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Στην εργασία αυτή μελετάμε το πρόβλημα της ανακατασκευής σκηνών τριών διαστά-» 
σεων από φωτογραφίες που έχουν ληφ-Οεί με φωτογραφικές μηχανές αγνώστων παραμέ
τρων, εστιάζοντας στις λεπτομέρειες της υλοποίησης και στα προβλήματα που παρουσιά
ζονται. Ο στόχος είναι να παρέχουμε ένα διαδραστικό πλαίσιο που θα επιτρέπει στον 

, χρήστη να ανακατασκευάζει επαρκώς τρισδιάστατες σκηνές από φωτογραφίες. Το πρό
βλημα της ανακατασκευής μελετήθηκε από διάφορες οπτικές γωνίες και αξιολογήσαμε την 
απόδοση των διαφόρων προτεινόμενων μεύόδων. Το τελικό πλαίσιο ανακατασκευής απο- 
τελείται από τρία βήματα. Το πρώτο βήμα περιλαμβάνει την βα6μονόμηση των φωτογραφι
κών μηχανών, με την εξάγουμε τις εσωτερικές παραμέτρους των φωτογραφικών μηχανών. 
Στην συνέχεια το δεύτερο βήμα αποτελείται από το ταίριασμα χαρακτηριστικών σημείων 
πάνω στις φωτογραφίες. Τα χαρακτηριστικά αυτά σημεία χρησιμοποιούνται στην συνέχεια 
για τον υπολογισμό της epipolar γεωμετρίας μεταξύ των διαθέσιμων φωτογραφιών. Τέ-*' 
λος αφού έχουμε υπολογίσει την epipolar γεωμετρία των βαθμονομημένων φωτογραφιών, 
συνεχίζουμε με την ανάκτηση των εξωτερικών παραμέτρων των φωτογραφικών μηχανών, 
δηλαδή την ΰέση τους στον χώρο, το οποίο 6α μας επιτρέψει να ανακτήσουμε το τρισ
διάστατο μοντέλο της σκηνής μέσο τριγωνοποίησης. Η εφαρμογή που αναπτύχ6ηκε είναι 
ένα αλληλεπιδραστικό σύστημα που επιτρέπει στον χρήστη να εισάγει φωτογραφίες από 
διάφορους τύπους αρχείων εικόνας και να εφαρμόσει τα παραπάνω βήματα ώστε να ανα
κατασκευάσει την σκηνή. Το τρισδιάστατο μοντέλο της σκηνής μπορεί στην συνέχεια να 
εξαχΰεί σε άλλα εργαλεία για περαιτέρω επεξεργασία.
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In this thesis we study the problem of reconstructing three-dimensional scenes from 
two-dimensional snapshots acquired from uncalibrated cameras. We focus on the im-^ 
plementation details and problems encountered. The goal is to supply an interactive 
framework that will enable the user to efficiently reconstruct three-dimensional scenes 
from photographs. The reconstruction problem is studied from various perspectives 
and we evaluate the efficiency of the proposed methods. The proposed reconstruction 
framework consists of three steps. The first step consists of calibrating the cameras,
i.e. we obtain the intrinsic parameters of the cameras. Then the second step consists of 
feature point matching on photographs. These feature points are then used to  estimate 
the epipolar geometry among the available views. Finally, once the epipolar geometry 
of the calibrated views is known, we derive the positioning of the cameras in world 
space coordinate system, i.e. obtain a  three-dimensional model of the scene with tri
angulation. We have developed an interactive system that enables the user to im port. » 
two-dimensional snapshots in any digital image format and to perform the above men- ’ 
tioned steps to recreate the scene. The three-dimensional model can then be exported 
to solid modelling or reverse engineering software for further processing and editing.
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C h a p t e r  1

I n t r o d u c t i o n

1.1 Overview

1.2 Definition of the problem

1.1  O v erv iew

The objective of this thesis is to explore, present and implement three-dimensional re
construction techniques from images. We will implement a system capable of acquiring 
three-dimensional models directly from two dimensional snapshots of a real object.

The problem of acquiring cloud points from images is a fairly new research field. Re
searchers have been investigating methods for acquiring three-dimensional information. 
from images for many years, mainly for use in robot vision where a  crude approximation 
of the environment is sufficient. T hat has changed recently with the increasing demand 
for realistic three-dimensional models for use in CAD, cinema, virtual reality, com
puter games and other computer graphics applications. The capabilities of personal 
computers today make it feasible to render high resolution and life like 3D models. 
Three-dimensional modelling of real world models is a time consuming and therefore 
expensive process. Thus creating accurate three-dimensional models from real objects 
without the use of expensive hardware is essential to Computer Graphics.

In this thesis we present various methods tha t has been proposed to solve the prob
lem, along with the complexity and performance evaluation of their implementations.



1.2  D e fin it io n  o f  th e  p ro b lem

In a more elaborate definition, the problem we are trying to solve involves acquiring 
three dimensional characteristics of objects when we have available images (photographs) 
taken with off-the-shelf consumer cameras.

The problem’s nature is best summarized by observing that images are the prod
uct of an irreversible projection operation from a three-dimensional scene onto a two- 
dimensional image. During this operation the depth information is lost. This is illus
trated in Figure 1.1. Notice that the projected point on the image can be anywhere on 
the line of sight.

i
*

Figure 1.1: The back projected point can be anywhere along the line of sight

Therefore the information an image provides is not sufficient for three-dimensional 
reconstruction. We must develop algorithms tha t overcome the projection’s ambiguity, * * 
possibly by using information from two of more images.

It turns out that the use of two or more images can resolve the depth ambiguity. The 
algorithm to do so is well known in topography and map making. Suppose tha t we have 
two images of a scene and two corresponding points, one on each image, projections 
of a three-dimensional point in the scene. The actual three-dimensional point can be 
acquired from the intersection of two lines of sight as presented at Figure 1.2. This 
process is known as triangulation.

To use triangulation we should acquire the following information:

•  Corresponding image points
Ψ

•  The parameters of the cameras

In this thesis we examine how we can acquire the parameters of the cameras from 
corresponding image jo in ts . These parameters are called the motion of the camera. 
We then use this information to derive the three-dimensional structure of the scene .

2
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Figure 1.2: Acquiring three-dimensional point with triangulation

»
The rest of this thesis is organized as follows. Chapter 2 discusses the fundamentals'* 

of image formation. We derive a model for the camera that we will use throughout our 
work. In Chapter 3 we present a  first approach to  the problem. We study the proposed 
method and we determine the scope and limitations based on the parameters of the 
problem we are trying to  solve. In Chapter 4 we present a more advanced and efficient 
method for three-dimensional reconstruction. We present the constraints of two-view 
geometry and how we can exploit it to  estimate both motion and structure. Chapter 
5 discusses the development of the three-dimensional reconstruction framework. The 
discussion ranges from the choice of programming language, to the implementation 
methods and systems used to efficiently implement the theoretical algorithms presented 
in previous chapters. Finally Chapter 6 concludes this thesis with a summary of our 
contribution and identification of future research direction.
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C h a p t e r  2

M o d e l l i n g  t h e  i m a g e  f o r m a t i o n

p r o c e s s

»
%

2.1 Introduction

2.2 Representing images

2.3 Light and lenses

2.4 Geometric model for image formation

2.1  In tr o d u c tio n

Before we explore the possible solutions to the problem of reconstructing a scene from 
a set of images, we should first understand the process of image formation. We should 
have a sound mathematical model of the workings that describe the creation of a pho
tograph in a  camera. A sound model does not necessarily mean a physically accurate 
model. We will design a model that is suitable for our purposes while being constrained 
on complexity in order to be efficient. For the purposes of our system we require a 
simple geometric model of the image formation process, and not require more complex 
photometric models. We use common theory for lenses that originate in physics and 
we formulate a  model of a  camera tha t successfully approximates the functionality of a 
real camera. In this chapter we derive the model tha t will be used in our work, and we' 
explain why it is suitable for our needs.

;?>
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2 .2  R e p r e se n tin g  im a g es

An image at an abstraction level, is a two dimensional brightness array. In the case 
of a standard camera, an image is a map / ,  defined on a planar and rectangular two 
dimensional surface Ω, taking positive real numbers. Therefore /  is a function:

/  : Ω C K2 —► K+; (x, y) *-* I(x , y) (2.1)

In the case of digital images both Ω and M+ are discretized. For example Ω can 
be [1,640] x [1,480] C Z2, and R+ can be approximated by an interval of integers 
[0,255] C Z+. The values of the image I  can then be presented on the computer’s 
monitor by using the values as intensities for pixels.

2 .3  L ig h t a n d  len se s

To complete the image formulation process, we must describe how the values of I(x , y) 
at each point (x, y) on Ω are calculated. The main component of a camera is the set of 
lenses. These lenses are used to direct light on the photographic film, or sensor in the 
case of a digital camera. It is true that completely modelling the way lenses interact 
with fight can be extremely complex. In physics scientists try  to model this effect by 
assuming “special” forms of lenses. Next we will review two basic lens models.

2 .3 .1  T h in  len s

A basic mathematical model to describe and study the way lenses refract light is the thin 
lens (Figure 2.1). This mathematical m odelis described by an axis, called the optical ·» 
axis, and a plane perpendicular to the axis, called the focal plane. The intersection of 
the focal plane with the optical axis is called the optical center. The thin lens has two 
parameters. The focal length f  and its diameter d. Its operation is described by two 
properties:

•  All rays entering the lens parallel to the optical axis intersect on the optical axis 
at a  distance /  from the optical center. The point of intersection is called the 
focus of the lens.

•  All rays through the optical center are undeflected.
#

To make it clear lets try  an example. Suppose tha t point p  €  E2 is at distance Z  
from the optical center along the optical axis. We then draw two rays starting from 
point p, one parallel to the optical axis and one through the optical center. According 
to the properties of thlil lens, the first ray intersects with the optical axis at the focus 
point, while the second passes through the lens undeflected. Call x  the point where the

5



Figure 2.1: The thin lens model

<
rays intersect, and let z be the distance of x  from the optical center along the opticaP 
axis. The above rays can be viewed in Figure 2.1. Using similar triangles in Figure 2.1 
we obtain the following fundamental equation of the thin lens:

I  1 - I
Z +  z ~ f

( 2.2)

The point x  is called the “image” of point p. Therefore, under the assumption 
of thin lens, I(x )  at the point x  with coordinates ( i ,y )  on the image plane, or retinal 
plane, is obtained by integrating all the energy emitted from a region of space contained 
in the cone determined by the geometry of the lens.

