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ABSTRACT

Charilaos Kalogirou.
MSc, Computer Science Department, University of Ioannina, Greece. January 2006

Supervisor : Ioannis Fudos

In this thesis we study the problem of reconstructing three-dimensional scenes from
two-dimensional snapshots acquired from uncalibrated cameras. We focus on the im-:
plementation details and problems encountered. The goal is to supply an interactive
framework that will enable the user to efficiently reconstruct three-dimensional scenes
from photographs. The reconstruction problem is studied from various perspectives
and we evaluate the efficiency of the proposed methods. The proposed reconstruction
framework consists of three steps. The first step consists of calibrating the cameras,
i.e. we obtain the intrinsic parameters of the cameras. Then the second step consists of
feature point matching on photographs. These feature points are then used to estimate
the epipolar geometry among the available views. Finally, once the epipolar geometry
of the calibrated views is known, we derive the positioning of the cameras in world
space coordinate system, i.e. obtain a three-dimensional model of the scene with tri-
angulation. We have developed an interactive system that enables the user to import ..
two-dimensional snapshots in any digital image format and to perform the above men-°
tioned steps to recreate the scene. The three-dimensional model can then be exported
to solid modelling or reverse engineering software for further processing and editing.
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CHAPTER 1

INTRODUCTION

1.1 Overview

1.2 Definition of the problem

e o o

1.1 Overview

The objective of this thesis is to explore, present and implement three-dimensional re-
construction techniques from images. We will implement a system capable of acquiring
three-dimensional models directly from two dimensional snapshots of a real object.
The problem of acquiring cloud points from images is a fairly new research field. Re-l )

searchers have been investigating methods for acquiring three-dimensional information .
from images for many years, mainly for use in robot vision where a crude approximation
of the environment is sufficient. That has changed recently with the increasing demand
for realistic three-dimensional models for use in CAD, cinema, virtual reality, com-
puter games and other computer graphics applications. The capabilities of personal
computers today make it feasible to render high resolution and life like 3D models.
Three-dimensional modelling of real world models is a time consuming and therefore
expensive process. Thus creating accurate three-dimensional models from real objects
without the use of expensive hardware is essential to Computer Graphics.

| In this thesis we present various methods that has been proposed to solve the prob-

| lem, along with the complexity and performance evaluation of their implementations.

W
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1.2 Definition of the problem

In a more elaborate definition, the problem we are trying to solve involvés acquiring
three dimensional characteristics of objects when we have available images (photographs)
taken with off-the-shelf consumer cameras.

The problem’s nature is best summarized by observing that images are the prod-
uct of an irreversible projection operation from a three-dimensional scene onto a two-
dimensional image. During this operation the depth information is lost. This is illus-
trated in Figure 1.1. Notice that the projected point on the image can be anywhere on
the line of sight.

Figure 1.1: The back projected point can be anywhere along the line of sight

Therefore the information an image provides is not sufficient for three-dimensional
reconstruction. We must develop algorithms that overcome the projection’s ambiguity, **
possibly by using information from two of more images.

It turns out that the use of two or more images can resolve the depth ambiguity. The
algorithm to do so is well known in topography and map making. Suppose that we have
two images of a scene and two corresponding points, one on each image, projections
of a three-dimensional point in the scene. The actual three-dimensional point can be
acquired from the intersection of two lines of sight as presented at Figure 1.2. This
process is known as triangulation. ’

To use triangulation we should acquire the following information:

e Corresponding image points
e The parameters of the cameras

In this thesis we examine how we can acquire the parameters of the cameras from
corresponding image.Points. These parameters are called the motion of the camera.
We then use this information to derive the three-dimensional structure of the scene .

2



Figure 1.2: Acquiring three-dimensional point with triangulation

The rest of this thesis is organized as follows. Chapter 2 discusses the fundamentals®

of image formation. We derive a model for the camera that we will use throughout our
work. In Chapter 3 we present a first approach to the problem. We study the proposed
method and we determine the scope and limitations based on the parameters of the
problem we are trying to solve. In Chapter 4 we present a more advanced and efficient
method for three-dimensional reconstruction. We present the constraints of two-view
geometry and how we can exploit it to estimate both motion and structure. Chapter
5 discusses the development of the three-dimensional reconstruction framework. The
discussion ranges from the choice of programming language, to the implementation
methods and systems used to efficiehtly implement the theoretical algorithms presented
in previous chapters. Finally Chapter 6 concludes this thesis with a summary of our
contribution and identification of future research direction.



CHAPTER 2

MODELLING THE IMAGE FORMATION
PROCESS

-

2.1 Introduction
2.2 Representing images
2.3 Light and lenses

2.4 Geometric model for image formation

2.1 Introduction

Before we explore the possible solutions to the problem of reconstructing a scene from
a set of images, we should first understand the process of image formation. We should
have a sound mathematical model of the workings that describe the creation of a pho-
tograph in a camera. A sound model does not necessarily mean a physically accurate
model. We will design a model that is suitable for our purposes while being constrained
on complexity in order to be efficient. For the purposes of our system we require a
simple geometric model of the image formation process, and not require more complex
photometric models. We use common theory for lenses that originate in physics and
we formulate a model of a camera that successfully approximates the functionality of a
real camera. In this chapter we derive the model that will be used in our work, and we'
explain why it is suitable for our needs.

#
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2.2 Representing images

-
An image at an abstraction level, is a two dimensional brightness array. In the case
of a standard camera, an image is a map I, defined on a planar and rectangular two
dimensional surface Q, taking positive real numbers. Therefore I is a function:

I:QCR?-Ry;(z,y) — I(z,y) (2.1)

In the case of digital images both 2 and R, are discretized. For example §2 can
be [1,640] x [1,480] C Z?, and R, can be approximated by an interval of integers
[0,255] € Z,. The values of the image I can then be presented on the computer’s
monitor by using the values as intensities for pixels.

2.3 Light and lenses

To complete the image formulation process, we must describe how the values of I(z,y)
at each point (z,y) on Q are calculated. The main component of a camera is the set of
lenses. These lenses are used to direct light on the photographic film, or sensor in the
case of a digital camera. It is true that completely modelling the way lenses interact
with light can be extremely complex. In physics scientists try to model this effect by
assuming “special” forms of lenses. Next we will review two basic lens models.

2.3.1 Thin lens

A basic mathematical model to describe and study the way lenses refract light is the thin
lens(Figure 2.1). This mathematical modelis described by an axis, called the optical
axis, and a plane perpendicular to the axis, called the focal plane. The intersection of
the focal plane with the optical axis is called the optical center. The thin lens has two
parameters. The focal length f and its diameter d. Its operation is described by two
properties:

o All rays entering the lens parallel to the optical axis intersect on the optical axis
at a distance f from the optical center. The point of intersection is called the
focus of the lens. ’

o All rays through the optical center are undeflected.

To make it clear lets try an example. Suppose that point p € E? is at distance Z

from the optical center along the optical axis. We then draw two rays starting from
point p, one parallel to the optical axis and one through the optical center. According
to the properties of thint lens, the first ray intersects with the optical axis at the focus
point, while the second passes through the lens undeflected. Call z the point where the

5
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Figure 2.1: The thin lens model
]
rays intersect, and let z be the distance of z from the optical center along the optical®
axis. The above rays can be viewed in Figure 2.1. Using similar triangles in Figure 2.1
we obtain the following fundamental equation of the thin lens:
1 1 1

A (22)

The point z is called the “image” of point p. Therefore, under the assumption
of thin lens, I(z) at the point z with coordinates (z,y) on the image plane, or retinal
plane, is obtained by integrating all the energy emitted from a region of space contained
in the cone determined by the geometry of the lens.

-

2.3.2 Pinhole lens .

Suppose now that the aperture (radius) of a thin lens decrease to zero. Then all rays are
forced to go through the optical center o. So all rays remain undeflected. Consequently
the aperture of the cone decreases to zero and the only points that contribute to I(z, y)
are the points on a line through the center o of the lens.

Suppose that we have a reference frame centered at o with its 2 axis being the optical
axis, and let point p have coordinates X = [X,Y, Z]7. Then with similar triangles again
in Figure 2.2 we find out that the coordinates of p and its image z are related by the
well known perspective projection:

X Y .
I = _ffv y= —f'E (2'3)
where f is the focal length. This imaging model is also called the ideal pinhole camera

model. Note that the anus sign in the equations result in the image being presented
upside-down on the rétinal plane. We can remove the negative sign by flipping the



Image plane

Figure 2.2: The pinhole lens model

image space coordinates or by moving the retinal plane in front of the optical center.

2.4 Geometric model for image formation

So now under the assumption of a pinhole camera, we can essentially reduce the image
formation process to tracing rays from points on objects to pixels on the retinal plane.
To establish a precise correspondence between points in three-dimensional space with
their projected images on the retinal plane, a mathematical model for this process must

account for three types of transformations: .
e Coordinate transformation between the camera frame and the world frame
e projection of 3D coordinates onto 2D image coordinates

e coordinate transformation between possible choices of image coordinate frames

The coordinate transformation between the camera frame and the world frame,
essentially specifies the position of the camera in the scene, so it is a rigid body trans-
formation based on the position of the camera. The projection transformation is where
the actual irreversible transformation takes place. This transformation projects the
three-dimensional space on a two dimensional plane. The last transformation takes
place on the two dimensional plane that the image is formulated and has to do with the
choice of coordinate frame for the two-dimensional snapshots. All the above transfor-
mations will be dlscusged further in this chapter and their functionality will be become
more clear when we spec1ﬁca.11y define the camera model that will be used in this thesis.

