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Π ε ρ ί λ η ψ η

Η διατριβή εστιάζεται στο αραιό Μπεϋζιανό γραμμικό μοντέλο (sparse Bayesian linear 
model) για προβλήματα παλινδρόμησης (regression) και ταξινόμησης (classification) και 
σε εφαρμογές του σε προβλήματα επεξεργασίας εικόνας.

Αρχικά, παρουσιάζεται συνοπτικά η μεθοδολογία για Μπεϋζιανή συμπερασματολογία. 
Στη συνέχεια, προτείνεται ένας υπολογιστικά αποδοτικός αλγόριθμος για το πρόβλημα της 
αραιής Μπεϋζιανής παλινδρόμησης εικόνων. Ο προτεινόμενος αλγόριθμος χρησιμοποιεί λει
τουργίες στο πεδίο του διακριτού μετασχηματισμού Fourier και τη μέθοδο βελτιστοποίησης 
συζυγών κατευθύνσεων (conjugate gradient) για να επιτύχει παλινδρόμηση εικόνων με εφι
κτό υπολογιστικό κόστος. Έπειτα, ο αλγόριθμος αυτός χρησιμοποιείται για την επίλυση του 
προβλήματος ανίχνευσης αντικειμένων σε εικόνες, προτείνοντας μια παραλλαγή του μοντέλου 
Relevance Vector Machine (RVM) που το ονομάζουμε multikemel RVM.

Το αραιό Μπεϋζιανό γραμμικό μοντέλο χρησιμοποιείται στη συνέχεια για να εκτιμήσουμε 
την συνάρτηση διασποράς σημείου της θόλωσης (blurring PSF) στο πρόβλημα της τυφλής 
αποσυνέλιξης εικόνων (blind image deconvolution). Προτείνεται ένα στατιστικό μοντέλο, 
βασικά πλεονεκτήματα του οποίου είναι η εκτίμηση του μεγέθους της συνάρτησης διασπο- 
ράς σημείου που περιγράφει την θόλωση, η ανακατασκευή των ακμών της εικόνας και η 
ανθεκτικότητα στο θόρυβο. Η Μπεϋζιανή συμπερασματολογία υλοποιείται με την χρήση της 
variational προσέγγισης.

Κατόπιν, η διατριβή εστιάζεται στο πρόβλημα επιλογής κατάλληλων συναρτήσεων βάσης 
για το αραιό Μπεϋζιανό γραμμικό μοντέλο, το οποίο είναι σημαντικό ζήτημα προκειμένου να 
κατασκευάσουμε συστήματα με καλή γενικευτική ικανότητα. Τυπικά, η επιλογή κατάλληλων 
συναρτήσεων βάσης πραγματοποιείται με την χρήση της τεχνικής cross-validation, όμως η 
τεχνική αυτή έχει υψηλές υπολογιστικές απαιτήσεις και έτσι μπορεί να εφαρμοστεί για την 
επιλογή του καλύτερου σύνολου συναρτήσεων βάσης, μόνο εάν ο αριθμός των υποψήφιων 
συνόλων είναι μικρός. Προτείνεται ένας προσαρμοστικός αλγόριθμος μάθησης των συναρ
τήσεων βάσης, ο οποίος είναι ανάλογος με το μοντέλο RVM, αλλά εκτιμά τις παραμέτρους 
των συναρτήσεων βάσης ταυτόχρονα με την εκπαίδευση του μοντέλου. Πιο συγκεκριμένα, 
η προτεινόμενη μέθοδος εκτιμά διαφορετικές τιμές για τις παραμέτρους κάθε συνάρτησης 
βάσης και έτσι προκύπτει ένα πολύ ευέλικτο μοντέλο. Για να αποφευχθεί η υπερεκπαίδευ- 
ση, επιβάλλεται μια εκ των προτέρων κατανομή που οδηγεί σε αραιές λύσεις, ρυθμίζοντας 
αυτόματα τον ουσιαστικό αριθμό παραμέτρων του μοντέλου. Η προτεινόμενη μεθοδολογία 
εφαρμόζεται σε διάφορα προβλήματα παλινδρόμησης και ταξινόμησης και χρησιμοποιείται για

XI



την ανάλυση εικόνων λ,ςπουργχκσύ μαγνητικσύ συντονισμού (fMRI).
Επίσης, προτείνεται μια τροποποίηση της προηγούμενης μεθόδου, που χρησιμοποιεί ανισο- 

τροπικές Γκαουσσιανές συναρτήσεις βάσης, με ξεχωριστή παράμετρο κλίμακας (πλάτος) για 
κάθε χαρακτηριστικό, ώστε να επιτύχει τοπική eπιλογή χαρακτηριστικών. Η επιλογή χαρα
κτηριστικών είναι τοπική, με την έννοια ότι υποθέτουμε ότι διαφορετικά χαρακτηριστικά είναι 
σημαντικά σε διαφορετικές περιοχές του χώρου παραδειγμάτων. Για να απαλείψουμε τα χαρα
κτηριστικά που δεν είναι χρήσιμα, υποθέτουμε μια κατάλληλη εκ των προτέρων κατανομή για 
τις παραμέτρους κλίμακας. Οι παραπάνω μεθοδολογίες μάθησης των παραμέτρων των συναρ
τήσεων βάσης (με ή χωρίς ταυτόχρονη τοπική επιλογή χαρακτηρστικών) χρησιμοποιούνται 
για την ταξινόμηση δεδομένων από μικροσυστοιχίζς (microarrays) DNA.
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A b s t r a c t

In this thesis, we study the sparse Bayesian linear model for regression and classification 
tasks and for solving image processing problems.

We start with an overview of the Bayesian inference methodology and its application 
to linear regression. We then develop a computationally efficient training algorithm for 
sparse Bayesian regression of images. The proposed training algorithm uses operations in 
the Fourier domain and the conjugate gradients method, in order to allow regression of 
large images at reasonable computational cost. We then apply this algorithm to detect 
objects in images, using a variant of the relevance vector machine (RVM), which uses 
many types of kernels simultaneously and we call the multikemel RVM.

Next, we use the sparse Bayesian linear model to estimate the point spread function 
(PSF) in the blind image deconvolution (BID) problem. We propose a Bayesian model 
that estimates the support of the blurring PSF, allows reconstruction of image edges 
and achieves noise robustness. Bayesian inference on this model is performed using the 
variational approximation.

Furthermore, we focus on the problem of selecting appropriate basis functions for the 
sparse Bayesian Unear model, which is crucial in order to achieve good generalization 
performance. Typically, this problem is tackled using cross-validation technique, but this 
technique is computationally expensive and it can be used to select the best out of a small 
number of candidate basis function sets. Instead, we propose an adaptive kernel learning 
algorithm, which is similar to the RVM but also learns the parameters of the kernels during 
model training. More specifically, the proposed method estimates different parameter 
values for each kernel, resulting in a very flexible model. In order to avoid overfitting, a 
sparsity enforcing prior is imposed that controls the effective number of parameters of the 
model. The proposed methodology is evaluated on benchmark regression and classification 
datasets and applied for analysis of functional magnetic resonance images (fMRI).

We also propose a modification of this method that performs local feature selection 
by estimating the parameters of appropriate kernel functions. In order to incorporate 
local feature selection, anisotropic Gaussian kernels are considered, which use a separate 
scaling factor (width) for each feature. Feature selection is local, in the sense that different 
features are assumed to be significant at different regions of the input space. This is 
achieved because we learn different values for the scaling factors of each kernel. In order 
to eliminate irrelevant features, we assume a sparsity enforcing prior on the scaling factors
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of the kernels. The proposed adaptive kernel learning algorithms (with or without local 
feature selection) are employed to the problem of classifying DNA microarray datasets.
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C h a p t e r  1

I n t r o d u c t i o n

1.1 Machine Learning Basics

1.2 Image Processing Problems

1.3 Thesis C ontribution

1.1 Machine Learning Basics
Machine learning is the area of artificial intelligence that attempts to  give machines the 
ability to learn from their environment. More specifically, in machine learning problems 
we want to use a set of observations, which we call the training set, in order to make 
predictions for unseen events. Typically, we separate this problem in two phases; first we 
use the training set to learn a model of the observations and then we make predictions 
based on this model. For example, in handwritten digit recognition we are given a training 
set that consists of handwritten images and corresponding labels that identify the digits 
that appear on each image. Using this training set we can learn a model that captures the 
correlations between the observed images and their labels. Then, we can use this model 
to predict the label of a  previously unseen image. The importance of machine learning 
is that it can be used to  solve problems (such as handwritten digit recognition or speech 
recognition) for which it is difficult to design typical algorithms.

But how do we learn a system using the available observations in the training set? A 
common approach is to  consider a parametric function (model) tha t is used to describe 
the process that generates the observed data. Then, during the training phase, we es
timate the parameters of this model by maximizing some objective function. Under a 
stochastic framework, it is convenient to assume that the observations are random vari
ables and define an appropriate parametric probability density function (pdf) for them. 
Then, we can define the objective function for learning as the likelihood of the obser
vations, which is the probability that the observations have been generated by specific

1



values of the parameters. Estimation of the parameters is performed by maximizing the 
likelihood of the observations in a process known as maximum likelihood estimation. Al
ternatively, Bayesian methods assume that the parameters of the model are also random 
variables. This framework provides an elegant way to apply constraints on the param
eters by assigning suitable prior distributions to them. More importantly, the Bayesian 
framework provides a principled methodology to measure uncertainties of the parameter 
estimates and propagate these uncertainties to the predictions made using this model. 
These Bayesian learning methodologies are discussed in detail in Chapter 2.

An important issue to note is that in order for a model to generalize the observations of 
the training set to unseen examples, it needs to make certain assumptions for the mecha
nism that generates the observations. These assumptions are called the bias of the model. 
For example, a common assumption is that similar inputs should be mapped to similar 
outputs. The more assumptions a model makes, the larger the bias is. Models with very 
large bias generally have poor performance, because they make too many assumptions, 
which are unlikely to be realistic. On the other hand, models with very small bias make 
too few assumptions and for this reason their predictions are heavily affected by noise that 
commonly exists in the observations. How much a machine learning model is affected by 
noise of the training examples is measured by the variance of the method. More specif
ically, the generalization performance of a model increases as the bias and variance gets 
smaller. However, there is a bias-variance tradeoff; the larger the bias of an algorithm, 
the smaller its variance. For this reason it is important to measure the generalization 
performance of a machine learning method. This is commonly achieved by comparing 
the prediction of the method to the known labels of a separate set observations, which is 
called the test set and should be independent of the training set.

Machine learning methods are divided in two broad categories depending on the level of 
supervision that they require. Supervised learning methods assume that the observations 
have the form of pairs, containing inputs and corresponding outputs. The aim is to build 
a model that can be used to make predictions for the outputs of previously unseen inputs. 
On the other hand, unsupervised learning methods assume a training set that only consists 
of observed inputs. They learn a model of these inputs, which can later be used for example 
to predict missing values of some of the observations, or to group similar observations 
in clusters. Semi-supervised machine learning methods combine characteristics of both 
supervised and unsupervised methods. These methods, require that some of the input 
observations are associated with the corresponding desired output, but they can also take 
advantage of available input observations whose corresponding output is unknown.

Supervised methods are further divided in two categories depending on the type of 
the outputs. Classification methods assume that outputs are labels that describe the 
category which the observation belongs to. For example, handwritten digit recognition 
and speech recognition are examples of classification problems. In contrast, if the outputs 
are continuous variables, the problem is known as regression. For example, predicting the 
temperature based on some other measurements, predicting the value of a stock based on
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its previous values and estimating the value of an image pixel given its neighboring pixels 
are regression problems.

When designing classification methods there are two general approaches; the discrim
inative and the generative approach. In the discriminative approach we attem pt to find a 
function that directly discriminates the categories. For example, in binary classification, 
where we assume only two categories, we may discriminate the two categories based on the 
sign of the output of some function, whose parameters are estimated diming the training 
phase. Instead, when using the generative approach we attem pt to learn for each category 
a (probability distribution) function that describes the mechanism that generates its data. 
Then, we can make predictions for unseen data using the Bayes law. Generative methods 
solve a more general problem than required, since they also estimate a model of how the 
observations of each category are generated. Thus, they typically require larger training 
sets compared to discriminative methods, but they provide a framework to overcome other 
difficulties, such as missing data in the training set. Furthermore, it is usually straight
forward to extend discriminative methods for regression problems. In contrast generative 
methods cannot be used for regression tasks, since the outputs in regression are contin
uous and therefore they can take an infinite range of values (a generative method would 
attempt to estimate the generative model for each possible output value).

The most common assumption that supervised learning methods make is that similar 
inputs should be mapped to similar outputs. However, it is not always straightforward how 
to define similar inputs. Many simple algorithms measure similarity between two input 
points X\, x 2 using their inner product x { x 2- However, this is usually insufficient and 
more flexible similarity representations can be obtained using a mapping function ψ(χ)  to 
map the inputs to some feature space of usually higher dimension. Then similarity of the 
input points can be computed as the inner product ψ(χι ) τ ψ (χ 2) in the new feature space. 
For example, instead of working directly with the two dimensional input x  =  ( x i ,x2)T 
we can map it to the feature vector ψ(χ)  =  (χι, χχχ2, x2)T. Furthermore, we notice that 
inner products in the feature space can be efficiently computed using a kernel function 
Κ ( χ ι , χ 2) = ψ(χ ι ) τ ψ (χ2), which in the above example is K ( x i , x 2) — { x \x 2)2. In 
summary, it is often useful to measure similarity using kernel functions rather than the 
typical inner product approach. Such methods that use kernel functions are known as 
kernel methods and have become very popular for solving regression and classification 
tasks. However, their performance depends largely on selecting an appropriate kernel 
function, which generally is an empirical task.

A property of kernel-based machine learning methods that has lately attracted a lot 
of interest is sparsity. Kernel classifiers make predictions for a new input point based on 
its similarity with the input points of the training set. The key observation in developing 
sparse methods is that it is typically redundant to consider the similarity with all the input 
points of the training set. Instead, sparse methods consider the similarity with only a small 
subset of the input points, which axe selected during the training phase. Popular sparse 
kernel classifiers are the support vector machine (SVM), the relevance vector machine
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(RVM) and several sparse approximations of Gaussian processes. In Chapter 3 we describe 
in detail the linear model and explain how to obtain sparse estimations and in Chapter 6 
we propose a modification that learns parameters of the kernel function simultaneously 
with the parameters of the model.

1.2 Image Processing Problems

Nowadays, computer systems have excessive storage and computational capabilities that 
allow storage and processing of multitmedia content. A lot of interest is paid in applica
tions tha t process and store images, since images are a very important type of information.

There are several problems of interest in the image processing field. For example, 
edge detection is the problem of detecting the edges (discontinuities) in a given image. 
Image segmentation is the problem of segmenting the image into regions tha t correspond 
to different objects. Image registration is the problem of aligning two or more images. 
In image denoising we are given an observed image that has been corrupted by additive 
noise and we want to estimate the initial image. Image restoration is a similar problem, 
where the observed image has been degraded by known blur and addition of some noise 
source and we want to restore the original image. The problem is known as blind image 
deconvolution when the type of blur is unknown. In image recognition we want to identify 
what type of object is depicted in a given image and in the more specific problem of face 
recognition we wish to recognize individuals using images of their face. Image detection 
is a slightly different problem, were we want to identify all occurrences of a target object 
in an observed image and we also want to find the locations were they appear. In the 
tracking problem, we are given sequences of images (video), and after detecting an object 
we attem pt to keep track of it. In image retrieval we assume to have a database of images 
and we want to retrieve images that are similar to some other given image. Furthermore, 
many problems of interest involve processing of medical images.

A large variety of image processing methods have been developed in order to treat 
such problems. Many of these methods are based on the discrete Fourier trasform (DFT) 
that describes images based on their frequency spectrum. Another useful tool that has 
been more recently used for image processing, is the discrete Wavelet trasnform (DWT), 
which combines information in the spatial and frequency domains. Furthermore, machine 
learning methods have been used with great success, because many of the previously 
mentioned problems can be tackled by learning a model using a set of training examples.

An image can be mathematically defined as a function /  : Ω —► I c that maps input 
points (pixels) from its support fi C R2 to a color space I c c  Rc, where R is the set of 
real numbers. The support Ω of the image commonly has rectangular form Ω =  {(x,y) : 
·£ ^ [Xrnini ·£τηαι] t V € [l/mtn y Umax]} i where *̂ min i %τηαχ 5 ymin and j/mox are minimum and 
maximum values for both image dimensions. Color images are usually encoded using 
three channels that correspond to the intensities of the three basic colors (red, green
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blue), therefore the color space is I c =  R 3. On the other hand, grayscale images assume 
only one channel ( / c =  R) that corresponds to the grayscale intensity. Computers can 
only process digital representations of images and for this reason, the image support and 
color space cannot be infinite sets. This limitation is overcome by quantizing the image 
support and color space, which can then be assumed to be integer sets, Ω C Z2 and 
I c C Zc, where Z is the set of integers. The elements of the image support are then called 
image pixels. A specific characteristic of images, in contrast to arbitrary functions, is that 
image pixels lie on a uniform grid, which means that they are not randomly distributed, 
but they have equal distances between their neighbors. For this reason, we can represent 
images as vectors th a t contain the intensity values at all the pixels in some specified 
order, without explicitly representing the pixel location. In this thesis we will only treat 
grayscale images. However, it should not be difficult to extend the proposed methods in 
order to deal with the case of color images.

