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Abstract

Anna Mpanti, M.Sc. in Computer Science, Department of Computer Science and En-
gineering, University of Ioannina, Greece, March 2017.
Graph-based Algorithmic Techniques for Watermarking using Self-inverting Permu-
tations and Bitonic Sequences.
Advisor: Stavros D. Nikolopoulos, Professor.

Over the last 25 years, digital or multimedia watermarking has become a popular
technique for protecting the intellectual property of any digital content such as im-
age, audio, video or software data. Software watermarking has received considerable
attention and was adopted by the software development community as a technique to
prevent or discourage software piracy and copyright infringement. A wide range of
software watermarking techniques has been proposed among which the graph-based
methods that encode watermark numbers as graphs whose structure resembles that
of real program graphs.

Following up on recently proposed methods for encoding watermark numbers w
as reducible permutation flow-graphs F [π∗] through the use of self-inverting permu-
tations π∗, in this thesis, we extend the types of flow-graphs available for software
watermarking by proposing two different reducible permutation flow-graphs, namely,
Fs[π

∗] and Ft[π
∗]. These flow-graphs incorporate important properties which are de-

rived from specific properties of the bitonic subsequences composing the self-inverting
permutation π∗. We show that a self-inverting permutation π∗ can be efficiently en-
coded into either Fs[π

∗] or Ft[π
∗] and also efficiently decoded from theses graph

structures.
The proposed flow-graphs Fs[π

∗] and Ft[π
∗] enrich the repository of graphs which

can encode the same watermark number w and, thus, enable us to embed multi-
ple copies of the same watermark w into an application program P . Moreover, the
enrichment of that repository with new flow-graphs increases our ability to select

v



a graph structure more similar to the structure of a given application program P

thereby enhancing the resilience of our codec system to attacks.
Finally, we compare the proposed watermarking algorithms with two previously

proposed codec watermarking algorithms and present similarities and differences with
respect to their structures and complexity. In addition, we compute the probabilities of
edge and label modifications of our flow-graphs Fs[π

∗] and Ft[π
∗] in order to consider

the resilience of our watermark systems.

vi



Chapter 1

Introduction

1.1 Thesis’s Scope

1.2 The Notion of Watermarking

1.3 Contriburion

1.4 Road Map

1.1 Thesis’s Scope

Internet technology is the ability of the Internet to transmit information and data
through different servers and systems. It has lead to a wealth of information available
to anyone who is able to access the Internet. In addition, internet technology has
changed, and will continue to change, the way that the world does business and
how people interact in daily life [1]. This frequent use of the internet means that
measures taken for internet security are indispensable since the web is not risk-free
[2, 3]. However, the spread of computing and the Internet have made it difficult to
apply traditional intellectual property laws. Despite popular belief, just because it’s
easy to distribute information using the Internet does not mean that it’s right to do
so, and thus such data may end up on a user who falsely claims ownership.

Software piracy used to describe the act of illegally using, copying or distributing
software without ownership or legal rights. The copyright holder is typically the
work’s creator, or a publisher or other business to whom copyright has been assigned.
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Copyright holders routinely invoke legal and technological measures to prevent and
penalize copyright infringement. But how can someone claim a software program’s
ownership? Watermarks are a solution to this problem, if he previously embedded
one in software program.

From network topologies and online social networks to simple software programs,
many of today’s most sensitive datasets are captured in large graphs [4]. Current tools
can provide limited node or edge privacy, but require modifications to the graph that
significantly reduce its utility. That is what this thesis suggests, techniques according
to which invisible watermarks are embedded into a digital object which may be used
to verify its authenticity or the identity of its owners.

The purpose of this work is that intellectual property protection and proper use
are some of the greatest concerns over internet users today. The term intellectual
property (IP) refers to a creation of a mind for which a set of exclusive rights are
recognized. More precisely, IP can be divided into two categories: industrial property,
which includes inventions (patents), trademarks, industrial designs, and geographic
indications of source; and copyright, which includes literary and artistic works such as
novels, poems, plays, films, musical works, drawings, paintings, photographs, sculp-
tures, and architectural designs. The objective of recognizing intellectual property is
to encourage innovation. This is because people will not have the incentive to create
if they are not legally protected in order to get the social value that they deserve
from their creations. Of course the world’s evolution and economic growth depend
on creations and inventions and that makes intellectual property such an important
and vital aspect.

From 1996, there is the Digital Millennium Copyright Act (DMCA) which is a
United States copyright law that implements two treaties of the World Intellectual
Property Organization (WIPO). It criminalizes production and dissemination of tech-
nology, devices, or services intended to circumvent measures (commonly known as
digital rights management or DRM) that control access to copyrighted works. It also
criminalizes the act of circumventing an access control, whether or not there is actual
infringement of copyright itself. In addition, the DMCA heightens the penalties for
copyright infringement on the Internet [5].

Over the last years the internet has been expanding very rapidly and, thus, in-
formation is now spread freely, easily and cost-efficiently and that gives a greater
importance to intellectual property. Because of the internet, the distribution of intel-
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lectual material went out of control. Just the fact that nearly every intellectual material
that is produced today is published in digital form or can be transformed into dig-
ital form means that it can be easily transmitted free via the internet, without any
permission from the creator.

The thing is though, how someone can be able to claim and thus enabled to protect
his intellectual property. Watermarking and in our case Software Watermarking is
a solution. The problem of Software Watermarking is inserting some data into a
program, thereby protecting it against intellectual property theft [6].

Since the late 1990s, there has been an explosion in the number of digital water-
marking techniques developed mostly for the rights protection of multimedia contents
(See Chapter 2). However, it is worth mentioning that every single method requires
attention because we can not discriminate a specific one as the best. Every case has
its ideal solution and the same rule applies for Software Watermarking.

What this thesis’s technique suggests, is an efficient and robust methods for soft-
ware watermarking technique based on graph properties. The important fact for this
idea, is that it suggests a way in which an integer number w can be represented by
a watermark graph, which, in term, can be embedded into a software program. In a
similar way, such a watermark graph can be extracted from a watermarked program
and converted back to the integer w.

Concerning the mentioned interim state, this work suggests an efficient algorithm
for encoding a self-inverting permutation π∗ into a flow graph F [π∗]. This is done
by partition of self-inverting permutation in bitonic subsequences. This is done by
partition of self-inverting permutation in bitonic subsequences, the edge and vertex
sets are created from them and after that a watermark graph is constructed.

This work also suggests an efficient algorithm for extracting the embedded self-
inverting permutation π∗ from the watermark graph. That enables us to reconstruct
the subsequences of the self-inverting permutation π∗ and thus extract the embedded
watermark w.

As mentioned in a previous paragraph, the suggested watermarking technique
has properties that make it robust to multiple transformations which are further
analyzed at Chapter 4 dedicated to the evaluation of our watermarking method and
the comparison of two proposed algorithms, too.

The key idea behind the proposed watermarking model is that an integer water-
mark w, is embedded into a software program P through the use of self-inverting

3



SiP π
∗integer w

encoding

PwP

decoding

SiP π
∗integer w

Figure 1.1: An illustration of the main idea behind the watermarking technique.

permutations π∗ resulting the watermarked image Pw (See, Figure 1.1).

1.2 The Notion of Watermarking

Nowadays, we can find watermarks in nearly every official document, like banknote.
In this case, a watermark is an identifying image or pattern in paper that appears
as various shades of lightness/darkness when viewed by transmitted light (or when
viewed by reflected light, atop a dark background), caused by thickness or density
variations in the paper. The origin of the water part of a watermark can be found
back when a watermark was something that only existed in paper, at that time the
watermark was created by changing the thickness of the paper and thereby creating
a shadow/lightness in the watermarked paper. This was done while the paper was
still wet/watery and therefore the mark created by this process is called a watermark.
Their purpose is to carry information about the object in which they are hidden and
they are designed in such a way so that to be as difficult as possible to be reproduced
by counterfeiting methods.

Watermarking is used to verify the identity and authenticity of the owner of a
digital image. The term ”digital watermark” was first coined in 1993 by Andrew Tirkel
et al. [7]. It is a process in which the information which verifies the owner is embedded
into the digital object; note that it is embedded in a way that it is inseparable from
the data and so that it is resistant to many operations not degrading the host object.
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These objects could be either video, picture, audio, or software. For example, famous
artists watermark their pictures and images, ensuring thus that every copy of the
image is a watermarked copy.

We may also notice that some watermarks may be directly visible with the human
eye, while others are hidden from view during normal use and only become visible
under special viewing processes such as specific viewing angle or specific lighting
conditions i.e. perceptible and imperceptible watermarks.

Note that when most researchers refer to watermarks, specifically to digital wa-
termarks, they consider the imperceptibility as a defining characteristic. Digital wa-
termarking is the act of hiding a message related to a digital signal (i.e. an image,
song, video) within the signal itself. It is a concept closely related to steganography,
in that they both hide a message inside a digital signal. However, what separates
them is their goal. Watermarking tries to hide a message related to the actual content
of the digital signal, while in steganography the digital signal has no relation to the
message, and it is merely used as a cover to hide its existence.

Watermark is typically used to identify ownership of the copyright of such signal.
More specifically, digital watermarking is a popular technique for copyright protec-
tion of a digital object or, in general, multimedia information [8, 9]; the idea is simple:
a unique marker, which is called watermark, is embedded into a digital object which
may be used to verify its authenticity or the identity of its owners [10, 11]. This appli-
cation requires a high level of robustness to ensure that embedded watermark cannot
be removed without causing a significant distortion in digital media. In addition, data
authentications’ objective is to detect modification of data. This can be achieved with
so called fragile watermark that have a low robustness to certain modifications. Copy
protection tries to find a mechanism to disallow unauthorized copy of digital media.

A watermarking system consists of two components:

• watermark encoder or embedder, and

• watermark decoder/extractor or detector.

In a similar manner we can tell that these two components are two processes, the
embedding and extraction process. The first takes as an input the cover work and the
value of the watermark w and returns as an output the watermarked work. Whereas
the extracting process takes as an input the watermarked work and returns the value
of the detected wa termark w as an output.
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In this thesis, we are interested in watermarking where the cover work is a software
program; this is called software watermarking. Software watermarking is a branch of
digital watermarking which can be briefly described as the process of hiding digital
information in a program. More details about software watermarking problem are
about to follow in Chapter 2.

Furthermore, similar to traditional watermarking, digital watermarks can only be
perceptible under specific conditions such as, after using special extracting algorithms
[12]. There has been an explosion in the number of digital watermarking techniques,
day to day. If a digital watermark distorts the carrier signal in a way that it becomes
perceivable, it is of no use. In digital watermarking, the signal may be audio, picture,
video, text, 3D models, etc. A signal can carry several different watermarks at the
same time. Unlike metadata which is added to the carrier signal, a digital watermark
does not change the size of the carrier signal meaning that the digital watermark do
not add additional payload to the object.

In the software watermarking process, the digital information, i.e., the watermark,
is hidden in program graph. The watermark is embedded into program’s graph
through structures which resemble that of real program graphs. Its aim is to prevent
or discourage software piracy and copyright infringement.

1.3 Contriburion

Recently, Chroni and Nikolopoulos have presented two codec algorithms, namely,
Encode_W.to.SIP and Decode_SIP.to.W, for encoding an integer w into a self-inverting
permutation π∗ and extracting it from π∗ [13], and several codec algorithms for en-
coding π∗ into several reducible permutation flow-graphs Fi[π

∗] (i > 1) [14, 15]. Thus,
they have created a wide repository of graph-structures, namely flow-graphs, whose
structures resemble that of real program graphs.

In this thesis, we extend the types of flow-graphs which can efficiently encode a
self-inverting permutation π∗ by proposing two different reducible permutation flow-
graphs Fs[π

∗] and Ft[π
∗] having properties which are derived from specific properties

of bitonic subsequences b∗1, b
∗
2, · · · , b∗k composing the self-inverting permutation π∗.

We show relations between the elements of such a bitonic subsequence b∗i and their
indices in π∗ and prove properties concerning the first, last, max and min elements of

6



π∗. We also show that the first bitonic subsequence b∗1 of a self-inverting permutation
π∗ of length n∗ has always length ⌈n∗

1/2⌉ and structure (⌈n∗
1/2⌉, . . . , π∗

max, . . . , 1), where
π∗
max is the max element of π∗.
Taking advantage of these properties, we construct two different reducible per-

mutation flow-graphs Fs[π
∗] and Ft[π

∗] which can encode the same self-inverting
permutation π∗ and, thus, the same watermark number w. By construction, the in-
degree of the first node s = un∗+1 of the flow-graph Fs[π

∗] is equal to the number of
bitonic subsequences b∗1, b

∗
2, · · · , b∗k of π∗, while the indegree of the first node of the

graph Ft[π
∗] is much smaller than k. This property causes Ft[π

∗] more appropriate,
in same cases, since it does not contain an extreme characteristic thereby enhancing
the resilience of graph-structure to attacks.

