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Hepidnyn

H anocvuvéhEn eikévov gival éva dvokoro arrd xat Backd tpdfAnua mov Sexaetieg
éxel anacyoAoel Toug epevvntég encepyaciag onpatog. To npoPAnua opiletar wg
gknc: n vmoPabuiopévn ewkdva €xer ovvehiyBei pe €va ypappikd xar yxpovika
apstdPfinto eiktpo, evd peténeita 86puvPog éxer mpootedel. To mpdPinua sivan
anokatdotaoctn (restoration) mg apywnig ewkovag, dedopévng ™mg vroPabuicpévng,
péow amoouvvéhéne. [Ipdkertar ya éva «kakdg opiopévon (ill-posed) mpofinua,
ondTE 1 E10AYOYN] EK TOV TPOTEP®V YVAOOTIS YA TNV £1kOvag pag eival avaykaia.

To otoyactikd poviého mg dwadikaciag g vrofaduiong, n kaxdg opiopévn @lan
™G cuvEMENG TOv Tapdyel TG MAPATNPNOES KABIOTd emTakTIK ™V avdykn yia
EI00YOYY €K TOV APOTEPMV YVDOGNG TG EKOVAG OTO TPOPANUa ™G anocuvéMENC.
Avtd pag odnyet avtopata ot ypion mg Mrebliaviig peBodoroyiag (Bayesian
methodology). H Mreiliavii pebodoloyia civar o moAd vkt Kat gvyxpnot
nebodoroyioc n omoia éxer ypnowonowmnBel katd k6po o€ mpoPAfpaTa AVTHG NG
PLOEWG.

Mg 01630 ™V avanapdcTact YOPAKTNPICTIKOV Mg €1KOVag aut) povielomoeital
and pa otoyaotiki Sadikacia, mov ToAAEG popég Bcwpeital otatik (stationary).
Ouwg ot otatikég 1810mTEG MOV LITOBETOVTAL TOAD CUYVE Y@ AGYOUG VTOAOYIOTIKNG
gokoAiag, eival un peaiioTikég piag xat Sgv HTopoldv va avanapacTicovV TIG  YWPIKE
petafardopeves 1010mMTEg TOV €KOVOV. Q¢ ek TOvTOV dev divouv mOAD KaAd
anoTeALCoHATA OTAV YPTCLOTOOVUVTAL OAV HOVTEAD OTNV ANOKATACTACT TG £1KOVAG.
INa avtd 1o Adyo un-ctatikd (non-stationary) povréha kat péBodot £xovv npotabei.

Ze gqumiv ™MV epyacia éva VEO GTOYAOTIKO UN-OTATIKO  HOVTIEAO YU EWKOVEG
perembnke, xar pe Paon avtd pEbodor Y ™MV  aNOKATAGTAGY EKOVOV
avartoydnkav kot viomombnkav. 10 TPOTO KEQPAAAO YiveETal T} £10QYWYN OTO
wpofAinua ™m¢ anocuvEMENG EOvVeV, KaBOG Kal KAToleg kKAaokEG péBodot oTatikig
amOKATAGTAONG. ZTO JEVTEPO MAPOVGIALoVTAL PO YOVUEVES £PYACIES Kol pOVTEAa
Y pn-otankég pe8odovs. o tpito mapatiferan yevikh meprypap g Mrebliavig
pebodoroyiag xabmg kat o1 apyég ™G. 10 TETAPTO KEPAAMO, TapovotdleTal To un-
o1aTik0 HOVIEAO Kai ot tpémol emidvong Tov. Xto Téhog mapovcuifovial Ta
aplOunTiK@ TEWPANATA KAl TO CGUUREPACNATE OV APOEKLYAV AMO TNV EKTOVIION
avtig ™G SwrpiPiic.
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CHAPTERI1

INTRODUCTION TO DIGITAL IMAGE RESTORATION

1.1 Imaging Models in Restoration

Image restoration is the scientific field that studies methods for recovery of the
original image from observed degraded data. This field emerged as imaging systems
appeared. The imperfections of the imaging systems and the artifacts that they yield
when they produce images motivated the study of methods, mainly in the field of
signal processing, to restore degraded images. The development also of the digital
computer along with the invention of digital imaging ‘syste‘ms has contributed even

more to the development of this field.

Applications of image restoration are numerous. For example, astronomical images
from spacecrafts and telescopes are usually degraded due to atmospheric turbulence
and imperfect optics. Another important field of applications is medical imaging
where the degradations hinder the patient’s treatment. X-rays, Magnetic Resonance
Imaging (MRI), f-MRI, Positron Emission Tomography (PET) are examples of
imaging modalities where restoration is often necessary. Photography is another field

where image restoration can be useful when the focus is not good or there is motion.

Images are usually degraded by two processes. In the first process a spatial
degradation is caused from various reasons, i.e. out of focus camera, atmospheric
turbulence and motion.-[Lhis results in blurring the original image. The second process

is a point degradation according to which noise affects the individual pixel gray level.

-




-

This is caused by various types of noise (shot, thermal) in the detector systems and
errors in the recording process due to quantization. In this work we assume;as in
many other works, the space-invariant blurring and the white noise. Formally, the

imaging model is linear and is given by:

£(0) =33 W=k, j=1) £ (k1) +n (i),

kal I=}
which, can also be written as:

g=h**f+n. (1.1)
The observed image g, is an N x N matrix, and is produced first by a convolution of
the original imagef , also an N x N matrix, with h a linear shift invariant (LSI) low-
pass filter. This is also called the point spread function (PSF), since it spreads an

.impulse to many pixels, and models the spatial degradation mechanism. Then, noise

is added, where and are the zero and the identity matrices respectively. The operation
** is the two dimensional convolution. Noise variance is often assumed unknown, in
contrast with the PSF, which will be assumed known in this thesis.

-

To use a more convenient notation we express the convolution by a matrix-vector
multiplication by an N> x N’matrix H (representing linear convolution operator) by
the vectorh . The equivalent equation is:

g=Hf+n, (1.2)
where g,f and n are N?x1 vectors ordered lexicographically by the previous matrix

formation.