7



2.4.1 The ideal perspective camera

Consider a point p with world space coordinates Xo = [Xo, Yy, Zo]7. Then the coor-
dinates X = [X,Y, Z]" of the same point relative to the camera space coordinates are

given by a rigid-body transformation g = (R, T) of Xo:
X=RX,+T (2.4)

Suppose now that we use the pinhole camera model. The point X is then projected
onto the retinal plane at the point:

)4l

We can rewrite this relationship in homogeneous coordinates like this:

z] [f 0 o0 o i,( »
Zlyl=10 f 0 0 7 (2.5)
11{- |0 0 1. 0
1
. or if we specify x, X using homogeneous coordinates:
f 0 0 o0
Zx=|0 f 0 0|X (2.6)
0 0 1 0
In the above equation we can decompose the matrix to:
f 0 0 0 f o0 o|lft o o o “
0 f 0 oOo|=|0 f oO0f|l0 1 0 O 27"

0O 0 1 O O 0 1410 0 1 O

We call the first matrix K; and the second ITy. The matrix Iy in referred as the
canonical projection matriz. From the world frame to camera frame transformation we
have:

X Xo ’ .
Y R T||Y,
= 2.
Z [o; 1] Zy (2.8)
1 1

Summarizing all the above we get the overall geometric model for an ideal camera:

W Zx=KLX = KTlgXo (2.9)



Figure 2.3: From retinal coordinates to pixel coordinates

>

In the case the focal length is known and hence can be normalized to 1, this model
reduces to an Euclidian transformation g followed by a canonical projection IIy.

2.4.2 A camera with intrinsic parameters

The ideal camera model uses a very specific retinal frame. The retinal frame is centered
at the optical center with one axis aligned with the optical axis. When dealing with
images on computers however the retinal coordinate frame is usually different. The
coordinates are referenced in pixels.with origin of the image being the upper-left corner
of the image. So to use the model described by Equation (2.9), we need to specify the
transformation from the retinal frame to the pixel array as shown in Figure 2.3

The first transformation to be applied is a scale on the retinal coordinates so that
they map to pixel coordinates. This transformation is described by a scaling matriz:

S I8 -~

However the scaled coordinates are still specified relative to the principal point. This
point is the point where the z-axis intersects with retinal plane. So we need to translate
the origin of the reference frame to the upper-left corner. To do this we add ¢;, ¢, to z,
and y,. Where (c,, ¢,) are the coordinates of the principal point relative to the reference
frame. So if the actual image coordinates are given by the vector x' = [z/,/, 1] instead
of the ideal image coordinates x = [z,y, 1]T then the coordinate transformation can be
written as:

L3 )
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Figure 2.4: Image skew
7 ;,1; 0 ¢l |z .
=|yl=10 & ol (2.11)
1 0 0. 1]l

In the case where the pixels are not rectangular a more general scaling matrix can

~ be used that takes that into account:

1 1
P r tana (2.12)
0 1

Py

where a is the angle of the pixel’s borders as viewed in Figure 2.4. With most cameras
it is common to assume that the skew angle is zero. However there are cases that we
need to specify an a. This is usually on scanned images that where previously taken "
with regular cameras that use photographic film.

Now if we combine the projection model of the ideal camera with this scaling we
gain a more realistic model for cameras:

X
4 aw ptana c|ff 0 o0 o[t o 0 o v
Z|y|=1|0 - [0 F 0 o0fJ0 1 0 oOf|,
1 0 0 1Jlo 0 1 off0 0o 1 0f]|]
(2.13)

In the above equation we denote the scaling matrix with K, and we define K as: .
for [ptana o

\:’\K =KKf=10 f pl’ Cy (2.14)
i 0 0 1

10
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then the final model for a camera with intrinsic parameters is:

Zx’ = KII,X (2.15)

The upper triangular matrix K collects all the parameters that are intrinsic to the
camera and so we call this matrix the tntrinsic parameter matriz, or the calibration
matriz of the camera.

The process of obtaining the camera’s calibration matrix is known as camera cali-
bration. The camera calibration step allows us to find the matrix K which can give us
normalized coordinates from pixel coordinates with a simple inversion.

R
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CHAPTER 3

A FIRST APPROACH TO
THREE-DIMENSIONAL RECONSTRUCTION

3.1 Camera model
3.2 Simultaneous recovery of structure and motion

3.3 Results

3.1 Camera model | .

In this first approach the perspective camera model is used, known also as the pinhole “
camera model. The geometric process for image formation with the pinhole camera -
model is completely determined by specifying a perspective projection center and a
retinal plane . The projection of an object point is then obtained as the intersection of
a line through that point and the center of projection with the retinal plane. This is
illustrated in Figure 3.1, and is basically the ideal perspective camera with the retinal
plane positioned in front of the camera center.

In this approach we preferred the ideal perspective camera model for its simplicity
over the camera with intrinsic parameters model. This way we only have to estimate
the focal length of the camera as an intrinsic parameter. The principal point is assumed
to be at the center of the two dimensional snapshots, the pixels are rectangular and
the skew angles are zero. This close enough to reality for most applications and it was
judged a good assumption for the proposed method.

kY
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Optical Axis -

Retinal Image

R

-

Camera

Figure 3.1: Perspective projection

3.2 Simultaneous recovery of structure and motion

In this section a method for recovering both camera motion and scene structure will
be discussed. The problem will be formulated as an optimization problem that will be .
solved with the aid of non-linear least squares.

3.2.1 Problem formulation

We suppose that we are given k images of a rigid scene and that we want to recover from
these images the structure of the scene and the motion of the cameras. This will require
to calculate the position and orientation they have in the world frame. The position of
three-dimensional points on the surfaces of the scene will have to be calculated also. So
we have to calculate for each camera the rotation matrix R* and the translation vector
t¥, and the three-dimensional points p; on the scene’s surfaces. )

Suppose that the three rows of R* are r¥, r¥ and r¥, and the three entries in t* are
t¥, t and t¥. We also make the assumption that the principal point of the cameras
lies at the center of the images, which is common for most cameras. The projection
equation (2.9) can be™Written as:
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Instead of using the above equation directly, we reformulate the problem to estimate

inverse distances to the scene [1]. Let 7* = 1/t¥ be the inverse distance and s* = f*n*

be the world-to-image scale factor. This formulation allows for the scale factor s* to be

reliably estimated even when the focal length is long, whereas the original formulation

has a strong coupling between the f* and t¥ parameters. The equations (3.1) become :

zt = f* (3.1)

K k koo o ik
k_ ok TzPit i k_ ok TyPitly

CT 0 Ty YT Tk
finally we collect all the terms in the left side and we get :

(3.2)

b ok TePi s
A s agl
1 +n*rp;

k_ ok ryPi +t _
% 1+ 7n*rtp;
So we have a system of 2k equations that we will solve using the Levenberg-
Marquardt non-linear least squares algorithm [1].

3.2.2 Simple rotation matrix

The above solution although it is well formulated is has several difficulties in its imple-
mentation. The main problem originates in the formulation of the unknown rotation
matrix. )

The simple approach is to parameterizé the 3 x 3 rotation matrix with nine un-
knowns, and try to solve that problem. This turns out not to work efficiently since
several geometric properties that the rotation matrix possesses are not satisfied, i.e.
the equations constitute a set of necessary but not sufficient conditions. This may
result in erroneous solution, unless very good initialization conditions are determined.

Other attempts to enforce the constraints, like including in the optimization process
the constraint:

RR™ =1

does not give good results because they create singularities that cause the optimiza~
tion process fail to find the minimum.

14



3.2.3 Euler angles parameterization

In order to enforce the geometric properties we use a specific parameterization of the
rotation matrix based on Euler angles .
In R3 rotations around the z, y and z axes are:

1 0 0
R;(a) = |0 cosa sina
_O —sina cosa |
[cosa 0 —sina]
R,(a) = 0 1 0
_sin a 0 cosa |
[ cosa sina 01
R.(a) = |-sina cosa O
i 0 0 1

Any rotation can be given as a composition of rotations about these three axes,
according to Euler’s rotation theorem. So our rotation maftrix is the result of multiplying
the above matrices:

-~

Rau(a, b, c) = R;(a) Ry(b) R.(c) (3.3)
which results in the following parameterization:
cosbcosc cosbsinc —sinb
Rou(a,b,c) = |sinasinbcosc — cosasinc - sinasinbsinc+ cosacosc sinacosb
cosasinbcosc+sinasine cosasinbsinc —sinacosc  cosacosb
(3.4)

This parameterization ensures that the R,; will be a rotation matrix, so using it
in the optimization process will always result in valid rotation matrices. However as
we can see in equation (3.4), the parameterization depends on trigonometric functions
that can be hard to solve efficiently and accurately. This claim was found to be true in
practice with the implementation of the method. _

The use of the above parameterization failed to find the global minimum most of the
times. The optimization method gets stuck in local minima and in general converges
very slowly. The optimization step was conducted in the beginning using forward
differencing for the calculation of the Jacobian matrix. Analytical Jacobian was used
also but we didn’t observe significant improvements in terms of convergence time.

k)
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3.3 Results

It is obvious that this method works on all images at once. It basically requires a
non-linear optimization step. The complexity of the problem can get quite big with
growing number of images and point correspondences among the images. This makes
the system slow, non robust and thus inappropriate for time-critical applications.

The implementation of the system revealed several flows in the method. The most
important is that there is no efficient parametrization of the rotation matrices.