In particular, we propose the algorithm Encode_SiP.to.RPG-Bitonic-S which ex-
ploits the bitonic sequences b∗i of π∗ and their properties, and the algorithm Encode

SiP.to.RPG-Bitonic-T which exploits the id-bitonic subsequences (i.e., a sequence is
called id-bitonic if either monotonically increases and then monotonically decreases)
and the indegree of header node s in Ft[π

∗] is decreased, and both produce a reducible
permutation flow-graph F [π∗] on n∗+2 nodes; in both approaches, the whole encod-
ing process takes O(N) time and requires O(N) space, where N = n∗+2 and n∗ is the
length of π∗. The corresponding decoding algorithm Decode_RPG.to.SiP-Bitonic-S ex-
tracts the self-inverting permutation π∗ from the reducible permutation graph Fs[π

∗]

by construction first an undirected graph H[π∗] and then applying BFS-search on each
of the connected components of H[π∗]. The decoding algorithm Decode_RPG.to.SiP-

Bitonic-T also extracts π∗ from Ft[π
∗] by converting Ft[π

∗] into an undirected graph
H[π∗]. It applies BFS-search on the connected components of H[π∗] and construct
the new set R′, which has the nodes ui with outdeg(ui) ≥ 2. The decoding process
takes time and space linear in the size of the flow-graph F [π∗], that is, both decoding
algorithms take O(N) time and space; recall that the length of the permutation π∗

and the size of the flow-graph F [π∗] are both O(N), since N = 2n∗ + 1 = 2n+ 3.
It is worth noting that our codec (encode, decode)F [π∗] system incorporates several

important properties which characterize it as an efficient and easily implemented
software watermarking component. In particular, the reducible permutation flow-
graphs Fs[π

∗] and Ft[π
∗] do not differ from the graph data structures built by real

programs since its maximum outdegree does not exceed two and it has a unique
root node so the program can reach other nodes from the root node. The function

7



Decode_RPG.to.SIP-Bitonic-S or -2 is high insensitive to edge and node modifications
of Fs[π

∗] and Ft[π
∗]. Moreover, the self-inverting permutation π∗ captures important

structural properties, due to the bitonic property used in the construction of π∗, which
make our codec system resilient to attacks.

The flow-graphs Fs[π
∗] and Ft[π

∗] enrich the repository of graphs which can en-
code the same watermark number w and, thus, enable us to embed several copies
of the same watermark w into an application program P . Moreover, it increases our
ability to select a graph structure more similar to the structure of a given application
program P thereby enhancing the resilience of our codec system to attacks.

1.4 Road Map

This thesis is strictured as follows.
Chapter 1 induces the basic concept of the watermarking process and briefly

present the construction of this thesis by focusing on the main ideas.
Chapter 2 includes the theory behind software watermarking and it makes refer-

ence to the respective definitions and properties. It analyzes how the watermarking
techniques are categorized and it describes its most important techniques for each
category developed so far. In addition, it describes how watermark embeds into a
software program and includes our contribution of this work.

Chapter 3 describes the main idea behind the proposed software watermarking
algorithms by exploiting self-inverting permutations using an efficient transformation
of a watermark from an integer. Finally, it shows properties of method’s components.

Chapter 4 presents two codec algorithms for encoding a self-inverting permutation
π∗ into two different reducible permutation flow-graphs Fs[π

∗] and Ft[π
∗], incorpo-

rating important properties which are derived from specific properties of the bitonic
subsequences composing the self-inverting permutation π∗. Also, it describes the sim-
ilarities and differences between two codec algorithms.

Chapter 5 shows that properties of method’s components help prevent edge and/or
node modifications attacks.

Chapter 6 compares the proposed watermarking algorithms with two previously
proposed codec watermarking algorithms based on their structures, edges and node
modification, space and time complexity.

8



Finally, Chapter 7 concludes the thesis and discusses possible future extensions.
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Chapter 2

Software Watermarking

2.1 Preliminaries

2.2 Attacks

2.3 Techniques for Software Watermarking

2.1 Preliminaries

Software Watermarking is a technique that is currently being studied to prevent
or discourage software piracy and copyright infringement. The idea is similar to
digital (or, media) watermarking where a unique identifier is embedded in image,
audio, or video data through the introduction of errors not detectable by human
perception. The process of watermarking involves embedding secret messages into a
cover message. The software watermarking problem can be described as the problem
of embeding a structure w into a program P such that w can be reliably located and
extracted from P even after P has been subjected to code transformations such as
translation, optimization and obfuscation [16, 17]. More precisely, given a program
P , a watermark w, and a key k, the software watermarking problem can be formally
described by the following two functions:

• embed(P,w, k)→ P and

• extract(Pw, k)→ w.
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In order to extract the watermark information, blind, semi-blind, non-blind, static, or
dynamic techniques are used. Non-blind techniques require at least an original media.
It extracts a watermark from the possibly distorted image and the original media.
Semi-blind techniques do not require an original media for detection, whereas blind
techniques require neither an original media nor the embedded watermark. It is also
referred to as public watermarking. Static or dynamic techniques refer to software
watermarking [18].

A static watermark is stored inside program code in a certain format, and it
does not change during the program execution. According to the representation of
watermark information, there are two types of static watermarks: data watermarks
and code watermarks.

(i) A data watermark stores watermark information as program data, and can be
stored anywhere inside a program, such as in comments or in variables.

(ii) A code watermark is represented by choosing a particular sequence of instruc-
tions in cases (and these are common), where more than one sequence of in-
structions has an equivalent effect. A static code watermark may also be stored
in ”dead code” (which is never executed); any sequence of instructions may be
used with equivalent effect in a dead-code area.

On the other hand, a dynamic watermark w is built during program execution, per-
haps only after a particular sequence of input Ikey. It might be retrieved from the
watermarked program Pw by analyzing the data structures built when watermarked
program Pw is running on input Ikey. In other cases, tracing the program execution
may be required. There are three types of dynamic watermarks, Easter Egg, data
structure and execution trace watermarks.

In general, such a graph-based software watermarking model mainly consists of
two codec algorithms:

• an encoding algorithm which embeds a graph G which represents a watermark
w into an application program P resulting thus the watermarked program Pw,
i.e., embed(P,G, k)→ Pw, and

• a decoding algorithm which extracts the graph G from Pw, i.e., extract(Pw, k)→
G.

11



We usually call the pair
(embed, extract)G

as graph codec model and the embedding and extracting algorithms as codec or water-
marking algorithms.

In a graph-based software watermarking environment we are interested in both
finding a class of graphs G having appropriate graph properties, e.g., graphs in
G should be contained nodes with small outdegree so that matching real program
graphs, and designing efficient codec algorithms, e.g., both algorithms of (embed, extract)G
model should be computed in polynomial time.

When referring to watermarks, we should always mention certain characteristics
which are the key features defining each watermarking technique. Those character-
istics describing a technique have mostly to do with the imperceptiveness and the
resistance of the watermarks embedded using it. Furthermore, each watermarking
technique also comes with an evaluation. That is measuring its behavior presenting
certain characteristics. So, we have also certain evaluating techniques. Some basic
ones, are the following:

• Effectiveness: We consider a watermark as effective when the extracting algo-
rithm is able to successfully extract it. So, we define as embedding effectiveness
the probability that the extracting algorithm successfully extracts the embedded
watermark without loosing any information.

• Invisibility: Invisible watermarks, are considered those that are hidden under
normal use and can only appear when extracted from an authorized user using
a special software.

• Robust Watermarks: The target in most cases is to design a robust software
watermarking technique. Piracy attacks should not affect the embedded water-
mark. Robustness is measured according to how the watermarked withstands
attacks and transformations such as, edge and node modification etc.

• Fragile Watermarks: Fragile watermarks, are also known as tamper-proof wa-
termarks. This kind of watermarks unlike robust watermarks is destroyed by
data manipulation. They are designed in such a way in order to be destroyed
by any form of copying or encoding other that bit-by-bit digital copy. Their
absence indicates that a copy of the digital object has been made as slight errors
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occurred during copy destroyed the watermark. For example a fragile water-
mark designed for authentication purposes declares by its absence that the object
is not original anymore as it has been through processing applications.

• Security: A watermark should be secret and thus be undetectable by an unau-
thorized users and only detectable by authorized ones. This requirement is re-
garded as a the security factor. Generally speaking, the security of a watermark
refers to its ability to resist hostile attacks.

• Watermark keys: It should also be mentioned that there is a specific category
of watermarks that make use of keys. That means that input at the encoder are
not just the watermark and the digital object but also a key which is also needed
at the decoder as an input in order to successfully extract the watermark.

2.2 Attacks

Watermarked software may be subject to attacks that have the objective of locating,
distorting, or removing the watermark. The quality of a watermarking system is
correlated with the degree to which the watermarked software is resistant to attacks.
Most approaches to software watermarking have concentrated on resisting attacks by
preserving program transformations, including compilation, optimization, obfuscation
and decompilation. Such transformations do not change the behavior of a program,
but they do change the form of the program.

Having designed a software watermarking algorithm, it is very important to evalu-
ate it under various assessment criteria in order to gain information about its practical
behavior; the most valuable and broadly used criteria can be divided into two main
categories: (i) performance criteria (e.g., data-rate, time and space overhead, part
protection, stealth, credibility), and (ii) resilience criteria (e.g., resistance against ob-
fuscation, optimization, language-transformation). We mention that the performance
criteria measure the behavior of the watermarked program Pw and the quality and
effectiveness of the embedded watermark w, while the resilience criteria measure
the robustness and resistance of the embedded watermark w against malicious user
attacks. From a graph-theoretical and practical point of view, we are interested in
finding a class of graphs G having appropriate graph properties, e.g., graphs G ∈ G
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should contain nodes with small outdegree so that matching real program graphs,
and developing software watermarking models (embed, extract)G which meet both:

◦ High Performance: both programs, the original P and the watermarked Pw,
have almost identical execution behavior, almost same size and similar codes,
and

◦ High Resiliency: the algorithm extract() is insensitive to small changes of Pw

caused by various attacks, that is, if G ∈ G represents the watermark w and
extract(Pw, k)→ w then extract(P ′

w, k)→ w with P ′
w ≈ P .

On the other side, a successful attack against the watermarked program Pw prevents
the recognizer from extracting the watermark while not seriously harming the per-
formance or correctness of the program Pw. It is generally assumed that the attacker
has access to the algorithm used by the embedder and recognizer. There are four
main ways to attack a watermark in an application program.

• Additive attacks: Embed a new watermark into the watermarked software, so
that the original copyright owners of the software cannot prove their ownership
by their original watermark inserted in the software;

• Subtractive attacks: Remove the watermark of the watermarked software with-
out affecting the functionality of the watermarked software;

• Distortive attacks: Modify watermark to prevent it from being extracted by the
copyright owners and still keep the usability of the software;

• Recognition attacks: Modify or disable the watermark, so that the detector gives
a misleading result.

Attacks against graph-based software watermarking algorithms can mainly occur in
the following three ways:

(i) Edge-flip attacks,

(ii) Edges-addition/deletion attacks, and

(iii) Node-addition/deletion attacks.
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The main approaches to defending against such attacks are to either make the
watermark an inherent part of the programs behavior, or to make the watermark be
represented by data structures that are created at run-time [19]. A goal of a good
watermarking system should be to make an attacker to unable to locate the code that
builds the graphs and to make it difficult to remove from rest of the program all
dependencies on the graphs, hence also difficult to remove or distort the code that
builds the two graphs.

2.3 Techniques for Software Watermarking

Since the late 1990s, there has been an explosion in the number of digital watermark-
ing techniques among which time-series, biological sequences, graph-structured data,
spatial data, spatiotemporal data, data-streams and others [6]. Recently, software wa-
termarking has received considerable attention and many researchers have developed
several codec algorithms mostly for watermarks that are encoded as graph-structures
[20]. The patent by Davidson and Myhrvold [21] presented the first published soft-
ware watermarking algorithm. The preliminary concepts of software watermarking
also appeared in paper [22] and patents [23, 8]. Collberg et al. [18, 24] presented
detailed definitions for software watermarking, while Zhang et al. [25] and Zhu et al.
[26] gave brief surveys of software watermarking research; see, Collberg and Nagra
[10] for an exposition of the main results.

The algorithm of Davidson and Myhrvold [21] embeds the watermark into a
program by reordering the basic blocks of a control ow-graph; note that a static
watermark is stored inside programs’code in a certain format and it does not change
during the programs’execution. The first dynamic watermarking algorithm CT was
proposed by Collberg and Thomborson [18]; it embeds the watermark through a
graph structure which is built on a heap at runtime.

Several software watermarking algorithms have been appeared in the literature
that encode watermarks as graph structures [27, 28, 21, 29]. Recently, Chroni and
Nikolopoulos extended the class of software watermarking codec algorithms and
graph structures by proposing efficient and easily implemented algorithms for en-
coding numbers as reducible permutation flow-graphs (RPG) through the use of
self-inverting permutations (or, for short, SiP). More precisely, they have presented
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Figure 2.1: (a) The dynamic call-graph G(P, Ikey) of an application program P . (b) The re-

ducible permutation graph F [π∗]. (c) The dynamic call-graph G(P ∗, Ikey) of the watermarked

program P ∗.

an effcient method for encoding first an integer w as a self-inverting permutation π∗

and then encoding π∗ as a reducible permutation flow-graph F [π∗] [13]; see, also [16].
The watermark graph F [π∗] incorporates properties capable to mimic real code, that
is, it does not differ from the graph data structures built by real programs.

Chroni and Nikolopoulos [15] and Chionis et al. [30] have proposed call-graphs
as key-objects in their watermarking model for embedding the graph F [π∗] into an
application program discuss properties of dynamic call-graphs. A call-graph is a di-
rected graph that represents calling relationships between program units in a com-
puter program. Specifically, the nodes f1, f2, . . . fn of a call-graph represent functions,
procedures, classes, or similar program units and each edge (fi, fj) indicates that fi
calls fj; function fi is called caller while fj is called callee. Call-graphs can be divided
in two main classes of graphs, namely static and dynamic. A static call-graph is the
structure describing those invocations that could be made from one program unit to
another in any possible execution of the program [31]. The static call-graph can be
determined from the program source code; they mention that, its construction is a
time consuming process specifically in the case of large scale software [32].