Due to the LSI nature'’of the PSF the matrix H is block-Toeplitz, but can be

efficiently approximated by a block circulant matrix [3]. The larger the dimension N




is, the better the approximation becomes [4]. Using this approximation is the same as
assuming that the convolution in Eq.(1.1) is circulant. One can pad the vectors ip the
convolution with zeros, and convert any linear convolution to a circulant one. The

matrix H is formed as:

[ H(0) H(WN-1) - H(Q) ]
H(Q)  H() - H(N-1)
o=l S S
|H(N-1) H(N-2) - H(0) |

where each sub-matrix is a circulant matrix, formed by h, the LSI filter:

[ n(i,0)  A(,N-1) - k(i) ]
H (i) = h(:,l) h(';o) h(t,]:/—l) '
h(,N-1) h(i,N=2) - h(i,0) |

‘The circulant form leads to more tractable equations and an easy to handle model in
the discrete Fourier transform (DFT) as will be explained in more detail latter on. This
is because the eigenvalues of-all circulant matrices are obtained by DFT of the
generating filter h [3]. In other words; the eige.nvectors of circulant matrices are the
complex exponentials basis functions of the DFT. Formally, a circulant N x N matrix
A is diagonalized as follows:

A=N"'wAw"

where A is diagonal with eigenvalues (the DFT coefficients), N™"*W is the DFT

transform operator matrix and N™">*W~' the inverse [3]. In the case of a block

circulant matrix the same equations hold. The only difference is that instead of the
one dimensional DFT transform, two dimensional DFT is used. In this thesis the

notation that will be used for simplicity is one dimensional.
N




1.2 Restoration Algorithms

Now that the imaging model has been defined, the task that remains is to find a

method to obtain the original image f (or an estimate f ) from the degraded

observations. The most and obvious and naive way is to take the inverse of the

convolution matrix and apply it to the observations. This results in the estimate:
f=H'g.

In the DFT domain, using the previous diagonalization we get:

f'=H"'g:>f‘=%WA;'W"g=>W"'f'=A;,1W"g=> F=A,'G, ¥

where, A, is a diagonal matrix with the eigenvalues of H (the DFT coefficients), and

F,G are the images in the DFT domain. Unfortunately, noise has been added to the
observed image, so by Eq.(1.2) the estimated image will be:

f=f+H'n. (1.3)
Since matrix H has certain small eigen;lalues, or even worse equal to zero, the noise
will be greatly amplified. Furthermore, the zero eigenvalues make the invertion
impossible. To make this more clear Eq.(1.3) is written in the frequency domain, this

gives:

= G() . N(i) -
F(')—A,,(i,i)_F(’)+_—A,,(i,i)’ i=1.N, (1.4)

where Fand N are the DFT of the image and noise vectors respectively. Notice that
the eigenvalues A, (7,7) must not be zero for the inversion to be possible. However, a

very disastrous and usual situation is when large levels of noise correspond to high

. . '?\ . . .
frequencies where the eigenvalues A, (i,i) are close to zero. This results in restored

images that contain noise which is greatly amplified.




In the scientific literature such problems are called “ill-posed”. Loosely speaking this
means that small changes in the observed data can cause very large cha;nges to the
restored image, or at the worst case the original data cannot be recovered (restored in
our case), even in the absence of noise (H is not invertible) [1,2]. In order to avoid
this difficulties of solving an ill-posed problem the theory of regularization has been
introduced which converts them to well-posed [1, 2]. This is achieved by constraining
the set of admissible solutions using a priori knowledge about the image. Since
regularization changes the problem to a well-posed one the solution also changes.
However, if the a priori knowledge used is accurate and realistic, the results can be
quite satisfactory.

A very commonly used estimate in image restoration is the linear minimum mean

square error (LMMSE) estimate [3]. This estimate is based on second order statistics

of the image and the noise. More specifically R, =E[ffT] andR_, =E[nn’],

-

where E[] is the expectation operator, are the image and noise variances,
respectively. If zero mean is assumed, the covariance is equal to the correlation
matrix. The covariances can be computed from the degraded image for R, and from
a flat region of the image forR ,. The LMMSE estimate which is also called Wiener

filter [3] minimizes the expectation:

{41}

Then, the estimated image is then given by:

o )
f=RH"(H'R,H+R,)'g. (15




AR

-

In this case the inversion is better conditioned, and the ill-posed problem has been
avoided. This can be seen in our case where the noise has simple covariance ard it is
circulant:
R, =0’ I=W'c'IW.
Thus the power spectrum S, is easily computed:
S.()=0% i=1..N.
If the process is assumed zero mean the covariance euals to correlation matrix. Also if

the covariance matrix is assumed circulant, the equivalent equation of Eq.(1.5) to the

DFT domain, following the same notation as in Eq.(1.4), is:

" S (i)A;(i,i) ) ]
F(i)= uf G(i), i=L..N, (1.6
D menrs.pre c 0o

where S, (i) is the power spectrum of the image [3). The quantity that multiplies the

observed image to obtain the restored is the inverse filter, since the multiplication is a
convolution to the spatial domain. This formulation was possible because the image

and the noise covariances were assumed circulant.

A stochastic process with statistical characteristics that do not change with time (or

space) is called stationary. A random process x(t) is stationary in a wide sense (wide

sense stationary, WSS) if the mean is constant and independent of time, and the

covariance (or correlation for zero mean) between x(r) and x(s) where 7 and s are
two points in time of space depends only on the difference 7-s:

E[x(t)x(s)] =r(t-s).
This for a discrete proce.ls yields as covariance a matrix which is Toeplitz. Circulant

matrices are a special case of Toeplitz matrices and as in the case of the operator H




-

the Toeplitz covariances can be approximated by a circulant one. The main benefit of
a stationary model is the ease of solution in the DFT domain. Unfortunately.these

models usually cannot describe efficiently the real world phenomena.

At this point we will present how deterministic regularization is used to solve ill-
posed problems. In deterministic approaches the criterion used to find the restored

image is the minimization of the Euclidian norm:
le-melf"
However, this alone yields the pseudo-inverse solution
f=(HH) H'g,
which, is ill-posed [2). To ameliorate this situation Tikhonov regularization can be

used with an addition of a penalty (regularization) term 2] according to:

g-HI[' +afQt[}.  (1.7)

m{in{|
The parameter a is a scalar and Q is’a N x N matrix. The penalty term tries to bias
the solution obtained by the first norm, toward to a different solution, which is
constrained to have some properties common in images. In most cases this property is
that the image must have small energy at high-frequencies and thus be rather smooth
[7]. The Laplacian operator can form the regularization matrix Q. For a one

dimensional signal this is given by

kA

-




1

-

-

This form of Laplacian operator is obtained by writing each of the pixels after
application to the image of this operator as: ~
Qf[i]=f[i]=-f[i-1]+2f[i]-f[i+1], i=1,.,N. (1.8‘)
Circularity implies that: f[-1]=f[N],f[N +1]=f[1] and it is incorporated for the
same reasons as with H and the covariance matricesR,, andR,,. If Q is viewed as a
filter its frequency response is Q(w)=2(1-cosw), which is clearly a high-pass

filter.