2 .3 .2  P in h o le  len s

Suppose now tha t the aperture (radius) of a thin lens decrease to zero. Then all rays are 
forced to go through the optical center o. So all rays remain undeflected. Consequently 
the aperture of the cone decreases to zero and the only points tha t contribute to I(x , y) 
are the points on a  line through the center o of the lens.

Suppose that we have a reference frame centered a t o with its z  axis being the optical 
axis, and let point p have coordinates X  =  [X , Y, Z]T. Then with similar triangles again 
in Figure 2.2 we find out that the coordinates of p  and its image x  are related by the 
well known perspective projection:

x = ~ / γ >  y = (2.3)'

where /  is the focal length. This imaging model is also called the ideal pinhole camera 
model. Note that thejninus sign in the equations result in the image being presented 
upside-down on the retinal plane. We can remove the negative sign by flipping the

6



Figure 2.2: The pinhole lens model

image space coordinates or by moving the retinal plane in front of the optical center.

2 .4  G e o m e tr ic  m o d e l for im a g e  fo rm a tio n

So now under the assumption of a pinhole camera, we can essentially reduce the image 
formation process to tracing rays from points on objects to pixels on the retinal plane. 
To establish a precise correspondence between points in three-dimensional space with 
their projected images on the retinal plane, a  mathematical model for this process must 
account for three types of transformations:

•  Coordinate transformation between the camera frame and the world frame

• projection of 3D coordinates onto 2D image coordinates

•  coordinate transformation between possible choices of image coordinate frames

The coordinate transformation between the camera frame and the world frame, 
essentially specifies the position of the camera in the scene, so it is a rigid body trans
formation based on the position of the camera. The projection transformation is where 
the actual irreversible transformation takes place. This transformation projects the 
three-dimensional space on a two dimensional plane. The last transformation takes 
place on the two dimensional plane that the image is formulated and has to do with the 
choice of coordinate frame for the two-dimensional snapshots. All the above transfor
mations will be discussed further in this chapter and their functionality will be become 
more clear when we specifically define the camera model that will be used in this thesis.

7



2 .4 .1  T h e  id ea l p e r s p e c t iv e  ca m era

Consider a point p with world space coordinates Xo =  [Xo,Y q, Zq]t . Thqji the coor
dinates X  =  [X, Y, Z]T of the same point relative to the camera space coordinates axe 
given by a  rigid-body transformation g = (R, T ) of X q:

X  =  R X q +  T ( 2.4)

Suppose now that we use the pinhole camera model. The point X  is then projected 
onto the retinal plane at the point:

X f X

y .
z Y

We can rewrite this relationship in homogeneous coordinates like this:

X / 0 0 0
z y = 0 / 0 0

1 - 0 0 1 . 0

-1 Ύ
Y
z
1

_ or if we specify x, X  using homogeneous coordinates:

I,

*
( 2 .5)

f 0 0 0
Z x  = 0 / 0 0

0 0 1 0
X

In the above equation we can decompose the m atrix to:

(2.6)

0 0 o' '/ *0 o' \ 0 0 0*
0 / 0 0 0 / 0 0 1 0 0
0 0 1 0 0 0 1 0 0 1 0

• %
( 2.7) '

We call the first matrix K / and the second Π 0· The m atrix Πο in referred as the 
canonical projection matrix. From the world frame to  camera frame transformation we 
have:

Ύ 'Xo
Y R T Yo
z °3T 1 Zo

_1_ 1

(2.8)

Summarizing all the above we get the overall geometric model for an ideal camera:

Z x  =  Κ /Π οΧ  =  Κ/ΠορΧο ( 2 .9)

8
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In the case the focal length is known and hence can be normalized to  1, this model 
reduces to an Euclidian transformation g followed by a canonical projection Πο·

' 2 . 4 . 2  A  ca m era  w ith  in tr in s ic  p a r a m e te r s

The ideal camera model uses a very specific retinal frame. The retinal frame is centered 
at the optical center with one axis aligned with the optical axis. When dealing with 
images on computers however the retinal coordinate frame is usually different. The 
coordinates are referenced in pixels .with origin of the image being the upper-left corner 
of the image. So to use the model described by Equation (2.9), we need to specify the 
transformation from the retinal frame to the pixel array as shown in Figure 2.3 *

The first transformation to be applied is a scale on the retinal coordinates so that 
they map to pixel coordinates. This transformation is described by a  scaling m atrix:

X 8

oH
i X

y s i---
--- O y

(2.10)

However the scaled coordinates are still specified relative to the principal point. This 
point is the point where the z-axis intersects with retinal plane. So we need to translate 
the origin of the reference frame to the upper-left corner. To do this we add cx, Cy to x s 
and ys. Where (cx, Cy) are the coordinates of the principal point relative to the reference 
frame. So if the actual image coordinates are given by the vector x ' =  [x\ y', 1]T instead 
of the ideal image coordinates x  =  [x,y, 1]T then the coordinate transformation can be 
written as:

9



Figure 2.4: Image skew

x ' =
X 1

v '
1

v 0Px

0 AP it

oo

c*

Cy
1

(2.11)

In the case where the pixels are not rectangular a  more general scaling m atrix can 
be used that takes that into account:

-f- -7- tana
Px Py

P*r
0

(2.12)

where a is the angle of the pixel’s borders as viewed in Figure 2.4. W ith most cameras 
it is common to assume that the skew angle is zero. However there are cases th a t we 
need to specify an a. This is usually on scanned images tha t where previously taken 
with regular cameras that use photographic film.

Now if we combine the projection model of the ideal camera with this scaling we 
gain a more realistic model for cameras:

x f
“JL

P x
-7-tana c*
P y / 0 0 o' 'l 0 0 o'

z y ' — 0 A * 0 / 0 0 0 • 1 0  0
1 _0 0 1 0 0 1 0 0 0 1 0

In the above equation we denote the scaling matrix with Ks and we define ]

/-7-tana 
4  Ρ »

C*'
K =  KSK / =

Λ
0

0 0 1

X
Y
Z
1

(2.13)

(2.14)
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then the final model for a  camera with intrinsic parameters is:

Zy> =  Κ Π 0Χ  ^  (2.15)

The upper triangular matrix K  collects all the parameters that are intrinsic to the 
camera and so we call this matrix the intrinsic parameter matrix, or the calibration 
matrix of the camera.

The process of obtaining the camera’s calibration matrix is known as camera cali
bration. The camera calibration step allows us to find the m atrix K  which can give us 
normalized coordinates from pixel coordinates with a  simple inversion.

t%

• I



Chapter 3

A FIRST APPROACH TO  

THREE-DIMENSIONAL RECONSTRUCTION

I
Λ

3.1 Camera model

3.2 Simultaneous recovery of structure and motion

3.3 Results

3.1  C a m era  m o d e l

In this first approach the perspective camera model is used, known also as the pinhole 
camera model. The geometric process for image formation with the pinhole camera · 
model is completely determined by specifying a perspective projection center and a 
retinal plane . The projection of an object point is then obtained as the intersection of 
a line through that point and the center of projection with the retinal plane. This is 
illustrated in Figure 3.1, and is basically the ideal perspective camera with the retinal 
plane positioned in front of the camera center.

In this approach we preferred the ideal perspective camera model for its simplicity 
over the camera with intrinsic parameters model. This way we only have to estimate 
the focal length of the camera as an intrinsic parameter. The principal point is assumed 
to be at the center of the two dimensional snapshots, the pixels are rectangular and 
the skew angles are zero. This close enough to reality for most applications and it was 
judged a good assumption for the proposed method.

12
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Figure 3.1: Perspective projection

3 .2  S im u lta n e o u s  re co v ery  o f  s tr u c tu r e  a n d  m o tio n

In this section a  method for recovering both camera motion and scene structure will 
be discussed. The problem will be formulated as an optimization problem that will be /  
solved with the aid of non-linear least squares.

3 .2 .1  P r o b le m  fo rm u la tio n

We suppose that we are given k  images of a rigid scene and tha t we want to recover from 
these images the structure of the scene and the motion of the cameras. This will require 
to calculate the position and orientation they have in the world frame. The position of 
three-dimensional points on the surfaces of the scene will have to be calculated also. So 
we have to calculate for each camera the rotation matrix R fc and the translation vector 
t fc, and the three-dimensional points p 4 on the scene’s surfaces.

Suppose that the three rows of R fc are r£, rk and r£, and the three entries in t fc are 
tk, ty and t kz. We also make the assumption that the principal point of the cameras 
lies at the center of the images, which is common for most cameras. The projection 
equation (2.9) can b e ^ i t t e n  as:

13



(3.1)Tk _  f k*xPi + tkx k _  f k rvPi + tky
Xi 1 r£Pj + tk Vi 1 r*Pi +  tk

Instead of using the above equation directly, we reformulate the problem to estimate 
inverse distances to the scene [1]. Let vk =  l / t kz be the inverse distance and sk =  f kvk 
be the world-to-image scale factor. This formulation allows for the scale factor sk to be 
reliably estimated even when the focal length is long, whereas the original formulation 
has a strong coupling between the f k and tk parameters. The equations (3.1) become :

k k r xPi +  <£ k k TyPi +
1 + r/fcr^pt· 1 +  vkrkpi

finally we collect all the terms in the left side and we get :

k k TxPi  + t x nXi -  sk. a . . 1 =  0

(3.2)

V i - s

1 +  vkr*Pi 

k r vPi +  i =  0
1 +  vkrkpi

So we have a system of 2k equations that we will solve using the Levenberg- 
Marquardt non-linear least squares algorithm [1].

3 .2 .2  S im p le  r o ta t io n  m a tr ix

The above solution although it is well formulated is has several difficulties in its imple
mentation. The main problem originates in the formulation of the unknown rotation 
matrix.

The simple approach is to parameterize the 3 x 3  rotation m atrix with nine un- , * 
knowns, and try to solve that problem. This turns out not to  work efficiently since ' 
several geometric properties tha t the rotation m atrix possesses are not satisfied, i.e. 
the equations constitute a set of necessary but not sufficient conditions. This may 
result in erroneous solution, unless very good initialization conditions are determined.

Other attem pts to enforce the constraints, like including in the optimization process 
the constraint:

RRT = I

does not give good results because they create singularities that cause the optimiza
tion process fail to find the minimum.

;vs
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3 .2 .3  E u ler  a n g le s  p a ra m eter iza tio n

In order to enforce the geometric properties we use a specific parameterization of the 
rotation matrix based on Euler angles .

