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1 Introduction

1.1 General aims of this thesis

Meta-analysis of randomized control trials (RCTs) is a key ingredient in today’s
comparative effectiveness research in evidence-based medicine. International health
organizations such as the World Health Organization or the Cochrane Collaboration
recognize their value and use meta-analyses routinely while Agencies such as the Canadian
Agency for Drugs and Technologies in Health (CADTH), the Agency for Healthcare
Research and Quality (AHRQ) and the National Institute for Health and Clinical Excellence
(NICE) use them to produce guidelines for clinical practice. The institute of Medicine in the
United States set a goal that, by the year 2020, 90 percent of clinical decisions will be
evidence-based (1).

Traditional meta-analytical techniques, however, can only compare two treatments
(i.e. can only perform a ‘pairwise’ comparison) and thus their usefulness is limited when
three or more competing treatments for the same condition are present. In addition, even
though the interests of policy-makers lie in the comparison of active agents, new treatments
are commonly compared only to placebo. In such cases pairwise meta-analysis cannot give
a definite answer as to which treatment works best for a specific condition, setting hurdles
to the decision-making process (2).

This situation drove the interest of researchers and funding bodies towards a new
framework for synthesizing information from studies comparing different subsets of
competing treatments. Network Meta-Analysis (NMA, sometimes also called ‘multiple
treatment meta-analysis’ or ‘mixed-treatment comparison’) was developed to address this
issue (2-6). NMA is a statistical tool which can combine information across a network of
randomized trials, and which produces inferences concerning the relative effectiveness of
multiple interventions.

In the last few years NMA has become increasingly popular (7-12) and its usefulness
has been recognized by various organizations. For example, the Decision Support Unit of
NICE provides extensive guidance on performing an NMA (13) and the Cochrane
Collaboration has established the ‘Comparing Multiple Interventions Group’ for promoting

the methodology for comparing multiple interventions, http://cmimg.cochrane.org/.

Moreover, there have been many papers discussing the advantages and limitations of the


http://cmimg.cochrane.org/

method (14-30), which have also been explored in empirical assessments (31-35) and
simulation studies (9,34,36). The advantages include a potential increase in the precision
from the estimates of an NMA compared to an estimate based on direct evidence alone and
that it allows comparing treatments that have never been compared in head-to-head
experiments. This is particularly valuable when active agents are only compared to placebo
or standard care for regulatory purposes but not to each other (37). In addition, NMA can be
used to answer policy-relevant questions by providing a ranking of all competing treatments
(38) and to reduce the uncertainty in cost-effectiveness analyses (39).

Despite the aforementioned advantages, the implementation of NMA in practice may
be hindered because of several reasons. First, the methodology of NMA rests on the
assumption of transitivity, i.e. that different sources of evidence (direct and indirect evidence
for the same treatment comparison) are in agreement. This assumption is often viewed as an
important limitation of the method because it may be difficult to assess its plausibility in
practice, and because if it does not hold NMA results may be invalid. Moreover, the field of
NMA is swiftly evolving; during the last few years there has been an abundance of published
methodological articles presenting alternative approaches to deal with issues related to
NMA.

The first objective of this thesis is to give a comprehensive account of the currently
available methods for NMA and discuss in depth conceptual and statistical ways for
evaluating the underlying assumptions of the model while providing guidance for
researchers that set out to perform an NMA. To this end we performed a systematic review
of the methodology, to ensure that interested researchers use state-of-the-art methods for
practical applications and when conducting further methodological research.

The second objective of this PhD thesis is the extension of NMA methods to the case
of multiple correlated outcomes. Studies typically report on more than one outcome, and
multiple outcomes can be correlated. For example, a study on antihypertensives may report
systolic and diastolic blood pressure. These two outcomes are correlated because they are
measured in the same patients. Moreover, on the meta-analysis level, there may be between-
study correlations of the true outcome effects across studies. These correlations will reflect
the way that the true outcome effects depend on each other when measured in different
settings.

Currently available models for performing a multiple-outcomes meta-analysis of

randomized trials are limited to the case of studies that compare only two treatments. In this



thesis we present new methods for performing an NMA for the case of multiple, correlated
outcomes. We discuss a range of different modeling approaches to perform such an analysis,
depending on the nature of the outcomes (e.g. binary/continuous) and the availability of
information regarding the correlations.

In the next section of this introductory chapter we give a brief account of the basic
concepts and statistical models used in simple (pairwise) meta-analysis. In the following
chapters we will see how these methods are generalized for the case of NMA, and also

multiple outcomes NMA.
1.2 A brief outline of methods for pairwise meta-analysis
1.2.1 General concepts in meta-analysis

Let us start by considering a collection of Ny studies, which compare two interventions
for the same disease in terms of a specific outcome. Let us also assume that the populations
of patients are similar across the studies. Each study provides an estimate of the magnitude
of relative treatment effect (y;), along with the corresponding measure of the uncertainty of
this estimate (e.g. this could be the observed variance s? of y;). Relative effects can be
expressed for example in terms of odds ratio, risk ratio, risk difference (for binary outcomes),
mean difference, standardized mean difference (for continuous outcomes), hazard ratios (for
time-to-event outcomes), etc.

The basic assumption behind all meta-analysis methods is that these distinct — but
conceptually similar — studies aim to estimate a common underlying truth regarding relative
treatment effects. Thus, the scope of meta-analysis is to synthesize the N different answers
into a single, pooled estimate of this treatment effect. There are several different statistical
approaches to meta-analysis, but most are variations of a weighted average, where the result
obtained in each study is assigned a study-specific weight (40). These weights usually relate
to the precision of the studies, where more precise studies receive larger weights. The
advantage of this pooling is that it leads to a higher statistical power, an increase in precision
as compared to the individual studies’ results, and the chance to settle controversies arising
from conflicting results in the individual studies (40,41).

The two most popular approaches to meta-analysis are the fixed (or common) effect

and the random effects models, and we describe them in brief in the following paragraph.



1.2.2 Fixed vs. random effects meta-analysis

Fixed effects models assume that there is a single true treatment effect that underlies
all studies in the analysis. Observed differences between the estimates of the studies are only
due to random (sampling) error. This implies that the studies are similar in all aspects that
might potentially modify the relative treatment effect. These include population
characteristics (e.g. age of the participants), study design characteristics (e.g. duration of
follow-up), intervention characteristics (e.g. dose) etc. (42). If we denote the true treatment
effects in study i by 6; (where i = 1,2, ... Ng), under the fixed effect assumption all 9, are
equal, i.e. ; = u. The observed effects in each study are y; = u + ¢;, where ¢; is the random
error.

By contrast, random effect models assume that the true effect size is different in each
study. For example effect sizes might be larger in studies with older or more severely ill
patients, or when more intensive variants of the treatment were used (43). In most cases
studies are expected to have at least some variability in terms of patient or care-taker
characteristics, implementations of the treatments etc., so that there may be different true
effect sizes in each of the different studies. If Ng was infinitely large we could reconstruct
the distribution of the study-specific effect sizes. In a random effects model the observed
effect sizes in the studies are assumed to be a random sample of this underlying distribution
(43). The variability of this distribution of effects is typically termed heterogeneity. Thus, in
a random effects meta-analysis model the observed differences of the estimates of the studies
can be attributed to two factors: random (sampling) error, and random effects (due
heterogeneity). The most common assumption used to model the distribution of study-
specific true effects is to assume a normal distribution. The observed effects in each study
arey; = u+ 6; + €;, where ¢; are is the random effect. We will denote the standard deviation
of random effects by t in this dissertation. Setting T = 0 corresponds to assuming no
variation in the study-specific effects, and in that case the random effects meta-analysis
models simplifies to a fixed effects model.

Regarding the choice between the two models, fixed effect vs. random effects: if
researchers expect the identified studies to share a common effect size and also they are only
interested in identifying the treatment effect for a specific population, then a fixed effect
meta-analysis is more appropriate to use. In all other circumstances the random effects

assumption is much more suitable (41) and should be considered.



1.2.3 Inverse variance meta-analysis

Perhaps the most common approach to defining weights in a meta-analysis is the
inverse variance method. According to this method each study i is assigned a weight w;,

where, for a fixed effects meta-analysis we assume:

1
— 1
W= (1)
l

The pooled treatment effect is estimated to be:

and the corresponding variance:
var(fi) = L, 3)
NiW;

For a random effects meta-analysis the weights are defined in a way similar to

Equation (1), but they now also include the heterogeneity variance:

1 @)
Wi = s? + 12

The pooled estimate and corresponding variance is still given by Equations (2) and (3),
with the only change being the replacement of w; with w;".

In order to use Equation (4) one first needs to obtain an estimate of heterogeneity, 2.
The most widely used approach to estimating 7?2 is the DerSimonian and Laird method (44).
In recent years, however, a plethora of alternative method have been proposed. Among these,
an estimator proposed by Paule and Mandel (for both continuous and dichotomous
outcomes) and the restricted maximum likelihood estimator (for continuous outcomes) have

been shown to perform better (45).
1.2.4 Estimating pairwise meta-analysis in a Bayesian framework

Meta-analysis can also be formulated in the form of a hierarchical model, and then be
fitted using Bayesian machinery. For a random effects meta-analysis, we assume:
Yi~N(6;,s7) (5)
0;~N(u,7%)
Prior distributions then need to be assigned to u and t. The pooled treatment effects follow

from the posterior distribution of u. Note that equation (5) can be used for meta-analysing



continuous outcomes, but also for dichotomous or time-to-event outcomes, if one uses
measures that can be assumed to follow a normal distribution, e.g. log-odds ratio, log-risk
ratio, log-hazard ratio etc.

A better approach would be to take into account the exact likelihood of the data. Note
that this requires arm-level data to be available from the original studies. Let us focus on the
case of a dichotomous outcome. Let us assume that we have a number of studies comparing
treatments A to B, and that study i reports the number of events and number of randomized
patients per treatment arm, i.e. 1; 4, 1; p and n; 4, n; . These are assumed to follow a binomial
distribution:

1i,a~Bin(pia,nia)
1,3 ~Bin(p;p, nip)

The arm-specific probabilities p; , and p; 3 can be used to estimate the treatment

effects in that study. For instance, in order to use log-odds ratios we set logOR; =

lo (—E’l""‘;l_;’;‘?)). These study-specific effects can then be assumed exchangeable across
—VPi,AJPiB
studies, e.g. by setting logOR;~N(u,t%). A detailed account of the various hierarchical
models one can use depending on the likelihood of the data can be found in a paper by Dias
et al. (46).
In the next, final section of this introductory chapter, we provide a brief outline of this

dissertation.
1.3 Outline of the dissertation

In Chapter 2 we present the results of the systematic review on the methodology of
NMA. We present our search strategy in Section 2.1. In Section 2.2 we provide an in-depth
discussion of some conceptual issues and assumptions that underlie NMA. We discuss
statistical methods for fitting NMA in Section 2.3. We present approaches for evaluating the
underlying assumptions of NMA in Section 2.4. We summarize the currently available
methods for fitting NMA in Section 2.6 and we discuss the use of alternative effect measures
in Sections 2.7 and 2.8. We then present extensions of the model for adding covariates in the
analysis (Section 2.9), and for investigating potential sources of bias 2.10. In Section 2.11
we discuss the reporting of NMA results. In Section 2.12 we review methods for

synthesizing repeated measurements and multiple outcomes in NMA. In Section 2.13 we



discuss the issue of deciding which treatments to include in a NMA. In Sections 2.14 and
2.15 we summarize recent advances in incorporating individual patient data (IPD) and non-
randomised studies in NMA. In Section 2.16 we discuss the issue of planning future studies.

In Chapter 3 we propose a new model for performing a joint network meta-analysis,
for the case of multiple, correlated, dichotomous outcomes. In Section 3.2 we describe a
motivating clinical example, borrowed from a systematic review aiming to compare 14
different drugs and placebo for acute mania, in terms of efficacy and acceptability. In Section
3.3 we present our model in detail. One of the important features of the model is that it
requires external input in the form of information elicited from clinical experts. There we
discuss methods that can be employed for obtaining such information. In Section 3.4 we
apply our methods to the network of treatments for acute mania, and obtain relative treatment
effects for all comparisons in the network, for both outcomes. In Section 3.5 we summarize
our findings.

In Chapter 4 we present two additional models that can be used for the network meta-
analysis of multiple correlated outcomes, for the general case of analyzing either
dichotomous, continuous, or time-to-event correlated outcomes. In Section 4.2 we present
the mathematical details models. In Section 4.3 we apply the two models to the acute mania
dataset and we present our results. In Section 4.4 we compare the two models and we discuss
how to choose between the two in real-life clinical applications

Finally, in Chapter 5 we present the most important findings of this dissertation. We
start by summarizing our recommendations for performing NMA as they emerged from our
systematic review. We discuss the best practices and highlight the most appropriate methods
for NMA, aiming to provide guidance to future researchers. We also give an overview of the
new models we propose for performing NMA for multiple outcomes. We summarize the
advantages and limitations of each model and discuss how to choose between them in
practical applications. We also highlight some areas of future research.






2 Systematic review of the methodology of network meta-
analysis

2.1 Search strategy

For the purposes of our review of the methodology we have searched for published
articles that presented new methods for NMA or articles evaluating existing methodology.
We based our search on a previous review of the literature in NMA performed by the
‘Comparing Multiple Interventions Methods Group’ of the Cochrane Collaboration. We also
used the results from a recent literature review performed by Donegan et al. (47) where 116
papers on methods for assessing the homogeneity and consistency assumptions of NMA
were identified (referred to as “key paper” in Figure 1) In addition, we searched the
PUBMED database for relevant hits using the following terms:

(network OR mixed treatment* OR multiple treatment* OR mixed comparison* OR
indirect comparison* OR umbrella OR simultaneous comparison*) AND (meta-analysis).

This query produced 1789 hits (14 March 2014), 88 of which were deemed relevant.
Articles that have appeared in two methodological journals, namely Journal of Research
Synthesis Methods (RSM) and Journal of the Royal Statistical Society (JRSS), series A, B
and C, are not indexed by the PUBMED database; for this reason we performed a hand-

search for relevant publications in these two journals.

Inclusion criteria

We included articles that contribute to the methodology of network meta-analysis by
introducing new methods and models; articles that review the existing methodology and
articles that provide recommendations or give guidance on how to perform an NMA. We
also included papers that discuss the conceptual issues and the assumptions behind NMA
and articles that provide some sort of empirical assessment for the conduct of network meta-

analyses in general.

Exclusion Criteria

We excluded publications for which one of the following criteria was met:
. full text of the publication was not available
. published in a language other than English

. conference posters



. applications of NMA without a methodological focus

In Figure 1 we present the flow chart of the papers identified in our search. The

identified articles were organized according to their context and are discussed in the relevant

sections of this review. An online database of all included articles tagged by topic can be

found at https://www.zotero.org/groups/wp4 - network meta-analysis/items. This database

has been shared with experts in the field to identify missing relevant articles.

Aiming to make our results more accessible to the interested reviewers, each identified

article was assigned one or more tags according to the type of research presented, one or

more tags according to the methodological topics addressed and one or more tags according

to the software it used to implement the methods it presented.

We used 5 contribution tags:

Methodology development: this will be assigned to papers presenting a novel
methodology.

Didactical/good practice/recommendations: for papers giving guidance or advice.
Methodology overview: to be assigned to papers presenting a summary of the
existing methodology for NMA

Simulation: for papers using a simulated dataset to make assessments

Empirical assessment: for papers presenting an assessment based on published
NMA:s.

There were 14 methodology tags:

Basic Methodology: for papers presenting novel methodology for addressing
fundamental issues of NMA

Definition of nodes: which will be assigned to articles presenting methodology
regarding the definition of treatment nodes included in an NMA

Effect Sizes: for papers addressing issues on the different effect sizes that can be
used in an NMA

Conceptual issues/Assumptions underlying NMA: to be assigned to papers that
elucidate the conceptual issues of an NMA and discuss the assumptions that need
to hold in order for an NMA to give valid results.

Statistical inconsistency: for papers discussing methods for quantifying statistical
inconsistency in NMA, for papers presenting ways for addressing inconsistency or

for papers examining the prevalence of inconsistency in published networks.
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Risk of Bias: for papers presenting methods for addressing the risk of bias in an
NMA

Non-randomized and observational studies: assigned to papers suggesting ways to
include data from non-randomized and observational studies in an NMA
Publication Bias: for papers presenting methods for addressing the risk of
publication bias in an NMA

Multiple outcomes/repeated measures/survival analysis: for papers presenting
methods for the joint analysis of multiple correlated outcomes, repeated measures
and analysis of survival data

NMA meta-regression: for papers discussing the use of covariates in an NMA

IPD in NMA studies: for papers presenting ways to include evidence from studies
reporting individual patient data in an NMA

Sensitivity analyses: for papers presenting some form of sensitivity analysis
Planning future studies: for papers discussing methods for planning future trials

Reporting NMA: for papers discussing methods for reporting the results of an NMA

Finally we used 4 software implementation tags:

BUGS: for papers using either WinBUGS or OpenBUGS

R: to be assigned to papers using the R programming language
STATA: for papers using the STATA software package

SAS: for papers using the SAS software package

Since our focus is on methodology, completeness of the search is less of an issue: a

more extensive search might provide some additional articles, but it is unlikely that it will

provide any new insights or further methodological perspectives. This effect is termed

theoretical saturation (48).

In the remainder of this Chapter we provide an overview of best practices and methods

for NMA, as they were identified by our systematic review.
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Figure 1: Flow chart of included and excluded methodological papers for the systematic

review

1789 papers identified
through PUBMED search

1694 excluded after

N screening title or author
7 papers excluded after
v reading the full text
88 papers relevant
papers included
78 papers added from a publicly
€ available database (by the

‘Comparing Multiple
Interventions Methods Group’ of
the Cochrane Collaboration)

6 articles added after hand
searching journal databases and
after going through citations of

key papers

\ 4
172 papers included
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2.2 Conceptual issues and assumptions underlying network meta-
analysis

The key feature of NMA is that it allows the synthesis of direct and indirect estimates
for the relative effects of many competing treatments for the same health condition. Two
treatments A and B may have been directly compared in head-to-head (A vs. B) studies. An
indirect estimate may also be obtained from studies comparing these two treatments with a
common comparator treatment C, i.e. AC and BC studies (49), as shown in the left panel of
Figure 2. If both direct and indirect estimates are available, they can be combined into a
mixed treatment effect.

In practice, for most health conditions there is a plethora of interventions being
compared in randomized control trials, forming a network of evidence. For a given treatment
comparison within such a network there may be direct and many different indirect estimates,
obtained via many different comparators, as shown in the example of the right panel of
Figure 2. Using NMA one can synthesize all these different pieces of information to produce
an internally consistent overall estimate of all treatments’ relative effects.

Despite the benefits of NMA discussed in the Introduction Chapter, there is still
controversy among the scientific community about the validity of using indirect treatment
comparisons (indirect evidence) for decision making. The use of such evidence may be
particularly challenged when direct treatment comparisons (direct evidence) are also
available (50-52). One focal point of criticism is the nature of evidence NMA provides.
Even though patients within an RCT are randomized to receive one of the treatments being
compared, the treatments are not randomized across the included trials. Therefore, indirect
comparisons are non-randomized comparisons. In fact, indirect comparisons provide
observational, rather than randomized, evidence. As a consequence indirect treatment
comparisons may be more subject to biased treatment effect estimates, due, for example, to
confounding, when randomized AB and AC studies are systematically different than BC (3);
also, due to selection bias, when the choice of comparator in a study is dependent on the
relative treatment effect (53). Such considerations are also closely related to the underlying

assumptions of NMA; in what follows we discuss these assumptions in detail.
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Figure 2: Each circle represents an intervention. A line connecting two interventions
represents the availability of studies performing the corresponding comparison. Left
panel: Three interventions A, B, and C form a simple triangular network. The indirect AB
comparison is estimated via C, i.e. using the direct AC and BC comparisons. The mixed
relative treatment effect for AB is estimated by combining the direct comparison and the
indirect comparison. Right panel: A network of five interventions and eight direct
comparisons. Overall, one direct comparison and four indirect comparisons contribute
evidence to A versus B (indirect comparisons are via C, via E, via C and D, and via E and
D).

2.2.1 Transitivity

The aim of a NMA is to enhance the decision-making process regarding the choice
among alternative treatments for a certain disease and a target population. NMA adopts the
same set of assumptions as a pairwise meta-analysis (54) but it also employs one additional
assumption which can be hard to assess (55) called transitivity (56) (also termed similarity
(11,32) or exchangeability (57)). Transitivity implies that information for the comparison
between treatment A and B can be obtained via another treatment C, using the comparisons
A vs. C and B vs. C. This assumption cannot be tested statistically, but its validity can be
evaluated in a conceptual and epidemiological manner (24).

The transitivity assumption implies that we can combine the direct evidence from AC
and BC studies to learn (indirectly) about the comparison AB. This, however, will be

questionable if there are important differences in the distribution of the effect modifiers
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(variables or characteristics which modify the observed relative effects, e.g. mean age of the
participants, treatment dosage etc.) across the AC and BC trials which inform the indirect
comparison (56,58). An effect modifier might differ across studies of the same comparison
(e.g. mean participant age might be different across the AC trials) but if it has a similar
distribution across comparisons (AC and BC) the transitivity assumption may still be valid
(24). Consequently, the plausibility of the transitivity assumption can be evaluated by putting
the collection of studies under scrutiny for important differences in the distribution of effect
modifiers. If the studies are deemed to be similar then the transitivity assumption might be
realistic, provided that there are no unknown modifiers of the relative treatment effect (59).
Obviously, such an evaluation of transitivity may be impossible when the effect modifiers
are not reported or when there are few studies per treatment comparison (60). If important
differences are identified and there are enough data available, a network meta-regression can
be used to improve the transitivity of the network (see also Section 2.9).

This implies, for example, that the common comparator treatment C must be similar
in the AC and in the BC studies in terms of dose, modes of administration, duration etc. In
an NMA of studies comparing fluoride treatments for the prevention of dental carries, the
definition of placebo was different between studies of fluoride toothpaste and studies of
fluoride rinse (61), casting doubt about the plausibility of the transitivity assumption and
thereby challenging the reliability of NMA results. In another example, Julious and Wang
(62) discussed how the use of placebo as an intermediate comparator might bias the results
of indirect comparisons due to changes in the placebo response of the population over the
years; for example, when studies comparing treatment A to placebo are older than studies
comparing B to placebo the indirect estimate for A vs. B via placebo may be biased.

Other ways of formulating the transitivity assumption is to assume that regardless of
the treatments being compared in each study the true relative effect of A vs. B is the same in
a fixed effects model or exchangeable across studies in a random effects model (57,63), that
the ‘missing’ treatments in each trial are missing at random (64) or, equivalently, that the
choice of treatment comparisons in the trials is not associated either directly or indirectly
with the relative effectiveness of the interventions (24). Finally, an alternative way of
postulating this assumption is to state that the included patients could in principle be

randomized to any of the treatments included in the network (24).
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2.2.2 Consistency

The statistical manifestation of transitivity is called consistency (60). Checking the
network for consistency constitutes an additional method of inferring indirectly about the
plausibility of the transitivity assumption. Consistency refers to the statistical agreement
between the observed direct and the (possibly many) indirect sources of evidence. A simple
network may only include three treatments A, B and C. The transitivity assumption then
implies that uysp = tac — Upc (also termed consistency equation), where u,p denotes the
true relative effect of treatment B over C; likewise for puc, ugc. When this equation does
not hold for the (direct) estimates, the network is said to be inconsistent (64) or incoherent
(65). If this is the case, results from an NMA will be more difficult to interpret and become
less reliable. In a following section we review various statistical methods and models that
have been suggested for identifying inconsistency and thus assessing the transitivity
assumption in NMA.

Statistical inconsistency can be thought of as another form of heterogeneity:
heterogeneity results from the variation of effect modifiers within a treatment comparison,
while inconsistency results from the variation of effect modifiers across treatment
comparisons (58). Researchers should keep in mind, though, that the consistency of a
network can only be assessed statistically when there is both direct and indirect evidence for
one or more treatment comparisons. This situation only occurs when there are closed loops
in the network (i.e. when three or more interventions are connected by a polygon, the edges
of which represent head-to-head comparisons between the corresponding treatments). When
there are no closed loops present in the network, a statistical assessment of inconsistency
will not be possible. In these situations there cannot be inconsistency by definition. This,
however, does not imply that the transitivity assumption will necessarily hold. It should also
be noted that the absence of statistical inconsistency does not provide proof for the validity
of the transitivity assumption, which, as discussed in the previous section is essentially an
untestable assumption. Thus, next to statistical tests for inconsistency, a
conceptual/theoretical assessment of the transitivity assumption should always take place
before an NMA is conducted (60) and the studies included in an NMA should always be
scanned for important differences in terms of patients, interventions, outcomes, study design,
methodological characteristics and reporting biases (3,7,9,15,19,26,28,35,49,59,66-70).
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2.3 Statistical models for network meta-analysis

A simple network may include three treatments of interest, A, B and C. An estimate
of the indirect treatment effect of A vs. B can then be obtained by utilizing the direct
observations A vs. Cand Bvs. Cas gy = ah — pbe (49). This result is sometimes also
referred to as “adjusted indirect comparison”. The variance of the indirect estimate is the
sum of the variances of the two direct ones. When direct evidence is also available for the A
vs. B comparison it can be combined with the indirect estimate using the usual inverse
variance method to produce a mixed estimate. Note that this method for obtaining indirect
estimates is only valid for ‘triangular networks’, where three treatments have been compared
in a number of two-arm trials and for ‘star-shaped’ networks, where all treatments are
compared to a common comparator (e.g. placebo) but not to each other. For complex
networks there will be multiple sources of indirect information, and thus more advanced
models need to be used.

Popular implementations of NMA models adopt meta-regression (Section 2.3.1),
hierarchical modelling (Section 2.3.2) or a multivariate meta-analysis approach (Section
2.3.3). A common feature of all of these models is that the use of the consistency equations
minimizes the number of parameters that need to be estimated. The minimum set of
parameters needed to model the relative treatment effects is usually termed as the set of
“basic parameters” or “basic contrasts”; these parameters are in number equal to the number
of treatments minus one and can be used to generate estimates for all possible treatment
comparisons, via the consistency equations. The basic parameters can be chosen arbitrarily
as long as they form a “spanning tree” of the evidence (64); if this condition is satisfied the
actual choice of basic parameters does not affect the NMA results. These parameters are
commonly taken to be the relative effects of each treatment versus a reference (e.g. the
placebo, if present in the network). For example, for a network of four treatments A, B, C
and D three basic parameters are needed. These can be chosen to correspond to the relative
treatment effects of all other treatments versus A, i.e. AB, AC and AD. All other treatment
effects can be generated from these 3 parameters, e.g. the relative treatment effect for BD
can be estimated using the AB and AD parameters. Choosing instead BA, BC and BD as the
basic parameters would have no impact on the NMA results.

In what follows we describe the most popular approaches for performing an NMA.
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2.3.1 Network meta-analysis as a meta-regression

In the meta-regression approach, first proposed by Lumley (65) the various treatment
comparisons are treated as covariates in a meta-regression model (6). The usual NMA meta-
regression model can be summarized in the following equation: y = Xu + € + 8, with y
being the vector of observed relative treatment effects, u the vector of basic parameters, €
the vector of random errors, and & the vector of random effects. Note that for a study
i comparing T; different treatments, only T; — 1 observations on treatment comparisons need
to enter the model. For a parallel randomized three-arm ABC trial, for example, we only
need to include two of the three comparisons, e.g. AB and AC; the BC comparison is just a
linear function of the other two. This means that y, € and & have a length equal to }:(T; — 1).
Random errors are assumed to follow a multivariate normal distribution, e~N (0, 2), with X
being the (block-diagonal), within-study variance covariance matrix. A study i with T;
treatments arms will contribute a (T; — 1) x (T; — 1) matrix to Z; a two-arm AB study, for
example, will only contribute to X the variance of the relative treatment effect of A vs. B. A
three-arm trial ABC will contribute to X a 2 x 2 matrix with the variances and the covariance
of the 2 relative treatment effects chosen to be included in y, eg. AB and AC. Similarly,
6~N(0,4) for the random effects, with A being the heterogeneity variance-covariance
matrix. Matrix X, the design matrix, has as elements 1, —1 and 0 and describes the structure
of the network, providing information on which comparison is being performed in each study
(6). If for example the network is built by an AB study (study 1), an AC study (study 2) and
a BC study (study 3), the model would be written as:

Y14aB 1 0 o €14B 6148
<3’2Ac> =0 1 (.UAC) + €2Ac> + <52Ac .
Y3Bc -1 1 83BC 63BC

~

The basic parameters can be estimated as i = (XTWX)"1XTWy, with variance
var(fi) = (XTWX)~1, where W is the weight matrix, W = (£ + A)~1. The within-study
variance-covariance matrix X can be estimated from the observed data (4,71), while for the
between-study variance-covariance matrix 4 one can use various ways of estimation
including likelihood methods or the methods of moments (72-74). Estimating 4 may be
difficult especially when the data are sparse or in the presence of multi-arm studies. For this
reason, it is common to introduce additional assumptions to reduce the number of parameters

in A and simplify the estimation. The most common approach is to assume equal
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heterogeneity variances across comparisons, i.e. the between-study heterogeneity of the
relative treatment effects is the same for all treatment comparisons (4,65). This assumption
is, however, quite strong and may often be unrealistic. Lu & Ades (63) discussed how the
consistency equations impose restrictions in the heterogeneity of each comparison, based on
the (different) heterogeneity variances of each of the basic parameters. Thorlund et al. (75)
presented models for exchangeable heterogeneity variances and also discussed the use of
informative prior distributions in the context of a Bayesian analysis.

In a different approach, Lu et al. proposed a two-stage method for performing an NMA
as a meta-regression (76). At the first stage a meta-analysis is performed in each group of
trials comparing the same treatments, e.g. all two-arm trials that compare A vs. B, all three-
arm trials that compare A vs. B vs. C, etc. This provides the direct estimates on treatment
comparisons. At the second stage of the meta-analysis, a weighted linear regression is
performed with the direct estimates as dependent variables. This provides inference for the
basic parameters. This two-stage method can be used to investigate how the first-stage
(direct) evidence influences the network estimates and may therefore help to assess the

consistency of the network (see next section).

2.3.2 Network meta-analysis as a hierarchical model

Hierarchical NMA models (5,6) seem to be implemented most often (7,8). An
important advantage of this approach is that if arm-level data are available, their exact
likelihood can be used (46).

The likelihood of the arm-level data is defined in terms of a set of unknown parameters
y and a link function, g(y) which is used to map these parameters in the (—oo, ) range.
For a study i comparing treatments A and B we set:

9Wia) = w;,
9Wig) = u; + Oiup.

For the case of binary data, for example, we can choose g to be the logit function and
y the probability of observing an event. We set:

logit(pia) = w;,
logit(pig) = u; + 045
Here u represents the log-odds of the outcome for treatment A and 6,5 the log-odds

ratio of A versus B; the event probabilities for each arm parameterize the binomial
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likelihood, r;r~Bin(p;r, nir), With r;r denoting the events and n; the total number of
randomized patients in each treatment arm (T = A, B). We then allow 6;,5~N (u4p, t55) for
a random-effects meta-analysis. If two non-reference treatments are compared in a study,
e.g. treatments B and C, we utilize the consistency equations by setting 0;5c~N (Usc —
Uag,Tac). Inthe presence of multi-arm studies multivariate normal distributions should be
used instead, where the within- and between-study variances are replaced by the
corresponding variance-covariance matrices S; and 4;. Details on how to model other types
of data can be found in (46). Note that the issues discussed in the previous section regarding
the estimation of the between-trial heterogeneity hold for the hierarchical models as well.

NMA can be fitted as a hierarchical model also if only contrast-level data are available
from the studies (i.e. when the reported data is on the relative treatment effects of the
treatments being compared, but not on the specific arms). For a two-arm study i comparing
A (reference treatment) and B the model is written as v ;45 ~N (8,45, s7). Note here that the
normality assumption can be justified even if the underlying patient-level distributions are
skewed, due to the central limit theorem (46).

Hierarchical models can also be fitted when a combination of arm-level and contrast-
level data is available, using the exact likelihood for the arm-level data and the normal

approximation for the contrast-level data in a so-called shared parameter model (46).

2.3.3 Network meta-analysis as a multivariate meta-analysis mode

White et al. (77) suggested a method of performing NMA as a multivariate meta-
analysis by treating the basic comparisons as different outcomes and by employing standard
multiple-outcome meta-analytical techniques (78). For this model to work all studies need
to report on the reference treatment; if this is not the case for some studies, a data-
augmentation technique is required to impute a minimally informative reference treatment
arm. The model is written as y = X*u + € + 8, with X* being a matrix with all elements
either 0 or 1, depending on which ‘outcomes’ are reported in each study.

Assume for example that treatments A, B and C are compared in a number of studies,
and also assume that treatment A is taken to be the reference treatment. In this approach u
will be a 2 x 1 vector of the basic parameters, AB and AC. A study comparing A vs. B will
contribute an element 1 in the first column of X* and 0 in the second, since in this study only

the first ‘outcome’ is reported. An A vs. C study will report the second outcome only, thus
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the relevant elements in X* will be 0 and 1 respectively. For a B vs. C study, however, an A
arm must be imputed; this study becomes three-arm, and reports on both ‘outcomes’. The

model for these three studies is as follows:

YV14B 1 0 €14B 8148
Yaac | _ (0 1| HaB €24c 824c
Yaae | |1 0 (HAC) + €34B + 8348
Y3ac 0 1 €34c O34c

Note that the two random errors and also the two random effects that were included
for the third study will be correlated. Also note that in this approach the vector of
observations, y has been modified to account for the imputed arms. Standard methods for
multiple-outcome meta-analysis can now be used to fit the model.

The models described in this section should be considered equivalent; the choice
between them should be primarily dictated by the availability of software packages for
implementing them and by the technical expertise of the researchers. We discuss the
currently available software options for fitting all models presented in this review in a
following section. Alternative models for performing an NMA have also been recently
proposed in the literature. Rucker (79) described the analogy between network meta-analysis
and electrical networks and applied graph-theoretical methods to perform a fixed-effects
NMA. Also, Yang et al. (80) introduced a confidence distribution approach for performing
an NMA. In this approach, instead of combining point estimates from each study, the authors
combine confidence distributions.