Eq.(1.8) implies that neighboring pixels of the image must have similar values. From
a mathematical point of view the Laplacian operator is the discrete analogous of the
second derivative operation. Thus, introducing this derivative as a penalty term
automatically constrains the restored image to have bounded discontinuities. The
parameter a , which is called regularization parameter, expresses the degree of belief
to the constrained term and so to the prior knowledge. The solution of minimization

of Eq. (1.7) is obtained by: .

f=(H"H+aQ'Q) H'g. (1.9)
Parameter a has to be estimated and various ways of doing this can be found in [7].
Due to the properties of circulant matrices, Eq. (1.9) can be written in the frequency
domain as:

. /.. RN b B NP
F(i)= '2"("') -G (i)= lAQ(';')I A"('i:) G(i), i=1..,N.
|Aw (i.0)] +alAg (i.i) AL (i) [Ag (i) +a

It is very important to notice that Eq.(1.6) is identical to the above equation if the
inverse image covariance equals to QTQ, or setting the inverse of the image power

spectrum equal to Laplacian operator’s eigenvalues:

10




Se()=Ac (i), i=1..,N.
From this relation the close connection between stochastic and determtnistic
approaches becomes obvious. Precisely the deterministic method can be derived from
a correspondent stochastic, following the maximum a posteriori (MAP) paradigm and

incorporating a-priori a probability density function (pdf ) for the image, based on the

SAR prediction model [21]:
- 1
p(f)=2" exp{-—2- allelIz } .

Due to the additive Gaussian noise of the degradation model, the conditional pdf of

the observed image is:
- 1 g - -
p(e1n)=2; exp{->L-g-mef |

Z, and Z, are normalizing constants. According to Bayes’ rule the posterior pdf is:

p(g!f) p(f)
r(g)

b4

p(fig)=

where p(g) is the marginal distribution of g which does not depend on f . It is very
convenient to estimate the image by the mode of this density and obtain the maximum
a posteriori (MAP) estimation:

f,ur =argmax p(f| g) = argmax p(g|f) p(f).

This is equivalent to minimize the negative log-likelihood of the posterior:
fuuir = argmin{~log p(g|f) p(£)} = arg min {ﬁll?“flr +alQf ||2} :

The variance parameters can be merged to one, since this has no effect to the solution:

~

f,,=arg m{ig{“g -Hf[ +a ||Qfﬂ2} , where @’ =ao’. (1.10)

11
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CHAPTERII

PREVIOUS WORK ON NON STATIONARY IMAGE RESTORATIQN

2.1 Motivation

The restoration methods discussed so far incorporate the stationary image assumption
for the stochastic case and unchanged spatially characteristics for the deterministic.
Thus restoration is called stationary or spatially invariant, respectively. Despite the
smaller complexity of these models, the main drawback is the inability to efficiently
describe the nature of real images. More specifically, images contain edges, smooth
areas, and areas with texture. Thus, a model that captures the image properties has to
- be spatially varying and cannot be stationary. The use of stationary models results in
the appearance of restoration artifacts. The most common and known artifacts are the
ringing artifact at the edges of the restored image and the texture-like shape in smooth
areas due to noise amplification [5,6]: These artifacts are hard to suppress because if
more regularization (lesser noise amplification) is used, more ringing artifact appear

[7]. This motivated researchers to introduce spatial varying models.

Thus, the need for spatially adaptive methods has been motivated by heuristic

arguments. However, an objective function is necessary to make restoration in this

case rigorous. Images are destined to be observed by humans. Psychophysical
experiments [8] showed that human visual system has the characteristic ability to be
more sensitive to noise presented in smooth regions, in contrast to areas of high
spatial activity where {,Re noise in not so observable. Spatial invariance does not

respect this visual property of the human observer. As a result, the goal of spatial

13
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adaptive restoration is to make adaptive regularization dependant on the image local
intensity transitions. Smooth regions need more regularization. In contrast, rggions
with edges are not affected so much from noise amplification. Also less reéularization
means more edge preservation. Thus for goal of spatially adaptive methods, the trade-

off between regularization and noise amplification is not a severe.

2.2 Visibility Function Based Non-Stationary Restoration

In [8] a measure of spatial detail was defined by a noise masking function M (i) at

pixeli. The visibility function /(i) was defined, which express the relationship

between the noise visibility and the masking function, experimentally. Following in
[9] the masking function was set to be the local variance of the pixel and accordingly

to [8] the visibility function was defined to be:

Ne— 1 o
f(')_HM(i)H’ i=1,..,N

where 6 is a scale parameter depending on the image. This function goes to zero
when local variance goes to infinity (pixel belongs to an edge) and to one when the
variance close to zero (pixel belongs to a smooth region). Finally, as a result of an
extended analysis (as in [9]), in contrast to Euclidean norm as in Eq. (1.7), a weighted

norm is introduced for the penalty term:
alQff, =af"Q"AQf,
where A isa NxN diagonal matrix with elements: A(i,i)= f*(i), i=1,..,N. The

matrix Q is recommenc‘l{:d to be a high-pass filter and the example of the p-th order

Y,

(discrete) derivative operator is given. Notice that in Eq.(1.7) this is for p=2. The

14
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resulting linear systcm(H“H +uQ"AQ)l" wH'g is solved iteratively with

-

constraint gradient descent algorithm.

The weights can be assumed known or can be approximated by a non-adaptive
method. In [12] the weights are cvaluated at every step {rom the partinlly restored
image. Furthermore, in [11] the restored image is constrained to belong to a convex
set (hard regularization). This achieved by application of a projection operator at

every step.

2.3 Markov Random Field (MRF) Non-Stationary Restoration

The adaptive methods mentioned so far are deterministic. However, many none
stationary stochastic models have been proposed. Markov Random Fields (MRI'y) ure
very known and used models in image processing. The main success point of MREs
is that can model local characteristics using local conditional probubilities. The
physical analogous of these conditionals probubilities in images is the (realistic)
assumption that a local pixel's intensity depends only from the neighboring pixcly. An
MRF describes a non-stationary stochastic process, in which clements arce labeled
with states following o procedure that obeys the conditional probabilities, (Note: there
are probabilities and not probability density functions, due to the discrete nature of un

MRF),

One of the most important works is that of Geman & Geman [12]. They made an
[]
") .

ananlogy between statistical physics theory and Image processing, by Introducing

MRF's to image restoration. At this work (ax many later works) an imuge Is rogurdod

15
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as a pair(F,L), where F is the Nx N matrix of the observable pixel intensities and

represents the intensity process, and Lis a NxN matrix with unobservable edge
binary elements (indicating when there is an edge or not between two .pixels) and
represents the line process. For brevity the later process will be temporally ignored,
because can be easily introduced using a theorem that follows. For the present time

the image is assumed to be a realization of an MRF process. Specifically, each pixel’s

seS intensity is the realization random variable X, where S ={s,,s,,...,5,}is the
set of image pixels. Each random variable is assigned with values (states) from a
finite set A={0,1,..,L-1}. Let X={X,,X,,..,X,} be the set of the random

variables. Thus a realization x, of X, belongs to this setX, =x, €A Then

Q= {w =(x,l,x,z,...,x )} is the set of all possible configurations. Moreover the set

Sy

G

{Gs,VseS} is defined as a neighborhood system, where G, is the set of

neighbors of site s. For the intensity process F, the four (or more) nearest pixels can

be defined as neighbors. With this notation X is an MRF over the graph { S,G} if:
P(X=w)>0, VYoeQ,

P(Xs=x,|X,=x¢,VreS)=P(Xs=xs|X’ =x',Vr=Gs).

