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Περίληψη

Τα συστήματα ομοτίμων προσφέρουν έναν αποδοτικό τρόπο για το διαμοιρασμό 
μεγάλων ποσοτήτων δεδομένων σε ανεξάρτητους κόμβους. Σε αυτήν την ερ- 
γασσία, θεωρούμε την κατασκευή συστημάτων ομοτίμων με ιδιότητες ενός μικρό- 
κοσμου. Οι μικρόκοσμοι είναι τοπολογίες στις οποίες α) η απόσταση μεταξύ δύο 
οποιονδήποτε κόμβων είναι μικρή και β) υπάρχει ένας μεγάλος αριθμός συνδέσεων 4
μεταξύ συσχετιζόμενων κόμβων. Οι κόμβοι χαρακτηρίζονται ως συσχετιζόμενοι 
με βάση την πιθανότητα να απαντούν στο ίδιο σύνολο ερωτήσεων. Προτείνουμε 
μια μη-κεντρικοποιημένη διαδικασία για την κατασκευή και ενημέρωση δικτύων 
μικρόκοσμου βασισμένη σε ευρετήρια δρομολόγησης. Τα ευρετήρια δρομολόγησης 
είναι δομές δεδομένων που περιγράφουν το περιεχόμενο γειτονικών κόμβων. Σαν 
ευρετήρια δρομολόγησης χρησιμοποιούμε ιστογράμματα, τα οποία είναι κατάλληλα 
για την απάντηση ερωτήσων διαστήματος τιμών πάνω σε ένα γνώρισμα. Σαν 
ένδειξη συσχέτισης ανάμεσα στο περιεχόμενο των κόμβων αναπτύσσουμε μετρικές 
σύμφωνα με την ομοιότητα των ιστογραμμάτων, ενήμερες με βάση το φόρτο ερ
γασίας. Εισάγουμε μια μετρική υπολογισμού της απόστασης μεταξύ ιστογραμμάτων, 
που λαμβάνει υπόψιν το είδος των ερωτήσεων που υποβάλλονται στο σύστημα. Η 
πειραματική μελέτη έδειξε οτι η μετρική αυτή είναι πολύ αποδοτική για κάθε είδος 
ερωτήσεων. Επεκτείνουμε τα ιστογράμματα και τις μετρικές, εισάγοντας μια δομή 
για πολυεπίπεδα ιστογράμματα πάνω σε περισσότερα από ένα γνωρίσματα. Τέλος, 
τα πειραματικά αποτελέσματα δείχνουν οτι σε συτήματα ομοτίμων μικροκόσμου ·»
που κατασκευάζονται χρησιμοποιώντας τη διαδικασία που προτείνουμε, το πλήθος 
των συσχετιζόμενων αποτελεσμάτων που επιστρέφονται αυξάνεται.
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Abstract

Peer-to-peer systems offer an efficient means for sharing large amounts of da ta
among autonomous nodes. In this thesis, we consider building peer-to-peer
systems with small-world properties. Small-worlds are networks in which (i)
the distance between any two nodes is small and (ii) there is a large number
of connections among relevant nodes. We characterize relevance between nodes \
based on the probability that the nodes match the same set of queries. We 11
propose a decentralized procedure for constructing and updating small-worlds
based on routing indexes. Routing indexes are data  structures tha t describe the
content of neighboring nodes. We use histograms as routing indexes, and as an
indication of relevance among the content of nodes we develop workload-aware
metrics of histogram similarity. Our experimental results show th a t in small-
world peer-to-peer systems built using our procedure, the percentage of relevant
results returned is increased.



Chapter 1

Introduction

The popularity of file sharing systems such as Napster [3], Gnutella {1] and 
Kazaa [2] has spurred much current attention to peer-to-peer (p2p) computing. 
Peer-to-peer computing refers to a  form of distributed computing tha t involves 
a large number of autonomous computing nodes (the peers) tha t cooperate to 
share resources and services [18].

The term “peer-to-peer” (p2p) refers to a  class of systems and applications 
that employ distributed resources to perform a  critical function in a  decentral
ized manner. With the pervasive deployment of computers, p2p is increasingly 
receiving attention in research, product development, and investment circles. 
Some of the benefits of a p2p approach include: improving scalability by avoid
ing dependency on centralized points; eliminating the need for costly infrastruc
ture by enabling direct communication among clients; and enabling resource 
aggregation.

The resources encompass computing power, data (storage and content), net
work bandwidth, and presence (computers, human, and other resources). The 
critical function can be distributed computing; data/content sharing, commu
nication and collaboration, or platform services. Decentralization may apply to 
algorithms, data, and meta-data, or to all of them.

P2P enables valuable externalities, by aggregating resources through low- 
cost interoperability, lower cost of ownership and cost sharing, by using existing 
infrastructure and by eliminating and distributing the maintenance costs and 
anonymity/privacy, by incorporating these requirements in the design and algo
rithms of p2p systems and applications, and by allowing peers a  greater degree 
of autonomous control over their da ta  and resources.

In a  p2p system, peers are autonomous. They depend on each other for 
getting information, computing resources, forwarding requests, etc. which are 
essential for the functioning of the system as a  whole and for the benefit of 
all peers. As a result of the autonomy of peers, they cannot necessarily trust 
each other and rely completely on the behavior of other peers, so issues of scale 
and redundancy become much more important than in traditional centralized 
or distributed systems.



8 CHAPTER 1. INTRODUCTION

Each peer in a p2p system is connected with only a small number of other 
peers (neighbors). Whenever a message need to be transferred between two 
peers that are not neighbors, the message should be propagated through all the 
intermediate peers.

Conceptually, p2p computing is an alternative to the centralized and client- 
server models of computing, where there is typically a single or small cluster of 
servers and many clients. In its purest form, the p2p model has no concept of 
server; rather all participants are peers (Fig. 1.1).

In our view, p2p is about sharing: giving to and obtaining from the peer 
community. A peer gives some resources and obtains other resources in return. 
In the case of Napster, it was about offering music to the rest of the community 
and getting other music in return. p2 p is also a way of implementing systems 
based on the notion of increasing the decentralization of systems, applications, 
or simply algorithms. p2 p is a way to leverage vast amounts of computing 
power, storage, and connectivity from personal computers distributed around 
the world.

Our goal is to build a peer-to-peer data sharing system. Consider a database 
that consists of one or more relations. Each peer stores a database with the 
same schema. The user poses in the network a range query over one or more 
attributes of the database, asking for the tuples (stored a t varius peers) that 
satisfy the query. We want to increase the number of results (tuples) returned by 
propagating the query to peers that have large number of tuples that satisfy this 
query. Thus, a central issue in p2p systems is identifying which peers contain 
data relevant to a user query; we call such peers matching peers.

In this thesis, we propose building small-worlds based on the content of the 
peers. Small-worlds are networks with (i) a small distance between any two 
peers (small diameter) and (ii) a large number of connections among relevant 
peers (large clustering coefficient). The small-world phenomenon has many 
applications in real life {29, 13]. friendship networks are a  good example of 
this. Consider the friendship graph, where each peer corresponds to a  person 
and two people are connected with an edge if they know each other. Such a 
graph consists of smaller sub-graphs (which are rich in short-range connections) 
each one representing a community and there are a few long-range links between 
peers of different communities (if A knows B and B knows C, then A is more 
likely to know C than some other random person). We define the relevance 
of two nodes (peers) based on the common queries tha t both of them match. 
Intuitively, the topology of a  small-world network represents a number of smaller 
networks (groups or clusters) that are rich in links between their peers (short- 
range links), while they are linked to each other with a few random connections 
(long-range links). The motivation for such small-world p2p networks is that 
once in the appropriate group, all relevant to a query peers are a few links apart. 
Long-range links are used for routing among groups.

Previous approaches to the problem of building small-worlds, either study 
the problem theoretically, or they do not present a clear description of the 
construction procedure. Also, there are many works tha t cluster peers together 
based on their context similarity, but in most of them the number of clusters
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is fixed and global knowledge of the Information the pccre «tore In required to 
create the clusters.

We present an approach for building small-worlds baaed on a fully decentral
ized procedure. Our approach 1« baaed on using local Indexcn. Λ local index is *
a characterization of the content of a peer. Routing indexes tha t arc created by 
aggregating local indexes of neighboring peers, are uses] to create small-worlds 
in a fully distributed manner, whore only local Information is used. We define 
similarity among indexes, so that peers with similar indexes match the same 
set of queries. Such similarity is weighted, so that matching frequent queries 
counts “more" than matching infrequent ones, thus creating workload-aware 
small-worlds.

We propose using histograms [14] os local indexes and show how such In
dexes can be used to construct a small-world and route range queries over one 
attribute. The main advantages of histograms over other techniques are tha t 
they incur almost no run-time overhead and, for most real-world databases, 
there exist histograms that produce low-error estimates while occupying rea
sonably small space. We also Introduce a weighted histogram distance metric 
that takes into account the query workload.

Our approach is extended to support range queries over multiple attributes. * *
Previous approaches to the problem propose multi-dimensional histograms with «
the drawback that they cannot be easily updated and aggregated. To this 
end, we propose a multi-attribute histogram structure, Lhat takes into account 
the dependencies between the attribute values, and also, it can be updated 
and aggregated easily. The weighted histogram distance metric is extended for 
multi-attribute histograms.

In summary, this thesis makes the following contributions:

•  presents a procedure for building content-based small-worlds In p2p sys
tems based on routing Indexes, that is, on data  structures th a t summarize 
information about the content of neighboring peers;

•  proposes building workload-aware small-worlds so th a t the grouping of 
similar peers is based on whether the peers match similar sets of queries; 
this is achieved by incorporating the frequency of queries in the definition
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of similarity between the indexes of the peers;

•  exploits histograms as routing indexes for query processing and small- 
world construction in p2 p systems and introduces appropriate workload- 
aware histogram distances;

•  proposes a structure for multi-attribute histograms for supporting range 
queries over multiple attributes, and extends the workload-aware edit dis
tance for this type of histograms.

Our experimental results show that our small-world construction procedure 
is effective, since in the resulting peer-to-peer system peers with small histogram 
distance have also small network distance. Also, routing is very efficient, in par
ticular, for a given number of visited peers, since using histograms increases a 
lot the number of results returned for a given number of peers visited compared 
with a random network. Also, the network scales very well when increasing the 
number of peers, since only logM number of peers need to be visited (during the 
join procedure) as the number M of peers increases, in order to achieve the same 
performance and to leave the network properties unaffected. Furthermore, the 
use of the workload-aware edit distance improves the performance comparing 
to the other distance metrics.

Thesis  O u tlin e
In chapter 2 the related work is presented. In chapter 3 we introduce histograms 
as routing indexes and describe how histograms are used to route, construct and 
maintain small-world. In chapter 4, we propose a novel workload-aware distance 
metric and present experiments comparing it with other distance metrics. In 
chapter 5, we introduce multi-attribute histograms, distance metrics for this 
type of histograms and experimental results comparing the different distance 
metrics. In chapter 6 , we present our experimental results showing the perfor
mance of our small-world network. Finally, in chapter 7, we offer conclusions 
and directions for future work.

10 CHAPTER l.  INTRODUCTION



Chapter 2

Related Work

We propose an approach for building and querying small-world networks based 
on the content of the peers using routing indexes. Routing Indexes are stored 
for each link of a peer and summarize the content of a number of peers th a t 
are reached through this link. We consider range queries over one or more a t
tributes and propose a multi-dimensional histogram structure th a t is used as a 
routing index when more that one attributes of a relation are summarized. We 
distinguish the research related to our work into three areas: 
a) research on resource discovery in p2 p systems, b) research on building small 
world networks or organizing peers in clusters and c) research on building net
works for answering range queries and methods for summarizing the content of 
relations over more than one attribute.

2.1 Resource Discovery in P2P Systems
There are two basic types of p2p systems: structured and unstructured ones. 
In structured p2p systems, da ta  items (or indexes) are placed a t specific peers 
usually based on distributed hashing (DHTs).

Chord [12] is an an example of a structured peer-to-peer system. It is a 
distributed lookup protocol for the efficient location of the node that stores 
a desired data  item. Given a key Chord maps a key onto a node. A key is 
associated with each data  item and the key/data pair is stored a t the node to 
which the key maps. The nodes are mapped into a virtual cycle according to 
the identifier provided by the hash function and da ta  are stored to the nodes 
based on their own hash identifier.

A similar approach is followed in CAN [24]. CAN organizes the nodes in a 
d-dimensional coordinate space, which is dynamically partitioned among all the 
nodes, such tha t each node owns an individual distinct zone within the overall 
space. Keys are deterministically mapped onto points in the coordinate space 
using a uniform hash function. To retrieve an entry corresponding to a key, any 
node can apply the same hash function to map the key onto the point and then
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retrieve the data  from the node corresponds to the point. CAN provides fast 
lookup functionality on Internet like scales.

Although these approaches provide very efficient search, they compromise 
peers autonomy. Also, the DHT topology is regulated since all peers have the 
same number of neighboring peers.

In unstructured p2p systems, there is no assumption about the placement 
of data  items a t the peers. Napster [3J is one of the first peer-to-peer systems, 
that relies on a centralized server which accepts the requests from all the peers. 
Gnutella [1| is another unstructured p2p system where a flooding algorithm (re
quests are are forwarded to all the neighbors) is used for query routing. However, 
both of these solutions introduce scalability problems. In Napster the central
ized server becomes overloaded as the number of peers increases (increasing also 
the number of requests). In Gnutella, there are many messages in the network, 
thus larger network bandwidth is needed. Also, many irrelevant peers receive 
many requests increasing there load.

In order to achieve efficient location of the relevant da ta  for a given query, 
many solutions have been proposed th a t use summaries describing the content 
of a set of other peers in the network. These summaries are used to route the 
query to the appropriate region in the network.

In (9] routing indexes are used for efficient routing of the queries. The routing 
indexes are stored for each outgoing link of a node and used for selecting the 
best neighbor to route the query. The routing index for each link is produced by 
summarizing the content of the nodes along that path. Several types of routing 
indexes are discussed. The simple routing index summarizes the content of 
all the nodes along the path. Hop-count routing indexes are aggregated routing 
indexes for each hop up to a maximum number of hops. Finally, in exponentially 
aggregated routing indexes, it is not stored the exact number of results for each 
network distance as in hop-count routing indexes, bu t a value is stored that 
depends on the network-distance the results can be found. They require less 
storage space with the drawback of loss in accuracy.

A similar approach is presented in [19]. Bloom filters are used as indexes. 
Each peer maintains a  local Bloom Filter that represents the object in the local 
repository, and a remote Bloom Filter for each link obtained from its neighbors. 
During the query routing, each node propagates the query to the best k links 
based on the semantic similarity with the query. When a node discovers tha t a 
peer frequently produces good results to its requests, it attem pts to move closer 
to it by connecting directly to tha t peer.

2.2 Building Small-Worlds and Clusters
Many recent research focus on organizing peers into a  small-world topology that 
has been shown to be efficient in retrieving large number of results.

