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Abstract 

This thesis deals with the numerical modeling of healing and osteoporotic long bones 

based on scanning acoustic microscopy images (SAM) and the potential of ultrasound 

to diagnose and monitor bone pathologies. The outermost aim is the investigation of 

the complex wave scattering phenomena induced by the composite nature of osseous 

and callus tissues. In this direction, theoretical and numerical methodologies are 

applied to identify changes in the scattering amplitude, the propagation of guided 

waves and the first arriving signal velocity (FAS) at successive healing stages, as well 

as in computational models of cortical bones with different porosities. Numerical 

simulations of ultrasound propagation in healthy, healing and osteoporotic bones are 

conducted using the traditional axial transmission technique, while the backscattering 

method is also used as a relative new method. Emphasis is given on the investigation 

of the porous nature of callus and cortical bone, which is incorporated in the 

numerical models using the SAM data, and alterations which occur due to bone 

pathologies.  

In the first chapter, the biological and mechanical background is given. To fully 

evaluate bone’s mechanical properties, the mechanical properties of its component 

phases and the structural relationship are presented between the various levels of 

hierarchical structural organization. The fundamental principles of the theory of 

elasticity are also analyzed to provide a theoretical background for the 

characterization of the material and structural properties of bone. Then, the 

mechanisms of the fracture healing process and osteoporosis are described. More 

specifically, the evolution of the biological processes and the mechanical and 

structural properties are analyzed.  

The second chapter presents the fundamental principles of ultrasound propagation in 

the bone. Complex wave propagation phenomena are explained which occur due to 

the composite nature of bone, as well as due to the presence of soft tissues in the 

ultrasonic propagation path such as reflection, refraction, attenuation and scattering. 

The two main parameters for ultrasonic bone assessment are discussed which are the 

FAS velocity and the propagation of guided waves. 
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In the third chapter, the state of the art in the field of ultrasonic characterization of 

bone is presented. The experimental and computational studies in this field are 

included. It also describes the ultrasonic techniques which have been applied in the 

literature and more specifically the axial transmission, the through transmission and 

the backscattering methods for bone evaluation. At the end of the chapter, the 

objective and the contribution of this thesis are discussed. 

In the fourth chapter, ultrasound wave propagation in healing long bones is simulated 

using an iterative effective medium approximation (IEMA) and SAM images from an 

animal study. The effectiveness of IEMA in bone characterization is examined: (a) by 

comparing the theoretical phase velocities with experimental measurements in 

cancellous bone mimicking phantoms, and (b) by simulating axial wave propagation 

in complex healing bone geometries. The original material properties and porosity are 

derived using SAM data in order to apply more realistic conditions. The Boundary 

Element Method (BEM) is used for the numerical solution of the wave propagation 

problem. Guided wave analysis is performed for different healing stages. 

In the fifth chapter, the backscattering method is used to evaluate healing long bones 

at successive healing stages. The parameters of interest are the scattering amplitude 

and the variation of the acoustic pressure in the backward direction. SAM images are 

used to establish more realistic geometries of healing long bones and incorporate the 

nonhomogeneous and porous nature of the callus and the cortical tissues. The BEM is 

used for the numerical solution of the wave propagation problem. The impact of the 

excitation frequency is also considered. 

The sixth chapter presents a parametric and systematic numerical study on ultrasound 

propagation in cortical bone models to investigate the effect of changes in cortical 

porosity and the occurrence of large basic multicellular units (BMUs) on the FAS 

velocity. Two-dimensional geometries of cortical bone are established for various 

microstructural models mimicking normal and pathological tissue states. Emphasis is 

given on the detection of large BMUs formation which may provoke the thinning of 

the cortical cortex and the increase of porosity at a later stage of the disease. The role 

of the excitation frequency is also discussed.  
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In the final chapter, the conclusions of this thesis are highlighted based on the results 

and limitations as they result from the previous chapters. Directions and trends for 

future research in the field are also discussed.  

The main contributions of this thesis can be summarized as: (i) the development of 

realistic numerical models of healing long bones which account for callus and cortical 

porosity based on SAM images, (ii) the development of numerical models of healthy 

and osteoporotic bones which incorporate the occurrence of large BMUs aiming not 

only to monitor cortical porosity alterations but also to detect regions being at high 

risk of fracture, (iii) the investigation of the complex scattering phenomena at 

successive stages of fracture healing, (iv) the application of different ultrasonic 

methods in order to propose new quantitative parameters for bone assessment and v) 

the study of the impact of the excitation frequency.  
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Περίληψη  

Η παρούσα διδακτορική διατριβή ασχολείται με την αριθμητική μοντελοποίηση των 

κατεαγότων και οστεοπορωτικών μακρών οστών με βάση εικόνες ακουστικής 

μικροσκοπίας σάρωσης και τη δυνατότητα του υπερήχου να χρησιμοποιηθεί για τη 

διάγνωση και την παρακολούθηση των παθολογιών των οστών. Ο βασικός στόχος 

είναι η διερεύνηση των πολύπλοκων φαινομένων κυματικής σκέδασης που 

προκαλούνται από τη σύνθετη φύση του οστικού ιστού και του πώρου. Σε αυτή την 

κατεύθυνση, εφαρμόζονται θεωρητικές και αριθμητικές μεθοδολογίες για τον 

εντοπισμό μεταβολών στο πλάτος σκέδασης, την διάδοση των κυματοδηγούμενων 

ρυθμών και την ταχύτητα του πρώτου αφιχθέντος σήματος σε διαδοχικά στάδια 

επούλωσης, καθώς και σε αριθμητικά μοντέλα του φλοιώδους οστού με διαφορετικά 

ποσοστά πορώδους. Η αριθμητική προσομοίωση της διάδοσης υπερήχου σε υγιή, 

κατεαγότα και οστεοπορωτικά οστά πραγματοποιήθηκε αρχικά με την ευρέως 

χρησιμοποιούμενη τεχνική αξονικής μετάδοσης, ενώ η μέθοδος οπισθοσκέδασης 

αξιολογήθηκε επίσης ως σχετικά νέα μέθοδος. Έμφαση δίνεται στη διερεύνηση της 

πορώδους φύσης του πώρου και του φλοιώδους οστού, η οποία ενσωματώθηκε στα 

αριθμητικά μοντέλα με τη χρήση των δεδομένων ακουστικής μικροσκοπίας σάρωσης, 

και σε μεταβολές που συμβαίνουν λόγω των παθολογιών των οστών. 

Στο πρώτο κεφάλαιο παρουσιάζεται το βιολογικό και μηχανικό υπόβαθρο της 

μελέτης. Αρχικά, προκειμένου να αξιολογηθούν πλήρως οι μηχανικές ιδιότητες του 

οστού, παρουσιάζονται οι μηχανικές ιδιότητες των επιμέρους συστατικών του και τα 

διαφορετικά επίπεδα ιεραρχικής δομικής οργάνωσης. Οι θεμελιώδεις αρχές της 

θεωρίας της ελαστικότητας αναλύονται επίσης παρέχοντας ένα θεωρητικό υπόβαθρο 

για τον χαρακτηρισμό των υλικών και δομικών ιδιοτήτων του οστού. Στη συνέχεια 

περιγράφονται οι μηχανισμοί της διαδικασίας επούλωσης κατάγματος και 

οστεοπόρωσης και αναλύονται η εξέλιξη των βιολογικών διαδικασιών και οι 

μηχανικές και δομικές ιδιότητες.  

Το δεύτερο κεφάλαιο παρουσιάζει τις θεμελιώδεις αρχές της θεωρίας της διάδοσης 

υπερήχων στα οστά. Εξηγείται η εξέλιξη των φαινομένων που παρατηρούνται λόγω 

της σύνθετης φύσης του οστού καθώς και λόγω της παρουσίας μαλακών ιστών στη 

διαδρομή της διάδοσης υπερήχων όπως η ανάκλαση, η διάθλαση, η απόσβεση και η 

σκέδαση. Επίσης, περιγράφονται οι δύο κύριες παραμέτροι για την αξιολόγηση των 
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οστών, οι οποίες είναι η ταχύτητα του πρώτου αφιχθέντος σήματος και η ανάλυση της 

διάδοσης των κυματοδηγούμενων ρυθμών. 

Στο τρίτο κεφάλαιο, παρουσιάζεται η ανασκόπηση της βιβλιογραφίας  στον τομέα 

του χαρακτηρισμού των οστών με τεχνικές υπερήχου. Περιλαμβάνονται οι 

πειραματικές και υπολογιστικές μελέτες στον συγκεκριμένο τομέα. Περιγράφονται 

επίσης οι τεχνικές υπερήχων που έχουν εφαρμοσθεί στη βιβλιογραφία για την 

αξιολόγηση του οστού και πιο συγκεκριμένα η μέθοδος αξονικής διάδοσης, η 

μέθοδος εγκάρσιας διάδοσης και η μέθοδος οπισθοσκέδασης. Τέλος, συζητείται ο 

στόχος και η συμβολή της παρούσας διατριβής. 

Στο τέταρτο κεφάλαιο, προσομοιώνεται η διάδοση των υπερηχητικών κυμάτων σε 

κατεαγότα μακρά οστά χρησιμοποιώντας μια επαναληπτική αυτοσυνεπή μεθοδολογία 

υπολογισμού της φασικής ταχύτητας και απόσβεσης ενός κύματος και εικόνες 

ακουστικής μικροσκοπίας σάρωσης από προηγούμενη μελέτη σε ζώα. Πρώτον, 

εξετάζεται η αποτελεσματικότητα της μεθοδολογίας για το χαρακτηρισμό των οστών: 

(α) συγκρίνοντας τις θεωρητικές ταχύτητες φάσης με πειραματικές μετρήσεις σε 

οστικά φαντασμικά συστήματα, και (β) με προσομοίωση της αξονικής διάδοσης 

κύματος σε σύνθετες γεωμετρίες κατεαγότων οστών. Οι αρχικές ιδιότητες του υλικού 

και το πορώδες προέρχονται από δεδομένα ακουστικής μικροσκοπίας σάρωσης 

προκειμένου να εφαρμοστούν πιο ρεαλιστικές συνθήκες. Η μέθοδος συνοριακών 

στοιχείων χρησιμοποιείται για την αριθμητική επίλυση του προβλήματος κυματικής 

διάδοσης. Πραγματοποιείται μελέτη της διάδοσης των κυματοδηγούμενων ρυθμών 

για διαφορετικά στάδια επούλωσης. 

Στο πέμπτο κεφάλαιο, η μέθοδος οπισθοσκέδασης χρησιμοποιείται για την 

αξιολόγηση κατεαγότων μακρών οστών σε διαδοχικά στάδια επούλωσης. Οι 

παράμετροι που μελετώνται είναι το πλάτος σκέδασης και η μεταβολή της 

ακουστικής πίεσης στην οπίσθια διεύθυνση. Εικόνες ακουστικής μικροσκοπίας 

σάρωσης χρησιμοποιούνται για τη δημιουργία ρεαλιστικών γεωμετρικών κατεαγότων 

μακρών οστών που ενσωματώνουν την ανομοιογένεια και το πορώδες των ιστών του 

πώρου και του φλοιώδους οστού. Η μέθοδος των συνοριακών στοιχείων 

χρησιμοποιείται για την αριθμητική λύση του προβλήματος κυματικής διάδοσης. Η 

επίδραση της συχνότητας διέγερσης επίσης λαμβάνεται υπόψη. 
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Το έκτο κεφάλαιο παρουσιάζει μια παραμετρική και συστηματική αριθμητική μελέτη 

της διάδοσης υπερήχων σε μοντέλα φλοιώδους οστού για τη διερεύνηση της 

επίδρασης των αλλαγών στο πορώδες του συμπαγούς οστού και στην εμφάνιση 

μεγάλων πολυκύτταρων μονάδων στην ταχύτητα του πρώτου αφιχθέντος σήματος. 

Διδιάστατες γεωμετρίες του φλοιώδους οστού παρουσιάζονται για διαφορετικά 

αριθμητικά μοντέλα που ενσωματώνουν την μικροδομή των ιστών ώστε να μιμούνται 

φυσιολογικές και παθολογικές καταστάσεις. Έμφαση δίνεται στον εντοπισμό του 

σχηματισμού μεγάλων πολυκύτταρων μονάδων που μπορεί να προκαλέσει την 

λέπτυνση του φλοιού και την αύξηση του πορώδους σε μεταγενέστερο στάδιο της 

νόσου. Ο ρόλος της συχνότητας διέγερσης επίσης εξετάζεται. 

Στο τελευταίο κεφάλαιο επισημαίνονται τα συμπεράσματα αυτής της διδακτορικής 

διατριβής με βάση τα αποτελέσματα και τους αναγκαίους περιορισμούς της 

ερευνητικής εργασίας όπως προκύπτουν από τα προηγούμενα κεφάλαια. Επίσης, 

συζητούνται κατευθύνσεις και τάσεις για μελλοντική έρευνα στο συγκεκριμένο πεδίο. 

Η συμβολή της παρούσας διδακτορικής διατριβής συνοψίζεται στους παρακάτω 

παράγοντες: (i) την ανάπτυξη ρεαλιστικών αριθμητικών μοντέλων κατεαγότων 

μακρών οστών που λαμβάνουν υπόψη την πορώδη φύση του πώρου και του 

φλοιώδους οστού με βάση εικόνες ακουστικής μικροσκοπίας σάρωσης, (ii) την 

ανάπτυξη αριθμητικών μοντέλων υγιών και οστεοπορωτικών οστών που 

ενσωματώνουν την ύπαρξη μεγάλων πολυκύτταρων μονάδων στοχεύοντας τόσο στην 

αποτελεσματική παρακολούθηση της οστεοπόρωσης όσο και στην έγκαιρη πρόβλεψη 

της νόσου σε αρχικό στάδιο, (iii) τη διερεύνηση των σύνθετων φαινομένων σκέδασης 

σε διαδοχικά στάδια της πώρωσης καταγμάτων, (iv) την εφαρμογή διαφορετικών 

τεχνικών διάδοσης υπερήχων ώστε να μελετηθούν νέες ποσοτικές παράμετροι για την 

αξιολόγηση των οστών, v) τη μελέτη του ρόλου της συχνότητας διέγερσης. 
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Chapter 1: Introduction to Bone Hierarchical Structure and 
Mechanical Properties 

1.1 Bone Composition and Hierarchical Structure 

1.2 Elasticity  

1.3 Methods for Assessing Bone Quality at different Hierarchical Levels  

1.4 Bone Pathologies 

 

 

 

1.1 Bone Composition and Hierarchical Structure 

1.1.1 Bone functions  

The skeletal system consists of individual bones and the connective tissue which 

surrounds them and plays a significant biomechanical and metabolical role. Bone is 

the main constituent of the skeletal system and forms a protective and supportive 

framework for the body. More specifically, the skeletal system enables body 

movement by acting as a lever and point of attachment for muscles, protects vital 

organs and provides the means for a metabolic activity. 

1.1.2 Wolff’s law 

Bone is a living material as it evolves during life having an effect on bone physiology 

and biology. It constantly remodels and changes its shape and its internal structure to 

adapt to mechanical loading. This was conceptualized by Wolff’s law in 1892 stating 

that mechanical stress was responsible for determining the architecture of bone 

(Wolff, 1982). The remodeling of bone in response to loading is achieved via 

mechanotransduction, a process of converting forces into biochemical signals and 

integrating these signals into the cellular response. Wolff’s Law explains the 
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significance of exercise in the treatment of bone pathologies such as osteoporosis and 

fracture healing. Specifically, weight-bearing and strength exercises are usually 

recommended by clinicians as a non-medicinal treatment for osteoporosis, while a 

range of motions and stresses can improve the overall strength of a bone having 

sustained a fracture. 

1.1.3 Bone composition 

Bone is a composite material consisting of an inorganic and an organic phase. 

Approximately 60% of the tissue is inorganic matter, 8-10% is water and the 

remainder is organic matter (Marcus et al., 2011).  

The mineral phase is an impure form of hydroxyapatite, Ca10(PO4)6(OH)2, containing 

constituents such as carbonate, citrate, magnesium, fluoride, and strontium 

incorporated into the crystal lattice or absorbed onto the crystal surface. Foreign 

substances such as tetracyclines, polyphosphates, bisphosphonates, and bone-seeking 

radionuclides can also be incorporated with high affinity (Cowin, 2001). 

The organic phase is composed of collagen (90%) and a variety of noncollagenous 

proteins, and cells (10%). The organic phase of bone plays a key role influencing the 

structure and the mechanical and biochemical properties of the osseous tissues 

(Marcus et al., 2011; Cowin, 2001). The role of noncollagenous proteins is unclear. 

The most abundant ones are osteocalcin, osteonectin, osteopontin, and bone 

sialoprotein.  

1.1.4 Organization of long bones 

The skeleton is consisted of two parts: the axial skeleton, which is composed by the 

bones of the head and trunk and the appendicular skeleton, which includes the bones 

of the limbs and pelvic girdle. This study deals with the numerical modeling of long 

bones such as the tibia, femur and humerus which have three main regions: the 

epiphysis, the metaphysis and the diaphysis as shown in Fig.1.1. The central portion 

of the long bone is called diaphysis. The epiphysis covers the end of the bone and 

develops from a center of ossification that is distinct from the rest of the long bone 

shaft. The metaphysis is the region of transition from the wider epiphysis to the more 

slender diaphysis (Marcus et al., 2011). 
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In (Barkaoui et al., 2014; Rho et al., 1998; Katz et al,. 1980), five levels of 

hierarchical organization have been distinguished, shown in Figure 1.2, which have 

been widely accepted in the scientific community: the macrostructural level, the 

microstructure, the sub-microstructure, the nanostructure and the sub-nanostructure 

level. 

From a macrostructural point of view, bone consists of the periosteum, bone tissue, 

bone marrow, blood vessels and nerves. Bone tissue is composed of the cortical or 

compact bone and the cancellous or trabecular bone (Fig.1.1). In cross-section, the 

end of a long bone such as the femur has a dense cortical shell with a porous, 

cancellous interior. The main differentiation between these two types of osseous 

tissues refers to their degree of porosity and density. In Fig.1.2, the hierarchical 

structure of bone is presented from the macrostructure to the microstructure level. 

 

Figure 1.1: The structure of a long bone (Marieb and Hoehn, 2014). 

Cancellous bone is found in the inner part of bones and has a significantly porous 

structure. It is also known as spongy bone due to its high porosity. The porosity in 

cancellous bone ranges from 50–90%, usually found in cuboidal bones, flat bones and 
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at the ends of long bones (Wang et al., 2016). In the microstructure level, it is 

consisted of three-dimensional cylindrical structures, called trabeculae, with a 

thickness of about 100 μm and a variable arrangement form (Potsika et al., 2014b).  

The microstructure of cancellous bone is composed of irregular, sinuous convolutions 

of lamellae (Rho et al., 1998). This porous network of cancellous bone includes pores 

filled with marrow which produces the basic blood cells and consists of blood      

vessels, nerves and various types of cells. Cancellous bone material properties are 

important for the characterization of several bone pathologies, and the assessment of 

various joint implants as cancellous bone is affected by disease sooner than cortical 

bone. 

Cortical bone composes of the external surface of all bones and has a porosity of 

about 5–10%. Mineralized collagen fibers form into planar arrangements called 

lamellae (3–7 mm wide). The lamellae wrap in concentric layers (3–8 lamellae) 

around a central canal to form what is known as an osteon or a Haversian system. The 

osteon looks like a cylinder with diameter 200–250 μm running roughly parallel to the 

long axis of the bone. Other forms of cortical bone in which the mineralized collagen 

fibers are less well organized showing no specific pattern are called woven bone of 

lamellae (Rho et al., 1998).  

At the nanoscale, the most significant type of porosity, known as vascular porosity, is 

formed by the Haversian canals (aligned with the long axis of the bone) and the 

Volkmanns canals, which are transverse canals connecting Haversian canals, with 

capillaries and nerves. The lamellae have a twisted plywood arrangement, where 

neighboring lamellae have different fibril orientations. Here, osteocyte cells reside in 

lacunae (15–25 μm diameter) that interconnect through canaliculi (100–400 nm in 

diameter) (Zimmermann et al., 2015). The boundary between the osteon and the 

surrounding bone is called the cement line. 

The basic components in this level are collagen and hydroxyapatite which are made of 

collagen molecules organized in fibrils. The fibrils are surrounded by polycrystalline 

extrafibrillar mineral platelets. In addition to mineral, the extrafibrillar and the 

intrafibrillar matrix contain molecular components, such as non-collageneous proteins 

or cross-links, promoting the formation of sacrificial bonds. Within the fibrils, type I 

collagen molecules (1.5 nm diameter, 300 nm length) and hydroxyapatite nanocrystals  
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Figure 1.2: The hierarchical structure of a typical long bone at various length scales (Wang et 

al., 2016; Sadat-Shojai et al., 2013). 

(50 nm width, 25 nm height, 1.5–4 nm thickness) form a composite structure, where 

arrays of collagen molecules staggered at 67 nm are embedded with  nano-platelets of 

hydroxyapatite mineral (Zimmermann et al., 2015; Sadat-Shojai et al., 2013; Bienz 

and Saad, 2013). 

Inorganic components (hydroxyapatite crystals) are mainly responsible for the 

compression strength and stiffness, while organic components (collagen fibers, 

proteoglycans, osteocalcin) are responsible for tension properties. The hydroxyapatite 

crystals are located in the interfibrillar spaces. Mineralized fibers are aligned to form 

bone lamellae of typical thickness of a few micrometers. The orientation of the fibers 

depends on the lamellae and may change within lamellar sublayers (Potsika et al., 

2014b). 
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1.2 Elasticity  

Bones are physical objects that obey the laws of mechanics. The primary laws of 

mechanics that concern deformable objects like bone are the three laws of motion by 

Sir Isaac Newton in 1687 and the law of elasticity of solid materials described by 

Robert Hooke in 1678 (Cowin, 2001). 

The theory of elasticity deals with the systematic study of the stress, strain and 

displacement fields in an elastic body under the influence of external forces. The 

response of a solid body to external forces is influenced by the geometric 

configuration of the body, as well as by the mechanical properties of the material. The 

strain and stress fields in a medium are related by laws called constitutive or material 

laws, characterizing the mechanical behavior of the medium. These are derived from 

experimental procedures and allow us to have the best description of the experimental 

results. Although living tissues are not elastic in nature, in limited ranges of stress, 

strain and temperature they may follow an elastic behavior. Bone mechanics deals 

with elastic materials, i.e. materials in which the deformation and stress disappear 

with the removal of the external forces. A deeper understanding of the tissue elastic 

properties can provide invaluable information about the normal function of various 

organs, predict changes due to pathophysiological alterations and help to propose 

methods of surgical treatment and artificial intervention (Fotiadis et al., 2006). 

In daily life, the skeletal system is subject to a variety of loads that alternate within 

the bone according to the type of movement and joint. Biomechanical experiments 

can be performed using compression, tension, shear, torsion or bending loading to 

evaluate the rigidity and ultimate load of a long bone (Bankoff, 2012). A compressive 

strength causes shortening and extension, a tensile strength causes narrowing and 

elongation, torsional strength creates an angular distortion and the bending strength 

includes all changes seen in compression, tension and shear. Shear load is 

characterized by two forces acting parallel to each other but in opposite directions so 

that one part of the object is moved or displaced relative to another part. 

Considering the upper extremity of the femur loaded in a single stance phase 

configuration, the monopodal loading is mimicked (Laugier and Haïat, 2011). This 

loading condition can be reproduced ex vivo on a testing machine. From this specific 

experiment, the load applied to simulate a single stance phase configuration and the 
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corresponding displacement can be measured. In Fig.3, the load-displacement curve is 

depicted. The rigidity (R) can be assessed from the linear part of the curve from the 

following equation: 

                                                               FR =
Δl

٫                                                     (1.1) 

where F is the load (in N) and Δl the displacement (in m). 

The rigidity reflects the capability of the bone to withstand a load. This parameter 

evaluates the elasticity of a complex shape (such as bone or a portion 

of bone, i.e. the proximal femur). The ultimate response of the structure is defined by 

the ultimate load (failure load) which corresponds to the maximum of the load-

displacement curve. These parameters depend on the geometry of the bone. More 

specifically, with increasing size of the bone, the rigidity and the failure load are 

higher. Fig. 1.3 presents the load-displacement curve, ultimate load (Fult) and rigidity 

(R). 

 
Figure 1.3: Load-displacement curve, ultimate load and rigidity. 

The stress is the central physical concept of continuum mechanics and elasticity 

theory and corresponds to the transmission of force through a continuum medium. 

The stress (σ) is determined from the measurement of the load (F) applied to a given 

area (A) as described by the following equation: 

                                                     Fσ = 


                                                     (1.2) 

The strain (ε) can be computed from the ratio of the measured displacement (ΔL) and 

the initial specimen length (L) (Fig. 1.4): 
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                                                  ΔLε =
L

                                                     (1.3) 

Figure 1.4 presents the stress-strain curve for mild steel. If the material after loading 

returns to the initial position, the material presents an elastic behavior. The yield point 

corresponds to the end of the elastic domain and is defined by the yield stress (σy). 

The most elementary description of material behavior is the well-known Hooke’s law 

which refers to a one-dimensional extensional test: 

                                                    σE =
ε

٫                                                     (1.4) 

in which E denotes the Young’s modulus or modulus of elasticity.  

.  

Figure 1.4 Stress-strain curve for mild steel (Fotiadis et al., 2006). 

The material elasticity is defined by the Young’s modulus which can be assessed as 

the slope of the linear part of the stress-strain curve. The material that is loaded only 

to a level below the yield strain and unloads along the same path is called elastic. 

If the path is linear as well, the material is said to be linearly elastic. In order to 

postulate a linear relationship between each component of stress and strain, it is 

necessary to establish the existence of a strain energy density W that is homogeneous 

quadratic function of strain components, ijW(ε ) . For a body which is slightly strained 
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by gradual application of the loading, while the temperature remains constant, this 

will produce stress components derivable as follows: 

                                                              ij
ij

Wσ =
ε




·                                                   (1.5) 

It should be noted that the function should have coefficients such that W 0  in 

order to insure the stability of the material, with W(0) 0  corresponding to a natural 

or zero energy state. 

The generalized Hooke’s law is expressed by the equation: 

                                                            ij ijkl klσ =C ε ٫                                                   (1.6) 

where ijklC is a fourth-order tensor (34= 81 components).  

The coefficients σ11, σ12, … , σ33 are the components of stress. The entire array consists 

the stress tensor based on the transformation rule, σkl = λkiλljσij , i,j,k,l=1,2,3, where λki 

are the direction cosines. 

Since W is continuous, the order of differentiation in Eq. (1.5) is immaterial and ijklC  

is symmetric. Thus, the number of independent components (elastic constants) can be 

reduced to 21. 

The corresponding strain energy function is: 

                     

2
11 11 12 11 22 13 11 33 14 11 12 15 11 23

2
16 11 31 22 22 23 22 33 24 22 12 25 22 23

2
26 22 31 33 33 34 33 12 35 33 23 36 33 31

2
44 12 45 12 23 46 12 31

2
55 23

2W  = C ε +2C ε ε +2C ε ε +2C ε ε +2C ε ε
+2C ε ε +C ε +2C ε ε +2C ε ε +2C ε ε
+2C ε ε +C ε +2C ε ε +2C ε ε +2C ε ε
+C ε +2C ε ε +2C ε ε
+C ε +2 56 23 31

2
66 31

C ε ε
C  

            (1.7) 

The generalized Hooke’s law in matrix form is: 
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11 12 13 14 15 1611 11

21 22 23 24 25 2622 22

33 3313 23 33 34 35 36

12 1241 42 43 44 45 46

23 2351 52 53 54 55 56

31 3161 62 63 64 65 66

C C C C C Cσ ε
C C C C C Cσ ε

σ εC C C C C C
=

σ εC C C C C C
σ εC C C C C C
σ εC C C C C C

    
    
    
    
   
   
   
   

       







 ٫                (1.8) 

where ij jiC =C · 

Eq. (1.6) can be written in the inverse form as follows: 

                                                                ij ijkl klε =S σ ٫                                                 (1.9)  

or in the analogous to (1.8) form as: 

                                                                  1 S C                                                 (1.10) 

The coefficients ij jiS =S  are called the compliance constants. 

The transformation of (1.6) and (1.9) follows the rules of the Cartesian tensors. 

The preceding characterization of a medium is the most general and refers to an 

anisotropic material. More specifically, a material is anisotropic when its mechanical 

properties vary according to the direction of analysis. Several factors contribute to the 

mechanical anisotropy of bone. These include the orientation of the Haversian porous 

network, the orientation of the lamellae and the alignment of collagen fibers and 

hydroxyapatite crystals. In hierarchical structures like bone, the anisotropy depends 

on the observational level. Most of the engineering materials possess properties of 

symmetry about one or more of the planes or axes, which allows the number of 

independent constants to be reduced. This reduction is a function of the symmetry 

exhibited by the material under consideration. 

An orthotropic material has three planes of symmetry which are mutually orthogonal. 

The existence of the two orthogonal symmetry planes implies the existence of the 

third. Therefore C  is derived by adding a symmetry plane orthogonal to the preceding 

one of the monoclinic material. The invariance of C  under a change of reference 

system carried out by symmetry about the second plane leads to: 
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11 12 13

12 22 23

13 23 33

44

55

66

C C C 0 0 0
C C C 0 0 0
C C C 0 0 0
0 0 0 C 0 0
0 0 0 0 C 0
0 0 0 0 0 C

 
 
 
 
 
 
 
 
  

 .                          (1.11) 

Thus, the number of independent elastic constants i jC  is reduced to nine. 

In first approximation, cortical and cancellous bones can be considered orthotropic, 

which means that the properties differ according to orthogonal directions. A 

composite medium such as bone can be considered as being consisted of a fiber 

embedded in a cylinder of matrix. The material behaves as an orthotropic material 

having in addition one axis of revolution. The material is then called a transverse 

isotropic material. A change of reference system produced by an arbitrary rotation 

about this axis must leave C unchanged. Considering this property the following 

equations are satisfied: 

                                            
 

13 12 33 22 55 66

44 22 23

C =C , C =C , C =C
1C = C C
2

 
                                  (1.12) 

Thus, the properties of a transverse isotropic material can be determined by five 

independent elastic constants.  

A material is isotropic if its properties are independent of the choice of its reference 

axes. The usual materials, with the exception of wood, usually satisfy this model at a 

macroscopic level. In this case C  must be invariant under any change of the 

orthonormal basis. The application of this property to a unidirectional material leads 

to: 

                                        22 11 23 12 66 11 12
1C =C , C =C , C = C C
2

 .                        (1.13) 

Thus, the number of independent constants is reduced to two. 

Introducing the Lamé coefficients λ and μ the following equations are derived: 

                                                 12 11 12
1C = λ, μ = C C
2

 ٫                                     (1.14) 
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and: 

                                                                11C =λ+2μ .                                              (1.15) 

After (1.14) and (1.15) the Hooke’s law (1.8) can be written as: 

                                                          ij ij kk ijσ =λδ ε +2με ٫                                      (1.16) 

where kk 11 22 33ε =ε +ε +ε  is the dilatation of the material  and δij is the Kronecker’s 

delta. 

The normal stresses (i=j) are written as: 

                                                               ii kk iiσ =λδ +2με                                           (1.17)  

and the shearing stresses (i j) as: 

                                                                ij ijσ =2με .                                             (1.18) 

The deformations as functions of stresses are easily obtained as: 

                                                  
 ij ij kk ij

λ 1ε = δ σ + σ
2μ 3λ+2μ 2μ

 .                                (1.19) 

In the case of uniaxial tension or compression the only non-vanishing stress is 11σ 0 . 

It follows from this that ijσ 0  for i j. The normal deformation in the test direction 

is, by (1.19):  

                                                   
 11 11 11

λ 1ε = σ + σ
2μ 3λ+2μ 2μ

                                 (1.20) 

and 

                                                                 11 11σ = Εε ٫                                             (1.21) 

where: 

                                                               μ 3λ+2μ
Ε=

λ+μ
 ٫                                         (1.22) 
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is the Young’s modulus. 

The transverse strains are: 

                                           22 33 11 11
λ λε = ε = σ = ε

2μ 3λ+2μ 2 λ+μ
  ٫                    (1.23) 

or  

                                                    22 33 11 11ε = ε = σ = ε
E
ν ν  ٫                                   (1.24) 

where 

                                                           
 

λ=
2 λ+μ

ν ٫                                                (1.25) 

is called the Poisson’s ratio. 

In a simple shear test the only non-vanishing stress is 12σ τ 0  . 

The stress-strain relations are then reduced to: 

                                                           12 12 12σ 2με μγ  ٫                                        (1.26) 

where 12γ  denotes the shear strains between the two orthogonal directions 1x , 2x . 

The coefficient μ=G is called the shear modulus.  

The shear modulus is related to the Young’s modulus and the Poisson’s ratio as: 

                                                               
EG=

2 1+v
                                               (1.27)                               

The bulk modulus (K) of an isotropic material measures its resistance to uniform 

compression (i.e., uniform load applied in all directions). It is linked to the Young’s 

modulus (E) and the Poisson’s ratio (ν) by the following relationship: 

                                                              
EK=

3 1 2v



                                             (1.28) 
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Only two constants are independent since G=μ and Ε, ν are defined in terms of λ and 

μ. The Lamé coefficients in terms of Ε and ν are given as: 

                                           
Eμ=

2 1+v
and    

Eλ=
1+ 1 2

v
v v




                         (1.29) 

In order for λ to remain finite, the Poisson’s ratio should be in the range: 

                                                            1 0.5v   .                                              (1.30) 

It is difficult to derive ν < 0 as this implies that an elongational strain in the direction 

1e  would result in an expansion in the direction 3e  as well. For v = 0.5 the material is 

said to be incompressible. 

The elasticity equations are usually written as functions of the engineering constants. 

For an isotropic material these constants are: i) Young’s modulus, ii) Poisson’s ratio, 

and iii) shear modulus. These engineering constants are measured employing simple 

mechanical tests.  

Table 1.1 presents the mechanical properties of selected biological and engineering 

materials. Indicative values of the Young’s modulus, ultimate strength and Poisson’s 

ratio of cortical and cancellous bones are also included (Fotiadis et al., 2006). 

1.3 Methods for Assessing Bone Quality at different Hierarchical 
Levels  

Nowadays, dual energy X-ray absorptiometry (DEXA) is the most popular method for 

the assessment of bone quality through measurements of the bone mineral density 

(BMD) at the spine and hip. It plays an important role in the evaluation of individuals 

at risk of osteoporosis, and in helping clinicians advise patients about the appropriate 

use of treatment (Blake et al., 2007). 

Nevertheless, the material and structural properties of bone differ according to the 

examined hierarchical level. The development of realistic numerical models requires 

the consideration of bone’s microstructural effects, as well as the determination 

of porosity and anisotropy properties. This section presents an overview of the 

most significant methods for mechanical, geometrical/microarchitectural, and 
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compositional bone evaluation according to the different length scale of analysis as 

illustrated in Fig. 1.5. 