-
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CHAPTER 4

AN EFFICIENT METHOD FOR
THREE-DIMENSIONAL RECONSTRUCTION

-

4.1 Introduction

4.2 Camera calibration

4.3 Epipolar geometry

4.4 Estimating the fundamental matrix
4.5 Normalized coordinates
4.6 The essential matrix
4.7 Image plane homographies ‘o
4.8 Extracting structure and motion

4.9 Extending the method use to multiple views

4.10 Results

4.1 Introduction

In this chapter we will describe an efficient way to reconstruct a scene based on the
geometric properties of the two view geometry. We describe the steps to acquire a three-
dimensional representation of a scene along with the theoretical background. First we
present a way to estimate the intrinsic parameters of the camera, or in other words a
method to calibrate the cameras. We then explore the constraints that are present when

17



we have two views of a rigid scene, and we describe the so called epipolar geometry.
We continue by exploiting the epipolar geometry to acquire the projection matrixes of
the cameras and finally to solve the reconstruction problem with triangulation.

4.2 Camera calibration

Suppose that we have a camera by which we take pictures of a scene we wish to re-
construct in three-dimensions. It is important to know the way this particular camera
formulates the images on the film or CCD sensor. This is equivalent to knowing the
intrinsic parameters of the camera. A camera with known intrinsic parameters is re-
ferred as a calibrated camera, and the procedure of acquiring these parameters is called
camera calibration. So we will first describe a method for calibrating a camera. We will
present a method for estimating the intrinsic parameters of the camera as described in
Section 2.4.2. '

These parameters are different for every camera and depend on the manufacturing >
characteristics of the camera and the topological placement of the lens when the pho-
tographs where taken. These parameters can be available from the manufacturer, but
that is not always the case. That means that we must device ways to obtain these
parameters, through the process of calibration.

The calibration technique described here is based on work of Zhang [10, 11}, and is
based on viewing a planar object from different views.

4.2.1 The absolute conic,

When dealing with camera calibration we first define the most basic parameters of the
camera. Since little in known we have to work with an abstract object in the scene. .
The absolute conic. The absolute conic is a special conic that is positioned at the plane
at infinity!, which is invariant to transformations in three-dimensional space. Consider
this like the effect the moon gives on a moving observer on earth. It seems like it is not
moving in relation to the observer. Now expand this to include rotations and you will
be able to grasp the concept of the absolute conic.

This has the advantage that the image of the absolute conic is independent of the
position and orientation of the camera. The absolute conic is symbolized as wq, and is
related to the camera calibration matrix K in the following way:

Weo = K~ TK™! (4.1)

1The plane at infinity is an augmentation of the Euclidian space and is the plane where all parallel
lines meet. This plane consists of points with the last coordinate set to zero, in their homogeneous
representation ,
v!-‘,\
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i Figure 4.1: The images of the absolute conic ®

Therefore knowing the absolute conic is equivalent to knowing the cameras calibra-
tion matrix. This means that by estimating the absolute conic we can find the intrinsic

parameters of the camera, and thus we have solved the camera calibration problem.

4.2.2 A planar object and its image

In this calibration technique we use the view of a calibration pattern consisting of a
black and white checkerboard with squares of known length. In Figure 4.2 we can
see the planar calibration object photographed from several positions. The calibration
object consists of an A4 paper that was glued on a desk to ensure that it is planar. The :.
printed black and white squares are 256mm x25mm. Since the object is planar we are
able to establish a homography between it and its image.

We will assume with no loss of generality that the planar object lies on Z = 0 in
the world coordinate system. Taking the projection equation (??) and representing the
it* column vector of the rotation matrix by r;, we obtain the following equation:

T X X
, slyl =K [rl rs rg t] ol = K [r1 rz t] Y (4.2)
'\ 1 1 1

l ’

Now because Z = 0, the homogenous coordinates of point X are written as X =

[X,Y,1]7. A planar object point X is related to its image point x by a 3 x 3 homography
matrix H: o)

19




e 1= Y
S EIEAKED

Figure 4.2: The planar calibration object photographed from various position;
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Figure 4.3: The selected world space coordinates for the four corners of the pl
object
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sk = HX < (4.3)

with H=K][r; r2 t]

The homographies can be estimated by selecting the four corners on the calibration
object, as shown in Figure 4.3. In that figure we can also see the world space coordinates
X 1..4 used.

Zhang [10, 11] uses a maximum likelihood criterion to estimate the homography.
The maximum likelihood criterion of H is obtained by minimizing the following:

min Y _ ||x; — &l[? (44)
H i
where
) 1 |h{X; '
Ri = ——— 4.5)

with h; the i, row of H. This is a nonlinear minimization problem that can be
solved using the Levenberg-Marquardt optimization algorithm.
By setting x = [h] h; h]]7 the equation (4.3) can be written as follows:

=T =T
X 0" -zX
~ ~7Ix=0 4.6

[oT X' —yXT] (49)
If we have n points, n equations are obtained and can be written in a matrix form

Lx = 0, where L is a 2n x 9 matrix, The solution is then derived as the eigenvector of
LTL associated with the smallest eigenvalue.

4.2.3 Estimating the camera calibration matrix
We will now try to estimate the camera calibration matrix. We start by writing H =
[h; h, hg] in equation (4.3) :

[hl h2 h3] = AK[I'] 9 t] (47)

where ) is a scalar. It is true that the vectors r; and rq are orthonormal, since. they
are rows of the rotation matrix R. Then the following two equations are obtained and
give two constraints on the internal parameters of the camera:

h/K-"K'h, =0 (4.8)
b/K-"K'h; = hJK~ 'K 'h, (4.9)

It can be seen that" K~ TK™! represents the image of the absolute conic we,.
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We expand the equation (4.1) and a symmetric matrix is obtained:

-
_12_ s . 8—cz f;
W W wy Iz fiby e f"f}‘u
_ _ 8 1 _3s 8—Cz )_
woo =K K™ = |wn w3 ws|=|—7% Rty ;{! %
Wi ws W &LE}-_:& _sgr_:,,;z—f:;f,,) _ %_ gggsf—:fzv Wl % +1

(4.10)
Deﬁmng Wy = [wly Wwa, W3, Wy, Ws, ws]T and hi = [h;‘l,h;‘z,hi3]T the ith column of H,
the following equation is derived:

h:Twoohj = u;‘;‘wu (4.11)
where
T .
u; = [hilhjl hihja + highji  hishjo  hizhjy + hithjz  hizhje + hiohjs hishjs] »
(4.12)

It then possible to rewrite the two constraint equations (4.8) and (4.9) as two ho-
mogeneous equations in w,,:

-

U | =0 (4.13)
(1111 - uzz)T ¢ '

For n images on n homographies, the above vector equation is stacked n times and
the following is obtained:

Vw, =0 (4.14) |,

with V being a 2n x 6 matrix. The general solution is then derived as the eigenvector
of VTV associated with the smallest eigenvalue. If only two images are present, it is
possible to assume that the skew s is zero (which is very common). This will be added
as an additional row in V. We can assume further that the principal point is at the
image’s center and solve with only one image.

The absolute conic wy, is defined up to a scale, and it is possible to extract the
intrinsic parameters of the camera, once vector w, is known:
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Wolg — Wis ~

o YT s 4.15
% wiw;z — w2 : (4.15)
2 —
A = wa—“’”c”(“’z)“l“ wits) (4.16)
)
fr = o (4.17)
Awl
= |2 4.18
fy v — (4.18)
2
5 = ___wzf;fv (4.19)
SCz w4f2
= = 4.2
Ce 3 S ( 0)_

Once the calibration matrix is calculated the external parameters for each image

can be calculated also from the equation (4.3).

rl = MK 7'h; (4.21)
r2 = MK lhy (4.22)
r3 = rlxr2 (4.23)
t = MK 'hy (4.24)

— 1 1
where the scalar A = Kooy KD

The solution we obtain from the above procedure is used as an initial guess to the
a nonlinear optimization problem. We minimize:

n m

> Dl — %(K, Ra, t, Xy) | (4.25)

i=]1 j=1

Where X(K, R, t;, X;) is the projection of point X; in image ¢. This optimization is
solved with the Levenberg-Marguardt non linear least squares optimization algorithm.

4.3 Epipolar geometry

One important question that someone can ask is whether there is a constraint between.

a pair of perspective images of a scene. It turns out that there is such a constraint, the
epipolar constraint. This constraint states that for each point in one of the images, the
corresponding point m,{:he other image must lie on a straight line.

This constraint is expressed mathematically by a 3 x 3 singular matrix, known as

23
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the fundamental matriz and denoted by F. If a three-dimensional point X is projected
atpointxintheﬁrstimageandatpointx’attheseoondone,thenthein‘mgepoints
satisfy the relation:

X Fx=0 (4.26)

The fundamental matrix in essence describes the epipolar geometry between two
views of the same scene. The epipolar geometry is the geometry of the intersection of
the image retinal planes with the pencil of planes having as axis the line joining the
camera centers, as seen in Figure 4.5.

Lets consider two photographs of the same scene taken from two distinct points in
space. If the cameras are calibrated and have a matrix K equal to 1. the homogeneous
coordinates x and the spatial coordinates X of a point p, with respect to the camera
frame:

ax = X (427)°

That means that the image x differs from the actual three-dimensional coordinates
of the point by a depth A € R,. Now without loss of generality we can assume that the
_ world frame is aligned with the first camera, while the other camera is positioned and
oriented according to an Euclidian transformation ¢ = (R,t). Suppose now that the
three-dimensional coordinates of a point p relative to the two cameras are X;, X, € R3,
they are related by the following transformation:

X, =RX; +¢ (4.28)
Now let the x;,x> € R? be the homogeneous coordinates of the projection of the

‘e

same point p in the two photographs. Since X; = \;x;,i = 1,2, the above equation can .
be written as:

Aoxz = RAix; + ¢ (4.29)
In order to eliminate the depths \; we multiply both sides with [t]x:

Dolthexz = [el R, : (4.30)

Since the vector [t].x, = t x x5 is perpendicular to the vector x,, their inner
product is zero. Multiplying the previous equation with x} yields that the quantity
x; [t]x R\ x; is zero. Since Ay > 0, we have proven the following: .
Theorem 4.3.1. Consider two tmages X;,X, of the same point p from two camera
positions with relattve pose (R, t), where R the relative orientation and t the relative
posilion. Thenx;,ngﬂisfy:

x; [fxBx; =0 (431)

P
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Figure 4.4: Epipolar correspondence

The matrix E = [t]xR (as we will see later on) is called the Essential matriz and is
a specialization of the fundamental matriz for the case of calibrated cameras.

