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Abstract

In the first part of this thesis, we study the emission of Hawking radiation (HR) by higher-dimensional

Schwarzschild-de Sitter (SdS) black holes in the context of the large extra dimensions scenario. Fo-

cusing on the emission of a scalar field, both on the brane and in the bulk, that is non-minimally

coupled to gravity, we perform a thorough study of the corresponding greybody factors (GFs), i.e the

transmission probability of the field in a given spacetime. The expressions for the GFs are derived

both analytically and numerically by developing the appropriate numerical code. With our exact

numerical results for the GFs, we then study in depth the HR spectra both in the brane and bulk

channels of emission. Also, the effect of various definitions for the temperature of the SdS spacetime

on the HR spectra is also investigated. The second part of this thesis is dedicated to the search for an

exact analytic 5-dimensional black-hole solution, that is localized close to the brane in the context of

the warped extra dimensions scenario. In the model we study, the line-element is of the Vaidya-type

with a mass that depends on the radial, temporal and extra dimension coordinates. For the bulk

content we consider various scalar field theories with one or multiple scalars, (non-)minimally coupled

to gravity and with general kinetic and general potential terms.
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ΠΕΡΙΛΗΨΗ

Η Γενική θεωρία της Σχετικότητας (ΓΘΣ) του Albert Einstein αποτελεί την ακριβέστερη θεωρία

που διαθέτουμε για την περιγραφή της βαρύτητας. Στα πλαίσια της ΓΘΣ, η βαρύτητα περιγράφεται

ως καμπύλωση στο χωρόχρονο η οποία προκαλείται από την παρουσίας μάζας. Οι εξισώσεις

κίνησης για το βαρυτικό πεδίο gµν είναι οι ακόλουθες:

Gµν ≡ Rµν −
1

2
gµν R = κ2

D Tµν , (1)

όπου στο αριστερό μέλος έχουμε τον τανυστή του Einstein, Gµν και στο δεξί έχουμε τον τανυστή

ορμής-ενέργειας Tµν .

Σύγχρονες αστρονομικές παρατηρήσεις υποδηλώνουν πως το Σύμπαν μας διανύει μια φάση επι-

ταχυνόμενης διαστολής η οποία μπορεί να αποδοθεί στην παρουσία μιας θετικής κοσμολογικής

σταθεράς η οποία επάγει ένα επιπλέον όρο +gµνΛ στο αριστερό μέλος των εξισώσεων του

Einstein.

Μια από τις πιο συναρπαστικές προβλέψεις της ΓΘΣ είναι η ύπαρξη περιοχών στο χωρόχρονο

όπου η καμπύλωση είναι τόσο έντονη ώστε τίποτε, ούτε το ίδιο το φως, να μην μπορεί να διαφύγει

της βαρυτικής έλξης. Οι περιοχές αυτές επομένως δεν εκπέμπουν τίποτε, παρά μόνο απορροφούν

ύλη και ακτινοβολία με αποτέλεσμα να φαίνονται μαύρες για ένα μακρινό παρατηρητή, εξού και η

ονομασία τους ως μελανές οπές.

Οι εξισώσεις Einstein είναι υπερβολικά πολύπλοκες εξισώσεις και έτσι για να βρεθεί αναλυτικά

μια ακριβής λύση για το βαρυτικό πεδίο απαιτείται η υπόθεση υψηλού βαθμού συμμετρίας για

το σύστημα που μελετούμε. Το 1916, μόλις ένα χρόνο μετά τη δημοσίευση της ΓΘΣ, ο Karl

Schwarzschild θεωρώντας μια στατική, σφαιρικά συμμετρική και αφόρτιστη κατανομή μάζας βρήκε

την πρώτη λύση μελανής οπής η οποία έχει το ακόλουθο στοιχείο μήκους:

ds2 = gµνdx
µdxν = −h(r)dt2 + h(r)−1dr2 + r2

(
dθ2 + sin θ2dφ2

)
, h(r) ≡

(
1− rh

r

)
, (2)

Σε αυτό το σύστημα συντεταγμένων, ο ορίζοντας γεγονότων της μελανής οπής βρίσκεται στην

ακτινική απόσταση r = rh για την οποία η μετρική δεν είναι καλά ορισμένη καθώς η συνάρτηση
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της μετρικής μηδενίζεται h(rh) = 0. Η νοητή σφαιρική επιφάνεια ακτίνας r = rh ορίζει το

“σημείο χωρίς επιστροφή ”, καθώς κανένα φωτεινό σήμα δεν μπορεί να εκπεμφθεί με r 6 rh και

να φτάσει σε έναν παρατηρητή ο οποίος βρίσκεται μακριά από την μελανή οπή.

Η εικόνα που είχαμε για τις μελανές οπές ως τους απόλυτους απορροφητές του Σύμπαντος άλλαξε

ριζικά στα μέσα της δεκαετίας του 1970 όταν ο Βρετανός φυσικός Stephen Hawking απέδειξε

πως, αν λάβουμε υπόψη κβαντικά φαινόμενα τότε η μελανές οπές εκπέμπουν σωματίδια με θερμικό

φάσμα. Η θερμοκρασία της μελανής οπής είναι ανάλογη της επιφανειακής βαρύτητας του ορίζοντα

γεγονότων της, ενώ η ακτινοβολία των μελανών οπών ονομάζεται ακτινοβολία Hawking.

Η διαδικασία εκπομπής σωματιδίων από τη μελανή οπή μπορεί να περιγραφεί ως εξής. Το κενό

γεννά συνεχώς ζεύγη σωματιδίων-αντισωματιδίων τα οποία εμφανίζονται για πολύ μικρό χρονικό

διάστημα πριν ξανά εξαϋλωθούν. ΄Οταν ένα τέτοιο ζεύγος σχηματιστεί κοντά στον ορίζοντα γε-

γονότων, το ένα σωματίδιο μπορεί να απορροφηθεί από την μελανή οπή αφήνοντας έτσι το άλλο

σωματίδιο του ζεύγους ελεύθερο. Αν το σωματίδιο αυτό έχει αρκετή ενέργεια για να δραπε-

τεύσει μέχρι το άπειρο, ένας μακρινός παρατηρητής θα αντιληφθεί την παραπάνω διαδικασία ως

ακτινοβολία προερχόμενη από τη μελανή οπή.

Σύντομα μετά τη διατύπωση της ΓΘΣ, σε μια προσπάθεια για την ενοποίηση της βαρύτητας με τον

ηλεκτομαγνητισμό, οι Kaluza και Klein υπέθεσαν την ύπαρξη μιας επιπλέον χωρικής διάστασης

πέρα των τριών που παρατηρούμε. Ο λόγος που η επιπλέον διάσταση δε γίνεται αντιληπτή είναι γιατί

είναι καμπυλωμένη με πολύ μικρή ακτίνα συμπαγοποίησης. Στα τέλη του προηγούμενου αιώνα, η

υπόθεση πως το Σύμπαν μας διαθέτει επιπλέον χωρικές διαστάσεις βρέθηκε ξανά στο προσκήνιο

στα πλαίσια των μοντέλων βρανών (brane-world models). Σε αυτά τα μοντέλα ο χωρόχρονος

είναι (1+3+D)-διάστατος, ενώ το Σύμπαν που παρατηρούμε μπορεί να θεωρηθεί ως μια μεμβράνη

1 + 3 διαστάσεων η οποία είναι εμβαπτισμένη μέσα στον πλήρη (1 + 3 +D)-διάστατο υπερχώρο.

Το πρώτο μέρος της διατριβής είναι αφιερωμένο στη μελέτη της ακτινοβολίας Hawking από

πολυδιάστατες (HD) μελανές οπές τύπου Schwarzschild de-Sitter (SdS) οι οποίες περιγράφουν

σφαιρικά συμμετρικές μελανές οπές παρουσία θετικής κοσμολογικής σταθεράς. Η ύπαρξη μιας

θετικής κοσμολογικής σταθεράς έχει ως αποτέλεσμα την εμφάνιση ενός κοσμολογικού ορίζοντα

(σε ακτινική απόσταση r = rc από την αρχή των συντεταγμένων) επιπλέον του ορίζοντα της

μελανής οπής. Οι δύο ορίζοντες αποτελούν τα όρια του αιτιατού μέρους του Σύμπαντος για ένα

αδρανιακό παρατηρητή που βρίσκεται σε μια θέση r = r0 ανάμεσα από τους δύο ορίζοντες

rh 6 r0 6 rc.

Στο πρώτο κεφάλαιο, κάνουμε μια σύντομη εισαγωγή σε βασικές έννοιες της ΓΘΣ, της θερμο-

δυναμικής των μελανών οπών και στην ακτινοβολία Hawking καθώς και στις θεωρίες επιπλέον

χωρικών διαστάσεων. Στη συνέχεια, στο δεύτερο κεφάλαιο, επικεντρωνόμαστε στον αναλυτικό

υπολογισμό των Συντελεστών Γκρίζου Σώματος (ΣΓΣ) (greybody factors) για ένα βαθμωτό
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πεδίο σε μη-ελάχιστη σύζευξη με τη βαρύτητα, το οποίο διαδίδεται στο γεωμετρικό υπόβαθρο μιας

μελανής οπής HDSdS. Οι ΣΓΣ αποτελούν πολύ βασικές ποσότητες μεταξύ άλλων και για τη

μελέτη της ακτινοβολίας Hawking από μια μελανή οπή καθώς το φάσμα της εκπομπής διαφέρει

από αυτό ενός τέλειου μέλανος σώματος κατά ένα παράγοντα ίσο με τον ΣΓΣ.

Για τον αναλυτικό υπολογισμό των ΣΓΣ επιλύουμε ένα πρόβλημα σκέδασης στο ενεργό δυναμικό

Regge-Wheeler του βαρυτικού πεδίου της HDSdS μελανής οπής. Οι ΣΓΣ αντιστοιχούν στην

πιθανότητα διέλευσης από το φράγμα δυναμικού για σωματίδια που γεννώνται από τη μελανή

οπή και διαδίδονται προς μεγαλύτερες τιμές της ακτινικής συντεταγμένης. Υποθέτοντας σφαιρικά

συμμετρικό πεδίο και χρησιμοποιώντας τη μέθοδο χωρισμού των μεταβλητών επιτυγχάνουμε την

αποσύζευξη των ακτινικών μερών των εξισώσεων κίνησης του πεδίου για διάδοση περιορισμένη

πάνω στη μεμβράνη καθώς και για διάδοση στον υπερχώρο. Οι δύο ακτινικές διαφορικές εξισώσεις

που προκύπτουν είναι πολύ δύσκολο να επιλυθούν ακριβώς αναλυτικά και συνεπώς καταφύγαμε

στην χρήση μιας προσεγγιστικής μεθόδου γνωστής και ως ΜΕθόδου Ταύτισης των Ασυμπτωτικών

Λύσεων (ΜΕΤΑΛ). Με τη ΜΕΤΑΛ κάτω από κατάλληλους μετασχηματισμούς της ακτινικής

συντεταγμένης και επανορισμό του πεδίου μπορούμε να φέρουμε την εξίσωση κίνησης σε μορφή

γνωστής διαφορικής εξίσωσης κοντά στους ορίζοντες οπότε και μπορούμε να τη λύσουμε. Στη

συνέχεια, για να διασφαλίσουμε την ύπαρξη λύσης σε όλο το εύρος της ακτινικής συντεταγμένης

κάνουμε ταύτιση των δύο ασυμπτωτικών λύσεων στην ενδιάμεση περιοχή κάτω από κατάλληλα

αναπτύγματα.

Κοντά στους ορίζοντες, και συναρτήσει της λεγόμενης tortoise συντεταγμένης μπορούμε να

γράψουμε τις λύσεις των εξισώσεων κίνησης για το πεδίο με τη μορφή επίπεδων ελεύθερων κυ-

μάτων και από το λόγο των πλατών των εξερχόμενων και εισερχόμενων κυμάτων να υπολογίσουμε

τους ΣΓΣ. Στην ανάλυση μας για τη λύση κοντά στον ορίζοντα της μελανής οπής, σε αντίθεση

με παρόμοιες μελέτες, καταφέραμε να βρούμε ένα κατάλληλο μετασχηματισμό για την ακτινική

συντεταγμένη ο οποίος λαμβάνει υπόψη και την κοσμολογική σταθερά. Κατ’ αυτόν τον τρόπο, τα

αναλυτικά μας αποτελέσματα έχουν μεγαλύτερη ακρίβεια.

Τα αναλυτικά μας αποτελέσματα για τους ΣΓΣ (στη μεμβράνη και τον υπερχώρο) είναι ακριβή για

χαμηλές ενέργειες, μικρές τιμές της κοσμολογικής σταθεράς (Λ), και για μικρές τιμές της στα-

θεράς σύζευξης του βαθμωτού πεδίου (ξ) με το βαθμωτό καμπυλότητας του Ricci. Ωστόσο είναι

έγκυρα για αυθαίρετο αριθμό επιπλέον χωρικών διαστάσεων και για κβαντικό αριθμό τροχιακής

στροφορμής του πεδίου (l).

Και στα δύο “κανάλια εκπομπής ” (στη μεμβράνη και στον υπερχώρο) βρήκαμε πως οι ΣΓΣ

καταστέλονται με τη σταθερά μη-μηδενικής σύζευξης του πεδίου, με τον κβαντικό αριθμό της

τροχιακή στροφορμής καθώς και με τον αριθμό των επιπλέον χωρικών διαστάσεων (n). ΄Οσον

αφορά την επίπτωση στους ΣΓΣ της τελευταίας παραμέτρου του συστήματος , δηλαδή της θετικής

κοσμολογικής σταθεράς, διαπιστώσαμε πως ο ρόλος της είναι δυικός. Ανάλογα με την τιμή του ξ,
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η αύξηση της Λ μπορεί να ενισχύσει ή να καταστείλει την εκπομπή σωματιδίων. Η συμπεριφορά

αυτή οφείλεται στον τρόπο που η κοσμολογική σταθερά εμφανίζεται στις εξισώσεις. Από τη μια

μεριά, εμφανίζεται στη συνάρτηση της μετρικής ως πυκνότητα ενέργειας του κενού και συνεπώς

ενισχύει την εκπομπή σωματιδίων. Από την άλλη μεριά, εμφανίζεται στην έκφραση της ενεργού

μάζας για τα βαθμωτά σωματίδια μέσω ενός γινομένου με το ξ και έτσι, όσο πιο βαριά γίνονται

τα σωματίδια τόσο πιο δύσκολο είναι να εκπεμφθούν από την μελανή οπή. Για μικρές τιμές του ξ

η πρώτη συνεισφορά της Λ ως ενέργειας κενού κυριαρχεί με αποτέλεσμα οι ΣΓΣ να ενισχύονται,

ενώ για μεγαλύτερες τιμές της σταθεράς μη-ελάχιστης σύζευξης τα σωματίδια αποκτούν αρκετά

μεγάλη ενεργή μάζα προκαλώντας την καταστωλή των ΣΓΣ.

Η μελέτη των αναλυτικών εκφράσεων των ΣΓΣ στο χαμηλοενεργειακό όριο αποκάλυψε πως το

γνωστό μη-μηδενικό γεωμετρικό όριο για το κυρίαρχο mode του πεδίου χάνεται όταν το πεδίο δεν

είναι σε ελάχιστη σύζευξη με τη βαρύτητα, ένα αποτέλεσμα που ισχύει εξίσου για τη μεμβράνη και

τον υπερχώρο. Οι πρώτες διορθώσεις και στις δύο περιπτώσεις είναι τάξης O(ω2) στην ενέργεια,

(ω) ενώ τις ακριβείς εκφράσεις των διορθώσεων συναρτήσει των παραμέτρων του συστήματος

έχουμε υπολογίσει και παρουσιάζουμε.

Για την πλήρη μελέτη της ακτινοβολίας Hawking σε όλο το ενεργειακό φάσμα, είναι απαραίτητο

να έχουμε την ακριβή μορφή των ΣΓΣ και επομένως τα προσεγγιστικά αναλυτικά αποτελέσματα

που υπολογίσαμε δεν είναι αρκετά. Για το λόγο αυτό, στο τρίτο κεφάλαιο αναπτύξαμε έναν αριθμη-

τικό κώδικα για την επίλυση των ακτινικών εξισώσεων κίνησης στη μεμβράνη και στον υπερχώρο,

προκειμένου να λάβουμε τις ακριβείς εκφράσεις για τους ΣΓΣ. Η σύγκριση ανάμεσα σε αναλυτικά

και αριθμητικά αποτελέσματα φανέρωσε εντυπωσιακή συμφωνία ανάμεσα στα δύο σετ στη χαμηλο-

ενεργειακή περιοχή (σε κάποιες περιπτώσεις και πέρα από αυτή) ενώ αποκλίσεις εφανίζονται όταν

τα Λ και ξ αποκτούν μεγάλες τιμές.

΄Εχοντας τις ακριβείς εκφράσεις των ΣΓΣ στη διάθεση μας, υπολογίσαμε στη συνέχεια το φάσμα

της ακτινοβολίας Hawking για την HDSdS μελανή οπή στη μεμβράνη και στον υπερχώρο. Για τη

θερμοκρασία της μελανής οπής χρησιμοποιήσαμε την κανονικοποίηση των Bousso και Hawking,

η οποία λαμβάνει υπόψη την απουσία του ασυμπτωτικά επίπεδου ορίου της μετρικής SdS. Βρήκαμε

πως και στα δύο κανάλια εκπομπής, το φάσμα ενισχύεται με τον αριθμό των επιπλέον χωρικών

διαστάσεων, ενώ η αύξηση του ξ προκαλεί καταστολή της εκπομπής σε όλο το ενεργειακό φάσμα.

Επίσης, ο δυικός ρόλος της κοσμολογικής σταθεράς που παρατηρήθηκε στους ΣΓΣ μεταβιβάζεται

και στην ακτινοβολία Hawking καθώς, ανάλογα με την τιμή του ξ, η κοσμολογική σταθερά

ενισχύει ή καταστέλλει την ακτινοβολία.

Ακολούθως, υπολογίσαμε το λόγο των ολικών εκπεμπτικοτήτων της μελανής οπής στον υπερχώρο

και στη μεβράνη για διάφορες τιμές των παραμέτρων. Με αυτό τον τρόπο μπορούμε να αποφαν-

θούμε για το ποιο είναι το προτιμητέο κανάλι εκπομπής, δηλαδή μπορούμε να διαπιστώσουμε πού

εκπέμπει η μελανή οπή το μεγαλύτερο μέρος της ακτινοβολίας της. Η μελέτη του λόγου των
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ολικών εκπεμπτικοτήτων φανερώνει πως η εκπομπή στον υπερχώρο είναι αυτή που κυριαρχεί όταν

οι τιμές της σταθεράς μη-ελάχιστης σύζευξης και του αριθμού των επιπλεόν διαστάσεων είναι ταυ-

τόχρονα μεγάλες. Αξίζει να σημειωθεί πως αυτή είναι μια από τις ελάχιστες φορές όπου το κανάλι

εκπομπής στον υπερχώρο κυριαρχεί του αντίστοιχου στη μεμβράνη και ο λόγος που συμβαίνει

αυτό είναι ο μη τετριμμένος τρόπος με τον οποίο το πεδίο συζευγνύεται με τη βαρύτητα.

Στο κεφάλαιο 4, επικεντρωθήκαμε στην επίδραση της θερμοκρασίας στην ακτινοβολία Hawking

της HDSdS μελανής οπής. Η παρουσία ενός δεύτερου ορίζοντα στο χωρόχρονο πέραν του ο-

ρίζοντα της μελανής οπής δημιουργεί προβλήματα στον ακριβή ορισμό της θερμοδυναμικής των

ασυμπτωτικά de-Sitter μελανών οπών. Αρχικά η απουσία ενός ασυμπτωτικά επίπεδου ορίου σύμ-

φωνα με το οποίο κανονικοποιείται η επιφανειακή βαρύτητα και κατά συνέπεια και η θερμοκρασία

απαιτεί να ορίσουμε τη θερμοκρασία με βάση έναν αδρανειακό παρατηρητή που βρίσκεται στην

περιοχή ανάμεσα από τους δυο ορίζοντες. Επιπλέον, καθώς εν γένει οι δυο ορίζοντες έχουν

διαφορετική θερμοκρασία, ο χωρόχρονος SdS δε βρίσκεται σε θερμοδυναμική ισορροπία καθώς

υπάρχει μια μόνιμη ροή θερμότητας από το θερμότερο ορίζοντα της μελανή οπής προς τον ψυ-

χρότερο κοσμολογικό ορίζοντα. Για το λόγο αυτό πρόσφατα έχει προταθεί η ενεργός προσέγγιση

στη θερμοδυναμική των ασυμπτωτικά de-Sitter μελανών οπών όπου, αντί καθένας από τους δυο

ορίζοντες να έχει το δικό του πρώτο θερμοδυναμικό νόμο, ορίζουμε έναν τέτοιο νόμο για ολόκληρο

το σύστημα και με αυτό τον τρόπο παίρνουμε μια έκφραση για την θερμοκρασία.

Για την αντιμετώπιση των προαναφερθέντων προβλημάτων, έχουν προταθεί στη βιβλιογραφία δι-

άφοροι ορισμοί ως οι κατάλληλοι για τη θερμοκρασία της SdS μελανής οπής. Χρησιμοποιώντας

τα ακριβή αριθμητικά αποτελέσματα για τους ΣΓΣ που υπολογίσαμε στο προηγούμενο κεφάλαιο,

συγκρίναμε τα φάσματα εκπομπής για 6 διαφορετικές θερμοκρασίες μια εκ των οποίων προτείνουμε

για πρώτη φορά. Η σύγκριση των φασμάτων καταδεικνύει πως η έκφραση της θεμοκρασίας που

επιλέγεται για τη μελέτη της ακτινοβολίας Hawking επηρεάζει σημαντικά το απορρέον φάσμα

εκπομπής. Κάποιες από τις θερμοκρασίες αδυνατούν να οδηγήσουν σε σημαντική εκπομπή ακτινο-

βολίας, ενώ άλλες το επιτυγχάνουν μόνο για μικρές ή μεγάλες τιμές της κοσμολογικής σταθεράς.

Σε κάθε περίπτωση, διαπιστώσαμε πως η επιλογή της θερμοκρασίας που έχει προταθεί από τους

Bousso και Hawking είναι αυτή που οδηγεί στο πιο έντονο φάσμα εκπομπής.

Στο δεύτερο μέρος της διατριβής, στραφήκαμε στο πρόβλημα εντοπισμού των μελανών οπών πάνω

στη μεμβράνη σε μοντέλα καμπύλων επιπλέον διαστάσεων (ΚΕΔ) (warped extra dimensions). Σε

αντίθεση με τα μοντέλα μεγάλων επιπλέον διαστάσεων (large extra dimensions) όπου αναλυτικές

λύσεις μελανών οπών είναι γνωστές εδώ και δεκαετίες, στα μοντέλα ΚΕΔ μέχρι σήμερα δεν

έχουν βρεθεί ακριβείς αναλυτικές λύσεις πεντα-διάστατων μελανών οπών εντοπισμένες πάνω στη

μεμβράνη. Προς αυτό το στόχο, επεκτείνοντας προηγούμενες δουλειές, θεωρήσαμε ένα ansatz

για τη μετρική τύπου Vaidya η οποία εκφυλίζεται σε μια μετρική τύπου Schwarzschild πάνω στη

μεμβράνη.
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Προκειμένου να προσδώσουμε μεγαλύτερη ευελιξία στις εξισώσεις, επιλέξαμε η παράμετρος μάζας

να εμφανίζει εξάρτηση από τη χρονική και την ακτινική συντεταγμένη καθώς και από τη συντε-

ταγμένη της επιπλέον διάστασης. Για να υποστηρίξουμε μια τέτοια λύση μέσω των εξισώσεων

Einstein χρειάζεται να έχουμε ένα μη-μηδενικό τανυστή ορμής-ενέργειας (Tµν) στον υπερχώρο.

΄Ετσι, θεωρήσαμε διάφορες κατανομές πεδίων για τον Tµν του υπερχώρου ξεκινώντας από την

πιο απλή μη-τετριμμένη περίπτωση όπου ο υπερχώρος εμπεριέχει μόνο μια κοσμολογική σταθερά.

Ακολούθως, θεωρήσαμε ένα βαθμωτό πεδίο με κανονικό ή και με μη-κανονικό κινητικό όρο στη

Λαγκρανζιανή και μετά μελετήσαμε την περίπτωση όπου δυο αλληλεπιδρώντα πεδία υπάρχουν στον

υπερχώρο με απλούς και μικτούς κινητικούς όρους. Τέλος, θεωρήσαμε την περίπτωση όπου στη

Λαγκρανζιανή έχουμε μια γενική συνάρτηση σύζευξης f(Φ) ανάμεσα στο βαθμωτό πεδίο Φ και

το βαθμωτό Ricci μαζί με ένα γενικό δυναμικό καθώς και ένα όρο κοσμολογικής σταθεράς.

Σε κάποιες από τις παραπάνω περιπτώσεις βρήκαμε συναρτήσεις μάζας οι οποίες είναι συμβατές

με τις εξισώσεις περιορισμού (constraints). Η αντικατάσταση αυτών των λύσεων στη συνάρτηση

μετρικής γεννά διάφορους ενδιαφέροντες όρους τύπου Schwarzschild (r−1), (anti)de-Sitter (r2)

ή τύπου Reissner-Nordstrom (r−2). Ωστόσο, όποτε τέτοιες λύσεις υπάρχουν το προφίλ της συ-

νάρτησης μάζας κατά μήκος της επιπλέον διάστασης δεν είναι το κατάλληλο για τον εντοπισμό της

ιδιομορφίας κοντά στη μεμβράνη και κατά συνέπεια οι λύσεις αυτές δεν οδηγούν σε εντοπισμένες

μελανές οπές.

Στο κεφάλαιο 6 παρουσιάζουμε αναλυτικά τα συμπεράσματα της διατριβής.
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Chapter 1

Introduction

1.1 General theory of relativity

The General Theory of Relativity (GR) was formulated over a century ago by Albert Einstein [13]

and to date, it provides the most accurate description of gravity1. In Einstein’s theory the Newtonian

force of gravity has been replaced by curvature in space and time. The presence of matter causes

spacetime to “curve” and in turn, the curvature of spacetime dictates the way matter moves in it along

geodesics. In this section we introduce some basic concepts of GR and refer the interested reader to

an indicative list of text on the subject for further details [15–23].

1.1.1 Geometry and gravity

The mathematical framework upon which GR has been formulated is that of differential geometry

[24–26] that constitutes a generalization of the usual Euclidean geometry by considering properties

of vectors and curves on curved surfaces. In the language of differential geometry, the gravitational

field, corresponds to a symmetric rank-2 tensor (endowed with some special properties) called the

metric tensor gµν , or simply the “metric”. Let us now define some important geometric quantities

more rigorously.

Starting with the most basic concept in relativity, we have the notion of spacetime that is defined as

a manifold with a metric on it (M, g). Vectors pa in curved spacetime are understood as differential

operators and are defined as tangents to curves on M . Inversely, curves on M are defined by vector

fields. Dual vectors (also termed as one-forms) are symbolized with lower indices pα and are defined as

linear operations acting on vectors and giving numbers (complex in general). A combination between

a dual vector and a vector corresponds to the inner product . One of the important roles of the metric

is to provide a way to combine a vector and a dual vector to produce a number.

The generalization of vectors and dual vectors in this abstract language are tensors, that are defined

as operations on vectors and dual vectors that produce numbers. In order for an object T a1,...,ar b1,...,bs
to be a tensor of type (s, r) it has to transform appropriately under coordinate transformations. Under

a general coordinate transformation of the form xa → x
′a(x) the tensor components between the two

1For a review on the status of the experimental tests of GR see [14] and references therein.
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coordinate systems are related as

T
′a1,...,ar

b1,...,bs
=

(
∂x
′a

∂xc

)
. . .

(
∂xd

∂x′b

)
T c1,...,cr d1,...,ds

. (1.1)

By including a metric tensor gµν on a manifold we have a metric space. This gives birth to the notion

of distances in spacetime which are encoded in the so-called line element

ds2 = gabdx
adxb . (1.2)

With this, yet another important feature of the metric is uncovered, namely that it converts coordinate

increments (differentials) into physical distances. Points on a metric space are termed events and are

usually specified by a “time coordinate” and a number (depending on the dimensionality of spacetime)

of “space coordinates”.

Once we have a metric we can lower and raise indices between vectors and dual vectors as follows:

gabpa = pb , gabp
a = pb . (1.3)

It is important to notice that before we introduce a metric on the manifold to make it a metric space

the two notions of vectors are independent and so the inclusion of the metric provides a relation

between the two. As a consequence, it is common that both vectors and dual vectors are referred to

simply as “vectors” when dealing with metric spaces.

Another important quantity is the inverse metric that corresponds to the inverse matrix of the matrix

representation of the original metric

gabgbc = δac . (1.4)

Aside from the metric we may also assign another independent (in general) structure to the manifold,

called the connection Γab c. This quantity is not a tensor as it does not transform like one under

coordinate transformations. For the record, it is possible, in abstract differential geometry terms, to

have a manifold with a connection and no metric on it. In this case we would have an affine manifold .

Usually in GR it is common to have both a metric and a connection on the manifold. It is also

very common to choose a connection that is metric compatible. This means that the connection is

completely tied to the metric and is obtained via first derivatives of the metric in the following way:

Γab c =
1

2
ga d (∂bgd c + ∂cgd b − ∂dgb c) . (1.5)

In this case the connection is called the Christoffel symbols which are also symmetric in the lower

indices. This last property is a feature enjoyed by the connection in torsion-free theories. The role of

the connection is to give us a “transport rule” to move vectors on the manifold from one point to the
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other, then be able to take the difference between the two vectors and by dividing with the distance

between the vectors be able to get a covariant derivative.

In covariant differentiation we distinguish two cases. There are cases where you have a vector field

defined only on a curve and cases where a vector field is defined in an open region in spacetime. So,

suppose that we have a vector field on a curve γ. The vector field on the curve means that for each

point on the curve we know what the vector is. So the vector is defined everywhere on the curve and

only on the curve. If the field is defined only on the curve we can only differentiate it only along the

curve. To do that we need a parameter description of the curve which essentially is just giving the

coordinate description of the curve in terms of some running parameter

γ : xµ(λ). (1.6)

So, for each value of the parameter λ we know the coordinates of the curve and in this way we can

“build” the curve. As an example, if we talk about the world-line of an observer the role of λ would

be played by proper time (τ).

What we are looking for is to create a notion for

dAµ

dλ
, (1.7)

the derivative of a vector field with respect to the parameter. If we didn’t have a problem with dealing

with vectors in different points the derivative would be straight-forward. We define the covariant

derivative along a curve as follows:

DAa

∂λ
=
∂Aa

∂λ
+ ΓabcA

b∂x
c

∂λ
. (1.8)

When we calculate the covariant derivative along the curve we don’t need to know anything about

the vector field away from the curve! We also introduce the notion of the tangent vector to the curve

γ : ta ≡ ∂xa

∂λ
, (1.9)

as the derivative of the coordinate description of the curve with respect to the parameter λ. In this

notation we can re-write the expression for the covariant derivative along a curve as

DAa

∂λ
=
∂Aa

∂λ
+ ΓabcA

btc. (1.10)

Now we turn to the broader case where we have a vector field defined in an open region Aa(xµ) and

not only on a curve and calculate its covariant derivative. We are now able to take its derivative in

all directions. In that case we define the covariant derivative with respect to any coordinate direction

β as

Aa;β = ∇βAa = Aa,β + ΓaβcA
c . (1.11)
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Finally, by comparing (1.10) and (1.11), we see that we can write the covariant derivative along a

curve as the full covariant derivative multiplied by the tangent to the curve as

DAa

∂λ
= Aa;βt

β . (1.12)

In GR the paths that point-particles follow in the curved spacetime correspond to geodesic curves

when no other force apart from gravity is exerted on them. These are curves with the very special

property that they extremize the distance between two events. Depending on the sign of the norm of

their tangent vector ta, there are three types of geodesics, namely spacelike (when tata > 0), timelike

(when tata < 0) and lightlike or null (when tata = 0). Massive particles follow timelike trajectories

while massless particles (such as photons) move along null trajectories. Finally, spacelike geodesics

do not have a physical interpretation and so we will not consider them any further.

Let us focus on timelike geodesics. They are timelike curves in spacetime with the fundamental

property of the extremum of proper time between two events. Proper time is defined as the negative

spacetime interval

dτ2 ≡ −ds2 , (1.13)

and we take the minus sign because we have the dominance of the time direction versus the space one

in timelike curves. So the proper time between two events A and B is going to be

τ(A→ B) =

∫ B

A

√
−gab

dxa

dλ

dxb

dλ
dλ , (1.14)

and this integral is called proper time functional. It is a functional of the path A to B because we have

to calculate the metric along the path we have chosen as well as the coordinate differentials along the

path. Notice that the parameter λ in eq. (1.14) is not necessarily the proper time τ , but rather an

arbitrary parameter. Employing the Euler-Lagrange method with the Lagrangian

L =

√
−gab

dxa

dλ

dxb

dλ
, (1.15)

we end up with the geodesic equation

d2xa

dλ
+ Γabc

dxb

dλ

dxc

dλ
= κ

dxa

dλ
, κ ≡ 1

L
dL
dλ

. (1.16)

In general, when λ 6= τ the quantity κ is non-zero. If now we choose τ to parametrize the curve, we

have that L = 1 → κ = 0. In fact this is true for any parameter λ that is linearly related to the

proper time parameter i.e. λ = aτ+b, for arbitrary constants a and b. This special class of parameters

correspond to the so-called affine parametrization.
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Using the tangent vector to a curve (1.9) we may also write eq. (1.16) using the covariant derivative

in the following way:

ta∇atb = κ tb , ta ≡ dxa(λ)

dλ
. (1.17)

The left hand side (l.h.s.) of the above equation can be geometrically understood as the projection of

the acceleration of the curve on to the direction of the speed of the curve. Physical observers follow

timelike geodesics and the “natural choice” of parametrization for the curve is their proper time (τ).

Thus, the right hand side (r.h.s.) of eq. (1.17) vanishes and so we see that geodesics are curves of

zero acceleration.

When it comes to null geodesics, i.e. the path that light takes in curved spacetime, the affine param-

eterization of the curve is no longer a good choice of parameter. This is due to the fact that for null

curves ds2 = 0 and so the proper time interval vanishes as well. Thus, null geodesics are in general

described in terms of non-affine parameters. In general we define null geodesics as the integral curves

of vectors ka that satisfy

ka∇akb = f(x) kb , kaka = 0 , (1.18)

where f(x) is a function of spacetime.

1.1.2 Einstein’s field equations

The field equations for the gravitational field are obtained from the variation of the Einstein-Hilbert

action

S =

∫ (
R

2κ2
D

+ Lm
)√
−gdDx , (1.19)

with respect to the metric tensor gµν . In the above, R is the Ricci scalar, κ2
D ≡ 8πG/c4 where G

is the gravitational constant and c is the speed of light; Lm is the Lagrangian describing the matter

content of spacetime, g is the metric determinant and D = 4 + n is the total number of dimensions,

where an arbitrary number n of extra spacelike dimensions has been introduced.

The variation of eq. (1.19) with respect to the metric yields the Einstein’s Field Equations (EFEs)

Gµν ≡ Rµν −
1

2
gµν R = κ2

D Tµν , (1.20)

where Gµν is the Einstein tensor given in terms of the Ricci tensor Rµν (involving second derivatives

of the metric tensor). Finally, on the right-hand side (r.h.s.) of the Einstein equations we have the

energy-momentum tensor Tµν that describes the distribution of energy and momentum and is defined

via

Tµν ≡
2√
−g

δ(
√
−gLm)

δgµν
. (1.21)



8

When the action (1.19) is extended to include a positive cosmological constant2 term (−Λ/κ2
D , Λ > 0)

that may be interpreted as a contribution from the field-theory part originating from Lm or as a

geometric term in the same way that R enters the action, the EFEs are then

Gµν + gµνΛ = κ2
D Tµν . (1.22)

1.1.3 Some exact solutions

To obtain the form of the metric tensor, one has to solve the EFE. In four dimensions, eq. (1.20)

corresponds to ten non-lineal differential equations with respect to the metric tensor components and,

in general, obtaining an analytic solution is nearly impossible unless some symmetry conditions are

imposed in order to simplify the form of the equations.

The first and simplest vacuum solution (Tµν = 0)3 to the EFEs was found by (and named after)

Karl Schwarzschild [28] shortly after Einstein introduced GR. The Schwarzschild solution has a line

element that in spherical coordinates (t, r, θ, φ) is given by

ds2 = gµνdx
µdxν = −

(
1− rh

r

)
dt2 +

(
1− rh

r

)−1
dr2 + r2

(
dθ2 + sin θ2dφ2

)
, (1.23)

where rh ≡ 2Gm
c2

is the Schwarzschild radius given in terms of the mass m. In the limit m → 0 the

above line element reduces to the Minkowski metric of flat spacetime. One of the important properties

of this spacetime is its time-independence. The latter is immediately evident since the time coordinate

(t) does not appear in any of the metric components. Due to its simplicity, we will often refer to the

four dimensional Schwarzschild metric when introducing various quantities in this introduction.

According to Birkhoff’s theorem [29], the Schwarzschild solution corresponds to the unique spherically

symmetric and uncharged vacuum solution to the EFEs. Notice, that the metric4 becomes “prob-

lematic” in two specific values of the radial coordinate, r = 0 and r = rh. These values cause the

divergence and vanishing, respectively, of the so-called metric function associated with the element

gtt of the metric

− gtt ≡ h(r) =
(

1− rh
r

)
. (1.24)

Therefore, the line element (1.23) becomes inappropriate for the description of physics in this region

since we have the appearance of singularities. Not both of these singularities are of the same type

though. Consider the Kretschmann scalar RµνρσRµνρσ corresponding to the square of the Riemann

tensor. Since it is a scalar quantity constructed out of the Riemann tensor, it measures the curvature

in a way that does not depend on the coordinate system. For the Schwarzschild metric, it has the

2Initially introduced by A. Einstein in order to support a static universe [27].
3This means that no matter or non-gravitational fields are present.
4Often the term “metric” is used to refer to the line element as well.
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following form:

RµνρσRµνρσ =
48G2m2

r6
, (1.25)

and clearly diverges at r → 0. Thus the singularity located at r = 0 in the Schwarzschild metric is

a physical one since it causes the divergence of the scalar invariant of the curvature tensor; therefore

it cannot be eliminated by any coordinate transformation. All observers agree that the physical

singularity is there and physics breaks down at its location. On the other hand, at r = rh we have

a coordinate singularity because the curvature scalars are well behaved there. Under appropriate

coordinate transformations these types of singularities can be eliminated. So it becomes clear that

the distinguishing characteristic between different types of singularities is whether or not they cause

the curvature scalars to diverge.

When one includes the cosmological constant term into the 4-dimensional Einstein-Hilbert action, the

metric (1.23) is generalized to the Schwarzschild-de Sitter (SdS) line element

ds2 = gµνdx
µdxν = −

(
1− rh

r
− Λ

3
r2

)
dt2 +

(
1− rh

r
− Λ

3
r2

)−1

dr2 + r2
(
dθ2 + sin θ2dφ2

)
, (1.26)

where the extra “cosmological constant term” −Λr2 appears in the metric function. The SdS metric

can be generalized to an arbitrary number of extra space-like dimensions [30] and thus the Higher-

dimensional (HD) SdS metric is obtained

ds2 = GMNdx
MdxN = −h(r) dt2 +

dr2

h(r)
+ r2dΩ2

2+n . (1.27)

In the above, the metric function is

h(r) = 1− µ

rn+1
−

2κ2
DΛ

(n+ 2)(n+ 3)
r2 , (1.28)

and dΩ2
2+n is the surface element of a (2 + n)-dimensional unit sphere given by

dΩ2
2+n = dθ2

n+1 + sin2 θn+1

(
dθ2
n + sin2 θn

(
...+ sin2 θ2 (dθ2

1 + sin2 θ1 dϕ
2) ...

))
, (1.29)

with 0 ≤ ϕ < 2π and 0 ≤ θi ≤ π, for i = 1, ..., n+ 1.

The line element of eq. (1.27) will play a very important role in this thesis as it constitutes the basis

for the majority of the analysis performed.
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Figure 1.1: The “echo” of the merging of black holes as detected in the form of gravitational waves
by the LIGO collaboration. Credit: [38]

1.2 Black holes

In this section we introduce some of the basic concepts of black holes (BHs). Black holes are definitely

amongst the most exciting predictions of GR [26, 31–36]. They are regions of spacetime so intensely

curved that nothing, not even light, can escape. Classical BHs are solutions to the EFE and are

characterized by the existence of an event horizon at the boundary and a singularity at its core.

The solutions (1.23), (1.26) and (1.27) presented above describe static, spherically-symmetric and

uncharged black holes either in the absence or presence of a cosmological constant. The existence of

singularities in GR is an indication that the predictive power of the theory breaks down in this region

and a description based on a yet to be found complete theory of quantum gravity becomes necessary.

Even though we have never directly observed a black hole, the observational indications seem to

strongly support the existence of BHs; from the orbits of stars close to the center of our galaxy

that hint towards a super massive black hole [37] to the most recent indirect observation coming

from a series of detected signals of gravitational waves [38], that are in stunning agreement with the

predictions of GR, generated by the coalescing of black holes (see Fig. 1.1). Finally, the Event Horizon

Telescope (EHT) [39] is set to capture the first “image” of a black-hole horizon by creating a virtual

Earth-sized telescope and targeting Sgr A∗ at the center of our galaxy.
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1.2.1 Symmetries and Killing vectors

In GR it is often very important to be able to express the invariance of a tensor under translations

along a direction in spacetime (as we shall see this is related with conserved quantities along geodesics).

To this end it will prove useful to introduce yet another type of differentiation that is more “primitive”

than the covariant derivative (1.11), in the sense that it does not require the extra structure of the

connection in order to be defined. This new type of differentiation is the Lie derivative LU that is

defined along the integral curves of a given vector field Ua, in an open region of a manifold. The Lie

derivative with respect to a vector field Ua acting on another vector field Aa is written as

LUAa = U b∂bA
a −Ab∂bUa = −LAUa . (1.30)

Geometrically we can understand eq. (1.30) as the projection of the partial derivative of the vector

Aa along the vector Ua minus the projection of the partial derivative of Ua along Aa. Even though we

used partial derivatives to illustrate that Lie derivative is defined independently of a connection, it is

clear that due to the minus sign between the two terms if we simply replace the partial differentiations

with covariant ones, the Christoffel symbols that appear cancel out. This is why we may use instead

the following expression as the “definition”:

LUAa = U b∇bAa −Ab∇bUa . (1.31)

From the above equation it becomes clear that Lie differentiation is a covariant operation since both

terms on the r.h.s. are tensors. As is usually the case with any differential operator, LU obeys the

product rule of differentiation. When acting upon scalar quantities it reduces to partial differentiation

i.e. LUΦ = Ua∂aΦ, while acting on one forms and mixed tensors it has the following effects:

LUBa = U b∇bBa +Bb∇aU b , (1.32)

LUT ab = U c∇cT ab − T cb∇cUa + T ac∇bU c . (1.33)

Let us now see how to use the Lie derivative to state that an object5 is invariant under translations

along a direction in the manifold in a covariant, i.e. coordinate independent, manner.

