Tool Support and Topological Study of Schema Evolution in
terms of Foreign Keys

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee

by

Konstantinos Dimolikas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
WITH SPECIALIZATION
IN SOFTWARE

University of loannina

January 2019

Examining Committee:

e Panos Vassiliadis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)

e Evaggelia Pitoura, Professor, Department of Computer Science and
Engineering, University of Ioannina

e Apostolos Zarras, Associate Professor, Department of Computer Science and
Engineering, University of Joannina

DEDICATION

To my family.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Panos Vassiliadis for his
guidance and the fruitful collaboration we had throughout my graduate studies in
the University of loannina. Finally, I should express my gratitude to my parents for
all the support and encouragement they offered me all these years.

TABLE OF CONTENTS

DEDICATION
ACKNOWLEDGMENTS
TABLE OF CONTENTS
LIST OF FIGURES
ABSTRACT IX
EKTETAMENH ITEPIAHWH XTA EAAHNIKA
CHAPTER 1. INTRODUCTION
1.1 Scope
1.2 Roadmap
CHAPTER 2. RELATED WORK
2.1 Case Studies of Schema Evolution
2.2 Comparison to the State of the Art
CHAPTER 3. REFACTORING PROCESS
3.1 Aim of Refactoring
3.2 Initial Architecture and Design
321 Package Diagram

3.2.2 Class Diagrams

3.2.3 Classes Collaborations Responsibilities (CRC) Method

3.3 Refactoring Actions

VII

IV

XI

13

13

19

20

20

27

28

29

30

30

31

41

3.3.1 Package Level Issues
33.2 God Classes
3.3.3 Lack of APIs
3.3.4 Duplicated Code
3.3.5 Misplaced Methods
3.3.6 Redundant Components
3.3.7 Convention Violations
34 Testing
3.5 Final Architecture and Design
3.5.1 Package Diagram
3.5.2 Class Diagrams
3.6 Evaluation
3.6.1 Abstractness — Instability Graph
3.6.2 Class Level Metrics
3.7 Summary of Refactoring Results
CHAPTER 4. TABLE TOPOLOGY AND EVOLUTION
41 Experimental Setup
4.1.1 Datasets
412 Data Preprocessing
4.2 Distribution of Tables over Degrees
43 Table Topological Categories
43.1 Definition of Topological Categories

432 Rules for Table Classification

4.4 Relationship between Tables” Topological Categories

and their Properties

441 Relationship between Topological Categories and Duration

ii

41

42

43

51

53

53

53

54

55

55

56

60

60

62

74

76

77

77

79

81

86

86

89

93

96

4.4.2 Relationship between Topological Categories and Survival

4.4.3 Relationship between Tables” Topological Categories and
Birth Version

4.4.4 Relationship between Tables” Topological Categories and
Update Activity

4.4.5 Relationship between Tables” Topological Categories and
Size Change

45 Summary of Findings

CHAPTER 5. EXPORTING PARMENIDIAN TRUTH AS A WEB
APPLICATION

51 Architecture of a Web Application
5.2 Design of Parmenidian Truth Web Application
521 Package Diagram
522 Class Diagrams
CHAPTER 6. CONCLUSIONS AND FUTURE WORK
6.1 Conclusions
6.2 Future work
BIBLIOGRAPHY

SHORT CV 140

1ii

102

106

109

116

120

125

125

127

128

128

134

134

135

137

LIST OF FIGURES

Figure 3.1 Functionalities of Subsystems

Figure 3.2 Initial Package Diagram of Parmenidian Truth

Figure 3.3 Class Diagram of the Gui Package

Figure 3.4 Class Diagram of the Core Package

Figure 3.5 Class Diagram of the Export Package

Figure 3.6 Class Diagram of the Model.Loader Package

Figure 3.7 Class Diagram of the Model Package

Figure 3.8 Class Diagram of the ParmenidianEnumerations Package
Figure 3.9 CRC Cards of the Classes of Package Core

Figure 3.10 CRC Cards of the Classes of Package Export

Figure 3.11 CRC Cards of the Classes of Package Gui

Figure 3.12 CRC Cards of the Classes of Package Model.Loader
Figure 3.13 CRC Cards of the Classes of Package Model

Figure 3.14 CRC Cards of the Classes of Package ParmenidianEnumerations

Figure 3.15 Methods (squares) and Attributes (circles) of the
DiachronicGraph Class

Figure 3.16 Class Diagram of the [ParmenidianTruth interface and its client

Figure 3.17 Class Diagram of the Interfaces of Package Datalmport and their
Clients

Figure 3.18 Class Diagram of the IDiachronicGraph Interface and its Client
Figure 3.19 Class Diagram of the IMetricsReport Interface and its Client

Figure 3.20 Class Diagram of the IGraphMetrics Interface and its Clients

iv

30

31

32

33

33

34

35

36

37

37

38

39

40

41

44

45

46

48

49

50

Figure 3.21 Class Diagram of the IExportManager Interface and its client

Figure 3.22 Class Diagram of the Classes Responsible for Metrics Reports
Generation

Figure 3.23 Checkstyle Violations Before and After the Refactoring Process
Figure 3.24 Updated Package Diagram of ParmenidianTruth

Figure 3.25 Updated Class Diagram of the Gui Package

Figure 3.26 Updated Class Diagram of the Core Package

Figure 3.27 Updated Class Diagram of the DataImport Package

Figure 3.28 Updated Class Diagram of the Export Package

Figure 3.29 Updated Class Diagram of the Model Package

Figure 3.30 Abstractness-Instability Graph Before Refactoring Process
Figure 3.31 Abstractness-Instability Graph After Refactoring Process

Figure 3.32 Distribution of Classes wrt Number of Methods (range) in the
Core Package

Figure 3.33 Distribution of Classes wrt Number of Fields (range) in the Core
Package

Figure 3.34 Distribution of Classes wrt CBO (range) in the Core Package
Figure 3.35 Distribution of Classes wrt LCOM (range) in the Core Package

Figure 3.36 Distribution of Classes wrt Number of Methods (range) in the
Export Package

Figure 3.37 Distribution of Classes wrt Number of Fields (range) in the
Export Package

Figure 3.38 Distribution of Classes wrt CBO (range) in the Export Package
Figure 3.39 Distribution of Classes wrt LCOM (range) in the Export Package

Figure 3.40 Distribution of Classes wrt Number of Methods (range) in the
Model Package

Figure 3.41 Distribution of Classes wrt Number of Fields (range) in the
Model Package

Figure 3.42 Distribution of Classes wrt CBO (range) in the Model Package

A%

51

52

54

55

56

57

58

58

59

61

62

64

65

66

66

67

67

68

68

69

70

70

Figure 3.43 Distribution of Classes wrt LCOM (range) in the Model Package

Figure 3.44 Distribution of Classes wrt Number of Methods (range) in the
Datalmport Package

Figure 3.45 Distribution of Classes wrt Number of Fields (range) in the
Datalmport Package

Figure 3.46 Distribution of Classes wrt CBO (range) in the Datalmport
Package

Figure 3.47 Distribution of Classes wrt LCOM (range) in the Datalmport
Package

Figure 3.48 Summary of the Improvements of the Refactoring Process
Figure 4.1 Statistics for the datasets used in our study, [VKZZ17]
Figure 4.2 Growth Rate of Tables and Foreign Keys

Figure 4.3 Evolution of Foreign Keys in SlashCode and Zabbix

Figure 4.4 Distribution of Tables over Total Degrees

Figure 4.5 Distribution of Tables over In-Degrees

Figure 4.6 Distribution of Tables over Out-Degrees

Figure 4.7 Breakdown of tables wrt In- and Out-Degrees at the Diachronic
Graph

Figure 4.8 Breakdown of Tables over the Chain Link and Mini-Hub
Categories

Figure 4.9 Table Categories Based on the Topology of the Diachronic Graph

Figure 4.10 Distribution of Tables over the Single and Multi-labels
Categories

Figure 4.11 Occurrences of Label Changes per Type of Change
Figure 4.12 Rules for Tables” Categories Determination

Figure 4.13 Misclassification Rate of Assigning Labels via the Automatic
Process

Figure 4.14 Breakdown of Tables over Topological Categories

vi

71

72

72

73

73

74

79

79

80

82

84

85

86

88

89

90

91

92

93

94

Figure 4.15 Distribution of Tables over Categories including Isolated
Category

Figure 4.16 Distribution of Tables over Categories excluding Isolated
Category

Figure 4.17 Distribution of Tables per Normalized Duration Category
Figure 4.18 Distribution of Tables over the Normalized Duration Categories

Figure 4.19 Distribution of Tables per Topological and Duration Categories
with and without the ISOLATED Category

Figure 4.20 Probability for a Table of a Topological Category to Belong to a
Certain Duration Category

Figure 4.21 Distribution of “Survivors” per Topological Category

Figure 4.22 Distribution of “Survivors” per Topological Category (including
ISOLATED)

Figure 4.23 Probability of Survival per Topological Category
Figure 4.24 Probability of Survival for the ISOLATED Tables

Figure 4.25 Populations of Tables (left: without ISOLATED; right: with
ISOLATED) Born in the Originating Version

Figure 4.26 Distribution of Tables Born in the Originating Version per
Topological Category

Figure 4.27 Probability to be “born” in the First Version per Topological
Category

Figure 4.28 Distribution of Tables per Activity Class (top: without the
ISOLATED; bottom: with the ISOLATED)

Figure 4.29 Distribution of Tables per Topological and Activity Categories

Figure 4.30 Probability for a Table of a Topological Category to Develop
Specific Update Activity and vice versa

Figure 4.31 Distribution of Tables per Size Scale Category

Figure 4.32 Top: Distribution of Tables over Topological and Size Scale
Categories; Bottom: Probability for a Table to Have a Certain Size
Scale

Figure 5.1 Client/Server Communication Model
vii

94

95

96

97

100

101

102

103

104

105

106

107

108

111

113

114

117

118

126

Figure 5.2 Package Diagram of the Application’s Java Resources

Figure 5.3 Class Diagram of the Servlets Package (along with the Interfaces
of the Core Package)

Figure 5.4 Class Diagram of the Core Package
Figure 5.5 Class Diagram of the Model Package

Figure 5.6 Class Diagram of the Enums Package

viii

128

129

131

132

133

ABSTRACT

Konstantinos Dimolikas. MSc in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, January 2019.

Tool Support and Topological Study of Schema Evolution in terms of Foreign Keys

Advisor: Panos Vassiliadis, Associate Professor.

Studying the evolution of databases” structure, known as schema evolution, is of great
importance, since it can reveal patterns that will help administrators devote less time
for increasing databases’ information capacity with the least possible effects on the
surrounding applications and take all the necessary maintenance actions for
preserving and enhancing databases’ performance.

The main research question that we attempt to answer in this Thesis can be expressed
in this way: is there a relationship between tables” involvement with foreign keys and their
evolution? For answering this question, we adopt a model that considers each version
of a schema as a graph which includes schema’s tables and foreign key constraints as
nodes and edges, respectively. The union of the graphs forms the Diachronic Graph,
which comprises all the tables and all the foreign keys that ever exist in schema’s
history. We also define four categories, namely isolated, source, lookup and internal, for
the tables with respect to the combination of their in- and out- degrees in the
Diachronic Graph. We refer to these categories with the term topological since they
describe the arrangement of the tables in the Diachronic Graph with respect to their
inciting foreign keys. We then classify tables into the topological categories and we
study how tables’ topology is associated with several evolution-related properties,
such as tables’ duration, their update activity, their size change, etc. The schema
histories that we utilize in the context of our work derive from 5 relational databases
supporting open-source projects.

The most significant results of our research work, which are also verified by the
statistical evidence, are: (a) a relationship between tables’ topological categories and
their probability to be born in the originating version of their databases and (b) a
correlation between tables’ topology and their update activity. Specifically, we have

ix

identified that the more topologically complex a table is the more intense is its life in
terms of its update activity and the higher is the probability to be introduced in the
very first version of its schema history.

To facilitate the research part of the Thesis, we perform an extensive refactoring in
the architecture of the Parmenidian Truth tool that visualizes the schema evolution of
relational databases. After identifying and prioritizing design defects, we have
applied a series of modifications in the source code of the tool, aiming at increasing
tool’s extendibility potential. To verify that the changes we introduced have not
altered tool’s expected behavior, we have created unit tests for all the modules we
either modified or added. Finally, we have evaluated the enhancements of the
refactoring process by comparing the design quality of the tool before and after the
refactoring.

Complementing the refactoring of the tool, we have also constructed a web
application that visualizes the schema evolution of relational databases and
summarizes the main corresponding statistics.

EKTETAMENH IIEPIAHWH LTA EAAHNIKA

Kowvotavtivog AnpoAikac, MAE otnv ITAnoogoowkr, Tunua Mnxavikwv H/Y kat
ITAnoogoopwkr|g, Iavemiomuio Iwavvivwv, Iavovaglog 2019.

MeAétn g e£EALENG oxNuaTog Paoewv dedopévwy oe oxéon pe ta Eéva KAedL
e TN XoNon eEedKeLVUEVOL AOYIOUIKOV

ErBAénwv: [avayuwwng Baoideixdng, AvanAnowtrc Kabnynmc.

H peAétn g e£EALENG ™G dopnc TwV Pdoewv dedopévwy, 1) omola elvat yvwot)
pue tov 0o &&&ALEN oxnuatoc, elvar Wwitepa onuavtiky kabwg pmogel va
amokaAvPet potifa mov Ba PonOrjoovv Tovg dlaxEWOTEC TwV PAoEwv va
APLEQWVOLY ALyOTEQO XOOVO OTNV AVENOT TG XWENTIKOTNTAS TWV TIAQEXOUEVWV
TIATQOPOQLWV HE TIG ALYOTEQES TOAVES CUVETIELEG VI TIG EEXQTNHEVES EQAQUOYES
KAL Vot VAOTIOLOUV OAEG TIC anapaltnTes eQyaoteg ouvtronong yiax va dixtnoeitat
Kot va BeAtiovetal n amtodoor) g Baong.

To PBaowd, epevVNTIKIG PUOEWS, EQWTNUA TIOV ETUOLWKOVIE VA ATIVTI|OOVLE
otV magovoa gQyaoia pmogel va duaxtvnwOel wg e&Ng: Yrapxer kamowa oxéon
UETAED TNG OVOXETLONG TWV TUVAKWY e Ta Eéva kAedia piac Paonc dedopevwy Kat
e eéAEnc tovg, Twx va amaviTr)OOvHE OTO OUYKEKQIHEVO EQWTNHA,
XONOLUOTIOOVHE €V HOVTEAO TIOL avATAQLOTA K&Be €kdOOT) TOL OXNUATOS OV
£vav YOAPO TOL 0TTOloL OL KOUBOL Kol OL AKUEG AXVTLOTOLXOVV OTOUG THVAKES KAl To
Eéva kKAedx Tov oxNpatog, avtiotoxa. H évwon avtav twv yoagpwv avtiotoryel
otov Awaypoviko I'pago, o ortotog amoteAeitatr amd OAOLS TOUS THivakeg Kat OAx T
EEva KAEWIX TIOL ep@avioTNKAY 0g TOLAAXLOTOV Mia ékdooT TN¢ LoToQlag Tov
oxnuatoc. Emiong, optCovue 4 katnyoplec yiax TOvg TIVAKES, OLYKEKQLUEVA TIG
isolated, source, lookup kau internal pe BAOTN TOV OLVOLVACHO TWV €0W- KAl €Ew-
Pabuwv tovg otov Ataxypovikd I'odgo. Xapaktnollovpe TIG KATNYOQLEG AVTEG LLE
TOV 000 TOTOAOYIKEC, KABWS TEQLYQAPOLY TN 0£0T) TV MIVAKWY OTOV AlxXQOVIKO
I'odpo oe oxéon pe ta Eéva KAeWWA TOLG. LT OLVEXELR, TAELVOUOVUUE TOULG
TIVAKES OTIC TOTIOAOYIKEG KATNYOQleG Kal HEAETAUE TS 1) TOTOAOYIlX TV
TUWVAKWV OXETICETAL HE DAPOQA XAQAKTNOLOTIKA TNne e&€ALENG Tovg, OTWS 1)
dudoreta Cwr|g TOVG, N dpAOTNELOTTA TOVG, N aAAayr) Tov peyéOovug toug, k.o Ta
xi

OXNHATA TIOL XONOLUOTIOLOVHE 0T ATl TNG €QEVVAC S TTROEQXOVTAL ATtO 5
oxeoaKég Paoels dedopévwy ToL LTOOTNEILOVY CLOTIHATA AOYLOULKOV AVOLXTOV
KK,

Ta onuavtikotepa anmoteAéopuata g £éQevvac pag, ta oTola emiBePatwvovtat
KL amo Ta OTATIOTIKA otolXela, etval (a) 1 oxéon pHetall Twv TOTOAOYKWV
KQTNYOQUOV TWV TUVAKWV KAl NG MOAvVOTNTAG €UPAVIONG TOUG OTNV TOWTH
£K000T] TOL OXNHUATOC TNG Paong Tovg kal () N ocvoxEtion NG ToToAoylag Twv
TUVAKWV HE TN 0QACTNOLOTTA TOUG. LUYKEKQLUEVA, OATIOTWOAME OTL 00O TIO
oUVOeTOC TOMOAOYIKA elval évag Tivakag TO00 TLo €VTOoVT) dQAOTNOLOTITA €XEL
Kol T000 peyaAvteon elvat n mbavotnta eUQAVIOTS TOL OTNV TTEWTN €Kd00T TOV
OXNHATOG TOV.

I'a va OdtevkoAVvovpe TV €oevva pag, VLAOTTOMOape M EKTETAUEVT)
AVAOQPWOT TNG AQXLITEKTOVIKNG TOL Aoylopukov Iaguevideix AANOewx, To omoio
omttkoTtotel TNV e£EALEN TOL OXNUATOS OXeOlakwV Pacewv dedopévwv. ‘Exovtag
EVTOTIOEL KAL TIQOTEQALOTIOW]OEL TA OXEDATTIKA EAATTWUATA, EPAQUOCALE Lot
OelRA& ATO TEOTOTOWOELS OTOV TU)YAlO0 KWOKAX TOL €QYAAElOL HE OTOXO VA&
avfnoovpe TIC dLVATOTNTEG ETEKTAONG TWV AELTOVOYLDV TOL TIQOOPEQEL TO
Aoylopuo avto. TN va emiBePawwoovpe 0t ot aAAayég mov vVAomoujoaple dev
€XOUV EMNEEACEL TNV AVAHEVOUEVI] OUUTEQLPOQKX TOUL AOYLOULKOU,
dnuovEynoape €AEYXoUG HOVODIXIWY EVOTTWV Y kK&Oe evotnTa mov eite
toontomtomoape elte mpooOéoape. TéAog, afloAoyovue Tc PeATiwoelc TOL
eTEPEQE 1) DLAdIKATIX AVAHOQPWONG, OLYKQLVOVTAG TNV TodTNTA TNG oXedlaong
TOL €QYAAELOV TIOLV KAL HETA TNV AVAHOQPWOT).

LUUTANQWHATIKE TNG AVAMOQPWONG TOU AOYLOULKOV, Odnuiovgynoape pia
OLADIKTLAKY] EQPAQHUOYT] TIOL OTTIKOTIOLEL TNV €EEALEN TOV OXIUATOS OXEOIAKWV
Bdoewv dedopévwv Kat ovvopilet TG PaoukdteQes MANEOQPOLies Yo TNV e£EALEN
Twv Baoewv.

xii

CHAPTER 1.

INTRODUCTION

1.1 Scope

1.2 Roadmap

1.1 Scope

There is no doubt that the life cycle of a software product includes a series of
changes that aim to either correct potential faults or extend its existing
functionalities. Over the course of time, applications tend to increase the
services they offer to their users and as consequence they are becoming more
dependent upon their databases by retrieving more information from them.
This entails a sequence of modifications to the database that alter its internal
structure or its schema between successive versions. We use the term schema
evolution to refer to these changes, which encompass tables/foreign keys
insertions and removals as well as key and type updates.

The importance of studying schema evolution and understanding the
mechanisms behind the necessity for changing database’s structure can be
realized if we consider that minor changes such as a foreign key removal or
an attribute insertion can affect the surrounding applications leading to
applications’ failures or information loss. Identifying potential patterns in the
evolution of databases’ schemata can help administrators to maintain or
develop databases in a way that eliminates the effects on the dependent
applications and reduces the time and the effort they have to devote to apply
the required modifications in the structure of the databases.

The so far limited number of the existing studies on the topic of relational
databases” evolution can be attributed to the unavailability of a large number
13

of open-source databases’ schema histories that would allow us to establish
solid conclusions on how schemata evolve over time and what are the factors
that determine their evolution. It is worth mentioning that until 1993 there
was no any in-depth study concerning schema evolution revealing a research
gap in this topic. This gap was partially filled in the following years due to the
presence of few open-source software projects that led to various works,
which covered different aspects of the evolution, ranging from coarse-grained
approximations that identify the effects of schema changes and propose
methods for eliminating them to more fine-grained analyses that involve
studying tables and foreign keys’ evolution and determining which tables’
properties are liable to affect tables” update activity.

Our approach on the topic of schema evolution is twofold, consisted of the
research and the tool support parts. In the first part, we deal with the problem
of schema evolution from a new perspective that takes into account tables’
involvement with foreign keys, which means that we are mainly interested in
understanding how the patterns of edges surrounding nodes in the Diachronic
Graph, the graph whose nodes and edges represent databases’ tables and
foreign key constraints, respectively, is related to the evolution activity of
databases’” schemata. We should mention that in the context of this Thesis we
use the term topology to describe tables” involvement with foreign keys in the
Diachronic Graph. The second part of our work contains a principled
refactoring process on a existing tool for the study of schema evolution and
the utilization of this tool to construct a web application that can facilitate the
works of research community on the topic of schema evolution.

In a nutshell, the research question that we attempt to answer in this thesis
can be stated as follows: “Is there a relationship between tables’ topological
categories and their evolution?”

To answer this question, we utilize the schema histories of 5 databases
supporting open-source projects from different domains. First, we study the
distribution of the tables with respect to the combination of their in- and out-
degrees in the Diachronic Graph to define the different topological categories
to which we append the including tables. We identify four different categories
in terms of tables” topology, which can be synopsized as follows:

e Jsolated tables with no references from or to other tables.
e Lookup tables with only incoming references.

e Source tables with only outgoing references.

14

e [nternal tables with both incoming and outgoing references.

Having determined the topological categories, we encounter the first problem
arising from the so-called change of category phenomenon, which occurs when
tables change category throughout their history. As a result, the tables are
divided into those with a single topological label and those with multiple
labels. A multi-labeling scheme does not facilitate our attempt to relate tables’
topological labels to their evolution profile and for this reason we manually
track tables that change category and assign a single label to them. The
manual inspection of the label changes also helps us to determine a list of
tilters consisted of 6 rules that would automate the classification process of
the multi-label tables by removing or ignoring bewildering parts of tables’
lives that confuse the true nature of the tables. Although the misclassification
rate between the two alternative processes is not high, we adopt the labels
derived from the manual process, since it allows us to take into account the
special features of the tables examined.

Assigning a single label to each table enables us to study whether tables’
topological categories are related to various measures of their evolutionary
activity, such as their lives’ duration, their survival potential, their update
activity etc. To assert whether the topology of the tables affects their
evolution-related properties, we accompany the results derived from our
study with statistical evidence by utilizing the Chi-square and Fisher tests.

The first question that we address is stated as follows: “Is there a relationship
between tables’ topological categories and their duration?” We classify tables in
three categories with respect to their normalized duration, which is defined for
a table as the ratio of the number of versions that the table exists in the dataset
over the total number of versions of its dataset. Although we identify several
duration-related patterns, the statistical tests we conducted to evaluate the
differentiation of tables” duration due to their topological categories does not
allow us to strongly support that there is a correlation between tables’
topology and their lives” duration. The commonalities that we observe in the
datasets examined are outlined in the following list:

e Internal and lookup tables tend to lives of long duration.
e [solated tables avoid existing for a long period of time.

The second relationship that we are interested in is that between tables’
topology and their survival potential. We describe a table as a “survivor” if it
exists in the last known version of its dataset. The relevant research question
that we attempt to answer can be stated as follows: “Is there a relationship

15

between tables’ topological categories and their survival potential?” The high
survival rates, which surpass the 65% of the number of tables in all datasets,
along with the results produced by the statistical tests indicate that is quite
unlikely that tables’ topology affect their survival potential. Nevertheless, we
identify two interesting patterns summarized as follows:

o There exists a monotone decrease pattern in the percentages of the
including “survivor” tables, starting from the source tables followed by
lookup and ending with the internal tables.

e Source and lookup tables” survival rates follow the aggregate ones, while
the survival potential of the internal tables is higher than the
corresponding aggregate in all datasets.

Next, we examine whether the topology of the tables is somehow related to
the originating version of their dataset’s schema history. We can express the
respective research question in the following way: “How is the topological
category of a table related to the probability of being born in the originating version of
its dataset’s schema history?” The main findings of our study on this
relationship are synopsized as listed below:

e Internal and lookup tables are more likely to be “born” in the originating
version of their dataset’s history, which means that it is not probable
that these tables are introduced in the succeeding versions.

e Jsolated and source tables tend to be born in versions that follow the
originating one.

e The aforementioned results are in accordance with the gravitation to
rigidity pattern, which suggests that dependency-magnet tables, like
internal and lookup, are not prone to experience any kind of
modifications in the later versions of database’s schema. Thus, we
presume that the early introduction of these tables is preferable in
order to avoid changes caused by adding them in subsequent versions.

The update profile of the tables and its relationship with the topological
categories is another issue that we study. The question that concerns us can be
formulated in this way: “Is there a relationship between the topological category of
a table and its update activity?” We classify tables with respect to their update
activity in three categories, using the label rigid for those with no changes in
their lives, the label gquiet for tables with few changes that do not exceed the
value of 5 and the label active for tables with more than 5 updates and with
Average Transitional Update (ATU) greater than 0.1. The ATU represents the

16

fraction of the number of changes a table experiences in its life over its
duration. The main findings on the relationship between topological
categories and tables” update profile can be listed as follows:

e Isolated and source tables are associated with no or few updates.
e Lookup tables experience either few or many changes.
e [Internal tables are prone to undergo many updates.

We also examine the probability for a table with certain update activity to
belong to a specific topological category. We outline the most interesting
results in the subsequent list:

e Rigid tables are quite likely to be source in datasets where there is no
strong presence of isolated tables, while in datasets with numerous
isolated tables the rigid ones tend to be isolated.

e Quiet tables are likely to belong to the source category.
e Active tables tend to categories of high topological complexity.

Given the aforementioned findings as well as the results from the statistical
tests, we can claim that tables with different topological categories are subjects to
different amounts of updates.

The last relationship we study is that between the tables” topological
categories and their size change, meaning the change of their size between
their first and last known versions. The research question we attempt to
answer is expressed in this way: “How is the topological category of a table related
to its size change?” We categorize tables with respect to the scale of their size
change in three categories, with the label scale down denoting a reduction in a
table’s size, the label steady representing tables with unchanged sizes and the
label scale up indicating an expansion in tables’ sizes. Although the statistical
evidence is not adequate enough to support a correlation between topological
categories and tables’ size change, we identify the following behaviors:

e The majority of the isolated and source tables remain steady.
e Lookup and internal tables tend to increase their size.

The second topic of our thesis concerns the refactoring process applied in
Parmenidian Truth project, a tool that visualizes the evolution of relational
databases’ schemata. The main reason for improving the design of this tool is
that we utilize its functionalities for creating the web application presented in

17

Chapter 5, so a series of refactoring actions would facilitate the introduction
of new functionalities required by our application. Using the Unified Modeling
Language (UML) along with the Classes Collaborations Responsibilities (CRC)
method, we are able to identify violations or the absence of design principles
that would complicate our effort to add new functionalities or make use of the
existing ones provided by the Parmenidian Truth tool. The defects we inspect
are summarized as follows: (i) Package level issues (ii) God classes (iii) Lack
of APIs (iv) Duplicated code (v) Misplaced methods (vi) Redundant
components (vii) Convention violations

To deal with each of the above mentioned defects we apply a series of
modifications in the source code of the tool taking into consideration and
complying with the proposed, in each case, design principles and patterns.
Next, we create a unit test for each class we added or modified to confirm that
our alterations have not affected the expected behavior of the tool. Finally, we
conduct a thorough evaluation of the quality of the resulting source code after
the refactoring actions we applied in order to assess and quantify the
enhancements achieved in design level.