To understand the epipolar geometry and the epipolar constraint, lets discuss about
- the point projection properties. Given the projection point x on one image, we are not
able to know the exact location of X but we know that is bound to be on the line of
sight of x. Check the Figure 4.4. The line of sight of x is the line joining the center
of projection C of the camera and x. This line can be projected on another image and
the corresponding image point x’ is bound to be on the projected line I'. In fact all
the points on plane II defined by the two projection centers and the point X have their
image on I'. In the same fashion all these points are projected on the first image on a
line 1. There two lines are then in epipolar correspondence.

Suppose now that we have more three-dimensionsl points in the scene. With every
three-dimensional point and the centers of projections, we get a different plane. As we
can see in Figure 4.5 each such plane results in a pair of corresponding epipolar lines.
All these lines pass through two specific points e and e'. These special points are called
the epipoles and they are the projections of the center of projection of one image to the
other.

These concepts were introduced by Faugeras [2] and Hartley [3]. Since then, there
has been a lot of research on the properties of the fundamental matrix and the methods
for estimating it from two uncalibrated images [4].
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Figure 4.5: Epipolar geometry

4.4 Estimating the fundamental matrix

The Equation (4.26) can be used to estimate the fundamental matrix for two uncali- ?

brated images. Every pair of corresponding image points gives one constraint on the
fundamental matrix F. Since F is a 3 X 3 matrix, we have nine unknowns. But since
we require that the matrix is of rank 2, we need to determine it only up to scale so we
" have eight unknowns. Therefore 8 pairs of corresponding image points are sufficient to
compute F.

4.4.1 The eight-point algorithm

The most straightforward method for estimating the fundamental matrix is using Equa-
tion (4.26) with eight corresponding image points and solving a linear system. Equation
(4.26) can be written as:

[zz' y2' ' =y vy’ ¥ =z y 1]f=0 (4.32)

where x = [.’B y ].]T, x = [.’B' y’ l]T and f = [Fn F12 F13 F21 F22 F23 F31 F32 F33]T

with Fj; being the elements of the fundamental matrix F. By stacking eight of these
equations in a matrix A, we obtain the following equation:

Af =0 (4.33)

This system of equations can be solved by Singular Value Decomposition(SVD). The

SVD of A results the decomposition USV" with U and V orthonormal matrices and.

S a diagonal matrix containing the singular values. The singular values o; are positive
and decreasing in order. In our case oy is guaranteed to be zero and thus the last
column of V is the solgtion. Of course, this holds as long as the eight equations are
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linearly independent?.

Here we must note that in the presence of noise on the points coordinates, the
estimated matrix will not satisfy the rank 2 constraint. This constraint is ver)\r important
and most applications of the fundamental matrix rely on the fact that it is rank 2. The
most convenient way is to enforce the constraint after the initial solution is obtained.
To do so we replace the matrix F with the matrix F’ that minimizes the Frobenius
norm ||F — F’|| subject to the condition det F/ = 0. To do this, let F = UDV be the
SVD of F, with D = diag(r,s,t). We then let F' = Udiag(r,s,0)V'. This method
was suggested by Tsai and Huang [5] and has been proven to minimize the Frobenius
norm of F — F as required.

4.4.2 Improving the eight-point algorithm

We went on and improved this fundamental matrix estimation algorithm by applying a
normalization on the input point coordinates [9]. What we do is we transform the image

points before we feed them in the eight-point algorithm. Suppose that coordinates x in *

one image are replaced by X = Tx, and coordinates x’ in the second image are replaced
by x' = T'x’. Substituting that to equation (4.26) we get :

FTT " TFT ' =0 (4.34)

where T'~" is the inverse transpose of T'. This relation implies that T~ FT"! is
the fundamental matrix corresponding to the transformed points. So what we do is :

1. Transform the image coordinates according to transformations X = Tx and %’ =
T'x

-

2. Estimate the fundamental matrix F corresponding to the transformed points
3. Set F=TTFT

The fundamental matrix estimated this way will correspond to the original untrans-
formed points no matter what that transformation was. Hartley [9] showed that using
a specific transformation can result in the eight-point algorithm to perform almost as
good as the algorithms that use non-linear criterions. .

This transformation is done in two steps. The first translates the coordinates in each
image so that the centroid of the point set is brought to the origin. The coordinates
are then scaled, the suggested scaling is such that the average point is [1,1,1]". Such
point will lie at a distance v/2 from the origin. So the transformation is as follows :

1. The points are translated so that their centroid is at the origin.

2All other singular valties must be non zero
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Figure 4.6: The cpipolar geometry estimated by the eight-point algorithm wi
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Figure 4.7: The epipolar geometry estimated Ly the eight-point algorithm witl
malization

In Figure 4.6 and Figure 4.7 we can see the results of the point coordinates nc
ization. The epipolar geometry in figure 4.7 is good and is almost identical to
the non-linear criterion algorithm gives. On the other hand the epipolar geome
4.6 given by the eight-point algorithm without normalization of the point, coord:
is distorted. N
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4.4.3 Distance minimization algorithm

In general, it is possible to obtain more than eight image point correspondsnces from
two images. It that case, we should use the extra points in order to minimize the effect
of noise on the result. The original eight-point algorithm can be extended to use more
points, in a linear least squares fashion. In that case the matrix A of equation (4.33)
will contain rows for all additional point matches. The solution is obtained in a similar
way. The last singular value is used again, only that now it is not zero.

Even though the above method is fast and simple to implement, it is very sensitive to
noise, even when there are more than eight point correspondences. We will discuss this
matter in the implementation chapter of this thesis but one of the main problems with
this method is that we minimize an algebraic error which does not have a “physical”
meaning. It would be better if we where minimizing a more geometrically meaningful
criterion.

The obvious error that we should be minimizing is the distance of points from the

corresponding epipolar lines. So the first idea is to use the following non-linear criterion:
Z d? (x, Fx;)-
= with d(x,]) being the euclidian distance of point x from line 1 = [I},l5, l3]":

Ty
d(x,1) = — 11 (4.35)
(l1)% + (12)?
The problem with the above criterion is that, unlike the linear criterion of the

eight-point algorithm, the two imagés does not play a symmetric role. This criterion

determines only the epipolar lines in the second image.

To have a consistent fundamental matrix it is necessary and sufficient that by ex-
changing the two images, the fundamental matrix is changed to its transpose. So we
must include that in the minimization criterion, hence we minimize this quantity:

Z (d® (x{,Fx;) + d* (i, FTx:))
4.4.4 Singularity constraint

The problem with the previous method is that we do not take into account the fact that
F is of rank 2. We could use minimizations under the constraint det(F') = 0. This con-

straint is a cubic polynomial in the coefficients of F and the numerical implementations -

are not efficient enough to be usable.
It turns out that we can enforce the singularity constraint by using a certain para-
meterization. The ideasds to express the matrix F as:
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2 I I3
F= T4 Ts Te ~ (436)
7T + Ty I7T9 + TTs I723 + TgZg

What we basically do is write the third row of the matrix as a linear combination
of the two first rows. This ensures that the matrix will be singular.

The previous parameterization takes into account only the fact that F is singular.
It would be appropriate to parameterize it by values that are more significant to us. As
Quang-Tuan Luong [6] we can use this parameterization:

a b —az — by
F = c d —cz —dy (4.37)
—ar’' —cy b’ —dy (ax+by)r’ + (cz +dy)y

Where, = and y are the coordinates of the first epipole, z’ and y’ are the coordinates’

of the second epipole, and a,b,c and d parameterize the epipolar transformation mapping
an epipolar line in the first image to its corresponding epipolar line in the second image.
With this parameterization and the constraint of equation (4.4.3) we can use a non-
linear optimization method to obtain the fundamental matrix for two arbitrary views,
-based on point correspondences.

4.5 Normalized coordinates

Consider a camera projection matrix as described in equation (2.15):

P = K[R|t]

Suppose that the calibration matrix K is known. Now if x = PX is a point on the
image, we can apply K~! to the point x to obtain:

x=K'x (4.38)

Then X is image point expressed in normalized coordinates. It may be thought of
as the projection of a point x with respect to a camera having as a calibration matrix
the identity matrix I.

The camera projection matrix:

K-'P = [R|t]
is called normalized camera matriz as the effect of the known calibration matrix has
been removed.

4
3
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4.6 The essential matrix

The essential matrix is a specialization of the fundamental matrix. It is basically the
fundamental matrix in the case of normalized coordinates. The definition of the essential
matrix is:

% TEx =0 (4.39)

in terms of the normalized image coordinates for the corresponding points x, x'.
Substituting X and X’ with equation (4.38) gives:

X"TK-TEK x =0

Comparing this with the relation (4.26) for the fundamental matrix, it follows that
the relationship between the fundamental matrix and essential matrix is:

E = KFK (4.40) *

4.7 Image plane homographies

Another important concept in projective geometry is the plane homography. A plane
homography is a nonsingular 3 x 3 matrix which relates two uncalibrated retinal images
of a three-dimensional plane.

