
ΠΑΡΑΚΟΛΟΥΘΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ

ΣΕ ΕΙΚΟΝΟΣΕΙΡΕΣ

ΜΕ ΜΟΝΤΕΛΑ ΜΙΚΤΩΝ ΚΑΤΑΝΟΜΩΝ

Η ∆Ι∆ΑΚΤΟΡΙΚΗ ∆ΙΑΤΡΙΒΗ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Μηχανικών Η/Υ και Πληροφορικής

Εξεταστική Επιτροπή

από τον

ΒΑΣΙΛΕΙΟ ΚΑΡΑΒΑΣΙΛΗ

ως μέρος των Υποχρεώσεων για την λήψη του

ΔΙΔΑΚΤΟΡΙΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΔΕΚΕΜΒΡΙΟΣ 2015

COMMITTEES

Advisory Committee

• Christophoros Nikou, Associate Professor, Department of Computer Science and Engi-
neering, University of Ioannina, Greece (Supervisor)

• Aristidis Likas, Professor, Department of Computer Science and Engineering, University
of Ioannina, Greece

• Lisimachos-Paul Kondi, Associate Professor, Department of Computer Science and En-
gineering, University of Ioannina, Greece

Examination Committee

• Christophoros Nikou, Associate Professor, Department of Computer Science and Engi-
neering, University of Ioannina, Greece (Supervisor)

• Aristidis Likas, Professor, Department of Computer Science and Engineering, University
of Ioannina, Greece

• Lisimachos-Paul Kondi, Associate Professor, Department of Computer Science and En-
gineering, University of Ioannina, Greece

• Stefanos Zafeiriou, Senior Lecturer, Department of Computing, Imperial College Lon-
don, United Kingdom

• Ioannis Kakadiaris, Professor, Department of Computer Science, University of Hous-
ton, USA

• Nikolaos Mitianoudis, Assistant Professor, Department of Electrical and Computer En-
gineering, Democritus University of Thrace, Greece

• Konstantinos Blekas, Associate Professor, Department of Computer Science and Engi-
neering, University of Ioannina, Greece

DEDICATION

I wish to dedicate this work to my family, my teachers and my friends.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to my advisor Prof. Christophoros Nikou
for the valuable guidance, advice and encouragement he has offered during the elaboration of
this thesis. For the time and effort he spent on my work throughout all these years, dating back
to 2008. Our collaboration has been a pleasant and memorable experience that has helped me
develop strong research skills.

I would also like to thank the Greek State Scholarships Foundation (IKY) for providing me
with a scholarship for my doctoral studies.

December 2015
Vasileios Karavasilis

CONTENTS

1 Introduction 7
1.1 Visual Tracking . 7

1.2 Contribution of the thesis . 8

2 Visual tracking 11
2.1 Target representation . 12

2.1.1 Standard representation approaches 12

2.1.2 Gaussian mixture models for target representation 12

2.2 Tracking by filtering . 13

2.3 Tracking by gradient based optimization . 14

2.4 Multi-target tracking . 16

3 Tracking using the Earth Mover’s Distance between Gaussian Mixtures 19
3.1 Introduction . 19

3.2 Target appearance modeling . 20

3.2.1 Background on weighted Gaussian Mixture Models 20

3.2.2 Earth Mover’s Distance between Gaussian Mixture Model 22

3.3 Target tracking . 25

3.4 Robustness to Occlusions . 28

3.4.1 Background on Kalman filter . 28

3.4.2 Differential EMD with GMM and Kalman filter 28

3.5 Experimental Results . 30

3.6 Conclusions . 34

4 Visual Tracking under Abrupt Illumination Changes 37
4.1 Introduction . 37

4.2 Mean shift algorithm . 38

4.3 Target modeling by a GMM . 39

4.4 Experimental results . 41

4.5 Conclusions . 43

vii

5 Visual tracking using spatially weighted likelihood of Gaussian mixtures 45
5.1 Introduction . 45
5.2 Tracking by weighted likelihood . 46

5.2.1 Gradient based update . 49
5.2.2 Mean shift-like update . 50
5.2.3 Scale adaptation . 50
5.2.4 Target model update . 52

5.3 Experimental results . 55
5.3.1 Experimental results on the VOT2014 dataset 63

5.4 Conclusions . 67

6 Real time visual tracking using a spatially weighted von Mises mixture model 69
6.1 Introduction . 69
6.2 Weighted von Mises mixture model . 70

6.2.1 Introduction to the von Mises distribution 70
6.2.2 Von Mises mixture model . 71
6.2.3 Weighted von Mises mixture model 73

6.3 Tracking using the weighted von Mises mixture model 73
6.3.1 First frame . 74
6.3.2 Tracking in consecutive frames . 74
6.3.3 Implementation details . 75

6.4 Experimental results . 75
6.5 Conclusions . 85

7 Motion segmentation and tracking by clustering incomplete trajectories 87
7.1 Introduction . 87
7.2 Extracting trajectories . 89
7.3 Clustering trajectories of variable length . 91

7.3.1 Initialization Strategy . 94
7.4 Experimental results . 95

7.4.1 Experiments with simulated data sets 96
7.4.2 Experiments with real data sets . 100
7.4.3 Experiments using the Hopkins 155 dataset 102
7.4.4 Experiments using other key point descriptors 104

7.5 Conclusions . 104

8 Conclusions and Future Work 107
8.1 Conclusions . 107
8.2 Future Work . 108

Appendices 122

viii

A The Kalman filter 123
A.1 Motion Model . 123
A.2 Linear Kalman Filter . 125
A.3 Extended Kalman Filter . 128

B The Particle filter 131
B.1 The Condensation algorithm . 131

B.1.1 Discrete-time propagation of state density 131
B.1.2 Factored sampling . 132
B.1.3 The Condensation algorithm . 133

B.2 The ICondensation algorithm . 134
B.2.1 Importance sampling . 134
B.2.2 The ICondensation algorithm . 135

C The Mean shift algorithm 137
C.1 Target representation . 137
C.2 Histogram Distance . 139
C.3 The Mean shift algorithm . 139
C.4 Background modeling . 141

D The Differential Earth Mover’s Distance 143
D.1 The Earth Mover’s Distance . 143
D.2 The DEMD algorithm . 144
D.3 DEMD extensions . 146

ix

LIST OF FIGURES

3.1 Variations of the GMM parameters during tracking. As the racket moves, the compo-

nent that corresponds to the background (π3) increases its proportion in the GMM due

to the fact that more pixels belonging to background are inside the ellipse. On the other

hand, components corresponding to the object (π1 and π2) reduce their responsibilities

γni in the model because pixels belonging to the object get out of the ellipse. Never-

theless, the means and variances of the model components remain unchanged because

the object and background colors change smoothly. 24

3.2 Representative frames of the image sequences used in the experiments. 31

3.3 Seq5. Representative frames with the estimates of the ellipse for the compared algorithms. 34

3.4 Seq6. Representative frames with the estimates of the ellipse for the compared algorithms. 35

3.5 Seq6. The normalized Euclidean distances between the ground truth and the estimates

of the ellipse center for the compared algorithms. 35

4.1 a) The histogram of the target in the initial image. b) The histogram of the target
in the next image is shifted due to an abrupt illumination change. c) The GMM
of the target in the initial image. d) The resulting smooth histogram using (4.14). 40

4.2 Representative frames of the datasets used in the experiments. 42

4.3 Top row: the first frames of Seq3a. Bottom row: the first frames of Seq3b. . . . 43

5.1 The original ellipse (top) and the horizontally scaled ellipse (bottom). The pixels that

are used in (5.4) are represented by the gray columns. When the size of the ellipse

increases by α%, the inter-column distance is also increased by the same amount. Thus,

the number of pixels N is constant and f (P ;y,h) = f (P ′;y,h). 52

5.2 Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error. 61

5.3 Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error. 62

5.4 Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error. 62

5.5 Representative results on the real datasets used in the experiments Real1, Real2, Real3

and Real4, Real5, Real6, Real7, Real8 and Real9 using WLT. Although the inscribed

ellipse is used in the computations, the target is bounded by a green rectangle for visu-

alization purposes. 63

5.6 Representative frames of the sequence used for the evaluation of the algorithm on rota-

tions of the target. 63

xi

5.7 Representative frames for the sequence that is used for the qualitative evaluation of the

model update (the total number of frames that were used during the tracking procedure

is 71). The chair rotates around its axis and moves from left to right. The model update

procedure is applied every 10 frames. While in the initial frame only the black color

is included in the target model, in the final frame (number 71) both the black and the

purple colors are included in the model. 64

5.8 Performance of WLT without model update (green) and with model update (red). . . . 65

5.9 Comparative evaluation of the proposed WLTMS (green square indicated by the arrow)

with respect to state-of-the-art algorithms over all the video sequences of the VOT2014

data set. The plot is generated by the VOT 2014 toolset. (a) Baseline experiments and

(b) region noise experiment. 67

6.1 Comparative evaluation of the proposed VMT (green star indicated by the arrow) with

respect to state-of-the-art algorithms over all the video sequences of the VOT2014 data

set. The plot is generated by the VOT 2014 toolset. (a) Baseline experiments and (b)

Region Noise experiments. 77

6.2 Representative frames from the david image sequence (left) and the corresponding his-

tograms with the estimated von Mises mixture superimposed on it (right). 82

6.3 Representative frames from the sphere image sequence (left) and the corresponding

histograms with the estimated von Mises mixture superimposed on it (right). 83

6.4 Representative frames from the sunshade image sequence (left) and the corresponding

histograms with the estimated von Mises mixture superimposed on it (right). 83

7.1 Trajectories extracted from an image sequence. (a) The first frame of the image se-

quence showing four robots and their mean trajectories. The group of robots perform

a square-like movement. (b) The trajectories of the features extracted from the image

sequence. The two axes represent the horizontal and vertical coordinates. (c) The hori-

zontal trajectories along time. (d) The vertical trajectories along time. Notice that there

is a large number of short and incomplete trajectories because the features disappear

and reappear during the image sequence due to illumination changes and the distance

of the object from the camera. 88

7.2 Example of trajectories construction. The red dots represent the image key points and

the green lines represent their trajectories. The figure is better seen in color. 90

7.3 The effect of the translation parameter. (a) A set of trajectories. (b) Alignment of the

trajectories. 92

7.4 The overall progress of our method applied to an experimental image sequence of

250 images with k = 4 objects with different motions. (a) Real trajectories, (b) input

trajectories, (c) initial estimation of mean trajectories using the proposed technique, (d)

the estimated trajectories after EM convergence. 96

xii

7.5 Features are not uniformly distributed over the object and the center of gravity of the

key points does not coincide with the center of gravity of the object. The small dots

represent the features and the big dot represents their barycenter. The figure is better

visualized in color. 97
7.6 Comparative results with four artificial datasets. For each problem we give the true

objects motion, the created input trajectories and the estimated motion by all approaches. 98
7.7 Comparative results with three artificial datasets. For each problem we give the true

objects motion, the created input trajectories and the estimated motion by all approaches. 99
7.8 Comparative results with five real datasets. For each problem we give the true objects

motion (chosen manually), the created input trajectories and the estimated motion by

all approaches. 101
7.9 Estimated trajectories for the dataset Real4. (a) Our method, (b) mean shift, (c)

camshift. The green (printed in light gray in black and white) trajectory in (b) and

(c) corresponds to the person in black moving from the right side of the image to the

left and backwards. The ellipse highlights the part of the trajectory where the person

is lost, because mean shift or camshift fails to track the object due to occlusion. The

figure is better visualized in color. 102
7.10 Representative frames of the Hopkins 155 dataset. The feature points are marked using

different colors in order to denote the cluster they belong to. 102

xiii

LIST OF TABLES

3.1 Tracking accuracy. The average normalized Euclidean distance between the
true object center and the estimated object center is presented for the compared
methods. 32

3.2 Average execution times for the compared methods (sec/frame). 33
3.3 Average number of iterations per frame for the compared methods. 33

4.1 The performance of the proposed method for different GMM components num-
ber (K) in terms of average position error and average execution time. 42

4.2 The performance of the compared methods (mean shift and MSGMM withK =

2) in terms of average position error and average size error. 43

5.1 Performance of camshift, FRAG, WLT and WLTMS in terms of correct target
localization. 58

5.2 Performance of camshift, FRAG, WLT and WLTMS in terms of position error
(mean ± std). 59

5.3 Performance of camshift, FRAG, WLT and WLTMS in terms of size error
(mean ± std). 59

5.4 Performance of camshift, FRAG, WLT and WLTMS in terms of precision (mean
± std). 60

5.5 Performance of camshift, FRAG, WLT and WLTMS in terms of recall (mean±
std). 60

5.6 Performance of camshift, FRAG, WLT and WLTMS in terms of F-measure
(mean ± std). 61

5.7 Comparison of WLT and LT in terms of the maximum allowable target initial-
ization area. 64

5.8 Performance of the proposed WLTMS method over the VOT2014 dataset. The
labels Average, Below and Above indicate the performance of the tracker with
respect to the the mean of the state-of-the-art algorithms considered in the eval-
uation. The ordering of the algorithm’s performance is also indicated for each
video sequence. 66

6.1 Performance of VMT in terms of accuracy rank for the Baseline experiments
(less is better). 78

xv

6.2 Performance of VMT in terms of robustness rank for the Baseline experiments
(less is better). 79

6.3 Performance of VMT in terms of accuracy rank for the Region Noise experi-
ments (less is better). 80

6.4 Performance of VMT in terms of robustness rank for the Region Noise experi-
ments (less is better). 81

6.5 Comparison of the different initialization approaches that are presented in sec-
tion 6.3.3. All times are in microseconds (10−6 second). 84

6.6 Comparison of different likelihood estimation approaches presented in section
6.3.3. GMM indicates a Gaussian mixture model and Hist a histogram approach
employed in the mean shift algorithm. All times are in microseconds (10−6

second). 85

7.1 The performance of the compared methods in terms of classification accuracy
(ACC) and mean squared error (MSE). 100

7.2 Statistics on the average of classification error for the traffic subset of the Hop-
kins 155 dataset. 103

7.3 Statistics on the median of classification error for the traffic subset of the Hop-
kins 155 dataset. 103

7.4 The performance of the different key point extraction methods in terms of clas-
sification accuracy (ACC) and mean squared error (MSE). 104

D.1 Starting Tableau . 145
D.2 Reformulated optimal tableau . 145

xvi

LIST OF ALGORITHMS

1 Differential EMD with GMM (MDEMD) . 27
2 Scale adaptation on MDEMD . 27
3 Differential EMD with GMM and Kalman filter 30
4 Mean shift tracking procedure . 39
5 WLT algorithm . 55
6 Target update . 56
7 Trajectories construction algorithm . 90
8 Kalman Filter . 129
9 Extended Kalman filter . 130
10 Condensation algorithm . 133
11 ICondensation algorithm . 136
12 Bhattacharyya coefficient ρ[p̂(y), q̂] maximization 140
13 Differential EMD (DEMD) . 146
14 Algorithm to Adjust Object Scale and Position with Both Foreground and Back-

ground Cues . 147

1

ABSTRACT

Vasilios Karavasilis
PhD, Department of Computer Science and Engineering, University of Ioannina, Greece.
December, 2015.
Thesis Title: Visual tracking in image sequences using mixture models.
Thesis Supervisor: Christophoros Nikou.

An important field in computer vision is visual tracking, which is the procedure of gen-
erating inference about motion of an object or target in a sequence of images. Solutions to
this problem have a variety of applications, some of them being surveillance, action and ges-
ture recognition, motion-based video compression, teleconferencing and video indexing. In
tracking problems, it is assumed that the model of the object is known and based on a set of
measurements in a video the object’s position should be estimated. In this thesis, we focus on
the application of clustering methods to model the target’s appearance and on the optimization
of a cost function to estimate the position of the target and we propose algorithms that improve
the state of the art performance or reduce the computational complexity of existing methods.

The first algorithm proposed in this thesis is an extension to the Differential Earth Mover’s
Distance (DEMD) algorithm for tracking. The contribution of this work is twofold. At first,
the representation of the object is accomplished by Gaussian mixture models (GMM) instead of
histogram signatures employed in the standard algorithm. This leads to reduced computational
cost for real time applications as the algorithm avoids the large dimensionality of histograms.
Also, the DEMD algorithm is combined with a Kalman filter to handle occlusions which is a
problem not addressed by the original algorithm.

The second algorithm is a variant of the mean shift algorithm where a Gaussian mixture
model is employed at each iteration to smooth the differences in the histogram bins representing
the appearance of the object. By these means, the algorithm is capable of handling color changes
due to variations in the illumination of the scene.

The next algorithm that is proposed herein also relies on Gaussian mixture modeling of the
target’s appearance. However, compared to the previous approach, the GMM parameters are
estimated in the first frame of the image sequence in order to define the appearance of the target.
In subsequent frames, the target’s position is estimated by maximizing the weighted likelihood
of the mixture model by assuming that pixels near the target’s geometric center contribute more
to the estimation of its position. The advantages of this method are a close-form update for the

3

target’s position, a lower dimension of the target’s representation and a reduced computational
complexity. Moreover, an update framework is proposed in order to handle cases when the
target changes its color due to pose and illumination variations.

An algorithm robust to illumination changes is also proposed which employs only the hue
component of the target. As the hue component is periodic, a Gaussian mixture can not model it
properly and therefore, a mixture of von Mises distributions is used, which is a circular distribu-
tion modeling accurately the hue component of an image. Moreover, the fact that the hue is one
dimensional is exploited to discretize it to a finite number of values, which may be computed a
priori, thus, speeding up the tracking procedure significantly.

Finally, a framework for visual object tracking based on clustering trajectories of image key
points is proposed. The main contribution of the method is that the trajectories are automatically
extracted from the image sequence and they are provided directly to a model-based clustering
approach. In most other methodologies, the latter constitutes a difficult part since the resulting
feature trajectories have a short duration, as the key points disappear and reappear due to oc-
clusion, illumination, viewpoint changes and noise. We present a sparse, translation invariant
regression mixture model for clustering trajectories of variable length. The overall scheme is
converted into a maximum a posteriori approach, where the Expectation–Maximization (EM)
algorithm is used for estimating the model parameters.

4

Εκτεταμένη Περίληψη στα Ελληνικά

Βασίλειος Καραβασίλης του Χρήστου και της Ειρήνης.

Phd, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων.
Δεκέμβριος, 2015.

Τίτλος Διατριβής : Παρακολούθηση της κίνησης σε εικονοσειρές με μοντέλα μικτών κατα-

νομών.

Επιβλέπων: Χριστόφορος Νίκου.

΄Ενα σημαντικό πεδίο στην περιοχή της υπολογιστικής όρασης είναι η οπτική παρακο-

λούθηση, που είναι η διαδικασία εκτίμησης της κίνησης ενός αντικειμένου ή στόχου σε μια

ακολουθία εικόνων. Η επίλυση αυτού του προβλήματος έχει εφαρμογές στην επιτήρηση πε-

ριοχών, στην αναγνώριση των κινήσεων ή των χειρονομιών, στην συμπίεση βίντεο με βάση

την κίνηση, στις τηλεδιασκέψεις και την κατηγοριοποίηση βίντεο. Στα προβλήματα οπτικής

παρακολούθησης, το μοντέλο των αντικειμένων είναι συνήθως γνωστό, και με βάση κάποιες

μετρήσεις κατά την διάρκεια του βίντεο, πρέπει να εκτιμηθεί η θέση του αντικειμένου. Η

παρούσα εργασία, επικεντρώνεται στην χρήση μεθόδων ομαδοποίησης και πιο συγκεκριμένα

στις μικτές κανονικές κατανομές, με σκοπό την μοντελοποίηση της εμφάνισης του στόχου

και στην βελτιστοποίηση μιας συνάρτησης κόστους με σκοπό την εκτίμηση της θέσης του

στόχου. Προτείνουμε αλγορίθμους που έχουν βελτιωμένη απόδοση σε σχέση με ήδη υπάρ-

χουσες υλοποιήσεις ή μειώνουν την υπολογιστική πολυπλοκότητα ήδη υπαρχόντων μεθόδων.

Ο πρώτος αλγόριθμος που προτείνεται στην παρούσα εργασία είναι μια επέκταση του αλ-

γόριθμου Differential Earth Mover’s Distance (DEMD) . Η συνεισφορά αυτής της επέκτασης
έχει δύο πλευρές. Αρχικά, για την αναπαράσταση του μοντέλου του αντικειμένου χρησι-

μοποιούνται μικτές κανονικές κατανομές αντί για υπογραφές ιστογράμματος που χρησιμο-

ποιούνται στον αρχικό αλγόριθμο. Με αυτό τον τρόπο μειώνεται το υπολογιστικό κόστος

για εφαρμογές πραγματικού χρόνου, καθώς ο αλγόριθμος αποφεύγει την μεγάλη διάσταση

ενός ιστογράμματος. Επίσης, ο αλγόριθμος DEMD συνδυάζεται με το φίλτρο Kalman για
να μπορεί να χειριστεί αποκρύψεις του αντικειμένου, που είναι ένα πρόβλημα το οποίο δεν

αντιμετωπίζει ο αρχικός αλγόριθμος.

Ο δεύτερος αλγόριθμος είναι μια επέκταση του αλγορίθμου μέσης μετατόπισης στον ο-

ποίο μικτές κανονικές κατανομές χρησιμοποιούνται σε κάθε επανάληψη για να εξομαλύνουν

τις διαφορές μεταξύ των στηλών του ιστογράμματος που μοντελοποιεί την εμφάνιση του αν-

τικειμένου. Με αυτό τον τρόπο, ο αλγόριθμος μπορεί να χειριστεί αλλαγές στο χρώμα του

5

αντικειμένου που οφείλονται σε μεταβολές της φωτεινότητας της σκηνής.

Ο επόμενος αλγόριθμος που προτείνεται βασίζεται επίσης σε μικτές κανονικές κατανομές

για να μοντελοποιήσει την κατανομή του χρώματος του αντικειμένου. Ωστόσο, σε αντίθεση

με την προηγούμενη προσέγγιση, οι παράμετροι της μικτής κανονικής κατανομής που πε-

ριγράφει την αναπαράσταση του αντικειμένου υπολογίζονται μόνο στην πρώτη εικόνα της

εικονοσειράς. Στις υπόλοιπες εικόνες, η θέση του αντικειμένου υπολογίζεται μεγιστοποι-

ώντας τη σταθμισμένη πιθανοφάνεια του μικτού μοντέλου, με βάση την υπόθεση ότι τα

εικονοστοιχεία κοντά στο γεωμετρικό κέντρο του αντικειμένου συνεισφέρουν πιο πολύ στον

υπολογισμό της θέσης του. Τα πλεονεκτήματα αυτής της προσέγγισης είναι η κλειστή μορφή

της εξίσωσης που εκτιμά την θέση του αντικειμένου, η αντιμετώπιση της μεγάλης διάστασης

και οι μικρές απαιτήσεις σε υπολογιστική ισχύ. Επιπλέον, προτείνεται μια μέθοδος για την

ενημέρωση του μοντέλου που αναπαριστά το αντικείμενο σε περιπτώσεις που το χρώμα του

αντικειμένου αλλάζει λόγω μεταβολών στην επιφάνεια του αντικειμένου ή τον φωτισμό της

σκηνής.

Επίσης, προτείνεται ένα αλγόριθμος που είναι ευσταθής σε αλλαγές της φωτεινότητας

επειδή χρησιμοποιεί μόνο την τιμή της απόχρωσης του στόχου. Επειδή η απόχρωση είναι πε-

ριοδική, δεν μπορεί να χρησιμοποιηθεί η μικτή κανονική κατανομή για να την μοντελοποιήσει

επαρκώς. Για το λόγο αυτό, χρησιμοποιείται η μικτή κατανομή von Mises, που είναι περιο-
δική και μπορεί να μοντελοποιήσει με ακρίβεια την συνιστώσα της απόχρωσης μιας εικόνας.

Επιπλέον, το γεγονός ότι οι η συνιστώσα της απόχρωσης είναι μονοδιάστατη χρησιμοποιείται

για την διακριτοποίησή της μικτής κατανομής σε πεπερασμένο πλήθος τιμών, που μπορούν

να υπολογιστούν εκ των προτέρων, και επομένως να βελτιώσουν την ταχύτητα εκτέλεσης

του αλγορίθμου.

Τέλος, προτείνεται ένας αλγόριθμος για την ανίχνευση πολλαπλών αντικειμένων που βα-

σίζεται στην ομαδοποίηση των τροχιών κάποιων σημείων ενδιαφέροντος των αντικειμένων.

Η κύρια συνεισφορά της μεθόδου είναι ότι οι τροχιές υπολογίζονται αυτόματα από την ει-

κονοσειρά και χρησιμοποιούνται απευθείας στην διαδικασία κατηγοριοποίησης. Σε άλλες

προσεγγίσεις, η κατηγοριοποίηση είναι δύσκολη γιατί οι τροχιές των σημείων ενδιαφέροντος

μπορεί να έχουν μικρή διάρκεια, καθώς τα σημεία αυτά εξαφανίζονται και επανεμφανίζονται

λόγω επικαλύψεων, αλλαγών στην φωτεινότητα, μεταβολή της θέσης θέασης και θόρυβο.

Παρουσιάζουμε ένα αραιό, ανεπηρέαστο από την μετατόπιση μικτό μοντέλο παλινδρόμισης

που χρησιμοποιείται για την κατηγοριοποίηση καμπυλών μεταβλητού μεγέθους. Η διαδικα-

σία ομαδοποίησης μεταφράζεται σε μια μεγιστοποίηση της εκ των υστέρων πιθανοφάνειας,

όπου ο αλγόριθμος Expectation – Maximization (EM) χρησιμοποιείται για την εκτίμηση των
παραμέτρων του μοντέλου.

6

CHAPTER 1

INTRODUCTION

1.1 Visual Tracking

1.2 Contribution of the thesis

1.1 Visual Tracking

Computer vision is a field of computer science and engineering that designs methods for ex-
tracting semantic information from images. Usually, the input to such methods is an image
and the objective is to extract some information or infer an interpretation from the the image
content.

In this process, the first step is image acquisition, where images are captured by sensors
like cameras and are represented as 2D signals. When a series of images are recorded from
the same camera in consecutive time moments an image or video sequence is obtained. As
sampling is relatively dense, the differences between consecutive frames are not very large and
the variations between them result from camera motion, partial or total scene motion, occlusions
and their combinations.

The objective of visual tracking, which is the topic in this thesis, is to estimate the position of
an object in an image sequence. Usually, the position and shape of the object in the first frame
of the image sequence is known. Thus, in every frame, except from the first one, a tracking
algorithm has to locate the object using information on the position of the object in the previous
frames and the appearance of the object.

Tracking can be difficult for a number of reasons. At first, the individual images may prob-
ably have large sizes (generally over 1 Mpixel) and the recording frame rate is relatively large
(generally over 25 pictures per second). Therefore, as the image resolution and the sampling rate
increase, the demands for storage space and computational power also increases. Nevertheless,
in visual tracking, the localization of objects must be done in real time in many applications.
Consequently, the algorithms must be efficient with respect to execution time in order to be

7

able to process each image before the appearance of the next frame in a video sequence. On
the other hand, there are cases where a number of frames may be dropped or the algorithm has
to handle low resolution frames, leading to loss of measurement and consequently missing of
the tracked target. Another issue may be the change of the object’s appearance, color or both.
Changes in appearance may occur due to physical properties (e.g. a person walking) or due
to occlusions (e.g. a car passes in front of another car). Changes in color may happen due to
rotation (e.g. a colorful ball rolling) or due to changes in the illumination of the scene (e.g.
reflections). Finally, a major issue arises when the objects to be tracked have similar color with
other objects which are considered as parts of the background. Other factors making tracking
difficult may be the projection from the three dimensional real word to the two dimensional
image space, acquisition noise, complex non-rigid movement of the object and the prerequisite
for real time execution.

Despite the fact that tracking an object efficiently in every possible scenario is an open is-
sue, many approaches have been proposed which solve the problem when various constraints
are assumed to apply to the motion model or the appearance of the object. For instance, many
methods assume that the motion is smooth without abrupt changes, or the illumination of the
object does not change dramatically, or the acceleration of the object is constant for some time
period or the object’s shape can be modeled by a primitive geometric shape. These simplifica-
tions enable the design of algorithms that can track objects efficiently for a specific application.

Finally, tracking can be seen as a standalone process, where we are only interested in the
position and shape of a target through time, or as an intermediate step in order to handle a
broader problem. Knowing the object’s position can be useful in many applications, such as
action recognition based on motion (e.g. recognition based on gait or gesture), human identifi-
cation, video-based surveillance, human – computer interaction, automatic vehicle driving and
character animation in computer graphics.

1.2 Contribution of the thesis

In this thesis, we study the problem of visual tracking in image sequences by using mixture
models in order to model the appearance of the target or its trajectory. Mixture models provide
a compact representation which is robust to slight color changes and provide the foundation for
real time tracking by eliminating the curse of dimensionality. The structure of the rest of the
thesis is organized as follows:

In Chapter 2, the related literature on visual tracking is reviewed with respect to the methods
proposed in this thesis.

In Chapter 3, an extension to the Differential Earth Mover’s Distance method is proposed
which uses Gaussian mixture models to model the appearance of the target. We demonstrate
how the DEMD may be used for visual tracking in synergy with Gaussian mixtures models.
According to the appearance model, motion between adjacent frames results in variations only
of the mixing proportions of the Gaussian components representing the object to be tracked.

8

These variations are computed by minimizing the differential EMD between Gaussian mix-
tures, yielding a very fast algorithm with high accuracy, without recurring to the EM algorithm
in each frame. Moreover, we also propose a framework to handle occlusions, where the es-
timation of the object’s location is forwarded to an adaptive Kalman filter whose parameters
are estimated online by the motion model already observed. Thus, the algorithm can not only
handle occlusions but also predict the objects future position.

In Chapter 4, an extension to the mean shift algorithm is proposed which smooths the his-
togram in order to handle global scene illumination changes. Mean shift is based on the mini-
mization of the distance between the discrete histogram of the target and the discrete histogram
of the neighborhood of a candidate image location. While the algorithm performs well when
the target’s appearance and the lighting conditions are constant, it may fail when these condi-
tions are not met because the ideal histogram is generally shifted with respect to the reference
histogram. In this chapter, we propose to compute the initial histogram of the target using a
Gaussian mixture model rather than impulses generated by simple counting. This mixture plays
the role of a weighting function, in the histograms computed in subsequent frames, in order
to make them smoother and increase the overlapping area with the initial histogram. By these
means, sudden illumination changes between consecutive frames may exhibit smoother transi-
tions between the two histograms and the involved distance is not trapped into local minima.
This methodology is not tightly tied to mean shift and can be applied to other methods that use
histograms in order to represent the target appearance and do not use cross bin metrics.

In Chapter 5, a new method that uses weighted Gaussian mixture model and likelihood
maximization is proposed. In the probabilistic real time tracking algorithm that is proposed, the
target’s feature distribution is also represented by a Gaussian mixture model. However, com-
pared to the approach of Chapter 3, there is only one Gaussian mixture model estimated. The
target localization in the image sequence is achieved by maximizing the weighted likelihood
with respect to the object location having the GMM parameters constant. The role of the weight
in the likelihood definition is important as it allows gradient based optimization to be performed,
which would not be feasible in a context of standard likelihood representations. Moreover, the
algorithm handles scale and rotation changes of the target, as well as appearance changes, which
modify the components of the GMM. The proposed appearance update framework uses only in
the previous target positions in order to determine if an update to the appearance must take place
and can be combined with other tracking approaches.

In Chapter 6, a new method based on a weighted von Mises mixture model is proposed in
order to represent the hue component of the target. The mixture weights, which are provided
by a spatial kernel, along with the hue values are used in order to estimate the parameters of
the weighted von Mises mixture model. As the hue component is periodic, approaches that use
distributions that are designed for linear spaces (e.g. Gaussian distribution) can not be applied.
The von Mises distribution is suitable for circular data and it is employed in order to eliminate
drawbacks in kernel-based tracking caused by eventual shifts of the target’s histogram bins. The
weights allow a mean shift-like gradient based optimization by maximizing the weighted like-
lihood, which would not be feasible in the context of a standard von Mises mixture. Moreover,

9

as only the hue component of the target is involved, many quantities of the algorithm may be
pre-calculated for fixed parameters and therefore the algorithm can perform in real time.

In Chapter 7, we present a framework for visual object tracking based on clustering trajec-
tories of image key points extracted from an image sequence. The main contribution of our
method is that the trajectories are automatically extracted from the image sequence and they are
provided directly to a model-based clustering approach. In most other methodologies, the latter
constitutes a difficult part since the resulting feature trajectories have a short duration, as the
key points disappear and reappear due to occlusion, illumination, viewpoint changes and noise.
We present a sparse, translation invariant regression mixture model for clustering trajectories of
variable length. The overall scheme is converted into a maximum a posteriori approach, where
the expectation -maximization (EM) algorithm is used for estimating the model parameters.
The proposed method simultaneously detects the distinct objects in the input image sequence
by assigning each trajectory to a cluster, and provides their motion which is represented by the
mean trajectory of each cluster.

In Chapter 8, we provide an overall review of the proposed methods, summarize the basic
conclusions and indicate open issues and interesting directions for future work.

10

CHAPTER 2

VISUAL TRACKING

2.1 Object representation

2.2 Tracking by filtering

2.3 Tracking by gradient based optimization

2.4 Multi-target tracking

Visual target tracking is a preponderant research area in computer vision with many ap-
plications such as surveillance, targeting, action recognition from motion, motion-based video
compression, teleconferencing, video indexing and traffic monitoring. Tracking is the procedure
of generating an inference about motion given a sequence of images. Based on a set of mea-
surements in image frames the object’s true position should be estimated. Various approaches
have been proposed in order to solve this problem. However, classifying the various tracking
algorithms into categories is not a straightforward process [107, 130, 140]. This results from the
fact that the tracking process may be split in phases, with a different approach for each phase.
The first phase is to create a representation of the object based on its initial view. In this phase,
various features can be employed, like color, texture, or higher level features. The second phase
is the estimation of the object’s position. This can be accomplished by exhaustive search, meth-
ods using gradient based optimization, filtering, or data association. The final step is the model
update. This is related to the first step, but it can also employ information about the motion. In
[53], it shown that an accurate appearance model is considerably more effective than a strong
motion model. Thus, the appearance model that is chosen in the first phase has great impact on
the strategy that is followed in the second phase to locate the target. Moreover, some algorithms
may not include a phase at all or integrate more than one phases simultaneously. In this chapter,
an overview of recent tracking algorithms is presented, with respect to the appearance and the
localization of the target.

11

2.1 Target representation

Images in visual tracking are represented by two dimensional matrices with elements being
scalar (in grayscale images) or vectors (in color images). Moreover, many features can be used
in order to describe each pixel. In grayscale images one may employ the illumination while
in RGB images the color is more frequently used. In gradient images the gradient in each
direction (or its equivalent angle and magnitude) are employed. Even though there are some
differences among them, the majority of the algorithms handle this issue in the generic case of
two dimensional matrix, with the scalar image being a special case of a multi-channel image.
The object to be tracked is a region of the image in a specific place. In what follows, the terms
object, target and image subregion of the object are considered interchangeable. Thus, in order
to represent the object various methodologies have been employed.

2.1.1 Standard representation approaches

The most straight forward approach is to represent the target by a template [38, 85, 93, 132,
121, 148, 144, 145, 154]. In this case, the appearance model can be thought as an array of
values, which can be formed by concatenating the columns of the target’s image subregion. This
approach has the advantage that it is easy to implement, but if the target changes its appearance,
for example by rotating, the new template will be significantly different.

Another approach estimates the distribution of some features from the target [66, 71, 99,
136, 152]. The feature distribution is usually represented by a histogram, although some other
approaches use histogram signatures or some sort of mixture model. This approach has the
advantage that the distribution does not change when some simple variations to the shape of the
object take place, for example in case of rotation, but it has the disadvantage that the object is
not strictly defined. Moreover, for higher dimensional features, for example RGB histograms,
the model’s accuracy in representing the target’s appearance can not be easily evaluated.

