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Abstract

Bioengineering is a broad-based engineering discipline that applies engineering principles and de­
sign to challenges in human health and medicine. It includes research and analysis o f  the mechanics 
o f living organisms and the application o f engineering principles to biological systems. This re­
search and analysis can be carried out on multiple levels, from the molecular, wherein biomaterials 
such as collagen and elastin are considered, all the way up to the tissue and organ level. Applications 
that benefit from bioengineering include medical devices, diagnostic equipment, biocompatible ma­
terials, and many others.

Precise modeling o f biomechanical phenomena is based on principles and laws o f  continuum 
mechanics. There is a vast literature on the subject, including the books by Fung [62, 63, 64] 
and Kojic et al. [91] and the references therein. One is immediately overwhelmed by the plethora 
o f  mathematical equations accompanying the description o f every biological process. Circulation, 
motion, growth, living tissues, cardiovascular mechanics, electrocardiography (ECG), electroen­
cephalography (EEG), magnetoencephalography (MEG), ultrasonography and source localization 
are all described by a specific boundary value problem (BVP) involving a system o f coupled or 
uncoupled partial differential equations (PDEs). For instance, under most circumstances, blood 
is modeled as an incompressible Newtonian fluid and the blood flow is governed by the incom­
pressible Navier-Stokes equations [60, 61]. At tissue level the arterial walls, muscles and other 
soft tissues such as tendon, ligament and cartilage can all be modeled as continuous media. In the 
investigation o f bone healing through guided ultrasound waves [126, 127], bones are modeled as 
transversely isotropic elastic materials and the elastic wave propagation problem is governed by the 
Navier equation.

The underlying BVPs for modeling biomedical systems involve linearly or nonlinearly coupled 

systems o f PDEs in quite non-trivial geometries. Much effort has been devoted to the understanding 
o f  similar phenomena in one space dimension, where the underlying equations can be solved ana­
lytically in a first attempt to investigate and monitor physical processes o f this type. However, one 
space dimension inevitably hides evolution phenomena that are by nature three-dimensional, and 
the one-dimensional models fail in some rather simple cases.
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The development and validation o f such models in any case relies heavily on experimental in­
vestigations, which nowadays are increasingly coupled to computer modeling. Computer modeling, 
in turn, employs sophisticated numerical methods for solving the underlying boundary value prob­

lems. The accurate and efficient treatment o f such BVPs in realistic three-dimensional geometries 
is a computationally very demanding process and a highly active area o f research.

Traditionally, BVPs can be broadly classified as either exterior or interior, and numerical meth­
ods specialize to either case. In the first category, one usually finds scattering processes and wave 
propagation phenomena. The second category includes phenomena that evolve in a fixed bounded 
domain. Both problem types model several processes encountered in bioengineering and both are 
considered in this work. Our contributions are presented in the following three chapters.

C hapter 1: Sonography Sonography is widely known as an ultrasound-based diagnostic imaging 

technique used to visualize muscles and internal organs, their size, structures and possible 
pathologies or lesions. There are a plethora o f diagnostic and therapeutic applications in 
medicine using sound waves propagating at specific frequencies. The choice of the underlying 
frequencies of the generated acoustic waves depends on the application. For example, in 
ultrasound imaging there is a trade-off between spatial resolution o f the image and imaging 
depth: lower frequencies produce less resolution but penetrate deeper into the body.

Despite the widespread use of ultrasonography as an efficient and “safe” imaging technique, 
there are several weaknesses of ultrasonic imaging as well as risks and side-effects [84, 88, 
89]. Sonographic devices have trouble penetrating bones. They perform very poorly when 
there is gas between the transducer and the organ of interest because of the extreme differ­

ences in acoustic impedance. Even in the absence of bone or air the depth of penetration of 
ultrasound is limited, making it difficult to image structures deep in the body. These weak­
nesses are a direct consequence of the high frequencies of ultrasound waves. Waves of lower 
frequencies would potentially not suffer from such problems. This fact strongly encourages 
the investigation of their suitability as a possible replacement of ultrasound waves in imaging 
applications.

A first step in this direction is the quest for devising mathematical methods for the efficient 
treatment of the direct acoustic scattering problem. This is an exterior BVP governed by 
the Helmholtz equation. We employ an analytical method for the investigation of the direct 
scattering problem using a prolate spheroid, which can model several organs or structures 
of the human body. The efficiency of analytical approaches employed for this purpose is 
strongly influenced by physical and geometrical characteristics of the scatterers involved, as 
well as the frequency of the incident field. Our contribution in this work is three-fold.
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First, a novel basis o f  Helmholtz outward-radiating eigensolutions for the underlying spher­
oidal geometry is introduced by employing the Vekua transformation, which maps the kernel 
o f  the Laplace operator to the kernel o f  the Helmholtz operator. The scattered field is then 

represented as an infinite expansion o f this complete set, which is inevitably truncated to 
allow numerical schemes to be developed.

Second, the coefficients o f the truncated expansion are provided by the solution o f  linear sys­
tems constructed to minimize the L?  norm o f the error o f the boundary condition satisfaction, 
introduced by truncation, on the scatterer’s surface.

Finally, a study o f the condition o f the matrices involved in the aforementioned linear sys­
tems revealed the need for computation in arbitrary precision. Appropriate multiple-precision 
software was developed, allowing a thorough convergence study and investigation o f the sen­
sitivity o f the solution with respect to parameters related to the scattering problem and the 
adopted numerical scheme. Up to 180 digits o f  precision were needed to achieve reliable so­
lutions. Our results are accompanied by visualizations o f far-field patterns, clarifying the pre­

ferred scattering directions for a wide range o f frequencies and eccentricities o f the spheroidal 
scatterer.

C hap ter 2: Convection-Diffusion-Reaction Coupled convection-diffusion-reaction PDE systems 
model a wide variety o f biomedical and physical applications. For instance, mass transport 
o f  oxygen in arteries and transport o f the low density lipoprotein (LDL), well known as an 
atherogenic molecule, are governed by convection-diffusion PDE systems [91]. The model­
ing o f thrombosis by continuum-based methods involves nonlinearly coupled convection- 
diffusion-reaction systems [91]. Gas flow in the airway tree (respiration system) is also 
modeled by convection-diffusion equations [64]. Tumor growth modeling involves nonlin­
ear reaction-diffusion systems [92, 93]. Finally, EEG source localization in the modeling of 
focal epilepsy is described by the Poisson equation [8, 9, 10, 124]. Industrial applications 
include semiconductors, fuel cells, and many others.

The numerical treatment o f such problems must overcome two main obstacles. This chap­
ter focuses on the first obstacle: the quality of results. Most standard numerical schemes 
fail when applied to convection-dominated PDEs. For instance, the standard Finite Element 
Bubnov-Galerkin method obtains solutions that suffer from instabilities, which appear as non­
physical ripples contaminating the solution domain. Stabilization approaches are needed to 
eliminate numerical ripples where possible in order to achieve high quality solutions.

Classical approaches such as streamline-upwind Petrov-Galerkin (SUPG), Galerkin least- 
squares (GLS), continuous interior penalty (CIP), and least-squares finite-element methods,
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are all designed to provide stable solutions. However, they are incapable of removing nu­

merical ripples completely, especially in areas where the solution exhibits steep gradients. 
Thus, quantities positive by nature (such as energy, concentrations, densities etc.) inevitably 

become negative and the corresponding results leave much to be desired. An approach that to­
tally eliminates numerical oscillations and provides positivity-preserving results for transient 

problems is the class o f Flux-Corrected Transport methods (FCT).

Our second chapter presents a new generalization o f the FCT methodology to implicit finite 
element discretizations. It preserves all the desired properties (superlinear convergence, pos­
itivity) o f the original scheme introduced in [94, 99] and refined in [97, 98], and at the same 
time speeds up the whole process by using a single sweep of the multidimensional FCT lim­
iter at the first outer iteration. It thereby avoids the computation o f an intermediate low-order 

solution, which was essential for the original algorithm. Finally, the suggested scheme favors 
the application o f the discrete Newton approach employed for the solution of the nonlinear 
systems, as it simplifies considerably the assembly o f the related discrete Jacobians.

C hapter 3: Domain Decomposition The second obstacle we encounter is common to every PDE 
system when a numerical solution method is employed. The obstacle is especially great for 
the Finite Element method. Discretization of the PDE system in that case leads to sparse 
algebraic linear systems involving millions of equations and unknowns. Especially in three- 
dimensional domains, the solution o f the linear systems typically constitutes 90-95% of the 
total running time of the computer simulation. Efficient solution of such linear systems is still 
considered an open problem.

Motivated by the widespread availability of multi-processing computing systems, we are 
forced to consider solution methods specifically designed for parallel processing. A large 
category of such methods is the class of Domain Decomposition methods, which we investi­
gate in our third chapter.

The usefulness o f any domain decomposition method rests on the ability to solve a prob­
lem that is posed on the internal boundary introduced by the decomposition and involves 
a pseudo-differential operator: the Stcklov-Poincard operator. To this end, a great number 
o f iterative approaches have been suggested in the literature; classical algorithms include 
Dirichlet-Neumann, Neumann-Neumann, FETI methods, Schwarz methods, together with 
two-level and overlapping variants.

An alternative that has not been considered to date but can be shown to be competitive is based 
on a well known property of the discrete Steklov-Poincar6 operator: it is norm-equivalent to 
a Sobolev norm-matrix of index 1/2. Our contribution builds on recent results o f Arioli and
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Loghin, which provide explicit finite-element representations o f fractional Sobolev norms. 
These discrete representations can be written in terms of generalised eigenvalue problems 
defined on the interface associated with the domain decomposition under consideration.

Our work focuses on a general class o f scalar elliptic partial differential equations in both 
two and three dimensions. Given the non-sparse representation o f fractional Sobolev norms, 
special algorithms for computing the action of these implicitly defined norm-matrices are re­
quired in order to maintain the scalability and efficiency in a domain decomposition context. 
We provide a description and analysis o f optimal algorithms based on approximation o f frac­
tional Sobolev norms via sparse algorithmic approaches such as the Lanczos algorithm. In 

particular, our analysis indicates independence o f the size of the problem. This prediction is 
tested on a range o f discretizations o f  elliptic problems in both two and three dimensions. The 
performance o f the resulting iterative solvers surpasses existing methodologies.

For example, the finite element method was applied to a scalar Poisson problem with Dirichlet 
boundary conditions on the geometry o f the human brain. The mesh consisted o f 164 million 
tetrahedra and 26 million nodes, and was partitioned into 2048 subdomains. The linear system 
o f order 26 million was solved on a single processor (1.9 GHz) in around 30 minutes (with the 
residual norm reduced by a factor o f 10“6). With our preconditioner, the Flexible GMRES 
solver required only 24 iterations.

The scalability o f the parallel implementation o f our preconditioning approach is extensively 
benchmarked on SMP multiprocessing platforms under several different operating systems 
(Linux, Sun Solaris, IBM A1X). With 16 CPUs, speedups o f around 13 were achieved for the 
factorization phase and about 9 for the solution phase. The speedups were found to depend 
on the operating system and the vendor-supplied BLAS implementation.
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Chapter 1

Sensitivity of the acoustic scattering 
problem in prolate spheroidal geometry 
with respect to wavenumber and shape

1.1 Introduction

The investigation o f the scattering problem in spheroidal geometry has attracted scientific interest 
for several decades. This is due to the simplicity and the important property o f the spheroidal system 
to fit quite accurately in several geometrical configurations lacking symmetry in one only Cartesian 
direction. Thus, it simulates successfully a large variety o f inclusions or inhomogeneities participat­
ing in scattering processes. A lot o f  effort has been devoted especially in the realm o f time harmonic 
acoustics to studying the direct scattering problem by spheroids. The adopted methodology depends 
crucially on the frequency range under consideration.

In the resonance region, the most popular approaches employ either separation o f variables or 
T-matrix methods [73, 75, 158, 164]. In the vast majority o f these approaches, the well known 
spheroidal wave functions dominate, which emerge via spectral analysis o f the Helmholtz equation 
in spheroidal coordinates. These functions are constructed via a necessary intermediate numerical 
scheme, which becomes cumbersome and extremely complicated for spheroids with large focal 
distances and small semi axes ratio. In addition, the spheroidal wave functions are defined via 
infinite expansions in terms o f basis functions o f separable form, and the convergence becomes poor 
in the upper limit o f  the resonance region and even worse in the high frequency realm. Particularly 
for high frequencies, the only practical choice is to resort to asymptotic methods (e.g., ray tracing). 
These methods, on the other hand, are not error-controllable because they solve an approximate

1
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model instead o f the original equations (the cikonal equation instead o f the Helmholtz equation 
itself). The adoption of resonance techniques in the high frequency regime, in cases where this is 
realizable, increases severely the computational resources. For instance, the Mie theory for acoustic 
scattering by a sphere o f radius o, predicts that the number o f summation terms is proportional to 
k 2a +  c(ka)1/ 3 +  62 (k  is the wavenumber and c, b suitable constants) as the frequency becomes 

higher [ 163].

It is well known that there are several numerical difficulties inherent in the solution of the scat­
tering problem using analytical methods, strongly dependent on the geometrical features o f the 
scatterer and the imposed frequency (or equivalently the induced wave number). Apart from the 
intrinsic numerical difficulty in the determination of the spheroidal wave functions, the standard 
methodology of expanding the scattered field in terms o f the aforementioned basis leads to ex­

tremely ill-conditioned matrices in the linear systems arising from the boundary condition satis­
faction. It is widely recognized [12, 24] that the 64-bit and 80-bit IEEE floating point arithmetic 
formats currently provided and utilized in most computer systems are inadequate for the inversion 

of ill-conditioned matrices of this type [149].

In our previous work [66], we introduced a new theoretical setting inspired by a novel concept 
[33] in which the Vekua transformation was adopted [159, 160, 161 ], in order to construct Helmholtz 

equation solutions by transforming appropriately the well known spheroidal harmonic functions. 
This setting avoids the standard spheroidal wave functions, thus removing all the intrinsic numerical 
deficiencies and truncation errors. In the present work, we extend the numerical investigation o f the 
acoustic scattering problem by spheroidal scatterers (introduced in [66]) towards the high frequency 
regime.

In Section 1.2 we present the necessary theoretical outcome, taken from [66]. We also provide 
additional theoretical arguments and justifications regarding the completeness of the constructed 
solution set. The scattered field emanating from the interaction o f a plane acoustic wave with an 
impenetrable soft spheroidal scatterer is represented as an expansion in terms of the elements o f 
the Vekua basis. This infinite expansion is truncated and forced to satisfy the boundary condition 
on the scatterer's surface. For the determination of the expansion coefficients we follow the L2 
error norm minimization methodology [66], which has been proven very robust and reliable in the 
low-frequency regime even for very elongated spheroidal bodies. The numerical investigation of the 
system, the solution of which furnishes the truncated expansion coefficients and its conditioning, is 
presented in Section 1.3. There we also expose an extensive convergence analysis of our approach, 
in terms of truncation level, geometry and wavenumber. Additionally we provide the global de­
pendence of the L·2 norm o f the error as a function of the aforementioned three parameters. The 
cornerstone o f the numerical implementation is arbitrary-precision software facilities [ 12, 13,167],
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an indispensable tool for several scientific areas such as Experimental Mathematics, Climate Model- 
ing [24], Computational Geometry [141] among many others, which in our case allows the solution 
o f  the encountered linear systems. Finally the main outcome o f the direct scattering problem, i.e., 

the far-held pattern, is constructed and appropriately visualized for indicative wave numbers ranging 
from low frequencies to the dawn o f  high-frequency asymptotics.

1.2 Theoretical formulation

In [159,161] one can find a very interesting one-to-one transformation connecting the solutions o f 
Laplace and Helmholtz equations with regular behavior near the origin, for arbitrary space dimen­
sions. In three dimensions, the transformation pair becomes

u (r) =  Uo(r) -  y  J  u0( t r ) J i ( k r y / l  -  t ) - j= L = d t  (1.1)

and jl···  ̂— λ
uo(r) =  u (r )  +  Y j o u ( t v ) h ( k r y / t ( l  -  ί ) ) γ = = ,  (1.2)

where r  =  |r | =  (x \2 +  X22 +  X32)K  u € ke r (A  +  A:2), uq e  ker  Δ , and J j ,  Ιχ stand for 
the Bessel and the modified Bessel functions of order 1 respectively. The wave number k  and the 
radial frequency ω of the scattering process are interrelated via the basic relation k =  u;/c , where c 
stands for the velocity of the acoustical waves. The transformation presented above clearly concerns 
regular, near the origin, functions and consequently refers to solutions o f Laplace and Helmholtz 
equations in interior domains. We summarize briefly the main arguments needed to describe the 
construction of the novel set o f  Helmholtz equation solutions.

1.2.1 Construction of a new set of Helmholtz eigensolutions

Let us introduce the prolate spheroidal coordinate system, described by the spheroidal coordinates 
(μ , θ, φ). The prolate spheroidal coordinates are interrelated with the Cartesian ones via

Q
x  — — sinh μ  sin Θ cos 0,

L·
μ  €  [0, oo), (1.3)

y  =  ~~ sinh μ  sin Θ sin φ ,
L·

0 € [O , jt], (1.4)

2  =  2  cosh μ cos0, φ  €  [0,2π), (1.5)
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where a  stands for the focal distance. The complete set o f eigensolutions o f Laplace operator, which 
are regular harmonic functions at the origin, expressed in prolate spheroidal coordinates is given by

«nm (r ) =  P r ( c o sh M ) ^ ( c o B 0 ) e w,* 1 n  s  0 ,1 ,2 , . .  M  |m| <  n, ( L 6 )

where P™ are the Legendre functions. We substitute every member o f  (1.6) in (1.1) aiming at 
the construction o f the corresponding eigensolution o f Helmholtz equation. Then every harmonic 

function gives rise to the dynamic eigensolution

Unm(r) =  P™(coshμ)Ρη  (cos θ)βίτηφ -  y  j i 'p ^ i c o s h  S)P?(cos

M k r V T ^ l ) J j L - d t , (1.7)

where ( / / ,  <jf) represent the spheroidal coordinates o f r '  =  <r, (0 <  t  <  1). Extended manipula­
tions o f the involved special functions in the integrand [33] transform Unm (r )  to the representation

[Π] [ZL̂E] J

Unm (r) =  “  2 p +  2 ) (bL\n~2p+\/2 ^ ~ 2P -2i(C0S^ P)
p = 0 (=0 '  2 >

n̂m- 2p- 2 i ( c o s ^ ) e ^ ,  (1.8)

where

Sn,m,p,/
( - l ) r ( n + m ) t ( n . 2 p - 2 i - m ) l ( 2 n - 2 p ) !  ( n - 2 p - Q f ( 2 n - 4 p - 4 f + l )

( n - m ) ! ( n - 2 p - 2 i + T 7 i ) ! p !  ( η - Ρ ) 1 Π 2 2 Ρ + ί ι ( 2 η - 4 ρ ~ 2 ί + ϊ ) !
0

\ m \ < n - 2 p -  21 

|m | >  n 2 p  — 21.

(1.9)

Representation (1.8) would have been an elegant formula for unm(r) if  the radial coordinate r  were 
not encountered therein. Actually, the radial component r  involves both spheroidal coordinates 
(μ ,0) and prevents unm(r) from being expressible in terms o f spheroidal coordinates in a fully 
separable manner. As described in detail in [33], expanding the Bessel function Jn- 2P+i/ 2 as a 
power series of its argument and using functional properties o f Legendre functions products, we
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obtain the following quasi-separate representation o f (1.8):

oo 9 [?] [*=$*] 3
“ηπ.(Γ) =  Σ Σ Σ  Σ  ^ Ζ Μ ^ ^ , η , τ η , ρ , Ι , ί , ο ^ ΐ χ ύ ι μ )29 2 j

9=0 j= 0  p=0 1=0 i = - j

Pn-2p-2l(cosh t*)Pn-2p~2l+2t(cos θ)είτηφ. (1.10)

In (1.10), c =  ka /2  and A (q . j ,  Z, i, c) is a specific function of its arguments [33]. However,
expression (1.8) is a veiy useful “hybrid” form o f u„m(r) as it consists o f a finite superposition of 
products. Each one o f those products is built by a harmonic separable part and a wave term, incor­
porating the wave number k  appropriately accompanied by the radial distance r .  This expression is 
the convenient one for constructing the exterior eigensolutions of Helmholtz equation. We consider 
separately the functions generated by splitting etm* into its real and imaginary parts and invoke the 
spherical Bessel functions instead o f the cylindrical ones. Then

f unm(Γ) 
1 <m (r)

[§] W  „ 2
=  Σ  Σ Β ^ Γ (η ~ 2? +

p = 0 /= o  z  V 7 r

j(n-2p){kr)
(^)n-2P

P n - 2 p - 2 l  ( c o s h  β ) Ρ η - 2 p -2 l  ( c o s  θ )
cos (τηφ) 
s in (m ^) }

( 1. 11)

We now replace in the formulae above the Bessel function with the corresponding outwards radiat­
ing Hankel one, thus constructing the functions u„m and which are irregular in the vicinity of 
r  =  0 and constitute candidates for being outgoing waves obeying to the Helmholtz equation. We 
treat only u for simplicity, obtaining

if) [ ^ ]
.£  /  \  _  D  r»/ λ  | 2  ^ n - 2 p ( ^ r )
u n m ( T) -  Σ  Σ  B n ,m ,p , l^ ( n  %P +  ( k r \ n - 2 p

p=0 /= 0  v  '  2 /

P n —2p—2l ( c o s h  y ) P n - 2 p - 2 l  ( c o s  0 )c o s (m 4 > ). ( 1.12)

We consider now Rayleigh’s formula [15]

(1.13)

which suggests that the function

/nm(^! r) — k 2 n + l ( A  +  fc2)w^m(r), (1.14)
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depending only on k  (with r  ^  0 kept fixed) is analytic in the upper half o f  the complex plane. The 
real part r)  o f r)  is a harmonic function in the domain where it is defined. On the

real axis ( I m(k)  =  0), we have

«C (* ;r)|fcefl =  Λβ{*2Β+1(Δ +  k 2)ucnm(r)}\keR =  Α:2"+1(Δ  +  fc2) < m ( r )  =  0. (1.15)

On the large semicircle of the upper half-plane o f radius /?, the harmonic function w£m(fc; r)  takes 
values decaying to zero for R —>oc. This is proven by considering formula (1.13) and examining the 
asymptotic behavior of the crucial term etz for z =  7?e*7r , where a rg 7  6  (0, π).

Thus, the harmonic function r)  vanishes in the upper half-plane and clearly so does the

analytic function /£ m. Then for real k, (Δ  +  fc2)«£m(r) =  0 provided ucnjn belongs to ke r (A  +  
k 2). Similarly we treat u„m (r) and finally obtain that all unrn(r) constitute eigensolutions o f the 

Helmholtz equation. The radiating character o f unm (r) is due to the asymptotic behavior o f the 
Hankel function.

1.2.2 Completeness of the new set

We proceed with the completeness of the constructed solution set, as our purpose is to expand 
our arbitrary Helmholtz equation solution in terms o f this basis set. We remark first that unm =  
t/7im +  where unm is constructed with the Bessel function o f first kind in (1.8) replaced by
the corresponding Neumann function. Let u  be an arbitrary radiation solution o f the Helmholtz 
equation. Its regular part Rr.gu can be expanded in terms of the complete set u nm (in the space o f 
regular Helmholtz equation solutions) as

Regu  — ^  ^ 7nmUnm· (1*16)
n , m

We define

w =  Unm =  R ^U  +  i 7nm «nm · (> ■ 1'V
n,m n,m

The function u -  w  disposes zero regular part and satisfies the Helmholtz equation and the well 
known Sommerfeld radiation condition.

duBC(r)
-  ifeti c(r) «  0 { - ζ ) ,  r—* oo. (118)dr
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Then,

elfcr 1
u - w  = -----g(0 , φ) +  ), r —» oo, (1.19)

r  r z

where g{Q, 0) the scattering amplitude o f the radiating field. Note that

Reg(u  -  u>) =  i ~ ·^ g(0, φ) +  O ( ^ )  (1.20)
r

and then g(0. φ) vanishes. Invoking Relich’s lemma leads to the result that u — w  vanishes in the 
whole exterior domain. Thus u — m 7nm^nm·

1.2.3 D ire c t sc a tte rin g  p ro b lem

The above analysis settles the background for developing the corresponding scattering problem. We 
consider a prolate spheroidal acoustically impenetrable (soft) scatterer occupying a specific region 
in R 3 defined by the scatterers’s surface S , which is represented by the spheroidal surface

μ =  μο- (1.21)

The exterior region o f the scatterer is denoted by D  and is characterized by the range μ  >  μο, 
0 <  θ < π, 0 <  φ < 2π o f spheroidal coordinates. The scatterer is illuminated by a time harmonic 
incident accoustic plane-wave o f radial frequency ω. Suppressing the time dependence in all 
the physical quantities o f the scattering process, we represent the incident field by the time-reduced 
plane wave

u*"c(r) =  e,k r , r  €  Z?, (1.22)

where k  =  k k , k  is the wavenumber and k  is the direction o f the incident field. The presence of 
the scatterer in the medium where the wave propagates gives rise to a secondary acoustic field, the 
scattered one denoted by u 8C, which satisfies exactly as the incident wave the Helmholtz equation

A u ec(r) + k?usc(r )  =  0, r  €  D.  (1.23)

This field emanates from the scatterer and radiates to infinity, satisfying uniformly over all directions 
the Sommerfeld radiation condition (1.18). The total field w(r) =  uinc(r) +  u sc(r) defined in 
D  =  D  U 5  obeys on the scatterer’s surface a specific type o f boundary condition, depending on the
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special nature o f the scatterer. We focus on the soft scatterer case, implying that

u{r) =  uinc(r) +  u*c{r) =  0, r e S. (1.24)

The methodology suggested here is based on exploiting the eigensolutions constructed in the pre­

mental solutions, we select the set o f outgoing radiating fields, because only these functions satisfy 
radiation condition (1.18). We then expand the unknown scattered field in terms o f the aforemen­

tioned radiating basic solutions to obtain

where the coefficients A nm are be determined.

1.2.4 Far field

The representation (1.25) can be exploited to provide the far-field pattern, which determines the 
behavior of the scattered field far from the scatterer and usually constitutes the measured quantity 
in direct scattering. What is necessary is to investigate the asymptotic behavior (for r —► oo) of the 
eigensolutions unm(r). For r  » 1 ,  we apply an extended but straightforward asymptotic analysis of 
the special functions involved in the “hybrid” definition formula o f unm(r), namely

vious section. More precisely, these eigensolutions are produced via the Vekua transformation o f 
the complete set o f the spheroidal harmonic separable solutions. From all these transformed funda­

o o  n
U>c(r) =  Σ  A nm U „m (r), Γ €  D , (1.25)

2 p ~ 2 l  ( ® O s h  f l )  P n ~ 2p —2 l ( C O S  0 ) c i m * (1.26)

The scattered field obtains the well known form

e,ltr 1

u'C(r) =  Ί ίΓ /οο(Μ ) +  ° & ' r -  00 (127)
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where the far-field pattern /^ ( f l ,  Φ) is given by

/αο(0,*) =  Σ  Σ
P=0

Pn-2p{cos9)e{im<i,). (1.28)

Satisfaction o f the boundary condition (1.24) leads to the determ ination o f the expansion coefficients 
in (1.25) and hence to the solution o f the direct scattering problem.

1.3 Numerical investigation and implementation

The numerical implementation of our approach involved both C++ and Mathematica software de­
velopment, to allow consistency checks. Both implementations relied heavily on arbitrary precision, 
without which the range of the frequency of the incident wave, the geometry and the truncation level 
of the series that could be handled would be severely restricted. The need for arbitrary precision 
motivated the use o f general computing environments like Mathematica [167], which incorporates 
arbitrary precision in a very natural way. The need for performance and convenience motivated the 
development o f C++ software. Arbitrary-precision arithmetic in C++ was provided by the ARPREC 
library [13]. The implementations o f special functions in C++ was based on [ 125, 170] with neces­
sary modifications and tuning to the working precision. This involves recalculation o f all the usual 
parameters and mathematical constants entering the definition o f special functions to the desired 
precision and appropriate modifications of the source code o f the special functions [125, 167, 170] 
in order to be evaluated to the required precision. The results obtained by both C++ and Mathemat­
ica implementations agreed to all but the last two or three decimal digits in any desired precision.

1.3.1 Assembly and solvability of the system

The most computationally demanding part of our approach is the assembly of the linear system 
whose solution provides the expansion coefficients. This is because the L 2 norm minimization 
approach needs expensive 2D quadratures, and further, all entries o f the matrix and right-hand side 
involve special function evaluations that must converge to the working precision. Moreover, the 
aforementioned systems involve extremely ill-conditioned matrices with condition numbers ranging 
from 1010 to 10160 and more, as demonstrated in the sequel.

The solution o f the linear systems was provided by Singular Value Decomposition (SVD) [68, 
125], which allows direct calculation o f the condition number o f the matrices involved. As the most
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computationally intensive part o f our approach was the assembly of the linear system and not its 
solution, in contrast to classical numerical methods, computational overhead associated with the 
specific choice of SVD over the classical LU decomposition was negligible.

In the scattering process under investigation we consider a spheroidal scatterer with large semi 
axis whose reduced length is kept constant and equal to one, while the small semi axis varies suit­
ably, giving rise to several aspect ratios. The excitation of the scattering mechanism has been 
accomplished with a plane wave corresponding to the wavenumber propagation vector k  =  kk ,  
where k  =  (x  +  y - t-z ) /\/3  and k €  {0 .5 ,1 .1 .5 ,2 ,2 .5 ,3 ,3 .5 ,4}%/3 (all in reduced units). We have 
applied an incident wave field of this form in order to handle a rather generic excitation case. This 
increases the complexity of the numerical calculations involved, compared to the one coordinate 
axis oriented stimulation, but reveals the reliability and robustness o f the adopted methodology in 

the general propagation case.
We should point out that the dimensionless product o f the incident wavenumber k  and the char­

acteristic dimension of the prolate spheroid, taken as the large semi axis C , is being expanded 

beyond low frequency kC  <  1 or resonance region kC  ~  1. The range for the dimensionless 
product is taken from kC  =  0 .5 \/3  to k C  =  4%/3 in all our “computer" scattering “experiments”.

1.3.2 Condition number

In Fig. I . I (left) we plot the condition number o f matrices arising in the adopted methodology, as a 
function o f the truncation level o f the series N  at various wavenumbers for a semi axes ratio equal 
to O.G. It is evident that the condition number is established mainly by the truncation level o f the 
series, while the role of the wavenumber of the incident field is almost negligible especially for 
values beyond k  =  0.5 y/3. The plot clearly reveals an exponential growth of the condition number 
with increasing N .  On the contrary the dependence of the condition number on the wavenumber k  
is hardly noticeable as the wavenumber increases from k  =  l>/3 up to k  — 4 \/3 .

In Fig. I . I (right) we plot the condition number o f the matrices for a truncation level o f the series 
N  a* 16 as a function of the wavenumber k  for several aspect-ratios o f the scatterer, ranging from 
aft — 0.6 to a *  =  0.9. For the low wavenumber region defined by k €  [0.5v/3, l.by/3] there is an 
exponential decay with two different slopes in logarithmic representation for k  €  [0.5>/3,1 y/3] and 
from k  € (l\/3 ,1 .5 \/3 ]. Surprisingly a plateau value for the condition number is being established 
for all the aspect ratios and the wavenumbers beyond k  =  1.5\/3. The condition o f the system 
strongly depends on the truncation o f the series and not the geometry under investigation or the 
wavenumber o f the incident wave.

Due to the fact that those linear systems are highly ill-conditioned, the solution obtained by 
one back substitution is extremely inaccurate relative to the working precision, as we can see in
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Figure 1.1: Condition number as a function o f N  for several /c’s at an  =  0.6 (left) and as a function 
o f the wavenumber k  for several clrs and N  — 16 (right).

Table 1.1. To adjust the solution to our working precision we used iterative refinement [68, 125]. 
Error and residual bounds involved in the iterative refinement procedure were adjusted to the work­

ing precision. Below, the desired precision was set to 170 decimal digits and the update ||&r||2 and 
residual | | r ||2 Euclidean norm tolerances were adjusted to 10-170 and 10-172 respectively. As a

Table 1.1: Update and residual norms during iterative refinement.

Iteration ||Jx ||2 IMh
1 1.213932e+14 7.060036e-60
2 5.556136e-18 9.824089e-127
3 7.734852e-85 3.159688e-l33
4 2.130082e-164 3.159688e-133
5 1.831668e-166 3.159688e-133

rule o f thumb the working precision should be tuned [149] to log10 k{A). It is evident that in the 

first step o f  iterative refinement the norm o f the solution update is still too large and five steps of 
iterative refinement need to be performed in order to reduce the Euclidean norm o f the error to our 
working precision. The computational cost o f  iterative refinement procedure is negligible compared 
to that o f the matrix factorization. This suggests that iterative refinement is a cheap way of obtaining 
highly accurate results when necessary.
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1 3 3  Convergence analysis

Our convergence study focuses on the treatment o f boundary condition satisfaction (1.24). Due 
to the well-posedness o f the direct scattering problem, convergence o f the numerical solution to 
the solution o f the exact scattering problem is guaranteed, provided the error related to the bound­

ary condition satisfaction approaches zero. In what follows we present an extensive study o f the 
convergence in I?  norm of the so-constructed error function defined as

IMlL*(s) = (^ M M )l2ds)*,

£ν (Θ, φ) =  (u%(r) + u inc(r))\T€S

=  Σ  Σ  Α ηηιΰη η {ιχί Λ Φ )  + ^ <μο'β'φ)· (1.29)
n=0 mss—n

Computation o f the integrals related to the L 2 norm was performed using Gauss-Legcndre quadra­
ture [125]. The number o f required quadrature points was adjusted so that the L 2 norm of the error 
converged to the fifth significant digit. The way several parameters o f  our physical problem, like 
the aspect ratio o f the prolate spheroidal scatterer and the frequency of the incident field, influence 

convergence is exposed in the plots that follow. The convergence study is supplemented with 3D 
plots o f the distribution o f the real and imaginary parts o f  the error on the scatterer’s surface.

Figure 1.2: |k||^2(5j as a function o f the truncation level N  with αχ  = 0.6,0.7 and k  =  
0.5\/3, 2\/z, 3v/3.4\/Z.

Figs. 1.2 and 1.3 plot the dependence o f the HeyvIL·2̂ )  as a function o f  the truncation level 
o f the series N  for several wavenumbers (k  =  0.5>/3, \/3,2\/3,3>/3,4\/3) o f the incident wave, 
for each of the scatterers (a/? =  0.6,0.7,0.8,0.9) under consideration. The scale on the y  axis is
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Figure 1.3: H ellos) as a function o f the truncation level Ar with aR =  0.8,0.9 and k — 
0.5\/3, \/3,2v/3,3\/3, Ay/Z.

logarithmic.

Several interesting properties regarding the convergence of our approach emerge from the plots. 
First o f all, we observe that in all the cases, the convergence is clearly exponential. For each 
scatterer, the error increases with increasing wavenumber (consequently frequency), but the con­
vergence rate remains the same independently o f the frequency. This is a very nice property that 
suggests that incident waves o f high frequencies can be sufficiently handled by the current approach, 
provided the convergence rate for the specific scatterer is sufficiently high. We observe however, 
that the convergence rate is strongly influenced by the aspect ratio o f the spheroidal scatterer. The 
more elongated our spheroid becomes, the slower the series convergences. In Fig. 1.4 we plot 
IIcn IIl2(5) *n logarithmic scale on the y  axis, but now as a function o f the wavenumber k  for the 
aspect ratios under consideration: aR €  {0.6,0.7.0.8,0.9} at N  =  16. This plot reveals two im­
portant properties. As before, convergence rate clearly deteriorates with smaller aspect ratios. The 
error exponentially increases with increasing wavenumber k.

The error dependence on the truncation level o f  the series N  and on the aspect ratio a/*, as 
depicted in Figs. 1.2, 1.3 and Fig. 1.4, allows a straightforward regression analysis, which will 
ideally express in closed form the L2 norm of the error as a function of the three parameters involved. 
These are the truncation level TV, the aspect ratio <ir  and the wavenumber k. This is a three-step 

process, described below.

We begin by expressing the dependence o f the logarithm o f the L 2 norm o f  the error, which is 
clearly linear with respect to the truncation level o f  the series TV, as

ΙηίΝΙ^ίΤν,αΛ,Α:)) =  C ( a R , k ) N  +  D ( a R t k ) t (1.30)
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Figure 1.4: ||€ ||^ 2  as a function o f wavenumber for various aspect ratios at truncation level 16.

where C{u r , fc), D(aj?, k)  are functions depending on the aspect ratio o f the scatterer clr and the 
wavenumber k . The values of C(aR,k).D(<iR,k)  for different aspect ratios and for indicative 
wavenumbers k  obtained by regression analysis with sufficiently high correlation (0.999) are sum­
marized in Table 1.2.

Having calculated the slope-regression coefficient C (a R ,k )  and the intercept-regression con­
stant D(o/j, k) we proceed with the investigation o f the dependence o f slope and intercept as func­

tions o f the wavenumber k.