If x is the projection of a point on a plane on one image and x’ is the projection of
the same point on the second image; then the two projections are related by the linear
projection transformation:

x' ~ Hx (4.41)

Shashua shows that the fundamental matrix and plane homographies are tightly
coupled [7]. To be more exact, the entire group of all possible homography matrixes
between two images lies in a subspace of dimension 4. It is spanned by four homography
matrixes. These four homography matrixes are such that their respective planes to not
all coincide with a single point. It is shown [8] that given the fundamental matrix F
of an image pair, a suitable basis of four homography matrixes Hj, ..., Hy, referred as
“primitive homographies”, is defined as follows:

H; = [c)«F, i=1,2,3

and

k) H, =ed7 (442)
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where ¢; are the identity vectors :

& =[1,0,0]",e2 = [0,1,0]",e3 = [0,0,1]7

[]x designates the skew symmetric matrix representing the vector cross product, so
that for a vector x, [x]xb=x x b, V b. More specifically:

Kx=lz 0 -z (4.43)
-y z 0

J is a vector such that §"e # 0. This can be satisfied by defining vector § so that
each of its elements has an absolute value of one and a sign identical to that of the
corresponding element of e.

The first three homography matrixes are of rank 2 and span the subgroup of ho-
mographies matrices whose associated plane contains the center of projection C’ of .
the second camera. The fourth homography matrix has an associated plane that goes ~
through the center of projection C of the first camera and not coincident with with C’,
thus having rank 1. The four primitive homographies allows any other homography H
to be expressed as a linear combination of them:

H=) \H; (4.44)

i=1

4.8 Extracting structure and motion

Until now we explored how different views of the same scene relate to each other. In **
this section we will try to use these relations to estimate the structure of the scene and )
the motion of the camera.

Contrary to the method described in Section 3.2 where we derived both scene struc-
ture and camera motion simultaneously in a big optimization problem, here we will see
how we can obtain the camera motion alone at first, and then use that information
along with the point correspondences to estimate the structure of the scene. So this
method extracts motion and structure in two separate steps.

4.8.1 Camera motion

In order to estimate the motion of the cameras we will have to use corresponding image’
points from the images. So we will suppose we have a number of corresponding image
point pairs. Given these image points we will be able to construct the epipolar geometry
constraint. This mean® that we will estimate the fundamental matrix F for the given
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pair of images.

In the following procedure we can use the fundamental matrix to estimate \the motion
of the cameras, but this will give results only up to a projective ambiguity. On the other
hand if we use the essential matrix the camera matrices may be retrieved from up to
scale and a four-fold ambiguity. That is that there are four possible solutions, each of
which at an undetermined scale.

4.8.2 Using the essential matrix to extract the projection ma-
trixes

With no loss of generality we will assume that the first camera’s projection matrix is
P = [I|0). This mean that we position the first camera to be aligned with the world
frame. In order to compute the second camera’s projection matrix P’, it is necessary
to factor the essential matrix E into a product SR of a skew symmetric matrix and a
rotation matrix.

We will use the matrices:

0 -1 0 To "1 o
w=|1 o o z=|-1 o o (4.45)
0 o0 1 0 0 0

note that W is orthogonal and Z is skew-symmetric. Suppose now that the SVD of
E is Udiag(1,1,0)VT. There are two possible SR factorizations of the essential matrix,
as follows:

S=UZU" R=UWV'T or UWTV" (4.46)

The given factorization is true, and it is verifiable by inspection. The above fac-
torization determines the translation part t of the camera’s projection matrix P’, up
to scale, from S = [t]x. However, the Frobenius norm of S = UZUT is v/2, which
means that if S = [t]x including scale then |[t|| = 1, which is a convenient normal-
ization for the baseline of the two projection matrixes. Since St = 0, it means that
t =UJ0,0,1]" = us, the last column of U.

However the sign of E and consequently t, cannot be determined. Therefore given
an essential matrix, there are four possible choices for the second camera projection
matrix. Two for the possible choices of R and another two for the possible signs of t.

So the available choices for the second projection matrix are:

PI
“ P’

[

[UWVT| + u3]
[UWVT| —uj)
P = [UW'VT|+uj]
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Figure 4.8: The four possible solutions for the projection matrixes

P = [UW'VT| - uj (4.47)

4.8.3 The geometrical interpretation

It is obvious that the difference between the first two solutions is simply that the
direction of the translation vector is the opposite. For the relation between the first
and third projection matrixes we have to pay some more attention. It is verifiable that:

[UW VT jug] = [UWVT |u] (4.48)

UWTWTVT
1
and UWTWTVT = Vdiag(—1,~1,1)VT is a rotation of 180° about the line joining
the two centers of projection of the cameras.
In Figure 4.8 we can see the four solutions that we acquire from the essential matrix.
In this figure the left and right sides present the translation reversal, and top and
bottom subfigures present the 180° rotation around the line joining the two centers of

projection. To determine which one of the four solutions is the correct one we will.

have to reconstruct a three-dimensional point from the point correspondences. This
is further explained in the next section, but once we have reconstructed the three-
dimensional point as .§hown in Figure 4.8 we can determine the correct solution by
checking in which cast "the point is in front of both cameras. In the figure example
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Figure 4.9: Acquiring three-dimensional point with triangulation

note that the reconstructed point M is in front of both cameras only at the top-left ’
subfigure.

Thus, testing with a single point to determine if it is in front of both cameras is
sufficient to decide between the four available solutions for the second camera matrix.

4.8.4 Structure

Once the two projection matrixes have been determined we can use the available point
matches to reconstruct actual three-dimensional points of the scene.

For each point on an image there is a corresponding line of sight that can be placed
in space. This line is the line passing from the center of projection of the camera and
the point on the retinal plane. In the case of two corresponding points on two different .,
views, the lines of sight intersect in a three-dimensional point, that is the original scene *
point. This illustrated in Figure 4.9.

In practice, however, these lines will not perfectly intersect. This is because of faulty
positioned points and the presence of noise.

So what we have are the two projection matrixes of the two views, along with the
coordinates the point is represented on the retinal planes. So suppose that the three-
dimensional point in space is X = {X,Y, Z, W] and its projections on the images are
x = [z,9,1)" and ¥’ = [~,/,1]7. By making use of the pinhole camera model equation
(??) the following two equations can be defined:

$1X = P1X (4.49)'
82X = P,X (4.50)

where 8, and s, are two arbitrary scalars. Suppose now that pJ; and pj; are the
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it* row of P, and P, respectively. The scalars s; and s, are eliminated by setting the
following: s; = pjX and s, = p3;X. Then the above equations can be written in the
>

form:
AX =0 (4.51)
with A being a 4 x 4 matrix:
Pl — ZPj;
T _omT
A = | P12 " ¥Pi3 (4.52)

Pgl - z'P;s
P32 — ¥'Pas
Then the solution is the eigenvector of the matrix AT A associated with the smallest
eigenvalue. .
To further improve the result obtained from the linear system solution above, we ,
can use a nonlinear optimization step. We minimize the error measured in the retinal ~
plane between the observation and the projection of the reconstructed point [16]:

T 2 T 2 T 2 T 2
an) ( me) ( ' P21x) ( ’ Pzzx)
rT——==1 + ——==— ) 4+l —-—==)] + - == 4.53
( P13 X YT peX Py X v P23 X (4.53)

The optimization is done with the Levenberg-Marquardt algorithm.

4.9 Extending the method use to multiple views

So far we have seen how it is possible to reconstruct three-dimensional points from point -
correspondences on two photographs of a scene. But what happens if we have more
than two photographs? It would be nice to be able to incorporate more photographs
in the reconstruction of the scene, so that more points can be calculated. Actually this
is most of the times necessary since with only two views many parts of the scene are
occluded.

The research done on the field is in trying to generalize the epipolar constraint in the
case of more that two views. This leads to constraints that can be used in the simpler
and implementable case: in triplets of images. This along with a method to relate
consecutive image triplets [12] can give us a way to utilize all the additional images of
the scene. '

This however can often be hard to implement efficiently. This is because of arith-
metic inaccuracies in the implementation machines and also because of the consecutive
nature of the solution;sthat can result in accumulation of error.
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In this thesis we propose a different solution to the problem. Our solution has the
advantage of being implementation friendly and also removes the consecutive nature of
the solutions based on multi-view constraints. The proposed method uses the algorithm
that we described previously in this chapter on pairs of images chosen from the available
images of the scene. We then use point correspondences across more that two images
to relate the resulting three-dimensional models and merge them into a single model.
We will continue by explaining how is that possible and we will describe the algorithm
to accomplice that.

4.9.1 Relating reconstructed segments

Suppose that we have a series of more that two photographs of a scene. We also have
a number of feature points on these images. Until now we needed correspondences of

these feature points between two photographs, but it is possible to have a feature point

visible across more that two photographs. We will use these feature points to relate
the separate reconstructions that we can obtain through the algorithm we described
previously in this chapter.
Lets take three photographs from the given series. The only constraint on the
choice of photographs is that there are some feature points visible across all three of
“the photographs. So now we have three sets of feature points:

e The set A of feature points that are in correspondence in the first and second
photographs

e The set B of feature points that are in correspondence in the second and third
photographs

e The set C of feature points that are in correspondence in all three photographs

The first set A will be used to reconstruct three-dimensional points from the first
and second photograph, while the set B will be used to reconstruct three-dimensional
points from the second and third photographs. Unfortunately these reconstructed points
will not be in the same world coordinate frame. This is due to the way the epipolar
geometry reconstruction method works. Using the epipolar geometry to obtain the
projection matrixes results to projection matrixes with unknown scale, and the: first
projection matrix is always the canonical projection matriz. We will use the feature

points in the set C to bring all the feature points in the same world coordinate frame.

