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Abstract

Spiros Apostolou, M.Sc. in Computer Science, Department of Computer Science and
Engineering, University of Ioannina, Greece, February 2018.
Template-driven team formation.

Advisor: Panayiotis Tsaparas, Associate Professor.

The team-formation problem on social networks asks for a team of individuals
that collectively possess the skills to perform a task and have low communication
cost, as measured by their distances in the social network. This is a problem of
great practical importance that has attracted considerable attention. Most related work
assumes a flat structure in the team, where team members are all indistinguishable, or
a simple star structure centered around a leader. However, in real life, teams often have
complex structures and deep hierarchies, and members with distinct roles in these
structures. In this thesis, we consider the Template-Driven Team Formation problem,
where given a fixed template structure for the team in the form of a graph and a
designated role for each node in the template, we ask for workers that can fill the
roles in the template, while minimizing the communication cost along the template
edges. Although the problem is in general NP-hard, there are variants of the problem
that can be solved optimally using dynamic programming. For the general case, we
provide approximation and heuristic polynomial-time algorithms. We experiment on
real data and we demonstrate that our heuristic algorithms perform well in practice
while being significantly more efficient. Our case studies highlight the quality of the

teams produced by our algorithms.
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Extetopévn Iepiindn

YXmopog Amootorov, M.AE. oty [TAnpopopixy, Tunuo Mnyovixwy H/Y xow [TAnpo-
poptxng, [avemotuio Twavvivwy, ®efpovdprog 2018.

ZYNUOTLOROS OLABOG UE XPNOY TTPOGYESLOL.

EmBAénwy: [avoyintng Toandpog, AvarmAnpwtig Kabnyntie.

To TEOBANe ToL oy uUaTIoNOU ouddac(team-formation) e x0OLVwWYLXE SixTUO CLPOPE
oTNY aVolNTNON RLOG OUEDAG OTOULY TTOV CUVOALXA EYEL TLG ATTUOALTNTES LXAVOTNTEG
(skills) yroo vou @épet eig Tépog piow epyaoia, eved TAVTOXEOVO TO XOOTOG ETILXOLYL-
viog, To 0TTolo LETPLETOL WS TO ADPOLOUO TWY ATTOGTACEWY TWY LEAWY GTO XOLVWYLXO
dixtvo, Topauével o YounAd enimeda. H mpoxTtinn @Oon tov TEOPRANUOTOG lvor
%o 0 AOYOG TTOV €YEL TTPOGEAXDOEL TO EVOLOPEQPOY TWY EPEVYNTWY OE LEYAAO PoOpd.
Aev elvar aovvnbLoto oevépto pLo etonpion vor BEAeL vor oynuatiost pLor opédo Yo vou
dexmepotoet pio epyooior 1 Evar TuNuar Taventotniov va B€AeL vo oynuatiost pio
OULBdO 0Tt EQELYNTEG YL EVOL TTPOYPAUULO TO OTTOLO OTTALTEL ATOUA OTTO SLOPOPETL-
%x00¢ TouElg TN TTANpopoptxns. H BLBAtoypapia, otny mAstodhneio g, bTobETEL TG
N opédo Exel emiTEdN SOWY), OTTOL OMANDY OAC Tow EAT elval (oo, M pioe oTtAY] Soun
oo TEPLOV OTTOL OA Tow UEAY ELVOL CUYXEVTPWREVX YOPW OTtd évay NYETY. [lop’ Ao
QUTA, OTNY TEOYLOTLXY LW, OL Ou&dEg Exovy olvbeteg douég xal Lepapyleg pe Ue-
Y&Ao Babog xo Tor LEAN TWY OPAd WY €XOLY SLAXELTOVE POAOLG. ZE QLT TNV EQYOOTLAL,
optlovpe to TEOPANUa ToL Xynuatiouot Ouadog ue IloOTLTTO, GORPWYO UE TO OTTOLO
000EVTWY EVHG XOLYWYLXOV YPAPOL TTOL EVWVEL, EVOS TTPOTOTTOL dOUNG TNG OULAS0S O
LOPPN YOAPOL %ot ULag avdbeong pOAwY aToug x6uoug Tov TEOTOHTTOV, AValNTOVUE
’gpYydtes” oL omolotl Bor xatohdBovy TLg B€oelg TOL TEPOTHTTOL, EAXYLOTOTTOLWOVTOGS TO
%x00TOG ETULXOLVWYIOG TTOL 0pLLETAL WG TO ADPOLOUO TWY ATOGTACEWY TWY KTOUWY
oL eTAEYONUOY Yo vou xaTaAdBovy TG BEoEL TOL TPOTVTIOL WG TTPOG TLG OXMUES

TOL TPOTVTOV, dNADY N ATTOGTOGT V0 ATOUWY TTOL OEV EVHVOVTOL UE OXUY] OTO
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TPOTLTTO eV OLYLTIOAOYILETOL GTO XHOTOG TNG avdbeang xabwg N xaAN eTTLxOLYWViN
ovapeoa TOLG Elvoll SEVTEPEVOVTOG ONUAGLOG POV deV TPOPRAETETOL VoL YOELOOTEL
voo ouvepyaatovv. Ilop’ 6Ao mov to TEOPRANua elvar NP-hard, pepixég mopoAioyég
TOL TPOPANUOTOG ADVOVTOL BEATLOTO YENOLULOTOLWOVTOG SUVOLLYO TTOOYQOULUOTLOUO.
Mo TN YeEVLX TTEPITTTWOT, TTOPEYOVULE TTPOOEYYLOTIXEG ADTELS XL EVPLOTLXOVG OAYO-
potbpovg. EmimAéoy metpopati{Opoote o€ TEUYULOTIXG OESOUEVO XAL TTOPOVOLALOVILE
WS 0L ELELOTLXOL AYOPLOROL aTTodidoVY €ELCOL XAAA EVE TOLTOY POV ELVOL TTOAD
L0 aTTOS0TLXOL O DEpaTa YPOVOUL EXTEAEDYG, XOL TGS OL AYOPLOPLOL [LE TOLG OTTOlOLG
ETUOLWOXOVUE VO TTPOCEYYLOOVIE TNV PEATLOTY AVOY OTYY YEVLXY] TEPITTTWOY OEV OTTé-
¥OLY TTOAD amtd owTy. TéAog, SLeEQyovue YLor EUTIELOLXY] LEAETY] TWV ATTOTEAEGUATWY
N OoTolol ETLONUOLYEL TNV TOLOTNTO VTWY, XS Ol OUASES TTOV TTAPAYOVTAL YLO
x00e opddo dedopévwy eivor ahnbopaveis, evivel dNAadY dtopor Tov glvor AoYLXO

