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ABSTRACT 

Nikolaos Koufos  
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Title: Community Detection in Undirected Graphs Using a New Quality Measure 

Supervisor: Aristidis Likas 

 

The detection of communities is of great significance in sociology, biology, computer science 

and other disciplines where complex systems are often represented as graphs or networks. 

One of the most interesting properties of graphs representing real systems is community 

structure, i.e. the partitioning of graph nodes into clusters, with many edges joining nodes of 

the same cluster and comparatively few edges joining nodes of different clusters. This hard 

but important problem has attracted an increasing scientific interest over the past few years 

and several techniques have been proposed, especially for the case where the number of 

communities is not known in advance. 

The most popular family of community detection methods is based on the optimization of 

the so called ‘modularity’ criterion using various clustering approaches. The modularity of a 

community is defined as fraction of the edges that fall within a given group minus the 

expected fraction if edges were distributed at random. However, it has been shown that 

modularity has several drawbacks, such as for example the ‘resolution limit’, i.e., it is unable 

to detect small communities. 

We introduce a new quality measure to evaluate a partitioning of a graph into communities 

that is called ‘inclusion’. This quality measure evaluates how well each node is ‘included’ in 

its community by considering both its existing and its non-existing edges. We have 

implemented several techniques to optimize the inclusion criterion. A first technique follows 

the agglomerative principles, as it starts with every node in a separate community and 

iteratively merges communities so that inclusion is improved. A second technique is 

similarly initialized, but instead of community merging, it improves the inclusion of the 

partitioning by moving each time a single node to another community. Another method is 

based on evaluating the solutions provided by spectral clustering. In the experimental 

evaluation we conducted, it has been shown that the inclusion measure is very effective in 

evaluating communities and usually leads to improved community detection results without 

requiring the a-priori specification of the number of communities.
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Νικόλαος Κουφός 

MSc, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων 

Ιούλιος 2017 

Τίτλος: Εντοπισμός κοινοτήτων σε μη κατευθυνόμενα γραφήματα με ένα νέο κριτήριο 

ποιότητας διαμέρισης 

Επιβλέπων: Αριστείδης Λύκας 

 

Ο εντοπισμός κοινοτήτων παίζει σημαντικό ρόλο στην κοινωνιολογία, βιολογία, 

επιστήμη υπολογιστών καθώς και σε όλους τους τομείς όπου πολύπλοκα συστήματα , 

συχνά αναπαρίστανται ως γραφήματα η δίκτυα. Μία από τις πιο ενδιαφέρουσες 

ιδιότητες που έχει η αναπαράσταση με γραφήματα, είναι η δομή του σε κοινότητες, 

δηλαδή, η διαμέριση του γράφου σε συστάδες που απαρτίζονται από κόμβους που 

συνδέονται με πολλούς κόμβους της ίδιας συστάδας μέσο ακμών, και όσο δυνατόν 

λιγότερους κόμβους που ανήκουν σε άλλες συστάδες. Αυτό το πρόβλημα, παρά την 

δυσκολία του, έχει κεντρίσει το ενδιαφέρων διάφορων επιστημών τα τελευταία χρόνια, 

με αποτέλεσμα να προταθούν αρκετές τεχνικές επίλυσης του προβλήματος, κυρίως για 

τις περιπτώσεις όπου ο αριθμός των συστάδων δεν είναι γνωστός εκ των προτέρων. 

Η πιο γνωστή οικογένεια μεθόδων εντοπισμού κοινοτήτων είναι βασισμένη στην 

βελτιστοποίηση του κριτηρίου ‘modularity’ με διάφορες τεχνικές ομαδοποίησης. Το 

modularity για μια κοινότητα ορίζεται ως ένα κλάσμα των ακμών μέσα σε μία συστάδα 

μείον τον κλάσμα των αναμενόμενων ακμών αν οι ακμές είχαν τοποθετηθεί τυχαία. 

Παρόλα αυτά, το κριτήριο modularity, έχει αρκετά μειονεκτήματα όπως για παράδειγμα 

η ανικανότητά του να ανιχνεύσει μικρές σε μέγεθος κοινότητες. 

Σε αυτήν την εργασία, προτείνουμε ένα καινούρια κριτήριο διαμέρισης, εν ονόματι 

‘inclusion’. Αυτό το κριτήριο εκτιμάει πόσο καλά ένα κόμβος ‘συμπεριλαμβάνεται’ στην 

κοινότητα του εξετάζοντας την ύπαρξη ακμών αλλά και την μη-ύπαρξη ακμών. Έχουμε 

υλοποιήσει αρκετές τεχνικές για την βελτιστοποίηση του κριτηρίου. Η πρώτη τεχνική 

ακολουθεί την agglomerative λογική , καθώς ξεκινάει τοποθετώντας κάθε κόμβο σε 

ξεχωριστή κοινότητα και έπειτα συνενώνει κοινότητες έτσι ώστε να βελτιωθεί το 

inclusion. Η επόμενη τεχνική που υλοποιήσαμε, έχει παρόμοια αρχική κατάσταση με 

την πρώτη, αλλά αντί να συνενώνει κοινότητες, μετακινεί ένα κόμβο κάθε φορά σε 

άλλη κοινότητα. Μία άλλη τεχνική, ήταν να αξιολογήσουμε τις λύσεις που παρήγαγε ο 

αλγόριθμος του spectral clustering. Στην πειραματική αξιολόγηση που κάναμε, τα 

αποτελέσματα έδειξαν πως το κριτήριο inclusion είναι αρκετά αποδοτικό στον 
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εντοπισμό κοινοτήτων και συνήθως οδηγεί σε καλύτερες λύσεις του προβλήματος χωρίς 

να χρειάζεται να προσδιορίσουμε τον αριθμό των κοινοτήτων εκ των προτέρων.
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CHAPTER 1.  

INTRODUCTION 

1.1 Introduction 

1.2 Contribution and Roadmap 

1.1 Introduction 

Graph theory is the study of graphs, which are mathematical structures used to model 

pairwise relations between objects. A graph is made up of nodes and edges. The origins of 

graph theory dates back to 1736, where Euler proposed a solution for the puzzle of 

Königsberg's bridges [Eule36]. Since then, we have learned a lot about graphs and their 

mathematical properties [Boll98].  

Through the years, graph models became an extremely useful representation of a wide 

variety of systems in different scientific areas. Social, Biological and Telecommunication are 

some of the networks that have been studied as graphs and helped researchers extract some 

valuable features for these systems. For example, social network analysis started in the 1930's 

and since then, it has become one of the most important topics in sociology [WaFa94]. 

Due to the fact that we are living in the computer revolution era, scientists and researchers 

are provided with a huge amount of data, as well as computational resources. Those 

enormous data, can lead to graph models with millions or even billions of nodes and edges. 

So, the need of analysis rose, to determine helpful insights about the data.  

Graphs that represent real systems are not always regular, meaning that each node does not 

have the same number of neighbors. The first attempt on modeling those graphs was 

introduced by Erdös and Rényi [ErRé59]. In their method, the probability of having an edge 

between a pair of nodes is equal for all possible pairs. Their model is quite simple and 

powerful with many applications. Although, their model does not have two important 

properties of real-world networks. Triadic closure, which is the property among three nodes 
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A, B, and C, such that if a strong relationship exists between A and B as well as A and C, 

there is a weak or strong relationship between B and C. The second property not present in 

Erdös–Rényi model, is the power-law distribution on the nodes degree which is commonly 

observed in real-world networks. Erdös–Rényi graphs converge to a Poison distribution. To 

tackle the aforementioned problems, Watts and Strogatz proposed a different approach 

based on interpolation between an Erdös–Rényi graph and a regular ring lattice [WaSt98]. 

In a random graph, the degree distribution is highly homogenous, which can lead to a 

problem, as some of the real networks follow a power law distribution as previously 

mentioned. Furthermore, real networks show high edge concentration within some group of 

nodes and low edge concentration between those groups. That property is called clustering 

or community structure [GiNe02]. 

 

Figure 1 Simple graph clustering. 

The need to create communities, is in the human nature. From families and friendship circles 

to alliances between countries at times of war. So, the need for community study inevitable 

rose. Communities also appear in many networked systems like computer science, 

economics, politics, biology, etc. For instance, in World Wide Web there are corresponding 
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group of pages that may deal with the same or related topic i.e. American Presidential 

Election. 

Finding those aforementioned communities, has many applications. Identifying clusters of 

clients based on their previous purchases, improves significantly the recommendation 

system, which in return increases business opportunities. Another application is in parallel 

computing. For example, it is critical to allocate group of tasks to different processors in 

order to minimize communication between them and thus enabling rapid performance. The 

mathematical formalization of this problem falls under the category of NP-hard problems. 

1.2 Contribution and Roadmap 

In this thesis, we study the community detection problem as well as algorithmic techniques 

that try to approach it. More specifically, in Chapter 2, we present widely used algorithms 

such as Hierarchical clustering, Partitional clustering, Statistical models, etc. Finally, we 

thoroughly present a state-of-the-art quality function, called modularity. 

In Chapter 3, which is the thesis contribution, we present a new quality measure, called 

inclusion. Our quality measure can be considered as a multi-criteria score function, since it 

focuses both on groups inter and intra edge density. Furthermore, we present two 

optimization techniques for our inclusion criterion. The first one follows the agglomerative 

principles, as it starts with every node in a separate cluster and iteratively merges clusters in 

a greedy way, that best improve the inclusion criterion. The second technique has the same 

initialization process as the first one, but instead of cluster merging, it moves a single node at 

a time to a new cluster that yielded the best value of inclusion. 

Chapter 4 is dedicated on the experimental comparison between inclusion and modularity 

measures. It contains results from both of the aforementioned criteria on various synthetic 

graphs with different properties and sizes. Moreover, we also tested both criteria on real-

world datasets such as Zachary’s Karate Club and American College Football. 