Table 1.1 Mechanical properties of selected biological and engineering materials (Fotiadis et 

al., 2006). 

Material 
Young’s Modulus 

(MPa) 
Ultimate 

Strength (MPa) 
Poisson’s ratio 

Actin  2.2  

Elastin 0.3-0.6   

Collagen fibers 0.1 -1 ×103   

Skin 0.1-4  >0.4 

Fat 20 × 10-3   

Smooth Muscle 10-100 × 10-3   

Blood Vessels Walls 0.2 -0.9  >0.4 

Tendon, Ligament 1-2 × 103 50-100  

Cartilage 0.5-1  > 0.45 

Cortical Bone 10-20 × 103 100-150 0.37 

Cancellous Bone 1 × 103 8-50 0.33 

Rubber 10  0.5 

Stainless Steel 2.2 × 105 850 0.3 

Aluminum Alloy 70 × 103 450 0.35 

Titanium 1.1 × 105 900 0.32 

Bone Cement 2 × 103 20 0.33 

1.3.1 Assessing mechanical properties 

Methods for assessing the mechanical properties of bone include whole-bone, bulk 

tissue, microbeam, and micro and nanoindentation testing techniques. These methods 

measure the structural strength and material modulus of the bone. Their most 

important advantage is the direct assessment of bone strength, while specimen 

destruction during testing is their main disadvantage (Donnelly et al., 2011).  

More specifically, from a macroscale point of view, the structural behavior of bones is 

evaluated using whole-bone mechanical testing. A whole bone is usually loaded to 

failure in compression, bending, or torsion (Donnelly et al., 2011) to measure the 

structural stiffness, the failure load, and the energy absorbed to failure. The structural 

stiffness reflects the bone’s resistance to elastic or reversible deformation. The failure 
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load characterizes the strength of the bone. The energy absorbed to failure is a 

measure of structural toughness and represents the amount of energy which can be 

absorbed by the bone before it breaks. However, experimental assessment of bone 

strength requires destructive whole-bone testing, and a main limitation of testing to 

failure is that the specimen might be broken during testing.  

    

Figure 1.5: The hierarchical structure of bone is depicted schematically on a logarithmic 

scale. Techniques for mechanical (dark gray bars), geometric/microarchitectural (medium 

gray bars), and compositional testing (light gray bars) are presented according to the 

approximate length scale of analysis (Donnelly et al., 2011). 

Bulk tissue mechanical testing is applied to assess the mechanical properties of 

cortical and cancellous bone at the tissue level. The effect of parameters such as the 

anatomic site, porosity, apparent density, and tissue mineral content on the 

mechanical properties of osseous tissues is evaluated. In particular, regularly shaped 

specimens (typically cylinders or cubes with diameters or edge lengths of 5–10 mm) 

are derived from cortical or cancellous tissue and tested to failure in tension, 

compression, bending, or torsion to determine the effective elastic modulus and 

ultimate stress. The effective material properties obtained from these tests are 

independent of the macroscopic bone geometry but include the effects of porosity and 

geometric anisotropy arising from osteon or trabeculae orientation (Donnelly et al., 

2011). 
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In microbeam mechanical testing, bending or tensile loads are applied to microbeams 

(approximately 200 x 200 x 2000 μm) of cancellous or cortical bone to measure the 

elastic modulus and ultimate stress (Donnelly et al., 2011). The elastic modulus 

reflects the material’s intrinsic resistance to elastic deformation, while the yield stress 

characterizes the material’s intrinsic resistance to plastic deformation. In a recent 

study (Jimenez-Palomar et al., 2015), microbeam testing revealed a decrease of bone 

elastic modulus properties with osteoporosis. 

In microindentation testing, a rigid indenter is pressed with a known force into a flat 

specimen, and the area of the resulting impression is estimated optically. 

Microindentation is used routinely to evaluate the elastic properties of bone structural 

units in both cancellous and cortical sites allowing the characterization of the 

mechanical properties of individual trabeculae or osteons. This technique has been 

used in vitro to evaluate variations among different anatomical sites, the effect of 

pathologies on the mechanical properties of bone structural units, the bone matrix 

quality and the effect of tissue condition (hydrated, dried or embedded) during the test 

(Dall'Ara et al., 2012). With the possibility to assess elastic and plastic deformation at 

the tissue level, microindentation is an attractive technique to evaluate to which extent 

microdamage is associated with tissue mechanical properties. It is a relative easy 

testing procedure and measurements can be performed in multiple locations within the 

tissue. However, the main disadvantage is that only the tissue hardness can be 

assessed. 

Nanoindentation can provide information at the microscale level for the mechanical 

properties of segments of osseous tissue as small as individual lamellae. An 

indentation test is performed with a depth-sensing indenter tip, often combined with a 

scanning probe microscope for spatially resolved measurements. The force-

displacement data are analyzed to determine the indentation modulus and hardness. 

Nanoindentation with relatively shallow indentation depths of approximately 100 nm 

yields spatial resolutions of approximately 1 μm in osseous tissue. Its application in 

fracture healing provides information on the evolution of material properties of the 

woven bone during regeneration process (Mora-Macias et al., 2017). This method can 

measure the material properties of microstructural features such as lamellae and detect 

localized changes in bone material properties induced by disease or drug treatment. 

Despite improvements in the instrument accuracy, nanoindentation has limited 
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capabilities for accurate mapping of the spatial variation in bone heterogeneous 

mechanical properties. First, measurements are constrained to discrete levels, thus 

jeopardizing a thorough evaluation of the non-uniform microstructure of bone. 

Secondly, nanoindentation is inherently destructive leading to a permanent plastic 

deformation provoked by the indenter tip.  

Scanning acoustic microscopy (SAM) is an attractive noncontact imaging modality 

able to map, over a large surface, the spatial distribution of micro-elastic properties 

(Rupin et al., 2009). A transmitter generates a radio frequency signal which excites a 

piezoelectric transducer. The piezoelectric transducer converts the radio frequency 

signal into an acoustic wave that is made to converge by the lens and propagate onto 

the sample through a liquid couplant. When the acoustic signal approaches the 

interface between couplant and sample, a fraction of it is reflected back to the lens. 

Then, the lens is acting as a receiver transforming the acoustic signal into a voltage 

proportional to the signal. To obtain an acoustic image of the desired area, the lens is 

rastered over the sample and the process is repeated pixel by pixel. SAM can be used 

for imaging the acoustic impedance of nohomogeneous materials like bone with a 

resolution in the micrometer range. This method could become an interesting tool in 

basic bone research providing mechanical, as well as histomorphometrical data of 

calcified bone tissue (Regauer et al., 2006). 

1.3.2 Assessment of bone geometry and microarchitecture 

Imaging modalities can be used for the assessment of bone geometry and 

microarchitecture such as quantitative computed tomography (QCT), high-resolution 

peripheral quantitative computed tomography (HR-pQCT), high-resolution magnetic 

resonance imaging (MRI), and micro-computed tomography (μ-CT).  Based on these 

techniques, the bone geometry, trabecular morphology, and tissue mineral density can 

be assessed non-invasively, while the bone strength cannot be measured directly.  

The availability of HR-pQCT has made it possible to measure three-dimensional (3D) 

bone microarchitecture and volumetric bone mineral density in vivo, with accuracy 

previously unachievable and with relatively low-dose radiation (Cheung et al., 2013). 

More specifically, the advent of HR-pQCT scanners with isotropic resolution of 

approximately 80 μm has enabled in vivo imaging of 3D trabecular morphology at 

peripheral sites such as the distal radius. HR-pQCT provides unprecedented ability to 
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measure human bone microarchitecture at the wrist and ankle in clinical practice and 

these data can provide new insight into changes in bone quality across the lifespan as 

well as the impact of anti-osteoporosis therapies on bone quality. Using this 

technique, cancellous bone geometry can be evaluated and morphological parameters 

such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular 

separation (Tb.Sp), and trabecular number (Tb.N) can be determined. Inclusion of 

calibration phantoms allows also the calculation of apparent bone mineral density 

(vBMD). Compared to two-dimensional (2D) measurements based on DEXA, it 

provides assessment of not only BMD, but also of bone structure and strength 

(Cheung et al., 2013). Recent studies using this novel imaging tool have increased 

understanding of age-related changes and sex differences in bone microarchitecture, 

as well as the effect of different pharmacological therapies. In cross-sectional analyses 

of population-based cohorts, HR-pQCT has identified substantial age-related 

differences in vBMD, trabecular structure and cortical thickness in premenopausal 

and postmenopausal women (Geusens et al., 2014). One advantage of this novel tool 

is the use of finite element analysis modeling to noninvasively estimate bone strength 

and predict fractures using reconstructed three-dimensional images. Although these 

measurements are largely restricted to peripheral sites, they have the concomitant 

benefit of reduced radiation doses relative to those from whole-body QCT scans 

(Donnelly et al., 2011). 

High-resolution MRI (HR-MRI) allows nonionizing 3D imaging of the cancellous 

network at peripheral sites. During scanning, a strong magnetic field and a series of 

radiofrequency (RF) pulses are applied to the specimen to generate 3D images of the 

hydrogen in the water within skeletal tissues. Bone tissue generates no signal in 

images as a result of the low water content of the tissue and the chemical environment 

of the protons within the bone matrix. When the marrow is illustrated, the trabeculae 

appear as the dark space within the bright marrow. Resolutions as small as 

approximately 50 x 50 x 200 μm have been achieved ex vivo, and resolutions of 156 x 

156 x 300 μm are typical in vivo. Consequently, MRI-based trabecular morphologic 

parameters are also affected by partial volume effects. The MRI-based trabecular 

measures are correlated with their counterparts measured by μ-CT, and MRI can 

detect age- and disease-induced changes in trabecular morphology. A critical 

advantage of this technique is its ability to generate 3D images of bone geometry and 
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microarchitecture without ionizing radiation, while the main disadvantage is the long 

scan time required to acquire high resolution images of cancellous bone. Cortical 

bone appears as a signal void with all conventional clinical MRI sequences, because 

of the rapid decay of the magnetic resonance signal (Shang-Lian et al., 2013; Bae et 

al., 2012). More recently, ultrashort time echo (TE) sequences with nominal TE of 

less than 100 μs have created increasing interest and significant information for 

cortical porosity can be derived. 

At the microscale, μ-CT provides ex vivo assessment of the microarchitecture of 

cancellous bone with resolution from 1–6 μm. In μ-CT scanners, the specimen is 

rotated in angular increments between the Χ-ray source and detector, and the 

attenuation data at each position are reconstructed into a 3D array of Χ-ray 

attenuation, which can be converted to mineral density values with inclusion of 

appropriate calibration phantoms. The measured parameters are the BV/TV, Tb.Th, 

Tb.Sp, Tb.N, trabecular connectivity, and true tissue mineral density (TMD) which is 

defined as the ratio of the mass mineral to the volume bone tissue. Limitations include 

a maximum specimen size of approximately 14-mm diameter x 36-mm length in older 

scanners and 100-mm diameter x 140-mm length in the new generation scanners. 

Nevertheless, μ-CT is the most popular technique for ex vivo quantification of 

trabecular morphology. The development of desktop in vivo μ-CT scanners has 

enabled characterization of the macroscopic geometry and microarchitecture of the 

bone. Although high resolutions require relatively long scan times and large radiation 

doses, these scanners have enabled the examination of skeletal development, 

adaptation and response to treatment with a resolution up to approximately 10 μm. μ-

CT in vivo or ex vivo with a synchrotron source maximizes resolution of 

microarchitectural features and local spatial gradients in tissue mineral content. The 

tightly collimated, monochromatic Χ-ray source provides a spatial resolution of 

approximately 1 μm and eliminates the beam hardening artifacts arising from 

differential attenuation of the polychromatic sources in conventional desktop μ-CT 

systems. Synchrotron μ-CT is the current gold standard for assessment of local 

gradients in TMD and is capable of resolving resorption spaces and microcracks. 

However, the relative inaccessibility of synchrotron facilities limits the widespread 

use of this technique. 
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1.3.3 Assessment of tissue composition 

Both the inorganic and the organic components of osseous tissues contribute to the 

structural integrity of bones. Microscopic, spectroscopic, physical, and chemical 

techniques are available for the assessment of the mineral and the collagenous 

components of bone tissue. 

Nuclear magnetic resonance (NMR) imaging provides information about water 

content and the structure of the mineral within the tissue. For analyses of water and 

mineral in bone, the primary isotopes of interest are 1H and 31P, respectively. As in 

MRI, when placed in a strong magnetic field, the NMR activates 1H and 31P nuclei in 

the bone mineral resonate at slightly different frequencies depending on their local 

chemical environment. Thus, NMR spectra are generated by varying the frequency of 

the applied RF field monitoring the absorption of the specimen. Water in bone tissue, 

while not detected with typical clinical MRI techniques, can be imaged with 

appropriate pulse sequences. The percent of bone water in volume can be quantified 

from the 1H images and can serve as a surrogate measure of cortical porosity. It is 

inversely correlated with effective ultimate stress estimated from three-point bending 

tests of cadaveric bones. 

Solid-state 31P NMR imaging can be used to characterize the chemical structure of the 

bone mineral phase, allowing detection of temporal changes in the mineral chemistry. 

Furthermore, this technique can be used quantitatively to determine the mass of bone 

mineral in the tissue, enabling detection of hypomineralization in the osteomalacic 

rabbit tissue at an isotropic spatial resolution of approximately 280 μm. Quantitative 

NMR analyses of bone mineral chemistry have also been performed in vivo, but such 

studies typically require long acquisition times in specialized scanners and are 

currently limited to the fingers, the wrist, and the hand. Recent advances in 

instrumentation have enabled in vivo solid state imaging of bone mineral in a clinical 

scanner. 

NMR techniques allow non-invasive, non-ionizing in vivo characterization of changes 

in the composition of bone tissue. Strengths of NMR include the ability to detect 

subtle changes in the chemical bonding environments of the bone mineral, but this 

technique cannot provide information about the collagenous component of the matrix. 
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The low signal-to-noise ratio and the limited spatial resolution remain key challenges 

for the 31P solid state methods. 

More recently, in (Schrof et al., 2016) the structural, chemical, and mechanical 

properties of osteonal and interstitial domains of human cortical lamellar bone were 

analyzed by means of synchrotron X-ray phase contrast nano tomography, Raman 

spectroscopy and SAM. Knowing that the degree of mineralization and the fibril 

orientation appear as key determinants of the local elastic properties, various 

independent parameters were analyzed reflecting not only the fibril orientation, the 

degree of mineralization, and the local elastic properties, but also on the state of 

mineral maturation in regions of varying tissue age. The parameters derived from 

these measurements were correlated with two levels of bone structural hierarchy, 

namely single lamellae and entire tissue domains (i.e. osteonal and interstitial bone 

structural units) with the aim of getting further insight into the interplay of structural, 

chemical and mechanical tissue characteristics. Mutual correlation analysis strongly 

suggested that the characteristic elastic modulations of bone lamellae within single 

units are the result of the twisting fibrillar orientation, rather than compositional 

variations, modulations of the mineral particle maturity, or mass density deviations. 

Furthermore, it was found that predominant fibril orientations in entire tissue units 

can be rapidly assessed employing Raman parameter maps. This approach could be 

applied in future studies for non-destructive investigation of small pathologic samples 

from bone biopsies and a broad range of biological materials and tissues. 

1.4 Bone Pathologies 

1.4.1 Osteoporosis 

Osteoporosis is a metabolic skeletal disorder characterized by low bone mass and 

microarchitectural deterioration of bone tissue leading to the weakness of the skeleton 

and increased risk of fracture, particularly of the spine, wrist, hip, pelvis and arm. 

Osteoporosis causes more than 8.9 million fractures annually worldwide and over 

one-third of all osteoporotic fractures occur in Europe (Sadat-Shojai et al., 2013). By 

2020, almost 14 million individuals older than 50 years are expected to have 

osteoporosis, and another 47 million will likely have low bone mass (Shuler et al., 

2012). 
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The main cause of osteoporosis is hormonal deficiency, and thus the most frequent 

disease is post-menopausal osteoporosis. At least 40% of post-menopausal women 

over the age of 50 and 15–30% of men will sustain one or more fragility fractures 

(Potsika et al., 2014b). Fracture prevention is a critical component of managing 

osteoporosis. In elderly people, a fracture at the proximal femur has a negative impact 

on the quality of life and can even lead to death, with a mortality rate of up to 36% 

depending on age (Rohde et al., 2014). Sex hormones, particularly estrogen, help to 

maintain the health and normal density of the skeleton by restraining osteoclast 

activity and by promoting deposit of new bone. After menopause, however, estrogen 

secretion wanes, and estrogen deficiency is strongly implicated in osteoporosis in 

older women.  

Other factors that contribute to osteoporosis include: (a) the body size (e.g. small, thin 

women face a higher risk), (b) insufficient exercise, (c) immobility, (d) a diet poor in 

calcium and protein, (e) abnormal vitamin D receptors, (f) smoking (which reduces 

estrogen levels), (g) and hormone-related conditions such as hyperthyroidism, low 

blood levels of thyroid-stimulating hormone, and diabetes mellitus, (h) family history, 

(i) ethnicity (e.g. white and Asian women are at highest risk, while black and 

Hispanic women have a lower risk), (j) use of medication as some medicines increase 

the risk of osteoporosis. In addition, recent research indicates that a particular gene, 

dubbed LRP5, may play a role in the occurrence of osteoporosis. This gene inhibits 

the release of serotonin by cells of the gut. Because serotonin inhibits osteoblast 

growth, reducing its synthesis increases bone density (Marieb and Hoehn, 2014). 

Βone mass is the main measured parameter in clinical practice, and forms the 

cornerstone for the overall management of the disease including risk prediction, 

diagnosis, and monitoring of patients. The decline in bone mass is associated with 

reduced bone strength, resulting in osteoporosis. BMD is defined as the amount of 

bone mass per unit volume (volumetric density, g/cm3), or per unit area (areal density, 

g/cm2), and both can be measured in vivo by densitometric techniques (Sadat-Shojai 

et al., 2013). It is most often described as a T-score or Z-score, both of which are 

units of standard deviation (SD). The Z-score describes the number of SDs by which 

the BMD of an individual differs from the mean value expected for age and sex. The 

T-score describes the number of SDs by which the BMD of an individual differs from 

the mean value expected in young healthy individuals. According to the World Health 
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Organization (WHO), the definition of osteoporosis is based on the T-score for BMD 

measured from white postmenopausal women and it is defined as a value for BMD 

equal to or lower than the young female adult mean (Sadat-Shojai et al., 2013, Chen 

et al., 2013). The three categories for diagnosis include: (a) normal bone (T-score 1.0 

and above), (b) low bone mass referred to as osteopenia (T-score between –1.0 and –

2.5), (c) osteoporotic bone (T-score –2.5 and below). This threshold was originally 

developed for measurements of BMD at the spine, hip, or forearm. 

Different techniques have been used to measure BMD. Densitometric techniques have 

evolved over the last century from the use of dental radiographs of mandible by 

dentists to quantitative morphometry using plain radiographs, ultrasonography-based 

methods, dual energy absorptiometry, and CT scan-based modalities like peripheral 

QCT and HR-pQCT (Chen et al., 2013). DEXA is today's established standard for 

measuring BMD. It is based on an enhanced form of X-ray technology which is used 

to measure bone loss. This technique is relative simple, quick, noninvasive, portable 

and less expensive. Although it can be used for screening and as a risk assessment 

tool, it is not appropriate for diagnosis, treatment, and follow-up. 

In addition to BMD measurement, clinical risk factors assessment is significant to 

determine patients with the highest risk of fracture who should receive the highest 

priority for treatment. To this end, after rigorous scientific study and debate, a revised 

description of osteopenia and assessment of osteoporosis was developed by the WHO 

in 2008 to provide a prediction tool for assessing an individual’s risk of fracture in 

order to enhance clinical decision for patients’ treatment. A fracture risk score, called 

Fracture Risk Assessment Tool (FRAX) is a web-based algorithm designed to 

calculate the 10-year probability of major osteoporosis-related fracture (clinical 

vertebral, hip, forearm, or humerus) and hip fractures in men and women based on 

easily obtained clinical risk factors and BMD of the femoral neck.  FRAX accounts 

for factors such as age, sex, weight, height and clinical risk factors which include 

previous fragility fractures, premature menopause, parental history of hip fracture, 

current tobacco smoking, long-term use of glucocorticoids, rheumatoid arthritis, and 

other causes of osteoporosis (Laugier and Haïat, 2011). The model uses data derived 

from 9 population-based cohorts from around the world, including centers from North 

America, Europe, Asia, and Australia, and has been validated in 11 independent 

cohorts with similar geographic distribution. 
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Despite the fact that low bone mass in osteoporosis is a major indicator of the risk of 

fracture, alterations in bone microstructure contribute significantly to skeletal 

fragility. However, DEXA is not able to directly assess changes in the bone 

microarchitecture due to osteoporosis such as the increase in cortical porosity which is 

considered as a good indicator of bone fragility.  Also, DEXA is not suitable for mass 

screenings as it requires specialists, and involves weak exposure to X-ray radiation 

(Hata et al., 2016). With the development of non-invasive imaging techniques such as 

computed tomography (CT), μ-CT, and HR-pQCT, imaging of the bone architecture 

provides important information about age-related changes in bone microstructure and 

estimates of bone strength. More specifically, the bone resorption starts from the 

endosteal (inner) surface, leading to the thinning of the cortex and trabecularisation of 

the inner cortical layer. Fig. 1.6 depicts the contrasting architecture of normal versus 

osteoporotic bone in scanning electron micrographs. The most common sites of the 

osteoporotic fractures include the vertebra, femoral neck and distal radius, in which 

the investigation of the microstructural effects is a key factor to fully understand the 

disease and improve the prediction of fracture risk. Vertebral strength is mostly 

preserved by cancellous bone, which is inhomogeneous, with lower bone volume in 

the central. Increased fragility of osteoporotic femoral neck is attributed to low 

trabecular bone volume and high compact porosity. Distal radius shows significant 

variations in cortical porosity (Chen and Kubo, 2014). 

Bone structural integrity is maintained by the removal of old bone by osteoclasts and 

synthesis of new bone in its place by osteoblasts. This process, called bone 

remodeling, is not performed individually by each cell, but by groups of cells 

functioning as organized units. More specifically, bone remodeling is accomplished 

by the assembly of osteoclasts and osteoblasts into discrete temporary anatomic 

structures called large basic multicellular units (BMUs) (Jilka, 2003).  

Osteoblasts form bone as they produce the organic matrix of collagen protein, called 

osteoid, and also secrete hormones and enzymes which later affect the mineralization 

process. They are entrapped in the matrix of the bone and become mature bone cells, 

known as osteocytes (Kilappa, 2014). Osteoclasts are large, multinuclear cells derived 

from macrophages, which secrete enzymes which destroy bone, forming resorption 

pits (Howship's lacuna or resorption lacuna).  
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In young populations, this process forms new bone, as the activity of osteoblast is 

higher, while in adulthood, the resorption and formation processes are ideally 

balanced, sustaining the mass and shape of the skeleton (Kilappa, 2014). More 

specifically, approximately 10% of the skeleton is regenerated each year in mature 

humans (Manolagas, 2000).  However, in the elderly, and especially in older females, 

estrogen deficiency after menopause disrupts the balance of this turnover process, 

increasing the resorption rate leading to a gradual deterioration of bone mass. 

 

Figure 1.6: The contrasting architecture of normal versus osteoporotic bone in scanning 

electron micrographs (Marieb and Hoehn, 2014). 

The occurrence of BMUs in cortical bone is considered as an early sign of 

osteoporosis, which leads to cortical thinning and reduced bone strength at a later 

stage of the disease progression (Bourgnon et al., 2014). In chapter 6 of this thesis, 

numerical simulations of wave propagation in cortical bone are presented to 

investigate the interaction of ultrasound with changes in cortical porosity and more 
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specifically the ability of ultrasound to identify the occurrence of BMUs, simply 

called non-refilled resorption lacunae (RL).  

1.4.2 Fracture healing 

Despite their remarkable strength, bones are susceptible to fractures or breaks as a 

result of a trauma or osteoporosis. Fracture healing is a natural process that can 

reconstitute injured tissue and recover the original function and shape of the bone. It 

is a very complex process that involves the coordinated participation of immigration, 

differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, 

chondroblasts and osteoblasts which synthesize and release bioactive substances of 

extracellular matrix components (e.g., different types of collagen and growth factors) 

(Doblaré et al., 2004). 

Young population usually experiences fractures due to a trauma that twists or smashes 

the bones due to violent physical activity in occasions such as sports injuries, 

automobile accidents or falls. In the elderly, most fractures occur due to low bone 

mass and microstructural deterioration of osseous tissue leading to the weakness of 

the skeleton in osteoporosis. Osteoporotic fractures are usually observed in the spine, 

hip, wrist, humerus and rib. Hip and spine fractures are the two most serious fracture 

types, associated with pain, disability, and even death. While bone fractures in healthy 

individuals occur in high energy traumatic events, osteoporotic bone fractures are 

associated with fragility fractures occurring with minimal trauma events (Marieb and 

Hoehn, 2014).  

Fractures can be classified based on: 

a. The position of the bone ends after fracture. In nondisplaced fractures the bone ends 

keep their normal position, while in displaced fractures the bone ends are out of 

normal alignment.   

b. The completeness of the break. If the bone is broken through, the fracture is a 

complete fracture. Otherwise, it is an incomplete fracture. 

c. The orientation of the break relative to the long axis of the bone. If the break is 

parallel to the bone’s long axis, the fracture is linear, while if the break is 

perpendicular to the long axis, it is called transverse. 
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d. Whether the bone ends penetrate the skin. In this case the fracture is an open 

(compound) fracture, while a closed (simple) fracture is observed in a different 

occasion. 

Unlike soft tissue healing, which leads to scar formation, in bone healing the anatomy 

of the osseous tissues is regenerated. Although fracture repair usually restores the 

damaged skeletal tissue to its pre-injury cellular composition, structure and 

biomechanical function, about 10% of fractures will not heal normally (Einhorn and 

Gerstenfeld, 2015). For a simple fracture the healing time is six to eight weeks for 

small or medium-sized bones in young adults, but it is much longer for large, weight-

bearing bones and in the elderly. Delayed union occurs when a bone fails to unite 

within an average anticipated time. For a given fracture, healing time varies with 

location and configuration, as well as the specific bone and age group. If this 

condition persists for 3 consecutive months with no evidence of progression toward 

healing, it is characterized as a nonunion (Freeland et al., 1986). Pseudarthrosis is the 

end stage of a nonunion when a false joint, lined with pseudosynovial cells and 

containing fluid, occurs. A pseudarthrosis generally forms if the bone ends are not 

united within 2 years (Freeland et al., 1986).   

For normal bone healing, two different types of healing are observed, known as 

primary and secondary fracture healing. Primary healing occurs in cases of extreme 

stability and negligible gap size, involving a direct attempt of the bone to form its 

structural and material properties directly. Secondary healing occurs when there is not 

enough stabilization and the gap size is moderate. In this case, responses within the 

periosteum and external soft tissues are activated that form an external callus, which 

reduces the initial movement by increasing stiffness. In most cases secondary healing 

occurs, which does a more thorough job of replacing old and damaged osseous tissue 

(Doblaré et al., 2004).  

1.4.2.1 Secondary bone healing 

Secondary fracture healing is characterized by spontaneous bone reconstruction in the 

absence of rigid fixation of the fracture site. It is the most common method of bone 

healing. It involves the following four major stages, which are illustrated in Fig. 1.7 

(Geris et al., 2009; Marieb and Hoehn, 2014; Einhorn and Gerstenfeld, 2015): 
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Inflammatory stage: An injury that interrupts the continuity of bone damages not only 

the cells, blood vessels, and bone matrix, but also the surrounding soft tissues, 

including muscles and nerves. A hematoma, a mass of clotted blood, forms at the 

fracture site. In this clot, activated and degranulating platelets provide a source of 

growth factors, playing an important role in the healing cascade. Osteocytes at the 

trauma site become deprived of their nutrition and necrose, as do the damaged tissues 

in that area. This necrotic process triggers an immediate inflammatory response, 

bringing inflammatory cells, leucocytes and macrophages to the region. These are 

followed by the invasion of fibroblasts, mesenchymal stem cells and endothelial cells. 

Growth factors and cytokines, important regulators of the healing process, are 

produced by the cells in the regeneration area, as well as released into this area from 

the surrounding tissues (damaged bone ends, muscles, periosteum and marrow) (Geris 

et al., 2009). The inflammatory phase peaks in 48 h and disappears almost completely 

by 1 week post-fracture. 

Soft Callus Stage: Within a few days, several events lead to the formation of soft 

granulation tissue, also called the soft callus. Capillaries grow into the hematoma and 

phagocytic cells invade the area and begin cleaning up the debris. In the meanwhile, 

fibroblasts and osteoblasts occupy the fracture site from the nearby periosteum and 

endosteum and begin reconstructing the bone. Mesenchymal stem cells differentiate 

into chondrocytes (cartilage-forming cells) in the central fracture area, where the soft 

callus will gradually take on the appearance of cartilage, mechanically stabilizing the 

fracture zone. As chondrocyte differentiation progresses, the cartilage extracellular 

matrix undergoes mineralization and this phase of fracture repair terminates with 

chondrocyte apoptosis. This entire mass of repair tissue, now called the 

fibrocartilaginous callus, connects the broken bone. 

Hard callus stage: In this phase blood vessels invade the calcified cartilage, bringing 

along osteoblasts. These osteoblasts will produce a hard callus tissue consisting of 

mineralized woven bone matrix in a process called endochondral ossification 

receiving enough oxygen and subjected to the proper mechanical stimuli. When the 

fracture ends are connected by a bony callus, clinical union is reached. This stage 

continues until a firm union is formed about two months later. 
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Bone remodeling: The final remodeling phase begins with osteoclastic resorption of 

unnecessary or poorly placed parts of the regenerated bone and the formation of 

lamellar bone. In particular, the first mineralized matrix produced during primary 

bone formation is resorbed by osteoclasts, and then the secondary bone laid down 

during the period of cartilage resorption is also resorbed. As the bony callus tissue 

continues to be resorbed, this prolonged period is characterized by coupled cycles of 

osteoblast and osteoclast activity in which the callus tissue is remodeled to the bone’s 

original cortical structure. The excess material on the diaphysis exterior and within 

the medullary cavity is removed, and compact bone is  laid  down  to  reconstruct  the 

shaft walls. The remodeling phase takes  place  for a prolonged   period  of  time, 

gradually reverting the blood supply to a normal state and restoring the bone at the 

regeneration site to its original shape and strength. 

 

Figure 1.7: Schematic representation of the different stages of fracture healing. 
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1.4.2.2 Primary bone healing 

Primary bone healing requires rigid stabilization with or without compression of the 

bone ends. Unlike secondary bone healing, this rigid stabilization suppresses the 

formation of a callus in either cancellous or cortical bone. Because most fractures 

occurring worldwide either are untreated or are treated in a way that results in some 

degree of motion (sling or cast immobilization, external or intramedullary fixation), 

primary healing is rare (Sfeir et al., 2005).  However, this type of healing is often the 

primary goal to achieve after open reduction and internal fixation surgery. When these 

requirements are achieved, direct bone healing can occur by direct remodeling of 

lamellar bone, the Haversian canals and blood vessels. Depending on the species, it 

usually takes from a few months to a few years, before complete healing is achieved 

(Marsell and Einhorn, 2011). Primary healing of fractures can either occur through 

contact healing or gap healing. Both processes involve an attempt to directly re-

establish an anatomically correct and biomechanically competent lamellar bone 

structure. If the gap between bone ends is less than 0.01 mm and interfragmentary 

strain is less than 2%, contact healing occurs. Under these conditions, cutting cones 

are formed at the ends of the osteons closest to the fracture site. The tips of the cutting 

cones consist of osteoclasts which cross the fracture line, generating longitudinal 

cavities at a rate of 50–100 μm/day. These cavities are later filled by bone produced 

by osteoblasts residing at the rear of the cutting cone. In this way, the simultaneous 

generation of a bony union and the restoration of Haversian systems formed in an 

axial direction are achieved. Gap healing differs from contact healing as bony union 

and Haversian remodeling do not evolve simultaneously. It occurs if stable conditions 

and an anatomical reduction are achieved, although the gap must be less than 800 μm 

to 1 mm (Marsell and Einhorn, 2011). In this process the fracture site is primarily 

filled by lamellar bone oriented perpendicularly to the long axis, requiring a 

secondary osteonal reconstruction unlike the process of contact healing. 

1.4.2.3 Assessment of fracture callus structure and material properties 

Assessment of the hard callus microstructure: The calculation of morphometric 

indices is a standard method for describing trabecular bone microarchitecture. Indices 

such as Tb.N, Tb.Th, Tb.Sp, degree of anisotropy, connectivity density, standard 

deviation of the trabecular thickness and trabecular separation have been shown to be 
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potential predictors of the resistance to fracture of bone (Casanova et al., 2014; 

Bouxsein et al., 2010). Recently, these trabecular measures were used by (Mehta et 

al., 2013) to evaluate the mineralized struts of the callus in the late reparative phase, 

which were correlated with the resistance to re-fracture. It was observed that a 

combination of the morphometric measures mentioned beforehand predicted the 

resistance to fracture as good as basic bone quantity parameters such as BV/TV. The 

results suggest that in the analysis of the mechanical behavior of the callus, 

morphometric descriptors of the microstructure may enhance the capacity to predict 

callus strength.  

Morphometric indices of trabecular structures can be assessed together with bone 

callus quantity parameters using μ-CT. In rodent models, the whole callus has to be 

scanned with a resolution below 10 mm to reliably depict the small size of trabeculae 

(Bart et al., 2013, Donelly et al., 2011). To achieve this resolution, HR μ-CT is 

needed. HR μ-CT could also be used to assess whether complete bridging of 

mineralization across the callus or defect has occurred. This is an important issue that 

is usually overlooked in the analyses of the callus, where bone mass is used as an 

indicator of the healing progress. Algorithms for HR μ-CT that take into account the 

location and the extent of struts bridging across the callus will enable a better 

estimation of the resistance to re-fracture (Casanova et al., 2014).  

