Community Detection in Undirected Graphs Using a New
Quality Measure

A Thesis

submitted to the designated
by the General Assembly of Special Composition
of the Department of Computer Science and Engineering

Examination Committee

by

Nikolaos Koufos

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
WITH SPECIALIZATION
IN SOFTWARE

University of Ioannina

July 2017

DEDICATION

To my family and my friends.

ACKNOWLEDGMENTS

I would like to express my sincerest thanks and gratitude to my advisor Prof. Aristidis Likas
for the valuable guidance, advice he has offered during the elaboration of this thesis. For his
excellent work ethic. Our collaboration has been a pleasant and memorable experience that
has helped me develop strong research skills as well as develop my critical thinking.

I would also like to thank my colleagues for creating a pleasant and friendly environment at
the office and for the useful conversations we had during the past years. It has been a
privilege to conduct my research among them.

I would also like to thank my parents, Charalampos and Theodora, and my siblings Giorgos
and Fani for always believing and supporting me.

loannina, July 2017

Nikolaos Koufos

TABLE OF CONTENTS

Dedication

ii

Acknowledgments

Table of Contents

List of Tables iii

List of Figures vi

Abstract

vii

Extetapévn IegiAnn ota EAANvika

CHAPTER 1. Introduction

1.1

1.2

Introduction

Contribution and Roadmap

CHAPTER 2. Related work

21

2.2

2.3

24

2.5

2.6

2.7

Basics

Graph Partitioning

Hierarchical Clustering

Partitional Clustering

Methods Based on Statistical Inference
Divisive Algorithms

Quality Measures

271 General Methodology

2.7.2 Modularity Measure

CHAPTER 3. Inclusion Quality Measure (I)

3.1

Introducing the New Quality Measure (I)

1

iii

viii

10

10

12

14

14

15

16

18

21

22

23

23

24

28

28

3.2 Optimizing Inclusion

CHAPTER 4.

Datasets & Results

41 Synthetic & Real-World Data

4.2 Results

421

Equal Cluster Size — Large Intra Cluster Probability

422 Equal Cluster Size — Variable Intra Cluster Probability
423 Variable Cluster Size — Large Intra Cluster Probability
424 Variable Cluster Size — Variable Intra Cluster Probability (Small
Cluster High Density)
425 Variable Cluster Size — Variable Intra Cluster Probability (Large
Cluster High Density)
42.6 Summary of Results
4.2.7 Large Graphs — Optimization via Spectral Clustering
4238 Real-World Graphs
CHAPTER 5. Conclusion and Future Work
5.1 Conclusion

5.2 Future Work

References

Short CV

54

56

ii

30

34

34

35

36

37

38

40

41

42

44

48

52

52

53

LIST OF TABLES

Table 1 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed
Cluster Size, External Probability 15% and Probability List ranging from
90% to 100%.

Table 2 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed
Cluster Size, External Probability 15% and Probability List ranging from
90% to 100%.

Table 3 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed
Cluster Size, External Probability 15% and Probability List ranging from
90% to 100% for the First Cluster Followed by a 15% Reduction for each
Subsequent Cluster.

Table 4 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed
Cluster Size, External Probability 15% and Probability List ranging from
90% to 100% for the First Cluster Followed by a 15% Reduction for each
Subsequent Cluster.

Table 5 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster
Size with Descending Order (40%, 30%, 20%, 10%), External Probability
15% and Probability List ranging from 90% to 100%.

Table 6 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster
Size with Descending Order (30%, 25%, 20%, 15%, 10%), External
Probability 15% and Probability List ranging from 90% to 100%.

Table 7 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster
Size with Ascending Order (10%, 20%, 30%, 40%), External Probability
15% and Probability List ranging from 90% to 100% for the First Cluster
Followed by a 15% Reduction for each Subsequent Cluster

Table 8 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster
Size with Ascending Order (10%, 15%, 20%, 25%, 30%), External
Probability 15% and Probability List ranging from 90% to 100% for the
First Cluster Followed by a 15% Reduction for each Subsequent Cluster

Table 9 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster
Size with Descending Order (40%, 30%, 20%, 10%), External Probability
15% and Probability List ranging from 90% to 100% for the First Cluster
Followed by a 15% Reduction for each Subsequent Cluster

iii

36

37

37

38

39

39

40

41

41

Table 10 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster
Size with Descending Order (30%, 25%, 20%, 15%, 10%), External
Probability 15% and Probability List ranging from 90% to 100% for the
First Cluster Followed by a 15% Reduction for each Subsequent Cluster

Table 11 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed
Cluster Size, External Probability 15% and Probability List ranging from
90% to 100%.

Table 12 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed
Cluster Size, External Probability 10% and Probability List ranging from
90% to 100% for the First Cluster Followed by a 10% Reduction for each
Subsequent Cluster

Table 13 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster
Size with Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%),
External Probability 15% and Probability List ranging from 90% to
100%.

Table 14 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster
Size with Ascending Order (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%),
External Probability 10% and Probability List ranging from 90% to 100%
for the First Cluster Followed by a 10% Reduction for each Subsequent
Cluster

Table 15 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster
Size with Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%),
External Probability 10% and Probability List ranging from 90% to 100%
for the First Cluster Followed by a 10% Reduction for each Subsequent
Cluster

Table 16 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally
Distributed Cluster Size, External Probability 15% and Probability List
ranging from 95% to 100%.

Table 17 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally
Distributed Cluster Size, External Probability 15% and Probability List
ranging from 95% to 100% for the First Cluster Followed by a 5%
Reduction for each Subsequent Cluster

Table 18 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed
Cluster Size with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%,
6.25%, 6.25%, 6.25%, 5.25%, 5%, 3.5%, 2%, 2%, 2%), External Probability
15% and Probability List ranging from 95% to 100%.

Table 19 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed
Cluster Size with Ascending Order (2%, 2%, 2%, 3.5%, 5%, 5.25%, 6.25%,
6.25%, 6.25%, 7.5%, 8%, 8%, 8%, 10%, 10%, 10%), External Probability

iv

42

44

44

44

45

45

46

46

46

15% and Probability List ranging from 95% to 100% for the First Cluster
Followed by a 5% Reduction for each Subsequent Cluster

Table 20 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed
Cluster Size with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%,
6.25%, 6.25%, 6.25%, 5.25%, 5%, 3.5%, 2%, 2%, 2%), External Probability
15% and Probability List ranging from 95% to 100% for the First Cluster
Followed by a 5% Reduction for each Subsequent Cluster

Table 21 Real-World Networks” Statistics

Table 22 Results for Karate Club Dataset (2 Clusters)

Table 23 Results for American College Football Dataset (12 Clusters)
Table 24 Spectral Optimization for Zachary's Karate Club Dataset

Table 25 Spectral Optimization for American College Football Dataset

47

47

48

48

49

49

49

LIST OF FIGURES

Figure 1 Simple graph clustering.

Figure 2 Graph Partitioning Example | V| =14, number of clusters 2.
Figure 3 Hierarchical Clustering illustrated with dendrograms.

Figure 4 Spectral Clustering vs K-Means.

Figure 5 Visualizations of the steps used by Louvain's method [BGLLO8].

Figure 6 a) Graph clustered into three communities, I = 0.85 b) Graph clustered into
four communities, I = 0.89 c) Graph clustered into five communities, I =
0.80.

vi

11

15

18

20

27

29

ABSTRACT

Nikolaos Koufos

MSc, Computer Science and Engineering, University of Ioannina, Greece

July 2017

Title: Community Detection in Undirected Graphs Using a New Quality Measure
Supervisor: Aristidis Likas

The detection of communities is of great significance in sociology, biology, computer science
and other disciplines where complex systems are often represented as graphs or networks.
One of the most interesting properties of graphs representing real systems is community
structure, i.e. the partitioning of graph nodes into clusters, with many edges joining nodes of
the same cluster and comparatively few edges joining nodes of different clusters. This hard
but important problem has attracted an increasing scientific interest over the past few years
and several techniques have been proposed, especially for the case where the number of
communities is not known in advance.

The most popular family of community detection methods is based on the optimization of
the so called “modularity” criterion using various clustering approaches. The modularity of a
community is defined as fraction of the edges that fall within a given group minus the
expected fraction if edges were distributed at random. However, it has been shown that
modularity has several drawbacks, such as for example the ‘resolution limit’, i.e., it is unable
to detect small communities.

We introduce a new quality measure to evaluate a partitioning of a graph into communities
that is called “inclusion’. This quality measure evaluates how well each node is ‘included” in
its community by considering both its existing and its non-existing edges. We have
implemented several techniques to optimize the inclusion criterion. A first technique follows
the agglomerative principles, as it starts with every node in a separate community and
iteratively merges communities so that inclusion is improved. A second technique is
similarly initialized, but instead of community merging, it improves the inclusion of the
partitioning by moving each time a single node to another community. Another method is
based on evaluating the solutions provided by spectral clustering. In the experimental
evaluation we conducted, it has been shown that the inclusion measure is very effective in
evaluating communities and usually leads to improved community detection results without
requiring the a-priori specification of the number of communities.

vii

EKTETAMENH IIEPIAHWH LTA EAAHNIKA

NucoAaog Kovgpde

MSc, Tunua Mnxavicov H/Y kat ITAngogopknic, Iavemiotruo Iwavvivwy

IovA10¢ 2017

TitAoc: Evromiopde kowvottwv oe un katevOuvopeva yoagruata e éva VEO KQLTHOLO
oot TAg déQLong

EmpAénwv: Agloteidng Avkag

O evtomiopde koot twv mailel onNuUavTikd QO0Ao OTnVv KowwvioAoyia, PloAoyia,
ETUOTHUN VTTIOAOYLOTWV KaOwS Kot 0e OAOLG TOVG TOHES OTTOL TMOAVTIAOKQ cLOTIHATA ,
OLXVA avaTaploTavial wg yoagnuata n diktva. Mia anmd Tic MO evila@éQovoeg
OLOTNTEG TOL €XEL] AVATIAQACTAOT] HE Yoapnuata, elvat 1) OO TOv O& KOWOTNTEG,
OnNAadn, 1 dapéElon Tov YEAPOL e TLOTADES TOL amaQtilovTal amd KOBoLS Tov
ovvdéovtal pe TOAAOUS KOUPBOLS NG BLC oLOTAdAS PECO AKUWV, KOl 000 OLUVATOV
ALyOTEQOUS KOUPOLS TIOL AVIKOLV 0& AAAEC OLOTAdES. AULTO TO TIEOPANUA, TTAXQK TNV
dLOKOALX TOV, €XEL KEVTOLOEL TO EVILAPEQWYV DIAPOQWYV ETUOTNHWY TA TEAgLTALX XQOVIAX,
pe anmotéAeopa va mEOoTafoUv aQKeTeC TeEXVIKES emtiAvong Tov MEOPANUATOS, KLEIWS Y
TIC TTEQLTITWOELS OTIOV 0 AQLOUOC TV OLOTADWV deV elval YVWOTOG €K TWV TIOOTEQWV.

