
Flow Motifs in Interaction Networks

A Thesis

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Chrysanthi Kosyfaki

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

February 2019

Examining Committee:

• Nikolaos Mamoulis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina (Advisor)

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina

• Panayiotis Tsaparas, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

Dedication

To my father, Nasos...

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Prof. Nikos
Mamoulis for his useful comments, remarks and engagement through my master the-
sis. Furthermore, I would like to thank him for the support. I would also like to thank
Prof. Panayiotis Tsaparas and Prof. Evaggelia Pitoura for the excellent collaboration
and their advices during my master thesis. Working beside them was a great experi-
ence.

Many thanks to my friends for their support, help and advice through all these
years. Also I would like to thank them for their patience when I was not available.

Finally, I must express my very profound gratitude to my mother Theodora and
my sisters Christina, Maria and Konstantina for providing me with unfailing support
and continuous encouragement throughout my years of study. This thesis would not
have been possible without them.

Table of Contents

List of Figures iii

List of Tables iv

List of Algorithms v

Abstract vi

Εκτεταμένη Περίληψη vii

1 Introduction 1
1.1 Contributions . 4
1.2 Roadmap . 5

2 Related Work 6
2.1 Static Networks . 6
2.2 Temporal Networks . 7

3 Definitions 9

4 Finding Flow Motif instances 14

5 Top-k flow motif search 21
5.1 Finding the top motif instance . 22

6 Experiments 25
6.1 Dataset Description . 26
6.2 Efficiency and Scalability . 28
6.3 Comparison to a competitor . 28
6.4 Sensitivity to δ and ϕ . 29

i

6.5 Top-k flow motif instance search . 32
6.6 Scalability to the dataset size . 33
6.7 Significance of Motifs . 34
6.8 Association of motifs to events . 38

7 Conclusions 39
7.1 Summary . 39
7.2 Future Work . 40

Bibliography 42

A Additional Motifs 45

ii

List of Figures

1.1 Example of graph, motif, and instances 2

3.1 Example of an interaction graph (bitcoin user graph) 9
3.2 Examples of motifs. 11
3.3 Examples of motif instances . 12

4.1 From a multigraph to a time series graph 15
4.2 Structural matches of M(3, 3) (phase P1) 15
4.3 Example for Algorithm 4.1 . 17

6.1 Our two-phase algorithm vs. the join algorithm 27
6.2 Number of instances and time for different values of δ 30
6.3 Number of instances and time for different values of ϕ 31
6.4 Flow of k-th instance . 33
6.5 Efficiency of the dynamic programming module 34
6.6 Scalability to input graph size . 35
6.7 Scalability to input graph size . 36
6.8 Number of instances in random networks (box plots), in real networks

(diamonds), and z-scores . 37

A.1 Extra Motifs. 45

iii

List of Tables

3.1 Table of notations . 10

5.1 Example of the DP module . 23

6.1 Statistics of Datasets . 26
6.2 Number of structural matches and runtime in phase P1 of motif search 29
6.3 Motif instances in different days and months 38

A.1 Number of motifs instances and runtime for phases P1 and P2 46

iv

List of Algorithms

4.1 Instance finding module . 18
5.1 DP module for top-1 instance search . 22

v

Abstract

Chrysanthi Kosyfaki , M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, February 2019 .
Flow Motifs in Interaction Networks .
Advisor: Nikolaos Mamoulis, Associate Professor .

Many real-world phenomena are best represented as interaction networks with
dynamic structures (e.g., transaction networks, social networks, traffic networks). In-
teraction Networks capture flow of data which is transferred between their vertices
along a timeline. Analyzing such networks is crucial towards comprehending pro-
cesses in them. A typical analysis task is the finding of motifs, which are small
subgraph patterns that repeat themselves in the network.

In this thesis, we introduce network flow motifs, a novel type of motifs that model
significant flow transfer among a set of vertices within a constrained time window.
We design an algorithm for identifying flow motif instances in a large graph. Our
algorithm can be easily adapted to find the top k instances of maximal flow. In ad-
dition, we design a dynamic programming module that finds the instance with the
maximum flow. We evaluate the performance of the algorithm on three real datasets
and identify flow motifs which are significant for these graphs.

Our results show that our algorithm is scalable and that the real networks indeed
include interesting motifs, which appear much more frequently than in randomly
generated networks having similar characteristics.

vi

Ε Π

Χρυσάνθη Κοσυφάκη , Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, Φεβρουάριος 2019 .
Εύρεση μοτίβων ροής σε συνθετικά δίκτυα .
Επιβλέπων: Νικόλαος Μαμουλής, Αναπληρωτής Καθηγητής .

Πολλά φαινόμενα του πραγματικού κόσμου μπορούν να μοντελοποιηθούν με την
βοήθεια των δικτύων αλληλεπίδρασης με δυναμικές δομές (π.χ. δίκτυα συναλλαγών,
κοινωνικά δίκτυα, δίκτυα κυκλοφορίας). Τα δίκτυα αλληλεπίδρασης περιλαμβάνουν
την ροή δεδομένων που μεταφέρεται μεταξύ των κόμβων του δικτύου κατά μήκος
μιας χρονικής γραμμής. Η ανάλυση αυτών των δικτύων είναι ζωτικής σημασίας για
την κατανόηση διάφορων διαδικασιών που συμβαίνουν σε αυτά. Ένας τύπος ανάλυ-
σης σε αυτά τα δίκτυα είναι η εύρεση μοτίβων, τα οποία είναι μικρά υπογραφήματα
που επαναλαμβάνονται μέσα στο δίκτυο.

Στην εργασία αυτή εισαγάγουμε τα μοτίβα ροής δικτύου, ένα νέο τύπο μοτίβων
που μοντελοποιούν την σημαντική μεταφορά ροής ενός δικτύου μεταξύ ενός συνόλου
κόμβων μέσα σε ένα περιορισμένο χρονικό πλαίσιο. Σχεδιάζουμε έναν αλγόριθμο
για τον προσδιορισμό των μοτίβων ροής σε ένα μεγάλο γράφημα. Ο αλγόριθμος μας
μπορεί εύκολα να προσαρμοστεί και να βρει τα κορυφαία στιγμιότυπα με την μεγα-
λύτερη ροή. Επιπλέον σχεδιάζουμε μια ρουτίνα δυναμικού προγραμματισμού που
βρίσκει το στιγμιότυπο με την μεγαλύτερη ροή. Αξιολογούμε την απόδοση του αλ-
γορίθμου σε τρια πραγματικά σύνολα δεδομένων και προσδιορίζουμε μοτίβα ροής
που είναι σημαντικά για αυτά τα γραφήματα.

Τα αποτελέσματα μας δείχνουν ότι ο αλγοριθμός μας είναι κλιμακώσιμος και
ότι τα πραγματικά δίκτυα περιλαμβάνουν όντως ενδιαφέροντα μοτίβα, τα οποία

vii

εμφανίζονται πολύ συχνότερα σε αυτά σε σχέση με τυχαία παραγόμενα δίκτυα που
έχουν παρόμοια χαρακτηριστικά.

viii

Chapter 1

Introduction

1.1 Contributions

1.2 Roadmap

Interaction networks include a large number of highly connected components that
dynamically exchange information. Examples of such graphs are neural networks,
food webs, signal transfer pathways, the bitcoin network, social networks, and traffic
networks. An interaction network captures flow of data (e.g., money, messages, pas-
sengers, etc.) which is transferred between its vertices along a timeline. In such a
network, there could be multiple edges connecting the same pair of vertices, mod-
eling data exchange between them at different times. Figure 1.1(a) shows a small
example of an interaction network, where the vertices represent users who exchange
money. The edges are annotated by timestamped interactions; e.g., edge u1u2 with
label t = 2, f = 5 denotes that user u1 sent 5 units of flow (money) to user u2 at time
2.

Interaction networks are a powerful and versatile model, and as such they have
been studied extensively in the literature [1, 2, 3]. In this thesis, we consider the prob-
lem of finding small characteristic patterns in the networks, such as chains, triangles
or cycles. These patterns are called network motifs. A motif is a subgraph that appears
significantly more often in a real network than in a randomized network with similar
characteristics [4]. Finding motifs is a method of identifying functional properties of

1

a network. Previous work mainly focused on static motif patterns [4, 5]. They have
proposed many algorithms for finding motifs in static networks like FADOM [6],
MODA etc. Recently, there has been increasing interest in analyzing temporal net-
works [7, 8, 1, 9, 3], where edges carry timestamps that signify the time of interaction
between vertices. However, to the best of our knowledge, there is no previous work
on motif search that considers the flow of data between connected nodes. Motivated
by this, we define the concept of flow motifs in temporal interaction networks and
study their identification.

Our definition of flow motifs extends a well-accepted definition of temporal motifs
[9]. We define flow motifs as small graphs whose edges are ordered; the order defines
how the data flows between the vertices. An instance of the motif is a subgraph of
the interaction network, whose edges obey the total order specified by the edges of
the motif. Moreover, the time difference between the temporally last and first edges
should not exceed a pre-defined threshold δ which is a parameter of the motif. These
requirements are the same as in the temporal motif definition of [9], which however
disregards the data flow in interactions. The distinctive feature of our flow motifs is
that, in a flow motif instance, multiple edges of the graph can instantiate a single
edge of the motif, if they satisfy the order constraint with the edges that instantiate
the motif’s previous and next edges. The flow values in the edge-set that instantiates
a motif edge are aggregated to a single value, which captures the total flow passing
through the motif edge. The minimum aggregated flow at any motif edge defines the
flow of the instance. In order for the instance to be valid, we require that its flow
exceeds a threshold ϕ.

