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Introduction

A fundamental concept in submanifold theory is the notion of the relative nullity
distribution that was introduced by Chern and Kuiper [13]. The relative nullity of
a submanifold in a space form is defined as the kernel of the second fundamental
form. The index of relative nullity at a point of the submanifold is just the dimension
of the kernel of the second fundamental form at that point. The kernels form an
integrable distribution along any open subset where the index is constant and the
leaves of the foliation are (part of) affine subspaces in the ambient space. Moreover,
if the submanifold is complete then the leaves are also complete along the open subset
where the index reaches its minimum; see [14].

A frequent theme in submanifold theory is to find geometric conditions for a
complete isometric immersion f: M™ — R" with positive index of relative nullity
v > k to be a k-cylinder. This means that M™ splits as a Riemannian product
M™ = M™% x R¥ and there is an isometric immersion g: M™% — R"~* such that
f = g x idgx. The theory of the relative nullity distribution is an important tool
for the characterization of cylindrical submanifolds. In order to conclude that f is a
cylinder one has to show that the images under f of the leaves of relative nullity are
parallel in the ambient space.

A fundamental result asserting that a complete isometric immersion f: M™ — R"
with positive index of relative nullity must be a k-cylinder is Hartman'’s theorem [40]
that requires the Ricci curvature of M™ to be nonnegative; see also [52]. A key
ingredient for the proof is the famous Cheeger-Gromoll splitting theorem [10], which
is used to conclude that the leaves of the minimum relative nullity split intrinsically
as a Riemannian factor. Even for hypersurfaces, the same conclusion does not hold
if instead we assume that the Ricci curvature is nonpositive. Notice that the latter is
always the case if f is a minimal immersion. Counterexamples easy to construct are
the complete irreducible ruled hypersurfaces of any dimension discussed in [19, p. 409].
Some of the many papers containing characterizations of submanifolds as cylinders
without the requirement of minimality are [15,17,38,40,52,54,58]. When adding the
condition of being minimal we have [1,24,35,36,38,41, 64, 66.
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In this thesis, we aim to extend the aforementioned results for the class of complete
minimal immersions f: M™ — Q! with rank at most two, or equivalently, with index
of relative nullity at least m — 2. We would like to mention that the hypersurface
case was treated in [41-43, 59, 60].

The structure of this thesis is as follows: After some background material in
submanifold theory introduced in Chapter 1, we present the original results of the
thesis in Chapters 2,3,4 and 5.

More precisely, in Chapter 2 we prove a crucial lemma concerning three dimen-
sional minimal submanifolds in space forms with index of relative nullity one. As it
turns out, the three dimensional case is the most interesting one.

In Chapter 3, we investigate complete minimal submanifolds f: M™ — R"™ with
positive index of relative nullity v > m — 2. We prove that the submanifold must be
a cylinder over a minimal surface, under the mild assumption that the Omori-Yau
maximum principle for the Laplacian holds on M™; see [21]. The category of complete
Riemannian manifolds for which the Omori-Yau maximum principle is valid is quite
large. For instance, it contains the manifolds whose Ricci curvature does not decay
too fast to —oo. It also contains the class of properly immersed submanifolds in a
space form whose norm of the mean curvature vector is bounded [56, Example 1.14].
Our result is truly global in nature, since there are plenty of non complete minimal
submanifolds of dimension m having constant index of relative nullity m — 2 that
are not part of a cylinder on any open subset. They can all locally be parametrized
in terms of a certain class of elliptic surfaces; see [15, Theorem 22]. Consequently,
what remains a challenging open problem is the existence of minimal complete and
noncylindrical three dimensional submanifolds with v > 1.

In Chapter 4, we study complete minimal immersions f: M™ — S™ in Euclidean
spheres with positive index of relative nullity at least m — 2 at any point. These are
austere submanifolds in the sense of Harvey and Lawson [44] and were studied by
Bryant [7]. For any dimension and codimension there is an abundance of examples
of non-complete submanifolds which are fully described by Dajczer and Florit [15]
in terms of a class of surfaces, called elliptic, for which the ellipse of curvature of a
certain order is a circle at any point. Under the assumption of completeness, it turns
out that any minimal submanifold in Euclidean sphere is either totally geodesic or
has dimension three. In the latter case, there are plenty of examples, even compact
ones. Moreover, under the mild assumption that the Omori-Yau maximum principle
holds on M™ we provide a complete local parametric description of such submanifolds
in terms of 1-isotropic surfaces in Euclidean space. These are the minimal surfaces
for which the standard ellipse of curvature is a circle at any point; see [22]. For these
surfaces, there exists a Weierstrass type representation that generates all simply-
connected ones.



CONTENTS 3

Chapter 5 is devoted to minimal submanifolds in the hyperbolic space H" and will
be divided in three parts. In the first part, we study complete minimal submanifolds
f: M™ — H" having index of relative nullity at least m —2 at any point. In contrast
to Euclidean and spherical case already being studied, the condition that the index
of relative nullity is at least m — 2 is now quite less restrictive. Nevertheless, we
have reasons to believe that the three-dimensional case is still quite special and this
is why we obtain a characterization of a class of submanifolds that is contained in
the following description. We prove that any complete three dimensional minimal
submanifold f: M3 — H" having index of relative nullity at least one at any point,
is either totally geodesic or a generalized cone over a complete minimal surface lying
in an equidistant submanifold of H”, under the assumption that the scalar curvature
is bounded from below; see [23].

The second part of Chapter 5 is devoted to minimal submanifolds f: M™ — H"
in arbitrary codimension, whose index of relative nullity is m — 2 [49]. Our goal
is to parametrically describe these submanifolds as subbundles of the normal bun-
dle of certain elliptic spacelike surfaces in the Lorentzian space or in the de Sitter
space. Therefore, the assumption of completeness in the characterization of three
dimensional manifolds in hyperbolic space in essential, since there exist local exam-
ples other than generalized cones. Moreover, using this parametrization, one can
construct an abundance of complete submanifolds of any dimension other than gen-
eralized cones, as can been seen from the results in [9], [32] and [47]. Another way
of constructing complete minimal submanifolds in the hyperbolic space, via regular
fibers of harmonic morphisms to Riemann surfaces, was obtained by Gudmundsson
in [39].

In the third and last part of the thesis, we introduce a new class of minimal im-
mersions F': M™ — H"™ n > 3, that are (n — 2)-ruled [49]. This means that they
carry an integrable tangent distribution of dimension n — 2, whose leaves are mapped
diffeomorphically by F' onto open subsets of totally geodesic (n— 2)-hyperbolic spaces
of H""2. Furthermore, we provide a characterization for them among (n — 2)-ruled
minimal submanifolds of rank 4 (if n > 4) or 3 (if n = 3). If the manifold is simply
connected, we show that it allows a one-parameter family of equally ruled minimal iso-
metric deformations that are genuine. The deformations are obtained while keeping
fixed the normal bundle and the induced connection, but now the second fundamen-
tal form relates to the initial one in a much more complex form; in particular, no
orthogonal tensor in involved. It is an interesting question if the above associated
family of complete ruled minimal submanifolds exhausts all examples in the same
class that admit genuine deformations. Of course, a much more challenging classifi-
cation problem for submanifolds of rank 4 would be to drop one of the conditions,
for instance being minimal or ruled.
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The notion of genuine rigidity was introduced by Dajczer and Florit [16]. This is
the right setting to study rigidity problems for higher codimension submanifolds. This
concept relies on the idea that, as we discard congruent submanifolds when analyzing
rigidity, we should also discard deformations that are induced by deformations of a
bigger dimensional submanifold containing the original one. An isometric immersion
f : M™ — H"P is called a genuine deformation of a given isometric immersion
f: M™ — H""P with p > 2, if there is no open subset U C M" along which f|y
and f|y extend isometrically. That f: M™ — H™™ and f: M™ — H™P extend
isometrically means that there is an isometric embedding j: M™ — N1 1 < g < p,
into a Riemannian manifold N"*¢ and there are isometric immersions F': N"t9 —
H"*P and F': Nt — H"P such that f = Foj and f = F o j, i.e., the following
diagram commutes:

; Hn+]’
/}}
Mn e N7t

f\\‘\lf

H"+P



CHAPTER 1

Background material on submanifold
theory

In this chapter, we set up the notation and give a brief overview of the background
material needed for the rest of the thesis.

Let (M™, (-,-)) be a Riemannian manifold with Levi-Civita connection V and let
X(M) denote the set of smooth local vector fields of M™.

The (1, 3)-curvature tensor R: X(M) x X(M) x X(M) — X(M) is defined by
R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z.

The sectional curvature K(X AY) at the point x € M™ and along the plane
spanned by the orthonormal vectors X,Y € T, M is defined by

K(XAY) = (R(X,Y)Y,X).

A complete and simply-connected n-dimensional Riemannian manifold with con-
stant sectional curvature c is called a space form and is denoted by Q. It is well
known that Q7 is the Euclidean space R", the Euclidean sphere S"™ or hyperbolic
space H" according to ¢ being 0,1 or —1, respectively. In the sequel, we denote by
V the Levi-Civita connection of Q7.

A differentiable map f: M™ — Q7 is called an immersion if the differential
Je(x): T, M™ — TryQ7 is injective for any point € M™. An immersion f is said
to be an isometric immersion if, moreover,

(X, Y)um = (fu(2) X, fu(2)Y)qn,

for all x € M™ and X,Y € T, M. The number p = n — m is called the codimension
of f and for simplicity we refer to f as a submanifold of Q7.

5



6 1.1. THE GAUSS AND WEINGARTEN FORMULAS

Given an isometric immersion f: M™ — QI we denote by f*TQ! the induced
bundle over M™ whose fiber at x € M™ is T,)QF. Moreover, we denote by V the
induced connection on f*7'Q7. The orthogonal complement of f, ()T, M™ in T, QF
is called the normal space of f at x and is denoted by N;M (z). The normal bundle
NyM of f is the vector subbundle of f*T'Q! whose fiber at x € M™ is NyM(z).
In the sequel, the set of smooth sections of the normal bundle NyM is denoted by
I'(NgM). Given vector fields X,Y € X(M) we decompose

VxlY = (Vx V) + (VxfY)" (1.1)
with respect to the orthogonal decomposition
[frQl = f.TM & N;M.
One can easily verify that
(VxfY)' = £(VxY),
where V is the Levi-Civita connection of M™. Moreover, the map
a: X(M) x X(M) = T'(NgM)

defined by
a(X,Y) = (VxfY)"

is called the second fundamental form of f.

1.1 The Gauss and Weingarten formulas

From (1.1) we obtain the following first basic formula of the theory of submanifolds,
known as the Gauss formula

Vx/[.Y =VxY +a(X,Y). (1.2)

For every normal vector field ¢ € I'(NyM), the endomorphism A¢;: TM — TM
defined by
<A§X7 Y> = <CK(X, Y)7£>

is called the shape operator of f in the direction £&. Now, the second basic formula,
known as the Weingarten formula, is

where V+ is the normal connection of f.
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The mean curvature vector of f at x € M™ is the normal vector defined by

1 m
H = Xi? Xl
(©) = o D alte X)
where X1, ..., X,, is an orthonormal basis of T,,M. The immersion f is called minimal

at v € M™ if H(x) = 0. We say that f is a minimal immersion if the mean curvature
vector vanishes identically, everywhere on M™. It is well known that any minimal
immersion in a space form is real analytic; see [55, Theorem 2.2].

1.2 (Gauss-Codazzi-Ricci equations

Using the Gauss-Weigarten formulas and projecting into tangent and normal compo-
nents we derive the compatibility equations of an isometric immersion f: M™ — Q7.
These fundamental equations, called the Gauss-Codazzi-Ricci equations are listed
below:

(RX,Y)ZW) =c((XAY)Z, W) 4+ (X, W), a(Y, Z)) — (a(X, Z), (Y, W)),
(VyAg)X — AgeeX = (VxAY — Ag.Y,
(RE(X,YVIE ) = ([Ae, AX, V),
where (X AY)Z = (Y, Z)X — (X, Z)Y and R* denotes the curvature tensor of the
normal bundle NyM.
The Ricci tensor Ric: X(M) x X(M) — C*°(M) is defined by
Ric(X,Y) = trace (Z — R(Z,X)Y).
The Ricci curvature in the direction of a unit vector field X € X(M) is defined by
Ric(X) = Ric(X, X).
Finally, the scalar curvature s € C*(M) is defined by

s = trace Ric.

Let {ej,...,en} be alocal orthonormal tangent frame. Using the Gauss equation
we derive for X, Y € X(M) that

Ric(X,Y) = Z(R(ei,X)Y, e:)
= c(m—1)(X,Y)+ Z ((ales €), (X, Y)) — (X, ), (Y, €;)))
= ¢(m—1D)(X,Y)+m(a(X,Y),H) — Z(a(X, ei),a(Y,e;)). (1.3

i=1



8 1.3. UMBILICAL ISOMETRIC IMMERSIONS

Taking traces in (1.3) yields
s=m(m—Lc+m?[H[* — [l (1.4)

where

m
lal* =) llater )

ij=1
is the square of the norm of the second fundamental form.

1.3 Umbilical isometric immersions

An isometric immersion f: M™ — QF is said to be umbilical at © € M™ if there
exists n € NyM(x) such that

a(X,Y)=(X,Y)n, forall XY e€T,M.

Then, 7 is the mean curvature vector H(x) of f at z. Notice, that f being umbilical
at x is equivalent to

A = (H(x),&)I, forall &€ NpM(x),

where [ is the identity endomorphism on 7, M. A submanifold is called totally um-
bilical if it is umbilical at every point.

Using the Codazzi and Ricci equations, one can show that an umbilical isometric
immersion f: M™ — Q! has parallel mean curvature vector field with respect to
the normal connection V+, ie., V3 H = 0 for all X € TM, and flat normal bundle,
i.e., Rt = 0. Moreover, the Gauss equation yields that M™ has constant sectional
curvature ¢ + || H||?.

We view the hyperbolic space H" inside the Lorentz space (L™, (- -)) equipped
with the indefinite metric (-,-) of signature (1,n). Moreover, we denote by S} the
Lorentzian sphere inside L"™!, called de Sitter space. It is well known that every
totally umbilical hypersurface Q™! of H" arises as the intersection of H" with a
hyperplane

P(v,d) = {z e L""": (z,v) =d},

with (v,v) + d? > 0. Its unit normal vector field is

&= (v+dr), z€Q"

(v,v) +d?
Using the Gauss and Weingarten formulas if follows that the sectional curvature of
Q" ! is given by
P UL

(v,v) +d?
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Observe that if d = 0, then the hypersurface Q™! is totally geodesic, i.e., a(X,Y) = 0
for X,Y € TQ"'. Moreover, Q" ! is a geodesic sphere if K > 0, a horosphere if
K =0 and an equidistant hypersurface if K < 0.

The classification of totally umbilical submanifolds of H" reduces to the classifica-
tion of totally umbilical hypersurfaces, see [61, Lemma 25]. Namely, if Q* is a totally
umbilical submanifold of H", then Q* is contained in a totally geodesic submanifold
of dimension k + 1 of H"™. Similar conclusions hold true for totally umbilical sub-
manifolds of de Sitter space. More precisely, if Q* is a totally umbilical submanifold
of S?, then Q" is contained in the subspace arising as the intersection of S7 with a
hyperplane of dimension k + 1 of L"*!. If in addition this hyperplane passes through
the origin of L"*!, then Q* is a totally geodesic submanifold.

1.4 Relative nullity distribution

Let M™ be a Riemannian manifold and f: M™ — QI be an isometric immersion.
The relative nullity subspace D(x) of f at any point 2 € M™ is the tangent subspace
given by
Dx)={XeT,M:aX,Y)=0 forall Y e T,M},

i.e., is the kernel of its second fundamental form a: TM x T'M — N;M with values
in the normal bundle. The dimension v(x) of D(z) is called the indezx of relative
nullity of f at x € M™. This notion was introduced by Chern and Kuiper [13] and
turned out to be a fundamental concept in the theory of isometric immersions. For
simplicity, we call p(x) = m —v(z) the rank of f at x € M™. Notice that p(x) is the
rank of the Gauss map of f at x € M™.

A smooth distribution E of M™ is called totally geodesic if VxY € I'(E) whenever
X,Y € I'(E). We recall in the following proposition some well-known results for the
relative nullity distribution.

Proposition 1.1. Let U C M™ be an open subset where the index of relative nullity
v =35>0 is constant. Then

(i) The indez of relative nullity v is upper semicontinuous. In particular, the subset
My={ze M™: v(z) =1}
where v attains its minimum value vy 1S open.
(ii) The relative nullity distribution x +— D(x) is smooth on U.

(i1i) The kernels form a totally geodesic and hence integrable distribution D along
U. The leaves of D are totally geodesic submanifolds of M™ and their images
under f are (part of) affine subspaces in the ambient space.
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(iv) If v: [0,0] = M™ is a geodesic curve such that v([0,b)) is contained in a leaf
of relative nullity contained in U, then v(v(b)) = s.

(v) If M™ is complete then the leaves are also complete along M.
Proof: See [14, Proposition 5.2 and 5.3] &

1.5 Splitting tensor

In this section we define the notion of the splitting tensor which measures how the
conullity distribution is twisting along the tangent bundle of our manifold.

The conullity subspace of f at € M™ is the orthogonal complement D+(x) of
D(zx) in the tangent space T, M. We write

X=X"+Xx"
according to the orthogonal splitting 7'M = D @ D+ and denote
VLAY = (VxY)" and VY = (VxY)".

In the sequel we work on the open subset U of M™ where the index of relative nullity
in constant. In order to investigate how D+ is twisting along the tangent space TM
we introduce the so-called splitting tensor C': T'(D) x I'(D+) — I'(D*) defined by

C(T,X)=-ViT

for any T € T'(D) and X € I'(D}). It is immediate that C' is C*°(M)-linear with
respect to the second variable. That is also C*°(M)-linear with respect to the first
variable follows from

C(¢T, X) = =V (¢T) = —¢ViT = 6C(T. X), ¢ € C*(M).
Therefore, the value of C'(T, X) at a point z € M™ depends only on the values of T'
and X at x. We will write Cr X instead of C'(T, X), and also regard C' as a map
C: T'(D) — I'(End(DH)).

Recall that a distribution E is integrable if for every X,Y € I'(E) the Lie bracket
[X,Y] lies in ['(E). Hence, the distribution D+ is integrable if and only if Cr is self
adjoint. This follows from

(CrX,Y) —(X,0pY) = —(VAT,Y)+(X,VLT)
= —(VxT,Y)+ (X, VyT)
= (VxY - VyX,T)
= <[X>Y]7T>a
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for X,Y € I'(D*) and T € T'(D). In this case, Cr coincides with the shape operator
of the leaves of D+ in M™ with respect to the normal direction 7.

Moreover, using the fact that the distribution D is totally geodesic we obtain that
(VrX,9)=—(X,VrS) =0,

where T, S € I'(D) and X € I'(D}). Thus, Vo X € I'(D4) and one can define the
covariant derivative of Cp by

(VsCr)X =Vg(CrX) — Cr(VsX).
The next proposition will play a key role in the sequel.

Proposition 1.2. The following differential equations for the splitting tensor hold:

(i) VeiCr = CTCS+CVST+C<S, T>I (15)

In particular, the operator C, along a geodesic v contained in a leaf of D
satisfies the differential equation

D
C’Y, - C"le + C.[.

dt
(ii) (VXCr)Y — (VyCr)X = CyyrY — CyyrX (1.6)
and

forany S,T € (D), X,Y € I'(D*') and § € T(N; M), where I stands for the identity
endomorphism on D*+. In particular, the endomorphism A¢Cr of D+ is symmetric,
1.€.,

AeCr = CLA,.

Proof: The equations (1.5) and (1.6) are derived using the Gauss equation and the
fact that D is totally geodesic, whereas equation (1.7) is an easy consequence of the
Codazzi equation. For further details see [14] or [19]. §
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1.6 Submanifolds with umbilical conullity

Let U be and open subset of M™ where the index of relative nullity of the isometric
immersion f: M™ — Q7 is constant. The simplest possible structures of the splitting
tensor occur when either C' vanishes identically or ImC' is spanned by the identity
endomorphism I of D+.

A smooth distribution £ C T'M is called umbilical if there exists a smooth section
V of the orthogonal complement E+ of E, called the mean curvature vector field of
E, such that
(VxY,T) = (X,Y)(V,T),

for all X,Y € I'(E) and T € I'(E+). An umbilical distribution is always integrable
and its leaves are umbilical sumbanifolds of M™.

We call an isometric immersion f: M™ — R" a k-cylinder over g: M™% — R*=F
if M™ = M™% x R* and f = g x Idgr, where Idgi: R¥ — R* is the identity map.
The following proposition gives a sufficient condition for an isometric immersion to
reduce codimension.

Proposition 1.3. Let f: M™ — QI be an isometric immersion. If there exists
a parallel subbundle E of the normal bundle NyM with rank p < n —m such that
N{(z) C E(x) for each point x € M™, then there exists a totally geodesic submanifold
Qm*P in QF such that f(M) C Q7P i.e., f admits reduction of codimension to p.

Proof:  See [14, Proposition 4.1]. &

Proposition 1.4. Let f: M™ — Q be an isometric immersion with constant index
of relative nullity v(xz) = vy > 0. If the conullity distribution is totally geodesic, then
c =0 and f is locally a k-cylinder over an isometric immersion g: M™™"0 — R™7¥0,

Proof: Since the splitting tensor vanishes identically, it follows from (1.5) that ¢ = 0.
The distribution D+ being totally geodesic yields

Vxfo(T) = f.(VxT) + ap(X,T) = f.(VxT) € f.(D)

for all X € ['(D*) and T € ['(D). Thus, f.(D) is constant in R™ along any leaf L of
D+. Set M™ ¥ = [ and ¢ = f o, where i: L — M™ is the inclusion. Then, due
to Proposition 1.3 the immersion g reduces codimension to n — 1y and f coincides
locally with the cylinder over g.

