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Πεοίληυ/η

Η αποσυνέλιξη εικόνων είναι ένα δύσκολο αλλά και βασικό πρόβλημα που δεκαετίες 
έχει απασχολήσει τους ερευνητές επεξεργασίας σήματος. Το πρόβλημα ορίζεται ως 
εξής: η υποβαθμισμένη εικόνα έχει συνελιχθεί με ένα γραμμικό και χρονικά 
αμετάβλητο φίλτρο, ενώ μετέπειτα θόρυβος έχει προστεθεί. Το πρόβλημα είναι η 
αποκατάσταση (restoration) της αρχικής εικόνας, δεδομένης της υποβαθμισμένης, 
μέσω αποσυνέλιξης. Πρόκειται για ένα «κακώς ορισμένο» (ill-posed) πρόβλημα, 
οπότε η εισαγωγή εκ των προτέρων γνώσης για την εικόνας μας είναι αναγκαία.

Το στοχαστικό μοντέλο της διαδικασίας της υποβάθμισης, η κακώς ορισμένη φύση 
της συνέλιξης που παράγει τις παρατηρήσεις καθιστά επιτακτική την ανάγκη για 
εισαγωγή εκ των προτέρων γνώσης της εικόνας στο πρόβλημα της αποσυνέλιξης. 
Αυτό μας οδηγεί αυτόματα στη χρήση της Μπεϋζιανής μεθοδολογίας (Bayesian 
methodology). Η Μπεϋζιανή μεθοδολογία είναι μια πολύ ευέλικτη και εύχρηστη 
μεθοδολογία η οποία έχει χρησιμοποιηθεί κατά κόρο σε προβλήματα αυτής της 
φύσεως.

Με στόχο την αναπαράσταση χαρακτηριστικών μιας εικόνας αυτή μοντελοποιείται 
από μια στοχαστική διαδικασία, που πολλές φορές θεωρείται στατική (stationary). 
Όμως οι στατικές ιδιότητες που υποθέτονται πολύ συχνά για λόγους υπολογιστικής 
ευκολίας, είναι μη ρεαλιστικές μιας και δεν μπορούν να αναπαραστήσουν τις χωρικά 
μεταβαλλόμενες ιδιότητες των εικόνων. Ως εκ τούτου δεν δίνουν πολύ καλά 
αποτελέσματα όταν χρησιμοποιούνται σαν μοντέλα στην αποκατάσταση της εικόνας. 
Για αυτό το λόγο μη-στατικά (non-stationary) μοντέλα και μέθοδοι έχουν προταθεί.

Σε αυτήν την εργασία ένα νέο στοχαστικό μη-στατικό μοντέλο για εικόνες 
μελετήθηκε, και με βάση αυτό μέθοδοι για την αποκατάσταση εικόνων 
αναπτύχθηκαν και υλοποιήθηκαν. Στο πρώτο κεφάλαιο γίνεται η εισαγωγή στο 
πρόβλημα της αποσυνέλιξης εικόνων, καθώς και κάποιες κλασικές μέθοδοι στατικής 
αποκατάστασης. Στο δεύτερο παρουσιάζονται προηγούμενες εργασίες και μοντέλα 
για μη-στατικές μεθόδους. Στο τρίτο παρατίθεται γενική περιγραφή της Μπεϋζιανής 
μεθοδολογίας καθώς και οι αρχές της. Στο τέταρτο κεφάλαιο, παρουσιάζεται το μη- 
στατικό μοντέλο και οι τρόποι επίλυσης του. Στο τέλος παρουσιάζονται τα 
αριθμητικά πειράματα και τα συμπεράσματα που προέκυψαν από την εκπόνηση 
αυτής της διατριβής.
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CHAPTER I

INTRODUCTION TO DIGITAL IMAGE RESTORATION

1.1 Imaging Models in Restoration

Image restoration is the scientific field that studies methods for recovery of the 

original image from observed degraded data. This field emerged as imaging systems 

appeared. The imperfections of the imaging systems and the artifacts that they yield 

when they produce images motivated the study of methods, mainly in the field of 

signal processing, to restore degraded images. The development also of the digital 

computer along with the invention o f digital imaging systems has contributed even 

- more to the development o f this field.

Applications of image restoration are numerous. For example, astronomical images 

from spacecrafts and telescopes are Usually degraded due to atmospheric turbulence 

and imperfect optics. Another important field of applications is medical imaging 

where the degradations hinder the patient’s treatment. X-rays, Magnetic Resonance 

Imaging (MRI), f-MRI, Positron Emission Tomography (PET) are examples of 

imaging modalities where restoration is often necessary. Photography is another field 

where image restoration can be useful when the focus is not good or there is motion.

Images are usually degraded by two processes. In the first process a spatial 

degradation is caused from various reasons, i.e. out of focus camera, atmospheric 

turbulence and motion, ^his results in blurring the original image. The second process 

is a point degradation according to which noise affects the individual pixel gray level.
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This is caused by various types of noise (shot, thermal) in the detector systems and 

errors in the recording process due to quantization. In this work we assume,·* as in 

many other works, the space-invariant blurring and the white noise. Formally, the 

imaging model is linear and is given by:

g ( i>j) = Σ Σ h (i - k>J- l ) f ( k>l ) + n ( i’j ) ’*«l /=!

which, can also be written as:

g = h * * f+  n . (1.1)

The observed im ageg, is an N x N  matrix, and is produced first by a convolution of 

the original im agef, also an N x N  matrix, with h a linear shift invariant (LSI) low- 

pass filter. This is also called the point spread function (PSF), since it spreads an 

impulse to many pixels, and models the spatial degradation mechanism. Then, noise 

is added, where and are the zero and the identity matrices respectively. The operation 

** is the two dimensional convolution. Noise variance is often assumed unknown, in 

contrast with the PSF, which will be assumed known in this thesis.

To use a more convenient notation we express the convolution by a matrix-vector 

multiplication by an N 2 x N 2 matrix H (representing linear convolution operator) by 

the vector h . The equivalent equation is:

g = H f + n ,  (1.2)

where g ,f and n are N 2 x l vectors ordered lexicographically by the previous matrix 

formation.