Consider a specific coordinate system in four dimensions xa = (x0, x1, x2, x3) and suppose that a

vector Aa does not depend on the first of the coordinates (x0). Then in the coordinate system xa

this is stated as ∂Aa/∂x0 = 0. Of course this last condition will not hold in an arbitrary coordinate

system. Now, in xa, the vector that points along the direction of x0-changes will be Ua = (1, 0, 0, 0).

Since the components of Ua are constant, its partial derivative along any direction in xa will be

∂bU
a = 0 . (1.34)

5Here we will consider a vector, but this idea is generalized to arbitrary tensor fields.
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With the above it is clear that the “x0-independence condition” ∂Aa/∂x0 = 0 can be written equiva-

lently as

U b∂bA
a = 0 . (1.35)

Turning now to the definition of the Lie derivative (1.30) and using eqs. (1.34) and (1.35) we have

that

LUAa = U b∂bA
a −Ab∂bUa = 0 . (1.36)

Even though the above result has been derived for the specific coordinate system xa, the covariant

nature of LU guarantees that this holds in any coordinate system. We may thus conclude that the

invariance of a vector Aa along translations in the direction of U b is stated in a coordinate-independent

way by the vanishing of its Lie derivative

LUAa = 0 . (1.37)

The condition of eq. (1.37) is of course not only restricted to vector fields but is generalized to tensors.

Assume now that the Lie derivative of an arbitrary metric gab vanishes along the direction of a vector

ξa

Lξgab = 0 = ξc∇cgab + gcb∇aξc + gac∇bξc , (1.38)

where in the last step we used the definition for the Lie derivative. The first term in eq. (1.38)

vanishes due to metric compatibility ∇cgab = 0 and so we have

gcb∇aξc + gac∇bξc = ∇a (gcbξ
c) +∇b (gacξ

c) , (1.39)

which eventually leads to Killing’s equation

∇bξa +∇aξb = 0 . (1.40)

Any vector field satisfying eq. (1.40) is called a Killing Vector Field (KVF) and “points” along a

direction that the metric remains invariant. For any symmetry of the metric there is a corresponding

KVF associated with it. In D dimensions, the maximum number of linearly independent KVFs is

D(D + 1)/2 and when a metric has the maximum number of KVFs we have a maximally symmetric

space for which the Riemann tensor is given simply by

Rabcd =
R

D(D − 1)
(gacgbd − gadgbc) , (1.41)

where R is the Ricci scalar. Some characteristic examples of maximally symmetric spaces are the

Minkowski and de-Sitter spaces.

In general, in order to find the KVFs of a given metric one has to solve eq. (1.40) explicitly but often,

there are cases where one can “read” the KVFs simply by inspection of the metric. Based on the
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discussion above, it is clear that if in a given coordinate system the metric does not depend on one of

the coordinates there is a KVF associated with translations along that coordinate.

A linear combination of KVFs still satisfies Killing’s equation and this implies that KVFs are defined

up to a normalization constant. In chapter 4 we discuss different approaches to the normalization of

the KVFs depending on the asymptotic structure of the spacetime.

The symmetries of the metric and the associated Killing vectors that go with them give rise to con-

served quantities along the geodesics of the spacetime. Assume a KVF ξa and a geodesic parametrized

affinely by xa(λ) with tangent vector ta(λ) ≡ dxa(λ)/dλ. Then the following holds:

d

dλ
(taξa) = tb∇b (taξa) = ξat

b∇bta + tatb∇bξa = 0 . (1.42)

The first term vanishes due to the geodesic equation tb∇bta = 0 and the second by virtue of Killing’s

equation that constitutes the term ∇bξa antisymmetric. The result of eq. (1.42) then implies that

the quantity taξa is a constant of motion along the geodesic. Another useful result, that is trivial to

prove, is that for the energy momentum tensor T ab and a KVF ξa the quantity Tabξ
a ≡ Pb is also

conserved.

1.2.2 Event horizons and surface gravity

The coordinate singularity at r = rh in the Schwarzschild geometry corresponds to the location of

the Event Horizon (EH) of the black hole. This two-dimensional spherical surface with radius rh is

the outer boundary of the black hole. Anything that approaches the singularity to a distance smaller

than rh can never escape the gravitational attraction. According to the so-called cosmic-censorship

conjecture [40], any singularity in nature, with the only exception being the big-bang singularity,

remains “cloaked” behind an event horizon. This is a necessary requirement in order to preserve the

predictability of classical GR.

We have defined the event horizon loosely, as the outer boundary of the black hole. A horizon usually

appears for an observer (O) when there is gravity involved (curved spacetime) or even in the absence

of gravity (flat spacetime) when an observer undergoes constant proper acceleration (Rindler observer)

[41]. The effect of acceleration (or gravity) is to cause some regions of spacetime to become “causally

disconnected”. The same holds for in the case of “repulsive gravity” effect of the cosmological constant

(Λ). In the presence of a positive cosmological constant, the spacetime expands. As a result, at

distances larger than the typical scale of rc ≡
(√

Λ
)−1

the expansion of space is so rapid that signals

beyond this point can never reach the location of the observer. This way we have the appearance

of a cosmological horizon. For the current, exceptionally small value of the cosmological constant

Λ ∼ 10−52m−2 the radius of the cosmological horizon is rc ∼ 1026m or roughly 3Gpc!
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There are different types of horizons in black-hole physics including trapped surfaces, apparent

horizons, event horizons and dynamical horizons (see [23, 42] for more details). In static spacetimes

the event horizon and the so-called, Killing horizon are identified.

A Killing horizon, that we shall denote with H, is defined as a null hypersurface S(xa) = 0 that is

everywhere tangent to a Killing vector field Kµ which becomes null (KµKµ = 0) on H.

The defining property of a null hypersurface S(xa) = 0 is that its normal vector na ∼ ∂aS is null and

so we have the condition

gab∂aS∂bS = 0 . (1.43)

It can be shown that the integral curves of the KVF that becomes null on the location of the Killing

horizon H, are geodesics everywhere on H. This gives the parameter κ on the r.h.s. of the geodesic

equation (1.16), that measures the deviation from affinity of the parametrization of the geodesic, the

interpretation of the surface gravity [15, 22, 26] of the black-hole horizon. Explicitly on the location

of the Killing horizon it is given by

κ2
h = −1

2
∇bKa∇bKa|H . (1.44)

Surface gravity plays a very important role in black-hole thermodynamics since it is related to the

temperature of Hawking radiation as we shall see in the following sections.

1.3 Black-hole thermodynamics

In this section, we present the four laws of black hole mechanics and compare them to the laws of ther-

modynamics. Then we derive an expression for the physical temperature of a Killing-horizon valid for

an arbitrary spherically-symmetric spacetime. Finally, after introducing some basic tools of quantum

field theory in curved spacetime, we move on to sketch Stephen Hawking’s original calculation, and

obtain the famous Hawking formula for the spectrum of the black-hole radiation.

1.3.1 The four laws of black-hole mechanics

A striking similarity between black-hole mechanics and thermodynamics was uncovered in the classical

level in the early 70s in the form of the “four laws of black-hole mechanics” [43]. These laws state the

following

The four laws of black-hole mechanics
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Zeroth law: The surface gravity κh of a stationary black hole is constant everywhere on the

surface of the event horizon.

First law: Perturbing a stationary black hole with mass m, charge Q and angular momentum

J respectively by δm, δQ and δJ , the new state is described by (m+ δm,Q+ +δQ, J + δJ) and

the variations are related via

δm =
κh
8π
δA+ ΦhδQ+ ΩhδJ , (1.45)

where κh and A are respectively the surface gravity and surface area of the event horizon,Φh is

the electric potential on the horizon and Ωh is the angular velocity of the horizon.

Second law: In any (classical) process the surface area of the event horizon is non-decreasing

δA > 0 . (1.46)

Third law: It is impossible to reduce the surface gravity κh of the event horizon to zero under

a finite sequence of operations, no matter how idealized the procedure.

——————— ? ———————

There is a clear resemblance between the four laws given above and the corresponding laws of ther-

modynamics. In thermodynamics, the zeroth law states

For a system in thermal equilibrium, the temperature (T ) remains constant.

Thus we see that the surface gravity behaves similarly to the temperature, κh ↔ T . In the first

law for a thermodynamic system, small variations in the internal energy U and entropy S between

equilibrium states are related by

δU = TδS + work terms . (1.47)

Then, by the forms of eqs. (1.45) and (1.47) it is tempting to identify the black-hole mass with the

internal energy m ∼ U , and the surface area of the event horizon with the entropy A ∼ S. In fact the

entropy of the black hole was found to correspond to a quarter of the total surface area of the event

horizon S = A/4 [44] and in this way, the analogy between the laws suggests the identification of the

temperature with the surface gravity as T = κh/(2π).

The second law of thermodynamics states that

For a closed system the change in entropy is non-negative i.e. δS > 0.

Given that we have related the surface area of the black-hole horizon with the entropy of the black

hole, the second law of thermodynamics becomes reminiscent of Hawking’s area theorem.



16

The aforementioned analogy between the laws of black-hole mechanics and thermodynamics when

first realized certainly appeared to be simply a formal one. This is due to the fact that classically a

black hole is a perfect absorber and thus it cannot be endowed with temperature. Also, the entropy of

a thermodynamic system is a measure of the number of microstates that lead to the same macrostate

with a given volume, pressure and temperature. On the other hand, according to the no-hair theorems

[45–47], black holes are completely characterized only by a few parameters: mass, charge, and angular

momentum.

It was Hawking who first realized [48] that, when quantum effects are taken into account, the black

hole is endowed with entropy and non-vanishing temperature and in this way behaves exactly like

a thermodynamic system [44, 48–50]. The entropy is proportional to the surface area of the event

horizon and corresponds to the information that is “hidden” behind the event horizon. The black-

hole temperature is related to the surface gravity at the location of the event horizon (a proof of this

statement is provided in the next subsection).

1.3.2 The black-hole temperature

In this section we shall derive a very general expression for the Hawking temperature using a method

that is based on the analogy between systems at a finite temperature and path integrals with periodic

time [50, 51]. The obtained result is valid for any spherically-symmetric metric in arbitrary number

of extra spacelike dimensions.

Let us begin by writing down the line element for such a metric in D-dimensions

ds2 = −h(r)dt2 +
1

h(r)
dr2 + r2dΩ2

D−2 , (1.48)

where h(r) is the so-called metric function and dΩ2
D−2 is the surface element of a (D−2)-dimensional

hyper-sphere with unit radius. The roots of the metric function correspond to the locations of the

Killing horizons in the above spacetime.

We now perform a Wick rotation i.e. t→ iτ , and omit the angular part of the metric (1.48) by virtue

of the spherical symmetry to obtain the Euclidean form of the metric

ds2 = h(r)dτ2 +
1

h(r)
dr2 . (1.49)

Assume now the location rh of an event horizon for the above metric, i.e. the metric function satisfies

the equation h(rh) = 0. Infinitesimally close to the location of the horizon r = rh + ε → dr = dε,

where 0 < ε� 1 we may Taylor expand the metric function to obtain

h(rh + ε) ≈ h(rh) + ε ∂rh(r)|r=rh +O(ε2) = ε ∂rh(r)|r=rh +O(ε2) . (1.50)
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In the last step we employed the fact that the metric function vanishes at the location of the horizon.

To first order in ε the metric is then written as

ds2 = ε h′(rh)dτ2 +
1

ε h′(rh)
dε2 , (1.51)

where we have denoted ∂rh(r) by h′(r). Finally, under the following coordinate redefinition:

w =
2
√
ε√

h′(rh)
→ dw =

dε√
ε h′(rh)

, (1.52)

we may recast the metric to the form

ds2 = w2h
′(rh)2

4
dτ2 + dw2 . (1.53)

The form of eq. (1.53) is that of the metric of a 2D Euclidean plane in polar coordinates (r, φ) i.e.

ds2 = dr2 + r2dφ2 if the rescaled time coordinate

φ ≡ h′(rh)

2
τ (1.54)

is identified with the angular coordinate with period 2π

0 <
h′(rh)

2
τ 6 2π −→ 0 < τ 6

4π

h′(rh)
≡ β . (1.55)

With the imposed periodicity in the time coordinate we made sure that the conical singularity at

w = 0 (or equivalently at r = rh) corresponds to merely a coordinate singularity, as it should. The

true merit of the identification φ→ φ+ 2π is that we may now use the path integral approach to the

quantization of a scalar field to obtain the black-hole temperature [50].

In the path integral formulation, for a given action S[φ(t)], the amplitude for the field φ to go from a

state φ1 at time t1 to a state φ2 at time t2 is

〈φ2, t2 |φ1, t1〉 =

∫
d [φ] exp (iS[φ]) , (1.56)

where the integration runs over all field configurations that take the values φ1 and φ2 at time t1 and

t2 respectively. The left hand side of the last equation may equivalently be obtained by means of the

time evolution operator as

〈φ2, t2 |φ1, t1〉 = 〈φ2 | exp [−iH(t2 − t1)] |φ1〉 , (1.57)

where H is the Hamiltonian. Upon setting t2 − t1 = −iβ and φ2 = φ1 and summing over all φ1 we

end up with

Tr exp (−βH) =

∫
d [φ] exp (iS[φ]) . (1.58)
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This time, the path integral is restricted to fields that are periodic with period β in imaginary time.

Also, the left hand side of the above equation is by definition the partition function for the canonical

ensemble of the field φ at temperature given by T = β−1.

Returning now to eq. (1.55), we conclude that the temperature of an horizon located at rh will be

given by

Th =
1

β
=
h′(rh)

4π
=
κh
2π

, (1.59)

where κh = h′(rh)/2 is the surface gravity for the Killing horizon.

As an illustrative example, for the 4D Schwarzschild black hole (1.23), the temperature has the

following expression in terms of the mass m of the black hole:

Th =
~c3

8πGmkB
, (1.60)

where ~ is the reduced Planck constant, c is the speed of light, kB is the Boltzmann constant and G

is the gravitational constant. It is clear that in the classical limit ~ → 0 the black-hole temperature

vanishes. The interesting feature of this expression is that the temperature of the BH is inversely

proportional to its mass. It is then clear that large black holes, such the ones generated in astrophysical

processes, have a very small temperature. On the other hand, mini-black holes, such as the ones

theorized to emerge in high-energy particle collisions, are extremely hot due to the smallness of their

mass.

1.3.3 Quantum field theory in curved spacetime

The aim of this section is to develop the basic formalism of semiclassical gravity that is necessary in

order to derive the Hawking radiation spectrum in a following section. In the semiclassical treatment

of gravity, it is assumed that at energy scales much lower than the Planck scale it is a very good

approximation to treat gravity classically and matter quantum mechanically. This is realized in the

context of Quantum Field Theory (QFT) in curved spacetime [52–62] where one considers a classical

solution to the Einstein equations as the fixed curved background and performs QFT calculations on

it.

Consider the Equation Of Motion (EOM) for a free scalar field φ propagating in a curved background

described by a metric gµν

gµν∇µ∇νφ = 0 . (1.61)
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In analogy to the usual QFT in flat spacetime, the canonical quantization proceeds by promoting the

field to an operator, imposing the canonical equal time commutation relations

[
φ
(
t, xi

)
, φ
(
t, yi

)]
= δ3

(
xi − yi

)
, (1.62)

and defining the Hilbert space upon which the operators act. The observable quantities are then

obtained as expectation values of their respective operators in this space.

We are specifically interested in the notion of particles which correspond to the positive frequency

excitations of the vacuum “defined” with respect to an observer’s time. In flat space, Lorentz in-

variance of QFT ensures that all inertial observers define the same vacuum and thus agree in the

particle content. In curved space, the vacuum state of the theory is not uniquely defined since Lorentz

invariance is replaced by general covariance and every observer’s proper time is a legitimate choice of

time with respect to which the vacuum may be defined. It is the non-uniqueness of the vacuum in

combination with the presence of an horizon that will result in the phenomenon of particle creation.

Let us now return to the Klein-Gordon equation for the scalar field, (1.61) and consider two complex

solutions f and h. We then define the Klein-Gordon inner product as

〈f, h〉 =

∫
Σ
dΣnµj

µ , jµ(f, h) = −i
√
−ggµν [f∗∂νh− (∂νf

∗)h] , (1.63)

where Σ is a spacelike (hyper-)surface, nµ is the (future-directed) unit normal vector to Σ and we

indicate complex conjugation with the superscript “∗”. Notice that due to the fact that f and h are

solutions to the EOM (1.61) the current in (1.63) is conserved (∂µj
µ = 0). As a consequence, we

obtain the very important property that the Klein-Gordon inner product 〈f, h〉 is independent of the

choice of the boundary Σ

〈f, h〉 |Σ1 = 〈f, h〉 |Σ2 ∀ Σ1,Σ2 . (1.64)

In other words, the Klein-Gordon inner product is conserved. Since the vector nµ is a future directed

vector, eq. (1.63) assumes the following simplified expression

〈f, h〉 = −i
∫
dx3√−g

(
fḣ∗ − ḟh∗

)
, (1.65)

where we used a dot to denote time differentiation ḟ ≡ ∂tf . Consider now a complete basis of solutions

fω, which are orthonormal 〈fω, fω′〉 = δ(ω − ω′) with respect to the inner product (1.65). We may

then write the field operator in this basis as

φ =

∫
dω
(
âωfω + â†ωf

∗
ω

)
, (1.66)
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in terms of the creation (â†) and anihilation (â) operators that obey the following commutation

relations

[âω, â
†
ω′ ] = δ(ω − ω′) , [âω, âω′ ] = [â†ω, â

†
ω′ ] = 0 . (1.67)

The vacuum state of the theory (|0〉in) is defined by the condition

âω |0〉in = 0 , ∀ω > 0 , (1.68)

where the subscript “in” is introduced for consistency with the discussions of the following sections.

By acting consecutively upon the vacuum state with the creation operator we obtain states that

contain particles. For example the state â† nω |0〉 = |n〉 contains n particles, each with energy ω. The

total number of particles in the state |n〉 is then calculated as usual, by means of the number operator

N̂
in
ω ≡ â†ω âω −→ 〈0|ânω N̂

in
ω â† nω |0〉in = n . (1.69)

We can always expand the field operator in a second set of solutions to the Klein-Gordon equation

(pω, p
∗
ω) as

φ =

∫
dω
(
b̂ωpω + b̂

†
ω p
∗
ω

)
. (1.70)

In this basis, the respective creation (b̂
†
ω ) and annihilation (b̂ω) operators obey the following com-

mutation relations:

[b̂ω, b̂
†
ω′ ] = δ(ω − ω′) , [b̂ω, b̂ω′ ] = [b̂

†
ω, b̂

†
ω′ ] = 0 , (1.71)

and they define a vacuum state, different from |0〉in, by the condition

b̂ω |0〉out = 0 , ∀ω > 0 . (1.72)

From the ladder operators b̂
†
ω and b̂ω we define the corresponding number operator N̂

out
ω that mea-

sures the particle content in an excited state of the vacuum |0〉out.

The two sets of modes (fω, f
∗
ω) and (pω, p

∗
ω) are solutions to the same equation and constitute complete

orthonormal bases. It is then possible to relate the two sets by expressing one in terms of the other

in the following way:

pω =

∫
dω′

(
αωω′fω′ + βωω′f

∗
ω′
)
, (1.73)

and

fω =

∫
dω′ (α∗ω′ωpω′ − βω′ωp∗ω′) . (1.74)

The quantities αωω′ and βωω′ are the so-called Bogoliubov coefficients [63] and they can be isolated

from the above integrals by using the inner product (1.65) as follows:

αωω′ = 〈pω, fω′〉 , βωω′ = −〈pω, f∗ω′〉 . (1.75)
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They obey the following normalization conditions:∫
dωk

(
αωiωk

α∗ωjωk
− βωiωk

β∗ωjωk

)
= δ(ωi − ωj) , (1.76)

and ∫
dωk

(
αωiωk

βωjωk
− βωiωk

αωjωk

)
= 0 . (1.77)

The Bogoliubov coefficients have been introduced to relate different sets of the field modes. Con-

sequently they can also be used to relate their corresponding creation and annihilation operators

as

âω =

∫
dω′

(
αω′ωb̂ω′ + β∗ω′ωb̂

†
ω′

)
, (1.78)

and

b̂ω =

∫
dω′

(
α∗ωω′ âω′ − β∗ωω′ â

†
ω′

)
. (1.79)

These last two equations are the most important expressions of this section since they make possible

the comparison between the particle content of a given state as it is perceived by different observers.

Finally, due to the fact that the basis functions are orthonormal, we have the following important

relation between the Bogoliubov coefficients:∫
dω′

(
|αωω′ |

2 − |βωω′ |
2
)

= δ(ω − ω′) . (1.80)

Consider now the vacuum state with respect to the modes (fω, f
∗
ω) namely |0〉in. Then, obviously the

corresponding number operator N̂
in
ω ≡ â†ω âω gives zero particles for this state

〈0|N̂ in
ω |0〉in = â†ω âω = 0 . (1.81)

The ladder operators b̂
†
ω and b̂ω corresponding to the basis (pω, p

∗
ω) of eq. (1.70) can be expressed

via eq. (1.79) in terms of the operators â†ω and âω and in this way, the vacuum expectation value for

the number operator N̂
out
ω ≡ b̂

†
ω b̂ω in the same state |0〉in is

〈0|b̂†ω b̂ω|0〉in = 〈0|
∫
dωi

∫
dωj [αωωjα

∗
ωωi

â†ωj
âωi
− αωωjβ

∗
ωωi

â†ωj
â†ωi

(1.82)

−βωωiα
∗
ωωi

âωj
âωi

+ βωωiβ
∗
ωωi

âωj
â†ωi

] |0〉in .

The first three terms in the above equation are vanishing because they give zero when acting upon

the state |0〉in and so we have

〈0|N̂out
ω |0〉in =

∫
dωidωj |βωωi |2 〈0|âωj

â†ωi
|0〉 . (1.83)
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After using the commutation relations (1.67) and relabeling the integration parameter ωi → ω′ we

finally obtain that

〈0|N̂out
ω |0〉in =

∫
dω′|βωω′ |2 . (1.84)

This is a striking physical consequence of considering QFT in curved spacetime! A state that is empty

of particles for one observer is interpreted as a non-vacuum state by another observer. An equivalent

way to interpret this result is that the gravitational field creates particles!

It is clear then by the form of eq. (1.84) that particles will be created whenever any of the coefficients

βωω′ are non-zero.

1.3.4 Particle creation by black holes

Hawking Radiation [48] is undoubtedly one of the most remarkable predictions of semiclassical gravity

and plays a pivotal role in providing the link between the laws of black-hole mechanics and classical

thermodynamics discussed in the previous section. In the absence of a complete theory of quantum

gravity, the Hawking effect emerges as a semiclassical phenomenon of QFT in curved spacetime.

In this section we will derive the famous thermal spectrum for the Hawking radiation emitted by a

black hole following along the lines of Hawking’s original work [48, 64]. We start by considering a

massless scalar field φ, that propagates in the gravitational background of a black hole formed by

gravitational collapse (see Fig. 1.2). The scalar field’s equation of motion is

1√
−g

∂µ
[√
−ggµν∂νφ

]
= 0 . (1.85)

Sufficiently far away from the black hole we may write the field in terms of a complete set of orthonor-

mal solutions fω of the EOM (1.85) as

φ =

∫
dω
(
fωâω + f∗ωâ

†
ω

)
, (1.86)

where the operators âω and â†ω are the annihilation and creation operators respectively. With the

above decomposition of the scalar field we describe the incoming modes of the field originating from

past null infinity. The vacuum for these modes i.e. the ground state that corresponds to no incoming

particles is defined as usually via

âω |0〉 = 0 . (1.87)

Turning now to the near-black-hole region the field will be “mixed” in the sense that there will be field

modes moving towards the black hole and field modes moving away from it after scattering. Thus
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Figure 1.2: Carter-Penrose diagram of a collapsing star that results in the formation of a black hole.
The shaded region corresponds to the interior of the star. Credit: [15]

we may write the field as

φ =

∫
dω
(
pib̂ω + p∗ωb̂

†
ω + qωĉω + q∗ωĉ

†
ω

)
, (1.88)

in terms of the two sets of orthonormal functions pω (outgoing modes) and qω (incoming modes)

that are also solutions to eq. (1.85). The corresponding creation and anihilation operators for these

solutions are b̂
†
ω , ĉ

†
ω and b̂ω, ĉω respectively. The outgoing modes will eventually reach the distant

observer in the future and they may be expressed as a linear combination of the original field decom-

position in terms of the fω modes as

pω =

∫
dω′ (αω′ωfω′ + βω′ωf

∗
ω′) , (1.89)

where the coefficients αω′ω and βω′ω are the Bogoliubov coefficients. This last equation leads to the

following relation between the operators âω and b̂ω:

b̂ω =

∫
dω′

(
α∗ωω′ âω′ − β∗ωω′ â

†
ω′

)
. (1.90)

We thus conclude that the vacuum expectation value for the number operator of the outgoing field

modes b̂
†
ω b̂ω will be given by

〈0| b̂†ω b̂ω |0〉 =
∑
ω′

|βωω′ |2 . (1.91)

This last equation yields the total number of particles that are generated by the gravitational field

of the collapsing black hole, manage to escape the gravitational attraction and reach the distant

observer. It is clear that this number is determined by the Bogoliubov coefficient βωω′ . We may now

take advantage of the spherical symmetry of spacetime and Fourier expand the solutions fω and pω
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as

f =
Fω(r)√

2πω

eiωv

r
Yl m (θ, φ) , p =

Pω(r)√
2πω

eiωu

r
Yl m (θ, φ) , (1.92)

in terms of the advanced and retarded coordinates given respectively by

v ≡ t+ r + 2m log | r
2m
− 1| , (1.93)

u ≡ t− r − 2m log | r
2m
− 1| . (1.94)

Consider now an outgoing field mode pω at the location of the observer and trace it back to the near

black hole region. There, part of the field will get scattered by the gravitational potential of the black

hole and move again towards the distant observer with its frequency unaltered ω. This part of the

field will contribute to the αωω′ Bogoliubov coefficient. The rest of the field that does not get back-

scattered by the potential will tunnel through it and as a consequence will be highly red-shifted due

to the intense gravitational field. This part of the field contributes to the βωω′ Bogoliubov coefficient.

Then, if (1− Γ) is the part of the field that back-scatters of the potential, the part that goes through

it will be Γ and is explicitly given in terms of the Bogoliubov coefficients as

Γ =

∫ ∞
0

(
|αωω′ |2 − |βωω′ |2

)
dω′ . (1.95)

The expectation value of the number of particles that are generated and escape to the location of the

observer are

n =

∫ ∞
0
|βωω′ |dω′ (1.96)

while the following relation between the coefficients holds

|αωω′ | = eπω/κh |βωω′ |. (1.97)

Finally, after combining eqs. (1.95) and (1.97) one obtains

n =
Γ

e2πω/κh − 1
. (1.98)

This last equation tells us that the energy profile of the particle flux generated by the gravitational

field of the black hole, as it is detected by a distant observer, resembles that of black body radiation

at temperature determined by the value of the surface gravity of the black-hole horizon κh. More

presisely the temperature for the Schwarzschild black hole will be given by eq. (1.60).

As any thermodynamic system with temperature, black holes radiate by emitting particles in the form

of Hawking radiation (HR). The vacuum is constantly generating particle-antiparticle pairs that “pop”

into existence for a very short period of time before annihilating. The number of pairs generated is

larger in regions of spacetime where the curvature is more intense. Such a region is the vicinity of the

horizon of a mini-black hole. For large BHs the region close to the event horizon is relatively “flat”.
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When a pair of particles forms close to the horizon, the pair gets “pulled apart” by tidal forces and

the antiparticle may get absorbed by the BH. In this way, the mass of the black hole gets reduced by

the tinniest amount. The other particle of the pair is then able to move away from the black hole (if it

overcomes the gravitational barrier, that is) and as such a distant observer detects a flux of particles

originating from the horizon. Over time, through this process, the mass of the black hole decreases

until it eventually evaporates completely. This has lead to the information paradox [65] since if the

black hole indeed evaporates completely in the final stages of Hawking radiation and no “quantum

gravity effect” prevents this from happening, all the information that went into the black hole during

its lifetime is lost. This is in contradiction with one of the most fundamental principles of physics,

namely the conservation of information. Chapters 2 − 4 of this thesis are dedicated to the study of

Hawking radiation emitted by the HD SdS black hole (1.27).

1.4 Extra dimensions

Gravitational theories that postulate the existence of extra spatial dimensions appeared shortly after

the formulation of GR by the pioneering works of Kaluza and Klein [66, 67] in an effort to unify

gravity with electromagnetism. In the late 90s, motivated by the hierarchy problem of gravity, the

so-called braneworld-models have emerged. In these models, our observable universe is thought of as

a membrane (upon which all regular matter is localized), embedded in a higher dimensional space

(which can be probed only by gravity and possibly exotic non-Standard-Model particles). Modern

theories that are candidates for a complete theory of gravity (string theory and variants of it), in fact

require the existence of extra spacelike dimensions beyond the three we observe.

While it is true that, even to date, there is no experimental evidence supporting the existence of extra

dimensions, we also have no reason to restrict our theories to only (3 + 1)-dimensional spacetimes;

after all Einstein’s GR is valid for an arbitrary number of dimensions. Thus, considering Higher-

Dimensional (HD) theories is interesting not only from a purely theoretical point of view but as a

means of possibly providing useful input for experiments aiming to detect them in the future.

Since the existence of extra dimensions drastically modifies the properties of black holes, it is the goal

of this section to provide a short introduction to the HD theories discussed above and to the HD

black holes.

1.4.1 The Kaluza-Klein idea

Attempts for unification via extra dimensional theories date back to the works of Kaluza and Klein

[66, 67] where they tried to unify gravity and electromagnetism by considering a flat 5-dimensional
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space M(4, 1). The 15 Degrees Of Freedom (DOF) of such a metric can be decomposed into the usual

4D metric tensor (10 DOFs), a 4-vector that is interpreted as the vector potential of electromagnetism

(4 DOFs) plus a scalar DOF.

Since we observe only four dimensions in the universe the extra dimension should be “hidden” somehow

via a mechanism that reproduces effectively the 4-dimensional gravity we observe. To achieve this, as

Klein pointed out, the extra dimension (y) can be “curled up” to a circle of extremely small radius.

Mathematically this is realized via the “compactification” of the extra dimension that amounts to

imposing the periodic condition

y ∼ y + 2πkL , (1.99)

where k is an arbitrary integer and L is the radius of the circle of compactification. Indeed, if L is

very small6 the extra dimensions cannot be observed and the world appears four-dimensional. More

precisely, the statement that the extra dimension remains hidden can be understood as follows. The

imposed periodicity (1.99) on the extra dimension causes the fluctuations of the gravitational field that

are called KK modes to have discrete masses that are heavier the smaller the radius of compactification

L is. To see this, we may expand the 5D metric as

gM N (xµ, y) =
∑
k

e
i k y
L gkM N (xµ) , (1.100)

where henceforth capital (lowercase) letters are used to denote indices that span the five- (four-)

dimensional spacetime respectively. Then it can be shown that the 5-dimensional space corresponds

to an effective 4-dimensional theory along with an infinite tower of fields with masses mk ≡ |k|/L.

Assuming then that the radius of compactification is small we get that the mass of the first KK mode

(k = 1) is out of reach for the current particle detectors. In this way, only massless modes appear in

the low-energy effective theory and the metric can be considered independent of y.

1.4.2 The brane world scenario

Beyond the Kaluza-Klein proposal, there are other theories that allow for a fundamentally higher-

dimensional (HD) universe to appear effectively as four-dimensional. This is achieved within the

context of the so-called braneworld models that first appeared in the late 90s. In the braneworld

models, the four dimensional universe we observe corresponds to a “membrane” that is usually termed

the brane embeded in a higher-dimensional space called the bulk . All standard model particles are

confined on the brane while gravity being the geometry of space itself “spreads out” to all dimensions.

The chronologically first brane-world model to appear [8–10] was the Arkani-Hamed-Dimopoulos-

Dvali (ADD) or equivalently the Large Extra Dimensions (LEDs) scenario. The motivation behind

6Of the order of the Planck length.
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the formulation of the ADD model was the solution to the hierarchy problem. This problem refers to

the fact that gravity is many orders of magnitude weaker than the rest of the fundamental forces in

nature. In the ADD model it is assumed that the fundamental scale of gravity and the energy scales

set by the Standard Model (SM) of particle physics are essentially the same.

The explanation then as to why gravity appears weaker is that it is the only one of the forces that can

probe the extra dimensions of spacetime and as such it gets “diluted”. The extra dimensions can be

“large” in the sense that they are much larger than the Planck length. By virtue of Gauß’s law it can

easily be shown that the (fundamental) (4+n)-dimensional scale of gravity M∗ and the 4-dimensional

one MP are related in the following way:

Mn+2
∗ ∼ 1

Ln
~c
G

(
~
c

)n
=
M2
P

Ln
, (1.101)

where n is the number of extra dimensions and L is the length of the extra dimensions (for simplicity

all extra dimensions are assumed to be of the same length). In the last equality we have set ~ = c = 1.

In the second brane-world scenario, [11, 12] called Warped Extra Dimensions (WED) or Randall-

Sundrum (RSI, RSII) model, the SM particles are still confined on a 3-brane while only one extra

dimension is sufficient to solve the hierarchy problem. The crucial difference between the WED and

LEDs is that, in the former, the extra dimension is not flat but it is “warped”. The warping of the

extra dimension is supported by the presence of a negative bulk cosmological constant Λ5. Another

important feature of the WEDs is that the extra dimension is Z2-symmetric and so the bulk is y-

symmetric around the location of the brane. The line-element is given by

ds2 = e−2|y|/lηµνdx
µdxν + dy2 , (1.102)

where l ≡
√
−6/Λ5 is the AdS radius and ηµν is the Minkowski metric. The function e−2|y|/l is called

warp factor . Due to the fact that the warp factor is en exponentially decaying function as we move

away from the brane at y = 0, gravity remains localized close to the brane.

In the first RSI model [11], the gravitational set up consists of two branes, one with positive tension

located at y = 0 and one with negative tension located at y = L. As with the Kaluza Klein model

the extra dimension is compactified with period L. The action for the model is

S = Sg + S1 + S2 (1.103)

with

Sg =

∫
dx4

∫
dy

√
−g(5)

(
R

2κ2
5

− Λ5

)
, (1.104)
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where Λ5 is the cosmological constant. The contributions to the action by the two 3-branes located

at y = 0 and y = L with respective energy densities σ1 , σ2 and Lagrangians L1 , L2 are

S1 =

∫
d4x
√
−g1 (L1 − σ1) (1.105)

and

S2 =

∫
d4x
√
−g2 (L2 − σ2) . (1.106)

In the second RSII model [12], Randall and Sundrum showed that it is possible to effectively obtain

4d-gravity with an infinite extra dimension L. In this picture the 3-brane located at y = L is sent to

infinity and is thus essentially removed from the setup. The action for RSII is

S = Sg + S1 , (1.107)

where the first and second terms in the above equation have been defined in eq. (1.104) and eq.

(1.105) respectively.

Higher dimensional black-hole solutions have been found already from the 60s [30, 68] where, as in

the LEDs brane-world scenario, the topology of the extra dimensions is flat, or uniformly curved due

to the presence of a bulk cosmological constant. The HD SdS black hole of eq. (1.27) belongs to this

class of solutions. On the other hand, in WEDs the richer topological structure of the model has, so

far, proven to be an insurmountable obstacle towards finding an exact analytic localized on the brane

black-hole solution in this context. The chapter 5 of this thesis is dedicated to the search for such a

solution in WEDs.



Chapter 2

Greybody factors for higher-dimensional

Schwarzschild-de Sitter black holes

Our understanding of black holes changed drastically in the mid-seventies when Steven Hawking

considered quantum field theory in curved spacetime and realized for the first time that black holes

are not the perfect absorbers they were considered to be [48]. He found that in fact black holes

evaporate by radiating particles with a perfect black-body spectrum at the Hawking temperature Th,

exactly at the location of the event horizon when backreaction effects on the background are ignored

[69] . The emitted particle flux though has to transverse a non-trivial curved spacetime background

until it reaches the distant observer; by that time, the frequency profile of the spectrum is modified

to the famous Hawking spectrum that for massless bosons has the following form:

d2E

dt dω
=

1

2π

∑
l

Nl |A|2 ω
exp(ω/Th)− 1

. (2.1)

The above gives the energy emitted per unit time and unit frequency by the black hole. Also, ω is

the energy of the emitted particle, Nl is the multiplicity of states with the same angular-momentum

number and Th is the temperature of the black hole. The term |A|2 encodes all the information

about the deviation from the Planck spectrum and has been dubbed greybody factor (GF). For pure

black-body radiation the GF is a constant and equals the surface of the emitting body while in the

case of a black hole it depends on the properties of the emitted particle species and the geometrical

background. The main objective of this chapter is to obtain an analytic expression for the GF of

spherically-symmetric, uncharged black holes in the presence of a positive cosmological constant in

d = 4 + n dimensions. We focus on the emission of massless scalar particles that are non-minimally

coupled to gravity and derive the corresponding GF both for bulk and brane propagating fields for

an arbitrary angular momentum parameter of the field.

We start by introducing the higher-dimensional black-hole geometry, we obtain the brane-induced

metric by projection and study the causal structure to determine the event horizons of this spacetime.

Then we solve the equations of motion (EOM ) of the scalar field employing an approximate technique

of matching its solutions at the two asymptotic radial regimes. The derived complete solution then

allows us to compute the GF. Finally we study in depth the profile of the GF in terms of all four

parameters that govern the emission namely, the number of extra dimensions n, the cosmological

constant Λ, the angular momentum number of the field l and the non-minimal coupling parameter ξ.

Also, the low-energy limit of our analytic expressions is thoroughly investigated.

29
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2.1 The (4 + n)-dimensional Schwarzschild-de Sitter black-hole

2.1.1 Gravitational background

Under the assumption that our universe is fundamentally higher-dimensional and the ever-increasing

observational confirmation [70–82] of its expansion at an accelerated rate we are led to consider

the Einstein-Hilbert action in D = 4 + n dimensions, supplemented by a positive bulk cosmological

constant term Λ

SD =

∫
d4+nx

√
−G

(
RD
2κ2

D

− Λ

)
. (2.2)

The determinant of the metric tensor GMN is G while the higher-dimensional gravitational constant

κ2
D = 1/M2+n

∗ is related to the fundamental scale of gravity M∗. Finally RD is the D-dimensional

Ricci scalar. The observed value for the cosmological constant is Λ ∼ 10−52m−2 although in our

analysis we will not be restricted to this specific value but rather consider different values for Λ .

Employing the principle of extremal action, the variation of (2.2) with respect to the inverse metric

tensor yields the Einstein equations

RMN −
1

2
GMN RD = −κ2

DGMNΛ ≡ κ2
D TMN (2.3)

where we have identified the r.h.s. of the gravitational equations as the bulk energy-momentum tensor

TMN . To calculate the Ricci scalar one can simply contract (2.3) with GMN to find that in n extra

dimensions it is given by the following expression:

RD =
2 (n+ 4)

n+ 2
κ2
DΛ . (2.4)

Notice that it is directly proportional to the cosmological constant. Let us now assume a general

ansatz for a (4 + n)-dimensional spacetime that is spherically-symmetric and static i.e. there are no

time-space mixing terms. Then the line element in such a coordinate system will be

ds2 = GMNdx
MdxN = −h(r) dt2 +

dr2

h(r)
+ r2dΩ2

2+n , (2.5)

where dΩ2
2+n is the surface element of a (2 + n)-dimensional unit sphere given by

dΩ2
2+n = dθ2

n+1 + sin2 θn+1

(
dθ2
n + sin2 θn

(
...+ sin2 θ2 (dθ2

1 + sin2 θ1 dϕ
2) ...

))
, (2.6)

with 0 ≤ ϕ < 2π and 0 ≤ θi ≤ π, for i = 1, ..., n + 1. In concord with the spherical symmetry of the

spacetime, the metric function1 h(r) is a function of the radial coordinate r only and we choose to

1Sometimes also referred to as the “gravitational potential” because in the weak field limit the g00 metric component
is related to the Newtonian potential.
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introduce the n extra space-like dimensions in the form of n additional azimuthal coordinates θi. In

order to specify the functional form of h(r) we need to use the Einstein equations (2.3). To this end,

we substitute (2.5) into (2.3) and recover the Tangherlini solution [30] describing a (4+n)-dimensional

black hole in the presence of a cosmological constant term

h(r) = 1− µ

rn+1
−

2κ2
D Λr2

(n+ 3)(n+ 2)
. (2.7)

The mass parameter µ is related to the mass M of the black hole through the relation [68]

µ =
2κ2

DM

(2 + n)A2+n
, A2+n =

2π(n+3)/2

Γ[(n+ 3)/2]
, (2.8)

where A2+n is the surface area of the (2 + n)-dimensional unit-sphere.

The line element (2.5) with the metric function (2.7), corresponds to the (4 + n)-dimensional gen-

eralization of the Schwarzschild-de Sitter (SdS) solution that describes the gravitational field in the

exterior of a spherically-symmetric, uncharged mass in the presence of a positive cosmological con-

stant. The invariance of the metric under time translations indicates that the spacetime admits a

Killing vector field Kµ ∼ ∂t that is time-like in the region of spacetime where h(r) > 0.

In the limit Λ → 0 the last term in eq. (2.7) vanishes and h(r) becomes that of an asymptotically

flat (4 +n)-dimensional Schwarzschild black hole. On the other extreme limit µ→ 0 the black hole is

“removed” from the setup and we are left with the pure higher-dimensional de Sitter space.

We have thus far introduced the geometry of the higher-dimensional black hole and a few important

comments are in order regarding the fitness of the above metric to adequately describe the Hawking

radiation process which is the ultimate goal of this study. Hawking radiation, as we discuss in the

introduction, is a semi-classical effect where quantum fields are considered on a classical gravitational

background and result in the black hole radiating particles in a very specific way. Of course, each of

the particles emitted strips the black hole of an amount of energy equal to the particle’s total energy

thus reducing its mass and in turn altering the metric upon which the particles propagate. The line

element (2.5) is indeed a good approximation to the black-hole background as long as the energy

carried away by the field is much smaller than the black-hole mass because only then can we neglect

the back-reaction of the particle emission on the spacetime. For the purposes of this study we assume

that this is always the case.

The second point we wish to clarify is the following. In order for this black hole to be a higher-

dimensional object, it has to be fully submerged in the higher-dimensional space. This means that

the black-hole radius rh has to be much smaller than the characteristic length scale of the extra

dimensions2 L otherwise the black hole is effectively four-dimensional. Also, rh has to be much larger

2Here, for simplicity we assumed that all extra dimensions have the same length scale.
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than the Planck scale lP so that we can safely ignore quantum-gravity effects. Eventually the black-

hole radius is assumed to satisfy lP � rh � L. This observation, combined with the upper limit for

the size of the extra dimensions today, makes clear that the black holes we study in this work are

not of astrophysical size but rather miniature black holes that could possibly be created in present or

future particle accelerators with sufficient center-of-mass energy higher than the fundamental Planck

scale M∗ [83].