Corollary 1.5. Let f: M™ — R™ be an isometric immersion with constant index
of relative nullity v = s > 0 and complete leaves of relative nullity. If the splitting
tensor C' vanishes, then f is a s-cylinder.
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Proof: That C' = 0 is equivalent to D being parallel in M™. Consequently, the images
via f of the leaves of D are also parallel in R". g

Let Q?‘k denote a complete connected submanifold of Q7. For ¢ = —1, it is well
known that Q2" is either a totally geodesic submanifold of a geodesic sphere, or an
equidistant hypersurface, or a horosphere, according to whether ¢ > 0, ¢ < 0 or ¢ = 0,
respectively.

Consider an isometric immersion g: L™ % — Q2 % and i: Q2" — QP the umbili-
cal inclusion. Then, the normal bundle of h =i 0 g: L™ * — Q" splits orthogonally
as

N,L =i,N,L & N;Q" ™",
where L = L™% and N;Q"* is regarded as a subbundle of N, L.
Let G: N;Q" % — Q" be defined by

G(7,w) = expy(,) W,

where exp denotes the exponential map of Q7. We denote by M™ the open subset
of N;Q" % where G is an immersion, endowed with the metric induced by the map
G. The generalized cone in Q" over g: L™ % — Q?‘k is the isometric immersion

Fy: M™ — Q7F, defined by F, = G|ym.

Proposition 1.6. Let f: M™ — Q be an isometric immersion with constant index
of relative nullity v(x) = vy > 0. If the conullity distribution is umbilical, then f
coincides locally with the generalized cone over g: M™™"° — Q27" into an umbilical
submanifold Q%" of Q. Moreover, the submanifold is globally a generalized cone if
the relative nullity leaves are complete.

Proof: Let j: L — M™ be the inclusion of a leaf L of D+ into M™ and let h = f o j.
Then, the normal bundle N, L of h splits as

NuL = f.(N;L) & N;M = f.(D) & N;M.
By assumption, there exists S € I'(D) such that
Cr = (T, 5)1,
for all T € T'(D). Hence,

VifuT) = f(VxT)+as(X,T)
— —[(CrX) + L(VET)
= (TS LX) + L(VET)
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for all T € T'(D), where V is the induced connection on f*TQ?. It follows that
the subbundle L = f.(D) of N,L is parallel with respect to the normal connection
and that the shape operator of h with respect to any section n = f.(T") of L, where
T € I'(D), is given by

Al =(T,S)I.

Hence, h(L) is contained in an umbilical submanifold Q%" of Q7. This means
that there exists an umbilical inclusion 7: Q7" — Q7 and an isometric immersion
g: Mm™ = L — Q7" such that h = i 0o g. Moreover, at any point z € L the
fiber L(z) = f.(D)(z) coincides with the normal space of i at i(x). Therefore the
generalized cone over g coincides locally with f. The global statement is immediate. §

1.7 Elliptic surfaces

Denote by Q7. the space form of constant sectional curvature ¢ with index (signature)
e =0,1. If ¢ = 0 then the metric on QF is Riemannian, meaning that all eigenvalues
of the real symmetric matrix g;; of the metric tensor are positive, whereas if ¢ = 1
then the metric g;; has one negative eigenvalue and the rest positive. Hence, Q7 is
either the Lorentz space " or the de Sitter space S} according to ¢ = 0 or ¢ =1
respectively, whereas Qf, = Q stands for the Euclidean space, the n-sphere or the
hypebolic space, with respect to the sectional curvature ¢ being 0, 1 or —1.

Throughout this section let g: L? — Q. be a substantial isometric immersion
of a 2-dimensional Riemannian manifold L?, where by substantial we mean that the
codimension cannot be reduced.

We recall from [61] the notion of the s'*-osculating space Osc’g of an immersion
g at a point x € L?. It is the subspace of the tangent space Ty QL. defined as

Oscjg = span {g*X1|x,@ng*X1|$, . ,@XS . -@X2g*X1|x c X1,..., X, € %(LQ)},

where V stands for the induced connection on ¢*T' Qr.. Hence, the first osculating
space Osc.g coincides with the tangent space g.(T,L).

An isometric immersion ¢g: L? — Qr. is called k-regular if all osculating spaces
Osclg for s < k + 1 have constant dimension and the metric induced from QZE is

Riemannian. We call g regular if all osculating spaces have constant dimension and
Riemannian induced metric.

The st"-normal space N9(z) of a k-regular immersion g at x € L? is defined as
the orthogonal complement of Oscig in Oscitly, i.e.,

Osci™lg = Oscig @ NY(z) for 1<s<h+1.
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Notice that the s**-normal space can be interpreted as the subspace

N(z) = span{at! (X1, ..., Xo1) : X1, ..., Xep1 € TLL}.

S

Here oz?c = ay and for s > 3 the symmetric tensor 0422 TLx---xTL— NgL, called
the s'"-fundamental form, is defined inductively by

af(X1,..., X,) =7 (Vx, - Vx,a0(Xa, X1))

where 7° denotes taking the projection onto the normal subspace (N @---® N?_|)+.

Following [15], a surface g: L* — Q7 is called elliptic if there exists a (necessary
unique up to a sign) almost complex structure J: TL — TL such that the second
fundamental form satisfies

(X, X) + a,(JX, JX) =0

for all X € T'L. Notice that J is orthogonal if and only ¢ is minimal, i.e., has zero
mean curvature.

Minimal surfaces are elliptic, but the class of elliptic surfaces is much larger.
Equivalently, that a surface h: L? — R" is elliptic means that given a basis X, Y of the
tangent plane T, L at any = € L? the second fundamental form ay: TL x TL — Ny L
of h satisfies

ac (X, X) + 2bap(X,Y) + cap(Y,Y) =0,

where a,b, c € R verify ac — b? > 0. Equivalently, in any local system of coordinates
(u,v) of L?, any coordinate function of & is a solution of the elliptic PDE of the type
0? 0? 0? 0 0

02 V500 T T 0 T — O

where the smooth functions a, b, ¢, d, e satisfy ac—b* > 0. The reason that are named
elliptic surfaces is exactly because they satisfy the latter elliptic PDE.

Assume from now on that g: L? — Q7. is a k-regular elliptic surface. We consider
the bundle .
A =(N{®- N

and the corresponding timelike unit bundle
U], = {(z,w) € A} : (w,w) = —1}.
The normal bundle decomposes orthogonally as

N,L=N{®--- &N @ AL,
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where all N¢ are plane bundles for 1 < s < k. The induced bundle g*T'Qf_ splits as
gTQ. =N§ &N/ &--- & N ® AL,

with N = ¢.(TL). The almost complex structure J on TL induces an almost
complex structure J; on each N¢, 0 < s < k, defined by

J5@;+1(X17 to ’XS? X5+1) = QZ+1(X17 s 7X87 JX5+1)7

where a; = g, stands for the differential of the immersion g. The s'*-order ellipse of
curvature E9(x) C N9(z) of gat w € L? for 0 < s < k is

ENa) ={a)" (Zp,.... Zy) : Zy=cos0Z +sin0JZ and 0 € [0,m)},

where Z € T, L has unit length and satisfies (Z, JZ) = 0. From ellipticity assumption
such a Z always exists.

We say that the curvature ellipse £9 of a k-regular elliptic surface g is a circle for
some 0 < s < k if all ellipses £9(x) are circles. Notice that & is a circle if and only
if g is minimal. Furthermore, a surface ¢g: L? — Q7. will be called k-isotropic if all
ellipses of curvature £9 for 0 < s < k, are circles.

Moreover, there exists a Weierstrass type representation from [20] that genera-
tes all simply-connected k-isotropic surfaces h: U C C — R+ Start with any
nonzero holomorphic map ag: U — C? in a simply-connected domain U. Assuming
inductively that o, : U — C?*2 has been defined, for 0 < r < k, set

Orp1 = 6r+1 (1 - 72~7 2(1 + ¢72«)7 Q(br) (18)

where ¢, = [ “a,(2)dz and B,.; # 0 is any holomorphic function. Then, we have
that h = Re {ag1} is a k-isotropic surface in R*+4,

1.8 Elliptic submanifolds and polar surfaces

In this section, we recall from [27] the notion of elliptic submanifolds into a space
form as well as several of their basic properties.

Let f: M™ — Q! be a rank two isometric immersion of a Riemannian manifold
M™. The relative nullity subspaces D C T'M form a tangent subbundle of codimen-
sion two. We can assume that f is locally the saturation of a fixed cross section
L? C M™ to the relative nullity foliation.

An isometric immersion f: M™ — QF of rank two is called elliptic if there exists
a (necessary unique up to a sign) almost complex structure J: D+ — D+ such that

ap(X,X) +a;(JX,JX)=0 foreach X €T(D").
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Notice that J is orthogonal if and only f is minimal.

The st"-normal space NI (z) of f at x € M™ for s > 1 is defined as

N/(z) =span{af™(X1,..., Xo1) : Xu,..., Xon € LM},

S

where afc = ay and for s > 3 the symmetric tensor 04;: TM x---xTM — N¢M is
given by
af (X1, X)) =7 (Vx, - Vx,ar (X2, X1))

and 7° being the projection onto (le SRRRN<> Nil)L. Notice that due to Proposition
1.7 the normal spaces N/ form subbundles of the normal bundle, along connected
components of an open and dense subset of M™. Then, along that subset the normal
bundle splits orthogonally as

—Ng... f
where all N/’s have rank two, except possibly the last one NTff that has rank one in
the case the codimension is odd.

We call an elliptic submanifold f: M™ — QI nicely curved if all normal sub-
spaces Nef ’s have constant dimension and thus form normal subbundles. According
to the following proposition, any elliptic immersion is nicely curved along connected
components of an open and dense subset of M™.

Proposition 1.7. Let f: M™ — QI be a substantial, elliptic immersion. Denote
by Uy the set of points where the dimension of N,f 1s maximal, except the last one
U, that may have dimension one if the codimension is odd. Then, the subsets Uy,
1 <k <7 are open and dense in M™.

Proof: Let f: M™ — QI be a substantial elliptic immersion. At first, we are going
to prove that the subset

U, = {x e M™/dimN{ = 2}

is open and dense in M™. Due to ellipticity of f, there exists a unit tangent vector field
Z such that (Z, JZ) = 0and {e; = Z, ea = JZ/||JZ]|} constitute a local orthonormal
frame of NJ. Set for simplicity ay, = af(Z, Z) and aqo = ay(Z, JZ).

Since a1 and a9 are linearly independent at a point x € Uy, they stay linearly
independent in a neighborhood of z. This shows that U; is open.

To prove that the set U; is dense, suppose to the contrary that is not. Then, its
complement V), = Uy has non empty interior. Hence, there exists and open subset W
of M™ such that dilef <1 on W, that is,

g = )\Ckll, A E COO(W)
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We aim to prove that le is parallel and because is has dimension less than its
maximum it reduces codimension in view of Proposition 1.3. We compute using the
symmetric of the third fundamental form ai’c that

enenen) = (Thon) g
(V;)\Oén)(
= (es(Nan + AV om) (1.

N+

= )\a?f(eh €1, 61)7
and using the ellipticity of f we obtain

a}o’c(el,el,el) = —a?(eg,eg,el)
= _(Vé;O‘l?)(le)L
= —(62(>\)0611 + )ijlozH)(le)L
= —Aa?(el,el, es)
= —>\2oz?c(el,el,el).

Hence
a?}(el,el,el) = 06?0(61,61762) = 0.

This means that le is a parallel subbundle of the normal bundle and dilef =1 hence
by Proposition 1.3 it reduces codimension. We have reached a contradiction in view
of f being substantial. The results for higher normal spaces are obtained similarly
by showing that le D---P N,f are parallel for 2 < k < 7. Thus, by Proposition 1.3
f reduces codimension which contradicts the assumption of f being substantial. I

From the last proposition it is immediate that the normal bundle of f can be
decomposed orthogonally as

(1.9)

where all Nef 's have rank 2, except possibly the last one NTff that has rank 1 in case
the codimension is odd. Thus, the induced bundle f*T'QZ splits as

fIQr=fDeoN eN & &N/,

where Ng = f.D*. Set

o1 if n—m iseven
|l =1 if n—m isodd.
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It turns out that the almost complex structure J on D+ induces an almost complex
structure J; on each Nef, 0 < ¢ <77, defined by

JzOé?rl(Xh ey Xoy X)) = O‘?H(Xh s Xy J X)),

where a} = f,. Moreover it holds, see [15],

Js (@XS)NSJ’ = (6)(1]5—15)]\,; = (@fo)sta Vée N/, X e D*

and
J;—1<6X77)st_l = (@XJﬁn)Ng_l = (@an)N;c_l, Vn € st, X € D,

where J!_; denotes the transpose of J_i.

The (" -order curvature ellipse Ef (x) € N/ (z) of f at z € M™ for 0 < £ < ¢ is
&l (x) = {affl(Zg, o Zp)  Zyg=cos0Z +sinfJZ and 6 €[0,7)},

where Z € D*(x) has unit length and satisfies (Z, JZ) = 0. From ellipticity such a
Z always exists.

We say that the curvature ellipse é}f of an elliptic submanifold f is a circle for
some 0 < ¢ < 77 if all ellipses 6{ (x) are circles. That the curvature ellipse 8{ is a
circle is equivalent to the almost complex structure J, being orthogonal. Notice that
8({ is a circle if and only if f is minimal.

An elliptic submanifold f is called ¢-isotropic if all curvature ellipses up to order /¢
are circles. Then f is called isotropic if the curvature ellipses of any order are circles.

Substantial isotropic surfaces in R?" are holomorphic curves in C* = R?". Isotropic
surfaces in spheres are also referred to as pseudoholomorphic surfaces. For this class
of surfaces a Weierstrass type representation was given in [28].

Let f: M™ — QI ¢ = 0,1, be a substantial and nicely curved elliptic subman-
ifold. Assume that M™ is the saturation of a fixed cross section L? C M™ to the
relative nullity foliation. The subbundles in the orthogonal splitting (1.9) are parallel
in the normal connection (and thus in Q?~¢) along D. Hence each N, gf can be seen as
a vector bundle along the surface L?.

A polar surface to an elliptic immersion f is an immersion ¢ of a cross section L? to
the relative nullity foliation defined as follows:

(a) If n — ¢ — m is odd, then the polar surface g: L* — S ', ¢ = 0,1 (resp.
g: L? — SPT1if ¢ = —1) is the spherical image of the unit normal field spanning
the last normal bundle NTJ; .
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(b) If n — ¢ — m is even, then the polar surface g: L> — R", ¢ = 0,1 (resp.
g: L?* = L""? if ¢ = —1) is any surface such that ¢, T,L = fo(x) up to parallel
identification in R™ (resp. L""2).

Polar surfaces always exist since, in case (b), any elliptic submanifold admits
locally many polar surfaces.

Since our work is local, we may assume that an elliptic submanifold f is the
saturation of a fixed cross section L? C M™ to the relative nullity foliation. The
almost complex structure J on D+ induces an almost complex structure J on T'L
defined by

PJ=JP,

where P: TL — D is the orthogonal projection.

The following proposition ensures that associated to any elliptic submanifold of
rank two, there is an elliptic surface that “integrates” its k-th normal space and
relates the complex structure and normal spaces between them.

Proposition 1.8. Any elliptic submanifold f: M™ — QI admits locally a polar
surface. Moreover, in substantial codimension, any polar surface g to f is k-regular
for appropriate k and elliptic with respect to J§ = J such that

NY=N!__ and JS=Jt |, (1.10)

for each 0 < s <k and x € L?, up to parallel identification in R"! if ¢ = 0,1, or in
Lt if e = —1.

Proof: See Proposition 8 in [15]. &

A bipolar surface to f is any polar surface to a polar surface to f. In particular,
if we are in case f: M3 — S* !, then a bipolar surface to f is a nicely curved elliptic
immersion g: L? — R™.

1.9 Omori-Yau maximum principle

A main ingredient in the proof of our results is the Omori-Yau maximum principle.
The Omori- Yau mazximum principle is said to hold on a complete Riemannian mani-
fold M™ if for any function ¢ € C?(M) bounded from above there exists a sequence
of points {z;},en such that

;) >supp = 1/j, [[Vell(z;) <1/j and  Ap(z;) <1/7,
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for any j € N. The category of complete Riemannian manifolds for which the principle
is valid is quite large. For instance, it contains the complete manifolds whose Ricci
curvature satisfies Ric > —K(1 + r2log®(r + 2)), where r is the geodesic distance
function from a fixed point of the manifold and K is a non negative constant. It also
contains the class of properly immersed submanifolds in a space form whose norm of
the mean curvature vector is bounded; see [3] or [56, Example 1.14].

In the sequel, we recall the elementary strong maximum principle and two results
that are consequences of the Omori-Yau maximum principle and will be crucial in
the proof of our main results.

Proposition 1.9. If a harmonic function attains maximum value in an interior point
of M then it must be constant.

Proof: See [57, Theorem 5 in Chapter 2]. 1

The following proposition is a consequence of a result due to Cheng and Yau [11].

Proposition 1.10. Let M™ be a Riemannian manifold for which the Omori-Yau
mazimum principle holds. If o € C*(M) satisfies that Ap > 2¢* then sup ¢ = 0.

Proof: See [3] or [42, Lemma 4.1]. §

The next proposition was proved by Yau in his attempt to generalize the classic
Liouville Theorem of complex analysis to complete Riemmanian manifolds.

Proposition 1.11. Let M™ be a Riemannian manifold with Ricci curvature bounded
from below by —K for some constant K > 0. If o € C°°(M) is a harmonic function
which is bounded from below, then

Vel < v(m = 1)K (p — inf ¢).
Proof: See [67, Theorem 3"]. 1

1.10 Removable singularities of harmonic maps

In this section, we state some well known results, regarding extensions of harmonic
maps between Riemannian manifolds.

Let F: M — M be a C? mapping between smooth Riemannian manifolds M, M
with Levi-Civita connections V and V respectively. Pick a local orthonormal tangent
frame field {ey, ..., e, } around a point x € M. We define the tension field of F at a
point x € M to be

T(F)(x) = Z (@F*EJF*GJ' o F*vejej)(@

m
j=1
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We say that F'is a harmonic map if the tension field vanishes identically.

The following proposition allows us to extend analytically a harmonic map between
Riemannian manifolds. For a proof, we refer to Eells-Sampson [30, Proposition p.
117].

Proposition 1.12. Every harmonic map F: M — M of class~C'2, where M and
M are complete Riemannian manifolds, is smooth. If M and M are both analytic
Riemannian manifolds, then every such map is analytic.

In order to state the next theorem, we need to introduce the notion of the relative
2-capacity of a compact set K of R”. We denote by B, (0) the open ball of center 0
and radius 7o > 0 in R™. If K C B,,(0), then Cap,,,(K) is defined by

Copay () =it { [ [DolPde: v € (5,00, 021 on K},
RTL

By C*(B,,(0),R) we denote the space of smooth functions ¢: B,,(0) — R with
compact support. For n > 3, we set Caps(K) =Caps o (K). If B is open subset of
R™ then

Cap,(B) = sup {Capy(K) : for each K C B, K compact}.
If F/ is an arbitrary subset of R™ then
Capy(E) = inf {Cap,(B) : for each E C B, B open}.

If M is a Riemannian manifold and ¥ C M then by Caps(3) = 0 we mean that
Caps(¢(XNU)) = 0 for each chart (U, ¢) of M. It is well known that if K is a smooth
curve, then its 2-capacity is zero, see (cf. [33, Theorem 3]) or (cf. [45, p. 37]).

Let M be a connected Riemannian manifold and let M be a complete Riemannian
manifold without boundary. Let A be a relatively closed subset of M. Meier proved
in [53, Theorem 1] the following removable singularity result:

Theorem 1.13. Let F: M~ A — M be a bounded harmonic map and Cap,(A) = 0.
Suppose F(M ~ A) is contained in some closed geodesic ball B,(Zy) of M which does
not meet the cut locus of its center &y, and for which r < w/(2y/k), where Kk > 0 is
an upper bound for the sectional curvature of M on B,(%). If r = n/(2y/K), assume
in addition that F(M ~ A) is not completely contained in the boundary of B,(Zy).
Then F extends to a harmonic map of class C* in all of M.

Using Proposition 1.12 and Theorem 1.13 we obtain the following lemma:

Lemma 1.14. Let F:~]\43 <A — M be a bounded harmonic map, where A is a
smooth curve and M, M are complete Riemannian manifolds. If F' has continuous
extension over A, then F can be extended analytically over A.
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1.11 Real analytic subvarieties

A function H(xy, ..., x5 1;2k) of k real variables is called a distinguished polynomial
or Weierstrass polynomial if it has the form

H(.I‘l, c. ,13]671;13]@) = LCZL + Al(ﬂfl, . ,13]671)‘132171 + -
+Am_1(ﬂf1, L ;xk’—l)xk + Am('xb cee 7$k—1)7

where each A; vanishes at (zy,...,25-1) = (0,...,0). It is an important fact that any
analytic function is locally, up to an invertible factor, a distinguished polynomial, see
for instance Weierstrass preparation theorem [50, Theorem 6.3.1].

Every distinguished polynomial H admits a unique decomposition into irreducible
distinguished polynomials. The discriminant D(H)(z1,...,x,_1) of a distinguished
polynomial H vanishes if and only if H(xq,...,z5_1; k) has a repeated irreducible
factor, see [6].

Recall that a closed set X C M is called a real analytic subvariety of M, if for

each point p € X there exists a neighborhood V' and a set F of real analytic functions
defined in V such that

XNV ={peV/f(p)=0 forall fecF}.

By a careful analysis of symmetric functions of the roots of a distinguished polynomi-
als, Lojasiewicz was able to prove in [50, Theorem 6.3.3], the following stratification
theorem for real analytic subvarieties.

Theorem 1.15. Let ®(z4,...,x,) be a real analytic function in a neighborhood of
the origin. After a rotation of the coordinates x1,...,x,_1 one has that there exist
numbers 0; >0, j =1,...,n, and a system of distinguished polynomials

Hf(x1,...,55520), 0<k<n, k+1<(<n,

defined on Qr = {|z;| < 6;, 1 <j <k}, such that the discriminant D§ of Hf does
not vanish on Q. and the following properties are satisfied:

(i) Each root ¢ of Hf(xy,...,xx;+) on Qy satisfies ||C|| < .
(ii) The set
Z:={zx=(x1,...,xn) : ||xj|| < 9; foreach je€{l,....,n} and ®(x) =0}

has a decomposition
Z=Vvou...uvri
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The set VO is either empty or consists of the origin alone. For 1 <k <n —1,
we may write VF as a finite, disjoint union

of k-dimensional subvarieties which have the following explicit description:

(a) (Analytic Parametrization) Each I'; is defined by a system of n — k equa-

tions
Tp1 = ¢§,k+l($17 cee 7‘7“143)7
_ k
Tp = ¢j,n(x17"‘7xk)7

where each function gzﬁfz 15 real analytic on an open subset Qf C Qi C RF,
k N
HE (x17...,xk; j7£):07

and
Déf(xlaamk)?éo
forall(xl,...,xk)EQ?,Equtl,...,n.