Vo oavxovy oty (Ota opado BACEL TWY TEONYOVIEVWY GUYEQPYOLWY TOVC.
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Chapter 1

Introduction

1.1 Contributions

1.2 Roadmap

Over the last few years, the team-formation problem has received an increasing interest
from researchers and practitioners [1] alike. The popularity of online labor markets
(e.g., Upwork') that enable the online collaboration of experts in order to complete
projects, as well as the increasing popularity of online educational platforms (e.g.,
Coursera”) have brought team-formation problems into the spotlight, and have raised
new questions and challenges.

The first work that addressed the problem of forming teams taking into considera-
tion not only the skills of the experts but also the communication between them, was
the pioneering work of Lappas et al. [2]. In their setting, each worker is associated
with a set of skills, and there is also a network structure that captures how well a
pair of workers can work together. The goal is to find a team that collectively covers
the set of skills required for completing a task, and it has low communication cost.
Since the original work in [2], several extensions of this general framework have been
considered, using different formulations for the communication cost [3, 4, 5, 6, 2, 7],

or different settings for job arrivals [8, 9].

1http://www.upwork.com
http://www.coursera.org



Most of this existing work, assumes a flat team structure, where all members are
indistinguishable, or they assume that there is one team leader to which everyone
is connected [10]. However, in real life teams often have complex structures and
hierarchies, and the team members have distinct roles within these structures. For
example, in a team of authors writing a paper, there may be a senior professor that
gives the direction for the paper and has the overall supervision, a post-doctoral
researcher that goes into the technical details of the paper, and a few students that
are in charge of running the experiments. The post-doc acts as an intermediary in
the communication of the students with the professor, while the students collaborate
closely with each other to complete the experiments. Similarly, a team for completing
a project in industry, may consist of a manager, a program manager, programming
engineers, testing engineers, and researchers. These individuals are usually organized
in a fixed hierarchy (different, for different organizations), and there are specific
channels of communication between the different members of the team.

Motivated by these observations, we define the Template-Driven Team Formation
(TDTF) problem, where given a fixed template structure for the team in the form
of a graph, and a designated role for each node of the template, the problem asks
for a team of workers that can fill the roles in the template, while minimizing the
communication cost along the template edges. From the technical point of view, we
study the complexity of the problem, we provide optimal, approximation, and heuris-
tic algorithms for the different variants of the problem, and we perform experiments

on two datasets that demonstrate the effectiveness and efficiency of our algorithms.

1.1 Contributions
In summary, the contributions of this thesis are the following:

e We define the novel problem of Template-Driven Team Formation (TDTF). To
the best of our knowledge, we are the first to formally define and study this

problem.

* We show that although the TDTF problem is NP-hard in its full generality,
there are variants of the problem when the template is a tree, that can be solved

optimally, using dynamic programming. For the hard variants, we design ap-



proximation and heuristic algorithms that exploit the properties of the problem.

* We perform experiments on data from two different domains: academic colla-
borations, and collaborations in the movie-making industry. Our experiments
demonstrate that our algorithms perform well in practice, while being quite ef-
ficient. We also conduct two case studies that confirm that the teams produced

by our algorithms are highly intuitive.

1.2 Roadmap

The rest of the thesis is organized as follows. Chapter 2 reviews the related work
in the area. In Chapter 3 we formally define our problem, and its different variants,
and study their complexity. In Chapter 4 we present our algorithms for the different
problem variants. Chapter 5 presents the experimental evaluation of our algorithms,

and Chapter 6 concludes this thesis.



Chapter 2

Related work

The high-level goal in team-formation problems is the following: given a set of experts
organized in a network, where each individual is associated with a set of skills, identify
a subset of experts that together can perform a given task, while at the same time they
induce a subgraph with low communication cost [8, 9, 3, 4, 5, 6, 2, 7]. At their core,
all these problems involve solving an extended version of the set-cover problem. None
of these works considers hierarchical teams, or teams described by a graph template
with fixed roles. As a result the algorithmic problems are completely different from
those considered in our work. A fundamental difference is that our problem does not
correspond to a coverage problem, but rather an assignment problem.

Among the works that formalize the team-formation problem as a variant of the
set-cover problem, the most related to ours is the work by Kargar and An [10]. In
that work, they consider a variant of the team-formation problem where one of the
team members is a designated leader and the rest of the team communicates mostly
through the leader. Although this work tries to impose a structure in the identified
teams, it only considers the simple star template, which, as we show, is a special
case of our problem, and it can be easily solved by an exhaustive algorithm. The
formulation in [10] does not generalize to more complex templates. As a result, both
the high-level problem definition we consider, as well as the algorithmic challenges
we face are quite different from the ones addressed in [10].

Going beyond set-cover formulations, other formulations for team formation have

been recently considered in the context of teams being formed in educational set-



tings (both offline and online) [11, 12, 13, 14]. The work in this domain comes in
two flavors. The first, focuses on finding one or multiple teams of students so that
some learning objective is maximized [11, 12]. The second, focuses on the a-posteriori
analysis of already formed teams (usually formed in an ad-hoc way). These studies
identify factors that make a team successful or not [13, 14]. The objective function we
optimize in our work is different from the ones studied in this line of work. Moreover,
in the teams studied in educational settings no template is given as part of the input.