Due to the LSI nature&'of the PSF the matrix H is block-Toeplitz, but can be 

efficiently approximated by a block circulant matrix [3]. The larger the dimension N
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is, the better the approximation becomes [4]. Using this approximation is the same as 

assuming that the convolution in E q.(l.l) is circulant. One can pad the vectors ip the 

convolution with zeros, and convert any linear convolution to a circulant one. The 

matrix H is formed as:

H =

H (  0)
Η  Ο

H ( N - l )

H (  0)
H (  1)

H ( N - 1)

H ( N - l )  H ( N - 2) ··■ tf (0 )

where each sub-matrix is a circulant matrix, formed by h, the LSI filter:

A(/,0) h ( i , N - 1) -  A(i,l)

*(;. 1) * ( ' .« )  ;·· H i · » - 1)

h ( i ,N -1) h(i ,N-2)  h(i,0)

The circulant form leads to more tractable equations and an easy to handle model in 

the discrete Fourier transform (DFT) as will be explained in more detail latter on. This 

is because the eigenvalues of all circulant matrices are obtained by DFT of the 

generating filter h [3]. In other words the eigenvectors of circulant matrices are the 

complex exponentials basis functions o f the DFT. Formally, a circulant N  x N  matrix 

A is diagonalized as follows:

A = ir 'W A W '1

where A is diagonal with eigenvalues (the DFT coefficients), N ~m W is the DFT 

transform operator matrix and N~m W"1 the inverse [3]. In the case of a block 

circulant matrix the same equations hold. The only difference is that instead of the 

one dimensional DFT transform, two dimensional DFT is used. In this thesis the 

notation that will be used for simplicity is one dimensional.



1.2 Restoration Algorithms

*«·

Now that the imaging model has been defined, the task that remains is to find a

A

method to obtain the original image f  (or an estimate f )  from the degraded 

observations. The most and obvious and naive way is to take the inverse of the 

convolution matrix and apply it to the observations. This results in the estimate:

* I
f -  H ' g .

In the DFT domain, using the previous diagonalization we get:

f = H -‘g =* f  = 1  W A - 'W g  => W ’f  = Λ;1 W ‘g => F = Aa-’G ,

where, Aa is a diagonal matrix with the eigenvalues of H (the DFT coefficients), and

F,G  are the images in the DFT domain. Unfortunately, noise has been added to the 

observed image, so by Eq.(l .2) the estimated image will be:

f = f + H"‘n . (1.3)

Since matrix H has certain small eigenvalues, or even worse equal to zero, the noise 

will be greatly amplified. Furthermore, the zero eigenvalues make the invertion 

impossible. To make this more clear Eq.(1.3) is written in the frequency domain, this 

gives:

i ' ( i ) = T r \ = F ( ' ) + 7 T \ ’ ( l -4)A,,(m ) a  /,(/,/)

where F and N are the DFT of the image and noise vectors respectively. Notice that 

the eigenvalues Λλ(/,/) must not be zero for the inversion to be possible. However, a 

very disastrous and usual situation is when large levels of noise correspond to high 

frequencies where the eigenvalues AA (/, /) are close to zero. This results in restored 

images that contain noise which is greatly amplified.
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In the scientific literature such problems are called “ill-posed”. Loosely speaking this 

means that small changes in the observed data can cause very large changes to the 

restored image, or at the worst case the original data cannot be recovered (restored in 

our case), even in the absence of noise (H is not invertible) [1,2]. In order to avoid 

this difficulties of solving an ill-posed problem the theory o f regularization has been 

introduced which converts them to well-posed [1,2], This is achieved by constraining 

the set of admissible solutions using a priori knowledge about the image. Since 

regularization changes the problem to a well-posed one the solution also changes. 

However, if  the a priori knowledge used is accurate and realistic, the results can be 

quite satisfactory.

A very commonly used estimate in image restoration is the linear minimum mean 

square error (LMMSE) estimate [3]. This estimate is based on second order statistics

of the image and the noise. More specifically R ff = £ [ f f TJ andR nn = £ ^ n n T] ,

where £[·] is the expectation operator, are the image and noise variances,

respectively. If zero mean is assumed, the covariance is equal to the correlation 

matrix. The covariances can be computed from the degraded image for R ff and from

a flat region of the image forR nn. The LMMSE estimate which is also called Wiener 

filter [3] minimizes the expectation:

Then, the estimated image is then given by:

f  = R „H T(H TR „H + R „,)- g .  (1.5)

m.in <£ f - f
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In this case the inversion is better conditioned, and the ill-posed problem has been 

avoided. This can be seen in our case where the noise has simple covariance and it is 

circulant:

Κ = σ 2Ι = \ν-'σ2Πν.on

Thus the power spectrum is easily computed:

S ..( /)  = a 2, i = l ,. . . ,N .

If the process is assumed zero mean the covariance euals to correlation matrix. Also if 

the covariance matrix is assumed circulant, the equivalent equation o f Eq.(1.5) to the 

DFT domain, following the same notation as in Eq.(1.4), is:

|A*0">0«2 Sff ( / )+ <x2 w ’
/ = !,·.., N , (1.6)

i

where Sa (/) is the power spectrum of the image [3]. The quantity that multiplies the

observed image to obtain the restored is the inverse filter, since the multiplication is a 

convolution to the spatial domain. This formulation was possible because the image 

and the noise covariances were assumed circulant

A stochastic process with statistical characteristics that do not change with time (or 

space) is called stationary. A random process x (t)  is stationary in a wide sense (wide 

sense stationary, WSS) if the mean is constant and independent o f time, and the 

covariance (or correlation for zero mean) between x (/)  and x (s)  where t and s are 

two points in time o f space depends only on the difference t-s:

£ [x (/)x (s)]  = r ( / - s ) .

This for a discrete proems yields as covariance a matrix which is Toeplitz. Circulant 

matrices are a special case o f Toeplitz matrices and as in the case o f  the operator H
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the Toeplitz covariances can be approximated by a circulant one. The main benefit of 

a stationary model is the ease o f solution in the DFT domain. Unfortunately.these 

models usually cannot describe efficiently the real world phenomena.

At this point we will present how deterministic regularization is used to solve ill· 

posed problems. In deterministic approaches the criterion used to find the restored 

image is the minimization of the Euclidian norm:

lle-Hfl’ .

However, this alone yields the pseudo-inverse solution

f = (HrH)‘, Hrg,

which, is ill-posed [2]. To ameliorate this situation Tikhonov regularization can be 

used with an addition of a penalty (regularization) term [2] according to:

min{|g.Hf||! +a ||Qf|! }. (1.7)

The parameter a  is a scalar and Q is‘a N x N  matrix. The penalty term tries to bias 

the solution obtained by the first norm, toward to a different solution, which is 

constrained to have some properties common in images. In most cases this property is 

that the image must have small energy at high-frequencies and thus be rather smooth

[7]. The Laplacian operator can form the regularization matrix Q. For a one 

dimensional signal this is given by

2 -1 0 · · · -1
-1 2 -1 ... 0
0
1

-1 2 -  
* ·

0
•

-1 0
1 ·

... -1 2
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This form of Laplacian operator is obtained by writing each of the pixels after 

application to the image of this operator as:

Qf [/] = f  [/] = - f [ / - 1 ]+ 2f [ / ] - f [/ +!], i = l,...,N . (1.8)

Circularity implies that: f [ - l ]  = f [ # ] , f [ / /  + l] = f[l] and it is incorporated for the 

same reasons as with H and the covariance matrices R,, and R nn. If Q is viewed as a 

filter its frequency response is g (w ) = 2 ( l-c o s w ) , which is clearly a high-pass 

filter.