~ . k _ Ok kO —
(b) (Non-Redundancy) For any integers k, 1, j, either Qf = QF or QFNQY = 0.

In the second instance one has, for any ¢ = k+1,...,n, either gbﬁé = ?,e

on QU or ¢F (w1, .. xp) # O (w1, wy) for all x = (zy,...,2) € QF.

(c) (Stratification) For each k the closure of V¥ contains all the subsequent
V™mos that is, VOU---UVF T C QN V*. The lower dimensional varieties
Vm.om < n—1, do not occur as isolated sets; they are in fact the zero

sets of certain discriminants and (in a sence) form the boundaries of the
components F;"H of Vmtt . ynt

A point xy € Z is called a regular point of dimension d if there is a neighborhood
Q of xg such that 2N 7 is a d-dimensional real analytic submanifold of 2. If otherwise
xo is said to be a singular point. The set of singular points is locally a finite union
of submanifolds.

We now turn our attention to the Cauchy-Kowalewski theorem. It concerns the
existence and uniqueness of a real analytic solution of a Cauchy problem, given real
analytic initial data on a hypersruface S. Before we state this theorem, we introduce
some notation and definitions.
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An n-tuple a = (aq,...,a,) of nonnegative integers will be called a multi-indez.
We define
n
|al :Zaj, a! = alas! - - - ay!,
7j=1
and for z = (xy,...,2,) € R,
a __ _.ai..a an
xt =altry? .

We will use the shorthand

0y = —
’ 8xj

for derivatives in R™ and for higher order derivatives we use the following convention:
0" = —a\al .

Oxi - - Ozan
If v is a vector field on an open set 2 C R™ we define the directional derivative 9, by

9y = (1, V),

where (-, ) is the standard inner product in R™. For any differentiable function f in
), we have that

n

O,f(x) = (v(2), Vf(x)) = Y _v;(2)0;, f ().

=1

L= No"

la|<k

Let

be a linear differential operator of order k on €2 C R™. Then, its characteristic form
at x € ) is the homogeneous polynomial of degree k on R" defined by

Q@,0) =Y N(@)C?, CeR™

la|=Fk

A nonzero vector ( is called characteristic for L at x if Q(z,() = 0 and the set of all
such ( is called the characteristic variety of £ at x and is denoted by char,(L£). Thus,
the condition ¢ € char,(£) means that, in some sence, L fails to be “genuinely kth
order” in the direction ¢ at x. The operator L is said to be elliptic at x if char, (L) = ()
and elliptic on () if it is elliptic at every point x € ().

A hypersurface S in € is called characteristic for £ at a point = € S, if the
unit normal vector 7j(x) to S at x is in char,(L£). The hypersurface S is called non-
characteristic if it is not characteristic at any point.
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Theorem 1.16. Consider the Cauchy problem

‘C(u) =F (:L‘, (aau>|a|§k) = O’ (1.11>
dju=¢; on S for 0<j <k,
where the functions F, ¢q, . .., ¢r_1 are near analytic near the origin. If the hypersur-

face S is non-characteristic, then there exists a neighborhood of the origin on which
the Cauchy problem (1.11) has a unique analytic solution.

Proof: See [37, Theorem 1.25].



CHAPTER 2

A fundamental lemma

The ideas in this chapter will play a crucial role in the proofs of our main results in
Chapters 3,4 and 5.

Let f: M3 — QO be a substantial minimal isometric immersion with index of
relative nullity v(z) > 1 at any point of M3, that is, the index is either 1 or 3. Let
U C M3 be an open subset where v = 1 and the line bundle of relative nullity is trivial.
Fix a smooth unit section e spanning the relative nullity distribution along U and
let J denote the unique, up to sign, almost complex structure acting on the conullity
distribution D+ = {e3}*+ = span{e;, e}, where e3 = e and e, ey are orthonormal.
Moreover, set for simplicity C = C¢,. The following lemma is of crucial importance.

Lemma 2.1. There are harmonic functions u,v € C*(U) such that
C=vl—uJ (2.1)

where I stands for the identity map on the conullity distribution. Moreover, the
integral curves of e are geodesics and the functions u and v satisfy the following
differential equations:

e(v) =v>—u’+e¢, e(u) =2uw (2.2)

and
e1(u) = ex(v), ea(u) =—ep(v). (2.3)

Proof: We may assume that the immersion f is substantial, that is, it does not reduce
codimension. Let A¢ be the shape operator of f with respect to the normal direction

& ie.,
(A~ ) = (al(-,),6).
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From the Codazzi equation for A¢|p. restricted to D+ we have that
Vedelpr = A¢lpr 0 C + Avielpe

for any normal vector field £ € I'(N;yM). Thus A¢|pe o C has to be symmetric, and
hence
A¢lproC=C"o A¢lpi. (2.4)

On the other hand, the minimality condition is equivalent to
A£|'DL O J = Jt o} A§|fDL (25)

First we consider the hypersurface case n = m + 1. Take a local orthonormal
tangent frame ey, €9, e that diagonalizes the shape operator of f such that

Jeg =ey and e3=ce
and let £ be a unit normal along the hypersurface. Set
u = (Veer,e) and v= (Ve e).
From the Codazzi equation
(Ve,Ae)e = (Ve Ae)es,

where 1 < i < 2, we have that (V,es,e) = v and (V.e,e1) = (Vee,ea) = 0. The
latter shows that the integral curves of e are geodesics, i.e., V.e = 0. Moreover, from

<(V61A5)€2, 6> = <(VG2A§>617 6)?

we obtain that (V. ez, e) = —u. Now we can readily see that (2.1) holds true.

Assume now that f does not reduce codimension to one. Due to minimality
assumption, we have that dimN,{ <2 If dimef = 1 on an open subset V C M3, a
simple argument using the Codazzi equation shows that le is parallel in the normal
bundle along V' and thus according to Proposition 1.3, f|y reduces codimension to
a hypersurface. Due to real analyticity the same would hold globally, and that has
been excluded. Hence, there is an open dense subset W of M? where dim le = 2.
We conclude from (2.4) and (2.5) that C € span{/, J} on U N W. By continuity, we
then get that C € span{/, J} on U. Therefore, also in this case there are functions
u,v € C*(U) such that (2.1) holds.

It remains to show that u,v are harmonic. From (1.5) and (1.6) we have

Ve =C? + I (2.6)
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and
(ViC)Y = (ViC)X (2.7)

for any X,Y € I'(D4). For a local orthonormal tangent frame ey, es, e3 such that
Jey = eg and ez = e, it follows from (2.1) that

v= (Ve e) = (Ve e) (2.8)

and

= —(Vea,e) = (Ve,eq,e). (2.9)

It is easily seen that (2.6) is equivalent to (2.2), whereas (2.7) is equivalent to (2.3).
The Laplacian of v is given by

Av = Z e;ej(v) + wia(ez)er(v) — wia(er)ea(v) — (wis(er) + was(ez))e(v),  (2.10)

where wjj(e) = (V€5 €5), for 1 <4, 5,k < 3. Using (2.9) and (2.3), we have that

ere1(v) + egea(v) = —ejea(u) + ezer(u) = [ea, €1](u)

— Veei(w) - V,ea(u)

= wiz(er)er(u) + wialea)ea(u) + (wiz(ea) — wasler))e(u)
= wia(er)ex(v) —wia(eg)er (v) + 2ue(u).

Inserting the last equality into (2.10) and using (2.8) and (2.2) yields
Av = ee(v) + 2ue(u) — 2ve(v) = 0.

Also, that the function u is harmonic is proved in a similar manner. B
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CHAPTER 3

Minimal immersions with relative nullity
in Euclidean space

A frequent theme in submanifold theory is to find geometric conditions for an isome-
tric immersion of a complete Riemannian manifold into Fuclidean space f: M™ — R"
with index of relative nullity v > k£ > 0 at any point to be a k-cylinder. This means
that the manifold M™ splits as a Riemannian product M™ = M™% x R* and there
is an isometric immersion g: M™% — R"* such that f = g x idp«.

A fundamental result asserting that an isometric immersion f: M™ — R"™ with
positive index of relative nullity must be a k-cylinder is Hartman’s theorem [40] that
requires the Ricci curvature of M™ to be nonnegative; see also [52]. A key ingredient
for the proof of this result is the famous Cheeger-Gromoll splitting theorem [10]
used to conclude that the leaves of minimum relative nullity split intrinsically as a
Riemannian factor. Even for hypersurfaces, the same conclusion does not hold if
instead we assume that the Ricci curvature is nonpositive. Notice that the latter is
always the case if f is a minimal immersion. Counterexamples easy to construct are
the complete irreducible ruled hypersurfaces of any dimension discussed in [19, p.
409].

Some of the many papers containing characterizations of submanifolds as cylinders
without the requirement of minimality are [15,17,38,40,52,54,58]. When adding the
condition of being minimal we have [1,24,35,36,38,41,64,66].

3.1 The main result

In this section, we extend a result for hypersurfaces due to Savas-Halilaj [60] to the
situation of arbitrary codimension.
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Theorem 3.1. Let M™ be a complete Riemannian manifold and f: M™ — R"™ be a
mainimal isometric immersion with index of relative nullity v > m — 2 at any point of
M™. If the Omori- Yau mazimum principle holds on M™, then f is a cylinder over
a minimal surface.

Corollary 3.2. Let M™ be a complete Riemannian manifold and f: M™ — R™ be
a minimal isometric immersion with index of relative nullity v > m — 2 at any point
of M™. Assume that either the scalar curvature s of M™ satisfies s > —c(dlogd)?
outside a compact set, where ¢ > 0 and d = d(-,0) is the geodesic distance to a
reference point o € M™, or that f is proper. Then f is a cylinder over a minimal
surface.

Theorem 3.1 is truly global in nature since there are plenty of examples of non-
complete minimal submanifolds of any dimension m with constant index v = m — 2
that are not part of a cylinder on any open subset. They can be all locally parametri-
cally described in terms of a certain class of elliptic surfaces; see Theorem 22 in [15].
In particular, there is a Weierstrass type representation for these submanifolds when
the manifold possesses a Kéhler structure; see Theorem 27 in [15]. On the other
hand, after the results of this chapter what remains as a challenging open problem
is the existence of a minimal complete noncylindrical submanifold f: M3 — R with
index of relative nullity v > 1.

The main difficulty in the proof of Theorem 3.1 arises from the fact that the index
of relative nullity v is allowed to vary. Consequently, one has to fully understand the
structure of the set of points A C M™ where f is totally geodesic in order to conclude
that the relative nullity foliation on M™ \ A extends smoothly to A.

Recently Jost, Yang and Xin [48] proved various Bernstein type results for com-
plete m-dimensional minimal graphical submanifolds in Euclidean space with index
v > m — 2. We observe that from a result in [19] it follows that the submanifolds
considered in [48, Theorem 1.1] are cylinders over 3-dimensional complete minimal
submanifolds with v > 1. Moreover, from Corollary 3.2 it follows that the sub-
manifolds considered in [48, Theorem 1.2] are just cylinders over complete minimal
surfaces, since entire graphs are proper submanifolds. Thus, to prove a Bernstein
theorem for such submanifolds is equivalent to show a Bernstein theorem for entire
minimal 2-dimensional graphs in Euclidean space.

3.2 The proofs

Let M™ be a Riemannian manifold. An isometric immersion f: M™ — R" is called
ruled if M admits a continuous codimension one foliation such that f maps each
leaf (ruling) onto an open subset of an affine subspace of R". We say that f is
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completely ruled if all rulings are complete. Observe that in this case, the leaves in
each connected component of M (called a ruled strip) form an affine vector bundle
over a curve with or without endpoints. We then say f is a cylinder if M = L' x R™1
and f = f; x id splits.

The possible structures of an isometric immersion f: M™ — R™ when M™ is
complete and the index of relative nullity of f satisfies v > m — 2 at any point was
completely described by Dajczer and Gromoll in [19, Proposition 2.1]. Among other
results they proved the following:

Proposition 3.3. Let f: M™ — R", m > 3, be an isometric immersion of a com-
plete Riemannian manifold which does not contain an open set L3 x R™3 with L3
unbounded, and p the rank of the Gauss map. Suppose that p < 2 everywhere, and
let M* be the open subset of all points in M with p = 2. Then the following hold:

(i) M* is a union of smoothly ruled strips.

(i1) If [ is completely ruled on M*, then it is completely ruled everywhere, and a
cylinder on each component of the complement of the closure of M*.

Consequently, if f is real analytic, then either M = L3 x R™=3 and f = f, x id splits,
or fis completely ruled.

In the case of minimal (hence elliptic) submanifolds, Dajczer and Florit proved
in [15, Theorem 16] the following:

Theorem 3.4. Let f: M™ — R™ be a complete submanifold elliptic on a dense subset
of M™. Then, each connected component of an open dense subset of M™ is isometric
to L3 x R™3 and f splits accordingly. Moreover, the splitting is global if M™ is
simply connected and does not contain an open subset L? x R™~2,

From the latter it is obvious that the interesting case occurs when m = 3. Hence,
we only have to consider the case of a nontrivial minimal f: M3 — R" with v > 1
at any point of M3,

Let A denote the set of totally geodesic points of f. From Proposition 1.1(iv) the
relative nullity foliation D is a line bundle on M3 \. A. Due to the real analyticity
of the submanifold, the square of the norm of the second fundamental form is a real
analytic function. It follows that A is a real analytic set. According to Lojasewicz’s
structure Theorem 1.15 the set A locally decomposes as

A=V'uvtuy?uy?,

where each V¥, 0 < d < 3, is either empty or a disjoint finite union of d-dimensional
real analytic subvarieties.
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Our goal now is to show that A = V!, unless f is just an affine subspace in R"
in which case Theorem 3.1 trivially holds. After excluding the latter trivial case, we
have from the real analyticity of f that V3 is empty.

Lemma 3.5. The set V? is empty.

Proof: We only have to show is that there is no regular point in V?. Suppose to
the contrary that such a point do exist. Let Q C M? be an open neighborhood
of a regular point o € V? such that L? = QN A is an embedded surface. Let
e1,ea,e3,&1, ..., &3 be an orthonormal frame adapted to M? along € near xy. The
coefficients of the second fundamental form are

h;‘lj - <a(€i7 ej)a €a>7

where from now on 1 <1¢,7, k<3 and 1 <a,b<n-—3.

The Gauss map v: M® — Gr(3,n) of f as a map into the Grassmannian of
oriented 3-dimensional linear subspaces in R™ is defined by v(z) = f.(T.M?) C R",
up to parallel translation in R to the origin. Regarding Gr(3,n) as a submanifold
in A3R" via the map for the Pliicker embedding, we have that v = f.e; A f.ea A fies.

Then
Ve = hieja, (3.1)
7,a

where e, is obtained by replacing f.e; with &, in f.e; A fiea A fies. Then

D (s yuei) = > (h)* = llol?,

7 ©,J,a
where the inner product of two simple 3-vectors in A3R™ is defined by
<CL1 N a9 A as, bl A b2 A\ b3> = det (<6LZ', b]>)

For a fixed simple 3-vector A = a; Aas Aas in A’R™, let wy : M3 — R be the function
defined by

wa = (v, A).
Because the immersion f is minimal, the height function w, satisfies
Awa = —lolPwa+ D bbb lejam, A),
i,a7#b,j#k

where e, 15 is obtained by replacing f.e; with &, and f.e;, with & in f.e; A fiea A fres
(cf. [65, p. 36]). Let e1,...,&, be an orthonormal basis of R” . The set

{ej Nejy Nejy 1 1< i < jo < jz <n}
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of 3-vectors is an orthonormal basis of ASR™ by means of which identify A*R™ with

-----

N
7:ZwJAJ where w; = (v, Ay).
J=1

From hg; = (v.e;, €ja), we obtain

ey = (eja, Asei(w,). (3.2)

J
Moreover, for any J € {1,..., N}, it holds
ij = —||Oé||2wj+ Z h?jh?]@<€ja,kb;AJ>‘ (33)
i,a#b,j#k

Take a local chart ¢: U — R? of coordinates x = (1, z2,r3) on an open subset U of
Q) and set
J

Setting 0; = wy o ¢!, we obtain the map 0: ¢(U) C R®> — RY given by

0=> 0,A,=(01,...,0n).
J

Note that § = yo ¢!, i.e., § is just the representation of the Gauss map with respect
to the above mentioned charts. From (3.2) and (3.4) we have

hi; = Z:uik<€jaa Ap)(05)z, (3.5)
o,

and

lf? = Z (Zﬂik<€jaa AJ)(QJ)xk>2- (3.6)

imjva k7J

The Laplacian of M? is given by
1 g
A=— al‘z <\/§gwaxj>
7

where ¢" are the components of inverse of the metric g;; of M?® and g = det(g;;).
Using (3.5) and (3.6) we see that (3.3) is of the form

Z gij(eJ)xixj +Cy (:U, 0,0z, 0.,, 9503) =0,

Z’Mj
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where C;: ¢(U) x R*™ — R is given by

Cy(@,y, 21,22, 23) = —Z \/_9 legJ‘i‘yJZ <Z,uzk: €jas Ar) Zk[)

0,7,a
- Z Z Milﬂim<€ja,kb, AJ> <6ja; AK> <6kb, A1>2mIZlK
e

with y = (y1,...,yn),2i = (zi1, .-, zin), t,m,l € {1,2,3} and I, J, K € {1,...,N}.
Therefore, we have that the vector valued map 6 = (6,...,0y) satisfies the elliptic
equation

L0 =" Ajj(2)0s,0, + C(2,0,0s,,00,,0,,) =0,

where A;; = ¢“Iy, Iy being the identity N x N matrix and C' =
Moreover, we have from (3.1) that 6 is constant on ¢(L?) and 7i(6)
where 77 is a unit normal field to the surface ¢(L?) in R3.

Consider the Cauchy problem L£6 = 0 with the following initial conditions: 6 is
constant on ¢(L?) and 7(f) = 0 on ¢(L?). According to the Cauchy-Kowalewsky
theorem (cf. [62]) the problem has a unique solution if the surface ¢(L?) is nonchara-
cteristic. This latter is satisfied if Q(77) # 0, where @ is the characteristic form given
by

( Cn).
— 0 on ¢(L?)

Q(O) = det(A(Q)).
where ¢ = ((1, (2, (3) and -
0= ey

is the symbol of the differential operator £. That the surface ¢(L?) is noncharacteri-

stic follows from N
= ( N Ci(j)
,J

Because C(z,y,0,0,0) = 0 the constant maps are solutions to the Cauchy problem.
From the uniqueness part of the Cauchy-Kowalewsky theorem we conclude that the
Gauss map ~ is constant on an open subset of M3, and that is not possible. 1

Lemma 3.6. The set V° is empty.

Proof: Suppose that 2o € V° and let  be an open neighborhood around z, such that
v=1on Q~ {xo}. Let {z;};en be a sequence in Q ~\ {z¢} converging to xy. Let
e; = e(x;) € T,; M be the sequence of unit vectors contained in the relative nullity
distribution of f. By passing to a subsequence, if necessary, there is a unit vector
eo € Ty, M such that lime; = ey. By continuity, the geodesic tangent to ey at xp is a
leaf of relative nullity outside xy. But this is clearly impossible in view of Proposition
1.1(iv). u
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Lemma 3.7. The foliation F of the nullity distribution extends analytically over the
reqular points of A.

Proof: First observe that the relative nullity distribution extends continuously over
the regular points of A. In fact, by the previous lemmas it remains to consider the
case when € is an open subset of M3 such that Q2N A is a open segment in a straight
line in the ambient space. But in this situation the result follows by a argument of
continuity similar than in the proof of Lemma 3.6.

Let 2 be an open subset of M3\ A and let {ey, e, e3 = €} be a local frame on
as in the proof of Lemma 2.1. Consider the map F': Q — S"! into the unit sphere
given by F' = f.e. A straightforward computation using (2.8), (2.9) and (2.3) gives
that its tension field

3
T(F) =) (Vi Fej — F.Voe;)

j=1

vanishes, where V denotes the Levi-Civita connection of S"~!. Hence F is a harmonic
map. Since A = V! we obtain that F is real analytic in view Lemma 1.14. §

Lemma 3.8. The set A has no singular points.

Proof: According to Lemmas 3.5 and 3.6 the set A only contains subvarieties of
dimension one with possible isolated singular points. Thus, by Lemma 3.7, the set of
regular points of A just contains segments of straight lines.

Assume that the set S of singular points of A is not empty. Then, a singular
point zg € S C A should be the intersection of transversal regular arcs 1,7 of A.
We know from previous lemmas that the line bundle D|y;. 4 extends to a line bundle
on M ~ S which we denote again by D. Take a local section e of the extended line
bundle D on an open subset U of M ~\ S.

We claim that the integral curves of e are geodesics. Indeed, we know that the
integral curves of e on U N (M ~ A) are geodesics, hence by continuity we have that
Vee=0o0n UN (M~ S). Now we claim that e is tangent to the regular arcs of A.
Assume to the contrary that there exists a point x on a regular arc ¢ such that e(x)
is transversal to ¢ at that point x and let v be the geodesic passing through x with
speed e(x). Since A = V', there exists € > 0 such that v(s) € M \ A, for s € (0,¢].
This means that v(y(s)) = 1, for s € (0,€]. On the other hand v(v(0)) = v(z) = 3,
that contradicts Proposition 1.1(iv).

In this way, we obtain a geodesic flow tangent to D on M \. S, hence U \ {zg} fo-
liates by geodesics having e as tangent vector field. Therefore, there exists a geodesic
v that intersects either 41 or 7, at a point y and the image v \ {y} lies in M ~ A.
This contradicts again with Proposition 1.1(iv). &
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The proof of our main result relies heavily on Proposition 1.10 that is a conse-
quence of the Omori-Yau maximum principle; see [3, Theorem 28] or [42, Lemma
4.1].

