
Adaptation through Replica-group
Reconfiguration in NoSQL Data Stores

A Thesis

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Dimitrios Valekardas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WITH SPECIALIZATION

IN SOFTWARE

University of Ioannina

December 2018

Examining Committee:

• Kostas Magoutis, Assistant Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)

• Vassilios Dimakopoulos, Associate Professor, Department of Computer Science
and Engineering, University of Ioannina

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineering,
University of Ioannina

Acknowledgements

I would like to thank my advisor professor Kostas Magoutis for sharing his knowl-
edge on the thesis scientific field with me. Through his lectures, I was attracted to
distributed systems and motivated to master replication systems in this thesis. Fur-
thermore, I would like to thank Prof. Vassilios V. Dimakopoulos and Prof. Evaggelia
Pitoura for agreeing to participate in my examination committee and for their com-
ments on my thesis draft. I would also like to thank the open-source community for
providing code repositories of widely used systems, giving researchers the ability to
experimentally study, modify, and understand them.

Table of Contents

List of Figures iii

List of Tables v

Abstract vi

Εκτεταμένη Περίληψη vii

1 Introduction 1
1.1 Objectives . 3
1.2 Thesis Structure . 4

2 Background 5
2.1 The Go language . 6
2.2 Raft and related algorithms . 7
2.3 Etcd and related systems . 11
2.4 BoltDB and related backends . 13
2.5 Adaptive reconfiguration of stateful services 14

3 Implementation 15
3.1 Implementing the learner role . 16
3.2 Implementing the joint consensus mechanism 20

3.2.1 Design . 20
3.2.2 Protocol buffers, RPCs, and CLI 21
3.2.3 Message types and state transitions 23
3.2.4 Operation of Etcd joint consensus 26
3.2.5 Message processing . 30
3.2.6 Discussion . 35

i

3.3 Extending the Etcd benchmark . 35

4 Evaluation 38
4.1 Experimental setup . 39
4.2 Insight into reconfiguration process under different load levels 40
4.3 Etcd snapshot, compaction and defragmentation policy 44
4.4 Scaling up using joint consensus . 47
4.5 Simultaneously increasing fault-tolerance and performance 49
4.6 Characterizing the performance impact of learner additions 51
4.7 Impact of back-end . 55
4.8 Experimenting with prediction models 56
4.9 Joint consensus vs single server reconfiguration 57

5 Conclusions and future work 62
5.1 Conclusions . 62
5.2 Future work . 64

Bibliography 66

ii

List of Figures

2.1 Diagram explaining Raft joint consensus 8

3.1 State-changing process with joint consensus 25
3.2 Process of changing from follower to candidate and vice versa 26

4.1 EWMA formula . 40
4.2 Correspondence of results to the timeline of Raft joint consensus 41
4.3 Duration of reconfiguration process (from start to completion) 42
4.4 Number of committed log entries . 42
4.5 Committed log entries from Cold,new proposal till Cold,new commitment . . 43
4.6 Committed log entries while leader is in joint consensus configuration . 43
4.7 Committed log entries from proposal to commit of Cnew 44
4.8 History compaction and snapshotting 46
4.9 Effect of defragmentation on snapshot size 46
4.10 Latency of a 3-node group over two reconfigurations progressively in-

creasing node CPU capacity . 48
4.11 (a-c): CPU utilization of different nodes in C1-C3 50
4.12 Latency of a 3-node to 5-node group over reconfiguration increasing

node CPU capacity . 51
4.13 Latency impact of learner additions (Bench 1) 52
4.14 Leader CPU impact of learner additions (Bench 1) 52
4.15 Latency impact of learner additions (Bench 2) 53
4.16 Leader CPU impact of learner additions (Bench 2) 53
4.17 Latency impact of learner additions (Bench 3) 54
4.18 Leader CPU impact of learner additions (Bench 3) 54
4.19 Latency impact of key range size . 56
4.20 CPU usage impact of key range . 56

iii

4.21 Regression models . 57
4.22 Full replica-group reconfiguration using min-impact policy with single-

server changes . 59
4.23 Full replica-group reconfiguration using ASAP policy (excerpt of Figure

4.10) . 60

iv

List of Tables

3.1 Example of match indices in maybeCommit function 27
3.2 Example of sorted match indices in maybeCommit function 27
3.3 Example of match indices in maybeCommitJoint function (old config-

uration) . 29
3.4 Example of match indices in maybeCommitJoint function (new config-

uration) . 29
3.5 Example of sorted match indices in maybeCommitJoint function (old

configuration) . 30
3.6 Example of sorted match indices in maybeCommitJoint function (new

configuration) . 30

4.1 Regression model metrics . 57

v

Abstract

Dimitrios Valekardas, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, December 2018.
Adaptation through Replica-group Reconfiguration in NoSQL Data Stores.
Advisor: Kostas Magoutis, Assistant Professor.

Modern stateful services are able to adapt by dynamically adjusting the level of fault
tolerance and performance to ensure that their service characteristics closely match
user requirements, which may change over time. In this thesis we focus on adaptive
stateful services using replicated NoSQL (key-value) stores for maintaining state, and
on replica-group reconfiguration as the primary way to adjust the level of fault tol-
erance and performance delivered by each replica group in the system. We extend
the state of the art in this field by considering the pros and cons of different ways to
reconfigure a replica group and by experimentally evaluating reconfiguration variants
in the context of the Etcd key-value store, based on the Raft algorithm. We exper-
imentally study the costs and benefits of replica-group reconfiguration in various
adaptation scenarios of practical interest, using an implementation of Etcd extended
with the joint-consensus reconfiguration method, as well as the default single-server
reconfiguration offered in the publicly available implementation. Our results demon-
strate that the main adaptation costs incurred in both reconfiguration variants are
transferring state and electing a new leader. Reconfiguration actions may be sched-
uled to reduce either the duration or the performance impact of reconfiguration. In
both cases the two variants perform comparably, differing only in qualitative aspects
such as implementation complexity.

vi

Εκτεταμένη Περίληψη

Δημήτριος Βαλεκάρδας, Μ.Δ.Ε. στην Πληροϕορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροϕορικής, Πανεπιστήμιο Ιωαννίνων, Δεκέμβριος 2018.
Δυναμική Προσαρμογή μέσω Αναδιοργάνωσης Ομάδων Αντιγράϕων στα Συστήματα
Αποθήκευσης Δεδομένων τύπου NoSQL.
Επιβλέπων: Κώστας Μαγκούτης, Επίκουρος Καθηγητής.

Οι σημερινές μοντέρνες διαδικτυακές και μη υπηρεσίες που λειτουργούν ως μη-
χανές καταστάσεων, έχουν τη δυνατότητα να προσαρμόζουν δυναμικά το επίπεδο
ανεκτικότητας σε σϕάλματα όπως και το επίπεδο απόδοσης. Με αυτόν τον τρόπο, οι
υπηρεσίες προσαρμόζονται στις απαιτήσεις και της ανάγκες του χρήστη, οι οποίες
μεταβάλλονται κατά τη διάρκεια της ζωής και εξέλιξης ενός συστήματος. Σε αυτή
τη διατριβή, εστιάζουμε στην δυνατότητα προσαρμογής ομάδων-αντιγράϕων που
χρησιμοποιούν ως αποθηκευτικό χώρο βάσεις κλειδιού-τιμής (τύπου NoSQL) μέσω
χρήσης μηχανισμών αναδιοργάνωσης. Η αναδιοργάνωση (αλλαγή πλήθους αντιγρά-
ϕων) είναι ο κύριος τρόπος να τροποποιήσουμε την ανεκτικότητα ενός συστήματος
σε σϕάλματα, αλλά και το επίπεδο απόδοσης των ομάδων-αντιγράϕων που ανή-
κουν σε ένα σύστημα. Συμβαδίζοντας με την τελευταία λέξη τη τεχνολογίας, ερευ-
νήσαμε τις δυνατότητες των μηχανισμών αναδιοργάνωσης σε ομάδες αντιγράϕων,
λαμβάνοντας υπόψιν τα πλεονεκτήματα και μειονεκτήματα των διάϕορων τρόπων
προσαρμογής. Μελετήσαμε και υλοποιήσαμε γνωστή παραλλαγή του μηχανισμού
αναδιοργάνωσης, στο πλαίσιο κατανεμημένου συστήματος αποθήκευσης κλειδιών-
τιμών, ονομαζόμενου Etcd, το οποίο βασίζει την αντιγραϕή δεδομένων μεταξύ αντι-
γράϕων στον αλγόριθμο συμϕωνίας Raft. Μελετήσαμε πειραματικά τα κόστη και τα
οϕέλη της αναδιοργάνωσης ομάδων αντιγράϕων σε ποικίλα σενάρια προσαρμογής
μεγάλου και πρακτικού ερευνητικού ενδιαϕέροντος. Μελετήσαμε τη δυνατότητα να
προσαρμόζουμε την ανεκτικότητα του συστήματος μέσω προσθήκης νέων αντιγρά-

vii

ϕων, και τη δυνατότητα βελτίωσης της απόδοσης με αντικατάσταση των αντιγράϕων
με αντίγραϕα που χρησιμοποιούν περισσότερους πόρους. Η μελέτη αυτή έγινε με
χρήση της τροποποιημένης από εμάς έκδοσης του Etcd, η οποία χρησιμοποιεί την μέ-
θοδο της από κοινού συμϕωνίας αναδιοργάνωσης (joint consensus reconfiguration),
με την οποία μπορούμε να αυξομειώσουμε το πλήθος των αντιγράϕων μονομιάς.
Η από κοινού συμϕωνία αναδιοργάνωσης είναι ένα εργαλείο που μας επιτρέπει
να αλλάξουμε το πλήθος μιας ομάδας αντιγράϕων με μια εντολή, η οποία περι-
λαμβάνει πολλαπλές ταυτόχρονες προσθήκες/αϕαιρέσεις/αντικαταστάσεις κόμβων.
Μας επιτρέπει να μεταβούμε από μια οποιαδήποτε ομάδα αντιγράϕων σε μια εντε-
λώς καινούργια, ανεξαρτήτου πλήθους αντιγράϕων. Μεταβαίνοντας στο νέο σύνολο
αντιγράϕων, προστίθεται ενδιάμεσα μια επιπλέον ϕάση στην οποία οι αποϕάσεις
λαμβάνονται από κοινού μεταξύ της παλιάς και της διάδοχης ομάδας αντιγράϕων.
Μελετήσαμε και αξιολογήσαμε και την προϋπάρχουσα μέθοδο αναδιοργάνωσης, η
οποία αυξομειώνει το πλήθος της ομάδας-αντιγράϕων κατά ένα αντίγραϕο τη ϕορά
(single server reconfiguration), και είναι διαθέσιμη σε δημόσιο ηλεκτρονικό αποθη-
κευτικό χώρο. Τα αποτελέσματά μας επιδεικνύουν τα βασικά κόστη αναπροσαρμο-
γής, τα οποία προκαλούνται από τη μεταϕορά της κατάστασης από τον αρχηγό της
ομάδας αντιγράϕων προς τους νεοεισερχόμενους κόμβους, και την πιθανή εκλογή
νέου αρχηγού της ομάδας αντιγράϕων, και είναι κοινά και στους δυο τρόπους ανα-
διοργάνωσης των ομάδων. Συμπεραίνουμε πως και οι δυο τρόποι αναδιοργάνωσης
έχουν παρόμοια απόδοση, διαϕέροντας μόνο στην πολυπλοκότητα υλοποίησης.

viii

Chapter 1

Introduction

1.1 Objectives

1.2 Thesis Structure

Adaptation in stateful services, such as a database, file system, or other distributed
storage system, is defined as the ability to dynamically adjust the level of fault tol-
erance (resilience to one or more simultaneous faults) and performance (ability to
handle a specific amount of load at a certain response-time) in such systems. Adap-
tation is an important way to ensure that the above defined non-functional service
characteristics closely match changing user requirements and goals over time, rather
than provisioning a system at deployment and then not being able to match its
resources and characteristics (and thus, its cost) to the actual needs of its users. Dy-
namically adapting to potential faults (e.g., node crashes) and workload variations
should be possible while any necessary changes (such as increasing the number and
type of nodes) result to as little downtime as possible, minimizing financial costs and
end-user disappointment.

Adaptation in stateful services is more challenging to implement and manage
compared to stateless services (e.g., stateless web caching), especially in those stateful
services that use data replication as a primary way to mask failures, as there is a
need to prepare (transfer state) to new replicas before they can be operational. In this
thesis we focus on the class of replicated NoSQL (key-value) stores as a foundation
for maintaining service state due to their scalability and high availability properties,

1

which have made them quite popular in recent years. Our main adaptation mecha-
nism is replica-group reconfiguration, as a way to adjust the level of fault tolerance and
performance delivered by each replica group in the system. Adjusting the level of
data sharding (number of replica groups) and thus service parallelism in the system is
another adaptation mechanism in such systems, however it is orthogonal (and com-
plementary) to replica-group reconfiguration and beyond the scope of this thesis.
Previous work on adaptation in replicated stateful services (Fitch [1], SMART [2],
ZooKeeper [3] [4] etc.) has demonstrated the benefits of dynamically adjusting the
level of fault tolerance and performance of replica groups. In this thesis, we extend the
state of the art in this field by considering the pros and cons of different reconfigura-
tion primitives and experimentally evaluating dynamic replica-group reconfiguration
within a key-value store (Etcd [5] [6]) that is based on the Raft [7] consensus algo-
rithm, a popular system that has not been evaluated in this context before. Our focus
is on the costs and benefits of replica-group reconfiguration in various adaptation
scenarios of practical interest (such as changing the number and type of replicas to
improve fault tolerance and availability, to decommission replicas, or to “rejuvenate”
a service by replacing its replicas with new nodes), using an extended implementation
of Etcd with the Raft joint consensus mechanism. The implementation of Raft joint
consensus was developed, tested, and evaluated as part of the work performed for
this thesis.

Techniques for data replication are generally known for quite some time [8] [9] [10]
and their implementations have initially focused on ensuring consistency and perfor-
mance in static configurations. More recently, increased interest in dynamic adaptivity
in distributed key-value stores was fueled by the variability of Internet workloads and
as the notion of elasticity (dynamically adjusting system resources to workload needs)
became a first-class system property in cloud environments. Replication techniques
based on the Paxos [11] family of algorithms support dynamic reconfiguration of
replica groups (SMART), however the impact of such reconfiguration depends on
the specific technology of implementing Paxos and there is still no comprehensive
experimental study that evaluates service availability and tradeoffs in reconfiguration
primitives. Replication techniques based on the primary-backup model (ZAB [12],
Raft [7] [13]) support dynamic reconfiguration and are more popular in real imple-
mentations, however there have been few studies on the methodology of how (and
when) specifically to carry out such reconfigurations and what the corresponding per-

2

formance impact is for the application. Another research question addressed is how a
dynamic reconfiguration primitive that supports arbitrary replica-group changes in a
single atomic operation compare to a simpler reconfiguration primitive that supports
only single-server changes per invocation. This thesis contributes to better under-
standing the benefits, limitations, and tradeoffs in replica-group reconfiguration, with
the objectives described next.