Eq.(1.8) implies that neighboring pixels of the image must have similar values. From 

a mathematical point of view the Laplacian operator is the discrete analogous of the 

second derivative operation. Thus, introducing this derivative as a penalty term 

automatically constrains the restored image to have bounded discontinuities. The 

parameter a , which is called regularization parameter, expresses the degree o f belief 

to the constrained term and so to the prior knowledge. The solution o f minimization 

of Eq. (1.7) is obtained by:

f = (H TH + a Q TQ)_,HTg . (1.9)

Parameter a has to be estimated and various ways of doing this can be found in [7]. 

Due to the properties o f circulant matrices, Eq. (1.9) can be written in the frequency 

domain as:

a ; m

|Α„(/,/)|2+ α |Λθ (/,/) |2
Ι Μ ^ Ο Γ ^ Ο ’*') c ( .) 

Ιλ η( ^ οιΊ λ <?(/’/ ) Γ + λ

It is very important to notice that Eq.(1.6) is identical to the above equation if the 

inverse image covariand^ equals to QTQ , or setting the inverse o f the image power 

spectrum equal to Laplacian operator’s eigenvalues:
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From this relation the close connection between stochastic and deterministic 

approaches becomes obvious. Precisely the deterministic method can be derived from 

a correspondent stochastic, following the maximum a posteriori (MAP) paradigm and 

incorporating a-priori a probability density function (pdf) for the image, based on the 

SAR prediction model [21]:

p( f )  = Z;' exp j ~ f l | | Q f f

Due to the additive Gaussian noise of the degradation model, the conditional pdf of 

the observed image is:

P (  81f) = z l ' exp{"^jlg ‘ Hff  } *

Z, and Z2 are normalizing constants. According to Bayes’ rule the posterior pdf is:

P {  i)

where p(g)  is the marginal distribution o f g which does not depend on f . It is very

convenient to estimate the image by the mode o f this density and obtain the maximum 

a posteriori (MAP) estimation:

-  arg max p  (f  | g) = arg max p  (g | f ) p  (f ) .

This is equivalent to minimize the negative log-likelihood o f the posterior:

f^r  = a r g w m { - \ o g p ( g \ t ) p { f ) }  = *rgm in j - I - | |g - H f ||2 +  a ||Q f ||2 J .

The variance parameters can be merged to one, since this has no effect to the solution: 

L/> = ^ g m m j||g -H f |f  +a  ||Q f|2| , where d  = α σ 1. (1.10)
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CHAPTER II

PREVIOUS WORK ON NON STATIONARY IMAGE RESTORATION

2.1 Motivation

The restoration methods discussed so far incorporate the stationary image assumption 

for the stochastic case and unchanged spatially characteristics for the deterministic. 

Thus restoration is called stationary or spatially invariant, respectively. Despite the 

smaller complexity of these models, the main drawback is the inability to efficiently 

describe the nature of real images. More specifically, images contain edges, smooth 

areas, and areas with texture. Thus, a model that captures the image properties has to 

, be spatially varying and cannot be stationary. The use of stationary models results in 

the appearance of restoration artifacts. The most common and known artifacts are the 

ringing artifact at the edges of the restored image and the texture-like shape in smooth 

areas due to noise amplification [5,6].- These artifacts are hard to suppress because if 

more regularization (lesser noise amplification) is used, more ringing artifact appear 

[7]. This motivated researchers to introduce spatial varying models.

Thus, the need for spatially adaptive methods has been motivated by heuristic 

arguments. However, an objective function is necessary to make restoration in this 

case rigorous. Images are destined to be observed by humans. Psychophysical 

experiments [8] showed that human visual system has the characteristic ability to be 

more sensitive to noise presented in smooth regions, in contrast to areas of high 

spatial activity where t^e noise in not so observable. Spatial invariance does not 

respect this visual property of the human observer. As a result, the goal of spatial
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adaptive restoration is to make adaptive regularization dependant on the image local 

intensity transitions. Smooth regions need more regularization. In contrast, regions 

with edges are not affected so much from noise amplification. Also less regularization 

means more edge preservation. Thus for goal of spatially adaptive methods, the trade­

off between regularization and noise amplification is not a severe.

2.2 Visibility Function Based Non-Stationary Restoration

In [8] a measure of spatial detail was defined by a noise masking function M  (/) at

pixel/. The visibility function/ ( / )  was defined, which express the relationship

between the noise visibility and the masking function, experimentally. Following in 

[9] the masking function was set to be the local variance of the pixel and accordingly 

to [8] the visibility function was defined to be:

/ ( ' )  = 0M (/) + l ’
/ = !,...,TV

where Θ is a scale parameter depending on the image. This function goes to zero 

when local variance goes to infinity (pixel belongs to an edge) and to one when the 

variance close to zero (pixel belongs to a smooth region). Finally, as a result of an 

extended analysis (as in [9]), in contrast to Euclidean norm as in Eq. (1.7), a weighted 

norm is introduced for the penalty term:

allQf|L =<ffTQTAQf,

where Λ is a N x N  diagonal matrix with elements: Λ(/,/) = / 2 (/), / = 1 , . , . ,Ν . The

matrix Q is recommended to be a high-pass filter and the example of the p-th order 

(discrete) derivative operator is given. Notice that in Eq.(1.7) this is for p  = 2 . The
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resulting linear system (H rH + uQTAQ )f* H rg is solved iteratively with a 

constraint gradient descent algorithm.

The weights can be assumed known or can be approximated by a non-adaptive 

method. In (12] the weights arc evaluated at every step IVom the partially restored 

image. Furthermore, in [11] the restored image is constrained to belong to a convex 

set (hard regularization). This achieved by application of a projection operator at 

every step.

*

2.3 Markov Random Field (MRF) Non-Statlonary Restoration

The adaptive methods mentioned so far are deterministic. However, many non* 

stationary stochastic models have been proposed. Markov Random Fields (MRFs) arc 

very known and used models in image processing. The main success point of MRFs 

is that can model local characteristics using local conditional probabilities. The
I

physical analogous of these conditionals probabilities in images is the (realistic) 

assumption that a local pixel's intensity depends only from the neighboring pixels. An 

MRF describes a non*stntionnry stochastic process, in which elements arc labeled 

with states following a procedure that obeys the conditional probabilities. (Note: there 

are probabilities and not probability density ftmclions, due to the discrete nature of an 

MRF).