Finally, other methods represent the object by a set of points [34, 50, 52, 77, 91, 96, 139,
146], small image patches [38, 59, 118, 147, 154] or a combination of them [131, 138]. Some
constrains may apply to this set of points in order to enforce them form a structure as each point
is individually tracked using optical flow [78, 105]. However, the representation of each point
relies on simple approaches such the ones mentioned above, for example each key point may be
represented by a template of the color of its surrounding window. Algorithms in this category
may track each point individually and afterward estimate the position of the complete object, or
use the complete set of points in order to estimate the position of the object in one step.

2.1.2 Gaussian mixture models for target representation

An alternative method of representing the distribution of the features instead of a histogram is to
use a continuous distribution. Due to their theoretical simplicity and the efficiency of modeling
many distributions, the Gaussian mixture models will be presented as an example. Gaussian
mixtures have been widely used in computer vision for image segmentation [92], background

12

subtraction [26, 89], image classification [21] and human pose estimation [40]. In visual track-
ing, GMM have been employed to model the appearance of the target or as a support to the
tracking procedure. One work in the latter category is presented in [97], where a generic online
multi-target track-before-detect method is proposed that is applicable on confidence maps used
as observations. The main novelty is the inclusion of the target identity in the particle state,
enabling the algorithm to deal with unknown and large number of targets. In order to avoid
identity switches of close targets, the state estimate of a target is performed via mean shift clus-
tering and supported by GMM in order to enable an accurate assignment of identities within
each single cluster. In other works employing particle filters for visual tracking [75, 82] the
transition model of the particles is described by a GMM around an approximation of the state
posterior distribution of the previous frame.

The appearance of the target using a variation of the Gaussian distribution is proposed in
[36]. The asymmetric generalized Gaussian distribution is formulated by having two variance
parameters, one for the left part and one for the right part of the distribution, and it is capable of
modeling non-Gaussian asymmetrical data. The proposed mixture of multidimensional asym-
metric generalized Gaussian distributions is used for pedestrian detection and multiple target
tracking. A standard Gaussian mixture model for target appearance modeling is proposed in
[62], where Gaussian mixtures are used to represent the appearance of the target. The target
position is estimated using particles whose weights are computed by marginalizing out the ap-
pearance models. The target is divided in subregions; the features of the pixels inside each
subregion are used to estimate the parameters of a GMM and the appearance distribution of the
whole target is a combination of the distributions of the non-overlapping subregions.

2.2 Tracking by filtering

The algorithms based on filtering assume that the moving object has an internal state which
may be measured and, by combining the measurements with the model of state evolution, the
object’s position is estimated. In every frame, the previous state of the algorithm is combined
with the measurement in order to provide the current state. Subsequently, based on the cur-
rent state, the state transition model gives the next state. The first method of that category
is the Kalman filter [106] which successfully tracks objects even in the case of occlusion if
the assumed type of motion is correctly modeled [32]. Another approach in this category are
the particle filters [6, 76, 117, 123, 137, 149]. This category also includes Condensation [54]
and ICondensation [55] algorithms which are more general than Kalman filters, as they do not
assume specific type of densities and, using factored sampling, have the ability to predict an
object’s location under occlusion as well. The term particle filter is usually used when the same
tracker is applied with different parameters (e.g. various initial positions). However, in [10], the
results of multiple trackers are merged using a weighting scheme. Moreover, trackers having
consistently poor performance are removed and continuous trajectories are favored. In the same
spirit, trackers for single person and multiple persons are combined in [112] in order to track

13

people in crowded scenes. In [73], multiple image patches that are robust for visual tracking are
identified through a particle-filter based method. The patches can overlap with each other and
they are tracked using a base tracker. In [60], multiple samples taken from different cameras are
used in order to locate a target. Due to the fact that a camera may have less information about
the target with respect to the other cameras (e.g. the target may not be visible in its image),
a weighted approach is proposed in order make the samples affect the state of the target dif-
ferently. The problem of multiple targets tracking is handled by solving the matching problem
between multiple measurements per camera and their corresponding states.

These methods have the drawback that the type of object’s movement should be correctly
modeled. The motion model in the case of Kalman filter is important, as it only has one internal
state and if this singe state fails to estimate the position of the object, it will fail. On the other
hand, due to the fact that particle filters usually have many internal states, a small subset of them
may be sufficient to predict the correct state. However, due to the sampling procedure between
state transitions, the particle filters must have mechanisms in order to prevent the particles
from concentrating to only one state. This problem is bypassed by incorporating initialization
of new particles and inclusion of noise in state transitions. In [79], a modified evolutionary
computing method for the Condensation algorithm is introduced which resolves the particle
impoverishment under a proper size of particle population.

Another problem may be the sampling procedure. These methods can be combined with
external algorithms in order to handle the sampling of each step. For example, in the case of
Kalman filter, the target’s position can be estimated using another tracking algorithm, while
in particle filters, the similarity measure can be the difference of the template of the target
candidate and the target model. This implies that the external algorithms must be efficient in
terms of computation time, especially in the case of particle filters, where one sample must be
drawn for each particle.

The advantage of these methods is their implementation simplicity and the easy integration
with other algorithms in the sampling step. Moreover, due to their transition model, a prediction
for the future object’s position can be made, which can be employed in order to successfully
track the object under partial or full occlusions.

2.3 Tracking by gradient based optimization

A major subset of trackers in visual tracking address the problem of model-free shape by em-
ploying spatial kernels and modeling the color distribution of the target [27, 70, 71, 72, 74, 120].
In this category, tracking algorithms employ a probabilistic model of the object appearance and
try to detect this model in consecutive frames of the image sequence. More specifically, color
or texture features of the object, masked by an isotropic kernel, are used in order to create
their histogram. Then, the object’s position is estimated by minimizing a cost function between
the target’s model and candidate histograms. The key idea of this family of algorithms is the
representation of the target by an primitive shape, which is usually an ellipse. Combining the

14

ellipse with a spatial kernel eliminates the effect of varying object dimensions (e.g. a long thin
object) and allows tracking of a wide variety of targets. Each pixel inside the ellipse is assigned
a weight, with the maximum weight characterizing the pixel at the center of the ellipse. The
intuition behind this modeling is that pixels near the center of the ellipse are more likely to
belong to the object in contrast to pixels near the boundary. Masking the object with a kernel
allows a gradient-based optimization of a cost function instead of a brute force search for target
localization and real-time performance may be achieved on a standard personal computer.

A representative method in this category is the mean shift algorithm [20, 30] where the
object is supposed to be inside an ellipse and the histogram is constructed from pixel values
inside that ellipse. In the first frame, it estimates a target model which is represented by a
histogram. In consecutive frames, the location in which the corresponding histogram is similar
to the target model is estimated. In [150], the mean shift algorithm is extended in order to
estimate the orientation and scale of the target. In [153], scale invariant features are used and a
similarity measure between two neighboring frames in terms of color and SIFT correspondence
is computed and the expectation-maximization algorithm is employed in order to estimate a
maximum likelihood solution. In [135], various distance measures are associated with the mean
shift algorithm and in [125], the advantages of using a more detailed shape model instead of a
generic ellipse for target representation is investigated. Other approaches using multiple kernels
[39] and a Newton style optimization procedure [46] were also proposed.

However, the original algorithm shows some limitations which were recently addressed.
More specifically, mean shift fails to track the object when the histogram of the model changes
during time. It compares only the corresponding bins between histograms, so if the bins values
are shifted, then the object may be lost. This is common due to illumination changes (where
the histogram bins are shifted), view point changes (i.e. 3D rotation) or reappearance after oc-
clusion and the algorithm may not handle the overall drift in the histogram of the target. To
tackle these limitations, the tracker in [151, 152] minimizes the EMD between the target model
and the target candidate histograms. The movement in each iteration of the algorithm is one
pixel, due to the fact that there is no closed form solution in order to update the center of the
ellipse. In [69], a tracker that minimizes the EMD for the case of 1D feature histograms and a
tracker which minimizes a cross-bin metric that is based on histogram smoothing for multidi-
mensional features histogram are proposed. In [49], the target consists of overlapping regions,
whose weighted histograms are estimated. The histogram of the spatially corresponding regions
between the target model and the target candidate are compared using the EMD distance and an
exhaustive search framework is employed in order to estimate the target’s position. Moreover,
the histogram of model’s regions that their distance with the corresponding candidate regions
is above a threshold are updated, as the appearance of the target in these regions is likely to
have changed. The work in [70], enables mean shift to use multiple reference histograms ob-
tained from different target views or from different target states and the convex hull of these
histograms is used as the target model. In [74], the target appearance is modeled using a sparse
coding histogram based on a learnt dictionary. A sparse representation-based voting map is
used to regularize the mean shift algorithm in order to adapt it to appearance changes and limit

15

the drifting. The HSV color model can be employed in order to eliminate the issues caused
from illumination change. The hue component is a flexible representation, due to the fact that
is closely related to what humans perceive as color. Moreover, hue is unrelated to illumination
changes, as these changes are encoded in the saturation and value components. These properties
are highlighted in [20] in order to support the authors decision to use only the hue component.
Another advantage of using the hue component of the HSV color space instead of the full RGB
color space is that the dimensions of the problem are reduced to one instead of three. The hue
component does not depend on illumination changes, but this does not prevent its histogram
bins to be shifted. In these cases, we can not directly apply the approaches that were proposed
for the RGB histogram based methodologies, due to the fact that the hue is periodic with period
2π and these methodologies have been proposed for linear color spaces.

Another case where mean shift fails is when the object’s motion is abrupt and the target
ellipses in two consecutive frames do not intersect, which results from the local optimization
performed in the framework of kernel-based trackers. Combination with Kalman filter [8] or
particle filters [126] may give a solution to this problem, when the predicted state of the filter
is close to the next frame’s target’s position. The work in [72] addresses this drawback by em-
ploying a pyramidal decomposition to capture distant targets between consecutive frames. An
extension of the main algorithm is proposed in [71], which may handle cases where the color
of the target is similar with the color of the background and the displacements are large. The
disambiguation between target and background is achieved by a model incorporating informa-
tion about the spatial context of the target and large displacements are handled by increasing
the candidate scales.

2.4 Multi-target tracking

The above methods track only one object at a time. Other works track many objects simul-
taneously [5, 9, 12, 87, 113, 124, 134] and in these cases occlusions may be detected more
efficiently. These methods assume that a partial or total occlusion between objects may take
place and use this information in order to make the tracking procedure more robust. In [1],
prior knowledge of objects’ movement is used in order to detect occlusions. Moreover, the
object to be tracked is usually represented by its color histogram, but this is not always nec-
essary. A GMM was used in [122] to represent the object in a joint spatial-color space and
in [110] for background subtraction. Furthermore, the object may be represented by a con-
tour [103, 141] or a level set [31, 81, 90, 95, 101]. Other approaches that employ level-sets
tracks the objects [13, 51] by optimally grouping regions whose pixels have similar feature sig-
natures. Combining multiple object representations could make the tracking procedure more
robust [47, 88, 116, 129]. Also, in [16], multiple views of an object are learnt through principal
component analysis (PCA) and a support vector machine (SVM) classifier was also used in [7].
In [22, 94], graph cuts [18] were employed in order to segment each frame into possible objects.
An application in vehicle tracking is presented in [80] where multiple vehicles are tracked by

16

initially assigning each pixel either to background, or foreground and applying next a Kalman
filter to estimate the vehicle position and associate each foreground pixel with a single object. In
cases of articulated objects (e.g. pedestrians) stereo depth information has been used in order to
acquire a 3D articulated structure per object and then estimate the 3D trajectory of each object
[44]. Moreover, combining multiple object representations could make the tracking procedure
more robust [47].

Motion segmentation constitutes a significant application of tracking algorithms, which
aims at identifying moving objects in an image sequence. It can be seen either as the post-
processing step of a tracking algorithm, or as an assistive mechanism of the tracking algorithms
by incorporating knowledge to the number of individual motions or their parameters. It has
been considered as an optical flow estimation [15] where violations of brightness constancy and
spatial smoothness assumptions are addressed. In [127], an alternative scheme is used where
small textured patches with uniform optical flow are detected and clustered into layers, each
one having an affine flow. Likewise in [100], image features are clustered into groups and the
number of groups is updated automatically over time in.

Trajectories of image key-points extracted from an image sequence have also been used for
tracking. Grouping 3D trajectories is proposed in [23] using an agglomerative clustering algo-
rithm where occlusions are handled by multiple tracking hypotheses. Finite mixtures of hidden
Markov models (HMMs) were also employed in [4] where training is made using the EM al-
gorithm. In [142], it is assumed that trajectories belonging to different objects lie in different
subspaces, thus, the segmentation can be obtained by grouping together all the trajectories that
generate these subspaces. The grouping is obtained by the eigenvectors of an affinity matrix
which contains the pairwise distances between trajectories computed in the corresponding sub-
spaces. The number of motions can be estimated based on the number of eigenvalues of the
symmetric normalized Laplacian matrix. In [143], a two stage procedure is proposed. Initially,
an iterative clustering scheme is applied that groups temporally overlapping trajectories with
similar velocity direction and magnitude. Next, the clusters created are merged covering larger
time spans. In [128], faces are detected in each frame and tracked for a short period. Then,
the short trajectories are iteratively clustered and linked into longer trajectories by finding long
tracks of faces that are consistent in motion and appearance.

Furthermore, spectral clustering approaches were also proposed, such as in [67] where the
motions of the tracked feature points are modeled by linear subspaces, and the approach in [57],
where missing data from the trajectories are filled in by a matrix factorization method. More-
over, in [133] a linear manifold is estimated for every trajectory and then spectral clustering is
employed to separate these subspaces. In [63], motion segmentation is accomplished by com-
puting the shape interaction matrices for different subspace dimensions and combine them to
form an affinity matrix that is used for spectral clustering.

Finally, many methods proposed independently rely on the separation of the image into
layers. For example, in [83], tracking is performed in two stages: at first foreground extracted
blobs are tracked using graph cut optimization and then pedestrians are associated with blobs
and their motion is estimated by a Kalman filter.

17

CHAPTER 3

TRACKING USING THE EARTH MOVER’S

DISTANCE BETWEEN GAUSSIAN

MIXTURES

3.1 Introduction

3.2 Target appearance modeling

3.3 Target tracking

3.4 Robustness to Occlusions

3.5 Experimental Results

3.6 Conclusions

3.1 Introduction

In the Differential Earth Mover’s Distance tracking algorithm [151, 152], the object is repre-
sented by a histogram (called a signature) and the distance between signatures in consecutive
frames to be minimized is the Earth Mover’s Distance [102]. The computational complexity of
the EMD prevents a direct implementation in many real time applications. To overcome this
drawback, the DEMD algorithm based on sensitivity analysis of the simplex method provides
an acceleration compared with its standard counterpart [151, 152].

Motivated by the efficiency of the differential EMD tracking algorithm [151, 152] and the
compactness of the representation of probability densities using Gaussian mixture models [14],
we propose to first model the appearance of the target by a Gaussian mixture model trained on a
weighted likelihood and then to employ the differential EMD approach for tracking. According

19

to our model, motion between adjacent frames results in variations of the mixing proportions of
the Gaussian components representing the object. These variations affect the distance between
the mixtures, at the same image location, representing the object in consecutive frames. By these
means, the gradient of the EMD, namely the differential EMD [151, 152], between Gaussian
mixtures shows the direction of the minimum and consequently the target location.

Moreover, in a second part of this chapter, we propose to consider the estimated location of
the target as a measurement (observation) of a time-varying Kalman filter in order to address
cases presenting occlusions. Hence, the prediction for the object’s location is forwarded to a
Kalman filter whose state matrix parameters are not constant but they are updated on-line based
on recent history of the estimated motion.

The contribution of the presented chapter is twofold. At first, the proposed approach leads
to a significant improvement in terms of execution time with respect to the differential EMD
tracking algorithm [151, 152] without compromising the accuracy of the method. At second,
based on the motion model already observed, occlusions are successfully handled by modifying
on-line the state matrix of a Kalman filter.

The remainder of the chapter is organized as follows: In section 3.2, the modeling of the
object to be tracked by a Gaussian mixture is presented. The tracking algorithm relying on the
minimization of the Earth Mover’s Distance between Gaussian mixtures is presented in section
3.3. In section 3.4, the extension of the algorithm in order to address the problem of occlusion is
described. Experimental results are shown in section 3.5 which are followed by our conclusions
in section 3.6.

3.2 Target appearance modeling

In this section we present the basic idea of minimizing the Earth Mover’s Distance between
Gaussian mixture models for tracking. We describe the GMM as a way of representing an
object’s appearance and define the EMD as a distance between two GMM.

3.2.1 Background on weighted Gaussian Mixture Models

A one dimensional Gaussian distribution has a probability density function given by

N (In;µ, σ) =
1√
2πσ

exp

(
−(In − µ)2

2σ2

)
(3.1)

Where In is the intensity of the nth pixel, µ is the mean value and σ2 is the variance of the
distribution.

Let two Gaussian distributions be:

f1(In) = N (In;µ1, σ1), f2(In) = N (In;µ2, σ2). (3.2)

The Gaussian Mixture Model (GMM) is a convex combination of Gaussian components

20

[14]. A single component is given by (3.1) and the GMM with m components is expressed by

f(In;µ, σ, π) =
m∑
i=1

πiN (In|µi, σi) (3.3)

where µ = {µi}i=1,...,m, σ = {σi}i=1,...,m and π = {πi}i=1,...,m, are the model parameters. The
parameters πi represent the importance of each component and satisfy the constraints

∑m
i=1 πi =

1 and πi ≥ 0, ∀i = 1, . . . ,m.

We assume that we have grayscale images, and each object may be described by the inten-
sities of its pixels. An object is represented by an ellipsoidal region, and the object’s pixels are
those lying inside that region. The usual way to represent an object is by histograms of mh

bins. This approach has the disadvantage that the number of the bins must be specified a priori.
However, it is a very common and efficient way of modeling the object to be tracked in the
majority of the state of the art trackers [30].

In this chapter, we propose the representation of an object using a GMM. The parameters
of the GMM are estimated by clustering the density values of object’s pixels using the EM
algorithm [14]. An advantage of the GMM representation is that the number of components m
is significantly smaller than the number of distinct intensities.

Every object may be represented by an ellipsoidal region with finite precision. As an effect,
inside the ellipse, there will be regions not belonging to the object. Usually, these regions exist
at the edges of the ellipse. To eliminate the influence of regions not belonging to the object, the
ellipse is weighed by a kernel as will be explained bellow.

At first, we assume that the center of the ellipse is in the spatial location (0, 0). Then, the
ellipse is normalized to a unit circle by dividing each pixel coordinates by hx and hy, which are
the sizes of the ellipse in the horizontal and vertical directions respectively. Let the normalized
pixel locations be (xn, yn). An isotropic kernel, with profile k(x), is applied to pixels inside the
unit circle to attribute corresponding weights at every pixel. The weight for a pixel indexed by
n is defined by

wn =
k(x2

n + y2
n)∑N

i=1 k(x2
i + y2

i)
. (3.4)

Notice that x2
n + y2

n ≤ 1 because the point (xn, yn) is inside unit sphere and
∑N

n=1 wn = 1.
The kernel profile k(x) is a convex monotonic decreasing function such that k : [0,∞) → <
and g is the negative derivative of the kernel function, g(x) = −k′(x). We use a kernel with
Epanechnikov profile [30]

k(x) =

{
1
2
(1− x) if x ≤ 1

0 otherwise
(3.5)

Let I = {In}n=1,...,N be the intensity values of the pixels inside the unit circle as defined
above and let W = {wn}n=1,...,N be the corresponding normalized weights of each sample. The

21

weighted likelihood of the model is expressed by

L(I,W;µ, σ, π) =
N∑
n=1

wn log (f(In;µ, σ, π))

=
N∑
n=1

wn log

(
m∑
i=1

πiN (In;µi, σi)

)
(3.6)

and the update equations of the Expectation - Maximization (EM) algorithm that maximize this
likelihood are:

• Expectation step: Compute responsibilities

γni =
πiN (In;µi, σi)∑m
j=1 πjN (In;µj, σj)

. (3.7)

• Maximization step: Estimate parameters

π̂i =
N∑
n=1

wnγni, (3.8)

µ̂i =

∑N
n=1 wnγniIn∑N
n=1wnγni

, (3.9)

σ̂2
i =

∑N
n=1wnγni(In − µ̂i)2∑N

n=1 wnγni
. (3.10)

The above iterations are repeated until convergence of the likelihood. In our method the EM
algorithm is applied at the initialization step and when significant changes are observed, in order
to infer the GMM parameters that are to be tracked in the following frames.

3.2.2 Earth Mover’s Distance between Gaussian Mixture Model

Having computed the parameters µ = {µi}i=1,...,m, σ = {σi}i=1,...,m, πM = {πMi }i=1,...,m of
the object’s model, in the next frame we assume that the new center of the ellipse comprising
the target is located at the normalized coordinates y of the next frame. In the above notation,
the exponent M in πM represents the object’s model. We assume that the colors of the object
and the background do not change abruptly, so the target GMM candidates have the same mean
and variance as their counterpart in the initial frame and the only difference is the importance
(mixing proportion) of each component. The model for the background may change between
frames but it should have limited overlap with the model of the object. The only problem is
when pixels from the background have the same intensity with pixels belonging to the object
(camouflage). In case the mixing proportions of the GMM do not change smoothly between
frames, this is an indication that important illumination changes occur. Therefore, the GMM
needs to be trained again to take into account the new illumination conditions.

22

An illustrative example is presented in figure 3.1, where the number of components m = 3,
highlights the change in each component’s importance. The value for m is appropriate for this
example. This parameter actually depends on the colors of the object (e.g. it can be deter-
mined by the number of colors belonging to the object and those belonging to the background).
Statistical criteria may also be employed in order to estimate more accurately the number of
components [41]. In the images at the left, the ellipse remains at the same spatial location,
while the racket is moving downwards. In the right figures, the horizontal axis represents the
gray levels and the vertical axis represents the probability of each gray level (3.3). Each GMM
has three components. As the racket is moving outside of the ellipse, the mixing proportions
associated with the object get smaller while the mixing proportion representing the background
is increasing.

Therefore, the GMM parameters for the candidate object in the next frame are (described
by an exponent C) are µ = {µi}i=1,...,m, σ = {σi}i=1,...,m, πC(y) = {πCi (y)}i=1,...,m, where the
mixing proportions depend on the location y. This means that the centers µi and the variances
σ2
i remain unchanged through time. Also, by assuming that πCi (y) do not change dramatically

through time, equations (3.7) and (3.8) of the EM algorithm may be used to estimate the pro-
portions πCi (y). We must point out that the EM is used only in the initial image. In all other
images, only computation of the proportion πC(y) is made, as means µ and variances σ remain
unchanged (due to the fact that the color and the luminance of the object remain unchanged). By
substituting πi ← πMi and π̂i ← πCi (y) in (3.7) and (3.8) respectively, the mixing proportions
for the candidate object is:

πCi (y) =
1

N

N∑
n=1

wCn (y)
πMi N (ICn (y);µi, σi)∑m
j=1 π

M
j N (ICn (y);µj, σj)

(3.11)

where ICn (y) is the image intensity of the nth pixel of the candidate object at location y, wCi (y)

are the normalized pixel weights inside the unit circle in the next image and N is the number of
the pixels.

As the means µi and the variances σ2
i of the GMM in the initial and the current frames are

the same, the parameters for the first GMM are defined by µ = {µi}i=1,...,m, σ = {σi}i=1,...,m,
πM = {πMi }i=1,...,m and for the second one are µ = {µi}i=1,...,m, σ = {σi}i=1,...,m, πC(y) =

{πCi (y)}i=1,...,m. We define the Earth Mover’s Distance (EMD) between two GMM as [102]:

EMD(y) = min
fuv

[
m∑
u=1

m∑
v=1

fuv(y)duv

]
(3.12)

subject to ∑m
u=1 fuv(y) = πCv (y), 1 ≤ v ≤ m∑m
v=1 fuv(y) = πMu , 1 ≤ u ≤ m∑m
u=1

∑m
v=1 fuv(y) = 1

fuv(y) ≥ 0, 1 ≤ u ≤ m, 1 ≤ v ≤ m

(3.13)

where duv is the symmetric Kullback-Leibler distance given by

du,v =
1

2

[
σ2
u

σ2
v

+
σ2
v

σ2
u

+ (µu − µv)2

(
1

σ2
u

+
1

σ2
v

)
− 2

]
= DKL(fu|fv) +DKL(fv|fu), (3.14)

23

π1 = 0.24

π2 = 0.64

π3 = 0.12

π1 = 0.03

π2 = 0.52

π3 = 0.45

π1 = 0.00

π2 = 0.01

π3 = 0.99

Figure 3.1: Variations of the GMM parameters during tracking. As the racket moves, the component
that corresponds to the background (π3) increases its proportion in the GMM due to the fact that more
pixels belonging to background are inside the ellipse. On the other hand, components corresponding
to the object (π1 and π2) reduce their responsibilities γni in the model because pixels belonging to the
object get out of the ellipse. Nevertheless, the means and variances of the model components remain
unchanged because the object and background colors change smoothly.

where DKL(f1|f2) is the Kullback-Leibler divergence [14] between f1 and f2 is defined as

DKL(f1|f2) =
1

2

[
log

(
σ2

2

σ2
1

)
+
σ2

1

σ2
2

+
(µ2 − µ1)2

σ2
2

− 1

]
. (3.15)

The product fuv(y)duv represents the work needed to transfer a quantity of fuv(y) amount
of solid to a distance duv. These transfers must be performed in such a way that the total work
is minimum. Hence, EMD(y) represents the work which must be produced to fill the holes of
the second GMM using earth of the first GMM. We must notice that this fill is always possible
because

∑m
u=1 π

M
u = 1 and

∑m
v=1 π

C
v (y) = 1. In other words, the amount of earth in the hills is

exactly equal to the amount needed by the holes to be fulfilled.

24

3.3 Target tracking

To locate the target, we must find the ellipse with center located at ŷ which is most similar to
the ellipse of the model. In other words, a local minimum of EMD(y) must be found:

ŷ = argmin
y

[EMD(y)] (3.16)

The computation of the EMD between the GMM of the target model and the GMM of the target
candidate is computationally expensive if it is repeated for every possible location y in the target
frame. In order to accelerate the procedure, following the principles proposed in [151, 152], we
initialize the center y at the old center estimated in the previous frame, we calculate the gradient
of the EMD(y) with respect to y and use it to determine a new location. The same step is
repeated until the value of EMD(y) in the new location increases.

To solve the optimization problem (3.16), we have to calculate the derivative ∇yEMD(y)

and choose the neighbor pixel in the direction of the derivative. Using the chain rule [151, 152]
yields

∇yEMD(y) =
m∑
v=1

∂EMD(y)

∂πCv (y)
∇yπ

C
v (y) (3.17)

The calculation of ∇yEMD(y) is described in [151, 152]. Here we summarize the key
steps. The difference with [151, 152] is the usage of GMM instead of color signatures, which
yields to a different formula for the computation of∇yπ

C
v (y) and consecutively for the compu-

tation of∇yEMD(y). The formula for ∂EMD(y)
∂πCv (y)

is the same as in [151, 152]. At first, equation
(3.12) and the constraints in (3.13) are transformed to matrix-vector form. There are m × m

variables fuv(y) and m ×m constants duv stacked in vectors f(y) and d both of size m2 × 1.
Taking together the first three constraints in (3.13), a matrix (S of size m2 + 1)×m2 is created
whose elements are 0 or 1. We also define the vector b(y) = [(πC(y))T , (πM)T , 1]T . Using
these notations, equation (3.12) may be written as

EMD(y) = min
f

dT f(y) (3.18)

and the constraints in (3.13) now become

Sf(y) = b(y)

f(y) ≥ 0
(3.19)

The above linear programming problem is solved by the simplex method [28]. Since the matrix
S has rank 2m−1, there are 2m−1 basic variables, which will be denoted by fB(y). Also there
are m2 − 2m + 1 non basic variables, which will be denoted by fNB(y). Similarly, we denote
by dB and dNB the elements of vector d = [dBdNB]T . Finally, SB and SNB are the columns
of matrix S corresponding to the basic and non basic variables fB(y) and fNB(y) respectively.
Equation (3.19) can now be written as[

SB SNB

] [fB(y)

fNB(y)

]
= b(y) (3.20)

25

By performing sensitivity analysis the derivatives ∂EMD(y)
∂πCv (y)

are computed as [151, 152]:

∂EMD(y)

∂πCv (y)
= kv −

m∑
j=1
j 6=v

kj
bj∑m
l=1
l 6=v

bl
(3.21)

where kv =
∑2m−1

l=1 (dB)l(S
−1
B)lv.

To calculate∇yπ
C
v (y), which is the different part of our method with respect to the original

DEMD paper [152], the derivative of (3.11) with respect to y must be computed. After some
algebraic manipulation this leads to

∇yπ
C
v (y) =

1

N

N∑
n=1

[
BnCn,v + wn(y)An,vI

′C
n (y)

]
, (3.22)

where

wn(y) =
k(‖xn − y‖2)∑m
i=1 k(‖xi − y‖2)

, (3.23)

An,v =
m∑
i=1

[
Cn,v Ci,v

[
ICn (y)− µv

σ2
v

− ICn (y)− µi
σ2
i

]]
, (3.24)

Bn =
2g(‖xn − y‖2)(xn − y)

∑N
i=1 k(‖xi − y‖2)− 2k(‖xn − y‖2)

∑N
i=1 g(‖xn − y‖2)(xi − y)[∑N

i=1 k(‖xi − y‖2)
]2 ,

(3.25)

Cn,v =
πMv N(ICn (y);µv, σv)∑m
j=1 π

M
j N(ICn (y);µj, σj)

. (3.26)

In the above equations, I ′Cn (y) is the spatial derivative of the intensity of the nth pixel of the
candidate object at location y.

Substituting (3.21) and (3.22) in (3.17) yields the gradient of the EMD energy in closed
form:

∇yEMD(y) =
1

N

N∑
n=1

[
Bn

m∑
v=1

[
∂EMD(y)

∂πCv (y)
Cn,v

]
+ wnI

′C
n

m∑
v=1

[
∂EMD(y)

∂πCv (y)
An,v

]]
(3.27)

The overall tracking algorithm is summarized in algorithm 1. We call this algorithm Mixture-
based DEMD (MDEMD). After the computation of the derivative, one of the eight neighbor
pixels is chosen. This pixel is the one that its center is most closer to the line that is defined by
the gradient.

In order to handle target scaling changes, the main idea is to try different sizes for the
ellipse and select the one with the minimum EMD. An extension to the notation must be used to
introduce the time variable. At time t, the ellipse has axes htx and hty. The canonical coordinates
xn (used by algorithm 1) of the pixels inside the ellipse at time t, are computed by taking into
account htx and hty. The current ellipse, representing the object, is obtained using algorithm 1
(MDEMD). Then, two new GMMs are constructed. The first GMM is trained using the pixels
of a smaller ellipse (same center, smaller axes with respect to the current ellipse), while the

26

Algorithm 1 Differential EMD with GMM (MDEMD)

Input: The center yi−1 of the object in the previous frame i − 1 and the GMM parameters of
the object to be tracked.

Output: The center yi of the object in the current frame i.

1 Initialization: Set y0 = yi−1 and evaluate EMD(y0) using (3.12).

2 Compute∇yEMD(y0) using (3.27).

3 Choose one of the 8 neighbors of y0 in the direction of the gradient∇yEMD(y0). Let y1 be
the coordinates of this pixel. Evaluate EMD(y1) using (3.12).

4 If EMD(y1) < EMD(y0) set y0 ← y1 and goto step 2.
Else return yi ← y0.

other is trained using the pixels of a bigger ellipse (same center, bigger axeswith respect to the
current ellipse). If both of the new GMMs have greater EMD with the initial GMM compared
to the EMD of the current ellipse with the initial GMM then the procedure stops. Otherwise
the ellipse with the smaller EMD is selected and this procedure is repeated. This procedure is
summarized in algorithm 2.

Algorithm 2 Scale adaptation on MDEMD

Input: The center yi−1 and the axes size hi−1
x and hi−1

y of the object in the previous frame i−1,
and the GMM parameters of the object to be tracked.

Output: The center yi and the axes size hix and hiy of the object in the current frame i.

1 Initialization: Set y0 = yi−1, hx = hi−1
x and hy = hi−1

y .

2 Call MDEMD with input y0 and axes size hx and hy. Store the center return by MDEMD to
yi.

3 Compute e = EMD(yi) using (3.27), using size axes hx and hy.

4 Compute e+ = EMD(yi) using (3.27), using size axes 1.1hx and 1.1hy.

5 Compute e− = EMD(yi) using (3.27), using size axes 0.9hx and 0.9hy.

6 if e+ < e− and e+ < e, set y0 = yi and axes size hx = 1.1hx and hy = 1.1hx. Go to step 2.

7 if e− < e+ and e− < e, set y0 = yi and axes size hx = 0.9hx and hy = 0.9hx. Go to step 2.

8 return yi and the axes size hix = hx and hiy = hy

27

3.4 Robustness to Occlusions

In this section we combine the differential MEMD algorithm with a Kalman filter to handle
occlusions.

3.4.1 Background on Kalman filter

In general, we assume that there is a linear process governed by an unknown inner state pro-
ducing a set of measurements. More specifically, there is a discrete time system and its state at
time n is given by vector xn. The state in the next time step n+ 1 is given by

xn+1 = Fnxn + wn (3.28)

where Fn is the transition matrix from state xn to xn+1 and wn is white Gaussian noise with
zero mean and covariance matrix Qn.

The measurement vector zn is given by

zn = Hnxn + vn (3.29)

where Hn is the measurement matrix and vn is white Gaussian noise with zero mean and co-
variance matrix Rn. In equation (3.29), the measurement zn depends only on the current state
xn and the noise vector vn is independent of the noise wn.

The Kalman filter approach computes the minimum mean-square error estimate of the state
xk given the measurements z1, . . . , zk. The solution is obtained using a recursive procedure
[106].

3.4.2 Differential EMD with GMM and Kalman filter

The main idea behind the combined approach is to find the position of the object with algorithm
1 (measurement) and forward it to Kalman filter to obtain the current position of the object
(estimation). The transition matrix Fn is not known in the beginning and is estimated by the
algorithm.

We assume that the object is described by its center coordinates (x, y) and the axes (hx, hy)

of the ellipse around it and that the size of the ellipse does not change through time. The state
vector xn = [xn, yn, 1]T is the position of the center in the image in homogenous coordinates
(xn and yn are the horizontal and vertical coordinate respectively) and its position varies over
time as described in equation (3.28). The matrix Fn is defined as:

Fn =

1 0 dxn
0 1 dyn
0 0 1

where dxn dyn are the horizontal and vertical translations of the object’s center. Parameters dxn
dyn are not constant in time, but they are computed dynamically as it will be explained below.
The noise vector wn = [wnx , wny , 1]T has covariance matrix Q.

28

We employ algorithm 1 to obtain the measurement vector zn = [x′n, y
′
n]T where x′n and y′n

are the horizontal and vertical coordinates of the ellipse center. In general, these measurements
differ from the state variables xn and yn of vector xn due to the presence of noise vn. The
relation between measurement zn and state xn is given by (3.29), where

H =

[
1 0 0

0 1 0

]

and the measurement noise vn = [vnx , vny]
T has covariance matrix R.

The only problem that remains to be solved is the automatic evaluation of dxn and dyn.
Using algorithm 1 we obtain:

• the measurement zn,

• the distance between the mixture components of the model of the target and the target
candidate.

The main idea is to use the computed distance to determine if the object was found or not. This
provides a quality measure of the current estimate of the object. If the distance is small, then
we have a good chance that the object’s center is near the predicted center. If this distance is
large, then, the target is lost. This distance is expressed as a normalized coefficient:

a(y) = exp(−cEMD(y)) (3.30)

where EMD(y) is given by (3.12) and it is the EMD distance between the source and target
GMM at position y and c is a constant. From experimental results, we found that the value
of c does not affect the correctness of the algorithm significant. The value for c used for the
experiments in this chapter is equal to 10. The a is an estimation of how confident we are that
the object is found. If we are not sure the object is correctly located, then we follow the previous
movement of the object, assuming that occlusion took place. On the other hand, when we are
convinced that the object is inside the ellipse, we update our knowledge about the object’s
movement. Relying on the value of a in (3.30), parameter dn = [dxn, dyn]T is automatically
updated by:

dn+1 = (1− a(x̂n))dn + a(x̂n)(x̂n − x̂n−1) (3.31)

where x̂n is the vector containing the estimated values of the horizontal and vertical coordinates
of the ellipse center at time n. In view of (3.31), the estimate x̂n contributes to the updates of
the displacement dn only when the current estimate resembles the source object model, that is
when a(x̂n) → 1. On the other hand when a(x̂n) → exp(−c), the displacements included in
the state matrix Fn remain nearly unchanged, as they were in step n − 1, assuming that the
object is occluded. This process has the advantage that the matrix Fn incorporating information
on the object movement can be updated by the tracking algorithm.