In the previous chapter, the MAP estimator was presented. The same methodology

can be adopted for MRFs; incorporate prior knowledge for the image with an MRF

and find the MAP solution given the degradation model and the degraded image. Let
P(G=g|X=x) and P(X=x) be the observed image density and prior

respectively, where G'§5 the random variable of the degradation process (it is a

16
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stochastic degradation process due to random noise) and g a realization of it (the

observed image). Then the posterior distribution, according to Bayes’ Rule, is:

P(G=g|X =x)P(X =x)
P(G=g) ’

P(X=x|{G=g)=

and omitting the constant P(G = g) the MAP estimation of the image is:

f‘mp=argm?xP(X=x|G=g)=argmf1xP(G=gfX=x)P(X=x).

The disadvantage of this estimation is that the prior distribution of the image P(X)

must be determined by the conditional probabilities. This is a very difficult and
usually impossible task. Fortunately, there is a connecting theorem between MRFs

and Gibb’s distributions. Preserving the previous notation, a probability distribution

() relative to the graph {S,G} is a Gibb’s distribution if it is of the form:

m(w)= %exp{*%U(w)} = %exp{—%gz‘c V. (a))}, weQ,

-

denoting by C the set of cliques of the graph. The term V(@) is a function of the

configuration @ only of the sites that belong to clique C and is called potential
Sunction. The normalizing constant Z is the partition function. The constant T is the

temperature. The Hammersley-Clifford theorem states that a random variable X over a

graph{S,G}is an MRF if and only if it follows a Gibb’s probability distribution,

hence:
7(0)=P(X = ).
This is a powerful tool to define MRFs in a straightforward manner by the

construction of the potefitial functions, avoiding the definition of the local conditional

probabilities. For example, Geman & Geman used the following potential:

17

-

LR )



One other difficulty that can be solved is the introduction of the line process to the

model, by introducing potentials as functions both of intensity and line process. Thus

the MRF is expanded with the joint process (F,L) and the neighborhood system is

expanded to include the line process. Thus an element of L, i.e. /, can have five

neighbors (the nearest edge points) and can take binary values (or more), indicating
when there is an edge or no. Now one can define the potential with a manner that
penalizes pixels placed between edges and have related values, and encourages pixels
belonging to the same edge to take similar values. For example, the following

- potential can be defined:

V'

rs -

Vrs’ !f Id=0’

where 7,5 are two neighboring pixels and /,is the edge element between them.

Because this function depends only on neigl{boring pixels (cliques), the proposed

model] 1s an MRF.

Finally, Geman & Geman proposed the Gibb’s sampler embedding a simulating

annealing process (temperature 7 is for that reason) for finding the global mode of the

posterior probability. First they showed that the posterior is also a Gibb’s distribution
assuming a more general degradation model (the present is a special case). Thus the
degradation process is an MRF. Then they defined the local conditionals for the

update equations for the:gptimization algorithm.

18
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Despite the fact that MRF's are general non-stationary models, it is important to notice
that when the potential function is the same for all pixels, they are homogengous
(stationary). The model can be easily converted to non-homogeneous.when the
potential function varies spatially. Nevertheless, the posterior probability is in general

non-stationary thus the restoration is spatially adaptive.

The connection between stochastic and deterministic methods appears also in MRF
models. The potential function can also be seen as a regularization function. These
functions help to be quadratic because lead to simple linear inverse filters. However
they suffer from the drawback of restoration artifacts, such that have mentioned in the
previous chapter. Linearity cannot preserve high order discontinuities such as edges
and texture. Some example works on non-quadratic restoration are [13, 14]. Non-
quadratic functions have a disadvantage: the optimization is very difficult, because
non-quadraticity means non-convexity, which leads to local minima. An important

effort to solve this problem is that of D. Geman and C. Yang [15]. They proposed an

expansion of the regularization function(D(X), introducing auxiliary variables

following the property, (such as analog line process):

®(X)=argmin®’(X,b)

The function ®"(X,b) has the same minima with®(X). Also it is half-quadratic

with respect to X, which means fixing the auxiliary variables, the function becomes |

quadratic. In the probabilistic point of view the probability distribution of (X ,b) (the

random variable is the image X =f) is half-gaussian. However @’ (X ,b)is non-

convex. The minimizatigm of the new objective function is far more difficult due to

the non-convexity:
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£, =arg m'in {"g - Hf"r +Aarg mjn o’ (X,b)} R

where 4 is a regularization parameter. Geman and Yang proposed an optimization by
implementation of the Gibb's sampler (with simulated annealing) and using the half-

quadratic property.

An also interesting work on half-quadratic functions appears in [16]. First some
conditions for these functions are imposed and then a general iterative optimization
algorithm is given. To find the minimum of the objective function, introduce the
auxiliary variables as in [15] and then iterate between two steps: (deterministic)
minimization with respect to image f and then tod. The latter step is very simple. A
proof of convergence is given.

In [17] theoretical aspects about the convexity of the objective function are discussed.
More specifically Idier in [17] was able to find the conditions under which the
convexity of the objective function .guarante.es the convexity of the regularized

function, which was proposed by [15] and [14].

Generally MRF are very effective and model well images attributes. But the main

drawback, as it appears in this discussion, is the complexity of estimating their

parameters. This is due to the cyclic relationships between the variables. See Chapter -

III for the graphical models reference [31].
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2.4 Wavelet Based Non-Stationary Restoration

Another used mathematical tool for non-stationary image restoration is the wavelet
framework. For example, in [18] the matrix-vector multiplication as in Eq.(1.1) is
reformulated based in a wavelet subband decomposition, which allows the
computation of both the convolution operator and the image in the wavelet domain.
Thus, the problem is altered to multichannel restoration. At each channel stationary
restoration was applied, but the more channels used to model the image, the more
spatially adaptive the restoration of the entire image (the composition of the channels)

is. The restoration filter used there was the LMMSE.