1.3 Thesis Contribution

The contribution of this thesis is twofold. On one hand, we focus on the problem of 
selecting appropriate basis functions for the sparse Bayesian linear model and we propose 
methods that automatically learn the parameters of the basis functions. On the other 
hand, we develop computationally efficient training algorithms for applying the sparse 
Bayesian linear model to regression problems on images and we treat image processing 
problems, such as object detection, blind image deconvolution and analysis of functional 
neuroimages.

In Chapter 2 we provide an overview of the Bayesian inference methodology [Tzikas 
et al., 2008b], which will be used in the following chapters. More specifically, we discuss 
graphical models tha t provide a powerful approach to visualize the random variables of a 
stochastic model and the dependencies among them. We then describe how exact Bayesian 
inference can be achieved if we use conjugate priors, and how to estimate the parameters 
of a Bayesian model using the expectation maximization (EM) algorithm. Finally, we 
describe the maximum a posteriori (MAP) principle and the variational Bayesian ap
proximation, which can be used with rather complex Bayesian models. The application 
of these methodologies to the linear regression problem is shown in Chapter 3. We first 
describe the maximum likelihood approach and explain its drawbacks. We then impose 
conjugate Bayesian priors on the parameters of the linear model to derive a model that 
can be solved exactly using the EM algorithm. Furthermore, we describe how the prior 
distribution can be modified in order to obtain sparse estimations using the variational 
Bayesian approximation. Finally, we discuss how the sparse linear model has been used 
to solve classification problems.

In Chapter 4 we consider a specific case of the linear model, which we call the mul- 
tikemel RVM and which is a variant of the well-known relevance vector machine (RVM)
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model, but uses many types of kernels simultaneously [Tzikas et al., 2006b, 2007b]. Wt%
then propose a fast algorithm that can be used for sparse Bayesian linear regression o 
large scale images. The proposed algorithm uses operations in the Fourier domain in orde 
to allow regression of large images with reasonable computational cost. We then use thi 
method to detect objects in images and simultaneously determine their locations.

In Chapter 5 we present a new Bayesian approach for the blind image deconvolutioi 
(BID) problem [Tzikas et al., 2006a, 2007a,c, a]. The main novelty of this approach is th 
use of the sparse Bayesian linear model for the blurring point spread function (PSF) tha 
allows estimation of both PSF shape and support. In the proposed approach, a robus 
model of the BID errors and an image prior that preserves edges of the reconstruct» 
image are also used. Sparseness, robustness and preservation of edges are achieved b; 
using priors that are based on the Student’s t probability density function (PDF). Thi 
pdf, in addition to having heavy tails, is closely related to the Gaussian and thus yield 
tractable inference algorithms. The approximate variational inference methodology i 
used to solve the corresponding Bayesian model. Numerical experiments are present© 
that compare this BID methodology to previous ones using both simulated and real data

Sparse kernel methods are very efficient in solving regression and classification prot 
lems. The sparsity and performance of these methods depend on selecting an appropriat 
kernel function, which is typically achieved using a cross-validation procedure. In Chap 
ter 6 we propose an incremental method for kernel-based supervised learning, which i 
similar to the Relevance Vector Machine (RVM), but it also learns the parameters of th 
kernels during model training [Tzikas et al., 2008a, b]. Specifically, we learn differer 
parameter values for each kernel, resulting in a very flexible model. In order to avoi 
overfitting we use a sparsity enforcing prior that controls the effective number of pararr 
eters of the model. We present experimental results on artificial data to demonstrat 
the advantages of the proposed method and we provide a comparison with the typici 
RVM on several commonly used regression and classification datasets. Furthermore, w 
apply the proposed approach to model spatial correlations of the activation signal in fun( 
tional neuroimaging. Numerical results with an artificial phantom show that, in contraf 
to previous approaches, the proposed model can simultaneously detect the presence c 
activations that are i) strong but small and ii) large but weak.

In Chapter 7 we propose a modification to the kernel learning method of Chapter 6 tha 
performs local feature selection simultaneously with model inference. In order to incoi 
porate local feature selection, appropriate kernels need to be used; we consider Gaussia 
anisotropic kernels, which use a separate scaling factor (width) for each feature. Becaus 
we learn different values for the scaling factors of each kernel, feature selection is local, i.< 
different features are assumed to be significant at different regions of the input space. I: 
order to eliminate irrelevant features, we impose a sparsity enforcing prior on the scalin 
factors of the kernels. Experimental results show that the proposed method has improve 
performance in several regression and classification benchmark datasets.

Furthermore, we consider the classification task with biological DNA microarray data
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sets, where feature selection is very important, sinse the microarray examples are of very 
high dimension. The proposed methodology first applies two popular (and computation
ally efficient) feature selection approaches, namely recursive feature elimination (RFE) 
and automatic relevance determination (ARD), to initially reduce the number of features. 
Then, using the remaining features, we apply both the adaptive RVM with kernel learning 
and the local feature selection approach and examine their performance. Experimental 
results indicate tha t the adaptive kernel learning algorithm of Chapter 6 exhibits superior 
classification performance compared to the commonly used RVM model. Furthermore, 
the proposed local feature selection approach has similar performance and may be useful 
in identifying which genes are significant for the classification task.

/
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C h a p t e r  2

B a y e s i a n  I n f e r e n c e

2.1 Introduction

2.2 G raphical M odels

2.3 B ayesian  Inference w ith  C onjugate priors

2.4 T he E xpectation  M axim ization  (EM ) A lgorithm

2.5 T he M axim um  A  Posteriori (M A P ) A pproxim ation

2.6 T he Variational B ayes A pproxim ation

2.1 Introduction
Statistical models are collections of random variables, whose behavior is determined by 
their joint probability distribution. Typically, these random variables can be distinguished 
as observed x  and hidden z  random variables, depending on whether they are included 
in the training set or not. Furthermore, it is common to use parameters Θ in order to 
define the joint distribution model p(x,  z \ Θ) of the random variables. In this chapter we 
will discuss methodologies tha t can be used to achieve i) inference of the hidden random 
variables and ii) estimation of the model parameters. Hereafter, the term inference will be 
used to refer to the computation of the posterior distribution p(z\x)  of the hidden random 
variables z ,  while the term estimation will refer to the process of assigning appropriate 
values to the parameters Θ, using the observations x.  We will later see tha t exact inference 
can be achieved when using conjugate prior distributions. However, in many cases of 
interest it is advantageous to use more complicated prior distributions, even though we 
need to resort to approximate inference methods.

Many simple statistical models do not use any hidden variables and it is easy to com
pute the likelihood function p(x\ Θ) tha t describes the probabilistic relationship between 
the observations x  and the parameters Θ. In this case estimation of the model parameters
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to this approach, the ML estimate is obtained as

Θ =  argmaxp(*; Θ). (2.1)
e

is commonly perform ed using the  popular m axim um , likelihood  (ML) approach. According
»

However, in many problems of interest, direct assessment of the likelihood function 
p(sc; Θ) is complex and is either difficult or impossible to compute it directly or optimize it. 
In such cases the computation of this likelihood is greatly facilitated by the introduction of 
hidden variables z .  These random variables act as “links” th a t connect the observations 
to the unknown parameters via Bayes’ law. The choice of hidden variables is problem 
dependent. However, as their name suggests, these variables are not observed and they 
provide sufficient information about the observations so that the conditional probability 
p (x \ z ;  Θ) and therefore the joint distribution p ( x ,  z; Θ) are easy to compute.

Once the hidden variables z  and a prior probability for them p(z \  Θ) have been intro
duced, one can obtain the likelihood of the observations x  or the margined likelihood as 
it is usually called, by integrating out (marginalizing) the hidden variables z:

p(x ;0) =  J p ( x , z \  Θ) d z  =  J  ρ ( χ \ ζ · , θ ) ρ ( ζ · , θ ) ά ζ (2.2)

This seemingly simple integration is the core of the Bayesian methodology, since in this 
manner we can obtain both the likelihood function, and by using Bayes’ theorem, the 
posterior of the hidden variables:

ρ(ζ \χ · ,θ )
ρ {χ \ζ ;θ )ρ {ζ · ,θ )

ρ(χ\ Θ)
(2.3)

As it will be shown later, if the posterior distribution of the hidden variables ρ { ζ \ χ \θ )  
can be analytically computed, the parameters of Bayesian models can be estimated using 
the EM algorithm, which iteratively maximizes the likelihood function without explicitly 
computing it.

In many cases of interest the posterior distribution is not available, because the in
tegral in (2.2) is either intractable or very difficult to compute in closed form. Thus, 
the main effort in Bayesian inference is concentrated on techniques that allow us to by
pass or approximately evaluate this integral. Such methods can be classified into two 
broad categories. The first contains numerical sampling methods also known as Monte 
Carlo [Robert and Casella, 2005, Andrieu et al., 2003] techniques and the second cate
gory concerns deterministic approximations of the integral, such as the Variational Bayes 
methodology.
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2.2 Graphical Models
Graphical Models provide a framework for representing dependencies among the random 
variables in a statistical modelling problem. They constitute a comprehensive and elegant 
way to graphically represent the interaction among the entities involved in a probabilistic 
system. A graphical model is a graph whose nodes correspond to the random variables 
of a problem and the edges represent the dependencies among the variables. A directed 
edge from a node A to a node B  in the graph indicates that the variable B  stochastically 
depends on the value of the variable A. Graphical models can be either directed or undi
rected. In the second case they are also known as Markov Random Fields [Bishop, 2006, 
Borgelt and Kruse, 2002, Neapolitan, 2003]. We will focus on directed graphical models 
also called Bayesian Networks, where all the edges are considered to have a direction from 
parent to child denoting the conditional dependency among the corresponding random 
variables. In addition we assume that the directed graph is acyclic (i.e. it contains no 
cycles).

Let G =  (V, E)  be a directed acyclic graph with V  being the set of nodes and E  the 
set -of directed edges. Let also x s denote the random variable associated with node s 
and 7rs the set of parents of node s. Associated with each node s is also a conditional 
probability density p(xs |xw>) that defines the distribution of x s given the values of its 
parent variables. Therefore, for a graphical model to be completely defined, apart from 
the graph structure, the conditional probability distribution at each node should also be 
specified. Once these distributions are known, the joint distribution over the set of all 
variables can be computed as the product:

ρ ( χ ) =  I J p f c - l * » · )  (2-4)
S

The above equation constitutes a formal definition of a directed graphical model 
[Bishop, 2006] as a collection of probability distributions that factorize in the way spec
ified in the above equation (which of course depends on the structure of the underlying 
graph).

In Fig. 2.1 we show an example of a directed Graphical Model. The random variables 
at the nodes are a,b,c and d. Each node computes a conditional probability density that 
quantifies the dependency of the node from its parents. The conditional densities at a 
node i may not be exactly known and may be parameterized by a set of parameters 0,. 
Using the chain rule of probability, we would write the joint distribution as:

p(a, 6, c, d\ Θ) =  p(a; 0i)p(b|a; 02)p(c|a, b\ 03)p(d|a, b, c; 04) (2.5)

However, we can simplify this expression by taking into account the independencies 
that the graph structure implies. In general, in a graphical model each node is independent 
of its ancestors given its parents. This means that node c does not depend on node a 
given node b, and node d does not depend on node a given nodes b and c. Thus, from (2.4)
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Figure 2.1: Example of directed Graphical Model. Nodes denoted with circles correspond 
to random variables, while nodes denoted with squares correspond to parameters of the 
model. Doubly circled nodes represent observed random variables, while single circled 
nodes represent hidden random variables.

we can write:

p(a, b, c, d\ θ) =  ρ(α; 0ι)ρ(δ|α; 02)ρ(φ; e3)p(d\b, c; 04), (2.6)

which is also obtained by applying (2.4).

Once a graphical model is completely determined (i.e. all parameters have been spec
ified), then several inference problems could be defined, such as computing the marginal 
distribution of a subset of random variables, computing the conditional distribution of 
a subset of variables given the values of the rest variables and computing the maximum 
point in some of the previous densities. In the case where the graphical model is para
metric, then we have the problem of learning appropriate values of the parameters given 
some dataset with observations. Usually, in the process of parameter learning, several 
inference steps are also involved.

2.3 Bayesian Inference with Conjugate priors

Conjugate priors play an important role in facilitating Bayesian calculations. More specif
ically, assume a Bayesian model with hidden variables z ,  observed variables as, prior dis
tribution p(z)  and conditional likelihood p{x\z).  Then, the marginal likelihood is given
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by

ρ(χ)  = J p { x , z ) dz  = J p ( x \ z ) p ( z )  dz, (2.7)

which cannot always be computed analytically. However, the marginal likelihood is in
volved in the computation of the posterior distribution p(z \x)  of the hidden variables z , 
which is computed according to

P ( z \ x )
p(x\z)p(z)

P( x)
(2.8)

and is required in order to proceed with Bayesian inference. Thus, it is important to 
find a prior p(z)  such tha t when multiplied with a likelihood distribution p{x\z)  allows 
analytical computation of the marginalization integral of (2.7). A common practice is to 
choose the prior distribution such that it has the same form as the likelihood, so tha t the 
resulting posterior distribution p{z\x)  has also the same form as the likelihood p(z\x),  
when viewed as a function of the hidden variables. Such prior distributions allow closed 
form marginalization of the hidden variables and are called conjugate to the likelihood 
distribution.

For example, consider a Gaussian conditional likelihood with zero mean and whose 
precision (inverse variance) is given by a hidden variable a:

ρ(ζ|α) =  (2π) 1/2a 1/2exp(—̂ a x 2). (2.9)

This likelihood, when viewed as a function of a , has the form of a Gamma pdf defined as

ρ(α; a, b) =  j ^ y a a_1 exp(-ba). (2.10)

Thus, the marginalization of the precision a  of a Gaussian pdf (when a Gamma conjugate 
prior is used for it) is possible in closed form according to

p(x; a,b) = J  ρ(χ|α)ρ(α; a, b) d a  =  pfr)1/* ( b +  j )  ’ t2'11)

and gives the Student’s t  pdf. Unfortunately, given an arbitrary likelihood distribution, 
a conjugate prior distribution does not always exist. Table 2.1 shows the formula of some 
common distributions, and Table 2.2 shows their conjugate prior distributions and the 
resulting posteriors.

2.4 The Expectation Maximization (EM) Algorithm

In the case of statistical models where inference is tractable, therefore the posterior distri
bution of the hidden variables can be analytically computed, estimation of the parameters
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Distribution pdf

Normal Ν (χ |μ ,Σ )  =  (27τ)~η/2|Σ |_1/2βχρ [ -§ (x  -  μ )τ Σ -1(χ  -  μ)]
Gamma Gamma(x|a, 6) =  bar(a)~1x a~ie~bx

Wishart
χχτζ 1 wxri T / \  |X|<*“i,- 1>''2exp(trace-|V‘X)
W ishart(X |i/, V )  — 2vd/Jjrd(i_1)/4 v -n/2  v(u+i-i)/2

Multinomial Mult(x|7r) -  Πί=ι V

Dirichlet D m chlet(x |a) -  ^  J (af } Π ,= ι V

Table 2.1: Formulas for some common probability distribution functions.

Likelihood Conjugate Prior Posterior

Ν (χ |μ ,Σ )  
Ν (χ |ρ ,σ2) 
Ν (χ |μ , Σ) 
Mult(x|7r)

Ν (μ |μ 0,Σ 0) 
Gamma(a_2|a, b) 

W ishart(E_1|^, V ) 
Dirichlet(7r|a)

Ν (μ |μ , Σ), μ  = i ^ V o  + πΣ^χ), Σ  =  (Σό1 +  ηΣ"1)-1 
Gamma (σ_2|α -1- η /2 ,6  + $3”=1(xi — /χ)2/2) 

Wishart (Σ_1|̂  -1- η, V  +  ΣΓ=ι(χ * — F)T (x i ~  α0) 
Dirichlet(7r|a +  x.)

Table 2.2: Conjugate prior distributions. Here, n  denotes the number of observations and 
x  =  ]T)”=1 x { is the mean of x.

can be performed using the maximum likelihood principle. Typically the conditional like
lihood given the hidden variables p (x |z ;0 ) is readily computable. However, parameter 
estimation should be carried out by maximizing the marginal likelihood p (x ;0 ), which 
may be difficult to compute or difficult to maximize. In such cases, the EM algorithm 
can be used to compute the parameter values 0 that maximize the marginal likelihood 
p(x ;0), without explicitly computing it. The computations involve only the conditional 
likelihood p (x |z ;0 ) and the posterior of the hidden variables p ( z |x ;0 ).

