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EuxaploTieg

H oloxinpwon tng ddaktopikng datpiPng dev Ba ntav dvvatn yopic v Pondeio ko v
VROGTNPLEN TOAAGDV avOPOT®Y, GTOLG 0TOioLE Ba NBEAN VO EKPPACH TNV EVYVOUOGVLVY LOV.
IMpodta ko kdpla o HOeha va guyopiothiom tov emiPriénovio kabnynt pov k. John M.
Halley, yio v gvkoipio mov pov £6woe va acyoAndd pe to cuykekpiuévo Bépo alAd Kot vo
Yive pélog tov epyactnpiov owkoAoyiog. Tov evyaploT®d £Tiong Y10 TO OVGLOCTIKO EVOLPEPOV
Kot v evepyn emiPreyn oe OAa To otdol G daTpPng pov. Evyopiotd emiong tov
kaOnynm x. Yoh Iwasa, pélog g tpipuerodc GUUPBOVAELTIKNG ENLTPOTNG, TTOV TAPOAO TTOV dEV
dovAéyape omd Kovtd, Hov £0mce TMOALTILEG 10€eg oL PBondncav oIV OAOKANPMOON TNG
épevvag pov. Téhog evyapiot®d Wwitepa tov kaBnynm pov k. Xdapn BdapPoyAin, uéhog g
GUUPOVAEVTIKNG EMTPOTMNG, VIO TIC WOEEG KON TIG EMONUAVOELG TOL OAAL KOl TNV oTAPIEN Kot
mv epuydywon tov. H yvopwio pov pe v emomun g owoAoyiag doev Ba Mtav 1000
EVYAPIOTN KOl ETOIKOSOUNTIKN YOPIG Ta LEAN TOL gpyactnpiov oworoyiag, £étol Ba NBela va
evyaplotnom tpocmnikd tovg Valentino Marini Govigli, Ntiva Zoypageov, EAAn TopkaAn,
Noatdoo TCoptlakn, Niko Movokpovco kot Kodiodnn Ztdpa akid kot tov Pya Towokipn yio
ovtd mov pov £uabav oALL Kot TG opaieg oTyHES mov mépaca. Idwaitepa gvyaploTd TOV
Valentino Marini Govigli yio tqv Ponbeid tov otnv d10pbwon tov Kewévov kot T Ntiva
Zoypaeov Yl T GLVEPYNSio LG GE £vo amd TO EMUEPOVS OVTIKEIPEVA TNG OlaTpIPG, GTO
01010 oNUAVTIKO PEPOG TNG Epevvag £Ytve amd kowov. [Ma Tig emonpudvoelg Kot Tig d1opldoelg
TOVG OTO Kelpevo tng OaTpPng €vxaploTd €mionNe To HEAN TG €EETAGTIKNG EMITPOMNG,
Aéomowva Bokov, ABavéacio Koy, Kootavtia Avka kot Avactdoio Tpoykdvr. Ovoikd
N mopela PEYPL TNV 0OAOKANP®o™n G dtrtpPng Ba NTav ToAD SopopeTikn Ywpic ™ oThpién
NG OWKOYEVEWIS MOV KOl TV KOVIWVAV LoV QIAV €01KA o O0oKoAeg otiypés. TéElog,
evyopotd t0 Kowmeerés Topvpo ArEEavdpog X. Qvdong yioo TV LITOTPOPio. TOL LoV

YOpNYNoe, xwpig v omoia Ba NTav adLVATN N EPELVA KOl 1] OAOKANP®OGT TG SLOTPLPNG LLoV.
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Ieptinyn

H ondAelo evolomquotog omotelel onuepa v kupldtepn otio e&a@dvions €av
(Millennium Ecosystem Assessment, 2005). Qot660, 1 Tpofreyn TV e£o@avicemv Kol TV
YEVIKOTEPOV GUVETEIDMV TNG OMOAELNG EVOLOLTALATOSG Yo TN PlOoTOtKIAOTNTA deV €ival VKON,
Kupilmg emedn avtég oev meplopilovtor HOVO OTIS TTEPLOYEG TOL £YOLV TANYEL AUEGH OALA
emmpedlovv HakpoTpOBECO KOl TO EVOTOUEVOV EVOLOLTNILOL ZVYKEKPIUEVA, 1) OTTOAELD ELODOV
OV AKOAOLOEL TNV am®AEL evOlonTALATOG YiveTal o€ dVo @doels. H mpdtn gdomn apopd oty
AmOAEDL €W0OOV TOL eVONUOUV OTO KOTESTPOUUEVO evdwitnuo (evOnukég M dueoes
eCapavioeg). H oebtepn ¢@don agopd otnv otadokn peiwon tov aplfuod €OV 6To
evamopuévov evotaitnuo (§uueoes e€apoavioelg). YTApyovv TOLAGYIGTOV TPELS AOYOL Y10, TIC
éupeoec eapavioels: a) €iomn mov dev eEapavifovral dueco umopel va vVTOGTOHV PEYOAN
peimon tov mAnBvopod tovg. Av o TAnBvopog Tov amopeivet givar TOAD pIKPOS, avTd To 10N
Ba &xovv avEnuévn mboavommrta e€apavions. B) Kdamowo €ion pmopel va dapdyovv oTIC
TEPLOYEG OV OEV EMNPEACTNKOAY OO TNV OTMAEWD EVOLOUTUATOS. AVTO OU®G 0dnyel otnv
aOENGCT TOL OVTAY®OVICUOD G OVTEG TIS TEPLOYEG, OV TEAMKE OVOUEVETOL VO OONYNGEL GE
avénomn tov puBpov e€apdviong. TELOG, Y) N ATMOAELN EVOLOLTHUATOS GLUVOSEVETUL GLVNOMG
amd PeTaPOAEG TOV TEPIPAAAOVTIKOV cLVONK®OV OV eMNPedlovy TO EVOTOUEVOV EVOLOLTNLLAL.
H mo ovvnbiopévn petaforn esivar m  omopdvmon tov  evolutipotog (my. AOY®
KOTOKEPUATIOHOV). Q¢ amoTéAea, TO evilaitna dgv pumopet va vrootnpilel Tov 1010 apBuo
€OV OnOc TPV TNV amoudvmor] Tov, ®ote o€ Pdbog ypdvov kamown omd to €idn Oa
e€apaviotobv. H otadiokn andAeia e0OV Kot ETavapopds TG KOOTNTOG 0T VEX 1G0PPOTIN
TOL OKOAOVLOEL TNV OamOAE EVOLOTLOTOS UTOPEl Vo OlpKECEL MG Kol YIAMAdES ypovia
(Diamond 1972). Avt 1 dwdwocio Tov eEapavicemv ovopaletor yoldpmon (relaxation),
eV 0 aplpdc €OV Tov avopévetor vo. eEapaviotel avagpépetor oG ypEog e&apaviong
(extinction debt, Jackson and Sax 2010, Halley et al. 2014).

Tnv tehevtoio oekoetion €xel d1d00el 1 ¥PNON OTOYUOTIKOV HOVIEA®V Yo TNV

TEPLYPOPN TNG 0pYavewong Tov Prokowvotntov. H emtuyia avtdv tov HoviéAmv opeileTot 6To



OTL umopovv vo. TPOPAEYOVV HOKPOGKOTIKG YOPOUKTNPIOTIKE TMV OKOAOYIKMOV KOWVOTHTMV
otV PBdon dwdikacidv mov cvpupaivouy ce enimedo atouwV (OTMS YEVVNOELS, Bdvatol kot
dlaomopd) aAAG Kot NG dtadikaciog e1doyéveong (speciation). To mo yvooTd Kol ETTUYNUEVO
povtédo eivor m ovdétepn Bewpio g Promowirotnrtag (Hubbell 2001). Enpovtikd
TAEOVEKTNUA. TOL HOVTEAOL &ivol OTL pmopel vo dMoel AVCELS KAEIGTNG-HOPONG Yoo TNV
KOTAOTOON oG Plokovétntag o€ 100ppomia, Om®mG Katavopés agboviag-elddv Kot
oyéoeig-empavelag €0mv (McKane et al. 2000, Volkov et al. 2003, Vallande and
Houchmandzadeh 2003, McKane et al. 2004, Etienne and Alonso 2007, Rosindell and Cornell
2007, O’Dwyer and Green 2010). [TopdAinia, divel T dvvatdtra vo peietn0el n dvvapikn
TV Brokowvotitwv. 'Etot 10 00v0étepo HoviéAo TG PLOTOIKIAOTNTOG PAIVETOL KATAAANAO Yo
™ HEAETN NG OmOKPIoNG TOV OIKOAOYIKAOV KOWOTHTWV GTNV OTOAEL £vOlouTnUoToc. Na
onUeEIDEl €0 OTL TO OVIETEPO LOVTELD TTEPLYPAPEL TV OIKOAOYIKT KOWVOTNTO MG £VO. GLVOAO
€0MV TOoV 1010V TPOPKOV eMTESOV (OTmC Yo mapadetypa to d€vipa evog ddoovg) (Hubbell
2001). 210 €£NG, OTOV OVOPEPOUACTE GTNV OIKOAOYIKN KOWOTNTO Kol TG e€apavicels 10V,
Ba evvooULE TNV OTKOAOYIKT] KOWVOTNTO LE TNV TOPOTAV® £VVOLd.

H mapovca datpipn kiveitar oty katehBouvon g dnpovpyiag evog eviaiov TAoicsiov
Yo v epunveia Kow v wpdPreyn ¢ oamdAelng PromokiAdtntag mov akoiovbel v
aTOAELD EVOLUTUOTOC. [ TO oKOMO avTO, YPNOYLOTOIOVUE TO OVOETEPO LOVTEAO Yo VO
avtpetonicovpe tpia peilova {ntiuata mov oyetilovion pe v anmdAgo Bromotkidotnrag. (1)
Kotaokevalovpe éva evvolohoyikd poviého mov e€nyel m dadikacio yoahdpwong Emetto and
AOAELN EVOLOLTANOTOS. (2) XPNOHOTOl00HE TO 0VOETEPO HOVTEALD MG LOoVTELO-BAoT Yoo TOV
ELeyyo VOBEGE®V TOV APOPOLV TN UETOPOAT TNG OOUNG TV PLOKOIVOTHTOV AOY® KALATIKNAG
aAhayns. (3) Kévoope po pobnpatikn meptypagn g o1adkaciog xarapmaongs, Tov TpoPAEnel
™ peTaBoAn Tov ap1BUoD TOV £V HE TOV ¥POVO GE Lo Kowotnto £ktdg woppomiag. Ta
TOPOTAV® OTOTEAOVY €MIONG KOl TPES POCIKEG EQPOPUOYES TOL OVIETEPOL HOVIEAOL GTNV
owoAoyia, dNAadY| T ¥PNoN TOV HOVTEAOL MG EVVOIOAOYIKOV povtéAov (conceptual model),
o¢g povtélov-faong (null model), Kou ®g HOg TPOTNG TPOGEYYIONG TNG OVVAUIKNG TWV
Blokowvottov (first approximation to reality).

2T0Y0C TNG TPAOTNG EPOPUOYNG €lvar va YIVEL (ol TOLOTIKN TTEPLYPOPT TNG OTMAELNG

BlomotkiAdT TG TOV AKOAOLOEL THV OTOAELD EVOLUTLATOS. AVOQEPOLOCTE TNV TTEPITTOON

[\



Omov éva evdwitnuUo 7OV Eivol TUNHO UOG MTEPOTIKNG TEPLOYNG OTOUOVAOVETOL AOY®
Katakeppatiopov. E&attiag ¢ amopdvmong Tov, To eVOLOUTNIO LETATPENETAL GTOOLOKEA GE
vnoioa (isolate) (Preston 1962, Triantis et al. 2012). Zmnv cvykekpiuévn nepintmon, eKTO¢ amod
™V peloon g emedvelag, n HETAPOAN TG apBoviag 0MV TOL EVOLIUTAHUATOG OQEIAETOL KOt
OTNV OMOUOVOGT TOV, dNAadN o1 peimon Tov puBuoy peETOVAGTELONG. XPNGLUOTOOVUE TO
0VLOETEPO LOVTEAO Y10l VO, EKTIUNGOVUE TO ¥pEOg e€apavions yio To gvolaitnua. Toavtoypova
a7t TO LOVTEAO TPOKVTTOVV KOl Ol GYEGELS EMPAVELNG-EOMV Y10 TO EVOLOLTNUA TPV KO LETA
NV amopoveon tov. Onwg TpokOmTeL, T0 ¥pEog eEapdviong ival n dtopopd peta&d Tov 600
oxéoemv emMEAVENG-e0MV. 'ETol T0 000£tEp0o HOVTEALD TOPEYEL 0L GUVOEST OVAUECH OTN
oY£0T EMPAVELNG-EOMV Kot T SLVOUIKT NG dwadikaciog yordpwons. EmmAéov dikanoAoyel
™V XPNON NG OYEONG EMPAVELNG-EWODV Y100 TNV TPOPAeYN TV eapavicewv. Extinmvtog to
péyebog tov ypéovg e€apdviong KATm amd d16popo GEVAPLL KATOAYOVUE GE £VO. OTLLOVTIKO
ocoumépacpa: o ypéog eEapdviong (Eppeceg egapavioelg) pmopel va givan tééeg peyébovg
UEYOAVTEPO Od TIG AUECES EENPAVIGELS.

Extog amd m pelowon mg emeavelng €vOog eVOLOITHUOTOS AOY® KOTOGTPOONS, M
OOAELD EVOLOTAHOTOC UTOpel Vo elvon EUUEST] KOl Vo OQEIAETAL KOU GE UETAPOAN TOV
neplparloviikddv ocvovinkov. o mopdderypo, po oddoyn g Oepupokpociog umopei va
KOTOOTNOEL £Va EVOLAITN O OKOTAAANAO Yo KAmola 1) OAa Tal €101 OV PLAOEEVODVTOL GE OLTO,
avayKaloviag To Vo LETAVAOTEVCOVV O OAAEG MEPLOYEC. XTO EMIMEDO LMOG KOWOTNTOS, N
eMIOPOOT HLOG KAMUOTIKNG OAAAYNG EKONAMVETAL OG U0 LETABOAY TV apBOVIOV TV MV
otov xpovo (temporal turnover). Qo10G0, 1 OVIYVELON AVTAOV TOV CAAAYDV KOl 1| COVOESN
TOVG HE TNV KMUOTIKY aAhayn| 0ev elvar éva amAd tpoPAnua. H dvokoiio opeiletar oto 0TL O
apBovieg tov €00V pag Prokovotntog petafdAlovTol cuveX®mS, aKOUO Kol yopig v
EMIOPOON CLOTNUATIKOV EEMTEPIKOV EMOPAGEMY. AVTH 1] PUOIKY| SOKVUAVOT TOV 0PHOVIDV
opeiletanl otn dNUoypaPikn otoyactikotnTo (ecological drift) aAld kot ot V)i dtaCTOPA
tov atopwv (dispersal) (Vellend 2010). To ovdétepo povtédo eumepiéyxet Tic 0VO TOPATAVED
mYyég afeforotnrag Kot £Tot lval KATdAANAO Yio TNV TEPLYPAPN TNG LETOPOANS TV apBovidV
ot0 YpOVO o€ ovvOnkeg 1ooppomiag, dNANON OTaV OEV VTAPYEL CLOTNUOTIKY METAPOAN

TEPPOALOVTIIKDOV CUVONKDV.



21 0ehTEPN €QPOAPUOYN YPNOUYLOTOIOVUE TO OVOETEPO HOVTELO G HovTEAO Bdon (null
model) yia va gAéyEovpe v vrdbeon g emidpaong g avénong g Beppokpaciog oty
KOWOTNTO TETOAOVO®V TOV dAcoLs TS Aadlds. H avaivon deiyvel 0tt 1 puoikn dtokdpoven
e€nyel peydio pépog g mapatnpovpevns netafoing tov apboviov. [apdAinia, vdpyet Kot
ONUAVTIKOG aptBpdc e10dV TV omoimv 1 HeTafoAn apBovidv dev e€nyeital amd 1n QLOIKN
dwakvpavon. H petafory ™ aeboviag TV OCLYKEKPEVOV E0OV GUUEOVEL HE TIC
avapevopeves PeTaforéc Adym avEnong g OBeppokpaciog. Agdopévov O6tL 11 avénom g
Oepuokpociog etvar M pévn YVOOTH OCLOTNHOTIKN HETABOAN CLUVONK®V otV TEPLOYN,
KATOANYOVUE OTO cLUmEPaco 0Tt gival kot 1 o mlavi otio Yo TIC TOPOTPOVUEVES
petaforés. H avdivon odnyel kot o€ £va YEVIKOTEPO GUUTEPAGLAL: 1) PUGIKT] SLOUKVLLOVOT] TOV
apBoviov pmopel va elvar ToAD peydAn, Kot xopic Tov KOTAAANAO GTOTIOTIKO EAEYYO UmOpPEl
gbkoAa v amodobel AavOaopéva og eEmTeptkd aitio, OT®MG 1 KAATIK oAAayr]. Avto givat
wwitepa  emikapo Ady® TOL pEYAAOL aplBPOV TV  OMUOCIEVCEWV OV  ATOdId0VV
TOPOATNPOVUEVEG HETOAPOAEG GE KOWOTNTEG OTNV KAMOTIKN aAhayr], Yopic Tov amapaitnto
otatotikd éAeyyo (Meshinev et al. 2000, Walther et al. 2002, Poloczanska et al. 2013).
KotaAnyoopue, 6t éva povtédo yio tnv eKtipnomn tov peyéfoug g euoikng dtakdpoveng eivat
amopoitnto epyoreio oV afloAdynon TETOI®V TOPATPNCEDV. LVYKEKPIUEVA, TO OVOETEPO
HOVTELO €lval KATAAANAO Y100 0LTO TO OKOTO, EMEDN, GE AVTIOEON LLE TPONYOVUEVO LOVTEAQL,
EUTEPIEXEL KO TN SKVLUAVOT AOY® Oloomopdc 1 omoia emnpedlel onuavtikd ™ ovvheon
TOTMKAOV KOWVOTIT®V.

To ovdétepo poviého odlvel T dvvatdTNTO TG HOOMUOTIKNG TEPLYPAPNS TNG
dwdwaciog yorapwons. Iapdro mov 1 SuvoKT TOV 0VLOETEPOL HOVTEAOL €xel peAetnOel
o1egodkd, vmhpyovv Ayeg OMUOGIELGEIS TOL VO OPOPOVV TN SlOIKAGIO YOAAPWOOTNC.
Yvykekpyéva ot Halley kou Iwasa (2011) €xovv datvmmoet pia e€icmon mov meptypdeel
petafoiny Tov aplBpov WOV HE TOV YPOVO CE OTOUOVOUEVO, EVOLOUTAUATO, ONANON
evolutNUaTo mov Ogv emmpedlovtol amd UETAVACTELON 1 €00YEVEST. XE OUTHV TNV
TEPINTOON, TO HOVTEAD TpoPAémel OTL otV 1ooppomia emiPidvel éva povo €idog. Xnv
TPOYLOTIKOTNTO KOpio KOwOTnto 0ev €lval &VIEAMG OMOUOVOUEVN KOl Kotvovpylo £iom
eykobiotavrolr pécm petavactevong 1N Onuovpyovvtol HEGH €00yEveoNC. XTnV Tpitn

€QOPUOYY, KOvovpe o yevikevon g oyéong tov Halley kar Iwasa (2011) n omoia



nepthopPdvel Kot eueavion vémv €0®V pe TN dladikacio gwdoyéveong tuyaiog dwipeonc
(Haegeman and Etienne 2010). H e&icmwon mov mpokdmtel £yl pio EMUTAEOV TAPAUETPO TOV
etval o otaBepdg pvOudc eoyéveons. H Avon g egicmong odnyel og o avaAvTtiky oyéon
Yy ™ peTafoin Tov aplBpoy TV €OV HE TOV XpOvo. AT €XEL TPEIS TOPAUETPOVS: TOV
apykd opliud €mv, Tov aplnd TV WOV 6TNV 1oppomio. Kot Tov puBud edoyéveong. Xe
avtifeon pe ™V amopovVOUEVI) KOwotNnTa, 0 aplflog €W0OV GTNV 1G0PPOTI0 TPOKVTTEL MG
GLUVAPTNOT TOL HEYEBOVG TNG KOVOTNTAG Kol TOL pLOLOD E100YEVEDT|G.

H e&lowon pmopet vo ypnoyomombel yio v mpdPreyn ¢ ondAES 0OV G
TPOYUOTIKEG  KOWOTNTEG £METOL  OMO  OMMOAEW  EVOLUTAUOTOS M GAAN  Swotapoyn.
XPNOYOTOMGOUE TPOAYLATIKE dEdOUEVA OO EEQPAVIOELS TTNVAOV GE VNGLA KO NTEPMOTIKEG
VNGo10eg Y00 VO TOPOUETPOTOM|GOVUE TNV €&lomon Kol VTOAOYIGOUE YOPOKTNPLOTIKOVG
xpovovg yoAdpwong. Bpiokovpe 6ti, oe aviiBeon pe TO HOVTEAO Y10, OITOUOVMUEVEG
KOWOTNTES, O YPOVOG YOAAPMONG CLEAVETOL TO OPYE UE TNV EMUPAVEID, TOL VNGOV Kot
OLYKEKPIUEVA e TNV TETPAY®VIKY pila g empaveloc. [Tapaperpomoidvtog v e&icmon and
oedopéva e€apavicemyv nmmvov oto Barro Colorado Island (BCI), mpoPfAémovpe 611 m
opviBomavida Tov violol PpiokeTot akOpo TNV SOdKAGIo YOAAP®ONG Kol 0 aplOnog Tmv
€OV mpokettar va otabepomombei yopw ota 116 €idn nmvov mepimov oe 100 ypdvia amd
onuepo.

To povTéAo OV YPNCLUOTOMCANE KOADTTEL LOVO £VAY OTO TOVG UNYOVIGUOVS LE TOVG
omoiovg yivetar avovémon tov €0dv pog kowotmrag. Ilapapéver avorytd va PBpebodv
avTIoTOUEG KOUTOAES YOAAPMOONG Yot KOWOTNTEG OV €MNPEALOVIOL OO WETAVAGTELON M
GAAOVG pNYaVIoHOVG €100YEvEON G TTEPOV TNG €00YEVESNC TuYaiag Olaipeonc. EmumAéov éva
HOVTEAO 7OV TEPLYPAPEL O AETTOUEPDS TOV UNYXAVICUO €100Yéveong Oa dmdoel po mo
PEOMOTIKT TEPTYPOPT TNG SLOOKOGIOS YOUALPMOOTC.

Epsoviicape tn dvvatdmto Tov 0ovdETEPOL HOVTEAOL TNG PlOmOKIAOTNTOS VO
TePLYpAYEL TN Oladtkacio yohdpwong émetta omd ondAswo evotontiuotoc. To povtédo
ATAOTOEL TNV OTKOAOYIKT TPAYUATIKOTNTA, AYVODVTAG TIG O0POPES LETAED TOV E0MV Kol TIG
HETOED TOVG OAANAETIOPAGELS Kot AQpUPAavovTag VT OYly UOVO GTOYOOTIKEG OL0OIKAGIES OF
eninedo atdépmv, OMAAON TN ONUOYPUPIKY GTOYOCTIKOTNTO Kol TN dcmopd aAAd kol TV

dwdkacio tng edoyéveons. Avtd oe Kopio Tepintwon dev amotelel 1oYLVPICUO OTL Ol GAAEC



oWoAOYIKEG  Oladkacieg dev vmapyovv 1 d0ev mailovv onpovtikd poro, OT®G GuYVA
AVOQEPETAL OE OPVNTIKEG KPITIKEG gvovtiov Tov povtélov. H amlomoinon amockomel otnv
TEPLYPOPT] HOKPOCKOTIKMY  YOUPOUKTNPIOTIKOV TOV  OKOAOYIKOV KOWOTHT®OV, Yo TNV
TEPLYPOUPT| TOV OTOIMV £VOL TLO AETTOUEPES KO PEAMOTIKO HOVTELO TOOVAOG Vo unv €lxe TV
Ot TpoPAentikn wavoTnTO EVO M €YY cvumepacudtov o fTov dVcKoAn. TTapdAinia,
éva. povtélo mov Poocileton otTic PocikéG OKOAOYIKEG Olepyociec TG OMUOYPAPIKNG
OTOYOOTIKOTNTOG KOl TNG Olomopds pmopel vo amotedécsel 1n Pdaon yio v diepehivnon
emmALov S1001KOCIOV OV EMNPEALOVY OMUOVTIKA TNV opyavmorn kot v eEEMEN TV
oworoywkdv kowvotntev (Rosindell et al. 2012, McGill and Nekola 2010, Alonso et al. 2006).

[Topd TIc AMAOTOMGELS, TO OVOETEPO HOVTEAD OmOTEAEL £vol ONUAVTIKO £pYaAEio Yla
mv TEPYpaPn NG Oondkaciag yoAdpmons. To poviého eumepléyel To oTOlXElD Yo TNV
TOWOTIKY TEPLYPOPN TNG OldKaGIoG, OAAG KOl Yo TOCOTIKEG EKTIUNOCELS TOL YPEOVG
e€apdviong. Emiong, pumopel va meptypdyel m Suvopiky g oadikaciog YoAdpmong Kot va
wpoPAéyel ) petafoin Tov aplBpov TOV WOV pe TOV YPOVO GE IO KOWOTNTO EKTOG
ooppomiag. TEAOG, TO 0VOETEPO HOVTEAO €ivol KATAAANAO YL TNV TEPLYPOAPT TNG PUVGIKNG
dtkOpavong TV aefovidv, Ady® SNUOYPAPIKNG CTOXOOTIKOTNTAS KOl S10oTopas. 2g T€To10
umopet va, ypnopomoin et yio Tov EAeyyo vofEcemv GYeTIKA Pe TIG LETOPOAES apBoviag AOym
KMUOTIKOV HETAPOADV 1 BALDV GUOTNHATIKOV eE0TEPIKOV emdpdoewv. Kataiyovue 6t 10
0VOETEPO UOVTEAO umopel va amotedécel PBAomn Yy TNV OWKOOOUNON UG EVOTOUMUEVIG
TePLYPaPS TG dradkaciog yardpwons. H katavomon g dadkosiog yoAdpwons péca amod
amhd povtéda gtvar m apyn Yo [io To PECAMGTIKY TEPLYPOUP] TNG ATOAELNS PLOTOUKIAITNTAG

EmeLta oo O1TOPOYEG.
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Abstract

Biodiversity loss is accelerating as a result of the destruction of species natural habitats
(habitat loss, fragmentation etc.). A direct effect of habitat loss is species extinctions, however
not all of the extinctions are imminent. On the contrary, most extinctions are spread out in a
long period of time following the loss (delayed extinctions), a process that is called relaxation.
Today there is no single framework for predicting the effects of habitat loss on biodiversity.
However, the recent development of stochastic models of community assembly, in particular
Hubbell’s neutral theory of biodiversity, has given the opportunity to model community
dynamics. The purpose of this thesis is to investigate the capacity of the neutral model to
describe the process of biodiversity loss in general and to provide a mathematical description
of the relaxation process in particular. We investigated the above matters in three applications
of the neutral model.

In the first application the model is used to qualitatively describe the relaxation process
in habitat fragments that became isolated due to habitat loss. It is found that the number of
delayed extinctions on the fragments can be predicted as the difference between the sample
species-area relationship (SAR), describing the area before the loss, and the isolate SAR
(ISAR), characterizing the remaining fragments. Both types of SARs can be predicted from
the neutral model. Interestingly, delayed extinctions can be up to two orders of magnitude
more than imminent extinctions (at least for the set of parameters used). This shows that large
errors can arise in extinction forecasts if delayed extinction are ignored, a fact that has been
neglected in relevant studies.

The second application deals with the problem of attribution of community temporal
turnover to external drivers, like climate change; an observed turnover can be the result of a
systematic external driver or it can just be the result of natural drift, i.e. the natural fluctuation
of species abundances due to stochastic demography and random dispersal. Using the model,
we estimated the expected (due to natural drift) temporal turnover of a community of
butterflies and compare it with the observed turnover. The comparison shows that the

observed turnover is higher than expected by natural drift, hence there must be additional



causes for the observed turnover; possibly the systematic temperature rise recorded in the
study area. Still, a considerable amount of the observed turnover is explained by natural drift.
This highlights the need for careful statistical tests before attributing observed alterations in
communities to climate change or other external drivers. We argue that the neutral model
provides a good basis for such tests.

In the third application we present a mathematical description of the relaxation
process. Solving the neutral model’s master equation, we derive a closed-form expression for
the variation of species richness with time in a community that is subject to speciation. This is
an extension of already existing results applying to isolated habitats, namely habitats with no
immigration or speciation. We used the equation to estimate relaxation times in islands and
forest fragments that suffered habitat loss and found that the new formula improves the
predictions. In particular, it predicts a scaling of the relaxation time with habitat area, which is
in better agreement with observations.

In summary, we have assessed the use of the neutral model of biodiversity in
extinction forecasts and conclude that this can provide a basis for building a unified

framework to study the process of biodiversity loss.



Chapter 1

Introduction

1.1 Land use change, a major threat for biodiversity

As human population grows, the demand for area to support it increases rapidly. Habitat
destruction or conversion to agricultural land, housing and associated infrastructure like
transport and energy facilities, reduces the area and resources available to other species. Apart
from habitat loss caused directly by human activities, this can also be the result of other
environmental changes, as for example the melting of ice due to temperature rise,
desertification, etc. Today, habitat loss is the number one cause of species extinctions and
constitutes a major threat to biodiversity (Millennium Ecosystem Assessment 2005).

At the same time, the effects of habitat loss on ecological communities cannot be
accurately predicted. There are several reasons for this. Firstly, the effects of habitat loss on
species richness are not easily accessed by observation (Collen et al. 2010). For instance, it is
very difficult to confirm the absence of a species (extinction) and many species that were
thought extinct have reappeared (Priddel et al. 2003, Fisher and Blomberg 2011, Scheffers et
al. 2011). Thus, theoretical predictions cannot be easily confirmed or falsified. Secondly,
habitat loss has long-term effects on the affected communities, which can cause species
extinctions long after the loss has been realized. However, the traditional method for
estimating extinctions, namely the SAR method, predicts extinctions on the basis of area
reduction, which is the final result of habitat loss, ignoring the dynamics of the extinction
process. As a result, the predictions cannot be matched with observations at intermediate
stages of biodiversity loss. A dynamical approach to the extinctions process comes from the
theory of island biogeography (MacArthur and Wilson 1967, Diamond 1972). Still this model
does not take into account the community composition, as all species are considered to have
the same probability of going extinct. Thus currently, there is no single theory of biodiversity

that can view all the matters regarding biodiversity loss under a unified framework.



Furthermore, as the effects of habitat loss are long-term, such a framework needs to take into
account the assembly and dynamics of ecological communities. It should be noted at this point
that we are interested in the ecological community in a restricted sense. In particular, we think
of an ecological community as a group of species that belong to the same trophic level and
live in the habitat at the time of the loss.

The recent development of stochastic models of community assembly has established a
different view of the organization of ecological communities. In these, community assembly is
explained on the basis of individual based processes (births, deaths and dispersal) as well as
speciation. Hence, such models give the opportunity to explicitly model ecological community
dynamics. The Neutral Theory of Biodiversity (NTB) (Hubbell 2001) is the most popular and
successful among others and its equilibrium and dynamical features have been studied
thoroughly (McKane et al. 2000, Volkov et al. 2003, Vallande and Houchmandzadeh 2003,
McKane et al. 2004, Azaele et al. 2006, Etienne and Alonso 2007, Rosindell and Cornell
2007, O’Dwyer and Green 2010, Chisholm 2011). However, to date there haven’t been many
studies that examine the consequences of these theoretical considerations on the process of
biodiversity loss following habitat loss. In this thesis we explore the prediction of the neutral
theory of biodiversity with respect to the process of extinctions following habitat loss, which
facilitates the aim of developing a unified framework for understanding and predicting the

effects of habitat loss on ecological communities.