H mo yvwot owoyéveir pnebodwv evromopoy Koot twy eival Baclopévn otnv
PeAtiotomoinon tov kEutneiov ‘modularity” pe didgogec Texvucés opadomoinone. To
modularity yix pa kowvotnta opilletat ws éva KAAOHA TV aKpWV Héoa 0€ Hila ovotdda
HeloV TOV KAGOUA TWV AVAHEVOUEVOV KUV VvV oL akpéG elxav TtomoOetnOel Ttuxala.
ITapdAa avtax, To kELtrELo modularity, éxel AOKETA HELOVEKTIHATA OTIWGS YIX TTAQADELY X
N AVIKAVOTITA TOV Vo avixvevoeL Hikpég oe péyebog kotvotnrec.

Le autv TNV £0Yaoilx, TEOTELVOUHE éva KAvOLQLX KOLTHOLO dMéQLONG, €V OVOHATL
‘inclusion’. AvTO TO KQLTIOLO EKTIUAEL TTOOO KAAQ éva kOpPog ‘ovumeoAapfBavetal otnv
KOLVOTNTA TOL £ETALOVTAG TNV VITAQETN AKUWV AAAK KAt TV pn-vrapén axpwv. ‘Exovpe
LAOTIOMOEL AOKETES TEXVIKES Y TNV BeAtiotoTtoinon tov koutnetov. H mowtn texvikn
axoAovOel v agglomerative Aoywr) , kaBwg Eexwvael tonobetwvtac kabe wouPo oe
EEXWOLOTI] KOWOTNTA KAL €MEITA CLVEVWVEL KOWOTNTEG €Tt0l wote va PeAtiwOel to
inclusion. H emopevn texvikr) mov vAomomoape, €xel MAQOHO QXK KATAOTAON HE
NV MEWTN, AAAX avti va OLVEVWVEL KOWVOTNTEG, peTakvel éva kOpPo kdOe @opa oe
AAAN kowvoTnTa. Miot AAAN TEXVIKT),)TV VA AELOAOYTOOVUE TIG AVOELS TIOL TTAQT)YAXYE O
aAyoplOpog tov spectral clustering. Xtnv mewapatikyy alloAdynorn mov KAVAME, T
amoteAéopata €deléav mMwg TO kOO inclusion elval aQkeTd ATOdOTIKO OTOV

viii

EVTOTILOUO KOWVOTHTWV kKat obvOwg 0dnyel o kaAvTeQeg AVoelg Tov MEOBANUATOS XWOLS
va xoewxletal v TEoodlogloovpe Tov aQlOpo TV KOWOTNTWV €K TWV TROTEQWV.

X

CHAPTER 1.

INTRODUCTION

1.1 Introduction

1.2 Contribution and Roadmap

1.1 Introduction

Graph theory is the study of graphs, which are mathematical structures used to model
pairwise relations between objects. A graph is made up of nodes and edges. The origins of
graph theory dates back to 1736, where Euler proposed a solution for the puzzle of
Konigsberg's bridges [Eule36]. Since then, we have learned a lot about graphs and their
mathematical properties [Boll98].

Through the years, graph models became an extremely useful representation of a wide
variety of systems in different scientific areas. Social, Biological and Telecommunication are
some of the networks that have been studied as graphs and helped researchers extract some
valuable features for these systems. For example, social network analysis started in the 1930's
and since then, it has become one of the most important topics in sociology [WaFa94].

Due to the fact that we are living in the computer revolution era, scientists and researchers
are provided with a huge amount of data, as well as computational resources. Those
enormous data, can lead to graph models with millions or even billions of nodes and edges.
So, the need of analysis rose, to determine helpful insights about the data.

Graphs that represent real systems are not always regular, meaning that each node does not
have the same number of neighbors. The first attempt on modeling those graphs was
introduced by Erdos and Rényi [ErRé59]. In their method, the probability of having an edge
between a pair of nodes is equal for all possible pairs. Their model is quite simple and
powerful with many applications. Although, their model does not have two important
properties of real-world networks. Triadic closure, which is the property among three nodes

10

A, B, and C, such that if a strong relationship exists between A and B as well as A and C,
there is a weak or strong relationship between B and C. The second property not present in
Erdos-Rényi model, is the power-law distribution on the nodes degree which is commonly
observed in real-world networks. Erdos—Rényi graphs converge to a Poison distribution. To
tackle the aforementioned problems, Watts and Strogatz proposed a different approach
based on interpolation between an Erd6s—Rényi graph and a regular ring lattice [WaSt98].

In a random graph, the degree distribution is highly homogenous, which can lead to a
problem, as some of the real networks follow a power law distribution as previously
mentioned. Furthermore, real networks show high edge concentration within some group of
nodes and low edge concentration between those groups. That property is called clustering
or community structure [GiNe02].

1.0 T T T T T T

0.8 |

0.6 |

0.4

0.0 |

_02 L | | | 1 1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1 Simple graph clustering.

The need to create communities, is in the human nature. From families and friendship circles
to alliances between countries at times of war. So, the need for community study inevitable
rose. Communities also appear in many networked systems like computer science,
economics, politics, biology, etc. For instance, in World Wide Web there are corresponding

11

group of pages that may deal with the same or related topic i.e. American Presidential
Election.

Finding those aforementioned communities, has many applications. Identifying clusters of
clients based on their previous purchases, improves significantly the recommendation
system, which in return increases business opportunities. Another application is in parallel
computing. For example, it is critical to allocate group of tasks to different processors in
order to minimize communication between them and thus enabling rapid performance. The
mathematical formalization of this problem falls under the category of NP-hard problems.

1.2 Contribution and Roadmap

In this thesis, we study the community detection problem as well as algorithmic techniques
that try to approach it. More specifically, in Chapter 2, we present widely used algorithms
such as Hierarchical clustering, Partitional clustering, Statistical models, etc. Finally, we
thoroughly present a state-of-the-art quality function, called modularity.

In Chapter 3, which is the thesis contribution, we present a new quality measure, called
inclusion. Our quality measure can be considered as a multi-criteria score function, since it
focuses both on groups inter and intra edge density. Furthermore, we present two
optimization techniques for our inclusion criterion. The first one follows the agglomerative
principles, as it starts with every node in a separate cluster and iteratively merges clusters in
a greedy way, that best improve the inclusion criterion. The second technique has the same
initialization process as the first one, but instead of cluster merging, it moves a single node at
a time to a new cluster that yielded the best value of inclusion.

Chapter 4 is dedicated on the experimental comparison between inclusion and modularity
measures. It contains results from both of the aforementioned criteria on various synthetic
graphs with different properties and sizes. Moreover, we also tested both criteria on real-
world datasets such as Zachary’s Karate Club and American College Football.

Finally, Chapter 5 summarizes the results which indicate that the inclusion measure is very
effective in evaluating communities and usually leads to improved community detection
results. Furthermore, we provide some future work/open issues regarding the exploitation of
the inclusion criterion.

12

13

CHAPTER 2.

RELATED WORK

21 Basics

21 Graph Partitioning

2.2 Hierarchical Clustering

2.3 Partitional Clustering

24 Quality Measures

2.1 Basics

The problem of graph clustering, has a major semantic problem thus making it actually not
well defined. The main reason behind that problem is the definition of community itself.
There are many suggestions on the definition of a community, but scientists tend to always
disagree which led to a rich literature regarding this problem.

It is important to stress that the identification of communal structure is possible when the
graphs are sparse enough. That means that the number of edges m is of the order of the
number of nodes n of the graph. Otherwise, the distribution of edges is too homogeneous for
communities to make sense.

In this section, we will present many algorithms for graph clustering, but before that some
basic definitions are essential:

14

A graph G with nodes [V| = n and edges undirected and unweighted |E| = m i.e. ¢;; = e,
eij € {0,1}

2.2 Graph Partitioning

Graph partitioning is the problem of dividing the nodes of a graph in k groups, such that the
number of edges between the groups is as small as possible. The number of edges between
clusters is called cut size. The next figure is from Fortunato’s survey on community detection

in graphs and shows a graph with 14 vertices and 2 clusters [Fort10].

\

Figure 2 Graph Partitioning Example |V| =14, number of clusters 2.

One major problem with the graph partitioning is that you need to specify the number of
groups. If one does not specify the number of clusters, then the problem becomes quite
trivial in the sense that you can group all nodes in one big cluster which will minimize the
cut size. This problem can be actually avoided by choosing a different measure to optimize
for the partitioning, which accounts for the size of the clusters as well. Specifying the size is
also necessary, as otherwise the most likely solution of the problem would be a two-way
partition where the lowest degree node will be in one cluster and all the other nodes in
another. But this case is also quite simple and uninteresting.

Most variants of the graph partitioning problem are NP-hard. However, there are several
algorithms that can produce some heuristic solutions with good results Many of those
algorithms perform a bisection of the graph. To achieve further partitioning into more than
two clusters, the technique of iterative bisectioning is used. Furthermore, in most cases there
is a constraint that suggests that all clusters are of equal size. This problem is known as the
minimum bisection and is NP-hard.

One of the first proposed algorithms that is still widely used is the Kernighan-Lin algorithm
[KeLi70]. The motivation behind this algorithm was the partitioning of electronic circuits
15

onto boards. More specifically, the nodes contained in different boards need to be linked to
each other with the minimum number of connections. The first thing they did was to define a
benefit function Q. That function, quantifies the difference between the number of edges
inside the modules and the number of edges lying between them. Then they tried to
optimize it as follows: The initialization was the partition of the graph into two clusters of
predefined size. This partition can be either random or suggested by some information
regarding the graph. Then, subsets of equal numbers of nodes are swapped between the two
clusters, so that maximum Q increase is achieved. To reduce the risk of Q’s local maxima, the
process may include some transitions that reduce the Q value. After a series of swaps with
positive and negative Q values, the partition with the largest value of Q is selected and used
as starting point of a new series of iterations (0 (n®log(n))).