To some, the team formation problem may sound similar to the graph pattern
matching problem, which seeks for a pattern (similar to this work’s template) inside a
graph [15, 16]. In pattern matching and related bibliography, the solution is expected
to be isomorphic to the pattern, which in our setup means that every assignment
should have cost |Er|. This is a very strict variant to our problem and highly counter-
intuitive since it actually looks for preconstructed teams instead of looking to form
new ones. Some relaxations of the problem have been discussed [17, 18], but they
don’t really approach our problem since these relaxations only mean to improve the
solutions while still pertaining to the strict variant where every team member must
be a direct neighbor to each of his colleagues.

Finally, a more recent line of work focuses on team-formation problems where
the goal is for the formed teams to define a subnetwork with certain social-network
properties (e.g., have certain number of dyads, triads, triangles, etc) [19]. One can
draw some high-level parallels between this line of work and ours: in both cases
there are some desired properties for the structure of the team network. However, this
similarity is only at a very high level. The work of Farasat and Nikolaev [19] focuses
on optimizing some structural property of the network, while our work focuses on
respecting the exact structure of an input template. The algorithmic techniques used
in the two papers are also very distinct. Farasat and Nikolaev use genetic algorithms,

while we use combinatorial methods like dynamic programming.



Chapter 3

Problem Definition

We are given a undirected connected graph G = (W, E) which represents a network
of workers. Each edge in E represents a connection between two workers, e.g., a
past collaboration, or a personal relationship between the two workers. The edges
may be weighted, where the weight denotes distance between the two workers. The
shortest path distance d(w, u) between two workers in the graph captures the degree
of compatibility of the two workers. Small distance implies that the two workers can
work effectively together.

Each worker has a set of skills. Given the set of all available skills, S, the set of
skills of a worker w € W is denoted as S,, C S. These skills may be programming
languages if G represents a network of developers, or they may be a set of research
fields if G represents a network of researchers. Every worker has at least one skill.

We want to create a team of workers for completing a task. We assume that we are
given as input a template graph 7' = (P, Er). Each vertex p in the template represents
a position in the team to be filled, and it is associated with a set of required skills
R, C §. The structure of the template graph represents the communication structure
in the team. For example if the template is a binary tree of depth two, we assume that
the worker at the root of the tree communicates with her two subordinates, who in
term communicate with their own two subordinates. It is thus important that there
is good communication along the edges of the template graph. The goal is to fill the
positions in the team, such that each worker has the required skills for the assigned

position, and the workers assigned to neighboring positions have small distance, and
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Table 3.1: Variants of the TDTF problem

Skills/worker Template skills Template graph

TDTF-SUT Single Unique Tree
TDTF-MUT Multiple Unique Tree
TDTF-SRT Single Repeated Tree
TDTF-MRT Multiple Repeated Tree
TDTF-SUG Single Unique General
TDTF-MUG Multiple Unique General
TDTF-SRG Single Repeated General
TDTF-MRG Multiple Repeated General

thus can work together effectively.

We define a position assignment as a function f : P — W, where worker f(p) is
assigned to position p € P. The assignment f is acceptable if for every p € P, R, C Sy,
i.e. the worker assigned to the position has the required skills. We assume that the
function f is injective, that is, a worker can only be used in a single position.

In order to evaluate an assignment f, we use the cost function C(f) which is
defined as the sum of the distances in G between the workers assigned to each pair

of adjacent positions in 7. Specifically,

C(fy=">_ df(p). f(a)

(p,9)€ET

We are now ready to define the Template-Drive Team Formation (TDTF) problem.

Definition 3.1 (Template-Driven Team Formation (TDTF)). Given a network of wor-
kers G = (W, E¢), with skills {S,, € S : w € W}, and a template 7' = (P, Er), with
required skills {R, : p € P} find an acceptable assignment f : P — IV, that minimizes
the cost C'(f).

Given the general problem definition above, we can distinguish interesting sub-
problems by constraining the parameters of the problem. The first parameter we
constrain is the number of skills a worker can have, i.e. the cardinality of the set S,
for w € W. We consider the case where every worker has a single skill. The second
parameter we constrain is the number of times that a skill can appear in the template,

and we consider the case where each position has a unique set of skills. Finally, the



third parameter we constrain is the type of the template. We consider specific families
of graphs that make sense in our setting. We will study in detail tree template graphs,
which model the case of a hierarchical team structure which is commonly found in
real-life teams.

In order to differentiate between the different problem variants we will append a
letter to the problem name that determines the variant we consider. We use the letters
S and M to discriminate between Single and Multiple skills per worker. We use the
letters U and R to discriminate between Unique and Repeated skills in the template
positions. We use the letter T to denote the Tree structure, and G to denote a General
graph. So, for example, the problem where we have a tree template graph, a single
skill per worker, and unique skills in the template is denoted as TDTF-SUT. The
problem where we have a tree template but no restriction on the number of skills per
worker, or the number of appearances of skills in the template is denoted as TDTF-
MRT. The general problem corresponds to the TDTF-MRG problem. We will also
consider additional families of templates later on, and introduce the corresponding
notation.

Table 3.1 summarizes the properties of the different problem variants we consider
in detail in this thesis, and serves as a reference for the problem-naming notation.

We will now consider the computational complexity of our problem. We can prove

the following theorem for the general TDTF problem.
Theorem 3.1. The Template-Driven Team Formation (TDTF) problem is NP-hard.

Proof. The decision version of the TDTF problem asks if there is an assignment
f: P — W with cost C(f) < 6, for some value 6. It is easy to show that we can reduce
the Subgraphlsomorphism problem [20] to our problem. The Subgraphlsomorphism
problem, given two graphs G and H as input, asks if graph G contains a subgraph
isomorphic to . We can reduce an instance of Subgraphlsomorphism to an instance
of TDTF where G is the worker graph, and H the template graph. We set all workers
to have the same skill s, and all positions to require the same skill s as well. Setting
6 = |Ey| to be the number of edges in the graph H, it is easy to see that GG contains an
isomorphic subgraph H, if and only if there is an assignment f with cost C(f) < .

