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In recent years, increasing amounts of graph structured data are being made
available from a variety of sources, such as social, citation, computer and hyperlink
networks. Their continuous evolution is becoming a subject that attracts considerable
attention, and finds a wide spectrum of applications ranging from social network
marketing to virus propagation and digital forensics. Although the analysis of the
graph evolution is important of our understanding of the network, the main focus of
research has been on efficiently storing and retrieving the graph snapshots. Further-
more, processing graph data through a variety of graph queries including reachability,
distance and pattern-based ones, is limited to static graphs, leaving query processing
on evolving graphs unexplored.

This dissertation focus on managing and querying the full history of a graph as
it evolves. We introduce a compact representation of an evolving graph, where each
graph element i.e., node or edge is annotated with the set of time intervals that refer
to the existence of each element through the graph evolution.

We then include studies of different ways of extracting information from the evolv-
ing graph by posing different queries on a sequence of graph snapshots. We call such
queries historical queries. In particular, we first introduce historical graph traversal
queries that consider paths that exist in a sufficient number of graph snapshots. We
exploit variants of two types of historical traversal queries, reachability and shortest
paths. Historical reachability queries ask whether two nodes are connected in some
time instance, in all time instances, or in a sufficient number of time instances whereas
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historical shortest path queries ask for the shortest path between two nodes posing
requirements on the lifespan of such paths. We provide efficient algorithms for sup-
porting historical graph traversal queries. We propose effective implementations of
our algorithms based on time index structures for in-memory and graph database
systems, and provide an extensive experimental evaluation of various aspects of our
approach.

We also formalize a new problem that of finding the top-k most durable matches
of an input graph pattern query, that is the matches that exist for the longest period of
time. Locating durable matches in the evolution of large graphs is important for our
understanding of the network, and it may be crucial for many applications. Applying
previous approaches to pattern matching problem at each snapshot and aggregating
the results for large networks and long sequences is computationally expensive, since
all matches have to be generated at each snapshot, including those appearing only
once. Thus, we propose a new efficient and effective approach that uses appropriate
time indexes to prune the search space and strategies to estimate the duration of the
seeking matches in large evolving graphs.

Furthermore, we systematically study density in evolving graphs, and provide
definitions for density over multiple graph snapshots, that capture different semantics
of connectedness over time. We study the complexity of the different variants of the
problem and we propose a generic algorithmic framework for solving our problems,
that works in linear time. Our experimental evaluation shows both the efficiency of
our algorithms and the usefulness of the problems.

Finally, we introduce three approaches of modeling evolving graphs in native
graph databases, as well as, algorithms for processing historical queries that use these
approaches.
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Τα τελευταία χρόνια, αυξανόμενες ποσότητες δεδομένων που αναπαριστώνται
από γραφήματα διατίθενται από διάφορες πηγές, όπως τα δίκτυα κοινωνικής δικτύ-
ωσης, τα δίκτυα παραπομπής, τα δίκτυα ηλεκτρονικών υπολογιστών και τα δίκτυα
υπερσύνδεσης. Η συνεχής εξέλιξη τους γίνεται ένα θέμα που προσελκύει ιδιαίτερη
προσοχή και βρίσκει ένα ευρύ φάσμα εφαρμογών που κυμαίνονται από το μάρ-
κετινγκ στα κοινωνικά δίκτυα έως τη διάδοση των ιών και την ψηφιακή εγκλημα-
τολογία. Αν και η ανάλυση της εξέλιξης των γραφημάτων είναι σημαντική για να
κατανοήσουμε το δίκτυο, ο κύριος στόχος της έρευνας τα τελευταία χρόνια ήταν
η αποτελεσματική αποθήκευση και ανάκτηση των στιγμιότυπων της εξέλιξης του
γραφήματος. Επιπλέον, η επεξεργασία δεδομένων γραφημάτων μέσω μιας ποικι-
λίας ερωτήσεων σε γραφήματα (graph queries), όπως της προσπελασιμότητας, της
εύρεσης απόστασης και μοτίβων, περιορίζεται στα στατικά γραφήματα, αφήνοντας
ανεξερεύνητη την επεξεργασία ερωτήσεων στα εξελισσόμενα γραφήματα.

Παρόλο που υπάρχει μεγάλο ενδιαφέρον για την επεξεργασία στατικών γρα-
φημάτων μέσω μιας ποικιλίας ερωτήσεων σε γραφήματα (graph queries), όπως της
προσπελασιμότητας, της εύρεσης απόστασης και μοτίβων, η αναζήτηση στο ιστορικό
ενός εξελισσόμενου γραφήματος είναι πολύ λιγότερο μελετημένη.

Στόχος αυτής της διατριβής είναι η διαχείριση και διερεύνηση της ιστορίας ενός
γραφήματος καθώς εξελίσσεται. Παρουσιάζουμε μια συμπαγή αναπαράσταση ενός
εξελισσόμενου γραφήματος, όπου κάθε στοιχείο του π.χ. κόμβος ή ακμή, σημειώνε-
ται με το σύνολο χρονικών διαστημάτων που δηλώνουν την ύπαρξη κάθε στοιχείου
κατά την διάρκεια της εξέλιξης του γραφήματος.
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Στη συνέχεια παρουσιάζουμε μελέτες διαφορετικών τρόπων εξαγωγής πληρο-
φοριών από το εξελισσόμενο γράφημα θέτοντας διαφορετικά ερωτήματα σε μια
ακολουθία στιγμιότυπων γραφημάτων. Αναφερόμαστε σε τέτοιου είδους ερωτή-
ματα ως ιστορικά ερωτήματα (historical queries). Συγκεκριμένα, παρουσιάζουμε
πρώτα ιστορικά ερωτήματα διάσχισης ενός γραφήματος που λαμβάνουν υπόψη τις
διαδρομές που υπήρχαν σε επαρκή αριθμό στιγμιότυπων του γραφήματος. Χρησι-
μοποιούμε παραλλαγές δύο τύπων ιστορικών ερωτήσεων διάσχισης, της προσβασι-
μότητας και της εύρεσης συντομότερων διαδρομών. Τα ερωτήματα ιστορικής προ-
σβασιμότητας ρωτούν αν δύο κόμβοι συνδέονται είτε σε κάποια χρονική στιγμή, είτε
σε όλες τις χρονικές στιγμές ή σε επαρκή αριθμό χρονικών στιγμών, ενώ τα ιστορικά
ερωτήματα εύρεσης συντομότερων διαδρομών ζητούν τη συντομότερη διαδρομή με-
ταξύ δύο κόμβων θέτοντας περιορισμούς ως προς τη διάρκεια ζωής αυτών των δια-
δρομών. Παρέχουμε αποτελεσματικούς αλγόριθμους για την υποστήριξη ιστορικών
ερωτημάτων διάσχισης σε γραφήματα. Προτείνουμε αποτελεσματικές υλοποιήσεις
των αλγορίθμων μας που κάνουν χρήση χρονικών ευρετηρίων σε συστήματα που
βρίσκονται εξολοκλήρου στη μνήμη και σε συστήματα βάσεων γραφημάτων. Στη
συνέχεια, παρουσιάζουμε μια εκτενή πειραματική αξιολόγηση διαφόρων πτυχών
της προσέγγισής μας.

Ορίζουμε επίσης το νέο πρόβλημα της εύρεσης των k πιο ανθεκτικών ισομορ-
φικών γραφημάτων ενός μοτίβου εισόδου, δηλαδή την εύρεση των γραφημάτων
που είναι ισομορφικά με το μοτίβο εισόδου και υπάρχουν για το μεγαλύτερο χρο-
νικό διάστημα. Η εύρεση τέτοιων γραφημάτων είναι σημαντική για την κατανόηση
του δικτύου και μπορεί να είναι κρίσιμη για πολλές εφαρμογές. Εφαρμόζοντας
τις προηγούμενες προσεγγίσεις στο πρόβλημα εύρεσης ισομορφικών γραφημάτων
ενός μοτίβου εισόδου σε κάθε στιγμιότυπο και τη συγκέντρωση των αποτελεσμά-
των, είναι υπολογιστικά ακριβό για μεγάλα δίκτυα. Αυτό συμβαίνει γιατί όλα τα
ισομορφικά γραφήματα του μοτίβου εισόδου πρέπει να βρεθούν σε κάθε στιγμιό-
τυπο, συμπεριλαμβανομένων εκείνων που εμφανίζονται μόνο μία φορά. Για τον λόγο
αυτό, προτείνουμε μια νέα αποδοτική και αποτελεσματική προσέγγιση που χρησι-
μοποιεί κατάλληλα χρονικά ευρετήρια για να μειώνει τον χώρο αναζήτησης όπως
και στρατηγικές αναζήτησης για να υπολογίζει τη διάρκεια ζωής των γραφημάτων
που αναζητούμε.

Επιπλέον, μελετάμε το πρόβλημα της εύρεσης του συνόλου των κόμβων που
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είναι πιο πυκνά συνδεδεμένοι σε όλα τα στιγμιότυπα του εξελισσόμενου γραφήμα-
τος. Παρέχουμε ορισμούς για την πυκνότητα σε πολλαπλά στιγμιότυπα γραφημά-
των, που καταγράφουν διαφορετικές σημασιολογίες της συνδεσιμότητας των κόμ-
βων κατά την πάροδο του χρόνου, και μελετάμε τις αντίστοιχες παραλλαγές του
προβλήματος. Μελετάμε την πολυπλοκότητα των διαφορετικών παραλλαγών του
προβλήματος και προτείνουμε ένα γενικό αλγοριθμικό πλαίσιο για την επίλυση των
προβλημάτων μας, που λειτουργεί σε γραμμικό χρόνο. Η πειραματική μας αξιολό-
γηση δείχνει τόσο την αποτελεσματικότητα των αλγορίθμων όσο και τη χρησιμότητα
των προβλημάτων.

Τέλος, παρουσιάζουμε τρεις προσεγγίσεις για τη μοντελοποίηση των εξελισσό-
μενων γραφημάτων σε βάσεις γραφημάτων, καθώς και τους αλγορίθμους για την
επεξεργασία ιστορικών ερωτημάτων που χρησιμοποιούν αυτές τις προσεγγίσεις.
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C 1

I

1.1 Dissertation contribution

1.2 Repeatability

1.3 Dissertation layout

G are one of the most important abstractions in computer science, as
they offer a way of expressing relationships and interactions between enti-
ties. Such relationships between entities from the most abstract to the most

concrete i.e., events, things, people, convey information that is not possible to be cap-
tured by the entities alone. Since graphs are powerful abstractions, they can be very
important in modeling data in various real-world applications. Graphs can represent
power grids, water networks, links between web pages in the web, data flow analysis
in compilers, semantic links between tags and words in documents and tweets. In fact,
many problems can be reduced to known graph problems, for example graphs can
represent relationships between individuals in social and collaboration networks, or
cells and molecules in protein-protein interaction graphs, or communication packets
in network traffic graphs, even neurons in neural networks.

Most real-world networks are evolving over time since new entities and relation-
ships are added, or existing ones are deleted. We refer to such networks as evolving
graphs. The flow of information in e-mail messages, mobile telephone calls, and so-
cial media is one such network that has recently attracted much attention. Likewise,
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detailed understanding of the dynamic propagation of some electronic and biological
viruses calls for taking the properties of the underlying contact sequences into ac-
count. Studies of many networks in life sciences from activation sequences of genetic
regulation to time domain features of functional brain networks may benefit from the
evolving graph approach. Food webs and other networks of species evolve in time
with environmental conditions that are to some extent a result of which species are
present.

We view an evolving graph as a sequence of graph snapshots, each one repre-
senting the state of the graph at a specific time instance. Although the analysis of
the graph evolution is important for our understanding of the network, most re-
search focuses only on efficiently storing and retrieving the graph snapshots. Various
optimizations for reducing the storage and snapshot reconstruction overheads have
been proposed. For example, optimizations include the reduction of the number of
snapshots that need to be reconstructed by minimizing the number of deltas ap-
plied [1], using a hierarchical index of deltas and a memory pool [2], avoiding the
reconstruction of all snapshots [3], and improving performance by parallel query ex-
ecution and proper snapshot placement and distribution [4]. This dissertation also
considers efficient representation models of evolving graphs but the focus is on query
processing.

Regarding processing queries in graphs, there has been considerable interest in
static graphs [5, 6, 7, 8, 9, 10]. However, only a few studies have addressed queries on
evolution of the graph [11, 12]. In this dissertation, we introduce and study queries
on evolving graphs along with algorithms and indexes that address them. We refer
to queries that consider past snapshots of an evolving graph as historical queries. For
example, a historical reachability query may ask whether two nodes were reachable
at some time interval in the past or for the time point at which two nodes become
reachable for the first time, or for the k pairs of nodes that remained connected for
the longest interval.

In the following, we present in more detail the contribution of this dissertation.
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1.1 Dissertation contribution

The focus of this dissertation is on managing and querying the full history of a
graph as it evolves. We provide formal definitions and efficient representation models.
We also study different ways of extracting information from the evolving graph. In
particular, we revisit reachability and shortest path queries, graph pattern queries,
density queries and show how to provide support for evolving graphs within native
graph databases. We next present our contribution of the above topics.

1.1.1 Historical Reachability Queries on Evolving Graphs

Reachability queries on static graphs ask whether two nodes are connected. Here, we
study the problem of historical reachability queries on directed evolving graphs. We
start by revisiting the basic transitive closure and online traversal using a compact
representation of an evolving graph called version graph. For the transitive closure,
we compute a minimum representation of reachability information for each pair of
nodes. For the online traversal, we propose a novel interval-based traversal of the
version graph along with a number of pruning steps. Furthermore, to avoid the cost
and space overheads associated with precomputing the transitive closure and improv-
ing the processing cost of the online traversal, we propose a new approach, termed
TimeReach. TimeReach exploits the fact that most graphs consist of strongly connected
components (SCCs) [13, 14]. Thus, instead of maintaining reachability information for
pairs of nodes, we maintain posting lists with information about node membership
in SCCs. We minimize the size of posting lists through an appropriate assignment of
identifiers to SCCs. We show that the problem of the optimal assignment of identifiers
to SCCs is equivalent to the maximum bipartite matching problem among SCCs in
consequent graph snapshots. Along with postings, we maintain a condensed version
graph which corresponds to the version graph of the SCCs evolution. To improve
the performance of answering historical queries, we also introduce an interval-2hop
approach based on pruned landmark labeling [12, 15] on the condensed version
graph.

In a nutshell, we make the following contributions:

• We revisit an online traversal approach for processing historical reachability
queries on evolving graphs.
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• We propose an indexing approach namely TimeReach that exploits the fact that
most graphs consist of strongly connected components to answer queries that
ask whether two nodes were reachable during a time interval in the past.

• We propose a compressed version of TimeReach based on a novel assignment
of nodes to SCCs and a performance improvement based on interval 2-hop
indexes.

• We experimentally evaluate the efficiency of our approach using three real
datasets.

1.1.2 Persistent Graph Matches

Given as input, a graph, and a smaller query graph called pattern, pattern graph
queries ask for all appearances of the input pattern in the graph. Such appearances
are called matches. Here, we address the problem of finding the top-k most durable
matches of a query graph pattern, that is, the matches that persist over time. The
straightforward approach of finding durable matches is to find the matches at each
snapshot by applying a state-of-the-art graph pattern algorithm and then aggregate
the results. However, even an efficient implementation of this approach incurs large
computational costs, since all matching patterns in each snapshot must be identified,
even patterns that appear in only one snapshot. To avoid the computational cost of
applying the algorithm per snapshot, we propose an efficient algorithm and appro-
priate time indexes to prune the search space and strategies to estimate the duration
of the seeking matches. Our approach identifies the durable matches by traversing a
compact representation of the graph snapshots. We propose and efficient in-memory
layout of the graph snapshots which allows fast retrieval of neighboring nodes at each
snapshot. To prune the number of candidate matches, we introduce neighborhood
and path time indexes based on Bloom filters [16, 17]. Finally, our DurablePattern
algorithm is driven by a ϑ-threshold in the sense that the algorithm searches for
matches whose duration is at least ϑ, thus ϑ determines the order of searching for
possible matches on the duration of the matches. We exploit various strategies that use
the time-based indexes to efficiently determine an appropriate value for the duration
threshold.

In a nutshell, we make the following contributions:
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• We propose a new DP algorithm that exploits the version graph,
ϑ-threshold graph exploration search and appropriate Bloom-filter based time
indexes to process durable graph pattern queries efficiently.

• We perform extensive experiments on various datasets that show both the effi-
ciency of our algorithm and the effectiveness of durable graph pattern queries
in locating interesting matches.

1.1.3 Lasting Dense Subgraphs

A central question in the context of evolving graphs that captures changes of graphs
through time is: which interactions, or relationships are the most lasting ones?. Here, we
introduce and study the problem of identifying dense subgraphs in a collection of
graph snapshots defining an evolving graph. We consider many definitions of density
over evolving graphs and we show that for many of them the problem of identifying
a subset of nodes that are densely-connected in all snapshots can be solved linearly.
We also demonstrate that there are versions of the problem cannot be solved with
our proposed algorithm. Furthermore, instead of requiring nodes being connected in
all snapshots, we ask for the densest set of nodes in at least k of a given set of graph
snapshots. We show that this problem is NP-complete for all definitions of density
and we propose a set of iterative and incremental algorithms for solving it. Finally,
we present an experimental evaluation that shows the efficiency and usefulness of
our problems.

In a nutshell, we make the following contributions:

• We introduce two novel problems of identifying a subset of nodes that define
dense subgraphs in a collection of graph snapshots. To this end, we extend the
notion of density for collection of graph snapshots, and provide definitions that
capture different semantics of density over time leading to four variants of our
problems.

• We study the complexity of the variants of both problems and propose appro-
priate algorithms. We prove the optimality, or the approximation factor of our
algorithms whenever possible.

• We perform experiments with both real and synthetic datasets and demonstrate
that our problem definitions are meaningful, and that our algorithms work well
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in identifying dense subgraphs in practice.

1.1.4 Time Traveling in Graphs using a Graph Database

Finally, we followed another line of research that aims at supporting historical queries
on native graph databases which offer an attractive means for storing and processing
big graph datasets. We performed a concrete study where we propose three models
based on associating with each node and edge, its lifespan, i.e., the time intervals,
during which the node and edge is valid. Our approaches use either a single edge
or multiple edges to represent connections that appear at different time points. We
present algorithms for processing all different types of historical traversals such as
reachability and shortest path using these approaches and experimentally compare
their performance in two native graph databases.

In a nutshell, we make the following contributions:

• We present three representations of graph snapshots that use either single and
multi-edge approaches.

• We present algorithms for processing historical queries for both the multi-edge
and the single-edge approaches in the Sparksee [18] and Neo4j [19] graph
databases.

• We evaluate our approaches experimentally for various types of historical traver-
sal queries.

1.2 Repeatability

We have made publicly available both implementations of the various algorithms and
datasets presented in this dissertation at GitHub [20].

1.3 Dissertation layout

The rest of this dissertation is structured as follows. In Chapter 2, we introduce
evolving graphs, their basic representation and various queries that one can pose on
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these graphs. In Chapter 3, we address the problem of efficiently answering histori-
cal reachability queries on evolving graphs using indexes that maintain reachability
information of nodes in the graph. In Chapter 4, we introduce the novel problem of
finding matches of a given pattern query that persist over time in the evolution of a
graph, as well as, an algorithm and time indexes for locating durable matches. Chapter
5 presents a systematically study of density problem over multiple graph snapshots
and provide a generic algorithmic framework for solving this problem. Chapter 6
introduces three approaches of modeling evolving graphs in native graph databases,
as well as, algorithms for processing historical queries that use these approaches. In
Chapter 7, we present related work in the field of storage and processing of evolving
graphs. Finally, Chapter 8 summarizes this dissertation and highlights directions for
future work.
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C 2

S  P  E
G

2.1 The Evolving Graph

2.2 The Version Graph

2.3 In-memory storage of the Version Graph

2.4 Basic Graph Querying Functionalities

I  this chapter, we will introduce evolving graphs and their basic representation.
Then, we will introduce a concrete representation of evolving graphs called
version graph and all the operations it provides. In addition, we will briefly

discuss about problems that arise on evolving graphs, and we will examine types of
queries that one can pose on these graphs.

2.1 The Evolving Graph

A graph is a collection of nodes which are connected by edges. A graph may be
undirected, meaning that there is no distinction between the two nodes associated
with each edge, or its edges may be directed from one node to the other. Assuming
that nodes are different entities and edges are the various relationships among them,
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Figure 2.1: Example of an evolving labeled graph.

we can create a natural model for relationships and interactions between entities. In
particular, graphs can model relationships among people in social and cooperation
networks, communications between servers in computer networks, interactions be-
tween proteins in biological networks, or co-occurrences between tags and words in
documents and tweets. Here, we consider both directed and undirected multi-level
labeled graphs.

Definition 2.1 (Graph). A directed (node) labeled graph G = (V,E, L) is defined as
a set of nodes V , a set of edges E, and a labeling function L : V → Σ that maps a
node to a set of labels Σ.

Most networks evolve over time as new nodes or edges are added, or existing
nodes or edges are deleted. In addition, new labels may be associated with nodes,
and existing labels may be deleted. In this dissertation, we assume a sequence of
graph snapshots where each graph snapshot represents the state of the network at
a different time instance. Also, for simplicity, we assume that time is discrete and
use successive integers to denote successive time instants. Let Gt = (Vt, Et, Lt) denote
the graph snapshot at time instant t, that is, the sets of nodes, edges and the labeling
function that exist at time instant t. An evolving graph captures the evolution of the
graph over time.

Definition 2.2 (Evolving Graph). An evolving graph G[ti,tj ] in time interval [ti, tj] is
a sequence {Gti , Gti+1, . . . , Gtj} of graph snapshots.

An example is shown in Figure 2.1 which depicts an evolving graph G[1,5] consist-
ing of five graph snapshots {G1, G2, G3, G4, G5}. We may simply use G if the context
is obvious.

Note that there are various possible interpretations of time. One interpretation
is that of physical time, for example, time instant t may correspond to say October
19, 2015, 11:59pm PST. Another view is operational, where time is related to graph
operations, for example, a new time instant is created when a graph operation, i.e.,
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Figure 2.2: The LVG of the evolving graph of Figure 2.1.

an insert or delete of a node, edge, or label, occurs. In all interpretations, there is
also a notion of granularity. For instance, in the case of physical time, successive
time instants may correspond for example, to successive minutes, days, or months,
whereas in the case of operational time, a new time instant may be created after m

graph operations for different values of m.

2.2 The Version Graph

We consider a more efficient approach that uses a concise representation of the evolv-
ing graph, that we call a version graph (VG) and a labeled version graph (LVG) when
a labeling function exists. We use the term lifespan for the validity time of a graph
element (i.e., node, edge or label), that is, for the set of time intervals during which
the corresponding element exists. More formally, given an evolving graph G[ti,tj ] , the
lifespan, L(u), (resp. L(e), L(l)) of a node u (resp. edge e, label l) is a set of intervals
such that an interval [ti, tj] ⊆ I belongs to L(u), (resp. L(e), L(l)), if and only if, for
all ti ≤ tm ≤ tj , u ∈ Vtm (resp. e ∈ Etm , l ∈ Ltm). For example, the lifespan of edge
(u1, u3) in Figure 2.1 is {[1, 1], [3, 4]}. Lifespans are set of time intervals (also known
as temporal elements [21]) to allow the deletion and re-insertion of a graph element. If
we do not allow deleted nodes or edges and labels to be re-inserted, then lifespans
are just intervals. Furthermore, if there are no deletions, all lifespans are intervals of
the form [ti, tcurr], where ti is the time instant the node or edge first appeared and
tcurr is the time instance of the current snapshot. Therefore, in this case, lifespans can
be represented simply by the time instance ti. In the following, we use I to denote
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a time interval and I to denote a set of time intervals. The labeled version graph is
the union of the graph snapshots where each node, edge and label is annotated by
its lifespan.

Definition 2.3 (Labeled Version Graph). Given an evolving graph GI = {Gti , Gti+1,
. . . , Gtj}, its labeled version graph (LVG) is a lifespan annotated directed graph V GI

= (VI , EI , LI , Lu, Le, Ll) where: VI =
∪

tm ∈ I Vtm , EI =
∪

tm ∈ I Etm , LI =
∪

tm ∈ I Ltm ,
Lu : VI → I assigns to each node u ∈ VI its lifespan Lu(u), Le : EI → I assigns to
each edge e ∈ EI its lifespan Le(e) and Ll : LI → I assigns to each node label l ∈
LI(u) its lifespan Ll(l).

Figure 2.2 depicts the labeled version graph of the evolving graph of Figure 2.1.
In the case where the nodes of the evolving graph are not labeled, we may call it, for
brevity, a version graph.

2.2.1 Lifespan Operations

Let us define a number of operations on lifespans, i.e., set of intervals. For two sets
I and I ′ of time intervals, we say that I covers I ′, denoted I ⊒ I ′, if for each time
instant t in an interval I ′ of I ′, there is an interval I in I such that t belongs to I.
We also use I ⊒ I for an interval I and I ⊒ t for a time instant t. We say that two
sets I and I ′ of time intervals are equivalent, I ≈ I ′, if I ⊒ I ′ and I ′ ⊒ I.

We would like to maintain the smallest among equivalent sets of intervals. We call
such sets minimum sets. Let us first define some simple properties for time intervals.
Two time intervals I = [ti, tj] and I ′ = [t′i, t

′
j] are called disjoint, when I ∩ I ′ = ∅ and

overlapping otherwise. They are called continuous when t′i = tj + 1 and non-continuous
otherwise. It is easy to see that the following proposition holds.

Proposition 1.

(i) A set of intervals is minimum, if and only if, it consists of disjoint and non-continuous
intervals.

(ii) For each set of time intervals, there is a unique equivalent minimum interval set.

We next define two useful operations on interval sets, namely, join and merge.
Given two sets of intervals, join returns the time instants common to both, while
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merge returns the time instants present in at least one of them. For example, the
join of {[1, 3], [5, 10], [12, 13]} and {[2, 7], [11, 15]} is {[2, 3], [5, 7], [12, 13]}, whereas the
merge of {[1, 3], [5, 10], [12, 13]} and {[2, 7], [11, 15]} is {[1, 15]}.

Definition 2.4 (Join and Merge of Interval Sets). Let I = {I1, . . . Ik} and I ′ = {I ′1,
. . . I ′l} be two sets of time intervals.

(i) Join I ⊗ I ′ of I and I ′ defined as the minimum set equivalent to {I1 ∩ I ′1, . . .
I1 ∩ I ′l , . . . , Ik ∩ I ′1, . . . Ik ∩ I ′l}.

(ii) Merge I ⊕ I ′ of I and I ′ defined as the minimum set equivalent to I ∪ I ′.

Note that if I and I ′ are minimum, then the set {I1 ∩ I ′1, . . . I1 ∩ I ′l . . . , Ik ∩ I ′1 }
is a minimum set, whereas the set {I1 ∪ I ′1, . . . I1 ∪ I ′l , . . . , Ik ∪ I ′1 . . . Ik ∪ I ′l} may
not be minimum.

Since we have defined the main operations of lifespan, let us now define the
lifespan L(p) of a path p in the evolving graph. Given an evolving graph and p =
u1u2 . . . um be a path ofm nodes where uk ∈ ∪

tj
tl=tiVtl , 1 ≤ k ≤m. We define the lifespan,

L(p), of path p as follows: L(p) = L((u1, u2)) ⊗ L((u2, u3)) . . . ⊗ L((um−1, um)). For
example, the lifespan of path u1u3u6 of G[1,5] in Figure 2.1 is {[3, 4]}.

2.3 In-memory storage of the Version Graph

Our basic data structure for the in-memory storage of the evolving graph is the version
graph. For storing lifespans, we use bit arrays. Assume without loss of generality, that
the maximum number of graph snapshots is T . Then, a lifespan, i.e., set of intervals
I , is represented by a bit array B of size T , such that B[i] = 1 if time instant i

belongs to I and 0, otherwise. For example, for T = 16, the bit representation of I =
{[2, 4], [9, 10], [13, 15]} is 0111000011001110. This representation supports an efficient
implementation of both join ⊗ and merge ⊕. In particular, let I1 and I2 be two set
of intervals and B1 and B2 be their bit arrays. Then, I1 ⊗ I2 can be computed as
B1 logical-AND B2 and I1 ⊕ I2 as logical-OR B2. We also present two alternative
representations. The first one is the temporal log (TL) of ordered time instants [22],
where we keep the time instances of I1 as a sequence of integers [2, 3, 4, 9, 10, 13,
14, 15]. The second representation follows the physical representation of an interval
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Figure 2.3: Comparison of the TL, BIT and LI representations: (a) LVG size, (b) LVG
construction time, (c) reachability queries, and (d) durable graph pattern queries.

by storing an ordered list of time objects (TL) where each time object represents an
interval by its tstart and tend points.

2.3.1 Lifespan Representation Benchmarking.

In this section, we evaluate the three different representation of lifespans in terms
of storage and processing. We use the DBLP dataset [23] for the following set of
experiments.

Storage

Figure 2.3(a) depicts the size of the labeled version graph LVG for the DBLP dataset.
When using the LI and TL representations, LVG is three times larger than when
using the BIT representation, since the integer values of LI and the list of objects of
TL require more memory than bit vectors. The LI representation of LVG is larger that
the TL one, due to the lack of many consecutive co-authorships in DBLP requiring
LI to create many time objects for distinct time instants.
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Construction time

In Figure 2.3(b) we report the time required to construct LVG using the different
representations. LI requires the most time, since the creation of new time objects and
the processing of the existing objects is time consuming compared to adding integers
in TL. BIT requires the least time, since it avoids expensive operations involving
memory allocation.

Graph query processing

We evaluate the three different representations in terms of query processing time. To
this end, we use a generic graph query that asks whether two nodes are reachable
in whole query time interval IQ. To test whether node u is reachable from v, we
perform BFS traversals from u taking at each step the join of the lifespan of the path
traversed so far with the lifespan of the current edge. Such join traversals are the
building blocks of our algorithms that we will discuss later in Chapter 3 and 4 and
we expect the relative performance of the three representations on such queries to be
indicative of their performance on the queries introduced in the following chapters.

Figure 2.3(c) reports the performance of reachability queries for different IQ in-
tervals in the DBLP dataset. Results are averages over 1,000 queries with randomly
selected endpoints. BIT -based traversals are faster, followed by the TL-based ones.
We also experimented with graph pattern queries, that we will discuss later in Chapter
4, and we observe that the relative performance of the three representations remains
the same. As an example, we show the results for a graph pattern query asking for
the most durable cliques of authors labeled as SENIOR for different clique sizes in
Figure 2.3(d).

In the following, we use BIT representation as the default representation of ver-
sion graph lifespans.

2.4 Basic Graph Querying Functionalities

In this section, we discuss the two most basic graph querying functionalities: graph
patterns and traversal (or navigiational) queries [24]. We begin with graph pattern
queries, in which a graph-structured query is matched against the data and follow
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with traversal queries.

2.4.1 Pattern Graph Queries

The simplest form of graph pattern query is a graph structured query that should be
matched against the graph. Pattern graphs follow the same structure as the type of
graph they are intended to query and also permit labels on nodes. In other words,
each node of any comprised match has the same label as the pattern node it matches.

More formally, a graph G′ whose nodes and edges are subsets of the nodes and
edges of G is called a subgraph of G. Now, given a graph G and a user-specified graph
pattern P , a graph pattern query asks for all occurrences of P in G.

Definition 2.5 (Graph Pattern Query). Given a graph G = (V,E, L) and a graph
pattern P = (VP , EP , LP), a graph pattern query returns all subgraphs Gm = (Vm, Em)

of G for which there exists a bijective function f : Vp → Vm such that for each v ∈ VP ,
LP(v) ⊆ L(f(v)) and for each edge (u, v) ∈ Ep, (f(u), f(v)) ∈ Em. Graph Gm is called
a match of P in G.

Note, that we use subgraph isomorphism semantics for matching. Further, addi-
tional edges may exist between the nodes of the subgraph that matches the pattern,
besides the edges appearing in the pattern. Also, since, we allow multiple labels per
node, we ask that the labels of the matching node are a superset of the labels of the
corresponding pattern node (i.e., LP(v) ⊆ L(f(v)), for each v ∈ VP).