31

t=2,	f=5

multigraph

t=4,	f=3

u1 u2

u3u4

t=5,
f=2

t=1,
f=6

t=3,
f=4

t=2,
f=4

t=10,	f=1

motif

1

2

t=2,	f=5

instance	2

u1 u2

u3

t=5,
f=2

t=3,
f=4

t=2,	f=5

instance	1

t=4,	f=3

u1
u2

u4

t=1,
f=6

31

t=2,	f=5

multigraph

t=4,	f=3

u1 u2

u3u4

t=5,
f=2

t=1,
f=6

t=3,
f=4

t=2,
f=4

t=10,	f=1

motif

1

2

t=2,	f=5

instance	2

u1 u2

u3

t=5,
f=2

t=3,
f=4

t=2,	f=5

instance	1

t=4,	f=3

u1
u2

u4

t=1,
f=6

31

t=2,	f=5

multigraph

t=4,	f=3

u1 u2

u3u4

t=5,
f=2

t=1,
f=6

t=3,
f=4

t=2,
f=4

t=10,	f=1

motif

1

2

t=2,	f=5

instance	2

u1 u2

u3

t=5,
f=2

t=3,
f=4

t=2,	f=5

instance	1

t=4,	f=3

u1
u2

u4

t=1,
f=6

31

t=2,	f=5

multigraph

t=4,	f=3

u1 u2

u3u4

t=5,
f=2

t=1,
f=6

t=3,
f=4

t=2,
f=4

t=10,	f=1

motif

1

2

t=2,	f=5

instance	2

u1 u2

u3

t=5,
f=2

t=3,
f=4

t=2,	f=5

instance	1

t=4,	f=3

u1
u2

u4

t=1,
f=6

(a) multigraph (b) motif (c) instance 1 (d) instance 2

Figure 1.1: Example of graph, motif, and instances

Consider again the interaction network of Figure 1.1(a). Assuming that the motif

2

of interest is a chain of three nodes (Figure 1.1(b)), where the labels in edges specify
the flow order and that δ = 5 and ϕ = 5, the two subgraphs of Figures 1.1(c) and
1.1(d) are instances of the motif because the sets of edges mapped to each motif edge
satisfy (i) the time order constraint of the motif and (ii) thresholds δ and ϕ. For
example, in Figure 1.1(d), both edges that connect u2 to u3 are temporally after the
edge that connects u1 to u2 and their aggregated flow is 6 (≥ ϕ); in addition, the
time difference between the temporally first and last edges in the instance is 5− 2 = 3

(≤ δ).
Overall, a valid flow motif instance should satisfy three requirements: (a) a struc-

tural constraint, defined by the graph structure of the motif; (b) a temporal constraint
defined by the temporal window size δ; (c) a flow constraint defined by the minimum
flow value ϕ.

Flow motifs correspond to frequently occurring sub-structures with high activity
that appear in short time windows. Finding instances of flow motifs is of great impor-
tance in understanding interaction networks. For instance, in networks that model
money transfers, flow motifs correspond to transaction patterns involving significant
flow of money that appear more frequently than expected. Flow motif search is of
particular interest to Financial Intelligent Units (FIUs); these are organizations which
identify suspicious flow patterns that may suggest criminal behavior (e.g., money
laundering). Belize FIU (fiubelize.org) and Hong Kong’s JFIU (www.jfiu.gov.hk) in-
dicate as suspicious patterns which include ‘smurfing’ (i.e., numerous small-volume
transfers which aggregate to large amounts), cyclic transactions between parties, and
chains of significant money transfers within limited time (e.g., payments out which
are paid in on the same or previous day). In addition, bitcoin theft has been asso-
ciated to flow patterns in [10]. In communication and social networks, flow motifs
may reveal common patterns of influence [11, 12]. For example, the strength of the
relationships between two social network users is correlated with the frequency of
online interactions between them [13]. This implies that groups of users with frequent
communication between them within a short period have high chance to influence
each other.

Given a large interaction network, we propose an algorithm that takes as input a
flow motif and efficiently finds its instances in the network. Our algorithm operates
in two phases. First, the structural matches of the motif (disregarding temporal and
flow information) are identified. Then, for each structural match, we find the motif

3

instances which satisfy the temporal and flow constraints. This is achieved by sliding
a time window of the same length as the duration constraint of the motif and system-
atically finding the combinations of edges that constitute motif instances. Compared
to motif search algorithms from previous work, our algorithm is novel in that it con-
siders the aggregated flow on multiple edges that connect the same pair of nodes in
the network during the construction of the motif instances. Due to the large number
of possible edge combinations, the problem is harder compared to finding instances
of motifs, by disregarding flows and multiple edges. Our algorithm effectively uses
the duration and flow constraints to prune the space. We also suggest a variant of the
algorithm that identifies the top-k instances of an input flow motif with the highest
flow. Finally, we propose a dynamic programming module for the algorithm, for the
problem of finding the motif instance with the maximum flow.

We evaluate the performance of the algorithm on three real datasets of different
nature (bitcoin user network, facebook network, and Passenger flow network). We
compare the performance of our algorithm to a baseline method which builds up
motif instances by joining their components and demonstrate the superiority of our
approach against this alternative method. We also show that our tested flow motifs
indeed appear more frequently in real networks than in randomized networks having
the same characteristics as the real ones.

1.1 Contributions

In summary, this thesis makes the following contributions:

• We propose the novel concept of flow motif. To our knowledge, this is the first
work that defines and studies the search of flow motifs in interaction networks.

• We propose an efficient algorithm for finding flow motif instances in large in-
teraction networks and variants of it that identify the instances of a motif with
the maximum flow.

• We evaluate our approach using three real datasets, which are totally different
between them , and demonstrate that it scales well for large data.

• We investigate the significance of the tested motifs in the real networks. In order
to do this we generated randomized versions of our datasets.

4

1.2 Roadmap

The rest of the thesis is organized as follows. Chapter 2 describes work related to
network flow motifs, which are then formally defined in Chapter 3. Our motif search
algorithm is presented in Chapter 4. Chapter 5 shows how to extend our algorithm
to find the k instances of a given motif with the maximum flow. In Chapter 6, we
experimentally evaluate our algorithm and the significance of the motifs by using
a randomization approach. Finally, in Chapter 7, we conclude our thesis and give
directions for future work. Appendix A includes some extra experiments about new
motifs.

5

Chapter 2

Related Work

2.1 Static Networks

2.2 Temporal Networks

There has been a lot of research interest in motif search and mining in interaction
networks [6, 14, 15]. In this chapter we summarize the most representative works in
static and temporal networks.

2.1 Static Networks

Motifs were first defined for static networks. Milo et al. [4] introduced the concept
of motifs and studied their identification in large graphs. They defined a network
motif as a “pattern of interconnections occurring in complex networks at numbers that are
significantly higher than those in randomized networks”. They investigated motif discovery
in directed networks, which do not carry temporal information (i.e., the motifs do
not consider the time when the interactions took place).

FANMOD [6] is an efficient tool for finding network motifs in static networks, up to
a size of eight vertices. Given a subgraph size, the tool either enumerates all subgraphs
of that size or samples them uniformly. The identified subgraphs are grouped into
classes based on their isomorphism. The significance of each class is finally measured

6

by counting their frequencies in a number of random graphs (generated by swapping
edges between vertices in the original network).

2.2 Temporal Networks

In temporal networks, the interactions between vertices are labeled by the time when
they happen. More specifically, temporal networks are defined as networks whose
links are active only at certain points in time. Fundamental definitions, concepts,
and problems on temporal networks are given in [7]. For instance, the concept of
time-respecting path and its relation to network flows are defined and studied here.

Paranjape et al. [9] define motifs in temporal networks as small connected graphs,
whose edges are temporally ordered. Instances of a motif are subgraphs that struc-
turally match the motif and their edges obey the order. In addition, the time-difference
between the temporally last and the first edges should not exceed a motif duration
constraint δ. They propose a general algorithmic framework for computing the num-
ber of motif instances in a graph and fast algorithms that count certain classes of
temporal motifs. Our network flow motifs are similar to the temporal motifs of [9],
however, in our case (i) a motif edge can be instantiated by multiple edges of the
graph and (ii) we introduce and consider a minimum flow requirement.

Another work that defines and studies the enumeration of temporal motifs is [8].
In the context of this work, the interactions between vertices are not instantaneous but
they carry a duration interval. Motifs are again subgraphs whose edges are temporally
ordered. As opposed to [9], there is no δ threshold between the last and the first edge
in a motif instance. Instead, a maximum time-difference ∆t between consecutive edges
in a motif instance is allowed.

Rocha et al. [16] also define motifs that model the information spread in temporal
networks. They study the impact of time ordering information by comparing the
instances of the motifs by considering or not the temporal order. The flow motifs
defined and used in [16] are different to ours, because in our case (i) we consider the
flow on edges (ii) we define the flow in a motif differently and (iii) our input graph
and the motif instances are multigraphs.
Communication motifs are suggested as a model for capturing the structure of hu-

man interaction in networks over time. Zhao et al. [1] studied the evolution of such

7

behavioral patterns in social networks. For any two adjacent interactions, the term
maximum flow is used to characterize those interactions that are the most probable
to belong to the same information propagation path among any such adjacent in-
teractions. On the other hand, in our context, flow refers to the data (e.g., money,
messages, etc.) being transferred from one node along network paths. Another work
that studies behavioral patterns in social networks by defining and mining communi-
cation motifs between people in social networks is [17]. A scalable mining technique
(called COMMIT) for communication motifs in interaction networks is proposed.

A recent work that studies the structure of social networks and the temporal
relations between entities in them is [3]. Temporal pattern search is proposed as a
tool in this direction. In order to facilitate the efficient retrieval of pattern instances,
occurrences of small patterns are precomputed and indexed.

Flow can also be used to describe other concepts. In [18], the authors study the
information propagation problem. They try to identify all time-respecting paths in
temporal networks to model potential pathways for information spread. Our work is
differnt in that (i) we are interested in specific motifs and (ii) we consider the flow
on edges. The identification of time-respecting paths (as defined in [18]) that form
cycles is studied in [19], where an efficient algorithm (2SCENT) is proposed.