In R3 rotations around the x, y  and z  axes are:

’l 0 0
R*(a) = 0 cos a sin a

0 — sin a cos a

COSO 0 - sin a
Ry(a) = 0 1 0

sin a 0 cos a

cos a  sin a o’
R z(a) = — sin a cos a 0

0 0 1

Any rotation can be given as a  composition of rotations about these three axes, 
according to Euler’s rotation theorem. So our rotation matrix is the result of multiplying 
the above matrices:

Ro//(a,6,c) =  Rx(a) Rj,(6) R z(c) 

which results in the following parameterization:

(3-3)

Roiz(®) b, c)
cos b cos c

sin a sin b cos c — cos a sin c 
cos a sin b cos c +  sin a sin c

cos b sin c
sinasinbsinc  +  cosacosc 
cos a sin b sin c — sinacosc

— sin 6 
sin a  cos 6 
cos a cos b 

(3.4)
This parameterization ensures that the R au will be a rotation matrix, so using it 

in the optimization process will always result in valid rotation matrices. However as 
we can see in equation (3.4), the parameterization depends on trigonometric functions 
that can be hard to solve efficiently and accurately. This claim was found to  be true in 
practice with the implementation of the method.

The use of the above parameterization failed to find the global minimum most of the 
times. The optimization method gets stuck in local minima and in general converges 
very slowly. The optimization step was conducted in the beginning using forward 
differencing for the calculation of the Jacobian matrix. Analytical Jacobian was used 
also but we didn’t  observe significant improvements in terms of convergence time.
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3 .3  R e su lts

It is obvious that this method works on all images a t once. It basically requires a 
non-linear optimization step. The complexity of the problem can get quite big with 
growing number of images and point correspondences among the images. This makes 
the system slow, non robust and thus inappropriate for time-critical applications.

The implementation of the system revealed several flows in the method. The most 
important is that there is no efficient parametrization of the rotation matrices. *

*
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Chapter 4

An e f f i c i e n t  m e t h o d  f o r

THREE-DIMENSIONAL RECONSTRUCTION

4.1 Introduction

4.2 Camera calibration

4.3 Epipolar geometry

4.4 Estimating the fundamental matrix

4.5 Normalized coordinates

4.6 The essential matrix

4.7 Image plane homographies

4.8 Extracting structure and motion

4.9 Extending the method use to  multiple views

4.10 Results

4 .1  In tr o d u c t io n

In this chapter we will describe an efficient way to reconstruct a  scene based on the 
geometric properties of the two view geometry. We describe the steps to acquire a three- 
dimensional representation of a  scene along with the theoretical background. First we 
present a way to estimate the intrinsic parameters of the camera, or in other words a 
method to calibrate the cameras. We then explore the constraints th a t are present when
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we have two views of a rigid scene, and we describe the so called epipolar geometry. 
We continue by exploiting the epipolar geometry to acquire the projection matrixes of 
the cameras and finally to solve the reconstruction problem with triangulation.

4 .2  C a m era  ca lib ra tio n

Suppose that we have a camera by which we take pictures of a  scene we wish to re
construct in three-dimensions. It is important to know the way this particular camera 
formulates the images on the film or CCD sensor. This is equivalent to knowing the 
intrinsic parameters of the camera. A camera with known intrinsic parameters is re
ferred as a calibrated camera, and the procedure of acquiring these parameters is called 
camera calibration. So we will first describe a method for calibrating a camera. We will 
present a method for estimating the intrinsic parameters of the camera as described in 
Section 2.4.2. .

These parameters are different for every camera and depend on the manufacturing 
characteristics of the camera and the topological placement of the lens when the pho
tographs where taken. These parameters can be available from the manufacturer, but 
that is not always the case. That means that we must device ways to obtain these 
parameters, through the process of calibration.

The calibration technique described here is based on work of Zhang [10, 11], and is 
based on viewing a planar object from different views.

4 .2 .1  T h e  a b so lu te  con ic.

When dealing with camera calibration we first define the most basic parameters of the
i t

camera. Since little in known we have to work with an abstract object in the scene. . 
The absolute conic. The absolute conic is a  special conic that is positioned a t the plane 
at infinity1, which is invariant to transformations in three-dimensional space. Consider 
this like the effect the moon gives on a moving observer on earth. It seems like it is not 
moving in relation to the observer. Now expand this to include rotations and you will 
be able to grasp the concept of the absolute conic.

This has the advantage that the image of the absolute conic is independent of the 
position and orientation of the camera. The absolute conic is symbolized as and is 
related to the camera calibration matrix K  in the following way:

Woo =  K -T K -1 (4.1)

JThe plane at infinity is an augmentation of the Euclidian space and is the plane where all parallel 
lines meet. This plane consists of points with the last coordinate set to  zero, in their homogeneous 
representation

A?*
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Figure 4.1: The images of the absolute conic

Therefore knowing the absolute conic is equivalent to "knowing the cameras calibre^ 
tion matrix. This means that by estimating the absolute conic we can find the intrinsic 
parameters of the camera, and thus we have solved the camera calibration problem.

4 .2 .2  A  p la n a r  o b je c t  a n d  it s  im a g e

In this calibration technique we use the view of a  calibration pattern consisting of a 
black and white checkerboard with squares of known length. In Figure 4.2 we can 
see the planar calibration object photographed from several positions. The calibration » %
object consists of an A4 paper that was glued on a desk to ensure tha t it is planar. The , 
printed black and white squares are 25mm x 25mm. Since the object is planar we are 
able to establish a  homography between it and its image.

We will assume with no loss of generality that the planar object lies on Z  =  0 in 
the world coordinate system. Taking the projection equation (??) and representing the 
ith column vector of the rotation matrix by r*, we obtain the following equation:

_ X _
X

=  Κ  |τχ r 2 r 3 t]
Y

=  K  [ n  r 2 t]
X

y 0
Y

1 1
- - 1

Now because Z  =  0, the homogenous coordinates of point X  are written as X  =  
[X, y, 1]T. A planar object point X  is related to its image point x  by a 3 x 3 homography 
matrix Η: Άr»j *

■f
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Figure 4.2: The planar calibration object photographed from various position;

Figure 4.3: The selected world space coordinates for the four corners of the pi 
object

20



sx  =  H X (4.3)

with Η  =  Κ[Γχ r 2 t]
The homographies can be estimated by selecting the four corners on the calibration 

object, as shown in Figure 4.3. In that figure we can also see the world space coordinates 
X i ...a used.

Zhang [10, 11] uses a maximum likelihood criterion to estimate the homography. 
The maximum likelihood criterion of H  is obtained by minimizing the following:

where

(4.4)

A

X i

with hj the ith row of H. This is a nonlinear minimization problem that can be 
solved using the Levenberg-Marquardt optimization algorithm.

By setting χ  — [hj* h J h J ]T the equation (4.3) can be written as follows:

X = 0 (4.6)

If we have n points, n  equations are obtained and can be written in a  m atrix form 
L* =  0, where L is a 2n x 9 matrix. The solution is then derived as the eigenvector of 
LTL associated with the smallest eigenvalue.

« % 
%

4 .2 .3  E s t im a t in g  th e  ca m e r a  c a lib r a t io n  m a tr ix

We will now try  to estimate the camera calibration matrix. We start by writing H  =  
[hi h 2 ha] in equation (4.3) :

[hi h 2 I13] =  AK[ri r 2 t] (4.7)

where λ is a scalar. It is true that the vectors Γχ and r2 are orthonormal, since they 
are rows of the rotation matrix R . Then the following two equations are obtained and 
give two constraints on the internal parameters of the camera:

h i K - TK - lh 2 =  0 (4.8)

h7 K -T K -1h i =  h j  Κ - τ Κ - ^ 2 (4.9)

It can be seen that^K-T K _1 represents the image of the absolute conic
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We expand the equation (4.1) and a  symmetric matrix is obtained:

ωοο =  Κ ΤΚ _1 =

Γ l 8 • Cy8~“Cxfy
Wi U>2 W4 728 117v fify  ’
U)2 6c>3 ω5 — W v f'if'i f t  

i s . ^  +  1  +  iJ
(4.11

U>4 CyS-CxJj,
L fzfv

s(C||S—Cx/||) Cy
m  I t

Defining ωη =  [wj,ω2,ω3,ω4,ω5, w6]T and hj =  [hti,hi2,hi3]T the i th column of H , 
the following equation is derived:

h^oohj = ujwu
where

(4.11)

U y  —  h n h j 2 +  h & h j i  h ^ h j i  +  h % \h j$  h ^ h j 2 +  h f t h j z  ^ 3 ^ 7 3  J

(4.12)
It then possible to rewrite the two constraint .equations (4.8) and (4.9) as two ho

mogeneous equations in u>u:

“ w
( t i n  -  U 2 2 ) T

wu =  0 (4.13)

For n  images on n  homographies, the above vector equation is stacked n  times and 
the following is obtained:

Vwu «= 0 (4 -1 4 ) .,

with V  being a 2n x 6 matrix. The general solution is then derived as the eigenvector 
of V TV  associated with the smallest eigenvalue. If only two images are present, it is 
possible to assume that the skew s is zero (which is very common). This will be added 
as an additional row in V . We can assume further that the principal point is a t the 
image’s center and solve with only one image.

The absolute conic ω is defined up to a scale, and it is possible to  extract the 
intrinsic parameters of the camera, once vector ωη is known:

3»

22



0>2̂ 4 “ (4.15)Cy

λ

Λ

Λ

S

C*

UJiU>3 — U>2

ω\ +  ον{ω2ωΑ -  ωλω5) 
ωβ-------------------------------

Λ
sc , _  w ,f l  
λ Λ

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Once the calibration matrix is calculated the external parameters for each image 
can be calculated also from the equation (4.3).

r l  =  AK_1hi (4.21)

r2  =  λ Κ —1h 2 (4.22)

r3  =  r l  x r2  (4.23)

t  =  λΚ ~1h 3 (4.24)

where the scalar λ = 1 _ 1 
:- l i ____ — f > - lllK-lhm ||K “ h2||'

The solution we obtain from the above procedure is used as an initial guess to  the 
a nonlinear optimization problem. We minimize:

n m

ΣΣΐΙ*«-*(κ.Ι*<.*·.Χ<)ΙΙί <4·25)
t=l 3=1

Where x(K , Rj, tj, X j)  is the projection of point X j  in image i. This optimization is 
solved with the Levenberg-Marquardt non linear least squares optimization algorithm.