Hereafter, we will follow the exposition of the EM in [Neal and Hinton, 1998, Bishop, 
2006, Tzikas et al., 2008b]. It is straightforward to show that the log-likelihood can be
written as

lnp(x ;0) = F(q,0) + KL(q\\p), (2.12)

with
F(g ,0) =

J  9( ^  q(z) d ’
(2.13)

and
KL{q\\p) = (2.14)

f  , „  ρ{ζ\χ\θ)  Λ
- J M *  , ( , )  d 2 '

where q(z) is any probability density function, KL(q\\p) is the Kullback-Leibler divergence 
between p (z |x ;0 ) and q(z), and since KL{q\\p) > 0, it holds that lnp (x ;0 ) >  F(q,0). 
In other words, F(q, Θ) is a lower bound of the log-likelihood. Equality holds only when 
KL(q\\p) =  0, which implies q(z) =  p (z |x ;0 ). The EM algorithm and some recent 
advances in deterministic approximations for Bayesian inference can be viewed in the
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light of the decomposition in (2.12) as the maximization of the lower bound F(q, Θ) with 
respect to the density q(z) and the parameters Θ.

In particular, EM is a two step iterative algorithm that maximizes the lower bound 
F(q, Θ) and hence the log-likelihood. Assume that the current value of the parameters 
is e OLD. In the E-step the lower bound F(q, 9OLD) is maximized with respect to q{z). 
It is easy to see that this happens when KL(q\\p) = 0, in other words, when q(z) =  
p (z \x; 6OLD). In this case the lower bound is equal to the log-likelihood. In the subsequent 
M-step, q{z) is held fixed and the lower bound F(q, 0) is maximized with respect to Θ 
to give some new value 0NEW. This will cause the lower bound to increase and as a 
result, the corresponding log-likelihood will also increase. Because q(z) was determined 
using QOLD and is held fixed in the M-step, it will not be equal to the new posterior 
p ( z \x ;0 NEW) and hence the KL distance will not be zero. Thus, the E-step and M-step 
need to be repeated until the algorithm converges.

If we substitute q(z) = p ( z |ar, 6OLD) into the lower bound and expand (2.13) we get

_ F(q,9) = J ρ{ζ\χ·,θΟΕΣ)) \η ρ (χ , ζ · ,θ )ά ζ  -  J p ( z \ x - , e OLD)]np(z\x- ,eOLD) d z

=  <2 (0 , Go l d ) +  constant, (2.15)

where the constant is simply the entropy of p (z |x ; 0OLD) which does not depend on Θ. 
The function

<2(0, Gold) =  J p { z \ x ; GOLD) lnp(* , z; Θ) dz =  (lnp(a;, z; 0))p(z|^ old) (2.16)

is the expectation of the log-likelihood of the complete data (observations +  hidden vari
ables) which is maximized in the M-step. The usual way of presenting the EM algorithm 
in the literature has been via use of the Q{9, Gold) function directly [Moon, 1996, Kay, 
1997].

In summary, the EM algorithm is an iterative algorithm involving the following two 
steps:

• El-step: Compute ρ(ζ\χ·, 0OLD)

• M-step: Update 0 NEW =  argmaxe <2 (0 , GOLD)

Furthermore, it is interesting to point out that the EM algorithm requires that the pos
terior of the hidden variables p(z|as;0) is explicitly known, or at least we should be able 
to compute the conditional expectation of its sufficient statistics (lnp(cc, z; 0))p(z|a,;e), 
see (2.16). While ρ (ζ |χ ;0 )  is in general much easier to compute than p (s ;0 ) , in many 
interesting problems this is not possible, thus the EM algorithm is not applicable. For 
this reason, approximate inference techniques are employed.
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2.5 The Maximum A,Posteriori (MAP) Approximation
One of the most commonly used methodologies in the statistical modeling is the maximum 
a posteriori (MAP) method, MAP can be considered as an approximation of Bayesian 
inference, since the parameter vector Θ is assumed to be a random variable and a prior 
distribution ρ(θ) is imposed on Θ. However, this approximation is rather crude, since the 
posterior distribution is approximated with a degenerate distribution at its mode.

For observations x  generated by model p ( x |0), the MAP estimate is defined as

Θμ α ρ  =  argmaxp(0|a:) (2.17)
9

and using Bayes theorem it can be obtained from

Θμαρ =  argm axp(x|0)p(0), (2.18) .
θ

where p(x |0) is the likelihood of the observations. The MAP estimate is easier to obtain 
from (2.18) than (2.17). The posterior in (2.17) based on Bayes’ theorem is given by

p(0|x)
p(x|0)p(0)

/p (x |0 )p (0 )d 0
(2.19)

and requires the computation of the Bayesian integral in the denominator of (2.19) to
marginalize 0.

Prom the above it is clear tha t both MAP and Bayesian estimators assume that 0 is 
a random variable and use Bayes’ theorem, however, their similarity stops there.

The MAP approach uses only the mode of the posterior, which is found by maximiz
ing the posterior with respect to the parameters 0. In fact, the MAP approach can be 
considered as a simple extension of the maximum likelihood approach, which incorpo
rates penalty terms for the parameters through definition of prior distributions for them. 
In contrast, for Bayesian inference the posterior is used and thus 0 has to be marginal
ized. It is important to note that Bayesian inference, unlike MAP, averages over all the 
available information about 0. Therefore, it is preferable over MAP, because it generally 
produces more accurate estimations and it also provides measures of the uncertainty of 
the estimation [Tzikas et al., 2008b).

The EM algorithm can also be used to obtain MAP estimates of 0. Using Bayes’ 
theorem we can write

lnp(0 |x) =  lnp (x ,0 ) — lnp(x) =  lnp(x |0 ) +  lnp(0) — lnp(x). (2.20)

Using a similar framework as for the ML-EM case in Section we can write

lnp(0|x) = F(q, 0) + KL(q\\p) +  lnp(0) — lnp(x)
>  F(q,0) +  lnp(0) - ln p (x ) ,
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where in this context 1ηρ(®) is a constant. The right hand side of (2.21) can be maximized 
in an alternating fashion as in the EM algorithm. Optimization with respect to q(z) gives 
an identical E-step as in the ML case previously explained. Optimization with respect 
to Θ gives a different M-step since the objective function now contains also the term 
lnp(0). In general the M-step for the MAP-EM algorithm is more complex than in its 
ML counterpart [Blekas et al., 2005, Nikou et al., 2007]. Strictly speaking in such a model 
MAP estimation is used only for the Θ random variables, while Bayesian inference is used 
for hidden variables z.

2.6 The Variational Bayes Approximation

Because MAP is a coarse approximation that does not consider uncertainties of the estima
tion, more flexible approximations are commonly considered. For example, the Laplacian 
approximation [Bishop, 2006] approximates the posterior distribution with a Gaussian 
distribution whose mean is assumed to be a mode of the true posterior distribution. Then, 
the covariance of the Gaussian distribution can be determined in terms of the Hessian 
matrix (matrix of second derivatives) of the true posterior at its mode.

More general approximations have also been considered. Variational Bayesian in
ference is an approximate inference technique that proceeds by assuming an arbitrary 
approximation q(z) for the posterior distribution. Inference proceeds using a EM-like 
algorithm, which is called Variational EM  (VEM) and which is based on the decompo
sition of (2.12). In the E-step q(z) is found by maximizing F(q, Θ) keeping Θ fixed. To 
perform this maximization, a particular form of q(z) must be assumed. In certain cases 
it is possible to assume knowledge of the form of q(z; ω), where ω is a set of parameters. 
Thus, the lower bound F(ω, Θ) becomes a function of these parameters and is maximized 
with respect to ω in the E-step and with respect to Θ in the M-step, see for example 
[Bishop, 2006].

However, in its general form the lower bound F(q, Θ) is a functional in terms of q, in 
other words, a mapping that takes as input a function q(z), and returns as output the 
value of the functional. This leads naturally to the concept of the functional derivative, 
which in analogy to the function derivative, gives the functional changes for infinitesimal 
changes to the input function. This area of mathematics is called calculus of variations 
[Weinstock, 1974] and has been applied to many scientific areas.

Variational methods can be used to find approximate solutions in Bayesian inference 
problems. This is done by assuming that the functions over which optimization is per
formed have specific forms. For example, we can assume only quadratic functions or 
functions tha t are linear combinations of fixed basis functions. For Bayesian inference a 
particular form that has been used with great success is the factorized one, see [Jaakola, 
1997, Jordan et al., 1999]. The idea for this factorized approximation stems from theo
retical physics where it is called mean field theory [Parisi, 1988].
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According to this approximation, the hidden variables z  are assumed to be partitioned 
into M  partitions z,· with 2 =  1 , . . . ,  M.  Also it is assumed that q(z)  factorizes with respect 
to these partitions as

M
q ( z ) =  (2·23)

t=l

Thus, we wish to find the q(z) of the form of (2.23) that maximizes the lower bound 
F{q,6). It can be shown that this happens when [Jaakola, 1997, Jordan et al., 1999]:

Inqjizj) =  (In ρ ( χ , ζ \ θ ) ) ίφί +  const, (2.24)

and with appropriate normalization the approximate posterior distributions qj(zj) are:

Qj(zj) =
exp ((Inp(x, z; 0))i/;,·) 

/e x p  ((lnp (a :,z ;0 ))¥ j )  dzj
(2.25)

The above equations for j  =  Ι , . , . ,Μ  are a set of consistency conditions for the 
maximum of the lower bound subject to the factorization of (2.23). They do not provide 
an explicit solution since they depend on the other factors qi(zi) for i Φ j .  Therefore, a 
consistent solution is found by cycling through these factors and replacing each in turn 
with the revised estimate.

In summary, the Variational EM algorithm is given by the following two steps:

1. Variational E-Step
Evaluate qNEW( z ) to maximize F(q, 0OLD) solving the system of (2.25)

2. Variational M-Step
Compute 9n ew  — argmaxe F(qNBW, Θ)

At this point it is worth noting that in certain cases a Bayesian model can contain 
only hidden variables and no parameters. In such cases the Variational EM algorithm has 
only an E-step in which q(z) is obtained using (2.25). This function q(z) constitutes an 
approximation to p(z\x)  that can be used for inference of the hidden variables.
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3.1 Introduction
In this chapter we will apply the Bayesian Inference methods of the previous chapter on 
the problem of linear regression. For this problem, we consider an unknown function 
y(x) € R, x  £ Ω C R ^ and want to predict its value i ,  =  y(x*) a t an arbitrary location 
£C* e  Ω, using a vector t  =  (ίχ ,.. . , t N)T of N  noisy observations (tn =  y (x n) +  Gi), at 
locations x  = (* χ ,. . . ,  x n ) t , * n £ Ω, n  =  1 , . . . ,  JV.

The unknown function y  is commonly modelled as the linear combination of M  basis 
functions <fim(x):

M

y(*) =  ^   ̂'̂ ]τηφτη(χ)ι (3·1)
m = l

where w  = (wi , .. . , w m )t  are the weights of the linear combination. Selection of appro
priate basis functions is essential in order to achieve good performance. However, there
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is no rigorous methodology ingoing so, but cross-validation techniques can be used to 
compare the performance of several basis function sets and then select the best one.

The additive noise e =  (e i,. . .  ,e/v)T is commonly assumed to be zero-mean, Gaussian 
distributed

p (£) =  N(c| 0 , S - 1), (3.2)

where B  is the inverse covariance (precision) matrix. Usually, we assume that the obser
vations are independent and identically distributed (i.i.d.), therefore B  =  β ΐ .  However, 
here we retain the more general form of the precision matrix, because it is used to derive 
the classification algorithm and also allows considering non-Gaussian noise distributions. 
For example, if we assume independent noise, but assign separate precision βη to each 
data point tn, the precision matrix becomes B  = diag{/?i,. . .  ,/?„} and this allows design
ing robust regression models by selecting an appropriate noise precision prior ρ{βη)· More 
specifically, assuming a Gamma pdf for the noise precisions:

ρ{βη) = Gamma(/?n|c, d), (3.3)

we obtain a Student’s t  pdf for the noise

p{en) =  J ρ(εη\βη)ρ{βη) άβη = Student(e„]0, u, λ), (3.4)

with λ =  c/d  and u =  2c. This pdf can provide robustness, because it may have heavy 
tails (Tipping and Lawrence, 2003].

Here, we consider Gaussian distributed noise, therefore by defining the design matrix 
Φ =  (0 l t . . . , Φμ ), with φτη =  (Φτη(χι), ■■■, Φτπ(χ ν ))τ , the observations t  are modelled 
as

t  =  Φ w  4- £, (3.5)

and their likelihood is
p ( t , w , B )  =  Ν (ί|Φ ιο ,Β _1). (3.6)

In what follows Bayesian inference is applied to the linear regression problem and 
we demonstrate three well-known methodologies to compute the unknown weights w  of 
this linear model [Bishop, 2006, Tzikas et al., 2008b], First, we apply typical maximum 
likelihood (ML) estimation of the weights which are assumed to be parameters. As it will 
be demonstrated, if the number of parameters is large (compared to the number of ob
servations), the ML estimates are very sensitive to the noise and overfit the observations. 
Subsequently, to ameliorate this problem a prior p(w)  is imposed on the weights, which 
are assumed to be random variables. First, a simple Bayesian model is used, which is 
based on a stationary Gaussian prior for the weights. For this model, Bayesian inference is 
performed using the EM algorithm and the resulting solution is robust to noise. Neverthe
less, this Bayesian model is very simplistic, and it is possible to use a more sophisticated 
non-stationary hierarchical model, which is equivalent to assuming a  Student’s t  prior for
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the weights, see Section 3.4.4. This model is too complex to solve using the EM algorithm. 
Instead, the variational Bayesian methodology described in Section 2.6 is used to infer 
values for the unknowns of this model. In Fig. 3.1 we show the graphical models for the 
three approaches to Linear Regression that axe described in the following sections.

3.2 Maximum Likelihood Estimation

The simplest estimate of the weights w  of the Unear model is obtained by maximizing the 
likelihood of the model. This ML estimate assumes the weights w  to be parameters, as 
shown in the graphical model of Fig. 3.1a. The ML estimate is obtained by maximizing 
the likelihood function of (3.6):

(t — Φw )TB  (t  — Φζο)^ . (3.7)

This is equivalent to minimizing

E ls =  ||£ -  Φ ^ΙΙβ  =  (£ -  Φw )TB  (t  -  Φw).  (3.8)

Thus, in this case the ML is equivalent with the least squares (LS) estimate

w l s  = argmaxp(£; w, B ) =  argmin 2?ls =  (Φτ 2?Φ)_1Φτ Ι? ί (3.9)
W W

In many situations and depending on the basis functions that are used, the matrix 
ΦΤΒ Φ  may be ill-conditioned and difficult to invert. This means that if noise e is included 
in the observations, it will heavily affect the estimation w l s  of the weights. Thus, when 
using maximum likelihood linear regression, the basis functions should be carefully chosen 
to ensure that matrix ΦΤΒ Φ  can be inverted. This is generally achieved by using a model 
with few basis functions, which also has the advantage that only few parameters have to 
be estimated.

p { t ; w ,B )  =  (2tt) N/2|B |1/2exp

3.3 The Bayesian Linear Model

A Bayesian treatm ent of the linear model begins by assigning a prior distribution p(w)  to 
the weights of the model. This introduces bias in the estimation, but also greatly reduces 
its variance, which is a major problem of the maximum likelihood estimate. Here, we 
Consider the common choice of independent, zero-mean, Gaussian prior distribution for 
the weights of the linear model:

p ( w , a )  =  Ν(«>|0,α: 'I ) . (3.10)
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(a) (b) (c)

Figure 3.1: Graphical models for linear regression solved using (a) model without prior 
(direct ML estimation), (b) model with stationary Gaussian prior (EM), (c) model with 
hierarchical prior (variational EM).

This is a stationary prior distribution, meaning th a t the distribution of all the weights is 
identical. The graphical model for this problem is shown in Fig. 3.1b. Notice that here 
the weights w  are hidden random variables and the set of model parameters contains the 
parameter a  of the prior for the weights and the precision B  of the additive noise.