Proof of Theorem 3.1: Without loss of generality we may assume that M?3 is oriented
by passing to the oriented double cover if necessary, see for details see [59, pp. 95-101].
It follows from Lemma 3.7 and 3.8 that the almost complex structure J is globally
defined and that ||C||? = u* + v? is real analytic on M3. From Lemma 2.1 and (2.2)
it follows that

A? +v?) = 2||Vul]* + 2| Vol
2(e(u))2 + 2(6(1)))2
Su?v? + 2(u? — v?)?

= 2(u2 + v2)2.

v

Hence, the following differential inequality holds
AllC]® = 2fc]i*.

Using Proposition 1.10 we derive that C = 0 and from Corollary 1.5 we obtain the
desired splitting result. §

Proof of Corollary 3.2: The Omori-Yau maximum principle holds on M™ under the
assumption on the scalar curvature (see [2] or [3, Theorem 2.4]) or if the immersion
f is proper (see [3, Theorem 2.5]). Hence we can apply the same arguments as in the
proof of Theorem 3.1, due to the validity of the Omori-Yau maximum principle on
M™. 1



CHAPTER 4

Minimal immersions with relative nullity
in Euclidean spheres

In this chapter, we investigate minimal isometric immersions f: M™ — S", m > 3,
into Euclidean spheres with index of relative nullity at least m —2 at any point. These
are austere submanifolds in the sense of Harvey and Lawson [44] and were studied by
Bryant [7]. Austerity is a pointwise algebraic condition on the second fundamental
form. It requires that the nonzero principal curvatures in any normal direction occur
in oppositely signed pairs, hence, the austerity condition is, aside from surfaces, much
stronger than minimality.

For any dimension and codimension there is an abundance of examples of non-
complete minimal isometric immersions f: M™ — S" fully described by Dajczer and
Florit [15] in terms of a class of surfaces, called elliptic, for which the ellipse of curva-
ture of a certain order is a circle at any point. Under the assumption of completeness,
it turns out that any submanifold is either totally geodesic or has dimension three.
In the latter case there are plenty of examples, even compact ones. Under the mild
assumption that the Omori-Yau maximum principle holds on the manifold, a trivial
condition in the compact case, we provide a complete local parametric description of
the submanifolds in terms of 1-isotropic surfaces in Euclidean space. These are the
minimal surfaces for which the standard ellipse of curvature is a circle at any point.
For these surfaces, there exists a Weierstrass type representation that generates all
simply-connected ones.
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4.1 The main result

The completeness of M™ imposes f to be totally geodesic unless m = 3. On the
other hand, it follows from the subsequent results of this chapter that any example
for m = 3 can locally be constructed as follows:

Let g: L? — R"™!, n > 4, be an elliptic surface whose first curvature ellipse is a
circle. Then, the map t,: T'L — S™ defined on the unit tangent bundle of L?

T'L={(r,w):x €L, weTL, |w|=1}

and given by
Yy, w) = gaw (4.1)

parametrizes (outside singular points) a minimal immersion f: M3 — S" with index
of relative nullity at least one at any point. More precisely, we prove the following:

Theorem 4.1. Let f: M™ — S™, m > 3, be a minimal isometric immersion with
index of relative nullity at least m — 2 at any point. If M™ is complete, then f is
totally geodesic unless m = 3. Moreover, if the Omori- Yau maximum principle holds
on M3, then, along an open dense subset, f is locally parametrized by (4.1) where
g: L* — R is a minimal surface whose first curvature ellipse is always a circle.

A minimal surface g: L? — R"™ whose first curvature ellipse is a circle at any
point is called a 1-isotropic surface. The above result should be complemented by
the fact that there is a Weierstrass type representation, see (1.8), that generates all
simply-connected 1-isotropic surfaces.

Examples: There are plenty of compact examples of three-dimensional minimal
submanifolds in spheres with index of relative nullity at least one at any point:

(i) Hopf lifts: If g: L? — CP", n > 2, is a substantial holomorphic curve, then the
Hopf fibration H: S?*"*! — CP" induces a circle bundle M3 over L?. This lifting
induces an immersion f: M3 — S?"*! such that gom = H o f, where w: M3 — L?
is the projection map. Such submanifolds (called Hopf lifts) are minimal with index
of relative nullity at least 1 if n = 2 (see [29]) or n = 3 (see [51]). Moreover, if L? is
compact, then M?3 is also compact.

(ii) Tubes over minimal 2-spheres: Due to the work of Calabi, Chern, Barbosa and
others, see [8], [12], [4], it is known that minimal 2-spheres in spheres are pseudoholo-
morphic (isotropic) in substantial even codimension. Calabi [8] proved that any such
surface in S$?™ is nicely curved if its area is 27n(n+1), and Barbosa showed [4] that the
space of these surfaces is diffeomorphic to SO(2n+1,C)/SO(2n+1,R). According to
Proposition 4.4 below such surfaces produce examples of compact three-dimensional
minimal submanifolds in S?" with index of relative nullity one.
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Recall that a triple (M, (-,-), J) is called almost Hermitian if (M, (-,-)) is an even
dimensional Riemannian manifold and J is an almost complex structure on M that
is orthogonal with respect to the metric, i.e.,

(X,Y) = (JX,JY), for X,Y €X(M).

An almost Hermitian manifold (M?™ (- ,-),J) is called nearly Kahler if V.J is a skew
bilinear form with values on TM, i.e.,

(VxJ)X =0, for X eTM.

The 6-sphere S° inherits a nearly Kéhler structure from its natural inclusion to imagi-
nary Octonions. It is thus endowed with an almost symplectic structure, given by a
non-degenerate 2-from w which is not closed. The canonical almost complex structure
J on S%, is compatible with w in the sence that

(X,Y) = w(X,JY).

We define Lagrangian submanifolds of S® as 3-dimensional submanifolds on which w
vanishes.

Among the second family of examples given above in (i), there are the submani-
folds produced from pseudoholomorphic surfaces g: S? — S°® with area 247 which are
holomorphic with respect to the nearly Kihler structure in S°. For instance, this is
the situation of the Veronese surface in S®. In this case, the compact submanifolds
M? are Lagrangian (also called totally real) in S%; see [29].

Corollary 4.2. Let f: M3 — S°® be an isometric immersion with index of relative
nullity at least one at any point. Assume that f is Lagrangian with respect to the
nearly Kdhler structure in S8. If M3 is complete and the Omori- Yau maximum prin-
ciple holds, then f is locally parametrized by (4.1) along an open dense subset of M3
where g is a 2-isotropic surface in RS (respectively, R”) and f is substantial in S®
(respectively, S°).

That the surface g is 2-isotropic means that it is 1-isotropic and that the second
ellipse of curvature is also a circle at any point. Hence, in the case of R® we have
that ¢ is congruent to a holomorphic curve in C* = RS.

It follows from the results in [27] that the universal cover of any of the complete
three-dimensional submanifolds considered in Theorem 4.1 admits a one-parameter
associated family of isometric immersions of the same type. Moreover, that family
is trivial if and only if the (local) generating minimal surface is congruent to a holo-
morphic curve. We refer to Lotay [51] for a discussion about the existence of such an
associated family in the case of yet another family of examples.
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4.2 The local case

We discuss next two alternative ways to parametrically describe, at least locally,
all spherical three-dimensional minimal submanifolds of rank two in spheres. This
follows from the results in [15] bearing in mind that a submanifold is minimal in a
sphere if and only if the cone shaped over it is minimal in the Euclidean space.

Let g: L? — R™ n > 4, be an elliptic surface and let T'L denote its unit
tangent bundle.

Proposition 4.3. If the ellipse £{ is a circle, then the map v,: T*L — S™ given by

¢g($a w) = gxw

is a minimal immersion with index of relative nullity v > 1 outside the subset of
singular points, which correspond to points where dim NY = 0. Moreover, a reqular
point (z,w) € T'L is totally geodesic for 1, if and only if dim N3 (z) = 0. Conversely,
any three-dimensional minimal submanifold in the sphere with v = 1 at any point can
be at least locally parametrized in this way.

The above parametrization (used for Theorem 4.1) is called the bipolar parametri-
zation in [15] because ¢ is a bipolar surface to 1,. The parametrization in the sequel
(used for the examples discussed above) was called in [15] the polar parametrization.

Let g: L? — Q2" (¢ = 0,1), n > 2, be a nicely curved elliptic surface and let
M? = UN¢ stand for the unit bundle of N .

Proposition 4.4. If the ellipse 2 | is a circle, then ¢g: M* — S*"* given by
pg(x,w) = w is a minimal immersion of rank two and polar surface g. Conversely,
any minimal submanifold M3 in S?"*¢ of rank two can locally be parametrized in this
way.

4.3 The complete case

We first observe that for complete submanifolds of rank at most two the interesting
case is the three-dimensional one. The remaining of the section is devoted to the
study of the latter case.

Proposition 4.5. Let f: M™ — S™, m > 3, be a minimal isometric immersion with
index of relative nullity v > m — 2 at any point. If M™ is complete, then f is totally
geodesic unless m = 3.
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The above is an immediate consequence of the following result due to Ferus [34]
(see [14, Lemma 6.16] where the proof holds regardless the codimension) since due
to minimality we cannot have points with index of relative nullity m — 1. For the
sake of completeness we will provide an alternative proof of this but first we need the
following result.

Lemma 4.6. Let f: M™ — S™ be an isometric immersion and let U C M™ be an
open subset where the index of relative nullity is constant and the leaves of the relative
nullity distribution D are complete. Then, for any xo € U and Ty € D(xq) the only
possible real eigenvalue of Cry, is zero.

Proof: If Cp,, has nonzero real eigenvalues Ay, ..., A, set

o -1
tan ¢ = min [A;7],

where ¢ € (—7/2,7/2). Let 7: R — M™ be the geodesic such that v(0) = 2, and
7'(0) = Ty. From Proposition 1.2(i) we have that

V., Cy =C2 4 1. (4.2)

The endomorphism I —tant Cr, is invertible for any ¢t € (—¢, ¢). The unique solution
of the differential equation (4.2) for ¢ € (—¢, ¢) with initial data C,/ gy = Cg, is

Corpy = Po(t)(tant I + Cp ) (I — tant Cp,) "' Py (1),

where Py(t) denotes the parallel transport along + from the point v(0) = zo to y(t).
If follows that either 1/tan(¢ —t) or —1/tan(¢ + t) must be an eigenvalue of C(; for
t € (—¢,¢). On one hand, these quantities become unbounded when the parameter ¢
tends to ¢ and —¢, respectively. On the other hand, by our completeness assumption
Cy () is well defined for any ¢ € R, and this is a contradiction. &

Proof of Proposition 4.5: Let U C M™ be the open subset where f has rank two.
Clearly, if U is empty the minimality condition implies that f is totally geodesic.
Thus, we may assume that f is not totally geodesic in which case the leaves of
relative nullity in U are complete.

The codimension of ker C' in D satisfies codimker C' < 1. If otherwise, we have
from dim End(D+) = 4 and dim Sym(D+) = 3 that the image Im(C) C End(D*)
contains a non trivial self-adjoint endomorphism, in contradiction to Lemma 4.6.
From (1.5) we obtain

VgCs = Ogv + CVSS + 1. (4.3)

In particular, it follows that codimker C' = 1.
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Suppose that m > 3. By the above there exists a unit vector field Ty € D spanning
(ker C')*. This implies that dimker C' = m — 3 > 0. Hence, the tangent bundle splits
as

TM = D+ @ span{T}} @ ker C.

Moreover there exists a unit vector field S € ker C. Then (4.3) takes the form
(VsS, 1T0)Cr, +1 =10
which contradicts Lemma 4.6. §

Let A denote the set of totally geodesic points of f. By Proposition 1.1(iv) the
relative nullity distribution D is a line bundle on M? . A. Being f real analytic,
the square of the norm of the second fundamental form is a real analytic function
and hence A is a real analytic set. According to Theorem 1.15 the set A locally
decomposes as

A=V'uvtuyrtuy?
where each V7, 0 < d < 3, is either empty or a disjoint finite union of d-dimensional
real analytic subvarieties.

We want to show that A = V! unless f is just a totally geodesic three-sphere in
S™. After excluding the latter case, we have from the real analyticity of f that V3 is
empty. We will proceed now following ideas as the ones developed in Euclidean case.
In fact, we only sketch the proof of the following fact, which is similar to the proof
of Lemma 3.5.

Lemma 4.7. The set V? is empty.

Proof: We only have to show that there are no regular points in V2. Suppose that a
regular point zy € V? exists. Let  C M3 be an open neighborhood of zy such that
I? = QN A is an embedded surface. Let ey, es,e3,&1,...,&,—3 be an orthonormal
frame adapted to M? along ) near xy. The coefficients of the second fundamental
form are

h;‘lj = <af(€i’ ej)v §a>’
where 1 <4, 5,k <3 and 1 <a,b<n-—3.
The Gauss map v: M3 — Gr(4,n + 1) of f is a map into the Grassmannian of
oriented 4-dimensional subspaces in R"*! defined by

v=f N fier A fuea A fres.

We can regard Gr(4,n + 1) as a submanifold in AYR"™ via the map for the Pliicker
embedding. Then

Ve = hEfAeja,
j7a’
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where ej, is taken by replacing f.e; with &, in e; A ea A e3. Moreover, it easy to see
that the Gauss map satisfies the partial differential equation

Ay+llaglPy = > BGBSS A ejans,
i,astb,j £k

where e, 1 is obtained by replacing f.e; with &, and f.ex with & in f.e1 A fiea A fres.
Hence, we may write the latter equation in the form

Ay(x) + (@) [Py(2) + Gz, 7.) =0,

where G is real analytic with G(-,0) = 0. Clearly, we have that v is constant along
L? and 7,(77) = 0 on L? where 77 is a unit normal of L? C M?. Then, from the
uniqueness part of the Cauchy-Kowalewsky theorem (cf. [62]) we deduce that the
Gauss map 7 must be constant. This would imply that f(M) is a three-dimensional
totally geodesic sphere which contradicts our assumption.

Lemma 4.8. The set V° is empty.
Proof: The proof is identical to the one give in Euclidean space, see Lemma 3.6. 1

Lemma 4.9. The foliation of relative nullity extends analytically over the regular
points in the set A.

Proof: Observe that the distribution D extends continuously over the regular points
of A. In fact, by the previous lemmas it remains to consider the case when 2 is an
open subset of M? such that QN A is a open piece of a great circle in the ambient
space. But in this situation the result follows by a argument of continuity similar
than in the proof of Lemma 4.8. The rest of the proof is similar to Euclidean case,
see Lemma 3.7 for details.

Lemma 4.10. The set A has no singular points.

Proof: Let x¢ € A be a singular point. From Lemmas 4.7 and 4.8 the set A contains
subvarieties of dimension one. It is well known that the singular points of such curves
are isolated. Moreover, according to Lemma 4.9 the set of regular points of A contains
geodesic curves of the relative nullity foliation. Hence z is an intersection of such
geodesic curves. The rest of the proof is carried out as in Lemma 3.8.

4.4 The proofs

Proof of Theorem 4.1: By Proposition 4.5 we only have to consider the case m = 3.
We distinguish two cases.
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Case A = (). At first suppose that the line bundle D is trivial with e a unit global
section. By Lemma 2.1 there exist harmonic functions u,v € C*(M) such that
C=vl—ud

We claim that u is nowhere zero. To the contrary suppose that u(zg) = 0 at
o € M3. Let v: R — M? the maximal integral curve of e emanating from xy. The
second equation in (2.2) gives that u must vanish along . Thus the first equation
in (2.2) reduces to v'(s) = v*(s) + 1, where v(s) = v(y(s)) is an entire function. But
this is a contradiction since this equation has no entire solutions. In the sequel, we
assume that u > 0. Using (2.2) and u > 0, one can easily see that

A(w—1)* +2%) = 2(|Vul® +[|Vo]*) = 2((e(w))* + (e(v))*)

—2
> 2((u—1) —1—112)2,

where in the last inequality we used that u > 0. Hence, from Proposition 1.10 we
obtain

C=-J

Let U C M? be the open dense subset where f is nicely curved. Let U C U be an
open connected subset U that is the saturation of a simply connected cross section
L? C U to the relative nullity foliation. Hereafter we work on U where f is nicely
curved. Hence polar and bipolar surfaces of f|y are well defined.

Let h be a polar surface to f|y. We have seen that the almost complex structure
J on D+ induces an almost complex structure J on T'L defined by PJ = JP, where
P: TL — D' is the orthogonal projection. Moreover, h is elliptic with respect to J
and (1.10) holds. In addition, it follows from Proposition 4.4 that £ _, is a circle.

We claim that the last curvature ellipse th of h is also a circle. In that case the
bipolar surface g: L? — R™"! to f is l-isotropic, and we are done. Observe that

N} = span{¢, n},
where & = fie|r2 and n = f|r2. Using C = —J, we obtain that
£ = fulproJoP. (4.4)

Consider vector fields X;,..., X,,,Y € TL. Since N"

Th—1

= N/ = f.(DY), we have
a(Xy,..., X.,) = fiZ
for some Z € D+. Keeping in mind the bundle isometries, we obtain that

O[;;h—i_l(Xl, L. 7X7'h7 Y) = (V?/J_O[;;h(X17 . ,Xq—h>)N7@h — (©Yf*Z)N7@h
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Taking into account (4.4) we see that

o Xy, X Y) = (VY L2686 + (Vv foZ o)

= ([ Z,&Y)E = (fZ,n.Y )n
= —(Z,JPY)¢ — (Z,PY)n.

Recall that the almost complex structure th on th is given by
JEap (X, X Y ) = ot (X, X, Y.

Since

o™Xy, .., X, Y) = —(Z, JPY)¢ — (Z, PY)n

and
ap (X, .., X, JY) = (Z, PY)E — (Z,JPY ),

we have that o}" ™ (X1,..., X,,,Y) and a* ™' (X,,..., X,,, JY) are perpendicular of
the same length. Thus J2 h is orthogonal, and proves the claim.

Finally, if the line bundle D is not trivial, it suffices to argue for a 2-fold covering
I1: M3 — M3 such that the nullity distribution D of f = foIl is a trivial line bundle

and II,D = D, see [59, pp. 95-101] for details.

Case A # (0. We have seen that the relative nullity distribution D can be extended
analytically to a line bundle on M3, denoted again by D, over the set of totally
geodesic points A. Without loss of generality, we may assume that there is a global
unit section e spanning D, since otherwise we can pass to the 2-fold covering space

M3 = {(z,w) : 2 € M*,w € D(z) and |lw| =1}

and argue as in the previous case. From Lemma 2.1, we know that there exist
harmonic functions u, v € C°° (M3~ A) such that (2.1) holds on M3~ A. By previous
results the functions u and v can be extended analytically to harmonic functions on
the entire M3. Moreover, since u is positive on M3 ~. A and A consists of geodesic
curves, by continuity we get that u > 0 on M3. Then ||C+ J||? is globally well defined
and, arguing as in the previous case, we conclude again that C = —J on M3. The
remaining of the proof now goes as before. 1

Proof of Corollary 4.2: By aresult of Ejiri [31, Theorem 1] we have that f is minimal.
Let ey, e9,e3 be a local orthonormal tangent frame such that e3 € D. Since f is
Lagrangian, we have that Jeq, Jey, Jes is an orthonormal frame in the normal bundle
of f. Moreover, it is well known that the 3-linear tensor h given by

h(eiaejaek) = <af(ei7€j)7 Jek>7 i?j:k € {17273}5
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is fully symmetric. Away from the totally geodesic points, using the symmetry of h
and the minimality of f we obtain that af(e;, e1) and ay(eq, e2) are perpendicular to
each other and have the same length. Hence the ellipse 51f is a circle.

Suppose at first that f is substantial in S°. Assume that the submanifold is
the saturation of a fixed cross section L? to the relative nullity foliation and denote
by h: L? — S°® the polar surface to f. From Proposition 1.8 we obtain that h is
1-isotropic. Proceeding as in the proof of Theorem 4.1, we deduce that the second
ellipse of h is also a circle. Therefore, h is pseudoholomorphic and any bipolar surface
g to f is 2-isotropic in R”.

Now we consider the case where f is substantial in S®. Consider a fixed cross
section L? to the relative nullity foliation and let h: L? — R® be a polar surface to f.
As in the previous case, we obtain that h must be isotropic. Therefore, any bipolar
surface ¢ to f is an isotropic surface in RS. &



CHAPTER 5

Minimal immersions with relative nullity
in hyperbolic space

This chapter will be divided in three parts.

At first, we study complete minimal isometric immersions f: M™ — Q in space
forms initiated in [21] for sectional curvature ¢ = 0 and continued in [22] for ¢ > 0
(see Chapters 3 and 4). The basic hypothesis is that the index of relative nullity
satisfies v > m — 2 everywhere. The goal is to conclude that under some reasonable
assumption the submanifold has to be of a simple geometric type other than totally
geodesic. For instance, under the hypothesis that the Omori-Yau maximum principle
holds on the manifold, we showed in Chapter 3 that the Euclidean submanifold has
to be a (m — 2)-cylinder.

In the second section, we provide a parametrization of all minimal submanifolds
M™ of rank two lying in hyperbolic space H" through k-regular elliptic surfaces.
Using this parametrization, and the results in [9], [32] and [47] one can construct
many complete examples of any dimension other than generalized cones.

The last section, is devoted to minimal submanifolds in hyperbolic space with rank
three or four. Explicit examples of minimal submanifolds in the hyperbolic space are
rare and new examples are certainly welcome. In this direction, we introduce a new
class of minimal submanifolds F': M™ — H"*2, n > 3, in the hyperbolic space that
are (n — 2)-ruled. If in addition the manifold is simply connected, then we prove
that F' allows a one-parameter associate family of equally ruled minimal isometric
deformations that are genuine.

49
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5.1 Minimal immersions of three dimensional sub-
manifolds

In any of the two cases already studied, namely the Euclidean and spherical case,
the proofs reduce to analyze the situation of the three dimensional submanifolds.
In fact, for submanifolds in spheres only this case turned out to be possible. For
complete minimal immersions f: M"™ — H" the condition that the index of relative
nullity satisfies v > m — 2 turns out to be quite less restrictive than in the previously
studied cases. Nevertheless, we have reasons to believe that the manifold being three-
dimensional is still quite special and this is why this case allows a characterization
of a class of submanifolds that is contained in the following description. In fact, in
this section we prove the following result for complete minimal three dimensional
submanifolds in hyperbolic space f: M3 — H" under the assumption that v > 1.