As far as the complexity of the algorithm, the Kernighan-Lin algorithm is considered quite
fast if you use a constant number of swaps at each iteration. The solution is heavily
dependent on the initial configuration, thus is most commonly used to improve the
partitions found by other techniques.

Algorithms for graph partitioning are not very suitable for community detection. That is
because it is necessary to provide the number of clusters and in some cases even their sizes.
Instead, it is preferable to have an algorithm to be capable of providing this kind of
information as its output.

2.3 Hierarchical Clustering

Community structure of a graph, is an uncharted territory in general. It is most unlikely to
know the number of clusters or any information indicating connections between nodes
beforehand. In cases like that, which are the most common ones, graph partitioning
algorithms cannot be helpful.

In order to handle those cases, one must make some reasonable assumptions about the
clusters structure. One major assumption is that the graph may have a hierarchical structure.
For instance, a graph may display levels of grouping of nodes, with small clusters inside
larger ones, which in respect they are included within even larger clusters.

In cases like the aforementioned ones, we can use any of the hierarchical clustering
algorithms, which reveal the multilevel structure of the graph. Hierarchical graph clustering,
has been successfully used in several areas such as: Biology, Marketing, Social Network
analysis etc.

The first step of every hierarchical clustering algorithm is the definition of the similarity
function. Cosine, Euclidean and Manhattan are some of the most commonly used similarity
functions. After the function is well defined, the next step is to compute the pairwise
similarity between all n nodes. This step will result in a n X n matrix S, also known as the
similarity matrix.

16

This kind of clustering techniques aim at finding groups of nodes with high similarity, and
are generally distinguished into two categories:

1. Agglomerative algorithms, in which clusters are merged iteratively if their similarity is high
enough.

2. Divisive algorithms, in which clusters are split iteratively by removing edges connecting nodes with
low similarity.

These two categories reflect on opposite processes: agglomerative algorithms are bottom-up,
as the process starts from the nodes in separate clusters and ends up with the graph as a
unique cluster. On the other hand, divisive algorithms are top-down as they follow the
opposite direction. They begin with all the nodes in one big cluster and they end up in a
graph with several clusters.

Since the clusters are merged based on their mutual similarity, the number and quality of
clusters is highly dependent on the nature of the similarity function. In agglomerative
techniques such as single linkage clustering, the similarity between two groups C; and C; is
the defined as minimum S;; where i € C;,j € C,. This leads to iteratively combining two
clusters that contain the closest pair of elements not yet belonging to the same cluster as each
other. One major problem with this algorithm is that it usually produces long thin clusters in
which nearby elements of the same cluster have small distances, but elements at opposite
ends of a cluster may be more distant from each other than to elements of other clusters.

Another algorithm, is the complete linkage clustering. In this technique, the similarity of two
clusters C; and C, is the similarity of their most dissimilar members, meaning the maximum
S;j where i € Cy,j € C,. This is equivalent to choosing the cluster pair whose merge has the
smallest possible diameter. Complete linkage clustering has its drawbacks as well. More
specifically, a single node far from the center can increase the diameters of candidate merge
clusters dramatically and result in completely changing the final clustering.

Finally, in average linkage clustering, the distance between two clusters is defined as the
average of distances between all pairs of nodes, where each pair is made up of one node
from each group. At each step, the algorithm merges the clusters with the minimum average
value. As it can be observed, this algorithm lies in between single and complete linkage
clustering, as it shares both their advantages and drawbacks.

One of the advantages of hierarchical clustering, is that if the number of data is fairly small,
the clusters can be easily visualized by dendrograms. The figure below represents a simple
example of hierarchical clustering solution illustrated by dendrograms.

17

0.65

06

0.58

05T

045

0.35

el 1A O] ﬁﬂ

92317 611 315 71419162422 11312 521 41020 218 8 25

Figure 3 Hierarchical Clustering illustrated with dendrograms.

Hierarchical clustering does not avoid the problem with the number of clusters. It simply
constructs the tree spanning over all samples and let you manually chose the “right” number
of clusters. However, the results highly depend on the adopted similarity function.
Moreover, this technique constructs a partition of clusters assuming hierarchical structure,
which in some cases the graph does not have. Another problem is that nodes with only one
other node as neighbor are often classified in a separate cluster, which makes no sense.
Finally, another major problem is the scalability of the agglomerative clustering. For
example, the computational complexity of single linkage is 0(n?) and O(n*logn) for
complete and average linkage.

2.4 Partitional Clustering

Another popular class of methodologies is the partitional clustering. In this class, the number
of clusters is pre-required. The data points are usually fixed in a metric space, so that each
node is a point and a distance measure is defined between pairs of points in the space. The
distance is usually a function of dissimilarity between nodes. The goal is to separate the
points in k (number of clusters given) clusters in order to maximize/minimize a given cost
function based on distances between points. Some of the most commonly used functions are
listed below:

18

Minimum k-clustering: The cost function here is the diameter of a cluster, which is
the largest distance between two points of a cluster. The classification of the points is
done in a way that the largest diameter of the k cluster diameters is minimized. The
key idea behind this function is that the clusters are tightly compact.

Average k-clustering: It is similar to the minimum k-clustering, but the diameter is
replaced by the average distance between all pairs of points of a cluster.

K-center: For every cluster, a representative is selected (centroid). Then the maximum
distance d; of the distances of each cluster point from the centroid is computed. The
cluster and centroids are changing to minimize the largest value of d;.

K-median. Same as k-center, but the maximum distance from the centroid is replaced
by the average distance.

One of the most popular techniques, if not the most popular, is the k-means clustering
algorithm [MacQ67]. The cost function of k-means is the squared error function:

k
2
D Dy —mil

i=1 ijCi

Where C; is the subset of points of the i, cluster and m; is its centroid. The steps of the
algorithm are shown below

Algorithm 2.3.1 K-means Algorithm

1. Select K points as the initial centroids

2. repeat

3.

4.

Form K clusters by assigning each point to its closest centroid

Recompute the centroid for each cluster

5. until centroids do not change

The results of each K-means run may vary a lot, and that is because it is highly dependent on
the initial positions of the centroids. To increase the performance of the algorithm, you can
run multiple randomly initialized instances of the algorithm and keep the one that yields the
minimum squared error.

19

Another major technique in clustering is spectral clustering [NgJWO01]. The main
characteristic of all spectral clustering techniques is that they partition the graph using the
eigenvectors of similarity matrices. More specifically, the objects could be points in any
metric space. Spectral clustering consists of a transformation of the initial set of objects into a
set of points in space, whose coordinates are elements of eigenvectors. Then the set of points
is clustered with standard techniques, usually k-means.

The reason that we do not apply k-mean directly, is that the change of representation
induced by the eigenvectors makes the cluster properties much clearer. In this way, spectral
clustering is able to separate data points that could not be resolved by applying directly k-
means clustering. Finally, Spectral Clustering algorithm needs the similarity matrix S as its
input, which as mentioned in the previous section, it contains all the pairwise similarities
between all n nodes. If the S matrix is not given, the algorithm must calculate it first, using
some similarity function (e.g. RBF)

Algorithm 2.3.2 Spectral Clustering Algorithm

Input: Similarity Matrix, number of clusters k

1. Compute the first k eigenvectors vj, ..., vy of the matrix §
2. Build matrix V' € R™*¥ with the eigenvectors as columns
3. Interpret the rows of V as new data points Z;

4. Cluster the points Z; with the k-means algorithm

Spectral Clustering K-means

| [NP B Ry
. BT L, AL LAy
. ~Jﬁ‘; Vel (% Loet . '-‘u"'?'f' * '?"‘f’;’&-"

| 4.

1.0
1.0

- L ¥

0.4
0.5

on
]
-

on

05

1.0
L
.

1.0

Figure 4 Spectral Clustering vs K-Means.

20

2.5 Methods Based on Statistical Inference

The statistical inference in general is the process of extracting properties of data sets, starting
from a set of examples and model hypotheses [Mack03]. If the data are in a form of a graph,
the model, which is based on the hypotheses on how nodes are connected to each other, has
to fit the actual graph topology. In this section, we will focus specific on the Bayesian
inference [Wink03].

Bayesian inference is a specific case of statistical inference where the Bayes’ theorem is used
update the estimation the probability that a given hypothesis is true, as more examples
become available. It consists of two main characteristics: a statistical model with parameters
{6} and the examples which are expressed by system’s information D. Bayesian inference
starts by writing the likelihood P(D|{6}) that the observed examples are produced by the
model for a given set of parameters {#}. The aim is to determine the choice of {6} that
maximizes the posterior distribution P({0}|D) of the given parameters of the model and the
examples provided. With the use of Bayes' theorem, one has

P((0}ID) = 5 P(DI(ODP((EY),

where P({0})is the prior distribution of the model parameters and Z is a normalizing
constant

z= f P(DI(O})P((6}) d8

Unfortunately, computing the integral above is a major challenge, plus, the choice of the
prior distribution P({0}) is not quite obvious. Different generative models distinguish
themselves from each other by the choice of the model and the way they address the
aforementioned issues.

Bayesian inference is frequently used in the analysis of real graphs, including social
networks [Hart07]. One major part of this analysis is graph clustering. In graph clustering,
the examples are represented by the graph structure in either adjacency or weight matrix
form. One additional information, that one wants to extract is the partition of the nodes into
groups, which is missing. Along with this information, the parameters of the model which is
supposed to be responsible for the partition is required as well.

This idea is at the basis of several recent papers, which we discuss here. In all these works,
one essentially maximizes the likelihood P(D|{@}) that the model is consistent with the
observed graph structure, with different constraints. We specify the set of parameters {6} as
the triplet ({q}, {r}, k) where {q} indicates the community assignment of the nodes, {r} the
model parameters, and k the number of clusters.