In [15] a small world network is proposed for which it can be shown that 
the number of messages for search is bounded by a function proportional to 
(logN)2. The network structure is a  two-dimensional lattice where each node
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is connected with the neighbor nodes in the lattice through short-range connec
tions. Also each node has a long-range connection with a non-neighbor node. 
This long-range connection is created with probability l / r a , where r  is the lat
tice distance and a a parameter. For a =  2, it is shown that the above search 
bound is achieved. However a very strict topology it presumed. Also, there is 
no description of the procedure that creates this type of network.

In [13], peers are organized into clusters based on their interests, where peers 
within the same cluster are highly connected between them. Each peer has all 
the information provided by the cluster. Gossiping mechanisms are used for the 
information dissemination within a group. Requests tha t cannot be answered 
by the local node are forwarded to other clusters. However, there is no clear 
description of the procedure followed to build such a network and to  navigate 
between the clusters. Also each peer should have knowledge about all the data  
the peers of its cluster store.

Small worlds in non DHT p2p systems are also discussed in [5] in the con
text of searchable querical data  networks. Interconnection between nodes is 
correlated with ’similarity’ of the data  content of the nodes. Some principles of 
building and querying networks based on the content of the peers are discussed. 
Nodes with similar data content are clustered together. A query is propagated 
to the neighbor that is more similar to the target data. Some variations of 
the query propagation are proposed, such as the use of flooding when the first 
target data item is located. However, this work does not include a concrete 
decentralized small-world construction procedure.

In [4], a family of distributed access methods are proposed for building 
a small-world network and for efficient execution of various similarity-search 
queries (exact-match, range and k-nearest neighbor queries). The idea is that 
all the similar objects are nearby in the network. Lv norm is used as the dis
tance function between two nodes keys that represent their data. The forward 
primitive uses only local information to process a query and make forward deci
sions. The query is propagated to the neighbor that has the smaller Lp distance 
with the query key. Range or kNN queries can be executed efficiently in two 
phases: first, by an exact-match query to locate the locality of the query, and 
then by flooding the query throughout the locality of the query.

In SSW (Semantic Small World) [16] peers are organized with semantically 
similar data closer to each other in clusters, forming a small world overlay net
work. LSI (Latent Semantic Indexing) is employed to derive the semantic vector 
for each data object. A peer clusters its data  object with similar semantics. The 
location information of the peer’s local data  objects not belonging to the seman
tic subspace of the peer are published into the rest of the P2P system. A peer 
also holds location information of data  objects belonging to its subspace but 
physically stored at other peers. A new peer joins the cluster whose centroid 
is the closest to its semantic label. Since the dimension of the semantic vector 
is correlated with the SSW dimensionality, only the first few dimensions are 
used for the construction of the small world topology, which results in loss of 
information.

Very recently, researchers have proposed extending DHTs with long range
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links towards creating small worlds. Symphony (17) is an extension of Chord. 
Similar to Chord, the participants are arranged along a ring. Each node that 
arrives chooses an id uniformly from an interval. A node manages the sub
range of the interval which corresponds to the segment on the cycle between 
its own id and the id of its immediate clockwise predecessor. There are also 
long distance links drawn from a family of harmonic distributions, in order to 
achieve a small-world topology. Each node except of its neighbors maintains a 
list of its neighbor’s neighbors in order to improve the choice of neighbor for 
routing queries.

Also, many recent research efforts are focusing on organizing peers in clus
ters, which in a  sense are similar to groups in small worlds. In most cases, the 
number or the description of the clusters is fixed and global knowledge of this in
formation is required. The main difference between clusters and small-worlds is 
that a small-world refers to a particular topology, where peers in the same group 
are highly connected between them and there are a  few links between peers of 
different groups. On the other hand, a  cluster is a  set of similar peers (based 
on some characteristics) where there is no assumption on how peers within the 
cluster are connected. Also, there is no assumption on how different clusters 
are connected between them.

In SETS [6], peers are partitioned into a fixed set of C clusters each one 
corresponding to a topic segment such th a t sites with similar documents belong 
to the same segment. Each topic segment has a description called topic centroid. 
Knowledge of the centroids is global (all the peers should know the centroids 
of all the clusters). Short distance links connect sites within a segment. Long 
distance links connect sites of different segments. The routing procedure consist 
of two steps: Global routing forwards the query to the appropriate segment. 
Then, local routing is used to propagate the query to a subset of sites within 
a segment. The disadvantage of this approach is that there must be a site for 
specific administrative tasks, such as updating the topic centroids and finding 
the appropriate topic segment for attaching a new peer.

In Semantic Overlay Networks'(SONs) [8], nodes semantically related are 
clustered together forming a semantic overlay network. There is a classification 
hierarchy of the queries and the nodes based on their content. Queries are 
routed to the appropriate SONs, increasing the chances th a t matching files will 
be found quickly. However, there is no description on how SONs are created or 
how the queries are routed.

In [28], documents are classified into semantic categories. Clusters of peers 
are formed based on the semantic categories of the documents they store. The 
number of clusters is fixed and predefined during the bootstrap of the system. 
Each node in a cluster has information about the content of all the other peers 
within the cluster, in order to serve all requests for documents contributed by all 
the nodes of the cluster. Alternatively, this can be achieved by having a  distinct 
set of super-peers storing cluster m etadata. Also each node stores a  Document 
Category Routing Table that maps documents categories to  cluster-ids and a 
Node Routing Table mapping each cluster-id to a  list of nodes belonging to the 
cluster. These tables are used for the routing of the queries to  the right cluster.
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Recent extensions of the DHT-based networks propose instead of associating 
keys to data items based just on their identifier, to associate with each data  item 
(or peer) a vector describing its content and then use this vector as an input to 
the hashing functions.

In self-organizing SONs [27], LSI is used to represent documents and queries 
as vectors in a Cartesian space. Semantically related indices arc in nearby nodes 
of the overlay network. The document semantics are produced using LSI. CAN 
is used to create a semantic overlay by using the semantic vector of the document 
as the key to store document index in the CAN. The query is only need to be 
compared against a small region centered a t the query. Since the dimensionality 
of the CAN is much smaller than the LSI’s semantic space, rolling index is used 
to partition the semantic space along more dimensions by rotating the semantic 
vectors. Also a content-aware boot-strapping helps to distribute the indices 
more evenly across nodes. Finally, a content-directed search algorithm is used 
to face the problem of the curse of dimensionality. However, there is loss of 
information when reducing the dimensions (using roiling indexes).

In [26] a p2p information discovery system is presented, th a t supports flex
ible queries using partial keywords and wildcards, and range queries. The key 
innovation is a dimension reducing scheme that effectively maps the multi
dimensional information space to physical peers. Documents th a t arc local in the 
multi-dimensional space are mapped to indices that are local in the 1 -dimension 
space and to peers that are close in the overlay network. Chord is used as the 
overlay network topology. Each data elements is associated with a sequence of 
keywords tha t form a multi-dimensional space. A Space-Filling Curve (SFC) 
is used for the mapping from the d-dimensional to the 1 -dimensional space. 
The problem with this mapping is that not all the adjacent sub cubes in the 
d-dimensional space are adjacent or even close in the curve.

2.3 Range Queries and Multi-Attribute 
Histograms

In [25] a method based on the CAN system for efficient evaluating range queries 
is proposed. The answers of range queries are cached a t the peers and are used 
to answer future range queries. The system uses a 2d virtual hash space similar 
to CAN, which is partitioned into zones. Each zone is assigned to a peer. Given 
a range query (ςβ,ς ε)> it is hashed into point (qeiqe) in the virtual hash space 
(target point) and thus, the node that owns this zone stores information about 
the answer of the query. Not all the peers in the system participate in the 
partitioning. The nodes that participate are called active nodes (each one owns 
a zone). The rest of the peers are called passive nodes. Initially there is only 
one active node tha t owns the entire hash space. The partitioning of the hash 
space is dynamic and changes over time as the existing zones split (due to large 
load) and new zones are assigned to passive nodes. Whenever a peer gets an 
answer, it informs the target node in order to cache the answer. Initially, all the
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queries are answered by the single active node. The performance of the network 
increases as more queries are posed.

In (21] is presented how multidimensional range queries can be supported 
in a p2 p system by using traditional spatial-database technologies (Ad-trees and 
space-filling curves). When space-filling curves are used for range partitioning, 
data is first mapped down into a  single dimension using a  space-filling curve and 
then, the single-dimensional data is range partitioned across a dynamic set of 
nodes. The network graph topology is a circular linked list of nodes, enhanced 
with additional skip pointers for faster routing. Each node manages data in 
a  contiguous range of values. Similarly, during the query routing, the multi
dimensional query is first converted to an appropriate set of 1 -d range queries. 
All these queries are routed to the network. When using fcd-trees, the data 
space is broken into rectangles with each node managing one rectangle. The 
leaf nodes of the fcd-tree correspond to the rectangle being stored by a node. 
The space is split load equally instead of space equally. Skip pointers are also 
used to speed up the routing.

STHoles [20] is a ’workload-aware* histogram th a t allows bucket nesting to 
capture data regions. This histogram exploits query workload to spend more 
resources in heavily accessed areas. Regions th a t are more heavily queried will 
benefit from having more buckets with finer granularity. The problem with kd- 
tree and STHoles is that it is very difficult to merge histograms that belong 
to one or another type, since the tree structure of these two histograms is not 
determined and depends on the number of tuples (for Ad-tree) and on the query 
workload (for STHoles).

In [23], two main alternatives to approximate multi-dimensional joint data 
distributions are proposed: multi-dimensional histograms and Singular Value 
Decomposition (SVD) techniques. Following the first approach, either the prob
lem is reduced to a single dimension using space-filling curves, such as the Hilbert 
curve (however, two adjacent points in the n-dimensional space may be distant 
in the linear ordering), or the n-dimensional space is partitioned into rectangu
lar regions (at every step the attribute for which the marginal distribution is 
the most in need of partitioning is selected to be partitioned). SVD techniques 
cannot be extended to dimensions greater than two.

To conclude, there are many works that deal with the small-world phe
nomenon in p2p systems. There are works tha t study the small-world phe
nomenon theoretically, such as [15], or propose p2p network topologies that 
follow the small-world topology [13, 5], but there is no clear decentralized con
struction procedure. The small-world topology has also been extended to DHT 
systems (such us [17]), with the drawbacks of compromising peers autonomy 
and requirement for strict network topology. Clustering of the peers have been 
proposed by many recent works [6 , 8 , 28]. The number or the description of 
the cluster is fixed in most cases, and global knowledge of this information is 
needed to attach each peer to the appropriate cluster.

We use histograms as routing indexes, instead of other type of indexes used 
in previous works, such as inverted list of keywords [9] and Bloom Filters [19]. 
The main advantages of histograms over other type of indexes are tha t they
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incur almost no run-time overhead and, for most real-world databases, there 
exist histograms that produce low-error estimates while occupying reasonably 
small space [14]. Histograms also perform better on answering range queries 
and there are type of histograms that can be easily updated and aggregated 
(creating the routing indexes).

There are also many works that deal with the problem of answering multi
dimensional range queries [20, 21, 23]. These works propose either techniques 
for reducing the problem into a single dimension (that lacks accuracy since two 
adjacent points in the n-diraensional space may be distant in the 1 -dimensional 
ordering) or structures for multi-dimensional histograms. In the latter case, the 
structures proposed have large update cost, since the multi-dimensional space 
is split into regions of different size which is modified as the data  changes, and 
also, it is difficult to be merged.
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Chapter 3

System Overview

We assume a p2p system with a set of peers. This set changes as new peers leave 
and join the system. Each peer is connected to a small number of other peers 
called its neighbors. Peers store data items. A query q may be posed a t any of 
the peers, while data items satisfying the query may be stored a t various peers 
of the system. Our goal is to route the query to such matching peers efficiently.

3.1 Histograms as Routing Indexes
We focus on p2p systems where each peer stores a  relation R with a  numeric 
attribute x and on routing range selection queries on x. Each peer maintains an 
index of the data items stored locally a t it; this is called a local index. As local 
indexes, we use histograms. Histograms are widely used as a  mechanism for 
compression and approximation of da ta  distributions, for selectivity estimation, 
approximate query answering and load balancing [14]. In this work, we use 
histograms for clustering and query routing in p2 p systems.

A histogram H (x) on an attribute x is constructed by partitioning the data  
distribution of x into b (>  1 ) mutually disjoint subsets called buckets and ap
proximating the frequencies and values in each bucket. The problem of building 
an accurate histogram for a  given attribute is well-studied and is not the focus of 
this thesis. One requirement in our context is using histograms that can be effi
ciently aggregated; tha t is given two histograms for the d a ta  items stored locally 
a t two peers, to have a low-cost procedure for constructing one histogram for 
the items collectively stored a t both peers. We consider equi-width histograms, 
that is, we divide the value set of an attribute x into ranges of equal width 
(buckets). For each bucket we keep the fraction of the number of tuples with 
values for x within the range of the bucket, divided by the to tal number of tuples 
the histogram summarizes. Consider the histogram shown in Fig. 3.1 over an 
attribute x of a relation /£, 0 <  x <  40. The data  space of x is partitioned into 
four equi-width buckets. The fraction of the total number of tuples th a t belong 
to the first bucket (the value of x is included within range [0,9]) is 0.3, which
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Figure 3.1: Example of an equi-width histogram over an attribute x, 0 <  x < 40

means that 30% of the tuples have value for x within range [0,9]. Similarly, 
the fraction of the total number of tuples that belong to the second bucket (the 
value of x is included within range [10,19]) is 0.2, and so on. In addition, we 
maintain the total number of all tuples (the histogram size), denoted by S(n).

We denote by LI(n) the histogram used as the local index of peer n. Besides 
its local index, each peer n maintains one routing index RI(n,e) for each of its 
links e, that summarizes the content of all peers that are reachable from n  using 
link e at a distance at most H, called radius. The routing index RI(n, e) is also 
a histogram defined next.

We shall use the notation H(n) to denote a histogram for peer n  (used 
either as a local index LI(n) or as a routing index RI(nt e)), Hi(n) to denote 
the frequency of the values within i-th  bucket, 0 <  i <  b — 1, and S (i/(n ))  to 
denote its size. Then,

D efin ition  1 (h is to g ram -b ased  ro u tin g  index ) The frequency of the val
ues within the i — th bucket of the histogram-based routing index Rf(n,e) of 
radius R of the link e of peer n is defined as:
RIi(n, e) =  EpeP(L/<(p) * S (L /(p )))/E pePS(LJ(j>)),
where S(RI(nt e)) =  Epep5(L /(p )) and P is the set of peers p within distance 
R of n reachable through link e.

Thus, the frequency stored a t each bucket in the routing index of a  particular 
link e of peer n is produced by taking the fraction of the total number of 
tuples tha t correspond to this bucket for all the local indexes within the horizon 
(reachable through this link), divided by the total number of tuples the peers 
within the horizon (that are reachable through this link) store.

Similarly, if the local index of peer p need to be subtracted from the routing 
index of peer n, the new routing index is produced by the following equation:

An example is shown in Fig. 3.2. For a given query q, the local histogram 
LI( 1 ) of peer 1  provides an estimation of the number of results (matching tuples) 
of peer 1 , while the routing index RI( 1, e) provides an estimation of the number 
of results that can be found when the query is routed through link e. The set 
of peers within distance R of peer 1 is called the horizon of radius R of peer I.

