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Abstract

Peer-to-peer systems offer an efficient means for sharing large amounts of data
among autonomous nodes. In this thesis, we consider building peer-to-peer
systems with small-world properties. Small-worlds are networks in which (i)
the distance between any two nodes is small and (ii) there is a large number
of connections among relevant nodes. We characterize relevance between nodes
based on the probability that the nodes match the same set of queries. We
propose a decentralized procedure for constructing and updating small-worlds
based on routing indexes. Routing indexes are data structures that describe the
content of neighboring nodes. We use histograms as routing indexes, and as an
indication of relevance among the content of nodes we develop workload-aware
metrics of histogram similarity. Our experimental results show that in small-
world peer-to-peer systems built using our procedure, the percentage of relevant
results returned is increased.
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Chapter 1

Introduction

The popularity of file sharing systems such as Napster (3], Gnutella {1] and
Kazaa [2] has spurred much current attention to peer-to-peer (p2p) computing.
Peer-to-peer computing refers to a form of distributed computing that involves
a large number of autonomous computing nodes (the peers) that cooperate to
share resources and services [18].

The term “peer-to-peer” (p2p) refers to a class of systems and applications
that employ distributed resources to perform a critical function in a decentral-
ized manner. With the pervasive deployment of computers, p2p is increasingly
receiving attention in research, product development, and investment circles.
Some of the benefits of a p2p approach include: improving scalability by avoid-
ing dependency on centralized points; eliminating the need for costly infrastruc-
ture by enabling direct communication among clients; and enabling resource
aggregation. -

The resources encompass computing power, data (storage and content), net-
work bandwidth, and presence (computers, human, and other resources). The
critical function can be distributed computing; data/content sharing, commu-
nication and collaboration, or platform services. Decentralization may apply to
algorithms, data, and meta-data, or to all of them.

P2P enables valuable externalities, by aggregating resources through low-
cost interoperability, lower cost of ownership and cost sharing, by using existing
infrastructure and by eliminating and distributing the maintenance costs and
anonymity/privacy, by incorporating these requirements in the design and algo-
rithms of p2p systems and applications, and by allowing peers a greater degree
of autonomous control over their data and resources.

In a p2p system, peers are autonomous. They depend on each other for
getting information, computing resources, forwarding requests, etc. which are
essential for the functioning of the system as a whole and for the benefit of
all peers. As a result of the autonomy of peers, they cannot necessarily trust
each other and rely completely on the behavior of other peers, so issues of scale
and redundancy become much more important than in traditional centralized
or distributed systems.




8 CHAPTER 1. INTROD U\C'I‘I ON

Each peer in a p2p system is connected with only a small number of other
peers (neighbors). Whenever a message need to be transferred between two
peers that are not neighbors, the message should be propagated through all the
intermediate pecrs.

Conceptually, p2p computing is an alternative to the centralized and client-
server models of computing, where there is typically a single or small cluster of
servers and many clients. In its purest form, the p2p model has no concept of
server; rather all participants are peers (Fig. 1.1).

In our view, p2p is about sharing: giving to and obtaining from the peer
community. A peer gives some resources and obtains other resources in return.
In the case of Napster, it was about offering music to the rest of the community
and getting other music in return. p2p is also a way of implementing systems
based on the notion of increasing the decentralization of systems, applications,
or simply algorithms. p2p is a way to leverage vast amounts of computing
power, storage, and connectivity from personal computers distributed around
the world.

Our goal is to build a peer-to-peer data sharing system. Consider a database
that consists of one or more relations. Each peer stores a database with the
same schema. The user poses in the network a range query over one or more
attributes of the database, asking for the tuples (stored at varius peers) that
satisfy the query. We want to increase the number of results (tuples) returned by
propagating the query to peers that have large number of tuples that satisfy this
query. Thus, a central issue in p2p systems is identifying which peers contain
data relevant to a user query; we call such peers matching peers.

In this thesis, we propose building small-worlds based on the content of the
peers. Small-worlds are networks with (i) a small distance between any two
peers (small diameter) and (ii) a large number of connections among relevant
peers (large clustering coefficient). The small-world phenomenon has many
applications in real life {29, 13]. Friendship networks are a good example of
this. Consider the friendship graph, where each peer corresponds to a person
and two people are connected with an edge if they know each other. Such a
graph consists of smaller sub-graphs (which are rich in short-range connections)
each one representing a community and there are a few long-range links between
peers of different communities (if A knows B and B knows C, then A is more
likely to know C than some other random person). We define the relevance
of two nodes (peers) based on the common queries that both of them match.
Intuitively, the topology of a small-world network represents a number of smaller
networks (groups or clusters) that are rich in links between their peers (short-
range links), while they are linked to each other with a few random connections
(long-range links). The motivation for such small-world p2p networks is that
once in the appropriate group, all relevant to a query peers are a few links apart.
Long-range links are used for routing among groups.

Previous approaches to the problem of building small-worlds, either study
the problem theoretically, or they do not present a clear description of the
construction procedure. Also, there are many works that cluster peers together
based on their context similarity, but in most of them the number of clusters

-
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Figure 1.1: View of a Peer-to-Peer syslem

is fixed and global knowledge of the information the peers store is required Lo
create the clusters.

We present an approach for building small-worlds based on a fully decentral-
ized procedure. Our approach is based on using local indexen. A local index is
a characterization of the content of a peer. Routing indexes that are created by
aggregating local indexes of neighboring peers, are used to create small-worlds
in a fully distributed manner, whore only local information is used. We define
similarity among indexes, so that peers with similar indexes match the same
sel of queries. Such similarily is weighted, so that matching frequent queries
counts “more” than matching infrequent ones, thus creating workload-aware
small-worlds.

We propose using histograms [14] as local indexes and show how such In-
dexes can be used to construct a small-world and route range querics over one
attribute. The main advantages of histograms over other techniques are that
they incur almost no run-time overhead and, for mast real-world databascs,
there exist histograms that produce low-crror estimates while occupying rea-
sonably small space. We also introdiice n weighted histogram distance metric
that takes into account the query workload.

Our approach is extended Lo support range queries over ultiple attributes,
Previous approaches Lo the problem propose multi-dimensional histograms with
the drawback that they cannol be easily updated and aggregated. To this
end, we propose a multi-attribute histogram structure, that takes into account
the dependencies between the atiribute values, and also, it can be updated
and aggregated casily. The weighted histogram distance metric is extended for
multi-atiribute histograms.

In summary, this thesis makes the following contributions:

o presents a procedure for building content-based small-worlds in p2p sys-
tems based on routing indexes, that is, on data structures that summarize
information about the content of neighboring peers;

o proposcs building workload-aware small-worlds so that the grouping of
similar peers is based on whether the peers match similar scts of queries;
this is achieved by incorporating the frequency of queries in the definition

<
"
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of similarity between the indexes of the peers;

e exploits histograms as routing indexes for query processing and small-
world construction in p2p systems and introduces appropriate workload-
aware histogram distances;

e proposes a structure for multi-attribute histograms for supporting range
queries over multiple attributes, and extends the workload-aware edit dis-
tance for this type of histograms.

Our experimental results show that our small-world construction procedure
is effective, since in the resulting peer-to-peer system peers with small histogram
distance have also small network distance. Also, routing is very efficient, in par-
ticular, for a given number of visited peers, since using histograms increases a
lot the number of results returned for a given number of peers visited compared
with a random network. Also, the network scales very well when increasing the
number of peers, since only logM number of peers need to be visited (during the
join procedure) as the number M of peers increases, in order to achieve the same
performance and to leave the network properties unaffected. Furthermore, the
use of the workload-aware edit distance improves the performance comparing
to the other distance metrics. - )

Thesis Outline

In chapter 2 the related work is presented. In chapter 3 we introduce histograms
as routing indexes and describe how histograms are used to route, construct and
maintain small-world. In chapter 4, we propose a novel workload-aware distance
metric and present experiments comparing it with other distance metrics. In
chapter 5, we introduce multi-attribute histograms, distance metrics for this
type of histograms and experimental results comparing the different distance
metrics. In chapter 6, we present our experimental results showing the perfor-
mance of our small-world network. Finally, in chapter 7, we offer conclusions
and directions for future work. -

ey
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Chapter 2

Related Work

We propose an approach for building and querying small-world networks based
on the content of the peers using routing indexes. Routing Indexes are stored
for each link of a peer and summarize the content of a number of peers that
are reached through this link. We consider range queries over one or more at-
tributes and propose a multi-dimensional histogram structure that is used as a
routing index when more that one attributes of a relation are summarized. We
distinguish the research related to our work into three areas:

a) research on resource discovery in p2p systems, b) research on building small
world networks or organizing peers in clusters and c¢) research on building net-
works for answering range queries and methods for summarizing the content of
relations over more than one attribute.

2.1 Resource Discovery in P2P Systems

There are two basic types of p2p systems: structured and unstructured ones.
In structured p2p systems, data items (or indexes) are placed at specific peers
usually based on distributed hashing (DHTS).

Chord [12] is an an example of a structured peer-to-peer system. It is a
distributed lookup protocol for the efficient location of the node that stores
a desired data item. Given a key Chord maps a key onto a node. A key is
associated with each data item and the key/data pair is stored at the node to
which the key maps. The nodes are mapped into a virtual cycle according to
the identifier provided by the hash function and data are stored to the nodes
based on their own hash identifier.

A similar approach is followed in CAN [24]. CAN organizes the nodes in a
d-dimensional coordinate space, which is dynamically partitioned among all the
nodes, such that each node owns an individual distinct zone within the overall
space. Keys are deterministically mapped onto points in the coordinate space
using a uniform hash function. To retrieve an entry corresponding to a key, any
node can apply the same hash function to map the key onto the point and then
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retrieve the data from the node corresponds to the point. CAN provides fast
lookup functionality on Internet like scales.

Although these approaches provide very efficient search, they compromise
peers autonomy. Also, the DHT topology is regulated since all peers have the
same number of neighboring peers.

In unstructured p2p systems, there is no assumption about the placement
of data items at the peers. Napster [3] is one of the first peer-to-peer systems,
that relies on a centralized server which accepts the requests from all the peers.
Gnutella 1] is another unstructured p2p system where a flooding algorithm (re-
quests are are forwarded to all the neighbors) is used for query routing. However,
both of these solutions introduce scalability problems. In Napster the central-
ized server becomes overloaded as the number of peers increases (increasing also
the number of requests). In Gnutella, there are many messages in the network,
thus larger network bandwidth is needed. Also, many irrelevant peers receive
many requests increasing there load.

In order to achieve efficient location of the relevant data for a given query,
many solutions have been proposed that use summaries describing the content
of a set of other peers in the network. These summaries are used to route the
query to the appropriate region in the network.

In (9] routing indexes are used for efficient routing of the queries. The routing
indexes are stored for each outgoing link of a node and used for selecting the
best neighbor to route the query. The routing index for each link is produced by
summarizing the content of the nodes along that path. Several types of routing
indexes are discussed. The simple routing index summarizes the content of
all the nodes along the path. Hop-count routing indexes are aggregated routing
indexes for each hop up to a maximum number of hops. Finally, in exponentially
aggregated routing indexes, it is not stored the exact number of results for each
network distance as in hop-count routing indexes, but a value is stored that
depends on the network-distance the results can be found. They require less
storage space with the drawback of loss in accuracy.

A similar approach is presented in [19]. Bloom filters are used as indexes.
Each peer maintains a local Bloom Filter that represents the object in the local
repository, and a remote Bloom Filter for each link obtained from its neighbors.
During the query routing, each node propagates the query to the best k links
based on the semantic similarity with the query. When a node discovers that a
peer frequently produces good results to its requests, it attempts to move closer
to it by connecting directly to that peer.

2.2 Building Small-Worlds and Clusters

Many recent research focus on organizing peers into a small-world topology that
has been shown to be efficient in retrieving large number of results.

In [15] a small world network is proposed for which it can be shown that
the number of messages for search is bounded by a function proportional to
(logN)?. The network structure is a two-dimensional lattice where each node
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is connected with the neighbor nodes in the lattice through short-range connec-
tions. Also each node has a long-range connection with a non-neighbor node.
This long-range connection is created with probability 1/r®, where r is the lat-
tice distance and a a parameter. For a = 2, it is shown that the above search
bound is achieved. However a very strict topology it presumed. Also, there is
no description of the procedure that creates this type of network.

In [13], peers are organized into clusters based on their interests, where peers
within the same cluster are highly connected between them. Each peer has all
the information provided by the cluster. Gossiping mechanisms are used for the
information dissemination within a group. Requests that cannot be answered
by the local node are forwarded to other clusters. However, there is no clear
description of the procedure followed to build such a network and to navigate
between the clusters. Also each peer should have knowledge about all the data
the peers of its cluster store.

Small worlds in non DHT p2p systems are also discussed in [5] in the con-
text of searchable querical data networks. Interconnection between nodes is
correlated with ’similarity’ of the data content of the nodes. Some principles of
building and querying networks based on the content of the peers are discussed.
Nodes with similar data content are clustered together. A query is propagated
to the neighbor that is more similar to the target data. Some variations of
the query propagation are proposed, such as the use of flooding when the first
target data item is located. However, this work does not include a concrete
decentralized small-world construction procedure.

In [4], a family of distributed access methods are proposed for building
a small-world network and for efficient execution of various similarity-search
queries (exact-match, range and k-nearest neighbor queries). The idea is that
all the similar objects are nearby in the network. L, norm is used as the dis-
tance function between two nodes keys that represent their data. The forward
primitive uses only local information to process a query and make forward deci-
sions. The query is propagated to the neighbor that has the smaller L, distance
with the query key. Range or kNN queries can be executed efficiently in two
phases: first, by an exact-match query to locate the locality of the query, and
then by flooding the query throughout the locality of the query.