In a nutshell, the main improvements achieved via the refactoring process can
be outlined as follows:

e We have increased tool’s expandability and immunity to changes by
introducing a set of APIs

e We have eliminated duplicated code by applying the recommended
template method design pattern

e We have increased cohesion of methods by moving misplaced methods
to new classes

e We have removed redundant components that increase code
complexity

e We have verified the correctness of the proposed modifications by
creating unit tests for classes that we either added or modified

The third part of this thesis describes the structure of a web application we
create to visualize the schema evolution of relational databases. Our prime
motive for creating this application was to provide the entire research
community with a tool that can facilitate their work on the topic of schema
evolution. We utilize the refactored version of the Parmenidian Truth tool and
its functionalities to upload all the necessary information on the server and

18

exploit it each time a client’s request is submitted. The main functionalities
provided by our application are summarized as follows:

e An overview on the distribution of the tables with respect to several
properties, like their update activity, birth version, etc.

e Visualization of tables and foreign keys’ evolution as well as the
depiction of the four evolution-related patterns presented in [VaZS15].

e Visualization of the Diachronic Graph and the intermediate versions.
We also provide users with the capability of selecting nodes’
classification criterion and setting nodes’ radius based on different
tables’ properties.

To sum up, the main contributions of this thesis are synopsized in the next
list:

e A thorough study on the relationship between tables” topology and
their evolution.

e An extensive restructuring of the Parmenidian Truth tool’s architecture
and an in-depth evaluation of the refactoring process.

e A web application that facilitates the visualization of databases’
schemata evolution.

1.2 Roadmap

The contents of this thesis can be summarized as follows. In Chapter 2, we
highlight the most significant contributions on the topic of schema evolution
and explain how our work differentiates from the state of the art. In Chapter
3, we present and assess the modifications we applied to Parmenidian Truth
tool to improve its architecture, aiming at utilizing it to create a web
application that visualizes schema evolution. Chapter 4 contains our study on
how tables’ topological labels are related to tables’ evolution. In Chapter 5, we
present our web application that facilitates the study on the evolution of
databases” schema histories via visualizing various known patterns and
providing the corresponding quantitative information. In Chapter 6, we
outline the most important conclusions of our work and highlight open issues

for future research.

19

CHAPTER 2.

RELATED WORK

2.1 Case Studies of Schema Evolution

2.2 Comparison to the State of the Art

In this Chapter, we present the state of the art in the related literature on the
topic of this thesis so as to highlight the growing interest for schema evolution
and what has been achieved over the years. In the second section, there
appears a brief comparison of our work to the case studies of the first section,
demonstrating how our work diverges from the previous ones and
contributes to broadening our knowledge over the subject of schema
evolution.

2.1 Case Studies of Schema Evolution

One of the earliest works in the area of schema evolution was implemented in
1993 by [Sjeb93], who studied the evolution of a database for a period of 18
months and demonstrated the need for the development of a change
management tool. The main findings of his work can be outlined as follows:

e Every relation of the database has been modified during the period of
the study.

e More additions than deletions appeared in the early phases of the
databases’ lives, in contrast to the operational period in which the
additions and deletions were in balance.

20

e There was a 139% increase in the number of relations and a 274%
growth in the number of fields, concerning the period of examination.

In 2002, Amela Karahasanovic [Kara02] presented a tool for tracing the effects
of schema changes in applications developed in object — oriented systems.
This tool, namely Schema Evolution Management Tool (SEMT), receives as
input the source files of a schema, identifies the modules of the schema and
their relationships, creates a graph — based representation with the nodes
corresponding to schema’s modules and the edges to the relationships
between the modules and predicts the impacts of changes applied on the
schema. The evaluation of the tool was carried out by conducting an
experiment in which two groups of students were asked to apply changes in
the schema of a library application and subsequently identify the effects of the
changes by using SEMT. Each group used a different version of the SEMT
tool, with the first group utilizing a version that recognizes the impacts of a
change at a fine — grained level and the second one exploiting a version that
determines the affected modules at a coarse — grained level. The results of the
experiment, which consisted of the time required to complete the impact
analysis, the correctness of the answers and the user satisfaction, are the
following;:

e The time required to complete the experiment was 6 minutes shorter
for the group utilizing the low — level version of the SEMT tool.

e Students using the fine — grained version of the tool committed fewer
errors in their effort to discover the parts of the schema that were
affected by a change.

e The score regarding users’ satisfaction and viewpoint about SEMT’s
efficiency was high within the two groups.

In 2008, Carlo Curino, Hyun Moon and Carlo Zaniolo [CuMZ08] introduced a
set of Schema Modification Operators (SMOs) to facilitate the evaluation of
the effects of the schema changes and minimize the maintenance costs
involved in terms of time and effort required to identify the parts affected.
Each of the SMOs corresponds to a function whose parameters are a relational
schema and the underlying database and its output is a modified version of
the initial schema and a migrated version of the database. In this context, they
developed the Panta Rhei Information & Schema Manager (PRISM) system,
which automates the completion of tasks associated with schema evolution
such as query translation, data migration and documentation of the changes.
As for the assessment of the PRISM system, they exploited the schema
evolution history of Wikipedia to quantify the efficiency of the PRISM in
21

terms of the proportion of the evolution steps automated by the system and
the percentage of the queries that were compatible with the new schema
version. The results obtained from this experimental evaluation are
summarized in the following list:

e In 97.2% of the evolution steps the PRISM system was capable of
adjusting queries to the new schema version in an automatic way.

e 74% of the queries were operational after the required modifications
applied by the PRISM system, in contrast to the 16% of the compatible
queries in case of no changes would have been introduced.

e In 12% of the queries altered there appeared a gain of 35% in terms of
the execution time in favor of the manually modified queries and that
was attributed to the fact that the PRISM system was incapable of
identifying integrity constraints.

In 2008, Carlo Curino, Hyun Moon, Letizia Tanca and Carlo Zaniolo
[CMTZ08] made a thorough analysis of the evolution history of the Wikipedia
and its schema, covering a period of approximately 4.5 years. Acknowledging
the profound impact schema changes have on the applications accessing a
database, they initially performed a macro — and micro — classification of the
schema changes and then they evaluated the effect of the changes on
applications by quantifying the success rate of the queries execution among
different schema versions. The following list puts in a nutshell the key
findings of their study.

e The majority of the evolution steps (nearly 55%) included actual
schema changes and more than 40% of the steps concerned key/index
adaptations.

e The micro — classification of the schema changes revealed an
equilibrium between additions and deletions of tables and attributes,
which signifies the intention to preserve database’s contents.

e Only 22% of the queries of previous versions are functional in
subsequent versions.

Shengfeng Wu and Iulian Neamtiu [WuNell] focused their research on
schema evolution of embedded databases and proposed a system for the
automatic retrieval of the source code, the extraction of the embedded
databases and the computation of the schema evolution. They employed 4
well — known applications containing embedded databases and studied its

22

evolution within an 18 — year period. The main findings of this study are
condensed as follows:

e The high frequency of tables and attributes deletions indicate that
embedded databases are more prone to restructuring growth rather
than a continuous one.

e The early periods in schemas’ lives are related to higher number of
changes as opposed to the latter versions which include few
modifications.

e The overall change rate for the embedded databases tends to be lower
than that of the enterprise — class databases.

In 2012, G. Papastefanatos, P. Vassiliadis, A. Simitsis and Y. Vassiliou
[PVSV12] presented their work about the impact of evolution events on the
Extract — Transform — Load (ETL) workflows and proposed a set of graph —
theoretic metrics for the assessment of the quality of ETL designs. First, they
develop a graph — based model to represent the modules of an environment
and following that they analyze its structure to determine the extent to which
evolution events can affect environment’s components. The evolution graph
representing the parts of an ETL system and its relationships was analyzed in
two levels, specifically a fine — grained level where node properties are
examined as potential predictors of node’s vulnerability to evolution actions
and a coarse — grained level concerning only relations, views and queries. The
proposed metric suite used for the structure analysis of the evolution graph
includes degree — based metrics, such as simple or transitive degrees of nodes
or modules, indicating the level of dependencies among nodes and modules
and entropy - related metrics which signifies the possibility for a node to be
affected by a random evolution event. The evaluation of the proposed metrics
was implemented by exploiting a software tool, namely Hecataeus, which in
this study analyses 7 real — world ETL scenarios for 6 months. The most
important observations derived from this experimental evaluation are
synopsized as follows:

e The schema size of a system is a crucial factor behind system’s
vulnerability to evolution events, that is to say that tables with many
attributes are more likely to be affected and affect the corresponding
work flows.

e Out - degree of nodes and modules are the most adequate predictors
for the evolution of all module types.

23

e In cases where the previous metrics fail, the out — transitive degree and
the entropy — related metrics may operate as better predictors for the
impact of evolution on ETL workflows.

In [QiLS13], authors studied the co — evolution of database schemata and the
code of the related applications in 10 open — source projects. The main
research questions addressed concerned the frequency and amount of schema
evolution, the distribution of the schema change types within databases’ lives
and the evaluation of the impact of schema changes on the corresponding
application code. They classified atomic schema changes into 24 categories,
each of which belongs to one out of 6 high — level schema change types, so as
to discriminate the dominant types of modifications and assess the effect of
each type to the surrounding applications. The following list includes the
main results of this study.

e The frequency of schema modifications is high, with the average
number of atomic changes to approximate the value of 90 in a year.

e The growth rate of tables in 60% of the databases exceeds 100% as it is
the case for the change rate in 90% of the projects examined.

e In all but 3 projects their schema size approaches the 60% of their
maximum value within the first 20% of their lifetimes.

e Regarding the distribution of schema change types in databases’ lives,
it appears that transformations, structure refactorings and data quality
refactorings are the most common categories of changes accounting for
80% of schema changes in all projects and 95% in 7 of them.

e Additions of tables/columns and datatype changes are the most
frequent changes at the low — level of change categories.

e Each atomic change affects approximately from 10 to 100 Lines of Code
on average. At a coarse — grained level, transformations and structure
refactorings are responsible for the most of the alterations required in
the source code of the surrounding applications.

In 2015, A. Cleve et al. [CGMM+15] published their findings on the adequacy
of using the database evolution history as an effective tool in reverse
engineering procedures. Specifically, they studied the evolution history of a
medical record application seeking for valuable information that would assist
system’s extendibility capacities in order to comply with new requirements.
To achieve their main goal, they developed a set of tools for retrieving,
analyzing and visualizing the schema versions of the database accessed by the

24

aforementioned application. The main results of their work are highlighted in

the following list.

The number of tables appears to be increasing from the beginning till
the end of the period examined, unveiling an obvious reluctance to
remove tables.

The trend in the evolution of attributes approximates that of tables.

The addition of large tables spans the whole life of the system under
examination.

The update activity in the database schema is far from being intense
with the majority of tables experiencing less than 4 changes in their
lives.

P. Vassiliadis, A. V. Zarras and I. Skoulis [VaZS517] performed an in — depth
analysis on the schema evolution of 8 databases aiming at perceiving how

individual tables evolve and studying the impact of various tables properties
on tables’ lives. Specifically, they investigate whether or not properties such
as schema size, birth/removal versions are associated with evolution — related

features, for instance table’s update activity, duration, survival profile. The

key findings of their study are outlined in the subsequent list.

Wide tables, these are tables born with more than 10 attributes, are
more likely to survive, in other words to exist in the last schema
version. With the exception of 2 datasets, the percentage of those tables
exceeds 85% in all cases.

In 50% of the datasets the portion of wide tables that were born early,
that is to say in the lowest 33% of versions, and finally survive,
surpasses 70%.

Approximately 70% of tables of a database resides within the 10x10
box, meaning that the number of attributes at the birth version does
not exceed the value of 10 and the number of updates a table
undergoes throughout its life is less than 10.

As for the relationship of tables” duration with their update profile,
they introduce the “inverse I'” pattern which indicates that short —
lived tables are related with a small amount of changes, tables of
medium duration undergo a small or medium number of changes and
long — lived tables are subjects to all kinds of updates.

25

e More than 75% of active tables, those are tables having an Average
Transitional amount of Update (ATU) greater than 0.1 and
experiencing more than 5 changes in their lifetime, are born early.

e Apart from 2 datasets, the fraction of active tables that survive is
greater than 70%.

e The probability for an active, long — lived table to survive is 100%, as it
is the probability for active, long — lived survivors to have been born
early.

e In 6 out of 8 datasets, the percentage of removed tables that experience
few updates exceeds the value of 85%.

e With 1 exception, the fraction of removed tables that were born early is
greater than 70%.

e Removed tables that are short — lived accounts for more than 75% of
the total number of “dead” tables in all but three datasets.

In 2017, P. Vassiliadis et al. [VKZZ17] studied how foreign keys evolve in the
context of schema evolution of relational databases. Recognizing the impact of
the schema evolution on the smooth operation of the surrounding
applications and the importance of predicting forthcoming schema changes
for the maintenance process, they opted for six open — source databases
derived from different domains and included foreign key constraints. First,
they represented each version of the schema of a database as a graph with
relations as nodes and foreign keys as graph’s edges and then detected a set
of changes between subsequent versions by utilizing the Parmenidian Truth
tool that models, visualizes and quantifies schema evolution of a database.
The main findings of this work are summarized as follows:

e The growth of the schemata is continuous including alternating phases
of concentrated modifications and of few or zero changes.

e In most datasets, there seems that foreign key constraints are rare and
in some cases their existence appears to be unwelcome.

e The evolution of foreign keys does not always follow that of tables.

e The heartbeat of foreign key changes is mostly rare and small in
volume.

26

2.2 Comparison to the State of the Art

In the previous section we attempted to give a synopsis of the different
approaches to the matter of schema evolution and the most significant
contributions of each work towards understanding the mechanisms that
determine how schemata evolve in terms of their main components including
tables and foreign key constraints and whether a set of tables” properties such
as their size, duration, update activity, etc. is likely to affect their evolution.
To the best of our knowledge, this is the first study that examines the role of
tables’ topology in the evolution process, which expressed in a different way
means that we are going to focus our research on how and to what extent the
“neighborhood” of a table affects its life in terms of its survival likelihood, its
update profile or the duration of its life. Prior to studying the relationship
between tables’ evolution and their topological labels, we propose a set of
rules for classifying tables into topological categories taking into account the
changes of the corresponding labels throughout tables’ life cycles.

27

CHAPTER 3.

REFACTORING PROCESS

3.1

3.2

3.3

34

3.5

3.6

3.7

Aim of Refactoring

Initial Architecture and Design

Refactoring Actions

Testing

Final Architecture and Design

Evaluation

Summary of Refactoring Results

In this chapter, we present the set of modifications we applied to Parmenidian
Truth tool in order to improve its design and facilitate any attempt to extend
its functionalities. Firstly, we explain why refactoring is required in the
context of the current thesis and we show the initial design along with the
corresponding defects. Next, we describe a series of refactoring actions
applied aiming at eliminating design violations, mention the tests conducted

28

to ensure that our changes did not affect the expecting behavior of the tool
and present the design ensued after our alterations. Finally, we assess the
benefits of the refactoring process.

The Parmenidian Truth tool visualizes the evolution of relational databases’
schemata. It takes as input a set of data definition files that contain the history
of a database and produces as output the Diachronic Graph, a graph whose
nodes correspond to the tables that have existed in database’s history for at
least one version and edges model the foreign key constraints that have
identified between the tables for at least one version. Apart from the
Diachronic Graph, the Parmenidian Truth tool produces a PowerPoint
presentation, where each slide illustrates a graph modeling of each version
with the including tables depicted as nodes and the foreign keys as edges. The
graph representation of a database’s schema history was introduced in
[VKZZ17] facilitating the correlation of graph-related metrics with evolution-
related features. In this context, this tool also computes a set of graph-based
measures for each version as well as for the entire history of the database.

3.1 Aim of Refactoring

One of the main objectives of this master thesis is to utilize the functionalities
provided by the Parmenidian Truth tool. The fulfillment of new requirements
and their adaptation to the existing code entail the understanding of tool’s
design and the evaluation of its quality. In a first step, we have to obtain an
insight of Parmenidian Truth’s structure disclosing either potential violations
or lack of design principles, which might exacerbate the extension process
and complicate forthcoming maintenance efforts. In a next step, we attempt to
apply a series of modifications to source code in order to improve the design
of the software in a way that will favor the extensibility and maintainability of
the tool. This process is known with the term refactoring, which is explained
in more detail in the following paragraph.

Terminology. Refactoring is used to describe a change made to the internal
structure of software to make it easier to understand and cheaper to modify
without changing its observable behavior [FBB+99].

The rationale behind the necessity of this process derives from the fact that we
inherited the source code of the tool, so understanding its design and
determining the margins for improvements is considered to be of great
importance for the subsequent process of adding new features to the tool and
exploiting them in the application presented in Chapter 5.

29

3.2 Initial Architecture and Design

In this subsection, we discuss the architecture of Parmenidian Truth before
our refactoring took place. At first, we utilize diagram generators that offer
graphical representations of the subject system at high — level, presenting the
dependencies of its packages and also at package — level, revealing the
relationships between the entities included.

3.2.1 Package Diagram

Figure 3.2 depicts the initial package diagram of Parmenidian Truth system
before the refactoring. Each package represents a subsystem that offers a
unique functionality required by the system in order to fulfill the
requirements that this tool satisfies. As mentioned before, Parmenidian
Truth’s main functionality is the visualization of a database’s schema as a
PowerPoint presentation, so its subsystems are expected to cooperate in a way
that this functionality is provided.

Figure 3.1 summarizes the functionalities provided by each subsystem.

Subsystem Functionality

gui Contains graphical interface — related classes

core Operating as manager of the use cases system
performs

export Includes the classes that offer export — related
operations

model.Loader Organizing data using externalTools
subsystem

model Contains domain classes of the system

externalTools Consists of Hecate tool’s classes that parse
SQL files

parmenidianEnumerations Comprises useful enumerations

Figure 3.1 Functionalities of Subsystems

It is important to clarify that the externalTools package consists of classes of the
Hecate tool, which is a different system and for this reason it was not
modified during the refactoring process.

30

1

<<Java Packages=

Hui

1

<<Java Package=>

i core

1

<<Java Package>=
H export

1

==Java Package=>
i model.Loader

1o
=<=Java Package=>

1 model

<<lava Package== L

4 externalTools R
==Java Package=>

4 parmenidianEnumerations

Figure 3.2 Initial Package Diagram of Parmenidian Truth

3.2.2 Class Diagrams

As mentioned before, each subsystem is supposed to offer a functionality that
derives from the cooperation of its components. This means that the classes of
each package are supposed to be strongly correlated to one another, aiming at
serving a single purpose. The class diagrams of this subsection show the
associations between the elements of each package giving a sense of the
degree of cohesion within it.

Figure 3.3 corresponds to the class diagram of the gui package.

31

<<Java Class>>
® WorkspaceChooser

 serialVersionl I long = 1
° textField JTexiField
FWorkspaceCh

<<lava Class>>
® MetricsChooser

g

o numberQfConnectedComponents: JCheckBox
= numberQfEdges: JCheckBox

o graphDiameter: JCheckBox

= numberOfVertices: JCheckBox

o edgeBetweenness: JCheckBox

&WorkspaceChooser()

@ init() void

< getRefined Text(String):String
@ saveWorkspace(String)-void

@ savePreferences(boolean)void

<<lava Class=>
(9 EdgeChooser

qui

o buttons: ButtonGroup = new ButtonGroup()

o linearButton: JRadioButton = new JRadioButton("Linear”)

o grthogonalButton: JRadioButton = new JRadioButton("Orthogonal”)
& loiNewLabel_1: JLabel = new JLabel(")

o edgeType: int

_edgeCh,

= vertexBy JCheckBox

o outDegree: JCheckBox

o inDegree: JCheckBox

o vertexDegree: JCheckBox

o clusteringCoefficient: JCheckBox

= numberOfVerticesinGoc: JCheckBox
= numberOftdgesinGec: JCheckBox

<<lava Class=
© ProjectEditor

4 fileChooser. JFileChooser = new JFileChooser()

& ProjectEditor(Gui String, boolean String String,String, String String, String)
El

& MetricsChoaser(Gui)

v

<<Java Class>>
©Gui

qui

NES ‘serialVersionU I long =11

= FileNames: ArrayList<String> = new ArrayList<Siring={)

© workspace: String
toolBar JToolBar = new JToolBar()

*{ = muNode: JToggleBution = new JTaggleButton(™)
= myGraph: JToggleButton = new JToggleButton(™)

= button: JButton = new JButton(™}
= btnNewButton_3: JButton = new JBution(™)
< butt Butt = new Butt)

© buttons: ButtonGroup = new ButtonGroup()
o targetFolder: String

<nrafs Prafarences

o projectName: String

= fileChooser: JFileChooser

= projectini: String

e radio’: JRadioBution

e radio2: JRadioButton

o toolBar_1: JToolBar

= pop: JPopupMenu

= manager: ParmenidianTruthManager
= visualizationViewer. Component

<<Java Classs»
® OutputChooser

o ppbiWanted: boolean = true

&EdgeChooser(Component)
@ getEdgeType():int

&Guil)

o createVideo()void

© createVideo(File)void

@ create Transitions{}:void

< loadimagesForPptx():void

© loadimagesForPptx(String)void

@ changeWorkspace()-void

© s(Object)void

© createPowerPointPresentation():File
© loadLifetime(String):void

® batchOutput{):void

= openMetricsPanel() void

= visualize(boolean) void

= createNewProject()void

= editProject():void

= clear()void

& main(Sring [l oid

@ refreshWorkspace({):void

© getRefined Text(String):String

© getDnDFilename(String).File

© getManager():ParmenidianT ruthManager
@ calculateMetrics{ArrayList<Metric_Enums=)-void

@ boolean = false

& QutputChooser(Component boolean()
@ isPptx():boolean
@ isVideo():boolean

Figure 3.3 Class Diagram of the Gui Package

Figure 3.4 depicts the class diagram of the core package.

32

<<lava Class=>
(@ ParmenidianTruthManager

& Parmenidian TruthManager()
@ clear():void

@ getTargetFolder():String

@ stopConvergence():void

@ sefTransformingMode(}.void
@ sefPickingMode()void

@ saveVertexCoordinates(String)-void

© visualize(tr

@ createTransitions(File):void

@ loadProject(String,String, String double, double, double, double, double,double, String,int):Component

ing,String>,String, String,int) void

@ createPowerPointPr
@ createVideo(File).void
@ refresh(double,int):.Component

@ calculateMetrics{String, ArrayList<Metric_Enums>)-void

tring>,String, String)void

-exportianager 1

-modellanager U 1

<<Java Class»>
(© ExportManager

oore

<<Java Class»>
@ ModelManager

oore

& ExportManager()
@ create Transitions{File):void
@ createPowerPointPr i

@ createVideo(File)-void

9>, String, String):void

e diachronicGraph: DiachronicGraph = null

&’ ModelManager()

@ clear()void

@ getTargetFolder():String

@ stopConvergence()void

@ saveVertexCoordinates(String)void

© setTransformingModei).void

@ setPickinglMode()void

© visualize(VisualizationViewer<String,String=,String,String,int)-void

@ generateVertexDegreeReport{String) void

© generateVeriexinDegreeRepori(String).void

® OutDegreeR oid

© generateVeriexBetweennessReport(String)void
@ generateEdgeBetweennessRepont(String)void

@ generateGraphDiameterReport(String)void

@ generateVertexCountReport(String):void

@ generateEdgeCountReport(String)-void

© refresh(double,int).Compenent

@ generateConnectedComponentsCountReport(String):void
© generateClusteringCoefficientReport(String)void
@ generateVertexCountReportForGCC(String):void
@ generateEdgeCountReportForGCC(String):void

@ loadProject(String,String, String, double double, double, double, double, double, String,intk: Component

Figure 3.4 Class Diagram of the Core Package

Figure 3.5 shows the classes included in the export package.

<<Java Class»>>
(& PowerPointGenerator
sxport

==Java Class»=>
(9 VideoGenerator
export

=<Java Class»=
(9 HecateScript
export

o targetWorkspace: String
o presentation: String

o width: int

o height: int

o selectedPresentation: File

a filename OfPresentation: String
& FRAME_RATE: double

= gutputFilename: String

& PowerPointGenerator(String,String)

@ createPresentation(ArrayList<String=) void

& initializePresentation(XMLSlideShow ArrayList<5tring=) XMLSlide Show
= appendslideShow(String XMLSlide Show). XMLSlideShow

m setSlide Title(String):String

= sourceFolder: String
&VideoGenerator(File)

@ exportToVideo(}void

= extractPngFromPphbx(}void
= createVideo()void

<<Java Class>>
(2 ImageFileFilter
export

& ImageFileFilter()
@ accept(File):boolean

& deleteGeneratedPng():void

& setOutputFilename()void

& setSourceFolder()void

& convertToType(Bufferedimage,int) Bufferedimage

o selectedDirectory. File
o sglFiles: File]]
o worker: HecateManager

& HecateScript(File)
@ create Transitions() void

<<Java Class>>
(D FilenameSorter
expaort

=<Java Class=>
(3 FilenameSorter2

export

£FilenameSorter()
@ compare(File Fileyint
@ getFname(File}int

& FilenameSorter2()
@ compare(File,Fileyint

Figure 3.5 Class Diagram of the Export Package

33

<<Java Class>>
(9 SQLFileFilter
export

& SQLFileFilter()
® accept{File):boolean

Figure 3.6 presents the classes the model.Loader package consists of.

<=Java Class=»
(2 Parser

loader

o lifetime: ArrayList-DBVersion:-
o fransitions: ArrayList<Map=Siring, Integer==
o graphmlt boolean

GBF'arser{String Siring, String)

@ getLifetime()-ArrayList-DBVersion-

@ gefTransitions()-ArrayList<Map<5Siring, integers>
@ hasGraphmi{):boolean

@ getGraphmiloader().GraphmiLoader

-graphmiLoader 0.1

<=Java Class=> << Java Class»>>
© Graphmiloader (¥ HecateManager
leader Inader
) Ei ey A AR o lifetime: ArrayList=-DBVersion:-
e e e o fransitions: ArrayList=Map<Siring, integer>>
GCGraphn'lL-:lader(String} GCHB-::atBr'-.’Ianager{}
TR B LA BT 2 @ parseSgl Siring)-ArrayList<DBVersion=
i'?g BB 2 U S R AR L DI @ parseXmi{ Siring)-ArrayList=Map<5Siring Integer==
- w @ createTransitions(Fiel],Fie):void
= marshal Transitions,File)-void
@ parseLifetime{Fie):void
B parseTransitions(File):void

<=Java Class=>

(® SQLFileFilter

loader

@ SOLFileFiter()
@ accepi{Fie) boolean

Figure 3.6 Class Diagram of the Model.Loader Package

Class diagram of the model package is shown in Figure 3.7.