One of the most important works is that of Ocmun & Ocmnn |I2|. They made an 

analogy between statistical physics theory und Imago processing, by Introducing 

MRFs to image restoration, At this work (as many later works) an Imuge Is regarded
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as a pair(F ,L ), where F is the N x N  matrix of the observable pixel intensities and

represents the intensity process, and L is a N x N  matrix with unobservable· edge 

binary elements (indicating when there is an edge or not between two pixels) and 

represents the line process. For brevity the later process will be temporally ignored, 

because can be easily introduced using a theorem that follows. For the present time 

the image is assumed to be a realization of an MRF process. Specifically, each pixel’s 

s e S  intensity is the realization random v a ria b le ^ , where S  = {sl,s2,...,sN} is the 

set of image pixels. Each random variable is assigned with values (states) from a 

finite set A = { 0 ,l ,. . . ,I - l} . Let X  = {Xt, X 2,.. . ,XN} be the set o f the random 

variables. Thus a realization xs of X s belongs to this setX , = xs e  A  Then 

Ω = |ύί = (xJ ,xl2,...,xJ is the set of all possible configurations. Moreover the set

G = {Gj,Vs e 5} is defined as a neighborhood system, where Gs is the set of 

neighbors of site s . For the intensity process F , the four (or more) nearest pixels can 

be defined as neighbors. With this notation X  is an MRF over the graph {S,G} if:

Ρ ( Χ  = ω)> 0, V d ieQ ,

P ( X t =xt \ X r =xt , V r e S )  = P ( X , = x t \ X , = x r,Vr  = G,).

In the previous chapter, the MAP estimator was presented. The same methodology 

can be adopted for MRFs; incorporate prior knowledge for the image with an MRF 

and find the MAP solution given the degradation model and the degraded image. Let 

P{G = g \ X  = x)  and P ( X  = x)  be the observed image density and prior 

respectively, where G the random variable of the degradation process (it is a
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stochastic degradation process due to random noise) and g a realization of it (the 

observed image). Then the posterior distribution, according to Bayes’ Rule, is: ^

/>(G = g |X  = x )P (X  = x)

and omitting the constant P ( G - g )  the MAP estimation of the image is:

fMP = arg max P ( X  = x |G  = g ) = arg max P(G = g \ X  = x ) P ( X  = x)  ■

The disadvantage of this estimation is that the prior distribution of the image P ( X )

must be determined by the conditional probabilities. This is a very difficult and 

usually impossible task. Fortunately, there is a connecting theorem between MRFs 

and Gibb’s distributions. Preserving the previous notation, a probability distribution 

π  {of) relative to the graph {S,G} is a Gibb’s distribution if it is o f the form:

π ω ε Ω ,

denoting by C  the set of cliques of the graph. The term Vc (m) is a function o f the

configuration ω only o f the sites that belong to clique C and is called potential 

function. The normalizing constant Z is the partition function. The constant T  is the 

temperature. The Hammersley-ClifFord theorem states that a random variable X over a 

graph {5, G} is an MRF if  and only if it follows a Gibb’s probability distribution, 

hence:

π(ω)  = Ρ ( Χ  = ω).

This is a powerful tool to define MRFs in a straightforward manner by the 

construction of the potential functions, avoiding the definition o f the local conditional 

probabilities. For example, Geman & Geman used the following potential:

*
*

* %
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V 1, i f  *r=X,
0, i f  xr * xs

One other difficulty that can be solved is the introduction of the line process to the 

model, by introducing potentials as functions both of intensity and line process. Thus 

the MRF is expanded with the joint process (F ,L ) and the neighborhood system is 

expanded to include the line process. Thus an element o fL , i.e. lr can have five 

neighbors (the nearest edge points) and can take binary values (or more), indicating 

when there is an edge or no. Now one can define the potential with a manner that 

penalizes pixels placed between edges and have related values, and encourages pixels 

belonging to the same edge to take similar values. For example, the following 

- potential can be defined:

where r,s are two neighboring pixels and ld is the edge element between them.

Because this function depends only on neighboring pixels (cliques), the proposed 

model is an MRF.

Finally, Geman & Geman proposed the Gibb’s sampler embedding a simulating 

annealing process (temperature T is for that reason) for finding the global mode of the 

posterior probability. First they showed that the posterior is also a Gibb’s distribution 

assuming a more general degradation model (the present is a special case). Thus the 

degradation process is an MRF. Then they defined the local conditionals for the 

update equations for the*vqptimization algorithm.
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Despite the fact that MRFs are general non-stationary models, it is important to notice 

that when the potential function is the same for all pixels, they are homogenous 

(stationary). The model can be easily converted to non-homogeneous when the 

potential function varies spatially. Nevertheless, the posterior probability is in general 

non-stationary thus the restoration is spatially adaptive.

The connection between stochastic and deterministic methods appears also in MRF 

models. The potential function can also be seen as a regularization function. These 

functions help to be quadratic because lead to simple linear inverse filters. However 

they suffer from the drawback of restoration artifacts, such that have mentioned in the 

previous chapter. Linearity cannot preserve high order discontinuities such as edges 

and texture. Some example works on non-quadratic restoration are [13, 14]. Non­

quadratic functions have a disadvantage: the optimization is very difficult, because 

non-quadraticity means non-convexity, which leads to local minima. An important 

effort to solve this problem is that of D. Geman and C. Yang [15]. They proposed an 

expansion of the regularization function Φ (Χ ), introducing auxiliary variables 

following the property, (such as analog line process):

Φ ( X )  = arg min Φ* (X,b )
b

The function Φ* (X,b)  has the same minima w ithO (Y ). Also it is half-quadratic 

with respect to X,  which means fixing the auxiliary variables, the function becomes 

quadratic. In the probabilistic point of view the probability distribution of (X ,b )  (the

random variable is the imageX  = f )  is half-gaussian. However Φ*( X , b )is  non-

convex. The minimization o f the new objective function is far more difficult due to 

the non-convexity:
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'MAP « arg minHi - H f + λ  arg min Φ
b

where λ is a regularization parameter. Geman and Yang proposed an optimization by 

implementation of the Gibb’s sampler (with simulated annealing) and using the half­

quadratic property.

An also interesting work on half-quadratic functions appears in [16]. First some 

conditions for these functions are imposed and then a general iterative optimization 

algorithm is given. To find the minimum of the objective function, introduce the 

auxiliary variables as in [15] and then iterate between two steps: (deterministic) 

minimization with respect to image f and then to b . The latter step is very simple. A 

proof of convergence is given.

In [17] theoretical aspects about the convexity o f the objective function are discussed. 

More specifically Idier in [17] was able to find the conditions under which the 

convexity of the objective function guarantees the convexity o f the regularized 

function, which was proposed by [15] and [14].

Generally MRF are very effective and model well images attributes. But the main 

drawback, as it appears in this discussion, is the complexity of estimating their 

parameters. This is due to the cyclic relationships between the variables. See Chapter 

III for the graphical models reference [31].

20



2.4 Wavelet Based Non-Stationary Restoration

Another used mathematical tool for non-stationary image restoration is the wavelet 

framework. For example, in [18] the matrix-vector multiplication as in E q.(l.l) is 

reformulated based in a wavelet subband decomposition, which allows the 

computation of both the convolution operator and the image in the wavelet domain. 