A dynamic call-graph G is a directed graph that includes invocations of caller-

16



callee pairs over an execution of the program P . Such a graph can be considered
as an instance of the corresponding static call-graph for a specific input sequence I.
The call-graph G is a data structure that is used by dynamic optimizers for analyzing
and optimizing the whole-program’s behavior; such a graph can be extracted by a
profiler. It is fair to mention that the construction of a dynamic call-graph G of a
program P is not a time consuming process even if P is a large scale software.

They denote a dynamic call-graph G of the program P over the input I as G(P, I).
Figure 2.1 shows the dynamic call-graph G(P, Ikey) of an application program P ,
the reducible permutation graph F [π∗] which encodes the number w = 4 and the
dynamic call-graph G(P ∗, Ikey) of the watermarked program P ∗ along with its real
edges (solid arrows) and water edges (dashed arrows).

Based on this idea and watermarking scheme proposed by these authors, Bento
et al. [33] introduced a linear-time algorithm which succeeds in retrieving deter-
ministically the n-bit identifiers encoded by such graphs (with n > 2) even if k ≤ 2

edges are missing. In addition, they proved that k ≤ 5 general edge modifications (re-
movals/insertions) can always be detected in polynomial time. Both bounds are tight.
Finally, their results reinforce the interest in regarding Chroni and Nikolopoulos’s
scheme as a possible software watermarking solution for numerous application.

A line of research that is more related to the graph watermarking problem we
study is anonymization and de-anonymization for social networks. Eppstein et al.
propose an approach [20] to graph watermarking that is necessarily related to the
problem of graph isomorphism and its approximation. It is based on characterizing
the feasibility of graph watermarking in terms of keygen, marking, and identification
functions defined over graph families with known distributions. They demonstrated
the strength of this approach with exemplary watermarking schemes for two random
graph models, the classic Erdos-Renyi model and a random power-law graph model,
both of which are used to model real-world networks. They studied these two random
graph models and showed that watermarking in these models could be achieved in
such a way that no adversary could remove the watermark with high probability
and still have a graph that is ”close” to his original graph. Also, they provided an
exemplary implementation that works effectively for marks consisting only of edge
flips.
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Chapter 3

Our Watermarking Scheme

3.1 Components for Graph-based Watermarking

3.2 Properties

3.1 Components for Graph-based Watermarking

We consider finite graphs with no multiple edges. For a graph G, we denote by V (G)

and E(G) the vertex (or, node) set and edge set of G, respectively. The subgraph of
a graph G induced by a set S ⊆ V (G) is denoted by G[S]. The neighborhood N(x) of a
vertex u of the graph G is the set of all the vertices of G which are adjacent to u. The
degree of a vertex u in the graph G, denoted deg(u), is the number of edges incident
on node u; for a node u of a directed graph G, the number of head-endpoints of the
directed edges adjacent to u is called the indegree of the node u, denoted indeg(u),
and the number of tail-endpoints is its outdegree, denoted outdeg(u). The parent of
a node x of a rooted tree T is denoted by p(x).

The main components, which are used by the algorithms of our codec system, are
illustrated in Figure 3.1 and we describe them in detail.

3.1.1 Bitonic Permutation

We think of a permutation π of length n as a permutation over the elements contained
at a set Nn = {1, 2, ..., n}. That permutation π is represented as a sequence as follows:
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The integer number w

Self-inverting Permutation π
∗

Reducible Permutation Graph F [π∗]

Bitonic Sequences b∗
i

Encode W.to.SiP Decode SiP.to.W

Figure 3.1: The main data components used by the algorithms of our codec system for a

watermark number w: (i) the self-inverting permutation π∗, (ii) the bitonic sequences b∗i and

(iii) the reducible permutation graph F [π∗].

π = (π1, π2, ..., πn), for example, the permutation π = (4, 3, 6, 1, 5, 2) has π1 = 4, π2 = 3,
π3 = 6 etc. Having seen how we represent a permutation, note also that represented
with πi is the element of the permutation on the position with index i and with π−1

i

the index of the element i, in our example, π−1
4 = 1, π−1

3 = 2, π−1
6 = 3 etc. The length

of a permutation π is the number of elements in π.
More formally, if π is a permutation of numbers 1, 2, . . . , n, then the graph G[π] =

(V,E) is defined as follows:
V = {1, 2, . . . , n}

and
ij ∈ E ⇔ (i− j)(π−1

i − π−1
j ) < 0.

An undirected graph G is called a permutation graph if there exists a permutation
π such that G ∼= G[π].

A cycle of π is a sequence c = (πi1 , πi2 , . . . , πip) such that π−1
i1

= πi2 , π
−1
i2

=

πi3 , . . . , π
−1
ip

= πi1). Throughout the thesis, a cycle of length k is referred to as a
k-cycle.

A subsequence of a permutation π = (π1, π2, . . . , πn) is a sequence b = (πi1 , πi2 , . . . , πin)

such that i1 < i2 < . . . < ik.
A sequence b = (b1, b2, . . . , bn) is called bitonic if either monotonically increases and

then monotonically decreases, or else monotonically decreases and then monotonically
increases.

In this work, we consider only bitonic sequences that monotonically increases and
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then monotonically decreases, i.e., the minimum element of such a sequence b is either
the first b1 or the last bn element of b; for example, b = (5, 6, 8, 9, 1) is such a bitonic
sequence. The maximum element of a bitonic sequence b, which we call top element
of b, is denoted as top(b). Obviously, b is an increasing sequence if top(b) = bn, while
b is a decreasing sequence if top(b) = b1.

Definition 3.1 Let b = (b1, b2, . . . , bn) be a bitonic sequence of length n. According to
the index of the element top(b), the sequence b is called:

◦ i-bitonic or increasing bitonic if top(b) = bn;

◦ d-bitonic or decreasing bitonic if top(b) = b1;

◦ id-bitonic or full-bitonic if b1 < top(b) and top(b) > bn.

In terms of the above definition, b1 = (2, 7) is an i-bitonic or increasing bitonic se-
quence, b2 = (4, 3) is a d-bitonic or decreasing bitonic sequence, while b3 = (5, 6, 8, 9, 1)

is an id-bitonic or full-bitonic sequence.

3.1.2 Self-inverting Permutations (SiPs)

We next define the main component of our codec system, namely, the self-inverting
permutation (SiP). In mathematics, the notion of permutation relates to the act of
arranging all the members of a set into a sequence or order. Self-inverting parmuta-
tions are a subclass belonging to the class of the permutations. Permutations may be
represented in many ways, where the most straightforward is simply a rearrangement
of the elements of the set Nn = {1, 2, . . . , n}. For example, π = (5, 6, 8, 9, 1, 2, 7, 3, 4)

is a permutation of the elements of the set N9; hereafter, we shall say that π is a
permutation over the set N9.

So, which is the extra property which distinguishes the subclass of the self-
inverting permutations, or for short hereafter, SiP from the class of the permutations?
The answer is at the following definition.

Definition 3.2 Let π = (π1, π2, . . . , πn) be a permutation over the set Nn, n > 1. The
inverse of the permutation π is the permutation q = (q1, q2, . . . , qn) with qπi

= πqi = i.
A self-inverting permutation (or, for short, SiP) is a permutation that is its own inverse:
ππi

= i.
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By definition, a permutation is a SiP (Self-inverting Permutation) if and only if all its
cycles are of length 1 or 2; for example, the permutation π = (5, 6, 8, 9, 1, 2, 7, 3, 4) is
a SiP with cycles: (1, 5), (2, 6), (3, 8), (4, 9), and (7).

Throughout the thesis, we shall denote a self-inverting permutation π over the set
Nn as π∗.

3.1.3 Encode Watermark Numbers as SiPs

In this section, we present the way of encoding an integer w into a self-inverting per-
mutation π∗ and extracting it from π∗, which we need to construct our watermarking
system.

In [16], Chroni and Nikolopoulos have proposed algorithms for such a system
which efficiently encode an integer w into a self-inverting permutation π∗ and effi-
ciently decode it. First, they have presented the encoding algorithm Encode_W.to.SIP,
which takes as input an integer w, computes its binary representation, and then
produces a self-inverting permutation π∗. Also, they have proposed an extraction
algorithm Decode_SIP.to.W, which takes as input a self-inverting permutation π∗ pro-
duced by Algorithm Encode_W.to.SiP and returns its corresponding integer w. The
key-idea behind its algorithms is mainly based on mathematical objects, namely,
bitonic permutations.

Following, is the step-by-step description below the two codec algorithms (encode
and decode) that correspond integer numbers into self-inverting permutations (SiPs).

Algorithm Encode_W.to.SiP (Chroni and Nikolopoulos [16])

1. Compute the binary representation B of w and let n be the length of B;

2. Construct the binary number B′ = 00 . . . 0�B�1 of length 2n + 1, and then the
binary sequence B∗ = (b1, b2, . . . , bn′) of flip(B′);

3. Construct the sequence X = (x1, x2, . . . , xk) of the 0’s positions and the sequence
Y = (y1, y2, . . . , ym) of the 1’s positions in B∗ from left-to-right, where k+m = n∗;

4. Construct the bitonic permutation πb = X||Y R = (x1, x2, . . . , xk, ym, ym−1, . . . , y1)

over the set Nn∗ = N2n+1;

5. for i = 1, 2, . . . , n = ⌊n∗/2⌋ do

21



construct a 2 − cycle with the i-th element of πb from left and the i-th
element from right construct the 2-cycle ci = (πb

i , π
b
n∗−i+1);

construct the 1-cycle ci = (πb
n+1);

6. Initialize the permutation π∗ to the identity permutation (1, 2, . . . , 2n+ 1);
for each 2-cycle (πi, πj) computed at Step 5, set π∗

πi
= πj and π∗

πj
= πi;

7. Return the permutation π∗ (which by construction is self-inverting);

Algorithm Decode_SiP.to.w (Chroni and Nikolopoulos [16])

1. Compute the decreasing cycle representation C = (c1, c2, . . . , ck) of the self-
inverting permutation π∗ = (π1, π2, . . . , πn∗), where n∗ = 2n+ 1;

2. Construct the permutation πb of length n∗ as follows:
set i = 1 and j = n∗;
while the set C is not empty, do the following:

select the minimum element c of the set C , i.e., the cycle containing the
minimum among the elements of all the cycles in C;

Case 1: the selected cycle c has length 2 and let c = (a, a′) with a > a′:
set πb

i = a and πb
j = a′;

i = i+ 1 and j = j − 1;

Case 2: the selected cycle c has length 1 and let c = (a):
set πb

i = a and i = i+ 1;

remove the cycle c from C;

3. Find the increasing subsequence X = (πb
1, π

b
2, . . . , π

b
k) of πb and then the decreas-

ing subsequence Y = (πb
k+1, π

b
k+2, . . . , π

b
n∗);

4. Construct the binary sequence B∗ = (b1, b2, . . . , bn∗) by setting 0 in positions
πb
1, π

b
2, . . . , π

b
k and 1 in positions πb

k+1, π
b
k+2, . . . , π

b
n∗);

5. Compute B∗ = flip(B∗) = (b′1, b
′
2, . . . , b

′
n, b

′
n+1, . . . , b

′
n∗+1, b

′
n∗;

6. Return the decimal value w of the binary number B = b′n+1b
′
n+2 . . . b

′
n∗+1;
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Both of two algorithms run in O(n) time, where n is the length of the binary repre-
sentation of the integer w. Moreover, they proposed several algorithms for multiple
encoding the same watermark number w into many different reducible permutation
graphs Fi[π

∗], i > 1, through the use of the encoding self-inverting permutation π∗

[14, 15]. These results are summarized in the following theorems.

Theorem 3.1 Let w be an integer and let b1, b2, . . . bn be the binary representation of w.
The algorithm Encode_W.to.SiP encodes the number w in a self-inverting permutation π∗ of
length 2n+ 1 in O(n) time and space.

Theorem 3.2 Let π∗ be a self-inverting permutation of length n which encodes an integer
w using the algorithm Encode_W.to.SiP. The algorithm Decode_SiP.to.W correctly decodes
the permutation π∗ in O(n) time and space.

Theorem 3.3 It can produced more than one reducible permutation flow-graphs F1[π
∗],F2[π

∗],
. . . , Fn[π

∗] which encode the same watermark integer w through the use of the self-inverting
permutation π∗.

Example 3.1 W-to-SiP: Let w = 10 be the given watermark integer. We first compute
the binary representation B = 1010 of the number 10, then we construct the binary
number B = 0000||1010||1 and the binary sequence B∗ = (1, 1, 1, 1, 0, 1, 0, 1, 0) by flip-
ping the elements of B′; we compute the sequencesX = (5, 7, 9) and Y = (1, 2, 3, 4, 6, 8)

by taking into account the indices of 0s and 1s in B∗, and then the bitonic permu-
tation πb = (5, 7, 9, 8, 6, 4, 3, 2, 1) on n′ = 9 numbers by taking the sequence X||Y R;
since n′ is odd, we select 4 cycles (5, 1), (7, 2), (9, 3), (8, 4) of lengths 2 and one cycle
(6) of length 1, and then based on the selected cycles construct the self-inverting
permutation π∗ = (5, 7, 9, 8, 1, 6, 2, 4, 3).