1.2 The effects of habitat loss and models of community assembly

Habitat loss can have both direct and indirect effects on species. Firstly, when a habitat area is
destroyed, all individuals that cannot escape from the area are killed, which means that species
lose part of their population. If all individuals of a species are found entirely in the lost habitat
at the time of habitat loss, then this species becomes locally or globally extinct. These
extinctions, observed immediately after habitat loss, are called imminent or endemic
extinctions. Apart from these direct effects, there are also long-term effects on the remaining
species. The extinctions that happen some time after habitat loss are called delayed

extinctions and the relevant phenomenon is called extinction debt. There are at least three
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reasons for delayed extinctions: 1) even if a species is not directly extinct, it could still lose a
large part of its population, which can put it near an extinction threshold. This means that this
species has a high probability of going extinct in the time following the loss. 2) Some species
may have escaped and found refuge in the remaining habitat areas. However, as there is a limit
to the number of individuals and consequently the number of species that the remaining
habitat can support, some of these species are expected to go extinct at a later time due to
increased competition. Finally, 3) habitat loss is in many cases accompanied by a change of
conditions affecting the remaining habitats. A usual such change is isolation due to
fragmentation. Due to isolation, the remaining fragments cannot host the same number of
species as when they were parts of a continuous habitat and in time some of these species are
bound to go extinct. From the above it is clear that species extinctions following habitat loss
are spread out in a period of time after the destruction of the habitat. This period of
extinctions, known as the relaxation process, can take up to thousands of years (Diamond
1972, Terborg 1974).

To understand the effects that habitat loss has on the ecological community it is first
appropriate to understand the effects on single species. When considering the population of a
single species, all the interactions that this has with its environment (abiotic) and with other
species (biotic) collectively determine its reproduction and death rate. Under a deterministic
perspective, if the birth rate is higher than the death rate, then the species population is
expected to increase exponentially. If the death rate is higher, then the species population will
fall exponentially to extinction. For big enough population sizes, the change in abundance of a
single species is well approximated by a deterministic growth curve, which is a solution to the
logistic equation (Renshaw, 1991). The same is not true if the population size falls below an
extinction threshold. This is a critical population size, below which the species has high
probability of becoming extinct even with a positive growth rate, simply because of
demographic stochasticity or other random disturbances. For example, suppose that a species
population is represented by one individual and the birth rate is twice as big as the death rate.
This means that in every 3 events there are on average two births and one death.
Deterministically, this species average population will increase exponentially and there is no

risk of extinction. However, since births and deaths occur randomly (i.e. at random times),
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there is still a probability of 1/3 that this one individual dies before giving birth and thus the
species will go extinct (Renshaw, 1991).

When considering two co-existing species, the interaction between them is an
important determinant of their population growth. The species could be independent (i.e. not
affecting one another) or could interact (e.g. competition for the same resources). Again, the
species population growth can be described by logistic growth equations. This system of
coupled equations can be solved explicitly for some sets of parameters and successfully
predicts the dynamics of the species populations (for examples see Renshaw 1991, chapter5).
Still in this case, the stochastic drift due to demographic events can play an important role at
low abundances. Adding more species, the number of interactions increases rapidly and the
system of equations cannot be solved explicitly. Moreover, the solution that can be found
through simulations becomes less informative of the overall state of the community and
usually lacks prediction power. In this case, it is more effective to replace the model of
inter-specific interactions with a model that considers the assembly of the community as a
whole.

There are two opposing theories that offer an explanation to the assembly of ecological
communities. The first is the niche-based community assembly. According to this view, every
species in a community occupies its own niche, which refers to the set of conditions and
resources that enable the species to persist (Hutchinson 1957). The co-existence of species in a
community is possible if these occupy different or slightly overlapping niches. If two species
have widely overlapping niches, then competitive exclusion will in time lead to the extinction
of one of them. In the end, the abundances of species in a community reflect their success of
adaptation to their biotic and abiotic environment. The second view is dispersal-assembly. As
defined by Hubbell (2001), dispersal-assembly asserts that species abundances are governed
by random speciation, demography and dispersal. That is to say, there is no need to
incorporate species differences in order to explain the different relative species abundances in
a community; these are the result of the random dispersal patterns of individuals and stochastic
demography. The two theories seem contradictory; however they can both describe reality
very well on different spatial and temporal scales. Niche theory offers an explanation of

competitive exclusion between two similar species (species scale) (Gause 1934). On the other

12



hand, models based on dispersal-assembly can capture the collective effect of demographic
stochasticity and dispersal on a macroscopic scale, where many species are involved
(macroecological scale).

The neutral theory of biodiversity is currently the most popular dispersal-assembly
model that can successfully capture macroecological community patterns. The theory views
the ecological community as a number of trophically similar species that coexist in the same
area and compete in equal terms for the same limited resources (Hubbell 2001). The limitation
of resources requires that the sum of the abundances of all species is constant over time
(community size constraint). Apart from this, species dynamics are independent and all
inter-specific interactions are ignored. The neutral community evolves in time through
demographic events (birth and deaths), dispersal and speciation, which are all modeled as
stochastic events (chance events). The community size constraint is very relevant in the case
of habitat loss, as the basic effect of habitat loss is the reduction of area, which sets a
limitation on the maximum community size that can be supported. Thus, within the neutral
theory, the response of a community to habitat loss is modeled as a rearrangement of species
abundances that follows: a) the reduction of populations of single species and b) the reduction

of available resources, which constrains the total community size.

1.3 Aim and structure of the thesis

Aim of the thesis
The ultimate goal of this thesis is to contribute towards developing a unified framework for
studying the effects of habitat loss on biodiversity. More specifically we use the Neutral
Theory of Biodiversity (NTB) of Hubbell (2001) to address three major issues:
1. To develop a conceptual framework for understanding the process of extinction
following habitat loss.
2. To demonstrate how the neutral model can be used as a null model to estimate the
magnitude of ecological drift and assess the observed turnover in real communities.
3. To build a mathematical description of the dynamics of extinctions following habitat

loss.



Addressing the above questions, we also provide three major applications of NTB in ecology,
namely the use of the NTB as a conceptual model, as a null model and as an approximation to

the relaxation process.

First Application: a theoretical framework for understanding the process of extinction
following habitat loss

There are several frameworks for understanding the process of relaxation following habitat
loss. Currently, the most commonly used framework for extinction forecast is the SAR
method, which, however, has been criticized for its assumptions (e.g. Connor and McCoy
2001) and even as fundamentally flawed (He and Hubbell 2011). In the theoretical
introduction chapter (Chapter 2) we include a short review of the SAR method, which
attempts to: 1) recognize the method’s limitations and possible errors that arise at its
implementation and 2) outline the correct implementation of the method that allows the
correct interpretation of its predictions. The review concludes that the SAR method is
justified. The neutral model provides yet another way of looking at the process of extinctions.
In the first application, we use the neutral model to construct a conceptual framework that
describes the relaxation process in habitats that become isolated due to fragmentation. The
model predicts delayed extinction as the difference between the sample SAR describing the
habitat before the loss and the isolate SAR describing the remaining fragments, while both
SARs are provided by the model. Hence, the model provides a generalization to the SAR
method that takes into account the delayed extinctions due to the isolation of the remaining
habitat. Overall, the framework provides a unification of the different concepts and ideas that

are used to describe the biodiversity loss following habitat loss.

Second Application: the use of NTB as a null model to estimate the magnitude of ecological
drift and assess the observed turnover in real communities

Along with habitat loss, systematic changes of environmental conditions (e.g. climate change)
can increase the local rate of species extinctions and alter a community’s composition with
time. Hence, it is important to be able to recognize the signs of climate change early enough in

order to take appropriate measures. This proves not an easy task, as the effects of climate
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change cannot be easily distinguished from the effects of chance, namely the natural drift of
species abundances that is caused by demographic stochasticity and dispersal. In this
application, we use the neutral model as a null model to simulate natural drift and use
statistical hypothesis testing to assess the observed turnover in a community of butterflies. To
parameterize the model, we follow the usual methodology of maximum likelihood parameter
estimation described by Etienne 2007 and Jabot et al. 2008. However, we introduce a slight
modification to the previous methodology by directly estimating one of the parameters from
available data. Overall, the method is not new; nevertheless it is topical as there are many
studies that claim to prove the effects of climate change on ecological communities by
showing that observed changes are correlated with the expected changes under climate
change. However, without testing if the magnitude of the observed turnover is within the
limits of natural drift, such conclusions are not sound. Although this application is not directly
related to habitat loss, the model is used to decide whether the community is at equilibrium or
whether it is drifting out of equilibrium due to the effects of climate change. In the latter case,
habitat loss is indirect as species are forced to migrate to other habitats due to the changing

conditions.

Third Application: predicting the rate of extinctions following habitat loss

An ultimate goal in the study of the relaxation process is to be able to predict the decline of
species richness with time. To this end, the neutral model of biodiversity provides a very
promising starting point. Paradoxically, although the neutral model dynamics have been
thoroughly studied, there haven’t been many studies that apply to the process of relaxation.
Among the few exceptions are the studies of Leigh et al. (1993), Gilbert et al. (2006) and
Halley and Iwasa (2011). In particular, Halley and Iwasa (2011) have used the neutral model
and found a relaxation equation that describes the variation of species richness with time in a
fully isolated habitat (i.e. a habitat with no recruitment of new species). The aim of this last
application is to expand the work of Halley and Iwasa (2011) to “open” habitats, i.e. habitats
where new species are recruited through speciation or immigration. For this purpose we use
the neutral model with random-fission speciation (Haegeman and Etienne 2010) and derive a

closed-form equation for the variation of species richness with time. To demonstrate how the



equation can be used in extinction forecasts, we present two separate applications where the
equation is parameterized from data of avifaunal extinctions. In the first application we
estimate the relaxation times of the avifaunal communities in islands and forest fragments. In

the second application we predict the avifaunal relaxation of the Barro Colorado Island.

Structure of thesis

The thesis is organized as follows. Chapter 2 is an introduction to the theoretical tools that
were used in the research and are essential to comprehend the remainder of the thesis. This is
divided in three parts. In the first part, we introduce terminology and conceptualize habitat loss
and the relaxation process. The second part is a short review of the SAR method for extinction
forecasts. In the third part we introduce the neutral theory of biodiversity, giving a detailed
mathematical description. In Chapter 3, we use the neutral model to build a conceptual
framework for understanding extinctions following habitat loss (first application). In Chapter
4, we use the neutral model as a null model to simulate ecological drift in a community of
butterflies (second application). In Chapter 5, we use the neutral model to mathematically
describe the relaxation process (third application). Finally, in Chapter 6, we present the main
conclusions and assess the use of the neutral theory of biodiversity in extinction forecasts and

in general.
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Chapter 2

Theoretical Background'

In this chapter we introduce the theoretical tools that were used in this research and are
necessary to comprehend the work presented in the remainder of this thesis. In section 2.1 we
introduce terminology and define habitat loss and the relaxation process. Section 2.2 is a
review of the SAR method for extinction forecasts. Finally, in section 2.3 we introduce the

neutral theory of biodiversity and give a detailed mathematical description.

2.1 Habitat loss

Before defining other terms, it is appropriate to define habitat loss. The habitat loss paradigm

that will be used throughout this thesis is depicted schematically in Figure 2.1.

Figure 2.1 Schematic representation of a habitat loss scenario. An initial habitat of area A suffers
habitat loss which causes the reduction of its area to a. Habitat loss happens rapidly, which means that
all individuals found in the destroyed habitat (dotted area) are killed. The destroyed habitat is
considered contiguous and inhospitable for the community under study, while no habitat regeneration
takes place afterwards.

! Parts of this chapter have been published in Halley, Sgardeli and Triantis (2014) (parts of sections 2.1.1 and
2.1.2) and Halley, Sgardeli and Monokrousos (2013) (section 2.2).



In this, a habitat of area A, called the initial habitat, suffers habitat loss that results in the
destruction of part of its area (dotted area). The habitat that is left after the destruction, called
the remaining habitat has reduced area a < A. Note that the initial habitat represents any
habitat area of interest. This could be embedded in a larger habitat of the same or of different
type, or could be surrounded by inhospitable matrix. Following Halley and Iwasa (2011) we
make the following assumptions about habitat loss. We consider that the destroyed habitat is
contiguous with no special edge effects and is rendered inhospitable for the community under
consideration. For example, if the destroyed habitat is covered by water and the target species
in the remaining habitat are trees, then the destroyed habitat cannot host the community any
more. This kind of habitat loss is called complete. Furthermore, we assume that there is no
habitat regeneration taking place after the loss, namely the area that is lost stays lost. Finally,
habitat loss is considered to take place instantaneously or at least very rapidly. This means that
all individuals that are found in the destroyed habitat at the time of habitat loss and cannot
escape are killed. For a definition of the main terminology relevant to habitat loss see Box 2.1.

The community that is left after habitat loss will be in general out of equilibrium and
species extinctions are expected to occur in the period following the loss, during a process that
is called relaxation. In order to define the relaxation process and the non-equilibrium state,
there should first be a notion of an equilibrium state for the community. In reality, ecological
communities are affected by so many processes that equilibrium is not easy to define and it is
even questionable whether a community is ever at equilibrium. However, for the purpose of
this study, we define equilibrium as a state in which all the macroscopic characteristics of the
community fluctuate around a constant average value with a fixed variance. Since we are
interested in species extinctions, the macroscopic property of interest is the species richness.
Hence, we say that the community is at equilibrium when its species richness is stabilized
around a constant average value. The above definition of equilibrium is a loosely defined
stationarity property. Strict stationarity, as defined in stochastic processes analysis, requires
that the joint probability distribution of a given process is constant over time (Lindgren et al.
2013, section 2.3). As we will see in section 2.3, within the neutral model of biodiversity,
which we use as a model of ecological communities, stationarity and thus the equilibrium is

strictly defined.
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Box 2.1 Glossary

Habitat loss: the loss of an area that was previously habitat to an ecological community,
in a way that this area can no longer support the community as before. If the lost area is
rendered completely inhospitable for the community in question, then habitat loss is
complete.

Initial habitat: the habitat area of interest before habitat loss occurs.

Destroyed habitat: the part of the initial habitat that is destroyed by habitat loss.
Remaining habitat: the part of the initial habitat that is not destroyed by habitat loss.
Equilibrium: the state of an ecological community in which all its macroscopic properties
are stabilized around a constant average value. In the case of extinction, the property of
interest is species richness, which is stabilized when the rate of species extinctions is
balanced by the rate of species origination through speciation and/or immigration. This
kind of equilibrium can also be referred to as a stationarity state, a steady state or as
dynamical equilibrium.

Relaxation process: the process by which an ecological community that has been
disturbed returns to equilibrium.

Imminent extinctions: species extinctions (local or global) that are a direct result of
habitat loss or other disturbances (e.g. spatially correlated disturbance on endemic species
with a narrow geographic range (Kallimanis et al. 2005)).

Delayed extinctions: species extinctions that happen during the relaxation process. These
could be considered as indirect extinctions due to habitat loss.

Extinction debt: the number of species committed to extinction at some time, ¢, of the
relaxation process. According to this definition, extinction debt equals the delayed
extinctions minus the delayed extinctions already realized by time .

Total extinctions: the sum of imminent and delayed extinctions.

Temporal turnover: the change of a community’s composition with time. This includes
the variation of species abundances, but also species extinctions and introduction of new
species.

2.1.1 Two phases of species loss: imminent and delayed extinctions

The decline of species richness following habitat loss happens in two phases. In the first phase
species whose range is restricted to the lost habitat become immediately extinct. Such
extinctions, being the direct result of habitat loss, are called imminent or endemic extinctions
(Jackson and Sax 2010, Halley et al. 2014). After habitat loss is complete, the community that
is left in the reduced habitat is in general out of equilibrium, as many species may have
reduced populations and the loss of habitat is usually accompanied by changes in habitat

structure (e.g. increased isolation). As a result, the number of species of the remaining habitat
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soon after habitat loss is usually greater than that the affected area can support. The second
phase regards the gradual relaxation of the community to a new equilibrium during which
more species are expected to go extinct. These are called delayed extinctions. The number of
species that are bound to go extinct at a given time after habitat loss is called extinction debt
(Kuussaari et al. 2009, Jackson and Sax 2010, Halley et al. 2014). Figure 2.2 shows
schematically the two phases of extinctions and the corresponding reduction of species
richness. The total number of extinctions (Si:) that result from habitat loss is the sum of
imminent and delayed extinctions. In practice, total extinctions can be estimated using
Species-Area Relationships (SARs) as the difference in species richness between the initial
habitat and the remaining habitat at equilibrium (SAR method) (Halley et al. 2013). If the

initial habitat area is A and the remaining habitat area is @ we can write,

Stot = Sa - Sas 2.1

where S4 is the number of species of the initial habitat and S, the number of species of the
remaining habitat at equilibrium, both predicted from the appropriate SARs. Note that, due to
changes induced by habitat loss (e.g. isolation of the remaining habitat), the SAR describing
the initial and remaining habitats might be different. The total number of extinctions also

equals the sum of delayed and imminent extinctions, hence we can write,

Stot: SA - Sa = EA—a + Da, (22)
where E,, are the imminent extinctions in the destroyed habitat and D, the delayed
extinctions in the remaining habitat. Taking into account the time dependence (Halley et al.

2014) equation (2.2) reads,

Stor(t) = Sa - Sa(t) = En.a + Do(1). (2.3)
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In equation (2.3), S,(0)=Sy is the initial number of species of the remaining habitat soon after
habitat loss, D,(?) represents the number of delayed extinctions already realized by time ¢ and

D,(0)=0 are the delayed extinctions at time ¢ = 0 (Figure 2.2).
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Figure 2.2 The phases of extinction following habitat loss. Initially the community of S, species is in
equilibrium (point O) in a habitat of area A. When habitat is lost, some extinctions happen immediately
because there are species found entirely in the lost area (OP trajectory). More extinctions follow later
due to increased isolation and smaller populations in the remaining area a. Eventually the community
arrives at the new equilibrium (R) where local extinction and colonization are in balance (c.f.
Rosenzweig, 2001). It should be noted that in particular cases (high aggregation, uneven
species-abundance distribution or high immigration), imminent extinctions can be so many that the
species left in the remaining area after habitat loss are fewer than the area can support. In such a case,
the species richness will increase to equilibrium (immigration credit) (Jackson and Sax 2010). (Figure
taken from Halley et al. 2014).

The magnitude of imminent extinctions can vary based on the degree of aggregation,
the dominance pattern of the community and the size of the destroyed habitat (Green and
Ostling 2003, Halley et al. 2014, Kitzes and Harte 2015). If we focus on the degree of

aggregation, we can describe two extreme scenarios shown in Figure 2.3 This shows two
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communities both having four species but with very different spatial distributions; in the first,
the distributions of species are not overlapping, while in the second the distributions of species
are overlapping. In the case of extreme aggregation, where the species spatial distributions are
not overlapping, a possible area loss can deplete the populations of two of the species but
leave the other two unaffected (Figure 2.3, left). In this case, imminent extinctions deplete half
of the species (50% of initial species richness). However, the rest of the species stay
unaffected, so there are no delayed extinctions. In the other extreme, where the spatial
distributions of species are completely overlapping, there will be no imminent extinctions and
the habitat reduction will equally affect all species populations (Figure 2.3, right). However,
all four species are now forced to live in half the initial area, and in time it is expected that
some of these species will go extinct. If the remaining area can only support two species at
equilibrium (based on a species-area relationship), then two of the species are expected to go
extinct. In this case, imminent extinctions are zero, but delayed extinctions correspond to 50%
of the initial species richness. At equilibrium, both habitats (Figure 2.3, left and right) are left
with two species.

Apart from the spatial configuration, the size of imminent extinctions also depends on
the Species-Abundance Distribution (SAD) of the given community (see Box 2.2). As
explained in Green and Ostling (2003), imminent extinctions are more for more uneven SADs.
A SAD is even when the individuals are evenly distributed over species. An extreme case of
an even distribution is one where all species have the same abundance. In the other extreme,
the most uneven distribution is one where there is one species with many individuals and the
rest of the species have one individual each. For an uneven distribution, the depletion of a
habitat area is more likely to completely deplete a species, since many species have very few
individuals. For example, if the spatial distribution of individuals is random, the probability
that 1 individual of a given species is found in the destroyed area x is x/A. If this species has n
individuals then the probability that all of them are found in x is (x/A)". Hence, the fewer
individuals a species has, the more likely it is that these are found within area x, which makes

it more likely to go directly extinct in an event of habitat loss.
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Figure 2.3 Two extreme scenarios of spatial distribution of species and the effects of habitat loss.
Species spatial distributions are defined by circles of different colors. On the left, the species
distributions are non-overlapping and the loss of the area results in the extinctions of two of the species
but leaves the other two unaffected. In this case imminent extinctions correspond to 50% of the initial
species richness and delayed extinctions correspond to 0% since the remaining habitat can support the
two remaining species as before. On the right, the species spatial distributions are almost completely
overlapping. The loss of area affects all species equally but does not immediately lead to their
extinction. However, the four species are now restricted in a smaller habitat and this can lead to the
extinction of some of them. In this case imminent extinctions are 0%. If the remaining area can only
support two species at equilibrium (based on species-area relationship) then delayed extinctions
comprise 50% of the initial species richness. In the end both habitats (left and right) will end up having
two species.



Box 2.2 Species-abundance and rank-abundance distributions

In a sample of abundance data taken from an ecological community, different species are
expected to be represented by different numbers of individuals. The distribution of
individuals to species can be summarized by a vector, N={n;, n,,..., ng}, where n;
represents the abundance of the i species and S is the total number of species. The
species-abundance distribution (SAD) and the rank-abundance distribution (RAD) are two
different ways of representing the distribution of individuals to species. There are several
theoretical models for this distribution; four of them are shown in Figure I using (a) the
RAD and (b) the SAD representation.

RAD: in the RAD representation, species are ranked in descending order according to
their abundance. This gives a vector rad={n,, n,,..., ns}, in which n, is the abundance of
the most abundant species, n, the abundance of the second most abundant species and so
on. The RAD can be represented by a graph, in which the abundances of all species are
plotted against their rank (rank-abundance plot) (Figure Ia). The RAD curve is flatter if
the individuals are more evenly distributed to species. The extreme case is the even
distribution in which all species have the same abundance.

SAD: in the SAD representation, the species are first grouped according to their
abundance and then the number of species in each abundance class is counted. The SAD
can be represented by a vector sad={S, S»,..., S}, in which S, is the number of species
that have abundance 1, S, the number of species with abundance 2 and so on (Figure Ib).
Note that some authors use the term species-abundance distribution (SAD) to refer to both
RAD and SAD. Here we keep the distinction between the two terms as defined above.
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Figure I. Four theoretical models used to describe the distribution of individuals to
species (log-series, broken-stick, log-normal and even distribution) represented in two
different ways: (a) using the rank-abundance distribution (RAD) and (b) using the
species-abundance distribution (SAD).
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2.1.2 Estimation of imminent and delayed extinctions

The size of imminent extinctions depends on the degree of aggregation and on the
species-abundance distribution (SAD) of the community. Green and Ostling (2003) provide
formulas for the estimation of imminent extinctions for random placement of individuals
across the habitat and for aggregated configurations described by the negative binomial
distribution. Consider that N;, i=1-S4 represents the abundance of species i in a community. If
habitat loss results in the removal of area A-a, then the expected number of imminent

extinction in the case of random placement is given by,

S(A) a N;
EA_¢,=Z[I—ZJ : (2.4)

where a is the remaining habitat area. For a spatial distribution following the negative

binomial distribution, the expected number of imminent extinctions is,

a & Nal"
EA_az(l—ij 1+? : (2.5)
i=1 i

where k; is a parameter controlling the aggregation, which can vary between (-, -Nj a/A) and
(0,+ o). For positive k, the distribution of species is aggregated with smaller values
corresponding to greater aggregation. When k is negative the distribution of species is regular
(He and Gaston 2000). An important property of the negative binomial distribution to keep in

mind is that k increases proportionally with scale (see Box 2.3).



Box 2.3 The story of the negative binomial distribution and imminent
extinctions

The negative binomial distribution (NBD) is frequently used to model the spatial
distribution of individuals of organisms (Eberhardt 1967, Perry and Taylor 1985, He and
Gaston 2000, He and Legendre 2002, Green and Ostling 2003, He and Gaston 2007,
Conlisk et al. 2007). In 2011 it was used by He and Hubbell, in a very cited and
controversial paper, which showed that Species-Area Relationships (SARs) always
overestimate extinctions from habitat loss due to an unnoticed difference between the
regular SAR and the endemics SAR (He and Hubbell 2011). In the core of it, this article
defied the laws of probability, stating that the probability of finding a species entirely in
the lost area (A-a) and the probability of not finding it in the remaining area (a) are not
equal (given that the species exists in the initial area A). After a year of confusion and
strong opinions for and against the article, the solution to the mystery was given by
Axelsen et al. (2013), who discovered that He and Hubbell forgot to scale the aggregation
parameter (k) of the negative binomial distribution! As He and Gaston (2007) explain,
“the assumption of a constant NBD k across scales is a simple violation of a theoretical
premise of the NBD. It is well established in statistics that k increases proportionally with
scale; that is, if x1 and x2 are from an NBD with aggregation parameter k, then y = x1 + x2
follows a NBD with 2k.”.

If the imminent extinctions can be estimated using the above formulas, then the delayed
extinctions can be estimated from equation (2.2) as the difference between total and imminent
extinctions. However, there is no way to estimate the delayed extinctions at any given time
after habitat loss without considering the dynamics of the relaxation process. In recent years,
the development of stochastic models of community assembly has given the opportunity to
model the dynamics of ecological communities. In particular, the neutral model of biodiversity
has proven very successful in predicting both the equilibrium and dynamical features of
communities.

For a community whose initial SAD is close to broken-stick there is a solution to the
neutral model (Halley and Iwasa 2011) applicable for systems without immigration or

speciation. According to this solution, the number of delayed extinctions at time 7 is,

Sy

D @#)=8S,-———,
(D=3 1+1/1,

(2.6)
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with #50=tJ/S) the time to lose half of the species, J the community size, t one generation time
and Sy =S4-E, the number of species in the remaining habitat immediately after habitat loss.
Equation (2.6) was used by Halley and Iwasa (2011) to derive the rate of biodiversity decline
on isolated islands. A time-dependent neutral formula was also derived by Gilbert et al. (2006)

assuming a log-series SAD, which is applicable at short timescales (¢ << J),

J+o

D.(t)=aln——= |
T+ +a

2.7

with J the community size and o Fisher’s alpha-diversity.

There have been other studies of the dynamical aspects of the neutral model and
analytical results regarding species turnover distributions and the time evolution of probability
distributions (McKane et al. 2000, Azaele et al. 2006, Chisholm 2011). Nevertheless, these
authors don’t report any closed-form expressions for the variation of species richness with
time and this area has been left unexplored. In Chapter 5 we derive such an expression for a
neutral community that is subject to speciation, which expands the result of Halley and Iwasa
(2011) to communities where there is recruitment of new species. Still, even without explicit
formulas, the dynamics of relaxation under the neutral model can be efficiently explored using

simulations.

2.2 SAR method for extinctions

2.2.1 Introduction

Species-Area Relationships (SARs) relate the number of species found in a habitat with the
habitat's area. Many functions have been used to describe this relationship, but the most

commonly used one is the Arrhenius curve,

S=cA”. (2.8)
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In equation (2.8), S is the number of species, A is the area of the habitat, ¢ is a constant
representing the number of species per unit area (i.e. the alpha diversity) and the exponent z is
a constant that controls how quickly the species richness increases with area. SARs are
commonly used to predict extinctions following habitat loss (Wilson 1988, Pimm and Askins
1995, Brooks et al. 1997, Triantis et al. 2010). Let us consider again the scenario of habitat
loss depicted in Figure 2.1. An initial habitat of area A suffers habitat loss as a result of which
its area reduces to a. The number of extinctions can be defined as the difference between the
species richness of the initial and the remaining habitat at equilibrium, namely AS=S4-S,,

which according to equation (2.8) is,

AS=S4-S,=cA*- ca’. 2.9

The reduction of species richness with area is shown in Figure 2.4. Graphically, the number of
extinctions can be found by tracing the SAR curve backwards until the remaining area is
reached. For this reason, this method of estimating extinctions has been called the backward
SAR method. Note that the SAR method as defined by equation (2.9) and Figure 2.4 implies
that the SAR describing the initial and the remaining habitat is the same. However, this is not
always the case. As we will see in Chapter 3, the SAR of the remaining habitat may have a
different slope, z, as a result of a change in the habitat structure (e.g. increased isolation due to
fragmentation). From now on, when referring to the SAR method we refer to the general
method in which the species richness of the initial and the remaining areas can be estimated

independently, namely using different SARs.
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Figure 2.4 The backward SAR method for estimating extinctions following habitat loss. If a habitat’s
area is reduced from A to a, the species richness falls from S, to S,,.

It should be emphasized that the SAR method described above predicts the total
number of extinctions (imminent plus delayed extinctions). However, this fact is often
misjudged. He and Hubbell (2011) claimed that equation (2.9) gives the number of imminent
extinctions, in the lost habitat, A-a. According to this claim, the use of equation (2.9) to
estimate total extinctions is flawed, while its failure to predict total extinctions is erroneously
attributed to extinction debt. We note, however, that He and Hubbell interpret the species
richness of the remaining habitat, S,, in a different way than it is meant by equation (2.9). If S,
represents the number of species found in area a at the time of habitat loss, then surely
AS=S54-S, represents the imminent species extinctions in the lost habitat area, A-a. However, if
this is the case, this habitat should be considered as a sample from the larger habitat, A, in
which case its species richness is not given by the Arrhenius curve of equation (2.9), but by
the appropriate sample SAR for this habitat. We want to make clear however that S, in
equation (2.9) refers to the species richness of the remaining habitat long after this has become
isolated, namely it refers to the species richness of the habitat at equilibrium. This is no more a

sample from the initial area, and an island type SAR should be used to estimate its species
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richness. As we explain in the next section, ignoring the above fact, namely that the SAR

method predicts total extinctions, can lead to large errors in the SAR extinction forecasts.

2.2.2 Uncertainty of SAR extinctions forecasts

Given the species richness of the initial habitat, the size of the remaining area and the
parameters of the Arrhenius curve, the backward SAR estimation is straightforward. However,
as the estimation of the parameters, but also the choice of the correct functional form for the
SAR, is not obvious, there is a great uncertainty to this prediction. The method itself has been
criticized for the assumptions it bears (Connor and McCoy 2001). Nevertheless, as explained
in Halley et al. (2013), the mismatch between SAR predictions and observation is in many
cases due to the omission of secondary phenomena (like habitat regeneration or extinction
debt). In studies where these phenomena were taken into account, SAR estimates held up
rather well (Halley et al. 2013). Another objection to the SAR method came from He and
Hubbell (2011), who claimed to prove that the method was fundamentally flawed, but as it
proved later there was a mistake in their derivation (see Box 2.3).

Halley et al. (2013) reviewed the possible sources of error arising when the SAR
method is used to forecast extinctions. These errors can be grouped into four categories. The
first type of error and one that cannot be avoided relates to the natural scatter of the SAR. The
second type is related to the choice of the SAR functional form and the choice of parameters.
The third type regards the erroneous interpretation of the SAR predictions. The fourth type of
error has to do with secondary phenomena that the SAR method ignores, like partial habitat
conversion instead of complete loss and habitat regeneration. Below we present a summary of

the more extended review of Halley et al. (2013).

Natural scatter

When measurements of species richness are plotted against area, it is unlikely that the points
will fall on a monotonically increasing curve; in other words the SAR is an approximate law.