4 .3  E p ip o la r  g e o m e tr y

One important question that someone can ask is whether there is a constraint between, 
a pair of perspective images of a scene. It turns out that there is such a constraint, the 
epipolar constraint. This constraint states that for each point in one of the images, the 
corresponding point inJhe other image must lie on a straight line.►>I

This constraint is expressed mathematically by a 3 x 3 singular matrix, known as
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the fundamental matrix and denoted by F. If a three-dimensional point X  is projected 
at point x  in the first image and at point x/ at the second one, then the image points 
satisfy the relation:

x/TFx =  0 (4.26)

The fundamental matrix in essence describes the epipolar geometry between two 
views of the sam e scene. The epipolar geometry is the geometry of the intersection of 
the image retinal planes with the pencil of planes having as axis the line joining the 
camera centers, as seen in Figure 4.5.

Lets consider two photographs of the same scene taken from two distinct points in 
space. If the cameras are calibrated and have a matrix K equal to I. the homogeneous 
coordinates x  and the spatial coordinates X  of a point p, with respect to the camera 
frame:

Αχ =  ΠοΧ (4.27) ’

That means that the image x  differs from the actual three-dimensional coordinates 
of the point by a depth Λ € R+. Now without loss of generality we can assume that the 
world frame is aligned with the first camera, while the other camera is positioned and 
oriented according to an Euclidian transformation g =  (R -t). Suppose now that the 
three-dimensional coordinates of a point p  relative to the two cameras are X j,X 2 €  R3, 
they are related by the following transformation:

X 2 =  RXj + 1 (4.28)

Now let the x j,x 2 6  R* be the homogeneous coordinates of the projection of the • ft
same point p  in the two photographs. Since X, =  \ X i , i  =  1,2, the above equation can . 
be written as:

^ x 2 =  RAjXj -f-1 (4.29)

In order to eliminate the depths A, we multiply both sides with [t]x:

Mt]xX2 =  [tjxRAxXx (4.30)

Since the vector [t]xx2 =  t  x x2 is perpendicular to the vector x 2, their inner 
product is zero. Multiplying the previous equation with x j  yields that the quantify 
xJft]xRAiXi is zero. Since Aj >  0, we have proven the following;

Theorem 4-3.1. Consider two images Xj,x2 of the same point p  from two camera 
positions with relative pose (R t) , where R  the relative orientation and t  the relative 
position. Then Xj,x2 t&tisfy:

xJ{t]xR x, = 0  (4.31)
4
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Figure 4.4: Epipolar correspondence
*

The matrix E  =  [t]xR  (as we will see later on) is called the Essential matrix and is 
a specialization of the fundamental matrix for the  case of calibrated cameras.

To understand the epipolar geometry and the epipolar constraint, lets discuss about 
- the point projection properties. Given the projection point x  on one image, we are not 

able to know the exact location of X  but we know that is bound to be on the line of 
sight of x. Check the Figure 4.4. The line of sight of x  is the line joining the center 
of projection C  of the camera and x. This line can be projected on another image and 
the corresponding image point x* is bound to be on the projected line Γ. In fact all 
the points on plane Π defined by the two projection centers and the point X  have their 
image on 1'. In the same fashion all these points are projected on the first image on a 
line 1. There two lines are then in epipolar correspondence.

Suppose now that we have more three-dimensional points in the scene. W ith every 
three-dimensional point and the centers of projections, we get a different plane. As we 
can see in Figure 4.5 each such plane results in a pair of corresponding epipolar lines. 
All these lines pass through two specific points e and e'. These special points are called 
the epipoles and they are the projections of the center of projection of one image to the 
other.

These concepts were introduced by Faugeras [2] and Hartley [3]. Since then, there 
has been a lot of research on the properties of the fundamental m atrix and the methods 
for estimating it from two uncalibrated images [4].
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Figure 4.5: Epipolar geometry 

4 .4  E s t im a tin g  th e  fu n d a m en ta l m a tr ix
»

The Equation (4.26) can be used to estimate the fundamental m atrix for two uncali- '  
brated images. Every pair of corresponding image points gives one constraint on the 
fundamental matrix F. Since F  is a 3 x 3 matrix, we have nine unknowns. But since 
we require that the matrix is of rank 2, we need to determine it only up to scale so we 
have eight unknowns. Therefore 8 pairs of corresponding image points are sufficient to 
compute F.

4 .4 .1  T h e  e ig h t-p o in t  a lg o r ith m

The most straightforward method for estimating the fundamental m atrix is using Equa
tion (4.26) with eight corresponding image points and solving a  Unear system. Equation 
(4.26) can be written as:

[xx ' yx' x ' xy ' yy' y' x  y  1] f  =  0 (4.32)

where x  =  [x y  1]T, x ' =  \x' y' 1]T and f  =  [Fn  Fn  Fi3 F2l F22 F23 F3l F32 F33]T 
with Fij being the elements of the fundamental m atrix F. By stacking eight of these 
equations in a matrix A, we obtain the following equation:

A f =  0 (4.33)

This system of equations can be solved by Singular Value Deeomposition(SVD). The 
SVD of A  results the decomposition U S V T with U  and V  orthonormal matrices and. 
S a diagonal matrix containing the singular values. The singular values σ* axe positive 
and decreasing in order. In our case ag is guaranteed to be zero and thus the last 
column of V  is the section . Of course, this holds as long as the eight equations are
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linearly independent2.
Here we must note that in the presence of noise on the points coordinates, the 

estimated matrix will not satisfy the rank 2 constraint. This constraint is very important 
and most applications of the fundamental matrix rely on the fact that it is rank 2. The 
most convenient way is to enforce the constraint after the initial solution is obtained. 
To do so we replace the matrix F  with the matrix F ' that minimizes the Frobenius 
norm ||F  — F '|| subject to the condition det F ' =  0. To do this, let F  =  U D V T be the 
SVD of F, with D =  diag(r,s, t). We then let F ' =  \Jdiag(r, s ,0 )V T. This method 
was suggested by Tsai and Huang [5] and has been proven to minimize the Frobenius 
norm of F  — F ' as required.

4 .4 .2  Im p ro v in g  th e  e ig h t-p o in t  a lg o r ith m

We went on and improved this fundamental matrix estimation algorithm by applying a 
normalization on the input point coordinates [9]. W hat we do is we transform the image ·. 
points before we feed them in the eight-point algorithm. Suppose that coordinates x  in 
one image are replaced by x  =  T x, and coordinates x ' in the second image are replaced

A  -

by x ' =  T  x  . Substituting that to equation (4.26) we get :

x 'TT / - t F T -1x =  0 (4.34)

where T '_T is the inverse transpose of Τ '. This relation implies tha t T /-TF T -1 is 
the fundamental matrix corresponding to the transformed points. So what we do is :

1. Transform the image coordinates according to transformations x  =  T x  and x ' =  
T 'x '

<
2. Estimate the fundamental matrix F  corresponding to the transformed points

3. Set F  =  T 't F T

The fundamental matrix estimated this way will correspond to the original untrans
formed points no m atter what tha t transformation was. Hartley [9] showed tha t using 
a specific transformation can result in the eight-point algorithm to perform almost as 
good as the algorithms that use non-linear criterions.

This transformation is done in two steps. The first translates the coordinates in each 
image so that the centroid of the point set is brought to the origin. The coordinates 
are then scaled, the suggested scaling is such tha t the average point is [1 ,1 ,1]T. Such 
point will lie at a distance \/2  from the origin. So the transformation is as follows :

1. The points axe translated so that their centroid is at the origin.

2All other singular valtfek must be non zero
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<1. " IV ov" ,v w lor both coordinates so tlm t the nverng
t.ance from t he origin is equal t o  ^

Figure 4.G: The epipolar geometry estim ated by the eight-point, algorit hm wi 
normalization

Figure 4.7: The epipolar geometry estim ated by the eight-point, algorithm  wil l 
malization

In Figure 4.6 and Figure 4.7 we can see the results of the  point coordinat es nc 
ization. The epipolar geometry in figure 4.7 is good and is alm ost identical to  
the non-linear criterion algorithm gives. On the other hand the epipolar georrie
4.6 given by the eight-point algorithm  w ithout norm alization of the point coord; 
is distorted. ,VS
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4 .4 .3  D is ta n c e  m in im iz a tio n  a lg o r ith m

In general, it is possible to obtain more than eight image point correspondences from 
two images. It that case, we should use the extra points in order to minimize the effect 
of noise on the result. The original eight-point algorithm can be extended to use more 
points, in a linear least squares fashion. In that case the matrix A  of equation (4.33) 
will contain rows for all additional point matches. The solution is obtained in a similar 
way. The last singular value is used again, only that now it is not zero.

Even though the above method is fast and simple to implement, it is very sensitive to 
noise, even when there axe more than eight point correspondences. We will discuss this 
matter in the implementation chapter of this thesis but one of the main problems with 
this method is that we minimize an algebraic error which does not have a “physical” 
meaning. It would be better if we where minimizing a more geometrically meaningful 
criterion.

The obvious error that we should be minimizing is the distance of points from the 
corresponding epipolar lines. So the first idea is to use the following non-linear criterion: ’

J V ( x ' , F  * ) .
i

with d(x, 1) being the euclidian distance of point x  from line 1 =  [Ιχ, l2,

„ n - ___ !ί!ϊ!___
’ '  V t U M W

The problem with the above criterion is that, unlike the linear criterion of the 
eight-point algorithm, the two images does not play a  symmetric role. This criterion 
determines only the epipolar lines in the second image.

To have a consistent fundamental matrix it is necessary and sufficient tha t by ex- . 
changing the two images, the fundamental matrix is changed to  its transpose. So we 
must include that in the minimization criterion, hence we minimize this quantity:

5 ^  ( d 2 ( x ' ,  F x j )  +  <Z2 ( x j ,  F T x Q )

4 .4 .4  S in g u la r ity  co n stra in t

The problem with the previous method is that we do not take into account the fact that 
F  is of rank 2. We could use minimizations under the constraint det(F) =  0. This con
straint is a cubic polynomial in the coefficients of F  and the numerical implementations 
are not efficient enough to be usable.

It turns out that we can enforce the singularity constraint by using a  certain para
meterization. The ideadp to express the matrix F  as:
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Χ3
Χ6 (4.36)

Χι

ΧΑ

XjXl + Χ%Χ\

χ2
*5

ΧγΧ2 +  Χ%Χ$ XjX3 +  Χ»Χ6

W hat we basically do is write the third row of the matrix as a linear combination 
of the two first rows. This ensures that the m atrix will be singular.