Example 3.2 SiP-to-W: Let π∗ = (5, 7, 9, 8, 1, 6, 2, 4, 3) be the given self-inverting
permutation produced by our method. The cycle representation of π∗ is the fol-
lowing: (1, 5), (2, 7), (3, 9), (4, 8), (6); from the cycles we construct the permuta-
tion πb = (5, 7, 9, 8, 6, 4, 3, 2, 1); then, we compute the first increasing subsequence
X = (5, 7, 9) and the first decreasing subsequence Y = (8, 6, 4, 3, 2, 1); and construct
the binary sequence B∗ = (1, 1, 1, 1, 0, 1, 0, 1, 0) of length 9; we flip the elements of B∗

and construct the sequence B′ = (0, 0, 0, 0, 1, 0, 1, 0, 1); the binary number 1010 is the
integer w = 10.
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3.1.4 Reducible Permutation Graphs (RPGs)

A flow-graph is a directed graph F with an initial node s from which all other nodes
are reachable. A directed graph G is strongly connected when there is a path x→ y for
all nodes x, y in V (G). A node u ∈ V (G) is an entry for a subgraph H of the graph
G when there is a path p = (y1, y2, . . . , yk, x) such that p ∩H = {x} (see, [34, 35]).

Definition 3.3 A flow-graph is reducible when it does not have a strongly connected
subgraph with two (or more) entries.

There are some other equivalent definitions of the reducible flow-graphs which use
a few more graph-theoretic concepts. A depth first search (DFS) of a flow-graph
partitions its edges into tree, forward, back, and cross edges. It is well known that
tree, forward, and cross edges form a dag known as a DFS dag. Hecht and Ullman
[34, 35] have proven the following theorem:

Theorem 3.4 Let F be a flow-graph. The following three statements about F are equivalent:

(i) the graph F is reducible;

(ii) the graph F has a unique DFS dag;

(iii) the graph F can be transformed into a single node by repeated application of the
transformations T∞ and T∈, where T∞ removes a cycle-edge, and T∈ picks a non-
initial node y that has only one incoming edge (x, y) and glues nodes x and y.

Recently, a wide range of software watermarking techniques has been proposed among
which the graph-based methods that encode watermark numbers w as reducible flow-
graph structures F capturing such properties which make them resilient to attacks.

3.2 Properties

To be effective, a graph watermark system needs to provide several key properties. In
this section, we analyze the structures of the three main components of our proposed
codec system, that are, the self-inverting permutation π∗, reducible permutation graph
F [π∗] and 1− cycle and discuss their properties with respect to resilience to attacks.
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3.2.1 Properties of permutation π∗

The main properties of self-inverting permutation π∗ produced by the algorithm
Encode_W. to.SiP can be summarized into the following four categories:

• Odd-lenght property: By construction, the self-inverting permutation π∗ has
always odd length.

• One-cycle property: The self-inverting permutation π∗ always contains one, and
only one, cycle of length 1;

• Bitonic property: The self-inverting permutation π∗ is constructed from the
bitonic sequence πb = X||Y R , where X and Y are increasing subsequences (see,
Step 4 of encoding algorithm Encode W.to.SiP), and thus the bitonic property
of πb is encapsulated in the cycles of π∗.

• Block property: The algorithm Encode_W.to.SiP takes the binary representation
of the integer w and initially constructs the binary number B′ (see, Step 2). The
binary representation of B′ consists of three parts (or, blocks):

(i) the first part contains the leftmost n bits, each equal to 0,

(ii) the second part contains the next n bits which form the binary represen-
tation of the integer w, and

(iii) the third part of length one contains a bit 0.

This property affects the construction of both subsequences X and Y and thus
the cycles of π∗

We next analyze the structure of a self-inverting permutation π∗ produced by the en-
coding algorithm Encode_W.to.SiP. Let π∗ be the self-inverting permutation of length
n∗, and let b∗1, b∗2, . . . , b∗k be the bitonic subsequences forming the permutation π∗; note
that, π∗ encodes a watermark number w of binary length n and n∗ = 2n + 1. Then,
b∗1, b

∗
2, . . . , b

∗
k have the following properties:

(P1) Sequence b∗1 is a id-bitonic, b∗2, b∗3, . . . , b∗k−1 are either id-bitonic or d-bitonic se-
quences, while b∗k is either a id-bitonic, i-bitonic, or d-bitonic sequence.

(P2) Sequence b∗1 contains the min element π∗
min of permutation π∗ and has always

length ⌈n∗/2⌉; note that, π∗
max = top(b∗1) = 2n+ 1 and π∗

min = 1;
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(P3) The last element last(b∗k) of sequence b∗k is equal to the index of the max element
π∗
max = 2n+ 1 in b∗1.

Furthermore, it is easy to see that the elements of subsequence b∗1 are in the range
[n+1, 2n+1]

∪
{1} and the elements 1, 2, and n+1 are never top elements of some sub-

sequence b∗i . Finally, since we computed all bitonic subsequences from self-inverting
permutation π∗, it is very important to us to know how many these subsequences can
be existed. So, if l is the number of all possible bitonic subsequences in a self-inverting
permutation π∗, then

2 ≤ l ≤ ⌊n+1
2
⌋+ 1.

Example 3.3 Let w1 = 20 and w2 = 45 be two watermark numbers. For these
two watermarks, the encoding algorithm Encode_W.to.SIP produces the self-inverting
permutations

◦ π∗
1 = (6, 8, 11, 10, 9, 1, 7, 2, 5, 4, 3), and

◦ π∗
2 = (7, 9, 10, 12, 13, 11, 1, 8, 2, 3, 6, 4, 5)

of lengths n∗
1 = 2n1 + 1 = 11 and n∗

2 = 2n2 + 1 = 13, respectively; note that, n1 = 5

is the length of the binary representation of number 20 (i.e., 10100), while n2 = 6 is
that of number 44 (i.e., 101101). The permutations π∗

1 and π∗
2 are composed by the

following three and four, respectively, bitonic subsequences:

◦ π∗
1 : (6, 8, 11, 10, 9, 1) || (7, 2) || (5, 4, 3)

◦ π∗
2 : (7, 9, 10, 12, 13, 11, 1) || (8, 2) || (3, 6, 4) || (5)

We observe that all the bitonic subsequences of both permutations π∗
1 and π∗

2 sat-
isfy the properties (P1), (P2), and (P3). Indeed, for example, the subsequence b∗1 =

(6, 8, 11, 10, 9, 1) of permutation π∗
1 is id-bitonic, contains the min elements of π∗

1 , has
length 6 = ⌈n∗

1/2⌉, where n∗
1 = 11 is the length of π∗

1 , and the last element of subse-
quence b∗3 = (5, 4, 3) (i.e., 3) is equal to the index of the max element of π∗

1 in sequence
b∗1 (i.e., π∗

max = 11).
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3.2.2 Properties of permutation F [π∗]

In a graph-based watermarking environment, the watermark data can be encoded
in the structures of various types of graphs. A graph representing a watermark data
is called a watermarking graph. To be effective, a graph watermark system needs to
provide several key properties. In general, the watermark will be difficult to detect
(and remove) by potential attackers, and adding the watermark to the graph has
minimal impact on the graph structure and its utility, so, the watermark graph should
not differ from the graph data structures built by real programs. Important properties
are graph watermarks should be relatively small and, the existence of a unique root
node so that all other nodes can be reached from it. Finally, both the embedding and
extraction of graph watermarks should be efficient, even for extremely large graph
datasets with billions of nodes and edges.

Our watermark graph F [π∗] and a corresponding codec system (encode,decode)F [π∗]

incorporate all the above properties; in particular, the graph F [π∗] and the correspond-
ing codec have the following properties:

• Appropriate graph types: The graph F [π∗] is directed on n∗ + 2 nodes, where
n∗ = 2n + 1 and n = ⌈log 2w⌉, with outdegree exactly two; that is, it has low
max-outdegree and, thus, it matches real program graphs.

• High resiliency: The reducible permutation graph F [π∗] consists of the following
three components:

(i) A header node: it is a root node with outdegree one from which every
other node in the graph F [π∗] is reachable and is denoted by s. Note that,
every control flow-graph has such a node.

(ii) A footer node: it is a node with outdegree zero that is reachable from every
other node of the graph and is denoted by t. Every control flow-graph has
such a node, representing the method exit.

(iii) A linked list: it consists of n nodes u1, u2, . . . , un each with outdegree two.
In particular, each node ui (1 ≤ i ≤ n) has exactly two outpointers: one
points to node ui−1, which we call list pointer, and the other points to node
um, where m > i, where um > ui > ui−1.

Thus, the graph F [π∗] enables us to correct single edge modifications, i.e., edge-
flips, edge-additions, or edge-deletions.
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• Small size: The size |Pw|− |P | of the embedded watermark w is relatively small
since the size of the corresponding watermark graph F [π∗] is O(n∗); in fact, the
size of F [π∗] is O(log2w), since n∗ = 2n+ 1 and n = ⌈log2w⌉.

• Efficient codecs: The codec (encode,decode)F [π∗] has linear time and space com-
plexity.

It is worth noting that our codec system use basic data structures and operations,
and thus they are easily implementable.

Furthermore, there is a relation between structure of F [π∗] and Hamiltonian Path.
It is well-known that any acyclic digraph G has at most one Hamiltonian path (HP);
G has one HP if there exists an ordering (v1, v2, . . . , vn) of its n nodes such that in the
subgraphs G0, G1, . . . , Gn−1 the nodes (v1, v2, . . . , vn), respectively, are the only nodes
with indegree zero, where G0 = G and Gi = G \ (v1, v2, . . . , vi), 1 ≤ i ≤ n − 1. It is
important to note that any reducable flow-graph haw at most one Hamilton Path [27].
It is not difficult to see that the reducible permutation graphs F [π∗] constructed by
Algorithms Encode_SiP.to.W-Bitonic-1 and Encode_SiP.to.W-Bitonic-2 have a unique
Hamiltonian path, denoted by HP(F [π∗]); this is precisely the path un∗+1un∗ . . . u1u0.
Such a path can be found in time linear in the size of F [π∗]. Chroni and Nikolopoulos
[16] proposed the algorithm Unique_HP, which takes as input a graph F [π∗] on n∗ + 2

nodes and produces its unique Hamiltonian path HP(F [π∗]). The time and space
complexity of this algorithm is summarized in the following theorem.

Theorem 3.1 Let F [π∗] be a reducible permutation graph of size O(n∗) constructed by
algorithm Encode_W.to.SiP. The algorithm Unique_HP correctly computes the unique Hamil-
tonian path of F [π∗] in O(n∗) time and space.

3.2.3 Properties of 1− cycle

By definition, a self-inverting permutation π∗ contains only one 1-cycle (x). This 1-
cycle represents the index of the first 0 in the binary representation of the integer w.
The 1-cycle is in the n+ k vertex, where n is the length of the binary representation
of the integer w and k is the index of the first 0 in the binary representation; thus,
n + 2 ≤ x ≤ 2n + 1. The last number of a range of bits, which does not have zeros,
the 1-cycle is the maximum element π∗

max, i.e, x = 2n+1. Moreover, the 1-cycle is the
maximum element after the first bitonic subsequence b∗1 of self-inverting π∗. Taking
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into consideration that we can find which element is the 1-cycle if we know the
first increasing subsequence from π∗, which is the elements between n+ 1 to 2n+ 1.
The 1-cycle is the first consecutive element which is missing from the first bitonic
subsequence b∗1.

Example 3.4 The permutation π∗ = (6, 8, 10, 11, 9, 1, 7, 2, 5, 3, 4) which decodes the
number w = 21 with binary representation 10101. Obviously, the first bitonic sub-
sequence is b∗1 = (6, 8, 10, 11, 9, 1) and the 1-cycle is 7 = n + k, where n = 5 and the
index of first zero is k = 2. Finally, it is easy to see that the 1-cycle is the maximum
element in the next bitonic subsequences b∗2 = (7, 2), b∗3 = (5, 3), b∗4 = (4) and 7 is
the first sequential element which is missing from the first increasing subsequence
(6, 8, 10, 11).

There are 2n−1 different integers wi in the range n, where n is the number of bits
in the binary representation of wi. The encoding algorithm Encode_W.to.SiP produces
2n−1 different self-inverting permutations π∗ and thus, there are n different 1-cycles
(x1), (x2), . . . , (xn), where xi = π∗

n+i+1 and xn = π∗
max. The 1-cycle (xi) appears 2n−i−1

times in different self-inverting permutations, i < n, and the 1-cycle (π∗
max) appears

only one time; note that it happens when w is the last integer in range n, that
w = 2n − 1.

Example 3.5 For n = 3, there are 4(= 2n−1) different integers wi. So, the self-inverting
permutations produced by algorithm Encode_W.to.SiP, are:

◦ w1 = 4: π∗
1 = (4, 7, 6, 1, 5, 3, 2),

◦ w2 = 5: π∗
2 = (4, 6, 7, 1, 5, 2, 3),

◦ w3 = 6: π∗
3 = (4, 5, 7, 1, 2, 6, 3), and

◦ w4 = 7: π∗
4 = (4, 5, 6, 1, 2, 3, 7)

with 3 different 1-cycles x1 = 5 = n + i + 1, x2 = 6 and x3 = 7 = π∗
max. We observe

that element 5 appears 2(= 2n−i−1) times, as 1-cycle x1 in π∗
1 and π∗

2.
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Chapter 4

Watermarking Algorithms

4.1 S-bitonic Algorithm

4.2 T-bitonic Algorithm

4.3 Comparison of our algorithms

4.1 S-bitonic Algorithm

Having presented an efficient codec algorithm for encoding a watermark number w
as a self-inverting permutation π∗ [13] and several codec algorithms for efficiently
encoding the permutation π∗ into different reducible permutation flow-graphs Fi[π

∗]

(i > 1), in this section we extend the types of such flow-graphs by proposing an algo-
rithm for encoding a self-inverting permutation π∗ into a reducible permutation graph
F [π∗] having properties which are derived from the bitonic subsequences composing
the self-inverting permutation π∗ (see, properties P1 − P3 in Subsection 3.2.1).