Finally, Chapter 5 summarizes the results which indicate that the inclusion measure is very 

effective in evaluating communities and usually leads to improved community detection 

results. Furthermore, we provide some future work/open issues regarding the exploitation of 

the inclusion criterion. 
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CHAPTER 2.  

RELATED WORK 

2.1 Basics 

2.1 Graph Partitioning 

2.2 Hierarchical Clustering 

2.3 Partitional Clustering 

2.4  Quality Measures 

2.1 Basics 

The problem of graph clustering, has a major semantic problem thus making it actually not 

well defined. The main reason behind that problem is the definition of community itself. 

There are many suggestions on the definition of a community, but scientists tend to always 

disagree which led to a rich literature regarding this problem.  

It is important to stress that the identification of communal structure is possible when the 

graphs are sparse enough. That means that the number of edges m is of the order of the 

number of nodes n of the graph. Otherwise, the distribution of edges is too homogeneous for 

communities to make sense.  

In this section, we will present many algorithms for graph clustering, but before that some 

basic definitions are essential:  
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Α graph 𝐺 with nodes |𝑉|  =  𝑛 and edges undirected and unweighted |𝐸| =  𝑚 i.e. 𝑒𝑖𝑗 = 𝑒𝑗𝑖 ,

𝑒𝑖𝑗 ∈ {0,1}. 

 

2.2 Graph Partitioning 

Graph partitioning is the problem of dividing the nodes of a graph in k groups, such that the 

number of edges between the groups is as small as possible. The number of edges between 

clusters is called cut size. The next figure is from Fortunato’s survey on community detection 

in graphs and shows a graph with 14 vertices and 2 clusters [Fort10]. 

 

Figure 2 Graph Partitioning Example |V| = 14, number of clusters 2. 

One major problem with the graph partitioning is that you need to specify the number of 

groups. If one does not specify the number of clusters, then the problem becomes quite 

trivial in the sense that you can group all nodes in one big cluster which will minimize the 

cut size. This problem can be actually avoided by choosing a different measure to optimize 

for the partitioning, which accounts for the size of the clusters as well. Specifying the size is 

also necessary, as otherwise the most likely solution of the problem would be a two-way 

partition where the lowest degree node will be in one cluster and all the other nodes in 

another. But this case is also quite simple and uninteresting. 

Most variants of the graph partitioning problem are NP-hard. However, there are several 

algorithms that can produce some heuristic solutions with good results Many of those 

algorithms perform a bisection of the graph. To achieve further partitioning into more than 

two clusters, the technique of iterative bisectioning is used. Furthermore, in most cases there 

is a constraint that suggests that all clusters are of equal size. This problem is known as the 

minimum bisection and is NP-hard. 

One of the first proposed algorithms that is still widely used is the Kernighan-Lin algorithm 

[KeLi70]. The motivation behind this algorithm was the partitioning of electronic circuits 
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onto boards. More specifically, the nodes contained in different boards need to be linked to 

each other with the minimum number of connections. The first thing they did was to define a 

benefit function Q. That function, quantifies the difference between the number of edges 

inside the modules and the number of edges lying between them. Then they tried to 

optimize it as follows: The initialization was the partition of the graph into two clusters of 

predefined size. This partition can be either random or suggested by some information 

regarding the graph. Then, subsets of equal numbers of nodes are swapped between the two 

clusters, so that maximum Q increase is achieved. To reduce the risk of Q’s local maxima, the 

process may include some transitions that reduce the Q value. After a series of swaps with 

positive and negative Q values, the partition with the largest value of Q is selected and used 

as starting point of a new series of iterations (𝑂(𝑛2log (𝑛))). 

As far as the complexity of the algorithm, the Kernighan-Lin algorithm is considered quite 

fast if you use a constant number of swaps at each iteration. The solution is heavily 

dependent on the initial configuration, thus is most commonly used to improve the 

partitions found by other techniques. 

Algorithms for graph partitioning are not very suitable for community detection. That is 

because it is necessary to provide the number of clusters and in some cases even their sizes. 

Instead, it is preferable to have an algorithm to be capable of providing this kind of 

information as its output. 

2.3 Hierarchical Clustering 

Community structure of a graph, is an uncharted territory in general. It is most unlikely to 

know the number of clusters or any information indicating connections between nodes 

beforehand. In cases like that, which are the most common ones, graph partitioning 

algorithms cannot be helpful. 

In order to handle those cases, one must make some reasonable assumptions about the 

clusters structure. One major assumption is that the graph may have a hierarchical structure. 

For instance, a graph may display levels of grouping of nodes, with small clusters inside 

larger ones, which in respect they are included within even larger clusters. 

In cases like the aforementioned ones, we can use any of the hierarchical clustering 

algorithms, which reveal the multilevel structure of the graph. Hierarchical graph clustering, 

has been successfully used in several areas such as: Biology, Marketing, Social Network 

analysis etc. 

The first step of every hierarchical clustering algorithm is the definition of the similarity 

function. Cosine, Euclidean and Manhattan are some of the most commonly used similarity 

functions. After the function is well defined, the next step is to compute the pairwise 

similarity between all 𝑛 nodes. This step will result in a 𝑛 × 𝑛 matrix S, also known as the 

similarity matrix. 
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This kind of clustering techniques aim at finding groups of nodes with high similarity, and 

are generally distinguished into two categories:  

1. Agglomerative algorithms, in which clusters are merged iteratively if their similarity is high 

enough. 

2. Divisive algorithms, in which clusters are split iteratively by removing edges connecting nodes with 

low similarity. 

These two categories reflect on opposite processes: agglomerative algorithms are bottom-up, 

as the process starts from the nodes in separate clusters and ends up with the graph as a 

unique cluster. On the other hand, divisive algorithms are top-down as they follow the 

opposite direction. They begin with all the nodes in one big cluster and they end up in a 

graph with several clusters. 

Since the clusters are merged based on their mutual similarity, the number and quality of 

clusters is highly dependent on the nature of the similarity function. In agglomerative 

techniques such as single linkage clustering, the similarity between two groups 𝐶1 and 𝐶2 is 

the defined as minimum 𝑆𝑖𝑗 where 𝑖 ∈  𝐶1 , 𝑗 ∈  𝐶2. This leads to iteratively combining two 

clusters that contain the closest pair of elements not yet belonging to the same cluster as each 

other. One major problem with this algorithm is that it usually produces long thin clusters in 

which nearby elements of the same cluster have small distances, but elements at opposite 

ends of a cluster may be more distant from each other than to elements of other clusters. 

Another algorithm, is the complete linkage clustering. In this technique, the similarity of two 

clusters 𝐶1 and 𝐶2 is the similarity of their most dissimilar members, meaning the maximum 

𝑆𝑖𝑗 where 𝑖 ∈  𝐶1 , 𝑗 ∈  𝐶2. This is equivalent to choosing the cluster pair whose merge has the 

smallest possible diameter. Complete linkage clustering has its drawbacks as well. More 

specifically, a single node far from the center can increase the diameters of candidate merge 

clusters dramatically and result in completely changing the final clustering. 

Finally, in average linkage clustering, the distance between two clusters is defined as the 

average of distances between all pairs of nodes, where each pair is made up of one node 

from each group. At each step, the algorithm merges the clusters with the minimum average 

value. As it can be observed, this algorithm lies in between single and complete linkage 

clustering, as it shares both their advantages and drawbacks. 

One of the advantages of hierarchical clustering, is that if the number of data is fairly small, 

the clusters can be easily visualized by dendrograms. The figure below represents a simple 

example of hierarchical clustering solution illustrated by dendrograms. 
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Figure 3 Hierarchical Clustering illustrated with dendrograms. 

Hierarchical clustering does not avoid the problem with the number of clusters. It simply 

constructs the tree spanning over all samples and let you manually chose the “right” number 

of clusters. However, the results highly depend on the adopted similarity function. 

Moreover, this technique constructs a partition of clusters assuming hierarchical structure, 

which in some cases the graph does not have. Another problem is that nodes with only one 

other node as neighbor are often classified in a separate cluster, which makes no sense. 

Finally, another major problem is the scalability of the agglomerative clustering. For 

example, the computational complexity of single linkage is 𝑂(𝑛2) and 𝑂(𝑛2 𝑙𝑜𝑔 𝑛) for 

complete and average linkage. 

2.4 Partitional Clustering 

Another popular class of methodologies is the partitional clustering. In this class, the number 

of clusters is pre-required. The data points are usually fixed in a metric space, so that each 

node is a point and a distance measure is defined between pairs of points in the space. The 

distance is usually a function of dissimilarity between nodes. The goal is to separate the 

points in k (number of clusters given) clusters in order to maximize/minimize a given cost 

function based on distances between points. Some of the most commonly used functions are 

listed below: 
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• Minimum k-clustering: The cost function here is the diameter of a cluster, which is 

the largest distance between two points of a cluster. The classification of the points is 

done in a way that the largest diameter of the k cluster diameters is minimized. The 

key idea behind this function is that the clusters are tightly compact. 

• Average k-clustering: It is similar to the minimum k-clustering, but the diameter is 

replaced by the average distance between all pairs of points of a cluster. 

• K-center: For every cluster, a representative is selected (centroid). Then the maximum 

distance 𝑑𝑖 of the distances of each cluster point from the centroid is computed. The 

cluster and centroids are changing to minimize the largest value of 𝑑𝑖. 

• K-median. Same as k-center, but the maximum distance from the centroid is replaced 

by the average distance. 