21

In 2006, Hastings [Hast06] tried to approach the community detection problem as an
inference problem: n nodes are assigned to q clusters with the following requirements: nodes
of the same cluster are connected with an edge with a probability p;,, while nodes of
different clusters are connected with an edge with a probability pyy.. If pin > poue the model
shows community structure. The probability of a node correctly assigned to a cluster is given
by the following model:
"6q.q;

p(Lad) = cenpl Y I8yl exply ol

<> i)

Where }..; j>~ denotes a sum over pairs of i,j connected by an edge in the graph, § is the
delta function, with 8‘1in is 1if q;, q; are in the same community and 0 otherwise and

log(1 — poue) N(N — 1)
2

c = exp|

Jexpl)" 108(@ouc/(1 = Pour)]

<i,j>
] = log[(pin(l — Pour))/((1 — pin)pout)]
J' =log[(1 — pin)/(1 — Pout)]

The above equations present the probability as a Potts model problem with combined short
and long-range interactions, with coupling constants J,J. So, the problem of community
detection is reduced to finding the ground state of this Potts model. Hastings used belief
propagation [Gall63] to find the ground state of the spin model.

The complexity of the model on sparse graphs, is expected to be 0(nlog®(n)), where a needs
to be estimated numerically. Also, in order for the model to work, one has to specify the p;,,
Pout- However, these parameters turn out that they can be chosen arbitrarily, as any bad
choices can be recognized and corrected.

2.6 Divisive Algorithms

The main idea behind divisive algorithms is to detect the edges that connect nodes of
different clusters and remove them, so that the clusters get disconnected from each other.
The most critical part of any divisive algorithm, is finding the property of edges between
clusters that will lead to their identification.

22

Divisive algorithms are pretty similar to the traditional hierarchical top down clustering. The
main difference is that the divisive algorithms remove inter-cluster edges instead of edges
between pairs of nodes with low similarity. That process does not provide assurance that the
edges removed connected nodes with low similarity.

Probably one of the most popular algorithm, if not the most one, was proposed by Girvan
and Newman [GiNe02, NeGi04]. In their approach, edges are selected according to the
values of measures of edge “betweenness”, which is defined of each edge as the number of
shortest paths between all pair of nodes that run along the edge. The steps of the algorithm
are the following:

1. Calculate the “betweenness” for all edges in the graph.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.

They considered three alternative definitions: geodesic edge betweenness, random-walk
edge betweenness and current-flow edge betweenness but calculating edge betweenness was
by far the fastest one (0(n?) vs O(n®) on sparse graphs). Moreover, in real-world
applications the edge betweenness gives better results than adopting the other centrality
measures.

A major problem they came across on their original work was that they had to deal with the
whole hierarchy of the partitions, as they had not found a way to choose the best partition.
On a later work [NeGi04], they introduced the modularity criterion, which sparked another
kind of clustering technique that we discuss in the following section.

2.7 Quality Measures

2.7.1 General Methodology

As we have already mentioned in the previous chapter, a cluster or community is typically
considered as a group of nodes with high edge connectivity among its members than with
the nodes of different communities/clusters. The general methodology when trying to detect
communities via quality measures, is usually following the next two major steps in their
approach:

e Define a quality measure (objective function), that captures the definition of
community structure in a way nodes in the same group have better internal than
external connectivity.

e Use algorithmic techniques, so that the nodes of the network are assigned to specific
communities, through optimization of the objective function.
23

In many cases, the optimization of the objective function leads to computational difficult
problems. So, a common approach is to employ some kind of heuristic algorithms or other
approximation techniques.

Some of the quality measures focus on both the intra as well as the inter cluster edge density
(multi-criterion scores). Another kind of measures is the single-criterion score, where the
measure focuses only in one of them (either inter or intra). An excellent example of that kind
of measure is modularity, which we will get into detail in the next section.

2.7.2 Modularity Measure

Newman and Girvan introduced modularity Q as a stopping criterion for one of their
previous algorithms [NeGi04]. Since then, modularity became one of the most popular and
widely used measures to evaluate the quality of the graph partition. It is a classic example of
one of the first attempts to achieve a better understanding of the community detection
problem, as it presents key elements such as the definition of a community as well as its
strength.

The main idea of modularity is that given a specific partition of a graph, it measures the
number of edges that exist within a cluster compared to the expected number of edges of a
random graph with the same degree distribution.

In other words, modularity is taking advantage of the fact that a random graph is not
expected to have inherent community structure. So, comparing the density of a subgraph
with the expected one of the same subgraph in a random graph, will determine a method for
identifying clusters. More specifically, the modularity value Q is defined below:

1 kik;
Q =ﬁz eij—% 6(Ci,Cj)
L]

Where

[,j are the graph nodes

e;j represents the weight of the edge between i and j

k; is the sum of the weights of the edges attached to vertex i
m is the sum of all of the edge weights in the graph

¢; and ¢; are the communities of nodes i, j respectively

¢ is delta function, with §(u, v) is 1 if u = v and 0 otherwise

24

The assumption made by one, is that high values of modularity indicate good partitions. This
indicates that the partition that corresponds to the maximum value of modularity is a very
good one if not the best. The optimization of modularity @ through exhaustive search is not
feasible due to the huge number of possible ways to partition a graph. In 2006, it has been
proved that optimizing modularity is a NP-complete problem [BDG+06]. However, there are
several algorithms able to find good approximations of the modularity maximum in a
reasonable time.

The first algorithm to maximize modularity was a greedy agglomerative clustering method
proposed by Newman himself [NewmO04]. The algorithm starts by assigning n nodes to n
different clusters, each containing exactly one node. The edges are not available all at once,
as they are added one by one during the algorithm. However, the Q value of partitions is
calculated with the full topology of the graph.

Adding the first edge to the set of disconnected nodes reduces the number of clusters from n
ton — 1, creating a new partition of the graph. The edge is chosen in order for the partition
to achieve the maximum increase of modularity. This process is repeated for all other edges.
The number of partitions found during the procedure is n, each with a different number of
clusters, from n to 1. The largest modularity value from those subsets is the solution given by
the algorithm.

As for the complexity of the algorithm, at each iteration step, one needs to compute the
difference AQ produced by the merging of any two communities of the current partition, and
choose the best merge. An interesting thing is that, merging communities with no edges
between them, can never lead to an increase of Q, so there is no need to check all the
available communities, only the connected ones which are at most m. Since the calculation of
each AQ can be done in constant time, this part of the calculation requires a time O(m). After
choosing the communities merging pair, the edge matrix update which expressing the
number of edges between clusters i and j of the running partition can be done in O(n) at
worst-case. Since the algorithm requires n — 1 iterations to run to completion in order to
merge all communities, its complexity is 0((m + n)n).

Clauset, Newman and Moore [CINMO04] in 2004 pointed out that a large amount of
operations regarding the update of edge matrix, where redundant. They proposed a max-
heap data structure to perform this operation, which stores the data in a binary tree form.
They maintained the matrix of modularity 4Q, in a max-heap containing the largest elements
of each row as well as the corresponding communities. The optimization process is done in
the same way as before, but much faster due to the new data structures.

The complexity of the algorithm is O(md(log(n))), where d is the depth of the max-heap,
which grows up to log(n) for graphs with a strong hierarchical structure. This algorithm is
still used to estimate the modularity maximum on such large graphs.

Finally, in 2008, Blondel, Guillaume, Lambiotte and Lefebvre [BGLLO8] proposed a simple
heuristic algorithm that outperformed the previous methods in terms of computational time
and at some times in the achieved modularity value as well. This method is also known as

25

the Louvain method. In order to maximize the modularity value, the Louvain algorithm
consisted of two steps that are repeated iteratively:

At first, each node in the graph is assigned to its own community. Then for each node i, the
change in modularity is calculated by removing i from its own community and moving it
into all the possible communities that the neighbors of i belong.

To avoid the intense computations of moving each node to different communities and then
calculate modularity from the start, they came up with this function that yield the
modularity change:

AO =
Q 2m 2m

2
Zin+ 2kiin <Ztat + ki)

e) - 6]

Yin 1s the sum of all the weights of the links inside the community i is moving into
Ytot is the sum of all the weights of the links to nodes in the community

k; is the weighted degree of i

k; in is the sum of the weights of the links between i and other nodes in the community
m is the sum of the weights of all links in the graph.

Once this value is calculated for all possible communities that i is connected to, i is placed
into the community that yields the greatest modularity increase. If there is no possible
increase, then i stays in its initial community. This process is applied repeatedly and
sequentially to all nodes until no modularity increase can be achieved. After the local
modularity maximum is hit, this phase has ended.

In the second phase, the algorithm groups all the nodes in the same communities and builds
a new graph. Nodes are the communities from the first phase. The links between nodes in
the same group, represented as self-loops on the new merged community. Also, links from
multiple nodes in the same community to a node in a different community are represented
by weighted edges between nodes. Once the new graph is constructed, phase one can be re-
applied to it. This phase is optional and usually omitted.

26

2
Modularity Community
Optimization Aggregation

2nd pass 26 24

—> (2 O

Figure 5 Visualizations of the steps used by Louvain's method [BGLLO0S].

Another technique for optimizing modularity is via simulated annealing [KiGV83].
Simulated annealing is used in many different problems and simply performs an exploration

of all possible states, while trying to achieve global optimum of a given function F. The
AF

probability of a transition from one state to another is 1 if the function F increases and e T
otherwise, where AF is the function decrease and T is the temperature which decreases over
time. At some point, the system converges to a stable state, which can be a good
approximation of the maximum of F.

Guimera, Pardo and Amaral [GuSA04] were the first ones to use simulated annealing as an
optimization technique for modularity. In his implementation two types of moves are used.
The first one is local move where a single node is moved to another cluster at random. The
second one is global move which contains communities” splits and merges. The split move is
implemented in order to reduce the risk of trapping in local minima. The simulated
annealing method can be potentially equal to the true modularity maximum, but it is very
slow. The true complexity cannot be estimated, due to the heavy dependence on the
parameters chosen for the optimization such as initial temperature and cooling factor.
Simulated annealing is usually used for small graphs.

Although optimizing modularity has many advantages compared to other methods, it has
some limitations as well. As noted by Fortunato and Barthélemy [FoBa(07], modularity
suffers from the resolution limit. More precisely, modularity optimization might fail to detect
clusters smaller than a scale number, which is mainly dependent on the graph size. This
limitation is important because real world networks, often contain communities of various
sizes.

27

CHAPTER 3.