1.1 Objectives

The objectives in this thesis are:

• To evaluate different adaptation scenarios using a production-quality NoSQL
data store that is able to dynamically reconfigure a replica group. Our aim is to
allow any modification in the number and type of replicas (including replacing
all current replicas with new replicas). Our focus is on the procedures involved
in such a reconfiguration, namely the steps to plan the necessary changes de-
pending on the goals (performance and availability of new system, and level
of impact (latency, time) during reconfiguration), proactively prepare the new
replicas, and effect the reconfiguration to move to a new system.

• To implement a reconfiguration algorithm that allows arbitrary changes in the
replica group (rather than a single-server change at a time), termed joint consen-
sus, in a widely used production distributed key-value store (Etcd) whose pub-
licly available implementation features only single-server reconfiguration within
the Raft algorithm. Our implementation adds joint consensus as a new recon-
figuration mechanism (a new feature) in Etcd, while allowing the pre-existing
single-server implementation as another option.

• To evaluate our implementation of Raft joint consensus in Etcd replica-group
reconfiguration. There are few implementations of Raft today that implement
and use joint-consensus for cluster reconfiguration, and no studies comparing
it experimentally to the Raft single-server reconfiguration variant. We perform
experiments that provide insight to the costs and benefits of replica-group re-
configuration in general (regardless of the specific reconfiguration mechanism)
and comparing joint-consensus to single-server.

3

1.2 Thesis Structure

The rest of this thesis is composed of the following chapters: In Chapter 2, we provide
background information on this thesis and explain how it relates to our work. In
Chapter 3, we describe in detail the implementation steps that we made to support
our experimental work. In Chapter 4, we perform a detailed experimental evaluation
and analysis of our system under a variety of scenarios. Lastly in Chapter 5, we
conclude and discuss open issues and future work.

4

Chapter 2

Background

2.1 The Go language

2.2 Raft and related algorithms

2.3 Etcd and related systems

2.4 BoltDB and related backends

2.5 Adaptive reconfiguration of stateful services

In this chapter, we make a brief introduction and analysis of the Etcd system used in
this thesis and the technologies it comprises. In Section 2.1 we provide basic infor-
mation about the language Go, used to develop Etcd, and compare its key features
to those of other popular languages. InSection 2.2 we describe Raft and related con-
sensus algorithms that have been proposed in the past, with special focus on their
reconfiguration mechanisms. In Section 2.3, we examine the features of Etcd and the
architecture of other similar systems. In Section 2.4 we refer to the characteristics of
the Etcd (as well as alternative) backends. Last, in Section 2.5 we discuss other work
related to adaptivity through reconfiguration.

5

2.1 The Go language

Go is Google’s open-source programming language, conceived by Robert Giesemer,
Rob Pike, and Ken Thompson in September 2007 [14] and announced in November
2009. All inspection and profiling tools in Go are also free and open-sourced. Go is
similar to the C language (some call it as C of the 21st century), but also borrows
good ideas and functionalities from other languages. Go is ideal for building infras-
tructure and network servers but also useful for other programming purposes. Go is
statically typed, guarantees memory safety, and makes an automated use of garbage
collector. It is considered a light object-oriented language: It does not have the notion
of a class, but gives programmers the ability to have an object-oriented approach
to their code with the use of structs. Go structs and their associated methods serve
the same goal of a traditional class and are obviously (although synonymous) more
powerful than C structs. Structs only hold the state, and struct methods provide the
behavior, enabling structs to change state. In addition, Go has its own distinct way
for private and public data. If the name of a variable/struct/function starts with an
upper-case letter is considered as package-public, else it is considered as package-
private. Most programming languages like Java and Python were conceived in 90’s
(the “single-threading era”). Although they support multi-threading, problems (such
as race conditions and deadlocks) often occur in concurrent executions. These prob-
lems make it hard to create multi-threading applications on these languages. If we
create a thread in Java, it can consume approximately 1MB of the heap size and one
can imagine what happens when a lot of threads are deployed. As Go was released
in 2009, when multi core processors had already been in widespread production and
use, it was designed with concurrency in mind. Go uses Goroutines instead of threads,
an equivalent construct that consumes around 2KB of the heap size, so that millions
of routines can be started. Goroutines also have quicker start-up than threads. In
addition, they have growable segmented stacks which means that they use more
memory only when necessary. Two or more goroutines can communicate easily with
the use of gochannels. Gochannels can be thought as pipelines that connect different
concurrent parts of a code that send/receive data. Directions can be set and define
which pipeline edge receives and which delivers data. These differentiations make
Go language a good choice for deploying distributed datastores such as Etcd.

6

2.2 Raft and related algorithms

In this section, we describe Raft and other related algorithms, with a special focus on
their reconfiguration mechanisms. A consensus algorithm aims to achieve agreement,
namely for a group of servers to agree on the sequence of operations to execute so
as to also agree on the data values stored. Distributed consensus is needed to reach
agreement between physical separate servers. The role of the algorithm is to guarantee
that there will be no mismatch in the replicas of data stored across servers through
appropriate synchronization between them. A consensus-based replication algorithm
also provides the properties of fault-tolerance and high availability by being able to
tolerate one or more server failures, maintaining the availability of the overall service.

Raft is a consensus algorithm proposed by Diego Ongaro in 2014. The purpose
of Raft is to provide a replicated state machines (RSM) algorithm that is easier to
understand compared to the classic Paxos consensus algorithm. Raft is also widely
adopted and used in production systems as a reliable replication protocol that guar-
antees fault tolerance and consistency between participating servers. In Raft, servers
can have one of three roles: Leader, Follower and Candidate. A single leader proposes
to the followers, while followers respond whether they accept proposals or not. Based
on whether a majority of follower accepts the proposal, the leader decides to commit.
If a Follower senses that the current leader has crashed, it becomes candidate and
proposes itself as new leader.

The sequence of agreed values on every node forms a replicated data log, stored
on each node’s disk. Communication between servers happens with asynchronous
message exchanges. Each message is characterized by two numbers: The term and
the index. The recipient of a message can understand if it is missing any data by
looking at the index. If the current log index is higher than the message index, the
node realizes that message is outdated (possibly a repeat of a past, already agreed,
message). When a new leader is elected, it advances term to term + 1. The next
messages that leader will broadcast to the cluster will have their term increased.
Therefore, term is the way for a node to learn if it is missing cluster configuration or
not.

Raft is similar in some ways to another consensus algorithm, Viewstamped Repli-
cation (VR) [15], with some unique features. Just as in VR, Raft elects a strong leader.
This means that log entries always flow from the leader to the other nodes. Raft also

7

Figure 2.1: Diagram explaining Raft joint consensus

uses randomized timers to elect leaders. The key difference is the way that member-
ship changes happen. Raft uses joint consensus to change the existing configuration to
a successor configuration. In joint consensus, there is a time period where the old and
new configurations overlap (Figure 2.1), and as such, quorums from both configura-
tions are needed for the common leader to decide. First, the leader proposes Cold,new

to the old and new configuration nodes. Cold,new takes effect on each server, when
it is applied to its log. When the leader receives quorums of responses from both
configurations for Cold,new, it then proposes Cnew. In the meanwhile, it needs quorums
both of Cold and Cnew to make decisions. Furthermore, a new leader may be elected
under a joint consensus configuration. This new leader will need to be voted from
quorums of both configurations to be elected. As soon as a server receives and stores
the new configuration entry,it considers the new configuration to be in force. When
leader proposes the Cnew, it considers it to be in force (when the leader is part of the
new configuration). Cnew takes effect on followers as soon as it is seen. In case of the
leader is not in the new configuration, Cnew will take effect at commit rather than at
the proposal. The leader will continue to replicate log entries without being leader of
the new configuration until it receives a quorum of responses from the new configu-
ration for Cnew. Then the old leader will become follower, and new configuration will
elect a new leader. In his PhD thesis D. Ongaro proposes a single-phase single-server
variant of the reconfiguration approach, which was adopted in several systems. In
this variant, a cluster can reconfigure only by adding or removing one server each
time. When adding/removing one server, any majority of the previous configuration
overlaps with any majority of the new configuration, thus a single phase suffices in
that case, and the leader proposes Cnew to the nodes of the new configuration. Cnew

8

is considered committed when a quorum of the Cnew nodes have applied it. The
new configuration takes effect on each server when it is added to its log.

Paxos is a classic consensus algorithm proposed by Leslie Lamport. Comparing to
Raft, it does not strictly require a leader and utilizes three classes of agents: Proposer,
acceptor and learner. While always ensuring safety, some Paxos implementations
additionally utilize a distinguished proposer (akin to a leader) to also ensure progress.
When Paxos is not leader-based, every node is able to advocate a client request. A
quorum of acceptors is required for a request to be committed. Learners implement
the replication phase of the protocol. Once the acceptors have agreed on a client
request, the learner agents execute the request.

Paxos can also be used to apply reconfiguration to the participating set of nodes
(replicas). Let us assume that the current replica set consists of nodes A, B, C. Recon-
figuration messages order to change the current configuration to A, B, D. If reconfig-
uration is proposed at slot n, reconfiguration will take place a slots later. The number
a must be sufficiently big so that the leader will be able to make new proposals before
consensus on reconfiguration is achieved (as the leader may not be part of the new
configuration). If the number a is too big, it will lead to many unapplied proposals
(to fill with no-ops). On the other hand, a small a may cause service unavailability.
Thus, amust be appropriately chosen so that server logs have enough time to catch up
with the most updated. Work in the SMART project pointed out that this technique
comes with several vulnerabilities and hazards (consecutive reconfigurations, new
configuration leader unawareness etc.). In SMART, when the configuration changes
from A, B, C to A, B, D, it creates 3 new configuration replicas A’, B’, D which are
part of configuration-2 (Paxos-2), while the previous replicas A, B, C which are part
from configuration-1 (Paxos-1) are kept until the new configuration is established.
If a node is in both configurations it will run two replicas (e.g., A and A’). Leader
election (leader may not be part of the new configuration) does not have to deal with
reconfiguration as soon as configurations are distinct (e.g., configuration-1 is distinct
from configuration-2 even though they may overlap). We could say that SMART re-
configuration approach seems like the Raft joint consensus proposal of adding nodes
that do not compete in making decisions, but only get up to date. When A’, B’, D
are started, they acquire state to get up to date just like our learners (Chapter 3,
Section 3.1). The time at which A’, B’, D are started must be such that the leader of
the configuration-1 can make a-1 proposals before it informs the clients to direct to

9

configuration-2.
Viewstamped replication also offers a reconfiguration protocol. In VR, the system

progresses through a sequence of views. In each view, one node has the role of the
primary, and the secondary (backups) monitor it. When the primary node is out of
order, the backups run a view-change protocol (election) to select a new node as pri-
mary. Like Raft, VR supports reconfiguration via Paxos [16]. When reconfiguration
message arrives to the old configuration, cluster stops accepting client requests. The
new configuration can start accepting messages when a majority of the new configu-
ration nodes has completed state transfer. When it is done, system passes to a new
epoch (term).

ZAB is a crash-recovery atomic broadcast consensus algorithm designed for Zookeeper.
It is a leader-based protocol, where a primary process (leader) receives and executes
the client requests and propagates the state changes to the backup (follower) replicas.
Leader requires a quorum of responses (including itself) to make progress. The ZAB
algorithm consists of three phases: discovery, synchronization and, broadcast. With
few words, in discovery phase the prospective leader proposes a new epoch. When
receiving positive responses of a quorum, it proceeds to synchronization phase. In
this phase leader proposes new-leader message and on receiving quorum of responses
for this message, it proceeds to broadcast phase. Normal operation happens in this
phase, where client requests are served by the cluster and data is replicated to the
ZAB nodes. In the beginning, ZAB membership changes happened using a “rolling-
restart” fashion, where all servers are shut down and restarted in such way there will
always be a quorum of running servers that will contain at least one server with the
latest state.

This proved to be problematic and hard to execute, so they proposed a reconfig-
uration mechanism [17] that is very similar to Raft joint consensus. Primary (leader)
sends state to the nodes of the new set (configuration) that have no state (similar
to learners). When ready, primary proposes cop (reconfiguration) message to all the
nodes. The proposals that arrive to the primary after the cop proposal require quo-
rums of both sets. When cop is acknowledged by quorums from both sets, the primary
(when member of the new set) activates the new set by sending an active message to
backups. If the old primary does not participate in the new set, it keeps proposing
requests scheduled after cop but it is the responsibility of the newly elected primary
of the new set to determine commitment on these entries. This is an important dif-

10

ference with Raft, where a departing leader proposes and announces commitment of
log entries beyond the proposal of Cnew and up to the commitment of Cnew at which
point it steps down.

2.3 Etcd and related systems

In this section, we take a look into Etcd and related key-value stores. We mainly focus
on Etcd, as it is the system which we modify but also refer the main functionalities
of the other systems.

Etcd is a highly available distributed key-value store which provides reliability
in cross-machine data storing. Its name comes from the “/etc” directory commonly
found in UNIX variants, typically storing system setting files; the “d” stands for
distributed. Etcd is an open source system and available in Github. There is a large
active community that maintains the code and extends the abilities of the system. It
is written in Go and uses the Raft consensus algorithm to provide consistency, fault-
tolerance and highly-available replicated logs. Etcd uses BoltDB [18] as its backend
storage. Etcd is widely used in production by several companies. For example, it
is used by Kubernetes [19] [20] as backing store for all cluster data. While Etcd is
commonly used for storing metadata, it can also be used to save other types of data.
It is also preferred to be deployed on SSDs, but can also be on HDDs.

Etcd can modify the cluster size using single server reconfiguration mechanism.
Reconfiguration goes through two phases: First, the cluster is informed about the new
configuration. This happens with an API call (e.g. member addition), which returns
when the cluster agrees on the configuration change. Second, the new member is
started. It contacts the cluster and verifies if the cluster configuration matches with
its cluster interpretation. When the member is started successfully, the cluster has
reached the expected configuration. More than one node additions can take place
with multiple single-server addition reconfigurations.

