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Abstract

Christos Spatharis , M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, June 2018 .
Multi-Agent Reinforcement Learning Methods for Congestion Problems.
Advisor: Konstantinos Blekas, Assistant Professor .

Multi-agent systems can be used to address problems in a variety of domains, in-
cluding robotics, telecommunications, congestion avoidance and distributed control.
Reinforcement learning framework can provide a robust and natural way for agents
to learn how to coordinate their action options in multi-agent systems. The objec-
tive of this thesis is to propose and investigate the use of Collaborative Multi-Agent
Reinforcement Learning methods for autonomous agents for resolving congestion
problems. Such problems require the investigation of a joint policy in order to max-
imize a pay-off function. Agents have limited information about others payoffs and
preferences, and need to coordinate their action to achieve their tasks while adhering
to operational constraints. We study three different Multi-Agent Reinforcement learn-
ing methodologies: the independent case, the edge-based case and the agent-based
case. We have applied these schemes to an interesting traffic application: solving the
demand-capacity imbalances during pre-tactical phase in Air Traffic domain. Sev-
eral experiments have been made based on real-world data and the results obtained
confirm the effectiveness of our methods in resolving the demand-capacity problem.
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Ε Π

Χρήστος Σπαθάρης , Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πληρο-
φορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2018 .
Multi-Agent Reinforcement Learning Methods for Congestion Problems.
Επιβλέπων: Κωνσταντινος Μπλέκας, Αναπληρωτής Καθηγητής .

Η παρούσα εργασία πραγματεύεται τον τρόπο επίλυσης προβλημάτων συμφόρης
στο εναέριο δίκτυο με χρήση μεθόδων πολυπρακτορικής ενισχυτικής μάθησης. Πιο
συγκεκριμένα, οι πράκτορες του δικτύου μας ανταποκρίνονται σε αεροσκάφη που
πραγματοποιούν προκαθορισμένες διαδρομές και σκοπός τους είναι να εκτελέσουν
ομαλά τη διαδρομή τους δίχως να δημιουργήσουν πρόβλημα στον εναέριο χώρο.

Ο εναέριος χώρος, χωρίζεται σε εναέρια μπλοκ ή τομείς και κάθε τομέας έχει
μια προκαθορισμένη τιμή Χωρητικότητας την οποία δεν πρέπει να υπερβεί σε κα-
μία χρονική στιγμή. Αυτό το πρόβλημα, είναι γνωστό και ως Ανισορροπία μεταξύ
Ζήτησης-Χωρητικότητας και σκοπός μας σε αυτή την εργασία είναι η εύρεση της
βέλτιστης κοινής πολιτικής των πρακτόρων ώστε να αποφευχθούν οι συμφορήσεις
στον εναέριο χώρο. Η Ζήτηση είναι η ποσότητα που μετράει πόσα αεροσκάφη
διανύουν ή πρόκειται να διανύσουν έναν συγκεκριμένο εναέριο τομέα σε μια συ-
γκεκριμένη χρονική στιγμή. Συνεπώς, όταν η τιμή της Ζήτησης ξεπεράσει την τιμή
της Χωρητικότητας, τότε πλέον υπάρχει ανισορροπία μεταξύ των δύο ποσοτήτων
και δημιουργείται ένα σημείο συμφόρησης στον τομέα.

Η λύση του προβλήματος εντοπίζεται στην υπαγωγή των αεροσκαφών που προ-
καλούν τη συμφόρηση σε κάποιους κανονισμούς λειτουργίας. Στην περίπτωση μας
αυτοι οι κανονισμοί λειτουργίας μεταφράζονται σε λεπτά καθυστέρησης. Στην ερ-
γασία μας, μελετάμε την επιβολή καθυστερήσεων στα αεροσκάφη κατα τη διάρκεια
της ”προ-τακτικής” φασής. Η συγκεγκριμένη φάση λαμβάνει χώρα αρκετές μέρες
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πριν την πτήση των αεροσκαφων και περιλαμβανει την επιβολή καθυστερήσεων σε
αεροσκάφη που επρόκειτο να δημιουργήσουν πρόβλημα στον εναέριο χώρο κατά τη
μέρα αναχώρησής τους. Παράλληλα, κατά την επιβολή καθυστερήσεων χρήζει προ-
σοχής το γεγονός ότι κάθε λεπτό καθυστέρησης κοστίζει στην αντίστοιχη εταιρεία
κάποιο χρηματικό ποσό για τον δεδομένο τύπο αεροσκάφους.

Στην προσέγγισή μας, χρησιμοποιήσαμε μεθόδους πολυπρακτορικής ενισχυτικής
μάθησης στην οποία οι πράκτορες συνεργάζονται μεταξύ τους για την επίλυση του
κοινου προβλήματος. Υλοποιήσαμε τρεις διαφορετικές μεθόδους οι οποίες επιτυγ-
χάνουν διαφορετικές λύσεις του προβλήματος. Επιπλέον, αξίζει να σημιεωθεί ότι τα
πειράματα έγιναν πάνω σε πραγματικά δεδομένα χιλιάδων πτήσεων που προσέφερε
το πρόγραμμα DART.

Οι μέθοδοί μας βασίζονται στην εύρεση βέλτισης κοινής πολιτικής η οποία ορίζει
για τον κάθε πράκτορα αν πρέπει να καθυστερήσει την αναχώρησή του από το
αεροδρόμιο ή αν είναι ελεύθερος να πετάξει με ασφάλεια. Στόχος της εργασίας είναι
να βρούμε αυτή την πολιτική η οποία να εξαλοίφει πλήρως τους τομείς συμφόρησης
ενώ παράλληλα να μειώνει τα λεπτά καθυστέρησης και το συνολικό κόσος, όσο το
δυνατόν περισσότερο.
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Chapter 1

Introduction

1.1 Introduction

1.1 Introduction

A multi-agent system is a group of autonomous, interacting entities sharing a com-
mon environment, which they perceive with sensors and upon which they act with
actuators. They are used in a variety of domains such as robotics, distributed control,
resource management, collaborative decision making, congestion avoidance systems,
and many more. The agents participating in the multi-agent system, often need to
learn new behaviours online, in order to gradually improve their performance as well
as the performance of the whole multi-agent system. This is caused by the complexity
of the environment that makes the a-priori design of the agent behaviors difficult or
even impossible, meaning that it is infeasible to hardcode the behaviour of all the
agents.

A Reinforcement Learning agent constantly learns by interacting with its envi-
ronment. At each time step, the agent using its sensors perceives the state of the
environment and takes an action, which causes the environment to transit into a new
state. The quality of each transition is being evaluated by a scalar reward, and the
aim of the agent is to maximize the cumulative reward.
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Moving towards congestion problems, there are many situations where resources
of a limited capacity have to be shared by multiple agents simultaneously. These are
ever present in the modern world, plaguing various aspects of our business, activities,
and daily lives. Most notably, congestion problems appear regularly in various traffic
domains. The complexity of these problems makes them difficult to solve with pre-
programmed agent behaviours. Multi-agent Reinforcement Learning (MARL) has
proven to be a suitable framework for such problems, as it allows autonomous agents
to learn by interacting within a common environment. In these kind of environments,
agents do not have fully knowledge of the state, but only partial and they have to
work together in order to come up with a solution.

More specifically, in the Air-Traffic Management (ATM) domain, congestion
problems arise whenever demand of airspace use exceeds capacity, resulting to hotspots.
This is known as the Demand and Capacity Balance (DCB) problem. The current
ATM system worldwide is based on a time-based operations paradigm that leads to
DCB issues. These further impose limitations to the ATM system, that are resolved
via airspace management or flow management solutions, including regulations that
generate delays and costs for the entire system. These demand-capacity imbalances
are difficult to be predicted in pre-tactical phase (prior to operation) as the existing
ATM information is not accurate enough during this phase.

Against this background, this thesis formalises a generic problem where agents
aim to coordinate their joint actions towards the simultaneous performance of tasks,
with respect to operational constraints on the use of resources. The generic problem is
formulated as a multi-agent MDP (MA-MDP) and it is instantiated to the demand-
capacity problem at the pre-tactical stage of air traffic management operations where
resources correspond to air sectors with limited capacity, and where the issue at hand
is to minimize the scheduled flight delays, and thus delay costs, while ensuring effi-
cient utilisation of airspace. As part of this formulation, we devise a reward function
that takes into account agents’ participation in congestions and penalties in terms
of implied cost when agents deviate from their schedule to perform tasks. We then
proceed to describe multiagent reinforcement learning techniques for learning joint
policies, and explore their efficacy using real-world data from the air traffic man-
agement domain. Considering operational constraints for the joint performance of
the tasks, the proposed methods support agents to reconcile conflicting options and
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jointly decide about individual policies, while possessing no information about the
preferences and payoffs of others.

The structure of this thesis is organized as follows. Chapter 2 introduces the
basic background in single-agent Reinforcement Learning and Markov Decision Pro-
cesses (MDP). Chapter 3 describes the Demand-Capacity Problem along with the
Problem Specifications and presents the related work. In Chapter 4, we begin with
the modelling of MDP for the multi-agent case and continue with the collaborative
multi-agent Reinforcement Learning algorithms that we formulated in our research.
Finally, Chapter 5 discusses the results of our research, and Chapter 6 concludes the
thesis.
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Chapter 2

Reinforcement Learning

2.1 Markov Decision Processes

2.2 Reinforcement Learning

2.1 Markov Decision Processes

This section gives an overview of Markov Decision Processes (MDP). A Markov
Decision Process provides a framework suitable for sequential decision problems that
depend on the action taken by an agent at each time step. The agent receives a reward,
which depends on the action and the state and the goal is to find a function, called a
policy, which specifies which action to take in each state, in order to maximize some
function of the sequence of rewards.