One of the most popular techniques, if not the most popular, is the k-means clustering 

algorithm [MacQ67]. The cost function of k-means is the squared error function: 

 

∑ ∑ ‖𝑥𝑗 − 𝑚𝑖‖
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

 

 

Where 𝐶𝑖 is the subset of points of the 𝑖𝑡ℎ cluster and 𝑚𝑖 is its centroid. The steps of the 

algorithm are shown below 

 

Algorithm 2.3.1 K-means Algorithm 

1. Select K points as the initial centroids 

2. repeat 

3. Form K clusters by assigning each point to its closest centroid  

4. Recompute the centroid for each cluster 

5. until centroids do not change 

 

The results of each K-means run may vary a lot, and that is because it is highly dependent on 

the initial positions of the centroids. To increase the performance of the algorithm, you can 

run multiple randomly initialized instances of the algorithm and keep the one that yields the 

minimum squared error. 
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Another major technique in clustering is spectral clustering [NgJW01]. The main 

characteristic of all spectral clustering techniques is that they partition the graph using the 

eigenvectors of similarity matrices. More specifically, the objects could be points in any 

metric space. Spectral clustering consists of a transformation of the initial set of objects into a 

set of points in space, whose coordinates are elements of eigenvectors. Then the set of points 

is clustered with standard techniques, usually k-means.  

The reason that we do not apply k-mean directly, is that the change of representation 

induced by the eigenvectors makes the cluster properties much clearer. In this way, spectral 

clustering is able to separate data points that could not be resolved by applying directly k-

means clustering. Finally, Spectral Clustering algorithm needs the similarity matrix 𝑆 as its 

input, which as mentioned in the previous section, it contains all the pairwise similarities 

between all 𝑛 nodes. If the 𝑆 matrix is not given, the algorithm must calculate it first, using 

some similarity function (e.g. RBF) 

 

Algorithm 2.3.2 Spectral Clustering Algorithm 

Input: Similarity Matrix, number of clusters 𝑘 

1. Compute the first 𝑘 eigenvectors 𝑣1, … , 𝑣𝑘 of the matrix 𝑆 

2. Build matrix 𝑉 ∈ 𝑅𝑛 𝑥 𝑘 with the eigenvectors as columns 

3. Interpret the rows of 𝑉 as new data points 𝑍𝑖  

4. Cluster the points 𝑍𝑖 with the k-means algorithm  

 

 

Figure 4 Spectral Clustering vs K-Means. 
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2.5 Methods Based on Statistical Inference 

The statistical inference in general is the process of extracting properties of data sets, starting 

from a set of examples and model hypotheses [Mack03]. If the data are in a form of a graph, 

the model, which is based on the hypotheses on how nodes are connected to each other, has 

to fit the actual graph topology. In this section, we will focus specific on the Bayesian 

inference [Wink03]. 

Bayesian inference is a specific case of statistical inference where the Bayes’ theorem is used 

update the estimation the probability that a given hypothesis is true, as more examples 

become available. It consists of two main characteristics: a statistical model with parameters 

{𝜃} and the examples which are expressed by system’s information 𝐷. Bayesian inference 

starts by writing the likelihood 𝑃(𝐷|{𝛩}) that the observed examples are produced by the 

model for a given set of parameters {𝜃}. The aim is to determine the choice of {𝜃} that 

maximizes the posterior distribution 𝑃({𝛩}|𝐷) of the given parameters of the model and the 

examples provided. With the use of Bayes' theorem, one has 

𝑃({𝛩}|𝐷) =  
1

𝑍
𝑃(𝐷|{𝛩})𝑃({𝛩}), 

 

where 𝑃({𝛩}) is the prior distribution of the model parameters and 𝑍 is a normalizing 

constant  

𝑍 =  ∫ 𝑃(𝐷|{𝛩})𝑃({𝛩}) 𝑑𝜃 

 

Unfortunately, computing the integral above is a major challenge, plus, the choice of the 

prior distribution 𝑃({𝛩}) is not quite obvious. Different generative models distinguish 

themselves from each other by the choice of the model and the way they address the 

aforementioned issues. 

Bayesian inference is frequently used in the analysis of real graphs, including social 

networks [Hart07]. One major part of this analysis is graph clustering. In graph clustering, 

the examples are represented by the graph structure in either adjacency or weight matrix 

form. One additional information, that one wants to extract is the partition of the nodes into 

groups, which is missing. Along with this information, the parameters of the model which is 

supposed to be responsible for the partition is required as well.  

This idea is at the basis of several recent papers, which we discuss here. In all these works, 

one essentially maximizes the likelihood 𝑃(𝐷|{𝛩}) that the model is consistent with the 

observed graph structure, with different constraints. We specify the set of parameters {𝛩} as 

the triplet ({𝑞}, {𝜋}, 𝑘) where {𝑞} indicates the community assignment of the nodes, {𝜋} the 

model parameters, and k the number of clusters.  
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In 2006, Hastings [Hast06] tried to approach the community detection problem as an 

inference problem: n nodes are assigned to q clusters with the following requirements: nodes 

of the same cluster are connected with an edge with a probability 𝑝𝑖𝑛, while nodes of 

different clusters are connected with an edge with a probability 𝑝𝑜𝑢𝑡. If 𝑝𝑖𝑛 > 𝑝𝑜𝑢𝑡 the model 

shows community structure. The probability of a node correctly assigned to a cluster is given 

by the following model: 

𝑝({𝑞𝑖}) = 𝑐𝑒𝑥𝑝[ ∑ 𝐽𝛿𝑞𝑖𝑞𝑗
]

<𝑖,𝑗>

𝑒𝑥𝑝[∑
𝐽′𝛿𝑞𝑖𝑞𝑗

2
]

𝑖≠𝑗

 

 

Where ∑  <𝑖,𝑗>  denotes a sum over pairs of 𝑖, 𝑗 connected by an edge in the graph, 𝛿 is the 

delta function, with 𝛿𝑞𝑖𝑞𝑗
 is 1 if 𝑞𝑖, 𝑞𝑗 are in the same community and 0 otherwise and 

 

𝑐 = exp [
log(1 − 𝑝𝑜𝑢𝑡) 𝑁(𝑁 − 1)

2
]exp [ ∑ log(𝑝𝑜𝑢𝑡/(1 −  𝑝𝑜𝑢𝑡)]

<𝑖,𝑗>

 

 

J =  log[(𝑝𝑖𝑛(1 −  p𝑜𝑢𝑡))/((1 −  𝑝𝑖𝑛)p𝑜𝑢𝑡)] 

 

𝐽′ = log[(1 − 𝑝𝑖𝑛)/(1 −  p𝑜𝑢𝑡)] 

 

The above equations present the probability as a Potts model problem with combined short 

and long-range interactions, with coupling constants 𝐽, 𝐽′. So, the problem of community 

detection is reduced to finding the ground state of this Potts model. Hastings used belief 

propagation [Gall63] to find the ground state of the spin model.  

The complexity of the model on sparse graphs, is expected to be 𝑂(𝑛𝑙𝑜𝑔𝛼(𝑛)), where 𝛼 needs 

to be estimated numerically. Also, in order for the model to work, one has to specify the 𝑝𝑖𝑛, 

𝑝𝑜𝑢𝑡. However, these parameters turn out that they can be chosen arbitrarily, as any bad 

choices can be recognized and corrected. 

2.6 Divisive Algorithms 

The main idea behind divisive algorithms is to detect the edges that connect nodes of 

different clusters and remove them, so that the clusters get disconnected from each other. 

The most critical part of any divisive algorithm, is finding the property of edges between 

clusters that will lead to their identification. 
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Divisive algorithms are pretty similar to the traditional hierarchical top down clustering. The 

main difference is that the divisive algorithms remove inter-cluster edges instead of edges 

between pairs of nodes with low similarity. That process does not provide assurance that the 

edges removed connected nodes with low similarity. 

Probably one of the most popular algorithm, if not the most one, was proposed by Girvan 

and Newman [GiNe02, NeGi04]. In their approach, edges are selected according to the 

values of measures of edge “betweenness”, which is defined of each edge as the number of 

shortest paths between all pair of nodes that run along the edge. The steps of the algorithm 

are the following: 

1. Calculate the “betweenness” for all edges in the graph. 

2. Remove the edge with the highest betweenness. 

3. Recalculate betweennesses for all edges affected by the removal. 

4. Repeat from step 2 until no edges remain.  

They considered three alternative definitions: geodesic edge betweenness, random-walk 

edge betweenness and current-flow edge betweenness but calculating edge betweenness was 

by far the fastest one (𝑂(𝑛2) vs 𝑂(𝑛3) on sparse graphs). Moreover, in real-world 

applications the edge betweenness gives better results than adopting the other centrality 

measures.  

A major problem they came across on their original work was that they had to deal with the 

whole hierarchy of the partitions, as they had not found a way to choose the best partition. 

On a later work [NeGi04], they introduced the modularity criterion, which sparked another 

kind of clustering technique that we discuss in the following section. 

2.7 Quality Measures 

2.7.1 General Methodology 

As we have already mentioned in the previous chapter, a cluster or community is typically 

considered as a group of nodes with high edge connectivity among its members than with 

the nodes of different communities/clusters. The general methodology when trying to detect 

communities via quality measures, is usually following the next two major steps in their 

approach: 

• Define a quality measure (objective function), that captures the definition of 

community structure in a way nodes in the same group have better internal than 

external connectivity. 

• Use algorithmic techniques, so that the nodes of the network are assigned to specific 

communities, through optimization of the objective function.  
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In many cases, the optimization of the objective function leads to computational difficult 

problems. So, a common approach is to employ some kind of heuristic algorithms or other 

approximation techniques. 

Some of the quality measures focus on both the intra as well as the inter cluster edge density 

(multi-criterion scores). Another kind of measures is the single-criterion score, where the 

measure focuses only in one of them (either inter or intra). An excellent example of that kind 

of measure is modularity, which we will get into detail in the next section. 