As for the data model, Etcd keeps revisions. Each time the key space is modified,
Etcd increases its revision counter. Revisions become more useful combining with
backend multi-version concurrency control (MVCC). It stores data in a multi-version
persistent key-value store. This store keeps the previous version of a key-value pair
when value is replaced with a new one. This means that through MVCC, we can view

11

the evolution of a key-value store from a past revision.
Etcd has a broad API and can serve different types of requests, such as reads,

writes, transactional writes (wraps multiple requests into one transaction), and deletes.
Transactional writes are atomic compare-and-swap operations that can be used to
build a distributed lock service. Etcd is tunable, and a user can adjust the system to
its needs. Although most of the features that are referred below are automated, Etcd
also provides an easy management API, with which a user can externally observe and
manage the state of the cluster. Specifically, Etcd provides us the ability to modify
cluster participants (add/remove server). We can also make several actions on the
nodes like taking snapshots, key-space history compaction (keeps key information
from a specific revision and forward) and defragmentation mechanism (release un-
used space -result of fragmentation- back to the system). A user can trigger leader
election in the cluster and can specify the node that will be the next leader (leadership
transfer). A user is able to get informed about cluster and node health or observe
the future modifications of specific keys (watch command). Specifically, since Etcd
maintains the history (revisions) of the keys, the watch command enables the user
have access to their previous values. Other important features of Etcd are: distributed
locks, leases, adding roles (user, root) and permissions to them.

TiKV [21] is a distributed key-value store that relies on the Raft consensus pro-
tocol. It eventually stores the data on a RocksDB backend. TiKV supports horizontal
scaling by using sharding. Each shard partition is called region and every region is
replicated to servers (replicas). Shard replication and load balancing is orchestrated
by Placement Driver, an Etcd cluster, which also stores metadata such as key shard
locations. PD does not replicate regional data. TiKV is part of TiDB [22] [23], a dis-
tributed SQL database, but can also be deployed as standalone system. TiKV is the
NoSQL part of the system, while TiDB is the SQL part of it. TiKV is an open-source
system with a Github repository, and written in the Rust language [24].

Like TiKV, CockRoachDB [25] [26] is a data store that supports sharding and
bases its consensus mechanism on Raft algorithm, using a RocksDB backend. In
CockRoachDB, shards are called ranges. Code is written in Go and hosted in a Github
repository. Regarding CockRoachDB architecture, SQL statements are transformed to
key-value operations and are distributed across the cluster. The distributed KV store
communicates with CockRoachDB nodes. Each CockRoachDB node may comprise
many physical devices, each holding one store. Each store may contain many ranges.

12

Ranges are replicated across the CockRoachDB nodes via Raft consensus algorithm.
Consul [27] [28] is a distributed key-value store that provides a data-center so-

lution for service discovery across distributed infrastructure. It is written in Go and
uses the Raft consensus algorithm. It differs from Etcd in that it does not support
multi-version concurrency control in its back-end. Consul uses a gossip protocol to
manage membership and to broadcast messages to the cluster. Gossip is provided
through the use of Serf [29], which uses SWIM [30] gossip protocol. Consul make
use of two different gossip pools: The LAN Gossip pool is used for client-server and
client-client intra-datacenter communication. Clients use this pool to automatically
discover servers. LAN gossip pool also helps to quickly and reliably broadcast events
such as leader election. Failure detection is not performed by the servers, but is dis-
tributed via the gossip protocol as well. WAN Gossip pool is used for cross-datacenter
communication as all servers participate in this protocol. WAN pool enables to per-
form cross-datacenter requests and also allows the datacenters to discover each other
in a low-touch manner.

Last, Zookeeper in yet another distributed key-value store and coordination ser-
vice, like Etcd, that uses replication for high availability. As referred previously, it
uses the ZAB consensus algorithm. With regard to the data model, data in Zookeeper
is saved in znodes. Znodes are organized in a hierarchical namespace fashion. Inter-
nal znodes (akin to directories) may also contain data, just like leaf znodes. The data
that a znode contains are always relevant to it. A znode can have children etc. Each
znode is associated with an access control list (ACL). Except for regular znodes, there
are also ephemeral znodes, which live only as long as the session that created them
exists. User can create/delete and get children of a node.

2.4 BoltDB and related backends

BoltDB is a key-value store developed in Go. It is characterized of rapid serving of
read-intensive workloads. It is used by Etcd and other systems as their backend.
Its code is open-source and available in a Github repository. BoltDB saves data in
a memory-mapped file, creating a copy-on-write B+ tree [31] which enables the co-
existence of multiple versions of keys. This simplifies read-write concurrency and
locks are not necessary between writer and readers. Copy-on-write makes BoltDB

13

reads rapid. BoltDB allows only one writer per time but there is no limitation for
readers. When records are deleted from BoltDB, although the specific disk space is
not any more used, it is replaced by tombstones, released back to the system during
defragmentation.

RocksDB [32] [33] is another persistent key-value store implemented as a library
in C++, available in a Github repository. RocksDB uses log-structured merge-tree
(LSM) [34]. This tree structure is known to be more suitable for write-intensive
workloads. The reason that RocksDB performs fast write speeds, is that writes are
straightly written in a memtable placed in memory, periodically flushed to disk. The
LSM tree on-disk structure consists of sorted-string-table files (SST). RocksDB being
an implementation of LSM trees requires periodic compactions (briefly, SST files are
merged, multiple copies (duplicates or overwritten) of the same key are removed,
and the end result written to a new SST file), which operates (and costs) similar to
defragmentation.

2.5 Adaptive reconfiguration of stateful services

Fitch is an infrastructure which is used both for stateful and stateless services. State-
ful service replication system of Fitch can be compared to our work. Fitch key-value
store is based on BFT-SMaRt [35]. BFT-SMaRt is a leader-based protocol and im-
plements reconfiguration based on the ideas presented by Lamport et al. [36]. Their
system uses three different reconfiguration command types: add, remove replace.
Based on them, they perform experiments to check the impact of proactive replica
additions/removals on stateful services. This kind of experiments can be related to our
experiments described in Section4.6. They also use their reconfiguration mechanism
to scale up/scale down we do in our evaluation in Section 4.4. Their experiments
are related to our work; however, we carry out a more thorough investigation of the
replica addition costs, different options on timing additions (one learner at a time or
group additions), etc.

14

Chapter 3

Implementation

3.1 Implementing the learner role

3.2 Implementing the joint consensus mechanism

3.3 Extending the Etcd benchmark

In this chapter, we describe the Etcd mechanisms that we modified and the code
we produced in order to implement and evaluate joint consensus. The original Etcd
implementation can only perform single-server reconfigurations. As proposed in On-
garo’s thesis [7], joint consensus implementation should add new servers initially as
non-voting members. In this thesis we term such members as learners and add them
to a live cluster as described in Section 3.1. The core of our changes lay within the
Etcd Raft package, where we modified the existing Raft algorithm to perform joint
consensus as described in Section 3.2. Along with the algorithm, we modified all the
necessary external files that the Raft package uses. We also extended the Etcd client
API (etcdctl) as a necessary step to be able to command and control reconfiguration
of the system. We also modified the Etcd benchmark Section 3.3 to enable the client
to detect leader changes so as to always send writes directly to the leader, avoid-
ing forwarding costs. Finally, we modified the benchmark to record throughput and
average latency per second.

15

3.1 Implementing the learner role

Learners (Etcd nodes that maintain replica state but are not counted towards con-
sensus decisions) are of key importance to our joint consensus implementation. In
the original Etcd implementation we started with (v3.3.0-rc.0 as of December 20,
2017) [37] there was an initial implementation of learners, mainly within the Raft
package. The original intention of Etcd developers (judging from activity in Etcd’s
Github repository) with the concept of learners was to use them as backup nodes
that will be able to vote for a new leader, in case of the members cannot achieve
consensus about the new leader. In our concept, learners cannot vote or to be voted
as a new leader. They only listen to the decisions of the voting-nodes (members) of
the cluster. Learners only build their state and do not take part in decision making.
The leader does not take into consideration the progress of the learners in order to
advance the committed index of the agreed log entries. When a learner is online,
it establishes the connections with all nodes that are part of the cluster. The leader
will keep trying to connect to a learner if it stops receiving heartbeats from it, but
that does not inhibit progress since the quorum is not affected. Learners are the only
way to change an existing cluster configuration to a completely different one, without
affecting the previous quorum.

To expose learner functionality to the user, we extended the original Etcd imple-
mentation to allow an Etcd user to add a node as a learner, not just as member, via
changes to the command line interface of the Etcd client. Initially, there was only the
ability to add member nodes with the etcdctl member add command. In the standards
of this command, we add learners via learner add command. We specify the end-
points of the nodes of the cluster followed by the learner add command, the name of
the learner and its peer url (etcdctl –endpoints = endpoint 1, endpoint 2, … endpoint
n learner add learner name –peer-urls = peer url).

The general communication between a client and the cluster involves a request
message followed by a response. By typing the above command, the client sends the
url of the new learner (request) and waits for the id, name and endpoints of the new
learner (response). Requests and responses are messages which are actually data
structures. Messages obey the Google Protocol Buffer [38] format. These messages
and their composition of corresponding fields are saved in suitable protocol buffer
files. In these files, we compose the corresponding services which use the related

16

messages, as well. Generally, all protocol buffer messages correspond to structures in
Go code. The following code excerpt describes the messages for learner addition and
the corresponding service definition:

service Cluster {

rpc LearnerAdd (LearnerAddRequest) returns (LearnerAddResponse) {

option (google.api.http) = {

post: "/v3beta/cluster/learner/add"

body: "*"

};

}

}

// ResponseHeader pre-existed. Necessary for better comprehension.

message ResponseHeader {

// cluster_id is the ID of the cluster which sent the response.

uint64 cluster_id = 1;

// member_id is the ID of the member which sent the response.

uint64 member_id = 2;

// revision is the key-value store revision when the request was applied.

int64 revision = 3;

// raft_term is the raft term when the request was applied.

int64 raft_term = 4;

}

message Learner {

// ID is the learner ID for this learner.

uint64 ID = 1;

// name is the human-readable name of the learner. If the learner is not started,

the name will be an empty string.

string name = 2;

// peerURLs is the list of URLs the learner exposes to the cluster for communication.

repeated string peerURLs = 3;

// clientURLs is the list of URLs the learner exposes to clients for communication.

17

If the learner is not started, clientURLs will be empty.

repeated string clientURLs = 4;

}

message LearnerAddRequest {

// peerURLs is the list of URLs the added learner will use to communicate with the

cluster.

repeated string peerURLs = 1;

}

message LearnerAddResponse {

ResponseHeader header = 1;

// learner is the learner information for the added learner.

Learner learner = 2;

}

The definitions of the above code snippet are compiled with protoc and as result,
encode, decode and other necessary functions along with the RPC of the service are
auto-generated. One of the nodes that are already online, receives the learner addition
request. Depending on the health of the cluster (e.g. inactive quorum) or other settings
(e.g. learner id mismatch), the node accepts or declines the request. If everything is
as expected, this node creates a configuration change message (ConfChange of type
ConfChangeAddLearnerNode) and proposes the configuration change to all nodes of
the cluster. This configuration message has been extended by us, and is located is
appropriate protocol buffer file in Raft package (beyond code snippet).

enum ConfChangeType {

ConfChangeAddNode = 0;

ConfChangeRemoveNode = 1;

ConfChangeUpdateNode = 2;

ConfChangeAddLearnerNode = 3; //added by us

}

message ConfChange {

optional uint64 ID = 1 [(gogoproto.nullable) = false];

18

optional ConfChangeType Type = 2 [(gogoproto.nullable) = false];

optional uint64 NodeID = 3 [(gogoproto.nullable) = false];

optional bytes Context = 4;

}

The request proceeds at the Raft level only if previous steps were error-free. In
Raft, the Leader receives a proposal message (MsgProp) containing EntryConfChange
field. Raft message types will be extensively analyzed in Section 3.2. During learner
addition, no other configuration change is permitted. Existing members and learners
receive a message to apply (MsgApp). In Etcd Raft, this message –like all the others–
is managed just a simple log entry to be added. Followers and learners send back to
leader a message applied response (MsgAppResp) and the leader checks whether the
message has been applied in a majority of members or not. Despite the fact that the
leader receives heartbeats and responses from all nodes, learners are always informed
about everything but are otherwise ignored. When a quorum of followers (members)
have applied the configuration change entry, all nodes apply the configuration change
at the server level, update their cluster information, save the new learner in their stores
and backends and try to establish peer connections with the new node. Etcd control
client (etcdctl) then receives a successful response that new learner has been added
and the following terminal message appears: “Learner learner-id added to cluster
cluster- id”.

The learner is now ready to start. The learner is started with etcd command, just
like the members. Etcd developers had not predicted the insertion of learners into the
cluster, and there is not separate way to start learners instead of members. For this
reason, we define in code the names which correspond to learners and when a node
starts, it learns whether it is learner or not. When online, it will be informed of the
pre-existing members/learners of the cluster, save them into its store and backend,
and establish peer connections with all of them. It will also save all the necessary
data that describe itself. It will then receive replica state from the leader to bring the
learner up-to-date.

In the same manner, we added the ability to remove a learner, with learner remove
command. As input, we give the id of the learner node to be removed. We create the
corresponding request and response messages and the service that implements the
remove RPC. Just like learner addition, the same process of actions also stands for

19

learner removal. A node receives the request from the client and decides whether to
forward it or not. ConfChangemessage is composed again but of ConfChangeRemoveNode
type this time. Leader receives MsgProp message and sends MsgApp messages to the
rest of the nodes. Leader receives MsgAppResp messages and when the message is
replicated to logs of a quorum of members, nodes update their cluster interpretation,
delete the learner from their store/backend, and remove the peer connections and any
other data about the deleted learner.

Overall, learner addition/removal mechanisms are quite similar to member addi-
tion/removal mechanisms. They both use the single-server configuration approach.
We take advantage of single-server configuration to add/remove learners into the
cluster. This is justified since a learner addition/removal will not increase/decrease
fault tolerance ability of the cluster, as they are passive nodes. This is an unavoidable
step to make some nodes part of the cluster without affecting quorum. In our imple-
mentation, quorum can be affected only when we pass from a small (less members)
to bigger (more members) or smaller cluster via joint consensus. For example, we
can have a 6-node cluster (consisting of 3 followers and 3 learners) which requires
at least two-member votes and pass to another 6-node cluster configuration (6 mem-
bers) where at least 4-member votes are required. Joint consensus enables nodes to
change their “nature” and become members (followers/leader) from learners and vice
versa. Further details for the joint consensus functionality and code implementation
is described in Section 3.2.

3.2 Implementing the joint consensus mechanism

3.2.1 Design

The original Etcd reconfiguration mechanism supports only single-server reconfig-
uration, namely a user can add or remove one member at a time to or from an
existing cluster respectively. To implement joint consensus, as we have already said,
we firstly had to find a way to proactively start nodes that only build state and do
not participate in consensus. For this reason, we insert learners as key part of the
joint consensus reconfiguration, as soon as we need nodes that will be up-to-date
when reconfiguration is ordered. By our perspective, it is meaningful to add learners

20

into the cluster when there is a plan to replace existing members with new nodes.
We then had to give system the ability to apply multiple reconfigurations at once.
We developed suitable command and all the necessary parts of the respective RPC to
serve multiple reconfigurations. In algorithmic level, we need an extra phase (pro-
posal) that will order the cluster to move to a wider one, where decisions will be
made commonly from the previous and the successor configuration. This is why we
added extra message and role types and methods which serve this need.