Algorithm 3 summarizes the differential MEMD tracking algorithm with Kalman filtering.
Note that step 4 uses a tracking algorithm to estimate the position of the object. This algorithm
can be also mean shift or DEMD.

29

Algorithm 3 Differential EMD with GMM and Kalman filter

1 Initialization: x̂0 = initial object location:

P0 =

0 0 0

0 0 0

0 0 0

 , Q =

hx 0 0

0 hy 0

0 0 0

 , R =

hx 0 0

0 hy 0

0 0 0

 , F0 = I3×3.

2 Compute initial GMM0 in the first frame as described in section 3.2.1.

3 Prediction:
x̂−n = Fnx̂n−1,

P−n = FnPn−1F
T
n + Q,

Gn = P−nHT
n [HnP

−
nHT

n + R]−1.

4 Measurement: Compute the new center (zn), the new GMM and the distance between
GMM and GMM0 using MDEMD (Algorithm 1).

5 Estimation:
x̂n = x̂−n + Gn(zn −Hnx̂

−
n),

Pn = (I−GnHn)P−n .

The output x̂n is the object’s new location.

6 Update the elements of Fn using (3.31).
Goto the Prediction step for the next iteration.

3.5 Experimental Results

To evaluate the proposed algorithm MDEMD, we have performed comparisons with the mean
shift algorithm [30] and the standard DEMD tracking method [151, 152]. In the same context,
we have also evaluated the Kalman based DEMD tracker (MDEMD-K). The proposed adapted
Kalman filter is also combined with the mean shift (MS-K) and the DEMD algorithm (DEMD-
K) in order to have a complete overview of its behavior. Six test sequences were employed in the
evaluation consist of outdoor testing situations. The length of the sequences varies between 80
and 400 frames with one object to be tracked in every image sequence. Representative frames
are shown in figure 3.2. Each object is described by its center, in image coordinates, and the
size of the ellipse around it (the ellipse has axes parallel to the image axes). The ground truth
in every image was determined manually. All the algorithms assume knowledge of the objects
position only in the first frame. The object position is estimated in the following frames, using
the corresponding algorithm. In all tests, the number of histogram bins for the mean shift is
16 and for the standard DEMD algorithms was 8 and 16 as suggested in [30, 151, 152]. The
number of the components in the proposed GMM based tracker was selected to be 3, 4 and 6.

30

The respective number of components may not be suitable for every problem and it depends on
the complexity of the object to be tracked. As a rule of thumb, the number of components is
equal to the colors of the object plus the colors of the background. For instance, by using three
components, we assume that two components belong to the object (e.g. in Seq5 a red car with
black windows) and one component corresponds to the background (e.g. the gray road). All
the examples were carried out with a core 2 Duo 1.66 GHz processor with 2GB RAM under
Matlab.

Seq1 (129 frames) Seq2 (80 frames) Seq3 (400 frames)

Seq4 (221 frames) Seq5 (106 frames) Seq6 (285 frames)

Figure 3.2: Representative frames of the image sequences used in the experiments.

Sequences Seq1 and Seq2 show a person walking from left to right in an underground sta-
tion (PETS 2006 workshop). Seq3 show a car moving (PETS 2001 workshop). Seq4 shows a
person walking in an outdoor environment (BEHAVE dataset, University of Edinburgh, School
of Informatics, http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/). The last
two sequences (Seq5 and Seq6) are created by our group. They show a red car moving from left
to right without occlusion (Seq5) and with occlusion (Seq6).

To estimate the accuracy of the compared algorithms we measure the normalized Euclidean
distance between the true center (c) of the object (as determined by the ground truth) and the
estimated location of the ellipse center (ĉ). The normalized Euclidean distance is defined by

NED (c, ĉ) =

√(
cx − ĉx
hx

)2

+

(
cy − ĉy
hy

)2

(3.32)

where we recall that hx and hy are the ellipse dimensions. This implies that if NED (c, ĉ) < 1,
then the estimated ellipse center ĉ is inside the ground truth ellipse. By these means, the image
size and the ellipse dimensions do not influence the relative distance between (c) and (ĉ).

31

Table 3.1: Tracking accuracy. The average normalized Euclidean distance between the true
object center and the estimated object center is presented for the compared methods.

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6
Frames 129 80 400 221 106 285
MS (16 bins) 0.44 0.38 0.46 4.01 0.07 2.08
DEMD (8 bins) 0.16 0.17 0.39 4.09 0.05 2.56
DEMD (16 bins) 0.17 0.16 0.36 0.41 0.05 2.50
MDEMD (3 components) 0.20 0.15 0.38 0.38 0.05 2.14
MDEMD (4 components) 0.23 0.15 0.40 0.51 0.06 1.98
MDEMD (6 components) 0.97 0.27 0.48 4.03 0.05 2.11
MS-K (16 bins) 0.55 0.47 0.48 5.47 0.09 0.72
DEMD-K (16 bins) 0.19 0.22 0.42 0.44 0.06 0.56
MDEMD-K (4 components) 0.25 0.25 0.39 0.94 0.05 0.48

Table 3.1 summarizes the comparisons in terms of tracking accuracy. As it can be seen, the
proposed algorithm has high accuracy (the computed center is inside the ellipse of the actual
object). The standard DEMD algorithm confirms its efficiency with respect to mean shift, as
it is presented in [151, 152]. Moreover, the proposed algorithm based on GMM is favorably
compared with mean shift (table 3.1). Generally, all of the compered methods present high
performances with little differences. DEMD performs better at Seq1 and Seq3, MDEMD is
more accurate at Seq2 and Seq4 and all of the methods achieve similar results at Seq5. Also,
the employment of Kalman filter has the ability to track objects when occlusions occur, while
the other methods fail. When NED > 1 the target is lost, which is the case for the methods not
using the adapted Kalman filter (Seq6). Moreover, MDEMD-K with four components provides
highly better accuracy with respect to MS-K and DEMD-K.

As it can also be observed in table 3.1 when DEMD employs relatively few bins its results
deteriorate in comparison with configurations using larger number of bins. The opposite stands
for the proposed MDEMD. The is also confirmed by Seq4 (table 3.1) where DEMD with 8 bins
totally misses the target (this is also true for MDEMD with 6 components). This is a relative
difficult sequence as an indoor camera records a person moving from left to right outside. There
is a glass between the camera and the moving person. This sequence has particular difficulties
such as reflections due to the glass and illumination changes between frames. These difficulties
are responsible for the failure of mean shift (MS) even when it is jointly applied with the adapted
Kalman filter (MS-K).

The comparison of the three algorithms employing the Kalman filter (last three rows of table
3.1) reveals that DEMD and MDEMD show similar accuracies (in any case they are better than
mean shift).

In table 3.2, the execution times (sec/frame) of the compared methods are shown. The
proposed GMM based methods (MDEMD and MDEMD-K) are significantly faster with respect

32

Table 3.2: Average execution times for the compared methods (sec/frame).

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6
Frames 129 80 400 221 106 285
MS (16 bins) 1.64 2.91 0.66 0.55 8.05 0.36
DEMD (8 bins) 1.14 1.88 0.58 0.48 2.30 0.40
DEMD (16 bins) 2.42 3.82 1.39 1.42 4.67 2.45
MDEMD (3 components) 0.53 0.89 0.23 0.21 1.81 0.20
MDEMD (4 components) 0.52 0.77 0.24 0.20 1.71 0.22
MDEMD (6 components) 0.55 0.80 0.27 0.23 1.66 0.17
MS-K (16 bins) 2.19 3.85 0.68 0.64 10.53 0.38
DEMD-K (16 bins) 3.48 4.86 1.32 1.68 6.38 1.04
MDEMD-K (4 components) 0.58 0.49 0.24 0.16 1.56 0.28

to DEMD (table 3.2). This occurs because the number of GMM components is less than the
number of histogram bins. Therefore, the integration of mixtures in DEMD tracking preserves
the tracking accuracy and simultaneously reduces the computational complexity.

Table 3.3: Average number of iterations per frame for the compared methods.

Sequence Seq1 Seq2 Seq3 Seq4 Seq5 Seq6
Frames 129 80 400 221 106 285
MS (16 bins) 2.98 3.86 1.00 1.90 2.17 1.10
DEMD (8 bins) 4.76 4.90 2.40 3.46 3.36 2.78
DEMD (16 bins) 4.71 4.82 2.56 3.77 3.46 2.77
MDEMD (3 components) 2.43 2.62 1.23 2.34 1.88 1.51
MDEMD (4 components) 2.27 2.22 1.27 2.10 1.75 1.39
MDEMD (6 components) 2.05 2.05 1.17 1.95 1.67 1.29
MS-K (16 bins) 3.86 5.31 1.03 2.37 2.93 1.34
DEMD-K (16 bins) 6.57 7.15 2.46 4.87 4.54 2.89
MDEMD-K (4 components) 2.58 1.48 1.54 1.66 1.44 1.30

In table 3.3 we present the mean number of iterations needed for each method to converge
in a single frame. The values of this table are independent from the machine used for the
experiments and better highlight the rate of convergence of the various algorithms. As it can be
seen the new MDEMD algorithm converges in fewer iterations than the standard DEMD. Let us
also notice that DEMD converges in approximately the same number of iterations with 8 and 16
bins. However the average execution time per frame (as depicted in table 3.2) is almost doubled
when using 16 bins. This is due to the augmented complexity in the optimization algorithm.
Furthermore, the application of the adaptive Kalman filter reduces the number of iterations if

33

MS

DEMD16

MDEMD4

MDEMD4-K

Figure 3.3: Seq5. Representative frames with the estimates of the ellipse for the compared algorithms.

the motion model is correctly estimated.
A representative example of Seq5 is shown in figure 3.3. An example with occlusion is

presented in figure 3.4 and 3.5 where the red car is masked by the trees. All of the compared
algorithms successfully track the object until it reaches the trees. However, only the algorithms
employing the proposed adaptive Kalman filter achieve in predicting its motion.

3.6 Conclusions

In this chapter, we have proposed a method for visual object tracking relying on modeling
the appearance of the object in the first frame using a Gaussian mixture. The EM algorithm
is applied to compute the initial GMM. In the following frames, the location of the object is
estimated in a differential framework by the direction of the gradient of the EMD with respect
to the bi-dimensional image space [151, 152]. This gradient is computed in closed form and
the key issue in this computation, is the change in the responsibilities of the GMM components
between adjacent frames. In these images the EM is not applied, because means and variances
do not change. Therefore, the algorithm is significantly faster than the standard DEMD tracker
[151, 152] while retaining the same high tracking accuracy. Also, the proposed algorithm is
combined with a Kalman filter to efficiently handle occlusions. The prediction of the GMM-
based DEMD tracker is considered as the observation of a Kalman filter whose state parameters
are automatically determined based on recent motion history. By these means, partial or total
occlusions may be successfully addressed.

34

MS

DEMD16

MDEMD4

MDEMD4-K

Figure 3.4: Seq6. Representative frames with the estimates of the ellipse for the compared algorithms.

Figure 3.5: Seq6. The normalized Euclidean distances between the ground truth and the estimates of
the ellipse center for the compared algorithms.

35

CHAPTER 4

VISUAL TRACKING UNDER ABRUPT

ILLUMINATION CHANGES

4.1 Introduction

4.2 Mean shift algorithm

4.3 Target modeling by a GMM

4.4 Experimental results

4.5 Conclusions

4.1 Introduction

In this chapter, we propose a variant of the mean shift algorithm [30], in order to make the
tracking procedure more robust to uniform or nonuniform abrupt light changes, such as flicker,
light switch or shadow casts. In these cases, as the whole image becomes darker or brighter, the
histogram of the target is shifted with respect to the initial histogram and the affinity between
them would be close to zero, thus, making the mean shift algorithm to miss the object. In our
approach, we propose to estimate the initial histogram of the target in the first frame by a GMM
and consider this mixture as a weighting function for the calculation of the histogram in the next
frames. By these means, all of the mixture components contribute to the value of a specific bin
and the histogram becomes smoother as its original values are diffused to neighboring bins.

In the remaining of the chapter, the mean shift method is described in section 4.2, the pro-
posed evaluation of histogram is described in section 4.3, experimental results are presented in
section 4.4 and the conclusions are drawn is section 4.5.

37

4.2 Mean shift algorithm

The mean shift [30] is a target representation and localization algorithm trying to locate the
object by finding the local maximum of a function. Here we give a brief review. The object
target pdf is approximated by a histogram of m bins q̂ = {q̂u}u=1...m,

∑m
u=1 q̂u = 1, with q̂u

being the u-th bin. To form the histogram, only the pixels inside an ellipse surrounding the
object are taken into account. The center of the ellipse is assumed to be at the origin of the
axes. Due to the fact that the ellipse contains both object pixels and background pixels, a kernel
with profile k(x), k : [0,∞)→ < is applied to every pixel to make pixels near the center of the
ellipse to be considered more important. To reduce the influence of an eventual difference in the
length of the ellipse axes, the pixel locations are normalized by dividing the pixel’s coordinates
with the ellipse’s semi-axes lengths hx and hy. Let {x∗i }i=1...n be the normalized pixel’s spatial
location. The u-th histogram bin is given by:

q̂u = C
n∑
i=1

k(‖x∗i ‖2)δ[b(x∗i)− u] (4.1)

where b : <2 → {1 . . .m} associates each pixel with each bin in the quantized feature space, δ
is the Kronecker delta function and C is a normalization factor such as

∑m
u=1 q̂u = 1.

In the next image, the object candidate is inside the same ellipse with its center at the nor-
malized spatial location y. Let {xi}1...n be the normalized pixel coordinates inside the target
candidate ellipse. The pdf of the target candidate is also approximated by an m-bin histogram
p̂(y) = {p̂u(y)}u=1...m,

∑m
u=1 p̂u(y) = 1, with each histogram bin given by

p̂u(y) = D
n∑
i=1

k
(
‖y − xi‖2) δ[b(xi)− u] (4.2)

where D is a normalization factor such as
∑m

u=1 p̂u(y) = 1.
The distance between q̂ and p̂(y) is defined as:

d(y) =
√

1− ρ[p̂(y), q̂] (4.3)

where

ρ[p̂(y), q̂] =
m∑
u=1

√
p̂u(y)q̂u (4.4)

is the similarity function between q̂ and p̂(y) (Bhattacharyya coefficient).
To locate the object correctly in the image, the distance in (4.3) must be minimized, which

is equivalent to maximize (4.4). The ellipse center is initialized at a location ŷ0 which is the
ellipse center in the previous image frame. The probabilities {p̂u(ŷ0)}u=1...m are computed and
using linear Taylor approximation of (4.4) around these values:

ρ[p̂(y), q̂] ≈ 1

2

m∑
u=1

√
p̂u(ŷ0)q̂u +

D

2

n∑
u=1

wik
(
‖y − xi‖2) , (4.5)

38

where

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u]. (4.6)

As the first term of (4.5) is independent of y, the second term of (4.5) must be maximized. The
maximization of this term may be accomplished by employing the mean shift algorithm [30],
which yields the following update:

ŷ1 =

∑n
i=1 xiwig

(
‖ŷ0 − xi‖2)∑n

i=1wig
(
‖ŷ0 − xi‖2) , (4.7)

where g(x) = −k′(x). The complete algorithm [30] is summarized in algorithm 4.

Algorithm 4 Mean shift tracking procedure

Input: The target model {q̂u}u=1...m and its location ŷ0 in the previous frame.

1. Initialize the center of the ellipse in the current frame at ŷ0, compute {p̂u(ŷ0)}u=1...m using
(4.2).

2. Compute the weights {wi}i=1...n according to (4.6).

3. Compute the next location of the target candidate according to (4.7).

4. If ‖ŷ1 − ŷ0‖ < ε Stop.
Otherwise set ŷ0 ← ŷ1 and go to Step 2.

4.3 Target modeling by a GMM

If global, uniform or nonuniform, illumination changes take place, then the whole histogram
p̂u(y) in (4.2) will be (uniformly or not) shifted with respect to the initial histogram q̂u in (4.1).
For the sake of clarity, this issue is illustrated by a simple example in figure 4.1, where the initial
histogram is shown in fig. 4.1(a) and the histogram of the target in the next frame (under abrupt
illumination change) is shown in fig. 4.1(b). Notice that, ideally, this should be the histogram
corresponding to the maximum of (4.3). However, by simple inspection, this distance is close to
zero and the algorithm would respond with an erroneous image location for the target due to the
influence of this distance in the computation of the weights in (4.6). Although this issue could
be overcome for simple global uniform illumination changes (e.g. by subtracting the mean
image value) the problem becomes more intricate if the involved changes in lighting conditions
are highly non uniform. In figure 4.1(c), the GMM representing the density of the target in
fig.4.1(a) is shown.

In order to estimate the GMM parameters we define the log-likelihood function of the color

39

(a) (b)

(c) (d)

Figure 4.1: a) The histogram of the target in the initial image. b) The histogram of the target in
the next image is shifted due to an abrupt illumination change. c) The GMM of the target in the
initial image. d) The resulting smooth histogram using (4.14).

of pixels inside an ellipse:

L(I;π,µ,Σ) =
n∑
i=1

ln
K∑
k=1

πkN (I i;µk,Σk) (4.8)

where I = {I i}i=1,...,n denote the color of every pixel, π = {πk}k=1,...,K are the mixing propor-
tions, µ = {µk}k=1,...,K are the mean vectors, Σ = {Σk}k=1,...,K are the covariance matrices
and K denotes the number of the GMM components. The estimation of the GMM parameters
is achieved through the EM algorithm [14]:

E-Step:

zk,i =
πkN (I i|µk,Σk)∑K
l=1 πlN (I i|µl,Σl)

. (4.9)

M-Step:

πk =

∑n
i=1 zk,i
n

, (4.10)

µk =
1

Nk

n∑
i=1

zk,iI i, (4.11)

Σk =
1

Nk

n∑
i=1

zk,i (I i − µk) (I i − µk)
T , (4.12)

The EM algorithm is employed in the first frame in order to estimate the GMM parameters.
Having computed π = {πk}k=1,...,K , µ = {µk}k=1,...,K and Σ = {Σk}k=1,...,K we can estimate
the equivalent histograms’ bins in (4.1) and (4.2).

40

We assume that every bin is computed by the mixture of all components and the u-th his-
togram bin in (4.1) is now given by:

q̂u = C

n∑
i=1

k(‖x∗i ‖2)
K∑
k=1

πkN (I i;µk,Σk). (4.13)

Equivalently, in the next image the u-th histogram bin is given by:

p̂u(y) = D

n∑
i=1

k
(
‖y − xi‖2) K∑

k=1

πkN (I i;µk,Σk), (4.14)

which corresponds to the toy example in fig. 4.1(d). Notice that the transitions between bins
are now smoother and the basin of attraction of the smoother histogram may be large enough to
capture the reference histogram in fig. 4.1(a). The reference histogram looks now more similar
to the histogram at the ideal target location.

By following the same reasoning as in section 4.2, we end up in the same update equation
for y as in (4.7). However the weights wi are given by:

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0)

K∑
k=1

πkN (I i;µk,Σk). (4.15)

Therefore, the tracking procedure is the same as described in algorithm 4, but we use (4.13),
(4.14) and (4.15) instead of (4.1), (4.2) and (4.6) respectively.

4.4 Experimental results

The evaluation of the proposed tracking algorithm was performed using three datasets (Fig.
4.2). In Seq1, a man is walking from left to right, in Seq2, a car is moving from left to right
and in Seq3, four robots are moving at different directions. The ground truth for these image
sequences was manually determined. We compared our approach (referred as MSGMM) with
the standard mean shift algorithm [30]. We use RGB images where and the number of the
histogram bins is set to 16 in each channel, resulting to 163 bins totally.

We evaluated the performance of the tracking algorithm both in terms of position error and
execution time. We define the position error as the average Euclidian distance between the
ground truth’s ellipse center and the ellipse estimated by the tracking algorithm (in normalized
coordinates). The execution time is defined as the average time (seconds) needed per frame by
the tracking procedure.

Firstly, we evaluate the proposed method for different numbers of the GMM components K
(Table 4.1). Comparing the position error for K = 1, . . . , 5, we observe that the best results are
obtained for K = 2. This happens due to the fact that the targets have relatively few colors. In
terms of average time per frame, the fewer the components of the GMM are, the less execution
time is needed. Here, we must point out that all these variants are executed in real time. For this

41

Seq1 Seq1 Seq2
(300 frames) (700 frames) (250 frames)

Figure 4.2: Representative frames of the datasets used in the experiments.

Table 4.1: The performance of the proposed method for different GMM components number
(K) in terms of average position error and average execution time.

Sequece K = 2 K = 3 K = 4 K = 5

Position Error
Seq1 0.216 0.226 0.242 0.270
Seq2 0.461 0.487 0.545 0.517
Sqe3 0.342 0.392 0.390 0.401

Seconds/Frame
Seq1 0.012 0.014 0.019 0.021
Seq2 0.013 0.017 0.019 0.024
Sqe3 0.010 0.012 0.014 0.016

set of experiments, we choose K = 2 for comparison with the standard mean shift in flicker
conditions.

In order to evaluate the proposed method during illumination changes, we used six more
sequences that are generated from sequences Seq1, Seq2 and Seq3. The sequences with the
subscript a are produced from the initial sequences by keeping the first frame the same and
making the rest of the frames significantly brighter. The sequences with the subscript b are
produced from the initial sequences by making the odd-numbered frames brighter and the even-
numbered frames dimmer (Fig. 4.3).

In Table 4.2, the comparative results between the standard mean shift algorithm and the
proposed method with K = 2 GMM components are given. In normal conditions (Seq1, Seq2
and Seq3), mean shift provides the best results in terms of position error in two out of three
datasets. In terms of execution time, the MSGMM algorithm needs approximately twice the
time needed by mean shift in all nine sequences. This results from the fact that computations
involving the evaluation of the normal distribution for every pixel are performed.

When the lighting conditions change, MSGMM clearly outperforms mean shift. Especially,
in Seq3a and Seq3b, mean shift fails to track the object from the beginning. On the other hand,

42

Figure 4.3: Top row: the first frames of Seq3a. Bottom row: the first frames of Seq3b.

Table 4.2: The performance of the compared methods (mean shift and MSGMM with K = 2)
in terms of average position error and average size error.

Position Error Seconds/Frame
Sequece Mean shift MSGMM Mean shift MSGMM
Seq1 0.264 0.216 0.007 0.012
Seq1a 0.572 0.544 0.006 0.013
Seq1b 0.904 0.875 0.012 0.026
Seq2 0.289 0.461 0.005 0.013
Seq2a 0.608 0.251 0.006 0.018
Seq2b 0.726 0.566 0.018 0.037
Sqe3 0.155 0.342 0.005 0.010
Seq3a - 0.919 0.005 0.015
Seq3b - 1.029 0.011 0.022

MSGMM successfully tracks the object with a position error of 0.919 for Seq3a and 1.029 for
Seq3b. The error around 1 means that the estimated center of the target is around the edge of the
ellipse representing the object, but there is still common area between the ground truth ellipse
and the estimated ellipse.

4.5 Conclusions

In this chapter, we modified the mean shift algorithm in order to make the tracking procedure
more robust to illumination changes. We used Gaussian mixture model for the evaluation of
histogram bins. This modification also affects the weights of every pixel during the tracking
process. As shown by the experimental results, this approach can successfully track objects

43

when the light conditions change dramatically.

44

CHAPTER 5

VISUAL TRACKING USING SPATIALLY

WEIGHTED LIKELIHOOD OF GAUSSIAN

MIXTURES

5.1 Introduction

5.2 Tracking by weighted likelihood

5.3 Experimental results

5.4 Conclusions

5.1 Introduction

In this chapter, we address both problems of feature dimensionality and changes in model ap-
pearance. We present a tracking algorithm relying on a probabilistic representation of the ob-
ject to be tracked and its subsequent localization in the image sequence. It is assumed that
the appearance of the target may be described by a GMM instead of a histogram or histogram
signatures, as it is the case in [30, 152, 155]. Using a GMM instead of a histogram has certain
advantages. At first, GMM provide a more compact representation of the feature space as a few
parameters are generally sufficient to model the color distribution of the target. At second, if
high dimensional features are employed the bins of a standard histogram increase exponentially,
while the number of GMM components remains relatively low.

In this framework, masking the object with a spatial kernel results to a weighted likelihood
which inherits the advantages of kernel based approaches. Firstly, the pixels of the target do
not contribute equally to the likelihood of the target but they are weighted with respect to their
distance from the center of the object. Following the assumption adopted in kernel-based track-
ing methods [20, 30, 35, 152], it is considered that pixels near the center are more probable to

45

belong to the object and they contribute more to the total likelihood. On the other hand, pixels
which are more distant from the center may be part of the background and their contribution
to the object’s likelihood should be smaller. Secondly, the weight at each pixel depends on
the target location and the maximization of the likelihood is easily obtained with respect to it.
This is not the case for a standard GMM likelihood function which cannot be employed in this
framework. The localization of the target is obtained by maximizing the weighted likelihood
along the frames of the image sequence. Another significant advantage of the method is that
the spatial regularization induced by the weight make the similarity function to be smooth and
therefore suitable for gradient descent optimization methods.

Furthermore, changes in the appearance of the object are handled by updating the GMM
which represents the target. The proposed approach is independent of the target appearance and
motion model. When a new color component is observed, it is not generally known if it belongs
to the background or the object. The ambiguity is resolved by integrating a new component into
the GMM of the target and tracking the target backwards in time. If the backward trajectory
does not vary significantly from the forward trajectory, the new color component is accepted
as a target’s GMM component. Moreover, the algorithm handles scale and rotation changes of
the object and numerical experiments showed that it provides, in general, more accurate target
localization than state of the art algorithms.

In the remaining of the chapter, section 5.2 describes the tracking algorithm relying on the
maximization of the weighted target likelihood, experimental results are presented in section
5.3 and conclusions are drawn is section 5.4.

5.2 Tracking by weighted likelihood

We assume that the object, which is represented by an ellipse, is known in the first frame of the
image sequence. Using color and intensity features inside this ellipse a GMM is constructed
by employing the EM algorithm. In the rest of the frames, during the tracking procedure, the
initial position of the ellipse in the current frame is the same with the position of the ellipse in
the immediately previous frame. Starting from this initial position, we move the ellipse along
the gradient of the weighted log-likelihood. We continue to move the ellipse until the weighted
log-likelihood is reduced. In this chapter, we present the estimation of the GMM parameters
and the tracking procedure.

In the first frame we assume that we know the position of the object (the center and the
axis of the corresponding ellipse). Let y be a vector representing the coordinates of the center
of the ellipse and h = [h(1), h(2)]T be a vector with components the lengths of the major and
minor axis of the ellipse. The coordinates of the n-th pixel of the image are represented by
xn = [x

(1)
n , x

(2)
n]T and the corresponding feature by In. No ordering of the pixels is implied. The

feature In carries information on the RGB values of the current pixel. Inclusion of neighboring
pixels is straightforward, as the vector In may have any dimension. We assign a weight wn(y)

46

to every pixel by masking the ellipse with a kernel k(·):

wn(y) = k (f (xn;y,h)) , (5.1)

where

f (xn;y,h) =

(
x

(1)
n − y(1)

h(1)

)2

+

(
x

(2)
n − y(2)

h(2)

)2

= (xn − y)TH−1(xn − y), (5.2)

is the squared Mahalanobis distance between xn and y with diagonal covariance matrix H =

diag(h(1), h(2)).
The kernel k(·) has a decreasing profile and assigns bigger weights to pixels near the center

of the ellipse than to pixels near the boundary of the ellipse. For pixels outside the ellipse
k(·) = 0.

By using function f in (5.2) the drawback of the difference in axis lengths is overcome
because the normalized pixel coordinates, for pixels inside the ellipse, are now in the interval
[−1, 1].

The log-likelihood of the n-th pixel:

Ln = ln
K∑
k=1

πkN (In;µk,Σk), (5.3)

is described by a GMM of K components with mixing proportions πk such that
∑K

k=1 πk = 1

with mean vectors µk and covariance matrices Σk, for k = 1, . . . , K.
We now define the weighted log-likelihood function for the ellipse with center y:

L(I,w(y);π,µ,Σ) =
N∑
n=1

wn(y)Ln, (5.4)

where N is the number of pixels, I = {In}n=1,...,N , w(y) = {wn(y)}n=1,...,N , where wn(y)

denotes the (non normalized) importance of the n-th pixel to the model.
To estimate the model parameters, the EM algorithm [14] will be used to maximize the

weighted log-likelihood. We assume that for each pixel there is a hidden variable zn, which
is a vector of K components zn = [zn,1, zn,2, . . . , zn,K]T having all of its components equal
to zero except the one responsible for generating the observation In. Following the standard
EM terminology, the pair (I, z), where z = {zn}1,...,N , forms the complete data. Thus, the
complete data log-likelihood:

ln p(I,w(y), z;µ,Σ,π) (5.5)

should be maximized with respect to µ, Σ and π. As the values of the hidden variables are not
known, we make use of their posterior distribution:

L = p(z; I,w(y),µ,Σ,π)

∝
N∏
n=1

K∏
k=1

[πkN (In;µk,Σk)]
zn,kwn(y),

(5.6)

47

where the difference with the standard GMM definition is that each observation exists with
probability wn(y) instead of 1. Under this posterior, the expectation E[zn,k] = r(zn,k) can be
estimated. Thus, the expectation of the complete-data log-likelihood function conditioned on
the expectations of the hidden variables r(zn,k) is given by:

Q =
N∑
n=1

wn(y)
K∑
k=1

r(zn,k)[ln πk + lnN (In;µk,Σk)]. (5.7)

The EM algorithm can now be employed in order to maximize the weighted log-likelihood (5.4)
with respect to µ, Σ and π.

In the E-step, the expectations r(zn,k) are computed:

E[zn,k] = r(zn,k) = wn(y)
πkN (In;µk,Σk)∑K
l=1 πlN (In;µl,Σl)

. (5.8)

In the M-Step, the complete-data log likelihood (5.7) is maximized with respect to the pa-
rameters µ, Σ, π leading to the following updates:

Nk =
N∑
n=1

r(zn,k), (5.9)

µk =
1

Nk

N∑
n=1

r(zn,k)In, (5.10)

Σk =
1

Nk

N∑
n=1

r(zn,k) (In − µk) (In − µk)
T , (5.11)

πk =
Nk∑N

n=1wn(y)
. (5.12)

We consider that in the first frame, the center y and its size h of the ellipse, which represents
the target, are known. For computational purposes, in order to estimate the GMM parameters
we use only pixels inside the ellipse, as pixels outside of the ellipse have weight wn(y) = 0.
Using the pixels inside this ellipse, we estimate the GMM parameters µ, Σ and π employing
the EM algorithm described above. During the EM algorithm components with importances πk
below a threshold are removed. A limitation of the method is that it can not capture concave
objects or objects with highly contaminated background. We partially address this issue by also
modeling the background with a GMM and removing components if they are similar with the
components of the target. More specifically, we construct another standard GMM (i.e. without
weights) for the background using the pixels belonging to an area around the ellipse which
represents the object. For the area around the object we used another ellipse whose size is
three times the size of the ellipse which represents the object. We use a standard GMM without
weights to represent the background in order to treat all these pixels equally (on contrary, the
weighted GMM gives more weight to pixels near the center of the ellipse). Afterwards, we
remove the components of the object’s GMM having centrers µ which have a small Euclidian
distance with any component’s center that belongs to the background’s GMM.

48

In the next frame, we seek to estimate the center of the ellipse whose pixels gives the maxi-
mum weighted log-likelihood in that frame. Due to the big amount of candidate centers, which
are all the pixels of the image, exhaustive search is not feasible as the tracking must be done in
real time. Thus, a gradient method is used in order to move the center in order to reach a local
maximum of the weighted log-likelihood.

5.2.1 Gradient based update

In order to estimate the position of the object in the next frame, the gradient of the weighted
likelihood (5.4) with respect to y must be computed:

dL

dy
=
dL(I,w(y);π,µ,Σ)

dy

=
N∑
n=1

dk (f (xn;y,h))

dy
Ln,

(5.13)

where Ln is the log-likelihood for the n-th pixel defined in (5.3) and

dk (f (xn;y,h))

dy
=

[
dk(f(xn;y,h))

dy(1)
dk(f(xn;y,h))

dy(2)

]
. (5.14)

By defining the negative derivative of the kernel function as g(x) = −dk(x)
dx

, we have:

dk (f (xn;y,h))

dy
= 2An(y)g (f (xn;y,h)) , (5.15)

where

An(y) =

[
x

(1)
n − y(1)

h(1)2
,
x

(2)
n − y(2)

h(2)2

]T
, (5.16)

leading to:

dL

dy
=

N∑
n=1

2An(y)g (f (xn;y,h))Ln. (5.17)

Once (5.17) is computed, we move the center y along the gradient vector to one of its 8

neighboring pixels, as it is proposed in [152], in order to ensure a smooth motion between
frames. Based on the angle of the vector dL

dy
we chose one of the 8 neighboring pixels which

are adjacent to the current pixel which represents the center y. Then the same procedure is
repeated for the new center, until the weighted log-likelihood (5.4) decreases. An alternative
would be to use the exact values of the gradient vector in order to make steps of variable length.
An advantage of using the weighted log-likelihood in (5.4) is that the gradient in (5.17) depends
on the target location y. This is in contrast with a standard GMM-type likelihood (without
the weight), which would not provide a gradient dependent on y and therefore the likelihood
maximization with respect to it would not be feasible.

49

5.2.2 Mean shift-like update

Another approach for estimating the target’s position after the computation of the GMM param-
eters µ, Σ and π would be to maximize (5.4) by setting its derivative (5.17) with respect to y
equal to zero, thus obtaining:

y =

∑N
n=1 xng (f (xn;y,h))Ln∑N
n=1 g (f (xn;y,h))Ln

, (5.18)

which is a mean shift like update [30]. In (5.18), the log-likelihood Ln for the n-th pixel, which
is obtained from (5.3), may have a negative or positive value. The negative values may yield
erroneous estimations for the location of the target, as the mean could be shifted out of the
convex hull of the pixels inside the ellipse. Moreover, in practice, positive values tend to be
small in absolute value, while negative values may be of large amplitude. This results to abrupt
changes in the mean location and the object can be lost. To overcome this drawback, Ln should
have non negative values. This can be achieved by defining

L′n = ln

(
B ×

K∑
k=1

πkN (In;µk,Σk)

)
= lnB + Ln (5.19)

where B is a normalization factor such that

B ×
K∑
k=1

πkN (In;µk,Σk) ≥ 1, ∀ n ∈ {1, . . . , N}, (5.20)

thus the logarithm is always non negative. In our implementation, the normalization term B is
set to a large number and we ignore pixels whose values of (5.20) are below 1. By following the
same reasoning as before, we can end up in the same update formulas for the EM algorithm as
the term in (5.19) is the sum L′n = ln(B) + Ln and an update equation like (5.18) is obtained.
Thus, in order to locate the object in an image, the tracking procedure can start from an initial
position yold (obtained from the object’s position in the previous frame) and iteratively apply:

ynew =

∑N
n=1 xng (f (xn;yold,h))L′n∑N
n=1 g (f (xn;yold,h))L′n

. (5.21)

This procedure stops when the spatial distance between yold and ynew is below a threshold
which is expressed in pixels and may be relative to the target size. In our implementation we set
this threshold in 3% of the target’s diagonal. Otherwise, the center is moved to the next position
yold := ynew and the procedure continues until convergence.