In SSW (Semantic Small World)[16] peers are organized with semantically
similar data closer to each other in clusters, forming a small world overlay net-
work. LSI (Latent Semantic Indexing) is employed to derive the semantic vector
for each data object. A peer clusters its data object with similar semantics. The
location information of the peer’s local data objects not belonging to the seman-
tic subspace of the peer are published into the rest of the P2P system. A peer
also holds location information of data objects belonging to its subspace but
physically stored at other peers. A new peer joins the cluster whose centroid
is the closest to its semantic label. Since the dimension of the semantic vector
is correlated with the SSW dimensionality, only the first few dimensions are
used for the construction of the small world topology, which results in loss of
information.

Very recently, researchers have proposed extending DHTs with long range
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links towards creating small worlds. Symphony {17] is an extension of Chord.
Similar to Chord, the participants are arranged along a ring. Each node that
arrives chooses an id uniformly from an interval. A node manages the sub-
range of the interval which corresponds to the segment on the cycle between
its own id and the id of its immediate clockwise predecessor. There are also
long distance links drawn from a family of harmonic distributions, in order to
achieve a small-world topology. Each node except of its neighbors maintains a
list of its neighbor’s neighbors in order to improve the choice of neighbor for
routing queries.

Also, many recent research efforts are focusing on organizing peers in clus-
ters, which in a sense are similar to groups in small worlds. In most cases, the
number or the description of the clusters is fixed and global knowledge of this in-
formation is required. The main difference between clusters and small-worlds is
that a small-world refers to a particular topology, where peers in the same group
are highly connected between them and there are a few links between peers of
different groups. On the other hand, a cluster is a set of similar peers (based
on some characteristics) where there is no assumption on how peers within the
cluster are connected. Also, there is no assumption on how different clusters
are connected between them. v

In SETS [6), peers are partitioned into a fixed set of C clusters each one
corresponding to a topic segment such that sites with similar documents belong
to the same segment. Each topic segment has a description called topic centroid.
Knowledge of the centroids is global (all the peers should know the centroids
of all the clusters). Short distance links connect sites within a segment. Long
distance links connect sites of different segments. The routing procedure consist
of two steps: Global routing forwards the query to the appropriate segment.
Then, local routing is used to propagate the query to a subset of sites within
a segment. The disadvantage of this approach is that there must be a site for
specific administrative tdsks, such as updating the topic centroids and finding
the appropriate topic segment for attaching a new peer.

In Semantic Overlay Networks (SONs) [8], nodes semantically related are
clustered together forming a semantic overlay network. There is a classification
hierarchy of the queries and the nodes based on their content. Queries are
routed to the appropriate SONs, increasing the chances that matching files will
be found quickly. However, there is no description on how SONs are created or
how the queries are routed.

In (28], documents are classified into semantic categories. Clusters of peers
are formed based on the semantic categories of the documents they store. The
number of clusters is fixed and predefined during the bootstrap of the system.
Each node in a cluster has information about the content of all the other peers
within the cluster, in order to serve all requests for documeénts contributed by all
the nodes of the cluster. Alternatively, this can be achieved by having a distinct
set of super-peers storing cluster metadata. Also each node stores a Document
Category Routing Table that maps documents categories to cluster-ids and a
Node Routing Table mapping each cluster-id to a list of nodes belonging to the
cluster. These tables are used for the routing of the queries to the right cluster.
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Recent extensions of the DHT-based networks propose instead of associating
keys to data items based just on their identifier, to associate with each data item
{or peer) a vector describing its content and then use this vector as an input to
the hashing functions.

In self-organizing SONs 27}, LSI is used to represent documents and queries
as vectors in a Cartesian space. Semantically related indices are in nearby nodes
of the overlay network. The document semantics are produced using LSI. CAN
is used to create a semantic overlay by using the semantic vector of the document
as the key to store document index in the CAN. The query is only need to be
compared against a small region centered at the query. Since the dimensionality
of the CAN is much smaller than the LSI's semantic space, rolling index is used
to partition the semantic space along more dimensions by rotating the semantic
vectors. Also a content-aware boot-strapping helps to distribute the indices
more evenly across nodes. Finally, a content-directed search algorithm is used
to face the problem of the curse of dimensionality. However, there is loss of
information when reducing the dimensions (using rolling indexes).

In [26] a p2p information discovery system is presented, that supports flex-
ible queries using partial keywords and wildcards, and range queries. The key
innovation is a dimension reducing scheme that eflectively maps the multi-
dimensional information space to physical peers. Documents that are local in the
multi-dimensional space are mapped to indices that are local in the 1-dimension
space and to peers that are close in the overlay network. Chord is used as the
overlay network topology. Each data elements is associated with a sequence of
keywords that form a multi-dimensional space. A Space-Filling Curve (SFC)
is used for the mapping from the d-dimensional to the 1-dimensional space.
The problem with this mapping is that not all the adjacent sub cubes in the
d-dimensional space are adjacent or even close in the curve.

-

2.3 Range Queries and Multi-Attribute
Histograms

In [25] a method based on the CAN system for efficient evaluating range queries
is proposed. The answers of range queries are cached at the peers and are used
to answer future range queries. The system uses a 2d virtual hash space similar
to CAN, which is partitioned into zones. Each zone is assigned to a peer. Given
a range query (q,,ge.), it is hashed into point (g,, g.) in the virtual hash space
(target point) and thus, the node that owns this zone stores information about
the answer of the query. Not all the peers in the system participate in the
partitioning. The nodes that participate are called active nodes (each one owns
a zone). The rest of the peers are called passive nodes. Initially there is only
one active node that owns the entire hash space. The partitioning of the hash
space is dynamic and changes over time as the existing zones split (due to large
load) and new zones are assigned to passive nodes. Whenever a peer gets an
answer, it informs the target node in order to cache the answer. Initially, all the
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queries are answered by the single active node. The performance of the network
increases as more queries are posed.

In [21] is presented how multi-dimensional range queries can be supported
in a p2p system by using traditional spatial-database technologies (kd-trees and
space-filling curves). When space-filling curves are used for range partitioning,
data is first mapped down into a single dimension using a space-filling curve and
then, the single-dimensional data is range partitioned across a dynamic set of
nodes. The network graph topology is a circular linked list of nodes, enhanced
with additional skip pointers for faster routing. Each node manages data in
a contiguous range of values. Similarly, during the query routing, the multi-
dimensional query is first converted to an appropriate set of 1-d range queries.
All these queries are routed to the network. When using kd-trees, the data
space is broken into rectangles with each node managing one rectangle. The
leaf nodes of the kd-tree correspond to the rectangle being stored by a node.
The space is split load equally instead of space equally. Skip pointers are also
used to speed up the routing.

STHoles [20] is a *workload-aware’ histogram that allows bucket nesting to
capture data regions. This histogram exploits query workload to spend more
resources in heavily accessed areas. Regions that are more heavily queried will
benefit from having more buckets with finer granularity. The problem with kd-
tree and STHoles is that it is very difficult to merge histograms that belong
to one or another type, since the tree structure of these two histograms is not
determined and depends on the number of tuples (for kd-tree) and on the query
workload (for STHoles).

In [23], two main alternatives to approximate multi-dimensional joint data
distributions are proposed: multi-dimensional histograms and Singular Value
Decomposition (SVD) techniques. Following the first approach, either the prob-
lem is reduced to a single dimension using space-filling curves, such as the Hilbert
curve (however, two adjacent points in the n-dimensional space may be distant
in the linear ordering), or the n-dimensional space is partitioned into rectangu-
lar regions (at every step the attribute for which the marginal distribution is
the most in need of partitioning is selected to be partitioned). SVD techniques
cannot be extended to dimensions greater than two.

To conclude, there are many works that deal with the small-world phe-
nomenon in p2p systems. There are works that study the small-world phe-
nomenon theoretically, such as [15], or propose p2p network topologies that
follow the small-world topology (13, 5], but there is no clear decentralized con-
struction procedure. The small-world topology has also been extended to DHT
systems (such us [17]), with the drawbacks of compromising peers autonomy
and requirement for strict network topology. Clustering of the peers have been
proposed by many recent works [6, 8, 28]. The number or the description of
the cluster is fixed in most cases, and global knowledge of this information is
needed to attach each peer to the appropriate cluster.

We use histograms as routing indexes, instead of other type of indexes used
in previous works, such as inverted list of keywords [9] and Bloom Filters [19].
The main advantages of histograms over other type of indexes are that they
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incur almost no run-time overhead and, for most real-world databases, there
exist histograms that produce low-error estimates while occupying reasonably
small space [14]. Histograms also perform better on answering range queries
and there are type of histograms that can be easily updated and aggregated
(creating the routing indexes).

There are also many works that deal with the problem of answering multi-
dimensional range queries {20, 21, 23]. These works propose either techniques
for reducing the problem into a single dimension (that lacks accuracy since two
adjacent points in the n-dimensional space may be distant in the 1-dimensional
ordering) or structures for multi-dimensional histograms. In the latter case, the
structures proposed have large update cost, since the multi-dimensional space
is split into regions of different size which is modified as the data changes, and
also, it is difficult to be merged.

kY
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Chapter 3

System Overview

We assume a p2p system with a set of peers. This set changes as new peers leave
and join the system. Each peer is connected to a small number of other peers
called its neighbors. Peers store data items. A query q may be posed at any of
the peers, while data items satisfying the query may be stored at various peers
of the system. Our goal is to route the query to such matching peers efficiently.

3.1 Histograms as Routing Indexes

We focus on p2p systems where each peer stores a relation R with a numeric
attribute z and on routing range selection queries on z. Each peer maintains an
index of the data items stored locally at it; this is called a local indez. As local
indexes, we use histograms. Histograms are widely used as a mechanism for
compression and approximation of data distributions, for selectivity estimation,
approximate query answering and load balancing [14]. In this work, we use
histograms for clustering and query routing in p2p systems.

A histogram H(z) on an attribute z is constructed by partitioning the data
distribution of z into b (> 1) mutually disjoint subsets called buckets and ap-
proximating the frequencies and values in each bucket. The problem of building
an accurate histogram for a given attribute is well-studied and is not the focus of
this thesis. One requirement in our context is using histograms that can be effi-
ciently aggregated; that is given two histograms for the data items stored locally
at two peers, to have a low-cost procedure for constructing one histogram for
the items collectively stored at both peers. We consider equi-width histograms,
that is, we divide the value set of an attribute z into ranges of equal width
(buckets). For each bucket we keep the fraction of the number of tuples with
values for z within the range of the bucket, divided by the total number of tuples
the histogram summarizes. Consider the histogram shown in Fig. 3.1 over an
attribute = of a relation R, 0 < z < 40. The data space of z is partitioned into
four equi-width buckets. The fraction of the total number of tuples that belong
to the first bucket (the value of z is included within range {0,9]) is 0.3, which
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Figure 3.1: Example of an equi-width histogram over an attribute z, 0 < r < 40

means that 30% of the tuples have value for r within range [0,9]). Similarly,
the fraction of the total number of tuples that belong to the second bucket (the
value of z is included within range [10,19]) is 0.2, and so on. In addition, we
maintain the total number of all tuples (the histogram size), denoted by S(n).

We denote by LI(n) the histogram used as the local index of peer n. Besides
its local index, each peer n maintains one routing index RI(n,e) for each of its
links e, that summarizes the content of all peers that are reachable from n using
link e at a distance at most R, called radius. The routing index RI(n,e) is also
a histogram defined next.

We shall use the notation H(n) to denote a histogram for peer n (used
either as a local index LI(n) or as a routing index RI(n,e)), Hi(n) to denote
the frequency of the values within i-th bucket, 0 < i < b — 1, and S(H(n)) to
denote its size. Then,

Definition 1 (histogram-based routing index) The frequency of the val-
ues within the i — th bucket of the histogram-based routing index RI(n,e) of
radius R of the link e of peer n is defined as:

Rli(n,€) = Zpep(L1i(p) * S(LI(p)))/ZpepS(LI(p)),

where S(RI(n,e)) = Lpe pS(LI(p)) and P is the set of peers p within distance
R of n reachable through link e.

Thus, the frequency stored at each bucket in the routing index of a particular
link e of peer n is produced by taking the fraction of the total number of
tuples that correspond to this bucket for all the local indexes within the horizon
(reachable through this link), divided by the total number of tuples the peers
within the horizon (that are reachable through this link) store.

Similarly, if the local index of peer p need to be subtracted from the routing
index of peer n, the new routing index is produced by the following equation:
RIi(n,e) = (RI;y(n,e)*S(RI(n,e))—LI;(p)*S(LI(p)))/(S(RI(n,e))—S(LI(p)))

An example is shown in Fig. 3.2. For a given query g, the local histogram
LI(1) of peer 1 provides an estimation of the number of results (matching tuples)
of peer 1, while the routing index RI(1, e) provides an estimation of the number
of results that can be found when the query is routed through link e. The set
of peers within distance R of peer 1 is called the korizon of radius R of peer 1.

We denote by results(n,q) the actual number of results peer n stores for
query q and by hresults(H(r),q) the number of results estimated by the his-
togram H(n) that summarizes the content of peer n. As usual, we make the
uniform frequency assumption and approximate all frequencies in a bucket by
their average. We also make the continuous values assumption, where all possi-
ble values in the domain of z that lie in the range of the bucket are assumed to
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Figure 3.2: The local indexes of peers 1, 2, 3, and 4 and the routing index of
link e of peer 1 for radius R = 2, assuming that local indexes LI(2), L1(3) and
LI(4) have the same size.

be present. However, there is a probability that although a value is indicated
as present by the histogram, it does not really exist in the data (false positive).
This is shown to depend on the number of buckets, the number of tuples and
the range of the attribute. Details can be found in the Appendix.