The previous parameterization takes into account only the fact that F  is singular. 
It would be appropriate to  parameterize it by values that are more significant to  us. As 
Quang-1\ian Luong [6] we can use this parameterization:

F  =
a
c

—ax' — q /

b
d

—bx' — dy'

—ax — by 
—cx — dy

(ax + by)x' + (cx +  dy)y'
(4.37)

Where, x  and y are the coordinates of the first epipole, x' and y' are the coordinates'
>

of the second epipole, and a,b,c and d parameterize the epipolar transformation mapping ■» 
an epipolar line in the first image to its corresponding epipolar line in the second image.

W ith this parameterization and the constraint of equation (4.4.3) we can use a non
linear optimization method to obtain the fundamental matrix for two arbitrary views, 

-based on point correspondences.

4 .5  N o r m a liz e d  c o o r d in a te s

Consider a camera projection matrix as described in equation (2.15):

P  =  K [R |t]

Suppose that the calibration matrix K  is known. Now if x  =  P X  is a point on the 
image, we can apply K -1 to the point x  to  obtain:

x  =  K -1x  (4.38)

Then x  is image point expressed in normalized coordinates. It may be thought of 
as the projection of a point x  with respect to  a  camera having as a calibration m atrix 
the identity matrix I.

The camera projection matrix:

K _1P  =  [R|t]

is called normalized camera matrix as the effect of the known calibration m atrix has 
been removed.

►>?>
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4 .6  T h e  e s se n tia l m a tr ix

The essential matrix is a specialization of the fundamental matrix. It is basically the 
fundamental matrix in the case of normalized coordinates. The definition of the essential 
matrix is:

x ,TE x  =  0 (4.39)

in terms of the normalized image coordinates for the corresponding points x, x'. 
Substituting x  and x ' with equation (4.38) gives:

x ,TK /-TE K -1x  =  0

Comparing this with the relation (4.26) for the fundamental matrix, it follows that 
the relationship between the fundamental matrix and essential m atrix is:

E  =  K ,TF K  (4.40)

4 .7  Im a g e  p la n e  h o m o g r a p h ies

Another important concept in projective geometry is the plane homography. A plane 
homography is a nonsingular 3 x 3  matrix which relates two uncalibrated retinal images 
of a three-dimensional plane.

If x  is the projection of a point on a plane on one image and x ' is the projection of 
the same point on the second image; then the two projections are related by the linear 
projection transformation:

■

x ' ~  H x  (4-41)

Shashua shows that the fundamental matrix and plane homographies are tightly 
coupled [7]. To be more exact, the entire group of all possible homography matrixes 
between two images lies in a subspace of dimension 4. It is spanned by four homography 
matrixes. These four homography matrixes are such that their respective planes to  not 
all coincide with a single point. It is shown [8] that given the fundamental m atrix F  
of an image pair, a suitable basis of four homography matrixes H i , ..., H 4, referred as 
“primitive homographies” , is defined as follows:

Η» =  [̂ i] x F , i  =  1,2,3

and

H4 =  e'<5T (4.42)
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where are the identity vectors :

Cl =  [ 1 , 0 , 0 ] T , e2 =  [ 0 , 1 , 0 ] T , e3 =  [ 0 , 0 , 1]T

[.]x designates the skew symmetric matrix representing the vector cross product, so 
that for a  vector x, [x]xb  =  x  x b, V b. More specifically:

0 —z y
z 0 —X
-y X 0

(4.43)

<5 is a vector such that STe ψ  0. This can be satisfied by defining vector δ so tha t 
each of its elements has an absolute value of one and a  sign identical to  tha t of the 
corresponding element of e.

The first three homography matrixes are of rank 2 and span the subgroup of ho- 
mographies matrices whose associated plane contains the center of projection C ' o f . 
the second camera. The fourth homography m atrix has an associated plane th a t goes * 
through the center of projection C  of the first camera and not coincident with with C ', 
thus having rank 1. The four primitive homographies allows any other homography H  
to be expressed as a linear combination of them:

4

H  =  ^ A iH j
«=1

(4.44)

4.8 Extracting structure and motion
Until now we explored how different views of the same scene relate to  each other. In * ‘%
this section we will try to use these relations to  estimate the structure of the scene and 
the motion of the camera.

Contrary to the method described in Section 3.2 where we derived both scene struc
ture and camera motion simultaneously in a  big optimization problem, here we will see 
how we can obtain the camera motion alone at first, and then use th a t information 
along with the point correspondences to  estimate the structure of the scene. So this 
method extracts motion and structure in two separate steps.

4.8.1 Camera motion
In order to  estimate the motion of the cameras we will have to  use corresponding image' 
points from the images. So we will suppose we have a  number of corresponding image 
point pairs. Given these image points we will be able to  construct the epipolar geometry 
constraint. This means' that we will estimate the fundamental m atrix F  for the given
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pair of images.
In the following procedure we can use the fundamental matrix to estimate the motion 

of the cameras, but this will give results only up to a projective ambiguity. On the other 
hand if we use the essential matrix the camera matrices may be retrieved from up to 
scale and a four-fold ambiguity. That is that there are four possible solutions, each of 
which at an undetermined scale.

4.8.2 Using the essential matrix to extract the projection ma
trixes

W ith no loss of generality we will assume that the first camera’s projection m atrix is 
p = p|o]. This mean that we position the first camera to be aligned with the world 
frame. In order to compute the second camera’s projection matrix P ', it is necessary 
to factor the essential matrix E  into a  product S R  of a  skew symmetric m atrix and a  
rotation matrix.

We will use the matrices:

0 -1 o' • ’ 0 ' 1 o'
w = 1 0 0 z = -1 0 0

0 0 1 0 0 0
note that W  is orthogonal and Z is skew-symmetric. Suppose now tha t the SVD of 

E is Udm g(l, 1,0) V T. There are two possible S R  factorizations of the essential matrix, 
as follows:

S =  U Z U T R  =  U W V T or U W TV T (4.46)

The given factorization is true, and it is verifiable by inspection. The above fac- * 
torization determines the translation part t  of the camera’s projection matrix P ',  up 
to scale, from S =  [t]x. However, the Frobenius norm of S =  U Z U T is y/2, which 
means that if S =  [t]x including scale then ||t|| =  1, which is a convenient normal
ization for the baseline of the two projection matrixes. Since S t =  0, it means that 
t  =  U [0,0 ,1]T =  u 3, the last column of U.

However the sign of E  and consequently t , cannot be determined. Therefore given 
an essential matrix, there are four possible choices for the second camera projection 
matrix. Two for the possible choices of R  and another two for the possible signs of t.

So the available choices for the second projection matrix are:

P ' =  [U W V T| + u 3] 
P ' =  [U W V T| — u 3] 
P ' =  [U W TV T| + u 3]

33



Μ

C

Figure 4.8: The four possible solutions for the projection matrixes

P ' =  [U W TV T| — u 3] (4.47)

4.8.3 The geometrical interpretation
It is obvious that the difference between the first two solutions is simply tha t the 
direction of the translation vector is the opposite. For the relation between the first , t 
and third projection matrixes we have to pay some more attention. It is verifiable that: '

[UWTVT|u3] =  [UWVT|u3] U W TW TV T
1

(4.48)

and U W TW TV T =  Vdiag{—1, —1 ,1)VT is a rotation of 180° about the line joining 
the two centers of projection of the cameras.

In Figure 4.8 we can see the four solutions that we acquire from the essential matrix. 
In this figure the left and right sides present the translation reversal, and top and 
bottom subfigures present the 180° rotation around the line joining the two centers of 
projection. To determine which one of the four solutions is the correct one we will 
have to reconstruct a three-dimensional point from the point correspondences. This 
is further explained in the next section, but once we have reconstructed the three- 
dimensional point as shown in Figure 4.8 we can determine the correct solution by 
checking in which cas$ \he point is in front of both cameras. In the figure example
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Figure 4.9: Acquiring three-dimensional point with triangulation

note that the reconstructed point M  is in front of both cameras only at the top-left 
subfigure.

Thus, testing with a single point to determine if it is in front of both cameras is 
sufficient to decide between the four available solutions for the second camera matrix.

4.8.4 Structure
Once the two projection matrixes have been determined we can use the available point 
matches to reconstruct actual three-dimensional points of the scene.

For each point on an image there is a  corresponding line of sight tha t can be placed 
in space. This line is the line passing from the center of projection of the camera and 
the point on the retinal plane. In the case o f  two corresponding points on two different , .  
views, the lines of sight intersect in a three-dimensional point, th a t is the original scene ’ 
point. This illustrated in Figure 4.9.

In practice, however, these lines will not perfectly intersect. This is because of faulty 
positioned points and the presence of noise.

So what we have are the two projection matrixes of the two views, along with the 
coordinates the point is represented on the retinal planes. So suppose tha t the three- 
dimensional point in space is X  =  [X, Y, Z, W]T and its projections on the images are 
x  = [x, y, 1]T and x ' = [a/, j / , 1]T. By making use of the pinhole camera model equation 
(??) the following two equations can be defined:

s jx  =  P iX  (4.49)'

s2x / =  P 2X  (4.50)

where 8\ and s2 aflft two arbitrary scalars. Suppose now th a t and p j  are the
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ith row of P i and P 2 respectively. The scalars Si and S2 are eliminated by setting the 
following: Si =  p ^ X  and s2 =  P 23X· Then the above equations can be written in the 
form:

A X  =  0

with A being a 4 x 4 matrix:

(4.51)

A  =

P n  -  *Pl3 
Pw -  ypw 
P21 -  Ζ'Ρ23 
PL -  ν'P23.

(4.52)

Then the solution is the eigenvector of the matrix A T A  associated with the smallest 
eigenvalue.

To further improve the result obtained from the linear system solution above, we . 
can use a nonlinear optimization step. We minimize the error measured in the retinal * 
plane between the observation and the projection of the reconstructed point [16]:

The optimization is done with the Levenberg-Marquardt algorithm.

4.9 Extending the method use to multiple views
4

So far we have seen how it is possible to reconstruct three-dimensional points from point > 
correspondences on two photographs of a scene. But what happens if we have more 
than two photographs? It would be nice to be able to incorporate more photographs 
in the reconstruction of the scene, so that more points can be calculated. Actually this 
is most of the times necessary since with only two views many parts of the scene axe 
occluded.

The research done on the field is in trying to generalize the epipolar constraint in the 
case of more that two views. This leads to constraints that can be used in the simpler 
and implementable case: in triplets of images. This along with a method to relate 
consecutive image triplets [12] can give us a way to utilize all the additional images of 
the scene.