2.7.2 Modularity Measure 

Newman and Girvan introduced modularity Q as a stopping criterion for one of their 

previous algorithms [NeGi04]. Since then, modularity became one of the most popular and 

widely used measures to evaluate the quality of the graph partition. It is a classic example of 

one of the first attempts to achieve a better understanding of the community detection 

problem, as it presents key elements such as the definition of a community as well as its 

strength. 

The main idea of modularity is that given a specific partition of a graph, it measures the 

number of edges that exist within a cluster compared to the expected number of edges of a 

random graph with the same degree distribution. 

In other words, modularity is taking advantage of the fact that a random graph is not 

expected to have inherent community structure. So, comparing the density of a subgraph 

with the expected one of the same subgraph in a random graph, will determine a method for 

identifying clusters. More specifically, the modularity value Q is defined below: 

 

𝑄 =
1

2𝑚
∑ [𝑒𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗

𝛿(𝑐𝑖, 𝑐𝑗) 

 

Where 

𝑖, 𝑗 are the graph nodes 

𝑒𝑖𝑗 represents the weight of the edge between i and j 

𝑘𝑖 is the sum of the weights of the edges attached to vertex i 

𝑚 is the sum of all of the edge weights in the graph 

𝑐𝑖 and 𝑐𝑗 are the communities of nodes 𝑖, 𝑗 respectively 

𝛿 is delta function, with 𝛿(𝑢, 𝑣) is 1 if 𝑢 = 𝑣 and 0 otherwise 
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The assumption made by one, is that high values of modularity indicate good partitions. This 

indicates that the partition that corresponds to the maximum value of modularity is a very 

good one if not the best. The optimization of modularity 𝑄 through exhaustive search is not 

feasible due to the huge number of possible ways to partition a graph. In 2006, it has been 

proved that optimizing modularity is a NP-complete problem [BDG+06]. However, there are 

several algorithms able to find good approximations of the modularity maximum in a 

reasonable time. 

The first algorithm to maximize modularity was a greedy agglomerative clustering method 

proposed by Newman himself [Newm04]. The algorithm starts by assigning 𝑛 nodes to 𝑛 

different clusters, each containing exactly one node. The edges are not available all at once, 

as they are added one by one during the algorithm. However, the 𝑄 value of partitions is 

calculated with the full topology of the graph. 

Adding the first edge to the set of disconnected nodes reduces the number of clusters from 𝑛 

to 𝑛 −  1, creating a new partition of the graph. The edge is chosen in order for the partition 

to achieve the maximum increase of modularity. This process is repeated for all other edges. 

The number of partitions found during the procedure is 𝑛, each with a different number of 

clusters, from 𝑛 to 1. The largest modularity value from those subsets is the solution given by 

the algorithm. 

As for the complexity of the algorithm, at each iteration step, one needs to compute the 

difference 𝛥𝑄 produced by the merging of any two communities of the current partition, and 

choose the best merge. An interesting thing is that, merging communities with no edges 

between them, can never lead to an increase of 𝑄, so there is no need to check all the 

available communities, only the connected ones which are at most 𝑚. Since the calculation of 

each 𝛥𝑄 can be done in constant time, this part of the calculation requires a time 𝑂(𝑚). After 

choosing the communities merging pair, the edge matrix update which expressing the 

number of edges between clusters 𝑖 and 𝑗 of the running partition can be done in 𝑂(𝑛) at 

worst-case. Since the algorithm requires 𝑛 − 1 iterations to run to completion in order to 

merge all communities, its complexity is 𝑂((𝑚 + 𝑛)𝑛). 

Clauset, Newman and Moore [ClNM04] in 2004 pointed out that a large amount of 

operations regarding the update of edge matrix, where redundant. They proposed a max-

heap data structure to perform this operation, which stores the data in a binary tree form. 

They maintained the matrix of modularity 𝛥𝑄, in a max-heap containing the largest elements 

of each row as well as the corresponding communities. The optimization process is done in 

the same way as before, but much faster due to the new data structures. 

The complexity of the algorithm is 𝑂(𝑚𝑑(𝑙𝑜𝑔(𝑛))), where d is the depth of the max-heap, 

which grows up to 𝑙𝑜𝑔(𝑛) for graphs with a strong hierarchical structure. This algorithm is 

still used to estimate the modularity maximum on such large graphs.  

Finally, in 2008, Blondel, Guillaume, Lambiotte and Lefebvre [BGLL08] proposed a simple 

heuristic algorithm that outperformed the previous methods in terms of computational time 

and at some times in the achieved modularity value as well. This method is also known as 
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the Louvain method. In order to maximize the modularity value, the Louvain algorithm 

consisted of two steps that are repeated iteratively: 

At first, each node in the graph is assigned to its own community. Then for each node 𝑖, the 

change in modularity is calculated by removing 𝑖 from its own community and moving it 

into all the possible communities that the neighbors of 𝑖 belong. 

To avoid the intense computations of moving each node to different communities and then 

calculate modularity from the start, they came up with this function that yield the 

modularity change: 

 

∆𝑄 = [
∑ +𝑖𝑛 2𝑘𝑖,𝑖𝑛

2𝑚
− (

∑ +𝑡𝑜𝑡 𝑘𝑖

2𝑚
)

2

] −  [
∑  𝑖𝑛

2𝑚
−  (

∑  𝑡𝑜𝑡

2𝑚
)

2

−  (
𝑘𝑖

2𝑚
)

2

 ] 

 

∑  𝑖𝑛  is the sum of all the weights of the links inside the community 𝑖 is moving into 

∑  𝑡𝑜𝑡 is the sum of all the weights of the links to nodes in the community 

𝑘𝑖 is the weighted degree of 𝑖 

𝑘𝑖,𝑖𝑛 is the sum of the weights of the links between i and other nodes in the community  

𝑚 is the sum of the weights of all links in the graph.  

Once this value is calculated for all possible communities that 𝑖 is connected to, 𝑖 is placed 

into the community that yields the greatest modularity increase. If there is no possible 

increase, then 𝑖 stays in its initial community. This process is applied repeatedly and 

sequentially to all nodes until no modularity increase can be achieved. After the local 

modularity maximum is hit, this phase has ended. 

In the second phase, the algorithm groups all the nodes in the same communities and builds 

a new graph. Nodes are the communities from the first phase. The links between nodes in 

the same group, represented as self-loops on the new merged community. Also, links from 

multiple nodes in the same community to a node in a different community are represented 

by weighted edges between nodes. Once the new graph is constructed, phase one can be re-

applied to it. This phase is optional and usually omitted. 
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Figure 5 Visualizations of the steps used by Louvain's method [BGLL08]. 

Another technique for optimizing modularity is via simulated annealing [KiGV83]. 

Simulated annealing is used in many different problems and simply performs an exploration 

of all possible states, while trying to achieve global optimum of a given function 𝐹. The 

probability of a transition from one state to another is 1 if the function 𝐹 increases and 𝑒
𝛥𝐹

𝑇  

otherwise, where 𝛥𝐹 is the function decrease and 𝑇 is the temperature which decreases over 

time. At some point, the system converges to a stable state, which can be a good 

approximation of the maximum of 𝐹. 

Guimerà, Pardo and Amaral [GuSA04] were the first ones to use simulated annealing as an 

optimization technique for modularity. In his implementation two types of moves are used. 

The first one is local move where a single node is moved to another cluster at random. The 

second one is global move which contains communities’ splits and merges. The split move is 

implemented in order to reduce the risk of trapping in local minima. The simulated 

annealing method can be potentially equal to the true modularity maximum, but it is very 

slow. The true complexity cannot be estimated, due to the heavy dependence on the 

parameters chosen for the optimization such as initial temperature and cooling factor. 

Simulated annealing is usually used for small graphs. 

Although optimizing modularity has many advantages compared to other methods, it has 

some limitations as well. As noted by Fortunato and Barthélemy [FoBa07], modularity 

suffers from the resolution limit. More precisely, modularity optimization might fail to detect 

clusters smaller than a scale number, which is mainly dependent on the graph size. This 

limitation is important because real world networks, often contain communities of various 

sizes. 
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CHAPTER 3.  

INCLUSION QUALITY MEASURE (I) 

3.1 Introducing the New Quality Measure (I) 

3.2 Optimizing Inclusion 

 

3.1 Introducing the New Quality Measure (I) 

As we have presented previously, the modularity measure has many advantages but a major 

disadvantage as well. With our new quality measure named Inclusion, that we will present 

in detail below, we tried to approach the community detection problem from another 

perspective. Assume a graph 𝐺 with nodes |𝑉|  =  𝑛 and edges undirected and unweighted 

|𝐸| =  𝑚 i.e. 𝑒𝑖𝑗 = 𝑒𝑗𝑖, 𝑒𝑖𝑗 ∈ {0,1} 

The first main difference of our measure compared to the existing ones, is that we value the 

absence of edges between two different clusters. The reason behind this idea is that for a 

cluster to be compact, the number of edges from/to different clusters should be minimum. 

The second and probably the most important difference, is that our measure focuses 

primarily on nodes and not on clusters. With this approach, we believe that we will be able 

to predict the number of main communities, but also discover the communities that are small 

compared to the size of the whole graph.  