34

e S
@ DEVersionVisualRepresentation

e G
@ DiachronicGraphVisualRepresentation

= inputF oider: Sring
* lapout. SpringLayoul2<Siring String=

@ W Vesualizabon\iewer<Sinng, Sking>
= universalf rame: Dimension

= tamgetFalder Siring

= edgeType: Transtomer

¥

= show()VisusizationViewer
@ sefTransiorminghode() vesd

= sefFickingMode() void

& saveVertexCoordinales (Sting) vord

@ e Visuslzation\iewer=Siring Siring>
= gelTametFolder() String
 siop(aid

= UpdalEInIe(String) void

@ getFrameX(} double

= geiFrameY() double:

* getScaleX() doutle

© getScaie(double

= getunversalF rame) Dimension

@ getUniversalCenier) Paini2D)

= getiWidihOfisual 2aborViewes) int
& gebisighlON isusizatonViewer) inl
= reresh(double t} Companent

@ getunversaiBoundsi) Rectangie

AereyList< T abies ArrayList

muaizstona Dischranicorapn

P

= Inyout Layout=Sting Sring>
© targetF oler. Siring

© edgeType: Transiormer

© episodeName: Sting

= Wi int
= height int
= Visualizalioniewer<Sting, String>
< able= ArayL igriey> Sting)
@ setDetails{Sking,int inln) void
 Table

wrte IPEGImageiVesual zationViewer<Sting String=File) void

<ieve Canans
@ Diachromicray

= transitions: ArayListeMap=Stnng Inieger=>

© generateClusieringCoeMcientRepart(Sting) void

© generateEdgeCauntResarlStingl o
 gensratsEageCountReponF orGociSying void
© generatekiertexCounReport(Sting) void

= generateVeriexCountReportF orGoolSinng) void
& generstevedexCulDegreeReport Siung) void

= generassvenexnDagresRepon(Sng - oid
 generste GraphDiameserReporiSting) wid

@ generateEdgeBetweennessReport{Siring) vosd
o generate\ertexBetuenness Report Sig) void
 generatsveneDegreEREOOISIINg) void

= updatel debmeN T ransiions(void

= sefFirsiVersion(DBVersion) void

= setFinalVersion(DBV erson int) vaid

= sellntermedialeV esionDBVerson il oid

= fuGraphi)void

= cresteDischronicGraph()woid

= ranstormEdges() woid

= trsnsformNadesi) vord

= getiodes() AmanL st T avie

© geiEdges() AmayListeForignker

[—

®oBuersion

= versionName: Sting

i< able= ArrayL

@ setDetails(Sting.inLintint) void
© getTables(yAmayList<Tables

@ getiersion) Sting
© clearllvoid

[x

=
@ Tavte

“ ableMame Sirng
= coords: PomtzD

« abieStalus int
#Tableistoog)

< Tabletswng Pont
@ getey() Sting

~<ava Clase
Grapnmetrics

- gragh GrapheSting Sking>
P rr—

® ge(Gragh() Graph<Sting Sking>
= addNodes(AmayListe Tabie=) void

= addEdgesiArmeyList<F oreignKey) veid
@ generate\VerteaDegroe(Siring) Siring

© generateVertmsin Degree(Sting) Siring

 getvetexCouni(Strng
 gelVensRCoUNFOrGCE(Stng

© getEdgeCount) Sting

© gelEdgeCountForGeo() Siring

© getGraghDiameter() Strng
 geNumBECIConNecledCompanents() String
© getCiusteringCoeficiend)y Map=String Doubie=

© setTranslorminglader) voud
@ saveVerteaCoordinates(Siring) vod
@ stopCanvesgencal) wid

= getT argetFolder() Siring

@ visualizeDy i

 Tablex

@ show) VisuslzationViewsr

© get rame () double
 getGraph() Graph
@ retreshidouble i) Component

~grapnea:

-esges Jo -

@roresgaror

= sourceTable: Sting
= targei Table: Siing

P —]

® gelEdgeCountForGCC) Sting

© getlustenngCoetlicient]y Map<Siring Double>

#Foregnkey{Sinng Stnng)
 getSource Tabie) Sting
® getTargetT able() String

= geiKey) Strng

Figure 3.7 Class Diagram of the Model Package

35

Class diagram of the parmenidianEnumerations package is depicted in Figure
3.8.

== Java BEnumerafion==> == Java Enumeration:->
{3 Metric_Enums (3 Status
parmenidianEnumerations parmenidianEnumerations
%N VERTEY_N_DEGREE Metric_Enums W unDENED: Status
Y VERTE_OUT_DEGREE Metric_Enums WF crEATION: Status
Y vERTE_DEGREE Metric_Erums %o Enont: status
%P vERTEY BETWERNMESS: Metric_Enums SFUPDATE: Status
%FO_LETERI\E_OEEFFEET\IT: Metric_Enums o value: int
% EDGE_BETWERNMESS: Metric_Enums o Status(in)
Y erRAPH DIAWETER: Mefric_Ernums o getvalue()int

P NUVBER_OF WERTICES: Metric_Enums

W UNVBER_OF BDGES: Metric_Enums

% NUMBER_OF_CONNECTED COMPONENTS: Metric_Enums
%FNJ~EE?_GF_VE?TEES_N_GCI3: Meiric_Bnums
%FN.,NEIER_GF_EDGES_N_GOC: Meiric_BEnums

& Metric_Enums()

Figure 3.8 Class Diagram of the ParmenidianEnumerations Package

3.2.3 Classes Collaborations Responsibilities (CRC) Method

A more fine — grained analysis that is not constrained within the limits of a
package is carried out to provide a more comprehensive picture of the
relationships between the elements of the different subsystems. Thus, the CRC
method [BeCu89] is applied for each class of each package of Parmenidian
Truth tool. In the context of the refactoring process, CRC cards are expected to
be useful in our attempt to acquire a general overview of the responsibilities
assigned to each class and also a more clear perception of the object
interactions. In this way, we seek to identify classes which might encompass
more responsibilities than these that are supposed to discharge and evaluate
the degree of the coupling among objects.

Figures 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14 depict the CRC cards for each
package of the tool.

36

ExportManager

= manages objects responsible for exports « export.HecateScript
« export.PowerPointGenerator

« export.VideoGenerator

ModelManager

« manages objects, that contain graph information

model.DiachronicGraph

loads existing graph
visualizes the graph

= saves layout changes made by the user
» saves reports with metrics

ParmenidianTruthManager

« manages export and model packages' objects « core.ModelManager
« makes the calls for every operation, that the gui offers « core.ExportManager

« parmenidianEnumerations.Metric_Enums

Figure 3.9 CRC Cards of the Classes of Package Core

HecateScript

creates the object, responsible for the transitions.xml file « model.Loader.HecateManager
« makes the calls needed for Hecate
filters files

PowerPointGenerator

creates powerpoint from screenshots

adds all the related features to the powerpoint

VideoGenerator

extracts png files from the pptx file
creates the video from the png files
« exports the video

Figure 3.10 CRC Cards of the Classes of Package Export
37

EdgeChooser

« is the dialog, that lets the user choose the edge type of the graph

Gui
« is the main gui » gui.EdgeChooser
« calls the appropriate collaborators for every user action « gui.OutputChooser
* gui.WorkspaceChooser
* gui.MetricsChooser
» gui.ProjectEditor
» core.ParmenidianTruthManager
» parmenidianEnumerations.Metrics_Enums
MetricsChooser
» is the dialog, that lets the user choose the metrics he wants to export * gui.Gui
OutputChooser

is the dialog that lets the user choose the type (pptx, video) of export

ProjectEditor

is the dialog, that creates or edits a project
saves the input/output paths, that the user gives

« gui.Gui

WorkspaceChooser

is the dialog, that lets the user choose the path of the workspace, where » gui.Gui

all the corresponding output files will be saved

Figure 3.11 CRC Cards of the Classes of Package Gui

38

GraphmlLoader

« loads the graphml file, that contains the coordinates
« defines the coordinates of each table(node)

+ model.Table
« model.ForeignKey

HecateManager

« makes Hecate calls

« parses sql and xml files

« produces the transitions and the evolution information of the schema via
Hecate

« model.DBVersion

« model.ForeignKey

« model.Table

« externalTools.HecateParser
« externalTools.Schema

« externalTools.Delta

« externalTools.TransitionList
« externalTools. Transitions
« externalTools.Deletion

« externalTools.DiffResult

« externalTools. Transition

« externalTools.Insersion

« externalTools.Update

« externalTools.ForeignKey
« externalTools.Table

. parmenidianEnumerations.Stan.ls

Parser

« parses Hecate's output files
« stores the information of the aforementioned files in model package's
objects

« model.DBVersion
« model.Loader.GraphmiLoader
« model.Loader.HecateManager

Figure 3.12 CRC Cards of the Classes of Package Model.Loader

39

DBVersion

« stores all the information, that a certain schema version has « model.DBVersionVisualRepresentation
« produces all the metrics via the GraphMetrics object model.GraphMetrics

model.Table

model.ForeignKey
model.DiachronicGraph

DBVersionVisualRepresentation

« visualizes the database schema as a graph » model.Table
« creates png files for every version of the schema « model.ForeignKey
« model.DBVersion

DiachronicGraph
« creates the diachronic graph « model.DBVersion
« creates the reports with all the metrics « model.Table

model.ForeignKey
model.DiachronicGraphVisualRepresentation
model.GraphMetrics

model.Loader.Parser
model.Loader.GraphmiLoader

« manipulates the graph

parmenidianEnumerations.Status

DiachronicGraphVisualRepresentation

« is the graphical representation of the diachronic graph « model.Table

. ges the layout chang « model.ForeignKey

« transforms the graph to png files « model.DiachronicGraph
ForeignKey

» holds the information of every foreign key

GraphMetrics
= calculates all the metrics based on the graph = model.Table
= model.ForeignKey
Table
« holds the information of the table (name, coordinates etc.) « parmenidianEnumerations.Status

Figure 3.13 CRC Cards of the Classes of Package Model
40

Status

« matches integers with notions of colouring

MetricsEnums

« contains enumerations of the metrics

Figure 3.14 CRC Cards of the Classes of Package ParmenidianEnumerations

3.3 Refactoring Actions

The previous representations were helpful in our attempt to detect design
defects and prioritize them based on their frequency of occurrence and the
implications they create in case of modifying the source code. The
classification of the defects is based on the taxonomy of [FBB+99] and is as
follows:

e DPackage Level Issues

e God Classes

e Lack of APIs

e Duplicated Code

e Misplaced Methods

¢ Redundant Components
e Convention Violations

The following sections describe the previous defects in detail and present the
refactoring techniques applied for improving tool’s design and increasing its
adaptability to imminent extension or maintenance actions.

3.3.1 Package Level Issues

The refactoring process starts from the highest level of abstraction, which is
the package level. In this level, the most obvious and important violation is
the cyclic dependency between model.Loader and model packages. One possible
and straightforward approach to deal with this defect would be to merge the
two packages, especially if we take into account the strong correlation
between them. However, this option would significantly increase the
complexity of the new package’s design.

41

We finally decided that it would be more efficient to identify the elements of
the two packages that cause the cycle and transfer them to a new package.
Moreover, the use of model.Loader’s elements in the DiachronicGraph class of
the model package created the aforementioned cyclic dependency which was
broken through creating the datalmport package containing the classes of
model.Loader and removing the dependencies of the model’s classes from the
new package in a higher level.

Another design weakness we observed was the total absence of cohesion
between the classes of the export package. In order to increase the coherence of
the package, we transferred the ExportManager class from the core package to
the export one, based on the fact that this class is the common client of export’s
elements. It is noteworthy to mention that there appears to be no resemblance
in the implementation of the export package’s classes and as a result there
were no any other available options to increase the cohesion of this package.

3.3.2 God Classes

The term “God class” refers to a class that encapsulates more than one
responsibility, violating the Single — Responsibility Principle (SRP). In
[MaMa06], the Single — Responsibility Principle is defined as “A class should
have only one reason to change”. According to this principle, each
responsibility assigned to a class is considered to be a reason to modify the
corresponding class. Every change in the requirements of a system is applied
via altering the responsibilities of its modules, and if a module undertakes
two or more responsibilities it would be difficult to adjust any kind of
changes related to one responsibility in a way that would not affect parts of
the module that fulfill other purposes.

The ordinary way of dealing with this kind of design defect is to discriminate
the methods within a class that were created to serve different purposes and
extract each group of methods in new classes.

In the initial version of the Parmenidian Truth system, a module that meets
the criteria in order to be classified as a “God class” is that of DiachronicGraph
in the model package. This class encapsulates responsibilities related to graph
manipulation and also those for the generation of reports that include various
graph metrics.

Figure 3.15 verifies this assertion by depicting methods and attributes of the
DiachronicGraph class as squares and circles respectively, where each edge
between a square and a circle denote that the method has access to the
corresponding attribute.

42

It is obvious that there are two discrete clusters of methods, which do not
have access in common attributes. This definitely shows that the methods of
each cluster fulfill different requirements and an extraction of one of the two
clusters in a new class is necessary. Our decision was to extract the group of
methods related to the generation of reports, which consisted of two discrete
sub-groups and contained additional defects that we describe in next
subsections. As a result, the DiachronicGraph class remained only with graph —
related responsibilities, increasing in this way the cohesion among the
methods of the class and abiding by the SRP.

3.3.3 Lack of APIs

Another design defect we observed was the lack of APIs, whose presence in a
system is considered to be crucial, especially when the requirements of the
system have to be modified or expanded. APIs" main role is that of
determining a set of functionalities that another class, called “client”, needs
and imposing the implementation of these methods in classes that implement
them. In this way, it is feasible to make “client” classes independent from
changes occurring in concrete classes and agnostic to the details of the
implementation.

In a first step, we introduced an interface that serves as a contract between the
Gui class of package gui and the ParmenidianTruthManager class of package
core. The IParmenidianTruth interface contains methods required by Gui and
implemented by ParmenidianTruthManager. In this way, the Gui class does not
depend directly on classes of the core package and becomes independent of
the changes made in these modules. In Figure 3.16 the class diagram of the
previous classes after the insertion of the interface is shown.

43

generateClusteringC

P

generateC

e []
generateC po! .\‘ /, . generateVertexDegreeReport
generateEdgeCountReportForGee .‘ '
‘
generateVertexCountReport ‘
generateVertexCountReportForGec .‘ ‘V'
A

generateVertexOutDegreeReport .

= (
generateVertexinDegreeReport . [] stopcomergence

vertices,
)
generateGraphDiameterReport . getTargetFolder

getScaleX . . visualizeDiachronicGraph
graphEdges
getScaleY . ’ - visualizeIndividualDBVersions
graph
gt [] O [T

[] smtnvematconsr

WL
refresh . visualizan‘onOlDG

getUniversalBounds .
. setPickingMode

setTransformingMode .
. saveVertexCoordinates

Figure 3.15 Methods (squares) and Attributes (circles) of the DiachronicGraph Class
44

<<Java Class=»

(S Gui
*f serialVersionU DY long
o fileNames: ArrayList<String= A e
o workspace: String 3 IParmenidianTruth
</ toolBar. J ToolBar =
o myNode: JToggleButton @ clear()void
= myGraph: JToggleButton ® getTargetFolder():String
o button: JBution @ stopConvergence()void
o hinNewButton_3: JButton @ saveVertexCoordinates(String)-void
o buttonGroup: ButienGroup @ setTransformingMode(}:void
o huttons: ButtonGroup @ setPickingMode() void
o targetFolder: String @ visualize(VisualizationViewer<String, String> String, String, int):void
o edgeChooser: EdgeChooser @ loadProject(String,String,String, double, double, double, double double, double, String, int):Component
o'nreferences’ Preferences @ refresh(double,int). Component
o projectName: String @ generateMetricsReport(String ArrayList<Metric_Enums>)void
o fileChooser: JFileChooser -manager _| @ create Transitions(File)void
o projectini: String 1 | @ createPowerPaintPresentation(ArrayList<String> String, String)-void
= radio. JRadioButton ® createVideo(File)void
o radio2? JRadioButton A A
= toolBar_1: JToolBar g
5 pop: JPopupMenu <<Java Class>»
= visualizationViewer. Component _factory © ParmemdlanTzzltanManagerFactory

&Gui()
i) g1 & Parmenidian TruthManagerFactory()

< createVideo()void
ST E! @ getManager(}:|Parmenidian Truth

< createVideo(File)void
@ create T ransitions() void .
< loadimagesForPpx():void) oy

% loadlmagesForPptx(String)void . <<J.adva r._\;sst;'n
< changeWorkspace()void ©Parmeni \::E"l anager

< printString(Object)void

< createPowerPointPresentation():File
@ loadLifetime(String)-void

® batchOutput{) void

= openMetricsPanel(jvoid

® yisualize(boolean).void

= createNewProject()void

= editProject().void

= mode/Manager: ModelManager

o exporiManager: [Exportianager

o exManagerFactory: ExportManagerF actory

= importManager. [Hecatelmportianager

o imManagerF actory: HecatelmportManagerF actory

& ParmenidianTruthManager()
@ clear()void
@ refresh(double,int):Component

& clear(}void

Smain(Stringflyoi @ getTargetFolder():String

i vai ’ @ stopConvergence()-void .

o refreshWorkspace()woid @ saveVertexCoordinates(String):void
R . St @ setTransformingMade()void

@ setPickinghMode():void

@ visualize(VisualizationViewer<String, String= String String,int) void

@ loadProject|String,String,String,double, double,double,double,double,double, String,int).Component
@ create Transitions{File)void

@ createPowerPointPresentation(ArrayList<String=,Siring String) void

@ createVideo(File)void

@ generateMetricsReport(Siring ArrayList<Metric_Enums=)void

< getRefined Text(String):String

< getOnDFilename({String).File

@ getManager():IParmenidianT ruth

® calculateMetrics{ArrayList<Metric_Enums=}.void

Figure 3.16 Class Diagram of the IParmenidianTruth interface and its client

Our next change concerns the datalmport package, which consists of classes
responsible for parsing sql files in order to create objects of the model package.
The “clients” of this package are the ModelManager and the
ParmenidianTruthManager of the core package and for this reason we created
the interfaces [Parser and I[HecatelmportManager implemented by the Parser
and HecatelmportManager classes respectively. The presence of the two
interfaces is regarded necessary since the clients are different and we attempt
to comply with the Interface — Segregation Principle (ISP), which, according to
[Mart00], can be expressed as “Many client specific interfaces are better than
one general purpose interface”. The obedience of this principle ensures that

45

we can avoid forming clients” dependencies upon methods that clients do not
use and increase the cohesion within each interface. Apart from the two
aforementioned interfaces, we added the IGraphmiLoader implemented by the
GraphmlLoader class. In Figure 3.17, the class diagram of these interfaces along

with their clients is depicted.

<<Java Class>>
(® ParmenidianTruthManager

<<Java Class>>
(®ModelManager

= exportManager: |[ExportManager
e exManagerFactory: ExportManagerFactory

= diachronicGraph: IDiachronicGraph
o factory: DiachronicGraphFactory

& Parmenidian TruthManager()

@ clear()void

@ refresh(double, int):Component

® getTargetFolder():String

@ stopConvergence()void

© saveVertexCoordinates(String):void

@ setTransformingMode():-void

© setPickingMode():void

@ visualize(VisualizationViewer<String,8tring> String,String, int) void

© loadProject{String,String, String,double double,double double,double double, String,int): Gomponent
@ createTransitions(File)void

© createPowerPointPresentation(ArrayList<String> String,String) void
@ createVideo(File)void

© generateMetricsReport(String ArrayList<Metric_Enums>} void

<*ModelManager()

&getinstance(] ModelManager

@ clear():void

© getTargetFolder():String

@ stopConvergence{):void

© saveVertexCoordinates(String)void

@ sefTransformingMode():void

® setPickingMode ():void

@ visualize(VisualizationViewer<String,8tring> String,String,int):void

@ refresh(double,int):Component
@ generateMetricsRepori(String ArrayList<Metric_Enums>)void

© loadProject{String,String, String, double, double,double, double, double, double, String, int). Component

-instance

0.1

-imManagerFactory | 0.1

= sefVersions(String) void
pa rsar\Lﬂ 1

-modelManagey” 0.1

= setT ransitions(String)void
<<Java Interface=>

<<Java Class>>
@ HecatelmportManagerFactory

astalmport -hecatelngrFactory

HecatelmportManagerFactory() o

© createH;) IH:

<<lava hterface>>
) IHecatelmportManager
astaimport

e create T ransitions(File):void (X
@ parseSql(String)ArrayList<DBVersion>
@ parseXml(String):ArrayList<Map<String Integer>>

<<Java Classs>

G Parser
satalmport

@ gellifetime(String) ArrayList<DBVersion>

Integers>

@ getT| J:ArrayList<Map<Stri
@ createGraphmiLoader(String):void

@ getNodes(yArrayList<Table>

@ getEdges():ArrayList<ForeignKey>

@ createTransitions(File)void

=<Java Class»>

datalmport

-parserFactorl

<<Java Class»»
@ Parser
datalmport

& ParserFactory()
® createHecateParser()|Parser

& Parser()
@ getl ifefime(String):ArrayList<DBVersion>

(@ HecatelmportManager
satsimpont

o directorySelected: File

= sqlFiles: File]]

o lifetime: ArrayList<DBVersion>

© transitions: ArrayList<Map<String Integer>>

& HecatelmportManager()

| @ createTransitions(File) void

@ parseSgl(String)ArrayList<DBVersion>

@ parseXml(String):ArrayList<Map<String Integer>=>

® createTransitions(File]] File)void

= marshal(Transitions, File) void

® parseLifetime(File}void

p<Attribute Attribute>):ArrayList<Foreig
® parse T ransitions(File) void

s
= geff

-gmiLoaderFactory | 0.4

© getTransitions(String) ArrayList<Map<String,|
@ createGraphmiLoader(String) void

© getNodes()ArrayList<Table>

@ getEdges()ArrayList<FareignKey>

© createTransitions(File)-void

Integer>>

—grapnmLuaderJ/n 1

<<lava Interface>>
@ IGraphmiLoader
asaimport

@ getNodes():ArrayList<Table>
@ getEdges() ArrayList<Foreignkey>

<<lava Class=>
(3 GraphmiLoader
aatalmport

<<Java Classss

datalmgort

(®GraphmiLoaderFactory

o vertices: ArrayList<T able>
o edges: ArrayList<Foreignkey>

& GraphmiLoaderFactory()

@ createGraphmlLoader(String) IGraphmiLoader

& GraphmlLoader(String)
@ getNodes():ArrayList<Table>

© getEdges(:ArrayListeForeignKey>
eFprintSiring(Ohject)void

0.1

Figure 3.17 Class Diagram of the Interfaces of Package Datalmport and their

Clients

The model package is considered as the most complex package in terms of the
dependencies between its classes, so it is crucial to recognize those modules
that are important for the other packages and create interfaces that will
determine the functionalities required by the clients and diminish the impact

46

of possible changes introduced in classes of this package. Figures 3.18, 3.19
and 3.20 show the interfaces included in the model package.

Although IDiachronicGraph and IMetricsReport are used by the same client the
functionalities they provide are uncorrelated between each other and that was
the main reason for creating two interfaces instead of a large one that would
be more prone to changes and less coherent.

The rationale for creating the IGraphMetrics interface was the fact that the
existing implementations concerning the metrics produced by Parmenidian
Truth tool were explicitly specified for csv files. In order to provide a set of
methods that can be utilized in a subsequent different implementation, we
created the IGraphMetrics interface with the role of clients assigned to the
DiachronicGraph and the DBVersion classes.

The final introduction of an interface concerns the export package which
contains classes responsible for creating a PowerPoint presentation and a
video stream of the schema evolution of a database. The absence of cohesion
between these classes was the main reason for transferring the ExportManager
class from the core package to the export one and creating an interface that
offers functionalities required by the ParmenidianTruthManager class. Figure
3.21 depicts the aforementioned interface with its client.

47

<o G
)
o parserFactory. ParsefF actory
o parser Parser
“ModelMenager()
&
o dlear()wid
@ gefTargetF oider() Sting. oo
© saveVertesCoordnates(Sitnng) void o
@ selTanskorminghloge() oid
@ sefickinghlode) o ——
s Caa
i @ DiachronicGraph
oo
© refeshidoutle) Component = versions. ArayListDBVersion>
© generaeMeticsReport(Sting ArayListeMetic_Enums>}od = ransiions. AmpyListeMag<Strag lnteger>
= sefVersions(Strng)void 7
Sl Tomicraiekgiay] © graphEdges ConcurentiashMop<Strng Forexrier>
ey |01 = verices AraylisteTable>
s ces = edges Amaylist<Foreguker
@ DuchronicGraphFactory -
o = graph¥etricsOfDiachronicGeaph IGraphMetics
& DachronicGraphi ackon() ;ﬂ"‘F”“" Captilobealockyy
© createDiachronicGraph() DiachronicGraph ‘DiachroncGraph()
y updaeL felme ihTransitons/) void
" <amcivoncaragh 0.1 o
= <<Java interfaces>
O DachronicGraph 8 geneateGraphMetics()vod
o
© dlear(joid 8 sefrsiVersion{DEVersion) void
 seiPickingMode() 0 & seFnalVersion(DBVersion in) void
@ selTranshomingode() oid & setrlemmediateVersion[DBVersion,nt oid
© saveNertexCoornates(Sting) void
@ sopComergence(od

© selTransons(ArayistcMap<Strng Integen>) void
© updateLfeimeiNithTranstions{) void

© getlniversaF rame) Dimension

Figure 3.18 Class Diagram of the IDiachronicGraph Interface and its Client

48

© getScaleX(jdoudle:
© getScale¥(double

 getVersions) Aralist<DBVersion>

© getGraphMeics () IGraphMetrics.