We denote by results(n, q) the actual number of results peer n  stores for 
query q and by hresults(H(n)} q) the number of results estimated by the his
togram H(n) that summarizes the content of peer n. As usual, we make the 
uniform frequency assumption and approximate all frequencies in a  bucket by 
their average. We also make the continuous values assumption, where all possi
ble values in the domain of x th a t lie in the range of the bucket are assumed to
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Figure 3.2: The local indexes of peers 1, 2, 3, and 4 and the routing index of 
link e of peer 1 for radius R =  2, assuming that local indexes LI(2), LI(3) and 
L/(4) have the same size.

be present. However, there is a  probability tha t although a value is indicated 
as present by the histogram, it does not really exist in the data (false positive). 
This is shown to depend on the number of buckets, the number of tuples and 
the range of the attribute. Details can be found in the Appendix.

Let a  query qkj = {x: a < x < a -f- k * d — 1}, where d is equal to the range 
of each bucket. We denote k (0 <  k <  b) as the query range (the number of 
buckets the query includes), j  is the starting bucket of the query, j~a/d and 
a = c* d (the start of the query is the start of bucket j), where 0 <  c <  6 — 1 . 
We also consider the queries q<j- — {x: x < a} and q>j =  {x: x >  a}. Note 
that query q>j is the same with query q̂ j. Also if j  +  k > b -  1 for the query 
qkj, then it is the same with the query q>j. We can estimate results(n, q) using 
the histogram H{n) of peer n based on the type of the query q as follows:

• qkj: hresults(H(n),qkj) = S(H(n)) * Σ {^Η {(π)

• Q<j: hresultsiHin)^^) — S(H(n)) * Σ<-0//«(η)

•  Q>j: kresults(H(n), g>j) =  S(H(n)) * E*=^/f«(n)

We defined the query qkj as starting from the lower limit of a  bucket (a =  c 
* d), for simplicity.

In the general case where the s ta rt or the end of the query can be any point 
of the bucket the query can be defined as qkj =  {x: a.\ < x < a2 -f k* d — 1 } where 
\j — o i /d j , a\ and a 2 can be any integer values within the range (0 ,d  * 6 — 1 ] 
and a\ < a 2 +  k * d. Also q>j =  {x: x >  αχ} and =  {x: x <  02}, where 
jj  =  α ι/d j and \j =  a 2/d j correspondingly. In order to estimate the number of 
results we use the uniform frequency assumption for the values of each bucket. 
The fraction of the total number of tuples tha t satisfy each type of query is:

• qkj: perc(H{n),qkj ) =  Σ{^~}Hi(n)+Hj(n)*(l-(ai~j*d))/d+Hj+k(n)* 
(a2-{j+  k + l)*d)/d (l)

•  q<j·. perc(H(n),q<j) =  Σ ^ Η ^ η )  +  Hj(n) * (at -  j  * d)/d (2)

• q>f perc(H{n),q>j) =  Ebi=j+1Hi(n) + Hj(n) * (1 -  (a2 - j *  d))/d (3) 

The estimated number of results based on the type of query is:
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•  qkj: hresults{H(n),qkj) -  S(H(n)) * perc(H(n),qkj) (4)

•  g < j-  hresults(H(n) , q < j )  = S{H{n))*perc{H(n),q<j) (5)

•  ?>_,·: hresults(H(n),q>j) =  S(H(n)) * perc(H(n),q>j) (6)

In the rest of the thesis, wc assume that queries s ta rt and end a t the lower 
and the upper limits of the buckets correspondingly.

3.2 Small-Worlds in Peer-to-Peer Systems
Ideally, we would like to route each query q only through the peers that have 
the largest number of results for q. To this end, we define PeerRecall as our 
performance measure. PeerRecall expresses how far from the optimal a  routing 
protocol performs. Let V be a set of peers (V C TV), by Sre$uUs(V,q) we 
denote the sum of the numbers of results returned for a  query q by each peer 
that belongs to V.

D efin ition  2 (P eerR eca ll)  Let Visited (Visited C N) be the set of peers 
visited during the routing of a query q and Optimal (Optimal C N) be the set 
of peers such that \Optimal\ = \Visited\ and v €  Optimal <=> resuHs(v, q) > 
results(u% q), V u £ Optimal. We define PeerRecall as: PeerRecall(Visited, q) 
= Sresults(Visited, q)/Sresults(Optimalt q).

Intuitively, to increase PeerRecall, peers th a t match similar queries must 
be linked to each other. The network distance between two peers n< and η7·, 
dist(ni, r i j )  is the length of the shortest path from rn to  n j  in the p2p network. 
The diameter of the network is the maximum distance between any two peers 
in the network. The clustering coefficient of a  network captures the probability 
that two neighbors of a  peer are also neighbors themselves; it is the average frac
tion of pairs of neighbors of a  peer th a t are neighbors of each other. Small-world 
networks are characterized by: (i) a  small diameter and (ii) a  large clustering 
coefficient (29]. To increase PeerRecall, small-worlds of peers should be formed 
based on whether the peers match similar queries. Fig. 3.3 shows a random 
and a small-world p2p network. In a  small-world network, peers tha t match a 
query are nearby, thus once in the right group all matching peers are nearby.

To cluster peers, we propose using their local indexes. T hat is, we cluster 
peers th a t have similar local histograms. For this to work, the distance (d) 
between two histograms must be descriptive of the difference in the number of 
results to any given query.

P ro p e r ty  1  Let L /(n i) , LI(n2) and LI(nz) be the local indexes of three peers 
n\, «2  and n*. For each query q, if d(LI{n\),LI{ri2 )) > d(LI(ni),LI{nz)), 
then\resvlts(n\^q)IS(LI(n\)) - results(n2 ,q)/S(LI(n2))\ > 
\results(nuq)/S(LJ(ni)) - resvltsfaz,q)/S(LI(n3))\.

Sresults(Vtq) = Y,V£vresults(v,q) (3.1)
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Figure 3,3: (left) Random and (right) small-world p2p network

If the distance between the local indexes LI(ni) and LI(n%) of peers n\ and 
ri2 is smaller than the distance between the local indexes LI(n\) and LI(n3) of 
peers n\ and 7*3 , we want also the difference in the percentage of tuples that 
satisfy the query for n\ and 7*2 to be greater than the difference in the percentage 
of tuples that satisfy the query for n% and 713.

We expect peers that have small histogram distance, to have also small 
difference in the number of results they return for each given query. Since our 
goal is to maximize the returned number of results, we want to build the network 
such as the structure to help on retrieving large number of results. Peers that 
are more likely to answer the same set of queries (and thus, have small distance 
between their local indexes) we want to be nearby in the overlay network.

We consider latter two distance metrics (the L\ and the edit distance) and 
propose weighted versions of both that satisfy the above property, taking into 
account the query workload. For different query workload the distance between 
the two histograms will be different, since the difference in the number of results 
varies depending on the query.

3.3 Query Routing and Small*World Construc
tion

We describe first how histogram-based routing indexes can be used to  route 
a  query and then how small-worlds are constructed. We distinguish between 
two types of links: ahorUrange or short links th a t connect similar peers and 
long-range or long links th a t connect peers with non-similar content. Two peers 
belong to  the same group if and only if there is a  path consisting only of short 
links between them.

3,3.1 Query Routing
A query q may be posed a t  any peer n. Our goal is to  route the query q 
through a  set of peers th a t gives a  large number of results for qt th a t is, we 
want to  maximize PeerRecall. To this end, we use the following heuristic: 
each peer th a t receives a  query propagates i t  through those of its links whose 
routing indexes indicate th a t the peers reachable through them  provide the 
largest number o f matching tuples. In particular, each peer n  th a t receives



24 CHAPTER 3. SYSTEM OVERVIEW

Rl(n,el)

RI(n,e2)

Rl(a,e3)
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S(Rl(n.el» = 1000 tuples

S(RI(n,el)) *500tuples

S(RI(n,el)) = 1500 tuples

Figure 3.4: Example of an equi-width histogram over an attribute x, 0 < x <  40

a query q propagates the query through the link e whose routing index gives 
the most matches (hresults(RI(nt e), q) > hresults(RI(ntl)tq) V link l Φ e) 
and has not been followed yet. By following this link, the query is propagated 
towards the peers that are estimated to provide the largest number of results 
and thus PeerRecall is increased. The routing of a  query stops either when 
a  predefined number of peers is visited (MaxVisited) or when a satisfactory 
number of results is located.

Consider the situation in which the query q reaches peer n  of Fig. 3.4. Let 
the query be 10 < x <  15. The estimated number of results for each of the 
routing indexes of links e l, e2 and e3 is (based on equation (4) in Section 3.1): 
hresults(RI(n1el)iq) =  RI\(ny e l)  * S(RI(nte 1)) * perc(RI(ni e l ) ,<7) =  0.4 * 
1000*0.5 =  200
hresults(RI(n,e2)1q) ~R I\(n , e2) * S(RI(nie2)) * perc{RI(n^e2)yq) =  0.4 * 
500 * 0.5 =  100
hresults(RI(n^ e3),q) =  3) * S (R /(n ,e3 )) * perc(R /(n , e3),g) =  0.2 *
1500*0 .5=  150
Thus, peer n selects link e l to propagate the query since the estimated number 
of results is the largest.

By following this procedure, it is possible to reach a situation in which no 
matching peers are found. This can happen if the peer n  tha t poses a query 
has no matching links (hresults(RI(n}e)} q) =  0 V link e of n), which means 
that the matching peers (if any) are outside the radius R of n. In this case, 
query routing would stop without returning any results. To handle this case, 
we use a variation of the above procedure until we find the first matching link. 
Specifically, if no matching link has been found during the routing of the query, 
and the current peer has no matching links, then the long-range link of this 
peer is followed (even if it does not match the query). The idea is that we want 
to move to another small-world of the network, since the current small-world 
(bounded by the horizon) has no matching peers. In the case th a t the peer has 
no long-range link or we have already followed all long-range links, the query is
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propagated through a short link to a neighbor peer and so on until a long-range 
link is found.

In the above procedure each peer propagates the query to only one of its 
neighbors (corresponding to a depth-first traverse of the network). A variation 
can be used in order to exploit the grouping of the peers for faster retrieval of 
the results. More specifically, when the query reaches a peer p of the appropriate 
group, flooding can be used, in order to propagate the query to all the peers 
that are connected with p through short links (thus, propagate the query to all 
the neighbors of the same group).

The question is how we can determine whether the query has reached ap
propriate group or not. Let the query qkj, where k is the range of the query 
and j  the starting bucket. If hresulis(H(n)tqkj) = maxi(hresults(H(n)tqki)) 
V 0 < i < 6 —1, then peer n  belongs to the appropriate group. The idea is that 
if the r  buckets tha t include the query range correspond to the combination of 
k buckets of the local index that gives the maximum number of results for this 
particular query, then all the peers of the same group will have large number of 
results to these buckets and it will be effective to flood the query to this group.

This variation of the query procedure can be effective for fast retrieval of 
the results. However it does not ensure that many results will be found. The 
problem is that each new peer that joins the system links to the most similar 
of the existing peers. This does not guarantee that peers linked through short 
links can answer the same set of queries. Also, it is possible tha t a query (for 
example a query with large range) can be answered by peers of more than one 
groups. However, when using flooding, after the flooding starts, the propagation 
of the query is limited within one group only.

3.3.2 Small-World Construction
We describe next how routing indexesran be used to build small-world networks. 
Each new peer that enters the system tries to find a relevant group of peers and 
links with SL of them through short links. The idea is to use the local index 
of the new peer as a  query and route this towards the peers tha t have the most 
similar indexes. Then the new peer is connected with the SL  peers that are 
most similar to it. Each new peer also links with a peer that does not belong to 
the group through a long link with probability P(. Short links are inserted so 
that the peers with relevant information are located nearby in the p2 p network 
and a large clustering coefficient is attained. Long links are used for keeping the 
diameter small. The reason is tha t we want to be able to find both all relevant 
results once in the right group, and the relevant group once in another group, 
thus increasing Peer Recall.

In particular, when a new peer p wishes to join the system, a  join message 
that contains its local index LI(p) is posed as a query to a well known peer 
in the system. The join message also maintains a list L (initially empty) with 
all peers visited during the routing of the join message. The join message is 
propagated until up to JMaxVisited peers are visited.

Whenever the join message reaches a  peer n:
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1 . The distance d(LI(n), LI(p)) between local indexes LI(n) and LI(p) is 
calculated.

2. Peer n and the corresponding distance are added to list L .

3. If the maximum number of visited peers JMaxVisited is reached» the 
routing of the join message stops.

4. Else» the distances d(L/(p), /2 /(n ,e)) between the local index LI{p) of 
the new peer p and the routing indexes f l/(n ,e )  that correspond to each 
of the outgoing links e of peer n are calculated.

5. The message is propagated through the link e with the smallest distance 
that has not been followed yet» because there is a higher probability to find 
the relevant group through this link. When the message reaches a peer 
with no other links that have not been followed, backtracking is used.

Consider the example of Fig. 3.4. Let the join message be a t peer n and 
the appropriate link need to be selected to propagate the message. Let the 
histogram distance between the local index of the new peer p and the routing 
indexes for each link of n  be: 
d(L/(p), H /(n ,e  1 )) =  10  
d(LI(p),RI(n,e 2)) =  5 
d (L /(p ),H /(n ,e3 )) =  15
Then the join message will be propagated through link e2, since the routing 
index of peer n for this link has the smallest distance from the local index of 
the new peer p.

When routing stops, the new peer selects to be linked through short links to 
the SL peers of the list L whose local indexes have the smaller distances from 
the local index of the new peer, and with probability Pi to one of the rest of the 
peers in the list through a long link.

An issue is how the peer tha t will be attached to the new peer through the 
long link is selected. One simple approach is to select randomly one of the rest 
of the peers within the list (that does not belong to the SL peers selected to be 
linked through short links). Other more sophisticated methods can be followed 
for selecting the long link based on the histogram distances, bu t this is left as 
future work.

3.3.3 Index Update
When a new peer η* joins the system, it must inform the peers within distance 
R about the data  it stores, in order to update their routing indexes. To this end, 
njt sends a message New(LI(rik)* Counter) to all its neighbors, where Counter 
is set to R. Upon receipt of a  New message, each peer n< merges the received 
LI(njt) index with the routing index of the corresponding link. Then, it reduces 
Counter by one, and if Counter is nonzero, it sends a New(LI(nk)i Counter—1) 
message to all other of its neighbors. This way, the local index of the new peer 
is propagated to the existing peers.
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In addition, the new peer must construct its own routing indexes. Thus, it 
should receive the local indexes of all the peers within its horizon for each of 
its links and construct the routing indexes for each link based on the Def. 1 of 
Section 3.1. This is achieved through a sequence of FW(Index, Counter, flag) 
messages. In particular, each peer n,- upon receipt of a New message from a peer 
rij, it replies to rij with a FW(LI(rii), R, False) message where Counter is set 
to R. The use of the flag parameter will be explained shortly. Upon receipt of 
a FW (Life), Counter, False) message, each peer nj, decrements the Counter 
by one, and if Counter is nonzero, it sends a FW(LI(rti),Counter — 1, False) 
message back to the peer that has sent the New message to it. This way, the 
local indexes reach the new peer n*. Peer n* creates its routing indexes by 
merging the corresponding local indexes received by the various FW  messages.