INCLUSION QUALITY MEASURE (I)

3.1 Introducing the New Quality Measure (I)

3.2 Optimizing Inclusion

3.1 Introducing the New Quality Measure (I)

As we have presented previously, the modularity measure has many advantages but a major
disadvantage as well. With our new quality measure named Inclusion, that we will present
in detail below, we tried to approach the community detection problem from another
perspective. Assume a graph ¢ with nodes |V| = n and edges undirected and unweighted
|E| = mie.e; = ey, e; € {0,1}

The first main difference of our measure compared to the existing ones, is that we value the
absence of edges between two different clusters. The reason behind this idea is that for a
cluster to be compact, the number of edges from/to different clusters should be minimum.
The second and probably the most important difference, is that our measure focuses
primarily on nodes and not on clusters. With this approach, we believe that we will be able
to predict the number of main communities, but also discover the communities that are small
compared to the size of the whole graph.

Given a community structure C = {Cy,C5, ..., C;}, the definition for the Inclusion model is
presented below:

1 |Wi@in) [Wi(out) +1
Ii == +
2| d;

N—7] I, €0.5,1]

28

where

W{(in), is the number of existing edges between the corresponding node and the nodes of
the same cluster

W¢(out), is the number of non-existing edges between the corresponding node and nodes
belonging in different clusters

d;, is the degree of node i

N, is the total number of nodes

In other words, inclusion measures for each node, its existing edges inside its community
and non-existing edges with the other communities. With the presented formula, it is now
easier to understand that our criterion is node-centric and not cluster centric. Another
property of our criterion is that it is in fact a multi-criterion score function as it focuses both
on inter as well as intra edge density. The following formula expresses the inclusion measure
on the whole graph:

[= Ml

1€[0.5,1]

Figure 6 a) Graph clustered into three communities, I = 0.85 b) Graph clustered into four
communities, I = 0.89 c) Graph clustered into five communities, I = 0.80.

29

As you can easily observe from Figure 6, I tends to increase as the quality of the clusters
increases. In the first case, the graph is separated in three clusters which is a visually fine
solution. That partition has I = 0.85. For the second case, the graph is separated in four
clusters, which is the visually the best one. That partition has I = 0.89. In the third case, graph
is separated in five clusters, which seems kind of over-partitioning it. That results in I = 0.80.
The visual results from the three cases, align with the I values of each graph partition.

To examine the extreme cases where all nodes into one cluster or every node on a separate

cluster, assume a fully connected graph, where all nodes are connected to each other. In the

wi(in)
d;

for every node because in a fully connected graph, the degree of every node is N-1 and the

case where all nodes are in the same cluster, the first part of inclusion measure, , is one

since all the nodes are in the same cluster, the intra-edges are also N-1. For the second part of

i
%ﬁ?ﬂ, is also one cause as we already established the degree of
—dq

every node is N — 1 thus the denominator is N — (N-1) = 1. Moreover, the non-existing edges

the inclusion formula,

to other clusters is zero because there is only one cluster thus the numerator is also 1. So, the
inclusion value for this case is 1.

In the case of every node belonging in a separate cluster the first part of the inclusion
i .
formula, Wl;m) , is zero because there are no other nodes in each node’s cluster. As for the
i
i
%{?H, is one as it does not differ from the previous case. So, the inclusion
—Gq

value for this case is 0.5.

second part,

3.2 Optimizing Inclusion

After explaining how our criterion works, it is only natural to try to optimize our criterion in
order to detect the underlying communities. To achieve that, we tried two major techniques
which are presented in detail below.

Agglomerative Cluster Merging:

Our first approach on the optimization problem, was based on cluster merging in each step.
More precisely, at the start of the algorithm, each node is in a separate cluster containing
only the node itself. Then for every possible cluster merge, we calculate all the corresponding
I values and store the cluster pair that yielded the maximum I. Afterwards, we merge the
aforementioned clusters and repeat the second step for finding the max I. Our stopping
criterion was the improvement of I. If there was no pair that improves I, then we stop the
algorithm.

30

Algorithm 3.2.1 Agglomerative Cluster Merging

1. € = Set all nodes into separate clusters (Initialization)

2. repeat

3. Set maxlI to 0

4. for cluster c; in C

5.. for cluster ¢; in C

6. Calculate corresponding I value

7. Store c;, ¢; if corresponding I > maxlI

8. Update maxl = I

8. Update C by merging the ¢; and ¢;that resulted in maxI

9. until I does not improve

Our first results on the algorithm were encouraging, but the computational time was huge.
That is because for every possible cluster pair we need to computed I from scratch (0(n?)).
To tackle this issue, we compiled a delta function to compute this increase without
calculating the I from the whole graph. The nodes belonging in same cluster as the node n,
who is about to move to a new cluster are labeled as N,;; as on the other hand the nodes on
cluster that the node n is about to be moved to are labeled as N,,,,,. The definition for our
delta function is presented below:

Al = Z Z ei'j(zidi)_(l—ei,j)z(lv;_di)

iENo1d JENpew

Al z z e (%di)—(l—ei,j)m

iENNew JENoId

[Al + AL
- N

Although, there was a major improvement in computational time, the method was still
pretty slow. So, we abandon this technique and start experimenting with a new one
presented below.

31

Greedy Node Movement:

The second approach on the problem, was based on moving nodes between clusters instead
of whole clusters. The initiation process was the same, with every node belonging in a
separate cluster. Then for every node in our graph we calculate the Al value for every
possible cluster it can move to and store the maximum A4/ as well as the node and cluster that
yielded that AI. Then we implement the best transition and start the search for the next
move. Our stopping criterion was the same, the lack of improvement of /.

Algorithm 3.2.2 Greedy Node Movement

1. € = Set all nodes into separate clusters (Initialization)

2.6 = (V,E)

3. repeat

4. Set maxAl to 0

5. fornodeninV

6. for cluster c in C

7. Calculate corresponding Al value

8. Store n, c if corresponding A > maxAl

9. Update C by moving node n to cluster c that resulted in maxAI

10. until I does not improve

After running several experiments, we observed that the results were highly dependent on
the processing order of the nodes. So, to manage this problem, our first try was to examine
nodes based on their degree. We tried to process nodes with descending and ascending
order regarding their degree. The results did not differ from a random selection, so we
abandon this technique. Furthermore, we slightly change the Al function to fit the nature of
our method (node-centric). As in our previously presented delta function, the nodes
belonging in same cluster as the node i, who is about to move to a new cluster are labeled as
Nyiq as on the other hand the nodes on cluster that the node i is about to be moved to are
labeled as N,y -

N I By TS

Jj#iLjENoIg

32

3 1/1 1 1/ 1 1
a= {ei'f[z@—,-*d—i)]‘“‘el"f>[5<zv—d,-+zv—di>]}

J#UL,jENpew

AL+ Al

Al
N

Our final approach with this technique, was to consider three major decisions for searching.
The first one, was either to search nodes sequentially or in a random order every time. The
second decision, rose from the nature of our criterion. Our criterion positively values the
existence of edges inside the cluster and the non-existence of edges between different
clusters. So, we chose to either search adjacent clusters only, which are clusters that contain
at least one neighbor of the respective node processed at the time, or every possible cluster.
The last decision was either to examine all the possible clusters and find the best or chose the
first better that we found.

Those three decisions, led us to develop eight optimization methods for inclusion that we
will compare against modularity on both real datasets as well as artificial ones with certain
properties. More specifically, we labeled these methods three parts separated with an
underscore. The first part is about node selection. The ‘All’ tag refers to exhaustive node
search as on the other hand, ‘Rnd’ refers to randomly selecting a node for examination. The
second part of the name is about the candidate clusters that a node can move to. The ‘Adj’
tag means that a node can move to adjacent clusters, which are clusters that contain at least
one neighbor of the respective node processed at the time. ‘All’ tag means that a node can
move to every possible cluster. Finally, the third tag refers to choosing either the best of the
available clusters (‘B’ tag) or the first cluster that improves inclusion (‘F’ tag).

33

CHAPTER 4.

DATASETS & RESULTS

41 Synthetic & Real-World Data

4.2 Results

4.1 Synthetic & Real-World Data

In order to test our data, we used both synthetic and real-world graphs. To produce synthetic
graphs, we implemented a function that creates a graph given the following parameters:

N number of nodes
C number of clusters
Cluster_size list of percentages regarding the number of nodes for each cluster

External_probability the probability of each node to have an edge with nodes from other
clusters

Probability_list list of probabilities for intra-edges in each cluster

After tweaking those parameters, we created five different categories of synthetic graphs to
examine our criteria against modularity. The first sub-category of our synthetic data, consists

graphs with equally distributed Cluster_size (%) and Probability_list values ranging from 80

to 100% percent for each cluster. This results in graphs that are separated in a clear way.

The next category contains of graphs with Probability_list values ranging from 80 to 100%
percent for each cluster and descending Cluster_size. This results in graphs with the dense
large clusters and sparse small clusters.

34

The third category contains graphs with equally distributed Cluster_size (%) and a

descending Probability_list values which starts ranging from 90 to 100 percent and reduced
for each cluster by a constant amount (15%). That category creates equally dense clusters
regarding the number of nodes, but addresses the various intra edge density.

The fourth category contains graphs with descending Probability_list values as described
above. Also, the Cluster_size is descending as well. That parameter tweaking leads to
clusters with stable ration between number of nodes and intra edge density.

The final sub-category includes once again graphs with a descending Probability_list values
as described in the two previous categories. However, the Cluster_size is ascending. That
leads to graphs with large sparse clusters and small dense clusters.

Due to the large running time for our optimization techniques on large graphs, on a
commercial personal computer, we implemented a different approach. In order to test both
criteria on large scale networks, we implement an optimization via the spectral clustering
algorithm. More specifically, we run the spectral clustering algorithm for k number of
clusters ranging from 2 to 20 for each graph, and store the partition that maximized
modularity and inclusion respectively. We did 20 independent runs for each category.

The second category, is actual real-world datasets. To determine which of the real-world
datasets to choose, we had two basic criteria. The first one was that the dataset was small
enough, so it could be processed in a simple personal PC. The second and the most
important one, was that the dataset had the ground truth provided. Ground truth, is the
actual partition of the nodes into clusters. That information was necessary to us, because a
couple of our metrics were based on it.

The first dataset that we chose was the famous Zachary’s Karate Club [Zach77]. This dataset
is a social network of a karate club that was studied for three years. During the study, a
conflict arose between the administrator and instructor, which led to the split of the club into
two.