Motif discovery on Heterogeneous Information Networks (HINs) which carry tem-
poral information was also recently studied [2]. In such graphs, some nodes are as-
sociated to events (which happened at a specific time). A motif is then defined by
a graph and a maximum temporal difference between the events that instantiate its
event nodes. As in the rest of previous work, any data flow on the edges of the
network is disregarded in the definition and search of motifs.

8

Chapter 3

Definitions

In this chapter, we formally define flow motifs and the graph wherein they are iden-
tified. Table 3.1 shows the notations used frequently in the thesis.

The input to our problem is a directed multigraph G(V,E), where each pair of
nodes u, v ∈ V can be connected by any number of edges in E. We denote by E(u, v)

the edge-set from u ∈ V to v ∈ V . Each edge e ∈ E is annotated by a unique timestamp
t(e) in a continuous time domain T and a positive real number f(e), called flow.

Figure 3.1 shows an example of an input graph G from a real application, where
vertices correspond to users (addresses) of the bitcoin network and edges correspond
to transactions between them. Each edge is annotated by the timestamp of the trans-
action followed by the transaction amount. For example, user u1 at timestamps 13

and 15 sent 5 and 7 bitcoins, respectively, to u2.

Algorithm 1

• Example of Step 1:

9

u1 u2

u3

u4

13,5

15,7

10,101,2
3,5

11,10

18,20

21,4

19,5

23,7

u1 u2

u3

u4

(13,5), (15,7)

(10,10)
(1,2),
(3,5)

(11,10)

(18,20)

(19,5), (21,4)

(23,7)

Figure 3.1: Example of an interaction graph (bitcoin user graph)

9

Table 3.1: Table of notations

Notations Description

GM (VM , EM) graph structure of motif M

δ duration constraint of a motif

ϕ flow constraint of a motif

l(e) order of edge e in a motif M

SPM spanning path of motif M

ei or SPM [i] i-th edge of motif M

SPM [i : j] subpath ei . . . ej of SPM

G(V,E) input graph

E(u, v) set of edges in G from u to v

f(e) flow on edge e

t(e) timestamp of edge e

f(GI) flow of motif instance GI

GT (V,ET) time-series graph equivalent to G(V,E)

(t, f) flow interaction element on an edge of ET

R(u, v) time series on edge (u, v) ∈ ET

R(ei) time series on edge of ET mapped to ei

S set of structural matches of a motif

Gs structural match of a motif

Definition 3.1 (Flow Motif). A network flow motif M is a triplet (GM , δ, ϕ) consisting
of (i) a directed graph GM(VM , EM) with m = |EM | edges, where each edge e is labeled
by a unique number ℓ(e) in [1,m]; (ii) a value δ, which defines an upper-bound on
the duration of the motif; and (iii) a value ϕ, which defines a lower bound on the
flow of the motif.

The labels of the edges in the motif graph GM define a total order of the edges
that models the direction of the flow in GM . For example, if GM consists of two edges
(u, v) and (v, w) and we have ℓ(u, v) = 1 and ℓ(v, w) = 2, this means that the flow in
the graph originates from node u, it is first transferred to v, and then from v to w.

Figure 3.2 shows some examples of motifs (we only show the motif graphs GM ,
but not the thresholds δ and ϕ). The numbers in the parentheses denote the number
of nodes and edges in the motifs. For example, the motif labeled M(3, 3) models a
cyclic flow between three nodes (extra motifs in Appendix).

10

Motifs Considered for WSDM
• Requirement: all edges of the motif form a single path

1

1

M(4,3)

2 31

M(3,2)

2 1

M(3,3)

3

2

M(4,4)Α

41 3

M(4,4)Β

1 4

2

M(4,4)C

34

2

M(5,5)Α

41

M(5,5)Β

3
41 5

M(5,5)C

3
2

4

1

1

M(5,4)

4

2

23

23 1

3

2

55

Figure 3.2: Examples of motifs.

We assume that the ordering of the edges according to their labels defines a path
in the graph GM . We refer to this path as the spanning path of the motif, and we
denote it as SPM . The spanning path is not necessarily a simple path, i.e., there may
be repeated vertices in the path. We sometimes refer to a motif graph GM by its
spanning path SPM = e1e2 . . . em, i.e., the total order of its edges, where ei denotes
the edge with label i. For example, we may refer to motif M(3, 3) in Figure 3.2 by
the sequence SPM(3,3) = e1e2e3 of its three edges. In addition, we use ei or SPM [i] to
denote the i-th edge of the motif, and SPM [i : j] to denote the subsequence of edges
ei . . . ej along the path. We now define motif instances as follows.

Definition 3.2 (Flow Motif Instance). An instance of a motif M = (GM , δ, ϕ) in the
graph G(V,E) is a subgraph, GI(VI , EI), VI ⊆ V , EI ⊆ E of G with the following
properties:

• There is a bijection µ : VM → VI from the vertex set of the motif graph VM to
instance vertex set VI .

• For every edge (u, v) ∈ EM there is a non-empty set of edges EI(µ(u), µ(v)) in GI ,
such that EI(µ(u), µ(v)) ⊆ E(µ(u), µ(v)). In addition, EI =

∪
(u,v)∈EM

EI(µ(u), µ(v)).

• The edge-sets in GI are time-respecting: For every pair of edges (u, v) and (v, w)

in EM , if l(u, v) < l(v, w), then for every pair of edges ei ∈ EI(µ(u), µ(v)),
ej ∈ EI(µ(v), µ(w)), t(ei) < t(ej).

• The maximum time difference between any two edges in EI is at most δ.

11

• The sum of flows of any edge-set in EI is at least ϕ.

The first two conditions express a structural requirement on the matching sub-
graph, the third and fourth conditions temporal constraints, and the last condition a
minimum flow constraint. Figure 3.3(a) shows an instance of M(3, 3) in the graph
of Figure 3.1, assuming that δ = 10 and ϕ = 7. u3, u1, and u2 are mapped to the first,
second, and third node of M(3, 3) according to the order of its edges. u1 and u2 in
the instance are linked by two edges which are both temporally after the edge(s) that
link u3 to u1 and before the edge(s) that link u2 to u3. The maximum time difference
between any two edges is 8 (≤ δ) and the aggregate flows on EI(u3, u1), EI(u1, u2),
and EI(u2, u3) are 10, 12, and 20, respectively (i.e., each of them is at least ϕ). If we
denote M(3, 3) by its spanning path SPM(3,3) = e1e2e3, we can express the instance of
Figure 3.3(a) by [e1 ← {(10, 10)}, e2 ← {(13, 5), (15, 7)}, e1 ← {(18, 20)}].

Motif and instances

28

1

M(3,3)

2
3

u1 u2

u3

13,5

15,7

10,10 18,20

u1 u2

u3

15,7

10,10 18,20

maximal non-maximal

Motif and instances

28

1

M(3,3)

2
3

u1 u2

u3

13,5

15,7

10,10 18,20

u1 u2

u3

15,7

10,10 18,20

maximal non-maximal(a) maximal instance (b) non-maximal instance

Figure 3.3: Examples of motif instances

For the ease of exposition, we define the flow f(GI) of an instance GI of motif M
as the minimum total flow among all edge-sets EI(µ(u), µ(v)) which instantiate the
edges (u, v) of M . Formally:

f(GI) = min
(u,v)∈EM

∑
e∈EI(µ(u),µ(v))

f(e) (3.1)

We now define the concept of motif instance maximality.

Definition 3.3 (Instance Maximality). An instance GI(VI , EI) of a motifM = (GM , δ, ϕ)

is maximal iff, the addition of one more edge to any edge-set EI(µ(u), µ(v)) of GI from
the corresponding edge-set E(µ(u), µ(v)) of G violates the duration or flow constraints
of the motif.

For example, assuming that δ = 10 and ϕ = 7, Figure 3.3(b) shows an instance of
M(3, 3) in the graph of Figure 3.1, which is not maximal. This is because the addition

12

of edge (13,5) to EI(u1, u2) results in the valid instance of Figure 3.3(a). In this thesis,
we focus on finding maximal instances of motifs only, because non-maximal ones are
redundant and considering them can mislead towards the importance of a motif.
For example, if ϕ = 0, all combinations of subsets of the edge-sets that form a valid
motif instance are also valid (but not maximal) instances. Considering them would
exponentially increase the total number of motif instances, potentially over-estimating
its importance.

13

Chapter 4

Finding Flow Motif instances

We now present an efficient algorithm for enumerating the maximal instances of a
given motif M(VM , EM) in an input graph G(V,E). For the ease of presentation, we
consider the input graph G not as a temporal multi-graph, but as a graph where
all original edges from a vertex u ∈ V to a vertex v ∈ V are merged to a single
edge. The single edge (u, v) is associated with an interaction time-series R(u, v) =

{(t1, f1), (t2, f2), . . . , (tm, fm)}. Each pair (ti, fi) represents a flow interaction occurring
at time ti with flow transfer fi from u to v. The interaction time series is ordered in
time. Figure 4.1 shows an example of how the edges of a multigraph G are merged to
time series. For example, the two edges from u1 to u2 are considered as a single edge;
the two edges with timestamps 13 and 15 are now considered as a time series on a
single edge (u1, u2). The conversion of the multigraph to a graph does not have to be
explicitly performed; for each connected pair of vertices, it suffices to consider their
multiple edges ordered by timestamp. We will use GT (V,ET) to denote this graph
and we will refer to it as the time series graph.

Our algorithm takes as input the multigraph G(V,E) and a motif M = (GM , δ, ϕ),
and finds all instances of M in G. The algorithm operates on the time series graph
GT and works in two phases P1 and P2:

P1 Find the set S of all structural matches of graph GM in graph GT , disregarding
the labels on the edges and constraints δ and ϕ.