Given a community structure 𝐶 =  {𝐶1, 𝐶2, … , 𝐶𝑘}, the definition for the Inclusion model is 

presented below: 

 

𝐼𝑖 =
1

2
 [

𝑊1
𝑖(𝑖𝑛)

𝑑𝑖
+ [

𝑊0
𝑖(𝑜𝑢𝑡) + 1

𝑁 − 𝑑𝑖
]]    𝐼𝑖 ∈ [0.5, 1] 
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where 

𝑊1
𝑖(𝑖𝑛), is the number of existing edges between the corresponding node and the nodes of 

the same cluster 

𝑊0
𝑖(𝑜𝑢𝑡), is the number of non-existing edges between the corresponding node and nodes 

belonging in different clusters 

𝑑𝑖, is the degree of node 𝑖 

𝑁, is the total number of nodes 

 

In other words, inclusion measures for each node, its existing edges inside its community 

and non-existing edges with the other communities. With the presented formula, it is now 

easier to understand that our criterion is node-centric and not cluster centric. Another 

property of our criterion is that it is in fact a multi-criterion score function as it focuses both 

on inter as well as intra edge density. The following formula expresses the inclusion measure 

on the whole graph: 

 

𝐼 =  
∑ 𝐼𝑖

𝑁
𝑖=1

𝑁
                    𝐼 ∈ [0.5 ,1] 

 

 

 

Figure 6 a) Graph clustered into three communities, I = 0.85 b) Graph clustered into four 

communities, I = 0.89 c) Graph clustered into five communities, I = 0.80. 
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As you can easily observe from Figure 6, I tends to increase as the quality of the clusters 

increases. In the first case, the graph is separated in three clusters which is a visually fine 

solution. That partition has I = 0.85. For the second case, the graph is separated in four 

clusters, which is the visually the best one. That partition has I = 0.89. In the third case, graph 

is separated in five clusters, which seems kind of over-partitioning it. That results in I = 0.80. 

The visual results from the three cases, align with the Ι values of each graph partition.  

To examine the extreme cases where all nodes into one cluster or every node on a separate 

cluster, assume a fully connected graph, where all nodes are connected to each other. In the 

case where all nodes are in the same cluster, the first part of inclusion measure, 
𝑊1

𝑖(𝑖𝑛)

𝑑𝑖
 , is one 

for every node because in a fully connected graph, the degree of every node is N-1 and the 

since all the nodes are in the same cluster, the intra-edges are also N-1. For the second part of 

the inclusion formula, 
𝑊0

𝑖(𝑜𝑢𝑡)+1

𝑁−𝑑𝑖
, is also one cause as we already established the degree of 

every node is N – 1 thus the denominator is N – (N-1) = 1. Moreover, the non-existing edges 

to other clusters is zero because there is only one cluster thus the numerator is also 1. So, the 

inclusion value for this case is 1. 

In the case of every node belonging in a separate cluster the first part of the inclusion 

formula, 
𝑊1

𝑖(𝑖𝑛)

𝑑𝑖
 , is zero because there are no other nodes in each node’s cluster. As for the 

second part, 
𝑊0

𝑖(𝑜𝑢𝑡)+1

𝑁−𝑑𝑖
, is one as it does not differ from the previous case. So, the inclusion 

value for this case is 0.5. 

3.2 Optimizing Inclusion 

After explaining how our criterion works, it is only natural to try to optimize our criterion in 

order to detect the underlying communities. To achieve that, we tried two major techniques 

which are presented in detail below. 

 

Agglomerative Cluster Merging: 

Our first approach on the optimization problem, was based on cluster merging in each step. 

More precisely, at the start of the algorithm, each node is in a separate cluster containing 

only the node itself. Then for every possible cluster merge, we calculate all the corresponding 

𝐼 values and store the cluster pair that yielded the maximum 𝐼. Afterwards, we merge the 

aforementioned clusters and repeat the second step for finding the max 𝐼. Our stopping 

criterion was the improvement of 𝐼. If there was no pair that improves 𝐼, then we stop the 

algorithm. 
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Algorithm 3.2.1 Agglomerative Cluster Merging 

1. 𝐶 = Set all nodes into separate clusters (Initialization) 

2. repeat 

3. Set 𝑚𝑎𝑥𝐼 to 0 

4. for cluster 𝑐𝑖 in 𝐶 

5..          for cluster 𝑐𝑗 in 𝐶 

6.                   Calculate corresponding 𝐼 value 

7.                   Store 𝑐𝑖, 𝑐𝑗 if corresponding 𝐼 >  𝑚𝑎𝑥𝐼 

8.                   Update 𝑚𝑎𝑥𝐼 =  𝐼 

8. Update 𝐶 by merging the 𝑐𝑖  and 𝑐𝑗that resulted in 𝑚𝑎𝑥𝐼 

9. until 𝐼 does not improve 

 

Our first results on the algorithm were encouraging, but the computational time was huge. 

That is because for every possible cluster pair we need to computed I from scratch (𝑂(𝑛2)). 

To tackle this issue, we compiled a delta function to compute this increase without 

calculating the I from the whole graph. The nodes belonging in same cluster as the node n, 

who is about to move to a new cluster are labeled as 𝑁𝑜𝑙𝑑 as on the other hand the nodes on 

cluster that the node n is about to be moved to are labeled as 𝑁𝑛𝑒𝑤. The definition for our 

delta function is presented below: 

 

𝛥𝐼1 = ∑ ∑ 𝑒𝑖,𝑗 (
1

2𝑑𝑖
) − (1 − 𝑒𝑖,𝑗)

1

2(𝑁 − 𝑑𝑖)
𝑗∈𝑁𝑛𝑒𝑤𝑖∈𝑁𝑜𝑙𝑑

  

 

𝛥𝐼2 = ∑ ∑ 𝑒𝑖,𝑗 (
1

2𝑑𝑖
) − (1 − 𝑒𝑖,𝑗)

1

2(𝑁 − 𝑑𝑖)
𝑗∈𝑁𝑜𝑙𝑑𝑖∈𝑁𝑁𝑒𝑤

  

 

𝛥𝐼 =  
𝛥𝐼1 + 𝛥𝐼2

𝑁
 

 

Although, there was a major improvement in computational time, the method was still 

pretty slow. So, we abandon this technique and start experimenting with a new one 

presented below. 
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Greedy Node Movement: 

The second approach on the problem, was based on moving nodes between clusters instead 

of whole clusters. The initiation process was the same, with every node belonging in a 

separate cluster. Then for every node in our graph we calculate the 𝛥𝐼 value for every 

possible cluster it can move to and store the maximum 𝛥𝐼 as well as the node and cluster that 

yielded that 𝛥𝐼. Then we implement the best transition and start the search for the next 

move. Our stopping criterion was the same, the lack of improvement of 𝐼. 

 

Algorithm 3.2.2 Greedy Node Movement 

1. 𝐶 = Set all nodes into separate clusters (Initialization) 

2. 𝐺 =  (𝑉, 𝐸) 

3. repeat 

4. Set 𝑚𝑎𝑥𝛥𝐼 to 0 

5. for node 𝑛 in 𝑉 

6.          for cluster 𝑐 in C 

7.                   Calculate corresponding 𝛥𝐼 value 

8.                   Store 𝑛, 𝑐 if corresponding 𝛥𝐼 >  𝑚𝑎𝑥𝛥𝐼 

9. Update 𝐶 by moving node 𝑛 to cluster 𝑐 that resulted in 𝑚𝑎𝑥∆𝐼 

10. until I does not improve 

 

After running several experiments, we observed that the results were highly dependent on 

the processing order of the nodes. So, to manage this problem, our first try was to examine 

nodes based on their degree. We tried to process nodes with descending and ascending 

order regarding their degree. The results did not differ from a random selection, so we 

abandon this technique. Furthermore, we slightly change the 𝛥𝛪 function to fit the nature of 

our method (node-centric). As in our previously presented delta function, the nodes 

belonging in same cluster as the node 𝑖, who is about to move to a new cluster are labeled as 

𝑁𝑜𝑙𝑑 as on the other hand the nodes on cluster that the node 𝑖 is about to be moved to are 

labeled as 𝑁𝑛𝑒𝑤. 

 

𝛥𝐼1 =  ∑ {(1 − 𝑒𝑖,𝑗) [
1

2
(

1

𝑁 − 𝑑𝑗
+

1

𝑁 − 𝑑𝑖
)] − 𝑒𝑖,𝑗 [

1

2
(

1

𝑑𝑗
+

1

𝑑𝑖
)]}

𝑗≠𝑖,𝑗∈𝑁𝑜𝑙𝑑
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𝛥𝐼2 = ∑ {𝑒𝑖,𝑗 [
1

2
(

1

𝑑𝑗
+

1

𝑑𝑖
)] − (1 − 𝑒𝑖,𝑗) [

1

2
(

1

𝑁 − 𝑑𝑗
+

1

𝑁 − 𝑑𝑖
)]}

𝑗≠𝑖,𝑗∈𝑁𝑛𝑒𝑤

 

 

𝛥𝐼 =  
𝛥𝐼1 + 𝛥𝐼2

𝑁
 

 

Our final approach with this technique, was to consider three major decisions for searching. 

The first one, was either to search nodes sequentially or in a random order every time. The 

second decision, rose from the nature of our criterion. Our criterion positively values the 

existence of edges inside the cluster and the non-existence of edges between different 

clusters. So, we chose to either search adjacent clusters only, which are clusters that contain 

at least one neighbor of the respective node processed at the time, or every possible cluster. 

The last decision was either to examine all the possible clusters and find the best or chose the 

first better that we found. 

Those three decisions, led us to develop eight optimization methods for inclusion that we 

will compare against modularity on both real datasets as well as artificial ones with certain 

properties. More specifically, we labeled these methods three parts separated with an 

underscore. The first part is about node selection. The ‘All’ tag refers to exhaustive node 

search as on the other hand, ‘Rnd’ refers to randomly selecting a node for examination. The 

second part of the name is about the candidate clusters that a node can move to. The ‘Adj’ 

tag means that a node can move to adjacent clusters, which are clusters that contain at least 

one neighbor of the respective node processed at the time. ‘All’ tag means that a node can 

move to every possible cluster. Finally, the third tag refers to choosing either the best of the 

available clusters (‘B’ tag) or the first cluster that improves inclusion (‘F’ tag). 
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CHAPTER 4.  