Thus, the problem is altered to multichannel restoration. At each channel stationary 

restoration was applied, but the more channels used to model the image, the more 

spatially adaptive the restoration o f the entire image (the composition o f the channels) 

is. The restoration filter used there was the LMMSE.

Tn another work [19] a multiscale Kalman smoothing is used directly to the wavelet 

coefficients of a pre-filtered image. Pre-filtering by a constrained least square estimate 

(CLSE) filter produces an under-regularized solution. Post-filtering by the wavelet 

methodology, enables smoothing over the desired regions, and not on the edges where 

edge preservation is critical.

"ft
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CHAPTER III

THE BAYESIAN METHODOLOGY

The Bayesian methodology is very popular and has been used successfully in many 

scientific fields. The Bayesian paradigm is applied to solve statistical inference 

problems. Since image restoration boils down to an inference problem, the Bayesian 

methodology is a very powerful tool for such problems. Inference is in essence the 

estimation of unknown random variables based on certain observations and a 

stochastic model [29]. Inverse problems can be viewed as inference problems because 

the unknown data is obtained from the observations of a stochastic model.

Stochastic models have parameters that need to be estimated. A very popular method 

is the use of the maximum likelihood (ML) estimator. This estimator is from the 

relationship:

% l =argm ax/?(y;0), (3.1)0

where y is the vector of the observations (data produced from the stochastic model), 

Θ is the vector consisting of the parameters and p (y ;0 ) the probability density

function (PDF) of the data. Usually this likelihood is not directly known, because the 

generative model may have ‘hidden’ (or ‘latent’) random variables that connect the 

observations with the model parameters [35]. The hidden variables are unobserved 

and they are very important because they include all the information that we need to 

solve the inference problem. The introduction of the ‘hidden’ variables to the problem 

can be made by writing the likelihood of Eq.(3.1) using Bayes’ rule and then 

marginalizing them according to the integral [31]:
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p (y ;0 ) = Jp (y ,x ;0 )/x =  J/?(y |x ;0)p(x ;0)rfx , (3.2)

where ρ (χ ;θ ) is the a priori PDF for the hidden variables x . This is one of theT>asic

principles of the Bayesian methodology which allows us to incorporate all the 

information that we have for x by means of the prior probability distribution. 

Estimation of the parameters can be based on the equations (3.1) and (3.2). Then, 

Bayes’ rule is used to obtain the conditional posterior probability distribution 

of x under the observed data:

i , x |y ; e ) = 7 M T  ■ ,( * · ) " ..... ' α )

The estimate of hidden can be the mode or the mean o f the posterior probability:

x = arg max p (x  | y ;0 ) , (3.4)

or x = £ [ p ( x |y ;0 ) ] .  (3.5)

The Expectation-Maximization (E-M) algorithm a very popular algorithm to find ML 

estimates in a sense alternates between the equations (3.2) and (3.4), for details see for 

example [36, 37].

In the Bayesian philosophy probability is treated as degree of belief or knowledge. It 

is obvious that the Bayesian methodology allows us to incorporate to the stochastic 

model used for estimation, the a priori knowledge about the hidden variables. This 

knowledge is represented by the prior PDF.

But this methodology has a serious drawback. In most models of interest the integral

of Eq. (3.2) is intractable, since it is difficult or impossible to obtain it in a closed
'•SIS

form. Thus, a number of approximations have been used by researchers of the years to
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compute this integral, see for example [29, 31, 37]. The simplest approximation is to 

assume the joint probability (the integrand) is a delta function at the mode of this 

function [37]:

p ( y |x ;0 ) p (x ;0 ) * p ( y |x ;0 ) p ( x ;0 ) £ ( x - x ) ,  (3.5)

where,

x = argm ax/?(y ,x;0). (3.6)

Then, the parameters are estimated by:

Bul = argmax J/?(y |x;0)/?(x;0)<5(x-x)dx = argmax/?(y | x;0)/7(x;0). (3.7)

Of course this method does not to follow exactly the Bayesian methodology; and it is 

called maximum a posteriori (MAP) estimation.

Another approximation is often used when only a part of the hidden variables can be 

integrated out explicitly. Let us assume the two sets o f hidden variables x = {x,,x2} . 

Then, we can first integrate out x, and then approximate the remaining integral using 

its mode as in the MAP methodology according to the equation:

/>(y;0)» j p ( y  | xt, x2;B)p (x i, x2;B)S(x2- x 2)dx idx2 = p ( y |x2;0)/?(x2;0), (3.8) 

where,

x2= argm ax p(y,x2;0). (3.9)
*2

This approach of course is not full Bayesian, but may be called partially-Bayesian.

It is interesting to notice the solution o f equations (3.6) and (3.7) is obtained by the 

Bayes’ rule of Eq. (3.3) and it is the mode o f the posterior probability distribution. For 

example equation (3.6) is:
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χ = argmax ;?(y,x;9) = argmax ’ J - = argmax /? (x |y ;9 ) , (3.10)
* * p (y ;0 )

because the likelihood p ( y;9) is constant with respect to x . Then the optimization

algorithm for both MAP and partial-Bayesian approaches, alternates between 

(approximate) likelihood maximization and hidden variables estimation. This is 

exactly is done when the previous mentioned E-M algorithm is used.

In Chapter I an example of a stationary stochastic model and a method of finding the 

solution was given with Eq. (1.10), when the all parameters are known. In this image 

restoration example, using the Bayesian framework g is defined as the observed data, 

since only the degraded image is known, and f .  is th e -‘hidden’ variables (the 

, unknown original image). These are random variables with known joint probability 

distribution:

p (& f)  = p ( g | f M f ) ’

where the conditional is:

/> (g |f) = W (H f,a2) 

and the prior on the hidden variables is:

p ( f )  oc Af|o,(aQTQ)

The parameters of the model, denoted by a vector 9 , are the variances:

θ = [ α ,σ 2] .

Following the Bayesian methodology, if  we manage to estimate the parameters (for 

example via the E-M algorithm) then the estimation o f the hidden data is given as in 

Eq.(l.lO) from Bayes’ cHie:
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f -  arg max p ( t  | g; 8) = arg min j ^ g  - H f f  + a  (Q f|21 . 

where σ 1 ,a  are the estimated parameters.

A stochastic generative model can be described by a graph, which is called a 

graphical model [31]. A graphical model describes the data generation process, 

defining random variables and relations between them. For the previous example the 

graphical model is shown in Figure 3.1. The cycles denote random variables and the 

square the parameters that governs the probability distributions. This graphical model 

is a directed acyclic graph (DAG).

Figure 3.1: Graphical model of die degradation process.

Of course more variables can be introduced to the model and make it more complex. 