P2 For each Gs ∈ S, using the time series of the edges in Gs, find all instances of

14

Algorithm 1

• Example of Step 1:

9

u1 u2

u3

u4

13,5

15,7

10,101,2
3,5

11,10

18,20

21,4

19,5

23,7

u1 u2

u3

u4

(13,5), (15,7)

(10,10)
(1,2),
(3,5)

(11,10)

(18,20)

(19,5), (21,4)

(23,7)

Algorithm 1

• Example of Step 1:

9

u1 u2

u3

u4

13,5

15,7
10,101,2

3,5

11,10

18,20

21,4

19,5

23,7

u1 u2

u3

u4

(13,5), (15,7)

(10,10)
(1,2),
(3,5)

(11,10)

(18,20)

(19,5), (21,4)

(23,7)

(a) multigraph (b) time series graph

Figure 4.1: From a multigraph to a time series graph

M in Gs (which should satisfy the duration and flow constraints defined by δ

and ϕ).

We now elaborate on the two phases.
Phase P1: To illustrate phase P1, as an example, consider the graph GT of Figure
4.1(b) and the motif M(3, 3) shown in Figure 3.2. Figure 4.2 shows all six structural
matches of M(3, 3) in GT found in phase P1. The labels {e1, e2, e3} on the edges of
the matches indicate the edges of the motif on which they are mapped. For example,
edge (u1, u2) of the first match is mapped to the first edge e1 of the motif.

Time/flow agnostic instances of M(3,3)

30

u1 u2

u3

(13,5), (15,7)

(10,10)

(18,20)

u2

u3

u4

(18,20)

(19,5), (21,4)

(23,7)

u1 u2

u3

(13,5), (15,7)

(10,10)

(18,20)

u2

u3

u4

(18,20)

(19,5), (21,4)

(23,7)

u1 u2

u3

(13,5), (15,7)

(10,10)

(18,20)

u2

u3

u4

(18,20)

(19,5), (21,4)

(23,7)

e1

e3 e2 e1 e1

e1

e1

e1

e2

e2

e2

e2

e2

e3

e3

e3
e3

e3

Figure 4.2: Structural matches of M(3, 3) (phase P1)

Algorithmically, for phase P1, any graph pattern matching algorithm for static
graphs can be used (e.g., [6]). In our implementation, we exploit the fact that the

15

ordering of the edges defines a path. Using a modified depth-first search algorithm
on GT , we can extract all paths of length |EM | that are structural matches of GM in
GT . Specifically, in a loop, we map every node in GT to the first node in GM (i.e.,
the origin node of the first edge in GM) and recursively find all paths that originate
from that node and map to the spanning path SPM of GM . For example, for motif
M(3, 3), the depth-first search algorithm should make sure that the last vertex of the
traversed path is the same as the first vertex of the path. Hence, the algorithm on the
graph G of our running example would identify path u1u2u3u1 as a match of M(3, 3).
Phase P2: In phase P2, given the set of structural matches S, for each Gs ∈ S, we
process the time series on the edges of Gs in order to find valid flow motif instances.
In a nutshell, we slide a time window of length δ along the set of all (ti, fi) interactions
on the edges of Gs; for all sets of interactions within δ time difference, we find all
combinations thereof which constitute valid motif instances. Note that each structural
match Gs from phase P1 may produce an arbitrary number of flow motif instances,
as each time window position can generate different instances depending on the
combinations of edge flows we use.

To illustrate, consider again M(3, 3) (for δ = 10) and a possible structural match,
shown in Figure 4.3. We will get different flow motif instances depending on whether
we consider window [10, 20] or [15, 25]. Furthermore, even for the specific time-
window [10, 20], we can get different flow motif instances depending on how we
combine the edges in this window. For example, one possible flow motif instance
is [e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}], while another flow motif in-
stance is [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}]. Note that the flow in
the former case is 5, while in the latter is 3, meaning that the latter instance would
be rejected for ϕ = 5.

Algorithm 4.1 is applied in phase P2 to find all instances of the motif M in a
match Gs (found in phase P1). The algorithm slides a window T of length δ over the
time domain, to find subsets of edges in Gs that satisfy the duration constraint δ and
can generate maximal motif instances. Given a specific window T we run procedure
FindInstances in order to generate all possible maximal flow-motif instances that
satisfy the flow constraint ϕ. The procedure is recursive on the length m of the
spanning path SPM = e1e2 . . . em of the motif.

FindInstances takes as input the graph instance Gs, a spanning path SP , a time-
window T and the threshold ϕ. Let R(ei) be the interaction time series on the edge

16

The case of total orders

2

u3 u2

(10,5),
(13,2),
(15,3),
(18,7)

(14,4),(19,6),(24,3),(25,2)

u1
(9,4),
(11,3),
(16,3)

e1 e2
e3

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,16,19,24,25
11,17

Overcounting is not possible, because all instances should
contain elast[plast] (not contained in prev. instances)

elast[plast]=19

elast[plast]=22

10 15 20 25

1

M(3,3)

2
3

Figure 4.3: Example for Algorithm 4.1

of Gs which is mapped to edge ei of the motif. If the spanning path consists of a
single edge e1, then the procedure finds the set RT (e1) ⊆ R(e1) of all elements in
R(e1), which are within the time-window T , and aggregates their flow. If the total
flow f(RT (ei)) of these elements satisfies the flow constraint ϕ, the edge-set of G

corresponding to RT (ei) becomes an instance of SP and it is returned. For longer
spanning paths, the procedure considers again the first edge e1 = SP [1]. For every
prefix Tp of the window T that contains instances of the edge e1, it computes the set
RTp(e1) ⊆ R(e1) of all (t, f) interaction elements in R(e1) for which t ∈ Tp. If RTp(e1)

is non-empty and satisfies the flow constraint, then FindInstances is recursively called
on the rest of the spanning path SPnext = SP [2 : m], with time window Tnext = T −Tp.
This recursive call will return the set of valid instances within time-window Tnext for
the sub-motif defined by SPnext. Each of these instances is concatenated to RTp(e1) to
create a new valid instance for SP .

The condition at line 16 of the algorithm helps us to find invalid prefixes of the
motif instances early. In other words, if a sub-series RTp(e1) which is candidate for
instantiating a motif edge does not qualify ϕ, we do not consider the possible instances
that include the elements of RTp(e1) as an instance of e1. Hence, the search space is
effectively pruned.

17

Algorithm 4.1 Instance finding module
Require: δ, ϕ, time window T , structural match Gs

1: I ← ∅ ▷ set of instances of Gs in T

2: for each maximal time window T that satisfies δ do

3: I ← I ∪ FindInstances(Gs, SPM , T, ϕ)

4: end for

5: return I

6: procedure FindInstances(Gs, SP, T, ϕ)

7: I ← ∅ ▷ set of instances of Gs in T

8: if length(SP) = 1 then

9: RT (e1)← all (t, f) elements of R(e1) in T

10: if f(RT (e1)) ≥ ϕ then ▷ ϕ condition check

11: add RT (e1) to I

12: end if

13: else

14: for each prefix Tp of time window T do

15: RTp(e1)← all (t, f) elements of R(e1) in Tp

16: if f(RTp(e1)) ≥ ϕ then ▷ ϕ condition check

17: SPnext ← SP [2 : m] ▷ suffix of SP

18: Tnext ← T − Tp ▷ suffix of T

19: Inext ← FindInstances(Gs, SPnext, Tnext, ϕ)

20: for each I ∈ Inext do

21: add RTp(e1) ◦ I to I

22: end for

23: end if

24: end for

25: end if

26: return I

27: end procedure

18

Figure 4.3 illustrates the functionality of Algorithm 4.1. On top, the figure shows
motif M(3, 3) and a structural match Gs of it, where each edge is labeled by the
time series of flows between the corresponding nodes (e.g., at time 10, u2 sent to u1

a flow of 5). The elements on the edges of Gs are illustrated (as sequences of dots
ordered by time) at the bottom of the figure, colored by the edge they belong to (e.g.,
black for e2). The first row of dots includes all (t, f) elements, i.e., the first black dot
corresponds to element (9, 4) on edge (u1, u2), which is mapped to the second edge
e2 of M(3, 3). To find the motif instances that comprise of nodes and edges in Gs,
we slide a window of length δ along the timeline. Assuming that δ = 10, the first
position of the sliding window is [10, 20]. The algorithm finds all prefixes of elements
in R(e1) that fall in this window and for each such prefix, it generates recursively the
combinations of elements from other edges that form valid instances (according to δ).
For example, for the prefix Tp = [10, 10], which includes just the first element (10, 5)
from e1, the 2nd and the 3rd line of dots in the figure show the valid instances formed.
Specifically, these instances are [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}]
and [e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}]. Note that the ϕ constraint
is applied at every prefix in order to prune the search space if it is violated (e.g.,
if ϕ = 5, any instance [e1 ← {(10, 5)}, e2 ← {(11, 3)}, . . .] would be rejected. Note
also that there is no instance which contains just the first two elements of e1 but
not the third one, because there is no element from e2 which is temporally between
(13, 2) and (15, 3). Finally, note that the next position of the sliding window is [15, 25]
because the position [13, 23] which starts from the 2nd element of e1 does not include
any new elements from e3 compared to the previous window position [10, 20]; hence,
considering window position [13, 23] would result in redundant (i.e., non-maximal)
instances and this position is skipped.

We have not explained yet how window positions are skipped in Algorithm 4.1.
First, only window positions which start at elements of R(e1) are considered; in-
between positions (e.g., window [11, 21] in Figure 4.3) would result in redundant
(non-maximal) instances because there will be a subsequent position for which R(e1)

(and the other sets) can only expand (e.g., window [13, 23] in Figure 4.3). Second,
from those window positions that are considered, we skip those, where R(em) (i.e.,
the interaction time series, which is mapped to the last edge em of the motif) is not
expanded with new elements, compared to the previous valid window position. In
our example, [13, 23] is skipped because no element is added to R(e3), compared to

19

position [10, 20]. If we used window position [13, 23], we would generate instances
that would not be maximal because we could add to each of them element (10, 5) of
e1 without violating the δ constraint. In summary, in consecutive window positions
where module FindInstances is applied, the first elements of R(e1) should be different
and the last elements of R(em) should also be different.