In the brane-world theories [8–12] the standard model fields are confined on the brane, in order to

avoid conflict with observations, while gravity is free to probe the extra dimensions. Then, for fields

localized on our observable brane universe the geometry is not described by the line element of (2.5)

but rather by a projected-on-the-brane metric. The projection of the bulk metric onto the brane is

achieved by assigning to all the extra coordinates the value π
2 . This way the surface element of the

unit-sphere reduces to the usual four-dimensional one and the induced metric on the brane is

ds2 = gµνdx
µdxν = −h(r) dt2 +

dr2

h(r)
+ r2 (dθ2 + sin2 θ dϕ2) . (2.9)

Finally by performing a direct computation one can verify that the Ricci scalar derived from (2.9) is

R4 =
24κ2

DΛ

(n+ 2)(n+ 3)
+
n(n− 1)µ

rn+3
. (2.10)

Notice that the projection procedure does not affect the functional form of h(r) and in this way the

effect of the extra-dimensions still enters the geometry of the brane via the metric function. A direct

consequence of this is that both line elements (2.5) and (2.9) will share the same causal structure the

study of which is the subject of the following section.

2.1.2 Causal structure

To find the locations of the horizons for a given spherically-symmetric spacetime one has to solve

grr = 0 because at these radii the timelike Killing vector ∂
∂t becomes null [15]. So the condition we

are looking for is the vanishing of the metric function

h(r) = 1− µ

rn+1
−

2κ2
D Λr2

(n+ 3)(n+ 2)
= 0 . (2.11)

In general this algebraic equation yields n+ 3 roots corresponding to multiple horizons of the higher-

dimensional spacetime which at first glance may seem to lead to a very complicated causal structure.

Thankfully, not all of these roots are real and positive and thus some of the solutions are non-physical

and are discarded. To simplify things even further one can restrict the parameter space of (n,Λ, µ)
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in such a way that the following condition is always respected:

µ2Λ̃(n+1) 6
4(n+ 1)(n+1)

(n+ 3)(n+3)
(2.12)

where we have defined Λ̃ ≡ 2κ2
DΛ/(n+ 2)(n+ 3). Then, only two real and positive solutions to (2.11)

exist [84–86] with the smaller one corresponding to the radius of the black-hole horizon rh and the

larger one to the cosmological-horizon radius rc.

We are interested in events that satisfy rh 6 r 6 rc so we deal with observers located in the causal

part of spacetime between the two horizons. In this region the metric function is positive and thus

the space-like (time-like) character of the spatial (temporal) coordinates is preserved while outside

the horizons i.e. at (0, rh)∪ (rc,∞) the sign of h(r) is reversed along with the causal character of the

coordinates and thus the spacetime is dynamical. In our analysis we shall work in units of rh and this

effectively sets rh = 1. For example the cosmological constant will be measured in units of r−2
h and

in the plots that appear throughout this thesis the energy will be parametrised by the dimensionless

quantity ωrh.

To better understand the behavior of the metric function h(r) (2.7) in Fig. 2.1 we fix the black-hole

mass parameter µ = 1 and the number of extra dimensions n = 2 as the value of the cosmological

constant Λ varies from Λ = 10−5r−2
h to Λ = 10−1r−2

h . Care has been taken so that the values

considered for µ and Λ are compatible with the constraint (2.12).

Recall that the locations of the two horizons correspond to the roots of h(r) and so in Fig. 2.1(a)

the radii at which the curves meet the horizontal axis are the locations of rh and rc. As Λ grows,

the two horizons are located closer to each other and thus the causal space becomes smaller (in this

coordinate system [87]) until a critical value Λcrit is reached and the two horizons apparently coincide
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h(
r)

(a) (b)

Figure 2.1: The metric function (2.7) for µ = 1, n = 2 and (a) various values of the cosmological
constant Λ. (b) The location of r0 (black curve) for all values of Λ ∈ (10−5, 10−1).
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n 0 1 2 3 4 5

Λcrit(r
−2
h ) 0.44 1.50 3.26 5.77 9.09 13.23

Table 2.1: Indicative values of Λcrit for µ = 1 and for n ∈ [1, 5] ∩ Z.

(See appendix A) when

µ2Λ̃
(n+1)
crit → 4(n+ 1)(n+1)

(n+ 3)(n+3)
. (2.13)

Some indicative values of Λcrit for various n and for µ = 1 are given in Table 2.1. For even larger

values of the cosmological constant, the condition (2.12) is violated and thus (2.5) ceases to describe

a black hole since there are no horizons.

By inspection of Fig. 2.1(a) it is evident that the metric function (2.7) always exhibits a global

maximum at some radius rh < r0 < rc. This can also be seen in Fig. 2.1(b), where we plot the metric

function for all values of Λ ∈ (10−5, 10−1) and the black curve corresponds to the location of r0 in

each case. The exact value of r0 can be easily calculated as it corresponds to the vanishing of the first

derivative of the metric function and has the following expression:

r0 =

[
(n+ 1)(n+ 2)(n+ 3)µ

4κ2
DΛ

]1/(n+3)

. (2.14)

The importance of this radius is that the metric function satisfies h(r0) ≈ 13 and actually this becomes

an increasingly accurate approximation as Λ becomes smaller, something one can also verify from Fig.

2.1. An observer O located at r0 in SdS will resemble the asymptotic Minkowski observerM located

at r →∞ in a pure-Schwarzschild geometry where the metric function is

hM(r) = lim
Λ→0

hO(r) = 1− µ

rn+1
, (2.15)

and so it is clear that

hO(r0) ≈ 1 = hM(r →∞). (2.16)

For O, the gravitational attraction of the black hole and the repulsion of the cosmological constant

cancel out and so O is a non-accelerated observer exactly like M.

The cosmological horizon radius rc has been identified with the largest of the two roots of the metric

function. It is interesting to quantify how much larger rc is than the black hole radius rh for a given

Λ and n. To this end, in Fig. 2.2(a) we have fixed the mass parameter of the metric function to µ = 1

and computed numerically the value of the ratio of the horizon radii rc/rh as Λ ranges from Λ = 0 to

Λ = 6 (in units of r−2
h ) for several values of the number of extra dimensions. The feature that emerges

from this figure is that the larger the number of extra dimensions (n), the further away rc is located

3This feature will play an important role in our discussion in chpt. 4 about the various proposals made for the proper
definition of the temperature for the Hawking radiation process in asymptotically de Sitter spacetimes.
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from rh for the same value of Λ. So we conclude that the causal region of spacetime available to the

SdS observer increases with n. As Λ increases, the ratio becomes smaller until the two horizons are

identified (rc/rh = 1). Thus one realizes that in contrast to the asymptotically flat case where a black

hole can be indefinitely large, the presence of a cosmological constant sets an upper limit to the size

of the black hole [88, 89]. This limit corresponds to the extremal SdS or Nariai solution [90] .

In Fig. 2.2(b) we fixed again the parameter µ = 1 and for an arbitrary number of extra dimensions n =

1 we plot the variation of the black-hole horizon radius depicted with the red curve, the cosmological

horizon with the purple curve and the “unaccelerated observer” radius r0 with the blue curve as Λ

ranges from Λ = 0r−2
h to Λ = 1.5r−2

h . For small values of Λ we see that the black-hole horizon

radius approaches the pure-Schwarzschild radius since the cosmological term contribution to eq. (2.7)

becomes negligible in this limit. The observer at the special radius r0 is located further away from

the black-hole horizon rh the smaller Λ is and approaches the asymptotic observer at infinity in the

limit Λ→ 0. As Λ increases, rc and r0 decrease rapidly at first and then their decrease rate becomes

milder while rh exhibits a mild increase through-out the range of the allowed Λ values. A possible

interpretation to the latter could be the increase of the internal energy contained by the black hole

[91] as the vacuum energy density increases with the cosmological constant. For Λ = 1.5r−2
h , the

maximum allowed value for the cosmological constant (2.13) subject to the constraint of eq. (2.12)

has been reached and the two horizons coincide with r0. Thus we have the apparent “vanishing” of

the causal volume of the observable universe (since (rc − rh)→ 0).
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Figure 2.2: For fixed mass parameter µ = 1, (a) the ratio rc/rh as Λ varies in the range (1, 6) for
n ∈ [1, 5] ∩ Z, and (b) the values of rh, rc, r0 and rc − rh for n = 1 and Λ ∈ (0, 1.5).
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2.2 Scalar field scattering on the brane

2.2.1 The effective potential

Having specified the geometry of the higher-dimensional curved spacetime, the next step is to introduce

the field theory on it. The propagating field will interact with the black hole by means of scattering

on the effective potential generated by the non-trivial spacetime curvature [92–94]. Computing the

transmission probability of this process will then allow as to obtain the greybody factor. We focus

on a free scalar field (that is to say we will not include a self-interaction term in the action) that is

massless but couples non-minimally to gravity through an interaction term with the Ricci scalar.

We will first study the case of a brane localized field since it is the phenomenologically more interesting

one. The action for brane-bound fields with the features described above reads

S4 = −1

2

∫
d4x
√
−g
[
ξΦ2R4 + gµν∂µΦ ∂νΦ

]
, (2.17)

where the induced metric is given in eq. (2.9), the Ricci scalar in eq. (2.10) and the strength of the

field coupling to gravity is parametrised by ξ. Varying the action (2.17) we obtain the field equation

of motion (EOM ) on the brane

1√
−g

∂µ
(√
−g gµν∂νΦ

)
= ξR4 Φ . (2.18)

Notice at this point that the form of the right-hand-side (r.h.s.) of eq. (2.18) can be interpreted as

an effective mass term for the field and taking also into account the expression for the Ricci scalar

(2.10) we can see that the “mass” of the field becomes larger with the parameter ξΛ while it vanishes

in the asymptotically-flat (Λ→ 0) and minimal-coupling (ξ → 0) limits.

Because we are dealing with a spherically symmetric spacetime the radial part of the eom is the one

that encodes all the important information of the field propagation and is naturally the one we are

interested in. So in order to decouple the radial part we introduce the following factorized ansatz for

the field:

Φ(t, r, θ, ϕ) = e−iωtR(r)Y (θ, ϕ) , (2.19)

where ω is the energy of the emitted particle, R(r) is the radial part of the field while the angular

contribution to the field enters through the scalar spherical harmonics Y (θ, ϕ). Applying the standard

method of separation of variables, the angular EOM corresponds to the eigenvalue equation of the

spherical harmonics with eigenvalue l(l + 1), where l is the angular momentum quantum number of

the emitted particle or field mode. The form of the radial part of the field R(r) is thus dictated by



37

the decoupled differential equation

1

r2

d

dr

[
h(r)r2 dR(r)

dr

]
+

[
ω2

h(r)
− l(l + 1)

r2
− ξR4

]
R(r) = 0 . (2.20)

This is the “master equation” for the calculation of the greybody factor for scalar fields with arbitrary

l and ξ and for any values of the spacetime parameters n and Λ.

Before we proceed to the solution, we will study the profile of the effective potential induced by the

spacetime curvature upon which the field scatters. The importance of this study is twofold. First and

most importantly, the barrier is the physical reason behind the form of the Hawking spectrum and

thus deserves special attention. Second, many of the qualitative features of the GFwill be encapsulated

by the shape of the potential. For example the higher the potential barrier the smaller the GFwill

be. This inverse relation between the two is due to the fact that the greybody factor corresponds to

the absorption probability for an incoming wave to be absorbed by the black hole after it scatters

on the barrier. One can prove [31, 93, 94] that the absorption probability of this problem equals the

transmission probability for a wave that emanates from the black-hole horizon and impinges on the

effective potential in order to overcome the barrier and contribute to the Hawking radiation.

To specify the expression for the potential we can recast (2.20) into an one-dimensional Schrödinger-

like equation and in this way obtain the potential term. After the field redefinition u(r) = rR(r) and

using the tortoise coordinate r∗ that was introduced by Wheeler and is related to r via

r∗ ≡
∫

dr

h(r)
, (2.21)

we obtain

− d2u(r)

dr2
∗

+ V brane
eff u(r) = ω2 u(r) . (2.22)

The effect of the tortoise coordinate is to “push” the locations of the horizons to infinity since it maps

the finite radial coordinate interval r ∈ [rh, rc] to the infinite r∗ ∈ (−∞,∞). So the black-hole horizon

is located at r∗ → −∞ and the cosmological one at r∗ → ∞. Equation (2.22) is of the same form

as the one derived by Regge and Wheeler in their investigation of the stability of the Schwarzschild

black hole [95] against linear perturbations and is often referred to as the Regge-Wheeler equation.

Thus the potential that a brane-confined massless scalar particle with angular momentum quantum

number l has to overcome is

V brane
eff =h(r)

[
l(l + 1)

r2
+ ξR4 +

1

r

dh

dr

]
=h(r)

{
l(l + 1)

r2
+

4κ2
DΛ(6ξ − 1)

(n+ 2)(n+ 3)
+

µ

rn+3
[ (n+ 1) + ξn(n− 1) ]

}
,

(2.23)

where in the last step we have substituted (2.10) and (2.7).
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This potential “filters” the particle flux generated on the black-hole horizon giving rise to the Hawking

spectrum for a distant observer. Only a portion of the emitted black-body radiation manages to

overcome the barrier (either by having energy larger than the peak of the potential or via quantum

tunneling) while the rest gets back-scattered into the black hole. The barrier depends on both the

spacetime properties n and Λ as well as on the field parameters l and ξ. Perhaps the most important

feature of the potential is its proportionality to the metric function h(r). On the location of the

horizons we have seen that the metric function vanishes and as a consequence in the vicinity of the

horizons the height of the effective barrier is negligible and the field is free. This enables us to express

the solution to (2.22) as a superposition of free plane waves.

In (2.23) we see that the shape of the gravitational barrier is determined by the following 5 parameters:

the black-hole mass parameter µ, the number of extra spacelike dimensions n, the angular momentum

number l, the non-minimal coupling ξ and the cosmological constant Λ. We can use the condition

that determines the locations of the horizons to reduce the number of parameters upon which the

barrier depends by one. At the location of any of the two horizons (which we collectively denote here

with a subscript “i”) we can solve for the mass parameter µ and have

h(ri) = 0→ µ = rn+1
i

(
1−

2κ2
DΛr2

i

(n+ 2)(n+ 3)

)
. (2.24)

So, using (2.24) evaluated on the black-hole horizon rh = 1 we can eliminate µ and thus study the

dependence of the effective potential eq. (2.23) on n, l, ξ and Λ.

The impact of l on the potential is evident by inspection of (2.23). The peak of the barrier assumes its

lowest value for l = 0 while for particles with larger values of the parameter l the height increases and

this means that they are less probable to overcome the barrier, reach the observer and contribute to

the radiation of the black hole. This can be attributed to the spherical symmetry of the background

that favors the also spherically-symmetric lowest mode with l = 0. This is the reason why this field

mode is often referred to as the dominant mode. The effect of the other three parameters on the form

of the barrier is less evident and so the best way to reveal their effect is to plot the potential.

For the dominant mode of the field with ξ = 0.5 and Λ = 0.01, in Fig. 2.3(a), we present the profile

of the effective potential as the number of extra dimensions assumes the values n = 0, 1, 2, 3, 4, 5, 8.

We notice that the height of the barrier increases with the increase of n and this will in turn lead to

the decrease of the emission of brane-localized scalar particles as was also shown in [96]. Regarding

the effect of the non-minimal coupling ξ in Fig. 2.3(b) we observe a similar behavior since the barrier

also increases with ξ.

Next, in Fig. 2.4, we study the effect of the cosmological constant Λ on the barrier for the dominant

field mode (l = 0) in the case of two extra dimensions (n = 2). The effect here is subtle and to

this end we present a plot focusing on the peak of the barrier to better depict this. For minimally

coupled fields, Fig. 2.4(b), the barrier is lowered with an increase in Λ and thus the particle emission
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Figure 2.3: Effective potential for brane scalar fields for: (a) l = 0, Λ = 0.01 r−2
h , ξ = 0.5 and

variable n = 0, 1, 2, 4, 5, 8 (from bottom to the top), and (b) l = 0, Λ = 0.01 r−2
h , n = 2 and variable

ξ = 0, 0.1, 0.2, 0.4, 0.5, 0.56 (again, from bottom to top).
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Figure 2.4: Effective potential for brane scalar fields for l = 0, n = 2, and variable Λ =
10−8, 10−2, 0.05, 0.1, 0.2, 0.3 (in units of r−2

h ), and (a) wide view for ξ = 0.5, and magnifications
of the peak area for (b) ξ = 0, (c) ξ = 0.67 and (d) ξ = 0.8.

is enhanced. As ξ is “switched-on” the emission-enhancing effect of Λ weakens as Fig. 2.4(a) and

2.4(c) with ξ = 0.5 and ξ = 0.67 respectively show. Finally for even larger values of ξ as in Fig. 2.4(d)

the role of the cosmological constant is reversed and now the effective potential height increases with

Λ.



40

2.2.2 The analytic solution

In this section we proceed with the computation of the greybody factor. The idea is to solve the

EOM for the scalar field (2.20) and then express the solution in terms of incoming and outgoing

plane wave modes, far away from the black-hole horizon, i.e. close to the cosmological horizon. The

greybody factor can then be obtained through the ratio of the amplitudes of the waves. Unfortunately

to obtain an exact analytic solution to eq. (2.20) is an extremely difficult task4 and to our knowledge

this has been achieved only in special cases (see for example [97]) albeit under fine tuning of the

parameters. We can solve this equation by employing numerical techniques and in fact we are going

to do so in the next chapters in order to calculate the exact form of the greybody factors valid for any

value of the parameters and throughout the energy range of the emitted particle. Still the analytic

calculation is deemed necessary in order to better grasp the physics of the problem and obtain the

boundary conditions we are going to use for the numerical solution.

To solve eq. (2.20) analytically we need to invoke an approximate scheme. A long-used approximate

method employed in calculations of field scattering by black holes was first introduced by Unruh in

1976 [98] and later used by a series of other authors to solve the Klein-Gordon equation in various

black-hole space-times, asymptotically-flat or not (see [99–102] for some indicative works).

In this scheme, assuming that the two horizons are located sufficiently apart, the EOM is solved

independently in the vicinity of each of the two horizons. This can be achieved after suitable field

and radial coordinate redefinitions that recast the radial differential equation to a familiar equation

with known solutions. The two sets of solutions are then smoothly matched in the intermediate region

between the horizons to ensure the existence of the complete solution. This is achieved by expanding

the asymptotic solutions and identifying the same power terms of the two expansions. In using this

method, the parameter space has to be constrained in one hand in order to obtain the solutions close

to the horizons and on the other hand for the matching of the solutions. As a consequence the validity

of the approximate analytic expressions is rather limited. This approximation procedure is termed

method of matched asymptotic expansions.

Previous studies that solved (2.20) analytically using the above approximate method were limited in

the case of the dominant mode (l = 0) for a minimally-coupled scalar field in (4+n) dimensions or for

a non-minimally coupled scalar field (ξ 6= 0) [93, 96] and arbitrary angular momentum number l but

in 4 dimensions [99]. In our analysis we deal with the most general case by considering non-minimal

coupling ξ in combination with arbitrary values for l and n.

In order to solve (2.20) close to the black-hole horizon the approach followed so far was to neglect the

effect of the cosmological constant in that region in order to simplify the analysis. We have managed

to solve the radial EOM in this regime without discarding Λ and thus to obtain more accurate analytic

4Even for the simplified form of the equation with ξ = 0 or Λ = 0.
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results. To do so we found out that the appropriate redefinition for the radial coordinate is

r → f(r) =
h(r)

1− Λ̃r2
, (2.25)

where, recall that we have previously defined Λ̃ ≡ 2κ2
DΛ/(n+2)(n+3). For the rest of our analysis we

shall also set κ2
D = 1. The new radial function close to the black-hole horizon behaves as f(r ≈ rh)→ 0

because it is proportional to the metric function. On the other hand, the r.h.s.of eq. (2.25) can be

expressed as

f(r) = 1− µ

rn+1

1

1− Λ̃r2
= 1−

(
rh
r

)n+1 (1− Λ̃r2
h)

(1− Λ̃r2)
(2.26)

thus, far away from the black-hole horizon where we have r � rh, f(r) ≈ 1. An important relation

that the derivative of f(r) satisfies is

df

dr
=

1− f
r

A(r)

1− Λ̃r2
, (2.27)

where we have defined A(r) ≡ (n+ 1)− (n+ 3)Λ̃r2.

We are now ready to rewrite the radial EOM (2.20) in terms of the new radial coordinate f(r) close

to the black-hole horizon as

f (1− f)
d2R(f)

df2
+ (1−Bh f)

dR(f)

df
+

[
(ωrh)2

A2
hf
−
λh (1− Λ̃r2

h)

A2
h(1− f)

]
R(f) = 0 . (2.28)

We used the (super-)subscript “h” to indicate quantities evaluated at r = rh and we have also defined

for reasons of convenience the following factors:

Bh ≡ 1 +
n

Ah
(1− Λ̃r2

h) +
4Λ̃r2

h

A2
h

, λh = l(l + 1) + ξR
(h)
4 r2

h . (2.29)

Regarding the form of the term in the square brackets of eq. (2.28), see appendix B. Under the

following field redefinition:

R(f) = fα1(1− f)β1F (f) , (2.30)

we can finally recast (2.28) in the familiar form of a hypergeometric differential equation

f (1− f)
d2F (f)

df2
+ [c1 − (1 + a1 + b1) f ]

dF (f)

df
− a1b1 F (f) = 0 , (2.31)

if we further identify

a1 = α1 + β1 +Bh − 1 b1 = α1 + β1 , c1 = 1 + 2α1 . (2.32)
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The general solution of (2.31) in combination with the redefinition (2.30) yields the radial part of the

field in terms of the coordinate function f(r)

RBH(f) = A1f
α1 (1− f)β1 F (a1, b1, c1; f)

+A2 f
−α1 (1− f)β1 F (a1 − c1 + 1, b1 − c1 + 1, 2− c1; f) , (2.33)

where the coefficients A1,2 are arbitrary constants to be determined by the boundary conditions we

will impose on the solution. In order to have the complete solution in the near black-hole horizon

regime we have to also specify the values for the power coefficients α1 and β1 of eq. (2.30). To do this

we need to solve a set of equations that result from the requirement that the term multiplying F (f)

in eq. (2.31) does not depend on f since only then we have the form of a hypergeometric differential

equation. The set of these two equations is the following:

α2
1 +

ω2r2
h

A2
h

= 0 , (2.34)

and

β2
1 + β1 (Bh − 2) +

ω2r2
h

A2
h

−
λh (1− Λ̃r2

h)

A2
h

= 0 , (2.35)

with the corresponding solutions being

α
(±)
1 = ± iωrh

Ah
, (2.36)

and

β
(±)
1 =

1

2

[
(2−Bh)±

√
(Bh − 2)2 +

4λh (1− Λ̃r2
h)

A2
h

]
. (2.37)

Close to the black-hole horizon the new radial coordinate f(r), as we have already seen, goes to zero

and so we can use one of the properties of the hypergeometric functions, namely F (a, b, c; 0) = 1 to

rewrite (2.33) as

RBH(f) ' A1 f
α1 +A2 f

−α1 . (2.38)

Since the coefficients A1 and A2 are arbitrary we are led to conclude that the two solutions for α1

(2.36) are equivalent. The reason being we can always interchange A1 with A2 in eq. (2.38). Also,

due to the vanishing of the effective potential on the horizons of SdS we can express the field as a

general superposition of free plane waves in terms of the tortoise coordinate namely

RBH(r∗) = Ã1 e
−iωr∗ + Ã2 e

iωr∗ . (2.39)

Then we can see that (2.38) and (2.39) coincide if f ∝ eAhr∗/rh , so choosing the positive or negative

sign of α1 corresponds to interchanging the in-going with the out-going field modes on the black-hole
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horizon. All we have to do then is to simply choose one of the two solutions. We shall choose

α1 =
−iωrh
Ah

. (2.40)

Turning now to the power coefficient β1 the way to pick one out of the two solutions in (2.37) is to

use the convergence criterion for the hypergeometric function,

Re (c1 − a1 − b1) > 0, (2.41)

which is satisfied if β1 = β
(−)
1 . Thus we have completely specified the solution close to rh. Finally a

boundary condition we should impose on the solution close to rh stems from the natural requirement

that exactly on the location of the horizon there can only be in-going field modes. This amounts to

setting A2 = 0 in eq. (2.38). Of course a second boundary condition can be used in order to specify

the remaining arbitrary coefficient A1 but in fact this is not necessary in deriving the GF because it

cancels out of the equations. So to simplify the expressions one can simply set A1 = 1.

Next we focus on the cosmological horizon regime. There in order to bring the radial EOM to a familiar

form we work along the lines drawn in previous studies [93, 99] and apply the following approximation

to the metric function

h(r) = 1−
(
rh
r

)(n+1)

− Λ̃r2

[
1−

(
rh
r

)(n+3)]
' 1− Λ̃r2 , (2.42)

where we have once again substituted the mass parameter µ via (2.24) evaluated at rh. By using this

asymptotic de Sitter approximation we neglect the effect of the black-hole mass close to rc. This is

indeed a well-justified approximation if the two horizons are located far away from each other and

in fact it becomes more accurate the further away rc is located from rh. Another factor that acts in

favor of the increased validity of the approximation of eq. (2.42) is the value of the parameter of the

number of extra dimensions n. This is due to the fact that in the neighborhood of rc we have r � rh

and thus for larger values of n the term rh/r gets heavily suppressed.

Under the radial coordinate transformation r → h(r) ' 1 − Λ̃r2, eq. (2.20) assumes the following

form:

h (1− h)
d2R

dh2
+
(

1− 5

2
h
) dR
dh

+
1

4

[
(ωrc)

2

h
− l(l + 1)

(1− h)
− ξR(c)

4 r2
c

]
R = 0 , (2.43)

where R
(c)
4 is the 4-dimensional Ricci scalar (2.10) evaluated at r = rc. This time, to bring the

EOM in the form of a hypergeometric equation we redefine the field as R(h) = hα2(1− h)β2X(h) and

the hypergeometric indices thus have the following expressions:

a2 = α2 + β2 +
3

4
+

√
9

16
− ξR

(c)
4 r2

c

4
, (2.44)
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b2 = α2 + β2 +
3

4
−

√
9

16
− ξR

(c)
4 r2

c

4
, c2 = 1 + 2α2 . (2.45)

As for the power coefficients α2 and β2, they are determined by the set of equations

α2
2 +

ω2r2
c

4
= 0 , (2.46)

and

β2
2 +

β2

2
− l(l + 1)

4
= 0 , (2.47)

with solutions

α
(±)
2 = ± iωrc

2
, β

(±)
2 =

1

4

[
−1± (2l + 1)

]
. (2.48)

Then, in the neighborhood of rc the general solution for the radial part of the field is given in terms

of hypergeometric functions we denote here with X(h) as

RC(h) =B1 h
α2 (1− h)β2 X(a2, b2, c2;h)

+ B2 h
−α2 (1− h)β2 X(a2 − c2 + 1, b2 − c2 + 1, 2− c2;h) ,

(2.49)

where once again the coefficients B1 and B2 are arbitrary. The vanishing of h(r) as the cosmological

horizon is approached results in the following expression

RC(h) ' B1 h
α2 +B2 h

−α2 (2.50)

where the properties of the hypergeometric functions have been employed once again. Also, close to

rc the vanishing of the effective potential allows for expressing the solution in the form of free plane

waves in terms of the tortoise coordinate. For h = e−2r∗/rc we can write (2.50) as

RC(r∗) ' B1 e
∓iωr∗ +B2 e

±iωr∗ (2.51)

In regard now with the power coefficients α
(±)
2 , as was the case in the rh neighborhood, choosing the

positive or negative solution simply interchanges the in-going and out-going modes on rc. On the

cosmological horizon, we can have both sets of modes, in contrast to the black-hole horizon where

we imposed the purely-in-going-modes condition . Then upon selecting α2 = α
(+)
2 , the coefficient B1

(B2) corresponds to the amplitude of the incoming (outgoing) wave and so the greybody factor is

given by the ratio of the coefficients as

|A|2 = 1−
∣∣∣∣B2

B1

∣∣∣∣2 . (2.52)

Finally since the solution (2.49) has to converge we are led to choose β2 = −(l + 1)/2 for the second

power coefficient and thus fully determine the rc asymptotic solution to the radial EOM .

The analysis so far boils down to two solutions of (2.20), each being valid close to one of the two
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causal boundaries of the SdS spacetime. In order to guarantee the existence of a full solution for

all r in rh < r < rc, we must make sure that these two asymptotic solutions (2.33) and (2.49) can

be smoothly “sewn” together at some intermediate value of the radial coordinate r. For this to be

possible the parameters of the system, unavoidably, have to be subject to further constraints. Before

we can derive these constraints though we must first “stretch” the asymptotic solutions towards the

intermediate regime. In the near-rh solution we take the limit r � rh (or in terms of the new radial

coordinate of (2.25) f → 1) and in this way “strech” the solution to large values of r. We use the

following hypergeometric function property [103]:

F (a, b, c;x) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

F (a, b, a+ b− c+ 1; 1− x)

+(1− f)c−a−b
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− x),

(2.53)

to change the argument in (2.33) (with A2 = 0) from f to 1− f . Then in terms of r the “stretched”

solution is

RBH(r) 'A1
Γ(c1) Γ(a1 + b1 − c1)

Γ(a1) Γ(b1)

(
r

rh

)−(l+1)

+A1
Γ(c1) Γ(c1 − a1 − b1)

Γ(c1 − a1) Γ(c1 − b1)

(
r

rh

)l
≡Σ1 r

−(l+1) + Σ2 r
l .

(2.54)

In deriving the last equation we had to use the following approximations valid for small cosmological

constant Λ and coupling constant ξ:

(1− f)β1 '
(rh
r

)β1(n+1)
'
(
r

rh

)l
(2.55)

and

(1− f)β1+c1−a1−b1 '
(rh
r

)(2−Bh−β1)(n+1)
'
(
r

rh

)−(l+1)

, (2.56)

since in that limit it holds that: Ah ' (n + 1), Bh ' (2n + 1)/(n + 1) and β1 ' −l/(n + 1). Note

that we only applied these approximations in the powers of the factors (1− f) and not in the gamma

function arguments. This way we expect to have an increased validity for our analytical results.

On the near-rc solution the corresponding “stretching” aims to extending the solution (2.49) towards

r � rc. To do this, we shift the argument h → 1− h using the transformation relationship (2.53) of

the hypergeometric function and under the following approximations:

(1− h)β2 '
(
r

rc

)2β2

=

(
r

rc

)−(l+1)

(2.57)

(1− h)β2+c2−a2−b2 '
(
r

rc

)−(1+2β2)

=

(
r

rc

)l
, (2.58)
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that once again require the smallness of Λ and ξ, we end up with the stretched solution in terms of r

RC(r) '
(
r

rc

)−(l+1) [
B1

Γ(c2) Γ(c2 − a2 − b2)

Γ(c2 − a2) Γ(c2 − b2)
+B2

Γ(2− c2) Γ(c2 − a2 − b2)

Γ(1− a2) Γ(1− b2)

]
+

(
r

rc

)l [
B1

Γ(c2) Γ(a2 + b2 − c2)

Γ(a2) Γ(b2)
+B2

Γ(2− c2) Γ(a2 + b2 − c2)

Γ(a2 + 1− c2) Γ(b2 + 1− c2)

]
≡ (Σ3B1 + Σ4B2) r−(l+1) + (Σ5B1 + Σ6B2) rl . (2.59)

The matching of the two expansions (2.54) and (2.59) is now possible in the region between the two

horizons because they exhibit the same powers of r namely l and −(l + 1). Equating the coefficients

of rl and r−(l+1) we find that the field amplitudes B1,2 on the cosmological horizon are

B1 =
Σ1Σ6 − Σ2Σ4

Σ3Σ6 − Σ4Σ5
, B2 =

Σ2Σ3 − Σ1Σ5

Σ3Σ6 − Σ4Σ5
. (2.60)

Having specified the amplitudes then it is straightforward to obtain the final expression for the grey-

body factor via eq. (2.52)

|A2| = 1−
∣∣∣∣Σ2Σ3 − Σ1Σ5

Σ1Σ6 − Σ2Σ4

∣∣∣∣2 . (2.61)

The analytic expression we derived for the greybody factor |A2| for the Hawking radiation process

of scalar particles emitted on the brane by a higher-dimensional Schwarzschild-de Sitter black hole

(2.61) has an extremely complicated dependence on the parameters of the system namely the two

horizon radii rh and rc, the coupling constant ξ, the cosmological constant Λ, the number of extra

spacelike dimensions n the angular momentum quantum number l as well as on the energy ω of the

emitted particle. In order to obtain this solution with the method of the matching of the asymptotic

expansions we had to impose some constraints on these parameters. More precisely, ξ and Λ need to

be small.

In the next subsection we study the low-energy profile of the approximate analytic result for the

greybody factor (2.61).

2.2.3 The low-energy limit of the greybody factor

We now focus in the infrared limit (ω → 0) of (2.61) for minimal and non-minimal coupling of the

scalar field. In the minimally-coupled case and for the dominant mode of the field l = 0 we recover

the findings of a previous work [96] that reported a non-vanishing low-energy asymptotic limit for the

GFOnce the coupling ξ is “switched-on”, the low-energy profile drastically changes. As we shall see,

non-minimally coupled scalar fields result in the vanishing of the greybody factor expansion around

ω → 0, a feature previously reported for the 4-dimensional case in [99].
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The functional dependence of the greybody factor is encoded in the parameters of the hypergeometric

functions ai, bi and ci. For the low-energy expansion we found that it is convenient to separate the

energy-dependent part of the (ai, bi, ci). More precisely, for the parameters of the near-rh solution we

write

a1 = δ − iωrh
(n+ 1)

, b1 = ε− iωrh
(n+ 1)

, c1 = 1− 2iωrh
(n+ 1)

, (2.62)

with the ω-independent parts defined as

δ =
1 + 2n−

√
1 + 4λh

2(n+ 1)
, (2.63)

ε =
1−
√

1 + 4λh
2(n+ 1)

. (2.64)

For the near-rc solution’s parameters we respectively have the following decomposition:

a2 = η+ +
iωrc

2
, b2 = η− +

iωrc
2

, c2 = 1 + iωrc , (2.65)

where

η± =
1

4

(
1− 2l ±

√
9− 4ξR

(c)
4 r2

c

)
. (2.66)

In order to manipulate analytically the low-energy expansion we had to impose a further simplification

of the expressions by neglecting terms proportional to Λ in grounds of small cosmological constant.

Note that all terms containing both Λ and ξ were kept into play.

Under these simplifications, if we further define RH ≡ rh/(n+ 1) and RC ≡ rc/2 we can write the Σi

coefficients that appear in (2.54) and (2.59) in the following compact forms:

Σ1 =
rl+1
h Γ(1− 2iωRH) Γ(δ + ε− 1)

Γ(δ − iωRH) Γ(ε− iωRH)
, (2.67)

Σ2 =
r−lh Γ(1− 2iωRH) Γ(1− δ − ε)

Γ(1− δ − iωRH) Γ(1− ε− iωRH)
, (2.68)

Σ3 =
r

(l+1)
c Γ(1 + 2iωRC) Γ(1− η+ − η−)

Γ(1− η+ + iωRC) Γ(1− η− + iωRC)
, (2.69)

Σ4 =
r

(l+1)
c Γ(1− 2iωRC) Γ(1− η+ − η−)

Γ(1− η+ − iωRC) Γ(1− η− − iωRC)
= Σ3 , (2.70)

Σ5 =
r−lc Γ(1 + 2iωRC) Γ(η+ + η− − 1)

Γ(η+ + iωRC) Γ(η− + iωRC)
, (2.71)

Σ6 =
r−lc Γ(1− 2iωRC) Γ(η+ + η− − 1)

Γ(η+ − iωRC) Γ(η− − iωRC)
= Σ5 . (2.72)
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We also make use of the following general expressions for the expansion of gamma functions [103]:

Γ(â+ iωb̂) = Γ(â)
[
1 + iωb̂Ψ(0)(â)

]
+O(ω2) , (2.73)

Γ(iωb̂) =
1

iωb̂
− γ +O(ω) , (2.74)

as well as the property zΓ[−z] = −Γ[1− z]. The coefficients â and b̂ are energy-independent and Ψ(0)

is the poly-gamma function. Finally, γ ≈ 0.577216 is the Euler–Mascheroni constant.

We consider first the dominant mode (l = 0) of a minimally coupled (ξ = 0) scalar field. In this case

the quantities of eq. (2.63),(2.64) and (2.66) assume the following simplified forms

δ =
n

n+ 1
, ε = 0 , η± =

(
1,−1

2

)
. (2.75)

Then the power-series expansion of Σi coefficients in the energy results in the following approximate

expressions:

Σ1 ≈ iωr2
h +O(ω2) , (2.76)

Σ2 ≈ 1 +
iωrh
n+ 1

[
γ + Ψ(0)

(
1

n+ 1

)]
+O(ω2) , (2.77)

Σ3 ≈ iωr2
c +O(ω2) = Σ4 , (2.78)

Σ5 ≈ 1 + iωrc (log 2− 1) +O(ω2) = Σ6 . (2.79)

Finally, substitution of these into (2.61) reproduces the low-energy asymptotic limit, often refer to as

the geometric limit for the greybody factor, reported in previous analyses [93, 96, 99, 104–106]

|A2| = 1−
∣∣∣∣ iω (r2

c − r2
h)

iω (r2
c + r2

h)

∣∣∣∣2 +O(ω) =
4r2
hr

2
c

(r2
c + r2

h)2
+O(ω) . (2.80)

The authors of [96] interpreted this characteristic non-vanishing value obtained for the dominant mode

of the massless scalar emitted by the black hole in the presence of a cosmological constant as follows:

The cosmological horizon creates effectively a finite-size universe for the particles to propagate and

since in the infrared limit the field is completely delocalized this results in a finite probability for the

particle to traverse the distance between the black-hole horizon and the detector. Of course when the

spacetime is asymptotically flat, the observer is located at spatial infinity and thus the probability for

the low-energy particle to reach this vanishes as does the geometric limit for Λ → 0 ⇒ rc → ∞. We

point out that although (2.80) does not exhibit clearly the dependence on n the numerical values of

rh and rc depend on it as they are solutions of h(r) = 0 that is an n-dependent equation.

Notice now the dependence of the infrared limit (2.80) on the black-hole and cosmological horizon radii.

By studying the infrared limit of the power spectrum that is closely connected with the geometric limit

of the GFof a decaying black hole, it is in principle possible to deduce the value of the cosmological
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horizon radius and in turn the value of the cosmological constant itself. As a matter of fact, an even

more exciting possibility opens-up in the case we observe Hawking radiation by a mini black hole

generated possibly in sufficiently energetic particle collisions in a future particle accelerator. By the

features of the spectrum we can infer not only the value of Λ but the number of the extra spacelike

dimensions (if any!) of our universe since as we have seen GF depend on n as well.

The GFinfrared limit, in the case of a non-minimally coupled scalar field (ξ 6= 0) exhibits an entirely

different behavior with respect to ω. The coefficients Σi are proportional to the combination

Γ(1± 2iωR)

Γ(â± iωR) Γ(b̂± iωR)
=

1∓ iωR
[
2γ + Ψ(0)(â) + Ψ(0)(b̂)

]
Γ(â) Γ(b̂)

+O(ω2) , (2.81)

where we denote by R either RH or RC and â, b̂ are again energy-independent. Using (2.81), we

can write the combinations of the Σi quantities that appear in the expression of the greybody factor

(2.61) as

Σ1Σ5 = K (1− iωRCB + iωRHΓ) ,

Σ1Σ6 = K (1 + iωRCB + iωRHΓ) , (2.82)

Σ2Σ3 = E (1 + iωRHZ − iωRCΘ) ,

Σ2Σ4 = E (1 + iωRHZ + iωRCΘ) ,

where we have defined the following quantities:

K ≡
r

(l+1)
h r−lc Γ(δ + ε− 1) Γ(η+ + η− − 1)

Γ(δ) Γ(ε) Γ(η+) Γ(η−)
,

E ≡
r−lh r

l+1
c Γ(1− δ − ε) Γ(1− η+ − η−)

Γ(1− δ) Γ(1− ε) Γ(1− η+)Γ(1− η−)
, (2.83)

and

B ≡ 2γ + Ψ(0)(η+) + Ψ(0)(η−) ,

Γ ≡ 2γ + Ψ(0)(δ) + Ψ(0)(ε) ,

Z ≡ 2γ + Ψ(0)(1− δ) + Ψ(0)(1− ε) , (2.84)

Θ ≡ 2γ + Ψ(0)(1− η+) + Ψ(0)(1− η−) .

It is straightforward then to get the quantity that appears in the numerator of (2.61)

Σ2Σ3 − Σ1Σ5 = (E −K) + iωRH (EZ −KΓ) + iωRC (KB − EΘ) , (2.85)
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while for the denominator we have

Σ1Σ6 − Σ2Σ4 = (K − E) + iωRH (KΓ− EZ) + iωRC (KB − EΘ) . (2.86)

From these two last equations one can easily conclude that

|Σ2Σ3 − Σ1Σ5|2 ' |Σ1Σ6 − Σ2Σ4|2 = (K − E)2 +O(ω2) , (2.87)

and so if we now substitute eq. (2.87) into eq. (2.61), we see that the first non-vanishing term for

non-minimally coupled scalar fields is of order O(ω2) and has the form

|A|2 =
8π2(ωrh)2λlh [Γ(θ+) Γ(θ−)]2 Γ[ 1+u

2(n+1) ] Γ[1+2n+u
2(n+1) ]

(1 + 2l)u
(

cos[ nπ
(n+1) ] + cos[ πu

(n+1) ]
)

Γ[1
2 + l]2 Γ[ u

(n+1) ]2 Γ[1+2n−u
2(n+1) ] Γ[ 1−u

2(n+1) ]
, (2.88)

where u ≡
√

(2l + 1)2 + 4ξR
(h)
4 r2

h, and

θ± =
1

4

(
3 + 2l ±

√
9− 4ξR

(c)
4 r2

c

)
. (2.89)

We can thus conclude that the low-energy asymptotic value for the greybody factor (2.80) disappears

for a non-vanishing coupling constant ξ. Also, since ξ is directly related with the presence of an

effective mass for the field (2.18), it becomes clear that only GFs for massless fields may exhibit this

low-energy non-zero limit.

2.2.4 Plotting the analytic result

In this section we are going to study in depth the profile of the approximate analytic expression

we obtained (2.61) for the greybody factor |A|2 for massless scalar fields emitted on the brane by a

higher-dimensional SdS black hole. The extremely complicated form of (2.61) makes imperative the

analysis using plots. We thoroughly investigate the dependence of the greybody factor on the field

parameters ξ and l as well as on the spacetime parameters n and Λ.