4.9.2 Aligning the world coordinate frames

So for every pair of photographs, we can get from the epipolar geometry reconstruction
method a reconstructé’& segment of the scene, but in its own world coordinate frame.
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So if we have two reconstructed segments we will have to “align” the different world
coordinate frames. What we basically need to find is the affine transformation that
when applied on one of the segments, it will bring it in the coordinate frame of the
other.

This transformation is defined by a rotation matrix R, a scale matrix S and a
translation vector t. Our goal it to determine (R, S, t). We do this by using the feature
points that belong to set C. With these triplets of feature points we get two different
reconstructed three-dimensional points. One from the first and second photograph and
one from the second and third. These two points are actually the same point in three-
dimensions, but the algorithm will not produce the same coordinates. So suppose that
X; are the reconstructed three-dimensional points from the first and second photographs,
and y; are the points that are reconstructed from the second and third photographs.
There is an (R, S, S, t) that will satisfy the relation:

y; = RSx; + t (4.54)

Suppose now that we use an Euler angles parameterization for the rotation matrix

R, then we have three unknowns for the rotation.matrix; three for the diagonal scale

matrix, and three unknowns for the translation vector t. When we have n triplets of
-feature points we can solve this problem by minimizing this criterion:

n

> (yi —RSx; +t)2=0 (4.55)
i=0

This is a minimization problem that we solve using the Levenberg-Marquardt opti-
mization algorithm. To be able to obtain the exact transformation we require at least
three points, that are not in a degenerate form3.

After obtaining the affine transformation (R, S,t) we can use it to transform the
points X; in the world coordinate frame of the points y; and have one “merged” recon-
structed point cloud.

This procedure can be followed for other couples of paired photographs in order to
reconstruct the full scene from a range of any number of photographs.

So if we have n images as shown in Figure 4.10, we can reconstruct the scene using
the algorithm described in Algorithm 1.

4.9.3 Getting more feature points

As we have seen in this chapter, given some feature points correspondences on pho-;

tographs of a scene, we can reconstruct the original three-dimensional points the im-
ages where extracted from. To get a good representation of a scene we often need many

3like being collinear
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Algorithm 1 Multi-view reconstruction

Reconstruct the scene’s fragment S that corresponds to images 1,2

i=2

while ¢ < n do
Reconstruct the scene’s fragment S,.,, that corresponds to images 4,7 + 1
Calculate the affine transform M that brings Spey to the world frame of S
Transform Sy, with M
Merge Sy into S
te—1+1

Return S
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-Figure 4.11: Projecting a pattern on the object we want to reconstruct creates additional
feature points

feature points. The number of feature points that we can extract from a photograph
depends on the scene itself. Some scenes can provide a big number of feature points
while others do not give sufficient feature points to obtain a detailed reconstruction. In
the case that we want to reconstruct a scene from which feature points cannot be easily
extracted, we suggest the use of structured light to create additional feature points.
Structured light. is light that is projected on the object and it contains patterns. For
example in Figure 4.11 we can see the effect of lighting a statue with structured light.
We make use of a data projector that projects on the statue a checkerboard pattern.
We then take photographs of the object with the projected pattern. Note that the
projected pattern must remain stable throughout the snapshot acquiring procedure.

4.10 Results

In this section we discuss the results that we had from the proposed method. We

present the data gathered from the experimental scene reconstructions, to characterize’

the efficiency of the reconstruction method.
During the development of the three-dimensional reconstruction method we used
several scenes to check'the efficiency of the methods we were implementing. These
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[ Noise | Edge 2 | Edge 3 | Edge 4
0.00 1.000 1.000 1.000
0.05 0.999 0.995 0.998
0.10 0.995 0.992 0.994
0.15 0.982 | 0.969 | 0.978

Table 4.1: Results obtained from the reconstruction algorithm, from the synthesized
scene. The algorithm is run several times each time adding different zero-mean gaussian
noise to the on-image coordinates of the feature points. The column represent the
relation of the respected edges with edge 1

scenes were both real and synthesized. We begin with synthesized images of scenes, in
order to have good knowledge of the scene we were reconstructing. A synthesized scene
gives us the ability to efficiently measure the performance of the implemented method.

4.10.1 Reconstruction of synthesized scenes

A synthesized scene is simply a scene for which we already have the three-dimensional
model. From this scene we can obtain snapshots from various positions and use them
for images.

So what we basically do in the case of reconstructing synthesized scenes is simulate
the process of taking a photograph of a scene, and then try to reverse the process.
For our experiments we used a simple synthesized scene to test the reconstruction
method. This scene consists of two cubes. We then assume a camera of known intrinsic
parameters K that we define. We position this virtual camera at different positions
in space and use it to project the two cubes on “photographs”. We then use the
projected points on these photographs as input to our algorithm. The efficiency of the
algorithm is then measured by judging the differences between the original scene and
the reconstructed scene.

Since the reconstruction of the scene does not reconstruct the scene with its original
scale, we cannot compare the lengths directly. What we do is check the lengths of the
edges of the reconstructed cubes, and all must be of the same size. The algorithm is
run several times, each time adding different amount of zero-mean gaussian noise to
the screen coordinates of the feature points. We use all the available points for the
calculation of the epipolar geomentry. The differences in length are shown on Table
4.1.

4.10.2 Reconstruction of real scenes

When the proposed method was tuned and found to efficiently reconstruct synthesized
scenes, we experimentqq with photographs of real three-dimensional scenes. This step
is necessary since it reveals the true performance of the reconstruction method.
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N Y
T.0T3 | 679.230
235.088

e s

Focal Length 67
Principal point | 318.801
Skew angle 0

Table 4.2: Canon INUS v ealibration parameters at 640 X AR0

Figure 4.12: The real scene photographs used for the reconstruction

For the real scene reconstructions we used an off-the-shelve consumer camera, with
unknown intrinsic parameters. The camera used is Canon IXUS v, This is 0 9.9
megapizel camera that is able to take photographs up to 2048 x 1536 pixels. In our
experiments we used photographs taken at 640 x 480 pixels and 1024 x 768 pixels, which
was found to be efficient for our scenes.

The camera was calibrated using the method described in Scetion 4.2, and the
intrinsic paranmeters where found to be the ones listed at Table 4.2.

In Figure 4.12 we can see the photographs we used for the reconstruction, with the
feature points marked with white crosses. The feature points are placed by hand and
not by an automated method.

The scene consists mostly of objects with good geometrical charncteristics in order
to be able to test these characteristics later on. The calibration pattcrn is also included
in the scene for the same reason.

We test the reconstructed scene for how planar the calibration pattern is in the
reconstructed scene, along with how close are some angles to 90°. For the planarity
of the calibration pattern we average the distance of feature points on the calibration
pattern from the plane that is defined by the three points at the edges of the calibration
pattern. In the absence of noise and arithmetic computation error this distance shotld -
be zero.

We run the reconstruction algorithm each time with different feature points selected
for the epipolar geomekry calculation. In Table 4.3 we can see the results we ohtain
from the reconstruction method. The angles that we measure are marked in Figure
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Run | Angle 1 | Angle 2 | Planarity

1 90.2 89.9 0.12

2 91.1 90.7 0.14 ~

3 90.1 90.1 0.09 )

4 88.7 90.0 0.79 :
5 89.1 89.9 0.11

6 90.1 90.0 0.10

Table 4.3: Results obtained from the reconstruction algorithm. The algorithm is run
several times each time choosing a different set of feature points for the calculation of
the epipolar geometry

Figure 4.13: The measured angles in the reconstructed scene

4.13.

As we can see the results vary depending on the feature points that are selected
for the calculation of the epipolar geometry. This is expected since the error on the
image coordinates of each feature point is different. This also shows that the selection
of appropriate feature points for the calculation of the epipolar geometry if crucial for
obtaining accurate results from the method.
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CHAPTER 5

IMPLEMENTATION

5.1 Overview

5.2 Programming language

5.3 Additional software

5.4 Simultaneous structure and motion method
5.5 The epipolar geometry method

5.6 The graphical user interface

5.7 Example reconstruction.

5.1 Overview

In this chapter we discuss the implementation details of the system we created in
order to reconstruct three-dimensional models from photographs. We will examine the
various problems that one can face in implementing the theoretical methods described
in the previous chapters, along with the proposed solutions and workarounds that were
necessary. We will demonstrate this way the feasibility of the effort and the prospects
that we have, given the performance and accuracy of the implementation. .

5.2 Programming language

The language of choice for the implementation of the system was a very sensitive decision
that had to be made fgom the beginning of the project. The main requirements from
the language were:
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| Code Speed GUI | Scientific libraries Prototyping |
C Excellent GTK LAPACK Bad
C++ Excellent | wxWidgets LAPACK Bad
Delphi Medium Delphi Very little support " Bad
Perl Medium Several | LAPACK ports mainly Good
Python Medium Several SciPy Excellent
Matlab Low Native Excellent Excellent

Table 5.1: Language features

e Speed of execution

e Graphical user interface creation

e Support for accurate mathematical computations
e Availability of scientific libraries

e Allow for quick prototyping
Several languages were evaluated for the purpose, some of which are:
o C

o C++

Delphi

e Perl

Python
Matlab

Most of the languages reviewed usually failed in to more that one of our basic
requirements, with the most mutual exclusive to be speed of execution and quick pro-
totyping. Both of which are fundamental for the project. Speed of execution is crucial
for this kind of application since if involves heavy arithmetic computations. On the
other hand the time line for the project was short and there wan't a clear road-map for
the implementation. So we had to create a system with no way on knowing forehand
what exactly it will take, or how exactly it will be structured, and what pitfalls we were

going to face. This requires that the language will support rapid prototyping, so that-

we could try out ideas as fast as possible.