Let a query gxj = {z: a < z < a+k+d - 1}, where d is equal to the range
of each bucket. We denote k (0 < k < b) as the query range (the number of
buckets the query includes), j is the starting bucket of the query, j=ae/d and
a = c* d (the start of the query is the start of bucket j), where 0 < c <b-1.
We also consider the queries ¢<; = {z: = < a} and ¢>; = {2: = > a}. Note
that query g is the same with query gy;. Also if j + k > b —1 for the query
gkj, then it is the same with the query g5 ;. We can estimate results(n, q) using
the histogram H{(n) of peer n based on the type of the query g as follows:

o s hresults(H(n),qxs) = S(H(n)) * Ti2f Hy(n)
¢ gej: hresults(H(n),g<;) = S(H(n)) + £i_oHy(n)
® g5j: hresults(H(n),q>;) = S(H(n)) * Z}_;Hy(n)

We defined the query gx; as starting from the lower limit of a bucket (@ = ¢
* d), for simplicity. .

In the general case where the start or the end of the query can be any point
of the bucket the query can be defined as gx; = {z: @1 < r < a2+k+d—1} where
lj = a1/d], a; and a; can be any integer values within the range [0,d * b — 1]
and a; < a2 + k+d. Also g>; = {z: z > a1} and g5 = {z: = < ay}, where
|7 = a1/d] and |j = a3/d] correspondingly. In order to estimate the number of
results we use the uniform frequency assumption for the values of each bucket.
The fraction of the total number of tuples that satisfy each type of query is:

o quj: perc(H(n), qes) = S50 Hy(n)+ Hy(n)*(1- (a1~ j*d))/d+ Hysx(n)*
(a2 - (G +k+1)xd)/d (1) .

o g<j: perc(H(n),q<s) = BiZo Hi(n) + Hj(n) » (g —j + d)/d (2)
® g>j: perc(H(n),q>j) = 2?=j+1Hi(n) + Hy(n)x (L — (a2 ~j* d))/d (3)

The estimated number of results based on the type of query is:
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o qij: hresults(H(n),qx;) = S(H(n)) * perc(H(n), gx;) (4)
® g<j: hresults(H(n),q<;) = S(H(n)) * perc(H(n), 9<;) (5)
® g5;: hresults(H(n), ¢5;) = S(H(n)) * perc(H(n), g>5) (6)

In the rest of the thesis, we assume that queries start and end at the lower
and the upper limits of the buckets correspondingly.

3.2 Small-Worlds in Peer-to-Peer Systems

Ideally, we would like to route each query ¢ only through the peers that have
the largest number of results for g. To this end, we define PeerRecall as our
performance measure. Peer Recall expresses how far from the optimal a routing
protocol performs. Let V be a set of peers (V C N), by Sresults(V,q) we
denote the sum of the numbers of results returned for a query ¢ by each peer
that belongs to V.

Sresults(V, q) = Tyevresults(v,q) (3.1)

Definition 2 (PeerRecall) Let Visited (Visited C N) be the set of peers
visited during the routing of a query q and Optimal (Optimal C N) be the set
of peers such that |Optimal| = |Visited| and v € Optimal < results(v,q) >
results(u,q),V u ¢ Optimal. We define Peer Recall as: Peer Recall(Visited, q)
= Sresults(Visited, q)/Sresults(Optimal, g).

Intuitively, to increase PeerRecall, peers that match similar queries must
be linked to each other. The network distance between two peers n; and nj,
dist(n;, n;) is the length of the shortest path from n; to n; in the p2p network.
The diameter of the network is the maximum distance between any two peers
in the network. The clustering coefficient of a network captures the probability
that two neighbors of a peer are also neighbors themselves; it is the average frac-
tion of pairs of neighbors of a peer that are neighbors of each other. Small-world
networks are characterized by: (i) a small diameter and (ii) a large clustering
coefficient [29]. To increase PeerRecall, small-worlds of peers should be formed
based on whether the peers match similar queries. Fig. 3.3 shows a random
and a small-world p2p network. In a small-world network, peers that match a
query are nearby, thus once in the right group all matching peers are nearby.

To cluster peers, we propose using their local indexes. That is, we cluster
peers that have similar local histograms. For this to work, the distance (d)
between two histograms must be descriptive of the difference in the number of
results to any given query. ‘

Property 1 Let LI(n;), LI(n2) and LI(n3) be the local indexes of three peers
ny, ny and n3. For each query q, if d(LI(n,),LI(n2)) = d(LI(ny), LI(n3)),
then |results(n,,q)/S(LI(n1)) - results(nz, q)/S(LI(n2))| 2

Iresults(ny, q)/S(LI(n1)) - results(ns, )/ S(LI(ns))|
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Figure 3.3: (left) Random and (right) small-world p2p network

If the distance between the local indexes LI(n;) and LI(n,) of peers n; and
n, is smaller than the distance between the local indexes L/(n,) and LI(ns) of
peers n; and n3, we want also the difference in the percentage of tuples that
satisfy the query for n; and n; to be greater than the difference in the percentage
of tuples that satisfy the query for n; and nj.

We expect peers that have small histogram distance, to have also small
difference in the number of results they return for each given query. Since our
goal is to maximize the returned number of results, we want to build the network
such as the structure to help on retrieving large number of results. Peers that
are more likely to answer the same set of queries (and thus, have small distance
between their local indexes) we want to be nearby in the overlay network.

We consider latter two distance metrics (the L; and the edit distance) and
propose weighted versions of both that satisfy the above property, taking into
account the query workload. For different query workload the distance between
the two histograms will be different, since the difference in the number of results
varies depending on the query.

3.3 Query Routing and Small-World Construc-
tion y

We describe first how histogram-based routing indexes can be used to route
a query and then how small-worlds are constructed. We distinguish between
two types of links: short-range or short links that connect similas peers and
long-range or long links that connect peers with non-similar content. Two peers
belong to the same group if and only if there is a path consisting only of short
links between them.

3.3.1 Query Routing

A query g may be posed at any peer n. Our goal is to route the query ¢
through a set of peers that gives a large number of results for g, that is, we
want to maximize PeerRecall. To this end, we use the following heuristic:
each peer that receives a query propagates it through those of its links whose
routing indexes indicate that the peers reachable through them provide the
largest number of matching tuples. In particular, each peer n that receives
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Figure 3.4: Example of an equi-width histogram over an attribute z, 0 < z < 40

a query g propagates the query through the link e whose routing index gives
the most matches (hresults(RI(n,¢€),q) > hresults(RI(n,l),q) V link | # €)
and has not been followed yet. By following this link, the query is propagated
towards the peers that are estimated to provide the largest number of results
and thus PeerRecall is increased. The routing of a query stops either when
a predefined number of peers is visited (MazVisited) or when a satisfactory
number of results is located.

Consider the situation in which the query ¢ reaches peer n of Fig. 3.4. Let
the query be 10 < z < 15. The estimated number of results for each of the
routing indexes of links el, €2 and 3 is (based on equation (4) in Section 3.1):
hresults(RI(n,el),q) = RIi(n,el) * S(RI(n,el)) * perc(RI(n,el),q) = 0.4 *
1000 % 0.5 = 200
hresults(RI(n,e2),q) =-RIi(n,e2) * S(RI(n,e2)) * perc(RI(n,e2),q) = 0.4
500 % 0.5 = 100
hresults(RI(n,e3),q) = RIj(n,e3) x S(RI(n,e3)) * perc(RI(n,e3),q) = 0.2 %
1500 % 0.5 = 150
Thus, peer n selects link el to propagate the query since the estimated number
of results is the largest.

By following this procedure, it is possible to reach a situation in which no
matching peers are found. This can happen if the peer n that poses a query
has no matching links (hresults(RI(n,e), ¢) = 0 V link e of n), which means
that the matching peers (if any) are outside the radius R of n. In this case,
query routing would stop without returning any results. To handle this case,
we use a variation of the above procedure until we find the first matching link.
Specifically, if no matching link has been found during the routing of the query,
and the current peer has no matching links, then the long-range link of this
peer is followed (even if it does not match the query). The idea is that we want
to move to another small-world of the network, since the current small-world
(bounded by the horizon) has no matching peers. In the case that the peer has
no long-range link or we have already followed all long-range links, the query is
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propagated through a short link to a neighbor peer and so on until a long-range
link is found.

In the above procedure each peer propagates the query to only one of its
neighbors (corresponding to a depth-first traverse of the network). A variation
can be used in order to exploit the grouping of the peers for faster retrieval of
the results. More specifically, when the query reaches a peer p of the appropriate
group, flooding can be used, in order to propagate the query to all the peers
that are connected with p through short links (thus, propagate the query to all
the neighbors of the same group).

The question is how we can determine whether the query has reached ap-
propriate group or not. Let the query gx;, where k is the range of the query
and j the starting bucket. If hresults(H(n), qx;) = mazi(hresults(H(n), qx:))
V0 <i<b-1, then peer n belongs to the appropriate group. The idea is that
if the r buckets that include the query range correspond to the combination of
k buckets of the local index that gives the maximum number of results for this
particular query, then all the peers of the same group will have large number of
results to these buckets and it will be effective to flood the query to this group.

This variation of the query procedure can be effective for fast retrieval of
the results. However it does not ensure that many results will be found. The
problem is that each new peer that joins the system links to the most similar
of the existing peers. This does not guarantee that peers linked through short
links can answer the same set of queries. Also, it is possible that a query (for
example a query with large range) can be answered by peers of more than one
groups. However, when using flooding, after the flooding starts, the propagation
of the query is limited within one group only.

3.3.2 Small-World Construction

We describe next how routing indexescan be used to build small-world networks.
Each new peer that enters the system tries to find a relevant group of peers and
links with SL of them through short links. The idea is to use the local index
of the new peer as a query and route this towards the peers that have the most
similar indexes. Then the new peer is connected with the SL peers that are
most similar to it. Each new peer also links with a peer that does not belong to
the group through a long link with probability P;. Short links are inserted so
that the peers with relevant information are located nearby in the p2p network
and a large clustering coefficient is attained. Long links are used for keeping the
diameter small. The reason is that we want to be able to find both all relevant
results once in the right group, and the relevant group once in another group,
thus increasing PeerRecall.

In particular, when a new peer p wishes to join the system, a join message
that contains its local index LI(p) is posed as a query to a well known peer
in the system. The join message also maintains a list L (initially empty) with
all peers visited during the routing of the join message. The join message is
propagated until up to JMeazxVisited peers are visited.

Whenever the join message reaches a peer n:

A
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1. The distance d(LI(n), LI(p)) between local indexes LI(n) and LI(p) is
calculated.

2. Peer n and the corresponding distance are added to list L.

3. If the maximum number of visited peers JMazxVisited is reached, the
routing of the join message stops.

4. Else, the distances d(LI(p), RI(n,e)) between the local index LI(p) of
the new peer p and the routing indexes RI(n,e) that correspond to each
of the outgoing links e of peer n are calculated.

5. The message is propagated through the link e with the smallest distance
that has not been followed yet, because there is a higher probability to find
the relevant group through this link. When the message reaches a peer
with no other links that have not been followed, backtracking is used.

Consider the example of Fig. 3.4. Let the join message be at peer n and
the appropriate link need to be selected to propagate the message. Let the
histogram distance between the local index of the new peer p and the routing
indexes for each link of n be:

d(LI(p), RI(n,el)) = 10

d(LI(p),RI(n,e2))=5

d(LI(p), RI(n,e3)) = 15

Then the join message will be propagated through link e2, since the routing
index of peer n for this link has the smallest distance from the local index of
the new peer p.

When routing stops, the new peer selects to be linked through short links to
the SL peers of the list L whose local indexes have the smaller distances from
the local index of the new peer, and with probability P; to one of the rest of the
peers in the list through a long link.

An issue is how the peer that will be attached to the new peer through the
long link is selected. One simple approach is to select randomly one of the rest
of the peers within the list (that does not belong to the SL peers selected to be
linked through short links). Other more sophisticated methods can be followed

for selecting the long link based on the histogram distances, but this is left as
future work.

3.3.3 Index Update

When a new peer nj joins the system, it must inform the peers within distance
R about the data it stores, in order to update their routing indexes. To this end,
nx sends a message New(LI(ni), Counter) to all its neighbors, where Counter
is set to R. Upon receipt of a New message, each peer n; merges the received
LI(n;) index with the routing index of the corresponding link. Then, it reduces
Counter by one, and if Counter is nonzero, it sends a New(LI(nx), Counter—1)
message to all other of its neighbors. This way, the local index of the new peer
is propagated to the existing peers.

N .
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In addition, the new peer must construct its own routing indexes. Thus, it
should receive the local indexes of all the peers within its horizon for each of
its links and construct the routing indexes for each link based on the Def. 1 of
Section 3.1. This is achieved through a sequence of FW (Indez, Counter, flag)
messages. In particular, each peer n; upon receipt of a Vew message from a peer
n;, it replies to n; with a FW(LI(n;), R, False) message where Counter is set
to R. The use of the flag parameter will be explained shortly. Upon receipt of
a FW(LI(n;), Counter, False) message, each peer n;, decrements the Counter
by one, and if Counter is nonzero, it sends a FW{(LI(n;), Counter — 1, False)
message back to the peer that has sent the New message to it. This way, the
local indexes reach the new peer nx. Peer n; creates its routing indexes by
merging the corresponding local indexes received by the various FW messages.

As data changes locally at a peer, its local index need to be updated. Also,
the routing indexes of all the peers within its horizon need update. Thus,
periodically each peer informs its local index about the changes in the data
stores locally. Next, each peer that updates its local index, should inform all
the peers within its horizon to update their routing indexes. This is done by a
sequence of New messages.