© setNersions(Arraist<DBVersion>) void
 selTransitions{AmayLsteMap<Sting nteger>>} void
= seEdgesiimaylstForeignKey> woid

' seferfices/ArayList<T able>} vod

s<lava Class=>

(®ModelManager

core

@ diachronicGraph: IDiachronicGraph
o factory: DiachronicGraphFactory

o parserFactory. ParserFactory

o parser. |Parser

<*MadelManager()
&,

@ clear(}void

@ getTargetFolder():String

@ stopConvergence{)void

@ saveVertexCoordinates(String):void

e setTransformingMode(}.void

@ setPickingMode():void

@ visualize() iewer<Siring,String>,String, String,int).void

@ refresh(double,int):Component

@ generateMetricsReport(String ArrayList<Metric_Enums>)oid
= setVersions(String) void

= setTransitions(String):void

@ loadProject(String,String, String, double, double,double,double,double double, String, inf}: Component

-instance

le—
0.1

=<lava Class=>

®ReportFactory
model <<lava Interface=»
SyerpxMetricsSet . Frums> O‘ME:ERE"”“
“graphMetricsSet F . Frums>
@ generateMetricsReport()void

& ReportFactory() iy

@ getMetricsReportEngine(String Metric_Enums,IDiachronicGraph)IMetricsReport

<<lava Class=>
(& MetricsReportEngine

= targetFolder: Siring

o reportFile: File

<+ versions: ArrayList<DBVersion>

<+ graphMetricsOfDiachronicGraph: IGraphMetrics
< lines: int

< columns: int

<+ vertices: ArrayList<Table>

« edges: AmayList<ForeignKey>

= metric: Metric_Enums

< report: String[J

/V = writer: PrintiVriter

P T— & MetricsReportEngine()
(@ GraphMetricsReport @ generateMetricsReport()void
ozl @ createCsvFile()void

<'populateArray()-void
= printArrayintoFile()void
@ getReport):String I

c‘GraphMe1r|c5Repon(SInng.MetrlC,Enurn&lD\achromcGraphj
© populateArray() void
@ getDiachronicGraphMetricValue(String):String

@ gefVersionMetricValue(String,int): String

<<Java Class=>
(® VertexMetricsReport

& Report(String,Metric_Enums,IDiachronicGraph)

@ populateArray()void
@ getDiachronicGraphMetricValue(String, String):String
@ getVersionMetricValue(String,int, String): String

Figure 3.19 Class Diagram of the IMetricsReport Interface and its Client

49

<<Java Class>=
(©DBVersion

= versionName: String
= tablesWithin: Araylist<T able>
= versionF oreignKeys: ArrajList<Foreignkey>

OfDBVersion: DB

DBNersion(ArayList<Table> ArmayList<Foreigney>. Sting

° g.Sting> Diach
 seiDetails(String it intnfvoid
© gelTables(ArajList<Table>

rrayList<ForeignKey

g
© getodes{)Anayist<Table>

 getEdges(jArayList<Foreignkey>
© gelVersion(yString

 gelGraph()Graph

© generateVertexDegree(Sting) String
 generateVertexinDegres(Sting) String

© generateVertexOutDegree(Siing) Sting

© generateVertexBetweenness(Sting) Sting
© generateEdgeBetweenness(Sting) Sting
 gelGraphDiameter(}String

© gelVettexCount(String

o gelVertexCountForGec()Sting

© getEdgeCount() Sting

© getEdgeCountFarGCC()String

© generateConnectedComponentsC:

String

 gefClustering Cosficient():Map<Siring Double>

fijvoid

<<lava Class=>
(®@DiachronicGraph
mocl

= transitions: ArrayList<Map<String Integer>>

o*graph ConcurrentHashMap<String Table>
OEERET=® i pp<Sting ForeignKey

a vertices: ArayList<Table>
= edges: ArrayList<ForeignKey>
a Oi Di

~graphldetricsODiachronicGraph | 0.1

& DiachronicGraph()
 updateLifetime With Transitions{)void
© loadDiachronicGraph(Araylist<Table> ArrajList<Foreigniey>, Sting,String int double double, double, double, double, double)-1oid

h(String,String, int double double, double, double: double, double):void

© createDiach
& generateGraphMetrics() oid
) tring, intint double double double double,double, doubl

= setFirstVersion(DBVersion)void

& sefFinalVersion(DBVersion,int)void
= setintermediateVersion(DBVersion,inf)void

& fixGraph()void

& createDiachronicGraph()void

& transformEdges()oid

& transformiNodes()1oid

© gelNodes{)ArayList<Table>

© getEdges() ArrayList<Foreignkey>
 gelDictionaryOfGraph() ConcurrentHashMap<String Table>
o clear(1oid

& sefPickingMode()void

© sefTransiormingMode()void
 saveVertexCoordinates(String)void

© stopComergence()oid

© getTargetFolder(:String

<<lava nterfaces>
O GraphMetrics
otel

 gelGraph() Graph<String String>

© generateVertexDegree(String) Sting

© generateVertexinDegree(Sting):String

© generateVertexOutDegree(String)String
tring

-omFactory\, 0.1

<<lava Class>
(©GraphMetricsFactory
model

°

< GraphMetricsFacory()

rrayList<T able> ArayList<Foreignkey>) IGr

© generateEdgeBetueenness(String) String
31 & getGraphDiameter()String

© getertexCount()String

© gelVertexCountForGec()String

© getEdge Count():Stiing

© gelEdgeCountForGec{)Sting

© getNumberOfConnectedComponents():String

-gmFactory ‘4.1

© getClusteringC

Map<String Double>

© uisualizeD g, String=)void

® g.8tring® Sting,nfvoid

© show()VisualizationViewer
© getUniversalFrame() Dimension

© getUniversalCenter()PointzD

© getScaleX(double

© getScaleY():double

© gelFrameX()double:

© getFrameY(:double

© getGraph() Graph

o refresh(double.int) Component

© getUniversalBounds(}Rectangle

© getVersions(:ArrayList<DBVersion>

© getGraphMetrics(yGraphMetrics

© seVersions{arayList<DBVersion>}void

o sefTranstions(ArrayList<Map<String Integer>>)void
 setEdges(AmayListsForeignkey») void

& setVetices(ArrayList< T able>) void

<<Java Class>»
@ Graphietrics

= graph: Graph<Stiing String>

& ist<Table> Arrayist<Foreig

© gelGraph() Graph<String String>
= addNodes(ArrayList<Table>)void

= addEdges{ArayLisi<Foreignkey) oid

© generateVertexDegree(String) String

© generateVertexBetweenness(Sting) String

> & generateEdgeBetweenness(String) String

© generateVertexinDegree(Sting):String
© generateVertexOutDegrez(Sting):String

© getVertexCount(String

© getertexCountForGee () String

© getEdgeCount():Sting

© getEdgeCountrorGec()Sting

© getGraphDiameter()String

© getNumberOfConnectedComponents():String
© getClustering Goefficient() Map<String Double>

1)

Figure 3.20 Class Diagram of the IGraphMetrics Interface and its Clients

50

==Java Class>>
(9 ParmenidianTruthManager

Core

o modelManager: ModelManager
o importilanager: Hecatelmportanager
o imManagerFactory: HecatelmpertManagerFactory

OCF‘armenidianTruthI.1anager(}

@ clear()void

@ refresh{double,int): Component

@ getTargetFolder():String

@ stopConwvergence() void

@ saveVertexCoordinates(String) void

@ sefTranzformingMode(): void

@ setPickingMode):void

@ visualize{Visualization\Wiewer<String, String String, String, int):void

@ createTransitionz(File):void

@ createPowerPointPresentation{ArrayList=3tring= String, String j:veid
@ createVideo(File)void

@ generateletriceReport{String, ArrayList<Metric_Enums=}:void

@ loadProject(String, String, String,double, double, double, double,double double, String, int):Component

-exportianager | 0.1

==Java Interface==

€3 IExportManager
expaort

@ createVideo(File)void

@ createPowerPointPresentation{ArrayList=String= String, String) void

A

«=Java Classs»

(3 ExportManager
export

-exI.ianﬂg-é[Factury 0.1

{?Expurtf&anager(}

@ createVideo(File)void

@ createPowerPointPresentation{ArrayList=String= String, String) void

=<Java Class>»
(9 ExportManagerFactory
export

cfExpurtManagerFactu ry(y
@ createExportManager(): [ExportManager

Figure 3.21 Class Diagram of the IExportManager Interface and its client

3.3.4 Duplicated Code

The implementation of the methods which are responsible for the generation
of the reports that contain various metrics consists of three discrete parts. The
first one is related to the creation of the csv file which contains the results. The
second part includes the computation of the metrics selected by the user.
Finally, the third part registers the results of the second part to the file created
in the first part. Irrespective of the metrics chosen, the first and the third parts
are implemented in the same way for all the different metrics, while the
second one can be classified in two categories (specifically (a) metrics

concerning the entire graph and (b) metrics related to individual nodes) as far
as its implementation is concerned. It is obvious that this part is an example of
duplicated code.

Taking into account the recommended methods for dealing with duplicated
code, we created the MetricsReportEngine abstract class. This class contains a
template method, which defines the execution order of the aforementioned
parts. As mentioned, the first and the third parts are the same for all the
metrics and for this reason they are implemented in the abstract class. On the
contrary, the second part for the metrics computation is separated into graph
and vertex related implementations. This difference resulted in the creation of
the subclasses GraphMetricsReport and VertexMetricsReport, each of them
implementing the corresponding metric computation related code. Figure 3.22
shows the class diagram of the previous classes.

<=Java Clags=>

(& MetricsReportEngine

meodel

< targetFolder: String

o reportFile: File

< verzions: ArrayList=DBVersion=
<+ graphMetrics O fDiachronicGraph: IGraphMetrics
< lines: int

< columns: int

< vertices: ArrayList=Table=

< edges: ArrayList=ForeignKey=
< metric: Metric_Enums

< report: String[

o writer: PrintWWriter

&lJetric:sRepurtEngine(}

@ generateMetricsReport()void
B createCevFile():void
VAprufateArrey(J:mfu

@ printArrayintoFile):void

@ getReport():String[l]

<<Java Clags>> ==Java Class==
(2 GraphMetricsReport (9 VertexMetricsReport
medel model
& GraphMetricsReport(String, Metric_Enums, IDiachronicGraph) @ VertexMetricsReport(String, Metric_Enums, DiachronicGraph)
@ populateArray():void @ populateArray():void
@ getDiachronicGraphMetricValue(String):String @ getDiachrenicGraphMetricvalue(String, String): String
@ getVersionMetricValue(String,int): String @ getVersionMetricValue(String,int, String): String

Figure 3.22 Class Diagram of the Classes Responsible for Metrics Reports
Generation

52

Another occurrence of duplicated code was identified in the HecateManager
and the HecateScript classes, which both contained the same auxiliary class,
called SQLFileFilter. One of the packages included in ParmenidianTruth tool
was the fileFilter package containing the SQLFileFilter and the ImageFileFilter
classes used by the VideoGenerator class. However, this package remained
unused and in order to eliminate the duplicated code, the classes of the
fileFilter package can be utilized instead of the auxiliary ones.

3.3.5 Misplaced Methods

As described in subsection 3.3.2, the DiachronicGraph class consisted of
methods responsible for the generation of metrics reports and methods used
for graph manipulation functionalities. From our perspective, the methods
related to the generation of reports resided in a class irrelevant to the
functionality they offer and it would be more sensible to be assigned in new
classes described in subsection 3.3.4.

3.3.6 Redundant Components
The hecatelmports package existed in ParmenidianTruth’s source code,
containing all the classes provided by the externalTools package. The classes of
the hecatelmports package were not exploited by the other packages and for
this reason we decided to remove it.

3.3.7 Convention Violations

As far as the conventions abidance is concerned, we utilized a checkstyle tool
created by A. Papamichail, so as to identify potential violations that exist in
ParmenidianTruth. These violations concern the following conventions:

e Name conventions
e Method parameter conventions
e (lass size conventions

Figure 3.23 depicts the results provided by the tool prior and after the
refactoring process. The horizontal axis includes the name of each class and
the vertical the number of the violations detected.

53

Checkstyle Violations in ParmenidianTruth

Number of Violations

o S L & L& A
& & & &
o & & &

& & & L

<
&
& &
& & S & & N 5 .
o = S > & & Q¢ & & N
& & F & & £
S g 3¢
S 3
< & &
&

& S

S
&
& RS

0 mBefore Refactoring
After Refactoring

20 I
0llIIII Ill I

2 @' & N &) 2 & & & & & o

& & & [o o o X <€ RS & & 56 5

2 & & & & & &8 & & & A & & &

® o) é\ &7 A

| |
PORY
&8
¢

&

&

& class

Figure 3.23 Checkstyle Violations Before and After the Refactoring Process

3.4 Testing

In this section, we describe the tests we applied in order to evaluate the
correctness of our modifications. Using the unit testing framework for Java,
JUnit, we created a test case for each of the classes that we had either added or
changed. In most cases, we utilized Mockito [Fabe(07], a mocking framework
that allowed us to create objects that simulate the behavior of real objects,
without their dependencies.

The ReportFactory class contains only one method that creates the object
responsible for the generation of metrics reports. Using a mock object of the
DiachronicGraph class, we confirmed that this object is created correctly.

As for the tests performed for the abstract class that determines the execution
order for the creation of the reports, MetricsReportEngine, and its subclasses
GraphMetricsReport and VertexMetricsReport, we used mocking as well as
spying techniques. Spying is a functionality provided by the Mockito
framework and allows us to call all the normal methods of an object while still
tracking every interaction. The tests for the subclasses examined the
initializations and the non — void methods. For testing the creation of objects
that generate graph and vertex metrics reports we used spies that let us
monitor the calculation of the metrics.

Apart from the tests designed for the new classes, we also assessed the
behavior of the DiachronicGraph class which was the subject to our most

54

alterations. The results of the testing process confirmed that the object
construction and the operation of the methods involved are the expected ones.

Finally, except for the JUnit tests, we performed black — box testing for all the
parts that we modified and were responsible for the creation of the metrics
reports. More precisely, we compared the files that ParmenidianTruth
exported prior to our modifications with the ones created after our
modifications. In all cases, each of them concerning different dataset, there
was no difference between the corresponding files.

3.5 Final Architecture and Design

3.5.1 Package Diagram

This section includes the final high — level architecture of ParmenidianTruth
via the package diagram along with the corresponding dependencies,
depicted in Figure 3.24.

1
<=lava Packages==
 qui
1
<=Java Package=>
Heore [T
1 ¥
<<Java Package>> =<lava Package=»
Hexport 4 datalmport
— —
g <<Java Package:==
<=Java Package=> H model
HfileFiter [~ mode!
v —
<<Java Package=> =<Java Package==
f# externalTools £ parmenidianEnumerations

Figure 3.24 Updated Package Diagram of ParmenidianTruth

55

3.5.2 Class Diagrams

The following class diagrams present the new structure of each package of
ParmenidianTruth. The parmenidianEnumerations and externalTools packages
are omitted due to the fact that they were not altered during the refactoring
process and so their internal structure remained identical to the previous one.

Figure 3.25 depicts the class diagram of the gui package.

<<Java Class>>
(@ ProjectEditor

gui

= fileChooser: JFileChooser

& ProjectEditor(Gui, String boolean, String, String String String, String, String)

<<Java Class=>
(®WorkspaceChooser
qui
%/ serialVersionl I long
= textField: JTextField

& WaorkspaceChooser(Gui)
& WaorkspaceChooser()
@ initialize():void

< getRefined Text(String):String
@ saveWorkspace(String) void
@ savePreferences(boolean).void

<<Java Class=>
@ OutputChooser

= pptxWanted: boolean

= videoWanted: boolean

< QutputChooser{Component boclean]))
@ isPptx():boolean
@ isVideo():boolean

<<lava Class=>
(@EdgeChooser

gui

= uttons: ButtonGroup

= |inearButton: JRadioButton _edgeChooser

=<Java Class=>
@ MetricsChooser

= numberOfConnectedComponents: JCheckBox
= numberOfEdges: JCheckBox

= graphDiameter: JCheckBox

= numberOfVertices: JCheckBox

= edgeBetweenness: JCheckBox

= vertexBetweenness: JCheckBox

= gutDegree: JCheckBox

= inDegree: JCheckBox

= vertexDegree: JCheckBox

= clusteringCoefficient: JCheckBox

= numberOfVerticesinGec: JCheckBox
= numberOfEdgesinGec: JCheckBox

& MetricsChooser(Gui)
)

<<lava Class>s

@ Gui

gui

| o

= orthogonalButton: JRadioButton
o IbINewLabel_1: JLabel
o edgeType: int

0.1

& EdgeChooser(Component)
@ getEdgeType()int

S.f. P
o fileNames: ArrayList<String>
o workspace: String
toolBar: JToalBar

= myNode: JToggleBution

= myGraph: JToggleButton

.‘"_‘ = button: JButton

= btnNewButton_3: JButton
o buttonGroup: ButtonGroup
= buttons: ButtonGroup

o targetFolder: String

s

= projectName: String

= fileChooser: JFileChooser
o projectini: String

= radio1: JRadioButton

| @ radio2: JRadioBution

o toolBar_1: JToolBar

| o pop JPopupMenu

o factory. ParmenidianTruthManagerFactory
= manager: [ParmenidianTruth
o yisualizationViewer: Component

& Guil)

< createVideo()void

< createVideo(File)void

@ createT ransitions() void

< loadimagesForP ptx{):void

< loadimagesForPptx(String}void
< changeWorkspace(}void

< printString(Object) void

< createPowerPointPresentation():File
@ loadLifetime(String)void

= batchOutput():void

= openMetricsPanel().void

= visualize(boolean):void

= createNewProject():void

= editProject().void

®= clear()void

& main(Stringll) void

@ refreshWorkspace()void
Sretrioes . S
< getRefined T ext(String) String

< getDnDFilename({String):File

@ getManager():IParmenidian Truth
@ calculateMetrics(ArrayListeMetric_Enums=>)void

Figure 3.25 Updated Class Diagram of the Gui Package

56

Figure 3.26 shows the class diagram of the core package.

«<<Java Class»>
(3 ParmenidianTruthManagerfactory

core

<<lava Interfaces=
3 IParmenidianTruth

core

& Parmenidian TruthManagerFactory()
@ getManager():IParmenidian Truth

-instance

0.1

@ clear()void

@ getTargetFolder():String

@ stopConvergence(}void

@ saveVertexCoordinates(String).void

@ setTransformingMode() void

@ setPickingMode(}.void

@ visualize(VisualizationViewer<String, String=, String, String,int)-void
@ |oadProject{String,String,String, double, double double, double, double double, String,int):Component
@ refresh(double, int): Component

@ generateMetricsReport(String ArrayList<Metric_Enums>}void

@ create Transitions(File)void

@ createPowerPointPresentation{ArrayList<String= String, String)-void

@ createVideo(File):void
A

<<Java Class>>
(& ParmenidianTruthManager
sore

= exporthManager. [ExportManager

o exManagerF actory: ExportManagerFactory

o importianager: [HecatelmporiManager

o imManagerFactory: HecatelmportManagerF actory

&Parmenidian T ruthManager()

@ clear()void

@ refresh(double,int):Component

@ getTargetFolder():String

@ stopConvergence()void

@ saveVertexCoordinates(Siring)void

@ setTransformingMode():void

@ setPickingMede()void

@ visualize(VisualizationViewer<Siring,Siring= String, String, int) void
@ loadProject(String, String, String,double,double double double,double double, String,intk Compaonent
@ create Transitions(File}void

@ createPowerPointPresentation{ArrayList<String= String,String) void
@ createVideo(File}void

@ generateMetricsReport{String ArrayList<Metric_Enums=>)void

-modeldanager | 0.1

<=lava Class==

(3 ModelManager

ocore

o diachrenicGraph: IDiachronicGraph
o factory: DiachronicGraphFactory

o parserFactory. ParserF actory

o parser: |Parser

“ModelManager()

& getinstance() ModelManager

@ clear()void

@ getTargetFolder():String

@ stopConvergence()void

@ saveVertexCoordinates(String)void

@ setTransformingMode():void

@ setPickingMode()void

@ visualize(VisualizationViewer<String,String=,String, String,int):void
@ loadProject{String, String, String,double, double double, double, double, double, String, int: Component
@ refresh{double,int):Compaonent

@ generateMetricsReport(String ArrayListsMetric_Enums=}:void

= sefVersions(String)-void

= setTransitions(String)-void

Figure 3.26 Updated Class Diagram of the Core Package

57

Figure 3.27 presents the class diagram of the datalmport package.

<<Java nterface=>
O parser
sataimgent

 getl ifetime(String) ArrayList<DBVersion>
@ getT):ArrayLi

D

@ createGraphmiLoader(String):void
 getodes(:ArrayList<Table>

® getEdges()yArrayList<F oreignKey>
@ create Transitions(File)void

Integer>>

<<Java Class~
©Parser

sstzimpont

<<lava Class>>
@ Parserfactory

& ParserFactony()

<<lava Class=>
(@ HecateimportManagerFactory
aataimport -hecateMngrFactory

& Parser()

@ gellifetime(Siring) ArrayList<DBVersion>

@ createHecateParser{) IParser

& HecatelmportianagerFactory()
o createt 1

0.1 @ getT) ArrayLi
@ createGraphmiLoader(String)-void
@ getNodes() ArrayList<Table>

@ getEdges() ArrayList<Foreignkey>
@ create Transitions(File)void

p

Integer>>

<<lava Iterface=>
@ HecatelmportManager
impon

-graphmlLoader
 createTransitions(File) void]

0

-gmlLoaderFactory | 0.1

 parseSq(Sting) AmayList<DBVersion>

<<Java nterfaces>

@ GraphmiLoader
© parseXmi(String)-ArrayList<Map<String Integer=> datalmport

<<lava Class>>
(@GraphmiLoaderFactory
datalmgent

@ getNodes():ArrayList<Table>
@ getEdges(yArrayList<ForeignKey>

& GraphmiLoaderF actory()

<clava Class>>
(@ HecatelmportManager
Fenen <<Java Class»»
s directorySelected: File ® GraphmiLoader
= sqFiles: File] staimpor: o
o lifetime: ArrayList<DBVersion> o vertices: ArrayList<Table>
o transitions: ArrayList<Map<String Integer>> o edges: ArrayList<Foreignkey>
& HecatelmportManager() & GraphmlLoader(String)
@ create Transitions(F ile):void @ getNodes():ArrayList<Table>
© parseSql(String):ArrayList<DBVersion> © geffdges() Amayl ist<Foreigniey>
©p; JAmayLi P Integer>> e printSiring{Object) vaid
= create T ransitions(File]],F ile)void
= marshal(Transitions, F ile).void
= parseLifetime(File}void
= getForeingKeys(Map<Attribute Attribute>) ArrayList<ForeignKey>
= parse Transitions(File):void

@ create GraphmiLoader(String):IGraphmiLoader

Figure 3.27 Updated Class Diagram of the Datalmport Package

Figure 3.28 shows the class diagram of the export package.

<<lava Class>> <<lava Interface>>
(3 ExportManagerFactory @ IExportManager
export export
& ExportManagerF actory() @ createPowerPointP1 tation(ArrayList<String>, String, String):void
@ createExportManager():[ExportManager @ createVideo(File):void

==Java Class»>
©ExportManager
axport

FExp)

@ createPowerPointPr

@ createVideo(File):void

g>,8tring String) void

«<=Java Class»>
© PowerPointGenerator
xport

e targetiWorkspace: String
e presentation: String

= width: int

© height: int

& PowerPaintGenerator(String, String)

@ createPresentation(ArrayList<String>)void

= inifializePresentation(XMLSlideShow ArrayList<String>) XMLSlideShaw
= appendSlideShow(String XMLSlideShow):XMLSlideShow

= setSlide Title(String):String

<=<Java Classs>
(® VideoGenerator
export

o presentationSelected: File

o filenameOfPresentation: String
< FRAME_RATE: double

= gutputFilename: String

= sourceFolder. String

& VideaGenerator(File)

@ exporToVideo():void

= extractPngFromPptx()void
= createVideo()void

= deleteGeneratedPng()void
= setQutputFilename().void
= setSourceFolder(}void

= convertTaType(Bufferedimage. int) Bufferedimage

Figure 3.28 Updated Class Diagram of the Export Package

58

Figure 3.29 depicts the class diagram of the model package.

e e
o
7] ® generdieMetncsRepor) vod
<<iba Casser &
@Reportactory %
et <esava Clssrr
reeattencsSes FrumSetddetnc Fruase
 oraphbeticaSes EnumSetehletic Frums> £
#RepotFactor) © tgelFolder Sting
 geeticsReporEnginel) R ol i
: 1 ‘columns: it
L report Stangl
/ \ = witer Prntirter
({ ¢ MetncsReportEngine()
\ / @ generateMetrcsRepot() void
e G
o
© populaiedrayf)vod
© geDachonicGraphMeticyae(Sting) Sting

© gefersonbetrc\alue(Sting nSting

apteres0Dackenkongh [o 1

2.1y @ unhersalFrame: Dimension

= trgetFolder Stng
= oulputFolder Sty
= edgeType: Transiomer

= universalTransioemerF orScaling MutabieTransormer

& DiachronicGraph\isuaRepresentation()
& DiachronicGraphVisuaRepresertaion)

Figure 3.29 Updated Class Diagram of the Model Package

3.6 Evaluation

In this section, we attempt to evaluate the software quality of
ParmenidianTruth, after the refactoring process, using various metrics. This
evaluation provides an overview of the enhancements that refactoring actions
achieved in design level by comparing the values of the metrics before and
after the refactoring procedure.

3.6.1 Abstractness — Instability Graph

In this step, we were interested in identifying how our modifications affected
the packages of the tool. To this end, we used the instability and the
abstractness metrics [Mart00] with the former metric used to reveal the effort
required to make changes in one package and the latter representing the
degree of the abstractness within each package. The instability metric assesses
the degree of the violation of Stable Dependencies Principle (SDP), which
defines as unstable a package that has many dependencies upon other
packages. The violation of this principle results in creating a system that is not
flexible to changes, since minor changes in one package can affect many
others that depend upon it. The abstractness metric evaluates the abidance to
Stable Abstractions Principle (SAP), which determines as stable a package that
consists of many abstract classes and interfaces.

Terminology. The instability metric is given by the following equation

Ce

| =
Ca+ Ce

where [is the instability of the package, Ce the number of outgoing edges to
packages upon which the package depends and Ca the number of incoming
edges from packages that depend upon it. If I = 0, the corresponding package
is independent and thus is considered as a stable package, whereas a package
with I = 1 means that there are no any other packages that depend upon it and
so the package is considered to be unstable since it only depends on other
packages.

The abstractness metric is expressed as follows

_Na

A= —
Nc

where A is the abstractness of the package, Na the number of the abstract
classes and the interfaces included in the package and Nc the number of its
classes. If A =0, the package consists exclusively of concrete classes and the
other packages that depend upon this package are prone to changes applied

60

to each class of the package. On the other hand, if A =1 the package comprises
just a contract, a case which should be avoided due to the fact that a package
is supposed to contain a set of modules that depend upon each other aiming
at providing a single functionality.

At this point, we should mention that for the evaluation of the refactoring
process we exploited Structure Analysis for Java (STAN) [Buga07], which is a
tool that offers a set of code quality metrics.

Figures 3.30 and 3.31 depict these metrics for ParmenidianTruth before and
after our refactoring actions. The horizontal axis represents the abstractness of
the packages and the vertical axis their instability.

1 &gui

09 @

model.Losder

0,8

0,7 @ core

o
o)}

+. T, }
] '3[‘" externarlooils

® PT before

Instability
o
(0]
L
¢
X
e)

0,4

@® model Main Sequence

0,3

0,2

0,1 ---parmenidianEnum

0 o1 02 03 04 05 06 07 08 09 1
Abstractness

Figure 3.30 Abstractness-Instability Graph Before Refactoring Process

61

0,9
@® core
0,8
@ datalmport
0,7
0,6
Z
205 ®-export
E ® PT after
T 04 ; Main Sequence
5
0,3 ék‘
g
0,2 &
K
IS ® model
0,1 <
§
3 externalTools
oes e
0 o1 02 03 04 O05 06 07 08 09 1
Abstractness

Figure 3.31 Abstractness-Instability Graph After Refactoring Process

It is worth mentioning that Figure 3.30 reveals the total absence of
abstractions for the initial design of ParmenidianTruth tool, eliminating any
possibility for extension, since it is difficult to predict the effects each
modification in one package would create in the other ones. On the other
hand, it is obvious in Figure 3.31 that the refactoring process increased the
potentials for introducing new functionalities in ParmenidianTruth software
without having to alter its subsystems to a large extent. This is feasible due to
the addition of abstractions in almost all packages increasing their
abstractness, combined with the reduction of the dependencies from concrete
classes which decreases their instability.

3.6.2 Class Level Metrics

In a second approach concerning the improvements that our refactoring
actions achieved in ParmenidianTruth tool, we assessed the quality of the
classes of each package by using four metrics. Furthermore, we utilized the
number of methods, the number of fields, the Coupling Between Objects (CBO) and
the Lack of COhesion of Methods (LCOM).

62

Terminology. In [ChKe92], the CBO for a class is defined as the number of
couples with other classes. In other words, an object is coupled to another one
when it uses methods or instance variables of the other. The more coupled an
object, the more sensitive to changes made in the parts that depends upon.

As for LCOM, we can define it as follows [ChKe92]:

Let C: is a class with n methods Mi, Mz, ..., M. and {4;} the set of class’s
attributes used by method Mi with 1 <i <n.LetP = {(Mi, Mj) |A; N A; = (D}
the number of pairs of methods that do not share attributes and Q =
{(Mi, MJ-) | A;NA; # (D} the number of pairs of methods that share at least one
attribute. LCOM is defined as

P—Q,ifP—Q=0

LcoM = {0, otherwise

This metric gives us a notion of the degree of similarity of methods within a
class, which means that the lower the value of this metric, the more cohesive
the corresponding class.

The next charts represent the distribution of classes of each package with
respect to the previous mentioned metrics. We present these metrics only for
packages that underwent a set of changes during the refactoring process. This
is the reason we excluded from this evaluation the gui, the externalTools, the
fileFilter and the parmenidianEnumerations packages.

Figures 3.32, 3.33, 3.34 and 3.35 show the distribution of the classes of the core
package with respect to the four metrics before and after the refactoring
process. The black and gray colors denote ParmenidianTruth before and after
the refactoring, respectively. In Figure 3.32, the horizontal axis corresponds to
the number of methods in the core package and the vertical axis represents the
percentage of the classes.

63

80%

70% -

60%
50%

40%

Pct of classes

30%
20%
10%

0%

Avg #methods = 13.33
Avg #methods = 11.00

33,33%

__

% 25,00%

= PT before

#methods<=5

« PT after
33,33%
Q
10<#fmethods<=15 20<#methods<=25

Number of methods

Figure 3.32 Distribution of Classes wrt Number of Methods (range) in the

From Figure 3.32 it is obvious that there is an elimination of the classes with
more than 20 methods and a considerable increase in the percentage of classes

Core Package

that encompass from 10 to 15 methods.