Note that the same reduction works directly for the TDTF-SRG problem, while
for the TDTF-MUG problem we can change the reduction to give a distinct skill to

each node in the template, while the skill set of each worker consists of the set of all



possible skills in the template. Given that the subgraph isomorphism problem remains
NP-hard when the graph H is a tree, it follows that the TDTF-MUT, TDTF-SRT or
TDTF-MRT problems are also hard. ]

We can also prove the following theorem for the TDTF-SUG problem.
Theorem 3.2. The TDTF-SUG problem is NP-hard.

Proof. We will prove the theorem using a reduction from the k-Clique problem on a
k-partite graph which is known to be NP-hard [20]. Given a k-partite graph H, we
reduce the k-Clique problem on H to the TDTF-SUG problem as follows. We define
the worker graph G to be H. We define k skills and we assign the same skill to all
nodes in the same partition. We define the template graph 7" to be a k-clique, and we
assign a different skill to each position in the template. It is easy to see that there is a

worker assignment f with cost C(f) < (%) if and only if there is a k-clique in H. [

In Chapter 4 we show that there is a polynomial-time dynamic programming
algorithm for the TDTF-SUT problem. This is the only variant of the problem that
has a polynomial time solution. It is the combination of all three constraints that

makes the problem tractable.



Chapter 4

Algorithms

4.1 Algorithm for star templates
4.2 Dynamic Programming Algorithm for TDTF-SUT
4.3 Heuristic Algorithms for Tree Templates

4.4 Algorithm for general templates

We now present our algorithms for the TDTF problem. First, we show that the general
problem can be solved easily in the case of star template graphs. Then we consider the
TDTF-SUT problem, and we show that there is a dynamic programming algorithm
that solves the problem optimally. We then consider other variants of the problem on
trees, and we propose a heuristic modification of the dynamic programming algorithm
for these cases. Finally, we propose an algorithm for general template graphs, and we

show that it has a provable approximation factor for certain template graph families.

4.1 Algorithm for star templates

The star template graph is a simple, yet natural template for teams, where we assume
that there is “leader” that has put the team together. A similar problem has been
considered in [10]. The TDTF problem in this case can be solved optimally with an

algorithm that simply considers all possible candidate workers for the center of the

10



star. For a position p let W, denote the workers in W that are candidates for this
position, that is, they have the set of skills R,. Let ¢ denote the center of the star.
The algorithm considers all candidate workers in W, as possible assignments for the
center. For a given assignment f(c) = w, w € W,, for every child p of the center node
c in the template, we find the worker u € W, that has not already being assigned to a
position and minimizes the distance d(w, u), and we set f(p) = u. It is not hard to see
that the assignment with the minimum cost is optimal. Note that this algorithm works
for any problem setting, including single and multiple worker skills, and unique and

repeated skill appearances in the template.

4.2 Dynamic Programming Algorithm for TDTF-SUT

Recall that in the TDTF-SUT problem we assume a tree graph template, a single skill
per worker, and unique skills in the template. We will show that this case can be
solved using a Dynamic Programming (DP) algorithm. The algorithm traverses the
template tree structure in a bottom-up fashion, solving the problem for the subtrees,
and then aggregating the solutions of the subproblems to solve bigger ones, until
reaching the root of the tree.

Given a tree template 7' = (P, Ep), we assume that the tree is rooted, and we
use r to denote the root of the tree. For any node p in 7" we use T, to denote the
subtree rooted at node p. Let F(7},) denote the set of all possible worker assignment
functions for the subtree 7). Let F,,(7,) denote the set of all possible worker as-
signments where node p is assigned worker w. Let f = argminser, C(f) denote
the assignment in 7, with the minimum cost. We use B(w,T,) = C(f;,) to de-
note the cost of this assignment. If f* is the optimal assignment overall, then clearly
C(f*) = mingew, B(w,T). Also, if w* = argmin,ecw, B(w,T), then f* = f:)*v-

Given a network of workers G = (W, E¢;), the algorithm utilizes two |[W| x |P|
matrices M and F, where M[w,p| stores B(w,T,), and F[w,p| stores the optimal
assignment f/ ~of workers in W to positions in the subtree T, rooted at node p,
given that position p is filled by worker w. The assignment is stored as a set of pairs
{(w,q) : we W,q €T,} that define the assignment of workers to positions.

The B(w,T,) values are computed recursively on the height of the tree as follows.

For a subtree 7T}, of height zero, that is, a leaf node in the template tree, we define

11



B(w,T,) = 0, since there is no communication cost involved. For a subtree 7}, of height
greater than zero, the cost of the solution that assigns worker w to the root of the
tree p can be decomposed into the communication cost of worker w with the workers
assigned to the children of the root in the template, plus the cost for each subtree for
these assignments. For each child ¢ of the root p, we need to consider all candidate
workers z € W,, and find the one that minimizes the sum d(w, z) + B(z,T,). The key
observation is that since each worker has a single skill, and skills are unique in the
template, we can consider each child independently. Therefore, letting Children(p)

denote children of the root node p in the template graph, we have:

B(w,T,) = Z gg&&{d(w, z)+ B(z,T,)}, (4.1)
g€Children(p)

where W, denotes the set of candidate workers that have the skill in position q.
Given Equation 4.1, the DP algorithm traverses the tree 7" in a post-order fashion,
staring from the leaves and working its way up to the root r. At each node p it compu-
tes the value B(w, T,) and stores it in M[w, p] alongside the respective assignment f
in Fw, p]. When reaching the root of the tree r, it computes w* = arg min,ew, M [w, 1]
and returns the assignment F[w*,r]. The pseudocode for the algorithm is shown in

Algorithm 4.1.