Bayesian inference proceeds by computing the posterior distribution of the hidden 
variables:

p(w\t; a, B ) p(t\w, B)p(w, a) 
p { t \a ,B ) (3.11)

Notice, that the marginal likelihood p(t\ a, β) that appears on the denominator can be 
computed analytically:

p(t] a, B )  = J  p(t\w\ B)p(w\ a) dro =  N(t|0, J3-1 +  a " 1$ f r ). (3.12)

Then, the posterior of the hidden variables is:

p{w\t\ a, B )  =  Ν(ΐϋ|μ, Σ ), (3.13)

with

μ  =  Σ Φ ΓΒ ί, (3.14)

Σ  =  (ΦΤΒ Φ  +  α ΐ ) - 1. (3.15)

If we assume that the noise is i.i.d. then B  =  β ΐ  and the parameters of the model are the 
weight and noise precisions a, β  and they can be estimated by maximizing the logarithm
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of th e  m arginal likelihood p (i; a ,  β):

(cxml,Pm l ) =  argmax{log \β 1I  + a  + tT (β  1I  + a  1ΦΦΤ) 11}. (3.16)
α,β

Optimization of the marginal likelihood can be performed using the EM algorithm, 
which provides an efficient framework to simultaneously obtain estimates for α , β  and 
infer the posterior distribution of w.  Notice, that although the EM algorithm does not 
involve computations with the marginal likelihood of (3.12), the algorithm converges to 
a local maximum of it. After initializing the parameters to  some values (α ^ ° \β ^ ) , the 
algorithm proceeds by iteratively performing the following steps:

• E- step
Compute the expected value of the logarithm of the complete likelihood:

Q {t)(t, to; α, β) =  (Inp(t ,  w \ a , . (3.17)

This is computed using equations (3.6) and (3.10) as

Q ® (t ,w ,a , f i )  = In/? -  ^ || t -  Φυ)\\2 +  ^ ·  In a -  ^ ||tu ||2^  + const

=  y  In/? -  |  ( ||t  -  Φ ιυ||2) +  y  In a  -  |  ( |M |2) +  const. (3.18)

These expected values are with respect to p(w \ t ;  β ^ )  and can be computed 
from (3.13), giving

Q W ( t , w , a ,/?) = £ l n / ? - §  (||t - Φμ«||2 +  t r a c e ^ E ^ # ) )  +

γ ·  In α  -  ^  ( ||μ (ί)||2 +  trace(E (t))) +  const, (3.19)

where μ ^  and are computed using the current estimates of the parameters a ^  
and β ^ \

μ (ί) =  β ω Έ (ί)φ  Tt , (3.20)
Σ (ί) =  (/?«ΦΤΦ  +  a(i>I)_1. (3.21)

•  M-step

Maximize Q ® ( t , to ;a ,/?) with respect to the parameters a  and /?:

(o-fi+i),/?(<+!)) _  argmax Q w ( t , w , a , f i )  (3.22)
α,β
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(3.23)

The derivatives of Q ^ ( t Kw ,a ,P )  with respect to the parameters are:

d Q U ( t ,w ,a ,P)
da

0QW(t,w;a,/3)
δβ

+trace(E<‘>)),

^  -  \  (lit -  Φ μ “ > Γ  + (3.24)

Setting these to zero, we obtain the following formulas to update the parameters a  
and β:

a (‘+D =

0(M-i) =

_______ M _______
|j/LtW||2 +  trace(EW) ’

N
||t  -  Φμ(4)||2 +  trace($ r E W $ ) '

(3.25)

(3.26)

Notice, that the maximization step can be analytically performed, in contrast to direct 
maximization of the marginal likelihood in (3.12), which would require numerical opti
mization. Furthermore, equations (3.25) and (3.26) guarantee that positive estimations 
for the parameters a  and β  are produced, which is a requirement since these represent 
inverse variance parameters. However, the parameters should be initialized with care, 
since, depending on the initialization, a different local maximum may be attained. Infer
ence for w  is obtained directly, since the sufficient statistics of the posterior p(w\t\a,fi) 
are computed in the E-step. The mean of this posterior, given by (3.20), can be used as 
Bayesian linear minimum mean square error (LMMSE) estimate for w.

3.4 The Sparse Bayesian Linear Model

In the Bayesian approach described in the previous section, due to the use of a stationary 
Gaussian prior distribution for the weights of the linear model, exact computation of the 
marginal likelihood is possible and Bayesian inference is performed analytically. However, 
in many situations, it is important to allow the flexibility to model local characteristics of 
the lunction, which the simple stationary Gaussian prior distribution is unable to do. For 
this reason, a non-stationary Gaussian prior distribution with a distinct inverse variance 
am for each weight is considered:

p{w\a)  =  N(tn|0, A -1), (3.27)

where A  =  d iag{a i,. . .  ,Om }. However, such a model is over-parameterized, since there 
are as many parameters a< to be estimated as the number of basis functions. For this 
purpose the precision parameters a  =  (α χ ,... ,a**)r  are constrained, by treating them
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as random variables and imposing a Gamma prior distribution to them according to

M
P(a ) - Π  Gamma(am|a, b). (3.28)

m=1

This prior is selected because it is conjugate to the Gaussian.
We also assume i.i.d. noise, therefore B  = β ΐ  and we use a Gamma distribution as 

prior for the noise inverse variance β:

ρ(β) =  Gamma(/?|c, d). (3.29)

The graphical model for this Bayesian approach is shown in Fig. 3.1c, where the de
pendence of the hidden variables w  on the hidden variables a  is apparent. Also the 
parameters a, b, c and d of this model and the hidden variables th a t depend on them are 
also depicted.

Bayesian inference requires the computation of the posterior distribution

p ( w ,a , 0  It) =
p(t)

(3.30)

However, the marginal likelihood p{t) =  f  p(t \a ,  β)ρ(να\α)ρ(α)ρ{β) d w d a d f i  cannot be 
computed analytically, and thus the normalization constant in (3.30) cannot be obtained.

3.4.1 Variational Bayesian Inference

Because exact Bayesian inference is intractable, approximate Bayesian inference methods 
are employed and specifically the variational inference methodology of Section 2.6. As
suming posterior independence between the weights w  and the variance parameters a  
and β ,

p(w, a ,  β\ί) «  q{w, α , β) = q(w)q(a)q(fi \  (3.31)

the approximate posterior distributions q can be computed from (2.24) as follows. Keeping 
only the terms of lng(u>) tha t depend on w,  we have:

lng(ti>) =  (In p ( t , w , a , f i ) ) q(a)qUj) +const

=  (lnp(t|u>, β) + In p{w\a))q{a]m + const

=  / —^ ( t  -  Φw ) T{t -  Φw ))  -  ^w TA w \
' '  «(“ )?(/3)

=  - ~ - ( t Tt  — 2ίτ Φιυ +  w TΦτ Φιυ)) — ^ w T ( ^

+  const 

w  +  const

= [w7 m  φ Τ φ  +  W )  » - ! W  +  a n s t

= — i  \wTY,~lw  -  2/ωτ Έ~1μ] + const. (3.32)
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Notice, that this is the exponent of a Gaussian distribution with mean μ  and covariance 
matrix Σ  given by

E  =  ( 0 )  ΦΤΦ +  ( A ) ) ' ' , 

μ  =  (β) Σ Φ Τ1.
(3.33)
(3.34)

Therefore, q(w) is given by:
q(w) =  Ν(ιη|μ, Σ). (3.35)

•i
The posterior q(a)  is similarly obtained by computing the terms of In q(a)  tha t depend 1 

on a :

In 5 (a )  =  ( ρ ί ί ,ω ,α ,β ) ) ^ ) ^ )  + const

= (lnp(m |a) +  In p (a ))q(w) +  const 

1 i M
-  — In \A\ -  -  ( w TA w )  +  (a -  1) ^  ln a m -  6 ^ m  =

^ ^ m= 1

■<
3:

*
l Mo;m +  const

= ( ‘ - \ )  Σ ln - Σ  Or1+6) +
'  '  m=l m=l '  '

M Af
=  a ln a m — ocmb +  const.

m=l m=l

i,

(3.36)

This is the exponent of the product of M  independent Gamma distributions with param- 1 
eters ά and b, given by |

1
α - α + ~ , (3.37)

6  =  6 +
At

(3.38)

Thus, q{ot) is given by:
M

q(cx) =  Gamma(a-m|0,6).
m=l

i;

(3.39)

The posterior distribution of the noise inverse variance can be similarly computed as: |

q{0) =  Gamma(/?|c, d). (3.40)

with

e = c + j , (3.41)

(3.42) .



The approximate posterior distributions in equations (3.35), (3.39) and (3.40) are then 
iteratively updated until convergence, since they depend on the statistics of each other, 
see for details [Bishop and Tipping, 2000].

3.4.2 MAP Estimation of Precision Parameters

In this section an alternative training algorithm for the sparse Bayesian linear model is 
described, which is based on the MAP approximation for estimation of the weight and 
noise precisions a  and β. Under the MAP approximation, update formulas for the weight 
precisions a  can be obtained by maximizing the logarithm of the marginal likelihood 
p ( t \α ,β )  =  f  p ( t \w , β)ρ(ν)\α)ρ(α) d w . Here, we assume an uninformative prior for ex 

(p(ac) — const), therefore the marginal likelihood is given by [Tipping, 2001]:

L  =  logp(£|a, β )  = ~ { Ν  log 2π +  |C | +  t TC ~ H ) , (3.43)

where C  =  B ~ l +  Φ Α _1ΦΤ.
Maximization of the marginal likelihood is typically performed by considering the 

weights w  as hidden variables and then using the EM algorithm. It can be shown that 
the updates which this approach gives, axe equivalent to the updates of the variational 
algorithm of the previous section. However, instead of using the EM algorithm, [Tipping, 
2001] suggests tha t in this case it is more efficient to maximize the marginal likelihood 
directly. The derivative of the marginal likelihood with respect to log a* is

dL
d  log a . 5<‘

ΟίίΣϋ OCiPi). (3.44)

Equating this to zero and setting j i  =  1 — a fEa, we obtain the following update formula 
for £*{:

< *i = \  (3.45)

We can also compute updates for the noise precision β. The derivative of the marginal 
likelihood with respect to log β  is

dL 1
^  — ||£ — Φμ[|2 -  ί^ο β (Σ Φ τ Φ)

d log/? 2 [ β

and by setting it to zero we obtain the following update formula for β:

g N - T h T i
P ||£ -  Φ μ ||2 ·

(3.46)

(3.47)

These updates do not enjoy the theoretical convergence properties of the EM-based up
date equations. However, it has been experimentally observed that they always converge 
and, furthermore, they typically converge faster than the EM-based updates.
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3.4.3 Incremental Training Algorithm

Notice that the computational cost of the sparse Bayesian learning algorithm is high for 
large datasets, because the computation of Σ  in (3.33) involves matrix inversion and typ
ically requires 0 ( N 3) operations. An incremental algorithm that is more computationally 
efficient has been proposed in [Tipping and Faul, 2003]. It initially assumes that ai = oo, 
for all i =  1 , . . . ,  M, which corresponds to assuming tha t all basis functions have been 
pruned because of the sparsity constraint. Then, at each iteration one basis function may 
be either added to the model or re-estimated or removed from the current model. When 
adding a basis functions to the model, the corresponding parameter a* is set to the value 
that maximizes the marginal likelihood.

More specifically, the terms of the marginal likelihood (3.43) tha t depend on a  single 
parameter cq are [Tipping and Faul, 2003]:

l(a i) =  i  ( lo g ^  -  lo g ^  +  3i) +  , (3.48)

where

Si =

Qi =  0 fC r~1t,

(3.49)

(3.50)

and C - i  =  B  +  i αΐΦίΦ%· In regression we have t  = t  and usually B  = β ΐ ,  while in 
classification B  and t  are given by (3.88) and (3.89) respectively.

In order to simplify computations one can define:

$  =  Φ ϊ ο - ' φ ι ,
Qi =

(3.51)

(3.52)

and compute s^ qi from:

Si =

Qi =

QjjSi
c * i -S i '

ociQi
Q i - S i '

Also the inversion of C  can be avoided by using the Woodbury identity to write:

Si = ΦΐΒφί -  φΐΒΦΣΦτΒφ{>
Q i  =  φ ΐ Β ί  -  ΦΤΒΦΣΦτ Β£.

(3.53)

(3.54)

(3.55)
(3.56)

It has been shown in [Faul and Tipping, 2002] tha t Ι(α,) has a  single maximum at:

<*< =  Qt > Si, (3.57)
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if  g? <aci =  oo, (3.58)

Based on this result, the incremental algorithm proceeds iteratively, adding each time one 
basis function φι if qj > s,· and removing it otherwise.

An important question that arises in the incremental RVM algorithm is which basis 
function to update at each iteration. There are several possibilities, for example we 
could choose a basis function at random or with some additional computational cost, we 
could test several and select the one whose addition will cause the largest increase in the 
marginal likelihood. In the first approach, where we select basis functions at random, 
the incremental algorithm may require a very large number of iterations to converge. 
On the other hand, in the second approach, where we select the best basis function for 
addition, much less iterations are required, but the computational cost of each iteration 
is significantly increased.

3.4.4 Understanding Sparsity

As already mentioned, the ‘true’ prior distribution of the weights can 
marginalizing the hyper-parameters a

be computed by

p(w) = J  p{w\a)p{oi)d(x (3.59)

r  M=  /  Π  [Ν(^™|0, a m1)Gainma(am|a, b)dam]
J m=1

(3.60)

M
=  Student(«;m|0, Λ, t/), (3.61)

m=1

and is a  Student’s t  pdf,

Student(x|^, λ, v) — Γ (fr+l)/2) 
r(iV2) \ π ν

(3.62)

with mean μ  = 0, parameter Λ =  a/b and degrees of freedom v  = 2a. This distribution 
can be considered as a generalization of the Gaussian; with appropriate selection of its 
parameters, it can have heavy tails and in the limit it can become either Gaussian (large 
v), or uninformative (small v), see Fig. 3.2(a).

The important issue is that when the weights of a linear model follow a heavy-tailed 
distribution (such as the Student’s t  pdf with few degrees of freedom v), this results in 
sparse models, i.e. models with few non-zero parameters «/*. The sparsity of such models 
can be understood by observing the plots of the two-dimensional pdfs in Fig. 3.2(b). Most 
of the mass of the Student’s t  pdf is concentrated along the axes and the center, unlike 
the Gaussian, where it is evenly distributed around ellipses, as shown in Fig. 3.2(c). This 
observation can be generalized for vectors of arbitrary dimension, where the Student’s
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(b) (c)

Figure 3.2: (a) The Student’s t pdf with 0.1, 1 and 10 degrees of freedom compared to 
the Gaussian pdf. Two dimensional plot of (b) the Student’s-t pdf with 0.1 degrees of
freedom and (c) the Gaussian pdf.

t  pdf assigns large probability mass to estimations that contain a large number of zero 
elements. In similar spirit the Laplacian pdf (which also has heavy tails) has been used 
for obtaining sparse models [Figueiredo, 2003]. Since most of the weights are set to zero, 
most of the basis functions are pruned and do not contribute to the estimation.

There are several advantages of using sparse priors:

• The complexity of the model is automatically adjusted, thus very complex models 
may be initially considered.

• The basis functions that remain on the model provide information about which basis 
functions are relevant with the data. This may be useful in many applications.

• The output of sparse models is computed very efficiently, since only few basis func
tions are involved in the computation.

Notice, that for simplicity we have assumed fixed the parameters a, 6, c and d of the 
Student’s t  distributions. In practice we can often obtain good results by assuming un
informative distributions, which are obtained by setting these parameters to very small
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Pix ) =  A, (3-63)
Fl

which is also known to provide sparse solutions. Alternatively, we can estimate the above 
parameters using a Variational EM algorithm. Such an approach would add an M-step 
to the described method, in which the Variational bound would be maximized with re
spect to these parameters. However, a usual approach in Bayesian modeling is to fix the 
hyperparameters so tha t uninformative hyperpriors are defined at the highest level of the 
model.

values, i.e. a  =  b =  10-6 . In  th e  lim it, setting  a  =  b — 0 gives th e  im proper Jeffrey’s prior

3.5 The Relevance Vector Machine

The linear model is very efficient provided that appropriate basis functions are used. 
However, there is no rigorous methodology to select these basis functions. A significant 
advantage of the sparse linear model is that its estimations are not heavily affected by 
irrelevant basis functions, since it has the ability to prune them. For this reason, it is 
possible to consider sparse linear models with a large number of initial candidate basis 
functions and let the training algorithm prime the irrelevant ones.

The Relevance Vector Machine (RVM) [Tipping, 2001] is an instance of the sparse 
Bayesian linear model tha t assumes a particular form for the basis functions. Specifically, 
it has been motivated by the popular Support Vector Machine (SVM) [Scholkopf and 
Smola, 2001], and it assumes tha t the basis functions are kernel functions. A kernel 
function K ( X \ ,x f )  is a function that corresponds to the inner product ψ ( χ i)T^ ( x 2) at 
some high dimensional feature space defined by the mapping function ip(x). In this sense, 
kernel functions compute a measure of the similarity between two input points, after 
projecting them to the feature space. A common type of kernel function is the Gaussian 
kernel function:

K { x u x 2) = exp ll21! “  , (3.64)

where a2 is the width of the kernel. Notice, tha t since kernel functions are not probability 
distribution functions we can omit the normalizing constant.

More specifically, the RVM assumes that the number of the basis functions is equal to 
the number N  of training examples and that each basis function φί(χ) is a kernel K ( x ,  Xi) 
that computes the similarity between the input x  and the i-th training example *,. Then, 
the output of the RVM model is given by

N
y(x ) =  Σ  Xi)· (3.65)

i=l

Because of the sparse prior only a small subset of the available kernels remains in
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the final model. The examples of the training set that correspond to  the kernels that 
contribute to the estimation are called relevance vectors (RV).