5.2.3 Scale adaptation

In order to scale the target, we could use the derivative of the weighted log-likelihood (5.4) with
respect to the components of h. For h(1), this would result to:

dL

dh(1)
=

N∑
n=1

2g(f(xn;y,h))
(x

(1)
n − y(1)

n)2

(h(1))3
Ln. (5.22)

50

In practice, this derivative is always negative. This results from the fact that g(f(xn;y,h)) > 0

because g(x) = −dk(x)
dx

and dk(x)
dx

< 0 as we use a kernel with negative derivative in order

to assign bigger weight to pixels near the center of the ellipse. Moreover, (x
(1)
n −y

(1)
n)2

(h(1))3
> 0 as

(x
(1)
n − y(1)

n)2 > 0 and h(1) > 0. Finally, in our experiment Ln was negative for the big majority
of the pixels (over 99%), and the absolute value of the pixels having negative Ln was much
greater than the absolute value of the pixels having positive Ln. Thus, the derivative dL

dh(1)
was

always negative in practice. Following this approach, in order to maximize (5.4) we had to
shrink the ellipse every time, until it reaches 1 pixel.

One commonly used technique [30, 152] is to scale up and down the ellipse which represents
the target by a scale factor and keep the scale which maximizes (5.4). However, due to the
fact that the log-likelihood function (5.4) depends on the number of pixels N , we can not use
(5.4) directly to evaluate the scale of the target. For example, if the size of the ellipse increases,
which implies an increase in the number of pixelsN , the likelihood in (5.4) will always decrease
because it includes all of the terms of the previous (smaller) ellipse and new terms due to the
larger size of the new ellipse. In practice, the new terms have negative Ln so the log-likelihood
will be decreased if the ellipse gets bigger, or increased if the ellipse gets smaller. Therefore, we
will have a likelihood that decreases proportionally to the size of the ellipse, so as in the previous
case with the derivative, the ellipse that maximizes the log-likelihood is one pixel wide.

To overcome this drawback, the number of pixels N inside the ellipse, where the likelihood
is evaluated, must be constant. To this end, we only consider pixels in a certain grid. The anal-
ysis below is done for the horizontal scale, but the procedure for the vertical scale adaptation
is similar. The pixels in this grid exist in some columns of the ellipse, as shown in Fig. 5.1.
The horizontal distance between neighboring pixels in this grid is d while the vertical distance
between pixels in the same column is 1. When the horizontal size of the ellipse h(1) is in-
creased (or decreased) by α%, the horizontal distance d between neighboring pixels in this grid
is also increased (or decreased) by the same factor. Thus, the number of pixels N remain con-
stant. This scale adaptation is performed independently in the horizontal and vertical directions
and demands less computational resources compared to the computation of the position which
necessitates the whole number of pixels inside the ellipse. Moreover, the weights wn(y) are
evaluated only for the initial ellipse and are adapted accordingly. For example, in Fig. 5.1, the
ellipse at the bottom is scaled up by α%. The weight for the pixels P and P ′ are equal due to
the fact that the first terms in (5.2) are:

(
P ′(1) − y(1)

(1 + α) ∗ h(1)

)2

=

(
(1 + α) ∗

(
P (1) − y(1)

)
(1 + α) ∗ h(1)

)2

=

(
P (1) − y(1)

h(1)

)2

,

(5.23)

while the second terms in (5.2) are equal because there is no scale in the vertical direction.
Furthermore, smoothing by a 5 × 5 Gaussian filter is performed to avoid aliasing during the
sampling procedure.

51

More specifically, in our implementation, for the horizontal adaptation procedure we use the
pixels inside the current ellipse to construct a grid of pixels which have a constant horizontal
distance (e.g. 10 pixels) with their neighboring points and we evaluate (5.4). Then, we increase
and decrease the horizontal size of the ellipse by α = 10% and we construct a new grid as
described in Fig. 5.1. Now, we have three ellipses, the original, one smaller than the original
(we will refer to it as small ellipse) and one bigger than the original (we will refer to it as
large ellipse). If the log-likelihood of the original ellipse is greater than the log-likelihood of
the other two ellipses, we stop. If the log-likelihood of the large ellipse is greater than the
log-likelihood of the other two ellipses, we continue to increase the scale by 2α, 3α, . . . until
the log-likelihood is decreased or a maximum scale is reached. A similar approach is used if
the small ellipse has greater log-likelihood than the other two ellipses. The same procedure is
repeated for the vertical scale factor. The factor α = 10% is selected as a tradeoff between
the speed in which the ellipse changes (bigger α results to bigger scale changes, but results to
more coarse estimation of the scale) and the computational speed (smaller α results to a more
fine-grained estimation of the scale, but more increasing or decreasing iterations are needed).

An alternative approach to estimate both scale and rotation parameters would be to compute
them directly by the moment of the pixels inside the ellipse [20].

Figure 5.1: The original ellipse (top) and the horizontally scaled ellipse (bottom). The pixels that are
used in (5.4) are represented by the gray columns. When the size of the ellipse increases by α%, the
inter-column distance is also increased by the same amount. Thus, the number of pixels N is constant
and f (P ;y,h) = f (P ′;y,h).

5.2.4 Target model update

The target’s appearance (e.g. color) could change making the overall task more difficult. To
overcome this difficulty, the main idea is to dynamically update the model of the target by

52

inserting new components to the GMM using pixels near the target which have small likelihood
(under the current model assumptions). Also, if the importance πk of a component becomes
small enough, the component is eliminated from the GMM.

Initially, the weighted GMM is constructed using pixels inside the target ellipse. If a Gaus-
sian component has an importance πk below a threshold (e.g. bellow 0.1/K), during the EM
algorithm, then this component is removed from the GMM as it has a small contribution to the
model. Furthermore, we remove the target’s GMM components that are similar to components
constructed from an area around and outside the ellipse in order to discriminate the object from
the background, as the ellipse contains pixels belonging to the object and probably some pixels
belonging to the background. In order to accomplish this, a GMM for the background is ini-
tialized using the parameters of the GMM of the target. The pixels from the area around the
ellipse have wn(y) = 1, as they are all treated equally (this is equivalent to a standard GMM
with no weights). During the EM algorithm for the background GMM, we remove compo-
nents that have importances below a threshold. After convergence of the EM algorithm for the
background GMM, the components that do not change their mean vectors significantly are re-
moved from the target’s GMM. In our implementation we removed components that have their
center moved below 30 units (we used RGB images, having values [0 − 255] in each compo-
nent’s range). The intuition behind this approach is that there will be similar pixels in the target
and the background, resulting to approximately the same GMM component both in the GMM
representing the object and in the GMM representing the background.

During the tracking procedure, to make the tracking algorithm more robust and to account
for changes in the appearance of the target (i.e. a side of the target having a different color
appears), a new component is also created into the GMM of the target at a certain frequency (e.g.
every M frames, where M is application dependent and could be as low as 1). In this chapter,
we used M = 50, which for 25 frames per second results in an update every two seconds.
The new component is initialized with parameters computed by the lower quantile of the pixels
likelihood. Finally, the EM algorithm is employed in order to estimate the correct center and
covariance matrix of the new component. In this modified version of the EM algorithm, the
centers and covariances of the current GMM components are not affected. Only their mixing
proportions change due to the insertion of the new component. Furthermore, if the importance
πk of a component is below a threshold, the component is removed from the GMM.

Nevertheless, an ambiguity appears concerning whether this new component belongs to the
target that changed its appearance or to the background. As a preliminary measure, we also
construct a GMM for the background and we remove components from the object’s GMM that
are similar with the background’s GMM. Furthermore, we track the target from the current
position back in time by considering the last M frames and the respective positions of the target
in these frames. The idea of backward tracking has also been proposed in [59] for tracking
individual points, in [120] for scale estimation and in [68] in order to estimate the robustness
of a tracker. Here we apply this idea to the target model. If the trajectory of the new weighted
GMM is similar to the original trajectory, that is the average Euclidian distance between the
centers of the ellipses and the sizes of the axis are below a threshold, then we assume that the

53

target has changed its appearance and the new component belongs to the target whose GMM
is updated. Otherwise, the target model remains the same as these pixels are more probable
to belong to the background. Let yt and ht be the center and the axis of the ellipse at time t
estimated by the tracking algorithm while y′t and h′t be the center and the axis of the ellipse at
time t estimated by tracking the target backward in time during the update procedure. Note that
the sequence in which y′t are estimated is y′T , y′T−1, . . . , y′T−M (the same applies to h′t). The
average Euclidian distance between the centers and axis, respectively, is defined as:

Eucy(y,y
′) =

1

M

M∑
t=0

√√√√√ 2∑
j=1

y(j)
T−t − y

′(j)
T−t

h
(j)
T−t+h

′(j)
T−t

2

2

, (5.24)

Euch(h,h
′) =

1

M

M∑
t=0

√√√√ 2∑
j=1

(
h

(j)
T−t − h

′(j)
T−t

h
(j)
T−t

)2

, (5.25)

where T is the current time. The distance Eucy(y,y′) is normalized using the average of the
axis size at the corresponding time. The GMM changes if both distances are below a threshold,
i.e. Eucy(y,y′) < Thy and Euch(h,h′) < Thh, where Thy = Thh = 0.1.

The GMM update procedure is applied every M frames and it inserts at most one new
component to the GMM which represents the target, while it can remove several components.
After some calls of the update procedure, a different GMM (compared to the one constructed
in the initial frame) may be constructed. So, we propose a technique in order to estimate if the
new GMM that has been constructed can represent the target. By using the current position of
the target and the position in previous frames, we examine if we can use the new GMM in order
to track the target backwards in time accurately. The accuracy is estimated by comparing the
respective positions of the backward tracking with the positions that have been estimated during
the forward tracking procedure. Moreover, using this approach we do not need to predefine
the number of components accurately. Indeed, if we choose a bigger number for the GMM
components, the additional components will be removed as they will have small importance
πk. If the number of components is smaller, new components may be added during the update
procedure. If the change in illumination or self-occlusion is gradual and not abrupt the proposed
mechanism is expected to correctly update the model (e.g. Fi. 5.7). On the other hand, sudden
changes in illumination or self-occlusions are more difficult to be handled by the proposed
method.

In order to handle rotations, a heuristic method is employed which rotates the ellipse by
small steps of 2◦ in the interval [−45◦,+45◦] at each iteration and selects the angle providing
the maximum value of the log-likelihood (5.4). In practice, only very small rotations between
consecutive frames are observed.

The overall procedure describing the initialization and the tracking is presented in the weighted
likelihood tracking (WLT) Algorithm 5. The update of the GMM parameters is described in Al-
gorithm 6.

54

Algorithm 5 WLT algorithm
1: function WLT(Image sequence, M)
2: Input: an image sequence consisting of T frames and the frequency M of updating the

target model.
3: Output: the ellipse center y at each frame.
4: Initialization:
5: Determine the initial position y1 and the size h1 of the target.
6: Compute the parameters πk, µk and Σk of the GMM describing the target using (5.10),

(5.11) and (5.12).
7: Tracking:
8: for frame t = 2, . . . , T do
9: yt := yt−1

10: ht := ht−1

11: while the likelihood in (5.4) increases do
12: Move to yt using (5.17).
13: end while
14: Estimate horizontal and vertical sizes of the target ht = [h

(1)
t , h

(2)
t]T .

15: Estimate the rotation R of the target.
16: if mod(t,M) == 0 then
17: Update the target model using Algorithm 6.
18: end if
19: end for
20: end function

5.3 Experimental results

The evaluation of the proposed tracking algorithm was performed using nine real datasets (Fig.
5.5). We used two variations of the proposed method, one based on the derivative (5.17), which
will be referred as WLT, and one based on the mean shift-like formula (5.21), which will be
referred as WLTMS. The image sequences Real1 (449 frames), Real2 (199 frames), Real3 (299
frames) and Real4 (309 frames) are taken from the PETS’01 database, the datasets Real5 (129
frames), Real6 (169 frames) and Real7 (109 frames) are taken from PETS’06 database and the
datasets Real8 (71 frames) and Real9 (121 frames) are taken from PETS’09 database. In all of
these image sequences the targets change their position and size simultaneously. The ground
truth for these image sequences was manually determined (both for the size and the position
of the target). Note that although we show the ground truth delimited by rectangles, the WLT
algorithm employs the inscribed ellipse in its computations. In our experimental evaluation we
used B = 106, M = 50 frames and Thy = Thh = 0.1.

As each object is represented by an ellipse, in order to evaluate the performance of a tracking
algorithm we use the center and the size of the ellipse axis. We employ the evaluation criteria
that were used in [152]. The first criterion is the number of frames which the object is correctly

55

Algorithm 6 Target update
1: function TARGETUPDATE(targetGMM, M)
2: Input: The GMM representing the target and the last M frames of the image sequence.
3: Output: the new GMM representing the target.
4: newGMM := targetGMM
5: Create a new component for the newGMM (initialize using a pixel with a small likeli-

hood and apply the EM only for the new component).
6: Delete components with πk below a threshold.
7: Create a GMM for the background using an area around the target in the last frame and

remove the components of newGMM whose mean vectors are close (Euclidian distance) to
the components of the GMM of the background.

8: for frame t = M, . . . , 1 do
9: Track the target in frame t using newGMM.

10: end for
11: if the trajectory created by tracking backwards the target using newGMM is close (Eu-

clidian distance) to the trajectory of the target for the last M frames then
12: return newGMM
13: else
14: return targetGMM
15: end if
16: end function

tracked in. An object is considered to be correctly tracked in a frame if the estimated rectangle
covers at least 25% of the area of the target in the ground truth. This is a coarse measure, and
is only considered in order to roughly evaluate if the estimated object is near the ground truth
object. The next two measures provide more details about the performance of the algorithms.
The second criterion is the position error which is the Euclidian distance between the center
of the object in the ground truth and the estimated target center, divided by the diagonal of
the ground truth rectangle. The third criterion is the size error which is defined as the Euclidian
distance between the ground truth and the estimated vectors (with components the width and the
height of the ellipse), normalized by the ground truth length of the object diagonal. The division
with the diagonal of the object eliminates the problems of different object sizes. Finally, three
other criterions are the average precision:

p =
1

T

T∑
i=1

pi, (5.26)

where
pi =

number of correctly tracked pixels in frame i
number of tracked pixels in frame i

, (5.27)

the average recall:

r =
1

T

T∑
i=1

ri, (5.28)

56

where
ri =

number of correctly tracked pixels in frame i
number of target pixels in frame i

, (5.29)

and the average F-measure:

F =
1

T

T∑
i=1

pi × ri
pi + ri

. (5.30)

In our experiments we use a kernel with an exponential profile having σ = 1:

k(x) =

{
e(−x/σ) if x ≤ 1

0 otherwise
(5.31)

Consecutively, the derivative of (5.17) becomes:

dL

dy
=

N∑
n=1

An(y)wn(y)Ln. (5.32)

We compared our method with the OpenCV’s implementation of Camshift algorithm [20,
19] which is a robust version of the mean shift algorithm [30] with scale adaptation and the
FRAG tracker [3]. For Camshift, we used a 16 bin histogram for the hue component. Also,
we did not take into account pixels with low or high brightness or low saturation (we apply
thresholds equal to 10% of the maximum pixel value) as it is suggested in [20]. For comparison
purposes, we did not search for the rotation of the target in Camshift in order to have a common
baseline. For FRAG, we used the version provided by the authors which uses the grayscale
information and is quantized to 16 bins.

In Tables 5.1-5.6 and Figures 5.2-5.4, the quantitative results of the compared methods
are presented. The position and size errors are expressed in normalized coordinates. Thus, a
position error of 0.5 means that the center of the estimated target is positioned in the middle of
a ray of the ground truth ellipse. Similarly, a size error of 0.5 means that the estimated size is
half the size of the ground truth ellipse. In Real1 and Real2, where the targets are cars under
different illumination conditions, all algorithms successfully track the objects with Camshift
and WLTMS having a slightly better performance in terms of position error. In Real3 and
Real4, the target is a car viewed from the rear under different illumination conditions. In Real3,
the color of the car is similar with the color of the road and Camshift did not estimate the
position of the object accurately (the rectangle representing the target scaled up and included
both the road and the car). Although we consider that Camshift tracked the target (the ground
truth rectangle is inside the rectangle computed by Camshift), the position and size errors are
large while the precision is small. In Real4, Camshift fails to track the object after the half of
the image sequence due to the fact that the color of the target is similar with the color of the
background mountains. In contrast, FRAG, WLT and WLMS successfully track the objects in
Real3 and Real4 despite these difficulties with WLTMS having a slightly better performance
in terms of position error. The image sequences Real5, Real6 and Real7 are taken inside a
subway using cameras with different viewpoint angles and show persons walking. In Real5 and
Real7, a partial occlusion happens as another person walks between the camera and the target

57

and in Real6 another person passes very close to the target. All approaches successfully track
the objects, with WLT showing a significantly better performance in terms of position and size
errors. In Real8, a woman is walking. In this dataset only Camshift and WLT successfully track
the object with Camshift giving better results. On the other hand, FRAG and WLTMS lose the
object from the early frames. They lose the object after a couple of frames, due to the fact that
the object is close to the camera, and the difference in its position between consecutive frames is
big. Finally, in Real9, a man in black clothes is walking among other people with dark colored
clothes. FRAG loses the target in the early frames. Camshift follows the target in the majority
of the frames, but loses the target in the end. In contrast, both WLT and WLTMS successfully
track the target with WLT having better performance in terms of position error. Qualitative
results for WLT are presented in Fig. 5.5. For each sequence, the left figure shows the first
frame of the sequence, while the other frames are uniform samples in time. These examples
show that WLT and WLTMS have comparable performance in terms of position and size error
when the displacement of the object is small between consecutive frames. However, when the
displacement is larger, e.g. in Real8, WLTMS may fail to localize the object correctly. This
results from the fact that using (5.21), the new center may be significantly further with respect
to the current center, and may not provide the maximum of the log-likelihood (5.4). On the other
hand, WLT uses one pixel displacements in every iteration, after evaluating (5.17), and results
to smoother position changes and estimated final locations which minimize the log-likelihood
(5.4).

Table 5.1: Performance of camshift, FRAG, WLT and WLTMS in terms of correct target local-
ization.

Frames Tracked

Seq. Camshift FRAG WLT WLTMS

Real1 499/499 499/499 499/499 499/499
Real2 199/199 199/199 199/199 199/199
Real3 299/299 299/299 299/299 299/299
Real4 165/309 309/309 309/309 309/309
Real5 129/129 129/129 129/129 129/129
Real6 169/169 169/169 169/169 169/169
Real7 109/109 109/109 109/109 109/109
Real8 71/71 3/71 71/71 2/71

Real9 116/121 6/121 121/121 121/121

Also, we evaluated the performance of the algorithm when the target rotates. In Fig. 5.9,
representative frames of the image sequence that is used for testing are shown. The object
performs a rotation of 130◦, while moving during 62 frames. We used the WLT method for
tracking, as the ellipse rotation procedure is the same for all of its variants. The algorithm
successfully tracks the object, as the average error in the estimation of the rotation angle is
2.73◦ with standard deviation of 1.86.

58

Table 5.2: Performance of camshift, FRAG, WLT and WLTMS in terms of position error (mean
± std).

Seq. Camshift FRAG WLT WLTMS

Real1 0.07±0.04 0.15±0.05 0.10±0.05 0.07±0.05

Real2 0.08±0.04 0.19±0.09 0.14±0.03 0.06±0.02

Real3 2.36±0.82 0.26±0.27 0.18±0.06 0.18±0.04

Real4 3.00±1.89 0.27±0.16 0.12±0.06 0.11±0.05

Real5 0.26±0.12 0.16±0.02 0.13±0.04 0.20±0.48

Real6 0.26±0.18 0.30±0.08 0.15±0.05 0.22±0.05

Real7 0.28±0.27 0.13±0.07 0.20±0.09 0.25±0.06

Real8 0.05±0.03 0.05±0.02 0.07±0.05 0.08±0.01

Real9 0.43±0.08 0.08±0.02 0.12±0.09 0.34±0.10

Table 5.3: Performance of camshift, FRAG, WLT and WLTMS in terms of size error (mean ±
std).

Seq. Camshift FRAG WLT WLTMS

Real1 0.23±0.21 0.21±0.11 0.23±0.09 0.24±0.09

Real2 0.23±0.07 0.28±0.10 0.32±0.05 0.15±0.05

Real3 8.26±2.99 0.60±0.29 0.21±0.12 0.18±0.08

Real4 3.32±1.61 1.52±1.27 0.21±0.10 0.30±0.11

Real5 0.45±0.15 0.14±0.03 0.34±0.07 0.31±0.06

Real6 0.42±0.44 0.28±0.10 0.27±0.08 0.38±0.08

Real7 0.34±0.33 0.16±0.10 0.28±0.12 0.35±0.12

Real8 0.09±0.10 0.11±0.02 0.12±0.04 0.21±0.03

Real9 0.96±0.18 0.75±0.10 0.20±0.15 0.45±0.14

Furthermore, to justify the use of a weighted likelihood, we compared the WLT algorithm
with a tracking procedure using a standard GMM (referred by LT). The LT algorithm is the
same as WLT, with two differences: a) the GMM which is constructed in the first frame is a
standard GMM without location dependent weights and b) in order to move the center to one
of the 8 neighboring pixels we evaluate the standard log-likelihood in each of these 8 pixels,
considering them to be the center of the ellipse. This last distinction makes the LT algorithm
about 8 times slower compared to the WLT algorithm.

Therefore, we compared WLT with LT in terms of the larger initial ellipse that makes the
algorithm insensitive. More specifically, if the initial ellipse in the first frame, is erroneously
larger than the ground truth ellipse, the algorithm will be trapped by the background elements
included in the initial ellipse. In Table 5.7, the maximum initial target size is shown which
does not affect correct tracking. As it can be observed in all cases, WLT accepts a larger initial

59

Table 5.4: Performance of camshift, FRAG, WLT and WLTMS in terms of precision (mean ±
std).

Seq. Camshift FRAG WLT WLTMS

Real1 0.95±0.17 0.73±0.11 0.69±0.07 0.77±0.11

Real2 0.79±0.18 0.90±0.19 0.90±0.02 0.93±0.06

Real3 0.03±0.08 0.56±0.28 0.71±0.13 0.67±0.08

Real4 0.14±0.10 0.26±0.22 0.69±0.12 0.71±0.13

Real5 0.96±0.06 0.81±0.05 0.82±0.08 0.91±0.09

Real6 0.70±0.28 0.70±0.16 0.84±0.13 0.90±0.14

Real7 0.79±0.24 0.90±0.06 0.91±0.10 0.90±0.09

Real8 0.92±0.15 0.04±0.02 0.86±0.15 0.03±0.42

Real9 0.34±0.14 0.04±0.02 0.77±0.19 0.80±0.13

Table 5.5: Performance of camshift, FRAG, WLT and WLTMS in terms of recall (mean ± std).
Seq. Camshift FRAG WLT WLTMS

Real1 0.61±0.13 0.76±0.12 0.78±0.18 0.84±0.17

Real2 0.82±0.11 0.39±0.10 0.80±0.09 0.79±0.11

Real3 0.47±0.19 0.87±0.16 0.67±0.07 0.72±0.08

Real4 0.49±0.14 0.98±0.14 0.84±0.13 0.84±0.08

Real5 0.45±0.21 0.81±0.06 0.89±0.08 0.61±0.09

Real6 0.38±0.21 0.88±0.15 0.90±0.13 0.57±0.18

Real7 0.71±0.13 0.72±0.15 0.67±0.14 0.60±0.13

Real8 0.77±0.09 0.03±0.02 0.76±0.18 0.01±0.01

Real9 0.65±0.20 0.03±0.01 0.84±0.20 0.50±0.12

window by the user as it assigns smaller weights to pixels far from the window center. On the
other hand, the standard GMM does not associate with small weights pixels that are far from
the center and are more likely to belong to the background and therefore they affect the correct
estimation of the GMM parameters. We also compared these approaches with respect to the
size of the smaller initial ellipse, but in this case both algorithms provide similar accuracies, as
the ellipse is small and all its pixels belong to the object. Hence, we do not present these results
in Table 5.7.

In these image sequences, the rectangles which represent the targets have dimensions around
150× 70 pixels. For these target sizes, our algorithm, which is developed using OpenCV, runs
in real time, as the average time needed for each frame is at most 0.015 sec (or equivalently
at least 65 fps) for both variations (both WLT and WLTMS). The computer used during the
experimental evaluation is a dual core PC (even though in the implementations we did not use
the second core) at 1.83GHz with 2GB RAM at 667 MHz.

60

Table 5.6: Performance of camshift, FRAG, WLT and WLTMS in terms of F-measure (mean±
std).

Seq. Camshift FRAG WLT WLTMS

Real1 0.73±0.09 0.73±0.09 0.72±0.10 0.78±0.09

Real2 0.75±0.07 0.53±0.06 0.82±0.09 0.84±0.06

Real3 0.04±0.14 0.61±0.16 0.67±0.07 0.67±0.04

Real4 0.18±0.05 0.36± 0.22 0.74±0.05 0.74±0.07

Real5 0.57±0.20 0.81±0.05 0.85±0.05 0.76±0.05

Real6 0.42±0.21 0.75±0.08 0.86±0.08 0.70±0.08

Real7 0.71±0.15 0.79± 0.11 0.76±0.09 0.70±0.08

Real8 0.83±0.09 0.03± 0.03 0.78±0.10 0.02±0.02

Real9 0.35±0.13 0.03± 0.01 0.78±0.10 0.60±0.11

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real1

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real2

camshift

FRAG

WLT

WLTMS

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real3

camshift

FRAG

WLT

WLTMS

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frame #

S
iz

e
 E

rr
o

r

Real1

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame #

S
iz

e
 E

rr
o

r

Real2

camshift

FRAG

WLT

WLTMS

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Frame #

S
iz

e
 E

rr
o

r

Real3

camshift

FRAG

WLT

WLTMS

Figure 5.2: Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error.

Finally, we present some qualitative results for the model update method using WLT. We
used an image sequence of 71 frames showing a rotating chair. The front view of the chair has
a purple color while the back view of the chair is black. The initialization is accomplished in
the first frame (frame 0), where only the back view is visible. Afterwards, the chair moves from
left to right while rotating twice around its axis (Fig. 5.7). We check for an update according to
Algorithm 6 every 10 frames. In frame 10, where the back side of the chair is not visible, the
tracking algorithm tracks a small black part of the chair. After frame 10, the model is updated
and a component for the purple color of the front view of the chair is added. After the second
rotation of the chair (frame 71), the tracking algorithm covers a large area of the purple area of
the back of the chair. In Fig. 5.8, quantitative results are presented for the the position and size

61

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real4

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real5

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real6

camshift

FRAG

WLT

WLTMS

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

Frame #

S
iz

e
 E

rr
o

r

Real4

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame #

S
iz

e
 E

rr
o

r

Real5

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frame #

S
iz

e
 E

rr
o

r

Real6

camshift

FRAG

WLT

WLTMS

Figure 5.3: Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real7

camshift

FRAG

WLT

WLTMS

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real8

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frame #

P
o

s
it

io
n

 E
rr

o
r

Real9

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frame #

S
iz

e
 E

rr
o

r

Real7

camshift

FRAG

WLT

WLTMS

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

Frame #

S
iz

e
 E

rr
o

r

Real8

camshift

FRAG

WLT

WLTMS

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

Frame #

S
iz

e
 E

rr
o

r

Real9

camshift

FRAG

WLT

WLTMS

Figure 5.4: Performance of camshift, FRAG, WLT and WLTMS in terms of position and size error.

errors. We compared the performance of WLT without model update and with model update.
The implementation, in which the initial model does not change, misses the object after some
frames when the first rotation of the chair occurs. This is the reason why WLT without model
update has a smaller size error (the target is missed). On the other hand, WLT with model
update has to adapt its size in order to locate the object correctly.

62

Real1 Real2

Real3 Real4

Real5 Real6

Real7 Real8

Real9

Figure 5.5: Representative results on the real datasets used in the experiments Real1, Real2, Real3 and
Real4, Real5, Real6, Real7, Real8 and Real9 using WLT. Although the inscribed ellipse is used in the
computations, the target is bounded by a green rectangle for visualization purposes.

frame 0 frame 20 frame 40 frame 61

Figure 5.6: Representative frames of the sequence used for the evaluation of the algorithm on rotations
of the target.

5.3.1 Experimental results on the VOT2014 dataset

We also evaluated the proposed method using the Visual Object Tracking (VOT) 2014 dataset
(URL: http://votchallenge.net). A description of the dataset and the evaluation methodology
can be found in [65]. VOT provides the toolset in order to evaluate a new tracker over the
dataset as the performances of already tested trackers have been recorded. A comprehensive
comparative report is the outcome of the toolset. This dataset consists of 25 video sequences
including various visual phenomena like camera motion, illumination change, motion change,
size change and occlusion. The selected objects in each sequence were manually annotated by
bounding boxes. The report generated includes the results of 38 trackers which were evaluated
by the authors of [65].

The evaluation indices used in order to estimate the performance of our tracker are the

63

Table 5.7: Comparison of WLT and LT in terms of the maximum allowable target initialization
area.

Max initial target size Ratio

Seq. WLT LT WLT/LT

Real1 74× 32 48× 22 2.242

Real2 130× 27 128× 25 1.096

Real3 112× 62 114× 60 1.015

Real4 211× 162 146× 128 1.837

Real5 60× 170 50× 130 1.569

Real6 50× 162 50× 154 1.051

Real7 42× 150 36× 150 1.166

Real8 30× 250 29× 218 1.186

Real9 100× 400 82× 400 1.219

frame 0 frame 10 frame 20 frame 30

frame 40 frame 50 frame 60 frame 71

Figure 5.7: Representative frames for the sequence that is used for the qualitative evaluation of the
model update (the total number of frames that were used during the tracking procedure is 71). The chair
rotates around its axis and moves from left to right. The model update procedure is applied every 10

frames. While in the initial frame only the black color is included in the target model, in the final frame
(number 71) both the black and the purple colors are included in the model.

accuracy and the robustness. The accuracy measures how well the bounding box AT estimated
by the tracker overlaps with the ground truth bounding box AG and is defined by:

acc =
AG ∩ AT

AG ∪ AT
. (5.33)

64

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frame #

P
s

it
io

n
 E

rr
o

r

Chair sequence

WLT (with model update)

WLT (without model update)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame #

S
iz

e
 E

rr
o

r

Chair sequence

WLT (with model update)

WLT (without model update)

Figure 5.8: Performance of WLT without model update (green) and with model update (red).

The robustness is the number of times the tracker failed to locate the object correctly. A target
is considered lost when the AG ∩ AT = ∅, that is, there is no overlap between the estimated
target and the ground truth. In this case, the tracker is reinitialized from the the ground truth in
order to continue tracking and estimate the indices in the rest of the video sequence.

The evaluation procedure is as follows: the tracker runs on each sequence at most 15 times
(3 times if it is deterministic, 15 if not deterministic) and the average accuracy and robustness
of the sequences is indicated. Moreover, two set of experiments are performed: (i) the baseline
experiments, in which the initial position of the tracker is exactly the ground truth in the first
frame and (ii) the region noise experiments, in which the initial position of the tracker, whenever
it is initialized, is the ground truth perturbed by some noise, which uniformly affects the position
and the size of the target by ±10% pixels and the orientation of the ground truth bounding box
by ±0.1 radians.

The performance of our WLTMS method is summarized in Table 5.8. There are two evalua-
tions: a qualitative estimation which gives the performance of the proposed method with respect
to the mean of the rest of the already tested trackers and a quantitative index showing the or-
dering of our method with respect to the rest of the trackers. It is worth noting that the 38 other
trackers constitute the state of the art in the framework of the VOT2014 dataset [65]. Moreover,
as it is stated in [65], none of the examined algorithms outperforms all the others in all test.

In the majority of the sequences, our method has average performance with respect to the
rest of the algorithms. In some cases it has below average performance and in a few cases it
exhibits a performance above average. The best performance for our method is achieved for
the fish2 sequence, where our method is ranked second in the baseline experiment concerning
the accuracy index. In the sequences diving and gymnastics, our algorithm has a performance
which is above the average in terms of robustness with respect to the other algorithms in the
dataset. Especially for the sequence gymnastics, the performance in terms of accuracy for region
noise is drastically increased with respect to the baseline. These sequences have rotated targets,
and our method, which is based on kernel tracking may perform better due to the fact that no
exact matching of the target region is needed in contrast to template matching algorithms in
the VOT2014 dataset. The worst performance is achieved for sequences where the target is or

65

Table 5.8: Performance of the proposed WLTMS method over the VOT2014 dataset. The labels
Average, Below and Above indicate the performance of the tracker with respect to the the mean
of the state-of-the-art algorithms considered in the evaluation. The ordering of the algorithm’s
performance is also indicated for each video sequence.

Baseline experiments Region noise experiments
Seq. Accuracy Robustness Accuracy Robustness
ball Average (18/39)) Average (31/39) Average (13/39) Average (24/39)
basketball Average (9/39) Average (18/39) Above (5/39) Average (14/39)
bicycle Average (24/39) Below (37/39) Below (36/39) Below (38/39)
bolt Average (13/39) Average (19/39) Average (15/39) Average (19/39)
car Below (39/39) Below (37/39) Below (39/39) Below (32/39)
david Below (34/39) Below (36/39) Average (33/39) Below (35/39)
diving Below (35/39) Above (11/39) Average (21/39) Above (6/39)
drunk Below (32/39) Below (37/39) Below (31/39) Below (34/39)
fernando Average (19/39) Average (26/39) Below (37/39) Below (34/39)
fish1 Average (8/39) Average (26/39) Average (22/39) Average (20/39)
fish2 Above (2/39) Average (13/39) Above (2/39) Above (9/39)
gymnastics Average (30/39) Above (8/39) Average (7/39) Above (8/39)
hand1 Average (11/39) Average (14/39) Above (12/39) Average (12/39)
hand2 Average (13/39) Above (12/39) Average (21/39) Average (15/39)
jogging Below (34/39) Average (27/39) Average (28/39) Below (37/39)
motocross Average (27/39) Below (37/39) Below (35/39) Below (37/39)
polarbear Average (25/39) Average (39/39) Average (19/39) Average (38/39)
skating Below (31/39) Below (31/39) Below (36/39) Below (33/39)
sphere Below (32/39) Below (35/39) Below (32/39) Below (35/39)
sunshade Average (20/39) Average (24/39) Average (27/39) Average (17/39)
surfing Average (30/39) Average (37/39) Average (26/39) Average (35/39)
torus Below (38/39) Below (36/39) Below (38/39) Below (34/39)
trellis Average (32/39) Above (15/39) Average (30/39) Average (23/39)
tunnel Above (11/39) Below (39/39) Average (21/39) Below (39/39)
woman Average (20/39) Below (36/39) Average (22/39) Below (33/39)

becomes very small in the image sequence. For example, in the tunnel sequence, the target
is the jacket of a man riding a motorbike which moves inside a tunnel. In many frames, the
target occupies a rectangular area of 20 × 30 pixels, which cannot be correctly tracked by our
algorithm as the number of pixels is low to be successfully handled. More specifically, the
number of pixels inside the ellipse is small for the initialization of the GMM (the estimation of
the GMM parameters fails). Moreover, when the motion is large (due to the fact that the camera
moves quickly) and no overlapping section exists between the target in two consecutive frames,
our algorithm also fails as it starts from the initial position of the previous frame and performs a

66

local optimization procedure. This drawback may be eliminated if some sort of particle filtering
is employed.

(a) (b)

Figure 5.9: Comparative evaluation of the proposed WLTMS (green square indicated by the arrow) with
respect to state-of-the-art algorithms over all the video sequences of the VOT2014 data set. The plot is
generated by the VOT 2014 toolset. (a) Baseline experiments and (b) region noise experiment.

A graphical representation of the performance of the proposed method with respect to the
state of the art is shown in Fig.5.9 which is generated by the VOT toolset. The horizontal axis
represents the robustness and the vertical axis shows the accuracy. Better performance is from
bottom to up and from left to right. As we can observe, our method is situated very close to the
average performance of the state-of-the-art methods, which makes it competitive.

5.4 Conclusions

From the point of view of the target modeling and localization, the proposed algorithm belongs
to the same family as the histogram based methods [19, 20, 30, 152]. These methods minimize
the distance between the probability distribution of the model and the distribution of the pixels at
a candidate location in an image frame. The mean shift family of methods [20, 30] minimizes
the Bhattacharyya distance while in [152] the earth mover’s distance is involved. The WLT
method proposed herein, maximizes the weighted log-likelihood of the model without creating
a second distribution in the image frame under consideration. The key issue in estimating the
target’s position is the weight term depending on the location of the target. Concerning the
two versions of our algorithm (WLT and WLTMS), WLTMS shows in general a slightly better
performance and it is favored due to its faster convergence. More specifically, in each iteration
WLT moves the center of the ellipse by exactly one pixel, while WLTMS may move the center

67

of the ellipse by a larger step and consequently it may converge faster.