MDPs are useful for studying a wide range of optimization problems solved via
dynamic programming and Reinforcement Learning. The problem of calculating a
complete mapping from states to actions in a stochastic environment with a known
transition model, is called a Markov decision problem.

An MDP is usually defined as a tuple (S,A, T,R, γ) where:

• S is a set of states, which represents every possible state the agent can be in,
which can be discrete or continuous.
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• A is a set of actions, which are the available actions the agents can take in a
particular state.

• T : S×A× S→ [0, 1] is the transition function; which is a function of the cur-
rent state (s), the action taken (a) and the state where we will end up (s’).
This transition produces a probability of ending up in state s’, starting from the
state s and taking the action a. The transition function denotes a probability
distribution over next states given the current state and action such that:∑

s′∈S

T (s, a, s′) = 1 ∀s ∈ S, ∀a ∈ A

• Ri : S×A→ ℜ is a reward function , which is a value that tell us how good it
is to enter the new state. This value can be either positive or negative, but must
be bounded.

• γ ∈ [0, 1] is a discount factor.

There are two basic properties on which the Markov Processes are based on:

• Only the present matters; which means that the transition function only depends
on the current state s and not any of the previous states.

• Things are stationary, therefore rules do not change over time.

A solution must specify to the agent what action to take at any state. A solution
of this kind is called a policy. We usually denote a policy by π, and π(s) is the action
recommended by the policy π for state s. If the agent has a policy, then no matter
what the outcome of any action, the agent will always know what to do next.

The ultimate goal of the MDP is to find a policy that can tell us, for any state, which
action to take. The optimal policy is the one that maximizes the long-term expected
reward. In order to evaluate an agent’s policy, we have the following concept of the
state-value function: The value of a state s ,or the state-value function, under a policy
π is defined as the expected return when the agent starts at state s and follows a
policy π thereafter. Then the state-value function V π(s) becomes

V π(s) = Eπ

[
T∑
t=0

γtrt|s0 = s

]

5



where T is the final time step, t is the current time step, rt is the received immediate
reward at the time step t.

In the previous equation, T →∞ if the task is an infinite-horizon task such that
the task will run over an infinite period. If the task is episodic, T is defined as the
terminal time and each episode is terminated when time step T is reached. So, we
call the state where each episode ends as the terminal state sT . In a terminal state,
the state-value function is always zero such that V(sT ) = 0, ∀sT ∈ S. An optimal
policy π∗ will maximize the agent’s discounted future reward for all states such that

V ∗(s) ≥ V π(s), ∀π, ∀s ∈ S

The state-value function under a policy -the reward function and the transition
distribution are known- can be rewritten as a Bellman equation as follows:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′) · V π(s′)

where T (s, π(s), s′) = Pr{st+1 = s′|st = s, at = a} is the probability of the next
state being st+1 = s′ given the current state st = s and action at = a at time step t,
and R(s, a, s′) = E{rt+1|st = s, at = a, st+1 = s′} is the expected immediate reward
received at state s′ given the current state s and action a. If the agent follows the
optimal policy π∗ starting at state s, we have the optimal state-value function denoted
by V ∗(s). The optimal state-value function V ∗(s) is also called the Bellman optimality
equation, where

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) · V ∗(s′)

]

Similar to the state-value function, we denote as action-value function the expected
return of choosing a particular action a at state s and then following a policy π

thereafter. The action-value function Qπ(s, a) is given as

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) · V π(s′)

If the agent chooses action a at state s and follows the optimal policy π∗ thereafter,
the action-value function becomes the optimal action-value function Q∗(s, a), where

6



Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) · V ∗(s′)

2.2 Reinforcement Learning

Machine learning is a subset of artificial intelligence and its applications are typically
classified into three broad categories; supervised earning, unsupervised learning and
reinforcement learning. Reinforcement Learning is different from supervised learning,
which is the kind of learning studied the most in the field of machine learning
research. Supervised learning is learning from a training set of labelled examples
provided by an external supervisor. Each example is a description of a situation
together with the label of the correct action the system should take to that situation,
which is often to identify a category to which the situation belongs. The objective of
supervised learning is for the system to generalize its responses so that it acts correctly
when new situations arise that are not contained in the training set. In interactive
problems, as the one we deal with in this thesis, it is often difficult to obtain examples
of desired behaviour that are both correct and representative of all the situations in
which the agent has to act. In uncharted territory, where it is infeasible to hardcode
a behaviour, the agent must be able to learn from its own experience.

Reinforcement learning is also different from unsupervised learning, which is typ-
ically about finding structure hidden in collections of unlabelled data. Although one
might be tempted to think that reinforcement learning is similar to unsupervised
learning because it does not rely on examples of correct behaviour, reinforcement
learning is trying to maximize a reward signal instead of trying to find hidden struc-
ture.

The key idea behind reinforcement learning, is for an agent to learn to take
decisions by interacting with the environment. In real life, when an infant play, wave
its arms, or look around, it has no explicit teacher, but it does have a direct connection
-through its senses- to the environment. Exercising this connection produces a wealth
of information about cause and effect, about the consequences of actions, and about
what to do in order to achieve goals. Throughout our lives, such interactions are
undoubtedly a major source of knowledge about the world and ourselves. Whether
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we are learning how to drive a car or how to communicate with other people, we are
acutely aware of how our environment responds to what we do.

Reinforcement learning is about learning how to map states of the world to ac-
tions in order to maximize a numerical reward signal. The learner is not told which
actions to take beforehand, but instead must discover by its own which actions yield
the most reward by trying them. Most of the time, actions may affect not only the im-
mediate reward but also the next situation and, through that, all subsequent rewards.
Trial-and-error search along with delayed reward, are two of the most important
characteristics of Reinforcement Learning.

We formalize the problem of reinforcement learning as a Markov decision process.
As we discussed in the previous section, a learning agent must be able to sense the
state of its environment to some extent through its sensors and must be able to take
actions that affect the state. The agent must also have goals relating to the state of
the environment. Any method that is well suited to solve such problems, we consider
it to be a reinforcement learning method. The task of Reinforcement Learning is to
find an optimal policy that maximizes the expected total reward and to achieve that,
the agent uses the observed rewards to learn this optimal policy.

One of the challenges that arise in reinforcement learning, is the trade-off between
exploration and exploitation. To obtain higher reward, a reinforcement learning agent
must prefer actions that it has tried in the past and found to be effective in producing
a high reward. Although, in order to discover such actions, it has to try out actions
that they have not been selected in the past. The agent has to exploit what it has
already learned to obtain higher reward, but it also has to explore new actions in order
to make better action selections in the future. The agent must try a variety of actions
and progressively favor those that appear to be the best. On a stochastic task, each
action must be tried many times to gain a reliable estimate of its expected reward. The
exploration-exploitation dilemma has been intensively studied by mathematicians for
many decades, yet remains unresolved.

Summing up the above, a reinforcement learning setup is composed of two basic
components, an agent and an environment. The environment is where the agent is
acting upon, while the agent represents the reinforcement learning algorithm. The
environment starts by sending a state to the agent. The agent then, based on its
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knowledge, takes an action in response to that state. After that, the environment
send a pair of next state and reward back to the agent. The agent will update its
knowledge with the reward returned by the environment to evaluate its last action.
The loop keeps going on until the environment sends a terminal state.

Figure 2.1: Reinforcement Learning Illustration

In many complex domains, reinforcement learning is the only feasible way to train
a program to perform at high levels. For example:

• Gaming. Recently, DeepMind created AlphaGo, a Deep Reinforcement Learning
Go player that beat the World Champion. We can easily understand that the
agents’ behaviour in this game could not be hardcoded, if we think that Go
has over 10170 possible states. Similar algorithms used to train Neural Networks
along with Reinforcement Learning in order to beat tons of games that were
impossible in the past.

• Manufacturing. Robots in factories use Reinforcement Learning to pick a device
from one box and putting it in a container. Whether they succeed or fail, they
memorize the object and gain knowledge and train to do this job with great
speed and precision.

• Power Systems. Reinforcement Learning and optimization techniques are uti-
lized to assess the security of the electric power systems and to enhance Micro-
grid performance.

• Healthcare. Many Reinforcement Learning applications in health care mostly
pertain to finding optimal treatment policies.
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• Advertising. Learning to rank using one-shot learning for emerging items and
new users will bring more money.

There are two ways to divide reinforcement learning algorithms. The first sepa-
ration is between Model-Based and Model-Free methods. In the first approach, the
agent learns the Markov Decision Process model or an approximation of it. This
means that the agents have to learn the transition function as well as the reward
function. Having done that, they use it to find the optimal policy. Contrary to the first
approach, Model-Free methods derive the optimal policy without explicitly learning
the model.

The second possible way of dividing the reinforcement learning algorithms is into
Passive Learning and Active Learning algorithms.

In Passive Learning, the agent’s policy is fixed and the agent tries to learn how
good the policy is by observing the world. The three basic approaches of this division
are the following:

• Direct Utility Estimation. A simple method for this was invented in the late
1950s in the area of adaptive control theory by Widrow and Hoff. This is a
model-free method and the idea is that the utility of a state is the average of the
total reward from that state onward, and each trial provides a sample of this
value for each state visited. Thus, at the end of each sequence, the algorithm
calculates the observed reward of the state and updates the estimated utility
for that state accordingly, just by keeping a running average for each state in a
table.

• Adaptive Dynamic Programming. This method does not take advantage of the
constraints in the Bellman equation. It is a Model-Based method, as it learns the
transition function T and the reward function R. So, based on the underlying
MDP model, it can perform policy evaluation.

• Temporal Difference Learning. It combines the best of both previous ap-
proaches. The key is to use the observed transitions to adjust the values of
the observed states so that they agree with the constraint equations. The basic
idea of all temporal-difference methods is, first to define the conditions that
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hold locally when the utility estimates are correct, and then, to write an update
equation that moves the estimates toward this ideal ”equilibrium” equation.