Hence, an unavoidable source of uncertainty of the SAR method is due to the natural scatter of
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SARs. Triantis et al. (2012) found that when fitting Arrhenius models, the coefficient of
determination (goodness of fit on a scale 0-1) was on average R*=0.64 (£0.20 standard
deviation). As reported in Halley et al. (2013) a R*=0.68 is associated with a root mean square
deviation of 0.32, which means that the prediction can be 2.07 times larger or smaller than it

should be (based on one-sigma level).

Different types of SAR, choice of functional form and parameters

According to Preston (1962), SARs can be categorized into two types depending on the habitat
units that are used to construct them, namely ‘sample areas’ or ‘isolates’ (Scheiner 2003,
Tjgrve and Turner 2009, Triantis et al. 2012). Isolates are self-contained geographical units,
such as islands, mountain tops, lakes and habitat islands surrounded by inhospitable matrix.
Sample areas are fractions of isolates or of large continental areas, e.g. a plot within a forest
(Halley et al. 2013). The above distinction leads to the two types of SARs, namely the isolate
SAR (ISAR) and the sample or continental SAR (CSAR). An example of each one can be seen
in Figure 2.5. The ISAR is steeper and lies lower than the CSAR. If an Arrhenius curve is
fitted to species-area data, typical values of the z exponent lie between 0.25 and 0.35 for
ISARs and less than 0.15 for the CSAR. Despite the variety of values of the z exponent, only a
limited range has been used in SAR forecasts (Halley et al. 2013).
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Figure 2.5 Habitat patches as sample areas and as isolates. (A) A number of sample plots in a
continuous habitat, e.g. non-nested plots of various sizes within a tropical rain forest. (B) A set of true
geographical islands or isolates surrounded by inhospitable matrix. Note that the sizes of sample areas
and isolates in A and B are the same, so A indicates the architecture and initial state of what remains
after habitat loss, while B represents the final state. (C) Data for sample areas and for isolates for
Californian plants (Data from Johnson et al. 1968). Species—area relationships for isolates tend to be
lower and steeper; the slopes are 0.37 (for islands) and 0.16 (for continental areas). (Figure taken from
Halley et al. 2013).

Depending on the scale but also on the taxonomic group sampled, the scatter plot of
species richness versus area may appear to follow a linear, convex, concave or sigmoidal
function (Connor and McCoy 2001). With respect to scale, it is often observed that the SAR
follows a triphasic pattern, which is described by a rapid increase of species richness at local
scales, a lower slope at intermediate scales, often described by an Arrhenius curve, and an
accelerating increase at continental scales (O'Dwyer and Green 2010, He and Legendre 1996).
Triantis et al. (2012) lists 20 different functions that have been used to model SARs. Most of
them can be categorized in three basic families, each associated with a different ecological
theory. The first family includes variants of the Arrhenius curve. Preston (1962) showed that
in a community following a canonical lognormal species-abundance distribution, the SAR has
an Arrhenius form with exponent approximately z = 0.26. The second family of SARs is of a

log-linear form, such as the Gleason and Kobayashi equations, which often appear in the
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neutral theory of biodiversity (Hubbell 2001). Finally, the third family includes asymptotic
forms, namely SARs in which there is an upper bound on species richness. The three families

comply with the following general functional forms,

cA”
S =9 log(cA") . (2.10)
cA”

In the last function, Sp.x is the upper bound for the species richness. Halley et al. 2013 fitted
the three SAR models to the data of Figure 2.5 (Figure 2.6). As it is shown in Figure 2.6, the
three models can fit well to the observed data, but when extrapolated outside the range of
values for which the SAR was fitted, the predictions can differ by several orders of magnitude

(Figure 2.6 B).
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Figure 2.6 Fitting Arrhenius, Gleason, and asymptotic forms to predict extinctions for (A) islands and
(B) sample areas, for the data appearing in Figure 2.5. In both cases, the Arrhenius model was fitted by
the least-squares method to the line logS = zlogA + b, the Gleason was fit as S = zlogA + b, and the
asymptotic was fit using log[S/(S;—S)] = zlogA + b, having first assumed that S, = 4000 is the limiting
value. (Figure taken from Halley et al. 2013).

(O8]
W



Extinction debt

The effects of habitat loss are rarely limited to the loss of endemic species in the cleared
habitat. Most likely, habitat loss ‘kicks’ the remaining habitat out of equilibrium. Depending
on the pattern of habitat loss, the remaining community might have an excess or a deficit of
species (i.e. more or fewer species than it can support). Even more, the community will have
to adjust to a likely change of condition (e.g. isolation). In all of the above cases, the
relaxation of the remaining habitat to the new equilibrium takes a considerable time. A well
known example of this phenomenon are the New Guinea islands that were isolated at the end
of the Pleistocene, approximately 12,000 years ago, due to the rising sea levels. Diamond
(1972) constructed an ISAR for these islands and noticed that there is a group of big islands
which contain much more species than the ISAR predicts. By contrast, the species richness of
smaller islands of the same region agrees with the ISAR predictions. Based on the theory of
island biogeography, he found that the relaxation time for the big islands is around 16,700
years, which explains their higher biodiversity, as these have not yet reached equilibrium.
Hence, the fact that SAR estimates do not always agree with observations does not mean that
the SAR forecast is flawed. This shows that if extinction debt is ignored, the SAR method is
liable to overestimate the extinctions observed before the relaxation process is complete. But
how long does the relaxation process take to complete? Halley and Iwasa (2011) used data of
bird extinctions and found that the half-life time to relaxation inferred from the data scales
with area as Tsg = 4.35A%%2, As we show in Chapter 5, the neutral model with random-fission
speciation predicts a scaling exponent of 0.5 for the same data set, while the isolated-fragment

model of Halley and Iwasa (2011) predicts an exponent of 0.8.

Incomplete habitat loss and habitat regeneration

The SAR method assumes that habitat loss is complete, so that the species under consideration
cannot survive in the destroyed or converted habitat. This is true in the case the lost area is
replaced by inhospitable matrix. In cases of habitat conversion like deforestation, there is
always the possibility that biodiversity can be retained outside these boundaries, in the

converted habitat. This effect can be taken into account if one measures habitat loss in terms



of the net primary productivity (NPP) of the converted habitat. For example, if a former forest
habitat of area A is transformed to agricultural land, humans use part of the NPP e.g. 58%,
while the remaining 42% is left for other organisms (e.g. birds could eat wheat or vegetables,
so that the loss is not complete for these species). In such a case, habitat loss corresponds to
0.58A (Halley et al. 2013). There are studies where the effects of a partial conversion of
habitat have been taken into account (Koh et al. 2010, Tjgrve 2009, Pereira et al. 2012). Koh
et al. 2010 compared the predictions of these modified methods with the conventional SAR
method, in habitats where the total extinctions were known. They showed that modified SAR
methods had a root mean squared error of 35%, while the use of a conventional method had an
error of 51% when using a CSAR or 98% when using an ISAR. Another reason for a possible
error of the SAR calculation is habitat regeneration. If habitat regeneration happens before the
relaxation is complete, then there is a chance of full recovery of the habitat to its previous

state.

2.2.3 Summary and conclusions

Table 2.1 summarizes the possible sources of error that can arise in SAR extinction forecasts
and the associated maximum percentage error (corresponding to the logarithm of species
richness). The natural scatter of the SAR alone can lead to an error of 100%. As the natural
scatter is unavoidable, errors of less than 100% due to other sources cannot be considered
significant. Large errors can arise from a bad choice of the SAR functional form or a bad
choice of parameters, but also from ignoring extinction debt. On the one hand, if the SAR
estimate (which refers to total extinctions) is compared with observations of species richness
soon after habitat loss, then the SAR method will apparently largely overestimate extinctions;
however this is a result of ignoring the fact that the relaxation process is not yet complete. On
the other hand, in many cases of habitat loss, the remaining habitat becomes isolated and its
equilibrium species richness is more appropriately described by an island SAR (i.e. an SAR
with a larger z exponent). If this fact is ignored and the same type of SAR is used to describe

both the initial and the remaining habitat, then the total extinctions will be apparently
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underestimated. This comes from ignoring the extinction debt caused by the habitat’s

isolation.

Table 2.1 Possible sources of error arising when using the SAR method to forecast extinction and the
corresponding maximum percentage error on the logarithm of species richness. + sign denotes
overestimation of extinctions, - sign denotes underestimation, * either underestimation or
overestimation and *** denotes a very large number.

Description of limitation Maximum
or problem Error

1 SAR natural scatter +100%

2 Error in exponent of Arrhenius SAR +200%

3 Wrong functional form (prediction inside range of fitted data) +200%

4 Wrong functional form (prediction outside range of fitted data) | +***

5 Habitat loss not complete. Diversity retained in the “matrix” +16 to 63%
6 Regeneration of habitat HHE

7 Extinction debt (prediction timescale << relaxation time) +HE*

8 Extinction debt (prediction timescale >> relaxation time) -200%

Based on the above review we arrive at three main conclusions. Firstly, there is no
fundamental flaw in the SAR method. The concerns about the validity of the method are
actually related to its misuse or the misinterpretation of its predictions (i.e. ignoring extinction
debt, wrong use of SAR functional form, etc.). Whether the requirements for the appropriate
use of the SAR method can be met in reality is a different question. Secondly, the SAR
method predicts extinctions based only on area, which means that other factors affecting
extinctions are ignored (e.g. habitat regeneration, incomplete habitat loss). In some cases, the
estimate can be corrected by taking these other factors into account. Finally, the SAR method
has a great uncertainty that limits its prediction power. Nevertheless there is, currently, no
alternative method that gives more accurate predictions. As noted by Pereira et al. (2010), in
current biodiversity assessments using multiple methods “the range of uncertainty across
models and scenarios is close to three orders of magnitude.” In this light, most of the
uncertainties in Table 1 are negligible and do not undermine the credibility of the SAR method

(Halley et al. 2013).



2.3 Hubbell’s neutral theory of biodiversity

The neutral theory of biodiversity was introduced in ecology by S. Hubbell and popularized
with his book “The Unified Neutral Theory of Biodiversity and Biogeography” in 2001
(Hubbell 2001). The development of the theory and the corresponding model were based on
the neutral theory of molecular evolution, which already existed in population genetics since
1964 (Kimura and Crow 1964). The aim of the theory is to give a dispersal-assembly
explanation to the organization of ecological communities, namely to explain community
assembly as the result of the combined effects of random demography and dispersal. It should
be emphasized, however, that its application is limited to the diversity within a given trophic
level. For the purposes of neutral theory, Hubbell defines an ecological community as “a
group of trophically similar, sympatric species that compete in a local area for the same or
similar resources, as for example might be trees in a forest”.

In adapting the model to ecology, Hubbell was largely inspired by the Island
Biogeography Theory (ITB) (MacArthur and Wilson 1967). In the IBT, the equilibrium
species richness of islands results from a balance between species extinctions and species
introductions through immigration from a regional community. The neutral theory of
biodiversity (NBT) is based on the same principle but differs from the IBT in a major aspect:
in IBT, the neutral units are species having the same extinction and immigration rates and thus
the same abundance, while in NBT the neutral units are individuals all having the same
demographic rates and colonization ability. The species are formed as sets of individuals,
whose abundances at a given time reflects their different times of “origination” through either
dispersal or speciation and their subsequent evolution through stochastic demographic events.
Due to this distinction, species have different abundances and lifespans, which come as
predictions of the theory rather than being assumed (Hubbell 2001). Because of modeling at
the individual level, the NTB can predict macroscopic features of communities, like
species-abundance distributions and species-area relationships (McKane et al. 2000, Volkov et
al. 2003, Vallande and Houchmandzadeh 2003, McKane et al. 2004, Etienne and Alonso
2007, Rosindell and Cornell 2007, O’Dwyer and Green 2010). Furthermore, the neutral model

is a dynamical model and can be used to predict the time evolution of communities (McKane
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et al. 2000, McKane et al. 2004, Gilbert et al. 2006, Azaele et al. 2006, Chisholm 2011, Halley
and Iwasa 2011).

2.3.1 The theory

Neutral theory makes the following simplifying view of an ecological community. A
community is a collection of individuals, belonging to different species that coexist in the
same area. Each individual occupies a space associated to resources (i.e. a site). As resources
are limited, so are the available sites, which sets a constraint on the total number of individual
that can exist in the community. If furthermore the area is saturated with individuals at all
times (i.e. there is no empty site), then a new individual can arise only if a site becomes
available following the death of another individual. This is the so called zero-sum rule. The
neutrality of the theory lies in the fact that all individuals independent of species are equal
competitors, namely have equal chances of reproducing, dying, mutating and dispersing (i.e.
colonizing an empty site). As Etienne and Alonso (2007) have noted, neutrality does not
require that the species are functionally equivalent, but that they have the same demographic
rates and colonization ability, which can happen even if they follow completely different

strategies.
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Figure 2.7 The implicit-space neutral theory of biodiversity assumes two spatial scales; the
metacommunity and the local community. The metacommunity’s biodiversity is sustained through a
balance between extinctions and introduction of new species through speciation. In the local
community, the species richness is sustained by a balance between local extinctions and immigration
of individual from the metacommunity. The local community can be thought of as being part of the
metacommunity but it can also be a geographically separate habitat (i.e. an island). In both cases, the
metacommunity is much bigger than the local community, so that its composition is not affected by the
local community dynamics.

The basic form of the model is called the implicit-space neutral model. This assumes
two spatial scales; the metacommunity and the local community (Figure 2.7). The
metacommunity, which represents a regional species pool, evolves in time through
demographic events (births and deaths of individuals) and speciation. At the steady state, the
extinction of species is balanced by the introduction of new species through speciation. The
local community represents a sample from the metacommunity. The local scale is introduced
in order to model the effects of dispersal limitation on community composition. Dispersal
limitation is the restriction of individuals to move and colonize places far from their
origination. Due to this limitation, the compositional similarity of samples decreases with
distance. Furthermore, the composition of a sample does not represent all the species found at
a regional level. For example, if a sample is taken from a locality within a forest, the trees that
are found in the sample will mostly represent trees that exist in the neighborhood of the
sample and not all the trees found in the forest. In Hubbell’s local community model, dispersal
limitation is modeled as a restriction on the ability of species from the metacommunity to

enter the local community. In particular, in every death event in the local community, local
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species compete with the metacommunity species for the empty site, with local species having
a greater chance of colonizing the site. At the steady state, the local species richness results
from a balance between local extinctions and introduction of new species through
immigration.

Although the metacommunity species cannot freely enter the local community, the
metacommunity itself has no spatial structure, so that its individuals can be found anywhere
within its area (except the local community). This means that in an immigration event, all the
metacommunity individuals have the same chance of colonizing an empty site in the local
community. Finally, the metacommunity is considered much bigger than the local community,

so that its composition is not affected by the local community dynamics.

2.3.2 Metacommunity dynamics

Death

Speciation

Figure 2.8 One step in a neutral metacommunity with point mutation speciation. The community is
represented by a grid in which each site is occupied by an individual of a given species (color). At each
step, a random individual is killed (here an orange) and a site becomes available (white site). At the
same step, another random individual is picked (here a yellow) to give the descendant that will occupy
the empty site. However, with probability v, this descendant suffers a point mutation that converts it to
a different species (here a green). If these rules are applied many times, it is proved mathematically that
the community reaches a steady state, namely a state where all its statistical measures fluctuate around
a fixed value.

Hubbell described the evolution of the metacommunity as a discrete time stochastic process
(Figure 2.8). The process proceeds according to the following rules: at each step a random
individual is selected to die (death). The death leaves an empty site, which in the same step is

replaced by a descendant of another random individual from the metacommunity (birth).
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However, with a small probability v, the individual that will occupy the site mutates to become
a single member of a new species (point mutation speciation). The above rules define an
irreducible Markov chain, where the state of the community at each step can be determined by
its state at the previous step. It can be shown that after enough time, the process reaches a
steady state characterized by a unique stationary distribution (Haegeman and Etienne 2010,
Van Kampen 1992).

The maximum number of species that can exist in the metacommunity at any given
time is constrained by the total number of individuals, Jy. In an extreme case, the
metacommunity can have up to Jy species with one individual each. However, because
speciation constantly creates new species, the actual number of species that have lived in the
community can be much bigger than Jy. This means that if one wants to describe the state
space of the metacommunity as a vector with the abundances of all species, this should be
infinite, as given infinite time there is an infinite number of species that can be created. We
note, however, that species identities do not matter, as ultimately one seeks to find the
species-abundance distribution of the community. To slide over the problem of infinite state
space, we can keep the state space fixed by assuming that there are at most Jy species, which
can reappear by speciation after they have gone extinct. In this case, the state of the
metacommunity is described by a vector ny=(n, n,..., np), where n; is the abundance of
species i. The metacommunity can be found in all the states that comply with the community
size constraint, namely the total number of individuals in the community is fixed to
ni+no+...+npv=Jm. A more elegant way to overcome the problem of the infinite state space is
to define the state of the community using the species-abundance distribution, namely a vector
Sv=(S1, S2,..., Sim), with S representing the number of species with abundance i (unlabelled
species description) (see Etienne and Alonso 2007, Haegeman and Etienne 2010). In the
following we present the model using the former approach.

In a metacommunity with a size constraint, the dynamics of species are coupled; a
species can increase its abundance (birth) only following the death of an individual of another
species (zero-sum rule). Nevertheless, because all individual, independent of species, have the
same probability of death, birth, dispersal and speciation (neutrality), the dynamics of a

particular species with abundance n can be considered independently, with all other species
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considered as one species with abundance Jy-n (Haegeman and Etienne 2010). A way to
represent the dynamics of the process is by constructing the master equation. This is a
differential equation for the probability that the community is in a given state. If we focus on
one species, we can write a master equation for the probability that this species is at a state

with abundance n. This has the following general form,

dp .
_pz;t D S Rtk ), 1,0~ RG1E, p,, 1)), 210

where p, (?) is the probability that species i has abundance n at time ¢ and R(k,n); is the rate at
which species i moves from a state with abundance k£ to a state with abundance n. Equation
(2.11) has a simple interpretation. It states that the probability of being at state n changes with
time because of moving into state n from other states k and because of moving out of state n to
other states k. All possible transitions and the corresponding rates are described in Box 2.4.
There are three events that can cause a change in abundance for a species; birth, death or
speciation. The birth and death events result in an increase or decrease of its abundance by one
individual. Point mutation speciation also leads to an increase or decrease by one individual.
Hence a species with abundance n can only reach or be reached by states n+1 and n-1 in one
step. Note that because all species have the same transition rates (see Box 2.4) we can discard

the index i referring to species. Equation (2.11) takes the following form,

dp, (1)
dt

= gn—]pn—](t)+rn+1pn+](t)_(rn +gn)pn(t)’ (212)
where g, and r, are the rates of increase and decrease in abundance respectively. To find the
steady state probabilities, we set dp,(7)/dt = 0. This leads to the metacommunity equilibrium

species-abundance distribution (Etienne and Alonso 2005),

ES, 16,7,)=

Jy+1-

(JM+0—n)n ’
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where (x), denotes the rising factorial (Pochhammer symbol). The detailed derivation of
equation (2.13) is presented in Appendix A. In equation (2.13), E(S,l0,J/p) denotes the
expected number of species with n individuals and 8 = (Jv-1)/(1-v) is a constant parameter
called the fundamental biodiversity parameter. This controls the total species richness of
the community at equilibrium. In the limit of large Jy;, equation (2.13) tends to a probability

density distribution:

6(1—x)%"
X

p(x)dx = dx, (2.14)

which represents the number of species with relative abundance between (x, x+dx) (Vallade
and Houchmandzadeh 2003, Alonso and McKane 2004). Summing equation (2.14) over all n
from n=1 to n=Jy gives the expected number of species at equilibrium (Etienne and Alonso

2005, Hubbell 2001),

J
6
Su=ES160,7,)=> : 2.15
m = E( M) 2 v io1 (2.15)

which practically, for large enough Jy (>100) and 6 (>1), is well approximated by (Hubbell
2001),

Su :1+01n(1+éj. (2.16)
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Box 2.4 Transition rates for a species with abundance » in a metacommunity

with point-mutation speciation

The following diagram shows the possible transitions in and out of a state with abundance
n, for a species in a community with point-mutation speciation. There are two types of
transitions out and two transitions info state n, due to birth, death and speciation events.

&1

r?’l
Transition Rate
n J n
=(1-v)—M , n>0
n— n+l g, =( )JM J, -1
J
nonl 1= 1—y) 2y
Ju Jy -1
n—-1J n+1
-] — - - 1_ M s
n-l—-n 8na =\ )JM J, -1
n>1
+1 J,, — 1
n+l—n Vn+1=n ((1— )2 kY
M JM_

Description

An individual of another species dies
with prob. (Jy-n)/Jyv and an
individual of the target species gives
birth with prob. (1-v)n/(Jyu-1)

An individual of the target species
dies with prob. n/Jy. Then either an
individual of another species gives
birth with prob. (1-v)(Jy-n)/(Ju-1) or
speciation happens with prob. v.

An individual of another species dies
and an individual of the target
species gives birth

An individual of the target species
dies. Then either an individual of
another species gives birth or
speciation happens

Note: A special case is the transition from a state with abundance zero to a state with
abundance one, due to speciation. In such a case, the species can be reintroduced in the
community when a speciation event happens. A speciation event happens with probability
v per step, however as there exist S, species with abundance 0, the probability of

reappearance for the target species is go=v/Sp.
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2.3.3 Local community dynamics

Local birth

-

Nmo :

Immigration

-_—

Figure 2.9 One step in a neutral local community. The community is represented by a grid in which
each site is occupied by an individual of a given species (color). At each step, a random individual is
killed (here an orange) and a site becomes available (white site). Then with probability 1-m, another
random individual is picked (here a yellow) to give the descendant that will occupy the empty site.
With probability m the site is occupied by an immigrant from the metacommunity (here a green),
which is a descendant of a random individual from the metacommunity. Note that the species to
immigrate could already exist in the local community (i.e. could be one of the blue, yellow or orange
species).

Due to its bigger size, the turnover time of the metacommunity is much slower than that of the
local community. Hence, during the time it takes the local community to reach a steady state,
the metacommunity species-abundance distribution (SAD) does not change substantially. A
common practice followed to derive the local community dynamics is to consider that the
metacommunity SAD is fixed and follows equation (2.14) (Hubbell 2001, Volkov et al. 2003,
Etienne and Alonso 2007). Fixing the metacommunity SAD defines a finite state space for the
local community, as the species that can exist in the local community are limited to the species
that exist in the metacommunity. The state space can be described by a vector n=(n,, n, ...,
nsm), with n; the abundance of the K0 species and Sy the number of species in the
metacommunity. In the local community, species abundances change due to birth and death of
individuals and colonization from the metacommunity (see Figure 2.9). This process can be
described in discrete time: at each step a random individual is selected to die (death). Then the

empty site is either taken by the descendant of another individual from the local community



(birth) or with probability* m it is taken by a descendant of an individual from the
metacommunity (immigration). In an immigration event, the individual to immigrate is
selected randomly from the metacommunity, which means that this species is selected with
probability proportional to its metacommunity abundance. In contrast to the metacommunity,
every species in the local community has different rates of increasing and decreasing its
abundance per step, due to its different abundance in the metacommunity. The process
described above defines an irreducible Markov chain with a unique stationary distribution
(Haegeman and Etienne 2010, Van Kampen 1992).

As before, the dynamics of each species can be considered separately. Denoting by
pai(f) the probability that species k has abundance n at time ¢, one can write the following

master equation,

dp,, (1)
T =8tk Puts O F Ty Poir s O = (1, + 8,00, (D) - (2.17)

The rates g, x and r, are listed and explained in Box 2.5. To find the steady state probabilities
we set dpy,()/d=0 and solve the resulting equations (Appendix B). The solution gives the
expected number of species with n individuals in the local community (i.e. the expected
species-abundance distribution), which Hubbell called zero-sum multinomial distribution

(Hubbell 2001),

, (2.18)

1 — 61
E(Snlm,e,.l)zg(‘]jj (Ix),(10-x)),_, 1-x) .
n o

(I)J X

where I=m(J-1)/(1-m) is called the fundamental dispersal number, (/), denotes the rising

J
factorial (Pochhammer symbol) and ( J the combinatorial (Etienne and Alonso 2005).

n

Summing equation (2.18) over all n from n=1 to n=J gives the expected number of species in

* The parameter m has been called immigration probability by Hubbell (2001). However, this is essentially the
colonization probability, i.e. the probability that the individual will immigrate and successfully establish in the
local community. Here, we use the original term for m, as this has been established in the relevant literature.
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the local community. Since the summation does not yield a closed form expression, the

expected species richness is usually found computationally with simulations.
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Box 2.5 Transition rates for a species with abundance n in the local
community

The following diagram shows the possible transitions in and out of a state with abundance
n, for a species in the local community. There are two types of transitions out and two
transitions into state n due to birth, death and immigration events.

81 &y

Transition Rate Description

J—-n((0-m)n An individual of another species dies with

n— n+l Enk = J (ﬁ + kJ prob. (J-n)/J and then, either an individual
of the target species gives birth with prob.
(1-m)n/(J-1) or an individual of the target
species immigrates from the
metacommunity with prob. mx;, with x;
the relative abundance of the species in
the metacommunity.

An individual of the target species dies
with prob. n/J and then, either an
individual of another species gives birth
with prob. (1-m)(J-n)/(J-1) or immigration
happens and an individual of another
species immigrates m(1-xy).

zn(a—m)(f—n)

n— n-1 wk = g J—1

+m(l—x, )j

J—n+1{dA-m)(n-1) An individual of another species dies and
n-l-n 8n-1k = 7 J—1 v then, either an individual of the target
species gives birth or immigrates from the

mx o
) metacommunity

_n+l{(I-m)(J—-n-1) An individual of the target species dies.
n+lon Tk T J J—1 + Then either an individual of another
species gives birth or immigrates from

+m(l— .
() the metacommunity

Note: A species that became extinct in the local community can be reintroduced through
immigration from the metacommunity. Hence, a transition from a state with abundance 0
to a state with abundance 1 can happen due to immigration. This happens with rate g
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2.3.4 Sampling nature of neutral theory

When a sample is taken from a community, the composition of the sample will be in general
different from that of the whole community. Suppose that the species-abundance distribution
(SAD) of a community of size J is P(n). Namely, P(n) represents the probability that a species
has » individuals. Consider that a sample of size J1<J is taken from this community and that
p(n) is the relative number of species with n individuals in the sample. P(n) and p(n) are

connected through the following relation,

p(n)=> pnlx,J,J)P(x). (2.19)

x=1

In equation (2.19), p(nlx,J,J;) is the probability to find » individuals of a species in a sample of
size J;, given that the abundance of this species in the community of size J is x. This is called
the sampling distribution and depends on the way the sampling is performed. If the sampling

is random without replacement, then p(nlx,J,J,) is the hypergeometric distribution,

"

Etienne and Alonso (2005) showed that the SAD of the metacommunity (equation (2.13) or

Pryp(n1 X, J,J)) = (2.20)

(2.14)) is invariant under hypergeometric sampling. This means that if a hypergeometric
sample (i.e. a random sample without replacement) is taken from the metacommunity, then its
SAD will be the same as the SAD of the whole metacommunity. In other words, in equation
(2.19), p(n) and P(x) represent the same distribution (i.e. p(n) = P(x)).

As already mentioned, the local community is also a sample from the metacommunity.
Due to dispersal limitation, however, this is not a random hypergeometric sample, but a
dispersal-limited sample. Etienne and Alonso (2005) found the sampling distribution for this
kind of sampling, which they call the dispersal-limited hypergeometric distribution. Using
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this distribution, the local community SAD can be connected to that of the metacommunity

through equation (2.19), namely,

I
E(S,1m,60,0)=) po-(nlm,x,Jy,J)ES, 16,]y),
pr (2.21)

where E(S,Im,0,J) and E(S,0,Jy) represent the local community’s and metacommunity’s
species-abundance distribution respectively and the dispersal-limited hypergeometric

distribution is expressed as,

J n I* 1
PLoilmox, J,J) = s(n,a)s(J —n,A—a)———— alx,J,A),
P D=l Z( )5 ( ) (Ajphyp( w-A) o)
a

where s(n,a) denotes the unsigned Stirling number of the first kind. The sampling framework

described above shows how dispersal, which is a spatio-temporal process, manifests as a
sampling effect when local samples are drawn from a community. This is because the
composition of local samples is affected by the dispersal pattern of individuals in the
community. Also note that equation (2.19) provides yet another way of estimating the
composition of a local sample (or a dispersal-limited sample), when the metacommunity

species-abundance distribution is known.

2.3.5 Neutral theory success and criticism

Undoubtedly, the success of the neutral theory is that it derives realistic macroscopic
community features, e.g. species-abundance distributions and species-area relationships, from
fundamental ecological processes (e.g. see Hubbell 2001, Volkov et al. 2003, Etienne and
Alonso 2005). By contrast, the commonly used models of species-abundance distributions
(geometric, broken-stick, log-series and log-normal) are descriptive, namely they have been
developed to fit observations based on assumptions that are not directly linked to ecological

processes. Surprisingly, the neutral model provides justification for two of the above
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distribution models. As Hubbell (2001) first noted, the regional community with point
mutation speciation follows approximately the log-series distribution (see section 2.3.2). This
allows interpreting the log-series parameters; Fisher’s alpha is identified to the biodiversity
parameter, 6, while the parameter x represents the probability of a local birth (i.e. local birth
rate/death rate). As it was later shown by Haegeman and Etienne (2010), the broken-stick
distribution also emerges as a prediction of the neutral model. This is followed by the regional
community that is subject to random fission speciation (see Chapter 5).

Apart from the above, there are other aspects of the neutral theory that constitute it a
useful model in ecology. Firstly, the neutral model is a dynamical model. As such it gives the
opportunity to predict the evolution of communities, e.g. estimate species temporal turnover,
times to extinction, test a community’s response to disturbances etc. (e.g. see McKane et al.
2004, Azaele et al. 2006, Halley and Iwasa 2011, Chisholm 2011). Furthermore, the
dynamical nature of the model enables the explicit description of the relaxation process
following habitat loss. Secondly, the neutral model is a stochastic model. Stochasticity is an
important element of community evolution, not only because unknown and uncontrollable
forces affect communities, but mainly because the fundamental ecological processes are
stochastic in nature. In other words, demography, dispersal and speciation are inherently
stochastic. By explicitly modeling these processes (i.e. by including stochasticity), we are able
to predict the range of possible states that a community can be found in. This provides the
basis for statistical hypothesis testing whereby observations are compared with model
predictions, and where apart from an average state of a community one needs to predict the
expected deviation. As we will see in Chapter 4, the above two properties (in one word:
stochastic dynamics) constitute the neutral model an appropriate null model of temporal
community turnover.

Finally, a great advantage of the neutral model compared to previous models of
stochastic community dynamics (e.g. birth-death models) is that it includes stochastic
dispersal. Dispersal crucially affects the composition of local communities/samples (see
section 2.3.4). As explained by Etienne and Alonso (2007), when a local sample is drawn from
a community, the information that one takes for the whole community is filtered by the limited

ability of its individuals to disperse to the local community. Hence, by modeling dispersal, the



neutral model provides a link between the composition of local samples and the composition
of the whole community, namely the neutral theory is also a sampling theory (section 2.3.4,
Etienne and Alonso 2005).