Following from die Bayesian methodology, hierarchical priors can be introduced to 

the model. At this case one parameter of the model can be assumed stochastic (hence 

a hidden random variabib) with a prior distribution. The Bayesian formulation is the 

same, with only difference that the set o f hidden variables is altered. For example if
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'* we assume Θ to be random variable, with prior (named hyperprior): ρ(θ;θ ) ,  where 

Θ are the parameters (hyperparameters), and (f,0) are the hidden variables> The

hierarchical model can also be described by a graphical model (Figure 3.2). The 

parameters are omitted for brevity. The directed graph denotes a hierarchy between 

the random variable set. Not all the hidden are the same, but they belong to different 

levels of hierarchy. Then to obtain an estimation o f the hidden data f, we can use 

Bayes’ rule, but with the difference that the remaining hidden data (belonging to a 

different level o f hierarchy) must be integrated out:

f  = arg max p ( f  | g;0') = argmax 1 g;0')d0.

» t

Figure 3.2: Graphical model after the hyperprior introduction.

It is worth to mention that MRF are described by undirected graphical models [31]. 

An interesting discussion about Bayesian methods and regularization in image 

processing can be found in [7,20].
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CHAPTER IV

NON-STATIONARY IMAGE MODEL BASED ON HIERARCHICAL

PRIORS

As discussed in the previous Chapters, Bayesian methods have been applied 

extensively for many signal processing problems including image restoration. The 

Bayesian formulation offers many advantages for the image restoration problem since 

it allows the incorporation of a priori knowledge in the form of priors about the image 

and the unknown parameters. Strictly speaking the maximum a posteriori (MAP) 

methodology is not Bayesian since the mode of the posterior which is used in MAP 

may not be representative of the posterior distribution which is integrated in Bayesian 

formulation [31].

In many Bayesian and MAP formulations for the image restoration problem Gaussian 

stationary models have been used for the image prior; see for example [21, 23]. A 

very popular model is the simultaneously autoregressive (SAR) in which the statistics 

of the image are assumed invariant for the different spatial locations (has already been 

introduced in Chapter I); see for example [21-23].

This model greatly facilitates the parameter estimation process since only one 

parameter is used and thus can be easily estimated. However, it is seriously 

handicapped because it does not provide the flexibility to model the spatially varying 

correlations of the image. In other words, such prior enforces smoothness uniformly 

across the entire image ad corresponds to uniform “regularization”. Furthermore, the 

SAR model assumes Gaussian statistics for the autoregressive predictor residuals.
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This assumption is well known to be inaccurate for certain images where these 

residuals are heavy tailed due to large prediction errors in the regions of the image 

edges and texture.

There have been numerous efforts to ameliorate either the problems of uniform 

regularization or the Gaussian statistics assumption for the residuals in image 

restoration. However, there has not been an attempt to ameliorate both of them 

simultaneously. One of the most successful such efforts to ameliorate the first 

problem has used spatially adaptive regularization [8,9,26]. The motivation and the 

justification for this approach is based on psycho visual arguments about the visibility 

of the noise in images. Furthermore, for its application the parameters used to define 

the noise visibility weights are selected in an ad hoc manner. There have been 

numerous efforts to ameliorate the second problem, see for example [32] and [33]. 

However, in most these methods the parameters of the statistical models that are used 

are not estimated but are assigned empirically.

In this thesis we first propose new non stationary image prior models which 

incorporate both spatially varying variances for the SAR predictor residuals and 

generalized Gaussian statistics. Thus this prior provides the flexibility to model both 

the spatially varying correlations of images and the long tailed behavior of the SAR 

prediction residuals in edge and texture areas. Based on this model for the prior we 

present a MAP based methodology in which all the restored image and all parameters 

can be estimated. However, due to the non stationary nature of the image prior model 

it contains too many parameters. Thus, the MAP estimate of all unknown parameters 

turns out to be unreliable. For this purpose in order to ameliorate the estimation of the
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spatially varying variances a hierarchical model is also proposed with hyperpriors

within and a Bayesian setting. More specifically, based on the graphical model for the
%

observations the likelihood with respect to the “hidden” variables is marginalized 

[29].

4.1 Im aging and Im age M odels

In the introduction the model of the degradation process was given. The imaging 

model is linear. Let g be a N x \  vector, representing the observed degraded image. 

We assume that this image is formed as

g = H f+ n , (4.1)

where, f  the unknownN x 1 original image to be estimated, H a N x N  known 

degradation matrix, and n additive white noise. We assume Gaussian statistics for the 

noise given by:

η ~ Ν ( θ , β ~ Ί ) ,

where 0 and I are a N x l  vector with zeros and the N x N  identity matrix, 

respectively, and β  the inverse of the noise variance is assumed unknown. The image 

f is assumed to be generated by a zero mean SAR prediction model [21], given by:

f (k>j) = l T ,  Y , t ( k + Uj  + m) + s{kJ) ,  m * l
4 ,=_] m-_|

with z(k, j )  the prediction residual for the image location (k, j). With out loss of 

generality, in what follows we use for convenience one dimensional notation, as we 

have done in this thesis so far. The above equation can be also written in matrix 

vector form for the enti#s image as:

Qf = e.
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-> where Q is a N x N  matrix operator (the already introduced Laplacian operator), and

a = [f( l) ,f(2 ) ,...,£ r(N )]Tthe N x  1 vector o f the residuals. We assume that the

residuals have Generalized Gaussian statistics which induces prior for the image 

given by:

ca\: / \e(o ~p(e‘)=’̂ j c )expH Ml
where:

a , = ( i ( c ) ) ca r , k ( c )  = J p ^ i  (4.2).

r ( - ) is  the Gamma function. The standard deviation of the GGD prediction error at

location i is denoted b y a , . The parameter c determines the shape of the pdf. For the

special case where c = l we have the Laplacian distribution, and for c = 2 the 

Gaussian.

This model is non-stationary, because the standard deviation changes spatially. It 

introduces N  parameters a / s  that have to be estimated from N  data points, which

is clearly not a desirable situation from an estimation point o f view. For this purpose 

apart from the MAP approach we also propose a Bayesian methodology to bypass this 

difficulty and we introduce a Gamma hyperprior for all the at ' s .  The rational for

using this Gamma prior in the non stationary case is threefold. First, it is “conjugate” 

for the variance o f a Gaussian and ameliorates the over parameterization problem of 

this model. Second, similar hierarchical models have been used successfully in 

Bayesian formulations other statistical learning problems; see for example [8]. 

Finally, as we shall see in what follows it produces update equations for the a, 's
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previously derived using different principles. We parameterized the Gamma 

hyperprior as:

P e x p |- /w ( / -2 )a j (4.3)

For such a representation the mean and variance of the Gamma are given by:

£
/

2 m ( l - 2 )
, and Var l

2m2 ( l - 2 ) 2 ’

respectively [11]. This representation is used because the value of the parameter / 

can be interpreted as the level of confidence to the prior knowledge provided by the 

Gamma hyperprior [2,9]. More specifically, as:

/ ->  oo then and Far

Thus the prior becomes very restrictive. In contrast, as:

/ -> 2 both J -> oo and VarJ ^ .J -> oo,

thus the prior becomes uninformative.

i
>

a a
The hierarchical model, from the Bayesian perspective has been build. The graphical 

model is shown at Figure 4.1.