On the other hand, Active Learning is the approach in which the agent must also
learn what to do. As opposed to a Passive Learning agent, who has a fixed policy
that determines its behaviour, the principal issue here is exploration. The agent must
gain as much as possible experience from its environment in order to learn how
to behave in it. An agent of Active Reinforcement Learning must make a trade-off
between exploitation and exploration to maximize its reward, as we described earlier.

2.2.1 Q Learning

This section will go through one of the most important Reinforcement Learning
algorithms, known as Q-Learning [Watkins, 1989]. Q-Learning is an Active Temporal
Difference method which learns an action-value function instead of learning utilities.
As a model-free algorithm, the action-value function is approximated instead of the
state-value function, in order to discover an optimal policy. We will use the notation
Q(s, a) to denote the value of being in state s and taking the action a.

The learning procedure of the algorithm goes as follows: At each time step t, the
agent observes the state st and takes the action at according to a followed policy. As a
consequence of its action, it transits into a new state st+1 , and receives an immediate
reward rt+1. The goal is to maximize the Q-value. The update equation for Temporal
Difference Q-learning, which is calculated whenever action at is executed in state st

leading to state st+1, is given below:

Q(st, at)← Q(st, at) + a[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]

Here α refers to the learning rate and determines how fast are we approaching
the goal. A value near zero will make the agent not acquire any new knowledge,
while a value of 1 would make the agent consider only the most recent information.
The discount factor γ determines the importance of future rewards. A value of 0
will make the agent short-sighted by only considering current rewards, while a value
approaching 1 will make it strive for a long-term high reward.
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Since Q-learning is an iterative algorithm, it implicitly assumes an initial condition
before the first update occurs. High initial values, also known as ”optimistic initial
conditions”, can encourage exploration. Below, we present the basic Q-Learning al-
gorithm.

Algorithm 2.1 Q-learning algorithm
Require:
States S = {1, . . . , ns}
Actions A = {1, . . . , na}
Reward function R : S ×A → R

Transition function T : S ×A → S
Learning rate α ∈ [0, 1]

Discounting factor γ ∈ [0, 1]

Initialize Q : S ×A → R arbitrarily
while Q is not converged do
Start in state s ∈ S
while s is not terminal do
Calculate π according to Q and exploration strategy (e.g. π(s) ←
argmaxa Q(s, a))
a← π(s)

r ← R(s, a) {Receive the reward}
s′ ← T (s, a) {Receive the new state}
Q(s′, a)← Q(s, a) + α ∗ (r + γ ∗maxa′ Q(s′, a′)−Q(s, a))

s← s′

end while
end while
return Q
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Chapter 3

Problem Specification

3.1 The Demand-Capacity Problem

3.2 Problem Specification

3.3 Related Work

3.1 The Demand-Capacity Problem

Congestion problems are omnipresent in our every day life and are we face them in
a wide variety of domains such as traffic control, air traffic management and data
routing. In our thesis, we deal with problems that arise in the Air Traffic domain.
Specifically, we use real-world data to create real scenarios and use our multi-agent
reinforcement learning methods to resolve them. The scenarios used contain thou-
sands of flights during heavily congested days and we are challenged to resolve the
demand-capacity problem, while simultaneously providing better solutions than the
Network Manager.

Air Traffic Management (ATM) is a combination of procedures and techniques
that make possible for an aircraft to fly from an origin point to a destination. It is
formed by many services supporting this purpose. The demand-capacity problem
considers two important types of objects in the ATM system: aircraft trajectories and
airspace sectors.
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Aircraft trajectories are series of spatio-temporal points containing the longitude,
latitude and altitude of the aircraft at a specific time point ti. At the same time, flight
plans are intended trajectories, which consist of events of flights crossing air blocks
and sectors, and flying over specific waypoints. Each event specifies the sector that is
crossed, the entry and exit locations (coordinates and flight levels), and the entry and
exit times, or the exact time that the flight will fly over a specific sector (duration).
Other information such as estimated take-off time are specified, and, in case of delay,
the take-off time can be calculated by adding the delay to the original take-off time.

Sectors are air volumes segregating the airspace, each defined as a group of air-
blocks. These are specified by a geometry (the perimeter of their projection on earth)
and their lowest and highest altitudes. As an example, Figure 3.1 depicts projections
of airblocks above Europe. Airspace sectorization may be done in different ways, de-
pending on sector configuration. Such a configuration determines the number of active
(open) sectors and only one sector configuration can be active at a time. Airspace sec-
torization changes frequently during the day, given different operational conditions
and needs. This happens transparently for the flights.

Figure 3.1: Airlocks in 2D: Sectors are groups of adjacent airblocks.

The capacity of sectors is of utmost importance. That is because this quantity
determines the maximum number of flights allowed to fly within a sector during a
specific time interval. On the other hand, the demand for each sector is the quantity
that specifies the number of flights that co-occur (or predicted to occur) during a
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specific interval within a sector. Demand must not exceed sector capacity for any
time interval, as this could result into conflict on the air. There are different types of
measures to monitor the demand evolution, with the most common ones being Entry
Rate and Occupancy Count. In this work, we consider Occupancy Count.

The Occupancy of a given sector is defined as the number of flights inside the
sector during a selected period, referred as Occupancy Counting Period. In turn, this
Occupancy Counting Period is defined as a picture of the sector occupancy taken
every time step along an interval of fixed duration. The Step value defines the time
difference between two consecutive Occupancy Counting Periods. The Duration value
defines the time difference between start and end times of each Occupancy Counting
Period. For instance, considering the example in Figure 3.2 for a specific sector, the
occupancy counts corresponding to the set of flights at different moments P with
duration of 1min and step of 1min are: (a) At P: 1,2,3; (b) at P+1: 1,3,4,5; (c) at P+2:
3,4,6; and (d) at P+3: 4,6,7,8.

Figure 3.2: Occupancy Step = 1min., Duration = 1min.

In this thesis, we consider the demand-capacity process during the pre-tactical
phase. Pre-tactical flow management is applied at least six days prior to the day of
operations, and consists of planning and coordination activities. This phase aims to
compute the demand for the operations day, compare it with the predicted airspace
capacities on that day, and make any necessary adjustments to the flight plans. At
this phase, trajectories are sent to the Network Manager who takes into account sector
capacities to detect problematic areas. The main objective of this phase is to optimize
efficiency and to balance demand and capacity through an effective distribution of
resources.
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Summing up, our objective is to demonstrate how reinforcement learning methods
can help in trajectory forecasting when planned demand exceeds sectors capacity. In
this case, regulations in form of delays are applied to the trajectories. Finally, we
have to remember that the planning is happening in the pre-tactical phase and after
a flight departs we cannot impose any delay or change its route.

3.2 Problem Specification

Let there be n trajectories denoted as Traj that must be executed over the airspace
in a total time period of duration H hours. The airspace consists of a set of sectors,
denoted by Sectors. Time can be divided in intervals of duration ∆t, equal to that of
the Occupancy Counting Period.

Each agent represents a flight and each flight has a trajectory that is a sequence of
timed positions in the airspace. From this sequence, we can derive the series of sectors
that each flight crosses along with the entry and exit time for each of these sectors.
For the first (last) sector of the flight, i.e. where the departure (resp. arrival) airport
resides, the entry (resp. exit) time is the departure (resp. arrival) time. However, there
may exist flights that cross the airspace but do not depart nor arrive in any of the
sectors within our airspace. In this case, we consider the entry and exit time of sectors
within the airspace of our interest.

Thus, a trajectory T in Traj is a time series of elements of the form:

T = {(s1, entryt1 , exitt1), ..., (sm, entrytm , exittm)}

where si ∈ Sectors, i = 1, ...m.

For instance, considering the trajectories T1 and T2 in Figure 3.3, these are specified
as follows:

T1 = {(sector5, 10 : 00, 10 : 20), (sector2, 10 : 20, 10 : 45)}

T2 = {(sector1, 10 : 00, 10 : 05), (sector2, 10 : 05, 10 : 15),

(sector7, 10 : 15, 10 : 25), (sector12, 10 : 25, 10 : 35)}
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Figure 3.3: Example of trajectories crossing sectors

This information per trajectory suffices to measure the demand Dsi,p for each of the
sectors si ∈ Sectors in the airspace in any Occupancy Counting Period p of duration
∆t. This measurement of the demand will eventually lead to determine whether the
sector is under violation or not.

Specifically, Dsi,p = |Tsi,p|, i.e. the number of trajectories in Tsi,p, where
Tsi,p = {T ∈ Traj|T = (..., (si, entryti , exitti), ...), and the temporal interval [entryti , exitti ]
overlaps with period p}. In Figure 3.3, considering the trajectories T1 and T2 crossing
the sector s2, we have Ts2,p = {T1, T2}, with p = [10 : 10, 10 : 15].

Each sector si ∈ Sectors has a specific capacity Csi . The aim is to resolve imbal-
ances of sectors’ demand and capacity. These are cases where Dsi,p > Csi , for any
period p of duration ∆t in H , in any si ∈ Sectors. ∆t equals to the Occupancy Count-
ing Period duration. We refer to these cases as capacity violation or Demand-Capacity
imbalance cases, resulting to hotspots. In case of capacity violation, the interacting
trajectories are defined as hotspot-consulting trajectories which means that one or
more of these trajectories needs to be delayed in order to resolve the occuring im-
balance. In order to solve the Demand-Capacity problem in these sectors, the flights
that participate in them are being given delays in their take-off time.
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However, by imposing delays to interacting trajectories often leads to new hotspots
in a subsequent time period for the same and/or other sectors crossed by that trajec-
tory. Moreover, it should be stated again that the trajectory or the sequence of sectors
crossed cannot be changed for any flight. That means, changing the route of the flight
plan is not possible. Instead, by imposing the right delays, along with the restrictions,
we are challenged to solve the problem.