In table (5.1) we can see the features every language provides. The columns are the
features and the rows are the languages. Every language is examined for code speed,
graphical user interface libraries and builders, the availability of scientific libraries, and
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finally the quick prototyping allowed by the language. Note that on features like graph-
ical user interface and scientific libraries, there are usually several available choices. We
base our report on these features according to the best choice among them.\

It is obvious from the table (5.1) that the choice of language for the particular
project is difficult. The languages that support good prototyping lack in speed and vice
versa. The language Delphi which is basically an object oriented Pascal with very good
graphical user interface capabilities is rejected since the support for scientific libraries
is poor. Perl on the other hand is rejected because of its poor scientific libraries and
because of its general purpose nature that is more appropriate for quick-small programs.
Matlab would be an excellent choice for the purpose. The scientific computing support
from matlab is excellent, since it is what it was made of. Matlab is also very good at
rapid prototyping of ideas and solutions. Unfortunately the speed is not so good as
C++ for example, but that is not the basic problem. The basic problem is graphical

user interface and the capability of creating autonomous applications. Qur purpose was.

to create an concrete application that does not relay on an application like Matlab to
run. This forbids the use of Matlab in the project, even it would save us a lot of time
with its excellent scientific features.

C on the other hand has great speed of execution but is a very low level language

_that is certainly not good for our purpose. The best available graphical user interface

toolkit for C is GTK [17]. The fact that graphical user interfaces are from nature
object oriented and C is not an object oriented languge, forces the GTK toolkit to
create an object oriented model on top of C, which is very clumsy and error prune.
The availability of scientific libraries for C is good but very clattered. There are several
libraries that do different or the same things, some better than the others, and it is
quite hard to find the best solution. So C is rejected too, after all it is a very aged
language and it is basically suited for operating systems programming.

The same things goes for C++ also, with the difference that it is a fully object
oriented language. The graphical user interface is very good with wzWidgets [18] being
a very good , and portable across platforms, toolkit. The scientific libraries are mostly
the same that C uses. The bad thing about C++ is that it is not suited for rapid
prototyping.

A very good choice for a language is Python [19]. Python is a fully object oriented
language. It is open source and provides a wide variety of libraries. Python is a very
high level language that allows for quick prototyping and testing. Its dynamic nature
allows to easily create generic “templetized” code that is very useful in quickly sketching

implementations. Python also comes with a very powerful scientific library SciPy [20].
A very good feature that Python has is the ability to be extended in C of C++. The’

programmer can easily move code back and forth from Python to C++. This allows to
quickly prototype code in Python and later move code to C++ and enjoy the execution
speed of C++. k3
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So is was decided that the development system is going to be based in a mix of the
languages Python and C++. We basically worked in Python and then later moved the
execution speed critical parts to C++. In retrospect this was a wise choice since it cut
down the development time a lot, with no compromises in execution speed of the final
application.

5.3 Additional software

Through the development of the reconstruction system we used some additional soft-
ware. This software is in the form of libraries for Python and C++ and some stand-alone
software.

Great help came from the use of Maple [21]. Maple’s excellent analytical derivatives

calculation capabilities allowed us to calculate the analytical derivatives of very complex

functions fast and error-free.

The Python library SciPy [20] was used for the many linear algebra problems that
we faced in this thesis. SciPy is a scientific library that gives Python the ease of use
and features of a suite like Matlab [22]. It allows easy matrix manipulation and many
linear algebra algorithms, along with some optimization methods.

The mesh modelling application Blender [23] was also used for triangulating and
presenting the resulting point clouds that our application generated.

5.4 Simultaneous structure and motion method

We first tried the implementation of the method described in Section 3.2, that enables
us to recover structure and motion simultaneously.

For the parameterization of the rotation matrixes we used the parameterization
shown at equation (3.4).

The implementation of this method didn’t result in good results. The optimiza-
tion algorithm turned out not to able to find the minima of the problem, and usually
stuck in local minima. The problem begins with the fact that the parameterization of
the rotation matrix requires trigonometric functions that are hard to manipulate with
gradient based optimization methods. Specially when the functions are so complex.

In the beginning of the testing and to estimate if the results were going to be
good, we used forward differencing for calculating of the Jacobian matrix passed to the

Levenberg-Marquardt optimization algorithm. The results was not good. First of all.

the speed of execution was very low, since the function had to be evaluated many times
to estimate the Jacobian. The function is also slow by itself since it contains a lot of
trigonometrical mnctigqs, and can be very complex for big problems with many views
and point matches. Speed was not the only issue though. The converge to slow and
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Figure 5.1: The 3D Head Creator application that uses the simultaneous structure and

motion method successfully
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Point Normalization of Linear Fundamental
Correspondences coordinates Matrix estimation
De-normalization of Non-linear Fundamental
coordinates Matrix refinement

Figure 5.2: The procedure followed in order to efficiently estimate the epipolar geometry

the method got stuck in local minima most of the times.

We suspected that the problem was the inaccuracy of the estimated Jacobian matrix.
So we implemented a system to analytically derive the Jacobian for the function to be
solved. It turned out that the method performed worst with the analytical Jacobian.
Of course the execution speed was much higher with the analytical Jacobian, but the .
method got stuck at local minima much often now. It seems that the trigonometrical
functions created high frequency disturbances in the function, that the inaccuracy of
the estimated Jacobian helped to skip over, finding better minima.

-~ By initialing the method several times with random starting points we were able
to find the global minima, but the procedure is slow and does not guaranty results.
So this method was judged inappropriate for the purpose of our application. The
implementation is there and the user can try it in the application, but this is not the
suggested method for reconstruction. The user should use the Epipolar geometry method
most of the times. .

This method, even if it is not appropriate for the general reconstruction system we
were trying to implement, does not mean that is useless in general. For example we were
able to use this method successfully in a human head reconstruction system (Figure
5.1). In this system we had the advantage of knowing the general shape of our object.
This way the application could feed the optimization algorithm with a good starting
point using the coordinates of points on a generic head. The solution for the specific
head the user is working on, can’t be far from the generic head so the optimization
system find the solution easily.

5.5 The epipolar geometry method

The implementation of the reconstruction method that uses the epipolar geometry
described in chapter 4, was the most successful. The results obtained from this method

are very satisfactory.

49




5.5.1 Estimating the fundamental matrix

The first part of this method requires the estimation of the epipolar geometry between
the two views. This is equivalent to estimating the fundamental matrix , as described
in Section 4.4.

During the development of the fundamental matrix estimation system we used many
different approaches. The first was the eight-point algorithm described in section 4.4.1
(page 26). The algorithm is very straightforward and requires solving a set of linear
equations, which is quick and always gives a solution. The implementation is actually
just doing a Singular Value Decomposition.

However this method does not perform well under noisy real data. It specially fails
to enforce the rank 2 constraint required for the fundamental matrix. This is solved
by taking the closest rank 2 matrix to the one the eight-point algorithm provides. But

again the eight-point algorithm does not return appropriate results for the fundamental

matrix [6].

So we went on to implementing the method that uses a non-lincar criterion and
described in Section 4.4.3. The system uses the rank enforcing parametcrization of the
fundamental matrix as shown below:

a b —-az = by
F= c d —cz — dy (5.1)
—az' —cy —b'—dy (ar + by)z' + (cx + dy)y

The optimizer for the non-linear criterion was first implemented in Python and
used the Levenberg-Marquardt non-linear least squares optimization algorithm as im-
plemented by SciPy [20]. The results of the algorithm was satisfactory and it gives a
good approximation of the fundamental matrix. Actually the results are much better
than the results obtained by the linear eight-point algorithm. However this method
possesses the defects of all non-linear gradient based optimization methods, as it de-
pends on a good starting point. In the beginning we used random initialization for the
algorithm, which often got stuck in local minima.

To overcome this problem we used the previously implemented eight-point algorithm
to estimate a good starting point to feed in the non-linear optimization step. This
actually worked efficiently and the non-linear optimization algorithm did not stuck in
local minima most of the times. When it does a re-run of the algorithm, with a slightly
jittered starting point, will find the correct solution.

Even though with the coordinate normalization, the linear eight-point algorithm

performs almost as good as the non-linear one, we still use the non-linear optimization-

step to further improve the result.
The non-linear fundamental estimation step was also rewritten in C4+ to get the
maximum execution §peed possible. That with the good initial guess for the solu-
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tion coming from the eight-point algorithm we get instant estimation of the epipolar
geometry at the bigger accuracy possible. -

For the non-linear optimization step, the analytical Jacobian is provided to the
optimizer to speed up the optimization’s converge. The analytical partial derivatives
were calculated with the aid of Maple [21].

In Figure 5.2 we can see the full epipolar geometry estimation process.

5.5.2 Computing camera’s motion and scene structure

Once the fundamental matrix is known the application can continue to derive the motion
of the camera. This procedure was described in Chapter 4. We saw that it is possible to
obtain the cameras’ projection matrixes when the fundamental, or the essential matrix
is known.

The application calculates the four possible projection matrices by evaluating the,

equations (4.47). It then uses the “points in front of the camera” (Section 4.8.3) crite-
rion to choose the correct projection matrix for the second camera.
Structure is then calculated with triangulation, as described in Section 4.8.4.