In Figure 3.33, the distribution of classes with respect to the number of fields
is depicted. The x — axis presents the number of fields in the core package and
the y — axis the percentage of classes that include the corresponding number

of fields.

64

80% - Avg #fields = 1 # BT bef
Avg #fields = 2.5 . etore
70% - 66,67% T PT after
o
0% 7
50,00% / 50,00%
n 50% -
£
o 0% 33,33% /
& 30% - V /
20% - / /
10% / /
7 | 7 |
#fields=0 O<#fields<=5

Number of fields

Figure 3.33 Distribution of Classes wrt Number of Fields (range) in the Core
Package

As far as the number of fields is concerned, the refactoring process led to a
balanced distribution between the modules that do not have any fields and
these are the interfaces included in the core package and the remaining
concrete classes.

Figure 3.34 contains the distribution of classes with respect to the Coupling
Between Objects metric. The horizontal axis represents the values of the CBO
metric and the vertical one the percentage of the classes in the core package.

The results for the Coupling Between Objects metric reveal a substantial
reduction in the number of classes having dependencies in the range from 1 to
5 classes and the equally distribution of the percentage reduction in classes
that do not have any couplings and those that depend from 6 to 10 classes.

65

12

10

8

6

Pct of classes

2

4

0%

0%

0%

0%

0%

0%

0%

Avg CBO = 3.67
Avg CBO =2.75

25,00%

l

CBO=0

100.00% ¥ PT before
Il PT after
25,00%
0<CBO<=5 5<CB0O<=10
CBO

Figure 3.34 Distribution of Classes wrt CBO (range) in the Core Package

Figure 3.35 shows the spread of the classes over the values of the Lack of
Cohesion metric. The x and y — axes correspond to the values of LCOM metric

and the percentage of classes, respectively.

80%

70%

60%

50%

40%

30%

Pct of classes

20%

10%

0%

75,00%

Avg LCOM=2
Avg LCOM=0.25

r. PT before
PT after
33,33%
25,00% ?
0<LCOM<=5 5<LCOM<=10
LCOM

Figure 3.35 Distribution of Classes wrt LCOM (range) in the Core Package

We should mention that the Lack of Cohesion in the core package was
completely removed in the range from 6 to 10 and increased nearly by 10% for

the classes that are tightly cohesive.

66

Figures 3.36, 3.37, 3.38 and 3.39 present the distribution of the classes of the
export package for the four metrics, before and after the refactoring procedure.

Figure 3.36 depicts the distribution of the classes with respect to the numbers
of methods in the export package. The horizontal axis represents the number
of methods and the vertical one the percentage of the classes.

90%
80%

70% -

60%
50%
40%
30%
20%
10%

0%

Pct of classes

(o]

5,71%

83,33% Avg #methods = 3.43
i Avg #methods = 3.83

& PT before

“ PT after

#methods<=5 5<#methods<=10

Number of methods

Figure 3.36 Distribution of Classes wrt Number of Methods (range) in the

Export Package

Figure 3.37 shows how classes are distributed with reference to the number of
fields in the export package. The x and y — axes correspond to the number of

fields and the percentage of classes, respectively.

80%
70%
60%
50%
40%
30%

Pct of classes

20%
10%
0%

57,14%

DA

Avg #fields = 1.71
66,67% Avg #fields = 1.50

PT before

42,86%

+ PT after
33,33%

DM

#fields=0 O<#fields<=5

Number of fields

Figure 3.37 Distribution of Classes wrt Number of Fields (range) in the Export

Package
67

Figure 3.38 shows the distribution of the classes with regard to the CBO
metric in the export package. The horizontal axis includes the values of the
CBO metric and the vertical one the number of classes expressed with
reference to the total number of classes.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Pct of classes

Avg CBO=1.33 :':'_ .':':
Avg CBO = 1.00 HEHE

M PT before

0,
80,00% I PT after

20,00%

i

CBO=0 0<CBO<=5

CBO

Figure 3.38 Distribution of Classes wrt CBO (range) in the Export Package

Figure 3.39 depicts the distribution of the classes with respect to the LCOM
metric in the export package. The x and y — axes represent the values of the
LCOM metric and the percentage of the classes, respectively.

80%

70%

60%

Ul
o
X

40%

Pct of classes

30%

20%

10% -

0%

71,42% Avg LCOM=2.29
| sy 66,66% Avg LCOM= 2.83
% E
/ r. PT before
7 % # PT after
| 14,209 16/67% % 14,299 16/67%
LCOM=0 0<LCOM<=5 5<LCOM<=10

LCOM

Figure 3.39 Distribution of Classes wrt LCOM (range) in the Export Package

N

8

To summarize the results for the export package, there were some minor
fluctuations in the number of methods, the number of fields and the values of
LCOM and a 20% reduction in the CBO metric in the range from 1 to 5.

In Figures 3.40, 3.41, 3.42 and 3.43 the number of classes with regard to the
metrics for the model package is shown.

Figure 3.40 shows the distribution of the classes with respect to the number of
methods in the model package. The horizontal axis corresponds to the number
of methods and the vertical axis represents the relative number of the classes.

70% -

60% -

50% -

Pct of classes
ey
o
x

w
o
X

20% -

10% -

Avg #methods = 9.92
Avg #methods = 8.23

2 PT before

= PT after

Number of methods

Figure 3.40 Distribution of Classes wrt Number of Methods (range) in the

Model Package

In Figure 3.41, the distribution of the classes with reference to the number of
fields in the model package is presented. The x and y — axes denote the number
of fields and the percentage of the classes, respectively.

69

60% -

54,55%

50% - Avg #fields = 3.23
Avg #fields = 2.64

40% -

30% -

PT before

Pct of classes
22,73%

o PT after

20% -

13,64%

9,09%

10% -

m 15,38%

0%

g N\\\\\\\\\\\\\\\\? 38,46%

o

O<#fields<=5 S<#fields<=10 10<#fields<=15
Number of fields

Figure 3.41 Distribution of Classes wrt Number of Fields (range) in the Model
Package

Figure 3.42 shows how the classes are divided with respect to the CBO metric
in the model package. The horizontal axis includes the values of the CBO
metric and the vertical one the relative number of the classes.

90% 7 85,71%81,25%
80% - T Avg CBO =4.71
0% Avg CBO = 3.69
-
§ 60% - B PT before
(7]
£ 50% Il PT after
e 40% -
v R
& 30% - 2
20% - 14,29% o &
Pl B [i
0% | i
CBO<=5 5<CB0O<=10 10<CBO<=15
CBO

Figure 3.42 Distribution of Classes wrt CBO (range) in the Model Package
70

In Figure 3.43, the distribution of the classes with regard to the LCOM metric
in the model package is presented. The x and y — axes represent the values of
the LCOM metric and the percentage of the classes, respectively.

50% - o
46,15% Avg LCOM= 19.69

45% - Avg LCOM=17.64

40,91%
40% -

7
* Z
§ 30% - 3’0’77% ey / # PT before
g Jogp Z Z # PT after
5% - / / 7 /
D G0 D D

Figure 3.43 Distribution of Classes wrt LCOM (range) in the Model Package

From the previous figures, we can claim that we managed to reduce the
number of classes that included more than 20 methods and increase the
number of modules without fields by introducing interfaces. However, there
appears a small increase in the number of classes with CBO greater than 10
and a significant growth in the number of classes with LCOM in the range of
5 to 10.

The Figures 3.44, 3.45, 3.46 and 3.47 depict the distribution of the classes of the
datalmport package concerning the four metrics.

In Figure 3.44, the division of the classes with reference to the number of the
methods in the datalmport package is shown. The x — axis correspond to the
number of the methods and the y — axis to the percentage of the classes.

71

90%

80%

70%

Pct of classes

60%
50%
40%
30%

20%

10%

0%

Avg #methods = 3.46

= PT after

#methods<=5 5<#fmethods<=10

Number of methods

Figure 3.44 Distribution of Classes wrt Number of Methods (range) in the

Datalmport Package

Figure 3.45 depicts the distribution of the classes with respect to the number
of the fields in the datalmport package. The horizontal axis represents the
number of the fields and the vertical one the relative number of the classes.

90%

80%

70%

60%

50%

40%

Pct of classes

30%

20%

10%

0%

i 76,92%
i Avg #fields = 0.77
J + PT after
i 23,08%

#fields=0 O<#fields<=5

Number of fields

Figure 3.45 Distribution of Classes wrt Number of Fields (range) in the

Datalmport Package

72

In Figure 3.46, the distribution of the classes with respect to the CBO metric in
the datalmport package is presented. The x and y — axes correspond to the
values of the CBO metric and the percentage of the classes, respectively.

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Pct of classes

| 77,78%
Avg CBO = 3.44
) Il PT after
i 11,11% 11,11%
CBO=0 0<CBO<=5 10<CBO<=15
CBO

Figure 3.46 Distribution of Classes wrt CBO (range) in the Datalmport

Package

Figure 3.47 depicts the distribution of the classes with regard to the LCOM
metric in the datalmport package. The horizontal axis represents the values of
the LCOM metric and the vertical one the relative number of the classes.

70%

60%

50%

I
o
X

30%

Pct of classes

20%
10%

0%

30,77%

LCOM=0

61,54% Avg LCOM=2.46

g PT after

0<LCOM<=5 5<LCOM<=10
LCOM

Figure 3.47 Distribution of Classes wrt LCOM (range) in the Datalmport

Package
73

To synopsize the improvements achieved in the modules of the Parmenidian

Truth tool through the refactoring process, we give a brief description of the

enhancements in the following figure.

Subsystem # methods # fields CBO LCOM

core o 30% less e Balanced e 50% less e 30% less
classes with distribution classes with classes with
more than 20 between CBO in the LCOM in the
methods classes with range 1to 5 range 6 to 10

e 40% more no fields and e 10% more

classes with those with tightly
10 to 15 less than 5 cohesive
methods fields classes

export e Minor ® 9% less e 20% less e Small
changes wrt classes with classes with changes wrt
the number atleast 1 field CBO in the the LCOM
of methods range 1to 5 metric

model e Nearly 10% e 16% more e A small e 10% more
less classes modules with increase (6%) classes with
with more no fields in the LCOM in the
than 20 (interfaces) number of range 6 to 10
methods classes with

CBO in the
range 11 to 15

datalmport e 77% ofthe e 77%ofthe e 78% ofthe e 62% of the
modules with modules with modules modules
less than 5 no fields with CBO in with LCOM
methods the range 1 to in the range

5

1to5

Figure 3.48 Summary of the Improvements of the Refactoring Process

3.7

Summary of Refactoring Results

Concluding this chapter, we summarize our actions and results as follows:

e We have eliminated violations of the Single — Responsibility Principle
by extracting methods from classes that include more than one

responsibility.

74

We have increased Parmenidian Truth’s expandability and immunity
to modifications by introducing a set of APIs.

We have eliminated duplicated code by utilizing the template method
design pattern.

We have increased cohesion of methods by identifying misplaced
methods and assigning them in new classes.

We have reduced the complexity of the code and facilitating its
evolvement by removing redundant components.

We have complied with code conventions by identifying related
violations and making the required adjustments.

We have verified the correctness of our modifications by creating a test
case for each of the modules we either modified or added.

75

CHAPTER 4.

TABLE TOPOLOGY AND EVOLUTION

41 Experimental Setup

4.2 Distribution of Tables over Degrees

4.3 Table Topological Categories

44 Relationship between Tables” Topological Categories and their Properties

4.5 Summary of Findings

As already discussed in previous sections, we are equipped with both the
model and the tool support to treat database schemata as graphs, in which
nodes and edges represent the tables of the dataset and the foreign key
constraints between tables, respectively. Given that, we can exploit the
information on the position of a table in the graph to see whether such
information can be correlated to the evolution activity of the table. We use the
term “table topology” in its etymological sense, much like as it is also used
when referring to network topology, meaning the pattern of edges
surrounding nodes.

In this chapter, our main objective is to study the topology of the tables in 5

open-source datasets and identify possible patterns concerning the evolution

of the tables with reference to the topological categories they belong to. In the

first section, we introduce the datasets used in our study and describe the
76

preprocessing actions taken to eliminate data that would not help us arrive at
valid conclusions. The second section presents the distribution of the tables
over their in-, out- and total degrees, information exploited in the following
section to define the topological categories. The third section includes, apart
from the determination of the topological categories, a set of classification
rules applied to classify tables in these categories. The fourth section examines
the evolution of tables with respect to their topological categories and other
properties including tables’ duration, survival potential, version of birth,
update activity and size change. Finally, in the last section we summarize the
main conclusions derived from our study and evaluate the extent to which
our initial research questions are addressed.

4.1 Experimental Setup

In this section we present the experimental setup of our study. First, we start
with the main features of the 6 open-source datasets utilized in our study.
Next, we report on the preprocessing actions that we have taken in order to
exclude information that is considered to be useless in the context of this
research. At this point, it is worth mentioning that all the graph-related
metrics we use to study the schema and its evolution are obtained via the
Parmenidian Truth tool whose main functionalities were described in more
detail in Chapter 3.

4.1.1 Datasets

The datasets concerning this study support projects from different domains
and have a common feature, which is the availability of their source files that
allows us to conduct a research into the evolution of their structure. Figure 4.1
synopsizes for each dataset the information about the number of the tables
and the foreign keys at the first version, the last version and the Diachronic
Graph. The statistics concerning the Diachronic Graph express the total
number of unique tables or foreign keys that exist over the period that
database schema’s evolution is examined.

Atlas Trigger is the dataset that supports the ATLAS experiment which is one
of the four experiments conducted at the Large Hadron Collider in the
facilities of CERN in Geneva, Switzerland. The schema history of Atlas
Trigger consists of 85 versions including 88 tables and 88 foreign key
constraints. It started its life with 56 tables and 61 foreign keys and ended up

77

with 73 tables and 63 foreign keys. The growth of tables as well as that of
foreign keys between the first and the last version of its life is positive,
reaching the values of 30% and 3%, respectively.

BioSQL is a generic relational model for storing sequences, features and
ontologies derived from different sources aiming at facilitating the
interoperability of projects implemented by the Open Bioinformatics
Foundation (OBF). Our study concerns 47 versions that include 45 tables and
79 foreign keys. The first version includes 21 tables and 17 foreign keys and
the last one 28 tables and 43 foreign keys resulting in a growth of 33% and
153% for tables and foreign keys, respectively.

The Cern Advanced STORage (CASTOR) manager is the next database whose
schema evolution is being examined in the current study and its” main goal is
to store and provide remote access to physics data. Its” 194 versions comprise
91 tables and 13 foreign key constraints, with the corresponding numbers in
the first and last version to be 62, 6 and 74, 10 respectively. The growth in the
number of tables and foreign keys is 19% and 67% in the order given.

The Enabling Grids for E-sciencE (EGEE) project provided a world-wide
infrastructure for e-science, allowing the exploitation of its computer power
and the data storage capacity by numerous research groups around the
world. For the period examined, this dataset consists of 17 versions including
12 tables and 6 foreign keys, starts its life with 6 tables and 3 foreign keys and
eventually finishes up with 10 tables and 4 foreign keys. The respective
growth in the number of tables is 67% and in the number of foreign key
constraints 33%.

SlashCode is a content management system that initially used to support
Slashdot, a social news website. Its” 399 versions encompass 126 tables and 47
foreign keys, with the first version comprising 42 tables but no foreign keys as
it is also the case for the last version where the number of tables reaches the
value of 87. The corresponding growth rate of the tables between the first and
the final version is 107%.

Zabbix is an open — source monitoring software for networks, operating
systems and applications, which comprises 160 versions with 58 tables and 38
foreign key constraints. The originating version of Zabbix includes 15 tables
and 10 foreign keys and the last one 48 tables and 2 foreign keys resulting in a
growth rate of 220% for tables and -80% for foreign keys.

It is noteworthy that in all the datasets the growth rate of tables is positive, a
trend that also holds for foreign keys, with the exceptions of Zabbix and

78

SlashCode, where in the former there appears a significant decline in the
number of foreign keys and in the latter a total absence of foreign keys in the
first and the last versions. Figure 4.2 depicts the growth rate of tables and
foreign keys for each of the aforementioned datasets.

Datasets Versions g::ri g::: TC::;ZS c:::::; @Zfasrt FKs @end FKs @DG Grzl\(l:th
Atlas 85 56 73 88 30,4% 61 63 88 3,3%

BioSQL 47 21 28 45 33,3% 17 43 79 152,9%
Castor 194 62 74 91 19,4% 6 10 13 66,7%
Egee 17 6 10 12 66,7% 3 4 6 33,3%
Slashcode 399 42 87 126 107,1% 0 0 47 0,0%
Zabbix 160 15 48 58 220,0% 10 2 38 -80,0%

Figure 4.1 Statistics for the datasets used in our study, [VKZZ17]

Table 220,0%
Growth
S
Rate o]
& FK Growth A
- X
Rate —

X
N\
)
©

NN 66,7%
R 33,3%

xX
< EX
o B
—
A

) 30,4%
3,3%

W

p°

\ < e e
%\050' 2 30 \(\006 129

-80,0%

Figure 4.2 Growth Rate of Tables and Foreign Keys

4.1.2 Data Preprocessing

In this subsection we discuss the interventions we performed to the collected
data, along with decisions taken to aid the extraction of valid conclusions. As
already explained in [VKZZ17], two of the datasets, SlashCode and Zabbix,
demonstrate the explicit removals of foreign keys from the schema, with the
former also introducing foreign keys late in the schema history. We have

79

decided to omit the periods where foreign keys were massively absent from
the schema, since no table could possibly have any topological properties
during these periods. Figure 4.3 depicts the evolution of foreign keys in these
datasets.

Evolution of Foreign Keys (SlashCode)
90 -
80 -
70 -
60 -
50 -

40
30 -

Number of foreign keys

20 -
10 -

0 L] T L]]]
1 70 139 208 277 346

Version id

Evolution of Foreign Keys (Zabbix)
60 -

50 -

40 -

Number of foreign keys
w
o

10 -

0 T T T T T T T T

1 20 39 58 77 96 115 134 153
Version id

Figure 4.3 Evolution of Foreign Keys in SlashCode and Zabbix

In case of the SlashCode dataset depicted in the upper part of Figure 4.3, we
distinguish the first 74 versions with no foreign keys as well as the interval

80

after the version 260 after which we observe a continuing decrease in the
number of foreign keys until the last version examined. As a result, we opted
for limiting our study in the interval bounded by versions 74 and 260.

In a similar way, we examined the evolution of foreign keys in the Zabbix
dataset and identified a steep decline in the number of foreign keys after
version 150. Thus, we constrain our research in the period defined by versions
1 and 150.

4.2 Distribution of Tables over Degrees

As already mentioned in the introduction of this chapter, our main goal is to
study the evolution of the tables with respect to the topological categories
they belong to. Thus, prior to specifying the categories, it is vital to
understand and obtain a comprehensive overview of the distribution of tables
over the total degrees, in-degrees and out-degrees at the Diachronic Graph.
Having done that, we will be able to assign the tables in the corresponding
categories and study their evolution throughout their existence in the
respective database schemata.

Figure 4.4 presents the distribution of the tables over their total degrees at the
Diachronic Graph for the 6 studied datasets. The graphical part provides us
with some interesting insights about the breakdown of tables over degrees
summarized as follows:

e In 3 out of the 6 datasets, we encounter a substantial majority of zero-
degree tables that in all cases surpasses the half of the respective total
number of tables.

e In 4 out of the 6 datasets, there appears a decrease in the number of
tables as the degree increases. This pattern, which is described in
[VKZZ19] as a monotone decrease pattern, is the case for all the datasets
with the exceptions of Atlas and BioSQL.

e Atlas and BioSQL present a different behavior, with the former
following the so-called battleship pattern [VKZZ19], which starts with an
increase in the number of including tables of degree from 0 to 2
followed by a significant decrease in the percentages of tables of higher
degrees. On the contrary, the latter dataset demonstrates a “balanced”
distribution of its tables among the different degrees with the majority
of tables clustered in the degrees of 1 and 2.

81

Degree @DG

Datasets 0 1 2 3 >=4 Total
Atlas 11 25 35 7 10 88
BioSQL 5 15 15 6 4 45
Castor 75 8 6 2 0 91
Egee 6 2 2 2 0 12
SlashCode 90 21 7 1 7 126
Zabbix 23 15 13 2 5 58

X

% &0

n2
w3
E>=4
xX
SS
] XX
omnm
omm
P
: X
(o]
o

7

SRR 26%

xg
oM
N
7
1
Z B
1
Z
1
/
Z
1
1
Z 8

AL 1T%

Atlas BioSQL Castor Egee SlashCode Zabbix
(88 tables) (45 tables) (91tables) (12 tables) (126 tables) (58 tables)

Figure 4.4 Distribution of Tables over Total Degrees

The distribution of the tables over their total degrees at the Diachronic Graph
offered us the first useful information which is the strong presence of tables
that have no references to other tables throughout their entire lives.

82

Our next step concerns a more in-depth analysis of tables” topology which
will facilitate the process of defining the different table categories based on
their in- and out-degrees at the Diachronic Graph. Figure 4.5 depicts the
distribution of the tables of the datasets studied over their in-degrees.

The most intriguing observations concerning the breakdown of tables per in-
degree at the Diachronic Graph are outlined in the following list:

e The tables with zero in-degree are the dominating ones, accounting for
at least the 55% of the overall table population. Furthermore, in all the
datasets, the number of tables in the “zero in-degree” bucket is an
absolute majority, and frequently, a very large one.

e The trend for decreasing numbers of tables as the in-degree increases is
also present in this breakdown and it holds in all the datasets. We
should clarify that the increasing percentages of tables of in-degree
higher than three are due to the aggregation nature of this category and
this is the reason why the decrease in the number of tables is not
shown as monotone in Figure 4.5.

e The tables with in-degree greater than 2 constitute a small minority
that corresponds to values less than 4% in the datasets Castor, Egee
and SlashCode. Compared to those datasets, Atlas, BioSQL and Zabbix
encompass more tables of high in-degree, though the respective
percentages do not exceed the value of 15%.

In a nutshell, we notice that few tables ever get an incoming edge and the
probability of having more incoming edges monotonically decreases with the
in-degree.

83

In Degree @DG

Datasets 0 1 2 3 >=4 Total
Atlas 48 18 11 4 7 88
BioSQL 30 6 2 1 6 45
Castor 81 8 1 1 0 91
Egee 8 2 2 0 0 12
SlashCode 114 4 3 0 5 126
Zabbix 42 7 4 2 3 58
3 S 0

X
N~
©

17%
17%

S

Atlas BioSQL Castor Egee SlashCode Zabbix
(88 tables) (45 tables) (91 tables) (12 tables) (126 tables) (58 tables)

Figure 4.5 Distribution of Tables over In-Degrees

Figure 4.6 shows the distribution of the tables of the 6 datasets with reference
to their out-degrees at the Diachronic Graph. As far as this distribution is
concerned, we can make the following comments:

e Apart from Atlas and BioSQL, all the other datasets present a strong
tendency towards the zero out-degree, a behavior similar to that
encountered in the in-degree distribution but with a more moderate
intensity here.

e The declining numbers of tables while out-degree increases are more
obvious in the last three datasets, in contrast to the first two which
concentrate a significant number of tables in the out-degrees of value 1

84

and 2. Especially, the tables of out-degree 2 account for the one third of
the total table population in both datasets. After manual inspection, we
attribute this phenomenon to the existence of several N:M
relationships, modeled via tables of out-degree exactly equal to 2.

As for the tables of out-degree higher than 2, they represent a small
population in all the datasets excluding that of BioSQL. Compared to
tables of in-degree higher than 2, tables of high out-degree are less and
this can be attributed to the presence of lookup tables which attract a
high number of incoming edges from other tables.

Out Degree @DG

Datasets 0 1 2 3 >=4 Total
Atlas 43 14 28 0 3 88
BioSQL 7 12 14 9 3 45
Castor 83 3 5 0 0 91
Egee 7 4 1 0 0 12
SlashCode 95 20 8 2 1 126
Zabbix 32 15 10 1 0 58
X
pd 0
N %1
N~
|2
x
n N3

B>=4

X
§:
N
N
:_
N

1%
’ 2%

Atlas BioSQL Castor Egee SlashCode Zabbix
(88 tables) (45 tables) (91tables) (12 tables) (126 tables) (58 tables)

Figure 4.6 Distribution of Tables over Out-Degrees

Overall, we observe that in 4 of the 6 datasets the number of tables with out-
degree in the range from 1 to 2 is higher compared to the respective number
in the distribution over in-degrees. We should also stress the sparse
population of tables with out-degree higher than 2, with the exception of

85

BioSQL, in which high out-degree tables are more than those with high in-
degree.

4.3 Table Topological Categories

After having acquired a general overview of how tables are spread with
respect to their in- , out- and total degrees at the Diachronic Graph, we now
shift our focus to the combination of in- and out- degrees in order to define
the distinctive categories utilized for studying tables” evolution with reference
to the topological categories.

4.3.1 Definition of Topological Categories

In this subsection, we present the distinctive topological categories of tables
based on their references to and from other tables. Figure 4.7 depicts the
distribution of tables over the combination of their in- and out-degrees at the
Diachronic Graph for the 6 datasets.

In-Degree @DG Out-Degree @ DG Atlas BioSQL Castor Egee SlashCode Zabbix
0 0 11 2 75 6 90 23
#0 0 32 5 8 1 5 9
0 #0 37 28 6 2 24 19
#0 #0 8 10 2 3 7 7
Total 88 45 91 12 126 58

% InDeg: 0, Out Deg:0

]
N
X

& InDeg: >0, Out Deg: 0

In Deg:0, Out Deg:>0
62%

% InDeg: >0, Out Deg: >0

(%)
S
X

40%

DAY

Z
/ %z 33%
/ Y
7 7
2% % 25% %
o % 23} 19% %
= M & 7
N B %
Atlas BioSQL Castor Egee SlashCode Zabbix
(88 tables) (45 tables) (91 tables) (12 tables) (126 tables) (58 tables)

Figure 4.7 Breakdown of tables wrt In- and Out-Degrees at the Diachronic
Graph

86

In the sequel, we introduce the different topological categories, which are
determined on the basis of the topology of the Diachronic Graph.

The most obvious information portrayed in Figure 4.7 is the strong presence
of tables with no inciting edges in 4 of the 6 datasets. Moreover, in two of
these datasets, namely Castor and SlashCode, zero degree tables constitute an
overwhelming majority. Given that our interest concerns the evolution of
tables with respect to the graph topology, we concluded that tables without
any references would not provide us with useful insights answering our
research questions. Due to this, we will frequently accompany the statistical
analyses with extra frequency tables where these tables, which from now on
we will call isolated, are omitted and the respective percentages are counted
over the set of tables with at least one inciting edge.

The next category consists of tables with no incoming references and at least
one outgoing foreign key. This category of tables, which includes populations
varying from 7% to 62%, is identified by the label source since the tables
contained have only references to other tables.

The third category includes tables with only incoming references, so we
distinct them with the label lookup. In the 6 datasets, there is a small group of
tables that lie in this category, not exceeding the value of 36%, but we
consider them to occupy a key role in a database’s schema as they carry
valuable information exploited by other tables, so it is worth studying their
evolution as a standalone group.

The last two categories contain tables that have both in- and out-degrees.
Although their population would not justify their division into two discrete
groups, we assumed that there might be divergence between the tables of the
two categories with respect to the nature of their role. The first of these two
categories includes tables with in- and out-degrees equal to 1 and we use the
term chain link for the participating tables, due to the fact that they operate as
intermediate nodes in the topology of the Diachronic Graph. The second
category, which encompasses tables with total degree greater than 2 and with
both incoming and outgoing references, is defined with the term mini-hub
since the tables included are neither fountains nor sinks of the graph, and
thus, they are hub nodes in any possible path of the graph. Figure 4.8 presents
the distribution of the tables within these two categories.