In our approach, we consider an agent-based formulation of the problem. That
is, every agent Ai is an aircraft performing a specific trajectory in a specific date
and time. As it will be specified in the next chapter, these agents have their own
interests and preferences, but they collaborate in order to solve the common problem.
It must be stated that agents do not have any kind of communication and monitoring
constraints given that imbalances are resolved at the planning phase, rather than
during operation.

Therefore agents have to learn the joint delays to be imposed to their trajectories
with respect to the operational constraints concerning the capacity of sectors crossed
by these trajectories. It must be also noted that agents have conflicting preferences
since they prefer to impose the smallest delay possible - as it will eventually lead to
lower their cost- to their own trajectory, while also executing their planned trajectories
safely and efficiently.

Furthermore, each aircraft might has its own type (e.g. Airbus, Boeing, etc.),
and each type has its own cost per minute of delay. Another important aspect of
the considered flights is whether a flight is commercial or not. Commercial flight
describes an aircraft operation to transport passengers, cargo or mail for remuneration
or other valuable consideration. On the other hand, non-commercial flights include
flight training, military missions and similar operations. The non-commercial flights
cannot be delayed opposed to the commercial ones, but we must take them into
consideration while solving the Demand-Capacity problem as they fly through the
sectors.

Agents with interacting trajectories are considered to be ”neighbours” given that
they have to jointly decide on their delays. The actions that every agent takes into
a neighbourhood affect immediately all the other neighbouring agents, but not the
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other agents outside the neighbourhood. This implies that agents form “neighbour-
hoods”, taking also advantage of the inherent sparsity of the problem. However, these
neighbourhoods have to updated when delays are imposed to the agents’ trajectories
and as a result a dynamic update of the neighbours is necessary.

The problem can also be visualised as a graph. We define a society of agents
S = (Traj, Agents, E), with one node per agent Ai ∈ Agents and any edge (Ai, Aj) ∈ E

connecting agents with interacting trajectories in Traj. Next, we define as N(Ai) the
neighbourhood of agent Ai, i.e. the set of agents connected to agent Ai ∈ Agents

including itself. It is obvious, that the set of edges are dynamically updated by adding
new edges when new interacting trajectories appear.

As presented earlier, in order to solve the Demand-Capacity problem, every agent
should be assigned with an appropriate delay. This delay value is bounded. So, for
every agent Ai, Di ⊆ {0, 1, 2, ...,MaxDelayi} denotes the range of delays this agent
can take. Each agent Ai has a MaxDelayi value, which is the maximum delay we
can impose to this agent. Moreover, there is also a Maximum Delay value that none
of the agents can surpass in a given day.

Considering two neighbours Ai and Aj ∈ N(i)−{Ai}, agents must select among the
sets of available delay options Di and Dj respectively, so as to increase their expected
payoff with respect to their preferences on delays, and resolve the demand-capacity
problem. This problem specification emphasises on the following problem aspects:

• Agents need to coordinate their strategies to execute their trajectories jointly
with others with respect to their preferences and operational constraints

• Agents need to explore and discover how different combinations of delays affect
the joint performance of their trajectories, given that the way different trajectories
do interact is not known beforehand

• Agents’ preferences on the options available may vary depending on the trajec-
tory performed, and are kept private
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3.3 Related Work

The field of research concerning congestion problems has been heavily studied in
the past. In game theory, Rosenthal[14] introduced and studied the congestion games
along with the existence of Nash equilibria. Many more classes of congestion games
have been introduced since then, and their algorithmic and complexity aspects have
been extensively studied in the literature (see, e.g., [15, 16, 17]).

Bazzan [8] et al. were among the first to frame congestion problems as a mul-
tiagent coordination problem, while Dresner and Stone [9] proposed a multiagent
reservations-based traffic intersections control mechanism.

More recently, Agogino and Tumer [10] proposed a multiagent framework for
air-traffic control, and have evaluated their methods using real world airports’ data.
However, their agents do not correspond to aircrafts but are assigned to specific
ground locations throughout the airspace. Agents can perform one of three actions:
they can set separations between airplanes; they can order ground delays; or they
can order airplane reroutes. This approach is the closest to ours, however it does
not guarantee to resolve the DCB problem, can handle only up to two interdepen-
dent congestion instances and, moreover the agents are essentially individual action
learners.

In the approach of Malialis et al. [11], who use Q-learning to address multiagent
congestion problems, they evaluate their approach in road traffic simulation settings
using up to 1000 agents, but do not tackle multiple interdependent congestion in-
stances, and do not use real-world data. They devise reward functions that take into
account the existence of abstract groups of congested resources, and provide different
reward(increased punishment) to agents when they are about to consume a congested
resource.

There have also been a few papers using agent-based modelling to address the
tactical phase of the ATM problem — i.e., they focus on avoiding aircraft collisions.
Two such recent works use decentralized negotiation [12] or iterative peer-to-peer
and multiparty collision avoidance methods [13]. None of these works uses machine
learning or stochastic decision making methods, however.

As far as we are aware, there are no works that actually deal with the same
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prolem in the way that we propose, i.e. using collaborative multiagent RL methods to
resolve the DCB problem in pre-tactical phase. Only in T. Kravaris et al. in [2] show
encouraging preliminary results on medium size problems in simulated settings.
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Chapter 4

Collaborative Reinforcement Learning

4.1 Multi-Agent Reinforcement Learning

4.2 Advantages and Disadvantages of Multi-Agent Reinforcement Learning

4.3 Coordination Graphs and Max-Plus Algorithm

4.4 Independent Reinforcement Learners

4.5 Sparse Cooperative Q-Learning

In human society, as well as any other society, learning is an essential component of
intelligent behaviour. However, each individual agent need not learn everything from
scratch by its own discovery. Instead, they may exchange information and knowledge
with each other and learn from their peers or teachers. When a task is too big for a
single agent to handle they may cooperate in order to accomplish the task.

4.1 Multi-Agent Reinforcement Learning

In this section, we will generalize the Markov Decision Process model to the multi-
agent case. Specifically, in this thesis we present the case where the agents act col-
laboratively trying to maximize their payoff. This can be considered as a sequential
decision-making problem. In this category of problems, the agents select a joint action
which provides them with a reward and a transition to a new state. As in the case
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of single agent, we have no prior knowledge about the effect of the actions that the
agents will choose. Αs a consequence, the agents have to interact with the environment
and learn the optimal joint actions based on the received rewards.

Before proceeding further, we should define the basic naming notations to distin-
guish the multi-agent case from the single-agent. In the multi-agent case, we use the
payoff term instead of reward. Also, we denote as utility what we used to call value
in the single-agent case and as strategy, the actions that the agents will perform.

There are many models that can describe a multi-agent system interacting with its
environment. In our work, we chose the collaborative multi-agent MDP framework
[Guestrin, 2003] which is an extension of the MDP framework we discussed in Chap-
ter 2. In this model each agent selects an individual action in a particular state and
based on the resulting joint action the system transits into a new state and the agents
receive an individual reward. The global reward is the sum of all individual rewards.
This approach differs from other multi-agent models, for example, multi-agent MDPs
[Boutilier, 1996] or decentralized MDPs [Bernstein et al., 2000], in which all agents
observe the global reward. In a collaborative MDP, the goal of the agents is still to
maximize the global reward, but the individually received rewards allow for solution
techniques that take advantage of the problem structure.

Continuing with the description of MDPs, a multi-agent MDP can be regarded as
one large single agent in which the joint action is represented as a single action. It
is then possible to learn the optimal Q−values for the joint actions using standard
single-agent Q−learning. In this MDP, either a central controller models the complete
MDP and communicates to each agent its individual action, or each agent models
the complete MDP separately and selects the individual action that corresponds to its
own identity. In the latter case, the agents do not need to communicate but they have
to be able to observe the executed joint action and the received individual rewards.
The problem of exploration is solved by using the ϵ-greedy exploration-exploitation
strategy for all agents [3].

In spite of the fact that this approach leads to the optimal solution, it is infeasible
for problems with many agents. In the first place, it is intractable to model the com-
plete joint action space, which is exponential in the number of agents. For example,
a problem with 20 agents, each able to perform 2 actions (add delay or not) results
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in more than one million Q−values per state. Secondly, the agents might not have
access to the needed information for the update because they are not able to observe
the state, action, and reward of all other agents. Finally, it will need many time steps
to explore all joint actions resulting in very slow convergence.

So, in order to exploit its various advantages, we use the model of collaborative
multi-agent MDP framework [4][5] which assumes:

• A society of agents S = (Traj, Agents, E).

• A time step t = t0, t1, t2, ..., tmax, where (tmax − t0) = H

• A local state per agent Ai at time t, that correspond to the delay imposed to the
trajectory Ti , ranging to the sets of delay options assumed by Ai . Such a state
is denoted sti . The joint state sti,j of agents Ai and Aj at time t is the tuple of
the state variables for both agents. A global state st at time t is the tuple of all
agents’ local states.

• A local strategy for agent Ai at time t, denoted by strti is the action that Ai

performs at that specific time point. An action for any agent at any time point,
in case the agent is still on ground, may be, either impose a delay or not. Thus,
at each time point the agent has to take a binary decision. When the agent
flies, then it just follows the trajectory and neither can take additional delay nor
change its route. The joint strategy of a subset of agents A of Agents executing
their trajectories (for instance of N(Ai)) at time t, is a tuple of local strategies,
denoted by strtA (e.g. strtN(Ai)

). The set of all joint strategies for A ⊂ Agents

is denoted as StrategyA . The joint strategy for all agents Agents at time t is
denoted strt .

• The state transition function gives the transition to the joint state st+1 based on
the joint strategy strt taken in joint state st .
Formally Tr : State × Strategy → State. It must be noted that although this
transition function may be deterministic in settings with perfect knowledge
about society dynamics, the state transition per agent is stochastic, given that
no agent has a global view of the society, of the decisions of others, while its
neighbourhood gets updated. As a result no agent can predict how the joint state
can be affected in the next time step. Thus, for agent Ai this transition function
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is actually Tr : Statei × StrategyAi
× Statei → [0, 1], denoting the transition

probability p(st+1
i |sti, strti).