We now explain the use of the flag parameter. Flag is used because the
insertion of a new peer may change further the horizons of existing peers. Take
for example the network of Figure 3.5 with R = 2. Say a new peer, peer 13,
enters the network and links to both peers 1 and 3. The local index of 13 must
be propagated to 1, 2 and 3, 4; this is achieved through the New messages.
Peer 13 must also construct its own routing indexes; this is achieved through
the FW messages with flag equal to False. However, note that the insertion
of 13 has changed the relative distance of some peers. In particular, now peer
3 (1) belongs to the horizon of 1 (3) since their distance (through the new peer
13) is now 2. Thus, the local index of 3 (1) must now be merged with the
corresponding index of 1 (3). -

Flag is used as follows. Flag is initially set to False. When the new peer
ny receives a FW (Index, Counter, False) message, it changes Flag to True,
decrements Counter by one, and if Counter is nonzero, it propagates a message
FW (Index,Counter — 1, True) to all of its other neighbors. Upon receipt of
a FW (Indez,Counter,True) message, each peer merges the Indez with its
corresponding routing index, decrements Counter by one, and if Counter is
nonzero, it sends a FW (Index, Counter — 1, True) message to its neighbors.
This way, indexes of peers whose horizons change by the introduction of the new
peer are propagated to each other. When a peer wishes to leave the system, it
sends an update message to all its neighbors with a counter set to the radius
R. When the message reaches a peer, the peer performs the update at its
routing index and propagates the message further until the counter reaches 0.
Furthermore, it sends it own local index through the same link with a counter
set to R to inform the peers that are now included in its horizon, since the
departure of the peer has resulted in the decrease of its distance with other
peers.

Note that, as indicated in Figure 3.5, it is possible that the local index of
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Figure 3.5: Index update

a peer n; is included in more than one routing indexes of some other peer n;.
However, we may want to avoid this, because during search, two different paths
will lead us to the same peer. This problem can be overcome by using peer
identifiers. Each peer stores the identifiers of the peers that are included in
each of its routing indexes. When a local index reaches a peer during the join
procedure, the peer first checks whether it has already stored this index at the
routing index of some other link. The problem is that it cannot be applied in the
situation that the peer sends the New message in parallel to all its neighbor.
Thus, the New messages should be sent sequentially if we are interested in
avoiding a situation that more than one routing indexes to include the same
local index.

3.3.4 Load Balancing

By following the above procedure, peers that stay longer in the p2p network are
connected with more short links than recently arrived ones, since the probability
of old peers being selected as neighbors of arriving peers increases as they stay in
the network. This is not necessarily undesirable, since peers that stay connected
for longer periods of time are more stable. On the other hand, peers with more
links will receive more requests and thus, it is possible that they are overloaded.
This can be remedied by following a simple reconstruction procedure. Whenever
a peer gets overloaded (i.e., the number of its short links increase beyond a
threshold FLimit), the peer may delete some of its links. When a peer n
decides to delete a link, it selects the link e with peer p that has the largest
distance d(LI(n), RI(n,e)) among all of its links (that is, the less similar one).
Peer p is then connected through a short link with another peer in the group,
selected by sending a join message as above. More specifically, before n breaks
the link with p, it sends a message that is routed inside the group and tries
to find the peer with the less semantic distance with p (that can accept new
connections). Then it informs p about its new neighbor in order to establish
connection with it. The routing procedure whenever such a message reaches a
peer v is the following:

1. The distance d(LI(v), LI(p)) between local indexes LI(v) and LI(p) is

kY
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calculated.

2. Peer v and the corresponding distance are added to list L (similar to the
list used during the join procedure).

3. If the maximum number of visited peers is reached, the routing of the
message stops.

4. Else, the distances d(LI(p), RI(v,e)) between the local index LI(p) of
the peer p and the routing indexes RI(v, e) that correspond to each of the
outgoing short links e of peer v are calculated.

5. The message is propagated through the short link e with the smallest
distance that has not been followed yet. When the message reaches a peer
with no other links that have not been followed, backtracking is used.

When routing stops, the peer n selects the peer of the list L whose local
index has the smaller distances from the local index of the p, and informs p
about the connection it should create sending a message to it.

After this procedure takes place, peers with fanout greater than F Limit will
converge to fanout F'Limit. Also, the fanout of peers with fanout a little smaller
than FLimit will also converge to FLimit, since new peers will attach to them.
Finally, peers with small fanout will have fewer new neighbors than peers with
larger fanout, since the probability the routing of the message to reach these
peers is smaller.

3.3.5 Node Leave

Before a peer exits the system, it should decide about the new connections that
will be established after it leaves. We must ensure that the network will remain
connected and also that the peer’s departure will not affect the grouping of
the peers. The procedure tries to link the neighbors of the peer between them,
keeping the network connected and the properties of the group the peer belongs
to unaffected. In order to keep the network connected, the idea is to link in
a path all the neighbors of the peer n that leaves. Also, each neighbor that is
linked through short link with n, should connect with another neighbor that
has short link with n, keeping the grouping of the peers unaffected.

Peer n that wishes to leave, first propagates a message to its neighbors asking
for their local indexes and a list NL with their own neighbors. For each of its
neighbors peer n stores:

1. the local index
2. the list NL of its own neighbors and the type of links with them

Before peer n leaves, it needs to decide about the new connections that will be
created sfter its departure. The procedure is the following:

While NL # empty
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1. Peer n selects a neighbor k from NL. NL = NL - {k}

2. If the link between k and n is short ( link(k,n) = short), another peer u
€ NL (neighbor of n) is selected to link with k through short link. This
peer should satisfy the following properties: first, it should be connected
with n through short link ( link(u,n) = short), and second, it should be
the peer with the smallest histogram distance from k (V neighbor z of n
d(LI(k),LI(u)) = min,(d(LI(k),LI(2))), where z € NL). If link(k,n) =
long, k is marked to link through long link with peer u € NL for which
link(u,n) = short).

3. k=u.

List VL is used so that peer n can check whether two of its neighbors are
linked together in every iteration, without having to send messages to all the
neighbors.

After n has decided about all the new connections that will be created, it
propagates a message to each neighbor x containing the new connections z will
create. As soon as all the new connections are established n leaves the system.
Also the routing indexes of the peers within the horizon of n should be updated
after it leaves. '

The above procedure ensures that the network remains connected. The
reason is that there is a path between all the neighbors of the departing peer
n. Also, the grouping of the peers remains unaffected, since each neighbor k of
n for which link(k,n)=short connects with the most similar n’s neighbor m of
the same group (links with n through short link). Whenever a new peer joins
the system connects with the most similar of the existing peers. Thus n with
high probability will be the most similar peer to m and k, which means that
it is expected to be very similar also to each other. This is the reason we only
need to look at the neighbors of the peer that leaves for establishing the new
connections.

The number of messages needed so that peer n collects all the required infor-
mation (list NL and local index) is 2*degree(n), where degree(n) is the number
of n’s neighbors. Then for each neighbor, peer n selects another neighbor to
link with it, and sends a message to both of them. Thus, 2 * degree(n) more
messages are needed to inform the neighbors about the new connections that
will be created. The total number of messages is 4 * degree(n). Of course after
the new links are established the routing indexes of the peers within the horizon
of the neighbors of n need to be updated.

Note: If n has only one neighbor then there is no need of creating new
connections.

A
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Chapter 4

Histogram Distance Metrics

As discussed in the previous section, histograms over one attribute are used as
local indexes. The routing of the join message is based on the distance between
the histograms. Thus, the distance metric used plays crucial role in the per-
formance of the network. We expect the distance between the two histograms
(corresponding to the local indexes of two peers) to be descriptive of the differ-
ence in the number of results the peers store. For this reason, we introduce a
workload-aware edit distance that in the average case is shown to be analogous
to the difference in the number of results returned.

4.1 Distance Metrics
The L;-distance of two histograms H(n,) and H(n,) is defined as:

Definition 3 (L; distance between histograms) Let two histograms H(n;)
and H(ny) with b buckets, their L, distance, dp,(H(n1), H(nz)) is defined as:
dr,(H(m), H(nz)) = £25 |Hi(ny) - Hi(na)|.

For example, the L, distance of the histograms in Fig. 4.2 is:
dr,(H(nl),H(n2)) =0.1+0+04+0.5 = 1.

The histograms we study are ordinal histograms, that is, there exists an
ordering among their buckets, since they are built on numeric attributes. For
ordinal histograms, the position of the buckets is important and thus, we want
the definition of histogram distance to also take into account this ordering. This
property is called shuffling dependence. For example, for the three histograms of
Fig. 4.1, the distance between histograms H(n1) and H(n2) that have all their
values at adjacent buckets (Ho(nl) and H;(n2) respectively) should be smaller
than the distance between histograms H(n1) and H(n3) that have their values
at buckets further apart. This is because, the difference between the number
of results provided by peer nl and the number of results provided by peer n2
is smaller for a larger number of range queries than for peers nl and n3. The
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Figure 4.1: Intuitively, the distance between H(nl) and H(n2) should be smaller
than the distance between H(nl) and H(n3)

shuffling dependence property does not hold for dy,, since the three histograms
have the same pair-wise distance.

We consider an edit distance based similarity metric for which the shuffling
dependence property holds. The edit distance of two histograms H(n;) and
H(n,) is the total number of all necessary minimum movements for transforming
H(n;) to H(n;) by moving elements to the left or right. It has been shown that
this can be expressed by the following definition {7]:

Definition 4 (edit distance between histograms) Let two kistograms H(n,)
and H(ny) with b bucket.s' Their edit distance, d.(H(n1), H(nz)), is defined as:
de(H(m), H(nz)) = B5|B—o(Hj(m) — Hj(n2))|-

Let us define as:

pref(l) = Si_oHi(m) — Bi_oHi(n2),
where pref(l) =0forl >2b—1andl <0

Then, the edit distance can be written as:
de(H(n1), H(nz)) = Z g lpref (1)]

Edit distance takes the preffix sums of the array that represent the his-
togram. Consider the two histograms of Fig. 4.2. There edit distance is:
de(H(nl),H(n2)) =0.1+0.14+05+0=0.7.

We want a distance metric that will be descriptive of the difference in the
number of results for a given query (Property 1). In the ideal case, we want
the distance between two histograms H(n;) and H(ny) to correspond to the
difference in the number of results between the peers n; and ny for each query.

oy
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Figure 4.2: Example of two histograms over an attribute z € [0,40]

For a query gqx;, the estimated difference in the results, hdif fer, of two peers
n; and nj is:

hdif fer(n1,nz,qx;) = |hresults(H(n1), qx;)/S(H(n1)) = hresults(H(na), qu;)/S(H(na))}

= |32} (Hi(m1) ~ Hi(na))|

The difference in the results for query gx; is equal to:
hdif fer(ni,na,qxj) = lpref(G + k) — pref(i — 1)} (41)
(proof in the Appendix).

From Equation 4.1, for k = b—1 that is for queries of the form ¢5; Property
1 holds for edit distance. It also holds for queries of the form g<;. It does
not hold however, in general, so we extend Definition 4 as follows, based on
Equation 4.1.

Definition 5 (workload-aware edit measure between histograms) Let
two histograms H(n,) and H(nj) with b buckets. Their workload-aware edit
measure, wde(H(ny), H(n3)), is defined as:

L, wde(H (), Hmg) =
Tiso B Zowkjlpref(j + k) — pref(j — 1)|
where 0 S wyj £ 1 and 22;32?;(1,10“ =1.

We shall show that wd, satisfies Property 1, if we adjust the weights properly.
Let a query gxj; recall that j is the bucket the query starts from and k is the
range of the query. Property 1 holds for gy;, if we set wx; = 1 and all other
weights to zero. In this case, wd.=hdif fer(n,,n2,gx;), which means that the
distance between the histograms is equal to the difference in the number of
results returned for query gy;.

In general, let fi; be the frequency of the queries gx; in the workload. By
setting wk; = fij, the wd. distance approximates the expected difference in the
number of results over all queries. Thus, in general, when we have knowledge
about the range k of the query workload and the starting bucket j, we can use
this knowledge to favor popular queries. By using the frequencies of the queries
as weights, differences in the result sets of more popular queries influence more
the distance of the histograms, while unpopular queries have a smaller impact.
When no knowledge about the workload is available we can simply use d,.

¢
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We use the same technique to extend wy,, to take into account the workload.
Let us define as:

Ll(i) = H;(nl) - H,’(nz)
then, the L; distance can be written as:

dp,(H(n), H(nz)) = B2 |L1(1)]

Similarly to Equation 4.1 (proof in the Appendix),
hdif fer(n1,na,qu;) = DI T|L1G)| (4.2)

Thus, L, distance is analogous to the difference in the number of results
only for the queries gx; with k = 0, that is for queries covering a single bucket.
For being the distance descriptive of the difference in the number of results
(Property 1), we define a workload-aware version of the L;-distance as follows
based on Equation 4.2:

Definition 6 (workload-aware L; measure between histograms) Let two
histograms H(n,) and H(n;) with b buckets. Their workload-aware L, measure,
wdy, (H(n,), H(n2)), is defined as:

wdg, (H(m1), H(n2)) = Shy Tjoowis (D325 L16)|

where 0 < wy; <1 and 22;:)2?;(1)’”5 =1

By incorporating weights into dj,, the new metric is shuffling dependent and
it is proved to be equivalent to wd.. Both weighted versions (Definitions 5 and
6) are distance metrics. Proofs can be found in the Appendix.

4.2 Experimental Evaluation

We run a set of experiments to evaluate the histogram distance metrics. For
simplicity of presentation, in the reported experiment, we use histograms with
10 buckets and z € [0,99]. We used a workload with queries having range (k)
varying from O (covering data in 1 bucket) to 4 (covering data in 5 buckets). We
use 10 histograms H (i), 0 < i < 10, with 10 buckets each. Two different data
distributions are used. In the first, for histogram H (i), DT is the fraction of the
total number of tuples that are included within bucket i and the rest tuples are
uniformly distributed among the rest of the buckets. We also used the zipf data
distribution. For each histogram there is a ranking of the buckets based on the
number of the tuples each bucket summarizes. The probability a tuple to belong
to the bucket with rank r is analogous to P; = 1/r®, where a is a parameter that
varies in our experiments. For histogram H (i) bucket 7 is set to be the most
popular and the popularity reduces as the distance between bucket i and the
other buckets increases. Another parameter in our experiments is the number
bet of buckets that include the (100 * DT)% of the tuples (in our data distribu-
tion) or that are the most popular (in zipf distribution). More specifically, for
histogram H (i) buckets i, ...,i+bet — 1 include the (100 DT')% of the tuples (for
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Table 4.1: Input parameters for centralized experiments (Simple Histograms)

Parameter Default Value Range
Number of buckets 10

Domain of z [0, 99]

Tuples per peer 1000

Range of queries 04
DT 0.7 0.5-0.9
a 1.0 0.9-3.0
bet 1 1-3

our data distribution) or are the most popular (for zipf distribution). We com-
pute the distance between H(0) and each histogram H (i), 1 <1 < 10, using the
three distance metrics. Our performance measure is the difference in the num-
ber of results for each histogram with H(0), that is: hdif fer(H (i), H(0), qx;)
with respect to the distance of the respected histograms (that is, whether Prop-
erty 1 is satisGed). The desired behavior is the difference of the number of
results estimated by two histograms to be analogous to their distance. Table
4.1 summarizes the parameters of the experiments.