In the left panel of Fig. 2.5 we plot |A|2 for minimally coupled fields (ξ = 0), with solid curves, as

well as with an arbitrary non-minimal coupling (ξ = 0.3) depicted with dashed curves. The spacetime

parameters are fixed to n = 2 extra dimensions and Λ = 0.1 (in units of r−2
h ). The first 5 modes

(l = 0 − 4) of the field are depicted, with the l = 0 one clearly dominating in the low-energy region

both for ξ = 0 and ξ 6= 0. Recall that the height of the effective potential (2.23) increased with the

quantum number l of the field and this is clearly reflected here. For larger values of l the transmission

probability for particles with up to intermediate values of energy to overcome the barrier is further

decreasing.
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Figure 2.5: Greybody factors for brane scalar fields, for n = 2 and Λ = 0.1, and: (a) for variable
l = 0, 1, 2, 3, 4 and ξ = 0 (solid lines) or ξ = 0.3 (dashed lines); (b) for l = 0 and variable ξ =

0, 0.1, 0.2, 0.3, 0.4, 0.5.

Notice also that the non-vanishing low-energy limit of |A|2 (2.80) in the minimally coupled case is

clearly seen for the l = 0 mode. As a consequence, the presence of non-minimal coupling affects the

most the dominant mode (l = 0) in the low-energy limit. Independently of the value of l, we see that

for arbitrary ξ 6= 0 we have further suppression of the greybody factor compared to the case with

ξ = 0.

Although the authors of previous works, in order to achieve the matching of the two solutions had to

impose constraints on the energy parameter ωrh in our analysis of the previous section we have only

required ξ and Λ to be small . We believe that this contributed in enabling us to extend the curves

of the approximate analytic result way beyond the low-energy region, as it can be seen in Fig. 2.5 for

example.

The usually imposed low-energy approximation, causes the approximate analytic results to deviate

from the exact numerical ones when the energy is increased. Thus, we expect the analytic results

we obtained without resorting to the low-ωrh approximation to be more accurate and deviate from

the exact ones only at large values of the energy. Inevitably, a deviation between the exact and

approximate results is expected at large energies (even for ξ � 1 and Λ � 1) due to the presence of

poles in the arguments of the gamma functions of the analytic expressions (as is usually the case for

the analytic results for greybody factors). These poles, that occur at various values of ωrh, sometimes

result in “abrupt stops” exhibited in the plotting of the curves. One such example can be seen in the

l = 1 curve (solid) for the minimally coupled field in Fig. 2.5(a) where a pole restricts the plotting of

the curve in the low-energy region. The effect of ξ only slightly modifies the profile of the curves with
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Figure 2.6: Greybody factors for brane scalar fields, for l = 0, Λ = 0.1, and variable n = 0, 1, 2, 3, 4, 7
and: (a) for ξ = 0, and (b) ξ = 0.3.

l > 0 but its presence in the arguments of the gamma functions is enough to shift the location of the

pole and thus for the non-minimally coupled (dashed curve) l = 1 mode of the field, the greybody

factor manages to extend up to intermediate values of ωrh.

To see the effect of the non-minimal coupling parameter ξ on the greybody factor we plot |A|2 for the

following values of the parameters: n = 2, Λ = 0.1 and for the dominant mode l = 0 in Fig. 2.5(b).

The depicted coupling parameter values range from ξ = 0 to ξ = 0.5 with an increment of δξ = 0.1.

Clearly, the larger the coupling ξ the more suppressed the greybody factors get and this feature comes

as no surprise if one recalls the form of the equation of motion (2.18). The way ξ enters in the r.h.s.

of the EOM resembles the mass term of a massive field. This feature is in agreement with the findings

of previous works [107–111], that studied the emission of massive scalar particles by various black

holes, suggesting that the transmission probability for scattering on the Regge-Wheeler type effective

potential is reduced with the mass of the field.

Now, we turn to the effect of the spacetime parameters n and Λ on the greybody factor. We start by

plotting the profile of |A|2 with respect to the number of extra dimensions n in Fig. 2.6. Recall that

the dependence of the brane-induced metric on n is inherited via the functional form of the metric

function (2.7) and so the brane greybody factor depends on n as well. We fix Λ = 0.1 and work with

the dominant field mode (l = 0) for the cases of minimal coupling on the left panel and non-minimal

coupling with ξ = 0.3 on the right panel. For the minimally coupled case, the low-energy asymptotic

geometric limit (2.80) that was derived in the previous section can be clearly seen and decreases as n

becomes larger. The physical interpretation behind this result is that for fixed values of the black-hole

mass and cosmological constant, the two horizons are located further apart with the number of extra
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Figure 2.7: Greybody factors for brane scalar fields for l = 0, n = 2, and Λ =0.01, 0.05, 0.1, 0.2,
0.3, and (a) for ξ = 0, (b) ξ = 0.2, and (c) ξ = 0.5.

dimensions; in this way the space that the field has to traverse becomes larger, and as a consequence

the greybody factor is decreased. Moving away from the low-energy region we see that for larger

values of the ωrh parameter the suppression of |A|2 with n persists.

The most interesting interplay between the parameters of the system we considered is depicted in

Fig 2.7 where the effect of the cosmological constant Λ on the transmission probabilities is studied.

We consider once again the dominant mode of the field for l = 0, and fix the number of extra

dimensions to n = 2 while assigning the following values for Λ = 0.01, 0.05, 0.1, 0.2, 0.3. Then we plot

the transmission probability for 3 different values of the non-minimal coupling, namely ξ = 0, 0.2, 0.5

in subfigures (a),(b) and (c) respectively.

Starting with the minimal coupling in Fig. 2.7(a) we can clearly see that the low-energy geometric

limit of the curves gets larger as Λ grows. The values of the geometric limit depicted in the leftmost

panel can be used as a way to constrain the values of Λ. Obviously, as the cosmological constant

value grows the approximations we made in the derivation of the analytic result for the greybody

factor, that required the smallness of Λ, becomes less valid. See for example (2.42) and recall that

the cosmological horizon is located closer to the black-hole horizon for larger values of Λ. Of course

increasing the number of extra dimensions n as well restores partially the validity of the approximation

because the term
(
rh
r

)(n+3)
we neglect becomes smaller.

Then, for the dominant field mode in non-minimal coupling we can compare the exact geometric limit

value of (2.80) with the low-energy value of our approximate analytic result (2.61) and see how much

the two differ for various values of the cosmological constant. It turns out that for Λ > 0.3 we have

a deviation of the order of 10% while for Λ ≤ 0.1 the two values deviate by less than 5%. Finally,

notice that the enhancement of the curves with the cosmological constant in Fig. 2.7(a) extends up

to intermediate values of the energy parameter while for even larger values of ωrh the approximate

analytic curves are expected to deviate a lot from the exact ones.



54

Increasing now the value of the field coupling to ξ = 0.2 in Fig. 2.7(b) we see that the greybody

factor is almost independent of Λ while for even larger values of ξ, for example ξ = 0.5 in Fig. 2.7(c),

the effect of Λ on the GFis reversed and now the transmission probabilities get suppressed with the

cosmological constant. To explain this peculiar behavior of cosmological constant parameter we need

to recall where Λ comes into play. On one hand, as we have already discussed previously, the field

exhibits an effective mass that is proportional to ξ and Λ (via the Ricci scalar). When the field

coupling ξ is not negligible the effective mass increases with Λ and as a consequence the greybody

factor gets suppressed. On the other hand, for ξ → 0, the effect of the mass term is diluted and Λ

contributes via the metric function h(r) (2.7). As Λ grows, h(r) becomes smaller since the cosmological

term contributes with a negative sign. As a consequence, since the effective potential (2.23) is directly

proportional to the metric function the barrier gets lowered thus leading to the observed greybody

factor enhancement. Obviously for the values of the parameters of Fig. 2.7(b) these two effects cancel

each other out.

2.3 Scalar field scattering in the bulk

2.3.1 The effective potential

Following closely along the lines drawn in the previous section with the computation of the greybody

factor on the brane we now turn to the GFfor fields propagating in the bulk. We focus again on

the emission of massless scalar particles that couple non-minimally to gravity. This time the scalar

field will be free to probe the extra dimensions and in this sense it is a higher-dimensional field that

depends also on the extra azimuthal coordinates θi. Its action will be

SΦ = −1

2

∫
d4+nx

√
−G

[
ξΦ2RD + ∂MΦ ∂MΦ

]
, (2.90)

where the higher-dimensional metric tensor GMN components follow immediately from the line ele-

ment (2.5) and the Ricci scalar is given in (2.4).

Variation of the action (2.90) with respect to the field yields the scalar field equation of motion

1√
−G

∂M

(√
−GGMN∂NΦ

)
= ξRD Φ . (2.91)

Again we wish to decouple the radial part of the EOM and in order to achieve this we can write the

field in the following factorized form:

Φ(t, r, θi, ϕ) = e−iωtR(r) Ỹ (θi, ϕ) , (2.92)
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where Ỹ (θi, ϕ) are the hyperspherical harmonics [112] satisfying the following eigenvalue equation:

r2

√
−G

n+2∑
j=1

∂θj

(√
−GGθjθj∂θj Ỹ (θi, ϕ)

) = −l(l + n+ 1)Ỹ (θi, ϕ), (2.93)

where the index j runs on all angles θi and φ. Note that for n extra azimuthal coordinates the

determinant of the metric (2.5) is
√
−G = rn+2

n∏
i=1

sini θi . (2.94)

Equation (2.93), as one can easily verify, reduces to the well-known 4-dimensional one upon setting

n = 0.

Substituting the above field ansatz to eq. (2.91) and using the method of separation of variables we

obtain the decoupled radial part of the EOM that describes the propagation of Φ(t, r, θi, ϕ) in the bulk

1

rn+2

d

dr

[
h(r)rn+2 dR(r)

dr

]
+

[
ω2

h(r)
− l(l + n+ 1)

r2
− ξRD

]
R(r) = 0 . (2.95)

Under the field redefinition u(r) = r(n+2)/2R(r) and radial coordinate transformation dr∗ = dr/h(r) we

recast the EOM into a Schrödinger-like equation with the potential term being once again proportional

to the metric function. More precisely the form of the potential is

V bulk
eff = h(r)

[
l(l + n+ 1)

r2
+ ξRD +

(n+ 2)

2r

dh(r)

dr
+
n(n+ 2)h(r)

4r2

]
, (2.96)

and if we further use (2.7) we can write

V bulk
eff = h(r)

{
(2l + n+ 1)2 − 1

4r2
+ κ2

DΛ (n+ 4)

[
2ξ

(n+ 2)
− 1

2(n+ 3)

]
+

(n+ 2)2µ

4rn+3

}
. (2.97)

By inspection of (2.97) there are two features of the barrier that one can readily identify. Firstly,

we see that, for fields propagating in the bulk, we have the nice property that the potential vanishes

at the location of the horizons due to its proportionality to the metric function h(r). This fact, as

we have seen in the previous section, is crucial in order to express the field as a superposition of free

plane waves and be able to compute the greybody factor as the end product of a scattering problem.

The second feature is the increase of the height of the barrier with the angular momentum number l.

Still, the potential has a highly non-trivial dependence on the parameters n and ξ, so in order to be

able to see their effect on the potential the plots of Fig. 2.8 are necessary.

Similarly to the brane effective potential (2.23) we see that an increase in the number of extra di-

mensions n as well as an increase in the strength of the coupling of the field ξ results in the raising

of the barrier and consequently to a suppression in the total number of particles that contribute to

the radiation of the black hole in the bulk. Notice that the effect of ξ is milder for emission in the
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Figure 2.8: Effective potential for bulk scalar fields for: (a) l = 0, Λ = 0.01, ξ = 0.5 and variable
n = 0, 1, 2, 4, 5, 8 (from bottom to the top), and (b) l = 0, Λ = 0.01, n = 2 and variable ξ =

0, 0.1, 0.2, 0.4, 0.5, 0.56 (again, from bottom to top).

ξ → 0.0 0.1 0.2 0.4 0.5 0.56

n = 1 1.7048 1.70521 1.70561 1.70642 1.70682 1.70706

2 2.46808 2.31422 2.17869 1.95092 1.85431 1.8009

4 4.09964 3.30647 2.7708 2.09329 1.86547 1.75118

5 4.95021 3.71294 2.97078 2.1228 1.85784 1.72845

8 7.58826 4.6779 3.38132 2.17565 1.84655 1.69292

Table 2.2: Bulk-over-brane ratios of the peak values of the effective barriers for l = 0 and Λ = 0.01r−2
h

bulk in Fig. 2.9(b) compared to brane emission in Fig. 2.3(b) and this is the reason we present the

magnification around the area of the peak. The height of the barrier is also located at larger values

for the bulk channel compared to the brane one and this indicates a dominance of the latter as the

favored channel for emission (at least in this parameters range). For convenience we display in Table

2.2 the bulk-over-brane ratio of the peak values for the effective potentials. We will return to the

question of which is the favored channel for scalar particle emission by the higher-dimensional SdS

black hole in a following chapter where we compute the bulk-over-brane total and relative emissivities

using exact numerical results.

Finally, regarding the effect of the cosmological constant on the effective potential we see in Fig. 2.9

that for small values of the coupling ξ we have a suppression of the barrier with Λ while for larger

values of ξ the role of Λ is reversed and leads to an increase of the effective potential. The dual role

exhibited by Λ will be studied and analyzed in great detail in a following chapter.

2.3.2 The analytic solution

The form of the master equation (2.95) dictating the scalar field propagation in the bulk is even more

complicated than the corresponding brane one (2.20). So, in order to calculate the greybody factor
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Figure 2.9: Effective potential for bulk scalar fields for l = 0, n = 2, and variable Λ =
10−8, 10−2, 0.05, 0.1, 0.2, 0.3: magnifications of the peak area for (a) ξ = 0, and (b) ξ = 0.5.

for the bulk channel we employ the same approximate technique with the matching of the expanded

asymptotic solutions used in the previous section. We are able to keep the cosmological constant effect

on the proximity of the black-hole horizon rh into play by using the radial coordinate transformation

of (2.25), and thus we rewrite eq. (2.95) as

f (1− f)
d2R

df2
+ (1−Bh f)

dR

df
+

[
(ωrh)2

A2
h

+
(ωrh)2

A2
hf
−
λh (1− Λ̃r2

h)

A2
h(1− f)

]
R = 0 (2.98)

where Ah = (n+ 1)− (n+ 3) Λ̃r2
h, and

Bh ≡ 1 +
4Λ̃r2

h

A2
h

, λh = l(l + n+ 1) + ξRDr
2
h . (2.99)

To obtain a hypergeometric equation we redefine the field according to R(f) = fα1(1 − f)β1F (f).

Then the parameters of the hypergeometric equation are

a1 = α1 + β1 +
1

2

(
Bh − 1 +

√
(Bh − 1)2 − 4ω2r2

h/A
2
h

)
, (2.100)

b1 = α1 + β1 +
1

2

(
Bh − 1−

√
(Bh − 1)2 − 4ω2r2

h/A
2
h

)
, c1 = 1 + 2α1 , (2.101)

while the power coefficients α1 and β1 have the same functional form with their brane counterparts

namely

α1 = − iωrh
Ah

, (2.102)

and

β1 =
1

2

[
(2−Bh)−

√
(Bh − 2)2 +

4λh (1− Λ̃r2
h)

A2
h

]
. (2.103)
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Of course, the quantities Bh and λh that appear in (2.102) and (2.103) differ from the corresponding

brane ones and are given by eq. (2.99) instead.

The general solution of (2.98) in the neighborhood of the black-hole horizon rh after imposing the

condition that only in-going modes of the field exist on rh is

RBH(f) = A1f
α1 (1− f)β1 F (a1, b1, c1; f). (2.104)

Turning now to the cosmological horizon rc, the form of (2.95) after we change the radial coordinate

according to r → h(r) ' 1− Λ̃r2 is

h (1− h)
d2R

dh2
+

[
1− (n+ 5)

2
h

]
dR

dh

+
1

4

[
(ωrc)

2

h
− l(l + n+ 1)

(1− h)
− ξ(n+ 4)(n+ 3)

]
R = 0 .

(2.105)

Finally redefining the field as R(h) = hα2(1 − h)β2X(h) we recast (2.105) into a hypergeometric

equation with the following indices:

a2 = α2 + β2 +
n+ 3

4
+

1

4

√
(n+ 3)2 − 4ξ(n+ 4)(n+ 3) , (2.106)

b2 = α2 + β2 +
n+ 3

4
− 1

4

√
(n+ 3)2 − 4ξ(n+ 4)(n+ 3) , c2 = 1 + 2α2 . (2.107)

The power coefficients α2 and β2 are now

α2 =
iωrc

2
, β2 = −(l + n+ 1)

2
, (2.108)

and the general solution of (2.95) near the cosmological horizon has the same functional form as eq.

(2.49).

After this point the analysis in the bulk follows closely the one on the brane. The two asymptotic

solutions of the radial EOM in the neighborhood of the horizons are obtained in terms of hypergeo-

metric functions. Then they are stretched towards the intermediate radial regime by employing the

small- and large-value expansions of the hypergeometric functions. Finally a matching is achieved

under the assumption of small ξ and Λ since the solutions can be once again written in terms of the

original radial coordinate r and the terms of equal powers of r be identified. This identification yields

the expressions for the coefficients B1 and B2 and thus to the analytic expression for the greybody

factor in the bulk that is of the same form as that of eq. (2.61), namely

|A2| = 1−
∣∣∣∣Σ2Σ3 − Σ1Σ5

Σ1Σ6 − Σ2Σ4

∣∣∣∣2 , (2.109)

where the quantities Σi in the bulk, differ from their corresponding brane ones only by the form of

the exponents of rh and rc. More precisely, in the coefficients Σ1,Σ3 and Σ4 for the brane channel we
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have r
(l+1)
i while for the bulk channel we have r

(l+n+1)
i .

2.3.3 The low-energy limit of the greybody factor

We will now study the low-energy limit of the greybody factor (2.61) for the bulk channel. The low-ω

asymptotics for both the minimally (ξ = 0) and the non-minimally (ξ 6= 0) coupled scalar field will

be considered. Similarly to the brane case, the sets of the parameters (ai, bi, ci) for the solutions of

the hypergeometric equations close to the black-hole horizon rh and the cosmological horizon rc will

be in the same form as in (2.62) and (2.65). This time, the energy-independent parts (δ, ε, η±) will be

δ =
1

2

[
Bh −

√
(Bh − 2)2 +

4λh
A2
h

]
, (2.110)

ε =
1

2

[
2−Bh −

√
(Bh − 2)2 +

4λh
A2
h

]
, (2.111)

η± =
1

4

[
1− 2l − n±

√
(n+ 3)2 − 4ξRDr2

c

]
. (2.112)

In order to simplify the analysis we have taken the limit of small Λ in the above except in the expression

for Bh (2.99). For Λ→ 0, Bh → 1 and so we take this limit after we take the low-energy limit of the

gamma functions in order to keep the two expansions distinct.

For the dominant mode of the field (l = 0) and in the minimal coupling case (ξ = 0) the quantities of

(2.110)-(2.112) assume the simplified expressions

δ = Bh − 1 , ε = 0 , η± =

[
1,−(n+ 1)

2

]
, (2.113)

and the low-energy expansion of the Σi quantities yields

Σ1 ≈
iωrn+2

h

(n+ 1)
+O(ω2) , (2.114)

Σ2 ≈ Σ5 ≈ Σ6 ≈ 1 +O(ω) , (2.115)

and

Σ3 ≈
iωrn+2

c

(n+ 1)
+O(ω2) ≈ −Σ4 . (2.116)

Upon substituting these expressions in (2.61) we find that the infrared limit of the greybody factor

for the bulk channel and for (ξ, l) = (0, 0) is

|A2| = 1−

∣∣∣∣∣ iω (rn+2
c − rn+2

h )

iω (rn+2
c + rn+2

h )

∣∣∣∣∣
2

+O(ω) =
4(rhrc)

(n+2)

(rn+2
c + rn+2

h )2
+O(ω) . (2.117)
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The same low-energy geometric limit of the bulk greybody factor has been reported in previous works

[93, 96]. Note that due to the appearance of n in the powers of rh and rc of the last equation, the

bulk geometric limit is suppressed compared to the corresponding brane one. So, the probability for

very low-energy particles to overcome the effective potential in the bulk is smaller compared to the

brane case.

Finally, since the functional form of the Σi quantities in the bulk is the same with the ones in the

brane analysis and the arguments there in favor of the vanishing of the greybody factor as ω → 0

did not include the expressions of (δ, ε, η±) we conclude that, in the bulk also, non-minimally coupled

scalar fields result in greybody factors that exhibit vanishing asymptotic values in the low-energy

expansion. The first non-vanishing term has the following form:

|A|2 =
16π8(rh/rc)

l+n/2 (ωrh)2 sec4(wπ/2) [Γ(θ+) Γ(θ−)]−2

σ
√
σ2 + 4ξRDr2

h

(
cos[πσ2 ] + cos[

π
√

(n+3)2−4ξRDr2c
2 ]

)2

Γ[σ2 ]2Γ[w]2 Γ[1−w
2 ]4

, (2.118)

where we have defined the following quantities in order to simplify the expression:

σ ≡ 2l + n+ 1,

w ≡

√
(2l + n+ 1)2 + 4ξRDr2

h

n+ 1
, (2.119)

θ± ≡
1

4

(
1− 2l − n±

√
(n+ 3)2 − 4ξRDr2

c

)
.

For n = 0 we have confirmed that (2.118) reduces to the previously reported 4-dimensional result of

Crispino et al. [99].

2.3.4 Plotting the analytic result

The profile of the approximate analytic expression we obtained for the greybody factor of the bulk

channel upon variation of the particle and the spacetime parameters will be now investigated. We

start with the particle parameters in Fig. 2.10 where we have fixed n = 2 and Λ = 0.1. In the left

panel the dependence of |A|2 on the angular momentum number of the field is depicted with the solid

curves corresponding to minimal coupling and the dashed ones to ξ = 0.3.

For the dominant field mode the low-energy geometric limit is clearly seen for ξ = 0. We observe

that the larger the value of l, the more suppressed the transmission probability gets. The effect of

the non-minimal coupling further suppresses the curves with the most prominent effect being on the

l = 0 curve due to the presence of the geometric limit in the low energy regime. As l grows, the

greybody factors appear to get less sensitive to the presence of ξ since solid and dashed curves are

almost identified. Moving to Fig. 2.10(b) the effect of ξ on the dominant mode is presented. For
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Figure 2.10: Greybody factors for bulk scalar fields, for n = 2 and Λ = 0.1, and: (a) for variable
l = 0, 1, 2, 3 and ξ = 0 (solid lines) or ξ = 0.3 (dashed lines); (b) for l = 0 and variable ξ =

0, 0.1, 0.2, 0.3, 0.4, 0.5.

this particular value of Λ = 0.1 an increase in the non-minimal coupling suppresses |A|2. Again for

ξ = 0 the geometric limit can be seen. Notice also that the geometric limits in the bulk channel

(2.117) assume much smaller values compared to their brane counterparts (2.80) and this is a direct

by-product of the dependence the former exhibit on n.

In Fig. 2.11, for Λ = 0.1 and for the dominant mode, the effect of the number of extra dimensions

on the greybody factor is presented. Again we have used solid curves to indicate the ξ = 0 case and
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Figure 2.11: Greybody factors for bulk scalar fields, for l = 0, Λ = 0.1 and variable n = 0, 2, 4, 6
and for ξ = 0 (solid lines) and ξ = 0.3 (dashed lines).
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dashed for the arbitrary choice of ξ = 0.3. We were able to plot only curves that correspond to even

values of n because of the poles of the gamma functions in our analytic expression. We use the same

arbitrary values for the parameters to allow for easier comparison between different plots. A general

suppression of |A|2 with n is observed in the bulk channel which is further enhanced in all cases when

ξ 6= 0 and even more so for the lowest values of n.

Finally in Fig. 2.12 we show the effect of the cosmological constant Λ on the transmission probability

for minimally coupled fields on the left panel and for ξ = 0.5 on the right. The similar “dual-role”

behavior of Λ as the one observed in the brane channel arises. The cosmological constant acts in favor

of the enhancement of the greybody factor for low ξ and against it above some critical value for the

coupling ξ. Already at ξ = 0.5 the effect is reversed as one can see in Fig. 2.12(b).
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Figure 2.12: Greybody factors for bulk scalar fields for l = 0, n = 2, and Λ = 0.01, 0.05, 0.1, 0.2,
0.3, and (a) for ξ = 0, and (b) ξ = 0.5.

2.4 Conclusions

In this chapter, we considered scalar fields that propagate in the spacetime of a higher-dimensional

Schwarzschild-de Sitter (SdS) black hole. We focused on fields that are massless and couple non-

minimally to gravity via an interaction term in the action with the Ricci scalar. In this context,

we derived analytic expressions for the greybody factors, both on the brane and in the bulk, that

are valid for arbitrary values of the number of extra dimensions (n) and field angular-momentum

number (l). In order to solve the Klein-Gordon equation we followed a well-known approximate

technique that amounts to matching the asymptotic solutions in the vicinity of the two horizons of

the SdS spacetime. Contrary to previous works we were able to keep the effect of the cosmological
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constant (Λ) into play in both asymptotic solutions thus increasing the accuracy of our results. As a

consequence of applying this method, the analytic results we have obtained are valid in the low- and

intermediate-energy regime but for small values of the field coupling (ξ) and cosmological constant.

We then thoroughly studied the dependence of the greybody factors on the spacetime parameters n,Λ

and field parameters l, ξ. We found that the characteristic non-zero infrared limit of the GF for the

dominant field mode (l = 0) vanishes in the presence of a non-minimal field coupling both on the

brane and in the bulk. Our analysis has also revealed a particularly interesting “dual-role” behavior

of Λ that can act either in favor or against the enhancement of the GF depending on the value of ξ.





Chapter 3

The Hawking radiation spectrum of a

(4 + n)-dimensional Schwarzschild-de Sitter

black hole

In the previous chapter, the analytic expressions for the greybody factors (g.f.) for a massless scalar

field, non-minimally coupled to gravity that propagates in a (4 + n)-dimensional Schwarzschild-de

Sitter (SdS) spacetime were derived. The SdS line element in the bulk is

ds2 = GMNdx
MdxN = −h(r) dt2 +

dr2

h(r)
+ r2dΩ2

2+n , (3.1)

where the metric function is given by

h(r) = 1− µ

rn+1
−

2κ2
D Λr2

(n+ 3)(n+ 2)
, (3.2)

with µ being the black-hole mass parameter, n the number of extra space-like dimensions and Λ the

bulk cosmological constant. For fields confined on the brane, the geometry is described instead by the

induced metric

ds2 = gµνdx
µdxν = −h(r) dt2 +

dr2

h(r)
+ r2 (dθ2 + sin2 θ dϕ2) . (3.3)

Using a factorized ansatz for the field [eqs. (2.19) and (2.92) for the brane and bulk respectively], we

were able to decouple the radial part of the Klein-Gordon equation and obtain the following equations

of motion (EOM ):

� On the brane:

1

r2

d

dr

[
h(r)r2 dR(r)

dr

]
+

[
ω2

h(r)
− l(l + 1)

r2
− ξR4

]
R(r) = 0 , (3.4)

� In the bulk:

1

rn+2

d

dr

[
h(r)rn+2 dR(r)

dr

]
+

[
ω2

h(r)
− l(l + n+ 1)

r2
− ξRD

]
R(r) = 0 , (3.5)

where R(r) is the radial part of the field, ω is the energy of the emitted particle, l is the angular

momentum quantum number of the field, ξ is the non-minimal coupling parameter of the field to

65
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gravity and finally R4 (2.10) and RD (2.4) are the Ricci scalars for the brane and bulk geometries

respectively.

Since, to our knowledge, exact analytic solutions to eqs. (3.4) and (3.5) cannot be obtained for arbitrary

values of the parameters, we had to resort to an approximate method in order to calculate the g.f. The

approximations imposed restrict the validity of our analytic results to small values of the cosmological

constant Λ, small coupling parameter ξ and in the low-energy regime.

In this chapter we develop a numerical technique in order to extend the previous study and obtain

the exact forms of the g.f. for arbitrary values of the parameters. Then, with the exact g.f. in hand

we are able to study the Hawking radiation spectrum of the SdS black hole in the bulk and on the

brane.

We start by introducing the numerical method we developed in order to calculate the g.f. Then we

compare the analytic expressions for the g.f. of chapter 2 with the exact ones and move on to an

in-depth study of the Hawking spectrum in both the brane and bulk channels of emission. Finally,

for a wide range of the parameters, we calculate the bulk-over-brane relative energy rates and total

emissivity ratio in order to see whether the black hole emits the majority of its energy on the brane

or in the bulk.

3.1 Numerical calculation of the greybody factors

For the calculation of the g.f. we use the fact that the effective Regge-Wheeler potentials eqs. (2.23)

and (2.97) vanish at the locations of the horizons in order to express the field as a superposition of

plane waves in these regions. We have seen that the g.f. is then given in terms of the amplitudes of

the incoming (B1) and outgoing (B2) field modes at the tortoise-coordinate (2.21) infinity r∗ → ∞
via the relation

|A|2 = 1−
∣∣∣∣B2

B1

∣∣∣∣2 . (3.6)

So, in order to numerically compute the greybody factor we have to integrate the radial EOMs (3.4)

and (3.5) to obtain the exact solutions for the brane and bulk propagating fields and then isolate the

amplitudes B1,2 at r∗ →∞ i.e. in the vicinity of the cosmological horizon.

Of course, in order to solve eqs. (3.4) and (3.5) two boundary conditions are needed and to specify

them we turn to their analytic asymptotic solutions close to the horizons we have already derived

in the previous chapter. In the vicinity of the black-hole (rh) and cosmological (rc) horizons, the

radial part of the field has been found to be of the same functional form both in the bulk and on

the brane. The only difference lies in the definition of the indices of the hypergeometric functions

[compare eqs. (2.44) and (2.45) with eqs. (2.100) and (2.101)] and the power coefficients [compare

eq. (2.48) with eqs. (2.102) and (2.103)]. More precisely, we found that close to the black-hole horizon
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and after we impose the condition that purely in-going modes exist at r → rh, the solution is

RBH ' A1 f
α1 , (3.7)

where A1 is an arbitrary constant,

f(r) ≡ h(r)

1− Λ̃r2
, Λ̃ ≡ 2Λ

(n+ 2)(n+ 3)
, (3.8)

and

α1 =
−iωrh
Ah

, Ah = (n+ 1)− (n+ 3)Λ̃r2
h. (3.9)

In the limit r → rh, due to the vanishing of the metric function we have f → 0 and so by re-writing

(3.7) as

RBH ' A1 f
α1 = A1 e

−i(ωrh/Ah) ln f , (3.10)

we see that the solution indeed describes an in-going field mode close to the black-hole horizon. The

amplitude A1 has no physical significance since it does not appear in the expression of the g.f. and

thus has no observable effect. This allows us to normalize the radial solution to unity at the black-hole

horizon and obtain in this way the first boundary condition

RBH(rh) = 1 . (3.11)

Evaluating now the first derivative of (3.7) with respect to the original radial coordinate at r = rh

and using (3.11) we obtain the second boundary condition necessary for our numerical analysis

dRBH
dr

∣∣∣∣
rh

= A1f
−i(ωrh/Ah) ln f

(
− iωrh
Ah

)
A(r)(1− f)

h(r) r

∣∣∣∣
r=rh

' − iω

h(r)
. (3.12)

We now turn to the cosmological horizon (rc) regime. To obtain the asymptotic solution there, in

the analytic approach we used the simplified radial coordinate redefinition r → h(r) ≈ 1 − Λ̃r2

that essentially discards the effect of the black hole close to rc. Here, since we are dealing with the

problem numerically we are not going to resort to this simplification and so we use again eq. (3.8)

as the appropriate coordinate redefinition that takes into account both the black-hole mass and the

cosmological constant. Then, the asymptotic solution of the EOM close to rc (in analogy to the r → rh

case) is

RC ' B1 f
α2 +B2 f

−α2 = B1 e
−i(ωrc/Ac) ln f +B2 e

i(ωrc/Ac) ln f , (3.13)

where α2 = −iωrc/Ac and Ac = (n+1)−(n+3)Λ̃r2
c . This time both incoming and outgoing modes are

allowed. Notice that always Ac < 01 and since f → 0 also close to rc the amplitude of the incoming

(outgoing) field mode is B1 (B2); thus the GF is indeed given by eq. (3.6).

Because of the existence of an apparent singularity at r = rh we start the integration of the EOM not

1This can be easily verified by performing a numerical calculation.
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exactly at the location of the horizon but in the neighborhood of rh i.e. at radial distance r = rh + ε

where ε is a small positive parameter of the order of 10−6− 10−4. In order to obtain stable numerical

solutions we had to carefully choose not only the value of ε but the integration step as well.

With the boundary conditions of eqs. (3.11) and (3.12) imposed at r = rh + ε the integration of the

EOM proceeds until the radial distance r = rc − ε where the amplitudes B1,2 are to be computed.

To isolate the amplitudes of the plane waves close to the cosmological horizon we solved the system

of equations consisting of the asymptotic solution eq. (3.13) and its first derivative with respect to r.

This way we ended up with the following expressions for the amplitudes:

B1 =
1

2
ei(ωrc/Ac) ln f

[
RC(r) +

iAchr

ωrcA(r)(1− f)

dRC(r)

dr

]
, (3.14)

B2 =
1

2
e−i(ωrc/Ac) ln f

[
RC(r)− iAchr

ωrcA(r)(1− f)

dRC(r)

dr

]
. (3.15)

By plugging eqs. (3.14) and (3.15) into (3.6) the greybody factor is finally obtained. The numerical

code we developed on Wolfram Mathematica [113] can be found in App. C along with detailed

comments.

3.1.1 Exact results on the brane

Using the above algorithm we integrated numerically eq. (3.3) and obtained the exact form for the

g.f. for scalar fields confined on the brane. Before we move to the study of these results we compare

how our approximate analytic expressions stand against the numerical results. In Fig. 3.1 we plot

the numerical (analytic) results for the g.f. with solid (dashed) curves. On the left panel we depict

the variation with respect to coupling constant ξ while on the right panel we show the variation

with respect to the cosmological constant Λ. In both cases, in the low-energy regime the anticipated

agreement between the analytic and numerical results is excellent and only for intermediate values of

ωrh deviations start to appear. Recall that the analytic expressions were derived under the assumption

of small ξ and Λ. This is also depicted here since as either ξ or Λ ceases to be small the range of

agreement between the two sets of curves is reduced.

We would like to point out that a general feature of the analytic results is that they always lie lower

than their corresponding numerical counterparts. This is a consequence of the poles that appear in

the analytic expressions2 that tend to “pull-down” the analytic curves. In some cases the poles result

in the abrupt termination of the analytic curves while the numerical ones are free of this problem and

are thus smooth curves that extend throughout the energy regime.

2See also the discussion in §2.2.4 of the previous chapter.
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Figure 3.1: Greybody factors for brane scalar fields. Analytical (dashed curves) and numerical
results (solid curves) for l = 0, n = 2 with (a) Λ = 0.01 (in units of r−2

h ) for variable (top to bottom)
ξ = 0, 0.2, 0.5, 0.8 and (b) ξ = 0.1 for variable (bottom to top) Λ = 0.01, 0.03, 0.05, 0.08, 0.1.
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Figure 3.2: Greybody factors for brane scalar fields for Λ = 0.1 and (a) n = 2 for variable l =
0, 1, 2, 3, 4 and ξ = 0 (solid curves) or ξ = 0.3 (dashed curves); (b) l = 0, ξ = 0.3 for variable (top to

bottom) n = 0, 1, 2, 3, 4, 7.

In Fig. 3.2(a) we plot the dependence on the angular momentum l parameter of the field. We have

used solid and dashed curves to depict the minimal (ξ = 0) and non-minimal coupling (with ξ = 0.3)
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Figure 3.3: Greybody factors for brane scalar fields for l = 0, n = 2, Λ = 0.1 and variable (top to
bottom) ξ = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

respectively. Independently of the value of ξ we observe a suppression with l thus the most enhanced

g.f. are those for l = 0. The presence of a non-vanishing ξ results in the general suppression of the

g.f. and the effect of this suppression becomes milder the larger the value of l is. Finally, in the case

of minimal coupling, the infrared non-vanishing asymptotic limit of the g.f. (2.80) for the dominant

mode (l = 0) of the field can be seen.

In Fig. 3.2(b) for the dominant mode (l = 0) and for ξ = 0.3 we plot the effect of the number of extra

dimensions (n) on the g.f. As n increases the usual suppression of the g.f. is observed in agreement

to the findings of various previous works. Regarding the agreement with the analytic expressions as

n varies we report that the two sets are in excellent agreement in this case as well with deviations

appearing as the energy parameter ωrh and/or n are increased.

Turning now to the effect of the non-minimal coupling (ξ) on the g.f. in Fig. 3.3 we plot the dominant

mode with 2 extra space-like dimensions and for Λ = 0.1r−2
h while ξ varies. We see that an increase

in the value of ξ results to the suppression g.f. This was also the behavior we observed in the analytic

results. The physical interpretation of this result is tied with the effective mass term that appears in

the EOM of the scalar field (2.18) [1, 107–111, 114, 115] and is proportional to ξ.

The effect of the cosmological constant on the g.f., as the analytic approach of the previous chapter

hints, strongly depends on the value of ξ. To this end we plot in Fig. 3.4 the profile of the numerical

results as Λ varies with l = 0, n = 2 and for three values of the non-minimal coupling ξ = 0, ξ = 0.2

and ξ = 0.5, in the left, middle and right panel respectively. The dual role of the cosmological constant

now becomes evident. For minimal coupling, Λ acts in favor of the enhancement of the g.f. while as

ξ becomes larger its role is reversed and eventually above some critical value for ξ the increase in the

value of the cosmological constant results in the suppression of the g.f. The two opposing effects that

drive this behavior are the following: In one hand Λ enters in the effective mass term that increases

the height of the Regge-Wheeler potential (2.23) thus reducing the transmission probability. On the
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other hand, Λ also enters in the metric function (3.2) in such a way that h(r) is suppressed with

an increasing Λ and since the Regge-Wheeler potential is proportional to h(r) we have the opposing

effect. When ξ is small, the effective mass is negligible and the latter effect dominates. The opposite

holds for large values of ξ.

3.1.2 Exact results in the bulk

To obtain the exact forms of the GF for scalar fields propagating in the bulk we numerically integrate

the radial EOM (3.5) once again by means of the numerical technique we have introduced in the

beginning of section 3.1.

In Fig. 3.5 we compare the exact results (solid curves) we obtained with the aformentioned method

against the analytic ones (dashed curves) of the previous chapter. For two extra space-like dimensions

(n = 2) and for the dominant field mode (l = 0) we vary the value of ξ in Fig. 3.5(a) and Λ in Fig.

3.5(b). In the region of validity of the analytic results i.e. in the low ωrh regime and for small values

of ξ and Λ the two sets of curves exhibit an impressive agreement. Still the existence of poles in

the gamma functions of the analytic expressions result in the discontinuities observed for the dashed

curves.

Now we focus solely on the numerical results. We start with the dependence of the bulk GF on

the angular momentum l and the number of extra dimensions n in Fig. 3.6. We have fixed the

cosmological constant to Λ = 0.1r−2
h and we have used solid curves for the minimal-coupling case

(ξ = 0) and dashed for an arbitrary non-minimal coupling (ξ = 0.3). We observe that the GF get

suppressed as l and/or n are increased. Recall that for the dominant field mode (l = 0) the asymptotic
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Figure 3.4: Greybody factors for brane scalar fields for l = 0, n = 2 and Λ = 0.01, 0.1, 0.2, 0.3 and
(a) for ξ = 0, (b) ξ = 0.2 and (c) ξ = 0.5.
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infrared limit of the bulk GF is given in terms of the black-hole rh and cosmological horizon rc as

|A2| = 4(rhrc)
(n+2)

(rn+2
c + rn+2

h )2
. (3.16)

For n = 2 this asymptotic limit is highly suppressed and this is the reason why it can only be seen

via a magnification of the low ωrh regime in Fig. 3.6(a). On the other hand, when n = 0, 1 the limit

(3.16) is visible in Fig. 3.6(b) for the l = 0 mode with minimal coupling.

In both panels of Fig. 3.6 we notice that the effect of the non-minimal coupling on the GF is to

further suppress them with the effect becoming milder as l and n assume larger values. Essentially

for l > 3 and n > 5 the presence of ξ plays no role on the profile of the curves since for the considered

values of Λ and ξ, the contribution of the “effective mass” term is much smaller than the one of l

and n to the potential barrier. . Finally let as point out that the numerical results can be plotted

smoothly for all values of n in contrast to the analytic approach where the curves corresponding to

odd values of n could not be depicted because of the existence of poles.

In Fig. 3.7 we plot the dependence of the exact results for the bulk GF on the non-minimal coupling

of the field ξ with gravity. We study the l = 0 mode in n = 2 extra dimensions and for Λ = 0.1r−2
h .

As the field couples more intensely to the Ricci scalar the GF are suppressed mildly thus the scalar

particles become less probable to overcome the effective barrier. Notice that we used the same values

of the parameters as the ones we used in the brane channel (Fig. 3.3) to further allow us to compare

the effect of ξ on the two channels. We see that the effect of the variation of the field coupling is
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Figure 3.5: Greybody factors for bulk scalar fields. Analytical (dashed curves) and numerical (solid
curves) results for l = 0, n = 2 and: (a) for Λ = 0.01 and variable ξ = 0, 0.2, 0.5, 0.8; (b) for ξ = 0.1

and variable Λ = 0.01, 0.03, 0.05, 0.08, 0.1.
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Figure 3.6: Greybody factors for bulk scalar fields for Λ = 0.1, ξ = 0 (solid curves) or ξ = 0.3 (dashed
curves) and: (a) n = 2 and variable l = 0, 1, 2, 3, 4; (b) l = 0 and variable n = 0, 1, 2, 3, 4, 5, 6, 7.
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Figure 3.7: Greybody factors for bulk scalar fields for n = 2,Λ = 0.1, l = 0 and variable ξ =
0, 0.1, 0.2, 0.3, 0.4, 0.5.

milder in the bulk channel. To interpret this behavior we need to recall what our analytic study of the

previous chapter revealed. The effective potential in the bulk is not affected much by ξ (Fig. 2.8) and

this is reflected on the GF as well. Still, the role of the effective mass of the field (being proportional

to ξ) leads to the observed general suppression of the GF .

To study the effect of the cosmological constant on the GF using the exact results we plotted Fig.

3.8. On the left panel we have the minimal coupling (ξ = 0) while on the right panel we have ξ = 0.5.

We see that in the former case, the effect of Λ is to boost the GF while as the field coupling grows

the role of Λ is reversed and acts as a deterring factor at least up to intermediate values of the energy
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Figure 3.8: Greybody factors for bulk scalar fields for l = 0, n = 2 and Λ = 0.01, 0.1, 0.2, 0.3 and (a)
for ξ = 0 and (b) ξ = 0.5.

parameter ωrh. It is noteworthy that this dual-role behavior of the cosmological constant has been

encapsulated to a very good extend by the analytic results in Fig. 2.12.