For more in-depth reviews of the methodology that include the statistical details of the

models we presented we refer the reader to (15,81,82).

2.4 Detecting inconsistency in networks of interventions

As we have previously discussed (Section 0), transitivity is a central assumption of
NMA. A statistical assessment of this assumption can be made by checking whether the
various sources of evidence fit together in a coherent way. This assessment is vital for
ensuring that the NMA results are valid and interpretable for clinical decision making (83),
but may be difficult to do in practice, especially in the case of complex networks or when
multi-arm studies are included in the network.

Statistical consistency can be assessed only in closed loops of evidence; there are two
general approaches to do this: either locally (by focusing on the inconsistency of a specific

treatment comparison) or globally (by checking for inconsistency in the entire network of
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evidence). In what follows we discuss methods and models that have been proposed for both

of these approaches.

2.4.1 Local methods to detect inconsistency

A straightforward approach for evaluating the presence of inconsistency in a network
is to apply a loop-specific approach; in this approach we examine each loop of the network
in isolation with the rest of the network. For an ABC loop in the network, for example, we
choose one of the comparisons (e.g. B vs. C) and compute the direct (452 and indirect
estimates (a%¢). Their absolute difference measures inconsistency and is usually termed

inconsistency factor (64): Wapc = |Ahe* — ABY |, with variance var (Wypc) = var (Ags) +

var(A57). A 95% confidence interval can be obtained as W . + 1.96./var(W,pc) and a

Z-statistic for the null hypothesis of consistency, i.e. W,z = 0, can be constructed as z,g- =

Wapc/Jvar (Wagc); this can be compared with the standard normal distribution to obtain a
p-value (49). Inconsistency is a property of the loop, in the sense that choosing a different
treatment comparison of the loop and repeating the computations would give the exact same
results (57,64); thus we denote the inconsistency factor with an ABC subscript.

The loop-specific approach can be applied for each loop in a network to point out
hotspots for inconsistency. The major advantage of this approach is that it is easy to
implement, it suffers however from important limitations: when a treatment comparison is a
part of more than one loop this method does not compare direct evidence for this comparison
to all available indirect information, but to evidence from only one loop at a time; also in
this case the tests for different loops sharing this comparison will not be independent. In
addition, for networks with many loops there are multiple-testing issues.

It is possible to extend the loop-specific approach by accounting for more than one
indirect estimates for a treatment comparison (composite test for inconsistency (57,84)).
Suppose that there are L loops that provide independent indirect information for the A vs. B
comparison; these can be combined with the direct information using the usual inverse
variance method to obtain a pooled, overall estimate of the relative treatment effect of A vs.
B. Under the null hypothesis that the L + 1 different estimates are in agreement, a test
statistic following a chi-squared distribution with L degrees of freedom can be constructed

to check for inconsistency. One should keep in mind, however, that the presence of multi-
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arm studies induces correlations among the estimates for the treatment effects, which this
method, as well as the loop-specific approach, fail to account for.

Dias et al. also proposed two additional methods for locally checking inconsistency
(54). The first method (“back-calculation) can be applied when the only available data are
the pooled summaries of the pairwise meta-analyses. In the first step, the data is used to
obtain a network estimate for each pairwise comparison in the network. It is then assumed
that this estimate is a weighted average of the direct and the indirect evidence, coming from
the rest of the network. This allows a back-calculation of the indirect estimate and its
variance, which in turn can be used to construct a Z-test for the difference of direct and
indirect evidence. Note that this method is problematic for a random-effects meta-analysis,
as the posterior distribution of the heterogeneity variance will in general be different between
the NMA model and the model for the pairwise meta-analysis.

The second method proposed by Dias et al. (54), the node-splitting approach, can be
used when trial-level data are available. In this method the direct evidence for a specific
treatment comparison is excluded from the rest of the network and is used to obtain a direct
estimate. The remaining information in the network is used to obtain an indirect estimate for
this comparison, after fitting an NMA model. The two estimates, direct and indirect are then
used to evaluate inconsistency with a Z-test. The main drawbacks of this approach (as well
as the back-calculation approach) are that they might be computationally intensive,
especially for large networks with many treatment comparisons, and that they cannot
properly handle multi-arm studies.

2.4.2 Global methods to detect inconsistency

Lu and Ades introduced a model (64), in which the consistency equations are ‘bent’
by including extra terms, the inconsistency factors. For an ABC loop, for example, the
consistency equation is written as pgc = tac — Hap + Wapc, Where the w parameter
measures the discrepancy of direct and indirect evidence. For networks comprising many
loops a different inconsistency factor needs to be included in each loop. When the network
only includes two-arm studies the number of independent inconsistency factors (the
‘inconsistency degrees of freedom’, ICDF) is ICDF = C — T — 1, with C being the number
of available pairwise comparisons in the data and T the number of different treatments. The
inconsistency factors can be assumed to follow a common distribution in order to increase

the power in their estimation. A y? test can be used to assess the inconsistency of the whole
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network, under the null assumption that all inconsistency factors are zero. In the presence of
multi-arm studies, however, this model is problematic (85). Higgins et al. (86) showed that
different parameterizations of the model may lead to different results. Thus, when multi-arm
studies are present, the use of the Lu and Ades model should be avoided.

Higgins et al. (86) and White et al. (77) introduced an alternative inconsistency model,
the ‘design-by-treatment’ interaction model, which encompasses both loop and design
inconsistencies. The latter corresponds to the possible discrepancies in the treatment effects
across designs, where ‘design’ refers to the treatments being compared in a study. For
example, a study comparing treatments A and B is considered to be an AB design. The A
vs. B estimate coming from such a study may be different than the A vs. B estimate coming
from a three-arm study comparing treatments A, B and C (ABC design); this difference is
referred to as design inconsistency. In the absence of multi-arm studies the Lu and Ades
model is equivalent to the design-by-treatment model. Similarly to the Lu and Ades model,
when multi-arm studies are present, the estimates of the inconsistency factors depend on the
parameterization. Unlike the Lu and Ades model, however, the global statistic for
inconsistency in the design-by-treatment interaction model is invariant under re-
parameterization. The main drawback of this approach is that the definition of inconsistency
seems artificial, as it is mainly dictated by methodological rather than clinical considerations.
A model similar to the design-by-treatment was also proposed by Piepho et al. (87).

An alternative method was introduced by Dias et al. (57). In this model the consistency
equations are completely removed, and the network meta-analysis model is equivalent to a
series of separate, independent meta-analyses for each pairwise contrast, sharing, however,
a common heterogeneity variance (88). The fit of the model is then compared to the standard
consistency NMA model using the posterior deviance and the deviance information criterion
(DIC) (89). In the presence of multi-arm studies, however, a re-parameterization will affect
the results of a random-effects meta-analysis. In addition, estimating the contribution to
posterior mean deviance for each data point can help identify possibly ‘problematic’ studies,
i.e. studies not fitting well with the rest of the evidence. Each data point is expected to have
a contribution of about 1 to the posterior mean deviance. A larger value will suggest a poor
fit to the model, pointing out possibly inconsistent pieces of evidence; also, the use of
leverage plots was suggested as a diagnostic tool for identifying inconsistency (54).

A different approach for globally assessing inconsistency is by using the Q statistic for

inconsistency (90), which is analogous to the Q statistic for heterogeneity in simple meta-
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analysis. This approach is based on the two-stage method for fitting NMA (76). On the first
stage we perform a pairwise meta-analysis for the studies of each design available in the
dataset, and obtain the direct relative treatment effect. From the AB studies, for example, we

estimate fi,5; this can be used to compute the Q¢! statistic for heterogeneity as Q¢ =

2
> siz (yi — fiag) , Where i runs through all AB studies. Similarly, on the second stage of the

analysis we obtain network estimates for all pairwise comparisons; using these estimates and
the direct estimates of the first stage, a Q statistic for the inconsistency of the whole network
can be obtained and the null hypothesis of consistency in the network can be tested using a
x? distribution with ¢ — T — 1 degrees of freedom. This approach can be generalized to
account for the presence of multi-arm studies. Rucker has also suggested a Q statistic for
inconsistency (79), but it is only applicable for fixed-effects NMA and cannot handle multi-
arm studies.

In a another, graphical approach proposed by Chung and Lumley (91) the
multidimensional scaling method is used to infer about inconsistency in a network. For each
pairwise comparison a usual inverse variance meta-analysis is performed; the magnitude of
the relative treatment effects is considered to be a measure of the observed pairwise
‘dissimilarity’ of the treatments. The pairwise estimates are summarized in a dissimilarity
matrix, to which a weighted multidimensional scaling is applied in order to obtain the ‘fitted
dissimilarities’. Important differences between observed and fitted dissimilarities are an
indicator of possible inconsistencies. Note that this method cannot properly handle multi-

arm studies.

2.4.3 Empirical studies and simulations on inconsistency

Empirical studies show that the prevalence of inconsistency in published networks is
non-trivial. Song et al. (92) performed a meta-epidemiological study that included 112
published triangular networks, 16 of which were found to be statistically inconsistent.
Veroniki et al. (93) evaluated inconsistency in 40 published networks including a total of
303 loops. They found that 2-9% of the loops were inconsistent, depending on the effect
measure used and the assumptions for heterogeneity; also, approximately one eighth of the
networks were found to be inconsistent using the design-by-treatment method.

The various methods for assessing inconsistency have been rarely and poorly applied
in published NMAs (11). In a meta-epidemiological study by Nikolakopoulou et al. (8) it
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was found that in 24% of the published NMAs the authors did not use appropriate methods
to evaluate inconsistency, while in 44% the authors did not report using any method at all.
Song et al. (36) performed simulations in order to evaluate the statistical properties of
various methods for inferring about network inconsistency. They explored the use of the
loop-specific approach, the node-splitting technique and the Lu & Ades model. They found
that even though all methods are unbiased, they have little power in detecting inconsistency.
It is also important to note that inferences on inconsistency heavily depend on the extent of
heterogeneity and the method used to evaluate it (93). Thus, analysts should keep in mind
that a statistically non-significant estimate for inconsistency should not be interpreted as
proof of consistency. In addition, even when statistically significant inconsistency is found,
its magnitude should be interpreted in terms of clinical relevance; thus, a statistically-

significant inconsistency in a certain loop might be clinically unimportant.

2.5 Choosing between the methods for evaluating inconsistency

If the network structure allows it, i.e. if there are closed loops in the network, a
statistical assessment of inconsistency should always take place after fitting the NMA model.
In the previous paragraphs we presented a variety of methods and models currently available
for statistically checking the network for consistency and we discussed the advantages and
limitations of each approach. In Table 1 we provide an overview of these approaches,
including a brief summary of the limitations of each one.

An assessment of inconsistency may start with the loop-specific approach which,
despite its shortcomings, is the easiest one to implement and can pinpoint possibly
problematic loops. Afterwards, if all studies in the network are two-armed, all presented
strategies are valid choices for checking for inconsistencies. We generally recommend the
application of both local and global methods to gain a better understanding of the source of
possible discrepancies between direct and indirect evidence and the plausibility of the
consistency assumption in the network as a whole. If the network includes multi-arm studies
only the design-by-treatment model and the Q statistic approach will lead to results that are
independent of the parameterization of the model (i.e. the choice of the basic parameters).
Researchers may still choose to implement some of the other methods as well, as exploratory

analyses; they should bear in mind, however, that their results might not be robust.
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Approaches for evaluating inconsistency can also be selected based on the available
technical expertise and/or software packages. In Table 2 we provide a summary of the
currently available software solutions for implementing the various approaches.

If statistically significant inconsistency is detected, researchers are advised to explore
potential sources of it and try to explain it. Local methods for assessing inconsistency can
indicate outlying studies, which should be checked for data extraction errors, important
differences in the distribution of effect modifiers or other possible biases. In Section 2.9 we
present various models for adding covariates and adjusting for suspected biases in the
analysis. If sufficient studies are available, such models can be applied to explain and
possibly eliminate inconsistencies, while, if inconsistency persists, researchers can consider
splitting up the network (see discussion in Section 2.13). Finally, in the case of unexplained
inconsistency, researchers may choose not to synthesize the evidence in an NMA at all, or
to present the results from the appropriate inconsistency model (Lu & Ades model when all
studies are two-armed; design-by-treatment model when multi-arm trials are present) along

with the direct evidence and a warning to the readers of the limitations of the analysis).
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Table 1: An overview of the methods for assessing statistical inconsistency along with the
limitations of each method

Approach to o
) _ Method Limitations
inconsistency

« Does not compare direct
to all indirect evidence
for each comparison

. Different loops sharing a
comparison are not
independent

« Multiple-testing issues

Loop-specific

Fails to account for

Composite test correlations induce by
Local methods multi-arm studies

« Problematic for a

_ random-effects meta-

Back-calculation analysis

« Cannot properly handle
multi-arm studies

« Computationally

Node splitting intensive
« Cannot properly handle

multi-arm studies

Depends on

Lu and Ades model parameterization when
multi-arm studies are
included

of inconsistency.

Depends on
parameterization when
Global methods model multi-arm studies are
included

Unrelated mean effects

Based on the notion of
o ) ) design-by-treatment
(non-intuitive definition
of inconsistency)

Multidimensional scaling Cannot properly handle
multi-arm studies
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2.6 Software options for fitting network meta-analysis and statistically
evaluating inconsistency

Our literature search showed that BUGS software is a popular choice for implementing
new methods in NMA, the majority of the articles included in our database reported using
WinBUGS, OpenBUGS (94,95) or JAGS (96): (3-5,14,19,26-28,31,34—
36,38,46,54,57,59,61,63,64,67,68,71,75,77,82,84,88,97-147). An alternative option for
implementing Bayesian statistical inference is Stan, a recently developed programming
language (148). However, we did not identify any articles using Stan.

Also, there were many articles that reported the use of R (149):
(36,54,61,63,65,69,76,79,83,90,91,93,111,122,129,135-137,139,141,147,150-154); some
papers used STATA (155): (34,35,71,77,86,93,140,142,156-158) and a few papers reported
using SAS software (159): (100,115,34,118,87,160-162). Finally, Van Valkenhoef et al.
(141) presented GeMTC, a freely-available, open-source program for performing NMA.

Neupane et al. performed a review of the available automated packages for performing
an NMA in R aiming to summarize the key features and functionality of each package (163).
In Table 2 we describe possible software solutions for some of the models presented in this

review.
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Method

NMA as meta-
regression

Hierarchical NMA
model

NMA as a
multivariate meta-
analysis

Loop-specific
approach for
inconsistency

Node splitting
approach

Lu & Ades model

Design-by-
treatment model

Q-statistics in NMA

Graphical
presentation

Available software solutions for NMA

Software

BUGS

Stata (metareg)

R (rma command from metaphor; netmeta package)
BUGS codes available at: http://www.mtm.uoi.gr and
http://www.bris.ac.uk/social-community-
medicine/projects/mpes/

GeMTC software

Stata (mvmeta, network)
BUGS
R (mvmeta)

BUGS

R (routines available at
http://mtm.uoi.gr/index.php/how-to-do-an-mtm)
Stata (network_graphs, available at
http://mtm.uoi.gr/index.php/stata-routines-for-
network-meta-analysis)

BUGS (codes available at
http://www.bristol.ac.uk/cobm/research/mpes)
GeMTC software

Stata (mvmeta; network)

BUGS

Stata (mvmeta)

GeMTC software

BUGS
Stata (mvmeta; network)

R (routine available at http://www.unimedizin-
mainz.de/fileadmin/kliniken/imbei/Dokumente/Biome
trie/Software/netheat.R)

R (netmeta)

Stata (mvmeta; network)

Stata (network_graphs, available at
http://mtm.uoi.gr/index.php/stata-routines-for-
network-meta-analysis)
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2.7 The use of different measures of effect size

There is a wide choice of summary effect measures that can be used for the meta-
analysis of evidence on a binary outcome. The most common choices are the odds ratio
(OR), risk ratio for harmful or beneficial outcomes (RR+and RRg), risk difference (RD) and
hazard ratio (HR) for time-to event data. Donegan et al. (11) reported that the majority of
the published NMAs of dichotomous data used OR and RR (50% and 40% respectively),
with RD being used in only 10% of the analyses. Veroniki et al. (93) analyzed 40 published
networks and showed that the choice of effect measure may have an impact on the inferences
about the statistical inconsistency. This was also discussed by Coory and Jordan (66); using
information from published networks they concluded that the use of OR and RR is preferable
over RD. In addition, it has been demonstrated that the choice of the scale may have an
impact on the results of an NMA (164). In particular, Eckermann et al. (165) showed that
the use of RR may lead to inferential fallacies and advocate the use of OR. Norton et al.
(158) discussed that different choices of scale may lead to differences in the ranking of the
treatments in an NMA. They propose that researchers should explore how sensitive the NMA
results are in the choice of effect measure. Van Valkenhoef and Ades (166) on the other hand
discuss that a rank reversal is unlikely to take place unless the assumptions underlying NMA
do not hold, or the data is very sparse.

Caldwell et al. (88) proposed the use of the posterior mean deviance and the deviance
information criterion (DIC) to evaluate the model fit of the different effect measures in an
NMA. The choice of the effect measure can also be guided by considering the estimates of
between-study heterogeneity, with lower values being preferable; however this might be
problematic when there are not enough data available, in which case the choice of scale may
be driven by the ease of interpretation and the epidemiological understanding of the disease
process (46,88). HR should be always considered as a suitable choice of scale for the case
there is an underlying time-to-event process and the proportional hazards assumption is
deemed plausible (88,133) (see following Section).

Note that the discussion of this paragraph pertains to the analysis of a binary outcome.
When continuous data is available the analysts should avoid dichotomization since it
translates into a loss of power and also because the choice of cut-off point may impact on
the inferences of NMA (132).
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2.8 Modelling time-to-event data in network meta-analysis

In many RCTs the outcome measured is the time to the occurrence of an event (e.g.
death, disease progression etc.). Welton et al. (143) described a method for simultaneously
synthesizing survival and disease progression outcomes in a single NMA analysis; also,
Woods et al. (146) provided guidance on how to perform an NMA on the log-hazard scale
when studies report different survival statistics.

Analysts, however, should keep in mind that the synthesis of time-to-event data in
terms of hazard ratios relies on the proportional hazards assumption; treatment effects,
however, may vary over time and this might threaten the validity of the meta-analysis results.
For NMA this might have an extra impact, on the consistency of the results. Ouwens et al.
(124) and Jansen (116) modeled the hazard functions using parametric survival curves and
fractional polynomials respectively; in these models the hazard ratio is allowed to vary over
time. Jansen and Cope (117) discussed methods for extending these models by including
covariates that can reduce possible inconsistencies and bias. In another paper by the same
authors (104), various alternative summaries were presented for summarizing the estimates

of the relative treatment effects obtained from an NMA of survival data.

2.9 Extension of network meta-analysis to account for effect modifiers

In a pairwise meta-analysis a meta-regression on important effect modifiers
(covariates) can explain the presence of between-study heterogeneity, which may hinder the
interpretation of the results and may have important implications in decision making (106).
In NMA interpreting results will be even more problematic in the presence of evidence
inconsistency; meta-regression techniques in NMA adjust the treatment effects for possible
effect-modifiers and can reduce heterogeneity and inconsistency in the results that may be
present when these covariates are distributed unevenly among studies
(28,34,61,81,97,103,106,123). The effect modifiers can be either categorical or continuous
variables, and may represent either patient-level or trial-level characteristics.

2.9.1 General model for including covariates in network meta-analysis

Nixon et al. (123) first combined NMA and meta-regression techniques to develop
models that allow the simultaneous comparison of multiple competing treatments while

adjusting for study-level covariates, in an attempt to investigate and explain heterogeneity.
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Salanti et al. (61) and Cooper et al. (103) proposed the use of meta-regression as a tool for
eliminating inconsistency as well as heterogeneity in NMA. As an example of adding
covariates in NMA, Salanti et al. (61) considered the year of randomization in each trial as
a covariate in an NMA for topical fluoride treatments for the prevention of dental carries.
The covariate adjusted for possible time trends in the placebo-controlled comparisons, and
relative treatment effects were estimated for a pre-defined year of randomization (the year
of the most recent study).

In general, there are three main approaches in the meta-regression of study-level
covariates for NMA (103,106): using different and unrelated interaction terms (coefficients),

using exchangeable interaction terms and using a common interaction term.

Unrelated interaction terms

In this approach there are a number of interaction terms for each covariate equal to the
number of the basic parameters of the model. Let us assume for simplicity that we are only
interested in one study-level covariate x;. We can augment the hierarchical random-effects
model previously presented as follows: for a study i, comparing treatments B versus C, we
allow 8;5c~N (ugc + x;Bgc, T2), assuming a common heterogeneity variance 72 for the
treatment effects. If treatment A is chosen to be the reference treatment, we can utilize the
consistency equations to write 8;5c~N (e — tag + Xi(Bag — Bac),T2); in a Bayesian
analysis the B4 ‘basic’ coefficients (where T#A) can be assigned unrelated vague prior

distributions.

Exchangeable interaction terms

The model has the same structure as the model for unrelated interaction terms, but now
the basic coefficients are drawn from a common distribution, f,7~N (b, t?) where index T
runs through all treatments except reference treatment A. The mean b and the variance t? of

the common distributions can be assigned vague priors.

Common interaction term

The common interaction term model is the same as the exchangeable interaction model
described in the previous paragraph, but now all basic interaction terms are assumed equal,
Bar = B, for all treatments T=+A. A vague prior is then assigned to . This model implies

that the relative treatment effects between the non-reference treatments are independent of
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the covariate, since the interaction terms cancel out. In this case the choice of the reference

treatment becomes important, as it might change the meta-regression results (106).

2.9.2 Network meta-analysis meta-regression for baseline risk

The underlying risk of the disease, usually termed as ‘baseline risk’, is a proxy for
Important patient characteristics that may be possible modifiers of the treatment effects and
it can be included as a covariate in an NMA; however, care should be taken to account for
its correlation with the treatment effects (97,106). Achana et al. (97) proposed a random-
effects meta-regression model in which the effect of the reference treatment was used as a
measure of the baseline risk. In order to include studies not reporting the reference treatment
the authors proposed three alternative distributional assumptions for the ‘true’ unobserved
baseline risk. Following Cooper et al. (103), the interaction terms were taken to be
independent, exchangeable or common. The authors recommended that the goodness of fit

of the various alternative configurations can be based on residual deviance.

2.9.3 Limitations of network meta-analysis meta-regression models

Dias et al. (106) advocate that even though the use of the models with exchangeable
coefficients seems attractive, they are likely to lead to statistically insignificant interaction
terms; when this is the case decision-making may be based in non-robust results. Therefore,
even though the exchangeable coefficient model — or even more complex models — can be
fitted, the authors suggest that their use should be limited to exploratory analyses. Also,
analysts should keep in mind that NMA meta-regression inherits all the interpretation
difficulties from regular meta-regression, most importantly the inability to infer causal
relationships (106), and the risk of ecological bias if study-level covariates are used to infer
about individuals. An additional drawback of meta-regression models for decision-making
in general is that in order to assess the relative treatment effects the analyst must choose a

value of the covariate at which to make the comparison (28).

2.10 Investigating potential sources of bias in network meta-analysis

When combining results from different studies researchers always run the risk of
obtaining biased pooled estimates. This may be the case when some of the studies provide
biased evidence (‘internal bias’); for example when treatment effects are overestimated in

studies of low methodological quality. The pooled result may be biased even if the estimates
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of the included studies are not, (‘external bias’); e.g. when studies without statistically
significant results have not been published (167).

Dias et al. (106) discussed that when confronted with studies of mixed quality,
researchers have three options: they can choose to analyze only the high-quality studies, thus
ignoring a possibly important amount of information, they can choose to analyze all
evidence, thus risking a bias in the pooled estimates, or they can include all studies after
taking into account and adjusting for possible biases in the studies. In what follows we focus
on the latter, presenting various available approaches for adjusting for suspected internal
biases in the included studies, and also for adjusting for various forms of external bias.

2.10.1 Accounting for study limitations in network meta-analysis

A conceptually straightforward way to adjust for possible biases in the included studies
is by eliciting bias distributions (167). In this approach a number of independent experts
evaluate each study separately in terms of some predefined criteria and provide information
that is used in order to construct an overall bias distribution. The parameters of this
distribution are combined with the estimates of the studies in order to produce a bias-adjusted
estimate of the treatment effect in each study. These estimates are then synthesized using
standard NMA techniques. A disadvantage of this approach is that it is rather difficult and
time-consuming to implement (106).

A class of models assumes that biased studies estimate u + 3, where u is the unbiased
treatment effect and g is a bias parameter. If the study-specific bias parameters are assumed
to be exchangeable across studies the unbiased treatment effects and the mean bias can be
estimated from the network (106,109). Dias et al. (109) presented a model where
exchangeable bias parameter with non-zero mean were included in studies that compared an
active versus an inactive treatment and were considered to be of a high risk of bias (according
to some predefined measure such as allocation concealment, blinding or other trial
characteristics). They also explored the use of two different bias parameters, one for active
versus inactive, and one for active versus active comparisons; note that in this approach some
assumption on the direction of bias in the active versus active trials is necessary to be made.
Salanti et al. (127) considered a similar model in which the newest treatments were favored,
thus adjusting the treatment effects for possible ‘optimism’ or ‘novelty’ bias (108). Study
size can be a proxy for the study’s risk of bias and Chaimani and Salanti (102) presented a

method for adjusting for the ‘small study effects’, the exaggeration of treatment effects in
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smaller trials. This exaggeration might be due to methodological differences between
smaller and larger trials that affect treatment effectiveness, due to publication bias or due to
reporting bias. They proposed a network meta-regression model, where the bias parameter
Is multiplied with the observed variance of the treatment effects in each study; the standard
error or the precision (inverse variance) can be used alternatively. Their model can also
adjust for suspected ‘sponsorship’ bias, for the case when interventions are sponsored in

some of the studies. A similar model was also presented by Trinquart et al. (139).

2.10.2 Selection model to account for publication bias

Mavridis et al. (121) proposed a Bayesian implementation of the Copas selection
model (168) for addressing for possible publication bias in NMA. The idea behind selection
models is that the observed set of published studies is considered to be a ‘biased’ sample,
due to the nature of the publication process. This is addressed by introducing a latent variable
for each study, the ‘propensity of publication’, which is assumed to be correlated with the
study’s effect size. Mavridis et al. (121) modeled propensity via a regression model, where
it was assumed to be inversely proportional to the standard error of the effect size. They
considered alternative scenarios of how the selection model parameters depend on the
treatments being compared in each study. Trinquart et al. also presented a selection model
(139) which modeled the propensity score of a trial as a linear function of the standard error.
The effect sizes of the studies were weighted according to their propensity. Their model was

shown to yield similar results to the model by Mavridis et al.

2.10.3  Accounting for ecological bias

The meta-analysis of aggregated data can lead to ecological bias. This refers to a bias
that may arise when using aggregated data in order to make inferences about patient-level
interactions. Govan et al. (113) proposed an NMA model to control for ecological bias by
specifically modeling the effects of the covariates. Their model allows the inclusion of
studies that provide information on all covariates, studies that report marginal data on some
of the covariates and also studies not providing any covariate information at all. The model

allows the joint estimation of both the treatment and the covariate effects.
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2.10.4  Graphical approaches to assessing bias in network meta-analysis

In a different approach Salanti et al. (53) discussed how the geometry of the network
can offer insight on the presence of a ‘comparator preference’ bias, i.c. when head-to-head
comparisons between effective treatments are deliberately avoided, which in turn would
imply that the treatment effects versus the reference treatments might be exaggerated. The
authors utilized two indices from ecological literature: diversity, which is a measure of the
number of treatments present in the network and how often they were tested, and co-
occurrence, which measures whether specific treatment comparisons were preferred in the
network while others were avoided. Limited diversity and statistically significant co-
occurrence in a network is an indicator of possible preference bias in the network (18).

Jansen et al. (169) discussed the use of directed acyclic graphs (DAGS) as a graphical
tool for conceptually evaluating the consistency assumption and also identifying possible
sources of bias in indirect and mixed treatment estimates. By means of DAGs they showed
that NMA estimates can be biased when relative treatment effect modifiers vary across
comparisons and are not adjusted for in the analysis. They also showed that adjusting for

covariates that are not effect modifiers is not only unnecessary, but that it can introduce bias.

2.10.5  Empirical assessments of the impact of bias in network meta-
analysis

Chaimani et al. (101) performed a network meta-epidemiological study to explore the
effect of trial characteristics and study precision in NMA. They analyzed 32 networks and
found evidence that imprecise studies (studies reporting broader confidence intervals for
their estimates) tend to report larger effects compared to more precise studies, thus altering
the results of the NMA. However, they found no evidence of association between effect size
and previously identified indicators of bias, including blinding, allocation concealment and
random sequence generation. Trinquart et al. (138) used data from 74 FDA-registered
placebo-controlled studies on 12 antidepressants along with 51 corresponding publications
in order to assess the impact of publication bias. They found that the effect sizes derived
from published studies differed from the ones derived from the FDA data by at least 100%
for almost half of the pairwise comparisons. They concluded that reporting bias alters NMA
estimates and changes the treatments’ ranking. They also noted that the impact of reporting
bias may be more important in NMA compared to classical meta-analyses, in the sense that
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reporting bias in one treatment comparison may have an effect in the ranking of all
treatments in NMA.

2.11 Reporting results from network meta-analysis

Although the implementation of NMA is increasingly gaining popularity, the quality
of reporting has been rather low. Various meta-epidemiological studies of published NMAs
showed that the methods used and the assumptions made were not routinely reported
(8,11,170,171). Ohlssen et al. (82) presented a checklist of items that should be reported in
a drug-safety Bayesian NMA while Ades et al. (172) and Mills et al. (173) give guidelines
for those reviewing an NMA for the purposes of decision making.

One possible hurdle in the reporting of an NMA is that presenting all results can be a
challenging task, especially for networks with many treatments and multiple outcomes. The
literature offers a plethora of graphical and tabular methods for visualizing the evidence base
(91,157,174), the assumptions made (90,157) and the results obtained from an NMA
(38,91,154,157,174-176). In a meta-epidemiological study on the presentational approaches
used, Tan et al. (177) examined NMAs published in the UK and found that there is no
standardized presentational approach for reporting the results of NMA. The authors

concluded that a standardization of reporting is required.

2.12 Modelling repeated measures and multiple outcomes

In some cases, studies may report on a single outcome for multiple time points, which
leads to a series of correlated observations. Lu et al. (119) proposed a hierarchical NMA
model for synthesizing repeated measures of a discrete outcome. Dakin et al. (105) suggested
a model for a continuous outcome, but did not include in the analysis the correlations
between the observations. Ding and Fu (110) also presented a model for a continuous
outcome that automatically modeled the correlations between the observations at different
time points. Madan et al. (120) presented methods for analyzing two dichotomous outcomes
reported on multiple time points, for studies comparing complex interventions.

As we discussed in the Introduction chapter, RCTs commonly report on more than one
outcome. These outcomes may be correlated within a study (due to the fact that observations
come from the same set of patients) and in addition the true treatment effects on the outcomes
can be correlated across studies (reflecting the way outcomes are related when measured in

different settings). The usual meta-analytical approach on multiple outcomes is to analyze
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each one separately, ignoring all possible correlations. On the other hand, a joint meta-
analysis of all outcomes which incorporates possible correlations can increase precision by
‘borrowing of strength’ across outcomes and may reduce the impact of outcome reporting
bias (178,179).

Welton et al. (145) described a method for performing an NMA of two correlated
outcomes, but it can only be used for the case when all studies are two-armed. Schmid et al.
(129) proposed a model for unordered categorical data that also allows the inclusion of
studies with partially observed data Hong et al. (114) presented a model for multiple
outcomes that does not take into account within-study correlations. Competing risks is a
special case of multiple-outcome structure where the outcomes are mutually exclusive; Ades
et al. (99) presented methods for performing a competing-risks NMA. Price et al. (125)
discussed methods for an NMA in multi-state Markov models; a model averaging technique
was also proposed (126) for combining estimates from alternative multi-state models. More
details regarding methods for jointly synthesizing multiple outcomes in NMA can be found
in Chapters 3 and 4 of this dissertation. There we also present a range of new models that
we developed for the purposes of this PhD.

Using NMA results to decide which of all available treatments is optimal for a specific
condition might be a non-trivial issue, when the treatments are compared for more than one
outcome. In order to facilitate decision making in the presence of multiple outcomes, Van
Valkenhoef et al. (69) proposed a method for multiple criteria benefit-risk assessment of all
competing treatments in an NMA; also, Hong et al. (115) described a similar method for
producing an overall ranking of the treatments in the network using a scoring system for

combining efficacy and safety outcomes.

2.13 Definition of nodes in the treatment network

One important decision that analysts must make in the onset of an NMA regards the
number of nodes (treatments) to be included in the network. A simple choice would be to
include all relevant treatments; alternatively researchers might want to focus on just a subset
of the treatments, the ones that are deemed to be clinically relevant (e.g. newer/more
effective treatments). This, however, poses a dilemma, since including in the evidence-base
studies that compare treatments that are not clinically interesting might provide additional
indirect evidence for the clinically interesting ones, which in turn may increase the precision
of the results (24,180).
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Hawkins et al. (181) performed an empirical study that supported the use of all
potentially relevant data; in another empirical study Mills et al. (122) concluded that the
exclusion of treatments in an NMA might have an important effect on the results and might
limit its usefulness, if important comparisons are excluded. On the other hand, obtaining all
relevant evidence, including clinically uninteresting treatments, may be very time
consuming and inefficient. To address this issue Hawkins et al. (182) presented two
alternative iterative search strategies for identifying an efficient set of evidence, where the
comparators included in each search is determined by the results of the previous iteration. In
addition, Cooper et al. (14) showed that extending the network to include more treatments
might lead to increased heterogeneity, which in turn will increase the uncertainty in the
results despite the inclusion of additional information.