4.2.1 Our Data Distribution

For the first experiment, the starting bucket j of the query is chosen uniformly
and performed the experiments for different ranges r. As expected, the L, dis-
tance (Fig. 4.3(left)) does not perform well, especially for our data distribution.
The distance of the histograms has no'relation with the difference in the number
of results. This is because the L; distance compares only the respective buckets
of each histogram without taking into account their neighboring buckets which
however influence the behavior of queries with ranges larger than 0.

The edit distance (Fig. 4.3(center)) performs better than L;, since it takes
into account the position of the buckets. In particular, as the distance between
the histograms increases, their respective differences in the results also increase.
However, for each query range this occurs until some point after which the dif-
ference in the results becomes constant irrespectively of the histogram distance.
This is explained as follows. The edit distance between two histograms takes
into account the ordering of all buckets, while a query with range r involves only
r buckets, and thus it does not depend on the difference that the two histograms
may have in the rest of their buckets. For example, for a query with range 0,
the difference in the results remains constant while the histogram distances in-
crease, because the query involves only single buckets while the edit distance
considers the whole histogram. The edit distance works better for queries with
large ranges.

The behavior of the workload-aware edit distance is depicted in Fig. 4.3(right).
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Figure 4.3: (left) L1 distance, (center) edit distance and (right) workload-aware
edit distance for our data distribution and for different query ranges (DT = 0.7
and bet = 1)
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Figure 4.4: (left) L1 distance, (center) edit distance and (right) workload-aware
edit distance for our data distribution when varying DT (mixed query workload)

For each query, we set the weights that correspond to the range of the query to
1 and all other weights to zero. More specifically, for a query with range k, we
set wx; = 1, V j. The distance is proportional to the difference in the number
of results (which is the ideal performance).

For the following experiments, the starting bucket j of the query is chosen
uniformly and we use different ranges (between 0 and 4) for the queries, where
queries of different ranges have different frequencies.

Figures 4.4 and 4.5 present the performance of the distance metrics for our
data distribution when varying DT and bct correspondingly. As expected, the
L, distance (Fig. 4.4 (left) and 4.5(left)) does not perform well. When bct=1,
due to the nature of the data (for each histogram the large data distribution
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Figure 4.5: (left) L1 distance, (center) edit distance and (right) workload-aware
edit distance for our data distribution (DT = 0.7) varying bct (mixed query
workload)
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exists within a different bucket), all compared histograms have nearly the same
L, distance with H(0). When bct > 1, there is an overlapping between that
buckets that correspond to the large data distribution. Thus the L, distance is
not always the same, however again it does not perform well since the histogram
distance does not follow always the difference in the number of results.

The edit distance (Fig. 4.4 (center) and 4.5(center)) performs better than
L4, since it takes into account the order of buckets. In particular, as the distance
between the histograms increases, their respective differences in the results also
increase. However, for each value of DT this occurs until some point after which
the difference in the results becomes constant irrespectively of the histogram
distance.

The performance of the workload-aware edit distance is depicted in figures
4.4 (right) and 4.5(right). The weights are set equal to the frequency of the
queries. More specifically, wi; = fx V starting bucket j, where fi is the fre-
quency of the queries with range k.The performance is the ideal. As proved, the
difference in the results increases analogously to the difference of the histograms.

We also evaluated the workload-aware edit distance for a workload of queries
with range from 0 to 4, for the case in which the starting bucket of the queries
is not chosen uniformly but some starting points are more popular (Fig. 4.9
(left) and 4.10 (left)). The weights are: wx; = fxj where k is the range and j
the starting bucket of the query, and fx; is the frequency of the queries with
range k starting from bucket j. The distance satisfies Property 1 for this query
workload as well. Although for this workload the histogram distance is not
exactly analogous to the difference in the number of results, it satisfies the
property that the largest the histogram distance, the largest the difference in
the results.

4.2.2 Zipf Data Distribution

For the first experiment, where the starting bucket j of the query is chosen
uniformly and used different query ranges r, L; (Fig. 4.6(left)) performs bet-
ter than when using our data distribution. The reason is the distribution of
the data among more buckets. Edit distance (Fig. 4.6(center)) also performs
better for zipf distribution for the same reason. Workload-aware edit distance
(Fig. 4.6(right)) performs better then the other two distance metrics and it is
proportional to the difference in the number of results.

We performed also the experiments using different ranges (between 0 and 4)
for the queries, where queries of different ranges have different frequencies (Fig.
4.7 and 4.8). The workload-aware edit distance (Fig. 4.7 (right) and 4.8 (right))
has the same performance as above. The L, (Fig. 4.7 (left) and 4.8 (left)) and
edit distance (Fig. 4.7 (center) and 4.8 (center)) perform better due to the
nature of the data (the tuples are distributed across more buckets). However
their performance is worse than the workload-aware edit distance, since the
histogram distance is not analogous to the difference in the number of results.
Also, for large values of @ (which means that the most popular buckets have
much more tuples than the rest), the performance decreases, since the tuples
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Figure 4.6: (left) L1 distance, (center) edit distance and (right) workload-aware
edit distance for zipf data distribution and for different query ranges (a = 0.9
and bet = 1)
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Figure 4.7: (left) L1 distance, (center) edit distancé and (right) workload-aware
edit distance for zipf distribution, when varying a (mixed query workload)

are distributed among less buckets.

Also, for the case in which the starting bucket of the queries is not chosen
uniformly but some starting points are more popular (Fig. 4.9 (right) and 4.10
(right)), workload-aware edit distance satisfies Property 1 also for this data
distribution. Although for this workload the histogram distance is not exactly
analogous to the difference in the number of results, it satisfies the property
that the largest the histogram distance, the largest the difference in the results.

-

4.2.3 Summary of Experiments

To conclude, for both distributions and for all the values of DT and a, the
workload-aware edit distance performs better than L; and edit. The histogram
distance is nearly analogous to the difference in the number of the results. When
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Figure 4.8: (left) L1 distance, (center) edit distance and (right) workload-aware
edit distance for zipf distribution (a@ = 0.9) varying bct (mixed query workload)
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Figure 4.9: (left) workload-aware edit distance for our data distribution, and
(right) for zipf distribution, when varying DT and a correspondingly (mixed
query workload where the starting bucket is not selected uniformly)
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Figure 4.10: (left) workload-aware edit distance for mixed query workload for
our data distribution (DT = 0.7), and (right) for zipf distribution (a = 0.9),
when varying bct (mixed query workload where the starting bucket is not se-
lected uniformly)

using L; distance metric, the histogram distance is nearly constant indepen-
dently of the difference in the number of results the histograms summarize.
Edit distance is nearly proportional to the difference in the results until some
value of histogram distance. Beyond that point the distance increases although
the difference in the number of results remains constant. This point depends
on the range of the query. As the query range increases, edit distance metric
performs better. Also, L; and edit distance metrics perform better for zipf dis-
tribution and when increasing bct, due to the distribution of the tuples to more
buckets.
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Chapter 5

Multi-Attribute Histograms

So far, we have assumed that the user queries the system based only on the
range of one attribute. Now we will study the situation in which the query
consists of the range of more than one attribute. Consider a relational database
with attr numerical attributes A, ..., Aaur, distributed among the peers of
a peer-to-pecr network. Each peer maintains a local index that summarizes
the information stored locally. The simplest solution is to create a different
histogram that approximates the values for each attribute. The problem with
this approach is that there is dependence between the values of the attributes
that should be taken into account in the index.

5.1 Histogram Structure

The R-tree [11] structure is very close to what we need. Each level of the R-
tree represents the distribution of the values of a particular attribute. This
structure is more suitable for equi-depth histograms. The problem with this
type of histogram is that the update cost is very large, since whenever new
tuples are inserted, the R-trec will need to be built again. Also, the merge cost
is large and this makes difficult the construction of the routing indexes. Finally
it is more difficult to define an appropriate distance metric between equi-depth
histograms.

We use a variation of the R-tree, where the main difference is that each node
of the tree corresponds to an equi-width histogram, instead of an equi-depth.
Each node represents a histogram and approximates the value frequencies of
the corresponding attribute in a particular region. The total number of regions
that the attributes space is split is by*bg*...*bay,, where by, by,...,bactr is the
number of buckets for the attributes A;,...,Aqr correspondingly. The buckets
of the leaf nodes represent the regions to which the attribute space is split by
the tree.

An example of the above approach follows (Fig. 5.1). Consider three at-
tributes A4, B, C. The values of each attribute are split into three equi-width
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Figure 5.1: 3-Attribute Histogram

buckets. The histogram for these attributes is a tree with three levels, each one
corresponding to a particular attribute.

In the first level, we approximate the frequencies of attribute A in each
bucket. In the second level, for the tuples in each bucket of the first level, we
approximate the frequencies of attribute B. For example, for the tuples with
values between vl and v2 for A, we approximate the values of attribute B.
Similarly, in the third level, for the tuples in each bucket of the second level, we
approximate the frequencies of attribute C. For example, node N corresponds
to the histogram that approximates the frequencies of the values for attribute
C for the tuples with values between vl and v2 for attribute A and between ul
and u2 for attribute B.

An issue is how we select the attribute that will be partitioned at each level.
We select to partition the most critical attribute at each level. Since each query
may not contain ranges over all the attributes of the multi-attribute histogram,
we prefer the higher levels to corfespond to the attributes that are queried
more. Thus, smaller part of the tree will need to be traversed during the results
estimation.

Now we define the routing index for the multi-attribute histograms similarly
to the Definition 1 of Section 3.1. We shall use the notation H%(n) to denote a
histogram that corresponds to the j — th node of level [ in the tree (used either
as a local index LI'i(n) or as a routing index RI'(n,e)), HY(n) to denote
the frequency of the values within its i-th bucket, 0 < i < b — 1, where b; is
the number of buckets for the attribute at level I, 1 < I < attr, where attr is
the number of attributes the histogram summarizes. Also we use S(H(n)) to
denote its size of the multi-attribute histogram. Then,

Definition 7 (histogram-based routing index) The frequency of the val-
ues within i — th bucket for the histogram that corresponds to the j — th node of
the attribute at level | of the histogram-based routing index RI(n,e) of the link

e of peer n is defined as: RIY (n,e) = Spep(LIY (p) * S(LI(p)))/Tpc PS(LI(p))

%
Y




5.2. DISTANCE METRIC 43

and S(RI(n,e)) = XpcpS(LI(p)) where P is the set of peers p within distance
R of n reachable through link e.

5.2 Distance Metric

Consider a multi-attribute histogram of attr numerical attributes Ay,...,Aater.
Let by, ba,...,bater be the number of buckets that corresponds to each attribute.
Also we assume that attribute A; corresponds to level i in the tree. We can
use each of the known histogram distance metrics to calculate the distance be-
tween two multi-attribute histograms. Lets d(H"Y(n,), H"(n3)) be the distance
between two nodes of two multi-level histograms that correspond to the j-th
node of level [ in the tree. The distance between the multi-level histograms is
calculated by taking the sum of the distances for each level of the tree. The
distance for level [ is:

1-1 . .
dist; = T}~ d(HY(ny), HY (n3)) /b} 2} (5.1)

We take the sum of the distances between the corresponding nodes of the level
and divide it with the number of the nodes to give equal weight to each attribute
when calculating the distance of the whole multi-level histogram.

The total distance between two multi-attribute histograms H(n,) and H(nj) is:

D(H(ny), H(n)) = S2%T1dist, (5.2)

where attr is the number of attributes.

This distance metric gives equal weight to each level of the tree (to each
attribute) and also to each node in the same level. Thus, each region the tree
splits the attribute space has the same contribution to the distance.

In Section 4.1 we have shown that adjusting the weights properly the workload-
aware edit distance between two histograms in the average case is equal to the
difference in the number of results for a giverr query. Using this distance in
equation 5.1, Idif f; gives the average difference in the number of results for
attribute A; taking into account the distribution of the values for the attributes
of the higher levels in the tree. Thus, distance D that corresponds to the sum
for all the levels, in the average case is analogous to the total difference in the
number of results.

5.3 Estimation of Results

Our system support complex range queries over more then one attributes. The
query can be a conjunction (i.g. v1 £ A < v2 and ul < B < u2 and wl <
C < w2) or a disjunction (i.g. v1 < A<v2orul < B<u2orwl <C <w2)
of clauses over the attributes. A query may also contain both disjunctions and
conjunctions (i.g. v1 < A <v2 and (vl < B <v2or wl < C < w2)).

During the query routing, the query message is propagated through the link
that more results are expected to be found. This estimation is done based on
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the routing indexes, in our approach the multi-dimensional histograms. In order
to estimate the expected number of results stored at the peer that corresponds
to the multi-dimensional histogram, the buckets of the leaf nodes that satisfy
the query necd to be specified (the buckets that overlap with the range of the
query). During the traversal of the tree from the root to leaves in a Breadth
First Search manner, only the links that correspond to buckets that overlap with
the predicates of the query are followed. The procedurc continues until the last
level of the tree has been reached. The buckets of the leaf nodes we finally
reach will be taken into account for the results estimation. More specifically,
the expected number of results is the sum of the number of tuples each bucket
summarizes.