2.4.2 Traversal Queries

While graph patterns allow for querying graphs in a bounded manner, it is often use-
ful to provide more flexible querying mechanisms that allow to navigate the topology
of the data. A graph traversal allows the navigation of the structure of the graph
and is a fundamental graph query. In an abstract form, a traversal query Q can be
expressed as a path query Q = u

α−→ v, where α specifies conditions on the paths that
we wish to traverse and u, v denote the starting and ending points of these paths.
The starting and ending points can be specific nodes or properties of the nodes, or
a mix of both. The expression α involves constraints on the properties (or, labels) of
the nodes and edges in the path. For example, we may look for paths connecting two
people in a social network with edges labeled as “friends”.

15



Traversals retain the paths from u to v that satisfy α. In general, there are may
be many such paths, even an infinite number, if there are cycles in the dataset. Thus,
besides maintaining all possible paths, various other semantics may be associated
with the evaluation of traversals. Common ones are retaining only the shortest paths,
or only paths with no repeated nodes or edges.

2.4.3 Historical Traversal Queries on Evolving Graphs

In the previous section we described the two main types of graph querying func-
tionalities. In the following, we discuss traversal query types that one can pose on
evolving graphs. We call such queries historical to distinguish them from queries that
consider only one graph snapshot Gt at a time instant t.

We first present various types of general historical traversal queries and then
formally define types of historical reachability and path queries that we are going to
analyse in the following chapters.

Historical Graph Queries

The first category of historical queries include queries that are similar to current
graph queries but refer to past snapshots. Let Q be any type of graph query, e.g., a
reachability, shortest distance, or graph pattern query. The corresponding historical
query QH on an evolving graph G[ti,tj ] is a pair (Q, IQ), where IQ is an interval [tl, tm],
ti ≤ tl ≤ tm ≤ tj. Query QH is executed by applying query Q at all graph snapshots
Gt, tl ≤ t ≤ tm of G[ti,tj ], and returns as result an appropriately defined aggregation of
these results. For example, let Q be a query that asks for the shortest path distance
between nodes u and v and let QH = (Q, [tl, tm]). The shortest path distance between
nodes u and v is computed at all graph snapshots Gtl , Gtl+1, . . . Gtm and these tm -
tl + 1 distances are appropriately combined to produce the result of QH .

There are three general ways of combining the results: (a) use all snapshots, (b)
use only one of the snapshots, and (c) an intermediate case, in which we use r of the
involved snapshots. Let us now define formally the three ways of combining results
in the case of reachability queries.

Definition 2.6 (Historical Reachability Query). Given an evolving graph G[ti,tj ], a time
interval IQ = [tl, tm], ti ≤ tl ≤ tm ≤ tj and a pair of nodes v, u:
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(a) a conjunctive historical reachability query (C) returns true, if there exists a path
from u to v in all graph snapshots Gt, tl ≤ t ≤ tm of G[ti,tj ].

(b) a disjunctive historical reachability query (D) returns true, if there exists a path
from u to v in at least one graph snapshot Gt, tl ≤ t ≤ tm, of G[ti,tj ],

(c) an at least k historical reachability query (L) returns true, if there exists a path
from u to v in at least k graph snapshots Gt, tl ≤ t ≤ tm, of G[ti,tj ].

In the special case in which tl = tm, we just apply Q on the single past snapshot
Gtl of G[ti,tj ]. We call such queries stab (S) queries.

We also examine two ways of combining results in the case of shortest path queries.

Definition 2.7 (Historical Shortest Path Query). Given an evolving graph G[ti,tj ], a
time interval IQ = [tl, tm], ti ≤ tl ≤ tm ≤ tj and a pair of nodes v, u:

(a) a stable historical shortest path query (SSP) returns the shortest path, if there exists
one from u to v in all graph snapshots Gt, tl ≤ t ≤ tm of G[ti,tj ].

(b) an at least k historical shortest path query (KSP) returns the shortest path, if there
exists one from u to v in at least k graph snapshots Gt, tl ≤ t ≤ tm, of G[ti,tj ].

Similar to historical reachability queries, one can also apply the query Q on the
single past snapshots.

Historical Time Queries

Another type of queries pertinent to evolving graphs are queries that focus on the
timing aspect. Such queries ask when an event happened. For example, depending
on the type of query, we may ask when a specific graph pattern occurred, when two
nodes become reachable, or when their shortest path distance was equal to a given
value.

We make a distinction between queries that ask (a) when is the first time that an
event happened, (b) what is the longest continuous interval that the event lasted, or
(c) what is the total time that the event occurred. For reachability queries, we have
the following types of historical time queries.

Definition 2.8 (Historical Time Reachability Query). Given an evolving graph G[ti,tj ],
a time interval IQ = [tl, tm], ti ≤ tl ≤ tm ≤ tj and a pair of nodes v, u:
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(a) a first time reachability query (F) returns the smallest time point t, tl ≤ t ≤
tm, such that, there exists a path from u to v in graph snapshot Gt and there is
no path from u to v in any Gt′ , tl ≤ t′ < t,

(b) a longest continuous time reachability query (I) returns an interval [tk1 , tk2 ], tl ≤
tk1 ≤ tk2 ≤ tm, such that, there exists a path from u to v in all graph snapshots
Gt, tk1 ≤ t ≤ tk2 of G[ti,tj ] and there is no longer interval that this holds,

(c) a longest total time reachability query (T) returns the time points t, tl ≤ t ≤
tm, such that there exists a path from u to v in Gt.

Durable Top-k Queries

The last type of historical queries are queries that ask for the top-k pairs of nodes
that satisfy a condition for the longest time period. Depending on the query, this may
be a graph pattern that appears in the majority of graph snapshots, what are the
pairs of nodes that remained reachable the longest, or what are the pairs of nodes
whose distance was below some given value for most of the time points. Again, we
make a distinction between queries that ask for nodes that satisfy the property for
the longest duration, either (a) continuously or (b) in total. For reachability queries,
this gives us the following two types of top-k queries.

Definition 2.9 (Durable Top-k Reachability Query). Given an evolving graph G[ti,tj ],
a time interval IQ = [tl, tm], ti ≤ tl ≤ tm ≤ tj and a pair of nodes v, u and an integer
k, k > 0:

(a) a top-k continuous reachability query (T_) returns a set of k pairs (u, v) of
nodes u and v such that there exists a path from u to v in all graphs Gt in an
interval of size k and there is no pair of nodes u′, v′, for which a path from u′

to v′ exists in all graphs in an interval of size larger than k,

(b) a top-k total reachability query (_) returns the k pairs (u, v) of nodes u and
v such that there exists a path from u to v in the largest number of graph
snapshots Gt, tl ≤ t ≤ tm.

In the next sections, we will study in depth the various queries that one can
pose on evolving graphs and present novel approaches for answering these queries.
In particular, we focus on historical reachability queries and propose an in-memory
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approach for providing a solution in Chapter 3. In addition, we also study historical
traversal queries presented here using a native graph database in Chapter 6. Next in
Chapter 4, we focus on pattern queries and introduce the new problem of finding
the most durable top-k graph pattern matches in evolving graphs. We are the first
to formalize the durable pattern query problem since all previous work focused on
finding matches in each graph snapshot independently [25] or identify a match in a
stream of edge updates was given [26, 27]. Finally, we consider the search for durable
subgraphs without a pattern graph query as an input in Chapter 5.
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C 3

TR: H R
Q  E G

3.1 The Historical Reachability Query

3.2 Baseline Approaches

3.3 The TimeReach Index

3.4 Experimental Evaluation

3.5 Related Work

3.6 Summary

I  this chapter, we focus on on-line query-based processing of directed evolving
graphs. We assume that we are given an evolving graph, in the form of a
sequence of graph snapshots corresponding to the state of the graph at different

time points. We address the problem of efficiently answering queries that involve such
snapshots. In particular, we focus on a basic query type, namely reachability queries,
that ask whether a node u was reachable from another node v during specific time
intervals in the past. We call such queries historical reachability queries.

For processing historical reachability queries, we start by revisiting the basic tran-
sitive closure and online traversal approaches. For the transitive closure, we compute
a minimum representation of reachability information for each pair of nodes. For the

20



online traversal, we propose a novel interval-based traversal of the version graph along
with a number of pruning steps. Furthermore, to avoid the cost and space overheads
associated with precomputing the transitive closure and improving the processing
cost of the online traversal, we propose a new approach, termed TimeReach.

TimeReach exploits the fact that most graphs consist of strongly connected compo-
nents (SCCs) [13, 14]. Thus, instead of maintaining reachability information for pairs
of nodes, we maintain posting lists with information about node membership in SCCs.
We minimize the size of posting lists through an appropriate assignment of identifiers
to SCCs. We show that the problem of the optimal assignment of identifiers to SCCs is
equivalent to the maximum bipartite matching problem among SCCs in consequent
graph snapshots. Along with postings, we maintain a condensed version graph which
corresponds to the version graph of the SCCs evolution. To improve the performance
of answering historical queries, we also introduce an interval-2hop approach based
on pruned landmark labeling [12, 15] on the condensed version graph.

We have extensively evaluated our approach with three real social network
datasets. Our experimental results show that TimeReach is space efficient, in particu-
lar for graphs consisting of large SCCs as is the case of social networks. Its incremental
construction is fast; indexing a new snapshot graph takes just a few seconds. Finally,
processing historical queries using TimeReach is orders of magnitude faster than the
online traversal of the version graph.

To summarize, we make the following contributions which are also presented in
[28]:

• We propose an indexing approach namely TimeReach that exploits the fact that
most graphs consist of strongly connected components to answer queries that
ask whether two nodes were reachable during a time interval in the past.

• We present a suite of algorithms that exploit a compact representation of the
evolving graph and along with TimeReach index provide a solution for historical
reachability queries.

• We extend the TimeReach index and our algorithms for answering reachability
queries.

• We experimentally evaluate the efficiency of our approach using three real
datasets.
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The rest of this chapter is structured as follows. Section 3.1 introduces historical
reachability queries and Section 3.2 presents the two baseline approaches, namely, the
transitive closure and online traversal. In Section 3.3, we introduce the TimeReach
index approach, while in Section 3.4, we present experimental results. Finally, Section
3.5 presents related work and Section 3.6 concludes the chapter.

3.1 The Historical Reachability Query

Given a static directed graph G = (V,E) and two nodes u, v ∈ V , a reachability query
asks whether there exists a path from u to v in G. For evolving graphs, we introduce
the following two types of historical reachability queries.

Definition 3.1 (Historical Reachability Query). Let G[ti,tj ] = {Gti , Gti+1, . . . Gtj}, be
an evolving graph, IQ = [tk, tl] ⊆ [ti, tj] a time interval and v, u a pair of nodes:

(i) a conjunctive historical reachability query u
IQ∧
; v returns true, if there exists a path

from u to v in all graph snapshots Gtm , tk ≤ tm ≤ tl of G[ti,tj ].

(ii) a disjunctive historical reachability query u
IQ∨
; v returns true, if there exists a path

from u to v in at least one graph snapshot Gtm , tk ≤ tm ≤ tl, of G[ti,tj ].

Our goal is to derive methods for answering reachability queries efficiently. A
straightforward solution would be to build a different index for each of the graph
snapshots and then pose a reachability query at each one of them. However, this
solution imposes large space overheads. In addition, it requires extra processing for
combining the results of each query. Instead, we propose building indexes for inter-
vals.

Let us now define the lifespan, L(u, v), of the reachability between two nodes u

and v. Let P (u, v) = {p1, . . . pl} be the set of all paths from u to v. L(u, v) depends
on the lifespans of all possible paths in V GI from u to v, in particular, L(u, v) =
L(p1) ⊕ . . . ⊕ L(pl). For example, for nodes u4 and u6 in Figure 3.1(b), P (u4, u6) =
{p1, p2, p3, p4, p5, p6} where p1 = u4u3u6, p2 = u4u3u7u6, p3 = u4u1u3u6, p4 = u4u1u3u7u6,
p5 = u4u1u2u3u6, p6 = u4u1u2u3u7u6 (note, that for notational brevity, paths were
denoted by the participating nodes instead of edges). Then, L(u4, u6) = {[2, 3]} ⊕
{[3, 3]} ⊕ {[0, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} = {[0, 3]}.
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(a) (b) (c)

Figure 3.1: Example of (a) an evolving graph, (b) the corresponding version graph,
(c) SCC evolution.

Clearly, historical reachability queries can be represented in terms of lifespans.
Specifically, given a version graph V GI , a time interval IQ = [tk, tl] ⊆ [ti, tj] and two
nodes v, u,

(i) a conjunctive historical reachability query u
IQ∧
; v returns true, if and only if,

{IQ} ⊗ L(u, v) ⊒ IQ.

(ii) a disjunctive historical reachability query u
IQ∨
; v returns true, if and only if,

{IQ} ⊗ L(u, v) ̸= ∅.

3.2 Baseline Approaches

There are two baseline approaches to answering reachability queries on static graphs,
namely pre-computation of the graph transitive closure and online traversal of the
graph. In this section, we revisit these baseline approaches for historical reachability
queries on a version graph.

3.2.1 Historical Transitive Closure

Instead of maintaining a different transitive closure for each graph snapshot of the
evolving graph GI , we maintain a single transitive closure, CLI for the version graph
V GI . The transitive closure includes for each pair of nodes (u, v), their reachability
lifespan, L(u, v). To construct the transitive closure, we use a variation of the Floyd-
Warshall algorithm that takes into account lifespans, shown in Algorithm 3.1. If there
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Algorithm 3.1 TransitiveClosure(V GI)
Input: Version graph V GI

Output: The transitive closure CLI

1: for all u, v ∈ VI × VI do
2: if (u, v) ∈ EI then
3: CLI(u, v)← Le((u, v))

4: else
5: CLI(u, v)← ∅
6: end if
7: end for
8: for w ← 1 to |VI | do
9: for all u, v ∈ VI × VI do
10: CLI(u, v)← CLI(u, v) ⊕ (CLI(u,w) ⊗ CLI(w, v))
11: end for
12: end for

is a path pu,w from node u to node w and a path pw,v from node w to node v then
there exists a path pu,v = (pu,w, pw,v) from u to v with L(pu,v) = L(pu,w) ⊗ L(pw,v) and
L(pu,v) is merged with the L(u, v) computed so far.

The time complexity for Algorithm 3.1 is O(|VI |3T ) in the worst case and requires
storage in the order of |VI |2. For answering a reachability query u

IQ∨
; v or u

IQ∧
; v,

initially the entry L(u, v) in CLI is located and then joined with the query interval
IQ, thus requiring constant time complexity.

3.2.2 Online Traversal of the Version Graph

A straightforward approach to process a reachability query for an interval IQ would
be to perform an online traversal on all graph snapshots Gt, t ∈ IQ. When using the
version graph representation, this corresponds to traversing only edges e such that
Le(e) ⊒ t, once for each t ∈ IQ. We call this approach, instant based traversal.

To avoid multiple traversals, i.e., one for each snapshot in IQ, we consider an
interval based traversal of the version graph. The BFS-based interval traversal for dis-
junctive historical queries is shown in Algorithm 3.2 and for conjunctive historical
queries in Algorithm 3.3.

In particular, for conjunctive queries, since a node v may be reachable from u
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through different paths at different graph snapshots, we maintain an interval set R
with the part of L(u, v) ⊗ IQ covered so far (line 9, Algorithm 3.3). The traversal
ends when R covers the whole query time interval IQ (line 10, Algorithm 3.3).

To speed-up traversal, we perform a number of pruning tests. The traversal stops
when we reach a node whose lifespan is outside the query interval. In addition, the
traversal stops at a neighbor w of a node n when {IQ} ⊗ Le(n,w) = ∅ since a node
v cannot be reachable through an edge which is not alive in at least one t inside the
query interval (line 6, Algorithms 3.2 and 3.3).

Still an edge may be traversed multiple times, if it participates in multiple paths
from source to target. To reduce the number of such traversals, we provide additional
pruning by recording for each node w, an interval set IN (w) with the parts of the
query interval for which it has already been traversed. If the query reaches w again
looking for interval I ′ ⊆ IQ and IN (w) ⊒ I ′, the traversal is pruned (line 11 of
Algorithm 3.2, line 15 of Algorithm 3.3).

For example, consider the version graph in Figure 3.1(b) and query u1
[0,3]∧
; u5.

Paths p1 = u1u3u6u5, p2 = u1u3u7u6u5, p3 = u1u2u3u6u5, p4 = u1u2u3u7u6u5, p5 =
u1u4u3u6u5 and p6 = u1u4u3u7u6u5 with L(p1) = {[0, 1]}, L(p2) = {[1, 1]}, L(p3) =
{[1, 1]}, L(p4) = {[1, 1]}, L(p5) = {[2, 3]} and L(p6) = {[3, 3]} need to be traversed to
conclude correctly that the result of the query is true. Hence, some edges, e.g., (u3,
u6), (u6, u5) need to be traversed multiple times for different time intervals I ′i ⊆ IQ.
However, when the query reaches u3 again through path p3, it is pruned and it does
not traverse the edge (u3, u6) since IN (u3) is equal to {[0,1]} which covers the current
query interval I ′ = {[1,1]}.

Since in the worst case for both instant and interval based traversal each edge
may be traversed |IQ| times, the complexity for both traversals is O((|VI | + |EI |)|IQ|).
However, in practice interval based traversal outperforms the instant based one since
each edge traversal covers large parts of the query interval instead of a single time
instance. Furthermore, pruning guarantees that an edge will not be traversed twice
for the same interval.
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Algorithm 3.2 Disjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I

Output: True if v is reachable from u in any time instance in IQ and false otherwise
1: create a queue N , create a queue INT

2: enqueue u onto N , enqueue IQ onto INT

3: while N ̸= ∅ do
4: n← N.dequeue()

5: i← INT.dequeue()

6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w)) ̸= ∅ do
7: if w = v then
8: return true
9: end if
10: I ′ ← {IQ} ⊗ Le(n,w)

11: if IN (w) ̸⊒ I ′ then
12: IN (w) ← IN (w) ⊕ I ′

13: enqueue w onto N

14: enqueue I ′ onto INT

15: end if
16: end for
17: end while
18: return false

3.3 The TimeReach Index

Our approach exploits the fact that many real-world social graphs are characterized
by large strongly connected components (SCC) [13, 14]. Thus, instead of maintaining
reachability information for pairs of nodes, we maintain information about the SCCs
that each node belongs to. If two nodes belong to the same component, then they are
reachable. However, as the graph evolves over time, its strongly connected components
change as well. An example is shown in Figure 3.1(c) that depicts the SCCs of the
graph in Figure 3.1(b) as they evolve over time.

Given an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, we invoke at each graph snap-
shot Gtk ∈ GI an algorithm, e.g., Tarjan’s algorithm [29], to identify the corresponding
set of SCCs. A unique id is assigned to each SCC at each snapshot.

For each node u, we maintain a list P (u) that contains (C , t) pairs specifying
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Algorithm 3.3 Conjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I

Output: True if v is reachable from u in all time instances in IQ and false otherwise
1: create a queue N , create a queue INT

2: enqueue u onto N , enqueue IQ onto INT

3: while N ̸= ∅ do
4: n← N.dequeue()

5: i← INT.dequeue()

6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w)) ̸= ∅ do
7: I ′ ← {IQ} ⊗ Le(n,w)

8: if w = v then
9: R ← R ⊕ I ′

10: if R ⊒ IQ then
11: return true
12: end if
13: continue
14: end if
15: if IN (w) ̸⊒ I ′ then
16: IN (w) ← IN (w) ⊕ I ′

17: enqueue w onto N

18: enqueue I ′ onto INT

19: end if
20: end for
21: end while
22: return false

the strongly connected component C to which node u belongs at time instance t.
P (u) is called posting list and each pair in the list a posting. The storage complexity
is Ω(|VI ||I|), since each node participates in at most one SCC at each time instance.
If we use Tarjan’s algorithm [29], the time complexity for constructing the lists is
O((|VI | + |EI |)|I|), since each run of the Tarjan’s algorithm has an O(|VI | + |EI |)
complexity.

For presentation clarity, we assume that single nodes form singleton SCCs whose
ids are the ids of the corresponding nodes. However, for space efficiency, we do not
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maintain postings in this case.
We perform an additional optimization. Many nodes have strong connections,

i.e., they remain in the same components even in the face of component splits and
joins. We exploit this fact to reduce the storage space required for the postings by
observing that the posting lists of these nodes consist of the same elements. We
avoid redundancy by storing such lists only once and replacing the posting lists of
the relevant nodes with pointers to the common list. We call this approach posting
sharing.

An example is shown in Figure 3.2(a), where, for instance, the first posting list
indicates that nodes with ids 1 up to 50 belong to the strongly connected component
with id C1 at time t0, C6 at t1 and C9 at t2.

In addition, for each graph snapshot Gtk , we construct a SCC graph snapshot GStk

= (VStk
, EStk

) such that there is a node U in VStk
for each SCC in Gtk , and there is

an edge (U , V ) in EStk
, if and only if, there is an edge (u, v) in Gtk from a node u

that belongs to the SCC that corresponds to U to a node v that belongs to the SCC
that corresponds to V . For a time interval I = [ti, tj], this results in an evolving SCC
graph GSI

= {GSti
, GSti+1 , . . . , GStj

}. We construct the SCC graphs incrementally, as
the SCCs are created. The size of each SCC graph depends on the size of the original
snapshot graph and in the worst case is equal to it.

We call this approach simple TimeReach (TR). To answer a reachability query
u

IQ∧
; v, (or, u

IQ∨
; v), we check for each t ∈ IQ whether u and v belong to the same

component. If this is not the case, we traverse the corresponding GSt.
Next, we present a more space efficient method of exploiting strongly connected

components for historical queries.

3.3.1 Condensed TimeReach

While in the TR approach, we maintain information per time instance, we would like
to aggregate such information to express SCC participations during time intervals. In
this case, a posting (C, I ′), I ′ ⊆ I , belongs to P (u), if u participates in the SCC with
id C at all time instances in I ′. Our goal is to minimize the total number of such
postings.

Problem 1 (Optimal SCC-id assignment). Given a time interval I and a set of SCCs
for each t ∈ I, find an assignment of ids to SCCs that results in the minimum number of
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Nodes Posting List

1-50 (C1,t0),(C6,t1),(C9,t2)

51-80 (C2,t0),(C6,t1),(C9,t2)

81-100 (C3,t0),(C6,t1),(C9,t2)

101-200 (C4,t0),(C7,t1),(C9,t2)

201-230 (C5,t0),(C7,t1),(C9,t2)

231-350 (C5,t0),(C7,t1),(C10,t2)

351-450 (C5,t0),(C8,t1),(C10,t2)

(a)                                                                                        (b)
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Nodes Posting List

1-50 (C1,[t0,t1]),(C4,[t2,t2])

51-80 (C2,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

81-100 (C3,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

101-200 (C4,[t0,t2])

201-300 (C5,[t0,t0]),(C4,[t1,t2])

231-350 (C5,[t0,t0]),(C4,[t1,t1]),(C5,[t2,t2])

351-450 (C5,[t0,t2])

(c)                                                      (d)
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Figure 3.2: (a) Shared posting lists, (b) weighted graph modeling the evolution of
SCCs, (c) weighted graph after the bipartite matching, and (d) the compressed shared
posting lists.

postings.

A new posting is created, each time a node participates in a different SCC. Thus,
SCC ids should be re-assigned so that the number of such new postings is minimized.
We use a weighted graph to formalize the optimal assignment of ids to SCCs.

In particular, we model SCC evolution over a time interval I using a weighted
graph GC(VC , EC , W) where each node U ∈ VC corresponds to a SCC that existed at
some time instance t ∈ I , and an edge e = (U, V ) ∈ EC , if and only if, SCC U existed
at time tk, SCC V existed at time tk+1 and there is at least one node that belongs to
both U and V . W assigns to each edge e = (U, V ) a weight W(e) that corresponds to
the number of nodes that belong to both U and V .

An example of a weighted graph is shown in Figure 3.2(b) that depicts the evo-
lution of the graph whose posting lists are shown in Figure 3.2(a). For instance,
component C7 created at time instance t1 consists of 100 nodes from component C4

and 150 nodes from C5.
Let GC[tk,tk+1]

(VC[tk,tk+1]
, EC[tk,tk+1]

, W) be the subgraph of GC(VC , EC , w), that con-
sists of the nodes U ∈ VC[tk,tk+1]

that correspond to the SCCs that exist at time interval
[tk, tk + 1]. GC[tk,tk+1]

represents one step in the SCC evolution. Note that, from the
definition of GC , GC[tk,tk+1]

is a bipartite graph.
We make the following observation. At time instance tk + 1, a new posting is

created exactly for those nodes that participated in a different SCC at tk + 1 than at
tk. The number of these new postings is equal to the sum of weights from node U to
V in GC[tk,tk+1]

where U has a different id than V . Thus, to minimize the number of
new postings, we have to maximize the weight of the edges between pairs of nodes
that have the same id. This corresponds to finding a maximum bipartite matching of
GC[tk,tk+1]

.
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Theorem 3.1. The optimal SCC-id assignment problem can be reduced to the problem of
finding the maximum weight bipartite matching (MWM) Mk of each GC[tk,tk+1]

.

Proof. As shown above, solving the MWM for each bipartite graph GC[tk,tk+1]
mini-

mizes the number of new postings created at tk+1. We shall show that this step-wise
assignment is optimal overall in GC . For the purposes of contradiction, assume that
the optimal assignment is a set N of edges, N ⊂ EC and that N is different from the
set of edges attained through the maximum bipartite matchings, that is,

∑
e∈N

w(e) >∑
k

∑
e∈Mk

w(e). Hence, for some m, for Nm = N ∩ EC[tm,tm+1]
it holds that

∑
e∈Nm

w(e) >∑
e∈Mm

w(e), which means that Mm is not a MWM, which is a contradiction. �

Figure 3.2(c) shows the weighted graph after the assignment of new ids through
bipartite matching, while Figure 3.2(d) shows the new posting lists.

The maximum weight bipartite matching problem is well-studied (e.g., see [30]
for a survey). The most widely used algorithm for solving this problem on a graph
G(V,E) is the Hungarian algorithm whose running time ranges from O(|V |3) to
O(|E||V |+ |V |2loglog|V |) depending on the implementation. Another category of al-
gorithms depends on the edge weights and the fastest one runs in O(|E|

√
|V |logW )

time, where W is the maximum edge weight. In addition, a number of fast approx-
imation algorithms have been proposed. The simplest such algorithm is the greedy
algorithm that sorts the edges by weight and repeatedly picks the edge with the
largest weight. This algorithm can be implemented with O(|E|) time complexity and
produces a 1/2 worst case approximation.

The incremental algorithm for constructing the SCC postings is presented in Al-
gorithm 3.4. It takes as input the current snapshot and the postings computed up
to the previous snapshot, and constructs the current postings. It starts by computing
the SCCs using Tarjan’s algorithm with complexity O(|Vt| + |Et|) (line 2). Then, it
constructs the graph GC[t,t+1]

with complexity O(|EC[t−1,t]
|) (line 5). Next, the MWM

is computed and new ids are assigned to the new SCCs (lines 6 – 9). The complex-
ity of this step depends on which algorithm is used for computing the MWM. We
use the greedy algorithm with complexity O(|ES[t−1,t]

|). Finally, the SCC postings are
created/updated for each node of the current snapshot, creating a new entry only for
nodes that participate in a different SCC (with a different id) than the one in time
instance t − 1 (lines 11 – 22). The complexity of these steps is O(|Vt|) since each
operation in the loop has constant time complexity. Thus, in total the running time
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Algorithm 3.4 ConstructSccPostings(Gt, Pt−1, GS[t−2,t−1]
)

Input: Snapshot Gt, SCC postings Pt−1

Output: SCC postings Pt

1: SSCCt ← ∅, M ← ∅
2: Run Tarjan’s algorithm on Gt

3: SSCCt is the set of the detected SCCs where each SCCi ∈ SSCCt is assigned a
unique id Ci

4: if t > 0 then
5: Construct GS[t−1,t]

from SSCCt and GS[t−2,t−1]

6: Compute maximum weight matching M

7: for all edges e = (U, V ) ∈M do
8: Cv ← Cu

9: end for
10: end if
11: for all nodes u ∈ Vt do
12: find SCCi ∈ SSCCt s.t. u ∈ SCCi

13: if Pt−1(u) ̸= ∅ then
14: if Pt−1(u)[end].C ̸= Ci then
15: Pt−1(u)[end].I ← [ts, t− 1]

16: Pt−1(u).add(Ci, [t, curr])

17: end if
18: else
19: Pt−1(u).add(Ci, [t, curr])

20: end if
21: end for
22: Pt ← Pt−1

of the algorithm is O(|Vt|+ |Et|).
As in the simple TR approach, we also construct the evolving SCC graph, which

in this case has a much smaller number of nodes due to the reduction of the number
of strongly connected components achieved by the bipartite matching.

Finally, we construct the version graph V GSI
= (VSI

, ESI
, Lu, Le) of the evolving

SCC graph that we call condensed version graph. We construct the condensed version
graph incrementally as follows. For each snapshot Gti ∈ GI , for each edge (u, v) ∈ Eti
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Figure 3.3: Example of splitting query u
[1,15]∧
; v.

we look up the postings P (u), P (v) for entries (U, I ′), (V, I ′′) s.t. ti ∈ I ′ and ti ∈ I ′′. If
U ̸= V and edge (U, V ) ̸∈ ESI

, the edge is added with lifespan {[ti, ti]}, otherwise the
lifespan of the edge is extended to include ti. We call the above approach condensed
TimeReach (TRC).

3.3.2 Query Processing

Query processing of a (disjunctive or conjunctive) reachability query u
IQ
; v is per-

formed in two steps. In the first step, the appropriate postings of nodes u and v are
retrieved. If the two nodes belong to the same strongly connected component during
the whole query interval for conjunctive queries or once for disjunctive queries, the
answer is true. Otherwise, let I ′Q be the set of intervals during which nodes u and v

belong to different components. The query is rewritten as a set of reachability sub-
queries of the form Uk

IQi
; Vm, where u belongs to SCC Uk and v belongs to SCC Vm

for some common time interval IQi
, I ′Q ⊒ IQi

, the set IQ =
∪
i

IQi
consists of disjoint

intervals, and IQ ≈ I ′Q. The results of the sub-queries are combined to produce the
answer for the query through an AND (OR) for conjunctive (disjunctive) queries.

For example, consider the query u
[1,15]∧
; v in Figure 3.3, where the posting lists for

u and v are respectively, P (u) = (C6 [4, 7], C5 [8, 11], C4 [11, curr] and P (v) = (C6 [1, 8],
C4 [11, 15]). The query is split in three sub-queries: u

IQ1∧
; C6, u

IQ2∧
; C6, v

IQ3∧
; C5.

In the worst case, the two nodes belong to a different SCCs at each time instance
in IQ, thus we need to traverse the condensed version graph for each t with a cost
of O(|IQ|(|VSI

| + |ESI
|)). Two factors that influence performance are the number of

postings for each node and the size of the condensed version graph. The smaller
the number of postings, the fewer sub-queries are required in the second step. The
smaller the condensed version graph, the faster the traversals. Hence, the optimal
assignment of SCC ids is crucial to query processing performance, since it keeps the

32



C3

C1

C5

C2 C4

Lout: {C2,[0,3]}, {C3,[0,1]}, {C4,[0,3]}

Lin:{}

Lin: {C1,[0,3], C3,[0,1]} Lin: {C1,[0,3], C5,[0,3]}

Lout: {C2,[0,1]}

Lin: {C1,[1,2], C2,[1,2]}

[0,3][1,3]

[0,1]

Lout: {C3,[2,3]}

[1,2]

Lout:{C5,[1,2]}

Lout:{C4,[0,3]}

[0,1]

Lin: {C1,[0,3], C4,[2,3]}

[2,3]

[0,3]

Figure 3.4: An example of interval 2hop labels.

posting lists short and the size of the condensed version graph small.

3.3.3 Interval 2Hop

Reachability on version graphs can be made more efficient by maintaining additional
information. In this paper, we use an approach based on pruned landmark 2hop
labeling [12, 15]. The idea is that for each node u of a given graph, we maintain two
labels Lin(u) and Lout(u) which include nodes that can reach u and can be reached
by u respectively. The labels are computed such that a node u reaches v, if an only
if, Lin(v) ∩ Lout(u) ̸= ∅. Instead of traversing the graph, a reachability query can now
be answered by using the labels.

For historical reachability queries, we also keep along with each node w in Lin(v)

the reachability lifespan L(w, v) and along with each node w in Lout(u) the reachability
lifespan L(u,w). In the presence of 2hop labels, to answer a query u

IQ∧
; v (u

IQ∨
; v),

we compute the set Lin(v) ∩ Lout(u) and then for each w in Lin(v) ∩ Lout, we join the
lifespan of w in Lin(v) with the lifespan of w in Lout(u). To answer the query the
joined lifespans L (w) of nodes w in Lin(v) ∩ Lout are joined with the query interval
L to see whether they cover IQ (or, have at least a time instance in common).