Theorem 5.1. Let f: M3 — H" be a minimal isometric immersion with index of
relative nullity at least v > 1 at any point. Assume that M? is complete with scalar
curvature bounded from below. Then f is either totally geodesic or a generalized cone

over a complete minimal surface with bounded Gauss curvature lying in an equidistant
submanifold of H™.

Notice that generalized cones over minimal surfaces contained in the other two
types of umbilical submanifolds are not part of the theorem. In fact, if the surface
lies inside a geodesic sphere then the generalized cone is never complete, whereas if
it lies in a horosphere then the scalar curvature of the cone is unbounded.

Like it happens for ¢ > 0, in the present case where ¢ < 0 there are plenty of local
examples other than generalized cones. As a matter of fact, a local parametrization
of all minimal submanifolds f: M"™ — H" with index of relative nullity v = m — 2
was given in [49] in terms of certain elliptic spacelike surfaces in either the de Sitter
space or the Lorentzian flat space according to n —m being even or odd, respectively
(see section 5.2). Moreover, from the results in [9], [32] and [47] it is clear that this
parametrization can be used to construct complete examples of any dimension other
than generalized cones.

5.1.1 Generalized cones

In this section, we find sufficient conditions for an isometric immersion into the hy-
perbolic space to be globally a generalized cylinder. First, we recall from Subsection
1.6 the definition of generalized cone.

Let g: L™ % — Q™" be an isometric immersion into a totally umbilical submani-
fold Qm=* of the hyperbolic space and i: Q"% — H" the umbilical inclusion. The
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normal bundle of h =i o0 g: L™ * — H" splits orthogonally as
NnL =i,N,L & N;Q" ",

where L = L™ % and N;Q"* is regarded as a subbundle of N}, L. Consider G: N;Q"* —
H" the map defined by
G(7,w) = expy(,) W,

where exp denotes the exponential map of H". We denote by M™ the open subset
of N;Q"~ % where G is an immersion, endowed with the metric induced by the map
G. The generalized cone in H" over g: L™ * — Q"% is the isometric immersion
Fy: M™ — H", defined by F, = G|pym.

The following proposition characterizes generalized cones over a minimal surface
lying into an umbilical submanifold.

Proposition 5.2. Let g: L* — Q"™ be a minimal surface into an umbilical submani-
fold Q7= of H". Then

(i) The generalized cone Fy: M™ — H", m = 2+ v, over g is a minimal immersion
with index of relative nullity at least v at any point.

(17) The map G is an immersion if and only if Q7" is a totally geodesic submanifold
of either an equidistant hypersurface or a horosphere in H™. In that case M™ is com-
plete if and only if L? is complete. Moreover, if Q™" is contained in an equidistant
(respectively, horosphere) hypersurface then the scalar curvature of M™ is bounded
(respectively, unbounded) along each fiber of the normal bundle of the umbilical in-
clusion i: QU7 — H".

Proof: Let i: Q7" — H" be a complete simply connected umbilical submanifold.
Then let ny,1ms,...,n, be a global orthonormal frame of the normal bundle of ¢ such
that n; points in the direction of the mean curvature vector field H.

Since the normal bundle N;Q77" is a trivial vector bundle we have that the map
G: L* x RY — H", is given parametrically by

G(z,ty,ta,...,t,) = cosht, f,_1(x) + sinht, n,(x),
where f; are defined inductively by f, = g and
fj =cosht;f,_y +sinht;n;, 1<j<w.

Set

h; = H coshty, 1<j<v-—1
k=j+1
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and
r = hy(cosht, — ||H|| sinht;).

A straightforward computation gives

G.(X) = rg.(X), XeTL,
G.(0y;) = hj(sinht; f;_1 +cosht;n;), 1<j<v—1,
G.(0y,) = sinht, f,_1 + cosht,n,.

It is clear that the map G is an immersion if and only if ||H|| < 1, which in turn
is equivalent to Q77" being a totally geodesic submanifold of either an equidistant
hypersurface or a horosphere in H"”. Moreover, its second fundamental form is given
by

ac(X,Y) =ray,(X,Y)

it X,Y € TL, and the fact that the vectors 0;,, ..., 0, belong to the relative nullity
subspace. This proves part (7).
The induced metric on L? x R is given by

<. , ‘>G - < , .>g + < , .>0’
where the Euclidean space R” is equipped with the complete Riemannian metric
(,)o=hidt; + -+ h2_ dt>_| +dt2.

It follows from Lemma 7.2 in [5] that the manifold M™ is complete if and only if L?
is complete.
Finally, the Gauss equation yields that the scalar curvature s of M™ is given by

1
s = —m(m —1) = 5 lay >

This implies that the scalar curvature of M™ is bounded (respectively, unbounded)
along each fiber of the normal bundle of the umbilical inclusion ¢: Q7" — H" if
Q7" is a totally geodesic submanifold of an equidistant hypersurface (respectively,
horosphere). §

5.1.2 The proofs

Next we make use of the real analytic structure of a minimal submanifold in order to
extend smoothly the relative nullity distribution to the totally geodesic points.

Let A denote the set of totally geodesic points of f. By Proposition 1.1, the
relative nullity distribution D is a line bundle on M3 \. A. Since f is real analytic
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we have that A is a real analytic set. According to Theorem 1.15, it follows that A
locally decomposes as

A=V'uv'uy?uy?
where each set V¥, 0 < k < 3, is ecither empty or a disjoint finite union of k-
dimensional real analytic subvarieties.
We can assume that V? is empty since, otherwise, we already have by real ana-
lyticity that f is a totally geodesic submanifold.
Lemma 5.3. The set V° is empty.
Proof: The proof goes as in Euclidean case, see Lemma 3.6. 1

Lemma 5.4. The set V? is empty.

Proof: The proof is similar to the spherical case. All we have to show is that }?
does not contain regular points. Suppose to the contrary and let QO C M? be an
open neighborhood of a regular point 2y € V? such that L? = QN A is an embedded
surface. Let e, eq,e3,&1,...,&—3 be an orthonormal frame adapted to M3 along )
near .

The Gauss map v: M3 — Gr(4,n + 1) takes values into the Grassmannian of
oriented spacelike 4-dimensional subspaces in the Lorentzian space L"™!. Regarding
Gr(4,n + 1) as a submanifold in AYL"™! via the map for the Pliicker embedding, we
have that

Y= f A f*el A f*€2 A f*eg.
The coefficients of the second fundamental form are
h?j = <a(€iu ej)7€a>7

where from now on 1 <i4,j,k <3 and 1 <a,b <n — 3. It is easy to see that
Vi = Z hi; f A €ja, (5.1)
7,0
where ej, is obtained by replacing f.e; with &, in f A f.eqr A fiea A fies. Then

Y (i mes) = Y (W) Aejas [ Aeja) = —llall?,

7 i,j,(l
where the inner product of two simple 4-vectors in AYL"*! is defined by

<Cl1 N as N\ as N Ay, b1 N bz A bg A b4> = det ((&l’, b]>)
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A long but straightforward computation using the Codazzi equation yields

Ay=—lal>y+ > hihh fAcjam, (5.2)
1,a7#b,j#£k

where e, i is obtained by replacing f.e; with &, and f.e; with & in f.e1 A fiea A fres.

We identify A'L™! with LY where N = ("}') and S = (%) and regard v as a

.....

where Ay, ..., Ag are timelike and the remaining vectors spacelike, we have that
N
Y= Z 'UJJAJ,
J=1

where w; = —(v,Ay) for 1 < J < Sand wy = (y,A;) for S+1<J < N.
We obtain from (5.2) that

Awy = —lalfw; —er Y HERLF A ejap Ag), (5.3)
i,a#b,j#k

where
)L 1<J<LS
= {—1, S+1<J<N.
Take a local chart ¢: U — R3 of coordinates = (x1, s, 3) on an open subset
U of Q2 and set
J

Setting 67 = wy o ¢, we obtain the map 0: ¢(U) C R® — LY given by

N
0=> 0,A;=(01....0x).
J=1

Thus § = v o ¢! is the representation of the Gauss map with respect to the above
mentioned charts. From (5.4) and

hiy = (f A ejas Agei(wy)

J

we derive that

hi; = Zmﬂf A €jay Ag)(07)a, (5.5)

k,J
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Thus
o2 =37 (D2 maelf A eios A5} (05)a) (5.6)

ija = kJ

The Laplacian of M3 is given by
1 .
A=—)> 0, <\/§g”8xj>,
73

where ¢"/ are the components of the inverse of the metric g;; of M? and g = det(g;;).
Using (5.5) and (5.6), we see that (5.3) is of the form

> 97(00) iz, + Cr (2,0, 04y, 02y, 00,) =0,

2'7j

where C;: ¢(U) x R*™ — R is given by

CJ(xaya 2172'2,23) =

1 . 2
— Z(\/ﬁg”)xisz + Yy Z (Z pir(f A €ja, A1>Zk1>
V93 ija kI

+€JZ Z fitpim (A €jagby An)(f A €jay Ar)(f A ervs Ar)zmizix
LK ilm
a#b,j#k
with y = (y1,...,yn),2i = (zi1, .-, zin), t,m,l € {1,2,3} and I, J, K € {1,...,N}.
Let A;; = g” Iy, Iy being the identity N x N matrix, C' = (C,...,Cy) and 7] the unit
normal field to the surface ¢(L?) in R3. Then, the vector valued map 6 = (6y,...,0x)
satisfies the elliptic equation

L= Ajj(2)0s,0, + C(2,0,0s,,0s,,00,) =0
1,J

with initial conditions: 6 is constant on ¢(L?) and 6,(17) = 0 on ¢(L?), where 77 is a
unit normal of ¢(L?) C R3.

According to the Cauchy-Kowalewsky theorem (cf. [62]) the above system has
a unique solution if the surface ¢(L?) is noncharacteristic. This latter condition is
satisfied if Q(7]) # 0, where @ is the characteristic form given by

Q(¢) = det(A(C))

with ( = (Cla CQ, <3) and
A(Q) = ZgijCiCj[N
4.
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is the symbol of the differential operator £. That the surface ¢(L?) is noncharacte-
ristic follows from N
Q) = (Y g7a6)
1,

Since C'(x,y,0,0,0) = 0 the constant maps satisfy the system. Due to uniqueness of
solutions to the Cauchy problem, we deduce that the Gauss map ~ is constant on an
open subset of M? and that is not possible. §

Lemma 5.5. The relative nullity distribution can be extended analytically over the
reqular points of the set A.

Proof: Clearly D extends continuously over the regular points of A. Let e1,e5,e3 =€
be a local orthonormal tangent frame on an open subset U of M3 \. A as in Lemma
2.1. We view e as a map F': U — T*M into the unit tangent bundle of M3 endowed
with the Riemannian metric inherited from the Sasaki metric on T'M. We argue that
the map F' = e is harmonic. In fact, from (2.8), (2.9), (2.2) and (2.3) we obtain that

(u* + %) e

3
AF = Y (VeVee— Vv, c6)
=1
=
— (IVeel® + [ Vesel?) e.

Hence the map F’ satisfies the differential equation
AF + |[VF|*F = 0,

which is precisely the Euler-Lagrange equation for the energy functional of F' (cf.
(63, Proposition 1.1]). Thus F': U — T'M is harmonic. Since A = V! we obtain that
F' is real analytic in view Lemma 1.14. g

Lemma 5.6. The set A has no singular points.
Proof: The proof is the same as in Lemma 3.8. 1

Proof of Theorem 5.1: We have seen that the relative nullity distribution D extends
to a global line bundle, also denoted by D. By passing to the 2-fold covering, if
necessary, we have that this line bundle is trivial. Thus it is spanned by a globally
defined unit section e. Hence, there is a unique, up to sign, orthogonal almost complex
structure J: D+ — DL, By Lemma 2.1 there are harmonic functions u,v € C*(M)
such that

C=vl —ul.
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To obtain the proof of the theorem all we have to show is that u vanishes. In fact,
if that is the case then the result will follow from Propositions 1.6 and 5.2.

Making use of the equations (2.2) and that the functions w,v are harmonic, we
obtain that

Au? +0v* —1) 2||Vul|? + 2| Vo2
2(e(u))® + 2(e(v))”
Sutv? + 2(v* — u? — 1)

2(u® +v® = 1)%

v

v

Since the Ricci curvature of M? is bounded from below, then Proposition 1.10 applies
and gives that u? +v? < 1. Hence u and v are bounded functions.

We claim that v? < 1. Suppose to the contrary that there is 9 € M3 such that
|v(z9)] = 1. The maximum principle for harmonic functions (see Proposition 1.9)
yields that v =1 or v = —1 everywhere. Hence C' = 4+1. We have using (1.7) that

n—3 n—3 n—3
e(flaf) = e( DY tr(A2)) =D tr(Vedi) =2 tr(Ag 0 C o Ag) = £2]alf?,
j=1 j=1 j=1
where &, ..., &,_3 is an orthonormal normal frame parallel along a geodesic integral

curve v of e. Thus
la(y()]* = ce™

where ¢ > 0 is a constant. Therefore ||« is unbounded along . Using equation (1.4)
and the minimality of f we derive that the scalar curvature is given by

s =6 [l

This clearly contradicts the assumption on the scalar curvature and proves the claim.
Let v: R — M3 be a unit speed geodesic contained in a leaf of the relative nullity
foliation. Since v? < 1, we have from the first equation in (2.2) that

(vor) = Won) — (wor)’ —1< (wor) — 1.

Hence the function voy: R — (—1,1) is strictly decreasing and satisfies supvoy =1
and inf v oy = —1. Thus the function v changes sign only once along each leaf of the
relative nullity foliation. From the first equation in (2.2) and v* < 1 it follows that

2

e(v) =v? —u*—1<0.

Since 0 is a regular value of v, the level set L? = v=1(0) is a 2-dimensional connected
submanifold of M? and the map p: L? x R — M3 defined by

p(x,t) = exp,te(z)
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is a diffeomorphism. Notice that for z € v~!(0) the integral curve of e, passing
through = = p(z,0), is given by p(z,t), t € R. Thus, p, (%) =e.
Consider the smooth function ¢: L? x R — R given by

1 —2v
pop = -
L+u? 402+ /(14 u? + v2)2 — 402

Setting 1 = ¢ o p~!, we have that

(LA —v
T+9¢2  1+u2+0? (5.7)

Differentiating (5.7) using (2.2) yields

e(W)1—v?)  (L+u?+0)?— 4’
(1+¢2)2 o (1+u2+v2)2

2
—v
- 14—
(1+u2+v2)

_ vy
- 1_4(L+W)'

e(y) =1—19% (5.8)
Since ¢ vanishes on L? we obtain that ¢(x,t) = tanh¢. Thus ¢ is bounded on M?3.
Hence 0 € C*°(M) given by

Hence,

0 =u’+ (v+¢)°
is also bounded. Using (2.2) and (5.8) we readily see that
e(0) = 2ue(u)+2(v+1Y)(e(v) +e(y))
= 4uPv+2(v + ) (v* — u® —P?)
= 2(v—1)0. (5.9)

Since v and v are harmonic functions, we obtain that

A) = 2|Vul® +2(v + ¥)AY + 2| V(v + )|
> 8uPv? +2(v + ) AY 4 2(e(v) + e(¥))?
= 8utv® 4+ 2(v + V) A + 2(v* — u? — p?)>. (5.10)

On the other hand, it follows from (5.7) that

(1 =) (1 +u? +0?)?

(L +42)? Vi = 2uvVu — (1 +u? — v?*)Vo. (5.11)
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Using the harmonicity of u and v again, a straightforward computation gives

1— ¢2 U(l — 3u? + U2) 9 2u(1 + u? — 31}2)
2(1+¢?)? Ay (1+ w2+ 02)3 [Vaul[® + (It + 07 (Vu, Vo)
v(3+3u® —v?) s 3V — P? 2
(1 + u? 4 02)3 IV +m||v¢|| . (5.12)

Since 6 is bounded, by the Omori-Yau maximum principle there is a sequence
x; }ien of points in M3 such that
737

(i) limO(x;) =supb, (i) [|[VO(z;)| <1/j and (iii) AB(x;) < 1/j. (5.13)

Taking a subsequence, we have that lim u(x;) = ug, limv(x;) = vy and im ¢ (x;) = .
Estimating at z; and letting j — 0o, we obtain from (i) and (i¢) of (5.13) and (5.9)
that

(vo — thg) sup 8 = 0.

We conclude that u has to vanish unless vy = 1.

Suppose now that vy = 1y. We have from (5.7) that vg = ¥y = 0. On the
other hand, since the Ricci curvature of M? is bounded from below it follows from
Proposition 1.11 that ||Vul|| and ||Vv|| are bounded. Hence, from (5.11), (5.12) and
since ¢y = 0, we have that Ay(z;) is bounded. Passing to the limit and using part
(23i) of (5.13), we obtain from (5.10) that uo = 0. It follows using part (i) of (5.13)
that supf = 0. Thus the function u vanishes, and this concludes the proof. &
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5.2 Local parametrization

In this section, we locally parametrize all minimal submanifolds M™ of rank two lying
in hyperbolic space H" through k-regular elliptic surfaces. It turns out that rank two
minimal submanifolds of odd codimension are parametrized via timelike bundles over
k-regular elliptic surfaces lying in de Sitter space, whereas the ones lying in even
codimension are parametrized by k-regular elliptic surfaces lying in Lorentz space.

Theorem 5.7. Let g: L?> — Qv1, ¢ = 0,1, be a k-reqular elliptic surface. Assume
that the ellipse E] is circular. Then, the map v,: UiA] — H" "1 given by

by(z,0) = v,

parametrizes at reqular points, a rank two minimal submanifold in H" 1. The con-
verse 1s also true, i.e., any nicely curved rank two minimal submanifold of hyperbolic
space can be parametrized in this way at least locally.

We can construct k-regular elliptic surfaces in de Sitter space by the following
procedure: Start with a substantial minimal isometric immersion g: L? — Q%3
lying into an umbilical submanifold Q?**3 of hyperbolic space H?***. Clearly, the
last normal space of ¢ is a line bundle. Consider the polar surface h : L?> — S¥*+4
associated with g. According to Proposition 1.8, h is k-regular elliptic surface and
the ellipse of curvature & is circular.

Proof of Theorem 5.7: We first deal with the direct statement. Let g: L? — Q. be
a k-regular elliptic surface with circular curvature ellipse 7.

We assume that n = 2m +2 and set { = m — k > 0. For a unit Z € T'L satistying
(Z,J7Z) =0, consider the local tangent orthonormal frame {e; = Z, eo = JZ/||JZ||}.
Let {&,...,&:} be a local orthonormal frame of A7, such that (&,&) = —1 and
(€;,&) =1for 2 < j <2¢. We denote by V the connection on the induced bundle

gTQ, = N§@---® N © A
with NJ = ¢, T L. We define recursively the following sequence of normal vector fields

fO = 517
fj = COShtj fj—l + Sil’lhtj €j+1 for 1 S] S 20 — 1.

Then, the map ¢, : UyA] — H*™ ! can be parametrized by
Vg(@,t1, ... ta1) = far1 = coshita_y for_o + sinh ity 1 Eop.

We set
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20—1
hj = H coshty, for 1<j57<20—-2
s=7+1

and hg,—1 = 1. We can readily verify that the differential of ¢, satisfies
Yy, (0/0t;) = hj(sinht; f;_1 +cosht; &) for 1 <5 <201,

Notice that due to dimension reasons Aj is spanned by the linearly independent
vector fields {fzg_l,wg*(é?/@tl), . ,%*(a/at%_l)}. We consider for 1 < s < ¢ —1,
the orthogonal projections

Py g"TQey — Ny & -+ & N,

PL: g TQ! — (N{®--- @ N.,)".

Set also for simplicity w = for ;. Using that P(Vxw) and 1, (0/dt;)’s are both
perpendicular to w for 1 <7 < 2¢—1 and X € TL, we obtain that there exist 1-forms

A; such that
201

PL(Vxw) = Z i (X)), (0/0t;).
For any X € T'L we have

1/19*<X) = @XU} == Pk(@xuﬁ -+ Pé(@xw)
20—1

= (Vxw)ys + > M(X)t, (0/0)),

i=1
where (Vxw) ¢ denotes the orthogonal projection of Vxw to NY. Hence,
20-1 )
Vo, (X = D" N(X)0/0t:) = (Vxw)ys
i=1

Assume that ¢ < m—2. At regular points, 1, parametrizes a (2¢+ 1)-dimensional
submanifold of hyperbolic space whose normal bundle is given by

Ny, =span{cg} ® NJ @ --- ® N/_,.
Choose a local orthonormal frame {n;,...,n2} such that

ng = Span {77257177725}7 1 S S S k.
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Since the ellipse &} is circular, the vector fields o/;’*l(Z, ..., Z)and o/;“(JZ, Z,...,7)

are perpendicular to each other and they have the same non-zero length p. Hence,
{M2k—_1, M2k } can be chosen such that

1 1
Nok—1 = ;a’;“(Z, ... Z) and my = ;a’;“(JZ, Z,.... 7).

For any X € T'L we have

(@Xw)Ng = <@Xw77]2k—1>772k—1 + <@Xw, T]2k>772k
= —(w, @Xn%—ﬁn%—l - <w7 @XU%)T]%
1 1
— _;<w,a§+2(x, Z, . Z) a1 — ;<w,o/;+2(X, JZ,Z, ..., Z)\ .