For example consider the 3-attribute histogram of FFig. 5.1 and the conjunc-
tion query: ¢y and g,. Lets assume the predicate q; of the form ul < B < u2,
where B is the attribute of the sccond level and ¢; of the form wl < C < w2,
where C is the attribute of the third level in the above schema. In order to
specify the leaf buckets that satisfy this query the procedure is the following:
all the links of the first level’s buckets are followed. For each node of the second
level (that corresponds to attributeB) we select the buckets that overlap with
the range of the query ¢;. Then only the links of these buckets are followed
leading to the corresponding nodes of the next level.

Continuing, we evaluate the second predicate g2. We follow the same proce-
dure starting from the nodes reached by the above procedure. When reaching
the third level, the buckets that overlap with g are selected. These are the
buckets that should be taken into account for the results estimation.

We denote S the set of these buckets. The estimated number of results is
the sum of the number of tuples each bucket bc™ of set S summarizes:

Est = £C _, tuples(bc™)
where C is the size of S and tuples(bc™) the number of tuples bucket bc™
summarizes.

If the query consists of both conjunctions and disjunctions, then it is trans-
formed into disjunctions of the conjunctions (Disjunctive Normal Form) and
we handle each conjunction separately. The estimated number of results is the
maximum number of the results estimated by the conjunctions. For example,
a query: ¢; and (g2 or ¢3) is transformed into: (q; and ¢;) or (g; and g¢3). The
estimated number of results for the query (g1 and ¢2) and the query (¢, and ¢3)
is calculated, and we take the sum of them as the results estimation.

In the above procedure, we assumed that the buckets satisfying a query
are included as a whole to the query range. In the case that the query range
overlaps with only a part of a bucket, the uniform frequency assumption for
the values of each bucket is assumed (as in simple histograms) to estimate the
number of results. In particular, each bucket in S does not contribute the total
number of tuples it summarizes to the estimated number of results, but only the
expected number of tuples that satisfy the query based on the uniform frequency
assumption. More specifically, for each bucket bc™ in S lets bc}* be the bucket at
level i of the path from the root to bc™. Let perc]* be the fraction of the bucket
be* that overlaps with the query (perc]® is evaluated based on the equations
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Figure 5.2: Error in the estimated number of results for multi-attribute and
simple histogram

(1)-(3) of section 3.1). Then, the number of tuples that bc™ contributes to the
estimated number of results is:

Est™ = tuples(bc™) = 2 perc*, where attr is the number of attributes.
Thus, the estimated number of results is:

Est =XC_ Est™.

5.4 Using N Simple Histograms Instead of an
N-Dimensional Histogram

Instead of using multi-dimensional histograms when there are more that one
attributes, an alternative structure is the use of one simple histogram per at-
tribute. The whole histogram consists of attr simple histograms, where attr
is the number of attributes. The problem with this approach is that it does
not take into account the dependence between the values of different attributes.
Instead, we assume the values of different attributes are independent between
them. Let H;(n) be the simple histogram for attribute i and perc(Hi(n),q*)
the fraction of the tuples the query predicate for attribute i satisfies (similar to
Section 3.1). Assuming that the attributes values are related with the uniform
distribution, the estimated number of results is:

hresults(H(n), g) = perc(H1(n), q')*perc(Hz(n), ¢%)#...sperc(Har(n), ¢*“7)*
S(H(n)).

We performed experiments to calculate the difference EstimatedError be-
tween the actual number of results results(n,q) and the estimated number of
results hresults(H(n), q) for a query g, a peer n and its histogram H(n), when
there are two attributes.

EstError = |results(n,q) — hresults(H(n), q)|/S(H(n))

We compare the use of two simple histograms with the two-dimensional his-
togram (Fig. 5.2). '

We notice that the use of a two-attribute histogram performs much better
for all query ranges, since it takes into account the dependence between the
values of different attributes. Also, the error in the estimation is analogous to
the range of the query, due to the greater number of results when increasing the
range. Also the increase rate is smaller for multi-attribute histograms.
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Figure 5.3: The bold square summarizes the tuples with r € [30,39] and y €
[50, 59].

5.5 Experimental Results

We run a set of experiments to evaluate the histogram distance metrics. For
simplicity of presentation, in the reported experiment, we use two-attribute
histograms on attributes z and y with 10 buckets per attribute and z, y € [0,99].
The tuples of the two attributes are summarized by a multi-attribute histogram
with 10 buckets for each level (attribute). Consider a two-dimensional space,
each dimension representing the tuple values on one of the attributes (Fig.
5.3). Summarizing the tuples based on a two-attribute histogram, each tuple
corresponds to a. square in the two-dimensional space based on the values of
the attributes x and y, as shown in figure 5.3. We used a mixed workload with
queries having range (k) varying from 0 (covering data in 1 bucket) to 4 (covering
data in 5 buckets) for each attribute. We use 100 two-attribute histograms
H(i,l),0 <i< 10 and 0 <! < 10, with 10 buckets per attribute each one. Also
we evaluate the multi-attribute histograms for two data distributions. In the
first, for each histogram H(i,l), DT is the fraction of the total number of tuples
that are included within the square defined by the buckets 7 and ! for attributes
z and y correspondingly, and the rest tuples are uniformly distributed among
the rest of the buckets. We also used the zipf data distribution, where there is a
ranking of squares (i,l) based on the number of the tuples with values for z, y
within each square. We use two values for parameter a, 0.9 and 3. Similarly to
the experiments with simple histograms, we vary the number bct of buckets that
include most tuples from 1 to 3. We compute the distance of each histogram
with H(0,0) using the three distance metrics. Our performance measure is
the difference in the number of results for each histogram with H(0,0), that
is: hdif fer(H(i,1), H(0,0), gi;) with respect to the distance of the respected
histograms (that is, whether Property 1 is satisfied). The desired behavior is the
difference of the number of results estimated by two histograms to be analogous
to their distance. Table 5.1 summarizes the parameters of the experiments.
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Table 5.1: Input parameters for centralized experiments (Multi-Attribute His-
tograms)

Parameter Default Value Range
Number of histograms 100
Number of attributes 2
Number of buckets per attribute 10
Domain of z, y [0, 99]
Tuples per peer 1000
Range of queries 0-4
DT 0.7 0.5-0.9
a 0.9 0.9-3.0
bet 1 1-3
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Figure 5.4: L1 distance for our data distribution for various values of DT (mixed
query workload)

5.5.1 Our Data Distribution

We calculated the average performance of the three distance metrics for a mixed
query workload of queries with range from 0 to-4. The starting bucket of the
query is chosen uniformly and the weights for the weighted edit distance are set
equal to the frequency of the queries. More specifically, wi; = fr V starting
bucket j, where f} is the frequency of the queries with range k for the attribute
that corresponds to the query predicate r.

L, has the worst overall performance. Using our data distribution (Fig.
5.4 and 5.5), although the distance between many histograms is constant, the
difference in the number of results is not (especially when bct < 3).

The edit distance behaves better. For our data distribution (Fig. 5.6 and
5.7), the difference in results increases as the histogram distance increases, but
in many cases the histogram distance increases although the difference in the
number of results remains constant. Also, when bct > 2 the behavior is even
better, since the tuples are more distributed across the buckets.

The workload-aware edit distance follows the desired property for all the
values of DT and bet (Fig. 5.8 and 5.9). The difference in the number of results
is analogous on average to the histogram distance.

In the next experiment (Fig. 5.10 and 5.11) we evaluate the workload-aware
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Figure 5.5: L1 distance for our data distribution (DT = 0.7) for various values
of bet (mixed query workload)
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Figure 5.6: Edit distance for our data distribution for various values of DT
(mixed query workload)
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Figure 5.7: Edit distance for our data distribution (DT = 0.7) for various values
of bet (mixed query workload)
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Figure 5.8: Workload-aware edit distance for our data distribution for various
values of DT (mixed query workload)
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Figure 5.9: Workload-aware edit distance for our data distribution (DT = 0.7)
for various values of bct (mixed query workload)
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Figure 5.10: Workload-aware edit distance for our data distribution for various
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Figure 5.12: L1 distance for zipf data distribution for various values of ¢ (mixed
query workload)
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Figure 5.13: L1 distance for zipf data dlstnbutlon (a = 0.9) for various values
of bet (mixed query workload)

edit distance for a mixed query workload of queries with range from 0 to 4,
for the case in which the starting bucket of each query predicate is not chosen
uniformly but some starting points are more popular. The weights are: wh; =
fk; where k is the range and j the starting bucket of the query predicate r, and
fi; is the frequency of the query with range k starting from bucket j for the
attribute that corresponds to query predicate r. The distance satisfies Property
1 for this query workload as well in the average case, although there is greater
variance in our data distribution.

5.5.2 Zipf Data Distribution

Also for zipf distribution, we calculated the average performance of the three
distance metrics for a mixed query workload of queries with range from O to 4,
where the starting bucket of the queries is chosen uniformly and the weights for
the weighted edit distance are set equal to the frequency of the queries.

L, (Fig. 5.12 and 5.13) has the worst overall performance, although performs
better than in the other distribution. The reason is that the tuples are more
distributed across the buckets. For large values of a, which means that the
most popular squares have much more tuples than the rest, the performance
decreases, since the tuples are distributed across less squares.

Edit distance behaves better than L;. For zipf distribution (Fig. 5.14 and
5.15) the performance is much better (thatn in our data distribution) due to
the distribution of the data across more buckets. For large values of a, the
performance decreases also for this distance metric.

The workload-aware edit distance follows the desired property a and bet (Fig.

)
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Figure 5.14: Edit distance for zipfl data distribution for various values of a
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Figure 5.15: Edit distance for zipf data distribution (a = 0.9) for various values
of bet (mixed query workload)

5.16, 6.17). The difference in the number of results is analogous on average o
the histogram distance.

In the next experiment (Fig. 65.18 and 5.19) we evaluate the workload-aware
edit distance for a mixed query workload of queries with range from 0 to 4,
for the casc in which the starting bucket of each query predicate is not chosen
uniformly but some starting points are more popular. This distance metric
salisfies Property 1 also for this query workload and data distribution.

5.5.3 Summary of Experiments -

To conclude,the experiments show that for both distributions and for all the
values of DT and a, the workload-aware edit distance performos better than Ly
and edit. The histogram distance is nearly analogous to the difference in the
number of the results. Also, all the distance metrics perform better for zlpf
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Figure 6.16: Workload-aware edit distance for zipf data distribution for various
values of a (mixed query workload)
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Figure 5.17: Workload-aware edit distance for zipf data distribution (a = 0.9)
for various values of bct (mixed query workload)
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Figure 5.19: Workload-aware edit distance for zipf data distribution (a = 0.9)
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Chapter 6

Experimental Evaluation

In this section we evaluate the network built following our construction proce-
dure. We show experimentally that it follows the small-world properties. We
also evaluate the performance of the network on answering queries. We study
the effect of the different distance metrics on the topology of the constructed
network and the querying performance.

We simulated the peer-to-peer network as a graph where each node corre-
sponds to a peer. The size of the network varies from 500 to 1500 peers and the
radius of the horizon from 1 to 3. Each new peer creates 1 to 2 short links (SL
= 1 or 2) and one long link with probability P; that varies between 0.2 and 0.6.
The routing of the join message stops when a maximum number (JMazVisited)
of logM peers is visited, where M is the number of peers in the network. The
routing of a query stops when a maximum number (MazVisited) of peers is
visited. This number is set to 5% of the existing peers in the network. The
behavior of the network is evaluated also with peers joining and leaving the
system (with the same rate). -

We evaluate the small-world construction procedure when the L; distance
(L1.dist), the edit distance (edit_dist) and the workload-aware edit distance
(wedit _dist) is used. We also compare the constructed small-world network with
a randomly constructed p2p network, that is a p2p system in which each new
peer connects randomly to existing peers (random construction and routing)
(random) and a randomly constructed p2p system that uses histograms only
for query routing (random_join). Finally, we performed experiments to see
how the network performs when large number of peers leave the system and the
effect of the load balancing procedure in the distribution of the links among the
peers.

6.1 Using Simple Histograms

Each peer stores a relation with an integer attribute z € {0, 999] that contains
1000 tuples. The tuples are summarized by a histogram with 100 buckets. In the
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Table 6.1: Input parameters (Simple Histograms)

Parameter Default Value Range
Number of peers M 500 500-1500
Radius of the horizon 2 1-3
Number of short links (SL) 2 1-2
Probability of long link (P:) 0.4 0.2-0.6

Perc of peers visited

during query routing( MazVisited) 5

Peers visited

during join procedure(JMazVisited) logM
Histogram-Related Parameters

Number of buckets 100
Domain of z [0, 999]
Tuples per peer 1000
Range of queries 0, 10

data distribution we use, 70% of the tuples of each peer belong to one bucket,
and the rest are uniformly distributed among the rest of the buckets. The tuples
in each bucket also follow the uniform distribution. The input parameters are
summarized in Table 6.1.

6.1.1 Small-World Construction

We study the properties of the network created using our small-world construc-
tion procedure. In particular, we evaluate the diameter and the clustering of the
network. For these experiments, we assume two query workloads with ranges 0
and 10 each (whose results occupy-1 and 11 buckets correspondingly) to tune
the weight for the workload-aware edit distance. We compare the constructed
clustered network with a randomly constructed p2p system.

Diameter

In the first two experiments, we keep the size of the network fixed and vary
the radius of the horizon from 1 to 3. We present the diameter of the network
with respect to the radius of the horizon. We conducted the same experiment
for query ranges 0 and 10 and number of short links 1 and 2 (Fig. 6.2 and
6.1). Using two short links the diameter decreases for all histogram distance
metrics. Also, for two short links the diameter is below 10 for each value of
the radius and for each distance metric, which means that it satisfies the small-
world property of a small diameter (i.e. logarithmic order in the number of
peers). We then vary the number of peers in the network from 500 to 1500.
We use two short links and a radius equal to two. As shown in Fig. 6.3, the
diameter of the network scales well when increasing the number of peers and

iy
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Figure 6.1: Influence of radius on diameter when range = 0 (left) and renge =
10 (right), when SL = 2
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Figure 6.2: Influence of radius on diameter when range = 0 (left) and range =
10 (right), when SL =1

remains logarithmic in order to the number of peers.