Overall, the neutral theory includes three of the four processes that according to
Vellend (2010) influence the composition of ecological communities, namely speciation,
ecological drift (i.e. stochastic demography) and dispersal. The fourth process that is not
incorporated in the model is selection. By involving these basic processes, the model provides
a baseline for detecting the relative importance of any additional processes affecting the
community assembly and evolution. Finally, the neutral model has an important conceptual
and explanatory value; that is the model’s predictions can be traced back to the relevant
underlying processes, which facilitates the understanding of the reasons leading to observed
macroecological patterns. For example, the form of the species-abundance distribution at the
local scale arises from an interplay between local extinctions and dispersal, with the
immigration probability defining its shape; an explicit-space neutral model predicts a triphasic
species-area relationship, which shape was found to depend strongly on the speciation rate
(Rosindell and Cornell 2007); the process of extinctions following habitat loss can be
understood to a satisfactory level under the implicit-space neutral model (Halley and Iwasa
2011, Halley et al. 2014, Chapter 3, Chapter 5).

The neutral model has been used in several different applications. Many such examples
can been found in Alonso et al. (2006), Rosindell et al. (2011) and Rosindell et al. (2012).
These fall into two categories. In the first type of applications, the model is used as an
approximation, i.e. the model is proven or assumed to be a good approximation for the
community in study and is used to make predictions for the community. In the second type of
applications, the neutral model is used as a null model, i.e. a model that by its failure to fit
observations can reveal other factors affecting the community in study or disprove one of the
models assumptions (e.g. neutrality) (Rosindell et al. 2012).

The neutral model has been criticized for making unrealistic assumptions about
ecological communities (e.g. Ricklefs 2003, Clark 2009, Purves and Turnbull 2010, Clark
2012). Currently it has become clear that from the four assumptions of the implicit-space

neutral model, namely the zero-sum rule, the neutrality, the implicit treatment of space and the
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point mutation speciation, the first two are the least unjustified ones (e.g. see Rosindell et al.
2011 for a review of these assumptions). Firstly, as it was proven by Etienne et al. (2007a)
(see also Haegeman and Etienne 2008), the analytical results regarding the equilibrium state of
the community are the same even if the zero-sum rule is discarded. Secondly, the neutrality
assumption is a good starting point if one wants to have a fairly simple model with some
predictive power. But even as a first approximation to reality, neutrality is not such an
unreasonable assumption. As is has been shown, the species-abundance distribution of the
neutral model is very robust to the breaking of neutrality (Rosindell et al. 2012, Allouche and
Kadmon 2009, Chisholm and Pacala 2010, Etienne and Haegeman 2011). The consequences
of breaking the neutrality have been studied by He et al. (2012). These authors showed that,
compared to a neutral model, in a birth-death trade-off model species coexist for longer times.

The implicit-space assumption and the assumed speciation mechanism are more
restrictive to the application of the model. In the implicit-space model there is no sense of
dispersal distance, as all metacommunity individuals have the same probability of colonizing
empty sites in the local community. This can be problematic when the model is used to
parameterize real data, where many local samples are taken from the same regional area
(Etienne and Rosindell 2011, Etienne 2007, Jabot et al. 2008). This creates the following
contradiction: the local samples are subject to dispersal-limitation, but at the same time, the
union of these local samples forms the regional community, which in the implicit-space model
is considered to be well-mixed (i.e. has no spatial structure). To overcome these problems,
explicit space models have been developed (Etienne and Rosindell 2011, Rosindell and
Cornell 2007). These have been successful in predicting species-area relationships (Rosindell
and Cornell 2009, O’Dwyer and Green 2010), but perform worse than the implicit-space
model in predicting species-abundance distributions (Etienne and Rosindell 2011).

The final assumption refers to the mechanism of speciation and its implications on the
mean lifetime of species and the number of species at equilibrium. As noted by Ricklefs
(2003), the point mutation mode of speciation predicts many species with very short lifetimes
while an alternative mode (the random fission speciation mode) predicts very long lifetimes
resulting in unrealistically high equilibrium species richness, for realistic speciation rates. To

correct for this, Rosindell et al. (2010) proposed the mechanism of protracted speciation. In
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this, the establishment of speciation events is delayed by 7 generations. This means that a new
species appears with a higher abundance, given that it survives for 7 generations, which results
in more realistic speciation rates per individual. A related issue has to do with the
interpretation of species richness and speciation rate. While in the model every speciation
event results to a new species, in reality there are many species that are created and go extinct
before they can be observed. Hence, there is a mismatch between the species richness and
speciation rates estimated from observation (in which many species are unobserved) and the
model predictions where all species are counted (see Ricklefs 2003, Hubbell 2003, Chave
2004 for further discussion).

There has also been a different kind of criticism against the neutral model, which
focuses on more general matters. For example, the role of stochasticity and demographic
stochasticity (ecological drift) in particular is questioned by some ecologists (e.g. see Clark
2009, Clark 2012). As explained in Rosindell et al. (2012), this kind of criticism refers to
semantic issues that relate to the use of models in general. These semantic issues regard
questions like: should we use complex or simple models, stochastic or deterministic models?
Does pattern reveal process? Should a model’s assumptions be strictly accurate? A discussion
of these matters can be found in Rosindell et al. (2012), McGill and Nekola (2010) and Alonso
et al. (2006). We also catch up on this discussion in the concluding chapter of the thesis
(Chapter 6).



Chapter 3

Neutral theory as a conceptual model of

community relaxation’

3.1 Introduction

In this chapter we use the neutral model to develop a framework for understanding the
mechanisms of species extinctions following habitat loss. This is based on the conceptual
model of extinction debt built by Kuussaari et al. (2009) and provides a justification of this
model in terms of the dynamics of the relaxation process. Although the developed framework
can also be used for predictions, here we emphasize more its conceptual value that conveys the
fundamental principles and basic functionality of the system to be described (Strickland 2011).
Thus, the focus is to evaluate the model’s ability to describe the extinction process, including
only the necessary and sufficient variables and mechanisms needed to explain the
phenomenon.

There are various frameworks aiming to understand and interpret the effects of habitat
loss on biodiversity. Traditionally, the total extinctions following habitat loss are estimated as
the difference between the species richness of the initial habitat and the species richness of the
remaining habitat at equilibrium, using Species-Area Relationships (SARs). Under this
perspective, the total loss of species (imminent plus delayed extinctions) is explained by one
variable, namely area. However, habitat loss is usually accompanied by the formation of
isolates (e.g. islands of forest created by fragmentation). In such cases, the loss of species in
the remaining fragments can be explained in terms of sink and source species. According to
Rosenzweig (1995), sink populations of a species in a given habitat are characterized by more
deaths than births and their persistence is due to immigration from source populations

inhabiting a habitat where births are more than deaths. Areas that are part of a continuous

? Parts of this chapter have been published in Halley, Sgardeli and Triantis (2014).



habitat have more sink species (i.e. species that are not resident, but are occasional
immigrants). On the other hand, isolates have mostly source species. So, the number of species
of an area that was previously part of a continuous habitat and becomes isolated will decline
due to the loss of sink species that cannot sustain their population on the isolate without
support from the regional area. Under this view, extinction debt equals the number of sink
species in a sample plot before habitat loss occurs. Another framework for extinctions due to
habitat loss is provided by the theory of island biogeography (MacArthur and Wilson 1967).
This predicts that the species richness of an island or a local habitat results through a balance
between local extinctions and immigration from the mainland. In an event of habitat loss, the
rates of extinction and immigration are out of balance so that the species richness increases or
decreases until a new balance is met.

The neutral theory of biodiversity (NTB) provides yet another way of looking at
extinctions. As we demonstrate, the neutral theory can link many of the concepts related to
habitat loss (i.e. extinction debt, imminent and delayed extinctions, island and sample SARs)
in one unified framework. It predicts that under fragmentation, extinction debt is precisely the
number of species lost in the process by which a sample area transforms to an isolate and is
equal to the difference between the sample SAR of the initial habitat and the island SAR of the

remaining habitat, which can both be derived from the model.

3.2 Habitat loss under the NTB paradigm

As a case of habitat loss we consider a fragmentation scenario, where a sample area becomes
isolated by clearing part of the habitat surrounding it (Figure 3.1). Due to the clearing, the
former sample area losses the support of the surrounding habitat and gradually transforms to
an isolate, that is a habitat area surrounded by inhospitable matrix, as for example an island, a
mountain peak or a plot of forest surrounded by agriculture land (see Preston 1962 or Chapter

2).
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Figure 3.1 Definition of sample areas (a) and isolates (b). Under fragmentation, a habitat area (A-a)
surrounding a sample plot (a) is destroyed, leaving the sample plot isolated, surrounded by inhospitable
matrix (white). The percentage of habitat loss is f=100*(A-a)/A.

During the isolation procedure, the sample area will lose its sink species and relax to a lower
equilibrium. The main difference between an isolate and a sample area (e.g. a plot within a
continuous habitat) is the degree of isolation. While the sample area is embedded within a
habitat and species can easily enter and exit its area, an isolate has a higher degree of isolation
and is connected to other areas only through rare immigration events. For this reason, sample
areas can accommodate more species than isolates of the same size. Furthermore, the
species-area relationship for isolates (ISAR) is steeper than the species-area relationship for
sample areas (sample SAR or CSAR) (see section 2.2.2). To make a connection between
extinction debt and the process by which a sample area transforms to an isolate, Halley et al.
(2014) used the neutral model of biodiversity to compute the extinction debt and the SARs of
sample areas and the corresponding isolates.

In terms of the neutral model of biodiversity, the initial sample plot can be considered
as a local community, namely a dispersal-limited sample from the metacommunity (e.g. the
surrounding forest) (see Chapter 2, Etienne and Alonso 2007). The Species-Abundance
Distribution (SAD) of this sample plot follows Hubbell’s zero-sum multinomial distribution
(equation 2.18, Chapter 2). This provides an estimate for the expected number E(S,l6,1,J) of
species with n individuals, given the fundamental biodiversity parameter 6 of the
metacommunity, the total number of individuals in the sample, J, and the fundamental

dispersal parameter, I,
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respectively. The fundamental dispersal parameter is defined as I=m(J-1)/(1-m), where m is
the per birth probability of immigration from the surrounding area in the sample plot, which
can take values from m=0 (total isolation) to m=1 (no dispersal limitation). To find the number
of species within the sample plot of area a we can simply sum the SAD of equation (3.1) from

n=1 to n=J,, where J,=p*a is the number of individuals in area a, that is:

S(a)= E(S,16,1.J,). (3.2)

n=1

After the sample plot is isolated, this is still connected to the metacommunity through
immigration; however the immigration probability has now decreased. The isolate is still a
dispersal-limited sample from the metacommunity, its SAD is described by equation (3.1) and
its equilibrium species richness can be computed from equation (3.2) with dispersal parameter
I'=m'(J, -1)/(1-m"), where m'<m is the reduced immigration probability. Based on the above,
the difference in species richness between the initial sample area and the isolate area of the

same size is given by,

(a)= X[E(Sn 16,1,0 )—E(S,16,1',J)]. (3.3)

n=1

D, =S . (a)-S,

sample isolate

Equation (3.3) gives the number of delayed extinctions that are expected to happen when a
sample area transforms to an isolate. Imminent extinctions can also be estimated from
equation (3.2). The number of imminent extinctions is just the number of species found in the

destroyed habitat area (A-a), hence,
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E,,=Sume(A—a)=D E(S,16,1,J,.,). (3.4)

n=1

Note that the above estimates of imminent and delayed extinctions are consistent with random
placement of individuals across the initial habitat (an assumption of the implicit-space neutral
model). That is equations (3.3) and (3.4) cannot predict imminent and delayed extinctions in
aggregated habitats. This fact however, does not affect the equilibrium species richness of the
remaining isolate, which is independent of the initial condition (i.e. independent of the state of
the remaining community at the time of habitat loss). As we show in section 3.3, one can
estimate imminent extinctions independently, on the basis of an aggregated distribution of
species, and then find the equilibrium species richness under the neutral model by evaluating
equation (3.2). The equilibrium species richness can also be found from direct simulations of
the local community dynamics, or more efficiently using Conlinsk’s colonization method

(Conlisk et al. 2010) (see Appendix C for a Fortran 95 source code).

3.2.1 Immigration rate in isolates

From equation (3.3) it is clear that extinction debt is largely due to the isolation of the habitat
fragments (isolates) remaining after habitat loss. In this section we explore what determines
the immigration rate in isolates. It is reasonable to assume that the number of immigrants
arriving on an isolate per unit time depends on both its area and its distance from the nearest
regional community or mainland, that is u = u(a, d). For example, consider the case depicted
in Figure (3.2) left. Two islands of different area lie in the same distance from a mainland.
Suppose that the immigrants are seeds and that the density of seeds decreases with the distance
from the mainland, as illustrated by the color gradient (i.e. darker color corresponds to higher
density of seeds). For a given distance, the number of seeds that will land on the island per
unit time is proportional to the island’s area. In a different scenario where the immigrants
arrive by sea, the immigration rate could instead be proportional to the island’s perimeter. In

this case, the number of immigrants arriving per unit time increases with the square root of



area. The immigration rate also depends on the island’s distance, d, from the mainland. For an
island of given area, the number of immigrants it receives per unit time will decrease with
distance (see Figure 3.2 right). Hence the immigration rate for isolates can be expressed by the
general relationship u=ka*d”, with x>0, y<0 and k a constant.

The immigrants that arrive on the island compete with the local population for
available sites. The probability that an immigrant will take up an empty site instead of a local,
i.e. the immigration probability m', depends on the relative abundances of locals and
immigrants but also on their establishment capability. It could be the case that immigrant
species have a disadvantage of establishment compared to the local species, a phenomenon
that is termed biotic resistance. Studies of real communities show that biotic resistance is
greater in richer communities (see Levine et al. 2004); hence the establishment capability of
immigrants is expected to decrease with area, as bigger areas support richer communities. If
we denote by c the establishment capability of immigrants (defined here as the probability that
an immigrant that is selected to immigrate will establish in the community), then this is
expected to scale with area as c(a)~a™, w>0. Because the number of local individuals is
proportional to the island’s area, the relative abundance of immigrant to local individuals will
be proportional to a*d”/a. Taking the above effects into account, the immigration probability is
expected to scale as m'~a™a"'d’. Hence in the general case, the immigration probability for
isolates depends on both its area and its distance from the mainland. Note, that although both
the immigration rate (¢) and the immigration probability (m') scale with the isolate’s area,
there is one importance distinction: while the immigration rate increases with area, the
immigration probability (which is in practice the probability of immigration and establishment
(see section 2.3.3)) might as well decrease with the area of the isolate.

There is however a situation where the expected distance of an island from the
mainland depends on its area. This is the fragmentation scenario described in Figure 3.1,
where an island (or fragment) of area, a, is created by clearing the habitat area, A-a,
surrounding it. If the lost area is small, the fragment will be on average closer to the mainland
and the immigration probability will tend to be equal to that of the corresponding sample plot.
At the other extreme, when the percentage of habitat loss increases (i.e. for smaller fragments),

the average distance of the fragment from the mainland also increases, which means that the
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immigration probability will decrease until it becomes zero when there is no remaining
fragment. This apparent dependence of the expected immigration probability on the area of the

fragment is derived in Appendix D and is,

_ ﬁ0.5 s
m mA(Aj 5 (3.5)

where m, is the immigration probability for a=A (no habitat loss) (see figure 3.1).
Adopting different assumptions about the immigration pattern, leads to different
dependencies of the immigration probability on area. To incorporate these, equation (3.5) can

be generalized to,

a -0
— a 3.6
m mA(Aj ) (3.6)

where the exponent @ can be positive, negative or zero and the equation is made to comply
with the fragmentation scenario of Figure 3.1, so that when there is no area loss, the
immigration probability is equal to that of a sample area of size A, i.e. m'(a=A)=m4. For © >0
the immigration probability decreases with the fragment’s area and assumes its maximum
value for the smallest possible fragment (i.e. for a fragment accommodating only one
individual). For @ < 0 the immigration probability increases with the area of the fragment and
assumes its maximum value, my, for the largest possible fragment, namely that of area A.

Finally, for w=0 the immigration probability is independent of area.
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Figure 3.2 Schematic presentation showing how the number of immigrants arriving on an island
(isolate) depends on the island’s area (left) and its distance from the mainland (right). It is assumed that
the density of immigrants (e.g. seeds) that disperse from the mainland to the island decreases with the
distance from the mainland (as represented by the color gradient). The number of immigrants landing
on the island can be approximated by the product of the island’s area and the average density of seeds
over its area. In general, the number of immigrants increases with the island’s area and decreases with
its distance from the mainland.

3.2.2 Extinction debt and Species-Area Relationships

We now turn to examining what the neutral framework for extinctions (equations 3.1-3.4)
predicts in terms of extinction debt and SARs. We consider three habitat loss scenarios
implying different types of dependence of the immigration probability, m’, on isolate’s area a.
In each case, we use equation (3.2) to construct the sample SAR of the habitats before habitat
loss and the ISAR of the isolates remaining after the loss. Analytically, the three cases are:
1. Immigration probability constant (w=0). This is based on the fragmentation scenario
of Figure 3.1 for which we assume that the immigration probability for the isolates, m’,
is independent of their area and their distance from the mainland. Hence the ISAR is
constructed with m'=constant.
2. Immigration probability scales with distance. This is again based on the fragmentation

scenario of Figure 3.1, but where the immigration probability for the isolates scales
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only with their distance from the mainland. This leads to an apparent dependence of m'
on the isolate’s area: m'(a) = mA(a/A)O'5 (equation 3.5).

3. Immigration probability scales with area. In this we consider a scenario of habitat loss
in an island as described by Halley et al. (2014). The immigration probability is
assumed to decrease with area according to m'(a):mA(a/A)'O'S. This could be interpreted
as the result of biotic resistance of the isolate’s community, which is stronger in bigger
(and thus more species-rich) habitats.

In all three cases, the sample SAR is constructed using a constant dispersal number, I, which
means that the immigration probability for sample areas scales as m(a)=I/(I+J,-1), where

Ju.=pa and p is the constant density of individuals (number of individuals per unit area).

Case A: Immigration probability constant

Consider the scenario of habitat loss of Figure 3.1 also shown in Figure 3.3 (a), (b). A
continuous habitat of area A suffers habitat loss, as a result of which a former sample plot of
area a becomes isolated. Due to its increased isolation, the newly formed fragment has a lower
immigration probability than the initial sample area (m'<m). Although the immigration
probability for the isolate, m', is expected to depend on its area (as explained in section 3.2.1),
in this first example we ignore this dependence, i.e. we consider the case w=0, which leads to
m'=constant. Figure 3.3 (c) shows the SAR for sample areas (upper curve) and the
corresponding isolates (lower curve), both produced using equation (3.2). The sample SAR is
produced using a constant dispersal number I=m'(J4-1)/(1-m"). The ISAR is produced using
m'=constant. The arrows in Figure 3.3 (c) represent the decline of species richness due to
imminent and delayed extinctions. The different colors represent the magnitude of imminent
(light grey) and delayed (grey) extinctions and the species richness of the remaining habitat at
equilibrium (dark grey). Note that the two curves intersect at a=A, at which point there is no
habitat loss and the habitat in question is just a sample plot of area A within the surrounding

continuous habitat.

63



/ m \‘.
] 1
) —-—— 1
Ja i

N . Socoo” ’,'
(b

Ca>
|:| Habitat 0 0.2 0.4 0.6 0.8 1
al A

[1 Inhospitable matrix

Figure 3.3 A scenario of habitat loss and the corresponding SARs derived from the neutral model of
biodiversity. (a) A sample plot of area a within a continuous habitat. The plot is dispersal-limited with
immigration probability m. (b) The isolate remaining after clearing the area surrounding the sample
plot. The isolate has lower immigration probability than the sample plot (m'<m). (c) SARs of the two
habitats. The first describes the species richness of sample areas within the initial habitat (sample SAR,
upper curve). This is computed using equation (3.2) with parameters 6=10.0, /I=103.0. The second
describes the species richness of the isolates remaining after habitat loss (ISAR, lower curve). This is
computed using equation (3.2) with parameters 6=10.0, m'=0.1. Different colors represent imminent
extinctions (light grey), delayed extinctions (grey) and remaining species richness (dark grey).
(Parameters: p=928 ind./km? J4=928).
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Case B: Immigration probability scaling with distance

In this second example, we consider the case in which the immigration probability declines
proportionally with the distance from the mainland. Within the fragmentation scenario we
consider, this leads to a scaling of immigration probability with area described by equation
(3.5) and corresponds to w=-0.5. The resulting SARs are shown in Figure 3.4 (c). As in case
A, we construct the sample SAR using a constant dispersal number I=ms(J4-1)/(1-my4). The
ISAR is produced using m'(a) = ma(alA)’. Although the sample SAR is the same as in Figure
3.3, the ISAR has a different form and species richness increases more rapidly with area.
Compared to case A, for a given percentage of habitat loss (e.g. 80%), delayed extinctions
(grey) are increased at the expense of imminent extinctions (light grey) and remaining

biodiversity (dark grey).
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Figure 3.4 A scenario of habitat loss and the corresponding SARs derived from the neutral model of
biodiversity. (a) A sample plot of area ¢ within a continuous habitat. The plot is dispersal limited with
immigration probability m. (b) The isolate remaining after clearing the area surrounding the sample
plot. The immigration probability for the isolate scales with the square root of its area according to
equation (3.5). (c) SARs of the two habitats. The first describes the species richness of sample areas
within the initial habitat (sample-SAR, upper curve). This is computed using equation (3.2) with
parameters 6=10.0, I=103.0. The second describes the species richness of the isolates remaining after
habitat loss (ISAR, lower curve). This is computed using equation (3.2) with parameters =10.0, m'(a)
= my(a/A)* and m,=0.1. Different colors represent imminent extinctions (light grey), delayed
extinctions (grey) and remaining species richness (light grey). (Parameters: p=928 ind./km’ J,=928).
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Case C: Immigration probability scaling with area

Halley et al. (2014) described the situation of habitat loss where an island (already an isolate)
losses part of its area (e.g. due to a volcano eruption or a rising sea level). This scenario is
shown in Figure 3.5 (a), (b). Halley et al. (2014) considered an immigration pattern, where the
immigration probability of the isolate decreases with the isolate’s area according to equation
(3.6) with w=0.5. The SARs for sample plots within the initial island and for isolates
remaining after habitat loss are estimated using equation (3.2) (Figure 3.5(c)). The ISAR curve
is constructed using m'(a)=mA(a/A)'O‘5. The sample SAR is constructed using a constant
dispersal number I=m4(J4-1)/(1-my). In addition to the SAR curves, the species richness of the
sample areas and isolates were estimated from simulations performed using Conlisk’s
colonization method (points) (Conlisk et al. 2010). Both the sample SAR and the ISAR
initially rise more rapidly compared to cases A and B. Although the parameters used in this
case are different, the examples show how the different immigration scenarios result in

different relative magnitudes of imminent and delayed extinctions.
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Figure 3.5 A scenario of habitat loss in an island and the corresponding SARs derived from the neutral
model of biodiversity. (a) A sample plot of area a within the island. The immigration probability for
the island is my4. The sample plot is considered a random sample from the island (no
dispersal-limitation within the island). (b) The island remaining after the partly submersion of the
initial island. The new immigration rate is m'(a). (c) SARs of the two habitats. The first describes the
species richness of sample areas within the initial island (sample-SAR, upper curve), computed using
equation (3.2) with parameters 6=10.0, I=1.18, m,=0.0013. The second describes the species richness
of the islands (isolates) remaining after habitat loss (ISAR, lower curve). This is computed using
equation (3.2) with parameters 6=10.0, m(a)=0.3a"". Different colors represent imminent extinctions
(light grey), delayed extinctions (grey) and remaining species richness (light grey). The black and grey
points represent the species richness computed using Conlisk’s colonization rule (Conlisk et al. 2010)
(see Appendix C). (Parameters: p=928 ind./km? J,=928).

3.3 Relative magnitude of imminent and delayed extinctions

The different colors in Figures 3.3, 3.4 and 3.5 express the message of equation (2.1) that,
following habitat loss, species from the original habitat can meet three fates: some go extinct
immediately (light grey), others are lost in the subsequent relaxation process (grey) and the
remainder form the new equilibrium community (dark grey). The relative magnitude of
imminent and delayed extinctions depends on the size of habitat loss and the extent of
isolation of the remaining habitat, as it is shown in the above figures. Note that these results

are specific to the implicit-space neutral model of biodiversity, which is consistent with a
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random spatial distribution of individuals and a zero-sum multinomial species-abundance
distribution (SAD). In reality, the SAD and the spatial distribution of individuals differ from
that assumed by the neutral model and this difference is expected to affect the size of
imminent extinctions. To explore the influence of the initial community configuration, Halley
et al. (2014) considered two different SADs, the broken-stick and the Zero-Sum Multinomial
(ZSM) and two initial spatial distributions, random placement (RP) of individuals and an
aggregated distribution (AGG) based on a negative binomial distribution.

To estimate imminent and delayed extinctions the following procedure was followed.
The first step was to construct the RAD or the SAD of the initial community. For the ZSM
distribution this was done by running simulations based on Conlisk’s colonization method
(Conlisk et al. 2010, see source code in Appendix C). For the broken-stick distribution the
SAD can be found given the size and the species richness of the community (see Table 1 in
Green and Ostling 2003). The second step was to estimate imminent extinctions, E4,, for a
given spatial configuration (either RP of AGG) using equations (2.4) and (2.5) (Chapter 2,
section 2.1.2). Due to imminent extinctions (loss of endemic species), the remaining
community is left with Sy=Ss-E4., species and J,=(a/A)J4 individuals. The third step was to
determine the equilibrium species richness, Seq, of this remaining community. This was done
using simulations and letting the community to gradually relax to its new equilibrium state.
Note that in estimating S.q, the initial abundance vector of the community after habitat loss is
irrelevant, since the community will always relax to the same equilibrium independent of the
magnitude of imminent extinctions. In other words, in all four cases (broken-stick and RP,
broken-stick and AGG, ZSM and RP, ZSM and AGG) the equilibrium species richness is the
same. The delayed extinctions were then estimated as the difference between the initial species
richness after habitat loss and the species richness at equilibrium, namely D,=So-Seq. The
percentage of delayed extinctions for the four initial community configurations is reported in
Table 3.1, for initial habitats of various sizes and different percentages of habitat loss. The
results correspond to the scenario of habitat loss in an island described in case C of section

3.2.2.
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Table 3.1 Percentage of delayed extinctions (Delayed / (Delayed+Imminent))*100 as a function of the
percentage of habitat loss, in three habitats of different initial sizes. Each column corresponds to a
different initial community configuration: broken-stick or zero-sum multinomial (ZSM) SAD and
aggregation (AGG) or random placement (RP) of individuals across the habitat. Parameters: constant
density of individuals: p=928 (ind./kmz), initial habitat area: A, initial species richness: S, initial
community size: Jy=pA, immigration probability: m'=1/(p-a)” (equation 3.6). Metacommunity:
individuals: Jy=10,000,000, species: Sy=1,400, biodiversity parameter: §=123.7. The aggregation
model used to estimate imminent losses is based on a finite negative binomial distribution with
aggregation parameter k=0.5 for all species (see equation (2.5), Chapter 2).

Broken-stick Zero-sum multinomial
Parameters Area
of initial community | Lost (%) Random Aggregated Random Aggregated

10 90.4 38.5 34.7 9.8
A= 10km’ 30 90.3 45.2 58.5 20.7
Na= 9,280 50 89.4 49.6 65.0 28.7
Sa= 232 70 854 46.6 57.7 27.3
Ja /Sy = 40 90 70.9 37.6 47.2 22.8
99 22.4 15.0 17.1 10.1
10 96.4 40.2 58.4 14.3
A= 100 km* 30 97.3 60.3 72.7 28.3
Na= 92,800 50 96.5 56.7 69.3 26.7
Sa = 397 70 95.5 57.2 68.3 30.2
Ju/Sy= 233 90 91.1 52.5 63.2 30.2
99 61.7 33.7 44.1 23.2
10 99.5 75.3 82.4 35.3
A= 1,000 km’ 30 99.3 72.5 78.7 28.9
Na= 928,000 50 99.2 73.0 77.1 31.6
Sa = 562 70 99.0 74.4 76.1 37.8
Jy/Sy= 1,651 90 98.2 72.3 71.5 40.1
99 90.3 56.8 59.5 333

The results reported in Table 3.1 can be summarized in three main conclusions:

= For a relatively even SAD (broken-stick) and with random placement of individuals,
delayed extinctions dominate. This no longer prevails when the SAD is more
asymmetrical (zero-sum multinomial) or if there is aggregation or both. Thus, in
communities with a large percentage of rare species and a strong degree of localization,
(that is low dispersal abilities), the relative numbers of imminent losses is much larger
than that of delayed extinctions (see also Green and Ostling 2003).

= The percentage of delayed extinctions does not change monotonically with the

percentage of habitat loss. Delayed losses initially increase with lost area but then
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decrease again and become zero when the total area is lost, in which case all
extinctions are imminent. This pattern is more apparent for the aggregated spatial
distribution and the more uneven SADs (i.e. the zero-sum multinomial). In conclusion,
the proportion of delayed losses is largest for low and intermediate levels of habitat
loss.

= Delayed extinctions are more for larger initial habitats. We conjecture, however, that
this is a secondary effect. The decisive variable is the ratio J4/S4, namely the average
number of individuals per species, which with our choice of parameters happens to be
higher in the larger habitats. When this ratio is small, there are a lot of species with few
individuals, which are more prone to imminent extinction and thus delayed extinctions
are less. As this ratio becomes bigger, species are less prone to imminent extinction

and thus delayed extinctions increase.

The above results are indicative of the scaling of the percentage of delayed extinctions with
area and community structure. However, the values are also expected to depend on the
particular immigration pattern. In addition, it should be emphasized that imminent extinctions
were estimated independently of the neutral framework described by equations (3.3) and (3.4).
According to the implicit-space neutral model, the configuration of the initial community is
zero-sum multinomial with random placement of individuals. Thus, there is a mismatch
between the configuration used to estimate imminent extinctions (e.g. aggregation and
broken-stick) and the configuration used to estimate the equilibrium species richness and thus
delayed extinctions (i.e. zero-sum multinomial with random placement). For a fully consistent
estimation of delayed extinctions for aggregated habitats, one should start from an explicit

spatial model.

3.4 Summary and conclusions

The neutral model was used to construct a conceptual framework for understanding the
mechanism of species extinctions following habitat loss. This links the dynamics of the

relaxation process with the SAR method for extinction forecasts. The main result is
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schematically presented in Figure 3.6, which shows two cases. In the first case (Figure 3.6a)
habitat loss causes the isolation of the remaining habitats. In this case, imminent extinctions
can be estimated from the sample SAR of the initial habitat used in a backward fashion. Then,
delayed extinctions are species lost from the remaining habitat due to increased isolation.
These can be found from the difference between the sample SAR and the ISAR describing the
habitat before and after its isolation. In the second case (Figure 3.6b) the remaining habitat is
not isolated due to habitat loss. This can describe a situation where the initial habitat is already
an isolate. In this case, one can estimate the total number of species extinctions (Imminent +
Delayed) from the ISAR used in a backward fashion, a method that is usually used to predict
extinctions in islands (for example see Triantis et al. 2010).

The described framework predicts that delayed extinctions are the sole result of the
reduction of the immigration probability for the remaining habitat. Hence, if the remaining
habitat is no further isolated there are no delayed extinctions. In reality, however, there might
be extinction debt even without further isolation of the remaining habitat. For example, if
habitat loss results in the reduction of species populations without causing any imminent
extinctions (as in the example of Figure 2.3, Chapter 2), there are no species lost as a direct
result of habitat loss. However, the species are now forced to reside in a smaller habitat, which
will lead to delayed extinctions due to increased competition. The limitation of the model to
describe this situation originates from the built-in assumption that the individuals are
randomly placed across the habitat, i.e. the model cannot describe the spatial distribution of
species. To describe this situation an explicit space model is needed.