The dependence o f C(aR,h)> as can be seen in Fig. 1.5 (left), is linear with respect to the 
wavenumber k  and can be expressed as

C (a n ,k )  =  ci(an)fc +  C2 (a* ), (1.31)

where ci,C2 , depend only on the aspect ratio an- The values for ci(an)iC 2 (a/t) can be found in 
Table 1.3. We proceed by describing the dependence o f ci(an)» ca(afl) on the aspect ratio qr by 

the following formulas:

Ci(an) »  c,o +  cuclr + Ci2dR (i = 1,2). (1.32)
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Table 1.2: C (b r , k) and D ( q,r , fc)

k C(aR ,k) D {o r , k)
0.60 0.5 v/3 -0.2023 -1.2552

lv/3 -0.1981 -0.8257
2v/3 -0.1920 -0.1828
3y/3 -0.1856 0.3331
4v/3 -0.1757 0.7056

0.70 0.5v/3 -0.3299 -1.3274
lv/3 -0.3234 -0.7779
2v/3 -0.3096 0.0955
3v/3 -0.2951 0.7540
4 \/3 -0.2809 1.2801

0.80 0.5 v/3 -0.5296 -1.3128
lv/3 -0.5191 -0.5413
2v/3 -0.4961 0.6951
3v/3 -0.4696 1.5875
4v/3 -0.4435 2.2968

0.90 0.5 v/3 -0.8822 -1.1351
lv/3 -0.8658 0.1568
2v/3 -0.8241 2.0133
3v/3 -0.7745 3.3340
4v/3 -0.7218 4.3189

Table 1.3: c i(clr) andc2 (a/j)

OR Cl (o r) 02 (o r )

0.6 0.0042 -0.2060
0.7 0.0081 -0.3373
0.8 0.0143 -0.5435
0.9 0.0266 -0.9104

Again, the regression analysis suggested

c i(a fl) =  0.0742 -  0.2429αΛ +  0.2108a^ 

02(αΛ) =  -2 .0016  +  6.5219αΛ -  5.8943a^. (1.33)
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Figure 1.5: C(aR, k) (left) and D(o.r } k.) (right) as a function of wavenumber k for various aspect 
ratios a* with the linear fit.

Figure 1.6: ci(a/*) (left) and 0 2(0 /2) (right) in conjunction with the fitting function.

In Figs. 1.6 (left, right) we plot the adjusted curves with the computed values for cj (a#)} 0 2(0 /2).
We have followed a similar three-step procedure for the decomposition of D{qr, k)9 venturing 

to find the best fitting functions. The intercept D(ax, k) plotted in Fig. 1.5 (right) was expressed as 
a function of wavenumber k by the following formula:

D{aRyk) — di{aR)\/k + d2(ait)· (1*34)

The values of the non-linear curve fit are presented in Table 1.4. We express the dependence of 
d\9d2 on a/ι by

di(aR) — dio + diiax 4- i = 1,2. (1.35)
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Figure 1.7: d.i(aR) left and d2(aR) right (black) and fitting functions (red dashed).

Table 1.4: Values of £ίχ(αβ ), d2(aR )

GR di{aR) d2(aR )
0.6 1.1645 -2.3456
0.7 1.5464 -2.7846
0.8 2.1437 -3.3221
0.9 3.2320 -4.0927

The regression analysis suggested

d i(a R) =  6.6344 -  19.6893αβ  +  1 7 .6 5 9 5 ^

d2(aR) =  -3 .3 6 1 7  +  6.656αβ  -  8.2898a^ (1.36)

Figures 1.7 (left, right) plot d \(a R) and d2(aR). Summarizing, nonlinear regression analysis sug­
gested the following dependence o f \\e\\&:

M il*  =  <*K* * * \

p(N , aR , k)  =  ((0.0742 -  0.2429αβ  +  0.21084)*:

-  2.0016 +  6.5219αβ -  5 .8 9 4 3 4 ) N  

+  (6.6344 -  19.6893αβ  +  1 7 .65954) ν '*

-  3.3617 +  6.656αβ -  8 .28984· (1-37)
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Figure 1.8: Re(e) (left) and /m (e) (right) at α χ  =  0.6 and k -  4 \/3 .

Figure 1.9: J?e(e) (left) and Im (e)  (right) at α χ  =  0.9 and k  =  4 \/3 .

Additionally we have calculated the L°° norm defined by

ΙΙ£Ν|Ιί,«(5) =  ess sup|e;v| =  max|c/v|. (1.38)
S S

In Figs. 1.8, 1.9 (left, right) we plot both the real and imaginary parts o f the error on the 
surface of the scatterer for N  =  16, wavenumber k. = 4 \/3  and aspect ratios «/? =  0.6 and 
αχ — 0.9 respectively. Those 3D plots provide a detailed description of the error distribution. We 
can see that the error attains it maximum value in both cases on the poles o f the spheroidal scatterer, 
where the curvature is usually higher. Finally in Table 1.5, we provide indicative values for different 
aspect ratios for the real and imaginary part o f  the L°° norm, as well as for the L 2 norm o f the error.
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1J.4  The far-field pattern

The far-field pattern constitutes the basic outcome o f the analysis o f the direct scattering problem. 
It is determined by Eq. (1.28), by substituting the calculated expansion coefficients provided by the 
preceding numerical process. In Figs.!.10-1.17 we visualize both the real and imaginary parts o f 
the far-field pattern for the two extreme geometrical configurations q r  =  0.6, o r  =  0.9 and for 
wavenumbers starting from k  =  1.5 v/3 because directivity becomes prominent from this specific 
value o f  the wavenumber. We have selected both real and imaginary parts, instead o f  the magnitude, 
to distinguish between the two different contributions. Color bars give the quantitative description 
o f the scattered field. The direction o f the incident field is shown packed together with the axes 
system. Both the far-field pattern and the scatterer are described on the same coordinate system and 
are rendered together to clarify the directionality o f the scattered wave relative to the geometry o f 
the scatterer.

Figs. 1.10-1.13 show the far-field pattern obtained by the interaction o f our incident field with 
the prolate spheroid o f semi axes ratio q r  =  0.6. Usually for very low frequencies (wavenumber 
k  as 0.1) the far-field pattern exhibits an almost spherical shape, due to the fact that the incident 
field is not able (wavelength sensitivity) to follow the shape and curvature o f the scatterer’s surface. 
We observed this behavior by solving the forward scattering problem for wavenumbers around 
fc ~  0.1 (low frequency region). For this reason we begin in Figs. 1.10 (left, right) with wavenumber 
k  =  1.5 λ/3, where we distinguish a single main lobe. In Figs. 1.11 (left, right) (k  =  2>/3), two 
individual secondary lobes emerge and grow in size as wavenumber increases. This procedure leads 
to exaggerated twin lobes for k =  4 \/3  depicted in Fig. 1.13, indicating the redistribution o f the 
scattering energy in particular favored directions. Directivity o f the scattered field is observed for 
the imaginary part as well at different directions, suggesting that the total scattered field displays a 
rich pattern o f preferred scattering directions.

The case of semi axes ration/? =  0.9 is presented in Figs. 1.14—1.17. Starting with wavenumber 
k  =  1.5>/3 we see as before, one main lobe both for the real and imaginary part o f the far-field pat­
tern. As the frequency increases, redistribution o f energy occurs towards several favored directions, 
which is more than those we observed in the previous case. This is clearly expected because for 
q r  =  0.9 the prolate spheroid is hardly distinguishable from a sphere (q r  =  1.0), which is not 
true for (a/? =  0.6), and generally more symmetries in geometrical configurations result in energy 
redistribution to more preferable directions.
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Figure 1.11: Far-field pattern Re  left and Im  right fora/? =  O.G at k  =  2\/3·

Figure 1.12: Far-held pattern Rc left and Im  right for ur =  0.6 at k — 3\/3.
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Figure 1.13: Far-field pattern Re (left) and Im  (right) for aR =  0.6 at k =  4 ^3 .

Figure 1.14: Far-field pattern Re  (left) and Im  (right) for aR =  0.9 at k =  1 . 5 ^ .

t0Qe«00

Figure 1.15: Far-field pattern Re (left) and Im  (right) for aR =  0.9 at it =  2>/3.
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Figure 1.16: Far-field pattern Re  (left) and Im  (right) for aR = 0.9 at k =  3v/3.

Figure 1.17: Far-field pattern Re (left) and Im  (right) for α χ  =  0.9 at k =  4 \/3 .
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Table 1.5: Error norms L°° and L 2 for truncation level N = \6  as functions o f the aspect ratio and 
the dimensionless product kC  o f wave number and characteristic dimension o f the scattered The 
latter being the large prolate spheroidal semi axis C  =  1.

a H kC l|Jfe{£} ||L« llelli2
0.60 0.5v/3 1.240e-2 2.636e-2 1.146e-2

1.0v/3 2.730e-2 3.755e-2 1.864e-2
1.5v/3 5.352e-2 4.109e-2 2.773e-2
2.0V3 7.019e-2 6.129e-2 3.966e-2
2.5 v/3 8.042e-2 9.740e-2 5.510e-2
3 . 0 v ^ 1.03 le-1 1.267e-l 7.393e-2
3.5v/3 1.472e-l 1.483e-l 9.637e-2
4.0v/3 1.865e-l 1.749e-l 1.234e-l

0.70 0.5 v/3 1.256e-3 3.018e-3 1.386e-3
1.0v/3 4.022e-3 4.615e-3 2.656e-3
1.5 v/3 7.508e-3 6.585e-3 4.718e-3
2.0V3 1.076e-2 1.264e-2 7.917e-3
2.5 v/3 1.516e-2 1.995e-2 1.263e-2
3.0\/3 2.477e-2 2.806e-2 1.923e-2
3.5 v/3 3.599e-2 3.836e-2 2.841e-2
4.0v/3 4.884e-2 5.549e-2 4.083e-2

0.80 0.5 v/3 4.647e-5 1.118e-4 5.766e-5
Ι.Οχ/3 1.881e-4 2.176e-4 1.470e-4
1.5V3 3.810e-4 4.946e-4 3.418e-4
2.0V3 7.020e-4 1.033e-3 7.257e-4
2.5 v/3 1.394e-3 1.895e-3 1.433e-3
3.0\/3 2.522e-3 3.340e-3 2.686e-3
3.5 v/3 4.364e-3 5.815e-3 4.819e-3
4.0v/3 7.29 le-3 9.734e-3 8.285e-3

0.90 0.5\/3 1.847e-7 3.900e-7 2.440e-7
1.0v/3 8.354e-7 1.519e-6 1.147e-6
1.5v/3 2.599e-6 5.41 le-6 4.280e-6
2.0V3 8.332e-6 1.617e-5 1.409e-5
2.5 v/3 2.317e-5 4.680e-5 4.184e-5
3.0v/3 6.03 le-5 l.I88e-4 1.149e-4
3.5 v/3 1.520e-4 3.018e-4 2.936e-4
4.0\/3 3.589e-4 6.94 le-4 7.069e-4
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Results and discussion

The sensitivity o f the solution o f the direct acoustic scattering problem in prolate spheroidal geom­
etry with respect to the wavenumber and shape o f the scatterer was investigated. We verified that 
one of the main issues is that we have to deal with extremely ill-conditioned linear systems. The 
systems cannot be solved with conventional 80-bit IEEE floating-point arithmetic formats and inte­
gration of arbitrary-precision software facilities is the only choice available. Iterative refinement can 
assist, when arbitrary-precision is integrated, in keeping the number of decimal digits required as 

low as possible, thereby improving the performance. The suggested analytical method, in conjunc­
tion with L2 norm minimization of the error in satisfying the boundary condition on the surface of 

the scatterer, proved to be a very robust technique that could accurately handle a wide range o f  elon­
gated prolate spheroidal bodies and quite high frequencies (or equivalently the induced wavenum­
ber) o f the incident wave. Our convergence study revealed, however, that for extremely elongated 
spheroidal bodies the convergence rate decreases. In contrast, the frequency (wavenumber) o f the 
incident field does not affect the convergence rate but only increases the errors exponentially as it 
grows. This suggests that a solution to our problem for any frequency can be obtained, as long as the 
aspect ratio of the spheroid is such that it allows a relatively high convergence rate. The geometry 
o f the scatterer proved to be the most crucial parameter affecting the convergence.



Chapter 2

Implicit FEM-FCT algorithms and 
discrete Newton methods for transient 
convection problems

2.1 Introduction

The advent o f  nonlinear high-resolution schemes for convection-dominated flows traces its origins 

to the flux-corrected transport (FCT) methodology introduced in the early 1970s by Boris and Book 
[23]. The fully multidimensional generalization proposed by Zalesak [168] has formed a very gen­
eral framework for the design o f  FCT algorithms by representing them as a blend o f linear high- and 
low-order approximations. Unlike other limiting techniques, which are typically based on geomet­

ric design criteria, flux correction o f  FCT type is readily applicable to finite element discretizations 
on unstructured meshes [110, 111]. A comprehensive summary o f the state o f the art can be found 
in [35,96, 110, 169].

The design philosophy behind modem front-capturing methods involves a set o f  physical or 
mathematical constraints to be imposed on the discrete solution so as to prevent the formation o f 
spurious undershoots and overshoots in the vicinity o f  steep gradients. To this end, the following 
algorithmic components are to be specified [96, 169]:

•  a high-order approximation, which may fail to possess the desired properties;

•  a low-order approximation, which does enjoy these properties but is less accurate;

•  a way to decompose the difference between the above into a sum o f skew-symmetric inter- 
nodal fluxes that can be manipulated without violating mass conservation;

25
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•  a cost-effective mechanism for adjusting these antidiffusive fluxes in an adaptive fashion so 
that the imposed constraints are satisfied for a given solution.

Classical FCT algorithms are based on an explicit correction o f the low-order solution whose local 
extrema serve as the upper/lower bounds for the sum of limited antidiffusive fluxes. In the case o f 
an implicit time discretization, which gives rise to a nonlinear algebraic system, the same strategy 

can be used to secure the positivity o f the right-hand side, whereas the left-hand side is required 
to satisfy the M-matrix property. A nonsingular discrete operator A  with nonpositive off-diagonal 
entries a*j < 0, Vj φ  i is called an M-matrix if all the coefficients o f its inverse are nonnegative. 
Consequently, for an M-matrix, A x  >  0 implies that x  > 0.

The rationale for the development o f implicit FCT algorithms stems from the fact that the under­
lying linear discretizations must be stable. In particular, the use o f an unstable high-order method 
may give rise to nonlinear instabilities that manifest themselves in significant distortions o f the so­
lution profiles as an aftermath o f aggressive flux limiting. In the finite element context, a proper 
amount of streamline diffusion can be used to stabilize an explicit Galerkin scheme. However, 
the evaluation o f extra terms increases the cost o f matrix assembly and the time step must satisfy 
a restrictive ‘CFL’ condition. On the other hand, unconditionally stable implicit methods can be 

employed at large time steps (unless iterative solvers fail to converge or the positivity criterion is 

violated) and there is no need for any extra stabilization. Moreover, the overhead cost is insignifi­
cant, since the use of a consistent mass matrix leads to a sequence o f linear systems even in the fully 
explicit case.

The generalized FEM-FCT methodology introduced in [94, 99] and refined in [97, 98] is ap­
plicable to implicit time discretizations, but the cost o f iterative flux correction is rather high if  the 
sum of limited antidiffusive fluxes and the nodal correction factors need to be updated in each outer 
iteration. In addition, the nonlinear convergence rates leave a lot to be desired in many cases. The 
use of 'frozen9 correction factors computed at the beginning o f the time step by the standard Zalesak 
limiter alleviates the convergence problems but the linearized scheme can no longer guarantee pos­
itivity. The scmi-implicit limiting strategy to be described below makes it possible to overcome this 
problem and enforce the positivity constraint at a cost comparable to that o f  explicit flux correction. 
The resulting FEM-FCT algorithm is to be recommended for strongly time-dependent problems 
discretized in time by the Crank-Nicolson scheme. The design o f general-purpose flux limiters that 
are more expensive but do not suffer from a loss o f accuracy at large time steps is addressed in [95].

In this chapter, we compare a new semi-implicit FCT scheme to its semi-explicit prototype and 
focus on the iterative solution o f the resulting nonlinear algebraic systems. As an alternative to 
the fixed-point defect correction scheme, which tends to converge rather slowly, a discrete Newton 
method tailored to the peculiarities o f FEM-FCT schemes is developed. The sparse Jacobian matrix
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is approximated to second-order accuracy by means of divided differences and assembled edge-by­

edge. The semi-implicit nature of the new FCT limiter makes the Jacobian assembly particularly 
efficient because the sparsity pattern o f the underlying matrices is preserved. A detailed numerical 

study illustrates the potential o f flux-corrected Galerkin schemes combined with discrete Newton 
methods for the treatment o f nonlinearities.

2.2 Algebraic flux correction

In this chapter, we adopt an algebraic approach to the design o f high-resolution schemes that con­
sists o f  imposing certain mathematical constraints on discrete operators in order to achieve some 

favorable matrix properties. A handy algebraic criterion, which represents a multidimensional gen­
eralization o f Harten’s TVD theorem, was introduced by Jameson [81, 82], who proved that a semi­
discrete scheme o f the general form

=  C u, with Cij > 0 Vj φ  i  and Cij =  0, (2.1)
3

is local extremum diminishing (LED). After the discretization in time by a two-level scheme, such 
methods remain positivity-preserving (PP) provided that each solution update un —► t/n+1 or the 

converged steady-state solution u n+l =  un satisfies an algebraic system o f the form

A u n+l =  B u n +  / ,  (2.2)

where A  is an M-matrix, whereas B  and /  have no negative entries. Under these conditions, the 
positivity o f the old solution carries over to the new one [96, 98]:

un >  0 => un+1 =  A ~ l (B u n +  / )  >  0. (2.3)

If  the underlying spatial discretization is LED, then the off-diagonal coefficients o f both matrices 
have the right sign, while the positivity condition bn >  0 for the diagonal entries of B  yields a 
readily computable upper bound for admissible time steps [96]. In what follows, we discretize (2.1) 

in time using the standard 0-scheme, which yields A = I  -  OAtC  and B  ~  I  4- (1 -  0)A tC . The 
resulting CFL-like condition for the time step A t  reads [96]

1 +  A t ( l  -  0) min eg > 0  for 0 <  0 <  1. (2.4)
i

The discretization is unconditionally positivity-preserving if a fully implicit time-stepping scheme
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(Θ =  1) is adopted. O f course, the above algebraic constraints are not the necessary but merely 
sufficient conditions for a numerical scheme to be local extremum diminishing and/or positivity 
preserving. In the linear case, they turn out to be far too restrictive. According to the well known 

Godunov theorem, linear schemes satisfying these criteria are doomed to be (at most) first-order 
accurate. On the other hand, a high-order discretization that fails to satisfy the imposed constraints 
unconditionally can be adjusted so that it admits an equivalent representation o f the form (2.1) 
and/or (2.2), where the matrix entries may depend on the unknown solution. This idea makes it pos­
sible to construct a variety o f nonlinear high-resolution schemes based on the so-called algebraic 
flux correction (AFC) paradigm. A detailed overview o f this methodology is given in the survey 
article [96]. The design o f flux limiters for finite element discretizations with a consistent mass 
matrix is addressed in [95].

To keep the presentation self-contained, we will follow the road map displayed in Fig. 2.1 and 
explain the meaning of all discrete operators in the next three sections. Roughly speaking, a high- 
order Galerkin discretization is to be represented in the generic form (2.2), where the matrices A  
and D do satisfy the above-mentioned positivity constraint. In order to guarantee that the vector /  

poses no hazard to positivity either, it is to be replaced by its limited counterpart /*  such that the 
right-hand side remains nonnegative for u n > 0. This modification is mass-conserving provided 
that both /  and /*  can be decomposed into skew-symmetric intemodal fluxes as defined below. A 
family of implicit FEM-FCT schemes based on this algebraic approach was proposed in [94, 99] 
and combined with an iterative limiting strategy in [98]. In section 2.5.2 we present an alternative 
generalization o f Zalesak's limiter that offers some extra advantages. The new approach to flux 
correction o f FCT type is also based on the positivity constraint (2.2) but enforces it in another way 
so that the costly computation o f nodal correction factors is performed just once per time step. The 

positivity o f the resulting semi-implicit FCT algorithm is proven in section 2.5.3.

Solution strategics for die nonlinear algebraic system to be solved in each time step are presented 
in section 2.5.4. In particular, a discrete Newton method is proposed as a promising alternative 
to the standard defect correction approach. A suitable approximation to the Jacobian matrix is 
constructed using divided differences. In the framework of the semi-implicit FCT algorithm, this 
can be accomplished in a very efficient way because the correction factors arc computed just once 
per time step in the first outer iteration. In contrast, the use o f a semi-explicit FEM-FCT scheme 
results in an extended sparsity pattern for the Jacobian operator. The same side-effect is observed 

in the context o f high-resolution schemes o f TVD type [114].
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1. Semi-discrete high-order scheme (Galerkin FEM) I

du
M e -7-  = K u  such that 

d t
0 1

2. Semi-discrete low-order scheme L  — K  + D

M l ~ -  =  Lu  such that 
dt

h j > 0, Vj φ  i

3. Nonlinear FEM-FCT algorithm Am"+1 =  B u n + /* ,  I

where A  =  M l  — OAtL, B =  M l  +  (1 -  & )AtL  1

Figure 2.1: Roadmap o f matrix manipulations.

2.3 Semi-discrete high order scheme

As a standard model problem, consider the time-dependent continuity equation for a scalar quantity 
u  transported by the velocity field v , which is assumed to be known:

du  „  .
^  +  V * ( v u ) = 0 .  (2.5)

Let the discretization in space be performed by a (Galerkin) finite element method, which yields a 
DAE system for the vector o f time-dependent nodal values:

Λ/c—  =  K u ,  (2.6)dr

where M e  =  {m tJ} denotes the consistent mass matrix and K  =  {k ij}  is the discrete transport 
operator. The latter may contain some streamline diffusion used for stabilization purposes and/or 
to achieve better phase accuracy, e.g., in the framework of Taylor-Galerkin methods. Its skew- 

symmetric part |  (K  — K T ) provides a consistent discretization o f v  * V, whereas the symmetric 
part }}(K  +  K T ) — diag{ K }  represents a discrete (anti-)diffusion operator.

2.4 Semi-discrete low order scheme

In the case o f  linear discretizations, the algebraic constraints (2.1) and (2.2) can be readily enforced 

by means o f ‘discrete upwinding’ as proposed in [94,99]. For a semi-discrete finite element scheme
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o f the form (2.6), the required matrix manipulations are as follows:

•  replace the consistent mass matrix M e  by its lumped counterpart M l  =  diag{m,-};

•  render the operator K  local extremum diminishing by adding an artificial diffusion operator 

D  =  {dij}  so as to eliminate all negative off-diagonal coefficients.

This straightforward ‘postprocessing’ transforms (2.6) into its linear LED counterpart

Ah
M l ^  = Lu , L  = K  +  D , (2.7)

a t

where D  is supposed to be a symmetric matrix with zero row and column sums. For each pair o f 
nonzero off-diagonal coefficients fcy and kji o f the high-order operator K % the optimal choice o f the 
artificial diffusion coefficient dij reads [96, 99]

d ij = max{-/cy,0, - k j i }  =  d j i. (2.8)

Alternatively, one can apply discrete upwinding to the skew-symmetric part %(K -  K T) o f the 

original transport operator AT, which corresponds to

j  Ik { j  k j i \  k { j -h k j i  
aij -  o o e dji (2.9)

In either case, the off-diagonal coefficients of the low-order operator Zy :=  fcy+dy are nonnegative, 
as required by the LED criterion (2.1). Because o f the zero row sum property o f the artificial 
diffusion operator D, the diagonal coefficients o f L  are given by

(2. 10)

The semi-discretized equation for the nodal value u, (t) can be represented as

=  Σ  hj(<lj -  Ui) +  Ui Uj, (2 .1 1 )
jV* j

where m* =  m y  >  0 and Zy >  0, Vi Φ j .  The last term in the above expression represents 
a discrete counterpart o f  -uV * v , which is responsible for a physical growth o f  local extrema 
[96]. Recall that the operator D  has zero row sums so that m  ^  Zy =  u* (2.11). In the
semi-discrete case, this term is harmless because (cf. [83])

in(f) =  0, « i( t)> 0 , φ  ^ £ > 0 ,  (2.12)
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which proves that the low-order scheme (2.7) is positivity-preserving. For the fully discrete system 

to inherit this property, the time step should be chosen in accordance with the CFL-like condition 
(2.4) unless the backward Euler time-stepping (Θ =  1) is employed.

We would like to mention here that we have no proof for the convergence o f the low order 

scheme to the solution o f our original PDE. It does not result from some kind o f consistent dis­
cretization of the PDE and contains artificial diffusion which inevitably reduces the approximation 

order especially in the vicinity o f steep gradients. For finite element approximation we do not have 

currently any other alternative. A promising alternative is the one suggested by Gartner [65] for Fi­
nite Volume schemes, provided that the techniques and ideas presented in there could be transferred 
to finite element discretizations.

2.5 Nonlinear FEM-FCT algorithm

The high-order system (2.6) discretized in time by a standard 0-scheme

[Mc  -  Θ Μ Κ )ηη+ι = [Mc  +  (1 -  0 )A tK ]u n (2.13)

admits an equivalent representation in the form (2.2) amenable to flux correction:

\M l  -  0A tL ]un+l = [Μ ι +  (1 -  e)A tL ]u n +  f ( u n+1,u n). (2.14)

The last term in the right-hand side is assembled from skew-symmetric intemodal fluxes / # ,  which 
can be associated with the edges o f the sparsity graph [96]:

f i  =  Y , f n · .  where f a  =  - f a -  (215)

Specifically, these raw aniidiffusive fluxes, which offset the discretization error induced by mass 

lumping and discrete upwinding, are given by the formula [96,98]

f i j  = [mij +  0 Δ ί< ς+1] « +1 -  u?+1) -  K  -  (1 -  («? -  «")· <2->«)

Interestingly enough, the contribution o f the consistent mass matrix consists o f  a truly antidiffusive 
implicit part and a diffusive explicit part, which has a strong damping effect. In fact, explicit mass 

diffusion o f the form (M e  — M i) u n has been used to construct the ‘monotone’ low-order method 
in the framework o f explicit FEM-FCT algorithms [111].

In the case o f an implicit time discretization (0 <  Θ < 1), the nonlinearities inherent in the
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governing equation and/or the employed high-resolution scheme call for the use of an iterative 
solution strategy. Let successive approximations to the solution un+1 at the new time level £n+I =  
tn +  Δ ί be computed step-by-step in the framework of a fixed-point iteration

u<m+1> =  u (m) +  [C(m)] " 1r (m), m =  0 , 1 ,2 , . . . ,  u<°> =  un, (2.17)

where denotes a suitable ‘preconditioner* (to be defined below) that should be easy to invert. 

The corresponding residual vector of the m-th outer iteration is given by

r (m)=:6(Tn)ei4u(m)i (2.18)

Here, A  represents the ‘monotone’ evolution operator for the underlying low-order scheme

A ^ M l -  L = K  + Dt (2.19)

which enjoys the M-matrix property because the off-diagonal entries o f L  are nonnegative by con­
struction. The right-hand side which needs to be updated in each outer iteration, consists o f a 
low-order part augmented by limited antidiffusion [96]:

6(m) =  B u n +  r ( u ^ m\ u n ), B  =  M l  +  (1 -  9 )A tL . (2.20)

In order to prevent the formation of nonphysical undershoots and overshoots, the raw antidiffusive 
fluxes h i  should be multiplied by suitable correction factors so that

f i  — where 0 <  a y  <  1. (2-21)

This adjustment transforms (2.14) into a nonlinear combination o f  the low-order scheme (oty ξ  0) 
and the original high-order one (a y  =  1). The task of the flux limiter is to determine an opti­
mal value o f each correction factor a y  individually so as to remove as much artificial diffusion as 
possible without violating the positivity constraint introduced in section 2.2.

In a practical implementation, the ‘inversion* of the operator is also performed by a suit­
able iteration procedure for solving the sequence o f linear subproblems

C(m)Au(m+1) =  r <m>, m =  0 ,1 ,2 ,.... ( 2 .22)
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After a certain number of inner iterations, the increment is applied to the last iterate

u(m+1) =  u {m) +  A t/(m+1). (2.23)

A natural choice for the operator C^m\  is the monotone low-order operator (2.19) so that the itera­
tion procedure (2.17) yields the standard fixed-point defect correction scheme

A u {m+l) =  b{m\  m  =  0 ,1 ,2 ,___ (2.24)

Ideally, should be a good approximation to the Jacobian matrix j ( m) with coefficients

j(™) _ϋ
drj
duj u—ti(m)

(2.25)

evaluated at the last iterate . It is well known that the convergence behavior o f Newton s  method,
which corresponds to (2.17) with C =  j ( m\  is quite sensitive to the initial guess «(°). Because 

linear subproblems (2.22) are solved by an iterative technique, the resulting algorithm is categorized 
as an inexact Newton method [42]. A simple inexact scheme is based on the following convergence 
criterion in each linear iteration:

||./<mW m+1> -  r<m)|| <  T/||r<’n>||, (2.26)

where the so-called forcing term r/ €  [0,1) can be chosen adaptively [55]. Furthermore, some 

globalization strategy may be required to enhance the robustness o f Newton’s method. For a detailed 
description o f such techniques, which are mainly designed to guarantee a sufficient decrease o f the 

nonlinear residual (2.18), the interested reader is referred to the literature, e.g., [87]. In the case of 
time-dependent problems, globalization is less critical because the solution from the last time step 
may serve as a good initial guess.

Linear subproblems (2.22) can be solved using a Krylov subspace method such as BiCGSTAB 
or GMRES combined with preconditioners of ILU type. Because of the M-matrix property o f 
the evolution operator (2.19), its incomplete LU factorization unconditionally exists and is unique 
[113]. Hence, it is advisable to use A  as preconditioner for the Krylov solver even if  the Jacobian 
matrix (2.25) is adopted in the outer iteration procedure.

2.5.1 Semi-explicit FCT limiter

The first implicit FCT algorithm for finite element discretizations on unstructured meshes [94, 99] 
was based on the following limiting strategy, which was eventually superseded by further extensions
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proposed in a series o f subsequent publications [97,98].

1. Compute the high-order solution to (2.14) in an iterative way by solving (2.17) using the total 
amount of raw antidiffusion (a tJ s  1) to assemble the term /* .

2. Evaluate the contribution of the consistent mass matrix to the raw antidiffusive fluxes (2.16) 

using the converged high-order solution as a substitute for un+1.

3. Solve the explicit subproblem Μχ,ΰ =  B v 11 for the positivity-preserving intermediate solu­
tion fi, which represents an explicit low-order approximation to u(fn+I“ tf).

4. Invoke Zalesak’s multidimensional FCT limiter to determine the correction factors a y  so as 
to secure the positivity o f  the right-hand side as explained below.

5. Compute the final solution by solving the linear system A u n+l — 6, where

6,* =  77?t?7,· +  ^  fjj, fij =  (2.27)

In the fully explicit case (ι9 =  0), we have A =  M l  so that un+1 =  M £ l b can be computed 

explicitly from (2.24), and the classical FEM-FCT algorithm ofLohneret al. [110,111] is recovered. 
The crux o f the above generalization lies in the special choice of the operator A , which guarantees 
that the positivity of the right-hand side is preserved, whence

f i > 0  => b >  0 =* un+1 **A ~l b> Q . (2.28)

The flux correction process starts with an optional ‘prelimiting* o f the raw antidiffusive fluxes /y .  
It consists o f cancelling the 'wrong' ones, which tend to flatten the intermediate solution and create 
numerical artifacts. The required adjustment is given by [95]

f i j  ·= m ax{0,ρ,·7'}(ΰί -  u j), Pij =  } ^ /{ ΐα  -  ttj). (2.29)

The remaining fluxes are truly antidiffusive and need to be limited. The upper and lower bounds to 
be imposed on the net antidiffusive flux depend on the local extrema

fi!"** =  max fij, u f n =  min fij, (2.30)jes, J jzSt 3'

where Si — {j | m y ^  0} denotes the set o f nodes that share an element with node i.
In the worst case, all antidiffusive fluxes into node i have the same sign. Hence, it is worthwhile 

to treat the positive and negative ones separately, as proposed by Zalesak [168].
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1. Evaluate the sums o f all positive and negative antidiflfusive fluxes into node %:

K  = Σ  max{°> f i j } ’ Ρ Γ  = Σ  “ in i0- f ' i j } · (2.31)
j#i

2. Compute the distance to a local maximum/minimum o f the low-order solution:

s\-r _ -m ax  -  r \ -  _ -cQi — = U,-mm - (2.32)

3. Calculate the nodal correction factors, which prevent overshoots/undershoots:

Λ,+ =  min{l;mt<51+/P + }) R,- =  min{l, τη,ζ), / P i }. (2.33)

4. Check the sign o f / y  and apply R f  or R j ,  whichever is smaller, so that

=  |  m i n { f l t ,  Λ Τ } , i f  /* .  >  0 ,

|  π ή η ΙΛ ί',β Ι"} , otherwise.
(2.34)

This symmetric limiting strategy guarantees that the corrected right-hand side (2.27) satisfies the 
constraint i/J™11 <  fri/m* <  ΰ ψ Because the low-order operator A  was designed to be an M- 
matrix, the resulting scheme proves positivity-preserving [96, 99],

It is worth mentioning that the constituents of the sums P *  vary with A t,  while the corre­
sponding upper/lower bounds Q f  are fixed. Consequently, the correction factors produced by 
Zalesak’s limiter depend on the underlying time step. This peculiarity o f FCT methods turns out 
to be a blessing and a curse at the same time. On the one hand, a larger portion o f the raw an- 

tidiffusive flux f i j  may be retained as the time step is refined. On the other hand, the accuracy o f 
FCT algorithms deteriorates as A t  increases, because the positivity constraint (2.2) becomes too 
restrictive. The iterative limiting strategy proposed in [98] alleviates this problem to some extent by 
adjusting the correction factors ot\j in each outer iteration so as to recycle the rejected antidiffusion 
step-by-step. However, the cost o f iterative flux correction is rather high, and severe convergence 

problems may occur. Therefore, other limiting techniques such as the general-purpose (GP) flux 
limiter introduced in [95] are to be preferred if the solution is expected to reach a steady state in the 

long run.
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2.5*2 Semi-implicit FCT limiter

For truly time-dependent problems, the use o f moderately small time steps is dictated by accuracy 
considerations so that flux limiting o f FCT type is appropriate, in this case, the underlying time­

order to capture the evolutionary details. For this reason, we favor an implicit time discretization o f 
Crank-Nicolson type (0 =  1/2) and mention the strongly A-stable fractional-step 0-scheme [152] 

as a promising alternative.

The semi-explicit limiting strategy presented in the previous section can be classified as an 
algorithm o f  predictor-corrector type because the implicit part o f the raw antidiffusive flux (2 .16) is 
evaluated using the converged high-order solution in place o f un+1. This handy linearization, which 
can be traced back to the classical FEM-FCTprocedure [111], makes it possible to perform flux 
correction in a very efficient way, as Zalesak’s limiter is invoked just once per time step. However, a 
lot o f CPU time needs to be invested in the iterative solution o f the ill-conditioned high-order system 
and the convergence may even fail if  the time step is too large. Moreover, the final solution fails to 

satisfy the nonlinear algebraic system (2.17) upon substitution. On the other hand, an update o f the 
auxiliary quantities Ρ Ϊ ,  Q f , and R f  in each outer iteration would trigger the cost o f flux limiting 

and compromise the benefits o f implicit time-stepping. In order to circumvent this problem, let us 

introduce a semi-implicit FCT algorithm that can be implemented as follows:

• At the first outer iteration (m  =  1), compute a set o f antidiffusive fluxes f a  that provide an 

explicit estimate for the admissible magnitude o f f a  =  ctijfa -

1. Initialize all auxiliary arrays by zeros: P *  =  0, Q f  s  0, R f  =  0.

2. Compute the positivity-preserving intermediate solution o f low order:

stepping method should provide (unconditional) stability and be at least second-order accurate in

ϋ  =  u n  +  (1 -  0 ) A tM £ l L u n. (2.35)

3. For each pair o f  neighboring nodes i  and j< evaluate the raw antidiffusive flux

(2.36)

and add its contribution to the sums o f  positive/negative edge contributions;

max max
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4. Update the maxiraum/minimuni admissible increments for both nodes:

Q< '=  W f H » — <}■ «J =  {<#·■< -« > } ·  P-3«)

5. Relax the constraint <  1 for the nodal correction factors and compute

R f  == m iQ f/P t· (2-39)

6. Multiply the raw antidiffusive fluxes /£· by the minimum of R f  and R f :

;  , =  f rma{R t,R j} fP p  i f f $ > 0 ,
t j  \  min{/?j". otherwise.

At each outer iteration (777 =  1,2, . . . ) ,  assemble / *  and substitute it into (2.20).