• The local reward function of agent Ai, denoted Ri , is the reward that the agent
gets by executing its own trajectory in a specific joint state of its neighbours in
N(Ai), and the joint strategy of agents in N(Ai). The joint reward, denoted by
RA , for a set of neighbours A specifies the reward received by agents in A by
executing their actions in their joint state, according to their joint strategy. The
joint reward RA for A ⊆ Agents depends on many variables. More specifically,
it depends on (a) the number of hotspots occurring while the agents execute
their trajectories according to their joint strategy StrategytA in their joint state stA
, (b) the chosen delay, (c) the duration that the flight stays within the violated
sector and (d) the cost per minute of delay for the respective type of aircraft.

The reward RA for a set A ∈ Agents with join state sA depends on the partici-
pation (contribution) of agents in hotspots according to their joint strategy strtA.
In our work we have used the following reward function:

RA(s
t
A, str

t
A) =

TDC × 81− λ×Delay × Cost(Aircraft), if TDC > 0

C − λ×Delay × Cost(Aircraft), if TDC = 0

where,

TDC denotes the duration of agents’ participation in congestion instances, i.e.
their contribution in hotspots. This is multiplied by the factor 81 which is the
average strategic cost (in Euros) per minute in Europe when 92% of the flights
do not have delays [18]. This term evaluates the cost of delaying by means of
agents’ participation in hotspots.

Delay is the total delay (i.e. the summation of individual delays in minutes)
imposed to the agents in A.

Cost(aircraft) is the summation of strategic delay cost corresponding to the
aircraft types executing the trajectories, as specified in [18].

The parameter [λ > 0] represent the importance of minimizing delays and it
provides the weight of measuring strategic delay costs.
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C is a positive constant representing the total payoff of agents in case where no
hotspots (TDC = 0) occur.

It must be noted that alternative schemes of the reward function can be also
used by taking into account broader airline-specific strategic policies and con-
siderations regarding flight delays.

• A local policy of an agent Ai is a function πi : Statei → StrategyAi
that returns

local strategies for any given local state, for Ai to execute its trajectory. The ob-
jective for any agent in the society is to find an optimal policy π∗ that maximizes
the expected discounted future return.

This model assumes the Markov property, assuming also that rewards and tran-
sition probabilities are independent of time. Thus, the state next to state s is denoted
by s′ and it is independent of time.

4.2 Advantages and Disadvantages of Multi-Agent Reinforcement

Learning

The distributed nature of multi-agent RL has many benefits. In addition to the
speedup made possible by the parallel computation, multiple RL agents can gain
a lot from sharing experience, i.e. by communication, teaching or coordination. On
the other hand, multi-agent RL carries the burdens of single-agent RL, such as curse
of dimensionality and the exploration-exploitation trade-off.

Experience sharing can help agents that perform similar tasks learn faster and
produce better solutions. As an example, agents can exchange information during
the training; better trained agents can serve as teachers to the poor trained or new
agents can learn by imitating the more experienced. Moreover, parallel computation
is possible exploiting the decentralized nature of the problem.

Conversely, the curse of dimensionality is caused by the exponential growth of
the state-action space in the number of state and action variables. For example, Q-
Learning algorithm estimate values for each possible state-action pair, and as a result

26



a growth in terms of agents and dependencies among them, will leads to an ex-
ponential increase in the computational complexity. Furthermore, in multi-agent RL,
complications in the efficiency of the algorithms arise by increasing the number of the
agents as the exploration-exploitation strategy becomes harder to handle. Agents need
not only to obtain information about the environment, but also have to communicate
with a subset of the other agents in order to coordinate their actions. Too much ex-
ploration may destabilize the other agents, thereby making the learning process more
difficult for the exploring agent.

4.3 Coordination Graphs and Max-Plus Algorithm

The most important and challenging part of collaborative Reinforcement Learning is
for the agents to cooperate and find an optimal joint policy to follow.

Let there be n agents and each agent Ai follows its individual strategy stri. As a
reminder, strategy refers to the action the agent selects in a particular time step. The
joint vector containing all the agents’ strategies is str = (str1, ..., strn) and generates
a payoff for the group of agents, denoted as u(str). The coordination problem is to
find the optimal joint strategy vector str∗ that maximizes the payoff, that is, str∗ =

maxstr u(str).

The optimal joint strategy can be computed by producing all possible joint strategy
vectors and choosing the one that maximizes u(str). It is easily understood that this
approach is infeasible as the size of the joint strategy space grows exponentially
with the number of the agents. Fortunatelly, as we mentioned earlier, the nature
of our problem helps us, as the agents do not depend on the actions of all other
agents, but only on a subset of them. This subset of agents, has been denoted as the
neighbourhood of an agent, and it is formed when the agent participates in a hotspot.

So, we exploit the Coordination Graphs (CG) framework which assumes that the
strategy an agent Ai follows, depends only on a subset of the systems’ agents, j ∈ Γ(i),
that is the neighbourhood of this agent. The global payoff can be written as a linear
combination of all local payoff functions:
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u(str) =
n∑

i=1

fi(stri)

Each local payoff function fi depends on the joint strategy of agent Ai and its
neighbours in N(Ai). This can be visualised as an undirected graph G = (V, E) with
|V | nodes (agents) and |E| edges and each edge (i, j) ∈ E shows that the agents Ai

and Aj have to coordinate their actions.
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Figure 4.1: Example of a Coordination Graph.

Figure 4.1 shows an example of a Coordination Graph containing 8 nodes and
between the nodes the corresponding edges. The payoff contribution of a pair of
actions (stri, strj) of two neighbouring agents Ai and Aj is denoted as fij. In our
case, every CG we examine is a complete graph, that is, every agent connects and
shares an edge with every other agent within its neighbourhood. As a result, every
neighbourhood is formalized as an individual Coordination Graph. Each agent Ai may
belong to many Coordinated Graphs, as it can take part to more than one hotspots.

To solve the coordination problem, we have to find the optimal joint strategy
str∗ = maxstru(str). In order to do that, we can either apply Variable Elimination
(VE) algorithm or the approximate Max-Plus algorithm. Briefly, VE algorithm elim-
inates the agents one by one and before the elimination the agent collects the payoff
produced by its edges. It guarantees that it will always find the optimal joint strategy
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and it does not depend on the elimination order. Contrary, the execution time of the
algorithm heavily depends on the order we choose to eliminate the agents. To find
the optimal elimination order it is considered to be an NP-complete problem, but
there exist some heuristics.

Nevertheless, an approximate alternative to the VE algorithm exists. Max-Plus
algorithm [7] is a popular method for computing the maximum a-posteriori (MAP)
configuration in an undirected graphical model. It operates by iteratively sending
locally optimized messages µij(strj) between node i and j over the corresponding
edge in the graph. After convergence, each node then computes the MAP assignment
based on its local incoming messages only [1]. In order to find the optimal joint
strategy str∗, each agent Ai repeatedly sends messages µij to its neighbours:

µij(strj) = max
stri
{fi(stri) + fij(stri, strj) +

∑
k∈Γ(i)−j

µki(stri)}

where Γ(i)− j is the neighbours of Ai except Aj.

The produced message is an approximation of the maximum payoff that the agent
Ai is able to achieve given an action of agent Aj , and it is computed by maximizing
over the sum of the payoffs and all the incoming messages to Ai. These messages are
being exchanged until they converged to a fixed point.

The main difference between VE and Max-Plus algorithm, lies to the fact that
in the latter an agent only has to sum over the received messages of its neighbours
instead of enumerating over all possible action combinations. Each agent Ai selects the
optimal strategy str∗i based on a function that combines its payoff and the summation
of the incoming messages from its neighbours. We denote this function as gi(ai):

gi(ai) = fi(stri) +
∑
j∈Γ(i)

µji(stri)

str∗i = argmaxstrigi(stri)

The optimal joint action str∗ is computed by local optimizations, as every node
individually maximizes its own gi(stri). The main disadvantage of the method is
that it does not guarantee convergence in graphs with cycles. Below, we present the
Max-Plus Algorithm for a Coordination Graph CG = (V,E).
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Algorithm 4.1 Max-Plus Algorithm
Input: CG = (V,E)

Initialize messages µij = µji = 0 for every (i, j) ∈ E

Initialize gi = 0 for every i ∈ V

while fixed_point = false do
fixed_point = true

for every agent i do
for all neighbours j = Γ(i) do
send j message

µij(aj) = max
ai
{fi(ai) + fij(ai, aj) +

∑
k∈Γ(i)−j

µki(ai)} − cij

if µij(aj) differs from previous message by a small threshold then
fixed_point = false

end if
determine gi(ai) = fi(ai) +

∑
j∈Γ(i) µji(ai)

a∗i = argmaxaigi(ai))

end for
end for

end while
return a∗

The following sections will describe three collaborative Reinforcement Learning
methods used in this thesis, considering that the agents do not know the transition
and reward model (model-free methods). The three methods that will be discussed
are: Independent Reinforcement Learners, Agent-Based Collaborative Reinforcement
Learners and Edge-Based Collaborative Reinforcement Learners.

4.4 Independent Reinforcement Learners

This method implements the Q-Learning algorithm independently for every agent
participating in the multi-agent system.
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In this approach (Claus and Boutilier, 1998), the agents ignore the actions and
rewards of the other agents, and learn their strategies independently, that is each
agent learns its own policy independently and treats other agents as part of the
environment. Each agent Ai stores and updates an individual local table Qi and the
global Q− function is defined as a linear combination of all individual contributions,
Q(s, str) =

∑n
i=1Qi(s, stri).