The second dataset was the American College Football dataset. This dataset is a network of
American football games between Division IA colleges during regular season Fall 2000.

4.2 Results

In order to measure the quality of the solution given by inclusion and modularity, we
measure the similarity of an obtained solution with the ground truth solution, using two
different metrics that are presented below:

Normalized Mutual Information (NMI): Mutual Information score (MI) in general, is the
measure of mutual dependence between two random variables, but in our case, is adjusted
to measure dependence (similarity) between different partitions instead of random variables.
So, NM], is a normalization of the Mutual Information score (MI), which is a measure of the

35

mutual dependence between the two random variables, to scale the results between 0 (no
mutual information) and 1 (perfect correlation).

Adjusted Rand Index (ARI): The Rand Index (RI) computes a similarity measure between
two partitions by considering all pairs of samples and counting pairs that are assigned in the
same or different clusters in the predicted and true partitions.

The adjusted Rand index is a normalization of RI that provides a value close to 0.0 for
random labeling independently of the number of clusters and samples and exactly 1.0 when
the clusters are identical.

Once we have defined the NMI and ARI performance measures, we will explain the contents
in the tables that follow. For each category, we created a graph with 60 nodes and 4 clusters
as well as a graph with 80 nodes and 5 clusters. For each type of graph, we conducted 100
runs and kept the average values for various metrics.

Starting with the table columns, the first one presents of the average cluster size. The second
one gives the average Inclusion value. The third one gives the average Modularity. Finally,
the last two correspond to the average NMI and average ARI respectively.

As for the table rows, the first one corresponds to the solution produced by the fast
modularity algorithm. The next rows, present the results for our optimization function. Each
row name consists of three parts separated with an underscore, which are thoroughly
described at the end of chapter 3.

4.2.1 Equal Cluster Size — Large Intra Cluster Probability

Tables 1 and 2 present the results for the case where all clusters are of equal size and have
high intra-edge density.

Table 1 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size,
External Probability 15% and Probability List ranging from 90% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4 0.7672 0.2789 1 1
All_Adj_B 3.81 0.7613 0.2720 0.9741 0.9435
All_Adj_F 4 0.7672 0.2789 1 1
All_All_B 3.81 0.7613 0.2720 0.9741 0.9435
All_All_F 4 0.7672 0.2789 1 1
Rnd_Adj_B 3.97 0.7663 0.2777 0.9960 0.9911

36

Rnd _Adj_F 3.66 0.7543 0.2645 0.9542 0.9000

Rnd _All_B 3.98 0.7664 0.2779 0.9973 0.9940

Rnd _All_F 3.43 0.7457 0.2545 0.9229 0.8316

Table 2 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size,
External Probability 15% and Probability List ranging from 90% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4.99 0.7306 0.2568 0.9991 0.9977
All_Adj_B 3.7 0.7069 0.2288 0.8779 0.7294
All_Adj_F 5 0.7307 0.2570 1 1
All_All_B 3.67 0.7064 0.2282 0.8750 0.7237
All_All_F 4.99 0.7306 0.2568 0.9991 0.9977
Rnd_Adj_B 4.87 0.7284 0.2542 0.9882 0.9711
Rnd _Adj_F 4.14 0.7139 0.2369 0.9212 0.8102
Rnd _All_B 4.9 0.7289 0.2548 0.9910 0.9774
Rnd _All_F 3.73 0.7042 0.2258 0.8817 0.7319

4.2.2 Equal Cluster Size — Variable Intra Cluster Probability

Tables 3 and 4 present the results for the case where all clusters are of equal size and have
intra-edge densities that are gradually reduced.

Table 3 Results for Graph Model with 60 Nodes, 4 Clusters, Equally Distributed Cluster Size,
External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster
Followed by a 15% Reduction for each Subsequent Cluster.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI

Modularity 3.99 0.7335 0.2508 0.9960 0.9943

37

All_Adj_B 3.37 0.7164 0.2318 0.8891 0.7957
All_Adj_F 4.02 0.7335 0.2508 0.9954 0.9948
All_All_B 3.37 0.7164 0.2318 0.8891 0.7957
All_All_F 4.01 0.7336 0.2508 0.9955 0.9951
Rnd_Adj_B 3.99 0.7326 0.2498 0.9904 0.9852
Rnd _Adj_F 3.81 0.7252 0.2401 0.9585 0.9222
Rnd _All_B 3.98 0.7318 0.2488 0.9860 0.9760
Rnd _All_F 3.48 0.7165 0.2303 0.9088 0.8290

Table 4 Results for Graph Model with 80 Nodes, 5 Clusters, Equally Distributed Cluster Size,
External Probability 15% and Probability List ranging from 90% to 100% for the First Cluster
Followed by a 15% Reduction for each Subsequent Cluster.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4.73 0.6827 0.2124 0.9022 0.8642
All_Adj_B 3.75 0.6687 0.1952 0.7643 0.6293
All_Adj_F 5.03 0.6840 0.2129 0.9309 0.9128
All_All_ B 3.74 0.6687 0.1951 0.7652 0.6298
All_All_F 5.02 0.6839 0.2128 0.9285 0.9084
Rnd_Adj_B 4.79 0.6796 0.2070 0.8674 0.8110
Rnd _Adj_F 4.59 0.6767 0.2034 0.8501 0.7766
Rnd _All_B 4.94 0.6803 0.2077 0.8932 0.8464
Rnd _All_F 4.18 0.6703 0.1945 0.8148 0.7064

4.2.3 Variable Cluster Size — Large Intra Cluster Probability

Tables 5 and 6 present the results for the case where clusters are of various size and have
high intra-edge density.

38

Table 5 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List
ranging from 90% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 3.48 0.7850 0.2581 0.9545 0.9458
All_Adj_B 3.14 0.7797 0.2557 0.9180 0.8979
All_Adj_F 4 0.7883 0.2575 0.9983 0.9990
All_All_B 3.14 0.7797 0.2557 0.9180 0.8979
All_All_F 3.99 0.7883 0.2576 0.9976 0.9980
Rnd_Adj_B 3.93 0.7874 0.2572 0.9918 0.9896
Rnd _Adj_F 3.9 0.7877 0.2577 0.9892 0.9884
Rnd _All_B 3.9 0.7869 0.2569 0.9892 0.9856
Rnd _All_F 3.76 0.7855 0.2566 0.9764 0.9681

Table 6 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with
Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List

ranging from 90% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4.36 0.7420 0.2551 0.9574 0.9327
All_Adj_B 3.36 0.7240 0.2383 0.8504 0.7511
All_Adj_F 491 0.7440 0.2548 0.9933 0.9874
All_All_ B 3.37 0.7242 0.2383 0.8511 0.7519
All_All_F 4.92 0.7443 0.2551 0.9947 0.9910
Rnd_Adj_B 4.57 0.7415 0.2533 0.9673 0.9446
Rnd _Adj_F 4.3 0.7352 0.2468 0.9385 0.8831

39

Rnd _All B

4.66

0.7419

0.2535

0.9729

0.9544

Rnd _All_F

3.88

0.7267

0.2375

0.8991

0.8082

4.2.4 Variable Cluster Size — Variable Intra Cluster Probability (Small
Cluster High Density)

Tables 7 and 8 present the results for the case where clusters are of various size and have
intra-edge densities that are gradually reduced, resulting in smaller sized clusters having
larger intra-edge density.

Table 7 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Ascending Order (10%, 20%, 30%, 40%), External Probability 15% and Probability List
ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 3.71 0.7242 0.2285 0.9684 0.9628
All_Adj_B 3.09 0.7168 0.2232 0.8930 0.8672
All_Adj_F 3.96 0.7255 0.2284 0.9943 0.9938
All_All_B 3.08 0.7166 0.2229 0.8904 0.8641
All_All_F 3.92 0.7254 0.2284 0.9890 0.9880
Rnd_Adj_B 3.78 0.7239 0.2276 0.9681 0.9641
Rnd _Adj_F 3.77 0.7238 0.2275 0.9692 0.9617
Rnd _All_B 3.91 0.7245 0.2276 0.9845 0.9797
Rnd _All_F 3.63 0.7217 0.2257 0.9536 0.9417

40

Table 8 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with
Ascending Order (10%, 15%, 20%, 25%, 30%), External Probability 15% and Probability List

ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4.56 0.6663 0.1938 0.9225 0.8944
All_Adj_B 3.5 0.6526 0.1765 0.7584 0.6477
All_Adj_F 5.03 0.6678 0.1948 0.9504 0.9395
All_All_B 3.5 0.6525 0.1764 0.7589 0.6486
All_All_F 4.9 0.6674 0.1945 0.9358 0.9192
Rnd_Adj_B 4.75 0.6637 0.1896 0.8898 0.8435
Rnd _Adj_F 4.52 0.6626 0.1887 0.8766 0.8251
Rnd _All_B 4.59 0.6639 0.1901 0.8845 0.8424
Rnd _All_F 3.99 0.6563 0.1804 0.8084 0.7212

4.2.5 Variable Cluster Size — Variable Intra Cluster Probability (Large
Cluster High Density)

Tables 9 and 10 present the results for the case where clusters are of various size and have
intra-edge densities that are gradually increased, resulting in larger sized clusters having
larger intra-edge density.