An additional issue that analysts might face regards the definition of treatments across
studies. It is not uncommon for a treatment to be administered in different ways in the
included studies, for example in different doses. This differential definition of the nodes will
make the transitivity assumption less easy to defend and might cause inconsistency and/or
heterogeneity in the results (24,67). Del Giovane et al. (112) and also Warren et al. (142)
presented various alternative models to account for variability in treatment definition due to
differences in the dose. In another frequently encountered scenario in which the definition
of nodes can be of importance is when interventions are administered as a combination of
more than one treatment; the simplest approach would be to analyze each combination as a
different node in the NMA. Welton et al. (144) and Mills et al. (183) proposed possible
scenarios for modeling how interventions interact with each other when combined into a
complex intervention, with one of the approaches being the assumption of additive treatment
effects. Thorlund et al. (137) performed a simulation study which showed that when the
treatment effects are truly additive, the conventional NMA model performs poorly in
comparison to the additive effects model.

In summary, even though there is no exact recipe available for setting up the network
and defining the nodes, the choice should be guided by considerations of the transitivity
assumption, the presence of statistical inconsistency, the possibility of bias and also practical
constraints on the resources available for setting up the database. Ideally, whenever possible
such decisions should be described a priori in the protocol in order to avoid selective use of
data (24).
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2.14 Incorporating individual patient data in network meta-analysis

The NMA models we have discussed so far can be used only for the analysis of
aggregated data (AD) while the meta-regression approaches presented in Section 2.9.1 allow
the exploration of the effects of only study-level covariates to the relative treatment effects.
On the other hand the use of individual patient data (IPD) in an NMA (either exclusively or
in combination with AD) is expected to increase precision and also allows the distinction
between within-study from across-study associations to be made, so as to avoid possible
ecological bias (150). Debray et al. extensively discuss the statistical methodology and the
potential advantages of an IPD-MA when pooling head-to-head trials (184). These
advantages also apply to NMA, and access to IPD is particularly relevant when the number
of included studies is small and the validity of using meta-regression of study-level
covariates becomes increasingly questionable. The use of patient-level covariates will allow
a better evaluation of the heterogeneity and inconsistency in the network (19,28,81,185).

A few models for including IPD in an NMA have been recently proposed. Saramago
et al. (128) developed a series of NMA models set in a Bayesian background that can be
used for the simultaneous synthesis of IPD and AD while incorporating both study and
individual-level covariates. Their models also allow the inclusion of studies with different
designs (cluster and individual allocation). The authors found that the incorporation of IPD
in the network resulted in an increase in the precision compared to an AD-only analysis,
even when IPD are available only for a fraction of the studies. Donegan et al. (83,111)
presented a model for combining IPD and AD in a single analysis with three alternative
specifications (unrelated, exchangeable and common interactions; see also Section 2.9.1).
The inclusion of both IPD and AD in the analysis was shown to lead to an increased precision
of the estimates of the regression coefficients and a better assessment of the consistency
assumption. A similar model was proposed by Jansen (150). In the same paper a second,
alternative model was also suggested for the case of a binary covariate. The author performed
a simulation study indicating that the second model is less affected by bias at the cost of
larger uncertainty in the results. Finally Ali et al. (186) discussed the use of IPD in order to
identify possible interactions between treatment effects and potential effect modifiers; when
such modifiers are found to be unevenly distributed among studies, the authors suggest that

NMA models need to account for these differences.
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2.15 Utilizing data from non-randomized and observational studies

Ades and Sutton (187) discuss that results obtained from RCTs may not be necessarily
generalizable to a wide population and that randomized studies’ results could be combined
with information from observational studies or patient registries, by adjusting for potential
biases. Randomized and non-randomized evidence can be regarded as being complimentary,
in the sense that observational studies can be considered to be reliable sources of information
regarding the population baseline, while RCTs regarding intervention effects data. Dias et
al. (107) describe how non-randomized studies can be used to inform a ‘baseline natural
history model’. Evidence from such studies can be used to estimate the absolute effect for a
reference treatment. This can in turn be combined with NMA results for the relative effects
of active treatments, in order to obtain an estimate of the absolute treatment effects.

Schmitz et al. (131) proposed three alternative models for jointly synthesizing
information from RCTSs as well as non-randomized studies: the simplest approach presented
was be to perform a naive pooling, disregarding differences in study design; the second
approach was to utilize non-randomized studies as prior information, while adjusting for bias
due to study design; the third was a three-level hierarchical model which accounts for bias
and for heterogeneity between trial designs. The first of the models (naive pooling) should
only be used as the first step of the analysis, since it disregards potential biases in non-
randomized trials. The second model (using observational evidence as prior information)
allows adjusting for biases, but between-trial design heterogeneity is not taken into account,
and it is not possible to include more than two different trial designs. The third model (three-
level hierarchical model) addresses these issues and should be preffered.

Finally, Soares et al. (133) discussed the use of observational data for the case that
there are sparse and few data in an NMA. In their approach such data were used to inform

the baseline effects, but did not directly contribute to the relative treatment effects.

2.16 Planning future studies

The issue of planning future studies based on the results of an existing NMA has
received little attention in the literature. Thorlund and Mills (188) and also Snapinn and Jiang
(189) provided sample size considerations for determining the statistical power of indirect
evidence and Mills et al. (151) performed a simulation study to estimate the power of indirect

comparisons; however, there is to our knowledge currently little guidance on the design (i.e.
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treatments to be compared) and the sample size needed for updating an existing NMA in an
optimal manner.

Naci and O’ Conor (190) alternatively suggest the design and conduct of prospective
NMAs; this would go against the current practice of retrospective NMA, where each
individual study is planned in isolation from others. They also suggest that the regulatory
agencies should have an active role in the design of future trials, especially in the selection
of comparators and in ensuring that the patient populations are comparable in terms of

treatment effect modifiers.
2.17 Concluding remarks

The popularity of NMA has been increasing over the last few years; however, NMA
is still a subject of controversy. Many concerns focus on the assumptions underlying the use
of indirect evidence. These assumptions can be difficult to understand, hard to test, and may
challenge the validity of the NMA results. Moreover, the mathematical and statistical
complexity of the model and the lack of user-friendly software may deter researchers from
using it. Even worse, it has been shown that a non-trivial amount of published reviews
employed inappropriate methods, although the percentage has been decreasing over the
years (8,191).

In our review we summarized the state-of-the-art in the field aiming to provide
guidance to researchers interested in applying network meta-analytical techniques. We tried
to shed light to the assumptions behind NMA and to present the statistical aspects of the
model. We also discussed extensions of the basic NMA model and we summarized the
currently available software options for fitting NMA.

Our review has several limitations. Pragmatic decisions needed to be made given the
lack of a widely accepted terminology referring to network meta-analysis, the abundance of
recently published articles and the complexity of new methods in order to ensure a timely
publication of this review. Thus, there may have been articles that presented methodological
advances for NMA which we failed to identify by not including in our search more online
databases and by not hand-searching additional journals. We believe, however, that even if
the identified set of articles might not be complete, it is representative of the currently
available methods for NMA and that the most important methodological aspects, challenges

and solutions of NMA are covered. Moreover, although we present some of the mathematical
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features of the various models and methods, we do it in a descriptive manner and we do not
provide all relevant details. Hence, this review serves as a roadmap for researchers: the keen
reader should refer to the original articles for details, keeping also in mind that NMA is still
an active, rapidly developing research field.

The results of the research presented in this Chapter were published in the Research
Synthesis Methods journal (192) .
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3 Modelling correlated binary outcomes in network
meta-analysis using odds ratios

3.1 Introduction

As we discussed in Chapter 1 of this dissertation, RCTs typically report on multiple
outcomes, and these outcomes may be correlated. There are two types of correlations to
consider:

i. within-study correlations of the multiple outcome effect estimates, reflecting the
fact that the same patients report on each of the analyzed outcomes

Ii.  between-study correlations of the true outcome effects across studies, reflecting the
way the true outcome effects depend on each other when measured in different
settings.

For the case of simple (pairwise) meta-analysis, researchers typically disregard these
correlations and perform a series of independent, univariate meta-analyses for each outcome.
Ignoring the correlations between outcomes, however, has been shown to lead to a loss in
precision for the estimated effect sizes and an increase in bias in the presence of selective
outcome reporting (178,193-195).

A multiple outcomes meta-analysis (MOMA) model can account for the correlations
between treatment effects on different outcomes. In the recent years, MOMA has gained in
popularity and several methodological developments have taken place (73,196-202). Two
recent papers offer a comprehensive review of multivariate meta-analysis methods (78,179).
A practical constraint frequently encountered in a MOMA framework is that the correlations
between the effect sizes observed in the same study (within-study correlations) are rarely
reported (78,179,194). Wei and Higgins (202) estimated the within-study correlations from
the correlation coefficient between the outcomes, while Bujkiewicz et al.(203) used external
evidence to inform correlations between dichotomous and continuous outcomes. While
expert opinion could inform the unknown within-study correlation coefficients, it is not an
easy task to elicit quantitative estimates for correlations from clinical experts (204,205).
Focusing on dichotomous outcomes, in this chapter we suggest an alternative approach for
eliciting expert opinion in a straightforward and easily understood manner.

In addition, most available MOMA models are applicable only for the case of pairwise
treatment comparisons. However, as we discussed in Chapters 1 and 2 of this thesis, NMA
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constantly gains in popularity and is often used to compare more than two interventions for
the same outcome. It would be desirable to combine both methods (MOMA and NMA), so
as to jointly synthesize data about multiple competing interventions on multiple outcomes
(multiple outcomes network meta-analysis, MONMA).

There have been few attempts for a MONMA model (see also Section 2.12 of the
previous Chapter). Welton et al. (145) described a MONMA model but is limited to the case
of two armed studies. However, the majority of applications of NMA include at least one
multi-armed study (8). Schmid et al. (129) proposed a MONMA model for analysing
unordered categorical outcomes. This model also allows the inclusion of studies with
partially observed data. However, it cannot be applied for the more frequent cases of meta-
analyses of binary or continuous outcomes. Hong et al. (114) presented a model for multiple
outcomes which, however, does not take into account within-study correlations. Madan et
al. presented an approach for modeling multiple outcomes reported over multiple follow-up
times; their models are applicable only for repeated measurements (120).

The primary aim of the research we present in this Chapter is to develop a model for
synthesizing multiple dichotomous outcomes over a network of studies. In Section 3.2 we
describe a clinical example from acute mania (206) which we use to illustrate our methods.
In Section 3.3 we present a method for estimating the within-study correlation coefficients
by utilizing a set of conditional probabilities. We show how these probabilities can be
elicited from clinical experts through easily understood questions. We then present a new
MONMA model. In Section 3.4 we discuss the application of our methods to the network of

treatments for acute mania. In Section 3.5 we summarize our findings.

3.2 Example: the acute mania dataset

The dataset includes a network of 65 randomized controlled trials comparing 14 active
antimanic drugs and placebo for acute mania, Cipriani et al. (206). Most of the studies have
two arms (47 studies) and there are 18 three-arm studies.

The primary outcomes of interest were efficacy and treatment discontinuation
(acceptability, or “dropout”) after 3 weeks. Acceptability was estimated as the number of
patients leaving the study early for any reason, before or after having a response to the
treatment, out of the total number of randomized patients. All-cause discontinuation from
allocated treatment may be due to a number of reasons, such as: adverse effects, inefficacy,

other reasons not related to treatment (e.g. moving away, protocol violation), or a
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combination of the above. Efficacy was reported either as dichotomous outcome (number of
patients who responded to treatment, defining response as a reduction of at least 50% in
manic symptoms from baseline to week 3) or as continuous outcome (mean change scores
on a standardized rating scale for mania after 3 weeks). Although we recognize that outcome
dichotomization may lose some information, we used data on efficacy as a dichotomous
outcome as it may be easier to interpret clinically and allows us to illustrate our methodology
for two related binary outcomes, a frequent scenario encountered by researchers. Only a few
patients did not provide data for response to treatment and their outcome was coded as
treatment failure; an imputation assumption that has been shown to be sensible when the
missing rates are low (134). Among the included studies, only 65 contributed with data for
at least one of the outcomes of interest: 18 studies (28%) did not report usable data on
response, while only one study did not report information on the number of dropouts (1.5%).
Efficacy and acceptability outcomes are generally expected to be negatively correlated;
although early full response to the treatment may be a cause for leaving the study
prematurely, more often it is reasonable to assume that more efficacious treatments are
associated with a lower dropout rate. Within-study correlations were not reported in any of
the studies and individual patient data (IPD) which could be used to estimate within-study
correlations were not available. The dataset included a total of 69 head-to-head comparisons
for response and 100 for dropout. In Section | of the Supplementary Material we provide a
table with all head to head comparisons for each outcome, along with the odds ratios and
their 95% confidence interval. The initial analysis consisted of two independent network
meta-analyses, one for each outcome (206). As both outcomes are crucially important for
clinical decision making, the ranking of the treatments was presented for both efficacy and
acceptability in a two-dimensional scatter plot (Figure 6 in Cipriani et al.) so that efficacious
treatments with high tolerability could be identified. This is a suboptimal approach and the
rankings of the treatments for each outcome can be better estimated jointly in a MONMA
model to account for the correlation in the outcomes. This is especially important here as 19
studies provide data on only one of the two outcomes, and MONMA can 'borrow strength'
from these studies even for the missing outcomes.

In Figure 3 and Figure 4 we present the network of evidence for response and dropout.
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Figure 3: Network of pharmacological treatments for acute mania, for the response
outcome. Nodes and edges are weighted according to the number of studies involved in
each treatment or comparison respectively.
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3.3 Statistical methods

Here we start by revising and extending a MOMA model when only two treatments
are compared. Emphasis is placed on estimating the within-study correlation coefficients.

Subsequently we generalize the approach to a network meta-analysis with multi-arm studies.

3.3.1 Pairwise meta-analysis models for multiple outcomes

Suppose we have a total of Ny studies comparing two treatments with respect to two
different, correlated outcomes, denoted by R and D. These two outcomes are identified as
the response to the treatment (R) and dropout rate (D) in the acute mania example. Note that
some studies may not report on both outcomes. We denote the observed treatment effects in

study i for outcomes R and D with y; r and y; , respectively. A bivariate random effects
meta-analysis model can be written as follows:

Y1i,Rr €1,R 61,r
B4W)) é (1) u €1, 61.p
_ R P | |
kyz_rR | = 1 0 ( ) +| &2r [+] &pr | (6)

: Mo : :
yNS,D/ gNS.D/ SNS,D/

Equation (6) can be compactly written as Y = Xu + € + 8, where Y is the (2Ns-
dimensional) vector of the observed effects, u is the vector of the true relative effects for
each outcome, u = (ug, up)’, X is the (Ng x 2) ‘design matrix’, € and & are the vectors of
random errors and random effects respectively. We assume multivariate normal distributions
for € and &, so that e~N(0,2) and 8~N(0,4), with ¥ and A denoting the within and
between-study variance-covariance matrices. Note that letters in bold denote vectors and
matrices.

The random errors within a study and the random effects across studies are in principle
correlated, and this correlation is incorporated in X and 4 respectively. More specifically,

the variance-covariance matrix for the random effects takes a block-diagonal form:

73 PrTRTD 0 0
/ PrTRTp T 0 0 \ Aoxzy 0 @
4= 0 0 % peTRTp v | T ( 0  Adpex )
\ 0 0 pPrTRTp T3 : :

The above 2N x 2N matrix involves the heterogeneity standard deviations for each
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outcome, 7z and 7, and the between-study correlation coefficient, p,. Note that this
between-study variance-covariance matrix is block-diagonal with identical 4,y matrices
in its diagonal. The parameters p,, Tz and t, need to be estimated from the data: this can be
done either within a frequentist setting. using approaches like maximum likelihood,
restricted maximum likelihood method and the generalized method of moments (72—
74,198,207), or in a Bayesian setting using Markov Chain Monte Carlo. Similarly, the

within-study variance-covariance matrix is also block diagonal:

012,R P101,RO1.D 0 0
P101,RO1 D oip 0 0 X, 0 -
2= 0 0 O'ZZ'R ‘020'27R0-2.D oo = 0 22 o (8)
0 0 P202 RO2 D 022,0 : : ;

In this matrix p; is the within-study correlation coefficient and o; g%, ;52 are the
variances of the effect sizes in every study i. All entries in X can be estimated from the data.
Sample estimates for the o; z2, 0; p* are often available, but few studies, if any, provide
enough information to estimate the within-study correlation coefficient p;. In the absence of
sample estimates for p;, a range of plausible values can be used in a sensitivity analysis, or
one could try to elicit prior distributions for the correlation coefficient from clinical experts.
However, obtaining a prior for the correlation coefficient is not straightforward. In the
following sections we discuss how partial information reported in studies can be combined
with external information to obtain estimates of p; and incorporate them in the MOMA
model.

3.3.2 Estimation of within-study correlation coefficient for two dichotomous

outcomes

Studies that report on two or more dichotomous outcomes typically provide the number
of successes and failures for every outcome in each arm. For two outcomes the data can be
summarized in two independent 2x2 tables which we refer to as ‘collapsed’ tables. We refer
to a ‘full cross’ table as the table that gives information about the cross-classification of the
patients in both outcomes. Let us consider for example a study reporting on response and
dropout: a full cross table provides information on the number of successes and failures

among those who drop out as well as the number of successes and failures among those who
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do not drop out for each arm. In a recent paper Bagos (208) showed how to compute the
covariance of two correlated log odds ratios (logOR) when the full cross tables are available.
Consequently, if all studies in a meta-analysis provide the full cross tables, the within
variance-covariance matrix of Equation (8) can be estimated and a multivariate analysis can
be readily performed. However, outcomes are routinely analyzed separately and only the
row and column margins of the full cross tables are usually provided in the studies.

In this section we show how to reconstruct the full cross tables for every study given the
usual 2x2 collapsed tables and external evidence. Having reconstructed the full cross tables
we can then use the methods described in (208) and compute the correlation coefficient

needed for the multivariate analysis.

3.3.2.1 Reconstruction of the full cross table and estimation of the correlation

coefficient

Consider a study i comparing two treatments A and B for response (R) and dropout (D).
The data are e;rr, firr, €irp, firp for treatments T = A, B, where e;rr denotes the
number of patients that responded positively (R*) to treatment T and f; r » the ones that did
not (R™); likewise e; ;- , denotes the patients randomized in group T that dropped out of the
study early (D*). Similarly, f; r , denotes those who did not drop out (D).

Let us denote by ¢; + = P(D*|R™");  the probability that a patient who responded to the
treatment would drop out; also let {; = P(D|R™);r denote the probability of a non-
responder to drop out. Table 3 shows how to compute the elements of the full cross table
from the elements of the collapsed table (e; 7z, firr, €ir.p, firp) forevery treatment. For
example @; se; 4 r Patients received treatment A, had a positive response to the treatment but
dropped out of the study and (1 — @;z)e;pr Who received treatment B had a positive

response and stayed in the study.
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Table 3: Reconstructing the full cross table from the collapsed table for a study i
comparing treatments A and B for response (R) and dropout (D). ¢; r denotes the
proportion of dropouts among responders and {; ;- the proportion of dropouts among non-
responders. R™ (R) denotes a positive (negative) response to the treatment while D*(D")
denotes dropping out of (staying in) the study.

Treatment A R* R~ TOTAL
D* Piaiar zi,Afi,A,R €i,AD
D~ (1 —@ia)eiar (1 =&a)fiar fiap
TOTAL €iAR fiar Nia
Treatment B R* R~ TOTAL
D* ®ip€iBR Zi,Bfi,B,R €i,B,D
D~ (1—-@ipleipr (1 =4i)fiR fip.D
TOTAL €i,R fiBR Nip

It can be shown that {;  is dependent on @; ;- given the marginal counts:

1

Sir = Firn (eir,p — €irrPir) 9)

Thus, information about only one of @, ¢ is needed for every arm in order to reconstruct
the table. Note that Equation (9) holds when the total sample size is the same for the two
outcomes, thatis e;rr + firr = €irp + firp-

Having reconstructed the full cross tables, the correlation coefficient between the two
log-odd ratios y; r and y; , can be estimated using the formula produced by Bagos (208),

which after some algebra can be shown to be equal to:

(10)

~ 2
5. = 1 Z Qi (ei,T,R + fi,T,R) —eyrp(€irr + firr)
' GirGip

e: . .
T=AB l.T.Dfl,T,Rfl,T,D

Equation (10) allows us to estimate the correlation coefficient between log odds ratios of the
different outcomes in study i, given the data typically reported (e;rr, firr» €irp, firp)
and @; r for every treatment (assumed known), under the restriction that both outcomes were

reported for every patient within the same study.
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Table 4: Data from a two-arm study comparing Aripiprazole to placebo for response (R)
and drop-out (D) (209). eTr, er,p denote the number of patients who were positive in
outcomes R and D, while frr, fr,p denote the number of patients negative in outcomes R

and D respectively.

Treatment (T) eT‘R fT,R eT’D fT,D
Aripiprazole 155 98 54 199
Placebo 63 68 20 111

Equation (10) suggests that if the proportion of dropouts in the responders equals the
proportion of dropouts in the total number of patients, i.e. @, = e;rp/(e;rr + firr), then
the two outcomes are independent and the correlation coefficient in (10) becomes zero. If
both @; r are equal to zero, which suggests that all responders stayed in the study, we get
p; = —1. In the contrary, if both @; r are equal to one (all responders dropped out) Equation
(10) gives p; = 1.

Note here that @; 1 in each study can only take values that ensure 0 < ; < 1, that is:

€itp — fi,T,R €D

< Pir <
—_ l,T —_
€ TR € TR

(11)

Of course, 0 < @;r < 1 must also hold. In Table 4 we present data from a two-arm
study comparing Aripiprazole with Placebo for both response and drop-out rate (Vieta et al.
(209)). We have dropped study index i since we refer to a single study.

Equation (11) impliesthat 0 < @4z; < 0.34 and 0 < @p; < 0.31, with @4z; and @p,,
denoting the proportion of dropouts among responders for the Aripiprazole and the placebo
arm respectively. This means that less than 34% of those who responded positively to
Aripiprazole could have dropped out. Using Equation (10) we plot p for various values of
@agr; and @p; in Figure 5, in order to explore how the correlation coefficient depends on
these proportions. We assume four different values for ¢p;, and plot the correlation
coefficient versus ¢ 4z;. We also plot the corresponding p if the two proportions are assumed

to be equal. Figure 5 suggests that the correlation coefficient for the logOR for response and
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Figure 5: Within-study correlation coefficient p between the log odds ratios for response
and dropout versus the par for a study (209) comparing Aripiprazole vs Placebo. Four

different values for ¢pL are presented and the line par = gpL

———PARI
- 04

@pr, = 0.05
¢p, = 0.10
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@p, = 0.20
— @pL = PaARI

0.6

drop-out rate remains negative for small values of both ¢ parameters, something which is
readily understood: the smaller the proportion of responders dropping out, the more
negatively correlated are the log odds ratios for response and drop-out rate.

In a recent paper Wei and Higgins (210) have also produced a formula for estimating
the covariance between the logORs of two correlated outcomes. Their formula requires the
correlation coefficient between the two dichotomous outcomes to be known. The motivation
for their approach was that the value for the correlation between the outcomes is more likely
to be available (or easier to guess) than the correlation between the treatment effects. It can
be shown that our formula in Equation (10) is equivalent to the formula (8) derived by Wei
and Higgins in (210), under the assumption that all patients report on all outcomes (the
mathematical details can be found in Section Il of the Appendix). However, we think it is

more useful to express the correlation coefficient (or the covariance) of the log odds ratios
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in terms of the parameters @; r. This is because, as we will show in the following section,
these parameters are flexible in modeling and prior distributions can be obtained from
clinical experts through easily understood questions.

3.3.2.2 Modeling the ¢ parameters, eliciting priors and synthesizing prior distributions

Assuming that the proportions @; r are not reported in the studies we can use expert
opinion to inform the ‘true’ conditional probabilities ¢;r they estimate. Then we can
compute the correlations of the logORs using Equation (10). The parameters ¢;  can be
assumed to be:

e study and treatment-specific ¢; r

o fixedp;r =¢

e treatment-specific ;r = @r

o study-specific ;7 = ¢;

e Or we can assume group-specific probabilities ¢;r = @groupr), Dy identifying
groups of treatments that share some common characteristic. For example we may
assume that there are two parameters; one common for all active treatments and one
for placebo.

Investigators could choose between these options after considering the nature of the
clinical condition under investigation, the types of interventions and the outcomes of interest.
The decision about the number of different ¢ parameters and their plausible values should
be specified after consulting with clinicians experienced in randomized controlled trials in
the field.

Having assigned a value to every ¢;r, the full cross table for each study can be
reconstructed, the within-study correlation coefficient can be estimated and the full
multivariate analysis can be performed. Alternatively, we can treat ¢ as a random variable
and elicit information about its distribution. Then the reconstruction of the full cross tables
is carried out stochastically. For the acute mania example, we use the following question to

elicit information about ¢, which is assumed to be treatment-specific:

“If a number of people randomized to treatment T responded to the treatment, what
proportion of them do you expect to leave the study early? Please provide a 95% confidence

’

interval for this proportion.’
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Once external evidence is collected from experts, we need to combine their input into a
single distribution of ¢;. To this end we will use an approach described in (204) which
attributes a different weight to each expert’s input.

Suppose we have a number N of clinical experts. The k-th expert (k =1,..,Ng)
provides an estimate for the 95% confidence interval of ¢ ;. Assuming the expert’s opinion
to be a beta distribution we can construct a prior (@) = Beta(@y; ay, by) from the
provided confidence interval.

An overall prior can then be obtained as a combination of the individual expert opinions:

f(pr) x (”1((PT))W1 (nz(fpr))wz (7TNE(<PT))WNE = n(”k((PT))Wk (12)
k

The w;, parameters are weights (Z’,ﬁjlwk = 1) assigned to experts, and reflect the
credibility attached to their opinions. In the acute mania example we define the weights
based on the years of relevant clinical experience of each expert and the number of clinical
trials he/she has been involved with.

Equation (12) suggests that the prior distribution for ¢ is a beta distribution:

pr~Beta (Z Wi Qe » Z Wkﬁk) (13)

If the parameter ¢ is believed to be trial-specific, experts should also be given
information about relevant study characteristics (such as trial duration) and then synthesis of
their opinions could be done as described above. Note that the prior distribution for ¢ might
need to be truncated within each study to account for the plausible range of values as
explained in Equation (11). In the infrequent case that the prior distribution for a ¢ parameter
provided by the experts lies outside the permissible range of values for a study as given in
Equation (11) a uniform uninformative distribution in the allowed values can be employed.
Obtaining priors outside the permitted area could be prevented if the experts were provided
with the range of permitted values for ¢; however we do not recommend this as prior
elicitation should not include any consideration of the data.

Instead of eliciting expert opinion one could assume both study- and treatment-specific
¢ parameters and employ vague priors for each, such as with a uniform distribution in the
allowed range given by Equation (11). This would substantially increase the uncertainty
about the parameters (as neither data nor informative priors would inform the correlation
coefficients) but could be considered as a sensitivity analysis to complement the analysis

with informative priors.
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3.3.3 Network meta-analysis for two correlated outcomes

In the previous sections we presented a method for performing a pairwise meta-
analysis for two outcomes. We now extend the method to network meta-analysis. We restrict
our analysis to networks that contain only two-arm and three-arm studies and a maximum of
two different dichotomous outcomes. We allow for random effects and we assume
consistency in the network, i.e. there is no discrepancy between direct and indirect evidence
(24).

Consider a network of studies reporting on outcomes R and D for a number N of
different treatments. Assuming consistency, we need to estimate N — 1 independent (basic)
parameters for every outcome. The model is a generalization of the simple meta-analysis
model of Section 3.3.1, Y = Xu + £ + &, with Y the vector of the observed log odd ratios,
X the design matrix, u the vector of the basic parameters, € the vector of random errors, and
6 the vector of random effects (6,46). The design matrix X describes the structure of the
network, and the consistency assumption is embedded within it.

For a two-arm study i that compares treatments A and B the random errors are assumed
to follow a multivariate normal distribution, i.e. (6;4pr, 0iapp) ~ N(0,402x2)). In
network meta-analysis it is often assumed that the amount of heterogeneity is independent
of the treatment comparison; that is, for any two random treatments X and Y it is 72y r = T3
and 7%y , = 75 (4,6). Under this assumption, the variance-covariance matrix of a two-arm
study is exactly as in the case of a pairwise meta-analysis.

For a three-arm study i that compares treatments A, B and C, the random effects are
assumed to follow a multivariate normal distribution:
(6iaBR »0iaBDp » Oiacr0iacp) ~ N(0,44xs)). The assumption of consistency on the
random effects (e.9. 8;4pr = Siacr + Oicpr) and the equal heterogeneity parameters
across comparisons suggest that the covariance between logOR of different comparisons for

response is /2 and for dropout is t3/2. Consequently the (4 x 4) variance-covariance

matrix is:
Tzze PzTRTD Tzze/z X1TRTD\
Ay = PzTRTp TIZJ X2TRTp T]%/Z (14)
( ) 2 2 2
Tr/ X2TRTp TR PzTRTp
X1TRrTp TIZJ/ 2 PzTRTp T]%
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We further assume that the correlations corr(8;4pr,8iacp)=x1 and
corr(éi,AB,D 0 ac R ) = y, between logORs of different comparisons-different outcomes
are all equal to y. This is a plausible assumption to make if treatments B and C are
comparable in terms of both efficacy and acceptability. For example, in a three-arm study
with two active treatments and placebo, the assumption will be a plausible one as long as we
identify placebo as treatment A. Although this assumption might be difficult to defend in
practice, it will often be necessary to reduce the number of parameters to be estimated. In

Section 111 of the Appendix we show that this assumption simplifies the 44,4, matrix to:

1 0 1/2 0 0 0 0 O
_ 2/ 0 0 0 O ,[0 1 0 1/2
A(4X4) - TR 1/2 0 1 O + TD O O 0 0
0 0 0 O 0 1/2 0 1
15
0o 1 0 1/2 (19)
1 0 1/2 0
TP o 12 0 1
1/2 0 1 0

Under these three assumptions (consistency, heterogeneities equal across comparisons
and equal correlations between effects of different comparisons and different outcomes)
there are only three between-study parameters to estimate: the heterogeneity for response
(r3) and dropout (73) and the between-study correlation coefficient (p,) just like in the case
of pairwise comparison, Equation (7).

When a considerable amount of data is available and the network is very dense (that is
many studies connecting pairs of interventions) then the assumptions we used to reduce the
number of model parameters in A might not be necessary, e.qg. if there are at least three studies
per comparison, then different heterogeneity variances can be used. However, real-life
networks of interventions tend to be poorly connected and the median number of studies per
comparison has been found to be low, equal to two studies (8). In Section 111 of the Appendix
we present how A is modelled when correlations between different treatments and different
outcomes are not equal. Note that the variance-covariance matrix as defined above is always
positive-definite.

For a three-arm study i that compares A, B and C the random errors are assumed to be
distributed as (€;apr »€iaBp »Eiack »€iaco) ~ N(0,Z;), with the variance-covariance

matrix X;:
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/ lAB R . \
= Pi,ABRABp 9i.AB,ROi.AB,D O-i?AB,D . . | (16)

2
\ KiaBrACg Pi,ABpACROi.AB,DOi.AC,D 0; ACR : /
Pi,ABrACp0i.AB,ROi.AC,D Ki,ABRrACR Pi,acgacpTiAc,ROiAc,D  OiAcC,D

There are four different correlation coefficients entering this study-specific variance-
covariance matrix. Two of them, p; ap ap, aNd p; acpac, COrrelate logORs of the same
treatment comparisons for different outcomes, while the other two, p; 4g.ac, and p; acras,,
correlate different comparisons for different outcomes. The quantities o and « in X; can be

readily estimated from the data, e.g. the variance for the AB comparison for response (R)

. A 1 1 1 1 A
can be estimated as 62; 45 r = + + + and also R appacy, =
o ejar fiar €iBR fiBR ’

1 1

eiar fiaR
The data needed to compute these two quantities are typically available from the published
articles while the four correlation coefficients can be estimated from the collapsed tables and
using external evidence about the ¢ parameters as in Section 3.3.2. More specifically

Equation (10) can be employed to estimate coefficient p; 45,45, Of Equation (16) as:

R 2
~ 1 (pi,T(ei,T,R + fi,T,R) —erp(eirr + firr)
PiABRrABp = & (17)

0i,4B,ROi AB,D

T=AB ir.ofirrfiT,D

and an analogous formula can be used to estimate p; 4c.ac,- We show in Appendix, section

IV that;

A 2

~ 1 Dia (ei,A,R + fi,A,R) — e ap(€iart+ fiar)
5, - (18)

i,ABRACp ~ ~
0i,4B,ROi,AC,D eiapfiarfiap
A similar formula holds for p; 4c,4p5,. Using Equations (17) and (18) we can use prior
information on ¢; r to estimate all correlation coefficients in a three-arm study and perform
a full MOMA.. As we have already seen in Section 3.3.2.1the values of these parameters are

bounded for every study according to Equation (11), which means that the values for the

correlation coefficients of Equations (17) and (18) are bounded as well.
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3.4 Application to acute mania dataset: network meta-analysis for

response and dropout

3.4.1 Prior distributions and model fit

In Figure 6 we present the informative prior distributions we used for the conditional
probabilities ¢, of dropping out given a positive response to the treatment T. These
distributions were elicited from experts in the field following the method presented in
Section 3.3.2.2. Experts were not provided access to the actual data with an aim to get
unprejudiced results. In Section V of Appendix we provide details about the individual prior
distribution elicited from each expert. Then, by using Equation (10) for the two-arm studies,
and Equations (17) and (18) for the three-arm studies, we computed all within-study
correlations. In Section VI of the Appendix we present a table with the estimated correlation
coefficients for all two arm-studies.

After inspecting the data we could divide the treatments in categories according to
their efficacy and dropout, and assume a common ¢ in each category. We chose, however,
to assume a different ¢ for every treatment in order to present the most general case.

We used OpenBUGS software (94,95) to fit our model. When studies did not report
on one of the outcomes we imputed data with very large variances and zero within-study
covariances (179).

The heterogeneity standard deviations 7z and t, were assigned a minimally
informative prior distribution (211,212), g, Tp~U(0,1). For the between-study correlation
coefficient p,, an uninformative prior distribution Unif(—1,1) can be used if there is no
information about the correlation between the outcomes. In our example expert opinion
suggested that the outcomes are expected to be negatively correlated, therefore a
Unif (—1,0) was chosen.