This however can often be hard to implement efficiently. This is because of arith
metic inaccuracies in the implementation machines and also because of the consecutive 
nature of the solution^tjiat can result in accumulation of error.
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In this thesis we propose a different solution to the problem. Our solution has the 
advantage of being implementation friendly and also removes the consecutive nature of 
the solutions based on multi-view constraints. The proposed method uses the algorithm 
that we described previously in this chapter on pairs of images chosen from the available 
images of the scene. We then use point correspondences across more that two images 
to relate the resulting three-dimensional models and merge them into a single model. 
We will continue by explaining how is that possible and we will describe the algorithm 
to accomplice that.

4.9.1 Relating reconstructed segments
Suppose that we have a series of more that two photographs of a  scene. We also have 
a number of feature points on these images. Until now we needed correspondences of 
these feature points between two photographs, but it is possible to  have a feature point 
visible across more that two photographs. We will use these feature points to  relate . 
the separate reconstructions tha t we can obtain through the algorithm we described '  
previously in this chapter.

Lets take three photographs from the given series. The only constraint on the 
choice of photographs is that there are some feature points visible across all three of 
the photographs. So now we have three sets of feature points:

•  The set A  of feature points that are in correspondence in the first and second 
photographs

•  The set B  of feature points that are in correspondence in the second and third 
photographs

i

• The set C  of feature points that are in correspondence in all three photographs

The first set A  will be used to reconstruct three-dimensional points from the first 
and second photograph, while the set B  will be used to reconstruct three-dimensional 
points from the second and third photographs. Unfortunately these reconstructed points 
will not be in the same world coordinate frame. This is due to the way the epipolar 
geometry reconstruction method works. Using the epipolar geometry to obtain the 
projection matrixes results to projection matrixes with unknown scale, and the first 
projection matrix is always the canonical projection matrix. We will use the feature 
points in the set C  to bring all the feature points in the same world coordinate frame.

4.9.2 Aligning the world coordinate frames
So for every pair of photographs, we can get from the epipolar geometry reconstruction 
method a reconstruct^  segment of the scene, but in its own world coordinate frame.
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So if we have two reconstructed segments we will have to “align” the different world 
coordinate frames. W hat we basically need to find is the affine transformation that 
when applied on one of the segments, it will bring it in the coordinate frame of the 
other.

This transformation is defined by a rotation matrix R , a scale matrix S and a 
translation vector t. Our goal it to determine (R, S, t). We do this by using the feature 
points that belong to set C. With these triplets of feature points we get two different 
reconstructed three-dimensional points. One from the first and second photograph and 
one from the second and third. These two points are actually the same point in three- 
dimensions, but the algorithm will not produce the same coordinates. So suppose that 
Xj are the reconstructed three-dimensional points from the first and second photographs, 
and y { are the points that are reconstructed from the second and third photographs. 
There is an (R, S, S, t)  that will satisfy the relation:

y { =  RSXj + 1 (4.54)

Suppose now that we use an Euler angles parameterization for the rotation matrix 
R, then we have three unknowns for the rotation , matrix, three for the diagonal scale 
matrix, and three unknowns for the translation vector t. When we have n triplets of 

-feature points we can solve this problem by minimizing this criterion:

n

Σ &  < ~  R S x i + 1)2 =  ° (4·55)
i=0

This is a minimization problem that we solve using the Levenberg-Marquardt opti
mization algorithm. To be able to obtain the exact transformation we require a t least 
three points, that are not in a degenerate form3.

After obtaining the affine transformation (R, S, t)  we can use it to transform the . 
points Xj in the world coordinate frame of the points y t and have one “merged” recon
structed point cloud.

This procedure can be followed for other couples of paired photographs in order to 
reconstruct the full scene from a range of any number of photographs.

So if we have n images as shown in Figure 4.10, we can reconstruct the scene using 
the algorithm described in Algorithm 1.

4.9.3 Getting more feature points
As we have seen in this chapter, given some feature points correspondences on pho-, 
tographs of a scene, we can reconstruct the original three-dimensional points the im
ages where extracted from. To get a good representation of a scene we often need many

3like being collinear
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Figure 4.10:

\
*

« I

A lgo rithm  1 Multi-view reconstruction___________________________________
Reconstruct the scene’s fragment 5  that corresponds to images 1,2 
i=2
w hile i < n  do

Reconstruct the scene’s fragment Snew th a t corresponds to images i, i +  1 
Calculate the affine transform M  that brings Snew to the world frame of S  
Transform Snew with M  
Merge Snew into S  
i <— i +  1 

Return S
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- Figure 4.11: Projecting a pattern on the object we want to reconstruct creates additional 
feature points

feature points. The number of feature points that we can extract from a photograph 
depends on the scene itself. Some scenes can provide a big number of feature points 
while others do not give sufficient feature points to obtain a detailed reconstruction. In 
the case that we want to reconstruct a scene from which feature points cannot be easily 
extracted, we suggest the use of structured light to create additional feature points.

Structured light is light that is projected on the object and it contains patterns. For 
example in Figure 4.11 we can see the effect of lighting a statue with structured light. 
We make use of a data projector that projects on the statue a checkerboard pattern. 
We then take photographs of the object with the projected pattern. Note that the 
projected pattern must remain stable throughout the snapshot acquiring procedure.

4.10 Results
In this section we discuss the results that we had from the proposed method. We

t
present the data  gathered from the experimental scene reconstructions, to characterize 
the efficiency of the reconstruction method.

During the development of the three-dimensional reconstruction method we used 
several scenes to chedt*the efficiency of the methods we were implementing. These
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Noise Edge 2 Edge 3 Edge 4
0.00 1.000 1.000 1.000
0.05 0.999 0.995 0.998
0.10 0.995 0.992 0.994
0.15 0.982 0.969 0.978

Table 4.1: Results obtained from the reconstruction algorithm, from the synthesized 
scene. The algorithm is run several times each time adding different zero-mean gaussian 
noise to the on-image coordinates of the feature points. The column represent the 
relation of the respected edges with edge 1

scenes were both real and synthesized. We begin with synthesized images of scenes, in 
order to have good knowledge of the scene we were reconstructing. A synthesized scene 
gives us the ability to efficiently measure the performance of the implemented method.

4.10.1 Reconstruction of synthesized scenes ;
A synthesized scene is simply a scene for which we already have the three-dimensional 
model. Prom this scene we can obtain snapshots from various positions and use them 
for images.

So what we basically do in the case of reconstructing synthesized scenes is simulate 
the process of taking a photograph of a scene, and then try to  reverse the process.
For our experiments we used a simple synthesized scene to  test the reconstruction 
method. This scene consists of two cubes. We then assume a camera of known intrinsic 
parameters K  that we define. We position this virtual camera a t different positions 
in space and use it to project the two cubes on “photographs” . We then use the 
projected points on these photographs as input to our algorithm. The efficiency of the , % 
algorithm is then measured by judging the differences between the original scene and ' 
the reconstructed scene.

Since the reconstruction of the scene does not reconstruct the scene with its original 
scale, we cannot compare the lengths directly. W hat we do is check the lengths of the 
edges of the reconstructed cubes, and all must be of the same size. The algorithm is 
ran several times, each time adding different amount of zero-mean gaussian noise to 
the screen coordinates of the feature points. We use all the available points for the 
calculation of the epipolar geomentry. The differences in length are shown on Table
4.1.

4.10.2 Reconstruction of real scenes
When the proposed method was tuned and found to efficiently reconstruct synthesized 
scenes, we experim ent^ with photographs of real three-dimensional scenes. This step 
is necessary since it reveals the true performance of the reconstruction method.
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.Y V
Focal Length 077.573 079.230
Principal point 318.801 235.088
Skew angle 0

Table -1.2: Canon IXl'S v3 calibration parameters at 040 \  -ISO

Figure 4.12: The real scene photographs used for the reconstruction

For the real scene reconstructions we used an off-t he-shelve consumer camera, with 
unknown intrinsic parameters. The camera used is Canon IXUS v'i. This is a S.'i 
megapixel camera that is able to take photographs up to 2048 x 1530 pixels. In our 
experiments we used photographs taken at G40 x 480 pixels and 1024 x 708 pixels, which 
was found to be efficient for our scenes.

The camera was calibrated using the method described in Section 4.2, and the 
intrinsic parameters where found to be the ones listed at Table 4.2.

In Figure 4.12 we can sec the photographs we used for t he reconstruction, with the 
feature points marked with white crosses. The feature points are placed by hand and 
not by an automated method.

The scene consists mostly of objects with good geometrical charact erist ics in order 
to be able to test these characteristics later on. The calibration pattern is also included 
in the scene for the same reason.

We test the reconstructed scene for how planar the calibration pattern is in the 
reconstructed scene, along with how close are some angles to 90°. For the planarity 
of the calibration pattern we average the distance of feature points on the calibration 
pattern from the plane that is defined by the three points at the edges of the calibrat ion 
pattern. In the absence of noise and arithmetic computation error this distance should 
be zero.

We run the reconstruction algorithm each time with different, feature points selected 
for the epipolar geometry calculation. In Table 4.3 we can see the results we obtain 
from the reconstruction method. The angles that we measure are marked in Figure
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Run Angle 1 Angle 2 Planarity
1 90.2 89.9 0.12
2 91.1 90.7 0.14
3 90.1 90.1 0.09
4 88.7 90.0 0.79
5 89.1 89.9 0.11
6 90.1 90.0 0.10

Table 4.3: Results obtained from the reconstruction algorithm. The algorithm is run 
several times each time choosing a different set of feature points for the calculation of 
the epipolar geometry

Figure 4.13: The measured angles in the reconstructed scene

i
·»

» t

4.13.
As we can see the results vary depending on the feature points tha t are selected 

for the calculation of the epipolar geometry. This is expected since the error on the 
image coordinates of each feature point is different. This also shows tha t the selection 
of appropriate feature points for the calculation of the epipolar geometry if crucial for 
obtaining accurate results from the method.
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C h a p t e r  5

I m p l e m e n t a t i o n

5.1 Overview

5.2 Programming language

5.3 Additional software

5.4 Simultaneous structure and motion method

5.5 The epipolar geometry method

5.6 The graphical user interface

5.7 Example reconstruction

i
*»

5.1 Overview
In this chapter we discuss the implementation details of the system we created in 
order to reconstruct three-dimensional models from photographs. We will examine the 
various problems that one can face in implementing the theoretical methods described 
in the previous chapters, along with the proposed solutions and workarounds tha t were 
necessary. We will demonstrate this way the feasibility of the effort and the prospects 
that we have, given the performance and accuracy of the implementation.