A local table Qi is updated using the global temporal-difference error, the difference
between the current global Q-value and the expected future discounted return for the
experienced state transition, using

Qi(si, stri) := Qi(si, stri) + α[R(sN(Ai), strN(Ai)) + γmax
stri

Qi(s
′
i, stri)−Qi(si, stri)]

It must be noted that instead of the global reward used in [6], we use the reward
received by the agent, taking into account only the joint state and joint strategy of its
neighbourhood.Furthermore, this method considers only local states and strategies
and it is in contrast to the approach of Coordinated Reinforcement Learning model
proposed in [6], since that model needs to know the maximising joint action in the
next state, the associated maximal expected future return, and needs to estimate the
global Q-value in the global state. As already pointed out, agents’ neighbourhoods
are not stable and they need to be updated occasionally during the learning process.

4.5 Sparse Cooperative Q-Learning

In this section, we describe the two other methods using Collaborative Reinforcement
Learning. These methods are based on Sparse Cooperative Q-Learning, or SparseQ,
methods which also approximate the global Q-function into a linear combination
of local Q-functions. The decomposition is based on the structure of a Coordinated
Graph which is chosen beforehand. This decomposition can either be in terms of
the edges or nodes(agents). In our approach, we construct the Coordination Graph
assuming the following:

• Every agent (flight) is a node.
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• An edge between two graph nodes exists if and only if the two corresponding
nodes (flights) are involved in the same hotspot.

Two connected flights on that graph are called neighbours. A flight can be a
neighbour of another flight only if they both can be found at the same sector, at the
same occupancy period. It has to be noted here, that given a maximum delay for
each flight, the set of possible interacting flights at a time slot is finite.

In the agent-based decomposition the local function of an agent is based on its
own action and those of its neighbouring agents. In the edge-based decomposition
each local function is based on the actions of the two agents it is connected to. In
order to update a local function, the idea is to base the update not on the difference
between the current global Q−value and the experienced global discounted return,
but rather on the current local Q−value and the local contribution of this agent to the
global return. In this thesis we utilize the edge-based decomposition.

In the edge-based decomposition, we have our coordination graph G = (V,E)

with |V | nodes (agents) and |E| edges. Each edge (i, j) ∈ E corresponds to a local
Q-function Qij and the sum of all Q-functions defines the global Q-function:

Q(s, a) =
∑

(i,j)∈E

Qij(sij, strij)

where si,j ⊆ si ⊆ Sj is the subset of the state variables related to Ai and Aj. Figure
4.2 shows an example of an edge-based decomposition for a 4-agent problem.

Furthermore, in order to update a local Q-function, we have to propagate back
the reward received by the individual agents. This is complicated, as the rewards are
received per agent, while the local Q-functions are defined over the edges. As a result,
for an agent in a neighbourhood we cannot directly derive the dependency generated
the reward. So, we need to associate every agent with a local Q-function Qi that is
directly computed from the edge-based Q-functions Qij. In order to compute Qi, we
assume that each edge-based Q-function contributed equally to the two agents that
form the edge. Then, the local Q-function Qi of agent Ai is defined as the summation
of half the values of all local Q-functions Qij of Ai and its neighbours j ∈ Γ(i) :

Qi(si, stri) =
1

2

∑
j∈Γ(i)

Qij(sij, strij)
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Figure 4.2: An edge-based decomposition of the global Q-function for a 4-agent
problem.

Finally, to compute Q we have to sum all local Q-functions Qi. The following
subsections, describe two update methods for the edge-based decomposition.

4.5.1 Edge-Based Update

This is a variant of the edge-based update of the sparse cooperative edge-based
decomposition Q-learning method proposed in [8]. Given two peer agents, Ai and Aj ,
the Q-function is denoted succinctly Qij(si,j, stri,j. For every agent Ai we made the
assumption that the reward Ri is divided proportionally over its neighbours Γ(i). We
use the following to update:

1

2

∑
j∈Γ(i)

Qij(sij, strij) :=

1

2

∑
j∈Γ(i)

Qij(sij, strij) + α[
∑
j∈Γ(i)

Ri(si, stri)

|Γ(i)|
+ γ

1

2

∑
j∈Γ(i)

Qij(s
′
ij, str

∗
ij)−

1

2

∑
j∈Γ(i)

Qij(sij, strij)]

In order to update an individual local Q-function Qij , we remove the sums, because
one half of every local Q-function Qij is updated by the agent Ai and the other half
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by the agent Aj. Adding the two of them gives us the following update rule for a
single local Q-function Qij :

Qij(sij, strij) :=

Qij(sij, strij) + α[
Ri(si, stri)

|Γ(i)]
+

Rj(sj, strj)

|Γ(j)]
+ γQij(s

′
ij, str

∗
ij)−Qij(sij, strij)]

Each local Q-function Qij is updated with a proportional part of the received
reward of the two agents forming the edge and with the contribution of this edge
to the maximization of the joint strategy str∗ij in state s′ij. The latter is computed by
either applying the approximate max-plus algorithm we described earlier or by using
our variant that uses each agent’s max value for the next state. In our method the
strategy str∗i is the best known strategy for that agent and it is depicted directly from
the agent’s value function, Qi(si, stri), which has been calculated as the summation
of local Qij values in its neighbourhood:

str∗i = argmaxstriQi(si, stri)

Qi(si, stri) =
1

2

∑
j∈Γ(i)

Qij(sij, strij)

The above method for the selection of str∗i provides an approximation that, as our
experimental study has shown, it offers qualitative solutions in a significantly efficient
way than a message-passing approach.

4.5.2 Agent-Based Update

As we previously discussed, the edge-based update method divides the reward pro-
portionally over the different edges of an agent. A different approach from this, is
the agent-based update, in which we first compute the temporal-difference error per
agent and then divide this value over the edges. For this, we use:

1

2

∑
j∈Γ(i)

Qij(sij, strij) :=

1

2

∑
j∈Γ(i)

[Qij(sij, strij)] + α[Ri(si, stri) + γQi(s
′
i, str

∗
i )−Qi(si, stri)]
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In order to transform into a local update function, we re-write the temporal dif-
ference error as a summation of the neighbours of agent Ai :

Ri(si, stri) + γQi(s
′
i, str

∗
i )−Qi(si, stri) =

∑
j∈Γ(i)

Ri(si, stri) + γQi(s
′
i, str

∗
i )−Qi(si, stri)

|Γ(i)|

Just as the edge-based update, there are two agents which update the same local
Q-function Qij. So, we can decompose by removing all sums. When we add the
contributions of the two involved agents -Ai and Aj-, we get the following local
update equation:

Qij(sij, strij) :=

Qij(sij, strij) + α
∑

k∈(i,j)

Rk(sk, strk) + γQk(s
′
k, str

∗
k)−Qk(sk, strk)

|Γ(k)|

This update rule propagates back the temporal-difference error from the two
agents which are involved in the local Q-function of the edge that is updated. The
difference of agent-based update from the edge-based update method is that the
latter directly propagates back the temporal-difference error related to the edge that
is updated.

This is also a variant of the original agent-based update method proposed in [1],
as it computes the maximizing joint action str∗ using the maximum next value for
every agent instead of max-plus or VE algorithm.
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Chapter 5

Experimental Results

5.1 Experimental set-up

5.2 Experimental Results with Artificial Data

5.3 Experimental Results with Real-World Data

In this chapter, we will present the experimental results of our proposed methods
upon real-world scenarios. Initially, we will describe the experimental procedure along
with the environment settings and present the results of every method. Finally, we
will compare our results to the solutions given by the Network Managers.

5.1 Experimental set-up

In this thesis, we have performed a series of experiments -both in artificial and real-
world data- in order to test and compare the efficiency of the three collaborative
Q-learning methods. The efficiency is measured in terms of the resulting number
of hotspots, the average delay achieved and the distribution of delays to interacting
flights. Moreover, we tested our methods in real-world scenarios with thousands of
flights.

Concerning the free parameters in the reward function, λ and C , we experimented
with plenty of values. A typical value for lambda is lambda = 20 , after experimental
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study. Using this value, the proposed methods provide solutions with reduced aver-
age delays per flight, compared to cases where λ < 20. For the constant term C , we
experimented with values resulting to high positive feedback when the hotspots that
the agent participated were eliminated. We used the value 500.000 for our experi-
ments, as lower values tested did not solve the problems and higher values would
not reach the performance of this value.

For the real world data, all methods have been executed for 10000 episodes fol-
lowing an ϵ-greedy exploration-exploitation strategy starting from probability 0.9,
which every 80 episodes is diminished by the value of 0.01. At episode 7200 the
probability becomes 0.001 and is henceforth considered zero. Then, a pure exploita-
tion phase starts. The learning procedure we followed for the artificial data will be
presented on the next section as the scenarios were significantly smaller than the
real ones, but their contribution was crucial as they helped us understand that the
methods can be successfully applied to our problems and motivated us to continue
our research.

In addition to the above, and in order to enhance the efficiency and the quality of
results received by any of the proposed methods, we have considered a deterministic
rule for the flights that do not participate in any congestion. These flights are set
to have delay equal to 0, that is they are free to depart from the airport at their
specified take-off time, unless they participate in any hotspot in the future before
their departure time. It must be pointed out that any of these flights may participate
in congestions in any future state, as the delays imposed to other flights may lead
to the creation of new hotspots in subsequent times. In this case the rule does not
apply for these flights and the corresponding agents participate in the multi-agent RL
process. The rationale for that rule is to prune the search space by having the delay
of flights that do not contribute to congestions, and thus do not have neighbours in
the agents’ society, set to zero.