3.6 Relation of RVM to other models

3.6.1 Gaussian Processes

Gaussian processes [Rasmussen and Williams, 2006] axe collections of N  random variables 
a j j , . . . ,  x n , any finite number of which have a  Gaussian distribution. A Gaussian process 
is completely specified by its mean m(xi)  and covariance function k ( x i tXj), which are 
defined as:

m(Xi) =  (/(X i)>, (3.66)

k(xi ,Xj)  = (\f(Xi) — wi(*t)][/(®j) ~  η ι(®ί)]) · (3.67)

A Gaussian process with these statistics is denoted as

f ( x )  =  GP(m(Xi), k ( x fl Xj)). (3.68)

It can be seen that the linear model of (3.1) is a special case of the Gaussian process 
model. Here, we consider a zero mean Gaussian distribution for the weights with arbitrary 
precision matrix A

p(w)  =  N(to|0, A ~ l ). (3.69)

Then, the output t , =  y(x ,)  of the model at an arbitrary point x ,  is given by t , = 
4%w+e,  where 0„ =  (0 i(x .) , . . . ,  Φμ (&·))τ  is a vector tha t contains all the basis functions 
evaluated at x . and it is Gaussian distributed with:

<*.) =  ΦΪ (u>) =  0, (3.70)

=  0 lT ( w w T) Φΐ -  Φΐτ A ~ lΦΐ. (3.71)

Therefore the Bayesian linear model is a special case of a Gaussian process whose 
covariance function is determined by the covariance A  of the Gaussian prior of the weights 
and the basis functions φχ{χ). In the Bayesian linear model of Section 3.3 and in the sparse 
Bayesian linear model of Section 3.4 we assume that A  — a l  and A  = d iag{a i,. . .  ,Ολ#} 
respectively. The main difference between the typical Gaussian process model and the 
Bayesian linear model is that in the former we typically assume a fixed covariance function 
while in the latter we update the covariance function by estimating the precision matrix A.

Apart from the RVM, other versions of sparse Gaussian processes have also been 
developed, most of which are specific cases of a unified view proposed by [Quinonero- 
Candela and Rasmussen, 2005].
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3.6.2 Support Vector Machines

Support vector regression (SVR) [Smola and Scholkopf, 1998] is a regression method based 
on the popular Support Vector Machine (SVM) model [Scholkopf and Smola, 2001]. It is 
analogous to to the RVM in the sense that they both produce sparse solutions using an 
initially complex linear model. However, unlike the RVM which is based on the Bayesian 
framework an therefore sparseness is derived by a suitable weight prior, in SVR sparseness 
is derived by defining an appropriate penalty function for the noise.

More specifically, in SVR we ideally want to constraint all the errors to be smaller 
than a constant ε, without penalizing at all any errors that are smaller than ε. However, 
such a solution does not always exist and, when necessary, we may allow some errors to 
be larger than ε. Errors are penalized using the function:

l£U =
0 if \ξ\ < ε,

|ξ| — ε otherwise.
(3.72)

Furthermore, in order to make smooth estimations for the unknown function, we seek 
the values of the weights that have the smallest magnitude. By introducing auxiliary 
variables ξ,,ξ*, the SVR training can be formulated as follows:

minimize
1
2 I H I 2 +  c j >  +  iT)

i—1
(3.73)

Vi -  ίοτ Φ{χ ) -  b < e +  &
subject to <w T<j>{x) + b - y i  < ε  + ξ* (3.74)

</
Y> **■
# IV o

w.r.t. w,£,£*,b. (3.75)

Here, the constant C  determines the strength of the penalty for errors larger then ε. The 
above maximization can be performed efficiently by constructing the Lagrangian function 
and then considering its dual function.

There are several drawbacks of SVR compared to the Bayesian sparse linear regression 
approach. First, in SVR we need to select appropriate values for the parameters C and ε, 
which is usually achieved with a cross-validation procedure. Furthermore, Bayesian sparse 
linear modelling is usually sparser than support vector regression or classification, where 
the number of support vectors scales with the size of the training set [Tipping, 2001]. 
Another potential advantage of the Bayesian sparse linear model is that, in contrast to 
SVR, it provides probabilistic predictions and therefore it also offers estimations of the 
accuracy of predictions. Finally, in SVR the kernel function needs to satisfy Mercer’s 
condition, otherwise the SVR optimization problem might have no solution [Burges, 
1998]. In RVM this constraint does not exist.
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Figure 3.3: Linear regression solutions obtained by ML estimation, EM-based Bayesian 
inference and variational-EM sparse Bayesian inference.

3.7 Linear Regression Examples
Next, we present numerical examples to demonstrate the properties of the previously 
described linear regression models. We also demonstrate the advantages that can be 
reaped by using the variational Bayesian inference. An artificially generated signal y(x)  
is used so that the “ground truth" is known. We have obtained N  = 50 samples of the 
signal and added Gaussian noise of variance σ2 =  4 x 10~2, which corresponds to signal to 
noise ratio S N R  = 6.6dB. We used N  basis functions and, specifically, one basis function 
centred at the location of each observation, similarly to the RVM. The basis functions are 
Gaussian kernels of the form

<l>i(x) as K ( x , X i )  =  exp II® -  ®ill2j  · (3-76)

We then used the observations to build a regression model, using i) ML estimation (3.9) 
ii) EM-based Bayesian inference (3.14) iii) sparse Bayesian inference (RVM) (3.34). For 
the case of sparse Bayesian model, we assume uninformative precision prior p (a) by 
setting a =  b — 0.

Results are shown in Fig. 3.3. Notice, that the ML estimate follows exactly the noisy 
observations. Thus, it is the worst in terms of mean square error. This should be expected, 
since in this formulation we use as many basis functions as the observations and there is no 
constraint on the weights. The Bayesian methodology overcomes this problem since the 
weights are constrained by the priors. However, since this signal contains some regions 
with large variance and some with very small variance, it is clear that the stationary
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prior does not provide the flexibility to accurately model local signal characteristics. In 
contrast, the hierarchical non-stationary prior is more flexible and seems to achieve better 
local fit. Actually, the solution corresponding to the latter prior, uses only a small subset 
of the basis functions, whose locations are shown as circled observations in Fig. 3.3. This 
happens because we have set a =  b =  0, which defines an uninformative student’s t 
distribution. Therefore, most weights are estimated to be exactly zero and only few 
relevance vectors are finally used for signal estimation (denoted as (RV) in Fig. 3.3).

3.8 Classification

The classification exhibits analogy to the regression problem, but in classification the 
unknown function maps input points x n to discrete and unordered class labels tn rather 
than continuous valued outputs. Assuming K  classes, the outputs can be coded so that 
tnk — 1 if belongs to class k, otherwise tnk = 0. Predictions can be made by assuming 
that the outputs tn follow a multinomial distribution, whose parameters are given by 
applying a sigmoid function to a linear model with K  outputs:

N K
p(t\w) = J J  J \ a ( y k(xn\w))tnk, (3.77)

η—1k=1

where σ(ζ) = 1 For simplicity we only consider binary classification and assume 
that the outputs are coded so that tn e  {0,1}. Multiclass problems can be solved using 
the one-vs-all approach, which builds only two-class models. In binary classification the 
multinomial likelihood in (3.77) simplifies to a Bernoulli likelihood:

N
p(t\w) =  J J y J r ( l  -  2/n)1_tn, (3.78)

n=1

where yn = a (y (xn\w)).

Unlike the regression case, we cannot perform exact Bayesian inference with this like
lihood. Instead we use the Laplacian approximation that is based on a Gaussian approx
imation of the posterior distribution around its mode [Tipping, 2001).

We can find the values of the weights w m p  that maximize the posterior p(w\t,  a)  cc 
p(t\w)p(w\(x)

w m p  = axgmaxp(w\t ,a).  (3.79)
W

We consider again a zero mean Gaussian prior distribution for the weights:
*

p(w\a)  =  N(io|0, A),  (3.80)

where A  is the precision matrix. Then, the logarithm of the posterior distribution that
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appears in (3.79) is given by

logp(to|£, A )  =  log p(t\w)p(w\A)  +  const (3.81)

N 1 
=  argmax V ]  (tn log yn +  (1 -  in) log(l -  yn)) -  - w TA w  +  const, (3.82)

W , L·n = l

and its maximization can be efficiently performed using the iteratively reweighted least 
squares (IRLS) algorithm [Bjorck, 1996].

The Laplacian approximation is based on a Gaussian approximation of the posterior, 
or equivalently a quadratic approximation of its logarithm:

logp(u>|£, A )  «  “ (tu -  w MP)TH - l (w -  w MP). (3.83)

We set the covariance matrix Σ  so that the Hessian matrix —| Σ -1 of the approximation 
is equal to the Hessian of the log-posterior

" Σ -1 =  VWVW logp(u>|£, A) =  —(ΦΤΒ Φ  +  A), (3.84)

with B  =  diag{/?i,.. · , 0 ν } and βη =  a{y{xn))[ 1 -  o{y{xn))\, which gives

Σ  =  (ΦΤΒ Φ  + A )~ l . (3.85)

At the mode of the posterior w m p  its curvature is zero, therefore the mode can be found 
by setting the gradient of the log-posterior to zero:

V ^ lo g p M t, A)\wmp =  o, (3.86)

which gives

with t  =  Φιυ + B  : (t — y).

w m p  =  ΣΦ  TB t y (3.87)

In summary, using the Laplacian approximation, the classification problem is mapped
to a regression problem with heteroscedastic noise p(en) =  N(en|0,/3n) 
whose precision is given by

[Tipping, 2001],

βη = y«(l — yn)i (3.88)

and the regression targets £ =  ( t j , . . . ,  t ^ )T are:

£ =  Φιν + B ~ l {t — y), (3.89)

where y  =  (yi, · · · ,Vn )t  and B  — diag(/?i,. . .  ,/3/v). Furthermore, depending on the 
structure of the covariance matrix of the prior of the weights in (3.80) we can obtain 
either the simple Bayesian linear model of Section 3.3 by setting A  =  a l ,  or the sparse
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Bayesian linear m odel of Section 3.4 by setting  A  =  d ia g { a i , . . . ,  % }■

3.9 Conclusions
In this chapter we considered the regression problem using the linear model. In Sec
tion 3.2 we described the simplest approach that treats the weights of the linear model 
as parameters and estimates them using the ML approach. If the linear model contains 
a large number of basis functions, it is very flexible and the ML estimations may be 
heavily corrupted by noise. For this reason, in Section 3.3 the Bayesian linear model is 
described, that treats the weights as random variables. In its simplest form, it uses a 
stationary Gaussian distribution for the weights, which forces them to small values and 
allows tractable Bayesian inference. However, there are many advantages in considering 
more complex prior distributions. In Section 3.4 we presented the sparse Bayesian linear 
model that uses a non-Gaussian prior distribution to provide sparse solutions tha t use 
only few of the available basis functions.

In the next chapters, we use the sparse Bayesian linear model to treat some image 
processing problems. More specifically, we use the sparse linear model to perform regres
sion of images, which presents several computational difficulties, due to the large scale of 
the problem. For this reason, in Chapter 4 we propose a training algorithm for sparse 
Bayesian regression of images that is based on operations in the Fourier domain. Then we 
use this algorithm to tackle the problem of detecting objects in images and the problem 
of blind image deconvolution (in Chapter 5). In Chapter 6 we propose a methodology to 
learn parameters of the basis functions. In contrast to the cross-validation approach that 
is commonly used for selecting basis function parameters, the proposed incremental ap
proach uses different parameter values for each basis function. We evaluate this method
ology in several regression and classification datasets and in we apply it for detecting 
activations in functional neuroimages. In Chapter 7 we extend the previous method in 
order to  simultaneously perform feature selection and we apply it to the analysis of DNA 
microarray datasets.
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C h a p t e r  4

S p a r s e  M u l t i k e r n e l  R e g r e s s i o n  f o r

I m a g e  A n a l y s i s

4.1 Introduction

4.2 M ultikernel RVM  for Im age R egression

4.3 Sparse Linear R egression in th e D FT  dom ain

4.4 Evaluation o f th e  D F T -based  RVM  im plem entation

4.5 O bject D etection  U sing th e  M ultikernel RVM  M odel

4.6 Conclusions

4.1 Introduction

A major issue with the linear model is how to select appropriate basis functions. Typically, 
using a large number of basis functions results in a very flexible model which overfits the 
noise and has poor generalization capability. However, this is not an issue in the sparse 
linear model, because it computes sparse solutions that use only a small number of the 
available basis functions. For example, the relevance vector machine (RVM) [Tipping, 
2001] initially places one kernel basis function at each point of the training set. In the 
RVM it is important to select appropriate kernel function, for example Gaussian kernel 
functions are very commonly used. Parameters of the kernel function, such as the variance 
of Gaussian kernels are typically selected using cross-validation techniques.

In this chapter we propose an extension of the typical RVM, which is based on a linear 
model with several different basis functions and we call the multikemel RVM  [Tzikas 
et al., 2006b, 2007b]. Similarly to the RVM, each of these basis functions is placed at all
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(4.1)

the points of the training set, therefore the multikernel model is given by

M N
J/(x) — ΊΜψηΐφγηζΧ) X*))

m~\ t= l

where N  is the number of training points and M  is the number of different basis function 
types and Xi) is the z-th basis function. For example, we might use Gaussian basis 
functions of several different widths

<f>m(x, x ^  = exp [ ~ h j \ \ x  -  Xi \ \2] , (4.2)

where hm is the width of the Gaussian kernel.

We then apply this model for modeling images. Unfortunately, since N  is large (equal 
to the number of image pixels) the standard training algorithms are too computationally 
demanding, even for small images. We notice that if the training points Xi lie on a 
uniform grid, the linear model can be rewritten as the convolution of the weight vector 
w  =  (ιοί,.. . , w n )T with a vector φ  =  (φ(χ ι ) , .. . , φ ( χ κ ) ) τ , which consists of the basis 
function φ{x)  evaluated at the training points Xi- The output of the linear model can 
then be written as:

y  = φ * w ,  (4.3)

where * denotes the convolution operator and y  — ( y (* i ) , . . .  , y(sctv))T is a  vector con
taining the outputs of the model evaluated at the training points. In section 4.2 we present 
in detail the multikernel RVM model and propose an alternative implementation of the 
EM-based training algorithm [Tipping, 2001]. Our implementation computes convolu
tions in the DFT domain, improving both time and memory requirements and allows to 
train RVM models on high resolution images, with reasonable computational costs. The 
proposed implementation is evaluated in section 4.4.

We then use the proposed algorithm to treat the object detection problem, which is the 
problem of finding the location of an unknown number of occurrences of a given ‘target’ 
image in another given ‘observed’ image, under the presence of noise. The ‘target’ may 
appear significantly different in the observed image, as a result of being scaled, rotated, 
occluded by other objects, different illumination conditions and other effects.

The most common approaches to solve the object detection problem are variants of 
the matched filter, such as the phase-only [Horner and Gianino, 1984] and the symmetric 
phase-only [Chen et al., 1994] matched filters. These are based on computing the cor
relation image between the ‘observed’ and ‘target’ images and then using a threshold to 
determine the locations where the ‘target’ object is present. Alternatively, the problem 
can be formulated as an image restoration problem, where the image to restore is consid
ered as an impulse function at the location of the ‘target’ object. This technique allows 
many interesting background models to be considered, such as autoregressive models 
[Abu-Naser et al., 1998]. A different object detection approach, which has been success-
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fully applied on face detection [Viola and Jones, 2001], is to split the observed image in 
several regions and train a classifier with some features of the target ‘object’ in order to 
decide which regions contain the ‘target’ object.

In section 4.5 we propose a method for object detection, which is based on training a 
multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM model 
consists of two sets of basis functions: basis functions that are used to model the ‘target’ 
image and basis functions that are used to model the background. After training the 
model, each ‘target’ basis function whose corresponding weight is larger than a specified 
threshold is considered as a detected ‘target’ object. Finally, we provide examples of the 
proposed RVM-based object detection algorithm and a comparison with the autoregressive 
impulse restoration [Abu-Naser et al., 1998] method.

4.2 Multikernel RVM for Image Regression

The linear model is very efficient provided that suitable basis functions φί are selected 
and th a t there exist adequate training examples. Thus, finding a basis function set that 
describes the data well is an important problem, that is difficult to solve. In this paper, 
we simultaneously consider M  different types of basis functions φι,·  ■ ■ ,Φμ  centered at 
each training point Xi, resulting in the following model with M N  basis functions:

Μ N
y(x)  =  ^  ^  ',ιντηίφτη{χ ®«), (4-4)

m = l i= 1

Although we use so many basis functions (and therefore parameters), overfitting should 
not be a concern, because of the sparseness in the final RVM model.