Assessment of the soft callus microstructure: A tool which is able to identify and 

quantify cartilage in the soft callus would provide benefits in the assessment of 

fracture repair. A promising imaging approach is the micro-magnetic resonance 

imaging (μ-MRI) as it provides good contrast for soft tissues which are abundant in 

the young fracture callus. However, the resolution of μ-MRI measurements is in the 

order of 100 mm (in the longitudinal direction), which is rather low compared with 

desktop μ-CT in the micrometer regime (Kim et al., 2012). In addition, strong 

magnetic fields have been suspected of interfering with bone healing processes 

(Nakahira et al., 2003). Consequently, the application of μ-MRI for the assessment of 

bone repair is still limited in preclinical studies. μ-CT could be possibly used in the 

future for the evaluation of the soft tissues in the callus. Recently, (Hayward et al., 

2012) developed a contrast-enhanced protocol for μ-CT imaging of the soft callus in 

an ex vivo setting.  
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Assessment of the callus material properties: Raman spectroscopy, Fourier transform 

infrared imaging (FTIR), quantitative backscattered electron imaging (qBEI) and 

energy-dispersive X-ray spectroscopy (EDX) are potential methods to characterize the 

callus material properties (Pezzuti et al., 1998; Ouyang et al., 2004). Both Raman 

spectroscopy and FTIR measure partially overlapping subsets of the specimen’s 

vibrational spectrum (Casanova et al., 2014; Carden and Morris, 2000) and they give 

access to important bone quality factors by describing the quality of the newly formed 

bone tissue of the callus, such as the mineral-to-matrix ratio, the carbonate to 

phosphate ratio and collagen cross-linking (Morris et al., 2010). The mineral to matrix 

ratio could be used to determine the changes in mineralization in specific regions of 

the callus, and the carbonate to phosphate ratio could provide important insights into 

callus quality as it varies depending on the architecture of the collagen tissue, its age 

and its mineral crystallinity (Ouyang et al., 2004; Mendelsohn et al., 2000). Collagen 

can be considered to be the backbone of the bone’s mineral structure, and it is 

therefore an important factor for assessing bone strength. For the fracture callus, it 

means that non-completely mineralized areas present during the first stages of the 

reparative phase could be evaluated based on their collagen structure, which will 

show different levels of maturity. Recently, (Meganck et al., 2013) applied Raman 

spectroscopy to callus to analyze the effect of bisphosphonates on bone material 

properties for two different mouse models. This study showed that there was no 

significant change in the mineral to matrix ratio, but there were significant changes in 

crystallinity between the two mouse strains. A high intragroup and intrasample 

variation was also observed in the callus in the mineral to matrix ratio, crystallinity 

and carbonate to phosphate ratio. Nonetheless, Raman spectroscopy has been shown 

to be a powerful tool to detect changes in material properties in murine bones 

interacting with bisphosphonates (Juillard et al., 2010). Therefore, spectroscopic 

techniques have a potential application to assess the quality of healing bone tissue, 

which can help understanding how treatments influence its recovery (Brennan et al., 

2009).  

Backscattered microscopy or qBEI is a form of scanning electron microscopy where 

backscattering of incident electrons colliding with atoms of the sample is recorded to 

estimate the local bone mineralization level (Casanova et al., 2014). This technique 
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was successfully used to investigate the mineralization degree in the callus tissue 

(Manjubala et al., 2009).  

EDX is a technique applied to study the atomic composition of a sample by analyzing 

the emission of characteristic X-rays through an energy-dispersive spectrometer. EDX 

can be particularly helpful to detect specific elements in the callus, which cannot be 

distinguished by Raman spectroscopy or by FTIR. For example, (Bruel et al., 2011) 

used EDX to investigate the presence of strontium ranelate in the callus after specific 

treatment with this drug. As EDX can detect the presence of specific atoms, it is 

appropriate for studies including treatments, which involve exogenous atoms. 

Assessment of the callus mechanical properties: The most common techniques for 

measuring local biomechanical properties of bone tissue are nanoindentation and 

SAM (Oyen, 2010; Eckardt and Hein, 2001). For nanoindentation tests, a diamond tip 

penetrates the specimen up to a certain depth and the exerted forces are recorded to 

extrapolate the mechanical properties (Oyen, 2010). In (Leong and Morga, 2008) the 

local mechanical properties of rodent callus were investigated via nanoindentation, 

demonstrating the usefulness of this technique in characterizing the heterogeneous 

mixture of tissues present in the callus. In contrast, SAM uses measurements of a 

sample’s reflection of acoustic waves to derive its stiffness (Hube et al., 2006). SAM 

was already successfully adopted to investigate the relationship between resistance to 

fracture and local mechanical properties in ovine callus (Preininger et al., 2011). A 

strong correlation between the two parameters was found. Both techniques provide 

the stiffness of the region under investigation at high spatial resolution. Compared 

with SAM, nanoindentation has the advantage to concomitantly extrapolate the elastic 

modulus and the hardness of the investigated tissue which is not possible with SAM. 
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Chapter 2: Ultrasound Propagation in Bone 

2.1 Fundamentals of Ultrasound 

2.2 Reflection and Refraction 

2.3 Attenuation 

2.4 First Arriving Signal Velocity 

2.5 Guided waves 

2.6 Ultrasonic Transducers 

 

 

 

2.1 Fundamentals of Ultrasound 

According to Chapter 1, elasticity is a solid’s most important property for restoring its 

shape and volume after the termination of the action of external forces, while for 

liquids and gases, only the volume is restored. Elastic vibrations are vibrations of a 

mechanical system (an elastic medium or its part) which arise under mechanical 

disturbances. Elastic or acoustic waves are mechanical disturbances reproduced in an 

elastic medium (Nazarchuk et al., 2017). 

Ultrasound is a mechanical wave propagating at frequencies above the audible range 

(20 kHz). For medical applications frequencies typically above 1 MHz are used. The 

wave propagates through a medium as a disturbance of the individual particles 

supporting the wave. These disturbances induce a displacement of the particles and 

are transmitted gradually to other parts of the medium.  

Ultrasound propagates as a longitudinal or compressional wave (Fig. 2.1), when the 

molecules oscillate sinusoidally within the medium, moving forward and backward 

along the direction of propagation. Alternatively, the particles may oscillate 

transversely, perpendicularly to the direction of propagation. Such a wave is called a 

transverse or shear wave. Shear waves and compressional waves are the two main 
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modes of propagation of acoustic energy in biological hard tissues such as bone. The 

compressional wave speed is related to the bulk elasticity modulus of the medium 

while the shear wave speed is related to the shear elasticity modulus. However, 

typically, in soft tissues, liquids and gas ultrasound bulk shear waves are usually of 

little relevance and are neglected as they are highly attenuated at ultrasonic 

frequencies. Fig. 2.1 shows that within the wave, regular pressure variations occur 

with alternating areas of compression, which correspond to areas of high pressure and 

high amplitude, and with areas of rarefaction or low pressure zones where expansion 

of particles occurs. 

 
Figure 2.1: Distribution of wave vibrations for: (a) a compressional, and (b) a shear wave (Z. 

Nazarchuk et al., 2017). 

In an infinite isotropic homogeneous solid body, in which the propagating wave does 

not interact with the boundary of the medium, the longitudinal (cl) and shear (cs) 

propagation velocity are given by:                                                    

																																																																								cl=ඨc11 
ρ =ඨλ+2μ

ρ  ٫																																														 (2.1)	
and 

																																																																									cs=ඨc11 − c12

2ρ =ඨμ
ρ ٫ 																																												 (2.2)	

in which c11, c12 are the two stiffness coefficients, λ (bulk modulus) and μ (shear 

modulus) are the Lamé coefficients and ρ is the density of the medium of propagation. 
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Except for the longitudinal and shear velocity, the acoustic impedance is another 

parameter that characterizes the medium of wave propagation. The acoustic 

impedance (Z) is defined as the ratio of the acoustic pressure (p) at a point in the 

medium to the particle speed (u) at the same point:  

                                                                   pZ=
u
                                                       (2.3) 

Considering the propagation of plane waves in a non-attenuating medium, the 

acoustic impedance is defined by the product of the mass density and the speed of 

sound c (also known as the wave propagation velocity or sound velocity): 

                                                                   Z=ρ·c·                                                (2.4) 

Table 2.1 presents typical values of sound velocity and acoustic impedance in 

different biological tissues (Laugier and Hait, 2011).  It should be mentioned that 

these values are indicative of the order of magnitude, due to the significant biological 

variability. 

The frequency f and period T of a longitudinal wave are related to the speed of sound 

and its wavelength, λ, by the equation: 

                                                                 c=λf	= λ
Τ ·                                                 (2.5) 

Table 2.1 Typical values for ultrasound propagation velocity and characteristic acoustic 

impedance, in different biological tissues for temperatures in the range between 20°C and 

37°C. 

Tissue 
Ultrasound Propagation 

velocity (m/s) 
Characteristic Acoustic 
impedance (kg·s-1·m-2) 

Water (20 °C) 1480 1.48·106 

Cancellous Bone 1450  ̶ 1800 1.54·106  ̶  2.2·106 

Cortical Bone 3000  ̶  4000 4·106  ̶  8·106 

Fat 1450 1.38·106 

Muscle 1550  ̶  1630 1.65·106   ̶  1.74·106 

Skin 1600 1.7·106 

Typical diagnostic ultrasound devices use frequencies in the range of 

2–15 MHz.  In cortical bone a typical sound velocity approximates the value 4000 m/s 
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calculated for a wavelength of 16 mm and frequency 250 kHz or for 4 mm at 1.0 

MHz. In cancellous bone of the human calcaneus, a typical sound velocity 

approximates the value 1500 m/s when the wavelength is 3.1 mm and the frequency 

500 kHz (Laugier and Haiat, 2011). A typical sound velocity for soft tissue is 1540 

m/sec (Aldrich, 2007). 

2.1.1. Phase velocity-Group velocity 

Two fundamentally different sound velocities can be distinguished. Phase velocity 

(cp) corresponds to the propagation velocity of a given phase that is of a single 

frequency component of a periodic wave. The phase velocity is calculated as: 

                                                       	           cp=
ωk 	٫																																																										(2.6) 

in which ω denotes the angular frequency and k is	the wavenumber. The wavenumber 

is inversely proportional to the wavelength λ according to the equation: 

																																																																													k=
2π
λ ·																																																										(2.7) 

A propagating medium is called dispersive if the phase velocity is a function of 

frequency or wavelength, which is the case for example in all attenuating media. This 

means that the different frequencies contained in the signal do not propagate at a 

constant velocity. 

The group velocity refers to the velocity of propagation of a wavepacket. Α 

wavepacket is a short "burst" or "envelope" of localized wave action that travels as a 

unit (Fig. 2.2). Each wave of the wavepacket propagates with the phase velocity cp, 

but the wavepacket propagates with the group velocity. The group velocity (cg) is 

defined as: 

																																																												    cg=
dω
dk = cp+k

dcp

dk ·       			  							     					              (2.8) 

The group velocity corresponds physically to the velocity at which energy or 

information is conveyed along the direction of propagation.  In the case of a 

dispersive medium, the group velocity may differ from the phase velocity. It is 
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important to account for velocity dispersion because it potentially affects the accuracy 

of sound velocity measurements. 

 

Figure 2.2: (a) A wavepacket propagating at the x direction with the group velocity cg. Every 

wave of the wavepacket propagates with the phase velocity cp, (b) a wavepacket propagating 

in a dispersive medium. The group and phase velocities are frequency dependent and 

therefore the signal envelop changes its form (Protopappas, 2006b). 

2.2 Reflection and Refraction 

As ultrasound energy propagates in a composite medium such as bone, interactions 

that occur include reflection, refraction, scattering, and absorption. Reflection and 

refraction occur at the boundary between two media with different characteristic 

acoustic impedances or different wave propagation velocities. Even if the incident 

wave is purely longitudinal or purely transverse, the refracted and reflected waves 

will be in general superpositions of longitudinal and transverse waves propagating in 

different directions (Lautrup, 2011). In composite media such as bone, wave 

reflection and refraction occur when the size of the heterogeneity d (size of pores with 

marrow in osseous tissues) is much larger than the wavelength (Manolis et al., 2017).  

If the surface is smooth, specular reflections occur whereas for rough surfaces, 

reflections are diffuse. Specular reflection forms the basis of pulse-echo ultrasonic 

imaging (echography) and contributes to image formation displaying organ 

boundaries. Figure 2.3 shows reflection and refraction between two fluid media, and 

between a fluid and a solid medium. These phenomena represent realistically the 

ultrasound interaction in the boundary of soft tissue and cortical bone. However, the 

interaction between ultrasound and cancellous bone is more complicated as the 

contribution of scattering phenomena is also significant. 
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The wave propagation phenomena of Fig. 2.3a, at the boundary between two fluid 

media can be described by the Snell’s law. More specifically, the reflection angle θ1 is 

equal to the angle of the incident wave and the transmitted wave is refracted away 

from the direction of the incident wave θ1 at a refraction angle θ2 given by: 

																																																																	sinθ2

c2
=

sinθ1

c1
٫																																																     (2.9)	

where c1 and c2 are the sound velocities of the first and second medium. 

The ratio of the reflected to the incident acoustic pressure amplitude is called 

amplitude reflection coefficient r. The ratio of the transmitted to the incident acoustic 

amplitude is called amplitude transmission coefficient t. Coefficients t and r are given 

by: 

                             		              		   			   		r  = Z1 ̶ 	Z2
Z1 +	Z2

					       			                     					           (2.10) 

and 

 																																																																	t  = 2Z2

Z1 + Z2
	 · 			     		           					       																  (2.11) 

Similarly intensity reflection (R) and transmission coefficients (T) are defined by the 

ratio of the reflected to the incident acoustic intensity and the ratio of the transmitted 

to the incident acoustic amplitude, respectively: 

                                                        
2

1 2

1 2

Z ZR=
Z +Z

 
 
 

                                          (2.12) 

and 

                                                         
 

1 2
2

1 2

4Z ZT=
Z +Z

 ٫                                               (2.13) 

where Z1 and Z2 are the characteristic acoustic impedances of the first and second 

medium for longitudinal waves, respectively. One can verify that T + R = 1,  

which corresponds to the conservation of energy equation. The 
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amount of energy in the reflected wave depends on the impedance discontinuity of 

the two media. The larger the difference, the larger is the reflected energy. 

 
Figure 2.3: Reflection and refraction at the boundary: (a) between two fluid media, (b) 

between a fluid and a solid medium. 

At the boundary between a fluid and a solid medium (Fig. 2.3b), the Snell’s law 

obtains the following form: 

																																																													sinθ1

c1
=

sinθ2L

c2L
=

sinθ2T

c2T
٫  																																					  (2.14) 

in which the subscripts “2L” and “2T” correspond to the refracted longitudinal and 

shear waves in the solid medium (e.g., cortical bone). 

As longitudinal waves in solids propagate with a higher speed of sound than in fluids, 

the refraction angle θ2L is larger than the angle of incidence θ1. When θ1 is higher than 

a certain value θc, total internal reflection occurs and the longitudinal wave is no 

longer transmitted into the solid. The refracted wave is termed evanescent as it travels 

parallel to the interface and decays exponentially from the boundary. The 

corresponding incident angle θc is termed the first critical angle and is given by: 

																																																																						sin θc =
c1

c2L
	 · 																																																			(2.15)	

According to the range of longitudinal wave velocity values in cortical bone (Table 

2.1), the typical values of θc are between 20° and 25°. 
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2.3 Attenuation 

When an ultrasonic wave propagates through osseous tissues, the effects of scattering 

and absorption lead to the reduction of acoustic pressure amplitude and are the two 

mechanisms that contribute to ultrasound attenuation. The loss of incident acoustic 

energy is characterized by the attenuation coefficient which can be defined as the sum 

of the absorption coefficient µα and the scattering coefficient µs: 

                                                                μ=μα+μs ·                                                                         (2.16) 

Ultrasound attenuation is characterized by the following exponential decrease of the 

pressure amplitude p and of the amplitude of the acoustic intensity I with the traveling 

distance z: 

                                                                 p=p0e-αz ٫                                                (2.17) 

and 

                                                                I=I0e-2αz ٫                                                (2.18) 

where, p0 and I0 are the pressure and intensity at z = 0, respectively. The quantity α 

(expressed in cm−1) is the pressure frequency-dependent attenuation coefficient. The 

factor 2 in the exponential term of the intensity equation results from the 

transformation of pressure into intensity, as intensity is proportional to the square of 

pressure.  

Different mechanisms are responsible for absorption phenomena such as thermal 

conductance, chemical and viscous effects. So far, the phenomena responsible for 

ultrasound absorption in biological tissues have not been completely understood. The 

role of scattering is described in subsection 2.3.1. 

Attenuation differs substantially between fluid-like soft tissues and porous media such 

as bone, in which (i) viscous friction effects due to the relative motion of marrow and 

solid frame, (ii) scattering of the ultrasonic wave by bone heterogeneity and (iii) 

longitudinal to shear mode conversion contribute significantly. Acoustic attenuation 

in cancellous bone is almost one order of magnitude higher than in cortical bone. This 

is likely due to the large bone surface-to-volume ratio, which reinforces scattering, 

mode conversion and viscous friction. Recent studies suggest that loss mechanisms 
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such as mode conversion may be a significant contributor to the overall attenuation in 

bone in the diagnostic frequency range. Further important factors that contribute to 

the total wave intensity attenuation in a complex medium composed of layers of 

different media (surrounding soft tissues, bone, marrow) are diffraction, reflection and 

refraction. Due to diffraction phenomena, the acoustic beam emitted from a planar 

(unfocused) transducer will increase its diameter as the wave propagates and the 

intensity will decrease with increasing distance from the source. Reflection and 

refraction losses at tissue interfaces depend on the impedance mismatch at the 

interfaces. 

Finally, normal bone demonstrates higher attenuation and is associated with higher 

velocity values compared to osteoporotic bone (Laugier et al., 2002). 

2.3.1 Scattering 

When a plane wave travels through a suspension of particles like particulate 

composites (solid particles in solids), liquid suspensions (solid particles in fluid), and 

emulsions (fluid inclusions in fluid), multiple scattering occurs and part of the 

incident energy is transferred to the scattered fields. Parameters such as the frequency 

of the incident wave, the relative position among the particles, the geometry of the 

particles and the material properties of both matrix and inclusions affect the amount 

of this energy (Aggelis et al., 2004).  

Scattering phenomena result from the interaction between a primary ultrasonic wave 

and the boundaries of particles if their physical properties such as 

density or elasticity are different from those of the surrounding medium. In this case, 

the oscillatory movement of the scatterer is different from that of the surrounding 

medium, which leads to the emission of a secondary wave denoted scattered wave. 

The scattering regime of a single particle depends on the ratio between its dimension 

and the wavelength (λ). If λ is much smaller than the size of the heterogeneity, 

specular reflection occurs obeying the usual laws of reflection. In contrast, a scattered 

wave is created if the dimensions of the heterogeneities are comparable to or lower 

than the wavelength.  

The scattering problem of light and sound by small scatterers was first solved by Lord 

Rayleigh (Rayleigh and Lindsay, 1878) and is therefore called Rayleigh scattering. 
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For scatterers much smaller than the wavelength, the intensity of the 

scattered waves is proportional to the fourth power of the frequency of the incident 

wave and to the sixth power of the size of the scatterers (Morse and Ingard, 1986). 

The case of scatterers with larger sizes or sizes comparable to the wavelength 

involves more complicated calculations. The scattered intensity from soft tissues is 

generally considerably smaller than the specularly reflected intensity from organ 

boundaries. However, similarly to specular reflection, such scattering events are of 

primary importance for image formation and for assessing micro-structural properties 

of the medium such as scatterer’s size and scatterers’ number. In ultrasound images of 

soft tissues, scattering causes the grainy aspect, also denoted as speckle. 

2.4 First Arriving Signal Velocity 

Fig. 2.4a shows the propagation of a broadband spherical wave emitted by a source S 

located in the water interface separating water and bone. Considering that the 

longitudinal bulk velocity of bone ( lc  ≈ 4000 m/s) is larger than that of the water (cw 

≈1490 m/s), this configuration leads to the propagation of the so-called lateral wave 

(Bossy et al., 2002). The lateral wave in the fluid/solid case connects the longitudinal 

refracted wave front to the reflected wave front, and propagates along the surface with 

the longitudinal bulk velocity cl Eq. (2.1). Fig. 2.5 shows the propagation of the wave 

fronts of the lateral, reflected and refracted waves in non-absorbing media when the 

direct wave is spherical. The orientation of this lateral wave front depends on the ratio 

of the shear velocity to the longitudinal velocity. 

The time-of-flight (TOF) is the main estimated parameter in ultrasound propagation 

measurements in order to calculate the FAS velocity. Fig. 2.6 shows a source and a 

receiver at a distance d from the water-bone interface, separated by a distance r. The 

lateral wave exists at the receiver only if r>2d tan(θc), so that the path BC exists. 

Supposing that r always verifies this condition for the lateral wave, the theory predicts 

that the TOF corresponds to the geometrical path ABCD, traveling with velocity cw 

on part AB and CD and with velocity cl on part BC. Using the axial transmission 

method, the time of arrival of the lateral, direct and reflected waves can be calculated 

as: 
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Figure 2.4: Snapshot of the wave propagation, in (a) the fluid/solid case, after the 

longitudinal refracted wave front has disconnected from the incident wave 

front, (b) for comparison purposes the fluid/fluid case is also depicted (Bossy et al., 2002). 

		 																																																					 tlateral =	2dcosθc

cw
+

r
c1

٫      																																						 (2.19) 

		                                               				    tdirect =	 r
cw

٫                              	                   (2.20) 

																																																									  treflected =	ටr2+(2d)2

cw
· 																																												(2.21)  

It can be seen from these expressions that r must be large enough, so that the lateral 

wave, propagating along the surface at lc  > cw arrives first. The corresponding 

condition tdirect 	̶ tlateral > 0 therefore yields a value rmin, so that for r > 

rmin , the TOF of the lateral wave is less than that of the direct wave. 

 

Figure 2.5: Wave fronts in non-absorbing media when the direct wave is spherical: curve 1-

direct wave, curve 2-specular reflected wave, curve 3-lateral wave, curve 4-refracted wave 

(Brekhovskikh and Godin, 1999). 
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Figure 2.6: Propagation paths for the direct (...), reflected (- - -) and lateral wave (---). 

Then, the FAS velocity can be calculated if the TOF and the propagation path have 

been determined. Several time criteria, have been used to identify the TOF at the 

receiver, including extrema, zero crossings or threshold-based time criteria as 

illustrated in Fig 2.7.  

 

Figure 2.7: Illustration of different time detection criteria such as threshold-time, 

zero-crossings, extrema. 

In intact long bones, the FAS velocity measured in cortical bone is known to be 

strongly correlated with the bone macrostructure and microstructure properties, i.e. 

matrix stiffness, porosity and thickness (Grondin et al., 2010; Rohde et al., 2014; 
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Grimal et al., 2013). Therefore, FAS velocity measurements can provide significant 

quantitative information concerning bone deterioration in cases of bone pathologies 

such as osteoporosis and fracture healing. 

2.5 Guided waves 

Wave propagation through bounded media results in multiple reflections of the waves 

at the boundaries, and mode conversion occurs between longitudinal and shear waves. 

When the propagation medium is thin compared to the wavelength, superpositions 

cause the formation of wave packets, which are commonly referred to as guided wave 

modes (Protopappas et al., 2006a). The wave guide character of the sound 

propagation has been evidenced for cortical bone in the 0.25–2 MHz frequency range 

(Laugier and Haiat, 2011). In this case, cortical bone can be modeled as a plate-like 

(2D representation) or a tube-like (3D representation) layered medium. 

In the case of a homogeneous isotropic elastic plate with traction-free upper and lower 

surfaces (free plate), the guided waves are plane strain waves called plate waves or 

Lamb waves. Lamb waves are dispersive implying that the velocity at which a wave 

propagates within a plate is a function of the frequency and the plate thickness. The 

dispersion of Lamb waves is described by the following equation known as the 

Rayleigh-Lamb frequency relation: 

                                                     
 

±1
2

22 2

tanβd/2 4αβk=
tanαd/2 k β

   
  

٫                                (2.22) 

where d is the plate thickness, k=ω/c is the component of the wavenumber parallel to 

the interface, ω is the angular frequency, c is the phase velocity of the Lamb wave and  

α, β are given by: 

                                                               
2

2
2

l

ωα = k
c

 ٫                                               (2.23) 

and  

                                                               
2

2
2

s

ωβ = k
c

 ٫                                             (2.24) 

where lc  is the bulk longitudinal and sc  is the shear velocity of the medium.  
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In Eq. (2.22), the exponent of the right-hand term is +1 for symmetric modes and  ̶ 1 

for anti-symmetric modes. Symmetric modes, denoted as S0, S1, S2, etc., are waves 

with motion symmetric with respect to the midplane of the plate, whereas in anti-

symmetric modes, denoted as A0, A1, A2, etc. the motion is anti-symmetric (Fig. 

2.8). 

 

Figure 2.8: Propagation of: (a) symmetric, and (b) anti-symmetric modes. 

Numerical evaluation of Eq. (2.22) yields Lamb wave dispersion curves which 

define the variation in phase velocity as a function of the frequency–thickness product 

F × d (Fig 2.9). Also, from Eq. (2.8), the group velocity dispersion curves can be 

calculated. 

Each continuous curve in Fig. 2.9 represents a guided wave mode. From these 

dispersion curves it can be seen that all but the two fundamental modes, S0 and A0, 

have a cut-off frequency–thickness product. Thus, for very low frequencies, or for 

very thin plates, only the fundamental S0 and A0 modes can be excited. In these 

conditions, the phase velocity of the S0 wave can be calculated by the following 

equation (Nicholson et. al, 2002): 

                                                         cp= ඨ Eሺ1 − ν2ሻρ 	٫																																																	(2.25) 

where E is Young’s modulus, ν is the Poisson ratio, and ρ is the density. 

With increasing F × d, the velocities of all Lamb modes asymptotically approach the 

Rayleigh velocity. The Rayleigh velocity cR is that of a pure non-dispersive surface 

wave, given by (Graff, 1991) as: 
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Figure 2.9: Theoretical Lamb wave dispersion curves for the first four symmetrical (S0–S3) 

and anti-symmetrical (A0–A3) guided modes in acrylic plates: (a) phase velocity, (b) group 

velocity. 

                                    	  			 	   	      	cR≈ 
cs(0.87+1.12ν)

(1+ν) 	 · 																																												(2.26) 

If a wave is guided by the bone cortex with a phase velocity greater than that of 

the compression wave of the surrounding soft tissues, the energy propagating in the 

bone cortex can leak into the soft tissue. The boundary conditions are modified by the 

presence of a surrounding medium and the characteristics of Lamb waves in a fluid-

immersed plate are different from those of Lamb waves in a free plate. For example, 

if the phase velocity of the fluid is close to the phase velocity of a Lamb mode, the 

mode continuously radiates into the fluid and, therefore, its attenuation is high 
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(Nicholson et. al, 2002). However, the theoretical background is not described herein 

as the analysis in Chapter 4 has been based on the free plate problem. 

2.5.1 FAS velocity and guided waves  

In the receiving element, the FAS can be defined as the first component of the signal 

which emerges from noise. The velocity of the FAS is measured in the time domain. 

FAS velocity can be easily calculated by means of numerical simulations using 

numerical tools such as the finite difference time domain (FDTD) method (Bossy et 

al., 2004; Nicholson et al., 2002). According to such FDTD simulation studies based 

on homogeneous bone models with uniform geometries, the nature of FAS, and 

subsequently the FAS velocity, changes with the thickness to wavelength (λL) ratio. 

Specifically, λL refers to the compression bulk wave inside bone, in the direction of 

bone axis. For thickness larger than λL, FAS is the so called lateral wave which is the 

trace on the surface of the compression bulk wave in the material (Camus et al., 

2000). If cortical thickness is much larger than the wavelength (3–4 mm at 

frequencies close to 1 MHz) no impact on FAS of thickness variability can be 

expected (Prevrhal et al., 2001) according to numerical predictions (Bossy et al., 

2004). Therefore, in this case FAS velocity does not depend on the thickness and is 

close to lc . For thickness in the range λL/2−λL, the reflection of compression bulk 

waves on the inner surface impacts the FAS velocity. For lower thickness, FAS 

velocity decreases with thickness and approaches the low frequency limit of the phase 

velocity of the guided wave S0 on plates. In this thickness range, thickness related 

variations of FAS velocity qualitatively agree with the dispersion of the S0 wave. The 

FAS velocity is expected to increase nonlinearly with thickness and to reach a plateau 

for the thickest samples.  

In agreement with guided wave analysis, the precursor of the signal is related to the 

wave component which has the highest group velocity and width. For instance, when 

the frequency bandwidth of the excitation signal contains low enough frequency 

components, the FAS is expected to originate in the S0 wave. In this frequency 

domain, the S0 wave is slightly dispersive, i.e. its waveform is expected to be only 

slightly distorted with propagation distance. However, its amplitude is small due to 

the fact that it induces a longitudinal displacement field across the whole thickness. 
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In agreement with numerical predictions, several studies on plastic samples (acrylic, 

PVC, perspex) with varying thickness showed that FAS velocity varies with thickness 

when it is smaller than the wavelength λL (Moilanen et al., 2004; Njeh et al., 1999). 

The largest variations of FAS velocity were obtained for the smallest nominal 

frequency (200 kHz). 

2.6 Ultrasonic Transducers 

Ultrasonic probes are sensors which can generate acoustic signals and detect returned 

signals. A sound wave is typically produced by a piezoelectric transducer encased in a 

probe. Piezoelectric crystals change size and shape when a voltage is applied. For 

specific applications, proper piezoelectric materials are chosen according to a number 

of factors such as their piezoelectric performance, dielectric properties, elastic 

properties and stability (Zhou et al., 2014). 

The beam pattern of a transducer can be determined by the active transducer area and 

shape, the ultrasound wavelength, and the sound velocity of the propagation medium. 

The sound is focused either by the shape of the transducer using a lens in front of the 

transducer, or by a complex set of control pulses from the ultrasound scanner 

machine. In this way, an arc-shaped sound wave is generated. The wave travels into 

the body and is focused at a desired depth. Almost all piezoelectric transducers are 

made of crystals (quartz) or ceramic materials such as Lead Zirconate Titanate, 

Lithium Niobate and Lead Metaniobate. The transducer may be in contact with the 

body surface, or inserted into the body. 

Since the piezoelectric material exhibits a higher acoustic impedance (≈30 MRayl) 

than that of biological tissue or water (≈1.5 MRayl), a substantial part of the acoustic 

energy would be lost at the rear interface and not directed into the forward direction, 

resulting in poor resolution and sensitivity, if not properly matched acoustically.  

Fig. 2.10 presents a diagram of a typical transducer construction. The backing 

material is located behind the piezoelectric element to prevent excessive vibration. 

Reducing excessive vibration will cause the element to generate ultrasonic waves with 

a shorter pulse length, improving resolution in images. Ultrasonic waves transmitted 

from the piezoelectric element are reflected by a target because there is a big 

difference in acoustic impedance between the piezoelectric element and the object. To 
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avoid this phenomenon, an intermediate material is inserted to ensure that ultrasonic 

waves can efficiently enter the object. This is the role of the acoustic matching layer. 

The acoustic lens is attached to the tip of the probe. Ultrasonic waves transmitted 

from the probe would spread and travel like light. The acoustic lens prevents the 

ultrasonic waves from spreading and focuses them on a specific target.  

 

Figure 2.10: Diagram of a typical transducer construction. 

In bone applications two are the most popular ultrasonic configurations known as the 

axial and through transmission techniques. A schematic view of the two techniques is 

presented in Fig. 2.11. When the axial transmission method is applied, the transducers 

are aligned along the bone axis to measure the FAS velocity and guided waves in the 

cortical layer of long bones. As bone is a highly attenuating medium, most studies use 

relatively low frequencies from 100 kHz to 2.0 MHz which are substantially lower 

than the frequencies used in conventional ultrasonography of soft tissues.  

Axial transmission FAS velocity reflects both structural and intrinsic material 

properties of cortical bone. Experimental studies on excised human radii 

demonstrated the sensitivity of the velocity of the FAS to porosity and degree of 

mineralization (Bossy et al., 2004b) and also to intrinsic elastic properties (Raum et 

al., 2005). 

The transverse transmission technique uses two piezoelectric transducers, a 

transmitter and a receiver, placed on opposite sides of the skeletal site. The transverse 

transmission technique provides estimates of the FAS velocity and frequency-
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dependent attenuation known as broadband ultrasonic attenuation. While the 

calcaneus (heel bone) is the preferred skeletal site, this method has been applied at the 

finger phalanxes. More recently, devices have been presented to measure the 

ultradistal radius at the forearm (Mano et al., 2006; Otani et al., 2009) or the proximal 

femur at the hip (Barkmann et al., 2010; Barkmann et al., 2008).  

The application of these techniques for the assessment of healthy and pathologic 

bones is discussed in detail in chapter 3 which describes the state-of-the art analysis in 

this research field and presents the cornerstone studies in the literature. 

 

Figure 2.11: Schematic view of the: (a) axial transmission, and (b) through transmission 

methods. 

Concerning medical imaging, four different modes of ultrasound are used (Carovac et 

al., 2011). These are: 
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 A-mode: A-mode is the simplest type of ultrasound. A single transducer scans a 

line through the body with the echoes plotted on a screen as a function of depth.  

 B-mode: In B-mode, a linear array of transducers simultaneously scans a plane 

through the body which can be viewed as a two-dimensional image. 

 M-mode: M stands for motion. In M-mode a rapid sequence of B-mode scans 

enables doctors to see and measure the range of motion, as the organ boundaries 

that produce reflections move relative to the probe. 

 Doppler mode: The Doppler effect is used to measure and visualize blood flow. 

Doppler sonography plays an important role in medicine. Sonography can be 

enhanced with Doppler measurements, which employ the Doppler effect to assess 

if a medium (e.g. blood) is moving towards or away from the probe, and the 

relative velocity. By calculating the frequency shift of a particular sample 

volume, for example a jet of blood flow over a heart valve, its speed and direction 

can be determined and visualized. This is particularly useful in cardiovascular 

studies and essential in many areas such as determining reverse blood flow in the 

liver vasculature in portal hypertension.  
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3.6 Contribution of this Thesis 

 

 

 

3.1 Introduction  

Quantitative ultrasound (QUS) has received considerable interest during the last few 

decades for its potential to assess bone structural and material properties which reflect 

the risk of bone fragility. In the quite rich literature, several experimental and 

computational studies have been presented aiming to correlate QUS propagation 

parameters with bone microstructural alterations in pathological cases (Casciaro et al., 

2015; Barbieri et al., 2011, Cheung et al., 2011; Krieg et al., 2008; Kaufman et al., 

2007; Protopappas et al., 2006a).  