Figure 4.1: Graphical model o f the observations
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In the next section the restoration algorithms are described, based on the proposed 

model and the Bayesian methodology discussed in Chapter III.

4.2 The R estoration  A lgorithm s

4.2.1 Maximum a posteriori (MAP) approach

At first we propose a MAP approach to estimate all the parameters of our model and 

the restored image. This is based on maximization of the posterior probability using 

Bayes rule. This is given by:

/?(g,f,a;/?,/n,/) = p (g  | | a)/?(a;m ,/).

-Maximizing the quantity p(g,f,a;/?,/w,/) is equivalent to minimizing the negative 

logarithm:

Γf’‘, a‘, β ' , m ,/* 1 = arg max log p  (g, f, a; β,  m, 1) = arg min log J (g, f ,a;β,ηι,Ι)
[r,

where:

J(g,f,a;^ , m,l) =

-y lo g y0 + i>9 ||H f-g f-Iz io g a i +Z«i|[Q f](O r -^ |lo g a /+OT( /- 2 ) i« 1. (4-4)

Setting VoJ ( g ,f ,a ;β ,η ι,Ι) = 0 yields

=(i +i (i _ 2))(liQf κοΓ+"('-2))’' <4·5)
Taking derivative and setting to zero, we have the maximum for β  is

N

β  Ilg-H f"1
(4.6)
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To find the parameters m,l that maximize the approximation, it is enough to estimate 

the parameters of the gamma distribution, treating a, 's as samples from that gamma 

distribution. Formally this means:

[ m , r ]  = arg max log p (  g | ί , β )  p ( f  | a) = argmax p(a;m, l )
{«,/] [m,/]

It is known that the ML estimated parameters o f the Gamma distribution 

a ~ Gam{a \ b ,d ) from its samples are given from the relationships [33]:

(4.7)
s

(4.8)
%

where:

s! = - ^ J ; ( « , - o ) 2 (4.io)

Easily derived from the above, each parameter is:

(4.11)

(4.12)

For the Gaussian case (c=2) Vf«/(g ,f,a;β,τη,Ι) = 0 yields

(4.13)

For all other values of c, f  cannot be found in closed form.
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4.2.2 Bayesian (partial) Algorithm

For the Bayesian formulation we select first what will be considered as hidden 

variables and what as parameters. A graphical model is used that describes the 

observed data generation process and is shown in Figure 5. In this figure ellipses 

represent the random variables and rectangles the parameters. Thus, f  and a are 

considered “hidden” (latent) variables, while m , / and β are unknown parameters. In 

the Bayesian inference paradigm hidden variables are marginalized while parameters 

are estimated [10]. Given the observations g , the parameters are estimated by 

maximizing the likelihood p(g;f i ,m,l) .

Based on the graphical model in Figure 4.1 the likelihood is obtained by 

marginalizing the joint probability density function (pdf) according to Bayes rule:

where, da = dalda2...daN. The exact evaluation of the complete Bayesian integral is

not possible thus we resort to an approximation. In this approach we evaluate only the 

integral for the variable a .

P (g; β , m, l) = J J p  (g | f; β ) p  (f | a) p  (a; m,/) dfda =
= J P (g If ; β )  (J P (f  I a ) p  (a; m, l) da) di

(4.15)

The evaluation of the inner integral becomes:

\ p { i \ a )p {a \ m , l )d a  =

2~c
(4.16)
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where the term outside the integral is the constant of the original gamma pdf. To 

explain better this result we must say that all of the N terms were the integratiort*of a 

gamma function. Thus, integration of them produces the constant term of a gamma 

density function. Combining equations (4.15) and (4.16), it is: 

p(g; β,  m,l) =

The remaining integral is impossible to be evaluated. Thus we resort to the previous 

introduced MAP methodology. At the same manner the approximation of the integral

is the value of the integrand at the maximum. We want to minimize a new function:

.L i
2~2

The derivative with respect to f is:

where v is an N x  1 vector, defined as:

(i-2 )+ |[Q f](/)Tm

See Appendix B for a detailed derivation of this result.
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'*■ Using the closed form of the gradient, the maximum is obtained by application of the 

iterative scheme of a nonlinear Conjugate-Gradients algorithm, using the Sgcant 

method for the line search. This algorithm was preferred because it is designed to 

quadratic-like functions.

Of course the iterations take place in the DFT domain to reduce the computations, 

since all the matrices are circulant.

Now since we have an approximation (at the point f ‘), remains to find the values of 

the model parameters that maximize the likelihood. Tthe derivative with respect to
*

« 1
/o f  the logarithm of the approximation is:

dl
m  { N d /log(w (/-2)) 
U  2 dl

N

= G(l) +
lo g (w ( /- 2 )) + ^ 2 ) n

-Σ
fog(m (;-2)+|[Q f'](f)|f )

«I

where:

f n >γΝ
[ M i l2 c )d logrU

' rl V-/ c /  J
dl

The computation of the function GO) that represents the derivative of the logarithm 

of the two gamma functions is described in Appendix A. The derivative for the 

second parameter is simpler:

d f ( g , r ;^ n , i )  v  i / n ^  0-2 )
dm 2 m ~ \ 2  ^ J ^ ( w( /_ 2) + |[Q f- ] (/) |^ '

37



■> The two gradients are used to the application of a semi-Newton optimization 

algorithm, based on the BFGS update formula for the Hessian matrix. ^

The parameter for the noise is estimated again from Eq. (4.6).

4.3 Experiments

We present numerical experiments to demonstrate our algorithms using 2 5 6 x 2 5 6  

images. The images were blurred by Gaussian shaped blur and Gaussian noise of 

variance 10 Jwas added to it and is shown in Figure 4.2, 4.7 and 4.12. The restored 

image using a stationary SAR prior and a MAP approach in [22] is shown in Figure

4.3, 4.9, 4.14. In Figure 4.4, 4.9, 4.14, we show the restored image using the MAP 

approach with a non stationary prior with c=2. In our numerical implementation we 

observed that the MAP approach could not estimate reliably all unknowns. In other 

words we could estimate simultaneously f,a,y5,/, and m iterating between (4.5)- 

(4.13). This is a serious drawback of the MAP formulation for this model. Thus, we 

estimated β  and m from a stationaiy SAR model and / = 2.1 was used which was 

empirically found to give good restorations. In contrast for the Bayesian approach all 

parameters can be computed automatically. To demonstrate the Bayesian approach 

and the effect of the selection of the exponent of the generalized Gaussian model we 

show restorations with c=2.0 and 0.8 in Figures 4.(5, 10, 15) and 4.(6, 11, 16) 

respectively.