1. Update the target flux (2.16) using the solution from the previous iteration:

f * j = [ i r i i j + - u}m))
-  [m y -  (1 -  0)Atd?j] «  -  u]).

2. Constrain each flux f i j  so that its magnitude is bounded by that of f i f

η
r. _  Γ min{fij, max{0, fij}}, if > 0,
,J max{/y,min{0,/y}}, otherwise.

(2.40)

(2.41)

(2.42)

3. Insert the limited antidiffusive fluxes /£· into the right-hand side (2.20):

, { « . )  , ( m )  . ( m )  b (m)  _
ut * wt ^  Jtji uj  · y»j· (2.43)

Because / x” is not the real taiget flux but merely an explicit predictor used to estimate the maximum 
amount of admissible antidiftusion, the multipliers R f  are redefined so that the ratio h i  f i j  may 
exceed unity. However, the effective correction factors :=  / £ /  f i j  are bounded by 0 and 1, as 
required for consistency.

Instead of computing the optimal upper/lower bounds (2.32) for a given time step, it is also 
possible to use some reasonable fixed bounds and adjust the time step if this is necessary to satisfy a 
CFL-like condition (as in the case of TVD methods). For instance, the auxiliary quantities Q f  can
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be computed using un instead o f u:

Q f  — miucu” -  u” , Q i  =  m in u ” -  u ” . (2.44)

The corresponding nodal correction factors R f  should be redefined as [95]

R t  = { m i - m u ) Q f / P rf ,  (2.45)

where rrii -  =  Σ & ΐ  m ij iS the difference between the diagonal entries o f the consistent and
lumped mass matrices. This modification eliminates the need for evaluation o f the intermediate 

solution u  in (2.35) and leads to a single-step FCT algorithm.

For a given time step, the multipliers (2.45) will typically be smaller than those defined by 
(2.39), However, in either case the denominator P *  is proportional to A t.  Therefore, the difference 
between the effective correction factors a y  will shrink and eventually vanish as the time step is 
refined. As long as A t  is sufficiently small, the accuracy o f both FCT techniques depends solely on 

the choice o f the underlying high-order scheme.

2.5.3 Positivity proof

The positivity proof for the semi-implicit FCT algorithm (2.35H 2.43) follows that for the classical 
Zalesak limiter; see [96, 99]. In the nontrivial case f t  φ  0, the ί-th component o f the right-hand 
side (2.20) admits the following representation:

=  m iU i  +  / *  =  ( m j  -  a ,* ) t i i  +  a if if c , (2.46)

where the coefficient a,- =  /,* /(£* -  ΰ^) is defined in terms o f the local extremum:

=
{

r .m a x  “t i
:m in

i f / ; > ( ) ,  

if /r < o.
(2.47)

This definition implies that /*  — a ,Q * t where a ,  >  0. By virtue o f (2.46), the sign o f the 
intermediate solution v  is preserved if the inequality m,· -  a ,  >  0 holds.

In the case f t  <  0, the antidiffosive correction to node i is bounded from below by

m (Q r < R f  P f  < £ m i n { 0 , / y } <  /*  =  
Mi

(2.48)
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Likewise, a strictly positive antidiffxisive correction f*  > 0 is bounded from above by

a iQ t  = f t <  X > a x { 0 ,  f i j}  < R + P f < TTiiQ?. (2.49)

It follows that 0 <  a,· <  m r , which proves that b*>  0 provided ΰ,· >  0 and ΰ* >  0.

In light o f the above, the semi-implicit FCT limiter is positivity-preserving as long as the diag­
onal coefficients o f the matrix B  as defined in (2.20) are nonnegative. The corresponding CFL-like 
condition (2.4) for the maximum admissible time step reads

(1 -  6 )A t < m in \m i/lu \ . (2.50)
i

The positivity of the single-step algorithm based on the slack bounds (2.44)-{2.45) can be proven 
in a similar way using the following representation o f the right-hand side:

b* =  (m,· -  α , Χ  +  aiu% +  (1 -  0 )A t Uju]. (2.51)
3

In this case, the limited antidiffusive correction to node i can be estimated as follows:

(m, -  m a ) Q T  < f t  < ( m i  -  m J Q f ,  (2.52)

so that m i —ai > m u. Thus, the right-hand side given by (2.51) preserves the sign o f un if  the time 
step satisfies the positivity constraint for all diagonal coefficients:

(1 -  0 )A t  <  m in \m a /lu \. (2.53)t

Under the above conditions, the M-matrix property o f the low-order operator (2.19) is sufficient 
to guarantee that each solution update is positivity-preserving if  the fixed-point iteration (2.17) is 
preconditioned by =  A , Vm. On the other hand, only the fully converged solution is certain 
to remain positive if  Newton’s method (C ^  =  J ^ )  is employed.

2.5.4 Approximation of jacobians

For the practical application o f Newton’s method, it remains to devise an algorithm for the construc­
tion o f  the Jacobian matrix (2.25). For simplicity, superscript m  will be omitted unless indicated 

otherwise. In what follows, differentiation is to be performed with respect to u, whereas u n is re­
garded as a given constant. The nonlinear residual (2.18) depends on the 'monotone’ operator A  and 
on the right-hand side h given by relations (2.19) and (2.20), respectively. Hence, it is advisable
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to split the Jacobian operator .7 =  J  +  J*  into its ‘upwind* part .7 =  {.7y} and the contribution o f 

the antidiflusive correction J* =  {«/£}.

Formally, the upwind Jacobian is given by J  — A!u -f A , which reduces to the M-matrix A =  
Μ ι —OAtL  for linear model problems o f the form (2.5). On the other hand, its derivative A ' does not 
vanish if the original transport operator K  (u) and hence its local extremum diminishing counterpart 

L(u) =  K (u )  +  D (u) depend on the unknown solution. Since the artificial diffusion operator D(u) 

was derived on the semi-discrete level by means of matrix manipulations, no analytical expression 
is available for A f(u). As a remedy, the Jacobian matrix is approximated by means of divided 
differences. To this end, let /  : W 1 —► R  denote a generic function for which the central divided 

difference operator is defined as follows:

* [ / ( « , 1 / ( «  + " * >  - / ( « ■- « > ) . (2.54)
2(T

In the above equation, e* denotes the fc-th unit vector. The optimal choice o f the perturbation 

parameter 0 < σ < 1  requires some knowledge of the sensitivity of the function /  and has been 
addressed by many authors. Following a strategy proposed by Nielsen et al. [i 16] it can be chosen 

proportional to the square root of the machine precision e. The formula

σ  =  [c(l +  IM|)]5 (2.55)

suggested in [123] takes into account the norm o f the solution and is claimed to reduce the noise 

arising from the numerical evaluation o f  the function / .  Some alternative choices are given in a 

survey paper on Jacobian-free Newton-Krylov methods by Knoll and Keyes [90],

The centra] divided-difference operator introduced in (2.54) yields a second-order accurate ap­

proximation for each entry of the upwind Jacobian J :

£ *  =  0*[(Λ«)<] +  Ο (σ2). (2.56)

Since A  =  M i  -  OAtL, the so-defined coefficient J** can be cast into the foim [114]

Jik -  i«*m* -  ΘΑΙ +  J !  « b M u * ) « (2*57)

where €  {0,1} denotes the standard Kronecker delta symbol and the auxiliary quantity 7,* 
stands for the average of the perturbed evolution coefficients resulting from discrete upwinding:

-  lik(u +  ae\k) +  lik(u -  cek)
Uk -------------------------o------------------ - (2.58)



2.5. N O N L I N E A R  F E M -F C T  A L G O R I T H M 41

It is also possible to neglect averaging in (2.57) and replace the averaged transport operator L  by 

the standard low-order term L. If the problem at hand is linear, the upwind Jacobian reduces to J  =  

M l  — 9 A tL  because all divided differences vanish. It is worth mentioning that the decomposition 
into individual edge contributions yields an efficient assembly procedure for the Jacobian that can 

be considered as a viable alternative to the element-by-element procedure traditionally employed in 

the finite element community [31].

Interestingly enough, the operator J  exhibits the same sparsity pattern as the finite element 

matrix, that is, j i j  Φ 0 implies m tJ Φ 0. As soon as algebraic flux correction comes into play, 
this amenable property may be lost. For upwind-biased discretization schemes o f  TVD type, the 

phenomenon o f matrix fill-in engendered by the flux limiter has been analyzed in section 4.2 o f 
publication [114]. Because o f conceptional similarities within the family o f  AFC schemes, essen­

tially the same analysis remains valid for symmetric flux limiters [95, 96]. As we are about to 
see, the semi-implicit FCT algorithm presented in section 2.5.2 is free o f this drawback and hence 

particularly suitable for the application o f Newton’s method.

To highlight this advantage o f the semi-implicit approach, let us revisit the general approach 

to evaluating o f the antidiffusive contribution J * to the Jacobian operator. To this end, let the 
solution vector u be perturbed at some node, say k, and compute the compensating antidiffiisive 

fluxes (2.21) based on the solution vectors u +  σβ* and u  — σβ* following the semi-explicit limiting 
algorithm presented in section 2.5.1. By construction, the nodal correction factors R f  defined in 

(2.33) may be affected by this perturbation for all i from the set £* o f nodes that share an element 
with node k. Consequently, the final correction factors α,-j defined in (2.34) may have different 
values if  at least one o f the nodes i and j  belongs to the set <S*. To put it in a nutshell, the impact 

o f  ‘jiggling’ the solution value at one particular node usually propagates along two edges i j  by 
virtue o f the correction factors Qy, which are recalculated at each iteration. Figure 2.2 illustrates 

the difference between the sparsity pattern o f the finite element matrix and that o f  the approximate 
Jacobian operator constructed as explained above.

As demonstrated in [114], the connectivity graph of the Jacobian is known a priori and can 

be directly constructed from that o f the stiffness matrix by means of symbolic matrix multiplica­
tion. Because of the matrix fill-in, the amount o f memory required to store the much denser Jaco­
bian increases considerably and so does the computational cost o f linear algebra operations such as 
matrix-vector multiplication, construction o f an ILU decomposition, etc.

Interestingly, it turns out that the antidiffusive Jacobian operator J * for the semi-implicit FCT 

algorithm presented in section 2.5.2 inherits the sparsity pattern of the finite element matrix. A 
closer look at equations (2.35)—(2.40) reveals that the initialization of the antidiffusive fluxes /  in 

the first outer iteration (m  =  1) does not rely on the dependent variable Hence, the explicit
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Figure 2.2: Sparsity pattern: Finite element matrix vs. Jacobian operator.

estimate for the admissible antidiffusion, which is already computed in the residual assembly, can 
be also adopted for the construction o f  the Jacobian. In essence, the target fluxes (2.16) that need 

to be updated at each iteration are constrained such that their magnitude is bounded by that o f / .  
Let us emphasize the fact that the correction factors a y  are only defined implicitly and hence will 

not entail a widening o f the matrix stencil. As a result, the Jacobian part J* can be assembled in a 

rather efficient way.
As a rule of thumb, the fc-th column of J* can be assembled by performing the algorithmic 

steps (2.41) and (2.42) based on the perturbed solution vectors u  4- σε* and u -  σε* to evaluate the 
corresponding fluxes / +  =  f* (u  +  σο*) and /  - = / * ( « -  σε*) and scale their difference by 2σ. 
However, this approach is quite expensive because it does not exploit the sparsity o f the Jacobian, 
which is inherited from the global evolution operator A. In order to circumvent this problem, let us 
introduce an efficient algorithm for assembling the operator J* for the semi-implicit FCT limiter in 

an edge-based fashion.

•  At each outer iteration (m — 1 ,2 , . . . ), initialize J* to zero and rebuild it in a loop over edges 
i j .  This process involves the following steps to be performed for k = i and k  =  j :

1. Evaluate the explicit antidiffusive contribution and the solution difference:

Λ3 =  [rny -  (1 -  Θ )Δ Ι< % Μ  -  «"). A Ujim )» « { m )- uyB). (2.59)

2. Compute auxiliary coefficients using the perturbed solution u ±  σβ*:

2 + =  m ij 4- 0& tdij(u{m) 4* σε*), z~ k =  m y  +  0A fdy(u(m) -  σβ*). (2.60)
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3. Update the perturbed target fluxes (2.16) depending on the index k:

ftj,k  =
ί  4 j. K " + ' i + / 5  

l  - Ί  +  / 5

if k — i, 

otherwise,
(2.61)

fij,k  "
_ ί  «5ΐΔ *ί Γ , - σ ΐ + Λΐ  

1  +

i f  k  =  i, 

otherwise.
(2.62)

4. Constrain each f lux/ ΐ * .*JlK so that its magnitude is bounded by that o f  fa :

f t j% =
ί  m in { / i fc,m a x { 0 ,/y }}, 

1  m ax{/<jtfci niiii{0, f i j} } ,
i f  f t j  >
otherwise,

(2.63)

(  m in { /”)fc, max{0, f i j} } ,  
\  m a x { /y fc)m in {0 ,/y }} ,

i f  f i j  >  0,
otherwise.

(2.64)

5. Compute the divided difference and insert it into the fc-th column o f the Jacobian:

fij,k =  ^  ~  / , ] ; )  > ··= J?k -  f t jJe, J j k - J j k  + fiijk- (2.65)

The last three steps call for further explanation. Following expression (2.41), the implicit contribu­
tion of the target fluxes (2.61 H 2 .6 2 ) is multiplied by the perturbed solution difference (u  ±  aek)% — 
(u ±  σek)j, where k  equals i or j .  This yields four possible combinations u* ±  σδ& — Uj q= aSjk 

for j  Φ i that need to be multiplied by the coefficients zf^k. The magnitude o f the raw antidiffusive 
fluxes f ? j k is bounded by that o f the explicit estimate f i j .  In the last step, the central difference o f 

the limited fluxes is inserted into the k -th column of the Jacobian matrix. Following step (2.43) of 
the original algorithm, node j  receives the same flux as node i but with opposite sign. Note that the 
antidiffusive fluxes are now applied to the left-hand side (2.65) so that the signs for nodes i and j  

are reversed.

The above algorithm is applicable to linear and nonlinear transport operators alike, it is worth 
mentioning that in the linear case the artificial diffusion coefficient djj does not depend on the 
solution so that the auxiliary quantity z\j =  rriij +  9 A td ij is not affected by solution variations. 

Moreover, the perturbed fluxes exhibit the following symmetry property:

f t j , i = ZijIAutf0 + σ1 + f i j  = f i j j ’ 

f i j , i = ~  + f i j  * f i j j ·

(2.66)

(2.67)
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As a consequence, the final flux that is inserted into the i-th column is also applied to column 

number j  but with opposite sign. That is, the following skew-symmetry holds:

/ ; .< = 5  (/«; -  ηή - -Bu- ο**)

Hence, it suffices to compute the divided difference (2.65) only for one index, say k  =  i, and update 
the four coefficients o f the Jacobian simultaneously according to

JS

1II f * .  .JW'

J*. :=  J? - f* ·,UJJ

•9  : = ·$  +  /& . (2.69)

Roughly speaking, the calculation o f the operator J*  is approximately twice as expensive as aug­
menting the right-hand side (2.20) by the antidiffusive fluxes making use o f the semi-explicit FCT 
algorithm (2.41 )-(2.43). As we are about to see, this extra cost clearly pays off in terms o f total effi­
ciency when it comes to time accurate simulation o f transient flows. Remarkably, this improvement 
is already observed if the evolution operator A  =  M i — OAtL  is constant and can be assembled 

once and for all at the beginning o f the simulation so that the standard defect correction approach 
(2.24) does not require further matrix evaluations. The benefits o f Newton’s method become even 
more significant if the preconditioner (2.19) needs to be updated in each outer iteration because o f 
a nonlinear governing equation or a linear but time-dependent velocity field v  =  v (x , i), so that the 
costs for assembling the operators J  and .7* may be neglected.

2.5.5 Convergence

A remark is in order regarding the convergence behavior o f the fixed-point iteration (2.17). The 
converged solution un+1 is supposed to satisfy a nonlinear algebraic system o f the form

A*«n+l =  Β ιΛ  (2.70)

where A * is the nonlinear FCT operator, which includes some built-in antidiffusion:

A*«n+1 :=  Aitn+1 -  /* . (2.71)

Clearly, the rate of convergence will depend on ||A* -  C ||, that is, the approximation property of 
the preconditioner C. On the one hand, the operator A  as defined in (2.19) is linear and easy to 
‘invert’ because it is an M-matrix. On the other hand, it represents a rather poor approximation to 
the original Galerkin operator M e  — O A tK , which is recovered in the limit q ,j  —♦ 1. A sa result, the
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convergence o f a highly accurate FCT algorithm based on the standard defect correction approach 

is likely to slow down as the high-order solution is approached.

In light o f  the above, the lumped-mass version, which is obtained by setting m jj =  0 in the 
definition o f the raw antidififusive flux, converges much faster than the one based on the consistent 

taiget flux (2 .16). However, mass lumping may have a devastating effect on the accuracy o f a time- 
dependent solution, as demonstrated by the numerical study performed in the next section. At the 

same time, the high phase accuracy provided by the consistent mass matrix comes at the cost of 

slower convergence, because the ‘monotone’ preconditioner A  is based on M l rather than M e- 
The original high-order system (2.13) that corresponds to o ij ξ  1 is particularly difficult to solve, 
even though it is linear (see below). Moreover, the number o f outer iterations tends to increase as 
the mesh is refined.

In general, there is a trade-off between the accuracy o f the numerical solution and convergence 
of the fixed-point iteration (2.24). Any modification of the flux limiter that makes it possible to 

accept more antidiffusion has an adverse effect on the nonlinear convergence rates. Conversely, 
more diffusive schemes converge much better but their accuracy leaves a lot to be desired. To 

overcome this shortcoming, the use of the discrete Newton method is advisable. The number of 
outer iterations required to drive the residual to some prescribed tolerance is drastically reduced and 

becomes largely independent of the grid refinement level. However, one should keep in mind that 
the Jacobian matrix (2.25) does not possess the M-matrix property so that intermediate solutions are 
not necessarily positivity-preserving.

2.6 Numerical examples

In order to evaluate the performance o f the new algorithm, we apply it to several time-dependent 

benchmark problems discretized using the standard Galerkin method and the second-order accurate 
Crank-Nicolson time-stepping. After flux limiting, the order o f approximation (in space and time) 
may vary depending on the local smoothness o f the solution. The goal o f this numerical study is to 
examine the accuracy of the resulting high-resolution scheme as well as the convergence behavior of 
the fixed-point iteration (2.17) and the implications of mass lumping. To this end, the semi-implicit 
FCT method (2.35)—(2.43) is compared with its semi-explicit prototype (2.29H2.34) and to the 
standard Galerkin discretization. Moreover, the standard defect correction scheme (2.24) and the 

discrete Newton approach are compared with respect to their nonlinear convergence rates as well as 
computational efficiency, that is, the total CPU time required to solve the nonlinear algebraic system 
(2.14) up to a prescribed tolerance.
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2.6.1 Convection skew to the mesh

In order to study the convergence behavior of the semi-implicit and semi-explicit FEM-FCT al­

gorithms as compared to that o f the underlying Galerkin scheme, let us solve equation (2.5) with 
v  =  (1,1) so that the initial profile is translated along the diagonal o f the computational domain 

Ω =  (0 ,1) x (0,1). The numerical study is to be performed for two different initial configurations 

centered at the reference point (xo, Vo) =  (0.3,0.3).

TP1 The first test problem corresponds to the discontinuous initial condition

u{x,y,Q ) if  max{|a; -  *o|. \y ~  Ifol} <  0.1, 
otherwise.

(2.72)

TP2 The second test problem deals with translation o f a smooth function defined as

u(x, v, 0) =  j [ l  4- cos(107r(x -  xo))][l +  cos(107r(y -  y0))) (2.73)

within the circle y j(x  -  x0)^ +  (y  -  yo)2 <  0-1 and equal to zero elsewhere.

Figures 2.3—2.4 display the approximate solutions at time t =  0.5 computed using A t  =  10~3 on a 
quadrilateral mesh consisting of 128 x 128 bilinear elements. The upper diagrams were produced by 
the consistent-mass semi-implicit FCT algorithm, which yields nonoscillatory solutions bounded by 
0 and 1. The underlying high-order scheme remains stable but gives rise to nonphysical undershoots 

and overshoots, as seen in the lower diagrams.
In either case, the numerical solution was computed in an iterative way using the fixed-point 

defect correction scheme (2.17) preconditioned by the low-order operator (2.19). The stopping 

criterion was based on the Euclidean norm o f the residual vector

r  =  A u n+t -  B u n -  /* ,  ||r || =  V & r , (2.74)

which was required to satisfy the inequality ||r || <  10 4. The difference between the exact solution 
u  and its finite element approximation Uh was measured in the Lpnorm,

||u -  «hill = |u -  Uh|dz *  ~ “<l. (2.75)

as well as in the L2 -norm defined by the following formula:

||u  — Uhlli =  /  iu -  t2 dx- «  £ T ?n |u (x j,ifc ) -  u , |2, (2.76)
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FEM-FCT

Galerkin scheme

Figure 2.3: Convection skew to the mesh TP1: 128 x 128 Q i  -elements, t  -  0.5.
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FEM-FCT

Galerkin scheme

Figure 2.4: Convection skew to the mesh TP2: 128 x 128 Q \ — elements, t — 0.5.
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where m, =  f n ipt- d x  are the diagonal coefficients o f the row-sum lumped mass matrix. Further­

more, the global minimum umin =  mini u, and maximum u max =  max, m  o f the discrete solution 
Uh were compared to their analytical values 0 and 1.

Tables 2.1 and 2.2 illustrate the convergence behavior o f the iterative flux/defect correction 

scheme as applied to the test problems TP1 and TP2 on three successively refined meshes. The 

first three columns in each table display the refinement level NLEV, the number o f vertices/nodes 
NVT, and the total number o f outer iterations NDC required to compute the numerical solution at 

t  =  0.5. The different performance o f the six algorithms under consideration supports the arguments

standard defect correction
NLEV NVT NDC ||u Uh ||l ||u wft||2 umin Umax

semi-implicit FCT / consistent mass matrix
6
7
8

4,225
16,641
66,049

2,500
2,461
2,489

1.1737e-2
7.3688e-3
4.7039e-3

6.2176e-2 
4.8577e-2 
3.8715e-2

0.0
0.0
0.0

1.0
1.0
1.0

semi-implicit FCT / lum >ed mass matrix
6
7
8

4,225
16,641
66,049

751
1,000
1,014

1.9356e-2 
1.2402e-2 
7.851 Ie-3

8.4294e-2 
6.5356e-2 
5.1182e-2

0.0
0.0
0.0

0.9988
1.0000
1.0000

Galerkin scheme / consistent mass matrix
6
7
8

4,225
16,641
66,049

4,666
7,379

13,852

3.6283e-2
2.7340e-2
2.3000e-2

7.4952e-2
5.8124e-2
5.2536e-2

-0.2557
-0.2743
-0.4437

1.4505
1.3797
1.4080

Galerkin scheme / lumped mass matrix
6
7
8

4,225
16,641
66,049

1,000
1,423
1,500

6.5181e-2 
4.7055e-2 
3.5126e-2

l,3073e-l
9.8663e-2
8.0298e-2

-0.4022
-0.4340
-0.3713

1.5608
1.5732
1.5628

semi-explicit FCT / consistent mass matrix
6
7
8

4,225
16,641
66,049

3,190
3,220
3,590

9.3328e-3
5.4794e-3
3.3680e-3

5.4115e-2 
4.1218e-2 
3.2369e-2

0.0
0.0
0.0

1.0
1.0
1.0

semi-explicit FCT / lum jed mass matrix
6
7
8

4,225
16,641
66,049

1.500
1.501 
1,540

1.9098e-2
1.2422e-2
7.8662e-3

8.3498e-2 
6.5348e-2 
5.1167e-2

0.0
0.0
0.0

0.9989
1.0000
1.0000

Table 2.1: Convection skew to the mesh: Convergence behavior for TP1.
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presented in section 2.5.5. In particular, it can readily be seen that the use o f the consistent mass 

matrix results in a much better accuracy but the convergence slows down, whereas the lumped- 
mass version is less accurate but much more efficient. If the difference Hu"*1 -  un || is laige, mass 

antidiffusion affects the convergence rates even stronger than the convective part o f the antidiffusive 
flux. Since the latter is proportional to A t,  the mass lumping error plays a dominant role at small 
time steps such that A  & M i .  On the other hand, the linear convergence rates improve since the 
condition number o f A  decreases and its diagonal dominance is enhanced as the time step is refined.

standard defect correction
NLEV NVT NDC u -u / ,  h I» -  W/1II2 u, Umax

semi-implicit FCT / consistent mass matrix
6 4,225 2,486 1.4799e-3 9.2813e-3 0.0 0.8562
7 16,641 1,833 4.3436e-4 2.7820e-3 0.0 0.9418
8 66,049 2,867 1.7887e-4 !.2032e-3 0.0 0.9740

semi-implicit FCT / lumped mass matrix
6 4,225 1 ,0 0 0 4.2704e-3 2.7827e-2 0.0 0.7308
7 16,641 1,000 1.7834e-3 1.1294e-2 0.0 0.9218
8 66,049 736 7.6982e-4 4.6142e-3 0 .0 0.9612

Galerkin sc leme / consistent mass matrix
6 4,225 2,500 1.3961e-3 2.6234e-3 -0.0158 0.9890
7 16,641 6,437 1.8892e-3 3.900 le-3 -0.0480 0.9925
8 66,049 13,700 2.3237e-3 8.1553e-3 -0.1363 1.0012

Galerkin scheme / lumped mass matrix
6 4,225 1,000 1.0904e-2 4.2409e-2 -0.1911 0.8809
7 16,641 1,000 3.4837e-3 1.4234e-2 -0.0811 1.0098
8 66,049 1,000 1.3092e-3 4.3179e-3 -0.0322 1.0046

semi-explicit FCT / consistent mass matrix
6 4,225 2,651 1.0770c-3 7.6799e-3 0.0 0.8555
7 16,641 2,328 2.84l4e-4 2.1692e-3 0.0 0.9471
8 66,049 3,434 1.3188e-4 9.8597e-4 0.0 0.9775

semi-explicit FCT / lum ped mass matrix
6 4,225 1,500 4.267 le-3 2.7760c-2 0.0 0.7296
7 16,641 1,500 1.775 le-3 1.1237e-2 0.0 0.9211
8 66,049 1,500 6.4767e-4 3.8591e-3 0.0 0.9653

Table 2.2: Convection skew to the mesh: Convergence behavior for TP2.
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Note that the consistent-mass Galerkin scheme faces severe convergence problems and the er­
ror may even increase in the course o f mesh refinement (see Table 22). By contrast, the results 

computed by the semi-implicit FCT algorithm exhibit monotone grid convergence as well as some 

improvement of the convergence rates. Even the consistent-mass version converges slowly but 

surely to a nonoscillatory time-accurate solution. For large time steps, the single-step implementa­

tion based on (2.44)-{2.45) would be more diffusive and converge faster. However, for time steps as 
small as the one employed in this section, it would be just as accurate and converge at the same rate 

as the algorithm (2.35)-(2.43). The values of umax in Table 2.2 reveal that flux correction may lead 

to undesirable ‘peak clipping’, which is a well known phenomenon discussed, e.g., in [96, 168]. On 
the other hand, the associated high-order solution is corrupted by undershoots and overshoots that 

are particularly large for discontinuous initial data (Table 2.1) and less pronounced for the smooth 

cosine hill (Table 2.2). These nonphysical oscillations result in a dramatic loss o f  accuracy and 
slow/no convergence, so that the results are inferior to those produced by the semi-implicit FCT 
algorithm using the same settings.

It is not unusual that semi-explicit flux correction (2.29)-(2.34) as applied at the end o f each 

time step to the converged high-order predictor requires less outer iterations than the underlying 
Galerkin scheme (see Tables 2.1 and 2.2). However, the residual o f  the flux-corrected solution can 

no longer be controlled and the total number o f defect correction steps is considerably greater than 
that for the semi-implicit FCT Limiter, whereas the accuracy of the resulting solutions is comparable. 

O f course, the linear system (2.13) could be solved in one step (without resorting to defect correc­
tion) but this straightforward approach would inevitably lead to a severe deterioration o f the linear 
convergence rates. Indeed, the high-order operator M e  -  Θ Α ΐΚ  is much harder to ‘invert’ than the 

preconditioner A , which enjoys the M-matrix property. In many cases, the high-order solution may 

prove prohibitively expensive or even impossible to compute in such a brute-force way, unless a 
direct solver is employed. Hence, even linear high-order systems of the form (2.14) call for the use 
o f iterative defect correction.

In order to obtain a better insight into the error reduction rate, Figure 2.5 displays the L \-  

errors (top) and ί/2 -errors (bottom) of all six methods for both benchmark configurations. For each 
discretization, the solid line denotes the consistent mass matrix whereas the ‘lumped’ version is 
indicated by dashed lines. Obviously, the rate o f convergence is the same for the implicit (circular 

markers) and explicit (square markers) FCT algorithm whereby the norm o f the error is slightly 
smaller for the latter one if the consistent mass matrix is adopted. Interestingly enough, both FCT 

algorithms produce nearly the same results if mass lumping is performed. On the other hand, the 

solution produced by the high-order Galerkin scheme denoted by triangular markers is less accu­
rate, which manifests itself in greater error norms. Moreover, it suffers from severe convergence
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TP1: discontinuous initial data TP2: smooth initial data

Figure 2.5: Convection skew to the mesh: error reduction.

problems if the consistent mass matrix is adopted and fails completely for the second test problem 
if the mesh is successively refined.

The marginally better accuracy o f the semi-explicit FEM-FCT scheme as compared to its semi- 

implicit counterpart can be attributed to the better phase characteristics of the high-order Calerkin 
scheme employed at the predictor step. On the other hand, the involved splitting error may become 
pronounced in other settings, especially as the time step is increased. Moreover, the linear and/or 
nonlinear convergence rates leave a lot to be desired so that the semi-implicit approach combined 
with the discrete Newton method is preferable in many cases.
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2.6.2 Swirling flow

Let us proceed to another two-dimensional benchmark problem proposed by LeVeque [103]. It 

deals with a swirling deformation o f initial data by die incompressible velocity field given by

vx — sin2(Trx) sm(27ry)g(t), vy =  — sin2(7ry) sin(27rx)y(f).

The initial condition to be prescribed is a discontinuous function o f  the spatial coordinates that 

equals unity within a circular sector o f tt/ 2 radians and zero elsewhere:

u (x ,y r0)
if (x  — l ) 2 +  (j/ — l ) 2 <  0.8, 

otherwise.

TP3 For the first test problem, let us employ a constant velocity profile that corresponds to

g(t) =  1.

TP4 For the second test problem, we adopt a more ‘agile’ velocity field and let

y(<) =  c o s (7 r t /T ) , 0  <  t  <  T .

For both benchmark configurations, the mass distribution assumes a complex spiral shape in the 
course o f  deformation. Figures 2 .6 -2 1 display the numerical solutions calculated by the semi- 

implicit FCT algorithm (2.35H 2.43) with consistent mass matrix using the time step A t  =  10~3.

Recall that for TP3, the low-order evolution operator A  remains constant and can be assembled 
once and for all at the beginning o f the simulation. The numerical results at time t =  2.5 are 

computed on a uniform mesh o f 128 x  128 bilinear finite elements and depicted in Figure 2.6 (top). 
The use o f a piecewise-linear finite element approximation on a triangular mesh with the same 
number o f nodes yields virtually the same solution; see Figure 2.6 (bottom). For the difference 

between the underlying triangulations to be visible, both profiles were output on a coarser mesh 
consisting o f4,225 vertices. In either case, the resolution o f discontinuities is seen to be remarkably 

crisp. These results compare well to those presented in [96] using algebraic flux correction schemes 
o f TVD type.

On the other hand, the velocity vector is strongly time-dependent for benchmark TP4. After 

the startup, the flow gradually slows down and reverses at t =  T /2  such that the initial profile is 
recovered as exact solution at the final time t =  T \ that is, u(x,y,!T) =  u (x ,t/,0 ) . The value 

T  =  1.5 is used, which corresponds to performing 1,500 time steps o f size Δ ί  =  10“ 3. The
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128 x 128 Q \-elem ents

128 x 128 P i-elem ents

Figure 2.6: Swirling deformation: semi-implicit FEM-FCT, t — 2.5.



2 .6 . N U M E R I C A L  E X A M P L E S 55

initial/exact solution at t =  1.5

intermediate solution at t =  0.75

Figure 2.7: Swirling deformation: semi-implicit FEM-FCT, 128 x 128 Q \  -elements.
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Table 2.3: TP3: semi-implicit FCT with consistent mass matrix, defect correction.

numerical solutions at t  =  0.75 and t  =  1.5, which are displayed in Figure 2.7, were calculated on 
a mesh o f 128 x 128 bilinear finite elements by the semi-implicit FCT algorithm with the consistent 
mass matrix. The solution profiles resulting from the application o f the lumped mass matrix are 
slightly more diffusive but ‘look’ quite similar.

For these two benchmark configurations, we performed an in-depth convergence study on four 
successively refined quadrilateral meshes. A detailed comparison between the standard defect cor­

rection method and the discrete Newton approach is presented in Tables 2.3-2.5.

As before, the first two columns display the refinement level NLEV and the number of ver- 
tices/nodes NVT. All tests were performed on an Intel Core Duo T2400 (1.83 GHz, FSB 667 MHz) 
processor with 1024 MB (553 MHz) o f system memory. The code was compiled with the Intel 
Fortran 9.1 Compiler for Linux making use o f the - f a s t  switch, which yields the best results for 
this setup. The total CPU time (in seconds) required to reduce the norm of the nonlinear residual to 

the prescribed tolerance in each time step is given in the third column. In the next four columns, the 
total number of nonlinear iterations (NN), the number o f nonlinear iterations per time step (NL/Δ ί), 
the total number of linear iterations (NL) and the number o f linear iterations per nonlinear iteration 
(NL/NN) are displayed in successive order. Given the lack of an exact solution for this benchmark 
configuration, only the global minimum and maximum of the discrete solution u/, are compared to 
their analytical values 0 and 1.
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NLEV NVT CPU NN NN lAt NL NUNN Umin Umax

IMI < o - 4
5 1.089 7 2,500 1.0 2,500 1.0 -1.789e-02 1.026
6 4,225 24 2,500 1.0 2,500 1.0 -9.153e-03 1.054
7 16,641 102 2,500 1.0 2,500 1.0 -3.906e-02 1.121
8 66,049 442 2,500 1.0 2,500 1.0 -5.087e-02 1.202

IMI < 0-8
5 1,089 32 9,891 3.96 44,547 4.50 -1.319e-ll 1.0
6 4,225 138 9,917 3.97 48,379 4.88 -1.430e-09 1.0
7 16,641 611 9294 3.72 49,464 5.32 -5.427e-I2 1.0
8 66,049 2,736 8,974 3.59 50,991 5.68 -8.505e-09 1.0

IMI <  ΙΟ "12
5 1,089 84 25,640 10.26 123,412 4.81 0.0 1.0
6 4,225 369 26,538 10.62 141,645 5.34 0.0 1.0
7 16,641 1,674 25,061 10.02 146,212 5.83 0.0 1.0
8 66,049 7,113 22,287 8.91 139,868 6.28 0.0 1.0

Table 2.4: TP3: semi-implicit FCT with consistent mass matrix, Newton’s method, η =  10-4 .

It can be seen from Table 2.3 that the convergence behavior o f the standard defect correction 
scheme deteriorates significantly if the tolerance for the residual norm is reduced from 10-8  to 

10-12. Moreover, for the latter one, the number o f outer iterations increases i f  the mesh is succes­
sively refined. On the other hand, the minimal and maximal solution values perfectly match their 
analytical bounds 0 and 1 because of the M-matrix property o f A.

The convergence behavior o f the discrete Newton approach making use o f  a constant forcing 
term η  =  10-4 as suggested in [29] is displayed in Table 2.4. This choice is quite restrictive and 
requires uniformly close approximations o f Newton steps in each nonlinear iteration. It reportedly 
yields local ^-linear convergence in some special norm [55]. As compared to the defect correction 

approach, the number o f  outer iterations is drastically reduced for all prescribed tolerances and, in 
addition, it does not increase for finer grids. Based on the moderate number o f linear sub-iterations 

we believe that the ILU-decomposition o f the monotone evolution operator A  constitutes an ap­
propriate preconditioner for the employed BiCGSTAB algorithm. Importantly, convergence o f the 
fixed-point iteration is a prerequisite for the Newton method to produce a positivity-preserving so­

lution. This is best illustrated by the unsatisfactory minimal and maximal solution values for the 

loose residual tolerance 10“ 4.