In order to assess the relative ranking of the treatments, we computed the surface under
the cumulative ranking curve (SUCRA\) for each treatment and outcome (38).

The R routine needed to estimate beta priors based on expert opinion can be found in
Section V of the Appendix. The OpenBUGS code used to fit the model can be found in
Section XI of the Appendix. All results pertain to 1,000,000 cycles and a thinning of 100
after a 5,000 burn-in period.
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Figure 6: Prior distributions for the treatment-specific probability ¢, as elicited from the

experts.
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3.4.2 Results

Figure 7 shows the odds ratios (ORs) for response and dropout for all active versus
placebo comparisons as estimated in two independent NMAs and the MONMA model. The
results from NMA and MONMA were comparable for the dropout outcome. This happened
because all but one studies reported dropout and, consequently, the joint analysis of both
outcomes did not have much impact on the dropout estimates. On the other hand, the ORs
for response were estimated with higher precision due to the fact that 28% of the studies did
not report on response. The relative decrease in the width of the OR confidence intervals
with the MONMA model was 4% on average. The maximum relative decrease in the width
of the confidence intervals was 15% and was observed for the case of Lithium. This can be
attributed to the fact that more than half of the studies comparing Lithium (8 out of 15) did
not report on efficacy. All results should be interpreted in the light of the high between-
studies correlation coefficient, which was estimated to be -0.84 (credible interval -0.98 to -
0.52).
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Figure 7: Odds ratios for response and dropout for Treatment vs. Placebo. The thick lines
present results from two independent NMA models (one for each outcome) and the thin
lines from the MONMA model.
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In Table 5 we present the point estimates and the 95% credible intervals for the
heterogeneities and the between-study correlation parameter. Figure 8 shows the relative
ranking of the treatments for both outcomes, based on their surface under the cumulative
ranking curve (“SUCRA”, (38)). For treatment A, outcome R, SUCRA is defined as
YTt cumpR /(Np — 1), with cumj”® denoting the probability of A ranking among the
best k treatments for outcome R. SUCRA values lie between 0 (when the treatment is certain
to be the worst for the outcome) and 1 (when the treatment is certain to be the best for the
outcome). It is a transformation of the mean rank which takes uncertainty of estimation into
account. Treatments lying at the upper right corner of Figure 8 are the best in both
acceptability and efficacy; those in the bottom left corner are the ‘worst’ treatments. The
small changes in the point estimates and the precision of the ORs for response had also an
effect on the relative ranking of the treatments. For instance, Carbamazepine ranked as the
most efficacious treatment with the usual NMA model, while it fell to the third place for the

MONMA model. The change in the OR, however, was not clinically important.
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Table 5: Model parameters for the outcome-specific NMA model, and the MONMA model

g% 7p° Pz
NMA 0.08 (0.02,0.17) 0.13 (0.06, 0.24) -
MONMA 0.08 (0.03,0.17) 0.14 (0.07, 0.24) -0.84 (-0.98, -0.52)

3.5 Concluding remarks

In this Chapter, we have presented a model for performing data synthesis in a network
of competing interventions, with multi-arm studies reporting on multiple dichotomous
outcomes. Both within and between-study correlations between the outcomes were taken
into account. We proposed a method for eliciting expert opinion to inform within-study
correlations. Motivated by the fact that questions about probabilities are better understood
compared to questions about correlations, we proposed the use of a set of conditional
probabilities to elicit information for the correlations. We showed how to construct prior
distributions for these probabilities based on expert opinion and how to use these priors in
order to estimate the within-study correlation coefficients needed. For between-study
correlations we proposed a method of simplifying the variance-covariance matrix by making
a set of assumptions. Our method was applied to the case of two correlated dichotomous
outcomes in the presence of two-arm and three-arm studies. The methods presented can be
extended for more than two outcomes and for networks that include studies with more than
three arms. A generalization of our model is presented in Section VI of the Appendix.

We fitted our model within a Bayesian framework which allows for a direct
incorporation of prior information and an easy way of including studies that report on some,
but not all of the outcomes. Another advantage of the Bayesian approach is that it is free of
the convergence problem often encountered in likelihood based methods when the number

of studies is small or the within-study variation relatively large (213,214).
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Figure 8: Ranking for antimanic drugs for response and dropout. Treatments located in
the darker (brighter) areas of the plots have the lowest (highest) rankings. ARl =
aripiprazole, ARl = aripiprazole. ASE = asenapine. CBZ = carbamazepine. VAL =
divalproex. HAL = haloperidol. LAM = lamotrigine. LIT = lithium. OLZ = olanzapine,
PBO = placebo. QTP = quetiapine. PAL = paliperidone. TOP = topiramate. ZIP =
ziprasidone. Gabapentin does not feature in the graphs as its efficacy has not been studied

in any of the trials.
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We implemented our model for the case of a network of treatments for acute mania and
two (negatively) correlated outcomes: response to the treatment and all-cause
discontinuation (dropout rate). Our model gave similar results with the simple univariate
model for the mean estimated treatment effects. However, it produced narrower confidence
intervals, especially for response, since almost one third of the studies did not report on this
outcome, thus allowing for a ‘borrowing of strength’ between the two outcomes. The
precision gain for the dropout was marginal, since all studies except one reported the number
of patients dropping out. In this particular example the change in the precision of the
estimates for response had a small impact on the relative ranking of the treatments.

Our model is suitable for dichotomous outcomes but requires arm-level data and it is
also subject to the assumptions we have made for the structure of the between-study

variance-covariance matrix. Our method considered the case of correlated odd ratios;
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however it can be extended to analyze risk ratios. Following the methodology presented in
this Chapter one can derive formulas for correlated log risk ratios.

The research presented in this Chapter was published in the Statistics in Medicine journal
(215).

65



66



4 Joint synthesis of multiple correlated outcomes in

network meta-analysis

4.1 Introduction

In Chapter 3 of this dissertation we presented a new model that can be used to perform
a network meta-analysis for the case of multiple dichotomous outcomes. In this chapter we
describe two additional MONMA models, that can be used to synthesize multiple binary,
continuous or time-to-event outcomes. The first model is based on making a set of
simplifying assumptions for the within and between-studies variance-covariance matrices.
The second model is a generalization of a bivariate pairwise meta-analysis model initially
proposed by Riley et al. (213). This model includes a single correlation coefficient, which is
used to model the overall correlation, i.e. an amalgam of the within-study and between-study
correlations. In order to exemplify our methods we use the acute mania dataset, which was
introduced in Section 3.2. We fit the two new MONMA models in a Bayesian framework,
which offers flexibility in incorporating prior beliefs and allows for a straightforward
inclusion of studies that do not report on all outcomes, as well as accounting for uncertainty
in parameter estimates.

This chapter is organized as follows: in Section 4.2.1 we start by presenting a brief
outline of the general framework for jointly meta-analyzing multiple outcomes for the case
of two competing treatments. This framework was presented in detail in Section 3.3.1, but
we also summarize it here in brief, for the reader’s convenience. Then, in Section 4.2.2 we
present an alternative MOMA model introduced by Riley et al. (213), which can be used for
the pairwise meta-analysis, for the case of two outcomes. In Section 4.2.3 we generalize both
these approaches for a network of interventions in the presence of multi-arm studies. In that
section we also discuss the technicalities of fitting these models. In Section 4.3 we apply the
new models to our data, in order to produce estimates for outcome-specific relative treatment
effects, and evaluate the relative ranking of the treatments for each outcome. In Section 4.4
we summarize our findings. All mathematical and statistical details, as well as the software

codes that were used for the analyses are presented in the Appendix.
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4.2 Statistical methods

4.2.1 General framework for pairwise meta-analysis of multiple outcomes

Here we start by providing a brief account of a MOMA model. More details can be
found in Section 3.3.1 of this thesis. Assume N studies comparing two treatments (for
example a new treatment versus a placebo) with respect to two different but correlated
outcomes, denoted with R and D. We use Y to denote the 2Ng-dimensional vector of the
observed effects; in our example, these are the log odds ratio for R and D, but in other
situations they could be mean difference or log hazard ratio estimates, for example. The
bivariate random effects meta-analysis model can be written, using matrix notation, as ¥ =
Xu + 8 + &, where X is the design matrix, u the vector of true mean relative treatment
effects and & and & are the vectors of random effects (reflecting between-study variability)
and random errors (reflecting within-study sampling variability) respectively.

For a joint meta-analysis of both outcomes we must incorporate the correlations
between the outcomes, both within as well as between-studies. We assume multivariate
normal distributions for £ and &, so that e~N (0, 2) and §~N (0, 4), with X and A4 being the
within and between study variance-covariance matrices. The variance-covariance matrix for
the random effects takes a block-diagonal form, with identical 4,,) matrices in its diagonal
(Equation (7), Section 3.3.1), and incorporates three parameters, p*, 7z and t,. More
specifically:

Aax2) = ( TTI% pTTI;TD>
P TRTp Tp

Note that this matrix is always positive-definite for —1 < p* < 1. The corresponding
parameters need to be estimated from the model. In a frequentist framework options include
restricted maximum likelihood and methods of moments; here we focus on a Bayesian
framework estimated using Markov Chain Monte Carlo (described in Section 4.3.1 later).
The random errors variance-covariance matrix X is also block diagonal, see Equation (8),
Section 3.3.1. In this matrix, p; is the within-study correlation coefficient and 0%, o/, are
the variances of the effect sizes in each study i. All entries in X are estimated from the data.
Sample estimates for oz and o/, are often available, but few studies, if any, would provide
enough information to estimate the within-study correlation coefficient p; and the majority
of meta-analyses do not have access to IPD that would enable its estimation.

Within a Bayesian framework we can give prior distributions to all the correlation
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coefficients in order to perform a full multivariate meta-analysis. One can model these
coefficients in a variety of ways, e.g. assume all p; to be equal (p; = p Vi), assume a
different coefficient depending on study characteristics, place a vague or informative prior

on each p; etc.
4.2.2 Riley’s alternative multiple outcomes meta-analysis model

Following a different approach, Riley et al. proposed an alternative model for a
bivariate, random-effects pairwise meta-analysis. The model allows for a single coefficient
to model the overall correlation. This plays the role of an amalgam of the correlations within
and between studies (213). Instead of modeling 2 and A4 separately, in this model the authors
assume an overall variance-covariance matrix £2, so that ¥ = Xu + n, where n ~ N(0, 2).
This matrix £ is again block diagonal, with each block corresponding to a study, so that 2 =
Diag (24, 2,, ...,.QNS).

For a study i this matrix takes the following form:
[ vi+o ol W3 + e 05 + ol
\et [t o fvh ot B+l

0=

(19)

The p!* coefficient in Equation (19) is the overall correlation in study i, a hybrid of the
within-study and between-study correlation coefficients.

We can again model the different p/* in a variety of ways, depending on the nature of
the data, e.9. p!' = p V i. The y parameters model for the variation additional to the sampling
error that enters due to heterogeneity, and they are similar to the T parameters that enter the
A ;2. But they are not directly equivalent, unless the within-study variances are small
relative to the between-study variances. The clear advantage of model (19) is that the within-

study correlations are no longer needed.
4.2.3 Network meta-analysis for two correlated outcomes

The models described in the two previous Sections cannot handle the case when studies
comparing more than two treatments. Moreover, the model described in Chapter 3 of this
dissertation focused on the case of binary outcomes.

In this section we present two models for performing a network meta-analysis of studies
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with multiple arms reporting on two correlated outcomes. The outcomes can be binary (and
relative treatment effect can be measured as log odds ratios or log risk ratios), continuous
(effects measured as mean differences or standardized mean differences) or time-to-event
(effects measured as log hazard ratios). Note that in order to use standardized mean difference
for a continuous outcome a large sample approximation is required. For more details see
Section 111 of the Appendix.

In the acute mania example the outcomes are identified as the binary response to the
treatment (R) and dropout rate (D). We exemplify the methodology for the case of networks
containing studies with a maximum of three arms. We assume a random effects model and
that the consistency equations (Bxy r = Bxzr — Byzr) hold for all treatments X, Y, Z; similarly

for outcome D.
4.2.3.1 Model 1: Simplifying the variance-covariance matrices

The first MONMA model we present is based on making assumptions that simplify the
within and between-study variance-covariance matrices. These assumptions are needed in
order to minimize the number of parameters that need to be estimated, thus easing the
computational burden and potential estimation difficulties. Some of the considerations
presented in this section were also discussed in Chapter 3, but they are also briefly
summarized here for completeness.

Let us start by considering a network of studies reporting on the correlated outcomes
R and D for a network of N different treatments. The model is Y = Xu + 6 + £ with Y the
vector of the observed effects, X the design matrix, u the vector of the basic parameters i.e.
the N — 1 parameters for the comparison of each treatment versus the reference (6,64), 6
the vector of random effects and & the vector of random errors (6,46). The design matrix X
describes the structure of the network and embeds the consistency equations (6); it maps the
observed comparisons into the basic parameters. For example, if A is chosen to be the
reference treatment, a study comparing B to C for outcome R provides information for a linear
combination of two basic parameters as fgc r = Bacr — Basr:

For a two-arm study i that compares treatments A and B the random errors are assumed
to follow a multivariate normal distribution, (6; apr ,0;app)" ~ N(0,4(2x2)). In network
meta-analysis it is often assumed that the heterogeneity is independent of the comparison

being made, i.e. T35 r = T3 and t55 , = 75 for every pair of treatments 4, B, and we also
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assume this here. For a three-arm study i that compares treatments A, B and C, the random
effects are again assumed to follow a multivariate normal distribution
(6iaBRr +6iaBp» Siacr» Oiacp) ~ N(O,Awxq). Assuming equal heterogeneities between
treatment comparisons and equal correlations between random effects of different
comparisons and different outcomes, i.e. (8;45r,0iac0) = cor(8iasp Siack ), @S We
show in Section 111 of the Appendix, the 4,4y matrix takes the form presented in Equation
(15):

1 0 1/2 0 0 0 0 0
o 0o 0o o) ,(0o 1 o0 172
A(4X4) =1R 1/2 0 1 0 + Tp 0 0 0 0
0 0 0 0 0 1/2 0 1
o 1 o0 1,2
1 0 1/2 0

TPTRTD| g 12 0 1
2 0 1 0

The random errors are also assumed to follow a multivariate normal distribution. For a
three-arm study i that compares treatments A, B and C for response (R) and dropout (D) we
assume (€; apr» €iaBp» €iacr» €iacp) ~ N(0,Z;). The variance-covariance matrix X is
given by Equation (16). As we discuss in Section 3.3.3, the ¢ and x coefficients in Z; can be
readily estimated if arm level data are available.

In what follows we present a method for dealing with the remaining correlation terms
within X;. We start by assuming that there are two different types of within-study correlation
coefficient for every study i. The first we denote by p;’, and corresponds to the correlation of
relative treatment effects of different outcomes for the same treatment comparison. This
enters the variance-covariance matrices for both two-arm and three-arm studies. The second
we denote by p;” and correlates the relative treatment effects for different comparisons and
different outcomes within the same study. This enters only the (4 x 4) matrices of the three-
arm studies. This means that:

Pi.ABrABp = PiAcgACy = Pi+ PiAcrABp = PiaBgracp = Pi » (Assumption 1)

The within-study variance-covariance matrix for a two-arm study i comparing

treatments A and B for two outcomes is:

2 *
of p; 0 oi
i,AB,R i 0i,AB,ROi,AB,D
z = < > (20)

Pi 0i,aB,ROi,AB,D O-i?AB,D
For a three-arm study comparing treatments A, B and C for two outcomes the X; matrix
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of Equation (16) now becomes:

2
0, AB,R
* 2
5 = Pi 0i,aB,ROi,AB,D 0i,AB,D . .
i Kk 2
Ki ABRACR Pi 0iaBD0iACR 0iAC,R : /
ok * 2
Pi 0i aBROiACD Ki aBpAcp Pi 0iacrOiacD  OiacD

It is very often the case that study arms are balanced in numbers of patients randomized.
Then, for treatments that are not very different in efficacy and dropout (e.g. drugs from the
same class) we can assume that:

OiBcR = 0i,aBR = Oiac,k @Nd Oipcp = Oypap = Ojacp (Assumption 2)

This assumption will not be reasonable if trials are imbalanced or compare very
different treatments. Insight on the validity of this assumption can be obtained from the data
after scanning for important differences among the estimated variances across studies. If we

choose to employ this assumption the model is considerably simplified as it implies that
pit = 1/2 p; (see Section VI1II of the Appendix). Consequently, an estimate of the variance-

covariance matrix for the three-arm study i after Assumptions 1 and 2 is as follows:

A2
0i,AB,R - - -
0 57

0; AB,D
2-"i = | ~ 0 ~2 |+
\Ki,ABRAcR 0i ACR :
0 K; 0 62
i,ABpACp i,AC,D (21)
0
0i,4B,ROi,AB,D 0 . N 4,3
pi 0 6 aB,p0iac,R/2 0 / =Sl T Pidiz
6 aB,ROi,ac,0/2 Ki ABpACh GiacrOiacp O

In the last line we have renamed p; to p;, in order to simplify notation and to highlight
that the correlation coefficient is equivalent to the one presented in Equation (16). It is
important to note that Assumption 2 does not mean that we force all study variances to be
equal: the diagonal elements of Z; are distinct and are estimated from the studies. We employ
this assumption only for the off-diagonal elements of the variance-covariance matrix so that
all correlations are functions of a single parameter p;. Consequently all elements of Z; ; and
%, , in equation (23) can be estimated when arm-level data are available. The assumption of
equal variances within a multi-arm study can be omitted, if it is deemed inappropriate. In
Section VIII of the Appendix we present the most general form of the variance-covariance

matrix for different variances, and compute general relations between the correlation
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coefficients it contains. This, however, results in a rather complicated structure for the X;
matrix and we will not consider any further.

To summarize, we have expressed all within-study variance-covariance matrices
utilizing a set of correlation coefficients p;, one for every study i, that measure the correlation
between the relative treatment effects of the two outcomes R and D for the same treatment
comparison. These coefficients might be available in study reports. Alternatively, they can
be deducted from empirical evidence (194) or expert opinion; in Chapter 3 we discussed how
this can be achieved for the case of MONMA for binary outcomes. If IPD are available then
the correlation coefficient can be estimated (203). A joint network meta-analysis of the two
outcomes can be performed within a Bayesian framework after assigning prior distributions
to the p;. These priors can be either uninformative or can be defined after consulting with
clinicians (210). We have a number of options on how to model these coefficients. The
simplest one is to assume p; = p, common correlation for all studies. We could alternatively
assume correlation coefficients across studies to share a common distribution. Another
choice would be to have different p;’s for different group of studies. For example we could
assume a coefficient p,.._p; for placebo-controlled studies, and another p4.;:—a.: for head-
to-head studies that compare only active treatments; this would be based on the assumption
that the two relative effect measures are differently correlated when one of the treatments
compared is the placebo.

One technical implication that comes up is that the positive-definiteness of the within-
study variance-covariance matrix is not guaranteed for three-arm studies. The estimated
matrix Z; for the random errors in Equation (21) is not always positive-definite, as it depends
on the data and on an arbitrary parameter p;. One way to overcome this problem is to

compute the four eigenvalues 4; ; of ¥, for every study i, with j = 1,2,3,4, and truncate

!

them to zero, replacing Z; = 2jmax(0,4; ))v; jv;j,

with v; ; the corresponding eigenvectors
as in Jackson et al. (73). This, however, might be difficult to implement, particularly if a
Bayesian software is used. Here we propose a different way of dealing with this problem: we
can truncate the correlation coefficient for every study so that the positive-definiteness of the
variance-covariance matrix is ensured. If for example we assume a uniform (—1,1) prior
distribution for each p;, we must truncate:p;~Unif (—1,1)I(l;,u;). The limits [; and u; are
the lowest and highest values of p; that lead to a positive definite matrix. That means that we

need to compute those values for all three-arm studies: it can be easily achieved by checking
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the corresponding eigenvalues of the variance-covariance matrix, as a positive-definite
matrix has only positive eigenvalues. In Section 4 of the Supplementary Material we provide
a program in R software that computes the limits [; and u; for every three-arm study. Wei
and Higgins discuss other approaches to ensure positive-definite matrices including Cholesky

paramaterisation and spherical decomposition (202).
4.2.3.2 Model 2: Extending the alternative MOMA model

In this Section we discuss a second method for performing a multiple-outcomes
network meta-analysis, by extending Riley’s et al alternative model (213). The model
described in Section 4.2.2isY = Xu + n, withn ~ N(0, £2), where, as in the case of pairwise
meta-analysis the matrix 2 is block diagonal. For a two-arm study the variance-covariance
matrix is as given in Equation (19). As we show in Section X of the Appendix, if we are
willing to employ Assumption 2 for a three-arm study i comparing treatments A4, B and C for

two outcomes, then its variance - covariance matrix £2; is given by:

/ Ci.aB,R . . . \
| Pih \/$i,a8,rRCi aB,D Ci.aB,D . . |
| pf
2 = i E\/ Ci,aB,RSiACR 71\/ Ci,aB,0Si,ACR Ciacr |
pl 1
l
o \/ Ci,aB,RSiAC,D 2 \/ Ci.ac,rSi,ac,D ,Dih A\ CiacrSiaco  Siacp

Here we have defined {;apr = 0upr + Y3, Ciasp = 0iapp + Y5, etc. Equation (22)

(22)

extends the model presented by Riley et al. for three-arm studies with two outcomes. The o
parameters can again be estimated from the data as the standard errors of the effect sizes, and
assuming a common correlation coefficient across studies there are three parameters left to
estimate: g, WY, and p". One of the advantages of this approach is that the variance-
covariance matrix is always positive-definite, so a multivariate meta-analysis can be readily
performed without further complications. As described in the previous Section, the equal
variance assumption (Assumption 2) can be omitted if the studies are imbalanced or the
treatments have significant differences in the measured effects, leading, however, to a much

more complicated £2; variance-covariance matrix.
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4.3 Application to the acute mania example

4.3.1 Description of the analyses and model fit

We fit the two models we presented in Section 4.2.3 in a Bayesian framework, using
the OpenBUGS software (94,95). Prior distributions need to be assigned to all model
parameters. The parameters 7z, 7 of the first model and g, Y, of the second can be
assigned minimally informative prior distributions. If there is no prior information on the
correlation of the outcomes, an uninformative U(—1,1) prior can be used on all correlation
coefficients. If external information is available on these coefficients, e.g. elicited from
experts in the field, it can be used to inform p or p™. In the acute mania example, the
correlation between response and dropout rate is expected to be negative so we assigned
appropriate negative priors to parameters p; (the within-study correlations between
outcomes, assumed equal across studies), p* (the between-study correlation in outcomes)
and p™ (the overall correlation). However, the robustness of conclusions to this assumption
could be checked if desired. In order to rank the treatments with respect to the response and
the dropout rate, we computed the surface under the SUCRA value (38), for each treatment
and for each outcome. All results pertain to 1,000,000 iterations and thinning of 100 after a
5,000 burn-in period; the thinning was deemed necessary since a preliminary analysis
showed a high auto-correlation in the chains. The code we used is provided in Sections XII
and XI1I of the Appendix. We explored the following analysis scenarios:

l. Univariate (independent) NMA of response and dropout rate separately,
assuming tg, Tp~U(0,1). This corresponds to setting all correlations equal to
zero.

. Multiple outcome network meta-analysis (MONMA) following the approach of
Section 4.2.3.1. We used minimally informative priors for the heterogeneity
parameters: p*~U(—1,0), tz,Tp~U(0,1), and: (a) we assumed a negative
common p; = p with p~U(—1,0); (b) we assumed a strongly informative,
negative, common p~U(—0.7,—0.5); (c) we assumed a common fixed p; = p
with p = —0.7; (d) we assumed two different within-studies correlation
coefficients p;: one for the studies comparing two active treatments, which we
denote as p4qt—act, and another for the studies comparing active treatments to

placebo, p4q:—p;- This distinction could be based on the assumption that the two
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relative treatment effects are differently correlated when one of the treatments
compared is the placebo. For both parameters we used a uniform negative,
U(—1,0), prior distribution
II. MONMA following the approach in Section 4.2.3.2, assuming a common
correlation coefficient and the following prior distributions for the parameters
of the model: p"~U(—1,0), Yxr~U(0,1), Yp~U(0,1).
In order to evaluate our assumption of a negative correlation coefficient within and
across studies we fitted MONMA model following the approach of Section 4.2.3.1. with
p; = p with p~U(—1,1) and p*~U(—1,1).

4.3.2 Results

The median posterior values for p and p* when non-informative U(—1,1) priors are
used were -0.33 and -0.84 with 95% credible intervals [-0.66; 0.14] and [-0.99; -0.38]
respectively. These values corroborate our prior belief of a negative association between
dropout and efficacy. In Table 6 we present the median posterior estimates and 95% credible
intervals for the parameters in each model. An interesting observation is that the
heterogeneity variances 3 and 73 are invariant across the different models. This may be due
to the large number of studies available in this meta-analysis. The mean estimates for the
correlation coefficients are well below zero (e.g. the between-study correlation ranges from
—0.56 for scenario Il.c up to -0.82 for scenario Il.a). The posterior median value for the
overall correlation p" in model 11 is -0.51 (95% Cr.1. [-0.68; -0.29]), a value lying between
the estimates of the two correlation coefficients for the multivariate model Il.a (-0.34 for p
and -0.82 for p® ). This is reasonable since p" is an overall correlation coefficient that

amalgamates the within and between-studies correlations measured by p and p®.
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Table 6: Median posterior estimates and 95% credible intervals for the heterogeneity

variance and correlation parameters in MONMA models.

Scenario T2 Tp? p p*

| 0.08[0.02;0.17]  0.13[0.06:0.24] - ]
Il.a 0.07 [0.02;0.16] 0.13[0.06;0.24] -0.34 [-0.66;-0.04] -0.82 [-0.99;-0.38]
I.b 0.07[0.02:0.15]  0.13[0.06:0.23]  -0.56 [-0.68:-0.50] -0.68 [-0.93;-0.23]

Il.c 0.07 [0.02;0.16] 0.13 [0.06;0.24] - -0.56 [-0.83;-0.12]
Pact-act: -0.31
[-0.71;-0.02]
I.d 0.08 [0.02;0.16] 0.13[0.06;0.23] -0.80 [-0.99;-0.33]
Pact-p1: -0.39
[-0.77;-0.04]
Y’ P’ p"
1 0.07 [0.02;0.16] 0.12 [0.04;0.22] -0.51 [-0.68;-0.29]

In Figure 9 we present the summary odds ratios for both outcomes for each treatment vs.
placebo and for models I, 11.b and I11. In XI of the Appendix we present the results from
fitting each model in detail. The multivariate approach has a minimal effect on the summary
results for the dropout outcome compared to the univariate. That is expected (200) since this
outcome was reported in all studies except one, and thus inferences do not gain much through
the joint analysis in terms of the posterior estimates and precision for this outcome. In
contrast, the posterior summary ORs for the response to treatment outcome have
considerable gain in precision when we use a multivariate rather than univariate model. This
gain arises because 28% of the studies did not report on response, and thus the multivariate
models additionally borrow strength from the correlated dropout outcome in these studies
(200). The gain in precision is larger as within-study correlation coefficient moves away
from zero; the decrease in the width of the confidence intervals of the ORs compared to the
results from the univariate approach is on average 8.4% for analysis Il.a, 12% for I1.b, 12.1%
for 1l.c, 8.2% for 11.d, and 10.8% for model 111. Note that apart from differences in precision
gain there are small changes in the point estimates for most odds ratios among the MONMA
models (see Section XI of the Appendix).
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Figure 9: Summary odds ratios for response and dropout, for active treatment vs. placebo.
The thick lines correspond to scenario | (univariate model), the slim lines to scenario 11.b
(MONMA model assuming strong correlation coefficient p~U(-0.7,-0.5)) and the dashed
lines to scenario III (alternative MONMA model assuming p"~U(-1,0))
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In Figure 10 we present the relative ranking of treatments for response and dropout, for

models I, 11.b and Ill, based on the SUCRA value for each outcome. Treatments near the
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upper right corner are the best when both acceptability and efficacy outcomes are considered
jointly important; those near the bottom left corner (dark areas of the plots) are the worst.
Note that Gabapentin is not present in the graph, since it was only reported for dropout.
Regardless of the choice of model, OLA has the highest ranking across both outcomes jointly.
However, the ranking of some other treatments is affected by the choice of multivariate rather
than univariate, especially in regard the response outcome which (through correlation) is able
to borrow strength from the more complete acceptability outcome. This use of additional
information leads to (small) differences in the multivariate and univariate mean posterior
estimates and precision of the summary ORs for response, and this has an impact on the
relative ranking of the treatments for this outcome. For example, Carbamazepine ranks as the
best treatment in terms of response with the univariate model but it falls to the fourth place

when we consider a within-study correlation coefficient p = —0.7.
4.4  Concluding remarks

In this Chapter we have presented two models for meta-analyzing evidence from
multi-arm studies reporting multiple correlated outcomes in a network of interventions. Our
models require minimum aggregated-level information and are applicable to any NMA with
multiple continuous, dichotomous or time-to-event outcomes; that is the majority of the
NMA applications (8). The set of models we present provides a unified way of handling
multiple outcomes in the presence of multi-arm studies using only a handful of parameters.
Choice between the two models may be informed by various factors. The first MONMA
model accounts for within-study variances (sampling error), between-study variance

(heterogeneity) as well as within and between-studies correlation.
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Figure 10: Ranking of antimanic drugs for response and acceptability. Treatments located

in the darker (brighter) areas of the plots have the lowest (highest) rankings. ARl =

aripiprazole, ARl = aripiprazole. ASE = asenapine. CBZ = carbamazepine. VAL =

divalproex. HAL = haloperidol. LAM = lamotrigine. LIT = lithium. OLZ = olanzapine,

PBO = placebo. QTP = quetiapine. PAL = paliperidone, TOP = topiramate. ZIP =
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The second (alternative) model includes both within-study and between-study
variances, but uses a single correlation parameter p". Thus, the second model can be viewed
as an approximation of the first MONMA model, with the latter having a more detailed
likelihood structure. The second model can be used in the common situation when within-
study covariances (the x parameters of X;, Equation (16) in Section 3.3.3) are not available
from all studies or cannot be reliably obtained from external data or expert opinion.

Ease of application is another consideration when choosing between the two models.
The first model is more difficult to implement as it has a richer structure and investigators
need to ensure the positive-definiteness of the variance-covariance matrix. Our models
perform better than the univariate one in terms of precision; this gain, however, does not
come without a cost. The complexity of the multivariate analysis is an important limitation,
and the difficulty in implementing the models rises as the number of outcomes of interest or
the number of arms of the studies in the network grows. When only a small number of studies
do not report on all outcomes the gain in precision can be trivial, rendering the use of
multivariate methods redundant. The models are also limited by the assumptions we used to
simplify the structure of the variance-covariance matrices; in the Appendix we offer guidance
for the case the analyst is unwilling to employ these assumptions.

Despite their limitations, the two presented models are to our knowledge the first
attempts for meta-analyzing data from networks of interventions comprising multi-arm
studies that report on multiple, correlated outcomes. In Chapter 3 we have presented a
framework that utilizes expert clinical opinion about quantities easily understood by
clinicians (such as proportions) to impute unreported correlation parameters. However, that
method is only applicable for binary outcomes measured with odds ratios. In the present
approach we provide two general models for all types of outcomes assuming that the within-
study correlations are known or directly informed by external evidence (model 1) or
completely unknown (model 2).

The research presented in this Chapter was published in the Biostatistics journal (216).
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5 Summary

Standard methods for meta-analysis are limited to the case of comparing two
interventions. In real life clinical practice, however, there are usually many alternative
competing interventions that can be used to treat the same disease, while studies may contrast
different sets of these interventions, thus forming a network of evidence. In such complicated
cases of data availability pairwise meta-analyses cannot give a definite answer as to which
intervention works best for the target condition. NMA is an extension of the standard,
pairwise meta-analysis, and can be used to jointly analyze evidence regarding multiple
interventions in order to produce clinically relevant estimates. It does so by utilizing the
totality of the available information. For each comparison of two interventions there may be
direct evidence (obtained from studies that compare the two interventions head-to-head)
and/or indirect evidence (coming from the rest of the network). NMA combines these two
types of information in a single analysis, which results in increased precision as compared
to the usual pairwise meta-analysis. In addition, NMA allows the comparison of
interventions that have never been compared in a clinical trial directly.

For these reasons, NMA methods are becoming increasingly popular, and there is an
almost exponential growth in the number of published applications during the last few years.
However, the underlying assumptions of the model may sometimes be difficult to assess
while the mathematical complexity of the model, combined with the lack of easy-to-use
computer software often result in researchers using suboptimal or even inappropriate
methods (8,191).

In Chapter 2 of this dissertation we described an updated review of methods for NMA,
which we performed in order to summarize the state-of-the-art in the field. Our scope was
to provide a comprehensive account of the currently available methods, which can be used
by researchers interested in assessing the quality of published NMAs, in applying NMA to
answer new clinical questions, or in conducting further methodological research. In this final
section of the dissertation we also provide a brief summary of recommendations regarding
the implementation of NMA, as they emerged from our review.

When setting off to perform an NMA, researchers should start by considering whether
the treatments they plan to compare can be thought to be ‘jointly randomizable’. This means
that in principle any patient could be randomized to receive any of the treatments in the

network. This is a key assumption and should always be considered when setting up the
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network.

Next, researchers need to perform a systematic review to identify studies that address
the clinical question at hand. This should be followed by a critical appraisal of all the
available evidence. After identifying relevant studies to be included in the NMA, researchers
should check whether there are differences in the definition of the treatments across
comparisons in terms of dosage, duration, means of administration (e.g. pill vs. injection)
etc. The existence of systematic differences in the definition of treatments in the studies may
shed doubts regarding the validity of the transitivity assumption, which is a fundamental
assumption of NMA.