3.2 The scalar power spectrum

Now that we have obtained and studied in depth the form of the exact results for the GF for scalar

fields propagating in the higher-dimensional SdS spacetime we are able to proceed to the derivation

of the Hawking spectrum emitted by such a black hole. The power emitted by the black hole per

unit frequency (ω) in the form of scalar particles that a non-accelerated observer measures is given

by [96, 116, 117]

d2E

dt dω
=

1

2π

∑
l

Nl |A|2 ω
exp(ω/Th)− 1

. (3.17)

In the above expression, |A|2 is the GF that corresponds to the transmission probability for scalar

particles generated on the horizon of the back hole to overcome the effective barrier and contribute

to the radiation. In the case of fermionic fields, the Hawking power spectrum is given by eq. (3.17)

with the only difference being the change of sign before 1 in the denominator. The coefficient Nl

corresponds to the multiplicity of states with the same angular momentum (l) due to the spherical
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symmetry of the spacetime. For fields in n extra spatial dimensions propagating on the brane and in

the bulk the multiplicity has respectively the following form [96, 118]:

Nl = 2l + 1 , Nl =
(2l + n+ 1) (l + n)!

l! (n+ 1)!
. (3.18)

Finally, to account for the non-asymptotic flatness of the SdS spacetime we employed the Bousso-

Hawking normalization for the black hole temperature3 TBH that for the line-element (3.1) has the

form [96, 119]

Th = TBH =
1√
h(r0)

1

4πrh

[
(n+ 1)−

2κ2
DΛr2

h

(n+ 2)

]
, (3.19)

where r0 is the location of the non-accelerated observer in SdS 4 given explicitly by

r0 =
[(n+ 1)(n+ 2)(n+ 3)µ

4κ2
DΛ

]1/(n+3)
. (3.20)

Notice that in order to obtain the power spectrum (3.17) one has to include the contributions of all the

field modes l and this translates to the computation of an infinite number of terms. In practice, only

the first lowest field modes contribute significantly to the spectrum and this allows as to terminate

the series at a finite value of the angular momentum l. This is essential in order to be able to perform

a numerical calculation in a finite amount of time!

To illustrate this, in Fig. 3.9 we give an indicative example of the individual contributions to the

spectrum by each field mode in the brane channel with n = 2, Λ = 0.1 r−2
h and ξ = 0. It is evident
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Figure 3.9: Energy emission rate curves for brane scalar fields for n = 2, Λ = 0.1, ξ = 0 for the first
six dominant modes with l = 0, 1, 2, 3, 4, 5.

that only the first few modes (l 6 5) contribute significantly. We found that in all cases, modes with

3 A detailed discussion on the black-hole temperature in SdS spacetime is given in the following chapter.
4 See the discussion on the causal structure of SdS in §2.1.2.
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l = 7 or higher induce contributions to the spectrum that peak many orders of magnitude lower than

the dominant mode (l = 0) and thus we terminated the sum at l = 7 for the needs of the numerical

calculation. The numerical code we developed on Wolfram Mathematica [113] can be found in App.

D along with detailed comments.

3.2.1 The power spectrum in the brane channel

We start with the study of the black-hole radiation in the brane channel that is the phenomenologically

more interesting one. Since the angular momentum (l) is summed up the only free parameters of the

system are now the non-minimal coupling of the field ξ, the cosmological constant Λ and the number

of extra dimensions n.

In Fig 3.10(a) we plot the dependence of the power spectrum on n for Λ = 0.1 and ξ = 0.3. Notice

that although the GF are suppressed with n [Fig. 3.2(b)] the spectra are clearly enhanced. The

reason for this behavior lies in the way the temperature (3.19) gets significantly enhanced with n thus

becoming the dominating factor. The observed enhancement of the spectra with the number of

extra dimensions was an anticipated result, since a plethora of previous works [96, 116, 120–142] have

also reported enhancement of the Hawking radiation with n not only for the SdS case but for other

spherically and axially symmetric black holes as well.

In Fig. 3.10(b) the effect of the coupling parameter ξ is depicted for two extra dimensions and Λ = 0.1.

We see that when the field couples to gravity non-minimally, the resulting radiation gets suppressed
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Figure 3.10: Energy emission rates for brane scalar fields, for Λ = 0.1, and: (a) ξ = 0.3 and variable
n = 0, 2, 4, 7; (b) n = 2 and variable ξ = 0, 0.1, 0.3, 0.5, 0.8, 1.
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throughout the energy regime apart from the tail of the curve. This time, the behavior of the spectral

curves is in agreement with the behavior of the GF (Fig. 3.3) since the temperature is independent

of the field parameters.

For the minimal coupling (ξ = 0) the imprint of the non-vanishing low-energy asymptotic limit of

the greybody factor (2.80) on the power spectrum is evident. Thus in this case we have a drastic

deformation of the power spectrum deviating from the “standard” form by starting from a non-

vanishing value in the infrared limit. This feature has also been reported in previous works [93, 96,

99, 106].

We finally point out that the observed suppression with ξ in Fig. 3.10(b) is in excellent agreement

with the results reported in [111] where massive scalar fields were considered. As we have seen in the

analytic approach, the coupling ξ to the Ricci scalar corresponds to an effective mass term for the

scalar field and thus the similar effect on the power spectra comes as no big surprise.

Turning now to the effect of the cosmological constant (Λ) on the spectra we plot in Fig. 3.11 the

differential energy emission rate in the brane channel for n = 2 extra dimensions, and three different

values of the non-minimal coupling parameter ξ as Λ varies. The motivation behind choosing three

values for ξ is of course the dual-role behavior of the cosmological constant on the GF we have

observed in the analytic approach and verified with the numerical analysis as well.

On the left panel of Fig. 3.11 we have the minimal coupling (ξ = 0) and the cosmological constant

boosts the particle emission. Also, the infrared asymptotic limits can once again be seen. In Fig.

3.11(b) as the field coupling to gravity is “switched on” the low-energy limit vanishes and the en-

hancement of the radiation with Λ becomes milder. Finally for an even stronger field coupling we

see in Fig. 3.11(b) that as the cosmological constant is increased the enhancement becomes milder

still in the high-energy regime while in the low-energy part of the spectrum we observe suppression of
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Figure 3.11: Energy emission rates for brane scalar fields for n = 2, variable Λ = 0.01, 0.05, 0.1, 0.2,
and for: (a) ξ = 0, (b) ξ = 0.3, and (c) ξ = 0.8.
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the low-energy particles that are emitted. Clearly, the effect of the “mass term” is irrelevant for the

high-energy modes, that is why the tail of the radiation curve is always enhanced with Λ.

3.2.2 The power spectrum in the bulk channel

We will now study the features of the bulk channel for the higher-dimensional SdS black hole decaying

via Hawking radiation in the form of scalar particles. In Fig. 3.12(a) we plot the dependence of the

spectrum on the number of extra dimensions (n). By purposely choosing the same values for the

parameters Λ = 0.1 and ξ = 0.3 as in Fig. 3.10(a), we are able to compare the bulk and brane

channels. We see that as n becomes larger, the bulk radiation becomes enhanced as well even though

in a milder way compared to the brane channel. On the other hand, the peaks of the power curves for

particles emitted in the bulk are shifted in a more prominent way towards larger values of the energy

parameter (ωrh).

For this specific choice of parameters the power curves in the bulk are located lower than their

corresponding brane counterparts thus yielding a brane dominance for the emission process. This

observation cannot be generalized because as we shall see in the following sections, the values of the

parameters strongly affect the bulk-over-brane relative emission rates and total emissivities.

The effect of ξ on the bulk spectra is depicted in Fig. 3.12(b) and we observe once again a suppression

with an increase of the field coupling in accordance with the behavior exhibited by massive particles
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Figure 3.12: Energy emission rates for bulk scalar fields for Λ = 0.1, and: (a) ξ = 0.3 and variable
n = 0, 2, 4, 7; and (b) n = 2 and variable ξ = 0, 0.1, 0.3, 0.5, 0.8, 1.
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in [111]. A low-energy non-vanishing limit when ξ = 0 is exhibited by the power spectra in the bulk

channel as well but since it stems from the infrared limit of the GF it is highly suppressed in the bulk

as we have already seen (at least for the value Λ = 0.1r−2
h we used here).This low-energy limit can

be seen when the cosmological constant is slightly larger as is the case with Λ = 0.2r−2
h in Fig. 3.13

where we plot the dependence on Λ for n = 2 and three values of the non-minimal coupling parameter

(ξ).

The behavior of the bulk power spectra with respect to the variation in Λ is reminiscent of the brane

channel. For vanishing values of ξ the cosmological constant boosts the emission throughout the

energy regime while as the field coupling becomes stronger the low-energy part of the spectrum gets

suppressed with the increase of Λ.
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Figure 3.13: Energy emission rates for bulk scalar fields for n = 2, variable Λ = 0.01, 0.05, 0.1, 0.2,
and for: (a) ξ = 0, (b) ξ = 0.3, and (c) ξ = 0.8.

3.3 The Bulk-over-brane emissivity

When we studied the exact numerical results for the GF in a previous section, we used the same values

of the parameters for both the brane and bulk analyses in order to make the comparison between the

two easy. Then, by inspection of the sets of figures 3.2 and 3.6 that depict the dependence of the GF

on the angular momentum (l) and the number of extra dimensions (n) on the brane and in the bulk

respectively, we can see that the bulk GF are more suppressed than the brane ones. In fact this is a

well-known result [116, 120, 143]. However, in our present work we have two more parameters namely

the non-minimal coupling of the field to gravity (ξ) and the cosmological constant (Λ). Regarding

the former we have seen that it suppresses the GF in both channels while the latter exhibits a more

complicated “dual role” behavior that depends on the value of ξ.



80

The above discussion makes evident that the previously reported bulk-over-brane dominance may be

refuted in the more general case we consider here. Thus it is necessary to study the relative emission

rates and compare the total emissivities in the two channels a task we undertake in this section.

3.3.1 Relative emission rates

In Fig. 3.14(a) we plot the effect of the non-minimal coupling (ξ) on the bulk-to-brane energy emission

ratio when n = 4 and Λ = 0.1. We observe a “dual role” behavior of ξ since in the low-energy regime,

the brane channel is favored over the bulk one with an increase of the coupling parameter while beyond

the intermediate energy regime the bulk emission is favored and at the same time the effect of ξ on

the ratio is deminished.

To better understand this result one may consult the sets of figures 3.10 and 3.12 where it is clear

that in the low-energy regime the bulk channel is highly suppressed compared to the brane one and

this results in the very small values of the ratio observed in the infrared limit in Fig. 3.14(a). For

intermediate values of ωrh the bulk spectral curves are only slightly lower than the brane ones while

in the high energy regime we eventually have a bulk domination. This behavior is again in agreement

with the findings of [111] that reported a boost of the bulk emission with the mass of the scalar field.

The cosmological constant effect on the ratio is plotted in Fig. 3.14(b) where again a “dual-role”

behavior is evident. In the low-energy regime Λ enhances the emission in the bulk channel while for

larger values of ωrh this effect is reversed favoring the brane channel. In the high-energy regime the

value of the cosmological constant appears to only slightly affect the ratio that approaches unity and

thus we conclude that both channels are equally favored for the emission of highly energetic particles.

This dual-role behavior of Λ is attributed to the presence of a non-vanishing field coupling (here we
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Figure 3.14: Bulk-over-brane relative emission rates for: (a) n = 4 , Λ = 0.1 and variable ξ =
0, 0.3, 0.5, 1, and (b) ξ = 0.8, n = 2 and variable Λ = 0.01, 0.05, 0.1, 0.2.
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had fixed ξ = 0.8) since in a previous study [96] of the bulk-to-brane emission ratio, the minimal-

coupling (ξ = 0) case was studied and an enhancement of the bulk channel throughout the energy

regime has been observed.

Finally we examine the dependence of the bulk-to-brane emission ratio on the number of extra di-

mensions. In Fig. 3.15, for ξ = 0.3 and Λ = 0.2 we observe that as n is increased the brane channel

is boosted in the low-energy region while above intermediate values of ωrh the bulk channel is signif-

icantly favored for all values of n.

3.3.2 Total emissivities

The analysis of the previous section revealed that the bulk-to-brane emission ratio differs by many

orders of magnitude when we compare different energy regions or change the values of the parameters.

What can we say about the total energy emitted by the black hole on the brane and in the bulk and

how is the energy balance between the two channels affected by the parameters?

This is a non-trivial question that cannot be answered by inspection of the bulk-to-brane ratios alone.

As an indicative example, we plot Fig. 3.16 where the energy emission rates (e.e.r. ) on the brane

and in the bulk for n = 7, Λ = 0.2 and for two values of the field coupling ξ = 0.3 and ξ = 1 are

depicted. In Fig. 3.16(a) we observe that the brane emission is favored in the low-energy regime while

for ωrh ≈ 4.5 and above the bulk channel becomes the dominant one. This is exactly the picture

painted in Fig. 3.15. A similar behavior though can be seen in Fig. 3.16(b), where the field coupling

is stronger, but this time the bulk dominance in the high-energy region is so strong that the brane

emission is only a small part of the total black-hole emission. It is then clear that in order to study

the energy balance between the two channels we need to calculate the total emissivities defined as the

total energy per unit time emitted over the whole frequency regime.
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Figure 3.15: Bulk-over-brane relative emission rates for ξ = 0.3, Λ = 0.2 and variable n = 2, 4, 7.
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To this end, for a given set of parameters (n,Λ, ξ) we integrate the brane and bulk e.e.r. throughout

the frequency range and compute the bulk-to-brane ratio. Our results are displayed in Tables 3.1 to

3.3.

Regarding the effect of the cosmological constant, we see that for a fixed value of n and as long as the

coupling is not larger than ξ ≈ 0.8 the bulk-over-brane ratio exhibits an enhancement with Λ that

becomes gradually less substantial as the value of ξ is increased. This is no longer the “rule” for even

larger values of ξ since in some regions of the parameter space we observe the opposite effect.

The non-minimal coupling of the scalar field to gravity in all cases appears to enhance the ratio thus
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Figure 3.16: Power spectra for emission on the brane and in the bulk for n = 7, Λ = 0.2, and: (a)
ξ = 0.3, and (b) ξ = 1.

Table 3.1: Bulk over brane total emissivity for n = 2

ξ → 0.0 0.1 0.3 0.5 0.8 1.0

Λ = 0.01 0.257506 0.269481 0.294391 0.320639 0.362918 0.393068

0.05 0.27356 0.285502 0.309271 0.333195 0.369824 0.394932

0.1 0.288635 0.300295 0.322187 0.343 0.373032 0.392523

0.2 0.314566 0.325492 0.343106 0.357599 0.375749 0.38618

Table 3.2: Bulk over brane total emissivity for n = 4

ξ → 0.0 0.1 0.3 0.5 0.8 1.0

Λ = 0.01 0.247028 0.275432 0.339321 0.413966 0.549627 0.658426

0.05 0.255885 0.284767 0.349056 0.423319 0.556669 0.662449

0.1 0.264557 0.293826 0.358134 0.43146 0.561241 0.662884

0.2 0.279594 0.30942 0.373259 0.444156 0.566328 0.659702
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Table 3.3: Bulk over brane total emissivity for n = 7

ξ → 0.0 0.1 0.3 0.5 0.8 1.0

Λ = 0.01 0.779006 0.906992 1.21479 1.60427 2.38062 3.05751

0.05 0.790883 0.92003 1.22955 1.61993 2.39509 3.0686

0.1 0.803103 0.933293 1.24413 1.63466 2.40657 3.07444

0.2 0.824629 0.956511 1.26906 1.65866 2.42208 3.07722

causing more energy to be emitted in the bulk channel the larger the value of ξ. Still, its effect is not

enough to tilt the energy balance in favor of the bulk channel at least when n and Λ are small. When

the number of extra dimensions assumes large values there is a clear dominance of the bulk with the

increase of ξ.

As the number of extra dimensions is increased from n = 2 to n = 4, in the case of a minimally coupled

field (ξ = 0) we see that the ratio decreases slightly and then rises again for larger values of n. This

behaviour has also been reported in the absence of a cosmological constant for the higher-dimensional

Schwarzschild black hole in [116]. For non-vanishing but small values of the coupling ξ 6 0.1 we see

that this behavior still persists in some regions of the parameter space while for an even stronger field

coupling ξ > 0.1 the increase in n clearly favors the enhancement of the bulk channel resulting (in

combination with a large value of ξ) to even 3 times more energy being emitted in the bulk than on

the brane! This bulk dominance is expected to be further enhanced with even larger values of the

field coupling.

3.4 Conclusions

In this chapter, we studied the Hawking radiation spectrum of a higher-dimensional Schwarzschild-de

Sitter (SdS) black hole that decays in the form of scalar particles on the brane and in the bulk. The

field theory we considered is that of a massless scalar field that exhibits a non-minimal coupling to

gravity. To obtain the Hawking spectrum, the exact form of the greybody factors (GF) over the whole

energy regime is necessary and their approximate analytic expressions derived in the previous chapter

do not suffice. To this end, we developed a numerical technique in order to solve the Klein-Gordon

equation and compute the GF valid throughout the energy regime and for arbitrary values of the

parameters, namely the field’s non-minimal coupling (ξ) and angular momentum (l), the number of

extra dimensions (n) and the cosmological constant (Λ). An excellent agreement between the analytic

and numerical results is observed in the low-energy regime (and in some cases even beyond that)

when ξ and Λ are small. Using the exact GF we computed the Hawking spectrum in both the brane

and the bulk and studied in depth its features. We found that the effect of ξ is to suppress the

energy emission rates while the role of Λ is “dual” and depends on the value of the field coupling. We

finally computed the relative emission rates and total emissivities in the brane and bulk channels of
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emission and concluded that the bulk channel becomes the dominant one when a strong field coupling

is combined with a large number of extra dimensions.



Chapter 4

The effect of the temperature on the Hawking

spectrum of Schwarzschild-de Sitter black holes

Based on Hawking’s area theorem [144, 145] stating that the surface area of the classical black-hole

horizon can never decrease, Bekenstein conjectured that the entropy contained in the black hole should

be related with to the surface area of the event horizon [44]. This observation opened the way to the

formulation of the laws of black-hole mechanics [43] that closely resemble the laws of thermodynamics.

In this analogy, that remains a mathematical one in the classical level, the internal energy (U) and

entropy (S) are related to the mass of the black hole (M) and the surface area of the event horizon

(A) respectively. A system that has energy and entropy, inevitably has temperature T associated to

it via
1

T
=
∂S

∂U
, (4.1)

and so, pursuing this analogy further, it is tempting to assign a temperature to the black hole as well

given by
1

Th
=

∂A

∂M
. (4.2)

It is clear that Th is a geometric quantity since both the surface area of the horizon and the mass of the

black hole are related to the geometry. As an example, for the Schwarzschild metric in 4 dimensions

M ∼ rh and A ∼ r2
h where rh is the radius of the event horizon and so Th ∼ r−1

h . It turns out that

the black-hole temperature is proportional to the surface gravity (κh) of the black-hole horizon1

Th =
~κh
2π

. (4.3)

At first, this formula was considered nothing more than an interesting mathematical consequence of

the relation between the first laws of thermodynamics and black-hole mechanics since classical black

holes absorb everything and thus are by definition, objects with zero temperature. It was only a

few years later that Hawking treated black holes semi-classically [48] and found that when quantum

effects are taken into account black holes radiate particles with a thermal spectrum at a temperature

given exactly by eq. (4.3). So eventually, Th was identified with the actual temperature of the black

hole! This relation between surface gravity and temperature is not restricted only to the black-hole

horizon. For every Killing horizon in a given spacetime, one can associate a temperature proportional

to its surface gravity.

1For the rest of the thesis we set ~ = 1.
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In the case of the Schwarzschild-de Sitter (SdS) spacetime both the black-hole (rh) and the cosmo-

logical (rc) horizons are Killing horizons and as a consequence each one has its own temperature. In

general, as we shall see, the black-hole temperature is larger than the one of the cosmological horizon

and so a problem immediately arises. An observer located in the causal part of the SdS spacetime

(rh < r < rc) can never be in true thermal equilibrium since due to the temperature gradient there

will be a constant flow of heat from the hotter black-hole horizon towards the colder cosmological

horizon.

A second obstacle towards the thermodynamic description of the SdS black hole is the absence of

an asymptotically flat observer with respect to whom the surface gravity (and as a consequence the

temperature) is traditionally defined. Through the years, in order to circumvent these issues, various

proposals have been made in the literature regarding the appropriate way to define the SdS black-hole

temperature.

In this chapter, we compare six different expressions for the temperature of the HD SdS black hole

and study their effect on the differential energy emission rates and the total emissivities on the brane

and in the bulk when the field theory is that of a massless scalar field with a non-minimal coupling

to gravity. Another important element of this study is that we do not restrict the value of the

cosmological constant (Λ) only to small values. Instead we consider values of Λ that span the whole

allowed regime up to the Nariai limit. The motivation for this is the radical differences exhibited by

the various temperatures in this limit.

Two of these temperatures are “black-hole temperatures” in the sense that involve only the surface

gravity of the black-hole event horizon and differ in the way that the Killing vectors are normalized.

The other four belong to the category of the recently proposed “effective temperatures” that involve

both the black-hole and cosmological horizon surface gravities. One of the four effective temperatures

we study, is valid only in 4-dimensions since its derivation is based on 3-dimensional spatial volumes

and its generalization in higher-dimensions requires careful consideration. This is why we only intro-

duce it in the final section of the chapter where we focus on the effect of the temperatures on the

4-dimensional Hawking radiation of SdS.

4.1 Black-hole thermodynamics in the presence of a cosmological

horizon

The analogy between thermodynamics and black-hole mechanics [43] associates the temperature of the

black hole with the geometric quantity of surface gravity (κh) evaluated at the location of the black-

hole event horizon. The physical interpretation of the latter becomes clear only when the spacetime

is static. It corresponds to the force (as it is measured by a non-accelerated observer) that has to be

exerted on a unit mass in order for it to remain static exactly on the location of the horizon [15, 22].
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Mathematically, the surface gravity can be obtained in terms of the underlying symmetries of the

metric. Consider an isometry of the metric i.e. an infinitesimal coordinate transformation of the form

xα(x)→ x
′α(x) = xα(x) + εKα(x) , ε� 1, (4.4)

that leaves the metric invariant. The associated vector field Kα, that generates this isometry, “points”

in the direction along which the metric remains unchanged. Such a field satisfies Killing’s equation

∇µKν +∇νKµ = 0, (4.5)

where ∇µ is the covariant derivative and is thus called a Killing vector field (KVF). For every isometry

of the metric there exists an associated KVF and any linear combination of KVFs with constant

coefficients is a KVF since it will still satisfy eq. (4.5). As a consequence, the KVFs are defined up

to a normalization constant.

The surface gravity on the black-hole horizon (rh) is then obtained via the following limit [15, 22, 26,

146]:

κ2
h = −1

2
lim
r→rh

(∇µKν)(∇µKν), (4.6)

in terms of a KVF Kµ that is timelike at infinity and becomes null on rh. Thus, in order to associate

surface gravity to the horizon the latter has to be a Killing horizon defined by the condition that the

norm of the KVF vanishes on it.

If the metric is time-independent there is a timelike Killing vector Kµ that points in the ”time

direction” along which the metric is invariant. This KVF will then have the following form [15]:

K = γt
∂

∂t
, (4.7)

where γt is a normalization constant.

Turning to the SdS spacetime, that as we have seen is static and so it has a KVF of the form of eq.

(4.7), we can compute the norm of Kµ to get

K2 = gMNK
MKN = γ2

t gtt = −γ2
t h(r) . (4.8)

The metric function h(r) (2.7) is positive for all values of the radial coordinate in between the black-

hole and cosmological horizon radii. It is then clear that Kµ is timelike in the causal patch of SdS

and becomes null on the locations of both rh and rc. So, the two horizons of SdS are Killing horizons

and thus temperature can indeed be associated to each one of them via their corresponding surface

gravity.

Substituting eq. (4.7) into eq. (4.6) one concludes that for a general static and spherically symmetric

spacetime, the surface gravity (4.6) is [147]
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κh =
1

2

γt√
−gttgrr

|gtt,r|r=rh =
1

2
|∂rh(r)|r=rh , (4.9)

and consequently can be simply obtained in terms of the first derivative of the metric function with

respect to the radial coordinate. Applying eq. (4.9) for the metric function (2.7) we find that the

surface gravity on the location of the black-hole horizon of the higher-dimensional SdS black hole is

κh =
γt

2rh

[
(n+ 1)− (n+ 3)Λ̃r2

h

]
, (4.10)

where n is the number of extra dimensions, Λ̃ ≡ 2λ/(n + 2)(n + 3) and we have used eq. (2.24)

evaluated at r = rh to eliminate the mass parameter µ.

The ambiguity, introduced in the expression of the surface gravity with γt, is lifted by appropriately

normalizing Kµ at the location of the static observer. For asymptotically-flat black holes, the static

observer lies in spatial infinity with a four-momentum Pµ that “points” in the direction of time

translations. Thus her four-momentum will be proportional to the timelike KVF. Usually, Pµ is

normalized as PµPµ = −1 and this also fixes the normalization of the KVF [15, 148]

lim
r→∞

KµKµ = γ2
t lim
r→∞

(−gtt) = −γ2
t = −1 . (4.11)

In the presence of a cosmological horizon, the static observer is located at r0 (2.14) instead, where the

black-hole attraction is canceled exactly by the repulsion of the cosmological constant. In the “naive”

approach, the KVF is normalized to unity at r0 as well [99, 149]. This way, the following expression

for the “bare” black-hole temperature is obtained:

T0 =
1

4πrh

[
(n+ 1)− (n+ 3)Λ̃r2

h

]
, (4.12)

and in a similar way the cosmological-horizon temperature in terms of the surface gravity at rc

[50, 85, 96] may be defined

Tc =
−1

4πrc

[
(n+ 1)− (n+ 3)Λ̃r2

c

]
, (4.13)

where the minus sign in the last expression has been introduced in order to have a positive-definite

temperature . Finally, notice that since rh < rc the black-hole temperature will always be larger than

the cosmological-horizon one. This is the root of another issue that plagues the SdS thermodynamics

namely the absence of thermal equilibrium due to the temperature gradient.

To deal with this problem, the usual approach is to treat the horizons as independent thermodynamic

systems [50, 119, 150]. This is indeed a reasonable assumption as long as the value of the cosmological

constant is very small so that one may ignore the effect of the cosmological horizon (rc → ∞). In
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this case, the “naive” normalization (4.12) is a very accurate approximation since h(r0)→ 1 and the

static SdS observer resembles greatly the asymptotically Minkowski one (see section 2.1.2).

By considering larger values of Λ, the two horizons are located closer, and the bare normalization

for the temperature of the black hole is no longer a good approximation. To account for the absence

of the asymptotically flat limit, a different normalization for the KVF at r0 has been proposed by

Bousso and Hawking [119]

lim
r→r0

KµKµ = γ2
t lim
r→r0

(−gtt) = −γ2
t h(r0) = −1 , (4.14)

and this amounts to setting γt = 1/
√
h(r0). The temperature obtained with this normalization is also

commonly used in the literature [3, 96, 106] and has the following form:

TBH =
1

4πrh
√
h(r0)

[
(n+ 1)− (n+ 3)Λ̃r2

h

]
, (4.15)

where the value of the metric function h(r) at r0 is

h(r0) =
1

n+ 1

[
(n+ 1)− (n+ 3)Λ̃r2

0

]
. (4.16)

Notice that even this “improved” expression for the SdS black-hole temperature is employed under

the assumption of independent horizon thermodynamics since the effect of the temperature of the

cosmological horizon on the emission is ignored.

Although in the previous chapter we studied the Hawking radiation of the HD SdS black hole with

TBH as the temperature both on the brane and in the bulk, our analysis was restricted to small

values of the cosmological constant. Here, the inclusion again of TBH in the study of the effect of the

temperatures on the power spectra is twofold. On the one hand, it serves as a reference to the results

of the previous chapter and on the other hand it allows for the study of its corresponding spectra

when Λ ≈ Λcrit, a limit we consider in this chapter.

In Fig. 4.1 we can see the dependence of the two black-hole temperatures T0 and TBH depicted with

blue and red curves respectively as the cosmological constant spans the whole allowed regime up to

the critical limit. In the left panel, we have the case of n = 2 extra dimensions and we observe that

as Λ increases, T0 gets suppressed according to eq. (4.12). On the other hand the Bousso-Hawking

normalized temperature increases. This is a consequence of the fact that as Λ grows the value of h(r0)

decreases (see sec. 2.1.2) resulting in a boost of TBH for nearly all values of Λ.

In the right panel of Fig. 4.1 where n = 5 the bare temperature still gets monotonically suppressed

while the enhancement of TBH with the cosmological constant is now restricted to the low- and

intermediate-Λ regime. Beyond that point, the boosting effect of the lowering of the value of the

denominator h(r0) is not sufficient to counter the rapid decrease of the numerator for large values
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of n. Independently of n, TBH is always larger than T0 throughout the allowed Λ values (see also

[106] where a similar comparison has been performed) and the two expressions match only in the

limit Λ → 0 where h(r0) → 1. This is the limit of a vanishing cosmological constant and as one

would expect, the asymptotic low-Λ value at which the two temperatures coincide corresponds to the

temperature of the HD Schwarzschild black hole

Th =
(1 + n)

4πrh
. (4.17)

In the other extreme limit where Λ → Λcrit [90, 151, 152], the bare temperature vanishes while TBH

assumes a non-zero value as a consequence of the simultaneous vanishing of the denominator and

numerator of its expression (4.15) that leaves the ratio constant.

To study the effect of the number of extra dimensions on the temperatures, in Fig. 4.2 we consider

two fixed values for Λ = 0.1 and 0.8 (in r−2
h ) as n ranges from 0 to 5. Focusing again on the black

hole temperatures, we see that they both increase monotonically with n while at the same time, the

difference between them decreases as the value of Λ becomes smaller.

The validity of the above two expressions eqs. (4.12) and (4.15) for the temperature gets compromised

as the cosmological constant is increased. This is related with the basic requirement that the two

horizons be located sufficiently apart in order to ignore the effect of Tc on the emission of the black

hole and, consequently, this limits the potential analyses. In an effort to take into account the effect

from both of the horizons in the thermodynamic description of the SdS black hole and deal with

the absence of thermal equilibrium, the notion of the effective temperature appeared in recent years

[153]. Contrary to the previous approach where each of the horizons has its own respective first
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Figure 4.1: Temperatures for a (4 + n)-dimensional Schwarzschild-de Sitter black hole as a function
of the cosmological constant Λ, for: (a) n = 2, and (b) n = 5.
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Figure 4.2: Temperatures for a (4 + n)-dimensional Schwarzschild-de Sitter black hole as a function
of the number of extra dimensions n, for: (a) Λ = 0.1, and (b) Λ = 0.8.

thermodynamic law and is studied independently, in the effective thermodynamics proposal a single

postulated global first law is assigned to the system2

δM = TeffδS − PeffδV, (4.18)

where M is the mass of the black hole, Teff the effective temperature, S is the total gravitational

entropy while in the role of pressure we have the cosmological constant Peff = Λ/8π. Finally, the

volume V is defined as the thermodynamic conjugate of pressure. In this picture, the system effectively

corresponds to a single horizon at temperature Teff .

Depending on the way one interprets the l.h.s. of eq. (4.18) one ends up with different expressions

for the black-hole temperature. If the black-hole mass M is identified with the enthalpy of the

system (M = −H) and the total entropy is taken to be the sum of the entropy of the two horizons

(S = Sh + Sc), then the following effective temperature is obtained [153–158]:

Teff− =

(
1

Tc
− 1

Th

)−1

=
ThTc
Th − Tc

, (4.19)

that is given in terms of both the black-hole (Th) and cosmological-horizon (Tc) temperatures. In

4 + n dimensions, after substituting eqs. (4.12) and (4.13) the explicit form of Teff− turns out to be

Teff− = − 1

4π

(n+ 1)2 − (n+ 1)(n+ 3)Λ̃(r2
h + r2

c ) + (n+ 3)2Λ̃2r2
hr

2
c

(rh + rc) [(n+ 1)− (n+ 3)Λ̃rhrc]
. (4.20)

2Extra “work terms” are included here for more general black holes such ones that are charged and/or rotating.
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It is interesting to see what happens to the above expression when we consider the limits rh → 0

(removing the black hole from the setup) and rc →∞ (vanishing cosmological constant). In the former

case and according to what one might expect, Teff− reduces to the temperature of the cosmological

horizon (4.13). On the other hand, if the limit rc → ∞ is considered, one does not end up with the

black-hole temperature (4.12) but rather with a vanishing result. This shows, that Teff− is valid only

for Λ 6= 0 since the cosmological constant plays the role of the pressure and is always considered to be

non-zero and positive in the related analyses. Still, this is not a drawback of the effective approach

because the need for such a thermodynamic interpretation arises exactly when Λ 6= 0.

That is not to say that Teff− is completely free of problems. In more complicated spacetimes such as

in the case of the charged SdS, the temperatures of the black-hole (Th) and cosmological (Tc) horizons

are not ordered. This means that depending on the value of the charge we may have Th < Tc, Th = Tc

or even Th > Tc. Thus from eq. (4.19) we see that this effective temperature can be non-positive or

even divergent.

The dependence of Teff− on the cosmological constant is shown in Fig. 4.1. We see that it is

enhanced with Λ and in the Nariai limit attains a non-zero value, similarly to the Bousso-Hawking

normalized black-hole temperature as a consequence of the simultaneous vanishing of its numerator

and denominator. Regarding the effect of n on Teff− we see, in Fig. 4.2, that the larger the number

of extra dimensions, the more suppressed this effective temperature gets contrary to the behavior

exhibited by the black-hole temperatures of eqs. (4.12) and (4.15).

It has been pointed out in [158], that if the total entropy in eq. (4.18) is not taken to be the sum but

rather the difference between the entropy of the two horizons i.e. S = Sc−Sh then, the corresponding

effective temperature

Teff+ =

(
1

Tc
+

1

T0

)−1

=
T0Tc
T0 + Tc

, (4.21)

may be defined, that is free of the problems that plague Teff−. This proposal has been characterized

as an “ad hoc” one since it can only be justified by the fact that it avoids the pathologies mentioned

above.

In Fig. 4.1 we see that in the limit of a vanishing cosmological constant Λ → 0, Teff+ goes to zero

similarly to Teff−, as it is also an effective temperature. Another way to see this is via eq. (4.21)

where in this limit, Tc → 0 while T0 6= 0. As Λ increases, so does Teff+ until approximately 0.5 Λcrit

beyond which point a further increase of Λ results in suppression of Teff+. Finally (and contrary

to Teff− this time) in the critical limit, Teff+ goes to zero. This vanishing can be seen clearly in

eq. (4.21) where due to the fact that T0 → 0 as Λ → Λcrit the numerator vanishes faster than the

denominator.
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For the (4 + n)-dimensional SdS black hole the explicit form of eq. (4.21) is

Teff+ =
1

4π

(n+ 1)2 − (n+ 1)(n+ 3)Λ̃(r2
h + r2

c ) + (n+ 3)2Λ̃2r2
hr

2
c

(rh − rc) [(n+ 1) + (n+ 3)Λ̃rhrc]
. (4.22)

Notice that by taking the limit rh → 0 in the above expression that amounts to removing the black

hole from the setup, one recovers the cosmological horizon temperature (4.13), a feature exhibited by

Teff− as well.

In [4], inspired by the way that the authors of [158] introduced Teff+ in order to deal with the

problematic behavior of Teff−, we proposed yet another effective temperature. We have found that if

we follow along the calculation that yielded Teff−, by assuming that the total entropy corresponds to

the sum of the entropy of the two horizons and merely employ TBH instead of T0 for the black hole

temperature, we end up with

TeffBH =

(
1

Tc
− 1

TBH

)−1

=
TBHTc
TBH − Tc

. (4.23)

We believe that this effective temperature is a more “natural” choice compared to Teff+, proposed

in [158], since in its derivation the total entropy of the system is obtained as the sum of the entropy

on the boundaries. Still, one may argue that the use of the Bousso-Hawking normalization for the

black-hole temperature imposes the same normalization for the surface gravity of the cosmological

horizon. We have also studied this case and we have found that if one uses TcBH ≡ Tc/
√
h(r0) as

the temperature for the cosmological horizon, the resultant effective temperature behaves similarly to

Teff− for small values of Λ, but is divergent in the critical limit! Of course this is an unacceptable

behavior for the temperature and thus this scenario has to be discarded.

By substituting eqs. (4.13) and (4.15) in eq. (4.23) we obtain the following explicit expression for

TeffBH in 4 + n dimensions:

TeffBH = − 1

4π

(n+ 1)2 − (n+ 1)(n+ 3)Λ̃(r2
h + r2

c ) + (n+ 3)2Λ̃2r2
hr

2
c

(rh
√
h(r0) + rc) [(n+ 1)− (n+ 3)Λ̃rhrc]

. (4.24)

In the limit rh → 0, the expression above reduces to the temperature of the cosmological horizon

(4.13) while for a vanishing cosmological constant it goes to zero similarly to the rest of the effective

temperatures. This can be seen both via eq. (4.23) where Tc → 0 while TBH 6= 0 and in Fig. 4.1

where the dependence of the temperatures on Λ is depicted. In the Nariai limit, we see that TeffBH is

vanishing and this is a consequence of the non-zero value of TBH and the fact that Tc → 0 in this limit.

To convince oneself that Tc indeed vanishes, one may compare eq. (4.13) with eq. (4.12) and after

recalling that in the critical limit rh → rc, conclude that T0 = Tc as Λ→ Λcrit. We also point out the

interesting profile of TeffBH that matches Teff− and T0 in the low- and high-Λ regimes respectively

as can it can be seen in Fig. 4.1.
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Finally, notice that both Teff+ and TeffBH get monotonically suppressed with the number of extra

dimensions as Fig. 4.2 reveals. This of course matches the behavior of Teff− and thus a general

conclusion that can be drawn is that all of the effective temperatures we consider in this chapter get

suppressed with n.

4.2 Power spectra for minimally-coupled scalar fields.

Now that we have introduced the expressions of various temperatures that are employed in the ther-

modynamics of the SdS spacetime we turn to the study of their imprint on the Hawking radiation. In

this section, we focus on the emission of scalar fields that are non-minimally coupled to gravity and

study both the brane and bulk channels of emission. The profile of the spectrum as it appears to the

non-accelerated observer located at r0 (2.14) will be given by the Hawking formula [96, 116, 117]

d2E

dt dω
=

1

2π

∑
l

Nl |A|2 ω
exp(ω/Th)− 1

, (4.25)

where l is the field angular momentum quantum number, Nl is the multiplicity of states (3.18), |A|2 is

the greybody factor (GF), ω is the energy of the emitted particle and Th is the temperature. In chapter

2 the form of the GF for the HD SdS black hole has been computed analytically albeit employing

an approximation scheme and as a result, these expressions are limited in the low-energy regime and

for small values of the field coupling ξ and cosmological constant Λ. To compute the power spectra

we need the exact form of the GF that is valid for all values of the parameters and throughout the

energy regime. The latter has been obtained by means of the numerical technique we developed in

chapter 3. Here, we will use these exact forms of the GF to compute the power spectrum for each of

the two SdS black-hole temperatures T0 and TBH as well as for the three effective ones Teff−,Teff+

and TeffBH , and compare the effect that each temperature expression has on the spectrum.

Before we move on to the study of the power spectra, an important comment is in order. The values

of the parameters n and Λ used in the figures of this chapter are compatible with the constraint (2.12)

that guarantees the existence of only two physical horizons in SdS (even though these values appear

to contradict the entries of Table 2.1). To obtain the critical values of Λcrit that are shown in Table

2.1 we had fixed the mass parameter of the metric function (2.7) to µ = 1, while in the analysis of this

chapter, we fixed the value of the black-hole horizon rh = 1 and substituted the mass parameter µ via

eq. (2.24) evaluated at rh into eq.(2.12) in order to obtain Λcrit. In Table 4.1 we give the maximum

allowed values of Λ corresponding to the Nariai limit, obtained when rh = 1.
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4.2.1 Emission on the brane

Starting with the brane channel in Fig. 4.3, we fix the number of extra dimensions to n = 2 and use

four different values of the cosmological constant namely Λ = 0.8, 2, 4 and 5 (in units of r−2
h ) to plot

the power spectra for the various temperatures.
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Figure 4.3: Energy emission rates for scalar fields on the brane from a 6-dimensional (n = 2)
Schwarzschild-de Sitter black hole for different temperatures T , and for: (a) Λ = 0.8, (b) Λ = 2, (c)

Λ = 4, and (d) Λ = 5 (in units of r−2
h ).

Notice that, when n = 2 the Nariai limit is reached for Λ = 6 r−2
h (see Table 4.1). So, the four values

we have used for Λ (here and in the following figures) have been appropriately chosen in order to

n 0 1 2 3 4 5

Λcrit(r
−2
h ) 1 3 6 10 15 21

Table 4.1: Indicative values of Λcrit for rh = 1 and for n ∈ [1, 5] ∩ Z.
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encapsulate the profiles of the spectra away from and close to the critical limit.

In Fig. 4.3(a), we have fixed Λ = 0.8 ≈ 0.13 Λcrit for which all three of the effective temperatures

(see Fig. 4.1) are approximately an order of magnitude smaller than the black hole ones, T0 and

TBH , depicted here with the blue and red curves respectively. It is the smallness of the effective

temperatures that leads to the observed heavy suppression of their corresponding differential energy

emission rates (EERs). We see that only the black-hole temperatures manage to produce significant

emission with the one normalized à la Bousso-Hawking to be the dominant one. In fact, for all values

of the cosmological constant, the power spectra corresponding to TBH are always the ones dominating

in agreement with Fig. 4.1.

Typically, the form of the EERs is to start from zero in the infrared limit, exhibit a peak for inter-

mediate values of the energy and then fade to zero again in the ultraviolet. So far, in the study of

the HD SdS black hole we have seen that the presence of the cosmological constant induces a non-

vanishing, low-energy limit for the GF , see eqs. (2.80) and (2.117). This limit results in the radical

deviation of the low-energy profile of the spectra as the analysis of the previous chapter has already

revealed. Now, in Fig. 4.3 we see that when the temperature is also small, as is the case with the

effective temperatures for small values of Λ, the spectra are severally distorted in the intermediate

energy regime as well. Notice that the low-energy asymptotic value in these cases is also the maximum

value for the EER while as the energy is increased the power curves monotonically decrease to zero.

Similar behavior is also observed in the Nariai limit when the temperatures T0, Teff+ and TeffBH are

employed since they are vanishing close to Λcrit.

By inspection of eq. (4.25) one can see that the low-energy asymptotic limit of the EERs is

d2E

dt dω

∣∣∣∣
ω→0

=
1

2π

∑
l

Nl |A|2 ω
exp(ω/Th)− 1

∣∣∣∣∣
ω→0

≈
|A|2geom Th

2π
, (4.26)

where |A|2geom is the geometric limit of the greybody factor on the brane (2.80), exhibited only for the

dominant mode of the field and thus only the l = 0 term of the infinite sum contributes. We see that,

in the infrared limit, the asymptotic value exhibited by the EERs is proportional to the temperature.

This is the reason why we have this “hierarchy” of the infrared limits of the curves (in accordance

with Fig. 4.1).