Let us briefly address the phenomenon o f oversolving [55] the linear subproblems. To this end, 

we relax the forcing term η  =  10“ 1 and leave alt other parameters unchanged. The results computed
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by the discrete Newton method are shown in Table 2.5. The nonlinear convergence behavior is quite 
similar to that observed for the more restrictive choice η =  10*"4. However, the number o f inner 
iterations is reduced by a factor of 2.5 to 3, which results in a significant reduction o f  the overall 
CPU time. Our experiments with different strategies for choosing the forcing term η adaptively [55] 
and even solving the linear subproblems directly [37] revealed that the simplest choice η — 10"1 
yields the most competitive results in terms o f overall performance for this class o f time-dependent 
flows. On one hand, the time step A t  =  10"3 was chosen moderately small to resolve the temporal 

evolution with high precision. On the other hand, the amount o f antidiffusion accepted by the 
FCT flux limiter is inversely proportional to A t  so that the computed solution profiles become 
more diffusive if larger time steps are employed. Consequently, the convergence rates o f the defect 
correction method and o f the discrete Newton algorithm improve, but the solution is smeared by 

numerical diffusion.

It is well known that choosing an appropriate perturbation parameter σ  is a delicate task. In our 
simulations we employed σ  — [(1 +  ||u||)e]ly/3, where e denotes the machine precision, as proposed 

by Pemice et al. and successfully used in the NITSOL package [123]. In order to investigate the 
influence of this 'free' parameter we repeated the simulation on mesh level 7 for fixed parameter 

values σ  =  c and σ  =  0.01, respectively. Figure 2.8 displays the nonlinear convergence behavior 
for the different solution strategies. The curve for the defect correction method is marked by stars.

Table 2.5; TP3; semi-implicit FCT with consistent mass matrix, Newton's method, η =  10
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whereas circles stand for the rapidly converging Newton method (η =  Ι Ο '1, σ  — e). Using ma­
chine precision as perturbation parameter works for this test case, but it is likely to diverge in other 

situations because o f round-off errors, and thus cannot be recommended in general. The strategy 

proposed by Peraice et al. (square markers) requires slightly more nonlinear steps but turns out 

to be more robust. Furthermore, the devastating effect o f  choosing the perturbation parameter too 

large, e.g., σ  =  0.01, is illustrated by the fourth curve (triangles). If  σ  is increased even further, 

the convergence o f Newton’s method slows down until it resembles that o f  the defect correction 
approach.

Figure 2.8: TP3; influence o f  perturbation parameter <x, t  €  [1.0,1.0 4- Δ ί],

Another quantity o f interest is the computing time per time step spent for each vertex, which 
is illustrated in Figure 2.9. Here, the circles correspond to the standard defect correction approach 
whereas triangles and squares stand for Newton’s method making use o f the forcing term η =  10-4 
and η — 10"1, respectively. The three curves plotted for each method denote the different tolerances 
for the nonlinear residual. It is worth mentioning that for the least restrictive choice η  =  10*1, the 

nodal CPU time remains nearly constant if  the number o f  vertices is increased, whereas a systematic 
growth is observed for both other methods.

Table 2.6 illustrates the convergence behavior o f the different solution methods and the errors 

o f the finite element approximation uh at time t =  1.5 for our benchmark configuration TP4. For 
all computations, a moderate stopping criterion )|r|| <  10~8 was used and the approved forcing 
strategy η  =  10-1 was adopted for Newton’s method. Moreover, the perturbation parameter σ  was
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computed as proposed by Pemice et al. [123] and utilized for the divided difference approximation. 

All other parameter settings, e.g., the configuration of the linear solver, remain unchanged. It can be 
readily seen that the discrete Newton approach outperforms the standard defect correction scheme 

in all situations.
Figure 2.10 (top) illustrates the CPU time spent per node in each time step, which remains 

nearly constant for all mesh levels. As before, the circular markers correspond to the standard 
defect correction method, whereas squares are used for the discrete Newton approach. Here, the 

dashed lines represent the lumped-mass versions of the two algorithms. The significant overhead 
costs o f the slowly converging defect correction method are clearly visible. The solution errors, 
which are virtually the same for both nonlinear solution strategies, exhibit a monotone reduction on 

sufficiently fine meshes as illustrated in Figure 2.10 (bottom).

Figure 2.9: TP3: influence of perturbation parameter σ, t  € [1.0,1.0 + At].
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NLEV NVT CPU NN NN /A t NL NL/NN -c1 ! 
3

||« -  v-hh

defect correction / consistent mass matrix
5 1,089 89 24,136 16.09 24,136 1.0 2.7748e-2 8.8019e-2
6 4,225 333 22,694 15.13 23,488 1.03 1.5630e-2 6.7038e-2
7 16,641 1,293 19,883 13.26 21,954 1.10 8.8456e-3 5.0641 e-2
8 66,049 5,203 17,959 11.97 22,812 1.27 5.1680e-3 3.8747e-2

defect correction /  lumped mass matrix
5 1,089 17 2,720 1.81 2,720 1.0 4.5446e-2 1.1689e-l
6 4,225 57 2,738 1.83 3,481 1.27 2.9877e-2 9.4992e-2
7 16,641 259 2,804 1.87 3,818 1.36 1.9192e-2 7.5658e-2
8 66,049 1,186 2,953 1.97 4,777 1.62 1.2250e-2 5.9934e-2

Newton’s method / consistent mass matrix
5 1,089 28 5,506 3.67 9,501 1.73 2.7743e-2 8.8007e-2
6 4,225 106 5,241 3.94 9,074 1.73 1.5624e-2 6.7021 e-2
7 16,641 442 4,831 3.22 8,342 1.73 8.8374e-3 5.0609e-2
8 66,049 1,844 4,506 3.0 7,802 1.73 5.1604e-3 3.8719e-2

Newton’s method /  lumped mass matrix
5 1,089 12 1,510 1.01 1,510 1.0 4.5441 e-2 1.16882e-l
6 4,225 42 1,513 1.01 1,513 1.0 2.9868e-2 9.4975e-2
7 16,641 188 1,572 1.05 1,572 1.0 1.9175e-2 7.5623e-2
8 66,049 910 1,803 1.20 1,803 1.0 1.2231 e-2 5.9887e-2

Table 2.6: TP4: semi-implicit FCT, ||r || <  10~8, η =  10 l .
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nodal CPU time vs. number o f vertices

error reduction in L i— and L %-error

Figure 2.10: TP4: nodal CPU time / error reduction.
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2.7 Results and discussion

The semi-implicit approach to flux correction of FCT type leads to a robust and efficient special- 

purpose algorithm for time-dependent problems discretized in space by the finite element method. 

The accuracy o f the resulting scheme improves as the time step is refined and the consistent mass 
matrix can be included in a positivity-preserving fashion. The new limiting strategy makes it possi­

ble to avoid a repeated computation o f  the nodal correction factors at each outer iteration. Therefore, 
the use o f an implicit time-stepping method pays off in spite of the CFL-like condition to be sat­

isfied by the time step in the case Θ <  1. For sufficiently small time steps, the new algorithm is 
more accurate and/or efficient than the algebraic flux correction schemes proposed in [98,99]. On 

the other hand, it is not to be recommended for steady-state computations, which call for the use of 
large time steps. In this case, both the limiting strategy and the underlying constraints need to be 
redefined as explained in [95].

In order to solve the nonlinear algebraic systems, a discrete Newton approach was devised mak­

ing use o f the fact that the underlying sparsity pattern is known a priori. The Jacobian matrix was 
assembled edge-by-edge using numerical differentiation as applied to the low-order operator and to 

the vector o f limited antidiflfusive fluxes. The use o f a new semi-implicit limiting strategy makes it 
possible to assemble the Jacobian in a particularly efficient way, resulting in a significant reduction 

(by a factor o f 2.5 to 3.5) o f the total CPU time as compared to standard defect correction. The semi­
explicit FCT algorithm was found to provide a slightly better accuracy for the test cases considered 
in the present chapter. However, the high-order system to be solved at the predictor step is extremely 

ill-conditioned, thus requiring a slowly converging defect correction scheme preconditioned by the 
low-order operator.
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Chapter 3

Solution of Large Sparse Linear Systems j
_   i

with Domain Decomposition Methods
)Ij

3.1 Introduction j
!I

Numerical methods for solving systems o f partial differential equations (PDEs) usually employ 
implicit discretization schemes, which always lead to an algebraic system to be solved. The cor­
responding linear systems are large (involving hundreds o f thousands or even several millions of 
unknowns) but at the same time very sparse. Sparsity here refers to the fact that most o f the ele­
ments of the matrix involved are zero.

Sparse linear systems o f equations can be solved by either direct sparse linear solvers, which are 

sophisticated implementations o f LU  decomposition and back-substitution, or by iterative solvers.
Recently, direct sparse linear solvers have been tuned close to perfection and excellent software li­
braries, serial CHOLM OD [34,36], UMFPACK [38,39,40,41 ] and even parallel PARD1SO [ 135,
136], are publicly available.

Sparse direct solvers, are amazingly efficient for linear systems arising from the discretization 
o f  PDE problems in two-dimensional domains. In the three-dimensional case, however, their perfor­
mance deteriorates significantly and at the same time memory resources rapidly become insufficient 
as the problem size increases.

3.1.1 Motivation: Direct sparse solvers and their shortcomings

Direct sparse linear solvers possess very favorable properties. The solution they provide is accurate 
up to machine precision, and it is computed very fast once the LU factors are available because they 
employ optimized computational kernels. At the same time, without sacrificing performance they

64
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PARDISO performance in 2D

mesh statistics Elapsed time in seconds memory
nodes ^max assembly init fact back-sub total MB
4014 3.125e-02 0.004 0.037 0.011 0.001 0.049 1.356

16454 1.563e-02 0.017 0.158 0.052 0.004 0.216 5.857
65175 7.813e-03 0.071 0.704 0.265 0.019 0.988 26.018

263838 3.906e-03 0.299 3.199 1.539 0.111 4.849 117.523
1068112 1.593e-03 1.307 14.766 9.518 0.535 24.819 527.656

Table 3.1: Performance o f PARDISO direct sparse solver in serial mode for problem (3.1) dis­
cretized by linear triangular finite elements.

can provide the solution with the transpose operator. For these reasons among many others, direct 

sparse solvers have become the standard approach for PDEs in two-dimensional domains. Their 

use, however, is rather limited for PDEs in three dimensions as the computational resources are 

quickly exhausted before the spatial accuracy o f the discretization scheme becomes sufficient.

We demonstrate next the reasons why direct sparse linear solvers have become a standard tool 
for 2D problems and the need for more sophisticated solution methods in real-life 3D problems.

2D problems

The complexity o f direct sparse linear solvers for two-dimensional problems, being 0 ( n 3/ 2) for 

the LU factorization and O (n lo g n ) for the back substitution, is nearly optimal, and thus they can 
hardly be outperformed by other methods. At the same time, the memory requirements are moderate 

and that makes them perfect black-box solvers for a wide class o f two-dimensional problems. Let us 

illustrate this fact by considering a classical PDE problem, namely the the scalar Poisson equation 
with homogeneous Dirichlet boundary conditions on the unit square:

—V 2u(x) =  1, ζ €Ω  
w(t ) =  0, x  €  0Ω.

We discretize problem (3.1) by the Finite Element method using an unstructured triangular mesh 
and the PI family o f  elements (linear triangles). Table 3.1 summarizes the time spent for the as­

sembly o f the finite element matrix and the time PARDISO needed for each phase o f the solution 
process. The initialization phase involves analysis related to the sparse matrix structure, which is 

determined by the topology of the mesh and symbolic factorization, while factorization and solu­
tion phases correspond to the sophisticated, highly efficient LU factorization of the matrix and the 
corresponding back-substitution.
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PARDISO performance in 3D
mesh statistics Elapsed time in seconds memory
nodes h max assembly init fact back-sub total MB

500 2.7e-l 0.001 0.005 0.001 0 0.006 0.298
4001 1.3e-l 0.017 0.062 0.057 0.002 0.121 4.712

32002 6.8e-2 0.180 0.636 2.783 0.069 3.488 80.357
256011 3.9e-2 1.785 6.925 185.469 1.428 193.8 1438.32

2000396 1.7e-2 16.942 76.625 11762.1 21.46 11860 24403

Table 3.2: Performance of PARDISO direct sparse solver in serial mode for problem (3.1) dis­
cretized by linear tetrahedral finite elements.

For linear steady-state problems, one is interested in the total solution time, while for the tran­
sient case, what matters is just the back-substitution time, as initialization and factorization are 
needed just once. In the nonlinear case, however, factorization and back-substitution times should be 

taken into account for both steady and transient problems, because the matrix changes within each 
outer iteration. The initialization phase should be repeated whenever the mesh topology changes 
(adaptively refined meshes, etc.). We clearly see that initialization and factorization times are greater 

than for the matrix assembly by less than one order of magnitude. However, the back-substitution 
is always more than twice as fast as the assembly and therefore the same factorization is frequently 
used throughout the solution o f a nonlinear system. The number o f outer iterations (Newton fixed- 
point steps) thereby increases, but the whole process is considerably accelerated, especially in the 
transient case when the matrix does not change too much for several time steps. We also see that 
the memory allocated by the solver is quite low and a problem involving one million of unknowns 

can be quickly solved on a common laptop. For the reasons described above, direct sparse solvers 
are frequently the first choice of every researcher when it comes to PDE problems discretized in 
two dimensions and there is not too much interest in more sophisticated methods for the solution of 
such problems.

3D problems

The computationally attractive properties that direct sparse linear solvers possess for problems in 
two spatial dimensions do not carry over to the three-dimensional case. There, the complexity dra­
matically increases to 0 (n 2) operations for the factorization and 0 ( n 4 3̂) for the back-substitution. 
Table 3.2 summarizes the performance o f PARDISO when we solve problem 3.1 on the unit cube 
using the PI family of elements (linear tetrahedra).

It is evident that the time spent for the back substitution is still quite encouraging, being usually
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less than the time needed for the matrix assembly. However, the time associated with the factor­

ization grows rapidly, rendering the total solution process slower than that o f  the assembly by two 
orders o f magnitude. This is observed even for medium-size problems, where the resolution is 

still not satisfactory. At the same time the memory needed by the solver grows prohibitively large, 

restricting severely the size o f the problems that can be handled. The memory and CPU time restric­

tions we just reviewed have motivated practitioners to develop other types o f solution approaches 
that are not so “resource hungry” These are the iterative methods we discuss next.

3.2 Iterative methods

In computational mathematics, an iterative method attempts to solve a problem (for example an 

equation or system o f equations) by finding successive approximations to the solution, starting from 
an initial guess. Iterative methods are the only choice for nonlinear equations. However, they are 

very popular for linear problems involving a large number o f variables (sometimes o f the order o f 
millions), where direct methods would be prohibitively expensive and in some cases impossible 
even with the best available computing power.

The main classes o f iterative methods employed for the solution o f linear algebraic systems 
are the stationary iterative methods, the multigrid methods, and the more popular Krylov subspace 
methods.

3.2.1 Stationary iterative methods

Stationary iterative methods solve a linear system with an operator approximating the original one. 

Based on a measure o f the error (the residual), they form a correction equation for which this process 
is repeated. While these methods are simple to derive, implement, and analyze, convergence is only 

guaranteed for a limited class o f matrices. Examples o f stationary iterative methods are the Jacobi 
method, the Gauss-Seidel method and the successive over relaxation (SOR) method. Stationary 

iterative methods are no longer competitive. However, they are used frequently as sm oothers in 
multigrid solvers.

3.2.2 Multigrid methods

Multigrid (MG) methods are a group of algorithms for solving differential equations. They belong 
to a conceptually different class o f iterative methods that take into account the underlying equations 

(or PDE system), using a hierarchy o f discretizations o f the problem under consideration. The 
typical application o f multigrid is the numerical solution o f elliptic partial differential equations in 
two or more dimensions [166].
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Multigrid methods may be applied in combination with any o f the common discretization tech­
niques. In these cases, they are among the fastest solution approaches known today, because their 
complexity scales linearly with the number o f unknowns. In contrast to other methods, they can in 

general treat arbitrary regions and boundary conditions. Their setting does not depend on the sepa­
rability o f the equations or other special properties. They are also directly applicable to complicated 
nonsymmetric and nonlinear systems of equations, like the Navier-Stokes equations [151, 153, 154] 
or even coupled fluid structure interaction PDE systems [80]. The multilevel concept has been 
successfully adopted by several other areas like graph partitioning [85, 86] and PDE optimization 
[25 ,50,51,70, 1 15].

Other extensions of multigrid include techniques where no PDE and no geometrical problem 

background is used to construct the multilevel hierarchy. Such algebraic multigrid methods (AMG) 
construct their hierarchy of operators directly from the system matrix and thus become true black­
box solvers for sparse matrices. Algebraic multigrid methods are documented extensively in [150], 

High performance scalable libraries are also publicly available [58, 76].
AMG methods are now used as preconditioners (as inner iteration) within Krylov subspace 

solvers (as outer iteration), which undoubtedly are the most popular iterative solution methods avail­

able today.

3.2.3 Krylov subspace methods

The iterative methods applied today for solving large-scale linear systems

Ax = b (3.2)

belong to the class o f preconditioned Krylov subspace solvers. Krylov subspace solvers are con­
sidered black-box solvers, as they do not need any other input except the linear system itself, just 
like the direct sparse solvers. Unlike direct sparse solvers, however, Krylov subspace solvers do not 
provide the solution up to machine precision but approximate it instead, up to the desired accuracy 
defined by some tolerance.

Let to be an initial approximation to the solution o f the linear system (3.2) and ro =  b ~ A x o 
be the initial residual. Then

M,ro) = span{r0, Λτό, >l2ro......Am Vo} (3.3)

is the Krylov subspace of dimension m defined by A and ro. At the mth step, Krylov subspace 
methods obtain an approximation xm to the solution of (3.2) in the space x0 + by satisfying a 
projection or minimizing condition of some kind. Let rm = b -  Axm be the residual at the mth
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step. Some standard conditions are: 

•  Petrov-Galerkin condition

’t'jji -L  'R'fny (3.4)

where 7Zm is some m-dimensional subspace. 

•  Gaierkin condition, when IZm =  fCm

I'm LKm- (3-5)

•  Minimum residual condition

||rm|| =  min ||i>-Ac||.
ι € ί ο + ^ τ η

(3.6)

It can be shown that (3.6) is a Petrov-Galerkin condition when 7Zm =  AJCm (Saad [132]).

The construction o f  an orthonormal basis for the Krylov subspace is carried out by the Amoldi 

procedure [7]. When the matrix is symmetric, this procedure simplifies and is due to Lanczos [101, 
102], A two-sided Lanczos procedure also suggested in [102] applies to nonsymmetric matrices. 

The major advantage of the Lanczos procedures is that the bases can be constructed by a three-term 

recurrence or two coupled two-term recurrences, respectively. Thus, only two to three previous 
vectors in each sequence need to be stored, thus keeping the storage requirements low. In contrast, 

the Amoldi procedure requires the whole basis to be stored. On the negative side, however, the 

two-sided Lanczos procedure may break down, and it needs products by the transpose operator A T, 
which is usually more computationally expensive to apply than A.

There is a vast literature on Krylov subspace methods, with each trying to cure weaknesses of 

previous ones. Although methods that target nonsymmetric linear systems can in general be applied 

equally well to symmetric ones, special methods have been suggested for the symmetric case that 
are both more effective and computationally efficient.

3.2*4 Symmetric case

The method of choice for symmetric positive definite linear systems is the well known conjugate
gradient method (CG) suggested by Hestenes and Stiefel in their monumental paper [77]. We now
know that it is effectively based on the symmetric Lanczos process, enforcing the Gaierkin condition
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(3.5), which can be shown to be equivalent to minimizing the A-norm (energy norm) o f the error:

m in | | x - x . | U ,  (3.7)
XGrCftt

where the Λ-norm is induced by the Λ-inner product (a:, y) =  x T Ay. Unlike other methods where 
the stopping criterion monitors the Euclidean norm o f the residual» CG allows sophisticated mon­
itoring o f the convergence, based on estimations of the norm o f  the true error o f the linear system 
(3.2), as later found by Golub and Kent [67] and Arioli [6].

When the matrix A  is symmetric but indefinite, CG is no longer applicable. Paige and Saun­

ders [118] devised two methods for this case, both based on the symmetric Lanczos process. In the 
minimum residual method (MINRES) the minimum residual condition (3.6) is imposed, and only 
the last two basis vectors for JCm are needed for the computation o f the approximation x m. By con­
sidering the Galerkin condition (3.5) instead, Paige and Saunders in [118] derived the SYMMLQ 
method for symmetric systems, which usually terminates at the CG approximation if  it exists, but 
along the way generates a different sequence o f approximations that minimize the 2-norm o f  the 

error over the subspace K,(A , A tq). Again only two basis vectors are needed.

The symmetric solvers are effective if the eigenvalues o f A  are clustered.

3.2.5 Nonsymmetric case

For the solution o f linear systems where A  is not symmetric, several methods have been pro­
posed. Among them the Generalized Minimal Residual method (GMRES) introduced by Saad 
and Schultz [133] is among the most popular choices. It computes a sequence o f orthogonal vec­

tors (like MINRES) and combines these through a least-squares solve. Unlike MINRES and CG, it 
uses the whole sequence of basis vectors, and hence a large amount o f storage is usually required. 
Restarted versions o f the method, GMRES(m), are frequently used instead, where computation and 
storage costs are limited by specifying a fixed number o f vectors (rn) to be generated.

Paige and Saunders in [ 119,120] introduced the LSQR method for solving nonsymmetric linear 
systems and least squares problems. The method employs the Golub and Kahan bidiagonalization 
procedure. It is analytically equivalent to the symmetric CG method applied to the normal equations 
A TA t  — A Tb, but it possesses more favorable numerical properties. It can also estimate die 
condition number o f the matrix A  and standard errors for x  among other quantities o f interest. 
LSQR is effective if the singular values o f A  are clustered. It is applicable to both square and 
rectangular systems [119, 120, 134]. On the downside, it requires matrix-vector products with both 
A  and the transpose operator A T .

Other popular choices for the nonsymmetric case are the conjugate gradient squared method
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(CGS) designed by Sonneveld [146] and the Biconjugate Gradient Stabilized method (Bi-CGStab) 

introduced by van der Vorst [156]. The former is a variant o f  an older approach, the BiConjugate 

Gradient method (BiCG), which exhibits irregular convergence and potentially breaks down. Sonn­

eveld managed to avoid BiCG’s need for the transpose matrix by applying the update operations for 

the Λ-sequence and the AT-sequences both to the same vectors. Often one observes a convergence 

rate for CGS about twice that for BiCG, which is in agreement with the observation that the same 
contraction operator is applied twice. In practice, however, convergence may be more irregular than 

BiCG. The BiCGStab method remedies the irregular behavior of CGS by using different updates 

for the A T sequence. Often it converges about as fast as CGS, sometimes faster and sometimes not.

These and many other properties of iterative Krylov subspace methods are discussed in the 
monographs by Saad [132], van der Vorst [157], Trefethen [149], and Axelsson [11]. Their algo­
rithmic implementation along with several theoretical details can be found in [14].

Quite frequently for both symmetric and nonsymmetric linear systems, the Krylov methods just 

reviewed may need several hundreds to many thousands of iterations before they reach the desired 
accuracy. The situation worsens with increasing problem size and calls for sophisticated solution 
techniques to accelerate the convergence. This is achieved by what is referred to as preconditioning 

techniques, which are the most crucial component o f iterative solution approaches.

3.3 Preconditioning

A preconditioner P  for a matrix Λ is a matrix that approximates A in some useful sense. Usually 
this means that P ~ l A has a condition number significantly smaller than that o f A. Preconditioners 

are employed by iterative subspace Krylov methods to accelerate their convergence related to the 
solution o f linear systems A r =  b by considering instead the left-preconditioned system

P~lAx = P~H, (3.8)

or the right-preconditioned system

AP~lx = b, Px = x. (3.9)

The products P ~ l A  and A P '1 are never formed explicitly. This is prohibitively expensive and 
would require more storage than direct sparse methods. Instead, the matrix-vector products Au* 

required by any iterative method are replaced by products P -1 (Au*) when the preconditioner is 
applied from the left, or by A( P ~ l v*.) when the preconditioner is applied from the right.

The preconditioner P  should be such that it allows P _1 to be applied very efficiently and for
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a smaller number o f iterations, thus reducing the total cost (computing time). At the same same 

time, especially when we aim at the solution o f linear systems obtained from the discretization 
o f PDEs, the preconditioning approach should render the condition number of the preconditioned 

linear system insensitive to the parameters involved in the adopted discretization scheme (usually 
the mesh size h or polynomial order) and if possible to the parameters inherent in the problem under 
consideration (reaction or diffusion coefficients). In cases where this goal is reached, one usually 
observes that the number of iterations needed by the Krylov solver, in order to reduce the relative 
residual o f the linear system to some threshold, remains the same or marginally increases for a very 
wide range of the parameters introduced by the discretization approach and those appearing in the 

underlying PDE system.

Several types of preconditioner have been suggested in the literature. Among the most popular 
black-box choices are incomplete LU preconditioners, which are extensively documented in the 

work of Saad [ 132], as well as very robust multilevel ILU preconditioners, suggested by Bollhofcr 
[19, 20, 21,22] and implemented in the publicly available software library 1LUPACK.

Motivated by today’s widespread availability o f cheap multi-processor hardware, we now inves­

tigate preconditioning approaches that are designed from the ground up for parallel processing. The 
class of methods that suit our purpose best is the class of domain decomposition preconditioners.

3.3,1 Domain decomposition preconditioners

Large-scale numerical simulations, like those arising in many areas o f physics and engineering, 
call for parallel solution algorithms. Domain decomposition serves exactly that puipose: to devise 
parallel algorithms that can benefit strongly from multiprocessor computers.

Domain decomposition methods need a partitioning o f the computational domain Q into sub- 
domains 12ΐ, i =  1 .2 , . . .  , / j, which may or may not overlap. The original problem may then be 
reformulated upon each subdomain Ω,, yielding a family o f subproblems o f reduced size, coupled 
through the values o f the unknown solution at the interface o f the subdomains; see Figure 3.1.

In many cases, the interface coupling is removed at the expense o f introducing an iterative pro­
cess among subdomains, yielding at each step independent subproblems (of lower complexity) that 
can be efficiently handled by multiprocessor systems. However, the number of iterations needed 
to achieve a certain level o f accuracy grows rapidly as the number o f subdomains and the prob­
lem size increase, degrading performance significantly and calling for more sophisticated iterative 
approaches.

When properly devised, these iterative procedures intrinsically embody a preconditioner for the 
system induced on the interface unknowns. A distinguishing feature o f a domain decomposition 
method is the property o f optimality o f  such a preconditioner; its ability to generate a sequence that
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Figure 3.1: The mesh (top left) is partitioned into 4 subdomains (top right). At the bottom left 
we see the unknowns in the interior and at the bottom right, the unknowns on the interface o f the 
subdomains.

converges at a rate that does not depend on parameters inherent in the discretization approach. Such 
parameters are usually the size o f the original system N  or equivalently mesh size h and the number 
o f the partitions, the variability of element sizes and even further diffusion or reaction coefficients 
(in case o f convection diffusion reaction PDE systems).

Traditionally, domain decomposition methods can be broadly classified as either overlapping or 
nonoverlapping methods. The precise presentation of each method suggested in the literature would 

require an extended discussion and is beyond our scope. Instead we briefly review the key ideas 
behind classical domain decomposition methods and provide a more detailed discussion of the key 

steps of the most recent and competitive ones.
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j

3.3.2 Overlapping methods

One-level methods Methods belonging to this class were introduced and analyzed first by Schwarz 
in 1890. They require a partitioning of the domain in overlapping subdomains. The level of 

the overlap may vary. Usually higher levels o f overlap improve the quality of the precon­
ditioner by reducing the sensitivity o f the solution process to the number o f  the unknowns. 
However, the method remains sensitive to the number o f partitions. In [137] Schwarz intro­
duced what is now referred to as the alternating Schwarz method' No significant advances 
were reported until one century later when Lions in [105, 106, 107] was responsible for fo­

cusing much attention on the subject. Dryja and Windlund (1987) in [47] suggested a modi­
fication of the original algorithm to make it significantly more reliable, the additive Schwarz 
method. It was further analyzed in [48] and found to be less sensitive to the level o f  overlap. 
Further analysis and convergence estimates were obtained by Bramble, Pasciak, Wang and 

Xu (1991) in [27].

Multilevel methods The sensitivity of the classical Schwarz methods on the number o f partitions 
was partially removed by a modification o f the original algorithm that led to the so-called 

multilevel overlapping Schwarz methods. There, apart from sufficient overlap, a coarse grid is 
generated where solutions to the original PDE are approximated and interpolated back to the 
initial fine grid. The coarse grid and the interpolation and restriction operators are constructed 
in a process similar to classical multigrid methods. The key difference, is that in domain 
decomposition methods the ratio in mesh refinement between levels may vaiy between 10 
or 100, whereas in classical multigrid methods it is usually 2 or 4. The consideration of the 
coarse grid dramatically reduces the condition number of the preconditioned system and it 
renders it practically insensitive to the number of subdomains. With sufficient overlap and a 
carefull choice of the size of the coarse grid, one usually expects that the iterations needed for 
the solution o f the system will be practically independent o f both the number o f subdomains 
and the number of the unknowns. Multilevel versions have been investigated by Dryja and 
Widlund in [49], by Zhang [171, 172, 173], and by Griebel and Oswald in [71]. Numerical 
studies o f multilevel overlapping Schwarz methods may be found in Gropp and Smith [72] 
and Bjorstad and Skogen [17]. Recent advances can be found in Chai [30] and Chan and 
Smith [32].

Overlapping Schwarz methods do not exhibit good scalability in parallel computing systems. 
The intercommunication between the processors forced by both the overlap and the coarse grid 
correction inevitably restricts the level o f parallelism that can be achieved. Approaches carefully 
designed to achieve higher scalability in parallel computing systems are those belonging to the class
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o f nonoverlapping domain decomposition methods, discussed next.

3.3.3 Nonoverlapping methods

These methods begin by generating a nonoverlapping partitioning o f the domain. At the next step 

the unknowns that belong to the interior o f the subdomains are ordered first and the ones residing 
on the interface o f the subdomains are ordered last; see Figure 3.1. They focus then on devising 

preconditioners for the Schur-complement system related to the unknowns on the interface of the 
subdomains.

Neumann-Dirichlet The older methods in this category are the Neumann-Dirichlet method dis­

cussed by Bjorstad and Widlund in [18] and later applied to structural mechanics by Bjorstad 

and Hvidsten [16]. In the case o f two subdomains for instance, one has to solve a prob­
lem with Neumann boundary conditions on the artificial boundary in the first subdomain, 

followed by a problem with Dirichlet boundary conditions on the artificial boundary in the 

second subdomain. Practical extension o f this method to more than two subdomains and par­

allel implementations pose severe restrictions on the partitioning approach by requiring the 
domain to be partitioned into strips. Then each processor is assigned two adjacent strips. This 
is not possible for arbitrary domains.

N eu m a n n -N eu m a n n  In the Neumann-Neumann preconditioner, proposed in Bourgat et al. [26] 

and extended later by Le Tallec [ 147] to arbitrary subdomains, a Dirichlet boundary value 
problem and a Neumann boundary value problem are solved on each subdomain. This ap­

proach extends easily to any number o f processors, in contrast to the Neumann-Dirichlet 
preconditioner. On the downside, for subdomains that reside completely in the interior o f the 

domain, the Neumann boundary value problem to be solved is singular. The standard way to 
remedy this is to add a zero-order term to the Neumann boundary value problem to render it 
nonsingular. As with overlapping methods, the standard Neumann-Neumann preconditioner 
converges slowly for large numbers o f subdomains. This observation motivated Mandel to 
introduce a coarse grid correction, deriving a new preconditioner that we discuss next.

B a la n c in g  N eu m a n n -N eu m a n n  The balancing Neumann-Neumann method uses a piecewise-con- 

stant grid correction to provide global communication among the several processors and it is 
almost an optimal preconditioner. It was introduced by Mandel in [112]. The convergence 

depends only mildly on the ratio H /h  o f  the substructure H  size to the discretization size h. 
The standard implementation, however, requires that a Dirichlet and a Neumann boundary 
value problem be solved exactly for each subdomain at each iteration, which is a potentially 

expensive operation.
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Iterative substructuring Substructuring methods arc among the latest and more sophisticated nonover­

lapping domain decompositions methods available. The construction o f the related Schur- 
complcmcnt preconditioner specializes to the dimension o f the problem. We describe a vari­

ant suggested by Smith [145] that, unlike previous versions in this category, can be completely 
parallelized. In three dimensions the interface boundary consists of faces (shared by two ad­
jacent subdomains), edges, and vertices. Edges and vertices may be shared by many faces.
The unknowns on the interface boundary ub  are reordered to unknowns on the faces u p  and 

unknowns on the wirebasket u \ y  (the union o f edges and vertices): v b  =  [u jr  tw ] r * The 
Schur complement with this type o f reordering has the form

and can be assembled from its substructure contributions as

(3.10)

«<

where Si may be written as

SlFF SxFw
Slww

(3.11)

(3.12)

Let T ?  map the average o f the values o f the boundary nodes o f each face (the adjacent edges 
and vertices) onto the nodes on the corresponding face. Then Si may be written as

(3.13)

The couplings between the various faces and the couplings between the faces and the wire- 

basket are then dropped. Also is replaced by Gu which is defined via the following 
minimization problem:

vT GiV =  m in(u  -  ΰ»<ζ*)Γ (ι> -  Wity) , (3.14)Wi

where for scalar PDEs, z* =  [1 , 1 , . . . ,  l]r . The purpose o f the minimization problem (3.14) 
is to ensure that the null space o f G, is the same as the null space of 5{v ,r , which implies 
that the null space o f the substructure preconditioner Bi to be introduced below is the same
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as the null space o f the Schur-complement contribution o f the same substructure S* . The 

preconditioner corresponding then to each substructure is

Finally the action o f the inverse of the related preconditioner can be assembled from individ­
ual contributions o f each substructure as

3-4 The H i /2 preconditioner

The usefulness o f any domain decomposition method (DD) rests on the ability to solve a problem

imately via a procedure that computes the action o f the inverse o f the discrete operator on a given 
vector. To this end, a great number of iterative approaches have been suggested in the literature; clas­
sical algorithms include Dirichlet-Neumann, Neumann-Neumann, FET1 methods, Schwarz meth­

ods, together with two-level and overlapping variants. For descriptions and analyses, see [128,148].

on a well known property o f the discrete Steklov-Poincare operator: it is norm-equivalent to a 

Sobolev norm-matrix o f  index 1/2 [128], the discrete representation o f which can be written in

subdomain [122]. This discrete norm has a non-sparse representation; however, since only the 
action o f its inverse on a vector is required, we can achieve this using a standard approach based on 

a Krylov subspace approximation. The resulting algorithm is a generalized Lanczos procedure and 
the ensuing preconditioning procedure is independent o f the size o f the problem.

3.5 Problem description

We review below the standard formulation o f non-overlapping domain decomposition problems for 
a general scalar elliptic problem.

(3.16)

involving a pseudo-differential operator: the Steklov-Poincare operator. Since under discretisation 
this gives rise to a system with a dense matrix, for large problems this needs to be solved approx­

An alternative that has not been considered to date and can be shown to be competitive is based

terms of the square-root o f a discrete Laplacian defined on the union o f the boundaries o f each
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3.5.1 Notation and definitions

Throughout this chapter we use the following notation and standard results. Given an open simply- 
connected domain U in Rd, its boundary is denoted by dU. We denote by C^iU) the space 
o f infinitely differentiable functions defined on U with compact support in U. We also denote by 
L2(U) the Lebesgue space of square-integrable functions defined on U endowed with inner-product 
(*, *), and by Hm{U) the Sobolev space o f order rn equipped with norm || * and semi-norm 

I * \m,u with the convention H°(U) =  L2(U). The Sobolev spaces o f  real index 0 <  s  < m  are 
defined as interpolation spaces o f index Θ =  1 -  s /m  for the pair [Hm(U), L2(U)\:

Η8(Ω) [Hm(U \L2{U))e θ = 1 -  s /m .

For any s, the space H q(U) denotes the completion o f C§°(U) in H*(U) (see e.g. [104, p  60]). In 

particular, we shall be interested in the interpolation space

for which there holds H ^ 2(U) =  H l^2{U). Another space o f  interest is H ^ { U \  a subspace o f 
Hl0/2(U) defined as the interpolation space of index 1/2 for the pair [Hq(U), L2(U) J:

Hdo2(U) =  [HUUhH°(U))1/2.

Norms on H l/ 2(U), H ^ 2(U) are denoted by the same notation | * | i / 2,c/ or || · Ili/2,i/* with the 
assumption that it is evident from the context which space is under consideration. We return to 
the definition of these norms in section 3.6. The dual o f H ^ 2(U)  is denoted by ( H ^ 2(U)Y  C 

where H~^2(U) := {Hl/2(U))' s  { Η ^ ψ ) ) ' .  The duality between H${U)  and its 
dual is denoted by (·, ·).

Finally, we make use of the trace operator 70  : H*(U) —* Hl 2̂(dU), which is known t° 
suijective and continuous, i.e., there exists a constant c^(U) such that

ΙΙτΌυΙΙι/2ι(βι/) ^ G>(^)llr lli,t/ Vv e Ηιψ ) .  (3.17)

A similar inequality holds if we take 70 : H^{U) -* H ^ i d U ) :

ΙΙτο«ΙΙι/2,(βι/)  ̂Μ̂ ΟΙΜΙι,ι/ V« € N&(U). (3.18)
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We also assume that the following Poincare inequality holds:

IMIo, u  <  C p ( U ) \v \ x j [ f .