The error metric used to evaluate our results is the weighted MSE (WMSE) that takes 

into account the visibility of the errors [8, 26]. This metric is defined

as WMSE = ( f - f ) r A ( f - f ) . The matrix A = diag(X[,X1...XN) ,where Λ,"1 the local
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'*■ variance of the original image at location /. From the restored images shown in 

Figures 4.3-4.16 it is clear that the non stationary model yields visually more pleasing 

results. Furthermore, the WMSE metric that incorporates the visibility of the error in 

the image is about 50% smaller for the non stationary model in all experiments. We 

can also observe the difference between the non stationary restored with the Bayesian 

algorithm shown in Figures 4.(5, 6), 4.(10, 11) and 4.(15,16). The larger is the 

generalized shape parameter c, the smoother the restored image seems to become.

The Conjugate-Gradients algorithm used for optimization, for the line search the 

Secant method was used. The line search terminated after a limited number of 

repetitions for two reasons. For c=2 the algorithm converged very fast, so the sooner 

it terminated the less time was needed for the restoration. For c=0.8, the convergence 

was much slower. But the main reason for terminating after a limited number of 

repetitions, and not using a criterion that takes into account the change in the 

likelihood, is that for the Gaussian case after a certain number o f steps, the increasie 

in the likelihood did not imply a decrease iir the WMSE. This behavior was not 

observed when c=0.8. In the experiments presented here we adopt the limited number 

repetitions for the Gaussian case, so the error metric appears better than the non- 

Gaussian case. For the non-Gaussian case the line search was terminated when 

convergence in the likelihood was detected. The “early stopping” technique was 

adopted also for the MAP case. Another very important result is the number of 

iterations. Two iterations of the optimization step were enough to restore satisfactorily 

the images. So the time required for the restoration was about 60’ in a Pentium 4 2.4 

GHz computer. Also the parameters / and m never exceeded their bounds (both 

positive and / greater from 2).
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Figure 4.2: 'Lena' degraded image.

Figure 4.3: Stationary restoration (WMSE = Figure 4 4: MAP non stationary reston 
4.07e-HUO) e=2 (WMSI·' = FX5e+010).

Figure 4.5: Bayesian ύόη stationary restoration Figure 4.6: Bayesian non statu
c=0.8(WMSE=2.67e+010) ’ restoration c=2 (WMSE = 2.44e+010)
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Figure 4.7: 'B o a t' degraded image.

r a k J I
Figure 4.8: Stationary
(WMSE = 1.79e+010)

restoration Figure 4.9: MAP non stationa
restoration c=2 (WMSE = 1.06e+010).

Figure 4.10: Bayesian non stationary Figure 4.11: Bayesian non stationa 
restoration c=0.8 (WMSJ§S= 1.27e+010) restoration c=2 (WMSE=1.63e+010)



Figure 4.12: Degraded im age

Figure 4.13: Stationary restoration
(WMSE =3.77e+010)

Figure 4.15: Bayesian non stationary 
restoration c=2 (WMSE=2.12e+010)

Figure 4.14: MAP non stationary 
restoration c=2 (WMSF =1.54e+0I0).

Figure 4.16: Bayesian non stationary 
restoration c=0.8 (WMSE=2.34e+010)
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CHAPTER V

C O N C L U SIO N S AND FUTUR E W O RK

The non stationary prior image model that we propose in this thesis provides better 

restorations since it has the ability to smooth the uniform areas of the images «bile at 

the same time it maintains its edges. An interesting observation about the MAP 

approach proposed in this paper is that it yields update equations for variances of the 

residuals of the non stationary SAR model for c=2 which are identical in form to the 

equations proposed for obtaining the visibility weights of the noise in images [6 ,7J. In 

other words, using the MAP formulation we were able to obtain the same form of 

equations as in [8,26] which were derived using heuristic arguments.

Also, the MAP and the Gaussian non-stationary algorithms give smaller WMSE, but 

this is due to the early stopping tactic that we adopted for the experiments. The fast 

convergence in these cases can be explained if we notice that the linear Conjugate- 

Gradients algorithm is designed to optimize quadratic functions. Thus when the 

function is not quadratic, more time is needed for the algorithm to converge and thus 

to give a small WMSE. We further noticed that the increasing likelihood did not 

decrease the WMSE when c=2. This leads us to the conclusion that the Gaussian 

model is not appropriate for this images

In the future we plan to explore methodologies to estimate the best shape parameter c 

for the generalized Gaussian and priors that capture the direction o f the edges also. A 

better approximation of the marginal distribution will be always a challenge. We also 

plan in the future, to use the variational methodology [31] for non stationary 

restoration.
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APPENDIX A
\

Here we show the calculation of the logarithmic derivative of the two gamma 

functions (denoted by the term <?(/)). The logarithmic derivative o f the general

function Γ (χ) is:

rflo g r(x ) c  1 1
dx x

1 > 
x+rij

where C is a constant. Using this result the derivative we want to evaluate is:

*
·*

For not large l , the approximation is quite satisfactory for summation to small n .



APPENDIX B

The maximum of the integrand is obtained taking the derivative o f the logarithm:

sf log Pig | f; ^ +i  jlog £(m(/ -  2)+|[Qf (/)]Γ) J

i f  ”

dlogp(g|f;/?) ( I  ' ι γ < * Μ ” ( ' - 2 Π < * ( 0 Τ )
df U  + cJ df

Evaluation of the first derivative is straightforward: i
*

dlogp(g\ i ; p)  l a (^llH f -g ll)  ^ π τ ( Π ί g ) B.l

The second needs more analysis. Derivation with respect to an
which is the

i - t h  point of the vector f , yields:

d £ lo g ( /n ( / - 2 ) + |[ Q f ( / ) j )  B.2

~  W ) =

_ - 2 c | [ Q f ( / - l ) J ' ^ g » ( Q f ( /- ! ) )   ̂ c][Qf(Q]f 'jfgw(Qf(0) + 

| m ( / - 2 ) + | [ Q f ( / - l ) ] | c) + (m (;-2 )+ |[Q f(/)j)

because:

0, if + l
tc-\ s f  j  ~  k

-2C|[Qf(t)I

ί 0 Γ ( * ) Γ ·  ,f

i f
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^  O f course, the function sign(x) returns the sign of the real num ber*.

Equation B.2 shows that the derivative with respect to f is a vector with elements the 

quantity in B.2 at each position /. If we consider the N x \  vector v where each 

element i is equal to:

1

g|[Qf (Q ]r '^ g » (Q f ( / - ! ) )

( m ( / - 2 ) + |[Q f( /) ] f )
/ *  1,2.....N

then the above derivative is obtained by application to vector v the Laplacian 

operator, as B.2 shows:

a £ lo g ( / n ( / - 2 ) + |[ Q f ( / ) j )  ^

“  Έ - = Qv.

Each element o f the N x l vector is:

Q v(/) = - 2 v ( / ) + v ( / - l ) + v ( /+ l ) ,

and it is equal to the derivative in Equation B.2.

\
·»

I t

I
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