Our joint consensus implementation mechanism enables the Etcd user to change
from any configuration to any other it wishes, in a single shot, and as many times as
it wants to. In order to implement joint consensus, we experienced several difficulties
and challenges since original Etcd did not have the hooks to and enable multiple
reconfiguration modes (single-server and joint) in the future. Nonetheless, we man-
aged to implement joint consensus and overlay a twofold nature to Etcd enabling
the co-existence (where a user can choose one or the other) of both single-server
and joint consensus reconfiguration. The power of joint consensus reconfiguration is
that it is both a scale-up (change node type and improve performance) and vertical-
scale mechanism (increase or decrease fault tolerance with more or less members)
depending on the needs of the system.

3.2.2 Protocol buffers, RPCs, and CLI

In order to implement reconfiguration, we had to develop the proper command line
tool along with the respective protocol buffer messages necessary for the RPCs. We
did not replace the existing reconfiguration mechanism but extended Etcd’s reconfig-
uration capabilities by introducing the reconfiguration command in its CLI. From now
on, by reconfiguration, we will mean joint consensus reconfiguration. The reconfig-
uration command syntax is: ./etcdctl –endpoints=<existing node 1 ip:2379>, <existing
node 2 ip:2379>, …<existing node n ip:2379> reconfiguration <node 1 id>, <node 2
id>, … <node n id>. In –endpoint argument, we can place any of the existing nodes
endpoints, which are used from the client to send the reconfiguration command to
the cluster. After the reconfiguration term, we list the ids of the nodes that will be part
of the new configuration.

We developed proper protocol buffer message structs and extended the service
that protoc uses, to generate the respective reconfiguration RPC and encode and

21

decode routines, depicted in beyond code snippet. Client sends a ReconfigurationRequest
message and waits for ReconfigurationResponse message.

service Cluster {

rpc Reconfiguration (ReconfigurationRequest) returns (ReconfigurationResponse) {

option (google.api.http) = {

post: "/v3beta/cluster/reconfiguration"

body: "*"

};

}

}

message ReconfigurationRequest {

repeated uint64 ConfIDs = 1;

}

message ReconfigurationResponse {

ResponseHeader header = 1;

repeated uint64 ConfIDs = 2;

}

The ids of the nodes in the new configuration are stored in an array of unsigned
integers. The ids are sent on both the request and response messages. If reconfigu-
ration is completed successfully, the message “configuration changed to id1 id2 …idn”
appears in the client terminal. One of the existing nodes delivers the reconfigura-
tion order from client and directs it to the leader. It composes a ConfChange message
of type Reconfiguration which also contains the new configuration member ids. In
the code beyond code snippet, we note with proper comments the new fields in the
existing message structures.

enum ConfChangeType {

ConfChangeAddNode = 0;

ConfChangeRemoveNode = 1;

ConfChangeUpdateNode = 2;

ConfChangeAddLearnerNode = 3;

Reconfiguration = 4; //added by us

}

message ConfChange {

22

optional uint64 ID = 1 [(gogoproto.nullable) = false];

optional ConfChangeType Type = 2 [(gogoproto.nullable) = false];

optional uint64 NodeID = 3 [(gogoproto.nullable) = false];

repeated uint64 ConfIDs = 4 [(gogoproto.nullable) = false]; //added by us

optional bytes Context = 5;

}

In the case of reconfiguration command, no action is taking place at the server
level (connections are established, stores/backends are updated, every node is aware
of the rest of nodes), it is used more as a link with the Raft package. The node which
delivered the reconfiguration message, composes a new Raft message called MsgPro-
pRec (message proposal of reconfiguration) which contains the ids of the nodes that
compete in new configuration and delivers it to the leader. When reconfiguration is
completed at the Raft level, all nodes are informed backwards and client get informed
about the state of its reconfiguration request. In this implementation, reconfiguration
is encountered only as a Raft internal process and main actions are taking place in
Raft package. We can say that our code actions have given to Etcd Raft a semantic
interpretation in message handling.

3.2.3 Message types and state transitions

Here is a short description of the new message types and states (roles) we inserted
in Etcd Raft. All of the following message types contain the id of the nodes that
are part of the new configuration. When a leader receives MsgPropRec (reconfigura-
tion proposal), it sends MsgAppRec (apply reconfiguration message) to the follower-
s/learners. When a node receives this type of message, it knows that it should pass
in joint consensus configuration. These nodes respond with MsgAppRecResp (apply
reconfiguration response message). Then, leader sends MsgAppNewConf (apply new
configuration message) to inform the followers/learners that system passes to new
configuration. Followers/learners respond with MsgAppNewConfResp (apply new con-
figuration message response).

In etcd/raft/raft.go, where the core of our implementation lies, we extend the exist-
ing StateType map. StateType represents the role of a node in the cluster. We introduce
the types of StateJointLeader, StateLeavingLeader, StateJointFollower, StateLearner, State-
JointLearner, StateJointCandidate and StateJointPreCandidate. The full list of state types,

23

including the new types we introduced, are listed in the beyond code snippet.

var stmap = [...]string{

"StateFollower",

"StateJointFollower",

"StateLearner",

"StateJointLearner",

"StateCandidate",

"StateJointCandidate",

"StateLeader",

"StateJointLeader",

"StateLeavingLeader",

"StatePreCandidate",

"StateJointPreCandidate",

}

Depending on the state type, a node differentiates its actions. For example, the
leader should take different actions when joint consensus reconfiguration is in progress
compared to a non-reconfiguration operation. Every role (leader, follower, and can-
didate) has its own step function, which determines the message handling (StepLeader,
StepFollower, StepCandidate). The Etcd developers did not create a step function for the
learners to handle Raft-level messages and so we had to develop it (StepLearner func-
tion). In step functions, state types help the nodes choose suitable actions, depending
on the configuration state (reconfiguration or not) and their role. In our implementa-
tion, reconfiguration results in type changing for all nodes. When the leader receives
MsgPropRec message, it becomes leader under joint configuration and changes its
state type from StateLeader to StateJointLeader. This state type changing happens by
calling becomeJointLeader function. The same stands for followers and learners. When
a follower receives a MsgAppRec message it changes its state from StateFollower to
StateJointFollower by calling becomeJointFollower. Learner changes from StateLearner
to StateJointFollower with becomeJointFollower, if its id is included in new con-
figuration id list. When the id is not in this list, it changes from StateLearner to
StateJointLearner by calling becomeJointLearner function. This differentiation exists
because when a node is not part either from the old or new configuration, it is
not allowed to compete in consensus when in transitional configuration state. When
“Joint leader” knows that quorums of both configurations have become “joint”, it

24

Figure 3.1: State-changing process with joint consensus

broadcasts MsgAppNewConf. Obeying in the Raft thesis, if leader participates in new
configuration, it straightly changes state type to StateLeader, otherwise it changes to
StateLeavingLeader. When it is sure that a majority of new configuration nodes have
reverted their state to StateFollower, it becomes learner. To make this clearer, we
depict the state-changing process in Figure 3.1.

If a candidate/precandidate node receives a message (MsgApp, MsgAppRec, Ms-
gAppNewConf, MsgHeartbeat, MsgSnap), depending on its state, it steps into “joint”
follower or follower. Since learners cannot become candidates, it means that candi-
dates were not learners or “joint” learners previously. Therefore, they cannot change
their state type to StateLearner or StateJointLearner. A candidate/precandidate can
have one of these two states: StateCandidate/StatePreCandidate or StateJointCandi-
date/StateJointPreCandidate. If the leader becomes inactive while a reconfiguration is in
progress, the follower node that decides to become candidate must change its state
to StateJointCandidate. This type of candidate will expect to be voted by majorities
of both the old and new configurations and proper state type helps that. We use
the existing functions becomeCandidate and becomePreCandidate, where we embed
suitable “joint” state type checks for the proper election format to be decided. Figure
3.2 depicts the process of changing from follower to candidate and vice versa. By
the “Message” arrow, we mean all the type of messages that were referred to influ-
ence the role changes (candidate to follower). “MsgHup” is the type of message that
a node receives when election timeout exceeds time limit and knows that it can be

25

Figure 3.2: Process of changing from follower to candidate and vice versa

candidate/precandidate. Leader and learners ignore any MsgHup messages.

3.2.4 Operation of Etcd joint consensus

Taking a more detailed look in our implementation, as regards the election, Etcd
has a function named poll, which is responsible for vote counting. Votes are saved in
separate vote array for each candidate. We added a similar function newpoll, which
counts the votes of the nodes whose ids are in the id list. Here, the votes of the
successor configuration are saved in an array called newvotes. The candidate becomes
leader when the votes are equal or more than the quorum of the nodes. When
candidate needs votes from both old and new configuration, it becomes leader when
the amount of the votes of the previous configuration members are equal or more
than the quorum of previous configuration nodes, and the amount of the votes of the
successor configuration members are equal or more than the corresponding quorum,
as well. These are checked with quorum function which returns the quorum of the old
configuration. We developed a function called newquorum which returns the quorum
of the successor configuration. To sum up, nodes can change roles only through joint
consensus reconfiguration. In case of candidates, we adjust the election mechanism
functions and the roles of nodes to satisfy Raft joint consensus principles.

Now, let us take a look into the way that leader realizes that a quorum of nodes
has appended a log entry into their own log. In his Raft thesis, Diego Ongaro proposes

26

Table 3.1: Example of match indices in maybeCommit function

Node types Match indices

Leader 1537

Follower 1 1498

Follower 2 1520

Follower 3 1501

Table 3.2: Example of sorted match indices in maybeCommit function

Node types Match indices

Leader 1537

Follower 2 1520

Follower 3 1501

Follower 1 1498

that leader should count responses of the cluster nodes in order to achieve consensus.
When a quorum of nodes has responded to the leader for a specific log entry, the
leader is sure that this entry has been replicated to a sufficient number of nodes.
Etcd does things a bit different. For performance reasons, the leader does not count
every single response for every single message. Leader saves its own progress and
the progress of every single follower of the cluster in a map called prs, where each
progress is a struct. Leader uses the Match field of the struct of each these nodes
except for learners. Match is the index of the highest known matched entry. Leader
sorts the match indices in descending order, including itself. At the end of the day, it
always checks the Match index located in the quorum–1 position of the sorted slice.
Having the slice sorted, we know that the number saved in position 0, is usually
leader’s Match index. If quorum is 2 (the case we have at least two nodes), we have
to check the Match index that is saved in position 1 and so on. The actions referred so
far take place in maybeCommit function located in etcd/raft/raft.go file. In the following
tables, we give an example. Slice creation is based on prs map.

Leader sorts in descending order the indices as shown in Table 2. Quorum here
is 3. Quorum - 1 position is 2 (counting from 0).

In this position we find Follower 3 whose match index is 1501. Then leader takes
this index and calls a function called maybeCommit located in etcd/raft/log.go file. The

27

name of the function gives an indication as to its action. Leader stores the index in
which a majority of nodes have agreed in their logs, in a variable named committed.
If the index of Follower 3 is bigger than the committed index, leader increments the
committed index to Follower 3 Match index. If not, it means that no majority of
nodes has yet applied their log entries up to this index. Nevertheless, cluster does
not stop serving the new log entries to be applied when a leader cannot increase the
committed index. Leader continues to send messages to the followers and all of them
continue to increase their log entries. Thus, leader cannot serve reads for log entries
that are not surely replicated to a quorum of nodes. In this way, Etcd achieves better
responses to the client and higher availability comparing to the case it would count
responses for each message. This particularity, forced us to adjust Raft joint consensus
to the needs of Etcd.

Therefore, we create maybeCommitJoint function which is used by the leader when
it needs to advance the committed index under joint consensus conditions. When
leader receives the MsgPropRec message, it also saves the progresses of the nodes of
the new configuration in a map called newprs, along with the map of progresses of
the nodes of the old configuration which are saved in prs. It also saves the proposal
index of the MsgPropRec. In maybeCommitJoint, leader gets the Match indices of
both of the nodes of previous and the successor configurations which are stored in
separate slices. The slices are also sorted in descending order. Just like maybeCommit,
in maybeCommitJoint we get the Match index of the node in position quorum-1 of
the sorted slice that contains the Match indices of the old nodes. Additionally, we
take the Match index of the node in position newquorum-1 of the sorted slice that
contains the Match indices of the nodes of the new configuration. Slices may overlap
but this is not a problem. For example, if the new configuration is subset of the old
configuration, there is a possibility for both of the Match indices to refer to the same
node. In this case, the same node will be double checked in the log.go maybeCom-
mitJoint function we developed. In this function, it is now more difficult for leader
to advance its committed index, as it requires quorums both of the configurations.
MaybeCommitJoint in log.go checks the following scenarios:

• MsgPropRec index is bigger than the Match index of the node positioned in
quorum-1: This means that no quorum of the old configuration has received
the message to proceed in joint consensus. Therefore, if the Match index of the
node positioned in quorum–1 is higher than the committed index of the leader,

28

Table 3.3: Example of match indices in maybeCommitJoint function (old configura-
tion)

Node types/ Old Conf Match indices

Leader 1537

Follower 1 1498

Follower 2 1520

Follower 3 1501

Table 3.4: Example of match indices in maybeCommitJoint function (new configura-
tion)

Node types/ New Conf Match indices

Leader 1537

Learner 1 1490

Learner 2 1510

Learner 3 1487

leader will advance it. In any other case, it will not. Therefore, committed index
can advance up the index before reconfiguration message is sent.

• If the MsgPropRec index is higher than the Match index of the node positioned
in quorum -1 but lower than node positioned in newquorum-1 (quorum of old
configuration nodes knows about the reconfiguration but not a quorum of new
configuration nodes knows), leader will not increase its committed index.

• If the previous checks are passed successfully, it means that MsgPropRec in-
dex is smaller both of the Match indices of the nodes in the quorum–1 and
newquorum-1 positions. Both of the quorums are aware of the reconfiguration
message. If both of the indices of the quorum–1 and newquorum-1 positions are
higher than the committed index of the leader, leader will increase its committed
index to the smaller of them.

Let us check an example in the following tables: First slice is created based on prs
map and the second one on newprs map.

After sorting the slices in descending order, Table 3.3 and Table 3.4 become:
If the leader’s committed index is lower than 1490, then it will advance it to 1490.