3.5*2 Domain decomposition for scalar elliptic PDE

Let Ω denote an open subset o f  R d with boundary 9Ω and consider the problem

f  Cu =  —div(aVw) +  b * V u  +  cu =  /  in Ω,
I u  =  0 on 0Ω,

(3.19)

(3.20)

where /  €  £ 2(Ω), c £  £°°(Ω ), b is a vector function whose entries are Lipschitz continuous 

real-valued functions on Ω, and a  is a symmetric d x d  matrix whose entries are bounded piecewise- 
continuous real-valued functions defined on Ω, with

0 < a rain <  ζτ α (χ ) ζ  < a r a  VC €

We also assume the following standard condition holds:

c - - V . 6 > ^  a.e. x  €  Ω. 

The weak formulation o f problem (3.20) reads

a.e. x  €  Ω. (3.21)

(3.22)

{
Find u  G H q (Ω) such that for all v  €  H q (Ω), 

B ( u , v )  =
(3.23)

where the bilinear form B (·, *): H q ( Q )  x  //<}(Ω) —► R  is defined via

B ( v t w) = (aVu, Vtu) 4- (b * V v  4- cu, . 

Let us assume a partitioning o f Ω into N  nonoverlapping subdomains Ω,*,

N

n  =  ( J o , · ,  Ω<ηΩ 7· =  0 ( i j t j ) ,
i=l

and let Γ C R d_1 denote the set o f internal boundaries associated with the above partition o f Ω:

Nu
i= l

r  =  ( J  r ,  ( r ,  :=  d i i i \ d n ) .
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Given a function v defined on Ω we denote by ti* the restriction of v to Ω*: n* = v |nr  Witli this 
notation, we define the bilinear forms · ) : H & { O i )  x  //ο(Ω*) —► R similarly to 2?(-, ·):

Bi (v i ,  w() = (aiVui, Vu;i) + · Vu* + . (3.24)

Now let

= {w € Hl {£li) : w lannati*— 0}

and let υ € #ο (Ω ). Then = v |n,€ ΖΓρ(Ω ί) and there holds

N  N

% v )  = Σ  Bi(ui,vi), ( /,v) = (3.25)
t= l i= l

Let u denote the solution of (3.20) and let m = u |n,. Assuming the value of the exact solution 
is known on each Tu say u* |r<= A„ problem (3.20) can be equivalently be written as a set of 
problems defined on Ω,· for all i:

Cut =  /
« Ui = 0
, Uj — At

in Ω{,
on έ7ΩΠ#Ω<, 
on Γ i.

(3.26)

Under the same assumption that A» are known, problems (3.26) can be decoupled into two sets of 
problems:

ΐπΩ*, (  £ u j2} = 0 in Ω«,

«ί1» = 0 on dO Π 9Ω<, A
h II o on dO Π 5Ωί,

u? } = 0 onI\. l  — A< on Γ,,
(3.27)

with the solution u |n<= = uj1* + txj.(2}

To find an equation for A i we integrate the two sets of problems in (3.27) against vt € 
and obtain the identities

= (f,Vi) +  I  n, · ajVupVjdsfrj),
JTi

B (u ™ ,v t) =  /  m  ■ a < V « P ^ « jd e (r i) .
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Adding them up and then summing over i  we find (using (3.25))

which yields, using (3.23), the Steklov-Poincare equation for the decomposition (3.26):

ΛΓ AT

* = 1  J r * is= l ■/ r *

Now let η € Η ^ 2(Γ) with 77,- =  η |p. and let v% be the solution to the problem

C vi = 0  in Qi,
- t/f- = 0  on \  I \ ,

Vi οηΓ,*.

(3.28)

Note that in the case o f the Poisson problem where C  =  —Δ , the functions vi are harmonic exten­
sions o f  7]i to Ω,-. In general, one can view v,- as ^-extensions o f the corresponding data iji to Ω,*. 

Furthermore, the function v  defined via v  |n ,=  v, can be viewed as a generalized ^-extension o f the 

function η  €  H ^ 2(T) to the domain Ω. Henceforth, such generalized ^-extensions o f  functions η  
or 1a will be denoted by Εη and Eiiy, respectively. Any other harmonic extensions will be denoted 
by F q  and Flifc. We also need the following elliptic regularity result, which is known to hold for 
the weak solution o f (3.28) (see for example [1]):

Using integration by parts, we can give the operator S  the following alternative representation:

Note that these definitions amend those given in [128, pp. 142-143].

With this definition o f 5 ,  our model problem can be recast as an ordered sequence o f three

ΙΜ Ι ι λ  =  I I ^ I I i a  <  ^ Μ ι /2,Γι., (3.29)

where Ce is a constant depending only on the domain Qj. We define the Steklov-Poincari operator

S  : H ^ 2(T) -  ( / 4 /2(Γ ))' as follows. Let H ^ { T )  with η |Γ<= : ι* ,μ  |r ,= :  We define

( 5 η .  μ) =  ] Π  /  - a < V (£ i j i )  Μ Λ(Γ<) = :  (<%ηί, to) - (3 -30)
,·=ι 3Γι 1
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decoupled sets o f problems involving the same operator £  with essential boundary conditions on 
each subdomain together with a problem set on the interface Γ:

(i)-
£ i4*» =  f  inf2i,

« {1}Ui =  0 ondflj.
r N

(ϋ )- 1 5A =  - •Σ* · « * « ! "
l t=l

f ^ =  0 in Ω*,

(iii) <1 u{2> ui =  Aj on Γ*,

{2}1 tij =  0 on 0Ω* \  Γ*.

The resulting solution is =  u j1* +

(3.32)

We now turn to the properties o f the interface operator 5 . Given representation (3.30) we can 
immediately see that S  is nonsymmetric unless 6 =  0. One can show further that 5  is a bounded 
positive operator on h Iq2(T).

Lemma 3.5.1. Let S  be defined by (3.30) and let (3.22) hold. Then there exist constants a \ , c*2 such 
that fo r  all η , μ €  Γ),

QilMli/2,r ^ (S V’V) . (δτι ,μ)  < «2 |ΜΙι/2,γΙΜΙι /2,γ·

Proof: Let Vi =  E t f i ,  Wi =  Ei&  satisfy (3.28). We have, using (3.22),

{Sth, m) =  Bi(vi,Vi)

=  (aiVi),·, Vi) + (b- Vvi,Vî j +  (cvi, Vi)

=  ( t t iV v i.v i)  +  ^ (c  -  · b)vt,vtj

^  “ mtaMl.n, +  r-ram||»'<|lo,n(

> min{aI,blcn*1}||wj ||?if,(.
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Moreover, using the Poincare inequality (3.19) we get 

(Sifafr) =  Bi(vi,Wi)

< ΟπΒχΚΙι,ΩίΙ ί̂Ιι,Ω; +  ΙΐίΐΙζ,οο^Ιυ,Ιι,η,ΙΙ^ΙΙο,Ω, +  lk||i/«J(fti)||t;i||o1nf||wi||oA

<  m ax |< w  +  ΙΙ&ΙΙτ̂ ω^ ρ Φ ϊ ), IMIl00̂ ) }  ΙΚΙΙι ,Ωϊ Ι Μ Ι ι ,Ωϊ *

Since 7 ov,- =  771, 7 0 ^* =  //*, the trace inequalities (3.17)-(3.18) read for all i =  1 , . . .  , N

{ Μ Ι ι / Ζ Γ ί  <  ^ ( Ω ιΜ Μ ι,α ,-,  Ι|μί||ι/2,Γί <  ^(Ω ίΜ Κ'ίΙΙι,Ω *

and the result follows from the regularity estimate (3.29) and definition (3.30) o f the operator S .  m

3.6 Finite element discretisations

Let z  be an arbitrary function of H \  having trace at each o f the i2* A, . In order to write down the 
weak formulation o f problems (3.32) we rewrite the set o f equations (3.32,(iii)) as

( £t/j2* =  -£ z i ini2i,
u j2} = 0  ο η Γ „

ΰ ί2} =  0 on d tli \  Γ „

where fii2  ̂ = u \2  ̂ — z. With this new notation, the weak formulations o f  problems (3.32) are

Ol·
k/

( i i )  .

.

(iii) <

Find up> e #ο(Ω|) such that for all u* € H&(ili),

B i ( u j 1 ] ,Vi)  =  ( f i , v i ).

Find λ €  H ^ 2(T) such that for all η e Η ^ 2(Γ), 

s{X ,V) :=  ( δ λ ,η )  =  Σ Ϊ ί ι  [(Λ, ^ / . )  -  ·

Find ΰ,·2  ̂ =  u j2* -  Zj e  (iii) such that for all n,· €  H ^(ili) ,  

B i(u f2}, Vi) = -B i ( z i , v i ) .

(3.33)

Note that Zi €  Η 1(ΩΙ) and z  6  Η ι (Ω) with 7 ο(Γί)2 ,* =  λ,·.

Let Pr (t) denote the space o f polynomials in d  variables o f  degree r  defined on a set t  C R d.
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Let

Vj1 = Vf’r := {u> € σ°(Ωί) : Hi € Pfc Vt € Th, tu |βηηβιι,= 0} c (3.34)

be a finite-dimensional space o f piecewise-polynomial functions defined on some subdivision %k 
o f Ω into simplices t  o f maximum diameter h. Further let V/}, V^B C V/1 satisfy V/} 0  V^B a  V{h. 
Also let

ν £  =  span {</>[, k  =  l . . . n l }  and V?B =  s p a n { ^ ,/e  =  l . . . n f }  

and set η / =  Σ ι  n l- Further let

v£ =  \J  v&
i=l

and let fc =  1 , . .  ·, n B} denote a basis for V%. Let S{* =  span {7 ο(Γ{) ^ ,  fc =  1 , . . . ,  n f } 
with S h =  u£L iSf. Finally, let

N
V h =  { J  Vth c

i=l

The finite element discretization o f the weak formulation (3.23) reads

j  Find Uh € V h such that for all € V*,

\  B ( u h, v h) = ( f , v h).

The finite element discretization o f the weak formulations (3,33) are as follows;

0)

(ii) .

(iii) .

Find u<‘> 6  V·} such that for all vm  €  V$,

B i ( u f f , v hi) =  ( f i , v hi).

Find λ/, €  S h such that for all η/, €  S h, 

e(Aft,r?ft) =  [ ( / i i  FiVhi) -  .

Find t i f f  =  u f f  -  zm €  such that for all ς  Vfi, 

Bi(uff,v/,i) ~  -Bi(Zhi,Vf,i).

(3.35)

(3.36)

r
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3.6.1 M a tr ix  fo rm u la tio n

Formulation (3.36) amounts to a Schur-complement approach for the solution o f the discrete weak 

formulation (3.35). For completeness o f exposition we include this characterization below. Let

A u  =
(A n

(3.37)

represent the linear system associated with the discrete formulation (3.35) with A  €  R nxn, u e l "  

where n  — n i  +  n e  sad A n  e  JRn,xn ' ,  Α ιβ, Α e  Rn,xr*B, A b b  €  R n° xnB are given by

(A)j

A n  = 4 / , Are = ^/B

\ A?J ^ /B /

, A b i  =  ( aJ ··· AVBI n BI

with

(An)kk =  Β Μ Ι,φ Ι), 

{Alj B)kj — Βί(φ\,φ^),

(A iB I)jk  =  Βΐ(ψϊ,φΐ), 

{Ab b )u =  Β{φι,φι),

for all fc = 1 ,..., n[, j  = 1 ,..., nf, / = 1 ,..., nB.

Lemma 3.6.1. In the above notation, the solution ofproblem s (3.28) has fin ite  element coefficients

v  =
-A J j Aib v b \

VB

where v #  are the coefficients o f  η  with respect to the basis o fV g .

Proof: We start by considering the weak formulation o f problems (3.28). I f  we let tu* |r*=  r)i we
can re-write our problems as

Cvi =  - £ z i ίηΩ ί,
Vi =  0 on dfti
Vi =  0 onT j,

(3.38)
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where we set f;* — -  Zj. These problems have the following discrete weak formulation:

f Find vki = Vhi -  Zhi € V(\ such that for all %  € 1$,
^ Hi{Vhij^hi) ~  -B i{zhU Whi),

so the global matrix representation resulting after summing over i is

and the statement of the lemma follows. ■

Consider now the matrix representation of operator S  in the basis {V'jt, it = 1 , ,  «β}· The 
discrete form of definition (3.31) is

s{nn^h) -  Bi{Eirnk,Fiinh)i (3-39)

where we recall that F( is an arbitrary extension operator to Ω* while Ei is an £-extension to the 
same domain. If we set v  |r \=  fy/i* tu |γ*= μ*/ι, the corresponding discrete representations o f these 
extensions will have the form (using the Lemma 3.6.1)

Eftth =
/ - A j/A jbvb

v va

Hence (3.39) has the representation

w£Svb  =  (w j1 ( A i l  
v y \A b i

which is equivalent to

wJ aV b =  w q(Abb -  ABrAJjAiBjvB

for all vb ,wb € Rn° xn^, so that S is the Schur complement of j4bb in the global matrix A. With 
this notation, (3.36 (i)) has the following matrix formulation: (i)

(i) A u u ^  *  f/(
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while (3.36 (ii)) becomes

( ϋ ) „ ϊ ϊ » . - ( „ Γ  w £ ) ( f ' ) - K

for any w* €  , w #  6  Ε ηβ; this equation simplifies to

(ii) SuB = fB -  ^ b/ u}1}.

Finally, from Lemma 3.6.1 the discrete form o f (3.36 (iii)) is seen to be

(iii) uj2} = -A j} A IBuB.

These equations are easily seen to represent a Schur-complement approach for the original linear 

system (3.37) with global solution u  given by

3.7 Preconditioners for the Steklov-Poincare operator

The result o f  Lemma 3.5.1 holds also in the discrete case for the choice o f space 5/, introduced in 
the previous section. In particular it translates into the following coercivity and continuity bounds 

for $(*,*): S h x  S h.

Lemma 3.7.1. Let s(*. *) be defined as in (3.33) and let (3.22) hold. Then there exist constants
l/2<*1 , a 2 such that fo r  a ll τ?Λ.μ Λ €  S/, C (Γ),

« ι ΙΜ Ι χ/2,γ ^  sfaft.Wi) <  a2lM li/2 ,rlK lli/2,r·

We realize from the above discussion that the continuous formulation o f the domain decomposi­
tion problem is intrinsically related to the Schur complement operator acting on the space H^q2(Γ); 
a space lying between H q(T) and L 2(T). In order to exploit the results o f (3.5.1), (3.7.1) for pre­

conditioning purposes, we need to derive corresponding matrix formulations. For this purpose it is 

essential to familiarize ourselves with the concept o f  interpolation of Hi lbert spaces and their related 
norms, as well as discrete norms equivalent to the continuous ones, which will finally provide the 

sought optimal preconditioners. We proceed by recalling related results presented in [4],
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3.8 Interpolation spaces

Let £ ,  M  denote two Hilbert spaces with £ C At, £  dense in At with continuous injection. Let 
(·, -)c , (*, ·)M denote the corresponding inner products, and || · ||£, || · ||jn the respective norms. By 
the Riesz representation theory (see for example [129]) there exists an operator 3 : £  —► At that is 
positive and self-adjoint with respect to {*, ·)M such that

(u, v)c  = <u, Zv)M  . (3.40)

Using the spectral decomposition of 3 we define the operator

<£ = Zl/2 : £ —» M , (3.41)

which in turn is positive self-adjoint. Moreover (see [104, Chapter 1, Section 2.2]), the space £  can 
be defined to be the domain D(<H) of <£, and the norm of £  is equivalent to the graph norm || * \\&

IM k  ~  IMIe := ( M &  +  ^ » |β , ) 1/2.

Similarly, the spectral decomposition o f € can be used to define any real power of <B. We can now 
introduce the interpolation or intermediate spaces o f index Θ taken from [104].

Definition 1. interpolation space o f  index Θ €  [0,1] fo r  the p a ir o f  H ilbert spaces [£, At] with 
£  C At, dense and continuously injected in M, is the domain o f  (S1 denoted by [£, At]e, with <£
defined b)' (3.41), endowed with the inner-product

{u,v)g = {u,v)M + (& ~eu ,& -ev) ,
' / At

and corresponding norm the graph norm o f $,ι ~θ:

l l^ := ( l |t i|a i + ||C1-eu ||^)1/2. (3.42)

In [104] the authors also prove that the space [£, M)e is a Hilbert space. We should remark that 
[C,M\o = C and [£,Λ4]ι = M . Moreover, if 0 < θχ < 02 < 1 then

£ c  [£, M]gt c  (£,Λ4]β2 C M . (3.43)

Now let £(A;B) denote the space of continuous linear operators from A into B. The following 
classic interpolation theorem can be found in [104, Theorem 5.1].
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Theorem  3.8.1. Let £ \ , M \  be defined as above and let £ 2 , M 2 satisfy sim ilar properties. Let 

tr S £ ,(£ 1; £ 2 ) Ο £ ( M v ,  M 2 )· Then fo r  all Θ €  (0,1),

We turn now to the case where the spaces generating the scale o f interpolation spaces are finite­

dimensional. In particular, we are interested in the discrete norms associated with these spaces.

3.8.1 Finite-dimensional interpolation spaces.

Let £ h c  £ , M h  C M  denote two finite-dimensional subspaces o f £ , M  respectively, with n  =  

dim  £h  =  dim M h- They are Hilbert spaces when endowed with the inner-products {·, -)c  , (·, -)M . 
We can similarly define corresponding positive, self-adjoint operators 3/,, <E* : £/, —► M h  satisfying

By employing Thm. 3.8.1 the authors in [4] prove the following.

Lem m a 3.8.2. Let £ h C M h , £  C M  be H ilbert spaces with inner-products (·, -)c , (·, -)M  and let 
II · Ha, || ■ || e,h be defined by (3.42), (3.45), respectively. Let us assume that there exists an interpolation 

operator I h such that I h : £ (£ ;£ / ,)  O t { M \ M h )  and IhUh -  U hfora lluh e  £/,. Thenthenorm s 

II · lie, II · ΙΙβ,/ι are equivalent on [£ h ,M h ]e fo f  all Θ €  (0,1).

3.8.2 Discrete fractional Sobolev norms

We are interested in describing the set o f symmetric and positive definite matrices

π  e  £ {[£ \ ,M i]e \  [£2 , Μ 2 )θ)·

(uh,Vh)c =  (uh,3hVh)M v-h,Vh€.£h,

1 /2where Zh is positive self-adjoint and <£/, =  J h .W e define the discrete interpolation spaces

[£h,M h]e-.= D{<Elh- e).

(3.44)

Furthermore, we define the scale o f discrete norms

(3.45)

{He €  Knx” : η €  N, 0 < Θ < 1} ,

which induce norms equivalent to j| * ||^h with constants o f equivalence independent o f n. Let L, M  
denote the Grammian (or Rjesz) matrices corresponding to the inner products {*, -)c , (·, -)M . More
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precisely,

L ij  = (Φύ Φΐ)β , = (φί, φ])Μ , 1 < i ,j  < η, (3.46)

where {Φί}χα<η denotes a basis of so that

II«aI|£ = H it, IM U  = IN \m ,

with u the vector of coefficients of «/, expanded in the basis {φ%}· We first note that the discrete 
Riesz representation (3.44) becomes

u TLv = u TM Jv

so that .7 = M~lL is a product of two symmetric and positive definite matrices. In the sequel we 
will need to define real powers of these matrices. Suppose H € Rnxn is a Diagonalizable matrix 
with a real Positive-definite Spectrum (DPS). Let the eigenvalue decomposition of H be denoted by 
H = V*”1 DfjV, where Dh is a diagonal matrix with entries λ< satisfying

0 < Αχ < λ2 < ... < λ< < . . .λη.

The following definition [78,100] will prove very useful in the subsequent discussion.

Definition 2. Let Θ € R. The Θ power ofa DPS matrix Η = V”1 Dh V is defined via the decompo­
sition H° := V~lD°HV.

The matrix J  will play a key role for several of our results. This matrix is self-adjoint and 
positive definite in the discrete M-inner-product, because

(u, Jv)M = uTM(M~lL)v = vTLu = vTM(M~lL)u = (v, Ju)M

and
(u, Ju)Af = ur Lu > 0 for all u Φ 0.

One can also write explicitly the eigenvalue decomposition of J : since L, M  are symmetric and 
positive-definite, there exists a matrix Q such that ([79, Cor 7.6.2])

L = QTDQ, M = QTQ,
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where D is a diagonal matrix with positive entries, so that

J  =  M ~ l L  =  Q~lDQ.

Note that this implies that J  is DPS, so that real powers o f J  can be defined via Definition 2. It is 

evident that the matrix representation o f  <£/, in the basis {<pi} is the DPS matrix

E = Q -'D '^Q ;

furthermore, the matrix representation o f 6 is similarly

E i-e = Q- i D{i-e)/2Q

We now turn to the matrix representation of the norm || - H ^ , which we denote by H e%h· Definition
(3.45) yields

IM Ilw  =  IMIm +

so that

Η θλ =  M  +  ( E 1~°)TM E 1~e =  M  +  QT D 1' eQ =  M  +  M J X~9 =  M  +

(3-47)

Let us consider now the reduced version o f Η$^\

Η θ =  M ( M ~ 1L )1~e. (3.48)

The following proposition allows us to consider the reduced form H$ as an alternative o f He.h-

Proposition 3.8.3. The matrix H$ = M (M  lL)1 e, the reduced form  o f  Hq̂  is equivalent to it 
with constants o f  equivalence independent o f  n.

Proof: By definition, the norm o f £/, is equivalent to the discrete graph norm (3.45) with Θ — 0:

QT D Q  = L ~  H Q,h =  M  +  M J  =  QT ( I  +  D)Q.

Hence, there exist two positive real constants a i , Q2 independent o f  n  such that

aiD a  <  (1 +  A i)  <  o^A* ! < * < « ·
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It follows that, setting = l,fi2 = max {<*2 ,2}, there holds

& i D l f 19 <  (1 +  D \^ ° )  <  02D \ r e 1 <  i  <  n

and we deduce that

He,h ~  H e : =  Q T D l ~eQ  «  M J 1* 9 =  M ^ r 1! ) 1" 9 . (3 .4 9 )

■

Corollary 3.8.4. Let the assumptions of Lemma 3.8.2 hold. Let H$ be defined as in (3.49). Then
the norms || * ||#, || · \\h0 are equivalent on [ChjM h]oforall Θ €  (0,1).

In the following, we assume that Γ is the union of planar (straight) feces (segments) Γ,*. We 
let M  be the space of square-integrable functions defined on Γ and let Vr denote the tangential 
gradient of a scalar function υ(χ) : Ω:

Vru(x)Vt>(x) -  n(n · Vv(x)),

i.e., the projection of the gradient of v onto the plane tangent to Γ at x € Γ. We define £ as follows: 

C = Η&[Γ) := jv  € L2(T) : J  |Vrv|2ds(D < oo, « |Γηβη = 0 

We endow £ with the norm

=  Ι Ι ^ | | ^ (γ).

Now let Ch = (Sh, II · ΙΙη0>(Γ)) C C and M h -  (Sh, || · ||i,a(r)) C M . The norms (3.47), (3.48) for 
the discrete interpolation space [ChtMh]\/2 have the matrix representations

H1/2A = M + M (M ~'L)W

where

Mij =  (Ψί*Ψί)ι a(D» Eij — (V’rt/'i, Vr^i)^J(r)»

with rjji e Sh for i = 1,. . . , τίβ. With this notation, Lemma 3.8.2 applies with h  fee finite element 
projector onto S \  Thus, for all A* € Sh with A* = A*0, them exist constants kj,K2 such
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that /r i ||Λ/*||!/2 ,γ <  ||λ||/#·1/2 <  * 2 | |^ /J |i /2,r. We immediately derive the following result.

Proposition 3,8.5. Let s(*. ·) be defined as in (3.33) and le t (3.22) hold. Let η ,μ  denote the co­

efficients o f  r\h,ph with respect to the basis {ψί, i =  1 , . . . . Π β} o f  S h. Let S  denote the matrix 
representation o f  s(-, ·) with respect to the sam e basis. Then there exist constants ά χ . ot2 such that

<*i M Ih 1/2 <  i)T Sr), μ Γ5τί <  ά2\\ν\\Η1/2\\μ\\ΗΛ/2

fo r  all r\h ^ h  €  S h C H ^ 2(T).

We will see below that the above equivalence indicates that f? i/2 ,h and the equivalent norm H^j2 
can be both used as a preconditioner for the Schur-complement system and that they are optimal in 
some sense to be described.

3.8.3 Optimal preconditioners

The solution o f linear system (3.37) requires an iterative approach in the case o f large-scale prob­

lems. A useful approach is to consider an iterative solver such as GMRES together with a suitable 
preconditioning strategy. In our case, one could for example employ a right preconditioner that will 

incorporate the solution o f problems posed on the interior o f each domain (achieved in parallel) and 
the (approximate) solution o f a problem involving the discrete Steklov-Poincare operator. Given the 
equivalence in Proposition 3.8.5, a candidate right-preconditioner is

Pr =
An Aib  
0 H i /2

With this choice, the preconditioned system is

APR1 Ab iAJ}
0

SHl/2

This block structure indicates that the convergence o f an iterative algorithm such as GMRES will 
depend on the ability of / /χ /2 to approximate S. In particular, the eigenvalues o f the above precon­

ditioned matrix are either equal to one or coincide with one o f the eigenvalues o f S H ^ 2. In fact, 
these eigenvalues lie in a region of the complex plane that is independent o f the size o f the problem 

and also lies in the right half-plane. To see this, we recall the definition of the H -field o f values of 

a matrix A,  given a symmetric and positive-definite matrix H.
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Definition 3. Let R, H £ Knxn with H symmetric and positive definite. The H-field of values of 
the matrix R, denoted by Wh (R), is a set in the complex plane given by

Wh{R)
- {

2 € C : 2 = x*HRx
x*Hx

( x ; R x )h  
M ) h  ’

x e C n \ { o } J .

When Η ~ I, the set is called the field ofvalues and is denoted by W{R).

We also need to recall a related result concerning the convergence of GMRES (see [56,132]).

Lemma 3.8.6. Let H e Rnxn be a positive-definite matrix. Let R ,P  6 Rnkn be nonsingular 
matrices such that the following bounds hold:

(x, RP 1x)„ 
ζ1 -  <*,*>„ ' IMIff

< 6 (3.50)

for some positive constants ξι and &· Then the GMRES algorithm in the H-inner product yields a 
residual r* after k iterations that satisfies

οι ι * ~ ν  a )

k/2
(3.51)

The following result provides bounds on the H y\-M d  of values.

Proposition 3.8.7. Let the hypothesis of Proposition 3.8.5 hold. Then the H y2-field of values of 
ts in the right half-plane and is bounded independently of ns·

Proof; The projection on the real line of the of values is bounded from below by

min
*ewWl/2

min
i?€Rn*\{0}

riTSnmm ΛΓ- ' ■ 
0 6 R”b\{0 } ητ Ηι/2η > Qri > 0.

An upper bound for the field of values is provided by the numerical radius, which in turn is bounded 
by the maximum H y2-singular value. The resulting bound on the -field of values of SH y2 is

\z\ < max 
0€Rn»\{0)

___________" 1/2

\\v \\h max max ηδμ
i/2 *=R"a\{o},i€R"a\{o} M h1/3\\p \\h

< 02-
' i /7
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Note that the above bounds also imply the following bounds independent o f π β  on the eigen­
values o f the preconditioned discrete Steklov-Poincare operator:

&1 < | Λ ( ^ Γ/2)| < Q2.

Given the result o f  Proposition 3.8.5, a convergence bound can be immediately derived fo ra  system 
o f equations involving the matrix S H

Proposition 3,8.8. Let the hypothesis o f  Proposition 3.8.5 hold. Then GMRES applied to the linear 
system

S H r 1 '-i/‘2y = *. (y = Hi/2y)

in the H ^ - in n e r  product yields a residual r*  after k  iterations that satisfies

l k * lk /2 /  - 2' * /2
M )llr °ll//I/2

The following result is adapted from [109, Thm 3.7],

(352)

Proposition 3.8.9. Let the hypothesis o f  Proposition 3.8.5 hold  and le t Pr be given by

Pr  =
Aib  \  

pH 1 / 2 /
(3.53)

Then there exists po > 0 such that fo r  all p  > pa conditions (3.50) hold with R , P  replaced by 

A , Pr  and fo r  the choice

( A n  0 \  
V o h 1/2)

As before, this result indicates that block triangular preconditioners Pr {p) are optimal precon 

ditioners when we use a suitable GMRES iteration to solve the global linear system.

3 .9  E v a lu a tio n  o f  Hg

The evaluation o f Ho consists of two steps. The first step involves the assembly of the matrices L, M
(3.46). These matrices are assembled on the interface o f the subdomains, which in a triangular mesh 

consists o f  segments and in a tetrahedral mesh consists o f  triangles. Unlike standard finite element
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meshes, these segments have vertices with two space coordinates and the triangles have vertices 
with three space coordinates. The finite element assembly o f operators acting on interfaces thus 
involves a quite non-standard process, explained in what follows.

3.9.1 Assembly on a 2D interface

Let as assume an arbitrary segment on the x  y  plane and let {x \ , y \ ) and (x2 , w )  be coordinates o f its 
vertices. Our purpose is to obtain the corresponding linear shape functions defined on that segment. 
As soon as we have them, the rest follow easily as in the case o f standard ID finite elements. For 
this purpose we need to construct the mapping o f any 2D segment to the reference segment defined 
by the line from (0,0) to (1,0) along the x-axis. We perform a translation o f  one end o f the segment 
to the origin, followed by a clockwise rotation o f the segment around the z-axis to align it with the 
x-axis. The segment is then scaled to be o f unit length. This mapping will provide the sought shape 

functions defined on 2D segments.

Translation to the origin

Let P  define the affine coordinates o f the end-points o f  a general segment in the x y  plane. Then P  
and the required translation matrix T  are as follows:

Rotation and scaling

The clockwise rotation around the Z axis by an angle Θ, followed by scaling o f the segment to unit 
length, are accomplished by applying the following matrices:

The translated segment is now
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where cos* =  f a  -  X l) / l ,  sin*  =  f a  -  <*)//, and , =  y / f a  -  +  f a  -  2 . jfae total
transformation matrix is

(  {X2 ~ Xl)//2 ^ 2 -  Vi)/ l2 i -χ ιχ»  +  x\  -  3/12/2 + y?)/Z2\
M  = SRZT  = ( - 2/2 + 2/1 )//2 (aj -  Ι ι)//2  _ yiX2)/l2

V 0 0 1

and it satisfies

( xi x2̂
J/l 1/2

1 Ο

Shape functions /

The linear shape functions corresponding to the end points o f the 2D segment have the general form

Ni{x,y)  =  aix +  biy +  ci, i - 1 , 2 ,
and the properties

N i( x j ,y j )  =  Sij, i , j  =  1 ,2 , (3.54)

W i(x, y) +  N 2(x , y) =  1, (3.55)

where &̂  is the Kronecker delta. The coefficients o f  N 2 are obviously the columns o f the first row 

o f  the matrix M . The coefficients o f  N \  can be easily obtained from (3.55). The sought shape 
functions are thus

N2( x , y ) =  X2 p — x +

V2 - y i  , χ2 +  y\ -  * 1x2 -  y m
~ W ~ y + ------------ μ ---------------
V2 - y i  . x\  +  2/1 -  X1X2 -  2/12/2 
- p - y + ------------ p ---------------

(3.56)

(3.57)

3.9.2 3D triangles and mapping to the reference

In three dimensions the interface boundary o f  the subdomains consists o f  triangles in the 3D space. 
We follow a similar process, constructing first the matrix that maps an arbitrary 3D triangle to 
the reference triangle [(0,0), (1 ,0), (0,1)]. Then we use that mapping to obtain the barycentric 

coordinates o f the 3D triangle.
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Translation to the origin

Let P  define the affine coordinates o f the vertices o f a general 3D triangle. Then P  and the requited 

translation matrix T  are as follows:

P  =

' x i X2 X3^ ( 1 0 0 - x i

Vl V2 V3
, t  =

0 1 0 - V l

21 22 23 0 0 1 - V i

V 1 1 1) 1 ° 0 0 1

The translated segment is now

T P *

X 2 — X l  X 3 — X i ^/o
0  m  -  yi y s - y i
0 Z2 - z \ 23 — z \

1 1 1

Rotations and m ap to the reference

The translation is followed by three consecutive rotations, counter-clockwise around the 2 -axis 
and y-axis and clockwise around the x-axis. After these rotations the 3D triangle lies on the xy- 

plane with the vertex with coordinates ( x i ,y i , 2 i) before any affine transformation takes place 
located now at the origin. As soon as the triangle is mapped onto the xy-plane the mapping to 
the reference follows trivially as it is usually done with standard triangular finite elements. The total 
transformation is expressed by the following matrix:

^χ2~χ ι  X3 - X 1 ((y2 - y i ) ( 23-  *i) -  (* 2  -  zx ) (ys -y i ) ) /d
M  _  V2 -  Vl yz “* Vl ( ( * 1  -  *2 )(*3 “  Z\) +  (X3 -  Xl){z% -  Z \))/d  y l

22 -  * 1 23 -  2 1 ((«a -  x i ) (y z  -  Vi) -  (*3  -  *i)(ya -  yx )) /d  z l  ’
V 0 0 0

where

=  ((V2 -  Vl) ( 2 3  -  2 1 ) -  (2 2  -  2 i)(y3 “  Vl))2 

+  ((Xl -  X2)(23 -  2l) +  (X3 -  Xl)(22 -  Zl))2 

+  ((x2 -  Xl)(vs “  Vl) -  (X3 “  Xl)(V2 -  Vi))2 .
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The determinant o f  M  is equal to d, while d /2  is tlie area o f the triangle. The matrix M  satisfies

X I x 2 f 0 1 0 >

yi 2/2 2/3 0 0 1

Z l 2 2 23 0 0 0

1 1 l1 1 V

Shape functions

The P I  shape functions corresponding to the vertices o f the 3D triangle have the general form

N i ( x , y , z )  = a iX  + h y  +  CiZ +  d i , i  =  1 ,2 ,3

and the properties

2/j j zj )  i h3  — l i 2 ,3  (3.58)

N x(x, y , z)  +  -/V2(rc, y, z) +  N 3(x,  y, z) =  1, (3.59)

where Sij is the Kronecker delta. The coefficients o f N 2 are obviously the columns o f the first row 
of the matrix M  and the coefficients o f N 3 the columns o f its second row. The coefficients o f N\  
can be easily obtained from the second property (3.59). The sought shape functions are thus

N \ ( x , y , z )  =  1 -  N 2( x ,y , z )  -  N $ (x ,y , z ) ,

Ν 2(Χ) y , z) -  (x 2 -  x \ ) x  +  (x3 -  x \ ) y

+  2  ((2/2 “  y0(*3 ~ ~  (Z2 ~ z i)&3 -  sO)* +

N $ ( x ,y , z ) =  (z2 -  z \ ) x  +  (zs -  z \ )y

+ 2 ((X2 -  ^l)(2/3 - y i )  -  ( *3  - Xl)(V2 -  2/l)) 2 + Z\.

3.9.3 Non-integer matrix powers

In order to construct and apply in a practical application any o f  the discrete norms derived in the 
previous discussion we are required to evaluate non-integer powers of a matrix. This task may be 
achieved in different ways for different applications. In general, if the dimension of the problem 

is low, one can employ a direct method based on a generalized eigenvalue decomposition; see for 
instance [6 8 , chapter 1 1 ], This approach however is prohibitively expensive, as its complexity is 

o f order 0 ( n 3). For large matrices it is recommended only if  the matrix has a block-diagonal

(3.60)

(3.61)

(3.62)
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structure, and the whole process can then take advantage o f cache-aware algorithms. When the 

matrices involved have a Toeplitz structure the desired matrix function can be evaluated via an FFT 
algorithm as suggested by Peisker [122]. The complexity then drops to 0 (n  log n). In both cases the 
storage requirements are o f order 0 { n 2). Newton’s method has attractive convergence properties 
but it will always be outperformed by the approach employing the eigenvalue decomposition.

In the realm o f preconditioning we usually desire an approximation o f H q or o f its action applied 
to a given vector. There are several approaches found in the literature designed for this problem. 
In [74] Hale, Higham and Trefethen propose a method based on contour integrals. Any matrix 

function can be represented as a contour integral and then this integral is evaluated using the periodic 
trapezoid rule with conformal maps involving Jacobi elliptic functions; the suggested algorithms 
show geometric convergence. Another approach is to construct approximations o f Krylov type, 
which take advantage o f the sparsity o f the matrices involved. Several authors have considered this 
approach for general matrix functions; see for instance [2, 28, 44, 45, 46, 52, 130]. Convergence 
analysis o f the proposed algorithms is provided for the computation o f the square root function 

in [45].

In what follows we describe a robust Krylov based approximation we adopted for any real value

of0.