DATASETS & RESULTS 

4.1 Synthetic & Real-World Data 

4.2 Results 

 

4.1 Synthetic & Real-World Data 

In order to test our data, we used both synthetic and real-world graphs. To produce synthetic 

graphs, we implemented a function that creates a graph given the following parameters: 

𝑁 number of nodes 

𝐶 number of clusters 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 list of percentages regarding the number of nodes for each cluster 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 the probability of each node to have an edge with nodes from other 

clusters 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 list of probabilities for intra-edges in each cluster 

After tweaking those parameters, we created five different categories of synthetic graphs to 

examine our criteria against modularity. The first sub-category of our synthetic data, consists 

graphs with equally distributed 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 (
1

𝐶
) and 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values ranging from 80 

to 100% percent for each cluster. This results in graphs that are separated in a clear way.  

The next category contains of graphs with 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values ranging from 80 to 100% 

percent for each cluster and descending 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒. This results in graphs with the dense 

large clusters and sparse small clusters. 
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The third category contains graphs with equally distributed 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 (
1

𝐶
) and a 

descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values which starts ranging from 90 to 100 percent and reduced 

for each cluster by a constant amount (15%). That category creates equally dense clusters 

regarding the number of nodes, but addresses the various intra edge density. 

The fourth category contains graphs with descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values as described 

above. Also, the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is descending as well. That parameter tweaking leads to 

clusters with stable ration between number of nodes and intra edge density. 

The final sub-category includes once again graphs with a descending 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑙𝑖𝑠𝑡 values 

as described in the two previous categories. However, the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 is ascending. That 

leads to graphs with large sparse clusters and small dense clusters. 

Due to the large running time for our optimization techniques on large graphs, on a 

commercial personal computer, we implemented a different approach. In order to test both 

criteria on large scale networks, we implement an optimization via the spectral clustering 

algorithm. More specifically, we run the spectral clustering algorithm for k number of 

clusters ranging from 2 to 20 for each graph, and store the partition that maximized 

modularity and inclusion respectively. We did 20 independent runs for each category. 

The second category, is actual real-world datasets. To determine which of the real-world 

datasets to choose, we had two basic criteria. The first one was that the dataset was small 

enough, so it could be processed in a simple personal PC. The second and the most 

important one, was that the dataset had the ground truth provided. Ground truth, is the 

actual partition of the nodes into clusters. That information was necessary to us, because a 

couple of our metrics were based on it. 

The first dataset that we chose was the famous Zachary’s Karate Club [Zach77]. This dataset 

is a social network of a karate club that was studied for three years. During the study, a 

conflict arose between the administrator and instructor, which led to the split of the club into 

two.  

The second dataset was the American College Football dataset. This dataset is a network of 

American football games between Division IA colleges during regular season Fall 2000. 

4.2 Results 

In order to measure the quality of the solution given by inclusion and modularity, we 

measure the similarity of an obtained solution with the ground truth solution, using two 

different metrics that are presented below: 

Normalized Mutual Information (NMI): Mutual Information score (MI) in general, is the 

measure of mutual dependence between two random variables, but in our case, is adjusted 

to measure dependence (similarity) between different partitions instead of random variables. 

So, NMI, is a normalization of the Mutual Information score (MI), which is a measure of the 
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mutual dependence between the two random variables, to scale the results between 0 (no 

mutual information) and 1 (perfect correlation).  

Adjusted Rand Index (ARI): The Rand Index (RI) computes a similarity measure between 

two partitions by considering all pairs of samples and counting pairs that are assigned in the 

same or different clusters in the predicted and true partitions.  

The adjusted Rand index is a normalization of RI that provides a value close to 0.0 for 

random labeling independently of the number of clusters and samples and exactly 1.0 when 

the clusters are identical.  

Once we have defined the NMI and ARI performance measures, we will explain the contents 

in the tables that follow. For each category, we created a graph with 60 nodes and 4 clusters 

as well as a graph with 80 nodes and 5 clusters. For each type of graph, we conducted 100 

runs and kept the average values for various metrics. 

Starting with the table columns, the first one presents of the average cluster size. The second 

one gives the average Inclusion value. The third one gives the average Modularity. Finally, 

the last two correspond to the average NMI and average ARI respectively. 

As for the table rows, the first one corresponds to the solution produced by the fast 

modularity algorithm. The next rows, present the results for our optimization function. Each 

row name consists of three parts separated with an underscore, which are thoroughly 

described at the end of chapter 3. 

4.2.1 Equal Cluster Size – Large Intra Cluster Probability 

Tables 1 and 2 present the results for the case where all clusters are of equal size and have 

high intra-edge density. 

Table 1 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size, 

External Probability 15% and Probability List ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4 0.7672 0.2789 1 1 

All_Adj_B 3.81 0.7613 0.2720 0.9741 0.9435 

All_Adj_F 4 0.7672 0.2789 1 1 

All_All_B 3.81 0.7613 0.2720 0.9741 0.9435 

All_All_F 4 0.7672 0.2789 1 1 

Rnd_Adj_B 3.97 0.7663 0.2777 0.9960 0.9911 
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Rnd _Adj_F 3.66 0.7543 0.2645 0.9542 0.9000 

Rnd _All_B 3.98 0.7664 0.2779 0.9973 0.9940 

Rnd _All_F 3.43 0.7457 0.2545 0.9229 0.8316 

 

Table 2 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size, 

External Probability 15% and Probability List ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4.99 0.7306 0.2568 0.9991 0.9977 

All_Adj_B 3.7 0.7069 0.2288 0.8779 0.7294 

All_Adj_F 5 0.7307 0.2570 1 1 

All_All_B 3.67 0.7064 0.2282 0.8750 0.7237 

All_All_F 4.99 0.7306 0.2568 0.9991 0.9977 

Rnd_Adj_B 4.87 0.7284 0.2542 0.9882 0.9711 

Rnd _Adj_F 4.14 0.7139 0.2369 0.9212 0.8102 

Rnd _All_B 4.9 0.7289 0.2548 0.9910 0.9774 

Rnd _All_F 3.73 0.7042 0.2258 0.8817 0.7319 

 

4.2.2 Equal Cluster Size – Variable Intra Cluster Probability 

Tables 3 and 4 present the results for the case where all clusters are of equal size and have 

intra-edge densities that are gradually reduced.  

Table 3 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size, 

External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster 

Followed by a 15% Reduction for each Subsequent Cluster. 

 
Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 3.99 0.7335 0.2508 0.9960 0.9943 
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All_Adj_B 3.37 0.7164 0.2318 0.8891 0.7957 

All_Adj_F 4.02 0.7335 0.2508 0.9954 0.9948 

All_All_B 3.37 0.7164 0.2318 0.8891 0.7957 

All_All_F 4.01 0.7336 0.2508 0.9955 0.9951 

Rnd_Adj_B 3.99 0.7326 0.2498 0.9904 0.9852 

Rnd _Adj_F 3.81 0.7252 0.2401 0.9585 0.9222 

Rnd _All_B 3.98 0.7318 0.2488 0.9860 0.9760 

Rnd _All_F 3.48 0.7165 0.2303 0.9088 0.8290 

 

Table 4  Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size, 

External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster 

Followed by a 15% Reduction for each Subsequent Cluster. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4.73 0.6827 0.2124 0.9022 0.8642 

All_Adj_B 3.75 0.6687 0.1952 0.7643 0.6293 

All_Adj_F 5.03 0.6840 0.2129 0.9309 0.9128 

All_All_B 3.74 0.6687 0.1951 0.7652 0.6298 

All_All_F 5.02 0.6839 0.2128 0.9285 0.9084 

Rnd_Adj_B 4.79 0.6796 0.2070 0.8674 0.8110 

Rnd _Adj_F 4.59 0.6767 0.2034 0.8501 0.7766 

Rnd _All_B 4.94 0.6803 0.2077 0.8932 0.8464 

Rnd _All_F 4.18 0.6703 0.1945 0.8148 0.7064 

 

4.2.3 Variable Cluster Size – Large Intra Cluster Probability 

Tables 5 and 6 present the results for the case where clusters are of various size and have 

high intra-edge density.  
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Table 5 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with 

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List 

ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 3.48 0.7850 0.2581 0.9545 0.9458 

All_Adj_B 3.14 0.7797 0.2557 0.9180 0.8979 

All_Adj_F 4 0.7883 0.2575 0.9983 0.9990 

All_All_B 3.14 0.7797 0.2557 0.9180 0.8979 

All_All_F 3.99 0.7883 0.2576 0.9976 0.9980 

Rnd_Adj_B 3.93 0.7874 0.2572 0.9918 0.9896 

Rnd _Adj_F 3.9 0.7877 0.2577 0.9892 0.9884 

Rnd _All_B 3.9 0.7869 0.2569 0.9892 0.9856 

Rnd _All_F 3.76 0.7855 0.2566 0.9764 0.9681 

 

Table 6 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with 

Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List 

ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4.36 0.7420 0.2551 0.9574 0.9327 

All_Adj_B 3.36 0.7240 0.2383 0.8504 0.7511 

All_Adj_F 4.91 0.7440 0.2548 0.9933 0.9874 

All_All_B 3.37 0.7242 0.2383 0.8511 0.7519 

All_All_F 4.92 0.7443 0.2551 0.9947 0.9910 

Rnd_Adj_B 4.57 0.7415 0.2533 0.9673 0.9446 

Rnd _Adj_F 4.3 0.7352 0.2468 0.9385 0.8831 
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Rnd _All_B 4.66 0.7419 0.2535 0.9729 0.9544 

Rnd _All_F 3.88 0.7267 0.2375 0.8991 0.8082 

 

4.2.4 Variable Cluster Size – Variable Intra Cluster Probability (Small 

Cluster High Density)  

Tables 7 and 8 present the results for the case where clusters are of various size and have 

intra-edge densities that are gradually reduced, resulting in smaller sized clusters having 

larger intra-edge density.  