The encoding algorithm, which we call Encode_SIP.to.RPG-Bitonic-S is described
below.

Algorithm Encode_SIP.to.RPG-Bitonic-S

1. Compute the bitonic subsequences S1, S2, ..., Sk of the self-inverting permutation
π∗ and let Si = (i1, i2, ..., top(Si), ..., it);

2. Construct a directed graph Fs[π
∗] on n∗ + 2 vertices as follows:
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2.1 V (Fs[π
∗]) = {s = un∗+1, un∗ , ..., u1, u0 = t};

2.2 for i = n∗, n∗ − 1, ..., 0 do

add the edge (ui+1, ui) in E(Fs[π
∗]);

3. For each bitonic subsequence Si, 1 ≤ i ≤ k, do

3.1 add the edge (utop(Si), s) in E(Fs[π
∗]);

3.2 for j = 1, 2, . . . , top(Si), . . . , t− 1 do

if ij < ij+1 then add the edge (uij , uij+1
)

else the edge (uij+1
, uij) in E(F1[π

∗]);

4. Return the graph Fs[π
∗];

Figure 4.1 shows the encoding of the SiP π∗ = (6, 8, 11, 10, 9, 1, 7, 2, 5, 4, 3) into the
reducible permutation flow-graph Fs[π

∗]; note that, π∗ encodes the watermark number
w = 20.

Time and Space Complexity. Let w be a watermark number and π∗ be the self-inverting
permutation of length n∗ = 2n+1 which encodes watermark w, where n is the length
of the binary representation of number w. The subsequences S1, S2, . . . , Sk of π∗ can
be computed in O(n∗) time and space. Furthermore, the construction of the graph
F [π∗] also takes O(n∗) time and space. Thus, the following theorem holds.

Theorem 4.1 The algorithm Encode_SIP.to.RPG-Bitonic-S for encoding the permutation
π∗ of length n∗ as a reducible permutation flow-graph Fs[π

∗] requires O(N) time and space,
where N = n∗ + 2.

We next present the decoding algorithm Decode_RPG.to.SIP-Bitonic-S, which takes
as input a reducible permutation flow-graph Fs[π

∗] on n∗ + 2 nodes produced by
algorithm Encode_SIP.to.RPG-Bitonic-S and correctly extract the self-inverting per-
mutation π∗ from the graph Fs[π

∗]; the algorithm is described below.

Algorithm Decode_RPG.to.SIP-Bitonic-S

1. Delete the directed edges (ui+1, ui), 1 ≤ i ≤ n, and the node t = u0 from Fs[π
∗],

and flip all the remaining directed edges in Fs[π
∗]; let s = u0, u1, u2, . . . , un be

the nodes in the resulting graph T1[π
∗];
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2. Compute the set R = {uj | (s, uj) ∈ T1[π
∗]} and delete the directed edges (s, uj)

from the graph T1[π
∗];

3. Sort the nodes of set R in descending order according to their labels and let
R∗ = (r1, r2, ..., rk) be the resulting sorted sequence, 1 ≤ k < n;

4. Construct the underlying graph H[π∗] of the directed graph T1[π
∗] and let C(r1),

C(r2), . . ., C(rk) be the connected components of the graph H[π∗] which contain
the nodes r1, r2, ..., rk, respectively;

5. For each node ri ∈ R∗, i = 1, 2, ..., k, perform BFS-search in graph C(ri) starting
at node u and compute the sequence b∗i of the nodes of C(ri) taken by the order
in which they are BFS-discovered; the starting node u is selected as follows:

◦ if i < k and deg(ri) = 2, then u is the node with minimum label in C(ri);

◦ if i < k and deg(ri) ≤ 1, then u is the node with maximum label in C(ri);

◦ if i = k, then u is the node with label ℓmax in C(ri), where ℓmax is the index
of the max element in sequence (b∗1)

R;

recall that, (b∗i )R denotes the reverse sequence of b∗i , 1 ≤ i ≤ k;

6. Return π∗ = (b∗1)
R||b∗2|| · · · ||b∗k−1||(b∗k)R;

Figure 4.1 shows the extraction of the self-inverting permutation π∗ = (6, 8, 11, 10, 9, 1, 7, 2, 5, 4, 3),
which encodes the watermark number w = 20, from the reducible permutation flow-
graph Fs[π

∗] using the tree T1[π
∗]. Note that a reducible permutation flow-graph Fs[π

∗]

of size n∗ + 2 encodes a self-inverting permutation π∗ of length n∗.

Time and Space Complexity. The size of the reducible permutation graph Fs[π
∗] con-

structed by the algorithm Encode_RPG.to.SIP-Bitonic-S is O(N), where N = n∗ + 2

and n∗ is the length of the permutation π∗, and thus the size of the resulting graph
T1[π

∗] is also O(N). The construction of underlying graph H[π∗] takes O(N) time
and space. It is well known that the BFS-search on the connected components C(r1),
C(r2), . . ., C(rk) of the graph H[π∗] takes time linear. Thus, the decoding algorithm
is executed in O(N) time using O(N) space. Thus, the following theorem holds:

Theorem 4.2 Let Fs[π
∗] be a reducible permutation flow-graph of size O(N) produced

by algorithm Encode_SiP.to.RPG-Bitonic-S. The algorithm Decode_RPG.to.SIP-Bitonic-S

decodes the flow-graph Fs[π
∗] in O(N) time and space.
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π∗
1 = (6, 8, 11, 10, 9, 1, 7, 2, 5, 4, 3)

↑↓

↑↓

b∗1 = (6, 8, 11, 10, 9, 1)

b∗2 = (7, 2)

b∗3 = (5, 4, 3)

67 5 4 3 2

Fs[π
∗]

811s

11 7 5

4

3

28 10

s

9

1

6

1 t910

T1[π
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Figure 4.1: The main structures used or constructed by the codec algorithms Encode SiP.to.

RPG-Bitonic-S and Decode RPG.to.SiP-Bitonic-S.

4.2 T-bitonic Algorithm

In this section we enrich the repository of reducible permutation flow-graphs F [π∗]

which can encode a self-inverting permutation π∗ or, equivalently, a watermark num-
ber w by proposing a reducible permutation flow-graph Ft[π

∗], different from Fs[π
∗]

but of the same type, having also important properties deriving from the bitonic
subsequences of π∗.

By construction, the indegree of the first node s = un∗+1 of the flow-graph Fs[π
∗]

is equal to the number of bitonic subsequences b∗1, b∗2, · · · , b∗k of π∗, while the indegree
of the first node of the graph Ft[π

∗] is much smaller that k. This property causes
Ft[π

∗] more appropriate, in same cases, since it does not contain an extreme charac-
teristic thereby enhancing the resilience of graph-structure to attacks. The proposed
algorithm Encode_SIP.to.RPG-Bitonic-T for encoding a self-inverting permutation π∗

into a reducible permutation graph Ft[π
∗] is described below.

Algorithm Encode_SIP.to.RPG-Bitonic-T

1. Execute algorithm Encode_SIP.to.RPG-Bitonic-S and compute the bitonic sub-
sequences S1, S2, ..., Sk of π∗ and the graph Fs[π

∗]; Set Ft[π
∗]← Fs[π

∗];

2. For each edge (utop(Si), s) in Ft[π
∗], 2 ≤ i ≤ k, do

if Si is an id-bitonic sequence, then
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π∗
1 = (7, 9, 10, 12, 13, 11, 1, 8, 2, 3, 6, 4, 5)

↑↓

↑↓

b∗1 = (7, 9, 10, 12, 13, 11, 1)

b∗2 = (8, 2)

b∗3 = (3, 6, 4)

b∗4 = (5)
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Figure 4.2: The main structures used or constructed by the codec algorithms S-bitonic and
T-bitonic.

◦ delete the edge (utop(Si), s) and

◦ add the edge (utop(Si), utop(Si−1)) in E(F2[π
∗]);

3. Return the graph Ft[π
∗];

We next describe the corresponding decoding algorithm for extracting the permuta-
tion π∗ from the flow-graph Ft[π

∗].

Algorithm Decode_RPG.to.SIP-Bitonic-T

1. Execute Steps 1 and 2 of algorithm Decode_RPG.to.SIP-Bitonic-S on graph Ft[π
∗]

and compute the directed graph T2[π
∗] and the node set R;

2. Compute the node set

R′ = {uj | (ui, uj) ∈ T2[π
∗] and outdeg(uj) ≥ 2},

delete the directed edges (ui, uj) from the graph T2[π
∗], and set R← R ∪R′;

3. Execute Steps 3, 4 and 5 of the decode algorithm Decode_RPG.to.SIP-Bitonic-S

and compute the sequences b∗1, b∗2, . . . , b∗k;
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4. Return π∗ = (b∗1)
R||b∗2|| · · · ||b∗k−1||(b∗k)R;

In the example of Figure 4.2, R = {13, 8, 5} and R′ = {6}. Recall that, the self-
inverting permutation which encodes watermark w is of length n∗ = 2n + 1, where
n is the binary length of the watermark number w, while the reducible permutation
flow-graph Ft[π

∗] is of size n∗ + 2.
The results of this section concerning the correctness and the time and space

complexity of both algorithms are summarized in the following theorem.

Theorem 4.3 The algorithm Encode_SIP.to.RPG-Bitonic-T encodes a permutation π∗ of
length n∗ into a reducible permutation flow-graph Ft[π

∗] in O(N) time and space, where
N = n∗ + 2, and the corresponding decoding algorithm Decode_RPG.to.SIP-Bitonic-t

correctly extract π∗ from the flow-graph Ft[π
∗] within the same time and space complexity.

4.3 Comparison of our algorithms

It would be very interesting to compare the two codec algorithms, S-bitonic Algorithm
and T-bitonic Algorithm. More precisely, we compare the structures of reducible
permutation flow-graphs Fs[π

∗] and Ft[π
∗], their properties, and also the space and

time complexity which are required.
First of all, the structures of the watermark graphs which are produced by Algo-

rithm Encode_ SIP.to.RPG-Bitonic-S and Algorithm Encode_SIP.to.RPG-Bitonic-T en-
coding the same self-inverting permutation π∗ are similar. The reducible permutation
flow-graphs Fs[π

∗] and Ft[π
∗] are node-labeled on n∗+2 nodes, where n∗ is the length

of π∗. Indeed, the labels of Fs[π
∗] and Ft[π

∗] are numbers of the set {0, 1, . . . , n∗ + 1}
where the label n∗ +1 is assigned to header node s = un∗+1, the label 0 is assigned to
footer node t = u0, and the label n∗ + 1− i is assigned to the ith body node un∗+1−i,
1 ≤ i ≤ n. Graphs are directed on n∗+2 nodes with outdegree at most two. More pre-
cisely, the body nodes have outdeg(un∗+1−i) = 2, the initial node s has outdeg(s) = 1

and the terminal node t with outdeg(t) = 0. Obviously, they have exactly the same
number of edges. For every node u of either Fs[π

∗] or Ft[π
∗], there is an edge (v, u),

where u+ 1 ≤ v ≤ 2n+ 1 or v = s or v = u− 1. Moreover, it is easy to see that both
of these graphs have the same Hamiltonian path.

There is always (2n + 1, s) edge in both of these flow-graphs Fs[π
∗] and Ft[π

∗],
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because 2n+ 1 is the maximum element of self-inverting permutation which is in its
first bitonic subsequence b∗1.

From Theorems 4.1, 4.2 and 4.3, we observe that both codec systems require
O(N) time and space for encoding the permutation π∗ as a reducible permuta-
tion flow-graph F [π∗] and decoding π∗ from theses graphs. Although, the Algo-
rithm Encode_RPG.to.SIP-Bitonic-t check whether any subsequence b∗i is id-bitonic
and computes one more node set R′, it does not effect its time and space complexity.

Therefore, it is also important to point out that, if self-inverting permutation π∗

does not have id-bitonic subsequence, the reducible permutation flow-graphs Fs[π
∗]

and Ft[π
∗] have identical structures.

On the other hand, we proposed two flow-graphs Fs[π
∗] and Ft[π

∗] which by con-
struction have some different properties so that they follow aim which is to enhance
our ability to select a graph structure being more similar to the structure of a given
application program P . The main difference is based on the way in which the edges
are constructed. The former links all top elements of subsequences b∗i with s node in
Fs[π

∗], while the latter checks whether the bitonic subsequences b∗i of the self-inverting
permutation π∗ are id-bitonic or not and if bitonic subsequence b∗i is id-bitonic, the
top(b∗i ) is linked with top(b∗i−1). On the contrary, from the S-bitonic Algorithm. It
implies that

indegFs[](s) ≥ indegFt[](s)

.
It is also necessary to consider the number of nodes that a node can be linked. We
distinguish the following five cases for Fs[π

∗] and Ft[π
∗]:

• If uk ∈ V (Fs[π
∗]):

◦ k = 1, then uk can be linked with n nodes, because the edge (uk, ui) can
exist, if i ∈ [n+ 3, 2n+ 1] ∪ {t}.

◦ k = 2: the node uk can be linked with n+1 nodes, because the edge (uk, ui)

can exist, if i ∈ [k + 1, n] ∪ {n+ k} ∪ {n+ k + 1} ∪ {1}.