29

Table 3.5: Example of sorted match indices in maybeCommitJoint function (old con-
figuration)

Node types/ Old Conf Match indices

Leader 1537

Follower 2 1520

Follower 3 1501

Follower 1 1498

Table 3.6: Example of sorted match indices in maybeCommitJoint function (new
configuration)

Node types/ New Conf Match indices

Leader 1537

Learner 2 1510

Learner 1 1490

Learner 3 1487

In summary, maybeCommitJoint acts not only as a joint consensus increasing
committed index mechanism, but includes the role of maybeCommit, as well.

3.2.5 Message processing

We will now describe in more detail, the actions that leader, followers, and learners
take when reconfiguration message arrives to the system.

• Leader receives MsgPropRec: If another reconfiguration is in progress (MsgProp
or MsgPropRec), it does not promote the message to the rest of the nodes. In case
there is no pending configuration, leader will fill the newprs map of progresses
(based on prs and learnerPrs), become “joint leader” and send MsgAppRec, to all
the cluster with bcastAppendRec. This function actually broadcasts the message
by calling sendAppendRec. SendAppendRec is the function that is responsible
for sending MsgAppRec message to a node. When learners are added into the
cluster, it takes some time to build their state and warm-up. During this period,
they cannot receive new messages. Messages can also be dropped, because of full
sending network buffers. For these reasons, in bcastAppendRec we check if a

30

quorum of nodes of the new configuration is active before sending the messages.
Without this check, old nodes used to become “joint” followers and “joint leader”
while the learners did not change their state to JointFollower or JointLearner.
In other words, a part of the cluster was aware for the reconfiguration and the
others had completely no idea. This is why learners are checked for being active
before sending MsgAppRec messages to the cluster. If the learners are not ready
to receive reconfiguration, leader reverts its state from StateJointLeader back to
StateLeader. By this way reconfiguration is declined.

• Followers and learners receive MsgPropRec: Message is redirected to the leader.

• Follower receives MsgAppRec: Competing on the new configuration or not, fol-
lower’s state always becomes StateJointFollower. Just like leader, follower can
retrieve the progresses of all nodes. It checks which of the node ids belong to
nodes progresses that are stored in prs (leader/follower progresses) and which
belong to node progresses that are saved in learnerPrs (learner progresses). Based
on them, follower saves the node progresses of the new configuration in newprs
(progresses of nodes that compete in new configuration). For any reason, if
a follower has received the MsgAppRec previously, it should not update the
newprs again. We can know this by its state type. If state type is StateJointFol-
lower, it means that follower has already received the reconfiguration message.
Message acceptance or rejection happens in handleAppendEntriesRec. Follower
answers back to leader with MsgAppRecResp.

• Learner receives MsgAppRec: Learner does exactly the same actions like fol-
lower. The only difference is that if its id is contained in the new configuration
list, it becomes “joint” follower, otherwise it becomes “joint” learner. When
“joint” follower, node can vote and be voted if election occurs.

• Leader receives MsgAppRecResp: When leader receives MsgAppRecResp, it pro-
ceeds to message handling only if its state is StateJointLeader. When state is
StateLeader or StateLeavingLeader, it means that MsgAppRecResp is outdated.
If quorums of both configurations have applied the MsgAppRec (it is checked
through maybeCommitJoint), it broadcasts MsgAppNewConf with bcastAppend-
NewConf which calls suitable function named sendAppendNewConf. Before broad-
cast, “joint leader” replaces the prs map content with newprs map content. This

31

happens with the help of another map of progresses which is called oldprs. The
progresses of nodes that are saved in oldprs are transferred to learnerPrs (fol-
lowers that do not compete in the new configuration become learners). The new-
prs progresses are transferred in prs progresses map, and the other progresses
are deleted. Learners which do not compete in the new configuration, progresses
remain in the learnerPrs map. The learners who compete in the new configura-
tion (they become followers), are deleted from learnerPrs map. When prs and
learnerPrs maps are updated, leader changes its state from StateJointLeader to
StateLeader or StateLeavingLeader. In case of receiving a rejection of the mes-
sage, or sending has delayed before, it sends MsgAppRec message again to this
node. Leader receives more than one MsgAppRecResp response, though. With
suitable checks, leader remembers whether it has broadcasted MsgAppNewConf
previously. If it has, it will not broadcast again.

• Follower receives MsgAppNewConf: In case a follower did not receive the Ms-
gAppRecMessage previously, this follower did not fill the newprs map of pro-
gresses and should fill when it receives MsgAppNewConf. When newprs is up
to date, follower should replace the prs progresses with newprs progresses.
This happens the same way the leader does, as described before. When prs and
learnerPrs maps are updated, follower changes its state from StateJointFollower
to StateFollower or StateLearner. Then it sends back to leader MsgAppNew-
ConfResp with handleAppendEntriesNewConf.

• Learner receives MsgAppNewConf: The actions and message handling that a
learner does when it receives MsgAppNewConf, are exactly the same with what
follower and leader make, as well. The only difference, is that learner changes
its state only from StateJointLearner to StateLearner because if it competed to
the new configuration it would have changed its state type to StateJointFollower
when it received MsgAppRec message.

• Leader receives MsgAppNewConfResp or MsgAppResp: At this point, things
become a little complex. When we stressed Etcd with benchmark using a lot
of clients, because of Etcd batched-alike responses, leader sometimes did not
execute MsgAppNewConfResp code and although that new configuration was
applied to the proper nodes, leader never learned it. This resulted the leader to
remain “leaving leader” while it should change its state. It also happened that

32

leader changed its state from StateLeavingLeader to StateLearner (depending
on its participation to the new configuration or not), before a majority of nodes
that participate in new configuration was informed to pass in new configura-
tion (they had not changed their states yet). The actions of state type changing
always happen in a different part of code. Although in maybeCommit/may-
beCommitJoint calls leader knew when it should advance the committed index,
it did not know when it should revert its state. Therefore, we needed a way for
the leader to punctually change its state, not earlier or later. For these reasons,
we decided to count responses of nodes that belong to the new cluster. When
leader is under workload (writes), it sends MsgApp messages, receives MsgAp-
pResp responses. Because as we said, not every single response is sent back
to leader, leader may receive not all of the MsgAppNewConfResp messages or
even worse none of them. This is why we do not count responses of MsgApp-
NewConfResp message types, but check for responses that their index is equal
or bigger than the MsgAppNewConfResp message. This adaptation means that
we adjusted leader to count such responses not only in MsgAppNewConfResp
message handling but in MsgAppResp message handling, as well. If a node
rejected the MsgAppNewConf message or sending has delayed before, leader
will send MsgAppNewConf to it again. Additionally –because we do not know
in which message handling, “leaving leader” will be sure for the new config-
uration transition– the leader can revert its state from StateLeavingLeader to
StateLearner not only in MsgAppNewConfResp but also in MsgAppResp mes-
sage handling. MaybeCommit and maybeCommitJoint function calls are also
influenced by these adaptations. If leader receives MsgAppResp, and no recon-
figuration is in advance (leader’s state type is StateLeader), it acts as it would
do before our code changes (leader calls maybeCommit). If reconfiguration is
in advance (leader’s state type is StateJointLeader), leader will call maybeCom-
mitJoint. If leader’s state type is StateLeavingLeader, it will call maybeCommit
(new progress structures are updated before MsgAppNewConf broadcast). Here,
maybeCommit function does not take into consideration leader’s Match index,
because leader does not participate in the new configuration. In MsgAppNew-
ConfResp handling, when leader receives MsgAppNewConfResp and its state
type is StateLeavingLeader, it means that leader has not yet received a quorum
of responses with higher index than the MsgAppNewConfResp and thus recon-

33

figuration is not yet completed. So, it continues to replicate log entries to the
followers/learners without being leader of the new configuration. It also keeps
observing the Match indices of the new configuration nodes with maybeCommit
function in order to advance the committed index, despite of not being in the
new configuration. Otherwise if leader has changed its state type to StateLeader
(is part of the new configuration), it also uses maybeCommit, but now Match
indices include the leader as well. In addition, it occurred that leader did not
receive the MsgAppRecResp messages, as well. As we have already said, when
leader receives MsgAppRecResp and majorities of both configuration nodes have
received the reconfiguration message MsgAppRec (checked with maybeCom-
mitJoint), it broadcasts MsgAppNewConf. Because of the Etcd batched-alike
response implementation, leader may first receive a MsgAppResp message from
a node. Quorum requirements may be met here (maybeCommitJoint), so leader
has to broadcast MsgAppNewConf. If MsgAppNewConf is broadcast, it will not
be broadcast in MsgAppRecResp/MsgAppResp handling again, if such message
arrives to leader. We do not need equivalent response count mechanism for Ms-
gAppRecResp and MsgAppResp messages. Leader first fills the newprs progress
map and changes its state to StateJointLeader and secondly sends MsgAppRec
messages to the rest of nodes. If cluster is not ready to “adopt” reconfiguration,
leader reverts its state back to StateLeader. On the other hand, leader does need
to be sure that a quorum of the new configuration nodes has agreed to proceed
to the new configuration, in order to changes its state from StateLeavingLeader
to StateLearner. When state is changed StateLearner, followers will realize the
absence of the leader and the cluster will be forced to new election. Old follow-
ers and old leader -now learners-, will find out about the new leader and will
increase their term like all the others. They are still part of the cluster, without
obligations and rights. User can completely remove them and because they are
learners, no node will care about that.

Concluding, the fact that leader may not receive the MsgAppNewConfResp messages
and rely on the later MsgAppResp messages to change its state, means that old leader
will keep on replicating the log entries to the new configuration for a little longer
period (few log entries) than it should. This is not a problem, though.

34

3.2.6 Discussion

The weakness of this implementation is that cluster interpretations at server level
are not updated. When the learners become followers and vice versa, each node
at server level remembers the old cluster configuration. Although nodes know the
truth at Raft level, it is not propagated to server level. For example, when we add a
new learner after a reconfiguration in which the old followers have become learners
and the reverse, incoming learner sees that the previously learners –now followers–
and previous members (followers and leader) -now learners- are misplaced still in
learner and member list respectively. Based on them, it builds incorrectly the prs and
learnerPrs maps of progresses. We tried to solve this but it required import cycles,
which are not allowed in Go. In order to be able to propose multiple reconfigurations
for our experiments, when leader send MsgAppRec message, it passes in the message
fields the ids of the nodes included in prs map, and the ids of the nodes included in
learnerPrs map. When the new learner receives MsgAppRec, based on these lists, it
corrects its own maps.

Message types, state types, role types maybeCommit/maybeCommitJoint functions,
broadcast functions, all inter-related and bounded by the proper checks and restric-
tions which joint consensus requires. We managed to implement it according to Raft
principles after significant development and testing effort. We stress-tested Etcd with
several benchmark runs under different number of clients. Stress testing the joint
consensus implementation led us to several code improvements that eventually re-
sulted to a stable, robust system. Our joint consensus implementation takes about
1500 new lines of code.

3.3 Extending the Etcd benchmark

The standard benchmark that came with the Etcd implementation required changes
to support the following requirements:

• Always find and target the leader node in a replica group, even when that node
is not part of the initial configuration

• Report latency and throughput during a benchmark run

By default, Etcd benchmark uses the endpoints specified by the user via the command

35

line interface (CLI). The user can specify whether the benchmark will hit directly the
leader or the load will be distributed to several nodes. Nevertheless, the final receiver
of the requests is the leader, as Etcd is a leader-based system (Raft uses strong
leader). However, the current implementation is not able to redirect writes to a new
leader after a reconfiguration action, relying instead on Etcd’s ability to forward to
the new leader. In addition, the original Etcd benchmark produces a response time
histogram, latency distribution (expressed as percentiles) and statistics like average
latency, average throughput etc.

In our implementation, we modified the functionality of the benchmark under
a write-intensive configuration (benchmark put) as follows: the benchmark client is
now able to detect the address of the new leader of the cluster, and ignore the end-
points that were initially given by the user. When the benchmark starts, it establishes
connections with the given addresses. Within two requests (writes in our case), time
interval is checked and if it exceeds a certain threshold (1.5 sec), the client checks
whether the leader endpoint has changed. We fetch the member and learner list with
suitable RPC calls from the client to the cluster and check if the new leader’s id,
matches with one of the ids fetched by the lists. The client thus finds out which node
is the new leader, re-establishes connections with the new leader, and continues to
stress the cluster with the workload.

The motivation to modify the benchmark client was due to the following prob-
lem: When we passed from one configuration to another and leader election took
place, if we specified the target to be the new leader and that leader was not part
of the previous configuration, the new leader would not be in the specified starting
endpoints. If we set the addresses of the learners in the beginning, which were not
yet active, the benchmark would try to establish connections with inactive nodes and
crash. If we did not set the leader as target, the client had to use the endpoints of the
old leader or the old members which led to increased latency after reconfiguration,
as writes had to reach the leader indirectly (through learner).

We also adjusted the benchmark as follows: We record the latency and throughput
per 1 sec interval. We firstly record the time in the beginning of the request production
and take the time again when the next request is ready to be sent to the cluster (the
benchmark is “closed loop”, namely a client does not issue a request unless the
previous request has completed). As long as we are within a specific 1 sec interval,
we keep on summing up the response time of all requests so far. We also count the

36

number of requests served within the interval. When time interval is equal or exceeds
the 1-sec time limit, we divide the sum of response times of the served requests by
the total number of operations and get the mean latency for this interval. Each 1-sec
interval mean latency is saved into an array (a time series). By counting the number of
served requests, we know the number of requests per 1 sec time interval. This counter
is saved to another array where throughputs per each interval are stored. This process
is repeated for all 1-sec intervals until the benchmark ends. When all requests are
finished, these two arrays are written to two files, latencies.txt and throughputs.txt,
respectively. With the same logic, we also record the 99th and 99.9th latency percentiles
of each interval.

In the experiments reported in Chapter 4 of this thesis we mainly depict and study
latency plots drawn from the records of latencies.txt, but during our investigation we
have studied the corresponding throughput plots as well.

37

Chapter 4

Evaluation

4.1 Experimental setup

4.2 Insight into reconfiguration process under different load levels

4.3 Etcd snapshot, compaction and defragmentation policy

4.4 Scaling up using joint consensus

4.5 Simultaneously increasing fault-tolerance and performance

4.6 Characterizing the performance impact of learner additions

4.7 Impact of back-end

4.8 Experimenting with prediction models

4.9 Joint consensus vs single server reconfiguration

In this chapter we describe the experimental evaluation of our joint consensus recon-
figuration mechanism in etcd in a number of scenarios. We start in Section 4.1 by
describing the experimental testbed, benchmark settings, and measurement method-
ology throughout the experiments. In Section 4.2 we take a closer look at the internal
workings of the joint reconfiguration implementation under different load levels by
examining Raft logs across replicas. In Section4.3 we observe how snapshot, log &
history compactions and defragmentation work together. In Section 4.4 we demon-
strate the power of replica-group reconfiguration in dynamically adapting stateful
replicated services by scaling up a 3-node etcd cluster through increasingly more

38

powerful node types. Section 4.5 describes how reconfiguration can be used as a tool
to both increase performance and fault-tolerance. In Section 4.6 we characterize the
costs of proactive reconfiguration in terms of adding nodes first as learners in prepa-
ration for a full reconfiguration action. In Section 4.7 we examine the performance
impact of the back-end system. In Section 4.8 we describe regression-based prediction
of periodic performance hot-spots, which –if predicted accurately– could be masked
by reconfiguration actions. The methodology presented in this section is general and
could be applied to other prediction needs. In Section 4.9 we compare single-server
and joint consensus reconfigurations, along with different reconfiguration policies.