Table 7 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with 

Ascending Order (10%, 20%, 30%, 40%), External Probability 15% and Probability List 

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each 

Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 3.71 0.7242 0.2285 0.9684 0.9628 

All_Adj_B 3.09 0.7168 0.2232 0.8930 0.8672 

All_Adj_F 3.96 0.7255 0.2284 0.9943 0.9938 

All_All_B 3.08 0.7166 0.2229 0.8904 0.8641 

All_All_F 3.92 0.7254 0.2284 0.9890 0.9880 

Rnd_Adj_B 3.78 0.7239 0.2276 0.9681 0.9641 

Rnd _Adj_F 3.77 0.7238 0.2275 0.9692 0.9617 

Rnd _All_B 3.91 0.7245 0.2276 0.9845 0.9797 

Rnd _All_F 3.63 0.7217 0.2257 0.9536 0.9417 
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Table 8 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with 

Ascending Order (10%, 15%, 20%, 25%, 30%), External Probability 15% and Probability List 

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each 

Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4.56 0.6663 0.1938 0.9225 0.8944 

All_Adj_B 3.5 0.6526 0.1765 0.7584 0.6477 

All_Adj_F 5.03 0.6678 0.1948 0.9504 0.9395 

All_All_B 3.5 0.6525 0.1764 0.7589 0.6486 

All_All_F 4.9 0.6674 0.1945 0.9358 0.9192 

Rnd_Adj_B 4.75 0.6637 0.1896 0.8898 0.8435 

Rnd _Adj_F 4.52 0.6626 0.1887 0.8766 0.8251 

Rnd _All_B 4.59 0.6639 0.1901 0.8845 0.8424 

Rnd _All_F 3.99 0.6563 0.1804 0.8084 0.7212 

 

4.2.5 Variable Cluster Size – Variable Intra Cluster Probability (Large 

Cluster High Density) 

Tables 9 and 10 present the results for the case where clusters are of various size and have 

intra-edge densities that are gradually increased, resulting in larger sized clusters having 

larger intra-edge density.  

Table 9 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with 

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List 

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each 

Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 3.14 0.7686 0.2447 0.9069 0.9002 

All_Adj_B 3.31 0.7675 0.2429 0.9039 0.8972 
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All_Adj_F 4.09 0.7724 0.2422 0.9748 0.9825 

All_All_B 3.31 0.7678 0.2429 0.9078 0.9010 

All_All_F 4.06 0.7725 0.2422 0.9761 0.9831 

Rnd_Adj_B 3.96 0.7721 0.2427 0.9641 0.9692 

Rnd _Adj_F 3.97 0.7721 0.2425 0.9699 0.9749 

Rnd _All_B 3.98 0.7719 0.2423 0.9654 0.9704 

Rnd _All_F 3.83 0.7705 0.2419 0.9538 0.9536 

 

Table 10 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with 

Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List 

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each 

Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 3.95 0.7181 0.2338 0.8795 0.8598 

All_Adj_B 4.17 0.7130 0.2272 0.8472 0.8073 

All_Adj_F 4.98 0.7200 0.2317 0.9282 0.9324 

All_All_B 4.18 0.7132 0.2275 0.8467 0.8087 

All_All_F 4.99 0.7200 0.2317 0.9270 0.9323 

Rnd_Adj_B 4.96 0.7192 0.2310 0.9152 0.9170 

Rnd _Adj_F 4.71 0.7174 0.2299 0.8951 0.8840 

Rnd _All_B 4.93 0.7193 0.2312 0.9177 0.9171 

Rnd _All_F 4.55 0.7133 0.2246 0.8776 0.8485 

 

4.2.6 Summary of Results 

For the first category, where the all the clusters high equal size and high intra-edge density, 

all methods performed generally well. Modularity, ‘All_Adj_F’ and ‘All_All_F’ performed 

the best on both graphs on all metrics, with almost perfect results every time. ‘Rnd_Adj_B’ 



 

43 

 

and ‘Rnd_All_B’ performed slight worse than the previous ones but still pretty great with 

results for both NMI and ARI above 97%. Furthermore, their average number of 

communities found 4.1 instead of 4. Finally, the rest of the methods performed great on the 

first category were the graph had 60 nodes and 4 clusters, but on the next category with 80 

nodes and 5 clusters, their percentage on NMI dropped about 10% to approximately 88% 

while the ARI dropped even more to almost 20% on some cases. Moreover, their number of 

detected communities was 3.7 for some cases instead of 5. 

On the next category, where clusters are of equal size but the intra-edge density is dropping 

gradually for every cluster, in graphs with 60 nodes and 4 clusters, ‘All_Adj_F’, ‘All_All_F’, 

‘Rnd_Adj_B’, ‘Rnd _All_B’ and modularity performed really well with both NMI and ARI 

nearly at 99%. Their number of detected communities was deviated by 0.01. ‘Rnd _All_F’, 

‘All_Adj_B’ and ‘All_All_B’ performed worse than the others with NMI and ARI at 90%, 

while their average number of communities deviated by 0.6. On the other hand, on graphs 

with 80 nodes and 5 clusters all methods dropped their percentages on all metrics except 

from ‘All_Adj_F’, ‘All_All_F’ which maintained their great performance. 

On the next category, where clusters are of various size and have high intra-edge density, 

‘All_Adj_F’, ‘All_All_F’ , ‘Rnd _Adj_B’, ‘Rnd_Adj_F’ and ‘Rnd _All_B’ performed 

remarkably well on graphs with 60 nodes and 4 clusters, with average NMI and ARI 

reaching 99% while their average number of clusters found had a very small deviation of 

0.08. Modularity and ‘Rnd_All_F’, performed slightly worse than the previous ones but still 

very good with an average of 96% on both NMI and ARI. As for their number of not detected 

clusters, it is about 0.35. ‘All_Adj_B’ and ‘All_All_B’ performed the worst once again with an 

average of 92% on NMI and 90% on ARI while their number clusters found was 3.15 instead 

of 4. On the contrary, on graphs with 80 nodes and 5 clusters, all methods suffered from a 

significant reduction on all metrics, with both ‘All_Adj_F’, ‘All_All_F’ outperforming the 

other methods. 

In the category where the clusters are of various size and have intra-edge densities that are 

gradually reduced, resulting in smaller sized clusters having larger intra-edge density, 

methods performed really well for the case of graphs with 60 nodes and 4 clusters. More 

specifically, ‘All_Adj_F’, ‘All_All_F’ and ‘Rnd _All_B’ performed the best with an average of 

98% on both NMI and ARI, while their number of clusters found deviated by 0.08. 

Modularity, ‘Rnd_Adj_B’, ‘Rnd _Adj_F’ and ‘Rnd _All_F’, performed slightly worse than the 

previous ones but still very good with an average of 96% on both NMI and ARI. As for their 

number of clusters found, it is about 3.7 instead of 4. ‘All_Adj_B’ and ‘All_All_B’ performed 

the worst once again with an average of 89% on NMI and 86% on ARI while their number of 

clusters found was approximately 3.1 instead of 4. For the case of 80 nodes and 5 clusters, all 

methods suffered a 5-10% reduction on both NMI and ARI except from ‘All_Adj_B’, 

‘All_All_B’ and ‘Rnd _All_F’ which suffered a significant reduction up to 15%. 

For the last category, where clusters are of various size and have intra-edge densities that are 

gradually increased, resulting in larger sized clusters having larger intra-edge density, 

almost all methods performed well on graphs with 60 nodes and 4 clusters. More 

specifically, ‘All_Adj_F’, ‘All_All_F’, ‘Rnd _Adj_B’, ‘Rnd_Adj_F’ ,‘Rnd _All_B’ and ‘Rnd 

_All_F’ performed really well with an average of 96% for NMI and 97% for ARI. 
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Furthermore, their number of detected clusters deviated by 0.05. Modularity, ‘All_Adj_B’ 

and ‘All_All_B’ performed the worst with 90% on both NMI and ARI, while their average 

number of detected clusters deviated by 0.8. On the graphs with 80 nodes and 5 clusters all 

methods suffered a 5-10% on every metric. 

4.2.7 Large Graphs – Optimization via Spectral Clustering 

 

In this section, we present the results for the spectral optimization. More specifically, we run 

the spectral clustering algorithm for k number of clusters ranging from 2 to 20 for each 

graph, and store the partition that maximized modularity and inclusion respectively. We did 

20 independent runs for each category. 

Table 11 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster 

Size, External Probability 15% and Probability List ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 8 0.6684 0.2122 1 1 

Inclusion 8 0.6684 0.2122 1 1 

 

Table 12 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster 

Size, External Probability 10% and Probability List ranging from 90% to 100% for the First 

Cluster Followed by a 10% Reduction for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 7.3 0.6200 0.1604 0.9694 0.9087 

Inclusion 8 0.6213 0.1600 0.9973 0.9977 

 

Table 13 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with 

Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 15% and 

Probability List ranging from 90% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 
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Modularity 6.9 0.6877 0.2264 0.9786 0.9733 

Inclusion 8 0.6883 0.2260 1 1 

Table 14 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with 

Ascending Order (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%), External Probability 10% and 

Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction 

for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 8 0.6054 0.1400 0.9997 0.9997 

Inclusion 8 0.6054 0.1400 0.9997 0.9997 

 

Table 15 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with 

Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 10% and 

Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction 

for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 5 0.6613 0.2057 0.8932 0.7827 

Inclusion 7 0.6661 0.2031 0.9756 0.9774 

 

For the spectral optimization on graphs with equally distributed and highly dense clusters, 

both methods yielded perfect results, as they found the ground truth solution every time. For 

the next category where the cluster sizes where equally distributed but there was various 

inter-edge probability, the modularity failed to detect the correct number of communities on 

some cases, resulting in a 96% NMI and 90% of ARI while its number of detected 

communities deviated by 0.7. On the other hand, inclusion found the ground truth solution 

nearly every time with an average of 99% on both NMI and ARI. 