As data changes locally at a peer, its local index need to be updated. Also, 
the routing indexes of all the peers within its horizon need update. Thus, 
periodically each peer informs its local index about the changes in the data 
stores locally. Next, each peer that updates its local index, should inform all 
the peers within its horizon to update their routing indexes. This is done by a 
sequence of New messages.

We now explain the use of the flag parameter. Flag is used because the 
insertion of a new peer may change further the horizons of existing peers. Take 
for example the network of Figure 3.5 with R =  2. Say a new peer, peer 13, 
enters the network and links to both peers 1 and 3. The local index of 13 must 
be propagated to 1, 2 and 3, 4; this is achieved through the New messages. 
Peer 13 must also construct its own routing indexes; this is achieved through 
the FW messages with flag equal to False. However, note th a t the insertion 
of 13 has changed the relative distance of some peers. In particular, now peer 
3 (1) belongs to the horizon of 1 (3) since their distance (through the new peer 
13) is now 2. Thus, the local index of 3 (1) must now be merged with the 
corresponding index of 1 (3).

Flag is used as follows. Flag is initially set to False. When the new peer 
η* receives a  FW (Index,Counter, False) message, it changes Flag to  True, 
decrements Counter by one, and if Counter is nonzero, it propagates a  message 
FW(Index,Counter — l ,T ru e )  to all of its other neighbors. Upon receipt of 
a  FW (Index, Counter, T rue) message, each peer merges the Index with its 
corresponding routing index, decrements Counter by one, and if Counter is 
nonzero, it sends a  FW(Index, Counter — l,T ru e )  message to its neighbors. 
This way, indexes of peers whose horizons change by the introduction of the new 
peer are propagated to each other. When a peer wishes to leave the system, it 
sends an update message to all its neighbors with a  counter set to the radius 
R. When the message reaches a  peer, the peer performs the update a t its 
routing index and propagates the message further until the counter reaches 0. 
Furthermore, it sends it own local index through the same link with a counter 
set to R to  inform the peers tha t are now included in its horizon, since the 
departure of the peer has resulted in the decrease of its distance with other 
peers.

Note that, as indicated in Figure 3.5, it  is possible tha t the local index of
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a peer n* is included in more than one routing indexes of some other peer nj. 
However, we may want to avoid this, because during search, two different paths 
will lead us to the same peer. This problem can be overcome by using peer 
identifiers. Each peer stores the identifiers of the peers tha t are included in 
each of its routing indexes. When a local index reaches a peer during the join 
procedure, the peer first checks whether it has already stored this index a t the 
routing index of some other link. The problem is that it cannot be applied in the 
situation that the peer sends the New message in parallel to all its neighbor. 
Thus, the New messages should be sent sequentially if we are interested in 
avoiding a situation that more than one routing indexes to include the same 
local index.

3.3.4 Load Balancing
By following the above procedure, peers tha t stay longer in the p2p network are 
connected with more short links than recently arrived ones, since the probability 
of old peers being selected as neighbors of arriving peers increases as they stay in 
the network. This is not necessarily undesirable, since peers th a t stay connected 
for longer periods of time are more stable. On the other hand, peers with more 
links will receive more requests and thus, it is possible tha t they are overloaded. 
This can be remedied by following a simple reconstruction procedure. Whenever 
a peer gets overloaded (i.e., the number of its short links increase beyond a 
threshold FLimit), the peer may delete some of its links. When a peer n 
decides to delete a  link, it selects the link e with peer p th a t has the largest 
distance d(LI(n)t f i/(n , e)) among all of its links (tha t is, the less similar one). 
Peer p is then connected through a short link with another peer in the group, 
selected by sending a  join message as above. More specifically, before n  breaks 
the link with p, it sends a message th a t is routed inside the group and tries 
to find the peer with the less semantic distance with p (tha t can accept new 
connections). Then it informs p about its new neighbor in order to establish 
connection with it. The routing procedure whenever such a message reaches a 
peer v is the following:

1. The distance d(LI(v)1 LI(p)) between local indexes LI(v) and LI(p) is
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calculated.

2. Peer v and the corresponding distance are added to list L (similar to the 
list used during the join procedure).

3. If the maximum number of visited peers is reached, the routing of the 
message stops.

4. Else, the distances d(L/(p), RI(vye)) between the local index LI(p) of 
the peer p and the routing indexes RI(vt e) that correspond to each of the 
outgoing short links e of peer v are calculated.

5. The message is propagated through the short link e with the smallest 
distance that has not been followed yet. When the message reaches a  peer 
with no other links that have not been followed, backtracking is used.

When routing stops, the peer n selects the peer of the list L whose local 
index has the smaller distances from the local index of the pt and informs p 
about the connection it should create sending a message to it.

After this procedure takes place, peers with fanout greater than FLimit will 
converge to fanout FLimit. Also, the fanout of peers with fanout a little smaller 
than FLimit will also converge to FLimity since new peers will attach to them. 
Finally, peers with small fanout will have fewer new neighbors than peers with 
larger fanout, since the probability the routing of the message to reach these 
peers is smaller.

3.3.5 Node Leave
Before a peer exits the system, it should decide about the new connections tha t 
will be established after it leaves. We must ensure tha t the network will remain 
connected and also that the peer’s departure will not affect the grouping of 
the peers. The procedure tries to link the neighbors of the peer between them, 
keeping the network connected and the properties of the group the peer belongs 
to unaffected. In order to keep the network connected, the idea is to  link in 
a path all the neighbors of the peer n th a t leaves. Also, each neighbor th a t is 
linked through short link with n, should connect with another neighbor tha t 
has short link with n, keeping the grouping of the peers unaffected.

Peer n  tha t wishes to leave, first propagates a  message to its neighbors asking 
for their local indexes and a list NL with their own neighbors. For each of its 
neighbors peer n  stores:

1. the local index

2. the list NL  of its own neighbors and the type of links with them

Before peer n  leaves, it needs to  decide about the new connections th a t will be 
created after its departure. The procedure is the following:

While NL φ empty
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1. Peer n selects a neighbor k from NL. NL =  NL  — {A:}

2. If the link between k and n is short ( link(k,n) =  short), another peer u 
G NL (neighbor of n) is selected to link with k through short link. This 
peer should satisfy the following properties: first, it should be connected 
with n through short link ( link(u,n) =  short), and second, it should be 
the peer with the smallest histogram distance from k (V neighbor z of n  
d(LI(k),Li(u)) = minz(d(LI(k),LI(z))), where z € NL). If link(k,n) =  
long, k is marked to link through long Link with peer u G NL for which 
link(u,n) =  short).

3. k = u.

List NL is used so that peer n  can check whether two of its neighbors are 
linked together in every iteration, without having to send messages to all the 
neighbors.

After n has decided about all the new connections tha t will be created, it 
propagates a message to each neighbor x containing the new connections x will 
create. As soon as all the new connections are established n leaves the system. 
Also the routing indexes of the peers within the horizon of n  should be updated 
after it leaves.

The above procedure ensures that the network remains connected. The 
reason is that there is a path between all the neighbors of the departing peer 
n. Also, the grouping of the peers remains unaffected, since each neighbor k of 
n  for which link{kyn)=short connects with the most similar n ’s neighbor m  of 
the same group (links with n  through short link). Whenever a  new peer joins 
the system connects with the most similar of the existing peers. Thus n  with 
high probability will be the most similar peer to m and k, which means tha t 
it is expected to be very similar also to each other. This is the reason we only 
need to look a t the neighbors of the peer tha t leaves for establishing the new 
connections.

The number of messages needed"so tha t peer n  collects all the required infor
mation (list NL  and Local index) is 2 *degree(n)y where degree(n) is the number 
of n 's  neighbors. Then for each neighbor, peer n  selects another neighbor to 
link with it, and sends a message to both of them. Thus, 2 * degree(n) more 
messages are needed to inform the neighbors about the new connections that 
will be created. The total number of messages is 4 * degree(n). Of course after 
the new links are established the routing indexes of the peers within the horizon 
of the neighbors of n  need to be updated.

Note: If n  has only one neighbor then there is no need of creating new 
connections.
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Histogram Distance Metrics

As discussed in the previous section, histograms over one attribute are used as 
local indexes. The routing of the join message is based on the distance between 
the histograms. Thus, the distance metric used plays crucial role in the per
formance of the network. We expect the distance between the two histograms 
(corresponding to the local indexes of two peers) to be descriptive of the differ
ence in the number of results the peers store. For this reason, we introduce a 
workload-aware edit distance that in the average case is shown to  be analogous 
to the difference in the number of results returned.

4.1 Distance Metrics
The Li-distance of two histograms H{n\ ) and H(n2) is defined as:

D efin ition  3 (L i d is ta n c e  b e tw een  h is to g ram s) Let two histograms H(n\) 
and H(n2) with b buckets, their L\ distance7 d[Jl(H(ni)tH(n2)) is defined as: 
dLl(H(TH),H(n2)) =  E^o1 - Ή (η 2)|. '

For example, the L\ distance of the histograms in Fig. 4.2 is: 
dhx ( j/(n l) , H(n2)) =  0.1 +  0 +  0.4 +  0.5 =  1.

The histograms we study are ordinal histograms, tha t is, there exists an 
ordering among their buckets, since they are built on numeric attributes. For 
ordinal histograms, the position of the buckets is im portant and thus, we want 
the definition of histogram distance to also take into account this ordering. This 
property is called shuffling dependence. For example, for the three histograms of 
Fig. 4.1, the distance between histograms i / ( n l )  and H(n2) th a t have all their 
values at adjacent buckets (Ho(nl) and H i(n2) respectively) should be smaller 
than the distance between histograms H(nl) and i/(n 3 ) tha t have their values 
at buckets further apart. This is because, the difference between the number 
of results provided by peer n l  and the number of results provided by peer n2 
is smaller for a larger number of range queries than for peers n l  and n3. The
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Figure 4.1: Intuitively, the distance between H(nl) and H(n2) should be smaller 
than the distance between /T (nl) and Jf(n3)

shuffling dependence property does not hold for d^ , since the three histograms 
have the same pair-wise distance.

We consider an edit distance based similarity metric for which the shuffling 
dependence property holds. The edit distance of two histograms H(ni) and 
H{m) is the total number of all necessary minimum movements for transforming 
Him) to Him) by moving elements to the left or right. I t  has been shown that 
this can be expressed by the following definition [7]:

D efin itio n  4 (ed it d is ta n c e  b e tw een  h is to g ra m s)  Let two histograms H{m) 
and H(r12) with b buckets. Their edit distance, deiH(m), Him)), is defined as: 
de(H(ni),H(n2)) =  E t o M ^ ( t f i (n1) - f f J-(n2))|.

Let us define as:
prefil) =  Eli=0Hiim) -  E ^H iim ), 

where prefil) — 0 for l >  6 — 1 and l <  0

Then, the edit distance can be written as:
d e ( i / ( m ) , i i ( n 2 ) )  =  E f - oV e / ( 0 !

Edit distance takes the preffix sums of the array th a t represent the his
togram. Consider the two histograms of Fig. 4.2. There edit distance is: 
deiHinl)t H(n2)) =  0 .1 +  0.1 +  0.5 +  0 =  0.7.

We want a  distance metric tha t will be descriptive of the difference in the 
number of results for a given query (Property 1). In the ideal case, we want 
the distance between two histograms Him) and Him) to  correspond to the 
difference in the number of results between the peers m  and « 2  for each query.
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Figure 4.2: Example of two histograms over an a ttribu te x €  [0,40]

For a query qkj, the estimated difference in the results, hdif fer% of two peers 
n i and na is:
hdif fer{n\, ri2»Qkj) =  \hresults(H(ni)tqkj)/S(H(ni)) -  hresults(H(n2)iqkj)/S(H(n2))\ 
= | E £ * -  Hi(ni))\

The difference in the results for query qy is equal to:
h d i f f e r ( n u n 2,qkj)  =  |p r e f ( j  +  k ) -  p r e f ( j  -  1)| (4 .1 )

(proof in the Appendix).

FYora Equation 4.1, for k = 6 — 1 that is for queries of the form q>t Property 
1 holds for edit distance. I t  also holds for queries of the form qKi. I t  does 
not hold however, in general, so we extend Definition 4 as follows, based on 
Equation 4.1.

D efin ition  5 (w ork load-aw are  e d it  m ea su re  b e tw e en  h is to g ra m s)  Let 
two histograms H(ni) and H{n2) with b buckets. Their workload-aware edit 
measure, wde(i7(ni), / f (n 2)), is defined as:

wdeiHirulHint)) =
^ L o  ^Uowkj\pref(j +  k) -  preffj -  1)|

where 0 <  tujy <  1 and =  1.

We shall show that wde satisfies Property 1, if we adjust the weights properly. 
Let a query qkj\ recall that j  is the bucket the query s ta rts  from and k is the 
range of the query. Property 1 holds for gjtji if we set tujy =  1 and all other 
weights to zero. In this case, wde=hdiffer(ni, qkj), which means th a t the
distance between the histograms is equal to the difference in the number of 
results returned for query q^j.

In general, let fkj be the frequency of the queries qkj in the workload. By 
setting Wkj =  fkj% the wde distance approximates the expected difference in the 
number of results over all queries. Thus, in general, when we have knowledge 
about the range k of the query workload and the starting bucket j ,  we can use 
this knowledge to favor popular queries. By using the frequencies of the queries 
as weights, differences in the result sets of more popular queries influence more 
the distance of the histograms, while unpopular queries have a  smaller impact. 
When no knowledge about the workload is available we can simply use de·
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We use the same technique to extend to take into account the workload. 
Let us define as:

Ll(i) = Hi(nx) -  Hi(m) 
then, the L\ distance can be written as: 

dLl(H(nl),H(n2)) = EblZt\Ll(l)\

Similarly to Equation 4.1 (proof in the Appendix),
hdif f  er{n\ , ri2, qkj) = (4.2)

Thus, L\ distance is analogous to the difference in the number of results 
only for the queries qkj with k =  0, that is for queries covering a single bucket. 
For being the distance descriptive of the difference in the number of results 
(Property 1), we define a workload-aware version of the Ζ,ι-distance as follows 
based on Equation 4.2:

D efin ition  6 (w ork load-aw are L\ m easu re  b e tw een  h is to g ram s) Let two 
histograms H(n\) and Η(ηϊ) with b buckets. Their workload-aware L\ measuref 
wdix (Η(ηχ)% H(n2))t is defined as:

wdLl(H(ni),H(n2)) = E £ i« r t J |E £ *  Ll(i)\

where 0 <  Wkj <  1 and =  1-

By incorporating weights into d ix the new metric is shuffling dependent and 
it is proved to be equivalent to wde. Both weighted versions (Definitions 5 and 
6) are distance metrics. Proofs can be found in the Appendix.