Nevertheless, as the equilibrium species richness of the habitat does not depend on the
initial configuration, imminent and delayed extinctions can be estimated independently.
Following this approach, we estimated imminent extinctions based on sampling formulas on
aggregated distributions developed by Green and Ostling (2003), while we estimated the
equilibrium species richness using the implicit-space neutral model of biodiversity. The most
important outcome of the analysis is that the number of delayed extinction can be up to two
orders of magnitude greater than imminent extinctions (for the range of parameters used). In

particular, delayed extinctions are expected to be more for less aggregated spatial distributions
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and more even species-abundance distributions. This shows the importance of incorporating

extinction debt in extinction forecasts.

Total
(Imminent+Delayed)

Species richness
Species richness

Area Area

Figure 3.6 A schematic framework for extinctions following habitat loss. (a) The general case: habitat
loss causes the isolation of the remaining habitat (e.g. due to fragmentation). Imminent extinctions can
be predicted from the sample SAR of the initial habitat used in a backward fashion. Delayed
extinctions can be estimated as the difference between the sample SAR describing the reduced habitat
before its isolation and the ISAR describing the same habitat after its isolation. (b) The initial habitat
and the remaining isolate are described by the same ISAR. In this case, the initial habitat, which is
already an isolate, loses part of its area (e.g. the submersion of part of an island due to a volcanic
eruption) without this affecting its degree of isolation (i.e. the immigration rate stays the same). In this
case, the total number of extinctions (imminent + delayed) can be estimated from the ISAR used in a
backward fashion.






Chapter 4

Neutral theory as a null model of

temporal community turnover*

4.1 Introduction

In this chapter we demonstrate how the neutral model can be used as a null model to test
hypothesis regarding the effects of climate change on real communities. Climate change can
increase the rate of species extinctions, as it may disfavor some species and render their
habitat unable to support them. At a local scale, the effects of climate change manifest as a
temporal community turnover, namely a variation of species abundances with time including
possible local extinctions. However, an observed community turnover cannot be readily
attributed to climate change or to other external forces, because communities are always
changing even in the absence of external drivers. The main cause of natural community drift is
demographic stochasticity, namely the random births and deaths of individuals (also called
ecological drift). Additionally, dispersal increases this drift by affecting the composition of
local samples (i.e. sampling effects, section 2.3.4, Chapter 2). Hence, a model of natural
community drift that includes demographic stochasticity and dispersal is appropriate to assess
the significance of an observed turnover in local communities. The purpose of the model is to
capture the extent of variation expected due to natural drift and thus reveal any additional drift,
which can then be linked to external forces (see Box 4.1), i.e. the model is used as a null
model for temporal community turnover. In this study, we demonstrate how the neutral model
can be used as a null model to asses the observed temporal turnover of a community of

butterflies for which there is indication of a response to temperature rise.

* The work presented in this chapter was done in collaboration with Konstantina Zografou and John Halley. This
has been submitted for publication in an international peer-reviewed journal and is currently under review.



4.1.1 Natural community drift

An inevitable element of ecological community dynamics is stochasticity, namely the effect of
processes that involve chance. In population ecology, a main source of stochasticity is
demographic stochasticity, which refers to the random events of births and deaths of
individuals, also called ecological drift. Other sources of stochasticity include environmental
variability (e.g. changes in temperature), but also the stochasticity due to dispersal (i.e. the
random movements of individuals). In this thesis, we will refer to the combined action of
demographic stochasticity and dispersal as natural drift. Because of natural drift, communities
are never static. Nevertheless a community can be in a state of dynamical equilibrium if the
forces affecting it are stationary, namely if they are on average constant and have a fixed
variance (e.g. the temperature fluctuates around a mean value with a fixed variance). At the
state of dynamical equilibrium, the macroscopic characteristics of the community are also
stationary (e.g. the number of species fluctuates around a given average value) (see Chapter
2). Hence, a community that is otherwise at equilibrium can be found in a multitude of
different states that are all consistent with the same average conditions.

Even at equilibrium conditions as defined above, natural drift causes a fluctuation of
species abundances which results in a gradual change of a community’s composition with time
(i.e. species go extinct and are substituted by other species). Thus, natural drift is associated to
a temporal community turnover. Apart from natural drift, a community’s turnover is also
affected by other forces, i.e. biotic factors (interactions between species) and abiotic factors
(change of environmental conditions). In a set of ecological data, natural drift and other
stochastic components can usually be recognized as noise, which can be removed to reveal an
overall pattern or trend. However, depending on the size of a community, the magnitude of
natural drift can be comparable to a systematic drift caused by non-stationary ecological forces
(e.g. temperature rise), making it difficult to distinguish between the two. If the available data
are not appropriate to distinguish between the two processes (natural drift and systematic drift
due to external forces), then the observed turnover can only be significant if it is greater than
the expected turnover under natural drift. Thus, in order to test the significance of an observed

turnover, it is necessary to first estimate the magnitude of natural drift in a community.
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Box 4.1 Statistical hypothesis testing and null models

Stochasticity is inevitable in ecological data and statistical hypothesis testing is frequently
used to make sense of or extract information from data. In such cases, a null model can be
used in order to capture stochasticity and thus reveal any underlying ecological
mechanism or relation between the measured variables or to test hypotheses. Gotelli and
McGill (2006) make the distinction between two types of null models used in ecology.
The first type is that of statistical null models. Statistical null models are not actual
models, but refer to randomization techniques on observed data. In these, the data are
randomized to produce an ensemble of possible states of a system by stochastically
varying according to some degrees of freedom, while keeping some constraints implied
from the observed data. The second type of null models is that of dynamical or
mechanistic null models. These are actual models as they assume some mechanisms by
which the observed system works. In these, the observed data are only involved in
estimating the parameters of the model. Then, the parameterized model is used to produce
a number of possible states of the system that are consistent with these parameters.

Example of a mechanistic null model. Suppose that a coin is tossed 10 times and the
sequence of heads and tails is recorded e.g. [T, T, H, T, H, H, T, T, T, T]. Then it is asked
whether the coin is fair. To be able to answer this question one needs to compare the
observed sequence with the sequence produced by a fair coin, namely a coin which gives
heads or tails with probability 0.5. As there is stochasticity (one cannot predict the result
of a given coin toss), every sequence of 10 successive tosses of the fair coin will be
different. For this reason, the fair coin has to be tossed many times to produce a fair
amount of sequences of 10 successive tosses. Then, to decide whether the initial coin was
fair is a matter of counting how many times the fair coin produced a result like the one
observed. This is the basis for a statistical hypothesis testing, where the null model is the
fair coin and the corresponding null hypothesis is that “the coin that produced the
observed sequence is fair”. Luckily, one need not have a fair coin, but it is sufficient to
construct a conceptual model of a fair coin. In this particular example, the probability of
obtaining 3 heads and 7 tails when tossing a fair coin 10 times is given by the binomial
distribution and equals p = 0.117 (where in order to keep things simple, we ignored the
particular order of heads and tails). This probability is large enough to say that the
observed sequence could be produced by a fair coin. Hence, the null hypothesis cannot be
rejected.

The neutral model in one of several possible models that can be used to estimate the

magnitude of natural drift. Compared to other drift models, the neutral model pioneers in one
important aspect; that is it takes into account the sampling effects that arise when local
samples are drawn from a dispersal-limited community (see section 2.3.4, chapter 2 or Etienne
and Alonso 2007). The model has been used before as a null model to assess species temporal

turnover in real communities (Leigh et al. 1993, McGill et al. 2005, Gilbert et al. 2006,
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Ricklefs 2006). Using the neutral model as a null model, one assumes that the natural drift of

the community in study is well approximated by neutral drift.

4.1.2 Introduction to the application

In recent years, there is a growing literature that cites the effects of climate change and
temperature rise on ecological communities. A typical sign of temperature rise is the
expansion of population’s ranges to higher altitudes or latitudes as they track the movement of
temperature isotherms (Walther et al. 2002). On a local scale, what is usually observed is the
invasion of species from lower altitudes (or latitudes) and the decline or extinction of local
species populations that are on the lower temperature edge of their distribution. The invasion
from lower altitudes is a much faster procedure compared to the extinction of local
populations. The latter is a slow relaxation process that can take years to complete (extinction
debt, Jackson and Sax 2010, Halley et al. 2014). This difference in the rates of species
introduction (through invasion) and species extinctions, causes an apparent increase of species
diversity at a local level, which if conditions remain constant will be restored by the eventual
loss of species that are not favored by the changed conditions.

Butterflies and other insects provide an excellent example for examining the effects of
global change on populations, as they react faster than other groups to the changes of
temperature (Bale et al. 2002, Devictor et al. 2012). Furthermore, due to their short life cycle,
changes on their distribution, abundances and community composition can become visible
over a short time period (Robinson et al. 2012). The best documented effect on butterfly
populations as climate warms is geographic range expansions to cooler areas, towards higher
latitudes or altitudes (Parmesan et al. 1999, Parmesan and Yohe 2003). As a result, species
adapted to warm conditions begin to invade ecological communities (Barry et al. 1995,
Dapporto and Dennis 2013, Wilson et al. 2007).

There have been many studies proving the northward expansion of species ranges
(Walther et al. 2002, Parmesan 1996). To make the connection with climate change, a
common approach is to show that the observed changes in a community over time are

consistent with the expected changes under a projected scenario (Southward et al. 1995,
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Holbrook et al. 1997, Brown et al. 1997, Sagarin et al. 1999, Meshinev et al. 2000, Parmesan
2006, Poloczanska et al. 2013). In studies where the whole species range is observed, a
possible range expansion may be easy to show and provides a strong evidence of the effects of
climate change (Parmesan 1996). However, proving the effects of climate change from the
change of community composition on a local scale is tricky, because a turnover caused by
natural drift can easily be mistaken for an effect of climate change. Given the possible bias
towards publishing studies that prove the effects of climate change (and possibly not
publishing studies that prove opposite effects), a statistical test for natural drift is even more
important.

In this study, we used the neutral model as a null model to asses the observed turnover
of the butterfly community of Dadia National Park, Greece, for which there is an indication of
turnover due to temperature rise. Dadia NP is located in northeastern Greece and is part of the
NATURA 2000 network. Due to its conservation status, the reserve has remained relatively
unmodified by humans for the last 30 years, which excludes land use changes as an
explanation for the observed turnover. The butterfly community of Dadia NP has been
surveyed by Grill and Cleary in 1998 and by Zografou in 2011 and 2012 following the same
sampling scheme (Grill and Cleary 2003, Zografou et al. 2014). A comparative analysis of the
data between the two samplings (1998 and 2011), done by Zografou et al. (2014), showed an
increase of warm-adapted species and a decrease of cold-adapted species. This was found to
be significant based on randomization tests. As reported in Zografou et al. (2014), the
observed turnover was consistent with the temperature rise recorded in the area between 1990
and 2012. In all habitats except one, the community temperature index increased significantly,
an indication that the community is being dominated by warm-adapted species.

The aim is to see whether the observed turnover of the Dadia butterfly community in a
period of 13 years can be explained by natural drift alone. If this is the case, then there is one
more mechanism that explains the observed turnover as well as climate change and thus the
hypothesis of climate induced changes is not sound. If on the contrary natural drift is not
sufficient to explain the observed turnover, then the hypothesis of climate induced changes can

be further assessed.
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4.2 Methods

4.2.1 Model Parameterization

The parameterization of a model consists of two steps. In the first step one needs to make a
connection between the model’s concepts (or entities) and the real system in study. The
second step is the estimation of the model parameters. The main elements of the implicit-space
neutral model (described in Chapter 2) are the metacommunity and the local community. We
make the connection between the model and our study system based on the following
assumptions: a) we identify the metacommunity to Evros region, which is the regional unit of
Greece containing Dadia NP, b) we assume that the seven sampled areas are independent local
samples from this metacommunity and c¢) we assume that the metacommunity has a fixed
rank-abundance distribution. Considering a fixed metacommunity distribution is a common
practice, justified by the fact that the metacommunity turnover times are much larger than
those of the local communities, hence its distribution does not change significantly during the
time scale of examination (Volkov et al. 2003, Etienne and Alonso 2007).

Given the above, the parameters that need to be determined are the size of the
metacommunity, Jy;, the fundamental biodiversity parameter, & (Hubbell 2001), and the
immigration probabilities for each local sample, m;. Ideally, these parameters should be
measured directly or estimated independently of the data used to test the model (Gotelli and
McGill 2006). However, as this is very difficult to do, the usual methodology followed is to
estimate the parameters that maximize the likelihood of the observed data set (Etienne 2007,
Jabot et al. 2008). In this study we followed the usual methodology of maximum likelihood
parameter estimation that is described in Etienne (2005), Jabot et al. (2008) and Etienne
(2007). However, in contrast to previous studies, we introduced a parameterization of the
metacommunity that is partly independent of the test data set. In particular, we assumed that
the metacommunity species-abundance distribution has a log-series form and specified its
species richness from estimates of regional diversity that exist for our study area.

We first estimated the biodiversity parameter of the metacommunity, 8, using Ewen’s
sampling formula (Ewens 1972). As explained in Hankin (2007), to estimate @ it is sufficient

to maximize the following function,
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where § and J are the number of species and individuals of the pooled sample (i.e. the sample
that results from the merge of the data of all the samples). Given 6, we estimate the
immigration probability (m;) for each local sample independently, using Etienne’s sampling

formula (Etienne 2005) as applied by Jabot et al. (2008). For one sample with abundance

vector N; ={ny,..., nsm}, the likelihood of immigration probability m and metacommunity
vector X={xi,..., Xxsm } s,
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where I=m(J-1)/(1-m) is the fundamental dispersal number of the sample, (/); denotes the
rising factorial (Pochhammer symbol), J the number of individuals in the sample and Sy the
number of species in the metacommunity (Jabot et al. 2008). Following Jabot et al. (2008), we
assumed that the metacommunity abundance vector, X, is fixed and the same for all samples.
However, instead of identifying the metacommunity to the pooled sample as proposed by
Jabot et al. 2008, we assumed that this follows a log-series rank-abundance distribution. To
create the metacommunity abundance vector, we used the estimated 6 and the recorded
number of species of the regional area (i.e. the species richness of Evros region (Sy=128)
reported in Pamperis (2009)). We then found the metacommunity size using the log-series
species individual curve, Sy=6-In[1+J\/6]. We produced 100 random metacommunity vectors
with these parameters and took the average. To enforce a correspondence between the species
in the metacommunity and the species in the samples, we sorted the metacommunity vector
according to the observed pooled abundance vector averaged in both years. The parameters
estimated using our approach and Jabot’s approach are reported in Table E1 (Appendix E).

Because the samples taken from the same habitat in 1998 and 2011 differ in size, we estimated

81



the parameters again after re-sampling the bigger sample (either 1998 or 2011) to make the
two equal in size (Table E2, Appendix E). The effect of using a larger metacommunity than
the pooled sample used by Jabot et al. (2008) is that the estimated immigration probabilities

for all samples are smaller than those estimated using Jabot’s method (Table E1, Appendix E).

4.2.2 Simulations

We used direct simulations of the stochastic process to produce an ensemble of equilibrium
neutral samples corresponding to each of the seven parameterized communities, using the
1998 parameterization. For the simulation of the local community dynamics, a source code
was developed in Fortran 95 programming language. This can be found in Appendix F. To
produce one sample, we run the simulation for 10,000 generations (years) to allow it to reach
stationarity (dynamical equilibrium) and recorded the species-abundance vector of the sample
at the end of the simulation. The produced samples correspond to possible states of the
communities when these are at dynamical equilibrium. We also produced random samples
from the log-series metacommunity. These are produced by running the simulations with
immigration probability m=1, which corresponds to a random sampling of the metacommunity

(Etienne and Alonso 2007).

4.2.3 Estimation of temporal turnover

In order to quantify the turnover of the observed and the simulated communities in a period of
13 years, we used two measures of turnover. The first measure is the Root Mean Squared
Distance (RMSD) between an abundance vector sampled at time ¢ and the same vector

sampled at time ¢ + At,

RMSD = J DI LA A (4.3)
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with n;; and n,.,; denoting the abundances of species i at the two instances, S the total number
of species found in both samples (the union) and A¢ = 13 years. As a second measure of

turnover we used the Bray-Curtis dissimilarity index defined as,

5 |
z, lnt,i nt+An

BC= 4.1

z lnl‘l +nr+Arz

The two measures of turnover differ in that the RMSD measures the absolute change in
abundance, while the BC index measures the relative change. Because the samples taken from
the same habitat in 1998 and 2011 differ in size, before applying equations (4.3) and (4.4) we
re-sampled the bigger sample (either 1998 or 2011) and re-estimated the dispersal
probabilities, m;.

To estimate the turnover of the corresponding neutral samples we performed
simulations using the 1998 parameterization. For each sample we performed the simulation for
13 years at stationarity, recording the species-abundance vector at the beginning and the end
of the simulation. We repeated each simulation 1,000 times to get 1,000 sets of vectors 13
years apart and applied equation (1). Apart from the community turnover, we are also
interested in the population drift of separate species. For this we performed the simulation for
10,000 years at stationarity and kept record of the abundances of all species at the end of each
year. We then selected an initial abundance value ny, found all species that have this
abundance at some point in time as well as their abundances after 13 years. This way we
constructed a distribution of abundances after 13 years, for each initial abundance, ny. We
assumed that a species has significant change in abundance if its observed abundance after 13

years lies outside the 95% confidence intervals of the distribution of neutral abundances.

4.3 Results

The first step is to asses the goodness of the parameterization. This can be done by comparing
the rank-abundance distributions (RADs) of the observed samples with the corresponding

distributions of the simulated samples. Note that there isn’t a one to one correspondence
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between the species in the real samples and the species in the simulated samples. As far as the
neutral model is concerned, all species have the same a-priory probability of reproduction and
extinction. Furthermore, the number of species predicted by simulations is not the same in
every simulation and does not coincide with the observed number of species in the
corresponding samples. The RAD plots are shown Figures 4.1 and 4.2. There are two main
conclusions from Figures 4.1 and 4.2. (a) The observed distributions fall within the bulk of the
neutral distributions for all seven habitats and for both years and (b) the observed
pooled-sample RADs do not fall within the bulk of the simulated metacommunity
distributions. Overall the parameterization is good. The mismatch between the observed
pooled-sample and the simulated metacommunity samples means that the merge of local

samples cannot be considered a random sample from the assumed log-series metacommunity.

84



10° 10" 10
Pooled sample Agriculture 4 DMeadow
’w\ 10”10 107
107 Ry T
\\‘..,, 107 B, 10° ~
10" 10" 10"
o 0 50 100 0 20 40 60 0 20 40
2 10 10" 10"
1]
g GPasture f MForest t OForest
2 107k 107 |y, 107
© *e 3 o~’ e
o o b
= 3 b1 -3 i -3 v
E 1 0 uuu“" 1 0 wm 1 0 ““m
[ IR L LR VAN Wil L
o -4 -4 -4
10 10 10
0 20 40 0 20 40 60 0 20 40 60
10" 10"
+ FForest I WhMeadow
107| 8 107
1 073 ’...’ 1 073 ‘“....
10" 10"
0 20 40 0 20 40 60

Descending rank in abundance

Figure 4.1 Rank-abundance distributions of the seven local samples and of the pooled-sample in 2011.
Black dots represent the observed relative abundances ranked in descending order. Grey lines represent
1,000 rank-abundance distributions of the simulated neutral communities (parameterized using the
maximum likelihood parameters of Table E1, Appendix E). The pooled-sample simulated distributions
are produced using immigration parameter m=1 (no dispersal limitation), which stands for random
sampling of the metacommunity.
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Figure 4.2 Rank-abundance distributions of the seven local samples and of the pooled-sample in 1998.
Black dots represent the observed relative abundances ranked in descending order. Grey lines represent
1,000 rank-abundance distributions of the simulated neutral communities (parameterized using the
maximum likelihood parameters of Table E1, Appendix E). The pooled-sample simulated distributions
are produced using immigration parameter m=1 (no dispersal limitation), which stands for random
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sampling of the metacommunity.

distribution of the simulated samples (boxes). Using both measures of turnover (RMSD or
Bray-Curtis index), we find that in all habitats (except one) the observed turnover is higher
than the median neutral turnover. The exception is the Wet Meadow habitat, for which the
RMSD measure predicts lower turnover. The higher than neutral turnover found in 6 of the 7

habitats is a result that could have occurred by chance. However, using a Wilcoxon

Figure 4.3 shows the turnover of the real samples (grey dots) and the turnover
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signed-rank test (Wilcoxon 1992), we find that this has a probability of less than 2.5% to have
occurred by chance. Finally, in the three forest habitats, the observed turnover is significantly

greater than expected by neutral drift.

30 , T
o -
@) . g ol ® e o
525 R S 3 -
0 - + T } c I - |
gzo% =0 o ';,0-6%% e -
T | : T A Fosf | @ = T
o 15 . BB I= B | HH I
5 . ‘% 0.4 | | |
= @@E o 27 LT EBH
s1000 L 0 T L Sosl L - 0 T T T
= i $ i i - - - 8 $ % i —.i: H i
5| - 0.2 T s
- +
AG DM WM GP MF OF PF AG DM WM GP MF OF PF

Figure 4.3 Observed turnover between 1998 and 2011 (grey circles) and turnover of 1,000 simulated
neutral samples (boxes) for each of the seven habitats (AG=Agriculture, DM=Dry meadow, WM=Wet
meadow, GP=Grazed pasture, MF=Mixed forest, OF=0ak forest, PF=Pine forest). (a) Turnover
defined as the Root Mean Squared Distance (RMSD). (b) Turnover defined as the Bray-Curtis
dissimilarity index. Boxes define the upper and lower quartiles of the distribution, i.e. they contain
50% of the values around the median, which is represented by the horizontal grey line. Whiskers
extend to 1.5 times the boxes range. The real turnover is computed after re-sampling the bigger vector
(either 1998 or 2011) (see section 4.2.1 and Table E2, Appendix E). Based on the RMSD the turnover
is significant for the MF, OF and PF habitats (p=0.004, <0.001 and 0.002). Based on the BC
dissimilarity index the turnover is significant for the MF, OF, PF (p<0.001) and the GP habitat
(»=0.002).

To visualize the change in abundance of separate species, we plot the abundance of
every species in 2011 against its abundance in 1998, for each of the seven habitats separately
(Figure 4.4). On the same plots, we draw the corresponding 95% confidence intervals of the
distribution of simulated abundances, which are computed by the method described in section
4.2.3. Figure 4.4 shows that in two of the habitat (Agriculture and Wet Meadow) the
abundances of all species lie within 95% confidence intervals of the neutral distributions,
while in the rest of the habitats there are a few species which lie outside the 95% confidence
intervals. We identified 16 such cases, which correspond to 11 species (out of the 88 species

studied). Almost all of these species have increased their abundance except from Aporia
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crataegi and Argynnis paphia, while three of the species (Aricia agestis, A. crataegi and
Kirinia roxelana) show significant increase or decrease in more than one habitat.

These species are listed in Table 4.1, along with the 19 species that were reported by
Zografou et al. (2014) to contribute more to turnover. We see that species that contribute more
to turnover do not all have significant change in abundance according to the drift model. In
particular, from the 19 species reported by Zografou et al. (2014), only 7 have an observed
trend in abundance that cannot be attributed to drift. Furthermore, we found 4 other species
whose change in abundance is greater than expected by drift. Table 4.1 also reports the
Species Temperature Index (STI); that is the mean temperature value per species across its
range (data taken from Schweiger et al. 2014). Viewing our results in conjunction with the STI
values shows that species with high STI (warm-adapted) have increased abundance; while
species with low STI (cold-adapted) have either increased or reduced abundance. The above is

a sign of increased domination of warm-adapted species in the communities.
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Figure 4.4 Observed species abundances in 2011 versus their abundances in 1998 for the seven local
samples (open circles) and 95% confidence intervals (CI) of the corresponding distribution of
simulated neutral abundances (grey lines). Simulated data are drawn from stationarity by picking
random species with a given abundance and finding the distribution of abundances after 13 years.
Species with abundances that lies outside the grey lines have higher or lower abundance in 2011 than
expected by the model. The real data are plotted after re-sampling the bigger sample (either 1998 or
2011) to make the 1998 and 2011 samples comparable in size.
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Table 4.1 Butterfly species with significant increase (+) or decrease (-) in abundance between
1998 and 2011 (i.e. species that lie outside the 95% confidence intervals of the distribution of
simulated abundances of Figure 4.2) and species that contributed more to turnover according
to Zografou et al. (2014). STI £ SD: Species Temperature Index with + 1 Standard Deviation
(Schweiger et al. 2014, supplementary material 1). Note that the average STI value of all 88
species in our samples is 10.5. Habitats: the habitats where significant changes occurred in this
study (AG=Agriculture, DM=Dry meadow, WM=Wet meadow, GP=Grazed pasture, MF=Mixed
forest, OF=0ak forest, PF=Pine forest). Nomenclature follows the updated taxonomy of
European Butterflies, made for the Red List of 2010 (Van Swaay et al. 2010).

Zografou This

Species et al. (2014) study STI+=SD Habitats
Coenonympha pamphilus - 8.96 £ 3.89

Argynnis paphia - - 9.02 + 291 MF
Vanessa cardui - 9.04 + 4.12

Polyommatus icarus + + 9.07 = 4.11 GP
Aporia crataegi - - 9.14 + 3.53 GP, OF
Issoria lathonia - 9.33 + 3.08

Favonius quercus + 9.49 + 2.79 MF
Maniola jurtina + + 9.85 + 3.29 MF
Thymelicus sylvestris + 9.87 £ 2.96

Aricia agestis + + 10.16 + 2.89 MF, OF, DM
Satyrium ilicis + 10.21 £ 2.91

Melitaea didyma + 1042 = 3.10

Hipparchia fagi + + 10.53 + 2.62 PF
Brenthis daphne - 10.60 = 2.90

Arethusana arethusa - 10.63 £ 2.22

Colias crocea + 10.69 = 3.33

Melitaea trivia - 10.97 = 2.71

Brintesia circe - 11.07 £ 2.74

Pieris mannii - 1146 = 3.13

Argynnis Pandora + 11.92 + 3.06 GP
Kirinia roxelana + + 13.10 = 2.34 MF, OF, PF
Hipparchia syriaca + 13.13 + 2.61 PF
Hipparchia fatua + 14.03 + 2.28 DM

4.4 Discussion

Ecological drift and dispersal are two inevitable sources of stochasticity affecting populations.
This natural drift can cause a community temporal turnover that can easily be mistaken for an
environmental trend. For this reason, statistical inference and hypothesis testing are necessary

to interpret observations. The proposed framework is to use the neutral model of biodiversity
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as a null model for temporal community turnover. That is to use the model to simulate natural
drift and be able to asses the observed turnover using standard methods of statistical
hypothesis testing. There are two main assumptions behind this framework: 1) the assumption
that the community in study is affected by natural drift (ecological drift and dispersal) and 2)
the assumption that the natural drift of the observed community is well approximated by
neutral drift.

The framework was used to asses the turnover of a butterfly community (in
Dadia-Leukimi-Soufli National Park, Greece), for which there is an indication of shift due to
temperature rise over a period of 13 years. We found that neutral drift explains most of the
variation of species abundances. At the same time, there is a considerable number of species
that don’t behave as expected by neutral drift (i.e. have significant change in abundance) and
hence their change in abundance could be more reliably associated with changing conditions
and in particular climate change. Thus, we reject the null hypothesis of natural drift as the only
explanation of the observed turnover. Although there might be other hypothesis explaining the
observations, the climate change hypothesis is very plausible and can be further assessed.

The drift model reveals a significant increase in abundance of warm-adapted species
(i.e. species with high Species Temperature Index), consistent with the temperature rise
recorded in Dadia NP since 1990 (Zografou et al. 2014). The above is in agreement with the
study of Zografou et al. (2014), which reported an increased alpha-diversity of warm-adapted
species and an increase of the Community Temperature Index. At the level of particular
species, we find that the observed trends of 11 species cannot be attributed to drift, 8 of which
showed significant turnover in forest habitats, where the observed community turnover is also
higher than expected by drift. Zografou et al. (2014) also report species that contribute more to
community turnover. However, we found that many of these species trends are actually
explained by neutral drift, while we found a few more species, not reported by Zografou et al.
(2014), whose change in abundance is greater than expected by drift.

The increase of populations of species associated with warm conditions is a frequently
observed pattern (Barry et al. 1995, Wilson et al. 2007, Dapporto and Dennis 2013) explained
by the northward expansion of species ranges (Parmesan and Yohe 2003). A typical example

of a northward range expansion is that of A. agestis in Britain (Pateman et al. 2012). The same
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species abundance increased significantly in Dadia, unlike in some other Mediterranean areas
where its population declined (Stefanescu et al. 2011). Similarly, the increased abundance of
Favonius quercus in our system contrasts with the stable and declining population trends in
Catalonia and Andorra (Stefanescu et al. 2011). However, our findings for A. crataegi and A.
paphia (decreased abundance) are in accordance with corresponding observations from central
Spain (Merrill et al. 2008), North Europe (Parmesan et al. 1999) and Catalonia and Andorra
(Stefanescu et al. 2011). Finally, the significant increase in abundance of Maniola jurtina is in
agreement with the prediction of Isaac et al. (2011) for the UK.

The present study is not the first to use a drift model to assess real communities’
turnover. Leigh et al. (1993) found that the turnover (over 9 years) of the tree community on
the islands of Gatun Lake is not explained by demographic stochasticity, attributing this result
to a violent change in environmental conditions. McGill et al. (2005) examined fossil records
of mammalian communities across 1 million years and found that they changed less than the
neutral drift predicts, concluding that there are also deterministic forces at work in structuring
communities. More recently, Dornelas et al. (2014) carried out a meta-analysis of time series
from different taxa and geographical regions (with most series concentrated in the last 40
years). They found that the observed community turnover is higher than expected by a neutral
model, attributing this to changes of environmental conditions like habitat loss, climate
change, species range shifts and invasion. Like Dornelas et al. (2014) we find the observed
community turnover to be higher than expected by the neutral model but the only known
systematic change in conditions in our study area is temperature rise, which we consider as the
most likely cause of the large turnover.

Although the model’s applicability can be limited by its assumptions, it has one great
advantage compared to previous models of community drift. That is it takes into account the
sampling effects that arise when local samples are drawn from a dispersal limited community.
This property (i.e. the sampling property) extends out of the model’s limits (Alonso and
Etienne 2005) and should be incorporated in statistical inference based on samples.