Algorithm 4.1 Dynamic programming algorithm for TDTF-SUT

Input: Graph G = (W, E;), template T' = (P, Er), distance function d
Output: optimal assignment f*

1: O < PostOrder(W)

2: M < new N x P Array

3: for p € O do

4: for v € C), do

5 sum, < 0

6: for u € desc(p) do

7: my, < mingeo, { B(w, u) + dg(v,w)}
8: SUMy $— SUMLy, = 1y,

9: end for
10: M, < sum,

11: end for
12: end for

12



The complexity of the algorithm is determined by the sizes of the candidate sets
of the skills in the template. For an edge (p, ¢) in the template we need to consider all
pairs of candidates |W,| x |IW,|. If Ny is the size of the template, and N, is popularity
of the most popular skill, then the cost of the DP is O(NpN?).

4.3 Heuristic Algorithms for Tree Templates

We now consider the TDTF-SRT, TDTF-MUT and TDTF-MRT variants of the pro-
blem, were we still have a tree template graph, but workers may have multiple skills,
or the same skill may be repeated in the template. The common characteristic of these
variants is that they allow a worker w to be candidate for more than one positions
in the template. The DP algorithm we defined for the TDTF-SUT problem, breaks
down in this case, since it is no longer the case that the subproblems defined by the
subtrees of the root node are independent. For example, a worker w that is eligible
for two positions, may be the best candidate for both of these positions. Assume that
w appears in the optimal assignments for the subtrees 7, and T}, which are children
of node v. Since we cannot assign worker w to both positions, it is no longer the case
that we can express the cost for node v as a function of the optimal costs for nodes
p and q.

We now consider heuristic algorithms for these problems.

4.3.1 Dynamic Programming Heuristic Algorithm (DPH)

The first heuristic algorithm modifies the DP algorithm, addressing the issue of wor-
kers that are eligible for multiple positions. More specifically, when computing the
cost B(w,T),) for the subtree rooted at position p, when assigning w to the root, the
algorithm iterates over the nodes in Children(p) in an arbitrary order. Throughout the
iterations, it maintains a set X,,, with all the workers that have already been assigned
to some node in the subtree 7,,. When considering a position ¢ € Children(p), it goes
through the candidates z € IV, in decreasing order of the cost d(w, z) + B(z,T,). For
a candidate z € W,, we have the set X, of all the workers that are utilized in the
assignment f;‘| ” If X., N Xy, =0, that is, if none of the workers in f;“lq have already
been used, then we add f7,, to the solution f; .update the set X,,, accordingly, and

move on to the next child of p. Otherwise, we discard this candidate, and move to
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the next one. If for some child of p there is no acceptable candidate, then we consider
w as unacceptable for p, and move on to the next candidate for p. If no candidate
for p produces a solution, then the algorithm halts and outputs no solution. Similar
to before, the algorithm proceeds in a bottom-up fashion, until it reaches the root,
or until it halts unable to produce a solution. The pseudocode for the algorithm is

shown in Algorithm 4.2.

4.3.2 Top-Down Heuristics

We also consider two greedy heuristic algorithms that fill the template in a top-down
fashion. The TopDown algorithm assigns randomly one of the candidate workers to the
root of the tree. For the children of the root, it assigns the candidate workers that are
closest to the root worker, making sure that no worker is used twice. The algorithm
proceeds like that, down the tree, each time assigning to a node the candidate worker
that is closest to the worker of the parent node that has not already been used, until
the whole template is filled.

The algorithm TopDown+ is the same as TopDown, except for the fact that for the
root assignment, it considers all possible candidate workers in W,. It then returns the
assignment with the minimum cost. Note that the TopDown+ algorithm is optimal for

the case of the star template.

4.4 Algorithm for general templates

We now consider an algorithm for the TDTF problem on general templates. The
algorithm exploits the fact that we have a methodology to solve the problem on trees.
It first constructs a spanning tree of the template, by making a BFS traversal of the
template graph. It then solves the TDTF problem using the BFS tree as the template,
and computes the cost of the solution on the full template graph. The starting node
for the BFS traversal determines the root and the structure of the tree. For some
template graphs the choice of the starting node is obvious. In the general case, the
algorithm considers all possible starting nodes, and reports the solution with the
minimum cost. We refer to this algorithm as the Spanning Tree Algorithm (STA).
Despite the simplicity of the STA algorithm we can prove some interesting proper-

ties for it, exploiting the triangular inequality of graph distances. For the following,
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Algorithm 4.2 Dynamic Programming Heuristic Algorithm (DPH)

Input: Graph G = (W, E¢;), template T' = (P, Er), distance function d on graph G.

Output: optimal assignment f*
1: O < PostOrder(W)
2: M <+ |W| x |P| Array storing B(w,T,)

3: F « |[W|x |P| Array storing fr

4 X « [W|x |P| Array storing the workers in f;

5: for p € O do

6: for w € W, do
7: Mw,p] <0
8: Flw, p] + {(w,p)}
9: Xfw,p] = {w}
10: for ¢ € Children(p) do
11: mincost, < 0o
12: L, < {z € W,} in decr. order of d(z,w) + M|z, ¢]
13: for 2 ¢ L, do
14: if X[z,q] N X[w,p] = 0 then
15: mincost, < d(w, z) + M|z, ¢]
16: Flw,p| < Flw,p|U F|z,q]|
17: X[w,p] + X[w,p]U Xz, ¢
18: Mw, p| = M[w, p] + mincost,
19: break
20: end if
21: end for
22: if mincost, = oo then
23: Mlw, p] = oo
24: break
25: end if
26: end for
27: end for
28: if min,ew, M[w, p] = oo then
29: halt
30: end if
31: end for

32: w* = argmingew, Mw,r|

33: return F|w*,r] 15




let n denote the number of nodes in the template graph 7', and m the number of
edges. We prove the following Lemma for the TDTF-SUG problem, where we assume

a general graph template, single skill per worker, and unique skills in the template.