The overall population of tables included in the last two categories ranges

between 2% and 25% of the population of their datasets, with each dataset not

containing more than 10 such tables. Figure 4.8 demonstrates that the mini-hub

category is the superior one in 5 of the 6 datasets, with the corresponding
87

populations ranging from 57% to 100% with respect to the total number of
tables included. Over the course of our study, and specifically in the phase of
assigning a single label to each table, we realized that the number of tables
included in the chain link category was too small and as a result they were
absorbed by the mini-hub class, forming a unified category identified by the
label internal.

CHAIN LINK
MINI-HUB

90%

86%

50% 50%
43%

w
w
X

S
AT

Atlas BioSQL Castor Egee SlashCode Zabbix
(8 tables) (10 tables) (2 tables) (3 tables) (7 tables) (7 tables)

Figure 4.8 Breakdown of Tables over the Chain Link and Mini-Hub
Categories

Figure 4.9 illustrates how the categories, previously described, are determined
based on the topology of the Diachronic Graph.

88

Name Figure Description

ISOLATED O Tables without edges

SOURCE >{/_ Tables with only outgoing edges
LOOKUP "Cle'i Tables having only incoming edges
CHANUNG g, [ibeaty | o n
DAL EE b Lo moming and surgong edges

Figure 4.9 Table Categories Based on the Topology of the Diachronic Graph

4.3.2 Rules for Table Classification

Having decided which the categories are, we are now ready to label the
tables. Given a graph of any version of a schema’s history, it is
straightforward to assign labels of topological categories to every table due to
the simplicity of the patterns. However, there exist tables that change label
throughout their history (a phenomenon that we call change-of-category) and
as a result we end up with the following categories of tables with respect to
their labels:

e Single label tables, which have a unique topological label throughout
their entire lives.

e Multi-label tables, which have more than one label during their
existence in the dataset.

Figure 4.10 presents the distribution of tables between the ones with a single
label and those with more than one label. Apart from Zabbix, in the rest of the
datasets the majority of tables have a single label in their lives.

89

#iTables with...

Total single
>1 label

Datasets #tables label
Atlas 88 76 12
BioSQL 45 39 6
Castor 91 84 7
Egee 12 9 3
SlashCode 126 97 29
Zabbix 58 30 28

Figure 4.10 Distribution of Tables over the Single and Multi-labels Categories

A problem that arises is that we would like to relate the labels of the tables to
their activity profile and their survival potential and a multi-labeling scheme
would not facilitate this attempt. To address this problem, we have manually
inspected the tables with change-of-category and decided to assign a single
label to each of them, since their number is so small that would not entail any
major loss of information. We have distilled the phenomena of label changes
for a table in the following list:

1. Changes that include an ephemeral transition to a different category
and the return to the former category.

2. Changes from the isolated category to a different category.
3. Changes soon after the table’s “birth”.

4. Changes leading to labels assigned for a short period in terms of the
number of versions.

5. Changes caused by the introduction or the removal of self-references to
the table.

Figure 4.11 demonstrates the breakdown of multi-label tables according to the
aforementioned enumeration of changes that induce label change. A subtle
point to clarify is that the reported frequencies concern occurrences of label
change and not of tables belonging to the respective category (i.e., a table can
experience more than one label changes due to more than one types of
changes). A second subtle point is that a single occurrence of a change may
belong to more than one categories of the enumeration (for example, a change
(a) from isolated to non-isolated, (b) soon after a table’s birth pertains to both

90

these two types of changes). We resolve this issue by counting only the
occurrence in one of the two categories: the resolution of which category to
assign to, is done with decreasing order over the enumerated list of the above
enumeration (i.e., an occurrence is assigned to the first category to which it

pertains).
Type of Change
Ephemeral ISOLATED -> Soon after Short - lasting Self-
Datasets (DO-UNDO) new category birth labels references Other
Atlas 6 0 0 1 0 7
BioSQL 0 1 0 3 5 0
Castor 2 6 0 3 0 0
Egee 0 1 1 2 0 1
SlashCode 20 3 1 0 0 5
Zabbix 0 4 2 3 0 4

Figure 4.11 Occurrences of Label Changes per Type of Change

Having done all that, we discovered that the process of assigning a category
label to multi-label tables can be automated by passing the history of labels of
each table through a list of filters that either remove or ignore parts of the
history with labels that would confuse the understanding of the true nature of
the tables. The input in this automated process is the list of labels of a table’s
history, one label per version that the table exists. The history is then passed
through the list of filters to remove the possibly bewildering parts and
produce as an output a single label for the table.

Figure 4.12 summarizes the rules that represent the list of filters utilized to
classify tables in the topological categories. We should clarify that this list of
filters defines the order according to which the rules are applied on the list of
labels of each table to produce a single label. If we had implemented the
automatic process of filtering, we would have ended up with identical labels
with those of the manual classification for the tables that abide by any of the
rules RO-R5, but we would have misclassified few tables that eventually fire
the rule R6.

At this point, we should define the terms First Known Version and Most
Frequent category which are included in Figure 4.12. The First Known Version
of a table refers to the first version that the table is present in the database’s
schema. The Most Frequent category for a table is the topological category with
the highest frequency in table’s life.

91

Figure 4.13 shows the misclassification rate of the automatic labeling process,
in case the rule R6 was stricter allowing one instead of two categories. Except
for the Atlas, all the datasets have the minimum misclassification rate when
we use the most frequent category. Observe that in the case of labeling via the
most-frequent category, the range of misclassifications is between 0% and 3%, which
we deem really low. Although the misclassification rate in most datasets is not
high, in the rest of our deliberations, we adopt the labels derived from the manual
classification process, which provides a more accurate picture of tables’
topological categories, taking into consideration the special features of the

tables included.
Rule Description of Changes Specific Criteria Category Decision
RO No category change - The respective

R1

R2

R3

R4

R5

R6

Ephemeral category changes ~ Changes must be
(DO-UNDO) successive

Changing from ISOLATED to
another category

category

The first category
prior to the first
change

The category after
the change

Changing category soon after The upper limit is The category after

the First Known Version (FKV) set to 10 versions

Changing to a category with ~ Duration should
short duration not exceed 10
versions

Changing category due to the -
presence of self-references

Changes not abiding by any of -
the previous rules

the change

The category prior to
the change

The category prior to
the change

The Most Frequent
category or the
category at the First
Known Version

(FKV)

Figure 4.12 Rules for Tables” Categories Determination

92

Misclassified Tables (wrt to #tables)

Use Most Frequent

Datasets #tables Category Use Category at FKV
Atlas 88 2% 0%
BioSQL 45 29 29%
Castor 91 3% -
Egee 12 0% 17%
SlashCode 126 29 59,
Zabbix 58 2% 16%

Figure 4.13 Misclassification Rate of Assigning Labels via the Automatic
Process

In the remainder of this chapter we examine how tables” topological
categories are related to various measures of their evolutionary behavior, such
as their lives” duration, their survival potential, their update activity etc.

4.4 Relationship between Tables” Topological Categories and
their Properties

Having determined the categories in the previous section, we are now capable
of studying whether tables’ topological categories are related with various
measures of their evolutionary activity. Before that, we provide a general
overview of how tables are classified in the topological categories after the
classification process we performed in the six datasets.

Figure 4.14 depicts a heatmap with the breakdown of tables over the different
categories defined in the forgoing section. The colors of the cells are based on
their values creating a color scale that spans from white, soft red to intense
red with the first indicating the lowest values, the second corresponding to
values around the median and the last one highlighting the highest values.
The groups with the highest cardinality, which are presented with intense red
background color and white font, consist of isolated tables in 4 of the 6

93

datasets, in contrast to the two scientific datasets in which source tables form

the most populated class.

Topological Datasets

Category Atlas BioSQL Castor Egee SlashCode Zabbix

ISOLATED

SOURCE

LOOKUP

MINI-HUB 6 6 1 0 4 2

CHAIN LINK 1 0 3 0 1
Total 88 45 91 12 68 56

Totalw/o 43 16 6 33 34
ISO

Figure 4.14 Breakdown of Tables over Topological Categories

Figure 4.15 depicts the distribution of the tables in the topological categories
with respect to the total number of the tables.

Topological Datasets

Category Atlas BioSQL Castor Egee SlashCode Zabbix
ISOLATED 13% 4% 82% 50% 51% 39%
SOURCE 43% 64% 7% 17% 32% 36%

LOOKUP 36% 18% 10% 8% 10% 20%

MINI-HUB 7% 13% 1% 0% 6% 4%
CHAIN LINK 1% 0% 0% 25% 0% 2%
Total 88 45 91 12 68 56

Figure 4.15 Distribution of Tables over Categories including Isolated Category

We complement the absolute breakdown of tables with a breakdown of tables
that have at least one inciting edge. Figure 4.16 shows how tables are spread
over the categories after having removed tables of the isolated class. We
highlight the maximum values with red color and bold style, the values that
exceed the average by 10% with red color and those that are equal or lower

than the average by 10% with blue color.

94

Topological Datasets

Category Atlas BioSQL Castor Egee SlashCode Zabbix
SOURCE 49% 67% 38% 33% 67% 59%
LOOKUP 42% 19% 56% 17% 21% 32%
MINI-HUB 8% 14% 6% 0% 12% 6%
CHAIN LINK 1% 0% 0% 50% 0% 3%
Total 77 43 16 6 33 34

Figure 4.16 Distribution of Tables over Categories excluding Isolated

Category

The most interesting observations derived from the last figure can be

summarized as follows:

In 4 of the 6 datasets, the source tables constitute an overwhelming
majority accounting for the 49% at least and 67% at most with respect
to the total number of the tables with at least one edge.

There appears a decreasing tendency for dependence, since the last two
categories that represent complicated relationships include a small
number of tables. In accordance with this tendency we see that in all
datasets, except Egee, the lookup tables exceed the sum of mini-hub and
chain link tables.

The chain link category contains a negligible portion of tables that do
not surpass the 3% of the total number of tables, except for the Egee
dataset in which this category encompasses the one half of the tables.
However, the small number of tables in the Egee dataset and the total
absence of tables of this type in three other datasets are deterrent
factors for preserving this class as an independent category. Thus, as
we previously mentioned, it would be wiser to incorporate them in the
mini-hub category forming a new category for which we will use the
label internal.

Having presented the breakdown of values for the different topological
categories of tables, we now move on to investigate whether the topological
categories of tables are related to their evolutionary behavior. In the sequel,
we will not include the Egee dataset in our study due to the small number of
its tables and our intuition that any statistical results provided for this dataset

would not offer a more adequate answer to the upcoming research questions.

95

4.4.1 Relationship between Topological Categories and Duration

First, we study how table duration is related to the topological categories. The
research question that we attempt to address in this subsection can be stated
as follows:

Research Question: is there a relationship between the topological category of a table
and its duration?

The duration of a table represents the number of versions in which the table
exists in the dataset. We decided to use the categories of duration presented in
[VaZS15], where the authors define three different duration categories based
on the measure of the normalized duration.

Terminology. The normalized duration of a table is defined as the number of
versions that the table exists in the dataset over the total number of versions
of its dataset.

Figure 4.17 presents the bounds of the duration categories as they derived
from applying a k-means clustering based on the values of the normalized
duration. The limits provided by k-means in [VaZS15] are 0.33 and 0.77,
determining the following categories of tables:

i. Tables of short duration, which constitute the second most popular
category with respect to the total number of the tables of the six
datasets.

ii. Tables of medium duration.

iii. Tables of long duration, which account for more than half of the total
number of tables included.

Percentages (wrt

to the total
Tables... Range #Tables #Tables)
Short Lived <0.33 98 28%
Medium Lived 0.33-0.77 73 21%
Long Lived >0.77 179 51%
Total 350 100%

Figure 4.17 Distribution of Tables per Normalized Duration Category

96

Figure 4.18 depicts how tables in each dataset are spread over the categories
of the normalized duration. We highlight with intense red color the dominant
category, which in 4 of the 6 datasets is that of the long lived tables. The
distribution of the tables over the duration categories among the different
datasets can be summarized as follows:

e Short lived tables constitute a population that ranges from 23% to 32%
of the total number of tables.

e Medium lived tables represent a population that varies from 14% to 28%
with respect to the total number of tables, with the exception of BioSQL
dataset in which tables with medium life duration represent the most
populated category. This differentiation is mainly attributed to a
significant schema restructuring at the middle of the database’s life.

e Long lived tables add up to a population that ranges from 40% to 59% of
the total number of tables, with the exception of BioSQL.

BREAKDOWN OF TABLES WRT NORMALIZED DURATION
(PERCENTAGES OVER TOTAL #TABLES)

NORMALIZED DURATION
CATEGORY

SHORT MEDIUM LONG Total

LIVED LIVED LIVED #Tables
Atlas 32% 14% 55% 88
BioSQL 31% 38% 31% 45
Castor 24% 16% 59% 91
SlashCode 23% 19% 58% 69
Zabbix 32% 28% 40% 57

Figure 4.18 Distribution of Tables over the Normalized Duration Categories

Figure 4.19 illustrates the distribution of the tables with respect to the
combination of their topological and duration categories. In the upper part of
the figure the tables of the isolated category are included, while the lower part
ignores them and computes the respective percentages over the total number

97

of the tables with at least one reference. The most interesting observations
derived from the data shown in Figure 4.19 are outlined as follows:

e The most populated category in three of the five datasets is that of the
source tables with medium or long durations.

e The least populated categories, in all datasets apart from BioSQL, are
those of the internal tables with short or medium life durations.

Figure 4.20 presents the distribution of the tables over the topological and
duration categories within each of the topological categories. We see that the
distributions of the source tables are in accordance with the aggregate ones in
three of the five datasets, except for the Castor and the SlashCode datasets. It
is also obvious that in all datasets lookup tables with long life duration exceed
the respective aggregate percentages. To put in a nutshell the most significant
commonalities among the datasets, we mention the following observations:

e The majority of lookup tables tend to live long lives in all the datasets.

e The long lived category is also the most popular in case of the source
tables in 4 out of the 5 datasets, with the exception of the BioSQL
dataset.

e The internal tables avoid lives of short or medium duration, except for
those of the BioSQL and the Zabbix datasets, even though they do not
form a population that exceeds the 10% of the total number of their
dataset’s tables. In case of BioSQL, we attribute the different behavior
to the major schema restructuring occurred at the middle of the
database’s life while the short lives of the internal tables of Zabbix are
due to occasional deletions.

e In contrast to the previous topological categories, the isolated tables
incline to lives of short and medium duration, apart from those of the
Castor dataset that demonstrate a clear proclivity for lives of long
duration.

Having quantified the number of tables per topological and duration
categories, we performed the Chi-square and Fisher tests to assert whether
tables” behavior concerning their normalized duration is differentiated due to
their topological categories. The contingency table we used consists of four
rows, each representing a topological category, and three columns that
correspond to the three duration categories (short, medium and long lived).
Both tests cannot strongly support that the differences among the duration
categories are caused by the topology of the tables, since the p-values that do

98

not exceed the limit of 5% are 4.998E-06 in case of the Atlas dataset and
3.349E-02 for SlashCode.

To sum up, we studied how tables are spread over the combination of their topological
and duration categories identifying several duration-related patterns, out of which we
distinguish internal and lookup tables’ tendency to lives of long duration and the
isolated tables’ disinclination to longevity. However, the statistical evidence does not
allow us to emphatically suggest that there is a correlation between tables’ topological
categories and their duration.

99

Atlas

BioSQL

Castor

SlashCode

Zabbix

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

Atlas

BioSQL

Castor

SlashCode

Zabbix

BREAKDOWN OF ALL TABLES PER TOPOLOGICAL AND DURATION CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)

TOPOLOGICAL CATEGORY

Aggregate per Duration

ISOLATED SOURCE LOOKUP INTERNAL Category

Total SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG
#Tables LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED
88 3% 8% 1% 17% 5% 22% 11% 1% 24% 0% 0% 8% 32% 14% 55%
45 2% 2% 0% 22% 24% 18% 4% 4% 9% 2% 7% 4% 31% 38% 31%
91 24% 13% 45% 0% 1% 5% 0% 2% 8% 0% 0% 1% 24% 16% 59%
69 19% 12% 20% 3% 6% 23% 0% 1% 9% 0% 0% 6% 23% 19% 58%
57 14% 16% 9% 11% 7% 18% 4% 5% 11% 2% 0% 4% 32% 28% 40%

TOPOLOGICAL CATEGORY

Aggregate per Duration

SOURCE LOOKUP INTERNAL
Category
Total SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG SHORT MEDIUM LONG
#Tables LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED LIVED
77 19% 5% 25% 13% 1% 27% 0% 0% 9% 32% 6% 61%
43 23% 26% 19% 5% 5% 9% 2% 7% 5% 30% 37% 33%
16 0% 6% 31% 0% 13% 44% 0% 0% 6% 0% 19% 81%
33 6% 12% 48% 0% 3% 18% 0% 0% 12% 6% 15% 79%
34 18% 12% 29% 6% 9% 18% 3% 0% 6% 26% 21% 53%

Figure 4.19 Distribution of Tables per Topological and Duration Categories with and without the ISOLATED Category

100

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO BELONG TO A CERTAIN DURATION CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

TOPOLOGICAL CATEGORY

ISOLATED SOURCE LOOKUP INTERNAL Aggregate per Duration Category

Total SHORT MEDIUM LONG Total SHORT MEDIUM LONG Total SHORT MEDIUM LONG Total SHORT MEDIUM LONG Total SHORT MEDIUM LONG

#Tables LIVED LIVED LIVED #Tables LIVED LIVED LIVED #Tables LIVED LIVED LIVED #Tables LIVED LIVED LIVED #Tables LIVED LIVED LIVED

Atlas 11 27% 64% 9% 38 39% 11% 50% 32 31% 3% 66% 7 0% 0% 100% 88 32% 14% 55%
BioSQL 2 50% 50% 0% 29 34% 38% 28% 8 25% 25% 50% 6 17% 50% 33% 45 31% 38% 31%
Castor 75 29% 16% 55% 6 0% 17% 83% 9 0% 22% 78% 1 0% 0% 100% 91 24% 16% 59%
SlashCode 35 37% 23% 40% 22 9% 18% 73% 7 0% 14% 86% 4 0% 0% 100% 68 22% 19% 59%
Zabbix 22 36% 41% 23% 20 30% 20% 50% 11 18% 27% 55% 3 33% 0% 67% 56 30% 29% 41%

Figure 4.20 Probability for a Table of a Topological Category to Belong to a Certain Duration Category

101

4.4.2 Relationship between Topological Categories and Survival

The next property that we study in reference to the topological categories is
the tables” survival potential. We describe a table as a “survivor” if the table
exists in the last known version of its dataset. The respective research
question that we attempt to address is the following;:

Research Question: is there a relationship between the topological category of a table
and its survival potential?

Figure 4.21 depicts the population of survivors in each dataset with respect to
the topological categories they belong to. The including percentages are
computed with reference to the total number of each dataset’s tables. The red
and blue colors represent the most and the least populated categories,
respectively.

DISTRIBUTION OF SURVIVORS WITH AT LEAST ONE EDGE PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

Aggregate per Topological Category

TOPOLOGICAL CATEGORY (FOR SURVIVORS) (ind. of survival)
ind. urviv

Total Aggregate
#Tables SOURCE LOOKUP INTERNAL %Survivors SOURCE LOOKUP INTERNAL
Atlas 77 39% 34% 9% 82% 49% 42% 9%
BioSQL 43 44% 12% 9% 65% 67% 19% 14%
Castor 16 31% 44% 6% 81% 38% 56% 6%
SlashCode 33 64% 21% 12% 97% 67% 21% 12%
Zabbix 34 53% 24% 6% 85% 59% 32% 9%

Figure 4.21 Distribution of “Survivors” per Topological Category

It is obvious that, in four out of the five datasets studied, there appears a
decreasing sequence of percentages of the tables included among the
categories as presented in Figure 4.21, with the highest cardinality of
survivors to be assigned to the source tables and the lowest one attributed to
the internal tables. Figure 4.21 also contains the aggregate percentages of the
survivors, which are surprisingly high in all datasets varying from 65% to
97% of the corresponding total number of tables. The last three columns
include the overall percentages of tables per topological category, regardless
of their survival potential. We see that the “survivors” of the internal category
follow the respective aggregate percentages, which means that the survival
potential for these tables will be high.

102

In the previous figure we ignored the existence of the isolated tables, counting
the “survivors” with reference to the tables with at least one edge. If we
include the isolated tables, we will observe few differentiations concerning the
spread of the tables among the topological categories. Figure 4.22 depicts the
distribution of the tables-survivors over the topological categories including
the isolated category. Once again, the red color signifies the most populated
category, in terms of the number of survivors, and the blue color the least one.
We should mention that in two datasets, namely Castor and SlashCode, the
isolated “survivors” form a clear majority, which is largely explained by the
strong presence of the tables of the isolated group in these two datasets. The
isolated “survivors” are the second most populated group of tables in Zabbix,
as opposed to Atlas where they are the second least popular category. Finally,
BioSQL does not encompass “survivors” of the isolated category at all.

DISTRIBUTION OF ALL SURVIVORS PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

Aggregate per Topological Category (ind. of

TOPOLOGICAL CATEGORY (FOR SURVIVORS) survival)

Total Aggregate
#Tables ISOLATED SOURCE LOOKUP INTERNAL %Survivors ISOLATED SOURCE LOOKUP INTERNAL
Atlas 88 11% 34% 30% 8% 83% 13% 43% 36% 8%
BioSQL 45 0% 42% 11% 9% 62% 4% 64% 18% 13%
Castor 91 67% 5% 8% 1% 81% 82% 7% 10% 1%
SlashCode 68 44% 31% 10% 6% 91% 51% 32% 10% 6%
Zabbix 56 30% 32% 14% 5% 82% 39% 36% 20% 5%

Figure 4.22 Distribution of “Survivors” per Topological Category (including
ISOLATED)

Figure 4.23 illustrates how the tables that survive are spread over the
topological categories with respect to the total number of tables of each
category. The patterns that we observe in this figure can be outlined as
follows:

e The distributions of the survivors of the categories source and lookup are
similar to the respective aggregate distributions in all datasets, with the
exception of the lookup survivors of the Zabbix dataset.

e The internal category ensures that each participating table is sure to
survive and this observation holds in all the datasets apart from
BioSQL. In all the datasets, the percentages of the internal survivors
exceed the respective aggregate portions of survivors.

103

PROBABILITY OF SURVIVAL PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

Atlas
BioSQL
Castor
SlashCode

Zabbix

TOPOLOGICAL CATEGORY

Aggregate Survival

SOURCE LOOKUP INTERNAL Probability
Total Total Total Total
#Tables #Survivors %Survivors #Tables #Survivors %Survivors #Tables #Survivors %Survivors #Tables %Survivors
38 30 79% 32 26 81% 7 7 100% 77 82%
29 19 66% 8 5 63% 6 4 67% 43 65%
6 5 83% 9 7 78% 1 1 100% 16 81%
22 21 95% 7 7 100% 4 4 100% 33 97%
20 18 90% 11 8 73% 3 3 100% 34 85%

Figure 4.23 Probability of Survival per Topological Category

104

Figure 4.24 shows the probability of survival for the isolated tables. The
survival potential for the tables of this category is significantly high in all the
datasets except for BioSQL. It is also noteworthy that the including
percentages approach the aggregate ones in four of the five datasets.

PROBABILITY OF SURVIVAL FOR THE ISOLATED TABLES (PERCENTAGES OVER

TOTAL #TABLES)
Aggregate Survival
Probability
Total Total
H#Tables #Survivors %Survivors H#Tables %Survivors
Atlas 11 10 91% 88 83%
BioSQL 2 0 0% 45 62%
Castor 75 61 81% 91 81%
SlashCode 35 30 86% 68 91%
Zabbix 22 17 85% 56 86%

Figure 4.24 Probability of Survival for the ISOLATED Tables

The high percentages of “survivors”, regardless of the topological categories,
prejudiced us against the impact of the categories on the survival potential of
a table. This intuition was confirmed by the statistical tests we conducted by
forming 4x2 contingency tables, with their rows corresponding to the
topological categories (isolated, source, lookup, internal) and their two
columns representing the populations of the tables that exist in the last known
version and those that do not. The lowest p-value the Chi-square and Fisher
tests returned was 0.3238, indicating that there are no sufficient data to
support the correlation between the topological categories and the survival
potential.

Owerall, we should stress the high survival potential of the tables disregarding their
topological categories, which along with the statistical results are strong indications
that tables’ topology is not likely to be related to their probability to exist in the last
known version.

105

4.4.3 Relationship between Tables’ Topological Categories and
Birth Version

In this subsection we investigate if birth versions of the tables are related to
their topological categories. We are particularly interested in the relationship
between the probability that a table is born in the originating version of the
schema history and the topological category it belongs to. In this context, we
can formulate the relevant research question as follows:

Research Question: how is the topological category of a table related to the probability
of being born in the originating version of its dataset’s schema history?

Figure 4.25 illustrates the populations of the tables born in the very first
version of their datasets history. The left part of the figure ignores tables of
the isolated category, while the right part includes them. We can observe that
in three out of the five datasets, the tables born in the originating version form
overwhelming majorities that exceed the 70% of the total number of the
tables.

DISTRIBUTION OF TABLES BORN @v0 (PERCENTAGES OVER TOTAL #TABLES)

TABLES WITH AT LEAST ONE

EDGE ALL TABLES
Born @vO Born @vO0
Total Total
#Tables #Tables %Tables #Tables #Tables %Tables
Atlas 77 55 71% 88 56 64%
BioSQL 43 19 44% 45 21 47%
Castor 16 14 88% 91 62 68%
SlashCode 33 26 79% 68 41 60%
Zabbix 34 13 38% 56 15 27%

Figure 4.25 Populations of Tables (left: without ISOLATED; right: with
ISOLATED) Born in the Originating Version

In Figure 4.26 we present how the tables born in the first version are spread
over the topological categories. The red and blue colors indicate the most and
the least populated topological categories with respect to the total number of
each dataset’s tables.

106

It is worth mentioning that, in three of the five datasets, source tables born in
the first version of their dataset’s history are the most popular category, even
though only in one of them, namely BioSQL, they are the dominating group
as it is illustrated in Figure 4.15 that presents the distribution of the tables
over the topological categories. In Atlas, we notice that lookup tables born in
the very first version exceed those of the source category, though the latter are
the most popular among the dataset’s tables irrespectively of their “birth”

version.

DISTRIBUTION OF TABLES BORN @v0 PER TOPOLOGICAL CATEGORY
(PERCENTAGES OVER TOTAL #TABLES)

TOPOLOGICAL CATEGORY
Total
#Tables ISOLATED SOURCE LOOKUP INTERNAL Total

Atlas 88 1% 26% 28% 8% 64%
BioSQL 45 4% 24% 9% 9% 47%
Castor 91 53% 5% 9% 1% 68%
SlashCode 68 22% 24% 9% 6% 60%
Zabbix 56 4% 11% 9% 4% 27%

Figure 4.26 Distribution of Tables Born in the Originating Version per
Topological Category

Figure 4.27 depicts the potential the tables of each topological category have
to exist in the first version of their schema’s history.

The commonalities that we encounter with reference to the probability of
tables being “born” in the earliest version of their schema can be summarized

as follows:

e The tables of the internal category are 100% certain to be “born” in the
originating version in three out of the five datasets. In BioSQL and
Zabbix, although the overall population of the internal tables is not
present in the first version, the corresponding percentages are high
(67% in both cases).

e Lookup tables have higher probabilities to be “born” in the first version
compared to the respective average probability, and in fact, their
majority is present at the first version for four out of five datasets. The
same holds for the corresponding probabilities of the source tables.