3.9.4 Generalized Lanczos algorithms

The Lanczos method introduced in [101] is a technique that allows us to solve large sparse eigen­
value problems A x  =  Ax. The method involves partial tridiagonalizations o f the given matrix A. 
Important information about A’s extremal eigenvalues emerges long before the tridiagonalization 
is complete. This makes the Lanczos algorithm particularly useful in situations where a few of 
-4’s largest or smallest eigenvalues are desired. For a remarkable derivation o f the underlying algo­
rithm through optimization o f the Rayleigh quotient and a detailed discussion about its convergence 
properties and applications, see [68, chapter 9].

Suppose that we are given a symmetric and positive definite matrix A. The standard Lanczos 
algorithm o f Krylov space dimension k  < n constructs a set o f orthogonal vectors r*, i =  1 , . . . ,  fc+ 
1. The columns o f the matrix V* =  [t>i, U2 , . . . ,  v*] are known as the Lanczos vectors and they 
satisfy the identity

AVk ~ V kTk + 0M vM el, vk Vk -  h ,

where /* €  R*xfc is the identity matrix with fcth column denoted by e*, while 7* 6  R kxk is a 
symmetric and tridiagonal matrix defined in (3.64) below.
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We are interested in tbe generalized eigenvalue problem

A x  =  X B x .  (3.63)

where A  and B  are symmetric positive-definite matrices. The generalized eigenvalue algorithm 
[121,155] constructs a se to ff-o rthogonal vectors tv such that

A l l  =  B V kTk  -r β^\Β υ% + ιε% 7 Vk B V k =  I k .

where Tk and Ik are defined as before.

Table 3 3  lists die standard and generalized Lanczos algorithms. For the standard algorithm one 
needs to supply the symmetric positive definite matrix .4, an arbitrary starting vector i% and the 

Lanczos space dimension k . For the generalized Lanczos algorithm we need to supply die matrix 
B  as w e ll After termination, Lanczos provides die tridiagonal matrix Tk and the matrix Vk.

LANCZOS( A  v , k ) GLANCZOS( A . B , v , k )

0 i = 0 .v o  =  0, t ’i  =  r / | j r | |2 0 i =  0 , vo =  0 , r i  =  c / | | r | |B

for i  =  1 :  k for i =  l : k

tt’j —- 4 i 'j  — BfVf—i Wi =  B ~ l Avi — & V i-i

a .  =  ( m ,  V i ) Qi =

!D,>1 =  Wi — Q{Vi Wi-1-1 — Wi -  QiVi

J .+ i =  Ik i+ ili? di-i-t =  |fttr*J-l|fs
i f  3iu-i =  0 stop if  1 — 0 stop

=  U/i-ul/A-1
end for end for

Table 3 3 : Modifications to the standard Lanczos algorithm (left) that lead to the generalized version 
(right).

We should note drat Tk can be seen as the projection o f  A  onto tbe space spanned by tbe B - 

ortbogonal columns o f Vk. In exact arithmetic:

V ? A V k =  Tk, V ?  B V k =  /* .
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In both cases described above the explicit

/

Tfc =

V

form of Tit is

0-1 02 0 0

02 a2 *·. 0
0 •. •. 0k
0 0 Pk oth

\

/

(3.64)

In exact arithmetic, when k = n, the algorithm can be seen as providing simultaneous factorizations 
of the matrix pair (B , A):

A = V -TTnV ~ \ B = V~TV~l (3.65)

Estimation of f(A) band f{B~xA) b

Suppose /(·) is an analytic function. Let us assume exact arithmetic and suppose the generalized 
Lanczos algorithm has terminated without breakdown, giving Vn and Tn. Using (3.65) we have

B~lA = VnT„V~l

and therefore

H B -'A ) b = Vnf(Tn)V~l b = V„f(T„)VjBb. (3.66)

In practical applications, especially in the preconditioning realm, we do not need to proceed up to 
k = n, A few Lanczos vectors k <  n will suffice. In that case (3.66) becomes

f{ B - lA )b * V kf(Tk)V?Bb. (3.67)

If Lanczos starts with an arbitrary vector u, then the estimation provided by (3.67) will be poor and 
will converge only for sufficiently large values of k (values close to n). However, if the starting 
vector v provided to Lanczos is b itself, then from the B-orthogonality of the columns of V*, (3.67) 
simplifies to

f ( B - lA )bK V k f{Tk)\\b\\B ei (3.68)

and the convergence of the estimated value given by (3.68) to the exact value of f{A) 6 is signif­
icantly accelerated. Finally any matrix function on the matrix 7fc can be evaluated by computing 
the eigenvalue decomposition of 7* = UAUT, where U is the matrix of the eigenvectors and Λ is
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a diagonal matrix o f the real and positive eigenvalues. The corresponding algorithm1 is described 

in [43] and has complexity o f 0 { k n ) .  Since the matrix is only k  x  fc, where k  in practical appli­

cations is really small (k < 100), the eigenvalue decomposition o f the matrix 7* takes only a few 

milliseconds. After the eigenvalue decomposition o f 7* has been computed, any function o f  7* can 
be evaluated as

f (T k )  =  U f (A ) U T . (3.69)

The standard case may be recovered from the generalized one by changing B  to the identity matrix 
/ .  Then formula (3.68) becomes

f ( A ) b ^ V k f ( T k)\\b\\2 e1. (3.70)

The preconditioner described in section 3.4 involves inverse powers o f  B ~ XA.  In that case after 
substitution o f  (3.69) into equations (3.68), (3.70) we obtain

(·B - l A ) - °  b «  Vk UA~°UT  ||6||b  ei)

A ~ e 6 « 1 4  U A~eUT  II&H2 e i . (3.71)

Finally, the action o f each o f our preconditioners in section 3.4 on an arbitrary vector b is estimated 
by

Ηλ ° b = L~e b ^ V k UA~eUT ||b||2 a , (3.72)

H ^ 9 b =  (M~lL)~9 M -1 b » V k U A~9Ut  \\b\\M eu  (3.73)

H ^ 9 b =  (I + (M ^L )9) -1 M -1 b » V k U(I +  A9) ' lUT ||6||A/  ex. (3.74)

In (3.72) Lanczos iteration starts with b. In (3.73) and (3.74), however, the starting vector is M -1 b. 

Speeding up Lanczos

The Lanczos iteration converges very quickly to the largest eigenvalues o f the matrix A . But since 

we are interested in inverse powers o f the matrix A , the largest eigenvalues approximated first 
by Lanczos will have a small reciprocal and consequently convergence to the final result will be 

observed as soon as Lanczos has sufficiently resolved the smallest eigenvalues.

The eigenvalues o f A ~ l are the reciprocals o f  the eigenvalues o f A . If  we consider instead the

'The LA PACK routine used for this purpose is DSTEMR, which is specifically designed for symmetric tridiagonal 
eigenvalue problems.
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inverse of the matrix A in Lanczos, the largest eigenvalues of A "1 or the smallest eigenvalues of A 
will be recovered soon and the application of Α~~θ or (Β~ιΑ)~θ will converge much sooner. The 
corresponding eigenvalue problems are

A~~l x  =  ^  .t ,

B x = \ a x . (3.75)Λ

The eigenvalues of the modified problem (3.75) are the reciprocals of the original problem (3.63) 
as well. Everything we discussed before holds here, with the exception that the standard Lanczos 
algorithm is carried out with A~l instead of Ay while for the generalized eigenvalue problem one 
has to swap B and A. The formulas (3.71) then become

(B~1A)~e b « Vk UAgUT ||&||β eu
A~e UAeUT ||fc||2 ej. (3.76)

Finally, the action of each one of our preconditioners introduced in section 3.4 on an arbitrary 
vector 6, is estimated by

H~e b = L °b * V k UA~°UT ||6||2 ej, (3.77)
Η ϊβ b = (M~lL)~g M~l b «  Vk UAeUT ||6||m ej, (3.78)

Ηςβ 6= (/ + (M~lL)e)~l b «  14 U(I + A~e)~lUT ||6||Af ei- (3.79)

In (3.77) Lanczos iteration starts with b, while in (3.78) and (3.79) the starting vector is M~l b. We 
would like to note here that the matrices A~e, Ae or (/ + Λ*)-1, (/ + Λ-*)-1 are diagonal matrices 
and their inversion wherever it appears is trivial. For instance, the diagonal entries of the matrix 
Λ" = (/ + are = (1 -f A^*)-1 while the entries of the matrix A+ — (J *+· A*)'1 are
*5 =  ( i  +  *£)**.

3.10 Flexible Krylov subspace solvers

The Lanczos subspace iteration we employ for the approximation of the action of the square root 
on a vector C{A,vm, k), at the mth step of the outer Krylov subspace iteration, generates differ­
ent sequences of approximations for different starting vectors vm. It cannot be considered a fixed 
preconditioner unless the accuracy of the action of the square root on vm has been computed up 
to machine precision. This would require, however, a very large k and reorthogonalization of the
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Lanczos vectors, as orthogonality is usually lost very soon [68]. Apart from the large amounts of 
storage that would be needed, the application of the preconditioner would become very inefficient. 
That leaves no choice but to consider a few Lanczos vectors (small k) per application of the precon­
ditioner, at the expense of having a preconditioner that is no longer fixed but changes within each 
outer iteration.

The classical Krylov subspace methods we reviewed in section 3 .2.3  have not been designed 
for variable preconditioners. GMRES, for instance, may reduce the relative residual below the 
prescribed threshold, but the solution we end up with may be totally wrong. As in our case, there 
are many other examples where the preconditioner is too expensive to apply. There, an approximate 
solution z whose residual 2-norm falls below some prescribed (inner) tolerance (||um — Λ/!|| <  em) 
usually works fine [5 7 ]. Another application is to replace the preconditioning step by some other 
Krylov subspace iteration. The most important application, however, is to allow a preconditioner to 
be updated with newly computed information as in Eirola and Nevanlinna [5 4 ] and Weiss [165].

These challenges call for more sophisticated Krylov subspace solvers specifically designed to al­
low variable preconditioners. It was demonstrated by several authors that existing Krylov subspace 
methods are capable of providing that flexibility with minor modifications to the original algorithm. 
These methods are called Flexible Krylov subspace methods. We briefly describe a flexible variant 
of GMRES, proposed by Saad [131] and named flexible GMRES (FGMRES).

Let us suppose that we use a right-preconditioner. Then the approximation x m at the last (mth) 
step of GMRES can be written as

Xm — Xo + M  l Vm Vm,

Vm =  [vu V2, - · ·, vm). (3 .8 0 )

When the preconditioner M  is variable, then at the last step of GMRES it is clear that M ^ l Vm Φ 
[M f1ηχ, M 2 1V2j . . . ,  Therefore, the final approximate solution xm cannot be recovered
by means of (3 .8 0 ). Instead, during the recurrence, one computes and stores z{t =  k  —
1 , 2 . . . . ,  m, in Zm =  [z\, Z2, . .  ·, Sm). The final solution can then be computed as

Xm — xo 4" Zmym· (3 .8 1 )

The corresponding Amoldi relation is A Z m =  Vm+\Hm+\,m and the vector ym is obtained by 
the same minimization, but the subspace 7Z(Zm) is not necessarily a Kiylov subspace. Unlike 
the situation in several other classical Krylov methods, there may not exist any Krylov subspace 
containing 1Z(Zm). Nevertheless, as long as 7l ( Z m) C 7£(Zm+i), and thus the subspace keeps 
growing, there is no breakdown and the sequence ||γτπ||2 is non increasing [53]. On the downside,
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the storage is essentially doubled because both Zm and Vw need to be stored.
Based on the same framework, flexible variants of other preconditioned algorithms have been 

devised. These are variable preconditioned CG [69], flexible CG [117], which allows at the same 
time sparsification [59], and flexible versions of the BiCG and Bi-CGStab algorithms [162], Inter­
estingly enough, FGMRES can assist the solution o f large sparse linear systems by direct sparse 
solvers as well. In [3] the authors consider the triangular factorization o f matrices in single-precision 
arithmetic and show how these factors can be used to obtain a backward stable solution. They 
even manage to obtain double-precision accuracy even when the system is ill-conditioned. This 
technique allows direct sparse solvers to operate in single precision, thereby reducing the memory 
requirements by half and speeding up considerably both the factorization and solution phases.

GMRES (.4 , A/, b, tol) FGMRES(.4 , M i,b, tol)

xq = M~lb, ro =  b -  Axo, .ro =  A/0- l 6, 7’o = b -  A.r0,

0  =  IMI2 Ui =  k  = 0 β =  IMI2 Ui = ^ j,  k = 0

while ||7>||2 > β  tol while ||r*||2 > β  tol
k = k + 1 k = k + 1

= M ~ l vk, v) =  A zk 2fc =  M ^ V k ,  U> =  Azk
fort = for i =  1 , 2 , . . . ,  k  do

hi,k = u fw h,,k = u fw
W =  W — /li.fcUi W =  w  — hi'feUi

end for end for
hk+i,k = M 2 hk+i,k =  IH k

w U)
uk+l — , UM  — ,

«lf+ΙΛ
14 =  (i>i,V2,...,r*] Vk =  |t’J ,"2.···.  77*]

Zk =  [-1,-2.· t**]
Hk =  {Kj}> 1 <  t < 3 +  1, 1 <  j  < k Hk =  Vh,j},  1 <  i < j  +  1, 1 < j < k
yk =  argminjl^e! -  Hk y \\2 yk = argminJ/Jej -  IJk y||2
Xl· -  ^0 + M  1VA. z/fc, Tfc =  b -  A Xk = .r() + Zk 1/*, rk ~ b -  A x k

end while end while

Table 3.4: Modifications to the classical GMRES algorithm (left) that render it flexible, FGMRES 
(right). The update (left) at the last step marked with blue is replaced by the two steps at the right 
marked with red.
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3 .11  C o m p u ta tio n a l e x p e r im e n ts  c o v e red  b y  th e  th e o ry

In what follows the performance o f our preconditioning approach is thoroughly investigated through 
several numerical experiments. Our main purpose is to verify the basic theoretical outcome o f sec­

tion 3.4 claiming independence o f the condition number o f the preconditioned system on the mesh 

size h . Although this is traditionally achieved by sophisticated multilevel overlapping methods, we 

will demonstrate that it is also feasible by the single-level approach we introduced in section 3.4. 
We defined the discrete version o f our preconditioner as

H \/2,h = M  + M  (Λ /-1! ) 1/2, (3.82)

and we also considered its equivalent

H lf2 =  M ( M ~ 1L ) 1/2, (3.83)

with M  and L  being the mass matrix and the negative Laplace operator, assembled on the interface 
o f the subdomains with the mass matrix also replaced by its diagonal. In what follows we will also 

consider the following version which performed quite efficiently in some o f benchmark cases:

H \/2 =  L 1/2. (3.84)

The action o f the inverse square root o f  the matrices involved during the preconditioning step is 
obtained in most cases as described in section 3.9.4, where we employ the Lanczos iteration, but 
with A  replaced by its inverse, which drastically reduces the number o f iterations needed.

The set o f the numerical experiments that follow try to withdraw any confusion possibly intro­
duced by the polyparametric setting o f our preconditioner. More precisely they are carefully chosen 

to clarify the following issues:

1. Preconditioner type: Which o f the three available versions of the preconditioner should be 

preferred and under what circumstances should we switch from one to another?

2. M ass matrix form: It is common practice to replace the mass matrix by a lumped version. 
In our case, doing so will clearly decrease the cost o f each iteration, but what will the effect 

be on the number of iterations?

3. Lanczos k : What is the optimal parameter k  for the Lanczos subspace iteration and is there 

any systematic way to obtain it?



108 C H A P T E R  3 . D O M A I N  D E C O M P O S I T I O N

Whenever the geometry o f our domain and the partitioning are such that the matrix on the 
interface o f subdomains obtains a block-diagonal structure obvious benefits arise:

1. Exact evaluation of the desired m atrix function (square root); The block-diagonal struc­

ture o f the interface operators allows for a separate eigenvalue decomposition of each block. 
The evaluation of any matrix function then becomes trivial and at the same time exact up to 
machine precision, thus avoiding any approximation errors, which may potentially influence 
the convergence rate of the iterative solution process.

2. Fixed preconditioner: The preconditioner obtained with the block-diagonal eigenvalue de­
composition becomes fixed throughout the iterative process, allowing us to use one o f the 
classical iterative methods like the computationally more efficient preconditioned conjugate 

gradient method (PCG).

3. Ideal setting for parallel processing: The block-diagonal structure o f the interface operator 
is ideal for parallel processing on shared memory or distributed systems, as every part o f 
the solution process is completely decoupled and can be exclusively assigned to different 

processors.

3.11.1 Benchmark components

For the discretization o f all problems considered, we employed the finite element method using the 
Lagrangian PI family o f elements; that is, linear triangles for two-dimensional problems and linear 
tetrahedra for PDEs discretized in three dimensions.

Mesh generation

Finite element meshes in two dimensions were obtained by the unstructured mesh generator TH- 
angle [138. 139, 140], which generates exact Delaunay triangulations and high quality triangular 
meshes. Unstructured meshes in three dimensions were obtained by the tetrahedral mesh generator 
TetGen [142,143, 144], which among others, provides quality tetrahedral Delaunay meshes.

Krylov subspace solver and stopping criterion

As the Krylov subspace solver, we used the FGMRES method because our Lanczos-based precon­
ditioner changes at each step. Whenever we use a block-diagonal eigenvalue decomposition for 
the approximation o f the square root, we chose the PCG method, which is computationally more 
efficient.
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Our stopping criterion requires the relative residual at the kth iteration ||r* ||/ ||ro || to drop below 

a specific threshold, set to 10-6  throughout our numerical experiments. This threshold is in most 
cases small enough, because usually the error norms associated with the accuracy o f finite element 

approximation (L 2 , H l norms) have converged long before the relative residual reaches that value.

Ideally the stopping criterion should monitor the convergence o f the error o f  the finite element 
solution. Although this approach is feasible for some simple cases involving symmetric opera­
tors [6] and has been extended recently to the nonsymmetric case provided the preconditioner is 

chosen in a specific way [5], the general case remains an open problem.

Lanczos matrix function approximation

When the partitioning and geometry are such that the separators o f  the subdomains intersect, the 

discrete operator on the interface does not have a block-diagonal structure and the Lanczos proce­

dure is employed for the evaluation o f  the action o f the desired matrix function on a vector. The 
dimension o f the Lanczos subspace k  clearly influences the convergence o f the iterative solution 

process. Small values o f k  result in poor approximation o f the square root or any other matrix 

function, thus increasing the iterations needed by the Krylov method to reduce the relative residual 
below the specified threshold.

We should note that the specific choice o f k  need not be the same for all mesh levels considered, 
but it may change depending on the resolution o f the mesh (Λ). Since we are only interested in 

iteration counts at this point and not in the cost o f  each preconditioning step, we fix the value o f k  
so that the number of iterations needed to solve the linear system at the finest level does not drop 

further if  k  is increased. To illustrate the sensitivity o f the number o f iterations on k  we consider for 
some benchmark cases several different values o f k.

Partitioning approach

Quite frequently in the domain-decomposition literature, suggested methods consider a standard 
domain and partitioning approach, where they discretize and solve the PDE problem under consid­

eration. These are the unit square for 2D problems subdivided into square subdomains, or the unit 
cube for 3D problems subdivided into cubic subdomains. Apart from the convenience related to 

the construction o f the partitions, this standard benchmark problem also provides an easy way to 
obtain information from a coarser level and project it back to the fine level. The general partitioning 

scheme provided by a graph partitioning tool is examined in section 3.12.
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3.11.2 Poisson's equation

We consider Poisson’s equation with Dirichlet boundary conditions:

- V 2u(x) =  1, x  €  Ω

tt(x) = 0 ,  x €  0Ω. (3.85)

In what follows we solve this equation in several different domain configurations in both two and 
three-dimensional domains. The operator L  that appears in the definition of the family o f precondi­
tioned we consider here is the discrete version o f the - V 2 operator assembled on the interface o f 

the subdomains.

Long pipe 2D

A very long pipe o f height / =  1000 aligned with the Y axis and width a =  1 is considered here. 
It is manually partitioned into slices parallel to the X axis, as shown in Figure 3.2. This benchmark 
setting meets the requirements discussed in section 3.11 and reveals the optimal performance of 
the preconditioner. In the general two-dimensional case, the performance o f the preconditioner (in 

terms of iteration counts) will always be inferior to the one experienced here.
The mesh levels used for this benchmark and their characteristics are listed in Table 3.6. The 

number of unknowns on the interface o f the subdomains for each o f the partitions and mesh levels 
considered can be found in Table 3.5. In Tables 3.7, 3.8 we compare the iterations needed for 
reducing the initial residual o f the Schur-complement system by six orders o f magnitude for several 

different values o f the Lanczos space dimension k  (3 ,5 ,10 ,15). The mass matrix in the two versions 
o f the preconditioner 3.82- 3.83 has been replaced by its diagonal.

It is clear that the number o f iterations for this example is influenced only maiginally by the 
specific value o f k. Apart from that it is obviously /i-indcpendent as predicted theoretically. For the 
first two mesh levels and/or the first 2 partitionings (2 ,4), the number o f iterations is one or two less 
than the dominant value. But this is to be expected because for these cases the number o f unknowns 
o f the Schur-complement system is too small; see Table 3.5.

Moreover we sec that it is unexpectedly independent o f the number o f the partitions, which is a 
property o f only a few sophisticated multilevel domain decomposition methods.

The second version o f the preconditioner Λ /(Λ /“ 1£ ) 1/ 2 performs asymptotically better than 
the third version M  4- M ( M ~ l L)*/2 by one iteration. We proceed with the 3D equivalent o f this 
benchmark problem.
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Figure 3.2: A piece of the 2D pipe (left) manually partitioned to 4 subdomains (right). We can see 
the unknowns on the interface (gray) and the unknowns in the interior o f each subdomain.

mesh level
subdomains 1 2 3

2 7 17 33
4 25 51 98
8 60 119 227

16 124 254 492
32 258 522 1015

mesh level
subdomains 1 2 3

64 513 1055 2065
128 1051 2140 4143
256 2088 4301 8306
512 4236 8593 16684

1024 8185 17230 33319

Table 3.5: Nodes on the interface o f the subdomains for all mesh levels and partitionings.
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2 subdomains

level elements nodes hmax
1 99041 55920 2.653e-01
2 416805 221985 1.328e-01
3 1712315 883797 6.532e-02

4 subdomains
1 99062 55962 2.672e-01
2 416646 221833 1.313e-01
3 1711548 883447 6.481e-02

8 subdomains
1 99303 56043 2.616e-01
2 417312 222154 1.3l2e-01
3 1713167 884135 6.457e-02

16 subdomains
1 99641 56214 2.637e-01
2 416788 221901 1.319e-01
3 1713905 884585 6.478e-02

32 subdomains
1 99017 55938 2.651e-01
2 417472 222273 1.298e-01
3 1711285 883223 6.471e-02

64 subdomains
level elements nodes ^max

1 99573 56207 2.605e-01
2 418268 222648 1.312c-01
3 1711017 883080 6.553e-02

128 subdomains

1 99121 56031 2.660e-01
2 417866 222493 1.301e-01
3 1714048 884537 6.488e-02

256 subdomains

1 98446 55653 2.608e-01
2 417578 222396 1.319e-01
3 1712177 883789 6.519e-02

512 subdomains

1 98898 56166 2.558e-0I
2 417982 222680 1.308e-01
3 1716068 885924 6.446e-02

1024 subdomains

1 94236 53272 2.515c-01
2 419456 223843 1.278e-01
3 1711392 883275 6.461e-02

Table 3.6; Mesh levels used for each one o f the ten partitions. For each mesh level we see the 
number of elements, number o f nodes and maximum edge length.
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mesh level 1 2 3 mesh level 1 2 3
subdomains Iterations subdomains Iterations

k  =  3 L 1/2 k  =  5 L 1̂
2 5 7 9 2 5 6 7
4 6 7 9 4 6 6 8
8 7 8 10 8 6 7 8

16 7 7 9 16 6 7 8
32 7 8 9 32 7 7 8
64 7 8 10 64 7 7 9

128 7 12 10 128 7 10 8
256 7 10 12 256 7 8 9
512 7 8 12 512 7 7 10

1024 7 8 11 1024 7 7 9
diagonal M ( M ~ l L ) 1/ 2 diagonal M ( M ~ l L ) l/2

2 5 6 8 2 5 6 7
4 6 6 8 4 6 6 7
8 7 7 8 8 6 7 7

16 7 7 8 16 7 7 7
32 7 7 8 32 7 7 7
64 7 7 8 64 7 7 7

128 7 7 9 128 7 7 7
256 7 7 9 256 7 7 7
512 7 7 9 512 7 7 7

1024 7 7 8 1024 7 7 7
diagonal M  +  M ( M ~ 1L ) ^ 2 diagonal M  +

2 5 7 9 2 5 7 8
4 7 7 9 4 7 7 8
8 7 8 9 8 7 8 8

16 8 8 9 16 8 8 8
32 8 8 9 32 8 8 8
64 8 8 9 64 8 8 8

128 8 8 9 128 8 8 8
256 8 8 9 256 8 8 8
512 7 8 9 512 8 8 8

1024 8 8 9 1024 8 8 8

Table 3.7: Iterations needed for reducing the initial residual o f the Schur-complement system by
a factor of 10 for all three versions of the preconditioner with the diagonal version of the mass
matrix M . Lanczos k  =  3,5.
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mesh level 1 2 3 mesh level 1 2 3
subdomains Iterations subdomains Iterations

oHIIJc At =  15
2 5 6 6 2 5 6 6
4 6 6 7 4 6 6 6
8 6 7 7 8 6 7 7

16 6 7 7 16 6 7 7
32 7 7 7 32 7 7 7
64 7 7 8 64 7 7 7

128 7 9 7 128 7 9 7
256 7 8 8 256 7 8 8
512 7 7 8 512 7 7 8

1024 7 7 7 1024 7 7 7
diagonal M ( M - l L ) V 2 diagonal M ( M ~ l L ) l/2

2 5 6 6 2 5 6 6
4 6 6 6 4 6 6 6
8 6 7 6 8 6 7 7

16 7 7 7 16 7 7 7
32 7 7 7 32 7 7 7
64 7 7 7 64 7 7 7

128 7 7 7 128 7 7 7
256 7 7 7 256 7 7 7
512 7 7 7 512 7 7 7

1024 7 7 7 1024 7 7 7
diagonal M  + M ( M ~ i L ) 1/'2 diagonal M  +  M ( M ~ 1L ) 1/i

2 5 7 7 2 5 7 7
4 7 7 7 4 7 7 7
8 7 8 7 8 7 8 7

16 8 7 7 16 8 7 7
32 8 8 8 32 8 8 8
64 8 8 8 64 8 8 8

128 8 8 8 128 8 8 8
256 8 8 8 256 8 8 8
512 8 8 8 512 8 8 8

1024 8 8 8 1024 8 8 8

Table 3.8: Iterations needed for reducing the initial residual o f the Schur-complement system by
a factor of 10~6, for all three versions of the preconditioner with the diagonal version of the mass
matrix M ,  Lanczos k  =  10,15.
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mesh levels mesh levels

subdomains 1 2 3 subdomains 1 2 3
4 77 199 647 128 2809 8349 28634
8 155 473 1581 256 5685 16865 57668

16 325 988 3390 512 11114 33784 115306
32 660 2022 6977 1024 22439 68742 232067
64 1403 4181 14202 2048 46439 137762 464165

Table 3.9: Nodes on the interface of the subdomains

Long pipe 3D

A very long pipe o f length / =  1000 aligned with the Z axis, with square cross-section o f side 

a =  1 is considered here. It is manually partitioned in slices parallel to the XY plane as shown in 
Figure 3.3. This benchmark setting meets the requirements discussed in section 3.11.

The mesh levels used for this benchmark and their characteristics are listed in Table 3.10. The 
number o f unknowns on the interface of the subdomains for each o f the partitions and the mesh 

levels considered can be found in Table 3.9. In Tables 3 .11, 3.12 we compare the iterations needed 
for reducing the initial residual o f  the Schur-complement system by six orders o f magnitude for 

several different values o f the Lanczos space dimension k  (3 ,5 .10 ,15). The mass matrix in the last 
two versions o f the preconditioner has been replaced by its diagonal.

It is clear that the number o f iterations for this example is influenced only marginally by the 

specific value o f k.  Moreover, although it is not h-independent as pronouncedly as we experienced 
in the 2D case, it increases only marginally as the mesh is refined. The dependence on the number 

o f partitions, however, seems to have vanished, especially for the versions o f the preconditioner 

that involve the mass matrix. We also verify here that the second version o f the preconditioner 
M (A /-1 L )1̂ 2 performs asymptotically better than the third version M  + by one
iteration. Undoubtedly the number o f iterations for this problem is a lower bound for the perfor­
mance o f the preconditioner in terms o f iteration counts. We do not expect better performance in 
the experiments that follow, but this benchmark will allow us to see how much room there is for 

improvement.
We proceed next by examining the performance o f the preconditioner with a different domain 

partitioning, where the interface o f subdomains intersect while the interfaces remain planar.
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4 subdomains
level elements nodes ^raax

1 207442 59055 6.774e-01
2 1627405 348350 3.37Ie-01
3 12795605 2346496 1.701e-01

8 subdomains
1 206327 58585 6.907e-01
2 1628901 348670 3.390e-01
3 12796247 2346282 1.719e-01

16 subdomains
1 200054 55843 6.924e-01
2 1620898 345834 3.343e-01
3 12780812 2343077 1.736e-01

32 subdomains
1 196452 53723 6.904e-01
2 1613664 343359 3.354e-01
3 12783539 2342304 1.699e-01

64 subdomains
1 198963 54559 6.923e~01
2 1621957 345579 3.31 le-01
3 12798434 2346124 1.730e-01

128 subdomains
level elements nodes ^max

1 204029 56184 6.924e-01
2 1634357 348796 3.358e-0i
3 12831683 2353549 1.753e-01

256 subdomains

1 214623 59396 6.653e-01
2 1652785 353208 3.322e-01
3 12883967 2364871 1.698e-01

512 subdomains
1 218351 60403 6.407e-0I
2 1681057 359518 3.32Ie-01
3 12958955 2380370 l.720e-01

1024 subdomains

1 220865 61606 6.566e-01
2 1739687 370650 3.372e-01
3 13110417 2408687 1.696e-01

2048 subdomains
1 264365 74543 6.429e-0I
2 1810639 386516 3.268e-01
3 13406875 2469553 1.718e-01

Table 3.10: Mesh levels used. For each level we see the number o f elements, number o f nodes, 
maximum and minimum edge length.
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Figure 3.3: A piece o f the pipe manually partitioned to eight subdomains. The interface o f the 
subdomains is rendered with gray.
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mesh level 1 2 3 mesh level 1 2 3

subdomains Iterations subdomains Iterations

k - 3 £ φ · /e =  5
... ._  .

4 11 11 12 4 11 11 11
8 11 12 14 8 11 11 13

16 10 11 14 16 10 11 13
32 10 14 15 32 10 14 14
64 13 15 16 64 13 15 15

128 15 16 16 128 14 16 15
256 15 17 17 256 14 16 16
512 16 17 17 512 16 16 17

1024 14 16 18 1024 14 16 17
2048 18 17 19 2048 18 17 18

diagonal diagonal - i ^ j i / y  ■

4 9 10 11 4 9 10 11
8 9 11 12 8 9 11 12

16 10 11 12 16 10 11 12
32 10 12 12 32 10 12 12
64 11 12 13 64 11 12 13

128 10 12 13 128 10 12 13
256 11 12 13 256 11 12 13
512 11 12 13 512 12 12 13

1024 11 13 13 1024 11 13 13
2048 15 14 15 2048 15 14 15

diagonal M  + M ( M ~ i L ) 1̂ 2 diagonal M  + M ( M ~ 1L )1/‘i
4 9 11 12 4 9 11 12
8 9 12 12 8 9 12 13

16 10 11 13 16 10 11 13
32 10 13 12 32 10 13 13
64 11 12 13 64 11 12 14

128 10 13 14 128 11 13 14
256 12 13 13 256 12 13 14
512 12 12 14 512 12 13 14

1024 12 14 14 1024 12 14 14
2048 16 15 16 2048 16 15 16

Table 3.11: Iterations needed for reducing the initial residual o f the Schur-complement system by 
a factor o f 10 ~6. for all three versions o f the preconditioner with the diagonal version o f the mass 
matrix M . Lanczos k  =  3,5.
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mesh level 1 2 3
subdomains Iterations

oII L l / 2

4 11 10 11
8 11 11 13

16 10 11 13
32 10 14 14
64 13 15 15

128 14 16 14
256 14 16 16
512 15 16 16

1024 14 16 17
2048 18 17 17

diagonal M ( M ~1L ) 1̂ 2
4 9 10 11
8 9 11 12

16 10 11 12
32 10 12 12
64 11 12 13

128 10 12 13
256 11 12 13
512 12 12 13

1024 11 13 14
2048 15 14 15

diagonal M  +
4 9 11 12
8 9 11 13

16 10 11 13
32 10 12 13
64 11 13 14

128 11 13 14
256 12 13 14
512 12 13 14

1024 12 13 14
2048 16 15 16

mesh level 1 2 3
subdomains Iterations

k  =  15 L 1/ 2

4 11 10 11
8 11 11 13

16 10 11 13
32 10 14 14
64 13 15 15

128 14 16 14
256 14 16 15
512 15 16 16

1024 14 16 17
2048 18 17 17

diagonal M ( M ~l L ) ^
4 9 10 11
8 9 11 12

16 10 11 12
32 10 12 12
64 11 12 13

128 10 12 13
256 11 12 13
512 12 12 13

1024 11 13 13
2048 15 14 15

diagonal M  4- M ( M ~ l L ) 1/ 2
4 9 11 12
8 9 11 13

16 10 11 13
32 10 12 13
64 11 13 14

128 11 13 14
256 12 13 14
512 12 13 14

1024 12 13 14
2048 16 15 16

Table 3.12: Iterations needed for reducing the initial residual o f the Schur-compleraent system by
a factor of 10“6, for all three versions of the preconditioner with the diagonal version of the mass
matrix M .  Lanczos k  =  10,15.
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Unit square

The domain o f definition in this example is the unit square. It is manually split into 4, 16, 64 and 
256 equal size squares as shown in Figure 3.4. Then for each subdivision we consider five mesh 

levels, generated in such a way that the maximum edge length /tmax is approximately the same for 
the same levels o f  all partitioning configurations. Details about the mesh levels considered can be 
found in Table 3.13, while the numbers o f unknowns on the interface o f subdomains are listed in 
Table 3.14.

Table 3.15 lists the iterations needed for reducing the initial residual o f  the Schur-complement 

system by six orders o f magnitude ( ||r* ||2  <  10"6 ||r0||2 ) for all three versions o f the precondttioner 
and with the mass matrix both as full or replaced by its diagonal. For the square root we use the 
Lanczos approach with the inverse matrix and k  =  140 Lanczos vectors. Clearly seen is that the 
iterations for all the cases considered do not depend on the mesh refinement level or equivalently 

on the mesh size h max. However, they do depend on the number o f the subdomains. The second 
version o f the preconditioner A /(il/_1L )1/2 with the mass matrix M  replaced by its diagonal is 
once more the most efficient.

Figure 3.4: Unit square partitioned manually into 16 subdomains. We can see the nodes on the 
interface o f the subdomains (gray) and those in the interior.
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4 subdomains

level elements nodes hmax
1 7867 4056 3.125e-02
2 32319 16409 1.562e-02
3 130206 65590 7.812e-03
4 525641 263801 3.906e-03

16 subdomains
level elements nodes hmax

1 7867 4056 3.125e-02
2 32319 16409 1.562e-02
3 130206 65590 7.812e-03
4 525641 263801 3.906e-03

64 subdomains
level elements nodes h-max

1 7867 4056 3.125e-02
2 32319 16409 1.562e-02
3 130206 65590 7.812e-03
4 525641 263801 3.906e-03

256 subdomains
level elements nodes h-max

1 7867 4056 3.125e-02
2 32319 16409 1.562e-02
3 130206 65590 7.812e-03
4 525641 263801 3.906e-03

Table 3.13: Mesh levels used. For each level we see the number of elements, number o f nodes, 
maximum and minimum edge length.

mesh level

subdomains 1 2 3 4

4 157 257 573 1160
16 394 826 1639 3367
64 860 1787 3729 7703

256 1891 3596 7484 15716

Table 3.14: Nodes on the interface of the subdomains.
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mesh level 1 2 3 4 5

subdomains Iterations
--------------L 175

4 9 9 10 10 10
16 12 12 13 13 13
64 16 16 16 16 16

256 23 21 22 22 22

full
4 12 12 13 13 13

16 15 15 16 16 15
64 19 20 20 20 20

256 27 27 26 26 26

diagonal
4 8 9 9 10 9

16 12 12 12 12 13
64 14 14 14 14 15

256 19 19 19 18 18

full M  +  M ( M - -TL ) V r ~
4 13 13 14 14 14

16 17 17 17 17 17
64 21 21 21 21 21

256 29 29 29 28 28

diagonal M  +  M { M - =IZp73“ ~

4 10 10 10 10 10
16 13 13 13 13 14
64 17 17 17 17 17

256 24 23 23 23 23

Table 3,15: Iterations needed for reducing the initial residual o f  the Schur-complement system by a 
factor of 10-6 for all three versions of the preconditioner with Lanczos k  — 140.
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Unit cube

We proceed with the 3D version of the previous experiment. The unit cube is internally split into 

8 ,64.512 cubes of equal size as shown in Figure 3.5. The resulting piecewise linear complex 

(PLC) for each o f the three cases is then forwarded to the tetrahedral mesh generator TetGen. Four 

different mesh levels are generated for each case, in such a way that the maximum edge length //max 

for each level is about half the one of the previous level. The maximum volume constraint for the 
tetrahedra of each level, an input parameter to TetGen, was adjusted for each case such that the 

maximum edge lengths are approximately the same, among the same levels o f each o f the three 
cases. Details about the meshes are listed in Table 3.16, while the nodes on the interface o f the 

subdomains for each o f the cases examined here can be found in Table 3.17.