In order to model a iV( x Nj  image t  using an RVM, we assume that the intensity 
t ( i , j )  of the observed image at location ( i , j )  has been generated from the output y(i , j )  
of the model (4.4) at the same location, after addition of independent white noise e(i,j):

= y(i , j )  + e(i,j), (4.5)

~  N ( 0 ,/T 1), (4.6)

where β  is the inverse variance of the noise.
Defining t  = (t(l,  1) , . . .  , t ( l ,  N j ) , . . .  ,t(jV,·, Nj))T to be a vector that contains the 

intensities of the image pixels in lexicographical order and similarly defining the noise 
vector e =  (e(l, 1 ) , . . . ,  e(l, N j ) , . . . ,  e(Ni, Nj))T, Eq. (4.5) can be rewritten in compact 
form as: M

t = <kw + e = ^  +  e, (4.7)
m —1

where Φ is the N  x ( MN)  design matrix, each column of which is a vector with the 
values of a basis function at all the training points. The design matrix can be partitioned
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as Φ =  (Φ χ,. . . , ΦΜ), with Φ„, =  (0mi> · · ·) being the part of the design matrix 
corresponding to basis functions of type <pm(x)  and <£m, =  — x<),. . . ,  Φτπ(χ ν  —
x i))T being a vector consisting of the basis function φηι( χ —Χ{) evaluated a t all the training 
points. The weight vector w  can be similarly partitioned as w  =  (inj’, . . . ,  w'fh)T, with 
each w m — (vJmu · · · i u w )  i m  = 1 , . .  ·, M, consisting of the weights corresponding to 
basis function φτη(χ)· The likelihood of the data set can then be written as:

(4.8)

Given that the described model has M  times more parameters than the available 
training examples, it is essential to seek a sparse solution. Under the Bayesian framework 
sparseness is obtained by assigning suitable prior distributions on the parameters as men
tioned in Chapter 2 and Chapter 3. Specifically, independent Gaussian prior distributions 
with unknown variances are imposed on the weights w:

Μ N Μ N

p{w) = Π  Π Ρ(ωηιί) =  Π  Π Ν(ω™Ι°’α^)> (4·9)
m = l i= 1 m = l i= l

where a mi is the inverse variance of the corresponding weight wmi. These parameters 
are assumed unknown and Gamma hyperpriors are assigned to them. The inverse noise 
variance β  may also be assumed unknown and similarly, a Gamma prior distribution is 
assigned to it:

p(t \w ,0)  =  (2 π) ΝΙ2β ΝΙ2& χρ{-]^β \ \ ί -Φ ν} \ \

Μ  N

Ρ(α) =  Π Π ΓΜ )>
τη—1 i= l

ρ(β) =  r(c ,d ),

(4.10)

(4.11)

where ot —  (0:1 1, * * · j ··»^A/iv)·

Since this model is an instance of the Bayesian linear model described in Chapter 3, 
the posterior weight distribution is:

p(u>|t,a,/3) =  Ν(ιο|μ, Σ ), (4.12)

with

Σ  =  (βΦτ Φ + Α )~ 1, 
μ  =  /9ΣΦτ ί,

where A  =  diag{a} and the precision parameters can be updated using:

&mi —
1

o *
Mmi

(4.13)
(4.14)

(4.15)
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Ρ Ρ - Φ μ Ι Ι 2 '

The learning algorithm proceeds by iteratively computing the posterior statistics μ,  Σ  
of the weights, given by (4.13) and (4.14) and then updating the hyperparameters using 
(4.15) and (4.16). Computation of Σ involves inverting an M N  x M N  matrix which 
is an 0 ( M 3N 3) procedure. During the training process, many of the hyperparameters 
are set to infinite values and the corresponding basis functions can be punned, allowing 
computation of the posterior statistics in 0 ( L 3) time, where L  is the number of functions 
that remain in the model. This results in significant speed-up of the latter iterations of 
the algorithm, however in the first iteration all the basis functions have to be considered 
and the overall complexity is still 0 { M 3N 3). For this reason it is difficult to apply this 
algorithm on large training sets, such as images. Furthermore, the incremental training 
algorithm of Section 3.4.3 is an important improvement, but it still cannot be used for 
large scale problems, such as modeling images. In this chapter we propose an RVM 
implementation based on DFT computations, that successfully resolves the problem of 
computational complexity.

4.3 Sparse Linear Regression in the DFT domain

It can be observed that if the training points are the pixels of an image, or generally uni
form samples of a signal, then the RVM given by (4.4) can be written using a convolution 
as:

M

υ  = Σ Φ ™ * ' ω™· (4·17)
m= 1

Equation (4.7) still holds, with the additional property that matrices Φτη are circulant. 
This means that each row of Φm can be obtained with a circular shift of the elements of 
the previous row. For this reason, we do not need to store in memory the whole matrix 
d>m, but it is sufficient to store only one of its rows. Furthermore, because <E»m is circulant 
the product &mw m is a convolution which can be efficiently computed in the DFT domain 
by multiplying the DFT T m and W  of the basis function φ πι and the weight vector w  
respectively.

M
^ Σ  (4·18)

m=s 1

where T  is the DFT of the vector t. This observation allows computation of the output 
of the model without using the complete design matrix, but using only one basis vector, 
improving memory complexity from 0(N2) to O(N) and time complexity from 0(N2) to 
O(NlogN).

The posterior statistics of the weights μ  and Σ  can also be computed in the DFT 
domain, thus obtaining the same advantage. Beginning with (4.14), the posterior mean
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(4.19)

(4.20)

of the weights can be found bjr solving the equation:

Σ * ν  =  βΦτ ί, 

(βΦτ Φ + A )  μ  =  βΦτ ί.

Instead of analytically inverting the m atrix βΦτ Φ + A ,  which is computationally 
expensive and requires inversion of the large design matrix Φ, we solve equation (4.20) by 
using the conjugate gradient method [Shewchuk, 1994] to minimize the following quadratic 
function:

μ* = argminlvF (βΦτ  Φ +  Α ) μ  — μ τ βΦτ ί). (4.21)
μ

The quantities βΦτ Φ μ  and βΦτ ί  can be easily computed in the DFT domain since 
Φ is circulant, while computation of Α μ  is straightforward since A  is diagonal. In the 
ideal case, the conjugate gradient method is guaranteed to find the exact minimum after 
N  iterations. In practice, a very good estimate can be obtained in only a few iterations.

Unfortunately, in order to compute the posterior weight covariance Σ  we have to invert 
the matrix βΦτ Φ + A , which is a computational burden. To overcome this problem, 
we notice that we only need to compute the diagonal elements of Σ  and consider two 
approximations.

The simplest approximation is to consider only the main diagonal of the matrix 
βΦτ Φ + A, and estimate Σα as:

S a H / W  +  a i) -1, (4-22)

with φ  =  (0 ^ , . . . , ΦΪΜ)Τ- Although this approximation is not valid in general, it has 
been proved very effective in the experiments, because the matrix A  has generally very 
large values and is the dominant term in the sum βΦτ Φ +  A.

An alternative approximation that has been considered is to approximate the matrix 
βΦτ Φ +  A  with a circulant matrix and estimate Σϋ as:

1 M
E,, «  (/J#T*  +  =  Jj +  <*)-’, (4.23)

i=i

where Fj is the j- th  element of the DFT of the first row of matrix Φ .̂ Notice, that 
a different (circulant) approximating matrix has to be inverted for the computation of 
each element of the diagonal of Σ . For this reason, this approximation requires more 
computations than the first and may be impractical for large images.
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(a) (b) (c) (d)

Figure 4.1: (a) An artificially generated image with added noise. Estimates of (b) the 
RVM algorithm and the DFT-RVM algorithm using (c) the diagonal approximation of 
Eq. (4.22) and (d) the circulant approximation of Eq. (4.23).

Algorithm σ2 =  1 σ2 =  2 σ2 =  4 σ2 =  8

RVM 0.055(229) 0.038(84) 0.040(45) 0.052(70)
DFT-RVM 0.055(249) 0.039(120) 0.048(49) 0 .1 1 1 (1 2 )
DFT-RVM (2) 0.058(234) 0.041(105) 0.077(165) 0.111(190)

Table 4.1: Mean square error of the typical RVM algorithm and the DFT-based algorithm 
with the two approximations for several choices of the kernel width σ2. Inside parenthesis 
is the number of relevance vectors for each case.

4.4 Evaluation of the DFT-based RVM implementation

In order to verify the validity and evaluate the performance of the proposed DFT-based 
implementation we consider the following artificial example. We sampled uniformly the 
function

t (x,y)
sin(||x +  yl|)

II*+  2/11
(4.24)

and added white Gaussian noise of variance 0.1 to generate a 30x30 image shown in 
Fig. 4.1. We then applied both the typical and the DFT-based algorithm to estimate 
the parameters of an RVM model, which was then evaluated at each pixel location to 
produce an estimate of the initial function t. Figure 4.1 shows the estimates obtained 
using the typical RVM algorithm and the DFT-based algorithm with the two different 
approximations respectively. Averages over 10 runs with different noise realizations of the 
mean squared error (MSE) of each method and the number of relevance vectors are shown 
in Table 4.1 for four different widths σ2 of the kernel. We notice that the first (diagonal) 
approximation typically gives better results than the second (circulant) approximation 
and it also requires less computations. Also notice that the approximation gives excellent 
results when the size of the kernel is small, because the matrix Σ is almost diagonal.

Unfortunately, we can’t compare the algorithms for larger images because we can’t 
apply the typical RVM algorithm on larger datasets. However, we demonstrate the ef
fectiveness of the proposed DFT-based algorithm on large scale regression problems, by 
training a multikernel RVM model with Gaussian kernels of sizes σ\  =  2, σ\  =  4 and
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(a) (b)

Figure 4.2: (a) An 128 x 128 image with added gaussian noise, (b) Estimate of the 
DFT-RVM algorithm using gaussian kernels of width 2, 4 and 8 .

σ\  — 8  on a 256 x 256 image. The estimated image, shown in Fig. 4.2, is improved 
with respect to the initial noisy image, having I S N R  =  2.2, where I S N R  is defined as 
I  S N R  = 10 log ^ ||/  — 5 ||2/ | | /  — / | | 2)  and is a  measure of the improvement in quality of 
the estimated image with respect to the initial image.

4.5 Object Detection Using the Multikernel RVM Model

In this section, we present an method for object detection, which is based on training 
a multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM 
model consists of two sets of basis functions: basis functions that are used to model the 
‘target’ image and basis functions that are used to model the background. After training 
the model, each ‘target’ basis function that remains in the model can be considered as 
a detected ‘target’ object. However, if the background basis functions are not flexible 
enough, ‘target’ functions may also be used to model areas of the background. Thus, we 
should consider only ‘target’ basis functions whose corresponding weight is larger than a 
specified threshold.

We denote by t  =  (t(1 ,1 ) ,. . . ,  t( l, Nj), . . . ,  t (Nu Nj))T a vector consisting of the in
tensity values of the pixels of the ‘observed’ image in lexicographical order. We model 
this image using the following RVM model:

N  N

ι  = Σ  -  *i) +  Σ  -  *«) +  €, (4.25)
i=l »=i

where N  =  NtNj, <pt is the ‘target’ basis function which is a vector consisting of the 
intensity values of the pixels of the ‘target’ image, and <pb is the background basis function,
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which we selected to be a Gaussian function. After training the RVM model, we obtain 
the vectors μ 4 and μ*,, which are the posterior mean for the kernel and background weights 
respectively, using (4.14). Ideally, ‘target’ kernel functions would only be used to model 
occurrences of the ‘target’ object. However, because the background basis functions are 
often not flexible enough to model the background accurately, some ‘target’ basis functions 
may have been used to model the background as well. In order to decide which ‘target’ 
basis functions actually correspond to ‘target’ occurrences, the posterior ‘target’ weight 
means are thresholded, and only those that exceed a specified threshold T  are considered 
significant:

|/ifi| > T  =Φ· Target exists at location i. (4-26)

Choosing a low threshold may generate false alarms, indicating that the object is 
present at locations where it actually doesn’t  exist. On the other hand, choosing a high 
threshold may result in failing to detect an existing object. There is no unique optimal 
value for the threshold, but instead it should be chosen depending on the characteristics 
of the application.

It must be also noted that the Support Vector Machine (SVM) cannot be used 'with this 
approach, since the basis functions used here are the ‘target’ image and do not correspond 
to valid kernel functions, since they do not satisfy the Mercer condition.

Next we present experiments tha t demonstrate the improved performance of the DFT- 
RVM algorithm compared to autoregressive impulse restoration (ARIR), which is an effec
tive method for object detection [Abu-Naser et al., 1998]. We demonstrate two examples 
where the ‘observed’ images have been constructed by adding the ‘target’ object to a 
background image and then adding white Gaussian noise. Images consisting of the val
ues of the kernel weights computed with the DFT-RVM algorithm are shown in Fig. 4.3 
and compared with the output of the ARIR method. Notice that, because of the RVM 
sparseness property, the output of the algorithm is zero at most locations where there is 
no target object. This property of the DFT-RVM detection method, is the main reason 
for the improved detection performance.

4.5.1 Experimental Evaluation
When evaluating a detection algorithm it is important to consider the detection probabil
ity Fb, which is the probability tha t an existing ‘target’ is detected and the probability 
of false alarm Pf a , which is the probability that a ‘target’ is incorrectly detected. Any 
of these probabilities can be set to an arbitrary level by selecting an appropriate value 
for the threshold T.  The receiver operating characteristics (ROC) curve is a plot of the 
probability of detection Pd versus the probability of false alarm Pfa  that provides a 
comprehensive way to demonstrate the performance of a detection algorithm. However, 
the ROC curve is not suitable for evaluating object detection algorithms because it only 
considers if an algorithm has detected an object or not; it does not consider if the object 
was detected in the correct location. Instead, we can use the localized ROC (LROC)
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(d) (c) (0

Figure 4.3: Two object detection examples, (a) and (d) are the ‘observed’ images, (b) and 
(e) are the results of the ARIR algorithm and (c) and (f) are the results of the DFT-RVM 
algorithm. The target object is the tank in image (a) and the jeep in image (d). In the 
results, only a small area around the target is shown. In all cases, the output of both 
algorithms is maximum at the location of the target. However, at all other locations, 
where there is no target and the output should ideally be zero, DFT-RVM outperforms 
the ARIR algorithm, since its output is zero at most locations.

curve which is a plot of the probability of detection and correct localization Pdl versus 
the probability of false alarm and considers also the location where a ‘target’ has been 
detected.

In order to evaluate the performance of the algorithm, we created 50 ‘observed’ images 
by adding a ‘target’ image at a random location of the background image, and another 
50 ‘observed’ images without the ‘target’ object. White Gaussian noise of variance σ 2 = 
2 0  was then added to each ‘observed’ image, that corresponds to signal to noise ratio 
22dB. The DFT-RVM algorithm was then used to estimate the parameters of an RVM 
model with a ‘target’ kernel and a Gaussian background kernel for each ‘observed’ image, 
generating 100 kernel weight images. The background basis functions were Gaussian 
functions of the form φι(χ) = exp( — 4f||® -  *,·||2) with the width parameter set to r  = 6 . 
The kernel weight images were then thresholded for many different threshold values and 
estimates of the probabilities P d l  and P p  a  were computed for each threshold value. 
Similar experiments were also performed for the ARIR algorithm and an LROC curve 
was plotted for each algorithm. Figure 4.4 shows the LROC curve of each algorithm for 
the two cases of background and target images shown in Fig. 4.3. It can be observed
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Figure 4.4: LROC curves of the ARIR and DFT-RVM algorithms for the two detection 
problems shown in Fig. 4.3.

that the area under the LROC curve, which is a common measure of the performance 
of a detection algorithm, is significantly larger for the DFT-RVM algorithm. Another 
important observation is tha t the LROC curve is high for small values of Pf a , since 
usually the threshold is chosen so th a t only a small fraction of false detections is allowed.

4.6 Conclusions
We have proposed the multikernel RVM model and an approximate but accelerated infer
ence method for training the RVM model on large scale images, based on fast computation 
of the posterior statistics in the DFT domain [Tzikas et al., 2006b, 2007b]. Experiments 
on images demonstrate tha t the proposed approximation allows inference on large scale 
images, where the typical RVM algorithm is too computationally demanding to run. We 
then presented an application of the method to the object detection problem. Experimen
tal results indicate th a t this approach is more robust than existing methods. Furthermore, 
the proposed technique can be extended to solve the rotation and scaling invariant object 
detection problem, by optimizing the model with respect to rotation and scaling of the 
basis functions.
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C h a p t e r  5

B a y e s i a n  B l i n d  I m a g e  

D e c o n v o l u t i o n  w i t h  S t u d e n t ’s  t

p r i o r s

5.1 Introduction

5.2 B ID  M odel

5.3 Variational B ayesian  Inference

5.4 N um erical E xperim ents

5.5 C onclusions and Future W ork

5.1 Introduction
In this chapter we propose the use of the sparse Bayesian linear model to estimate the 
PSF in the blind image deconvolution (BID) problem [Tzikas et al., a]. In order to reduce 
the computational cost of inference, the proposed algorithm uses operations in the DFT 
domain, similarly to the algorithm of Chapter 4.

In the BID problem, we observe an image which has been degraded by blurring and 
addition of some noise source. Such images are commonly observed in many situations; 
for example motion blur might be induced by motion of the camera during the image 
acquisition and in astronomy blurring is also induced by the atmosphere. Here, we assume 
that the point spread function (PSF) of the blur is the same at all regions of the image, 
which happens when the blur caused by motion of objects is negligible. In this case the 
blurring can be modeled as a convolution of the initial image with the blurring PSF. The 
process that generates the observed image is summarized in Fig. 5.1 and an example is 
shown in Fig. 5.1.
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Figure 5.1: Generation mechanism of the observed image in blind image deconvolution.

Blur PSF h

Convolulion

Noise

Observed Image g

Figure 5.2: Example blind image deconvolution.

Because in blind image deconvolution both the initial image and the point spread 
function (PSF) are unknown, the observed data are not sufficient to uniquely specify 
both the unknown image and PSF. In order to resolve this ambiguity, prior knowledge 
(constraints) has to be used for both the image and the PSF. Over the years a number of 
methodologies have been employed to introduce constraints in BID. A rather old survey 
paper on this problem is [Kundur and Hatzinakos, 1996a,b], while a very recent edited 
book on BID methods is [Campisi and Egiazarian, 2007].