Algorithm 4.1 does not miss any maximal instances because it systematically ex-
plores the combinations of edge-sets which are time-respecting and maximal within
a window. Moreover, the windows have maximal lengths and in each of them the
produced instances essentially include the temporally first (ti, fi) element that maps
to e1 and the temporally last (ti, fi) element that maps to em. At least one of these
pairs changes in the next window position; therefore, instances produced at different
windows do not violate the maximality condition.
Complexity Analysis. In the worst case, for each Gs and each time window, we
should consider all combinations of edges in G that instantiate the edges of the
motif. For example, when ϕ = 0, prefix-based pruning cannot be applied. In the
worst case, Gs = G and the edges in G ordered by timestamp are assigned to the
sequence of motif edges in a round-robin fashion. That is, the temporally first edge
of G is mapped to e1, the second to e2, etc. In this case, assuming the loosest possible
constraints δ =∞, ϕ = 0, the number of combinations of pairs to be considered (which
all form valid motif instances) is O(|E|/m)m, i.e., exponential to the number of edges
m in the motif. In addition, the number of structural matches is also exponential
to m. In practice, GT is sparse (or V is small) and the constraints δ and ϕ help in
pruning combinations of edges that do not form instances early, which renders the
algorithm scalable, as we will show in the experimental evaluation.

20

Chapter 5

Top-k flow motif search

5.1 Finding the top motif instance

Setting an appropriate value for the parameters δ and ϕ could be hard for non-experts
of the domain. Parameter δ is intuitively easier to be set to a time constraint that makes
sense to the application (for example, the analyst could be interested in patterns of
bitcoin transactions which happen within an hour or day). On the other hand, ϕ is
less intuitive, as too large values could result in too few or zero instances, whereas too
small values could result in thousands of instances which may overwhelm the user.
One solution to this problem is to replace the ϕ constraint by a ranking of the motif
instances GI with respect to their flow (see Equation 3.1). In other words, we may
opt to search for the k instances GI of the motif (with ϕ = 0) that satisfy δ, which
have the maximum flow f(GI).

To solve this top-k flow motif search problem, we can use our algorithm with a
small number of modifications. Phase P1 is identical; we should still find the set S
of all structural matches. Then, for each Gs ∈ S, we apply phase P2, by making the
following changes to Algorithm 4.1. First, we keep track in a priority queue (heap)
the top-k instances in terms of their minimum flow so far. Second, in place of ϕ, we
use the flow f(Gk

I) of the k-th instance Gk
I so far as a dynamic (floating) threshold.

21

5.1 Finding the top motif instance

For the special case, where k=1, the top-1 motif instance search problem can po-
tentially be solved faster with the help of a dynamic programming (DP) algorithmic
module. Recall that the objective of procedure FindInstances in Algorithm 4.1 is to
find the motif instances in a structural match Gs, within a time window T , which
qualify ϕ. We can replace this module by a dynamic programming algorithm that
finds the instance of maximum flow within T . This DP module can be described by
Algorithm 5.1.

Algorithm 5.1 DP module for top-1 instance search
Require: δ, time window T , structural match Gs

1: maxflow ← 0 ▷ keeps track of max flow found at any instance

2: for each maximal time window T that satisfies δ do

3: for all timestamps ti in T do

4: compute Flow([t1, ti], 1) = flow([t1, ti], 1)

5: end for

6: for κ = 2 to n do

7: for all timestamps ti in T do

8: compute Flow([t1, ti], κ) by Eq. 5.1

9: end for

10: end for

11: maxflow = max (maxflow, F low([t1, tτ ,m))

12: end for

13: return maxflow

Specifically, let [t1, t2, . . . , tτ] be the sequence of timestamps in T for which there
is a (t, f) interaction element in Gs. Let Mκ be the prefix of M which includes its fist
κ edges only and Flow([t1, ti], κ) be the flow of the top-1 motif instance of Mκ in the
time window [t1, ti]. Then, Flow([t1, ti], κ) can be recursively computed as follows:

Flow([t1, ti], κ) = max1<j≤i{min(Flow([t1, tj−1], κ− 1), f low([tj , ti], κ))}, (5.1)

where flow([tj, ti], κ) is the total flow of all (t, f) elements of the time series R(eκ) on
the κ-th edge of Gs, whose timestamps are in the time interval [tj, ti]. The Flow([t1, ti], 1)

array is initialized by scanning the elements of the first edge of Gs in T . Then,
for each κ > 1, Flow([t1, ti], κ) is computed using array Flow([t1, ti], κ − 1). Finally,
Flow([t1, tτ],m) corresponds to the top-1 flow of any motif instance in Gs within time

22

window T . By applying this algorithm for every window T , we can find the top
instance in Gs. Repeating this for each Gs gives us the top-1 instance of M in G.

Table 5.1 shows the steps of the DP module in the course of finding the top-1
instance in time window [10, 20] (assuming that δ=10) for the structural match of
M(3, 3) shown in Figure 4.3. The first row shows the values of Flow([t1, ti], 1) for the
first edge of the motif and for all values of ti (i.e., columns of the table). (Recall that
the starting timestamp t1 of the time window is 10.) The second row shows, for the
first two edges of the motif, the value of Flow([t1, ti], 2) for all values of ti, as well
as the value of tj , which determines Flow([t1, ti], 2). For all ti, the value of tj that
maximizes the flow is 11 and for ti ≥ 16 the flow becomes min(5, 3 + 3) = 5. Finally,
the last row shows the maximum flow for the best arrangement of (t, f) pairs to all
three edges of the motif, for all prefixes of the time window. Note that the last value
corresponds to the entire window and contains the flow of the best instance of the
entire motif in [10, 20], which is 5. The cells of the matrix in bold show how the top-1
instance, i.e., [e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}], can be identified.

Table 5.1: Example of the DP module

ti 10 11 13 14 15 16 18 19

κ=1 5 5 7 7 10 10 17 17

κ=2 3 (tj=11) 3 (tj=11) 3 (tj=11) 3 (tj=11) 5 (tj=11) 5 (tj=11) 5 (tj=11)

κ=3 0 (tj=13) 3 (tj=14) 3 (tj=14) 3 (tj=14) 3 (tj=14) 5 (tj=19)

Complexity Analysis. For each Gs and each time window, we should consider all
binary splits of the window at each iteration (i.e., for each edge in M). Hence the
time complexity is O(τ 2|E|), where τ is the number of timestamps in T for which
there is an (ti, fi) element in Gs. The space complexity is O(τ · |E|) because we only
need all Flow([t1, ti], κ− 1) for κ− 1 when we process the κ-th edge. The overall time
complexity per structural match in S is O(|S|δτ 2|E|), since the number of windows
to be considered is O(δ). The number of structural matches |S| is exponential to m,
as discussed in our previous analysis.
Extensibility. The algorithm can be applied to solve top-1 problems at a finer gran-
ularity. In particular, it can be used to find the top-1 instance for each structural
match Gs. This may be useful if we want to compare the sets of entities that consti-
tute the structural instances (e.g., groups of bitcoin users) based on their max-flow

23

interactions. In addition, we might be interested in finding the top-1 instance for each
position of the sliding time window T . This can be used in analysis tasks that com-
pare the volume of interactions (according to the motif structure) at different periods
of time.

24

Chapter 6

Experiments

6.1 Dataset Description

6.2 Efficiency and Scalability

6.3 Comparison to a competitor

6.4 Sensitivity to δ and ϕ

6.5 Top-k flow motif instance search

6.6 Scalability to the dataset size

6.7 Significance of Motifs

6.8 Association of motifs to events

The goal of our experimental evaluation is twofold: test the performance and scalabil-
ity of our algorithms and study the significance of flow motifs. We implemented the
algorithm presented in Chapter 4 and its two variants proposed in Chapter 5 (top-k
instance search, dynamic programming module for top-1 search). As a baseline, we
also implemented an alternative motif instance finding method based on finding and
joining instances of motif components in a hierarchical manner.

We evaluate the performance of all these methods on three real networks, to
be described in Section 6.1. We measure the efficiency and scalability of the tested
methods as a function of the problem parameters δ and ϕ on the motif structures
shown in Figure 3.2. These graphs model representative flows of interaction that
could be of interest to data analysts (e.g., M(3, 3) corresponds to cyclic transactions

25

in a money-exchange network, M(4, 3) corresponds to chains of region-to-region
movements in a passenger flow network). We also assess the statistical significance of
the tested motifs in three real graphs. All algorithms were implemented in Python3
and we ran all the experiments on a machine with an Intel Xeon CPU E5-2620
prossesor running Ubuntu 18.04.1 LTS.

6.1 Dataset Description

We used three datasets extracted from real interaction networks: the Bitcoin network,
the Facebook network and a Passenger flow network. Table 6.1 shows statistics of
the datasets. The third column is the distinct number of node pairs (u, v) ∈ V , for
which there is at least one edge (i.e., interaction) from u to v. This number equals
to the number |ET | of edges in the corresponding time-series graph GT . We now
provide more details about them.