-

Quality of Clustering

In this set of experiments, we evaluate the quality of clustering. We measure
the average histogram distance between the peers that are at various network
distances from each other in the created p2p network. We use a fixed size
network of 500 peers and radius 2, and conduct the same experiment for SL =1
(Fig. 6.5 and 6.7) and SL = 2 (Fig. 6.4 and 6.6). The average histogram
distance of peers with respect to their network distance is presented. As the
network distance between two peers increases, their histogram distance increases
for edit distance and for SL = 2 (Fig. 6.4 (center)), since this distance metric
counts the number of permutations needed to make the histograms similar, and
thus there will be an ordering of the peers based on the position of the buckets
that summarize the largest number of tuples for each histogram. For SL =1
(Fig. 6.5 (center)) this occurs until some network distance, since the use of only
one short links results in week grouping of the relevant peers. This means that
for SL = 2 the more similar two peers are, the closer in the network they are

&
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Figure 6.3: Influence of the number of peers on the diameter when range = 0
(left) and range = 10 (right) and SL = 2

T T v

rswprem Sriance

' N L . N " 1 " . N n s
1 2 ] L3 s ] 2 3 4 s ] 2 3 4 1
o detwey et Satace snod dgtpen

Figure 6.4: Clustering quality for networks built using L, (left) and edit (center)
distance and for the random network (right), when SL = 2
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Figure 6.5: Clustering quality for networks built using L; (left) and edit (center)
distance and for the random network (right), when SL =1
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Figure 6.6: Clustering quality for networks built using workload-aware edit
distance for range = 0 (left) and range = 10 (right), when SL =2
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Figure 6.7: Clustering quality for networks built using workload-aware edit
distance for range = 0 (left) and range = 10 (right), when SL =1
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Figure 6.8: Clustering quality for different number of peers for networks built
using L, (left) and edit (center) distance and for the random network (right),
when SL=2

located.

For L, distance (Fig. 6.5 (left) and 6.4 (left)) this applies only for the
neighboring peers (peers at distance 1), thus only peers that have the 70%
of their tuples within the same bucket are grouped together. For networks
distances greater than one, the histogram distances are nearly the same, since
this distance metric does not take into account the ordering of the buckets.

The workload edit distance depends on the range of the queries. For range 0
(Fig. 6.6 (left) and 6.7(left)), the clustering quality is similar to L,, since there
is no need of ordering the peers based on the buckets positions. We are only
interested in clustering together peers the have the 70% of their tuples within
the same buckets. For range 10 and 2 short links (Fig. 6.6 (right) 6.7 (right)),
histogram distance increases as the network distance increases, since we are
interested in this ordering (peers that have the large number of tuples within
buckets that are nearby, are more likely to answer the same query with range
10). For 1 short link this happens until some point due to the weak grouping of
the peers. -

For the random network (Fig. 6.4 (right) and 6.5 (right)), the histogram
distance is constant for all network distances, since there is no grouping of
similar peers.

Next we show the clustering quality as network scales (Fig. 6.8). We vary the
number of peers in the network from 500 to 1500 and we present the clustering
quality for each with respect to the size of the network. We use two short links
and a radius equal to two. We notice that the clustering remains unaffected as
the number of peers increases, which means that logM number of visited peers

when a peer joins the system are enough to achieve good grouping of the peers
as network scales.

6.1.2 Query Routing

In this set of experiments, we evaluate the performance of query routing using
PeerRecall as our performance measure (as defined in Def. 2). We compare
the constructed clustered network with a randomly constructed p2p network,
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Figure 6.9: Clustering quality for different number of peers for networks built
using workload-aware edit distance for range = 0 (left) and range = 10 (right),
when SL =2
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Figure 6.10: Performance of routing for different values of the radius when
range = 0 (left) and range = 10 (right), when SL =2

that is a p2p system in which each new peer connects randomly to existing peers
(random construction and routing) (random). We also consider a randomly con-
structed p2p system that uses histograms for query routing only (rendom_join).

We use a network of 500 peers and examine the influence of the horizon in
the query routing performance for both 1 and 2 short links and for queries with
range 0 (Fig. 6.11(left) and 6.10(left)) and 10 (6.11(right) and 6.10(right)). The
radius of the horizon varies from 1 to 3. PerrRecall with respect to the radius
is presented. Using histograms for both construction and query routing results
in much better performance than using histograms only for routing or not using
histograms at all. Also using 2 short links results is much better performance,
since peers in the same group have more links between them and it is easier to
retrieve all the results. For radius 2 and for 2 short links, we achieve the best
performance. PeerRecall decreases for radius greater than 2 (when SL = 2)
for all distance metrics. The reason is that many peers are included within the
horizon of a particular peer and thus, a very large number of peers correspond
to each routing index. This results in losing much more information than using
radius 2, due to the inaccuracy in the summarized information of the routing
indexes. For 1 short link, the performance increases even for radius 3, since there
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Figure 6.11: Performance of routing for different values of the radius when
range = 0 (left) and range = 10 (right), when SL =1
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Figure 6.12: Performance of routing for different values of P, when range = 0
(left) and range = 10 (right), when SL=2and R=2
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Figure 6.13: PeerRecall when varying the number of peers when range = 0
(left) and range = 10 (right), when SL =2 and R =2

are less links and the number of peers that are included within the horizon of a
particular peer is much smaller and there is less loss of information.

For queries of range 0, the performance for L; and workload-aware edit
distance is exactly the same, since for this range these distance metrics are the
same. Edit distance performs much worst, since for range 0 the difference in the
number of results between two histograms is independent from their distance
(as shown in section 4.2 Fig. 4.3(center))

For queries of range 10, edit and workload-aware edit distances have nearly
similar performance, since both of them make ordering of the peers based on the
positions of the buckets with large number of results. L; is much worst, since
it does not make this ordering, which is very effective for ranges larger than 0
(peers that have the large number of tuples within buckets that are nearby, are
more likely to answer the same query if the query range is large enough).

Next, we examine how our algorithms perform with a larger number of peers.
We vary the size of the network from 500 to 1500. Radius is set to 2. We use 2
short links and queries with range 0 and 10 (Fig. 6.13). Peer Recall increases a
little as the number of peers increase, for all histogram distance metrics. When
the network is initially created and the first peers join the system, we cannot
achieve the best structure, since each new peer has few choices about the peer
it will attach. But as the network scales, the join procedure can achieve the
best performance since the network has the expected structure, allowing the
new peers to make the best choices for the peers to attach. This is the reason
for which the performance increases a little as network scales. This experiment
shows also that logM visited peers during the join procedure are enough for the
network to scale.

We also vary the probability of creating a long link for each peer that joins
the system between 0.2 and 0.6, and present Peer Recall for each of these prob-
abilities. As this probability increases, the performance increases a little (Fig.
6.12) for the three distance metrics, since it is easier to navigate among the
groups and find more relevant to the query peers. But even for a few long links
the performance is very good.
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Figure 6.14: PecrRecall as peers leave the system when range = 0 (left) and
range = 10 (right), when SL=2and R=12
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Figure 6.15: Clustering quality as peers leave the system for networks bullt
using L; (left) and edit (center) distance and for the random network (right),
when SL=2and R =2

6.1.3 Peers Leaving the Network

We also run the same set of expetiiments to study the behavior of the network
as peers leave the system. In the ideal case we want all peers to have the same
fanout after the load balancing procedure. After the network of 500 peers has
been built, a percentage of the peers leave the system (varying from 10% to 50%).
The radius of the horizon is set to two and SL = 2. We present the Peer Recall
(Fig. 6.14) and the quality of clustering (Iig. 6.15 and 6.16) with respect to
the percentage of peers leave, for query ranges 0 and 10. We notice that the
performance and the clustering quality remains ncarly unaflfected. Thus, the
update procedure followed when peers leave the system (section 3.3.4) preserves
the properties of the network unaffected and keeps the network connected.

6.1.4 Distribution of Links

In this set of experiments, we build the p2p system incrementally to show how
the links are distributed among old and new peers. We apply the load balancing
procedure discussed in section 3.3.3. Figure 6.17 presents the distribution of the
fanout of the peers in the system before the load balancing procedure, and after
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Figure 6.16: Clustering quality as peers leave the system for networks built
using workload-aware edit distance for range = 0 (left) and range = 10 (right),
when SL =2 and R=2
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the procedure (for two different values of F Limit). In all cases, each peer may
have at most 12 links. We notice that after the load balancing procedure the
fanout of the pcers is distributed mainly among two different regions. More
specifically, many peers have F'Limit links and many other have about 2 and
3 links. This is explained as follows: before the load balancing procedure takes
place, most of the peers have about 2 or 3 links. After the load balancing
procedure is completed, the fanout of the peers is distributed mainly among two
different regions. One region is the same as before the procedure takes place,
and the other is the region around F Limit, since all the peers for which the
fanout was above F'Limit will have new fanout equal to F'Limit, and also, peers
with fanout a little less than FFLimit are more likely to be requested to accept
new neighbors. By reducing further the value of FLimit, these two regions
will reach each other. In the ideal case, there will be only one region of high
concentration, where nearly all the peers will have fanout around F'Limit/2.

6.1.5 Summary of Experiments Using Simple Histograms

To conclude, the network constructed with the proposed procedure is a small-
world network. The diameter remains of logarithmic order to the number of
peers and peers with relevant data are grouped together such as the network
distance between two peers to correspond also to the difference in the number of
results they maintain. Also, only logM number of peers need to be visited during
the join procedure in order the network to satisfy these properties, which means
that it scales very well as the number of peers increases. The performance is
much better when using histograms than in the random or in the random_join
network. Finally, workload-aware edit distance performs very well for all the
query workloads, instead of the L, that works well only when the query includes
one bucket, and the edit distance that performs well only with queries of larger
ranges. -

6.2 Multi-Attribute Histograms

Each peer stores a relation that includes 1000 tuples with two integer attributes
z,y € [0,99] with 1000 tuples. The tuples of the two attributes are summa-
rized by a multi-attribute histogram with 10 buckets for each level {attribute).
Consider a two-dimensional space, each dimension representing the tuple values
on one of the attributes (Fig. 5.3). Summarizing the tuples based on a two-
attribute histogram, each tuple corresponds to a square in the two-dimensional
space based on the values of the attributes z and y, as shown in figure 5.3. In the
data distribution we use, the 70% of the tuples of each peer belong to one square,
and the rest are uniformly distributed among the rest of the squares. The tuples
in each square also follow the uniform distribution. The input parameters are
summarized in Table 6.2.
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Table 6.2: Input parameters (Multi- Attribute Histograms)

Parameter Default Value Range
Numbet of peets M 500 500-1500
Radius of the horizon 2 1-3
Number of short links (SL) 2 1-2
Probability of long link (P:) 0.4 0.2-0.6
Number of peers visited

during join (JMazVisited) logM

Perc of peers visited

during routing (MazVisited) 5
Histogram-Related Parameters
Number of buckets per attribute 10

Domain of z (o, 99]
Domain of y fo, 99|
Tuples per peer 1000
Range of querics 0,10

6.2.1 Small-World Construction

We study the properties of the network built using our small-world construc-
tion procedure, evaluating the diameter and the clustering of the network. We
assume two query workloads with ranges 0 and 3 for each attribute (whose
results occupy 1 and 16 squares correspondingly) to tune the weight for the
workload-aware edit distance. We compare the constructed clustered network
with a randomly constructed p2p system.

Diameter

-

In the first two experiments, we kecp the size of the network fixed and vary the
radius of the horizon from 1 to 3. We conducted the same experiment for SL = 1
(Fig. 6.19) and SL = 2 (Fig. 6.18). When using two short links the diameter
decreases for all types of histogram distances. Also, for two short links the
diameter is below 10, for each value of the radius and for each distance metric,
which means that it satisfies the small-world property of a small diameter (i.e.,
a diameter of logarithmic order in the number of peers). We then vary the
number of peers in the network from 500 to 1500. We use 2 short links and a
radius equal to 2. As shown in Fig. 6.20, the diameter of the network scales
well when increasing the number of peers and remains of logarithmic.order to
the number of peers.

Quality of Clustering

In this set of experiments, we evaluate the quality of clustering. Similarly to the
experiments for simple histograms, we measure the average histogram distance
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Figure 6.18: Influence of radius on diameter when range = 0 (left) and range =
3 (right), when SL =2
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Figure 6.19: Influence of radius on diameter when range = 0 (left) and range =
3 (right), when SL=1
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Figure 6.20: Influence of the number of peers on the diameter when range =0
(left) and range = 3 (right) and SL = 2
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Figure 6.21: Clustering quality for networks built using L, (left) and edit (cen-
ter) distance and for the random network (right), when SL = 2
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Figure 6.22: Clustering qualify for networks built using L; (left) and edit (cen-
ter) distance and for the random network (right), when SL =1
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Figure 6.23: Clustering quality for networks built using workload-aware edit
distance for range = 0 (left) and range = 3 (right), when SL = 2
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Figure 6.24: Clustering quality for networks built using workload-aware edit
distance for range = 0 (left) and raenge = 10 (right), when SL =1

between the peers that are at various network distances from each other in the
constructed overlay network. We use a fixed size network of 500 peers and radius
2, and conduct the same experiment for SL = 1 (Fig. 6.22 and 6.24) and SL = 2
(Fig. 6.21 and 6.23). The results are similar to the simple histograms. For edit
distance, as the network distance between two peers increases, their histogram
distance increases too. When SL = 2 (Fig. 6.21 (center)) this is more clear
than using 1 short link only (Fig. 6.22 (center)), since with one short link we
have week grouping of the relevant peers.

