta upopoluptÔgmata, mporoÔn na parametrhjoÔn topik� wc dianusmatikèc upodèsmec
thc k�jethc dèsmhc miac kl�shc elleiptik¸n epifanei¸n gia tic opoÐec mia sugkekri-
mènh èlleiyh kampulìthtoc eÐnai kÔkloc se k�je shmeÐo (deÐte Je¸rhma 22 sto [15]).
AxÐzei na anaferjeÐ ìti èna apaithtikì anoiktì prìblhma to opoÐo apoteleÐ prìklhsh,
eÐnai h Ôparxh enìc mh-kulindrikoÔ pl rouc elaqistikoÔ upopoluptÔgmatoc me deÐkth
mhdenokatanom c ν ≥ 1.

Sto Kef�laio 4, meletoÔme pl reic elaqistikèc embaptÐseic f : Mm → Sn me deÐkth
mhdenokatanom c toul�qiston m − 2 se k�je shmeÐo. Ta anwtèrw upopoluptÔgmata
eÐnai austere upì thn ènnoia twn Harvey kai Lawson [44] kai melet jhkan apì ton
Bryant [7]. Up�rqei meg�lh poikilÐa apì mh-pl rh elaqistik� upopoluptÔgmata, se
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k�je sundi�stash, ta ìpoia èqoun parametrhjeÐ apì touc Dajczer kai Florit [15] wc
dianusmatikèc upodèsmec thc k�jethc dèsmhc miac kl�shc elleiptik¸n epifanei¸n, gia
tic opoÐec mia sugkekrimènh èlleiyh kampulìthtoc eÐnai kÔkloc se k�je shmeÐo. E�n
upojèsoume ìti to upopolÔptugma eÐnai pl rec, tìte sun�goume ìti eÐte eÐnai olik�
gewdaitikì, eÐte h di�stas  tou eÐnai trÐa. Sthn teleutaÐa perÐptwsh up�rqoun poll�
paradeÐgmata, metaxÔ aut¸n kai sumpag . Upì thn asjen  upìjesh ìti isqÔei h arq 
megÐstou Omori-Yau, mia tetrimmènh upìjesh ìtan to polÔptugma eÐnai sumpagèc,
parèqoume mia pl rh topik  perigraf  twn anwtèrw upopoluptugm�twn wc monadiaÐec
efaptìmenec upodèsmec thc k�jethc dèsmhc 1-isotropik¸n epifanei¸n ston EukleÐdeio
q¸ro. Oi 1-isotropikèc epif�neiec eÐnai elaqistikèc epif�neiec gia tic opoÐec h sun jhc
èlleiyh kampulìthtoc eÐnai kÔkloc se k�je shmeÐo. Gia autèc thc epif�neiec up�rqei
Weierstrass anapar�stash pou par�gei ìlec ìsec eÐnai apl� sunektikèc.

Tèloc, to Kef�laio 5 anafèretai se elaqistik� upopoluptÔgmata tou uperbolikoÔ
q¸rou kai diaireÐtai se trÐa mèrh. Sto pr¸to mèroc, meletoÔme pl reic elaqistikèc
isometrikèc embaptÐseic f : Mm → Hn me deÐkth mhdenokatanom c toul�qiston m− 2.
Se antidiastol  me tic peript¸seic tou EukleideÐou q¸rou kai thc sfaÐrac, h upìjesh
ìti o deÐkthc thc mhdenokatanom c eÐnai toul�qiston m − 2 eÐnai ligìtero periori-
stik  ston uperbolikì q¸ro. 'Eqoume isqurèc endeÐxeic ìti h tridi�stath perÐptwsh
m = 3 diaforopoieÐtai thc perÐptwshc m ≥ 4, gegonìc pou mac odhgeÐ ston qara-
kthrismì pl rwn elaqistik¸n embaptÐsewn f : M3 → Hn me deÐkth mhdenokatanom c
toul�qiston èna se k�je shmeÐo. Upì thn upìjesh ìti h arijmhtik  kampulìthta eÐnai
fragmènh apì k�tw, apodeiknÔoume ìti to upopolÔptugma M3 eÐnai eÐte olik� gewdai-
tikì, eÐte genikeumènoc k¸noc uper�nw miac pl rouc elaqistik c epif�neiac pou keÐtai
se isapèqon upopolÔptugma tou Hn (deÐte [23]). H upìjesh thc plhrìthtac eÐnai apa-
raÐthth sthn anwtèrw perigraf , kaj¸c up�rqei plhj¸ra paradeigm�twn mh-pl rwn
upopoluptugm�twn ta opoÐa den an koun sthn kl�sh twn genikeumènwn k¸nwn.