We compute the labels for the nodes of the condensed version graph, incremen-
tally. For an interval I = [ti, tj], we compute the labels for the SCC graph snapshots
at each time t in I , starting from ti. For each time tk, tk > ti, we merge the labels
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computed for a node C at time tk, with the labels computed for C at the previous time
tk − 1. For the construction of Lin and Lout for each SCC graph snapshot at time in-
stance tk, we process the nodes of the graph by using the INOUT strategy that starts
a BFS traversal from the nodes with the largest (indegree(u)+1) × (outdegree(u)+1)
[15]. An example of the final 2hop labels of each SCC node in a version graph is given
in Figure 3.4.

3.4 Experimental Evaluation

To evaluate our approach, we used three real datasets: Facebook (FB) [31], Flickr
(FL) [32] and YouTube (YT) [33]. The characteristics of each dataset are shown
in Table 3.3. For example, FB consists of 871 daily snapshots of the New Orleans
Facebook friendship graph, which correspond to 125 weekly or 29monthly snapshots.
We report the number of nodes, edges, and SCCs (singleton SCCs are not included)
and the size of the largest SCC at the first and last snapshot.

All three datasets are treated as directed. Also, all datasets are insert-only, i.e., they
do not contain information about node/edge deletions. Therefore, we synthetically
generate random edge deletes. The input parameters and their default values are
shown in Table 3.1.

We evaluate the size and the construction time of the Version Graph (VG), the
Transitive Closure (TC), the simple TimeReach (TR), the condensed TimeReach (TRC)
and the condensed TimeReach with 2hop labels (TRCH). We also evaluate the online
processing of historical reachability queries using an instant-based (INS) or interval-
based (INT) traversal of the version graph and using the various TimeReach indexes.
Table 3.2 summarizes the various approaches.

We ran our experiments on a system with a quad-core Intel Core i7-3820 3.6 Ghz
processor and 64 GB memory. We only used one core for all experiments.

3.4.1 Index Size

In the first set of experiments, we evaluate the various approaches in terms of their
storage requirements. The size of the TR and TRC include the storage required for
maintaining the posting lists and the SCC graphs, while the size of the TRCH includes
in addition the storage required for the 2hop labels.
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Table 3.1: Input parameters.

Query
# of Snapshot interval % of

nodes granularity (in days) deletes

FB
Default 61,096 day 7 10
Range 117 - 61,096 day, week, month 7 - 35 0 - 30

YT
Default 1,138,499 day 7 10
Range 1,004,777 - 1,138,499 day, week, month 7 - 35 0 - 30

FL
Default 2,302,925 day 7 10
Range 1,487,058 - 2,302,925 day, week, month 7 - 35 0 - 30

Table 3.2: Overview of different approaches.

VG Version Graph
TC Transitive Closure
TR (Simple) TimeReach
TRC Condensed TimeReach
TRCH Condensed TimeReach with 2hop labels
INS Instant-based traversal of the version graph
INT Interval-based traversal of the version graph

Table 3.3: Dataset properties.

Snapshot Granularity # nodes # edges # SCC Max SCC (# nodes)
first last first last first last first last

FB
(daily) 871 117 61,096 128 1,139,081 10 374 3 51,286

(weekly) 125 1,429 61,096 2,365 1,139,081 138 374 18 51,286
(monthly) 29 4,239 61,096 12,224 1,139,081 279 374 96 51,286

YT
(daily) 37 1,004,777 1,138,499 4,379,283 4,452,646 9,807 11,360 457,932 509,332
(weekly) 6 1,025,536 1,138,499 4,379,283 4,452,646 9,807 11,360 465,668 509,332
(monthly) 2 1,116,602 1,138,499 4,446,042 4,452,646 10,664 11,360 485,273 509,332

FL
(daily) 134 1,487,058 2,302,925 17,022,083 33,140,018 42,163 58,636 1,004,426 1,605,184
(weekly) 20 1,507,700 2,302,925 17,393,321 33,140,018 42,163 58,636 1,010,498 1,605,184
(monthly) 5 1,585,173 2,302,925 18,987,847 33,140,018 42,459 58,636 1,081,499 1,605,184

Graph Size (scalability)

Figure 3.6 reports the size for varying number of nodes. As shown, TRC is much
smaller than TR in all cases. For FB and FL, the largest SCC covers 83% and 70%
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of the graph respectively, while for YT, it covers just 45% (see Table 3.3). Thus, the
TRC size for the FB dataset is 89% smaller, while for the YT and FL datasets, we
achieve 40% and 57% of compression respectively. The larger the SCCs, the higher
the compression achieved.

Since the size of the transitive closure (TC) grows rapidly, we compute TC for a
smaller subset of the FB dataset varying the number of nodes from 1,000 to 6,000.
As shown in Table3.4, even for this small graph, the size of TC reaches 106 MB.

Percentage of Deletes

For each dataset, we vary the percentage of edge deletes from 0% to 30% of edge
insertions. Table 3.5 presents the results for the FB dataset. We observe that the size
of TR and TRC decreases; this can be explained by the fact that deletions affect the
isolated nodes that become disconnected from the components and thus there are less
edges between components and isolated nodes. The size of VG remains constant, since
the size of the lifespan labels remains the same. Finally, the size of TRCH increases,
because in case of deletes, additional nodes need to be included in the 2hop labels
for ensuring the reachability test.

Table 3.4: Comparison with transitive closure.

# nodes Size (MB) Constr. Time (sec)
TR TRC TC TR TRC TC

1,000 0.013 0.012 2.91 0.01 4.76 167.49
2,000 0.026 0.009 11.56 0.23 5.02 1,457
3,000 0.039 0.012 26.27 0.35 5.89 5,788
4,000 0.052 0.018 47.12 0.41 6.33 16,580
5,000 0.063 0.026 73.97 0.59 6.79 39,112
6,000 0.074 0.032 106.82 0.72 7.13 81,123

Snapshot Granularity

Table 3.6 reports the storage required for maintaining daily, weekly and monthly
snapshots of the three datasets. All sizes increase with the number of snapshots. For
example, for FL, the increase of the number of snapshots by a factor of 30 (from 5

monthly to 134 daily) causes an increase of the size of TR by a factor of 3.44. The
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Table 3.5: Size (MB) per % of deletes (Facebook).

% of deletes VG TR TRC TRCH

0 11 0.5 0.21 1,493
10 11 0.58 0.22 1,528
20 11 0.45 0.19 1,612
30 11 0.47 0.18 1,664

Table 3.6: Size (MB) per snapshot granularity.

Facebook YouTube Flickr
Days Weeks Months Days Weeks Months Days Weeks Months

VG 11 6 5 7.87 7.34 6.94 45.52 39.85 38.15
TR 0.58 0.47 0.42 44.28 21.28 14.98 141 73 41
TRC 0.22 0.08 0.07 3.21 1.92 1.46 2.89 2.27 1.88
TRCH 1,528 1,041 845 5,865 4,936 4,062 7,951 6,684 5,719

size of TR and TRC decreases with the snapshot granularity (number of snapshots)
since less snapshots mean less postings and smaller SCC graphs. The size of VG does
not decrease significantly, because it requires memory to keep lifespan labels for all
nodes and edges of the graph.
Posting Sharing. Finally, let us take a closer look at the posting sharing optimization
by evaluating the reduction in the size of postings for various granularities as depicted
in Figure 3.5. In general, we achieve compression ratios for the posting around 70%
for FB, around 90% for FL and over 95% for YT. The compression ratio decreases
with snapshot granularity due to the increase of the posting combinations. This is
more evident for the FB dataset where the number of snapshots is higher.

3.4.2 Construction Time

In this set of experiments, we evaluate the time to construct the various indexes.
As seen in Figure 3.7, TRC is slower than TR, because of the additional time

required for performing the bipartite matching. TRCH is even slower, since it also
needs to construct the 2hop labels. We use the greedy algorithm for the bipartite
matching and the INOUT strategy for computing the interval-2hop labels.
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Figure 3.5: Compression ratio achieved by posting sharing.

Constructing the TC for the whole graphs is prohibitive, since even for only 6, 000

nodes, it takes over 22 hours, while the TR construction takes just 0.72 seconds (Table
3.4).

Comparison of Different Bipartite Matching Algorithms

We also constructed the TRC using the Hungarian algorithm. For all datasets, the
size of the resulting TRC is almost equal to the size of the TRC resulting from using
the greedy algorithm (the difference is in the order of KB), thus confirming our
expectation that greedy achieves a very close approximation of the optimal solution
for social graphs. The Hungarian algorithm is much slower than greedy requiring an
additional 1.5 hour for large datasets such as FL.

Comparison with 2hop for Insert Only

We adopted the pruned labeling algorithm proposed in [12] for distance queries to
create labels for historical reachability queries. Pruned labeling incrementally updates
the index for each newly inserted edge, whereas in our approach we compute 2hop
labels per snapshot. The pruned labeling algorithm does not support deletions, thus,
we compare the two algorithms on the Facebook dataset without deletions. The
pruned algorithm was found to be 5.4 times faster but it produced labels that were
12 times larger that the ones computed with our approach.
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Figure 3.6: Size (log scale) for varying number of nodes in (a) FB, (b) YT, and (c)
FL.
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Figure 3.7: Construction time (log scale) for varying number of nodes in (a) FB, (b)
YT, and (c) FL.

3.4.3 Query Processing

Let us now focus on query processing. In each experiment, we ran 500 historical
reachability queries where the source and target nodes are chosen uniformly at ran-
dom with the restriction that both nodes are present in the graph at the beginning
and the end of the query interval. Queries involving nodes not present either at
the beginning or the end of the query interval can be pruned fast by checking the
lifespans of the nodes.

Online Traversal of the Version Graph

Let us first compare between an instant-based (INS) and an interval-based (INT)
online traversal of the version graph for different time intervals (Figures 3.8 and
3.9). A general remark that holds independently of the method used to evaluate
queries is that false conjunctive queries are faster than true conjunctive queries, since
processing stops as soon as a time instance is found at which the two nodes are
not reachable. Analogously, true disjunctive queries are faster than false disjunctive
queries, since processing stops as soon as a time instance is found at which the two
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nodes are reachable.
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Figure 3.8: Query time (log scale) INS and INT for conjunctive queries in (a) FB, (b)
YT, and (c) FL.
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Figure 3.9: Query time (log scale) INS and INT for disjunctive queries in (a) FB, (b)
YT, and (c) FL.

Interval-based traversal is faster that instant-based traversal for almost all datasets
and query types, since it can find the answer faster by searching for longer intervals.
The only exception is FB and false conjunctive queries, where INS is slightly better.
This happens because with INS, the search stops as soon as the first false answer is
produced in any traversal. Hence, if this answer is found in the first few time instances
of the query interval negative answers can be produced quickly for the smaller graph
(i.e, the FB graph).

Online Traversal versus TimeReach

Let us now compare interval-based online traversal with query processing using the
TR, TRC and TRCH approaches. The results for conjunctive queries are shown in
Figure 3.10 and for disjunctive queries in Figure 3.11.

We see that all approaches are not significantly affected by the increase of the query
interval due to fast posting lookups and short distances in the SCC graph for the TR
and TRC, and the efficient implementation of edge lifespans for the version graph.
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Figure 3.10: Query time (log scale) for conjunctive queries in (a) FB, (b) YT, and (c)
FL.
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Figure 3.11: Query time (log scale) for disjunctive queries in (a) FB, (b) YT, and (c)
FL.

We see that the TRC approach does not only produce a smaller structure than TR
but it also attains faster query response for almost all datasets. TR is slower because
for answering a query it needs to traverse the SCC graph per time instance when the
query nodes do not belong to the same component. TRCH attains the fastest time
when compared with all other approaches. The performance of TRCH is expected,
since only two simple steps are needed: first to obtain the intersection Lin(v)∩Lout(u),
and after that to check the lifespans L of the nodes in the intersection.

3.5 Related Work

There are a couple of approaches in the related literature that focus on efficiently
storing and retrieving graph snapshots. For example, one can store just some subset
of the graph snapshots in the sequence along with appropriate deltas, such that, any
other snapshot can be reconstructed by applying the deltas on the selected snapshots
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[1, 3, 4, 25].
Historical query processing in these approaches requires as a first and costly step

reconstructing the relevant snapshots. Then, queries are processed through an online
traversal on each of them. Query performance is addressed by trying to minimize
the number of snapshots that need to be reconstructed by minimizing the number of
deltas applied [1, 25], avoiding the reconstruction of all snapshots [3], or by parallel
query execution and proper snapshot placement and distribution [4]. Our work is
different since our goal is the indexing for supporting historical reachability queries
without constructing first the relevant snapshots.

Historical shortest path distance queries were addressed in [11]. The authors pro-
pose a method based on ordering nodes or edges pertinent to shortest path com-
putation. Finally, the recent work of [12] also proposes a dynamic indexing scheme
for historical distance queries. However, the authors consider only insertions. This
assumption simplifies the problem, since two nodes that are reachable remain reach-
able. The authors propose a dynamic 2hop index construction that is not applicable
in the case of node or edge deletions.

Reachability queries on static graphs have been thoroughly investigated along two
general directions: transitive closure compression and improving online search.

Transitive Closure Compression. Related research aims at compressing the transitive
closure by storing for each node only a subset of the nodes it can reach. The first idea
is to decompose the graph in k node-disjoint chains and for each node store only
the first node it can reach in each chain [34, 35]. Another line of research extracts a
spanning tree of the graph, and uses it to compress the transitive closure. Each node
of the tree is labeled with an interval of integers such that if node u is an ancestor of
v, the interval of u contains that of v. Reachability through tree edges can be easily
determined by a label containment check. To incorporate reachability through non-
tree edges each node inherits the intervals of its successors in the graph [36], or a
partial transitive closure of non-tree edges is constructed [37]. Building upon the idea
of interval labeling, a tree whose vertices are pair-wise disjoint paths extracted from
the original graph is used in [38]. Another approach in compressing the transitive
closure is 2hop labeling [39, 40, 41]. Each node stores two sets of intermediate nodes:
a set Lout of nodes it can reach and a set Lin of nodes that can reach it. Node u can
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reach node v only if Lout(u) ∩ Lin(v) ̸= ∅.

Speeding-up Online Traversal. These methods use interval labeling to aid online traver-
sal by pruning the search space. In [42] and [43], a tree cover of the graph is con-
structed and then, for the queries that can not be answered by the tree labeling, an
online search on the non-tree edges is performed using the labeling to guide the
search. In [44], multiple intervals are used for the labeling. If the label containment
check does not produce a negative answer, the graph is traversed online using the
intervals for pruning the search.

Some of the works discuss the incremental maintenance of the index in the case
of evolving graphs [36, 45, 46, 47]. However, the updated index contains reachability
information only about the current version of the graph and cannot be used for
answering historical queries.

3.6 Summary

In this chapter, we addressed the problem of efficiently answering historical reach-
ability queries over such graphs. Such queries ask whether a node u was reachable
from another node v during a time interval in the past. We have proposed an ap-
proach termed TimeReach that exploits the fact that most graphs consist of strongly
connected components (SCCs). TimeReach maintains information about SCC mem-
bership for each node, and a graph which represents the links between the strongly
connected components. We also maintain a condensed version graph which corre-
sponds to the version graph of the SCCs evolution. We have provided experimental
results regarding the efficiency of our solution.
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C 4

T-k D G P Q
 E G

4.1 The Durable Graph Pattern Matching Problem

4.2 The Durable Graph Pattern Algorithm

4.3 Time Indexes

4.4 Duration Threshold

4.5 Graph Search

4.6 Refine Candidates

4.7 Experimental Evaluation

4.8 Related Work

4.9 Summary

D , the large attention in processing graph pattern queries in static
graphs (e.g., [48, 49, 50, 51, 52, 53, 54, 7]), we are not aware of any study
on searching for durable graph matches in an evolving graph. There has

also been some recent work on evolving graph processing but the focus has been on
how to efficiently store and reconstruct the snapshots relevant to a query by exploiting
among others clustering, operational deltas, and efficient data versioning [25, 1, 3].
Instead, in this chapter, we propose efficient algorithms and indexes targeting graph
pattern queries.
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In particular, we assume that we are given the history of a node-labeled graph
in the form of graph snapshots corresponding to the state of the graph at different
time instances. Given a query graph pattern P , we address the problem of efficiently
finding those matches of P in the graph history that persist over time, that is, those
matches that exist for the longest time, either contiguously (i.e., in consecutive graph
snapshots) or collectively (i.e., in the largest number of graph snapshots). We call the
queries that return these matches durable graph pattern queries.

Locating durable matches in the evolution of large graphs finds many applica-
tions. Take for example collaboration and social networks, such as DBLP, Facebook
or LinkedIn, where nodes correspond to people and edges indicate relationships such
as cooperations, or friendships. Node labels may denote demographics, or other char-
acteristics of the users, such as related venues (for example, schools that the users
has attended, or scientific conferences where the user has published). Finding durable
matches that follow an input pattern helps us locate the most persistent research col-
laborations or durable social communities and social positions. It can also assist us
in the identification of the essential elements (in the form of node labels) that lead to
durable and stable cooperations among teams.

Other types of graphs where durable matches may find applications are complex
biological systems such as protein-protein, metabolic interaction and hormone signal-
ing networks where nodes are molecular components and edges relationships between
them [51]. Understanding such systems requires a molecular level analysis looking at
specific topological subgraphs. For instance, locating durable protein complexes may
give insight into repeated motifs that remain stable through the evolution of various
protein mechanisms. Durable patterns may also be relevant in viral analysis, where
scientist could, for example, be interested in finding durable chains of nucleotides of
virus RNA for predicting which genes are prone to mutations.

Durable graph patterns are also useful in the case of graphs modeling network
and transportation networks. For example, take a network traffic dataset where nodes
represent IP addresses and edges are typed by classes of network traffic [55]. Query-
ing such graphs and locating durable patterns in specific time frames may indicate
periodic infiltrations (path queries), denial of service (parallel paths) and malicious
spreads (tree queries).

Finally, a problem with graph pattern matching algorithms is that they often
return an excessive number of matches [56]. Persistence through time offers a means
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of discarding transient matches and identifying the ones that are meaningful. It offers
a way of ranking the results and presenting to users only the k most durable among
them.

The straightforward approach to processing durable graph pattern queries is to
find the matches at each snapshot by applying a state-of-the-art graph pattern al-
gorithm and then aggregate the results. However, even an efficient implementation
of this approach incurs large computational costs, since all matching patterns in
each snapshot must be identified, even patterns that appear only once. To avoid the
computational cost of applying the algorithm per snapshot, we propose an efficient
DP algorithm.

Our DP algorithm identifies the durable matches by traversing the
labeled version graph. An efficient in-memory layout of the LVG allows fast retrieval
of neighboring nodes at each snapshot. To prune the number of candidate matches,
we introduce neighborhood and path time indexes based on Bloom filters [16, 17].
Finally, our DurablePattern algorithm is driven by a ϑ-threshold on the duration of the
matches. We exploit various strategies that uses the time-based indexes to efficiently
determine an appropriate value for the duration threshold.

In a nutshell, we make the following contributions which are also discussed in
[57]:

• We formulate the problems of most and top-k durable graph pattern queries.

• We propose a new DP algorithm that exploits an LVG-based rep-
resentation, ϑ-threshold graph exploration search and appropriate Bloom-filter
based time indexes to process durable graph pattern queries efficiently.

• We perform extensive experiments on various datasets that show both the effi-
ciency of our DP algorithm and the effectiveness of durable graph
pattern queries in locating interesting matches.

The rest of this chapter is structured as follows. In Section 4.1 we formally define
the durable graph pattern matching problem. In Section 4.2, we provide the general
outline of our DP algorithm and in Sections 4.3 – 4.6, we present in
detail its various components. In Section 4.7, we present an experimental evaluation
of our approach. Finally, Section 4.8 provides a comparison with related work, while
Section 4.9 concludes the chapter.
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Figure 4.1: Example of an evolving labeled graph.

4.1 The Durable Graph Pattern Matching Problem

Most previous research in graph pattern queries looks for matches in a single static
graph (e.g., [53, 54]). However, most real world graphs change over time. New nodes
and edges are added, and existing nodes and edges are deleted. In addition, new
labels may be associated with nodes, and existing labels may be deleted.

Given an evolving graph G[ti,tj ], we say that a subgraph m is a match of a pattern
P = (VP , EP , LP) in G[ti,tj ], if m is a match of P in at least one graph snapshot
Gtk in G[ti,tj ]. Since, a match may appear in more than one graph snapshot of the
evolving graph, we would like to find the most durable among the matches. Let us
first introduce two different notions of duration.

Definition 4.1 (Duration). Let I be a set of time intervals. We define the collective
duration of I , ldur, as the number of time instants in I and the contiguous duration of
I , ndur, as the number of instants in the largest time interval in I. We use dur to
refer to both.

For example the collective duration of I = {[1, 3], [5, 10], [12, 13]} is 11, while its
contiguous duration is 6. Let us now formally define the lifespan of a match.

Definition 4.2 (Pattern Match Lifespan). Given an evolving graph G[ti,tj ] and a pattern
query P , the lifespan, lspan(G[ti,tj ], P , m), of a match m of P in G[ti,tj ] is the set I of
time intervals that includes all time instants, tk, ti ≤ tk ≤ tj , such that, m is a match
of P in graph snapshot Gtk .

We are now ready to define durable graph pattern queries for evolving graphs. In
this case, besides the graph pattern P , the query also includes a set of time intervals,
IP , that specifies the time periods for which we look for matches. Having IP as part
of the query allows us to look for durable matches at specific periods of time within
the evolving graph. For example, we may want to locate matches that appear only in
snapshots corresponding to weekends, or, to specific seasons of interest.
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Figure 4.2: Example of (a) a graph pattern query, (b) the corresponding matches in
the evolving graph of Figure 2.1.

Definition 4.3 (Durable Graph Pattern Match). Given an evolving graph G[ti,tj ], a
graph pattern P and a set of time intervals IP :

• a most durable graph pattern query returns the matches m and their lifespans such
that m = argmax

m′match of P
dur(lspan(G[ti,tj ], P ,m′)⊗ IP).

• a top-k durable graph pattern query, given an integer k > 0, returns a set S

of k matches and corresponding lifespans such that for all matches m in S,
dur(lspan(G[ti,tj ], P , m) ⊗ IP) ≥ dur(lspan(G[ti,tj ], P , m′) ⊗ IP) for all matches
m′ not in S.

Based on the definition of duration, we may have contiguous most durable (or,
top-k) graph matches and collective most durable (resp. top-k) graph matches.

An example of a graph pattern query is shown in Figure 4.2(a) which asks for
matches that depict a connection between a node with label l1 and two other nodes
with labels l1 and l2. Some matches of this query for IP = {[1, 5]} in the evolving
graph of Figure 4.1 are shown in Figure 4.2(b). If this query is interpreted as a
collective most durable query, it will return only match 1 (and its lifespan), whereas
in the contiguous case it will return match 3. A top-2 durable query will return match
1 and either of match 2 or 3, if interpreted as collective, and match 3 followed by
either match 1 and 2, if interpreted as contiguous.
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Algorithm 4.1 Baseline Algorithm(GI , P , IP)
Input: Evolving graph GI , pattern P , set of intervals IP
Output: Most (top-k) contiguous durable matches m
1: Hash tables H , H ′

2: M0 ← ∅, i← 1, tp ← 0

3: for all t ∈ IP ⊗ {I} do
4: Mi ← get matches of P in Gt

5: for each m ∈Mi do
6: if m ∈Mi−1 and t = tp + 1 then
7: H[m]++
8: else if H[m] not exists then
9: H[m]← 1

10: H ′[m]← 1

11: else if H[m] > H ′[m] then
12: H ′[m]← H[m]

13: H[m]← 1

14: end if
15: end for
16: tp ← t, i++
17: end for
18: return (all || top-k) matches m with the largest H ′[m] and their lifespan

4.2 The Durable Graph Pattern Algorithm

In this section, we start by describing a baseline approach to processing durable graph
pattern queries and then present our DurablePattern algorithm.

4.2.1 Baseline Approach

A straightforward way to process a durable graph pattern query is to first execute
the graph pattern query P at each graph snapshot Gtm , tm ∈ IP , of the evolving
graph using a state-of-the-art graph pattern matching algorithm and then aggregate
the results by counting for each match the number of times it appears in the result.

The steps of the baseline approach for finding contiguous durable matches are
shown in Algorithm 4.1. We represent each match m as a string u1u2...u|VP |, where ui,
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1 ≤ i ≤ |VP |, are the nodes of the matched subgraph m ordered following the order
of nodes’ ids in P that each one of them matches. Thus, we reduce graph matching
to string matching. Furthermore, to match the resulting strings we use hashing. We
maintain two hash tables H and H ′. H[m] indicates for each match m the duration of
the current largest time interval for which m was found to be a match, while H ′ the
duration of the previous largest interval. We compute the subgraphs that match the
input graph pattern P for each graph snapshot Gt of the evolving graph, for t ∈ IP
(line 4). For each match m, the algorithm checks whether it was found in the exact
previous time instant and if this is the case it increases H[m] (lines 6 – 7). Otherwise,
if match m is found for the first time, the algorithm initializes both hash tables (lines
9 – 10), or if match m was previously found, it updates H[m] and H ′[m] appropriately
(lines 12 – 13).

To process a collective durable graph pattern query, we use just one hash table H

and for each time instant that a match m is found, we increase H[m].
Even with these optimizations, the baseline approach is expensive, since we have

to retrieve all matches at each and every graph snapshot, even those matches that
appear only in just one snapshot. For frequent patterns and long intervals, the number
of retrieved matches grows very fast.

4.2.2 Durable Graph Pattern Matching

We consider a more efficient approach that uses the concise representation of the
evolving graph, that we call the labeled version graph. In addition to the LVG, we also
maintain a time-label index, VL, which allows constant time retrieval of all nodes
having a specific label at a given time instant. We will refer to LVG augmented with
this time index as VLG. VLG is our basic data structure.

The main steps of our durable graph pattern algorithm are outlined in Algorithm
4.2. The algorithm runs on the labeled version graph and is driven by a duration
threshold ϑ. It consists of two phases. The first phase (lines 2 – 5) computes the
candidate matching nodes in VI for each node p ∈ VP in the given set of time intervals
IP and stores them in a set C(p). We call the procedure of generating the candidate
nodes FC. The resulting candidate set C(p1)× ...×C(p|VP |) determines
the overall search space of the algorithm. To avoid a sequential scan of all nodes of a
large graph that would result in a total search space of

∏|VP |
n=1 |C(|VI |)|, we use VL.
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Algorithm 4.2 DurablePattern Algorithm(V GI , P , IP , Ptype)
Input: Version graph V GI , pattern P , set of intervals IP , query type Ptype (i.e.,

most/top-k, collective/contiguous)
Output: Durable matches m of type Ptype

1: ϑ← ID(Ptype),M ← ∅
2: for each p ∈ VP do
3: C(p)← FC(V GI , P , p, IP)
4: if C(p) = ∅ then
5: return ∅
6: end if
7: end for
8: while not (M.found() or ϑ = 0) do
9: C ← RC(V GI , P , C , ϑ, IP , Ptype)

10: DGS(V GI , P , C , 1, ϑ, IP , M,Ptype)

11: ϑ← RD(Ptype, ϑ)
12: end while
13: return M

VL returns for each pattern node p the graph nodes that have the same label as p
in at least one time instant in IP .

In the second phase (lines 8 – 12), we search for a match. The algorithm exploits
the fact that a feasible match of a pattern node must have the appropriate descendants
and ascendants nodes. Candidates nodes that do not meet these criteria are pruned
and not examined by the algorithm. The check of the appropriate descendants and
ascendants is conducted by the RC procedure. Then, Algorithm 4.2
traverses the remaining candidate nodes by calling the recursive DGS
procedure. The search procedure uses the candidate sets and searches in a depth-first
manner for matches with duration at least ϑ. If no solution is found, the algorithm
reduces ϑ by calling RD and searches for matches with a smaller
duration until a solution is found.

For the in-memory storage of the LVG, we maintain an array of nodes, where each
node is associated with a key-value structure that maps each node u to its neighboring
nodes along with a bit array of size T . The bit array keeps the lifespan of each edge
during T . The required storage for these adjacency lists is |EI |T , since we have to
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(a) (b) (c)

Figure 4.3: In-memory layouts of (a) VLG, (b) time-neighborhood-label indexes,
and (c) time-path-label index

store for all edges EI in V GI their lifespan of size T . We also maintain for each node
u its labels during T . A bit array of size T is associated with each label l of u to
represent the lifespan of this label during T . The required storage for label lifespans
is |ΣI |T , where ΣI is the set of all labels of VI . Figure 4.3(a) depicts the in-memory
layout of LVG.

VL, our basic time index, consists of two levels. The first level is an array of size
T where each position i refers to a time instant ti and links to a set of labels L. Each
label l in this set links to the set of nodes that are labeled with l at ti. Thus, the index
has at most |VI ||ΣI |T nodes. Figure 4.3(a) depicts the in-memory layout of VL.

The total time for constructing VLG from scratch is O(|VI | + |EI | + |ΣI |T ), that
is the time needed to create both LVG and VL. We incrementally update VLG
for each newly inserted edge in a time instant t, by updating the edge map entry
and label set of the interval array. The bit array structure for lifespans and the map
structure for the adjacency lists allow us to perform each update operation in constant
time.

Refining the Algorithm

In the following sections, we refine the basic steps of Algorithm 4.2 to address the
following issues:

1. reduce the size of the candidate set C(p) for each node p and efficiently retrieve
this set using appropriate time indexes,

2. determine appropriate values for the duration threshold,

3. efficiently search in the labeled version graph, and
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4. refine the overall search space.

4.3 Time Indexes

Besides our basic index, VL, we introduce additional time indexes to speed up
matching. We explore two types of indexes, namely neighborhood and path indexes.
We also present compressed representations of both.

4.3.1 Neighborhood and Path Time indexes

The time-neighborhood-label, TNL(r), index maintains for each node u ∈ VI informa-
tion about the labels of its neighbors at distance at most r at each time instant, that is,
the neighbors that are at most r hops away from u. For example, TNL(1) maintains
information for neighbors at distance 1, that is, for the immediate neighbors of each
node. Specifically, TNL(r) maintains for each u ∈ VI a set of labels. Each label l
is associated with r bit arrays of size T , where T is the number of graph snapshots.
The i-th position of the j-th array, 1 ≤ j ≤ r, is set to one, if at least one neighbor of
u at distance j has label l at the corresponding time instant ti. TNL(r) is depicted
in Figure 4.3(b).

We also consider replacing the bit arrays associated with each label l with counter
arrays where the i-th position of the j-th counter array is equal to the number
of neighbors of u at distance j that have label l at time instant ti. We call this
variation, counter-time-neighborhood-label or CTNL(r) index. CTNL(r) is shown in
Figure 4.3(b).

Furthermore, we explore a compact representation of TNL and CTNL using
Bloom filters. Bloom filters are probabilistic data structures often used to represent a
set A of n elements to support membership queries [16, 17]. The idea is to allocate an
array of F bits, initially all set to 0, and then choose l independent hash functions,
hi, 1 ≤ i ≤ l, each with range {1, . . . , F}. The hash functions are applied to each
element a of the set A and the bits at positions h1(a), . . . , hl(a) are set to 1. To check
whether an element b belongs to the set, the hash functions are applied to b and the
bits at positions h1(b), . . . , hl(b) are checked. If at least one of the bits is 0, then we
are certain that b does not belong to A. Otherwise, we conjecture that b belongs to A,
but there is a certain probability that this is not the case. This is called a false positive.
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Parameters F and l are chosen such as the false probability rate is acceptable (usually
≤ 1%).

For the probabilistic representation of TNL(r), denoted TNLB(r), we maintain
a Bloom filter with information for the labels of neighbors at distance r of node u.
Specifically, we insert in each Bloom filter a set that consists of pairs (t, l) where l is
a label of a neighbor of node u at distance r at time instant t.

A more compact representation of CTNL(r), denoted CTNLB(r), is achieved
by using counting Bloom filters [17]. In this case, each entry of the filter array is not
a single bit but a small counter. When an element (t, l) is inserted in the filter, the
corresponding counters are incremented by one. When we want to find the number
of neighbors of node u that have a specific label l at time instant t, again, we apply
the hash functions. We retain the smaller of the filter counters as an estimate of the
number of neighbors.