5.2 Programming language
The language of choice for the implementation of the system was a very sensitive decision 
that had to  be made fyqm the beginning of the project. The main requirements from 
the language were:
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Code Speed GUI Scientific libraries Prototyping
c Excellent GTK LAPACK Bad
C ++ Excellent wxWidgets LAPACK Bad
Delphi Medium Delphi Very little support Bad
Perl Medium Several LAPACK ports mainly Good
Python Medium Several SciPy Excellent
Matlab Low Native Excellent Excellent

Table 5.1: Language features

•  Speed of execution

•  Graphical user interface creation

•  Support for accurate mathematical computations

•  Availability of scientific libraries

•  Allow for quick prototyping

Several languages were evaluated for the purpose, some of which are:

•  C

• C + +

•  Delphi

•  Perl

•  Python

•  Matlab

Most of the languages reviewed usually failed in to more tha t one of our basic 
requirements, with the most mutual exclusive to  be speed of execution and quick pro
totyping. Both of which are fundamental for the project. Speed of execution is crucial 
for this kind of application since if involves heavy arithmetic computations. On the 
other hand the time line for the project was short and there wan’t a clear road-map for 
the implementation. So we had to create a system with no way on knowing forehand 
what exactly it will take, or how exactly it will be structured, and what pitfalls we were 
going to face. This requires that the language will support rapid prototyping, so th a t ' 
we could try out ideas as fast as possible.

In table (5.1) we can see the features every language provides. The columns are the 
features and the rows ^ e  the languages. Every language is examined for code speed, 
graphical user interface libraries and builders, the availability of scientific libraries, and

45



finally the quick prototyping allowed by the language. Note that on features like graph
ical user interface and scientific libraries, there are usually several available choices. We 
base our report on these features according to the best choice among them.

It is obvious from the table (5.1) that the choice of language for the particular 
project is difficult. The languages that support good prototyping lack in speed and vice 
versa. The language Delphi which is basically an object oriented Pascal with very good 
graphical user interface capabilities is rejected since the support for scientific libraries 
is poor. Perl on the other hand is rejected because of its poor scientific libraries and 
because of its general purpose nature that is more appropriate for quick-small programs. 
Matlab would be an excellent choice for the purpose. The scientific computing support 
from matlab is excellent, since it is what it was made of. Matlab is also very good at 
rapid prototyping of ideas and solutions. Unfortunately the speed is not so good as 
C ++  for example, but that is not the basic problem. The basic problem is graphical 
user interface and the capability of creating autonomous applications. Our purpose was. 
to create an concrete application that does not relay on an application like Matlab to 
run. This forbids the use of Matlab in the project, even it would save us a lot of time 
with its excellent scientific features.

C on the other hand has great speed of execution but is a very low level language 
that is certainly not good for our purpose. The best available graphical user interface 
toolkit for C is GTK [17]. The fact that graphical user interfaces are from nature 
object oriented and C is not an object oriented languge, forces the GTK toolkit to 
create an object oriented model on top of C, which is very clumsy and error prune.
The availability of scientific libraries for C is good but very clattered. There are several 
libraries that do different or the sapie things, some better than the others, and it is 
quite hard to find the best solution. So C is rejected too, after all it is a  very aged 
language and it is basically suited for operating systems programming. «*

The same things goes for C + +  also, with the difference tha t it is a fully object 
oriented language. The graphical user interface is very good with wxWidgets [18] being 
a very good , and portable across platforms, toolkit. The scientific libraries are mostly 
the same tha t C uses. The bad thing about C + +  is that it is not suited for rapid 
prototyping.

A very good choice for a language is Python [19]. Python is a fully object oriented 
language. It is open source and provides a wide variety of libraries. Python is a very 
high level language that allows for quick prototyping and testing. Its dynamic nature 
allows to easily create generic “templetized” code that is very useful in quickly sketching 
implementations. Python also comes with a very powerful scientific library SciPy [20].
A very good feature that Python has is the ability to be extended in C of C + + . The 
programmer can easily move code back and forth from Python to C + + . This allows to 
quickly prototype code in Python and later move code to C + +  and enjoy the execution 
speed of C + + . ^
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So is was decided that the development system is going to be based in a mix of the 
languages Python and C ++ . We basically worked in Python and then later moved the 
execution speed critical parts to C ++ . In retrospect this was a wise choice since it cut 
down the development time a lot, with no compromises in execution speed of the final 
application.

5.3 Additional software
Through the development of the reconstruction system we used some additional soft
ware. This software is in the form of libraries for Python and C + +  and some stand-alone 
software.

Great help came from the use of Maple [21]. Maple’s excellent analytical derivatives 
calculation capabilities allowed us to calculate the analytical derivatives of very complex 
functions fast and error-free. .

The Python library SciPy [20] was used for the many linear algebra problems that '  
we faced in this thesis. SciPy is a scientific library that gives Python the ease of use 
and features of a suite like Matlab [22]. It allows easy matrix manipulation and many 
linear algebra algorithms, along with some optimization methods.

The mesh modelling application Blender [23] was also used for triangulating and 
presenting the resulting point clouds that our application generated.

5.4 Simultaneous structure and motion method
We first tried the implementation of the method described in Section 3.2, tha t enables 
us to recover structure and motion simultaneously.

For the parameterization of the rotation matrixes we used the parameterization 
shown at equation (3.4).

The implementation of this method didn’t  result in good results. The optimiza
tion algorithm turned out not to able to find the minima of the problem, and usually 
stuck in local minima. The problem begins with the fact th a t the parameterization of 
the rotation matrix requires trigonometric functions that are hard to manipulate with 
gradient based optimization methods. Specially when the functions are so complex.

In the beginning of the testing and to estimate if the results were going to be 
good, we used forward differencing for calculating of the Jacobian matrix passed to the 
Levenberg-Marquardt optimization algorithm. The results was not good. First of all. 
the speed of execution was very low, since the function had to be evaluated many times 
to estimate the Jacobian. The function is also slow by itself since it contains a  lot of 
trigonometrical functions, and can be very complex for big problems with many views 
and point matches. Speed was not the only issue though. The converge to slow and
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Figure 5.1: The 3D Head Creator application that uses the simultaneous structure and 
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Figure 5.2: The procedure followed in order to efficiently estimate the epipolar geometry

the method got stuck in local minima most of the times.
We suspected that the problem was the inaccuracy of the estimated Jacobian matrix. 

So we implemented a system to analytically derive the Jacobian for the function to be 
solved. It turned out that the method performed worst with the analytical Jacobian.' 
Of course the execution speed was much higher with the analytical Jacobian, but the * 
method got stuck at local minima much often now. It seems that the trigonometrical 
functions created high frequency disturbances in the function, that the inaccuracy of 
the estimated Jacobian helped to skip over, finding better minima.

By initialing the method several times with random starting points we were able 
to find the global minima, but the procedure is slow and does not guaranty results. 
So this method was judged inappropriate for the purpose of our application. The 
implementation is there and the user can try  it in the application, but this is not the 
suggested method for reconstruction. The user should use the Epipolar geometry method 
most of the times.

This method, even if it is not appropriate for the general reconstruction system we 
were trying to implement, does not mean that is useless in general. For example we were 
able to use this method successfully in a human head reconstruction system (Figure 
5.1). In this system we had the advantage of knowing the general shape of our object. 
This way the application could feed the optimization algorithm with a  good starting 
point using the coordinates of points on a generic head. The solution for the specific 
head the user is working on, can’t  be far from the generic head so the optimization 
system find the solution easily.

5.5 The epipolar geometry method
The implementation of the reconstruction method that uses the epipolar geometry 
described in chapter 4, was the most successful. The results obtained from this method 
are very satisfactory.
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5.5.1 Estimating the fundamental matrix
The first part of this method requires the estimation of the epipolar geometry between 
the two views. This is equivalent, to estimating the fundamental matrix , as described 
in Section 4.4.

During the development of the fundamental matrix estimation system we used many 
different approaches. The first was the eight-point, algorithm described in section 4.4.1 
(page 26). The algorithm is very straightforward Mid requires solving a set of linear 
equations, which is quick and always gives a solution. The implementation is actually 
just, doing a Singular Value Decomposition.

However this method does not perform well under noisy real data. It specially fails 
to enforce the rank 2 constraint required for the fundamental matrix. This is solved 
by taking the closest rank 2 matrix to the one the eight-point, algorithm provides. But 
again the eight-point algorithm does not. return appropriate results for the fundamental 
matrix [6]. ,

So we went on to implementing the method that uses a non-linear criterion and * 
described in Section 4.4.3. The system uses the rank enforcing parameterization of the 
fundamental matrix as shown below:

a
F =

b
d

—ax' — cy' —bx' — dy'

—ax — by 
—cx — dy

(ax +  by)x' + (cx +  dy)y'
(5.1)

The optimizer for the non-linear criterion was first, implemented in Python and 
used the Levenberg-Marquardt non-linear least squares optimization algorithm as im
plemented by SciPy [20]. The results of the algorithm was satisfactory and it. gives a 
good approximation of the fundamental matrix. Actually the results are much better , ,  
than the results obtained by the linear eight-point algorithm. However this method ' 
possesses the defects of all non-linear gradient based optimization methods, as it de
pends on a good starting point. In the beginning we used random initialization for the 
algorithm, which often got stuck in local minima.

To overcome this problem we used the previously implemented eight-point algorithm 
to estimate a good starting point to feed in the non-linear optimization step. This 
actually worked efficiently and the non-linear optimization algorithm did not stuck in 
local minima most of the times. When it does a re-run of the algorithm, with a  slightly 
jittered starting point, will find the correct solution.

Even though with the coordinate normalization, the linear eight-point algorithm 
performs almost as good as the non-linear one, we still use the non-linear optimization’ 
step to further improve the result.

The non-linear fundamental estimation step was also rewritten in C-H- to get the 
maximum execution speed possible. T hat with the good initial guess for the solu-
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tion coming from the eight-point algorithm we get instant estimation of the epipolar 
geometry at the bigger accuracy possible.

For the non-linear optimization step, the analytical Jacobian is provided to the 
optimizer to speed up the optimization’s converge. The analytical partial derivatives 
were calculated with the aid of Maple [21].

In Figure 5.2 we can see the full epipolar geometry estimation process.

5.5.2 Computing camera’s motion and scene structure
Once the fundamental matrix is known the application can continue to derive the motion 
of the camera. This procedure was described in Chapter 4. We saw that it is possible to 
obtain the cameras’ projection matrixes when the fundamental, or the essential matrix 
is known.