4.2 Experimental Evaluation
We run a set of experiments to evaluate the histogram distance metrics. For 
simplicity of presentation, in the reported experiment, we use histograms with 
10 buckets and x €  [0,99]. We used a workload with queries having range (k) 
varying from 0 (covering data  in 1 bucket) to 4 (covering d a ta  in 5 buckets). We 
use 10 histograms H(i)y 0 <  i <  10, with 10 buckets each. Two different data 
distributions are used. In the first, for histogram H(i)y DT is the fraction of the 
total number of tuples tha t are included within bucket i and the rest tuples are 
uniformly distributed among the rest of the buckets. We also used the zipf data 
distribution. For each histogram there is a  ranking of the buckets based on the 
number of the tuples each bucket summarizes. The probability a tuple to belong 
to  the bucket with rank r  is analogous to P% = 1 / r a , where a is a  parameter that 
varies in our experiments. For histogram H(i) bucket i is set to be the most 
popular and the popularity reduces as the distance between bucket i and the 
other buckets increases. Another parameter in our experiments is the number 
bet of buckets that include the (100 * DT)% of the tuples (in our data  distribu
tion) or th a t are the most popular (in zipf distribution). More specifically, for 
histogram H(i) buckets i, . . . , i+ 6 c £ - l  include the (100*jDT)% of the tuples (for
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Table 4.1: Input parameters for centralized experiments (Simple Histograms)

Parameter Default Value Range

Number of buckets 10
Domain of x [0, 991
Tuples per peer 1000
Range of queries 0-4
DT 0.7 0.5-0.9
a 1.0 0.9-3.0
bet 1 1-3

our data distribution) or are the most popular (for zipf distribution). We com
pute the distance between H(0) and each histogram H(i), 1 <  i <  10, using the 
three distance metrics. Our performance measure is the difference in the num
ber of results for each histogram with f/(0), tha t is: hdif fer(H(i),H(0),tyy) 
with respect to the distance of the respected histograms (tha t is, whether Prop
erty 1 is satisfied). The desired behavior is the difference of the number of 
results estimated by two histograms to be analogous to their distance. Table
4.1 summarizes the parameters of the experiments.

4.2.1 Our Data Distribution
For the first experiment, the starting bucket j  of the query is chosen uniformly 
and performed the experiments for different ranges r. As expected, the L\ dis
tance (Fig. 4.3(left)) does not perform well, especially for our data distribution. 
The distance of the histograms has no‘ relation with the difference in the number 
of results. This is because the L\ distance compares only the respective buckets 
of each histogram without taking into account their neighboring buckets which 
however influence the behavior of queries with ranges larger than 0.

The edit distance (Fig. 4.3(center)) performs better than Lu since it takes 
into account the position of the buckets. In particular, as the distance between 
the histograms increases, their respective differences in the results also increase. 
However, for each query range this occurs until some point after which the dif
ference in the results becomes constant irrespectively of the histogram distance. 
This is explained as follows. The edit distance between two histograms takes 
into account the ordering of all buckets, while a query with range r involves only 
r  buckets, and thus it does not depend on the difference tha t the two histograms 
may have in the rest of their buckets. For example, for a  query with range 0, 
the difference in the results remains constant while the histogram distances in
crease, because the query involves only single buckets while the edit distance 
considers the whole histogram. The edit distance works better for queries with 
large ranges.

The behavior of the workload-aware edit distance is depicted in Fig. 4.3(right).



36 C H A P TE R  4 . H IST O G R A M  D ISTA N C E  M E TR IC S

«Μ » 11

Figure 4.3: (left) LI distance, (center) edit distance and (right) workload-aware 
edit distance for our da ta  distribution and for different query ranges (DT — 0.7 
and bet — 1)

Figure 4.4: (left) LI distance, (center) edit distance and (right) workload-aware 
edit distance for our data  distribution when varying DT (mixed query workload)

For each query, we set the weights that correspond to the range of the query to 
1 and all other weights to zero. More specifically, for a query with range k, we 
set Wkj =  1, V j. The distance is proportional to the difference in the number 
of results (which is the ideal performance).

For the following experiments, the starting bucket j  of the query is chosen 
uniformly and we use different ranges (between 0 and 4) for the queries, where 
queries of different ranges have different frequencies.

Figures 4.4 and 4.5 present the ^performance of the distance metrics for our 
data  distribution when varying DT and bet correspondingly. As expected, the 
L\ distance (Fig. 4.4 (left) and 4.5(left)) does not perform well. When bct=1, 
due to the nature of the data  (for each histogram the large da ta  distribution

Figure 4.5: (left) L I distance, (center) edit distance and (right) workload-aware
edit distance for our da ta  distribution (D T  =  0.7) varying bet (mixed query
workload)
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exists within a different bucket), all compared histograms have nearly the same 
L\ distance with //(0). When bet > 1, there is an overlapping between that 
buckets that correspond to the large data distribution. Thus the L\ distance is 
not always the same, however again it does not perform well since the histogram 
distance does not follow always the difference in the number of results.

The edit distance (Fig. 4.4 (center) and 4.5(center)) performs better than 
L i, since it takes into account the order of buckets. In particular, as the distance 
between the histograms increases, their respective differences in the results also 
increase. However, for each value of DT this occurs until some point after which 
the difference in the results becomes constant irrespectively of the histogram 
distance.

The performance of the workload-aware edit distance is depicted in figures 
4.4 (right) and 4.5(right). The weights are set equal to the frequency of the 
queries. More specifically, Wkj =  /* V starting bucket j t where /* is the fre
quency of the queries with range fc.The performance is the ideal. As proved, the 
difference in the results increases analogously to the difference of the histograms.

We also evaluated the workload-aware edit distance for a workload of queries 
with range from 0 to 4, for the case in which the starting bucket of the queries 
is not chosen uniformly but some starting points are, more popular (Fig. 4.9 
(left) and 4.10 (left)). The weights are: Wkj =  fkj where k is the range and j  
the starting bucket of the query, and fkj is the frequency of the queries with 
range k starting from bucket j. The distance satisfies Property 1 for this query 
workload as well. Although for this workload the histogram distance is not 
exactly analogous to the difference in the number of results, it satisfies the 
property that the largest the histogram distance, the largest the difference in 
the results.

4.2,2 Zipf Data Distribution
For the first experiment, where the starting bucket j  of the query is chosen 
uniformly and used different query ranges r, L\ (Fig. 4.6(left)) performs bet
ter than when using our data  distribution. The reason is the distribution of 
the data among more buckets. Edit distance (Fig. 4.6(center)) also performs 
better for zipf distribution for the same reason. Workload-aware edit distance 
(Fig. 4.6(right)) performs better then the other two distance metrics and it is 
proportional to the difference in the number of results.

We performed also the experiments using different ranges (between 0 and 4) 
for the queries, where queries of different ranges have different frequencies (Fig. 
4.7 and 4.8). The workload-aware edit distance (Fig. 4.7 (right) and 4.8 (right)) 
has the same performance as above. The L\ (Fig. 4.7 (left) and 4.8 (left)) and 
edit distance (Fig. 4.7 (center) and 4.8 (center)) perform better due to  the 
nature of the data (the tuples are distributed across more buckets). However 
their performance is worse than the workload-aware edit distance, since the 
histogram distance is not analogous to the difference in the number of results. 
Also, for large values of a (which means that the most popular buckets have 
much more tuples than the rest), the performance decreases, since the tuples
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Figure 4.6: (left) LI distance, (center) edit distance and (right) workload-aware 
edit distance for zipf data distribution and for different query ranges (a =  0.9 
and 6ct =  1)

Figure 4.7: (left) LI distance, (center) edit distance and (right) workload-aware 
edit distance for zipf distribution, when varying a (mixed query workload)

are distributed among less buckets.
Also, for the case in which the starting bucket of the queries is not chosen 

uniformly but some starting points are more popular (Fig. 4.9 (right) and 4.10 
(right)), workload-aware edit distance satisfies Property 1 also for this data 
distribution. Although for this workload the histogram distance is not exactly 
analogous to the difference in the number of results, it satisfies the property 
th a t the largest the histogram distance, the largest the difference in the results.

4.2.3 Summary of Experiments
To conclude, for both distributions and for all the values of DT and a, the 
workload-aware edit distance performs better than L\ and edit. The histogram 
distance is nearly analogous to the difference in the number of the results. When

Figure 4.8: (left) L I distance, (center) edit distance and (right) workload-aware
edit distance for zipf distribution (a =  0.9) varying bet (mixed query workload)
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Figure 4.9: (left) workload-aware edit distance for our data distribution, and 
(right) for zipf distribution, when varying DT and a correspondingly (mixed 
query workload where the starting bucket is not selected uniformly)

Figure 4.10: (left) workload-aware edit distance for mixed query workload for 
our data distribution (DT =  0.7), and (right) for zipf distribution (a =  0.9), 
when varying bet (mixed query workload where the starting bucket is not se
lected uniformly)

i
>

using Li distance metric, the histogram distance is nearly constant indepen
dently of the difference in the number of results the histograms summarize. 
Edit distance is nearly proportional to the difference in the results until some 
value of histogram distance. Beyond that point the distance increases although 
the difference in the number of results remains constant. This point depends 
on the range of the query. As the query range- increases, edit distance metric 
performs better. Also, L\ and edit distance metrics perform better for zipf dis
tribution and when increasing bc£, due to the distribution of the tuples to more 
buckets.
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Chapter 5

Multi-Attribute Histograms

So far, we have assumed that the user queries the system based only on the 
range of one attribute. Now we will study the situation in which the query 
consists of the range of more than one attribute. Consider a relational database 
with aitr numerical attributes Αχ, Aattr* distributed among the peers of 
a peer-to-peer network. Each peer maintains a local index th a t summarizes 
the information stored locally. The simplest solution is to create a  different 
histogram that approximates the values for each attribute. The problem with 
this approach is tha t there is dependence between the values of the attributes 
that should be taken into account in the index.

5.1 Histogram Structure
The R-tree [11) structure is very close to what we need. Each level of the R- 
tree represents the distribution of the values of a particular attribute. This 
structure is more suitable for equi-depth histograms. The problem with this 
type of histogram is that the update cost is very large, since whenever new 
tuples are inserted, the R-trec will need to be built again. Also, the merge cost 
is large and this makes difficult the construction of the routing indexes. Finally 
it is more difficult to define an appropriate distance metric between equi-depth 
histograms.

We use a variation of the R-tree, where the main difference is th a t each node 
of the tree corresponds to an equi-width histogram, instead of an equi-depth. 
Each node represents a histogram and approximates the value frequencies of 
the corresponding attribute in a particular region. The total number of regions 
that the attributes space is split is &ι*62*...*6οίίΓ, where &i, 62,...,6attr k  the 
number of buckets for the attributes A\,...yAattr correspondingly. The buckets 
of the leaf nodes represent the regions to which the attribute space is split by 
the tree.

An example of the above approach follows (Fig. 5.1). Consider three a t
tributes At jB, C. The values of each attribute are split into three equi-width
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v l v2 v3

node N

Figure 5.1: 3-Attribute Histogram

buckets. The histogram for these attributes is a  tree with three levels, each one 
corresponding to a  particular attribute.

In the first level, we approximate the frequencies of attribute A in each 
bucket. In the second level, for the tuples in each bucket of the first level, we 
approximate the frequencies of attribute B. For example, for the tuples with 
values between v l and v2 for A, we approximate the values of attribute B. 
Similarly, in the third level, for the tuples in each bucket of the second level, we 
approximate the frequencies of attribute C. For example, node N  corresponds 
to the histogram that approximates the frequencies of the values for attribute 
C for the tuples with values between v l  and v2 for a ttribu te A and between u l  
and u2 for attribute B.

An issue is how we select the attribute that will be partitioned at each level. 
We select to partition th e  most critical attribute a t each level. Since each query 
may not contain ranges over all the attributes of the m ulti-attribute histogram, 
we prefer the higher levels to correspond to the attributes that axe queried 
more. Thus, smaller part of the tree will need to be traversed during the results 
estimation.

Now we define the routing index for the m ulti-attribute histograms similarly 
to the Definition 1 of Section 3.1. We shall use the notation H^(n) to denote a 
histogram that corresponds to the j  — th node of level l in the tree (used either 
as a local index L J^(n) or as a routing index e)), H^(n) to denote
the frequency of the values within its i-th  bucket, 0  <  i <  6/ — 1 , where bi is 
the number of buckets for the attribute a t level Z, 1  <  l < attr, where attr is 
the number of attributes the histogram summarizes. Also, we use S(H(n)) to 
denote its size of the m ulti-attribute histogram. Then,

D efin itio n  7 (h is to g ram -b ased  ro u tin g  index ) The frequency of the val
ues within i — th bucket for the histogram that corresponds to the j  — th node of 
the attribute at level l of the histogram-based routing index R i(n , e) of the link 
e of peer n is defined as: RI^(nye) =  Dpgp(L /]J (p) * 5 (L /(p ))) /E p€p5(L /(p ))
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and S(RI(n,e)) = Σ pepS(LI(p)) where P is the set of peers p within distance 
R of n reachable through link e.

5.2 Distance Metric
Consider a multi-attribute histogram of attr numerical attributes ^ ι , . . . ,Λ μγ· 
Let b j, ^2)···»̂ αίίΓ be the number of buckets that corresponds to each attribute. 
Also we assume that attribute A, corresponds to level i in the tree. We can 
use each of the known histogram distance metrics to calculate the distance be
tween two multi-attribute histograms. Lets d ( i / i j (n i) , / /^ ( r ^ ) )  be the distance 
between two nodes of two multi-level histograms that correspond to the j-th  
node of level l in the tree. The distance between the multi-level histograms is 
calculated by taking the sum of the distances for each level of the tree. The 
distance for level l is:

IdisU =  e J S  d(HlHn i), HlUn2))/b\z\ (5.1)

We take the sum of the distances between the corresponding nodes of the level 
and divide it with the number of the nodes to give equal weight to  each attribute 
when calculating the distance of the whole multi-level histogram.
The total distance between two multi-attribute histograms H(ni) and Η  (η?) is:

DiHfa), H(n2)) = E^fldish  (5.2)

where attr is the number of attributes.
This distance metric gives equal weight to each level of the tree (to  each 

attribute) and also to each node in the same level. Thus, each region the tree 
splits the attribute space has the same contribution to the distance.

In Section 4.1 we have shown that adjusting the weights properly the workload- 
aware edit distance between two histograms in the average case is equal to the 
difference in the number of results for a given* query. Using this distance in 
equation 5.1, Idiffi gives the average difference in the number of results for 
attribute At taking into account the distribution of the values for the attributes 
of the higher levels in the tree. Thus, distance D that corresponds to the sum 
for all the levels, in the average case is analogous to the total difference in the 
number of results.

5.3 Estimation of Results
Our system support complex range queries over more then one attributes. The 
query can be a conjunction (i.g. vl <  A < v2 and ul < B < u2 and wl < 
C < w2) or a disjunction (i.g. vl <  A <  v2 or u l  <  B < u2 or w\ <  C <  w2) 
of clauses over the attributes. A query may also contain both disjunctions and 
conjunctions (i.g. vl <  A < v2 and (vl < B < v2 or wl < C < u>2)).