A large number of papers report changes in ecological communities and attribute them
to climate change. Our results show that natural drift can also lead to substantial rates of

species turnover, which could be mistaken for a response to climate change. Furthermore,
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autocorrelations of environmental variability will substantially increase these rates of turnover.
This underlines the need for careful statistical analysis when attributing ecological community
changes to climate change or other large-scale processes. In this respect, a null model that
simulates natural drift can be used to exclude the expected natural turnover and thus
investigate the causes of any additional turnover. To this end, neutral model offers a

reasonable starting point.
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Chapter 5

Neutral theory with random fission
speciation as a model of the relaxation

process’

5.1 Introduction

In this chapter we attempt the mathematical description of the relaxation process within the
neutral theory of biodiversity. The aim is to describe the variation of species richness with
time in a community that is out of equilibrium as a result of a given disturbance, as for
example habitat loss, change of climatic conditions, diseases, natural destructions or other.
Today habitat loss is the main disturbance on ecological communities and the leading cause of
species extinctions. As we discussed in Chapter 2, the main effects of habitat loss are the
reduction of the available habitat area (i.e. the reduction of available resources) and the change
of conditions affecting the remaining habitats (e.g. isolation). Relaxation after habitat loss
affects every species to a different extent, while the interactions between species and the
interaction of species with the changed environment are important (e.g. extinctions of
co-adapted species, environmental changes favor some species but not other etc.).
Nevertheless, in the core of it, relaxation is the competition of species to take hold of the
remaining available resources and the resulting change of species abundances that this causes.
On this basis, the neutral model seems like the appropriate model to describe the community

dynamics following habitat loss or other disturbances. In such a case, the aim is to estimate the

> The work presented in this chapter was done in collaboration with John M. Halley, Yoh Iwasa and Harry
Varvoglis. This has been submitted for publication at an international peer-reviewed journal and is currently
under review.



average number of species going extinct with time, ignoring the particular interaction between
species, which provides a first approximation to the more complex process of relaxation.
Earlier attempts to describe the relaxation process have been based on the theory of
island biogeography of MacArthur and Wilson (1967). According to this theory, the
equilibrium species richness of an island (or a local community) is determined by a balance
between immigration from the mainland (or the regional community) and local extinctions. By
this view, a community that is out of equilibrium is characterized by an imbalance between
local extinctions and immigration. For example, in a habitat area that became recently isolated,
the immigration rate is reduced and there are more extinctions per unit time than introductions
of new species through immigration. So the species richness will decrease until a new balance
is met. The simplest version of the model assumes that the extinction rate on the island is
proportional to the number of existing species and the immigration rate is proportional to the
number of species in the mainland that are absent from the island. The theory of island
biogeography was used by Diamond (1972) to predict the decline of species richness in islands
following an event of habitat loss. Diamond (1972) considered a constant rate of extinction per

species and derived an exponential decline of the number of species with time,
S()=8,, + (S =S e, 5.1)

with Sy the initial species richness, Se¢q the equilibrium species richness and ¢, the relaxation
time. Along similar lines but including competition between species, Terborg (1974)
considered an isolated habitat (no immigration) and found that the decline of species richness

with time is described by,

St)=—"—. (5.2)

The neutral theory of biodiversity was build on the basis of the island biogeography
theory, with the difference that the dynamics of the community are modeled by stochastic

processes at the individual level (see Chapter 2). This difference, apart from leading to a much
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richer behaviour, gives the opportunity to directly link the macroscopic features of
communities to the fundamental processes of birth, death and dispersal, thus providing a tool
for discovering the relative role of these processes in shaping macroecological patterns. The
dynamical behaviour of the neutral model has already been studied. A time-dependent
species-abundance distribution for a neutral community subject to immigration has been
independently derived by McKane et al. (2000, 2004), Azaele et al. (2006) and Chisholm
(2011)). At the same time, there hasn’t been much effort in deriving relaxation curves
analogous to those derived from the theory of island biogeography. The only exceptions are
the works of Gilbert et al. (2006) and Halley and Iwasa (2011) who derived relaxation curves
for isolated communities (with no immigration or speciation). The solution of Gilbert is based
on a branching process and is applicable to short timescales (r<<J). Halley and Iwasa (2011)
gave a solution that also applies to long timescales, by solving the neutral model equations

assuming a broken-stick species-abundance distribution. This is,

S)=—-"—, (5.3)

in which tso denotes the half life time to equilibrium. Note that in an isolated community, like
the one described by Halley and Iwasa (2011), the equilibrium state is fixation. Namely in the
end, one species dominates the community (Seq=1), provided that the species are bound by a
zero-sum rule. If the species dynamics are independent (no zero-sum rule), then eventually all
species drift to extinction (S¢q=0).

In this study, we extend the result of Halley and Iwasa (2011) to communities where
species diversity is sustained through speciation. In such a case, the equilibrium species
richness is non-trivial and results from a balance between extinctions and introduction of new
species. To introduce speciation we use the neutral model with random fission speciation,
which has been studied before by Haegeman and Etienne (Haegeman and Etienne 2010,
Etienne and Haegeman 2011). Based on this model, we derive a closed-form equation for the
variation of species richness with time. This has three parameters: the initial species richness,

the speciation rate and the species richness at equilibrium and can be parameterized to predict
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the relaxation curve of real communities or to estimate characteristic times to relaxation and
the species richness at equilibrium. We present two possible applications of the equation. In
the first, we estimate extinctions times for a number of avifaunal communities that have
suffered habitat loss. In the second, we predict the relaxation curve of the avifaunal
community of Barro Colorado Island. Since all of the communities considered are also
affected by immigration, we clarify the conditions under which the model can be used to

account for immigration as well as speciation.

5.1.1 Speciation modes in neutral model

In his original model, Hubbell uses the mechanism of point mutation speciation as the
mechanism that sustains the biodiversity of the metacommunity. However, he also briefly
discusses the random fission mode of speciation, which he introduces as a mechanistic
description of allopatric speciation. Unlike the point mutation mode where new species arise
by random mutations of individuals at birth, in the random fission mode, new species arise by
randomly splitting the population of existing species. From the two population fragments
resulting from the split, one remains to the mother species while the other forms the initial
population of the new species (Haegeman and Etienne 2010). A crucial difference between the
point mutation and the random fission mechanism is the initial abundance of the newly created
species. While in point mutation new species arise as singletons (i.e. with one individual), in
the random fission mode the abundance of the new species is a random proportion of the
abundance of the mother species. Because species with high abundance are more likely to
speciate, newly created species are likely to have a high initial abundance and thus a rather
high survivorship. This leads to higher species richness at equilibrium than in the point
mutation mode. In general, the random fission speciation mode predicts more realistic
speciation rates and mean lifetimes of species and is considered by some authors more realistic
than the point mutation mode (Etienne and Haegeman 2011, Rosindell et al. 2011).

An important parameter of the neutral speciation models is the community-level
speciation rate, namely the number of speciation events happening in the community per unit

time. Hubbell described both point mutation and random fission speciation as individual based
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processes. Namely, individuals are picked at a constant rate to initiate a speciation event
(either point mutation or random fission) (see Chapter 2). This means that the
community-level speciation rate is proportional to the number of individuals in the
community. Hence, in a community of a given size, speciation events happen at a constant
rate. The above description facilitates the simplicity of describing and implementing the
model, however it might not be realistic at least for some speciation modes (Etienne et al.
2007b). For example, the random fission mode of speciation, involves dividing the population
of species, so that the speciation rate is expected to depend on the existing number of species.
Such a model, in which the speciation rate depends on both the number of individuals and the
number of species, has been solved by Etienne et al. (2007b). By contrast, in point mutation
speciation, the linear dependence of community-level speciation rate on community size
seems reasonable. Hubbell (2001) supports that the above dependence offers an explanation to
the mechanism of radiation bursts. He suggests that these bursts are a result of the population
expansion of species after a mass extinction. As species expand their populations, they have
more births than deaths. Because speciation events happen at birth, more births lead to more
speciation events, which explains the rapid appearance of new species.

Still in reality, speciation is a complex spatio-temporal process that requires the
reproductive isolation of population. In particular, allopatric speciation requires the geographic
isolation of species populations. A hint on how allopatric speciation works in a group of
isolated islands was given by Rosenzweig (1995), who suggested that if the geographic
barriers are occasionally crossed by individuals, but after enough time for a speciation to be
established, then “this system acts like a speciation machine, rapidly cranking out new
species”. This mechanism was implemented by Yamaguchi and Iwasa (2013) in a model of
neutral accumulation of genetic differences, allowing a small (smaller than speciation) but
recurrent immigration between islands. It was shown that there is a value of immigration rate
for which the rate of species formation is maximized. In a situation like this, the number of
speciation events happening per unit time increases with the number of existing species.
However, the number of species cannot increase indefinitely. If available resources put a
constraint on community size, then as species numbers increase, every species will have less

individuals, which will reduce its probability of speciating.

99



From the above, it is clear that the dependence of speciation rate on population size
and species richness is not trivial, as it largely depends on spatial processes affecting the gene
flow within or between populations. Studies of real speciation events suggest that the
speciation rate increases with habitat area and decreases with increasing levels of gene flow,
while the level of gene flow determines the minimum area for which speciation can occur
(Kisel and Barraclough, 2010). Since the random fission speciation model we use here is
spatially implicit, these dependences cannot arise as predictions of the model. To avoid a
complicated description, we assume that the community-level speciation rate is constant
throughout the relaxation process and thus it does not depend on the number of existing
species. The dependence on the number of individuals does not matter in our case, as the
community size is kept constant (zero-sum rule). This description is consistent with the
original description of the random fission speciation model by Hubbell (2001) and Haegeman

and Etienne (2010).

5.2 Derivation of the differential equation

The model of a neutral community subject to random fission speciation has been studied by
Haegeman and Etienne, who found closed-form solutions for the equilibrium and the time
evolution of the community (Haegeman and Etienne 2010, Etienne and Haegeman 2011).
Haegeman and Etienne described the evolution of the community in continuous time, so as
time passes, birth-death events and speciation events happen at a constant rate and
independently of each other (decoupled). In a birth-death event which happens with rate u, a
random individual is selected to die (death) and is immediately replaced by the descendant of
another random individual from the community (birth). In a speciation event, which happens
at rate v, a species is selected with probability proportional to its abundance to undergo
speciation. The population of this species splits into two fragments, one corresponding to a
newly formed species and the other to the old species. If the initial abundance of the old
species was k, then after the split, the old species can have from 1 up to k-1 individuals, with

all possible ways of splitting happening with the same probability. Note that both birth-death
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and speciation events conserve the total number of individuals in the community, so that the
community size is constant at all times.

Like in the local community or metacommunity model described in Chapter 2, the
evolution of the random fission speciation metacommunity can be described with a master
equation. Below we derive the master equation for the average number of species with
abundance n (this is equation (34) in Haegeman and Etienne (2010)). We will refer to a
species with abundance n as being at state n. If we denote by S, the expected number of
species being at state n and by R(n,k) the transition rate from state n to another state k, we can

write the following general master equation,

ds
dtﬂ =Y [Rtkn)S, —R(nk)S,]. (5.4)

The possible transitions in the random fission model happen due to birth and death of
individuals and random fission speciation events. All possible transitions and their
corresponding rates for a species at state n are listed in Box 5.1. Based on these, the master

equation (5.4) takes the following form,

ds !
y L= S F S — (21,458, + D s, 2" (0)S,, (5.5)
t

m>n

where r,=u(n/J)((J-n)/(J-1)) is the rate related to birth-death events, s,=vn/J for n>1 and s,=0
is a rate related to speciation events and f"™(n)=1/(m-1) is the probability that a species of
abundance m that undergoes speciation will break into fragments (n, m-n). Note that s;, the
rate of speciation for a species with one individual, should be set to zero. Even if we consider
that the individual of this species is replaced by an individual of a new species when
speciation happens, this has no net effect on the total number of species. In order to proceed,

we need to introduce the total number of species, S, into equation (5.5). We note that S can be

expressed by the sum: S =Z::ISH. Taking the time derivative of this equation gives
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7 dS

= Z 17", i.e. the time derivative of the total number of species can be
"= dt

d_S:i 4 Sn)
dt dt =

found by summing equation (5.5) from n=1 to n=J. Doing so, leads to the following equation,

ds J J J J J
o DS+ S = 22, +5,)8, DD 5, 2f M ()S,, . (5.6)
n=1

-1 n=1 m>n

=
I
—
S
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Box 5.1 Transition rates for a state with abundance » in a metacommunity
with random-fission speciation

The following diagram shows the possible transitions in and out of a state with abundance
n, in a community with random-fission speciation. The transitions are due to birth, death
and speciation events.

—

n-k n-1 n n+1 nt+k
— W

Moving out of state n. There are three types of transitions out of a state with abundance

n.

Description Transition Rate

An individual dies n— n-1 r=u(n/J)((J-n)/(J-1))
An individual gives birth n— n+l r=u(n/J)((J-n)/(J-1))
A species undergoes speciation n— n-k s,=vnlJ, n>1
(only species with more than one 51=0

individual can speciate)

Moving into state n. There are three types of transitions from a state m # n into state n.

Description Transition Rate

An individual gives birth n-1-n Fua=u(n-1/0)((J-n+1)/(J-1))

An individual dies n+1—n Fon=u(n+1/0)((J-n-1)/(J-1))

A species with m=n+k individuals n+k—n r=s, 2f"(n)=vm)I(J(1-m))"

speciates into fragments k and n

*In this case there are J-n possible transitions, as the initial abundance m can range from
n+1 to J. To take these into account, the rate rhas to be summed over the range of m.

#% f"(n)=1/(m-1) is the probability that a species with abundance m that speciates will
have n individuals after the split. Because there are two ways in which a fragment of
abundance r is produced from this split (i.e. either the old species gets » individuals or the
new species gets n individuals), the probability that this split leads to state n is
2/ (n)=2/(m-1). This is illustrated by the double arrow in the graph.

Substituting the rates and evaluating the sums of the right hand side (see Appendix G), we

obtain the following differential equation,
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as _  u+v

dt J

5, (5.7)

Note that equation (5.7) can also be derived from equation (58) of Etienne and Haegeman
(2011).

Equation (5.7) describes the change of species richness with time as a function of S,
which is the number of species with one individual at time ¢ (singleton species). Since S is
unknown, in order to proceed we have to express S as a function of S. For a community that is
out of equilibrium, for example after an event of habitat loss, S; will be an unknown function
of time. However, in a community at or close to stationarity, S is a given fraction of the total
species richness, S, which can be determined by the species-abundance distribution of the
community. Here, in order to be able to express S; as function of S, we assume that the
species-abundance distribution of the community is fixed throughout the relaxation process. In
the random fission model, the equilibrium species-abundance distribution is very close to the
broken-stick distribution (see Etienne and Haegeman (2011) equation (74) of Appendix 4).

The expected number of species with n individuals in the broken-stick distribution is:

S-2

S = S(SJ_ D (1—?) . So, the expected number of species with one individual is:
S-2 2

S, = S(SJ D (1—%) . For J/>>$>>1 this formula is well approximated by S, zST (see

Appendix H). Substituting into equation (5.7) leads to a differential equation for S that is of a

“proper” form,

das _ = u+v

VT S, (5.8)

By setting dS/d¢=0 in equation (5.8) we find the equilibrium species richness,

Sy =J | (5.9)
V+u
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In equation (5.9), v+u is the total rate at which events (either births-deaths or speciation)
happen in the community, so that the fraction v'=v/(v+u) represents the probability of
speciation, given that an event happens. Using V', the equilibrium species richness can be also

be expressed as Seq:\/v' J.

5.3 Solution of differential equation (5.8)

Equation (5.8) can be solved by separation of variables. The step by step derivation can be

found in Appendix I, which leads to our main result,

28
S=Sy+o—at—0i,
So+S8e o1 (5.10)
SO _Seq

with Seq the equilibrium species richness of equation (5.9), So the species richness at time ¢ = 0
and y = 2v/S¢q a constant determining the rate of increase or decrease of species richness,

which we will be calling the relaxation rate.

5.4 Characteristic times of relaxation

Solving equation (5.10) for # we can find characteristic times of relaxation (see Appendix J):

1 {(5 +8,,)(Sy — Seq)}
tz;ln . (5.11)

(S =S, )(Sy +5.,)

We define as t, the time needed for a fraction p of the total extinctions to be realized. As the
total number of species that will eventually go extinct is Sp-Seq and the remaining species
richness when a fraction p of these extinctions happen is S, = So— p (So— Seq), substituting S =

S, into equation (5.11) gives,
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(5.12)

£, =1(S, = (S, —5.) zlyh{wo +8.,)- p(S, —Seq)}_

(A=p)(Sy+S,,)

For p=1/2, equation (5.12) gives the time for half of the extinctions to happen (half-life time),

which is,

1 S, +3S.
ts =—1n{M}. (5.13)

5.5 Dimensionless equations

The isolated-fragment and random fission speciation (RFS) equations (5.3) and (5.8) can be
transformed to dimensionless equation by applying appropriate transformation of variables.
The isolated-fragment equation can be transformed to a dimensionless equation by defining

the relative species richness s;= S/Sy and relative time #; = #/tso. This leads to,
s, =1/(1+1,). (5.14)

This equation is similar to that found by Terborg (1974) (equation (5.2)). To create a
parameter independent version of the RFS equation, we begin from equation (5.11). The

definition of new variables sq. = [(S =S, )(Sy + S, )5 +5.,)(S, = 5., and 1 = 7 leads

to the following equation,

Sgp = €Xp(—~tgp) - (5.15)

This has an exponential form similar to the equation derived by Diamond (equation (5.1)). The
dimensionless forms of the equations could be used to compare data from different studies. To

do so, the real data have to be normalized according to the above transformations. Plotting the
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data along with the dimensionless curves is a way to test the model and can also provide an

estimate of the expected uncertainty when the model is used to fit a new data set.

5.6 Comparing with simulation results

The derivation of equation (5.10) is based on the assumption that the species-abundance
distribution (SAD) of the community is broken-stick throughout the relaxation process. This is
not generally true. For example, soon after a disturbance, the SAD can be widely different
from the equilibrium broken-stick distribution. For this reason, the relaxation curve of
equation (5.10) is expected to initially deviate from the full solution (i.e. the solution where
the initial state is taken into account). To quantify this deviation, we compare the predictions
of the equation with direct simulations of the stochastic process. A detailed description of our
algorithm and the Fortran 95 source code is provided in Appendix K. We simulate three initial
community configurations that are characterized by different initial SADs: a) a broken-stick
SAD, b) a log-series SAD and c) an even SAD (where all species have the same number of
individuals).

Figure 5.1 shows the theoretical relaxation curve of equation (5.10) along with the
average relaxation curve from simulations, for the three cases. For a broken-stick initial SAD,
the theoretical relaxation curve coincides with the simulation average (Figure 5.1a). For an
even initial SAD, the theoretical curve initially declines more rapidly than the simulation
average (21.3% maximum divergence) and converges after 80 generations (Figure 5.1b).
Finally, for a log-series initial SAD, the theoretical curve initially declines more slowly than
the simulation average (10.2% maximum divergence) and converges after 50 generations
(Figure 5.1c). We conjecture that this difference in the initial relaxation rate is explained by
the proportion of rare species in the initial community. The log-series community has more
rare species than the theoretically assumed broken-stick community. As rare species quickly
drift to extinction, the initial relaxation rate is faster in the log-series community. Accordingly,
in a community with an even initial SAD there are no rare species and the initial relaxation
rate is slower than the theoretical curve predicts, because species need on average more time

to go extinct.
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Figure 5.1 Comparison between the theoretical relaxation curve of equation (5.10) (black line) and the
average relaxation curve from simulations (red line: average and grey lines: 95% confidence intervals),
for three different initial conditions: a) a community with a broken-stick species-abundance
distribution (SAD), (b) a community with a log-series SAD and (c) a community with an even SAD.
Average and confidence intervals are calculated from 50 simulations. Parameters: Community size
J=1000, speciation probability v'=0.0001.
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Figure 5.2 Equilibrium species richness, S, as a function of community size, J, for two different
speciation probabilities (v'=0.01 and v'=0.0001); comparison between the theoretical curve of equation
(5.9) (line) and simulation results (points). Each simulation point represents the number of species at
the end of a 10,000 generation run of the stochastic process. At this point the largest community
(J=10,000 individuals) has reached stationarity.

Another prediction of the model is the equilibrium species richness of the community
(equation (5.9)). We performed simulations for different community sizes and speciation
probabilities and recorded the equilibrium species richness at the end of each simulation (after
10,000 generations). Figure 5.2 shows the equilibrium species richness as function of
community size as predicted by simulations and by equation (5.9) for two different values of
the speciation probability. The simulation results seem scattered symmetrically around the line
hence the predictions of equation (5.9) are fairly accurate. By further investigating the
parameter space we find that equation (5.9) is accurate for big enough communities (J >
1,000) and low enough speciation probabilities (v' < 0.1) (see Appendix L). For high
speciation probabilities or small communities the equilibrium species richness 1is

systematically underestimated.

5.7 Species-Area Relationships

Equation (5.9) gives the species richness, S, of the community as a function of its size, J and

the rates of birth-death, ¢ and speciation, v,
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Etienne and Haegeman (2011) derived a similar equation for the same model (equation (31) on

page 91). This is,
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(5.17)

with 1Fj(a,b,c) the confluent hypergeometric function. Equations (5.16) and (5.17) can be
thought of as species-individual curves, namely curves that predict the species richness of
communities of different sizes. For a community saturated with individuals, the number of
individuals is approximately proportional to the area of the habitat accommodating the
community, so that equations (5.16) and (5.17) can be transformed to species-area
relationships by substituting J = pA, where A is the habitat area and p is the average density.
However, in order to derive the species-individual curve or species-area relationship one also
has to take into account the scaling of the community level speciation and birth rates (v and )
with the community size (J) and the number of species (S). For the community birth rate it is
reasonable to assume that it is proportional to community size, namely ¢ = mJ, where m is a
constant birth rate per individual. However, it is not generally know how the speciation rate
scales with J and S. As we mentioned in section 5.1.1, the speciation process is a complex
spatio-temporal process, which depends greatly on the geometry of the habitat (e.g. see
Yamaguchi and Iwasa 2013). Hence, the dependence of the speciation rate on J and S is not
straightforward to predict. Here, we consider a general power law dependence of the
speciation rate on community size and explore the predicted SAR forms. In particular, we
assume that the speciation rate scales as a power of community size, namely v=kJ* with k a
constant. The possible dependence on the species richness, S, is ignored as this was already

not considered in deriving equation (5.16). Substituting v into equation (5.16) we get,
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with ¢ = m/k a constant. Below we consider two specific values of x, namely x=0 and x=-1. In
the first case (x = 0), the community level speciation rate is constant (v = k = constant, i.e.

independent of community size) and equation (5.18) takes the form,

J J
S: = = emJO'S,
N+mios  iviie, V7 (5.19)

where Oy, = J(v/u) = k/m = const. is the fundamental biodiversity parameter as defined in the
point mutation speciation model (Etienne and Alonso 2007, Haegeman and Etienne 2010 eq.
(33)) and the last step results by considering that J>>0,n,,. In the second case (x = -1) the
community level speciation rate is inversely proportional to community size v = k/J and

equation (5.18) takes the form,

_ J _ J
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S

(5.20)

where 0,s= J vlw) =\(k/m)=const. is the fundamental biodiversity parameter as defined in the
random fission speciation model (Etienne and Haegeman 2011). In Figure 5.3 we compare the
species-individual curves of equations (5.19) and (5.20) with the corresponding curves
resulting from equation (5.17). The curves we derived are quite good approximation of the
more complex curves of Haegeman and Etienne. For values of x in the range -1 < x <0, the
resulting species-individual curves have an approximate Arrhenius form with exponents
between 0 and 0.5. For x=-1 the curve is asymptotic, meaning that species richness is bounded

below a maximum value.
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Figure 5.3 Two types of Species-Individual Curves resulting from the random fission speciation model
(equation (5.16)) (solid lines). The red solid line (equation 5.19) is produced by considering that the
community level speciation rate is constant (i.e. does not depend on community size, J). The resulting
curve has no saturation point, namely the number of species increases indefinitely with the number of
individuals. For large community sizes the curve converges to an Arrhenius curve with exponent 0.5.
The black solid line (equation 5.20) is produced by scaling the speciation rate inversely proportional to
community size. This has the property of keeping the species richness bounded as the number of
individuals, J, increases. The dotted red and black lines are the corresponding curves produced from
equation (31) of Etienne and Haegeman (2011) (equation (5.17) (see Muller (2001) for methods of
computation of the confluent hypergeometric function). All curves correspond to a constant
biodiversity parameter 9=10.

5.8 Real Data Applications

Observational data on speciation under habitat loss are hard to find. In the following we
parameterize the RFS relaxation curve from data of avian extinctions from islands and forest

fragments that are also affected by immigration. We use the RFS mechanism to account for



the compound effects of immigration and speciation assuming that, under certain conditions,
the RFS mechanism would have similar effects on species richness as immigration. Haegeman
and Etienne (2010) approximated the random fission speciation mechanism using an
immigration model with multiple immigrants colonizing the community at each immigration
event. If immigrants replace a number of individuals of an existing species to keep the
community size fixed, then immigration has the same effect for the target community as
random fission speciation. There are however two basic differences between the two
mechanisms: 1) while in immigration, the species to immigrate and the number of immigrants
depend on the composition of the regional species pool (i.e. are determined externally); in
speciation, both the species to speciate and the abundance of the new species depend on the
current community composition and the fission mechanism. 2) All species created by
speciation are new to the community. In immigration this is true only in the limit of an infinite
species pool. For a finite species pool, the rate of inflow of new species in the community
depends on the relative number of species that are common in the community and the regional
species pool. Based on the above, immigration can be modeled as random fission speciation if:
a) in immigration events the immigrating individuals belong to the same species and replace a
number of individuals of a species of the target community. b) the broken-stick distribution is
retained at least approximately (this means that immigrants replace a random portion of
individuals of an existing species) and c) the regional species pool is big and the immigration

rate is low, so that most of the immigrating species are new to the community.

5.8.1 Relaxation rates in avifaunal communities

In this first example, we parameterize equation (5.10) using the same data set that was used by
Halley and Iwasa (2011) to parameterize the isolation equation (5.3). The data come from
different studies of avian extinctions from around the world. These are summarized in
Appendix M, Table M1 (columns 1-5). All studies provide two values of species richness, the
initial species richness, Sy, and a record of species richness at a later time, S(¢). Halley and
Iwasa also provide the equilibrium species richness, S, which is estimated based on a

species-area relationship. Given the two records of species richness at times #y and ¢, we can
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compute the proportion of species gone extinct in the time interval At = #—t), between the two
observations. This is p = (So-S(£))/(So-Seq). Knowing p and Ar we can find the relaxation rate, y,
from equation (5.12) and the time for half of the extinction to happen, ts9, from equation
(5.13). Note that because the islands and forest fragments considered here are also largely
affected by immigration, the relaxation rate will reflect the compound effects of extinctions,
speciation and immigration in these communities. The estimated relaxation rates and half-life
times are given in columns 6-8 of Table M1, Appendix M.

In Figure 5.4 (a) the half-lives estimated from the two models (isolated-fragment
model and the RFS model) are plotted against fragment area. As illustrated by the power law
fits to the data, the dependence of relaxation time on area is weaker in the RFS speciation
model. For the RFS model, the half-life time increases with the square root of area (t50~A0'5),
while for the isolated-fragment model the increase with area is much sharper (f5o~A"%).
Furthermore, the two curves cross at around 50ha of fragment area, so that the half-life time
predicted by the RFS model is longer than that predicted by the isolated-fragment model for
small habitats (less than 50 ha), but is shorter for larger habitats (more than 50 ha). This result
can be understood in the two limiting cases. First note that the extinctions predicted by the
FRS model are always less or equal to those predicted by the isolated-fragment model, where
the equilibrium is always one species. Hence, everything else being equal, the time needed to
reach the equilibrium will be shorter in the RFS model. This effect is dominant in large
fragments, for which the two models predict very different number of extinctions. By contrast,
in smaller fragments (less than 50 hectares), the number of extinctions predicted by the two
models are comparable. In this case, a slower relaxation rate in the RFS model leads to longer
relaxation times. Note that the above results characterize the particular data set and don’t
necessarily describe a general case. In general, the relaxation time in the random fission model
depends on the equilibrium species richness, the initial species richness and the speciation

probability and hence its dependence on area is not straightforward.
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5.8.2 Avifaunal relaxation in Barro Colorado Island

In this application we use data of avian extinction from Barro Colorado Island (BCI) to
parameterize equation (5.10). Barro Colorado is a land-bridge island which was isolated in
1914 after the flooding of Gatun Lake to create the Panama Canal (Robinson 2001). Since
1920 there has been regular monitoring of the island’s avifauna. The surveys conducted in
early 1930s by F.M. Chapman reported 208 bird species including water birds (according to
Willis and Eisenmann 1979). We use data from 4 subsequent surveys conducted in 1970,
1977, 1995 and 2006, whose findings are reported in Willis and Eisenmann (1979), Robinson
(2001) and Watson (2010) (Table I). Since Willis and Eisenmann (1979) and Robinson (2001)
provide lists of the species recorded by name, we were able to derive presence/absence of
these species in 1970, 1977 and 1995 by comparing these lists. Following Robinson (2001),
we consider only resident species including water birds but excluding migrant species.
However, because the classification of species in Robinson (2001) and Willis and Eisenmann
(1979) do not always coincide, we adopt the classification of Robinson (2001) and include
only the species that are mentioned in both studies. The resulting list is included in Appendix
M, Table M2. The last record of species richness in 2006 is derived from Table 2 of Watson
2010. In order to include the water birds, we added the 24 water birds (i.e. all 186 species
minus the 162 forest species) to the 122 observed island resident species (see page 282 of
Watson 2010 for the species classifications). Table 5.1 shows the species richness derived
from the 5 surveys and the parameters estimated from a least-squares fit to equation (5.10).
The observed data and the fitted model are plotted in Figure 5.4 (b). This predicts an
equilibrium species richness of 116 + 23 (95% confidence intervals). It is also predicted that

90% of the total extinctions will have been realized by 2079.



Table 5.1 Numbers of bird species recorded in Barro Colorado Island in 5 surveys between 1930 and
20006, after the islands isolation in 1914. The species richness reported here refers to all resident bird
species, including water birds but excluding migrant species (Robinson 2001). Parameters estimated by
a least-square fit of equation (5.10) to the data. Relaxation rate (y), initial species richness (Sp)
(corresponding to year 1914 or r=0), equilibrium species richness (S.y) and the corresponding 95%
confidence intervals in parenthesis. The half-life time (#sy) (the time needed for half of the extinction to
happen) and the time needed for 90% of extinctions to happen estimated from equations (5.12) and
(5.13) respectively.

Data source Year of survey & Tseoistiii:ce S(?i,cl?rli:scsies
Willis and Eisenmann 1979 1930 16 208
Robinson 2001 1970 56 166
Willis and Eisenmann 1979 1977 63 161
Robinson 2001 1995 81 152
Watson 2010 2006 92 146

Non linear least square fit parameters
y So Seq t5o foo
0.0012 237 116 43 165
(0.0055 - 0.0179) (228 - 245) (93 -139)
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Figure 5.4 (a) Time for half of the extinctions to be realized (#59) as function of the habitats' area for
the avifaunal communities of Table M1, Appendix M. Half-life time estimated from the isolated-
fragment model of Halley and Iwasa (2011) (black points) and from the random fission speciation
model (grey points) and fitted power models t507i501=2A0‘8 (black line) and t507RFS=4.7A0'5 (grey line). (b)
Relaxation of the avifauna of Barro Colorado Island. Observed species richness from 5 surveys (open
circles) and least-squares fit to equation (5.10) (solid line). The observed records of species richness
refer to island resident species reported in Willis and Eisenmann (1979), Robinson (2001) and Watson
(2010). The fit predicts 116 + 23 (95% confidence intervals) species at equilibrium (dotted-line) and
237 £ 9 (95% confidence intervals) species in 1914, the year of the island’s isolation. The time for 90%
of the total extinctions to be realized is estimated to be around 65 years from now.

5.9 Discussion

Many of the results for extinction relaxation have been based on isolated communities
(Richman et al. 1988, Gilbert et al. 2006, Halley and Iwasa 2011). In this study, we have
generalized earlier results by deriving a closed-form expression for the variation of species
richness with time in a community where new species can enter through speciation. For this
we used the neutral model of biodiversity with random fission speciation (RFS). Our equation
has three parameters (one more than the isolated-community model of Halley and Iwasa
(2011)): the speciation rate, the initial species richness and the species richness at equilibrium.
In contrast to an isolated community where the equilibrium state is fixation (one species
survives), the RFS equation predicts a non-trivial equilibrium resulting from a balance

between speciation and extinction. Mathematical formulas for the variation of species richness
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with time (i.e. the relaxation process) have been derived using MacArthur’s and Wilson’s
theory of island biogeography (Diamond 1972) and competition theory (Terborg 1974).
However, being able to describe the relaxation process with the neutral model of biodiversity
is important, as this predicts the dynamics of communities in terms of fundamental ecological
processes taking place at the level of individuals. With neutral biodiversity models nowadays
used as baseline models for processes that produce empirical biodiversity patterns, the model
we use here allows us to explore a wider variety of factors affecting biodiversity loss.