TNL(r) requires storage at most r |VI | |ΣI |T , since for all nodes in the worst case
we have to store for each label a bit array of size T . Using Bloom filter, TNLB(r)
requires storage at most r |VI |F , where F is the average size of the Bloom filer. We
do not use the same size Bloom filters for all nodes. Instead, we estimate the size of
each Bloom so as to achieve a specified false positive rate. In the case of CTNL and
CTNLB, we store an integer value for each label instead of a bit array.

Finally, we consider a time-path-label or TPL(λ) index, in which we maintain for
each time instant t in T and each node u ∈ VI , the label paths of length up to λ

starting from u at t. TPL(λ) enumerates all paths up to a maximum length λ using

BFS. The number Pl of possible label combinations is very large: Pl = (

|λ|∑
r=1

|L|!
(|L| − r)!

),

but experimentally λ = 3 proved a good choice in terms of construction time and
query processing. Paths are stored as strings. For example, for λ = 2 the label path
l1 → l2 → l3 is stored as key [l1, l2, l3]. Each key is associated with the set of nodes that
are the sources of the corresponding path. For instance, key k = [l1, l2, l3] is associated
with the nodes that are labeled with l1, connected to a node labeled with l2, that is
in turn connected to a node labeled with l3. TPL is shown in Figure 4.3(c). The
required storage is Pl |VI | T .

For the compact representation of TPL, TPLB, we maintain a Bloom filter for
each node u in which we insert pairs (t, lpath), where each lpath denotes the label path
of length up to λ starting from u at time instant t. The required storage is |VI | F ,
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where F is the average size of the Bloom filters.
Construction Time. The total time for constructing TNL(r) is O(r(|EI | + |ΣI |T )). To
achieve this, we construct TNL(1) by checking for each node the labels of its 1-hop
neighborhood; this can be constructed in O(|EI |+ |ΣI |T ). Then, for each node u and
for each ri-hop, 1 < ri ≤ r we retrieve the labels of the (ri−1)-hop neighborhood
of its adjacency nodes which constitutes the TNL(ri) of u. Constructing CTNL(r)
requires the same time as TNL(r). For TPL(λ), for each node we compute all
paths of length λ, which requires a total time of O((|VI | + |Eλ

I |)|ΣI |T ), where |Eλ
I | is

the number of edges that need to be traversed until depth λ. Creating the compressed
indexes requires the same time as needed for constructing the uncompressed ones
plus the time for applying the hash functions. We evaluate the compression rate and
the performance of the compressed filters in Section 4.7.

4.3.2 Computing and Filtering Candidate Nodes

The indexes (either, the uncompressed or the compressed versions) are used to com-
pute and filter the candidate nodes. VL is first used to get the initial set of candidate
matches of a pattern node. In the case of neighborhood-based indexes, the indexes
are used to retain a node u as a candidate match of a pattern node p, only if the
neighborhood subgraph of u is sub-isomorphic to that of p in at least one time in-
stant in I. To enforce this requirement, we use TNL(r) to remove a node u from
the candidate set C(p), if u does not have a matching distance r-neighbor whose label
lifespan intersects in at least one time instant in I with the label of a corresponding
distance-r neighbor of p. In addition, CTNL(r) takes into account the multitude
of the labeled nodes in the r-neighborhood, thus the candidate sets produced by
CTNL(r) are subsets of the corresponding candidate sets produced by TNL(r),
i.e., C(p)CTiNLa(r) ⊆ C(p)TiNLa.

When TPL is used, we first compute for each pattern node p all label paths
starting from p up to length λ. Then, for all label paths Lpath(p) of p and for each
time instant of I , we use TPL to retrieve the set of nodes that are the source nodes
of each lpath ∈ Lpath(p). Since, a feasible match of p must be a node that is the source
node of all paths in Lpath(p), we intersect the retrieved sets in each time instant.

Generally, for each candidate set C(p) of p ∈ VP , it holds:

|C(p)TiPLa(λ)| ≤ |C(p)TiNLa(r)| ≤ |C(p)V iLa|, λ = r

55



However, there is no direct relationship between the candidate sets of CTNL(r)
and TPL(λ), with λ = r. Instead, the sizes of the corresponding candidate sets de-
pend on the pattern query. For example, for a pattern query with a node p connecting
to two other nodes that have the same label l, TPL will return as candidates for p,
even nodes that have just a single path l, whereas CTNL will prune such nodes and
return only nodes that have at least two neighbors with label l. On the other hand,
for a pattern query where p is connected with a node with label l1 which in turn is
connected with a node with label l2, CTNL(2) will return as candidate a node that
has a neighbor with label l1 at distance 1 and a neighbor with label l2 at distance 2,
even if these two nodes are not connected with each other, while TPL will prune
such nodes.

4.4 Duration Threshold

Our durable graph pattern matching algorithm (Algorithm 4.2) is driven by a thresh-
old duration ϑ, in the sense that the algorithm searches for matches whose lifespan has
duration at least ϑ. Thus, ϑ determines the order of searching for possible matches.
The value of ϑ is set to an appropriate initial value (line 1) and in refining of can-
didates (RC) and searching for subgraphs (DGS), we
look for subgraphs with duration at least ϑ.

The first strategy for determining ϑ, called M, initializes ϑ with 1, that is the
minimum possible value, looking for matches that appear in at least one time instant.
While we search for matches (DGS), ϑ is updated accordingly. For
a most durable query, ϑ is updated such as to be equal to the duration of the most
durable match found so far. For a top-k durable query, ϑ is updated so as to be equal
to the duration of the k-th match found so far. With the M strategy, in the first calls
of the recursive durable graph search procedure, the algorithm explores edges that
have a short duration compared to the actual duration of a potential match. Thus,
the algorithm pays a cost for exploring many matches of small duration.

The next two strategies, called MR and MB, follow a different ap-
proach and initialize ϑ to a value that is close to the actual duration of the seeking
match(es). This approach reduces the number of candidate matches, since fewer sub-
graphs qualify as such. Since the actual duration of the durable matches is not known,
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we use the time indexes to determine the maximum possible duration of a match and
use this value to initialize ϑ. If no matches are found with this estimated duration,
we recompute another smaller value for ϑ.

To this end, we introduce the ranking structure Rank, which maintains a ranking
of candidates for each pattern node p based on their duration. In particular, Rankθ(p)

includes the nodes that are candidate matches of p with duration at least θ ranked
by duration. To construct Rankθ(p), we use the time indexes VL, TNL (CTNL)
and TPL during the FC procedure. Rankθ(p) using VL refers to a
set of nodes that are feasible matches of p and have the same label as p for a duration
at least θ. Similarly, the Rankθ(p) using TNL (CTNL) refers to a set of nodes
that have the correct adjacency and label as pattern node p for a duration at least
θ. Finally, the Rankθ(p) using TPL refers to a set of nodes that have the required
paths as p for a duration at least θ.

The maximum duration of a match cannot be larger than the minimum value
among the maximum durations of the candidates for each nodes p ∈ P. Formally, for
each node p, let θmax(p) be the maximum value of θ for which Rankθ(p) is not empty.
MR and MB initialize ϑ as:

ϑ = min
p∈VP

θmax(p) (4.1)

By doing so, the candidate sets that have to be examined are smaller, since we
use only candidate nodes with duration greater or equal to ϑ. If no solution is found
with duration at least ϑ, a new smaller threshold is determined. The MB
strategy uses binary search for determining the next smaller ϑ value. The MR
strategy gets for each node p the maximum θ smaller than the current ϑ for which
Rankθ(p) is not empty and selects as the new ϑ the minimum among these values. In
recomputing ϑ, both strategies take also into account the duration of matches found
during the previous execution of DGS. This is explained in detail in
Section 4.5.

For a top-k query, for both strategies, we also check whether the combination of
candidates nodes with duration at least ϑ produces at least k matches. If this is not
the case, we use the largest ϑ value that fulfills this requirement.

Note that at each step we select larger candidate sets including nodes that have
candidate duration smaller than the previous threshold. Thus, searches get more
expensive as ϑ decreases. In terms of the number of calls to DGS,
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the algorithm is called at most |Θ| times, where Θ is the set of distinct values of ϑ
that the algorithm uses to find durable matches. For the MB strategy, Θ is at
most logarithmic to the initial value of ϑ.

4.5 Graph Search

The DGS algorithm (shown in Algorithm 4.3) searches in a depth-
first manner for durable matches with duration at least ϑ.

DGS first checks if the given candidate sets contain isomorphic
matches to the given pattern. First, it creates a copy C ′ of C (line 23), isolates a node
u in C(pi) and treats it as if it were the only node to match pattern node pi (line 24).
Then, a refinement is performed on C ′, which removes all nodes in C(p1), . . . , C(p|VP |)

that are not contained in an isomorphic match with u. If the pruning of candidates
eliminates all nodes in C ′, no isomorphic match exists with the current mapping,
and the algorithm backtracks. Otherwise, the search procedure is called recursively,
passing the subsequent pattern node pi+1 until all pattern nodes are examined or
refining eliminates all remaining possible matches. The above procedure is performed
for each pattern node in C(pi).

When a candidate match is found (line 1), an additional check is made (lines 2
– 5) to ensure that all nodes and edges of the candidate matching subgraph appear
in the same time period during IP . This is achieved by joining both the lifespans of
all edges of the matching subgraphs and the lifespans of the labels of their incident
nodes.
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Algorithm 4.3 DGS(V GI , P , C , i, ϑ, IP , M , Ptype)
Input: Version graph V GI , pattern P , candidates set C , pattern node to be matched

i, duration threshold ϑ, set of intervals IP , matches structure M , query type Ptype

Output: Solution M of durable graph pattern P of type Ptype

1: if i = |VP | then
2: for each (pi, pj) ∈ EP do
3: I ← IP ⊗ Le((C(pi), C(pj))

4: I ← I ⊗ LC(pi).label(pi) ⊗ LC(pj).label(pj)

5: end for
6: if Ptype = topk then
7: UTS(C,M, I, ϑ)
8: if |M | = k and M.durationMin ≥ ϑ then
9: F()
10: end if
11: else if Ptype = most then
12: if |I| = ϑ then
13: US(C , M)
14: else if |I| > ϑ then
15: ϑ← |I|
16: RS(C , M , ϑ)
17: else
18: KT(M , |I|)
19: end if
20: end if
21: else
22: for each u ∈ C(pi) and u /∈ C(pj), j < i do
23: C ′ ← copy of C
24: C ′(pi)← {u}
25: C ′ ← RC(V GI , P , C ′, ϑ, IP )
26: if C ′ ̸= ∅ then
27: DGS(V GI , P , C ′, i+1, ϑ, IP , M , Ptype)
28: end if
29: end for
30: end if
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Next, we present details regarding storing matches across recursive calls. We also
discuss how to maintain information for enhancing the selection of the ϑ threshold.

Most durable graph pattern queries

Regardless of the strategy used for selecting ϑ, the algorithm maintains the duration
of the best match found so far, let us denote this value as θcur. Since, our algorithm
is using recursion, all recursion calls must be notified when a match is found with a
duration larger than θcur, so as to prune subgraphs with duration less than the new
value. In addition, we need to store the new durable matches and delete the ones
with duration less than θcur. US keeps the current durable matches, while
RS removes old matches and keeps the new ones (lines 12 – 16).

We also use the duration of the best match to improve the selection of the new
smaller ϑ by the MR or MB strategies, when DGS finds
no matches for a given ϑ. Let us denote with ϑold the old threshold, with ϑnew the
new smaller threshold computed by MR or MB and with θbest, θbest <
ϑold, the duration of the best match found by DGS. The new call to
DGS is with ϑ = max{θbest, ϑnew}. The reason is that, since we have
found at least one match with duration θbest, we should search for matches with a
larger or equal duration. The equal duration is needed for locating all most durable
matches when θbest happens to be the largest possible duration.

Top-k durable graph pattern queries

We maintain a min heap structure M with the top-k matches found so far ordered
by their duration. UTS handles this heap. Let θheap be the minimum
duration of any match in the heap and mmin be the (top) match in the heap with
duration equal to θheap. The algorithm stores any match in the heap, until the heap
becomes full. When the heap is full, mmin is replaced by a new match m, if the
duration of m is larger than θheap.

As with most durable graph pattern queries, we use the duration of the matches
found so far to improve the selection of the new smaller ϑ, when DG-
S fails to find k matches with a duration at least ϑold. Again let ϑnew be the
new threshold computed by MR or MB. If the heap is full, the new call
to DGS is with ϑ = max{θheap + 1, ϑnew}. The reason is that, since
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we have already found k matches with duration at least θheap, we should search for
matches with a larger duration.

4.6 Refine Candidates

Let us now describe the RC procedure outlined in Algorithm 4.4. Our
refine procedure is based on the dual graph simulation technique [9] that was shown
in [58] to outperform the commonly used VF2 algorithm [50]. The refine procedure
checks for each node p and its candidate node u whether the neighborhood of p ∈ VP

is sub-isomorphic to that of u in the graph. Specifically, given a set of candidates
nodes C(p) of p ∈ VP , the refine procedure retrieves all its neighbors p′ (1 – 2). Then,
for each u ∈ C(p), it examines if there are any neighbors of u contained in C(p′)

using T_J described next (lines 4 – 11). If this is not the case, then u is removed
from C(p), otherwise its neighbors in C(p′) are stored in a temporary set C ′p′ (lines
6 – 10). Now, every node in C(p′) must be a neighbor of at least one node in C(p).
Thus, the candidate set of pattern node p′ is updated to contain only the nodes that
are neighbors of nodes in C(p) (line 15).

Since we seek durable matches, T_J that implements the refinement checks if
a candidate node has the required neighbors during IP . In particular, given a pattern
node p′ and a graph node u, T_J returns the intersection of the neighbors of
u with C(p′). It starts by checking if the neighbor v of u belongs to C(p′) (lines 21
–22). Next, the algorithm joins the label lifespan of both u, v with IP and then with
their edge lifespan (line 23). The reason is that, it has to identify in which time
instances u and v are connected with the correct labels as defined by the pattern
nodes p and p′ respectively. T_J ignores all neighboring nodes v of node u for
which the resulting duration I is less than the current duration ϑ. Note that, although
RC checks for the duration of the lifespans of the labels and edges of
the candidate nodes, it does not ensure that all edges of a found match are active
at the same time instants. This is the reason why when a pattern match is found,
Algorithm 4.3 checks for its duration in IP (lines 1 – 5).

In the end of the procedure, the new set C ′ is returned with all nodes that are
appropriate neighbors of u, otherwise an empty set is returned and node u is removed
(lines 6 – 7).
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Algorithm 4.4 RC(V GI , P , C , ϑ, IP)
Input: Version graph V GI , pattern P , candidate sets C , duration threshold ϑ, set of

intervals IP
Output: Candidate sets C after reduction
1: for each p ∈ VP do
2: for each (p, p′) ∈ EP do
3: C ′p′ ← ∅
4: for each u ∈ C(p) do
5: Cu(p

′)← T_J(p, u, p′)
6: if Cu(p

′) = ∅ then
7: C(p).remove(u)

8: else
9: C ′p′ ← C ′p′ ∪ Cu(p

′)

10: end if
11: end for
12: if C ′p′ = ∅ then
13: return ∅
14: end if
15: C(p′)← C ′p′

16: end for
17: end for
18: return C

19: procedure T_J(p, u, p′)
20: C ′ ← ∅
21: for each (u, v) ∈ EI do
22: if v ∈ C(p′) then
23: I ← IP ⊗ Lu.label(p) ⊗ Lv.label(p′) ⊗ Le((u, v))

24: if |I| ≥ ϑ then
25: C ′.add(v)

26: end if
27: end if
28: end for
29: return C ′

30: end procedure
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4.7 Experimental Evaluation

In this section, we evaluate: (i) the efficiency of our durable graph pattern matching
algorithm and (ii) the effectiveness of our approach in discovering interesting durable
patterns.

4.7.1 Datasets and Setting

We use a number of real datasets. The  [23] datasets include publications in time
interval [1959, 2016], where each graph snapshot corresponds to one year. A node
denotes an author and there is an edge between two authors if they wrote a paper to-
gether in the corresponding year. We use two datasets: DBLP and DBLPC . In DBLP,
we include all publications in the  dataset and assign labels to authors based
on the number of their publications, pub_no, at the corresponding year. Specifically,
a label takes 4 different values: B, if 1 ≤ pub_no ≤ 2; J, if 2 < pub_no
≤ 5; S, if 5 < pub_no ≤ 10; and P, if pub_no > 10. In DBLPC , we include
publications in 19 major database, data mining, computer systems, theory, network,
and graphics conferences. Authors are labeled by the venues they published at the
corresponding year.

We also use a YouTube () [33] and a Wiki-talk1 (W) datasets in time intervals
[1, 37], and [1, 1000] respectively. For both  and W, each snapshot corresponds
to one day. Since, these datasets do not contain any other information besides the
graph structure, we generate 10 different labels and assign them to nodes using a
Zipf distribution. For example, labels in W can refer to the expertise, language,
nationality, region, and number of edits of a user. Using a larger number of labels
would only make the problem easier due to smaller candidate sizes. In addition,
we use two biological networks [59] namely  and . The  dataset con-
sists of 40,000 instances where each instance denotes a topological structure of a
molecule. The  dataset consists of 200 instances where each instance represents
relationships among amino acids. The  and  datasets have 62 and 21 unique
label values, respectively. Finally, we use synthetic datasets with varying number of
nodes and snapshots, one random () and one () generated using preferential
attachment [60]. All synthetic datasets have 5 labels assigned using Zipf distribution.

The , biological and synthetic networks are undirected graphs, while  and
1https://doi.org/10.5281/zenodo.49561
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W are directed graphs. The dataset characteristics of the real datasets and the
default synthetic datasets are summarized in Table 4.1. The number of nodes and
edges are those of the LVG.

We ran our experiments on a system with an Intel Core i7-3820 3.6 GHz processor
using 64 GB memory. We use all 8 threads for index construction and one thread
for query processing. The code used in our experiments is publicly available2.

Table 4.1: Dataset characteristics.

Dataset # Nodes # Edges # Labels # Instances

DBLP 1,167,796 4,919,780 4 58
DBLPC 42,060 141,899 19 58
 1,138,499 4,452,646 10 37
W 2,987,535 9,379,561 10 1,000
 245 11,792 62 40,000
 883 52,608 21 200

 (default) 100,000 2,723,856 5 100
 (default) 100,000 3,265,747 5 100

Table 4.2: Size in memory (MB).

Dataset LVG VL TNLB (cprsn) CTNLB (cprsn) TPLB (cprsn)

DBLP 1,512 149 467 (16.46%) 1,037 (59.43%) 335 (90.49%)
DBLPC 73 14 17 (56.41%) 39 (71.53%) 19 (81%)
 1,667 3,104 694 (10.22%) 734 (85.47%) 781 (97.13%)
W 5,123 10,299 770 (29.68%) 1.828 (92.04%) 1.299 (95.13%)
 129 149 32 (41.82%) 246 (89.55%) 11 (98.35%)
 20 5 2.73 (9%) 15 (88.64%) 41 (96.38%)4
 294 597 82 (3.53%) 326 (87.86%) 98 (97.03%)
 553 596 110 (22.72%) 393 (95.93%) 163 (97.78%)

2https://github.com/ksemer/DurableGraphPatterns
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Table 4.3: Construction time (sec).

Dataset LVG VL TNLB TNL CTNLB CTNL TPLB TPL

DBLP 21.32 3.18 16.35 6.12 38.46 10.43 553 72.39
DBLPC 0.65 0.69 0.03 0.32 1.91 1.07 22.33 2.18
 16.67 29.33 15.32 8 36.65 26.2 2,552 6,265
W 49.61 25.32 71.63 17.61 5,419 155.45 3,539 1,263
 1.80 0.08 3.94 0.41 36.39 23.69 84.19 15.97
 0.99 0.01 0.70 0.1 2.38 1.3 6.69 11.44
 8 4 7.52 3.85 28.22 6.24 23.46 41.54
 19 4 8.42 3.88 48.23 9.03 58.16 104.65

4.7.2 Time Indexes Storage and Construction

In this set of experiments, we report the size and time needed to construct the various
time indexes. We use as default the compressed version of the indexes and compare
their performance with their uncompressed counterparts, since the compressed in-
dexes are space efficient and achieve similar query performance. The size of the
Bloom filters is set so as to achieve a false positive rate of 1%. We use for TNLB
and CTNLB, r = 1 and for TPLB, λ = 3 and present experiments for different
values.

Size. In Table 4.2, we report the size of LVG and the size of the various indexes.
LVG is our in-memory representation of the evolving graph. Comparing the size of
the various indexes, CTNLB is overall the most expensive one due to the use of
counters. Although TPLB maintains all paths (up to length λ = 3) per time instant,
the use of Bloom filters make it space efficient. Comparing the different datasets, note
that the size of TPLB for the  dataset is larger than DBLP since  nodes and
edges are active during all time instances, whereas DBLP is more active in the last
20 years in the interval. Thus, for each time instant of , all nodes are assigned to
label paths resulting in a larger structure. Although, W has the largest number of
instances (almost 30 times more than ), the corresponding indexes are only 2-3
times larger. For the biological networks, the neighborhood time indexes for  are
larger that those for  and this is due to the large number of instances of .
TPLB in  is larger than  because  contains smaller graphs with much
fewer paths compared to .
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In Table 4.2, we also report the compression rate achieved by using the compressed
indexes over using the uncompressed indexes. We observe that the reduction in size
is significant especially for costly indexes such as CTNL and TPL.

Construction time

As shown in Table 4.3, the construction of VL is the fastest one, because it links
only each node with the corresponding label for each time instant. TNLB requires
time for checking the labels of the neighbors of each node for each time instant. Since
W has a large number of instants CTNLB require almost 2 hours to be created,
since for each time instant we have to check a very large number of neighbors. The
TPLB construction is also expensive in all datasets, because it has to perform a
traversal from each node and compute label paths for each time instant. Also notice
that constructing TPLB for  requires more time than for  even if it leads to
a smaller structure, and this is due to the large number of instances in  dataset
that need to be examined for label paths.

In Table 4.3, we also report the construction time for the uncompressed indexes.
Compression introduce overhead, which is however justified by the reduction in stor-
age and the fact that the indexes are constructed once.

(a)  (b) 

(c)  (d) 

Figure 4.4: Index size for varying (a)(c) size of nodes, and (b)(d) number of snapshots.
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Scalability

We also test the scalability of the indexes in terms of both the size of the graphs and
the number of snapshots using the synthetic datasets. For testing scalability with size,
we create an initial graph snapshot G1 with N nodes (for N = 100,000 up to 500,000)
either using a random () or a preferential attachment () model. Then for each
graph, we create 100 snapshots as follows. Given Gt, we create Gt+1 be deleting 10%
random edges in Gt, and adding 10% of new edges. The addition of edges is done
using the corresponding model. The results of the indexes of the created evolving
graphs are shown in Figure 4.4(a) and 4.4(c). All indexes scale linearly with the
number of nodes, while the increase for TPLB and TNLB is very small.

For testing scalability with the number of graph snapshots, we create an initial
graph G1 with 100,000 nodes and then create T = 100 up to 500 snapshots as
described previously. We report the results in Figure 4.4(b) and 4.4(b). The results
are similar as with the number of nodes. Scalability with time is also linear with the
number of nodes and the number of snapshots.

4.7.3 Graph Pattern Query Processing

Let us now focus on processing durable graph pattern queries. As our default pattern
queries, we use two type of queries: (a) random graph pattern queries, and (b) clique
queries where all nodes have the same label.

Random graph pattern queries are generated as follows. For a random query of
size n, we select a node randomly from the graph and keep among its label the one
having the largest lifespan duration. Then, starting from this node, we perform a DFS
traversal keeping for each visited node the label with the largest lifespan duration
until the required number n of nodes is visited. We use as our pattern, the graph
created by the union of visited labeled nodes and traveled edges. We report the
average performance of 100 random queries for each size n.

In terms of clique queries, in the DBLP dataset, we have four label cliques. This
gives us pattern queries with varying selectivities among them the B cliques
have the largest number of matches and the P cliques the smallest. Similarly, for
the  and W datasets, we get 10 different cliques. Let us call M and L the
cliques with nodes having the most and the least frequent label, respectively. We get
similar cliques for the other datasets.
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Table 4.4: Comparison with the baseline algorithm.

Most durable (sec) Top-k durable (sec)
Dataset Q. Size Baseline VL Baseline VL

DBLP 2 >5,400 3.01 >5,400 3.18
DBLP 4 >5,400 14.08 >5,400 10.23
DBLP 6 >5,400 161.07 >5,400 111.15

DBLPC 2 3.08 0.006 3.24 0.008
DBLPC 4 3.84 0.11 4.23 0.031
DBLPC 6 2.97 0.157 3.74 0.404

 2 >5,400 4.08 >5,400 4.08
 4 >5,400 6.79 >5,400 6.58
 6 >5,400 12.73 >5,400 12.90

W 2 >5,400 3.28 >5,400 2.86
W 4 >5,400 5.26 >5,400 4.58
W 6 >5,400 120.14 >5,400 108.80

 2 38.53 0.98 41.56 0.94
 4 31.77 1.15 32.91 1.06
 6 27.34 1.38 29.32 1.36

As query interval, we use the whole duration of the evolving graph. We limit our
algorithm to get the first 1,000 durable matchings for frequent patterns. In case of
durable top-k durable queries we use 10 as the default k value. We only report the
response time of collective-time queries, since, in all cases, contiguous-time queries
are processed much faster by our algorithm because of the more effective pruning
of candidate sets due to the constraint of the consecutive time instances. We use as
default the MR duration strategy.

Comparison with the baseline algorithm

Let us first compare the performance of our algorithm with the baseline. In this
experiment, we use just VL, the most basic time index. Table 4.4 reports the results
for random queries for most and top-k durable queries. Since the baseline algorithm
needs to generate all matching patterns, it is prohibitively slow. In many cases, we
had to stop the baseline after 1.5h. As shown, the baseline algorithm takes less than
1.5h only for small datasets or datasets with selective query patterns, i.e., for query
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(a) (b) (c)

Figure 4.5: Query time for random most durable queries for varying r for (a) TNLB,
(b) CTNLB, and varying λ for (c) TPLB in DBLP.

patterns with few matches per snapshot. Still our algorithm with the basic time index
is considerably faster in such cases as well. For instance, in DBLPC for small query
sizes, it is up to ∼513x faster than the baseline for both most and top-k durable
queries. Also even for the  dataset, where the graphs are small, the large number
of instances makes baseline ∼30x slower.

We also run the baseline algorithm for finding durable cliques and the results are
similar. In general, the baseline algorithm tends to generate many redundant matches
even for selective queries. (e.g., for the P 2-clique query, the baseline approach
generates a total of 62,302 matches, whereas there is only one durable match).

Varying r and λ

Figure 4.5, shows the impact of parameters r (TNLB, CTNLB) and λ (TPLB)
for DBLP. We observe that increasing radius r for TNLB and CTNLB does not
improve performance. We examined this behavior and found that the additional
checks in each neighborhood do not reduce the search space satisfactorily and thus
the overhead induced by these checks leads to larger response times. TPLB seems
to perform better as we increase λ, since there is a huge decrease in search space. We
did not examine larger values for λ because it was prohibitively expensive for our
graphs due the very large number of different paths. Similar observations have been
made for the other datasets and thus we use r = 1 for TNLB (CTNLB) and λ = 3

for TPLB as default values.

Duration threshold

In this set of experiments, we compare the different strategies for setting the duration
threshold. The results for DBLP and  using the MR and MB strategies
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(a) (b) (c) (d)

Figure 4.6: Query time for random most durable queries using MR in (a) DBLP
and (c) , and MB in (b) DBLP, and (d) .

(a) (b) (c) (d)

Figure 4.7: Query time for random top-k queries using MR in (a) DBLP and
(c) , and MB in (b) DBLP, and (d) .

(a) (b) (c) (d)

Figure 4.8: Query time for most durable clique queries: (a) BEGINNER in DBLP, (b)
PROF in DBLP, (c) MOST in  and (d) LEAST in , note that for cliques of size 12
in DBLP, the plot is limited to 900 secs, the actual time for VLG, TNLB, is 1555,
1548 respectively and for TPLB 1331 secs.

are depicted in Figure 4.6 for most and in Figure 4.7 for top-k durable random
queries. We also report the results for W in Figure 4.9. Results with the M
strategy are not shown, since this strategy requires more than 1.5h in many cases.
This is due to the large size of the candidate sets of M, since setting threshold
ϑ equal to one in the first steps of the algorithm results in searching in all graph
snapshots for durable matches. Similar results hold for cliques queries and the other
datasets.

Overall, the MR strategy outperforms the MB strategy for all datasets
and all but the largest query sizes. This is because MB reduces the ϑ threshold
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(a) (b)

Figure 4.9: Query time for random most durable queries using (a) MR, and (b)
MB in W.

Table 4.5: Number of selected ϑ values and number of recursive calls for TPLB in
DBLP.

MR MB

Q. Size # ϑ # recursions # ϑ # recursions

2 15 3 2 10
4 16 166 4 348
6 19 932 3 2,026
8 19 1,853 3 759
10 19 2,263 3 1,169

at each step in half often producing values far below the actual duration thus creating
large candidate sets and more recursive calls in each step. MB performs better
only for the largest query sizes since for such queries the actual duration of the
matches is small and thus by reducing ϑ at each step in half, MB is able to
reach the correct threshold faster.

In Table 4.5, we present the number of selected ϑ values and the recursive calls
required for returning the most durable cliques in DBLP using MR and MB-
, where the number of recursive calls accounts for the actual cost of the algorithm.
The number of calls is not proportional to the number of ϑ values, since for larger
ϑ values we have smaller candidate sizes. MR selects more ϑ values but these
values are large, whereas ϑ selects fewer but smaller ones.

Overall, MR seems to strike a good balance giving few recursive calls with
high enough ϑ values and we use this strategy as the default one.
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Time indexes

Let us now compare the performance of the different time indexes using the default
MR strategy. Results are shown for most durable random queries in Figure
4.6(a), 4.6(c) and Figure 4.9(a) and for top-k durable random queries in Figure
4.7(a) and 4.7(c). In addition, in Figure 4.8, we depict results for the most and least
selective cliques queries. A first observation is that the relative performance of the
indexes is the same for the most and the top-k random queries. The same observation
was found to hold for top-k clique queries (not shown).

Overall, the indexes that lead to smaller candidate sets and thus achieve more
effective refinement work better. Which index works best depends on the type of
the query. For random queries, TPLB and CTNLB work the best, with TPLB
working better for large networks such as W. On the other hand, for clique queries,
CTNLB outperforms TPLB. The reason is that, since we use cliques with the same
labels, the matches need to have a specific number of neighbors with this label, and
the pruning achieved by CTNLB is substantial. Note also, that the most selecting
queries P and L are considerable faster than the corresponding less selective
ones, B and M respectively. Between the two datasets,  consists of edges
with large lifespan which is an important factor that leads large queries to have
matches with high duration. Thus, the algorithm answers faster the corresponding
queries in  than in DBLP since more steps are required for locating the durable
matches. Finally, in few cases for queries of small size, the reduction in the search
space achieved by the indexes is small and the overhead caused by the extra checks
surpasses the gain from this reduction.

(a) (b)

Figure 4.10: Query time using TPLB for top-k durable queries for various k and
query sizes in DBLP.
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(a) (b)

(c) (d)

Figure 4.11: Query time for random most durable queries for varying (a)(c) size of
nodes, and (b)(d) number of snapshots.

(a) (b)

Figure 4.12: Comparison with the non-compressed indexes for random most durable
queries: in (a) DBLP, and (b) .

For example, in DBLP and for the smallest B cliques VL outperforms
all other indexes. Although, the total recursions using time-neighborhood indexes
are less than using VL, the extra cost of processing the indexes leads to this small
difference in query time.
Varying k. We also run the top-k algorithm using TPLB for various k values.
In Figure 4.10(a), we depict the results for small k values. Overall processing does
not increase with k as long as there are enough matches in the first runs of the
algorithm. Figure 4.10(b) depicts the processing time for larger values of k. Overall
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TPLB seems to be stable in term of query processing time, with a small increase
with k. Results for the other indexes are similar.

Scalability

In this set of experiments, we use synthetic datasets to study the performance of
random most durable queries as we increase the number of nodes and the number of
snapshots in Figure 4.11(a)(c) and Figure 4.11(b)(d) respectively. We observe that for
all time indexes the response time increases linearly with both the number of nodes
and snapshots. In particular, TPLB shows excellent scalability.

Comparison with the non-compressed indexes

We also compare the performance of TNL (CTNL) and TPL versus their com-
pressed versions using random most durable queries in Figure 4.12. Overall, the
compressed indexes are clear winners given the size and their comparable query
performance.