During the query routing, the query message is propagated through the link 
that more results are expected to  be found. This estimation is done based on
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the routing indexes, in our approach the multi-dimensional histograms. In order 
to estimate the expected number of results stored a t the peer tha t corresponds 
to the multi dimensional histogram, the buckets of the leaf nodes that satisfy 
the query need to be specified (the buckets tha t overlap with the range of the 
query). During the traversal of the tree from the root to leaves in a  Breadth 
First Search manner, only the links that correspond to buckets that overlap with 
the predicates of the query arc followed. The procedure continues until the last 
level of the tree has been reached. The buckets of the leaf nodes wc finally 
reach will be taken into account for the results estimation. More specifically, 
the expected number of results is the sum of the number of tuples each bucket 
summarizes.

For example consider the 3-attributc histogram of Fig. 5.1 and the conjunc
tion query: q\ and ?2· bets assume the predicate q\ of the form ul < B < «2, 
where B is the attribute of the second level and <72 of the form wl < C < w2t 
where C is the attribute of the third level in the above schema. In order to 
specify the leaf buckets that satisfy this query the procedure is the following: 
all the links of the first level’s buckets are followed. For each node of the second 
level (that corresponds to attribu te#) we select the buckets tha t overlap with 
the range of the query q\. Then only the links of these buckets are followed 
leading to the corresponding nodes of the next level.

Continuing, we evaluate the second predicate q?. We follow the same proce
dure starting from the nodes reached by the above procedure. When reaching 
the third level, the buckets that overlap with q2 are selected. These are the 
buckets that should be taken into account for the results estimation.

We denote S the set of these buckets. The estimated number of results is 
the sura of the number of tuples each bucket bcm of set S  summarizes:

Esi — E^=1tuple3(bcm)
where C is the size of S and tuples(bcm) the number of tuples bucket bcm 
summarizes.

If the query consists of both conjunctions and disjunctions, then it is trans
formed into disjunctions of the conjunctions (Disjunctive Normal Form) and 
we handle each conjunction separately. The estimated number of results is the 
maximum number of the results estimated by the conjunctions. For example, 
a  query: q\ and (q2 or q$) is transformed into: (q\ and φ )  or (q\ and £3 ). The 
estimated number of results for the query (q\ and £2) and the query (q\ and $3) 
is calculated, and we take the sum of them as the results estimation.

In the above procedure, we assumed th a t the buckets satisfying a query 
are included as a whole to the query range. In the case tha t the query range 
overlaps with only a part of a bucket, the uniform frequency assumption for 
the values of each bucket is assumed (as in simple histograms) to  estimate the 
number of results. In particular, each bucket in S  does not contribute the total 
number of tuples it summarizes to the estimated number of results, but only the 
expected number of tuples that satisfy the query based on the uniform frequency 
assumption. More specifically, for each bucket bcm in S  lets be the bucket at 
level i of the path from the root to bcm. Let perc™ be the fraction of the bucket 
bdf1 th a t overlaps with the query (perc™ is evaluated based on the equations
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Figure 5.2: Error in the estimated number of results for m ulti-attribute and 
simple histogram

(l)-(3) of section 3.1). Then, the number of tuples tha t 6cm contributes to  the 
estimated number of results is:

Estm =  tupleslbc™) * Σ t=[perc^tt where attr is the number of attributes. 
Thus, the estimated number of results is:

Est =  E £ =1£ s tm.

5.4 Using N  Simple Histograms Instead of an 
TV-Dimensional Histogram

Instead of using multi-dimensional histograms when there are more th a t one 
attributes, an alternative structure is the use of one simple histogram per a t
tribute. The whole histogram consists of attr simple histograms, where attr 
is the number of attributes. The problem with this approach is th a t it does 
not take into account the dependence between the values of different attributes. 
Instead, we assume the values of different attributes are independent between 
them. Let Hi(n) be the simple histogram for attribute i and per^H ^n)^1) 
the fraction of the tuples the query predicate for attribute i satishes (similar to 
Section 3.1). Assuming tha t the attributes values are related with the uniform 
distribution, the estimated number of results is:
hrestiUs(H(n), q) = perc(Hr{n)x ql)*perc(H2{ri), q2)* ...*perc(Haar(n)t g°Mr)* 
S(H(n)).

We performed experiments to calculate the difference EstimatedError be
tween the actual number of results resulfcs(n, q) and the estimated number of 
results hresrdts(H(n)% q) for a  query q, a peer n  and its histogram H(n)t when 
there are two attributes.

EstError =  \resvlts(ny q) — hresxdt8(H(n)% q)\/S(H(n))
We compare the use of two simple histograms with the two-dimensional his
togram (Fig. 5.2).

We notice th a t the use of a two-attribute histogram performs much better 
for all query ranges, since it takes into account the dependence between the 
values of different attributes. Also, the error in the estimation is analogous to 
the range of the query, due to the greater number of results when increasing the 
range. Also the increase rate  is smaller for m ulti-attribute histograms.

SrMlt



46 CHAPTER 5. MULTI-ATTRIBUTE HISTOGRAMS

Figure 5.3: The bold square summarizes the tuples with x €  [30,39] and y € 
[50,59],

5.5 Experimental Results

We run a set of experiments to evaluate the histogram distance metrics. For 
simplicity of presentation, in the reported experiment, we use two-attribute 
histograms on attributes x and y with 10 buckets per attribute and x, y €  [0,99]. 
The tuples of the two attributes are summarized by a m ulti-attribute histogram 
with 10 buckets for each level (attribute). Consider a  two-dimensional space, 
each dimension representing the tuple values on one of the attributes (Fig. 
5.3). Summarizing the tuples based on a two-attribute histogram, each tuple 
corresponds to a. square in the two-dimensional space based on the values of 
the attributes x and y, as shown in figure 5.3. We used a mixed workload with 
queries having range (k) varying from 0 (covering d a ta  in 1 bucket) to 4 (covering 
d a ta  in 5 buckets) for each attribute. We use 100 two-attribute histograms 
# ( i , 0 ,  0 <  i <  10 and 0 <  l <  10, with 10 buckets per attribute each one. Also 
we evaluate the m ulti-attribute histograms for two d a ta  distributions. In the 
first, for each histogram #(£ , 1), DT is the fraction of the total number of tuples 
th a t are included within the square defined by the buckets i and l for attributes 
x and y correspondingly, and the rest tuples are uniformly distributed among 
the rest of the buckets. We also used the zipf da ta  distribution, where there is a 
ranking of squares (£, 1) based on the number of the tuples with values for x, y 
within each square. We use two values for param eter a, 0.9 and 3. Similarly to 
the experiments with simple histograms, we vary the number bet of buckets that 
include most tuples from 1 to 3. We compute the distance of each histogram 
with # (0 ,0 )  using the three distance metrics. Our performance measure is 
the difference in the number of results for each histogram with # (0 ,0 ) , that 
is: hdif fer[H(iy / ) ,# (0 ,0 ) , gj ·̂) with respect to  the distance of the respected 
histograms (tha t is, whether Property 1 is satisfied). The desired behavior is the 
difference of the number of results estimated by two histograms to be analogous 
to  their distance. Table 5.1 summarizes the parameters of the experiments.
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Table 5.1: Input parameters for centralized experiments (Multi-Attribute His
tograms)

Parameter Default Value Range

Number of histograms 100
Number of attributes 2
Number of buckets per attribute 10
Domain of x, y (0, 99|
Tuples per peer 1000
Range of queries 0-4
DT 0.7 0.5-09
a 0.9 0.9-3.0
bet 1 1-3

Figure 5.4: LI distance for our data  distribution for various values of DT (mixed 
query workload)

5.5.1 O ur D a ta  D is tr ib u tio n
We calculated the average performance of the three distance metrics for a mixed 
query workload of queries with range from 0 to-4. The starting bucket of the 
query is chosen uniformly and the weights for the weighted edit distance are set 
equal to the frequency of the queries. More specifically, =  /£ V starting 
bucket j ,  where /£  is the frequency of the queries with range k for the attribute 
that corresponds to the query predicate r.

L\ has the worst overall performance. Using our data  distribution (Fig. 
5.4 and 5.5), although the distance between many histograms is constant, the 
difference in the number of results is not (especially when bet <  3).

The edit distance behaves better. For our da ta  distribution (Fig. 5.6 and 
5.7), the difference in results increases as the histogram distance increases, bu t 
in many cases the histogram distance increases although the difference in the 
number of results remains constant. Also, when bet >  2 the behavior is even 
better, since the tuples are more distributed across the buckets.

The workload-aware edit distance follows the desired property for all the 
values of DT and bet (Fig. 5.8 and 5.9). The difference in the number of results 
is analogous on average to the histogram distance.

In the next experiment (Fig. 5.10 and 5.11) we evaluate the workload-aware
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Figure 5.5: LI distance for our data  distribution (DT =  0.7) for various values 
of bet (mixed query workload)
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Figure 5.6: Edit distance for our d a ta  distribution for various values of DT 
(mixed query workload)
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Figure 5.7: Edit distance for our data  distribution (DT =  0.7) for various values 
of bet (mixed query workload)

Figure 5.8: Workload-aware edit distance for our d a ta  distribution for various
values of D T  (mixed query workload)
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Figure 5.9: Workload-aware edit distance for our da ta  distribution (DT — 0.7) 
for various values of bet (mixed query workload)

Figure 5.10: Workload-aware edit distance for our data  distribution for various 
values of DT (mixed query workload where the starting bucket is not selected 
uniformly)

Figure 5.11: Workload-aware edit distance for our da ta  distribution (D T  =  0.7)
for various values of bet
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Figure 5.12: LI distance for zipf data distribution for various values of a  (mixed 
query workload)
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Figure 5.13: LI distance for zipf data  distribution (a =  0.9) for various values 
of bet (mixed query workload)

edit distance for a mixed query workload of queries with range from 0 to 4, 
for the case in which the starting bucket of each query predicate is not chosen 
uniformly but some starting points are more popular. The weights are: =
/jtj where k is the range and j  the starting bucket of the query predicate r , and 
flj  is the frequency of the query with range A: starting from bucket j  for the 
attribute that corresponds to query predicate r. The distance satisfies Property 
1 for this query workload,as well in the average case, although there is greater 
variance in our data distribution.

5.5*2 Z ip f D a ta  D is tr ib u tio n
Also for zipf distribution, we calculated the average performance of the three 
distance metrics for a mixed query workload of queries with range from 0 to 4, 
where the starting bucket of the queries is chosen uniformly and the weights for 
the weighted edit distance are set equal to the frequency of the queries.

L\ (Fig. 5.12 and 5.13) has the worst overall performance, although perforins 
better than in the other distribution. The reason is tha t the tuples are more 
distributed across the buckets. For large values of o, which means th a t the 
most popular squares have much more tuples than the rest, the performance 
decreases, since the tuples are distributed across less squares.

Edit distance behaves better than L\. For zipf distribution (Fig. 5.14 and 
5.15) the performance is much better (thatn  in our da ta  distribution) due to 
the distribution of the data across more buckets. For large values of a, the 
performance decreases also for this distance metric.

The workload-aware edit distance follows the desired property a and bet (Fig.
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Figure 5.14: Edit distance for zipf data  distribution for various values of a 
(mixed query workload)

Figure 5.15: Edit distance for zlpf data distribution (a =* 0.0) for various values 
of bet (mixed query workload)

5.16t 5.17). The difference in the number of results is analogous on average to 
the histogram distance.

In the next experiment (Fig. 5.18 and 5.19) we evaluate the workload-aware 
edit distance for a mixed query workload of queries with range from 0 to 4, 
for the ease in which the starting bucket of each query predicate is not chosen 
uniformly but some starting points are more popular. This distance metric 
satisfies Property 1 also for this query, workload and data  distribution.

5.6.3 Summary of Experiments
To concludctthe experiments show that for both distributions and for all the 
values of DT and a, the workload-aware edit distance performs better than L\ 
and edit. The histogram distance is nearly analogous to  the difference in the 
number of the results. Also, all the distance metrics perform better for zlpf
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Figure 6.16: Workload-aware edit distance for zlpf data  distribution for various 
values of a (mixed query workload)
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Figure 5.17: Workload-aware edit distance for zipf d a ta  distribution (a — 0.9) 
for various values of bet (mixed query workload)
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Figure 5.18: Workload-aware edit distance for zipf da ta  distribution for various 
values of a (mixed query workload where the starting  bucket is not selected 
uniformly)

Figure 5.19: Workload-aware edit distance for zipf da ta  distribution (a =  0.9)
for various values of bet
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distribution and when increasing 6ct, due to the distribution of the tuples to 
more buckets.
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Chapter 6

Experimental Evaluation

In this section we evaluate the network built following our construction proce
dure. We show experimentally tha t it follows the small-world properties. We 
also evaluate the performance of the network on answering queries. We study 
the effect of the different distance metrics on the topology of th e  constructed 
network and the querying performance.

We simulated the peer-to-peer network as a  graph where each node corre
sponds to a peer. The size of the network varies from 500 to 1500 peers and the 
radius of the horizon from 1 to 3. Each new peer creates 1 to 2 short links (SL 
=  1 or 2) and one long link with probability P* that varies between 0.2 and 0.6. 
The routing of the join message stops when a maximum number (JMaxVisited) 
of logM peers is visited, where M is the number of peers in the network. The 
routing of a query stops when a maximum number (MaxVisited) of peers is 
visited. This number is set to 5% of the existing peers in the network. The 
behavior of the network is evaluated also with peers joining and leaving the 
system (with the same rate).

We evaluate the small-world construction procedure when the L\ distance 
(L ljf is t) , the edit distance (editjdist) and the workload-aware edit distance 
(weditjdist) is used. We also compare the constructed small-world network with 
a randomly constructed p2p network, that is a p2p system in which each new 
peer connects randomly to existing peers (random construction and routing) 
(random) and a randomly constructed p2p system that uses histograms only 
for query routing (random-join). Finally, we performed experiments to see 
how the network performs when large number of peers leave the system and the 
effect of the load balancing procedure in the distribution of the links among the 
peers.

6.1 Using Simple Histograms
Each peer stores a  relation with an integer attribute x G [0,999] th a t contains 
1000 tuples. The tuples are summarized by a histogram with 100 buckets. In the
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Table 6.1: Input parameters (Simple Histograms)

Parameter Default Value Range

Number of peers M 500 500-1500
Radius of the horizon 2 1-3
Number of short links (S L ) 2 1-2
Probability of long link (Pi) 0.4 0.2-0.6
Perc of peers visited
during query routing(MaxVrst*eii) 5
Peers visited
during join procedure(JAfaxVtstied) l o g M

Histogram-Related Parameters
Number of buckets 100
Domain of x [0, 999]
Tuples per peer 1000
Range of queries 0, 10

data distribution we use, 70% of the tuples of each peer belong to one bucket, 
and the rest are uniformly distributed among the rest of the buckets. The tuples 
in each bucket also follow the uniform distribution. The input parameters are 
summarized in Tbble 6.1.

6.1,1 Sm all-W orld C o n stru c tio n

We study the properties of the network created using our small-world construc
tion procedure. In particular, we evaluate the diameter and the clustering of the 
network. For these experiments, we assume two query workloads with ranges 0 
and 10 each (whose results occupy-1 and 11 buckets correspondingly) to tune 
the weight for the workload-aware edit distance. We compare the constructed 
clustered network with a  randomly constructed p2p system.