Lemma 4.1. The STA algorithm is a (m — n + 2)-approximation algorithm for the TDTF-
SUG problem.

Proof. Let T be the input template graph, and let SPp denote the spanning tree for
the template 7. Given SPr as input we can solve the TDTF-SUT problem optimally
using the DP algorithm. Let f denote the optimal assignment for the spanning tree
produced by the DP algorithm. The cost of the assignment f on the template 7' is

defined as:

C(f)y= Y d(f), f(q))

(p,@)€T
= > AU f@)+ D, d(fp),f(9)
(p.q)ESPr (p.a)¢SPr

For any edge (p,q) ¢ SPr that is not in the spanning tree, let Path(p, ¢) denote the
path of edges in SPp that connects the two vertices. Since the graph distance d satisfies

the triangular inequality, we have that

d(f(p). fl@)< >, d(f(@),fw)

(=,y)€Path(p,q)

< Y d(f(p) 1)

(p’q)ESPT

There are m — n + 1 such edges, therefore, we have that

p,q)€T

C(f)y<(m—n+2) > d(f(p) f(q))
(p,q)

Let f* be the optimal assignment for the template graph 7. Since f is optimal on the

spanning tree SPr it holds that

Sood(f). f@) < Do d(f (). f(g) < C(f)
(p.9)eSPr (p.9)eSPr
It follows that C(f) < (m —n + 2)C(f*). O

As an immediate corollary, if we restrict the TDTF-SUG problem to Cycle graphs,

the STA algorithm has a 2-approximation factor with respect to the optimal solution.
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Note that the bound in Lemma 4.1 is pessimistic, since for every edge of the
template not in the spanning tree we charge the cost of the whole BFS tree. We can
obtain better bounds for specific families of graphs by bounding the length of the
Path(p, ¢) in the spanning tree that connects the endpoints of the edge (p,¢) in the
template.

For example, in our experiments, we consider the family of “flower” graphs. A
flower graph F}, is a graph with k¢+1 nodes. There is a center node that is connected
to all other k¢ nodes. The children of the center node are organized in ¢ cliques of
size k. This corresponds to the case where we have a leader in the team, to whom
everyone in the team reports. The subordinates of the leader are organized into /¢
teams of size k, where everyone works with every one.

Let TDTF-MRF denote the TDTF problem on flower graphs. We can prove the

following.

Proposition 4.1. The STA algorithm gives a k-approximation solution for the TDTF-MRF

problem.

Proof. We run the STA algorithm using the center node as the root of the BFS tree.
The spanning tree in this case is a star, so we can solve the problem optimally, when

we use it as input template. Let f denote this optimal assignment.

k

For every clique of size k, there are (;

) edges that are not included in the BFS
tree. For every edge (p,q) there is a path {(p,c),(c,q)} that connects them, where ¢
is the center of the flower. Note that the edge (c, p) participates in (k — 1) such paths,

for all the neighbors of p in the clique. Therefore, we have that:

C(fy= > dfe.fe)+ > d(fp). f)

(e,p)ESPr (p,q)¢SPr

= Y A, fE)+(k=1) > d(f(e), f(p)
(e,p)eSPr (e,p)ESPr

< kC(f)

where f* denotes the optimal solution. The last inequality follows from the fact that

the solution on the star BFS tree is optimal, and the tree is a subset of the template. [
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Chapter 5

Experiments

5.1 Datasets and Baselines
5.2 Results for TDTF-SUT
5.3 Results for TDTF-MRT
5.4 Results for general graph templates

5.5 Case Studies

The goals of the experiments are the following: (a) Compare the performance of dif-
ferent algorithms for the TDTF-SUT problem with respect to the cost metric, and
study the effectiveness-efficiency tradeoff; (b) Study the performance of the heuris-
tic algorithms for tree templates when workers can have multiple skills, and skills
may appear in multiple positions (TDTF-MRT); (¢) Compare the heuristic and ap-
proximation algorithms with an exhaustive algorithm on general graph templates;
(d) Perform an empirical evaluation of the quality and intuitiveness of the teams

produced by our algorithms by considering specific case studies.

5.1 Datasets and Baselines

We now describe the two datasets we consider in this thesis, and a simple baseline

algorithm we will use for comparisons.
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5.14.1 The Academic dataset

This dataset consists of information about academic publications, collected from Mi-
crosoft Academic'. We consider 11 fields of Computer Science and the corresponding
conferences, shown in Table 5.1. We collected all publications in the interval between
2000 and 2017 for these conferences, and the authors of these publications. We filte-
red out the authors with less than 7 publications in this interval, and we created the
collaboration graph between authors, where each node is an author and there is an
edge connecting two nodes if they have collaborated at least thrice in the specified
time interval. We keep the largest connected component of this graph. Each author
is assigned as skills the fields in which she has authored a publication. For the pro-
blems where each worker should have a single skill, we assign to each author the
field in which she has the most publications. The statistics for our dataset are shown

in Table 5.2.