In another work [19] a multiscale Kalman smoothing is used directly to the wavelet
coefficients of a pre-filtered image. Pre-filtering by a constrained least square estimate
(CLSE) filter produces an under-regularized solution. Post-filtering by the wavelet
methodology, enables smoothing over the desired regions, and not on the edges where

-

edge preservation is critical.

.',:“\
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CHAPTER III

THE BAYESIAN METHODOLOGY

The Bayesian methodology is very popular and has been used successfully in many
scientific fields. The Bayesian paradigm is applied to solve statistical inference
problems. Since image restoration boils down to an inference problem, the Bayesian
methodology is a very powerful tool for such problems. Inference is in essence the
estimation of unknown random variables based on certain observations and a
stochastic model [29]. Inverse problems can be viewed as inference problems because

the unknown data is obtained from the observations of a stochastic model.

_Stochastic models have parameters that need to be estimated. A very popular method
is the use of the maximum likelihood (ML) estimator. This estimator is from the

relationship:

6,, =argmax p(y;8), (.1

where yis the vector of the observations (data produced from the stochastic model),
0 is the vector consisting of the parameters and p(y;B) the probability density

function (PDF) of the data. Usually this likelihood is not directly known, because the

generative model may have ‘hidden’ (or ‘latent’) random variables that connect the

observations with the model parameters [35]. The hidden variables are unobserved °

and they are very important because they include all the information that we need to
solve the inference problem. The introduction of the ‘hidden’ variables to the problem
can be made by writing the likelihood of Eq.(3.1) using Bayes’ rule and then

marginalizing them accé’r\ding to the integral [31]:
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p(y:0)= [p(y.x;0)x = [p(yIx0) p(x;0)ix, (3.2)
where p(x;0) is the a priori PDF for the hidden variablesx. This is one of the'basic

principles of the Bayesian methodology which allows us to incorporate all the
information that we have for x by means of the prior probability distribution.
Estimation of the parameters can be based on the equations (3.1) and (3.2). Then,
Bayes’ rule is used to obtain the conditional posterior probability distribution

of x under the observed data:

_P(y:%9) _p(y|x8)p(x;8)

= - 3.3
p(y;0) p(y;0) -3)

p(x]y;8)

The estimate of hidden can be the mode or the mean of the posterior probability:

& = argmax p(x]y;0), 3.4

or x=E[ p(x|y;8)]. (3.5)
The Expectation-Maximization (E-M) algorithm a very popular algorithm to find ML

estimates in a sense alternates between, the equations (3.2) and (3.4), for details see for

example [36, 37]. -

In the Bayesian philosophy probability is treated as degree of belief or knowledge. It
is obvious that the Bayesian methodology allows us to incorporate to the stochastic
model used for estimation, the a priori knowledge about the hidden variables. This

knowledge is represented by the prior PDF.

But this methodology has a serious drawback. In most models of interest the integral
of Eq. (3.2) is intractable, since it is difficult or impossible to obtain it in a closed
A

form. Thus, a number of approximations have been used by researchers of the years to
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~  compute this integral, see for example [29, 31, 37]. The simplest approximation is to

assume the joint probability (the integrand) is a delta function at the mode of this
function [37]:
p(y1x0) p(x;0)~ p(yix;:0) p(x;0)6(x-%), (3.5)
where,
X=arg max p(y.x;0). (3.6)

Then, the parameters are estimated by:

A

8, =argmax jp(y |x;8) p(x;0)5 (x —X)dx = arg max p(y|x;8)p(%;8). (3.7)

: Of course this method does not to follow exactly the Bayesian methodology; and it is »

called maximum a posteriori (MAP) estimation.

-

Another approximation is often used when only a part of the hidden variables can be

integrated out explicitly. Let us assume the two sets of hidden variables x = {x,,x,}.

Then, we can first integrate out x, and then approximate the remaining integral using

L)

its mode as in the MAP methodology accordiné to the equation:
p(y;0)~ Ip(y |x;,X,30) p(x,,X,:0)5(x, - X, )dx,dx, = p(y|%,;0) p(%,;0), (3.8)
where,

X, =argmax p(y,x,;0). 3.9)

This approach of course is not full Bayesian, but may be called partially-Bayesian.

It is interesting to notice the solution of equations (3.6) and (3.7) is obtained by the
Bayes’ rule of Eq. (3.3) and it is the mode of the posterior probability distribution. For

)
example equation (3.6) is:
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;0
% = argmax p(y,x;0) =argmaxM—)- = arg max r(x|y;8), (3.10)

p(y:9)
because the likelihood p(y;8) is constant with respect to x. Then the optimization
algorithm for both MAP and partial-Bayesian approaches, alternates between

(approximate) likelihood maximization and hidden variables estimation. This is

exactly is done when the previous mentioned E-M algorithm is used.

In Chapter I an example of a stationary stochastic model and a method of finding the
solution was given with Eq. (1.10), when the all parameters are known. In this image
restoration example, using the Bayesian framework g is defined as the observed data,
since only the degraded image is known, and f.is the-‘hidden’ variables (the
-unknown original image). These are random variables with known joint probability
distribution:
p(g.f)=p(gif)p(f),

where the conditional is:
p(glf)=N(Iif,az) .
and the prior on the hidden variables is:
p(f) = N(0(aQ"Q)").
The parameters of the model, denoted by a vector, are the variances:
0= [a, 0'2] )
Following the Bayesian methodology, if we manage to estimate the parameters (for

example via the E-M algorithm) then the estimation of the hidden data is given as in

Eq.(1.10) from Bayes’ tifle:
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f=argm,axp(f|g;e)=argm,m{;lls-ﬂf||’+a|IQfII’}.

where 62,4 are the estimated parameters.

A stochastic generative model can be described by a graph, which is called a

graphical model [31]. A graphical model describes the data generation process,

defining random variables and relations between them. For the previous example the
graphical model is shown in Figure 3.1. The cycles denote random variables and the

square the parameters that governs the probability distributions. This graphical model

. is a directed acyclic graph (DAG). .

° ' °

Figure 3.1: Graphical model of the degradation process.

Of course more variables can be introduced to the model and make it more complex.

Following from the Bayesian methodology, hierarchical priors can be introduced to
the model. At this case one parameter of the model can be assumed stochastic (hence
a hidden random variabip) with a prior distribution. The Bayesian formulation is the

same, with only difference that the set of hidden variables is altered. For example if
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we assume 0 to be random variable, with prior (named hyperprior): p(O;O'), where

0 are the parameters (hyperparameters), and (f ,0) are the hidden variables~ The

hierarchical model can also be described by a graphical model (Figure 3.2). The
parameters are omitted for brevity. The directed graph denotes a hierarchy between
the random variable set. Not all the hidden are the same, but they belong to different
levels of hierarchy. Then to obtain an estimation of the hidden data f, we can use
Bayes’ rule, but with the difference that the remaining hidden data (belonging to a

different level of hierarchy) must be integrated out:

f= arg max p(fl g;O') = arg max Ip(f,ﬂl g;ﬂ')dﬂ.