D iam eter

In the first two experiments, we keep the size of the network fixed and vary 
the radius of the horizon from 1 to 3. We present the diameter of the network 
with respect to the radius of the horizon. We conducted the same experiment 
for query ranges 0 and 10 and number of short links 1 and 2 (Fig. 6,2 and 
6.1). Using two short links the diameter decreases for all histogram distance 
metrics. Also, for two short links the diameter is below 10 for each value of 
the radius and for each distance metric, which means tha t it satisfies the small- 
world property of a  small diameter (i.e. logarithmic order in the number of 
peers). We then vary the number of peers in the network from 500 to 1500. 
We use two short links and a radius equal to  two. As shown in Fig. 6.3, the 
diameter of the network scales well when increasing the number of peers and
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Figure 6.1: Influence of radius on diameter when range =  0 (left) and range =  
10 (right), when SL =  2

I
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Figure 6.2: Influence of radius on diameter when range =  0 (left) and range = 
10 (right), when SL =  1

remains logarithmic in order to the number of peers.

Q uality o f C lu sterin g

In this set of experiments, we evaluate the quality of clustering. We measure 
the average histogram distance between the peers th a t are a t various network 
distances from each other in the created p2p network. We use a fixed size 
network of 500 peers and radius 2, and conduct the same experiment for SL — 1 
(Fig. 6.5 and 6.7) and SL — 2 (Fig. 6.4 and 6.6). The average histogram 
distance of peers with respect to their network distance is presented. As the 
network distance between two peers increases, their histogram distance increases 
for edit distance and for SL = 2 (Fig. 6.4 (center)), since this distance metric 
counts the number of permutations needed to make the histograms similar, and 
thus there will be an ordering of the peers based on the position of the buckets 
that summarize the largest number of tuples for each histogram. For SL = 1 
(Fig. 6.5 (center)) this occurs until some network distance, since the use of only 
one short links results in week grouping of the relevant peers. This means tha t 
for SL — 2 the more similar two peers are, the closer in the network they are

I
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Figure 6.3: Influence of the number of peers on the diameter when range =  0 
(left) and range =  10 (right) and SL =  2

Figure 6.4: Clustering quality for networks built using L\ (left) and edit (center) 
distance and for the random network (right), when SL  =  2

N M r t t a n  M in i  M k j

Figure 6.5: Clustering quality for networks built using L\ (left) and edit (center) 
distance and for the random network (right), when SL  — 1
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Figure 6.6: Clustering quality for networks built using workload-aware edit 
distance for range =  0 (left) and range =  10 (right), when SL  =  2

Figure 6.7: Clustering quality for networks built using workload-aware edit 
distance for range =  0 (left) and range — 10 (right), when SL =  1



Figure 6.8: Clustering quality for different number of peers for networks built 
using L\ (left) and edit (center) distance and for the random network (right), 
when SL =  2

located.
For L\ distance (Fig. 6.5 (left) and 6.4 (left)) this applies only for the 

neighboring peers (peers a t distance l ) ( thus only peers tha t have the 70% 
of their tuples within the same bucket are grouped together. For networks 
distances greater than one, the histogram distances are nearly the same, since 
this distance metric does not take into account the ordering of the buckets.

The workload edit distance depends on the range of the queries. For range 0 
(Fig. 6.6 (left) and 6.7(left)), the clustering quality is similar to L i, since there 
is no need of ordering the peers based on the buckets positions. We are only 
interested in clustering together peers the have the 70% of their tuples within 
the same buckets. For range 10 and 2 short links (Fig. 6.6 (right) 6.7 (right)), 
histogram distance increases as the network distance increases, since we are 
interested in this ordering (peers that have the large number of tuples within 
buckets that are nearby, are more likely to answer the same query with range 
10). For 1 short link this happens until some point due to the weak grouping of 
the peers.

For the random network (Fig. 6.4 (right) and 6.5 (right)), the histogram 
distance is constant for all network distances, since there is no grouping of 
similar peers.

Next we show the clustering quality as network scales (Fig. 6.8). We vary the 
number of peers in the network from 500 to 1500 and we present the clustering 
quality for each with respect to the size of the network. We use two short links 
and a radius equal to two. We notice that the clustering remains unaffected as 
the number of peers increases, which means tha t logM number of visited peers 
when a peer joins the system are enough to achieve good grouping of the peers 
as network scales.

6.1.2 Q uery  R o u tin g

In this set of experiments, we evaluate the performance of query routing using
P eer Recall as our performance measure (as defined in Def. 2). We compare
the constructed clustered network with a  randomly constructed p2p network,



Figure 6.9: Clustering quality for different number of peers for networks built 
using workload-aware edit distance for range = 0 (left) and range =  10 (right), 
when SL =  2

Figure 6.10: Performance of routing for different values of the radius when 
range — 0 (left) and range =  10 (right), when SL =  2

♦
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that is a p2p system in which each new peer connects randomly to existing peers 
(random construction and routing) (random). We also consider a randomly con
structed p2p system that uses histograms for query routing only (random-join).

We use a network of 500 peers and examine the influence of the horizon in 
the query routing performance for both 1 and 2 short links and for queries with 
range 0 (Fig. 6.11(left) and 6.10(left)) and 10 (6.11(right) and 6.10(right)). The 
radius of the horizon varies from 1 to 3. PerrRecall with respect to the radius 
is presented. Using histograms for both construction and query routing results 
in much better performance than using histograms only for routing or not using 
histograms a t all. Also using 2 short links results is much better performance, 
since peers in the same group have more links between them and it is easier to 
retrieve all the results. For radius 2 and for 2 short links, we achieve the best 
performance. PeerRecall decreases for radius greater than 2 (when SL =  2) 
for all distance metrics. The reason is that many peers are included within the 
horizon of a particular peer and thus, a very large number of peers correspond 
to each routing index. This results in losing much more information than using 
radius 2, due to the inaccuracy in the summarized information of the routing 
indexes. For 1 short link, the performance increases even for radius 3, since there
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Figure 6.11: Performance of routing for different values of the radius when 
range =  0 (left) and range — 10 (right), when SL  =  1

Figure 6.12: Performance of routing for different values of Pi when range — 0 
(left) and range — 10 (right), when SL — 2 and R = 2
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Figure 6.13: Peer Recall when varying the number of peers when range — 0 
(left) and range =  10 (right), when SL =  2 and R = 2

are less links and the number of peers that are included within the horizon of a 
particular peer is much smaller and there is less loss of information.

For queries of range 0, the performance for L\ and workload-aware edit 
distance is exactly the same, since for this range these distance metrics are the 
same. Edit distance performs much worst, since for range 0 the difference in the 
number of results between two histograms is independent from their distance 
(as shown in section 4.2 Fig. 4.3(center))

For queries of range 10, edit and workload-aware edit distances have nearly 
similar performance, since both of them make ordering of the peers based on the 
positions of the buckets with large number of results. L\ is much worst, since 
it does not make this ordering, which is very effective for ranges larger than 0 
(peers that have the large number of tuples within buckets th a t are nearby, are 
more likely to answer the same query if the query range is large enough).

Next, we examine how our algorithms perform with a larger number of peers. 
We vary the size of the network from 500 to 1500. Radius is set to  2. We use 2 
short links and queries with range 0 and 10 (Fig. 6.13). PeerRecall increases a 
little as the number of peers increase, for all histogram distance metrics. When 
the network is initially created and the first peers join the system, we cannot 
achieve the best structure, since each new peer has few choices about the peer 
it  will attach. But as the network scales, the join procedure can achieve the 
best performance since the network has the expected structure, allowing the 
new peers to make the best choices for the peers to attach. This is the reason 
for which the performance increases a  little as network scales. This experiment 
shows also th a t logM visited peers during the join procedure are enough for the 
network to scale.

We also vary the probability of creating a long link for each peer th a t joins 
the system between 0.2 and 0.6, and present PeerRecall for each of these prob
abilities. As this probability increases, the performance increases a  little (Fig. 
6.12) for the three distance metrics, since it  is easier to  navigate among the 
groups and find more relevant to the query peers. But even for a  few long links 
the performance is very good.
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Figure 6.14: PccrRecall a s  peers leave the system when range «  0 (left) and 
range =  10 (right), when SL  =  2 and R =  2

Figure 6.15: Clustering quality as peers leave the system for networks built 
using L\ (left) and edit (center) distance and for the random network (right), 
when SL — 2 and R -  2

6.1.3 P ee rs  Leaving th e  N etw ork
We also run the same set of experiments to study the behavior of the network 
as peers leave the system. In the ideal case we want all peers to have the same 
fanout after the load balancing procedure. After the network of 500 peers has 
been built, a percentage of the peers leave the system (varying from 10% to 50%). 
The radius of the horizon is set to two and SL =  2. We present the P eer Recall 
(Fig. 6.14) and the quality of clustering (Fig. 6.15 and 6.16) with respect to 
the percentage of peers leave, for query ranges 0 and 10. We notice tha t the 
performance and the clustering quality remains nearly unaffected. Thus, the 
update procedure followed when peers leave the system (section 3.3.4) preserves 
the properties of the network unaffected and keeps the network connected.

6.1.4 D is tr ib u tio n  o f Links
In this set of experiments, we build the p2p system incrementally to show how 
the links are distributed among old and new peers. We apply the load balancing 
procedure discussed in section 3.3.3. Figure 6.17 presents the distribution of the 
fanout of the peers in the system before the load balancing procedure, and after
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t

Figure 6.16: Clustering quality as peers leave the system for networks built 
using workload-aware edit distance for range ~  0 (left) and range = 10 (right), 
when SL =  2 and R — 2
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Figure 6.17: Distribution of the links
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the procedure (for two different values of FLimit). In all cases, each peer may 
have at most 12 links. We notice that after the load balancing procedure the 
fanout of the peers is distributed mainly among two different regions. More 
specifically, many peers have FLimit links and many other have about 2 and 
3 links. This is explained as follows: before the load balancing procedure takes 
place, most of the peers have about 2 or 3 links. After the load balancing 
procedure is completed, the fanout of the peers is distributed mainly among two 
different regions. One region is the same as before the procedure takes place, 
and the other is the region around FLimit, since all the peers for which the 
fanout was above FLimit will have new fanout equal to FLimit, and also, peers 
with fanout a little less than FLimit are more likely to be requested to accept 
new neighbors. By reducing further the value of FLimit, these two regions 
will reach each other. In the ideal case, there will be only one region of high 
concentration, where nearly all the peers will have fanout around FLimit/2.

6.1.5 Sum m ary  o f E x p erim en ts  U sing S im ple H istogram s

To conclude, the network constructed with the proposed procedure is a small- 
world network. The diameter remains of logarithmic order to the number of 
peers and peers with relevant data are grouped together such as the network 
distance between two peers to correspond also to the difference in the number of 
results they maintain. Also, only logM number of peers need to be visited during 
the join procedure in order the network to satisfy these properties, which means 
that it scales very well as the number of peers increases. The performance is 
much better when using histograms than in the random or in the random-join 
network. Finally, workload-aware edit distance performs very well for all the 
query workloads, instead of the L\ that works well only when the query includes 
one bucket, and the edit distance tha t performs well only with queries of larger 
ranges.

6.2 Multi-Attribute Histograms

Each peer stores a relation that includes 1000 tuples with two integer attributes 
x ,y  € [0,99] with 1000 tuples. The tuples of the two attributes are summa
rized by a multi-attribute histogram with 10 buckets for each level (attribute). 
Consider a two-dimensional space, each dimension representing the tuple values 
on one of the attributes (Fig. 5.3). Summarizing the tuples based on a two- 
attribute histogram, each tuple corresponds to a square in the two-dimensional 
space based on the values of the attributes x and y, as shown in figure 5.3. In the 
data  distribution we use, the 70% of the tuples of each peer belong to one square, 
and the rest are uniformly distributed among the rest of the squares. The tuples 
in each square also follow the uniform distribution. The input parameters are 
summarized in Table 6.2.
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Tabic 6.2: Input parameters (Multi-Attribute Histograms)

Parameter Default Value Range

Number of peers Af 500 500-1500
Radius of the horizon 2 1-3
Number of short links ( S L ) 2 1-2
Probability of long link (Pi) 0.4 0.2-0.6
Number of peers visited
during join ( J M a x V i s i t e d ) l o g M
Pcrc of peers visited
during routing ( M a x V i s i t e d ) 5
Histogram-Related Parameters

Number of buckets per attribute 10
Domain of x (0, 99|
Domain of y (0, 991
Tuples per peer 1000
Range of queries 0, 10

6.2.1 Sm all-W orld C onstruc tion
We study the properties of the network built using our small-world construc
tion procedure, evaluating the diameter and the clustering of the network. We 
assume two query workloads with ranges 0 and 3 for each attribute (whose 
results occupy 1 and 16 squares correspondingly) to tune the weight for the 
workload-aware edit distance. We compare the constructed clustered network 
with a randomly constructed p2p system.

D iam eter

In the first two experiments, we keep the size of the network fixed and vary the 
radius of the horizon from 1 to 3. We conducted the same experiment for S L  — 1 
(Fig. 6.19) and S L  =  2 (Fig. 6.18). When using two short links the diameter 
decreases for all types of histogram distances. Also, for two short links the 
diameter is below 10, for each value of the radius and for each distance metric, 
which means tha t it satisfies the small-world property of a  small diam eter (i.e., 
a  diameter of logarithmic order in the number of peers). We then vary the 
number of peers in the network from 500 to 1500. We use 2 short links and a 
radius equal to 2. As shown in Fig. 6.20, the diameter of the network scales 
well when increasing the number of peers and remains of logarithmic order to 
the number of peers.

Q uality o f  C lu sterin g

In this set of experiments, we evaluate the quality of clustering. Similarly to the 
experiments for simple histograms, we measure the average histogram distance
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tmkm

Figure 6.18: Influence of radius on diameter when range =  0 (left) and range — 
3 (right), when SL — 2

\%

Figure 6.19: Influence of radius on diameter when range =  0 (left) and range =  
3 (right), when SL  =  1

* t

Figure 6.20: Influence of the number of peers on the diameter when range =  0 
(left) and range =  3 (right) and SL = 2
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Figure 6.21: Clustering quality for networks built using L\ (left) and edit (cen
ter) distance and for the random network (right), when SL =  2

Figure 6.22: Clustering quality for networks built using L\ (left) and edit (cen
ter) distance and for the random network (right), when SL =  1

• t

Figure 6.23: Clustering quality for networks built using workload-aware edit 
distance for range s= 0 (left) and range =  3 (right), when SL — 2
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Figure 6.24: Clustering quality for networks built using workload-aware edit 
distance for range =  0 (left) and range = 10 (right), when SL =  1

between the peers that are at various network distances from each other in the 
constructed overlay network. We use a fixed size network of 500 peers and radius 
2, and conduct the same experiment for SL =  1 (Fig. 6.22 and 6.24) and SL =  2 
(Fig. 6.21 and 6.23). The results are similar to the simple histograms. For edit 
distance, as the network distance between two peers increases, their histogram 
distance increases too. When SL =  2 (Fig. 6.21 (center)) this is more clear 
than using 1 short link only (Fig. 6.22 (center)), since with one short link we 
have week grouping of the relevant peers.