Furthermore, as mentioned before, there are many flights that considered to be
non-commercial. We cannot deal with those flights, and as a result these flights have
delay equal to 0. However, these flights take part in the multi-agent RL process as
they increase the Occupancy Count of the sectors they cross.
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Parameters Value

Number of planes, N 100
Max delay 10
Number of sectors 16 (4 × 4)
Capacity of sectors, Cap ∈ [4, 10]
Total time period duration, H 180

Table 5.1: Parameter values used during the simulated experiments

5.2 Experimental Results with Artificial Data

We have performed a series of experiments with artificial data in order to test and
compare the efficiency of the three collaborative Q-learning methods to resolving
the DCB problem in ATM. To this purpose, we create specific simulation scenarios
of trajectories crossing an airspace. The scenarios are artificial, but correspond to
typical and difficult cases in the real world, found in datasets provided by CRIDA,
the Spanish Reference Centre for Research, Development, and Innovation in ATM.
They have been used during the initial phase of our research in order to control the
experimental settings and explore the potential of the proposed methods.

For the simulation we consider that the airspace comprises a grid of sectors, all
having a specific capacity value (that could possibly differ from sector to sector). Table
5.1 presents the data used in producing the experimental cases and the parameter
values used in all simulated runs.

All three approaches follow an ϵ-greedy exploration strategy starting from proba-
bility 0.8, which is gradually reduced in subsequent rounds. However the Ind-Colab-
RL differs from the other methods in that it initiates an ϵ-greedy exploitation phase
for 1000 rounds with high probability, while in a subsequent phase of 1000 rounds, it
does pure exploration. To evaluate the three approaches in cases of varying difficulty,
we modify the capacity of sectors (Cap), and the number m of sectors that each flight
crosses. Herein we report results only for the most hard cases in the grid considered,
where m ∈ [3, 4]. For every capacity value Cap ∈ [4, 10], we generated 50 random
experimental cases. Figure 5.1 shows the mean value and the standard deviation of
the final (after learning) number of hotspots, as well as the mean delay for all flights
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and for all experiments performed. According to the results and as shown in Fig.
5.1 (a), all methods demonstrated very similar behaviour with respect to hotspots’
eradication, with Ed−Colab−RL being slightly more effective compared to others. The
x-axis in Fig. 5.1 (a) shows the capacity of each sector, while y-axis shows the number
of hotspots when agents’ strategies converge.

When the capacity of sectors was greater than or equal to 7 all methods reached the
optimum policy for the hotspot criterion. However, an improvement in the ’mean de-
lay’ criterion is shown in Fig. 5.1 (b) concerning the edge-based and the agent-based
collaborative RL approaches: x-axis in this figure shows the varying capacity of each
sector, and the y-axis shows the mean delay achieved by each method. Ind−Colab−RL
shows the worst performance, while the performance of Ed−Colab−RL is similar to
that of Ag−Colab−RL, although the later is more consistent while the capacity of sec-
tors increases. This confirms that the proposed multi-agent formulation provides a
promising framework for tackling the DCB problem.
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Figure 5.1: Comparative results: Plots illustrate (a) the number of hotspots and (b) the
mean delay estimated by each method in terms of various values of sectors’ capacity
(x-axis)

Figure 5.2 illustrates an example of the received learning curves by each method,
i.e. the number of hotspots and mean delay as estimated for 1000 episodes during
learning (we set sector’s capacity as C = 7 to all cases). For the Ind−Collab−RL method,
these episodes are from the pure exploration phase.

All methods were able to converge rapidly, achieving strategies with zero hotspots
to any sector, and with flights’ delay much less than the maximum acceptable delay.
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Figure 5.2: Learning curves received by three methods in a setting considering sectors’
capacity equal to 7. The x-axis shows the number of the learning episode, while the
y-axis shows the number of hotspots and mean delay achieved in each episode.

Figure 5.3: An example of the distribution of interacting flights in Occupancy Count-
ing Periods (upper) initially and (lower) as produced by three methods

Finally, in Figure 5.3 we present an example of the distribution of hotspots (y-
axis) in terms of Occupancy Counting Periods in a number of 29 non-overlapping
occupancy periods, each of duration equal to 6 time instants (e.g. 6 minutes). This
was obtained by measuring the interacting flights to a specific sector in different
periods: (a) at the beginning and (b) at the end of learning. As can be seen, our
schemes manage to offer strategies with significantly reduced hotspots (zero in these
cases, given that demand in any occupancy period is not greater than capacity).
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5.3 Experimental Results with Real-World Data

In this section, we present three different real-world scenarios used in our study to
test our multi-agent Reinforcement Learning methods. All the real-world scenarios
concern the flights above Spain in a specific day, i.e. in a period of 24 hours, H =
1440 mins. We have selected among the given days the most challenging ones in
order to test our algorithms. Moreover, the learning procedure we followed for the
real-world scenarios is the one we described in section 5.1. That is because the real-
world scenarios include thousands of flights and as a result the methods need much
more time to learn. Some characteristics of the scenarios used are:

• We deal with the DCB problem at the pre-tactical stage, we consider flight
plans, which are intended, scheduled trajectories, that specify departure and
arrival airports, as well as events of flights crossing sectors and flying over
specific waypoints, with the time schedule for these events to happen.

• There may be multiple sector configurations applied in a single day. However,
at each time instant one such configuration is considered; specifying the sectors
that are open in a specific time period and their capacities.

• We have used reference values for the cost of delay to European airlines as
provided in [18], which are also used by SESAR 2020 Industrial Research.

• Our scenarios also include the non-commercial flights that cross Spain in the
selected days. We do not deal with them (i.e., we cannot impose any delay to
them) but consider them part of the problem.

Table 5.2 contains the parameters used in the real-world scenarios. Specifically, it
contains the number of flights, the max delay value and the number of sectors for
each scenario respectively.
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Parameters Scenario 1 Scenario 2 Scenario 3

Number of planes, N 3676 3529 5544
Max delay 71 71 66
Number of sectors 144 (12 × 12) 144 (12 × 12) 169 (13 × 13)

Table 5.2: Parameters used in our study with the three real-world scenarios

Problem Number of De-
layed Flights

Avg Delay
(mins) (all
flights)

Avg Delay
(mins) (delayed
flights)

Ed-MARL 63 0.19 0.89
Ag-MARL 65 0.21 0.91
IRL 65 0.25 0.91

Ed-MARL 276 0.99 3.88
Ag-MARL 249 1.07 3.51
IRL 291 1.24 4.10

Ed-MARL 618 0.75 9.36
Ag-MARL 536 0.93 8.12
IRL 704 1.06 9.92

Table 5.3: Comparative results in three scenarios

Table 5.3 shows the experimental results. Specifically, they give the number of
delayed flights as a result of applying the methods indicated in the first column; the
average delay to the delayed flights, as well as the average delay to all flights, in the
second and third columns, respectively. The number of delayed flights circumscribes
all the flights that have been given at least one minute of delay during the pre-
tactical phase. All the results indicate the average values of results produced in 10
independent experiments. Each row of the table represents a scenario resolved by
our three proposed methods.

To be more accurate, the results shown in Table 5.3 correspond to solutions given
by our methods. This means that our algorithms solved the DCB problem resulting
to 0 hotspots at the end of the day.

Additionally, in Figure 5.4 we show the learning curves of the three multi-agent RL
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methods for 10000 learning episodes. In each case, the x-axis indicates the number
of episodes, while the y-axis indicates the average delay of all flights achieved at
each episode. Actually, this is the average of the delays reported in all independent
experiments per problem.

Furthermore, the histograms show the distribution of delays to the flights. The x-
axis shows the delay imposed (in minutes), while the y-axis the percentage of flights
to which this delay has been imposed. For constructing the histograms and for better
visualization of the results according to operational concerns, we have used two kind
of bins: a more detailed scheme with 6 or 7 bins (second column) and a one with
two bins (third column) which shows the percentage of delays in less (respectively,
more) than half an hour.

Figure 5.4: The learning curves and the distribution of delays of the three comparative
multiagent RL methods.

An initial observation from the application of the multi-agent RL methods is that
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all three methods manage to provide solutions to the congestion problems, imposing
delays that result to zero hotspots. Furthermore, the quality of the policy found by
all methods is quite significant since, as shown in the histograms of Figure 5.4, less
than 20% of the delayed flights have delay more than half an hour. Actually, this
percentage becomes very low in the case of scenario 3 which is the most complex
one. This is valuable by considering that the aim is to reduce the delays imposed to
flights, even if the number of flights delayed increase.

Comparing the three methods, as presented in Table 5.3, we can observe that
the collaborative multi-agent RL methods (Ed-MARL & Ag-MARL) seem to perform
better in terms of delayed flights and average delay to the flights. More specifically, Ed-
MARL provides results with significantly reduced average delay compared to the other
two, while Ag-MARL provides results with significantly reduced delayed flights. Also,
from the learning curves it is obvious that each one of the three methods converges a
little after getting into the exploitation phase (after 7200 episodes). Independent RL
method seems to converge much faster - especially in the first two scenarios-, however
it converges to a local maximum as far as the delays imposed to the concerned flights.

Last but not least, histograms in Figure 5.4 show that both collaborative multiagent
RL methods provide a distribution with very high percentage (almost 70 − 80 %) of
delayed flights with delays less than 10 mins. The Ag-MARL method is more compact
and performs slightly better since it achieves a distribution with fewer delays in large
values of delay that the other methods.

5.3.1 Comparison with CFMU

CFMU stands for Central Flow Management Unit. CFMU tracks all flight plans and
is responsible for air traffic control and devising solutions that optimize the handling
of traffic flows according to the available capacity. The Network Manager carries out
air traffic management network functions for the European Commission. These units
decide the delay that needs to be given to the flights in order to reach their destination
safely.

For the comparison, we have selected one of the available days in our database.
The parameters of the scenario produced by this day are depicted in Table 5.4.
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Parameters Scenario

Number of planes, N 5408
Max delay 95
Number of sectors 144 (12 × 12)

Table 5.4: Parameters of the selected scenario.