Table 9 Results for Graph Model with 60 Nodes, 4 Clusters, Distributed Cluster Size with

Descending Order (40%, 30%, 20%, 10%), External Probability 15% and Probability List
ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each

Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 3.14 0.7686 0.2447 0.9069 0.9002
All_Adj_B 3.31 0.7675 0.2429 0.9039 0.8972

41

All_Adj_F 4.09 0.7724 0.2422 0.9748 0.9825
All_All_B 3.31 0.7678 0.2429 0.9078 0.9010
All_All_F 4.06 0.7725 0.2422 0.9761 0.9831
Rnd_Adj_B 3.96 0.7721 0.2427 0.9641 0.9692
Rnd _Adj_F 3.97 0.7721 0.2425 0.9699 0.9749
Rnd _All_B 3.98 0.7719 0.2423 0.9654 0.9704
Rnd _All_F 3.83 0.7705 0.2419 0.9538 0.9536

Table 10 Results for Graph Model with 80 Nodes, 5 Clusters, Distributed Cluster Size with
Descending Order (30%, 25%, 20%, 15%, 10%), External Probability 15% and Probability List
ranging from 90% to 100% for the First Cluster Followed by a 15% Reduction for each
Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 3.95 0.7181 0.2338 0.8795 0.8598
All_Adj_B 417 0.7130 0.2272 0.8472 0.8073
All_Adj_F 4.98 0.7200 0.2317 0.9282 0.9324
All_All_ B 4.18 0.7132 0.2275 0.8467 0.8087
All_All_F 4.99 0.7200 0.2317 0.9270 0.9323
Rnd_Adj_B 4.96 0.7192 0.2310 0.9152 0.9170
Rnd _Adj_F 4.71 0.7174 0.2299 0.8951 0.8840
Rnd _All_B 4.93 0.7193 0.2312 0.9177 0.9171
Rnd _All_F 4.55 0.7133 0.2246 0.8776 0.8485

4.2.6 Summary of Results

For the first category, where the all the clusters high equal size and high intra-edge density,
all methods performed generally well. Modularity, ‘All_Adj_F" and ‘All_All_F" performed
the best on both graphs on all metrics, with almost perfect results every time. "‘Rnd_Adj_B’

42

and ‘Rnd_All_B" performed slight worse than the previous ones but still pretty great with
results for both NMI and ARI above 97%. Furthermore, their average number of
communities found 4.1 instead of 4. Finally, the rest of the methods performed great on the
first category were the graph had 60 nodes and 4 clusters, but on the next category with 80
nodes and 5 clusters, their percentage on NMI dropped about 10% to approximately 88%
while the ARI dropped even more to almost 20% on some cases. Moreover, their number of
detected communities was 3.7 for some cases instead of 5.

On the next category, where clusters are of equal size but the intra-edge density is dropping
gradually for every cluster, in graphs with 60 nodes and 4 clusters, ‘All_Adj_F’, “All_All_F,
‘Rnd_Adj_B’, ‘Rnd _All_B" and modularity performed really well with both NMI and ARI
nearly at 99%. Their number of detected communities was deviated by 0.01. ‘Rnd _All_F’,
‘All_Adj_B’ and ‘All_All_B’ performed worse than the others with NMI and ARI at 90%,
while their average number of communities deviated by 0.6. On the other hand, on graphs
with 80 nodes and 5 clusters all methods dropped their percentages on all metrics except
from ‘All_Adj_F’, “‘All_All_F’ which maintained their great performance.

On the next category, where clusters are of various size and have high intra-edge density,
‘All_Adj_F’, ‘All_AlLF" , 'Rnd _Adj_B’, ‘Rnd_Adj_F’ and ‘Rnd _All B’ performed
remarkably well on graphs with 60 nodes and 4 clusters, with average NMI and ARI
reaching 99% while their average number of clusters found had a very small deviation of
0.08. Modularity and ‘Rnd_All_F’, performed slightly worse than the previous ones but still
very good with an average of 96% on both NMI and ARI. As for their number of not detected
clusters, it is about 0.35. “All_Adj_B” and “All_All_B’ performed the worst once again with an
average of 92% on NMI and 90% on ARI while their number clusters found was 3.15 instead
of 4. On the contrary, on graphs with 80 nodes and 5 clusters, all methods suffered from a
significant reduction on all metrics, with both “‘All_Adj_F’, “‘All_All_F’ outperforming the
other methods.

In the category where the clusters are of various size and have intra-edge densities that are
gradually reduced, resulting in smaller sized clusters having larger intra-edge density,
methods performed really well for the case of graphs with 60 nodes and 4 clusters. More
specifically, “All_Adj_F’, “All_All_F" and ‘Rnd _AIll_B’ performed the best with an average of
98% on both NMI and ARI, while their number of clusters found deviated by 0.08.
Modularity, ‘Rnd_Adj_B’, ‘Rnd _Adj_F" and ‘Rnd _All_F’, performed slightly worse than the
previous ones but still very good with an average of 96% on both NMI and ARI. As for their
number of clusters found, it is about 3.7 instead of 4. “All_Adj_B’ and ‘All_All_B" performed
the worst once again with an average of 89% on NMI and 86% on ARI while their number of
clusters found was approximately 3.1 instead of 4. For the case of 80 nodes and 5 clusters, all
methods suffered a 5-10% reduction on both NMI and ARI except from ‘All_Adj_B’,
‘All_All_B" and ‘Rnd _All_F" which suffered a significant reduction up to 15%.

For the last category, where clusters are of various size and have intra-edge densities that are
gradually increased, resulting in larger sized clusters having larger intra-edge density,
almost all methods performed well on graphs with 60 nodes and 4 clusters. More
specifically, ‘All_Adj_F’, ‘All_All_ F’, ‘Rnd _Adj_B’, ‘Rnd_Adj_F’ ,/Rnd _All B’ and ‘Rnd
_AllF" performed really well with an average of 96% for NMI and 97% for ARIL

43

Furthermore, their number of detected clusters deviated by 0.05. Modularity, ‘All_Adj_B’
and “All_All_B" performed the worst with 90% on both NMI and ARI, while their average
number of detected clusters deviated by 0.8. On the graphs with 80 nodes and 5 clusters all
methods suffered a 5-10% on every metric.

4.2.7 Large Graphs — Optimization via Spectral Clustering

In this section, we present the results for the spectral optimization. More specifically, we run
the spectral clustering algorithm for k number of clusters ranging from 2 to 20 for each
graph, and store the partition that maximized modularity and inclusion respectively. We did
20 independent runs for each category.

Table 11 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster
Size, External Probability 15% and Probability List ranging from 90% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 8 0.6684 0.2122 1 1
Inclusion 8 0.6684 0.2122 1 1

Table 12 Results for Graph Model with 1000 Nodes, 8 Clusters, Equally Distributed Cluster
Size, External Probability 10% and Probability List ranging from 90% to 100% for the First
Cluster Followed by a 10% Reduction for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 7.3 0.6200 0.1604 0.9694 0.9087
Inclusion 8 0.6213 0.1600 0.9973 0.9977

Table 13 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with
Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 15% and
Probability List ranging from 90% to 100%.

Avg Clusters

Avgl

Avg Mod

Avg NMI

Avg ARI

44

Modularity 6.9 0.6877 0.2264 0.9786 0.9733

Inclusion 8 0.6883 0.2260 1 1

Table 14 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with
Ascending Order (5%, 5%, 10%, 10%, 15%, 15%, 20%, 20%), External Probability 10% and
Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction
for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 8 0.6054 0.1400 0.9997 0.9997
Inclusion 8 0.6054 0.1400 0.9997 0.9997

Table 15 Results for Graph Model with 1000 Nodes, 8 Clusters, Distributed Cluster Size with
Descending Order (20%, 20%, 15%, 15%, 10%, 10%, 5%, 5%), External Probability 10% and
Probability List ranging from 90% to 100% for the First Cluster Followed by a 10% Reduction
for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 5 0.6613 0.2057 0.8932 0.7827
Inclusion 7 0.6661 0.2031 0.9756 0.9774

For the spectral optimization on graphs with equally distributed and highly dense clusters,
both methods yielded perfect results, as they found the ground truth solution every time. For
the next category where the cluster sizes where equally distributed but there was various
inter-edge probability, the modularity failed to detect the correct number of communities on
some cases, resulting in a 96% NMI and 90% of ARI while its number of detected
communities deviated by 0.7. On the other hand, inclusion found the ground truth solution
nearly every time with an average of 99% on both NMI and ARI.

On the next category where the cluster sizes are created with various sizes, inclusion found
the ground truth partition on every occasion. On the contrary, modularity failed to detect the
correct number of communities once again providing an average of 6.9 communities instead
of 8.

On graphs where smaller clusters are denser, both methods yielded perfect solutions every
time. Finally, on the last category, where smaller clusters are sparser, both methods failed to
detect the correct number of communities. Inclusion though, found 7 instead of 8

45

communities with 97% NMI and ARI while modularity found 5 instead of 8 communities

with 89% on NMI and 78% on ARI.

Table 16 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster
Size, External Probability 15% and Probability List ranging from 95% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 16 0.5959 0.1294 1 1
Inclusion 16 0.5959 0.1294 1 1

Table 17 Results for Graph Model with 2000 Nodes, 16 Clusters, Equally Distributed Cluster
Size, External Probability 15% and Probability List ranging from 95% to 100% for the First

Cluster Followed by a 5% Reduction for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 13 0.5648 0.0926 0.9333 0.7021
Inclusion 14.8 0.5658 0.0919 0.9630 0.8995

Table 18 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size
with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%,
3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100%.

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 13.9 0.6095 0.1461 0.9853 0.9749
Inclusion 15.7 0.6097 0.1460 0.9982 0.9977

46

Table 19 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size
with Ascending Order (2%, 2%, 2%, 3.5%, 5%, 5.25%, 6.25%, 6.25%, 6.25%, 7.5%, 8%, 8%, 8%,
10%, 10%, 10%), External Probability 15% and Probability List ranging from 95% to 100% for

the First Cluster Followed by a 5% Reduction for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 13.8 0.5563 0.0795 0.9598 0.8629
Inclusion 15.4 0.5566 0.0793 0.9818 0.9421

Table 20 Results for Graph Model with 2000 Nodes, 16 Clusters, Distributed Cluster Size
with Descending Order (10%, 10%, 10%, 8%, 8%, 8%, 7.5%, 6.25%, 6.25%, 6.25%, 5.25%, 5%,
3.5%, 2%, 2%, 2%), External Probability 15% and Probability List ranging from 95% to 100%

for the First Cluster Followed by a 5% Reduction for each Subsequent Cluster

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 10.1 0.5925 0.1291 0.9085 0.7074
Inclusion 13.4 0.5944 0.1276 0.9763 0.9639

To even further harden the problem, we test both methods on even bigger graphs with more
clusters. On the first category where all cluster sizes are equally distributed, both methods
found perfect solutions every time. For the next category where the cluster sizes where
equally distributed but there was various inter-edge probability, inclusion outperformed
modularity with 96% on NMI and 90% on ARI while the average number of communities
found was 14.8 instead of 16. Modularity, found 13 communities instead of 16 with 93% NMI
and surprisingly low ARI 70%.