For L\ distance (Fig. 6.22 (left) and 6.21 (left)) after some network distance 
the histogram distances are nearly the same, since this distance metric does not 
take into account the ordering of the buckets.

The workload edit distance depends on the range of the queries. For range 0 
(Fig. 6.23 (left) and 6.24(left)), the clustering quality is similar to L i, since there 
is no need of ordering the peers based on the buckets positions. We are only 
interested in clustering together peers the have the 70% of their tuples within 
the same buckets for each attribute. For range 3 (Fig. 6.23 6.24), histogram 
distance increases as the network distance increases, since we are interested in 
this ordering (peers th a t have the large number of tuples within squares that 
are nearby, are more likely to answer the same query with range 3).

For the random network (Fig. 6.21 (right) and 6.22 (right)), the histogram 
distance is constant for all network distances, since there is no grouping of 
similar peers.

Next we show the clustering quality as network scales (Fig. 6.25). We vary 
the number of peers in the network from 500 to 1500. We use two short links 
and a radius equal to two. Also for m ulti-attribute histograms, we notice that 
the clustering remains unaffected as the number of peers increases, which means 
tha t logM number of visited peers when a peer joins the system are enough to 
achieve good grouping of the peers as network scales.

6.2.2 Q uery  R o u tin g
Similarly to the simple histograms, we measure PeerRecall to  evaluate the 
performance of query routing. We compare the constructed clustered network
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Figure 6.25: Clustering quality for different number of peers for networks built 
using L\ (left) and edit (center) distance and for the random network (right), 
when SL — 2

Figure 6.26: Clustering quality for different number of peers for networks built 
using workload-aware edit distance for range = 0 (left) and range =  3 (right), 
when SL =  2



72 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.27: Performance of routing for different values of the radius when 
range =  0 (left) and range =  3 (right), when SL =  2

Figure 6.28: Performance of routing for different values of the radius when 
range = 0 (left) and range — 3 (right), when SL =  1

with a randomly constructed p2p, that is a  p2p system in which each new 
peer connects randomly to existing peers (random construction and routing) 
(random). We also consider a randomly constructed p2p system that uses 
histograms for query routing only (random.join).

We use a network of 500 peers and examine the influence of the horizon in 
the query routing performance for query ranges 0 and 3 and for SL =  1 (Fig. 
6.28) and SL ~  2 (Fig. 6.27). The radius varies from 1 to 3.

The results are similar to the simple histograms. Using histograms for both 
construction and query routing results in much better performance than using 
histograms only for routing or not using histograms a t all. For 2 short the 
network performs better, due to the stronger grouping of similar peers. Also, 
the best performance is achieved for radius equal to two (when SL =  2), except 
from L\ distance. The reason is that since we deal with more attributes, there is 
larger relevance between the data stored by each peer. For example, two peers 
may have many tuples with similar values for the one particular attribute and 
different values for the other. Thus, except from the peers tha t have most of 
their tuples within the same square, there are also peers tha t have most of the 
tuples within squares of the same row or the same column in the two-dimensional
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Figure 6.29: Performance of routing for different values of Pj when range =  0 
(left) and range =  3 (right), when SL =  2 and R =  2

Figure 6.30: PeerRecall when varying the number of peers when range =  0 
(left) and ran^e =  3 (right), when SL =  2 and Λ =  2

space. T hat means that there are more peers that can give many results for 
each query, and thus, smaller value of radius is required to locate them. Using 
radius greater than two decreases the performance for all distance metrics due 
to the great loss of information. For one short link, the performance drops for 
radius 3 (in contrast to the simple histograms) for the same reason.

For queries of range 0, the performance for L\ and workload-aware edit 
distance is exactly the same, since for this range these distance metrics are 
the same. Edit distance has much worst performance since for range 0 the 
difference in the number of results between two histograms is independent from 
their distance.

For queries of range 3, edit and workload-aware edit distances have nearly 
similar performance, since both of them make ordering of the peers based on the 
positions of the buckets with large number of results. L\ is much worst, since 
it does not make this ordering, and thus, peers that have the large number of 
tuples within squares that are nearby, will not be nearby in the overlay network).

Next, we examine how our algorithms scales. We vary the size of the network 
from 500 to 1500. Radius is set to two. We use two short links and queries 
with range 0 and 3. As shown in Fig. 6.30, the network scales well and the
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performance increases a little as the number of peers increase, for all histogram 
distance metrics, due to the improvement in the network structure as more peers 
join the system.

Finally, we vary the probability of creating a long link for each peer that 
joins the system between 0.2 and 0.6 (Fig. 6.29). The performance is a little 
improved as the number of long links increases for all the distance metrics, since 
we can find the appropriate groups with less hops.

6.2.3 Summary of Experiments Using Multi-Attribute His
tograms

To conclude, we notice that in general the behavior of the network is nearly 
the same with simple histograms for all the distance metrics. Thus, the multi
attribute histograms and the distance metrics used perform well also for range 
queries over multiple attributes. When extending each distance metric (Li, 
edit and workload-aware edit) to the m ulti-attribute histograms, it inherits the 
properties of the distance metric over simple histograms.
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Chapter 7

Conclusions and Future 
Work

In this thesis, we have proposed the use of histograms as routing indexes in 
peer-to-peer systems. We proposed building a small-world network in a  fully 
decentralized procedure, where each peer uses only information stores locally. 
Routing indexes are stored for each link of a peer, summarizing the content of 
the peers within the horizon, reachable through this link. These indexes are 
used in order to route a query or join message, through the link tha t we expect 
to find more results for the query or to find peers that store data  similar to the 
new peer correspondingly.

We proposed using histograms as routing indexes, tha t are appropriate for 
answering range queries. In order to construct a small-world network based on 
the content of the peers, the distance between the histograms, th a t represent the 
content of different peers, should be calculated (peers with small distance will 
be grouped together). The criterion based on which the peers will be grouped 
together is the number of results they return for each query. Thus we introduced 
a workload-aware distance metric that takes into account the query workload 
in the calculation of the distance between two histograms. For this distance 
metric, it is shown th a t for a  particular workload the distance between two 
histograms, in the average case, is analogous to the difference in the number of 
results they store. Thus, peers that are more likely to answer the same set of 
queries will be grouped together.

A similar approach for building and querying a small-world network was 
first presented in [22]. Bloom filters are used as routing indexes, and exact- 
match queries are posed in the network. In [10], also path queries over XML 
documents are studied using Multi-Level Bloom Filters as indexes and horizons 
for the query routing.

We have extended our system to support also range queries over multiple 
attributes, by introducing a multi-attribute histogram. We also extended the 
distance metrics used for simple histograms to support also the m ulti-attribute
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histograms.
We compared experimentally workload-aware distance metric with L\ and 

edit distance. The results show that our distance metric performs much better 
(the histogram distance increases analogous to the difference in the number of 
results).

Our experimental results on the construction of the network and the routing 
of the queries have shown that our small-world construction procedure is effec
tive, since in the constructed peer-to-peer system peers with small histogram 
distance have also small network distance. Routing is also very efficient, since 
using histograms increases the number of results returned for a given number 
of peers visited. Furthermore, the network scales very well when increasing the 
number of peers, since only logM number of peers need to be visited (during 
the join procedure) as the number M of peers increases, in order to achieve the 
same performance and to leave the network properties unaffected. Finally, our 
workload-aware edit distance is very effective for the performance of the net
work. Instead of L\ and edit distance metrics, when workload-aware distance 
is used, the network performs well for all the query ranges.

This work is a first step towards leveraging the power of histograms in peer- 
to-peer systems. There are many issues that need further investigation.

So far we used equi-width histograms. An interesting issue would be to use 
other types of histograms, for example equi-depth histograms. In this occa
sion there are several things to be studied. New distance metrics should be 
introduced that are appropriate for the new type of histograms. Also new pro
cedures need to be defined for constructing the routing indexes by aggregating 
local indexes and updating them.

An issue that need to be studied further is finding the appropriate number of 
buckets thus achieving the best performance. In this work we assume that this 
number is predefined and does not change. Based on the content of the peers 
and the query workload, there may exist a more appropriate number that leads 
to a more accurate representation of the data  by the histograms. For example, 
if a particular range of values is queried more, it may be effective to distribute 
the tuples within this range into more buckets, in order to  achieve less loss of 
information.

We can extend our work on the histograms by using them in structured 
p2p systems, where the location of an object in the DHT overlay depends on 
its histogram (that can be seen as a vector of values). Objects with small 
histogram distance will be placed at peers tha t correspond to regions nearby in 
the n—dimensional space.

Another interesting issue is how to select the peer to be linked through long 
link with the new peer during the join procedure. We currently select this peer 
randomly from the list of the visited peers, but more sophisticated methods 
can be used. These methods may take into account the distances between the 
histogram of the new peer and each of the visited peers and select one of them 
with a probability that depends on this histogram distance. This way we can 
affect the topology of the constructed network.
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Appendix

False positive probability for a histogram. Let H(n) be a histogram for an inte
ger attribute x €  [Dmm, Dmax] (x can take d =  Dmax — Dmin +  1 distinct values). 
H(n) has b buckets. Let & query x = A. We assume that each peer has t tuples that 
follow uniform distribution. Then in each bucket we have t/b tuples. The probability 
that we do not have a query match, that is, there does not exist a tuple with value 
x =  A in the data summarized by H(n) is P (query jiojmatch) =  ((d — l)/d)n. The 
probability that the histogram indicates a match is: P(histjnatch) =  1 — ((6— l)/6)n 
(it is sufficient that one tuple foils into the bucket that A foils into as well). The range 
of each bucket is d/b. Thus the probability of having a qutryjnosnatch while we had 
a histogram match is: Pi =  ((d/b — 1 )/(d/b))^b — ((d — b)/d)t/b. Thus, the false 
positive probability is according to the formula of Bayes:
P(fp) — P(histjnatch /  quer~y_no.match) =  Pi * P(histjnatch) / P (query jiojnatch)
=* P(/P) =  (((d -  b)/d)‘ '"  * (1 -  ((6 -  1 )/b)‘ ))/((d ~  1 )/<*)*·

Equivalence of the two workload histogram distances. The two workload-aware 
distances 6 and 5 are equivalent, that is wdLl(H(ni)tH(n2 )) = wde(H(ni)tH(n2 ))·

Proof.

wdt(H(m ), H(m)) =  ZbkZl0ZbjZ10wkj\pref(j + k) -  pref(j -  1)| =
Σ & Ε } ^u»*J | ^ ( f t ( n 1) -  Hi(n,)) -  -  ft(«a))| =

-  Hi(η,) -  H{nx) + -  ft(n 2))| =
Σ ^ Σ ^ ^ Σ ^ ^ τ η )  -  ft(na))| =  Σ ^ Σ ^ ^ Ή ΐ *  (#<(">) "  * « ("* » !  =  
wdidHiiniair*)).

Proof that the histogram distances are metrics. We show next that the 
workload-aware Li measure is a metric, by proving that it satisfies the metric proper
ties (reflexivity, non-negativity, commutativity and the triangle inequality).

•  reflexivity: wdn(H{ni),H(ni)) = 0
Li(Hi{ni),Hi(ni)) = 0,Vi,0 < i < b - l = f «  W r.1 (ff(n i),f/(m )) =  0,

•  non-negativity: ttid£,l (H (ni)l/f(na)) >  0.
Since 0 <  Wk and wd^  is the sum of absolute values, the property holds.

•  commutativity: wdil (H(ni)iH(n2 )) =  vidt,x(H{n<2 )tH(ni)) 
wdLl(H(ni),H(.n3)) = E £l*E£Siu ,y|E$,o(A +i(n i) ~  Η« Λ η*))\ =
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££;02‘;> fc i|£ i= o tf< + iM  -  E,fc= o W m ) l  =  
wdLx (H(m). //(m))

• triangle ineq.: ν χ Ι ι , χ ζ Η ζ τ ΐ ι ) ,  H f a z ) )  ^  isdLjiZfini^/^njJJ+tiMi^^J'^naJf/fitta))· 
wdidl{H{n\)1 Η{η2)) — Sfc=o^i=owi*î l^ j= o(^+ i(n 0  "“ ^*+>(n3))l = 
Σ ί'ο Σ ;;Ιο^> ΙΣί=ο(^+>(η0 “ Σί= ο ^ + ί(τι2) + Σϊ*ο/ίί+ ί(η2)-Σ^=ο/ ί <+<ί(η3))|
< Σ ί ΐο Σ ί~ ο ^ ΙΣί= ο (^+ ί(η ι) “  Hi+j(n*)\ +  Σ ί=οΣ< = ο ^ ΙΣί=ο(Η<+̂ (η3)-
^+j(n3)| =
wdLl(H(m)tH(n2)) + ω 4 ι (//(η3) , % 3)).

Since wde and wdz,, are equivalent, wde is also a metric and the metric properties 
can be proved similarly to the respective properties of \i)di,x.

For two histograms J/(ni), H(n2) and a  query  qkj th e  difference in th e  num
ber of results returned  by the peers m  and na is: h d i//e r(n i,n 3, ^ j )  = 
£ & fc|Ll(t)|

Proof.

S ^ |L l ( t ) i= S ^ fc|^ i(n i) -  Hi(n3)|=  hdiffer(nitn2,qkj)

For two histogram s f/(m ), H(n2) and a  query  qkj th e  difference in th e  num
ber of results returned  by the  peers nj and  na is: hdif fer{n\,n2iqkj) =  
|p re/(j + k) -  pref(j -  1)|

Proof.

\pref(j + k)~ pref(j -  1 )Η Σ & (Λ (η χ )  -  / ϊ 4(η2))-Σίΐ*(Η 4(ηχ) -  Hi{n,)) |=
-  //<(n3))|= hdiffer(m,na ,qkj)

P roof th a t th e  m ulti-a ttribu te  histogram  d istance is m etric . We show next 
that the multi-attribute histogram distance measure (Equation 5.2) is a  metric, by 
proving that it satisfies the metric properties (reflexivity, non-negativity, commuta
tivity and the triangle inequality). We assume that the distance measure d used is a 
metric.

• reflexivity: D(H(ni),H(ni)) =  0

D(H(ni),H(n x)) =  Σ ΐ ^ Σ ^ ^ Η ^ , Η ^ η ,  ))/b\-_\ =  0 =► 
D(H(n,),H(ux)) =  0.

• non-negativity: D{H{n\)^H(n2)) > 0.
d(Hij(ni),Hij(n2)) > 0,V1 < t < attrandl < j  < bi- 1 => D(H(ni)tH(n2)) > 0

• commutativity: D{H(n\)yH{n2)) =  D(H(n2),H(ni))

D(H(ni),H(ni)) = Σ^Σ^}ά(Ηα(τη),Η{ί(η2))β\:\ =

Σ^ΓΣ/^ ά(Ηα(ηι), H4i(nx))/6i:l =
D(H(ri2),H(n χ))

•  triangle ineq.: D(H(n\)t H(n2)) < D(H(m)tH(n2)) *f D{H{n2)yH{n2))·
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D(H(n i),H(n3)) =  D g r f Q d iH v f a l H ii f a W b t l  <

E?“,r eJL'/ (diH^m), Hyfa)) + *M"0))/*C} =
D(H(ni),H(n3)) +  D(H(n3),H(n3))

Thus D is a  distance metric.