Table 6.1: Statistics of Datasets

Dataset #nodes #connected node pairs #edges Avg. flow per edge

Bitcoin 24.6M 88.9M 123M 4.845

Facebook 45800 264000 856000 3.014

Passenger 289 77896 215175 1.933

Bitcoin network. We downloaded all transactions in the bitcoin blockchain [20]
in the period February 1st 2014 to November 30 2014 and converted them to a bitcoin
user graph.1 Nodes correspond to users and for each transaction of f bitcoins in the
blockchain from user u to user v at time t, we added an edge from u to v with label
(t, f). Since the same bitcoin user may control and use multiple addresses, we applied
a well-known heuristic [21, 22] to merge addresses that are considered to belong to
the same user to a single network node. Specifically, we merged addresses that appear
together as input in the same transaction. We did not take into account insignificant
transactions with amounts under 0.0001 BTC. Bitcoin is a relatively sparse graph
and the cases of two nodes being connected by multiple edges is rare. Finding motif
instances in the Bitcoin network can help towards understanding complex interactions
between users and can possibly help toward identifying suspicious transactions like

1data obtained from http://www.vo.elte.hu/bitcoin

26

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

0

50

100

150

200

250

Motifs

ti
m
e
(s
ec
)

join algorithm two-phase algorithm

1

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

0

50

100

150

200

Motifs

ti
m
e(
se
c)

join algorithm two-phase algorithm

1

(a) Bitcoin Network (b) Facebook Network

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

0

30

60

90

120

Motifs

ti
m
e
(s
ec
)

join algorithm two-phase algorithm

1

(c) Passenger Network

Figure 6.1: Our two-phase algorithm vs. the join algorithm

money laundering and bitcoin theft [10].
Facebook network: We consider Facebook as an interaction network between

users. We divide the time into 30-second intervals [ts, te) and for each pair of users
u and v we aggregate all interactions from u to v and add an edge from u to v with
label (ts, f), where f is the total number of interactions from u to v in this interval.
We consider as interactions the posts of likes by u targeting v or the messages sent
from u to v. We created the Facebook user network using data from April 2015 to
October 2015; the same dataset is used in [23]. The Facebook network is relatively
sparse and each pair of connected nodes have about four edges on average. Motif
search on this graph can help in analyzing influence [11, 12] and finding important
interactions among users [24].

Passenger flow network: We processed trips of yellow taxis in NYC in Jan-
uary 2018.2. Each record includes the pick-up and drop-off taxi zones (regions)

2obtained from http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

27

the date/time of the pick-up and drop-off, and the number of passengers inside the
taxi. Using these records, we created an interaction network where the nodes are the
taxi zones; for each record, we generate an edge that links the corresponding nodes
and carries the timestamp of the activity (i.e., the pickup time) and the corresponding
flow (i.e., the number of passengers). This Passenger flow network is dense; in addi-
tion, each pair of connected nodes have about three edges on average. Motif instances
found in this passenger flow graph can help in understanding the flow of movement
between different regions on a map.

6.2 Efficiency and Scalability

In this section, we evaluate the efficiency and scalability of our algorithm when ap-
plied to find the instances of the motifs depicted in Figure 3.2. The default values
for the duration constraint δ are 600 sec., 600 sec., and 900 sec. on Bitcoin, Face-
book, and Passenger, respectively. These value represent realistic time intervals for
the corresponding applications. The corresponding default values for ϕ are 5, 3, and
2, respectively.

6.3 Comparison to a competitor

In our first set of experiments, we compare our algorithm with an alternative mo-
tif instance finding algorithm which is based on progressively finding and joining
instances of motif subgraphs.

Specifically, this join algorithm starts by accessing each edge (u, v) of the time series
graph GT and finding all time-intervals of length at most δ and their aggregated flows.
For each such interval [ts, te] a quintuple (u, v, ts, te, f) is generated. These tuples are
kept in two tables; C1 sorts them by starting vertex u and C2 sorts them by ending
vertex v. In the next step, C2 and C1 are merge-joined to find all pairs (c2, c1) having
c2.u = c1.v and also satisfying c1.te − c2.ts ≤ δ. The set P of all these tuple pairs
constitute results of all sub-motifs of M which include two consecutive edges. In the
next step, P is self-joined again to produce instances of sub-motifs of M with three
consecutive edges. This is done by finding pairs {(c2, c1), (c′2, c′1)} of couples in P for

28

which c1 = c′2 and c′1.te − c2.ts ≤ δ. The next steps are applied in a similar manner
until the instances of the entire motif M are constructed. Note that for each motif or
sub-motif that closes a cycle (e.g., M(3, 3)), we check the additional condition that the
starting vertex of the first motif edge in the instance is the same as the target vertex
of the last edge. At each step, we apply a merge join for the production of sub-motif
instances, after having sorted the tuples produced in the previous step accordingly.

Figure 6.1 compares the runtime cost of the join algorithm with that of our two-
phase algorithm presented in Chapter 4. For all motifs, we used the default values
for δ and ϕ. Note that our two-phase algorithm is typically twice as fast as the join
algorithm. This is attributed to the fact that the join algorithm produces a large
number of intermediate results (i.e., sub-motif instances), which are avoided by our
method. Note that many of these sub-motif instances do not end up as components
of any instance of the complete motif, so their generation is redundant. In the rest of
this section, we do not include additional comparisons with the join algorithm since
it was always found to be slower than our approach.

Table 6.2: Number of structural matches and runtime in phase P1 of motif search

Motif M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

Bitcoin
Instances 634K 485K 484K 210K 205K 213K 145K 122K 124K 121K
Time (sec) 47.02 49.23 50.15 57.05 60 61.16 64.35 69.11 73.02 75.15

Facebook
Instances 415K 276K 272K 113K 113K 114K 97K 90K 91K 90K
Time(sec) 40.02 43.43 44.21 48.45 49.32 49.01 52.33 50.12 52.07 54.31

Passenger
Instances 27893 16455 25778 14877 14569 14903 22134 12345 12567 12009
Time(sec) 19.14 21.33 22.15 26.22 29.03 29.11 25.04 30.45 31.14 32

6.4 Sensitivity to δ and ϕ

The next set of experiments evaluate the performance of our algorithm on the different
datasets and motifs, for various values of the constraints δ and ϕ. Table 6.2 shows
the number of structural matches found and the time spent by the algorithm just for
its first phase, which is independent of the δ and ϕ values (since these constraints are
not used when searching for the structural matches). This cost constitutes a lower
bound for our algorithm. Naturally, more complex motifs require more time but they
also have fewer structural matches.

Figures 6.2 and 6.3 show the number of instances and total runtime of our

29

5 10 15 20 25

0.5

1

1.5

2
·104

�, � = 600

#
in

s
t
a
n
c
e
s

M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3 ·10
4

δ- φ = 5

O
BM

bi�
M+

2b

JUj-kV
JUj-jV
JU9-jV

JU9-9V�
JU9-9V"
JU9-9V*
JU8-9V

JU8-8V�
JU8-8V"
JU8-8V*

200 400 600 800 1,0000

20

40

60

80

100

120

140

�, � = 5
ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(a) Bitcoin Network

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

·104

�, � = 3

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

200 400 600 800 1,0000
10
20
30
40
50
60
70
80
90
100
110
120

�, � = 3

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(b) Facebook Network

300 600 900 1,200 1,500

1

2

3

4

5 ·10
4

�, � = 2

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

300 600 900 1,200 1,5000

10

20

30

40

50

60

70

80

90

100

�, � = 2

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(c) Passenger Network

Figure 6.2: Number of instances and time for different values of δ

30

5 10 15 20 25

0.5

1

1.5

2
·104

�, � = 600

#
in

s
t
a
n
c
e
s

M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

5 10 15 20 25

0.5

1

1.5

2

2.5 ·10
4

�, � = 600

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

5 10 15 20 250

20

40

60

80

100

120

140

�, � = 600
ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(a) Bitcoin Network

3 5 7 9 11

0.5

1

1.5

2

·104

�, � = 600

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

3 5 7 9 110

20

40

60

80

100

120

140

�, � = 600

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(b) Facebook Network

1 2 3 4 5

1

2

3

4

5 ·10
4

�, � = 900

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1 2 3 4 50

10

20

30

40

50

60

70

80

�, � = 900

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(c) Passenger Network

Figure 6.3: Number of instances and time for different values of ϕ

31

algorithm for different values of δ (in seconds) and ϕ. When we vary δ, we set ϕ to its
default value and vice versa. As expected, in all cases, when δ increases the number
of instances and the runtime increases. The algorithm scales well as its cost increases
at a lower pace compared to the results found.

When comparing the different motifs, note that the simpler ones (e.g., M(3, 2)

and M(3, 3)) naturally have more instances and are cheaper to search compared to
the more complex ones (e.g., M(5, 5)A). The relative order between the motifs is
similar in the Bitcoin and Facebook networks. In both networks cyclic flow is quite
common; i.e., motifs containing cycles have a similar number of instances as motifs
without cycles having the same number of edges. On the other hand, in the Passenger
network, acyclic motifs dominate in terms of number of instances. This is expected,
as it is relatively rare that passengers move between regions on a map forming cycles
compared to moving along a chain of different regions.

The behavior is also consistent to our expectation when ϕ varies; the number
of instances and the runtime drop when ϕ increases. The algorithm becomes faster
because partial motif instances that do not qualify ϕ are pruned early.

6.5 Top-k flow motif instance search

We now evaluate the results and the performance of top-k motif search on the three
datasets, when using the default values of δ. In the first experiment, we run the version
of our algorithm which finds the top-k motif instances that have the maximum flow.
For each run, we record the flow of the k-th instance in Figure 6.4. As expected, the
flow of the k-th instance drops as k increases; the drop rate decreases when k becomes
large (note that the x-axis is not linear). In the second experiment, we compare the
runtime of the general top-k algorithm with its version that employs the dynamic
programming module proposed in Section 5.1. The barcharts show that the second
phase of the algorithm benefits from the use of dynamic programming (the runtime
drops 20% to 40%). The improvement is better on the Passenger network.

32

5 10 15 20 25

0.5

1

1.5

2
·104

�, � = 600

#
in

s
t
a
n
c
e
s

M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

R 8 Ry 8y Ryy 8yy0

10

20

30

40

50

60

70

80

90

100

k

~Q
r

Q7
k
@i?