On the next category where the cluster sizes are created with various sizes, both methods
performed really well with 98% and 99% on both NMI and ARI, for modularity and
inclusion, respectively. The average number of communities found was 13.9 for modularity
and 15.7 for inclusion, instead of 16.

On graphs where smaller clusters are denser, both methods performed really well once
again. More specifically, modularity reached 96% on NMI and 86% on ARI while its number
of detected communities is 13.8 instead of 16. Inclusion, performed slightly better with 98%
on NMI and 94% on ARI while its number of detected communities is 15.4 instead of 16.

Finally, on the last category, where smaller clusters are sparser, both methods struggled on
the correct number of the underlying communities. More precisely, modularity found 10.1

47

communities on average instead of 16 and reached 90% on NMI and 71% on ARI. On the
other hand, inclusion performed significantly better as the number of detected communities
on average was 13.4 and its NMI and ARI is approximately 97%.

4.2.8 Real-World Graphs

Table 21 presents some basic statistics on the two real-world networks we used.
Furthermore, Table 22 and 23 present the results on the Zachary's Karate Club and American
College Football datasets respectively.

Table 21 Real-World Networks’ Statistics

Number of Nodes | Number of Edges | Number of Clusters
Karate Club 34 78 2
American Football 115 616 12
Table 22 Results for Karate Club Dataset (2 Clusters)
Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4 0.8126 0.4188 0.6176 0.4619
All_Adj_B 9 0.7547 0.2940 0.5303 0.2321
All_Adj_F 11 0.7352 0.2588 0.5021 0.1576
All_All B 9 0.7547 0.2940 0.5303 0.2321
All_AlLF 11 0.7352 0.2588 0.5021 0.1576
Rnd_Adj_B 9.54 0.7563 0.2932 0.5280 0.2142
Rnd _Adj_F 6.11 0.7901 0.3687 0.6305 0.4142
Rnd _All_B 9.78 0.7521 0.2854 0.5202 0.1992
Rnd _All_F 6.15 0.7905 0.3666 0.6046 0.3803

48

Table 23 Results for American College Football Dataset (12 Clusters)

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 10 0.8367 0.6043 0.8856 0.8035
All_Adj_B 7 0.8350 0.6006 0.7955 0.5784
All_Adj_F 11 0.8363 0.6031 0.9115 0.8569
All_All_B 7 0.8350 0.6006 0.7955 0.5784
All_AllL_F 10 0.8342 0.5998 0.8895 0.8006
Rnd_Adj_B 10.9 0.8317 0.5948 0.8940 0.8003
Rnd _Adj_F 10.42 0.8308 0.5931 0.8867 0.7854
Rnd _All_B 10.71 0.8330 0.5970 0.8927 0.7934
Rnd _All_F 6.98 0.8111 0.5568 0.77573 0.5262

Table 24 Spectral Optimization for Zachary's Karate Club Dataset

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 4 0.8126 0.4188 0.6176 0.4619
Inclusion 4 0.8126 0.4188 0.6176 0.4619

Table 25 Spectral Optimization for American College Football Dataset

Avg Clusters Avgl Avg Mod Avg NMI Avg ARI
Modularity 11 0.8363 0.6031 0.9115 0.8569
Inclusion 11 0.8363 0.6031 0.9115 0.8569

For the Zachary’s Karate Club dataset, modularity found 4 communities instead of 2 with an
NMI of 62% and ARI of 46. ‘Rnd_Adj_F and ‘Rnd_All_F’ performed similar to modularity in
regard to NMI and ARI with 62% and 41% respectively but the number of communities

49

found is on average 6.1 instead of 2. All the other methods performed significantly worst
with NMI nearly at 50% and ARI at 20% while on some cases the number of communities
found is 11. That results indicate that the Karate Club is quite a difficult problem and
probably there more than 2 actual communities.

On American College Football dataset, the results were significantly better. “All_Adj_B’,
‘All_All_B" and ‘Rnd _All_F’ failed to detect the 5 clusters which led to poor results with
NMI of 78% and ARI of 55%. On the other hand, all the other methods found at least 10 of
the actual clusters with ‘All_Adj_F" performing the best with 11 clusters found and NMI of
91% and ARI of 86%.

For the spectral optimization on Zachary’s Karate Club dataset, both methods chose the exact
same solution. More specifically, they found 4 communities instead of 2 with an NMI of 62%
and ARI of 46%. The same thing occurred with the American College Football, as both
methods chose the exact same solution. The clusters found was 11 instead of 12, while the
NMI was 91% and ARI was 86%.

50

51

CHAPTER 5.

CONCLUSION AND FUTURE WORK

5.1 Conclusion

5.2 Future Work

5.1 Conclusion

In this thesis, we studied the community detection problem and introduced a new quality
measure, inclusion. Furthermore, we presented several optimization techniques for this
criterion and compare them to the most popular family of community detection methods
which are based on the optimization of the so called ‘modularity’ criterion using various
clustering approaches.

In the experimental evaluation we conducted, we deducted some valuable insights. First of
all, in almost every case we examined, higher inclusion values led to better results, on both
the quality of the solution (NMI and ARI) and actual number of communities detected. Thus,
the optimization of the inclusion measure can help in solving the community detection
problem.

Although on smaller graphs both methods optimizing inclusion and modularity performed
remarkably well, when we scale out, modularity seems to struggle on detecting smaller
communities. On the other hand, our methods and specifically ‘All_Adj_F" and “All_All_F’,
outperformed modularity on almost every occasion. Finally, when we used the spectral
optimization, thus narrowing our selection of solutions to a specific set, inclusion
outperformed modularity as a choice criterion.

52

5.2 Future Work

Given the encouraging community detection results obtained from the use of the proposed
inclusion measure, there are several research directions to be followed. At first it would be
interesting to test the approach on various community detection applications arising in
biological, social and other types of networks.

It would be also interesting to conduct a more detailed analysis of the strengths and
weaknesses of the proposed measure that will lead to the identification of graph cases where
the method succeeds or fails.

Another research direction is to consider alternative approaches for optimizing inclusion, in
analogy with the various techniques that have been proposed for optimizing modularity (e.g.
simulated annealing, alternative greedy search schemes, etc.).

It would also be important if we could formulate the inclusion maximization problem as a
trace maximization problem in analogy to the spectral clustering objective. In such a case, the
solution could be obtained from the eigenvectors of the corresponding matrix.

Finally, another important research direction concerns the possible use of inclusion measure
to detect communities in weighted graphs as well as in directed graphs. In such a case, an
adaptation of the inclusion definition would be necessary to take into account the richer
connection information included in the edge matrix.

53

REFERENCES

[Euler36]

[Bol198]

[WaFa94]

[ErRé59]

[WaSt98]

[GiNe02]

[Fort10]

[KeLi70]

[MacQ67]

[NgIWo1]

[Mack03]

[Wink03]

L. Euler, Solutio problematis ad geometriam situs pertinentis,
Commentarii Academiae Petropolitanae 8, 1736.

B. Bollobas, Modern Graph Theory, Springer Verlag, New York,
USA, 1998.

S. Wasserman, K. Faust, Social Network Analysis, Cambridge
University Press, Cambridge, UK, 1994.

P. Erdos, A. Rényi, On random graphs. 1., Publ. Math. Debrecen 6,
1959.

D. J. Watts, S. H. Strogatz, Collective dynamics of small-world
networks, Nature, 1998.

M. Girvan, M.E.J. Newman, Community structure in social and
biological networks, Proc. Natl. Acad. Sci. USA 99 12, 2002.

S. Fortunato, Community detection in graphs, Physics Reports, 2010.

B.W. Kernighan, S. Lin, An efficient heuristic procedure for
partitioning graphs, Bell Syst. Tech. J. 49 (1970) 291-307.

J.B. MacQueen, Some methods for classification and analysis of
multivariate observations, in: L.M.L. Cam, J. Neyman (Eds.), Proc. of
the fifth Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, University of California Press, Berkeley, USA,
1967, pp. 281-297.

A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and
an algorithm, in: T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.),
Advances in Neural Information Processing Systems, vol. 14, MIT
Press, Cambridge, USA, 2001.

D.J.C. Mackay, Information Theory, Inference, and Learning
Algorithms, Cambridge University Press, Cambridge, UK, 2003.

R.L. Winkler, Introduction to Bayesian Inference and Decision,
Probabilistic Publishing, Gainesville, USA, 2003.

54

[HaRT07]

[Hast06]

[Gall63]

[NeGi04]

[BDG+06]

[Newm04]

[CINMO4]

[BGLLOS]

[KiGV83]

[GuSA04]

[FoBa07]

[Zach77]

M.S. Handcock, A.E. Raftery,].M. Tantrum, Model based clustering
for social networks, J. Roy. Statist. Soc. A 170 (2007) 1-22. Working
Paper no. 46.

M.B. Hastings, Community detection as an inference problem, Phys.
Rev. E 74 (3) (2006) 035102.

R.G. Gallager, Low Density Parity Check Codes, MIT Press,
Cambridge, USA, 1963.

M.E.J. Newman, M. Girvan, Finding and evaluating community
structure in networks, Phys. Rev. E 69 (2) (2004) 026113.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikolski,
D. Wagner, On modularity np-completeness and beyond, 2006.

M.E.J. Newman, Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69 (6) (2004) 066133.

A. Clauset, M.E.]. Newman, C. Moore, Finding community structure
in very large networks, Phys. Rev. E 70 (6) (2004) 066111.

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast
unfolding of communities in large networks, J. Stat. Mech. P10008
(2008).

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated
annealing, Science 220 (1983) 671-680.

R. Guimera, M. Sales-Pardo, L.A.N. Amaral, Modularity from
fluctuations in random graphs and complex networks, Phys. Rev. E
70 (2) (2004) 025101 (R).

S. Fortunato, M. Barthélemy, Resolution limit in community
detection, Proc. Natl. Acad. Sci. USA 104 (2007) 36-41.

W.W. Zachary, An information flow model for conflict and fission in
small groups, J. Anthropol. Res. 33 (1977) 452-473.

55

SHORT CV

Nikolaos Koufos was born in Athens, Greece in 1992. In 2010, he enrolled in the Computer
Science & Engineering department in University of Ioannina and in 2015 he received his
diploma. In continuation to his studies, he joined the same department for his Master’s
Degree. After fulfilling his responsibilities as a post-graduate student, he presented his thesis
in July 2017 in order to complete his Master’s Degree.

56

57