The application calculates the four possible projection matrices by evaluating the, 
equations (4.47). It then uses the “points in front of the camera” (Section 4.8.3) crite- < 
rion to choose the correct projection matrix for the second camera.

Structure is then calculated with triangulation, as described in Section 4.8.4.

5.6 The graphical user interface
The application that we created uses a graphical user interface to interact with the 
user. This graphical user interface was created with the library wxPython, which is 
basically a wrapper around wxWidgets for C ++ . This library allow us to make the 
application portable across platforms. This means that the application can run in 
a variety of platforms, from Windows to many Unix clones with X-Windows based 
graphical environments.

In Figure 5.3 we can see how the main graphical user interface looks while running 
on Windows XP. The application follows the Multiple Documents Interface(MDI) par
adigm, with documents being images and reconstruction views. The user can create 
and work on one project at a time. This project consists of the images tha t we took 
from a scene along with the image points correspondences. These projects can be saved 
to special files with the extension .m pf which stands for modelling project file. All 
required information about the project is saved in these files and can be loaded at a 
later time.

The bottom and right part of the graphical user interface are adjustable in size and 
contain several tab pages. Each tab page has a special purpose. At the bottom part the· 
tab pages are the “Info” and “Images” . The “Info” tab contains general information 
about the currently open project. This info is general to the project, like the name of 
the project, the number, of images used in the project, etc. The tab  labelled “Images”
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-Figure 5.3: The main graphical user interface of the application. In the screen-shot 
we can see an open reconstruction project. Two images of the scene are visible along 
with the calculated corresponding epipolar lines. The three-dimensional reconstruction 
is also rendered in the OpenGL window.

(Figure 5.4), contains the thumbnails of all the images in the currently open project.
The user can quickly select the image that interests him from this toolbar.

The tabs at the right part (Figure 5.5) of the graphical user interface are dedicated * ‘ 
to controlling the point placement and correspondence.

The menu at the top of the application allows the user to  take actions concerning 
the modelling project. These range from loading and saving the project file, to solving 
the problem of reconstruction with one of the available methods.

5.6.1 Global refinement step
The method that uses the epipolar geometry to reconstruct the scene can be further 
refined with the use of the global optimization step from the simultaneous structure 
and motion method.

When the structure and motion of the scene has been estimated with the epipolar 
geometry method, a maximum likelihood estimation can be obtained through bun
dle adjustment [13]. W hat we do is refine the projection matrixes P* and the three- 
dimensional points X  that we obtained with triangulation, so tha t the mean squared
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distances between the observed image points x &  and the reprojected ones, is m i n i m i z e d .  

This is basically what we do in the simultaneous structure and motion method. The 
following criterion is m i n i m i z e d :

m  n

mm Σ Σ ^ ’Ρ * * )2 (5·2)
k = l  i = l

where D(a, b) is the Euchdian image space distance. If the image error is zero-mean 
Gaussian then bundle adjustment is the maximum likelihood estimator. This way we' 
bootstrap the Levenberg-Marquardt optimization algorithm with a starting point very 
close to the solution and the algorithm converges quickly to a more refined solution.
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5.6.2 Creating a new project
To reconstruct a three-dimensional scene from photographs using this application the 
user must first create a new modelling project. This is done by selecting the “new. 
project” item of the “File” menu. A new empty project is the created and the user 
should continue to add images to it.

5.6.3 Adding images
Then the user should import a number of photographs in the application. The appli
cation supports most of the available standard image formats, like JPEG, PNG, GIF, 
BMP, etc. In general it is recommended that the JPEG format is used for photographs. 
This is also true for this application, but for one additional reason too. The JPEG files 
when taken from digital cameras can contain additional info about the camera that 
took the picture. Some of this info, like the camera’s focal length, are very useful to 
our application and the JPEG file format is the only that supports it. ,

To add a new photograph the use should use the “Add images” item of the “Images” · 
menu. A file selection dialog will appear that will prompt the user to select the photo
graph from the disk. The new photograph will be inserted in the current project and 
should be visible in the thumbnail toolbar (Figure 5.4) as a thumbnail. The user should 
repeat this operation an many times as necessary to add all the available photographs 
of the scene.

5.6.4 Adding points
Once the photographs are loaded to the application, the user will have to establish 
point correspondences among the images. This is done by first adding named three-, 
dimensional points to the project. At the “3D Points” tab page (Figure 5.5) the user can 
add three-dimensional points by typing the name of the point and pressing the “Add 
3D point” button. Note that we enter here the points tha t we want the application 
to reconstruct. Some of these points will be used for the calibration of the scene also.
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The user should mark these point by checking the “Used for calibration” button. The 
points that are not used for calibration will still be reconstructed. ^

Once the points are entered in the application the user should select these points 
from the list and click on the images that the point is visible. Crosses will mark the 
position of the point in each image. The currently selected point has a red cross while 
the others a white cross.

The user should use for calibration the points that are better placed. This way the 
overall process will be more accurate. In the same sense the user would not use for 
calibration a point that has big ambiguity in its position. Such a point is fine for being 
reconstructed but putting it in the calibration procedure will tain the results of the 
other points too.

5.6.5 Solving the scene
The application allows for two distinct methods of solving the reconstruction problem. 
The one that was described in Chapter 3 and the one described in Chapter 4.

The first method uses the one big optimization step that was described at the 
according chapter. This method is there for illustration purposes only and should not 
be used for actual reconstruction of three-dimensional scenes. This method fails most 
of the times to reconstruct complex scenes. But is can sometimes give good results, 
depending on the initialization which can be no better than random. This scene solving 
is selected by choosing the “Simultaneous solution of motion and structure” item of the 
“Solve” menu.

The proposed way to reconstruct a scene is to use the “Estimate Fundamental 
matrix” item from the “Solve” menu. This solution utilizes the theory of chapter 4 
to reconstruct the three-dimensional scene. This method is accurate and produces the ·» 
desirable results. When we select this method there must be two photographs open in 
the application. Then the program will try to estimate the epipolar geometry of the 
two views. In Figure 5.7 we can see the result of the epipolar geometry calculation by 
the program.

We can observe the epipolar lines passing from the corresponding point in the im
ages. Once the epipolar geometry is estimated we can calculate the structure of the 
scene and the motion of the cameras. This is done automatically when the user chooses 
to estimate the epipolar geometry, but can be done manually by choosing the “Generate 
3D Points” from the “Solve” menu. This is useful for when the user makes changes to 
the point on the two images but does not want to recalculate the epipolar geometry. 
This can happen when modifying points not used in the calibration and epipolar geom
etry calculation step, or if the user would like to see how a point will be reconstructed 
if it had different image space coordinated, with the same epipolar geometry.

The resulting three-dimensional reconstruction can be viewed from the embedded
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Figure 5.7: The epipolar lines of the two views

“3D View” window, or can be exported to a .ply file. These files are three-dimensional  ̂
mesh files that can be read by many modelers. This file is mainly used by the Stanford 
3D scanning repository, and there are importers available for many modelling programs. 
This way the resulting cloud point can be imported in a modelling suit for further 
retouching it.

In Figure 5.8 we can see the reconstructed model in the modelling application : 
Blender [23]. The point cloud was exported from our application in the .ply file format 
and imported easily to Blender, where we were able to  triangulate it. As it can be seen 
the quality of the reconstruction is very good. In Figure 5.9 we can also see the model 
illuminated and shaded.

5.7 Example reconstruction
The reconstruction system we developed was used to reconstruct the bush of the “Char
ioteer” model. The replica bust of the famous Charioteer can be seen in Figure 5.10. To 
efficiently reconstruct the model we used structured light. This was necessary since the 
model does not provide many feature points by itself. In Figure 5.11 we can see the two 
photographs that we actually used for the reconstruction. The projected pattern on 
the bust enabled us to extract 250 feature point correspondences. These feature points 
was marked in the reconstruction application and the result was the three-dimensional 
positions of the feature points. In the specific model we didn’t  have to reconstruct both, 
sides of the model. By exploiting the symmetry of the model there is no need to extract 
feature points from the other side of the face. We reconstructed one side of the model 
and then mirrored thege points to obtain the other side.

The resulting point cloud was exported from our application and imported in the
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Figure 5.8: The reconstructed wire-frame model

 ̂modelling application Blender where is was triangulated and later textured. The 
suiting model can be seen in Figure 5,12. re-
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Figure 5.9: Two views of the reconstructed model rendered with shading
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Figure 5.10: The replica bust of Charioteer, we are going to reconstruct

Figure 5.11: The photographs used for the reconstruction. To extract a fine grid of 
feature points a pattern was projected on the bust. The result are 250 feature point 
correspondences

;s>
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Figure 5.12: The reconstructed model. In the left frame we can see the wireframe 
model. In the right we see two views of the model wit h a texture from the original bust, 
applied
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C h a p t e r  6

C o n c l u s i o n s  a n d  f u t u r e  w o r k

The work presented in this thesis deals with the three-dimensional reconstruction of ■* 
scenes from two-dimensional snapshots. The reconstruction problem was studied from 
several perspectives and a solid procedure was developed around which an interactive 
reconstruction application was build.

The developed method is decomposed into a number of discreet tasks. This design 
allowed for easy testing of different algorithms for each task. We where also able to 
identify bottlenecks and pitfalls in the total reconstruction system, and to optimize the 
performance of the system both speed wise but also in terms of accuracy.

The first system we developed that was based around a simultaneous reconstruc
tion of structure and motion was found inefficient for the purposes of our application. 
The optimization step involved made the system inappropriate for cases that no good 
starting point for the solution is known. However this method waS useful in our recon- . 
struction system, as a final refinement step.

The proposed algorithm for reconstruction in this thesis is based on the epipolar 
geometry between two views. We described a method that first estimates the epipolar 
geometry of two views, to calculate the motion of the cameras. Then with the aid of 
triangulation we are able to reconstruct actual three-dimensional points of the scene, 
from point correspondences. Various methods are described that optimize the output 
of the algorithms to make it usable in practice.

We have contributed a method to extend the usage of the epipolar geometry method 
to take advantage of more than two photographs. The proposed method does not relay 
on constraints of three view (or more) geometry, but works using data  available only 
from the epipolar geometry method.

This work depends heavily in the extraction of good feature points from the pho
tographs. This procedure can be performed interactively but it can also be automated. 
An automated method is going to be implemented for the reconstruction system based
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on detecting feature points with image processing and then later use the epipolar geom
etry to detect point correspondences.
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