107

PROBABILITY TO BE BORN @v0 PER TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

TOPOLOGICAL CATEGORY AGGREGATE BORN @vO0
ISOLATED SOURCE LOOKUP INTERNAL TABLES WITH AT LEAST ALL TABLES
ONE EDGE
Total Total Total Total Total Total

#Tables Born @vO H#Tables Born @vO H#Tables Born @v0 #Tables Born @v0 #Tables Born @vO #iTables Born @vO

Atlas 11 9% 38 61% 32 78% 7 100% 77 71% 88 64%
BioSQL 2 100% 29 38% 8 50% 6 67% 43 44% 45 47%
Castor 75 64% 6 83% 9 89% 1 100% 16 88% 91 68%
SlashCode 35 43% 22 73% 7 86% 4 100% 33 79% 68 60%
Zabbix 22 9% 20 30% 11 45% 3 67% 34 38% 56 27%

Figure 4.27 Probability to be “born” in the First Version per Topological Category

108

e The tables of the isolated category have the lowest potential for being
“born” in the originating version of their datasets, in four of the five
datasets. Equivalently, we can claim that it is easier to add tables of this
category over the course of a database’s schema evolution than
introducing lookup or internal tables.

e The probability for a source table to be introduced in the first version of
its dataset’s history is, approximately, in accordance with the average
probability and, in all datasets, is lower than the respective potential of
the lookup tables.

The common features among the datasets related to the probability for a table
to be “born” in the originating version if it belongs to a certain topological
category are supported to some extent by the statistical evidence that assess
the independence of the birth version from the topological categories.
Specifically, we performed the Chi-square and Fisher statistical tests by
utilizing a contingency table consisted of four rows representing the
topological categories and two columns corresponding to tables born in the
tirst version and those that are not. The p-values that do not exceed the limit
of 5% are 4.74E-02 for Atlas, 1.36E-02 for SlashCode and 3.22E-02 for Zabbix.

To sum up, we observed that internal and lookup tables are more likely to be “born”
in the originating version of their dataset’s history, which, expressed in a different
way, means that it is quite unlikely that they are “born” after this version. In
contrast, isolated and source tables are less probable to be introduced in the first
version, which entails that it is more probable that versions succeeding the originating
one include new tables of these two categories. The behavior of the lookup and the
internal tables can be attributed to the so-called gravitation to rigidity pattern
[VaZS17], according to which it is fairly improbable that dependency-magnet tables,
as those of the two aforementioned categories, experience any kind of change in later
versions of database’s schema. In this context, we can assume that administrators
prefer creating tables that attract foreign keys in the early if not in the originating
versions of the database in order to avoid changes caused by inserting them in
subsequent versions.

4.4.4 Relationship between Tables’ Topological Categories and
Update Activity

The next issue that we are interested in is that of the update profile of the
tables with respect to their topological categories. Thus, the research question
that arises can be put in the following way:

109

Research Question: is there a relationship between the topological category of a table
and its update activity?

To ease the process of analyzing tables” update behavior with respect to their
topological categories we decided to utilize the activity classes defined in
[VaZS515], which are summarized as follows:

i. Rigid tables, which experience no updates throughout their entire lives
in their datasets.

ii. Quiet tables, with the total number of updates not exceeding the value
of 5 and the Average Transitional Update (ATU) to be less than 0.1.

iii. Active tables, which undergo more than 5 updates and have an ATU
higher than 0.1.

Terminology. The Average Transitional Update (ATU) of a table is defined as
the fraction of the sum of updates the table undergoes throughout its life over
its duration. [VaZS15]

Figure 4.28 presents the distribution of the tables over the aforementioned
activity classes. The upper part of the figure ignores the presence of the
isolated tables, whereas the lower part includes them. The largest and the
smallest classes in terms of the tables” population are highlighted with red
and blue colors, respectively.

Ignoring the isolated tables, we observe that, in four of the five datasets, the
most multitudinous group is that of the quiet tables, accounting for nearly or
more than the one half of tables” population. But, if we take into account the
isolated tables, we can identify a decrease of small or large magnitude in the
numbers of quiet tables in all the datasets, apart from Atlas, and a
simultaneous increase in the cardinality of the rigid tables. As for the active
tables, if we include the isolated category, there appears a decrease in their
numbers in all the datasets to an extent varying from 1% to 11% with respect
to the total number of the tables.

110

BREAKDOWN OF TABLES WITH AT LEAST ONE EDGE WRT ACTIVITY CLASS
(PERCENTAGES OVER TOTAL #TABLES)

Activity Class Activity Class (%)
Total

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 77 15 37 25 19% 48% 32%
BioSQL 43 14 13 16 33% 30% 37%
Castor 16 7 7 2 44% 44% 13%
SlashCode 33 3 19 11 9% 58% 33%
Zabbix 34 11 21 2 32% 62% 6%

BREAKDOWN OF ALL TABLES WRT ACTIVITY CLASS (PERCENTAGES OVER
TOTAL #TABLES)

Activity Class Activity Class (%)
Total

#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE

Atlas 88 18 43 27 20% 49% 31%
BioSQL 45 16 13 16 36% 29% 36%
Castor 91 57 31 3 63% 34% 3%
SlashCode 68 15 38 15 22% 56% 22%
Zabbix 56 23 30 3 41% 54% 5%

Figure 4.28 Distribution of Tables per Activity Class (top: without the
ISOLATED; bottom: with the ISOLATED)

Next, we examine the impact of the topological categories on tables” update
activity. Figure 4.29 shows how tables are divided into the different
combinations of the topological and activity categories. As we mentioned

111

before, we used the red color to signify the most populated group of tables in
each dataset and the blue one for the least popular group after the groups
with no including tables. As far as the distribution of the tables of the
different topological categories over the activity classes is concerned, we
should mention the following observations:

e In two of the five datasets, namely Atlas and Zabbix, the source tables
with moderate update activity are the most popular with respect to the
total number of the tables. In Castor and SlashCode, the isolated tables
with no and quiet update activity, respectively, form the leading
groups of tables, while in BioSQL we see that the most popular groups
are those of the source tables with all kinds of update activities.

e We observe that in the least populated groups are included the internal
tables with moderate activity in BioSQL, Castor and SlashCode, the
isolated tables with intense activity in Zabbix and the lookup tables with
no updates in Atlas.

The upper part of Figure 4.30 depicts the probability for a table of a certain
topological category to develop a certain update activity during its existence
in its dataset. Once again, the red and blue colors correspond to the largest
and smallest groups respectively, but in this case with reference to the
number of tables of each topological category.

We outline the most interesting information derived from this figure in the
following list:

o Isolated tables experience no or few updates with a probability that is
higher than 82%.

e The likelihood for a source table to undergo no or few changes
throughout its life is at least 82% in all datasets, apart from BioSQL.

e In three of the five datasets, the lookup tables with intense update
activity exceed 38%, while those of the Castor and Zabbix datasets are
pertained to quiet lives in terms of the changes they experience.

¢ In four of the five datasets, the internal tables are expected to undergo
numerous updates.

112

Atlas
BioSQL
Castor
SlashCode

Zabbix

BREAKDOWN OF TABLES PER TOPOLOGICAL CATEGORY AND ACTIVITY CLASS (PERCENTAGES OVER TOTAL #TABLES)

TOPOLOGICAL CATEGORY

Aggregate per Activity

ISOLATED SOURCE LOOKUP INTERNAL Class
Total
#Tables RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE RIGID QUIET ACTIVE
88 3% 7% 2% 13% 25% 6% 5% 17% 15% 0% 0% 8% 19% 48% 32%
45 4% 0% 0% 22% 20% 22% 4% 7% 7% 4% 2% 7% 33% 30% 37%
91 55% 26% 1% 4% 1% 1% 3% 5% 1% 0% 1% 0% 44% 44% 13%
68 18% 28% 6% 4% 22% 6% 0% 4% 6% 0% 1% 4% 9% 58% 33%
56 21% 16% 2% 13% 23% 0% 5% 14% 0% 2% 0% 4% 32% 62% 6%

Figure 4.29 Distribution of Tables per Topological and Activity Categories

113

Atlas
BioSQL
Castor
SlashCode

Zabbix

Atlas
BioSQL
Castor
SlashCode

Zabbix

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO DEVELOP A CERTAIN UPDATE ACTIVITY (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

TOPOLOGICAL CATEGORY

ISOLATED SOURCE LOOKUP INTERNAL Aggregate per Activity Class
Total Total Total Total Total
#Tables RIGID QUIET ACTIVE #Tables RIGID QUIET ACTIVE #Tables RIGID QUIET ACTIVE #Tables RIGID QUIET ACTIVE #Tables RIGID QUIET ACTIVE
11 27% 55% 18% 38 29% 58% 13% 32 13% 47% 41% 7 0% 0% 100% 88 20% 49% 31%
2 100% 0% 0% 29 34% 31% 34% 8 25% 38% 38% 6 33% 17% 50% 45 36% 29% 36%
75 67% 32% 1% 6 67% 17% 17% 9 33% 56% 11% 1 0% 100% 0% 91 63% 34% 3%
35 34% 54% 11% 22 14% 68% 18% 7 0% 43% 57% 4 0% 25% 75% 68 22% 56% 22%
22 55% 41% 5% 20 35% 65% 0% 11 27% 73% 0% 3 33% 0% 67% 56 41% 54% 5%
PROBABILITY FOR A TABLE OF AN ACTIVITY CLASS TO BELONG TO A CERTAIN TOPOLOGICAL CATEGORY (PERCENTAGES OVER TOTAL #TABLES OF EACH ACTIVITY CLASS)
ACTIVITY CLASS
RIGID QUIET ACTIVE Aggregate per Topological Category
Total Total Total Total
#Tables ISOLATED SOURCE LOOKUP INTERNAL #Tables ISOLATED SOURCE LOOKUP INTERNAL #Tables ISOLATED SOURCE LOOKUP INTERNAL #Tables ISOLATED SOURCE LOOKUP INTERNAL
18 17% 61% 22% 0% 43 14% 51% 35% 0% 27 7% 19% 48% 26% 88 13% 43% 36% 8%
16 13% 63% 13% 13% 13 0% 69% 23% 8% 16 0% 63% 19% 19% 45 4% 64% 18% 13%
57 88% 7% 5% 0% 31 77% 3% 16% 3% 3 33% 33% 33% 0% 91 82% 7% 10% 1%
15 80% 20% 0% 0% 38 50% 39% 8% 3% 15 27% 27% 27% 20% 68 51% 32% 10% 6%
23 52% 30% 13% 4% 30 30% 43% 27% 0% 3 33% 0% 0% 67% 56 39% 36% 20% 5%

Figure 4.30 Probability for a Table of a Topological Category to Develop Specific Update Activity and vice versa

114

The bottom part of Figure 4.30 presents the probability for a table with a
certain activity profile to belong to a specific topological category. In a
nutshell, we can identify the subsequent commonalities among the datasets:

e The likelihood for a rigid table to be source is very high, especially in the
datasets with no strong presence of isolated tables, while in datasets
with numerous isolated tables, the rigid tables are more likely to be
isolated. On the other hand, it is not quite possible for a rigid table to be
lookup, since in all datasets this probability is less than the average one,
and it is completely impossible a rigid table to be internal in three of the
five datasets.

e In three of the five datasets, quiet tables are likely to belong to the source
category, with the exceptions of Castor and SlashCode, in which quiet
tables tend to be isolated. It is also obvious that the distribution of the
quiet tables over the topological categories is in agreement with the
aggregate one in all datasets.

e As for the active tables we notice a tendency towards categories of high
topological complexity. This is verified by the fact that, in all datasets,
the chances for an active table to belong to a topologically complex
category are higher compared to the average probabilities. This is
another way to identify internals’ inclination towards intense update
activity.

The statistical evidence provided by Chi-square and Fisher tests is fairly
strong. For each dataset, we utilized a contingency table consisted of four
rows, each of which represents a topological category and three columns
corresponding to the different activity classes. The p-values derived from
these tests are below the critical value of 5% in four of the five datasets,
ranging from 9.6E-05 (Zabbix) to 3.89E-02 (Castor). The statistical results
confirm that tables with different topological categories are subjects to different
amounts of updates.

Altogether, we established that the topological category of a table is related to its
update activity. Giving a summary of the findings, we can associate isolated and
source tables with no or few updates, lookup tables with few or many changes and
internal tables with many updates. These two different patterns can be regarded as an
example of the “electrolysis” pattern presented in [VaZal7], where the authors
identified two completely inverse behaviors concerning the relationship between
tables” duration and their survival potential, with “dead” tables living for short
durations and “survivors” related to lives of long duration. In the same sense, we can
claim that topologically simplest tables are associated with few or no changes, whereas
complex tables in terms of their topology are related to lives of intense update activity.
115

4.4.5 Relationship between Tables’ Topological Categories and
Size Change

Studying the relationship between tables” topological categories and their
activity profiles we were surprised by the significant portions of lookup tables
that undergo few or many updates over their lives in three of the five
datasets. One would expect that tables which are dependency magnets are not
prone to changes, since the dependents are certain to be affected. Given that,
we decided to study how the topological category of a table is related to its
size change between its first and last known versions. Naturally, the relative
research question is expressed in the following way:

Research Question: how is the topological category of a table related to its size
change?

Intuitively, we classified tables with respect to the scale of their size change in
three categories that each of them expresses size reduction, stability or
expansion. The scale of one table’s size change is defined as the fraction of its
size in the last version over its size in its first version. In a nutshell, the three
size scale categories can be defined as follows:

i. Scale down, when there is a reduction in table’s size, with the respective
size scale to be less than 1.

ii. Steady, when table’s sizes in the first and last versions are even, with
the scale to be equal to 1.

iii. Scale up, when there is an expansion in table’s size, with the scale to be
greater than 1.

Figure 4.31 shows how the tables of each dataset are spread over the size scale
categories. It is obvious that in all the datasets more than one half of the tables
remain steady in terms of their size, while a considerable number of tables
expand their size between their first and last versions. As for those that
downsize their number of attributes, we observe that they do not constitute
groups that exceed the 10% of the total number of the tables.

116

BREAKDOWN OF TABLES PER SIZE SCALE
CATEGORY (PERCENTAGES OVER TOTAL #TABLES)

Size Scale Categories

Total
H#tables <=0,99 1 >1
Atlas 88 6% 69% 25%
BioSQL 45 7% 53% 40%
Castor 91 3% 67% 30%
SlashCode 68 3% 50% 47%
Zabbix 56 2% 55% 43%

Figure 4.31 Distribution of Tables per Size Scale Category

We present in the upper part of Figure 4.32 the distribution of the tables over
their size scale and topological category. The percentages included are
quantified with reference to the total number of tables of each dataset. The red
and blue colors represent the largest and smallest groups of tables with
respect to the total number of tables, without taking into account the
categories with no participating tables.

We outline the most noteworthy information derived from the upper part of
Figure 4.32 in the upcoming list:

e In three out of the five datasets, the largest group of tables is that
consisted of isolated tables with steady size scale. In Atlas and BioSQL
the most populated category comprises the source tables with steady
size scale.

e We should also mention the low percentages of tables that experience a
size reduction in all topological categories. The corresponding values
do not surpass the 2% of the total number of tables of each dataset.

117

BREAKDOWN OF TABLES PER TOPOLOGICAL AND SIZE SCALE CATEGORIES (PERCENTAGES OVER TOTAL #TABLES)
TOPOLOGICAL CATEGORY

ISOLATED SOURCE LOOKUP INTERNAL Aggregate per Size Scale

Category
Total
#Tables <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1 <=0,99 1 >1
Atlas 88 1% 9% 2% 2% 35% 6% 1% 22% 14% 1% 3% 3% 6% 69% 25%
BioSQL 45 0% 4% 0% 7% 40% 18% 0% 4% 13% 0% 4% 9% 7% 53% 40%
Castor 91 1% 59% 22% 0% 4% 2% 2% 3% 4% 0% 0% 1% 3% 67% 30%

SlashCode 68 1% 35% 15% 1% 13% 18% 0% 1% 9% 0% 0% 6% 3% 50% 47%

Zabbix 56 2% 27% 11% 0% 20% 16% 0% 7% 13% 0% 2% 4% 2% 55% 43%

PROBABILITY FOR A TABLE OF A TOPOLOGICAL CATEGORY TO HAVE CERTAIN SIZE SCALE (PERCENTAGES OVER TOTAL #TABLES OF EACH TOPOLOGICAL CATEGORY)

TOPOLOGICAL CATEGORY
Aggregate per Size Scale

ISOLATED SOURCE LOOKUP INTERNAL
Categorv

Total Total Total Total Total

#Tables <=0,99 1 >1 #Tables <=0,99 1 >1 #Tables <=0,99 1 >1 #iTables <=0,99 1 >1 #Tables <=0,99 1 >1
Atlas 11 9% 73% 18% 38 5% 82% 13% 32 3% 59% 38% 7 14% 43% 43% 88 6% 69% 25%
BioSQL 2 0% 100% 0% 29 10% 62% 28% 8 0% 25% 75% 6 0% 33% 67% 45 7% 53% 40%
Castor 75 1% 72% 27% 6 0% 67% 33% 9 22% 33% 44% 1 0% 0% 100% 91 3% 67% 30%
SlashCode 35 3% 69% 29% 22 5% 41% 55% 7 0% 14% 86% 4 0% 0% 100% 68 3% 50% 47%
Zabbix 22 5% 68% 27% 20 0% 55% 45% 11 0% 36% 64% 3 0% 33% 67% 56 2% 55% 43%

Figure 4.32 Top: Distribution of Tables over Topological and Size Scale Categories; Bottom: Probability for a Table to Have a
Certain Size Scale

118

The lower part of Figure 4.32 contains the probability for a table of a certain
topological category to experience a specific change in its size. Once again, the
red and blue colors signify the most and the least populated groups of tables
respectively, within each topological category without taking into account the
total absence of including tables.

The similarities with regard to the combination of topological and size scale
categories we identified among datasets can be summarized as follows:

e In all datasets, the absolute majority of the isolated tables remain steady
in terms of their size.

e In four of the five datasets, the probability that a source table remains
steady exceeds the value of 55%.

e Contrary to the behavior of the source tables, the lookup tables
demonstrate a proclivity for increasing their attributes. This
observation, which holds in four of the five datasets, except for Atlas,
gives us an insight into the observation we briefly mentioned in the
beginning of this subsection about the intense activity of the lookup
tables. We can claim that, at least in four datasets, lookup tables’
heightened update activity results in the expansion of their size.

e As regards the internal tables, in all the datasets it is highly likely that
they undergo an expansion of their size during their existence in their
datasets.

e Compared to the average probability of experiencing a certain size
change, we distinguished two different patterns: the one according to
which the isolated and source tables follow the average probability for
size reduction, have higher probability for size steadiness and lower
for size expansion and the other including lookup and internal tables
with a potential for size reduction lower than the average with few
exceptions, a probability for size steadiness below the average and a
higher likelihood for size expansion.

Despite the patterns we observed with reference to the size scale of tables
within each topological category, the evidence derived from the statistical
tests are inadequate to support the correlation between the topological
categories and the size scale ones. We utilized a 4x3 contingency table with its
rows consisting of the topological categories and its columns representing the
size scale categories. Apart from Castor and SlashCode for which the tests
returned p-values 1.41E-02 and 6.8E-03 respectively, the statistical results for

119

the rest of the datasets surpass the limit of 5% with the lowest p-value to be
0.089 in the case of the Atlas dataset.

In a nutshell, we distinguished two different behaviors concerning tables’ size change
and topological categories. The majority of the isolated and source tables remain
steady, whereas the lookup and internal tables tend to increase their size.

4.5 Summary of Findings

In this chapter, our main objective was to study to what extent tables’
topology can determine their evolutionary activity. Given that, we defined
four topological categories at first based on the topology of the Diachronic
Graph. We then used the schema histories of five open-source datasets to
classify their tables into the topological categories and examined whether
these categories are related with various measures of tables’ activity. The
labeling process posed the dilemma of how to handle tables that change
topological categories throughout their lives and for this reason we manually
inspected the changes of these tables. This manual examination led to a set of
rules that applied to the tables” history would remove parts that would be
confusing for the understanding of the true nature of the tables and would
make feasible the automation of the classification process. However, we opted
for utilizing the labels derived from the manual classification of the tables.
Having assigned a single label to each table, we studied how the topological
category of a table is related to various measures of its evolutionary activity,
including duration, survival potential, birth version, update activity and the
scale of its size change. The remainder of this section includes the most
important findings concerning our study on tables’ topology and evolution.

Concerning the normalized duration of the tables, we noticed that tables of
long duration constitute the most popular group in four of the five datasets
and those of short duration are the second largest category without exception
among datasets. Studying the relationship between the topological category
of a table and its normalized duration, we observed that if we ignore the
existence of the isolated tables, the distributions of the source and lookup tables
over the duration categories follow the average distributions, with the
exceptions of BioSQL and Zabbix. We also identify the following interesting
similarities among the datasets:

e In all datasets, lookup tables are prone to lives of long duration.

120

e In four of the five datasets, at least half of the source tables are long
lived, apart from those of the BioSQL dataset.

e The internal tables avoid lives of short or medium duration, with the
exception of BioSQL.

e As for the isolated tables, they avoid living for long periods, except
for those of the Castor dataset.

The inclination of the tables towards lives of long duration holds for three of
the four topological categories with few exceptions and this is an indication
that it is quite unlikely that the topological categories are associated with
tables” duration. This was also confirmed by the statistical tests we conducted
for assessing the independence of tables’ duration from their topological
categories.

As far as survivors’ distribution over the topological categories is concerned,
we identified a monotone decrease pattern in the size of the categories’
populations, starting from the source tables followed by lookup and ending
with the internal tables in all datasets, except Castor. As for the relationship
between the topological categories and the survival, we observed that the
corresponding percentages are high in all datasets, excluding the isolated
tables of the BioSQL dataset. The only difference between the topological
categories is that the survival rate for the source and lookup tables follows the
aggregate one, while in case of the internal tables the respective percentages
are higher compared to the aggregate ones. The statistical evidence produced
by the Chi-square and Fisher tests was not adequate to verify that topological
categories can determine the survival rate of the including tables.

As regards the relationship between topological categories and tables” “birth”
version, we were specifically interested to examine if the topological category
of a table can have an effect on the probability to be introduced in the
originating version of its dataset’s history. @ Concerning the overall
percentages of the tables “born” in the very first version of their datasets and
excluding tables with no edges, we set apart the high portions of tables in
three datasets, namely Atlas, Castor and SlashCode, in which the relative
percentages exceed the value of 70%. The findings with reference to the
relationship between the topological categories and the “birth” version can be
summarized as follows:

e The internal and lookup tables demonstrate high probability to exist in
the first version of their datasets, with the involved percentages of the
former reaching the value of 100% in three of the five datasets.

121

e The source tables in all datasets, except BioSQL, present the second
lowest potential for being born in the originating version of their
datasets after the isolated tables.

e Compared to the aggregate probability of being created in the first
version of a dataset and ignoring isolated category, the source and lookup
tables approach the overall potential, while internal significantly exceed
it.

We attributed the high probability for a lookup or internal table to be “born” in
the first version to the gravitation to rigidity pattern, according to which it is
not preferable to creating tables that attract foreign key constraints in later
versions of the schema history. The statistical tests we performed were to
some extent in favor of the relationship between one table’s topological
category and the probability of being created in the originating version.

Concerning tables’ update activity and its relationship with topological
categories, we initially classified tables with respect to their update profile in
three categories, which are the rigid with no changes, the guiet with few
updates and the active with more than five updates. We saw that the majority
of the tables in four datasets are those with few changes, though we observed
an increase in the number of the rigid tables after including tables of the
isolated category. As for the distribution of the tables with reference to the
topological categories and their update profile, we highlighted the following
observations:

e Concerning the largest groups of tables, we encountered an
inconsistent behavior, with source tables with a quiet update profile
being the most popular in Atlas and Zabbix, with the isolated tables
with no or few updates constituting the most multitudinous categories
in Castor and SlashCode and with the source tables with all kinds of
updates being the most populated groups in BioSQL.

e The least popular groups of tables are those of the internal category
with no or few updates.

After that, we quantified the probability for a table of a certain topological
category to develop a certain update activity. The most noteworthy findings
are presented in the upcoming list:

e Isolated tables experience no or few updates during their lives.

e Apart from BioSQL, the source tables are very likely to sustain no or
few updates.

122

e In three of the five datasets, lookup tables are subjects to few or many
updates.

e In four of the five datasets, internal tables are expected to undergo
many updates throughout their lives.

Concerning the potential for a table of certain update profile to belong to a
specific topological category, we noticed that rigid tables are possible to
belong to the categories of the isolated and source tables with a probability that
is greater than 76%. Quiet tables are likely to be source in three of the five
datasets, with the exceptions of Castor and SlashCode, in which quiet tables
tend to be isolated. As regards active tables, there is not a consistent tendency
among the datasets, except for the datasets of Castor and SlashCode, where
the odds for active tables to be isolated, source or lookup are even.

The statistical tests we conducted for the relationship between topological
categories and update activity returned low p-values for four of the five
datasets and that makes us believe that there is a correlation between tables’
topology and their update profile.

In the last part of our study we examined whether topological categories are
related with the changes in the size of the tables. We group tables in three
categories with respect to the change of their sizes between their first and last
versions. We use the term scale down for tables that undergo a size reduction,
the term steady for those with no change in their size and the term scale up for
tables with a size expansion. We saw, on the one hand, the absolute majority
of tables remain steady in terms of their size and a large portion increase their
size and, on the other hand, tables that experience a size reduction to account
for no more than 10% of the total number of tables in each dataset. Taking into
consideration the topological categories of the tables, we end up with the
following commonalities among the datasets:

¢ In three of the five datasets, the isolated tables with steady size create
the largest groups with respect to the entire population of the tables.
The only exceptions to that pattern are Atlas and BioSQL, in which
source tables with steady size are the most populated group of tables.

e As for the least popular groups of tables, internal tables with all
kinds of size changes along with tables of the other categories with
size reduction or steadiness form groups whose cardinality does not
surpass the 4% of the total number of tables per dataset.

123

Concerning the probability for a table of a specific topological category to go
through a certain size change, we briefly describe the similarities we
encountered as follows:

e The absolute majority of the isolated tables remain steady.

e In four of the five datasets, the probability for a source table to remain
steady is greater than 55%.

e In four of the five datasets, lookup tables are prone to size expansion,
which is not at all what one would expect since their size expansion is
likely to affect tables that depend upon them.

e For the internal tables, it is likely (specifically, the least probability is
43%) that they will increase their size and it is highly improbable that
they will end up with less attributes than those they consisted of in
their first known version.

The results returned from the statistical tests we implemented are not
adequate to reject the null hypothesis on the independence of tables’ size
changes from their topological categories. Nevertheless, we distinguished two
different behaviors, the one of the isolated and source tables associated with a
tendency towards not changing their size and the second one concerning
lookup and internal tables that represents an inclination for size expansion.

Altogether, having conducted an in-depth survey concerning the impact of
tables” topological categories on various measures of their evolutionary
activity, we ended up with various findings, with the most significant being
the correlations of topological categories with “birth” version as well as with
update activity. These relationships were also confirmed by the statistical tests
we conducted in order to evaluate to what extent the metrics of tables’
evolution are related to their topological categories. As for the rest of the
measures and their relationships with the topological categories, although we
highlighted a few patterns among the datasets, the statistical evidence was
not sufficient in order to support the existence of a statistically significant
correlation between tables’ topology and the measures of their evolution.

124

CHAPTER 5.

EXPORTING PARMENIDIAN TRUTH AS A

WEB APPLICATION

51 Architecture of a Web Application

5.2 Design of Parmenidian Truth Web Application

The refactoring process of the Parmenidian Truth tool aimed at creating a
project that will be incorporated easily in any other project providing all its
functionalities through an interface. In this chapter, we exploit the new design
of Parmenidian Truth tool to create a web application that will make possible
for a user to visualize the evolution of a database’s schema by running the
application on a server. The first section of this chapter gives the necessary
background on the architecture of a web application describing its main
components and their roles. The second section presents the design of the web
application that utilizes the functionalities of the Parmenidian Truth tool to
analyze the schema evolution of a database.