4.1 Experimental setup

Our experimental testbed consists of 15 servers, each equipped with a dual-core AMD
Opteron 275 processor clocked at 2.2GHz with 12GB of main memory. All servers
run Ubuntu 16.04.4 64-bit with a 4.4.0 Linux kernel and are interconnected via a
1Gb/s Ethernet switch. Servers used as etcd nodes have a base 72GB 10,000 RPM
SCSI drive, and an additional 300GB 15,500 RPM SAS drive dedicated to storing
data. All hard drives are formatted with ext4.

The main benchmark used in our experiments is the etcd benchmark provided
by the developers of etcd in their GitHub repository. In this evaluation we focused
on an all-writes (100% writes) workload with the benchmark put command, known
to be placing significant resource strain on an Etcd replica group. Writes involve all
replica nodes whereas reads are served only by the leader node. Our main metrics
are response time and throughput measured at the client, and CPU resource usage
at the leader replica (when not otherwise specified).

We varied etcd benchmark’s argument values depending on the goals of each
experiment and problems faced. Argument values that are varied in each experiment
are always explained at the outset. All experiments use 8-bit keys and 256-bit values.
The order of keys is always sequential. We perform experiments with various concur-
rency levels, number of total writes, and key space sizes. In experiments that contain
reconfiguration, we have leader detection (Section 3.3) enabled. CPU utilization is
measured by monitoring CPU idle % via the top command, which was set to record
idle percentages for periods of time that cover the etcd benchmark runs. Record in-

39

Figure 4.1: EWMA formula

tervals are 1 sec. The exact command used is: top -b -d1 –nX | grep Cpu | cut -c
37-40 > cpuusagenode.txt where X is the total duration of the recording in seconds,
and node is the node that is monitored. We convert to CPU busy % by transforming
(i.e., 100 - idle) for each record.

We also removed fsync() from the file path of all replicas. In this way, the leader
is not certain what log offset is recoverable from follower disks. Thus, a follower
that crashes cannot recover from disk; instead, it is considered a new addition and
receives full state before entering service. Our motivation to remove fsync() was to
reduce the measurement noise that the disk introduces when in the critical path of
performance.

Early in our evaluation effort and after examining several results we decided that
smoothing time series using Exponentially Weighted Moving Average (EWMA) [39]
helps in depicting key phenomena that are obscured by noise when plotting the raw
data. Our EWMA transformation is based on the following standard formula:

Computation of the new observation St in each step is based on the actual obser-
vation Yt weighted by a constant α (always < 1). Then it is added with the value of
St-1 which is computed in the previous step, weighted by 1 – α. In our experiments,
we set α 0.125. The first observation of every experiment, is always weighted with
1 - a, in order to converge quickly to steady state values.

4.2 Insight into reconfiguration process under different load levels

The operation of the joint consensus reconfiguration process differs depending on a
number of factors. The duration of reconfiguration and number of committed entries
vary depending on the client load (proposal rate). To examine that, we perform re-
configurations that change the cluster to a completely new configuration. We consider
the following cases:

• Measure overall time during reconfiguration, from the point of proposing Cold,new

40

Figure 4.2: Correspondence of results to the timeline of Raft joint consensus

to the point of finding out that the proposal for Cnew has been committed, and
the number of log entries that have been committed during this time interval
(Figure 4.3, Figure 4.4)

• Measure the number of pending entries that are committed under Cold con-
figuration. We measure from the point the leader has proposed the Cold,new

(MsgAppRec message) (Figure 4.5) till the point of Cold,new commitment

• Measure the number of log entries that are committed between the log index
at which the leader learns that Cold,new is committed, to the index at which it
proposes Cnew via the MsgAppNewConf message (Figure 4.6). These entries are
committed under Cold,new

• Measure the number of committed log entries from the point where the leader
proposes Cnew to the point it learns that it has been committed (Figure 4.7).
The leader’s state at that time of Cnew proposal changes from StateJointLeader
to StateLeavingLeader. These entries are committed under Cnew. We consider
all above cases at three different load levels, serving 1, 10, or 100 concurrent
clients.

In Figure 4.3 we compute how long a reconfiguration proposal takes to be finished
(from proposal creation till the commitment of the new configuration). In Figure 4.4
we record the amount of committed log entries during the reconfiguration time in-
terval. All computations take place in leader and are based on suitable prints on
leader’s terminal. In these experiments we observe the relation between client con-

41

Figure 4.3: Duration of reconfiguration process (from start to completion)

Figure 4.4: Number of committed log entries

currency and the duration of reconfiguration and number of committed log entries
during reconfiguration. Differences are small in the cases of 1 and 10 clients. For
100 clients we see that the duration of reconfiguration and number of committed log
entries increase significantly. The system in this case is under higher pressure due to
the higher client load (proposal rate).

Analyzing the committed log entries during the three configurations (old, joint, or
new) we perform a breakdown of how many of the incoming proposals were served at
each configuration. In Figure 4.5, we depict the number of committed entries from the
point where the leader has created the Cold,new proposal (MsgAppRec message) to the
point where it learns that it has been committed , we see that in the 1- and 10-client

42

Figure 4.5: Committed log entries from Cold,new proposal till Cold,new commitment

Figure 4.6: Committed log entries while leader is in joint consensus configuration

experiments, commitment of MsgAppRec message comes nearly immediately after
the proposal, there is thus very little backlog of other proposals (outstanding, not yet
committed) at the time of proposing Cold,new. However, in the 100-client experiment the
leader learns of the commitment of up to 42 other proposals in the old configuration
before learning of the commitment of the MsgAppRec proposal. In Figure 4.6, which
depicts the number of log entries that are committed between the log index at which
the leader learns that Cold,new is committed, to the index at which it proposes Cnew via
the MsgAppNewConf message, we see that the processed requests under the joint-
consensus configuration (Cold,new) are few (1—8) in all cases, namely the leader moves
quickly in proposing Cnew after learning that Cold,new is committed. Figure 4.7 depicts

43

Figure 4.7: Committed log entries from proposal to commit of Cnew

the number of committed log entries from the point where the leader proposes Cnew

(MsgAppNewConf, leader changes its state to StateLeavingLeader) to the point it
learns that it has been committed, i.e., it receives a quorum of responses with higher
index than the MsgAppNewConf index, thus changing its state to StateLearner (if
it is not part of Cnew). In this case, although the leader is not part of the successor
configuration, it continues to replicate log entries to the cluster, observing the Match
indices of the new configuration members.

To ensure that, at least in these experiments, our joint consensus implementation
maintains consistency, we extract and compare the contents of the Etcd database in
each node using the etcd-dump-db tool. We save the extracted data in separate text files
and then we compare the similarity of the text files with a diff checker tool. These
text files are identical at the end of our experiments, providing a level of experimental
confidence that replicated data remains consistent across nodes.

4.3 Etcd snapshot, compaction and defragmentation policy

In Etcd, the leader can bring a newly inserted node to an existing cluster up-to-date
by sending it a snapshot of the full datastore state. After snapshotting, a node can
trim the Raft log in the WAL directory, where segments of the log are persisted. This
is termed log compaction, and differs from what is known as history compaction, which
removes update revisions from the Etcd tree backend. Trimming the log purges WAL

44

files with log entries smaller than the snapshot index, releasing disk space. The leader
keeps up to 5000 most-recent log entries after trimming, so that the leader can update
followers that are falling behind via log shipping rather than full snapshot transfer.

History compaction marks backend space with “tombstones” to declare deleted
key-value revisions but typically does not release disk space; however, tombstones
may be reused for future key-value entries. When history compaction is commanded
at the leader, it is applied to the rest of the nodes as well. The database file size will
increase again only when there is no more free space within the current file size to
reuse.

To observe the performance characteristics of log and history compaction, snap-
shotting and defragmentation, we carry out experiments in which we apply history
compaction on a 3-node cluster and immediately take a snapshot at the leader. Then
we add a new node (a learner) in the existing cluster, which receives the snapshot
from the leader. While one would expect that the learner would receive only live (non-
history-compacted) data, we observe that it receives all data (equal to the amount of
allocated disk space for the database). We also perform an experiment where the
leader applies history compaction, defragmentation, and takes a snapshot, then sent
to the learner.

The above observation prohibits, in the current Etcd implementation, use of recon-
figuration to in-effect to replace a heavily fragmented cluster with one that contains
a defragmented database, which could provide an alternative way to defragment an
Etcd cluster (trading off the disk and CPU cost of in-place defragmentation with the
CPU and network cost of transferring live data to new nodes).

In the two following experiments, five clients produce a total of 1M writes over 5
distinct keys. In both experiments, snapshots are taken at around 500K log entries.
Each snapshot is followed by log compaction, preserving the most recent 5K log
entries in the corresponding segment of the WAL directory.

In the first experiment of Figure 4.8, we perform history compaction with the
etcdctl compact command at revision 450K, which takes 7.54sec to complete. All revi-
sions prior to 450K are deleted. When compaction finishes, the database size at every
node is 170MB. The database file stops growing as space corresponding to deleted
entries is reused for future data. Database file size continues to grow from revision
900K and on. The incoming learner receives the snapshot whose size is 170MB al-
though the database has been compacted. Had we not performed compaction, the

45

Figure 4.8: History compaction and snapshotting

Figure 4.9: Effect of defragmentation on snapshot size

learner would receive a 188MB snapshot (as the file would have kept growing). Each
database insertion is indeed considered as a revision; when we request compaction
at revision 450K, compaction goes forward, evidence that 450K requests had indeed
been performed. If there were fewer revisions, the request would not be immediately
performed.

In the second experiment of Figure 4.9, we perform defragmentation at the leader
by typing the command etcdctl –endpoints defrag at the console after history compaction
is complete. Defragmentation is applied at the endpoints specified in the command;
in our case we defrag the leader. We make history compaction at 450K followed
by defragmentation, thus tombstoned disk space is removed from the database file,
reducing it to 30MB. Snapshot is taken on 500K log entries and the incoming learner
receives a snapshot sized at about 45MB. When the experiment is over, all nodes end
up with a 198MB database. The leader and incoming learner have an equally sized
database whose size is affected by defragmentation at the leader, whereas the other

46

two nodes (followers) which are not defragmented, are not affected by defragmenta-
tion at the leader.

4.4 Scaling up using joint consensus

In this experiment we demonstrate the power of replica-group reconfiguration in
dynamically adapting stateful replicated services by scaling up a 3-node etcd cluster
through increasingly more powerful node types. Since all of the servers are equipped
with the same technology, we had to emulate variable-resource-power nodes in order
to evaluate the ability of our system to rapidly adapt. To achieve this, we used the
cpulimit [40] command. With suitable arguments, cpulimit enforced an upper limit
on CPU available to a process as set by the user. The control of CPU is achieved by
sending SIGSTOP and SIGCONT POSIX signals to processes. Children processes and
threads of the etcd processes share the same CPU percentage. In this way, we emulate
nodes with three levels of CPU, weak, medium, and strong. Clusters will homogeneously
use nodes with the same CPU level and will be termed accordingly, i.e. a cluster with
weak CPUs will be call weak, and so on.

For this experiment, a total amount of 1.5M writes is produced over a range of
5 different keys. Snapshots are taken by the leader at 0.5M and 1M log entries. Just
after the snapshots, learners are inserted. We use only one client appropriately set to
avoid overload: increasing concurrency beyond a certain point overloads the nodes
(especially due to CPU restriction used in this experiment), causes heartbeat intervals
and leader election timeouts thresholds to be exceeded, thus causing unnecessary
leader elections that interfere with the experiment.

In the experiment of Figure 4.10, the initial 3-member cluster of weak nodes
(configuration C1) comprise node02 as leader and node03, node04 as followers (the
client is deployed on node 01). We observe that taking snapshots has no latency
impact. This can be explained by the fact that the snapshot is taken on the committed
entries stored at the tree of the backend, so new entries are not prevented or being
delayed from being replicated in the log structures of the nodes.

After the snapshot is taken, we add medium nodes 05, 06, 07 (configuration C2)
as learners one after another (using our single-server extension of adding learners
described in Section 3.1). In Figure 4.10 we observe that adding learners has a latency

47

Figure 4.10: Latency of a 3-node group over two reconfigurations progressively in-
creasing node CPU capacity

cost. This spike is highly related with the size of the snapshot (189MB and 3 seconds
to be delivered) and/or amount of log entries that a node has to receive to get ready, as
will be extensively explained later in the text (Section 4.8). It takes a small period of
time for the new nodes to warm-up, establish their connections, receive the snapshot
and store the configuration (other followers/learners) to their backend. An operator
may observe the establishment of the new configuration and readiness of new nodes
via messages on the respective server consoles.

When the new nodes are ready, they have received from leader the snapshot along
with around 1500-3000 log entries and have caught up with the nodes of the previous
configuration. Then the system is ready to pass from the old to the new configuration
and the previous followers to become learners and vice versa. The reconfiguration
itself (using joint consensus) causes a small period of unavailability (usually 1-2 sec at
the client, also affected by timeouts there) primary because of leader election. When
the new followers realize the absence of leader, they call an election and elect node
05. The time between a node becoming candidate and being elected leader is usually
around 1.2-2ms measured by timestamps at the console of that node. We immediately
remove the old followers (now learners) from the cluster to avoid their overhead on
the leader. For the time interval between learner additions and old member removals
(now learners), data is replicated to 6 nodes. After removals, the system is composed
again of 3 nodes, but with better CPU performance. The same holds for the second

48

reconfiguration but now, we pass from the medium to the strong cluster. Strong nodes
now receive a 378MB snapshot which takes around 6 sec to be delivered.

As nodes of the strong cluster, we use nodes 02, 03, 04 again (configuration C3),
unbounded by cpulimit settings, thus able to use as much of the CPU as necessary.
Node 03 is elected as new leader in C3. In Figure 4.11 we depict the actual CPU
usage percentages of the leaders of every configuration (C1 - C3).