Then researchers need to check the distribution of potential effect modifiers across
comparisons, to make sure there are no important differences. Effect modifiers are study
characteristics that may influence the relative effectiveness of interventions. Checking for
differences in the effect modifiers, however, might be hindered by limited accessibility to
information on relevant covariates or by the small number of studies contributing to the
analysis. All these considerations should be described in detail in the review, to allow readers
to conceptually evaluate the validity of the assumptions of NMA on their own.

Researchers then need to decide on the model they will use to perform the NMA. In
Chapter 2 of this dissertation we discussed a range of alternative (but equivalent) models
that can be employed. The choice between the different models should be primarily driven
by the availability of technical expertise in the research team regarding the various software
packages. If a Bayesian framework is adopted, it is important to discuss the choice of prior
distributions. Particular caution is warranted when modelling variance parameters (such as
heterogeneity), as they typically cannot be assigned non-informative prior distributions. This
implies that the estimated heterogeneity may vary depending on the chosen prior
distribution, and thereby influence network consistency and precision of relative treatment
effects. Sensitivity analyses are crucial to understand the potential impact of key assumptions
in the modelling process, and a minimal set of sensitivity analyses should be always pre-
specified, to avoid data dredging.

If the network structure allows it, i.e. if there are closed loops in the network, a statistical
assessment of inconsistency should follow the fitting of the model. Inconsistency refers to
the statistical difference between direct and indirect information for a given treatment
comparison. Evaluating inconsistency may be a challenging task, especially in the presence

of multi-arm studies. In Chapter 2 we have presented a variety of methods and models
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currently available for statistically checking the network for consistency and we have
discussed the advantages and limitations of each method. We recommend the application of
as many of the presented methods and models as possible in order to gain a better
understanding on the validity of the consistency assumption and possible sources of
inconsistencies. Researchers should bear in mind, however, that the absence of a statistically
significant finding for inconsistency does not necessarily mean that the transitivity
assumption holds: all tests for inconsistency are expected to have low power, while large
values of heterogeneity may mask important inconsistency.

If statistically significant inconsistency is detected, researchers are advised to explore
potential sources of it and try to explain it. Local methods for assessing inconsistency can
point out possibly problematic studies, which should then be checked for data extraction
errors, important differences in the distribution of effect modifiers or other possible biases.
We have also presented various models for adding covariates and adjusting for suspected
biases in the analysis. If sufficient studies are available, such models can be applied to
explain and possibly eliminate inconsistencies. If however inconsistency persists,
researchers can consider splitting up nodes in the network (e.g. high dose — low dose) or they
can present the results from the appropriate inconsistency model (Lu & Ades model when
all studies are two-armed; design-by-treatment model when multi-arm trials are present)
along with the direct evidence.

Even though a statistical significant finding for inconsistency will imply that the NMA
results may not be valid, observing such an inconsistency may provide additional insight and
generate additional research questions about modifiers of the relative treatment effects. It
can motivate further analyses, such as combining individual participant data and aggregated
data or including information from observational studies. Thus, for the purposes of the
decision-making process, NMA may be used not only as a method for comparing treatments,
but may also serve as a tool for gaining insight on the drivers of real-life effectiveness.

The second aim of this dissertation was to advance the statistical methodology for jointly
analyzing multiple correlated outcomes in NMA. In Chapter 3 we introduced a MONMA
model which focused on the case of analyzing multiple dichotomous outcomes while
accounting for the correlations between them. The model synthesizes information from
RCTs augmented by external evidence, which can be obtained from expert clinicians. We
highlighted the mathematical details of this model and we discussed in depth the elicitation

process for obtaining expert information. In Chapter 4 we presented two additional MONMA
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models. Both models can be used to synthesize multiple dichotomous, continuous, or time-
to-event outcomes. The first of them has a richer structure. The second model is an
approximation of the first, and can be used in cases of limited data availability. We provided
the software codes needed to run all models and discussed possible extensions in the
Appendix.

In order to illustrate our methods, we applied all our MONMA models to a network of
antimanic drugs, where 15 drugs and placebo were compared in terms of efficacy and
acceptability. We found that our models provided more precise estimates for most treatment
comparisons, for both outcomes. This increase in precision was more pronounced when
larger correlation was assumed between the outcomes. In addition, multivariate meta-
analysis might provide more powerful and less biased results in the presence of selective
outcome reporting in the original studies (178). This refers to the case when in some studies
researchers choose to not present results that were statistically non-significant, or that were
deemed to be clinically not so interesting.

Although our MONMA models were shown to perform well and might be preferable to
a series of independent univariate analyses, they also have their drawbacks and limitations.
The complexity of the analyses increases as the number of outcomes or the number of arms
in the included studies increases. The gain in precision may be small if the correlation
coefficients are close to zero. In such instances, the added benefit of joint modeling of
correlated outcomes might be too small to justify the increased modeling complexity (195).
The benefit of a performing a joint analysis of multiple outcomes will also depend on the
fraction of studies not reporting one of the outcomes. There is a critical balance of having
enough studies reporting both outcomes to capture the correlation, and having enough
studies not reporting both outcomes, in order to benefit from the borrowing of strength that
could result from the model. A future simulation study may help explore the gains in
precision for different values of the correlation coefficients, for different numbers of studies
not reporting some of the outcomes, in order to pinpoint the cases where complicated
modeling will result in considerably more precise estimates.

A limitation of our models is that they make the assumption that there are no missing
outcome data in the studies. In the acute mania example response data were not available for
a small proportion of patients (less than 10%) and the missing entries were imputed as
failures. This imputation analysis has been shown to not materially impact the result from

network meta-analysis when the total missing rate is small (134). When imputations are
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needed for multiple, correlated outcomes, the impact of the imputation process on the
correlation between the outcomes should be considered. For example, if the same strategy
(e.g. to impute missing data as failures) is followed for two efficacy outcomes, then this is
expected to increase their correlations.

To summarize, based on our findings we recommend researchers to consider both
univariate and multivariate approaches when possible, to ascertain if clinical conclusions
about the ranking of treatments for each outcome remain consistent under different model
assumptions. Finally, since multiple outcomes network meta-analysis is a new, largely
unexplored area, there are still many open areas for research. A possible extension would be
to include IPD, either exclusively or in a combination with aggregated data. Furthermore,
our models could be implemented in popular statistical software making MONMA more
easily accessible to review authors.

As a final, concluding remark, we believe that the research presented in this
dissertation is an important advancement in the field of NMA. We also think that our models
constitute the best available method for the network meta-analysis of multiple correlated

outcomes, and that their implementation is in practice straightforward.
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6 Iepiinyn

O khaowkég pébodot petd-ovarvong meplopilovtol oTny mEPITT®ON TG GVYKPIoNG dVO
Oepamevtikdv moapepfdoeny. v KAk Tpdaén, wotdco, vradpyovy cuvnOmG TOAAEG
EVOAOKTIKEG TOPEUPACES TOV UTOPOVV va. ypnoiorombovv yia tn Bepomeio g 1010
vooov. [TapdAinia, 6Tov TPOGTAONGEL KATOL0G VAL OTAVTIGEL GTO EPMTNLA TOL0L OO QVTEG
TIG ToPEUPAGEIS SOVAEVEL KOADTEPQ Y10 TNV OVTILETAOTION TS CLYKEKPIUEVNC VOGOV, UITopEl
vo evIomicel o TANODPA TLYOMOTOMUEVOY KMVIKOV OOKIUOV TOV £Y0VV GLYKPIVEL
SLOLPOPETIKA LTOGHVOADL QLTMOV TOV TOPEUPACEMV. Xe TETOIEG TIC TEPUTTOOCELS, OTIG OTOIES
o dwbéowa tekunpu oynuotifouv éva  diktvo Bepamevtik®dv  mapepPdcewny, N
ocvvnoicpévn petd-avaivon dev Umopel vor OMGEL [0 CAPY OTAVINGT OC TPOS TO O
napépPaon eivor mpotyodtepn. H petd-avaivon diktoov (MAA) givon po eméktaon tng
KAOOIKNG HeETA-avdAvong, kot umopel va ypnotpomombel yio var avoivoel ond Kotvov
dedopéva ylo. TOAAUTAEG TaPEUPACELS, TPOEPYOUEVO OO TOAAEC OLAPOPETIKEG KAIVIKEG
UEAETEG, HE OKOTO TNV mopay®yn KAvika ypnowov ektyuncemv. H MAA ocvvBétel 1o
cVuvolo G mAnpoeopiag oe pio eviaio avdivon. H vrdpyovca minpogopia yio v
ovYKplon 000 GLYKEKPLUEVOVY TapepPfdcey pmopel va givan gite dueon (amd KAWVIKES
peAéTEG TOL GuYKpivovy TG ev AOyw TmapepPacelg) eite éupeon (L€ow TOv OSKTOOV).
Xvvovdlovtag dueomn kat Eppeon TAnpoeopio n MAA emituyydvel o avénomn g akpifetog
0€ GUYKPIOT L€ TNV KAOGGIKY UETA-0VOAVOT|, EVA EMITPEMEL KOL TNV GVYKPLoN Oepomeudv
OV OEV £(0VV CLYKPLOE TOTE GE KATOLO KAMVIKT LEAETT).

o avtovg tovg Adyovg 1 MAA yiveton oAoéva Kot mo OMpoeing. Mdalota Ta
televtaio ypovia, €xel mopatnpndel po oxeddv ekbetikny avénomn tov apBpov TV
onuoctevpévoy  epappoydv g MAA. TMapdia avtd, yo éva aplBud epgvvntav
eEaxorovbel va punv etvan EexdBapo to mmg pmopel kdmolog va agloloynoet T Pacikég
TAPadOYEG TOL HOVTEAOV. AVLTO TO YEYOVOS, GE GUVOLOGUO He TNV EAAewyn €OYpNGTOV
AoyopkoD Yoo MAA Guyva €€l OG AOTEAEGILA O1 EPEVVNTES VAL YPT|CLLOTOLOVV OVETOPKEIS
N akoun Kot oKatdAAnAeg peboddovg otic avarvoelg toug (8,191).

210 Kepdroto 2 g mapovoag SatpiPng meptyplyople (o GUGTNUOTIKY OVOUGKOTNON
TV HeBodwv yio MAA, 1 onoia TpoylotonomOnKe e GKOTO Vo, GUVOWIGEL TIG GUYYPOVES
pneBOd0VG. XKOTOG OIS TOV VO TPOCGPEPOVIE L0l OAOKANPOUEVT EIKOVO Y10 TV GOYYPOVN
peBodoroyia tng MAA, cvvoyilovtog tv vrdpyovoa teyvoyveocia. To mpoidv avtng g

AVOOKOTNONG UToPEl vaL pavel YpICILO GE EPELVNTEG TOV EVOLAPEPOVTAL Y10 TNV AELOAOYN O
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g moldTNTag TV dnpoctevpévav MAA, yuo v epappoyn s MAA oty andvinon véov
KAMVIKOV EpOTNUATOV, 1] Kol 6TN SteEaywyn Tepantépm peBodoroyikng Epguvag oe pebdoovg
yio MAA. e avto to onueio Oa mapovoidoovpie Eva Tepiypappo TV BEATIGTOV TPOKTIKMOV
vy v €pappoyn g MAA, dnwg auTtég TPoEKLYV OO TNV GLGTNOTIKY] VOGKOTNGN TNG
Bproypapiog.

To mpdTo Prina oe o MAA €ykettal 6To ot epevvnTég Vo eEETAGOVY TO OV Kol KOTA
mOco ot Bepaneieg mov ckomevovy va e£eTdoovy pmopovv va BewpnBodv «omd Kowov
TUYOLOTOMGIHESY. AVTO onuaivel 0Tt Ba Tpémet 0 kKABe acbevg va pmopovoe — kat’ apynv
— va, &yl TuyaomomBet va Aapel omoladnmote and Tic TapepPdoelg oto dikTvo. Avth eivat
p Bacikn| mopadoyn Kot Oa mpémetl va AapPavetot mévto vwoyn KaTd TV Onpovpyio Tov
SktHoVL.

2N GLVEYELD, Ol EPELVNTEG KAAOVVTOL VO KAVOLV U0 GUGTNUOTIKY OVOGKOTNGN TG
BipAoypapiag dote va eVTOTIGOVV TIC VITAPYOVCES KAVIKEG LEAETEG TTOV ATTOVTOVV GTO VIO
e€étaomn KAVIKO epdTNUO. ZTNV GLVEXELN TTPETEL VAL AAPEL YDPQL Lt KPLTIKN 0&LoAdYNoN NG
TOWOTNTOG TOV PEAETAOV AVTAOV. AQOV KATAANEOVY OTIC LeAETES TOL Bal TEPIANPBOVY oV
petd-avéivon, ot gpguvntég Ba mpémel var EAEYEOLV AV LTAPYOLV OPOPES GTO MG
opifovtar o1 Bepaneiec avd {evyog cuyKpicemV 66OV aPopd TV d0GOA0YIa, TN JIUPKELD, TOV
TPOTO YopNyNong (m.y. yanvéveon) kin. H vmapln cuotnUATIKOV S10pOPADYV GTOV OPIGUO
tov Ogpameidv pmopel va Ompovpynoet apgiBorieg oxetikd pe v gykupdTTa TG
vobeong petafotikdmrag (transitivity). Avth n vedbeon givar Oepelddovg onuaciog yio
mv MAA, ko 6tav avt| kataotpatnyeiton ta omotedéopoto o MAA Ba mepiéyovv gv
vével peponyies.

21 OLVEYXEW, Ol €PELVNTEC TPEMEL v EAEYEOLV TNV KOTOVOUN TOV €V OuVAUEL
TPOTOTOINTAOV ETIOPOONS OTIG UEAETES, Yid va PEPatmBOVV OTL dEV VIAPYOLY CNUAVTIKES
dpopéc. Tporomomeng emidpaong ovopdletor pa petaAnt (o€ eninedo peAéng) n omoia
emmpedlel v oyeTikn enidpacn twv Bepaneidv mov cuykpivoviat. [ToAAEG popéc 0 ev AOY®
éleyyoc pmopel vo amodelytel otnv TPAEn dVOKOAOG, E0IKE OTAV eV VIAPYEL 1| GYETIKN
TAnNpoeopia o€ OAEG TIC OMUOGIELUEVEG UEAETEG N OTOV O OPBUOG TOV UEAETMOV TOV
ovufPdrilovy otnv avaivon eivar pikpoc. Oleg ot oyetikéc Aemtouépeteg Ba mpémel va
TEPLYPAPOVTAL AETTOUEPDG GE TLYXOV ONUOCIEVGEIS N AVAPOPES TMV OTOTEAECUATOV TNG
MAA, ®cte vo pmopoldv ol avoyvOGoTES Vo aELOA0YGOLY TNV £YKLPOTNTA TOV VTOOECEWDY
g aVAALONG.

To enduevo ot1ad10 glvarl va amopaciotel To akpiPég poviélo mov Ba ypnoorom et
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Yo v gpappoyn ™mg MAA. Xto Kepokato 2 avtig g dwtpiPrg mopovcidcape Eva
GUVOAO SLOPOPETIK®V (AL TOPATANGUDV) LOVIEAMY TOV LITOPOVV VAL XPNGLOTOMm 000V Yo
avtoV Tov okomo. H emAoyn| peta&d tov dtapdpmv poviéAwv Ba tpénet va Paciotel kupimg
OTNV VIAPYOVCH TEYVOYVAOGCIO TNG EPEVVNTIKNG OUAOOS GYETIKO UE T O16popa TOKETO
AOYIOUIKOV IOV pUmopolv va ypnoipomombovv yuo v avaivorn. Av viobenbei éva
Mmnaeliovo mlaicto, eivor onuoavtikd va ocvlnmbel n emAoy TOV €K TOV TPOTEP®V
katavoudv (prior distributions) mov ypetdletonr vo ypnoonomBoldv yia T ToPAUETPOG.
[d1aitepn mpocoy amatteiton KOTA TNV HOVIELOTOINOT T®V TOPAUETP®Y SOCTOPAS (OTwS
N €TEPOYEVELX), OESOUEVOL OTL YEVIKG YloL ALTOV TOV €100VG TIC TAPUUETPOVG Ol EK TMV
TPOTEPMOV KOTAVOLEG TTAVTO GUVEIGPEPOLVV TTANPOPOPia 6TO HOVTELD. AVTd cuvendyeTat OTL
1 EKTILOUEVT ETEPOYEVELN UTOPEL VAL TOIKIAEL OVAAOYOL LLE TNV EMAOYN TNG EK TOV TPOTEPOV
KOTOVOUNG, KO LE TOV TPOTTO aTO VoL EMNPEAGEL TI) GLVOYH TOV SIKTHOL KO TV EKTYLMUEVN
GYETIKN amoTeAESHATIKOTNTA TV Oepameidv. Ot avardoelg gvaichnciog sivor {oTikng
ONUAGI0g MOTE VO KOTAVONGEL KATO0G TOV EVOEYXOUEVO AVTIKTUTO TETOIWV LITOBEGEMY O
dwdwkacio povteromoinong. 'Evag eldyiotog aptfpnog avoivcemv evasnociog npénet mévra
va tpokabopileTal, 10aviKa o€ ONUOCIEVUEVO TPMTOKOALO.

Av 1 dopn TOV JIKTVLOL TO EMTPENEL, oV INANST VILAPYOVY GTO diKTLO KAEIGTOl fpdyOL,
[0 GTOTIOTIKY eKTipnon ¢ acvvémelog (inconsistency) Ba mpémer va Adfer yopa. H
GTOTIOTIKY] OCVVETELN AVAPEPETOL GE SLOPOPES OVAESH GE EKTIUNGELS TOVL Pacilovtol otnyv
dpeon Ko v éupeon mAnpopopio oto diktvo. H cwot extipnon g acvvéneiag propet
va givarl QUGKOAT, €0IKA Otav oty Paor dedouEveV VTAPYOVY UEAETEG TOL GLYKPIVOLV
moAlamAég Bepameieg. 1o Kepdiaio 2 avtrg g oTpifnig mapovstdcape o moikiiio
pHeBOO®V Kot LOVTEA®V OV UTOPOVV VO YPNGLULOTO OOV Y10 TOV GTUTIOTIKO EAEYXO TOV
Owtoov og oyéon pe v ovvénewn. [HapdAinia, culntnoape To TAEOVEKTHUATO KOl TOVG
mePLoplopoBs g Kabe pebodoov. Ipoteivovpe v epappoyn 660 10 dvvotd TeEPIGGHTEP®V
HOVTEA®V 1] HeBOS®V Yo TNV depehivnon NG GLVETELNS TOV OIKTVOV. Mg avTdV TOV TPOTO
dtevkoAvveTal 0 evtomicopdg mbavav nydv acvvénelag. Ot epguvntég Ba mpémet va £xovv
KATé VOu, 0GTOG0, OTL 1] ATOVGIO GTATIGTIKA GNULOVTIKMV EVPTLUATOV Y10 TNV OGVVETELN OEV
onuoivel kat’ avaykn 0Tt n vtobeon ™¢ HeTOPATIKOTNTOS IoYVEL OAES TO OTATIOTIKA TECT
Y10 LGVVETELN AVOILEVETOL VOL EXOVV YOUNAN 16Y0, EVO PEYOAES TILES TNG ETEPOYEVELNG UTTOPEL
VoL KPOWYOLV TUYOV OLGVVETEIEG GTO SEQOUEVOL.

Edv aviyvevbel oTATIGTIKO OMNUOVTIKY] OCLVETEWN, Ol €PELVNTEG KOAOLVTOL VO

dtepevvnoovy mbavég myEg TS Kot va tpoomadnoovy va tig eénynoovy. Tomkég péBoodot
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Yoo TNV 0E0AOYNON TNG AGVVETELNG UTOPOVV VO, ETIGT|ULAVOVY EVOEXOUEVOS TTPOPANUATIKES
puerétec, ol omoiec Ba Tpémetl otn cuvEKELD va eELeYYO0VV Yo TBavE GdAaTa 6TV ££0pLEN
OEOOUEVMV, Y10l TUYOV CUAVTIKEG OL0POPES TNV KATAVOUT TWV TPOTOTOTMOV EMIOPOCNC 1
dAlo mBoavd cedAipata. Emiong, mopovcidcape Sdpopa HOVTIEAN TOL UTOPOLV V.
¥pNoonombodv yoo v mpocsoppoyn ™mg MAA yia pepoinyio, pe v mpocsHnkn
TANPOPOPIOG CYETIKNG LE TOVG TPOMOTOMTEG emidpaons. Tétown poviéda pmopodv va
EQUPUOCTOVV Y10 VO EENYNOOLY — Kol EVOEYOUEVMG VUL EEUAEIYOVY — TVYOV AICVVETIEIEG GTO
OikTvo. AV 1) GTOTIOTIKN ACLVETELD OEV Elval dSuvaToV va eEAAEIPTEL e aVTOV TOV TPOTO, Ol
gPELVNTEG UmopoVV va eEeTAoOVY TNV KatdTunon kOpPwv (=0epaneidv) tov diktHov, m.y.
vynAn 66om / yaunin 66on. Evoddaktikd, LTopovv vo Tapousticouy To. ATOTEAEGLATO O
T0 KOTOAAN A0 povtého acvvénetag (Lovtého LU&Ades dtav Oleg ot peléteg cuykpivouy 800
Oepaméleg ka1 povtédo design-by-treatment Otav vrapyoLV UEAETEC WOV GLYKPIVOLV
ToAOmAEG Oepameieg) o€ ocuvovaoud pe TNV GUEST TANPOPOPIO. TOV TPOKVITEL OO
KAOOOIKES LETA-OVAADGELC.

[Toporo MOV €vo GTATIGTIKA CMUOVTIKO TEGT Yl TNV OGVVETEWL GUVEMAYETAL OTL TO.
amoteléopato pog MAA mbavag dev givol €ykupa, pio TETOWO TOPATHPNCN WITOPEL va
AmOTELECEL KIVIITPO Y10 TNV SLOTOTMOOT] TPOGHETOV EPEVVNTIKOV VITOBECEMY GYETIKA LE
mhovolg Tpomomontég enidpacng. Mmopel vo Topakiviioel TEPAITEP® AVOAVGELS, OTTMC M
TePIANYN aTOUIKAOV dedopévav TV aclevdv 1 TANPoeopies amd LEAETES TOPOTPNONG.
‘Eto1, yio tovg okomovg tng Odikaciag ANYng amopdacemv, 1 MAA pmopel va
ypnooromBet Ot povo wg péEBodog yia t cvykpion Bepomeldv, aAld pmopel eniong va
YPNOEVCEL OC gpyaAeio yw v dlepevvnon TV cuvinkov mov emnpedlovv v
AmOTELECUATIKOTNTA TV Oepaneldv oe cuvnOiopéveg KMViKEG GLUVOTKEG.

O de01EPOC GTOYOG TNG TOPOVGAG SLTPPNG NTAV 1 AVATTTVEY GTOTIGTIKNG Lebodoroyiog
YL TNV Atd KOWVOL aVAADGT TOAAATA®V GUCYETIGUEVOVY ekPdoemy pe MAA. Zto Kepdiaio
3 ewaydyope évo HOVTEAO TO OTOl0 emKEVIpOONKE otnv mepimtmon g avdAvong
TOALOTAGDV O1YOTOL®V EKPAGE®V TO 0MO10 LOVTELOTOLEL TIC CLGYETIoES avapesd Tovg. To
HOVTEAD GLVOETEL TANPOPOPIES A0 TLYAMOTOMUEVES UEAETEG, OTIS Omoieg mpooTtiBevion
eEMTEPIKA  OEOOUEVOL TTOL  TPOEPYOVIOL OO  EUTEIPOYVAOUOVES KAWVIKOVS  Y1OTPOVC.
[Tapovoracaple Tig LoONUATIKEG AETTOUEPELEG VTOV TOL LOVTELOL Kot culnTnoape o€ fdBog
N Odkacio. EKPoiguong TANPOPOPLOV OO TOVG EUTEPOYVOUOVES. 210 Kepdiao 4
TOPOVGLACALE OVO EMTAEOV LOVTEAN TOAATADV GLoYETICUEVOV eKPdoewv pe MAA. Kot

Ta dVO POVTEAD UTOPOVV VO, ¥PNOLUoTotnBody Yo vo cLVOEGOVY TOALATAES SLYOTOUES M|
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ovveyelg exPdoetg, N kau ekPacelg mov kabopilovrot amd Tov Ypovo UEXPL VO ELPAVIGTEL TO
o e€€taon cvpuPav. To mpdto amd avtd To povtéda £xel mo mAovota doun. To debtepo
HOVTELO €lval (ol TPOGEYYIOT] TOL TPMTOL, Kol UITOPEL Vo xpnolponombel e TePImTMOGELS
neplopopévng dabeoipndtntog dedopévov. O KdOOKAG AOYIGHKOD TOV oToLTeiTOl Yo Vol
YPNOLOTOMGEL KOVEIS Oha Ta LovTéLa KaBdS Ko TOavEG EMEKTAGELS TOVG GLLNTOVVTOL GTO
[Tapdptnuo ™ mapovcog daTpipg.

["a va ddcovpe Eva TOPAOEY O TPOKTIKNG EPAPLOYNE TV HEBOS®V LOG EQPUPUOCOLE
O\ TOL LOVTEAQ TTOV TTOPOVGLAGTNKOY GE VTV TNV JATPIPN o€ Eva SIKTVO AVTILAVIOK®V
eopudkmv. X avtd To diKTLO CLYKpivovTol 15 Papuakoroykés Bepameieg Yo v ogia
pavie kafog Kot o ewkovikd @dpupako (placebo), wg mpog ™V amoteAEoUATIKOTNTO
(efficacy) kot tnv dextikdtnTa (acceptability). Bpiikope 0Tt to povtého pog mapéyovy mo
aKpPEic EKTIUNGELS V1O TIC TEPIGGATEPEG GLYKPIGELS avapesa oTiC Bepameieg, Kot yia Tig 600
exPdoelc. Avty n avénon ¢ akpifelag Nrav mo Evtovn Otov vroBécaue PEYaADTEPT
ocvoyétion petald tov exPhocwv. EmmAéov, €xet deyybel 6TL M mOAV-petafinty peto-
avdAvon pmopel vo LELMGEL TV LEPOANYIN TOV EKTIUNGE®V OTOV KATOLES A0 TIG OPYKES
UEAETEC €KOVOV EMAEKTIKN avo@opl Tov amotedecpdtov (178), my. amoxpvfoviog
QOTELECUATO TOV OEV ETAGOV TO OPLO GTATIOTIKNAG CNLOVTIKOTNTOG 1) dgv KpifnKav apKeTd
EVOLUPEPOVTOL.

[Topd to yeyovog 0Tt Ta povTéda pag £deiEav va amodidovv KaAd kot pmopel vo eivon
TPOTILOTEPO OO U0 GEPE aveEapTnTO®V, LOVO-TAPAYOVIIKOV OVOADGE®V, £YOVV KATOL
HELOVEKTHLOTA KO TEPLOPIGHOVG. H moAvmAokotnTa TV ovoldsemv avEdvet e Tov aptipd
TV VIO avéAvon ekPdcemv 1 6tav oTIc CLUTEPIAAUPAVOLEVES HEAETES VITAPYOVV KATOIEG
ov cvuyKpivovv peydro apBpd Bepancimv. Eniong, o képdog otnv axpifeia amd v xpnon
TOV HOVTEA®V oG pmopel va gival HKpO oV Ol GUVIEAEGTES GULGYETIONG OVALEGO GTIG
ekPacelc etvar kovtd 6to Unodév. Xe TET01EG TEPUTTMOOELS, TO TAEOVEKTUATO TNG KOG Omd
KooV povtehomoinong Tov cuoyetilopevov ekfdocwv pmopel va givor moAd Atyo yio va
dkatoloynoovy v owénuévn TolvtAokotnta ¢ avaivong (195). To képdog oe akpifetia
eniong e€aptdral and T0 TOGOGTO TV PEAETMV OV OEV TAPEYOVY TANPOPOPIES Y10t OAES TIG
ekpacelc. Yrdpyet pio kpioun 1coppomio 6To vo £XEL KAVELG apKeETEC LEAETES TTOL VO dTvOLV
TANPOPOPIES KOl Yo TIG OVO eKPACEIS OGTE VO UTOPEl Vo EKTIUNCEL pe axpifela tov
GLGYETIGUO TOVG, OAAAL KOl OPKETEG LEAETEG TOV VO PNV TOPEYOLY TANPOPOPia Yo Kémolo
(M kdmoteg) amd TG ekPdoelc, mpokeévov va enmeenBel Kaveic and v avénon g

axpifelag mov umopet vo TpokvYEL oo T0 HOVTELD. Mia LEAAOVTIKY LEAETT) TPOGOUOTIMOTG

93



umopet vo. fondnoet oto va gpeuvnBolv ta mhovd o@éAN ce oyéom pe TV akpifela Twv
EKTIUNCEDV OO TO LOVTEAN LLOG, Y10 OLUPOPETIKES TUULES TMV GUVIEAEGTMOV GLGYETIONG, Yo
OLOLPOPETIKOVG OPIOLOVE LEAETMV KO Y10 OLOLPOPETIKA GEVAPLUL EMAEKTIKNG OVOPOPAS TV
QTOTELECUATO OTIG TPOTOTLTEG HEAETEC, TPOKEYWEVOD VO, EVTOTIGTOVY Ol TEPUTTMGELS KOTA
TIG Omoieg 1 ¥pNoN mo eEEMYUEVOV LOVTEL®Y B 00N yNoEL € TOAD 1o aKpPIPElG EKTIUNGELS.

‘Evoc mepropiopdg tov poviélmv pog ivar 6t kdvouv v vobeon Ot 0ev vIapy ovV
eMetlmovoeg TIHEG oTIg peAétes. 1o mopddetypo g ofelog poviag, 0edopéva yio TV
amoteleopatikdTnTo TG Bepameiog dev NTov dtubéaa o va pkpd mocootd TV achevmv
(AMydtepo and 10%). Xe avTég TIG TEPMTMOCELS, 01 EALEITOVGES TIUEG ETY0V KATOAOYIOTEL G
amotvyieg. Avt 1 oTpaTNYIKY £xel OBl OTL OV emMpedlel GNUOVTIKA TO OTOTEAEGLA TNG
MAA, 6tav 10 6uvoAKd T0G06TO EALEOVG®V TI®V givar pukpd (134). v mepintwon
OV LIAPYEL LEYOAO TOGOGTH EALEIMOVGAOV TIUMV Y10, TOAAATAES GUOYETICUEVES EKPACELS
to1e oplopéveg PEBOSOL GTPATNYIKY OVTIUETAOTIONG TOV EAAETOVCMV TIUOV UTOPEL va
odnynoetl oe cedipata. o mopdderypa, ov 1 10100 GTPATNYIKY VO KOTAAOYIGTOOV TO
ogdopéva  mov  Aeglmovv  ®g amotvyleg axolovBnbel kot  yu Vo  ekPhoelg
OTOTEAECUATIKOTNTAG, TOTE OVLTO OVOUEVETOL VO OVENCEL YELOMG TIS EKTILOUEVESG
GLOYETIGELS OAVAIEGA TOVC.

[evikd, xon pe Paon ta evpNUATA TNG EPELVAS LOG, GLUVIGTOVUE GTOVS EPEVVNTEG VO
¥pNowonooHV dtav givor dLVOTOV Kol TNV LOVOTOPOYOVTIKY KOl TOAVTOPOYOVTIKN
TPOGEYYION, MOTE VO STICTOOEL €AV TOL KMVIKE CUUTEPACUATO GYETIKA e TNV KATATOEN
tov Oepameldv yio kabe €kPaocm TOPOUEVOLV GUVETN KAT® om0 OPOPETIKES EMAOYEC
LOVTEAOVL.

Agdopévov 0tt 1 MAA molhomhdv ekPdacewv amotehel po véa, oe peydio Babpo
ave&epevvntn mePLoyN, £E0KOA0VOOVY VO VITAPYOVY TOAAA BELATO AVOIKTA TPOG TEPETAIP®
épevva. Mo mBovn eméktaon TV HOVIEA®V TOL TopovcldctnKav o Mrav va
GLUTEPIANPHOVV TPOGHOTIKA dEdOUEVA GTO EMIMEDO TOV 0GHEVDV, £1TE AMOKAEIGTIKA E1TE O
GLUVOLAGHO HE GLYKEVTPOTIKG dedopéva avd perétn. Emmiéov, Ba Nrav onuavtikd yo to
LOVTEAL LOG VO EPOPUOGTOVV GE SNUOPIAT AOYIGHIKA OoTe va yivel 1 MAA moAlamAmv
eKPAGE®V O TPOCITNH GTOVE EPELVNTEG.

Ev té)e1, motevovpe 4Tin £pguva TOL TOPOVGLAGTNKE GTNV TOPOVGa daTplPr) lval pia
onuavtiky e&EMEN otov topéa g MAA. Iliotedovpe emiong O6tL To poviédo mov
TOPOVGLAGTNKAY ATOTEAOVV €L TOV TAPOVTOG TNV KOAVTEPN O100EG1UN LEBODO Yot TNV HETA-

VAV SIKTVOL TAPOLGIK TOALATADY GUOYETIGUEVOV EKPACEWV.
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Appendix

l. The acute mania dataset
In this Section we provide the data used in the analyses of Chapters 3 and 4. The data
originates from a network of treatments for acute mania (206). It comprises 65 studies (47
two-arm and 18 three-arm) reporting on response to the treatment and dropout. Eighteen of

the included studies did not provide data for response while one did not report data on dropout.