Problem Number of De-
layed Flights

Avg Delay
(mins) (all
flights)

Ed-MARL 577 2.89
Ag-MARL 573 3.17
IRL 618 3.73
CFMU 281 18.55

Table 5.5: Comparative results to CFMU

Table 5.5, presents the results of our methods along with the results provided
by the CFMU. It must be pointed out that according to CFMU data, their regulated
flights do not resolve the DCB problem, i.e. even if we impose regulations to the
CFMU regulated flights we still have cases within the day where demand exceeds
capacity. In contrary, our three methods always converge to 0 hotspots. It is also
clear, that our approach leads to better results in average delay.

Comparing the three methods, we can observe that Ed-MARL provides again the
lowest average delay and Ag-MARL the lowest number of flights even though the
three methods are close. IRL solves the problem as well and provide better solution
than CFMU, but in the specific scenario cannot out-perform the two collaborative
methods.

Figure 5.5 depicts the distribution of flights in a congested sector in the initial
problem. On the other hand, Figure 5.6 and Figure 5.7 show the picture of the sector
after imposing the regulations decided by two of our methods (Ed-MARL and IRL
respectively).
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Figure 5.5: The initial problem state in a congested sector.

Figure 5.6: The final state after the regulations. (Ed-MARL)

Figure 5.7: The final state after the regulations. (IRL)
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In the previous Figures, we observe the configuration of the sector before and after
the regulations imposed to the flights that participate in the sector. The x axis shows
the periods for measuring demand according to the hourly counting period metric
(60’ window with a step of 30’), while the y axis shows the demand. The red line
indicates the capacity for the sector. Thus, any bar above that line indicates excess in
capacity (hotspot). It is easy to observe that both our methods solve the problem of
demand-capacity imbalance presented in the examined sector by imposing delays to
the flights.

As results show, methods do “push” excess of capacity in subsequent periods
within the same sector, or in other sectors (not shown here). This happens in small
scale, i.e. solutions affect the demand for only 2 or 3 subsequent periods within
the sector. This shows that delays imposed do not increase the workload per sector
considerably, leaving much space for increasing further the demand, if this is also the
case in the initial problem.

Summing up, the results reported from our methods show the following:

• They manage to find solutions at every given problem – i.e. the do manage
to regulate flights crossing an operational space in a day so as to resolve all
hotspots

• They manage to find solutions effectively. They do converge to solutions quite
fast, few rounds after exploration, in most of the cases.

• They manage to reduce the average delay for the regulated flights considerably,
compared to the average delay for the regulated flights reported by CFMU. The
same holds for the average delay considering all flights.
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Chapter 6

Conclusions and Future work

In this thesis, we tackled the problem of demand-capacity balancing in the Air Traffic
domain. We used collaborative Reinforcement Learning methods during the pre-
tactical planning phase in order to eliminate the hotspots by imposing delays to
the flights composing them. Also, while solving the problem, we tried to minimize
the mean delay of the flights along with the expected cost. The most crucial point
of our work, is the formulation of our problem as a coordination problem using the
collaborative multi-agent MDP framework where every aircraft is an agent. Moreover,
we provided a novel reward function that takes into consideration the imposed delays,
the expected cost for every minute of delay and the agents’ quota of participation in
the congested sectors they cross.

We presented three different multi-agent Reinforcement Learning algorithms: the
Independent Learners, the Edge-Based Collaborative Reinforcement Learners and the
Agent-Based Collaborative Reinforcement Learners. All of them, solved the problems
and eliminated the hotspots at each case, with results -in terms of mean delay, cost and
delayed flights- being significantly promising. Most importantly, our methods were
used on real-world scenarios with thousands of flights in a complex environment and
managed to efficiently solve the problem.

Experimental results in real-world problems show the potential of the proposed
methods, in terms of efficiency (i.e. speed of convergence) and efficacy (in terms of
quality of solutions achieved). In few words, collaborative multiagent RL methods
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are promising to resolving real-world complex DCB problems in ATM, compared to
independent RL learners used in most of works related to congestions resolution.

Concerning the future work, we have in mind a lot of improvements and our foal
is to extend our current work in even more challenging problems. Some interesting
extension might be:

• Devising new reward functions. As we already concluded, the reward function
is of utmost importance and the free parameters that it involves must be chosen
carefully after extensive experimentation. To this end, we will also try out new
reward schemes from the literature.

• Resolving problems occurring at the tactical stage. An interesting alternative to
our problem would involve solving the problem while the aircrafts have already
departed. This might allow us to use re-routing algorithms in order to solve
the problem before congestions occurred in the air.

• Extend our methods using Deep Learning. Dealing with continuous action
spaces, as the one discussed in the previous extension, we need to ensure the
scalability of our methods.

• Test our methods in other traffic fields. We aim to generalize our approach in
other traffic domains that involve situations where limited resources need to be
used by multiple agents.

49



Appendix A

References

[1] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by
payoff propagation. J. Mach. Learn. Res., 7:1789–1828, December 2006.

[2] Theocharis Kravaris, George A. Vouros, Christos Spatharis, Konstantinos Blekas,
Georgios Chalkiadakis, and Jose Manuel Cordero Garcia. Learning policies for resolving
demand-capacity imbalances during pre-tactical air traffic management. MATES 2017.

[3] N. Vlassis. A concise introduction to multiagent systems and distributed AI, 2003.

[4] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[5] Carlos Ernesto Guestrin. Planning Under Uncertainty in Complex Structured Envi-
ronments. PhD thesis, Stanford, CA, USA, 2003. AAI3104233.

[6] Carlos Guestrin Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated re-
inforcement learning. In Proceedings of the ICML-2002 The Nineteenth International
Conference on Machine Learning, pages 227–234, 2002.

[7] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

50



[8] Ana L. C. Bazzan, Joachim Wahle, and Franziska Klügl. 1999. Agents in Traffic
Modelling - From Reactive to Social Behaviour. In KI-99: Advances in Artificial Intel-
ligence, 23rd Annual German Conference on Artificial Intelligence, Bonn, Germany,
September 13-15, 1999, Proceedings. 303–306.

[9] K. Dresner and P. Stone. 2004. Multiagent traffic management: A reservation-based
intersection control mechanism. In Proceedings of the 3rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’04). 530–537.

[10] Adrian K Agogino and Kagan Tumer. 2012.A multiagent approach to managing air
traffic flow. Autonomous Agents and Multi-Agent Systems 24, 1 (2012), 1–25.

[11] Kleanthis Malialis, Sam Devlin, and Daniel Kudenko. 2016. Resource Abstraction
for Reinforcement Learning in Multiagent Congestion Problems. In Proceedings of the 15th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’16). 503–511.

[12] Baraa Munqith Albaker and Nasrudin Abd Rahim. 2010. Unmanned aircraft colli-
sion avoidance system using cooperative agent-based negotiation approach.Int. J. Simulation,
Syst. Sci. Technol 11, 4 (2010), 1–8.

[13] David Sislak, Přemysl Volf, and Michal Pechoucek. 2011. Agent-based cooperative
decentralized airplane-collision avoidance. IEEE Transactions on Intelligent Transporta-
tion Systems 12, 1 (2011), 36–46.

[14] R. W. Rosenthal. 1973. A Class of Games Possessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory 2 (1973), 65–67.

[15] C. Meyers. 2006. Network flow problems and congestion games: complexity approxi-
mation approximation results. Ph.D. Dissertation. Cambridge, MA, USA.

[16] I. Milchtaich. 2004. Social Optimality and Cooperation in Nonatomic Congestion
Games. Journal of Economic Theory 114 (2004), 56–87.

[17] Michal Penn, Maria Polukarov, and Moshe Tennenholtz. 2005. Congestion games
with failures. In Proceedings 6th ACM Conference on Electronic Commerce (EC-2005),
Vancouver, BC, Canada, June 5-8, 2005. 259–268.

51



[18] Andrew J Cook and Graham Tanner. 2015. European airline delay cost values.
(2015). http://www.eurocontrol.int/publications/european-airline-delay-cost-reference-
values.

52



Author’s Publications

[1] Theocharis Kravaris, George A. Vouros, Christos Spatharis, Konstantinos Blekas,
Georgios Chalkiadakis, Jose Manuel Cordero Garcia: Learning Policies for Resolv-
ing Demand-Capacity Imbalances During Pre-tactical Air Traffic Management.
MATES 2017: 238-255

[2] Christos Spatharis, Theocharis Kravaris, George A. Vouros, Konstantinos Blekas,
Georgios Chalkiadakis, Jose Manuel Cordero Garcia, Esther Calvo Fernandez: Mul-
tiagent Reinforcement Learning Methods to Resolve Demand Capacity Balance
Problems. SETN 2018

[3] C. Spatharis, T. Kravaris, K. Blekas and G. A. Vouros. Multiagent Reinforcement
Learning Methods for Resolving Demand - Capacity Imbalances. 37th AIAA/IEEE
Digital Avionics Systems Conference (DASC), Sept. 2018.



Short Biography

Christos Spatharis was born in Ioannina, Greece in 1992. He received his BSc degree
from the Department of Computer Science & Engineering of University of Ioannina
in 2016. In 2016 he became an MSc student at the same institution under the super-
vision of prof. Konstantinos Blekas. His academic interests are in the area of Machine
Learning, Robotics and Computer Vision.


	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Introduction

	Reinforcement Learning
	Markov Decision Processes
	Reinforcement Learning
	Q Learning


	Problem Specification
	The Demand-Capacity Problem
	Problem Specification
	Related Work

	Collaborative Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Advantages and Disadvantages of Multi-Agent Reinforcement Learning
	Coordination Graphs and Max-Plus Algorithm
	Independent Reinforcement Learners
	Sparse Cooperative Q-Learning
	Edge-Based Update
	Agent-Based Update


	Experimental Results
	Experimental set-up
	Experimental Results with Artificial Data
	Experimental Results with Real-World Data
	Comparison with CFMU


	Conclusions and Future work
	Bibliography
	References
	Author's Publications
	Short Biography