4.7.4 Case Studies

Finding durable graph patterns can reveal interesting information about the datasets.
In this section, we present example results of durable cooperations among authors
using DBLP and biological datasets.

Conferences with durable cliques

In our first study, we use the DBLPC dataset and study the appearance of author
cliques in conferences. To this end, we use clique patterns labeled with the name of
the conference. The results using cliques of various sizes are summarized in Table
4.6. Various observation can be made, for example,  has the most durable cliques
among the database conferences followed by , while in data mining, the most
durable cliques appear in . As expected in theory, cliques are smaller, with 
having both the largest and the most durable cliques.

Some of the authors forming the most durable matches are shown in Table 4.7,
while the top-5 most durable authors in  are shown in Table 4.8.
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Durable pattern in biological datasets

In our last study, we present in Table 4.9 results regarding amino acids using the
 dataset. We study the appearance of different hydrophobic amino acids which
are buried inside the protein molecules hydrophobic cores. We observe that the most
connections to Phenylalanine (F), produce high number of matches. This can be
explained by the fact that phenylalanine is an essential amino acid meaning the body
needs this ingredient and is unable to produce it naturally. In addition, it is used
to biochemically form proteins, coded for by DNA. We also sought durable cliques
of various sizes for all amino acids and we observed that they do not participate in
cliques of size greater than two.

Table 4.6: Author cliques in major cs conferences. Symbol “**” depicts a very large
number (≥ 1000) of matches.
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Table 4.7: Example authors with durable cooperation.

Table 4.8: (a) Top-5 pairs of authors.

Table 4.9: Results from .
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4.8 Related Work

Graph pattern matching in static graphs has been widely studied. To the best of our
knowledge, we are the first to introduce and study the problem of finding durable
graph pattern matches in a graph history. Next, we survey related work on graph
pattern queries in static graphs and on queries in evolving graphs.

Graph Pattern Queries. The problem has been studied first in the theoretical literature
as the subgraph isomorphism problem [48] where it was shown to be NP-complete
[61]. In recent years, many approaches have been proposed to solve the graph match-
ing in reasonable time using various indexing and pruning techniques. We can group
them into two general categories [62].

The first category includes indexing algorithms [51, 48, 50, 59, 63, 64, 65] that find
all embeddings for a given query and data graph. In particular, these algorithms first
capture auxiliary neighborhood information to retrieve for each query node all the
candidate graph nodes that may be part of a match. Then, they prune candidate nodes
that do not meet the required neighborhood properties defined by the query graph
and return the nodes that form a valid graph pattern match. The second category
includes algorithms [49, 52, 53, 54] that process pattern queries by decomposing the
query graph into paths and look for candidate data paths in the graph whose join
produces query matches. According to this classification, our approach is closer to
the first category.

Approaches in both categories use various indexing techniques to accelerate sub-
graph pattern matching. In particular, neighborhood indexes [51, 66] are proposed
for the nodes in the graph where each index contains properties of nodes in the
neighborhood. Combining these indexes with a distance measure, any pair of query
nodes is compared to the data graph nodes in order to locate the query matches.
A different type of index is proposed in [52] where the authors use for each node
the shortest paths from each node in the graph within its k-neighborhood to cap-
ture the local structural information around the node. Then a query graph decom-
position is performed into a set of indexed shortest paths in order to locate can-
didate paths from data graph that cover the original query graph. The approach
in [65] tries to access label frequency information and the frequencies of a triple
(fromLabel, edgeLabel, toLabel). For each pattern query, they weight query graph
edges accordingly and uses these weights to order the search by creating a minimum

77



spanning tree. Finally, the study of [67] identifies a set of key factors that influence
the performance of subgraph isomorphism algorithms and report the construction,
indexing and query processing time of six such methods.

In our work, we are looking for top-k durable matches and we extend our pre-
vious work [57] by considering top-k durable graph pattern queries and introducing
compressed time indexes and various optimizations in selecting appropriate values
for the threshold duration. Previous work has considered top-k graph matches in
different contexts. For example, when there is some weight associated with nodes
or edges, matches are ranked based on their weight [68]. Alternatively, to minimize
overlap among matches, the authors in [56] introduce diversity constraints and look
for the top-k diverse matches of a given query.

4.9 Summary

In this chapter, we introduced the problem of finding the durable matches of an
input pattern, that is, those matches that persist over time, either contiguously or
collectively. We have presented an approach termed DP that efficiently
identifies durable matches by traversing a compact representation of the graph snap-
shots and using a compressed time neighborhood and path indexes for pruning the
number of candidate matches. Finally, we have proposed strategies for estimating
the actual duration of the durable matches to further reduce the search space. Our
extensive experimental evaluation with real datasets demonstrated the efficiency of
our algorithm in finding durable matches.
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C 5

F L D S

5.1 The Aggregate density

5.2 The BFF problem

5.3 The O2BFF problem

5.4 Experimental evaluation

5.5 Related work

5.6 Summary

G , offer a natural model for capturing the interactions and relationships
among entities. But, which of these relationships or interactions are the
most lasting ones? In this chapter, we formalize this question and we design

algorithms that effectively identify such relationships. In particular, given a collection
of graph snapshots, which may correspond to the state of an evolving graph at
different time instances, or the states of a complex system at different conditions, we
introduce the problem of efficiently finding the set of nodes, that remains the most
tightly connected in all snapshots. We call this problem the Best Friends For Ever
(BFF) problem. We formulate the BFF problem as the problem of locating the set of
nodes that have the maximum aggregate density in all snapshots. We provide different
definitions for the aggregate density that capture different notions of connectedness
over time, and result in four variants of the BFF problem.
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We then extend the BFF problem to capture the cases where subsets of nodes are
densely connected for only a subset of the snapshots. Consider for example, a set of
collaborators that work intensely together for some years and then they drift apart,
or, a set of friends in a social network that stop interacting for a few snapshots and
then, they reconnect with each other. To identify such subsets of nodes, we define the
On-Off BFF problem, or O2BFF for short. In the O2BFF problem, we ask for a set
of nodes and a set of k snapshots such that the aggregate density of the nodes over
these snapshots is maximized.

The BFF and the O2BFF problems find many applications. For example, in col-
laboration and social networks, the nodes that belong to lasting dense subgraphs
correspond to well-acquainted individuals. Such individuals can be chosen to form
teams, or organize professional or social events, since usually the success of such
events depends on whether the participants are well-acquainted with each other.
Identifying groups of collaborators or friends may also help in improving our un-
derstanding of such networks. For example, using the DBLP co-authorship graph,
we were able to identify lasting collaborations among authors in database and data
mining conferences. In particular, for a specific definition of aggregate density, we
identified a group of authors that although there was no paper in which they are all
co-authors, they have co-authored papers with each other in many snapshots.

Furthermore, in a network where nodes are words or tags and edges correspond
to their co-occurrences in documents or microposts published during a specific period
of time, identifying BFF nodes may serve as a first step in topic identification, tag
recommendation and other types of analysis. For example, using a Twitter dataset of
tweets published in a period of two weeks, we were able, by locating O2BFFs, to iden-
tify both trending topics and the dates within these two weeks when these topics were
popular. The topics we discovered correspond to real events that attracted attention
world-wide. Yet another application of BFFs is in computer networks. For instance,
locating servers that communicate heavily over time may be useful in identifying
potential attacks, or bottlenecks. Finally, there are many applications in biological
networks. For example, in a protein-interaction network, one could apply the BFF
problem to locate protein complexes that are densely interacting at different states,
thus indicating a possible underlying regulatory mechanism.

We study the complexity of the different variants of the BFF and O2BFF problems.
Two of the BFF variants can be solved optimally, while the O2BFF is NP-hard. We
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propose a generic algorithmic framework for solving our problems, that works in
linear time. Experimental results with real and synthetic datasets show the efficiency
and effectiveness of our algorithms in discovering lasting dense subgraphs. Two case
studies on bibliographic collaboration networks, and hashtag co-occurrence networks
in Twitter validate our approach.

To summarize, we make the following contributions which are also discussed in
[69]:

• We introduce the novel BFF and O2BFF problems of identifying a subset of
nodes that define dense subgraphs in a collection of graph snapshots. To this
end, we extend the notion of density for collection of graph snapshots, and
provide definitions that capture different semantics of density over time leading
to four variants of our problems.

• We study the complexity of the variants of the BFF and O2BFF problems and
propose appropriate algorithms. We prove the optimality, or the approximation
factor of our algorithms whenever possible.

• We perform experiments with both real and synthetic datasets and demonstrate
that our problem definitions are meaningful, and that our algorithms work well
in identifying dense subgraphs in practice.

The rest of this chapter is structured as follows. In Section 5.1, we provide def-
initions of aggregate density. We introduce the BFF problem and its algorithms in
Section 5.2, and the O2BFF problem and its algorithms in Section 5.3. Our experi-
mental evaluation is presented in Section 5.4 and comparison with related work in
Section 5.5. Section 5.6 concludes the chapter.

5.1 The Aggregate density

We assume that we are given as input an evolving graph G[1,τ ] = {G1, G2, . . . , Gτ}
of τ graph snapshots, where each snapshot Gt = (V,Et), t ∈ [1, τ ], is defined over
the same set of nodes V . We may also have an unordered collection of graphs, for
example, when the snapshots of the evolving graph correspond to graphs collected as
a result of some scientific experiments. An example of an evolving graph with four
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(a) (b) (c) (d)

Figure 5.1: An evolving graph G[1,4] = {G1, . . . , G4} consisting of four snapshots.

snapshots is shown in Figure 5.1. Note that the evolving graph may consists of graph
snapshots with different set of nodes by considering V as their union.

We will now define the notion of density of a set of nodes in an evolving graph.
We start by reviewing two basic definitions of graph density of a set of nodes in a
single graph snapshot [70]. Given an undirected graph G = (V,E) and a node u in
V , let degree(u,G) denote the degree of u in G. Let S ⊆ V be a subset of nodes in the
graph G = (V,E), and let G[S] = (S,E(S)) in G be the induced subgraph for the set
S, where E(S) = {(u, v) ∈ E : u ∈ S, v ∈ S}. We define the average density, da(S,G), of
the set S to be the average degree of the nodes in S, in the induced subgraph G[S]:

da(S,G) =
1

|S|
∑
u∈S

degree(u,G[S]) =
2|E(S)|
|S|

We define the minimum density, dm(S,G), of the set S to be the minimum degree of
any node in S, in the induced subgraph G[S]:

dm(S,G) = min
u∈S

degree(u,G[S]).

Intuitively, for a given set of nodes S and the connections between them in E(S),
dm is defined by a single node, the one that is least connected in the induced subgraph,
while da looks at the average connectivity of the nodes in S. For example, for snapshot
G1 in Figure 5.1, for Sx = {x1, x2, x3, x4}, dm(Sx, G1) = da(Sx, G1) = 3, while for
Sy = {y1, y2, y3, y4, y5}, dm(Sy, G1) = 2 and da(Sy, G1) = 16/5. Between Sx and Sy, Sx

has the highest minimum density, whereas Sy the highest average density. Clearly, dm
is a lower bound for da. From now on, when the subscript of d is ignored, density
can be either da or dm. Abusing the notation, we will sometimes use d(G[S]) to denote
the density d(S,G) of S in G.

To define the density of a set of nodes S on an evolving graph, we need a way to
aggregate the density of a set of nodes over multiple graph snapshots.

Aggregating density sequences: Given an evolving graph G = {G1, . . . , Gτ}, we will
use d(S,G) = {d(S,G1), . . . , d(S,Gτ )} to denote the sequence of density values for the

82



graphs induced by the set S in the graph snapshots. We consider two definitions
for an aggregation function g(d(S,G)) that aggregates the densities over snapshots: The
first, gm, computes the minimum density over all snapshots:

gm(d(S,G)) = min
Gt∈G

d(S,Gt).

The second, ga, computes the average density over all snapshots:

ga(d(S,G)) =
1

|G|
∑
Gt∈G

d(S,Gt).

Intuitively, the minimum aggregation function requires high density in each and every
snapshot, while the average aggregation function looks at the snapshots as a whole.
Again, we use g to collectively refer to gm or ga. We can now define the aggregate
density f .

Definition 5.1 (A D). Given an evolving graph G = {G1, . . . , Gτ} de-
fined over a set of nodes V and S ⊆ V , we define the aggregate density f(S,G)
to be f(S,G) = g(d(S,G)). Depending on the choice of the density function d

and the aggregation function g, we have the following four versions of f : (a)
fmm(S,G) = gm(dm(S,G)), (b) fma(S,G) = gm(da(S,G)), (c) fam(S,G) = ga(dm(S,G)),
and (d) faa(S,G) = ga(da(S,G)).

Each density definition associates different semantics to density among nodes in
an evolving graph. Large values of fmm(S,G) correspond to groups of nodes S where
each member of the group is connected with a large number of other members of the
group at each snapshot. A group ceases to be considered dense if a single node loses
touch with the other members in the group, even for a single snapshot.

Large values of fma(S,G) are achieved for groups with high average density at
each snapshot G ∈ G. Contrary to fmm(S,G), where the requirement is placed at each
member of the group, large values of fma(S,G) are indicative that the group S has
persistently high density as a whole.

The fam(S,G) metric takes the average in time of the minimum degree of the nodes
in group S, thus is less sensitive to the density of S at a single snapshot.

Lastly, the faa(S,G) metric takes large values when the group S has many con-
nections on average; thus, faa is more “loose” both in terms of consistency over time
and in terms of requirements at the individual group member level.
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For example, take Sx and Sy in the evolving graph G[1,4] in Figure 5.1. All aggregate
densities for Sx are equal to 3. However, for Sy, faa(Sy,G) = 31/10, while fma(Sy,G)
= 12/5. That is, while faa(Sy,G) > faa(Sx,G), fma(Sy,G) < fma(Sx,G) due to the last
instance. Note also, that fmm(Sy,G) = 1 due to just one node in just one snapshot, i.e.,
node y4 in the last snapshot, while fam(Sy,G) = 2.

The average graph: Finally, let us define the average graph of an evolving graph G
which is an edge-weighted graph where the weight of an edge is equal to the fraction
of snapshots in G where the edge appears.

Definition 5.2 (A G). Given an evolving graph G = {G1, . . . , Gτ} on a set
of nodes V , the average graph ĤG = (V, Ê, ŵ) is a weighted, undirected graph on the set
of nodes V , where Ê = ∪τi=1Ei, and for each (u, v) ∈ Ê, ŵ(u, v) = |Gt=(V,Et)∈G|(u,v)∈Et|

|G| .

As usual, the degree of a node u in a weighted graph is defined as: degree(u, ĤG) =∑
(u,v)∈Ê ŵ(u, v). The average graph performs aggregation on a per-node basis, in that,

the degree of each node u in ĤG is the average degree of u in time. With the average
graph, we lose information regarding density at individual snapshots. With some
algebraic manipulation, we can prove the following lemma that shows a connection
between the average graph and the faa density function:

Lemma 5.1. Let G = {G1, . . . , Gτ} be an evolving graph over a set of nodes V and S a
subset of nodes in V , it holds: faa(S,G) = da

(
S, ĤG

)
.

5.2 The BFF problem

In this section, we introduce the BFF problem, we study its hardness and propose
appropriate algorithms.

5.2.1 Problem definition

Given the snapshots of an evolving graph G, our goal is to identify a subset of nodes
S ⊆ V (the Best Friends For Ever (BFF) set) that are densely connected in G.
Formally:

Problem 2 (The Best Friends Forever (BFF) Problem). Given an evolving graph G
and an aggregate density function f, find a subset of nodes S ⊆ V , such that f(S,G) is
maximized.
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By considering the four choices for the aggregate density function f , we have four
variants of the BFF problem. Specifically, fmm, fma, fam and faa give rise to problems
BFF-MM, BFF-MA, BFF-AM, and BFF-AA respectively.

5.2.2 BFF algorithms

We now introduce a generic algorithm for the BFF problem. The algorithm (shown
in Algorithm 5.1) is a “greedy-like” algorithm inspired by a popular algorithm for the
densest subgraph problem on a static graph [71, 70]. We use G[S] = {G1[S], . . . , Gτ [S]}
to denote the sequence of the induced subgraphs of the set of nodes S. The algorithm
starts with a set of nodes S0 consisting of all nodes V , and then it performs n − 1

steps, where at each step i it produces a set Si by removing one of the nodes in the
set Si−1. It then returns the set Si with the maximum aggregate density f(Si,G).

Algorithm 5.1 The FBFF algorithm.
Input: Evolving graph G = {G1, . . . , Gτ}; aggregate density function f

Output: A subset of nodes S
1: S0 ← V

2: for i← 1, . . . , n− 1 do
3: vi = arg min

v∈Si−1

score (v,G [Si−1])

4: Si ← Si−1 \ {vi}
5: end for
6: return arg max

i=0...n−1
f(Si,G)

The FBFF algorithm forms the basis for the algorithms we propose for the four
variants of the BFF problem. Interestingly, by defining appropriate scoring functions,
score (v,G [S]), (used in line 3 to select which node to remove), we can get effective
algorithms for each of the variants.

Solving BFF-MM

For the BFF-MM problem, we define the score for a node v in S, scorem, as the
minimum degree of v in the sequence G [S]. That is,

scorem (v,G [S]) = min
Gt∈G

degree (v,Gt [S]) .
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Algorithm 5.2 The scorem algorithm.
Input: Evolving graph G = {G1, . . . , Gτ}
Output: Node with the minimum scorem
1: Lt[d] ← list of nodes with degree d in Gt

2: procedure SAU()
3: for t← 1, . . . , τ do
4: dmint ← smallest d s.t. Lt[d] ̸= ∅
5: end for
6: scorem ← min

t←1,...,τ
dmint

7: t′ ← arg min
t=1,...,τ

dmint

8: u← Lt′ [scorem].get()
9: for each Gt ∈ G do
10: Lt[degree(u, Gt)].remove(u)
11: for each (u, v) ∈ Et do
12: Lt[degree(v, Gt)].remove(v)
13: Et ← Et − (u, v) // update degreev∈V (v,Gt)

14: Lt[degree(v, Gt)].add(v)
15: end for
16: end for
17: V ← V \ {u}
18: return u
19: end procedure

Therefore, at the i-th iteration the FBFF algorithm selects the node vi with the
minimum scorem value. We call this instantiation of the FBFF algorithm FBFFM.
Below we prove that FBFFM provides the optimal solution to the BFF-MM prob-
lem.

Proposition 2. The BFF-MM problem can be solved optimally in polynomial time using
the FBFFM algorithm.

Proof. Let i be the iteration of the FBFFM algorithm, where for the first time, a node
that belongs to an optimal solution S∗ is selected to be removed. Let vi be this node.
Clearly, S∗ ⊆ Si−1, and therefore scorem (vi,G [Si−1]) ≥ scorem (vi,G [S∗]) . Since vi is the
node we pick at iteration i, every node u ∈ Si−1 satisfies: minGt∈G degree(u,Gt[Si−1]) =
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scorem (u,G [Si−1]) ≥ scorem (vi,G [Si−1]) ≥ scorem (vi,G [S∗]). Since this is true for every
node u, this means that Si−1 is indeed optimal and that our algorithm will find it. �

The running time of FBFFM is O(nτ + M), where n = |V |, τ the number of
snapshots in the history graph and M = m1+m2+ . . .+mτ the total number of edges
that appear in all snapshots. The node with the minimum scorem value is computed
by the procedure SAU shown in Algorithm 5.2, which also removes the
node and its edges from all snapshots. For each snapshot Gt, we keep the list of
nodes Lt[d] with degree d (line 1 in Algorithm 5.2); these lists can be constructed in
time O(nτ +M). Furthermore, each position of the list Lt[d] points to a hash-based
data structure which stores nodes with degree d in order to handle additions and
deletions in constant time. Given these lists, the time required to find the node with
the minimum scorem is O(τ) (lines 3 – 8). Finding the minimum degree dmint for each
snapshot Gt at each step of the algorithm takes constant time, as the minimum degree
can only decrease by at most one in each Gt. Now in all snapshots, the neighbors of
the removed node need to be moved from their position in the τ lists (lines 9 – 16);
the degree of every neighbor of the removed node is decreased by one. Throughout
the execution of the algorithm at most O(M) such moves can happen. Therefore, the
total running time of FBFFM is O(nτ +M). Note that an algorithm that iteratively
removes from a graph G the node with the minimum degree was first studied in [71]
and shown to compute a 2-approximation of the densest subgraph problem for the
da(G) density in [70] and the optimal for the dm(G) density in [72].

Solving BFF-AA

To solve the BFF-AA problem, we shall use the average graph ĤG of G. Lemma 5.1
shows that faa(S,G) = da

(
ĤG [S]

)
. Thus, based on the results of Charikar [70] and

Goldberg [73], we conclude that:

Proposition 3. The BFF-AA problem can be solved optimally in polynomial time.

Although there exists a polynomial-time optimal algorithms for BFF-AA, the com-
putational complexity of these algorithms (e..g., O(|V ||Ê|2) for the case of the max-
flow algorithm in [73]), makes them hard to use for large-scale real graphs. Therefore,
instead of these algorithm we use the FBFF algorithm, where we define the score
of a node v in S, scorea, to be equal to its average degree of v in evolving graph G[S].
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That is,
scorea (v,G [S]) =

1

|G|
∑
Gt∈G

degree (v,Gt [S]) .

At the i-th iteration, we select the node vi with the minimum average degree in G[S].
We will refer to this instantiation of the FBFF, as FBFFA. Using Lemma 5.1
and the results of Charikar [70] we have the following:

Proposition 4. FBFFA is a 1
2
-approximation algorithm for the BFF-AA problem.

Proof. It is easy to see that FBFFA removes the node with the minimum density
in ĤG[S]. Charikar [70] has shown that an algorithm that iteratively removes from a
graph the node with minimum density provides a 1

2
-approximation for finding the

subset of nodes that maximizes the average density on a single (weighted) graph
snapshot. Given the equivalence we established in Lemma 5.1, FBFFA is also a
1
2
-approximation algorithm for BFF-AA. �

Using list of nodes with average degree d similarly to Algorithm 5.2 but on the
average graph, we can efficiently find the minimum scorea value and achieve an O(nτ+

M) total running time for FBFFA.

Solving BFF-MA and BFF-AM

We prove the following theorem of the complexity of the BFF-AM problem.

Theorem 5.1. The BFF-AM problem is NP-hard.

Proof. The reduction is from the k-C problem, which, given a graph G, asks
if the graph contains a clique of size at least k. The decision version of BFF-AM,
given an evolving graph G = {G1, . . . , Gτ}, asks if there exists a subset of nodes S

fam(S,G) ≥ θ for some value θ.
Given a graph G = (V,E) with |V | = n nodes that is input to the k-C problem,

we construct an evolving graph G with τ = n snapshots. All snapshots are defined
over the vertex set V . There is a snapshot Gi for each node i ∈ V , consisting of a
star-graph with node i as the center, and edges to all the neighbors of i in G. We
will prove that there exists a clique of size at least k in graph G if and only if there
exists a set of nodes S with fam(S,G) ≥ k/n. The forward direction is easy; if there
exists a subset of nodes S in G, with |S| ≥ k, that form a clique, then for this set of
nodes S, dm(S,Gi) = 1 for all i ∈ S; therefore, fam(S,G) ≥ k/n. To prove the other
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direction, we observe that all our snapshots consist of star graphs, and a collection
of disconnected nodes. Given a set S, dm(S,Gi) = 1, if i ∈ S and all nodes in S are
connected to the center node i, and zero otherwise. Therefore, if fam(S, Ck) ≥ k/n,
then this implies that dm(S,Gi) = 1 for k snapshots Gi ∈ G, which means that the
k centers of the star graphs in these snapshots belong to S and they are connected
to all nodes in S. Therefore, all nodes in S are connected to the k star centers, and
hence the k star centers for a clique of size k in the graph G. �

The complexity of BFF-MA is an open problem. Jethava and Beerenwinkel [74]
conjecture that it is NP-hard, yet they do not provide a proof.

We consider the application of FBFFM and FBFFA algorithms for the two
problems. In the following propositions, we prove that the two algorithms cannot
guarantee a good approximation ratio for all inputs for any of the two problems.
Recall that all our problems are maximization problems, and, therefore, the lower
the approximation ratio, the worse the performance of the algorithm. We construct
instances of the problems for which the algorithms achieve approximation ratio that
can be arbitrarily small as a function of the input size.

Proposition 5. The approximation ratio of algorithm FBFFM is at most O
(
1
n

)
, for the

BFF-AM problem, and at most O
(

1√
n

)
, for the BFF-MA problem, where n is the number

of nodes.

Proof. The intuition behind the proof is to construct an input where there is a dense
set of nodes A in the evolving graph G = {G1, ..., Gτ} that maximizes the density, but
the nodes of the set have low degree in a single snapshot. FBFFM will remove the
nodes from this set, and thus never return it as a candidate solution.

For the BFF-AM problem, we construct a counter-example graph sequence as
follows. The first τ − 1 snapshots consist of a set A with n− 1 nodes that form a full
clique, plus an additional node v that is connected with a single node u in A. The last
snapshot consists of just the edge (v, u). In the first n− 2 iterations of the FBFFM
algorithm, the node with the minimum minimum degree is one of the nodes in A

(other than the node u). Thus the nodes in A will be iteratively removed, until we
are left with the edge (u, v). Since node v is present in all intermediate subsets Si, the
minimum degree in all snapshots Gt is 1. Therefore, the solution S of the FBFFM
algorithm has fam(S) = 1. On the other hand clearly the optimal solution S∗ consists
of the nodes in A, where we have minimum degree n− 2, except of the last instance
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where the minimum degree is zero. Therefore, f(S∗) = (n− 2) τ−1
τ

which proves our
claim.

For the BFF-MA problem, we construct a counter-example graph sequence as
follows. We have τ = m snapshots that are all identical. They consist of two sets
of nodes A and B of size m and m2 respectively. The nodes in B form a cycle.
The nodes in A in graph snapshot Gt form a clique with all nodes except for one
node vt, different for each snapshot. The optimal set S∗ consists of the nodes in A,
that have average degree (m−1)(m−2)

m
= Θ(m). The FBFFM starts with the set of

all nodes. The average degree of any snapshot is 2m2+(m−1)(m−2)
m2+m

= Θ(1), which is
also the value of the fma(V ) function. In the first m iterations of the algorithm, the
nodes in A have scorem(v, Si) = 0, so these are the ones to be removed first. Then
the nodes in B are removed. In all iterations the average degree in each snapshot
remains O(1). Therefore, the set S returned by the FBFFM has fma(S) = Θ(1), and
the approximation ratio is Θ

(
1
m

)
. Since m =

√
n, this proves our claim. �

Proposition 6. The approximation ratio of algorithm FBFFA is at most O
(
1
n

)
for the

BFF-AM problem, and at most O
(

1√
n

)
, for the BFF-MA problem, where n is the number

of nodes.

Proof. For the BFF-AM problem, we construct the evolving graph G = {G1, ..., Gτ},
where τ is even, as follows. Each snapshot Gt contains n = 2b + 3 nodes. The 2b

of these nodes form a complete b × b bipartite graph. Let u, v, and s denote the
additional three nodes. Node s is connected to all nodes in the graph, in all snapshots,
except for the last snapshot where s is connected only to u and v. Nodes u and
v are connected to each other in all snapshots, and node u is connected to all 2b
nodes of the bipartite graph in the first τ/2 snapshots, while node v is connected
to all 2b nodes of the bipartite graph in the last τ/2 snapshots. Throughout assume
that τ ≥ 2. Note that the optimal set S∗ for this history graph consists of the 2b

nodes in the bipartite graph, with fam(S
∗,G) = b = Θ(n). The score scorea for every

node w of the 2b nodes in the bipartite graph is scorea(w,G) = b + 1 + τ−1
τ
. For

the nodes u and v, we have scorea(u,G) = scorea(v,G) = 2bτ/2+2τ
τ

= b + 2. Node s

has score scorea(s,G) = 2b τ−1
τ

+ 2. Therefore, in the first iteration, the algorithm will
remove one of the nodes of the bipartite graph. Without loss of generality assume
that it removes one of the nodes in the left partition. Now, for a node w in the
left partition, we still have that scorea(w,G[S1]) = b + 1 + τ−1

τ
. For a node w in the
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right partition we have that scorea(w,G[S1]) = b + τ−1
τ
. For nodes u and v we have

scorea(u,G[S1]) = scorea(v,G[S1]) = (2b−1)τ/2+2τ
τ

= b + 3
2
. For node s we have that

scorea(s,G[S1]) = (2b− 1) τ−1
τ

+ 2. Therefore, in the second iteration the algorithm will
select to remove one of the nodes in the right partition. Note that the resulting graph
G[S2] is identical in structure with G, with n = 2(b− 1)+3 nodes. Therefore, the same
procedure will be repeated until all the nodes from the bipartite graph are removed,
while nodes u and v will be kept in the set until the last iterations. As a result, the set
S returned by FBFFA has fam(S,G) = 2 (the degree of the nodes u and v), yielding
approximation ratio O

(
1
n

)
.

For the BFF-MA problem, we construct the evolving graph G = {G1, ..., Gτ} as
follows. We have τ = m snapshots that are all identical, except for the last snapshot
Gm. The snapshots G1, ..., Gm−1 consist of two sets of nodes A and B that form two
complete cliques of size m and m2 respectively. In the last snapshot the nodes in B are
all disconnected. The optimal set S∗ consists of the nodes in A, that have fma(A) =
m(m−1)

m
= Θ(m−1). The FBFFA starts with the set of all nodes. The value of fma(V )

is determined by the last snapshot Gm that has average degree m(m−1)
m2+m

= Θ(1). The
nodes in A have average degree (over time) m(m−1)

m
= Θ(m), while the nodes in B have

average degree (m−1)(m2−1)
m

= Θ(m2). Therefore, the algorithm will iteratively remove
all nodes in A. In each iteration the resulting set Si has fma(Si) = O(1). When all
the nodes in A are removed, we have that fma(Si) = 0. Therefore, the approximation
ratio for this instance is Θ( 1

m
). Our claim follows from the fact that n = m2 +m. �

Given that FBFFA and FBFFM have no theoretical guarantees, we also inves-
tigate a greedy approach, which selects which node to remove based on the objective
function of the problem at hand. This greedy approach is again an instance of the
iterative algorithm shown in Algorithm 5.1. More specifically, for a target function f

(either fam or fma), given a set Si−1, we define the score scoreg(v,G[Si]) of node v ∈ Si

as follows:
scoreg(v,G[Si−1]) = f (Si−1,G)− f (Si−1 \ {v},G) .

At iteration i, the algorithm selects the node vi that causes the smallest decrease, or
the largest increase in the target function f . We refer to this algorithm as FBFFG.
FBFFG complexity is O(n2τ+nM) since it requires to check all nodes when choos-
ing which node to remove at each step (shown in Algorithm ).
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5.3 The O2BFF problem

In this section, we relax the requirement that density is computed over all snapshots
of the evolving graph. Instead, we ask for a set of k snapshots and a set of nodes such
that the aggregate density over these snapshots is maximized. We call this problem
On-Off BFF (O2BFF) problem. We formally define O2BFF, we show that it is NP-hard,
and develop two general types of algorithms for efficiently solving it in practice.

5.3.1 Problem definition

In the O2BFF problem, we seek to find a collection Ck of k graph snapshots, and a
set of nodes S ⊆ V , such that the subgraphs induced by S in Ck have high aggregate
density. Formally, the O2BFF problem is defined as follows:

Problem 3 (The On-Off BFF (O2BFF) Problem). Given an evolving graph G = {G1,
G2, . . . , Gτ}, an aggregate density function f, and an integer k, find a subset of nodes
S ⊆ V , and a subset Ck of G of size k, such that f (S, Ck) is maximized.

As with the BFF problem, depending on the choice of the aggregate density func-
tion f , we have four variants of the O2BFF problem, namely O2BFF-MM, O2BFF-MA,
O2BFF-AM and O2BFF-AA.

Note that the subcollection of graphs Ck ⊂ G does not need to consist of contiguous
graph snapshots. If this were the case, then the problem could be solved easily by
considering all possible contiguous subsets of [1, τ ] and outputting the one with the
highest density. However, all four variants of the O2BFF become NP-hard if we drop
the constraint for consecutive graph snapshots.

Theorem 5.2. The O2BFF problem is NP-hard for any definition of the aggregate density
function f .