Table 7: The acute mania dataset

Response Dropout
Study 95% 95% 95% 95%
D Treatment 1 Treatment2 | OR C.l. C.l. OR C.l. C.l.
(lower) | (upper) (lower) | (upper)
1 Avripiprazole Placebo 059 | 0.38 0.90 0.66 0.38 1.17
2 Avripiprazole Placebo 041 | 0.25 0.67 1.12 0.70 1.81
3 Avripiprazole Haloperidol 0.70 | 0.46 1.06 2.65 1.67 4.20
4 Avripiprazole Placebo 035 | 0.20 0.62 2.64 1.53 4.55
5 Aripiprazole Placebo 082 | 0.54 1.26 1.04 | 0.68 1.58
6 Quetiapine Placebo 044 | 0.24 0.79 1.67 | 0.94 2.96
7 Quetiapine Placebo 0.67 | 0.39 1.15 141 | 0.80 2.47
8 Quetiapine Lithium 045 | 0.22 0.89 353 | 121 10.27
9 Quetiapine Placebo 044 | 0.28 0.69 0.98 | 0.60 1.60
10 Ziprasidone Placebo 056 | 0.31 1.03 141 | 0.79 2.51
11 Ziprasidone Placebo 049 | 0.26 0.93 1.29 0.71 2.33
12 Ziprasidone Placebo 091 | 052 1.57 0.86 0.47 1.56
13 Ziprasidone Olanzapine - - - 3.00 0.48 18.93
14 Ziprasidone Placebo 0.96 | 0.69 1.33 0.61 0.41 0.91
15 Olanzapine Lithium - - - 3.50 0.32 38.23
16 Olanzapine Placebo 0.32 | 0.15 0.66 2.99 1.50 5.96
17 Olanzapine Placebo 0.38 | 0.18 081 |227| 107 4.79
18 Olanzapine Divalproex 059 | 0.36 0.97 1.23 0.72 2.07
19 Olanzapine Placebo 043 | 0.27 0.68 1.07 | 0.65 1.75
20 Olanzapine Haloperidol 1.04 | 0.69 1.56 1.35| 0.91 2.00
21 Olanzapine Placebo 1.05 | 0.50 2.24 1.23 | 0.55 2.75
22 Risperidone Placebo 021 | 0.13 0.35 343 | 1.82 6.43
23 Risperidone Placebo 057 | 0.30 1.09 1.98 1.03 3.79
24 Risperidone Placebo 043 | 0.25 0.74 1.78 1.09 2.92
25 Risperidone Olanzapine 120 | 0.78 1.86 0.55 0.33 0.90
26 Divalproex Lithium 6.67 | 0.66 67.46 - - -
27 Divalproex Placebo 056 | 0.37 0.84 1.27 0.85 1.91
28 Divalproex Placebo 0.12 | 0.02 0.67 0.86 | 0.25 2.98
29 Carbamazepine Divalproex 241 | 0.52 11.10 | 1.00 0.17 5.98
30 Divalproex Placebo 0.38 | 0.19 0.76 1.74 | 0.63 4.80
31 Haloperidol Carbamazepine | - - - 1.07 | 0.06 18.62
32 Carbamazepine Placebo 032 | 0.22 0.48 1.40 | 0.96 2.03
33 Lithium Lamotrigine | 0.76 | 0.18 3.24 0.62 | 0.09 4.34
34 Placebo Topiramate - - - 1.76 | 1.05 2.95
35 Placebo Topiramate - - - 219 | 1.23 3.89
36 Lithium Olanzapine 244 | 1.01 5.85 0.36 | 0.13 0.98
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37 Placebo Paliperidone | 1.14 | 0.75 1.73 0.88 | 0.58 1.35
38 Haloperidol Carbamazepine | 0.80 | 0.12 5.40 0.10 | 0.01 0.90
39 Haloperidol Lithium - - - 3.33| 0.36 30.70
40 Haloperidol Carbamazepine | - - - 6.00 | 0.53 67.65
41 Lithium Carbamazepine | - - - 0.20 | 0.02 1.94
42 Olanzapine Lithium 189 | 0.38 9.27 0.63 0.09 4.24
43 Divalproex Placebo - - - 0.94 | 0.46 1.93
44 Topiramate Placebo 1.29 | 0.72 2.29 047 | 0.23 0.96
45 Gabapentin Placebo - - - 057 | 0.27 1.20
46 Lithium Carbamazepine | - - - 216 | 0.71 6.57
47 Olanzapine Placebo 0.64 | 0.36 1.16 0.92 | 0.53 1.61
48 Aripiprazole Lithium 092 | 0.59 1.43 0.94 | 0.60 1.46
48 Aripiprazole Placebo 059 | 0.38 0.93 0.99 | 0.64 1.54
48 Lithium Placebo 0.64 | 041 1.01 1.06 | 0.69 1.64
49 Aripiprazole Haloperidol 1.07 | 0.70 1.65 112 | 0.68 1.83
49 Aripiprazole Placebo 0.70 | 0.45 1.09 1.24 | 0.75 2.04
49 Haloperidol Placebo 0.65| 0.41 1.01 1.11 | 0.68 1.81
50 Quetiapine Lithium 099 | 0.57 1.72 1.62 | 0.68 3.83
50 Quetiapine Placebo 0.32 | 0.18 0.58 434 | 199 9.48
50 Lithium Placebo 0.32 | 0.18 0.59 269 | 1.32 5.47
51 Quetiapine Haloperidol 172 | 0.98 3.00 0.52 0.28 0.98
51 Quetiapine Placebo 0.73 | 0.41 1.28 1.20 0.68 2.12
51 Haloperidol Placebo 042 | 0.24 0.75 2.30 1.24 4.26
52 Ziprasidone Haloperidol 2.05 1.33 3.14 0.84 | 0.55 1.28
52 Ziprasidone Placebo 045 | 0.25 0.82 1.75 1.01 3.04
52 Haloperidol Placebo 022 | 0.12 0.40 2.09 1.20 3.63
53 Olanzapine Divalproex 0.97 | 0.65 1.44 0.94 | 0.60 1.46
53 Olanzapine Placebo 0.68 | 0.41 1.12 1.03 | 0.61 1.75
53 Divalproex Placebo 0.70 | 0.42 1.17 1.10 | 0.64 1.88
54 Risperidone Haloperidol - - - 212 | 0.96 4.64
54 Risperidone Placebo - - - 1.82 | 0.82 4.01
54 Haloperidol Placebo - - - 0.86 | 0.40 1.85
55 Risperidone Haloperidol - - - 1.63 0.23 11.46
55 Risperidone Lithium - - - 0.46 0.04 5.75
55 Haloperidol Lithium - - - 0.29 0.03 3.12
56 Risperidone Haloperidol 0.95| 0.60 1.51 0.87 0.41 1.83
56 Risperidone Placebo 053 | 0.32 0.86 1.42 0.72 2.82
56 Haloperidol Placebo 056 | 0.34 0.91 164 | 0.80 3.37
57 Asenapine Olanzapine 146 | 0.97 2.18 0.42 0.27 0.67
57 Asenapine Placebo 049 | 0.29 0.83 1.09 | 0.67 1.77
57 Olanzapine Placebo 0.34| 0.20 0.57 256 | 151 4.35
58 Asenapine Olanzapine - - - 056 | 0.35 0.87
58 Asenapine Placebo - - - 1.46 | 0.88 2.42
58 Olanzapine Placebo - - - 263 | 156 4.43
59 Divalproex Lithium 097 | 0.43 2.17 171 | 0.76 3.89
59 Divalproex Placebo 031 | 0.15 0.64 1.90 0.97 3.71
59 Lithium Placebo 032 | 0.14 0.75 111 | 0.49 2.52
60 Lamotrigine Placebo - - - 0.92 | 0.50 1.69
60 Lamotrigine Lithium - - - 207 | 0.94 4.56
60 Placebo Lithium - - - 2.24 1.03 4.89
61 Lamotrigine Placebo - - - 0.67 | 0.35 1.28
61 Lamotrigine Lithium - - - 0.37 0.19 0.72
61 Placebo Lithium - - - 055 | 0.28 1.08
62 Placebo Topiramate - - - 1.21| 0.73 2.02
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62 Placebo Lithium - - - 098 | 0.54 1.78
62 Topiramate Lithium - - - 0.81| 0.48 1.34
63 Placebo Topiramate - - - 1.04 | 0.48 2.27
63 Placebo Lithium - - - 149 | 0.71 3.12
63 Topiramate Lithium - - - 1.43 0.69 2.96
64 Paliperidone Quetiapine 0.80 | 0.54 1.19 1.05 | 0.64 1.71
64 Paliperidone Placebo 0.44 | 0.27 072 |248 | 147 4.19
64 Quetiapine Placebo 055| 0.34 0.90 238 | 141 4.00
65 Olanzapine Haloperidol 1.82 | 0.67 4.93 3.27 | 122 8.76
65 Olanzapine Placebo 0.75| 0.43 1.31 197 111 3.49
65 Haloperidol Placebo 041 | 0.15 1.13 0.60 | 0.23 1.60
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1. Equivalence between different formulas for estimating the

correlation of two log odds ratios.

In this section of the appendix we prove the equivalence between different formulas for
estimating the correlation of two log odds ratios: equation (8) in Wei and Higgins (210),
equation (10) in this dissertation and equation (4) in Bagos (208).

First we show the equivalence between equation (8) in (210) and equation (10) in this
thesis. The covariance between two log odds ratios for a study comparing treatments A and B
for outcomes R and D,following Wei and Higgins is (after dropping the study index):

cov(InORg, INORp)

_ PwMyrp 1 4 1 1 N 1
MU RMAD | CAR far.€p fap (23)

o _PwMagp j1+1j1+1
v MBRrMBD +|€BR fri€p fBD
In this equation:
e ORjy, ORj are the log odds ratios of the comparison AB for outcomes R, D.
e myg, Myp, Mypp are the number of patients that reported on outcome R, D or both in
group A; similarly for B.
® esr, far are the number of successes and failures for outcome R, arm A. Similarly for
outcome D and treatment B.
e py is the correlation coefficient between the two outcomes.
Wei and Higgins used a fixed correlation coefficient independent of the treatment
arm. Alternatively, correlation can be treatment-specific. Let us consider the data of Table
8. The correlation coefficient between the two binary outcomes R and D in arm A can be

estimated as (217):
_ N1 — No1M10

Pw.a =
\/ earfareapfap

(24)
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Table 8: Full cross-classified table for a study reporting on treatment A for response (R)

and dropout (D).
Treatment A D* Dy Total
R* niq Nip €ar
R~ Noq Moo fA,R
TOtal eA,D fA,D N

Following the methods for reconstructing the full cross tables when only the collapsed
information is available (presented in Section 3.3.2 of this dissertation), we use the ¢ and {

parameters to rewrite this coefficient as follows:

_ eA,R@A(l - ZA)fA,R - (1 - ZA)eA,RfA,RZA _earfar(Pa— $4)

Pw,A = (25)
\/ earfareapfap \/ earfareapfap
If we substitute {, = fi (eap — €arPa) We get:
AR
.~ €arPafar —€ar€ap + Paeip
Pw,a = (26)
\/ earfareanfap

We can now use Equation (23) to compute the covariance of the log odd ratios. In case that
all patients report on both outcomes we have mr g = myp = mygp = Ny for each treatment
T. Thus, we get:

cov(InORg, INORp)

_ Z eT,R@TfT,R_eT,ReT,D+¢Te’12",D\/ 1 1 \/ 1 1 (27)

+ +
T=AB \/eT,RfT,ReT,DfT,D eT,R fT,R eT,D fT,D

After some algebra, and substituting ey + frr = erp + frp = Nr We get:

. 2

.1 Pir(eirr + firr) —eirpeirr + firg)

P 28)
0i,rROi,p

T=AB ir.ofir.rfiT,D

This is Equation (10) in our thesis.
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We now show the equivalence between formula (8) of Wei and Higgins and formula (4) in
Bagos. Using the notation of (208) for a study comparing treatment A with treatment B, we
denote ey r = Ny14, fap = Ni+0) €R = No1++ fB,0 = No+o €tC. In this notation Equation (23)
by Wei and Higgins, after using Equation (24) for the correlation coefficient between the two

outcomes for each treatment, can be written as follows:

(InORg, InORp) ! + ! 1 + 1 =+ 1 + 1 1 + 1
cov(ln ,in = pw, Pw,
R b WA €A R fA,R €a,p fA,D B €B R fi B,R | €B,D fi B,D

Z p 1 n 1 1 n 1 Ni11Mioo — Mio1Mi10 N; N; _
Wi = =
Mits  Mios \[Mis1 Mivo &= 1\/ni1+ni+1ni0+ni+o N1+ Mo+ | Mi+1Mi+o0

i=0,1

Ni11Mioo — Mio1Mi10 N, = Ni11Mioo — Mio1Mi10

| = (ni11 + Moo + Mio1 +Mi10)
Ni1+Mi+1 M0+ Ni+0 | Ni1+Mi41 M0+ M40

After some algebra this can be shown to be equivalent to Equation (4) of the paper by Bagos:

ik Nijk
Cov(InORg, InORp) = z Z Z (-1)/ ( Uk >=
i=AB j=0,1k=0,1 Nij+Nitk

2:( N1 Ni1o Nio1 n Moo )
s Ni1+Miv1 Mj14MNiro Mijo+Mi+1 Nijo+Mi+o

i=A,
Thus, we conclude that the three different formulas for the covariances between two log odd

ratios (formula (10) in this thesis, formula 4 in Bagos (208) and formula 8 from Wei and

Higgins (210)) are equivalent.
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11, The variance-covariance matrix for heterogeneity

As we discuss in 3.3 of this thesis, for a three-arm study i, comparing treatments A, B and

C the (4 x 4) the variance-covariance matrix is assumed to have the following structure:

Tize PzTRTp ‘5123/2 XITRTD\
2 2
2
Ay = | PzTRTp Tp X2TRTp 5/ (29)
(4%4) 2 19 2
TR/ X2TRTp TR PrTRTp
X1TRTp T% /2 PzTRTp T%

We can now make the extra assumption that y; = y, = x. Let us pick a pair of the random

effects &; 4p r, 0; ac g @nd compute the variance of their difference:

Var(8iaco = Siapr) = Var(8iacp) +Var(8iasr) — 2Cov(8iac,p, Siapr) = (30)
=Ti+15—-2)xTRTp
The consistency assumption implies that:
8iac0 — OiaBr = (5i,Bc,D - 5i,BA,D) — 8i,48,r = Oipco — Oiap t Oipar

and by taking the variances we obtain:
Var(ai,AC,D - 5i,AB,R)
= Var(8;pcp) + Var(8izap) — 2Cov(8; 5¢,0,81840)

+2Cov(8;5¢,p, 6i,par) — 2C0V(8: 54,0, 81 5aR)
After using Equation (30)we get:
2 2 2 2 2 TI-Z)
Tp +Tp — 2XTRTp =T +Tp + T — 27 + 2YTRTp — 2P, TRTp —
1 (31)

X:Ep‘r

So the simplified form of the variance-covariance matrix 4 ,ya) is:

T}% PzTRTp T122/ 2 X1TgrTp
A _ | P<TR™D 5 X2TRTp  TH/2 (32)
(4x4) — 2 19 2
=/ X2TRTp TR PzTRTp
X1TRTp TLZ)/ 2 PzTRTp TLZ)

This can be conveniently decomposed as follows:
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1 0 1/2 0 0 0 0 0
_ [ 0 0 0 o0 [0 1 0 1/2
A(4X4) - 7’-R 1/2 0 1 0 + TD 0 0 0 0
0 0 0 0 0 1/2 0 1
0o 1 0 1/2 (33)
1 0 1/2 0
TR g 12 0 1
1/2 0 1 0

Ayxay = ThA1 + THA; + p,TRTp A3 (34)

If we choose not to employ the y; = y, = x assumption, then instead of (31) we get that
X1+ x2 = p* and Equation (34) can be expressed in terms of two correlation parameters.

Note that the analysis in this section holds for all type of outcomes. R and D may be
binary (in which case we analyze the log odds ratios, log risk ratios or log hazard ratios),
continuous (and we can use mean difference or standardized mean difference) or a mixture of

binary and continuous, e.g. R can be binary and D continuous.

104



1v. Computing within-study correlations from a full cross table

Consider the case of a three-arm study i for which we have the full cross-classified

information presented in Table 9.

Table 9: Full cross table for a study i comparing treatments A,B and C for outcomes R and

D.
Treatment A R* R~ TOTAL
D* N A(11) N 4(01) N A(+1)
D~ N A(10) N A(00) N A(+0)
TOTAL Nia(1+) N a(0+) Ni 4
Treatment B R* R~ TOTAL
Dt N p(11) N,B(01) N B(+1)
D~ N,B(10) 14,B(00) NiB(+0)
TOTAL N B1+) N B(0+) Nip
Treatment C R* R~ TOTAL
Dt Njc(11) Njc(01) N c(+1)
D~ Nic(10) Nic(00) Njc(+0)
TOTAL Nice14) Ny c(o+) Ni¢

For the margins we have used the notation of Bagos (208), so that a plus sign in an index
denotes a sum, e.9. n; g0y = MiB(00) + Mi,B(10)» Mia(0+) = Mi,a(00) T Mip(o1) ELC; this notation
significantly simplifies the expressions for the correlation coefficient.

In that paper it was shown that for the covariance of two log odds ratios of the same
comparison it holds:

COU(YABR:yABD) = Z Z Z (—1)/* <nn#nk>
i=AB j=0,1k=0,1 DAL

So that the correlation coefficient is estimated as:
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i = (—1)/7k ( (35)
pl'ABR'ABD O-l',Ro-i,D . nij+ni+k

i=A,B j=0,1k=0,1
Following the same methods we show how to compute the covariance of different
outcomes of different comparisons. Let us focus for example in the covariance of the log odds
ratio of AB comparison for outcome R and BC comparison for outcome D. After dropping the

study index i and setting cov(Innzjy, Inngyy,) = 0,V T # T’ we obtain

Cov(yAB,R'yBC,D) = cov(Inngoy,Inngyq) — cov(lnnggy,Inng,g)
—cov(Inng,,,Inng,,)+ cov(lnng,,,Inng,q)

and consequently:

.
Cov(Yapp Yary) = Xj=o1 Zr=0a(—1) 7" (i>

nBj+NB+k

Note that this method implies cov(Vapr Yacp) = cOV(Vacr Yasp), €tc. From this

formula, after restoring the study index i, the correlation coefficient is easily computed as:
S XE I =% B
Y j=0,1k=0,1

When only the collapsed tables are available we can reconstruct the full cross tables in the
way described in Section 3.3.2.1 of this thesis. With the full cross tables at our disposal we can
use Equations (35) and (36) to estimate all the correlation coefficients needed.

Switching to the notation used in this dissertation, i.e. ey g = nr(14), fr.r = Nr(o+) €rp =

nre+1) and frp = nreo) and after some algebra we get:

. 2
~ _ 1 Pir(eirr + firr) —eirp(eirr + firr) (37)
Di,ABRABp = & =
0;,4B,ROi,AB,D = e i,T,Dfi,T,Rfi,T,D
and
. 2
5 _ 1 Pialeiar + fiar) —eiap(Ciar + fiar) (38)
i ABRABp — & =
LACRAED 0;i,4B,ROi AC,D eianfiarfiap
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V. Eliciting prior distribution for the ¢ parameters from the experts

In this section we present the details of the elicitation process for the prior distributions

for the ¢ parameters, using the method described in Section 3.3.2.2 of this thesis. The

following program in R can be used to construct a beta distribution for the ¢ parameter based

on expert opinions for the 95% confidence interval of ¢:

betaparameters<-function(Clb,Clu){
ff=c(rep(0,1000000))
aaa=matrix(ff,1000)

for (i in 1:1000)

{a=i*0.1

for (k in 1:1000)

{b=k*0.1
aaa[i,k]=(abs(pbeta(Clb,a,b)-0.025)+abs(pbeta(Clu,a,b)-0.975))
3

al=which.min(aaa)
parameters=c(0,0)
parameters[1]=(al %% 1000)*0.1
parameters[2]=(a1%/%1000)*0.1

return(parameters)}

The inputs of this routine are Clu and Cib, the upper and lower limits of the 95%

confidence interval. The outputs are a and b, the parameters of the beta distribution.

For the application of our methods to the acute mania example, we assigned a weight

to each expert according to the years of his/her experience plus the number of randomized

control trials he/she has participated in. For each expert k the two parameters a,, 8 of the

beta distribution were computed for each treatment that he/she gave information about.

These parameters were then combined into a weighted average for a and . Details are

presented in Table 10.

107



Table 10: Parameters of the individual prior distribution for each expert and their

weighted average

Aripiprazole | Placebo Lithium | Haloperidol Quetiapine Ziprasidone | Olanzapine
Dlweight! « | g |alplalplalplal g |alp alsp
1| 008 |16.8 52.3|23.1 55.1| 17 52.3|19.2 53.5|16.8 523 |23.1 551 (142 49.8
21004 67 22|12 116|6.6 131| 6.6 13.1| 109 464 |109 46.4 |109 464
31006 |83 129|101 174| 14 156|157 14 |141 156 |15.6 23.8 |124 153
4010 | 48 125|113 11383 129|183 129| 66 131 |66 131 | 3 11
5| 008 |109 464 |83 129| 23 551| 36 544|255 90.1 (476 99.8 [711.5 215
6 | 002 |23.1 551|48 125| 11 464 48 125|109 464 — - 123.1 551
71004 | 39 186|49 196| 9.6 23.6| 48 125|109 464 — - 1109 464
8 | 001 |48 125|109 46.4| 45 45|83 129| 83 129 — - 183 129
91002 09 77|53 3|04 798068 106 39 186 |41 36.2 |0.42 7.98
10| 0.03 | 12 116 | 12 116| 12 116|109 46.4|27.8 1619 | 12 115.6|27.8 162
11| 0.11 113 113(69 69| 11 11369 68| 99 122 6 75 |49 78
12| 0.07 | 48 125/109 46.4| 11 464| 6.6 13.1| 4.8 125 |48 125 |48 125
131 015 | 34 51 (22 15|23 551|113 113| 31 52 |83 129 [96.3 225
14| 0.03 |18.3 225231 55.1| 48 125|113 11.3| 231 551 |11.3 11.2 |23.1 551
15| 0.04 |132 32 |98 71 |345 982 469 87.8| 354 176.4 |42.2 143.4|80.4 157
16 | 0.05 | 245 733|795 362 | 57 85.6(454 49.2| 298 76.1 |54.6 131.7 |42.4 43.2
171 004 |112 27498 71|83 12955 8.7 133 279 |116 313 |21.8 31.7
18| 0.04 | 316 43969 348|877 94 157 115|243 459 |69 118 |15.6 23.8
19| 0.02 |42.1 516|109 46.4| 76 59| 13 82| 99 269 |144 24 |119 27.6
VZS;?,Z;? 112|274 1129|47.4128.3|72.0|15.2|23.4| 13.7 | 409 |16.7| 40.6 32.1] 78.3

108




Lamotrigine | Divalproex | Risperidone | Asenapine | Carbamazepine | Topiramate |Gabapentin
Dlweight| « | g [a [ plal plalplal p |alp |lalp
1] 008 |23.1 55.1|16.8 52 |19.2 53.5|16.8 52.3 | 19.2 535 |25.7 55.6 |25.7 55.6
2 | 0.04 — — 6.7 22 |67 22 |109 46.4 | 6.7 22 — — - =
3 1006 |156 35 |16.1 24 |17.7 22.7 |16.6 276|148 325 |20.9 23.1 |155 19.9
41010 | 99 122|199 12 |48 12583 129 | 83 129 |83 129 |99 122
51 0.08 |23.1 551|715 215|36.3 97.2 |23.1 55.1| 126 242 |47.3 47.2 |47.3 47.2
6 | 002 | 48 125| - - — — - = — — — — - =
71004 |38 791|123 34 |42 98 - - 126 242 — — - -
8 | 0.01 — — 48 13|83 129| - - 8.3 12.9 — — - -
9 | 002 |83 129|042 8 |042 795 |26 22 3.9 186 | 6.7 22 |67 22
10| 0.03 | 12 116 [27.8 117 |27.8 161.9| 12 115.6| 12 1156 | 12 115.6| 12 115.6
11| 0.11 |552 23 |83 13 |11.3 113|69 6.8 | 6.9 6.8 (237 95 |11.3 113
12| 0.07 | 109 46.4|16.8 52 |48 125 |48 125 16.8 523 — — 109 464
13| 0.15 | 545 359109 46 [23.1 55.1 8.3 129 | 45 44 |545 359 |53 3
14| 0.03 | 545 359 (23.1 55 (109 464 | 36 544 | 36 544 |47.3 47.2 |54.5 35.9
15| 0.04 |20.8 59.3|28.9 84 |82.1 131.6(29.7 934|212 711 |21.2 711 |215104.8
16 | 0.05 |55.7 152 [41.7 111|529 86.8 |102 186.7| 81 185.7 | 100 256.8 |45.7 113.2
17| 0.04 | 166 61.2 (416 68 |63 13.1 104 21 |428 878 18 62.4 |16.6 61.2
18| 0.04 | 9.6 18.6|9.7 14 |126 242 |223 252 | 11.3 159 |96 23.6 [12.6 24.2
19| 0.02 [421 51.6|17.2 23 |11.2 27.4 |15.6 23.8 | 9.7 105 |126 242 |18.6 27.1
VZS;?Q;? 295|435 (20.4(55.2|19.2| 43.4 |17.8| 38.8 | 16.3 | 37.6 |32.6| 48.8 |20.6|39.9
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VI. Estimated values of the within-study correlation coefficients

In Table 11 we give the within-study correlation coefficients for the log odd ratios in
two-arm studies reporting both response and dropout, as estimated using the elicited experts’

opinion for the ¢ parameters and Equation (6) from the main paper.

Table 11: Within-study correlation coefficients estimated for two-arm studies reporting
both outcomes.

95%
Study 1D o Rl ey
(lower)
(upper)
1 0.15 005 | 036
2 036 | -051 | -0.20
3 0.03 017 | 027
4 058 | -069 | -047
5 058 | -070 | -0.44
6 033 | 045 | -0.19
7 028 | -044 | -011
8 0.18 0.09 0.23
9 010 | -024 | 006
10 045 | 056 | -0.33
11 028 | -039 | -017
12 011 | 026 | 005
14 0.02 019 | 025
16 037 | -046 | -027
17 043 | 057 | -0.28
18 010 | 022 | 003
19 063 | -063 | -063
20 0.07 022 | 033
21 009 | 027 | 01l
22 0.07 0.02 0.14
23 032 | -047 | -017
24 034 | 044 | 023
25 0.08 006 | 023
27 034 | -045 | -022
28 015 | 023 | -0.07
29 0.24 0.03 0.38
30 0.17 0.07 0.28
32 028 | -040 | -0.15
33 0.30 0.19 0.38
36 0.15 0.05 0.18
37 030 | -043 | -0.16
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38 -0.16 -0.30 -0.01
42 0.25 0.16 0.35
43 0.24 0.13 0.36
47 -0.25 -0.34 -0.15
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VII. Extending the model presented in Chapter 3

In this section of the appendix we discuss how to extend the model discussed in Chapter 3,
for the case of studies with more than three arms and for more than two outcomes of interest.

i. Handling studies with four arms or more
The models described so far can be extended when multi-arm studies with more than three

arms are present. Suppose a four-arm study compares treatments A, B, C and E for efficacy (R)
and dropout (D). If we choose the basic parameters to be the comparisons AB, AC and AE for
both R and D, the random effects can be assumed to follow a multivariate normal distribution
with variance-covariance matrix:
/ T3 : : : . : \

PrTRTD T3 : : : N
| T3/2  X2TRrTD 73 : : o
| X1TrTD T5/2  piRTy  TH . .
\ /2 pRTy  TR/2 TH/2 TR . /

PLTRTp  TH/2 peiRTp TH/2 TH/2 T

This matrix is analogous to the one in Equation (33) and the parameters P, T, T, need to

A(exe) =

be estimated from the data. The random errors are also assumed to follow a multivariate normal
distribution, the variance covariance-matrix is of the following form (the * represent the

standard errors that multiply the p’s, and we dropped the study index i for simplicity):

O-/%B,R
PaBraBp * O-/%B,D
5 - KaBrACy PABpACg* O-/%C,R
Papracp ¥ Kapracg  PAcgacp * O-/%C,D
KaBprAER  PABpAER *  KacgrAEp,  PAEgACp * O-.A%E,R

PABrAEL ¥ KaBpAEp,  PACrAEp ¥ KACpAE,  PAERAEp * O-/%E,D
The k’s can be readily estimated from the data and, as in the case of three-arm studies, we
can use the ¢ parameters to reconstruct the full cross tables and then use formulas analogous to
(37) and (38) to estimate all correlations needed. It is easy to see that this method can be applied

without complications to multi-arm studies with any number of arms.

ii. Handling more than two correlated outcomes

Assume we have studies reporting on a specific comparison A versus B, for the correlated

outcomes R, D and V. The random errors for every study can be assumed to follow a multivariate

113



normal distribution (after dropping the i study index):

2
5AB,R TR 39
2
8app |~N| O, PrrOTRTD 1)) (39)

2
SaBy Pz rRvTIRTy  PrpvTyTp Ty

Note that there are in principal three heterogeneity variances and three different between-

study correlation coefficients. The random errors follow a normal distribution:

0AB,R o} :
(GAB,D> ~N| 0,| prporop o5
9aBy PRVOROy  PpyOy0p  OF
We can again reconstruct the full cross tables from the collapsed ones, but in this case we
will need information on three different conditional probabilities, e.g. P(D*|R*), P(V*|R™)
and P(V*|D*) for every treatment. We can then use Equation (35) and compute every
coefficient needed. For the case of a network meta-analysis with three correlated outcomes the
between-study variance-covariance matrix for a three-arms trial is a (6 X 6) generalization of
the matrix in Equation (34). The within-study correlations can again be estimated after eliciting
the conditional probabilities P(D*|R*), P(V*|R*) and P(V*|D™).

A generalization for more arms or more outcomes follows the same principles.
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VIII. The variance-covariance matrix for random errors

In this section we describe how we can simplify the within-study variance-covariance
matrix for multi-arm studies, by employing a set of assumptions. The results of this section
are then employed in Section 4.2.3.1 of this dissertation.

For a three-arm study i that compares treatments A, B and C we assume that there are
two different correlation coefficients, p, that correlates same comparisons-different
outcomes, and p,, for different comparisons different outcomes, i.e:

Pi,ABRABp = PiAcgacy = Pis PiacgraBp = PiaBgrAcp = PiBCrBAp = Pi

The variance-covariance matrix for the random errors in this study is the following:

/ 0{ 4B R 2 : : : \ “

*
5 = | Pi0i,4B,ROi,AB,D 0i,4B,D . "
i— * % 2
\ Ki ABRACR Pi 0iaBDOi,ACR 0i AC,R . /
*k * 2
Pi 0 aBROiACD KiaBpacp Pi 0i ac,ROi,Ac,D  OiacD

The o and k parameters in the matrix above can be estimated from the data provided

in the studies using well-known formulas.
Following a similar method to the one presented in Section 11l of Appendix 1, after

assuming consistency we get:

Yiac,R — YVisc,p = YiBc,R — Yi,BAR — YVi,BC,D (41)
Taking the variance in both arms of Equation (41) we get:
VaT(Yi,AC,R) + VaT(Yi,BC,D) — 2p™0; ac.ROiBC,D
(42)

= Var(yi,BC,R) + VaT(Yi,BA,R) + Var(yi,BC,D) — 2K pcpBag

— 20" 0y pc,ROiBc,p + 20" 01,8AR0iBCD
If we use e;yy, to denote the number of successes and f; y i, the number of failures
reported in every treatment arm Y, for outcome W of the study i, the left-hand side of

Equation (42) can be written as follows:

LH <1+1+1+1>+<1+1+1+1>
eiar Jfiar €icr ficr eigp Jfisp €icp Jfico

* %k
— 2P0y ac,rOiBC,D
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The right-hand side can be written as:

RH—(1+1+1+1)+<1+1+1+1>
€iB R fi,B,R €icR fi,c,R €; AR fi,A,R €iBR fi,B,R

+< L I ) 2( L, > 2p"
- — 4P Ojpc,RrOi,BC,D
€iB.D fi,B,D €icp fi,C,D €iBR fi,B,R ' '

*%
— 2p™0ipaRr%iBC,D

By equating, we get:

*
PiOiBc,R (43)
OiBAR T 0iacR

*k
p; =

If we also assume that the standard deviations of different comparisons of the same

outcome are equal within every study, i.e. 0, pc r = i par = 0iacr, We get that

- Pi 44
Pi :71 (44)

Note that in order for this to be a consistent result we must also assume o; gcp =
0i,BA,D = 0jac,D-

Even though we have assumed equal variances to simplify the variance-covariance
matrix of Equation (40), in the end of the day the o and k parameters are still left distinct
and are estimated from the data. Equation (44) is just used to minimize the number of
correlation parameters needed for the matrix in Equation (40).

The two assumptions we used (equal correlations, equal variances) are a justified
approximation when all treatments in each study are comparable and the arms are balanced.
This, however, may not always be the case. We can repeat the whole analysis without making
any assumptions of equality in either the correlation coefficients or the variances. By taking
analogous relations to the one in Equation (41) we get the following set of equations, after
dropping the study index i for simplicity:

PacrAcpOacg = PaBracpOacp t PBcracy9BCy

PacrAcpOacp = PacgraBp94Bp T PacgBcpOBCh
PABRrABpOABRr = PAcrABpT4acg — PBCrABp9BCR (45)
PaBrABpOABp = PABRrACpOACH — PABRBCLOBC)H

PBcrABpOBCR = PAcgrBCpTack — PABRrBCpOACR
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By cycling through the treatment and outcome indices we can produce more equations
of this form, but it turns out they are linearly dependent to the ones above. Thus, out of the
nine different correlation coefficients entering the five Equations (45) only four of them are
independent. This set of equations is the most general solution to the problem of finding the
correlation coefficients in a three-arm study.