◦ 2 < k ≤ n− 1: the node uk can be linked with n− k+4 nodes, because the
edge (uk, ui) can exist, if i ∈ [k+1, n]∪{n+ k}∪ {n+ k+1}∪ {s}∪ {k− 1}.

◦ n ≤ k < 2n+ 2: the node uk can be linked with 2n− k + 1 nodes, because
the edge (uk, ui) can exist, if i ∈ [k + 1, 2n+ 1] ∪ {k − 1}.
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◦ n = 2n + 1: the node uk can be linked with 2 nodes, because there are
edges (u2n+1, s) and (u2n, u2n+1).

• If uk ∈ V (Ft[π
∗]):

◦ if k = 1: it is the same with Fs[π
∗].

◦ if k = 2: it is the same with Fs[π
∗].

◦ if 2 < k ≤ n− 1: the node uk can be linked with n + 1 nodes, because the
edge (uk, ui) can exist, if i ∈ [k + 1, n] ∪ [n+ 2, n+ k + 1] ∪ {k − 1}.

◦ if n ≤ k < 2n+ 1: it is the same with Fs[π
∗].

◦ if n = 2n+ 1: it is the same with Fs[π
∗].
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Chapter 5

Attacks

5.1 Node-Label and Edges Modification

5.2 Probability for Modification

A watermarking system is usually divided into three distinct steps, embedding, attack,
and extracting. In this section, we show that the malicious intentions of an attacker
to a reducible permutation graph F [π∗] by modifying some node-labels or edges of
the graph F [π∗] can be efficiently detected. Also, we present all probabilities of edge
and label modifications.

5.1 Node-Label and Edges Modification

In Chapter 2, we introduced the ways to attack a watermark in an application pro-
gram. In this part, we present how we can detect an attack in our graph watermark,
like node modification or edge modification.

The labels of F [π∗] by encoding algorithms Encode_SiP.to.RPG-Bitonic-S or En-

code_ SiP.to.RPG-Bitonic-T are numbers of the set {0, 1, . . . , n∗ +1 }, where n∗ is the
length of π∗. We have considered that the header node is s = un∗+1, the footer node
is t = u0 and body nodes are un∗+1−i, 1 ≤ i ≤ n.

A node-label attack of F [π∗], can mainly occur in the following three ways:
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1. Swapping of the labels of two nodes of F [π∗],

2. Altering the value of the label of a node, and

3. Node-unlabeled graph, i.e, removing all the labels of the graph F [π∗].

The algorithms Decode_RPG.to.SiP-Bitonic-S and Decode_RPG.to.SiP-Bitonic-T rely
on the labels of the flow graph F [π∗]. It would be problem for our code system
(encode, decode)F [π∗], if it is susceptible to node-label modification attack. But we
have a way to know if our flow graph F [π∗] has been attacked and we can be able
to correct the label of nodes. Obtaining the correct labels can be easily done in O(N)

time and space thanks to the unique Hamiltonian path HP (F [π∗]) since the nodes of
F [π∗] are encountered along HP (F [π∗]) in decreasing order of their labels. Thus, we
can recover from any change of the labels or even from complete deletion of them.
Therefore, we have the following result.

Lemma 5.1 Let F [π∗] be a reducible permutation graph of size O(N) produced by either
algorithm Encode_SiP.to.RPG-Bitonic-S or -2, and let F ′[π∗] be the graph resulting from
F [π∗] after having modified or deleted the node-labels of F [π∗]. Given F ′[π∗], the flow-graph
F [π∗] can be constructed in O(N) time and space.

However, an attacker can modify the edges of reducible permutation graph F [π∗],
so our codec system should have appropriate properties with respect to resilience to
these attacks. During the construction of a RPG F [π∗], an edge can be classified as
one of two types: forward edge (f1, f2), f1 < f2 or backward edge (b1, b2), b1 > b2. The
forward edges can be retrieved with the same way as label-node from HP(F [π∗]). The
backward edges require more attention for their retrieving. Let F [π∗] be a flow-graph
which encodes the SiP representing an integer w and let F ′[π∗] be the graph resulting
from F [π∗] after an edge modification.
There are two cases:

(i) our codec system fail to return the SiP, or

(ii) our codec system extracts F ′[π∗] and returns a SiP π′ ̸= π∗

The properties of self-inverting permutation π∗ (see Subsection 3.2.1), like odd-length
property or 1-cycle property, are incorporated in the structure of the reducible per-
mutation graph F [π∗]. Thus, if an attacker makes any single node-modification in
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F [π∗], i.e., node-addition or node-deletion, it can be easily identified. Although, it is
the first case, if at least one of the SiP properties does not hold. If F [π∗] decodes a
permutation π′ ̸= π∗, then the subsequence X (Y , resp.) may not be increasing and
the bitonic property does not hold. In the second case, an attacker makes appropriate
edge-modifications to F [π∗] so that the resulting graph F ′[π∗] decodes a permutation
π∗′ which is still self-inverting, then the first block of the binary sequence B′ may
contain one or more 1s or the third block may be 0.

In addition, we can use the properties of 1-cycle of self-inverting permutation π∗

for detecting an edge modification in F [π∗]. For example, we always know where the
edge of 1-cycle node is linked.

Property 5.1 Let π∗ be a self-inverting permutation. If the first increasing subsequence of
π∗ is known, we can construct the SiP π∗ = (π∗

1, π
∗
2, . . . , π

∗
n).

Proof. The proof is based on properties of self-inverting permutation π∗ and 1− cycle

(Chapter 3). From the first increasing subsequence of π∗, we can compute which
element is the 1 − cycle because it is the first missing consecutive element from this
subsequence. Also we know from the properties of partition b∗1, b

∗
2, . . . , b

∗
k of π∗, that

b∗1 contains all elements between n + 1 to 2n + 1. Obviously, π∗
max is the top element

of b∗1 and after that there is a decreasing subsequence. The final step is easy because
it is self-inverting permutation and applies ππi

= i, so we know all elements and its
indexes of SiP π∗.

Example 5.1 If the first increasing subsequence of π∗ is (6, 11), we can extract all
elements of self-inverting permutation π∗ = (π∗

1, π
∗
2, . . . , π

∗
11). First of all, we know

that π∗
max = 11, π∗

6 = 1 and π∗
11 = 2. Also, from properties of 1 − cycle, the 1-cycle

is 7, so π∗
7 = 7. We know that the first bitonic subsequence b∗1 contains all elements

between n + 1 to 2n + 1. It is obviously that we have an increasing subsequence
from n + 1 until 2n + 1 element and after a decreasing subsequence until minimum
element π∗

min = 1. So, π∗
3 = 10, π∗

4 = 9, π∗
5 = 8. Finally from ππi

= i, we can find
all elements from indexes of elements of b∗1. Thus, the self-inverting permutation is
π∗ = (6, 11, 10, 9, 8, 1, 7, 5, 4, 3, 2).

To sum up, if an attacker does not change the edges from the nodes with labels,
which are the first increasing subsequense’s elements of self-inverting permutation
π∗, we can construct the right F [π∗] and extract the original π∗.
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5.2 Probability for Modification

First of all, there are many parameters which affect the probability of edge exis-
tence in F [π∗]. Let a reducible permutation graph Fs[π

∗] produced by Algorithm
Encode_SIP.to.RPG-Bitonic-S and a RPG Ft[π

∗] produced by Algorithm Encode_SIP.to.RPG-

Bitonic-T on n∗ + 2 vertices, where n∗ = 2n + 1. The number of all nodes that have
a backward edge, is 2n+ 1 (s is header node and outdeg(t) = 0). Let we have a node
uk, where k is its label. We can compute the probabilities for any ”real” edge in a
RPG encoding by S-bitonic and T-bitonic Algorithm (see Section 5.1), which is given
by the following:

• If k = 1, then the probability of its node to linked is p1 = 1
n−1
, uk ∈ V (F1[π

∗]) or
uk ∈ V (F2[π

∗]).

• If k = 2, then the probability of its node to linked is p2 = 1
n−1
, uk ∈ V (F1[π

∗]) or
uk ∈ V (F2[π

∗]).

• If 2 < k < n, then the probability of its node to linked is pk = 1
n−k+3

, uk ∈
V (F1[π

∗]) or pk = 1
n
, uk ∈ V (F2[π

∗]).

• If n ≤ k ≤ 2n + 1, then the probability of its node to linked is pk = 1
2n−k+1

,
uk ∈ V (F1[π

∗]) or uk ∈ V (F2[π
∗]).

However, if an attacker knows that it should change only the backward edges in
order to succeed, the probability of construction an edge from uk node is:

pk =
1

2n+ 1− k
(5.1)

In addition, we consider the probability an attack to our flow-graph F•[π
∗], when

F•[π
∗] ∈ {F•[π

∗], F•[π
∗]} to be ”almost” successful. It means that our codec system

extracts F ′[π∗] and returns a SiP π∗′ ̸= π∗ (Case (ii) in Subsection 5.1). Let S be the
set of all pairs (Fi[π

∗], Fj[π
∗]) of RPGs of order 2n + 3 and let emf(i, j) denote the

number of edge modifications made in Fi[π
∗] so that Fi[π

∗] = Fj[π
∗]. Let S ′ be the

set of all pairs (Fi[π
∗], Fj[π

∗]) with the minimum value of emf(i, j). The first step
towards to compute the above probability is to find set S ′. The minimum number
of edge modifications is two, but there is low probability that it can occur. We want
to know all pairs of integers (w1, w2), where have different SiPs π∗

1 and π∗
2 but their

flow graphs Fs[π
∗] or Ft[π

∗], from Algorithms Encode_SIP.to.RPG-Bitonic-S and -2,
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67 5 4 3 2

Fs[π
∗]

81112 1 t91013s

67 5 4 3 2

Ft[π
∗]

81112 1 t91013s

Figure 5.1: The RPGs of π∗
1 = (7, 10, 13, 12, 11, 9, 1, 8, 6, 2, 5, 4, 3) from w1 = 36 and π∗

2 =

(7, 10, 11, 12, 13, 9, 1, 8, 6, 2, 3, 4, 5) from w2 = 39.

differ in two edges. All these pairs are (w1, w2), where w1 = a010b and w2 = a011b, a
is a binary number and 1 ≤ b ≤ n− 3. There are 2 edge modifications in their RPGs
because only two elements of their SiPs change their indices.

Example 5.2 Let w1 = 36 with binary representation 100100 and w2 = 39 with
binary representation 100111 be two watermarks. Their self-inverting permutations
are π∗

1 = (7, 10, 13, 12, 11, 9, 1, 8, 6, 2, 5, 4, 3) and π∗
2 = (7, 10, 11, 12, 13, 9, 1, 8, 6, 2, 3, 4, 5).

Figure 5.1 shows the encoding of the self-inverting permutations π∗
1 and π∗

2 into the
reducible permutation flow graphs Fs[π

∗] and Ft[π
∗]. Obviously, the different edges

from Fs[π
∗] to Ft[π

∗] are (9, 11) and (11, 12). The main difference is the bitonic sub-
sequences. The bitonic subsequences are b∗11 = (7, 10, 13, 12, 11, 9, 1), b∗12 = (8, 6, 2),
b∗13 = (5, 4, 3) and b∗21 = (7, 10, 11, 12, 13, 9, 1), b∗22 = (8, 6, 2), b∗23 = (3, 4, 5). In conse-
quence, b∗11 ̸= b∗12 with 3 different indices of elements, b∗12 = b∗22 and b∗13 = (b∗23)

R. Now,
it is easy to see that we need 2 edge modifications that E(Fs[π

∗]) = E(Ft[π
∗]).

The probability to choose a pair of integers (wi, wj)n such that the corresponding
RPGs Fi[π

∗] and Fj[π
∗] belong to S ′ is based on the following result.

Lemma 5.2 Let (w1, w2)n be a pair of watermark integers with the same length n of their
binary representations, which encode (F1[π

∗
1], F2[π

∗
2])n (F1 and F2 are produced by Algorithm

Encode_SIP.to.RPG-Bitonic-S or -2). The probability pn that F1[π
∗] and F2[π

∗] differ in
2 edges, is
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pn =


0, n ≤ 3

2n−2−1
2n−1−1

· pn−1 +
1

2n−2(2n−1−1)
, n > 3

(5.2)

Proof. There are 2n−1 different integers in the same range n, where n the length of
the binary representation of them and there are 2n−2(2n−1 − 1) possible pairs. The
number of pairs (w1, w2)n, that w1 encodes a RPG which differs only in 2 edges with
RPG of w2, is bn = 2bn−1 + 1. So, we have the following probabilities:

pn =
bn

2n−2(2n−1 − 1)
=

2bn−1 + 1

2n−2(2n−1 − 1)
(5.3)

pn−1 =
bn−1

2n−3(2n−2 − 1)
⇔ bn−1 = pn−12

n−3(2n−2 − 1) (5.4)

From 5.2 and 5.3:
pn = 2pn−12n−3(2n−2−1)+1

2n−2(2n−1−1)
= 2n−2−1

2n−1−1
pn−1 +

1
2n−2(2n−1−1)

Then

pn =

0, n ≤ 3

2n−2−1
2n−1−1

pn−1 +
1

2n−2(2n−1−1)
, n > 3.

It is easy to see from Lemma 5.2 that, when we have a big length n of binary
represantation, this probability pn decreases if we choose a random integer wn for
coding. Also, these edge modifications are only in the nodes that its labels represent
the elements of first bitonic subsequence of a self-inverting permutation.

The integers w1,w2 of pair (w1, w2)n of the above lemma are called as weak. Next,
we give the formal definition of the emf(F [π∗

1], F [π∗
2])n, which is the number of edge

modification in F [π∗
1] and F [π∗

2].