One category of such methods is based on regularization using the total variation 
(TV) principle. These methods define a distance function based on the data and use 
smoothness constraints on both the image and the PSF based on the TV principle [Chan 
and Wong, 1998]. A survey of recent developments on TV methods in image recovery 
problems and a book containing a review of the recent developments in mathematical 
tools for low level image processing problems can be found in (Chan et al., 2005a] and
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[Chan et al., 2005b] respectively. Methods based on anisotropic diffusion regularization 
have been also proposed [You and Kaveh, 1999], however they require the choice of the 
d iffu sio n  operator. There are also methods based on soft constraints [Yap et al., 2005, 
Chen and Yap, 2005], which are very flexible, however, the form and the type of the 
used soft constraints is ad-hoc. Methods based on sparse image representations and quasi 
likelihood criteria have been also suggested [Bronstein et al., 2005].

Another way to apply constraints to the image and the PSF, is through the use of 
the Bayesian methodology. In this approach the unknown quantities are assumed to be 
random variables and suitable prior distributions are selected to impose the desired char
acteristics [Jeffs and Christou, 1998, Galatsanos et al., 2002, Miskin and MacKay, 2000, 
Fergus et al., 2006, Likas and Galatsanos, 2004, Molina et al., 2006]. Unfortunately, since 
the BID data generation model is non-linear, the posterior distribution of the unknown 
image and PSF can not be computed analytically. Thus, Bayesian inference using con
ventional methods, such as Maximum Likelihood (ML) via the Expectation Maximization 
(EM) algorithm, cannot be applied.

These difficulties can be overcome using the variational Bayesian methodology [Bishop, 
2006] and [Jordan et al., 1998] described in Chapter 2. To our knowledge this method
ology was first applied to the BID problem in [Miskin and MacKay, 2000]. In that work 
the PSF and the image were modeled by an exponential and a mixture of exponential 
distributions, respectively. Furthermore, the support of the PSF was known, and the im
ages were line drawings which are sparse, in the sense tha t their intensity is zero at most 
locations. This work was recently extended for natural scene images in [Fergus et al., 
2006] with promising results. More specifically, a mixture of Gaussians for the gradient 
of the image, and a mixture of exponentials for the PSF were used. This PSF model 
allows only positive PSF intensities and encourages sparsity, all of which are desirable 
properties for BID. However, it does not model spatial PSF correlations. In another fine 
of work [Likas and Galatsanos, 2004], a simultaneously autoregressive (SAR) prior and 
a Gaussian prior with unknown mean and spherical covariance have been used for the 
image and PSF respectively. This methodology was extended in [Molina et al., 2006] 
to account for spatial PSF correlations using SAR models for both PSF and the image. 
However, this approach fails to model edges in the image or PSF and does not provide a 
mechanism to estimate the support of the PSF.

In this chapter we propose a kernel-based Bayesian approach for the BID problem 
that allows reconstruction of image edges, models spatial PSF correlations and estimates 
the PSF support [Tzikas et al., 2006a, 2007c,a, a]. The main contribution of this work, 
is a model that enforces PSF smoothness and simultaneously estimates the PSF support. 
This is achieved by modeling the PSF as an RVM model, as described in Chapter 3. 
More specifically, the PSF is modeled as a linear combination of kernel functions tha t are 
placed at all the pixels of the image. Thus, the amount of smoothness can be controlled 
by appropriately selecting the kernel function. The support of the PSF can be arbitrarily 
large, since we placed kernel functions at all image pixels. However, following the sparse
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Bayesian linear model approach, we assume that the distribution of the weights of the 
kernels that models the PSF is a heavy tailed Student’s t  distribution. As explained 
in Section 3.4.4, this distribution favors sparse models, forcing most of the weights to 
become zero and therefore limiting the support of the PSF. Furthermore, in order to 
promote smooth image estimates, we constrain the local image differences, by assuming 
tha t they follow a zero-mean Student’s-t distribution in order to allow reconstruction of 
edges [Chantas et al., 2006]. Finally, we model the errors of the imaging model with a 
Student’s-t distribution. This is important, not only because the noise in the observed 
image may not be Gaussian, but also because inaccurate PSF estimates produce heavy 
tailed errors, since the BID model is non-linear.

The rest of this chapter is organized as follows. In Section 5.2 the Bayesian BID model 
is presented. In Section 5.3 the variational methodology is applied for inference to the pro
posed model. In Section 5.4 we present experiments, with artificially blurred images where 
the ground tru th  is known and with real astronomical images. In these experiments we 
compare the proposed methodology with Bayesian methods th a t use Gaussian priors and 
TV based methods and the advantages of the proposed methodology are demonstrated. 
Finally, in Section 5.5 we provide conclusions and directions for future work.

5.2 BID Model
We assume that the observed image g(x) is given by convolving an unknown image f ( x ) 
with an unknown PSF h(x). To account for errors, additive, independent, identically 
distributed noise n(x)  is also assumed. This model is written as

g(x) = f ( x )  *h{x)  + n(x),  (5.1)

where x  =  (χχ, x2) € Ω/, Ω/ C R 2 is the support of the image and * denotes two- 
dimensional circular convolution. Equivalently, this can be written in vector form as

g = f * h  + n , (5.2)

where g, / ,  h  and n  are Μ  x 1 lexicographically ordered vectors (M  is the number of 
pixels) of the intensities of the degraded image, observed image, PSF and additive noise 
respectively. Here, we introduce the Μ  x M  block-circulant matrices F  and H  that 
implement two-dimensional convolution with the vectors /  and h  respectively, so that 
F h  =  H f  = f  * h .  Then, the BID model in (5.2) can be written as

g  =  F h  + n -  H f  + n . (5.3)

The blind image deconvolution problem is difficult because there are too many un
known parameters that have to be estimated. More specifically, the number of unknown 
parameters h  and /  is larger than the number of observations g,  and thus reliable estima
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tion of these parameters can only be achieved by exploiting prior knowledge of the char
acteristics of the unknown quantities. Following the Bayesian framework, the unknown 
parameters are treated as hidden random variables and prior knowledge is expressed by 
assuming tha t they have been sampled from specific prior distributions.

5.2.1 PSF kernel model
We model the PSF as a kernel-based linear model:

M
h(x)  =  Σ  Wi<j>i{ x),  (5.4)

t= l

where φ%(χ) =  R (x ,  Xi) is a kernel function centered at X{ = (χα,χ&)  £ Ω/ and Wi E  R.
j .

We denote as h  = (h (x i ) , , ϊι(χ μ )) the vector of values of the PSF h{x) a t each Xi 
and with φ ί =  (φϊ(χ ι ) , . . . , Φι(χ μ ))Τ the corresponding basis vector for φί(χ). Then the 
PSF vector h  can be written as

M
h  = y ^ w i<j>i. (5.5)

t= l

We further assume that the kernel is invariant to translations, i.e. R (x ,  χ φ  = R ( x  — χφ,  
thus (5.5) can be further written as

h  = φ  * w  — Φνυ = λ ¥ φ ,  (5.6)

where w  =  (w i , . . . ,  Wm )T are the weights of the linear combination and Φ, W  a re M x M  
block-circulant matrices tha t implement two-dimensional convolution with φ  = φ \  and 
w  respectively, so tha t Φw  = \ ¥ φ  = w  * φ. Thus, the BID data generation model (5.2) 
can be written as

g = ΡΦυ) + η  = Φ \Υ  f  + n.  (5.7)

Here, we consider Gaussian kernel function of the form R(x,  x 0) = exp[— γ τ \ \ χ  — ®o||2] 
(RBF kernels), which produces smooth estimates of the PSF. However, any other type of 
kernel could be used as well. It is even possible to model the PSF using a multikernel 
RVM that considers many different types of kernels simultaneously, at a small additional 
computational cost, as described in the previous chapter.

5.2.2 PSF sparseness
A hierarchical prior th a t enforces sparsity is imposed on the weights w  [Tipping, 2001]:

p(w\a)  =  N(m|0, A -1), (5.8)

where a  = (oti,. . .  , ocm)T> Ά  =  diag{a}. Each weight is assigned a separate local preci
sion parameter α», which is treated as a random variable that follows a Gamma distribu-
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Figure 5.3: Histograms of (a) estimated weights of the PSF sparse linear model, as
suming the true PSF is known, (b) horizontal and (c) vertical local differences of the 
“Lenna” image and (d) model errors of an image restoration method using incorrect 
PSF estimation. Solid lines show fits by the Student’s t  pdf with parameters (a) 
μ  =  2.51 x ΙΟ"34, λ =  9.05 x 1037, u =  0.043 (b) μ  =  1.7x HT3, Λ =  4.59 x 103, v  =  1.09 (c) 
μ  -  - 4  x 10~4, λ =  1.03 x 104, u = 1.132 and (d) μ  =  2.39 x 10~6, λ =  6 . 6 8  x 105, v  =  3.12.

p(a) =  J^Gamma(o'i|oa)6Q). (5.9)
t= l

This hierarchical prior is equivalent to a Student’s t  pdf. In order to demonstrate why 
sparse estimations of the PSF weights are appropriate, Fig. 5.3(a) shows a histogram of 
the PSF weights. This histogram was obtained using a 7 x 7 uniform square-shaped PSF 
function. Estimates of the PSF weights were obtained using the sparse Bayesian linear 
model of Chapter 3. It is apparent that the pdf of the weights is very heavy tailed and 
that there are only few non-zero weights. For this reason, we set aa = ba =  0 that define a 
very heavy tailed, uninformative Student’s-t distribution. It is interesting that the hidden 
variables a, of this Student’s-t distribution provide an estimate of the support of the PSF. 
Specifically, the local precision aii th a t corresponds to kernels outside the support of the 
PSF obtains very large values, therefore those kernels are pruned by setting Wi =  0. This 
is demonstrated in Fig. 5.4(a) where we show the estimated local variances for a BID 
problem with a 7 x 7 uniform PSF. Notice that outside a limited area that captures the 
support of this PSF these variances are zero.
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5.2.3 Image model

The image prior th a t we use is based on K  filtered versions of the image: ek = Q kf ,  
where Q k are Μ  x M  convolutional operators of the filters (k = 1 , . . . ,  K).  Specifically, 
we use horizontal and vertical first order local differences, by defining K  =  2, Q l and Q 2 

so that:

^ ( x , y )  = / ( * . y ) - / ( *  +  i.y)> (5·10)
e2(z>y) = f(x,y) -  f(x,y + 1)· (5.11)

W ithout any changes in the method, we could also use other convolutional operators Q k 
[Chantas et al., 2007]. In practice, we join all operators Q k in the K M  x M  operator 
Q = (Q lT, . . . ,  Q k T)t  that produces the K M  x 1  vector e =  (elT, . . . ,  eKT)T:

£ — Q f  — ( ( Q 7 ) T, ■ · ·, (QKf ) T)T- (5.12)

We assume that ek is Gaussian distributed with distinct precision i f :

p(ef|7 f) =  N(ef|0,(7 f ) - 1)· (5.13)

Assuming the ek independent with respect to i, induces a prior for the image, which is 
given by

P k ( f  IV) =  N (/|0 , (Q‘V q ‘ )->), (5.14)

with 7 fc =  (7 * . . .  7 ^  )T and Tfc =  diag{7 fc}. In order to combine the information captured 
by each prior p^, we define a composite prior, which is the product of them [Welling et al., 
2003]:

1 K
p (/l7 )  =  |  U pazC/IV1) =  N (/|0 , (QTr Q ) - ‘). (5.15)

with 7  =  (7 lT, . . . , ~γκ Τ )τ  and f  =  diag{7 }. Unfortunately, it is not possible to an
alytically compute the determinant [QTFQ\  th a t is required to estimate the normal
ization constant Z  in (5.15), since Q  is not square. Instead we approximate it as 
|Q r f Q | «  | f | |Q TQl, giving:

K  M

P(/l7) o c f J J J ( 7 f ) 2exp
fc=l i=I

-IfqFtQf (5.16)

Notice, th a t the approximation only affects the normalizing constant of the pdf. Therefore, 
this is an improper pdf, whose integral is not necessarily unity. Improper pdfs have been 
used in many other Bayesian methods [Bernardo and Smith, 1994]. The local precision 
parameters are assumed to be independent identically distributed, Gamma random
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Figure 5.4: Example of the estimated local variances (a) a -1 of the PSF weights for a 
uniform 7 x 7  square-shaped PSF, (b) and (c) (71)” 1 and (7 2 ) - 1  °f the image model 
residuals.

variables: κ  M
p{ 7) =  Π Π  Gamma(7 * |a7,67). (5.17)

fc=l i= 1

Thus, the prior on the first order local differences ek is equivalent to a Student’s t  pdf.

5.2.4 Noise model
The noise n  of the BID model (5.3) is assumed to be zero mean Gaussian distributed, 
given by:

M
Ρ(η\β) =  [ ] Ν(η'Ι°’Ό  =  N(n|0, B -1), (5.18)

i- 1

with β  — (/?i,. . .  }0 m ) and B  =  diag{/3}. The local precision parameters β{ are also 
assumed to be random variables with a Gamma prior:

M
ρ(β)  =  Π Gamma(/?i|a/3, bP). (5.19)

i=l

This two-level hierarchical prior for noise is equivalent to a Student’s t  pdf.

5.3 Variational Bayesian Inference
The observed variables of the proposed model are D  =  {gr}, the hidden variables are 
Θ =  { w , / , α , / 3 , 7 } and the parameters of the model are ξ  =  {aQ, 6°, αβ, bP, a7, 67}. The 
dependencies among the random variables that define the proposed Bayesian model are 
shown in the graphical model of Fig. 5.5.
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Figure 5.5: Graphical model that describes the dependencies between the random vari
ables of the proposed model. Circular nodes represent random variables, while square 
nodes represent parameters of the model. The observed variables are represented by 
double circled nodes.

Because the BID model is non-linear, the posterior distribution of the parameters 
p(6\D)  cannot be computed. Thus, we can not apply exact inference methods, such as 
maximum likelihood via the EM algorithm. Instead, we resort to approximate inference 
and specifically to the variational Bayesian methodology described in Chapter 2.

5.3.1 Approximate Posterior Distributions

Using the mean field approximation (2.23), the posterior distribution of the parameters 
is given by (2.24). Because we have used conjugate priors, the approximate posteriors 
have the same form as the priors. Specifically, the approximate posterior distributions of 
the PSF weights w  and the image f  are Gaussian and the distributions of the precision 
parameters α , β  and 7  are Gamma:

q{w) =  Ν (ίϋ |μ„,,Σ ω), (5.20)
? ( / )  =  Ν ( / |/χ/ , Σ / ), (5.21)

Μ
q(a)  — PjG am m a(cti |aa , 6 f ) )

i= 1
(5.22)

Μ

ν(β)  =  n Gamma(Ala^ ) f (5.23)
ι—i
K M

9 (7 ) =  π π ^ - ( τ * ι ^ ) , (5.24)
k—l i=l
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where

μ „  =  Σ„,Φ T (FT)(B)g,  (5.25)

Σ ω =  (ΦΤ(ΒΤΒ Β )Φ  +  (Λ) ) - 1 , (5.26)

μ /  =  ^ $ T ( W T){B)g,  (5.27)

Σ ,  -  ( φ Γ(Τντ Β Τ ^)Φ  +  QT(r> Q )~ X, (5-28)

αβ =  αα +  1/2, (5.29)

6f  == 6“ +  | ( ^ > ,  (5.30)

α* =  αΡ +  Μ/2,  (5.31)

ϊξ = tii + \ ( n n T)ii, (5.32)

α< =  α> +  1/2, (5.33)

blk = r + \ ( Q k( f f T)Qk) i i . (5.34)

The required expected values can be computed as:

(w) =  μ -u,,. (5.35)

<w<> =  Λ  +  (5.36)
( / )  =  μ , ,  (5.37)

( f f T) =  μ /μ ?  +  Σ /, (5.38)

(αί) = ά “/ 6 “ , (5.39)
( A ) = ^ / 5 f ,  (5.40)

(5.41)

(n n r ) =  — 2Φ {Fw)gT +  & { F w w T Β Τ)ΦΓ. (5.42)

The approximate posterior distributions of (5.20) to (5.24) can be computed as follows. 
In order to find the posterior distribution of the weights q(w) we start from (2.24) and 
keeping only the terms that depend on w  we have:

\nq(w)  =  ( \np{g\0,w,  /)p(to|o)),(/),(e),(j3),(7)
=  <lnp(g|/3, w, f )  + \np{w\a))q (m o t )m

+  const.
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1 1 M 
In q(w) =  -  -  [gT (B )  g  -  2gT (B F ) Φνο +  νυτ Φτ  (F TB F ) Φιο] -  -  ^  (a i) wi

Δ i = l

=  -  ^ w T ( φ τ  ( F TB F )  Φ +  (A)) w  -  w TΦτ  (F TB ) g  +  const.

We can easily see that this is the exponent of a Gaussian distribution, therefore q(w ) is a 
Gaussian distribution given by (5.20). Similarly, we can obtain the posterior q( f )  which 
is also a Gaussian distribution given by (5.21).