68

CHAPTER 6

REAL TIME VISUAL TRACKING USING A

SPATIALLY WEIGHTED VON MISES

MIXTURE MODEL

6.1 Introduction

6.2 Weighted von Mises mixture model

6.3 Tracking using the weighted von Mises mixture model

6.4 Experimental results

6.5 Conclusions

6.1 Introduction

In this chapter, we use the hue component of the HSV color space for visual object tracking
and we employ a weighted von Mises mixture model in order to overcome drawbacks caused
by shifting histogram values. The von Mises distribution is the circular analog of the normal
distribution on a line, and it can be used in order to model circular data. The values of the hue
component that is periodic with period 2π, can be represented as points in the two dimensional
unit circle. Thus, the terms periodic random variable and circular data will be considered in-
terchanged in this chapter. Moreover, we propose the weighted von Mises mixture to model
the distribution of the hue value when a single von Mises distribution is not flexible enough to
describe the target. Moreover, the proposed weighted von Mises mixture employs the spatial
weights that are provided by the kernel. The von Mises distribution has been employed in or-
der to model sensor noise [98], the direction of the movement [24, 64, 108], and the pose of
an object [56]. In [104], the background hue component is modeled through a single wrapped

69

Gaussian distribution which is also designed for circular data. Here, we use a weighted von
Mises mixture in order to model the model the appearance and track the target efficiently.

In the remaining of the chapter, section 6.2 reviews the von Mises distribution and presents
the proposed weighted von Mises mixture model, section 6.3 integrates the proposed weighted
von Mises mixture model in the visual tracking framework. Experimental results are presented
in section 6.4 and conclusions are drawn is section 6.5.

6.2 Weighted von Mises mixture model

6.2.1 Introduction to the von Mises distribution

There are cases in image processing and analysis where the measured quantity is periodic and
modeling it by a periodic variable may be an advantage (e.g. the hue component of an image
in the HSV color space). In what follows, we assume that the period is 2π and the periodic
variable is defined in the interval [0, 2π). If the variable is defined in another interval, we may
map this interval to [0, 2π). We will also refer to the observations (e.g. hue values) as angles
accordingly.

The main drawback of circular data is that we can not directly apply a conventional distri-
bution (e.g. Gaussian) as there is a dependence on the choice of the origin. For example, if we
have two angles one at 0 and one at π, then if we select 0 as the origin then the mean of these
angles is π/2. However, if we select π/2 as the origin, that is the interval is [π/2, 5π/2), the
mean is 3π/2 due to the fact that the angle 0 is mapped to the angle 2π. In order to overcome
these drawbacks, the von Mises distribution has been proposed. For a complete reference to its
properties, the reader is referred to [14]. Here we summarize the key points.

The von Mises probability density function for an angle a is given by:

M(a; θ,m) =
1

2πI0(m)
em cos(a−θ), (6.1)

where θ is the mean, m is the concentration (analogous to the inverse variance), I0(m) is the
zeroth-order Bessel function of the first kind [2], which is defined as I0(m) =

∫ 2π

0
em cos(t)dt.

For large values of m the distribution becomes Gaussian and for m = 0 it becomes uniform.
In order to estimate the parameters θ andm having some observed anglesA = {an}n=1,...,N ,

we can use the maximum likelihood estimation. The log-likelihood of the model is given by:

ln p(A; θ,m) = ln
N∏
n=1

M(an; θ,m)

= −N ln(2π)−N ln(I0(m)) +m

N∑
n=1

cos(an − θ). (6.2)

By maximizing (6.2) with respect to θ we obtain:

θ = tan−1

(∑N
n=1 sin(an)∑N
n=1 cos(an)

)
. (6.3)

70

By maximizing (6.2) with respect to m we obtain the equation:

I1(m)

I0(m)
=

1

N

N∑
n=1

cos(an − θ), (6.4)

which can be numerically solved, where I1(m) = I ′0(m) =
∫ 2π

0
em cos(t) cos(t)dt.

6.2.2 Von Mises mixture model

If the von Mises distribution is not flexible enough in order to model the observations, then we
can use the von Mises mixture model as a linear superposition of von Mises components. The
probability density function of an angle a for a von Mises mixture model can be defined as:

L(a;θ,m,π) =
K∑
k=1

πkM(a; θk,mk), (6.5)

where K is the number of components, θ = {θk}k=1,...,K are the means of the components,
m = {mk}k=1,...,K are the concentrations of the components and π = {πk}k=1,...,K are the
importances (weights) of the components.

In order to estimate the parameters we have to maximize the log-likelihood function with
respect to these parameters, which can be achieved using the Expectation-Maximization al-
gorithm [14]. We assume that we have observer N angles A = {an}n=1,...,N and we want
to estimate the parameters θ, m and π of the von Mises mixture model. The log-likelihood
function is defined as:

lnL(A;θ,m,π) =
N∑
n=1

ln (L(an;θ,m,π)) (6.6)

We can define a set of random variablesZ = {zn}n=1,...,N , where zn is aK-dimensional bi-
nary random variable which has znk = 1 if the n-th angle is produced from the k-th component,
and znj = 0 for j 6= k. Thus zn can reveal from which component the observation an has been
generated. In practice, the values of the variables Z are not known, so they are called latent
variables. If the value of the corresponding latent variable zn is known for each observation an,
then the set {A,Z} is called the complete data set. The complete data log-likelihood function
is given by:

lnL(A,Z;θ,m,π)

= ln

(
N∏
n=1

K∏
k=1

(πkM(an; θk,mk))
znk

)

=
N∑
n=1

K∑
k=1

znk (ln πk +M(an; θk,mk)) . (6.7)

71

Due to the fact that the latent variables Z are not know, we can only use their posterior
distribution:

p(Z;A,θ,m,π) =
p(A;Z,θ,m,π)p(Z;θ,m,π)

p(A;θ,m,π)

∝
N∏
n=1

K∏
k=1

(πkM(an; θk,mk))
znk . (6.8)

The expectation of the complete data log-likelihood is given by:

Q =
∑
Z

p(Z;A,θ,m,π) lnL(A,Z;θ,m,π)

=
N∑
n=1

K∑
k=1

r(znk) (lnπk + lnM(an; θk,mk)) , (6.9)

where the r(znk) is the expectation of the latent variable znk:

r(znk) = E[znk] =

∑
znk

znkp(znk; an, θk,mk, πk)∑
znj
p(znj; an, θj,mj, πj)

=
πkM(an; θk,mk)∑K
j=1 πjM(an; θj,mj)

. (6.10)

Now, the maximization of (6.9) with respect to θ,m,π can be easily achieved.
Thus, in order to evaluate the parameters θ,m,π of the von Mises mixture model, we

initialize these parameters to some values and repeatedly apply the E-step and M-step.
E-step:

r(znk) =
πkM(an; θk,mk)∑K
j=1 πjM(an; θj,mj)

. (6.11)

M-step:

Nk =
N∑
n=1

r(znk), (6.12)

πk =
Nk

N
, (6.13)

θk = tan−1

∑N
n=1 r(znk) sin(an)∑N
n=1 r(znk) cos(an)

, (6.14)

I1(m)

I0(m)
=

1

Nk

N∑
n=1

r(znk) cos(an − θk). (6.15)

Note that (6.15) is not in closed form but can be numerically solved with respect to the parameter
m.

72

6.2.3 Weighted von Mises mixture model

In some applications, some observations may affect more the log-likelihood (6.6) with respect
to others. For example, if we are confident that a pixel is more important than the others, then
the log likelihood becomes:

lnL(A,w;θ,m,π) =
N∑
n=1

wn ln (L(an;θ,m,π)) , (6.16)

wherew = {wn}n=1,...,N are the weights of the observations. The intuition behind this approach
is that if we use a pixel multiple times in (6.6), then we aggregate its appearances town in (6.16).

By using the same approach the E-step equation (6.11) remains the same. On the other hand,
the M-step equations (6.13), (6.14) and (6.15) change accordingly:

Nk =
N∑
n=1

wnr(znk), (6.17)

πk =
Nk∑N
n=1 wn

, (6.18)

θk = tan−1

∑N
n=1 wnr(znk) sin(an)∑N
n=1wnr(znk) cos(an)

, (6.19)

I1(m)

I0(m)
=

1

Nk

N∑
n=1

wnr(znk) cos(an − θk). (6.20)

6.3 Tracking using the weighted von Mises mixture model

In this chapter, we assume that the images employ the HSV color model and we use only
the hue component, that is, each pixel is represented by a single value in the interval [0, 2π).
Moreover, we assume that the object to be tracked can be represented by an ellipse. The ellipse
has a center denoted by y = [y(1), y(2)]T , where y(1) is the horizontal coordinate and y(2) is the
vertical coordinate of the center in the image coordinates system, and a vector h = [h(1), h(2)]T ,
where h(1) is the length of the horizontal semi-axis and h(2) is the length of the vertical semi-axis
of the ellipse.

Having set the parameters y and h, we can assign a weight to every pixel of the image by
using a spatial kernel k(t) which will assign greater weights to pixels near the center of the
ellipse. More specifically, we use a kernel with exponential profile:

k(t) =

{
e(−t/σ) if t ≤ 1

0 otherwise
. (6.21)

Using this kernel, the weight wn(y) of the n-th pixel with spatial coordinates xn = [x
(1)
n , x

(2)
n]T

is given by:
wn(y) = k(M(xn;y,h)), (6.22)

73

where

M (xn;y,h) =

(
x

(1)
n − y(1)

h(1)

)2

+

(
x

(2)
n − y(2)

h(2)

)2

= (xn − y)TH−1(xn − y), (6.23)

is the squared Mahalanobis distance between xn and y with diagonal covariance matrix H =

diag(h(1), h(2)). By using the functionM in (6.22) the drawback of the difference in axis lengths
is overcome because the normalized pixel coordinates, for pixels inside the ellipse, are now in
the interval [0, 1]. Thus, the weights wn(y) for pixels inside the ellipse are greater than zero,
while pixels outside the ellipse have weights equal to zero.

6.3.1 First frame

We assume that the position of the ellipse is known in the first frame of the sequence. Thus,
the objective here is to estimate the von Mises mixture model using the hue component of the
pixels. The image consists of N pixels (with some given order, e.g. row-by-row), each pixel’s
weight wn(y) is given by (6.22) and each pixel’s hue component is denoted by an. We can
now estimate the von Mises mixture model parameters θ,m,π using equations (6.11), (6.18),
(6.19) and (6.20) of the EM algorithm.

6.3.2 Tracking in consecutive frames

In every frame of the video (except for the first), we know: (i) the center y and the size h of
the ellipse which represents the target in the imediatelly previous frame and (ii) the parameters
θ,m,π of the von Mises mixture model which models the distribution of the hue component of
the object’s pixels. In order to estimate the center of the ellipse in the current frame, a gradient
based technique will be used.

We seek to estimate the position y which maximizes the log-likelihood:

lnL(A,w(y);θ,m,π) =
N∑
n=1

wn(y) ln (L(an;θ,m,π)) . (6.24)

This can be achieved by taking the derivative of (6.24) and setting it to zero. The derivative of
(6.24) is defined as:

dL

dy
=

[
dL

dy(1)
,
dL

dy(2)

]T
, (6.25)

where:
dL

dy(j)
=

N∑
n=1

dwn(y)

dy(j)
L(an;θ,m,π). (6.26)

The only term that depends on y is wn(y). By defining the negative derivative of the kernel
function as g(t) = −dk(t)

dt
, we have:

dk (M (xn;y,h))

dy(j)
∝ g (M (xn;y,h))

x
(j)
n − y(j)

h(j)2
. (6.27)

74

By substituting (6.27) into (6.26) we have:

dL

dy(j)
∝

N∑
n=1

g (M (xn;y,h))
x

(j)
n − y(j)

h(j)2
L(an;θ,m,π). (6.28)

By setting (6.28) equal to zero, we get the update formula (in vector form):

y =

∑N
n=1 xng (M (xn;y,h))L(an;θ,m,π)∑N
n=1 g (M (xn;y,h))L(an;θ,m,π)

. (6.29)

Thus, in every frame, starting from y estimated at the previous frame, we iteratively apply
equation (6.29) in order to move the center y to a new position, until (6.24) decreases. In (6.29),
the value of y in the right side of the equation is the new center while the value of y in the left
side of the equation is the old center. Scale estimation can be performed by increasing and
decreasing the ellipse size by a percentage (for example 10%) and choose the ellipse with the
bigger average likelihood.

6.3.3 Implementation details

The execution time of the proposed algorithm can be improved as the values of the hue compo-
nent are integers in the interval [0, 359].

First, in (6.16), the term L(an;θ,m,π) depends only on the hue value of the pixel. Thus,
we can aggregate the weight wn of the pixels that have the same hue value to a new weight
Wn. This is equivalent to creating a new image with 360 pixels having values from 0 to 359 and
assign to each pixel the corresponding weight Wi =

∑N
n=1wnδ(i− an). The delta function is

zero everywhere except the δ(0) = 1. Using this approach, the number of the pixels used by the
EM algorithm is constant and this makes also the time needed for the initialization on the first
frame relatively constant.

Second, in (6.29), the term L(an;θ,m,π) can be pre-calculated for all the values of an.
The parameters θ, m and π are determined for the first frame and are keep constant in the
subsequent frames. Thus, we can have an array of 360 values which can be computed after the
estimation of the parameters θ,m and π. During the tracking procedure, we can use this array
instead of the equations (6.16) and (6.1).

6.4 Experimental results

In order to evaluate the proposed method we used the Visual Object Tracking (VOT) 2014
dataset (URL: http://votchallenge.net). A detailed description on the dataset and the evaluation
methodology can be found in [65]. Here we will provide a quick overview of the dataset and
the toolkit.

The VOT dataset consist of 25 color image sequences with one moving object in each se-
quence. These videos include various visual phenomena (also called frame attributes) like cam-
era motion, illumination change, motion change, size change and occlusion. In every image of

75

every image sequence, the ground trough of the target has been manually annotated by bound-
ing boxes. The information provided for the initialization of the tracker is the bounding box in
the first frame. If the tracker loses the object, then it is reinitialized in a subsequent frame.

The toolkit evaluates the performance of a tracker in terms of accuracy and robustness. The
evaluation is performedNrep times for each video sequence, which allows dealing with potential
variance in the performance. The accuracy is associated with the average overlap per repetition
per frame between the target’s ground truth bounding box and the bounding box which was
estimated by the tracker. The robustness index is associated with the average number of times
the tracker failed per repetition. A target is considered to have lost the object when there is no
overlap between the estimated target and the ground truth.

For fair comparison, a ranking-based methodology is used [65]. Thus, the average accu-
racy and the average robustness are correlated with the accuracy rank and the robustness rank
respectively. For each tracker, a group of equivalent trackers is determined and a rank is then
calculated. The group of equivalent trackers is found per tracker, as the concept of equivalent
trackers is not transitive. For example, tracker T1 can perform indistinguishably from trackers
T2 and T3, but trackers T2 and T3 may not be indistinguishably between themselves. In the
end, the rank is the mean of the ranks in the equivalent trackers group. For visual comparison,
the AR-rank plot is created, where the axes correspond to the accuracy and robustness rank.
The best performing trackers appear at the top-right corner of the AR-rank plot, while the less
efficient trackers appear at the bottom-left corner.

The performance of the tracker is evaluated in two sets of experiments. In the first set,
which is called Baseline, the initialization of the target is done using the exact ground truth
bounding box. In the second set, which is called Region Noise, a noisy initialization is done.
More specifically, the ground truth bounding box position and size are perturbed by drawing
uniformly from [0− 10%] of the bounding box size.

Moreover, the VOT toolkit provides the tools that are needed in order to evaluate the perfor-
mance of a tracker over the VOT dataset. It provides the performance of 38 trackers that have
been already tested by the authors [65] and the tools needed to compare a new tracker with these
state-of-the-art algorithms.

The performance of the proposed method (denoted by VMT) using VOT 2014 is presented
in Fig. 6.1 and Tables 6.1-6.4. The number of components K is set a priori, but its estimation
is not a guess. The components of the von Mises mixture model, roughly represent the number
of colors of the object. In our experiments, we noticed that if K is set to a large value, some
components will have πk = 0.

In Fig. 6.1, the AR-rank plots for the Baseline and Region Noise experiments are presented.
The horizontal and vertical axis denote the robustness rank and accuracy rank respectively. The
proposed tracker, which is highlighted, is placed near the center of the plot, thus it has average
performance in both measures with respect to the other algorithms. It is worth noting that the
38 other trackers constitute the state of the art in the framework of the VOT2014 dataset [65].
Moreover, the performance of a similar tracker, (denoted by GMM) that used the Gaussian
distribution instead of the von Mises distribution is presented. Due to the fact that the Gaussian

76

distribution can not model circular data in the beginning of the axis accurately, it exhibits an
inferior performance than the von Mises distribution.

(a) (b)

Figure 6.1: Comparative evaluation of the proposed VMT (green star indicated by the arrow) with
respect to state-of-the-art algorithms over all the video sequences of the VOT2014 data set. The plot is
generated by the VOT 2014 toolset. (a) Baseline experiments and (b) Region Noise experiments.

In Tables 6.1-6.4, the average performance of the proposed method for each image sequence
is presented. The name of the sequence, the performance of the proposed method (denoted by
VMT), the variance of the tracker that uses the Gaussian distribution (GMM) and the minimum,
maximum, mean and standard deviation of the other 38 trackers are shown. The last row of
each table shows the average for all sequences for the tracker. Tables 6.1-6.2 correspond to the
Baseline experiments, while Tables 6.3-6.4 correspond to the Region Noise experiments. For
each set of experiments (Baseline and Region Noise) there are two tables which represent: a) the
accuracy rank (Tables 6.1 and 6.3) and b) the robustness rank (Tables 6.2 and 6.4). The accuracy
rank is correlated with the overlap and the robustness rank is correlated with the number of
failures. Thus, if a target performs well, for example, in accuracy with respect to the other
trackers, it will also perform well in terms of overlap. In the majority of the cases, both VMT
and GMM have comparable performances. These are the cases where the histogram bins are
not located in the beginning of the axis, so the Gaussian and von Mises distribution can model
the data. In some cases where the data are located in the beginning or the end of the axis (e.g.
sphere sequence) the VMT performs better than the GMM tracker).

In Table 6.1, the average performance in terms of accuracy rank is provided for the Baseline
experiment. In the majority of the sequences, VMT performance lies near the average perfor-
mance of the 38 trackers. In 7 sequences (ball, diving, fish1, fish2, hand1, polarbear, sphere) it
performs better than the mean while in 4 sequences (bicycle, car, skating, torus) its performance
is inferior to the mean value. The last row which indicates the average performance between

77

the sequences confirms that our algorithm has performance near the mean performance of the
38 trackers. As it is stated in [65], none of the examined algorithms outperforms all the others
in all tests.

Table 6.1: Performance of VMT in terms of accuracy rank for the Baseline experiments (less is
better).

Seq. VMT GMM Other Trackers
min max mean±std

ball 9.50 9.50 1.50 39.00 20.26± 11.31

basketball 14.00 16.00 4.00 38.50 20.15± 10.33

bicycle 30.88 30.50 1.50 32.00 19.72± 9.32

bolt 17.50 18.03 3.00 36.40 20.09± 5.72

car 32.00 32.50 2.50 37.50 19.70± 10.94

david 21.00 21.50 4.50 35.00 19.97± 8.87

diving 11.00 10.55 4.62 32.58 20.11± 8.05

drunk 23.65 23.65 1.50 39.00 19.90± 10.55

fernando 24.00 22.40 1.00 36.75 19.91± 7.49

fish1 4.00 12.06 1.50 39.00 20.40± 7.99

fish2 12.50 13.00 1.00 32.42 20.16± 7.05

gymnastics 21.87 22.21 15.50 39.00 19.85± 4.77

hand1 14.00 14.00 4.00 38.00 20.05± 10.52

hand2 24.56 27.00 2.00 36.20 19.76± 9.94

jogging 28.00 26.50 7.71 39.00 19.78± 8.61

motocross 25.80 29.56 1.50 35.20 19.51± 9.78

polarbear 16.50 16.50 2.50 38.50 20.09± 10.56

skating 32.50 33.45 3.50 36.17 19.68± 8.68

sphere 16.00 25.60 1.50 39.00 20.18± 11.25

sunshade 28.57 27.00 9.00 38.50 19.76± 10.15

surfing 24.00 25.50 5.00 39.00 19.89± 10.33

torus 36.33 36.80 2.50 39.00 19.56± 10.97

trellis 22.00 22.00 2.00 37.25 19.94± 9.97

tunnel 23.00 16.30 1.00 37.50 19.92± 10.63

woman 22.50 33.00 6.58 39.00 19.93± 9.86

Average 21.42 22.61 10.97 28.72 19.93± 4.20

In Table 6.2, the average performance in terms of robustness rank is provided for the Base-
line experiment. In 11 sequences (ball, car, david, diving, gymnastics, polarbear, skating,
sphere, sunshade, surfing, trellis), VMT has exactly the same performance as the best of the
38 trackers (these are the sequences that the target is never lost), in 7 sequences (basketball,
bolt, fernando, fish2, hand1, hand2, jogging), VMT has performance near the average and in 7

sequences (bicycle, drunk, fish1, motocross, torus, tunnel, woman), its performance is inferior
to the average performance.

78

Table 6.2: Performance of VMT in terms of robustness rank for the Baseline experiments (less
is better).

Seq. VMT GMM Other Trackers
min max mean±std

ball 10.50 10.50 10.50 38.50 20.25± 10.51

basketball 23.50 23.50 6.50 39.00 19.91± 11.29

bicycle 36.00 38.50 11.00 39.00 19.58± 10.16

bolt 11.00 11.00 3.00 39.00 20.25± 11.38

car 14.50 14.50 14.50 39.00 20.14± 9.04

david 12.00 12.00 12.00 39.00 20.21± 10.11

diving 4.00 4.00 4.00 34.00 20.48± 10.34

drunk 34.00 34.00 15.50 39.00 19.63± 8.16

fernando 20.50 29.00 3.50 39.00 20.11± 11.09

fish1 30.00 30.00 3.50 39.00 19.73± 11.27

fish2 4.00 4.00 2.00 39.00 20.42± 11.11

gymnastics 4.50 4.50 4.50 38.50 20.41± 11.03

hand1 12.67 12.50 4.50 39.00 20.17± 11.17

hand2 29.50 26.00 1.50 39.00 19.72± 11.37

jogging 15.50 15.50 2.00 39.00 20.12± 10.01

motocross 35.00 38.00 2.00 38.50 19.61± 11.04

polarbear 20.00 20.00 20.00 20.00 20.00± 0.00

skating 3.50 31.00 3.50 39.00 20.49± 11.04

sphere 16.50 34.00 16.50 39.00 20.09± 7.70

sunshade 13.00 13.00 13.00 39.00 20.18± 9.79

surfing 19.00 19.00 19.00 38.50 20.03± 4.41

torus 37.50 38.50 10.00 39.00 19.54± 10.43

trellis 8.00 8.00 8.00 38.00 20.32± 10.98

tunnel 34.00 35.50 11.00 39.00 19.63± 10.33

woman 36.00 38.00 5.50 39.00 19.58± 10.98

Average 19.38 21.78 9.04 33.66 20.02± 5.26

In Table 6.3, the average performance in terms of accuracy rank is provided for the Region
Noise experiment. In the majority of the sequences, VMT lies near the average performance of
the 38 trackers. In 8 sequences (ball, basketball - not in Baseline, diving, fish1, fish2, hand1,
polarbear, sphere) it performs better than the mean while in 6 sequences (bicycle, car, motocross
- not in Baseline, skating, sunshade - not in Baseline, torus) its performs worst than the mean.
The last row, which indicates the average performance between the sequences shows that our
algorithm has performance near the mean performance of the 38 trackers. The average perfor-
mance in terms of accuracy rank of VMT in the presence of noise in the initialization is slightly
inferior to the performance of the same tracker in the Baseline experiment (Baseline=21.42,
Region Noise=21.94.

79

Table 6.3: Performance of VMT in terms of accuracy rank for the Region Noise experiments
(less is better).

Seq. VMT GMM Other Trackers
min max mean±std

ball 9.50 7.50 1.50 38.00 20.28± 11.31

basketball 12.50 17.00 4.50 38.00 20.20± 9.87

bicycle 35.00 38.50 2.50 39.00 19.60± 8.87

bolt 18.50 18.00 4.00 35.50 20.05± 6.91

car 32.00 31.50 2.00 38.50 19.59± 10.85

david 20.00 20.50 6.50 34.00 20.00± 7.59

diving 8.50 9.50 5.50 33.50 20.32± 7.56

drunk 22.00 22.00 1.00 38.50 19.95± 10.28

fernando 26.00 23.00 1.00 39.00 19.84± 8.12

fish1 8.00 9.00 1.00 35.50 20.32± 8.44

fish2 11.00 12.00 1.50 32.00 20.24± 7.93

gymnastics 20.00 19.00 5.50 38.00 20.00± 5.83

hand1 13.00 13.00 3.50 39.00 20.18± 10.60

hand2 25.50 23.67 1.50 36.50 19.84± 10.39

jogging 26.50 23.59 12.00 39.00 19.82± 7.30

motocross 32.50 33.00 1.50 37.50 19.70± 10.55

polarbear 16.50 16.00 2.00 37.50 20.09± 10.50

skating 34.00 35.50 9.00 37.50 19.63± 7.41

sphere 13.00 27.50 2.50 39.00 20.30± 11.13

sunshade 29.50 28.50 8.00 38.50 19.75± 9.43

surfing 24.00 29.50 8.00 38.00 19.89± 9.28

torus 38.50 38.50 1.00 38.00 19.53± 10.97

trellis 21.00 21.50 2.00 37.00 19.97± 10.07

tunnel 27.00 27.00 1.50 37.00 19.82± 10.67

woman 24.50 23.00 5.00 38.50 19.88± 8.85

Average 21.94 22.69 11.74 32.89 19.95± 4.71

In Table 6.4, the average performance in terms of robustness rank is provided for the Re-
gion Noise experiment. In 11 sequences (ball, car, david, diving, fish2, gymnastics, polarbear,
sphere, sunshade, surfing, trellis), VMT has the best or close to the best performance among
the 38 trackers. In 7 sequences (basketball, bolt, fernando, fish1, hand1, jogging, skating),
VMT has average performance and in 7 sequences (bicycle, drunk, hand2, motocross, torus,
tunnel, woman), it is inferior. Compared to the Baseline results, fish1 has improved its accu-
racy and fish2 has moved from the average performance closer to the best performance. The
average performance in terms of robustness rank of VMT in the presence of noise in the ini-
tialization is slightly inferior to the performance of the same tracker in the Baseline experiment
(Baseline=19.38, Region Noise=19.94).

80

Table 6.4: Performance of VMT in terms of robustness rank for the Region Noise experiments
(less is better).

Seq. VMT GMM Other Trackers
min max mean±std

ball 13.00 10.00 10.00 38.00 20.20± 10.31

basketball 26.00 28.67 2.50 39.00 19.84± 10.85

bicycle 37.00 37.50 7.08 39.00 19.56± 10.10

bolt 17.00 18.62 1.50 39.00 20.12± 11.25

car 15.50 15.50 14.50 39.00 20.12± 8.99

david 11.00 13.00 11.00 39.00 20.20± 10.11

diving 3.50 3.50 3.50 36.50 20.50± 10.84

drunk 32.00 32.00 13.00 39.00 19.69± 8.95

fernando 17.44 20.00 1.00 39.00 20.13± 10.11

fish1 23.00 22.50 2.33 38.50 19.98± 11.18

fish2 4.00 4.75 1.50 38.50 20.51± 10.71

gymnastics 4.00 4.00 4.00 38.50 20.41± 10.69

hand1 14.00 14.00 4.50 39.00 20.17± 11.12

hand2 30.11 28.00 1.50 39.00 19.63± 11.15

jogging 26.70 16.00 2.75 39.00 19.85± 10.32

motocross 33.38 31.00 2.00 38.50 19.76± 10.42

polarbear 19.50 19.50 19.50 38.00 20.01± 3.00

skating 12.00 26.60 2.75 39.00 20.44± 10.87

sphere 17.50 32.00 17.50 38.50 20.07± 6.70

sunshade 9.00 13.00 9.00 38.00 20.29± 10.41

surfing 18.50 33, 50 18.00 39.00 20.04± 5.89

torus 38.00 38.00 7.00 38.00 19.58± 10.75

trellis 7.00 7.00 7.00 38.00 20.34± 10.86

tunnel 36.00 33.00 9.72 38.50 19.81± 9.88

woman 33.50 32.00 5.00 39.00 19.70± 10.98

Average 19.94 22.27 8.65 33.84 20.04± 5.38

Some representative frames from the david, sphere and sunshade image sequences along
with their corresponding histograms are presented in Fig. 6.2 - 6.4. In these figures, the first
column shows some frames of the corresponding image sequence. The second column shows
the corresponding histogram bins (computed from pixels inside the target) and the weighted von
Mises mixture (estimated in the first frame and not changing along time) which is indicated by a
continuous black line. For demonstration purposes, the histogram bins are normalized to [0−1].
In Fig. 6.2, the object to be tracked is in a very low illumination environment at the beginning
of the video and moves to a better illuminated place. The initial histogram has one major bin
at 0 and some smaller bins for the other values of hue. The mixture model that is formed has
two components with positive weights. The first component has its center around 0, so its left

81

tail gets to the right side of the histogram. As the video proceeds, the major histogram bin at 0

decreases its importance, while other bins with smaller weights become more important.
In Fig. 6.3, the target has a dominant red color, which in the beginning of the sequence

is located mainly at the right side of the histogram while at the end the bins are shifted to
the right and circularly appear at the left side of the histogram (due to the fact that the Hue
component is periodic). Even in these cases, the proposed algorithm successfully tracks the
object due to the fact that the von Mises distribution is periodic. More specifically, it assigns a
likelihood to the pixels whose colors belong to the right side of the histogram which is sufficient
to distinguish the object from the background. Finally, in Fig. 6.4, the object moves from the
sun to the sunshade and back. Although during this procedure some histogram bins change their
importances significantly, the tracker successfully locates the object.

frame 1 frame 192 frame 315

histogram 1 histogram 192 histogram 315

Figure 6.2: Representative frames from the david image sequence (left) and the corresponding his-
tograms with the estimated von Mises mixture superimposed on it (right).

In Table 6.5, the performance of the different initialization strategies is presented. The first
column represents the size of the target. The second column is the optimized implementation
that is proposed in section 6.3.3 which uses only 360 pixels in order to estimate the parameters
of the model using the EM algorithm. The third column is the standard implementation that uses
all of the image in order to estimate the same parameters. The time needed by the optimized
implementation is relatively constant and around 1 millisecond. This time also includes the
time needed in order to create the image with the 360 pixels and its aggregated weights. On the
other hand, the time needed by the standard implementation increases as the number of pixels
increases.

In Table 6.6, the performance in terms of time for the estimation of each pixel’s likelihood
is presented. The first column represents the size of the target. The fourth column (indicated by
GMM) is an implementation which uses a Gaussian mixture model. Finally, the fifth column
(indicated by Hist) is an approach that uses histograms in order to estimate the likelihood for
each pixel as described in [30] and employed by the mean shift tracker. The proposed optimized

82

frame 1 frame 122 frame 188

histogram 1 histogram 122 histogram 188

Figure 6.3: Representative frames from the sphere image sequence (left) and the corresponding his-
tograms with the estimated von Mises mixture superimposed on it (right).

frame 1 frame 30 frame 66

histogram 1 histogram 30 histogram 66

Figure 6.4: Representative frames from the sunshade image sequence (left) and the corresponding
histograms with the estimated von Mises mixture superimposed on it (right).

method is around 200 times faster than the straightforward approach that evaluates the expo-
nential and cosine functions in every pixel and 20 times than the approach that uses histograms.

In the experiments above, all mixtures have the same number of components and produce
the same results. The evaluation has been performed 10000 times and we present here the mean
values. The machine that was used is a laptop with a dual core CPU at 2.26 GHz .

From these experiments, we can underpin some properties of the algorithm: It performs
well when the target follows the following assumptions: a) the target may be represented by an
ellipsoidal shape and b) the pixels near the center of the ellipse are more important because they

83

Table 6.5: Comparison of the different initialization approaches that are presented in section
6.3.3. All times are in microseconds (10−6 second).

Size Optimized Standard Gain
50× 50 742 22004 29

50× 100 898 52170 58

50× 150 883 76103 86

50× 200 746 120294 161

50× 250 902 160631 178

50× 300 900 190094 211

100× 100 904 113634 125

100× 150 909 180908 199

100× 200 771 277454 359

100× 250 771 322151 417

100× 300 937 408177 435

150× 150 910 291927 320

150× 200 793 443965 559

150× 250 799 517091 647

150× 300 960 614066 639

200× 200 803 664858 827

200× 250 826 780319 944

200× 300 984 825003 838

250× 250 837 860095 1027

250× 300 1013 1164215 1149

300× 300 1042 1311570 1258

are more likely to belong to the target. For example, the torus sequence contains a target with
a hole in its center, where background pixels are present. In this case, the weighted von Mises
mixture model is trained using mainly pixels from the background, so the tracker can not locate
the object. In the motocross sequence, the target contains a rider with its motorbike performing
various stunts and it can not be modeled by an ellipse as the area of the target contains many
pixels from the background.

Also, when the tracked object is a sphere or the body of a human, it shows better perfor-
mance in terms of robustness with respect to the other trackers but average performance in terms
of accuracy. This means that it does not miss the object, but it can not locate exactly its position,
as some interference with the background may affect the result near the boundaries of the el-
lipse. Moreover, the performance of VMT if not affected significantly when the initialization in
the first frame of the image sequence does not contain exactly the target. This can be confirmed
by the results of the Baseline and the Region Noise experiments, where the performance both
in terms of accuracy and robustness remain nearly the same. Finally, the tracker continues to
perform well when the histogram of the color is shifted, like for example in the sphere sequence
(Fig. 6.3).

84

Table 6.6: Comparison of different likelihood estimation approaches presented in section 6.3.3.
GMM indicates a Gaussian mixture model and Hist a histogram approach employed in the mean
shift algorithm. All times are in microseconds (10−6 second).

Size Optimized Standard Gain GMM Hist
50× 50 3 656 218 544 51

50× 100 6 1303 217 1090 98

50× 150 9 1953 217 1631 144

50× 200 11 2596 236 2174 191

50× 250 13 3228 248 2718 237

50× 300 16 3888 243 3262 283

100× 100 11 2542 231 2013 201

100× 150 17 3819 224 3017 296

100× 200 22 5083 231 4021 391

100× 250 27 6358 235 5028 486

100× 300 33 7624 231 6034 581

150× 150 25 5834 233 5179 448

150× 200 33 7767 235 6903 593

150× 250 41 9699 236 8627 736

150× 300 48 11624 242 10338 879

200× 200 44 10272 233 10223 782

200× 250 53 12850 242 12787 973

200× 300 64 15415 240 15329 1165

250× 250 67 16131 240 15211 1223

250× 300 80 19344 241 18250 1461

300× 300 96 23144 241 21444 1760

6.5 Conclusions

The proposed algorithm eliminates drawbacks in kernel-based tracking which usually appear
in standard applications and are due to periodic shift of the histogram bins of the target. Al-
though some approaches have been proposed to handle this issue for linear spaces [69, 152],
these methods can not be directly applied for circular data as the determination of the origin of
the axis affect the distance between two points. The VMT method proposed herein, employs
the weighted von Mises mixture in order to estimate the target position within a maximum
likelihood framework using a gradient based approach. As the von Mises is a continuous distri-
bution, the likelihood is not affected by shifts in the histogram bins of the hue value. Moreover,
as the hue values are integers in the interval [0, 2π), the pre-calculation of key quantities of the
likelihood of the mixture model, both in terms of computational time and memory. Although
VMT uses the hue values, it could be used with other circular data, like the angle of the image
gradient.