Proof. For all aggregate density functions, the reduction is from the k-C problem,
which, given a graph G, asks if the graph contains a clique of size at least k. The
decision version of O2BFF, given an evolving graph G = {G1, . . . , Gτ}, asks if there
exists a subset of nodes S and a subset Ck of k snapshots, such that f(S, Ck) ≥ θ for
some value θ.

The reduction differs depending on the definition of f . In the case of fmm and
fam, the construction and proof is the same as that of Theorem 5.1. Given a graph
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G = (V,E) with |V | = n nodes that is input to the k-C problem, we construct
an evolving graph G with τ = n snapshots, where snapshot Gi is a star-graph with
node i as the center, and edges to all the neighbors of i in G.

We will prove that there exists a clique of size at least k in graph G if and only if
there exists a set of nodes S and a subset Ck ⊆ G of k snapshots, with f(S, Ck) ≥ 1.
The forward direction is easy; if there exists a subset of nodes S in G, with |S| ≥ k,
that form a clique, then selecting this set of nodes S, and a subset Ck of k snapshots
that correspond to nodes in S will wield fmm(S, Ck) = fam(S, Ck) = 1. This follows from
the fact that every snapshot is a complete star where dm(S,Gi) = 1 for all Gi ∈ Ck. To
prove the other direction, we observe that all our snapshots consist of a star graph,
and a collection of disconnected nodes. Given a set S, dm(S,Gi) = 1, if i ∈ S and
all nodes in S are connected to the center node i, and zero otherwise. Therefore, if
fmm(S, Ck) = 1 or fam(S, Ck) = 1, then this implies that dm(S,Gi) = 1 for all Gi ∈ Ck,
which means that the k centers of the graph snapshots in Ck are connected to all
nodes in S, and hence to each other. Therefore, they form a clique of size k in the
graph G.

In the case of faa and fma the construction proceeds as follows: given the graph
G = (V,E), with |E| = m edges, we construct an evolving graph G = {G1, . . . , Gτ}
with τ = m snapshots. All snapshots are defined over the vertex set V . There is a
snapshot Ge for each edge e ∈ E, consisting of the single edge e.

We will prove that there exists a clique of size at least k in graph G if and only
if there exists a set of nodes S and a subset CK ⊆ G of K = k(k − 1)/2 snapshots,
with f(S, CK) ≥ 1/k. The forward direction is easy. If there exists a subset of nodes
S in G, with |S| = k, that form a clique, then selecting this set of nodes S, and the(
k
2

)
snapshots CK in G that correspond to the edges between the nodes in S will yield

faa(S, CK) = fma(S, CK) = 1/k.
To prove the other direction, assume that there is no clique of size greater or

equal to k in G. Let CK be any subset of K = k(k − 1)/2 snapshots, and let S be the
union of the endpoints of the edges in CK . Since S cannot be a clique, it follows that
|S| = ℓ > k. Therefore, faa(S, CK) = fma(S, CK) = 1/ℓ < 1/k. �
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Algorithm 5.3 The Iterative (ITR) FO2BFF algorithm.
Input: Evolving graph G = {G1, . . . Gτ}; an aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.
1: converged ← False
2: (C0k , S0)← I (G, f)
3: ds0 ← f(S0, C0k)
4: while not converged do
5: Ck ← BS(S0, f)

6: S ← FBFF(Ck, f)
7: ds← f(S, Ck)
8: if ds ≤ ds0 then
9: (S, Ck)← (S0, C0k)
10: Converged ← True
11: else
12: (ds0, S0, C0k)← (ds, S, Ck)
13: end if
14: end while
15: return S, Ck

5.3.2 O2BFF algorithms

We consider two general types of algorithms: iterative and incremental ones. The
iterative algorithms start with an initial solution of the problem and improve it, whereas
the incremental algorithms build the solution incrementally, adding one snapshot at a
time. Next, we describe these two types of algorithms in detail. Note that in each of
the algorithms, depending on which of the O2BFF-MM, O2BFF-MA, O2BFF-AM or
O2BFF-AA problems we are solving, we use the appropriate version of the FBFF
algorithm.

Iterative algorithm

The iterative (ITR) algorithm (shown in Algorithm 5.3) starts with an initial collection
of k snapshots C0k and set of nodes S0 (routine I). At each iteration, given
a set S, ITR finds the best collection of k graph snapshots for S; this is done by
BS. BS computes the density d(S,Gi) of S in each snapshot Gi
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∈ G and outputs the k snapshots Ck with the largest density. Then, given the collection
Ck, the algorithm finds the best set S for Ck, that is, the set S ⊆ V such that f (S, Ck) is
maximized. This step essentially solves Problem 2 on input Ck for aggregate density
function f using the FBFF algorithm. ITR keeps iterating between collections Ck
and dense sets of nodes S until no further iterations can improve the score f (S, Ck).

An important step of the iterative FO2BFF algorithm is the initialization of C0k
and S0. We consider three alternative initializations.
Random initialization (ITRR): In this initialization, we randomly pick k snapshots C0k
from G and use them to produce S0 = FBFF(C0k , f).
Contiguous initialization (ITRC): The motivation behind contiguous initialization is that
in many real world datasets, such as in those modeling collaboration networks that
evolve with time, there is temporal locality. Thus, we expect that the dense subgraphs
will appear in nearby snapshots. Consequently, given G = {G1, . . . , Gτ}, we go over
all the O(τ) contiguous sets of k snapshots from G, and find the set of k snapshots
C0k and corresponding set of nodes S0 that maximize f(S0, C0k).
At least-k initialization (ITRK): With this initialization, our aim is to include in the
initial set S0 the nodes that appear to be densely connected in many snapshots. Thus,
we solve the BFF problem independently in each snapshot Gi ∈ G. This results in τ

sets Si ⊆ V , one for each Gi. S0 includes the nodes that appear in at least k of the
τ sets Si. We also experimented with other natural alternatives, such as the union:
S0 = ∪i=1...τSi and the intersection: S0 = ∩i=1...τSi; the at least-k approach seems to
strike a balance between the two.

The running time of the iterative FO2BFF algorithm is O (I (nτ +M)), where I
is the number of iterations required until convergence, and (nτ +M) comes from the
running time of FBFF, assuming that we use FBFFM or FBFFA (which can
be accordingly modified for FBFFG). In practice, we observed that the algorithm
converges in at most 6 iterations.

Incremental algorithm

The incremental algorithm starts with a collection C2 with two snapshots and in-
crementally adds snapshots to it until a collection Ck with k snapshots is formed.
Then, the appropriate FBFF algorithm is used to compute the most dense subset
of nodes S in Ck. We use two different policies for selecting snapshots. The first one,
termed incremental density (INCD) (shown in Algorithm 5.4), adds snapshots so as to
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Algorithm 5.4 The Incremental Density (INCD) FO2BFF algorithm.
Input: Evolving graph G = {G1, . . . Gτ}; aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.
1: Sij ← FBFF({Gi, Gj}, f), ∀Gi, Gj ∈ G
2: C2 ← arg max

Gi,Gj∈G
f(Sij, {Gi, Gj})

3: for i← 3 ; i ≤ k do
4: for each Gt ∈ G \ Ci−1 do
5: St ← FBFF(Ci−1 ∪ {Gt}, f)
6: end for
7: Gm ← argmax

Gt

f(St, Ci−1 ∪ {Gt})
8: Ci ← Ci−1 ∪ {Gm}
9: end for
10: return S, Ck

maximize density, whereas the second one, termed incremental overlap (INCO) (shown
in Algorithm 5.5), adds snapshots so as to maximize the similarity of their dense
subgraphs.
Incremental density (INCD): To select the pair of snapshots to form the initial collection
C2, we solve the BFF problem independently for each pair of snapshots Gi, Gj ∈ G.
This gives us

(
τ
2

)
dense sets Sij as solutions. We select the pair of snapshots whose

dense subgraph Sij has the largest density (lines 1 – 2). INCD then builds the solution
incrementally in k − 2 iterations by adding at each iteration the snapshot whose
addition maximizes density. Specifically, in the i-th iteration, we construct Ci by adding
to Ci−1 the graph snapshot Gm = argmax

Gt

f(St, Ci−1 ∪ {Gt}), over all Gt in G \ Ci−1.
The running time is O (τ 2(n+M) + kτ (nτ +M)), where the first term is due to the
initialization step (again assuming that we use FBFFM or FBFFA).
Incremental overlap (INCO): Our goal is to find snapshots whose dense subgraphs have
many nodes in common. To form the initial collection C2, we solve the BFF problem
independently in each snapshot Gi ∈ G. This gives us τ different sets Si ⊆ V , where
Si is the most dense subgraph in Gi. The algorithm selects from these τ sets the
two most similar ones, Si and Sj , using Jaccard similarity, and initializes C2 with the
corresponding snapshots Gi and Gj (lines 1 – 2). To form Ci from Ci−1, the algorithm
first solves the BFF problem in Ci−1. Let SC be the solution. Then, it selects from the
remaining snapshots and adds to Ci−1 the snapshot Gm whose dense set St is the most
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Algorithm 5.5 The Incremental Overlap (INCO) FO2BFF algorithm.
Input: Evolving graph G = {G1, . . . Gτ}; aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.
1: Si ← FBFF(Gi, f), ∀Gi ∈ G
2: C2 ← arg max

Gi,Gj∈G

|Si ∩ Sj|
|Si ∪ Sj|

3: for i← 3 ; i ≤ k do
4: SC ← FBFF(Ci−1, f)
5: Gm ← argmax

Gt

|St ∩ SC |
|St ∪ SC |

6: Ci ← Ci−1 ∪ {Gm}
7: end for
8: S ← FBFF(Ck, f)
9: return S, Ck

similar with SC (lines 3 – 7). The running time is O(k (nτ +M)) (again assuming
that we use FBFFM or FBFFA).

Note that the incremental algorithm can be easily modified so as, instead of the
number k of snapshots being an input to the algorithm, an appropriate value of k is
determined in the course of the algorithm. For example, snapshots could be added
to the solution until density drops below a given threshold value.

5.4 Experimental evaluation

The goal of our experimental evaluation is threefold. First, we want to evaluate the
performance of our algorithms for the BFF and the O2BFF problems in terms of the
quality of the solutions and running time. Second, we want to compare the different
variants of the aggregate density functions. Third, we want to show the usefulness
of the problem, by presenting results of BFF’s and O2BFF’s in two real datasets,
namely research collaborators in DBLP and hashtags in Twitter.
Datasets and setting. To evaluate our approach, we use both real and synthetic
datasets. We use six real evolving graphs where the graphs correspond to collab-
oration, computer, and concept networks (summarized in Table 5.1). The DBLP10

dataset [23] contains yearly snapshots of the co-authorship graph in the 2006-2015
interval for 11 top database and data mining conferences. There is an edge between
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Table 5.1: Real dataset characteristics.

Dataset # Nodes # Edges (aver. per snapshot) # Snapshots

DBLP10 2,625 1,143 10
Oregon1 11,492 22,569 9
Oregon2 11,806 31,559 9
Caida 31,379 45,833 122
Twitter 849 100 15
AS 7,716 7,783 733

two authors in a graph snapshot, if they co-authored a paper in the corresponding
year and more than two papers in total. The Oregon11 dataset consists of nine graph
snapshots of autonomous systems (AS) peering information inferred from Oregon
route-views (one snapshot per week), while the Oregon22 dataset includes in addi-
tion to route-views looking glass data and routing registry, all combined. The Caida3

dataset contains 122 AS graphs, derived from a set of route views BGP-table instances.
The Twitter dataset [75] contains 15 daily snapshots from October 27, 2013 to Novem-
ber 10, 2013, where the nodes are hashtags and there is an edge between two nodes
if the corresponding hashtags co-appear in a tweet. The AS4 dataset consists of 733
daily snapshots representing a communication network of who-talks-to-whom from
the BGP (Border Gateway Protocol) logs.

We also use synthetic datasets. In particular, we create graph snapshots using the
forest fire model [76], a well-known model for creating evolving networks, using the
default forward and backward burning probabilities of 0.35. Then, we plant dense
subgraphs in these snapshots, by randomly selecting a set X ⊂ V of the nodes and
creating additional edges between them, different at each snapshot. In all experiments,
we create 100 such evolving graphs and report average values.

We ran our experiments on a system with a quad-core Intel Core i7-3820 3.6 GHz
processor, with 64 GB memory. We only used one core in all experiments.

1https://snap.stanford.edu/data/oregon1.html
2https://snap.stanford.edu/data/oregon2.html
3http://www.caida.org/data/as-relationships/
4https://snap.stanford.edu/data/as.html
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5.4.1 BFF evaluation

In terms of algorithms, for the BFF-MM and BFF-AA problems, FBFFM and
FBFFA provide provably good solutions respectively (as shown in Section 5.2.2),
thus we only consider these algorithms for these problems. For the BFF-MA and
BFF-AM problems, we use all three algorithms, i.e., FBFFM, FBFFA, and
FBFFG. In addition, for the BFF-MA problem, we use the DCS algorithm pro-
posed in [74] for a problem similar to BFF-MA. The DCS algorithm is also an
iterative algorithm that removes nodes, one at a time. At each step, DCS finds the
subgraphs with the largest average density for each of the snapshots. Then, it iden-
tifies the subgraph with the smallest average density among them and removes the
node that has the smallest degree in this subgraph.

Quality of the solution and comparison of the density function definitions

We start with an evaluation of the accuracy of our algorithms along with a com-
parison of the different aggregate densities. Since we do not have any ground truth
information for the real data, we use first the synthetic datasets.

Synthetic datasets. We create 10 graph snapshots with 4, 000 nodes each using the
forest fire model [76]. Then, in each one of the 10 snapshots we plant a dense random
subgraph A with 100 nodes by inserting extra (different at each snapshot) edges with
probability pA. We consider subgraph A as our ground truth. We vary the edge
probabilities from pA = 0.1 to pA = 0.9. In Figure 5.2(a), we report the F measure
for the four aggregate density definitions, when trying to recover A. Recall that F
takes values in [0, 1] and the larger the value the better the recall and precision of
the solution with respect to the ground truth (in this case A). BFF-MM is the most
sensitive measure, since it reports A as the densest subgraph even for the smallest edge
probability. BFF-MA and BFF-AM achieve a perfect F value, for an edge probability
larger than pA = 0.1 and BFF-AA for an edge probability at least pA = 0.3. For
smaller values, these three density definitions locate supersets of A, due to averaging.
All variations of the FBFF algorithms produce the same results.

We now study how the various density definitions behave when there is a second
dense subgraph. In this case, we plant a subgraph A with edge probability pA = 0.5

in all snapshots and a second dense subgraph B with the same number of nodes
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Figure 5.2: Accuracy and density definitions: (a) F -measure for planted graph A, (b)
reported dense subgraph (pA = 0.5, pB = 0.9).

as A and edge probability pB = 0.9 in a percentage ℓ of the snapshots, for different
values of ℓ. Figure 5.2(b) depicts which of two graphs, graph A (shown in blue), or
graph B (shown in yellow), is output by the FBFF algorithms for the different
density definitions. BFF-MM and BFF-MA report A as the densest subgraph, since
these measures ask for high density at each and every snapshot. However, BFF-AM
and BFF-AA report B, when the denser subgraph B appears in a sufficient number
(more than half) of the snapshots. All density definitions and algorithms, recover the
exact set A, or B, at each case.

Table 5.2: Results of the algorithms for the BFF-MM and BFF-AA problems on the
real datasets.

Datasets

BFF-MM

FBFFM Random

fmm size fmm SD

DBLP10 1.0 11 0.01 0.09

Oregon1 14.0 33 0.84 0.37

Oregon2 23.0 75 0.02 0.14

Caida 8.0 17 0.1 0.30

Twitter 0.0 - 0.0 0.0

AS 4.0 15 0.0 0.0

Datasets

BFF-AA

FBFFA Random

faa size faa SD

DBLP10 2.75 8 0.92 0.27

Oregon1 25.73 59 4.43 0.72

Oregon2 47.89 147 7.59 1.06

Caida 33.21 96 5.33 0.36

Twitter 1.38 5 0.0 0.0

AS 16.38 38 2.01 0.49
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Table 5.3: Results of the algorithms for the BFF-MA problem on the real datasets.

Datasets

BFF-MA

FBFFM FBFFA FBFFG DCS Random

fma size fma size fma size fma size fma SD

DBLP10 1.33 3 1.75 8 1.7 61 1.29 14 0.12 0.15

Oregon1 23.7 80 23.86 70 24.05 80 24.05 77 4.75 0.80

Oregon2 44.33 140 45.24 131 45.95 132 44.91 116 6.71 1.24

Caida 13.76 33 12.76 29 15.43 6 15.05 57 0.60 0.53

Twitter 0.04 836 0.29 7 0.62 13 0.05 720 0.0 0.0

AS 8.53 19 6.67 18 9.0 20 8.75 16 0.19 0.11

Table 5.4: Results of the algorithms for the BFF-AM problem on the real datasets.

Datasets

BFF-AM

FBFFM FBFFA FBFFG Random

fam size fam size fam size fam SD

DBLP10 1.0 11 1.7 4 1.0 4 0.23 0.29

Oregon1 14.22 33 15.0 35 2.0 20 0.53 0.33

Oregon2 24.44 63 23.22 44 3.22 461 0.0 0.0

Caida 12.72 20 18.11 36 3.43 311 0.0 0.0

Twitter 0.0 - 1.0 3 1.0 3 0.0 -

AS 7.44 12 9.05 14 3.14 14 0.0 0.0

Real datasets. We also run all algorithms using the real datasets and present the
results in Table 5.2, 5.3, and 5.4. We report the density and the size of the solution.
In addition, to evaluate the quality of the recovered dense subgraphs, we performed
the following randomization test. For each of the real datasets, we create a random
subgraph with the same number of nodes as the recovered subgraph, by initiating
a BFS traversal from a randomly selected node. In Tables 5.2, 5.3, and 5.4, we also
report the density of these subgraphs (average and standard deviation (SD) over 100
tests). For the BFF-MA and BFF-AM problems, we use the size of the solution that
has the highest density.
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Table 5.5: Execution time (sec) of the algorithms for the BFF-MM and BFF-MA
problem on the real datasets.

Datasets
BFF-MM

FBFFM

DBLP10 0.08

Oregon1 0.27

Oregon2 0.36

Caida 2.24

Twitter 0.37

AS 3.49

Datasets
BFF-MA

FBFFM FBFFA FBFFG DCS

DBLP10 0.05 0.03 2.04 0.34

Oregon1 0.24 0.21 48 0.83

Oregon2 0.29 0.47 51.58 1.03

Caida 2.51 2.30 2,519 11.22

Twitter 0.57 0.24 2.81 0.47

AS 2.82 2.16 738 17.37

Table 5.6: Execution time (sec) of the algorithms for the BFF-AM and BFF-AA
problems on the real datasets.

Datasets
BFF-AM

FBFFM FBFFA FBFFG

DBLP10 0.05 0.08 1.58

Oregon1 0.48 0.57 131

Oregon2 0.58 0.65 117.58

Caida 6.31 5.97 1,652

Twitter 0.85 0.28 2.65

AS 9.29 10.43 470

Datasets
BFF-AA

FBFFA

DBLP10 0.04

Oregon1 0.28

Oregon2 0.48

Caida 2.14

Twitter 0.52

AS 2.64

As expected, the density of the random “BFS” graph is orders of magnitude
smaller than the density of the graph recovered by our algorithms. Note also, that the
value of the aggregate density (independently of the problem variant) is larger for
the more dense datasets. For BFF-MM problem we observe that the solutions usually
have small cardinality compared to the solutions for the other problems, since the
fmm objective is rather strict (the solution for Twitter was empty). The solutions for
BFF-MM problem in the autonomous-system datasets appear to have higher fmm

scores. This may be due to the fact that there are larger groups of nodes with lasting
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connections in these datasets, e.g., nodes that communicate intensely between each
other during the observation period.

Comparison of FindBFF alternatives for BFF-MA and BFF-AM

As shown in Table 5.3, for the BFF-MA problem, FBFFG and FBFFA perform
overall the best in all datasets producing subgraphs with large fma values. FBFFA
performs slightly worse than FBFFG only in the Caida dataset. In the Caida dataset,
due probably to the large number of snapshots, FBFFA – which is based on
the average degree – returns a set with the smallest density. FBFFM and DCS
have comparable performance, since they both remove nodes with small degrees in
individual snapshots. They are both outperformed by FBFFA and FBFFG.

For the BFF-AM problem in Table 5.4, we observe that FBFFA outperforms
both FBFFM and FBFFG. Our deeper analysis of the inferior performance of
FBFFG for this problem revealed that FBFFG often gets trapped in local maxima
after removing just a few nodes of the graph and it cannot find good solutions.

In Table 5.5 and Table 5.6, we report execution times. As expected, the response
time of FBFFG algorithm is the slowest in all datasets, due to its quadratic com-
plexity. For the BFF-MA problem, FBFFA is in general faster than DCS. The
difference in execution times of FBFFM algorithms for the various problems are
due to differences in the computation of the density functions.

Scalability

We also test the scalability of the algorithms in terms of both the size of the graphs
and the number of snapshots using the synthetic datasets. For testing scalability with
size, we create 10 graph snapshots with N nodes (for N = 20,000 up to 100,000).
Then, in each one of the 10 snapshots we plant a dense random subgraph A with 100

nodes by inserting extra (different at each snapshot) edges with probability pA = 0.5.
We consider subgraph A as our ground truth. In Figure 5.3(a), we report the average
execution time (and variance) of the different algorithms for the BFF-MA problem.
The corresponding algorithms have similar performance for the other BFF problems
as well. For testing scalability with the number of graph snapshots, we create T

snapshots of a graph with 50,000 nodes as before, for T = 10 up to 50 snapshots.
We report the average execution time (and variance) in Figure 5.3(b). All algorithms,
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Figure 5.3: Synthetic dataset (pA = 0.5): execution time (log scale) of the differ-
ent algorithms for the BFF-MA problem for varying number of (a) nodes, and (b)
snapshots.

except FBFFG, scale well with both the size of the graph and the number of
snapshots. In terms of accuracy, all algorithms in both cases achieve a perfect F

measure.

Summary

In conclusion, our algorithms successfully discovered the planted dense subgraphs
even when their density is small, with BFF-MM being the most sensitive measure.
Minimum aggregation over densities (i.e., BFF-MM, BFF-MA) requires a dense sub-
graph to be present at all snapshots, whereas average aggregation over densities (i.e.,
BFF-AM, BFF-AA) asks that the nodes are sufficiently connected with each other
on average. For the BFF-MA and BFF-AM problems, FBFFA returns in gen-
eral denser subgraphs than the alternatives (including DCS). Both FBFFA and
FBFFM scale well. They perform similarly for the different density functions with
the differences in running time attributed to the complexity of calculating the respec-
tive functions.

5.4.2 O2BFF evaluation

In this set of experiments, we evaluate the performance of the iterative and incremental
FO2BFF algorithms.
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Figure 5.4: Synthetic dataset (pA = 0.9): F -measure for the: (a) O2BFF-MM (b)
O2BFF-MA, (c) O2BFF-AM, and (d) O2BFF-AA problems.
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Figure 5.5: Synthetic dataset (pA = 0.5, pB = 0.9): F -measure for the: (a) O2BFF-MM
(b) O2BFF-MA, (c) O2BFF-AM, and (d) O2BFF-AA problems.
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Figure 5.6: DBLP10 dataset: aggregate density functions f .

Comparison of the algorithms in terms of solution quality

We start with an evaluation of the quality of the solution produced by the proposed
FO2BFF algorithms.

Synthetic datasets. Similar to before, we plant a dense random graph A in k snap-
shots. We then run the FO2BFF algorithms with the same value of k. In Figure
5.4, we report the average F measure (and standard deviation) for the different val-
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Figure 5.7: Oregon2 dataset: aggregate density functions f .

ues of k expressed as a percentage of the total number of snapshots. For the iterative
FO2BFF algorithm, the at-least-k initialization (ITRK) outperforms the other two,
and it successfully locates A for all four density definitions, when A appears in a suf-
ficient number of snapshots. Non-surprisingly, all initializations work equally well for
average aggregation over time (i.e., O2BFF-AM and O2BFF-AA). For the incremental
FO2BFF algorithm, density (INCD) slightly outperforms overlap (INCO). Overall, the
incremental algorithms achieve highest F , when compared with the iterative ones.

We conduct a second experiment in which we plant a dense random graph A

with edge probability pA = 0.5 in all snapshots and a dense random graph B with
the same number of nodes as A and edge probability pB = 0.9 in k snapshots. In
Figure 5.5, we report the average F measure (and standard deviation) assuming that
B is the correct output for the O2BFF problem for different values of k expressed
as a percentage of the total number of snapshots. Again, by comparing the different
initializations for the iterative FO2BFF algorithm, we observe that among the it-
erative algorithms, ITRK successfully locates B for all four density definitions, when
B appears in a sufficient number of snapshots. As in the previous experiment, all
initializations work equally well for average aggregation over time. The incremental
algorithms outperform the iterative ones with INCD being the champion, achieving
high F values even when B appears in a few snapshots.

Real datasets. We also apply the FO2BFF algorithms on all real datasets for var-
ious values of k. In Figures 5.6 and 5.7, we report the value of the aggregate density
for DBLP10 and Oregon2 for different values of k, again expressed as a percentage
of the total number of snapshots of the input evolving graph. Results are qualita-
tively similar for the other datasets. Overall, we observed that, in contradistinction
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to the experiments with real datasets, the contiguous initialization (ITRC) of the it-
erative O2BFF-AA algorithm emerges as the best algorithm in many cases, slightly
outperforming INCD. This is indicative of temporal locality of dense subgraphs in these
datasets, i.e., in these datasets dense subgraphs are usually alive in a few contiguous
snapshots. This is especially evident in datasets from collaboration networks such as
the DBLP datasets. We also notice that the incremental algorithms find solutions with
density very close to that of the iterative algorithms. Finally, we also observe that as
k increases the aggregate density of the solutions decrease. This again is explained
by the fact that often dense subgraphs are only “alive” in a few snapshots.

Convergence and running time

In terms of convergence, the iterative algorithms required 2-6 iterations to converge in
all datasets. In Figure 5.8, we report the execution time of O2BFF algorithms for the
O2BFF-MA problem for the DBLP10, and Oregon2 datasets. Results are qualitatively
similar for the other datasets and O2BFF problems. Both the iterative and incremental
INCO algorithms scale well with k. Comparing between the incremental algorithms,
INCO is up to 6x and 3.5x faster than INCD in the synthetic and the Oregon2 datasets
respectively due to the quadratic complexity of the latter.

Scalability

We also test the scalability of the algorithms in terms of both the size of the graphs and
the number of snapshots using the synthetic datasets. For testing scalability with size,
we create 10 graph snapshots with N nodes (for N = 20,000 up to 100,000). Then,
in each one of the 10 snapshots we plant at half of the snapshots a dense random
subgraph A with 100 nodes each by inserting extra edges with probability pA = 0.9.
We consider subgraph A as our ground truth. We report the average execution time
(and variance) of the different algorithms for the O2BFF-MA problem with k = 50%
in Figure 5.9(a), when trying to recover A. For testing scalability with the number
of graph snapshots, we create T snapshots of a graph with 50,000 nodes for T = 10
up to 50 snapshots, as described previously. We report the average execution time
(and variance) in Figure 5.9(b). In terms of scalability, INCO scales well with both
the number of nodes and snapshots and clearly outperforms INCD.
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Figure 5.8: Execution time of O2BFF algorithms for the O2BFF-MA problem for (a)
the DBLP10, and (b) the Oregon2 datasets.

Summary

In conclusion, all algorithms successfully discovered the planted dense subgraphs
that lasted a sufficient percentage (much less than half) of the snapshots with the
incremental ones being more sensitive. The incremental algorithms outperform the
iterative ones in most cases. Among the incremental algorithms, INCD is slightly better
than INCO. However, given the slow running time of INCD, INCO offers an attractive
alternative. Finally, in datasets consisting of dense subgraphs with temporal locality,
ITRC is a good choice for detecting such graphs.
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Figure 5.9: Synthetic dataset (pA = 0.9): execution time (log scale) of O2BFF-MA
problem for varying number of (a) nodes, and (b) snapshots.
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5.4.3 Case studies

In this section, we report indicative results we obtained using the DBLP10 and the
Twitter datasets. These results identify lasting dense author collaborations and hashtag
co-occurrences respectively.

Lasting dense co-authorships in DBLP10

In Table 5.7, we report the set of nodes output as solutions to the different BFF
problem variants, on the DBLP10 dataset.

First, observe that three authors “Wei Fan”, “Philip S. Yu”, and “Jiawei Han” are
part of all four solutions. These three authors have co-authored only two papers
together in our dataset, but pairs of them have collaborated very frequently over the
last decade. The solutions for BFF-AM and BFF-AA contain additional collaborators
of these authors. For BFF-AA we obtain a solution of 8 authors. Although, this
group has no paper in which they are all co-authors, subsets of the authors have
collaborated with each other in many snapshots, resulting in high value of faa. The
solutions for BFF-MM and BFF-MA contain the aforementioned three authors and
some of their collaborators, but also some new names. These are authors that have
scarce or no collaborations with the former group. Thus, in this case, the solutions
consist of more than one dense subgroups of authors (grouped in parentheses), that
are densely connected within themselves, but sparsely or not connected with others,
while this is not the case for BFF-AM and BFF-AA.

Lasting dense hashtag appearances in Twitter

In Table 5.8, we report results of the O2BFF problem on the Twitter dataset. Note that
the results of the BFF problem on this dataset (as shown in Tables 5.2, 5.3, and 5.4)
are very small graphs, since very few hashtags appear together in all 15 days of the
dataset. As seen in Table 5.8, we were able to discover interesting dense subgraphs
of hashtags appearing in k = 3, 6, and 9 of these days. These hashtags correspond to
actual events (including f1 races, the tpp agreement and wikileaks) that were trending
during that period.

Note also, that for large values of k, we do not get interesting results which is a
fact consistent with the ephemeral nature of Twitter, where hashtags are short-lived.
This is especially true for fmm and fma that impose strict density constraints and as a
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Table 5.7: The BFF solutions for DBLP10 (in parenthesis dense author subgroups).

BFF-MM

(Wei Fan, Philip S. Yu, Jiawei Han, Charu C. Aggarwal), (Lu Qin, Jeffrey Xu Yu, Xuemin Lin),

(Guoliang Li, Jianhua Feng), (Craig Macdonald, Iadh Ounis)

BFF-MA

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal), (Jeffrey Xu Yu, Xuemin

Lin, Ying Zhang)

BFF-AM

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han)

BFF-AA

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal, Mohammad M. Masud,

Latifur Khan, Bhavani M. Thuraisingham)

result the solutions consist of disconnected edges.
For each solution, we also report the selected snapshot dates. As expected there

is time-contiguity in the selected dates, but our approach also captures the interest
fluctuation over time. For example, for the wikileaks topic that is captured in the
dense hashtag set {“wikileaks”, “snowden”, “nsa”, “prism”}, the best snapshots are
collections of contiguous intervals, rather than a single contiguous interval.

When comparing the results of the different variants of the O2BFF problem, we
see that the variants that consider average density over time (i.e., O2BFF-AA and
O2BFF-AM) return much larger solutions than the variants that impose strict density
requirement at each and every snapshot (i.e., O2BFF-MM and O2BFF-MA). For
large k, the returned subgraphs refer to the “wikileaks” topic, while for small k, all
variants, but O2BFF-AM, return subgraphs that refer to the “f1” topic, indicating that
“wikileaks” was loosely trending for a longer period, as opposed to “f1” for which
we get dense subgraphs for smaller periods. O2BFF-AM poses a requirement on the
average minimum density and returns, for k = 6, a “wikileaks” subgraph consistent
with the longer trending of this topic. For k = 3, it finds a large “tpp” subgraph whose
average density may be smaller than the large “f1” subgraph found by O2BFF-AA
but all of its nodes are sufficiently connected with every other node in this “tpp”
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subgraph.