5.1 Architecture of a Web Application

A web application enables the execution of an application resided in a server
via the web. The users of the application exploit the client/server model
sending requests to the server and receiving responses from the server. Figure

125

5.1 depicts the client/server model which we use to create the Parmenidian
Truth web application.

|
|
|
|
|
|
|
l Web Browser
|
|
|
|
|
|
|
|

1. Sends requests 6. Sends responses

[Passive) View

2. User actions 5. Formats data/Updates views
Y

i
I
|
I
i
i
i
I
|
I
i
i
|
: Presenter
i
i
i
I
|
I
i
i
i
I
|
I
i

3. Updates model 4. Provides updated data

Figure 5.1 Client/Server Communication Model

The architecture of the server application is based on the Model-View-Presenter
(MVP) design pattern. This pattern, which is derivative of the well-known
Model-View-Controller (MVC) design model [KrPo88], was first introduced in
[Pote96] in which author proposes a three-part decomposition of an
application into the following components:

e Model: represents the domain of the application that includes the main
data structures.

e View: includes every Graphical User Interface (GUI) utilized to present
data provided by the presenter.
126

e Presenter: retrieves data from model component and formats it to be
displayed in the view component.

The essential difference between the MVP and the MVC patterns is that in the
former the view component has the passive role of displaying data and
delegating user requests to the presenter component, while in the latter the
view component updates itself whenever the model part changes. In other
words, in MVP model there is no direct dependency between the view and the
model components with their communication being implemented via the
presenter part.

In our application, the role of the model component is assigned to java classes
that make use of the Parmenidian Truth tool’s functionalities and create
objects that facilitate the presentation of the data in the view part of the
application. The view component consists of JavaServer Pages (JSP) that allow
users to develop web pages with dynamic content along with the static one,
like that of HTML markup language. In this component, we also exploit the
JavaScript language to incorporate the D3 library [BoHO11], a JavaScript
library for data visualization. As for the presenter part, it consists of java
servlets and classes, which receive clients’ requests, communicate with the
model module and update the view elements.

5.2 Design of Parmenidian Truth Web Application

Apart from the existing functionalities provided by the Parmenidian Truth
tool, we enriched our application with new ones that visualize the patterns
presented in [VaZS15], in order to acquire a better view of whether and how
evolution-related metrics are related to tables” properties. We also accompany
the visualization results with a set of statistics that give an overview of the
relationships between the measures and the properties previously mentioned.
In a nutshell, the main functionalities provided by our web application are
summarized as follows:

e Create/load a project in/from the server.
e Visualize Diachronic Graph/versions/evolution-related patterns.

e Compute evolution-related statistics.

127

5.2.1 Package Diagram

Figure 5.2 shows the package diagram of the web application’s java resources,
consisted of the following packages:

e Servlets: classes that are responsible for receiving clients’” requests and
sending responses back to them, playing along with the modules of the
core package the role of an MVP presenter.

e (ore: classes and interfaces that define the main functionalities of the
application.

e Model: classes that represent the data structures of the application.

e Enums: enum types that help us to implement sets of predefined
constants representing different categories of tables.

]

=<=Java Package==
Hgr.cs.uoi.daintiness.serviets

1

=<Java Package==
4 gr.cs.uoci.daintiness.core

1 i] Wy
<=Java Package>> <<Java Packages>
fH gr.cs.ucidaintiness.enums 3 gr.cs.uoi.daintiness.model

Figure 5.2 Package Diagram of the Application’s Java Resources

5.2.2 Class Diagrams

In this subsection, we present the including classes of the aforementioned
packages of the web application. We do not include the class diagrams of the
Parmenidian Truth tool, since we consider it as an independent project whose

128

functionalities, presented in Chapter 3, we utilize to create the web
application.

A. Servlets package

This package includes three classes each of which is responsible for receiving
clients’ requests related to the main functionalities provided by the
application. Figure 5.3 depicts the class diagram of the servlets package along
with the interfaces of the core package that they use.

a pFactory: ProjectServerFactory % PROJECT_FOLDER: String
a stFactory: StafisticsServerFactory o priServerFactory: ProjectServerFactory
rin
& Visuaizationsernvetl) o siFactery: StatisticsServerFactory o o rrolTE ok
® id & ProjectLoaderServiet() oz
B tring) ° o "
B gethiachronicGraphEdges(String) String ® o stFactory: StatisticsServerFactory
@
& ProjectCreatorServiets)
®
®

= getSubmitedFieName (Part):String

-stservén, 0.1 ~stserver | 0.1 -priserveh, 0.1 -projectServer | 0..1
-parmenidianServer | 0..1
e
<<Java Interfaces=

s <<Java Inerface>>
@ Projectserver
91.05.u0l daintiness.core

@ createOveralStatsiMap<Lal
° o
@ createActivityStats(Map=ActivityStatus Integer>):Map<String Integer> © createVersions(yvoid

o getactiviyLabeiint double):String @ getOveralStats(}Map<Labels Integer>
© getsurvivalLabelint):String

@ gelTablelpdateClass(int double):int
© getBithVersionLabel(nt int): String

Integer=) Map<String Integer> © getLinks():List<Link> :
| Integers @ createlodes(:void @ createProject(String):void
® getVersions()List<DBVersion-

abel Integer>

° ist<Hodex, intfl>

© createGammaFatternData(Lisi<Node=) Map<String int}> _modellingr | © getSurvivalStats()Map<SurvivalStatus integers
© createlnvGammaPatternStats (List<Nodes int) Map<String, int)> e al =
@ createlnvGammaPatternData (List ri @ getActivityStat

© setBubbles\/al

© createCommetPatiemStats (List=! i
@ setiiodes(String String):void

© createCommetPatternData(List<Node:

@ createEmptyTrianglePattemStat & gethlodes()List<Node>

© createEmptyTrianglePattemData(List<Nodex} Map<String infl- _stserver @ convertToJson(List<?>):String
& createSurvivalStats (Map<SurvivalStatus Integer»)-Map<String Integer> 5 © getversionsindson():String

© getTableNormCategory(int nty.int © getllodesinlson():String

© createDurationStats (M ap<DurationLabel Integer-) Map<String Integer- @ gelLinksinJson():String
© getversionsHum{yint

@ set des(String, String, String)-void
© setl ']
© set ks (String):void

Figure 5.3 Class Diagram of the Servlets Package (along with the Interfaces of
the Core Package)

The absence of relationships between the classes of the serviets package is due
to the fact that each of them serves different types of requests. More
specifically, the ProjectCreatorServlet class is responsible for receiving requests
for the creation of a new project. It then receives a set of data definition files
containing database’s history and by utilizing Parmenidian Truth tool as well
as the classes of the core package a model of the schema evolution is created.
It finally sends back to application’s front-end information related to the
evolution of the database’s schema. The ProjectLoaderServlet class utilizes the
aforementioned model that contains the required information for
implementing all the functionalities our application provides without the
necessity of submitting successive requests to the Parmenidian Truth tool. The

129

VisualizationServlet class processes requests concerning the visualization of the
patterns, presented in [VaZS15], the Diachronic Graph and the versions it
consists of. As mentioned in Chapter 3, the Diachronic Graph is a graph with its
nodes and edges corresponding to database’s tables and foreign keys,
respectively.

B. Core package

The core package implements the business logic part of the application via
retrieving the data provided by the model package, processing them and
producing the responses to the clients” requests. It consists of three interfaces,
namely ProjectServer, ParmenidianServer and StatisticsServer which offer the
required methods for implementing the main functionalities of the
application.

The ProjectServer interface has the central role of serving the classes of the
servlets package via providing all the necessary data derived from the model
package. The ParmenidianServer interface defines the methods that offer the
data derived from the Parmenidian Truth tool. The StatisticsServer interface
comprises the methods that process the data and create a set of statistical
information that summarize the evolution of the database’s schema. Apart
from the interfaces, there also exist two classes, the JsonConverter and Bubble
classes, which convert data in a format that will facilitate their visualization.
Figure 5.4 presents the participating classes and the dependencies between
them in the core package.

C. Model package

This package encompasses the domain classes of the application that model
the versions, the tables and the foreign keys of a database. It also includes the
Model module that represents the data needed to load a project and the
XmlProvider class used to convert the objects of the Model class to data in xml
format and vice versa. Figure 5.5 illustrates the components of the model
package.

130

<<lava terface>>
@ Projectserver

.05 uoi aint

© getLinks(yListeLink>
© createliodes(:vou

© createVersions(:void
© getOveralStats():Map=Labels Integer> -

© getBithVersionStats(:Map<BithVersionL abe ntegers o
& createLinks{):void :
© createXmliithversions{Fievoid
© parseXmbDoc{Fie):void <clava Class>>
@ getSurvivalStats(): Map<SurvivalStatus,Integer> (® Project Serverfactory
<<lava hterfaces> ° avel nieger> 91.65.uoi dantiness, core
(SE T © getActiviyStats()Map<ActiviyStatus, nteger= & Progctserverractory()
pE——— © setBubbiesValues(Hap<Siring int}=)List<Bubble> © createProjectServer()ProjectServer
© CreateOveraltats (Hap<Labels nteger>) Map<String nteger> © setlioges (String,String):-void
° Integer> © getlioges Listcliode>
© CreateActiviyStats(Map<ACtiviyStatus Integer=) WapeSting Integers © convertTolson(List<?»):String
& gethctiviyLabe(int double):String & getversionsinlson():String ;
 getSurvivalLabelint)String getllodesison()String
© gefTablelipdateClass it double int © getLinksinlson ():String .
© getBithVersionLabel(int, n):String atserver © getversionstlumdjint
© createGammaPattemStats (List<Nodes, nt) Map<Siring, nt]> ° tring,String):void
© creatGammapatiemData(List<llode>) Mag=Siring,nt]> o4 © selLinks(ivoid
© CreatsinvGammaPatternStats(List<Nodex int) Hap<String nfl- © setversonLinks(String):-void
© CreateinvGammaPatternData(List<Node>) Hap<String nfl>
© CreateCommetPatiemStats(List<Node>) Map<String infl> 1 . <<lava Class>>
© CreateCommetPatiemData(List<llode) ap<String.nfl> _ ©Bubble
° intg> LEd
& S | = name: sting
° Integers <<lava Class=> e © RValue it .
 gefTableliormCategoryint,nt)nt @ProjectProvider & yalus: it
e bel Integers or.05.u0 daintiess.oore o rac: double
= nodes: ListeNode> DG
K © groupedNiodes: List<Node> P & Bubble(String it int double double)

5 nks: ListsLink>

5 groupedinks: ListsLink>
o versions: List<Version>
y o modet odel

o xmilfanager: XmProvider
3

<<lava Class>>
© StatisticsServerFactory
5.c3 uoi dsintin

<ro

@gethstance(:ProjectProvider

~stfactory | o createLinks()-vou SEEsD
®-JsonConverter

0.1 OCEEITEgELT .08 e gamtingss.core

& leadLinks(void

 setlinks(:void

& setGroupedLinksiListeLink>)void

/ & setVersionLinks{(String-void

o getllodes()List<Hode>

9 getversions() List<Version>

© getversionshum(int

[——
o createStatiticsServer() SalstcsServer

& JsonConverter()
© convertistTolsonstring(List<?>}Siring

<<lava Class>> © convertToJson(List<2»):String
@ StatisticsProvider © getOveralstats) ap<Labels nteger>
© getBinthVersionStats()Map<BinhVersionLabel nteger>
o SHORT_LIVED: String © getSurvivalStats() Map<SurvivalStatus integer>
5./ 1/EDIUN_LIVED: Strng 6 getDurationStats(Map<DurationLsbel nteger>
5/ LONG_LVED. Sing © gethctiyStats(Hap<ActuiyStats ntsoer poTp——
%/ SMALL SZE: Siring & ladades (vl @ ParmenidianServer
5o MEDMM_SIZE: String & setllodes(String String)void = ueidintiness core
Safw setVersionNodes (String, String, String):void
yl D SEE S SIS parmserver | @ cresteProieci(Siringl-void
FEARLY_BORNL Siring @ getversionsinJson():String e N
% MEDIUM_BORN: String @ getLinksinJson():String — 0.1 N
o DI BORR Stng N N 5 @ getVersionshumint
ol LATE_BORN: String © createXmWithVersions(Fie): void
e © getTables()List<Table>
o SURVIVORS: String @ parseXmbDoc(Fiis) void
S © gefversioniinia(int:DBVersion
o/ NON_SURVIVORS: String B updateNodes():void
= © getForeignkeys(List<Foreignkey>

) © setBubblesValues(Map<String niJ>) List<Bubble>
© CreateOveralStats (4ap<Labels nteger) Hap<String nteger> DEZRTI .
© CreateBrthversionstats (Wap<BirthVersionLabe nteger>) Hap<String neger> & ckarcroupeddat(o
© getBithVersionLabelint nt):String OCETEERT _parmFactory [0.1
© getTabitiornCategory(int it OGECCErRPaE -
& oetactityLabel(nt double):String © create\ersions():veid <<lava Class>>
& gefTablelipdateClass(int double):nt B gethoceWirName(sting):Node @ ParmenidianServerfactory
© getSurvivallabel(int)String B updateVersionodes():void ..o daintiness. core

p ladversions(rvort
© createGammaPatiemStats(List<Node nt)Map<Siring inf]> 2 Mmmmﬁ;n(‘ o & Parmenidianserverractony()
© createGammaPatiempataiList<lode=)ap<Sirng > g :String S e oo
° tetodes, it =
© createinvGammaPattemData(List<Hode) 1 ap<String il -
© CreateCommetPatiemStats(List<Hode>) Hap<String inl=
© CreateCommetPatierData(Listeliode) Hap<Siring > <<lava Class>>

o ®ParmenidianProvider
© CreateEmptyTriangleFatern Stats(ListeModes, nt) Wap<String nil1> By
© CreateEmptyTrianglePatterData(List<Hodex . Hap<Sting >
Py . pesting il % TEST_FOLDER: String
° abel, ntegers pCEILO T S
. . . DUTPUT_FOLDER: String
. — o pamenidianlianager: ParmenidanTruth
o parmenidianFactory: ParmenidianTruthianagerFactory

© tables: List<Table>
5 keys: ListsForeignKey>

& getinstan ce():ParmenidianProvider
FPamendarprovder) o
@ createProject(String):void

@ getVersions():List<DBVersion>

@ getVersienshum():int

@ getVersienWithid(int) DBVersion

= createTables():void

@ createForeignKeys():void

© gefTables(y List<Table>

® getForeignKeys():List<ForeignKey>
@ clear():void

Figure 5.4 Class Diagram of the Core Package

131

-nodes | 0.F

<xJava Class>=
(®Node

gr.cs.uoi.daintiness. modl

a it String

o group: int

o birthVersion: int
o survivor: int

o duration: int

o changes: ink

o size: int

o atu: double

o activity: String
o atitri: int

o radius: int

o grouplabek String

&ode()

@ Node(String,int)

@ setSurvivorStatus(int)-void
@ setActivity Status(String):void
@ setAttr1(int)-void

@ setATW)void

@ setChangesNum{int)-void
@ setSizeAtBirth{int)-void

@ getSizeAtBirth():int

@ getChangesMNum{):int

@ setDuration(int):v oid

@ setLabel{String):void

@ setRadius(int):void

@ setBirthVersion{int):void
@ getATW()-double

@ getBirth\ersion():int

@ getGrouplabel):Siring

@ getiNodeMame():String

@ setModeMame(String):void
@ getMNodeGroup():int

@ getModeRadius():int

@ getSurvivorStatus():int

@ getDuration():int

==Java Class==
(® XmiProvider

gr.cs.uoi.daintiness. model

& xmiProvider()

& clear():void

@ createXmiDoc(Object, File)-void
@ parseXmiDoc{File):void

@ getModes() List<Node=

@ getLinks():List<Link=>

@ gefVersions()-List<Version=

- Brsiqns\lo..* -versions (0%

=<xJava Class>>

(®Model

gr.cs.uci.daintiness. model

& Madel()
& Model{List=Version=)
@ getVersions():List<\ersion>

=<xJava Class>»
(®Version

gr.cs.uoi.daintiness. model

o name: Siring

-links (0.*

o id: int <zJava Class>=
o tables: int ®Link
o keys: int gr.cs.uoi.daintiness. model
QCVBrSIDﬂ() o sgurce: Skring
- . a target: Sirin
-versionhlodes & version(String,int) -versionLinks Ig . .
0 @ sefVersionNodes(List<Table=):void 0. o value: int
h @ setModes(List<MNode=):void - & Link()
@ sefVersionLinks(List<Foreigniey=):void ecLinlo(String.String)

@ getiKeysNum():int

@ setiKeysNum(int)-void

@ gefTablesMNum{):int

@ sefTablesNum(int)-void

@ gefVersionMNodes():List<Node>
@ gefVersionLinks():List<Link>
@ getversionid():int

132

Figure 5.5 Class Diagram of the Model Package

@ getSourceMode():Siring
@ getTargetNode():String
@ printLink()-String

D. Enums package

The enum types included in this package define tables’ categories based on
their activity profile, their originating version, their duration in schema
history and their survival status based on their existence in the last version of
database’s schema. These types are used to quantify tables” distribution over
the different categories and to facilitate the visualization of the Diachronic
Graph. Figure 5.6 depicts the class diagram of the enums package.

The ActivityStatus type defines three table categories based on tables” update
activity during their existence in the database. The DurationLabel type
classifies tables in terms of their normalized duration, which is the number of
the versions they exist over the total number of the versions. The
BirthVersionLabel type includes three constants corresponding to the different
tables’ categories pertaining to their birth versions. The SurvivalStatus type
assigns to each table a label based on whether or not it exists in the last
version of database’s schema history. The last type, Labels, is only used to
provide the including constants as labels to the methods that compute the
evolution-related statistical information.

<<Java Enumeration==>

GA{:tivityStatus =<Java BEnumeration=>

: DurationLabel
==Java Brumeration:> gr.cs.uoi.daintiness_enums G o
GLabeIs o gr.cs.uoi.daintiness. enums
R—G — %FSI-DF{T_L WED: DurationLabel

“f QUET ActivityStatus %F MEDIUM_LIVED: DurationL abet
W ACTVE ActivityStatus

gr.cs.uci.daintiness. enums

% TABLES: Labels

% KEYS: Labeks %f LOMG_LIVED: DurationLabel
— o value: ink —

S VERSIONS: Labels o value: int

& Labels() e Activity Statusi(nt) & DurationLabel(int)

© getValue()-int @ gefvalue]):ink

<<Java Enumeration>= ==Java Enumeration==
{3 BirthVersionLabel {3 SurvivalStatus

gr.cs.usi. daintiness. enums gr.cs. uoi.daintiness. enums

SG-FE."-\FL‘]’_EIGH\]: Birth\versionLabel SFNOM_SURVIVOR: SurvivalStatus
5«:-FP.-'EE:IU.-'I_EIOF{T\J: Birth\VersionlLabel Q}FSLF{; WOR: SurvivalStatus

% LATE BORM Birth\ersionLabel o value: int

o value: int

E':SurvNaISIatus{int}
@ gefValue():int

B BirthversionLabel(int)
@ gefValue():ink

Figure 5.6 Class Diagram of the Enums Package

133

CHAPTER 6.

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

6.2 Future work

The final chapter of the current thesis summarizes the major findings of our
study, outlines the answers to the research questions we stated in the
introductory chapter and finally suggests potential issues for future work.

6.1 Conclusions

The twofold objective of this thesis was: (a) to examine whether there is a
correlation between tables” topological properties and various metrics of their
evolutionary activity and (b) to improve the internal quality of an existing tool
for the study of schema evolution with respect to foreign keys, by introducing
principled rectification mechanisms and applying a set of recommended
refactoring patterns. Thus, we conducted an in-depth analysis by classifying
tables in four topological categories, namely isolated, source, lookup and
internal and then we study how these categories are likely to determine
tables” durations, their potential to exist in the last version of the schema
history, the probability for a table to exist in the very first version of their
database, tables” update profile and their size change between the first and the
last versions.

The most important findings that are also supported by the corresponding
statistical tests were that there exist: (a) a relationship between tables’

134

topological categories and the probability to be born in the originating version
as well as (b) a correlation between tables” topology and their update activity.
As for the former relationship, we identified two different behaviors among
the topological categories, with the Ilookup and the internal tables
demonstrating a proclivity for existing in the early, if not in the very first,
versions of their database’s history, while the isolated and the source tables are
more likely to be introduced in versions succeeding the originating one.
Concerning the latter correlation, we recognize a monotone increase pattern in
the intense of tables’ update activity with their topological complexity.
Specifically, the isolated and the source tables are associated with no or few
updates, the lookup tables with few or many updates and the internal tables
with many changes. For the rest of the measures and their relationships with
tables’ topological categories although we pointed out several commonalities
among the datasets examined, we could not present solid evidence that
would verify the existence of these correlations.

We also presented a principled refactoring process applied in the
Parmenidian Truth tool, which visualizes the schema evolution of relational
databases. First, we inspected design defects that would complicate any
expendability efforts and the reusability of the tool. For each defect, we
applied the necessary modifications in tool’s source code aiming at
eliminating it and complying with the recommended design principles and
patterns. For the modules we either modified or added, we created unit tests
to verify that tool’s expected behavior has not altered after the refactoring
process. Finally, having performed all the refactoring actions, we assessed the
improvements in the tool’s architecture derived from the restructuring
process.

Following the refactoring process, we utilized the modified Parmenidian
Truth tool to create a web application that comprises an alternative solution
for visualizing the evolution of databases’ schemata and quantifying the
respective statistical information.

6.2 Future work

To the best of our knowledge, this was the first work that revolved around the
relationship of tables’” involvement with foreign keys with their evolutionary
behavior. In a follow-up work, one can investigate if a different topological
classification of the tables would lead to different conclusions on the role of
tables’” topology in the schema evolution. In our study, we chose to assign a

135

single label to each table, since the single label scheme facilitated our goal to
associate the topological labels with the evolutionary measures. A multi-
labeling scheme that does not ignore the label changes that a table experiences
is likely to reveal evolutionary features that our work neglected.

The second issue that can be the objective of future research has to do with
what we call a “second-pass” in tables’ classification process. In our work we
assign a label to each table based on its inciting edges without considering the
labels of its adjacent tables. It would be interesting to see, after classifying
tables via the process we proposed, whether a second classification phase that
takes into account tables” neighborhood, practically resulting in a different set
of topological categories, would provide us with new information about the
ways tables evolve with respect to the topological categories they belong to.

136

[FBB+99]

[MaMa06]

[Mart00]

[ChKe92]

[BeCu89]

[Fabe07]

[BugaO7]

[Sjeb93]

[Kara02]

[CuMZ08]

[CMTZ08]

BIBLIOGRAPHY

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts. Refactoring: Improving
the Design of Existing Code, pp. 46-47, 63-72, Addison Wesley Longman, Inc,
1999.

R. C. Martin, M. Martin. Agile Principles, Patterns, and Practices in C#, pp.
155, Prentice Hall, 2006.

R. C. Martin. Design Principles and Design Patterns, pp. 14-16, 24-26,
Objectmentor.com, 2000.

S. R. Chidamper, C. F. Kemerer. A Metrics Suite for Object Oriented Design,
pp- 19-21, 24-27, Center for Information Systems Research, Sloan School of
Management, Massachusetts Institute of Technology, 1992.

K. Beck, W. Cunningham. A Laboratory for Teaching Object Oriented
Thinking, Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA '89), pp. 1-6, New Orleans,
Louisiana, USA, October 1989.

S. Faber. Mockito Framework. Available at HTTP://SITE.MOCKITO.ORG/ ,
2007.

Bugan IT Consulting UG. Structure Analysis for Java. Available at
HTTP://STAN4].COM/ , 2007.

Dag Sjeberg. Quantifying Schema Evolution. Information and Software
Technology, 35(1), pp. 35-44, January 1993.

Amela Karahasanovic. Identifying Impacts of Database Schema Changes on
Applications. Available at HTTPS://WWW.RESEARCHGATE.NET/, 2002.

Carlo A. Curino, Hyun J. Moon, Carlo Zaniolo. Graceful Database Schema
Evolution: the PRISM Workbench. Proceedings of VLDB Endowment, 1(1),
pp- 761-772, August 2008.

Carlo A. Curino, Hyun J. Moon, Letizia Tanca, Carlo Zaniolo. Schema
Evolution in Wikipedia: toward a Web Information System Benchmark. In
Proc. of 10t International Conference on Enterprise Information Systems
(ICEIS 2008), pp. 323-332, Barcelona, Spain, June 2008.

137

http://site.mockito.org/
http://stan4j.com/
https://www.researchgate.net/publication/2911575_Identifying_Impacts_of_Database_Schema_Changes_on_Applications

[WuNel1]

[PVSV12]

[QILS13]

[CGMM-+15]

[VazS15]

[VaZS17]

[VaZal7]

[VKZZ17]

[VKZZ19]

[KrPo88]

[Pote96]

Shengfeng Wu, Iulian Neamtiu. Schema Evolution Analysis for Embedded
Databases. In Proc. 27% International Conference on Data Engineering
Workshops (ICDEW 2011), pp. 151-155, Hannover, Germany, April 2011.

G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Metrics for the
Prediction of Evolution Impact in ETL Ecosystems: A Case Study. Journal on
Data Semantics, 1(2), pp. 75-97, August 2012.

D. Qiu, B. Li, Z. Su. An Empirical Analysis of the Co — evolution of Schema
and Code in Database Applications. In Proc. of 9% Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013), pp. 125-135, Saint
Petersburg, Russia, August 2013.

A. Cleve, M. Gobert, L. Meurice,]. Maes,]. Weber. Understanding Database
Schema Evolution: A Case Study. Science of Computer Programming, 97(1),
pp- 113-121, January 2015.

P. Vassiliadis, A. V. Zarras, 1. Skoulis. How is Life for a Table in an Evolving
Relational Schema? Birth, Death and Everything In Between. In:
Johannesson P., Lee M., Liddle S., Opdahl A., Pastor Ldpez 0. (eds.)
Conceptual Modeling ER 2015. LNCS, 9381, pp. 453-466, December 2015.

P. Vassiliadis, A. V. Zarras, 1. Skoulis. Gravitating to Rigidity: Patterns of
Schema Evolution — and its Absence — in the Lives of Tables. Information
Systems, 63, pp.24-46, January 2017.

P. Vassiliadis, A. V. Zarras. Survival in Schema Evolution: Putting the Lives
of Survivor and Dead Tables in Counterpoint. 29t International Conference
on Advanced Information Systems Engineering (CAiSE 2017), Essen,
Germany, June 2017.

P. Vassiliadis, M. Kolozoff, M. Zerva, A. V. Zarras. Schema Evolution and
Foreign Keys: Birth, Eviction, Change and Absence. In Proc. of 36%
International Conference on Conceptual Modeling (ER 2017), pp. 106-119,
Valencia, Spain, November 2017.

P. Vassiliadis, M. Kolozoff, M. Zerva, A. V. Zarras. Schema Evolution and
Foreign Keys: a Study on Usage, Heartbeat of Change and Relationship of
Foreign Keys to Table Activity. Computing (2019), pp. 1-26, January 2019.

G. E. Krasner, S. T. Pope. A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming (JOOP), 1(3), pp. 26-49, Aug./Sep. 1988.

M. Potel. MVP: Model-View-Presenter. The Taligent Programming Model
for C++ and Java. Taligent Inc, 1996.

138

[BoHOL11] M. Bostock, J. Heer, V. Ogievetsky. D3js. Available at
HTTPS://GITHUB.COM/D3/D3, 2011.

139

https://github.com/d3/d3

SHORT CV

Konstantinos Dimolikas was born in Ioannina, Greece. In 2013, he received his
Diploma in Electrical & Computer Engineering from the National Technical
University of Athens. After fulfilling his military service and for 8 months he
worked as a Programmer-Analyst at the software development department of
the Independent Power Transmission Operator (IPTO). In 2016, he started his
graduate studies at the Department of Computer Science & Engineering in the
University of loannina while working as a Programmer in the public sector.

140