Sto deÔtero mèroc, melet�me m-di�stata elaqistik� upopoluptÔgmata tou uper-
bolikoÔ q¸rou se opoiasd pote sundi�stash, me deÐkth mhdenokatanom c m− 2 [49].
Stìqoc mac eÐnai na parametr soume topik� aut� ta upopoluptÔgmata, wc dianusmati-
kèc upodèsmec thc k�jethc dèsmhc miac kathgorÐac elleiptik¸n epifanei¸n tou q¸rou
Lorentz   tou q¸rou de Sitter. EÐnai plèon emfanèc ìti h upìjesh thc plhrìthtac ston
qarakthrismì twn tridi�statwn elaqistik¸n upopoluptugm�twn eÐnai anagkaÐa, kaj¸c
up�rqoun poll� topik� paradeÐgmata pou den an koun sthn kl�sh twn genikeumènwn
k¸nwn. Epiplèon, h paramètrhsh aut  mporeÐ na qrhsimopoihjeÐ gia thn kataskeu 
pl rwn upopoluptugm�twn tuqoÔsac sundi�stashc, ìpwc faÐnetai me qr sh twn apo-
telesm�twn sta [9], [32] kai [47]. AxÐzei na anaferjeÐ ìti ènac enallaktikìc trìpoc
kataskeu c pl rwn elaqistik¸n upopoluptugm�twn ston uperbolikì q¸ro, mèsw ka-
nonik¸n desm¸n apì armonikoÔc morfismoÔc se epif�neiec Riemann, dìjhke apì ton
Gudmundsson sto �rjro [39].
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Sto trÐto kai teleutaÐo mèroc thc diatrib c kataskeu�zoume mia nèa kl�sh elaqi-
stik¸n embaptÐsewn F : Mn → Hn+2, n ≥ 3, ston uperbolikì q¸ro oi opoÐec eÐnai
(n − 2)-eujeiogeneÐc [49]. Autì shmaÐnei ìti to Mn epidèqetai mia oloklhr¸simh ka-
tanom  di�stashc n − 2 thc efaptìmenhc dèsmhc, thc opoÐac ta fÔlla apeikonÐzontai
diaforomorfik� mèsw thc F se anoikt� uposÔnola olik� gewdaitik¸n (n−2)-di�statwn
uperbolik¸n q¸rwn. E�n to Mn eÐnai apl� sunektikì tìte apodeiknÔoume ìti h em-
b�ptish F epidèqetai mia monoparametrik  oikogèneia apì elaqistikèc paramorf¸seic
oi opoÐec eÐnai <<gn siec>>. Oi paramorf¸seic autèc apokt¸ntai krat¸ntac stajer 
thn k�jeth dèsmh kai thn epagìmenh k�jeth sunoq , all� h deÔterh jemeli¸dh morf 
sundèetai me thn arqik  me perÐploko trìpo. Endi�feron er¸thma eÐnai an h anwtèrw
kl�sh perièqei ìlec tic gn siec paramorf¸seic. Prìklhsh apoteleÐ epÐshc kai to
prìblhma taxinìmhshc twn pl rwn upopoluptugm�twn bajmÐdoc tèssera, afair¸ntac
thn upìjesh thc plhrìthtac   thc eujeiogèneiac.
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