85

CHAPTER 7

MOTION SEGMENTATION AND TRACKING

BY CLUSTERING INCOMPLETE

TRAJECTORIES

7.1 Introduction

7.2 Extracting trajectories

7.3 Clustering trajectories of variable length

7.4 Experimental results

7.5 Conclusions

7.1 Introduction

In this chapter, we present a novel framework for visual target tracking based on model-based
clustering trajectories of key points (Fig. 7.1). The proposed method creates trajectories of im-
age features (e.g Harris corner [48]). However, key point tracking introduces an additional
difficulty since the resulting feature trajectories have a short duration, as the key points dis-
appear and reappear due to occlusion, illumination and viewpoint changes. Therefore, we are
dealing with time-series of variable length. Motion segmentation is then converted into a clus-
tering problem of these input trajectories, in a sense of grouping together feature trajectories
that belong to the same object. For this purpose, we use an efficient regression mixture model,
which has three significant features: a) Sparse properties over the regression coefficients, b) it
is allowed to be translated in measurement space and c) its noise covariance matrix is diago-
nal and not spherical as it is commonly used. The above properties are incorporated through

87

a Bayesian regression modeling framework, where the EM algorithm can be applied for esti-
mating the model parameters. Special care is given for initializing the EM algorithm where an
interpolating scheme is proposed based on executing successively the k-means algorithm over
the duration of trajectories. Experiments show the robustness of our method to occlusions and
highlight its ability to discover better the objects motion in comparison with other approaches
and the Hopkins 155 dataset [115].

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

(a) (b)

0 50 100 150 200 250
0

100

200

300

400

500

y
(1

)

i

T
0 50 100 150 200 250

0

100

200

300

400

500

y
(2

)

i

T

(c) (d)

Figure 7.1: Trajectories extracted from an image sequence. (a) The first frame of the image sequence
showing four robots and their mean trajectories. The group of robots perform a square-like movement.
(b) The trajectories of the features extracted from the image sequence. The two axes represent the
horizontal and vertical coordinates. (c) The horizontal trajectories along time. (d) The vertical trajectories
along time. Notice that there is a large number of short and incomplete trajectories because the features
disappear and reappear during the image sequence due to illumination changes and the distance of the
object from the camera.

88

The rest of the chapter is organized as follows: the procedure of feature extraction and
tracking in order to create the trajectories is presented in section 7.2. The trajectories clus-
tering algorithm is presented in section 7.3, experimental results are shown in section 7.4 and
conclusions is drawn in section 7.5.

7.2 Extracting trajectories

Trajectories are constructed by tracking points in each frame of the image sequence. The main
idea is to extract some salient points from a given image and associate them with points from
previous images. To this end, we employ the so called Harris corners [48] and standard optical
flow for the data association step [78]. Let us notice that any other scale or affine invariant
features [77, 86] would also be appropriate. In this section, we use Harris corner features due
to their simplicity, as they rely on the eigenvalues of the matrix of the second order derivatives
of the image intensities.

Let T be the number of image frames and Y = {yi}i=1,...,N be a list of trajectories with
N being unknown beforehand. Each individual trajectory yi consists of a set of 2D points, the
time of appearance of its corner point into the trajectory, (i.e. the number of the image frame)
and the optical flow vector of the last point in the list.

Initially, the list Y is empty. In every image frame, Harris corners are detected and the
optical flow vector at each corner is estimated [105]. Then, each corner found in the current
image frame is attributed to a trajectory that already exists, or a new trajectory is created having
only one element, the corner under consideration. According to this scheme, three cases are
possible:

• If any key point of the previous frame has an optical flow vector pointing out the key point
under consideration, then the current corner is attributed to an existing trajectory. In this
case, a trajectory follows the optical flow displacement vector, meaning that the corner is
apparent in consecutive frames.

• If there is no such key point in the previous frame, we apply a window around the last
corner which is similar to the current corner. If there are more than one similar corners
then we choose the closest one.

• Otherwise, a new trajectory is constructed containing only the corner under consideration.

In Fig. 7.2, an intuitive example is presented where three corners are considered for demon-
stration purposes and five time instances are depicted. In the first frame, three corners are
detected and three trajectories are created. In the second frame, the same corners are detected
and associated with existing trajectories due to optical flow constraint. Next, one corner is de-
tected and attributed to an existing trajectory due to optical flow constraints while the other two
key points are occluded. During the fourth frame, the key point that was not occluded is also
detected and attributed to an existing trajectory. One of the other two corner points that reappear

89

is attributed to a trajectory due to local window matching. The other corner is not associated
with any existing trajectory, so a new trajectory is created. In the last frame, three corners are
detected and associated with existing trajectories due to optical flow. Thus, four trajectories
have been created: two trajectories corresponding to the same key point and two additional
trajectories involving two distinct key points.

Figure 7.2: Example of trajectories construction. The red dots represent the image key points and the
green lines represent their trajectories. The figure is better seen in color.

Once the list Y is created, the trajectories of the corner points that belong to the background
are eliminated. This is achieved by removing the trajectories having a small variance, according
to a predefined-threshold value, as well as the trajectories of small length (e.g. 1% of the number
of frames). The complete procedure is described in Algorithm 7.

Algorithm 7 Trajectories construction algorithm
1: function CREATETRAJECTORIES(Im)
2: Input: an image sequence Im.
3: Output: a list of trajectories Y .
4: Y = ∅.
5: for every image {im(t)}t=1,...,T do
6: Detect corners {c(t)

l }l=1,...,L(t) and estimate optical flow {f (t)
l }l=1,...,L(t) in each one.

7: for every corner {c(t)
l }l=1,...,L(t) detected in im(t) do

8: if yi has its last corner clasti in the image t− 1 and its optical flow f lasti points to
the current corner, i.e. clasti + f lasti ≈ c

(t)
l then

9: Insert c(t)
l into yi.

10: else if yi has its the window around its last corner clasti similar to the window
around thw current corner c(t)

l then
11: Insert c(t)

l into yi.
12: else
13: Insert a new trajectory yi with only c(t)

l into Y .
14: end if
15: end for
16: end for
17: Eliminate trajectory yi with small variation in its corners coordinates.
18: end function

90

7.3 Clustering trajectories of variable length

Suppose we have a set of trajectories of N tracked feature points over T frames obtained from
the previous procedure. The aim of tracking is to detect K independently moving objects in the
scene and simultaneously estimate their characteristic motion. This can be seen as a clustering
problem.

A 2D trajectory yi = (y
(1)
i ,y

(2)
i) consists of two directions: (1) horizontal and (2) vertical.

It is defined by a set of Ti points {(y(1)
i1 , y

(2)
i1), . . . , (y

(1)
iTi
, y

(2)
iTi

)}, corresponding to Ti image posi-
tions (ti1, . . . , tiTi) of the image sequence. It is important to note that we deal with trajectories
of variable length Ti since occlusions or illumination changes may block the view of the objects
in certain image frames.

Linear regression model constitutes a powerful platform for modeling sequential data that
can be adopted in our case. In particular, we assume that a trajectory y(j)

i of any direction
j = {1, 2} can be modeled through the following functional form:

y
(j)
i = Φiw

(j) + d
(j)
i + e

(j)
i , (7.1)

where Φi is the design kernel matrix (common for both directions) of size Ti × T , and w =

(w1, . . . , wT) is the vector of the T unknown regression coefficients.
At first, we assume that the input space consists of the time instances (t1, . . . , tT) which

correspond to the T frames of the image sequence. Having that in mind, equation (1) is the
standard linear regression model [14] with a global translation term added, where y(j)

i is a
vector of length Ti containing the values of the i-th observation of the horizontal (j = 1) and
vertical (j = 2) directions. The i-th design matrix Φi is generated by keeping the Ti rows of the
global design matrix Φ that correspond to time instances (ti1, . . . , tiTi), where the i-th key point
exists. The global matrix Φ is a kernel matrix of size T×T with elements calculated by a kernel
function, i.e. Φ(k, l) = k(tk, tl), where tk, tl ∈ {t1, . . . , tT} . In this chapter, we considered the

mexican hat wavelet kernel k(tk, tl) = 2
√

3σπ
1
4

(
1− (tl−tk)2

σ2

)
e
−(tl−tk)

2

2σ2 , though any other kernel
function could be used (e.g. Gaussian).

Also, in the above equation, we assume a translation scalar term d
(j)
i that allows for the

entire trajectory to be translated globally [43], see Fig. 7.3. Incorporating such term results in
a regression model that allows for arbitrary translations in measurement space. In our case, the
features are distributed around the edges of the objects and the trajectories of the key points
are translated in order to be aligned with the trajectory of the center of gravity of the object.
Finally, the error term e

(j)
i in the above formulation is a Ti-dimensional vector that is assumed

to be zero-mean Gaussian and independent over time:

ei ∼ N (0,Σi), (7.2)

with a diagonal covariance matrix Σ
(j)
i = diag(σ2(j)

ti1
, . . . , σ2(j)

tiTi
). More specifically, Σi is a block

matrix of a T×T diagonal covariance matrix that corresponds to the noise variance of T frames.
Under these assumptions, the conditional density of a trajectory is also Gaussian:

p(y
(j)
i ;w(j),Σ

(j)
i , d

(j)
i) = N (Φiw

(j) + d
(j)
i ,Σ

(j)
i) . (7.3)

91

(a) (b)

Figure 7.3: The effect of the translation parameter. (a) A set of trajectories. (b) Alignment of the
trajectories.

Moreover, we consider the scalar d(j)
i to be a zero-mean Gaussian variable with variance u(j):

d
(j)
i ∼ N (0, u(j)). (7.4)

Thus, we can further integrate out di to obtain the marginal density for y(j)
i which is also Gaus-

sian:

p(y
(j)
i ; θ) =

∫
p(y

(j)
i ;w(j),Σ

(j)
i , d

(j)
i)p(d

(j)
i)dd

(j)
i = N (Φiw

(j),Σ
(j)
i + u(j)

1) , (7.5)

where 1 is a matrix of 1’s of size Ti × Ti. The marginal density is implicitly conditioned on the
parameters θ = {w, u,Σ}.

In our study we consider that every object k can be described by a unique functional regres-
sion model, as given by the set parameters θk = {θ(1)

k ,θ
(2)
k }, where θ(j)

k = {w(j)
k , u

(j)
k ,Σ

(j)
k },

that fits to all trajectories belong to this object. Therefore, the objective is to dividing the set
of N trajectories into K clusters. This can be described by the following regression mixture
model:

p(yi; Θ) =
K∑
k=1

πkp(yi;θk) =
K∑
k=1

πkp(y
(1)
i ;θ

(1)
k)p(y

(2)
i ;θ

(2)
k) , (7.6)

where we have assumed independence between that trajectories of both directions (y
(1)
i ,y

(2)
i).

In addition, πk are the mixing weights satisfying the constraints πk ≥ 0 and
∑K

k=1 πk = 1,
while Θ is the set of all the unknown mixture parameters, Θ = {πk,θk}Kk=1.

An important issue, when dealing with regression models is how to determine their order.
Models of small order can lead to under-fitting, while larger order lead to curve over-fitting.
Both cases may cause to serious deterioration of the clustering performance. Sparse model-
ing [114] offers a significant solution to this problem by employing models having initially
many degrees of freedom than could uniquely be adapted given data. Sparse Bayesian re-
gression can be achieved through a hierarchical prior definition over regression coefficients

92

w
(j)
k = (w

(j)
k1 , . . . , w

(j)
kT)T . In particular, we assume first that coefficients follows a zero-mean

Gaussian distribution:

p(w
(j)
k ;α

(j)
k) = N (w

(j)
k ; 0,A−1(j)

k) =
T∏
l=1

N (w
(j)
kl ; 0, α−1(j)

kl) (7.7)

whereA(j)
k is a diagonal matrix containing the T elements of precisionsα(j)

k = (α
(j)
k1 , . . . , α

(j)
kT)T .

We impose next a Gamma prior on these hyperparameters:

p(α
(j)
k) =

T∏
l=1

Gamma(α
(j)
kl |a, b) ∝

T∏
l=1

α
(j)a−1

kl exp(−bα(j)
kl) , (7.8)

where a and b denote parameters that are a priori set to values near zero. The above two-
stage hierarchical prior is actually a Student’s t-distribution [114]. This is a heavy tailed prior
distribution that enforces most of the values α(j)

kl to be large, thus the corresponding w(j)
kl are set

to zero and eliminated from the model. In this way, the complexity of the regression model is
controlled in an automatic and elegant way and over-fitting is avoided.

Now, the clustering procedure has been converted into a maximum a posteriori (MAP)
estimation approach, in a sense of estimating the mixture model parameters that maximize the
MAP log-likelihood function given by:

L(Θ) =
N∑
i=1

log{
K∑
k=1

πkp(yi;θk)}+
K∑
k=1

2∑
j=1

{log p(w
(j)
k ;α

(j)
k) + log p(α

(j)
k)} . (7.9)

The model can be trained using the Expectation - Maximization (EM) algorithm [33] that itera-
tively performs two main stages: The E-step where the expected values of the hidden variables
are calculated. In our case, this includes the cluster labels of trajectories as given by the poste-
rior probabilities:

zik = P (k;yi) =
πkp(yi;θk)∑
k′ πk′p(yi;θk′)

, (7.10)

as well as the mean value of the translations d(j)
ik at any direction. The latter is obtained by using

the fact that the posterior density of translations is also Gaussian:

p(d
(j)
ik ;y

(j)
i , k) ∝ p(y

(j)
i ;θ

(j)
k)p(d

(j)
ik) = N (d̂

(j)
ik , V

(j)
ik), (7.11)

where

d̂
(j)
ik = V

(j)
ik

(
y

(j)
i − Φiw

(j)
k

)T
Σ−1(j)

ik 1i and V
(j)
ik =

(
1Ti Σ−1(j)

ik 1i +
1

u
(j)
k

)−1

, (7.12)

where 1i is a Ti-length vector of 1’s.

93

During the M-step, the maximization of the expected value of the complete log-likelihood
function (referred as Q-function in the machine learning bibliography [43]) is performed:

Q(θt, θt−1) =
N∑
i=1

K∑
k=1

zik

log πk +
2∑
j=1

−1

2
log |Σ(j)

k | −

(
y

(j)
i − µ

(j)
k

)T
Σ

(j)
k

(
y

(j)
i − µ

(j)
k

)
2

+

K∑
k=1

2∑
j=1

−1

2
log |A(j)

k | −
w

(j)T

k A
(j)
k w

(j)
k

2
+

K∑
k=1

2∑
j=1

T∑
l=1

logα
(j)a−1

kl − bα(j)
kl .(7.13)

Maximizing (7.13) with respect to the model parameters leads to the following update rules
[43, 17]:

π̂k =

∑N
i=1 zik
N

, (7.14)

ŵ
(j)
k =

[
N∑
i=1

zikΦ
T
i Σ−1(j)

ik Φi +A
(j)
k

]−1 N∑
i=1

zikΦ
T
i Σ−1(j)

ik (y
(j)
i − d̂

(j)
ik) , (7.15)

α
(j)
kl =

1 + 2a

ŵ2(j)
kl + 2b

, ∀ l = 1, . . . , T , (7.16)

σ̂2(j)

kl =

∑N
i=1 zik

{(
y

(j)
il − [Φiŵ

(j)
k]l − d̂(j)

ik

)2

+ V
(j)
ik

}
∑N

i=1 zik
, ∀ l = 1, . . . , T . (7.17)

û
(j)
k =

∑N
i=1 zik

(
d̂2(j)

ik + V
(j)
ik

)
∑N

i=1 zik
. (7.18)

where [.]l indicates the l-th component of the Ti-dimensional vector that corresponds to time
location til.

After convergence of the EM algorithm, two kinds of information are available: At first,
the cluster labels of the trajectories are obtained according to the maximum posterior probabil-
ity value (Eq. 7.10). Moreover, the motion of objects are obtained from the predicted mean
trajectories per cluster, i.e. µk = (µ

(1)
k ,µ

(2)
k) = (Φw

(1)
k ,Φw

(2)
k).

7.3.1 Initialization Strategy

A fundamental issue when applying the EM algorithm, is its strong dependence on the initial-
ization of the model parameters due to its local nature. Improper initialization may lead to
reaching poor local maxima of the log-likelihood, a fact that may affect significantly the perfor-
mance of the method. A natural way for initialization is by randomly selecting K samples from
the set of input trajectories, one for each cluster. Then, we can obtain the least-squares solution
for initializing the regression coefficients. In addition, the noise variance Σk is initialized by
a small percentage of the total variance of all trajectories equally for each clusters, while we
set the mixing weights πk equal to 1/K. Finally, one step of the EM algorithm is executed
for further refining these parameters and calculating the MAP log-likelihood function. Several

94

such different trials are executed and the solution with the maximum MAP likelihood function
is selected for initializing model parameters.

However, the above scheme cannot be easily applied to our approach due to the large vari-
ability in length (Ti) of the input trajectories which brings a practical difficulty in obtaining the
least-squared solution. For this reason, we have followed a more robust initialization scheme
based on the interpolation among successive time steps. More specifically, starting from the
first time step we perform periodically (e.g. at every 5T% frames) the k-means clustering over
the points (y

(1)
it , y

(2)
it). Then, the resulting K centers are associated with those of the previous

time according to the minimum distance criterion. Finally, a linear interpolation (per cluster)
is performed and thus the resulting K curves are used for initializing the parameters of the K
clusters. It must be noted that in cases where there is a large number of features representing
the background, the initialization may diverge from the desired solution since the existence of
a significant amount of outliers affects the k-means solution. Even if during our experiments
we have not faced with any such problem, treating with this situation still remains a future plan
of study. An example of the proposed process is given in Fig. 7.4 adopted from an experimen-
tal data set, where both the initial interpolated trajectories (Fig. 7.4c) and the final clustering
solution are shown (Fig. 7.4d).

7.4 Experimental results

We have evaluated the performance of our approach using both simulated and real examples.
Demonstration videos are available at http://www.cs.uoi.gr/∼vkaravas/motion segmentation and
tracking. Some implementation details of our method are the following: At first, we have

normalized spatial and temporal coordinates into the interval [0, 1] while the extracted tra-
jectories either with length less than 1% of the number of frames T , or with variance less
than 0.01 were not taken into account. We have selected the mexican hat wavelet kernel
k(tk, tl) = 2

√
3σπ

1
4

(
1− (tl−tk)2

σ2

)
e
−(tl−tk)

2

2σ2 for the design kernel matrix Φ, where the scalar
parameter took the value of σ = 0.3. Experiments have shown that the performance of our
approach is not very sensitive to this parameter, since we took similar results for values in the
range of [0.1, 0.5].

Comparison has been made with the mean shift algorithm [30], the camshift algorithm [20]
and the Kalman filter [32], which are established algorithms in visual tracking. For the mean
shift algorithm, the images were represented in the RGB color space using histograms of 16
bins for each component. For the camshift algorithm, the hue component of HSV color space
was used to construct a 16-bin histogram. For the Kalman filter, camshift was used in order
to provide measurements (the position and the size of the object). For initializing all these
algorithms, we have manually selected the position and the size of each object in the first frame
of the image sequence. Then, the objects are tracked, using a distinct tracker per each target.
The centers of the ellipses surrounding the targets are used to construct the mean trajectory
of each object. This comparison favors these algorithms in cases where the features are not

95

0 50 100 150 200 250
0

100

200

300

400

500

µ
(1

)

i

T
0 50 100 150 200 250

0

100

200

300

400

500

y
(1

)

i

T

(a) (b)

0 50 100 150 200 250
0

100

200

300

400

500

µ
(1

)

k

T
0 50 100 150 200 250

0

100

200

300

400

500

µ
(1

)

k

T

(c) (d)

Figure 7.4: The overall progress of our method applied to an experimental image sequence of 250
images with k = 4 objects with different motions. (a) Real trajectories, (b) input trajectories, (c) initial
estimation of mean trajectories using the proposed technique, (d) the estimated trajectories after EM
convergence.

uniformly distributed around the object, as the center estimated by the features may vary from
the geometric center of the object (Fig. 7.5).

7.4.1 Experiments with simulated data sets

The first series of experiments involves seven (7) simulated image sequences with spheres mov-
ing in predefined directions as shown in Fig. 7.6 and Fig. 7.7. Each image sequence contains
130 frames of size 512 × 512. The value of N varies from 1500 to 2000 trajectories per case,
with average length around T = 60 frames each trajectory. In the first five problems, no occlu-

96

Figure 7.5: Features are not uniformly distributed over the object and the center of gravity of the key
points does not coincide with the center of gravity of the object. The small dots represent the features
and the big dot represents their barycenter. The figure is better visualized in color.

sions are simulated (all objects are visible in every frame). In the rest two problems, occlusion is
happened, where in Sim6 a sphere disappears while in Sim7 a sphere disappears and reappears.

Since we are aware of the ground truth, the performance of all tracking approaches was
evaluated using two criteria:

• The mean squared error (MSE) measured in pixels, between the ground truth r and the
estimated mean trajectories µ as given by

MSE =
1

K · T

K∑
k=1

2∑
j=1

||r(j)
k − µ

(j)
k ||

2 .

• The accuracy (ACC) that counts the percentage of correctly classified trajectories. It
must be noted that the input trajectories created by our method have been also chosen to
evaluate the mean shift algorithm, the camshift algorithm and the Kalman filter tracker. In
particular, we assign every input trajectory to an object according to the smallest distance
with the predicted mean trajectory.

The depicted results are presented in Table 7.1. As it is obvious, we took comparable results
in the first thee approaches Sim1, Sim2 and Sim3. However, in the fourth problem (Sim4), our
approach and mean shift successfully track the objects, while camshift and the Kalman filter are
failed. This is happened in the case of camshift due to the fact that the objects are overlapping
in the initial frame, and after some iterations the result is an ellipse with its center located at
the center of the image and whose size is increased in order to contain all the objects inside it.
Moreover, Kalman filter fails because it uses camshift to obtain the measurements. On the other
hand, mean shift tracks the objects due to the fact that in this implementation we decided not to
integrate a scale change, as in camshift. In problem Sim5, camshift and Kalman filter fail again,
because two objects (the one with the green trajectory and the one with the blue trajectory in

97

Simulated datasets (A)
Sim1 Sim2 Sim3 Sim4

True
motion

Input tra-
jectories

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i
0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

Our
approach

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

k

µ
(2

)

k

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

k

µ
(2

)

k

Mean
shift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Camshift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Kalman
filter

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Figure 7.6: Comparative results with four artificial datasets. For each problem we give the true objects
motion, the created input trajectories and the estimated motion by all approaches.

Fig. 7.7) pass near each other and camshift makes the target ellipse bigger in order to include
both objects. In problem Sim6 one object suddenly disappears (the one with the red trajectory
in Fig. 7.7). Finally, in problem Sim7 the object disappears and reappears in another position
after some time. Mean shift fails to track the sphere that disappears and reappears and tracks
the object only as long as it is visible. Camshift and Kalman filter, as they take into account

98

Simulated datasets (B)
Sim5 Sim6 Sim7

True
motion

Input tra-
jectories

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

y
(1)

i

y
(2

)

i

Our
approach

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

k

µ
(2

)

k

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

k

µ
(2

)

k

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

k

µ
(2

)

k

Mean
shift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Camshift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Kalman
filter

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Figure 7.7: Comparative results with three artificial datasets. For each problem we give the true objects
motion, the created input trajectories and the estimated motion by all approaches.

scale changes, increase the size of the ellipse and track a nearby object. On the other hand, the
proposed method correctly associates the two separated trajectories of the sphere. Finally, it
must be noted that in the case of both problems Sim6 and Sim7, the frames in which a sphere is
not visible are not taken into account for computing the MSE criterion.

99

Table 7.1: The performance of the compared methods in terms of classification accuracy (ACC)
and mean squared error (MSE).

Problem Our approach Mean shift Camshift Kalman
MSE ACC MSE ACC MSE ACC MSE ACC

Sim1 69 100% 121 100% 4 96% 0 100%
Sim2 10 99% 114 100% 55 100% 54 100%
Sim3 10 96% 114 99% 202 95% 224 95%
Sim4 15 97% 130 99% lost lost lost lost
Sim5 20 100% 118 100% lost lost lost lost
Sim6 29 100% 74 100% lost lost lost lost
Sim7 41 99% lost lost lost lost lost lost

7.4.2 Experiments with real data sets

We have also evaluated our motion segmentation approach using five (5) real datasets shown in
Fig. 7.8 containing images of size 512 × 512. All of these videos were created in our labora-
tory and they may be downloaded at http://www.cs.uoi.gr/∼vkaravas/motion segmentation and
tracking. The first three of them (Real1-3) show mobile robots moving in various directions: In

Real1 (T = 250), the robots are moving towards the borders of the image forming the vertices
of a square. In Real2 (T = 680), the robots are moving around the center of the image forming
a circle, and finally in Real3 (T = 500), the robots are moving forward and backward. The rest
two datasets (Real4-5) show two persons walking, and so occlusion take place as one person
gets behind the other. In particular, in Real4 (T = 485) two persons are moving from one side
of the scene to the other and backwards, while in Real5 (T = 635) the persons additionally
move forward and backward in the scene.

As ground truth is not provided in these cases we have evaluated our approach only visu-
ally. In problems Real1-3 all algorithms produce approximately the same trajectories. On the
contrary, in the cases of Real4 and Real5 problems, where we deal with articulated objects and
occlusion, mean shift and camshift fail to properly track the persons and one of them is lost.
Moreover, the trajectory of the center of the ellipse (which represents the object in mean shift
and camshift) is not smooth. This is due to the change in the appearance of the target. When the
person walks, there are frames where both arms and legs of a person are visible and instances
where only one of them is present. In these cases, mean shift and camshift may produce abrupt
changes in motion estimation because the person in the frame has change its appearance with
respect to its appearance in the first frame (which is used to initialize the model representing
the object). On the other hand, our method is more accurate and produces a smooth trajectory.

Looking in more detail the problem Real4, we can see the person in black disappears (be-
cause he gets behind the other person) twice during this image sequence: at first, when he is
moving from right to left, and then, as he is moving from left to right. Mean shift successfully

100

Real datasets
Real1 Real2 Real3 Real4 Real5

True
motion

Input tra-
jectories

Our
approach

Mean
shift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Camshift

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Kalman
filter

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

0 100 200 300 400 500

0

100

200

300

400

500

µ
(1)

i

µ
(2

)

i

Figure 7.8: Comparative results with five real datasets. For each problem we give the true objects
motion (chosen manually), the created input trajectories and the estimated motion by all approaches.

follows the person before and after the first occlusion, but it fails to track it when the second
one takes place. Camshift fails to track the person after the first occlusion, but it follows it after
the second occlusion when the person turns back. The Kalman filter successfully follows the
person. This is better depicted in Fig. 7.9 where the predicted trajectory, corresponding to the
person in black, is shown in green. The part of the trajectory where the person is lost is high-

101

lighted by an ellipse. Mean shift (Fig. 7.9(b)) follows the correct person from right to left and
from left until the middle of the image when the second occlusion takes place. Then it follows
the other person which moves from the middle of the image to the left. Camshift (Fig. 7.9(c))
follows the person until the first occlusion at the middle of the image. Then, it follows the other
person which moves from the middle to the right and from the right to the middle. After the
second occlusion is occurred, it finds the correct person again which moves from the middle to
the right. On the other hand, the proposed method successfully tracks the object in all frames
(Fig. 7.9(a)).

(a) (b) (c)

Figure 7.9: Estimated trajectories for the dataset Real4. (a) Our method, (b) mean shift, (c) camshift.
The green (printed in light gray in black and white) trajectory in (b) and (c) corresponds to the person in
black moving from the right side of the image to the left and backwards. The ellipse highlights the part
of the trajectory where the person is lost, because mean shift or camshift fails to track the object due to
occlusion. The figure is better visualized in color.

7.4.3 Experiments using the Hopkins 155 dataset

We have also used the Hopkins 155 dataset [115] to evaluate our approach, where we have
selected the traffic subset that consists of 31 scenarios with two motions and 7 scenarios with
three motions. For each video, the extracted trajectories and the ground truth are provided.
Here we must highlight that these trajectories have been manually corrected or filled by the
researchers that constructed the dataset [115], so each trajectory has a value for every frame.
Some representative frames of the traffic subset are presented in Fig. 7.10.

Figure 7.10: Representative frames of the Hopkins 155 dataset. The feature points are marked using
different colors in order to denote the cluster they belong to.

In Tables 7.2 and 7.3, the performance of our algorithm is presented in terms of the clas-
sification error. For comparison purposes, we also summarize the results obtained by 15 other

102

methods as they are presented in the web page of the dataset (http://www.vision.jhu.edu/ mo-
tion.php#results). More specifically, the average value of the classification error as calculated
by our method over the corresponding dataset is shown in Table 7.2. For the rest of the com-
pared methods, we present the minimum, the maximum, the mean and the median values for
the average classification error over all the 15 state of art methods. This means that we have
included the average classification error of each of the compared methods in the computation of
each statistic (min, max, mean, median). As it may be observed, our method provides satisfac-
tory results compared to all other methods. This is also confirmed by the ranking information,
shown in the last column of Table 7.2. In the case of two motions, our method is ranked first
among the 15 compared algorithms. Let us notice that the method sparse subspace clustering
(SSC) [37] provides a similar average error. This is indicated in the last column of the Table 7.2,
showing how many methods provide the same error in average. In the case of three motions,
the performance of our method is ranked in the second place behind SSC, whose average error
is 0.58%.

Similar in spirit statistics are shown in Table 7.3 concerning the median classification error.
In that case, our method accurately classifies more than half of the time series which is also
the case for 7 out of 15 methods for the problems involving two motions. For the three mo-
tions problems, where the complexity increases, our algorithm is also ranked at the first place
along with other three methods, namely multi stage learning (MSL) [111], local linear manifold
clustering with projection to a space of dimension 5 (LLMC 5) [45] and SSC [37].

Table 7.2: Statistics on the average of classification error for the traffic subset of the Hopkins
155 dataset.

Our approach Other approaches Our Rank In tie
Min Max Mean Median

Two motions 0.02% 0.02% 5.74% 2.63% 2.23% 1/15 1
Three Motions 0.98% 0.58% 27.02% 9.53% 8.00% 2/15 -

Table 7.3: Statistics on the median of classification error for the traffic subset of the Hopkins
155 dataset.

Our approach Other approaches Our Rank In tie
Min Max Mean Median

Two motions 0.00% 0.00% 1.55% 0.51% 0.21% 1/15 7
Three Motions 0.00% 0.00% 34.01% 7.22% 2.06% 1/15 3

103

7.4.4 Experiments using other key point descriptors

In section 7.2 we described how to create trajectories from an image sequence and as an ex-
ample we used Harris corners [48] in order to detect salient image features and optical flow
[78] to associate them between images. Apart from Harris corners, numerous interest-point
detectors have been proposed in the computer vision literature, such as the scale invariant fea-
ture transform difference of Gaussian key points (SIFT DoG or SIFT for simplicity) [77], the
maximally stable extremal regions (MSER) [84], the Hessian matrix-based affine features [86]
and the speeded-up robust features (SURF) [11]. They mainly differ to the level of the trade-
off between repeatability and complexity [25, 86]. The SIFT features for example are highly
repeatable but require a large computational cost. This is why SURF key point detectors have
gained increasing interest, as they are faster (they are based on box filters and integral images
[119]).

In order to study the consistency of the proposed method we have evaluated it in terms of
the technique used for generating trajectories. Table 7.4 summarize the comparative results on
the seven simulated datasets using Harris corners, SIFT and SURF features. For every case we
give also the number of the generated trajectories. It may be observed that when the trajectories
are computed using Harris corners a smaller MSE is obtained while trajectories computed by
SIFT and SURF detectors have approximately similar errors but in any case higher than Harris
corners. In terms of accuracy, all of the methods exhibit, in average, comparable rates which
indicates a larger number of trajectories, provided for example by SURF, does not necessary
ensure a better result.

Table 7.4: The performance of the different key point extraction methods in terms of classifica-
tion accuracy (ACC) and mean squared error (MSE).

Problem Harris corners SIFT SURF
#Traject. MSE ACC #Traject. MSE ACC #Traject. MSE ACC

Sim1 3820 69 100% 973 130 100% 6352 107 99%
Sim2 1516 10 99% 1146 138 98% 3453 139 99%
Sim3 2348 10 96% 2296 172 98% 7708 104 99%
Sim4 2346 15 97% 2319 122 98% 7758 32 100%
Sim5 1954 20 100% 811 110 99% 4848 130 100%
Sim6 1351 29 100% 646 142 99% 3693 191 99%
Sim7 1485 41 99% 689 168 100% 4244 155 99%

7.5 Conclusions

In this chapter, we have presented a compact methodology for objects tracking based on model-
based clustering trajectories of Harris corners extracted from an image sequence. Clustering is

104

achieved through an efficient sparse regression mixture model that embodies efficient charac-
teristics in order to handle trajectories of variable length, and to be translated in measurement
space. Experiments have shown the abilities of our approach to automatically detect the motion
of objects without any human interaction and also demonstrated its robustness to occlusion and
feature misdetection.

The main advantage of our method with respect to Kalman filter is that the former handles
both tracking and motion segmentation while the latter only tracks the target. Also, Kalman
filter should be provided with the motion model while the method proposed herein needs as
input only the number of the objects to be tracked. Moreover, our method may be applied
without the knowledge of the full trajectories by using only time series data up to the current
time instant if this is imposed by the application. Finally, linear regression model can be applied
in order to predict the next state [14].

105

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

8.2 Future Work

8.1 Conclusions

In this work, visual tracking algorithms using clustering methods were proposed in order to
provide solutions to drawbacks and limitations of the existing methods. A first issue arrises
when scene illumination changes the color of the object to be tracked. In this case, the values
of the histogram representing the object’s color shift, making tracking approaches unstable. A
possible solution is to smooth the target’s candidate histogram using a a GMM that has the
form of the target’s model histogram. However, this approach does not eliminate the problem
of the curse of dimensionality of the target’s representation. To this end, two methods using
mixtures of continuous distributions were proposed. The first approach uses weighted Gaussian
mixture models in order to represent the distribution of the object’s features. During the tracking
procedure, the GMM of the target candidate and the target model are compared using EMD and
a gradient based approach is employed in order to minimize their distance. EMD is robust to
variations of the compared distributions, but it needs the estimation of two mixture models. The
second approach uses only one weighted GMM, whose parameters are estimated during the
initialization step. In the tracking step, the position of the target that maximizes this specific
weighted GMM is estimated using a closed form update. A further improvement in terms of
execution speed can be achieved by using only the hue component instead of the complete
RGB feature vector. However, the hue is periodic and the Gaussian distribution can not model
it accurately. Thus, a weighted von Mises mixture model is employed, which results to an
approach both robust to illumination changes and computationally efficient.

Color variations are not only a result from scene illumination change, but also from actual
color change of the object (e.g. due to 3D rotation of the object). We developed a solution to this

107

limitation in order to update the appearance model when a previously unseen face of the target
appears. The key idea is to track the new model (including its new color) backward in time
and compare this trajectory with the trajectory that was produced during the standard tracking
procedure. This framework is not tightly combined with any specific tracking algorithm so it
can be used by any similar method.

Moreover, occlusions may decrease the performance of the tracking algorithms. In order to
handle this problem, we proposed a method based on Kalman filtering which can be combined
with other tracking approaches. The Kalman filter predicts the position of the target in the next
frame, which can be used if parts of the target are occluded. Finally, a novel framework was
proposed for tracking multiple objects with partial occlusions by clustering the trajectories of
various key points. The trajectories can be of varying length and may have missing values,
due to the fact that the key points may disappear and reappear during the tracking procedure.
Tracking is accomplished by estimating a sparse model for the mean trajectory of each object’s
key points. The correspondence between the key points and the objects as well as the initial
position of the objects are not known a priori.

8.2 Future Work

In the following, we present some promising directions for future research that elaborate on a
number of open issues related to the problems that we have tackled in this thesis so far. The
following topics are of interest for more detailed investigation.

The methodology of Chapter 4 can applied to other approaches that use histograms in order
to represent the object. Using this approach, the standard algorithm does not change, for exam-
ple by using cross bin metrics. The only difference would be an intermediate smoothing of its
after the histogram estimation and before employing it at the next steps of the algorithm.