Using the ellipticity of g and the above, we derive that (Vzw) n¢ and (Vzw) N?
are perpendicular to each other and they have the same non-zero length, say r.
Consequently, the vector fields

20—1

X, - %(Z -3 N(2)9/0t),
X = Yoz auzoson)

are orthonormal with respect to the induced metric of 1, and perpendicular to
g, (0/0t;)’s for 1 < ¢ < 20 — 1. The vector fields {0/0t;,...,0/0ty_1} belong
to the relative nullity distribution of 1, in view of

Vojo e, (8/0t;) € AL for 1<i,j<20—1

and
(Vx,1,,(0/0ti), ) = —(4,,(0/0L;), Vx,m) =0, s=1,2,
for n € Ny,, where in the last equality we have used that

VxnENJ@® - @ N/

Notice that for & € span{cg} & NJ @ --- & N _,, the shape operators A¢ of 1,
vanish since
(AeXi, Xj)y, = (o, (X, X;),6)
= <VX¢(Vij)Ngag> = Oa Z?] = 1727
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where in the last equality we have used that

6Xi(@ij)N,‘j € N © N & Ny

We compute now the shape operators of 1, with respect to 7g,_3 = a’;(Yl, e
Zk), where Y;, Z, €e TL,i=1,...,k.

and N2k—2 = 0615(21, e

(A Xo, Xo)y,

T12k—3

Similarly for ng_o we derive

(A

M2k —2

Hence,

traceA

X, Xo)y,

T2k—3

<¢9*A772k—3X27 ¢9*X2>

1 - -
——<VJZ Mok—3, (Vzw)ns)

%<VJZVJZ Tok—3, W)
%(VJZ@JZ ag(Yi,..., Yi), w)
%<a§+2uz, JZ Y1, .. Yg),w)
_7%@’;*2(2, Z,Y1, ... V), w)
——(VZVZ ar(Y1, ..., Y3),w)
%(VZ M2k—35 (VZw)Né’>

— (A, X1, X1)y,-

1 - -
_T_2<VJZ Mok—2, (Vzw)ns)

(9007 o7, ), w)
%(a’;”(JZ, JZ, 21, . Zy), )
_%@’;“(Z, Z, 74, ..., Zy),w)
%(@z Nok—2, <@Zw)N£>
—( Ay 2 X1, X1)y,-

= traceA,,, , = 0.

63

7Yk>
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If £ =m — 1, then the normal bundle of 1, is Ny, = span{cg} ® NJ. If c =1 it
follows from (5.14) that A, = 0. Moreover for i = 1,2 we have that

1
_ﬁ<
1 .
== T—(VJZQQ(JZ,@),M>
1
- —<062(JZ,JZ762-),U)>

2

(Ag,ei X, Xo)y, = ag(JZ,e;), (Vzw)ys)

<

1 =~
= 5 (Vaa,(Z.e).w)

1 - N
= ;(Vzg*em(vzw)zvﬂ
= —(Age; X1, X1)y,

The latter imply that
traceA,,., = traceAd,, ., = 0.

As for the case where £ = m and ¢ = 1, we have that Ny, = span{g} and

1 -
<A9X2aX2>wg = (9+JZ, (VJZw)Ng>

2
1
= r_2<a9(‘]Z’ JZ), w)

~—50y(Z, 7). w)

1 .
= _ﬁ<vzg*va>

1 5
= 5(9:Z, (Vzw)ng)

= —(A,X1, X1)y,-

The proof for the case where n = 2m + 1 is carried out in a similar manner,
the only difference being that AJ is now spanned locally by an orthonormal frame

{51, Ce 7§2g_1}.

The proof of the converse will be divided in two parts, according to the parity
of the codimension. At first let f: M™ — H™?**! be a substantial and nicely
curved minimal isometric immersion with index of relative nullity v = m — 2. Let
L? be a cross section to the relative nullity foliation and consider the polar surface
g: L? — ST+ 4o f given by g = &ypy1, where &1 is a unit section of the last
normal bundle of f. Then,

9«(X) = V§(52k+1, X eTL.
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Moreover, according to Proposition 1.8, ¢ is k-regular elliptic with respect to the
almost complex structure J§ = J,f . The Lorentzian bundle Aj is given by

Aj = span{f} @ f.(D).

We parametrize locally the manifold M™ via the map
T:M™— UA]

given by
T(z) = (v(z), f(z)),

where 7: M™ — L? is the natural projection. Since
wg: UlAi — Hm+2k+l

is given by

Yy(x,v) =0,
it follows that

f=140T.

It remains to consider the case of a substantial and nicely curved minimal isometric
immersion f: M™ — H™*2* with index of relative nullity v = m—2. Let L? be a cross
section to the relative nullity foliation and consider a polar surface g: L? — Lm+2k+1
to f given by ¢.T,L = Nj.; () up to parallel identification in L"™! where NTJ; (x)
stands for the last normal plane bundle of f. From Proposition 1.8 we have that
J] = J({ . Using the minimality of f we deduce that the ellipse & is a circle. Moreover
the Lorentzian bundle A7 is given by

Ai = span{f} & f.(D).

Define the maps
T:V CM™— U]

T(x) = (n(x), f(2))

and
Vg UpAf — H™ 2

Yg(x,v) = 0.
Then, f =1, 0T completing the proof. i
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5.3 Minimal submanifolds with rank three or four

In this section, we introduce a new class of minimal submanifolds F: M™ — H"*2,
n > 3, in the hyperbolic space that are (n — 2)-ruled. This means that they carry
an integrable tangent distribution of dimension n — 2, whose leaves are mapped
diffeomorphically by F' onto open subsets of totally geodesic (n—2)-hyperbolic spaces
of H""2. Furthermore, we provide a characterization for them among (n — 2)-ruled
minimal submanifolds of rank 4 (n > 4) or 3 (n = 3). If the manifold is simply
connected we show that it allows a one-parameter associate family of equally ruled
minimal isometric deformations that are genuine. These results may be considered
as a continuation of those in [25] and [26].

The notion of genuine rigidity was introduced in [16] and it is the proper setting
to study rigidity problems for submanifolds of higher codimension. This concept
relies on the idea that, as we discard congruent submanifolds when analyzing rigidity,
we should also discard deformations that are induced by deformations of a bigger
dimensional submanifold containing the original one.

An isometric immersion f: M"™ — H"P is a genuine deformation of a given
isometric immersion f: M™ — H"*?, p > 2, if there is no open subset U C M" along
which f|y and f|y extend isometrically. That f: M™ — H™P and f: M™ — H"?
extend isometrically means that there is an isometric embedding j: M™ «— N"4,
1 < ¢ < p, into a Riemannian manifold N"*? and there are isometric immersions
F: N™ — H" and F': N™ — H"™ such that f = Fojand f = F o j, ie., the
following diagram commutes:

5.3.1 A class of ruled submanifolds

Let g: L? — H""? be a substantial surface whose first normal space N{ is a plane
bundle. Let w: ¥, — L? denote the vector bundle of rank n — 2 whose fibers are the
orthogonal complement in the normal bungle N,L of g of its first normal bundle N7.
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Define F,: ¥, — H""? to be the submanifold of H""? associated to g constructed
by attaching at each point of the surface g the totally geodesic hyperbolic space H" 2
whose tangent space at that point is the fiber of X , that is,

(z,v) € Xy = Fy(z,v) = expy(, v, (5.15)

where exp is the exponential map of the hyperbolic space. By definition F| is a
(n — 2)-ruled submanifold.

Consider the map G: N =R x ¥, — L"*3 given by
G(s,z,v) = sg(z) + v. (5.16)
It is clear now that F, = G|y, where
M" ={(s,z,v) e Rx Zy: —s*+ |v|* = —1}.

We can locally parametrize M™ with L? x R""? via the map Fy: L* x R""% — H"?
given by
Fy(xz,p,t1,...,th—3) = coshp g(x) + sinh p w, (5.17)

where w = w(x,t1,...,t,_3) is a parametrization of the unit sphere inside the fiber
of ¥4 at .

If in addition ¢ is l-isotropic, then L? \ L consists of isolated points, where
Ly is the open subset of L? where the first normal space Ny is a plane bundle. It
was shown in [25] that the vector bundle N{|,, extends smoothly to a plane bundle
over L? that will be denoted by the same symbol Ny. Moreover, from the results
in [46], there exists a method for constructing isotropic (superconformal) surfaces in
hyperbolic space. In the sequel denote by V the vertical bundle of 7: ¥, — L? given
by V = kermw,.

Lemma 5.8. Let g: L? — H"™2, n > 3, be a substantial oriented minimal surface.
Then, Fy: ¥, — H"™2 is an immersion. In addition 3, equipped with the induced
metric, is complete if and only if L? is complete. Moreover for any (z,v) € ¥, we
have that

Fg*(v)|(a:,v) = d(expg(a:))fU(Eg (I))

holds up to parallel identification in LT3,

Proof: Fix a point (z9,v9) € X4 and take V' € Tiy) 402 Let V' = +/(0), where
v(t) = (c(t),v(t)) is a curve in X, with v(0) = (20, v9). Then,

goc(t), if wv(t) =0,
cosh ||[v(t)]| g o ¢(t) + sinh ||U(t)”%, if w(t) #0.

Fg © V(t) = engoc(t) U<t) =
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Observe that
dv Vv

=) = =) = (9. (1), 0(t)) g0 c(t)
= g Aol () + () = ), (518

where V stands for the induced connection on the induced bundle on g.
We claim that

Gigy €' (0) + n (0), if v9=0,
Fg*<v) = VLU

cosh [[Vg || Guyy € (0) 4 d(€XP () )wo < pn (0)) , if we # 0.

(5.19)

To prove this claim we distinguish two cases.

Case a: We assume that vy # 0. Then v(t) # 0 for all t € (—¢,€), where € > 0 is
small enough. Using (5.18) and

d 1 Viu
il (101D = o0, = (0),

we obtain that

sinh ||v Viu
(F,07v)(0) HU!”OH (o, o (0)) g(z0) + cosh ||vg]| g«c'(0) (5.20)
||vo|| cosh ||vg|| — sinh |Jvg] Viv sinh ||vo|| V4o
0, 0)vg + ——— 0).
oo P o g O+ = O
For any w € Ty, H"*?, we set
W(t) =vy+tw, te (—¢e).
Then,
sinh ||vg + tw]|
W)(t) = h t tw).
(expg(:co) © )( ) CO8 ”UO + w” g(l'()) + ||UO + th (UO + w)
Hence,
_sinh |||

d
d( expg(xo) )’UO (w) = % ’0 ( eng(mO) © W) - <UO7 U)> g($0)

[[voll
{vg, w) sinh ||vo]|

+(Hv0||cosh|lvo|| —sinh||v0||) TE 0 Tool
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Our claim now follows from (5.20) and the above.

Case b: We assume that vg = 0. If v(¢t) = 0 for all t € (—¢,€), then F, (V) = ¢.c/(0).
Suppose now that v(t) # 0 for ¢ # 0 and ¢t small enough. Then we obtain

o’—imlcosv c Mv—c
(Fyo2)(0) =t {oosh Lo afete)) + 5 B o) - g (et
o eosh o g(e(0) — cosh [o(O)9(e(©) _ sinh (o)) vt
i t lo@I ¢
= %’0(003}1“1’”900)‘*’%(0)
Vi

d
= g ¢ = h :
9o (0) + | (cosh[vl])g(a0) + == (0)

However, we have that

| (cosh ol = gy RO
. sinh[ju(?)] Viu
I O R
— (0, L2 (0)) =0

Hence, our claim follows.
Observe that g., c¢'(0) is perpendicular to d(expg(mo))vo(vd—?’(O)). Then, we have
that V' € kerFy_|(z9.v,) if and only if

d(0) =0 and Vv(0) =0.

This proves that Fj is an immersion.
For any local section 7 of N{ we have

(20).m(an)) = 0. S22 0)) =~y i)

In particular, for any V' € V(xg,v9) it follows from (5.19) that

V4o
Fg*‘(:ro,vo)(v) = d<eng(mo))vo (7(0)%

with let”(O) € Xy(xo). Hence, Fy,(V)|@owo) C d(€XDy(zp))vy (Eg(0)) and the proof

follows by dimension reasons. &
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The tangent bundle of the manifold ¥, splits orthogonally as
TY,=HDV,

where H is the horizontal bundle and V the vertical bundle. In addition, V can
be orthogonally decomposed as V = V! @ VY where V! denotes the plane bundle

determined by

Fg*(V1)|(x7v) = d(eng(x))v(Néq(I))‘

Hereafter, we assume that g: L? — H""2 is a substantial and nicely curved mini-
mal surface. We choose positively oriented local orthonormal frames {e;, es = Jey},
where J is the complex structure of L? induced by orientation in T'L and {e3, e4} of
Ny such that

agler,e1) = ke and agler, ex) = peq,

where r, pu are the semi-axis of the first ellipse of curvature. Let {es,...,e,12} be a
local orthonormal frame of ¥, such that {es;1, €252} spans N for 1 < s <7, — 1,
and the last normal bundle N, is spanned by {€ni1,€nia} for n even, whereas for
odd n it holds N¢ = span{e,io}. We refer to {ei,...,€,42} as an adapted frame of
g and consider the 1-forms w;; by

wij(X) == <@Xei7ej> X € TL,

for 1 < 4,7 < n+ 2, where V stands for the connection on the induced bundle
g*TH™"2. To simplify the notation we set wf; = wy;(ex), k=1,2.

3

Using the minimality of g and the symmetry of the third fundamental form «,

we obtain
042(61, e1,61) = —043(62, e1,62).
This implies that
Wqs = —i *wss and  wy = Y * W3e, (5.21)

where the quantity A = p/k measures how much g deviates from being 1-isotropic and
« denotes the Hodge operator, i.e., xw(X) = —w(JX), X € TL. Set for simplicity

a; =wss and b, =wsy for @=1,2.

In the sequel, we provide several proofs for n > 4, but similar arguments take
care of the case n = 3. We choose a parametrization for the unit sphere in the fibers
of 3, with parameters t1,...,t,_4 € (0,7), t,—3 € (0,27), as follows

n—2
w = Zujej+4, (5.22)
j=1
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where
i—1
uy =sinty, u; = Hcostj sint; for 1=2,...,n—3,
=1
and

n—3
Up_o = H cost;.
j=1

Then, we have the following parametrization for F,
Fy(z,p,t1,. .., typ_3) = coshp g(x) +sinh pw, (5.23)
with ¢ # 0. The differential of F, satisfies

F, (0/0p) = sinhyg+ coshpw,

n—2
du;
F, (0/0t;) = sinhep Z a—jez+4, 1<j<n-3
i=1 7
Notice that
sinh® ¢, if i=j=1
j—1
gij = (Fy,(0/0t), F,,(0/0t;)) = { sinh® o [ [ cos® ty, if i=j>2
k=1
0, if i#j.

Denote by Py: N,L — Ny the orthogonal projection onto the first normal bundle
and by Py: N,L — ¥, the orthogonal projection onto ¥,. We define the functions

. . 1 0
¢; = sintywhs + costy sintawls,  and  \j(e;) = —(Viw, _w> (5.24)
g5 O
fort=1,2and 1 < j <n— 3. From

Pl(Véw) = sint1Vée5 + cos ty sin tQVéef;

—(sin tjwss + costy sin tawsg)es — (sintjwys + costy sin tawyg)ey,

we obtain
Lo ®2 I 1
P1<v61w) = —¢ie3 — 764, 7)1(V62w) = —¢oe3 + 764
and
n—3 aw
J_ f— . . R—
Pu{Viw) = YoM (e g
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Consequently, from
Fy,(&;) = cosh ¢ g.(e;) + sinh o P1 (Vo w) + sinh o Po (Vi w),
we derive that

r1F.(X1) = coshpg.(er) — ¢psinhpes — % sinh @ ey,

roF(Xs) = coshgg.(ea) — pasinhpes + % sinh p ey,

where
1 n—3
Xi=—(ei =) Xi(e)o/ot;), i=1,2,
T; =
and
2 2 o, D3y .o 2 2 i 2\ w2
r{ = cosh” p + (o7 + ﬁ) sinh® ¢, r; = cosh® ¢ + (ﬁ + ¢5) sinh® ¢
If g is 1-isotropic, then we have ry = ry = r. We set
(sinh )™, if i=1
h; = i-1
(sinh @H cost;)”t, if 2<i<n-3.
j=1

(5.25)

The vector fields {X1, Xo, 9/0p, hy 0/0t1, ..., h,_30/0t, 3} constitute a local or-
thonormal frame with respect to the induced metric of F,. Moreover, the normal

space N, of Fy is spanned by the orthogonal vector fields

§ = ¢isinhpg.(er) + @2 sinh @ g.(ez) + cosh g es,

n o= %sinhwg*(el)—%sinhsog*(ez)ﬂoshwﬁl-

Denote by H the distribution H = span{X;, X»}. Observe that
Fy, (M) ® Np, M = span {g.c1, g:€2, €3, €4}

and
F,,(v) & span{F,} = %, & span{g}.



5.3. MINIMAL SUBMANIFOLDS WITH RANK THREE OR FOUR 73

Lemma 5.9. Let g: L? — H"*? be a 1-isotropic surface. Then the second funda-
mental form of F, vanishes on spanV & span{d/dts,...,0/0t,_3}, where

V = (¢Y1x2 — ¥ax1)0/0¢ + (d1X2 — ax1)h1 00t + (P12 — datpr) ho O/ 0o,

and
1; = cosh p(b; sinty sinty — a;costy), x; = b; cosh ¢ costs.

Moreover, the second fundamental form of F, restricted to H & span{d/dp} & V! is
given by )

(K + 1) G2 —¢1 Y1 —x1
T (o —r(k+C) —¢2 2 —Xx2

TA& = —QZ51 —¢2 0 0 0 s
U (e 0 0 0
—X1 —X2 0 0 0

7 Co r(k—CG) —¢2 Y2 —X2
r(k — (1) -1 Qo o1 =Y oxa

TAn - _¢2 ¢1 0 0 0 )
w2 —¢1 0 0 0
| X2 X1 0 0 0 |
with respect to the frame { X1, X5,0/0p, h10/0t1, ha0/0ts}, where
sinh 2 . i . i
G = 5,2 14 ( sinty(—e;(ay) + aaB; + biwsg) + costy sinty(—e;(by) + boB; — aywsg)

— costy costysin tz(aiwh; + biwg;) — costy costy costy sinty(arwgg + biwgg)),
and B; = wiy +why, i =1,2.
Proof: By a straightforward computation, we can verify that the Ricci equations
(R*(e1,e5)eq, ) = ([Ae,, Ay ler,e2) =0 (5.28)

for a = 3,4 and b = 5,6 are equivalent to

er(ar) + ex(as) — aaBy + a1 By — biwig — baw?s =
e1(az) — eaay) + a1 By + aa By — bowig + biwig
e1(b1) + ea(by) — b By + by By + ajwag + aswis

e1(by) — ex(by) + by By + by By + agwig — ajwig =

I
o oo o

whereas for a = 3,4 and b = 7,8, are equivalent to
1 2 1 2
a1w57 + a2w57 + blw67 + b2w67 - O,
1 2 1 2
1 2 1 2

1 2 1 2
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The vector fields {0/0ts,...,0/0t,_3} belong to the relative nullity distribution
of F, since

VrF,,(0/0t,) € T(Z,)

for3<s<n-—-3and T €TM.
Furthermore, a direct computation shows that

apg(ﬁ/a(p,@/ﬁtj) = ong(a/ﬁti,a/ﬁtj) = ozpq(f)/ago,a/@go) =0 (529)
for1 <i,j <n-—3and

o (00, %) = = D6 = Py g, (0/0p, ) = - %+ Dy

Moreover, using the Gauss and Weingarten formula’s we obtain

ag, (b 0/0t, X1) = %f + %777 ag, (ki 0/0t1, Xs) %5 — %77,

g, (hy 0/0ty, X1) = _%5 - %777 ar,(hy 0/0ty, Xo) = —¥§ + %77,
whereas, using the Ricci equations (5.28) we have that

ar, (X1, X1) = (k+ Q)&+ Gn,
ap, (X1, X)) G + (K — C1)n,
ar, (X2, Xo) — (K + )& — Can.-

Observe that
Ong(V,Xj) =0, 7=12

Combining the latter with (5.29), we have that the relative nullity distribution of Fj,
is span V @span{d/dts, ...,0/0t,_3}. The result is a direct consequence of the latter
computations.

For a (n — 2)-ruled submanifold F: M" — H"*? we denote by H the tangent
distribution orthogonal to the rulings. An embedded surface j: L? — M" is called
an integral surface of H if j.(T,L) = H(j(x)) at every point € L% The following
theorem describes locally all rank three or four minimal submanifolds M™ of the
hyperbolic space H"™? that are (n — 2)-ruled.

5.3.2 Main results and proofs

Theorem 5.10. Let g: L? — H"™2, n > 3, be a 1-isotropic substantial surface. Then
the map Fy: ¥, — H""? parametrizes a (n — 2)-ruled minimal submanifold M"™ with
rank p =4 (unless n =3 = p) on an open and dense subset of ¥,,.
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Conversely, let F: M™ — H"2 be a (n — 2)-ruled minimal immersion with
rank p = 4 (unless n = 3 = p) on an open and dense subset of M"™. Assume that
j: L?* — M™ is a totally geodesic integral surface of the 2-dimensional distribution H
which is a global cross section to the rulings. Then the surface g = Foj: L? — H"?
is 1-isotropic and F can be parametrized by (5.15).

Proof: We first deal with the direct statement. Let g: L? — H""2 be a 1-isotropic and
substantial surface. Notice that g = F}, o j, where j: L? — 3, is the inclusion given
by j(z) = (x,0). Clearly, we have that j is an integral surface of the distribution
orthogonal to the rulings that is totally geodesic and a global cross section to the
rulings. The rest of the proof is an immediate consequence of Lemma 5.9.

We now prove the converse statement. Let F': M™ — H"™ n > 4 be a (n — 2)-
ruled minimal immersion with Gauss map of rank four everywhere. Denote by H the
distribution which is orthogonal to the rulings and V the orthogonal complement of
Hin TM, ie., TM = H @ V. The distribution V splits as V = V! ¢ V', with the
fibers of V? being the (n — 4)-dimensional relative nullity leaves.