Depending on the nature of the problem one can now make extra assumptions to
simplify these equations. If for example out of the three treatments A, B and C being
compared in a study, A is the placebo, while the other two are active treatments with similar

results in both outcomes, it would be justifiable to assume pc,ap, = Paprac, = P** If we

also set pappas, = Pacgacp = Pecgrecp, = P We find:

o= p* 04BROABp T Oacr04c, — OBCROBC)

04BRrOAcp t 0aBp0Ack
This equation allows a simplification of the variance-covariance matrix without the
need of any assumption on the variances of the treatment effects. Also note that this equation

further reduces to Equation (44) by employing the equal variance assumption.
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IX. Ensuring the positive-definiteness of variance-covariance matrices

The correlation coefficient parameter p; of the model described in Section 4.2.3.1
needs to be truncated separately for each three-arm study in order to ensure the positive-
definiteness of the variance-covariance matrix of Equation (8) of the main paper. The
following R (149) program can be used to compute the (study-specific) upper limits u; for
the correlation coefficient is the:

rho=c(rep(0,N))
ff=function(r,m){

S=S1+r*s2

ss=eigen(s[m,,],only.values = TRUE)

mineg=min(ss[[1]])

mineg}

for(min 1:N){

for(i in 1:100){
if (ff(0.01*i,m)*ff(0.01*i+0.01,m)<0)
{rho[m]=0.01*i}}}

rho

The program utilizes the fact that a positive-definite matrix has only positive
eigenvalues. The inputs needed are the number N of the three-arm studies and two arrays s1
and s2 which are (N x 4 x 4)-dimensional and contain the N in number (4 X 4)-
dimensional matrices X; ; and Z;, of Equation (21) of the paper. These are estimated from
the data. A similar program can be used to compute the lower values. This, however, is
redundant, because the limits are symmetrical around zero. The results for the 18 three-arm

studies of the acute mania dataset are given in Table 12.
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Table 12: Upper limit for the correlation coefficient in the three-arm studies

Study u;
48 0.99
49 0.96
50 0.96
51 0.98
52 0.54
53 0.65
54 0.81
55 0.86
56 0.99
57 0.68
58 0.84
59 0.95
60 0.78
61 0.80
62 0.83
63 0.82
64 0.75
65 0.85
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X. Generalizing the alternative model by Riley et al.

As we discuss in Section 4.2.2, Riley et al. (213) proposed a model for bivariate
pairwise meta-analysis in which a single correlation coefficient models all correlations; this
hybrid coefficient incorporates both within and between-study correlation.

For a two-arm study i reporting on outcomes R and D a bivariate normal distribution

Gy~ ( (5.,

With the variance-covariance matrix given by:

is assumed:

Yi + UiZ,R Ph\/l/h% + Ui?R\/wzz) + O—i?D\
Ph\/lp}% + O_i%R\/wg + O_i%D Y+ O-iZ,D

The vy parameters model for the additional variation apart from the sampling error that

9, = (46)

enters due to heterogeneity.

In this section of the Appendix we show how to extend the model for the case of a
network of interventions. We restrict to the case of networks with two-arm and three-arm
studies only. For a two-arm study i comparing treatments A and B for outcomes R and D,
the variance-covariance matrix is again of the form of Equation (46). For a three-arm study
comparing treatments A, B and C the variance-covariance matrix of Equation (46) can be
generalized as follows:

(i,AB,R

$i,4B,RSi,4B,D Ci,aB,D . ' (47)

h
'Ql'=

P1 (LABR(LACD pZ\/{lABD{lACR {lACR

P2+/Si.aB,rSi ac,p p3\/ZLABDZLACD p\/(LACR(LACD i.ac.p

In the above we have set {; spr = 045 r + V& and (i app = 024pp + Y5, similarly
for the AC comparison. In Equations (46) and (47) we have assumed that the correlation
coefficient p" correlates treatment effects of the same treatment comparison but different
outcomes (e.g. comparison AB for outcomes R and D), p, correlates different treatment
comparisons of the R outcome, p, correlates different outcomes of different comparison and
ps correlates different comparisons of the D outcome. In order to simplify this matrix we

also assume that the variances of the treatment effects for comparisons of the same outcome
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are equal within a study, irrespectively of the comparison being made:
OiaR = Otack = Oiger A 045 p = 0lacp = Oipcp-

This assumption, with the use of the consistency equations leads to p; = p; = 1/2, as
it is easy to prove. For example, consistency states that y; 45 r = ¥i ac.r — Yisc,r- BY taking
the variance on both sides we get:

Gi.aBr = Siack + Cipcr — 2P1+/Si,aB,RSBcR = P1 = 1/2

In the above we use {; apr = i acr = Ciscr» Which holds by virtue of the equal

variance assumption we make. A similar proof holds for p5.

Also, as we proved in Equation (42) the consistency equations give:
Var(yiacr) + Var(yisep) — 2Cov(Viacr Yipen)
=Var(yipcr) + Var(yigar) + Var(yiscp) — 2Cov(Vipcr Vipar)
— 2Cov(yipc,r Vipe) + 2Cov(Yipars Yinen) =
$ir+Cip— szm
=¢r+Cip+Gip— 2P1m - Zth + Zsz
In the above we have set {; 4pr = Ciack = Cipcr = Sir @ $iapp = Ciacp =

(i pc,p = i p- By substituting p; = 1/2, and after some algebra we get:

1

P2 :Eph

The variance-covariance matrix takes the following form (after dropping the study

index for simplicity):
CaB,R :
/Ph CaB,RSAB,D CaB,p .
h
o= Nniacs o \Cannlacn Gac
h
k%\/(AB,RCAC,D %\/CAE,D{AC,D Phxijc,RfAc,D Cac,p

(48)

N

The o parameters entering the ¢ can be estimated from the data. This variance-

covariance matrix is always positive-definite.
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XI.

Detailed results from fitting models of Chapter 4

In this Section we present the detailed results from all scenarios discussed Chapter 4,

Section 4.3.1. As a reminder, the scenarios explored were the following:

Univariate (independent) NMA of response and dropout rate separately, assuming

Tz, Tp~U(0,1). This corresponds to setting all correlations equal to zero.

Multiple outcome network meta-analysis (MONMA) following the approach of
Section 4.2.3.1. with minimally informative priors for the heterogeneity
parameters: p*~U(-1,0), 1z, tp~U(0,1), and: (a) assuming a negative
common p; = p with p~U(—1,0), (b) assuming a strongly informative,
negative, common p~U(—0.7,—0.5), (c) assuming a common fixed p; = p
with p =—-0.7, (d) assuming two different within-studies correlation
coefficients p;: one for the studies comparing two active treatments, which we
denote as p4.:—ace, and another for the studies comparing active treatments to
placebo, p,.:—p;. This distinction could be based on the assumption that the two
relative treatment effects are differently correlated when one of the treatments
compared is the placebo. For both parameters we used a uniform negative,
U(—1,0), prior distribution

MONMA following the approach in Section 4.2.3.2, assuming a common
correlation coefficient and the following prior distributions for the parameters
of the model: p"~U(—1,0), Yxr~U(0,1), Yp~U(0,1).

In Figure 11 we present the odds ratios for the response outcome, for the comparison

of active drugs vs. placebo. In Figure 12 we present the results for the acceptability outcome

(dropout). In Table 13 we present the rankings for all treatments based on their SUCRA

values (38) for each model.
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Figure 11: Summary odds ratios for response, Treatment vs. Placebo for all scenarios

presented in Section 4.3.1

Odd ratios for response

) | IL.a
Olanzapine —_ 217[1.70 ;273 ] Olanzapine " 2.18[1.74;2.71]
Paliperidone . 213[1.60;279]  Paliperidone — 2.19[1.67;2.84 ]
Quetipaine — 201 [150:266]  Quetipaine " 1.98[1.50:2.61]
Divalproex — 2.00[143;2.75]  Divalproex — 1.88 [ 1.36 ;2.54 ]
Aripiprazole — 2.00[152;263]  Aripiprazole — 1.99[1.52:2.58 ]
Carbamazpine - 259[1.33:445] Carbamazpine - 2.38[1.27:3.96]
Haloperidol —_ 224[169;294]  Haloperidol — 220[1.69:2.83]
Ziprasidone — 139[099;192]  Ziprasidone D 1.43[1.03;1.98]
Asenapine S 1.76 [0.89 ;3.17]  Asenapine — 1.92[1.08:3.16 ]
Lithium — 181[1.24;257]  Lithium ' 168 [1.19:2.29 ]
Lamotrigine 185[028;632]  Lamotrigine * 139[0.24;4.72 ]
Topiramate — 7 085[035;1.73]  Topiramate — % 0.96[0.46 ; 1.80 ]
T T T 1 T T T 1
0 1 2 3 4 0 1 2 3 4
«—Favors placebo Favors treatment— «Favors placebo Favors treatment—
ILb ILc
Olanzapine — 2.19[1.73;273] Olanzapine —_ 218[1.73 ;272
Paliperidone — 2.18 [1.67;2.81] Paliperidone — 218167 ;283 ]
Quetipaine —_ 197[1.50;257] Quetipaine 1.96 [ 1.47 ;2.57]
Divalproex — 1.87[1.36;2.50] Divalproex — 189[136:2353]
Aripiprazole — 199[1.52;257] Aripiprazole — 199[1.51;257]
Carbamazpine — 224[122;3.69] Carbamazpine 210[1.10;3.48]
Haloperidol —— 219[1.69;2.82] Haloperidol T 220[1.69 ;286 ]
Ziprasidone — 142[1.02;195] Ziprasidone e 1.42[1.02 ;1.94 ]
Asenapine —_ 192[1.09;318] Asenapine R 191[1.07:321]
Lithium — 168 [1.21;227] Lithium ) 169[121;229]
Lamotrigime — 1.19[0.27;3.56] Lamotrgine — = 1.09[027;3.02]
Topitamate "~ * 097[048;177] Topiramate "~ T 098[049:178]
o 1 2 3 4 o 1 2 3 4
«Favors placebo Favors treatment— «Favors placebo Favors treatment—
ILd 1L
Olanzapine _ 219[1.75;272] Olanzapine — 213[1.69;2.67]
Paliperidone R 219[167:283]  Paliperidone —_ 2.14[1.61;277]
Quetipaine —_ 199[1.49;262] Quetipaine — 199[1.48;2.63 ]
Divalproex — 187[136;252] Divalproex — 1.89[1.36 ;2.57 ]
Aripiprazole - 2.00[1.52;:2.59] Aripiprazole — 2.00[1.52;2.58]
Carbamazpine - 236[1.25:3.96] Carbamazpine S 225[1.17:3.79]
Haloperidol — 2.19[1.68;2.83] Haloperidol — 222[1.68;290]
Ziprasidone — 143[1.02;197] Ziprasidone — 145[1.03;2.00]
Asenapine _ 192[1.06;320] Asenapine A 1.9370.98;3.38]
Lithium — 169[1.22;231]  Lithium —_ 173[123;235]
Lamotrigine 140024 ;474 Lamotrigine — 1~ 1.1970.23;3.71]
Topiramate "~ T 0.97[0.46;1.79 ] Topiramate — % 095[0.45:181]
T T T 1 T T T 1
0 1 2 3 4 0 1 2 3 4
«—Favors placebo Favors treatment— «—Favors placebo Favors treatment—
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Figure 12: Summary odds ratios for dropout, Drug vs. Placebo for all scenarios presented

in Section 4.3.1..

Odd ratios for dropout
I ILa
Olanzapine - 0.58[0.44;0.74] Olanzapine - 0.58[045:0.75]
Paliperidone -~ 0.62[0.44 ;0.83 ] Paliperidone -~ 0.61 [0.44 ;0.83 ]
Quetipaine - 0.66[0.46 ;092 ] Quetipaine . 0.65[0.46 ;090 ]
Divalproex 5 0.75[0.51:1.05] Divalproex = 0.75[0.52;1.05]
Aripiprazole s 0.77[0.55;1.05] Aripiprazole i 0.77[055;1.05]
Carbamazpine T 0.85[045:1.48] Carbamazpine — 0.89 [0.48;1.55]
Haloperidol ek 0.86 [0.63;1.16 ] Haloperidol - 0.87[0.64 ;1.16 |
Ziprasidone —~ 0.93[0.62;1.34] Ziprasidone - 092[0.62:132]
Asenapine — 1.020.56 ;1.68 ] Asenapine T 1.01[0.57;1.66]
Lithium - 1.04[0.76 ; 1.39 ] Lithium = 1.03[0.75;139]
Lamotrigine _ 127[067;217]  Lamotrigine e 1.25[0.66;2.17 ]
Topiramate 1.52[1.00;2.22] Topiramate 1.52[1.00;224]
Gabapentin i ) " 202[0.61;:505] Gabapentin — T 201[063:493]
I T T 1 r T T 1
0 1 2 3 4 0 1 2 3 4
«Favors treatment Favors placebo — «Favors treatment Favors placebo —
IL.b IL.c
Olanzapine - 0.58[045;0.75] Olanzapine ! 0.59[0.45;0.76 ]
Paliperidone -~ 0.61[044;082] Paliperidone -~ 0.61[0.44 ;083
Quetipaine e 0.66 [ 0.46 ;0.90 | Quetipaine e 0.66 [ 0.46 ;091 ]
Divalproex S 0.78[0.53:1.09] Divalproex . 0.80[055:1.12]
Aripiprazole s 0.77[0.55;1.05] Aripiprazole ™~ 0.77[0.56 ;1.05]
Carbamazpine . 0.86 [ 0.46:146] Carbamazpine - 0.82[044:140]
Haloperidol - 0.87 [0.65;1.17] Haloperidol ey 0.87 [0.64;1.17]
Ziprasidone - 0.92[062;1.30] Ziprasidone - 0.94[062;133]
Asenapine T 1.02 [0.57 ;1.65 ] Asenapine . 1.02[0.58 ; 1.68 |
Lithium - 1.03[075:138]  Lithium = 103 [0.74 139 |
Lamotrigine = 1.26 [ 0.67 ;2.16 ] Lamotrigine — 1.27[0.67;2.18 ]
Topiramate 1.52[1.00;222] Topiramate 1.52[1.00;2.24]
Gabapentin T " 201[063:495] Gabapentin ] T 200[064:489]
) T T 1 ) T T 1
0 1 2 3 4 o1 2 3 4
«Favors treatment Favors placebo — «Favors treatment Favors placebo —
1L.d 11
Olanzapine - 0.58[0.45;0.75] Olanzapine - 0.57[0.44;0.73 ]
Paliperidone - 0.61[0.44 ;082 ] Paliperidone - 0.620.45;0.83 ]
Quetipaine - 0.65[0.45;0.90 ] Quetipaine - 0.66 [ 0.46 ;0.91 ]
Divalproex g 0.76 [ 0.53 ;1.08 ] Divalproex - 0.77[0.54 ;1.09 ]
Aripiprazole ™~ 0.77[0.55 ; 1.05 ] Aripiprazole s 0.77[0.56 ; 1.05 ]
Carbamazpine M 090[047 ;156 ] Carbamazpine —r 084046 ;143 ]
Haloperidol e 087[063:1.15] Haloperidol e 0.87[0.64;1.17 ]
Ziprasidone — 0.92[0.62;1.32] Ziprasidone e 0.94[0.63;1.34 ]
Asenapine - 1.02 [ 0.58 ; 1.68 ] Asenapine T 0.99[0.57;1.65]
Lithium =+ 1.03[0.76;1.38]  Lithium e 1.01 075134 ]
Lamotrigine - 126 [0.66;2.16 ] Lamotrigine . 1.49[0.79 ;2.59 ]
Topiramate * 1.52[1.00;2.23 ] Topiramate 1.55[1.01;2.27]
Gabapentin T T " 200[062;489] Gabapentin T T 1.99[063:;4.76]
T T T 1 I T T 1
0 1 2 3 4 0 1 2 3 4
«Favors treatment Favors placebo — «Favors treatment Favors placebo —
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Table 13: Treatment ranking for all models in Section 4.3.1.based on the SUCRA values
for response (R) and dropout (D).

| Il.a

SUCRA - R (%) SUCRA - D (%) SUCRA - R (%) SUCRA - D (%)
Carbamazepine 79.6 Olanzapine 91.7 Haloperidol 76.6 Olanzapine 91.2
Haloperidol 75.8 Paliperidone 86.3 Olanzapine 76.5 Paliperidone 87.5
Olanzapine 72.1 Quetipaine 80.3 Carbamazepine 75.2 Quetipaine 81.4
Paliperidone 69.0 Divalproex 68.8 Paliperidone 74.9 Divalproex 68.1
Quetipaine 60.4 Aripiprazole 65.6 Aripiprazole 62.4 Aripiprazole 65.9
Aripiprazole 60.1 Carbamazepine 57.6 Quetipaine 61.5 Carbamazepine  53.3
Divalproex 59.6 Haloperidol 52.9 Asenapine 54.4 Haloperidol 52.5
Lithium 47.1 Ziprasidone 45.1 Divalproex 54.0 Ziprasidone 46.5
Asenapine 45.2 Asenapine 39.7 Lithium 40.8 Asenapine 40.1
Lamotrigine 39.1 Placebo 34.1 Ziprasidone 27.9 Placebo 341
Ziprasidone 25.5 Lithium 32.7 Lamotrigine 26.5 Lithium 33.5
Placebo 9.7 Lamotrigine 23.5 Topiramate 9.9 Lamotrigine 24.3
Topiramate 6.9 Gabapentin 12.7 Placebo 9.4 Gabapentin 12.6

Topiramate 9.1 Topiramate 9.0
I.b Il.c

SUCRA - R (%) SUCRA - D (%) SUCRA - R (%) SUCRA - D (%)
Olanzapine 77.9 Olanzapine 91.3 Haloperidol 78.5 Olanzapine 91.0
Haloperidol 77.0 Paliperidone 87.3 Olanzapine 78.4 Paliperidone 87.1
Paliperidone 76.4 Quetipaine 81.5 Paliperidone 77.1 Quetipaine 81.3
Carbamazepine 72.0 Aripiprazole 66.0 Carbamazepine  66.5 Aripiprazole 66.1
Avripiprazole 63.2 Divalproex 65.2 Aripiprazole 64.4 Divalproex 62.6
Quetipaine 61.8 Carbamazepine 57.1 Quetipaine 62.2 Carbamazepine 61.6
Asenapine 56.0 Haloperidol 51.7 Divalproex 56.6 Haloperidol 52.1
Divalproex 54.4 Ziprasidone 46.9 Asenapine 56.3 Ziprasidone 45.6
Lithium 42.2 Asenapine 39.9 Lithium 43.0 Asenapine 39.6
Ziprasidone 27.7 Placebo 34.1 Ziprasidone 28.3 Placebo 34.4
Lamotrigine 21.5 Lithium 33.7 Lamotrigine 17.8 Lithium 33.7
Topiramate 10.2 Lamotrigine 23.8 Topiramate 10.9 Lamotrigine 23.7
Placebo 9.7 Gabapentin 12.6  Placebo 10.0 Gabapentin 12.3

Topiramate 9.0 Topiramate 9.1
Il.d ]

SUCRA - R (%) SUCRA - D (%) SUCRA - R (%) SUCRA - D (%)
Olanzapine 76.5 Olanzapine 91.2 Haloperidol 78.1  Olanzapine 92.8
Haloperidol 75.4 Paliperidone 87.6 Olanzapine 74.1  Paliperidone 86.6
Carbamazepine  75.3 Quetipaine 81.7 Paliperidone 73.0  Quetipaine 80.6
Paliperidone 75.1 Divalproex 67.3 Carbamazepine 71.4  Aripiprazole 66.1
Aripiprazole 62.4 Aripiprazole 66.2 Aripiprazole 63.4  Divalproex 65.8
Quetipaine 61.8 Carbamazepine  53.0 Quetipaine 63.2 Carbamazepine 58.7
Asenapine 55.1 Haloperidol 52.7 Asenapine 56.0  Haloperidol 52.2
Divalproex 53.6 Ziprasidone 46.8 Divalproex 55.4  Ziprasidone 45.4
Lithium 41.5 Asenapine 39.4 Lithium 445  Asenapine 42.9
Ziprasidone 27.4 Placebo 34.3 Ziprasidone 29.1  Lithium 36.1
Lamotrigine 26.7 Lithium 33.9 Lamotrigine 21.6  Placebo 34.6
Topiramate 9.9 Lamotrigine 23.9 Placebo 10.1  Lamotrigine 15.1
Placebo 9.4 Gabapentin 12.8 Topiramate 10.1  Gabapentin 13.3

Topiramate 9.2 Topiramate 9.9
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X1l.  Generalizing the models of Chapter 4

In this section of the Appendix we present methods for extending the two new models
proposed in Chapter 4 for the case of studies with more than three arms, reporting on more

than two correlated outcomes of interest.

a. Generalizing the first model
We start from the case of pairwise meta-analysis, when only two treatments are
compared for three outcomes. Suppose there are studies reporting on a single comparison A
versus B, for three correlated outcomes R, D and V. The random errors for every study are
assumed to follow a multivariate normal distribution (8 &p )" ~ N(0, Azx3)), With
variance-covariance matrix:
7

Aix3) = | PrrRDTRTD TLZ) (49)

Pt,rvTRTy  Pr,pvTyvTp (57
Note that there are in principle three heterogeneities and three different between-study
correlation coefficients that need to be estimated.
The random errors of study i are also assumed to follow a multivariate normal
distribution (g;z €;p €)'~ N(0,Z;). The within-study variance-covariance matrix is:

2
O-t,R

_ 2
2; = | PirDOi,ROiD O.p

2
PirvOiRrOiv PipvOivOip O.y

(50)

Thus, there are also three different within-study correlation coefficients to estimate.

We now extend the method for the case of multi-arm studies reporting on three
correlated outcomes for a multiplicity of treatments. If we focus on a three-arm study, the
heterogeneity variance-covariance matrix will be a (6 x 6) generalization of the matrix of
Equation (49):
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2
Pr,rDTRTD Tp . . . .

Agexey = pT,RZTRTV Pz,povTyTp 7 -2 . : (51)
Tr/2 PzrDTRTD Pr,rRVTIRTY TR
\pT,RD TRTD Tzz)/ 2 PzpvTpTy  Pr,rDTRTD TLZ)
Pz rvIRTy  PrpvipTy 75/ 2 PzrvIRTy  Prpviply T5

The within-study variance-covariance matrix for this study, after making the same

simplifying assumptions as in Section Il of this Appendix, can be estimated as follows:

/ 2BR : : : : : \
| Pi,rD SL'Z,AB,D , . . . o
|  Pirv Pipv Si,ABV : - (52)
i Kiaggacg  0:5Pirp 0.50; gy SiZ,AC,R I
0.50irp  Kiagpac, 0.5pivp  Pirp SiZ,AC,D .
\ 0.50; gy 0.5p;vp Kiapyacy, Pirv  PivD Siac V/

In the above we have dropped the standard errors that multiply the correlation
coefficients for simplicity. We now have three different within-study correlation coefficients
to estimate for every three-arm study. As before, we can model these coefficients to be
common across studies or among group of studies.

Extending for more arms or more outcomes is straightforward. For example, a four-
arm study in the case of three outcomes of interest will require a 9 x 9 generalization of the
above matrices.

b. Generalizing the second model

In this subsection we will show how to extend the second model presented in Section
3.2.2 of the main paper for the case of more than two correlated outcomes, or in the presence
of studies than more than three arms. Let us start by assuming a network of studies reporting
on three outcomes R, D and V. For a two-arm study the variance-covariance matrix can be

estimated as:

{iABR

Q; = | PRp/Si,a8,R5i,a80 CiaBD (53)
pRV\/ZLABRZlABV pDV\/ZLABD(lABV iaBv
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Note that we now need three different hybrid correlation coefficients to be estimated from

the model. For a three-arm study comparing treatments A, B and C for three outcomes R, D

and V a (6 x 6) variance-covariance matrix is needed instead:

/ Ci.aB,R
PgD i, aB.D
h h _
0. = Prv Pov  SiaByv
' 1/2 p]}/lD/Z szelv/z Ciacr
\Pgu/z 1/2 plf/lD/Z P}f?lD/z
P}’elv/z pli/lD/Z 1/2 Pz}elv/z

(54)

Ci.ac,p
h
Pvp/2 Ciacy

In the above matrix we have dropped the z parameters in the elements off the diagonal, for

simplicity. We can generalize for the case of studies with more arms, and for multiple

outcomes by following the same pattern. Note that care should be taken so that all the

variance-covariance matrices presented in this section remain definite-positive. In Section

4.2.3.1 and Section IX of this Appendix we discussed ways to ensure the positive-

definiteness of these matrices.
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XI. OpenBUGS code for fitting the model of Section 3.3.3

model {

## CONTROL for missing outcomes

for (i in 1:Ns){
cR[i]<-step(elr[i]
cD[i]<-step(eld[i]
control[i]<-cRJ[1]*

0.2)
-0.2)
cD[1i]
}

## truncate the o¢o’s for every study
for (1 in 1: Ns) {

plO[i]l<-max ((eld[i]-flr[i])/elr[i],0)*control[1i]
pll[i]l<-min(eld[i]/ (flr[i]l+elr([i]),1)
p20[i]<-max ((e2d[i]-f2r[i])/e2r[i],0) *control[1]
p21l[i]l<-min(e2d[i]/ (f2r[i]+e2r[i]),1)

zerol[i] <= O

philtrunc([i] ~ dunif(pl0[i],pl1[i])
ccl[i]<-step(abs(philtrunc([i])-pl0[i]) *step(pll[i]-
abs (philtrunc([i]))+0.0001

phil[i] <= -(a[T1[i]]-1)*log(philtrunc[i])-(b[T1[i]]-
1)*log(l-philtrunc([i])-log(ccl[1i])+1000000

zerol[i] ~ dpois(phil[il])

zero2[1] <- 0

phi2trunc[i] ~ dunif (p20[i],p21[i])
cc2[i]<-step(abs(phi2trunc([i])-pl0[i]) *step(p21[i]-
abs (phi2trunc([i]))+0.0001

phi2[i] <= —-(a[T2[1]]-1)*log(phi2trunc[i])-(b[T2[i]]1-
1)*log(1l-phi2trunc([i])-log(cc2[1])+1000000
zero2[i] ~ dpois(phi2[i])}

for (i in (N2h+1) :Ns) {
p30[i]<-max ((e3d[i]-flr[i])/e3r[i],0)*control[1i]
p31[i]<-min(e3d[i]/ (f3r[i]+e3r([i]),1)
zero3[1] <- O
phi3trunc[i] ~ dunif (p30[i],p31[i])
cc3[i]<-step(abs(phi3trunc[i])-p30[i]) *step (p31[i]-
abs (phi3trunc([i]))+0.0001
phi3[i] <= —-(a[T3[1]]-1)*log(phi3trunc[i])-(L[T3[i]]1-
1) *log (l-phi3trunc[i])-log(cc3[i])+1000000
zero3[i] ~ dpois(phi3[il])}

## two-arm studies

for (i in 1:N2h) {
testl[i]<-(philtrunc[i]*(elr[i]+flr[i])*(elxr[i]+£flr[i])-
eld[i]*(elr[i]+flr[i]))/(eld[i]*flr[i]1*£f1d[1i])
+(phi2trunc[i] * (e2r[i]+f2r[i]) *(e2r[i]+£f2r[i]) -

e2d[i]*(e2r[ 1+£2r[1]1))/ (e2d[1i]*f2r[1]1*£2d[1])

rho2h[i]<
testl[i]/(sqrt(l/elr[ 1+1/flr[i]+1/e2r[i]+1/£f2x[1i]) *sgrt (1/el
d[i]+1/f1d[1i]1+1/e2d[1i]+1/£2d[1i]))
rho22h[i]<-max (min (rho2h[i],0.98),-0.98) *control[i]
s2[i,1,1]1<-1/elr[1]+1/flr[i]l+1/e2r[1]+1/f2r[1i]
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s2[i,2,2]1<-1/eld[1]
s2[i,1,2]<-sqrt(s2]
s2[1,2,11<-s2[1,1,2

+1/£1d[i]+1/e2d[i]+1/£2d[1]
i,1,11*%s2[i,2,2]1) *rho22h[1i]
1}

for( i in 1:N2h) {prec2A[i,1:2,1:2]<-inverse(s2[i,,])}

for (1 in 1:N2h)
{y[(2*%1i-1): (2*1) ]~dmnorm(thetal[ (2*1i-1): (2*1i)],prec2A[i,, 1)}

for(i in 1:2){
for (37 in 1:2){

D2[i,]]<-
taul. sq*tl[ i,jl+tau2.sg*t2[i, j]l+sqgrt(taul.sg*tau?2.sq) * (rhotau
)*t3[1,J11}

prec2B[l:2,1:2]<-inverse(D2[,1])

for (i in 1:N2h)
{theta[ (2*1i-1) :2*i] ~dmnorm(mean|[ (2*i-1) :2*i],prec2B[,]1) }

## three-arm studies
for (i in 1:(Ns-N2h))
{sd4[i,1,1]1<-
1/elr[N2h+1]1+1/flr[N2h+i]+1/e2r [N2h+1]+1/£f2r[N2h+1]
41i,2,2]<-
1/eld[N2h+1]1+1/f1d[N2h+i]+1/e2d [N2h+1]+1/£f2d[N2h+1]
411,3,31<-
1/elr[N2h+1]1+1/flr[N2h+i]+1/e3r[N2h+1i]+1/£3r[N2h+1]
s4[i,4,4]<-
l/eld[N2h+i]+l/fld[N2h+i]+l/e3d[N2h+i]+l/f3d[N2h+i]
s4(1,1,3]1<-(1/elr[N2h+i]+1/f1lr[N2h+1]) R[1]
4[1,3,1]<-(1/elr [N2h+i]+1/f1r[N2h+i]) *CR[1]
471,2,41<-(1/eld[N2h+i]+1/f1d[N2h+i])*cD[1]
471,4,2]1<-(1/eld[N2h+i]+1/f1d[N2h+i])*cD[1]
## rho (AB-R,AB-D)
testsll2[i]<-
(philtrunc[N2h+i]* (elr[N2h+i]+flr[N2h+i]) * (elr [N2h+i]+flr[N2h

+i]) -

eld[N2h+i]* (elr[N2h+1i]+flr[N2h+i]))/ (eld[N2h+i]*flr [N2h+i]*fl

d[N2h+i1])

+ (phi2trunc [N2h+i]* (e2r [N2h+1]+f2r [N2h+1i]) * (e2r [N2h+i]+f2r [

N2h+1i]) -

e2d[N2h+i]* (e2r [N2h+i]+£f2r [N2h+i]) )/ (e2d[N2h+i]*f2r [N2h+i]*£f2

d[N2h+i1])

tests212[i]<-testsll2[i]/sqgrt(s4[i,1,1]1*s4[i,2,2])

rhosl2[ ]<-max(-0.98,min (0.98, tests212[1]))*control[ ]
471,1,2]<-rhosl2[i]*sqgrt(sd4[i,1,1]1*s4[i,2,2])
4[1,2,1]<-rhosl2[i]*sqgrt(sd4[i,1,1]1*s4[i,2,2])

## rho (AC-R,AC-D)
testl34[1]<-
(philtrunc[N2h+i]* (elr [N2h+i]+flr [N2h+i]) * (elr [N2h+i]+£flr [N2h
+i]) -
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eld[N2h+i]* (elr[N2h+i]+flr[N2h+i]))/ (eld[N2h+i]*flr [N2h+i]*f1l
d[N2h+i])

+ (phi3trunc[N2h+i]* (e3r [N2h+i]+f3r[N2h+i]) * (e3r [N2h+i]+£f3r]|
N2h+1i]) -
e3d[N2h+i]* (e3r[N2h+1i]+f3r[N2h+i]))/ (e3d[N2h+1i]*£f3r[N2h+1i]*£f3
d[N2h+i1])
test234[i]<-testl34[i]/(sqrt(sd4[i,1,1]1*s4]
rhos34[1i]<-max(-0.98,min(0.98,test234[1i])) *control[i]
sd4[i,3,4]<-rhos34[i]*sqgrt(s4([i,1,1]1*s4[i,3,3])
sd4[i,4,3]<-rhos34[i]*sqgrt(s4([i,1,1]1*s4[i,3,3])

4[1,3,31))
)

## rho (AB-R,AC,D), rho(AB-D,AC-R)
testll4d[i]<-
(philtrunc[N2h+i]* (elr [N2h+i]+flr[N2h+i]) * (elr [N2h+i]+£flr[N2h
+i])
eld[N2h+i]* (elr [N2h+i]+flr[N2h+i]))/ (eld[N2h+i]*flr [N2h+i]*f1l
d[N2h+i])
test214[i]<-testl14[i]/(sqrt(s4[i,1,1]1*s4[1,4,4]))

rhosl4[i]<-min (max (test214[i],-0.98),0.98) *control[i]

S4[l 1,4]<-rhosl4[i]l*sqgrt(s4([i,1,1]1*s4[i,4,4])
4[i,4,1]<-rhosl4([i]*sqrt(s4([i,1,1]1*s4[i,4,4])
4[i,3,2]<-rhosl4[i]*sqrt(s4[i,1,1]*s4[i,4,4])
4[i,2,3]<-rhosl4[i]*sqrt(s4([i,1,1]1*s4([i,4,4])}

for (k in 1: (Ns-N2h)) {
prec3A[k,1:4,1:4]<-inverse(sd[k,,]1)
y[2*N2h+4*k-3:2*N2h+4*k] ~dmnorm (theta [2*N2h+4*k-
3:2*N2h+4*k],prec3Alk,,]1)}

for (i in 1:4){
for (7 in 1:4){
D3[i,]]<-
taul.sg*deltal[i ,j]+tau2 sg*delta2[i,j]+sqgrt(taul.sg*tau2.sq)
* (rhotau) *delta3[i,j]}}

for (k in 1:(Ns-N2h))
{precd4Alk,1:4,1:4]1<-inverse(D3[,])
theta[2*N2h+4*k-3:2*N2h+4*k] ~dmnorm (mean [2*N2h+4*k-
3:2*N2h+4*k],precdAlk,,]1)}

#Parameterization of the means#

for(i in 1:N2h) {
mean[2*i-1] <= -dR[T2[i]] + dAR[T1[i]]
mean[2*i] <- -dD[T2[i]]+ dD[T1[i]]1}

for(i in 1:(Ns-N2h)) {

mean [2*N2h+4*1-3] <- —-dR[T2[N2h+i]] + dR[T1[N2h+i]]
mean [2*N2h+4*1-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]
mean [2*N2h+4*1-1] <- —-dR[T3[N2h+i]]+ dR[T1[N2h+i]]
mean [2*N2h+4*1] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]]}

#Priors#
for(k in 1: (ref-1)) {
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dR[k] ~ dnorm(0,.01)}
for(k in (ref+1) :NT) {

dR[k] ~ dnorm(0,.01)}
for(k in 1:(ref-1)) {

dD[k] ~ dnorm(0,.01)}
for(k in (ref+1l) :NT) {
dD[k] ~ dnorm(0,.01)}

taul.sg<-taul*taul
taul~dunif (0, 1)
tau2.sg<-tauz*tau?
tau2~dunif (0, 1)
rhotau~dunif (-0.99,0)
#Estimated Effect Sizes#
dR[ref]<- 0

for (¢ in 1l:(ref-1)) { Eff.refR[c]<- exp(dR[c] - dR[ref])}
for (¢ in (ref+l):NT) {Eff.refR[c]<- exp(dR[c] - dR[ref])}
for (¢ in 1:(NT-1)) {
for (k in (c+1):NT) { EffR[c,k] <- exp(dR[k] - dR[c])}}
dD[ref]<- 0
for (c in 1:(ref-1)) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}
for (c in (ref+1):NT) {Eff.refD[c]<- exp(dD[c] - dD[ref] )}
for (c in 1:(NT-1)) {
for (k in (c+1) :NT) {EffD[c,k] <- exp(dD[k] - dD[c]) }}

# Ranking of treatments - R
for (k in 1:13) {ddR[k]<-dR[k]}
for(k in 1:13) {
orderR[k]<-14- rank (ddR[], k)
most.effectiveR[k]<-equals (orderR[k], 1)
for(j in 1: 13) {
effectivenessR[k,j]<- equals (orderR[k],])
cumeffectivenessR[k,j]I<-
sum(effectivenessR[k,1:3])}}
for(k in 1:13) {SUCRAR[k]<- sum(cumeffectivenessR[k,1:(13-1)1])
/(13-1)}
#Ranking of treatments - D
for(k in 1:14) {
orderD[k]<- rank(dD[], k)
most.effectiveD[k]<-equals (orderD[k],1)
for(j in 1: 14) {

effectivenessD[k,j]l<- equals (orderD[k],]J)
cumeffectivenessD[k,j]<-

sum(effectivenessD[k,1:3])}}

for(k in 1:NT) {SUCRAD[k]<- sum(cumeffectivenessD[k,1:131) /(13)}}

The inputs required for this program are the following:
N2h: the number of two-arm studies.