Figure 3.2: Graphical model after the hyperprior introduction.

It is worth to mention that MRF are described by undirected graphical models [31].
An interesting discussion about Bayesian methods and regularization in image

processing can be found in [7, 20].
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CHAPTER IV
NON-STATIONARY IMAGE MODEL BASED ON HIERARCHICAL

PRIORS

As discussed in the previous Chapters, Bayesian methods have been applied
extensively for many signal processing problems including image restoration. The
Bayesian formulation offers many advantages for the image restoration problem since
it allows the incorporation of a priori knowledge in the form of priors about the image
and the unknown parameters. Strictly speaking the maximum a posteriori (MAP)
methodology is not Bayesian since the mode of the posterior which is used in MAP
may not be representative of the posterior distribution' which is integrated in Bayesian
formulation [31].

In many Bayesian and MAP formulations for the image restoration problem Gaussian
stationary models have been used for.the image prior; see for example [21, 23]. A
very popular model is the simultaneously autoregressive (SAR) in which the statistics
of the image are assumed invariant for the different spatial locations (has already been

introduced in Chapter I); see for example [21-23].

This model greatly facilitates the parameter estimation process since only one

parameter is used and thus can be easily estimated. However, it is seriously

handicapped because it does not provide the flexibility to model the spatially varying
correlations of the image. In other words, such prior enforces smoothness uniformly
across the entire image ad corresponds to uniform “regularization”. Furthermore, the

M
SAR model assumes Gaussian statistics for the autoregressive predictor residuals.
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This assumption is well known to be inaccurate for certain images where these
residuals are heavy tailed due to large prediction errors in the regions of the image
.

edges and texture.

There have been numerous efforts to ameliorate either the problems of uniform
regularization or the Gaussian statistics assumption for the residuals in image
restoration. However, there has not been an attempt to ameliorate both of them
simultaneously. One of the most successful such efforts to ameliorate the first
problem has used spatially adaptive regularization [8,9,26]. The motivation and the
justification for this approach is based on psycho visual arguments about the visibility
of the noise in images. Furthermore, for its application the parameters used to define
the noise visibility weights are selected in an ad hoc manner. There have been
numerous efforts to ameliorate the second problem, see for example [32] and [33].
However, in most these methods the parameters of the statistical models that are used
are not estimated but are assigned empirically.

In this thesis we first propose new non stationary image prior models which
incorporate both spatially varying variances for the SAR predictor residuals and

generalized Gaussian statistics. Thus this prior provides the flexibility to model both

the spatially varying correlations of images and the long tailed behavior of the SAR

prediction residuals in edge and texture areas. Based on this model for the prior we

present a MAP based methodology in which all the restored image and all parameters
can be estimated. However, due to the non stationary nature of the image prior model
it contains too many parameters. Thus, the MAP estimate of all unknown parameters

AN
[ 24
turns out to be unreliable. For this purpose in order to ameliorate the estimation of the
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spatially varying variances a hierarchical model is also proposed with hyperpriors
within and a Bayesian setting. More specifically, based on the graphical model for the
observations the likelihood with respect to the “hidden™ variables is marginalized

[29).
4.1 Imaging and Image Models

In the introduction the model of the degradation process was given. The imaging
model is linear. Let g be a N x1 vector, representing the observed degraded image.
We assume that this image is formed as
g=Hf +n, . 4.1)
-where, f the unknown N x]original image to be estimated, H a NxN known
degradation matrix, and n additive white noise. We assume Gaussian statistics for the
noise given by:

n<N(0,871),

where 0 and I are a Nx1 vector with zeros and the NxN identity matrix,

respectively, and f# the inverse of the noise variance is assumed unknown. The image

f is assumed to be generated by a zero mean SAR prediction model [21], given by:

f(k,j)=-l:i if(k+l,j+m)+e(k,j), m#l

{==1 m=-1 .
with g(k, j)the prediction residual for the image location (k, j). With out loss of
generality, in what follows we use for convenience one dimensional notation, as we
have done in this thesis so far. The above equation can be also written in matrix

vector form for the entif® image as:

Qf =¢,
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where Q isa N x N matrix operator (the already introduced Laplacian operator), and
€ =[£(1),8(2),...,8(N)]T the Nx1 vector of the residuals. We assume that the

residuals have Generalized Gaussian statistics which induces prior for the image
given by:

C

e(i)~ p(g)= 21_(1/) {—a,ls(i

I}

where:

I'(3/c)

0 =(KC) 07 k)= 70y @2

I'(-)is the Gamma function. The standard deviation of the GGD prediction error at

location i is denoted by o, . The parameter ¢ determines the shape of the pdf. For the

-

special case where ¢=1 we have the Laplacian distribution, and for c¢=2 the

Gaussian.

This model is non-stationary, because the standard deviation changes spatially. It
introduces N parameters a,'s that have to be estimated from N data points, which
is clearly not a desirable situation from an estimation point of view. For this purpose
apart from the MAP approach we also propose a Bayesian methodology to bypass this
difficulty and we introduce a Gamma hyperprior for all the a,'s. The rational for
using this Gamma prior in the non stationary case is threefold. First, it is “conjugate”
for the variance of a Gaussian and ameliorates the over parameterization problem of

this model. Second, similar hierarchical models have been used successfully in

Bayesian formulations f;f other statistical learning problems; see for example [8].

Finally, as we shall see in what follows it produces update equations for the a,'s
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previously derived using different principles. We parameterized the Gamma

hyperprior as:
1-2

p(ai)=ﬁa(7) exp{-m(I-2)a;}. 4.3)

For such a representation the mean and variance of the Gamma are given by:

E[ai]=——2m(;_2), and Var[ai] =-———————2m2 (;_2)2 ,

respectively [11]. This representation is used because the value of the parameter /

can be interpreted as the level of confidence to the prior knowledge provided by the

Gamma hyperprior {2, 9]. More specifically, as: "

| > o then E[ai]ﬁ?l’; andVar[a,.]—>0.

Thus the prior becomes very restrictive. In contrast, as:

1 — 2 both E[ai]—)oo and Var[ai]—mo,

thus the prior becomes uninformiative.

The hierarchical model, from the Bayesian perspective has been build. The graphical

model is shown at Figure 4.1.

(D

Figure 4.1: Graphical model of the observations

k)
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In the next section the restoration algorithms are described, based on the proposed

model and the Bayesian methodology discussed in Chapter III.