As we have seen in the previous section, the effective temperatures Teff− (purple curve), Teff+

(orange curve) and TeffBH (cyan curve) are enhanced for intermediate values of Λ . This is why,

in Fig. 4.3(b) where Λ = 2 ≈ 0.33 Λcrit their power spectra are now clearly boosted. Still, for this

value of the cosmological constant, it is the black-hole temperatures that produce the most emissive

spectra.

As the cosmological constant is further increased in Fig. 4.3(c) to Λ = 4 ≈ 0.66 Λcrit the curve

corresponding to Teff− is greatly enhanced compared to the milder enhancement exhibited by the rest
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of the effective temperatures. At the same time, the curve corresponding to the “bare” temperature

T0 gets suppressed and ends up lying below the Teff− one.

Finally, as we approach the Nariai limit with Λ = 5 ≈ 0.83 Λcrit in Fig. 4.3(d) the effective temper-

atures Teff+ and TeffBH as well as T0 approach zero and so their corresponding emission rates are

vanishing. On the other hand, the Bousso-Hawking normalized temperature TeffBH and the effective

Teff− as we have seen, assume non-vanishing asymptotic values (Fig. 4.1) and thus lead to significant

emission. It is worth pointing out that Teff− yields its most enhanced spectra close to the Nariai

limit since this temperature is maximized for Λ = Λcrit.

Turning to Fig. 4.4, where we plot the EERs for n = 5 (Λcrit = 21 r−2
h ) and four values of the

cosmological constant Λ = 4, 10, 16 and 18 (in units of r−2
h ) we observe a similar behavior to the n = 2

case studied above. Regarding the effective temperatures, their power spectra are very suppressed for

small values of the cosmological constant and then get slightly boosted as Λ is increased to intermediate

values. Close to the critical limit, their corresponding EERs are vanishing save for the one obtained

for the temperature Teff− that is again maximized since it asymptotes to a non-vanishing value.

The EER obtained with the “bare” black-hole temperature T0 becomes gradually suppressed with

the increase of Λ until it vanishes in the Nariai limit. On the other hand, the TBH temperature’s EER

dominates for all the values of the cosmological constant. Even close to the critical limit, where TBH

gets slightly suppressed (Fig. 4.1) the latter still yields the most emissive spectrum. Finally, notice

that even though the value of TBH is smaller for Λ = 18r−2
h compared to its value when Λ = 16r−2

h ,

as Fig. 4.1 shows, the corresponding EER in Fig. 4.4(d) peaks higher than that of Fig. 4.4(c).

The reason behind this behavior is that the profile of the EERs is determined by the combined effect

of the value of the temperature and the GF . In the previous chapters, we discovered that for non-

minimally coupled scalar fields propagating in the HD SdS spacetime, the GF gets enhanced with the

cosmological constant and this is why the power spectrum gets boosted even though the temperature

has decreased.

4.2.2 Emission in the bulk

We now turn to the bulk channel of emission in order to study the effect that the different temperatures

have on the bulk EERs. Notice that in order to make the comparison between the two channels easier

we have used the same values of the parameters n and Λ to plot the spectra.

In Fig. 4.5 we consider two extra spatial dimensions (n = 2) and four values of the cosmological

constant Λ = 0.8, 2, 4 and 5 (where for n = 2 we have Λcrit = 6 r−2
h ). The behavior observed here

is similar to the brane channel. The Bousso-Hawking normalized temperature (TBH) results to the

most emissive black hole even in the bulk under the combined effect of the large numerical value of

the temperature and the GF enhancement with Λ. The other black-hole temperature (T0) yields
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Figure 4.4: Energy emission rates for scalar fields on the brane from a 9-dimensional (n = 5)
Schwarzschild-de Sitter black hole for different temperatures T , and for: (a) Λ = 4, (b) Λ = 10, (c)

Λ = 16, and (d) Λ = 18 (in units of r−2
h ).

spectra that correspond to a significant amount of emission when Λ is small. For larger values of

the cosmological constant, we observe a gradual suppression of its corresponding EERs while as the

Nariai limit is approached the emission nearly stops due to the vanishing of the value of T0 in this

limit.

With respect to the effective temperature Teff− we see that its corresponding EER starting from a

nearly vanishing spectrum exhibits a gradual enhancement as the value of Λ increases until the critical

limit where Teff− obtains its maximum value. In this extreme limit, along with TBH , they are once

again the only temperatures that produce non vanishing emission.

Turning now to the impact of the other two “ad hoc” effective temperatures Teff+ and TeffBH on

the emission curves in the bulk, we see that only for intermediate values of Λ we have non-vanishing
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power spectra in agreement with the behavior of their corresponding temperatures given in Fig. 4.1.

The typical form of the differential energy emission curves in most cases depicted in Fig. 4.5 remains

highly distorted in the bulk channel as well. The combined effect of the low-energy asymptotic limit

exhibited by the EERs and the small values of the temperatures are responsible for this distortion of

the curves. Only TBH manages to sustain the “typical shape” throughout the allowed values of the

cosmological constant, followed by T0 in the low-Λ regime and Teff− in the critical limit.

If we consider an even larger number of extra dimensions, we see in Fig. 4.6 where n = 5 that the

EER curves behave similarly to the case with n = 2. Comparing the brane (Fig, 4.4) and bulk

(Fig. 4.6) channels for a large number of extra dimensions, we observe an important difference. In

the bulk, the EERs obtained with the effective temperatures, are always more suppressed than their

corresponding ones on the brane. To understand why this is happening, one must recall that for these
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Figure 4.5: Energy emission rates for scalar fields in the bulk from a 6-dimensional (n = 2)
Schwarzschild-de Sitter black hole for different temperatures T , and for: (a) Λ = 0.8, (b) Λ = 2,

(c) Λ = 4, and (d) Λ = 5 (in units of r−2
h ).
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EERs a very important factor that determines the form of the spectra is the low energy-asymptotic

limit (4.26). This low-energy limit compensates for the small values of the temperatures and thus

helps in “lifting” the curves from vanishing values. Then, a simple inspection of the expressions for

the geometric limit (|A|2geom ) of the GF , given here in terms of the black-hole (rh) and cosmological

(rc) horizon radii, on the brane

|A|2geom =
4r2
hr

2
c

(r2
c + r2

h)2
, (4.27)

versus the one in the bulk

|A|2geom =
4(rhrc)

(n+2)

(rn+2
c + rn+2

h )2
, (4.28)

T0

TBH

Teff-

Teff+

TeffBH

0. 0.05 0.1

0.00015

0.0003

0 1 2 3 4
0.00

0.01

0.02

0.03

0.04

0.05

0.06

ω

E
E
R

(a)

T0

TBH

Teff-

Teff+

TeffBH

0. 0.25 0.5

0.005

0.015

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

ω

E
E
R

(b)

T0

TBH

Teff-

Teff+

TeffBH

0. 0.25 0.5

0.02

0.04

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ω

E
E
R

(c)

T0

TBH

Teff-

Teff+

TeffBH

0. 0.05 0.1

0.02

0.04

0.06

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

ω

E
E
R

(d)

Figure 4.6: Energy emission rates for scalar fields in the bulk from a 9-dimensional (n = 5)
Schwarzschild-de Sitter black hole for different temperatures T , and for: (a) Λ = 4, (b) Λ = 10,

(c) Λ = 13 and (d) Λ = 18 (in units of r−2
h ).



101

reveals that as n is increased, the latter gets suppressed compared to the former and this is why the

bulk EERs are so much more suppressed than the brane ones for large values of n.

Having completed the study of the power spectra in both the brane and bulk channels for a wide

range of values of Λ (even up to the critical limit) we are now in place to draw some conclusions

regarding the EERs that correspond to the Bousso-Hawking normalized temperature as an extension

of the study performed in the previous chapter. As commented earlier, TBH is the only of the five

temperatures considered here, that yields the most typical forms of the power spectra throughout

the allowed Λ values. The energy-profile of its corresponding curves as it is depicted in Figs. 4.3-4.6

verifies the results of chapter 3, that the EERs for minimally-coupled scalar fields are enhanced with

an increase of the number of extra dimensions and/or with an increase in the value of Λ.

In fact, it is worth pointing out that the cosmological constant boosts the emission of low- and

intermediate-energy particles in the following way: First, the low-energy asymptotic limit of the

EERs increases with Λ and this boosts the emission of very low-energy particles. Secondly, an effect,

that is more evident the larger the number of extra dimensions, is that the peak of the EERs gets

shifted towards smaller values of the energy as Λ grows. As a result the intermediate-energy particles

become more likely to be emitted.

4.3 Power spectra for non-minimally-coupled scalar fields.

In this section, we consider the propagation of non-minimally coupled scalar fields in the background

of the HD SdS black hole again both on the brane and in the bulk. The presence of the field coupling

to gravity (ξ), as we have seen in chapter 2, creates an “effective mass” to the otherwise massless

scalar field we considered in the previous section. This way, we study in a unified way both the effect

of a mass term and a non-minimal coupling to gravity on the spectra.

A second reason that motivates the study of non-minimally coupled fields is based on the conclusions

of the previous chapter, indicating that the in the presence of ξ, there is a critical value ξcrit above

which the enhancement of the spectra with Λ turns to suppression. Of course, this is a conclusion

drawn with the use of the TBH as the temperature of the Hawking radiation and on top of that the

study was limited for values of the cosmological constant away from the critical limit. Now, we are

going to study the effect of this “dual role” of Λ for values up to Λcrit and also see for the first time

how the EERs corresponding to different expressions for the temperature behave in the presence of ξ.
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4.3.1 Emission on the brane

In Fig. 4.7 we consider the emission on the brane of a six-dimensional SdS black hole (n = 2) when

the field coupling is fixed to ξ = 1 and the cosmological constant assumes the following four values

Λ = 2, 2.8, 4 and 5 (in units of r−2
h ).

A comparison of Fig. 4.7 with Fig. 4.3 shows that a non-zero coupling ξ results in a general suppression

of the power spectra. Notice that this is the same effect induced by a mass term for the field [109–111].

As the study of the previous chapters revealed (see figures 3.3 and 3.7), in the non-minimally coupled

field case, the larger the value of ξ, the more suppressed the GF gets (a larger value of the field

coupling corresponds effectively to a more “massive” field). Thus, the power spectra are universally

suppressed regardless of the choice of the expression for the temperature employed.
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Figure 4.7: Energy emission rates for non-minimally coupled brane scalar fields, with ξ = 1, from a
6-dimensional (n = 2) SdS black hole for different temperatures T , and for: (a) Λ = 2, (b) Λ = 2.8,

(c) Λ = 4 and (d) Λ = 5 (in units of r−2
h ).
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Still, this suppression does not affect all the curves in the same way. A feature one immediately

observes in Fig. 4.7, is that the presence of the non-minimal coupling ξ has restored the “typical

form” of the power spectra. This is due to the vanishing of the low-energy asymptotic limit of the

GF (see chapter 2 for more details) that is responsible for the deformation of the low-energy part of the

EERs as we have seen in the previous section. As a consequence, the emission curves corresponding

to the effective temperatures and T0 that exhibit their maxima in the low-energy region get affected

the most by a non-vanishing ξ. In contrast, the curves of TBH (and Teff− close to the critical limit)

are the ones that are less sensitive to the field coupling.

It is well-known that the presence of a mass for the field (in our case an “effective mass” when ξ 6= 0)

affects the low-energy region of the EERs by forcing the emission curves to “start rising” from zero at

a larger value of ω the more massive the field is. Recall that the magnitude of the effective mass (2.18)

is proportional to the product ξΛ. So, by naively inspecting the behavior of the power spectrum with

TBH as the temperature in Fig. 4.7 one may wonder why as the value of Λ grows, the emission curve

“picks up” at smaller values of ω instead. The reason is that TBH gets enhanced with the cosmological

constant as depicted in Fig. 4.1 and it is this effect that dominates.

We have performed the same analysis for the brane channel in the case of a larger number of extra

dimensions (n = 5) and the behavior exhibited by the emission curves follows closely along the one

depicted for n = 2. The TBH emission curve once again dominates in all cases but due to the larger

value of n we observed that in the low-Λ regime the difference between the EERs corresponding to

the two black-hole temperatures T0 and TBH is smaller than the one shown in Fig. 4.7(a). This is a

consequence of the fact that the difference between the two temperatures is reduced as n grows (Fig.

4.1).

Again, as the value of Λ is increased, the EER corresponding to the “bare” black-hole temperature

gets suppressed until the emission stops at Λcrit. On the other hand, it is exactly in this limit that the

emission curve with Teff− as the temperature is maximized and along with the EER corresponding

to TBH are the only two curves that produce significant emission.

4.3.2 Emission in the bulk

Turning now to the bulk channel, in Fig. 4.8 we plot the profiles of the emission curves for the various

temperatures in n = 2 extra dimensions and four values of Λ while the field coupling has been fixed

to ξ = 1. The power spectrum for the Bousso-Hawking temperature (TBH) clearly dominates. The

other black-hole temperature T0 yields significant amount of emission only for small values of the

cosmological constant and is gradually suppressed with an increase in Λ.

The vanishing of the low-energy asymptotic limit of the emission curves due to the presence of ξ in

conjunction with the small values of the effective temperatures yields highly suppressed spectra for
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these temperatures. Only the curve corresponding to Teff− manages to produce significant emission

close to the critical limit. The same behavior for the emission curves in the bulk channel has been

observed when the number of extra dimensions is larger (n = 5).

Having completed the study of the emission curves both on the brane and in the bulk for minimal and

non-minimal coupling of the field as well as for a small and large number of extra dimensions, let us

focus once again in the EER of TBH that we had also employed in the study of Hawking radiation in

the previous chapter. We would like to address again the question of which is the preferred channel

of emission in light of the extended analysis in terms of the range of values for Λ considered in this

chapter.

In the minimal coupling case (ξ = 0), by comparing the vertical axes of Fig. 4.3 and Fig. 4.5 we
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Figure 4.8: Energy emission rates for non-minimally coupled bulk scalar fields, with ξ = 1, from a
6-dimensional (n = 2) SdS black hole for different temperatures T , and for: (a) Λ = 2, (b) Λ = 2.8,

(c) Λ = 4 and (d) Λ = 5 (in units of r−2
h ).
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observe that in the large-Λ regime the bulk channel dominates even for small values of n. This bulk

dominance becomes more prominent with n as the comparison between Fig. 4.4 and Fig. 4.6 reveals.

For ξ 6= 0, by inspection of the vertical axes in Fig. 4.7 and Fig. 4.8 we see that the bulk channel

dominates over the brane one for values of Λ larger than approximately 3 r−2
h up until the critical

value.

Even though we were able to draw some qualitative conclusions regarding the preferred channel of

emission simply by inspection of the profiles of the EERs a more quantitative investigation is deemed

necessary. To this end we are led to the calculation of the relative emissivities in the next section.

4.4 Bulk-over-brane relative emissivities

We now focus on the effect the different definitions for the temperature in the SdS spacetime have on

the bulk-over brane emissivity ratio. To do this, we integrate the differential energy emission rates

throughout the energy regime on the brane and in the bulk and compute their ratio. This way, we are

able to conclude which is the preferred channel of emission for the black-hole decay with respect to

the values of the parameters of the system (n,Λ and ξ). In the previous chapter the relevant analysis

was restricted only to the power spectra obtained with the Bousso-Hawking normalized temperature

(4.15) and for values of the cosmological constant far from the critical limit. In this sense the study

we perform here supplements and extends the one of section 3.3.2.

The bulk-over-brane emissivity ratio has been computed and the results we obtained for a six-

dimensional (n = 2) SdS black hole are shown in Tables 4.2 to 4.5. The values for the field coupling

and the cosmological constant we employed are respectively ξ = 0, 0.5, 1, 2 and Λ = 0.3, 1, 2, 4, 5.

Recall that for n = 2 the critical limit corresponds to Λ = 6 r−2
h and so, these values are indicative of

the whole allowed range.

Let us start with the bare black-hole temperature T0 that is the only one of the temperatures we have

studied that yields a bulk-over-brane ratio that behaves differently from the rest. When the field is

minimally coupled, we observe an enhancement of the bulk channel with the cosmological constant

while on the other hand, when ξ is non vanishing, the larger the value of Λ the more favored the brane

channel becomes and thus the ratio is decreased. This can be interpreted as a consequence of the

Table 4.2: Bulk over brane total emissivity for n = 2 and ξ = 0

Λ→ 0.3 1 2 4 5

T0 0.259268 0.304247 0.402190 0.663547 0.781833

TBH 0.338245 0.506324 0.798603 1.929660 3.247190

Teff− 0.032997 0.132329 0.319508 0.860880 2.071590

Teff+ 0.032507 0.125599 0.298895 0.717772 0.884068

TeffBH 0.032950 0.130510 0.309000 0.669669 0.792598
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Table 4.3: Bulk over brane total emissivity for n = 2 and ξ = 0.5

Λ→ 0.3 1 2 4 5

T0 0.281627 0.220836 0.160691 0.089933 0.067954

TBH 0.369359 0.450873 0.629061 1.617200 2.962410

Teff− 0.003762 0.012441 0.038311 0.432708 1.710000

Teff+ 0.003424 0.008841 0.014009 0.019979 0.021436

TeffBH 0.003725 0.011167 0.022578 0.046074 0.052124

Table 4.4: Bulk over brane total emissivity for n = 2 and ξ = 1

Λ→ 0.3 1 2 4 5

T0 0.286455 0.165240 0.089413 0.032550 0.020609

TBH 0.380420 0.387464 0.500779 1.364060 2.704060

Teff− 0.001233 0.003214 0.011410 0.279735 1.433260

Teff+ 0.001140 0.002529 0.003787 0.005227 0.005582

TeffBH 0.001222 0.002907 0.005497 0.012099 0.013918

Table 4.5: Bulk over brane total emissivity for n = 2 and ξ = 2

Λ→ 0.3 1 2 4 5

T0 0.280978 0.099559 0.035998 0.007446 0.003698

TBH 0.382963 0.287373 0.331984 1.002190 2.289020

Teff− 0.000222 0.000471 0.001935 0.138896 1.045890

Teff+ 0.000216 0.000410 0.000580 0.000778 0.000828

TeffBH 0.000221 0.000438 0.000738 0.001767 0.002089

vanishing of the low-energy asymptotic limit of the EER when ξ is “switched on”. The emission curve

with T0 is among those that exhibit their maximum in the low-energy regime and is thus significantly

affected. Clearly the bulk EERs are the ones affected the most in the low-energy region leading to

the observed brane channel dominance with Λ.

Turning to the rest of the temperatures, i.e. the three effective ones Teff−, Teff+, TeffBH and the

Bousso-Hawking normalized one TBH , we observe a similar behavior for the bulk-over-brane ratio.

In particular, we see that the brane channel dominates in the low-Λ regime regardless of the value

of the field coupling while as Λ assumes larger values, it is the bulk channel that gets enhanced. To

understand this, one has to recall firstly that when Λ increases, the peaks of the emission curves in the

bulk get shifted towards larger values of the energy and thus more energetic particles are accounted

for the emission in this channel. The second factor is that for larger values of Λ the peaks of the

emission curves in the bulk are located higher than the corresponding brane ones.

It is interesting to point out the values for the bulk-over-brane ratio obtained when the only two tem-

peratures that asymptote to non-vanishing values in the critical limit (TBH and Teff−) are employed.

For these temperatures it is the bulk channel that dominates over the brane even by a factor of 3 close

to the critical limit. This bulk dominance has has been anticipated based on the results we obtained

in section 3.3.2.
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Regarding the effect of the field coupling (ξ) on the ratio, we observe a general suppression, i.e.

enhancement of the brane channel of emission, the stronger the field couples to gravity. This effect

applies to nearly all values of the cosmological constant as only for small values of Λ the ratio is

increased with ξ.

To study the effect of the number of extra dimensions on the bulk-over-brane ratio of emissivities we

then set n = 5 and for ξ = 0, 0.5, 1 and 2 we chose indicative values for Λ = 1, 4, 10, 13 and 18 r−2
h that

once again span the whole allowed range (for n = 5 we have Λcrit = 21 r−2
h ). The results are shown in

Tables 4.6 to 4.9.

By inspection of the entries of Tables 4.6 to 4.9 we see that the general behavior we observed in n = 2

extra dimensions is exhibited also for n = 5 but amplified. As an indicative example, we point out

the bulk dominance for TBH and Teff− close to the critical limit for all values of ξ that even yields a

bulk-over-brane ratio of approximately 15 when the field is minimally coupled and TBH is employed.

Finally, notice that the enhancement of the ratio with ξ that was also observed when n = 2 and Λ

assumed small values is now sufficient to make the bulk channel the dominant one in this regime for

TBH and T0 (Table 4.9).

Table 4.6: Bulk over brane total emissivity for n = 5 and ξ = 0

Λ→ 1 4 10 13 18

T0 0.296070 0.299653 0.357216 0.422606 0.584868

TBH 0.419245 0.818056 2.578580 4.629670 14.18230

Teff− 0.000267 0.010603 0.140588 0.328066 4.192670

Teff+ 0.000265 0.010319 0.137045 0.291825 0.658816

TeffBH 0.000267 0.010549 0.134856 0.273098 0.559205

Table 4.7: Bulk over brane total emissivity for n = 5 and ξ = 0.5

Λ→ 1 4 10 13 18

T0 0.468836 0.288097 0.099659 0.054591 0.016835

TBH 0.641474 0.841435 1.770690 3.060490 11.19970

Teff− 3.152 10(−6) 0.000090 0.002028 0.018275 2.231760

Teff+ 2.898 10(−6) 0.000071 0.000552 0.000923 0.001500

TeffBH 3.139 10(−6) 0.000086 0.000938 0.002127 0.005982

Table 4.8: Bulk over brane total emissivity for n = 5 and ξ = 1

Λ→ 1 4 10 13 18

T0 0.664875 0.248447 0.040067 0.015499 0.002610

TBH 0.890165 0.778299 1.195190 2.049140 9.026680

Teff− 3.679 10(−7) 0.000007 0.000200 0.003575 1.293840

Teff+ 3.956 10(−7) 0.000006 0.000054 0.000095 0.000164

TeffBH 3.683 10(−7) 0.000007 0.000080 0.000187 0.000616
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Table 4.9: Bulk over brane total emissivity for n = 5 and ξ = 2

Λ→ 1 4 10 13 18

T0 1.162700 0.179527 0.009087 0.002170 0.000160

TBH 1.509360 0.632852 0.585960 1.010350 6.207500

Teff− 0.000274 1.054 10(−6) 6.508 10(−6) 0.000305 0.514108

Teff+ 0.000299 1.653 10(−6) 1.827 10(−6) 3.402 10(−6) 6.292 10(−6)

TeffBH 0.000275 1.033 10(−6) 2.328 10(−6) 5.573 10(−6) 0.000022

4.5 The effect of the temperatures on Hawking radiation in 4 di-

mensions

As Fig. 4.1 shows, when it comes to the dependence of the temperatures on the number of extra

dimensions (n) we have two groups. The first one consists of the black-hole temperatures T0 (4.12)

and TBH (4.15) and the second of the effective ones Teff− (4.19), Teff+ (4.21) and TeffBH (4.23).

The larger n gets, the more the temperatures in each group converge to each other. Thus it is clear,

that for the lowest value of n = 0 the largest differences between the temperatures appear. So, it is

interesting to study their effect on the differential energy emission rates of 4-dimensional (4d) SdS

black holes.

By setting n = 0 in the expressions of the temperatures presented in the introduction, we obtain their

4d forms given here for convenience. In terms of the radii of the black-hole (rh) and cosmological (rc)

horizons we have the bare black-hole and cosmological horizon temperatures respectively:

T0 =
1− Λr2

h

4πrh
, Tc = −1− Λr2

c

4πrc
, (4.29)

where Λ is the value of the cosmological constant. The Bousso-Hawking normalized temperature is

TBH =
1√
h(r0)

1− Λr2
h

4πrh
, (4.30)

where h(r0) is the value of the metric function (2.7) evaluated at the location of the non-accelerated

observer in SdS (2.14). The three effective temperatures assume the following simplified forms in 4d:

Teff− = −
(1− Λr2

h) (1− Λr2
c )

4π (rh + rc) (1− Λrhrc)
, (4.31)

Teff+ = −
(1− Λr2

h) (1− Λr2
c )

4π (rc − rh) (1 + Λrhrc)
, (4.32)

and

TeffBH = −
(1− Λr2

h) (1− Λr2
c )

4π (rh
√
h(r0) + rc) (1− Λrhrc)

. (4.33)

Finally, in this 4d context, we may further extend our study with the inclusion of one more expression
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of an effective temperature. This expression was historically the first one to be proposed in 2009 for

the effective description of the SdS thermodynamics by Urano et al.[153]. Employing the Iyer-Wald

formalism [159, 160], an effective first law was derived and the black-hole mass was interpreted as the

internal energy (M = U), the entropy as the sum of the entropy of the two horizons (S = Sh + Sc),

while the volume corresponding to the causal volume of SdS namely V = Vc− Vh. The expression for

the effective temperature thusly obtained is

TeffEIW =
r4
h Tc + r4

c T0

(rh + rc) (r3
c − r3

h)
. (4.34)

The reason we only study the effect of TeffEIW on the EERs in 4 dimensions, is that the derivation

of this temperature involves 3-dimensional spatial volumes and may thus only be employed in 4d.

Taking the limit rc → ∞ of eq. (4.34) that corresponds to a vanishing cosmological constant, one

recovers the black-hole temperature T0. This is the only temperature of the 4 effective ones that we

consider here that has this low-Λ asymptotic limit since all the rest go to zero. By construction,

TeffEIW requires the presence of the black hole in the setup while the rest require a non-vanishing

cosmological constant.

In Fig. 4.9 we plot the dependence of the 4d expressions of the six temperatures on the cosmological

constant up to the critical limit that for n = 0 corresponds to Λcrit = 1 r−2
h .

It is the behavior of TeffEIW that is the most interesting one in this plot, since the rest of the

temperatures behave similarly to their HD expressions and they have already been studied in depth.

Still, it is worth mentioning that a comparison with Fig. 4.1 reveals a dominance of TBH for all values
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Figure 4.9: Temperatures for a Schwarzschild-de Sitter black hole (from top to bottom in the low-Λ
regime: TBH , T0, TeffEIW , Teff−, TeffBH , and Teff+) as a function of the co- smological constant

Λ.
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of Λ in four dimensions as well but it is a dominance that is significantly less prominent. This holds

for the bare temperature T0 that also dominated in the low-Λ regime. The reason behind this is that

the temperatures TBH and T0 (including TeffEIW ), in the limit of a vanishing cosmological constant

asymptote to the temperature of the Schwarzschild black hole that in n extra dimensions is

T0|Λ→0 =
(1 + n)

4πrh
, (4.35)

where the horizon radius is given in terms of the black-hole mass (M) and the fundamental scale of

gravity (M∗) via [161]

rh =
1√
πM∗

(
M

M∗

) 1
n+1

(
8Γ
(
n+3

2

)
n+ 2

) 1
n+1

. (4.36)

The Schwarzschild black-hole temperature (4.35) is minimized in four dimensions (n = 0) as it can

be clearly seen in Fig. 4.10 where we plot its variation with respect to the extra dimensions. As a

consequence of the above, we anticipate that the EERs of all the temperatures (in the largest part of

the allowed Λ values) to be more comparable with each other.
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Figure 4.10: The Schwarzschild black-hole temperature (4.35) for M∗ = 1, M = 5M∗ and n ∈ [0, 5].

Focusing on the profile of TeffEIW in Fig. 4.9, we see that as the cosmological constant increases

its value, it is rapidly decreased at first and then more slowly for intermediate values of Λ until it

asymptotes to a non-vanishing value at the critical limit along with TBH and Teff−. In contrast to the

latter two temperatures that attain their maximum values at Λcrit, the TeffEIW is minimized in this

limit while exhibiting its maximum at Λ → 0 where it is identified with the black-hole temperature

T0.

4.5.1 The 4-dimensional emission spectra

In this section we study the imprint of the six temperatures on the 4d differential energy emission

rates of the SdS black hole. Starting with the case of a minimally coupled (ξ = 0) scalar field in Fig.
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4.11 we plot their corresponding EERs for two indicative values of the cosmological constant. The

first one Λ = 0.1 r−2
h is far from Λcrit, while the second one Λ = 0.8 r−2

h is appropriate to encapsulate

the profile of the spectra close to the critical limit.

Since there is no field coupling in this case, the effective mass is zero and the characteristic infrared

asymptotic limit (4.26) of the emission curves is present. For the small value of Λ = 0.1 r−2
h of Fig.

4.11(a) we see that when the Bousso-Hawking normalized temperature is employed, the most emissive

spectra are produced in accordance with Fig. 4.9. Also, this is the only emission curve that peaks

away from the low-energy limit. All the other temperatures yield EERs that exhibit their maxima at

their corresponding low-energy asymptotic limits and monotonically reduce to zero for larger values

of the energy.

In Fig. 4.11(b) where the critical limit has been approached, the emission curves corresponding to

TBH and Teff− are greatly enhanced since these temperatures are close to their maximum values (Fig.

4.9). All the other power spectra are suppressed with curves that produce insufficient emission due to

the small values of their corresponding temperatures. Notice that even though TeffEIW asymptotes

to a non-vanishing value at the Nariai limit, this value is not large enough to yield an emission curve

with the typical profile.

We now “switch on” the field’s coupling to gravity (ξ = 1/6) in Fig. 4.12 while using the same values

for the cosmological constant namely Λ = 0.1 r−2
h and Λ = 0.8 r−2

h to enable easy comparison between

different cases.

Comparing Fig. 4.12(a) with Fig. 4.11(a) we see that the presence of ξ suppresses all the emission

curves regardless of the temperature employed and it is their low-energy part that gets affected the
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Figure 4.11: Energy emission rates for minimally-coupled scalar fields from a Schwarzschild-de Sitter
black hole for: (a) Λ = 0.1 (in units of r−2

h ), and T = TBH , T0, TeffEIW , Teff−, TeffBH , Teff+ (from
top to bottom), and (d) Λ = 0.8 and T = TBH , Teff− (from top to bottom, again).
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most with the vanishing of low-energy asymptotic limit. This way the curves assume the characteristic

form of the EERs where they start from zero in the infrared, exhibit a maximum for intermediate

values of the energy and then reduce to zero again in the ultraviolet part of the spectrum. Notice also

that in contrast to the higher-dimensional case, in 4-dimensions, all the temperatures for Λ ≈ 0.1Λcrit

assume values that are relatively close to each other (Fig. 4.9) and so the power spectra for all of the

temperatures can be seen to peak sufficiently above zero.

In Fig. 4.13 we consider the case where the field couples even stronger to gravity with ξ = 1/2 and

we see that there is a further suppression of the emission curves. We report that the same behavior is

observed if we increase the value of ξ even further. Finally, notice that the suppression of the EERs

with ξ is more intense for the low-Λ regime compared with the regime close to Λcrit. This observation

will play a role in the interpretation of the results we obtained for the total emissivity of the SdS black

hole which is the subject of the next subsection.

4.5.2 Total emissivities in 4 dimensions

To calculate the total emissivity (TE) of the SdS black hole we integrate the differential energy

emission rate (4.25) throughout the energy regime. This corresponds to evaluating the surface area

under the EER curves. We performed this calculation for every one of the six different definitions for

the temperature when the field coupling is ξ = 0, 1/6, 1/2 and the cosmological constant spans the

whole allowed regime with the indicative values Λ = 0.1, 0.3, 0.5 and 0.8 (in units of r−2
h ). Our results

are shown in Tables 4.10 to 4.12.
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Figure 4.12: Energy emission rates for non-minimally-coupled scalar fields with ξ = 1/6 from a
Schwarzschild-de Sitter black hole for: (a) Λ = 0.1 (in units of r−2

h ), and T = TBH , T0, TeffEIW ,
Teff−, TeffBH , Teff+ (from top to bottom), and (d) Λ = 0.8 and T = TBH , Teff− (from top to

bottom, again).
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Figure 4.13: Energy emission rates for non-minimally-coupled scalar fields with ξ = 1/2 from a
Schwarzschild-de Sitter black hole for: (a) Λ = 0.1 (in units of r−2

h ), and T = TBH , T0, TeffEIW ,
Teff−, TeffBH , Teff+ (from top to bottom), and (d) Λ = 0.8 and T = TBH , Teff− (from top to

bottom, again).

Starting with the minimally coupled field case (ξ = 0), we see that as the cosmological constant

increases, the black-hole total emissivity, when the bare temperature T0 is employed, decreases. Com-

paring its values at Λ = 0.1 r−2
h and Λ = 0.8 r−2

h we observe the the latter constitutes only the 14%

of the former. Similarly, a suppression is observed when the TeffEIW temperature is used, only this

time the decrease is milder with the total emissivty close to the critical limit being 73% of its value

at Λ = 0.1 r−2
h .

Table 4.10: Total emissivity for ξ = 0

Λ→ 0.1 0.3 0.5 0.8

T0 0.000444 0.000487 0.000335 0.000065

TBH 0.001871 0.005432 0.011837 0.054554

Teff− 0.000058 0.000636 0.002106 0.015937

Teff+ 0.000013 0.000047 0.000050 0.000014

TeffBH 0.000040 0.000200 0.000225 0.000060

TeffEIW 0.000266 0.000267 0.000222 0.000196

Table 4.11: Total emissivity for ξ = 1/6

Λ→ 0.1 0.3 0.5 0.8

T0 0.000228 0.000124 0.000057 7.5796 10(−6)

TBH 0.001358 0.003647 0.008889 0.050743

Teff− 9.8980 10(−6) 0.000191 0.001040 0.013964

Teff+ 0.5696 10(−6) 1.3972 10(−6) 1.2237 10(−6) 0.2977 10(−6)

TeffBH 5.0160 10(−6) 0.000026 0.000027 6.3134 10(−6)

TeffEIW 0.000112 0.000044 0.000026 0.000054
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Table 4.12: Total emissivity for ξ = 1/2

Λ→ 0.1 0.3 0.5 0.8

T0 0.000087 0.000021 6.1253 10(−6) 0.5443 10(−6)

TBH 0.000837 0.002126 0.006062 0.045459

Teff− 0.8973 10(−6) 0.000040 0.000433 0.011571

Teff+ 0.0164 10(−6) 0.0316 10(−6) 0.0251 10(−6) 0.0057 10(−6)

TeffBH 0.3206 10(−6) 1.7945 10(−6) 1.8766 10(−6) 0.4070 10(−6)

TeffEIW 0.000033 4.1488 10(−6) 1.8064 10(−6) 0.000012

In the considered range of Λ values (0.1− 0.8 r−2
h ) and contrary to the behavior of the TEs for T0 and

TeffEIW , the temperatures TBH and Teff− result in an enhancement of the TE of the order of 30

and 300 respectively with the increase in Λ. Regarding finally the effect of the “ad hoc” temperatures

Teff+ and TeffBH we see that the TEs get enhanced at first until the intermediate values of Λ and

then decrease again as the critical limit is approached. Notice that the behavior of the TEs observed

here follows closely the profile of the temperatures as it is depicted in Fig. 4.9.

The effect of the field coupling on the TEs at any given value of the cosmological constant and

regardless of the choice for the temperature is to cause suppression. This is in accordance to the

interpretation of the non-minimal coupling term of the field equivalently as an effective mass term.

Focusing now to the combined effect of ξ and Λ on the TEs we see that as the cosmological constant

increases from 0.1Λcrit to 0.8Λcrit, the value of ξ modifies differently the enhancement or suppression

of the TE. More precisely, we see that when ξ = 1/6 and T0 is employed, the suppression of the TE

is of the order of 3% while at a larger coupling ξ = 1/2 it is of the order of 0.6% only. For the same

variation in Λ (0.1 r−2
h → 0.8 r−2

h ) the enhancement caused in the TE when TBH is employed is of the

order of 37 for ξ = 1/6 while for ξ = 1/2, it is of the order of 54.

Finally, the most impressive boost in the enhancement of the TE with an increase of ξ is seen when

the effective temperature Teff− is used. At ξ = 1/2 the value of the TE close to the critical limit

compared with its value in the low-Λ regime appears enhanced by a factor of 1400 and this factor

skyrockets to 12000 when ξ = 1/2.

4.6 The effect of the higher modes of the field on the EERs close to

the Nariai limit

So far in this chapter, we computed the EERs for various temperatures, considering values of the

cosmological constant up to the critical limit. In the calculation we took into account only the first

5 scalar field modes because higher modes have insignificant contributions to the spectrum as they
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Figure 4.14: The first five field modes when TBH is employed and n = 0, ξ = 0.5 while Λ equals (a)
0.1 Λcrit, (b) 0.3 Λcrit, (c) 0.6 Λcrit and (d) 0.8 Λcrit

peak many orders of magnitude below the dominant mode of the field. As we will now demonstrate

this is true only far away form the critical limit!

As we can see in Fig. 4.14 where the first five modes are given (the leftmost peak is always l = 0

and moving to the right we get one mode number up with each peak), as Λ increases, up until about

0.5 Λcrit it is a good approximation to truncate the EER sum to l = 5.

Notice in Figs. 4.14(b) that already for Λ = 0.3 Λcrit the “dominant mode” (l = 0) is comparable

with (l = 1)! For values of Λ larger than ∼ 0.5Λcrit higher modes need to be taken into account as

they contribute to the “tail” of the emission curve. This is demonstrated in Fig. 4.15 where we used

the Bousso-Hawking normalized temperature in four dimensions and for Λ = 0.8Λcrit , ξ = 0.5, we

plot the EER when we take into account the first 5 (red curve), 13 (blue dashed curve) and 20 (green

dashed curve) modes of the field.
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Figure 4.15: For TBH , in four dimensions, when Λ = 0.8Λcrit and ξ = 0.5 we give here the first 5
modes (l = 0 − 5) summed up with red, (l = 0 − 13) with blue dashed and (l = 0 − 20) with green

dashed.

4.6.1 The enhancement of the higher modes of the field close to Λcrit

We recall here for convenience the formula for the Hawking power spectrum

d2E

dt dω
=

1

2π

∑
l

Nl |A|2 ω
exp(ω/Th)− 1

=

[
ω(2π)−1

exp(ω/Th)− 1

][∑
l

Nl |A|2
]
. (4.37)

Obviously, the energy-profile of the EER is determined by the product of the two terms in the square

brackets. If we denote the first term with:

Ω(ω, Th) ≡ ω(2π)−1

exp(ω/Th)− 1
, (4.38)

then
d2E

dt dω
= Ω(ω, Th)

[∑
l

Nl |Al|2
]
, (4.39)

where |Al|2 is the GF of the l-th mode of the field. For the Bousso-Hawking normalization of the

temperature (4.15), in n = 2 dimensions the Ω(ω, Th) function’s energy profile as Λ ranges from Λ = 0

to Λ = Λcrit = 6r−2
h is depicted in Fig. 4.16.

If we focus now for simplicity on the brane channel, the multiplicity of states will be given by Nl =

2l + 1. Then eq. (4.39) for the first few modes is written as

d2E

dt dω
= Ω(ω, Th)

[
N0 |A0|2 +N1 |A1|2 +N2 |A2|2 +N3 |A3|2 + . . .

]
= Ω(ω, Th)

[
|A0|2 + 3 |A1|2 + 5 |A2|2 + 7 |A3|2 + . . .

]
. (4.40)

Clearly, the contribution of the GFs of the higher field modes to the spectrum is enhanced due to the

monotonic increase in the multiplicity-of-states factor Nl. Let us now define the following function
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A(l) ≡ Nl |Al|2. In Fig. 4.17 we give the first four functions A(l) when n = 2 and ξ = 1. Essentially,

these are just the plots for the GF for the first four modes of the field multiplied by some constant

number (Nl) that is larger the higher the mode of the field. In the low-Λ and low-(ωrh) region it is

the mode l = 0 that dominates as it is expected.

Figure 4.16: The Ω(ω, Th) function.

(a) (b)

(c) (d)

Figure 4.17: The functions A(l) ≡ Nl |Al|2 for n = 2 and ξ = 1, for the mode (a) l = 0, (b) l = 1,
(c) l = 2, and (d) l = 3.



118
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Figure 4.18: The functions S(l) ≡ Ω(ω, Th)A(l) for n = 2 and ξ = 1, for the mode (a) l = 0, (b)
l = 1, (c) l = 2, and (d) l = 3.

Turning now again to eq. (4.40), we write the contribution of each field mode to the total EER as

d2E

dt dω
= Ω(ω, Th)A(0) + Ω(ω, Th)A(1) + Ω(ω, Th)A(2) + . . . ≡ S(0) + S(1) + S(2) + . . . , (4.41)

where we have defined S(l) ≡ Ω(ω, Th)A(l). In this notation, it is then clear that the contribution to

the spectrum by the mode l = 0 (for example) is quantified in the function S(0) and its energy profile

will be the product of Fig. 4.16 and Fig. 4.17(a). The result of the latter multiplication is given in

Fig. 4.18(a). Similarly, in the rest of the panels of Fig. 4.18, the higher-mode contributions to the

EER are shown. Finally, summing up these 4 modes one gets the EER profile that is depicted in Fig.

4.19.

The way that the product between Figs. 4.16 and 4.17 works is as follows. The Ω(ω, Th) term of Fig.

4.16 “cuts” the high-energy part of the GF because the former vanishes for energy larger than about

ωrh = 1.8 for the case we study here. Then, only the low-energy part of the GFs (or equivalently the

functions A(l) of Fig. 4.17) survives in this product. It is the part that “manages to fit under” the

surface of Fig. 4.16.

Given the form of the A(l) functions in Fig. 4.17, it is clear that for small values of Λ, only the
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dominant mode l = 0 manages to “fit under” the surface of Fig. 4.16. On the other hand, for larger

values of Λ the higher modes of the field “fit under” the surface of Fig. 4.16 as well. In this case

though, due to the multiplicity-of-states factor Nl the small part of A(l) (Fig. 4.17) that fits under

the surface of Fig. 4.16 is greatly enhanced compared to the l = 0 → N0 = 1 mode A(0) and in this

way we have the dominance of the higher modes close to the critical limit.

4.6.2 Other black-hole temperatures and higher modes close to Λcrit

In our papers [4, 5], we have studied the power-spectra close to the critical limit but we haven’t studied

independently the forms of the GFs in this limit. In Fig. 4.20 we plot once again the behavior of the

first four functions A(l) ≡ Nl|Al|2, where Nl is the multiplicity of states and |Al|2 is the GFfor the

l-th field mode, this time up to the critical limit.

If we ignore for the moment the scales (determined by Nl), the plots in Fig. 4.20 are just the energy

profiles of the GFs for the first four modes on the brane as Λ ranges from 0 to Λcrit = 6. We see

that the dominant mode l = 0 indeed dominates in the low energy region for any value of Λ. In the

Λ→ Λcrit regime now, notice that all GFs curves (independently of the value of l) start to “pick up”

at very low-energies. If now the scales are also taken into account, it is then evident that close to the

critical limit, the higher-modes dominate.

From the discussion of the previous section it is clear that two effects contribute to the extreme am-

plification of the higher-modes (HMs) in the critical limit. On the one hand we have the magnification

of their corresponding GFs (|Al|2) by a factor of Nl that gets larger with the field mode number l.