BM
bi�

M+
2

JUj-kV
JUj-jV
JU9-jV

JU9-9V�
JU9-9V"
JU9-9V*
JU8-9V

JU8-8V�
JU8-8V"
JU8-8V*

R

1 5 10 50 100 50040

50

60

70

80

90

100

110

120

k

flo
w
of

k
-t
h
in
st
an
ce

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(a) Bitcoin Network (b) Facebook Network

1 5 10 50 100 50050

60

70

80

90

100

110

120

130

140

k

flo
w
of

k
-t
h
in
st
an
ce

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(c) Passenger Network

Figure 6.4: Flow of k-th instance

6.6 Scalability to the dataset size

In the next experiment, we test the performance of our algorithm on samples of
the original datasets having different sizes. For each of the three datasets, we take
samples defined by prefixes of the total period covered by the timestamps of the edges
included in the sample. Specifically, for the Bitcoin network we define 5 samples: B1,
B2, B3, B4, B5. B1 includes all transactions happened in the first month of the 9-
month period of the complete dataset. B2, B3, B4, and B5 cover the first 2, 4, 6, and
9 months respectively. Similarly F1, F2, F3, F4, and F5 cover the first 1, 2, 3, 4, and
6 months of the entire dataset respectively. Lastly, T1, T2, T3, and T4 cover the first
8, 16, 24, and 31 days of January 2018 respectively. Figure 6.7 shows the growth in
the number of instances and in the runtime of the algorithm for the different motifs.
Observe that the algorithm scales well as its cost grows at a slower pace compared to
the number of instances and the size of the input data.

33

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

10

20

30

40

50

60

Motifs

ti
m
e
of

p
h
as
e
P
2
(s
ec
)

top-k (k=1) DP

1

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

10

20

30

40

50

Motifs

ti
m
e
of

p
h
as
e
P
2
(s
ec
)

top-k (k=1) DP

1

(a) Bitcoin Network (b) Facebook Network

M
(3
,2
)

M
(3
,3
)

M
(4
,3
)

M
(4
,4
)A

M
(4
,4
)B

M
(4
,4
)C

M
(5
,4
)

M
(5
,5
)A

M
(5
,5
)B

M
(5
,5
)C

10

20

30

40

Motifs

ti
m
e
of

p
h
as
e
P
2
(s
ec
)

top-k (k=1) DP

1

(c) Passenger Network

Figure 6.5: Efficiency of the dynamic programming module

6.7 Significance of Motifs

In this experiment, we assess the significance of the different flow motifs in our
networks. Following the standard practice [25], we generated randomized versions
of our datasets, we computed the number of instances of each motif in each of these
datasets, and we compared it against the same number for the real dataset. A large
divergence between real and randomized numbers indicates a significant motif.

Specifically, from each dataset (e.g.. Bitcoin network) we generated random datasets
by keeping the structure of the corresponding graph fixed, and permuting the flows
on the edges. Recall that in the original input multigraph G = (V,E) each edge e

is associated with a timestamp t(e) and a flow value f(e). A pair of nodes (u, v) is
connected by a set of edges E(u, v). Given the entire set of flow values {f(e) : e ∈ E},
we compute a random permutation π of the flow values and reassign them to the
graph edges in this order. This generates a randomized dataset Gr(V,E) with the
same set of nodes and the same set of edges; each edge e has the same timestamp

34

5 10 15 20 25

0.5

1

1.5

2
·104

�, � = 600

#
in

s
t
a
n
c
e
s

M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

B1 B2 B3 B4 B5

0.5

1

1.5

2

2.5 ·10
4

data period, � = 5, � = 600

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

F1 F2 F3 F4 F5

0.5

1

1.5

2

2.5 ·10
4

data period, � = 3, � = 600

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

(a) Bitcoin Network (b) Facebook Network

T1 T2 T3 T4

0.5

1

1.5

2

2.5

3

·104

data period, � = 2, � = 900

#
in
st
an
ce
s

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(c) Passenger Network

Figure 6.6: Scalability to input graph size

t(e), and flow value π(f(e)). Hence, Gr is derived from G by randomly “shuffling”
the flow values on the edges.

The random graph Gr has the exact same structure as G and the edges in the
graph appear at the same timestamps. Therefore, all structural matches of the motifs
in G will also appear in Gr. In addition, putting aside the flow constraint ϕ, the motif
instances in the two graphs will be the same, when considering only δ. What changes
is the flow value of each motif instance, which will result in a different number of
flow motif instances in Gr compared to G, for non-zero values of ϕ. Our goal is to
study whether the motif instances that satisfy the ϕ constraint in the real data are
statistically significantly more than those in the randomized data.

We generated 20 different random graphs for each real network according to the
procedure we described above. We found the instances of each motif in all these
random datasets. In addition, we computed the mean and standard deviation of the

35

5 10 15 20 25

0.5

1

1.5

2
·104

�, � = 600

#
in

s
t
a
n
c
e
s

M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

B1 B2 B3 B4 B5
0

20

40

60

80

100

120

140

data period, � = 5, � = 600

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

F1 F2 F3 F4 F5
0

20

40

60

80

100

120

140

data period, � = 3, � = 600

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(a) Bitcoin Network (b) Facebook Network

T1 T2 T3 T4
0

10

20

30

40

50

60

70

80

90

100

data period, � = 2, � = 900

ti
m
e
(s
ec
)

M(3,2)

M(3,3)

M(4,3)

M(4,4)A

M(4,4)B

M(4,4)C

M(5,4)

M(5,5)A

M(5,5)B

M(5,5)C

1

(c) Passenger Network

Figure 6.7: Scalability to input graph size

number of motif instances in all 20 random graphs per real dataset. To assess the
significance of a motif in the real data, we compared the number of instances in the
real data with those in the random data. Figure 6.8 shows, for each dataset and motif,
the distribution of the numbers of instances for all random graphs in a box plot, and
the corresponding number in the real graph (marked by a diamond). Each real value
is also associated with the z-score (shown above the corresponding diamond), which
is computed as follows. For some motif M , let rM denote the number of instances of
the motif in the real data, let µM denote the mean number of motif instances in the
randomized data, and let σM denote the standard deviation. The z-score zM of the
motif is computed as

zM =
rM − µM

σM

The higher the z-score, the further the value rM from µM .
The first observation is that the number of instances in all random graphs is

36

M(3,
2)
M(3,

3)
M(4,

3)

M(4,
4)A

M(4,
4)B

M(4,
4)C
M(5,

4)

M(5,
5)A

M(5,
5)B

M(5,
5)C

0.5

1

1.5

2

·104
9.02

9.58 14.65

24.09 18.35 20.53
37.68

27.22 12.67 19.68

Motifs

#
in
st
an

ce
s

1

M(3,
2)
M(3,

3)
M(4,

3)

M(4,
4)A

M(4,
4)B

M(4,
4)C
M(5,

4)

M(5,
5)A

M(5,
5)B

M(5,
5)C

0.5

1

1.5

2

·104
17.96

25.44 55.10

35.07 20.52 21.32 71.79

22.75 26.89 65.52

Motifs

#
in
st
an

ce
s

1

(a) Bitcoin Network (b) Facebook Network

M(3,
2)
M(3,

3)
M(4,

3)

M(4,
4)A

M(4,
4)B

M(4,
4)C
M(5,

4)

M(5,
5)A

M(5,
5)B

M(5,
5)C

1

1.5

2

2.5

3

·104
21.32

23.02

35.42

59.37 52.77 46.42

39.82

59.90 56.99 47.39

Motifs

#
in
st
an

ce
s

1

(c) Passenger Network

Figure 6.8: Number of instances in random networks (box plots), in real networks
(diamonds), and z-scores

much lower compared to that in the corresponding real network and these values do
not deviate much from their mean. The empirical p-value (the fraction of random
datasets with number of instances greater than that of the real data) is zero, indicating
statistical significance of the motif occurrences in all cases. This is consistent with the
intuition that the flow is not arbitrarily generated or consumed at the vertices of the
network, but it is transferred from one node to another. To discriminate between the
different motifs we look at the z-scores. We observe that for the Bitcoin network,
two out of the three top z-scores are for motifs that contain cycles, indicating that
large flow movements that close a cycle are statistically over-represented in the bitcoin
network. A similar observation holds for the Passenger flow network, where three out
of the top-three motifs contain a cycle. A different pattern emerges in the Facebook
dataset, where two out of the three highest z-scores are for chains of nodes. We

37

conjecture that this due to propagation trees of information in the Facebook network,
which result in chains with significantly high flow movement. It is interesting that
the significance of the discovered motifs varies in the different types of interaction
networks, indicating differences in the way flow is distributed in such networks.

6.8 Association of motifs to events

In the last experiment, we investigate the reasons behind possible bursts of flow motif
instances along the timeline. We consider only the Passenger network because, we
can interpret the semantics behind the nodes of this graph, i.e., they correspond to
known regions on the map of NYC.

We consider only the motifs, which are the most significant for this network, i.e,
M(3,2), M(3,3) and M(5,4). For each of the these motifs, we separately enumerated
their instances for all days of the months January 2018 and November 2017. We
noticed a burst in the number of motif instances for specific days of each month
compared to the daily average. We then did a simple Google search to find out that
whether any special events happened on these days. Table 6.3 below shows the days
of Jan 2018 and Nov 2017 with the largest number of instances, as well as the total
number of instances in the entire months.

Table 6.3: Motif instances in different days and months

Motifs 11/23/17 11/26/17 Nov 2017 01/1/18 01/4/18 Jan 2018

M(3,2) 11223 8546 38456 16033 10500 36078

M(4,3) 10921 8100 36231 15720 10033 34457

M(5,4) 10163 7614 33973 15033 9420 31092

For the selected days of these months, we leveraged the information which we
obtained from Google to associate the increased number of motif instances with pos-
sible events that may have caused the increase of passenger flow on these dates. We
found out that indeed on these days some important events took place in NYC. The
two events in the two days of November 2017 were the Macy’s Thankgiving Day Parade
and theWinter’s Eve at Lincoln Square, respectively. For the two days of January 2018
we associated the increased number of motifs with two events: the Celebration of New
Year’s Eve at Times Square and the Winter in Bryant Park.