The methodology that is proposed in Chapter 5 in order to update the appearance model of
the target can be incorporated in other tracking approaches, as not require any special property
from the tracking algorithms, except for the history of the target’s positions at the corresponding
frames.

The algorithm of Chapter 6 can be used with other circular features, for example the angle
of the image gradient, which is also robust to illumination changes.

The approach of the weighted likelihood which was presented in Chapters 4 and 5 can
be used in other applications, when some samples of the data are considered more important
compared to others. In the application of visual tracking using spatial kernels, the pixels near the
center of the object are considered more important, due to the fact that they are more probable
to belong to the object.

We also examined the application of Gaussian mixture models and von Mises mixture mod-
els. However, the appearance model of the color could also be modeled with mixtures of other
distributions. For example, the Student’s t-distribution is robust to outliers. Moreover, an in-
teresting approach would be to model different components with different distributions. For

108

instance, in the HSV color space, the hue component is periodic, while the saturation and value
components are linear. Thus, the von Mises distribution can be used to model circular spaces
and the Gaussian distribution for linear spaces.

109

BIBLIOGRAPHY

[1] V. Ablavsky and S. Sclaroff. Layered graphical models for tracking partially occluded
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1758–
1775, 2011.

[2] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover Publications, 1965.

[3] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the in-
tegral histogram. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 1, pages 798–805, 2006.

[4] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in motion time-
series data. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 375–381, 2003.

[5] A. A. Argyros and M. I. A. Lourakis. Real-time tracking of multiple skin-colored ob-
ject with a possibly moving camera. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 368–379, 2004.

[6] S. Arulampalam, S. Maskell, and N. Gordon. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, 2002.

[7] S. Avidar. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(8):1064–1072, 2004.

[8] R. V. Babu, P. Pérez, and P. Bouthemy. Robust tracking with motion estimation and local
kernel-based color modeling. Image and Vision Computing, 25(8):1205–1216, 2007.

[9] S.-H. Bae and K.-J. Yoon. Robust online multi-object tracking based on tracklet confi-
dence and online discriminative appearance learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’14), pages 1218–1225, 2014.

[10] C. Bailer, A. Pagani, and D. Stricker. A superior tracking approach: Building a strong
tracker through fusion. In Proceedings of the European Conference on Computer Vision
(ECCV), volume 8695, pages 170–185, 2014.

[11] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up robust features. In Proceedings
of the European Conference on Computer Vision (ECCV’06), pages 404–417, 2006.

111

[12] D. Beymer and K. Konolige. Real-time tracking of multiple people using continuous
detection. In Proceedings of International Conference on Computer Vision (ICCV’99),
1999.

[13] C. Bibby and I. Reid. Real-time tracking of multiple occluding objects using level sets. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10), pages 1307
–1314, 2010.

[14] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[15] M. Black and P. Anandan. The robust estimation of multiple motions: parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–
104, 1996.

[16] M. J. Black and A. D. Jepson. Eigentracking: Robust matching and tracking of articulated
objects using a view-based representation. International Journal of Computer Vision,
26:63–84, 1998.

[17] K. Blekas, C. Nikou, N. Galatsanos, and N. Tsekos. A regression mixture model with
spatial constraints for clustering spatiotemporal data. Intern. Journal on Artificial Intel-
ligence Tools, 17(5):1023–1041, 2008.

[18] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, 2001.

[19] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Li-
brary. O’Reily, 2008.

[20] G. R. Bradski. Computer vision face tracking for use in a perceptual user interface. Intel
Technology Journal, Q2, 1998.

[21] R. P. Browne, P. D. McNicholas, and M. Sparling. Model-based learning using a mixture
of mixtures of gaussian and uniform distributions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(4):814–817, 2012.

[22] A. Bugeau and P. Perez. Track and cut: Simultaneous tracking and segmentation of
multiple objects with graph cuts. EURASIP Journal on Image and Video Processing,
2008(ID:317278), 2008.

[23] D. Buzan, S. Sclaroff, and G. Kollios. Extraction and clustering of motion trajectories in
video. In International Conference on Pattern Recognition, pages 521–524, 2004.

[24] S. Calderara, A. Prati, and R. Cucchiara. Mixtures of von Mises distributions for people
trajectory shape analysis. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 21(4):457–471, 2011.

[25] V. Chandrasekhar, D. Chen, A. Lin, G. Takacs, S. Tsai, N.-M. Cheung, Y. Reznik,
R. Grzeszczuk, and B. Girod. Comparison of local feature descriptors for mobile vi-
sual search. IEEE Signal Processing Magazine, 28(4):61–76, 2011.

112

[26] Z. Chen and T. Ellis. A self-adaptive gaussian mixture model. Computer Vision and
Image Understanding, 122(0):35–46, 2014.

[27] H. S. Choi, I. S. Kim, and J. Y. Choi. Combining histogram-wise and pixel-wise match-
ings for kernel tracking through constrained optimization. Computer Vision and Image
Understanding, 118(0):61–70, 2014.

[28] E. K. P. Chong and S. H. Zak. An Introduction to Optimization. Wiley-Interscience Series
in Discrete Mathematics and Optimization, 3rd edition, 2008.

[29] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

[30] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(5):564–577, 2003.

[31] D. Cremers. Dynamical statistical shape priors for level set based tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(8):1262–1273, 2006.

[32] E. Cuevas, D. Zaldivar, and R. Rojas. Kalman filter for vision tracking. Technical Report
B 05-12, Freier Universitat Berlin, Institut fur Informatik, 2005.

[33] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. B, 39:1–38, 1977.

[34] S. Duffner and C. Garcia. Pixeltrack: A fast adaptive algorithm for tracking non-rigid
objects. In Proceedings of International Conference on Computer Vision (ICCV’13),
pages 2480–2487, 2013.

[35] A. M. Elgammal, R. Duraiswami, and L. S. Davis. Probabilistic tracking in joint
feature-spatial spaces. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR’03), pages 781–788, 2003.

[36] T. Elguebaly and N. Bouguila. Finite asymmetric generalized gaussian mixture mod-
els learning for infrared object detection. Computer Vision and Image Understanding,
117(12):1659–1671, 2013.

[37] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’09), pages 2790–2797, 2009.

[38] L. Ellis, N. Dowson, J. Matas, and R. Bowden. Linear regression and adaptive appearance
models for fast simultaneous modelling and tracking. International Journal of Computer
Vision, 95(2):154–179, 2011.

[39] Z. Fan, M. Yang, and Y. Wu. Multiple collaborative kernel tracking. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(7):1268–1273, 2007.

[40] M. Fergie and A. Galata. Mixtures of gaussian process models for human pose estima-
tion. Image and Vision Computing, 31(12):949–957, 2013.

[41] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:381–396, 2000.

[42] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2002.

113

[43] S. Gaffney. Probabilistic curve-aligned clustering and prediction with regression mixture
models. PhD thesis, Department of Computer Science, University of California, Irvine,
2004.

[44] S. Gammeter, A. Ess, T. Jaeggli, K. Schindler, B. Leibe, and L. van Gool. Articu-
lated multibody tracking under egomotion. In European Conference on Computer Vision
(ECCV’08), LNCS, pages 816–830. Springer, 2008.

[45] A. Goh and R. Vidal. Segmenting motions of different types by unsupervised manifold
clustering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07),
2007.

[46] G. D. Hager, M. Dewan, and C. V. Stewart. Multiple kernel tracking with SSD. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’04), volume 1, pages
790–797, 2004.

[47] B. Han, S.-W. Joo, and L. S. Davis. Probabilistic fusion tracking using mixture kernel-
based Bayesian filtering. In Proceedings of International Conference on Computer Vision
(ICCV’07), pages 1–8, 2007.

[48] C. Harris and M. Stephens. A combined corner and edge detection. In Proceedings of
The Fourth Alvey Vision Conference, pages 147–151, 1988.

[49] S. He, Q. Yang, R. W. Lau, J. Wang, and M.-H. Yang. Visual tracking via locality
sensitive histograms. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’13), pages 2427–2434, 2013.

[50] Z. Hong, Z. Chen, C. Chen, X. Mei, D. Prokhorov, and D. Tao. MUlti-store tracker
(MUSTer): A cognitive psychology inspired approach to object tracking. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’15), pages 749–758, 2015.

[51] E. Horbert, K. Rematas, and B. Leibe. Level-set person segmentation and tracking with
multi-region appearance models and top-down shape information. In IEEE International
Conference on Computer Vision (ICCV’11), pages 1–8, 2011.

[52] Y. Hua, K. Alahari, and C. Schmid. Occlusion and motion reasoning for long-term track-
ing. In Proceedings of the European Conference on Computer Vision (ECCV), volume
8694, pages 172–187, 2014.

[53] J. S. S. III and D. Ramanan. Self-paced learning for long-term tracking. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR’13), pages 2379–2387, 2013.

[54] M. Isard and A. Blake. Condensation - conditional density propagation for visual track-
ing. International Journal of Computer Vision, 29:5–28, 1998.

[55] M. Isard and A. Blake. Icondensation - unifying low-level and high-level tracking in
a stochastic framework. In Proceedings of the 5th European Conference on Computer
Vision (ECCV), pages 893–908, 1998.

[56] O. Javed, M. Shah, and D. Comaniciu. A probabilistic framework for object recognition
in video. In International Conference on Image Processing, 2004 (ICIP ’04), volume 4,
pages 2713–2716, 2004.

114

[57] C. Julià, A. Sappa, F. Lumbreras, J. Serrat, and A. López. Motion segmentation from
feature trajectories with missing data. In Proceedings of the 3rd Iberian conference on
Pattern Recognition and Image Analysis, Part I, IbPRIA ’07, pages 483–490, 2007.

[58] T. Kailath. The divergence and Bhattacharyya distance measures in signal selection.
IEEE Transactions on Communications, 15(1):52–60, 1967.

[59] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection
of tracking failures. In Proceedings of 20th International Conference on Pattern Recog-
nition (ICPR’10), pages 2756–2759, 2010.

[60] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury. Information consensus for dis-
tributed multi-target tracking. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’13), pages 2403–2410, 2013.

[61] S. Kay. Fundamentals of statistical signal processing: Estimation Theory. Prentice Hall,
1993.

[62] J. Kim, Z. Lin, and I. S. Kweon. Rao-Blackwellized particle filtering with Gaussian
mixture models for robust visual tracking. Computer Vision and Image Understanding,
125(1):128–137, 2014.

[63] J.-H. Kim and L. Agapito. Motion segmentation using the Hadamard product and spectral
clustering. In Proceedings of the 2009 international conference on Motion and video
computing, WMVC’09, pages 126–133. IEEE Computer Society, 2009.

[64] L. Kratz and K. Nishino. Going with the flow: Pedestrian efficiency in crowded scenes.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 558–
572, 2012.

[65] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Cehovin, G. Nebehay, T. Vojir,
G. Fernandez, A. Lukezic, A. Dimitriev, A. Petrosino, A. Saffari, B. Li, B. Han, C. Heng,
C. Garcia, D. Pangersic, G. Hager, F. S. Khan, F. Oven, H. Possegger, H. Bischof,
H. Nam, J. Zhu, J. Li, J. Y. Choi, J.-W. Choi, J. F. Henriques, J. van de Weijer, J. Batista,
K. Lebeda, K. Ofjall, K. M. Yi, L. Qin, L. Wen, M. E. Maresca, M. Danelljan, M. Fels-
berg, M.-M. Cheng, P. Torr, Q. Huang, R. Bowden, S. Hare, S. Y. Lim, S. Hong, S. Liao,
S. Hadfield, S. Z. Li, S. Duffner, S. Golodetz, T. Mauthner, V. Vineet, W. Lin, Y. Li, Y. Qi,
Z. Lei, and Z. Niu. The visual object tracking vot2014 challenge results. In Proceed-
ings of the European Conference on Computer Vision (ECCV) Visual Object Tracking
Challenge Workshop, pages 98–111, Zurich, Switzerland, September 2014.

[66] J. Kwon, J. Roh, K. Lee, and L. V. Gool. Robust visual tracking with double bounding
box model. In Proceedings of the European Conference on Computer Vision (ECCV),
volume 8689, pages 377–392, 2014.

[67] F. Lauer and C. Schnorr. Spectral clustering of linear subspaces for motion segmentation.
In Proc. of the 12th IEEE Int. Conf. on Computer Vision, ICCV’09, 2009.

115

[68] D.-Y. Lee, J.-Y. Sim, and C.-S. Kim. Multihypothesis trajectory analysis for robust visual
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15),
pages 5088–5096, 2015.

[69] I. Leichter. Mean shift trackers with cross-bin metrics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(4):695–706, 2012.

[70] I. Leichter, M. Lindenbaum, and E. Rivlin. Mean shift tracking with multiple reference
color histograms. Computer Vision and Image Understanding, 114(3):400–408, 2010.

[71] S. Li, O. Wu, C. Zhu, and H. Chang. Visual object tracking using spatial context infor-
mation and global tracking skills. Computer Vision and Image Understanding, 125:1–15,
2014.

[72] S.-X. Li, H.-X. Chang, and C.-F. Zhu. Adaptive pyramid mean shift for global real-time
visual tracking. Image and Vision Computing, 28(3):424–437, 2010.

[73] Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Robust visual tracking by exploit-
ing reliable patches. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’15), pages 353–361, 2015.

[74] B. Liu, J. Huang, C. Kulikowski, and L. Yang. Robust visual tracking using local sparse
appearance model and k-selection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(12):2968–2981, 2013.

[75] S. Liwicki, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Efficient online subspace
learning with an indefinite kernel for visual tracking and recognition. IEEE Transactions
on Neural Networks and Learning Systems, 23:1624–1636, 2012.

[76] S. Liwicki, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Euler principal component
analysis. International Journal of Computer Vision, 101(3):498–518, 2013.

[77] D. G. Lowe. Distinctive image features from scale-invariant keypoint. International
Journal of Computer Vision, 60(2):91–110, 2004.

[78] B. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI ’81), pages 674–679, 1981.

[79] X. Luo, Y. Wan, X. He, J. Yang, and K. Mori. Diversity-enhanced condensation algorithm
and its application for robust and accurate endoscope three-dimensional motion tracking.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14), pages
1250–1257, 2014.

[80] D. R. Magee. Tracking multiple vehicles using foreground, background and motion
models. Image and Vision Computing, 22(2):143–155, 2004.

[81] A. Mansouri. Region tracking via level set pdes without motion computation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24:947–961, 2002.

[82] I. Marras, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Online learning and fusion
of orientation appearance models for robust rigid object tracking. Image and Vision
Computing, 32(10):707–727, 2014.

116

[83] O. Masoud and N. P. Papanikolopoulos. A novel method for tracking and counting pedes-
trians in real-time using a single camera. IEEE Transactions on Vehicular Technology,
50(5):1267–1278, 2001.

[84] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally
stable extremal regions. In In British Machine Vision Conference (BMVC’02), volume 1,
pages 384–393, 2002.

[85] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2259–
2272, 2011.

[86] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. V. Gool. A comparison of affine region detectors. International Journal
of Computer Vision, 65(1/2):43–72, 2005.

[87] A. Milan, K. Schindler, and S. Roth. Detection- and trajectory-level exclusion in mul-
tiple object tracking. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’13), pages 3682–3689, 2013.

[88] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple cue integration
for robust tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(4):670–685, 2008.

[89] D. Mukherjee, Q. M. J. Wu, and T. M. Nguyen. Multiresolution based gaussian
mixture model for background suppressio. IEEE Transactions on Image Processing,
22(12):5022–5035, 2013.

[90] D. P. Mukherjee, S. Member, N. Ray, S. T. Acton, and S. Member. Level set analysis for
leukocyte detection and tracking. IEEE Transactions on Image Processing, 13:562–572,
2004.

[91] G. Nebehay and R. Pflugfelder. Clustering of static-adaptive correspondences for de-
formable object tracking. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR’15), pages 2791–2784, 2015.

[92] T. M. Nguyen and Q. J. Wu. Dirichlet gaussian mixture model: Application to image
segmentation. Image and Vision Computing, 29(12):818–828, 2011.

[93] S. Oron, A. Bar-Hillel, and S. Avidan. Extended lucas kanade tracking. In Proceedings
of the European Conference on Computer Vision (ECCV), volume 8693, pages 142–156,
2014.

[94] N. Papadakis and A. Bugeau. Tracking with occlusions via graph cuts. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33(1):144–157, 2011.

[95] N. Paragios and R. Deriche. Geodesic active contours and level sets for the detection
and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22:266–280, 2000.

117

[96] K. Pauwels, L. Rubio, J. Diaz, and E. Ros. Real-time model-based rigid object pose
estimation and tracking combining dense and sparse visual cues. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’13), pages 2347–2354, 2013.

[97] F. Poiesi, R. Mazzon, and A. Cavallaro. Multi-target tracking on confidence maps: An ap-
plication to people tracking. Computer Vision and Image Understanding, 117(10):1077–
1272, 2013.

[98] G. Pons-Moll, A. Baak, J. Gall, L. Leal-Taixe, M. Muller, H. Seidel, and B. Rosenhahn.
Outdoor human motion capture using inverse kinematics and von Mises-Fisher sampling.
In Proceedings of International Conference on Computer Vision (ICCV’11), pages 1243–
1250, 2011.

[99] H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-free track-
ing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15), pages
2113–2120, 2015.

[100] S. J. Pundlik and S. T. Birchfield. Real-time motion segmentation of sparse feature points
at any speed. IEEE Transactions on Systems, Man, and Cybernetics, 38:731–742, 2008.

[101] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi. Particle filtering for geometric ac-
tive contours with application to tracking moving and deforming objects. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition 2005 (CVPR’05),
volume 2, pages 2–9, 2005.

[102] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

[103] K. Sato and J. K. Aggarwal. Temporal spatio-velocity transform and its application to
tracking and interaction. Computer Vision and Image Understanding, 96(2):100–128,
2004.

[104] F. Seitner and A. Hanbury. Fast pedestrian tracking based on spatial features and color.
In Proceedings of the Computer Vision Winter Workshop, pages 105–110, 2006.

[105] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’94), pages 593–600, 1994.

[106] D. Simon. Optimal state estimation: Kalman, H∞ and non linear approaches. Wiley–
Interscience, 2006.

[107] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual
tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(7):1442–1468, 2014.

[108] B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-Chowdhury. A stochastic graph evolution
framework for robust multi-target tracking. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 605–619, 2010.

[109] M. Sonka, V. Hlavac, and R. Boyle. Image Processing: Analysis and Machine Vision.
Thomson-Engineering, 1998.

118

[110] C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757, 2000.

[111] Y. Sugaya and K. Kanatani. Multi-stage optimization for multi-body motion segmenta-
tion. IEICE Transactions on Information and Systemsg, E87-D(7):1935–1942, 2004.

[112] S. Tang, M. Andriluka, A. Milan, K. Schindler, S. Roth, and B. Schiele. Learning people
detectors for tracking in crowded scenes. In Proceedings of International Conference on
Computer Vision (ICCV’13), pages 1049–1056, 2013.

[113] H. Tao, H. S. Sawhney, and R. Kumar. Object tracking with Bayesian estimation of
dynamic layer representations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(1):75–89, 2002.

[114] M. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

[115] R. Tron and R. Vidal. A benchmark for the comparison of 3d motion segmentation al-
gorithms. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07),
volume 1, 2007.

[116] J. Tu, H. Tao, and T. Huang. Online updating appearance generative mixture model for
mean-shift tracking. Machine Vision and Applications, 20(3):163–173, 2009.

[117] G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Sparse representations of image gradient
orientations for visual recognition and tracking. In Proceedings of Workshop on CVPR
for Human Behaviour Analysis (CVPR-W’11), pages 26–33, 2011.

[118] C. J. Veenman, M. J. T. Reinders, and E.Backer. Resolving motion correspondence for
densely moving points. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(1):54–72, 2001.

[119] P. Viola and M. Jones. Robust real-time face detection. International Journal of Com-
puter Vision, 57:137–154, 2004.

[120] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive mean-shift for tracking. In
Proc. of the 18th Scandinavian Conf. on Image Analysis (SCIA), pages 652–663, 2013.

[121] D. Wang, H. Lu, and M.-H. Yang. Online object tracking with sparse prototypes. IEEE
Transactions on Image Processing, 22(1):314–325, 2013.

[122] H. Wang, D. Suter, and K. Schindler. Effective appearance model and similarity measure
for particle filtering and visual tracking. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 606–618, 2006.

[123] N. Wang, J. Wang, and D.-Y. Yeung. Online robust non-negative dictionary learning
for visual tracking. In Proceedings of International Conference on Computer Vision
(ICCV’13), pages 657–664, 2013.

[124] X. Wang, E. Turetken, F. Fleuret, and P. Fua. Tracking interacting objects optimally
using integer programming. In Proceedings of the European Conference on Computer
Vision (ECCV), volume 8689, pages 17–32, 2014.

119

[125] Z. Wang, M. B. Salah, H. Salah, and N. Ra. Shape based appearance model for kernel
tracking. Image and Vision Computing, 30(4–5):332–344, 2012.

[126] Z. Wang, X. Yang, Y. Xu, and S. Yu. Camshift guided particle filter for visual tracking.
Pattern Recognition Letters, 30(4):407–413, 2009.

[127] K. Y. Wong and M. E. Spetsakis. Motion segmentation by EM clustering of good fea-
tures. In Computer Vision and Pattern Recognition Workshop (CVPRW’04), volume 11,
pages 1–8, 2004.

[128] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Simultaneous clustering and tracklet linking for
multi-face tracking in videos. In Proceedings of International Conference on Computer
Vision (ICCV’13), pages 2856–2863, 2013.

[129] Y. Wu and T. S. Huang. Robust visual tracking by integrating multiple cues based on
co-inference learning. International Journal of Computer Vision, 58(1):55–71, 2004.

[130] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PP(99):1–1, 2015.

[131] J. Xiao, R. Stolkin, and A. Leonardis. Single target tracking using adaptive clustered
decision trees and dynamic multi-level appearance models. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’15), pages 4978–4987, 2015.

[132] J. Xing, J. Gao, B. Li, W. Hu, and S. Yan. Robust object tracking with online multi-
lifespan dictionary learning. In Proceedings of International Conference on Computer
Vision (ICCV’13), pages 665–672, 2013.

[133] J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent,
articulated, rigid, non-rigid, degenerate and non-degenerate. In Proceedings of the Euro-
pean Conference on Computer Vision, ECCV’06, 2006.

[134] X. Yan, I. A. Kakadiaris, and S. K. Shah. What do I see? modeling human visual
perception for multi-person tracking. In Proceedings of the European Conference on
Computer Vision (ECCV), volume 8690, pages 314–329, 2014.

[135] C. Yang, R. Duraiswami, and L. Davis. Efficient mean-shift tracking via a new simi-
larity measure. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 176–183, 2005.

[136] F. Yang, H. Lu, and M.-H. Yang. Robust superpixel tracking. IEEE Transactions on
Image Processing, 23(4):1639–1651, 2014.

[137] M. Yang, Y. Wu, and G. Hua. Context-aware visual tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(7):1195–1209, 2009.

[138] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel. Part-based visual track-
ing with online latent structural learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’13), pages 2363–2370, 2013.

[139] K. M. Yi, H. Jeong, B. Heo, H. J. Chang, and J. Y. Choi. Initialization-insensitive vi-
sual tracking through voting with salient local features. In Proceedings of International
Conference on Computer Vision (ICCV’13), pages 2912–2919, 2013.

120

[140] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,
38(4):1–45, 2006.

[141] A. Yilmaz, X. Li, and M. Shah. Contour-based object tracking with occlusion handling
in video acquired using mobile cameras. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(11):1531–1536, 2004.

[142] L. Zappella, X. Llado, E. Provenzi, and J. Salvi. Enhanced local subspace affinity for
feature-based motion segmentation. Pattern Recognition, 44:454–470, 2011.

[143] M. Zeppelzauer, M. Zaharieva, D. Mitrovic, and C. Breiteneder. A novel trajectory clus-
tering approach for motion segmentation. In Advances in Multimedia Modeling, volume
5916, pages 433–443. Springer, 2010.

[144] K. Zhang, L. Zhang, and M.-H. Yang. Real-time object tracking via online discriminative
feature selection. IEEE Transactions on Image Processing, 22(12):4664–4677, 2013.

[145] K. Zhang, L. Zhang, and M.-H. Yang. Fast compressive tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(10):2002–2015, 2014.

[146] L. Zhang, H. Dibeklioglu, and L. van der Maaten. Speeding up tracking by ignoring
features. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’14),
pages 1266–1273, 2014.

[147] L. Zhang and L. van der Maaten. Preserving structure in model-free tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(4):756–769, 2014.

[148] T. Zhang, K. Jia, C. Xu, Y. Ma, and N. Ahuja. Partial occlusion handling for visual
tracking via robust part matching. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’14), pages 1258–1265, 2014.

[149] T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M.-H. Yang. Structural sparse
tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15),
pages 150–158, 2015.

[150] Z. Zhang and K. H. Wong. Pyramid-based visual tracking using sparsity represented
mean transform. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’14), pages 1226–1233, 2014.

[151] Q. Zhao, S. Brennan, and H. Tao. Differential EMD tracking. In Proceedings of Inter-
national Conference on Computer Vision (ICCV’07), pages 1–8, 2007.

[152] Q. Zhao and H. Tao. Differential earth mover’s distance with its application to visual
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):274–
287, 2010.

[153] H. Zhou, Y. Yuan, and C. Shi. Object tracking using sift features and mean shift. Com-
puter Vision and Image Understanding, 113(3):345–352, 2009.

[154] K. Zimmermann, J. Matas, and T. Svoboda. Tracking by an optimal sequence of linear
predictors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4):677–
692, 2009.

121

[155] Z. Zivkovic and B. Krose. An EM-like algorithm for color-histogram-based object track-
ing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’04), vol-
ume 1, pages 798–803, 2004.

122

APPENDIX A

THE KALMAN FILTER

A.1 Motion Model

A.2 Linear Kalman Filter

A.3 Extended Kalman Filter

In this section, the Kalman filter [42, 109, 32, 61, 140] is presented.

A.1 Motion Model

We assume that the data generation procedure is a linear system, which has an inner (unknown)
state and observations made from it (known). More specifically, there is a discrete time system
with its inner state at time n given by xn (xn may be a scalar or a vector). The state of the
system at the next time n+ 1 is given by the linear equation:

xn+1 = Fnxn + wn (A.1)

In equation (A.1), xn and xn+1 are the system state at time n and n + 1 respectively, Fn is the
transition matrix from state xn to the state xn+1 and wn the state evolution noise at time n. We
assume that wn is white Gaussian noise with zero mean value and covariance matrix given by:

E[wiw
T
j] =

{
Qi , i = j

0 , i 6= j
(A.2)

At every time n, observations are made from the system. These observations are produced
from the state of the system, but they do not represent exactly the system state (generally the
observation is a vector with different dimension than the state matrix). In general, observation
at time n is given by the equation:

zn = Hnxn + vn (A.3)

123

where, zn is the observation, xn is the state of the system, Hn is the observation matrix and vn
is the noise that affects the observation at time n. Noise vn is supposed to be white Gaussian
with zero mean and covariance matrix given by:

E[viv
T
j] =

{
Ri , i = j

0 , i 6= j
(A.4)

Notice that in equation (A.1) the state xn+1 depends only on the previous state xn. This
means that in order to generate the next state, the previous states are not needed (and do not
need to be stored). In order to start the system, an initial state is needed (that is the state x−1).
This state may be be known or it can be taken as the mean value of the distribution that is
supposed to follow at the initial state.

In equation (A.3), notice that the observation zn depends only on the state xn, that is, the
current state. Moreover, the noise vn is independent from the noise wn in equation (A.1).

The problem that is solved by Kalman filter is to estimate the system’s state based on the
observations. We assume knowledge on:

• The form of the system, that is, we know the dimension and the type (discrete, continuous)
of vector xn but we do not know the exact value of each coordinate.

• The state matrix Fn. This means that we know how state xn+1 is generated from xn. The
state matrix Fn is not constant in the general case but it can change through time. For
instance, if the object is moving with constant velocity then the state of the object can be
expressed by its position and its velocity. In this case, the next position of the object is
given by:

xn+1

yn+1

∆xn+1

∆yn+1

 =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

xn
yn

∆xn
∆yn

+ wn

where x, y is the position coordinates, ∆x and ∆y the velocity in each dimension and wn

the noise.

• Matrix Qn, which is the covariance matrix of the noise wn. This matrix may change
through time.

• The initial state x−1 of the system. If we do not know the exact initial state, then we can
estimate it by the mean value of the distribution describing the initial state.

• The observation matrix Hn, that is how each observation is produced from the state. The
observation matrix Hn may change through time. For instance when we observe an object
with constant velocity, we observe only its position. In this case, the observation is given
by: [

Zxn
Zyn

]
=

[
1 0 0 0

0 1 0 0

]
xn
yn

∆xn
∆yn

+ vn

124

where Zxn and Zyn are the observation coordinates and vn the noise.

• Matrix Rn, which is the covariance matrix of the noise vn that affects the observation.
This matrix may change through time.

The only thing that we do not know (and must be estimated) is the state of the system xn,
0 ≤ n ≤ N . Depending on the observations that we use in order to estimate the state xn the
problem is named:

• filtering, if the observations zi, 0 ≤ i ≤ n are used.

• prediction, if the observations zi, 0 ≤ i ≤ n− 1 are used.

• smoothing, if the observations zi, 0 ≤ i ≤ N are used.

We want to find the state xn that fits best in the parameters that we have set.
Now we are going to define the optimal state. We are going to use scalar states, but the same

analysis applies to vector states. Let zi, 0 ≤ i ≤ n be the observations and x̂n the posterior
estimation of the state xn. In general, the estimation x̂n is different from the actual state xn. We
define the mean square error function as:

Jn = E[(xn − x̂n)2] = E[(x̃n)2] (A.5)

where x̃n is the estimation error. Equation (A.5) is non negative and non decreasing. The
dependance of the cost function Jn from n highlights the non static nature of the procedure. In
order to estimate the optimal state x̂n we need the following two theorems [32].

Theorem A.1 (Conditional Mean Estimator). If the stochastic processes {xn} and {zn} are
jointly Gaussian, then the optimum estimate x̂n that minimizes the mean square error Jn is the
conditional mean estimator:

x̂n = E[xn|z0, . . . , zn] (A.6)

Theorem A.2 (Principle of orthogonality). Let the stochastic processes {xn} and {zn} be of
zero means, that is:

E[xn] = E[zn] = 0, ∀n (A.7)

then either the stochastic process {xn} and {zn} are jointly Gaussian, or if the optimal esti-
mate x̂n is restricted to be a linear function of the observations and the cost function is the
mean square error then the optimum estimate x̂n given the observations z1, z2, . . ., zn is the
orthogonal projection of xn on the space spanned by these observations.

A.2 Linear Kalman Filter

The linear Kalman filter is a recursive procedure which can compute the optimal solution in
linear filtering problems. The solution is produced from the previous solution and the observa-
tions. An advantage of this is that we do not have to store all the previous data. Moreover in
order to do the filtering we do not need data from future times.

125

We assume that the model is the same as in section A.1. The objective is to use the extra
information provided from the observation zn in order to make the estimation of the unknown
state xn more accurate. Let x̂−n be the a priori prediction of the system’s state (without the
observation zn) at time n. We can express the posterior estimation of the state x̂n (with the
observation zn) as:

x̂n = G(1)
n x̂−n + Gnzn (A.8)

where matrixes G
(1)
n and Gn must be computed. The error in estimation (the difference from

the actual state) is given by:
x̃n = xn − x̂n (A.9)

Applying the principle of orthogonality we can write:

E[x̃nz
T
i] = 0, ∀i = 0, . . . , n− 1 (A.10)

By using equations (A.3), (A.8), (A.9) and (A.10) we get:

E[(xn–G(1)
n x̂−n −GnHnxn–Gnvn)zTi] = 0, ∀i = 0, . . . , n− 1 (A.11)

Due to the fact that noise wn and vn are uncorrelated, we get:

E[vnz
T
n] = 0 (A.12)

By using equation (A.12) and by adding G
(1)
n xn −G

(1)
n xn, equation (A.11) may be written as:

E[(I–GnHn −G(1)
n)xnz

T
i + G(1)

n (xn − x̂−n)zTi] = 0, ∀i = 0, . . . , n− 1 (A.13)

where I is the identity matrix. From the principle of orthogonality we get E[(xn− x̂−n)zTi] = 0,
equation (A.13) can be simplified to:

(I–GnHn −G(1)
n)E[xnz

T
i] = 0, ∀i = 0, . . . , n− 1 (A.14)

Equation (A.14) must be satisfied for every value of xn and zi. This is true if

I–GnHn −G(1)
n = 0 ⇔ G(1)

n = I–GnHn (A.15)

By substituting equation (A.15) into (A.8) we can express the posterior estimation of state as:

x̂n = x̂−n + Gn(zn–Hnx̂
−
n) (A.16)

where Gn is called Kalman gain.
Kalman gain Gn must be explicitly expressed. From the principle of orthogonality, we have

E[(xn − x̂n)zTi] ⇔ E[(xn − x̂n)ẑTi] (A.17)

where ẑTi is the estimation of zTi by using the previous estimations z0, . . . , zn−1. We define
z̃n = zn− ẑn, which represents the contribution of zn in the information about the observation.
This can be expressed as

z̃n = zn–Hnx̂
−
n = Hnxn + vn–Hnx̂

−
n = vn + Hnx̃

−
n (A.18)

126

By subtracting the two parts of equation (A.17) we get:

E[(xn − x̂n)z̃Tn] = 0 (A.19)

Combining equations (A.3) and (A.16) we may express the error xn − x̂n as

xn − x̂n = x̃−n –Gn(Hnx̃
−
n + vn) = (I–GnHn)x̃−n –Gnvn (A.20)

By substituting equations (A.18) and (A.20) into (A.19) we get:

E[((I–GnHn)x̃−n –Gnvn)(Hnx̃
−
n + vn)] = 0 (A.21)

Due to the fact that the noise vn is independent of the state xn and x̃−n , equation (A.21) may be
written as

(I–GnHn)E[x̃−n x̃−Tn]HT
n–GnE[vnv

T
n] = 0 (A.22)

We define the a priori covariance matrix as

P−n = E[(xn − x̂−n)(xn − x̂−n)T] = E[x̃−n x̃−Tn] (A.23)

By using equations (A.4) and (A.23) we can express (A.22) as

(I–GnHn)P−nHT
n–GnRn = 0 (A.24)

and by solving for Gn we get

Gn = P−nHT
n [HnP

−
nHT

n + Rn]−1 (A.25)

Equation (A.25) expresses Gn as a function of the a priori covariance matrix P−n . To complete
the computation, we must express the error covariance propagation, which describes the effect
of time. This propagation involves two stages:

1. The a priori covariance matrix P−n at time n is given by equation (A.23). By using P−n
we can compute the a posteriori covariance matrix Pn as

Pn = E[(xn − x̂n)(xn − x̂n)T] = E[x̃nx̃
T
n] (A.26)

2. Given the a posteriori covariance matrix Pn−1 we can compute the a priori matrix P−n at
time n.

In order to compute Pn we substitute equation (A.20) into (A.26), and due to the fact that
the noise vn is independent of the a priori estimation error x̃−n we get

Pn = (I–GnHn)E[x̃−n x̃−Tn](I–GnHn)T + GnE[vnv
T
n]GT

n

= (I–GnHn)P−n (I–GnHn)T + GnRnG
T
n (A.27)

127

By using GnRn = (I–GnHn)P−nHT
n form (A.25) and substituting this to (A.27) we get

Pn = (I–GnHn)P−n –(I–GnHn)P−nHT
nGT

n + GnRnG
T
n

= (I–GnHn)P−n −GnRnG
T
n + GnRnG

T
n

= (I–GnHn)P−n (A.28)

In order to compute P−n we must notice that the a priori estimate of the state is given by:

x̂−n = Fnx̂n−1 (A.29)

By using equations (A.1) and (A.29) we get the a priori estimation error

x̃−n = xn − x̂−n

= (Fnxn−1 + wn−1)–(Fnx̂n−1)

= Fn(xn−1 − x̂n−1) + wn−1

= Fnx̃n−1 + wn−1 (A.30)

Substituting (A.30) in (A.23) and due to the fact that the noise wn is independent of x̂n−1 we
get

P−n = FnE[x̃n−1x̃
T
n−1]FT

n + E[wn−1w
T
n−1]

= FnPn−1F
T
n + Qn−1 (A.31)

Using equations (A.16), (A.25), (A.28) and (A.31) we can construct the recursive procedure,
shown in algorithm 8. We choose the initial state as x̂0 = E[x0] and the inital a posteriori
covariance matrix as P0 = E[(x0–E[x0])(x0–E[x0)T], due to the fact that we have no other
information about the distribution.