Table 5.8: The hashtags and the chosen snapshot dates output as solutions to the
O2BFF problem on Twitter.

k = 3 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

kimi, abudhabigp, f1, allowin ozpol, nz, mexico, malaysia,

signapore, vietnam, chile,

peru, tpp, japan, canada

abudhabigp, fp1, abudhabi,

guti, f1, pushpush, skyf1,

hulk, allowin, bottas, kimi,

fp3, fp2

Dates: Oct 31-Nov 2 Oct 27-28, Nov 7 Oct 31-Nov 2

Density: fmm = 3.0, fma = 3.25 fam = 3.33 faa = 4.15

k = 6 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

abudhabigp, f1, skyf1 wikileaks, snowden, nsa,

prism

abudhabigp, fp1, abudhabi,

guti, f1, pushpush, skyf1,

hulk, allowin, bottas, kimi,

fp3, fp2

Dates: Oct 28-Nov 2 Oct 27-28, Nov 3,5,7 Oct 28, Oct 30-Nov 1, Nov 9

Density: fmm = 1.0, fma = 1.33 fam = 2.0 faa = 2.35

k = 9 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

(No lasting graph found) wikileaks, snowden, nsa,

prism

assange, wikileaks, snowden,

nsa, prism

Dates: Oct 27-31, Nov 3,5-7 Oct 27-29,31, Nov 3,5-7,10

Density: fam = 1.33 faa = 2.13

k = 12 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

(No lasting graph found) wikileaks, snowden, nsa assange, wikileaks, snowden,

nsa, prism

Dates: Oct 27-Nov 1, Nov 3-7,10 Oct 27-31, Nov 2-7, 10

Density: fam = 1.33 faa = 1.76
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5.5 Related work

To the best of our knowledge, we are the first to systematically study all the variants
of the BFF, and O2BFF problems.

The research most related to ours is the recent work of Jethava and Beeren-
winkel [74] and Rozenshtein et al. [77, 78]. To the best of our understanding, the
authors of [74] introduce one of the four variants of the BFF problem we studied
here, namely, BFF-MA. In their paper, the authors conjecture that the problem is
NP-hard and they propose a heuristic algorithm. Our work performs a rigorous and
systematic study of the general BFF problem for multiple variants of the aggregate
density function. We have also compared experimentally their DCS algorithm for the
BFF-MA problem with our algorithms and shown that DCS is outperformed by the
much faster FBFFA algorithm. Additionally, we introduce and study the O2BFF
problem, which is not studied in [74]. The authors of [77] study a problem that can
be considered as a special case of the O2BFF problem. In particular, their goal is to
identify a subset of nodes that are dense in the graph consisting of the union of edges
appearing in the selected snapshots, which is a weak definition of aggregate density.
Furthermore, they focus on finding collections of contiguous intervals, rather than
arbitrary snapshots. They propose an algorithm similar to the iterative algorithm we
consider, which we have shown to be outperformed by the incremental algorithms.

There is a huge literature on extracting “dense” subgraphs from a single graph
snapshot. Most formulations for finding subgraphs that define near-cliques are often
NP-hard and often hard to approximate due to their connection to the maximum-
clique problem [79, 80, 81, 82, 83]. As a result, the problem of finding the subgraph
with the maximum average or minimum degree has become particularly popular, due
to its computational tractability. Specifically, the problem of finding a subgraph with
the maximum average degree can be solved optimally in polynomial time [70, 73, 8],
and there exists a practical greedy algorithm that gives a 2-approximation guarantee in
time linear to the number of edges and nodes of the input graph [70]. The problem of
identifying a subgraph with the maximum minimum degree, can be solved optimally
in polynomial time [72], using again the greedy algorithm proposed by Charikar [70].
In our work, we use the average and minimum degree to quantify the density of
the subgraph in a single graph snapshot, and we extend these definitions to sets of
snapshots. The algorithmic techniques we use for the BFF problem are inspired by
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the techniques proposed by Charikar [70], and by Sozio and Gionis [72]; however,
adapting them to handle multiple snapshots is non-trivial.

Existing work also studies the problem of identifying a dense subgraph on dy-
namic time-evolving graphs [84, 85, 86]; these are graphs where new nodes and
edges may appear over time and existing ones may disappear. The goal in this line
of work is to devise a streaming algorithm that at any point in time it reports the dens-
est subgraph for the current version of the graph. In our work, we are not interested
in the dynamic version of the problem and thus the algorithmic challenges that our
problem raises are orthogonal to those faced by the work on streaming algorithms.

Other related work focuses on detecting heavy, or dense, subgraphs in a special
class of temporal weighted graphs with fixed nodes and edges, where only edge
weights change over time and may take both positive and negative values [87, 88]. A
filter-and-verify approach was proposed in [87], while a more scalable data –driven
approach was recently introduced in [88]. The problem addressed in this work is
different, since the set of edges is fixed, while we consider graphs with changing
edge sets. Furthermore, density in the presence of edges with negative weights has
different semantics.

Discovering evolving communities in graphs has also received a lot of attention
(e.g., see [89] survey). In this paper, we are interested in a more specific problem, that
of identifying the densest subgraph over time, which in some sense can be viewed as
a special type of a tightly-knit evolving community. Various approaches have been
proposed for discovering communities in time-evolving graphs including incremental
tensor analysis (e.g., [90]).

An interesting line of work casts the problem of finding dense subgraphs as a
problem of frequent closed set discovery in ternary relations, or boolean tensors [91,
92, 93]. In this setting an “itemset” is defined in the node space, and the support is
defined over time. The goal is to find itemsets that appear frequently in time. This
can be used to find dense subgraphs over multiple snapshots (similar to the O2BFF
problem), but it requires that the edges of the discovered subgraph appear in all
snapshots, which is not necessarily the case in our setting.
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5.6 Summary

In this chapter, we introduced and systematically studied the problem of identifying
dense subgraphs in a collection of graph snapshots defining an evolving graph. We
showed that for many definitions of aggregate density functions the problem of iden-
tifying a subset of nodes that are densely-connected in all snapshots (i.e., the BFF
problem) can be solved in linear time. We also demonstrated that other versions of
the BFF problem (i.e., BFF-MA and BFF-AM) cannot be solved with the same al-
gorithm. To identify dense subgraphs that occur in k, yet not all, the snapshots of an
evolving graph we also defined the O2BFF problem. For all variants of this problem
we showed that they are NP-hard and we devised an iterative and an incremental
algorithm for solving them. Our extensive experimental evaluation with datasets from
diverse domains demonstrated the effectiveness and the efficiency of our algorithms.
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C 6

H T  N G
D

6.1 Storing Evolving Graphs

6.2 Processing Historical Traversal Queries

6.3 Experimental Evaluation

6.4 Related Work

6.5 Summary

I  the previous chapters, we described various historical queries that one can
pose to an evolving graph and we presented algorithms that can handle these
queries maintaining the evolving graph along with time indexes in-memory.

Here, given the history of an evolving graph, our focus is on efficiently storing and
querying these snapshots using a native graph database. Native graph databases offer
an attractive means for storing and processing big graph datasets.

To store the sequence of graph snapshots in a graph database, we propose three
models based on associating with each node and edge, its lifespan, i.e, the time
intervals, during which the node and edge is valid. The multi-edge approach ()
uses a different edge type for each of the time instances during which the edge was
valid. The single-edge approaches use a single edge annotated with a complex type
for representing the lifespan of the edge. We consider two single-edge approaches,
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one that models the lifespan as an ordered list of time instances (), and one that
uses an interval representation ().

We exploit the variants of two types of historical traversals, reachability and short-
est paths which was introduced in Section 2.4.3. Historical reachability queries ask
whether two nodes are connected in some time instance, in all time instances, or
in a sufficient number of time instances. Historical shortest path queries ask for the
shortest path between two nodes posing requirements on the lifespan of such paths.
We present algorithms for processing historical queries for both the multi-edge and
the single-edge approaches.

We have implemented our approach in two graph databases, namely Sparksee
[18] and Neo4j [19] and present experimental results using both real and synthetic
datasets. For very short-lived edges, using multiple edges to represent lifespans, seems
to work well by taking advantage of the built-in traversal methods of the native graph
database. However, for all other cases, using the interval-based approach to represent
lifespans () proves more efficient both in terms of processing time and storage.
We also present a case study regarding connectivity among authors of different con-
ferences through time.

To summarize, we make the following contributions which are also discussed in
[94, 95]:

• We introduce models for storing an evolving graph in the graph database

• We propose algorithms for supporting various types of historical reachability
and shortest path queries (introduced in Section 2.4.3).

• Finally, we experimentally evaluate and compare the various models and algo-
rithms using both real and synthetic datasets in two native graph databases.

The rest of this chapter is structured as follows. We introduce three approaches
for storing the graph snapshots in graph databases in Section 6.1 and algorithms for
processing historical traversal queries in Section 6.2. In Section 6.3, we experimentally
evaluate the different approaches. Section 6.5 concludes the chapter.
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6.1 Storing Evolving Graphs

In this section, we present different approaches for representing an evolving graph
in a native graph database. The basic idea is to augment each graph element with its
lifespan. For edges and nodes, lifespans are stored as labels (i.e., property, attribute)
of the corresponding edge and node. Based on the type of labels used, we have two
different approaches.

6.1.1 Multi-edge Representation

The multi-edge approach () utilizes a different edge type between two nodes u and v

for each time instance of the lifespan of the edge (u, v). The multi-edge representation
of the evolving graph G[1,5] of Figure 2.1 is depicted in Figure 6.1. For instance, to
represent a relationship between nodes u1, u3 with lifespan {[1, 1], [3, 4]}, we use three
edges with different labels to connect u1 and u3. Since all native graph databases
provide efficient traversal of edges having a specific label, the  approach provides
an efficient way of retrieving the graph snapshot Gt corresponding to time instance
t. Similarly, multiple labels are associated with each node.

u1 u2 u3

u5u4 u6

[1] [3] [4] [5]

Time Instances

[1]
[1]

[1]

[2]

[2]
[2]

[2]

[3]

[3]

[3]
[3]

[3]

[1]

[2]

[4]

[4]

[4]

[4]

[4]

[4]

[5]

[5]

[5]

[5]

[5]

Figure 6.1:  representation of the evolving graph of Figure 2.1 (nodes labels are
not shown for clarity).

6.1.2 Single-edge Representation

The single-edge approach uses a single edge between any two nodes appropriately
labeled with the lifespan of the edge. To represent the lifespan of an edge or node,
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we consider two different approaches. In the single-edge with time points approach (),
the lifespan of a node or edge is modeled using a label that is a sorted list of the
time instances in their lifespan. The  representation of the evolving graph G[1,5]
of Figure 2.1 is shown in Figure 6.2(a). For example, the lifespan of edge (u1, u3) is
now represented by a single edge having as label [1, 3, 4]. In the single-edge with time
intervals approach (), we use Ls and Le, each one an ordered list of m elements,
where m is the number of time intervals in the lifespan of the edge or node. In
particular, Ls[i], 1 ≤ i ≤ m, denotes the start of the i-th interval in the lifespan, while
Ls[i] the end of the interval. An example is shown in Figure 6.2(b). With the single-
edge approaches, retrieving the graph snapshot Gt at time instance t requires further
processing of the related labels.

u1 u2 u3

u5u4 u6

[1,3,4]

[4, 5]

[2, 3, 4, 5]

[4, 5]

[1, 2, 3, 4, 5]

[1, 3, 5]

(a)  representation

u1 u2 u3

u5u4 u6

Ls: [1, 3] | Le: [1, 4]

Ls: [4] | Le: [5]Ls: [1] | Le: [5]

Ls: [4] | Le: [5]

Ls: [2] | Le: [5]
Ls: [1, 3, 5] | 
Le: [1, 3, 5]

(b)  representation

Figure 6.2: Single-edge representations of the evolving graph of Figure 2.1 (nodes
labels are not shown for clarity).

6.1.3 Indexing

For faster retrieval of specific graph snapshots, we build an index within the graph
database by creating a new node type T where each node of the given type has a
unique value that corresponds to a specific time instance. A T node that denotes a
time instance t is connected with all nodes that existed at time instance t. To retrieve
the nodes that exist in a time interval, we get the neighbors of the T nodes that
correspond to this interval. Figure 6.3(a) shows the index of the evolving graph in
Figure 2.1.
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6.1.4 Time-varying labels

Finally, we discuss how to store labels that change over time. Current graph databases
do not support versioning on labels and thus we need to create for each unique label
value l, a new node of type l. We connect all nodes or edges that have value l at some
time instance with the node representing l using one of the three edge approaches
presented previously. Doing so, we only store each label once and to retrieve the labels
of a node u in a time interval, we retrieve all the nodes type of l that are connected to
u by edges that refer to the time instances in the interval. In Figure 6.3(b), we depict
an example of storing the time-varying labels of two nodes u1, u2 using .

u1 u2 u3 u4

T: [1] T: [2] T: [3]

u5 u6

T: [4] T: [5]

(a) Time Index

u1 u2

[2, 4][1, 3, 5]

l1 l2

[1, 2, 3, 4, 5]

l3

[1, 3][1, 5]

(b) Time-varying labels

Figure 6.3: (a) Time index of the evolving graph of Figure 2.1 and (b) an example
of time-varying labels.

6.2 Processing Historical Traversal Queries

In this section, we focus on processing historical traversal queries in native graph
databases. For simplicity, we consider a single interval I , but the algorithms easily
extend to sets of time intervals.

A basic functionality provided by all native graph databases is a BFS
method that implements a BFS traversal of all edges of a specific type (i.e., with a
specific label) starting from a source node. Thus, BFS is compatible with
our multi-edge representation. At each step, BFS returns either the current
traversed node or all the previously traversed nodes in a form of a path. One approach
for retrieving the paths that exist between two nodes u and v during a time interval
I is to invoke BFS starting from u once for each time instance t in I and
then combine these results. Another approach is to process paths an edge-at-a-time.
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Starting from u for each time instance t in I we traverse only the edges of type t until
we reach v. Which of the two approaches is more efficient depends on the type of
the traversal query under consideration.

Let us now discuss in more detail how to process the different types of historical
reachability queries that ask for a path from u to v in interval I. A C query returns
true, when there is no ti in I where v is not reachable from u. A D query returns
true, when the first ti in I is found in which v is reachable. Finally, for a L query,
we keep a counter c of the time points in I that v is reachable. If the counter reaches
the given r, the query returns a positive answer, otherwise it stops when the sum of
the counter and the remaining time instants is less than r.

Historical time reachability queries return time points or time intervals. For a
F query, we return the first ti when v is reachable. For a I query, we keep
a counter c for the consecutive times that v is reachable and a max variable of the
current maximum c. For each ti, that v is not reachable, c is reset and max is updated
if c > max. The query stops and returns the interval corresponding to the max value,
when c and the remaining time instants are less than max. Finally, for a T query,
we return all time points in I where v is reachable.

For the top-k historical reachability queries, we use the time index to obtain the
top-k (active) nodes utop, that is the k nodes that exist for the longest period in I. In
particular, for each node u we found in a time instance of I we increase a counter that
denotes the number of instances that u is active. We also use a Min Heap structure
to keep the top-k pairs of nodes that were connected for the longest interval (T_
query) or for the largest number of time points (_ query). The Min Heap stores
each pair as a triple (u, v, value) where value is a counter that keeps the longest
interval or the largest number of times that u and v were connected.

For a T_ query, we start traversing from each top active node utop for each time
instant in I. Intuitively, top active nodes have more active paths to other nodes. For
each node v reachable from utop, we increase a counter C(v), each time v is reachable.
We also keep a max(v) variable for the maximum C(v). Each time v is not reachable
from utop, C(v) is reset and max(v) is updated if C(v) > max(v). In the end of the
traversal from utop, we insert in the Min Heap the triple (utop, v, max(v)) if max(v)

is larger than the smallest element of the Min Heap. The query stops when the Min
Heap has size k and its minimum element is larger or equal to the lifetime in I of
the remaining top active nodes. Processing of a _ query is similar. The only

120



difference is that in the Min Heap, we store the number of time points instead of the
duration of the interval.

For historical path queries that require that the paths exist in at least k > 1 time
instances, using the BFS method is in general expensive, since we retrieve
all paths at each time instance, even those paths that appear only in a single time
instance. Thus, BFS is used only for the earliest shortest path (ESP) queries,
where it returns the shortest path that connects u to v in the first time instance. For
stable (SSP) and at least-k (KSP) shortest path queries, we use the edge-at-a-time
approach. We traverse the edge type that refers to the first time instance in I and
we continue the traversal only if for each edge (w, x) there are all (SSP) or at least k
(KSP) type of edges (w, x) that refer to other time instances in I.

6.2.1 Single-edge Representation

For the single-edge approaches, we cannot use the BFS, since we need to
post-process the lifespan label of each edge to determine the time instances where
the edges were active. Thus, we implemented our own BFS algorithm which
traverses edges that are alive in the given interval. We present in Algorithm 6.1, the
algorithm for processing conjunctive reachability queries. Algorithm 6.1 can be used
for processing all other types of historical queries with only small modifications.

Since a node v may be reachable from u through different paths at different graph
snapshots, we maintain an interval set R with the part of L(u, v) ⊕ Ie covered so far
(line 13), where Ie is the intersection of the lifespan of an edge with a given interval.
The traversal ends when R covers the whole query time interval I (lines 14 – 16).

To retrieve Ie, we use the method T_J (line 7) and getOtherNode(n) which
given a node n that is attached to an edge, returns the other node (line 11). In ,
T_J retrieves the lifespan label from the edge and using an intersection algorithm
for sorted lists it returns the intersection of edge lifespan with I. In , T_J
retrieves the edge lifespan labels Ls and Le and for each [s′, e′] ∈ I s.t. ∃ i s.t max(Ls[i],
s′) ≥ min(Le[i], e′) it returns the overlapping time instances {[s′, e′]⊗ [Ls[i], Le[i]]}.

To speed-up traversal, we perform a number of pruning tests. The traversal stops
when we traverse an edge that is not alive in the query interval (lines 7 – 10). Still an
edge may be traversed multiple times, if it participates in multiple paths from source
to target. To reduce the number of such traversals, we provide additional pruning by
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Algorithm 6.1 ( – ) Conjunctive-BFS(u, v, I)
Input: nodes u, v, interval I
Output: True if v is reachable from u in all time instances in I and false otherwise
1: create a queue N , create a queue INT

2: enqueue u onto N , enqueue I onto INT

3: while N ̸= ∅ do
4: n← N.dequeue()

5: i← INT.dequeue()

6: for each e ∈ n.getEdges() do
7: Ie ← T_J(e, i)
8: if Ie = ∅ then
9: continue
10: end if
11: w ← r.getOtherNode(n)

12: if w = v then
13: R ← R ⊕ Ie

14: if R ⊒ I then
15: return true
16: end if
17: continue
18: end if
19: if IN (w) ̸⊒ Ie then
20: IN (w) ← IN (w) ⊕ Ie

21: enqueue w onto N

22: enqueue Ie onto INT

23: end if
24: end for
25: end while
26: return false

recording for each node w, an interval set IN (w) with the parts of the query interval
for which it has already been traversed. If the query reaches w again looking for
interval Ie such that IN (w) ⊒ Ie, the traversal is pruned (lines 19 – 23).
Indexing. The time index can be used similarly in all approaches to prune some
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computations. For example, for the least-k reachability query that asks whether nodes
u and v are reachable in at least k time instances, we can first check using the index
whether both nodes were active in at least k common time instances. If they were not
active, we do not need to traverse the graph. Otherwise, we traverse the graph using
a subinterval of I that contains only the instances when both nodes were active.

6.3 Experimental Evaluation

In this section, we evaluate the storage approaches experimentally for various types
of historical traversal queries using Sparksee [18] and Neo4j [19] graph databases.
Our goal is to show the difference in terms of performances of the various stor-
age representations and not to perform a comparison between the two native graph
databases. We show experimental results for reachability queries using Sparksee in
Section 6.3.1. Section 6.3.2 evaluates the performance for answering historical reach-
ability and path queries including a deeper analysis about size and load time of the
various representations.

6.3.1 Evaluation with Sparksee

In this set of experiments we use Sparksee as our graph database, which supports
fast loading of the graph data and efficient operations that scan all edges in the
graph. Sparksee is based on a compact representation that uses bitmaps and highly
compressible data structures [96]. As our dataset, we used the whole DBLP dataset
[23] for the interval [1958, 2015]. Each graph snapshot corresponds to a year in this
interval.

Table 6.1: Sparksee graph database characteristics.

GDB # Nodes # Edges # Index Nodes # Index Edges # Edge Types Size (MB)

 1,013,762 3,849,319 58 2,542,405 2 538
 1,013,762 5,186,596 58 2,542,405 59 660

We ran all queries on a system with a quad-core Intel Core i7-4770 3.4 GHz
processor and 32 GB memory. We only use one core for all experiments.
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Storage

We created two different graph database instances (GDBs). The first graph database
instance stores our dataset following the single-edge approach, whereas the second
follows the multi-edge approach.

Table 6.1 shows the characteristics of each graph database instance. Single-edge
differs from multi-edge in the number of edge types, since the second one uses a
different edge type for each time point, which leads to a larger size. The index nodes
size states the number of time points which in our case is 58 years. The edge types
for single-edge are two, one type represents the PUBLISH edge and the other one
the index edge. Multi-edge has 59 types, one type for the index edge and 58 types
for each year in [1958, 2015].

Historical Query Processing

To evaluate the performance of both true and false queries, we generated for each
query type 250 true and 250 false queries.

For C, D, L, F, T_, and _, the query interval is I =

[2005, 2014], for S, the time point is a random year within I , for I, T_
the interval is I = [1958, 2015]. For L, r was randomly chosen from [2, 9], while
in T_, and _, k is equal to 10.

Table 6.2 reports the average time of true and false queries, on both graph in-
stances. Also, we report the query time when the time index is used, as well the
average execution time of T_, and _ on the multi-edge GDB instance.

Queries that ask for events that have the longest duration, either continuously or
in total require the most time to be processed, (since we need to check long time
intervals) followed by queries that seek for the largest number of time points that
something holds or the longest continuous interval that something holds.

Comparing the GDB instances, we notice that queries are faster when using mul-
tiple types of edges to represent the time points. This can be explained by the fact
that using a single edge type requires the processing of the edge to find if a time
point is contained in the lifespan label.

A general remark is that false conjunctive queries are faster than true conjunctive
queries, since processing stops as soon as a time point is found at which the two
nodes are not reachable. Analogously, true disjunctive queries are faster than false
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Table 6.2: Queries average time (ms).

GDB  

With Index Without Index With Index Without Index

true false true false true false true false

S 1.23 1,162 3.23 4,955 0.43 8 0.18 45

C 5,790 0.24 9,481 6,464 433 0.25 424 21

D 269 633,413 268 543,881 9.52 227 9.32 492

L 54,038 13,777 55,454 285,467 113 18 114 397

F 68,764 42,476 251,728 375,220 65 61 178 457

I 763,283 434,196 763,828 440,672 827 72 1,619 570

T 1,352,035 542,213 1,364,020 632,630 966 65.56 1,691 500

T_ 13,020 ( with Index)
_ 12,650 ( with index)

disjunctive queries, since processing stops as soon as a time point is found at which
the two nodes are reachable. Also an observation that holds independently of the
graph GDB used to evaluate queries is that the time index boosts query processing.
We gain more speed in false queries than true ones, since we can prune traversals
from nodes that are not active in a given time point or in the whole interval. For
example, if we seek to find the longest interval during which A and B were connected
and there is not any time point that both authors were active, then a false answer is
returned without executing any traversal.

Table 6.3 shows the top 10 authors pairs returned from T_, and _. Both
queries return the same pairs because the authors of each pair were reachable in
the whole interval (10 years). Thus, the authors that were connected for the longest
interval are the same with the authors that are connected the most time in the past.
We clarify that the top-k processing steps that were followed in T_, and _
stop when they find the first k pairs that meet the requirement. Hence, ties, i.e., pairs
that have the same property may not be reported.

Comparison with the Time-Varying Approach

Finally, we implemented the data model introduced in [97] and tested its performance
for the S query. The approach in [97] introduces a specific node to model the
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Table 6.3: Top 10 pairs of authors from T_ and _ on  and I = [2005, 2014].

Pairs
1 Ravishankar K. Iyer – Zbigniew Kalbarczyk

2 Wesley De Neve – Rik Van de Walle

3 M. Brian Blake – Walter Binder

4 Juan A. Rodriguez Aguilar – Axel Polleres

5 S. V. N. Vishwanathan – Zbigniew Kalbarczyk

6 Hans-Peter Kriegel – Fabio Gadducci

7 Kenneth R. Koedinger – Jie Xu

8 Bernhard Steffen – Frank Seide

9 Stefania Gnesi – Maurice H. ter Beek

10 Mariangiola Dezani-Ciancaglini – Luca Padovani

interaction between two nodes at a specific time point. They also use a hierarchical
index to support different time granularities, which is an issue that we do not address
here, thus, we do not implement such an index.

We created a new type of node PAPER which denotes the interaction of publishing
a paper and an AUTHOR node type for the authors. We connect with each PAPER its
authors using an edge type PUBLISH. For the time index, we connect each AUTHOR
and PAPER node to the time index nodes to which they belong. For example, if
authors A and B wrote a paper P together in t then from the time index node that
corresponds to t, we create edges that connect the time index node with the A, B
and P nodes. To find if two authors A and B are reachable, we have to obtain the
authors from each PAPER node that A is connected and from them to obtain their
co-authors. We repeat this process until we find B. This process is costly for finding
PAPER nodes that were active at a specific time point, since we check the time index
for each PAPER node to see if it was active in that time.

Running a S query using this approach requires 67.8 seconds for true queries
and 58.5 seconds for false queries (shown in Figure 6.4), while our best approach
requires only 0.43 and 8 milliseconds for answering true and false queries respec-
tively. This can be explained by the fact that their model has not been designed for
answering historical reachability queries but for querying the presence of objects in
a number of given time points.
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Figure 6.4: S time (log scale) on different approaches.

6.3.2 Evaluation with Neo4j

In this set of experiments, we implement all algorithms using the Neo4j Java API.
We use two real and one synthetic dataset. In particular, we use DBLP [23] in

time interval [1959, 2016]. We also use a FB [31] dataset which consists of 871 daily
snapshots where at each snapshot a node represents a user and an edge represents a
relation between two users. The synthetic dataset was generated using a preferential
attachment graph generator [60], where a new snapshot is created after 10,000 nodes.
The dataset characteristics are summarized in Table 6.4. The FB dataset and the
default synthetic dataset are insert-only, i.e., contain no node/edge deletions.

We ran our experiments on a system with a quad-core Intel Core i7-3820 3.6 GHz
processor, with 64GB memory. We only used one core in all experiments.

Table 6.4: Dataset characteristics.

Dataset # Nodes # Edges # Snapshots
DBLP 1,167,854 5,364,298 58

FB 61,967 905,565 871

Synthetic 1,000,000 1,999,325 100

Size and Load Time

We stored all datasets in three different database instances (GDBs) using the three
different representations, namely, , , and  introduced in Section 6.1. Also,
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Table 6.5: Graph database size and creation time.

Dataset GDB Size (MB) Index Size (MB) Time (sec)

DBLP
 353

131.37
39

 528.84 22
 546.55 23

FB
 6,000

830
631

 400 65
 31.98 33

Synthetic
 4,500

1,700
1,620

 513 145
 253 86
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Figure 6.5: Size (a) for varying number of nodes and (b) percentage of deletions.

in each GDB we stored a time index on the lifespan of the nodes. Table 6.5 shows
the size and construction time of each graph database instance. Multi-edge approach
uses a different edge type for each time instance, which leads to larger sizes. This
difference in size is more evident in the FB dataset, since most edges in the DBLP
dataset have short lifespans, because many co-authorships appear only once or span
very few years. To load the datasets into the graph databases we used the CSV
importing system of Neo4j. Again,  requires more time to be loaded since it has to
create more edges than the other models.

In Figure 6.5(a), we report graph database sizes for varying number of nodes (and
thus snapshot) using the synthetic dataset. As shown, the single-edge approaches
are much smaller than the multi-edge in all cases, as expected. We also vary the
percentage of edge deletes. For each edge, we randomly remove 10% to 50% of the
time instances in its lifespan. Figure 6.5(b) presents the results. We observe that
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the size of  decreases; since removing a time instance leads to less edges types.
The number of removals in the lifespan (stored as lists) in  leads to slower
size reduction.  size is increasing since removing time instances leads to more
subintervals and thus to larger Ls and Le lifespan structures. Overall, that single-
edges are the best choice in terms of size efficiency for storing large graphs. Among
them,  is more space-efficient, especially, when there are few subintervals in the
lifespan.

Query Processing

We now focus on query processing. We report the average execution time of 200
historical traversal queries where the source and target nodes are chosen uniformly at
random with the restriction that both nodes are present in the graph at the beginning
and the end of the query interval. For the FB and the synthetic dataset, the query
interval is chosen randomly. However, in DBLP dataset which is more active in the last
two decades, we use I = [2011, 2016] as default query interval. For larger intervals we
increase it by using earlier years for starting time instances. For the at least-k queries
we set k to be equal to |I|/2.

Reachability Queries

In Figures 6.6 and 6.7, we depict the average query times for DBLP and FB. A
general remark that holds independently of the graph representation model and the
dataset is that disjunctive queries are faster than conjunctive queries, since they stop
once an instance where the nodes are reachable is found. Conjunctive queries are in
turn faster than at least-k queries, since they stop once an instance where the nodes
are not reachable is found.

The main difference between the two datasets is that in DBLP edges represent
co-authorships, consequently, in general, their lifespans include very few years, in
most cases, just 1 or 2. In FB, lifespans are larger, and since we have no deletions,
include just one interval. The  approach is very fast for short-lived edges and is a
clear winner for reachability queries in DBLP. For FB which contains a large number
of multiple edge types, the response time of  increases linearly with the size of the
query interval. An exception is disjunctive reachability queries, where traversal stops
once an instance where a path exists is found and thus  remains competitive.
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Among the single edge approaches,  outperforms  only when the lifespan
includes very few time instances (as in DBLP). In this case, the time join between
the lifespan and any interval is fast. Furthermore, in this case,  includes many
small intervals. When lifespans become larger and more continuous (as in FB), 
outperforms .

To study further the effect of lifespans on query performance, we experimented
using the synthetic dataset with different percentage of deletions and with a query
interval of length 10 in Figure 6.8. We observe that  and  are competitive in
conjunctive and disjunctive queries whereas in at least-k queries  is the winner.
 takes advantage of the use of the native BFS method.  performs well
in all type of queries and it is starting to slow down when the percentage of deletions
is getting higher and the number of intervals in the lifespan gets large.
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Figure 6.6: Query time for historical reachability queries in DBLP.
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Figure 6.7: Query time for historical reachability queries in FB.

Path Queries

We also evaluated the performance of historical shortest path queries. ESP queries
perform similar to disjunctive reachability queries, since we seek for the shortest path
in the first instance when the two nodes are connected. However, in case of SSP
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Figure 6.8: Query time for historical reachability queries in the synthetic dataset.
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Figure 6.9: Query time for historical shortest path queries in FB.

and KSP we need to locate the shortest among paths that exist in all or in at least-
k instances. We experimented with a large number of random pair of nodes and
observed that in DBLP no paths that connect these pairs exist in more than 6 time
instances. Furthermore, in most cases, these paths existed in just a single instance. In
Figure 6.9, we report the average time for shortest path queries in FB. The processing
in  is costly since for each traversed edge that connects u to v the traversal algorithm
has to check if there are also other type of edges that refer to all (or k) time instances
that u is connected to v. Thus, we set a limit of 120 secs for each path query type.
KSP queries in  exceed the time limit for computing a solution. In general,  is
the fastest one and  comes second in SSP and KSP queries, since they traverse a
small number of edges compared to multi-edge and the edge lifespan verification in
the given interval is performed fast.
Time Index. Finally, we ran the same historical traversal queries in DBLP and FB
datasets without using the time index and we observed that in general the time index
improves query performance. We depict the change in performance for conjunctive
queries in Figure 6.10(a)(b). Similar observations can be found for the other two type
of queries. In particular, in DBLP dataset we observe high performance as long as
the query interval is increasing since there are not many connected pairs in all time
instances and thus indexing returns the negative answers very fast. However, in FB
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dataset where there are nodes that are connected in whole interval even for larger
ones, we notice that indexing is more helpful in  and  since we do not pay the
cost for traversing the graph for pairs that are not connected.  performance in
FB does not increase very much since traversal algorithms run very fast by pruning
edges that are not active in the interval. The same trend is observed in historical path
queries and thus results are omitted.
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Figure 6.10: (a)(b) Time index performance boost for conjunctive queries and (c)(d)
percentage of connected pair of nodes in various conferences.

Case Study

In this study, we use historical queries to study connectivity between authors at
difference conferences in DBLP. We selected 4 database (ADBIS, SIGMOD, VLDB,
ICDE) and 2 theory (SODA, STOC) conferences. For each conference, we randomly
selected 500 pair of nodes representing authors that have at least one publication
in the conference and examined whether they are reachable in at least k years in
the interval [1959, 2016]. We depict the results in Figure 6.10(c) where we observe
that theory conferences have the most reachable pairs of nodes which indicates that
they consist of more well-connected communities compared to database conferences.
As expected, the percentage of nodes that are reachable decreases as k increases. We
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also conducted a second study to show connectivity between ADBIS authors and
authors in the other 5 conferences. As show in Figure 6.10(d), somehow surprisingly
ADBIS authors are more connected with authors in the theory conferences than with
authors in the database conferences. Not surprisingly, connectivity between authors of
the same conference is larger than connectivity among ADBIS and other conferences.