Table 5.1: Fields and conferences in Academic dataset

Fields Conferences

Theory stoc, focs, soda, icalp, stacs
Languages popl, icfp, icse, pldi, icsm
Distributed & Parallel Computingx podc, icdcs, spaa, ics, sc
Operating Systems sosp, osdi, atc, fast, eurosys
Architecture asplos, icsa, ispd, ches, iccd
Networks sigcomm, nsdi, mobicom, mobisys, infocom
Security usenix, oakland, crypto, acns, ccs
Data sigmod, vldb, pods, kdd, www
Artificial Intelligence aaai, icml, icev, cvpr, acl
Computer Graphics siggraph, i3d, mm, dcc, icme
Human-Computer Interaction chi, cscw, uist, iui, gi

'http://academic.microsoft.com
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5.1.2 The Movies dataset

This dataset consists of data about movies obtained from The Movie DB (TMDb)?.
For the 3,000 most popular movies released after 2010, we collected information
about the cast and the crew of the movies. For the movie popularity we used a value
provided by TMDb, which is calculated by taking into account the movie’s ratings,
TMDb page views, release date, and more. Given that the cast of a movie may contain
tens of actors and actresses, we initially kept the 2,000 actors and 2,000 actresses that
were on average ranked as most popular (according to TMDDb) in our data. From
the crew, we selected the roles shown in Table 5.2, resulting in total 11 distinct roles.
We created a graph by creating a node for each crew or cast member, and an edge
between two nodes if they have collaborated in at least one movie. We subsampled
10K nodes to make the data manageable, and kept the largest connected component.
Each node is assigned as skills all the roles she has assumed in the dataset. When a
single skill is required, the most popular role is used. The statistics for the graph are

shown in Table 5.2

5.1.3 The MaxCentrality baseline

We also consider a simple baseline that selects workers based on their closeness
centrality in the network. The closeness centrality for a worker in the graph G is
defined as the inverse of the average distance of the node to all other nodes in the
graph. The algorithm fills the positions in a top-down fashion, where for each position
it selects the worker with the maximum centrality among the unused workers that
have the required skill. This is clearly, a very efficient but naive algorithm, and we use
it as a baseline for the efficiency and effectiveness of the algorithms we introduced in

Section 4.

5.2 Results for TDTF-SUT

Recall that for the TDTF-SUT problem we assume that the template is a tree, each
worker has a single skill, and the skills appear in at most one position in the template.

We construct the input for our experiments as follows. First, we assume that the

https://www.themoviedb.org/
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Table 5.2: Skill distributions and graph statistics.

Movies Academic

Skill Single Multiple Skill Single Multiple
Actor 1020 1318 theory 186 300
Actress 1199 1323 distr-paral 58 411
Casting 487 503 ai 572 1099
Producer 1919 2433 oS 25 195
Writer 609 1327 cg 442 920
Visual Effects 92 100 languages 21 111
Director 1151 1485 arch 11 100
Editor 699 830 security 44 157
Dir. of Photo. 545 588 hci 380 647
Screenplay 726 1121 data 420 901
Art Direction 708 730 networks 317 527
avg skills/worker 1 1.1758 1 2.168
avg workers/skill 832.27 1069 225.09 488
Total nodes 9155 2476

Total edges 78832 9155

template graph is a complete binary tree (CBT) of size ranging from 2 to 11 nodes
(total number of skills), and there is a single skill per position. We construct the
template incrementally. We start with a template of size 2, with 2 randomly chosen
skills, and we construct templates of larger size, by adding one node at the time,
with a skill randomly selected among the ones that have not already been used. In
this way, we guarantee that the template of size n is a subset of the template of size
n + 1. In our results we report the average performance of the algorithms over 50
such experiments.

Figures 5.1 and 5.2 show the solution costs and the running times for our
algorithms in the two datasets as a function of the template size. As expected, DP
yields the lowest cost, at the expense of a much higher running time. The MaxCentrality
baseline is significantly faster than all other algorithms with much higher solution

cost. Between the two top-down heuristics, the TopDown+ algorithm strikes the best
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Figure 5.1: Solution cost and running time for the TDTF-SUT problem with a CBT

template for the Academic dataset.

balance between DP and MaxCentrality. Its running time is slightly higher than that
of TopDown but it is still reasonably low, while the solution cost is almost identical to

that of the optimal DP algorithm.

5.3 Results for TDTF-MRT

We now consider the TDTF-MRT problem, where the template graph is still a tree,
but the same skill may appear multiple times in the template, and workers may have
more than one skill. We will study the performance of the different heuristics, and
also consider templates of larger size.

We consider two types of templates: The first is complete binary trees constructed
in the same way as for TDTF-SUT, but of larger size; The second is full trees of height
2, with varying branching factor. The skill assignment is done in the same way as for
the TDTF-SUT problem, ensuring that smaller templates are included in the larger
ones, but now the same skill may appear in multiple positions. All reported results
are averaged over 50 different experiments. For the DPH algorithm we report the
averages for the experiments for which it produced a solution.

Figures 5.3, 5.4, and 5.5, 5.6 show the results of our experiments. We observe
again that the DPH algorithm performs best in terms of solution cost but has also

the highest running time. The running time of DPH scales linearly with respect to
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Figure 5.2: Solution cost and running time for the TDTF-SUT problem with a CBT

template for the Movies dataset.

the size of the template, and quadratically with respect to the branching factor (given
than the height of the tree is 2). The TopDown+ algorithm is again the best option
with low running time, and solution cost essentially identical to that of DPH.

Note also that the DPH algorithm may not always produce a solution. In our
experiments, this was never the case for the Movies dataset, but we had failures for the
Academic dataset, for large template size and large branching factor. More specifically
for template size between 26 to 31 we had failures ranging from 2% to 16%, while
for branching factor 4, we have 4% failures. These are non-negligible percentages,

which demonstrate the weakness of DPH for large templates.

5.4 Results for general graph templates

We now consider the TDTF problem on templates different from trees. Our goal
is to study the performance of the STA algorithm and other heuristics against an
exhaustive algorithm that considers all possible assignments.

Since it is computationally prohibitive to run the exhaustive algorithm on the
full dataset, we construct smaller instances, by considering the ego-network of certain
nodes in the network. The ego-network of a node consists of all the neighbors of
the selected node, and all the edges between them. From the Academic dataset, we

extracted the ego-network of Jon Kleinberg which consists of 34 nodes. We will

23



—— DPH 141 —@— DPH
100 MaxCentrality 124 MaxCentrality
S go| —% TopDown < .| =< TopDown
5 —A— TopDown+ £ —A— TopDown+
[e] S 81
n 604
Y— (@)}
o £ 6
n 404 <
3 € 4]
© @
201 2]
0 0
3 7 15 31 3 7 15 31
Template size (humber of nodes) Template size (number of nodes)
(a) Academic solution cost (b) Academic running time

Figure 5.3: Solution cost and running time for the TDTF-MRT problem with CBT

template for varying template size for the Academic dataset.

refer to this dataset as EgoKleinberg. From the Movies dataset, we extracted the ego-
network of George Clooney, which consists of 81 nodes. We will refer to this dataset
as EgoClooney. To reduce the running time of the exhaustive algorithm we assume a
single skill per worker. Also, since the neighbors in the EgoKleinberg network were
heavily concentrated in just 3 fields, for this dataset we use the conferences as the
skills.