Kalman filter assumes that the noise is white Gaussian. The noise wn increase the uncer-
tainty (spreads the distribution), the state evolution matrix Fn translates the distribution and the
observation zn decreases the uncertainty.

A.3 Extended Kalman Filter

In cases where the system model is not linear, the linear Kalman filter is not the optimal solution.
However, we can use the linear Kalman filter, if we make a linear approximation of the system
[32]. The result is known as extended Kalman filter.

Let a nonlinear dynamical system described by:

xn+1 = f(n,xn) + wn (A.32)

zn = h(n,xn) + vn (A.33)

where wn and vn are independent white Gaussian noise processes with covariance matrices Rn

and Qn. Functions f(n,xn) and h(n,xn) express that the state evolution matrix is non linear

128

Algorithm 8 Kalman Filter

1 Initialization:
x̂0 = E[x0]

P0 = E[(x0–E[x0])(x0–E[x0])T]

2 Prediction:
x̂−n = Fnx̂n−1

P−n = FnPn−1F
T
n + Qn

Gn = P−nHT
n [HnP

−
nHT

n + Rn]−1

3 Estimation:
x̂n = x̂−n + Gn(zn–Hnx̂

−
n)

Pn = (I–GnHn)P−n

4 Increase time by one and go to step 2.

and time dependant. The main idea of the extended Kalman filter is to linearize the model
described by equations (A.32) and (A.33) around the most recent state prediction x̂−n or state
estimation x̂n. After the approximation is made, the linear Kalman filter can be used.

More specifically, the approximation may be done in two steps:

1. Matrices Fn and Hn are constructed as follows:

Fn =
∂f(n,x)

∂x

∣∣∣∣
x=x̂n

(A.34)

Hn =
∂h(n,x)

∂x

∣∣∣∣
x=x̂−n

(A.35)

2. After the evaluation of matrices Fn and Hn we can use Taylor approximation around x̂n
and x̂−n respectively.

f(n,xn) ≈ f(n, x̂n) + Fn · (x− x̂n) (A.36)

h(n,xn) ≈ h(n, x̂−n) + Hn · (x− x̂−n) (A.37)

Using the approximations of the above two steps, we can approximate equations (A.32) and
(A.33) by

xn+1 = Fnxn + wn + cn (A.38)

zn = Hnxn + vn + dn (A.39)

where
cn = f(n, x̂n)–Fnx̂n (A.40)

129

dn = h(n, x̂−n)–Hnx̂
−
n (A.41)

Using equations (A.38), (A.39), (A.40) and (A.41) we present the extended Kalman filter in
algorithm 9.

Algorithm 9 Extended Kalman filter

1 Initialization:
x̂0 = E[x0]

P0 = E[(x0–E[x0])(x0–E[x0])T]

2 Prediction:
x̂−n = f(n, x̂n−1)

Fn−1 =
∂f(n− 1,x)

∂x

∣∣∣∣
x=x̂n−1

Hn =
∂h(n,x)

∂x

∣∣∣∣
x=x̂−n

P−n = Fn−1Pn−1F
T
n−1 + Qn

Gn = P−nHT
n [HnP

−
nHT

n + Rn]−1

3 Estimation:
x̂n = x̂−n + Gn(zn–h(n, x̂−n))

Pn = (I–GnHn)P−n

4 increase time by one and go to step 2.

130

APPENDIX B

THE PARTICLE FILTER

B.1 The Condensation algorithm

B.2 The ICondensation algorithm

This family of algorithms, which are based on particle filtering, assume multiple states
in every time step, which can lead to successfully tracking an object even if some states are
erroneously predicted. Moreover, the noise is not restricted to be white Gaussian.

B.1 The Condensation algorithm

In this section the Condensation algorithm [54] is presented.

B.1.1 Discrete-time propagation of state density

The Condensation algorithm assumes a discrete time system, with the system state described
by xn and the observations by zn at time n. There is no assumption about the distributions of
xn and zn. Each state depends only on the immediately previous state:

p(xn+1|x1, . . . ,xn) = p(xn+1|xn) (B.1)

The observations zn are independent from each other and they depend only on the associated
state, that is:

p(z1, . . . , zn,xn+1|x1, . . . ,xn) = p(xn+1|x1, . . . ,xn)
n∏
i=1

p(zi|xi) (B.2)

By integrating both sides of the equation over xn+1, we get:

p(z1, . . . , zn|x1, . . . ,xn) =
n∏
i=1

p(zi|xi) (B.3)

131

The observation procedure depends only on p(zn|xn) at time n.
The probability of a state xn is given by:

p(xn|z1, . . . , zn) = knp(zn|xn)p(xn|z1, . . . , zn−1) (B.4)

where

p(xn|z1, . . . , zn−1) =

∫
xn−1

p(xn|xn−1)p(xn−1|z1, . . . , zn−1) (B.5)

and kn a normalization constant, which is independent of xn.
Equation (B.4) is the Bayes rule for the posterior probability. The prior probability given by

equation (B.5) is a prediction of the state xn, which is computed from the posterior probability
p(xn−1|z1, . . . , zn−1) of the state xn−1 and the single step probability from state xn−1 to xn.
In equation (B.4) we multiply by p(zn|xn) in order to take into account the observation zn.
These probabilities are non Gaussian. The problem now is how to apply a nonlinear filter to
evaluate the state density over time. This is computationally expensive and an approximation is
necessary.

B.1.2 Factored sampling

The objective is to locate a target described by the state xn with probability p(xn) and having
observation zn of a single image. The posterior probability p(xn|zn) gives the estimation of the
state xn using the observation zn. From Bayes rule we get:

p(xn|zn) = knp(zn|xn)p(xn) (B.6)

where kn is a normalization factor independent of xn. The factored sampling algorithm gen-
erates a random variable xn from a distribution p̃(xn) that approximates p(xn|zn). First a set
with M samples s1

n, . . . , s
M
n is constructed from the prior probability p(xn). Next, an index

i ∈ {1, . . . ,M} is chosen with probability πi, where

πin =
p(zn|sin)∑M
j=1 p(zn|s

j
n)

(B.7)

If xin is chosen in this way, it is produced from a distribution which approximates p(xn|zn) as
N increases.

The posterior mean propertiesE[g(xn)|zn] can be generated from samples s1
n, . . . , s

M
n using

p(zn|xn) as weight:

E[g(xn)|zn] ≈
∑M

i=1 g(sin)p(zn|sin)∑M
i=1 p(zn|sin)

(B.8)

For instance, the mean value can be approximated by using g(xn) = xn and the variance by
using g(xn) = xnx

T
n .

132

B.1.3 The Condensation algorithm

The Condensation algorithm [54] is based on factored sampling. At every time n, factored
sampling is employed and the result is the weighted sum of {sin, i = 1, . . . ,M} with weights
πin, which approximates the distribution p(xn|z1, . . . , zn). In order to produce the set {sin, i =

1, . . . ,M} we must know the prior probability p(xn|zn, . . . , zn−1). Usually this probability
function is not in closed form. We approximate the probability p(xn−1|z1, . . . , zn−1) with the
set {(sin−1, π

i
n−1), i = 1, . . . ,M}, which is the algorithm’s result at time n− 1. Therefore, the

prediction p(xn|z1, . . . , zn−1) can be computed using (B.5).
The objective is to approximate p(xn|z1, . . . , zn) with low computational cost. The first

thing to do is the sampling (with replacement) M times from the set {(sin−1, π
i
n−1), i =

1, . . . ,M}, choosing a specific index i with probability πin−1. Some elements, especially these
with large weights may be chosen many times, giving multiple copies of the same element. On
the other hand, elements with small weight may not be chosen at all.

Every element chosen in the new set is used by the prediction step. Firstly, every element of
the set undergoes a drift which is deterministic for all the elements. After that, each element is
diffused randomly, and multiply chosen elements split. In this point the set {sin, i = 1, . . . ,M}
has been constructed. This set is an approximation of the a priori probability p(xn|z1, . . . , zn−1)

at time n. Finally, the observation step of factored sampling is applied, generating weights from
the observation density p(zn|xn) to produce the set {(sin, πin), i = 1, . . . ,M} at time M . This
procedure is summarized in algorithm 10.

Algorithm 10 Condensation algorithm

From the set {(sin−1, π
i
n−1, c

i
n−1), i = 1, . . . ,M} at time n − 1 construct the set

{(sin, πin, cin), i = 1, . . . ,M} at time n.

Construct the ith sample by:

1 Selection: select a sample s′in by generating a random number r ∈ [0, 1] and choose the
element sjn−1 for which j is the minimum that satisfies cjn−1 ≥ r.

2 Prediction: sample from p(xn|xn−1 = s′in) to produce sin.

3 Estimation: using the observation zn compute the weight πin = p(zn|xn = sin). Normalise so
that

∑M
i=1 π

i
n = 1 and compute cin where

c0
n = 0 or cin = ci−1

n + πin, (i = 1, . . . ,M).

After the production of the M samples, the state estimation at time n can be obtained
E[f(xn)] =

∑M
i=1 π

i
nf(sin). For the mean position f(x) = x can be used.

In algorithm 10 the cumulative weights cin−1 (constructed in step 3) are used in order to
achieve efficient sampling in step 1. Moreover, in step 2 (prediction) the single step evolution

133

probability could be given from a formula like sin = Asiin + Bwi
n, where wi

n is a vector
following Gaussian distribution.

An advantage of condensation algorithm is its simplicity despite its general appliance. In
order to use the Condensation algorithm we must set:

• the initial state {(si0, πi0), i = 1, . . . ,M}.

• the single step evolution function p(xn = sin|x
j
n−1). More specifically, we do not need

to evaluate p(xn = sin|x
j
n−1) but we must be able to sample from it. For example if the

relation between the new position and the old position could be xn+1− x̄ = A(xn− x̂) +

Bwn, where x̄ is the mean state, A, B matrices and wn the noise, then sampling could
be done as

xn+1 = x̄ + A(xn − x̂) + Bwn

• the density function p(zn|xn) = xin. For example if we assume that the observation is
normally located around the state xn, then we can use

p(zn|xn) =
1√
2πσ

exp−(zn − xn)2

2σ2

where σ is the covariance of the distribution in one dimension case.

B.2 The ICondensation algorithm

In the condensation algorithm the samples sin are defined by the samples from the previous
time {(sin−1, π

i
n−1)} and the single step evolution probability p(xn = sin|x

j
n−1). The parts of

the image from which samples are taken are being set before any observation is made. This
is appropriate when the samples sin approximate the state density accurate. But in general, the
state density change through time and the random movement of the object gives a non zero
probability in many positions around it. In the desired case this will give samples around the
object with high probability and we will be able to track the object. But the usage of finite
number of samples will lead to samples only near the object. This means that a large number of
samples will exist in a specific area (with every one of them has large probability) and less or
no at all samples in other areas. To make the algorithm more robust in abrupt motion changes,
we increase the number of samples, but this would make the algorithm slower. We will employ
importance sampling for a better approach.

B.2.1 Importance sampling

Importance sampling improves the efficiency of factored sampling in section B.1.2 and it is
appropriate when the form of an importance function gn(xn) is known. The main idea is to use
the function gn(xn), instead of p(xn), in order to produce samples sin in areas where the object
is more likely to appear. Using this technique we can reduce the production of low weight
samples, which are unlikely to be selected.

134

A correction term fn/gn is added to the sample weights giving

πin =
fn(sin)

gn(sin)
p(zn|xn = sin) (B.9)

This term ensures that for large sample number M , importance sampling has no effect on the
consistency of the approximation function p̃(xn|zn). Any importance function gn(xn) could be
chosen and if the number of samples M is large enough then p̃(xn|zn) is a good approximation
of p(xn|zn). Importance sampling purpose is to improve the accuracy of p̃(xn|zn) for a given
(small) number of samples M . Since samples are drawn from gn(xn) it plays the part of a prob-
ability density, although it does not necessarily correspond to the distribution of any particular
random variable.

B.2.2 The ICondensation algorithm

Importance sampling can be applied to Condensation (section B.1) leading to ICondensation
algorithm [55]. The importance function at time n is given by gn(xn). In Condensation samples
are drawn from:

fn(sin) = p̃(xn = sin|z1, . . . , zn−1) =
M∑
j=1

πjn−1p(xn = sin|xn−1 = sn−1) (B.10)

Instead of sampling from p̃(xn|z1, . . . , zn−1), samples sin are drawn from gn(xn) with weights:

πin =
fn(sin)

gn(sin)
p(zn|xn = sin) (B.11)

Although the samples are drawn from gn, the set {(sin, πin)} approximates the distribution
p(xn|zn). To use (B.11) we must be able to evaluate p(xn|xn−1).

The use of the importance function gn may omit some peaks of p(zn|xn). To eliminate this
drawback, we can use factored sampling to produce some samples and importance sampling
the rest. In this way the object will be successfully tracked even if one of the two subsets fail to
estimate the object.

We can also reinitialize the state with probability q, which is independent of the past obser-
vations. This can locate an object when it enters the image or it was lost. The amended model
is of the form:

p̃′(xn|zn−1) = (1− q)p̃(xn|zn−1) + qp(xn) (B.12)

where p(xn) is the initialisation prior. Using this model, we use factored sampling with prob-
ability 1 − q − r, importance sampling with probability r or we reinitialize with probability
q. In the absence of knowledge about p(xn) we can use p(xn) = gn(xn). We summarize
ICondensation procedure in algorithm 11.

In order to use ICondensation algorithm we must set:

• the initial state {(si0, πi0), i = 1, . . . ,M}.

135

Algorithm 11 ICondensation algorithm

From the set {(sin−1, π
i
n−1), i = 1, . . . ,M} at time n − 1 construct the set {(sin, πin), i =

1, . . . ,M} at time n. The importance function gn(xn) is known.

Construct the ith sample by:

1 Selection: choose a uniform random number a ∈ [0, 1).

2 Sampling: sample from p̃′(xn|zn−1) as follows:

1. If a < q use the initialisation prior. Choose sin by sampling from gn(xn) and set the
importance correction factor λin = 1.

2. If q ≤ a ≤ q+ r use importance sampling. Choose sin by sampling from gn(xn) and
set the importance correction factor λin = fn(sin)/gn(sin), where

fn(sin) =
M∑
j=1

πjn−1p(xn = sin|xn−1 = sjn−1)

3. If a ≥ q + r use factored sampling from Condensation algorithm. Choose a sample
sin−1 with probability πin−1, then choose sin sampling from p(xn|xn−1 = sin−1) and
set the importance factor λin = 1.

3 Estimation: using the observation zn we update the importance sampling correction term:

πin = λinp(zn|xn = sin)

Normalize so that
∑M

i=1 π
i
n = 1 and store as {(sin, πin)}.

• the single step evolution function p(xn|xn−1 = sin−1).

• the density function p(zn|xn = xin).

• the importance function gn(xn).

• the values for q and r.

136

APPENDIX C

THE MEAN SHIFT ALGORITHM

C.1 Target representation

C.2 Histogram Distance

C.3 The Mean shift algorithm

C.4 Background modeling

Mean shift [30] is a robust optimization method which finds local maxima of a cost function.
The term robust refers to the statistical analysis of the algorithm, which ignores data far from
the mean value (outliers). Moreover it uses data of a specific area only. It iterates until the local
maximum is reached.

C.1 Target representation

In order to represent an object, a feature space must be chosen. The target model is represented
by its pdf q in the feature space. The target model is considered as centered at the spatial location
0. In the next frame a target candidate is defined at spatial location y and is characterized by
the pdf p(y). The pdfs are approximated by histograms with m bins:

target model : q̂ = {q̂u}u=1...m

∑m
u=1 q̂u = 1

target candidate : p̂(y) = {p̂u(y)}u=1...m

∑m
u=1 p̂u = 1

We will denote the similarity function between p̂ and q̂ by

ρ̂(y) ≡ ρ[p̂(y), q̂] (C.1)

Function ρ̂(y) can be viewed as the likelihood. Its maxima indicate the presence of objects
having representation similar to q̂. Due to the discrete nature of the image, gradient-based opti-
mization may not be applied and exhaustive search have large computational cost. By masking

137

the object with an isotropic kernel in the spatial domain, the feature space representations ρ̂(y)

becomes a smooth function of y.

The object that we are interested in will be referred as target and is represented by an el-
lipsoidal region in the image. The ellipse is centered at spatial location 0 and is reduced to a
unit circle in order to eliminate the influence of different target dimensions. This is done by
dividing each dimension with the corresponding ellipse axis hx and hy. Let {x∗i }i=1...n be the
normalized pixel locations inside the target. An isotropic kernel with convex and monotonic
decreasing kernel profile k(x) 1, assigns smaller weights to pixels farther from the center. By
using smaller weights to pixels far from the center, the robustness of the algorithm increases.
The function b : <2 → {1 . . .m} assigns a pixel to a bin.

The probability of each bin in the target model is given by:

q̂u = C
n∑
i=1

k(‖x∗i ‖2)δ[b(x∗i)− u] (C.2)

where δ is the Kronecher delta function and C is a normalization factor which is derived by
imposing the condition

∑m
u=1 q̂u = 1, giving:

C =
1∑n

i=1 k(‖x∗i ‖2)
(C.3)

In the next frame the object, which is referred as target candidate, is moving to the normal-
ized spatial location y. Let {xi}1...nh be the normalized pixel locations os the target candidate.
Using the same kernel profile k(x), but with bandwith h, the probability of each bin in the target
candidate is given by:

p̂u(y) = Ch

nh∑
i=1

k

(∥∥∥y − xi
h

∥∥∥2
)
δ[b(xi)− u] (C.4)

where

Ch =
1∑nh

i=1 k

(∥∥∥y−xi
h

∥∥∥2
) (C.5)

being the normalization constant, which does not depend on y and can be precalculated for
different values of h. The bandwidth h defines the scale of the target.

The similarity function (C.1) inherits properties from the kernel function profile k(x) when
we use (C.2) and (C.4) to represent the target model and candidate. A differentiable kernel
profile yields a differentiable similarity function and efficient gradient-based optimization pro-
cedure can be used to find its maxima.

1The profile of the kernel K is defined as a function k : [0,∞)→ < such that K(x) = k(‖x‖2).

138

C.2 Histogram Distance

The similarity function defines a distance between the target model and the target candidates.
We define the distance between two discrete distributions as

d(y) =
√

1− ρ[p̂(y), q̂] (C.6)

where

ρ̂(y) ≡ ρ[p̂(y), q̂] =
m∑
u=1

√
p̂u(y)q̂u (C.7)

is the sample estimate of the Bhattacharyya coefficient between p and q [58]. The Bhat-
tacharyya coefficient is the cosine of the angle between the m-dimensional unit vectors (

√
p̂1, . . . ,

√
p̂m)T

and (
√
q̂1, . . . ,

√
q̂m)T and it can be proved that it is a metric [30].

C.3 The Mean shift algorithm

The minimization of distance (C.6) is equivalent to the maximization of (C.7). The search
for the new target location in the current frame starts at the spatial location ŷ0 of the target
in the previous frame. Thus, the probabilities {p̂u(ŷ0)}u=1...m of the target candidate in the
current frame are computed first. Using Taylor expansion around the values of p̂u(ŷ0), the
linear approximation of (C.7) is given by:

ρ[p̂(y), q̂] ≈ 1

2

m∑
u=1

√
p̂u(ŷ0)q̂u +

1

2

m∑
u=1

p̂u(y)

√
q̂u

p̂u(ŷ0)
(C.8)

This approximation is satisfactory when the target candidate does not change drastically from
the initial target model. Using (C.4) in (C.8) we get:

ρ[p̂(y), q̂] ≈ 1

2

m∑
u=1

√
p̂u(ŷ0)q̂u +

Ch
2

nh∑
u=1

wik

(∥∥∥y − xi
h

∥∥∥2
)

(C.9)

where

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u] (C.10)

In order to minimize (C.6), the second term in (C.10) must be maximized (the first term is in-
dependent of y). The second term represents the density estimate computed with kernel profile
k(x) at y in the current frame with the date being weighted by wi (C.10). The local maxima
of this density function can be found using the mean shift method [30]. In this procedure, the
kernel is recursively moved from the current location ŷ0 to the new location ŷ1 according to the
relation:

ŷ1 =

∑nh
i=1 xiwig

(∥∥∥ ŷ0−xi
h

∥∥∥2
)

∑nh
i=1wig

(∥∥∥ ŷ0−xi
h

∥∥∥2
) (C.11)

139

Algorithm 12 Bhattacharyya coefficient ρ[p̂(y), q̂] maximization

Input: the target model {q̂u}u=1...m and its location y0 in the previous frame.

1 Initialize the location of the target in the current frame with y0, compute {p̂u(ŷ0)}u=1...m′ and
evaluate

ρ[p̂(ŷ0), q̂] =
m∑
u=1

√
p̂u(ŷ0)q̂u

2 Derive the weights {wi}i=1...nh according to (C.10).

3 Find the next location of the target candidate according to (C.11).

4 Compute {p̂u(ŷ1)}u=1...m′ , and evaluate

ρ[p̂(ŷ1), q̂] =
m∑
u=1

√
p̂u(ŷ1)q̂u

5 While ρ[p̂(ŷ1), q̂] < ρ[p̂(ŷ0), q̂]

Do ŷ1 ← 1
2
(ŷ0 + ŷ1)

Evaluate ρ[p̂(ŷ1), q̂]

6 If ‖ŷ1 − ŷ0‖ < ε Stop.

Otherwise set ŷ0 ← ŷ1 and go to step 2.

where g(x) = −k′(x). The mean shift method for target localization is presented in algorithm
12.

The stoping criterion threshold ε in step 6 of algorithm 12 is derived by constraining the
vectors ŷ0 and ŷ1 to be within the same pixel in original image coordinates. In practice, step 5
can be removed because its role is only to avoid potential numerical problems in the mean shift
based maximization. As a result, there is no need to evaluate the Bhattacharyya coefficient in
steps 1 and 4. Using kernels with Epanechnikov profile [29]

k(x) =

{
1
2
c−1
d (d+ 2)(1− x) if x ≤ 1

0 otherwise
(C.12)

the derivative of the profile g(x) is constant and (C.11) reduces to

ŷ1 =

∑nh
i=1 xiwi∑nh
i=1 wi

(C.13)

In order to handle scale changes we can change the bandwidth h. Denote by hprev the
bandwidth in the previous frame. We estimate the bandwidth hopt in the current frame by

140

running algorithm 12 three times, with bandwidths h = hprev, h = hprev + ∆h and h =

hprev − ∆h. A typical value is ∆h = 0.1hprev. The best result, hopt, yielding the largest
Bhattacharyya coefficient, is retained. To avoid oversensitive scale adaptation, the bandwidth
associated with the current frame is obtained through filtering:

hnew = γhopt + (1− γ)hprev (C.14)

where the default value for γ is 0.1.

C.4 Background modeling

The background information is important for at least two reasons. First, if some of the target
features are also present in the background, their relevance for the localization of the target is
diminished. Second, in many applications, it is difficult to exactly delineate the target, and its
model might contain background features as well. At the same time, the improper use of the
background information may affect the scale selection algorithm, making impossible to measure
similarity across scales, hence, to determine the appropriate target scale.

Let {ôu}u=1...m (with
∑m

u=1 ôu = 1) be the discrete representation (histogram) of the back-
ground in the feature space and ô∗ ne its smallest nonzero entry. This representation is computed
in a region around the target (usual three times the target area). The weights{

vu = min

(
ô∗

ôu
, 1

)}
u=1...m

(C.15)

are employed to define a transformation for the representations of the target model and candi-
dates. The transformation diminishes the importance of those features which have low vu. The
new target model representation is defined as

q̂u = Cvu

n∑
i=1

k(‖x∗i ‖2)δ[b(x∗i)− u] (C.16)

with the normalization factor C expressed as

C =
1∑n

i=1 k(‖x∗i ‖2)
∑m

u=1 vuδ[b(x
∗
i)− u]

(C.17)

Similarly, the new target candidate representation is

p̂u(y) = Chvu

nh∑
i=1

k

(∥∥∥y − xi
h

∥∥∥2
)
δ[b(xi)− u] (C.18)

where
Ch =

1∑nh
i=1 k

(∥∥∥y−xi
h

∥∥∥2
)∑m

u=1 vuδ[b(xi)− u]

(C.19)

141

APPENDIX D

THE DIFFERENTIAL EARTH MOVER’S

DISTANCE

D.1 The Earth Mover’s Distance

D.2 The DEMD algorithm

D.3 DEMD extensions

In this section, the differential Earth Mover’s Distance algorithm is presented [152]. EMD
is a similarity measure that is robust to illumination changes. However, its computational com-
plexity prevents a direct use in many applications. The DEMD algorithm employs the derivative
of EMD so that the computation of EMD is not necessary in every position.

D.1 The Earth Mover’s Distance

The main idea behind EMD distance is that there are two distributions, with one being a mass
of earth and the other a collection of holes. The EMD estimates the minimum amount of work
needed to fill the holes with earth. The unit work corresponds to transporting a unit of earth by
a unit of ground distance.

The EMD could be employed to compare the color distribution of the object model and that
of the object candidates. The distributions are represented by signatures:

s = {su}u=1...m, su = (au, wu) (D.1)

where m is the number of clusters in the signature, au is the mean and wu the weight of the u-th
cluster.

Representing the target model as a model signature and the target candidates (at position y)
as candidate signatures, we denote the ground distance between the u-th cluster in the model

143

signature and the v-th cluster in the candidate signature as duv and the flow between them as
fuv(y). We use superscript M to denote the object model and C for the object candidate. The
signature for the model will be denoted as sM = {sMu }u=1...mM , s

M
u = (aMu , w

M
u) and for the

candidate sC(y) = {sCv (y)}v=1...mC , s
C
v (y) = (aCv (y), wCv (y)). We use an isotropic kernel

function with profile k(x) to produce the weights:

wMu = β

N∑
n=1

k

(∥∥∥∥xn
h

∥∥∥∥2
)
δ[c(xn)–u] (D.2)

and

wCv (y) = γ
N∑
n=1

k

(∥∥∥∥xn − y

h

∥∥∥∥2
)
δ[c(xn)–v] (D.3)

where β and γ are normalization factors, c(xn) assigns a pixel to a cluster and δ(x) is the
Kronecker delta function.

In order to find the image coordinates ŷ for the candidate signature with the smaller EMD
distance from the model signature

ŷ = argmin
y

(EMD(y))) (D.4)

where EMD(y) is the Earth Mover’s distance between the model histogram and the candidate
histogram at position y, defined as

EMD(y) = min
fuv(y)

mM∑
u=1

mC∑
v=1

duvfuv(y) (D.5)

subject to ∑mM

u=1 fuv(y) = wCv (y), 1 ≤ v ≤ mC∑mC

v=1 fuv(y) = wMu , 1 ≤ u ≤ mM∑mM

u=1

∑mC

v=1 fuv(y) = 1

fuv(y) ≥ 0, 1 ≤ u ≤ mM , 1 ≤ v ≤ mC

In the next section a gradient-based method is presented in order to estimate a local minimum
of (D.4).

D.2 The DEMD algorithm

In order to solve (D.4) the formula of the derivative of (D.5) must be explicitly computed and
a gradient based method can be employed. Since EMD is a linear programming problem, the
derivative of the EMD cannot be directly computed. The derivation is done in two stages [152].
First we take the derivative of EMD with respect to the weights and the derivative of the weights
with respect to position. More specifically

∇yEMD(y) =
mC∑
v=1

∂EMD(y)

∂wCv (y)
∇yw

C
v (y) (D.6)

144

Equation (D.4) and (D.5) are transformed in a matrix form. We define the vectors d and
f(y) with dimensions (mM ×mC) × 1 containing the distances duv and flows fuv(y). Stack-
ing the constrains of (D.5) we can form the matrix H whith 1 and size (mM + mC + 1) ×
(mM ×mC), containing 0 and 1, and the vector b(y) of size (mM + mC + 1)× 1, containing
[(wC(y))T , (wM)T , 1]T . Using these notations the problem can be expressed as

EMD(y) = min
f(y)

dT f(y) (D.7)

subject to
Hf(y) = b(y)

f(y) ≥ 0

Matrix H is of rank mM +mC +1 (or it can be made to be [152]) so there are mM +mC +1

basic and mM × mC − (mM + mC + 1) non basic variables. Grouping all the basic and all
the non basic together we split the flow vector f(y) into [fTB (y) fTNB(y)]T , the distance vector d

into [dTB dTNB]T and matrix H into [HB HNB]. The starting tableau for the simplex method is
written as in table D.1.

Table D.1: Starting Tableau

EMD(y) fB(y) fNB(y) RHS

1 −dTB −dTNB 0

0 HB HNB b

Applying the simplex algorithm yields to the optimal tableau shown in table D.2.

Table D.2: Reformulated optimal tableau

EMD(y) fB(y) fNB(y) RHS

1 0 −dTNB + dTBH−1
B HNB dTBH−1

B b

0 I H−1
B HNB H−1

B b

Based on table D.2 we analyze the sensitivity if the EMD to a change in the cluster weights
wC(y) of the candidate signature. Using the second row we have EMD(y) = dTBH−1

B b.
Assume b(y) is changed to b′(y), where b′i = bi + ∆bi, (1 ≤ i ≤ mC). The optimal solution
becomes:

EMD′(y) = dTBH−1
B b′ = dTBH−1

B b + dTBH−1
B [0 . . . 0∆bi0 . . . 0]T = dTBH−1

B b + ki∆bi (D.8)

where ki =
∑mM+mC+1

l=1 (dB)l(H
−1
B)li. Therefore,

∂EMD(y)

∂bi
= lim

∆bi→0

∆EMD(y)

∆bi
=
ki∆bi
∆bi

= ki (D.9)

145

As the sum of the cluster weights of the candidate signature is 1, we get:

∂EMD(y)

∂bi
= ki −

∑
j 6=i

kj
bj∑
l 6=i,j bl

(D.10)

Taking the gradient of the cluster weights in equation (D.3), we have the density gradient of
the color feature

∇yw
C
v (y) =

2γ

h2

N∑
n=1

(xn − y)g

(∥∥∥∥xn − y

h

∥∥∥∥2
)
δ[c(xn)–v] (D.11)

where g(x) is the negative gradient of the kernel profile function, g(x) = −k′(x).
Using equations (D.6), (D.10) and (D.11) we get

∇yEMD(y) =
2γ

h2

N∑
n=1

(xn − y)g

(∥∥∥∥xn − y

h

∥∥∥∥2
)
πn (D.12)

where πn is the weight of each pixel:

πn =
mC∑
v=1

(
kv −

∑
j 6=v

kj
bj∑
l 6=i,j bj

)
δ[c(xn)–v] (D.13)

where ki =
∑mM+mC+1

l=1 (dB)l(H
−1
B)li. The distance minimization can be efficiently achieved

using algorithm 13.

Algorithm 13 Differential EMD (DEMD)

Input: Object center of the previous frame: y0 = yi−1

Output: Object center for the current frame yi

1 Initialize the location of the object in the current frame with y0. Evaluate EMD(y) using
(D.5).

2 Compute the weights {πn}n=1...N for the pixels in the tracking window according to (D.13).

3 Compute the gradient∇yEMD(y0) based on (D.12).

4 Move the object along the gradient vector to one of its 8 neighboring pixels y1. Evaluate
EMD(y1) using (D.5).

5 If EMD(y1) > EMD(y0), set yi0 ← y0 and stop; otherwise, set y0 ← y1 and go to step 2.

D.3 DEMD extensions

DEMD algorithm successfully tracks an object in many cases. However, there are cases when
the object scale changes or occlusion occurs. In order to estimate the scale and the position of

146

the object, local background scenes as well as foreground objects are modeled and the similar-
ities of both components are considered in order to determine the object state. the goal is to
find the object position y and scale h corresponding to the smallest sum of the EMD for the
foreground object and the EMD for the local background scene

argmin
y,h

(EMD(y, h) + EMDBG(y, h)) (D.14)

where the superscript Bg denotes the local background scenes.
To achieve real-time performance the initial object location for the current frame is obtained

by the DEMD tracking algorithm. The method and the detailed algorithm for the adjustment
step is given in algorithm 14.

Algorithm 14 Algorithm to Adjust Object Scale and Position with Both Foreground and Back-
ground Cues

Input: Object center: y0 = yi returned by algorithm 13. Object scale from the previous frame
h0 = hi−1.

Output: Object center yi and scale hi of the current frame.

1 Initialize the object location with y0, vary h0 by +/ − 10% and evaluate which scale is the
best using (D.14).

2 If the scale with the smallest distance h1 equals h0, set hi ← h0, yi ← y0 and stop; otherwise,
set h0 ← h1 and run algorithm 13 to obtain the new location y1.

3 If y1 equals y0, set hi ← h0, yi ← y0 and stop; otherwise, set y0 ← y1 and go to step 1.

147

AUTHOR’S PUBLICATIONS

Journal publications

J1 V. Karavasilis, C. Nikou and A. Likas. Visual tracking using the earth mover’s distance
between Gaussian mixtures and Kalman filtering. Image and Vision Computing, Vol. 29,
No 5, pp. 295-305, 2011.

J2 V. Karavasilis, K. Blekas and C. Nikou. A novel framework for motion segmentation and
tracking by clustering incomplete trajectories. Computer Vision and Image Understand-
ing, Vol. 116, No 11, pp. 1135-1148, 2012.

J3 V. Karavasilis, C. Nikou and A. Likas, Visual tracking using spatially weighted likelihood
of Gaussian mixtures, Computer Vision and Image Understanding, Vol. 140, pp. 43-57,
2015.

J4 V. Karavasilis, C. Nikou and A. Likas, Real time visual tracking using a spatially weighted
von Mises mixture model, submitted.

Conference publications

C1 V. Karavasilis, C. Nikou and A. Likas. Visual tracking by adaptive Kalman filtering
and mean shift. Proceedings of the 6th Hellenic Conference on Artificial Intelligence
(SETN’10), Lecture Notes in Artificial Intelligence, Vol. 6040, pp. 153-162, 4-7 May
2010, Athens, Greece.

C2 V. Karavasilis, K. Blekas and C. Nikou. Motion segmentation by model-based clustering
of incomplete trajectories. European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML - PKDD’11). Lecture Notes
in Artificial Intelligence, Vol. 2, pp.146-161, 5-9 September 2011, Athens, Greece.

C3 V. Karavasilis, C. Nikou and A. Likas. Gaussian Mixture-based Mean Shift for Tracking
under Abrupt Illumination Changes. Eighth International Conference on Intelligent In-
formation Hiding and Multimedia Signal Processing (IIH-MSP’12), pp. 510-513, 18-20
July 2012, Athens, Greece.

C4 V. Karavasilis, C. Nikou and A. Likas. Visual tracking by weighted likelihood maxi-
mization. 24th IEEE International Conference on Tools with Artificial Intelligence (IC-
TAI’12), pp. 246-252, 7-9 November 2012, Athens, Greece.

149

Publications not related with this thesis

1. M. Vrigkas, V. Karavasilis, C. Nikou and I. A. Kakadiaris, Matching mixtures of curves
for human action recognition, Computer Vision and Image Understanding, Vol. 119C,
pp. 27-40, February 2014.

2. M. Vrigkas, V. Karavasilis, C. Nikou and I. Kakadiaris, Action recognition by matching
clustered trajectories of motion vectors, in Proc. 8th International Conference on Com-
puter Vision Theory and Applications, pp. 112-117, Barcelona, Spain, 21-24 February
2013.

150

SHORT VITA

Vasileios Karavasilis received the Diploma and the MSc in Computer Science from the Uni-
versity of Ioannina, Greece, in 2007 and 2009, respectively. Since 2009, he has been a PhD
candidate and a researcher in the Department of Computer Science and Engineering of the
University of Ioannina. His main research interests lie in the fields of computer vision, image
processing and machine learning. He is a member of IEEE.

151