To derive the equation we assumed that the species-abundance distribution (SAD) of
the community is broken-stick throughout the relaxation process. Within the neutral model we
used, this is true for a community that is at or close to a steady state (equilibrium). For a
community that is far from equilibrium (e.g. just after a disturbance) the SAD can differ. To
investigate the validity of our assumption, we compared the predictions of the equation with
direct simulations of the stochastic process for different initial states (SADs) of the
community. We find that, the assumption provides a very accurate approximation to the actual
relaxation curve (i.e. the one found using simulations) for communities whose initial
configuration is broken-stick. For initial species-abundance distributions (SADs) that are more
even/uneven than the broken-stick, the initial relaxation rate is overestimated/underestimated.
Still, it can be concluded that for commonly observed SADs (ranging from broken-stick to
log-series) the initial deviation from the actual relaxation curve is less than 9%.

The equation also provides a simple expression for the species richness of the
community at equilibrium, which is S¢q = \v' J, with V' the speciation probability per birth and
J the community size. The above is a simplification to the more accurate formula derived by
Haegeman and Etienne (2010) for the same model. By exploring the parameter space using
simulations, we find that for realistic values of speciation probabilities (v'<0.1) and big enough
communities (J>1000), the formula agrees very well with the simulation average. For small
communities or high speciation probabilities the equilibrium species richness is systematically
underestimated. Given the correct scaling of speciation rate with community size, the same
formula can also provide species-individual curves or species-area relationships. Here we
explored the possible species-individual curves resulting from the model by considering that

the speciation rate scales as a power of community size. This results in two different types of
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curves, which have either an Arrhenius or an asymptotic form. As we discuss below, these are
not the only possible species-individual curve that can result from the model. Possibly a
different curve will arise if a scaling of speciation rate with the number of species is included,
but as this requires a completely different approach we didn’t consider such a case.

The RFS equation can be used to predict the decline of species richness in real
communities after catastrophic events (e.g. habitat loss). To demonstrate how this works, we
parameterized the equation using data from avian extinctions. In the first application we used
the data that were used by Halley and Iwasa (2011) to parameterize the isolated-fragment
model. We find that the RFS model predicts shorter relaxation times than the
isolated-fragment model for fragments of more than 50 hectares, but longer relaxation times
for smaller fragments. By fitting a power model to the data of half-life times versus area we
find that the half-life time predicted by the RFS speciation model depends less strongly on
fragment area than predicted by the isolated-fragment model. In particular, this increases with
the square root of area in the RFS model and with the 0.8 power of area in the isolated
fragment-model. In the second example, we fit the equation to observations of avian species
richness from Barro Colorado Island. This predicts that the equilibrium species richness is
around 116 species and that 90% of the total extinctions will have been realized by 2079. In
both the above examples immigration is likely to be playing an important role, for some of the
data at least. Thus, we have used a random fission speciation mechanism to account for the
compound effects of immigration and speciation. This will be a reasonable assumption a) if
the regional species pool is big and immigration rate low, so that most of the immigrating
species are new to the community and b) if immigration events are such that multiple
individuals immigrate at once and replace a random portion of individual of a species in the
community.

Although both speciation and immigration can be considered as just an inflow of new
species in the community, the two processes are fundamentally different. While immigration
depends on the abundances of species of the regional community (i.e. it is externally
determined), the abundance distribution of the “new” species in speciation depends on the
species-abundance distribution of the community itself (Haegeman and Etienne 2010). Hence,

a possible extension of the model will be to include an explicit description of immigration
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events. An important parameter of the random fission speciation model is the speciation rate.
Here, in agreement with the original model by Hubbell (2001) and Haegeman and Etienne
(2010), we considered a constant speciation rate per individual so that the speciation rate of
the community is also constant given that the community size is fixed. The above is a fair
assumption for an equilibrium community, in which all macroscopic characteristics are on
average constant over time. However this might not be the case for a community far from
equilibrium. In particular, as speciation is a species-level process, the speciation rate is also
expected to depend on the number of species (Etienne et al. 2007b). Such a case has been
described by Yamaguchi and Iwasa (2013) who studied a model of allopatric speciation in a
group of isolated islands where there are rare immigration events. In this case, the rate of
species formation is at least initially increasing with the existing number of species. In general,
the speciation process is a complex spatio-temporal process that requires some kind of
reproductive isolation of populations (e.g. geographic isolation). Hence, a natural extension of
the model will be to combine neutral drift with an explicit modeling of the speciation
mechanism. This can reveal the dependence of speciation rate on species richness and
community size and give more accurate description of the relaxation process in general.
Furthermore it can provide the correct form of species-area relationships.

The model we used here combines random fission speciation and neutral extinction to
predict the dynamics of species richness. Although there are many reasons for which such a
simple model deviates from reality, it is very important to have a simple and analytically
tractable model in which all the situations can be analyzed. Such models can help crystallize
our ideas on what are the leading factors affecting biodiversity loss and formulate a paradigm

within which matters of biodiversity loss can be discussed in the future.
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Chapter 6

Summary and Conclusions

Habitat loss is today the main causes of species extinctions and a major threat to biodiversity
as a consequence of the increase of human population and activities (Millennium Ecosystem
Assessment, 2005). Predicting its effects is thus an important matter in conservation biology.
Currently, there is no complete theory of biodiversity and no single framework to describe
biodiversity loss. The traditional SAR method for extinction forecasts, although correct in
principle, gives only an equilibrium estimate of biodiversity capacity based on area and does
not take into account community composition or dynamics (Halley et al. 2013). To this end,
dynamical models of community organization are a helpful tool for predicting the response of
ecological communities to habitat loss or other global disturbances. The purpose of this thesis
was to investigate how a dynamical model, and in particular the neutral theory of biodiversity,
can improve our understanding of the process of extinctions following habitat loss and
whether this can provide the basis for building a unified description of the process of
biodiversity loss. The model was used in three separate applications: 1) as a conceptual model
to construct a framework for understanding the relaxation process after habitat loss, 2) as a
null model for temporal community turnover to reveal possible effects of climate change on a
given community and finally 3) to develop a simple mathematical description of the relaxation
process in a habitat where new species are recruited through speciation.

To date, the commonly-used method to predict extinctions following habitat loss is the
SAR method. This predicts extinctions as the difference in the carrying capacity of the initial
habitat (before the loss) and the habitats remaining after the loss. Nevertheless, the method’s
assumptions and predictions are questioned (Connor and McCoy 2001, He and Hubbell 2011).
As we argue in Halley et al. (2013) (Chapter2, section 2.2), although much of the criticism is
justified, there is nothing fundamentally wrong with the SAR method itself, while the errors

arising in SAR predictions are due to unavoidable sources of uncertainty (i.e. the natural



scatter of SARs), but also due to either the misuse of the method or misinterpretation of its
predictions. A common misuse of the SAR method is due to ignoring extinction debt, i.e. the
fact that some of the extinctions following habitat loss are delayed in time. This can lead to
two types of error. The first arises in cases where habitat loss is accompanied by
environmental changes that alter the character of the remaining habitats (e.g. isolation of the
remaining habitat). Ignoring this alteration will result in using a wrong functional form for the
SAR of the remaining habitat (e.g. use of continental SAR instead of isolate SAR in cases of
isolation), which can lead to underestimation of the total extinctions (Halley et al. 2013). The
second error arises when the SAR predictions are compared with observations of species
richness before delayed extinctions are realized. Then, the apparent mismatch between the
observation and the prediction of the method can be falsely interpreted as an overestimation of
extinctions, although this mismatch is due to ignoring extinction debt (Halley et al. 2013).

In the first application, we used the neutral model to construct a conceptual framework
for understanding the process of extinctions following habitat loss. The value of this
framework is that it connects the SAR method for extinctions with the dynamics of the
relaxation process, thus providing a justification of the SAR method from the point of view of
the community dynamics. The framework also clarifies some ideas on the origin of extinction
debt. Firstly, extinction debt following habitat loss can be interpreted as the result of two
phenomena. The first is the reduction of resources (i.e. the loss of area). Although the
reduction of resources is immediate, few species will go directly extinct, even though many of
them will have reduced populations. Thus, soon after habitat loss, the number of remaining
species usually exceeds the biodiversity capacity of the remaining habitat(s). The second
reason is the possible isolation of the remaining habitat(s). This further reduces their capacity,
so that these cannot support the same number of species as before their isolation. In this latter
case (i.e. when there is isolation), extinction debt is precisely the difference between the
sample SAR describing the habitat in question and the island SAR describing the same habitat
after its isolation. Finally, for common species-abundance distributions and spatial
configurations, delayed extinctions (extinction debt) can be orders of magnitude greater than
imminent extinctions. This result highlights the important consequences of neglecting

extinction debt in extinction forecasts (Halley et al. 2014).



Together with habitat loss, the change of environmental conditions is another major
driver of species extinctions. Such changes (e.g. temperature rise) can render a habitat
inadequate to support some species, thus having an effect on these species that is similar to the
effects of habitat loss. In the second application, we used the neutral model as a null model to
reveal the possible effects of temperature rise in a community of butterflies. Approximating
the natural drift of the community by neutral drift, we estimated the magnitude of temporal
turnover expected in the community under equilibrium conditions. We found that neutral drift
is not sufficient to explain all the observed variation of species abundances in the community.
The additional turnover was mainly due to the increased abundance of species associated to
warm conditions, which is consistent with the expected effects of the temperature rise that was
recorded in the area. Nevertheless, the results show that natural drift can clearly lead to large
rates of turnover, rates which could easily be mistaken for a response to climate change. We
conclude that without an appropriate statistical test, one cannot derive safe conclusions on the
origin of turnover. To this end, the neutral theory of biodiversity provides a good starting
point.

Models of stochastic community drift have been used before to assess temporal
turnover in real communities (Leigh et al. 1993, Gilbert et al. 2006, Ricklefs 2006).
Nevertheless, the neutral theory adds an important component to these tests. Apart from
accounting for stochastic demography (i.e. births and deaths of individuals), it also includes
the stochasticity due to sampling effects that arises when localized samples are drawn from a
community. In such a case, the composition of the sample is not the same as that of the
community, as this is affected by the dispersal pattern of the individuals in the community.
The implicit-space neutral model accounts for this effect by introducing dispersal-limitation
between the community and the local samples, which is modeled as a restriction of the
individuals of the community to enter the local communities. This is achieved by introducing
one more parameter, which is the immigration rate. Although including dispersal-limitation
provides a better explanation of the composition of local sample, the additional parameter can
rarely be estimated directly from data. The usual methodology for estimating the model
parameters is maximum likelihood parameter estimation based on observed species-abundance

distributions (Etienne 2007, Jabot et al. 2008), which however is a fit rather than a



parameterization from observed data (Etienne 2007). In the present thesis we have slightly
altered the maximum likelihood methodology of Jabot et al. 2008 and estimated the
regional-community species richness directly from data, thus reducing the effect of the test
data set on the parameterization.

In the last application, we used the neutral model to mathematically describe the
relaxation process. In this, we derived a closed-form equation for the variation of species
richness with time in a community that is subject to speciation, thus expanding a previous
result by Halley and Iwasa (2011) that applied to fully-isolated habitats. The equation can be
used to forecast the species richness at any time after habitat loss or any other disturbance. In
contrast to the isolated-fragment model for which the equilibrium state is fixation to one
species, here the equilibrium species richness is non-trivial and can be predicted as a function
of the community size and the speciation rate. To model the recruitment of new species in the
community, we used the mechanism of random fission speciation (RFS) (Haegeman and
Etienne 2010). Although this restricts the use of the equation, we clarified the conditions under
which the random fission mechanism can also be used to account for immigration. This
allowed parameterizing the equation using real data of avian extinctions from islands and
forest fragments that are also subject to immigration. Estimating the relaxation time, we found
that compared to the isolated-fragment equation, the RFS equation predicts a less steep
increase of the relaxation time with the area of the island or fragment, which grows as the
square root of area. Parameterizing the equation from data of avian extinctions in Barro
Colorado Island we found that the island is still in the relaxation process and that it should
settle to around 116 bird species approximately 100 years from now.

Although an important step towards mathematically describing the relaxation process,
the solution presented here refers only to the mechanism of random fission speciation and
there is the need to describe the relaxation process under different mechanisms of species
recruitment like immigration, point mutation speciation and other. Furthermore, an explicit
description of the speciation process that models the process at the level of species and takes
into account its spatial dimensions will allow a more realistic description of the relaxation

dynamics (Etienne et al. 2007b, Yamaguchi and Iwasa 2013).



We have explored the use of the neutral model of biodiversity in predicting
biodiversity loss following habitat loss. The neutral model assumes a simplified view of the
ecological communities’ assembly, which ignores interactions between species and introduces
only a weak coupling through competition for limited resources. The model itself has been
heavily criticized for making unrealistic assumptions. However, as noted by Rosindell et al.
(2012), a model’s assumptions do not need to be strictly accurate for it to provide a successful
description of reality. Regarding the neutrality assumption, nobody seriously believes that
species behave neutrally (Alonso et al. 2006, Rosindell et al. 2012). Namely, neutrality is not
offered as a law of ecology to replace niche differentiation and adaptation. On the contrary,
this is a simplifying assumption, used to predict macroecological patterns in communities of
many species, for which the inclusion of species differences and interactions would create an
extremely complicated model with no predictive power. Ultimately, the model’s success
should be judged on the basis of how well it predicts these patterns (McGill and Nekola 2010).

Unfortunately, most of the criticism against the use of the neutral model regards
semantic issues that relate to the use of models in general (Rosindell et al. 2012). A common
criticism questions the use of stochastic models in ecology (Clark 2009). Clark believes that
stochastic processes do not describe mechanisms but the lack of mechanisms and that
ecologists should always seek to find deterministic rules. We feel the need to clarify that
stochastic models used in ecology and other fields of science are based on sets of rules that
relate to particular mechanisms. It is precisely because of these mechanisms, that the system
(here the ecological community) is more likely to be found in some states compared to others.
In the end, the state of the system, in a probabilistic sense, reflects the underlying mechanisms.
Hence, stochasticity is not the equivalent of a mechanism-free process and should not be
perceived as pure randomness. Whether nature is inherently stochastic or deterministic is a
philosophical question, but in terms of understanding nature by the use of models and theories,
stochasticity and determinism can be used without any need to answer the above question. In
fact, as Rosindell et al. (2012) point out, the same phenomenon can be described as stochastic
or deterministic depending on the level of description that one is willing to make.

We conclude that despite the fact that some of its assumptions are unrealistic, the

neutral model of biodiversity is a valuable tool for investigating the process of biodiversity



loss, as it includes the basic ingredients of community organization, namely stochastic
demography, random dispersal and speciation. The neutral theory can improve our
understanding of the relaxation process, by providing a qualitative description of the process
(conceptualization), but also by making quantitative predictions (i.e. estimation of extinction
debt). Most importantly, it gives the opportunity to model explicitly the dynamics of the
relaxation process and can provide closed-form equations for the relaxation curve (i.e. the
variation of species richness with time). Finally, the neutral model is an appropriate model for
natural drift, as it also takes into account the sampling effects due to dispersal-limitation.
Despite its simplicity, the neutral theory can provide a basis for building a unified framework
for describing the effects of biodiversity loss under many conditions. Understanding the
relaxation process through simple models is a first step towards creating more realistic

descriptions of biodiversity loss.
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Appendices

Appendix A: Derivation of the metacommunity species-abundance

distribution (equation 2.13)

To find the stationary (equilibrium) distribution for p, we set dp,(¢)/dt = 0 in equation (2.12).

This leads to g,.1pu-1+ Tus1Pn+1-(rut+gn)p»=0. Writing down this equation for all n gives:

8
n=0 NP =8Py =0= P =",
1
8 808
n=1 goPytnp,—(rn+g)p =0= pZ:—lplszo
" nr,
80 81 8
for 7 8,00+l — (1, +8,)p,=0= p, =" Do
rl'rZ' rn
So, the probability that a species has abundance n at equilibrium is,
n gi_
pn :I_I_lp()7 (Al)
i=1 i
i n Jy—n n Jy—n
with g()=V/S(), gnZ(I—V)— for n>0 and r,=— (1-v) +v |. Before
JM M JM JM—l

substituting the rates g, and r, into equation (Al), we can first sum the equation over all
species in order to get the average number of species with abundance n, which we denote by
S, = E(S,10,Jm). Note, that since all species have the same probability p, to have abundance n,
we can simply write S,=Jmp, for each n, where Jy is the total number of species including

species with zero abundance. This gives,



S _an zgo 81 8 _SHS’[ (A2)

= ... i=0 Tyt

i+

where Sy is the average number of species with zero abundance. Next we substitute the rates g,

and r, into equation (A2), which gives,

i(1=V)(J,, i)
Ju(Jy -1

VJMH(Z+1) (U —i—D v <D) =
Jy(Jy—1)

=] i1-v)(Jy, —0) VIutr Ju—i
H(z+1) —1—1(1—v)):> 50 = HJM—I

n —i (A3)
I-v
. e Jy =D .
Introducing the fundamental biodiversity parameter 6 = N v and changing the product
-V
index as i—i+1 gives,
vilyty Sy —i+1
S — M M . A4
" oon H 0+Jy —i (A9

Finally, multiplying and dividing by the factor corresponding to i=1, we derive equation

(2.13):

+6-14 +1-i -1 +1-i
Sn:VJM JM 0 HJM l‘:> Sn:LJM HJM l‘:>
n JM i=1 JM +9_l n 1_V i=1 J +9_l

ES, 16,J,)=S8, =

Jyt1-

(JM+¢9—n)n ’
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N
where (x), = H(x+ i —1) denotes the rising factorial.
i=1
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Appendix B: Derivation of the local community species-abundance

distribution (equation 2.18)

In order to find the stationary (equilibrium) distribution for p,; we set dp,(t)/dt = O in
equation (2.17). This leads to gn-1xPn-14+ Tn+1.iPn+1 i~ (Tni+&ni)Pni=0. Note that in this case,
each species has different metacommunity abundance and thus a different probability of
having abundance 7 in the local community. For this reason, we retain the species index, k.

Writing down the resulting equation for all n gives,

8ok
n=0 NP~ 8oxPox =0= Pix = P Pox
1Lk
_ 8k _ 8o0xk81xk
n=1 8oxPox YT TouPos — (i + 8P =0= Pri = P = Pox
Y UL
_ _8ox 8k 8nik
for n gn,k pn,k + rn+l,k pn+1,k - (rn,k + gn,k )pn,k - 0 = pn,k - pO,k

(B1)

J—n n n J—n
Substituting the rates =—|(1-m)—+mx, |and r , =—| 1-m)——+m(1—x
g gn,k J (( )J 1 kj nk J(( )J 1 ( k)j

into equation (B1) gives,



J—(i—l)[i—l
p :mekpo,k . J J -1
M l—mxk 42 i[.l—i

JlJ-1

(1—m)+mxk}

=

(1—m)+m(1—xk)}

CImxpy == (=D=m)+(J —Dmx,
P = l-mx, w2 i (J=DI-m+J-Dmd-x,)

p., = MEPos (J ]H (i =) (1=m)+(J —)mx,

Cd-mx, \n )i -DA-m)+(J -Dm(1-x,)’

J !
where we used the combinatorial( J:ﬁ Multiplying and dividing by the factor
n n. —n).

corresponding to i=1 leads to,

pn,k

- I-mx, \n (J —Dmx, o (J=D)A-m)+(J -Dm(-x,)

_mx,py, (Jj (J =D(A=m)+(J =DHm(1-x,) H (i—D)(1—m)+(J —)mx,

N (=DA=m)+(J —Dmx,
It

Pk = Po,k(n i (J=D1-m)+(J -Dm(l-x,)

¢-b

Introducing the fundamental dispersal number I = "
-m

b

i=1

J Wy i-l+4+1Ix,
P po’k(n] J—i+I(1-x,)

J - 1 N
= L
pn,k pOk(nJ(xk)nHJ—l-l-I(l_xk)

i=1
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J n 1 L J—i+I(1-x,)
= Ix ’ : =
Dok po,k(n]( k)”HJ—i+I(1—xk) I_IJ—i+I(1—xk)

i=1 i=1

J
; [17-i+10-x)
Pnx = Po (n ](ka )n i:;m :
[1/-i+1a-x)
i=1

Next we apply the index transformation i—J-i+1 and use the definition of the rising factorial

N

)y =] [+i-1),

i=1

J—n
J [Ti-1+10-x)
Pur = Pox (n ](lxk )n ijl =
[Ti-1+10-x)
i=1

JI(L 11—
P :po,k( ](xk ),,( ( xk))j_n . (B2)

(ra-x,)),

As we are interested in the average number of species having abundance n, namely S,=

E(S,Im,0,J), we have to sum equation (B2) over all species, namely:
S, =D Dy - (B3)

Note that in equation (B3), p,: is not the same for all species, because every species has
different relative metacommunity abundance, x;. Although x; is not known for every species,
the species-abundance distribution of the metacommunity is given by equations (2.13) and

(2.14). Hence, we can estimate S, as follows,
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J
S,=) ES 108,J,)p . (nlx),

X

<

(B4)

1l
—_

where E(S,10,Jv) is the expected number of species with abundance x in the metacommunity
(equation (2.13)) and p;(nlx) is the probability that a local species has abundance n given that
its metacommunity abundance is x. Note that py(nlx) is provided by equation (B2).
Accordingly, we can write a similar equation using the probability density, p(x), of equation

(2.14) for the metacommunity species-abundance distribution. This gives:

S = Iolp(x)pL(n | x)dx:I;pL(le) dx | (B5)

n

6(1-x)"" (J j (Ix),(10-x)),_,
(11-x),

where py(nlx) is the same as above. Summing equation (BS5) over n, from n=1 to n=J gives the
total number of species in the local community and provides an expression for pp(Olx) (see

Etienne and Alonso 2007). Finally, this leads to equation (2.18),

dx . (B6)

1 — N6
E(Sn|m,0,J)ESn=9[JJIO(Ix)n((1 X)), (1=x)

n (1 )J X
Cited Literature

Etienne, R. S. and Alonso, D. (2007) Neutral community theory: how stochasticity and

dispersal-limitation can explain species coexistence. Journal of Statistical Physics,

128:485-510.



Appendix C: Fortran95 source code applying Conlisk’s

colonization rule

The following subroutine finds the species-abundance vector of Hubbell’s local community by
applying the colonization rule described in Conlisk et al. (2010). The subroutine receives the
relative abundances of species in the metacommunity (p), the number of species in the
metacommunity (Sm), the immigration probability per birth (m) and the size of the local
community (Jr) and computes the species-abundance vector of the local community (N) and

the number of species (S).

subroutine Conlisk_colonisation (N,S,Jr,p,m,Sm)

I'N integer vector dim(1,Sm), abundances of species in the local
! community

'S integer, number of species in the local community

'Jr integer, number of individuals in the local community

!'Sm integer, number of species 1iIn the metacommunity

'p real vector dim (1,Sm), relative abundances of species in the
! metacommunity (fixed)

'm real, immigration probability per birth

'Pr real vector dim(1l,Sm), probability of species to colonize the
! community

!cumPr real vector dim(1,Sm), cumulative sum of Pr

IMPLICIT double precision (A-H,0-Z)
integer i, j,N,S,Jr, Sm, ind, index

real m,p,Pr,A,h,cumPr

dimension N(Sm),Pr (Sm), cumPr (Sm),p (Sm)

A=m* (Jr-1) 'l a constant parameter
N=0 'l initialize the abundance vector
N(l)=1 'l begin with a random species having one individual in the

'l local community

do j=2,Jr
call random_number (r) 'l random number to select species to colonize
ind=sum(N) 'l current number of individuals
h=A/ (A+ (1-m) *ind) 'l a parameter
Pr(l)=h*p(1)+((1-h)*N(1))/ind !! probability that species 1 will
'l colonize
cumPr (1)=Pr (1) 'l first element of cumulative sum
do i=1,Sm 'l repeat until species to colonize 1is found
if (cumPr(i)>=r) then
index=1 'l species 1 was selected to colonize
exit 'l exit the loop

146



end if

Pr(i+l)=h*p(i+1)+((1-h)*N(i+1))/ind !!no species was selected
cumPr (i+1)=cumPr (1) +Pr (i+1) 'l compute the next element of cumPr
end do
N(index)=N(index)+1 'l add one individual to species i=index
end do 'l repeat until all Jr individuals colonize
S=count (N/=0) 'l find the number of species in local community

end subroutine Conlisk_colonisation

Cited Literature
Conlisk, J., Conlisk, E. and Harte, J. (2010) Hubbell's local abundance distribution:

insights from a simple colonization rule. Oikos, 119: 379-383.
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Appendix D: Immigration probability as a function of habitat’s

area (derivation of equation (3.6))

S ———

Mainland

Figure D1. A simplified scenario of fragmentation. The white circular area of radius R represents a
former habitat area that has been destroyed, e.g. a habitat basin that is flooded with water. After the
loss of habitat, a circular fragment of radius r, remains within the basin. This is separated by distance d
from the mainland, while its center lies in distance x from the center of the basin. The dotted line
defines the area within which the center of the fragment of radius r should lie so as this is not
connected to the mainland.

Figure D1 describes an idealized case of fragmentation in which a circular plot of radius R is
destroyed (e.g. a basin is flooded with water), but leaves a circular fragment of radius r intact
within the destroyed habitat. The remaining fragment is surrounded by inhospitable matrix
(e.g. water, denoted by the white color) and lies in distance d from the mainland. For the
remaining fragment of radius r to be considered an island, its center should lie within a circle
of radius R-r from the center of the plot (i.e. the area delimited by the dotted line in Figure
D1). If the fragmentation happens in a non systematic way, we can ask whether the expected

distance of the island from the mainland is related to the fragment’s area. We assume that the
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fragmentation happens in such a way that the center of the fragment could be anywhere within
the destroyed habitat, i.e. the fragment’s center could fall anywhere within the circle of radius
R-r with the same probability. The probability that the center falls within area A; from the

center of the plot is,

Al

P(A)=—""—,
“4) 7(R-r)’

(D)

where A; is a circular plot of radius x in the center of the plot, namely A 1:7rx2. Thus, the

probability that the center of the fragment falls within distance x from the center of the plot is,

A P x’
P(x)=P(A) = = > = = (D2)
T(R—r) T(R—r) (R—r)
for which the associated probability density function is,
dP(x) 2x
x = = 5
f0 == == (D3)

namely f(x)dx is the probability that the center of the fragment is found within distance x and
x+dx. The expected value of x, or in other words the average distance of the fragment’s center

from the center of plot is:

R-r R-r 2_x2 2)C3 | o 2
<x>= xf (x)dx = dx = =—(R-r). D4
[ ode=| o T sm ], S5 ®D (D4)
From Figure D1 we can see that x is related to d like,
R=d+r+x or d=R-r—x, (D5)

149



from where we can find the expected d as,
2 1
<d>=R—r—<x>=R—r—§(R—r)=§(R—r). (D6)

Hence, the average distance of an island’s edge from the mainland decreases proportionally
with the island’s radius. Now we assume that the immigration probability decreases

proportionally with the distance d from the mainland. Namely,
m=m,—k—, (D7)

where my is the immigration probability when d=0, in which case the fragment is connected to
the mainland and k<my is a constant. Substituting the average d from equation (D6) into

equation (D7) leads to,

, kR—r , k r , k
m=m,—— = mzmo—g I—E =>m=my——|1-

a
3 R 3 ZJ’ (B9
This has to satisfy the boundary conditions m'(a=0)=0 and m'(a=A)=my4. The first condition
suggests that when there is no fragment area left (i.e. a=0) there is no immigration (i.e. m'=0).
For this to be satisfied the constant k& should be equal to 3my. The second condition ensures
that when the remaining fragment's area is a=A (i.e. there is no habitat loss) the immigration
probability should equal that of a sample area of size A. This second condition is satisfied if

mo=my, so that equation (D8) reads,

N
= — | . D9
m mA(Aj (D9)
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Appendix E: Maximum likelihood estimates of model parameters

Table E1. Parameter values and Maximum Likelihood Estimates (MLE) of model parameters for all
habitats (local samples) in 1998 and 2011. Metacommunity: number of species, Sy, number of
individuals, Jy and fundamental biodiversity parameter, 6. Local samples: sample size, J, MLE of

immigration probability, 71, MLE of fundamental dispersal number, I , maximum log likelihood,

Loglike and the corresponding values using Jabot’s method, 1, , I , and Loglike;.

Metacommunity Sm Jm 0

128 172,260 13.544
Local communities J 7] 7 Loglike n, I Loglike,
Local samples (1998)
Agriculture 395 0.064 2713 -153.88 0.090 38.87 -145.71
Dry Meadow 118 0.187 26.87 -83.44 0.201 29.35 -86.29
Grazed Pasture 288 0.049 14.69 -128.19 0.076 23.52 -117.76
Mixed Forest 754  0.071 57.69 -233.35 0.086 70.81 -225.15
Oak Forest 570 0.058 34.96 -158.98 0.107 67.98 -141.55
Pine Forest 445 0.034 15.85 -119.61 0.040 18.73 -118.88
Wet Meadow 314 0.048 15.79 -115.72 0.06 18.33 -112.58
Local samples (2011)
Agriculture 557 0.095 58.42 -231.14 0.091 55.93 -227.63
Dry Meadow 283 0.068 20.43 -134.19 0.093 28.96 -117.10
Grazed Pasture 259 0.127 37.47 -163.25 0.128 38.03 -156.78
Mixed Forest 553 0.125 79.10 -201.42 0.220 155.88 -172.83
Oak Forest 569 0.071 43.23 -176.32 0.097 61.21 -161.95
Pine Forest 408 0.023 9.74 -141.20 0.028 11.73 -131.18

Wet Meadow 619 0.054 35.32 -164.53 0.066 43.77 -156.25




Table E2. Maximum Likelihood Estimates (MLE) of immigration probabilities estimated after re-
sampling the bigger sample (either 1998 or 2011) to make the samples from both years equal in size
(see section 4.2.1). Sample size, J, MLE of immigration probability and fundamental dispersal number

for 1998 and 2011 samples, iy , IA98 and m,,, I,,.