Definition 5.1 Let F [π∗
1], F [π∗

2] be two different reducible permutation graphs. We
define emf(F [π∗

1], F [π∗
2])n to be the number of edge modification from F [π∗

1] to F [π∗
2]

and n is the length of binary representation w1 and w2 where encode F [π∗
1] and F [π∗

2].

All binary numbers have a recursive relationship. Specifically, a binary number,
in range n, n ≥ 2 , has binary subsequences which are binary numbers in range n′,
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n′ < n. It implies that there are RPGs (F [π∗
1], F [π∗

2])n that need the same numbers of
edges modification with RPGs (F [π∗

1], F [π∗
2])n′ if they are the form of (w1)n = 1k(w′

1)n′

and (w2)n = 1k(w′
2)n′ , k = n−n′ where encode F [π∗

1] and F [π∗
2]. For example, let F [π∗

1]

encodes the watermark integer w1 = 11000, F [π∗
2] encodes the integer w2 = 11001 and

the length of binary representation n = 5. The RPGs have emf(F [π∗
1], F [π∗

2])5 = 4 and
the RPGs also have emf(F ′[π∗

1], F
′[π∗

2])4 = 4, where F ′[π∗
1] decodes w′

1 = 1000 (w′
1 is a

subsequence of w1) and F ′[π∗
2] decodes w′

2 = 1001 (w′
2 is a subsequence of w2).

Let emf(F [π∗
1], F [π∗

2])n = l, and let F [π∗
1] encodes w1 and F [π∗

2] encodes w2. In
order to help us to find the value of emf(F ′[π∗

1], F
′[π∗

2])n−k+1, where F ′[π∗
1] encodes

w′
1, w = 1kw′

1 and F ′[π∗
2] encodes w′

2, where w2 = 1kw′
2, w1 < w2 and are binary

numbers with n the length of binary representation, we next present the following
result:

Lemma 5.3 Let F [π∗
1], F [π∗

2] be two different reducible permutation graphs with

emf(F [π∗
1], F [π∗

2])n = l

and let n be the length of binary representation of w1 = 1kw′
1 and w2 = 1kw′

2 where encode
F [π∗

1] and F [π∗
2]. It implies that emf(F [π∗

1], F [π∗
2])i = l, i < n− k+1. There are two cases

for emf(F [π∗
1], F [π∗

2])n−k+1:

(i) If w′
1 and w′

2 have the same first digit then emf(F [π∗
1], F [π∗

2])n−k+1 = l,

(ii) otherwise emf(F [π∗
1], F [π∗

2])n−k+1 = l − 1.

Proof. The proof of this property is based on construction of self inverting permu-
tation. The first increasing subsequence of SiP, which is encoded by w1 in range n,
indicate the sequence Y R of the 1s positions (See Subsection 3.1.3). So, the nodes
with its elements as label will linked consecutively. If we add or remove first 1 bit
in an integer w (if it is possible in range n + 1 or n− 1), the length of this sequence
will be changed but not its structure, i.e., the consecutive link of nodes. Let be w′

1

and w′
2 have different first digit and 0 is the first bit of w′

1. The b∗2 of SiP of 1kw′
1 and

1kw′
2 are id-bitonic subsequences. But the b∗2 of SiP of 1w′

1 is d-bitonic and the b∗2 of
SiP of 1w′

2 (its first bit of w′
2 is 1) is id-bitonic. So, there is one less edge modification,

emf(F [π∗
1], F [π∗

2])n−k+1 = l − 1. If w′
1 and w′

2 have the same first digit (i.e., the bit 0),
it means that all subsequence of SiPs from 1w′

1 and 1w′
2 are the same kind of bitonic

sequence (id-bitonic, i-bitonic and d-bitonic) with bitonic subsequences of SiPs from
1kw′

1 and 1kw′
2.
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To sum up, when we know all edge modifications that can be done between
(F [π∗

1], F [π∗
2])n decoding pair (w1, w2)n from the same range n, we can know all edge

modifications that can be done in range n− i, i < n. In addition, we can compute the
edge modifications between (F [π∗

1], F [π∗
2])n+1 of integer pairs (w1, w2)n with w1, w2 ≤

2n
′−1 + 2n

′−2 in the range n′ = n+ 1.
Let w1 = 10 and w2 = 11 be binary numbers which encode F [π∗

1] and F [π∗
2] using

Algorithm Encode_SIP.to.RPG-Bitonic-S or -2 and let emf(F [π∗
1], F [π∗

2])2 = 3. Based
on previous results, we should notice that any RPG F [π∗] from the penultimate in-
teger with n bits, i.e., 2n − 2, always differs 4 edges from F ′[π] which decodes the
last one integer in the same range, i.e., 2n − 1. But, we point out that this difference
is the smallest on between F [π∗] and any other RPG by two different SiPs, which
have different indices of 1-cycle, in the same range n. The 1-cycle of its self-inverting
permutation is unique and it change from SiP of the previous or next watermark
integer. Thus, we have the following lemma:

Lemma 5.4 Let π∗ be the self-inverting permutation of length n∗, where n∗ = 2n+ 1 and
n∗ ≥ 3, with its 1-cycle having index i. We need emf(F [π∗], F ′[π∗])n ≥ 4, where F ′[π∗]

decodes a SiP by S-bitonic Algorithm with 1-cycle is in index i+ 1, n+ 2 ≤ i ≤ n∗.

Proof. Let π∗
1 and π∗

2 be the self-inverting permutations of length n∗, where n∗ = 2n+1

and n∗ ≥ 3 and F1[π
∗], F2[π

∗] the corresponding reducible permutation graphs. The
1-cycle of π∗

1 is the index i and the 1-cycle of π∗
2 is the index i + 1. When the index

of 1-cycle change, from i to i+ 1, it implies that two elements of SiP p∗ are swapped
by b∗1 and b∗2 bitonic subsequences. We know from properties of 1-cycle that b∗2 always
contains the 1-cycle, which is the top element of it. Encoding F1[π

∗] and F2[π
∗] from

S-bitonic Algorithm, it needs at least 4 edge modifications, because the nodes with
label, which is the top element of any bitonic subsequences b∗i , are linked with initial
node s, so, emf(F [π∗], F ′[π∗])n ≥ 4.

Lemma 5.5 Let π∗ be the self-inverting permutation of length n∗, where n∗ = 2n+ 1 and
n∗ ≥ 3, with its 1-cycle having index i. We need emf(F [π∗], F ′[π∗])n ≥ 4, where F ′[π∗]

decodes a SiP by T-bitonic Algorithm with 1-cycle is in index i+ 1, n+ 2 ≤ i ≤ n∗.

Proof. The proof is similar with proof of Lemma 5.4 and it also needs at least
4 edge modifications but it is necessary to research more because a RPG from T-

bitonic Algorithm has more properties in construction. Encoding F1[π
∗] and F2[π

∗]
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from T-bitonic Algorithm, let be a node uik ∈ Fi[π
∗] with label k. In Fs[π

∗], there
are the edges (s, u11−cycle

) and (u1max , u1j), j ∈ b∗11. In Ft[π
∗], there are the edges

u2max , u21−cycle
(because b∗22 is id-bitonic) and (u2max , u2j). We observe that it is pos-

sible that u11−cycle
= u2j and u1j = u21−cycle

. So there is not other edge modification. It
implies emf(F [π∗], F ′[π∗])n ≥ 4.

A watermark w is called strong if its reducible permutation graph F [π∗] produced
by Algorithm Encode_SIP.to.RPG-Bitonic-S (or -T) has more different backward edges
of any other F ′[π∗] decoding a watermark w′ ̸= w of same length n. We can find a
strong watermark integer w by exploiting the properties of F [π∗] and 1− cycle of π∗.
In our case, the strong watermark in the range n (length of binary representation), is
the number 2n − 2. This watermark integer has the following properties:

(a) its sum of all edge modifications which need to fit in any other RPG, is always
maximum, and

(b) its 1-cycle of π∗ is unique.

We thus conclude that, if we choose a large n, and the integer 2n−2 which encodes a
reducible permutation graph, the probability for ”almost” successful attack decreases.
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Chapter 6

Comparison of Related Algorithms

6.1 Encoding SiPs as Reducible Permutation Graphs

6.2 Our Algorithms

6.3 Comparison

This section is based on a comparative study between different watermarking tech-
niques.

6.1 Encoding SiPs as Reducible Permutation Graphs

Graph-based watermarking schemes have received a lot of attention ever since and
due emphasis must be given to the contributions of Collberg et al. in a series of pa-
pers [27, 28]. More recently, Chroni and Nikolopoulos presented an ingenious such
scheme [13, 14, 15], where the generated watermark graphs constitute a subclass of
reducible flow graphs. It would be very interesting to compare their codec watermark-
ing scheme with ours because the reducible permutation graphs are produced by all
these algorithms encode the same structure, that is, the self-inverting permutation π∗.

First of all, we present their proposed encoding algorithm Encode_SIP.to.RPG-I.
They use dmax-domination relation, i.e., d − dom(j) is the set of all the elements
of the permutation π∗ which d-dominates the element j, dmax(j) is the element of
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the set d− dom(j) with maximum value and the element i dmax-dominates j (node
vi dmax-dominates vj , resp.) if i = dmax(j) (vi = dmax(vj), resp.). The algorithm
Encode_SIP.to.RPG computes the dmax-domination relation of each of the n elements
of the self-inverting permutation π∗, and then, it constructs a directed graph F1[π

∗] on
n∗ +2 nodes using the dmax-domination relation of the elements of the permutation
π∗.

Next, this encoding algorithm Encode_SIP.to.RPG-I is presented in detail (see, Fig-
ure 6.1).

Algorithm Encode_SIP.to.RPG-I

1. for each element i ∈ π∗, 1 ≤ i ≤ n∗, do;

◦ set P (i) = m, where m = dmax(i), i.e., m is the element from d − dom(i)

with the maximum value;

2. Construct a directed graph F1[π
∗] on n∗ + 2 vertices as follows:

◦ V (F1[π
∗]) = {s = un∗+1, un∗ , ..., u1, u0 = t};

◦ for i = n∗, n∗ − 1, ..., 0 do

add the edge (ui+1, ui) in E(F1[π
∗]);

3. for each vertex ui ∈ V (F1[π
∗]), 1 ≤ i ≤ n∗, do

◦ add the edge (ui, um) in E(F1[π
∗]) where m = P (i);

4. Return the graph F1[π
∗];

Next, they propose a decoding algorithm, namely, Decode RPG.to.SiP-I, which takes
as input a reducible permutation flow-graph F1[π

∗] on n∗+2 nodes constructed by al-
gorithm Encode_SiP.to.RPG-I, and produces a self-inverting permutation π∗ of length
n∗. The only operation used by the algorithm are edge modifications on F1[π

∗] and
DFS-search on trees; it works as follows (see, Figure 6.1):

Algorithm Decode_RPG.to.SIP-I

1. Delete the directed edges (ui+1, ui) from the edge set E(F1(π
∗)), 1 ≤ i ≤ n, and

the node t = u0 from V (F1[π
∗]);
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Figure 6.1: The main structures used or constructed by the codec algorithms Encode_SiP.to.
RPG and Decode_RPG.to.SiP.

2. Flip all the remaining directed edges of the graph F1(π
∗);

let Td[π
∗] be the resulting tree with nodes s, u1, u2, . . . , un∗;

3. Perform DFS-search on the tree Td[π
∗] starting at node s by always proceeding

to the minimum-labeled child node and compute the DFS discovery time d[u]

of each node u of Td[π
∗];

4. Order the nodes u1, u2, . . . , un∗ of the tree Td[π
∗] by their DFS discovery time

d[] and let π∗ = (u′1, u′2, . . . , u′n∗) be the resulting order, where d[u′i] < d[u′j] for
i < j, 1 ≤ i, j ≤ n∗;

5. Return π∗ = π;

Furthermore, Chroni and Nikolopoulos propose another one coding system consist-
ing of algorithms Encode_SIP.to.RPG-II and Decode_RPG.to.SIP-II. The first works as
follows: (i) first, it computes the decreasing subsequences S1, S2, . . . , Sk of the permu-
tation π∗ and then (ii) it constructs a directed graph F2[π

∗] on n∗ +2 nodes using the
subsequences S1, S2, . . . , Sk.

Algorithm Encode_SIP.to.RPG-II is presented in detail (see, Figure 6.2).