38

Chapter 7

Conclusions

7.1 Summary

7.2 Future Work

7.1 Summary

In this thesis, we introduced the novel concept of network flow motifs. To the best of our
knowledge we are the first to define and study motifs in interaction networks, which
consider both the temporal and flow information of the interactions. We proposed an
efficient algorithm for enumerating flow motif instances in large graphs and variants
of that find the top-k instances of maximal flow. We evaluated our algorithm on three
real datasets and demonstrated its scalability. In addition, we compared it to a baseline
motif instance finding method based on joining instances of motif components and
showed its superiority. Finally, we studied the statistical significance of a wide range of
representative motifs on the real graphs and showed that they indeed appear more
frequently than in random networks with the same characteristics. This indicates
that the flow is transferred from one node to another (as opposed to being arbitrarily
consumed or generated) and that there are subgraphs in the network where significant
flow is transferred at certain periods of time.

39

7.2 Future Work

Our plans for future work are as follows:

• We plan to investigate in more detail the distribution of motif instances in the
real networks. For example, we can group the motif instances per structural
match, in order to identify the structural matches (i.e., sets of vertices in the
graph G) with the largest activity and how this activity is spread along the
timeline.

• Another direction is to improve the efficiency of our algorithm, by processing
multiple structural instances together in phase P2. Since two or more structural
matches may share the same prefix, we can compute the flow instances of their
common prefix simultaneously before expanding these instances to complete
ones for the different motifs. In addition, we will work towards a version of
the algorithm which focuses on counting instances of (possibly multiple) motifs
without constructing them (along the direction of previous work [9]).

• It will be interseting to generalize the definition of flow motifs to capture other
graph structures besides paths (e.g., directed acyclic graphs with forks and joins)
and study their search in large networks.

• We plan to apply network flow motif search on different datasets to find out
which motifs are significant in them.. Such data include telecommunication
networks, biological networks, etc.

• We plan to investigate the replacement of constaint δ by another parameter
which restricts the maximum time difference between consecutive edges of an
instance, as in [8]. This way, the maximum time difference between the edges in
a motif would be proportional to the motif’s length, making longer and shorter
motifs to have a similar number of instances. In addition, such a change would
make the join algorithm presented as a competitor in Chapter 6 faster, as more
intermediate results would be extended to real instances.

• Last but not least, we also plan to redefine other concepts related to graph
analytics such as PageRank and centrality, in order to take into consideration
the flow on edges. For example, we could do this in PageRank algorithm and

40

find the most important nodes in the graph considering not only the connectivity
between nodes but also the flow on the edges.

41

Bibliography

[1] Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W. Lee, “Communication motifs:
a tool to characterize social communications,” in CIKM, pp. 1645–1648, 2010.

[2] Y. Li, Z. Lou, Y. Shi, and J. Han, “Temporal motifs in heterogeneous information
networks,” in MLG Workshop @ KDD, 2018.

[3] A. Züfle, M. Renz, T. Emrich, and M. Franzke, “Pattern search in temporal social
networks,” in EDBT, pp. 289–300, 2018.

[4] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon1,
“Network motifs: Simple building blocks of complex networks,” Science, vol. 298,
no. 5594, pp. 824–827, 2004.

[5] O. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic, V. Janjic, A. Karapandza,
Rasa Stojmirovic, and N. Pržulj, “Revealing the Hidden Language of Complex
Networks,” Scientific Reports, vol. 4, p. 4547, 2014.

[6] S. Wernicke and F. Rasche, “FANMOD: a tool for fast network motif detection,”
Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006.

[7] D. Kempe, J. M. Kleinberg, and A. Kumar, “Connectivity and inference problems
for temporal networks,” J. Comput. Syst. Sci., vol. 64, no. 4, pp. 820–842, 2002.

[8] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal motifs
in time-dependent networks,” CoRR, vol. abs/1107.5646, 2011.

[9] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,” in
WSDM, pp. 601–610, 2017.

[10] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A fistful of bitcoins: characterizing payments among men with
no names,” in IMC, pp. 127–140, 2013.

42

[11] J. Leskovec, M. McGlohon, C. Faloutsos, N. S. Glance, and M. Hurst, “Patterns
of cascading behavior in large blog graphs,” in SDM, pp. 551–556, 2007.

[12] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring networks of diffu-
sion and influence,” TKDD, vol. 5, no. 4, pp. 21:1–21:37, 2012.

[13] R. Xiang, J. Neville, and M. Rogati, “Modeling relationship strength in online
social networks,” in WWW, pp. 981–990, 2010.

[14] K. Semertzidis and E. Pitoura, “Durable graph pattern queries on historical
graphs,” in ICDE, pp. 541–552, 2016.

[15] P. Holme, “Modern temporal network theory: A colloquium,” CoRR,
vol. abs/1508.01303, 2015.

[16] L. E. C. da Rocha and V. D. Blondel, “Flow motifs reveal limitations of the static
framework to represent human interactions,” CoRR, vol. abs/1303.3245, 2013.

[17] S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable approach to min-
ing communication motifs from dynamic networks,” in SIGMOD, pp. 475–489,
2015.

[18] R. Kumar and T. Calders, “Information propagation in interaction networks,” in
EDBT, pp. 270–281, 2017.

[19] R. Kumar and T. Calders, “2scent: An efficient algorithm to enumerate all simple
temporal cycles,” PVLDB, vol. 11, no. 11, pp. 1441–1453, 2018.

[20] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system
http://bitcoin.org/bitcoin.pdf,” 2007.

[21] R. Cazabet, R. Baccour, and M. Latapy, “Tracking bitcoin users activity us-
ing community detection on a network of weak signals,” in COMPLEX NET-
WORKS, pp. 166–177, 2017.

[22] D. Kondor, M. Pósfai, I. Csabai, and G. Vattay, “Do the rich get richer? an
empirical analysis of the bitcoin transaction network,” CoRR, vol. abs/1308.3892,
2013.

43

[23] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social
network’s (datacenter) network,” Computer Communication Review, vol. 45, no. 5,
pp. 123–137, 2015.

[24] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego net-
works,” in NIPS, pp. 548–556, 2012.

[25] S. Ranu and A. K. Singh, “Graphsig: A scalable approach to mining significant
subgraphs in large graph databases,” in ICDE, pp. 844–855, 2009.

44

Appendix A

Additional Motifs

1

2
M(2,2) M(3,3)B

1 2

3

1 2

34
M(3,4)

Figure A.1: Extra Motifs.

We examine three motifs, which include smaller cycles compared to the ones in
Figure 3.2. Figure A.1 illustrates the structure of these motifs.

We measured the number of their motif instances and the runtime cost of our
algorithm in both phases P1 and P2 . In phase P2, we used the default values of
δ and ϕ for each dataset, which we used in the previous experiments in Chapter 6.
For example, for the Bitcoin Network, the default values of δ and ϕ are 600 and 5,
respectively. Table A.1 shows the results for all datasets.

We observe that the number of instances and the cost to enumerate them are
consistent with the ones of the other motifs, which we already studied in the thesis.
Specifically, M(2,2) has more instances and lower cost compared to more complex
motifs M(3,3)B and M(3,4). Also, we notice that the number of motif instances vary
depending the dataset. For example, in the Bitcoin dataset,occur frequently compared
to the other datasets, because of the existence of cyclic transactions and the fact

45

Table A.1: Number of motifs instances and runtime for phases P1 and P2

Motif M(2,2) M(3,3)B M(3,4)

Bitcoin

Instances (P1) 522K 496K 485K

Instances (P2) 18576 17654 12879

Time (sec) (P1) 48.13 49 50.32

Time (sec) (P1+P2) 83.16 84.17 85.23

Facebook

Instances (P1) 319K 273K 263K

Instances (P2) 18115 15843 14123

Time (sec) (P1) 41.15 44 46.03

Time(sec) (P1+P2) 73.14 73.49 74.12

Passenger

Instances (P1) 15995 15442 15100

Instances (P2) 21763 20622 20033

Time (sec) (P1) 24.03 24.34 24.40

Time(sec) (P1+P2) 58.04 58.29 59

that two users exchange money (e.g., returning change) frequently. Moreover, in the
Passenger dataset, we notice that these types of motifs do not appear so frequently
compared to acyclic motifs.

46

Author’s Publications

• Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, Panayiotis Tsaparas

Flow Motifs in Interaction Networks, in EDBT ’19, Lisbon, Portugal

• Chrysanthi Kosyfaki, Nikos Mamoulis Flow Motifs in Complex Networks, as
poster in HDMS ’18, Larnaca, Cyprus

Short Biography

Chrysanthi Kosyfaki was born in Agrinio, Greece in 1995. She received her BSc
degree from the Department of Computer Science of Ionian University in 2017. At
the same year, she became a MSc student at the Department of Computer Science
and Engineering of University of Ioannina, working under the supervision of Prof.
Nikos Mamoulis. In 2018, she went in Hong Kong as an intern, at the Department of
Computer Science of the University of Hong Kong working with Profs. Ben Kao and
Reynold Cheng. Her research interests are in the area of Data Management, Spatial
and Spatio-temporal Data Analysis, Online Analytics and Continuous Queries.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Contributions
	Roadmap

	Related Work
	Static Networks
	Temporal Networks

	Definitions
	Finding Flow Motif instances
	Top-k flow motif search
	Finding the top motif instance

	Experiments
	Dataset Description
	Efficiency and Scalability
	Comparison to a competitor
	Sensitivity to and
	Top-k flow motif instance search
	Scalability to the dataset size
	Significance of Motifs
	Association of motifs to events

	Conclusions
	Summary
	Future Work

	Bibliography
	Additional Motifs
	Author's Publications
	Short Biography