6.4 Related Work

There has been recent interest on analytical processing and mining of evolving graphs,
including among others developing models [98], discovering communities [99], and
computing measures such as PageRank [100]. There has been also research on build-
ing graph engines tailored to supporting analytical processing in dynamic graphs
[101, 102]. However, our focus here is on query processing.

There has been some work on historical query processing. The common assump-
tion is that the graph is either kept in main memory or is stored in disk, but not in
a native graph database. Most research assumes as a first step the reconstruction of
the relevant snapshots. Then, queries are processed through an online traversal on
each of the snapshots. Various optimizations for reducing the storage and snapshot
reconstruction overheads have been proposed. Optimizations include the reduction
of the number of snapshots that need to be reconstructed by minimizing the num-
ber of deltas applied [1], using a hierarchical index of deltas and a memory pool
[25], avoiding the reconstruction of all snapshots [3], and improving performance
by parallel query execution and proper snapshot placement and distribution [4].
Other research considers in-memory processing of specific types of historical queries
[11, 12, 57, 97, 28].

Very few works [97, 95, 103, 104] are built on top of a native graph database. In
particular [97] proposes an approach for storing time-varying networks in the Neo4j
graph database using a hierarchical time index to support snapshots with different
granularity (e.g., months and days). They do not discuss historical traversal queries,
but, instead consider retrieving specific snapshots.

In [104] the authors focus on graph data with structural changes, and present
time logs that capture when an event has occurred (i.e add/remove of edge/node) in
the history of the graph. Although, their indexes are used to retrieve fast a state of
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the graph in a given period they are not designed for supporting historical traversal
queries. A short discussion of the storage models  and  is made in position
paper [95]. Finally, the work in [103] targets specific types of graphs with static
structure but frequent changes in node and edges properties. Our focus here is on
structural updates and reachability and path queries.

6.5 Summary

In this chapter, we studied the problem of storing and querying the history of an
evolving graph in a native graph database. We have proposed different approaches
for storing such graphs based on associating with each node and edge a lifespan,
i.e, a set of time intervals indicating when they were valid. We have also proposed
algorithms for processing various types of traversal queries using the proposed stor-
age models. For very short-lived edges, using multiple edges to represent lifespans,
one for each time instance, seems to work well by taking advantage of the built-in
traversal methods of the native graph databases. However, for all other cases, using an
interval-based approach to represent lifespans proves more efficient both processing
and storage wise.
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C 7

R W  E G

7.1 An Overview of Evolving Graph Systems

7.2 Approaches for Specific Evolving Queries

M  systems are designed to analyze static graphs [105, 106, 107, 108].
However, real world graphs often evolve over time, as new nodes and
edges continually added or deleted, and their associated labels are be-

ing frequently updated. Consider for example, graphs generated by collaborating or
social networking sites, telecommunication service provides, biological networks, and
computer networks. The historical traces of these graphs, often called time evolving
graphs or historical graphs. Analyzing these evolving graphs is crucial for a large
spectrum of applications, since we can gain insights relevant to real-time decision
making.

We present related work along two axes, the storage and processing of evolving
graphs. Table 7.1 summarizes studies on these two axes. Processing tasks on evolving
graphs include network evolution, historical queries, and many others. Although, the
processing typically only includes the latest snapshot or the snapshots from a recent
window, nowadays there is also a need to do realtime processing on the streaming
data as it is being generated. These topics started to be the focus in the recent years
and thus we present an overview of the relative work in this chapter. In addition we

The rest of this chapter is structured as follows. In Section 7.1, we review existing
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evolving graph systems In Section 7.2, we review various indexing approaches for
supporting historical queries.

7.1 An Overview of Evolving Graph Systems

We assume that the evolution of a graph consists of additions or deletions of a node or
edge, or an update of a label attribute associated with a node or an edge [25, 101, 109,
110]. The contiguous evolution of graphs raises new significant challenges to graph
processing, since the majority of graph algorithms assume static graph structures.
Thus, new algorithms should be designed which consider the dynamic aspects of
the graph and support general purpose computations in evolving graphs. In order
to process evolving graphs, the majority of evolving graph systems separate graph
updates from graph processing. In particular, all graph processing is performed on
a collection of static graph views corresponding to the state of the evolving graph at
different time instances. For clarity, most of systems discretize the time so that there is
a set of natural numbers i.e, t ∈ N which constitutes the time domain. Assuming that
Gt is the static graph view of an evolving graph G at time t, an analytic function is
applied to the evolving graph G at time t is actually applied to Gt with the result F (Gt).
Now, for any result that refers to a time t′ > t, F (Gt′) is updated either by computing
it on Gt′ from scratch [25, 102, 109] or by incrementally updating the result from
F (Gt) [101, 110]. Various analytic operations can be performed on evolving graphs,
such as the evolution static graph properties (i.e., centrality measures, density), or
mining patterns that are formed during the graph evolution, or aggregating graph
statistics over time. In general, all these operations require to access past states of
the graphs and thus we need techniques for storing the evolving information in a
compact manner, while allowing the retrieval of graph states of any time point in the
past or the evolution of a specific node or neighborhood. Furthermore, the data must
be stored and queried in a distributed manner to handle the increasing scale of data.

The various systems for processing graphs can be divided in two categories, the
graph systems and graph database management systems [111]. In what follows, we
present studies on storing and processing evolving graphs using graph systems and
graph databases.
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Table 7.1: Summary of studies on storage and processing of evolving graphs.

Graph Systems Graph Databases Graph Indexing for Query Processing

Static

Graphchi [105]
Graphlab [106]
Pregel [107]
PowerGraph [112]
GraphX [113]
Arabesque [114]
Trinity Graph Engine [115]
Grace [116]

Sparksee [18]
Neo4j [19]
System G [117]
Blazegraph [118]
TinkerPop [119]
Titan [120]
Digree [121]

C. Sommer [6] – Shortest path

H. V. Jagadish [34] – Reachability
H. Wang et al. [37] – Reachability
E. Cohen et al. [39] – Reachability, distance
J. Cheng et al. [41] – Reachability
H. Tong et al. [7] – Pattern
S. Khuller and B. Saha [8] – Pattern
GADDI [51] – Pattern
SPath [52] – Pattern
Z. Sun et al. [53] – Pattern
Grapes [59] – Pattern
SUMMA [66] – Pattern
M. Charikar [70] – Density
Cocktail [72] – Community search

Evolving

GraphPool [2]
DeltaGraph [25]
Kineograph [101]
Immortalgraph [102]
LLAMA [109]
J. Gao et al. [122]
Portal [123]

g* [4, 124]
Time-varying [97]
Tgraph [103]
Backlogs [104]

G. Koloniari et al. [1] – Graph structure

FVF [3] – Shortest path
W. Huo and V.J. Tsotras [11] – Shortest path
T. Akiba et al. [12] – Shortest path
Y. Yano et al. [15] – Reachability
Grail [44] – Reachability
Dagger [47] – Reachability
P. Rozenshtein et al. [77, 78] – Community detection
D. Greene et al. [125] – Community detection
C. Wang and L. Chen [27] – Pattern
S. Choudhury et al. [55] – Pattern
Y. Yang et al [126] – Pattern
Jethava and Beerenwinkel [74] – Density
A. Epasto et al. [84] – Density

7.1.1 Graph Systems

In this section, we focus on distributed graph processing systems such as Pregel [107]
and its derivatives. Pregel has first introduced vertex-centric processing model which
is used by a variety of graph systems [101, 102, 106, 110]. The different programming
models are based on a general architecture of a distributed graph processing frame-
work where a master node is used for coordination and a set of worker nodes for
the actual distributed processing. The input graph is partitioned among all worker
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nodes, typically using hash or range-based partitioning on graph nodes labels.
In the vertex-centric model, a worker node stores for each of its vertices the ver-

tex value, all outgoing edges including their values and vertex identifiers (ids) of all
incoming edges. To write a program in a Pregel-like model, a function called ver-
tex compute has to be implemented. This function consists of three steps: read all
incoming messages, update the internal vertex state (i.e. its value) and send informa-
tion (messages) to its neighbors. Note that each vertex only has a local view of itself
and its immediate neighbors and any other information about the graph necessary
for computation has to be sent along the edges. Vertex functions are executed in
synchronized supersteps. In each superstep each worker node executes the compute
function for all of its active vertices, marks them inactive if the voteToHalt() function
is called and gathers their output messages. When all workers have finished, the
gathered messages are delivered synchronously. Vertices that receive messages are
then marked active. This is repeated until there is no active vertex at the end of a
superstep. Note that the synchronization barrier between supersteps ensures that each
vertex will only receive messages produced in the previous superstep. This execution
model is called the bulk synchronous parallel (BSP) model [127].

BSP execution model has further extended to Gather-Apply-Scatter (GAS) [112]
model. In GAS model instead of a single vertex compute function, the user has
to provide a gather, apply and scatter function. The gather function has the same
functionality as the combiner: it aggregates messages addressing the same vertex on
the sending worker nodes. The apply function has the incoming messages as input
and updates the vertex state. The scatter function has the vertex state as input and
produces the outgoing messages. Similar to the gather function, the scatter function
can be executed on the worker nodes. Instead of sending multiple messages from one
vertex to vertices on the same worker node, only the vertex value is send and the
messages are then created locally. The GAS model is especially effective on graphs
with highly skewed degree distributions. It not only reduces the amount of network
traffic, but also helps balancing the workload between worker nodes by spreading out
the computation.

The vertex-centric model is also imployed by various systems such as GraphLab
[106]. However, different from the BSP model in Pregel, GraphLab allows asyn-
chronous iterative computation. As another point of distinction, Pregel supports mu-
tation of the graph structure during the computation, whereas GraphLab requires the
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graph structure to be static. Another system, called Trinity Graph Engine [115] sup-
ports efficient online query processing and offline analytics on large graphs with just
a few commodity machines. For online processing, it keeps the graph topology in a
distributed in-memory key/value store. For offline processing, it employs the similar
vertex-based BSP model as in Pregel. Finally, Grace [116] is a single-machine parallel
graph processing platform. It employs the similar vertex-centric programming model
as in Pregel, but allows customization of vertex scheduling and message selection to
support asynchronous computation.

In the following, we present various systems that use the vertex-centric model to
process evolving graph data.

Processing of Evolving Graphs

ImmortalGraph (former Chronos) system [102] targets time-range graph analytics,
requiring computation on the sequence of static graph snapshots of an evolving graph
within a time range. Since the straightforward approach of applying computation
on each snapshot separately is too expensive, ImmortalGraph offers efficiency by
exploiting two kinds of locality of evolving graphs, namely time and structure locality.
Time locality stores all states of a node or edge in consecutive snapshots together,
whereas the structure lays out all states of neighboring nodes in the same snapshots
close to each other. However, structure locality is very hard to achieve due to complex
structure of a graph, and thus ImmortalGraph favors time locality for graph layout.
To leverage the time-locality graph layout, ImmortalGraph employs the locality-aware
batch scheduling (LABS) of graph computation. More specifically, LABS batches the
processing of a node across all the snapshots, as well as the information propagation
to a neighboring node for all the snapshots. As it is shown,with a simple partition-by-
vertex strategy, LABS significantly improves the performance of graph computation
in a multi-core parallel setting.

Another system called DeltaGraph [25] allows retrieval of different temporal graph
primitives including neighborhood versions, node histories, and graph snapshots, and
that features an evolving graph analysis framework built on top of Apache Spark. In
DeltaGraph the evolving graph is organized in a hierarchical data structure, whose
lowest level corresponds to the snapshots of the network over time, and whose interior
nodes correspond to graphs constructed by combining the lower level snapshots in
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some fashion. In particular, the interior nodes contain statistics, deltas and events
(nodes and edges insertions or deletions), but not the actual data. Neither the lowest-
level graph snapshots nor the graphs corresponding to the interior nodes are actually
stored explicitly. Instead, for each edge, a delta, i.e., the difference between the two
graphs corresponding to its endpoints, is computed, and these deltas are explicitly
stored. In addition, the graph corresponding to the root is explicitly stored. Given
those, any specific snapshot can be constructed by traversing any path from the
root to the node corresponding to the snapshot in the index, and by appropriately
combining the information present in the deltas. This index structure especially shines
with multi-snapshot retrieval queries which are expected to be common in temporal
analysis, as it can share the computation and retrieval of deltas across the multiple
snapshots. DeltaGraph also allows additional indexes creation in order to support
specific queries such as subgraph pattern matching and reachability over the evolving
graph data.

One more evolving graph system is the Kineograph [101] which is designed to
continuously deliver analytics results on static snapshots of an evolving graph peri-
odically. The system consists of two layers: a storage layer that continuously applies
updates to an evolving graph and a computation layer that performs graph com-
putation on a graph snapshot. In the storage layer, an evolving graph is stored in
a distributed key/value store among a set of graph nodes using an epoch commit
protocol for snapshot retrieval. Once a snapshot is generated, it is passed to the com-
putation layer for processing. Kineograph uses the GAS computation model which
supports both push and pull models for inter-vertex communication.

Another distributed system is the TIDE [110], and it is specially designed for
analyzing evolving interaction graphs in which new interactions, represented by edges,
are continually added. One of the key features that sets TIDE apart from the other
evolving or streaming graph systems is a novel and unique way of generating a
static view of an evolving graph, which is called the probabilistic edge decay (PED)
model. All other evolving or streaming graph systems use the snapshot model to
generate a static view of a dynamic graph. A key drawback of the snapshot model is
the contiguous increase of size of the snapshots, especially for insertion-heavy graph
updates. Graph analysis is usually much more complex than maintenance of simple
aggregates over a stream of data, and the memory usage of virtually all available
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graph algorithms increases with increasing graph size. As a result, computation and
memory resources quickly run out as new nodes or edges are added to the evolving
graph. Another drawback of the snapshot model is the recency problem: as time
progresses, the proportion of stale data in the snapshot becomes ever larger and
analysis results increasingly reflect out-of-date characteristics of the evolving graph.

One simple approach to reducing the size of the snapshots and enforcing recency
requirements is to use a sliding-window model, where only recent graph updates
that happen within a small fixed-size time window are considered in the analysis.
This simplistic cut-off approach completely forgets historical interactions and thus
loses the continuity of the analytic results with time. Historical interactions may be
less relevant to today’s decision making, but do not completely lack value, especially
in the aggregate. To address the drawbacks of both the snapshot and the sliding-
window models, TIDE proposes a probabilistic-edge-decay (PED) model, which takes
one or more samples of the snapshot at a given time. The probability that a given
edge of the snapshot graph is included in a sample decays over time according to a
user specified decay function. The PED model allows a controlled trade-off between
recency and continuity. When applying analytics algorithms, TIDE takes advantage
of the similarities among sample graphs, and employs a bulk execution model on
multiple sample graphs to improve efficiency.

In a recent work, Gao et al. [122] propose a vertex-centric approach for continuous
pattern matching for dynamic graphs using Apache Giraph. Their approach focuses
on decomposing the query graph into a DAG and then using the DAG to define
message transition rules for each of the nodes in the Giraph framework. The DAGs
could be seen as exploration plans, to be traversed by Giraph [128], one edge at a
time. While their approach is a nice fit for Giraph’s programming model, such a
framework might not be usable when there exist strict latency requirements. Their
approach is more suitable for tree patterns, and may require a very large number of
steps to detect structures like cliques and bicliques.

Moffitt and Stoyanovich [123] introduce a distributed processing framework for
evolving graphs. They present a declarative query language Portal for querying eolv-
ing graphs, which is based on temporal relational aglebra and is implemented on
GraphX [113].

Apart of distributed evolving systems, there also exist some single-machine sys-
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tems that support graph analytics on evolving graphs. A system like this is LLAMA
[109] for storing and analyzing evolving graphs. LLAMA is a single machine system
that stores and incrementally updates an evolving graph in multi-version represen-
tation, and it supports both in-memory and out-of-core graph analysis on graph
snapshots. In addition, LLAMA provides a general-purpose programming model,
though node-centric or edge-centric computations can be implemented on top of it.
An evolving graph in LLAMA is modeled as a time series of graph snapshots, where
each batch of incremental updates produces a new graph snapshot. Specifically, a
graph is represented by a single node table, and multiple edge tables, one per snap-
shot. The node table is organized as a large multi-versioned array (LAMA) that uses
a software copy-on-write technique for snapshotting, and the record of each node u

in the node table maintains the necessary information to track u’s adjacency list from
the edge tables across snapshots.

7.1.2 Graph Databases

Graph database systems are based on a graph data model representing data by graph
structures and providing graph-based operators such as traversals and pattern match-
ing [129]. Most graph databases focus on online transaction processing (OLTP) work-
load including operations such as create, read, update, delete for nodes and edges as
well as transaction and query processing. Some of the considered graph databases
already provide built-in support for graph analytics, i.e., the execution of graph al-
gorithms that may involve processing the whole graph, for example to calculate the
pagerank of nodes [107] or to detect frequent substructures [114]. Thus, these systems
try to include the typical functionality of graph processing systems by different strate-
gies, for example, IBM System G [117] provides built-in algorithms for graph analytics
i.e., pagerank, connected components and k-neighborhood. Blazegraph [118] is the
only system that supports custom graph processing algorithms within the database.
Additionally, the TinkerPop [119] includes the virtual integration of graph process-
ing systems in graph databases, i.e., from the user perspective graph processing is
part of the database system but data is actually moved to an external system. In
terms of storage, the majority of the considered graph databases is using a so-called
native storage approach, which enables efficient graph operations such as traversals.
However, some systems such as IBM System G and Titan [120] are offering multiple
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storage options. Furthermore, a system prototype that enables distributed execution
of graph pattern matching queries in a cloud of interconnected graph databases is
introduced in [121].

Nowadays, a small increase of database systems that model evolving graphs has
been observed [97, 104]. In particular, the authors in [97] propose a general approach
for storing an evolving graph in a native graph database, specifically Neo4j [19],
and experimentally tests a number of general graph queries that include past time
instances. A new node type within the graph database is introduced to model the
interaction between two nodes. In addition, they build a hierarchical index to support
different time granularities (i.e., days, months, years) and provides fast lookups of
the presence of objects in a number of given time points. For example, nodes that are
active at a given time point t are pointed by the specific type node that corresponds
to t.

In [104] the authors focus on graph data with structural changes, and present
time logs within Titan [120] database to capture when an event has occurred (i.e.,
add/remove of edge/node) in the evolution of the graph. Although, their indexes are
used to retrieve fast a state of the graph in a given period they are not designed for
supporting historical traversal queries.

Regarding graph database systems, the G* [124] is a distributed graph system that
manages graphs that correspond to periodic snapshots, with the focus on efficient data
layout. It takes advantage of the similarity between successive snapshots by storing
shared vertices only once and maintaining per-graph indexes. Each server of G* is
assigned a set of nodes along with all the outgoing edges of each vertex in the set.
This achieves significant data locality since obtaining all of a node’s edges can be
accomplished without the need to contact any of the other servers.

7.2 Approaches for Specific Evolving Queries

The work presented so far mostly focuses on efficiently storing, maintaining and
retrieving the snapshots of an evolving graph in various distributed and database
graph systems. There have been methods proposed in literature that instead aiming
at index the evolving graph sequence in a manner that permits the effective evaluation
of specific queries and perform stream graph analytics.

143



In particular, indexes for supporting shortest paths in evolving graphs have been
studied in [3, 11, 12]. The authors in [3] describe a method that consists of two phases,
a preprocessing phase and a query-processing phase. In the preprocessing phase the
initial snapshots of the sequence are grouped into smaller clusters of similar snap-
shots. This is performed by defining a graph similarity measure and by incrementally
adding snapshots in a cluster (starting from the first snapshot in the sequence) until
a graph similarity threshold has been surpassed. At that point, a new empty cluster is
created and the above procedure is repeated until all the snapshots have been exam-
ined. For each cluster, two representative graphs G∩ and G∪ are extracted which are
the largest common subgraph and the smallest common supergraph of all snapshots
in the cluster respectively. In the query-processing phase the authors use the clusters
and their representative graphs to answer shortest path queries. At first they evaluate
the solution to a query for the representative graphs of the cluster (”FIND” step) on
the basis that the solution will readily apply to a number of the snapshots in the
cluster. In the ”VERIFY” step, the evaluated solution is tested with each snapshot in
the cluster in conjunction with a set of intuitive lemmas. For each snapshot that the
evaluated solution does not apply, the framework attempts to ”FIX” the solution so
that it also applies to the aforementioned snapshot.

The approach in [12] which considers only insertions, describes dynamic indexing
schemes to support shortest path queries on either the current snapshot or in any
previous snapshot in the evolving graph sequence. Their indexing scheme is based on
2-hop cover and for each node v a label L(v) is maintained, with the only difference
that each entry of the label stores a triplet (u, t, δuv), where u is a destination node,
t describes the time point, and δuv the distance between u and v. Triplets with the
same destination node are sorted in ascending order of distance. In order to answer
a distance query in the current or in a previous snapshot between a pair of nodes
u and v at time point t, the entries of the labels L(u) and L(v) are checked and the
entries that share the same destination node but they have time different than t are
ignored.

Another method that focus on answering shortest path queries is the work in [11].
The authors keep the evolution of a graph in one simple, temporal graph, named
TEG instead of a sequence of snapshots or clusters and their deltas. In a TEG, there
are two temporal attributes: start time ts and end time te which represent the time
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interval that a node or an edge was alive. For example, an edge from node u to
node v with weight w during the time interval [ts(e), te(e)] in a TEG is represented as
< u, v, w, ts(e), te(e) >. For the computation of the different shortest paths between two
nodes in a given interval they make use of preprocessing indexes namely Contraction
Hierarchies (CH) [130] and a modified Dijkstra algorithm [131] which runs on the
TEG graph. The CH creates shortcut edges, by ”contracting” one node at a time in
increasing order and adds all necessary shortcuts to the TEG, which allow Dijkstra’s
search to effectively bypass irrelevant nodes during the search, without invalidating
correctness.

Yang et al. [126] propose an algorithm that discovers most frequently changing
components in an evolving graph sequence. They begin by defining measures of
change between vertices and the general problem of extracting the most frequently
changing component and proceed to present their solutions.

Choudhury et al. [55] investigate a selectivity-driven approach for continuous
pattern detection on streaming graphs. Their approach is to do continuous pattern
mining by decomposing the main query based on the selectivity of the node attributes,
matching the individual components, and finally performing a multi-way join.

There has also been a flurry of work on evolving and stream graph analytics.
For example, the evolution of community structures is studied in [132], where a
new mathematical and computational framework is proposed that enables analysis
of dynamic social networks and that explicitly makes use of information about the
time that social interactions occur. They present several algorithms for obtaining
information about the structure of evolving social networks in this framework and
demonstrate the utility of these algorithms on real data. The work in [125] describes
a model for tracking the evolution and structure of communities over multiple time
steps in an evolving network, where the life-cycle of each community is characterised
by a series of significant events. Based on this model, we propose a simple but effective
method for efficiently identifying and tracking these dynamic communities, which
involves matching communities found at consecutive time steps in the individual
snapshot graphs.

Change in page rank with evolving graphs is studied in [100]. Techniques for ma-
terializing snaphots using graph deltas presented in [1]. Several works have looked
at the problem of continuous detection of subgraph pattern matching queries over
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streaming graph data. Song et al. [26] study the problem of event pattern matching
over graph streams; they consider queries that have additional timing order con-
straints (i.e., happened before relationships in events) along with the graph structure.

Another work in [27] used an index-based technique for continuous subgraph
pattern matching. For each node in the graph, the index, named node-neighbor tree,
encodes all the simple paths of length l rooted at the node.
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C 8

C  F W

8.1 Summary of Contributions

8.2 Directions for Future Work

I  the current chapter. we summarize our findings and our major contributions
and describe directions for future work. Section 8.1 summarizes the contribu-
tions of this thesis, and ideas for future work discussed in Section 8.2.

8.1 Summary of Contributions

In this dissertation, we mainly focused on managing and querying the full history
of a graph as it evolves. Over the years, the evolution of graphs has attracted much
more attention to effectively store and retrieve the graph snapshots, while exploration
of the history of evolving graphs remained very limited. Here, we first proposed
a new model for storing the evolving graphs with a concise set of operations on
lifespans of graph elements. We then formalized traversal and pattern queries that
one can pose on evolving graphs and we provided efficient algorithms along with
time indexes which exploit our proposed model in order to produce query solutions
efficiently. Finally, we have proposed different approaches for storing and retrieving an
evolving graph in a native graph database by either using a single-edge with a lifespan
attribute or multiple-edge types where each type corresponds to a different time
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point. Finally, we introduced algorithms for evaluating historical traversal queries and
evaluated our approaches in two native graph databases. Next, we briefly summarize
the contributions of this dissertation.

We studied historical reachability queries on evolving graphs in Chapter 3 where
we show that our work is different from previous approaches since we propose an
index-based approach which is able to answer online these queries without recon-
structing the relevant snapshots. In particular, our main contributions concerning
historical reachability queries can be outlined as follows:

• We proposed an indexing approach namely TimeReach that exploits the fact that
most graphs consist of strongly connected components to answer queries that
ask whether two nodes were reachable during a time interval in the past.

• We presented a suite of algorithms that exploit a compact representation of
the evolving graph and along with TimeReach index provide a solution for
historical reachability queries.

• We extended the TimeReach index by make it smaller and we improved the
performance of our algorithms by introducing an interval-2hop approach.

We also addressed the problem of finding the top-k most durable matches of an
input graph pattern query, that is, the matches that persist over time in Chapter 4. We
showed that applying a state-of-the-art graph pattern algorithm in each snapshot and
then aggregate the results incurs large computational costs, since all matching patterns
in each snapshot must be identified, even patterns that appear only once. We proposed
an efficient algorithm and appropriate time indexes to prune the search space and
strategies to determine the duration of the seeking matches. We exploited various
strategies that uses the time-based indexes to efficiently determine an appropriate
value for the duration of the seeking matches. Concerning durable pattern matching
queries, our main contributions can be outlined as follows:

• We proposed a new DP algorithm that exploits the version graph,
ϑ-threshold graph exploration search and appropriate Bloom-filter based time
indexes to process durable graph pattern queries efficiently.

• We presented various strategies which can determine the duration value of the
seeking matches.
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• We performed extensive experiments on various datasets that show both the
efficiency of our algorithm and the effectiveness of durable graph pattern queries
in locating interesting matches.

In Chapter 5 we raised the question of which interactions, or relationships are the
most lasting ones? and we formalized the problem of identifying dense subgraphs in
a collection of graph snapshots defining an evolving graph. We considered many
definitions of density over evolving graphs and we show that for many of them the
problem of identifying a subset of nodes that are densely-connected in all snapshots
can be solved linearly. We also demonstrated that there are versions of the problem
cannot be solved with our proposed algorithm. Furthermore, we introduced the prob-
lem that relaxes the requirement of nodes being connected in all snapshots, and asks
for the densest set of nodes in at least k of a given set of graph snapshots. We showed
that this problem is NP-complete for all definitions of density and we proposed a set
of iterative and incremental algorithms for solving it.

Concerning finding lasting dense subgraphs in evolving graphs, our main contri-
butions can be outlined as follows:

• We introduced two novel problems of identifying a subset of nodes that define
dense subgraphs in a collection of graph snapshots. To this end, we extended
the notion of density for collection of graph snapshots, and provided definitions
that capture different semantics of density over time leading to four variants of
our problems.

• We studied the complexity of the variants of both problems and propose ap-
propriate algorithms. We proved the optimality, or the approximation factor of
our algorithms whenever possible.

• We performed experiments with both real and synthetic datasets and demon-
strate that our problem definitions are meaningful, and that our algorithms
work well in identifying dense subgraphs in practice.

Finally, in Chapter 6 we followed an another line of research that aims at sup-
porting historical queries on native graph databases which offer an attractive means
for storing and processing big graph datasets. We performed a concrete study and
we proposed three models based on associating with each node and edge, its lifes-
pan, i.e., the time intervals, during which the node and edge is valid. We presented
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algorithms for processing all different types of historical traversals such as reacha-
bility and shortest path using these approaches and experimentally compare their
performance in two native graph databases.

Concerning storing and processing evolving graphs in a native graph database,
our main contributions can be outlined as follows:

• We presented three representations of graph snapshots that use either single
and multi-edge approaches.

• We presented algorithms for processing historical queries for both the multi-
edge and the single-edge approaches.

• We evaluated our approaches experimentally for various types of historical
traversal queries.

8.2 Directions for Future Work

In this section, we outline ideas for additional research. We make a distinction between
short term plans, that consist of extensions to work done during this thesis, and
long term plans, that outline ideas for future research related to the general topic of
evolving graphs.

8.2.1 Short Term Plans

In this section we present future work ideas of our work described in previous chap-
ters.

TimeReach Expansion for Supporting Other Type of Queries

A possible direction on our existing work is the enhancement of our in-memory time
index (TimeReach) for supporting historical shortest path queries. Assume that we
are given a shortest path query that asks for the distance between nodes (u, v) in a
time interval, we could exploit TimeReach index to retrieve reachability information to
prune any redundant shortest path computation or by maintaining information about
changes in distances in order to determine their distance. In that way, we will be able
to compute shortest path distances in graphs that also contain deletions, in contrast to
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[12]. Another possible direction could also be to support attributes on nodes or edges
that are time-varying. For example, given a time interval we could search for paths
that connect two nodes and consist of intermediate nodes with specific attributes.

Supporting New Queries

Similar to our work in [95] but for the in-memory system we could design new
algorithms that support queries that focus on the timing aspect i.e. when an event
happened. For example, depending on the type of query, we may ask when two
nodes become reachable, or when their shortest path distance was equal to a given
value, or what are the pair of nodes that remained reachable the longest, or what are
the nodes whose distance was below some given value for most of the time points.

Enhancement for Identifying Durable Pattern Matches

In this dissertation we provided a solution for durable graph pattern queries on
evolving graphs. An interesting future direction would be to maintain appropriate
graph statistics in order to give better approximations of the duration of the seeking
match(es), and enhance the pruning power of our algorithm. Another more general
direction is studying the streaming version of the problem where instead of a collec-
tion of graph snapshots, we are given a stream of graph updates and want to locate
the most durable matches inside a sliding time window.

8.2.2 Long Term Plans

In this section we present our long term plans.

Distribution of Evolving Graph

In our future work, we first plan to focus on processing historical queries in a dis-
tributed manner, where the evolving graph is not stored in a single component but
is rather distributed in a set of different components i.e. different networked com-
puters. Out motivation emanates from the lack of distributed approaches that handle
traversal and pattern queries on evolving graphs. Processing evolving graphs in a
single storage may not scale well when there is a massive volume of data. In order
to scale fast we must distribute the storage and process the massive data streams
across several machines. The great challenge here is the distribution of evolving data
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and how one can reduce the redundant information among different machines and
provide solutions to historical queries in an efficient manner. Thus, new partitioning
techniques of evolving graph data should be defined that take into account not only
the structural aspect but also the evolving. Then, all current algorithms that support
historical graph queries must be redesigned to be compatible with the distributed
systems.

Historical Query Language Integration

Another long term direction is extending an open source native graph database such
as Neo4j with a historical query language, that will enable users to succinctly express
complex traversal on (or queries of) a collection of graph snapshots that we described
in this dissertation.

We also plan to design a framework that instead of modifying the graph database
query engine we will include user query language and an intermediate level of com-
munication between the query language and a collection of graph databases. To
achieve this, we need to implement an intermediate API that will convert our user
query language into a form that could be executable by the given graph database.
Thus, devising such a framework would allow future developers to support any new
graph database by just updating our intermediate API to translate our user query
language to the underlying graph database language.

Locating Matches of Interaction Patterns in Temporal Graphs

Finally, we plan to focus on the problem of finding patterns of interactions in an
temporal graph that appear within a time period of δ time units and consist of
chronologically sorted or partial time ordered edges. In a temporal graph [133], each
edge is a quadruple (u, v, t, ), where u, v ∈ V , t is the starting time, λ is the traversal
time to go from u to v starting at time t, and t+λ is the ending time. Identifying such
patterns will help us to explore the structure of several complex network systems
such as social networks, email services, and biological networks. In addition it can
be used as a tool of measurement of the frequency of patterns at different time scales
and identification of malicious behaviours in communication networks.
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