For L, distance (Fig. 6.22 (left) and 6.21 (left)) after some network distance
the histogram distances are nearly the same, since this distance metric does not
take into account the ordering of the buckets.

The workload edit distance depends on the range of the queries. For range 0
(Fig. 6.23 (left) and 6.24(left)), the clustering quality is similar to L, since there
is no need of ordering the peers based on the buckets positions. We are only
interested in clustering together peers the have the 70% of their tuples within
the same buckets for each attribute. For range 3 (Fig. 6.23 6.24), histogram
distance increases as the network distance increases, since we are interested in
this ordering (peers that have the large number of tuples within squares that
are nearby, are more likely to answer the same query with range 3).

For the random network (Fig. 6.21 (right) and 6.22 (right)), the histogram
distance is constant for all network distances, since there is no grouping of
similar peers.

Next we show the clustering quality as network scales (Fig. 6.25). We vary
the number of peers in the network from 500 to 1500. We use two short links
and a radius equal to two. Also for multi-attribute histograms, we notice that
the clustering remains unaffected as the number of peers increases, which means
that logM number of visited peers when a peer joins the system are enough to
achieve good grouping of the peers as network scales.

6.2.2 Query Routing

Similarly to the simple histograms, we measure PeerRecall to evaluate the
performance of query routing. We compare the constructed clustered network
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Figure 6.26: Clustering quality for different number of peers for networks built
using workload-aware edit distance for range = 0 (left) and range = 3 (right),
when SL =2 ’
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Figure 6.27: Performance of routing for different values of the radius when
range = 0 (left) and range = 3 (right), when SL =2
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Figure 6.28: Performance of routing for different values of the radius when
range = 0 (left) and raenge = 3 (right), when SL =1

with a randomly constructed p2p, that is a p2p system in which each new
peer connects randomly to existing peers (random construction and routing)
(random). We also consider a randomly constructed p2p system that uses
histograms for query routing only (random_join).

We use a network of 500 peers and examine the influence of the horizon in
the query routing performance for query ranges 0 and 3 and for SL = 1 (Fig.
6.28) and SL = 2 (Fig. 6.27). The radius varies from 1 to 3.

The results are similar to the simple histograms. Using histograms for both
construction and query routing results in much better performance than using
histograms only for routing or not using histograms at all. For 2 short the
network performs better, due to the stronger grouping of similar peers. Also,
the best performance is achieved for radius equal to two (when SL = 2), except
from L, distance. The reason is that since we deal with more attributes, there is
larger relevance between the data stored by each peer. For example, two peers
may have many tuples with similar values for the one particular attribute and
different values for the other. Thus, except from the peers that have most of
their tuples within the same square, there are also peers that have most of the
tuples within squares of the same row or the same column in the two-dimensional
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Figure 6.29: Performance of routing for different values of P, when renge = 0
(left) and range = 3 (right), when SL =2 and R =2
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Figure 6.30: PeerRecall when varying the number of peers when range = 0
(left) and range = 3 (right), when SL =2 and R =2

space. That means that there are more peers that can give many results for
each query, and thus, smaller value of radius is required to locate them. Using
radius greater than two decreases the performance for all distance metrics due
to the great loss of information. For one short link, the performance drops for
radius 3 (in contrast to the simple histograms) for the same reason.

For queries of range 0, the performance for L, and workload-aware edit
distance is exactly the same, since for this range these distance metrics are
the same. Edit distance has much worst performance since for range 0 the
difference in the number of results between two histograms is independent from
their distance.

For queries of range 3, edit and workload-aware edit distances have nearly
similar performance, since both of them make ordering of the peers based on the
positions of the buckets with large number of results. L, is much worst, since
it does not make this ordering, and thus, peers that have the large number of
tuples within squares that are nearby, will not be nearby in the overlay network).

Next, we examine how our algorithms scales. We vary the size of the network
from 500 to 1500. Radius is set to two. We use two short links and queries
with range 0 and 3. As shown in Fig. 6.30, the network scales well and the
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performance increases a little as the number of peers increase, for all histogram
distance metrics, due to the improvement in the network structure as more peers
join the system.

Finally, we vary the probability of creating a long link for each peer that
joins the system between 0.2 and 0.6 (Fig. 6.29). The performance is a little
improved as the number of long links increases for all the distance metrics, since
we can find the appropriate groups with less hops.

6.2.3 Summary of Experiments Using Multi-Attribute His-
tograms

To conclude, we notice that in general the behavior of the network is nearly
the same with simple histograms for all the distance metrics. Thus, the multi-
attribute histograms and the distance metrics used perform well also for range
queries over multiple attributes. When extending each distance metric (L,
edit and workload-aware edit) to the multi-attribute histograms, it inherits the
properties of the distance metric over simple histograms.
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Chapter 7

Conclusions and Future
Work

In this thesis, we have proposed the use of histograms as routing indexes in
peer-to-peer systems. We proposed building a small-world network in a fully
decentralized procedure, where each peer uses only information stores locally.
Routing indexes are stored for each link of a peer, summarizing the content of
the peers within the horizon, reachable through this link. These indexes are
used in order to route a query or join message, through the link that we expect
to find more results for the query or to find peers that store data similar to the
new peer correspondingly.

We proposed using histograms as routing indexes, that are appropriate for
answering range queries. In order to construct a small-world network based on
the content of the peers, the distance between the histograms, that represent the
content of different peers, should be calculated (peers with small distance will
be grouped together). The criterion based on which the peers will be grouped
together is the number of results they return for each query. Thus we introduced
a workload-aware distance metric that takes into account the query workload
in the calculation of the distance between two histograms. For this distance
metric, it is shown that for a particular workload the distance between two
histograms, in the average case, is analogous to the difference in the number of
results they store. Thus, peers that are more likely to answer the same set of
queries will be grouped together.

A similar approach for building and querying a small-world network was
first presented in [22]. Bloom filters are used as routing indexes, and exact-
match queries are posed in the network. In [10], also path queries over XML
documents are studied using Multi-Level Bloom Filters as indexes and horizons
for the query routing.

We have extended our system to support also range queries over multiple
attributes, by introducing a multi-attribute histogram. We also extended the
distance metrics used for simple histograms to support also the multi-attribute
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histograms.

We compared experimentally workload-aware distance metric with L, and
edit distance. The results show that our distance metric performs much better
(the histogram distance increases analogous to the difference in the number of
results).

Our experimental results on the construction of the network and the routing
of the queries have shown that our small-world construction procedure is effec-
tive, since in the constructed peer-to-peer system peers with small histogram
distance have also small network distance. Routing is also very efficient, since
using histograms increases the number of results returned for a given number
of peers visited. Furthermore, the network scales very well when increasing the
number of peers, since only logM number of peers need to be visited (during
the join procedure) as the number M of peers increases, in order to achieve the
same performance and to leave the network properties unaffected. Finally, our
workload-aware edit distance is very effective for the performance of the net-
work. Instead of L; and edit distance metrics, when workload-aware distance
is used, the network performs well for all the query ranges.

This work is a first step towards leveraging the power of histograms in peer-
to-peer systems. There are many issues that need further investigation.

So far we used equi-width histograms. An interesting issue would be to use
other types of histograms, for example equi-depth histograms. In this occa-
sion there are several things to be studied. New distance metrics should be
introduced that are appropriate for the new type of histograms. Also new pro-
cedures need to be defined for constructing the routing indexes by aggregating
local indexes and updating them.

An issue that need to be studied further is finding the appropriate number of
buckets thus achieving the best performance. In this work we assume that this
number is predefined and does not change. Based on the content of the peers
and the query workload, there may exist a more appropriate number that leads
to a more accurate representation of the data by the histograms. For example,
if a particular range of values is queried more, it may be effective to distribute
the tuples within this range into more buckets, in order to achieve less loss of
information.

We can extend our work on the histograms by using them in structured
p2p systems, where the location of an object in the DHT overlay depends on
its histogram (that can be seen as a vector of values). Objects with small
histogram distance will be placed at peers that correspond to regions nearby in
the n—dimensional space.

Another interesting issue is how to select the peer to be linked through long
link with the new peer during the join procedure. We currently select this peer
randomly from the list of the visited peers, but more sophisticated methods
can be used. These methods may take into account the distances between the
histogram of the new peer and each of the visited peers and select one of them
with a probability that depends on this histogram distance. This way we can
affect the topology of the constructed network.
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Appendix

False positive probability for a histogram. Let H(n) be a histogram for an inte-
ger attribute z € (Dmin, Dmaz} (z can take d = Dmaz — Dmin 4 1 distinct values).
H(n) has b buckets. Let a query z = A. We assume that each peer has ¢ tuples that
follow uniform distribution. Then in each bucket we have t/b tuples. The probability
that we do not have a query match, that is, there does not exist a tuple with value
z = A in the data summarized by H(n) is P(queryno.match) = ((d - 1)/d)". The
probability that the histogram indicates a match is: P(histonatch) =1~ ((b—1)/b)"
(it is sufficient that one tuple falls into the bucket that A falls into as well). The range
of each bucket is d/b. Thus the probability of having a quéry_no_match while we had
a histogram match is: Py = ((d/b — 1)/(d/b))*/* = ((d — b)/d)*/®. Thus, the false
positive probability is according to the formula of Bayes:

P(fp) = P(histumatch | query_no_maich) = P, + P(hist match)/P(query no.match)
= P(fp) = ((d - B/d)*"* x (1 - (- 1)/B)))/((d ~ 1)/d)".

Equivalence of the two workload histogram distances. The two workload-aware
distances 6 and 5 are equivalent, that is wdy, (H(n1), H(n2)) = wd.(H(n:), H(n3a)).

Proof.

wde(H(m), H(nz)) = R4 T50uwnslpref (5 + k) — pref(i ~ 1) =

ShZoSimbwes|Dits (Hilm) ~ Hi(na)) — TiZ3(Hilm) — Hi(na))| =

TE LB dwi DI (Hi(n) — Hi(na) = Hema) + Hi(na)) + S5 (Hi(n) — Hi(na))| =

zz;tzg;éwkjlzj"-k(f{i(nl) - Hi(ny))| = 21;{,2;;3wkj|zf:;(ffi(ﬂl) - Hi(n2))| =

i=j

wdy, (H(m1), H(nz)).

Proof that the histogram distances are metrics. We show nact. that the
workload-aware L, measure is a metric, by proving that it satisfies the t.netmc proper-
ties (reflexivity, non-negativity, commutativity and the triangle inequality).

o reflexivity: wdr, (H(n1),H(n,)) =0

Li(Hi(m), Hi(n1)) = 0,¥i,0 < i € b— 1 = wdr, (H(n), H(n1)) = 0.
o non-negativity: wdy,(H(n1), H(ng)) 2 0.

Since 0 < wy and wdy, is the sum of absolute values, the property holds.
e commutativity: wdy, (H(n1), H(n3)) = wdr, (H(n2), H(n1))

wdz, (H(n1), H(na)) = SLTAT8du o Hars(m) ~ Hrs(ma)ll =

S S dwks (B0 Hivi(m) — BicoHirs(na)l =
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£ b= b ;| oo Hit j(n2) = EfcoHis(m)| =

wdy, (H(na), H(m))

o triangle ineq.: wdr, (H(m1), H(n3)) < wde,(H(m1), H(n3))+wdy, (H(n3), H(na))-
wdy, (H(m), H(ns)) = ShobZizgwrs|Efzo(Hirs(n1) = Hiyj(na))| =
22;02?.—_.(; wki|2;=0(1{i+j("l )- 2§=0H‘+1("3) +2;=0Hi+i(ﬂ2) -“E;=0H‘+j(n3))|
< BoInt b Bh o (Hips(n1) = Hiss(na)| + oo s ws| S0 (Hit j(na) —
Hiyj(ns)| =
wdg, (H(n1), H(na)) + wdr, (H(na), H(ns)).

Since wd, and wdy, are equivalent, wd. is also a metric and the metric properties
can be proved similarly to the respective properties of wdy, .

For two histograms H(n)), H(n2) and a query qx; the difference in the num-
ber of results returned by the peers ny and nz is: hdif fer(ni,na,qkj) =
BIEHLIG)

Proof.
S LG =21 |Hi(n) — Hi(na)|= hd_iffef(nxmmqkj)

For two histograms H(ni), H(n2) and a query gx; the difference in the num-
ber of results returned by the peers ni and niz is: hdif fer(ni,na,gkj) =

lpref(i + k) — pref(j - 1)|
Proof.

lpref(j + k) — pref(i — 1)|={S12& (Hu(n1) = Hi(na))-E{Z5(Hi(m) - Hi(na))|=
IS} ¥ (Hi(n1) — Hi(na))|= hdif fer(na,na, gk3)

Proof that the multi-aftribute histogram distance is metric. We show next
that the multi-attribute histogram distance measure (Equation 5.2) is a metric, by
proving that it satisfies the metric properties (reflexivity, non-negativity, commuta~
tivity and the triangle inequality). We assume that the distance measutre d used is a
metric.

o reflexivity: D(H(m),H(n1)) =0
D(H(m), H(m)) = S35t d(Hg(m), Hism)) 5} = 0 =
D(H(m), H(n1)) = 0.
¢ non-negativity: D(H(ny), H(n2)) 2 0.
d(Hij(n1), Hiy(nz2)) 2 0,V1 < i < attrandl < j < by = D(H(ny), H(n2)) 20

o commutativity: D(H(n1), H(nz2)) = D(H(nz2), H(n1)) -
D(H(m), H(na)) = SR TS d(Hyg(ma), Hig(na)) /i) =

SST T1) d(Hig(na), Hig(ma)) /6423 =
D(H(nz), H(ny))

o triangle ineq.: D(H(n1), H(na)) < D(H(n1), H(n2)) + D(H(na), H(ns))-
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D(H(m), Hins) = S B35 d(Blyr), Hi(ma)) 17} <
TS (d(Hig(m), Heg(na)) + d(His(m), Heg(ma))) /6123 =
D(H(m), H(n)) + D(H(na), H(ns))

Thus D is a distance metric.
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