The axial transmission technique is considered as the “gold standard” method for 

ultrasonic bone evaluation using a single or multiple emitters and receivers aligned 

along the long axis of the bone in contact with the skin or directly with the bone (Hata 

et al., 2016; Foiret et al., 2014; Talmant, 2009). The FAS velocity and attenuation 

have been used as the main quantitative parameters for bone characterization (Hata et 

al., 2016; Baron et al., 2007; Potsika et al., 2016a; Barbieri et al., 2011). However, 
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when the wavelength is comparable to or smaller than the thickness of the cortex, the 

FAS propagates as a lateral wave reflecting only material and geometrical changes in 

the cortical surface. The signals obtained at the receiver(s) are the combination of all 

waves propagating axially along the long axis of the bone. A few studies indicate that 

cortical bones support the propagation of guided waves, despite absorption 

phenomena due to the heterogeneity of osseous tissues (Bochud et al., 2017; 

Minonzio et al., 2011; Minonzio et al., 2010; Vavva et al., 2009). Therefore, the study 

of the propagation of guided waves has attracted the interest of several research 

groups in order to investigate microstructural changes occurring at deeper bone layers 

in healthy and pathological bones (Foiret et al., 2014; Kilappa et al., 2014; Vavva et 

al., 2009). Ultrasonic axial transmission is widely applied along the axis of long bones 

such as the radius or tibia, while the through transmission and the backscattering 

methods have been used to a more limited extent and for different application sites 

(Potsika et al., 2016b). 

The through-transmission method has been also widely used to perform ultrasonic 

measurements in bone (Grimal et al., 2013; Rohrbach et al., 2013; Kaufman et al., 

2007; Barbieri et al., 2011; Glinkowski and Gorecki, 2006). In this ultrasonic 

configuration, two transducers are placed in opposite directions and are mainly 

applied to the heel bone and at the distal radius. The FAS velocity or attenuation and 

the propagation of guided waves are the main examined parameters reflecting changes 

in healthy and pathological bones. The through-transmission and the axial 

transmission methods have been used in the literature for the evaluation of both 

osteoporotic and healing bones. 

The backscattering method has been applied in skeletal sites such as the hip and spine 

where through-transmission measurements are difficult to be performed (Casciaro et 

al., 2015). In backscattering measurements a single transducer is used and the main 

parameters of interest are the integrated reflection coefficient, the broadband 

ultrasound backscatter and apparent integrated backscatter (AIB), the time slope of 

apparent backscatter and the frequency slope of apparent backscatter. The 

backscattering method has been widely used for the ultrasonic evaluation of 

cancellous bone (Hoffmeister et al., 2016; Liu et al., 2015; Hoffmeister et al., 2012; 

Karjalainen et al., 2012), while it has been applied to a lesser extent for the evaluation 
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of cortical bone (Eneh et al., 2017; Iori et al., 2015). Backscatter difference 

measurements may be used to detect changes in bone caused by osteoporosis. 

This chapter presents a thorough survey on ultrasonic characterization methods for the 

evaluation of fracture healing to highlight the significant monitoring role of QUS and 

its positive impact on the acceleration of the bone healing process. Emphasis is given 

on computational methods. At the end of this chapter, the aim and contribution of this 

thesis is presented compared to the current state-of-the art. 

3.2 Animal studies for the evaluation of bone healing using ultrasonic 
methods 

Animal studies on fracture healing can be divided into two main categories. The first 

one examines the bone status at a specific healing stage, while the studies of the 

second category monitor the complete healing process.  

More specifically, in (Floriani et al., 1967), an animal study on 40 guinea pigs with a 

femoral fracture was presented. The animals were sacrificed at the 6th postoperative 

month and the bones were classified as completely healed, partly healed, and non-

unions. Ultrasonic waves at 100 kHz were applied and the velocity of propagation 

was measured. It was shown that for completely healed bones the velocity 

approximated the ratio 94% of the control value, while for partly healed bones and 

non-unions the corresponding ratio was 81% and 67% of the control value, 

respectively. In (Abendschein and Hyatt, 1972), a midfemoral graft model on 96 

guinea pigs was used to examine the relation of ultrasound velocity with the modulus 

of elasticity of the healing bone. The animals were sacrificed 6 months 

postoperatively and the ultrasonic velocity was measured at 100 kHz by positioning 

the transducers at the proximal and distal ends of the femoral shaft. Then, a three-

point bending test was performed. It was found that the modulus of elasticity 

determined biomechanically was in linear relation with that determined by ultrasound. 

Another study on 36 rabbit tibiae fractures was presented by (Gill et al., 1989) 

examining the correlation coefficient of the ultrasonic velocity with the load at failure, 

stiffness, and modulus of elasticity derived from the three-point bending test. 

Ultrasonic measurements were performed at 0.5 and 1 MHz and higher correlation 

coefficients were found at 1 MHz. In (Yang et al., 1996), the exposure of 79 rat femur 
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fracture models to low-intensity ultrasound showed that ultrasound stimulation 

increased the mechanical properties of the healing fracture callus by stimulating 

earlier synthesis of extracellular matrix proteins in cartilage, possibly altering 

chondrocyte maturation and endochondral bone formation. More recently, in (Ferreira 

et al., 2010), the ability of ultrasound backscatter parameters in differentiating normal 

bones from bones with pseudarthorsis was investigated. A diaphyseal osteotomy of 

the femur was conducted for twelve young adult rats. A radiological study on the left 

forward limbs of all subjects was performed after a period of 120 days followed by 

euthanasia. An in vitro ultrasonic analysis of four bone samples with pseudarthrosis 

was realized with a 5-MHz circular transducer and the AIB was measured. Higher 

AIB values were found for pseudarthrosis comparing to normal bone.  

In (Maylia et al., 1999; Saha et al., 1982), ultrasound measurements were performed 

on ulnar fractures in rabbits to monitor the successive phases of the healing process. 

The amplitude of the FAS was calculated and a healing index was proposed as the 

ratio of the amplitude from the healing limb to that from the contralateral. The healing 

index was found to increase linearly with the healing time. Additional in vitro 

experiments revealed that the proposed healing index was positively correlated with 

the bending strength of bone. The positive effect of QUS on bone healing was also 

shown in (Pilla et al., 1990), investigating intervals between 14 and 28 days in rabbits. 

More specifically, torsional testing revealed that the application of QUS for 20 

minutes daily increased the rate of return of mechanical strength of an osteotomized 

rabbit fibula. Quantitative SAM at 50 MHz was applied in (Preininger et al., 2011) for 

the assessment of the microstructural and elastic changes of mineralized callus and 

cortical tissue in sheep tibiae subjected to a transverse osteotomy. The 2nd, 3rd, 6th and 

9th postoperative weeks were the examined healing stages and different types of 

stabilization were considered. The callus stiffness was found to increase while its 

porosity to decrease during the healing process. Different observations were derived 

for cortical bone as the cortical porosity increased at later healing stages and its 

stiffness decreased. In another animal study, (Barbieri et al., 2011), a model of a 

transverse mid-diaphyseal osteotomy of the tibiae of 21 sheep was used to measure 

ultrasound propagation velocity and attenuation. The subjects were distributed into 

three equal groups after 30, 60, and 90 days of healing and were finally sacrificed. 

Then, the ultrasound velocity and attenuation were measured at the osteotomy site in 
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the transverse and longitudinal direction. The intact left sheep tibia was used as 

reference case for comparison purposes. The ultrasound propagation velocity 

increased, whereas the broadband ultrasound attenuation decreased during the healing 

process, with significant differences between the examined healing stages. In 

(Rohrbach et al., 2013), a non-invasive monitoring system for fracture healing in 

small animals was presented. Specifically, a focused transmission system at 5 MHz 

was applied in a 2-mm osteotomy of twelve-month-old female rats aiming to 

discriminate alterations in osseous tissue during the early stages of fracture healing. 

Different healing stages after 6 weeks of consolidation were realized by different 

treatments and 2D projection images of TOF, speed of sound and ultrasound 

attenuation were measured. It was found that the osteotomy gap regions filled with 

fibrous tissue have similar properties compared to adjacent muscle tissue, while 

regions containing cartilage and mineralized callus tissue differed significantly 

(Rohrbach et al., 2013). In (Malizos et al., 2006; Protopappas et al., 2005), a system 

was proposed for the ultrasonic monitoring of fracture healing which was applied on a 

sheep tibial osteotomy with an external fixation device. The system consisted of a pair 

of miniature implantable ultrasound transducers, a wearable device and a centralized 

unit. The transmitter and receiver were positioned anterolaterally on each side of the 

osteotomy region with a distance of 25 mm among them and ultrasound 

measurements were conducted at 1 MHz. After the osteotomy, the assessment of the 

fracture healing progress proceeded on a 4-day basis until the 100th postoperative day 

and the ultrasound velocity was the parameter of interest. Measurements were also 

performed for the case of intact bone.  Three different patterns of ultrasound velocity 

variation were detected corresponding to: (a) secondary healing, (b) primary healing, 

and (c) delayed union (Protopappas et al., 2005). More specifically, for the case of 

secondary fracture healing, the velocity initially decreased by an average 17% after 

the osteotomy and continued to decrease by a further 13% until the 38th day. The 

results were attributed to the inflammatory response and the increased osteoclastic 

activity occurring at the early stages of the secondary healing, which broaden further 

the fracture gap. Then, the velocity gradually increased reflecting the formation and 

consolidation of the callus. Radiographic examination revealed the evolution of 

primary bone healing for 3 animals showing a constant increase in velocity after the 

osteotomy. In this case, the occurrence of direct bony union in the fracture gap was 

detected without the formation of the callus tissue. Finally, a non-union was identified 
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in 2 specimens as no systematic velocity variation profile was observed. It was also 

reported that the velocity of healed bones on the last postoperative day exceeds on 

average 80% the corresponding value of the intact bone. Therefore, the monitoring 

role of the ultrasound velocity was highlighted reflecting a dynamic healing process 

and potential complications such as a non-union or pseudarthrosis during the early 

stages of fracture healing. 

3.3 Computational studies  

3.3.1 Fracture healing  

Computational modeling has emerged as a powerful new approach to better 

comprehend the functionality and manipulate biological systems. Several methods 

have been proposed to model, visualize, and rationally alter systems at various 

hierarchical bone levels. In the case of ultrasonic bone assessment, numerical 

approaches have several benefits as: i) they give insight to complicated wave 

propagation phenomena which cannot be investigated via traditional clinical and 

experimental procedures, ii) the exposure of patients in experimental procedures is not 

required, reducing thus human suffering, relative costs as well as time constraints.  

Therefore, numerical simulations of ultrasonic propagation in bone have now become 

a standard tool for assessing osteoporosis and fracture healing. The rapid 

technological development has provided robust computational tools making efficient 

use of the computational time, power and available memory. Simultaneously, the 

evolution of imaging modalities and especially μ-CT and SAM, which provide bone 

microstructure with an analysis down to the μm range, lead to more realistic 2D and 

3D numerical models (Rohde et al., 2014; Potsika et al., 2014a; Moilanen et al., 2007; 

Baron et al., 2007). 

In the first numerical studies, the cortical and callus tissues were simulated as 2D, 

homogeneous and isotropic media and the axial transmission method was applied to 

simulate the ultrasonic propagation problem (Dodd et al., 2008; Dodd et al., 2007; 

Protopappas et al., 2006a). In (Dodd et al., 2007; Dodd et al., 2008), different 

geometries of bone fractures were established and the propagation of ultrasonic waves 

was examined at 200 kHz. The presence of the discontinuity of the fracture led to 

lower FAS velocities and an energy attenuation of the FAS due to wave propagation 
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interaction phenomena which evolve in the gap. Also, the occurrence of an oblique 

fracture led to the reduction of the extra time delay of the propagating wave 

comparing to the transverse case and to the decrease of the signal amplitude. Different 

oblique fracture angles were also considered and it was found that as the fracture 

angle decreases relative to the direction of wave propagation, the extra time delay 

decreases, while the signal loss increases. More recently, in (Machado et al., 2010) 

four numerical daily-changing healing models were presented to study the 

compositional factors in fracture healing affecting ultrasound axial transmission at 1 

MHz. The callus tissue was consisted of six tissue types with different Young’s 

modulus and Poisson’s ratio values to simulate fibrous tissue, immature cartilage, 

mature cartilage, immature bone, intermediate bone and mature bone, respectively. 

The FAS velocity and energy attenuation were the parameters of interest. It was 

concluded that the FAS velocity increases consistently during callus consolidation for 

all the examined cases showing that ultrasonic measurements can reflect the degree of 

mineralization of the callus, as well as potential consolidation delays and non-unions. 

Nevertheless, the FAS velocity was sensitive only to superficial geometrical and 

material alterations in the propagation path, while the effect of callus composition on 

energy attenuation was not completely understood.  

In (Machado et al., 2011), experimental and numerical means were combined to 

investigate the effect of cortical bone mineralization on ultrasound axial transmission 

measurements. A cortical bovine femur sample was used, in which a 3 mm fracture 

gap was drilled. A 3 mm thick cortical bone slice, extracted from another location in 

the bone sample, was submitted to a progressive demineralization process with 

ethylenediamine tetraacetic acid (EDTA) for 12 days. Axial transmission 

measurements and simulations using a 1 MHz probe were performed with the 

demineralized slice placed into the fracture gap to mimic different stages of 

mineralization during the healing process. The calcium loss of the slice due to the 

EDTA treatment was recorded everyday, and its temporal evolution could be modeled 

by an exponential law. A 50 MHz SAM was also used to assess the mineralization 

degree of the bone slice at the end of the intervention. These data were used in the 

numerical simulations to derive a model of the time evolution of bone slice 

mechanical properties. From both the experiments and the simulations, a significant 

and progressive increase in the TOF of the propagating waves was observed during 
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the beginning of the demineralization process (first 4 days). Although the simulated 

TOF values were slightly larger than the experimental ones, they both exhibited a 

similar time-dependence, validating the simulation approach. The results suggested 

that TOF measured in axial transmission is affected by local changes of speed of 

sound induced by changes in local mineralization and could contribute to the 

monitoring of callus maturation.  

In (Protopappas et al., 2006a), a 2D model of a bone-mimicking plate was proposed 

to simulate bone healing as a 7-stage process. The FAS velocity was found to 

decrease during the first two healing stages and increase at later healing stages. Also, 

guided wave analysis was conducted based on three time-frequency (t-f) distribution 

functions: (a) the reassigned Spectrogram, (b) the smoothed-pseudo Wigner-Ville, 

and (c) the reassigned version of it. For intact bone, the S2, A3 Lamb modes were 

found to be the dominant waves for a 1 MHz excitation frequency, while the S2, S0 at 

0.5 MHz. During bone healing, alterations in the callus tissue mechanical and 

structural properties affected the theoretical Lamb modes. Therefore, it was concluded 

that the study of the propagation of guided waves throughout the thickness of the 

cortical bone and the investigation of their sensitivity to both mechanical and 

structural changes during fracture healing could provide supplementary qualitative 

information to velocity measurements and enhance the monitoring capabilities of 

QUS. A guided wave analysis in fracture healing was also presented in (Vavva et al., 

2008a) and emphasis was given on the impact of boundary conditions which were not 

considered in previous studies. Three different cases of fluid loading boundary 

conditions were simulated as follows: (a) blood occupied the semi-infinite spaces of 

the upper and lower surfaces of the 2D cortical cortex, (b) the upper cortical surface 

was covered with a 2 mm layer of blood and the lower surface consisted of a semi-

infinite fluid corresponding to bone marrow, (c) the upper bone surface was loaded by 

a 2 mm blood layer and the lower cortical surface consisted of a 2 mm bone marrow 

layer. The callus tissue consisted of different evolving ossification regions to simulate 

serial fracture healing stages. The FAS velocity was found to decrease in the first 

stage and to increase gradually in stages 2 and 3 for all the examined boundary 

conditions. The application of different boundary conditions had a significant effect 

on the propagation of guided waves compared to numerical models in which the 

cortical cortex was assumed free. Then, the same numerical model of callus was used 
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in (Vavva et al., 2008b) proposing a new ultrasound configuration in which the 

transducers are placed on the pins of an already applied external fixation device 

instead of being implanted into the cortical bone. This method could offer several 

advantages in vivo compared to the previously described methods and its 

effectiveness was examined by performing FAS velocity measurements. Initially, 

intact bone models were examined to derive reference values and then the callus 

tissue was incorporated into the models. The effect of a possible non-perpendicular 

pin insertion was also investigated considering five additional cases for different 

angles. Only apparent velocity values could be derived from the proposed method 

corresponding to the whole propagation path (i.e. pins, bone and fracture) rather than 

to the fracture zone justifying the increased velocity values which were observed for 

all examined cases. Thus, it was reported that the sensitivity of the method is limited 

and the identification of small alterations in the callus during bone healing is more 

difficult compared to other QUS transmission methods. The examination of the pin 

inclination angle revealed that this parameter had a minor impact on the results 

implying that the proposed method may provide accurate results when applied in vivo. 

Recently, in (Li et al., 2017), a 2D FDTD simulation study was presented on 

transverse and oblique long bone fracture evaluation by low order ultrasonic guided 

waves. More specifically, an axial transmission technique was used to quantify the 

impact of the gap breakage width and fracture angle on the amplitudes of low order 

guided wave modes S0 and A0 under a 100 kHz narrowband excitation (Liu et al., 

2015; Li et al., 2017). The models of long bones were composed of three layers with a 

soft tissue overlay and marrow underlay. The simulations of the transversely and 

obliquely fractured long bones showed that the amplitudes of both S0 and A0 

decreased as the gap breakage widens. Fixing the crack width, the increase of the 

fracture angle perpendicular to the long axis was found to enhance the amplitude of 

A0, while the amplitude of S0 showed a non-monotonic trend with the decrease of the 

fracture angle.  

The aforementioned numerical studies presented 2D numerical models of healing long 

bones. In (Protopappas et al., 2007), 3D finite element numerical models of intact and 

healing bones were presented. More specifically, fracture healing was simulated as a 

three-stage process and the propagation of guided waves as well as the variation of the 

FAS velocity were examined for a 1-MHz excitation frequency. It was shown that the 
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irregularity and anisotropy of the bone, as well as the material and geometrical 

changes during bone healing have a significant impact on the dispersion of guided 

waves. The FAS velocity was found to decrease in stage 1, remained the same up to 

stage 2, and then increased in stage 3. However, when the FAS corresponded to a 

lateral wave, its propagation velocity was almost unaffected by the elastic symmetry 

and geometry of the bone and could not characterize the callus tissue throughout its 

thickness (Protopappas et al., 2007).  

3.3.2 Intact bone  

Most of the aforementioned numerical studies are based on the classical linear theory 

of elasticity. However, the classical elasticity cannot adequately describe bone’s 

mechanical behavior since only homogeneous media and local stresses are considered 

which cannot effectively reflect the mechanical behavior of materials with 

microstructure in which the stress state has to be defined in a non-local manner 

(Vavva et al., 2014; Vavva et al., 2009). To this end, in (Vavva et al., 2009) the 

simplified Mindlin Form-II or dipolar gradient theory of elasticity was used for the 

determination of symmetric and anti-symmetric modes propagating in a 2D and free 

of stresses gradient elastic plate. The main advantage of the proposed theory 

compared to other couple stresses, micropolar, gradient elastic, and non-local elastic 

theories is its simplicity and the symmetry of all classical and non-classical stress 

tensors involved. More specifically, two terms were added in the constitutive 

equations representing the characteristic length in bone: (a) the gradient coefficient g 

introduced in the strain energy, and (b) the micro-inertia term h, in the kinetic energy. 

The plate was considered free of stresses. Two different values were examined for the 

micro-inertia term (h=10−4 m and h=10−5 m). For each value three different 

combinations between g and h were assumed: (a) g>h, (b) g<h, and (c) g=h. The 

selection of these values was in agreement with typical values of the osteon’s size. 

The velocity dispersion curves of guided waves were calculated and compared with 

the solutions derived from the Lamb wave theory based on the classical elasticity to 

investigate the microstructural effects on guided modes. It was observed that when g 

is not equal to h, cortical microstructure affects mode dispersion by inducing both 

material and geometrical dispersion. Thus, gradient elasticity could provide 

supplementary information to better understand guided waves in bones. 
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Nevertheless, for frequencies higher than 0.8 MHz, ultrasound propagates rather as a 

dispersive surface Rayleigh wave than a dispersive guided wave considering that the 

wavelengths are smaller than cortical thickness. Since the classical elasticity cannot 

support dispersion in bulk and Rayleigh waves, in (Papacharalampopoulos et al., 

2011) the Mindlin’s Form-II gradient elastic theory was applied to examine the 

dispersion of Rayleigh waves in media with microstructure. The gradient elasticity 

was used along with the boundary element method (BEM) and the reassigned 

smoothed pseudo Wigner–Ville transform for the numerical determination of the 

dispersion curves of Rayleigh and guided waves propagating in a cortical bone model. 

More specifically, various cases of intrinsic parameters were examined that serve as a 

means for investigating the dispersive nature of the Rayleigh wave and its relationship 

with the intrinsic parameters of the Form-II gradient elasticity. Then, BEM 

simulations were performed for a free of stresses cortical plate with intrinsic 

parameters according to (Ben-Amoz, 1976). The results demonstrated the efficiency 

of gradient elasticity to describe Rayleigh wave dispersion along the bone surface. 

In (Vavva et al., 2014), the role of microstructural effects was considered by 

incorporating four intrinsic parameters in the stress analysis, namely l1, l2, h1 and h2. 

The examined cases correspond to the three different combinations between the 

gradient coefficient c and the microinertia term h in the dipolar elasticity examined in 

(Georgiadis et al., 2004). Calculations were performed for the cases: (a) case 1: 

l1=l2=h1≠h2 (l1=1.04x10-4 m, l2=1.04x10-4 m, h1=1.04x10-4 m,  h2=0.74x10-4 m), 

(b) case 2: l1=h1, l2=h2 (l1=1.04x10-4 m, l2=0.74x10-4 m, h1=1.04x10-4 m,  

h2=0.74x10-4 m), (c) case 3: l1=l2=h2≠h1 (l1=0.74x10-4 m, l2=0.74x10-4 m, 

h1=1.04x10-4 m,  h2=0.74x10-4 m), (d) case 4: l2=h1=h2≠l1 (l1=1.04x10-4 m, 

l2=0.74x10-4 m, h1=0.74x10-4 m,  h2=0.74x10-4 m), (e) case 5: l1=h1=h2≠l2 

(l1=0.74x10-4 m, l2=1.04x10-4 m, h1=0.74x10-4 m,  h2=0.74x10-4 m), and (f) case 6: 

l1=l2, h1=h2 (l1=0.74x10-4 m, l2=0.74x10-4 m, h1=1.04x10-4 m,  h2=1.04x10-4 m). 

The group and phase velocity dispersion curves were calculated and compared with 

existing computational results and semi-analytical curves for a simpler case of 

Rayleigh waves in dipolar gradient elastic half-spaces. Comparisons were also 

presented with the velocity of the first-order antisymmetric mode propagating in a 

dipolar plate in order to investigate the Rayleigh asymptotic behavior (Vavva et al., 

2014). For a transmitter-receiver distance 60 mm, the semi-analytical frequency-
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group velocity dispersion curves of the Rayleigh wave in both Mindlin’s Form II 

gradient and classical elasticity were converted to (t-f) curves and were superimposed 

on the (t-f) plane of the corresponding signals obtained from the BEM model in 

(Papacharalampopoulos et al., 2011).  Except for the very low frequency range, the 

agreement between BEM simulations and theoretical results from gradient elasticity 

was perfect. Also, it was found that Mindlin’s Form II gradient elasticity can 

effectively describe the dispersive nature of Rayleigh waves. 

3.4 Ossification process and angiogenesis predictions in bone healing 
under the ultrasound effect 

From a biological point of view, fracture healing is a complex process involving 

specific regenerative patterns and a sequence of cellular actions and interactions, 

regulated by biochemical and mechanical signals. The occurrence of a fracture is 

followed by the formation of a hematoma in the gap region due to blood vessel 

disruption. The hematoma consists of cells from both peripheral and intramedullary 

blood, as well as bone marrow cells (Marsell and Einhorn, 2011). Bone regeneration 

is achieved when mesenchymal stem cells are recruited, proliferate and differentiate 

into osteogenic cells (Marsell and Einhorn, 2011). Thus, stem cells approach the 

fracture region and endothelial cells migrate and proliferate forming new vessels. 

Angiogenesis plays significant role in bone healing since it re-establishes blood 

circulation at the fracture region which limits ischaemic necrosis and enhances bone 

repair. Several growth factors such as the transforming growth factor, the bone 

morphogenetic protein, the fibroblast growth factor, and the vascular endothelial 

growth factor (VEGF) regulate the vascularization process having direct or indirect 

osteogenic and angiogenic influence (Vavva et al., 2015). However, the VEGF 

pathway is considered to be the key regulator in the neoangiogenesis and 

revascularization of the fracture region.  

According to (Lam and Lui, 2013) elevated VEGF level has been reported with the 

use of low-intensity pulsed ultrasound in the treatment of fracture. The effect of 

ultrasound on fracture healing mechanisms has been investigated experimentally in 

(Reher et al., 1999; Doan et al., 1999). More specifically, these studies examined the 

impact of ultrasound on human mandibular osteoblasts, gingival fibroblasts and 

peripheral blood mononuclear cells. Various ultrasound application techniques, 
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intensities and frequencies were examined. It was observed that in all cases the 

cytokines that are related with angiogenesis were highly stimulated in osteoblasts, and 

the VEGF levels were increased. Also, in (Cheung et al., 2011) the effect of 

ultrasound on osteoporotic fracture rat models led to the increase in the VEGF. 

According to (Mundi et al., 2009) angiogenesis is enhanced by low-intensity pulsed 

ultrasound through an increase in mRNA expression and production of VEGF by both 

human osteoblasts and periosteal cells. Thus, ultrasound plays a key role on the 

proliferation of osteoblasts via osteocytes and enhances blood vessel formation due to 

alterations in the transport of VEGF and fibroblast growth factor which are related to 

angiogenesis.  

Computational studies in the field of bone mechanobiology have also been presented 

aiming to provide insight to the evolution of cell activities and angiogenesis 

mechanisms during the fracture healing process (Shefelbine et al., 2005; Claes and 

Heigele, 1999). In a more recent study (Peiffer et al., 2011), sprouting blood vessel 

growth and branching were simulated.  Nevertheless, these models do not account for 

the effect of ultrasound on the fracture healing mechanisms and angiogenesis. To this 

end, in (Grivas, 2016; Vavva et al., 2015), a deterministic hybrid model was presented 

for bone healing and angiogenesis predictions under the impact of ultrasound. The 

proposed mathematical model was based on the model of (Peiffer et al., 2011) 

extended by: (a) including an additional equation describing the spatiotemporal 

evolution of ultrasound acoustic pressure, and (b) modifying the equation that 

describes the spatiotemporal evolution of VEGF. Processes of the normal fracture 

healing evolution such as intramembranous and endochondral ossification were 

considered. Then, numerical simulations were performed for different values of the 

newly introduced parameters aiming to provide comprehensive knowledge on the 

cellular mechanisms that accelerate bone healing due to ultrasound.  It was observed 

that the application of ultrasound causes the upregulation in VEGF expression in 

weeks 3 and 4 after the fracture occurrence which is in agreement with previous 

experimental findings (Reher et al., 1999; Doan et al., 1999; Cheung et al., 2011). 

Therefore, ultrasound enhances blood vessel growth and the proposed model could be 

useful for the ultrasonic characterization of the biological processes involved in bone 

fracture healing. 
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3.5 The objectives of this Thesis 

The aim of this thesis is threefold: (a) to develop more realistic computational models 

of healing long bones which incorporate callus porosity using SAM images, (b) to 

evaluate fracture healing not only using traditional parameters such as guided waves 

and FAS velocity, but also assess new monitoring indicators such as ultrasonic 

attenuation and scattering, and (c) to investigate numerically the risk for fracture 

using ultrasonic methods to identify the occurrence of BMUs in cortical bone. 

Initially, SAM images are used from (Preininger et al., 2011) in order to establish 

numerical models of healing long bones which account for callus porosity alterations 

during the healing process. More specifically, according to (Preininger et al., 2011)  

increased stiffness and decreased porosity were observed in the callus tissue over the 

course of the healing process, while cortical porosity increased and stiffness decreased 

over time. The composite and porous nature of callus give rise to multiple scattering 

phenomena, which are evaluated for the first time using both theoretical and 

numerical means. Through the exploitation of SAM images, the evolution of the 

microstructure of the osseous and callus tissues can be better understood during bone 

healing. Therefore, this thesis presents a theoretical analysis to evaluate the frequency 

dependent attenuation coefficient and group velocity during bone healing which is 

accompanied by traditional ultrasonic axial transmission simulations to investigate the 

FAS velocity alterations and the propagation of guided waves in successive healing 

stages. 

Then, this thesis focuses on the evaluation of new quantitative and qualitative criteria 

for the monitoring of the fracture healing process. More specifically, although the 

backscattering method has been widely used for the evaluation of cancellous bone, its 

potential to monitor bone fracture healing has not been addressed so far in the 

literature. To this end, this thesis presents a numerical study on the monitoring of the 

fracture healing process using the backscattering method. The potential of the 

scattering amplitude and the acoustic pressure, calculated in the backward direction, 

for the assessment of fracture healing is investigated for the first time. 

Finally, the axial transmission method is used to perform FAS velocity measurements 

in small, predefined propagation paths in order to detect alterations in cortical 
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porosity focusing on the occurrence of large BMUs. The main objective is to identify 

regions of the cortical cortex which are subjected to a higher risk of fracture due to the 

formation and concentration of pores with a size larger than the typical diameter of 

the Haversian canal. In this way, the early signs of an osteoporotic fracture could 

potentially be detected aiming at the effective prognosis of the disease at the first 

stages and the prevention of a future fracture.  

Fig. 3.1 summarizes the three branches of the objective, the methods and novelty of 

this thesis.  

3.6 Contribution of this Thesis 

The evaluation of intact, osteoporotic and healing bones using QUS has been 

addressed in several experimental, computational and theoretical studies over various 

levels ranging from macrostructure to nanostructure. This section presents the 

contribution of this thesis and how the proposed methodologies and results are 

presented and structured in the following chapters. 

Chapter 4-A theoretical and computational study is presented based on an iterative 

effective medium approximation (IEMA) to investigate the evolution of the complex 

scattering propagation phenomena during fracture healing (Potsika et al., 2014a). For 

the first time realistic numerical models of healing long bones are developed 

incorporating the porous nature of callus with material and structural properties based 

on SAM images (Preininger et al., 2011). The imaging data represent 3-mm 

osteotomies in the right tibia of female Merino sheep and correspond to the 3rd, 6th and 

9th postoperative week. Guided wave analysis is performed accompanied by wave 

dispersion and attenuation predictions using both computational and theoretical tools. 

According to the literature, the evolution of scattering, material dispersion and 

absorption phenomena during secondary fracture healing has not been addressed in 

the past. Through the combination of theoretical and numerical means these complex 

wave propagation phenomena can be better understood by focusing on parameters 

that cannot be easily examined in experimental studies. For example, using numerical 

methods the effect of the callus porosity on wave dispersion and attenuation can be 

investigated separately keeping other parameters constant (e.g. cortical porosity, 

cortical thickness), which cannot be discriminated using traditional experimental and 

clinical approaches. 
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Chapter 5-The backward propagating acoustic field is evaluated in healing long bones 

aiming to provide insight into the complex scattering mechanisms and better 

comprehend the processes of bone regeneration (Potsika et al., 2017). 

 
Figure 3.1: The objectives of this thesis. 

Numerical models of healing long bones are established based on SAM from 

successive postoperative weeks considering the effect of the nonhomogeneous callus 

and cortical structure. More specifically, the scattering amplitude and the acoustic 

pressure variation are calculated in the backward direction to investigate their 

potential to serve as new quantitative and qualitative indicators for the monitoring of 

the bone healing process. The role of the excitation frequency is also examined 

considering frequencies in the range 0.2–1 MHz. The application of the 

backscattering method for the evaluation of fracture healing is an open research field 

as except for the experimental work of (Ferreira et al., 2010), studying bones with 

pseudarthrosis and healthy bones, no other study has been presented especially for 

secondary healing. Also, the innovation of this study compared to previous numerical 

studies is that except for the callus porosity the cortical porosity is also incorporated 

into the numerical models based on the findings of (Preininger et al., 2011). 

Chapter 6-The potential of ultrasound to early detect a region of high risk for an 

osteoporotic fracture is examined numerically. More specifically, a parametric and 

systematic numerical study is presented on ultrasound propagation in cortical bone 
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models to investigate the effect of changes in cortical porosity and the occurrence of 

large BMUs, simply called non-refilled RL, on the FAS velocity. 2D geometries of 

cortical bone are established for various microstructural models mimicking normal 

and pathological tissue states. Emphasis is given on the detection of RL formation 

which may provoke the thinning of the cortical cortex and the increase of porosity at a 

later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are 

examined. The proposed configuration consists of one point source and multiple 

successive receivers in order to calculate the FAS velocity in small propagation paths 

(local velocity) and derive a variation profile along the cortical surface. To the best of 

the author’s knowledge, this is the first study to investigate whether the local FAS 

velocity can capture cortical porosity changes including the occurrence of RL with 

different number, size and depth of formation considering the impact of the excitation 

frequency. 
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Chapter 4: Theoretical and numerical evaluation of the 
effect of callus porosity on ultrasonic wave propagation  

4.1 Introduction 

4.2 Application of an effective medium theory for composite materials and particle 

suspensions 

4.3 Determination of fracture callus wave propagation properties through IEMA 

4.4 Numerical simulations of wave propagation in healing bones using IEMA 

4.5 Numerical simulations of the effect of callus porosity and pores’ size on the FAS 

velocity 

4.6 Discussion 

 

 

 

4.1 Introduction 

The study of wave propagation in porous media such as cancellous bone and fracture 

callus is a challenging research field since scattering is predominant giving rise to 

material dispersion of velocity and attenuation. Wave dispersion due to porosity is 

difficult to be investigated alone since it is usually accompanied by geometry-induced 

dispersion.  

Many authors aiming at the ultrasonic assessment of cancellous bone have reported 

phase velocities that decrease with frequency, a phenomenon known as negative 

dispersion (Bauer et al., 2008; Anderson et al., 2008; Chakraborty et al., 2008; Haiat 

et al., 2008). Specifically, in (Bauer et al., 2008) this phenomenon was investigated 

by performing through transmission measurements in a cancellous bone phantom.  

Negative dispersion was observed at specific spatial locations of the plate at which the 

attenuation coefficient was increasing linearly with frequency. In (Anderson et al., 
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2008) the modified Biot–Attenborough model was used to simulate multiple-mode 

wave propagation in cancellous bone. It was found that negative dispersion can arise 

when signals consisted of overlapped fast and slow waves are analyzed as a single 

longitudinal wave. Another study (Chakraborty et al., 2008) presented a nonlocal 

version of Biot’s theory of poroelasticity to investigate the dependence of the phase 

velocity and attenuation for both porosity and frequency variation. It was shown that 

the phase velocities exhibit a negative dispersion where the magnitude of dispersion is 

strongly dependent on porosity. It was also observed that the Lamb modes show 

negative dispersion when predicted by the nonlocal poroelastic theory.  In (Haiat et 

al., 2008), trabecular bone was assumed to be a composite medium consisting of 

infinite cylinders immersed in a saturating matrix. The generalized self-consistent 

method was used to describe the homogeneous effective material by considering two 

concentric cylinders immersed in the medium. The authors suggested that scattering 

effects are responsible for the negative dispersion. However, the factors which affect 

the variability of the phase velocity and lead to the observed abnormal negative 

dispersion in cancellous bone are not yet fully understood.   