The normal space of ¢ = F' o j at a point x € L? is given by

NyL(z) = F.(j(x))V & NpM(j(z)).
Using the Gauss equation and the fact that j is totally geodesic, we obtain

for any X,Y € T'L. The latter and our assumptions imply that g is minimal.
Consider the subbundle 7: ¥, — L? of the normal bundle N,L, whose fiber at
x € L? is F.(j(z))V, and introduce the cone CF: R x M™ — L"*3 given by

CF(t,p) = tF(p).
Pick p € M", z = m(p) and define
u(t,p) = —t(F(p),g o m(p)).
Then,
CF(t,p) — CF(u(t,p), j(x)) = CF(t,p) — u(t,p)g o w(p) € Fi(j(x))V,

because p and j(x) belong to the same leaf of V. Since CF maps locally diffeomor-
phically the leaves of the vertical bundle V onto affine subspaces, it follows that the
map T: R x M™ = R x X, given by

T(t,p) = (ult,p),7(p),CF(t,p) — u(t,p)g o 7(p)),
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is a local diffeomorphism. Therefore, the immersion G = CF o T~ satisfies
G(s,z,v) = sg(z) + v,
i.e., G is of the form (5.16). The horizontal and vertical bundles satisfy
GutownV = (M{(2)) " C NyL(@), CoayH C gu(ToL) @ (S,(a)
NGR x S,(5,2,0) C gu(ToL) & (Sy(2))"
and (5.30) yields NY = X It is clear now that F = G|y, where
M" = {(s,p,v) ERXx Ty: —s°+|jv]* =—-1},

through the local identification of R x M™ with R x ¥, via the map 7. Consequently,
J is the zero section of ¥, and F can be parametrized as F,: L* x R""% — H""? given
by (5.17).

It remains to prove that g is l-isotropic. Let {ej, ea,€e3,...,€e,12} be an adapted
orthonormal frame along ¢ and denote by
the metric components of M™, where X; given by (5.25). Let

ﬁfj - <6X¢£7 F*(XJ)>7 an] = <@Xi7]7 F*<Xj>>7
be the components of the second fundamental form of F', with respect to the normal
directions ¢ and n given by (5.26) and (5.27). Then, we have that

g = cosh® @+ sinh?p (¢7 + 9252)
— 1
gi2 = ¢1ppsinh”p (1 — ﬁ)
¢2
g2 = cosh® @+ sinh? o (¢2 + )
Define for ¢ = 1,2 the functions

G; = costysin thEG + costy costy sin t30dé7 + cos t1 costy cos ts sin t4wé8,
H; = sint wi; + costy costysintywt, 4 costy costy costs sin tywie.

Using the Ricci equations we compute

25f1 = sinh 2¢(el(gb1) — Powiy — Q;\Q w34 +a1Gq + blHl) ( 2+ ¢3) sinh? ¢ + cosh?
25% = sinh 2@( ¢2 + ¢1w12 ¢i\l W31)4 + asGq + b2H1)7
2651 = sinh 290(62 ¢2w12 ¢;\2 W§4 + CL1G2 + bng),
265, = sinh2 91,2 2
5o = sinh2p(ea(¢2) + drwis + ~wiy + asGa + baHy) + k(4] + ¢3) sinh® ¢

A

2
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and

280, = sinh2p(e1 (Y1) — Pawiy + drwg, + )\QQGI + ibQHl),

280, = sinh2p(e1(¥2) + hrwiy + Pows, — /\alGl - %blﬂl) pcosh? o — (925% +¢3),
20 = sinh2p(eq(¢r1) — howiy + prwi, + %az@ + %52[{2) pucosh? o — ;(ﬁ + ¢3),
257272 = sinh 290(62 o) + ¢1W12 + ¢2W34 )\GIG2 - §b1H2)

Since F' is minimal, we obtain

911552 - 912(5% + 551) + 9225& =0 and g1155 — g12(Bs + B1) + 9228, = 0.

Moreover, the coefficients of sin* ¢, cos* t; sin® t, and cos? t; sin? ¢; sin? t, must vanish,
thus we obtain

(A = 1)(af — a3)(a] + a3) = 0 = (A* = 1)(bF — b3)(bF + b3)

and
(A2 — Dajag(a? 4+ a3) = 0 = (A* — 1)byby(b3 + 13).

Consequently A=1 since, otherwise, the latter equations together with (5.21) would
imply wis = wis = wis = wis = 0 for ¢ = 1,2, which contradicts our assumption that
F has rank four. g

We recall some well known results regarding the associated family of a substantial
simply connected oriented minimal surface ¢g: L? — H""2. The associated family is
obtained by rotating the second fundamental form while keeping fixed the normal
bundle and the induced normal connection. More explicitly, for § € S! = [0,7)
consider the orthogonal parallel tensor field

Jy = cos 01 4 sinfJ,

where [ is the identity endomorphism and J denotes the complex structure on T'L
determined by the metric and orientation. Define on the bundle Hom(TLxTL, N,L)
the symmetric section oy, (Jp-, -) which satisfies the Gauss, Codazzi and Ricci equations
with respect to the same induced normal connection; see [18]. Then, according to the
fundamental theorem of submanifolds, there exists an isometric minimal immersion
go: L? — H"*? whose second fundamental form is

Oége (X, Y) = ¢9 Oég<J9X, Y),

where ¢g: NgL — N, L is the parallel vector bundle isometry that identifies the
normal bundles as well as each of the normal subbundles N7 with N for 1 < s < 7,.
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In the sequel, we assume without loss of generality that g is 2-regular, i.e., NY
and Nj are subbundles of the normal bundle. Then, the vertical bundle V = ker r,
of the submersion 7: ¥, — L?, can be orthogonally decomposed as

y=1'aV
on an open dense subset of L?, where V! denotes the plane bundle determined by

Fg*(vl) ’(a:,v) = d<expg(a;)>v (NQQ(JI))

Furthermore, consider the orthogonal decomposition of the tangent bundle of M™
given by
TM=HaoYV,

where we identify isometrically the subbundle V tangent to the rulings with the
corresponding normal subbundle of ¢g. It is a direct consequence from the proof that
the relative nullity leaves of F' can be identified with the fibers of V°.

Let J be the endormorphism of 7', such that restricted to H is the almost
complex structure 7|3 : H — H determined by the orientation, whereas restricted to
V is the identity. Moreover, we set

Jo = cosOI +sinf.7.

The next theorem ensures the existence of genuine deformations and describes the
relation between the second fundamental forms of the associated family members.

Theorem 5.11. Let g: L> — H"™2, n > 3, be a simply-connected 1-isotropic sub-
stantial surface. Then F allows a smooth one-parameter family of genuine minimal
isometric deformations Fp: ¥, — H""2, 6 € S', such that Fy = F, and each Fy
carries the same rulings and relative nullity leaves as F.

Moreover, there is a parallel vector bundle isometry Ty : Ng,Xy — Ng,2, such
that the relation between the second fundamental forms is given by

ap, (X,Y) =Ty(R_gar,(X,Y) + 2ksin(0/2) B(JT_¢2X,Y)), (5.31)

where Rg is the rotation of angle 0 on Np, X, that preserves orientation, s is the
radius of the ellipse of curvature of g and B is the traceless bilinear form defined by

(5.38).

Proof: Consider the one-parameter family Fy: M™ — H""2 of isometric immersions,
defined by
Fg(l’, 12 U) = COSthgg(iL') + Sinh@ ¢HU7

where 0 € S, (z,v) € U132, and ¢p: N,L — N, L is the parallel vector bundle
isometry that identifies the normal subbundles of g and gs.
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In the sequel, corresponding quantities of Fj will be denoted by the same symbol
used for F,; marked with 6. Using the fact that ¢ is a parallel vector bundle isometry
we can easily prove that Fp is isometric to Fj,. Let {eq, eq,€3,...,€,12} be an adapted
orthonormal frame along g. Then, for the adapted frames of gy we have that

e} = ¢g o Rjes and €} = ¢y o Ryeu, (5.32)

where R} is the rotation of angle § on Ny. We complete the adapted frame for gy by
choosing
eg = ¢pe;, H<j<n+2. (5.33)

We can readily verify that w9, = w34 and wfj = w;; for 4,7 > 5. Furthermore, we have
that

0 0
Was = w35 0 Jp and wss = wse 0 Jp,

which implies
7= wis(er) = 0+ azsinf, af = wis(ey) = 0 — aysind
ay ‘= wss(€e1) = a cos azsinf, ay := wss(e2) = ag cos ay sin 6,

VY = whs(er) = bycosf + bysinf, bl = wis(es) = bycos — by sin.

We parametrize the unit sphere in the fiber of ¥, as in (5.22). Then, we have the
following parametrization for Fj

Fo(z,0,t1, ..., t,_3) = cosh ¢ go(x) + sinh p ppw,
where w given in (5.22). The differential of Fj is given by

F5.(0/0p) = sinhg gg + cosh p pyw,

Fy.(0/0t;) = sinhep Z a—t:ei+4, 1<j7<n-3.

Set gi; = (Fyp,(0/0t;), Fp,(0/0t;)). Then, we obtain

rEp(X1) = coshgg,(er) — ¢ sinhpe) — o) sinh e,
rEp(Xs) = coshigg,(es) — ¢)sinhp e + ¢ sinh o e,

where

n—3 1
i— Y —(Va )3/61&) for i=1,2,

=1 Yii

r? = cosh?  + sinh? ¢ ((¢])* + (¢5)%) = cosh® ¢ + sinh® (¢ + ¢3),

90 (X) = gu(JpX) = cos0 g.(X) +sinfg.(JX), X eTL (5.34)
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and
) = prcosO + gysinf, ¢ = —¢1sinb + ¢y cosh, (5.35)

with ¢;, i = 1,2 defined in (5.24).

The vector fields {X1, Xo, 0/0p, hy 0/0ty, ..., hy_30/0t,_3} constitute a local
orthonormal frame with respect to the induced metric of Fy. Moreover, the normal
space of Fy is spanned by the vector fields

& = ¢fsinhygy,(er) + ¢)sinh g, (e2) + coshpef, (5.36)
ng = ¢§ sinh ¢ gg, (1) — ¢f sinh ¢ gy, (e2) + cosh ez. (5.37)
The map Wy: Np, X, — Ng,2, given by
Vol =& and Ygn =1

is a parallel vector bundle isometry. The shape operators Ag,, A,, of Fy vanish on
VO and restricted to the subspace H @ span{d/dp} & V' spanned by the vectors
{X1, X5,0/0p,h10/0t1, ha0/0ls}, are given by

r(k+ () rés  —¢) U —xi
rGs  —r(R+() —¢5 Y8 x5
TAfe = _QZ)? _¢g 0 0 0
0 9 0 O 0
—x! X4 0 0 0
and 0 0N 40 0 .0
T Go (s —(7) ?3 2 X2
r(h=¢) -1 Y
rAng = _¢g ? 0 0 0 ’
o ! 0 0 0
—X} X 0 0 0
where

Cf = (1 cosf + (2sin 6. Cg = —(sinf + (5 cos b,

and (1, (y are defined in Lemma 5.9. This proves that there exists a one-parameter
family of minimal isometric immersions Fyp: M™ — H""2 6 € S', associated to F,
such that Fiy = F, and each Fy carries the same (n —2)-dimensional rullings and same
(n — 4)-dimensional relative nullity leaves as Fj. Observe also that since the shape
operators of Fy have rank 4, the isometric deformations Fy of F' are genuine.

Finally, consider the operator Ly: T'M — T'M such that Lg|spanfa/opyev = 0 and
Loy : HY7 — H's is the reflection given by

Lol = —sin(6/2) cos(60/2)
Olats cos(0/2) sin(6/2) |’



5.3. MINIMAL SUBMANIFOLDS WITH RANK THREE OR FOUR 81

with respect to the tangent frame { X7, X5}. It follows easily that
A§9 = AR9£ — 2K SID(H/Q)LQ and Aﬂe = ARGW — 2K Sln(9/2)j @) L@.

A straightforward computation shows that
2K
ap, (X,Y) =Ty (Rgong(X, Y) - 2 sin(0/2)((LeX,Y)¢ + (Lo T X, Y)n)) .

Consider the symmetric section B of Hom(TM x TM, N,%,) with corresponding
nullity distribution V, defined by

1 1
B(X17X1) == ﬁg == —B(XQ,XQ), B(Xl,XQ) == —ﬁn (538)

Then, (5.31) follows immediately. 1
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Abstract

In this thesis, we investigate complete minimal isometric immersions f: M™ — Q7
into space forms with positive index of relative nullity. The index of relative nullity
was introduced by Chern and Kuiper [13] and turned out to be a fundamental concept
in submanifold theory. At a point of M™ the index is just the dimension of the kernel
of the second fundamental form of an isometric immersion f: M™ — QF at that point.
The kernels form an integrable distribution, the so called relative nullity distribution
denoted by D, along any open subset where the index is constant and the images
under f of the leaves of the foliation are (part of) affine subspaces in the ambient
space.

At first, we consider complete minimal isometric immersions f: M™ — QF into
space forms QF, ¢ = —1,0,1, with index of relative nullity at least m — 2. Our
technique for classifying the latter immersions consists of studing a tensor, the so
called splitting tensor C, that describes how the conullity distribution D+ is twisting
inside the manifold M™. We employ tools from geometric analysis, among them is
the Omori-Yau maximum principle and the gradient estimate of Yau, in order to
describe the structure of the splitting tensor as an endomorphism of the conullity
distribution. The main difficulty arises from the fact that we allow the index of the
relative nullity to vary. In order to extend the splitting tensor over the real analytic
set A of totally geodesic points, it is essential to analyze the structure of the set A.
This is accomplished by employing regularity extension theorems for harmonic maps.

For minimal isometric immersions into Euclidean space R", we prove that the
immersion f must be a cylinder over a minimal surface, under the mild assumption
that the Omori-Yau maximum principle is satisfied for the Laplacian. The category
of complete Riemannian manifolds for which the Omori-Yau maximum principle is
valid is quite large. For instance, it contains the manifolds whose Ricci curvature is
bounded from below. It also contains the class of properly immersed submanifolds
in a space form whose norm of the mean curvature vector is bounded [56, Example
1.14]. The aforementioned result is truly global in nature, since there are plenty
of non complete minimal submanifolds of dimension m having constant index of
relative nullity m — 2 that are not part of a cylinder on any open subset. They can all
locally be parametrized in terms of a certain class of elliptic surfaces [15, Theorem 22].
Consequently, what remains as a challenging open problem is the existence of minimal
complete and noncylindrical submanifolds with index of relative nullity v > m — 2.
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It is worth noticing that many authors where interested into finding geometric
conditions for an isometric immersion f: M™ — R" of a complete Riemannian mani-
fold with positive index of relative nullity to be a cylinder. Some of the many papers
containing characterizations of submanifolds as cylinders without the requirement for
the immersion to be minimal are [15,17,38,40,52,54,58]. When adding the condition
of being minimal we have [1,24,35, 36, 38,41,64, 66].

For complete minimal immersions f: M™ — S™ in Euclidean spheres, we prove
that any such submanifold M™ is either totally geodesic or has dimension three. In
the latter case, there are plenty of examples, even compact ones. For any dimension
and codimension there is an abundance of examples of non-complete submanifolds
fully described by Dajczer and Florit [15] in terms of a class of surfaces, called el-
liptic, for which the ellipse of curvature of a certain order is a circle at any point.
Under the mild assumption that the Omori-Yau maximum principle holds on the
manifold, a trivial condition in the compact case, we provide a complete local para-
metric description of the submanifolds in terms of 1-isotropic surfaces in Euclidean
space. These are the minimal surfaces for which the standard ellipse of curvature is a
circle at any point. For these surfaces, there exists a Weierstrass type representation
that generates all simply-connected ones.

In any of the two cases already studied, namely the Euclidean and spherical case,
the proofs reduced to analyze the situation of the three dimensional submanifolds. In
fact, for submanifolds in spheres only this case turned out to be possible. For minimal
immersions f: M™ — H" in hyperbolic space of complete Riemannian manifolds M™,
the condition that the index of relative nullity satisfies v > m—2 turns out to be quite
less restrictive than in the previously studied cases. Nevertheless, we have reasons
to believe that the manifold being three-dimensional is still quite special and this is
why this case allows a characterization of a class of submanifolds that is contained in
the following description. We prove that any three dimensional minimal submanifold
f: M3 — H" having index of relative nullity at least one at any point, is either totally
geodesic or a generalized cone over a complete minimal surface lying in an equidistant
submanifold of H", under the assumption that the scalar curvature is bounded from
below, see [23].

Furthermore, we parametrically describe all minimal immersions f: M™ — H",
whose index of relative nullity is m — 2, as subbundles of the normal bundle of certain
elliptic spacelike surfaces in the Lorentzian space or in the de Sitter space [49]. From
this parametrization it is straightforward than there exist a plethora of examples of
non-complete minimal submanifolds with index of relative nullity m—2 . Additionally,
using this parametrization, one can construct an abundance of complete minimal
submanifolds of any dimension other than generalized cones, as can been seen from
the results in [9], [32] and [47].
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Finally we introduce a new class of minimal immersions F': M" — H"*2, n > 3,
in the hyperbolic space that are (n — 2)-ruled [49]. This means that they carry an
integrable tangent distribution of dimension n—2, whose leaves are mapped diffeomor-
phically by F' onto open subsets of totally geodesic (n — 2)-hyperbolic spaces of H" 2.
If the manifold is simply connected, we show that it allows a one-parameter family
of equally ruled minimal isometric deformations that are genuine. The deformations
are obtained while keeping fixed the normal bundle and the induced connection, but
now the second fundamental form relates to the initial one in a much more complex
form, in particular, no orthogonal tensor in involved. It is an interesting question
if the above associated family of complete ruled minimal submanifolds exhausts all
examples in the same class that admit genuine deformations. Of course, a much more
challenging classification problem of complete submanifolds of rank four would be to
drop one of the conditions, for instance being minimal or ruled.
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IHEPIAHYH

Mo amd T onpoavTixdTepes Evvoleg 6Ty Yewpla UTOTOAUTTUYHATWY Efvol UTH TNC
undevoxatavourc, 1 onola e.0fydn and toug Chern xon Kuiper [13]. H undevoxatavour
evOC UTOTOAUTTUYHATOS PEoa OE €vay YOpo oTaldephc xoumuAoTNnTog opileTon WS O TU-
evag g delTepng Vepeiwooug popprc. O delxtng tng undevoxatavourc oe €va onueio
TOU UTOTOAUTTOYHUTOS 0plleTon We 1) BLdoTACT TOL VPRV TNG BEUTERTC VeUEALOOUC
wop@nc oo onucio autd. Ot Tuprived autol cUVIGTOOY Ula OAOXATPWOCIUT] XUTAVOUT| XUTY
U1x0g xdle avoixTo) UTOGUVOAOU TOU UTOTOAUTTUYUATOS OTIoU 0 OeixTng elvon otoepdg
2o T PUAROL TNG UNOEVOXATAVOUYG CUVIGTOUY OAXA YEWOUTIXY UTOTOAUTTOYUATA GTOY
nepBdrlovTa yweo. Edv emmiéov 1o unomohdnTuypa efvar TARRES, TOTE amodEtXvOETOL
OTL ToL QUM TNG Undevoxatavourc elvon eniong mhren 6To avoxté UTOGUYOAO 6TOU O
debxtne hoBdver Ty ehdyotn Tur Tou (Seite [14]).

Yuyvo avuxelyevo yehétng otny Yewplo UTOTOAUTTUYUATWY eVl 1) €0PECT], YEWUE-
TEXWY UTOVECEWY, OOTE pla TARENS toouetexh epfdntion f: M™ — R"™ ye Jetnd
Oetntn undevoxatavourc v > k > 0 va etvar k-xOhvdpog. Autd onualver 6Tt To To-
Aomtupor M™ Swondtor w¢ ywvouevo Riemann M™ = M™F x RF yo 1 LGOUETOLXY,
euPdntion f dSwondtar we f = g X idge. H undevoxatavouy, anotekel onuavtind ep-
YOUAEID YLOL TOV YUEAXTNEIOUO TWY XUAVOPWY, BLOTL TEOXEWEVOL Vo amodety Vel 6Tl Wia
toopeTEY| EYPdnTion elvon k-x0hvdpog apxel va Oetydel 6Tt ol exdveg Twv POAWY TNg
undevoxatavourc péow e f elvan mapdhhnheg otov TepBdAlovTa Yweo.

Yruavtixd anotéhecya ot auth TV xatebduven elvar 1o Yewprnua tou Hartman [40],
oOuwva Ue 10 onolo xdie toouetewt| eudntion f: M™ — R™ ye Jetind delwty pnoe-
voxatovourc v > k > 0 xou un-opvnux xoumuhotnta Ricei ebvar k-xOivdpog. Baotxd
eoyaheio oty anddeln elvon to Yedpnua didonaore 1wy Cheeger-Gromoll [10] to o-
Tolo ypnowornoteiton Yoo var amodery el 6Tt Tol GUAANL TOU AVTIGTOLY 00UV GTOV EALYLCTO
Ot T UndevoxaTavourc SlaoT®VTaL w¢ yivopevo Riemann. To avwtépw anotélecua
oey ahndeler otny epinTwon dmou 1 xauruloTnTa Ricel efvan un-detiny|, xdti mou oup-
Badver mévta yroe ehoyioixég euPdnTioeic. AvTtinapadelyuato anoteholy ol evdeloyevelg
UTEPETLQAVELES OTOLGOHTOTE GUVBLdoTaoNE oTo [19, oel. 409].

A&iCer va onuerwvel 6tL moARd dpdpa yapaxtneilouv TNV xAdoT TV XUANVOpWY, €x
v omolwy o [15,17,38,40,52,54, 58] Sev avopépovtar 6€ ENUyIGTIXG UTOTOAUTTUYHOTO,
eve ta [1,24,35,36,38,41, 64, 66] neptypdpouv Ty xhdom twv xuAivpwy tor onofo efvat
ENOYIO TN UTOTOAUTTOY AT
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X1y nopoloa dlatelfr) 6TOY 0 Hog Efvar Vo ETEXTEVOUUE TA AVWTER®W ATOTEAECHUTA
OTNV XAAOT| TV EAAYIC TXWOY LooPeTEX®Y eufantioewy f: M™ — QF ue delxtn pnde-
voxatavopric Toukdytotov m —2. H teyvinr| yag elvon va xévoupe ypnon Tou Aeyouevou
TavUo TY SIIOTUO G, O OTOl0g TMEQIYQAPEL TWE XAUTUADVETOL TO 0pUocUUTARRLH TS
undevoxatavourc evtog tou moiuntiypatog M™. Xenowonowlue epyoheio and yew-
weTEW! avdAuoT), 6mws 1 apyh ueylotou Omori-Yau xo 1 extipnorn xiiong tou Yau
®oTe v xatovonel 1 dour| Tou Tavuo Ty Sidontacng. M omd TiC OTUAVTIXOTERES TEYVI-
#€¢ OUOXOMES TNV AMAOEIET TEOEPYETAUL OO TO YEYOVOS OTL EMITREMOUUE OTOV BEXTY
NG pndevoxatavounc va UetoBdhheton and ornuelo o onucio. Emouévwg, mpoxewévou
VoL ETEXTEVOUNE TOV TUVUG TH| BLEACTAONE UTERAV® TOU OVIAUTIXNOU GUVOROLU A TV ohixd
YEWOUTIXWY OTUEIWY, YENOHIOTOUUE VEMPHHUTA ETEXTACTS VL0 AQUOVIXES UTELXOVICELC.