Ns: the total number of studies.

NT: the number of treatments.
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ref: the treatment number for the reference treatment (e.g. placebo).

a, b: the parameters of the Beta prior distributions for the ¢.

y: the 2(N2h+2Ns)- dimensional vector of observed effects (2 for every two-arm study, 4
for every three-arm). Odd positions correspond to R comparison, even to D.

varr: the (N2h+2Ns)- dimensional vector of the variance for every R comparison (one for
each odd position in y). For studies with missing data impute a large variance (e.g.
100000).

vard: the (N2h+2Ns)- dimensional vector of the variance for every D comparison (one for
each even position in y). For studies with missing data impute a large variance (e.g.
100000).

T1,T2,T3: the Ns — dimensional vector of treatments for every study. For two arm studies
set T3=0.

elrfir,e2r,f2re3r,f3r: the Ns— dimensional vectors containing the number of successes
(e) and failures (f) of every arm for the R outcome. For studies with missing data impute
small a number (e.g. 0.1).

eld,fld,e2d,f2d,e3d,f3d: the same for the D outcome.

t1,t2,t3: the (2?2) matrices needed for constructing the heterogeneity variance-covariance
matrix for the two-arm studies, A_((2?2)) of Equation (2):

t1 = structure(.Data=c(1, 0, 0, 0),.Dim=c( 2, 2))

t2 = structure(.Data=c(0, 0, 0, 1),.Dim=c( 2, 2))

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2, 2))

deltal,delta2,delta3: the (4x4) matrices needed for constructing the heterogeneity
variance-covariance matrix for the three-arm studies.

deltal = structure(.Data=c(1,0,0.5 0,0,0,0,0,0.5,0,1,0,0,0,0,0),.Dim=c(4,4))

delta2 = structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1),.Dim=c(4 ,4))
delta3=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0),.Dim=c(4,4))

For the acute mania example the data are as follows:

list( N2h = 49, Ns=67, NT=14, ref=2,

y =c(5.34831E-01, 4.09477E-01, 8.97209E-01, -1.16246E-01,
3.62793E-01, -9.74196E-01, 1.05322E+00, -9.70437E-01,

1.95066E-01, -3.72771E-02, -8.29426E-01, 5.10009E-01,
3.99240E-01, 3.41398E-01, -8.09319E-01, 1.26194E+00, -
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8.28099%9E-01, -2.15871E-02, -5.71553E-01, 3.43985E-01, -
7.05038E-01, 2.52997E-01, -9.69115E-02, -1.54010E-01, NA,
-1.09861E+00, -4.37973E-02, -4.89940E-01, NA,
1.25276E+00, -1.14054E+00, 1.09397E+00, -9.65081E-01,
.18310E-01, 5.29278E-01, -2.02999E-01, -8.48977E-01,
.91444E-02, 3.84200E-02, 3.00429E-01, NA, NA,
.26437E-02, 2.05852E-01, -1.55186E+00, 1.23117E4+00, -
.38997E-01, 6.80725E-01, -8.34938E-01, 5.79166E-01,
.84498E-01, -6.00690E-01, 1.89712E+00, NA, -5.87877E-01,
.39369E-01, -2.10191E+00, -1.54151E-01, 8.78070E-01,

.0E+00, -9.68826E-01, 5.53768E-01, NA, -6.45385E-02, -
.13197E+00, 3.34935E-01, 2.71934E-01, 4.85508E-01, NA, -
5.66183E-01, NA, -7.84831E-01, -8.90315E-01, 1.03407E+00,
-1.28437E-01, 1.23193E-01, NA, NA, 2.23144E-01,
2.35138E+00, NA, 1.20397E+00, NA, -1.79176E+00,

NA, 1.60944E+00, 6.35989E-01, -4.62624E-01, NA, -
6.53195E-02, 2.51314E-01, -7.58439E-01, NA, -5.59162E-01,
NA, -7.71790E-01, -4.39488E-01, -8.15296E-02, -5.23822E-01, -

R O DN O 01 oy O

7.06051E-03, -4.40040E-01, 5.91889E-02, -3.61506E-01,
2.15552E-01, -4.32809E-01, 1.04443E-01, -1.12719E+00,
9.88264E-01, -1.13561E+00, 1.46863E+00, -8.57450E-01,
8.30769E-01, -3.17969E-01, 1.84141E-01, -1.52128E+00,
7.37673E-01, -8.05123E-01, 5.60758E-01, -3.86448E-01,
3.19516E-02, -3.51284E-01, 9.36559E-02, NA, -1.52549E-01,
NA, 5.96768E-01, NA, -1.25276E+00, NA, -7.67255E-01,
-5.86445E-01, 4.93876E-01, -6.37310E-01, 3.52167E-01, -
1.09030E+00, 9.40983E-01, -7.14470E-01, 8.20439E-02, NA,
9.67736E-01, NA, 3.79929E-01, -1.13498E+00, 1.02326E-01,
-1.16397E+00, 6.41322E-01, NA, -8.07657E-01, NA, -
7.99573E-02, NA, 6.03875E-01, NA, -3.94654E-01,

NA, 2.40976E-02, NA, -1.92126E-01, NA, -3.98348E-01,

NA, -3.88398E-02, -5.98762E-01, 8.64997E-01, -8.25390E-01,
9.09235E-01, -8.83191E-01, -5.06561E-01, -2.83200E-01,
6.79062E-01)
a=c(11.2,12.9,28.3,15.2,13.7,16.7,32.1,29.5,20.4,19.2,17.8,16
.3,32.6,20.6),
b=c(27.4,47.4,72,23.4,40.9,40.6,78.3,43.5,55.2,43.4,38.8,37.6
,48.8,39.9),

Tl=c( 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 6, 2, 3, 2, 2, 7,
2/ 4/ 7/ 2/ 2/ 2/ 2/ 7131 2/ 2/ 9 121 4 121 3/ 2/ 2/ 3/ 2/ 2/
4 I3I 4! 3! 3! 2! 2! 2! 3! 2! ’ 2! ’ 2! ’ ’ ’ ’ ’ ’
2, 2, 2, 2, 2, 2, 2, 2, 2),
T2=c(2,2,4,2,2,5,5,5,5,6,6,6,7,6,7,7,7,9,7,7,9,7, 10 ,10 ,10,
10,9,9,9 ,12,9, 12, 12,8 ,13 ,13,7,10, 10, 12,4 ,12 ,12,7,9
,13 ,14 ,12,7,1,1,3,4,4,7,4,4,4,7,7,3,3,3,3,3,5,4),

T3=c( 0, 0, O, O, O 0 O0 O 0 O, 0, O, 0, O,
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o o0, 0, 0, O 3, 4, 5, 5, 6, 9, 10, 10, 10, 11 ,11
, 9,8, 8,13 ,13 ,10, 1),

elr=c(1.55000E+02, 7.20E+01, 8.90E+01, 4.90E+01, 1.10E+02,
2.90E+01, 4.80E+01, 4.60E+01, 5.30E+01, 2.30E+01, 1.90E+01,

.80E+01, 0.1, 1.29000E+02, 0.1, 1.60E+01, 2.40E+01,
.80E+01, 5.10E+01, 1.58000E+02, 0.1, 3.90E+01, 5.10E+01,
.00E+01, 2.90E+01, 8.00E+01, 1.20E+01, 6.00E+01, 2.00E+0QO0,
.10E+01, 3.00E+01, 0.1, 5.40E+01, 9.00E+00, 0.1,

.1, 5.20E+01, 5.10E+01, 0.1, 5.00E+00, 0.1, 0.1,
.1, 5.00E+00, 0.1, 3.20E+01, 0.1, 0.1, 3.00E+01,
.60E+01, 5.80E+01, 2.60E+01, 3.50E+01, 18, 3.10E+01,

.1, 0.1, 3.90E+01, 2.60E+01, 0.1, 1.80E+01, 0.1,
.1, 0.1, 0.1, 3.60E+01, 4.30E+01),

2r=c (6.3E+01, 4.2E+01, 7.2E+01], 2.3E+01, 4.9E+01, 4.4E+01,
.9E+01, 6.0E+01, 8.2E+01, 6.5E+01, 6.3E+01, 5.0E+01,

.1, 2.71000E+02, 0.1, 3.4g+401, 3.5E+01, 5.2E+01,
.49000E+02, 1.67000E+02, 0.1, 3.7E+01, 1.05000E+02,
.0E+01, 5.5E+01, 7.2E+01, 9.0E+00, 8.9E+01, 9.0E+00,
.0E+00, 4.7E+01, 0.1, 1.12000E+02, 8.0E+0QO0, 0.1,
.1, 6.0E+01, 1.56000E+02, 0.1, 4.0E+00, 0.1,
.1, 0.1, 3.0E+00, 0.1, 2.6E+01, 0.1, 0.1,
.0E+01, 7.2E+01, 7.8E+01, 5.2E+01, 5.5E+01, 9.3E+01,
.2E+01, 0.1, 0.1, 5.9E+01, 9.4E+01, 0.1,
.8E+01, 0.1, 0.1, 0.1, 0.1, 9.4E+01,
.3E+01),
3r=c( 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
.1, 7.10000E+01, 8.00000E+01, 5.70000E+01, 4.30000E+01,
.50000E+01, 7.50000E+01, 0.1, 0.1, 6.50000E+01,
.80000E+01, 0.1, 3.50000E+01, 0.1, 0.1, 0.1,

.1, 1.06000E+02, 5.30000E+01),
lr=c(9.8E+01, 6.5E+01, 8.6E+01, 8.1E+01, 1.57000E+02,
.1E+01, 5.7E+01, 3.1E+01, 1.08000E+02, 4.7E+01, 4.7E+01,

O 1 J OO DdU U dHOJOHNODODODIODODODOOD RHPEPRPObOODWhEPELOUD OOUOoORFE WO

.5E+01, 0.1, 9.3E+01, 0.1, 5.3E+01, 3.6E+01,
.7E+01, 6.4E+01, 6.1E+01, 0.1, 2.1E+01, 9.4E+01,
.5E+01, 9.6E+01, 8.5E+01, 1.0E+00, 1.25000E+02, 2.0E+01,
.0E+00, 3.7E+01, 0.1, 1.66000E+02, 6.0E+0O0, 0.1,
.1, 1.9E+01, 7.1E+401, 0.1, 4.0E+00, 0.1, 0.1,
.1, 1.5E+01, 0.1, 1.12000E+02, 0.1, 0.1,
.1E+01, 1.09000E+02, 9.5E+01], 7.1E+01, 6.6E+01, 7.0E+01,
.4E+01, 0.1, 0.1, 1.01000E+02, 7.9E+01, 0.1,
.6E+01, 0.1, 0.1, 0.1, 0.1, 6.%E+01,
5.6E+01),

f2r=c(6.80000E+01, 9.30000E+01, 1.00000E+02, 1.09000E+02,
8.50000E+01, 4.70000E+01, 4.70000E+01, 1.80000E+01,
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7.30000E+01, 7.50000E+01, 7.70000E+01, 5.20000E+01, 0.1
1.87000E+02, 0.1, 3.60000E+01, 2.00000E+01, 7.40000E+01
8.00000E+01, 6.70000E+01, 0.1, 2.10000E+01, 4.10000E+01
3.50000E+01, 7.90000E+01, 9.20000E+01, 5.00000E+00,
1.03000E+02, 1.10000E+01, 7.00000E+00, 2.20000E+01, 0.1
1.11000E+02, 7.00000E+00, 0.1, 0.1, 9.00000E+00,
1.91000E+02, 0.1, 4.00000E+00, 0.1, 0.1, 0.
1.70000E+01, 0.1, 1.17000E+02, 0.1, 0.1,
6.10000E+01, 8.30000E+01, 8.90000E+01, 4.60000E+01,
4.40000E+01, 7.90000E+01, 1.33000E+02, 0.1, 0.1,
8.50000E+01, 9.60000E+01, 0.1, 1.80000E+01, 0.1,
0.1, 0.1, 0.1, 9.90000E+01, 7.00000E+00),

£3r=c ( 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 8.90000E+01, 8.50000E+01, 5.00000E+01, 5.90000E+01,
1.13000E+02, 1.26000E+02, 0.1, 0.1, 8.90000E+01,
1.16000E+02, 0.1, 3.40000E+01, 0.1, 0.1, 0.
0.1, 8.90000E+01, 5.20000E+01),

eld=c (5.4E+01, 6.2E+01, 4.1E+01, 7.6E+01, 1.57000E+02,
5.1E+01, 4.3E+01, 1.5E+01, 4.5E+01, 3.9E+01, 3.0E+01,
2.9E+01, 1.0E+01, 4.3E+01, 3.0E+00, 4.5E+01, 3.5E+01,
3.9E+01, 8.2E+01, 7.8E+01, 0.1, 1.8E+01, 4.3E+01,
4.0E+01, 7.3E+01, 3.5E+01, 0.1, 8.9E+01, 8.0E+00,
3.0E+00, 1.1E+01, 1.5E+01, 1.1E+02, 3.0E+00, 2.8E+01,
2.8E+01, 1.5E+01, 5.0E+01, 0.1, 7.0E+00, 4.0E+00,
1.0E+00, 5.0E+00, 2.0E+00, 6.4E+01, 1.3E+01, 2.1E+01,
1.0E+01, 4.1E+01, 8.7E+01, 4.4E+01, 3.0E+01, 4.0E+01,
6.3E+01, 2.8E+01, 2.5E+01, 1.0E+00, 2.1E+01, 4.1E+01,
4.1E+01, 4.7E+01, 3.4E+01, 3.1E+01, 2.9E+01, 1.4E+01,
4.1E+01, 4.7E+01),

e2d=c (2.0E+01, 6.5E+01, 7.7E+01, 1.04000E+02, 8.0E+01,
3.5E+01, 3.5E+01, 5.0E+00, 4.4E+01, 6.6E+01, 5.5E+01,
3.2E+01, 1.2E+01, 1.29000E+02, 1.0E+00, 2.7E+01, 2.1E+01,
4.5E+01, 1.6E+02, 6.8E+01, 0.1, 1.5E+01, 1.6E+01,
2.7E+01, 5.9E+01, 5.4E+01, 0.1, 8.1E+01, 8.0E+00,
3.0E+00, 7.0E+00, 1.6E+01, 9.3E+01, 2.0E+00, 8.7E+01,
4.8E+01, 6.0E+00, 1.32000E+02, 0.1, 2.0E+00, 2.0E+00,
4.0E+00, 1.0E+00, 3.0E+00, 1.22000E+02, 2.5E+01, 2.9E+01,
1.4E+01, 4.3E+01, 8.2E+01, 4.1E+01, 1.4E+01, 2.2E+01,
9.4E+01, 5.6E+01, 2.8E+01, 3.0E+00, 1.4E+01, 3.8E+01,
4.4E+01, 2.2E+01, 2.0E+01, 2.1E+01, 2.9E+01, 2.0E+01,
4.1E+01, 1.2E+01),

e3d=c ( 0.1, .1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

4
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1.34000E+02,
6.20000E+01,
7.40000E+01,
2.40000E+01,
1.41000E+02,
5.20000E+01,
1.40000E+01,
1.20000E+01,
.20000E+01,
.40000E+01,
.80000E+01,
.09000E+02,
.70000E+01,
.40000E+01,
.60000E+01,
5.20000E+01),
9.50000E+01,
7.30000E+01,
7.00000E+01,
4.30000E+01,
1.66000E+02,
7.50000E+01,
1.20000E+01,
1.30000E+01,
.15000E+02,
.40000E+01,
.00000E+01,
.26000E+02,
.59000E+02,
.52000E+02,
.70000E+01,
.00000E+00),
0.1,
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1, 0.1, 0.1, 0.1, 0
1, 0.1, 0.1, 0.1, 0.
1, 0.1, 0.1, 0.1, 0
1, 0.1, 0.1, 0.1, 0.
.1, 8.20000E+01, 4.40000E+01, 1.00000
.05000E+02, 5.00000E+01, 1.80000E+01,
.70000E+01, 7.20000E+01, 6.10000E+01,
.20000E+01, 3.70000E+01, 6.60000E+01,
.00000E+01, 3.30000E+01),
1d=c (1.99000E+02, 7.50000E+01,
.10000E+02, 4.90000E+01, 6.20000E+01,
.16000E+02, 3.10000E+01, 3.60000E+01,
.00000E+00, 1.79000E+02, 1.20000E+01,
.50000E+01, 8.60000E+01, 3.30000E+01,
.20000E+01, 1.02000E+02, 3.60000E+01,
.30000E+02, 0.1, 9.60000E+01,
.60000E+01, 1.00000E+00, 1.10000E+02,
.20000E+01, 7.80000E+01, 5.60000E+01,
.00000E+00, 3.00000E+00, 9.00000E+0O0,
.80000E+01, 1.40000E+01, 1.31000E+02,
.70000E+01, 6.00000E+01, 7.80000E+01,
.70000E+01, 6.10000E+01, 2.50000E+01,
.60000E+01, 1.40000E+01, 1.19000E+02,
.70000E+01, 2.70000E+01, 6.10000E+01,
.20000E+01, 9.80000E+01, 6.40000E+01,
2d=c(1.11000E+02, 7.00000E+01,
.40000E+01, 5.60000E+01, 7.10000E+01,
.11000E+02, 7.40000E+01, 8.50000E+01,
.00000E+00, 3.29000E+02, 1.40000E+01,
.40000E+01, 8.10000E+01, 6.90000E+01,
.30000E+01, 1.30000E+02, 4.80000E+01,
.10000E+02, 0.1, 1.11000E+02,
.20000E+01, 1.00000E+00, 1.30000E+02,
.27000E+02, 6.10000E+01, 6.30000E+01,
.00000E+00, 5.00000E+00, 6.00000E+0O0,
.70000E+01, 2.50000E+01, 1.18000E+02,
.10000E+01, 5.80000E+01, 7.30000E+01,
.40000E+01, 7.70000E+01, 7.80000E+01,
.50000E+01, 1.20000E+01, 1.30000E+02,
.61000E+02, 1.40000E+01, 1.60000E+01,
.40000E+01, 9.40000E+01, 1.52000E+4+02,
3d=c ( 0.1, 0.1, 0.1, 0.
.1, 0.1, 0.1, 0.1, 0.
1, 0.1, 0.1, 0.1, 0.
1, 0.1, 0.1, 0.1, 0
1, 0.1, 0.1, 0.1, 0.
.1, 0.1, 0.1, 0.1, 0.
1, 0.1, 0.1, 0.1, 0.
1, 7.80000E+01, 1.21000E+02, 9.70000
30000E+01, 1.51000E+02, 3.40000E+01,
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1.37000E+02, 1.22000E+02, 1.24000E+02, 3.60000E+01,
5.30000E+01, 3.70000E+01, 1.54000E+02, 1.01000E+02,
1.55000E+02, 7.20000E+01),

tl = structure(.Data=c(1l, 0, 0, 0),.Dim=c( 2 , 2 )),

t2 = structure(.Data=c(0, 0, 0, 1), .Dim=c( 2 , 2 )),

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2 , 2 )),

deltal = structure(.Data=c (1, 0, 0.5,
0,0,0,0,0,0.5,0,1,0,0,0,0,0), .Dim=c( 4 , 4 )),

deltaz2 =
structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1), .Dim=c
(4, 4)),

delta3

=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0), .
Dim=c( 4 , 4 )))
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XI1. OpenBUGS code for the model in Section 4.3.2.1

model {

# this controls for studies with one outcome not reported by
setting the correlation equal to zero

for (k in 1:(2*Ns-N2h))
{control [k]<-step (9999-varr[k]) *step(9999-vard[k]) }

# two-arm studies
for( k in 1:N2h) {
slk,1,1l]1<-varr[k]
2,2]<-vard[k]
;1,2]<-control[k]*rhosigma*sqrt (varr[k]*vard[k])
2,11<-control [k]*rhosigma*sqgrt (varr[k]*vard[k])

14

AN N

[
[
[
[

n 0 un

’ ’

prec2Alk,1:2,1:2]<-inverse(s[k,,])
y[(2*k-1): (2*k) ] ~dmnorm (thetal[ (2*k-
1) :(2*k)],prec2alk,,1)
for(i in 1:2){
for (3 in 1:2){
D2 [k,1i,3]<-
taul.sg*tl[i,j]+tau2.sg*t2[i,Jj]+sgrt (taul
.sgq*tau2.sq) *control[k]* (rhotau) *t3[i,]]}
}
prec2Blk,1:2,1:2]<-inverse (D2[k,,])
theta[ (2*k-1) : 2*k] ~dmnorm (mean|[ (2*k-
1) :2*k],prec2B[k,,]) }

# three-arm studies
for (k in 1:(Ns-N2h)) {
rhosigmalT[k]<-max (rhosigma,-ul[k])
rhosigmaT[k]<-min (rhosigmalT[k],ul[k])
for (i in 1:4){
for (j in 1:4){
Slk,i,31<-
sigmallk,i,j]+control [k]*rhosigmaT[k]*sigma2 [k
yi,311)
prec3Alk,1:4,1:4]<-inverse(S[k,,])
y[2*N2h+4*k-3:2*N2h+4*k] ~dmnorm (theta [2*N2h+4*k-
3:2*N2h+4*k],prec3Alk,,])
for (1 in 1:4) {
for (3 in 1:4){
D3[k,i,3]<-
taul.sg*deltal[i, jl+tau2.sg*delta2[i, jl+sqgrt(t
aul.sg*tau2.sq) * (control [k] *rhotau) *delta3[1i, ]
14}
precd4Alk,1:4,1:4]1<-inverse (D3[k,,])
theta[2*N2h+4*k-3:2*N2h+4*k] ~dmnorm (mean [2*N2h+4*k-
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3:2*N2h+4*k],prec4Alk,,])}

# Parameterization of the means
for(i in 1:N2h) {
mean[2*i-1] <- -dR[T2[i]] + dR[T1[i]]
mean[2*i] <- -dD[T2[1]]1+ dD[T1[i]]}
for(i in 1: (Ns-N2h))

{
mean [2*N2h+4*i-3] <- -dR[T2[N2h+i]] + dR[T1[N2h+i]]
mean [2*N2h+4*i-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]
mean[2*N2h+4*i-1] <- -dR[T3[N2h+i]]+ dR[T1[N2h+i]]
mean [2*N2h+4*i] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]] }

# Priors

for(k in 1:(ref-1)) {dR[k] ~ dnorm(0, .01)
for(k in (ref+1) :NT) {dR[k] ~ dnorm(0, .01
for(k in 1:(ref-1)) {dD[k] ~ dnorm(0,.01)
for(k in (ref+1) :NT) {dD[k] ~ dnorm(0, .01
taul.sg<-taul*taul

taul~dunif (0, 1)

tau2.sg<-tauz2*tau2

tau2~dunif (0, 1)

rhosigma<-0

rhotau<-0

# Estimated Effect Sizes
dR[ref]<- 0
for (c in 1:(ref-1)) {Eff.refR[c]<- exp(dR[c] - dR[ref] )}
for (¢ in (ref+1):NT) {Eff.refR[c]<- exp(dR[c] - dR[ref] )}
for (c in 1:(NT-1)) {

for (k in (c+1l) :NT) {EffR[c,k] <- exp(dR[k] - dR[c]) }}
dD[ref]<- O
for (¢ in 1:(ref-1)) {Eff.refD[c]<- exp(dD[c] - dD[ref] )}

for (¢ in (ref+l):NT) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}
for (¢ in 1:(NT-1)) {
for (k in (c+1):NT) {EffD[c,k] <- exp(dD[k] - dD[c]) }}

# SUCRA rankings

# Ranking of treatments for response. This part is customized
# for the acute mania dataset,

# where one of the treatments was not compared for response.

for(k in 1:13) {ddR[k]<-dR[k]}
for(k in 1:13) {
orderR[k]<-14- rank (ddR[], k)
most.effectiveR[k]<-equals (orderR[k], 1)
for(j in 1: 13) {
effectivenessR[k, J]<- equals (orderR[k], J)
cumeffectivenessR[k, j]<-
sum (effectivenessR[k,1:3]) }}

142



for(k in 1:13) {
SUCRAR[k]<- sum(cumeffectivenessR[k,1:(13-1)1) /(13-1)}

#Ranking of treatments for dropout
for(k in 1:NT) {
orderD[k]<- rank(dDI[], k)
most.effectiveD[k]<-equals (orderD[k], 1)
for(j in 1: NT) {
effectivenessD[k,j]<- equals (orderD[k], )
cumeffectivenessD[k, j]<- sum(effectivenessDI[k,1:3])}}
for(k in 1:NT) {
SUCRAD[k]<- sum(cumeffectivenessD[k,1l: (NT-1)]) /(NT-
1)) }}

The inputs required for this program are the following:

N2h: the number of two-arm studies.

Ns: the total number of studies.

NT: the number of treatments.

ref: the treatment number for the reference treatment (e.g. placebo).

y: the 2(N2h + 2Ns)-dimensional vector of observed effects (two for every two-arm
study, four for every three-arm). Odd positions correspond to R comparison, even to D.
Impute NA when in a study an outcome is missing.

varr: the (N2h + 2Ns)-dimensional vector of the variance for every R comparison (one
for each odd position in y). For studies with missing data impute a large variance (10,000).
vard: the (N2h + 2Ns)- dimensional vector of the variance for every D comparison (one
for each even position in y). For studies with missing data impute a large variance
(10,000).

T1, T2, T3: these are Ns — dimensional vector of treatments for every study. T1 refers to
the first treatment of every study (chosen arbitrarily), T2 to the second. For two arm-
studies set T3 =0.

t1, t2, t3: the (2 x 2) matrices needed for constructing the heterogeneity variance-

covariance matrix for the two-arm studies, 4,x7) in Equation (2) of the paper:
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t1 = structure(.Data=c(1, 0, 0, 0),.Dim=c( 2, 2))

t2 = structure(.Data=c(0, 0, 0, 1),.Dim=c( 2, 2))

t3 = structure(.Data=c(0, 1, 1, 0),.Dim=c( 2, 2))

deltal, delta2, delta3: the (4 x 4) matrices needed for constructing the heterogeneity
variance-covariance matrix A4y for the three-arm studies, Equation (5) of the paper.
deltal = structure(.Data=c(1,0,0.5 0,0,0,0,0,0.5,0,1,0,0,0,0,0),.Dim=c(4,4 ))

delta2 = structure(.Data=c(0,0,0,0,0,1,0,0.5,0,0,0,0,0,0.5,0,1),.Dim=c(4 ,4))
delta3=structure(.Data=c(0,1,0,0.5,1,0,0.5,0,0,0.5,0,1,0.5,0,1,0),.Dim=c(4,4))

sigmal, sigma2: the (Ns — N2h) X 4 X 4 — dimensional arrays entering Equation (8) for

every three-arm study, as computed from the data.
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X1, OpenBUGS code for the model in Section 4.2.3.2

model {

# this controls for studies with one outcome not reported by
setting the correlation equal to zero

for (k in 1:(2*Ns-N2h) ) {control[k]<-step (9999-
varr [k]) *step(9999-vard[k]) }

# two-arm studies
for( 1 in 1:N2h) {
s[i,1,1l]<-varr[i]+psiR.sqg
s[i,2,2]1<- Vard[ i]+psiD.sqg
s[i,1,2]<
control[i
sq)
s[i,2,1]<-s[1,1,2]
prec2Ali,1:2,1:2]<-inverse(s[i,,])
y[(2*%1-1) : (2*1) ] ~dmnorm (mean [ (2*i-
1) : (2*1)],prec2ali,,])}

]*rhol*sqrt (varr[i]+psiR.sq) *sqgrt (vard[i] +psiD.

# three-arm studies
for (i in 1: (Ns-N2h)) {

S[i,1,1]1<- varr[N2h+2*i-1]+psiR.sqg
S[i,2,2]<-vard[N2h+2*1i-1]+psiD.sq
S[i,3,3]1<- varr[N2h+2*i]+psiR.sqg
S[i,4,4]<-vard[N2h+2*i]+psiD.sqg
S[i,1,2]1<- control[i]*rhol*sqgrt(S[i,1,1]1)*sqgqrt(S[i,2,2])
S[i,2,11<- S[i,1,2]
S[i,1,3]<- control[i]*sgrt(S[i,1,1])*sgrt(S[i,3,3])/2
S[i,3,11<- S[i,1, 3]
S[i,1,41<-
control[i]*rhol*sqrt(S([i,1,1])*sqrt(S[i,4,4])/2
S[i, 4,1]<— S[i,1,4]
S[i,2,3]1<
control[l] rhol*sqgrt(S[i,2,2])*sqrt(S[i, 3,3])/2
S[i, 3 2]1<- S[i, 2, 3]
S[i,2,4]<- control[i]l*sqrt(S[i,2,2])*sqrt(S[i,4,4])/2
S[i,4,2]1<- S[i,2,4]
S[i,4,3]1<- control[i]*rhol*sqgrt(S[i,4,4])*sqrt(S[i,3,3])
S[i,3,4]<- S[i,4,3] }

for (k in 1.(Ns N2h)) {
prec3Alk,1:4,1:4]<-inverse(S[k,,])
y[2*N2h+4*k-3:2*N2h+4*k] ~dmnorm (mean [2*N2h+4*k-
3:2*N2h+4*k],prec3Alk,,])}

# Parameterization of the means

145



for(i in 1:N2h) {
mean[2*i-1] <- =-dR[T2[i]] + dAR[T1[4i]]
mean[2*i] <- -dD[T2[1i]]+ dD[T1[i]]}
for(i in 1: (Ns-N2h))

{
mean [2*N2h+4*i-3] <- -dR[T2[N2h+i]] + dR[T1[N2h+i]]
mean [2*N2h+4*i-2] <- -dD[T2[N2h+i]] + dD[T1[N2h+i]]
mean[2*N2h+4*i-1] <- -dR[T3[N2h+i]]+ dR[T1[N2h+i]]
mean [2*N2h+4*i] <- -dD[T3[N2h+i]] + dD[T1[N2h+i]] }

# Priors

for(k in 1: (ref-1)) { dR[k] ~ dnorm(0, .01)}
for(k in (ref+1) :NT) {dR[k] ~ dnorm(0,.01)}
for(k in 1: (ref-1)) { dD[k] ~ dnorm (0, .01)}
for(k in (ref+1) :NT) {dD[k] ~ dnorm(0,.01)}
psiR.sg<-psil*psil

psil~dunif (0,1)

psiD.sg<-psi2*psiZ2

psi2~dunif (0, 1)

rhol~dunif (-1, 0)

#Estimated Effect Sizes
dR[ref]<- 0
for (c in 1:(ref-1)) { Eff.refR[c]<- exp(dR[c] - dR[ref] )}
for (¢ in (ref+1):NT) { Eff.refR[c]<- exp(dR[c] - dR[ref] )
}
for (c in 1:(NT-1)) {
for (k in (c+1) :NT) {
EffR[c, k] <- exp(dR[k] - dRI[c]) }}
dD[ref]l<- 0
for (¢ in 1:(ref-1)) { Eff.refD[c]<- exp(dD[c] - dD[ref] )}
for (¢ in (ref+l):NT) { Eff.refD[c]<- exp(dD[c] - dD[ref] )
}
for (¢ in 1:(NT-1)) {
for (k in (c+1) :NT) {
EffD[c, k] <- exp(dD[k] - dD[c]) }}

# SUCRA rankings
# Ranking of treatments for response. This part of the code is
# adjusted for the acute mania dataset
for (k in 1:13) {ddR[k]<-dR[k]}
for(k in 1:13) {
orderR[k]<-13- rank(ddR[], k)
most.effectiveR[k]<-equals (orderR[k], 1)
for(j in 1: 13) {
effectivenessR[k, j]<- equals (orderR[k],J)
cumeffectivenessR[k, j]<- sum(effectivenessR[k,1:3])1}}

for(k in 1:13) {SUCRAR[k]<- sum(cumeffectivenessR[k,1: (13-
1)1) /(13-1)}
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#Ranking of treatments for dropout

for(k in 1:NT) {
orderD[k]<- rank(dD[], k)
most.effectiveD[k]<-equals (orderD[k],1)
for(j in 1: NT) {
effectivenessD[k,j]l<- equals (orderD[k], J)
cumeffectivenessD[k, j]<-
sum(effectivenessD[k,1:3]1) }}
for(k in 1:NT) {
SUCRAD[k]<- sum(cumeffectivenessD[k,1:( NT-1)]) /(NT-

1)1}

The data needed as inputs for this program are y, varr, vard and T1, T2, T3, described in
the end of the previous Section.
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