4.2 The Restoration Algorithms

4.2.1 Maximum a posteriori (MAP) approach

At first we propose a MAP approach to estimate all the parameters of our model and

the restored image. This is based on maximization of the posterior probability using

Bayes rule. This is given by:
p(g5a;8,m1)=p(g|f; B) p(f|a) p(a;m.1).

Maximizing the quantity p(g,f,a; 8,m,[)is equivalent to minimizing the negative

logarithm:

[f‘,a',ﬂ',m.’l.] _ ??g-al)]( log p(g,f,a; 8,m,1) = allfr’g;m!l; log J(g.f,a; 8,m,])
where: -
J(g.f,2;8,m,l)=

—%logﬁ 4-%,6"[-[1’1"2 —%g loga, + ga, I[Qf](i)

‘—I'Tzﬁloga, +m(l-2)2a,. (44)
i=l =1

Setting V,J (g,f,a; 8,m,l)=0 yields

a = (%Jf%(z —2))(|[Qf](i)|" +m(l- 2))“' 4.5)

Taking derivative and setting to zero, we have the maximum for g is

N
B =
E |-’

(4.6)
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To find the parameters m,/ that maximize the approximation, it is enough to estimate
the parameters of the gamma distribution, treating a,'s as samples from that gamma
distribution. Formally this means:

[m',l'] = arg[ nIl]axlog p(gif; B)p(f|a)= arg[rﬁaxp(a;m,l)

It is known that the ML estimated parameters of the Gamma distribution

a ~Gam(a|b,d) from its samples are given from the relationships [33]:

b=— @7
S
5 2 ¢
d=(—2) (4.8) ?
)
where: )
a=i%a (49
a_Ni=la' ( . )

== 4.11)

(3Y_1_
m _(sz) ) 4.12)

For the Gaussian case (c=2) V,J(g.f,a; 8,m,] )=0 yields
f'=(H"H+p"'Q"AQ) Hg. (4.13)

“F

&Y‘.\
For all other values of ¢, f cannot be found in closed form.
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4.2.2 Bayesian (partial) Algorithm ~

For the Bayesian formulation we select first what will be considered as hidden
variables and what as parameters. A graphical model is used that describes the
observed data generation process and is shown in Figure 5. In this figure ellipses
represent the random variables and rectangles the parameters. Thus, f and a are
considered “hidden” (latent) variables, whilem, / and g are unknown parameters. In
the Bayesian inference paradigm hidden variables are marginalized while parameters

are estimated [10]. Given the observations g, the parameters are estimated by
maximizing the likelihood p(g; 8, m,l).

-

Based on the graphical model in Figure 4.1 the likelihood is obtained by

marginalizing the joint probability density function (pdf) according to Bayes rule:
pe; B,m,0)=[[ p(g,5a; B,m,l)dida = [ | p(g|f; B) p(f | a) p(a; m, )dfda, (4.14)

where, da =dada,..da, . The exact evaluation of the complete Bayesian integral is

not possible thus we resort to an approximation. In this approach we evaluate only the

integral for the variablea .

p(g:8.m,0)=][p(g|f; B) p(f|a) p(a;m,!)dfda =

=] p(gIf; B)(J p(f1a) p(a;m,I)da)dE - (4.15)

The evaluation of the inner integral becomes:
fp(fla)p(a;m,l)da=

it e

= r(-;-)w (m(! Jz“))”é r(éa,-lg)ﬂ f:]'(m(l— 2)+[[Qe ()] )—’ °(4.16)
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where the term outside the integral is the constant of the original gamma pdf. To
explain better this result we must say that all of the N terms were the integratiofrof a
gamma function. Thus, integration of them produces the constant term of a gamma

density function. Combining equations (4.15) and (4.16), it is:

p(g: f.m0)=

11

F(LJ‘N r(é %)N (m(1-2))? fexp {—%/f’ e -g|f } fll(m(l ~2)+[ot()]f )‘5‘3

2

5

The remaining integral is impossible to be evaluated. Thus we resort to the previous
introduced MAP methodology. At the same manner the approximation of the integral ' .

is the value of the integrand at the maximum. We want to minimize a new function:

[f',ﬂ',rn',l']=afgma]x p(gIf;8) p(f;m,0) ='a[rgmi;1-J'(g,f;ﬂ,m,1),
,8.mi .8.mi

where:
. 1Y NI /! 1\ N
J (g,f,ﬂ,m,l)--Nlogl"(ajf?log(m(l—2))+Nlog1“(-5+;)——2—logﬂ+

+% B - g’ -(§+§)glog(m(l -2)+[[ar (j‘)]|°)

The derivative with respect to f is:

oJ(g.f,8;8,m,1l)
= =

V,J (.1 8,m,1) = —pH" (Hl‘»g)-(é-&-%]Qv

where v is an N x1 vector, defined as:

cl[Qf ](i)rl sign([Qf ](:)) -
m(1-2)+[Qf]()

See Appendix B for a detailed derivation of this result.

“¢
"

v(i)=
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Using the closed form of the gradient, the maximum is obtained by application of the
iterative scheme of a nonlinear Conjugate-Gradients algorithm, using the Sgcant
method for the line search. This algorithm was preferred because it is designed to

quadratic-like functions.

Of course the iterations take place in the DFT domain to reduce the computations,

since all the matrices are circulant,

Now since we have an approximation (at the point f*), remains to find the values of

the model parameters that maximize the likelihood. Tthe derivative with respect to

-

[ of the logarithm of the approximation is:

o (g1 8,m) () N2 tog(m(1-2)) a((é*ft)g"’g ('"("2)*[9"]('“()1
al 2 a al

]\/(]og(m(l—2))+Zl—_l—z--)—]“i log(m(l-2)+|[Qf'](f)|‘)n m(%"'{:)
2 ST 2 m(i-2)+[er )

d(logl"(—;-)w r(é+%)j

dl

=G(I)+

v

where: G(I) 2

The computation of the function G(/) that represents the derivative: of the logarithm
of the two gamma functions is described in Appendix A. The derivative for the

second parameter is simpler:

o7 (g,8'; fm, ) _N_,(L+l)” (1-2)
om Tam \2 ¢

) ) .Z..:(m(z-z)+|[qr](:)|‘)'
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The two gradients are used to the application of a semi-Newton optimization
algorithm, based on the BFGS update formula for the Hessian matrix. -

The parameter for the noise is estimated again from Eq. (4.6).