The second effect comes from the form of the function Ω(ω, Th). In the case of the Bousso-Hawking

normalization the profile of Ω is given in Fig. 4.16. Because TBH , and consequently Ω(ω, Th), are

non-vanishing in the critical limit the extreme amplification of the GFs of the higher-modes “runs

wild” and thus we have a divergent spectrum in this region. A solution then would be to consider a

temperature that vanishes in the critical limit in order to counter the effect of the magnification of

Figure 4.19: The contribution of the first four modes of Fig. 4.18 to the EER.
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the GFs of the higher modes. One such temperature is of course the bare black-hole one (T0). For

this temperature the function Ω(ω, Th) has the profile shown in Fig. 4.21.

Similarly to the analysis of the previous section, the individual contribution of each field mode l to

the total EER will be quantified by the functions S(l) ≡ Ω(ω, Th)A(l). For T0 as the choice for the

(a) (b)

(c) (d)

Figure 4.20: The functions A(l) ≡ Nl |Al|2 for n = 2 and ξ = 1. Given here up to Λcrit, for the
mode (a) l = 0, (b) l = 1, (c) l = 2, and (d) l = 3.

Figure 4.21: The Ω(ω, Th) function for the temperature T0 as Λ ranges from 0 up to the critical
limit.
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temperature, the first four functions S(l) will have a profile that is given by the product of Fig. 4.21

with each one of the panels in Fig. 4.20. The results (pay attention to the way the 3d plots are

oriented with respect to the energy-axis!) are shown in Fig. 4.22. Clearly the higher modes are

suppressed for all values of Λ. This is due to the fact that in the region that the surface of Fig. 4.21

is non-zero (and thus allows for non-vanishing contributions of the GFs to the spectrum), namely for

small ωrh and small Λ, the functions A(l) have extremely small values. In fact, the higher the mode

number l the corresponding function A(l) moves further away from this region (as Fig. 4.20 clearly

shows). On the other hand, close to Λcrit where A(l) are greatly enhanced, the vanishing of Ω(ω, Th)

truncates them before they yield any significant contribution to the spectrum. The resultant EER

with these first four modes summed is given in Fig. 4.23

Finally, let us consider one last case where the temperature starts from zero at Λ → 0, increases to

a maximum value and then decreases to zero again in the limit Λ → Λcrit. We employ the TeffBH

expression for the temperature as an indicative case with the aforementioned behavior. Then, the

profile of Ω(ω, Th) is given in Fig. 4.24.

(a) (b)

(c) (d)

Figure 4.22: The functions S(l) ≡ Ω(ω, Th)A(l) for n = 2 and ξ = 1. For the temperature T0 and for
the mode (a) l = 0, (b) l = 1, (c) l = 2, and (d) l = 3.
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Figure 4.23: The contribution of the first four modes of Fig. 4.18 to the EER for Th = T0.

Figure 4.24: The Ω(ω, Th) function for the temperature TeffBH as Λ ranges from 0 up to the critical
limit.

The individual contributions to the EER when Th = TeffBH for the first four modes is shown in

Fig. 4.25 while in Fig. 4.26(a), we show the profile of the S(20) that shows that even very large field

modes are greatly suppressed due to the fact that the regions on the (ωrh,Λ) plane where A(20) and

Ω(ω, TeffBH) are non vanishing do not overlap significantly and thus S(20) (that corresponds to the

product between the two) is highly suppressed. Lastly, the sum of the first four modes modes that

are shown in Fig. 4.25 is given in Fig. 4.26(b).
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(a) (b)

(c) (d)

Figure 4.25: The functions S(l) ≡ Ω(ω, Th)A(l) for n = 2 and ξ = 1. For the temperature TeffBH

and for the mode (a) l = 0, (b) l = 1, (c) l = 2, and (d) l = 3.

(a) (b)

Figure 4.26: (a)The S(20) function for the temperature TeffBH as Λ ranges from 0 up to the critical
limit and (b) hhe contribution of the first four modes of Fig. 4.18 to the EERfor Th = TeffBH .
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4.6.3 The effect of the field coupling

In Fig. 4.27 we depict the effect of the coupling constant on the GF up to the critical limit. To

illustrate this we considered the function A(1).

Let us focus in the low-Λ regime of Fig. 4.27. As we can see, an increase in Λ causes the monotonic

enhancement of the greybody factor when the field coupling (ξ) is small [Fig. 4.27(a)]. For larger

values of ξ, an increase in Λ causes initially the suppression of the GFs in the low-Λ region while for

intermediate-Λ values this effect is reversed, and up to the critical limit the GFs get enhanced with

the cosmological constant. Recall that we have already seen this effect where Λ assumes a “dual role”

depending on the value of the field’s coupling to gravity.

The dual role of the cosmological constant, gives rise to the “U”-shaped profiles of Fig. 4.27. This

“U”-shaped profile becomes more prominent with an increase in ξ, and consequently close to Λcrit, we

see that the modes yield A(l) that are constrained to a “thinner” region. Thus, for large values of the

field coupling we expect the amplification of the high modes contribution to the EER to be reduced

(for temperatures that vanish at Λcrit).

(a) (b)

(c) (d)

Figure 4.27: The function A(1) (i.e. for l = 1) for n = 2 as (a) ξ = 0.1, (b) ξ = 2, (c) ξ = 5, and
(d) ξ = 10.
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4.7 Conclusions

The proper definition of the temperature for the Hawking radiation by Schwarzschild-de Sitter (SdS)

black holes is an open subject of debate. The presence of the cosmological horizon endowed with

a temperature that is lower than the black-hole one, prevents the system from being in thermal

equilibrium. Also, the absence of an asymptotically-flat observer with respect to whom the Killing

vectors are usually normalized makes the definition of conserved quantities and the temperature

obscure. To circumvent the above issues, various proposals have been made in the literature including

a different normalization for the Killing vectors that take into account the non-asymptotic flatness

of SdS and the formulation of effective thermodynamic first laws. These approaches yield different

temperatures and are employed by various authors “at will”.

In this chapter, we compared six different expressions for the SdS temperature as the number of extra

dimensions (n) and the cosmological constant (Λ) assume different values. For the latter we considered

indicative values that span the whole allowed regime, even up to the Nariai limit. Consequently, we

studied the effect of each one of these temperatures on the differential energy emission rates (EERs)

and the total emissivity for the higher-dimensional SdS black hole, both on the brane and in the

bulk. The underlying field theory we considered is that of a scalar field that couples non-minimally

to gravity via the interaction term ξΦR in the action where R is the Ricci scalar and ξ is a free

parameter.

We found, that in the limit of a vanishing cosmological constant the temperatures split into two groups.

The first group asymptotes to the value of the Schwarzschild black-hole temperature while the second

one to zero. In the Nariai limit, the temperatures exhibit once again two distinct behaviors by either

going to zero or attaining a non-vanishing value. This is due to the assumptions in the derivation of

the temperatures that assume either the black-hole mass or the cosmological constant to be present

for the analysis.

The comparison of the EERs revealed that the Bousso-Hawking normalized temperature (TBH) results

in the most emissive spectra in all of the (n,Λ, ξ) parameter space while the other temperatures manage

to yield significant EERs only in the low- or large-Λ regime. Regarding the results of the bulk-over-

brane emissivity ratio, we found that an increase of ξ enhances the brane channel while the effect of

Λ is in general the opposite. For the vast majority of the parameter space it is the brane channel that

dominates over the bulk. Still, close to the critical limit and for large n, the balance may be tilted in

favor of the bulk channel even by a factor of O(10) when TBH is employed.





Chapter 5

Brane-localized 5-dimensional black-holes: In

search for analytic solutions

In the brane-world models, there are two popular theories that describe the structure of the extra

dimensional space. In the first one to be proposed [8–10], the so-called Large Extra Dimensions (LEDs)

scenario, the extra dimensions are flat and black-hole solutions to the Einstein equations are known

to exist. As a matter of fact, long before the LEDs were even proposed, higher dimensional black-hole

solutions had already been derived [30, 68]. It is in the context of these theories, that the study of

the higher-dimensional black holes in the preceding chapters of this thesis has been performed.

Shortly after the LEDs, Lisa Randall and Raman Sundrum, proposed another solution to the hierarchy

problem by introducing a single “warped” extra dimension with a Z2 symmetry that may be finite [11]

or infinite [12] in size. This scenario has been termed the Warped Extra Dimensions (WEDs) scenario.

Contrary to LEDs, in WEDs, no analytic, localized-on-the-brane, regular black-hole solution in five

dimensions has been found despite the huge amount of effort put forth by the community [162–168].

In the first attempt towards obtaining such a black-hole solution in the context of WEDs, the authors

of [162] considered the following line element:

ds2 = e2A(y)

[
−
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2 (dθ2 + sin2 θ dϕ2)

]
+ dy2, (5.1)

where y is the coordinate corresponding to the extra dimension and e2A(y) is the warp factor . The

constant parameter m is identified with the black-hole mass1 since when one considers the location

of the brane at y = 0 and the RS warp function2 A(y) = −l−1|y|, with AdS radius l, the above

line-element reduces to the 4-dimensional Schwarzschild metric. Still, the solution of eq. (5.1) does

not describe an object that is localized close to the brane in five dimensions. This becomes evident

by the singular behavior of the curvature invariants. As an example, consider the Kretschmann scalar

for the above geometry (5.1)

RMNRSRMNRS =
48e−4A(y)m2

r6
+ ... , (5.2)

1In contrast to previous chapters where the capital letter “M” has been used for the black-hole mass, here we denote
the same quantity with lower-case “m” since M is reserved for the indices of the various higher-dimensional tensorial
objects.

2This specific choice of A(y) is made here for illustrative reasons.
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where “. . .” in the expression above, is used to indicate extra terms that become sub-dominant in

the limit r → 0. It is then clear, that the spacetime singularity located at r = 0 extends throughout

the extra coordinate range and is not localized close to the brane where the gravitational collapse of

ordinary matter took place. In this sense, the line element of eq. (5.1) does not describe a regular

brane-localized black hole but rather a new family of solutions that have been termed black strings.

Since then, a plethora of works aiming to obtain brane-localized black holes appeared in the literature

[169–185]. Even though solutions in lower-dimensional gravity have emerged in some of these analyses,

in five dimensions no analytic exact solution exists to date. Numerical solutions in five and six

dimensions have been found [186–188] but their validity was restricted to black-holes that are small

(or at most of the same order) compared to the scale set by the bulk curvature. More recently,

numerical solutions describing large black holes appeared [189, 190], but an analytic solution is still

lacking.

The authors of [172, 173] were the first to point out that if the constant mass parameter m gets

promoted to a function of the extra coordinate, i.e. m→ m(y), then for an appropriate y-dependence

of m(y) that decreases faster than e4A(y), the bulk singularities could potentially be localized close

to the brane. In these works it has also been demonstrated that a line element of the Vaidya type

[191, 192] is the most appropriate choice since it minimizes the number of bulk spacetime singularities.

Due to the non-trivial dependence of the mass on the coordinates, the metric (5.3) is no longer a

vacuum solution to the Einstein equations and thus some form of field content has to be introduced

in the bulk to support this solution. In [172, 173] it has also been demonstrated that “conventional”

field-theory models such as minimally-coupled scalar or gauge fields are not sufficient to support the

aforementioned geometry and at the same time constrain the bulk singularities close to the brane.

For a series of other works attempting to find (both analytically and numerically) brane-localized

black-holes by introducing some form of bulk or brane matter, or even additional geometric terms see

[193–197].

The authors of [198] assumed a line element of the Vaidya type with a mass function m = m(v, y)

that depends on both the time (v) and extra dimension (y) coordinates. To support this metric

ansatz, they considered a number of bulk scalar field theories, including single and multiple fields

that couple minimally or non-minimally to gravity. Unfortunately, they concluded that even for these

“unconventional” types of field theories a localized-to-the-brane black hole does not emerge.

In this chapter, we build upon the work done in [198] by considering an even more general mass

function that ontop of a dependence on the time and extra dimension coordinates it also exhibits

a non-trivial profile along the radial coordinate r. The motivation for this postulated r-dependence

of the mass function is the greater flexibility of the field equations that may finally yield a viable

solution. Also, by assuming ∂rm 6= 0, a brane-induced geometric background that is richer than the
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Schwarzschild one is expected to emerge via the appearance of extra terms in the metric function that

are reminiscent of the (anti)de-Sitter (∼ r2) or “Reissner–Nordström” (∼ r−2) solutions.

Regarding the bulk field content necessary to support our five dimensional metric, we will consider a

plethora of models. We will start with the next-to trivial case of a bulk filled only with a cosmological

constant; we then move on to the case of a field theory with one or two scalar fields (interacting or

not) that are minimally coupled to gravity. In order to be as general as possible in our analysis, a

general potential term will be included in the Lagrangian and the kinetic terms will be canonical,

non-canonical or even mixed. Finally we will also consider scalar-tensor gravity where a single scalar

field Φ is coupled to the Ricci scalar in the action via a analytic, arbitrary function f(Φ).

5.1 The gravitational background

We consider the following ansatz for the line element of the five dimensional spacetime:

ds2 = e2A(y)

[
−
(

1− 2m(v, r, y)

r

)
dv2 + 2dvdr + r2(dθ2 + sin2θ dφ2)

]
+ dy2 , (5.3)

where the mass parameter m is a function of the time (v), extra dimension (y) and radial (r) coor-

dinates. The dependence of the mass on y is justified by the non-trivial field content of the bulk, a

necessary requirement after all in order for the Einstein equations to be satisfied. Finally, the warp

function A(y) is an arbitrary decreasing function of y that respects the Z2 symmetry.

For the line element of eq. (5.3), the non-vanishing components of the mixed Einstein tensor are

Gvv = Grr = 6A′2 + 3A
′′ − 2

r2
e−2A ∂rm,

Gθθ = Gφφ = 6A′2 + 3A
′′ − 1

r
e−2A ∂2

rm,

Grv =
2

r2
e−2A∂vm−

1

r
(∂2
ym+ 4A′∂ym) , (5.4)

Gyv = e2AGry =
1

r2
∂ym+

1

r
∂y∂rm,

Gyy = 6A′2 − e−2A
( 2

r2
∂rm+

1

r
∂2
rm
)
,

Gvr = Gyr = Gvy = 0 .

It is imperative to know the forms of the curvature invariants as well, since in order to obtain a black

hole that is localized close to the brane, any bulk singularity has to be contained around the location

of the brane at y = 0. Explicitly, the square of the Riemann and Ricci tensors and the Ricci scalar
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for the metric (5.3) are

RMNRSR
MNRS = 40A′4 + 32A′2A

′′
+ 16A

′′2 +
48e−4Am2

r6
− 8A′2e−2A

r

(
∂2
rm+

2

r
∂rm

)
+

4e−4A

r2

[
(∂2
rm)2 +

4m

r2
(∂2
rm−

4

r
∂rm)− 4

r
∂rm∂2

rm+
8

r2
(∂rm)2

]
, (5.5)

RMNR
MN = 80A′4 + 64A′2A

′′
+ 20A

′′2

− 4e−2A

r

(
∂2
rm+

2

r
∂rm

)
(A
′′

+ 4A′2) +
2e−4A

r2

[
(∂2
rm)2 +

4

r2
(∂rm)2

]
, (5.6)

and

R = −20A′2 − 8A
′′

+
2e−2A

r

(
∂2
rm+

2

r
∂rm

)
, (5.7)

respectively. We point out that these expressions smoothly reduce to the ones given in [198] upon

setting ∂rm = 0.

Notice that by postulating that the mass depends on the radial coordinate as well, the curvature

invariants become more complicated as they now also contain terms proportional to ∂rm 6= 0 and

∂2
rm 6= 0. All of these extra terms are singular at r = 0 and also extend to all values of y since they

are at the same time proportional to the warp factor. This latter feature, is the one that ensures that

even these terms may be localized close to the brane with an appropriate profile of the mass along

the extra coordinate i.e. one that decreases faster than the warp factor as we “move away” from the

location of the brane.

In the rest of this chapter, we consider various field theories in the bulk and investigate whether they

can support the geometric background of eq. (5.3) and at the same time yield a mass function that

eliminates the singularities of the curvature invariants at a finite coordinate distance from the brane.

5.2 In the presence of a bulk cosmological constant

The action functional in five dimensions is composed of the usual Einstein-Hilbert term supplemented

by a matter Lagrangian Lm that is specified each time by the field content of the theory at hand

S =

∫
d4x dy

√
−g

(
R

2κ2
5

− Lm
)
. (5.8)

In the above, g is the metric determinant, R is the Ricci scalar, while κ2
5 is the 5-dimensional gravi-

tational constant. The variation of eq. (5.8) with respect to the bulk metric gMN yields the Einstein
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field equations

GMN ≡ RMN −
1

2
gMN R = κ2

5 TMN , (5.9)

where as usual, the bulk energy-momentum tensor TMN , is defined via the variation of Lm with

respect to the metric as follows:

TMN ≡
2√
−g

δ(
√
−gLm)

δgMN
. (5.10)

For the rest of the chapter it is understood that we set κ2
5 = 1 unless otherwise stated.

In this section, we consider the simplest case where the only contribution to TMN comes from the

presence of a bulk cosmological constant (ΛB).

TMN ≡ −gMNΛB , (5.11)

and so, the mixed components of the energy-momentum tensor will be given by

TMN = −δMNΛB . (5.12)

The last equation, imposes some constraints on the Einstein tensor via eq. (5.9). In particular one

of the requirements is that all mixed diagonal components of GMN in eq. (5.4) be equal to each

other. Then, from3 Gvv = Gθθ we find that the mass function should satisfy the following differential

equation:

∂2
rm =

2

r
∂rm, (5.13)

that can be easily integrated to give the solution

m(v, r, y) = B(v, y) r3 + C(v, y) . (5.14)

This expression for the mass, when introduced in eq. (5.3) yields an interesting metric function with

a “Schwarzschild-like” term C(v, y)/r and an “(anti)de-Sitter-like” term B(v, y)r2. Still, another

constraint imposed on the Einstein tensor by the form of TMN in eq. (5.12) is that the off-diagonal

components of GMN should vanish. Thus from Gyv = T yv = 0 we have

1

r2
∂ym+

1

r
∂y∂rm = 0 . (5.15)

Unfortunately, the solution (5.14) fails to satisfy this constraint as well since its substitution into eq.

(5.15) results to

4r3∂yB + ∂yC = 0 , (5.16)

that can only hold if ∂yB = ∂yC = 0 and thus the dependence of the mass function on the extra

3Often in this thesis we also employ the alternative notation (MN ) to symbolize the GM
N = TM

N component of the
Einstein’s field equations (5.9).
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coordinate is removed. This is of course a non-acceptable requirement since the mass has to be

y-dependent in order for the localization of the singularity close to the brane to occur.

5.3 Minimally-coupled scalar field theories

Here, we study the case of a bulk filled with either a single scalar field or two interacting scalar fields

that are minimally coupled to gravity. We will also assume the presence of a general potential in

the Lagrangian as well as a general kinetic term that encompasses both canonical and non-canonical

kinetic terms for the field.

5.3.1 A single scalar field with a general Lagrangian

When the bulk is filled with a single scalar field we may write the Lagrangian as

Lφ =
∑
n=1

fn(φ)
(
∂Mφ∂Mφ

)n
+ V (φ) , (5.17)

where fn(φ) are arbitrary and analytic functions of the field φ and it is understood that the general

potential V (φ) may include the bulk cosmological constant ΛB. Notice that when n = 1 and f1(φ) = 1

the Lagrangian (5.17) reduces to the one of a single scalar field with a canonical kinetic term while

for arbitrary n, the general kinetic term is a mixture of canonical and non-canonical kinetic terms.

The energy-momentum tensor corresponding to the Lagrangian (5.17) is straightforwardly computed

via eq. (5.10) and it turns out to have the following expression:

TMN = 2
∑
n=1

n fn(φ)
(
∂Pφ∂Pφ

)n−1
∂Mφ∂Nφ− gMN Lφ. (5.18)

We assume that the scalar field is spherically symmetric meaning that it does not depend on the

angular coordinates θ and φ; other than that, in the most general case it depends on the rest of the

coordinates i.e. φ = φ(v, r, y).

From the off-diagonal component of the Einstein equations Gvr = T vr we obtain

2 e−2A
∑
n=1

n fn(φ)
(
∂Pφ∂Pφ

)n−1
(∂rφ)2 = 0 . (5.19)

If we reasonably assume that the warp factor and the functions fn(φ) are non-vanishing the latter

requires that the field does not depend on the radial coordinate

∂rφ = 0 → φ = φ(v, y) . (5.20)
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Under this simplification, the following two equations are obtained from the Einstein’s EOMs :

Gvv = T vv ⇒ 6A′2 + 3A
′′ − 2

r2
e−2A ∂rm = −Lφ , (5.21)

Gθθ = T θθ ⇒ 6A′2 + 3A
′′ − 1

r
e−2A ∂2

rm = −Lφ . (5.22)

Combining these two equations, we once again end up with eq. (5.13) and thus with the functional

form of the mass given in eq. (5.14). Substituting this solution to the Gyv = T yv component of the

EOMs we obtain the following constraint:

4r∂yB +
∂yC

r2
= 2

∑
n

n fn(φ) (∂Pφ∂
Pφ)n−1 ∂yφ∂vφ . (5.23)

The r-independence of the scalar field makes the right hand side (r.h.s.) of the last equation r-

independent. So, the only way that the left hand side (l.h.s.) is also r-independent is by demanding

that ∂yB = 0 and ∂yC = 0. But these conditions once again remove completely the necessary

y-dependence of the mass function. Notice also that the potential V (φ) and the functions fn(φ)

remained unspecified throughout the analysis of this section and thus we may conclude that any

Lagrangian with the general form of eq. (5.17) fails to support the line element (5.3).

Finally, we point out that one unavoidably ends up with the solution of eq. (5.14) for the mass due

to the constraint T vv = T θθ, that holds for both eq. (5.12) and eq. (5.18) (for ∂rφ = 0). In the next

subsection, this constraint will be avoided by considering two interacting scalar fields.

5.3.2 Two interacting scalar fields

Let us now consider a slightly more complicated scenario in which the field content in the bulk is

composed of two interacting scalar fields that are non-minimally coupled to gravity. For the moment

we will focus only on fields with canonical kinetic terms described by the Lagrangian

Lsc = f (1)(φ, χ) ∂Mφ∂Mφ+ f (2)(φ, χ) ∂Mχ∂Mχ+ V (φ, χ) , (5.24)

where the two scalar fields are denoted here with φ and χ respectively, the functions f (1,2) are again

arbitrary, analytic and depending on both fields, while V (φ, χ) is a general potential. The energy-

momentum tensor for this Lagrangian has the following form:

TMN = 2f (1)(φ, χ) ∂Mφ∂Nφ+ 2f (2)(φ, χ) ∂Mχ∂Nχ− gMN Lsc . (5.25)

Due to the vanishing of the respective components of the Einstein tensor (5.4), the off-diagonal

components T vr , T
y
r and T vy need to also vanish. As a consequence, the following two independent
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constraints for the scalar fields are obtained:

f (1)(φ, χ) (∂rφ)2 + f (2)(φ, χ) (∂rχ)2 = 0 , (5.26)

f (1)(φ, χ) ∂rφ∂yφ+ f (2)(φ, χ) ∂rχ∂yχ = 0 , (5.27)

while at the same time, the diagonal components of the Einstein’s EOMs Gvv = T vv and Gθθ = T θθ,

yield respectively

6A′2 + 3A
′′ − 2

r2
e−2A ∂rm = 2e−2A

[
f (1)(φ, χ) ∂rφ∂vφ+ f (2)(φ, χ) ∂rχ∂vχ

]
− Lsc , (5.28)

6A′2 + 3A
′′ − 1

r
e−2A ∂2

rm = −Lsc . (5.29)

Observe, at this point, that the components T vv and T θθ of the energy-momentum tensor i.e. the l.h.s.

of the last two equations, are different. This is a consequence of the non-vanishing of the term in the

square brackets of eq. (5.28) since this is not imposed by any constraint. This way, and in conjunction

with the discussion of the previous section, the solution of eq. (5.14) is now in general avoided.

Subtracting now eq. (5.29) from eq. (5.28) we find

1

r
∂2
rm−

2

r2
∂rm = 2

[
f (1)(φ, χ) ∂rφ∂vφ+ f (2)(φ, χ) ∂rχ∂vχ

]
. (5.30)

In order to check whether this differential equation for the mass can produce a solution that exhibits

the desired properties, it is convenient to consider individually the following cases for the scalar fields.

One of the scalar fields is r-independent. Then via eq. (5.26), it becomes evident that

the other field is r-independent as well. If in turn, both fields do not depend on the radial

coordinate, then eq. (5.30) reduces to eq. (5.13) with the corresponding solution that is given

by eq. (5.14). The (yv) component of the field equations is written explicitly as

∂ym

r2
+
∂r∂ym

r
= 2

[
f

(1)
1 (φ, χ)∂yφ∂vφ+ f

(2)
1 (φ, χ)∂yχ∂vχ

]
, (5.31)

and the r.h.s. has no dependence on the radial coordinate. This requires that the l.h.s. is also

r-independent and so, it is necessary to demand ∂yB = 0 and ∂yC = 0 removing this way the

y-dependence of the mass.

One of the scalar fields is y-independent. In this case, the constraint (5.27) requires the

other scalar field be either r- or y-independent. We have already excluded the former case in the

discussion above. Then we are dealing with the case that the fields satisfy ∂yφ = 0 and ∂yχ = 0

and consequently the r.h.s. of eq. (5.31) is zero. The resulting solution for the mass function is

m(v, r, y) =
E(v, y)

r
+D(v, r) . (5.32)
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Upon substituting this mass in the metric function of eq. (5.3) a term D(v, r)/r and a “Reiss-

ner–Nordström-like” term E(v, y)/r2 emerge. Unfortunately, plugging eq. (5.32) into eq. (5.30)

and keeping in mind that the r.h.s. is y-independent, we are forced to impose the condition

∂yE(v, y) = 0 and in this way render the mass y-independent once again.

One of the scalar fields is v-independent. Contrary to the previous two cases, by assuming

that one of the two fields does not depend on the time variable, we find that the constraints

imposed by the Einstein equations do not require the same to hold for the other field as well.

In fact, in order to guarantee that eq. (5.30) and eq. (5.31) do not reduce to eq. (5.13) and eq.

(5.15) respectively that yield a non viable solution, one of the two fields necessarily has to be

dynamic.

To deal with the most general case, we consider that both of the (spherically-symmetric) fields depend

on all of the coordinates i.e. φ = φ(v, y, r) and χ = χ(v, y, r). We may then solve eq. (5.26) for one

of the coupling functions to get

f (1) = −f (2) (∂rχ)2

(∂rφ)2
, (5.33)

and then substitute this into eq. (5.27) to obtain the following constraint:

∂rφ∂yχ− ∂rχ∂yφ = 0 . (5.34)

Substituting these last two equations in the (yy) component of the EOMs

6A′2 − e−2A

r

(
∂2
rm+

2

r
∂rm

)
= 2

[
f (1)(φ, χ) (∂yφ)2 + f (2)(φ, χ) (∂yχ)2

]
− Lsc , (5.35)

we find that the term in the square brackets vanishes. Combining then eq. (5.35) with the (θθ)

component (5.29) we end up with
2

r2
∂rm = −3A′′ e2A , (5.36)

that readily leads to the following solution for the mass function:

m(v, r, y) = −A
′′

2
e2Ar3 +m0(v, y) . (5.37)

This mass function gives rise to a “Schwarzschild-like” term m0(v, y)/r and a “(anti)de-Sitter” one

−A′′e2Ar2/2 when substituted into the metric function but fails to “pass” from the rest of the con-

straints. When eq. (5.37) is plugged into eq. (5.30), the l.h.s. vanishes and so we obtain

f (1) ∂rφ∂vφ+ f (2) ∂rχ∂vχ = 0 , (5.38)

which via eq. (5.33) gives

∂rφ∂vχ− ∂rχ∂vφ = 0 . (5.39)
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Using eqs. (5.34) and (5.39) into the (yv) component (5.31) of the EOMs we have a vanishing r.h.s.

and then, the l.h.s. upon substitution of the mass (5.37) yields

− 2r∂y(A
′′e2A) +

1

r2
∂ym0 = 0 . (5.40)

This last condition, once again imposes the y-independence of the mass function.

If we now include non-canonical kinetic terms for the fields in the Lagrangian it is trivial to exclude

this case as well. The form of Lsc is now

Lsc =
∑
n=1

f (1)
n (φ, χ)

(
∂Mφ∂Mφ

)n
+
∑
n=1

f (2)
n (φ, χ)

(
∂Mχ∂Mχ

)n
+ V (φ, χ) , (5.41)

while the energy-momentum tensor turns out to be

TMN = 2
∑
n=1

n f (1)
n (φ, χ)

(
∂Pφ∂Pφ

)n−1
∂Mφ∂Nφ

+2
∑
n=1

n f (2)
n (φ, χ)

(
∂Pχ∂Pχ

)n−1
∂Mχ∂Nχ− gMN Lsc . (5.42)

If one employs the following redefinitions for the coefficients of ∂Mφ∂Nφ and ∂Mχ∂Nχ in the last

equation:

f̃ (1)(φ, χ) =
∑
n=1

nf (1)
n (φ, χ)

(
∂Mφ∂Mφ

)n−1
, (5.43)

f̃ (2)(φ, χ) =
∑
n=1

nf (2)
n (φ, χ)

(
∂Mχ∂Mχ

)n−1
, (5.44)

it becomes clear that the expression of the energy-momentum tensor (5.42) is equivalent to eq. (5.25).

Since the coupling functions f (1,2)(φ, χ) played no role in the analysis of this section we conclude that,

two interacting bulk scalar fields described by the general Lagrangian of eq. (5.41) are not sufficient

to produce a viable solution for the mass function with the required y-dependence.

5.3.3 Two interacting scalar fields with mixed kinetic terms

Next, we turn to a more unconventional field theory described by the following Lagrangian:

Lsc = f (1)(φ, χ) ∂Mφ∂Mφ+ f (2)(φ, χ) ∂Mχ∂Mχ+ f (3)(φ, χ) ∂Mφ∂Mχ+ V (φ, χ) , (5.45)



137

where two scalar fields φ and χ are employed with mixed kinetic terms and a general potential V (φ, χ).

The corresponding energy-momentum tensor is then given by

TMN = 2f (1)(φ, χ) ∂Mφ∂Nφ+ 2f (2)(φ, χ) ∂Mχ∂Nχ

+ f (3)(φ, χ) [∂Mφ∂Nχ+ ∂Mχ∂Nφ]− gMN Lsc . (5.46)

As a consequence of the vanishing of the (vr), (vy) and (yr) field equations due to the vanishing of the

corresponding Einstein tensor components, the following two independent constraints are imposed on

the fields via (5.46):

f (1)(φ, χ) (∂rφ)2 + f (2)(φ, χ) (∂rχ)2 + f (3)(φ, χ) ∂rφ∂rχ = 0 , (5.47)

2f (1)(φ, χ) ∂rφ∂yφ+ 2f (2)(φ, χ) ∂rχ∂yχ+ f (3)(φ, χ) [∂rφ∂yχ+ ∂yφ∂rχ] = 0 . (5.48)

It is easy to see that, similarly to the case studied in the previous subsection, if one of the fields is

assumed to be r- or y-independent, then the above set of constraints imposes the same coordinate

independence on the second field as well. Then, the dependence of the mass on the extra coordinate

is eliminated . We are thus once again led to consider the case that both scalar fields depend on all

of the coordinates i.e. φ = φ(v, y, r) and χ = χ(v, y, r).

We may then solve the system of eqs. (5.47) and (5.48), to obtain

f (2) = f (1) (∂rφ)2

(∂rχ)2
, f (3) = −2f (1) ∂rφ

∂rχ
, (5.49)

and with these rewrite the (yv) and (rv) components of the field equations respectively as

∂ym

r2
+
∂r∂ym

r
=

2f (1)

(∂rχ)2
(∂vφ∂rχ− ∂rφ∂vχ) (∂yφ∂rχ− ∂rφ∂yχ) , (5.50)

and
2∂vm

r2
− e2A

r

(
4A′∂ym+ ∂2

ym
)

=
2f (1)

(∂rχ)2
(∂vφ∂rχ− ∂rφ∂vχ)2 . (5.51)

By rearranging the (θθ) and (yy) components of the field equations, the following equation is obtained:

2e−2A

r2
∂rm+ 3A′′ = − 2f (1)

(∂rχ)2
(∂yφ∂rχ− ∂rφ∂yχ)2 . (5.52)

Now, appropriately combining eqs. (5.50),(5.51) and (5.52) we are able to eliminate the dependence

on f (1) as well as on the derivatives of the fields, and thus end up with the following differential

equation for the mass function:

(
∂ym

r2
+
∂r∂ym

r

)2

=

(
2e−2A

r2
∂rm+ 3A′′

)[
e2A

r

(
4A′∂ym+ ∂2

ym
)
− 2∂vm

r2

]
. (5.53)
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Eq. (5.53) is the “master equation” that any mass function compatible with the constraints imposed

by the field equations has to satisfy when the field theory is described by eq. (5.45).

To obtain the form of m(v, y, r), we start by rearranging the components (vv) and (θθ) of the field

equations to get

1

r
∂2
rm−

2

r2
∂rm = 2f (1)∂rφ∂vφ+ 2f (2)∂rχ∂vχ+ f (3)(∂rφ∂vχ+ ∂rχ∂vφ) . (5.54)

Then, using eq. (5.49), we find that the r.h.s. of the last equation vanishes and as a result the solution

for the mass function is once again given by

m(v, r, y) = B(v, y) r3 + C(v, y) . (5.55)

This mass function of course has to satisfy the master equation given above. Upon substitution

of eq. (5.55) into eq. (5.53), we find that as long as ∂yC = 0, this mass is indeed a solution

while maintaining a y-dependence via the term B(v, y) r3. Unfortunately, when this term is plugged

into the metric function, it generates a “(anti)de-Sitter”-like term with a y-dependence and not a

“Schwarzschild”-like one, that is associated with the singular terms in the curvature invariants and

consequently with the possibility of the localization of the singularity.

5.4 Non-minimally coupled scalar field

In this final section, we turn to the case of a single bulk scalar field that is non-minimally coupled

with gravity. The action will be (we re-introduce the five-dimensional gravitational constant only for

the following three equations and then set κ2
5 = 1 for the remaining of the section)

S =

∫
d4x dy

√
−g
[
f(Φ)

2κ2
5

R− 1

2
(∇Φ)2 − V (Φ)− ΛB

]
, (5.56)

where f(Φ) is a analytic and positive-definite function of the scalar field. The corresponding field

equations are

f(Φ)
(
RMN −

1

2
gMNR

)
= κ2

5

(
T(Φ)
MN − gMNΛB

)
, (5.57)

and the generalized energy-momentum tensor of the scalar field has been defined as

T(Φ)
MN ≡ ∇MΦ∇NΦ− gMN

[1
2

(∇Φ)2 + V (Φ)
]

+
1

κ2
5

[
∇M∇Nf(Φ)− gMN∇2f(Φ)

]
. (5.58)

For a spherically symmetric scalar field i.e. Φ = Φ(v, y, r), the off-diagonal components of the field

equations are

(vr)⇒ (1 + f ′′)(∂rΦ)2 + f ′ ∂2
rΦ = 0 , (5.59)
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(yr) = (vy)⇒ (1 + f ′′)∂yΦ ∂rΦ + f ′ ∂y∂rΦ−A′f ′∂rΦ = 0 , (5.60)

(yv) = (ry)⇒ (1 + f ′′)∂yΦ ∂vΦ + f ′ ∂y∂vΦ−A′f ′∂vΦ−
∂ym

r
f ′∂rΦ =

f

r
(
∂ym

r
+ ∂y∂rm) , (5.61)

(rv)⇒ (1− 2m

r
)
[
(1 + f ′′)∂vΦ ∂rΦ + f ′ ∂v∂rΦ

]
+ (1 + f ′′)(∂vΦ)2 + f ′ ∂2

vΦ− ∂vm

r
f ′∂rΦ

+
f ′

r
∂vΦ

(
∂rm−

m

r

)
+
∂ym

r
e2Af ′∂yΦ = f

[ 2

r2
∂vm−

e2A

r
(∂2
ym+ 4A′∂ym)

]
, (5.62)

where, in the above, a prime indicates differentiation with respect to the argument i.e. f ′ ≡ df(Φ)/dΦ

and A′ ≡ dA(y)/dy. The diagonal components of the Einstein equations yield the following three

independent equations:

(vv)⇒ e−2A
[
(1 + f ′′) ∂vΦ ∂rΦ + f ′ ∂v∂rΦ +

f ′

r
∂rΦ (

m

r
− ∂rm)

]
+A′f ′ ∂yΦ− (LΦ +�f + ΛB) = f

(
6A′2 + 3A′′ − 2e−2A

r2
∂rm

)
, (5.63)

(θθ)⇒
e−2A

r
f ′
[
∂vΦ +

(
1− 2m

r

)
∂rΦ

]
+A′f ′ ∂yΦ− (LΦ +�f + ΛB)

= f
(
6A′2 + 3A

′′ − e−2A

r
∂2
rm
)
, (5.64)

(yy)⇒ (1 + f ′′)(∂yΦ)2 + f ′ ∂2
yΦ− (LΦ +�f + ΛB) = f

[
6A′2 − e−2A

r

(
∂2
rm+

2

r
∂rm

)]
, (5.65)

where

LΦ ≡
1

2
(∇Φ)2 + V (Φ) =

e−2A

2

[
2 ∂vΦ ∂rΦ +

(
1− 2m

r

)
(∂rΦ)2

]
+

1

2
(∂yΦ)2 + V (Φ) , (5.66)

and

�f = e−2A ∂v∂rf +
e−2A

r2
∂r

[
r2∂vf + r2

(
1− 2m

r

)
∂rf
]

+ e−4A∂y
(
e4A ∂yf

)
. (5.67)

By combining eqs. (5.63) and (5.64) we end up with the constraint

(1 + f ′′)∂vΦ ∂rΦ + f ′ ∂v∂rΦ =
f ′

r

[
∂vΦ + (1− 3m

r
+ ∂rm) ∂rΦ

]
+
f

r

(
∂2
rm−

2

r
∂rm

)
, (5.68)

that does not depend on the complicated quantities of eqs. (5.66) and (5.67).
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Let us first study the simplest cases where the bulk scalar field Φ depends on only one of the coordinates

v, y or r and see if such a field can satisfy the constraints of eqs. (5.59)-(5.62) and eqs. (5.63)-(5.65).

The field depends only on the time coordinate Φ = Φ(v). Then, by combining eqs. (5.63)

and (5.65), one ends up with

∂2
rm = −3e2AA′′r , (5.69)

and after integrating once with respect to the radial coordinate, we obtain

∂rm = −3

2
e2AA′′r2 +m0(v, y). (5.70)

Plugging in turn this expression for the mass function into the constraint of eq. (5.68) the

following relation is obtained:
∂v f

f
=

2

r
m0(v, y) . (5.71)

This equation cannot be satisfied since the l.h.s. is a pure function of the time coordinate while

the r.h.s. depends on the rest of the coordinates as well.

The field depends only on the extra-dimension coordinate Φ = Φ(y). For such a field

dependence, the l.h.s. of eq. (5.61) vanishes and thus we have the solution

m(v, r, y) =
C(v, y)

r
+D(v, r) . (5.72)

Substitution of this mass function into eq. (5.68) requires its y-independence and this is in

contrast with our main assumption that the mass has a non-trivial profile along the extra

dimension.

The field depends only on the radial coordinate Φ = Φ(r). In this case, eq. (5.60)

requires that either the warp function A′(y) = 0 or the coupling function f ′(Φ) = 0. In the

former case there is no warping of the metric with the extra coordinate while in the latter we

have once again the minimally coupled field theory of the previous section.

Consequently we are forced to assume that the field depends on more that one coordinates. Let us

now study independently the special cases that the field depends on two of the coordinates and search

for a viable solution before considering the most general case of Φ = Φ(v, y, r).

The Φ = Φ(v, r) case. From (5.60) we have once again either A′(y) = 0 or f ′(Φ) = 0 that has

already been discarded in the case of Φ(r) we studied previously.

The Φ = Φ(v, y) case. In this case, the constraint of eq. (5.68) can be written as

∂2
rm−

2

r
∂rm = −f

′

f
∂vΦ , (5.73)
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where in the r.h.s. we have an arbitrary function of v and y that we shall denote by C(v, y) ≡
−f ′

f ∂vΦ. Integrating then twice with respect to the radial coordinate r we obtain the following

solution:

m(v, r, y) = −C(v, y)
r2

2
+D(v, y)

r3

3
+ E(v, y) , (5.74)

in terms of the also arbitrary functions D(v, y) and E(v, y). Now, the combination of eqs. (5.63)

and (5.65) gives the following constraint:

(1 + f ′′)(∂yΦ)2 + f ′ ∂2
yΦ−A′f ′ ∂yΦ + 3fA′′ = −f

r
e−2A ∂2

rm, (5.75)

and since A = A(y) and f = f(v, y) the l.h.s. of this equation is r-independent, contrary to the

r.h.s. that has a dependence on the radial coordinate. Substituting the expression for the mass

function (5.74) into eq. (5.75), in order for the r.h.s. to be also r-independent, it is required

that the condition C(v, y) = 0 holds. This last condition though cannot be satisfied since via

eq. (5.73), we have that C(v, y) ∝ ∂vΦ 6= 0.

The Φ = Φ(r, y) case. For such a coordinate dependence of the field we find that eq. (5.61)

gets simplified to

(∂rf) ∂ym+ f (
∂ym

r
+ ∂r∂ym) = 0 , (5.76)

while eq. (5.68) is now

(∂rf)
(

1− 3m

r
+ ∂rm

)
+ f

(
∂2
rm−

2

r
∂rm

)
= 0 . (5.77)

Equations (5.76) and (5.77), constitute a homogeneous linear system of equations with respect

to the functions f and ∂rf . Consequently, to allow for additional solutions beyond the trivial one

(f, ∂rf) = (0, 0) to exist, the determinant of the system should vanish. The latter requirement

translates to the following constraint:(
∂ym

r
+ ∂r∂ym

)(
1− 3m

r
+ ∂rm

)
− ∂ym

(
∂2
rm−

2

r
∂rm

)
= 0 . (5.78)

To further proceed, we now write the mass function as a finite series of powers of the radial

coordinate containing both positive and negative order coefficients. More precisely we write the

mass function as

m(v, r, y) =
∑
n

αn(v, y) rn , n ∈ Z . (5.79)

Substitution of eq. (5.79) into eq. (5.78) yields

∑
`

(∂yα`) r
`−1

[
(`+ 1) +

∑
n

αn r
n−1(n− `+ 1)(n− 3)

]
= 0 . (5.80)

The most trivial way to satisfy this last equation is of course to require ∂yα` ∀ `. Unfortunately
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this removes the y-dependence of the mass and so it is the quantity in the square brackets

that has to vanish instead. The only way for this to happen is by removing the r-dependence

introduced by the second term. It is clear then than the only two allowed powers for the radial

coordinate are n = 1 and n = 3. The substitution of the mass into the metric function leads to

1− 2m

r
= 1− 2α1 − 2α3r

2 , (5.81)

and clearly does not yield a “black-hole” term but only a variant of an “(anti)de-Sitter” one.