Several multiple scattering theories have been proposed aiming at the quantitative 

determination of wave dispersion and attenuation phenomena induced by a random 

distribution of inhomogeneities-scatterers in composite media (Kim, 2010; Kanaun 

and Levin 2008; Layman et al., 2006; Linton and Martin, 2005; Fikioris and 

Waterman, 1964). The so-called self-consistent theories use self-consistent 

expressions derived from the solution of the single scattering problem in order to 

estimate the frequency dependent phase velocity and attenuation coefficient. Recent 

theoretical studies dealing with the quantitative determination of wave dispersion and 

attenuation in cancellous bone have been based on multiple scattering theories. Here 

one can mention the representative works of (Haïat et al., 2011; Haïat et al., 2008) 

and (Molero et al., 2012).  In the analytical studies (Haïat et al., 2011; Haïat et al., 

2008), multiple and independent scattering theories were presented to derive the 

frequency dependence of phase velocity.  In (Molero et al., 2012) an analytical 

approximation of the corrected model of (Waterman and Truell, 1961) was presented 

to conduct phase velocity predictions. In these studies, the theoretical results were 

found to be in agreement with experimental data in bone mimicking phantom samples 
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(Wear et al., 2005). However, for increasing scatterers’ volume concentrations the 

theoretical results were found to diverge from the experimental findings.  

Another approach based on the self-consistent theories is the iterative effective 

medium approximation (IEMA) of (Αggelis et al., 2004). Comparisons of the phase 

velocity and the attenuation coefficient calculated theoretically using IEMA with 

experimental findings in various nonhomogeneous media have shown the significant 

efficiency and accuracy of the methodology even in cases of scatterers with volume 

fractions as high as 50%. It should be mentioned that multiple scattering theories have 

not been exploited so far to investigate how the porous nature of callus can influence 

the evolution of scattering effects during bone healing.  

This chapter deals with wave scattering phenomena induced by the porous nature of 

callus. More specifically, ultrasound wave propagation in healing long bones is 

simulated using IEMA. First IEMA is applied to the cancellous bone mimicking 

phantoms presented in (Wear et al., 2005), and the results are compared with 

experimental and theoretical findings (Molero et al., 2012; Haïat et al., 2011; Wear et 

al., 2005) in order to examine the effectiveness of the methodology. Then, group 

velocity and attenuation predictions are performed for the callus region of healing 

bones in the frequency range from 24 – 1200 kHz. The material and geometrical 

properties of the callus tissue were obtained from a sheep study (Preininger et al., 

2011) using SAM images corresponding to different consolidation weeks.  

Subsequently, 2D healing bone models are presented having the original material 

properties of callus derived using SAM, and the equivalent homogeneous and 

isotropic numerical models with the effective material properties derived from IEMA. 

For comparison purposes FAS velocity measurements and guided wave analysis were 

performed. Finally, the effective material properties and the attenuation coefficient 

derived from IEMA are incorporated in BEM computational models of healing long 

bones representing different healing stages. The propagation of guided waves is 

investigated in the (t-f) domain.   

The novelty of this thesis consists in that (a) multiple scattering theories, although 

recently incorporated in the ultrasonic evaluation of cancellous bone, have not been 

used so far in the monitoring of bone healing, (b) this is the first systematic study 

investigating the evolution of scattering effects in the callus region at different healing 

stages based on realistic material and geometrical properties derived from SAM 
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images, and (c) the proposed methodology can contribute to the reduction of the 

simulation time in complicated geometries through the development of simple, 

homogeneous and isotropic computational models of healing bones, which however 

have equivalent geometrical and material properties with the original composite 

medium.  

4.2 Application of an effective medium theory for composite 
materials and particle suspensions 

In this section the IEMA is briefly described which was originally presented in detail 

in (Aggelis et al., 2004; Verbis et al., 2001). IEMA is used to compare the theoretical 

wave dispersion and attenuation predictions in cancellous bone mimicking phantoms 

to those taken either experimentally or theoretically through other multiple scattering 

theories. According to (Aggelis et al., 2004), IEMA is a single theoretical model that 

predicts effectively wave dispersion and attenuation in composite materials, 

suspensions and emulsions through an iterative computational procedure which is 

simple and easily implemented especially for the case where the material 

inhomogeneities are considered as spherical inclusions. Moreover, it provides 

reasonable results for a wide range of particle concentrations and wavenumbers. 

The main idea of the method is very simple and it is based on the hypothesis that a 

plane wave propagating in nonhomogeneous media such as healing bones can be 

considered as a sum of: a) a mean wave travelling in the medium with the dynamic 

effective properties of the composite, and b) fluctuating waves derived from the 

multiple scattering of the mean wave by the material inhomogeneities. Then, at the 

direction of the propagating plane wave, one can say that the dynamic effective 

properties of the nonhomogeneous material are those corresponding to a mean wave 

that propagates without deriving fluctuating waves at the propagation direction.  For a 

composite material with particles embedded in a matrix medium or solid particles 

suspended in a fluid matrix that idea can be expressed by the self-consistent condition 

(Kim et al., 1995): 

                     1 , 2 ,
(1) (2)ˆ ˆ( ) ( ) 0p s p sn g n g k k ٫                                      (4.1) 

where 1 2,n n  represent the volume concentration of particles and matrix, respectively, 

implying that n1+n2=1, k̂  is the direction in which a longitudinal (p) or shear (s) plane 
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mean wave propagates and (1) ( 2 ),g g  are the forward scattering amplitudes of the 

fluctuating waves derived from the solution of the scattering problems 1 and 2, 

respectively, presented schematically in Fig. 4.1.  

Employing the self-consistent condition of Eq. (4.1), the IEMA evaluates the 

frequency dependent phase velocity and attenuation of a plane wave propagating in 

the considered composite material or suspension through an iterative procedure 

described in what follows. First, the composite medium is replaced by an elastic 

homogeneous and isotropic material with bulk and shear moduli effK and 
eff , 

respectively, calculated using the static mixture model of (Christensen 1990) via the 

equations: 
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with , ,A B C  being functions of 1 2 1, , n   given in (Christensen, 1990), while the 

indices 1, 2 correspond to the material properties of the inclusion and the matrix, 

respectively, and ,
eff eff  stand for the Lamé constants of the composite medium. It 

should be mentioned here that both ,
eff eff   are real numbers and remain the same 

throughout the iterations. 

The effective density of the nonhomogeneous medium for the first step of iterations is 

defined as: 

                                                                 1 1 2 21
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step
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Thus, for a longitudinal wave the effective wave number 1( )d step

effk  is calculated as:  

                                                      1

1

( )
2

( ) step
p step

p

eff
eff

eff eff effC
k 


  


  ٫                                 (4.6) 



78 
 

  
Figure 4.1: A plane mean wave propagating in the effective medium and being scattered by: 

a) a matrix inclusion (Problem 1), and b) a particle inclusion (Problem 2).   

and for a shear wave it is defined as:   
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Next, utilizing the material properties  
1

, ,
step

eff eff eff   , the forward scattering 

amplitudes (1) (2),g g  corresponding to the scattering problems 1 and 2 (Fig. 4.1) are 

evaluated and the validity of the self-consistent relation (4.1) is checked. In case 

where Eq. (4.1) is not satisfied, the second step should be followed. In that step, the 

simple dispersion relation is used proposed by (Foldy et al., 1945) so as to define the 

new effective wavenumber of the mean wave: 
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where a is the radius of the spherical inclusion and 1
,

ˆ( )s t e p
p sg k is defined as: 
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Using Eqs. (4.6) or (4.7) and (4.8) the new  
2step

eff  can be calculated which is 

complex now due to the complex nature of Eq. (4.9).  Then, the procedure of the first 

step is repeated for material properties  
2

, ,e e e
step

ff ff ff   and the validity of Eq. (4.1) 

is checked again. Supposing that Eq. (4.1) is satisfied at step n, then the phase 

velocity , ( )p s

effC   and the attenuation coefficient , ( )p s

eff   are evaluated through 

the complex wave number  , ( )p s stepn

effk   with a real part that corresponds to the ratio 

ω / Cp,s
eff(ω) and an imaginary part that corresponds to the attenuation coefficient: 
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The use of the complex density as the main parameter that controls the iteration 

procedure was found in (Aggelis et al., 2004) to provide results being in a very good 

and sometimes in excellent agreement with the available experimental data.  

4.2.1 Validation of the IEMA in cancellous bone mimicking phantoms 

In (Aggelis et al., 2004; Verbis et al., 2001), multiple scattering problems were 

studied and the presented methodology was found significantly effective by 

comparing  the theoretical predictions with experimental data in particulate and fiber 

composites, suspensions of solids in liquids and liquid in liquid emulsion systems.  In 

the present work the results derived from the application of IEMA in cancellous bone 

phantoms are presented and compared with experimental (Wear et al., 2005) and 

theoretical findings (Molero et al., 2012; Haïat et al., 2011). Cancellous bone was 

assumed to be a composite medium in which water was the material of the matrix and 

nylon the content of the spherical inclusions. The material properties are shown in 

Table 4.1 (Wear et al., 2005). Two sets of calculations were performed: a) first, the 

scatterer diameter was set to 254 μm and the volume fraction of nylon to 7.9%. The 

phase velocity was estimated for frequencies from 0.4 – 0.8 MHz, b) then, applying a 

constant frequency 500 kHz and a scatterer diameter 254 μm, the scatterers’ volume 

concentration was gradually increased from 1.8 – 11.4% to investigate the phase 

velocity dependence on the scatterers’ volume fraction. 

Table 4.1 Material properties of nylon and water. 

Cancellous 
bone 

composites 

Young’s 
modulus 

(Gpa) 

Density 
(kg/m3) λ (Gpa) μ (Gpa) Poisson’s 

ratio 

Nylon 4.96 1100 3.72 1.86 0.39 
Water 300.50x10-9 1000 2.19 100x10-9 0.50 

 

Figure 4.2 shows the phase velocity estimations derived from IEMA as a function of 

frequency and inclusions’ volume concentration. Experimental findings from (Wear et 

al., 2005) and theoretical results from (Molero et al., 2012; Haiat et al., 2011) are also 

depicted for comparison purposes.   

In Fig. 4.2a, the phase velocity calculated using IEMA was found to slightly decrease 
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from 1506 m/s down to 1504 m/s with increasing frequency from 0.4 – 0.8 MHz, 

exhibiting a negative dispersion. The results are in perfect agreement with 

experimental findings (the relative errors were found in the range 0.01 – 0.12%).  

Slight differences exist between the phase velocities derived from IEMA and that of 

previous theoretical studies. On the other hand, the phase velocity was found to 

increase from 1485 – 1519 m/s as the inclusions’ volume fraction was increasing from 

1.8 – 11.4% (Fig. 4.2b).  It can be observed that the phase velocities calculated from 

IEMA are almost identical to the experimental and theoretical ones for low volume 

concentrations (i.e. up to 3%). For volume concentrations higher than 3% the phase 

velocity is slightly lower that the experimental observations (the relative errors were 

found in the range 0.08 – 0.28%).   

 

Figure 4.2: Phase velocity dependence on: a) the examined range of frequencies, b) the 

scatterer volume concentration. Comparison to experimental and theoretical results (Haiat et 

al., 2011; Molero et al., 2012; Wear et al., 2005).  
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4.3 Determination of fracture callus wave propagation properties 
through IEMA 

4.3.1 Scanning acoustic microscopy images 

The geometry and the material properties of the callus were derived from SAM 

images representing different healing stages of an animal study. SAM is a micro 

elastic imaging technique that has been extensively used to investigate the 

microstructural and elastic alterations of mineralized callus and cortical tissues 

(Preininger et al., 2011; Raum et al., 2006). The acoustic impedance images of 

embedded longitudinal sections of 3-mm osteotomies in the right tibia of female 

Merino sheep were obtained from a previous study (Preininger et al., 2011). All 

specimens were subjected to SAM measurements, using a spherically focused 50 

MHz transducer with spatial resolution 23 μm and scan increment 16 μm. Each SAM 

image corresponds to a representative healing stage after 3, 6 and 9 weeks of 

consolidation (Fig. 4.3). The original material properties of the mineralized callus 

tissue were directly transferred from the SAM images into the IEMA procedure in 

order to investigate the evolution of the scattering effects during the healing process.  

 
Figure 4.3: Scanning acoustic microscopy images representing the: (a) third, (b) sixth and (c) 

ninth postoperative week. 

4.3.2 Material properties 

The material properties of each pixel composing the cortical and callus tissues in Fig. 

4.3 were derived using empirical equations. The density ρ was calculated via the 

equation (Raum et al., 2011): 

                                                              Z=1.02ρ2.83,                                                (4.11) 

where Z is the acoustic impedance. 
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Next, the elastic constant in the axial direction c33 was determined as (Preininger et al. 

2011): 

                                                        
3.99

33c =2.75 ρ ·                                          (4.12) 

The Young modulus E was finally defined as: 

                                                   33

(1+ν)(1 2ν)
(1 ν)

E= c
 ٫                                       (4.13) 

where ν denotes the Poisson’s ratio and was set to 0.3. 

4.3.3 Wave dispersion and attenuation coefficient predictions using IEMA 

Tables 4.2 – 4.3 present the average material properties of cortical bone and callus 

derived from Eqs. (4.11), (4.12), (4.13), while Table 4.4 presents the callus effective 

material properties calculated using IEMA. Callus was assumed to be a composite 

medium consisting of a matrix with circular inclusions. In week 3, blood was 

considered as the matrix of the medium and osseous tissue as the material of the 

spherical scatterers. The opposite assumption was made in weeks 6 and 9 since at 

later healing stages the presence of osseous tissues is dominant in the callus region.  

Blood was assumed to have Young’s modulus Eblood  = 3 MPa, density ρblood = 1055 

kg/m3 and Poisson’s ratio νblood  = 0.49979 (Vavva et al., 2008a). 

Table 4.2 Average cortical bone material properties calculated using SAM images. 

Healing 
stage 

Young’s 
modulus (GPa) 

Density  
(kg/m3)        λ (GPa)          μ (GPa) 

Week 3  29.1         2001      16.8        11.2 
Week 6  32.7         2039      18.8        12.6 
Week 9  30.3         2016      17.5        11.7 

Table 4.3 Average callus material properties calculated using SAM images. 

Healing 
stage 

Young’s 
modulus (GPa) 

Density  
(kg/m3)        λ (GPa)        μ (GPa) 

Week 3 13.6 1425    7.9               5.2 
Week 6 17.1 1729     9.9               6.6 
Week 9 21.1 1881     12.2               8.1 
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Table 4.4 Callus effective material properties calculated using IEMA. 

Healing 
stage 

Young’s 
modulus   

(GPa) 
λ 

(GPa) 
μ  

(GPa) 
Poisson’
s ratio 

Density 
(kg/m3) - 
300 kHz 

Density 
(kg/m3) - 
500 kHz 

Density 
(kg/m3) - 
1000 kHz 

Week 3 1.9*10-6 3.8 645.7*10-9 0.50 1131.9 1444.4 1201.0 
Week 6 7.5 6.2 2.8 0.35 1803.8 1815.5 1867.0 
Week 9 13.5 9.0 5.1 0.32 1871.6 1873.3 1880.8 

Group velocity and attenuation coefficient estimations were performed in the frequency 

range 24 – 1200 kHz. The average scatterers’ diameter and volume concentration 

introduced in the iteration procedure were derived from multiple sampling 

measurements in the callus region of the SAM images as: a) 350 μm and 44.8% in week 

3, b) 200 μm and 38.7% in week 6, and c) 120 μm and 22.7% in week 9, respectively. 

Figure 4.4 shows the group velocity and the attenuation coefficient predictions 

derived from IEMA for the callus tissue at different healing stages in the frequency 

range 24 – 1200 kHz. In Fig. 4.4a, it can be observed that the group velocity 

decreases: a) from 1826 – 1609 m/s in week 3, b) from 2555 – 2403 m/s in week 6, 

and c) from 3202 – 3167 m/s in week 9, exhibiting a negative dispersion. In Fig. 4.4b 

the attenuation coefficient was found to increase exponentially in the examined 

frequency range: a) from 0.06 – 76.36 m-1 in week 3, b) from 0 – 51.86 m-1 in week 6, 

and c) from 0 – 1.91 m-1 in week 9. 

4.4 Numerical simulations of wave propagation in healing bones 

using IEMA 

In this section numerical simulations of wave propagation in healing long bones are 

presented. First, 2D healing bone models are developed with original material 

properties derived from the callus segments of Figs. 4.5b, 4.5c, and then the 

equivalent homogeneous and isotropic numerical models are constructed with the 

effective material properties calculated from IEMA. The effectiveness of IEMA as a 

homogenization method is investigated numerically by conducting FAS velocity 

measurements and guided wave analysis. Secondly, the effective material properties 

and the attenuation coefficient derived from IEMA are incorporated in BEM 

computational models of healing long bones corresponding to the third, sixth and 

ninth week of consolidation. The dispersion of guided waves is investigated in the 
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Figure 4.4. IEMA Estimation of the a) group velocity, and b) the attenuation coefficient for 

each healing week in the frequency range 24 – 1200 kHz. 

(t-f) domain.   

4.4.1 Ultrasound excitation 

The numerical solution of the 2D wave propagation problem was performed by using 

the BEM based on the software package ISoBEM. A Hanning sine pulse was used as 

the excitation signal expressed by the equation: 
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where A=1 MPa is the amplitude of the excitation pulse, f is the central angular 

frequency and n is the number of the sinusoidal cycles in the pulse. The examined 

central angular frequencies were 300 kHz, 500 kHz and 1 MHz, while the excitation 

signal included four sinusoidal cycles in the pulse. The duration of the simulated 

signals recording was 40 μs. The accuracy of the solution depends on the relation 

between the element size and the wavelength. In this respect, at least four three-noded 

quadratic line elements were used per smallest wavelength. 
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Figure 4.5: a) Segment of the callus derived from the SAM image at week 6, b) simulated 

geometry corresponding to week 6, c) callus was modeled as a nonhomogeneous medium 

including a random distribution of circular inclusions, d) callus was modeled as a 

homogeneous and isotropic medium having the effective material properties calculated using 

IEMA, and e-h) represent the corresponding cases for week 9. 

4.4.2 Representation of Lamb waves in the time-frequency domain 

Time-frequency analysis was conducted in order to represent the propagating wave 

modes. The reassigned smoothed-pseudo Wigner-Ville (RSPWV) distribution 

function was used as it was found to be effective in representing and isolating guided 

modes (Protopappas et al., 2006a).  Frequency-group velocity (f-cg) dispersion curves 

were computed for the plate model based on the Lamb wave theory. Plate thickness 

was set to 4 mm, which is an average value of multiple, random measurements on the 

upper and lower cortical bone segments of the SAM images. The (f-cg) dispersion 

curves were superimposed to the (t-f) representations in order to investigate guided 

wave propagation. Compared to other techniques (Moilanen et al., 2003; Nicholson et 

al., 2002; Bossy et al., 2002) the main advantage the proposed analysis is that a single 

broadband excitation is needed to represent the dispersion of multiple wave modes. In 

Fig. 4.6, analytically derived Lamb dispersion curves of symmetric and antisymmetric 

modes are illustrated. 
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Figure 4.6: Group velocity dispersion curves of the Lamb modes for a free plate. The solid 

lines correspond to the symmetric modes, while the dashed lines to the anti-symmetric modes. 

The bulk longitudinal and shear velocity in the plate are 4500 m/s and 2405 m/s, respectively, 

and the plate thickness is 4 mm. 

4.4.3 Estimation of the first arriving signal 

Axial-transmission measurements were performed by keeping constant the center-to-

center distance between the transducers to 25 mm.  The transducers’ size was set to 3 

mm and they were placed equidistantly from the osteotomy gap directly onto the 

cortical bone surface. The ultrasound propagation velocity was determined by 

dividing the transducers’ in-between distance to the transition time of the FAS. In 

order to detect the FAS in the receiving signal a threshold was used, corresponding to 

10% of the amplitude of the first signal extremum. 

4.4.4 Numerical simulations in cortical bone and callus with effective properties 

In this section, two sets of simulations of wave propagation in healing bone models 

were conducted to investigate whether IEMA could be used as a numerical tool of 

modeling media with a complicated porous nature and provide supplementary 

information for the status of bone healing.   

The callus segments of Figs. 4.5a, e (length = 3 mm and width = 4 mm) were 

incorporated in two simple computational cortical bone geometries. In the first case, 

callus was modeled as a nonhomogeneous medium including circular scatterers (Figs. 
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4.5c, g) and the original material properties were derived from the SAM images.  

Osseous tissue was considered as the matrix of the composite and blood as the 

material of the circular inclusions.  Blood volume concentrations were measured 

25.78% (corresponding to 22 spheres) and  28.68% (corresponding to 24 spheres) in 

the callus segments of Figs. 4.5b, c and Figs. 4.5f, g respectively, while the radius of 

the scatterer was set to 200 μm.  In the second case (Figs. 4.5d, h), the complex callus 

regions were replaced by a homogeneous and isotropic medium having the effective 

material properties calculated using IEMA. The material properties of cortical bone 

were derived from Table 4.2 and correspond to the ninth postoperative week. Table 

4.5 presents the average material properties of the callus segments in Figs. 4.5a and 

4.5d calculated through the Eqs. (4.10), (4.11), (4.12), as well as the effective material 

properties derived using IEMA for the excitation frequency of 300 kHz.   

Axial transmission measurements of the FAS velocity were conducted for the 

excitation frequency of 300 kHz and thereafter guided wave analysis was performed. 

Concerning the computational models of Figs. 4.5c, d the FAS velocity was 

calculated as 3928 m/s, while for the computational models of  Figs. 4.5g, h the  FAS 

velocity was 3985 m/s.  

Table 4.5 Material properties of the callus segment of Figs. 4.5c, d and Figs. 4.5g, h. 

  Original callus       Effective  callus              Original callus         Effective callus  
   properties                properties                      properties                  properties 

                                (Frequency   
                                Independent)  

     300 kHz                    (Frequency                     300kHz 
                                         Independent)  

                                                    Week 6                                                                Week 9 
Young’s                     
modulus (GPa)            16.5           9.8                                 21.0                          11.7 

λ (GPa)   9.5            7.0                                 12.1                            8.2 
μ (GPa)   6.3           3.7                                  8.1                             4.4 
Poisson’s ratio  0.30          0.33                                0.30                           0.33 
Density (kg/m3) 1770         1557                               1882                          1630 
Attenuation 
coefficient (m-1)    (-)           101                                  (-)                             118 

 

Figure 4.7 shows the (t-f) representations corresponding to the Figs. 4.5c, d and 4.5g, 

h. The A1 mode was identified in all the examined cases. The (t-f) representations are 

significantly attenuated (Figs. 4.7b, d) when  IEMA is used in comparison to the 
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Figure 4.7: The RSPWV distributions for the excitation frequency of 300 kHz of the signals 

obtained: a, c) when the callus has the original material properties (a: week 6, c: week 9), and 

b, d) from the equivalent homogeneous medium having the effective material properties 

derived from IEMA (b: week 6, d: week 9). 

original signal (Figs. 4.7a, c). Moreover, the (t-f) diagrams for the two homogenized 

models of week 6 and week 9 are similar (Figs. 4.7b, d).   

4.4.5 Simulations in different healing stages 

2D computational models of healing long bones were developed corresponding to the 

third, sixth and ninth postoperative week (Fig. 4.8). The complex callus region was 

replaced by a homogeneous and isotropic medium having the effective material 

properties derived from IEMA (Tables 4.4, 4.6, 4.7). An intact bone model was also 

developed having the material properties of the cortical bone in week 9 (Table 4.2). 

The guided mode features derived from the osteotomy numerical models were 

compared to the intact bone estimations.  

The (t-f) representations of the signals obtained from the intact bone model and the 

osteotomy bone models after three, six and nine weeks of consolidation  are illustrated 

in Figs. 4.9 – 4.11. 
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Table 4.6 Callus effective density for the examined central frequencies. 

Healing 
stage    Density (kg/m3)  

 300 kHz             500 kHz 1000 kHz 
Week 3 1132           1144 1201 
Week 6 1804           1816 1867 
Week 9 1872           1873 1881 

 

Table 4.7 Callus attenuation coefficient for the examined central frequencies. 

Healing 
stage Attenuation coefficient (m-1) 

 300 kHz              500 kHz 1000 kHz 
Week 3 0.39           2.55 37.73 
Week 6 0.17          1.34 23.93 
Week 9 0.0073          0.06 0.92 

 

The (t-f) representations are depicted in the form of pseudo-color 2D images, where 

the color of a point corresponds to the amplitude (in dB) of the energy distribution. At 

each healing stage the (f-cg) dispersion curves of Fig. 4.6 were superimposed to the 

(t-f) representations to investigate the propagation of guided waves during bone 

healing. Figures 4.9a, 4.10a, 4.11a correspond to the intact bone model, Figs. 4.9b, 

4.10b, 4.11b represent week 3, Figs. 4.9c, 4.10c, 4.11c represent week 6, and Figs. 

4.9d, 4.10d, 4.11d correspond to week 9.  

For the excitation frequency of 300 kHz (Figs. 4.9a – d) the S0 and A0 modes were 

found to be the dominant modes, while the A1 mode was also identified.  In 

particular, for the intact bone model the S0 and A0 modes were detected in the 

frequency ranges 0.28 – 0.42 MHz and 0.19 – 0.38 MHz.  In week 3 the S0 mode was 

detected from 0.20 – 0.42 MHz. In weeks 6 and 9 the S0 and A0 were the dominant 

modes in the frequency ranges 0.28 – 0.38 MHz, 0.21 – 0.38 MHz and 0.31 – 0.38 

MHz, 0.21 – 0.38 MHz, respectively.  In week 9 the A1 was also identified from 

0.30 – 0.38 MHz.  The significant restoration of the dominant modes during the final 

healing stages is shown in Figs. 4.9 c, d approaching the intact bone observations 

(Fig. 4.9a). 

For 500 kHz (Figs. 4.10a – d), the dominant modes were S0 and S1 during the whole 

healing process, while the mode A1 was also detected in weeks 6 and 9. Specifically, 

for the intact bone model the S0 and S1 modes were detected for frequencies from 
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Figure 4.8: A generic model of callus in which regions I-II have the effective material 

properties derived from IEMA and differ according to the examined healing stage. Regions I, 

II, III represent callus, blood and cortical bone, respectively. Specifically: a) week 3 includes 

regions I, II, III and hcallus was 6 mm, b) week 6 includes regions I, III and hcallus was 5 mm 

(region II is incorporated in region I) , and c) week 9 includes the same regions with week 6 

and hcallus was 3 mm. 

 

Figure 4.9: The RSPWV distribution for the excitation frequency of 300 kHz of the signals 

obtained from: a) the intact bone, b) week 3, c) week 6, and d) week 9 after the osteotomy.  

0.43 – 0.66 MHz and 0.52 – 0.56 MHz, respectively.   
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Figure 4.10: The RSPWV distribution for the excitation frequency of 500 kHz of the signals 

obtained from: a) the intact bone, b) week 3, c) week 6, and d) week 9 after the osteotomy. 

 

Figure 4.11: The RSPWV distribution for the excitation frequency of 1 MHz of the signals 

obtained from: a) the intact bone, b) week 3, c) week 6, and d) week 9 after the osteotomy.  



92 
 

In week 3 the S0 and S1 modes were identified in the frequency ranges 0.38 – 0.55 

MHz and 0.52 – 0.59 MHz, respectively. In week 6 the S0 modes is identified for 

frequencies from 0.34 – 0.51 MHz, while in week 9 the modes S0 and S1 were mainly 

detected in the frequency ranges 0.42 – 0.55 MHz and 0.52 – 0.55 MHz, respectively, 

showing a significant restoration in comparison to the intact bone model.   

Finally, some high-frequency modes were also supported when the central frequency 

of 1 MHz was applied (Figs. 4.11 a-d). The dominant modes were S1 and S2. 

Concerning the intact bone model, the modes S1, S2 and A3 were identified in the 

frequency ranges 1.10 – 1.20 MHz, 0.62 – 1.00 MHz, 0.65 – 0.92 MHz, and 1.10 – 

1.20, respectively.  In week 3 the modes S2, S3 and A2 were detected for frequencies 

between 0.68 – 0.97 MHz, 1.20 – 1.30 MHz, and 0.92 – 0.93 MHz, respectively.  In 

week 6, the S1 and A1 were the dominant modes in the frequency ranges 0.53 – 1.14 

MHz, 0.60 – 1.13 MHz, respectively, while the S2 mode was also detected from 0.65 

– 0.76 MHz. Finally, in week 9 the S1 mode was clearly observed in the frequency 

range 0.51 – 1.11 MHz, while the S2 mode is also detected between 0.92 – 1.12 MHz. 

4.5 Numerical evaluation of the effect of callus porosity and pores’ 
size on the FAS velocity 

This section presents computational models of a healing bone corresponding to a late 

healing stage to investigate the influence of different pores’ sizes and concentrations 

in the callus tissue on ultrasound propagation. Calculations of the FAS velocity are 

performed for different excitation frequencies and the impact of callus and cortical 

porosity on the FAS wave is examined. 

4.5.1 Model geometry 

The geometry and the material properties of the computational models were derived 

from (Potsika et al., 2014a) and correspond to a healing bone at the ninth week of 

consolidation. The cortical bone thickness was 4 mm and the callus region 3 mm. 

Callus was considered as a composite medium consisted of a matrix material 

including circular blood scatterers. The scatterers were randomly distributed in the 

callus region. Two series of calculations were performed. In the 1st  series (Fig. 

4.12a), cortical bone was considered as a compact medium and five cases were 

examined for different callus porosity distributions : i) callus porosity 0% (Problem I), 
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ii) callus porosity 22.70%, pores’ diameter 120 μm (Problem II), iii) callus porosity 

22.70 %, pores’ diameter 240 μm (Problem III), iv) callus porosity 11.35%, pores’ 

diameter 120 μm (Problem IV), v) callus porosity 11.35 %, pores’ diameter 240 μm 

(Problem V).  In the 2nd  series (Fig. 4.12b), the callus region was ignored and the 

whole region of cortical plate was considered as a composite medium with blood 

scatterers with: i) porosity 11.35%, pores’ diameter 120 μm (Problem VI), ii) porosity 

11.35%, pores’ diameter 240 μm (Problem VII). This series was included in this study 

aiming to analyze the influence of pores’ size alone on the characteristics of wave 

propagation. The case of intact homogeneous bone was also considered. Table I 

summarizes the material properties assigned to cortical bone, callus and blood. 

 

Figure 4.12: Ultrasound configuration for: a) the 1st series of calculations (Problem II), b) the 

2nd series of calculations (Problem VII). 

Table 4.8 Material properties of bone, callus and blood. 

         Bone                        Callus                          Blood 
  ρ (kg/m3)       2016.2                 1881.1     1055.0 

E (GPa)      30.3                 21.1       3x10-3 
λ (GPa)      17.5                12.2     2.6 
μ (GPa)      11.7                 8.1       0 

4.5.2 Ultrasound configuration 

Concerning Problems I-V, axial-transmission calculations were performed by placing 

one transmitter and one receiver on each side of the fracture gap directly onto the 

cortical bone surface. The transducers’ size was set to 2 mm, their center-to-center 

distance was 25 mm and they operated in the longitudinal mode. The same 

configuration was used for Problems VI-VII. Fig. 4.12 presents the ultrasound 

configuration for the two series of calculations. Absorption elements were considered 
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at the ends of cortical bone to simulate an infinitely long plate and neglect reflection 

from the boundaries. 

4.5.3 Numerical simulations and signal analysis in the time domain 

The numerical solution of the 2D wave propagation problem was carried out using the 

Finite Element Method (FEM).  In order to describe the propagation of ultrasonic 

waves in plates, a model of forced vibration was used: 

                                                     M u + D u + K u = P(t)  ٫                          (4.15) 

where  M is the mass matrix,  D is the damping matrix,  K is the stiffness matrix, 

 u is the acceleration vector, u  is the velocity vector,  u is the nodal displacement  

vector of the particles and  P(t)  is the vector of the excitation force (Potsika et al., 

2014c; Courant et al., 1928). 

A triangular element type was selected to achieve a reasonable time and memory cost, 

and the element size was set to l < λ/10, in which λ is the wavelength.  Also, 512 

equal timesteps were applied according to the criterion:Δt 1/(10× )f , in which  f 

denotes the central frequency. These restrictions were applied to acquire a stable 

analysis, conformed to the Courant–Friedrichs–Lewy condition. 

A Hanning sine pulse was used as the excitation signal according to Eq. (4.14). The 

examined central frequencies were 0.3, 0.5 and 1 MHz for the 1st series of 

calculations and the excitation signal included four sinusoidal cycles in the pulse. The 

same central frequencies were also examined in the 2nd series of calculations. The 

duration of the simulated signals recording was 30 μs.  In order to detect the FAS a 

threshold was used, corresponding to the detection of the first signal extremum. 

4.5.4 Results 

Fig. 4.13 presents the FAS velocity values for the 1st series of calculations. It can be 

seen that the highest FAS velocity measurements were calculated for Problem I 

corresponding to the case of a homogeneous callus region. On the other hand, the 

lowest FAS velocity values were measured for Problems II and III corresponding to 

the highest porosity concentrations. It is also shown that the velocity values computed 

for Problems II and III, as well as for problems IV and V approximately coincide. 
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Concerning the frequency dependence of ultrasound propagation, the lowest FAS 

velocity values were calculated for the central frequency of 0.3 MHz, while the 

highest values were observed for 1 MHz.  Particularly, the FAS velocities were in the 

range : i) 2884 – 2944 m/s for 0.3 MHz, ii) 3227 – 3308 m/s for 0.5 MHz, and  iii) 

3547 –  3634 m/s for 1 MHz.  The FAS values associated with numerical models of 

fractured long bones were lower in comparison to the case of intact bone. 

In the 2nd series of calculations, the FAS velocity was: a) 2777 m/s for Problem VI 

and 2701 m/s for Problem VII for the excitation frequency 0.3 MHz, and b) 3035 m/s 

for Problem VI and 3004 m/s for Problem VII for excitation frequency 0.5 MHz. 

These problems revealed an about 10% FAS velocity decrease compared to the 

corresponding cases of intact bone for the same frequency, whereas the change of the 

scatterer’s radius had an influence less than 2%.  

 

Figure 4.13: FAS velocity calculations for different callus porosity distributions and 

frequencies. 