Local samples J My Iy m,, I,

Agriculture 395 0.064 27.13 0.118 52.68
Dry Meadow 118 0.187 26.87 0.139 18.90
Grazed Pasture 259 0.044 11.88 0.127 37.47
Mixed Forest 553 0.079 47.48 0.125 79.10
Oak Forest 569 0.048 28.76 0.071 43.23
Pine Forest 408 0.029 12.30 0.023 9.74
Wet Meadow 314 0.048 15.79 0.080 27.28




Appendix F: Fortran95 source to simulate the local community

dynamics

The following subroutine iterates the local community dynamics for one generation (Jn steps).
The subroutine receives the local community size (Jn), the immigration probability (m), the
metacommunity species richness (Sm), the metacommunity species-abundance vector (Nm)
and the local community species-abundance vector (n) and number of species (St). It updates
and outputs the new local species-abundance vector (n) and species richness (St). The iteration
proceeds in discrete time steps. At each step one of two events can happen: 1) with probability
m, a random individual dies and a random individual from the metacommunity takes its place.
In this case, a species is selected with probability proportional to its abundance to loss one
individual and another species is selected with probability proportional to its metacommunity
abundance to gain one individual, 2) with probability 1-m, a random individual dies and
another random individual gives birth. In this case, two species are selected with probabilities
proportional to their local abundances to loss one individual and gain one individual
respectively. The abundances of the two species are updated together (after these have been
picked), so that the individual that dies can still contribute to the pool of offsprings competing
for the vacant site. This corresponds to the Moran version of the neutral model (see Etienne

and Alonso 2007).

subroutine iterate(Jn,n,m, St, Sm, Nm)

'Jn integer parameter, number of individuals in local community

!'Sm integer parameter, number of species in metacommunity

'n integer vector dim(1,Sm), number of individuals of each species
! in the local community

I Nm real vector dim(1l,Sm), number of individuals of each species 1in
! the metacommunity (fixed)

ISt integer, number of species in the local community

'm real parameter, Iimmigration probability per step

!'cum integer vector dim(1l,Sm), cumulative sum of n

! cumm integer vector dim(1,Sm) cumulative sum of Nm

IMPLICIT double precision (A-H,0-Z2)

integer Jn,n, St, specl, spec2, cum, Sm, cumm, ¢, p, sl
real m,rl,r2,mm,Nm, s2

dimension n(Sm),cum(Sm),Nm(Sm), cumm(Sm)



logical flagl, flag2

sl=sum(n) [

s2=sum (Nm) !
do g = 1,Jdn
cum (1) n(l)
cumm (1) Nm (1)
call random_number (rl)
call random_number (r2)

call random_number (mm)

e IMMIGRATION———————
if (mm<=m) then [
do p = 1,Sm [
if (cum(p)>=rl*sl)t
specl=p
exit
endif
cum(p+1l) = cum(p) +
enddo
do p = 1,Sm
if (cumm(p)>=r2*s2)
spec2=p
exit
endif
cumm (p+1) = cumm(p)
enddo
P Update abundances——-—-—
n(specl)= n(specl)-1
n(spec2)= n(spec2)+1
e LOCAL BIRTH-———————~—
else if (mm>m) then

flagl=.true.
flag2=.true.

do p = 1,8m

if (cum(p)>rl*sl.and
specl=p
flagl=.false.

endif

if (cum(p)>r2*sl.and
spec2=p
flag2=.false.

endif

if (.not. flagl .and.

cum(p+l) = cum(p) +

total number
total number

of individuals in local community (integer)
of individuals in metacommunity (real)

repeat for Jn
first element
first element
random number

steps (one generation)

of cumulative sum of n

of cumulative sum of Nm

to select species 1

random number to select species 2

random number to decide immigration from
the metacommunity (event 1) or birth of a

!
!
!
!
!
!
!
! local species (event 2)

!
!
!
!
!
!
!
!

with probability m perform immigration (event 1)
loop to select the species to loss an individual
hen ! check if the p'" species is selected
the p'" species is selected
exit the do loop
a species 1s not yet selected
find the next element of the
cumulative sum and repeat until
the species is selected
loop to select the species to immigrate
check if the p™ species is selected
p™" species is selected to immigrate
exit the loop
a species 1s not yet selected
)!! find the next cumulative sum
entry and repeat until a species 1is
selected

n(p+1l)

!
!
!
!
!
!

then

|
|
|
|
|
|
1
L
L
I
L
L

+ Nm(p+1
!
[

'l specl losses one individual (death)
! spec2 gains one individual (immigration)

with probability 1-m a local individual
gives birth (event 2)
becomes false if the first species is selected
becomes false if the second species is selected
repeat until both species are selected (death
and birth)
flagl)then check if the p'" species is
selected (for death)
the p" species was selected
update flag
check if the p" species is
selected (for birth)
p™ species was selected
update flag
exit !! if both species have
been selected exit

find next cumulative

flag2)then

Ml
Ml
Ml
M
M
Ml
Ml
11

.not. flag2)

M
Ml

n(p+l) if not,



enddo 'l sum entry and repeat until
'l both species are selected
!|———-Update abundanCes—————————————— ==~

n(specl)= n(specl)-1 'l specl losses an individual
n(spec2)= n(spec2)+1 'l spec2 gains an individual
end if
end do
St = count (n/=0) 'l update the total number of species

end subroutine iterate

Cited Literature
Etienne, R. S. and Alonso, D. (2007) Neutral community theory: how stochasticity and

dispersal-limitation can explain species coexistence. Journal of Statistical Physics,

128:485-510.



Appendix G: Derivation of differential equation (5.7)

To simplify the right hand side of equation (5.6) we change the summation indices in the first

and second sums, by applying the transformations n—n-1 and n—n+1 respectively:

@ :JZ JirSn—Z(Zr +5,)8, +ZZS 21" (n)S,, . (G1)

dt n=0 n=1 m>n

We can further simplify the first sum by noting that its first element, Sy, equals to zero, since

5o=0 and that the missing element r;S; is also zero, since s;=0. Hence, the first sum is equal to

ZJ r.S, . Accordingly for the second sum, we note that the last element, 7,151, is zero

n=1 n n
because S;1=0. By adding and subtracted —rS; this reads — 7S, + Z:zl r.S, . Substituting into
equation (G1) gives:
s _3

=>rS,—nS, +er —Z(Zr +5,)S, +ZZS 2" )8, . (G2)

dt n=l n=l m>n

Now, the first three sums have the same range and can be combined to give:

das _
=S ZSnSﬁZZS (G3)
n=1 m>n
Substituting the rates of r, and s, and noting that s,=0 leads to the following equation:
J J J
d—Sz—ﬁSI—lanﬁ&ZZLSm. (G4)



J . . ..
In order to evaluate the second sum we note that znZl nS, gives the total number of individual

in the community, J. Thus we can write z:zz ns, = z:zl nS, —S,=J—S,, which leads to:

2 J
= T ey Y s, (G3)

n=1 m>n M -1

The outer sum in equation (G5) has the effect of repeating each terms m-1 times, so that this

can simplify to:

ds u v 2v& (m—1)m

Lo By - T-5)+2> S =

dt ! ( ) J = m-1 "

ds U v 2v

D Fg Y-85+ s

o= Sy U=S)r Ty ms, (G6)

As before, the sum on the right hand side equals to J-S;. Substituting, we obtain equation

(5.7):

as Y7, 14 2v

—=—=85,-——U-=-§)+—0U-5)=

da J ! J( ) 7 X
ds =~ u+v

—= S, G7
” T (G7)



Appendix H: Number of species with one individual in the

broken-stick distribution

The number of species with one individual for the broken=stick species-abundance distribution

is:

S, :M(l_lj ) ) (H1)
J J

S-2
For J >>1 we can Taylor expand [1—%} near 1/J = 0. Setting x=1/J and f(0)=(1-x)>% we

have f(x)=f(0)+f'(0)x+0(x2)=1—(S—2)x+0(x2)z1—¥z1—§, for S>>1.

- : S*(, S)_s* §°
Substituting back to equation (H1): S, zT 1—7 :7_7' If also S/J <<1, we can keep

2
only the first term, so that S, = ST .



Appendix I: Solution of differential equation (5.8)

U+v

S? can be solved by separation of variables. By setting c=v and
J 2

Equation (5.8) ﬁ =vV-
dt

a= —(,u+v)/J2 this takes the form:

= J-aS +c_'[dt D

A general solution to the integral of the left hand side can be found in Abramowitz (1964), in

“integrals of rational algebraic functions” (page 12). This is:

1 [2a8 —J=4ac|
—4ac ‘2aS+«/—4ac‘

12)

Substituting in equation (I1) and replacing the constants a and ¢ we get:

V) ¢ _ [Av(u+y)
J’ J’
2(u+2v)SJr /4V(,U2+V)
J J

I wens—avwn|

2\ v(u+v) ‘—(ﬂ+v)S+JQ/v(ﬂ+v‘

! In

N (u+vylJ?

+C=t=>

V .
Vu

Dividing by (u+v) and replacing the equilibrium species richness S, = J



J R L) I S et

+C=t>
2+ VIV IV + 1) ‘—S+J«/V/(V+,u \ 2U+V)S,, \—S+s
2 S+S
J ln| A =C+t.
2u+v)S,, |S-S.,
2(u+v)S
Setting y = e 2) 4 =2 V2 S., - gives:
J S
eq €q
S+, S+S., t
In =yC+yt= =C'e". 13)
_Seq T Peq

Considering that $>S.q, which is true when the initial species richness is above equilibrium

(namely So>Seq), we have:

S+S, t 28, , 28,
1 _Cle" = =Ce' -1 S=8 +—1—. I4)
S-S S-S C'e’ -1

28, 28, S, +S,
Se=8y+—r=8 -5, = =>C=—"7T=. (15)
Cc-1 Cc-1 Sy =S,

Finally, substituting back to equation (I4) we derive equation (5.8). It can be shown that for

S<Seq and Sp<Seq the same equation (I5) is derived.

Cited Literature
Abramowitz, M. (1964) Handbook of Mathematical Functions With Formulas, Graphs and
Mathematical Tables. United States Department of Commerce, National Bureau of Standards.

United States of America.
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Appendix J: The time for a fraction p of the extinctions to be

realized, equations (5.11) and (5.12)

To find times to extinction we solve equation (5.10) for #:

25, 25.,(Sy—5,)
S=S +o—oct—= S-S, = , =
S0t Su i, (Sy+8.)e" = (S, =5,
SO _Seq

2
y _ 28,8, —S) N (S —S¢) T SeqSo = Seq T505 =88
(§—=8. ), +S,) (So+S8,) (§—=8.,)0S; +S.)

_Go=SG S8 1 (S =SS +5,)

yt

(S =5,)(S, +5.,) y n(S—Seq)(SO +5.,) ab

We can find the time, t,, it takes for a fraction p of the total extinctions to be realized (equation

(5.12)). The remaining species richness at this time will be S = So - p (So-Seq), s0:

t,=1(Sy = p(S;—S8)) :%/lnlz(so ~S5e)S = P(Sy _Seq)+Seq):|

(Sy = P(Sy=Se) =S, )(Sy +S.)

(J2)

p

:lln (Sg+Seq) = P(Sy—=S)
/4 (A=p)Sy+S.) |

Substituting p=1/2 we find the time needed for half of the extinctions to happen (equation
(5.13)).
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Appendix K: Fortran95 source code to simulate the dynamics of a

metacommunity with random fission speciation

The following subroutine is to iterate the dynamics of a metacommunity subject to random
fission speciation for one generation (Jr steps). As the total number of species in the
metacommunity is not fixed, the process can be more easily described using the unlabeled
species description (see Haegeman and Etienne 2010). In this case, the state of the
metacommunity is described by the species-abundance distribution, namely the vector
Sp=(Sp1,5p2,5p3,---»Spsr), With Sy the number of species having abundance k and Jr the
maximum abundance that a species can have. The subroutine receives the metacommunity
size (Jr), the speciation probability (v), the metacommunity species-abundance distribution
(Sp), the number of individuals per abundance class (N) and the total number of species in the
metacommunity (S1) and updates and outputs the new species-abundance distribution (Sp),
the new total species richness (S1) and the new individuals per abundance class (N). The
iteration proceeds in discrete time steps. At each step one of two events can happen: 1) with
probability 1- v there is a death event followed by a birth event. In this case a random species
is selected (with probability proportional to its abundance) to lose one individual (death) and
another species is selected (with probability proportional to its abundance) to gain one
individual (birth), 2) with probability v there is a speciation event. In this case a species is
selected with probability proportional to its abundance to undergo speciation. The selected
species divides into two fragments in a random way. One of the fragments will correspond to
the new species and the other remains to the old species. If a singleton species is selected to
speciate, then the individual of this species is replaced by an individual of the new species. As
this has no net effect on the species-abundance distribution (Sp) or the species richness (S1),

there is no need to update the vectors Sp and N in this case.

subroutine iteratel (Jr, Sp,v,S1,N)

'Jr integer parameter, number of individuals in the metacommunity

1s1 integer variable, number of species in the metacommunity

!'Sp integer vector dim(1,Jr), number of species with abundance k

I'N integer vector dim(1,Jr), number of individuals of each abundance

! class. N(k) 1is the sum of individual of all species with
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! abundance k (i.e. N(k)=Sp(k)*k).
'cum integer vector dim(l,Jr), cumulative sum of N
v real parameter, speciation probability per step

IMPLICIT LOGICAL (A-27)

integer Sp,S1,q,p,1,b,k,cum,Jr,N
real v,vv,rl,r2,r3,r4,r5,x
logical flagl, flag2

dimension Sp(Jr),N(Jr),cum(Jr)

Iterate for Jr steps

|
do p = 1,Jdr ! Create vector N=(N1,...,NJr) with the abundance
N(p)=Sp(p) *p ! of each class. N(p) 1is the total number of
end do ! individuals of class p (i.e. the sum of
! individuals of all species with p individuals)
cum(l) = N(1) ! first element of cumulative sum of N

'l to select species to lose 1 individual
'l to select species to gain 1 individual
to decide speciation or birth-death

to select abundance (1) of new species
to check if the same species 1s selected
for birth and death

to decide which species speciates

|
|
|
|
|
|
call random_number (
call random_number (
call random_number (
call random_number (
call random_number (

call random_number (r5)

if (vv>v) then 'l with probability 1-v perform birth-death
flagl=.true. 'l to check if species to die 1is selected
flag2=.true. 'l to check if species to give birth is selected
do p = 1,Jdr
if (cum(p)>=rl1*Jr .and.flagl) then !! pick the class that losses
k=p 'l 1 individual (death)
flagl=.false. 'l class k was selected, update flag
endif
if (cum(p)>=r2*Jr .and.flag2) then !! pick the class that gains
b=p 'Y 1 individual (birth)
flag2=.false. 'l class b is selected, update flag
endif

if both classes are
selected, exit

if not, compute the
next element of

the cumulative sum

if (.not. flagl .and. .not. flag2) exit

!
!
cum(p+1l) = cum(p) + N(p+1l) !
|
!

enddo

e Update the SAD vecCtor—————————————————————————————————————————
if (b==k) then if the same class was selected to gain and

lose an individual

with probability x, the same species was

selected

! if the same species was not selected update

! a species from class k lost an individual

! a species from class b gained an individual

x=1.0/Sp (k)

if (r4>=x) then
Sp(k)=Sp(k)-1
Sp(b)=Sp(b)-1
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if (k/=1) then !! if the species that lost an individual had

Sp(k-1)=Sp(k-1)+1 'l more than 1 individuals, then one
end if 'l more species of class k-1 appears
Sp(b+1)=Sp(b+1)+1 'l a species of class b+1 appears due to
end if 'l birth at class b
else 'Y if b#k (the same class was not selected)
Sp(k)=Sp(k)-1 'l a species from class k losses an individual
Sp(b)=Sp(b)-1 'l a species from class b gained an individual
if (k/=1) then !! if the species that lost an individual had
Sp(k-1)=Sp(k-1)+1 !! more than 1 individuals, then one more
end if 'l species of class k-1 appears
Sp(b+1l)=Sp(b+1)+1 'l a species of class b+1 appears due to
end if 'l birth at class b
oo —— SPECIATION—————————— e e e
else if (vv<=v) then 'l with probability v perform speciation
do p = 1,Jdr
if (cum(p)>=r5*Jr) then !! pick the class that undergoes
k=p 'l speciation
exit 'l class k was picked
endif
cum(p+l)=cum(p)+ N(p+l) !! if no class was picked compute the
end do 'l next element of the cumulative sum
e Update the SAD vector-——————————"—""""""""""—"—"—"——"————————————
if (k==1) then ' i1f a singleton species 1s selected
continue 'l continue without updating
else 'l else perform the split and update

l=int (r3*(k-1))+1 1 is the abundance of the newly created
species which is picked from a uniform

distribution between 1 and k-1 (where k
is the abundance of the species that

speciated). int () gives the integer part

Sp(k)=Sp(k)-1 a species from class k divided(speciated)
Sp(l)=Sp(l)+1 a species of class 1 appeared
Sp(k-1)=Sp(k-1)+1 a species of class k-1 appeared
end if
end if
end do
Sl=sum(Sp) 'l update number of species

end subroutine iteratel

Cited Literature
Haegeman, B. and Etienne, R.S. (2010) Self-consistent approach for neutral community

models with speciation. Physical Review E, 81:1-13.
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Appendix L: Simulations

We performed direct simulations of the stochastic process emanating from the random fission
speciation model described in Haegeman and Etienne (2010). The function used to iterate the
community dynamics for one generation, written in Fortran 95 programming language, can be
found in Appendix F. For each of the numerical experiments described below, we carried out
the simulation for 10,000 generations, which is enough time for the largest community of J =
10,000 individuals to reach stationarity. In order to get the average behavior, each numerical
experiment is repeated 1,000 times. Each time the seed of the random number generator is set
in order to produce a different sequence of random numbers.

In the following we compare the equilibrium species richness of equation (5.9)
(Seq_modet = J \/v‘) with the equilibrium species richness from simulations (Seq sim), for several
values of the speciation probability, V', and the community size, J. For each pair (v', J) we
record the species richness at the end of a 10,000 generations simulation and repeat this
numerical experiment 1,000 times to get the average behaviour. Figure L1 shows the relative
difference between the theoretical value of species richness (equation 5.9) and the one
)/ S

resulting from simulations, computed as: RDiff = (S For high

eq_model S eq_sim eq_model *
speciation probabilities (¥'=0.1), the model systematically underestimates the average
equilibrium from simulations (relative error less than 5%). For speciation probabilities below
v'=0.01 the relative difference fluctuates around O, so there is no systematic under or

overestimation except for very low community sizes, J<1000.
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Figure L1. Relative difference between the equilibrium species richness of equation (5.9) (Seq moder)
and the equilibrium species richness estimated from direct simulations of the stochastic process
(Seq_sim), as a function of the community size, J. Black and red lines represent the average relative
difference and the corresponding 95% confidence intervals from 1,000 simulations respectively. The
grey dotted line is the line y=0, which represents a relative difference of zero. The increased fluctuation
observed at low speciation probabilities is due to the very low species richness (<10 species) for this
particular parameter combination.

Cited Literature
Haegeman, B. and Etienne, R.S. (2010) Self-consistent approach for neutral community

models with speciation. Physical Review E, 81:1-13.

166



Appendix M: Real Data Applications

Table M1 contains data of avian extinctions from different parts of the world that were
gathered by Halley and Iwasa (2011) and were used to estimate half-life times to extinction.
Part of the data refer to islands that contracted due to submersion or were cut off from the
mainland due to submersion of land bridges at the end of the Pleistocene approximately
10,000 years ago. It is thought that these islands have not yet relaxed to equilibrium, as their
biodiversity is considerably higher than that of oceanic islands of the same size (Diamond
1972, Terborg 1974). The rest of the data apply to fragments of forests formed after
deforestation (Brooks et al. 1999, Newmark 1991, MacHunter et al. 2006, Castelletta et al.
2000, Diamond et al. 1987) and the island of Barro Colorado that was created after the
flooding of the surrounding area to form Gatun Lake (Terborg 1974, Robinson 1999). Table
M2 lists species recorded in Barro Colorado Island and their presence (1) or absence (0) in
years 1970, 1977 and 1995, extracted from the studies of Willis and Eisenmann (1979) and
Robinson (2001).
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Table M1. Data of avian extinctions from islands and fragments around the world (columns 1-6 and 9 from Halley and
Iwasa 2011, Table S1). Time since isolation or habitat loss in years (7), initial species richness (Sy), subsequent count of
species richness (S(7)), equilibrium species richness (S) estimated using a power-law species-area relationship with
exponent z = 0.22, which was used by Diamond to estimate the initial species richness in Fergusson Island (Halley and
Iwasa 2011, Diamond 1972), relaxation rate y estimated from equation (5.12), time for half of the extinctions to happen in
the RFS model (#s0) estimated from equation (5.13) and time for half of the extinctions to happen in the isolated-fragment
model (#50) (Halley and Iwasa 2011).

t

So

Seq

l4

150

Is50

Region Fragment or | Years Initial SubsSfEt)uen ( Equilibrium | Relaxation R;inscsiiocl)lrll I(SI_(I);?EOI_I
(Data source) island name since | species qu species rate . y
. . . observation . ) Speciat. Iwasa)
isolation | richness richness ") ) )
Fergusson 10000 108 86 59 4.57*10° 11719 49105
Goodenough | 10000 108 81 51 4.63*10° 10743 26143
Aru 10000 325 158 88 7.00*107 5068 99097
Waigeu 10000 325 137 72 7.23*10° 4285 40233
Southwest Japen 10000 325 119 67 8.55*10 3430 28408
Pacific Misol 10000 325 135 66 6.50*107 4452 26029
(Diamond 1972) Salawati 10000 325 134 62 6.19*107 4506 20810
Batanta 10000 325 106 47 6.62*10° 3405 5780
Batjan 10000 112 90 65 5.15*10° 10712 74574
N. Hanover 10000 105 84 58 4.54*10° 11842 46735
Amboina 10000 83 70 53 4.67*10° 12323 39237
Trinidad 10000 380 236 77 2.67*10° 10887 52663
West Indies Margarita 10000 320 74 56 0.0002 1594 14896
(Terborg 1974) Coiba 10000 250 78 46 9.80*10” 2759 7511
£ Tobago 10000 300 82 42 8.48*107 2587 4145
Rey 10000 225 46 40 0.0002 1130 4587
Malava 101 32 19 18 0.0231 23 130
Kakamega forest, | Kisere 63 39 32 26 0.0105 56 425
Kenya Tkuywa 20 48 44 36 0.0178 35 1252
(Brooks et al. 1999) | Yala 24 48 44 36 0.0149 42 1295
Main 82 62 59 56 0.0081 82 5750
Usamb ¢ Usambara/10 81 31 26 17 0.0042 128 697
e BN [ Usambara/4-9 | 81 31 15 10 0.0113 35 55
(Newmark 1991) Usambara/1l 81 31 7 5 0.0209 12 4
Usambara/2 81 31 8 5 0.0134 18 2
Southeastern F21 22 28 17 6 0.0128 23 5
Australia F20 22 33 26 7 0.0050 58 9
(MacHunter et al. | F24 22 441 33 8 0.0041 68 15
2006) T18 22 51 40 9 0.0045 61 29
Castelletta et al. Sineapore 26 91 65 25 0.0094 38 1262
2000 &ap 75 91 30 25 0.0240 15 1262
Terborg 1974 BCI 60 208 163 22 0.0010 177 339
Robinson 1999 BCI 85 208 143 22 0.0012 152 339
Diamond et al. 1987 | BBG 40 62 42 12 0.0047 57 58

168




Table M2. Presence (1) or absence (0) of bird species in Barro Colorado Island in 1970, 1977 and
1995. The data are extracted from the lists of species reported in Willis and Eisenmann (1979) and
Robinson (2001). As Robinson (2001) reports only resident species but the classifications of species
(resident, migrant, vagrant) in Willis and Eisenmann (1979) and Robinson (2001) do no completely
coincide, we include only species that appear in both studies.

Scientific name

Common name

1970

1977

1995

Accipiter superciliosus
Amazilia amabilis
Amazilia tzacatl
Amazona autumnalis
Amazona farinosa
Anthracothorax nigricollis
Aramides cajanea

Attila spadiceus
Baryphtengus martii
Brotogeris jugularis
Buteo albonotatus

Buteo brachyurus
Cacicus cela
Campephilus malenoleucos
Camptostoma obsoletum
Capsiempis flavogaster

Tiny Hawk

Blue-chested Hummingbird
Rufous-tailed Hummingbird
Red-lored parrot

Mealy Parrot

Black-throated Mango
Gray-necked Wood-Rail
Bright-rumped Attila

Rufous motmot
Orange-chinnes Parakeet
Zone-tailed Hawk

Short-tailed Hwak
Yelow-rumped Cacique
Crimson-crested Woodpecker
Southern Beardless Tyrannulet
Yellow-bellied Elaenia

Cathartes aura Turkey Vulture
Celeus loricatus Cinnamon Woodpecker
Cercomacra tyrannina Dusky antbird

Ceryle torquata
Chaetura brachyura
Chaetura spinicauda
Chalybura buffonii
Chloroceryle aenea
Chloroceryle amazona
Chloroceryle americana
Chlorophanes spiza
Chlorostilbon canivetii
Chondrohierax uncinatus
Ciccaba nigrolineata

Ringed Kingfisher
Short-tailed Swift
Band-rumped Swift
White-vented Plumeleteer
Pygmy Kingfisher
Amazon Kingfisher
Green Kingfisher
Green Honeycreeper
Fork-tailed Emerald
Hook-billed Kite
Black-and-White Owl

Ciccaba virgata Mottled Owl
Claravis pretiosa Blue Ground-Dove
Coereba flaveola Bananaquit

Columba cayennensis
Columba nigrirostris
Columba speciosa
Coragyps atratus
Cotinga nattererri
Crax rubra
Crotophaga ani
Crotophaga major

Pale-vented Pigeon
Shirt-billed Pigeon
Scaled Pigeon
Black Vulture

Blue Contiga

Great Curassow
Smooth-billed Ani
Greater Ani
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Crypturellus soui
Cyanerpes cyaneus
Cyanerpes lucidus
Cyanocompsa cyanoides
Cyanocorax affinis
Cymbilaimus lineatus
Dacnis venusta
Damophila julie
Dendrocincla fuliginosa
Dromococcyx phasianellus
Dryocopus lineatus
Dysithamnus puncticeps
Electron platyrinchum
Eucometis pencillata
Euphonia fulvicrissa
Euphonia laniirostris
Euphonia minuta
Eurypyga helias

Falco rufiguris

Florisuga mellivora
Geotrygon montana
Geotrygon violacea
Geranospiza caerulescens
Glyphorynchus spirurus
Gymnopithys bicolor
Habia fuscicauda
Harpagus bidentatus
Heliomaster longirostris
Heliothryx barroti
Hylopezus perspicillatus
Hylophilus decurtatus
Hylophilus flavipes
Hylophylax naevioides
Icterus chrysater
Laniocera rufescens
Legatus leucophaius
Lepidopyga coeruleogularis
Leptodon cayanensis
Leptotila cassinii
Leptotila verreauxi
Leucopternis albicollis
Leucopternis semiplumbea
Lipaugus unirufus
Lophornis delattrei
Lophostrix cristata
Lurocalis semitorquatus
Malacoptila panamensis
Manacus vitelinus
Megarhynchus pitagua

Little Tinamou
Red-legged Honeycreeper
Shining Honeycreeper
Blue-black Grosbeak
Black-chested Jay
Fasciated Antshrike
Scarlet-thighed Dacnis
Violet-bellied Hummingbird
Plain-brown Woodcreeper
Pheasant Cuckoo
Lineated Woodpecker
Spot-crowned Antvireo
Broad-billed Motmot
Gray-headed Tanager
Fulbus-vented Euphonia
Thick-billed Euphonia
White-vented Euphonia
Sunbittern

Bat Falcon

White-necked Jacobin
Ruddy Quail-Dove
Violaceous Quail-Dove
Crane Hawk
Wedged-billed Woodcreeper
Bicolored Antbird
Red-throated Ant-tanager
Double-toothed Kite
Long-billed Starthroat
Purple-crowned Fairy
Streak-chested Antpitta
Lesser Greenlet

Scrub Greenlet

Spotted Antbird
Yellow-backed Oriole
Specled Mourner

Piratic Flycatcher
Sapphire-troated humminbird
Gray-headed Kite
Gray-chested Dove
White-tipped Dove

White Hawk
Semiplumbeous Hawk
Rufous Pila
Rufous-crested Coquette
Crested Owl

Shirt-tailed nighthawk
White-whiskered Puffbird
Golden-collared Manakin
Boat-billed Flycatcher
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Melanerpes pucherani
Micrastur semitorquatus
Microrhpias quixensis
Momotus momota
Morphnus guianensis
Myiarchus panamensis
Myiarchus tuberculifer
Myiodynastes maculatus
Myiopagis gaimardii
Myiornis atricapillus
Myiozetetes cayanensis
Myiozetetes similis
Myrmeciza exsul
Myrmeciza longipes
Myrmotherula axillaris
Myrmotherula fulviventhris
Notharchus pectoralis
Notharchus tectus
Nyctibius grandis
Nyctidromus albicollis
Oncostoma olivaceum
Ornithion Brunneicapillum
Ortalis cinereiceps

Otus guatemalae vermiculatus
Pachyramphus polychopterus
Panyptila cayennensis
Penelope purpurascens
Phaenostictus mcleannani
Phaethornis longuemareus
Phaethornis superciliosus
Piaya cayana

Pionus menstrutus

Pipra mentalis
Pipromorpha oleaginea
Pitangus lictor

Pitangus sulphuratus
Pitylus grossus
Platyrinchus coronatus
Polioptila plumbea
Progne chalybea
Pteroglossus torquatus
Pulsatrix perspicillata
Querula purpurata
Ramphastos sulphuratus
Ramphastos swainsonii
Ramphocaenus rufiventris
Ramphocelus dimidiatus
Rhinoptynx clamator
Rhynchocyclus olivaceus

Black-ccheeked Woodpecker
Collared Forest-Falcon
Dot-winged Antwren
Blue-crowned motmot
Crested Eagle

Panama Flycatcher
Dusky-capped Flycatcher
Streaked Flycatcher

Forest Elaenia
Black-capped Pygmy-Tyrant
Rusty-margined Flycatcher
Social Flycatcher
Chestnut-acked Antbird
White-bellied Antbird
White-flanked Antwren
Checker-throated Antwren
Black-breasted Puffbird
Pied Puffbird

Great Potoo

Pauraque

Southern Bentbill
Brown-capped Tyrannulet
Gray-headed Chachalaca
Vermiculated Schreech-Owl
White-winged Becard
Lesser Swallow-tailed Swift
Crested Guan

Ocellated Antbird

Little Hermit

Long-tailed Hermit

Squirrel Cuckoo
Blue-headed Parrot
Red-capped Manakin
Ocre-bellied Flycatcher
Lesser Kiskadee

Great Kiskadee
Slate-colored Grosbeak
Golden-crowned Spadebill
Tropical Gnatcatcher
Gray-breasted Martin
Collared Aracari
Spectacled Owl
Purple-throated Fruitcrow
Keel-billed Toucan
Chestnut-mandibled toucan
Long-billed Gnatwren
Crimson backed Tanager
Striped Owl

Olivaceous Flatbill
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Rhytipterna holerythra
Sarcoramphus papa
Scaphidura oryzivora
Schiffornis turdinus
Sclerurus guatemalensis
Smaragdolanius pulchellus
Spizaetus ornatus
Spizaetus tyrannus
Sporophila aurita
Sporophila nigricollis
Stelgidopteryx rufipennis
Streptoprocze zonaris
Tachycineta albilinea
Tachyphonus luctuosus
Tangara gyrola

Tangara inornata
Tangara larvata
Terenotriccus erythrurus
Thalurania colombica
Thamnophilus punctatus
Thraupis episcopus
Thraupis palmarum
Thryothorus modestus
Tigrisoma lineatum
Tinamus major

Tityra inquisitor

Tityra semifasciata
Todirostrum cinereum
Tolmomyias assimilis
Trogon massena
Trogon melanurus
Trogon rufus

Trogon violaceus
Trogon viridis

Turdus grayi
Tyranniscus vilissimus
Tyrannulus elatus
Tyrannus melancholicus
Vireo flavoviridis
Xenops minutus
Xiphorhynchus guttatus
Xiphorhynchus lachrymosus

Rufous Mourner

King Vulture

Giant-tailed Grackle
Thrushlike Manakin
Scaly-throated Leaftosser
Green Shrike-Vireo
Crested Hawk-Eagle
Black Hawk-Eagle
Variable Seedeater
Yellow-bellied Seedeater
Rough-winged Swallow
White-collared Swift
Mangrove Swallow
White-shouldered tanager
Bay-headed Tanager
Plain-colored tanager
Golden-hooded Tanager
Ruddy-tailed Flycatcher
Crowned Woodnymph
Slaty Antshrike

Blue-gray tanager

Palm tanager

Plain Wren

Rufescent Tiger-Heron
Great Tinamou
Black-crowned Tityra
Masked Tityra

Common Tody-Flycatcher
Yellow-margined Flycatcher
Slaty-tailed Trogon
Black-tailed Trogon
Black-throated Trogon
Violaceous trogon
White-tailed Trogon
Clay-colored Robin

Paltry Tyrannulet
Yellow-crowned Tyrannulet
Tropical Kingbird
Yellow-green Vireo

Plain Xenops
Buff-throated Woodcreeper
Black-striped Woodcreeper
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Zarhynchus wagleri Chestnut-headed Oropendola
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