On the next category where the cluster sizes are created with various sizes, inclusion found 

the ground truth partition on every occasion. On the contrary, modularity failed to detect the 

correct number of communities once again providing an average of 6.9 communities instead 

of 8. 

On graphs where smaller clusters are denser, both methods yielded perfect solutions every 

time. Finally, on the last category, where smaller clusters are sparser, both methods failed to 

detect the correct number of communities. Inclusion though, found 7 instead of 8 
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communities with 97% NMI and ARI while modularity found 5 instead of 8 communities 

with 89% on NMI and 78% on ARI. 

Table 16 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster 

Size, External Probability 15% and Probability List ranging from 95% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 16 0.5959 0.1294 1 1 

Inclusion 16 0.5959 0.1294 1 1 

 

Table 17 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster 

Size, External Probability 15% and Probability List ranging from 95% to 100% for the First 

Cluster Followed by a 5% Reduction for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 13 0.5648 0.0926 0.9333 0.7021 

Inclusion 14.8 0.5658 0.0919 0.9630 0.8995 

 

Table 18 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size 

with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%, 

3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100%. 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 13.9 0.6095 0.1461 0.9853 0.9749 

Inclusion 15.7 0.6097 0.1460 0.9982 0.9977 
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Table 19 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size 

with Ascending Order (2%, 2%, 2%, 3.5%, 5%, 5.25%, 6.25%, 6.25%, 6.25%, 7.5%, 8%, 8%, 8%, 

10%, 10%, 10%), External Probability 15% and Probability List ranging from 95% to 100% for 

the First Cluster Followed by a 5% Reduction for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 13.8 0.5563 0.0795 0.9598 0.8629 

Inclusion 15.4 0.5566 0.0793 0.9818 0.9421 

 

Table 20 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size 

with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%, 

3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100% 

for the First Cluster Followed by a 5% Reduction for each Subsequent Cluster 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 10.1 0.5925 0.1291 0.9085 0.7074 

Inclusion 13.4 0.5944 0.1276 0.9763 0.9639 

 

To even further harden the problem, we test both methods on even bigger graphs with more 

clusters. On the first category where all cluster sizes are equally distributed, both methods 

found perfect solutions every time. For the next category where the cluster sizes where 

equally distributed but there was various inter-edge probability, inclusion outperformed 

modularity with 96% on NMI and 90% on ARI while the average number of communities 

found was 14.8 instead of 16. Modularity, found 13 communities instead of 16 with 93% NMI 

and surprisingly low ARI 70%. 

On the next category where the cluster sizes are created with various sizes, both methods 

performed really well with 98% and 99% on both NMI and ARI, for modularity and 

inclusion, respectively. The average number of communities found was 13.9 for modularity 

and 15.7 for inclusion, instead of 16. 

On graphs where smaller clusters are denser, both methods performed really well once 

again. More specifically, modularity reached 96% on NMI and 86% on ARI while its number 

of detected communities is 13.8 instead of 16. Inclusion, performed slightly better with 98% 

on NMI and 94% on ARI while its number of detected communities is 15.4 instead of 16. 

Finally, on the last category, where smaller clusters are sparser, both methods struggled on 

the correct number of the underlying communities. More precisely, modularity found 10.1 
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communities on average instead of 16 and reached 90% on NMI and 71% on ARI. On the 

other hand, inclusion performed significantly better as the number of detected communities 

on average was 13.4 and its NMI and ARI is approximately 97%. 

4.2.8 Real-World Graphs 

Table 21 presents some basic statistics on the two real-world networks we used. 

Furthermore, Table 22 and 23 present the results on the Zachary's Karate Club and American 

College Football datasets respectively. 

Table 21 Real-World Networks’ Statistics 

 Number of Nodes Number of Edges Number of Clusters 

Karate Club 34 78 2 

American Football 115 616 12 

 

Table 22 Results for Karate Club Dataset (2 Clusters) 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4 0.8126 0.4188 0.6176 0.4619 

All_Adj_B 9 0.7547 0.2940 0.5303 0.2321 

All_Adj_F 11 0.7352 0.2588 0.5021 0.1576 

All_All_B 9 0.7547 0.2940 0.5303 0.2321 

All_All_F 11 0.7352 0.2588 0.5021 0.1576 

Rnd_Adj_B 9.54 0.7563 0.2932 0.5280 0.2142 

Rnd _Adj_F 6.11 0.7901 0.3687 0.6305 0.4142 

Rnd _All_B 9.78 0.7521 0.2854 0.5202 0.1992 

Rnd _All_F 6.15 0.7905 0.3666 0.6046 0.3803 
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Table 23 Results for American College Football Dataset (12 Clusters) 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 10 0.8367 0.6043 0.8856 0.8035 

All_Adj_B 7 0.8350 0.6006 0.7955 0.5784 

All_Adj_F 11 0.8363 0.6031 0.9115 0.8569 

All_All_B 7 0.8350 0.6006 0.7955 0.5784 

All_All_F 10 0.8342 0.5998 0.8895 0.8006 

Rnd_Adj_B 10.9 0.8317 0.5948 0.8940 0.8003 

Rnd _Adj_F 10.42 0.8308 0.5931 0.8867 0.7854 

Rnd _All_B 10.71 0.8330 0.5970 0.8927 0.7934 

Rnd _All_F 6.98 0.8111 0.5568 0.77573 0.5262 

 

Table 24 Spectral Optimization for Zachary's Karate Club Dataset 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 4 0.8126 0.4188 0.6176 0.4619 

Inclusion 4 0.8126 0.4188 0.6176 0.4619 

 

Table 25 Spectral Optimization for American College Football Dataset 

 Avg Clusters Avg I Avg Mod Avg NMI Avg ARI 

Modularity 11 0.8363 0.6031 0.9115 0.8569 

Inclusion 11 0.8363 0.6031 0.9115 0.8569 

 

For the Zachary’s Karate Club dataset, modularity found 4 communities instead of 2 with an 

NMI of 62% and ARI of 46. ‘Rnd_Adj_F’ and ‘Rnd_All_F’ performed similar to modularity in 

regard to NMI and ARI with 62% and 41% respectively but the number of communities 
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found is on average 6.1 instead of 2. All the other methods performed significantly worst 

with NMI nearly at 50% and ARI at 20% while on some cases the number of communities 

found is 11. That results indicate that the Karate Club is quite a difficult problem and 

probably there more than 2 actual communities.  

On American College Football dataset, the results were significantly better. ‘All_Adj_B’, 

‘All_All_B’ and ‘Rnd _All_F’ failed to detect the 5 clusters which led to poor results with 

NMI of 78% and ARI of 55%. On the other hand, all the other methods found at least 10 of 

the actual clusters with ‘All_Adj_F’ performing the best with 11 clusters found and NMI of 

91% and ARI of 86%. 

For the spectral optimization on Zachary’s Karate Club dataset, both methods chose the exact 

same solution. More specifically, they found 4 communities instead of 2 with an NMI of 62% 

and ARI of 46%. The same thing occurred with the American College Football, as both 

methods chose the exact same solution. The clusters found was 11 instead of 12, while the 

NMI was 91% and ARI was 86%. 
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CHAPTER 5.  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

5.2 Future Work 

 

5.1 Conclusion 

In this thesis, we studied the community detection problem and introduced a new quality 

measure, inclusion. Furthermore, we presented several optimization techniques for this 

criterion and compare them to the most popular family of community detection methods 

which are based on the optimization of the so called ‘modularity’ criterion using various 

clustering approaches. 

In the experimental evaluation we conducted, we deducted some valuable insights. First of 

all, in almost every case we examined, higher inclusion values led to better results, on both 

the quality of the solution (NMI and ARI) and actual number of communities detected. Thus, 

the optimization of the inclusion measure can help in solving the community detection 

problem. 

Although on smaller graphs both methods optimizing inclusion and modularity performed 

remarkably well, when we scale out, modularity seems to struggle on detecting smaller 

communities. On the other hand, our methods and specifically ‘All_Adj_F’ and ‘All_All_F’, 

outperformed modularity on almost every occasion. Finally, when we used the spectral 

optimization, thus narrowing our selection of solutions to a specific set, inclusion 

outperformed modularity as a choice criterion. 
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5.2 Future Work 

Given the encouraging community detection results obtained from the use of the proposed 

inclusion measure, there are several research directions to be followed. At first it would be 

interesting to test the approach on various community detection applications arising in 

biological, social and other types of networks.  

It would be also interesting to conduct a more detailed analysis of the strengths and 

weaknesses of the proposed measure that will lead to the identification of graph cases where 

the method succeeds or fails. 

Another research direction is to consider alternative approaches for optimizing inclusion, in 

analogy with the various techniques that have been proposed for optimizing modularity (e.g. 

simulated annealing, alternative greedy search schemes, etc.).  

It would also be important if we could formulate the inclusion maximization problem as a 

trace maximization problem in analogy to the spectral clustering objective. In such a case, the 

solution could be obtained from the eigenvectors of the corresponding matrix. 

Finally, another important research direction concerns the possible use of inclusion measure 

to detect communities in weighted graphs as well as in directed graphs. In such a case, an 

adaptation of the inclusion definition would be necessary to take into account the richer 

connection information included in the edge matrix. 
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