Subdomains 8
I elements nodes ^min ^max
1 17963 3482 0.0624 0.1398
2 165268 28603 0.0156 0.0696
3 1399060 229041 0.0078 0.0348
4 11832730 1884996 0.0034 0.0174

Subdomains 64
elements nodes ^min ^max

21444 4090 0.026 0.1398
172805 29943 0.014 0.0692

1457693 238839 0.006 0.0348
11933280 1902206 0.003 0.0174

Subdomains 512
1 elements nodes ^ m in h m a x
1 21966 4387 0.0624 0.1398
2 199361 34821 0.0123 0.0699
3 1554746 255606 0.0061 0.0349
4 12149976 1939420 0.0032 0.0175

Table 3.16: Mesh levels generated for the cube manually partitioned to 8, 64 and 512 subdomains.

Tables 3.18, 3.19 list the iteration counts obtained for all three versions of our preconditioner 
with either the full or diagonal version o f the mass matrix and with k  =  5 ,10,15.20 to demonstrate 
the effect o f the Lanczos space dimension on the number of iterations. We observe that the first 

version o f the preconditioner L 1>/2, the most efficient in terms o f cost per iteration, is also the more 
efficient in terms of iteration counts. Most importantly, the diagonal version o f the mass matrix

mesh levels

subdomains 1 2 3 4
8 747 3214 12880 53460

64 2194 9231 38980 158733
512 3907 20579 89677 364470

Table 3.17: Nodes on the interface o f the subdomains
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| mesh level 1 2 3 4 mesh level 1 2 3 4

?r- II o* Iterations

oII Iterations

| subdomains ■■■■ - - σ τ τ .......... subdomains

1 8 17 22 23 31 8 17 21 19 25
64 23 25 29 36 64 24 24 26 30

1 512 20 32 35 41 512 22 32 32 35
| full r r L)T̂ full Μ  (M

1 8 24 28 30 35 8 24 27 26 31
64 28 31 37 44 64 29 30 33 37

1 512 28 41 42 46 512 28 41 40 43
| diagonal diagonal M {M _1L )1/1-2

8 21 24 24 28 8 21 23 22 26
64 24 26 30 36 64 24 25 27 31

1 512 24 34 34 38 512 24 34 33 35
| full M  + M { M ~ l L ) W full h i  + h I ( M ~ l L ) W

1 8 25 29 30 37 8 24 28 27 32
64 30 33 38 45 64 30 31 34 38

1 512 29 42 44 49 512 30 43 43 45

| diagonal M  +  M { M ~ l diagonal M  +  M ( M ~ l L ) W

1 8 21 24 25 29 8 21 23 23 26
64 24 27 31 37 64 24 26 28 32

1 512 24 35 35 39 512 25 35 34 36

Table 3.18: Iterations needed for reducing the initial residual o f the Schur-complement system by 
a factor o f 10“6 for all three versions o f the preconditioner with Lanczos k  =  5 (left) and k  =  10 
(right) for the case o f manually constructed partitions.

outperforms by far (3 to 10 iterations) the corresponding versions o f the preconditioner involving 
the full version o f the mass matrix. The difference becomes more pronounced as the number o f 
subdomains increases and is more prominent for the third version o f our preconditioner. Finally the 
second version o f the preconditioner as in the 2D case performs slightly better than the third (I to 
3 iterations) in terms o f iteration counts. The difference reduces to one iteration when the diagonal 
version o f the mass matrix is considered.
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| mesh level 1 2 3 4 mesh level 1 2 3 4
| A- =  15 Iterations A: =  20 Iterations '
| subdomains L ‘/a subdomains I 1/2 ■— -

1 8 17 21 19 23 8 17 21 19 23
64 24 24 26 27 64 24 25 26 26

1 512 22 32 32 33 512 22 32 31 33
j full M ( M -* £ )V  2 full M ( M ~ΎΣ)ΐ7Τ—

1 8 24 27 26 30 8 24 27 26 29
64 29 30 32 36 64 29 30 32 35

1 512 29 41 41 42 512 29 41 41 42
] diagonal -*1)1/2 diagonal M ( M ΐ£)ί75

1 8 21 23 22 24 8 21 23 22 24
64 24 25 27 30 64 24 25 27 29

| 512 24 34 33 34 512 24 34 33 34
| full M  + M ( M ~ l full M  + 17173-

1 8 24 28 27 31 8 24 28 26 30
64 30 31 34 37 64 30 31 34 37

1 512 30 45 45 44 512 30 43 44 44
| diagonal M  +  M { M ~ l L )»/i diagonal M  +  M ( M ~ l L ) l&~

I 8 21 23 23 25 8 21 23 23 25
64 24 26 27 30 64 24 26 28 30

| 512 25 35 35 35 512 25 35 34 35

Table 3.19: Iterations needed for reducing the initial residual o f the Scbur-complement system by a 
factor o f 10-6  for all three versions o f the preconditioner with Lanczos k  =  15 (left) and k  =  20 
(right) for the case o f manually constructed partitions.
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\.5: First level manually partitioned to 8 subdomains (left column) and interface boundary 
ith unknowns on the interface (right colun).
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3.11.3 Reaction diffusion

We proceed with the investigation of reaction-diffusion problems in two and three dimensions. The 

underlying PDE problem is the following:

— ν 2 ϊ / ( ζ )  - f  O r u ( x )  = 1 ,  X  €  Ω

u(x) = 0 ,  x  €  9Ω, (3.86)

where a  is the reaction coefficient: a new parameter introduced by this problem. When a  ap­
proaches zero, the reaction-diffusion operator becomes just a perturbation to the Laplace operator 

we have investigated previously. For this reason we restrict our study to values o f a  >  1. We should 
note that the matrix L  in what follows is no longer the discretization o f the —V 2 as in the Poisson 

problem but the discretization of the full operator - V 2 +  a l .

Long pipe 2D

We begin by solving problem (3.86) in two dimensions in the same configuration we used for the 
Poisson problem of section 3 .11.2. Our domain is manually partitioned as shown in Figure 3.2. As 

in the Poisson case we do not expect better performance for reaction diffusion problems in 2D than 
what we will experience here.

Details about the mesh levels used for this benchmark are listed in Table 3.6. The number o f 
unknowns on the interface o f the subdomains for each o f the partitions and mesh levels considered 
can be found in Table 3.5. In Tables 3.20, 3.21 we compare the iterations needed for reducing the 

initial residual o f the Schur-complement system by six orders o f magnitude for four different values 

o f α  (1,10.100.1000). The mass matrix in the last two versions o f the preconditioner has been 
replaced by its diagonal.

Independence of the number of iterations with respect to the level o f refinement and the number 

o f subdomains is prominent for all three versions of the preconditioner but especially for those 
involving the mass matrix. The preconditioners incorporating the full mass matrix are also Λ- and 
subdomains-independent but the number o f iterations increases by one or two compared with those 

where the mass matrix is replaced by its diagonal. All versions of the preconditioners seem to be 
insensitive on the parameter a  as well.
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mesh level 1 2 3 mesh level 1 2 3
subdomains Iterations subdomains Iterations

a  — 1 T 7 3 ----------- ο* =  10 ----------- 1175-----------

2 5 6 6 2 5 6 6
4 6 6 7 4 6 6 7
8 6 6 7 8 6 6 7

16 6 6 7 16 6 6 7
32 6 7 7 32 6 7 7
64 6 7 8 64 6 7 7

128 7 9 7 128 7 9 7
256 7 8 8 256 7 8 7
512 6 6 9 512 6 6 8

1024 6 7 8 1024 6 7 8

diagonal diagonal M { M ~ l L ) [!2
2 5 6 6 2 5 6 6
4 6 6 6 4 6 6 6
8 6 6 6 8 6 6 6

16 7 6 6 16 7 6 6
32 7 6 6 32 7 6 6
64 7 6 6 64 7 6 6

128 7 6 6 128 7 6 6
256 7 6 6 256 7 6 6
512 6 6 6 512 6 6 6

1024 6 6 6 1024 6 6 6
diagonal M  + diagonal M  + M { M ~ 1L ) 1̂

2 5 6 6 2 5 6 6
4 7 6 6 4 7 6 6
8 7 7 7 8 7 7 6

16 7 7 7 16 7 7 7
32 7 7 7 32 7 7 7
64 8 7 7 64 7 7 7

128 8 7 7 128 7 7 7
256 7 7 7 256 7 7 7
512 7 7 7 512 7 7 7

1024 7 7 7 1024 7 7 7

Tabic 3.20: Iterations needed for reducing the initial residual o f the Schur-compiement system by
a factor of 1 0 '6, for all three versions of the preconditioner with the diagonal version of the mass
matrix M  and o  =  1,10. Lanczos k  — 5.
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mesh level 1 2 3 mesh level 1 2 " T B
subdomains Iterations subdomains Iterations

o  =  100 q =  1000 L»/2-----------

2 5 6 6 2 5 6
4 6 6 6 4 7 7 6
8 6 6 7 8 8 7 6

16 6 6 6 16 7 7 6
32 6 6 6 32 8 7 6
64 7 7 7 64 8 7 7

128 7 9 7 128 8 10 7
256 7 8 7 256 8 9 7
512 6 6 8 512 7 7 8

1024 6 6 8 1024 7 7 8
diagonal diagonal M ( M  'Z , ) 1/ ? ------

2 5 6 6 2 5 6 6
4 6 6 6 4 7 7 6
8 7 6 6 8 8 7 6

16 7 6 6 16 8 7 6
32 7 6 6 32 8 7 6
64 7 7 6 64 8 7 6

128 7 6 6 128 8 7 7
256 7 7 6 256 8 7 7
512 6 6 6 512 7 7 7

1024 7 6 6 1024 7 7 6
diagonal M  +  M ( A f ~ TLy72~ diagonal M  +

2 5 6 6 2 5 6 6
4 7 6 6 4 7 7 6
8 7 6 6 8 8 7 6

16 7 7 6 16 8 7 6
32 7 7 6 32 8 7 6
64 7 7 6 64 8 7 6

128 7 7 6 128 8 7 7
256 7 7 7 256 8 7 7
512 7 7 6 512 7 7 7

1024 7 7 6 1024 7 7 7

Table 3,21: Iterations needed for reducing the initial residual o f the Schur-complement system by
a factor of 10 6, for all three versions of the preconditioner with the diagonal version o f the mass
matrix M  and a  =  100,1000. Lanczos k  =  5.
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Long pipe 3D

We proceed with the 3D equivalent o f  the previous problem. The configuration is the same one we 
used in section 3.11.2. The pipe here is manually partitioned as well in slices parallel to the XY 
plane, as shown in Figure 3.3. The mesh levels used for this benchmark and their characteristics are 

listed in Table 3.10. The number of unknowns on the interface o f the subdomains for each o f the 
partitions and mesh levels considered can be found in Table 3.9.

In Tables 3.22 and 3.23 below, we compare the iterations needed for reducing the initial residual 
o f the Schur-complement system by six orders o f magnitude for several different values o f the 
parameter a  (1,10,100,1000). The mass matrix in the last two versions o f the preconditioner has 
been replaced by its diagonal.

We see that the versions of the preconditioner that involve the mass matrix outperform the 
mass-matrix-free version L 1/2. On the other hand, all versions are clearly /i-independent. The 
dependence on the number o f the partitions seems to have vanished, especially for the versions o f 
the preconditioner that involve the mass matrix.

We verify here as well that the second version o f  the preconditioner performs
asymptotically better than the third version M  +  M ( M ~ l L )1/2 by one iteration. Undoubtedly the 
numbers of iterations in this problem are a lower bound for the performance o f the preconditioner 
in terms o f iteration counts. We do not expect better performance in the experiments that follow, but 
this benchmark allows us to see how much room there is for improvement.
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mesh level 1 2 3 mesh level 1 2 3
subdomains Iterations subdomains Iterations

o  =  l O'=  10 L 1' 2
4 12 11 11 4 12 11 11
8 11 11 13 8 11 11 13

16 10 11 13 16 10 11 13
32 10 13 14 32 10 13 14
64 13 14 15 64 13 14 15

128 14 15 15 128 14 15 14
256 15 16 15 256 15 16 15
512 15 15 16 512 15 15 16

1024 14 15 16 1024 14 15 16
2048 18 17 17 2048 18 17 16

diagonal M ( M diagonal M ( M
4 9 10 10 4 9 10 11
8 9 11 12 8 9 11 12

16 10 10 11 16 10 10 11
32. 10 11 12 32 9 11 12
64 11 11 12 64 11 11 12

128 10 12 13 128 10 12 13
256 11 12 12 256 11 12 12
512 11 12 13 512 12 12 13

1024 11 12 13 1024 11 12 13
2048 15 14 14 2048 15 13 13

diagonal M  +  M { M ~ l L ) ^ ~ diagonal M  +  M ( M ~ 1L ) 1/2
4 9 11 11 4 9 10 11
8 9 11 12 8 9 11 12

16 10 11 12 16 10 11 12
32 10 12 12 32 10 12 12
64 12 12 13 64 12 12 13

128 11 13 13 128 11 13 13
256 12 13 13 256 12 13 13
512 12 12 13 512 12 12 13

1024 12 13 13 1024 11 13 13
2048 16 15 15 2048 15 14 14

Table 3.22: Iterations needed for reducing the initial residual of the Schur-complement system by
a factor of 10_<\  for all three versions of the preconditioner with the diagonal version of the mass
matrix M  and a  =  1,10. Lanczos k  — 20.
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mesh level 1 2 3
subdomains Iterations

oo©II£ L l,2

4 13 9 10
8 13 10 13

16 10 10 12
32 9 12 13
64 15 14 15

128 16 14 14
256 16 15 15
512 16 16 17

1024 14 14 16
2048 17 16 17

diagonal

4 10 9 11
8 11 9 12

16 9 11 11
32 9 11 12
64 12 12 12

128 12 12 13
256 13 12 13
512 12 12 13

1024 11 12 13
2048 14 12 13

diagonal M  + M ( M ~ 1L ) 1̂

4 10 9 11
8 11 9 12

16 9 11 11
32 9 11 12
64 12 12 12

128 12 12 13
256 13 12 13
512 12 12 13

1024 11 12 13
2048 14 12 13

mesh level 1 2 3

subdomains Iterations

©©Hlie ----------- I F
4 12 10 11
8 11 11 13

16 10 11 13
32 9 13 14
64 13 14 15

128 15 15 14
256 15 16 15
512 16 15 16

1024 15 15 16
2048 17 17 16

diagonal M ( M
4 9 10 11
8 9 11 12

16 10 11 11
32 9 11 12
64 11 12 12

128 10 12 13
256 12 12 12
512 12 12 13

1024 11 12 13
2048 14 13 13

diagonal
4 9 10 11
8 9 11 12

16 10 11 12
32 9 12 12
64 11 12 13

128 10 12 13
256 12 12 13
512 12 12 13

1024 11 13 13
2048 14 13 13

Table 3.23: Iterations needed for reducing the initial residual o f the Schur-complement system by 
a factor o f 10 ~6, for all three versions o f the preconditioner with the diagonal version o f the mass 
matrix M  and a  =  100, 1000. Lanczos k  =  20.

J
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Unit square

We proceed with the unit square, which we discretize on the same meshes we used for the corre­
sponding Laplace problem. The domain is manually split into 4 ,16 ,64  and 256 equal size squares 

as shown in Figure 3.4. Details about the mesh levels considered can be found in Table 3.13, while 

the numbers o f unknowns on the interface o f subdomains are listed in Table 3.14.
We consider four different PDE problems corresponding to different values o f the reaction co­

efficient a  (1,10,100,1000). As for the Laplace problem we verify here as well that the number 

o f iterations is independent of the mesh size h. For this case, however, the performance in terras 
o f iterations o f the second version of the preconditioner is slightly better than for the other two, 

in contrast to what we experienced for the Laplace problem. Moreover the number o f iterations 
on the number o f subdomains decreases as the reaction coefficient grows. Finally we see that for 

a  — 1000 it drops (p =  64,256) slightly when the number o f subdomains increases. Table 3.24 

lists the iteration counts for each of the four problems. We should note that the matrix L  appearing 

in the definition o f our preconditioner is the discretization of the operator —V 2 4- a l .

Unit cube

We proceed with the 3D version o f the previous experiment. The unit cube is internally split to 

8 ,64,512 cubes o f equal size as shown in Figure 3.5. The finite element meshes are constructed 
as in the corresponding Poisson problem in section 3.11.2. Details about the meshes are listed in 
Table 3.16, while the nodes on the interface o f the subdomains for each one o f the cases examined 
here can be found in Table 3.17. As in the previous case the matrix L  appearing in the definition of 
our preconditioner is the discretization o f the operator —V 2 -F a / .  We use here as well the Lanczos 

iteration with the inverse matrix. There are no essential differences for values of k  greater than 
k  =  5. However in our computations we used k  =  20.

In the Tables 3.25, 3.26, we see the iterations needed for reducing the initial residual o f the 

Schur-complement system by six orders o f magnitude, for each one o f the four PDE problems 
corresponding to the four different values o f the parameters a  (1,10,100,1000).
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mesh level 1 2 3 4 5
a  =  100 Iterations

subdomains L'r*
4 8 9 11 10 10

16 11 11 12 12 12
64 13 14 14 14 14

256 19 18 19 19 19
diagonal

4 8 9 9 9 9
16 11 11 12 12 12
64 13 13 14 14 14

256 18 18 19 19 19
diagonal At +  M(M~ ~ L )1/ 2 '

4 8 9 9 9 9
16 11 11 12 12 12
64 14 14 14 14 14

256 19 19 19 19 20

Ooo41!s* Iterations

subdomains
4 13 14 15 14 15

16 14 15 17 16 17
64 14 15 14 15 16

256 14 12 13 13 14
diagonal

4 12 12 12 12" τ η ι
16 16 15 15 14 15
64 14 15 15 15 15

256 13 12 12 13 13
diagonal A l +  M { M - rrZ )T 73~

4 12 12 12 12 12
16 15 14 14 14 15
64 13 14 14 14 14

256 12 11 12 12 13

Table 3.24: Unit square. Iterations needed for reducing the initial residual of the Schur-complement
system by a factor of 10”6 for all three versions of the preconditioner. The mass matrix is replaced
by its diagonal and L  is the discretization of the operator of the original problem. Lanczos k  =  15.
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mesh level 1 2 3 4
a  =  1 Iterations

subdomains L 1/ 2
8 17 21 19 23

64 24 25 26 26
512 22 32 31 32
full 11 ( M - l£ ) l /2

8 24 27 25 29
64 28 30 32 35

512 28 41 41 42
diagonal 1I { M

8 21 23 22 24
64 24 25 27 29

512 24 34 33 34
full M  + M ( M ~ l L fF T

8 24 28 26 30
64 30 31 34 36

512 30 43 44 44
diagonal M  +  M { M ~ l L ) ^ r

8 21 23 23 25
64 24 26 27 30

512 25 35 34 35

mesh level 1 2 3 4
a  = 1 0 Iterations

subdomains F 72 ■
8 17 21 19 23

64 24 24 25 26
512 21 31 31 32
full M ( M

8 23 27 25 29
64 28 30 32 35

512 28 41 40 42
diagonal i I ( M

8 21 23 22 24
64 24 25 27 29

512 24 33 33 33
full M  + M { M ~ l L )1' 2

8 24 28 26 29
64 30 31 34 36

512 29 42 42 44
diagonal

7if+Is·* L y ^ ~
8 21 23 23 24

64 24 26 27 29
512 24 34 34 35

Table 3.25: Unit cube. Iterations needed for reducing the initial residual o f the Schur-compleraent 
system by a factor o f 10"6 for all three versions of the preconditioner with Lanczos k  =  20 for the 
case o f  manually constructed partitions and a  =  1,10.
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mesh level 1 2 3 4
a  =  100 Iterations

subdomains £173

8 16 20 18 22
64 23 23 25 25

512 18 28 28 28
full J1

8 23 26 25 27
64 27 28 30 32

512 26 37 37 38
diagonal / 4 ( M ~l L ) W

8 20 22 21 23
64 23 24 25 27

512 22 31 30 31
full M  +  M ( M ~ l i W

8 23 27 25 27
64 27 29 31 33

512 27 39 39 39
diagonal M  +  M ( M ~ l

8 20 22 21 24
64 23 24 26 27

512 22 32 31 32

mesh level 1 2 3 4
a  =  1000 Iterations

subdomains L 1#
8 15 19 16 20

64 21 22 23 24
512 14 25 25 25
full 7vi{M

8 21 24 23 25
64 25 25 28 29

512 19 30 30 31
diagonal IVI (M

8 19 21 20 22
64 22 22 24 25

512 17 26 25 26
full M -f  Λ /(Μ -1 l F 5"

8 22 24 23 26
64 25 26 28 29

512 20 30 30 31
diagonal M  - T

1 W r
8 19 21 20 22

64 22 22 24 25
512 17 26 25 26

Table 3.26: Unit cube. Iterations needed for reducing the initial residual o f  the Schur-complement 
system by a factor o f 10“ 6 for all three versions o f the preconditioner with Lanczos k — 20 for the 
case o f manually constructed partitions and a  =  100.1000.
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3.12 Computational experiments beyond the theory

Here we consider computational experiments not necessarily in accordance with the theoretical 
assessments. Everything discussed in section 3.11 related to the cases considered and the benchmark 

components remain as before. The main differences arise from the following modifications.

Partitioning approach The standard partitioning approach employed in section 3.11 is not always 

applicable to real-life problems set up in three spatial dimensions, where the underlying ge­
ometries are far from trivial. For this reason, we consider the case where our domain is 

automatically partitioned by a standard mesh-partitioning tool. A multilevel fc-way scheme 
is employed, provided by the software library METIS [85, 86], which is a graph-partitioning 

tool. The purpose of the underlying algorithm for our case is to obtain equal size partitions 
minimizing the total edge-cut and consequently the total number o f nodes on the interface of 
subdomains.

M atrix  exponent The optimal matrix exponent predicted by the analysis (square root appearing in 
all three versions of the preconditioner) is no longer considered fixed. We examine different 

matrix exponents and suggest the best one for each problem considered.

Long pipe 3D

We consider again the example o f section 3.11.2. This time the partitioning does not produce 

planar separators parallel to the XY plane. The separators and the partitioning to eight partitions are 
shown in Figure 3.6. The mesh levels used for this benchmark and their characteristics are listed in 

Table 3.27. The number o f unknowns on the interface o f the subdomains for each o f the partitions 

and mesh levels considered can be found in Table 3.28.

mesh level
level elements nodes ^min hmax

1 207442 59055 9.556e-02 6.774e-01
2 1627405 348350 5.732e-02 3.371e-01
3 12795605 2346496 2.953e-02 1.70Ie-01

Table 3.27: Mesh levels used. For each level we see the number o f elements, number o f nodes, 
maximum and minimum edge lengths.

In Table 3.29 we compare the iterations needed for reducing the initial residual o f  the Schur- 
complement system by six orders for both METIS and manually generated partitions. The value 

k  has been fixed to k  =  15 while the mass matrix in the last two versions of the preconditioner
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mesh level
subdomains 1 2 3

4 54 175 639
8 125 409 1490

16 278 891 3190
32 582 1851 6559
64 1204 3753 13382

128 2521 7636 27011
256 5015 16384 53997
512 10057 31387 108586

1024 19996 62081 218885
2048 28796 102563 389332

Table 3.28: Nodes on the interface of the subdomains for the partitions generated by METIS.

has been replaced by its diagonal. We consider first the 1/2 version o f the preconditioners. The 
partitioning generated by METIS seems to maintain the /i-independence. The number o f iterations, 
however, has become more sensitive to the number o f subdomains and has increased.

We then modify the exponent and investigate its effect on the number of iterations. The exponent 
that performs best was found to be 0.7. The iterations for this new family o f preconditioner and both 
manual and METIS-generated partitions are listed in Table 3.30 for Lanczos k  — 15. The number 
of iterations has decreased for both partitioning types. The Λ-independence is maintained and even 
enhanced for all versions o f the preconditioner.

For the METIS-generated partitions we observe that the number o f iterations increases rapidly 
after some point (64 subdomains). We see in what follows that in most cases considered, the itera­
tions are around 16 to 17 even for a very large number o f subdomains with partitions generated by 
METIS.
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Figure 3.6: A piece of the pipe manually into eight subdomains by METIS. Note the interface of 
the subdomains (gray), the nodes on the interface of the subdomains and the nodes in the interior.
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I

!

METIS Partitions

mesh level 1 2 3

subdomains Iterations

k  =  15 L*/'2
4 9 10 11
S 9 11 12

16 11 11 13
32 12 11 12
64 12 12 14

128 13 14 14
256 14 15 14
512 16 15 15

1024 17 15 16
2048 20 19 18

diagonal M {M
4 9 11 12
8 10 12 13

16 10 12 14
32 14 12 14
64 14 13 14

128 14 17 15
256 15 17 15
512 15 17 16

1024 17 17 17
2048 21 21 21

diagonal
4 9 12 13
8 10 12 14

16 11 13 15
32 14 13 15
64 14 13 15

128 15 18 16
256 15 18 16
512 15 18 17

1024 18 18 18
2048 21 22 22

Manual Partitions

mesh level 1 2 3

subdomains Iterations

k =  15 L l /i
4 11 10 11
8 11 11 13

16 10 11 13
32 10 14 14
64 13 15 15

128 14 16 14
256 14 16 15
512 15 16 16

1024 14 16 17
2048 18 17 17

diagonal M ( M
4 9 10 11
8 9 11 12

16 10 11 12
32 10 12 12
64 11 12 13

128 10 12 13
256 11 12 13
512 12 12 13

1024 11 13 13
2048 15 14 15

diagonal
4 9 11 12
8 9 11 13

16 10 11 13
32 10 12 13
64 11 13 14

128 11 13 14
256 12 13 14
512 12 13 14

1024 12 13 14
2048 16 15 16

Table 3.29: Manually constructed versus METIS-generated partitions. Exponent is set to 1/2  while 
the mass matrix is replaced by its diagonal and Lanczos k  =  15.

J
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Manual Partitions
mesh level 1 2 3

subdomains Iterations
k = 15 1 °

4 11 9 9
8 11 10 12

16 9 10 11
32 9 12 12
64 12 13 13

128 13 14 13
256 13 14 14
512 14 15 14

1024 12 14 15
2048 17 15 15

diagonal -1 l )0.7

4 8 9 9
8 9 9 10

16 9 9 10
32 8 10 10
64 10 11 11

128 10 11 11
256 10 11 11
512 11 11 11

1024 10 11 11
2048 13 11 12

diagonal
4 8 9 9
8 8 9 10

16 9 9 10
32 8 10 10
64 10 11 11

128 10 11 11
256 10 11 11
512 11 11 11

1024 10 11 11
2048 14 12 12

METIS Partitions
mesh level 1 2 3

subdomains Iterations
k  =  15 L0.7

4 8 9 10
8 10 10 11

16 11 10 12
32 13 11 12
64 13 11 13

128 13 14 13
256 14 14 14
512 17 16 14

1024 18 14 16
2048 19 18 17

diagonal M (M -1 L)U.7

4 8 10 11
8 10 11 12

16 11 11 13
32 13 11 13
64 13 11 13

128 14 17 13
256 15 16 14
512 16 17 14

1024 18 16 16
2048 20 19 18

diagonal M  +  M ( M ~ 1L)t>7
4 8 10 11
8 10 11 12

16 10 11 13
32 13 11 13
64 13 11 13

128 14 16 13
256 14 16 14
512 15 17 14

1024 18 16 16
2048 20 19 18

Table 3.30: Iterations needed for reducing the initial residual of the Schur-complement system by 
a factor of 10“e, with the 0.7-family of preconditioners and both manually and METIS-generated 
partitions. Mass matrix is replaced by its diagonal and Lanczos k  =  15.
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Unit cube

We study here the performance of the preconditioners on partitions produced by METIS. The bench­
mark was performed on the mesh levels described in Table 3.31. The partitioner allows greater 
flexibility in the number of desired subdomains and thus we were able to perform a more extensive 
test in terms of number of subdomains and mesh levels. The first mesh level consists of 500 nodes 
and 2079 tetrahedra, while the final level consists of 20 million nodes and approximately 127 mil­
lion tetrahedra. At the same time the number of subdomains ranges from 2 to 16384. We should 
note, however, that only a subset of the number of partitions was considered for each level. This 
is because partitions with very few unknowns are not desirable in practice because the number of 
unknowns on the interface increases considerably, with an adverse effect on the performance. The 
number of interface unknowns for each level and partitioning is listed in Table 3.32. Figure 3.7 
visualizes the second mesh level partitioned by METIS into 64 subdomains along with the interface 
boundary of the subdomains.

level elements nodes h-mitt h m a x

1 2079 500 9.8858e-02 2.7123e-01
2 20869 4001 3.12I6e-02 1.3442e-01
3 185963 32002 I.5604e-02 6.8082C-02
4 1567874 256011 7.7944e-03 3.3546e-02
5 12568378 2000396 3.7695e-03 1.7208e-02
6 127400903 20000768 1.7757e-03 8.0723e-03

Table 3.31: Mesh levels for METIS generated partitions. For each level we see the number of 
elements, number of nodes, maximum and minimum edge length.

We begin by considering the first five levels of Table 3.31 and partitions ranging from 2 to 
16384. We benchmark the three versions of our preconditioner with the mass matrix replaced by 
its diagonal, which was found to perform better than the full version by 2 to 3 iterations for every 
single case and furthermore does not require a linear system to be factorized and solved at each 
iteration. The results are summarized in Table 3.33 for two different values of Lanczos k (3,20). 
We sec that in most cases we achieve /(-independence for all three versions of the preconditioner. 
Wherever this is not evident, the number of iterations increases logarithmically with the refinement 
level. The sensitivity to the number of subdomains is also clear. The most efficient version of the 
preconditioner for this problem, in terms of iterations, is the first one (L1/2). In what follows we 
present how the sensitivity of the number of iterations with respect to the number of subdomains 
can be diminished without any additional computational cost.
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mesh level
subdomains 1 2 3 4 5 6

2 71 290 1183
4 124 551 2314 9621
8 189 785 3552 13780 55259

16 1190 5216 21686 88701
32 1565 7160 29961 124023
64 9213 39476 160484

128 11770 51465 216556 1056946
256 14800 65696 278533 1364200
512 83015 353147 1745987

1024 447034 2222309
2048 559011 2796220
4096 692256 3503214
8192 4369353

16384 5419460

Table 3.32: Nodes on the interface of the subdomains for the unit cube.

Towards h- and subdomains-independence

We proceed by investigating the effect of the exponent of the family of preconditioners on their effi­
ciency. The same test as before is considered here on all mesh levels summarized in Table 3.31 for 
the first version of our preconditioner, which was found to be the most efficient one in the previous 
benchmark. This time, however, the exponent is not the one suggested theoretically. Numerical 
experiments showed that the optimal value is 0.77. The preconditioner here is therefore L0 77. We 
consider four different values of Lanczos A: (3,5,10,20). The results are summarized in Table 3.34. 
For large numbers of subdomains we observe that the number of iterations decreases as the mesh 
is refined. A similar phenomenon is observed for dependence on the number of partitions. The 
iterations seem to decrease as the number of partitions grows and then they increase again slowly. 
This behavior is quite nonstandard in the Domain Decomposition realm. Usually iterations either 
increase or remain constant (for very sophisticated algorithms) with mesh refinement level h or with 
the number of subdomains.
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3.7: Λ sample cube partitioned by METIS to 8 subdomains. The column at the right shows 
rface boundary (top) the unknowns on the interface (middle) and the unknowns in the interior 
ubdomains (bottom).
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mesh level 1 2 3 4 5 mesh level 1 2 3 4 5
subdomains Iterations subdomains Iterations

* =  3 L l/2 II to o L 112
4 12 15 19 24 35 4 12 14 15 16 18
8 14 16 21 28 36 8 14 16 18 18 20

16 19 23 28 39 16 18 19 20 21
32 20 25 30 41 32 19 20 21 23
64 22 27 36 46 64 21 22 23 25

128 29 38 51 128 25 25 27
256 33 42 56 256 27 28 30
512 37 47 62 512 31 32 34

1024 54 69 1024 37 40
2048 60 71 2048 43 43
4096 66 78 4096 50 50

diagonal M ( M ~ 1L)1/2 diagonal M (M ~ l L ) ^ 2
4 14 16 19 22 26 4 14 15 18 19 20
8 18 18 20 24 28 8 18 18 20 22 22

16 20 22 23 27 16 21 21 23 23
32 21 22 25 28 32 22 23 24 25
64 26 26 25 28 64 26 26 26 27

128 28 26 30 128 28 29 30
256 33 34 30 256 32 33 34
512 39 38 32 512 39 37 38

1024 44 44 1024 45 44
2048 51 52 2048 52 50
4096 59 58 4096 59 57

diagonal M  +  M(M--iL)w diagonal M  +  M ( A r -l L ) W  ~
4 14 17 19 22 26 4 14 16 19 20 21
8 18 18 20 25 28 8 18 19 21 22 23

16 21 22 24 28 16 21 22 24 24
32 23 23 25 28 32 23 25 25 27
64 27 27 26 28 64 27 27 27 29

128 30 27 31 128 30 30 32
256 35 37 32 256 34 35 37
512 42 41 35 512 42 40 41

1024 49 48 1024 49 48
2048 54 56 2048 55 54
4096 63 62 4096 64 60

Table 3.33: Iterations needed for reducing the initial residual of the Schur-complement system by a 
factor o f 10"6, for all three versions of the 1/2-famiIy of preconditioners and the diagonal version 
of the mass matrix M.  Lanczos k =  3,20.
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Table 3.34: The L0·77 preconditioner and Lanczos k = 3 ,5 ,10,20.
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3.12.1 More complex geometries

We proceed now with harder geometrical configurations corresponding to real-life problems. In 
several cases, a finite element mesh may consist of very large and very small elements. This usually 
happens when a very peculiar shape has to be resolved by the corresponding surface mesh or when 
adaptive refinement algorithms are adopted to reduce the computational cost as much as possible. 
In such cases the largest and smallest volumes of the corresponding tetrahedra may differ by several 
orders of magnitude. In the cases studied so far we did not experience such problems because the 
ratio of the maximum to minimum edge length hmgx/h m\n was less than one order of magnitude. 
Most preconditioners encountered in the literature such as multigrid solvers and several domain 
decomposition preconditioners either fail to converge or their performance in most of the cases is 
significantly deteriorated. Others do not touch this problem at all. In the problems that follow we 
consider meshes with large variations of the mesh size h. The benchmark problems reveal under 
which circumstances the mass matrix is essential in the definition of the preconditioners, and shed 
some light on the choice of optimal exponent.

We suspect that the optimal exponent is related to the regularity of the solution. The regularity 
of the solution of the Poisson equation is influenced not only by the non-homogeneous term but 
also by the regularity of the surface of the domain. In non-convex domains with a rough surface 
the regularity of the solution inevitably drops compared with that observed for the unit cube. If our 
assumption is correct that the optimal exponent is related to the regularity of the solution, we expect 
that the optimal exponent for the problems that follow will be less than the optimal exponent for the 
cube case, which was 0.77, and will drop as the domain’s surface regularity decreases.

B ra in

We begin with the non-trivial geometry of the human brain depicted in Figure 3.8. It is partitioned 
with METIS into 8 and 16 subdomains. The ratio Amax//imin is around two orders of magnitude, 
as we can see in Table 3.35. The numbers of unknowns on the interface of the subdomains can be 
found in Table 3.36. The linear system corresponding to the first mesh level consists of about half a 
million unknowns, while the unknowns for the last level rise to 26 million.

Table 3.37 lists the iterations needed for reducing the relative residual by a factor of 10~6 for 
four different values of Lanczos k (5,10,20,30). We see that the iterations for k =  30 do not 
differ too much from those obtained with k =  5. We consider only the second version of the 
preconditioner because it outperforms the others. The optimal exponent for this problem was 0.7, 
but the performance is similar with the 0.G and slightly better than 0.5.