5.6 The graphical user interface

The application that we created uses a graphical user interface to interact with the
user. This graphical user interface was created with the library wxPython, which is
basically a wrapper around wxWidgets for C++. This library allow us to make the
application portable across platforms. This means that the application can run in
a variety of platforms, from Windows to many Unix clones with X-Windows based
graphical environments.

In Figure 5.3 we can see how the main graphical user interface looks while running
on Windows XP. The application follows the Multiple Documents Interface(MDI) par-
adigm, with documents being images and reconstruction views. The user can create
and work on one project at a time. This project consists of the images that we took
from a scene along with the image points correspondences. These projects can be saved
to spacial files with the extension .mpf, which stands for modelling project file. All
required information about the project is saved in these files and can be loaded at a
later time.

The bottom and right part of the graphical user interface are adjustable in size and

contain several tab pages. Each tab page has a special purpose. At the bottom part the-

tab pages are the “Info” and “Images”. The “Info” tab contains general information
about the currently open project. This info is general to the project, like the name of
the project, the numbgg of images used in the project, etc. The tab labelled “Images”
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“Figure 5.3: The main graphical user interface of the application. In the screen-shot
we can see an open reconstruction project. Two images of the scene are visible along
with the calculated corresponding epipolar lines. The three-dimensional reconstruction
is also rendered in the OpenGL window.

(Figure 5.4), contains the thumbnails of all the images in the currently open project.
The user can quickly select the image that interests him from this toolbar.

The tabs at the right part (Figure 5.5) of the graphical user interface are dedicated
to controlling the point placement and correspondence.

The menu at the top of the application allows the user to take actions concerning
the modelling project. These range from loading and saving the project file, to solving
the problem of reconstruction with one of the available methods.

5.6.1 Global refinement step

The method that uses the epipolar geometry to reconstruct the scene can be further
refined with the use of the global optimization step from the simultaneous structure
and motion method.

When the structure and motion of the scene has been estimated with the epipolar -

geometry method, a maximum likelihood estimation can be obtained through bun-
dle adjustment [13]. What we do is refine the projection matrixes P, and the three-
dimensional points X that we obtained with triangulation, so that the mean squared
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Figure 5.4: The image selection toolbar with thumbnail previews of the images in the
project file.
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Figure 5.5: The right part of the graphical user interface that allows for point manip- -
ulation.

distances between the observed image points x;; and the reprojected ones, is minimized.
This is basically what we do in the simultaneous structure and motion method. The
following criterion is minimized:

m n .
min Y " D(xu, PiXi)? (5.2)
P.X k=1 i=1
where D(a, b) is the Euclidian image space distance. If the image error is zero-mean
Gaussian then bundle adjustment is the maximum likelihood estimator. This way we’
bootstrap the Levenberg-Marquardt optimization algorithm with a starting point very
close to the solution and the algorithm converges quickly to a more refined solution.

)
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Figure 5.6: The file menu of the application.

5.6.2 Creating a new project

To reconstruct a three-dimensional scene from photographs using this application the

user must first create a new modelling project. This is done by selecting the “new.

project” item of the “File” menu. A new empty project is the created and the user
should continue to add images to it.

5.6.3 Adding images

“Then the user should import a number of photographs in the application. The appli-
cation supports most of the available standard image formats, like JPEG, PNG, GIF,
BMP, etc. In general it is recommended that the JPEG format is used for photographs.
This is also true for this application, but for one additional reason too. The JPEG files
when taken from digital cameras can contain additional info about the camera that
took the picture. Some of this info,' like the camera’s focal length, are very useful to
our application and the JPEG file format is the only that supports it.

To add a new photograph the use should use the “Add images” item of the “Images”
menu. A file selection dialog will appear that will prompt the user to select the photo-
graph from the disk. The new photograph will be inserted in the current project and
should be visible in the thumbnail toolbar (Figure 5.4) as a thumbnail. The user should
repeat this operation an many times as necessary to add all the available photographs
of the scene.

5.6.4 Adding points

Once the photographs are loaded to the application, the user will have to establish

point correspondences among the images. This is done by first adding named three-.

dimensional points to the project. At the “3D Points” tab page (Figure 5.5) the user can
add three-dimensional points by typing the name of the point and pressing the “Add
3D point” button. N(')\t'e that we enter here the points that we want the application
to reconstruct. Some of these points will be used for the calibration of the scene also.
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The user should mark these point by checking the “Used for calibration” button. The
points that are not used for calibration will still be reconstructed. -

Once the points are entered in the application the user should select these points
from the list and click on the images that the point is visible. Crosses will mark the
position of the point in each image. The currently selected point has a red cross while
the others a white cross.

The user should use for calibration the points that are better placed. This way the
overall process will be more accurate. In the same sense the user would not use for
calibration a point that has big ambiguity in its position. Such a point is fine for being
reconstructed but putting it in the calibration procedure will tain the results of the
other points too.

5.6.5 Solving the scene

The application allows for two distinct methods of solving the reconstruction problem.
The one that was described in Chapter 3 and the one described in Chapter 4.
The first method uses the one big optimization step that was described at the
according chapter. This method is there for illustration purposes only and should not
_be used for actual reconstruction of three-dimensional scenes. This method fails most
of the times to reconstruct complex scenes. But is can sometimes give good results,
depending on the initialization which can be no better than random. This scene solving
is selected by choosing the “Simultaneous solution of motion and structure” item of the
“Solve” menu.
The proposed way to reconstruct a scene is to use the “Estimate Fundamental
matrix” item from the “Solve” menu. This solution utilizes the theory of chapter 4
to reconstruct the three-dimensional scene. This method is accurate and produces the

L )

desirable results. When we select this method there must be two photographs open in

the application. Then the program will try to estimate the epipolar geometry of the
two views. In Figure 5.7 we can see the result of the epipolar geometry calculation by
the program.

We can observe the epipolar lines passing from the corresponding point in the im-
ages. Once the epipolar geometry is estimated we can calculate the structure of the
scene and the motion of the cameras. This is done automatically-when the user chooses
to estimate the epipolar geometry, but can be done manually by choosing the “Generate
3D Points” from the “Solve” menu. This is useful for when the user makes changes to

the point on the two images but does not want to recalculate the epipolar geometry.
This can happen when modifying points not used in the calibration and epipolar geom-

etry calculation step, or if the user would like to see how a point will be reconstructed
if it had different image space coordinated, with the same epipolar geometry.
The resulting threedimensional reconstruction can be viewed from the embedded
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Figure 5.7: The epipolar lines of the two views

“3D View” window, or can be exported to a .ply file. These files are three-dimensional >

mesh files that can be read by many modelers. This file is mainly used by the Stanford

3D scanning repository, and there are importers available for many modelling programs.

This way the resulting cloud point can be imported in a modelling suit for further
“retouching it.

In Figure 5.8 we can see the reconstructed model in the modelling application :
Blender [23]. The point cloud was exported from our application in the .ply file format
and imported easily to Blender, where we were able to triangulate it. As it can be seen
the quality of the reconstruction is very good. In Figure 5.9 we can also see the model
illuminated and shaded. i

5.7 Example reconstruction

The reconstruction system we developed was used to reconstruct the bush of the “Char-
ioteer” model. The replica bust of the famous Charioteer can be seen in Figure 5.10. To
efficiently reconstruct the model we used structured light. This was necessary since the
model does not provide many feature points by itself. In Figure 5.11 we can see the two
photographs that we actually used for the reconstruction. The projected pattern on
the bust enabled us to extract 250 feature point correspondences. These feature points
was marked in the reconstruction application and the result was the three-dimensional

positions of the feature points. In the specific model we didn’t have to reconstruct both,

sides of the model. By exploiting the symmetry of the model there is no need to extract
feature points from the other side of the face. We reconstructed one side of the model
and then mirrored thege points to obtain the other side.

The resulting point cloud was exported from our application and imported in the
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Figure 5.10: The replica bust of Charioteer, we are going to reconstruct

Figure 5.11: The photographs used for the reconstruction. To extract a fine grid of

feature points a pattern was projected on the bust. The result are 250 feature point
correspondences

R
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Figure 5.12: The reconstructed model. In the left frame we can see the wireframe
model. In the right we sce two views of the model with a texture from the original bust
applied
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The work presented in this thesis deals with the three-dimensional reconstruction of »
scenes from two-dimensional snapshots. The reconstruction problem was studied from
several perspectives and a solid procedure was developed around which an interactive
reconstruction application was build.

The developed method is decomposed into a number of discreet tasks. This design
allowed for easy testing of different algorithms for each task. We where also able to
identify bottlenecks and pitfalls in the total reconstruction system, and to optimize the
performance of the system both speed wise but also in terms of accuracy.

The first system we developed that was based around a simultaneous reconstruc-
tion of structure and motion was found inefficient for the purposes of our application.
The optimization step involved made the system inappropriate for cases that no good .
starting point for the solution is known. However this method waS useful in our recon- .
struction system, as a final refinement step.

The proposed algorithm for reconstruction in this thesis is based on the epipolar
geometry between two views. We described a method that first estimates the epipolar
geometry of two views, to calculate the motion of the cameras. Then with the aid of
triangulation we are able to reconstruct actual three-dimensional points of the scene,
from point correspondences. Various methods are described that optimize the output
of the algorithms to make it usable in practice. ‘

We have contributed a method to extend the usage of the epipolar geometry method
to take advantage of more than two photographs. The proposed method does not relay
on constraints of three view (or more) geometry, but works using data available only
from the epipolar geometry method.

This work depends heavily in the extraction of good feature points from the pho-
tographs. This procedure can be performed interactively but it can also be automated.
An automated method is going to be implemented for the reconstruction system based
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on detecting feature points with image processing and then later use the epipolar geom-
etry to detect point correspondences. -
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