4.6 Discussion 

In this chapter, a theoretical and computational study was presented based on an 

effective medium theory application for the modeling of ultrasound wave propagation 

in healing long bones. Numerical models of healing long bones were developed with 

material and geometrical properties derived from SAM images. For the first time 

wave dispersion and attenuation predictions were conducted in the callus tissue at 

different healing stages using IEMA. Moreover, 2D BEM simulations of bone healing 

were carried out and the porous nature of callus was taken into consideration in the 
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solution of the wave propagation problem. The proposed methodology is of great 

importance as the estimation of wave dispersion and attenuation using IEMA could 

provide valuable information for the callus restoration during the healing process. 

The effectiveness of the iterative procedure was examined by comparing the 

predictions of IEMA with experimental and other theoretical findings in trabecular 

bone mimicking phantoms.  It was shown that the phase velocity decreases when the 

frequency increases exhibiting, thus, a negative dispersion. However, when the 

Kramers-Kronig relations are used to estimate the dispersion of a medium with an 

increasing attenuation coefficient, the expected result is a phase velocity which 

increases logarithmically with frequency, known as positive dispersion (Anderson et 

al,. 2008; Marutyan et al., 2006; Waters et al., 2005). Nevertheless, a negative 

dispersion has been also reported in various experimental and numerical studies 

investigating wave dispersion in cancellous bone (Molero et al., 2012; Bauer et al., 

2008; Anderson et al., 2008; Haiat et al., 2008; Wear et al., 2005). According to 

(Marutyan et al., 2006), the apparent negative dispersion of ultrasonic waves 

propagating in bone can arise from the interference between fast and slow 

longitudinal modes, each exhibiting positive dispersion. The results of IEMA were in 

excellent consistency with the observations of (Molero et al., 2012; Haiat et al., 2008; 

Wear et al., 2005). Apart from the findings of this thesis for bone assessment, IEMA 

has been also found effective in various scattering problems presented in (Aggelis et 

al., 2004). Therefore, this is considered as an accurate methodology which models 

effectively the actual physics of a composite medium. 

Wave dispersion and attenuation predictions were conducted for the first time in the 

callus region at successive healing stages. A negative dispersion was exhibited in all 

the examined cases in the frequency range 24 – 1200 kHz. The present method is an 

analytical low frequency approach for solving scattering problems since the product 

of the wavenumber and the scatterer’s radius was found lower than 1 (ka<<1) for all 

the examined cases, implying that the wavelength is much larger than the 

heterogeneity size (λ>>2πa). However, the role of the wavelength to the heterogeneity 

size regarding the relationship with the negative dispersion needs further parametrical 

research. Also, it was observed that the calculated values of both the attenuation 

coefficient and the group velocity corresponding to week 9 vary slightly with 

increasing frequency in comparison to weeks 3 and 6. This could be attributed to the 
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consolidation of the osseous tissue at the final healing stages, followed by a gradual 

decrease of the inclusions’ volume concentration and diameter. Thus, the role of 

scattering, material dispersion and absorption phenomena is more significant during 

the early healing stages enhancing wave dispersion and attenuation estimations.   

The effectiveness of the methodology predictions in bone healing was investigated by 

developing two types of 2D numerical healing bone models: a) with the original 

material properties of the callus derived from SAM images, b) with the equivalent 

homogeneous and isotropic callus geometries having the effective material properties 

derived from IEMA. The same FAS velocity values were calculated for the original 

and the equivalent effective homogeneous geometries based on IEMA showing the 

significant accuracy of the methodology. However, the (t-f) analysis indicated that 

IEMA cannot capture wave dispersion but rather some of the dominant modes in spite 

of the significant attenuation of the signal.  The ability of IEMA to replace composite 

media with equivalent homogeneous and isotropic media could provide an alternative, 

simple and effective solution for guided mode characterization in complicated 

problems. 

Further to this benchmark analysis, ultrasound propagation during bone healing was 

simulated by incorporating the effective material properties and the attenuation 

coefficient derived from IEMA in 2D boundary element computational models of 

healing long bones. In comparison to previous computational studies (Machado et al., 

2010; Vavva et al., 2008a; Protopappas et al., 2006a), more realistic conditions are 

applied based on SAM images.  In addition, the porous nature of callus was taken into 

consideration through its numerical modeling by using the effective material 

properties derived from IEMA. Guided wave propagation was studied, which depends 

on both the geometrical and material properties of bone. For all the examined 

frequencies, the restoration of the dominant modes was apparent in weeks 6 and 9 

compared to the estimations of intact bone, while in week 3 guided mode features 

were different especially for the frequencies of 0.3 MHz and 1 MHz. This could be 

attributed to the gradual restoration of bone material and geometrical properties at the 

final healing stages approaching the structural integrity of intact bone.  For the 

excitation frequency of 0.3 MHz, the S0 and A0 modes were mainly identifiable. 

Previous studies using low-frequency transducers (at 0.1 and 0.25 MHz) have also 

examined the evolution of the S0 and A0 modes (Moilanen et al., 2003; Nicholson et 
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al., 2002; Bossy et al., 2002).  For the excitation frequency of 0.5 MHz the dominant 

modes were S0 and S1, while for the excitation frequency of 1 MHz the modes S1 

and S2 were mainly detected. The results derived from the homogenized models using 

IEMA showed similar trends in guided mode features as in previous research findings 

in bone healing (Vavva et al., 2008a; Protopappas et al., 2006a).  An experimental 

validation of the model behavior was not performed, although the effectiveness of the 

present methodology for bone characterization was verified both theoretically and 

numerically. Nevertheless, experimental validation of the model behavior will be 

performed in future studies. 

In addition to the numerical simulations of section 4.4, a parametric study was 

presented in section 4.5 to investigate the influence of the callus pores’ size and 

concentration on the propagation of ultrasonic waves in a healing long bone. A simple 

2D geometry was developed in which callus was considered as a composite medium 

consisted of a matrix with circular scatterers. Compared to the approximation 

followed in section 4.4, the callus region was not replaced by a homogeneous region 

with effective material properties using IEMA, while the influence of cortical porosity 

on wave propagation was also investigated. FAS velocity calculations were performed 

for different frequencies and porosity distributions of cortical bone and callus to give 

insight to the multiple scattering phenomena and determine quantitatively the 

interaction of ultrasound with the microstructure of callus and osseous tissues. 

It was shown that the FAS velocity increases with increasing frequency, which is in 

agreement with (Potsika et al., 2012). Moreover, the highest FAS velocity values 

were measured in the case of Problem I corresponding to a homogeneous callus 

region. This is attributed to the presence of the circular scatterers which provokes the 

attenuation of the signal and increases the time of arrival at the receiver. Also, this is 

reasonable as the propagation velocity in blood is lower in comparison to the callus 

tissue. Higher FAS velocity values were observed for lower porosity concentrations 

(Problem IV, V), which however remained lower in comparison to Problem I. 

Another significant conclusion was drawn for Problems II and III, as well as Problems 

IV and V, having the same porosity concentration and different pores’ diameters. In 

these cases, FAS velocity calculations were approximately the same. This reveals that 

changes in callus porosity concentration have a more significant influence on the 
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propagation of the FAS velocity in comparison to changes in the diameter of the 

scatterers.  Nevertheless, FAS velocity calculations for Problems VI and VII revealed 

that the scatterers’ diameter plays a key role on FAS velocity when larger porous 

areas are examined such as the whole surface of cortical bone. 

However, several assumptions were made for the development of the computational 

models.  The effect of the fluid loading boundary conditions on the features of guided 

wave propagation was neglected. The soft tissues provide leakage paths for the 

ultrasonic energy resulting in the so-called leaky guided waves and in this case the 

dispersion curves are modified (Vavva et al., 2008a). Moreover, IEMA introduces the 

assumption that the geometry of the inclusions is spherical which is not realistic as a 

better representation for the newly formed callus tissue would be a cylindrical shape. 

The modification of the iteration procedure in order to incorporate cylindrical 

scatterers constitutes an objective for future research. Another assumption is that the 

random distributed inclusions all have the same size. This condition is not realistic as 

different callus sub-regions have significantly different inclusions’ diameters derived 

even from the same healing stage. Also, the size and the volume concentration of the 

inclusions inside the osteotomy differ in comparison to the callus tissue surrounding 

the osteotomy gap.  Nevertheless, the exploitation of IEMA can simplify the solution 

of the wave propagation problem and give insight to the changes occurring in the 

callus microstructural effects and porosity during healing. Therefore, this 

methodology could be used in order to investigate numerically wave propagation 

scattering effects in computational models of osteoporotic bones (chapter 6).  
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Chapter 5: Backscattering simulation of ultrasonic wave 
propagation in computational models of healing long bones  

5.1 Introduction 

5.2 Model Geometry 

5.3 Material Properties 

5.4 Ultrasound Configuration 

5.5 Numerical solution of the scattering problem using the Boundary Element Method 

5.6 Statistical Analysis 

5.7 Results 

5.8 Discussion 

 

 

 

5.1 Introduction 

The investigation of ultrasonic scattering in bone has attracted the interest of several 

research groups worldwide (Liu et al., 2015; Karjalainen et al., 2012; Hoffmeister et 

al., 2012; Malo et al., 2014; De Marco et al., 2016). The propagation of an ultrasonic 

wave through a composite medium with strong acoustic impedance differences 

between the constituent materials like bone may induce multiple scattering. A part of 

the incident energy is transferred to the pores (Aggelis et al., 2004; Verbis et al., 

2001). The frequency of the incident wave, the distribution and geometry of the 

scatterers, as well as the physical properties of the pores and the surrounding medium 

affect the amount and distribution of the scattered intensity (Aggelis et al., 2004). 

Scattering in healing bones occurs due to the interaction of ultrasound with the 

complex microstructure of callus and cortical bone. In contrast to the axial 

transmission technique, the backscatter technique is more versatile, since it can be 
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easier applied to skeletal sites with thicker soft tissue layers between bone surface and 

skin, such as the hip and spine (Casciaro et al., 2015). 

The ultrasonic scattering characteristics of cancellous bone has been extensively 

studied in the literature (Liu et al., 2015; Karjalainen et al., 2012; Hoffmeister, 2011; 

Hoffmeister et al., 2012; De Marco et al., 2016; Wear, 2008; Padilla et al., 2006; 

Wear, 1999). The broadband ultrasonic backscatter (BUB) is the main parameter of 

interest reflecting the frequency averaged backscatter coefficient. However, the 

calculation of BUB requires knowledge on the attenuation along the ultrasonic wave 

propagation path which is not always available. In this case, parameters such as the 

apparent backscatter coefficient, the AIB and the frequency slope of apparent 

backscatter (FSAB) are examined (Hoffmeister et al., 2012; Malo et al., 2014; De 

Marco et al., 2016; Casciaro et al., 2015).  

Fewer studies have addressed the interaction of ultrasonic backscattering with cortical 

microstructure (Bourgnon et al., 2014; Gortsas et al., 2015; Iori et al., 2015) focusing 

on the discrimination of large BMUs from Haversian canals. Numerical models with 

various porosities and pore sizes have been established and the scattering amplitude, 

the average spectra of the backscattered signals, the AIB and the FSAB were 

calculated. It was reported that the backscattering signals convey significant 

information for the evaluation of cortical porosity and the detection of BMUs. 

Concerning bone healing, the assessment of pseudarthrosis with ultrasound 

backscattered signals in rats was investigated experimentally in (Ferreira et al., 2010). 

The AIB was calculated for normal bones and bones with pseudarthrosis, showing 

higher values for the latter. Theoretical and numerical approaches incorporating the 

effects of porosity determined through SAM were combined in (Potsika et al., 2014a) 

to evaluate the ultrasonic attenuation of the callus at different stages of healing. 

However, the interaction of backscattering parameters with alterations in the callus 

and cortical microstructure during bone healing is considered as an open research 

field. 

This chapter investigates the backward propagating acoustic field induced by changes 

in material properties and structure of the mineralized callus at successive healing 

stages in an ovine osteotomy healing model. The callus stiffening and the decrease in 

callus porosity, as well the cortical softening and the increase in cortical porosity are 
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incorporated in numerical models using SAM images from the second (week 2), third 

(week 3), sixth (week 6) and ninth (week 9) postoperative weeks (Preininger et al., 

2011). For the first time the monitoring potential of the backward propagating 

acoustic field in bone healing and the role of the central excitation frequency are 

investigated numerically considering the propagation of a plane wave at different 

frequencies in the range 0.2–1 MHz. The numerical solution of the scattering problem 

is performed using the BEM. The parameter of interest here is the scattering 

amplitude in the backward direction, which gives a measure of the energy scattered to 

this direction when a pressure wave strikes the bone structure, as well as the acoustic 

pressure variation. Initially, the model geometry, material properties, ultrasound 

configuration and numerical solution of the scattering problem using BEM are 

described. Then, the results are presented concerning the scattering amplitudes in the 

backward direction and near-field acoustic pressure. Finally, a thorough discussion is 

included based on the findings of this thesis compared to the literature. 

5.2 Model geometry 

This section presents the 2D numerical models of healing long bones based on SAM 

imaging data derived from a previous experimental study (Preininger et al., 2011). 

Figs. 5.1(a)–(l) show the SAM images for successive bone healing stages 

corresponding to weeks 2, 3, 6 and 9 after the osteotomy. Each image represents an 

acoustic impedance map of embedded longitudinal sections of 3-mm osteotomies in 

the right tibia of female Merino sheep. All specimens were subjected to SAM 

measurements, using a spherically focused 50-MHz transducer. For each healing 

stage, 3 different SAM images were used from different animals and 3 numerical 

models were established. As it can be seen in Fig. 5.1, a specific abbreviation is 

assigned to each SAM image to denote the week of healing and the number of the 

numerical model (e.g. the abbreviation W2-M1 corresponds to week 2 and the 1st 

numerical  model).  However, it should be  noted that as each  SAM image is derived 

from a different animal, the numerical association of the model number is random 

(e.g. the results from W2-M1 can be directly compared with each one of the models 

of the next healing stage W3-M1, W3-M2 or W3-M3 having no specific association 

with W3-M1). 
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Figure 5.1: Scanning acoustic microscopy images for: (a)-(c) week 2, (d)-(f) week 3, (g)-(i) 

week 6, and (j)-(l) week 9 after osteotomy. The colorbar reflects the Young’s modulus in GPa. 

An algorithm in MATLAB (The Mathworks, Inc., MA) was developed to detect the 

borders of cortical bone and callus considering differences in the greyscale values 

(Fig. 5.2). The pixel size is 12 μm. Then, the coordinates of the points comprising the 

pixel borders were calculated and directly transferred into numerical models 

developed based on the software package ISoBEM (ISoBEM, version v.1.0.11, BEM 

S&S, Greece). Also, 3 additional models were established to simulate intact cortical 

bone as reference cases. The numerical models for intact bone were developed based 

on the material and geometrical properties of cortical bone derived from the SAM 
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Figure 5.2: The ultrasonic configuration is demonstrated considering the numerical model 

W9-M1 and the upper cortical fragments. 

images of week 2 (Fig. 5.1(a) – (c)) restoring the bone discontinuity by removing the 

fracture gap. The cortical length (Lx) was different for each SAM image (Fig. 5.2). 

The 2D models of intact and healing long bones were assumed to be immersed in 

blood in order to account for the soft tissues surrounding the osseous tissues. 

5.3 Material properties 

Initially, a segmentation between the mineralized tissue and the embedding material 

was performed using a threshold for the acoustic impedance (Zthreshold=3.50 Mrayl) 

based on the specifications described in (Preininger et al., 2011). The material 

properties of the surrounding medium were derived from the literature and correspond 

to blood with bulk modulus Kblood = 2.38 GPa, density ρblood = 1055 kg/m3 and 

Poisson’s ratio νblood =0.49979 (Vavva et al., 2008; Potsika et al., 2014a).  

The calculation of the material properties of the cortical bone and callus tissue was 

performed in two stages: a) empirical equations were used to derive the medium 

density and Young’s modulus from the acoustic impedance images as previously 

described in (Preininger et al., 2011; Raum, 2011), b) the iterative effective medium 

approximation (IEMA) of (Aggelis et al., 2004) was used to calculate the effective 

material properties of the cortical and callus tissue as shown in Fig. 5.3. 

Initially, the density ρ was derived from the acoustic impedance values Z using the 

conversion provided in Table 16.5 from (Raum, 2011) as:                                                                        

                                                                Z1=1.02ρ2.83.                                              (5.1) 
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Then, the elastic coefficient		c11 in the direction normal to the longitudinal section 

surface was calculated as: 

                                                              c11=0.608Z1
1.923.                                            (5.2) 

If the Poisson’s ratio v is set to 0.3 (Preininger et al., 2011), the Young modulus E can 

be defined as: 

                                                            1 11

(1+ν)(1 2ν)= (1 ν) cE 
 ·                                         (5.3) 

Concerning the second stage and the application of IEMA, the composite medium 

(cortical bone or callus) is replaced by an elastic homogeneous and isotropic material 

with effective material properties respectively (Aggelis et al., 2004, Christensen, 

1990) as illustrated in Fig. 5.3. IEMA was analytically described in Chapter 4. Tables 

5.1 and 5.2 present the osseous and callus tissue effective material properties 

calculated based on Eqs. (5.1) – (5.3) and the application of IEMA for the excitation 

frequencies 0.2, 0.4, 0.6 , 0.8 and 1 MHz. These values were determined assuming 

circular scatterers with the material properties of blood (Fig. 5.3). The medium 

porosity and particle diameter in cortical bone and callus for each healing stage are 

also presented in Tables 5.1 and 5.2. The callus porosity was not considered for the 

numerical models of week 2 as callus porosity, callus area and matrix stiffness could 

not be assessed reliably at this time point because of the small mineralized callus area 

(Preininger et al., 2011). 

 

Figure  5.3: The composite medium in (a) is replaced by an elastic homogeneous and 

isotropic material in (b) with effective material properties (Eeff, νeff, ρeff) calculated from 

IEMA. 
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Table 5.1 Cortical bone effective material properties calculated using IEMA and SAM 

images. 

Numerical model 
(Week-Model No.) 

Young’s 
modulus 

(GPa) 

Poisson’s 
ratio 

 
Density (kg/m3) – 

0.2–1 MHz 
 

 
Porosity 

(%) 
Pores’ 

diameter (μm) 

W2-M1 23.26 0.3000 2048 0.33 50 
W2-M2 23.47 0.2998 2050 0.42 50 
W2-M3 24.49 0.2998 2066 0.45 50 
W3-M1 18.24 0.3022 1957 2.87 50 
W3-M2 19.23 0.3011 1975 2.15 50 
W3-M3 20.34 0.3009 1999 0.55 50 
W6-M1 20.36 0.3008 1996 1.80 50 
W6-M2 21.31 0.3018 2014 1.98 50 
W6-M3 22.35 0.3008 2032 1.25 50 
W9-M1 18.34 0.3049 1970 6.09 50 
W9-M2 22.57 0.3011 2036 2.50 50 
W9-M3 21.68 0.3011 2020 1.65 50 

 

Table 5.2 Callus effective material properties calculated using IEMA and SAM images. 

5.4 Ultrasound configuration 

The ultrasound configuration is presented in Fig. 5.2 for the 2D model W9-M1. The 

established models included both the upper and the lower cortical and callus regions 

of the SAM images. However, Fig. 5.2 presents only the borders of the upper cortical 

and callus surface for illustration purposes. The same ultrasound configuration was 

considered for all the examined numerical models for intact bone, week 2, week 3, 

week 6 and week 9. Plane waves of frequencies 0.2, 0.4, 0.6, 0.8 and 1 MHz were 

used as the incident wave propagating in the –y-direction (i.e., 0 degrees). The 

scattering amplitude was calculated in the backward direction (i.e., 180 degrees). 

Also, Fig. 5.2 shows that multiple receiving positions were considered in the 

Numerical 

model 

(Week-

Model 

No.) 

Young’s 

modulus    

(GPa) 

Poisson

’s ratio 

Density 

(kg/m
3
) – 

0.2 MHz 

Density 

(kg/m
3
) – 

0.4 MHz 

Density 

(kg/m
3
) – 

0.6 MHz 

Density 

(kg/m
3
) – 

0.8 MHz 

Density 

(kg/m
3
) – 

1 MHz 

Porosity 

(%)/ 

Pores’ 

diameter 

(μm) 

W3-M1 1.95x10
-6 

0.499 1173 1181 1194 1213 1239 44.8/350 

W3-M2 2.40x10
-6

 0.499 1176 1184 1198 1218 1245 46.3/350 

W3-M3 3.70x10
-6

 0.499 1183 1192 1206 1227 1255 48.2/350 

W6-M1 5.06 0.349 1630 1636 1645 1656 1668 29.4/200 

W6-M2 5.70 0.354 1763 1806 1821 1841 1863 38.7/200 

W6-M3 5.83 0.345 1694 1670 1709 1721 1735 30.0/200 

W9-M1 8.00 0.329 1761 1762 1764 1767 1771 22.7/120 

W9-M2 10.03 0.316 1783 1784 1785 1787 1788 12.8/120 

W9-M3 6.10 0.343 1709 1711 1714 1719 1725 30.0/120 
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backward direction (+y-direction) to calculate the acoustic pressure in a distance from 

12 mm (A2 (0,12)) to 27 mm (A3 (0,27)) relative to the cortical cortex (A1 (0,0)) 

covering an area width of 15 mm. The area length in the +x-direction was different for 

each SAM image according to the cortical length Lx as it is shown in Fig. 5.2.  

5.5 Numerical solution of the scattering problem using the Boundary 
Element Method  

The 2D fluid structure interaction scattering problem solved in the present work 

concerns the scattering of a pressure wave by an elastic structure immersed in an 

infinitely extended fluid. Assuming harmonic time dependence, the excited fluid 

pressure field p(x) and the corresponding elastic displacements u(x) at any field point 

x of the analyzed domain can be calculated from the following integral 

representations, respectively (Wrobel, 2002; Aliabadi, 2002; Polyzos et al., 1998): 

                  i
n y n y

S S

=c( )p( ) + G( , ,ω)p( )dS G( , ,ω) p( )dS + p ( ),  x x x y y x y y x         (5.4) 

                         y y
S S

=1 c( ) ( )+ ( , ,ω) ( )dS ( , ,ω) ( )dS ,  x u x T x y u y U x y t y                (5.5) 

where y represents a source point always lying at the surface of the scatterer S, ω is 

the frequency of the harmonic incident wave, G(x,y,ω), U(x,y,ω) are the fundamental 

solutions of the Helmholtz and Navier-Cauchy equations, respectively, T(x,y,ω) and 

t(x) are the traction fields corresponding to elastic fundamental solution U(x,y,ω) and 

displacement u(x), respectively, ip( )x  is the incident harmonic, plane wave 

propagating in the fluid region, n  denotes directional derivative with respect to the 

unit vector being normal to the surface of the scatterer, while the coefficient c(x) takes 

the values 0, 1 and 0.5 when the field point x lies inside, outside and at the boundary 

of the elastic scatterer, respectively. Both the field point x and the source point y are 

vectors defined with respect to a Cartesian coordinate system located usually inside to 

the scatterer.  

At the fluid-structure interface the following boundary conditions are satisfied: 
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n2 f

1 ˆp =-
ω ρ S ,

ˆp =

   
 

n u
x

n t
        (5.6)                                

with fρ  being the density of the fluid and n̂  the unit vector normal to the surface S. 

Writing the total pressure field p(x) as a sum of the incident and scattered wave, i.e. 

p(x) = pi(x) + ps(x), far away from the scatterer the following asymptotic expression 

of the scattered field is valid  (Dassios et al., 1987): 

                          
ikr

s1 eˆˆ ˆ= O , p = g( , ) , r ,
r kr

      
x y r r k
x y

                      (5.7) 

where r̂  is unit vector across the radial variable r of the polar coordinate system, O 

refers to the origin of the polar coordinate system, k is the wavenumber of the incident 

wave and ˆˆg( , )r k  is the scattering amplitude representing the energy scattered at r̂

direction when an acoustic wave impinges upon the k̂  direction, having the integral 

form: 

                            ˆ ˆ-ik -ik
y n

S

1 iˆˆ ˆ ˆg( , )= p( )ik( )e q( )e  dS , q p
4

       
r y r yr k y r n y  ·            (5.8) 

According to the BEM, the fluid-structure interface is discretized into quadratic three-

noded line elements and both integral equations (5.4) and (5.5) are collocated at the 

nodes of the discretized surface deriving the following linear systems of algebraic 

equations, respectively: 

                            acoustic acoustic i
n= + , q = p,        H p G q p                          (5.9) 

                                       elastic elastic= ,       H u G t                                     (5.10) 

where the vectors  p , q , u , t  represent all the nodal values of the pressure, 

pressure flux, elastic displacement and traction, respectively,  ip  is a vector 

containing the contribution of incident wave to the fluid-structure interfacial nodes 

and acoustic acoustic elastic elastic, , ,              H G H G  matrices contain integrals with kernels 
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nG( , ), G( , ), ( , ), ( , ) x y x y T x y U x y , respectively, all evaluated via advanced 

integration techniques explained in (Polyzos et al., 1998).       

Satisfying the boundary conditions of (5.6) and rearranging, the system of algebraic 

equations (5.7) and (5.8) obtains the final form:                                                          

                                              i= ,A x p                                               (5.11) 

with the vector  x  containing all the unknown nodal values of the vectors  p , q ,

 u  and  t .  

Solving the system (5.9) through a standard LU decomposition algorithm and 

evaluating the nodal values p , q , the scattering amplitude ˆˆg( , )r k  is easily 

evaluated via its integral representation (5.8), whilst the scattered pressure field 

outside to the scatterer is evaluated through the integral representation (5.4). 

5.6 Statistical Analysis  

A statistical analysis was conducted to evaluate the backward propagating acoustic 

field in successive healing stages for different excitation frequencies. More 

specifically, for each healing stage, the scattering amplitude values at 180 degrees 

have been averaged over the 3 models and the results are presented as mean scattering 

amplitudes of the three numerical models for each healing stage ±standard error. One-

way analysis of variance (one-way ANOVA) is also used to investigate the impact of 

frequency. The statistical findings are considered significant for p-values lower than 

0.05. Additionally, a post hoc analysis is conducted based on the Tukey-Kramer 

method to compare results from different weeks pairwise. 

5.7 Results 

Figures 5.4–5.9 present the results derived from the simulations of the backward 

propagating acoustic field and the excitation frequencies 0.2, 0.4, 0.6, 0.8 and 1 MHz. 

Specifically, in Fig. 5.4 the variation of the magnitude of scattering amplitude in the 

backward direction is presented for intact bone, week 2, week 3, week 6 and week 9 

after the osteotomy. The scattering amplitude is a quantitative parameter reflecting the 

scattered energy far away from the examined geometry depending on the size of the 

scatterer. Then, in Figs. 5.5–5.9 the variation of the acoustic pressure is illustrated 



111 
 

frοm multiple receiving positions in the backward direction. The acoustic pressure 

map reflects the amplitude of the vibration induced by the scattered wave. 

5.7.1 Scattering amplitudes in the backward direction 

Figures 5.4(a)–(e) show the magnitude of the mean scattering amplitude values 

derived from the three numerical models of each postoperative week for all the 

excitation frequencies. The standard error bars demonstrate the scattering amplitude 

variation in each healing stage. All the diagrams include the intact bone value for 

comparison purposes. Specifically, in Fig. 5.4(a) the mean scattering amplitude 

decreases from 0.31 in week 2 to 0.09 in week 3 and 0.07 in week 6, respectively. 

Finally, in week 9 the scattering amplitude increases to 0.12. In Fig. 5.4(b) for the 

excitation frequency 0.4 MHz, the mean scattering amplitude values for serial healing 

stages were: (a) 0.13 for week 2, (b) 0.09 for week 3, (d) 0.06 for week 6, and (e) 0.11 

for week 9. When the excitation frequencies 0.6 and 0.8 MHz were applied, a 

decrease of the scattering amplitude was observed showing no restoration in week 9. 

In particular, in Fig. 5.4(c) for the excitation frequency 0.6 MHz, the mean scattering 

amplitude values were calculated from 0.39 in week 2 to 0.08 in week 9, while in Fig. 

5.4(d) and at 0.8 MHz a decrease from 0.26 in week 2 to 0.09 in week 9 was 

observed. Finally, in Fig. 5.4(e) the excitation frequency of 1 MHz leads to an 

increase of the scattering amplitude value in week 9 as observed at 0.2 and 0.4 MHz. 

The calculated scattering amplitude values were: (a) 0.44 in week 2, (b) 0.14 in week 

3, (d) 0.07 in week 6, and (e) 0.11 in week 9. Concerning one-way ANOVA, the p-

values were lower than 0.05 for all the examined frequencies and more specifically 

the calculated values were: (a) 0.004 at 0.2 MHz, (b) 0.02 at 0.4 MHz, (c) 0.02 at 0.6 

MHz, (d) 0.04 at 0.8 MHz, and (e) 0.004 at 1 MHz.  

Although, a similar scattering amplitude variation was observed among the examined 

healing weeks at 0.2, 0.4 and 1 MHz, the Tukey-Kramer test did not reveal significant 

differences between the healing stages week 3-week 6, week 6-week 9 and week3-

week9, when pairwise comparisons were performed. More specifically, the Tukey-

Kramer test showed significant statistical differences between two means only for the 

following cases: 
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Figure 5.4: The magnitude of the scattering amplitude (in arbitrary units) during the bone 

healing process for the excitation frequencies: (a) 0.2 MHz, (b) 0.4 MHz, (c) 0.6 MHz, (d) 0.8 

MHz, and (e) 1 MHz. The standard error bars demonstrate the scattering amplitude variation 

in each healing stage. 

(a) excitation frequency 0.2 MHz and the examined pairs intact bone-week 3, intact 

bone-week 6, intact bone-week 9, week2-week 3, week 2-week 6, (b) excitation 

frequency 0.4 MHz and the case intact bone-week 6, (c) excitation frequency 0.6 

MHz and the pairs intact bone-week 6, intact bone-week 9, and (d) excitation 

frequency 1 MHz and the cases intact bone-week 3, intact bone-week 6, intact bone-

week 9, week2-week 3, week 2-week 6, week 2-week 9. Concerning  the frequency 

0.8 MHz, there are no significant differences in the scattering amplitudes measured at 

different healing stages.  

5.7.2 Acoustic pressure 

Figures. 5.5–5.9 present the variation of the acoustic pressure in the backward 

direction from multiple receiving positions covering the area illustrated in Fig. 5.2. 
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The value of the incident pressure amplitude is 1 Pa. For all the color maps, which 

follow, a color bar is also included consisting of a linear scale with 10 subdivisions 

based on the maximum pressure of the entire field, denoted as Pmax. The Pmax values 

for all the examined cases are presented in Table 5.3. It should be mentioned that each 

acoustic pressure map corresponds to one of the three numerical models established 

for each healing week. 

Fig. 5.5 presents the acoustic pressure variation map at 0.2 MHz.  In Figs. 5.5(a), (b) 

the scattering energy of the plane wave in the backward direction is illustrated as 

parallel planes for intact bone and week 2. The pressure amplitude is not evenly 

distributed in the x-direction probably due to the diffraction effect.  In Figs. 5.5(c), (d) 

the formation of the callus leads to the disruption of the parallel distribution of the 

scattered energy which shows an arched form following the structure of the callus 

tissue. 

Finally, in Fig. 5.5(e) the parallel distribution of the scattered waves in the backward 

direction is gradually restored in week 9. As it can be observed from the Pmax values 

of Table 5.3 and the color maps of Fig. 5.5, higher acoustic pressure values were 

derived during the first healing weeks, while lower values were calculated for weeks 6 

and 9. Also, it is shown that the presence of the callus tissue changes the distribution 

of the Pmax values showing the direction of the scattered energy field.  

Table 5.3 Maximum values of the acoustic pressure field (Pmax) in the backward direction 

for all the examined excitation frequencies. 

Numerical model 
(Week-Model No.) 

Acoustic Pressure Pmax (Pa) 
0.2 MHz 0.4 MHz 0.6 MHz 0.8 MHz 1 MHz 

Intact-M1 2.32 2.17 1.97 2.47 2.59 
Intact-M2 2.18 2.42 1.97 2.19 2.53 
Intact-M3 2.02 2.30 2.35 2.34 2.24 
W2-M1 1.79 2.40 1.78 2.37 2.34 
W2-M2 2.14 2.19 1.94 2.06 2.30 
W2-M3 1.87 2.38 2.20 2.16 2.40 
W3-M1 2.12 2.12 2.56 2.16 2.18 
W3-M2 1.99 1.83 2.08 2.04 2.05 
W3-M3 2.05 2.27 2.55 2.60 2.45 
W6-M1 1.81 1.43 1.75 1.89 2.05 
W6-M2 1.59 1.61 1.90 2.06 2.02 
W6-M3 1.88 1.63 2.08 2.17 2.67 
W9-M1 1.89 1.71 2.13 2.17 2.47 
W9-M2 1.69 1.85 1.57 1.58 1.74 
W9-M3 1.85 1.53 1.77 1.80 1.97 
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Figure 5.5: Acoustic pressure variation map for 0.2 MHz and the cases of: (a) intact bone, (b) 

W2-M1, (c) W3-M2, (d) W6-M2, and (e) W9-M1.   

Thus, for intact bone and week 2 the Pmax values are calculated above the center of 

the plate, while in weeks 6 and 9 the Pmax values are depicted near the boundaries of 

the plate. In Fig. 5.6, the acoustic pressure maps are depicted for the excitation 

frequency 0.4 MHz. It can be seen that the scattering energy of the plane wave in the 

backward direction is illustrated as parallel planes for intact bone. Next, the presence 

of the gap in weeks 2 and 3 interrupts the continuity of the parallel planes around the 

fracture site. The formation of callus in weeks 6 and 9 which closes the fracture gap 

leads to an arched form of the backscattered in week 6 and a parallel distribution in 

week 9.  
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Figure 5.6: Acoustic pressure variation map for 0.4 MHz and the cases of: (a) intact bone, (b) 

W2-M1, (c) W3-M2, (d) W6-M2, and (e) W9-M1.   

Nevertheless, for the excitation frequencies 0.6–1 MHz no specific acoustic pressure 

pattern can be observed in Figs. 5.7–5.9. Thus, a random distribution of the energy in 

the backward direction is shown which does not reveal the callus restoration and 

cannot provide any qualitative information for the fracture healing process. Finally, 

according to Table 5.3, higher Pmax values were calculated in week 3 and lower 

values in weeks 6 and 9, respectively. 