In most cases we experience /i-independence. The dependence on the number of subdomains is 
not monotone. Iterations increase only slightly, if at all, as the number of partitions is doubled.
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mesh level
level elements nodes h-min ^max

I 2077212 468474 4.650e-05 U01e-02
2 2112476 473730 4.643e-05 5.472e-03
3 31753520 5120357 2.148e-05 2.531e-03
4 164363725 25973106 4,643e-05 1.216e-03

Table 3.35: Mesh levels used. For each level we see the number of elements, number of nodes, 
maximum and minimum edge lengths.

mesh level
subdomains 1 2 3 4

2 1873 2064
4 4290 4511
8 7749 7976 51532

16 13013 13314 91333
32 18230 19077 133778
64 25225 27327 192083

128 35335 37159 267648
256 49104 51010 372033
512 66434 68949 504671 1543907

1024 679160 2067967
2048 895170 2737064
4096 1172815 3602083
8192 4676182

16384 5995113

Table 3.36: Nodes on the interface of the subdomains for the brain.
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Figure 3.8. First level partitioned by METIS into 16 subdomains along with mesh slices, interface 
boundary and interface unknowns.
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mesh level 1 2 3 1 4 meshlevel 1 2 4
subdomains 7— subdomains A/(M-TLj” .7

k = 5 Iterations k = 15 Iterations
2 13 13 2 13 13
4 14 15 4 14 14
8 16 15 18 8 16 15 16

16 19 17 25 16 19 16 23
32 19 18 20 32 19 18 18
64 19 19 21 64 19 19 19

128 21 20 21 128 21 20 19
256 23 21 21 256 23 21 20
512 23 22 21 24 512 22 22 20 21

1024 23 24 1024 22 22
2048 23 25 2048 22 23
4096 24 24 4096 24 23
8192 26 8192 25

16384 26 16384 26
* =  10 Iterations k = 20 Iterations

2 13 13 2 13 13
4 14 14 4 14 14
8 16 15 16 8 16 15 16

16 19 16 24 16 19 16 23
32 19 18 18 32 39 18 18
64 19 19 19 64 19 19 19

128 21 20 19 128 21 20 19
256 23 21 20 256 23 21 20
512 23 22 20 21 512 22 22 20 21

1024 22 22 1024 22 22
2048 22 24 2048 22 23
4096 24 23 4096 24 23
8192 25 8192 25

16384 26 16384 26

Table 3.37: Iterations needed for reducing the initial residual of the Schur-complement system by a 
factor of 10"6 for all three versions of the preconditioner with Lanczos k =  5,10,20,30.
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Boeing 747

We consider here the Boeing 747 depicted in Figure 3.9. The comers and cross-sections in the 
wings, tail, and engines should result in a less regular solution of the Poisson problem. Thus we 
expect an optimal exponent smaller than for the previous problem. This is indeed the case: the 
optimal exponent for this problem was found to be 0.62. The mesh levels we used are listed in 
Table 3.38 and the numbers o f unknowns on the interface of the subdomains are in Table 3.39.

We observe as well that the iterations decrease as the mesh is refined. In several cases the 
independence o f the number o f partitions is striking. For instance for k =  3,5 we see for the fourth 
mesh level, consisting of almost nine million unknowns, that the number of iterations either drops 
as the number of subdomains increases, or increases very slowly.

mesh level
level elements nodes ^min hmax

l 231000 51366 2.580e-03 8.121e+00
2 416085 82170 2.557e-03 4.232e+00
3 4685686 780255 2.568e-03 2.l58e+00
4 56071121 8987420 2.559e-03 1.821e+00

Table 3.38: Mesh levels used. For each level we see the number of elements, number of nodes, 
maximum and minimum edge lengths.

mesh level
subdomains 1 2 3 4

2 605 534
4 519 1707
8 952 1938 15420

16 1582 3917 27076
32 3328 6418 44339
64 4387 9294 64618 345687

128 13275 89350 487023
256 18939 119486 654231
512 157176 867909

1024 204224 1129954
2048 258662 1458420

Table 3.39: Number of nodes on the interface of the subdomains for the Boeing 747.
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Figure 3.9: Second mesh level partitioned by METIS to 33 subdomains.
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meshlevel 1 2 3 4
subdomains -1£)ΙΜ«

k = 3 Iterations
2 13 13
4 12 14
8 15 13 17

16 18 16 17
32 30 18 18
64 27 23 20 23

128 24 20 28
256 34 20 24
512 23 24

1024 26 23
2048 24 22

A: =  5 Iterations
2 13 12
4 12 14
8 14 13 15

16 17 16 15
32 28 17 16
64 24 22 18 21

128 24 17 24
256 32 18 21
512 23 22

1024 26 22
2048 24 22

meshlevel 1 2 3 4
subdomains t>2

k  =  10 Iterations
2 13 12
4 11 14
8 13 13 14

16 16 16 15
32 26 17 16
64 22 20 17 19

128 21 17 24
256 29 19 19
512 23 20

1024 26 22
2048 25 23

k = 20 Iterations
2 13 12
4 11 14
8 13 13 14

16 16 16 15
32 24 17 16
64 21 18 17 18

128 20 17 24
256 26 20 19
512 24 21

1024 26 22
2048 27 24

Table 3.40: Iterations needed for reducing the initial residual o f the Schur-complement system by a 
factor o f 1 0 '6 for all three versions o f the preconditioner with Lanczos k =  3 ,5,10,20.
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C ry sta l

We try here an even more peculiar shape: the crystal shown in Figure 3.10, where the first of the 
mesh levels considered is partitioned with METIS into 8 and 16 subdomains. The ratio fimax/A-min 
is more than five orders of magnitude, as we can see in Table 3.41. At the same time the boundary 
of the crystal is very rough and we expect that the regularity o f the solution will drop considerably 
compared with the regularity of the solution of the cube problem. As a result the optimal exponent is 
expected to be smaller than the optimal 0.77 exponent we found for the cube problem. The number 
of unknowns on the interface of the subdomains can be found in Table 3.42.

The numbers of iterations needed for these problems are listed in Table 3.43. We consider 
only the first two versions of the preconditioner because the last one always performs worse than 
the second in terms of iterations. The standard exponent 0.5 and the optimal exponent 0.6 for this 
problem display more or less similar performance, as the iterations with the latter are only one to five 
less than those with the former, unlike the previous problem, where we observed differences up to 
24 iterations. This is expected because the regularity of the solution of this problem is much smaller 
than that of the cube; it is much closer to the optimal value predicted theoretically, which is 0.5. We 
also observe that unlike the cube case, where the most efficient version of the preconditioner was the 
mass-matrix-free one, consideration of the mass matrix here dramatically increases the performance 
of the preconditioner. This fact clearly states that the mass matrix version of the preconditioner 
is needed whenever very large and tiny elements coexist in the same finite element mesh.

In most of the cases we experience //-independence or the iterations decrease as the mesh is 
refined, especially for the 0.6 exponent. Irregular behavior is observed for the dependence of itera­
tions on the number of partitions. They either remain constant or decrease or increase as the number 
of partitions grows.

Ciystal
level elements nodes ^min h-max

1 344679 67799 1.2841 e-07 4.4729e-02
2 1054204 240832 1.2841 e-07 2.7993c-02
3 12374659 2521753 1.2841 e-07 ).4046e-02

Table 3.41: Mesh levels used. For each level we show the number of elements, number o f nodes, 
maximum and minimum edge length.
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mesh level
subdomains 1 2 3

2 648 730
4 1416 2984 12430
8 2483 4353 35690

16 3963 6407 34043
32 5346 9720 55465
64 7940 14920 83462

128 10870 21286 120709
256 30414 169924
512 41839 232152

1024 315250

Table 3.42: Nodes on the interface of the subdomains for the crystal.
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Figure 3.10: First level partitioned by METIS to 16 subdomains, a mesh-slice, interface boundary 
and unknowns on the interface.
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mesh level 1 2 3
subdomains L 1' 2

A· =  20 Iterations
4 112 57 30
8 124 63 131

16 160 110 28
32 150 100 30
64 159 104 71

128 181 113 55
256 141 66
512 146 79

1024 80oII Iterations
4 112 57 29
8 124 63 131

16 160 110 28
32 150 100 30
64 159 104 71

128 181 113 55
256 141 65
512 147 78

1024 79
A: =  60 Iterations

4 112 57 30
8 124 63 131

16 160 110 28
32 150 100 30
64 159 104 71

128 181 113 55
256 141 65
512 147 77

1024 79

1 2 3
Li).o

Iterations
109 56 30
120 62 135
157 110 28
148 99 30
156 99 69
177 109 53

137 64
144 76

77
Iterations

109 56 30
120 62 135
157 110 28
148 99 30
156 99 69
177 109 53

137 64
144 75

76
Iterations

109 56 30
120 62 135
157 110 28
148 99 30
156 99 69
177 109 53

137 64
144 75

76

1 f
Iterations

17 16 17
21 18 37
26 23 20
25 26 21
29 31 30
33 30 25

37 27
40 30

32
Iterations

16 16 17
19 16 32
22 18 21
22 21 22
25 25 26
28 25 25

32 28
32 29

33
Iterations

16 16 17
19 17 32
21 17 21
21 21 22
23 24 25
25 25 25

31 29
30 29

33

1 2 3

Iterations
19 17 17
21 18 36
29 23 18
25 25 19
31 34 32
36 33 23

39 29
42 29

36
Iterations

17 16 16
20 16 34
26 18 18
24 22 18
27 26 27
30 26 21

33 26
32 26

30
Iterations

17 16 16
20 16 29
23 18 18
23 21 18
26 25 23
28 25 20

31 25
30 24

27

Table 3.43: Iterations needed for reducing the initial residual of the Schur-complement system by a 
factor of 10“ 6. The mass-matrix-free version of the preconditioner is not recommended when very 
large and tiny tetrahedra coexist on the same mesh. Lanczos k  =  20,40,60.
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F-16 Fighting Falcon

We proceed with a harder test case, the F-16 Fighting Falcon depicted in Figure 3.11. The comers 
and cross-sections in the wings, tail, and missiles should reduce the regularity of the solution even 
further. In this case we expect the optimal exponent to be smaller than for the Boeing 747 bench­
mark. This is indeed the case: the optimal exponent for this problem was found to be 0.54. The 
mesh levels we used are listed in Table 3.44 and the numbers of unknowns on the interface of the 
subdomains are in Table 3.45.

Table 3.46 lists the iterations needed for the second version o f our preconditioner M (M ~ lL)e 
with four different values for the exponent: Q — 0.5,0.54,0.6,0.65. The Lanczos subspace dimen­
sion k was fixed for all test cases to the value k =  30. Although we cannot claim independence of 
the number of subdomains, with the exception of the second column for all exponents, we can see 
especially for the exponent Θ = 0.54 practical independence of the mesh size h for all rows between 
32 and 512 subdomains.

mesh level
level elements nodes hmin Jtmax

1 436429 104381 1.222e-06 5.863e-01
2 2136627 404520 1.222e-06 3.700e-01
3 2882141 531103 1.222e-06 1.892e-01
4 25055374 4135416 1.222e-06 1.187e-01

Table 3.44: Mesh levels used. For each level we see the number of elements, number of nodes, 
maximum and minimum edge lengths.

mesh level
subdomains I 2 3 4

2 412
4 492 6075 3652
8 1637 2916 5757

16 2011 7440 14438
32 3891 11535 15605 135288
64 5425 17435 24885 193570

128 8418 25936 37269 263479
256 39615 54443 351571
512 62602 79607 464651

1024 607313
2048 787200

Table 3.45: Number of nodes on the interface of the subdomains for the F-16.
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Figure 3.11: First mesh level partitioned by METIS to 55 subdomains.
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meshlevel 1 2 3 1 4
M  (M~ .5

subdomains Iterations
2 12
4 12 19 15
8 16 17 23

16 19 21 35
32 20 22 23 24
64 22 22 25 24

127 26 25 27 27
256 28 31 30
512 31 32 33

1024 38
2048 40

M{M~τ χ ρ τ -

subdomains Iterations
2 12
4 11 19 14
8 15 16 24

16 18 22 36
32 19 22 22 22
64 22 22 25 22

127 25 24 27 24
256 29 31 28
512 31 32 29

1024 33
2048 35

meshlevel 1 2 3 4
M(M~ .b

subdomains Iterations
2 12
4 12 20 16
8 16 15 23

16 19 24 38
32 19 22 23 21
64 22 22 26 22

127 25 25 27 22
256 29 33 28
512 31 34 27

1024 31
2048 31

M(M~τ L j o s r -
subdomains Iterations

2 13
4 14 22 17
8 17 14 23

16 20 25 38
32 20 23 23 20
64 23 25 26 22

127 26 28 28 21
256 31 32 28
512 34 35 26

1024 29
2048 31

Table 3.46: Iterations needed for reducing the initial residual of the Schur-complement system by 
a factor of 10“c for the second version of the preconditioner with four different exponents Θ =  
0.5,0.54,0.6.0.65. Lanczos space dimension k  =  30.
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3.13 Η o versus iterative substructuring in three dimensions

It would be interesting to compare the performance of our H 1̂ 2 preconditioner with other popular 
domain decomposition approaches. The most competitive one is an iterative substructuring algo­
rithm suggested by Smith [145], carefully designed to address problems in 3D and providing a fully 
parallel algorithm without sacrificing the robustness of optimal sequential iterative substructuring 
algorithms.

The second benchmark problem considered in [145] is a really tempting one as it considers 
a rather general case involving two different types of boundary conditions. The boundary d Q  of 
the domain of definition Ω, which is the unit cube, is split into two parts. On the first part Γχ 
corresponding to x  =  0, we impose homogeneous Dirichlet conditions. On the remaining part 
of the boundary Γ2 =  0Ω — Γι, we assume homogeneous Neumann boundary conditions. The 
boundary value problem involves the Poisson equation

—V2u =  / ,  in Ω, (3.87)

where the non-homogeneous term /  is given by / ( x Ty ,z) =  2ex sin(y). The cube in [145] is 
partitioned into 64 subcubes. Details about the mesh levels considered are listed in Table 3.47. We 
use the same type of partitions as the ones considered in [145]. In addition we test the performance 
o f our preconditioners with METIS-generated partitions.

Table 3.48 lists the iterations needed for each case. The first column shows the number of 
iterations obtained by the 2-level iterative substructuring algorithm suggested in [145]. The Lanczos 
space dimension k  for all our preconditioners was set to k — 40, but k — 10,20 give similar 
results. The number of iterations of the best performing preconditioner (marked with blue) for 
the 1/2 exponent and the 0.7 exponent that was found to be optimal for this test case, follows for 
both manually and METIS-generated partitions. Once again the 0.7 exponent outperforms the one 
suggested in theory. As before this is attributed to the fact that the H 1 regularity is too pessimistic 
for the solution of the boundary problem (3.87). However, we see that consideration of Neumann 
boundary conditions reduced the optimal exponent for the specific geometry, which was found to 
be 0.77 for the pure Dirichlet problem.

Consideration of the optimal exponent for this problem renders our single-level preconditioner 
more robust than the two-level approach suggested by Smith. In the case when the partitions have 
been generated by METIS, our algorithm is pronouncedly Λ-independent, outperforming by 11 
iterations the iterative substructuring algorithm for the last level consisting of more than two million 
unknowns. Comparable performance is observed for sufficiently fine meshes from the 1/2 class of 
preconditioners.
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Manually generated meshes
level elements nodes huiax

1 202323 34991 7.013e-02
2 1657357 271437 3.408C-02
3 3258917 528933 2.668e-02
4 5880586 945761 2.238e-02
5 14261180 2271852 1.650e-02

mesh levels used with METIS
level elements nodes hmax

1 201316 34514 6.573e-02
2 1665255 271408 3.267e-02
3 3271340 527962 2.636e-02
4 5645964 904953 2.201e-02
5 13786443 2190085 1.685e-02

Table 3.47: Details about the manually and METIS-generated mesh levels for the cube partitioned 
into 64 subdomains. For each level we see the number of elements, number of nodes, maximum 
and minimum edge lengths.

64 subdomains Smith’s Parallel Iterative Substructuring 3D Algorithm
n 34,848 270,400 524,880 903,264 2,130,048

Smith 17 23 25 28 32
H& with Manual Partitioning to bricks

n 34,991 271,437 528,933 945,761 2,271,852
nb 10,690 43,882 70,958 102,150 182,992

L m 32 31 33 34 32
24 25 25 26 26

He with METIS Partitionin|l
n 34,514 271,408 527,962 904,953 2,190,085
nb 9,704 41,136 65,085 94,994 171,245

L W 29 33 33 33 34
£0.7 20 19 21 19 21

Tabic 3.48: He versus Smith’s iterative substructuring algorithm [145]. Smith partitions the unit 
cube into 64 subcubes. Iterations needed for reducing the relative residual of the Schur-complement 
system by six orders of magnitude. Both manual and METIS-generated partitions are considered 
for Ho, and for each case we show the best performing preconditioner. The number of unknowns is 
denoted by n while iib stands for the number of unknowns on the interface. The Lanczos dimension 
was set to k — 40.
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3.14 Parallel performance

Domain decomposition methods have been designed from the ground up for parallel computing. 
Thus, it is really tempting to explore the degree of parallelism that can be achieved by the method we 
investigated in the previous sections. We restrict our parallel investigations to symmetric multipro­
cessor computing systems (SMP). The parallel code uses OpenMP directives mainly for portability 
reasons but also because several compiler vendors2 have acknowledged the benefits o f OpenMP and 
provide OpenMP implementations even for distributed systems (Beowulf clusters).

The degree of parallelism achieved in SMP systems is strongly dependent on the architectural 
design of CPU, the operating system, and the compiler itself. We will see, however, that it is also 
influenced by the optimized BLAS libraries the code links to. Our purpose here is to find the com­
bination of platform, compiler and BLAS-LAPACK libraries that provides the highest scalability 
and also the most efficient code. For this reason, we have to consider a test case that is ideal for 
parallel computing and provides equally balanced workload among all the processors of the system. 
Without doubt, such a test case is the example we investigated in section 3.11.2, where all subdo­
mains and all separators consist of equal number of unknowns. The block-diagonal structure of the 
interface operator is ideal for parallel evaluation of the desired matrix power. The preconditioner we 
used is the M (M ~ XL)0'7 with the mass matrix M  replaced by its diagonal, which proved to be the 
most robust one in almost all the examples considered in sections 3.11 and 3.12. The domain was 
partitioned into several subdomains starting from 16 up to 2048 in powers of 2, and for each case 
we investigated the scalability and runtime performance of several components of the code. The 
code was compiled with all the compilers mentioned below and linked to optimized BLAS libraries 
that were available for each platform. The direct sparse solver we used for the subdomain matrices 
was CHOLMOD.

We have used the following platforms for our benchmark:

2Intel ClusterOpenMF: h t t p : //www. i n t e l . c o m /c d /so f  tw a r e /p ro d u c ts /a s m o -  n a /e n g /3 7 5 5 0 0  .h tm
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Linux AMD64 Sun Solaris A1X5.3

BLAS Libraries BLAS Libraries BLAS Libraries

1. Intel MKL 1. AMD ACML 1. ESSL

2. AMD ACML

COMPILERS COMPILERS COMPILERS

1. g++-4.2.2

2. intel icpc

3. SunCC

1. SunCC 1. xlC-r

3,14.1 Linux

We begin our investigation on the Linux operating system, where more compilers and software 
libraries are available. Our computing platform is an SMP system with 8 Dual Core Opteron™ 
Processors 870 and 1MB L2 cache per core. We used a 64-bit Linux distribution with the kernel 
recompiled and tuned for the specific platform. The compilers and their compilation flags used 
follow:

GNU (GCC) 4.2.2
g++-4.2.2 -03 -march-native-fopenmp

Intel (cce) 10.1.015
icpc -03 -xW  -openmp

CC: Sun Ceres 5.10 C++ LinuxJ386 2008/07/10
CC -xtarget-native -xOS -fast -m64 -xopenmp

The LAPACK routine used for the eigenvalue decomposition of the block diagonal boundary 
operator was DSYEVR, which is the fastest algorithm for symmetric cigenproblems when both 
eigenvalues and eigenvectors are desired. We should note, however, that the corresponding imple­
mentation of LAPACK1 is not thread-safe, in contrast to the implementations provided by the MKL 
and ACML libraries. Thus, unpredictable results are observed if  the DSYEVR routine provided 
by LAPACK is called by many threads simultaneously. Regarding the Sun performance library, it 
operates in parallel mode whenever the environmental variable OMPJVUIM.THREADS is set to a 
number greater than one. This variable controls the number of threads created during the execution

5LAPACK: h t t p : /  /www. n e t  1 i b . o r g / l a p a c k /
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of a parallel OpenMP program. When parallel OpenMP applications are linked to SUNPERF, the 
latter always operates in parallel mode, resulting in segmentation faults in most cases. This is why 
we did not consider it in our benchmarks.

In the figures that follow we show the total runtime and achieved speedup on 16 cores, for all 
combinations of compilers and optimized BLAS libraries used. We compare several phases of the 
total solution process.

At the left o f Figure 3.12 we see the total runtime corresponding to the combined initialization, 
factorization and solving phases, while at the right we show the achieved speedup when the code 
runs on 16 cores. The initialization phase refers to the symbolic factorization performed by the direct 
sparse solvers for the matrices corresponding to the diagonal blocks A n . The factorization phase 
refers to the total factorization (numerical factorization phase of direct sparse solvers corresponding 
to the diagonal blocks and preconditioner’s eigenvalue decomposition) while the solution phase 
involves every other step of the solution process.

number o f subdomains number o f  subdomains

Figure 3.12: Runtime in seconds for the combined initialization, factorization, and solution phases 
(left) and their scalability (right) when the code runs on 16 cores.

Figure 3.13 shows the runtime and scalability observed for the combined factorization and so­
lution phases, while Figure 3.14 concerns the solution phase only. It is evident that the highest 
performance and scalability are achieved when the code is compiled with g-H - and finked with the 
Intel-MKL library. For this combination of compiler and BLAS we proceed by examining the seal- 
ability of each single phase of the solution algorithm.

In Figure 3.15 we see the scalability of the initialization phase (left) and the scalability of the 
numerical factorization phase (right) corresponding to the subdomain matrices A //. We see that 
both phases scale well independently of the number of the partitions, with a speedup of 7 when 
the code runs on 8 cores. The speedup observed for the initialization phase on 16 cores is quite
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Runtime on 16 cores 
Combined Factorization and Solve Phase*

Scalability on 16 cores
Combined Factorization and Solve Phases

Figure 3.13: Runtime in seconds for the combined factorization and solution phases (left) and their 
scalability (right) when the code runs on 16 cores.

Runtime on 16 cores 
Solve Phoses

Scalability on 16 cores

Figure 3.14: Runtime in seconds for the solution phase (left) and scalability of the solution phase 
(right) when the code runs on 16 cores.

irregular however. It strongly depends on the number of partitions with a maximum speedup close 
to 14 observed for 512 subdomains. On the other hand the factorization phase scales pretty well 
even when the code runs on 16 cores, showing for every subdomain a speedup between 13 and 14. 
We should note here that the irregular speedup of the initialization phase occurs for every single 
combination of compiler and BLAS library the code links to when it runs on 16 cores, in contrast to 
the factorization phase, which scales smoothly with respect to the number of partitions.

In Figure 3.16 we see the speedup of the solution phase corresponding to the backsubstitution of 
the direct sparse solvers for the block matrices A//,  Although the code runs on an AMD platform,
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Scalability o f  Aii Initialization Phase Scalability o f  Aii Factorization Phase
g++-42 2  with Imd-MKL g++-4.2J with Imd-MKL

number o f  subdomains number o f subdomains

Figure 3.15: Scalability of the symbolic factorization (left) and numerical factorization phase (right) 
performed by the direct sparse solvers on the diagonal blocks A n .

Scalability o f  Aii Solve Phase Scalability o f  Aii Solve Phase
g+*-41 2  w ith Imd-MKL e+ -M i2  with AMD-ACML

Figure 3.16: Scalability of solutions performed by the direct sparse solvers on the subdomain ma­
trices A n . Intel-MKL BLAS (left) and AMD-ACML BLAS (right).

the Intel-MKL BLAS (left) provides better scalability than the AMD-ACML BLAS (right). Similar 
speedups were also obtained for every other combination of compiler and BLAS. It is evident that 
the scalability of the solution phase is not what one expects. This is a well known problem believed 
to be due to bandwidth limitations of the 0 ( n 2) BLAS2 kernels used in the solution phases, as 
opposed to the 0 ( n 3) BLAS3 kernels used in the factorization phases. We discuss it more later. 
Finally in Figure 3.17 we see the speedup for the two main phases of the preconditioning. The 
factorization phase (corresponding to the block eigenvalue decomposition), which is the most time- 
consuming phase (left), scales much better because the complexity of the related algorithms is
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Scalability o f Preconditioner*s Factorization Phase Scalability of Preconditioned Solve Phase
g++-4.2.2 with imd-MKL g++-4.2.2 with IntchMKL

Figure 3.17; Scalability of the preconditioner’s factorization phase, (left) and solve phase (right) 
when the code runs on 16 cores.

0(n 3), whereas the complexity of the solution phase drops to 0 (n 2) and the code hardly scales, 
with a maximum speedup of 6 on 16 cores.

3.14.2 Sun Solaris

The latest version of the Solaris Express Community Edition4 was installed on the same SMP system 
that we benchmarked Linux. Here we have only one option of compilers and math libraries. The 
latest version of the Sun CC compiler was used. The code was compiled with the same flags as 
for the Linux case and linked to the AMD-ACML BLAS library. The Sun performance library 
(SUNPERF) was not an option here for the same reason we mentioned previously. Thus we perform 
a side by side comparison of the runtime and scalability under Solaris and Linux.

At the left of Figure 3.18 we see the total runtime for the initialization, factorization, and solution 
phases. The corresponding speedup is shown at the right. It is evident, especially on a single core 
but also on any number of cores, that the code runs faster under the Solaris operating system. As 
regards scalability, we observe slightly better speedup under Solaris, especially on 8 and 16 cores for 
any number of partitions. As the number of partitions increases, the differences seem to vanish. As 
we experienced before, solution phases do not scale well and the performance of the two operating 
systems is more or less identical.

Figure 3.19 shows runtime and specdups for the factorization and solution phases.

4h ttp ! /  /www. opensolaris . org/os/downloads/eol__ex_dvd_l/
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Runtime o f  Combined Initialization Factorization and Solve Phases 
CC with AMD-ACML

Scalability o f  Combined Initialization Factorization and Solve Phases 
CC with AMD-ACML

Figure 3.18: Total runtime in seconds for the combined initialization, factorization, and solution 
phases (left) and the speedup observed as a function of the number of subdomains (right), under 
both Linux and Solaris.

Runtime of Combines Factorization and Solve Phases 
CC with AMD-ACML

Linux I core 
*—■ Linux 2 cores 

Linux 4 cores 
A-A Linux 8 cores 
t - t  Linux 16 cores 
©- © Solaris 1 core 
B- 0  Solaris 2 cores 
4- ❖  Solaris 4 cores 
A· Δ Solaris 8 cores 

v  Solaris 16 cores

r i i

64 128 256 512
number o f subdomains

Scalability o f Combined Factorization and Solve Phases 
CC with AMD-ACML

Figure 3.19: Total runtime in seconds for the factorization and solution phases (left) and the speedup 
observed as a function of the number of subdomains (right), under both Linux and Solaris.
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3.14.3 AIX

The AIX operating system version 5.3 was run on a POWER PC consisting of 16 Power5 processors 
at 1900 MHz each. The code was compiled with the following IBM xICj * C++ compiler and flags:

IBM(R) XL C/C++ Enterprise Edition V8.0 for AIX(R)
x IC j ‘ -03 -qstrict -qsmp-omp -q64 -qtime-auto

and linked to the IBM Engineering and Scientific Subroutine Library version (ESSL)5. The serial 
thread-safe version of ESSL was the only available BLAS6.

Unfortunately ESSL does not provide an implementation of the LAPACK DSYEVR routine 
that we used earlier for the solution of symmetric eigenvalue problems. Since there is no version of 
Intel’s MKL or AMD’s ACML available for AIX and since using DSYEVR from LAPACK is not 
an option because of the thread-safety problems we described previously, we are forced to use LA- 
PACK’s DSYEV routine. The latter is the fastest routine for symmetric eigenvalue problems when 
only eigenvalues are desired but it is about two times slower than DSYEVR when both eigenvalues 
and eigenvectors are desired. The performance of the eigenvalue decomposition here should not be 
directly compared with that observed on other platforms.

Scalability o f Aii Initialization Phase Scalability o f  Combined Initialization Factorization and Solve Phases

Figure 3.20: Scalability of symbolic factorization phase (left) and solve phase (right) of the direct 
sparse solvers on the subdomain matrices A //.

In Figure 3.20 we see that the symbolic factorization (left) and solution (right) for the subdomain 
matrices A j j  scale pretty well. A speedup of almost 8 for the initialization and around 7 for the 
solution phase are observed independently of the number of partitions when the code runs on 8

sESSL version 4.2
^Thread-safe ESSL: the code is linked with libesslj’
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Scalability o f  Aii Factorization Phase 
xlC rwithESSL r

Scalability o f  Factorization Phases 
xlC rwithESSL r

number of subdomains number o f subdomains

Figure 3.21: Scalability of numerical factorization for the subdomain matrices A n  (left) and total 
(combined A n  and preconditioner’s) factorization phases (right).

cores. On 16 cores the speedup depends on the number of partitions. The situation however is quite 
different for factorization, as we can see in Figure 3.21. The speedup of the total factorization and 
the factorization of the subdomain matrices drops as the number of partitions increases, especially 
with 8 or 16 cores. This is in contrast to our experience on the Opteron platform under Solaris or 
Linux. Thus we realize that the classical argument “BLAS2 algorithms do not scale well because o f 
memory bandwidth limitations, while BLAS3 algorithms do” is not quite true. Much depends on the 
CPU architecture and/or the BLAS implementation. However, we have no means of isolating the 
real problem because we do not have a BLAS implementation that is common to all architectures.

3.14.4 Linux vs Solaris vs A1X

We realize that scalability on different platforms is a very delicate issue influenced by several fac­
tors. The same parallel code compiled with the same compiler and linked to the same libraries does 
not show uniform scalability under different operating systems. The best combination of compiler 
and BLAS on the Linux platform was the g++-4.2.2 compiler and the Intel-MKL BLAS. Solaris 
performs better than Linux with a specific combination of compiler and BLAS. On Linux, however, 
one has more options for compilers and optimized BLAS libraries, which counterbalances the ad­
vantage of Solaris. On the other hand, IBM AIX finds it very hard to parallelize the factorization 
phases (which scale quite well on Linux and Solaris), yet it provides quite good speedup in the 
solution phases (which do not scale well on Linux or Solaris). Whether this is a problem of the 
operating system or the hardware is not clear, though we believe it is related to hardware and not 
software components.
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3.15 Results and extensions

The main contribution of this work is that it achieved what was considered to be impossible: a 
single-level domain decomposition approach for the Poisson and reaction-diffusion problems in­
sensitive to the size of the system and the number of subdomains. However, independence of 
the preconditioner’s performance on the number of subdomains is achieved with fractional pow­
ers greater than 1/2. Although this result is not yet explained theoretically, it has been verified 
numerically in a number of real-life applications and we believe that it is due to higher regularity 
of the solution of the benchmarked problems than the H l regularity guaranteed by theory for the 
general case.

Our numerical experiments indicate that there is still room for improvement, even without em­
bracing the multilevel concept. We highlight a number of issues where further improvements are 
desirable and will potentially boost further the performance and robustness of our preconditioner.

Evaluation of Hq A major challenge is the efficient and yet scalable evaluation of matrix real pow­
ers. The Lanczos approach we described in section 3.9.4 is very robust, especially when it 
uses the inverse of the matrix. However, for hard cases like the brain problem or the crys­
tal problem 3.12.1, a large number of Lanczos vectors (k ~  40) may be needed to ensure 
Λ-independence. A possible alternative is the method suggested in [74]. However the seal- 
ability, as in the Lanczos case, depends on the scalability of the corresponding direct sparse 
linear solver. A more scalable approach would take into account the special structure of the 
interface boundary, resulting in a sufficiently sparse matrix having an almost block-triangular 
structure. Then block versions of the symmetric tridiagonal eigenvalue decomposition sug­
gested by Dhillon [43] may be what we are looking for. The extra efficiency will come 
from the optimal bandwidth utilization of the 0 (n 3) algorithms associated with block-matrix 
operations. Apart from the cache efficiency we will definitely experience sufficiently high 
scalability, at least for Linux-Opteron platforms, which are quite popular these days.

Extensions of our preconditioning approach to more complicated PDE systems are also quite 
tempting.

Stokes flows The extension of our approach to Stokes equations is straightforward. Assuming a 
Taylor-Hood approximation of the velocity and pressure spaces in order to satisfy the LBB 
condition, the preconditioner will have the following block-diagonal structure:
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where L is the discrete P2 Laplacian (quadratic triangles/tetrahedra) assembled on the bound­
ary and M  is the P i  (linear triangles/tetrahedra) discretization of the identity operator (mass 
matrix) assembled on the boundary, while Θ will be the optimal fractional power we are fa­
miliar with.

Convection-Diffusion problems Extension of our approach to convection-diffusion problems is 
not so straightforward. Preliminary results in 2D with the H i/ 2 preconditioner show /;- 
independence and a mild sensitivity to the number of partitions, which nevertheless grows 
quickly as the Peclet number increases. This is expected because our preconditioner is sym­
metric and we do not expect it to be able to precondition well an increasingly nonsymmetric 
operator, like the convection-diffusion one.

Navier-Stokes flows Extension of our approach to Navier-Stokes equations will definitely be based 
on the preconditioner for Stokes but it will also be subject to the same difficulties as convection- 
diffusion PDEs. However the problem is nonlinear and that allows us to take advantage of 
adaptive preconditioning schemes suggested by Loghin et al. [108], which have been proved 
quite effective as they reduce the total number of iterations throughout the solution o f a nonlin­
ear system by a factor of four. Any successful extension of the theory to convection-diffusion 
problems directly applies here as well.

Structural mechanics Applications encountered in structural mechanics involve symmetric opera­
tors because of the symmetry of the stress tensor. Although the theory of He has not yet been 
extended to this class of problems, we believe that some fractional power of the differential 
operator assembled on the boundary will work here as well.

Multilevel It will be really interesting to see how much the performance of our preconditioner is 
improved by adopting the multilevel approach. The latter can be applied in many ways. Apart 
from the classical additive approach providing global communication, we could for instance 
use the coarse level for preconditioning the unknowns on the wirebasket, decoupling com­
pletely the application of the matrix power. This will allow a block-diagonal eigenvalue de­
composition for the remaining unknowns on the decoupled faces, and this can be completely 
parallelized.

Parallel scalability As regards the scalability of our code, there is still room for improvement. 
We experienced higher scalability for the factorization and initialization phases than for the 
solution phase on Linux platforms. On AIX we have exactly the opposite behavior. Apart 
from more extensive tests that need to be done, as we described in section 3.14 there are 
several tools and libraries we could use to improve parallel performance. These tools numactl
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and libnuma under Linux7 and pbind and liblgrp under Solaris* control the sheduling of our 
code, process, thread and memory affinity. However, such a detailed investigation for pushing 
the scalability a bit further would make sense only after the original algorithm incorporates 
all the enhancements we discussed above.

Minimizing total work Finally, an algorithm must be introduced to allow the preconditioner to find 
the optimal number of partitions. Optimality here refers to the runtime of the solution, factor­
ization, and solution phases, or all three phases including initialization. In memory-limited 
situations, tuning the number of partitions so that the memory consumption is minimized 
should also be an option.

This process involves describing in terms of the number of subdomains and the system size the 
complexity of the desired objective. Then for a given number of unknowns one has to solve a 
nonlinear algebraic equation to find the optimal number of partitions. An intermediate step in 
this direction is to be able to describe the growth of the number of unknowns on the interface 
of the subdomains as a function o f the system size and the number of partitions. However, 
this is not possible for an arbitrary-shaped domain. One has to make crude assumptions or 
apply a partitioncr on the mesh for several subdomains and describe by nonlinear regression 
analysis the growth of the boundary unknowns.

Moreover, if the Lanczos approach with the inverse matrix is employed for matrix-power 
evaluation, we need to be able to tell, for a given h and number of boundary unknowns, how 
the number of iterations for solving the system up to a certain threshold grows as the Lanczos 
k decreases. Clearly a larger k results in fewer iterations, while a smaller k results in a less 
accurate approximation of the desired matrix power but at the same time more efficient appli­
cation of the preconditioner. For this reason, more robust and efficient evaluation methods of 
matrix powers arc desirable and the block-diagonal approach combined with a coarse level on 
the wirebasket or a block-tridiagonal eigenvalue decomposition are methods that have to be 
taken seriously into account. Apart from their design, which favors parallel implementations, 
their complexity can be explicitly described and optimization becomes easier.

For these reasons we did not attempt something like that, because our results would be carried 
out for an ideal problem as in section 3.11.2 (for which such an analysis is straightforward), 
or would be based on crude assumptions regarding the Lanczos k .

7libnuma project: h t t p : / / o s s . sg i . c o m /p ro je c ts /1  ibnuma/
‘Solaris Numa: http: / /openedaris . org/os/community/performance/numa/
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