We considered the “flower” template for our experiments. Recall that in the flo-
wer template we have a center node that is connected to /k other nodes, which are
organized in /¢ cliques (“petals”) of size k. We set k = 2 and we vary ¢ from 1 to 3.
For each template we conducted 50 different experiments with random skill assign-
ments, where skills may be repeated in the template. We report the average cost of
the solutions.

Figure 5.7 shows the results for the two datasets. We consider two variants of the
STA algorithm, one that uses MaxCentrality to solve the problem on the spanning tree
(STA-MaxCentrality), and one that uses DPH (STA-DPH). Note that the spanning tree
is a star, so the solution of DPH and TopDown+ on the spanning tree is optimal. We
observe that the STA-DPH algorithm outperforms STA-MaxCentrality, and it is very
close to that of the exhaustive algorithm, indicating that STA is a good algorithm in

practice for general templates.
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Figure 5.4: Solution cost and running time for the TDTF-MRT problem with CBT

template for varying template size for the Movies dataset.

5.5 Case Studies

Finally, we perform two case studies, one for each dataset. We consider the TDTF-
SUT problem, and we manually set the template skills and evaluate the results. Our
goal is to empirically evaluate the solutions produced by the DP algorithm.

For the Academic dataset, in order to make the experiment more interesting, we
introduced an additional attribute to each researcher, which measures the seniority of
the researcher. To this end, we used the total citation count of each author, as provided
by Microsoft Academic, which we mapped to the nominal values senior, middle, and
junior. We label researchers with citations in the top-5% (more than 17,165 citations)
as senior, researchers in the top-35% (more than 3,752 citations) as middle, and the
rest as junior. Using the seniority attribute, we construct skills that use a combination
of the seniority and a field of computer science.

The template we used in our experiment with Academic is shown in Figure 5.8a.
The scenario we consider is that of creating a new research lab. The head of the lab
should be a senior researcher, irrespective of the field. There are three divisions, one
in Theory one in Data, and one in AI, which will be headed by a researcher of middle
seniority. Each division head will manage two junior researchers in their respective
field.

The result we obtain, shown in Figure 5.8b, is highly intuitive®. Ton Stoica, Pro-

3The seniority labels are debatable and also limited by the data provided by MS Academic. However,
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Figure 5.5: Solution cost and running time for TDTF-MRT with a full tree template

of height 2 and varying branching factor for the Academic dataset.

fessor at U.C. Berkeley, authority in the field of distributed systems with a broad
set of interests, is the head of the lab. Piotr Indyk, Professor at MIT, authority in
theoretical computer science, is the head of the Theory division. P. Indyk has com-
mon collaborators with 1. Stoica (Sammuel Madden). He manages his former student,
Alexandr Adoni, and Ronitt Rubinfeld who is also professor at MIT. Hence both are
academically close to him. The head of the Data division is Michael Franklin, long-
time collaborator of I. Stoica, highly respected in the field of Data Bases. He manages
his former Ph.D. student Shawn R. Jeffery, and Peter Bailis, U.C. Berkeley graduate
and former Ph.D. student of I. Stoica, with whom he has co-authored several pa-
pers. The head of the AI division is Steven Seitz, an expert in computer vision. He
received his Bachelor from U.C. Berkeley, and he has common collaborators with
I. Stoica (e.g., Sameer Agarwal). He manages two of his former Ph.D. students, Ira
Kemelmacher-Shilzerman and Li Zhang.

The template we use for the Movies dataset is shown in Figure 5.9a. We have
a Producer at the root of the tree who employs an Editor, a Director and a Writer,
and the Director collaborates with an Actor and an Actress. The solution of the DP
algorithm is shown in Figure 5.9b. The Producer, T. Luckinbill, has worked together
with T. Sheridan and J. Walker in the movie Sicario (2015) and with J. M. Vallee in
Demolition (2015) in which J. Gyllenhaal stars as a lead actor. Also, R. Witherspoon

stars in Vallee’s movie Wild (2014). Therefore, again the solution we obtain is highly

the correct definition of seniority is beyond the scope of this thesis, and of the team formation problem.
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Figure 5.6: Solution cost and running time for TDTF-MRT with a full tree template

of height 2 and varying branching factor for the Movies dataset.

intuitive.
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Figure 5.8: Academic case study.
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Producer T. Luckinbill
Editor | | Director | |Writer| [J. Walker ][ J. M. Vallée |(T. Sheridan]
Actor Actress [ J. Gyllenhaal ] [ R. Witherspoon ]

(a) Template & Skills

(b) DP Solution

Figure 5.9: Movies case study.
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Chapter 6

Conclusion

In this thesis we introduced and studied the novel problem of template-driven team
formation where, given a set of workers organized in an network, a set of skills for
each worker, and a template team structure with required skills for each position,
we seek to find a team of workers that have the required skills and minimize the
communication cost over the edges of the template. We showed that the problem is
NP-hard in the general case, but it can be solved in polynomial time using dynamic
programming for tree templates when workers have a single skill, and the template
positions have unique skills. We provide heuristic and approximate algorithms for
the general case. Our experiments demonstrate that our algorithms are effective in
practice. For future work, we are interested in better understanding how the proper-
ties of the template graph affect the team formation process, and derive approximation

guarantees for more general families of graphs.
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