5.8 Discussion 

In this chapter, 2D numerical simulations of wave propagation in healing long bones 

were performed using the BEM  aiming to provide new knowledge  on  the  multiple 
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Figure 5.7: Acoustic pressure variation map for 0.6 MHz and the cases of: (a) intact bone, (b) 

W2-M1, (c) W3-M2, (d) W6-M2, and (e) W9-M1.  

scattering phenomena and their contribution to the resulting acoustic field during bone 

healing (Potsika et al. 2017). The propagation of a plane wave was considered and 

different propagation frequencies were examined in the range 0.2-1 MHz. The scattering 

amplitude was calculated as well as the acoustic pressure in the backward direction. To 

the best of the author's knowledge, this is the first computational study to evaluate the 

backward propagating acoustic field in healing long bones based on imaging data from 

scanning acoustic microscopy (Preininger et al., 2011) considering the impact of the 

excitation frequency. The outer and inner borders of the cortical bone and callus were 

directly converted to realistic osseous tissue dimensions and introduced to the 
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Figure 5.8: Acoustic pressure variation map for 0.8 MHz and the cases of: (a) intact bone, (b) 

W2-M1, (c) W3-M2, (d) W6-M2, and (e) W9-M1.   

boundary element software. The material properties of the cortical and callus tissues 

and their composite structure were incorporated into the numerical models using the 

iterative effective medium approximation of (Aggelis et al., 2004). Except for the 

callus stiffening and the decrease in callus porosity, the softening of the osseous tissue 

and the increase in cortical porosity are also considered during bone healing according 

to (Preininger et al., 2011).  

Concerning the selection of the numerical method, the main advantage of the  BEM, 

as it is compared to the FEM and the FDM, is its requirement for boundary only 

discretization and not for surface plus volume discretization as FEM and FDM do. 

Thus, BEM is ideal for solving wave scattering problems where infinite domains are 
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Figure 5.9: Acoustic pressure variation map for 1 MHz and the cases of: (a) intact bone, (b) 

W2-M1, (c) W3-M2, (d) W6-M2, and (e) W9-M1.   

dealt with. This advantage becomes more pronounced in 3D problems. For pulse-echo 

signals, BEM works perfectly with the aid of Fast Fourier Transform (FFT). BEM 

uses the frequency domain for the solution of the problem corresponding to FFT 

spectrum of incident pulse and then by using the inverse FFT the results are converted 

to time domain. Since the BEM utilizes the integral representation of the solution of 

the problem, it is more stable and accurate than domain methods like FEM and FDM, 

which actually solve the partial differential equation of the problem. 

In Fig. 5.4, it can be observed that for the excitation frequencies 0.2, 0.4 and 1 MHz 

the scattering amplitude in the backward direction decreases in weeks 3 and 6 

compared to week 2 and increases in week 9 as the callus consolidation progresses. 
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Nevertheless, the Tukey-Kramer test revealed that not all the changes are statistically 

significant. More specifically, according to (Laugier and Haïat, 2011) in soft tissue, 

the density and compressibility of scatterers are close to those of the surrounding 

medium and the contribution of scattering to the overall attenuation is relatively 

small. Thus, the lower scattering amplitude values in weeks 3, 6 and 9 can be 

explained by the presence of soft callus. Subsequently, the higher scattering amplitude 

values in intact bone and week 2 are attributed to the higher elastic coefficient values 

of cortical bone in the transverse direction derived from the SAM images (Preininger 

et al., 2011). 

Also, the calculated p-values were lower than 0.05 for all the examined cases 

indicating that there are statistically significant differences between group means. The 

lowest p-values were calculated for the frequencies 0.2 and 1 MHz.  However, 

statistical tests performed using the Tukey-Kramer method did not reveal significant 

differences between the healing stages week 3-week 6, week 6-week 9 and week 3-

week 9 when pairwise comparisons were performed for the excitation frequencies 0.2, 

0.4 and 1 MHz.  Moreover, no statistically significant differences were detected for 

the frequency 0.8 MHz among all the examined cases, while for the excitation 

frequency 0.6 MHz only the pairs intact bone-week 6 and intact bone-week 9 revealed 

significant statistical differences between two means. Therefore, for the most of the 

examined healing weeks and frequencies, statistically significant decreases in 

scattering amplitude were detected at later stages of healing compared to the earlier 

stages of healing. Nonetheless, the results indicate that the use of the scattering 

amplitude value, as the main quantitative parameter for the evaluation of fracture 

healing, cannot discriminate effectively successive healing stages and more 

specifically variations between week 3-week 6, week 3-week 9 and week 6-week 9. 

Therefore, this study should be further extended considering more numerical models 

per healing stage as well as a longer monitoring period. 

The frequency dependence of wave attenuation and scattering was also investigated 

theoretically in (Potsika et al., 2014a) in which the attenuation coefficient was found 

to be higher in the first healing stages and increased with increasing the frequency in 

the range 0–1.2 MHz. It should be mentioned that at low MHz frequencies, 

attenuation by scattering in soft tissue is typically 10–15% of the total attenuation, 
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while scattering is likely to be an important attenuation mechanism in the bone 

(Laugier and Haïat, 2011).  

The bone healing process was also evaluated qualitatively from the acoustic pressure 

maps of Figs. 5.5–5.9. The maximum values of the acoustic pressure field (Pmax) in 

the backward direction were higher than 1 Pa for all the examined excitation 

frequencies reflecting the total pressure field which is the sum of the incident and 

scattered wave. Specifically, at 0.2 and 0.4 MHz and for the cases of intact bone, 

week 2 and week 9 a regular distribution of the acoustic pressure values was detected 

in almost parallel planes. Also, the presence of the fracture gap was clearly observed 

in the acoustic pressure maps at 0.4 MHz for weeks 2 and 3 as the parallel planes 

were interrupted around the fracture region. This indicates that the acoustic pressure 

maps derived for the proper excitation frequency could potentially provide 

information not only for the occurrence of a gap, but also for the size of the fracture. 

For higher frequencies no specific qualitative information was derived. This could be 

attributed to the higher attenuation of the propagating wave in higher frequencies. 

Also, among the numerical models of weeks 3, 6 and 9 which include the formation 

of callus, higher acoustic pressure values were derived during the early healing stages. 

This can be attributed to the callus consolidation followed by a gradual decrease of 

the inclusions’ volume concentration and diameter during the healing process as well 

as by the cortical bone softening according to (Preininger et al., 2011). 

However, the study of the complex bone scattering phenomena during fracture 

healing has received limited attention comparing to the evaluation of the FAS 

velocity, attenuation and the propagation of guided waves (Protopappas et al., 2005; 

Dodd et al., 2008, Machado et al., 2010; Machado et al., 2011; Rohrbach et al., 2013; 

Potsika et al., 2014a). The calculation of the sound pressure level using an axial 

transmission technique has been also proposed as a parameter which reflects the 

attenuation of the signal energy when it passes through the fracture gap (Machado et 

al., 2010; Dodd et al., 2008). It was found that the sound pressure level values 

initially decrease, while a great variation was observed in later healing stages. This 

was explained by the varying inner callus structure according to the different 

examined models, leading to different scattering/diffraction phenomena inside the 

fracture gap (Machado et al., 2010).  
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An experimental study has been also presented by (Ferreira et al., 2010) in which the 

backscattering method was applied for the characterization of pseudarthrosis in rats. 

An in vitro ultrasonic analysis of four bone samples with pseudarthrosis was 

presented using a 5-MHz circular transducer. The apparent integrated backscatter was 

measured and the calculated values for pseudarthrosis were always higher compared 

to normal bone. This was attributed to the complex matrix composition made of 

fibrous tissue, cartilage and calcified points with different acoustic impedance. Also, 

it was reported that the smaller attenuation and reflection in pseudarthrosis compared 

to bone permit a greater penetration of acoustic energy through the water sample 

interface. However, pseudarthrosis describes the non-consolidation or nonunion of a 

fracture when the process of bone repairing stops for some reason, while the present 

study deals with the evaluation of the backward propagating acoustic field in 

successive healing stages considering a normal process of bone healing.  

Nevertheless, the numerical simulations were based on necessary assumptions and 

limitations. First of all, 2D geometries were established from the 2D SAM imaging 

data. Also, circular scatterers with a constant diameter for each healing stage were 

considered to calculate the effective material properties, while the geometry and 

distribution of the scatterers is random. However, it should be mentioned that the 

diameter of the pores is not the same even for the cortical fragments of the same SAM 

image. The effectiveness and accuracy of IEMA has been examined in (Potsika et al., 

2014a; Aggelis et al., 2004) and this methodology has proven to be a useful tool 

which could simplify complex wave propagation numerical simulations in composite 

media via their replacement with equivalent homogeneous media with effective 

material properties. Furthermore, BEM provides accurate and stable frequency and 

time domain results through FFT. Consequently, for a known microstructure, the 

accuracy of the obtained results is given. Of course uncertainties related to the 

assumptions made about bone microstructure always exist. Also, according to (Ojanen 

et al., 2016) embedding trabecular bone samples can strongly influence the acoustic 

impedance measured by SAM.  It seems possible that material properties of the callus 

which are estimated from impedance measurements may be affected in a similar way. 

The application of a continuous incident wave is another limitation, while this study 

will be extended in the future to apply more realistic experimental conditions. 

Although the scattering amplitude alterations for the case of intact bone and different 
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excitation frequencies can be attributed to the application of IEMA, further 

investigation is required as for most tissues, the attenuation coefficient is a 

monotonically increasing function of frequency. Finally, despite the fact that 3 

different geometries were used for each healing stage, all the SAM images were 

derived from different animals with varying material and geometrical features of the 

osseous and callus tissues. Therefore, this study lays the foundations for future 

experimental research to assess the backscattering method during fracture healing by 

performing serial measurements in vivo for the same specimens. 
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Chapter 6: The impact of cortical porosity on ultrasound 
propagation features 

6.1 Introduction 

6.2 Validation of the Numerical Method: A Benchmark Problem 

6.3 Numerical Evaluation of Cortical Porosity Using Ultrasonic Techniques 

6.4 Results 

6.5 Discussion 

 

 

 

6.1 Introduction 

Aging is associated with accelerated bone loss and increased bone fragility. For the 

assessment of osteoporosis, QUS became attractive as it is free of ionizing radiation, 

less expensive, and has a potential to assess bone material, strength, and structure, 

providing information relevant to bone strength beyond BMD (Sakata et al., 2004). 

Best results from QUS measurements have been achieved using the through 

transmission technique at the calcaneus, a skeletal site consisting predominantly of 

trabecular bone (Grasel et al., 2017). However, cortical bone also substantially 

contributes to the breaking strength of bones. In (Sakata et al., 2004), an in vitro study 

on the assessment of human finger phalanges using QUS showed that the FAS 

velocity is affected by cortical area, cortical bone density, and cortical porosity, 

whereas attenuation only depends on the geometry of the medulla. 

This chapter deals with the potential of QUS to detect changes in cortical 

microstructure using computational methods. Concerning the first 2D computational 

studies, the cortical bone was modeled as a linear elastic homogeneous plate and 

ultrasound simulations were performed for different plate thicknesses to investigate 

the thinning of the cortical cortex due to osteoporosis (Nicholson et al., 2002; Bossy 
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et al., 2002). In (Moilanen et al., 2007), X-ray computed tomography reconstructions 

were derived from the human radius in order to develop more realistic 3D 

computational models of cortical bone. It was shown that for plate thicknesses larger 

than the wavelength the FAS corresponds to a lateral wave which propagates at the 

bulk longitudinal velocity of bone, while for very thin plates the FAS wave 

propagates as the lowest-order symmetric plate mode. More recent 2D and 3D 

computational studies (Rohde et al., 2014, Bourgnon et al., 2014; Moilanen et al,. 

2007; Grimal et al., 2013; Granke et al., 2011; Potsika et al., 2017) take into 

consideration cortical microstructure, porosity and anisotropy. In (Grimal et al., 

2013), SAM images of human femoral neck were used to develop numerical models 

which account for the sample’s overall shape, microstructure, cortical porosity, 

heterogeneous matrix elasticity and density. It was found that the FAS velocity is not 

influenced by trabecular bone properties or by the heterogeneities of the cortical bone 

mineralized matrix. On the other hand, the FAS was sensitive to variations in cortical 

porosity. In addition, in (Rohde et al., 2014), SAM human femoral neck cross-

sections were used to develop multivariate models for the prediction of pore size, 

porosity, and cortical thickness. It was shown that the FAS velocity decreases with 

increasing porosity, while an increase of the cortical thickness and pores’ diameter 

leads to an increase in FAS velocity. It was also reported that cortical porosity has the 

strongest effect on the prediction of the FAS velocity. In addition, a 3D 

micromechanical model consisting of an anisotropic matrix pervaded by cylindrical 

pores was developed in (Granke et al., 2011). It was found that, for the elderly 

population, the elastic properties of the mineralized matrix do not undergo large 

variations among different samples, while changes in the intracortical porosity 

account for most of the variations of mesoscopic elasticity. 

The following subsections present a 2D computational study of ultrasonic propagation 

on healthy and osteoporotic models of cortical bone to examine the effect of porosity 

on the FAS velocity. The established numerical models incorporate the occurrence of 

BMUs, simply called non-refilled resorption lacunae (RL), as the predominance of 

resorption causes an increase in Haversian canal size leading to the increase of 

cortical porosity and fragility (Bourgnon et al., 2014; Thomson, 1980). Initially, 

various microstructural models are established, mimicking normal and pathological 

tissue states with porosity of 5%, 10% and 16%. Then, numerical models are 
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presented to investigate the impact of changes in the number, size, position and depth 

of the RL on the FAS. The central excitation frequencies 0.5 and 1 MHz are 

examined. This is the first systematic and parametric numerical study to evaluate the 

FAS velocity variation along cortical bone derived from small, serial propagation 

paths for different porosities and frequencies, including the occurrence of pores with 

different sizes. The microstructural features were derived from SAM images from 

human tibia cross-sections (Raum et al., 2014). Fig. 6.1a corresponds to a healthy 

specimen, while Fig. 6.1c to an osteoporotic bone with reduced cortical thickness. In 

Fig.6.1b increased number of unrefilled RL indicates an early stage of osteoporosis. 

 
Figure 6.1: Differences in the tibia in patients of increasing age depicted by 50-MHz  using 

SAM. The progression of bone deterioration (from left to right) results in an accumulation of 

large RLs, cortical thinning and changes in the tissue stiffness (Potsika et al., 2014d). 

6.2 Validation of the Numerical Method: A Benchmark Problem 

The most popular numerical methods for ultrasonic evaluation of cortical bone are the 

FDM, FEM and BEM. According to (Treeby et al., 2012), for time domain modeling 

of broadband or high-frequency waves these methods can become cumbersome and 

slow due to the requirements for many grid points per wavelength and small time-

steps to minimize unwanted numerical dispersion. In order to validate the FDTD code 

that is used in this work based on the software SimSonic, LIP, Paris, France (Bossy et 

al., 2010; Bossy et al., 2007), a benchmark problem was established. The results of 

the FDTD method are compared with the MATLAB toolbox k-Wave which combines 

pseudo-spectral and k-space methods, so the spatial gradients are calculated by using 

FFT rather than by using a finite difference stencil (Treebe et al., 2012). The 

computational model of Fig. 6.2a was used corresponding to an intact cortical plate 

with thickness of 4 mm and length 40 mm surrounded by water. The material 

properties of bone and water are presented in Table 6.1. The grid size was set to 20 
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μm and the wave propagation simulation time was 10 μs. A point source and receiver 

were used to calculate the velocity at a distance of 12.5 mm between the transducers. 

The transducers were placed directly onto the cortical surface. A 1-MHz Gaussian 

pulse was used as the excitation signal. According to the results of Fig. 6.3, the two 

waveforms have the same time of arrival of the FAS, as well as the same qualitative 

behavior over time enhancing the accuracy of the FDTD method.  

Table 6.1 Elastic coefficients and density used for the simulations (Potsika et al., 2016a, 

Bourgnon et al., 2014). 

Propagation 
medium 

C11 (GPa) C12 (GPa) C66 (GPa) Ρ (g/cm3) 

Water 2.25 2.25 0 1.00 

Bone 28.71 10.67 9.02 1.85 

 

In order to provide quantitative information for the differences of the two waveforms, 

a convergence study is conducted for the grid sizes of 50, 30 and 20 μm. The 

methodology of waveform rectification was used followed by numerical integration 

via the trapezoidal method. A full-wave rectifier converts the examined waveform to 

a waveform of constant polarity (positive or negative).  

 

Figure 6.2: Numerical models of cortical bone corresponding to the first set of simulations 

(Series I_Po0-16) and Table 6.2, namely: (a) B_Hom, (b) B_Po5, (c) B_Po10, (d) B_Po16, 

(e) B_Po16_RL, (f) B_Po16_Gradual. For each geometry, only one of the three random 

porosity distributions is depicted in the form of 5 mm cortical segments derived from the 

original 40mm × 4mm plates. The ultrasound configuration is also presented in (a). 
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Specifically, the excitation signal was rectified, as well as the received waveforms 

from k-Wave and Simsonic. Numerical integration was applied using the trapezoidal 

method to derive the emitted and received signal area. Next, the ratio of the emitted 

signal area to the received waveforms’ area is calculated, which is a quantitative 

indicator reflecting the whole area of interest. Esim denotes this ratio calculated using 

Simsonic and Ekw using k-Wave. More specifically, the corresponding values were: 

(a) Ekw = 1166, Esim = 1084 (difference50μm = 82) for 50 μm, (b) Ekw = 1935, Esim = 

1921 (difference30μm=14) for 30 μm and (c) Ekw = 2924, Esim = 2919 (difference20μm = 

5) for 20 μm. Therefore, by further decreasing the grid size the value for Ekw will 

coincide with the value of Esim indicating the accuracy of the 2 numerical methods. 

 

Figure 6.3: Particle velocity waveforms derived from two different numerical tools, Simsonic 

and k-Wave, for grid size 20 μm. The threshold for the detection of the FAS is also depicted. 

6.3 Numerical Evaluation of Cortical Porosity Using Ultrasonic 
Techniques 

6.3.1 Model geometry 

In this section, the structural features of the computational models are described 

representing different cases of cortical porosity and pores’ sizes as well as different 

number and distribution of RLs. The structural and material properties were derived 

from (Bourgnon et al., 2014; Potsika et al., 2016a), in which the Haversian canals of 

normal size were differentiated from the RLs to distinguish healthy bones (with no or 

few RL) from degenerated ones. As can be seen in Fig. 6.2, the cortical bone was 

modeled as a 2D plate (length 40 mm, width 4 mm) surrounded by water (upper 

surface 4 mm, lower surface 2 mm).  
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Two sets of numerical simulations were performed in order to evaluate: (a) porosity 

changes from 0% to 16% covering the whole region of cortical bone (Series I_Po0-

16), (b) the occurrence of a single or a cluster of RLs in small propagation paths 

(Series II_RL). The selection of the porosities of Series I_Po0-16, and the sizes of the 

RL were based on previous studies investigating the interaction of ultrasound with 

cortical porosity (Rohde et al., 2014; Malo et al., 2013; Potsika et al., 2014b; 

Bourgnon et al., 2014). However, it should be emphasized that the evaluation of 

cortical porosity depends on several parameters such as age, gender and region of 

interest (Malo et al., 2013). The first set is presented in Fig. 6.2, in which cortical 

bone was modeled both as a homogeneous and nonhomogeneous medium to account 

for the cases of: (a) intact bone (Fig. 6.2a), (b) porosity 5% (Fig. 6.2b), (c) porosity 

10% (Fig. 6.2c), and (d) porosity 16% (Fig. 6.2d, e, and f). In Table 6.2, the exact 

structural features are presented concerning the porosity as well as the number and 

dimensions of the normal and larger pores. For each microstructural scenario of Table 

6.2, a total of three numerical models were established and the mean local FAS 

velocity values were calculated, as well as the standard error. 

Circular scatterers were considered in the transverse direction and the selected radii of 

normal pores and RL are presented in Table 6.2. Given the porosity and the 

dimensions of the plate and scatterers, the number of the pores can be calculated. An 

algorithm was developed to generate the osseous and soft tissues as greyscale values 

and the “porosity maps” with a random distribution of the pores. The scatterers were 

not in contact and did not merge with each other as well as with the cortical 

boundaries. 

Fig. 6.4 illustrates cortical segments of Series II_RL in which the cortex of a long 

bone was modeled initially as a 2D homogeneous plate including the presence of 1 

RL at different lengths, depths and diameters (Fig. 6.4a–e). Then, Fig.6.4f–h account 

for cortical microstructure to simulate the case of normal remodeling (Table 6.2: cases 

B_Po5_RL1, B_Po5_RL3, B_Po5_RL5) including a single or a cluster of RL in the 

center of the plate. 

6.3.2. Material properties 

The cortical bone was modeled as an isotropic, linear elastic medium. It was assumed 

that the soft tissues surrounding the cortical plate, as well as the circular pores are 
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composed of water.  Table 6.1 summarizes the material properties assigned to the 

cortical bone, scatterers and soft tissues which were derived from (Potsika et al., 2016a, 

Bourgnon et al., 2014). 

Table 6.2 Examined cases in the tangential direction for the second set of the simulations. 

 Description 
Porosity 

(%) 
No. of 
pores 

Pores’ 
radius 

(μm) 

No. of 
RL/RLs 

Radius of 
RL/RLs 

(μm) 

B_Hom Homogeneous bone 0 0 – – – 

B_Po5 
Porous bone, normal 

pores 
5 1592 40 – – 

B_Po5_RL

1 

Porous bone, normal 

pores and 1 RL 
5 1592 40 1 115 

B_Po5_RL

3 

Porous bone, normal 

pores and 3 RLs 
5 1592 40 3 115 

B_Po5_RL

5 

Porous bone, normal 

pores and 5 RLs 
5 1592 40 5 115 

B_Po10 
Porous bone, normal 

pores 
10 1592 60 – – 

B_Po16 
Porous bone, normal 

pores 
16 2263 60 – – 

B_Po16_RL 
Porous bone, normal 

pores and RLs 
16 1400 60 235 115 

B_Po16_ 

Gradual 

Gradual distribution 

of the pores, normal 

pores and RLs 

16 1775 
40, 60, 

80 
192 115 

6.3.3. Ultrasound configuration 

Simulations of ultrasound propagation were performed in the tangential direction 
(Fig. 6.2a). Calculations were conducted by placing one point source and 14 point 
receivers: (a) at a distance 2 mm from the upper cortical layer (non-contact 
transducers), (b) directly onto the cortical cortex (implanted transducers). The 
distance between two successive receivers was 2.48 mm implying that the distance 
between the emitter and the receivers ranges from 1.984 to 34.224 mm (receiver 1 
(R1) – receiver 14 (R14)). The width of each transducer was equal to 11 elements. 
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The use of a linear array of transducers is in agreement with existing ultrasonic 
devices for bone characterization such as the bidirectional device in (Muller et al., 
2005). 

 
Figure 6.4: Numerical models of cortical bone corresponding to the second set of simulations 

(Series II_RL) focusing on the regions of the occurrence of RL: (a) homogeneous bone, 1 RL 

with center coordinates (x, y) = (20, 2), (b) homogeneous bone, 1 RL with center coordinates 

(x, y) = (20, 3), (c) homogeneous bone, 1 RL with center coordinates (x, y) = (20, 1), (d) 

homogeneous bone, 1 RL with center coordinates (x, y) = (27, 2) mm, (e) homogeneous bone, 

1 RL with center coordinates (x, y) = (20, 2) and double the diameter, (f) B_Po5_RL1, (g) 

B_Po5_RL3, (h) B_Po5_RL5. 

6.3.4. Determination of the ultrasonic wave propagation path and velocity 

The “local FAS velocities” correspond to small propagation paths and were calculated 

as the difference in the FAS arrival time of the signals from successive receivers 

(distance 2.48 mm). In this way, the structural changes along small regions of cortical 

bone can be estimated due to porosity variations or to the presence of larger pores. 

When multiple receivers are considered, the change in the FAS arrival time Δt (μs) 

can be calculated using Δt(x) = t(xi) − t(xi-1), where i is the number of the receiving 

position, t(xi) is the arrival time of the signal at receiver i and t(xi-1) is the arrival time 

at the previous receiver (Dodd et al., 2008). For the detection of the FAS a threshold 

was applied to the receiving waveforms corresponding to the identification of the first 

signal extremum (Fig. 6.3) (Potsika et al., 2014c). 

6.3.5. Boundary conditions 

The cortical cortex was surrounded by soft tissues and perfectly matched layers 

(PML) were used to limit spurious reflections from the boundaries simulating an 
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infinitely long model. The PML efficiency was set to 80 dB which means that the 

wave reflected by the PML is expected to be 80 dB below the amplitude of an 

incident wave, in the case of normal incidence (Bossy et al., 2010; Bossy et al., 

2007). 

6.3.6. Numerical simulation and signal analysis in the time domain 

The numerical solution of the 2D wave propagation problem was carried out by using 

an FDTD code (Bossy et al., 2010; Bossy et al., 2007). The computations are based 

on a system of elastodynamic equations corresponding to the propagation of 

mechanical waves in continuous media which obey Hooke's law and are expressed as: 

			ρሺxሻ ∂ui

∂t
ሺx,tሻ=෍ ∂Tij

∂xj

d

j=1

ሺx,tሻ+fiሺx,tሻ , (6.1)

∂Tij

∂t
ሺx,tሻ=෍෍ cijklሺxሻ ∂uk

∂xl

d

l=1

d

k=1

ሺx,tሻ+θijሺx,tሻ , (6.2)

where subscripts i={1,…,d} refer to the direction of space and d to the space 

dimension (d=2 for 2D computational models), x and t are the space and time 

variables, ρ(x) is the mass density and c(x) is the fourth-order rigidity tensor. These 

parameters entirely define the material properties and geometry of the medium. ui (x, 

t) are the vector components of the particle velocity field, Tij (x, t) are the components 

of the stress tensor, while fi denote the vector components of force sources and θij 

denote the tensor components of strain rate sources.  

A Hanning pulse was used as the excitation signal including four sinusoidal cycles 

(Potsika et al., 2014a). The examined central angular frequencies were 0.5 and 1 

MHz. The duration of the simulations was 25 μs. The accuracy of the solution 

depends on the relation between the element size and the wavelength. According to 

the software requirements, the stability condition is defined as: 																																																																Δt ≤
1√d

Δx
cmax

, (6.3)

where Δt and Δx denote the time and spatial steps used to approximate time or spatial 

derivatives, cmax is the largest speed of sound amongst all the simulated materials 

(cmax = cbone = 3939 m/s), and d refers to the space dimension (d=2). The grid size was 
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set to 8 μm, and a convergence study is presented in the following subsection to 

demonstrate the accuracy of the findings. 

The grid size must be dense enough to ensure an accurate numerical solution and to 

minimize the computational cost. In addition, it must be small enough in comparison 

to the diameter of the pores. The convergence study is based on the numerical model 

B_Po5 which integrates the smallest scatterers among all the geometries of Table 2. 

Two transducers were considered which were placed directly onto the cortical surface 

and their distance was set to 20 mm. FDTD simulations were conducted and the FAS 

velocities were calculated for the central excitation frequency 1 MHz and the grid step 

sizes 4, 8, and 16 µm. The calculated FAS values were 3499 m/s for 4 μm, 3495 m/s 

for 8 μm, and 3489 m/s for 16 μm. It can be concluded that the 8-μm grid size is a 

good compromise for an accurate numerical solution and less time consuming 

simulations. 

6.3.7. Statistical analysis 

A statistical analysis was conducted and the results are presented as local mean FAS 

velocity ± standard error. Linear regression analysis and one-way analysis of variance 

(one-way ANOVA) were used to evaluate changes in porosity. The statistical findings 

were considered significant for p-values less than 0.05 (Rohrbach et al., 2012). 

6.4 Results 

Figs. 6.5–6.13 present the results derived from the two simulation sets of Figures 6.2 

and 6.4 and the central excitation frequencies 0.5 and 1 MHz. As multiple receivers 

were considered and small propagation paths were examined, the horizontal axis 

represents the distance of each receiving element from the starting point of the plate 

with coordinates (x, y) = (0, 0). First, in subsection 6.4.1, the results are presented for 

porosity changes from 0–16%, and then, in subsection 6.4.2, the findings 

corresponding to the occurrence of a single or a cluster of RLs in small propagation 

paths at different depths, lengths and sizes. 
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6.4.1. First set of simulations (Series I_Po0-16) 

6.4.1.1. Implanted transducers 

Figure 6.5 presents the FAS velocity variation profile from multiple implanted 

receivers considering cortical bone as a nonhomogeneous medium with porosity from 

0 to 16%. The local FAS velocities were calculated as the mean values from the same 

receiving position of three simulation maps with different random distributions of the 

pores keeping the same microstructure characteristics. The mean FAS velocities and 

the standard error bars for the excitation frequency 0.5 MHz are presented in Fig. 

6.5a–c and for 1 MHz in Fig. 6.5d–f.  

 

Figure 6.5: The potential of the mean local FAS velocity to detect changes in cortical porosity 

from 0%–16%. The diagrams correspond to the first set of simulations under the assumption 

of implanted transducers and the excitation frequencies: (a)–(c) 0.5 MHz and (d)–(f) 1 MHz. 

The standard error bars demonstrate the FAS velocity variation for the three numerical 

models established for each porosity scenario.  

It can be observed that a porosity increase leads to the decrease of the FAS velocity 

variation profile, and this is more apparent for the excitation frequency 0.5 MHz.  
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More specifically, considering the case B_Hom as the reference case, the relative 

percentage differences in Fig. 6.5a for the cases B_Po5, B_Po10 and B_Po16 were 

calculated in the range 4.32–7.87%, 6.58–13.53% and 6.41–20.34%, respectively. 

These findings can be directly compared with Fig. 6.5d. For the excitation frequency 

1 MHz, the relative percentage differences for the cases B_Po5, B_Po10 and B_Po16 

were from 3.14% to 6.67%, 3.91–12.10% and 7.35–15.56%, respectively. Then, 

Figures 4b, c, e, and 4f present more realistic scenarios of pathology including both 

normal pores and RLs for the case B_Po16_RL (Fig. 6.5b for 0.5 MHz and Figure 4e 

for 1 MHz) and the gradual formation of osteoporosis (Fig. 6.5c for 0.5 MHz and Fig. 

6.5f for 1 MHz). In Fig. 6.5b, a porosity increase up to 16% including the occurrence 

of RLs (B_Po16_RL) leads to a decrease of the local FAS velocities and the relative 

percentage differences were from 9.23% to 19.71% for the excitation frequency 0.5 

MHz. In addition, it was observed that there are few positions (e.g. Fig. 6.5b, x = 30–

32 mm) which show a minor increase of the FAS velocity locally despite the porosity 

increase. Fig. 6.5e presents the FAS velocities for B_Po16_RL and the excitation 

frequency 1 MHz. It can be seen that as the frequency increases it is more difficult to 

discriminate a specific FAS velocity behavior among the cases B_Po10 and 

B_Po16_RL. Finally, Fig. 6.5c and 6.5f show the potential of the local FAS velocity 

to detect the gradual formation of osteoporosis.  

The diagram B_Po5 is depicted in the same diagram with B_Po16_Gradual as when 

osteoporosis is gradually formed the upper cortical layer has the microstructure of a 

healthy bone, while the porosity and pores’ size increase starts from the endosteal 

region. The relative percentage differences for the case B_Po16_Gradual keeping 

B_Hom as the reference case were calculated from 8.70% to 16.63% for the 

excitation frequency 0.5 MHz (Fig. 6.5c) and from 5.02% to 15.49% for 1 MHz (Fig. 

6.5f), respectively.  

Then, one-way ANOVA was conducted and the p-value was calculated. It was found 

to be lower than 0.05 (p ≈ 0), implying that there are significant differences between 

group means. Linear regression analysis was also performed, as in some receiving 

positions of Fig. 6.5 the mean FAS velocity was found to increase locally despite the 

porosity increase. Fig. 6.6 shows that linear regression analysis is not influenced by 

local  phenomena,  and  the  examined cases can  be discriminated. The corresponding 

equations, coefficients of determination (R2) and root mean square errors (RMSE) are 
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included in Tables 6.3, 6.4. All the results are not presented graphically to reduce 

complexity, as similar findings to Fig. 6.6 were derived. 

 
Figure 6.6: Linear fit derived from multiple receiving positions for cortical porosities from 0 

to 10%. The diagrams correspond to the first set of simulations under the assumption of 

implanted transducers and the excitation frequencies: (a) 0.5 MHz, and (b) 1 MHz. The 

corresponding equations, coefficients of determination and root mean square errors are 

presented in Tables 6.3, 6.4. 

Table 6.3 Linear fit of the mean FAS velocities derived from all the receiving positions and 

the excitation frequency 0.5 MHz. 

 
Implanted transducers 

Transducers at a distance of 2 mm 
from the cortical surface 

y = ax + b R2 RMSE y = ax + b R2 RMSE 

B_Hom y = 2.27x + 3844 0.54 16.56 y = 3.00x + 3815 0.52 22.79 

B_Po5 y = 0.17x + 3661 0.01 37.94 y = 2.81x + 3577 0.17 48.84 

B_Po10 y = 0.72x + 3475 0.01 78.51 y = 0.28x + 3489 0.01 66.92 

B_Po16 y = −4.37x + 3417 0.09 110.08 y = −3.64x + 3385 0.53 24.58 

B_Po16_RL y = −4.09x + 3434 0.06 123.45 y = −3.23x + 3410 0.06 92.93 

B_Po16_ 

Gradual 
y = 1.38x + 3409 0.02 75.88 y = 1.57x + 3397 0.03 59.72 
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Table 6.4 Linear fit of the mean FAS velocities derived from all the receiving positions and 

the excitation frequency 1 MHz. 

 
Implanted transducers 

Transducers at a distance of 2 mm 
from the cortical surface 

y = ax + b R2 RMSE y = ax + b R2 RMSE 

B_Hom y = 1.08x + 3898 0.80 4.26 y = 1.65x + 3879 0.80 6.37 

B_Po5 y = −1.41x + 3748 0.28 17.82 y = −1.81x + 3759 0.19 29.16 

B_Po10 y = −1.54x + 3639 0.02 93.23 y = −1.78x + 3628 0.06 57.31 

B_Po16 y = −1.36x + 3549 0.01 100.58 y = −0.06x + 3510 0.01 30.84 

B_Po16_RL y = −5.38x + 3702 0.13 111.10 y = −3.21x + 3647 0.28 36.73 

B_Po16_ 

Gradual 
y = 3.96x + 3440 0.15 72.96 y = 4.49x + 3406 0.16 73.61 

6.4.1.2. Transducers at a distance of two millimeters from the cortical cortex 

Figure 6.7 presents snapshots of ultrasound wave propagation for indicative cases 

considering the excitation frequency 1 MHz and time instant 10 μs. It is shown that, 

as porosity increases, multiple scattering mechanisms evolve (Figs. 6.7d, e, and f). In 

addition, it can be observed that the application of PML limits spurious reflections 

from the boundaries, but the phenomenon is not totally diminished.  

Then, in Fig. 6.8 the received waveforms are illustrated derived from receiver R8, 

which is placed above the region of the cluster of 5 RLs (Fig. 6.5h) for indicative 

cases and the excitation frequency 1 MHz. It can be seen in Fig. 6.9a that the increase 

of porosity induces a delay in the propagation of the signal if we compare the zero-

crossing times. 