4.3 Experiments

We present numerical experiments to demonstrate our algorithms using 256 x 256
images. The images were blurred by Gaussian shaped blur and Gaussian noise of
variance 107 was added to it and is shown in Figure 4.2, 4.7 and 4.12. The restored
image using a stationary SAR prior and a MAP approach in [22] is shown in Figure
4.3, 4.9, 4.14. In Figure 4.4, 4.9, 4.14, we show the restored image using the MAP
approach with a non stationary prior with ¢=2. In our numerical implementation we
observed that the MAP approach could not estimate reliably all unknowns. In other

words we could estimate simultaneously f,a,S,/,and m iterating between (4.5)-

(4.13). This is a serious drawback of the MAP formulation for this model. Thus, we

estimated # andm from a stationary SAR model and /=2.1 was used which was

empirically found to give good restorations. In contrast for the Bayesian approach all
parameters can be computed automatically. To demonstrate the Bayesian approach
and the effect of the selection of the exponent of the generalized Gaussian model we
show restorations with ¢=2.0 and 0.8 in Figures 4.(5, 10, 15) and 4.(6, 11, 16)

respectively.

The error metric used to evaluate our results is the weighted MSE (WMSE) that takes

into account the visibility of the errors [8, 26]. This metric is defined

asWMSE = (f-f) A(f-f). The matrix A =diag(4,4,...4,),where ,"'the local
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variance of the original image at location i. From the restored images shown in
Figures 4.3-4.16 it is clear that the non stationary model yields visually more pleasing
results. Furthermore, the WMSE metric that incorporates the visibility of the error in
the image is about 50% smaller for the non stationary model in all experiments. We
can also observe the difference between the non stationary restored with the Bayesian
algorithm shown in Figures 4.(5, 6), 4.(10, 11) and 4.(15,16). The larger is the

generalized shape parameter c, the smoother the restored image seems to become.

The Conjugate-Gradients algorithm used for optimization, for the line search the
Secant method was used. The line search terminated after a limited number of
repetitions for two reasons. For ¢=2-the algorithm converged.very fast, so the sooner
it terminated the less time was needed for the restoration. For ¢=0.8, the convergence
was much slower. But the main reason for terminating after a limited number of
repetitions, and not using a criterion that takes into account the change in the
likelihood, is that for the Gaussian case after a certain number of steps, the increasie
in the likelihood did not imply a decrease ir the WMSE. This behavior was not
observed when ¢=0.8. In the experiments presented here we adopt the limited number
repetitions for the Gaussian case, so the error metric appears better than the non-
Gaussian case. For the non-Gaussian case the line search was terminated when

convergence in the likelihood was detected. The “early stopping” technique was

adopted also for the MAP case. Another very important result is the number of |

iterations. Two iterations of the optimization step were enough to restore satisfactorily
the images. So the time required for the restoration was about 60’ in a Pentium 4 2.4
GHz computer. Also tl}e parameters / and m never exceeded their bounds (both

vy

positive and / greater from 2).
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Figurc 4.12: Degraded image
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CHAPTER YV

CONCLUSIONS AND FUTURE WORK ~

The non stationary prior image model that we propose in this thesis provides better
restorations since it has the ability to smooth the uniform areas of the images while at
the same time it maintains its edges. An interesting observation about the MAP
approach proposed in this paper is that it yields update equations for variances of the
residuals of the non stationary SAR model for c=2 which are identical in form to the
equations proposed for obtaining the visibility weights of the noise in images [6, 7]. In
other words, using the MAP formulation we were able to obtain the same form of

equations as in [8, 26] which were derived using heuristic arguments.

:Also,tbeMAPanddleGaussianmn-staﬁomryalgoﬁdlmsgivcsmaﬂerWMSE,bm
this is due to the early stopping tactic that we adopted for the experiments. The fast
convergence in these cases can be explained if we notice that the linear Conjugate-
Gradients algorithm is designed to o.;mmuc quadratic functions. Thus when the
function is not quadratic, more time is needed for the algorithm to converge and thus
to give a small WMSE. We further noticed that the increasing likelihood did not

decrease the WMSE when ¢=2. This leads us to the conclusion that the Gaussian

model is not appropriate for this images

In the future we plan to explore methodologies to estimate the best shape parameter ¢
for the generalized Gaussian and priors that capture the direction of the edges also. A
better approximation of the marginal distribution will be always a challenge. We also
plan in the future, to ‘e the variational methodology [31] for non stationary

restoration.
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APPENDIX A
Here we show the calculation of the logarithmic derivative of the two gamma

functions (denoted by the term G(I) ). The logarithmic derivative of the general

functionI"(x) is:

-

where C is a constant. Using this result the derivative we want to evaluate is:

- IYY (1 1Y 11
d|logI’ 3 I 5ts dlogl"(—-+—) dlogl“(——)

A 2 ¢

dUE =N -N =
dl dx dx

=-Ni2-NZ 2 +N3+Nm( 2 )

1+ | 14240n| P m\It2n

c c - - '

For not large/, the approximation is quite satisfactory for summation to small# .




T APPENDIXB

>

The maximum of the integrand is obtained taking the derivative of the logarithm:

a(log pelf; ﬂ)—(-;—+—i—)logg(m(l—z)“'l[of(f)]l‘ )) _
of

_Olog p(g|f; B) _(1;1)a‘°g?f—“,(m('-2)+|[0f(f)]|°)
of 2 ¢ of

Evaluation of the first derivative is straightforward:

otog p(glt; ) __1 2P IBI-of)
of 2 o

—-pH(Hf-g) B

: oo ), which is the
The second needs more analysis. Derivation with respect to an f(’) , which

i —th point of the vectorf , yields:

aglog(m(1—2)+|[Qf(i)]Ic) i | B2
of (i) )

 sign(@e(i+1)

_=2ef[etrG-n] " sign(Qe(i-1) [or()]” sfgn(Qf("))fl[Q‘(Hl)] |[Qf(,-+1)]‘)

—\ - (m(-2*

(m(l—2)+ [Qf(i—l)]|‘) (m(l -2)+|[Qf(i)]|‘)

because:
(o, if i ek k-1k+1
et k)], T

B0 B At
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t
Of course, the function sign(x) returns the sign of the real number x.

Equation B.2 shows that the derivative with respect to fis a vector with elements the

quantity in B.2 at each position i. If we consider the Nx1 vector v where each

element i is equal to:

) cI[Qf (i)]r-' sign(Qf (i-1))
(m(l -2)+[Qr (i)]|‘)

then the above derivative is obtained by application to vector v the Laplacian

i=1,2,.,N

v(?)

s

operator, as B.2 shows:

alz:: log (m (7-2) +|[Qf (i)]lc)
ot =

Each element of the N x1 vector is:
Qv(i)=-2v(i)+v(i=1)+v(i+1),

and it is equal to the derivative in Equation B.2.

-

k)l
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