The CPU usage spikes observed when a node is inactive, correspond to records
close to 100% around records close to 1-5 % and as such they are not smoothed out
by EWMA. CPU usage of the leader node 02 in C1 (weak cluster) is around 20%
(the maximum allowed by cpulimit). Similarly, CPU usage of node 05, leader of C2
(medium cluster), ranges at 22-23% (maximum allowed by cpulimit). Node 03 is the
leader of C3 (strong cluster) with CPU usage nearly 30%. There is also a difference
in CPU usage when nodes are followers. Weak follower CPU is 12-13% while strong
follower is at around 17%. It is clear from Figure 4.10 and Figure 4.11 that relatively
small differences in CPU strength result in observable differences in client latency.

In summary, reconfiguration is a mechanism that allows operator to vertically scale
(scale-up) distributed key-value stores. When a system is considered overloaded ad
to improve performance, a system administrator can use reconfiguration to achieve
this. [t]

4.5 Simultaneously increasing fault-tolerance and performance

Reconfiguration enables us not only to vertically scale (scale up) a system and provide
higher availability, but also make a system less sensitive to node crashes. In this
experiment we use our reconfiguration mechanism to scale up and scale out, from a
3-member to a 5-member cluster at once. The 3-node cluster consists of weak nodes,
emulated with the cpulimit restriction. The 5-node cluster CPUs are not bounded
by cpulimit and are considered as strong nodes. By replacing the 3-node with the
5-node cluster, we use joint consensus reconfiguration mechanism to provide higher
availability along with increased fault-tolerance. For this experiment, we also produce
1.5M writes over a range of 5 different keys. We also use only one client for the reasons
referred in Section 4.4. Snapshot is taken by leader on 0.75M log entries.

The weak cluster is consisted of node02 (leader), node03 (follower), node04 (fol-

49

(a) Node 2 CPU: leader in C1, inactive in C2,

follower in C3

(b) Node 5 CPU: inactive in C1, leader in C2,

inactive in C3

(c) Node 3 CPU: follower in C1, inactive in

C2, leader in C3 CPU utilization of different

nodes in C1-C3

Figure 4.11: (a-c): CPU utilization of different nodes in C1-C3

lower). We add node05, node06, node07, node08, and node09 as learners immedi-
ately after the snapshot. They receive a snapshot of 284MB, which takes 5 seconds
to be delivered. When all of the learners are ready, we proceed to reconfiguration. As
we have already said, reconfiguring to cluster in which leader is absent lead to 1-2
sec of unavailability. After the reconfiguration is completed (node06 is elected as new
leader), we remove the old followers (currently learners). Between learner additions
(now followers and leader) and follower removals (now learners) cluster consists of
8 nodes. After all, new configuration is composed of 5 members. Although data is
now replicated to more nodes (system can now afford 2 node failures) base latency
is decreased, because new nodes have more CPU capacity. In this section, we will not
illustrate the CPU usage performances of weak and strong nodes, as we do not have
something remarkably different comparing to the previous section to depict.

To increase performance, it may only be necessary to upgrade the leader node

50

Figure 4.12: Latency of a 3-node to 5-node group over reconfiguration increasing
node CPU capacity

(or any majority of nodes), as they are on the critical path to committing proposals
in the replica group. However, having a single powerful node as a leader will work
only for as long as this node remains a leader. After an election, a less powerful node
becoming leader will bring down throughput (increase latency) for the entire replica
group.

4.6 Characterizing the performance impact of learner additions

A key feature of any highly-available replica reconfiguration system is the ability to
prepare replicas (transfer state to them and keep them up to date) proactively so
as to minimize the impact of a reconfiguration action. In this section, we study the
performance cost in terms of latency and CPU overhead, of adding learners. We study
the relationship between the size of state that the incoming learner has to receive, with
the latency penalty we observe at the client. We also observe that leader CPU increases
during learner additions. We performed benchmark runs in which learners receive
different sized snapshots. We spread learner additions over time and compare to
the impact of concurrent additions. By concurrent additions we mean single-server
additions (performed one after another) close in time, within a small (1 sec) interval.
For these experiments, we increase the number of the clients to 5, as this concurrency

51

Figure 4.13: Latency impact of learner additions (Bench 1)

Figure 4.14: Leader CPU impact of learner additions (Bench 1)

level stretches sufficiently the servers (CPU usage of 55-65% at the leader and 30%
for followers). We keep the same key space size equal to 5 distinct keys. We perform
three types of experiments, each consisting of two scenarios:

Bench 1: Benchmark runs with a total amount of 400K writes.
Scenario 1: The leader takes snapshot every 100K log entries. After each of the

first three snapshots is taken, a new learner is added to the cluster. They receive
around 39, 77 and 115.5MB snapshots respectively. The three snapshots need 0.6
sec, 1.1 sec, and 1.7 sec to be delivered respectively.

Scenario 2: The leader takes one snapshot at 300K log entry. Then all nodes are
added consequently. Each learner receives around 115.5 Mb snapshot. Each snapshot
needs around 1.7 seconds to be delivered in each node.

Bench 2: Benchmark runs with a total amount of 2M writes.
Scenario 1: The leader takes snapshot every 500K log entries. After each of the

first three snapshots are taken, a new learner is added to the cluster. Learners receive
snapshots of 189, 378, 566MB respectively. The 500K-entry snapshot needs around 3
seconds, the 1M-entry snapshot needs 6 seconds, and the 1.5M-entry snapshot needs
8.2 seconds.

52

Figure 4.15: Latency impact of learner additions (Bench 2)

Figure 4.16: Leader CPU impact of learner additions (Bench 2)

Scenario 2: The leader takes one snapshot at 1.5M log entry. Then all nodes
are added consequently. Each node receives snapshot size of around 566MB. Each
snapshot needs around 8.2 sec to be delivered.

Bench 3: Benchmark runs with a total amount of 4M writes.
Scenario 1: The leader takes snapshot every 1M log entries. After each snapshot is

taken, a new learner is added to the cluster. Learners receive around 377MB, 753.5MB
and 1.13GB snapshots, respectively. Snapshots need around 6 seconds, 10 seconds,
and 15 seconds to be delivered, respectively.

Scenario 2: The leader takes one snapshot at 3M log entries. Then all nodes are
added consequently. Each node receives a snapshot of 1.13GB, which needs 15 sec
to be delivered.

In Figure 4.13, Figure 4.15, and Figure 4.17 (latency impact of learner additions)
we observe:

• Learner additions always impact steady-state latency. When we add the 3 learn-
ers spaced-out in time, steady state latency is gradually increased. On the other
hand, concurrent additions lead to the steady-state latency of the third learner
addition at once.

53

Figure 4.17: Latency impact of learner additions (Bench 3)

Figure 4.18: Leader CPU impact of learner additions (Bench 3)

• Not every addition cost is the same. In all cases, concurrent additions are more
expensive comparing to spaced-out additions. It is costlier for the leader to
prepare 3 nodes concurrently than prepare them separately.

• Latency spikes are strongly related to snapshot size. The more state is snap-
shotted by the leader, the bigger snapshot a learner will receive. This is clearly
reflected to latency figures and results in latency spikes.

In Figure 4.14, Figure 4.16, and Figure 4.18 (CPU impact of learner additions) we
observe:

• At the time of learner addition, leader CPU usage appears dips. When an ad-
dition is completed, leader CPU consumes more resources in order to serve an
additional node. Adding all learners concurrently, increases CPU usage at once
to level after the third learner has been added.

• Like latency, not every addition costs the same. Concurrent additions cost more
than spare additions, as well. Leader is busy in sending state to the learners
which affects CPU usage, depicted with sharper dips.

54

• Just like latency spikes, CPU dips are related with state size. The biggest state a
learner receives, the deepest CPU usage dip we observe.

• CPU usage increment in the beginning of the CPU percentage figures is caused
by the first record of top command, which is always 0-5 %

We also studied the same cases for the scenario that leader does not snapshot. The
same conclusions also apply there. In these experiments, the latency cost when learn-
ers receiving snapshot is comparable to the case of learners receiving full log from the
leader. However, by experience we have observed that learners that receive a snapshot
are ready to join the cluster more quickly, compared to the case of receiving a full
log.

In these experiments we have determined that learner additions incur costs during
reconfiguration, however learner additions are an essential proactive action to avoid
stalls during reconfiguration. The cost and timing of learner additions are a tunable
parameter that depends on how soon a user wants learners to be ready and/or whether
to limit the impact of learner additions.

4.7 Impact of back-end

Performing experiments, we tried to increase the size of the key pool. We discovered
that when we increase key space size, there is a background noise (jitter) in latency
(Figure 4.19) and CPU (Figure 4.20) figures. We perform experiments that produce
5M writes in sequential order using one client. We also tried experiments with random
key order to see whether order matters but observed no significant difference. The
etcd cluster comprises a leader and two followers. In case (a), key space size is equal
to the total number of writes (each key is unique), while in case (b), key space size is
5. This means that all writes except for the first 5, are updates (new versions) of the
values of the previous keys. These two cases agree in base latency, but setting large
key range leads to jitter effect that is always increasing across latency axis as time
goes by.

We also studied the CPU behavior (Figure 4.20) and concluded that there is a
strong relation between the latency and the CPU % usage jitters. Base usage fluctuates
on the same level in both cases and differentiates in percentage range. We believe

55

(a) Huge key space size (b) Small key space size

Figure 4.19: Latency impact of key range size

(a) Leader CPU usage with huge key range (b) Leader CPU usage with small key range

Figure 4.20: CPU usage impact of key range

that jitter is caused by the B+ tree expansion of BoltDB. When key space size is equal
to the number of the writes, tree is forced to always increase its leaves. Some of the
insertions naturally lead to branch splits, which sometimes reach up to the root of
the tree. All these splits cause this increasing jitter in CPU, which afterwards leads to
the latency jitter. Studying jitter, we also noticed that not only spikes are increasing,
but they appear less often as time goes by. This reinforces our claim because as tree
grows up, fewer and fewer value redistributions are necessary, but when a branch
split happens, it costs more every time.

4.8 Experimenting with prediction models

We trained prediction models that help us know with good precision when the next
latency spike will appear and how big it will be. We build the regression models using
Matlab Regression Learner Application. The Matlab findpeaks [41] function helps us

56

(a) Latency Peak Height Linear Regression

Learner

(b) Latency Peak Distance Linear Regression

Learner

Figure 4.21: Regression models

Table 4.1: Regression model metrics

RMSE R2 MSE MAE

Linear Regression (Peak Heights) 0.19 0.94 0.03 0.11

Linear Regression (Peak Distances) 116.84 1.00 13651.40 97.88

detect the peaks of the jitter spikes. This function returns the exact positions (x, y) of
the spikes. We then create two datasets: a dataset that contains the X axis positions of
jitter spikes and a dataset that contains the Y (latency) axis values of the spikes. We
train the data using 10-fold cross validation. Initial data was collected by benchmark
run set up with one client and lasts 4 hours. Writes are served by a 3-member cluster.

After trying several models, we concluded that Linear Regression [42] model is
exactly what we need. Model selection criteria is the least Root Mean Square Errors
(RMSE), but in the case of the latency peak distance dataset, although we see that
Gaussian Processes [43] RMSE is less than Linear Regression RMSE, data is overfitted.
For that reason, we prefer simpler models like Linear Regression. In Figure 4.21 we
can validate the prediction accuracy of the models. We subjoin additional metrics in
Table 4.1, as well.

4.9 Joint consensus vs single server reconfiguration

In the previous experiments we observed that joint consensus reconfiguration costs
can be separated in the following two phases, which may be interleaved in different

57

ways:

• Learner additions: In Section 4.6 we observed that the cost of learner additions
depends on the size of transferred state. Adding learners at about the same
time has a higher impact (disrupts) the request pipeline, as the leader is busy
with sending several snapshots to the learners. Request response times naturally
increase during this time.

• Reconfiguration: Reconfiguration in Raft is not by itself an expensive process as
it requires light processing (it is treated just as two normal requests) and does
not stall request progress (Section 4.2). The real impact of reconfiguration is
realized when the leader is not member of the new configuration and thus the
cluster must elect a new leader, resulting to a short unavailability interval.

Full reconfiguration of a 3-member replica set (A, B, C to D, E, F) can be performed
using 6 single-server reconfiguration actions that replace step-by-step the members
of the cluster, instead of one reconfiguration action that changes all cluster members
at once. Single-server reconfiguration can be performed either using our implemen-
tation of the two-phase joint consensus reconfiguration, or the specific single-phase
single-server reconfiguration action (Section 2.2). Learner additions (state transfer)
are needed in both methods of reconfiguration. The member-add procedure in the
default Etcd reconfiguration (single server) operates similar to adding learners in our
joint consensus reconfiguration. An important factor is how state-transfer operations
are spaced in time.

Our general observations from our experiments are as follows:

• Simultaneous addition of many members or learners will cause higher latency spikes
during state transfer, compared to additions that are more spread in time.

• The size of the state transferred (amount of data in snapshot plus log) impacts
the breadth and height of the latency impact per added node

• Higher number of replica nodes (members or learners) increases base latency
as the leader needs to replicate data to more replicas in its common path

• Removing a leader from the cluster causes unavailability

We distinguish two main policies for doing reconfiguration, one geared towards min-
imizing its latency impact (Min-impact) and another geared towards minimizing time

58

Figure 4.22: Full replica-group reconfiguration using min-impact policy with single-
server changes

duration of reconfiguration (termed ASAP). Snapshot (and defragmentation) prior to
state transfer are recommended to reduce state size in all cases.

• Min-impact: Schedule reconfiguration as successive new-member-add old-member-
remove single-server reconfigurations [1]. The benefit of this policy is that base
latency remains low and that the latency impact of state transfer is also bounded
since state transfer happens a single replica at a time. However, this policy is
expected to result to longer reconfiguration actions.

• ASAP: First add all replicas as learners (nearly simultaneously to reconfigure
as soon as possible), then complete the reconfiguration. One downside of this
is that the cluster may operate for some time with a large number of replicas
(old and new), increasing base latency. The impact of this policy has already
been examined in Figure 4.10. Combining multiple single-server reconfigura-
tions into a single joint-consensus action is not expected to significantly reduce
reconfiguration time, even in the case of large replica groups or under high
load.

To demonstrate the min-impact policy we carry out an experiment (one client
performing 600K writes, key space size 5) moving from a weak directly to a strong
three-member replica group (Figure 4.22). Snapshots are taken at 150K (56MB, 0.7

59

Figure 4.23: Full replica-group reconfiguration using ASAP policy (excerpt of Figure
4.10)

sec), 300K (113.4MB, 1.6 sec) and 450K (169.6MB, 2.5 sec) entries just before adding
each learner. The first reconfiguration replaces the leader with as stronger (not CPU-
restricted) node, causing a short latency impact due to the leader election but also
a steady-state drop due to the stronger leader. The following two reconfigurations
replacing weak with strong followers are low-cost since they do not involve leader
elections, thus we only observe learner addition (state transfer) costs.