An increase in amplitude was also found with increasing the porosity. A comparison 

of the waveforms of the cases B_Po16 and B_Po16_RL is presented in Fig. 6.8b, 

showing that the occurrence of the larger pores has an effect on the received 

waveforms. However, in Fig. 6.8c, the waveforms for the cases B_Po5 and 

B_Po5_RL5 almost coincide, while no difference can be observed at the 

corresponding snapshots of Fig. 6.7.  
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Figure 6.7: Snapshots of wave propagation for the first set of simulations using non-contact 

transducers for the excitation frequency of 1 MHz and time instant 10 μs for the cases: (a) 

B_Hom, (b) B_Po5, (c) B_Po5_RL5, (d) B_Po10, (e) B_Po16, and (f) B_Po16_RL. 

Fig. 6.9 presents the mean FAS velocities and standard error bars when the 

transducers are placed at a distance of 2 mm from the cortical surface. The porosities 

from 0% to 16% are examined as in Fig. 6.5. In Figs. 6.9a and d, low FAS velocities 

are observed for the receivers which are placed before x = 12 mm due to the direct 

propagation of the FAS via the soft tissues.  

 
Figure 6.8: Waveforms derived from receiver R8 for the excitation frequency 1 MHz and 

simulation time 20 μs comparing the examined cases: (a) B_Hom, B_Po5, B_Po10 and 

B_Po16, (b) B_Po16 and B_Po16_RL, (c) B_Po5 and B_Po5_RL5. 
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More specifically, considering the case B_Hom as the reference case, the relative 

percentage differences in Fig. 8a for 0.5 MHz and B_Po5, B_Po10 and B_Po16 

were calculated in the range 4.71–7.65%, 7.22–12.83% and 12.90–17.60%, 

respectively. For the excitation frequency 1 MHz (Fig. 6.9d), the relative percentage 

differences for B_Po5, B_Po10 and B_Po16 were from 4.24% to 6.89%, 

 

Figure 6.9: The potential of the mean local FAS velocity to detect changes in cortical porosity 

from 0% to 16%. The diagrams correspond to the first set of simulations when the transducers 

are placed at a distance of 2 mm from the cortical cortex. The results for the excitation 

frequencies: (a)–(c) 0.5 MHz, (d)–(f) 1 MHz are presented. The standard error bars 

demonstrate the FAS velocity variation for the three numerical models established for each 

porosity scenario. 

6.37–12.19% and 8.78–11.82%, respectively. Then, Figs. 6.9b and e correspond to the 

case B_Po16_RL and are directly compared with the case B_Po10. Keeping B_Hom 

as the reference case the relative percentage differences for B_Po16_RL were from 

10.51 to 18.33% for 0.5 MHz (Fig. 6.9b) and 7.17–11.62% for 1 MHz (Fig. 6.9e). 
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Thus, even if according to Fig. 6.8b, the two waveforms seem to coincide for 

propagation time less than 10 μs, however the calculation of the FAS in small 

propagation paths shows quantitative differences when large pores are considered. 

The results for the gradual distribution of the pores are shown in Figs. 6.9c and 9f. 

The relative percentage differences for B_Po16_Gradual were derived from 9.02% to 

14.55% for the excitation frequency 0.5 MHz (Fig. 6.9c) and from 6.31% to 12.95% 

for 1 MHz (Fig. 6.9f), respectively. It should be mentioned that Figs. 6.9b, c, e, and 9f 

do not show the whole propagation path as the initial low values of Figs. 6.9a, b 

corresponding to the direct FAS propagation through the water were neglected. In 

addition, linear regression analysis was performed and the results are depicted in 

Tables 6.3 and 6.4. It was shown that the examined cases can be discriminated even 

for the diagrams of Figure 6.9e in which the mean local FAS velocities do not show a 

specific behavior with increasing the porosity.  

Concerning one-way ANOVA, the p-value was lower than 0.05 (p ≈ 0) ignoring the 

receiving positions near the source (d < 12 mm). The reason for not considering the 

first receivers in the calculations is that as it can be seen in Figs. 6.9a, d for d < 12 

mm, the FAS wave propagates directly in the soft tissues and low velocities are 

derived in comparison to the bulk longitudinal velocity of bone. This assumption was 

also considered for the cases of Fig. 6.5 to keep the same conditions. 

6.4.2. Second set of simulations (Series II_RL) 

This section presents the results corresponding to the occurrence of: (a) a single RL at 

different depths, lengths and sizes under the assumption of cortical homogeneous 

bone (Figs. 6.10, 6.12), (b) a single or a cluster of RL taking into account cortical 

microstructure (Figs. 6.11, 6.13). 

6.4.2.1. Implanted transducers 

In Figs. 6.10 and 6.11, implanted transducers are used and the excitation frequencies 

0.5 and 1 MHz are examined. Figs. 6.10a, b, and c depict the local FAS velocity 

variation profile for the excitation frequency 0.5 MHz and the presence of a single 

RL. For comparison purposes, all the diagrams include the calculated values for the 

intact bone (blue line) and the case of a single RL with center coordinates (x, y) = (20, 

2) (red line). All the diagrams start from a distance of 15 mm in the x axis as for lower 
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cortical lengths all the curves coincide. In Fig. 6.10a, it can be observed that for 0.5 

MHz the occurrence of one RL in the center of the plate can be captured by the 

receivers which are placed directly above the region of interest showing an increase of 

the FAS velocity of 35 m/s compared to the homogeneous bone diagram. In addition, 

keeping the same RL position and doubling the diameter of the pore (orange line), the 

receivers which are placed in the position x = 19–21 mm are the first to detect an 

increase of the FAS velocity  of 58 m/s in comparison to the homogeneous bone 

value. Fig. 6.10b shows the impact of the depth of the RL occurrence on the FAS 

velocity. It can be seen that, if by placing the RL at a higher cortical surface (grey 

line), the receivers which first capture the presence of a pore are placed again in the 

propagation path between x = 19–21 mm showing a velocity decrease of 29 m/s 

comparing to the reference case of homogeneous bone. On the other hand, when the 

depth from the cortical surface increases (purple line), there is a delay in the 

identification of the RL by the receivers above the region of x = 25–21 mm showing 

an increase of the FAS velocity of 57 m/s. Finally, Fig. 6.10c shows that if by 

changing the RL position along the x axis, the receivers which are placed above the 

region of interest are the first to detect an increase of the FAS velocity of 23 m/s 

revealing the position of the RL formation. 

Figs. 6.10d, e, and f present the local FAS velocity variation profile for the excitation 

frequency 1 MHz and the presence of a single RL. In Fig. 6.10d, it can be seen that 

the occurrence of a single RL in the center of the plate (red line) can be identified 

with a delay by the receivers which follow the region of interest (around x = 23 mm) 

showing an increase of the FAS velocity of 23 m/s. In addition, it was found that 

when the diameter of the RL is doubled (orange line), the same receivers are the first 

to detect an increase of the FAS velocity of 41 m/s. Then, Fig. 6.10e indicates that by 

increasing the depth from the cortical surface (purple line), the larger pore cannot be 

detected as this diagram coincides with the case of homogeneous bone (blue line). On 

the other hand, the occurrence of the RL near the upper cortical surface (grey line) 

leads to a decrease of the FAS velocity of 46 m/s derived from the receivers directly 

above the region of interest. Finally, Fig. 6.10f shows that by changing the position of 

the RL along the x axis, the receivers which are placed approximately at a distance of 

3 mm after the pore are the first to capture an increase of the FAS velocity of 47 m/s. 
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Then, Fig. 6.11 deals with the potential of the local FAS velocity to detect the 

occurrence of a single or a cluster of three or five large pores in the center of the plate 

taking into account the nonhomogeneous nature of cortical bone. Fig. 6.11a presents 

the FAS velocity variation profile for the excitation frequency 0.5 MHz, while Fig. 

6.11b the FAS values for 1 MHz considering the diagram of B_Po5 (red line) as the 

reference case. For the excitation frequency 0.5 MHz the relative percentage 

differences  were  calculated  in  the range: (a) 0.04 – 0.28% for B_Po5_RL1, (b) 0.04 

– 1.36 %  for B_Po5_RL3  and  (c) 0.04 – 3.08 %   for  B_Po5_RL5. It can be seen 

that the first receivers which can identify the RL occurrence are placed above the 

region of interest (x = 20–22 mm). A 2-mm delay in the detection of the larger pores 

 

Figure 6.10: The potential of the local FAS velocity to detect the occurrence of a single RL 

considering cortical bone as a homogeneous medium (geometries illustrated in Figs. 6.3a–e). 

The diagrams correspond to the second set of simulations under the assumption of implanted 

transducers and the excitation frequencies: (a)–(c) 0.5 MHz, and (d)–(f) 1 MHz. The legend 

describes the center coordinates of the RL. 
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Figure 6.11: The potential of the local FAS velocity to detect the occurrence of a single or a 

cluster of RL considering cortical bone as a nonhomogeneous medium for the cases B_Po5, 

B_Po5_RL1, B_Po5_RL3 and B_Po5_RL5 (geometries illustrated in Figs. 6.4f–h). The 

diagrams correspond to the second set of simulations under the assumption of implanted 

transducers and the excitation frequencies: (a) 0.5 MHz, and (b) 1 MHz. 

is observed in Fig. 6.11b for 1 MHz as they are first identified from the receivers in 

the region x = 22–24 mm. Lower relative percentage differences were calculated 

compared to 0.5 MHz from: (a) 0.05–0.24% for B_Po5_RL1, (b) 0.23–0.42% for 

B_Po5_RL3, and (c) 0.05–0.85% for B_Po5_RL5. 

6.4.2.2. Transducers at a distance of two millimeters from the cortical cortex 

Figs. 6.12a–c present the local FAS velocity variation profile for the excitation 

frequency 0.5 MHz and the presence of a single RL by placing the transducers at a 

distance of 2 mm from the cortical cortex. All the diagrams include the case of intact 

homogeneous bone (blue line) and the case of a single RL with center coordinates (x, 

y) = (20, 2) (red line). In Fig. 6.12a, it can be seen that, for 0.5 MHz, the occurrence 

of one RL in the center of the plate can be captured by the receivers which are placed 

directly after the region of interest (between x = 21–23 mm) showing a decrease of the 

FAS velocity of 17 m/s compared to the homogeneous bone diagram. Then, if we 

keep the same RL position and double the diameter of the RL (orange line) the same 

receivers are the first to detect an increase of the FAS velocity of 41 m/s in 

comparison to the homogeneous bone value. Fig. 6.12b shows the impact of the RL 

depth on the FAS values.  It can be observed that by placing the RL at a higher 

cortical layer (grey line), the receivers which first capture the presence of a pore are 

placed directly above the region of interest showing a velocity decrease of 89 m/s 

compared to the reference case of homogeneous bone. However, if we increase the 

depth from the cortical cortex (purple line), the receivers which are placed at a 
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distance almost 5 mm from the RL are the first to identify its occurrence showing an 

increase of the FAS velocity of 51 m/s. Finally, Fig. 6.12c shows that if we change the 

RL position along the x-axis, the receivers which are placed above the region of 

interest are the first to capture an increase of the FAS velocity of 23 m/s revealing the 

position of the larger pore. 

 

Figure 6.12: The potential of the local FAS velocity to detect the occurrence of a single RL 

considering cortical bone as a homogeneous medium (geometries illustrated in Figs. 6.4a–e). 

The diagrams correspond to the second set of simulations when the transducers are placed at a 

distance of 2 mm from the cortical cortex. The results for the excitation frequencies: (a)–(c) 

0.5 MHz, and (d)–(f) 1 MHz are presented. The legend describes the center coordinates of the 

RL.  

Additionally, Figs. 6.12d–f present the local FAS velocity variation profile for the 

excitation frequency 1 MHz and the presence of a single RL. Specifically, Fig. 6.12d 

shows that the occurrence of a single RL in the center of the plate (red line) can be 
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identified with a delay by the receivers which follow the region of interest (around x = 

23–25 mm) showing an increase of the FAS velocity of 35 m/s. In addition, it can be 

observed that by doubling the diameter of the RL (orange line) the same receivers are 

the first to identify an increase of the FAS velocity of 65 m/s. Fig. 6.12e shows that 

when the depth from the cortical surface is increased (purple line), the larger pore 

cannot be detected as this diagram almost coincides with the case of homogeneous 

bone. On the contrary, the occurrence of the RL near the upper cortical surface (grey 

line) leads to a decrease of the FAS velocity of 57 m/s, and it can be identified with a 

small delay by the receivers placed above the propagation path between x = 21–23 

mm. Finally, Fig. 6.12f shows that by changing the position of the RL along the x-

axis, the receivers which are placed between x=29–31 mm are the first to detect an 

increase of the FAS velocity of 17 m/s. 

Next, Fig. 6.13 deals with the potential of the local FAS velocity variation profile to 

identify the occurrence of a single or a cluster of three or five large pores in the center 

of the plate taking into account the cortical microstructure. Fig. 6.13a illustrates the 

local FAS velocities for the excitation frequency 0.5 MHz, while Fig. 6.13b shows the 

FAS values for 1 MHz considering B_Po5 (red line) as the reference case. For the 

excitation frequency 0.5 MHz, the relative percentage differences were calculated in 

the range: (a) 0.05–0.75% for B_Po5_RL1, (b) 0.05–1.41% for B_Po5_RL3 and (c) 

0.18–2.71% for B_Po5_RL5. It can be observed that the first receivers which capture 

the RL are placed between x = 21–23 mm showing a short delay. Α 4-mm delay in the 

detection of the larger pores can be seen in Fig. 6.11b for 1 MHz and lower relative 

percentage differences were calculated compared to 0.5 MHz from: (a) 0.04–0.32% 

for B_Po5_RL1, (b) 0.14–0.46% for B_Po5_RL3, (c) 0.05–0.79% for B_Po5_RL5, 

respectively. 

6.5 Discussion 

This chapter presented a 2D parametric and systematic computational study aiming to 

investigate the effect of cortical porosity on ultrasound wave propagation in healthy 

and osteoporotic long bones. In comparison to previous studies (Rohde et al., 2014; 

Bourgnon et al., 2014), more realistic porosity scenarios were established, as this is 

the first time that the distribution of the pores was randomized including normal 

pores, as well as pores with diameters larger than the Haversian canal size. Moreover, 
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Figure 6.13: The potential of the local FAS velocity to detect the occurrence of a single or a 

cluster of RL considering cortical bone as a nonhomogeneous medium for the cases B_Po5, 

B_Po5_RL1, B_Po5_RL3 and B_Po5_RL5 (geometries illustrated in Figs. 6.4f–h). The 

diagrams correspond to the second set of simulations when the transducers are placed at a 

distance of 2 mm from the cortical cortex. The excitation frequencies: (a) 0.5 MHz, (b) 1 

MHz are examined. 

the analysis was not limited to a small segment of cortical bone with the presence of 

only one large BMU as in (Bourgnon et al., 2014). 

The gradual formation of osteoporosis was also considered by simulating more 

physiological distributions of pores with larger pores in the endosteal cortex and 

smaller ones in the periosteum. The excitation frequencies 0.5 and 1 MHz were 

examined to investigate which frequency is more sensitive to detect changes in 

cortical porosity and the occurrence of RLs. Numerical simulations of wave 

propagation were performed in the tangential direction and various microstructural 

models mimicking normal and pathological tissue states were investigated. In 

comparison to traditional FAS velocity measurements using one emitter and one 

receiver, calculations of “local” FAS values were conducted in small successive 

propagation paths along the cortical cortex aiming to better comprehend the 

interaction of ultrasound with cortical microstructure. 

Initially, in Fig. 6.5 the FAS velocity variation profile was examined along cortical 

bone for microstructural models with porosities from 0–16%. It was made clear that 

as the porosity increases, the FAS velocities calculated in small propagation paths 

decrease for both the examined frequencies. However, the relative percentage 

differences calculated considering B_Hom as the reference case were higher for 0.5 

MHz comparing to 1 MHz. Moreover, Fig. 6.8a shows a delay in the time of arrival 

with increasing the porosity followed by an amplitude increase. This may be 
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explained by the reflection mechanisms, which enhance the received signal for higher 

porosities. However, despite the significance of the calculation of the FAS velocities 

from the first signal extremum, the evaluation of the whole waveform would be a 

possible direction for future research based on guided wave analysis or on the 

waveform rectification followed by numerical integration via the trapezoidal method.  

Additionally, the use of implanted transducers led to higher relative percentage 

differences compared to the use of non-contact transducers, while a delay in the 

detection of a single or a cluster of RL was observed for non-contact transducers. This 

can be attributed to the attenuation mechanisms induced by the presence of the soft 

tissues in the propagation path. The attenuation mechanisms include the evolution of 

absorption and scattering phenomena. Scattering is induced in bone due to the 

presence of the pores while soft tissues are major sources of acoustic wave absorption. 

Despite the accuracy of the FDTD method, which was demonstrated via a 

convergence study, a limitation of the present work is the simulation weakness of the 

software to account for attenuation effects resulting from the viscoelasticity (Rohde et 

al., 2014). In addition, it should be mentioned that the use of implanted transducers is 

considered as an invasive procedure for osteoporosis and was examined only for 

comparison purposes with the non-contact transducers. In clinical practice, their 

insertion is easy for fracture healing assessment (Protopappas et al., 2005), but, for 

the evaluation of osteoporosis, this configuration is not applied during in vivo 

measurements. 

Concerning the case of pathology with porosity 16%, two additional scenarios were 

investigated to account for the presence of pores with different diameters, as well as 

for the gradual formation of osteoporosis. It was found that the FAS velocity variation 

profile shows a decrease along the cortical cortex for both B_Po16_RL and 

B_Po16_Gradual for 0.5 MHz. On the other hand, the excitation frequency 1 MHz 

was not convenient for B_Po16_RL (Figs. 6.5e and 6.9e) as no specific FAS velocity 

tendency was observed, while, for B_Po16_Gradual, it was sensitive to the gradual 

porosity increase. A direct comparison of the received signals from B_Po16 and 

B_Po16_RL was also included in Fig. 6.8b showing a difference in the received 

signals due to the occurrence of large pores. 

Additionally, a statistical analysis was conducted based on the estimation of the 

standard errors, one-way ANOVA and linear regression analysis. It should be 
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mentioned that the receiving positions near the source (d < 12 mm) were ignored as 

for short distances between the transducers, low velocities are calculated, revealing 

that the FAS propagates directly via water (Figs. 6.9a and d). The calculated p-values 

were lower than 0.05 indicating that there are statistically significant differences 

between group means as the porosity increases from 0 to 16%. The low p-values can 

be explained by the high dispersion of the FAS velocity derived from serial 

measurements for porosity 16%. Linear regressions analysis revealed a specific FAS 

velocity trend even for the cases of Figs 6.5e and 6.9e. Nevertheless, low R2 values 

were derived implying that this analysis could be used only for supplementary 

observations following traditional local and successive FAS velocity measurements. 

The establishment of three numerical models for each case is another parameter which 

requires further discussion. The use of three models is considered as a good 

compromise to reduce the computational cost and derive accurate conclusions taking 

into account the calculated standard error values. More specifically, for all the 

examined cases, the maximum FAS velocity variation among the three computational 

models was far less than 5%, thus it was decided not to proceed to additional runs to 

keep calculations and simulations simpler. 

Then, the case of normal remodeling was examined including the presence of a single 

or a cluster of RL. Specifically, it was shown that for implanted transducers and 0.5 

MHz, as well as for both the hypothetic case of homogeneous and the realistic of 

nonhomogeneous bone, the presence of one or more RLs can be identified by the 

receivers which are placed directly above the region of interest revealing the 

effectiveness of the FAS wave as an indicator. The same observation was made for all 

the sizes, numbers, depths and lengths of the RL. However, the use of 1 MHz or the 

transducers’ placement into the water led to the detection of larger pores with a short 

delay when the RLs are placed in the center of the plate (approximately 4 mm) or near 

the upper cortical cortex (approximately 2 mm). It should be emphasized that the 

occurrence of a single RL near the lower surface of cortical bone could not be 

identified when the excitation frequency 1 MHz was applied irrespective of the 

transducers’ configuration. In addition, it was observed that as the receivers are 

removed from the region of interest the calculated values gradually approximate the 

values of healthy bone. Nonetheless, the combination of low and high frequencies for 

the detection of larger pores could be useful, as low frequencies can detect the region 
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of interest along the x axis and higher frequencies can reveal the depth of the pores 

along the y-axis. For example, in Figs. 6.10b and e, when the RL is placed near the 

upper cortical layer (grey line), for both frequencies, the large pore can be detected in 

the same position implying that the pore is near the cortical upper surface. By placing 

the RL in the center of the plate (red line), the use of 0.5 MHz frequency leads to the 

detection of the exact x position of the RL, but 1 MHz shows a delay. This reveals 

that the pore is placed deeper. Finally, Fig. 6.10e shows that for 1 MHz the RL at y = 

3 (purple line) cannot be detected, indicating in combination with 0.5 MHz findings 

that a large pore exist, but this pore is positioned near the lower surface of the cortical 

cortex. Thus, even from the limitations of 1 MHz, specific information may be 

derived concerning the depth of the RL interpreted in combination with 0.5 MHz 

findings when the occurrence of large basic multicellular units is a factor of major 

concern.  

A possible explanation for the low sensitivity of 1 MHz is that, when the wavelengths 

are comparable to or smaller (λ0.5MHz = 7.88 mm, λ1MHz = 3.94 mm) than the thickness 

of the cortical cortex (4 mm), the FAS wave propagates as a subsurface, lateral wave 

which travels at the bulk longitudinal velocity of the medium and cannot reflect 

changes occurring at deeper cortical layers. The calculation of the wavelengths 

depends on the frequency and the bone’s bulk velocity which is 3939 m/s considering 

the material properties of Table 6.1. However, bone velocity may vary from 3500 m/s 

to 4100 m/s depending on the type and anatomic region of bone. According to the 

literature (Nicholson et al., 2002; Moilanen et al., 2007), the use of low excitation 

frequencies (0.2 MHz) has been chosen to yield information on the correlation of the 

FAS velocity with changes in cortical thickness due to osteoporosis, while it was 

reported in (Moilanen et al., 2007) that the FAS velocities for high frequencies such 

as 1 MHz were weakly correlated with cortical thicknesses. Therefore, future research 

should address the question of which frequency range below 0.5 MHz is more 

convenient for the assessment of osteoporosis considering the occurrence of pores 

with different sizes. 

Concerning the case of homogeneous bone, it was observed that, for 1 MHz, the FAS 

velocity along the propagation path increases slightly, approximating the bone’s bulk 

velocity (Figs. 6.10d, e, and f), while this is not the case for 0.5 MHz in Figs. 6.10a, b, 

and c. The observed behavior at 0.5 MHz can be attributed to the fact that the 
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wavelength is almost twice the cortical thickness implying that more complex wave 

propagation phenomena evolve and the investigation of the propagation of guided 

waves could convey significant information. On the other hand, for 1 MHz, the FAS 

propagates as a lateral wave. 

Finally, several assumptions were made which require further numerical research and 

improvements. First of all, although two dimensional geometries were developed, 

they incorporated various porosity scenarios. Moreover, changes in cortical thickness 

in cases of pathology in combination with changes in cortical porosity were not 

considered. Imaging modalities could be also exploited to establish more realistic 

computational models (Raum et al., 2014; Raum et al., 2006b). In addition, the use of 

point transducers should be mentioned as in experimental procedures the transducers 

have a finite size. It was reported in (Moilanen et al., 2007) that the choice of using 

point elements instead of finite-sized ones did not affect significantly the recorded 

ultrasound velocities. However, further numerical research is needed to investigate the 

impact of the transducers’ size in relation to the scatterers’ size on the results. 

Furthermore, according to (Roschger et al., 2014), the majority of patients with 

osteoporosis have changes in the mineralization pattern. In particular, a reduction of 

the average mineral content was described when compared with age-matched controls 

or when compared with reference values for healthy adults. QUS was used in (Cortet 

et al., 2004) for bone characterization and the role of bone mineral density as a major 

determinant of acoustic properties was highlighted, as well as the significance of 

density-independent relationships with bone microarchitecture. However, according 

to (Sasso et al., 2007), the main cause of sound attenuation coefficient in bone is 

porosity, while matrix stiffness has a minor effect. In addition, it was reported in 

(Granke et al., 2011) that in aged women the changes in porosity prevail over those of 

of matrix elasticity to drive the variations of the bone mesoscopic elasticity.  

Finally, according to (Grasel et al., 2017), although simulation studies of QUS 

propagation through cortical bone indicate that anisotropy, calculated from the ratio of 

the velocities in axial and tangential directions, is correlated with porosity, this 

relationship is affected by error sources, specifically bone surface curvature and 

variability of probe positioning. With the aim of in vivo estimation of cortical porosity 

a new ultrasound device was presented in (Grasel et al., 2017), which sequentially 

measures velocities in 3 different directions using the axial transmission method. The 
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results of this work indicate that the estimation of porosity using velocity 

measurements in different directions might be feasible, even in bones with curved 

surface. These results obtained on phantom material indicate that the approach tested 

may be suited for porosity measurements on human tibia bone. 

Nevertheless, the results clearly indicated that the excitation frequency 0.5 MHz is 

more sensitive to detect changes in cortical porosity and the occurrence of RLs. In 

addition, it was shown that the calculation of the FAS velocity in small propagation 

paths could potentially provide significant quantitative information for the early 

diagnosis of osteoporosis and detection of pathologic regions with large pores with a 

high risk for fracture. 
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Chapter 7: Conclusions and Future Work  

7.1 Monitoring of Fracture Healing  

7.2 Prevention of an Osteoporotic Fracture 

7.3 Future Work 

 

 

 

7.1 Monitoring of Fracture Healing 

The current thesis presented numerical simulations of ultrasound propagation in 

healing long bones which incorporate the porosity of osseous and callus tissues.  

Compared to the literature, more realistic computational models were established 

based on scanning acoustic microscopy images. The material properties, the 

geometrical features of cortical bone and callus and more specifically cortical and 

callus porosity were derived from SAM data from a sheep animal study. Previous 

numerical studies neglected the evolution of porosity during fracture healing which, 

however, increases for the case of cortical bone and decreases for the callus at 

successive healing stages. 

Going beyond the state of the art, the evolution of scattering phenomena was 

evaluated during fracture healing using theoretical and numerical methods. In the first 

stage of this study an iterative effective medium approximation was used to evaluate 

wave dispersion and attenuation for the callus tissue at different healing stages, as 

well as the frequency dependence of these parameters. This method was first 

validated and comparisons were performed with previous theoretical and 

experimental findings in cancellous bone mimicking phantoms. Keeping all the 

examined parameters constant and modifying the frequency, the phase velocities 

calculated theoretically using IEMA were in better agreement with the corresponding 

phase velocities derived experimentally compared to other theoretical studies. A very 

good agreement between experimental and theoretical results was also observed when 

the volume concentration was changing keeping the frequency constant.  
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Then, the material properties and porosity of the callus in successive healing stages 

were derived from SAM images and for the first time estimations of the group 

velocity and the attenuation coefficient were performed up to 1.2 MHz. The group 

velocity was found to decrease with increasing frequency. Also, higher group 

velocities were calculated at late healing stages and the corresponding values for week 

3 were almost half the values of week 9. According to the literature several authors 

aiming at the ultrasonic assessment of cancellous bone have reported phase velocities 

that decrease with frequency, a phenomenon known as negative dispersion, while 

similar findings have not been presented for healing long bones. On the other hand, 

the attenuation coefficient was found to increase with increasing frequency. Also, a 

higher attenuation was calculated during the early healing stages having a higher 

porosity and pores’ size.  

This study is also innovative as the microstructure features of the osseous and callus 

tissues derived using SAM images when then incorporated to 2D computational 

models of healing long bones and simulations of ultrasonic wave propagation were 

presented. Previous numerical studies used only the axial transmission method to 

investigate wave propagation during fracture healing and the parameters of interest 

were the velocity of the FAS and the analysis of the propagation of guided waves. In 

the present study, the axial transmission method was used in the first stage of the 

research, while the backscattering method was also examined and new quantitative 

and qualitative parameters were proposed for the monitoring of fracture healing. 

More specifically, the axial transmission method was initially applied and FAS 

velocity calculations as well as a guided wave analysis were conducted in 

computational models of 2D healing long bones which integrated callus porosity. The 

multimodal analysis of guided waves revealed that during the healing process the 

dominant modes are restored. Additionally, a parametric study was presented on the 

impact of callus porosity and pores’ size on the FAS velocity for the same healing 

stage. It was shown that the FAS velocity decreases with increasing the callus 

porosity. Also, it was observed that changes in callus porosity concentration have a 

more significant influence on the propagation of the FAS velocity in comparison to 

changes in the size of the scatterers. Nevertheless, FAS velocity calculations revealed 

that the scatterers’ size plays a key role on FAS velocity when larger porous areas are 

examined such as the whole surface of cortical bone.  
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Then, except for the application of traditional wave propagation methods, the 

backscattering method was used for the first time to assess the evolution of the 

propagating acoustic field in healing long bones. The porosities of cortical bone and 

callus were incorporated into 2D computational models using IEMA. The alteration of 

the scattering amplitude in the backward direction was examined as a new 

quantitative parameter for the monitoring of fracture healing. The results showed that 

the scattering amplitude at late stages of healing is lower compared to earlier stages of 

healing. Also, the scattering amplitude was found to slightly increase in week 9 for 

the frequencies 0.2, 0.4 and 1 MHz showing a restoration tendency. Also, the 

assessment of the acoustic pressure alterations in the backward direction could 

provide supplementary qualitative information on the interaction of the scattered 

energy with bone and callus. More specifically, for low frequencies in the range 0.2-

0.4 MHz, material and structural alterations in the callus tissue change the distribution 

of the acoustic pressure map derived from multiple measurements in the backward 

direction reflecting the propagation of the scattered energy field. 

However, several assumptions were made. First of all, 2D numerical models were 

developed based on 2D SAM images which do not account for the 3D geometrical 

features of bone and callus. According to the literature, only one 3D numerical study 

has been presented on the evaluation of fracture healing, while several 2D numerical 

models have been presented since the last decade. Moreover, the use of a plane wave 

in backscattering numerical simulations is another limitation, while in the future this 

work will be further extended to examine ultrasound stimulations which are applied in 

experimental procedures.  Finally, IEMA introduces the assumption that the geometry 

of the callus’ inclusions is circular, while a more realistic representation for the newly 

formed callus tissue could integrate cylindrical scatterers in the region of interest. 

7.2 Prevention of an Osteoporotic Fracture 

The evaluation of cancellous bone porosity using ultrasonic methods has attracted the 

interest of several researchers worldwide using theoretical and computational 

approaches. On the other hand, the numerical evaluation of cortical porosity using 

ultrasonic techniques has been studied to a lesser extent. The novelty of this thesis is 

reflected on the development of 2D numerical models which account for different 

porosity scenarios, pores’ sizes and more specifically for the occurrence of pores with 
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sizes larger than the Haversian canals called large BMUs. The main objective was to 

detect regions of the cortical cortex which are subjected to a higher risk of fracture 

due to the formation and concentration of a cluster of BMUs. In this way, the early 

signs of an osteoporotic fracture could potentially be detected aiming at the effective 

prognosis of the disease at the first stages and the prevention of a future fracture. The 

role of the excitation frequency was also examined. It was shown for the first time 

that the “local” FAS velocity calculated in small propagation paths from successive 

receivers can capture the occurrence of a cluster of BMUs indicating a region which is 

more susceptible to a future osteoporotic fracture. It was also shown that the 

combination of low and high frequencies for the detection of large pores could be 

useful, as low frequencies can detect the region of interest along the cortical length 

and higher frequencies can reveal the depth of the pores along the cortical thickness. 

The gradual formation of osteoporosis was also examined considering larger pores in 

the region of the endosteum and smaller pores in the periosteum. Compared to the 

case of healthy nonhomogeneous bone, it was found that the local FAS velocity 

decreases as the porosity increases and this behavior is constant along the examined 

propagation path. 

Nevertheless, this work is subject to several limitations. First of all, 2D geometries 

were developed. Moreover, changes in cortical thickness in cases of pathology in 

combination with changes in cortical porosity were not considered. Also, point 

transducers were used, while in experimental procedures the transducers have a finite 

size. Also, the majority of patients with osteoporosis have changes in the 

mineralization pattern which was not considered in this thesis. Nonetheless, the main 

cause of sound attenuation coefficient in bone is porosity, while matrix stiffness has a 

minor effect.  

7.3 Future Work  

This thesis is considered as a springboard for the investigation of the complex wave 

scattering phenomena induced by the composite nature of osteoporotic and healing 

long bones. Although the computational models which were presented incorporate 

cortical and callus porosity features based on 2D SAM images, the establishment of 

3D computational models is the next step of this work.  
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Concerning the monitoring of fracture healing using the backscattering method, this 

study will be extended in the future to consider higher frequencies up to 5 MHz based 

on (Ferreira et al., 2010), as well as different propagation angles in the forward and 

backward direction.  

In addition, the application of IEMA was based on the consideration of circular pores, 

while a more realistic scenario based on the geometry of the osteon and trabeculae in 

the microstructure level would be to account for cylindrical pores. Therefore, this 

study could be further extended to examine the impact of the shape of the pores. 

Finally, the use of a continuous incident wave when the backscattering method was 

applied is another constraint reflecting effectively the theoretical aspect of the wave 

scattering problem. Thus, this thesis should be further extended to examine ultrasound 

stimulations which are applied in experimental applications. 

Another direction for future research could be the monitoring of the early stages of 

bone healing using ultrasonic methods and numerical means based on μCT data from 

the study of (Rohrbach et al., 2013). More specifically, this pilot study investigated 

the feasibility of QUS in a transverse-transmission mode for the assessment of the 

early stages of callus formation in a rat osteotomy model and the FAS attenuation and 

velocity were the parameters of interest. The potential of ultrasound to detect material 

and geometrical alterations in the callus and osseous tissues during the first healing 

stages could early indicate signs of a non-successful healing process and prevent a 

non-union or pseudarthrosis. Therefore, in future work the axial and backscattering 

methods will be used to investigate numerically the features of ultrasonic propagation 

during the early stages of bone healing. 

Finally, in this work the ultrasonic evaluation of cortical porosity was based on a 

parametric and systematic study investigating various porosity scenarios in 2D 

cortical plates using the axial transmission method. This study will be further 

extended to establish more realistic geometries based on SAM images from human 

tibia cross-sections presented in (Raum et al., 2014). These data could be exploited to 

account for alterations not only in cortical porosity, but also in the whole cortical 

geometry and thickness. In addition, the backscattering method will be used for the 

assessment of the scattering effects in healthy and osteoporotic long bones and the 

detection of resorption lacunae. Even though the first results of this study (Gortsas et 
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al., 2015) are quite encouraging showing that the scattering amplitude calculated in 

the backward direction could detect changes in cortical porosity, various porosity 

scenarios should be considered based on (Potsika et al., 2016a) to identify regions 

which are more susceptible to a fracture. 
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