Thus, the final case left to consider for the spherically-symmetric bulk scalar field is for it to depend

on all three of the coordinates i.e. Φ = Φ(v, r, y). Starting from eq. (5.59) we have

1 + f ′′(Φ) = −f ′(Φ)
∂2
rΦ

(∂rΦ)2
, (5.82)

and after substituting this result into eq. (5.60) we end up with

A′ = ∂r

(
∂yΦ

∂rΦ

)
. (5.83)

Integrating then once with respect to the radial coordinate we find

∂yΦ = ∂rΦ
[
A′(y) r + F (v, y)

]
, (5.84)

where F (v, y) is an arbitrary function. Substituting ∂yΦ via eq. (5.84) into eq. (5.61) and combining

the resultant equation with eq. (5.68) we find the following differential equation for f :

∂rf

[
(A′r + F )

(
1− 3m

r
+ ∂rm

)
+ r∂vF − ∂ym+ F

∂vΦ

∂rΦ

]
+f

[
(A′r + F )

(
∂2
rm−

2

r
∂rm

)
− 1

r
∂ym− ∂r∂ym

]
= ∂rfA1 + fA2 = 0 . (5.85)

In the last equality we symbolized the coefficients of ∂rf and f with A1 and A2 respectively for

convenience. If we now combine eqs. (5.64) with (5.65) and use eq. (5.82) to substitute 1 + f ′′, the

following differential equation is obtained:

∂rf

[
1− 2m

r
− re2A (A′′r + ∂yF ) +

∂vΦ

∂rΦ

]
+ f

(
−3A′′re2A − 2

r
∂rm

)
= ∂rfB1 + fB2 = 0 . (5.86)

Similarly to the previous equation, B1 and B2 are the coefficients of ∂rf and f respectively. The

requirement of the vanishing of the determinant of the homogeneous system of eqs. (5.85) and (5.86)

reads A1B2 −B1A2 = 0 or equivalently it may be written as

A1

B1
=
A2

B2
≡ G(v, r, y) , (5.87)
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for an arbitrary function G(v, r, y) that depends on all of the coordinates. The second equality of the

last relation is written explicitly as

(A′r + F )
(
∂2
rm−

2

r
∂rm

)
− 1

r
∂ym− ∂r∂ym = G(v, r, y)

(
−3A′′re2A − 2

r
∂rm

)
. (5.88)

If we now employ the form of the mass function given in eq. (5.79) the coefficients A2 and B2 will

be polynomials of the radial coordinate. Then, via eq. (5.87) the arbitrary function will also be a

polynomial that can be written as

G(v, r, y) =
∑
`

g`(v, y) r` , l ∈ Z (5.89)

where the sum in ` is finite and may contain terms of both positive and negative order.

If we finally use the polynomial expressions for the mass (5.79) and G(v, r, y) (5.89) in eq. (5.88) we

end up with the following constraint:

∑
n

[
n(n− 3)αnA

′ − (n+ 1) ∂yαn

]
rn−1 +

∑
n

αnFn(n− 3) rn−2

= −3
∑
`

g`A
′′e2Ar`+1 − 2

∑
`,n

g`αnn r
`+n−2 . (5.90)

Now we will consider various choices for the parameters n and ` that are compatible with the constraint

of eq. (5.90) and see if, for each one of these choices, an acceptable solution emerges for the mass

function.

(n, l) = (3, 1). In this case the substitution of the resultant mass into the metric function does

not generate a black-hole term but a modified (anti)de-Sitter one.

(n, l) = (4, 1). For this choice of the parameters we also have terms of the same order in r that

appear in eq. (5.90) but again the corresponding mass does not describe a black hole on the

brane.

n = 0. Though this choice is consistent with eq. (5.90) the corresponding mass function does not

depend on the radial coordinate and is thus reduced to the case m = m(v, y) that was studied

in [198], or even to the black-string solutions [162] if the condition ∂yαn = 0 is furthermore

imposed.

We may also consider other special cases that lead to the vanishing of the determinant of the system

of eqs. (5.85) and (5.86).

The two differential eqs. (5.85) and (5.86) reduce to one. Then the arbitrary function

defined in eq. (5.87) will be G(v, r, y) = 1 and this means that it does not depend on the radial
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coordinate. Consequently via eq. (5.89) we are led to choose ` = 0 and for this value of `, eq.

(5.90) requires that the other parameter n is either n = 2 or n = 3. For both these cases the

metric function does not contain a black-hole term.

One of the rows or the columns of the determinant has zero entries.

? If A2 = B2 = 0 one ends up with the solution of eq. (5.37) for the mass function with

∂ym0 = 0 that removes its y-dependence entirely thus rendering the solution insufficient to

localize the bulk singularities.

? If on the other hand we start with the condition A1 = B1 = 0, then eqs. (5.85) and (5.86)

lead again to A2 = B2 = 0 and to the conclusion of the previous point.

? Considering the case A1 = A2 = 0, we have from A2 = 0 and the polynomial form of

the mass function (5.79) that the following condition: Fn(n − 3) = 0 should hold. The

latter singles out three values for n. The obvious ones are n = 3 and n = 0. The third

one is obtained if we further substitute F = 0 into A2 = 0. The latter equation is then

r-independent for n = 1. In any case, all these three values of n yield a mass that does

not depend on the extra-dimension coordinate since the condition ∂yαn = 0 has to be also

imposed.

? The final case is B1 = B2 = 0. Solving B2 = 0 for the mass we obtain eq. (5.37). Then,

substituting this into the second condition B1 = 0 we find

∂vΦ

∂rΦ
=

2m0(v, y)

r
− 1 + r∂yFe

2A . (5.91)

Plugging then this last relation along with eq. (5.37) into eq. (5.85), we end up with the

following constraint:

∑
`

f` r
`+2 (`+ 4)

2
∂y

(
A′′e2A

)
+
∑
`

f` r
` `
(
A′ + ∂vF + F∂yF e

2A
)

−
∑
`

f` r
`−1
[
3`A′m0 + (`+ 1)∂ym0

]
−
∑
`

f` r
`−2 ` Fm0 = 0 , (5.92)

where we have also written the function f as a polynomial with respect to r of the form

f(v, r, y) =
∑
`

f`(v, y) r` . (5.93)

In order now for eq. (5.92) to hold, each individual term should vanish. From the condition

Fm0 = 0 then, we have either F = 0 that leads to A′(y) = 0 or m0 = 0 that removes the

y-dependence of the mass.
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Based on the results of the study performed in this section we are led to the conclusion that even the

most general spherically-symmetric bulk field that is non-minimally coupled to gravity is incompatible

with the line element of eq. (5.3).

Finally, the interested reader is refered to the recent master’s thesis [199] where, in an effort to

obtain analytic brane-localized black-hole solutions with the metric ansatz of eq. (5.3), an even

more complicated Lagrangian was considered. More precisely, the bulk field content consisted of two

interacting scalar fields φ(v, y, r) and χ(v, y, r) that couple non-minimally to gravity via a general

function f(φ, χ). Nevertheless, the results of that study dictated that even such a general Lagrangian

is not sufficient for localization to occur.

5.5 Conclusions

In the context of warped extra dimensions, analytic 5-dimensional localized-on-the-brane black-hole

solutions are still elusive. In an effort to obtain such solutions, we extended previous studies by

considering a generalized Vaidya ansatz for the metric where the mass parameter (m) depends on the

time (v), extra dimension (y) and radial (r) coordinates. Of course, in order to satisfy the Einstein

equations, an appropriate field content has to be introduced in the bulk. Then in principle, a mass

function m = m(v, y, r) may emerge from the field equations that corresponds to a black hole on the

brane with a singularity that extends over a finite distance along the extra dimension.

With the prospect of obtaining such a solution, we studied a plethora of scalar field models that source

the bulk energy-momentum tensor. Starting from the simplest possible non-trivial case, we assumed

a bulk filled only with a cosmological constant. We then turned to the cases of a single scalar field

and two interacting scalar fields minimally-coupled to gravity in conjunction with a general potential

and general kinetic terms (including both canonical and non-canonical ones as well as mixed kinetic

terms in the case of two scalars). Finally, we also considered a field theory of a non-minimally coupled

bulk scalar field (Φ) that couples to the Ricci scalar via an arbitrary analytic function f(Φ).

In some of the above cases, solutions to the mass function that are compatible with the constraints

imposed by the field equations have been found. When these solutions are substituted into the metric

function, physically interesting terms such as “Schwarzschild-like”, (∼ r−1), “(anti)de-Sitter-like”

(∼ r2) or “Reissner–Nordström-like” (∼ r−2) do emerge on the brane. Unfortunately, whenever

such solutions exist, the profile of the mass along the extra dimension is not suitable to localize the

black-hole singularity close to the brane.





Chapter 6

Conclusions

In this final chapter, we present the conclusions of the study performed in this dissertation.

In Chapter 2, we considered the propagation of scalar particles in the gravitational field of the Higher-

dimensional (HD) Schwarzschild-de Sitter (SdS) black hole, both on the brane and in the bulk. The

field theory we considered is that of a massless scalar field Φ that is non-minimally coupled to gravity

via an interaction term in the action (ξΦ2R) with the Ricci scalar R. By deriving the Equation Of

Motion (EOM) for the scalar field we found that an “effective mass” term appears that is proportional

to the product of ξ and the cosmological constant Λ. This way our analysis incorporates the case of

massive particles as well.

By employing a well-known matching technique of the two asymptotic solutions to the radial EOM

of Φ close to the black hole (rh) and cosmological (rc) horizons, we derived approximate analytic

expressions for the Greybody Factors (GF). Contrary to previous similar studies where the matching

of the two asymptotic solutions demands a low-energy approximation, this was not necessary in

our case and so our analytic results exhibit an extended range of validity. In addition, with an

appropriately chosen new radial coordinate, the effect of the cosmological constant was taken into

account both close and far away from rh, while previous studies discard the effect of Λ close to rh in

order to simplify the calculation. Still, in order to have a matching of the two asymptotic solutions

we had to assume small values for ξ and Λ. Other than that, our results are valid for an arbitrary

number (n) of extra spacelike dimensions and partial mode (l) of the field.

We started by deriving the GFs for scalar fields propagating on the brane and studying its low-

energy limit for both minimally and non-minimally coupled fields. In the former case and for the

dominant mode (l = 0) of the field, we showed that our general expression reproduces the non-

vanishing asymptotic limit exhibited by the GFs in the presence of a cosmological constant. We were

able to show analytically that when the field coupling ξ 6= 0, in the limit ω → 0, the aforementioned

asymptotic limit vanishes and the first non-zero contribution comes from the O(ω2) term which we

also derived and presented.

Then, we studied the energy-profile of the full expressions for the GFs with respect to the particle

(l, ξ) and spacetime (n,Λ) parameters. We found that as either of the two particle parameters or

the number of extra dimensions increase the GFs get suppressed on the brane. With respect to Λ,

we found that it can act in favor or against the enhancement of the GFs depending crucially on the
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value of the field coupling. For small field couplings, the GFs get enhanced with an increase of the

cosmological constant while the opposite effect is observed for large values of ξ.

We then turned to the study of a scalar field propagating in the bulk. By performing the corresponding

analysis we once again obtained the approximate analytic expressions for the GFs, valid for arbitrary

l and ξ. In the case of minimal coupling and for the dominant mode of the field the corresponding

low-energy asymptotic limit of the GF is recovered from our expressions. Again, we have shown

that when ξ 6= 0, this limit vanishes with the first non-zero term being of O(ω2). By studying the

energy-profile of the bulk GFs on the parameters l, n, ξ and Λ, we found that they follow the same

pattern as the brane GFs with the main characteristic being the milder dependence on ξ.

In Chapter 3, we developed a numerical technique to compute the exact expressions for the GFs in the

case of a massless scalar field non-minimally coupled to gravity propagating in the HD SdS spacetime

both on the brane and in the bulk. To achieve this, we numerically integrated the brane and bulk

EOMs for Φ and obtained the corresponding radial part of the field which was then used to determine

the transmission probabilities (GFs). To set the boundary conditions necessary for the integration of

the EOMs we used the asymptotic analytic expressions of the previous chapter. We then compared

the exact results we obtained via this method against our approximate analytic results, and we have

indeed found that for small values of ξ and Λ the two sets of results are in excellent agreement.

Deviations between the exact and approximate results appear as either ξ, Λ or the value of the energy

are increased beyond the allowed regimes.

The exact analytic results for the GFs verified the behavior we have observed with the approximate

analytic expressions, namely that an increase in any of the parameters ξ, l or n results in suppression

of the GFs both on the brane and in the bulk. The cosmological constant on the other assumes a

“dual role” and its effect on the transmission probabilities depends on the value of ξ - this is also a

feature that had been exhibited by the analytic results. The reason behind this behavior is that Λ

corresponds to the vacuum energy density that enhances the particle emission but on the other hand

it is simultaneously proportional to the effective mass of the field, thus suppressing the emission of

particles. As our analysis revealed, the effective mass is also proportional to the non-minimal coupling

ξ and for this reason, when ξ � 1, it is the former effect of Λ that dominates.

With the exact forms of the brane and bulk GFs that are valid for arbitrary values of the field and

spacetime parameters, we were then able to calculate the corresponding differential Energy Emission

Rates (EERs) for Hawking radiation by the HD SdS black hole that decays in the form of scalar

particles in the brane and bulk channels of emission. The dependence of the Hawking spectrum on

the parameters comes from the GF as well as from the expression for the temperature. More precisely,

the temperature depends on the spacetime parameters n and Λ. In this study we have employed the

Bousso-Hawking normalization for the temperature (TBH) to account for the non-asymptotic flatness

of the SdS spacetime.
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We found that in both channels, the increase in the number of extra dimensions causes the en-

hancement of the emission even though the GFs get suppressed with n. This behavior is due to the

enhancement of TBH with n that dominates over the effect of the GF. The field coupling ξ (that can

be interpreted as an effective mass term) caused the suppression of the EERs throughout the energy

regime. Finally with respect to the effect of the cosmological constant we found that the dual-role

behavior is also reflected on the EERs. When the field couples weakly with gravity, there is a global

enhancement of the emission with Λ throughout the energy regime while for larger values of ξ the

low-energy part of the spectrum gets suppressed.

By computing the relative energy rates we showed that for small ξ and Λ it is the brane channel that

dominates in the low- and intermediate-energy regime while as ξ is increased the bulk channel gets

boosted. The combined effect of an increased ξ and a large value of n results in the dominance of the

bulk channel over the brane one. This has been one of the very few times where the brane channel

becomes sub-dominant (see also [200]) and this is caused by the presence of the non-trivial interaction

of the field with the gravity.

In Chapter 4 we turned to the effect of the temperature on the EERs of the HD SdS black hole. Due

to the presence of a cosmological horizon endowed with a temperature that is in principle different

from the black-hole one, the SdS spacetime is in absence of true thermal equilibrium and an asymp-

totically flat limit. To deal with these issues various proposals appeared in the literature regarding

the appropriate definition of the temperature in SdS. We considered two different black-hole tempera-

tures. The bare black-hole temperature T0 in which the timelike Killing Vector Field (KVF) Kµ that

is associated with the surface gravity is normalized “naively” to KµKµ = −1 as in the asymptotically

flat case. On the other hand, the Bousso-Hawking normalized temperature TBH takes into account

the non-asymptotic flatness by appropriately normalizing Kµ. We also considered three effective tem-

peratures Teff−, Teff+ and TeffBH that are combinations of the black-hole and cosmological horizon

temperatures and are derived via effective thermodynamic first laws where the cosmological constant

plays the role of the pressure of the system.

We started by studying the dependence of the above set of five temperatures on the cosmological

constant and the number of extra dimensions. The former parameter assumed values from zero up

to the critical limit Λcrit (Nariai limit) that is the maximum allowed value of Λ, for a given n, that

yields only two horizons for the SdS spacetime. In the limit Λ → 0, T0 and TBH reduce to the

HD Schwarzschild temperature while the effective ones vanish. This is due to the fact that in their

construction the cosmological constant (pressure of the system) is assumed to be non-vanishing. In the

other extreme limit Λ→ Λcrit, only TBH and Teff− asymptote to a non-vanishing value while the rest

of the temperatures vanish. The same Λ-profile of the temperatures is observed as n is increased with

the black-hole temperatures getting a significant enhancement. In all cases, it is the Bousso-Hawking

normalized temperature that dominates throughout the allowed Λ range.
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Then we studied the effect of each of the temperatures on the EERs both on the brane and in the

bulk for indicative values of Λ that span the whole allowed regime and for a small (n = 2) and

large (n = 5) value of the number of extra dimensions. We found that the spectra follow closely the

behavior of their corresponding temperature. The most dominant spectra are produced when the

TBH temperature is employed. In the low-Λ regime the most emissive spectra are produced by TBH

and T0 while close to the critical limit, the TBH and Teff− temperatures give the dominant emission

curves. The temperatures Teff+ and TeffBH yield a non-negligible spectrum only for intermediate

values of Λ.

When there is no field coupling to gravity (ξ = 0), the non-zero low-energy (ω → 0) asymptotic value

of the GFs for the dominant mode results to EERs that are non-vanishing in this limit. Consequently,

a significant number of soft particles are expected to be emitted. For the case of the effective temper-

atures it is in fact this part of the energy spectrum that contributes the most to their total emissivity

since the peaks of the EER curves are located close to ω → 0. When ξ 6= 0 the emission curves return

to their “usual” shape where they vanish in the limits ω → 0 and ω →∞ while exhibiting a peak at

intermediate values of ω.

The analysis performed in this chapter not only serves as a comparison between the emission curves

obtained for various temperatures but it also provides information about the EERs close to the critical

limit. By computing the total emissivities in the two channels for the above five temperatures, we

found that as Λ is increased the bulk channel gets enhanced over the brane one (except for T0 when

ξ 6= 0) and becomes the dominant one as the critical limit is approached and the temperature is

non-vanishing i.e. for TBH and Teff−. When the number of extra dimensions is also increased, the

bulk dominated for the bare black-hole temperature T0 as well.

As a conclusion the choice of temperature greatly affects the obtained EERs for scalar particle emission

by the HD SdS black hole. While some of the proposed temperatures do not produce significant

emission rates, others do so only in the low- or large-Λ regimes. In any case, and throughout the

allowed range of parameters, the Bousso-Hawking normalized temperature yields the most enhanced

EERs.

Finally, in Chapter 5 we turned to the quest for obtaining analytic, 5-dimensional, localized on the

brane black-hole solutions in the Warped Extra Dimensions (WEDs) scenario. By extending previous

analyses [173, 198], we considered a metric ansatz that reduces to a Schwarzschild-like metric at

the location of the brane with a mass parameter that on top of the time and extra dimension (y)

coordinates also depends on the radial coordinate (r). This ansatz allows for greater flexibility of the

field equations and also allows for additional terms in the metric function beyond the Schwarzschild

one such as Reissner-Nordstrom-like (∼ r−2) or (anti-)de Sitter-like (∼ r2) to emerge. Even though

the extra-coordinate dependence of the mass function yields extra singular terms in the curvature

invariants, an appropriate solution for the mass function, i.e. one that decreases fast enough as we

move away from the brane, can localize them close to y = 0.
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To support this metric ansatz we considered a plethora of field theory models in the bulk that source

the energy momentum tensor (Tµν) in Einstein’s field equations. We started with a bulk filled with a

cosmological constant and we found that even though a Schwarzschild-(A)dS type of metric function

is allowed, the y-dependence of the mass that is necessary to localize the singularity close to the brane

is prohibited. The isotropy of Tµν along all five coordinates imposed this constraint.

Next we considered a single bulk scalar field with either canonical or non-canonical kinetic term but

the y-independence of the mass function is also required in this case by the constraints imposed by

the field equations, and this prevented a viable solution from emerging.

We then moved on to consider two interacting scalar fields with canonical or non-canonical kinetic

terms and we thus avoided the total isotropy of Tµν . Unfortunately the rest of the constraints required

that the terms generating the anisotropy of Tµν should vanish and this translated to a y-independent

mass function once again. The next step was to consider mixed kinetic terms for the two scalar fields.

This way we avoided the isotropy of the energy momentum tensor and obtained a Schwarzschild-

(A)dS (S(A)dS) type of solution with y-dependent mass function. Still, in the metric function, the

y-dependence appears as a multiplicative factor in the term ∼ r2 and not in the ∼ r−1 one that is

associated with the bulk singularities. So this case also had to be discarded.

In the final section of Chapter 5, we considered a general coupling function f(Φ) between the bulk

scalar field Φ and the Ricci scalar along with a general potential and a cosmological constant term

in the action. In this case, solutions resembling S(A)dS or Reissner–Nordström emerged but the

complete set of constrains trivialized the mass function or the black-hole spacetime itself.





Appendix A

The proper distance between rh and rc in the

Nariai limit

In this appendix, following [87, 201] we show that the apparent coalescence of the black hole horizon

rh and the cosmological horizon rc in the Schwarzschild-de Sitter (SdS) metric in the critical limit,

does not mean that the physical space between the horizons reduces to zero. Consider the SdS metric

in four dimensions for reasons of simplicity

ds2 = −h(r)dt2 +
1

h(r)
dr2 + r2dΩ2 , h(r) ≡ 1− 2m

r
− Λ

3
r2 . (A.1)

Then, there are only two horizons if the black-hole mass (m) and the cosmological constant (Λ)

satisfy 0 < m < 1
3Λ−1/2 while the critical limit, in which the two horizons meet, is given in terms of

an infinitesimal parameter ε as

9m2Λ = 1− 3ε2 , 0 6 ε� 1 , (A.2)

and so we have that the horizons are identified in the limit ε → 0. Under the following redefinitions

for the time and radial coordinates in eq. (A.1),

t =
1

ε
√

Λ
ψ , r =

1√
Λ

[
1− ε cosχ− 1

6
ε2
]
, (A.3)

to first order in ε the metric can be re-cast into

ds2 =
1

Λ

[
−
(

1 +
2

3
ε cosχ

)
sinχ2dψ2 +

(
1− 2

3
ε cosχ

)
dχ2 + (1− 2ε cosχ) dΩ2

2

]
, (A.4)

where the locations of the Killing horizons in these coordinates are determined by the vanishing of the

metric function, i.e. gtt = 0, and are χ = 0 for the black-hole horizon and χ = π for the cosmological

horizon.

Now, it is easy to see that the proper distance between the two horizons is non zero since in the limit

ε→ 0 we have

∫ π

0

1√
Λ

√
1− 2

3
ε cosχdχ '

∫ π

0

1√
Λ

(
1− 1

3
ε cosχ

)
dχ =

π√
Λ
6= 0 . (A.5)
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Appendix B

The manipulation of the energy dependence of

the radial EOM

In this appendix, we present the various ways in which one may write the radial EOM for the scalar

field that propagates in the HD SdS spacetime eq. (2.28) in order to obtain the most “reasonable”

expressions for the GFs. For convenience we re-write the EOM here

f (1− f)
d2R(f)

df2
+ (1−Bh f)

dR(f)

df
+

[
(ωrh)2

A2
hf
−
λh (1− Λ̃r2

h)

A2
h(1− f)

]
R(f) = 0 . (B.1)

We use this EOM to illustrate the method but keep in mind that this also applies to the asymptotic

form of the EOM close to the cosmological horizon as well and for fields that propagate on the brane

and in the bulk. Let us focus on the form of the term in the square brackets (in this appendix we

use the letter A to indicate this term). During the process of recasting the radial EOM for the scalar

field into the hypergeometric equation of eq. (2.31)

f (1− f)
d2F (f)

df2
+ [c1 − (1 + a1 + b1) f ]

dF (f)

df
− a1b1 F (f) = 0 , (B.2)

the term A in general is not of the form given in eq. (B.1) but rather

A ≡
[

(ωrh)2

A2
hf(1− f)

−
λh (1− Λ̃r2

h)

A2
h(1− f)

]
. (B.3)

Clearly, the form of A as it is given in eq. (B.1) is one of the mathematically equivalent ways that

one may write (B.3) in the near-horizon (f → 0) limit. Still, the way one chooses to write this term

affects the energy-profiles of the obtained GFs due to the fact that the locations of the poles that

appear in the gamma functions in the solution for GF change. Consequently some choices are “less

appropriate” than others, in the sense that they result in the abrupt termination of the GF curves or

yield curves that do not asymptote to the value 1 in the high-energy limit as is the typical behavior

of the GFs.

Let us start by recalling the form of the parameters a1 and b1 of eq. (B.2) that appear in the arguments

of the gamma functions of the analytic expressions for the GF (we re-write them here for convenience)

a1 = α1 + β1 +Bh − 1 b1 = α1 + β1 , c1 = 1 + 2α1 . (B.4)
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After the field redefinition (2.30), namely R(f) = fα1(1 − f)β1F (f), that takes us from eq. (B.1)

to eq. (B.2), the energy dependence of the first term in eq. (B.3) is distributed to the parameters

a1 and b1 via the form of αh and βh. The latter two parameters are determined by the requirement

that the coefficient of F (f) in eq. (B.2) should not depend on f which is guaranteed by imposing the

vanishing of the coefficients of the non-zero powers of f that appear in the product a1b1. So it is clear

that the way one writes the coefficient A close to the horizon affects the form of αh and βh which in

tern determine a1 and b1 that appear in the analytic GF expressions.

Using the fact that close to the horizon f → 0 or equivalently (1− f)→ 1 we may multiply “at will”

the first term in eq. (B.3) with unity i.e. 1 ∼ (1− f) and this way “split” the energy dependence of

(ωrh)2 to terms with various powers of f .

As an example consider the following case:

(ωrh)2

A2
hf(1− f)

=
(ωrh)2(1− f)

A2
hf

= −(ωrh)2

A2
h

+
(ωrh)2

A2
h

1

f
. (B.5)

This way the parameters that characterize the solution assume the following forms:

α1 = − iωrh
Ah

β1 =
1

2
[2−Bh]− 1

2

√
(Bh − 2)2 +

4λh(1− Λr2
h)

A2
h

a1 = (αh + βh) +
1

2
[Bh − 1] +

1

2

√
(Bh − 1)2 − 4

(
ωrh
Ah

)2

b1 = (αh + βh) +
1

2
[Bh − 1]− 1

2

√
(Bh − 1)2 − 4

(
ωrh
Ah

)2

c1 = 2αh + 1

Another way to write the first term of eq. (B.3) is

(ωrh)2

A2
hf(1− f)

=

(
ωrh
Ah

)2 1

f
+

(
ωrh
Ah

)2 1

(1− f)
. (B.6)

In this case, the parameters assume the following forms:

αh = − iωrh
Ah

Bh = 1 +
4Λr2

h

A2
h
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βh =
1

2

[
(2−Bh)−

√
(Bh − 2)2 +

4(λh(1− Λr2
h)− (ωrh)2)

A2
h

]
a1 = αh + βh

b1 = αh + βh + (Bh − 1)

c1 = 1− 2iωrh
Ah

We have found that the “best results” for the GFs are obtained upon writing (B.3) as in eq. (B.1).

The curves produced for the GF with the choice we made (B.1) in the manipulation of the A term,

are affected the less by the existence of poles. Finally, our choice is further justified by the impressive

agreement between the analytic results we obtained and the exact numerical ones.





Appendix C

Numerical code for the calculation of the

greybody factors

In this Appendix, we present the numerical code we developed in the context of [3] in order to derive

the exact forms for the greybody factors (GF) in the case of a massless scalar field that exhibits a

non-minimal coupling with gravity and propagates in the higher-dimensional Schwarzschild-de Sitter

spacetime. The exact forms of the GF in the case of brane-confined as well as for bulk-propagating

fields may be computed with the following algorithm:
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SetDirectory[NotebookDirectory[]];

$TemporaryDirectory = NotebookDirectory[];

(* --------------------- Input of the parameters -

(START) ------------------------------------------------ *)

Λ = 0.1; (* The value of the cosmological constant. *)

ξ = 0.1; (* The non-minimal coupling parameter. *)

n = 2; (* The number of extra dimensions. *)

l = 0; (* The angular momentum quantum number. *)

rh = 1;(* The black-hole horizon radius. *)

BoundaryConditions = 2;

(* Variable that discriminates between the different choices for the boundary conditions. *)

radialeom = "bulk";

(* Variable that discriminates between the bulk and brane radial equations of motion *)

ε = 10^(-5); (* The infinitesimal radial distance from the horizons. *)

w0 = 0.000001;(* Initial value of the energy for the integration of the radial eom. *)

wmax = 1.5;(* Final value of the energy for the integration of the radial eom. *)

datapoints = 200; (* Variable that determines the number of

data points the code generates in the energy interval: (wmax-w0). *)

dw = wmax / datapoints; (* The integration step for the solution of the radial eom. *)

(* --------------------- Input of the parameters -

(END) -------------------------------------------------- *)

If[radialeom == "brane",

filename = "GFdatafilebrane.txt";]

If[radialeom == "bulk",

filename = "GFdatafilebulk.txt";](* The name of the file containing the generated data. *)

Clear[rc];

Lam = 2 Λ / ((n + 2) (n + 3));

hr = 1 - (1 - Lam) / r^(n + 1) - Lam r^2;

(* The metric function after using h(rh)=0 and rh=1 to eliminate the mass parameter μ. *)

roots = NSolve[hr  0, r] ;

list = Table[0 j , {j, 1, n + 3}]; (* The roots of the metric function. *)

Do[If[Im[r /. roots[[i, 1]]]  0, list[[i]] = r /. roots[[i, 1]]], {i, 1, n + 3}];

rc = Max[list]; (* Sorting and isolating the root corresponding to the cosmological

horizon radius in a systematic way valid for any choice of the parameters of the system.*)

Ah = (n + 1) - (n + 3) Lam rh^2;

(* The quantity Ah (defined in eq. ... ) evaluated at the location of the black-hole horizon *)

Ac = (n + 1) - (n + 3) Lam rc^2;

(* The quantity Ah (defined in eq. ... ) at the location of the cosmological horizon *)

af[x_, w_] := 1;

bf[x_, w_] := -I w rh (n + 1 - (n + 3) Lam x^2)

(1 - (1 - (1 - Lam) / x^(n + 1) - Lam x^2) / (1 - Lam x^2)) / (Ah x (1 - (1 - Lam) / x^(n + 1) - Lam x^2));

near = rh + ε; (* The final value of the radial coordinate for the solution of the eom. *)

far = rc - ε; (* The initial value of the radial coordinate for the solution of the eom. *)

OpenWrite[filename];

For[w = w0, w < wmax, w = w + dw, (* For each value of w in the

*)
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range (wmax-w0) we compute the corresponding value of the greybody factor. *)

(* --------------------- Solution of the radial eom on the brane -

(START) ------------------------------------------------ *)

If[radialeom  "brane",

radialfn[r] =

NDSolve[{(1 - (1 - Lam) / r^(n + 1) - Lam r^2) D[r^2 (1 - (1 - Lam) / r^(n + 1) - Lam r^2) R'[r], r] +

(w^2 r^2 - ( l (l + 1) + ξ r^2 (12 Lam + n (n - 1) (1 - Lam) / r^(n + 3)))

(1 - (1 - Lam) / r^(n + 1) - Lam r^2)) R[r]  0, R[near]  af[near, w], R'[near]  bf[near, w]},

R[r], {r, near, far}, AccuracyGoal  Infinity, MaxSteps  Infinity];

(* --------------------- Solution of the radial eom on the brane -

(END) ------------------------------------------------ *)

,

(* --------------------- Solution of the radial eom in the bulk -

(START) ------------------------------------------------ *)

radialfn[r] = NDSolve[{(hr) D[r^(n + 2) (hr) R'[r], r] +

(w^2 r^(n + 2) - (hr) ( l (l + n + 1) r^(n) + ξ r^(n + 2) ((n + 3) (n + 4) Lam))) R[r]  0,

R[near]  af[near, w], R'[near]  bf[near, w]}, R[r], {r, near, far},

AccuracyGoal  Infinity, MaxSteps  Infinity];

(* --------------------- Solution of the radial eom in the bulk -

(END) ------------------------------------------------ *)

];

(* --------------------- Boundary conditions -

(START) ------------------------------------------------ *)

(* First set *)

If[BoundaryConditions  1,

Rfn[r] = R[r] /. radialfn[r];

ffn[r] = Ac (1 - (1 - Lam) / r^(n + 1) - Lam r^2) r

D[Rfn[r], r] / (w rc ((n + 1) - (n + 3) Lam r^2) (1 - (1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)));

pfn[w] = (1 / 2) Exp[-I w rc Log[(1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)] / Ac]

(Rfn[r] - I ffn[r]) /. r  far;

qfn[w] = (1 / 2) Exp[I w rc Log[(1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)] / Ac]

(Rfn[r] + I ffn[r]) /. r  far;

greyfn = (1 - Abs[( pfn[w])^2 / ( qfn[w])^2]);

];

(* Second set *)

If[BoundaryConditions  2,

Rfn[r] = R[r] /. radialfn[r];

ffn[r] = 2 (1 - (1 - Lam) / r^(n + 1) - Lam r^2) D[Rfn[r], r] / (w rc D[ 1 - (1 - Lam) / r^(n + 1) - Lam r^2, r]);

pfn[w] = (1 / 2) Exp[-I w rc Log[1 - (1 - Lam) / r^(n + 1) - Lam r^2] / 2] (Rfn[r] - I ffn[r]) /. r  far;

qfn[w] = (1 / 2) Exp[I w rc Log[1 - (1 - Lam) / r^(n + 1) - Lam r^2] / 2] (Rfn[r] + I ffn[r]) /. r  far;

greyfn = (1 - Abs[( qfn[w])^2 / ( pfn[w])^2]);

];

(* --------------------- Boundary conditions -

(END) -------------------------------------------------- *)

Write[filename, {w, Abs[greyfn[[1]]]}];

(* For[w] end *)];

Close[filename];

(* --------------------- Plotting the greybody factor -

(START) ------------------------------------------------ *)

horLabel = "ωrh";

verLabel = "|A 2";

ListPlot[ReadList[filename],

PlotStyle  {Thick},

161



(*PlotLegendsPlaced[{"n="<>ToString[n]},{0.85,0.63}],*)

Joined  True,

ImageSize  550,

PerformanceGoal  "Quality",

Frame  True,

LabelStyle  {FontFamily  "Times", FontSize  24, Bold},

FrameLabel  {horLabel, Rotate[verLabel, -Pi / 2]},

FrameStyle  Directive[Black, Opacity[1.5]]

]

(* --------------------- Plotting the greybody factor -

(END) ------------------------------------------------ *)
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Appendix D

Numerical code for the calculation of the

differential energy emission rates

In this Appendix, we present the numerical code we developed in the context of [3] in order to

derive the differential energy emission rates (EERs) for the Hawking radiation of a higher-dimensional

Schwarzschild-de Sitter black hole. The following algorithm is suitable to calculate the EERs for both

the brane and bulk channels of emission:
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SetDirectory[NotebookDirectory[]];

$TemporaryDirectory = NotebookDirectory[];

(* --------------------- Input of the parameters -

(START) ------------------------------------------------ *)

Λ = 0.1; (* The value of the cosmological constant. *)

ξ = 0.1; (* The non-minimal coupling parameter. *)

n = 1; (* The number of extra dimensions. *)

lmin = 0;(* The dominant mode of the field *)

lmax = 0; (* The upper cut-off in the l- summation of the power spectrum *)

rh = 1;(* The black-hole horizon radius. *)

BoundaryConditions = 1;

(* Variable that discriminates between the different choices for the boundary conditions. *)

radialeom = "bulk";(* Variable that discriminates between the bulk and brane radial equations of motion *)

ε = 10^(-5); (* The infinitesimal radial distance from the horizons. *)

w0 = 0.000001;(* Initial value of the energy for the integration of the radial eom. *)

wmax = 1.5;(* Final value of the energy for the integration of the radial eom. *)

datapoints = 50; (* Variable that determines the number of

data points the code generates in the energy interval: (wmax-w0). *)

dw = wmax / datapoints; (* The integration step for the solution of the radial eom. *)

(* --------------------- Input of the parameters -

(END) -------------------------------------------------- *)

If[radialeom == "brane",

filename = "EERdatafilebrane.txt";]

If[radialeom == "bulk",

filename = "EERdatafilebulk.txt";](* The name of the file containing the generated data. *)

Clear[rc];

Lam = 2 Λ / ((n + 2) (n + 3));

hr = 1 - (1 - Lam) / r^(n + 1) - Lam r^2;

(* The metric function after using h(rh)=0 and rh=1 to eliminate the mass parameter μ. *)

roots = NSolve[hr  0, r] ;

list = Table[0 j , {j, 1, n + 3}]; (* The roots of the metric function. *)

Do[If[Im[r /. roots[[i, 1]]]  0, list[[i]] = r /. roots[[i, 1]]], {i, 1, n + 3}];

rc = Max[list]; (* Sorting and isolating the root corresponding to the cosmological

horizon radius in a systematic way valid for any choice of the parameters of the system.*)

(*Calculating the radius of the preferred non-accelerated observer (PNAO) *)

Clear[Tbh];

roots2 = NSolve[D[1 - (1 - Lam) / r^(n + 1) - Lam r^2, r]  0, r] ;

list2 = Table[0 j , {j, 1, n + 3}];

Do[If[Im[r /. roots2[[i, 1]]]  0, list2[[i]] = r /. roots2[[i, 1]]], {i, 1, n + 3}];

r0 = Max[list2];

dh0 = (1 - (1 - Lam) / r^(n + 1) - Lam r^2) /. {r  r0};

(* Defining the surface gravity of the horizons *)

kh = ( 2 rh)^(-1) ((n + 1) - 2 Λ rh^2 / (n + 2));

kc = -(2 rc)^(-1) ((n + 1) - 2 Λ rc^2 / (n + 2));

(* The Bousso-Hawking temperature*)

Tbh = (Sqrt[dh0])^(-1) kh / (2 Pi);
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Ah = (n + 1) - (n + 3) Lam rh^2;

(* The quantity Ah (defined in eq. ... ) evaluated at the location of the black-hole horizon *)

Ac = (n + 1) - (n + 3) Lam rc^2;

(* The quantity Ah (defined in eq. ... ) at the location of the cosmological horizon *)

af[x_, w_] := 1;

bf[x_, w_] := -I w rh (n + 1 - (n + 3) Lam x^2)

(1 - (1 - (1 - Lam) / x^(n + 1) - Lam x^2) / (1 - Lam x^2)) / (Ah x (1 - (1 - Lam) / x^(n + 1) - Lam x^2));

near = rh + ε; (* The final value of the radial coordinate for the solution of the eom. *)

far = rc - ε; (* The initial value of the radial coordinate for the solution of the eom. *)

OpenWrite[filename];

For[w = w0, w < wmax, w = w + dw, (* For each value of w in the

range (wmax-w0) we compute the corresponding value of the greybody factor. *)

Clear[EER]; EER = 0; Do[

(* --------------------- Solution of the radial eom on the brane -

(START) ------------------------------------------------ *)

If[radialeom  "brane",

radialfn[r] = NDSolve[{(1 - (1 - Lam) / r^(n + 1) - Lam r^2) D[r^2 (1 - (1 - Lam) / r^(n + 1) - Lam r^2) R'[r], r] +

(w^2 r^2 - ( l (l + 1) + ξ r^2 (12 Lam + n (n - 1) (1 - Lam) / r^(n + 3))) (1 - (1 - Lam) / r^(n + 1) - Lam r^2))

R[r]  0, R[near]  af[near, w], R'[near]  bf[near, w]},

R[r], {r, near, far}, AccuracyGoal  Infinity, MaxSteps  Infinity];

(* --------------------- Solution of the radial eom on the brane -

(END) ------------------------------------------------ *)

,

(* --------------------- Solution of the radial eom in the bulk -

(START) ------------------------------------------------ *)

radialfn[r] = NDSolve[{(hr) D[r^(n + 2) (hr) R'[r], r] + (w^2 r^(n + 2) -

(hr) ( l (l + n + 1) r^(n) + ξ r^(n + 2) ((n + 3) (n + 4) Lam))) R[r]  0, R[near]  af[near, w],

R'[near]  bf[near, w]}, R[r], {r, near, far}, AccuracyGoal  Infinity, MaxSteps  Infinity];

(* --------------------- Solution of the radial eom in the bulk -

(END) ------------------------------------------------ *)

];

(* --------------------- Boundary conditions -

(START) ------------------------------------------------ *)

(* First set *)

If[BoundaryConditions  1,

Rfn[r] = R[r] /. radialfn[r];

ffn[r] = Ac (1 - (1 - Lam) / r^(n + 1) - Lam r^2) r

D[Rfn[r], r] / (w rc ((n + 1) - (n + 3) Lam r^2) (1 - (1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)));

pfn[w] = (1 / 2) Exp[-I w rc Log[(1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)] / Ac]

(Rfn[r] - I ffn[r]) /. r  far;

qfn[w] = (1 / 2) Exp[I w rc Log[(1 - (1 - Lam) / r^(n + 1) - Lam r^2) / (1 - Lam r^2)] / Ac]

(Rfn[r] + I ffn[r]) /. r  far;

greyfn = (1 - Abs[( pfn[w])^2 / ( qfn[w])^2]);

];

(* Second set *)
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If[BoundaryConditions  2,

Rfn[r] = R[r] /. radialfn[r];

ffn[r] = 2 (1 - (1 - Lam) / r^(n + 1) - Lam r^2) D[Rfn[r], r] / (w rc D[ 1 - (1 - Lam) / r^(n + 1) - Lam r^2, r]);

pfn[w] = (1 / 2) Exp[-I w rc Log[1 - (1 - Lam) / r^(n + 1) - Lam r^2] / 2] (Rfn[r] - I ffn[r]) /. r  far;

qfn[w] = (1 / 2) Exp[I w rc Log[1 - (1 - Lam) / r^(n + 1) - Lam r^2] / 2] (Rfn[r] + I ffn[r]) /. r  far;

greyfn = (1 - Abs[( qfn[w])^2 / ( pfn[w])^2]);

];

(* --------------------- Boundary conditions -

(END) -------------------------------------------------- *)

If[radialeom  "brane", (* With this conditional function,

we define the “multiplicity of states” coefficient Nl on the brane and in the bulk. *)

Nl = 2 l + 1,

Nl = (2 l + n + 1) Factorial[l + n] / Factorial[l] / Factorial[n + 1]

];

EER = EER + (Abs[greyfn[[1]]] Nl w / (Exp[w / Tbh] - 1) / (2 π));

, {l, lmin, lmax}];

Write[filename, {w, EER}];

(* For[w] end *)];

Close[filename];

(* --------------------- Plotting the energy emission rate -

(START) ------------------------------------------------ *)

horLabel = "ωrh";

verLabel = "EER";

ListPlot[ReadList[filename],

PlotStyle  {Thick},

(*PlotLegendsPlaced[{"n="<>ToString[n]},{0.85,0.63}],*)

Joined  True,

ImageSize  550,

PerformanceGoal  "Quality",

Frame  True,

LabelStyle  {FontFamily  "Times", FontSize  24, Bold},

FrameLabel  {horLabel, Rotate[verLabel, -Pi / 2]},

FrameStyle  Directive[Black, Opacity[1.5]]

]

(* --------------------- Plotting the energy emission rate -

(END) ------------------------------------------------ *)
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Out[44]=
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