Algorithm Encode_SIP.to.RPG-II

1. Compute the decreasing subsequences S1, S2, ..., Sk of permutation π∗;
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2. Construct a directed graph F2[π
∗] on n∗ + 2 vertices as follows:

◦ V (F2[π
∗]) = {s = un∗+1, un∗ , ..., u1, u0 = t};

◦ for i = n∗, n∗ − 1, ..., 0 do

add the edge (ui+1, ui) in E(F2[π
∗]);

3. For each decreasing subsequence Si = (i1, i2, . . . , it), 1 ≤ i ≤ k, do

add the edge (ui1 , s) in E(F2[π
∗]);

for j = t, t− 1, . . . , 2 do add the edge (uij , uij−1) in E(F2[π
∗]);

4. Return the graph F2[π
∗];

Having designed the encoding algorithm Encode_SiP.to.RPG-II, they next present the
decoding algorithm Decode_RPG.to.SiP-II which takes as input a flow-graph F2[π

∗]

and extracts the self-inverting permutation π∗ from F2[π
∗] using the components

of tree Ts[π
∗]. It finds all pairs P1, P2, . . . , Pk which are the cycles of self-inverting

permutation π∗; it works as follows (see, Figure 6.2):

Algorithm Decode_RPG.to.SIP-II

1. Delete the directed edges (ui+1, ui) from the edge set E(F2[π
∗]), 1 ≤ i ≤ n, and

the node t = u0 from V (F2[π
∗]) == {s = un∗+1, un∗ , ..., u1, u0 = t};

2. Flip all the remaining directed edges of the graph F2[π
∗]; the resulting graph is

a tree Ts[π
∗] rooted at s = un∗+1; let vn∗+1, vn∗ . . . , v1 be the corresponding nodes

of Ts[π
∗];

3. While the root s of Ts[π
∗] has at least one child vi do

◦ find the leaf vj of Ts[π
∗] which is reachable from node vi;

◦ set Pm = (vi, vj) and delete both vi and vj from Ts[π
∗];

4. Initialize the permutation π∗ = (π∗
1, π

∗
2, . . . , π

∗
n∗) to the identity permutation

(1, 2, . . . , n∗), and let P be the set of all pairs P1, P2, . . . , Pk computed at Step 3;
then

◦ for each pair (vi, vj) ∈ P , swap elements π∗
i and π∗

j in permutation π∗;

6. Return the self-inverting permutation π∗;
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Figure 6.2: The main structures used or constructed by the codec algorithms Encode SiP.to.

RPG-II and Decode RPG.to.SiP-II.

Their results are summarized in the following theorems.

Theorem 6.1. Let π∗ be a self-inverting permutation over the set Nn. The permutation
π∗ can be encoded into a reducible permutation graph F [π∗] in O(n) time and space
using algorithm Encode_SiP.to.RPG-I or -II.

Theorem 6.2. Let F [π∗] be a reducible permutation graph of order O(n) produced by
the encoding algorithm Encode_SiP.to.RPG-I or -II. The permutation π∗ can be cor-
rectly extracted from F [π∗] in O(n) time and space using algorithm Decode_RPG.to.SiP-

I or -II.
Chroni and Nikolopoulos extended the class of graph structures by proposing two

different reducible permutation flow-graphs F1[π
∗] and F2[π

∗] and it would be very
interesting to compare it with our proposed software watermarking model.

6.2 Our Algorithms

Our proposed algorithms are based on bitonic subsequences of self-inverting permu-
tation π∗. The encoding algorithm Encode_SiP.to.RPG-Bitonic-1 computes the bitonic
subsequences b∗1, b∗2, . . . , b∗k of SiP π∗ and adds all forward edges in E(Fs[π

∗]). Next, all
nodes which their labels are the top elements of bitonic subsequences, are linked with
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Figure 6.3: The main structures used or constructed by the codec system S-bitonic Algorithm

and t-Bitonic Algorithm, that is, the self-inverting permutation π∗, the bitonic sequences b∗i ,

the reducible permutation graphs Fs[π
∗] and Ft[π

∗], and connected components Cs(rk), Ct(rk)

of underlying graphs.

header node s and the remaining nodes are linked in accordance with order. The
decoding algorithm Decode_SiP.to.RPG-Bitonic-1 extracts the self-inverting permuta-
tion π∗ from RPG Fs[π

∗] by connecting components Cs(rk), 1 ≤ k < n, of undirected
graph Hs[π

∗] and BFS-search for the construction of bitonic subsequences.
The encoding algorithm, Encode_SiP.to.RPG-Bitonic-2, exploits the id-bitonic sub-

sequences (recall that, if either monotonically increases and then monotonically de-
creases) and the nodes, which are top elements of id-bitonic subsequences, are linked
with node, which is top element of previously bitonic subsequence. The remaining
edges of Ft[π

∗] coincide with E(Fs[π
∗]). The decoding algorithm Decode_SiP.to.RPG-

Bitonic-2 extracts π∗ from Ft[π
∗] by converting Ft[π

∗] into an undericted graph H[π∗],
too. Then, it applies BFS-search on connected components Ct(rk) of Ht[π

∗], 1 ≤ k < n,
by construction of new set R′, which has the nodes ui with outdeg(ui) ≥ 2.

In Figure 6.3, we present an example of our encoding watermarking systems S-

bitonic and T-bitonic with the same self-inverting permutation π∗ = (6, 7, 9, 11, 10, 1,
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67 5 4 3 2

Fs[π
∗]

811s 1 t910

67 5 4 3 2

Ft[π
∗]

811s 1 t910

67 5 4 3 2

F1[π
∗]

811s 1 t910

67 5 4 3 2

F2[π
∗]

811s 1 t910

Figure 6.4: The RPGs Fs[π
∗], F2[π

∗], F1[π
∗] and F2[π

∗] of π∗ = (6, 7, 9, 11, 10, 1, 2, 8, 3, 5, 4)

from w = 26.

2, 8, 3, 5, 4), which encodes the watermark number w = 26.

6.3 Comparison

It is worth mentioning that all comparative algorithms use the same self-inverting
permutation π∗ which is encoded by Encode_W.to.SiP-I. It implies that their reducible
permutation graphs will have similar structure. Specifically, they are node-labeled
on n∗ + 2 nodes, where n∗ is the length of permutation π∗. All encoding reducible
permutation graphs have a header node s with outdeg(s) = 1, a terminal node t with
outdeg(t) = 0 and body nodes, that have outdeg(un∗+1−i) = 2 (See Section 4.3).

It is worth notice that all algorithms take time and space linear in the size of the
flow graph F [π∗]. So all proposed algorithms encode and decode SiP and RPG in
O(N) time and space, where N = n∗ + 2 and n∗ = 2n+ 1.

Let ss be the header node in F s[π
∗] produced by Encode_SiP.to.RPG-Bitonic-S, st

in F t[π
∗] by Encode_SiP.to.RPG-Bitonic-2, s1 in F1[π

∗] by Encode_SiP.to.RPG and s2 in
F2[π

∗] by Encode_SiP.to.RPG-II. We have the following result (see, Figure 6.4):

indeg(st) ≤ indeg(ss) ≤ indeg(s1) = indeg(s2)
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k F1[π
∗] F2[π

∗] F s[π
∗] F t[π

∗]

1 n
2n+3

2
2n+3

n
2n+3

n
2n+3

2 2n
2n+3

n+1
2n+3

n+1
2n+3

n+1
2n+3

[3, n− 2] 2n−k
2n+3

n+1
2n+3

n−k+4
2n+3

n+1
2n+3

n− 1 2n−k
2n+3

n−1
2n+3

n−k+4
2n+3

n+1
2n+3

n 2n−k
2n+3

n+1
2n+3

2n−k+2
2n+3

2n−k+2
2n+3

n+ 1 2
2n+3

2
2n+3

2n−k+2
2n+3

2n−k+2
2n+3

[n+ 2, 2n] 2n−k+2
2n+3

3
2n+3

2n−k+2
2n+3

2n−k+2
2n+3

2n+ 1 2
2n+3

2
2n+3

2
2n+3

2
2n+3

Table 6.1: All probabilities of any edge (uk, ui) existence in RPGs F1[π
∗], F2[π

∗], F s[π
∗]

and F t[π
∗].

Let F1[π
∗] be a reducible permutation flow-graph of size n∗ = 2n+1 produced by the

algorithm Encode_SiP.to.RPG.
If uk ∈ V (F1[π

∗]):

◦ k = 1: the node uk can be linked with n+ 1 nodes,

◦ 2 ≤ k ≤ n: the node uk can be linked with 2n− k nodes,

◦ k = n+ 1: the node uk can be linked with 2 nodes,

◦ n+ 1 < k ≤ 2n+ 1: the node uk can be linked with 2n− k nodes.

Let F2[π
∗] be a reducible permutation flow-graph of size 2n∗ + 1 produced by the

algorithm Encode_SiP.to.RPG-II.
If k ∈ V (F2[π

∗]):

◦ k = 1: the node uk can be linked with 2 nodes,

◦ 2 ≤ k < n− 1: the node uk can be linked with n+ 1 nodes,

◦ k = n− 1: the node uk can be linked with n− 1 nodes,

◦ k = n: the node uk can be linked with n+ 1 nodes,

◦ k = n+ 1: the node k can be linked with 2 nodes,

◦ n < k < 2n+ 1: the node uk can be linked with 3 nodes,
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Algorithms min{emf(F [π∗
1], F [π∗

2])} probability of weak integers in range n

Encode
SIP.to.RPG-
Bitonic-S

2 pn =

0, n ≤ 3

2n−2−1
2n−1−1

pn−1 +
1

2n−2(2n−1−1)
, n > 3

Encode
SIP.to.RPG-
Bitonic-2

2 pn =

0, n ≤ 3

2n−2−1
2n−1−1

pn−1 +
1

2n−2(2n−1−1)
, n > 3

Encode
SIP.to.RPG-I

3 pn =

0, n ≤ 3

2n−2−1
2(2n−1−1)

pn−1 +
2n−3+1

2n−2(2n−1−1)
, n > 3

Encode
SIP.to.RPG-II

1 pn = 1
2n−2(2n−1−1)

Table 6.2: The minimum number of edge modification between (F [π∗
1], F [π∗

2]) and the
probabilities of weak watermark integers in range n for algorithms Encode SiP.to.RPG-

Bitonic-S, Encode SiP.to.RPG-Bitonic-2, Encode SiP.to.RPG-I and Encode SiP.to.RPG-

II.

◦ k = 2n+ 1: the node uk can be linked with 2 nodes.

When an attacker has no knowledge about the structure of RPG, then there are
2n + 3 options for edge modification. We know all properties of RPG but we have
to examine if one edge is ”real” for our codec system at higher level than the level
of SiP construction. Table 6.1 illustrates the probabilities of a successful modification
edge from an attacker in any reducible permutation graphs F s[π

∗], F t[π
∗], F1[π

∗] and
F2[π

∗].
We saw in Section 5.2, the minimum number of edge modifications, that an attack

is ”almost” successful in our flow graph F [π∗] (i.e., Case (ii) in Subsection 5.1), is 2 in
F s[π

∗] and F t[π
∗] with probability in Lemma (5.2). In Algorithm Encode_SIP.to.RPG,

the minimum number of edge modifications are 3, but the probability of a pair of
watermark integers (w1, w2) in same range n, with n the length of the binary repre-
sentation of them, where F 1[π

∗] has 3 different edges from F 2[π
∗] is
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pn =


0, n ≤ 3

2n−2−1
2(2n−1−1)

· pn−1 +
2n−3+1

2n−2(2n−1−1)
, n > 3

(6.1)

In Algorithm Encode_SIP.to.RPG-II, the minimum number of edge modifications is 1
because there is only one different edge between RPG which be extracted by w = 2n−2
and RPG which be extracted by w = 2n − 1. Thus, the corresponding probability is

pn =
1

2n−2(2n−1 − 1)
(6.2)

Table 6.2 summarizes the minimum number of edge modifications between F [π∗
1]

and F [π∗
2], that is the value of emf(i, j), which are produced by the same algorithms

using the SiPs π∗
1 and π∗

2 in the same range n. Also it depicts all probabilities of
weak integers (w1, w2)n, which encode (π∗

1, π
∗
2)n, in range n for all algorithms un-

der comparison, that is, Encode_SiP.to.RPG-Bitonic-S, Encode_SiP.to.RPG-Bitonic-T,
Encode_SiP.to.RPG-I and Encode_SiP.to.RPG-II.

The reducible permutation graphs F s[π
∗] and F t[π

∗] have bn = 2bn−1 + 1 pairs
of week integers having emf(·) = 2, F1[π

∗] has bn = 2bn−1 + 2n−3 − 1 pairs having
emf(·) = 3 and F2[π

∗] has 1 pair having emf(·) = 1, with n the length of the binary
representation of integer w, which encodes the self-inverting permutation π∗.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

7.2 Future Work

7.1 Conclusion

In the last decade, a wide range of software watermarking techniques has been pro-
posed among which the graph-based methods that encode watermark numbers as
graphs whose structure resembles that of real program graphs. Recently, Chroni and
Nikolopoulos [14, 15] proposed several algorithms for multiple encoding a water-
mark into a graph-structure: an integer (i.e., a watermark) is encoded first into a
self-inverting permutation π∗ and then into several reducible permutation graphs
using Cographs [14] and Heap-ordered trees [15].

Following up on our recently proposed methods, in this paper, we extended the
class of graph-structures by proposing two different reducible permutation flow-
graphs Fs[π

∗] and Ft[π
∗] incorporating important structural properties which are

derived from the bitonic subsequences forming the self-inverting permutation π∗.
These new flow-graphs enrich the repository of graphs available for multiple encod-
ing a watermark number and, thus, it increases our ability to select a graph structure
more similar to the structure of a given application program P thereby enhancing
the resilience of our codec system to attacks.

We compared the two watermarking algorithms with two previous codec water-
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marking algorithms and presented similarities and differences about structure and
complexity. In addition, we computed the probabilities of edge and label modifications
in order to consider the resilience of our watermark systems.

7.2 Future Work

An interesting open question is whether the properties of the bitonic subsequences
forming the self-inverting permutation π∗ can help develop efficient graph structures
having more similar structure to that of a given application program P . Can we use
some of the bitonic subsequences b∗1, b∗2, · · · , b∗k of permutation π∗ or part of them in
order to efficiently encode and decode a self-inverting permutation π∗ into a reducible
permutation flow-graph F [π∗]? In addition, we note that in light of our watermarking
model it would be very interesting to compare it with other dynamic, or even static,
already proposed software watermarking models, too. Finally, the evaluation of our
codec algorithms and structures under other watermarking measurements in order to
obtain detailed information about their practical behavior is an interesting problem
for future investigation.
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