H napoloa didoxtopuxt| dtatell dlaplpdveton we e€hg: Apyind avapépoupe Uept-
x(€¢ eloaywywés Evvoleg oto Kegdhoo 1 xan ota Kegdhota 2,3,4 xon 5 mepéyovion ta
TEOTOTUTOL ATOTEAECUOTA TNG DTEB7S.

ITo cuyxexpéva, oto Kegdhoto 2 uehetobue Ty dour Tou ToyuoTH BdoTaoTS Yid
TEWLAGTATA EAAYLOTIXG UTOTOAUTTOY AT GE YWEOUS HORPNC UE OEIXTT) UNOEVOXATAVOUTC
éva. AZilel va orueiwdel 6Tt 1) TR TATY TERITTWOT EfVOL OUGIOOOUS GNPAGiag YLol Ta
ATOTEAEOUATA TNG TOEOUCUS DLUTELBHC.

Y10 Kegdhowo 3, e€etdloupe mifien ehoyiotixd uromohuntiyuota M™ otov Euxdel-
0ct0 Ywpo Ue YeTind delxtyn undevoxatavouns Touldytotov m — 2. Anodeixvioupe Ot
#«4de té€Towo uToTOAITTUYHA v XOAVBLOC UTEPAV® ULag EAUYLOTIXNAS ETLPAVELNS, UTO
Vv aovevy) unddeor ot woylel 1 apyr ueyiotou Omori-Yau yio ) Aomloactovy. H
x\don TV TAREWY TOAUTTUYUATOY Yo To omtola toyOer 1 apyY| weyiotou efvon eupeia,
ool mepthauBdvel ta mohuntOyuoata Riemann twv omolwy 1 xoumuhétnta Ricei dev
pOivel Tayéwe oto Uelov dmetpo xS xal T Proper UTOTOAUTTUYUATO TWY OTolwY 1)
vopua TOL BtavioUUTOg PECTC xaumuAoTnTaS Efvan @eaypevr. To anotélecud pog etvou
olx6 ex PUCEWS, xang UTdEYEL TANY®EA TAPUDELYUATWY UT-TAHEWY EAAYICTIXDY UTO-
TOMNUTITUYUATWY GE OTOLCONTOTE GUYOLACTIOT), HE OTadEpd BelX T undevoxatavouns,
To omofor Oev efvor TuaTo XUAVOPOU oE xavEva avolxtd utocivord Toug. ‘Ola autd
TOL UTOTOAUTTOYUATO, UTOROUY VO TUQUUETENUOUY TOTIXE ¢ DIVUCUATIXEC UTODECUES
g %84T O€oung mag XAAONC EAAEITTIXWY ETLPAVELWY YO TIG OTOLEG Lol CUYXEXEL-
uévn éhherdn xaumuidtntog etvor xUxhog oe xdle onueio (Beite Oedpnua 22 oo [15]).
AZiler va avagepiel 6TL Eval amontnTnd avoto TeOBANua 1o onolo anotelel TEOXANOT),
ebvor 1) UToeEn EVOS UN-xUAVOEIX0) TAKLOUS EAUYLGTIXOU UTOTOAUTTOYUUTOS UE DElXTY
undevoxatovourc v > 1.

1o Kegdaro 4, yehetodue nAfperg ehayiotixég epPantioeg f: M™ — S™ ue delxtn
undevoxatavourc Toukdytotov m — 2 ot xdle onueio. To avwtépw utoTolurTdYUTA
elvar austere und v évvolr twv Harvey xau Lawson [44] xou pedetridnxoy and tov
Bryant [7]. Tndpyet peydhn movahio and un-miripn eAoyloTixd UTOTOAUTTOYUATA, OF
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x&e ouvdidotaoy), ta 6mow €youy tapopetenlel and toug Dajezer xau Florit [15] we¢
OLUVUGUOTIXES UTODEGUES TNG XAVETNG DECUNG UG XAUOTG EAAELTTIXGWY ETLPAVELDY, YidL
TIC OOl WLt GUYXEXPWEVY) ENAELT xaumUAGTNTOC elvar x0xhog oe xdle orueio. Edv
uroY€oouye 6Tl TO UTOTOAUTTUYHA Elvol TATPES, TOTE ouvdyouue OTL efte efvar ohxd
YEOUTINO, €lTe 1) dtdoTaor Tou elvar Tpla. Xtny tedeutofa TepinTwoT UTAEYOUY TOMAS
TopadetypaTa, ETAE) aut@y xou cuunayh. Tré v aclevy| utddeor oTL woylet 1) apyn
ueytotou Omori-Yau, wo tetpiuuévn unodeon 6tay To moAUTTUYHA Efval GUUTAYECS,
TOPEYOUUE Lol TATIOT| TOTUXT| TEQLYPUPY| TWY AVWTEPR UTOTOAUTTUYUATOY WS HOVIOLALES
EQUTTOPEVES UTOOECUES TNG %AVETNG OEoung 1-100TpoTIX®Y ETLPAVEIWY 0ToV Euxheldeto
¥@eo. Ot 1-100TpomixES ETLPAVELES Efvol EAXYIOTINES ETPAVELES Yia TIC OTtoleg 1 cuvUng
EMheudn xauruhoTnTog Ebvon xOxhog ot xdlde ornueto. T autés Tng emgdveleg uTdpyet
Weierstrass avanapdotacn mou napdyet OAeg OGS elvon amAd GUVEXTIXES.

Téhog, 10 Kegdhouo 5 avagpépeton o€ EAXYLOTIXG UTOTOAUTTOYHATA TOU UTERBOALXOU
yweou xon donpeiton oe telo Y€en. X1o TE®dTO UEpog, UEAETOUUE TANEEIS EAOYLOTIXEG
oopetEég euPantioeic f: M™ — H" ye deixtn undevoxatavouric Touldyiotoy m — 2.
e avTlo TOAY) e Ti¢ TeptnTmaoelg Tou Euxhedeiou ywpou xon tng ogalpag, 1 utédeon
OTL 0 OetxTng TNg undevoxatavouric elvon TouAdyioTov m — 2 elvon AyOTEQO TEPLOEL-
ot otov unegfolxd ywpeo. 'Eyouue woyupéc evdellel ot 1 tpidtdoTaty tepinTtwon
m = 3 dpopornoteitar g tepinTwong m > 4, yeyovdg mou pog odnyel otov yopo-
ATNPIOUO TARpwY elayloTixwy euBanticewy f: M3 — H” UE Belx T UNOEVOXATAVOUTC
TOUAd Lo TOV €va og xdve onuelo. TTo v unddeon ot 1 apriunTed xaunuAdTHTH elvon
ppayuévy oné %x4tw, anodeviouye 6Tl To uTorohiTTUYpa M? elvan elte ohxd yewdat-
TIX0, €lTE YEVIXEUPEVOS XMVOG UTERAVG UL TATIPOUS EAYLG TIXNG ETLPAVELIS TOU elTon
oe woanéyov uronohintuyua tou H" (deite [23]). H unddeon tne minpdtntac efvon oma-
ealtnTn oTNY AveTERW TEPLYPApT, xadde UTdpyEl TATUWOEA TUPUOELYUATOY UN-TATRwWY
UTOTOAUTITUYST®Y ToL 0Ttolal BEV AVAXOUY GTNY XAUCT) TWV YEVIXEUUEVWY XWOVWY.

210 0eUTEPO UEPOC, UEAETAUE M-OLACTATA EAUYLOTIXA UTOTOAUTTOYUATA TOU UTER-
Bolixot ydheou oe onotodhnote cLVBLEoTaOT, U BelxTn undevoxatavounc m — 2 [49)].
E16y0¢ pog elvon VoL TOQUUETEHOOUUE TOTUXE AUTY TO UTOTOAUTTOYHOTY, WS DLVUCUOLTI-
%G UTOOECUES TNG ASVETNG OECUNG ULaC XUTNYORLIC EAAEITTIXWY ETLPAVELDY TOU Y WOOOU
Lorentz | Tou ywpou de Sitter. Elvar tA¢ov epgaveg 6t 1 undieor tng mhnpdtntag ooy
YAPAXTNPLOUO TWV TELOLAG TUTWY EAXYLO TIXWY UTOTOAUTTUYHATWY ebvor avoryxodar, xadg
UTEEYOUY TOMAGL TOTUXE. TURUDELYUOTA TTOU BEV AVAXOUY GTNY XAJOT, TWV YEVIXEUUEVMY
x@vwy. Emniéov, n napauétenon auth unopel va yenotuonomnidel yia Tny xataoxeuy
TAPOY UTOTOAUTTUYHATWY TUYOUCUC GUVDIACTUCNS, OTWS QUUVETAL UE YPY\OT) TV ATo-
teheopdtwy ota [9], [32] xaw [47]. AZiler va avageplel 6Tt évag evakhoxTixds TpdToC
AATAOAEUTC TARPWY EAAYICTIXGY UTOTOAUTTUYRATOY GTOV UTEPBOALXO Y WO, UEGWL Xo-
YOVIXWY OEOUMY aTd apuovixols Lopgionols ot emgdveieg Riemann, 86Unxe and tov
Gudmundsson 7o dgdeo [39)].
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Y10 Ttplto xan Teheutalo Yépog NG BlaTEBrC XATACKEVALOUYE Ual VEX XAOT) EAOYL-
otxov eufanticewy F: M™ — H"2 n > 3, otov unepfohixbd yohpo ot omolec efvor
(n — 2)-eudetoyeveic [49]. Autd onuaiver 6T 0 M™ emdéyeton o OAOXANPOOIUT X0
Tavour| DIACTACTE N — 2 TG EQANTOUEYTC dEoUnG, TNg omolaug Ta phAla anetxovilovTo
SLapopolop®ixd Uéow tng F' oe avolxtd unocivoha olxd yewdartixwy (n—2)-0tdotatmy
utepBohxay ywewv. Edv to M"™ eivor anhd cuvextnd TOTE amodELXVOOUUE OTL 1) EU-
Bdntion F' emdEyeTan Uiol LJOVOTAQUUETEIXT| OLXOYEVELXL UTO EAUYIC TIXEC TAQUUOPPWOELS
ot onoleg ebvar “yvAolec”. Ol TAUPAUOPP®GCELS QUTEG ATOXTWVTOL XPATWVTAUS GTadep
TNV ®GUETN OECUT X TNV ETAYOUEVT) XQVETT cLUVOYT, AAAS 1) OetTEET VEUENWOT) LopQY,
cLVOEETOL PE TNY oEyLxr Ue Tepimioxo tpémo. Evdidgpepov cpwtnua efvar av 1 avetépw
xhdom mepLEyEl Oheg Tic yVHoeg mapapoppwoels. Ilpdxhnon anotehel eniong xan To
TEOBANUA TACVOUNONS TWV TARPWY UTOTOAUTTUYHATOY Paduidoc TEcoepa, apoupyTog
Vv unodeon g TAneotnTag K T evdeloyEvelag.



Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

[15]

K. Abe, Applications of a Riccati type differential equation to Riemannian manifolds with totally
geodesic distributions. Tohoku Math. J. 25 (1973), 425-444.

G. Albanese, L. J. Alias and M. Rigoli, A general form of the weak maximum principle and
some applications. Rev. Mat. Iberoam. 29 (2013), 1437-1476.

L. J. Alias, P. Mastrolia and M. Rigoli, Mazimum principles and geometric application. Springer
Monographs in Mathematics. Springer, Cham, 2016.

J. Barbosa, On minimal immersions of S* into S*™. Trans. Amer. Math. Soc. 210 (1975),
75-106.

R.L. Bishop and B. O’ Neill, Manifolds of negative curvature. Trans. Amer. Math. Soc. 145
(1969), 1-49.

F. Blum, J. R. Schulenberger, Algebra. volumes I and II, 7th edition, Ungar Press, New York
(1970).

R. Bryant, Some remarks on the geometry of austere manifolds. Bol. Soc. Brasil. Mat. 21 (1991),
133-157.

E. Calabi, Minimal immersions of surfaces in Euclidean spheres. J. Differential Geom. 1 (1967),
111-125.

E. Carberry and K. Turner, Harmonic tori in De Sitter spaces S3". Geom. Dedicata 170 (2014),
143-155.

J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature.
J. Differential Geom. 6 (1971), 119-128.

S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric
applications. Comm. Pure Appl. Math. 28 (1975), 333-354.

S.S. Chern, On the minimal immersions of the two-sphere in a space of constant curvature.
Problems in Analysis, 27-40. Princeton University Press (1970)

S.S. Chern and N. Kuiper, Some theorems on the isometric imdedding of compact Riemannian
manifolds in Euclidean space. Ann. of Math. 56 (1952), 422-430.

M. Dajczer et al., Submanifolds and Isometric Immersions. Math. Lecture Ser. 13, Publish or
Perish Inc. Houston, 1990.

M. Dajeczer and L. Florit, A class of austere submanifolds. Illinois J. Math. 45 (2001), 735-755.

91



92

16)
17)
18]
[19)
[20]
21]
22]
23]
24]
25)
26)
27)
28]
20]
30]

[31]
[32]

[33]

[36]

M. Dajczer and L. Florit, Genuine deformations of submanifolds. Comm. Anal. Geom. 12
(2004), 1105-1129.

M. Dajczer and D. Gromoll, Gauss parametrizations and rigidity aspects of submanifolds. J.
Differential Geom. 22 (1985), 1-12.

M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map. J.
Differential Geom. 22 (1985), 13-28.

M. Dajczer and D. Gromoll, Rigidity of complete Fuclidean hypersurfaces. J. Differential Geom.
31 (1990), 401-416.

M. Dajczer and D. Gromoll, The Weierstrass representation for complete minimal real Kaehler
submanifolds of codimension two. Invent. Math. 119 (1995), 235-242.

M. Dajczer, Th. Kasioumis, A. Savas-Halilaj and Th. Vlachos, Complete minimal submanifolds
with nullity in Euclidean space. Math. Z. 287 (2017), 481-491.

M. Dajczer, Th. Kasioumis, A. Savas-Halilaj and Th. Vlachos, Complete minimal submanifolds
with nullity in Euclidean spheres. Comment. Math. Helv. 93 (2018), 645-660.

M. Dajczer, Th. Kasioumis, A. Savas-Halilaj and Th. Vlachos, Complete minimal submanifolds
with nullity in hyperbolic space, to appear in J. Geom. Anal.

M. Dajczer and L. Rodriguez, Complete real Kdhler minimal submanifolds. J. Reine Angew.
Math. 419 (1991), 1-8.

M. Dajczer and Th. Vlachos, A class of complete minimal submanifolds and their associated
families of genuine deformations. Comm. Anal. Geom. 26 (2018), 699-721.

M. Dajczer and Th. Vlachos, A class of minimal submanifolds in spheres. J. Math. Soc. Japan.
69 (2017), 1197-1212.

M. Dajczer and Th. Vlachos, The associated family of an elliptic surface and an application to
minimal submanifolds. Geom. Dedicata 178 (2015), 259-275.

M. Dajczer and Th. Vlachos, A representation for pseudoholomorphic surfaces in spheres. Proc.
Amer. Math. Soc. 144 (2016), 3105-3113.

F. Dillen and L. Vrancken, Totally real submanifolds in S® satisfying Chen’s equality. Trans.
Amer. Math. Soc. 348 (1996), 1633-1646.

J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86
(1964), 109-160.

N. Ejiri, Totally real submanifolds in a 6-sphere. Proc. Amer. Math. Soc. 83 (1981), 759-763.

N. Ejiri, Isotropic harmonic maps of Riemannian surfaces into de Sitter space time. Quart. J.
Math. 39 (1988), 291-306.

L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Ad-
vanced Mathematics. CRC Press, Boca Raton (1992).

D. Ferus, The rigidity of complete hypersurfaces, Unpublished.

L. Florit and F. Zheng, Complete real Kihler Fuclidean hypersurfaces are cylinders. Ann. Inst.
Fourier 57 (2007), 155-161.

L. Florit and F. Zheng, Complete real Kdahler submanifolds in codimension two. Math. Z. 258
(2008), 291-299.



[37]
[38]
[39]
[40]
[41]

[42]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

93

Gerald B. Folland, Introduction to partial differential equations. Princeton University Press
(1995).

F. Guimaraes and G. Freitas, Cylindricity of complete Euclidean submanifolds with relative
nullity. Ann. Glob. Anal. Geom. 49 (2016), 253-257.

S. Gudmundsson, Minimal Submanifolds of Hyperbolic Spaces via Harmonic Morphisms. Geom.
Dedicata 62 (1996) 269-279.

P. Hartman, On the isometric immersions in Fuclidean space of manifolds with nonnegative
sectional curvatures. II. Trans. Amer. Math. Soc. 147 (1970), 529-540.

Th. Hasanis, A. Savas-Halilaj and Th. Vlachos, Minimal hypersurfaces with zero Gauss-
Kronecker curvature. Illinois J. Math. 49 (2005), 523-529.

Th. Hasanis, A. Savas-Halilaj and Th. Vlachos, Complete minimal hypersurfaces in the hyper-
bolic space H* with vanishing Gauss-Kronecker curvature. Trans. Amer. Math. Soc. 359 (2007),
2799-2818.

Th. Hasanis, A. Savas-Halilaj and Th. Vlachos. Complete minimal hypersurfaces of S* with zero
Gauss-Kronecker curvature. Math. Proc. Cambridge Philos. Soc. 142 (2007), 125-132.

R. Harvey and B. Lawson, Calibrated geometries. Acta Math. 148 (1982), 17-157.

S. Hildebrandt, Harmonic mappings of Riemannian manifolds. Springer-Verlag Berlin Heidel-
berg. (1985).

E. Hulett, Harmonic superconformal maps in H"™. J. Geom. Phys. 42 (2002), 139-165.

E. Hulett, Superconformal harmonic surfaces in De Sitter space-times. J. Geom. Phys. 55
(2005), 179-206.

J. Jost, Y. Xin and L. Yang, Curvature estimates for minimal submanifolds of higher codimen-
sion and small G-rank. Trans. Amer. Math. Soc. 367 (2015), 8301-8323.

Th. Kasioumis, Ruled minimal submanifolds with rank at most four in the hyperbolic space.
Preprint. (2018).

S. Krantz and H. Parks, A primer of real analytic functions. Birkhduser Advanced Texts: Basler
Lehrbiicher, Birkh&user Boston, Inc., Boston, MA, 2002.

J. Lotay, Associative submanifolds of the 7-sphere. Proc. Lond. Math. Soc. 105 (2012), 1183—
1214.

R. Maltz, Cylindricity of isometric immersions into Fuclidean space. Proc. Amer. Math. Soc.
53 (1975), 428-432.

M. Meier, Removable singularities of harmonic maps and an application to minimal submani-
folds. Indiana Univ. Math. J. 35 (1986), 705-726.

M. Noronha, Splitting theorems for submanifolds of nonnegative isotropic curvature. Results

Math. 60 (2011), 235-243.

H. B. Lawson, Jr. and R. Osserman, Non-ezistence, non-uniqueness and irregularity of solutions
to the minimal surface system. Acta Math. 139 (1977), 1-17.

S. Pigola, M. Rigoli and A. Setti, Mazimum principles on Riemannian manifolds and applica-
tions. Mem. Amer. Math. Soc. 174 no. 822, 2005.



94

[57]

[58]

[59]

[60]

[61]

[65]

M. H. Protter, H. F. Weinberger, Mazimum Principles in Differential Equations. Springer-
Verlag New York. (1984).

H. Reckziegel, Hypersurfaces with parallel Ricci tensor in spaces of constant curvature. Results
Math. 27 (1995), 113-116.

A. Savas-Halilaj, Complete minimal hypersurfaces with vanishing Gauss-Kronecker curvature
in 4-dimensional space forms. (In greek) PhD thesis, Ioannina 2006.

A. Savas-Halilaj, On deformable minimal hypersurfaces in space forms. J. Geom. Anal. 23
(2013), 1-26.

M. Spivak, A Comprehensive Introduction to Differential Geometry. Publish or Perish Inc.,
Houston (1979).

M. Taylor, Partial differential equations I. Basic theory. Second edition. Applied Mathematical
Sciences, 115. Springer, New York. (2011).

C.M. Wood, The energy of a unit vector field. Geom. Dedicata 64 (1997), 319-330.

H. Wu and F. Zheng, On complete developable submanifolds in complex Fuclidean spaces.
Comm. Anal. Geom. 10 (2002), 611-646.

Y. Xin, Bernstein type theorems without graphic condition. Asian J. Math. 9 (2005), 31-44.

J. Yan and F. Zheng, A Dajczer-Rodriguez type cylinder theorem for real Kdhler submanifolds.
Pure Appl. Math. Q. 9 (2013), 563-577.

S.-T. Yau, Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math.
28 (1975), 201-228.



	Acknowledgements
	Introduction
	Background material on submanifold theory
	The Gauss and Weingarten formulas
	Gauss-Codazzi-Ricci equations
	Umbilical isometric immersions
	Relative nullity distribution
	Splitting tensor
	Submanifolds with umbilical conullity 
	Elliptic surfaces
	Elliptic submanifolds and polar surfaces
	Omori-Yau maximum principle
	Removable singularities of harmonic maps
	Real analytic subvarieties

	A fundamental lemma
	Minimal immersions with relative nullity in Euclidean space
	The main result
	The proofs

	Minimal immersions with relative nullity in Euclidean spheres
	The main result
	The local case
	The complete case
	The proofs

	Minimal immersions with relative nullity in hyperbolic space
	Minimal immersions of three dimensional submanifolds
	Generalized cones
	The proofs

	 Local parametrization 
	Minimal submanifolds with rank three or four
	A class of ruled submanifolds
	Main results and proofs


	Bibliography