Comparing to the experiment of Figure 4.23 (excerpt of Figure 4.10) where re-
configuration takes place using the ASAP policy, our main observation is that the
min-impact policy indeed results in lower latency cost due to learner additions (state
transfer) being spread out in time.

In both policies, state-transfer and leader election costs cannot be avoided, al-
though state-transfer costs can be regulated by controlling state size and time spacing
of node additions. Joint consensus can in fact yield a short-term performance im-
pact when reconfiguring large replica-groups (e.g., with a 20-member group would
need to grow to a 20-member plus 20-learner group, for a total of 40 nodes, before
reconfiguring). Joint consensus does not seem preferable over multiple single-server
reconfigurations on the grounds of performance.

An advantage of joint consensus reconfiguration is that it is an atomic operation

60

that can apply cluster changes at once, e.g. important when nodes of different types
cannot simultaneously co-exist and/or interoperate. On the other hand, single server
reconfiguration is easier to develop (our implementation of joint consensus adds up
at least 1500 lines of new code, plus testing complexity). Generally, what can be done
by joint consensus reconfiguration, can also be done by single-server reconfiguration.

61

Chapter 5

Conclusions and future work

5.1 Conclusions

5.2 Future work

5.1 Conclusions

In this thesis, we studied the adaptability of replication systems using joint consen-
sus reconfiguration. Systems usually implement single-server techniques in order to
add/remove a replication node, as developers naturally choose algorithms that are
simpler to implement and test. In this thesis, we investigated the implementation
of Raft joint-consensus reconfiguration and prototyped it in Etcd. We adjusted re-
configuration algorithm to the needs of Etcd, abiding by the principles of the initial
algorithm proposal. We extended the Etcd client CLI in order to introduce learners,
passive nodes that build and maintain replica state without participating in voting.
The intention in adding a learner is to prepare for replacing an existing member
or increase fault-tolerance through reconfiguration mechanism. To properly evalu-
ate reconfiguration, we modified the Etcd benchmark by inserting a leader-detection
feature to it. Our extensive experimental analysis of joint consensus reconfiguration
latency and resource costs, and close look into the cross-reconfiguration differences,
led us to the following conclusions:

• A large fraction of the reconfiguration cost is due to the leader election needed
when the current leader is not in the new set of replicas; in that case, the outage

62

lasts for less than 2 sec (at most two 1-sec measurement intervals). When the
current leader remains in the new set and learners have already been prepared,
the impact of reconfiguration is minimal in both the single-server and joint-
consensus cases (Sections 4.4, 4.5, 4.9; Figures 4.10, 4.12, 4.22, 4.23)

• The performance of a replica group depends on the number of follower replicas
and the capacity of the leader (that is, latency increases with more replicas, or
when the leader is saturated -although followers may not be-) (Sections 4.4,
4.5, 4.9; Figures 4.10, 4.12, 4.22, 4.23)

• The cost of adding learners is part of the total reconfiguration cost (impact in
baseline latency, and CPU impact on the leader during of state transfer) (Sections
4.4, 4.5, 4.6 , 4.9; Figures 4.10, 4.12, 4.13, 4.15, 4.17, 4.22, 4.23)

• Being proactive is important: Preparing learners before proceeding to a new
configuration avoids stalls during reconfiguration for state transfer. But, the
latency overheads and CPU overhead of learner addition are unavoidable. (Sec-
tions 4.4, 4.5, 4.6 , 4.9; Figures 4.10, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.22,
4.23)

• Latency spikes (peak and duration) during learner additions depend on the size
of state transferred and on whether learners are added concurrently or spaced
out in time (Section 4.6; Figures 4.13, 4.15, 4.17)

• To reduce the amount of state transferred during learner additions, it is impor-
tant to perform snapshot operations prior to adding learners (Sections 4.4, 4.5,
4.6 , 4.9; Figures 4.10, 4.12, 4.13, 4.15, 4.17, 4.22, 4.23)

• Executing joint consensus under high client load leads to a longer reconfigura-
tion phase as more log entries are committed while reconfiguration is undergo-
ing (Section 4.2; Figures 4.3, 4.4)

• Joint consensus reconfiguration is a more general form of single-server recon-
figuration with which one can atomically effect multiple changes, however it
does not seem to lead to practical benefits compared to the latter. Learner addi-
tion costs and possibly leader-election costs, which are important components
of total reconfiguration costs, are common to both ways of reconfiguring (Sec-

63

tion 4.9; Figures 4.22, 4.23). Developers of replication solutions indeed prefer
single-server reconfiguration as a simpler alternative.

• Jitter in latency and CPU usage increases with the number (range) of keys in the
B+ tree of BoltDB and may be related to reorganization during key insertion
(Section 4.7; Figures 4.19, 4.20). The exact height and timing of jitter spikes
can be accurately predicted through training linear regression models (Section
4.8, Figure 4.21)

5.2 Future work

In terms of extending our evaluation in the future, it would be interesting to test our
system in other experimental testbeds, using a larger number of nodes, SSD storage
and/or more powerful machines. It would be interesting to compare different aspects
of Etcd’s joint consensus reconfiguration with other related systems. For example, the
author of another thesis [44] replaced BoltDB with RocksDB in Etcd. To consider the
impact of the backend (e.g., take advantage of better write performance of LSM-trees
in RocksDB vs. B+ trees in BoltDB), it would be interesting to evaluate the Etcd
reconfiguration mechanism over their implementation (however we have not yet as
of the time of writing this thesis been able to have access to that codebase). We intend
to perform experiments with a write-intensive client workload, where the system will
perform reconfiguration and change to RocksDB-backed Etcd nodes from a standard
set of BoltDB-backed nodes and vice versa. This requires a RocksDB to BoltDB (LSM
to B+ tree) data mapping and a mechanism that will detect the type of workload and
trigger reconfiguration. We intend to apply the prediction technique to predict the
latency impact of changing the number and type of nodes in a replication group (and
vice versa).

To maximize the impact of this work, we intend to make a stable version of our
modified Etcd code eventually available to the community via a Github repository.
One of the new features we intend to include is a separate way to start learners (they
are currently started with the help of an if-statement, depending on the name of the
node we decide whether to start learner or member). Additionally, we must find a
way to update the server-level cluster interpretations of the nodes about the proper
learner and member progress maps. There are many functions that have almost the

64

same usage. With proper architectural and structure changes, we will aim to simplify
and minimize the size of our code as an extension to baseline Etcd. Leader detection in
Etcd benchmark also needs improvements: the current benchmark implementation
is able to detect a limited amount of leader changes, which fits the needs of our
experiments in this thesis. However, general availability of this feature will require
code improvements in the benchmark to enable it to detect every leader-change event.

65

Bibliography

[1] V. V. Cogo, A. Nogueira, J. Sousa, M. Pasin, H. P. Reiser, and A. N. Bessani,
“FITCH: supporting adaptive replicated services in the cloud,” in DAIS, vol. 7891
of Lecture Notes in Computer Science, pp. 15–28, Springer, 2013.

[2] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and J. Howell,
“The smart way to migrate replicated stateful services,” in Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys
’06, (New York, NY, USA), pp. 103–115, ACM, 2006.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordi-
nation for internet-scale systems,” in Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’10, (Berkeley, CA, USA),
pp. 11–11, USENIX Association, 2010.

[4] “Zookeeper github repository.” https://github.com/apache/zookeeper. Accessed:
2018-12-5.

[5] “Etcd github repository.” https://github.com/etcd-io/etcd. Accessed: 2018-12-
5.

[6] “Etcd official site.” https://coreos.com/etcd/. Accessed: 2018-12-5.

[7] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algo-
rithm,” in Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIX ATC’14, (Berkeley, CA, USA), pp. 305–320, USENIX
Association, 2014.

[8] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Distributed systems
(2nd ed.),” ch. The Primary-backup Approach, pp. 199–216, New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1993.

66

https://github.com/apache/zookeeper
https://github.com/etcd-io/etcd
https://coreos.com/etcd/

[9] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A scalable distributed
file system,” in Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP ’97, (New York, NY, USA), pp. 224–237, ACM, 1997.

[10] E. K. Lee and C. A. Thekkath, “Petal: Distributed virtual disks,” in Proceedings
of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS VII, (New York, NY, USA), pp. 84–92,
ACM, 1996.

[11] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58, December 2001.

[12] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast
for primary-backup systems,” in Proceedings of the 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems&Networks, DSN ’11, (Washington, DC,
USA), pp. 245–256, IEEE Computer Society, 2011.

[13] D. Ongaro, Consensus: Bridging Theory and Practice. PhD thesis, Stanford Uni-
versity, 2014.

[14] “Go language explained by robert pike.” http://9p.io/sources/contrib/ericvh/

go-plan9/doc/go_talk-20091030.pdf. Accessed: 2018-12-5.

[15] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy
method to support highly-available distributed systems,” in Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC ’88,
(New York, NY, USA), pp. 8–17, ACM, 1988.

[16] D. Mazières, “Paxos made practical,” 2007.

[17] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira, “Dynamic reconfiguration
of primary/backup clusters,” in Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, (Berkeley, CA, USA), pp. 39–39,
USENIX Association, 2012.

[18] “Boltdb github repository.” https://github.com/boltdb/bolt. Accessed: 2018-
12-5.

[19] “Kubernetes github repository.” https://github.com/kubernetes/kubernetes. Ac-
cessed: 2018-12-5.

67

http://9p.io/sources/contrib/ericvh/go-plan9/doc/go_talk-20091030.pdf
http://9p.io/sources/contrib/ericvh/go-plan9/doc/go_talk-20091030.pdf
https://github.com/boltdb/bolt
https://github.com/kubernetes/kubernetes

[20] “Kubernetes official site.” https://kubernetes.io/. Accessed: 2018-12-5.

[21] “Tikv github repository.” https://github.com/tikv/tikv. Accessed: 2018-12-5.

[22] “Tidb github repository.” https://github.com/pingcap/tidb. Accessed: 2018-12-
5.

[23] “Tidb & tikv official site.” https://www.pingcap.com. Accessed: 2018-12-5.

[24] “Rust language.” https://www.rust-lang.org/en-US/. Accessed: 2018-12-5.

[25] “Cockroachdb github repository.” https://github.com/cockroachdb/cockroach.
Accessed: 2018-12-5.

[26] “Cockroachdb official site.” https://www.cockroachlabs.com/. Accessed: 2018-
12-5.

[27] “Consul github repository.” https://github.com/hashicorp/consul. Accessed:
2018-12-5.

[28] “Consul official site.” https://www.consul.io/. Accessed: 2018-12-5.

[29] “Serf official site.” https://www.serf.io. Accessed: 2018-12-5.

[30] A. Das, I. Gupta, and A. Motivala, “Swim: Scalable weakly-consistent infection-
style process group membership protocol,” in Proceedings of the 2002 International
Conference on Dependable Systems and Networks, DSN ’02, (Washington, DC, USA),
pp. 303–312, IEEE Computer Society, 2002.

[31] O. Rodeh, “B-trees, shadowing, and clones,” Trans. Storage, vol. 3, pp. 2:1–2:27,
Feb. 2008.

[32] “Rocksdb github repository.” https://github.com/facebook/rocksdb. Accessed:
2018-12-5.

[33] “Rocksdb official site.” https://rocksdb.org/. Accessed: 2018-12-5.

[34] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured merge-tree
(lsm-tree),” Acta Inf., vol. 33, pp. 351–385, June 1996.

68

https://kubernetes.io/
https://github.com/tikv/tikv
https://github.com/pingcap/tidb
https://www.pingcap.com
https://www.rust-lang.org/en-US/
https://github.com/cockroachdb/cockroach
https://www.cockroachlabs.com/
https://github.com/hashicorp/consul
https://www.consul.io/
https://www.serf.io
https://github.com/facebook/rocksdb
https://rocksdb.org/

[35] A. Bessani, J. a. Sousa, and E. E. P. Alchieri, “State machine replication for
the masses with bft-smart,” in Proceedings of the 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’14, (Washington,
DC, USA), pp. 355–362, IEEE Computer Society, 2014.

[36] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,” SIGACT
News, vol. 41, pp. 63–73, Mar. 2010.

[37] “Etcd edited version.” https://github.com/etcd-io/etcd/releases/tag/v3.3.

0-rc.0. Accessed: 2018-12-5.

[38] “Google protocol buffers.” https://developers.google.com/protocol-buffers/.
Accessed: 2018-12-5.

[39] J. S. Hunter, “The exponentially weighted moving average,” Journal of Quality
Technology, vol. 18, no. 4, pp. 203–210, 1986.

[40] “Cpulimit github repository.” https://github.com/opsengine/cpulimit. Accessed:
2018-12-5.

[41] “Matlab findpeaks function.” https://www.mathworks.com/help/signal/ref/

findpeaks.html. Accessed: 2018-12-5.

[42] S. Weisberg, Applied Linear Regression. Hoboken NJ: Wiley, third ed., 2005.

[43] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[44] G. M. Kokkinou and N. Kozyris, Optimizing Write Performance in the etcd Dis-
tributed Key-Value Store via Integration of the RocksDB Storage Engine. PhD thesis,
NTUA, 2018.

https://github.com/etcd-io/etcd/releases/tag/v3.3.0-rc.0
https://github.com/etcd-io/etcd/releases/tag/v3.3.0-rc.0
https://developers.google.com/protocol-buffers/
https://github.com/opsengine/cpulimit
https://www.mathworks.com/help/signal/ref/findpeaks.html
https://www.mathworks.com/help/signal/ref/findpeaks.html

Short Biography

Dimitrios Valekardas is a M.Sc. graduate student at the Department of Computer
Science and Engineering of University (CSE) of Ioannina, Greece. He is a member
of CSE Distributed Systems Group since 2017. Dimitrios received his B.Sc. degree
from the CSE Department in 2016. His research interests revolve around distributed
systems, data stores, and availability and performance improvement of distributed
applications.

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objectives
	Thesis Structure

	Background
	The Go language
	 Raft and related algorithms
	Etcd and related systems
	BoltDB and related backends
	Adaptive reconfiguration of stateful services

	Implementation
	Implementing the learner role
	Implementing the joint consensus mechanism
	Design
	Protocol buffers, RPCs, and CLI
	Message types and state transitions
	Operation of Etcd joint consensus
	Message processing
	Discussion

	Extending the Etcd benchmark

	Evaluation
	Experimental setup
	Insight into reconfiguration process under different load levels
	Etcd snapshot, compaction and defragmentation policy
	Scaling up using joint consensus
	Simultaneously increasing fault-tolerance and performance
	Characterizing the performance impact of learner additions
	Impact of back-end
	Experimenting with prediction models
	Joint consensus vs single server reconfiguration

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Short Biography