The posterior q(cx) is similarly obtained by computing the terms of In q(oc) th a t depend 
on a :

Then, because n  — g  — Φχυ and B  is diagonal and therefore sym m etric, we have:

ln 9(a ) -  (lnp H a)p (aO )g(/)9(w)9(0)9W
■y Μ Μ Μ M

=  9 Σ l n  a i ~  Σ  a i  +  ( a “  -  ! )  V )  I n  a i  -  ba  V  an
i = l  i= 1 i = l  i = l

=  ( ° a “  Σ ln αί ~  Σ  Q  (wi ) + + c&nst·

This is the exponent of a Gamma distribution, and therefore q(a)  is a Gamma dis
tribution given by (5.22). The posterior distributions q(fi) and q(7 ) are also Gamma 
distributions given by (5.23) and (5.24) and their computation is very similar.

5.3.2 Parameter Estimation

The parameters a13, and a 1, b1 of the noise and image Gamma hyperpriors can be 
estimated by optimizing the variational bound F  (2.13), which is given by:

\  ? ( m , / ,a , / 3 , 7 ) / qiwJia^ n)

= (In p ( g \ w , 0 , f ) )  +  (lnp(tu |a)) +  ( ln p ( / |7 ))

+  (lnp(a)) +  (lnp(jS)) +  (Inpfr)) -  (lnq(w))

-  <1 η ς ( / ) )  -  (Inq(a)) -  (lnq(P)) -  (\nq(y))

and the required expected values can be computed as:

1 / 1 Λί 4

(lnp(g |m ,/3,/ ) )  =  1η(2π) +  g  Σ  <l n & >  ~ 2 ^ 9  ~ Ρ Φ υ } ^ B ^  ~  F & ™ ) )
1=1

Μ  1 1
(lnp(m |a)) =  1η(2 π) +  ^ Σ  <1ηαί) “  2  Σ  ^  (wi )  »
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Κ Μ

< Μ /Μ >  =  - γ  1η(2-)·+ ί  Σ  Σ  Μ >  -  5 Σ  Σ  <■>»

<1ηρ(«)) =  Μα“ 1η6» +  (α“ -  « Γ ό π α , )  - » “ Σ <α,) - Μ '" Γ(“° ) ’

ΐ 1 «
(1ηρ(/5)) =  Μα-Ίη*» +  (ο» -  1) V ( l n f t ) W  “  Μ1" Γ(“ >'

Τ“τ
*-1 Κ  Μ

(1ηρ(7)) = M W  In Ρ  + (a1 -  1) Σ  Σ  ~ ^  S  5  ^  _ ΜΚ]ηΓ α̂'1)

(ln<?(tu)) =  -γ (1 η (2 π ) +  1) -  |ΐη |Σ „ ,|,

<1ης(/)) =  -γ (1 η (2 π ) +  1 ) - ^ 1 η |Σ / |,

(In 9(a)) =  ]Γ [ά“ 1η bf +  (άβ -  1) (In oj) -  ^  ~ 1ηΓ(αΛ)1’
ϊ=1

(lnq(p)) =  £ [ a ' ln 8 f  +  (α  ̂-  1) (In A) -  &? ^  ' 1ηΓ^ ^ ’
ι=1

(1η,(7)> =  Ιπί?* +  (S' -  1) (1ητί) '  <>ΐ W -ΙηΓ(α^)].
k = \  i=1

The derivatives of F  with respect to the above parameters axe:

dF
daP

dbP

dF_
dcfl

dF_
db'r

„ β  M

Μ τ , - Σ , Μ ’

u
Mini/* -  Μψ(αΡ) +  0»Α>

t=l

<=i
Κ  M

Μ Κ \ n P -  ΜΚφ{αΊ) +  Σ  Σ  ,
fe= 1 X= 1

if M

" * Ϊ Γ - Σ Σ « > .
fe=l t=l

(5.43)

(5.44)

(5.45)

(5.46)

where ψ(χ) is the digamma function given by φ(χ) =  dln£ ^  =  and Γ(χ) =  
fo° tx~1e~t dt. We can obtain updates for these parameters by setting the above derivar 
tives to zero. This cannot be done analytically for the parameters aP and a r, thus we 
find a numerical solution using a combination of bisection, secant, and inverse quadratic 
interpolation methods, as implemented by matlab’s fzero function.
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5.3.3 Computational issues

The computations in equations (5.25) - (5.42) involve matrix operations, whose dimension 
is M  x M, where M  is the number of pixels in the image. Unfortunately, computation of Σ /  
and Σ ω involves inversion of matrices that contain both diagonal and circulant matrices 
and cannot be performed explicitly for large M.  However, diagonal and circulant matrices 
are easy to invert. For this reason, we approximate Σ ω (5.26) with a diagonal matrix and 
Σ /  (5.28) with a circulant matrix, as:

=  (diag { $ r (F r £?F)#} +  ( A ) ) - \

Σ ,  =  { [ ^ T{ W TW ) ^  + ^ ) Q TQ y \

w ith 7  -  jk Σ ί ι  Σ ϊ ι  ΐ ί  ,β = h Σ Ϊ ι  Pi and

Μ
{ W TW )  =  (lV r )(W > +  / £ ( £ „ , , ) ,

i~l
M

( F TB F )  =  {FT){B H F )  + S l J2 ( f f l).
1=1

The diagonal approximation for matrix Σ ω is justified because parameters a , that 
appear in the diagonal were found to dominate in (5.26). On the other hand, Σ /  is 
approximated with a circulant matrix because both the parameters βί and 7 * obtain 
values in the same range. The above approximations are used for computation of bf, bf, 
and b] , in (5.30), (5.32) and (5.34) respectively, where the elements of the matrices Έηι 
and Σ /  appear directly. Furthermore, they are used for computing the expected value 
( F w w TF T) that appears in (5.42) as:

( F w w TF T) =  ( F ) ( w w T)(F T) +  (5.51)
i,j

For the posterior image and weight means μ /  and μ ω, we do not use the above 
approximations, since we can exactly obtain them by solving the following linear systems:

=  Φ T( W ) T(B)g,  (5.52)

Σ ^ μ *  =  Φ T(F)T(B)g.  (5.53)

These linear systems are solved iteratively with the conjugate gradient method, using 
the approximation matrices Σ /  and Σ ω as preconditioners. In these iterations, products 
of circulant matrices are efficiently computed in the DFT domain, while products of 
diagonal matrices in the spatial domain. Specifically, each conjugate gradient iteration 
requires 0 ( M  log M) iterations. Theoretically, an exact solution of the linear system is 
obtained after C  =  N  iterations, however, we typically obtain a good approximation after

(5.47)

(5.48)

(5.49)

(5.50)
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only few iterations, e.g. C  =  20. The overall computation cost is 0 ( C M  log M).

5.3.4 Variational Optimization Algorithm
Each iteration of the optimization algorithm proceeds as follows. First we compute the 
parameters of the approximate posterior probabilities, as given in (5.25) - (5.34) and 
then we compute the expected values using (5.35) - (5.42). Finally, we may update the 
parameters of the noise and image prior distributions, using equations (5.43) - (5.46). The 
means of the posteriors q(w) and q( f )  are used to obtain estimates of the PSF h  and the

A A
image f :  h  = Φμ^, and /  =  μ /.

5.4 Numerical Experiments
Several numerical experiments have been carried out both with artificially generated ob
servations where the ground tru th  is known and with real observations in order to demon
strate the properties of the proposed method. We compare the proposed method with 
previous Bayesian BID formulations based on Gaussian PSF and image models (Likas 
and Galatsanos, 2004], with the TV-based blind deconvolution method in (Chan and 
Wong, 1998] and another recent variational Bayesian method in [Molina et al., 2006].

Hereafter, we will refer to the proposed method as the StStSt method, to imply that 
three Student’s t priors are used to model the PSF weights, the BID model errors and the 
image local differences. We also considered several simpler versions of this Bayesian model 
that use Gaussian distributions in place of the Student’s t distributions. Specifically, we 
consider Gaussian distributions for the PSF weights, p(w)  =  N(tu|0, o -1/ ) ,  the additive 
noise, p (n ) =  Ν (η |0 , β~ιΙ) ,  and the image local differences, p ( / )  =  N (/|0 , (7 Q r Q )-1)· 
The names of these simplified versions consist of three parts that express the distributions 
of the PSF weights, the additive noise and the image local differences. For example, the 
method that uses Gaussian distribution for the image local variances but Student’s t 
distributions for the PSF weights and noise is denoted as StStG.

The GGG is very similar to the VAFtl method described in [Likas and Galatsanos, 
2004], which also assumes that the PSF weights, the imaging model errors and the image 
local differences are Gaussian. The only difference between VAR1 and GGG is that VAR1 
does not use a kernel model for the PSF, i.e. h  = {w\ , . . . ,  w m ) t . Thus, the VAR1 method 
is identical to the GGG, when a Gaussian kernel of very small size is used.

In the simplified models GGG, GStG, StGG and StStG, where Gaussian stationary 
image priors are used, we consider the typical simultaneously autoregressive (SAR) prior 
that has been used extensively in image restoration [Likas and Galatsanos, 2004, Molina 
et al., 2006]. This prior assumes a pdf for the image residuals e(x, y) given by:

(5.54)
meD[x,y)
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where D(x,y)  is the set of four neighbors of (x, y), given by D(x,y)  =  {(x + l,y ) , (x — 
1 , y), (x, y — 1 ), (x , y  + 1 )}. The Bayesian method in [Molina et al., 2006] uses the SAR 
prior for both the image and PSF and then uses the variational methodology to achieve 
inference, s im i la r ly  to the proposed method.

Furthermore, we provide a detailed comparison with the TV blind deconvolution 
method [Chan and Wong, 1998], This method provides estimates of the image and PSF 
by solving the following minimization problem:

mm h h  * f  -  g f  +  a f T V ( f )  +  a hT V { h \  (5.55)
/>* Δ

where T V (x )  = f  |Vx(z)| dz  is a to tal variation regularization term.

5.4.1 Experiments with artificially blurred images

In the first experiment, we compared all the methods using artificially degraded images. 
We generated a degraded image g  by blurring the true image /  with a known PSF h  and 
then adding Gaussian noise with variance σ 2 = 10-6. The signal to noise ratio (SNR) of 
the observed image g  is S N R  = 101og10 =  45dB. In all methods, the initial PSF h in
was set to a Gaussian-shaped function with variance σ ^η =  3. Since the true image is 
known, we can measure the quality of a recovered image / ,  by computing the improved 
signal to noise ratio I S N R f  = 1 0 1 og10 jjy~ ^ 2 which is a measure of the improvement of 
the quality of the estimated image with respect to the initial degraded image. We can also 
measure the quality of a PSF estimation h,  by computing IS N R h  =  101og10 if .

The PSF that was used in this experiment was a 7 x 7 uniform, square-shaped PSF. 
However, we initialized the PSF as a Gaussian-shaped function with variance σ% =  3. 
The kernel function that we used was set to a Gaussian with variance σ2φ — 0.1, which is 
flexible enough to model the boundaries of the square. The ISNR values for the image 
and PSF estimates of all methods are shown in Table 5.1. Furthermore, the degraded 
image and restored images for some of these methods are shown in Fig. 5.6 along with 
the restoration in [Chantas et al., 2006], which was obtained by assuming that the PSF 
is known and a similar in spirit image prior.

Inspection of these results reveals that in general, improvement in the accuracy of the 
estimated PSF implies improvement in the quality of the recovered image. Furthermore, 
using a Student’s t distribution to model the weights of the kernel model of the PSF gives 
significantly better PSF estimates as compared to using a Gaussian distribution for the 
same task. This demonstrates beyond any doubt the importance of this selection for the 
BID problem. The image estimates are also improved when using Student’s t distributions 
for either the image local differences or noise. Finally, the StStSt model seems to produce 
visually more pleasing restored images with “sharper” edges than either the StGSt and 
StStG models, even though the I S N R f  might be slightly lower. However, it is well known 
that I S N R f  does not always capture accurately the human perception of image quality.
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Table 5.1: ISNR for image and PSF for the experiments on the degraded lenna image 
with a uniform, 7 x 7  square-shaped PSF.

Method I S N R f I S N R h

GGG 0.47 0 . 8 8

GGSt 0.58 0.79
GStG 0.05 1.53
GStSt 1 .1 1 1.64
StGG 2.17 6.69
StGSt 5.87 8 . 1 2

StStG 5.57 10.91
StStSt 5.29 9.44

Method in [Chan and Wong, 1998] 3.13 5.64
Method in [Molina et al., 2006] 0.54 2.44

Known PSF in [Chantas et al., 2006] 8.63 —

5.4.2 Comparison with other BID methods

In this subsection, we describe another experiment, where we compare the method based 
on the StStSt model with methods in [Chan and Wong, 1998] and [Molina et al., 2006]. In 
these experiments, we use the 256 x 256 “Cameraman” image, degraded with several PSFs 
and noise levels. Specifically, we used three different PSFs; a Gaussian-shaped PSFs with 
variance 5, a uniform square-shaped PSFs of size 7 x 7  and a rectangular non-symmetric, 
accelerated motion blur [Yitzhaky et al., 1998] given by

h(x,y)
(u l 4- 2a(x +  sx)) 1/2 if |ζ | <  sx and |y| <  sy , 

0  otherwise,

with sx =  4, sy =  1, ti0 =  0.5 and a =  0.1. We also used two levels of noise; low noise 
with S N R  = 40dB  and high noise with S N R  = 20dB. The PSF was initialized as a 
Gaussian-shaped function with variance σ\.η — 3. For the StStSt method we used a 
Gaussian-shaped kernel function with variance σφ = 2, in all cases except for the case of 
accelerated motion PSF, where we used a Gaussian-shaped kernel with variance σφ = 1. 
The degraded images are shown in Fig. 5.4.2 and the restored images are shown in Fig. 5.8 
and Fig. 5.9. The parameters of all the methods were selected in a trial and error manner 
in order to optimize the resulting images.

We can observe here that in all cases the StStSt method outperforms both the methods 
in [Chan and Wong, 1998] and [Molina et al., 2006], especially in the case of low noise with 
S N R  = 40dB. Specifically, the method in [Chan and Wong, 1998] fails to estimate the 
Gaussian-shaped and motion PSFs, which is explained by the fact that the TV constraint 
on the PSF has the tendency to create flat areas and discontinuities, tha t are in contrast 
with the smooth PSFs that were used.

In terms of computational cost, the method in [Molina et al., 2006] is the most



(d_) Chan and Wong. 199S,(e; Aloiina et ah. 2006 0.54.2.44 I f j Known P5F LChantas et al. 
3.13.5.64 2006' $ .6 3 .-

Figure 5.6: Com parison of the  proposed m ethods on the  fa) lenna image degraded with 
a uniform, 7 x 7  square-shaped PSF. E stim ated images using the  (b) GGG m ethod, (c) 
StS tS t m ethod (d) m ethod in [Chan and Wong, 1998], (e) m ethod in [Molina et al., 2006] 
and (f) Known PSF resto ra tion  m ethod in [Chantas et al., 2006]. In all cases the  PSF 
was initialized as a G aussian w ith σΙ  = 3  and the  kernel was a G aussian w ith variance 

=  0.1. The num bers below each image are the  ISXR values of the  image (I S N R f ) and 
the corresponding PSF ( ISNRh.) ·

efficient, since each ite ra tion  involves 0 ( M  log M )  operations. On th e  other hand, each 
iteration of bo th  the  proposed m ethod and the m ethod in [Chan and Wong, 1998] require 
the solution of a Μ  x M  linear system  th a t is solved using the  conjugate gradient m ethod 
and require Of C M  log M ) com putations, wffiere C  is the  num ber of conjugate gradient 
iterations.

5.4.3 Experim ents with real astronomical images

We also applied the  proposed m ethodology on a real astronom ical image of th e  Saturn 
planet, which has previously been used in [Molina et al., 2006]. Astronom ical measure-
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(e) <0d)

Figure 5.7: Degraded cameraman images with (a)-(c) S N R  =  40dB  and (d)-(f) S N R  — 
20dB. The PSF was (a),(d) Gaussian-shaped with variance σ\  — 5, (b),(e) uniform, 
square-shaped 7 x 7  and (c),(f) accelerated motion blur.

ments suggest the following PSF model for ground based telescopes:

h(r) oc (1 + ^ ) ~ s. (5.56)

The parameters «5 and R  can be measured [Molina et al., 2006] and δ «  3 and R  «  3.4. 
The recovered images by the different methods are shown in Fig. 5.10 and the resulting 
PSFs in Fig. 5.11.

From these images it is clear again that the models with two or more Student’s t 
priors give visually superior results. In these images there is less ringing at the edges, 
noise in flat areas and the Saturn bands are better separated. Furthermore, the StStSt 
model produces again “sharper” images. It is interesting to notice that the StGG model 
does not yield good recovered images although it estimates well the measured PSF. This 
demonstrates the inappropriateness of the Gaussian to model the errors of the BID model 
and the image model. Notice also, that again, the TV-based methodology fails to estimate 
the smooth PSF and creates edges in areas where they do not exist in the original PSF, 
see Fig. 5.11.
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(g) 6.74.9.26 (in υ.όΐ.ϋ.δδ (i) —0.17.0.62

Figure 5.8: Comparison on cameraman image with SNR =  40dB and (a)-(c) Gaussian- 
jj shaped PSF with variance σ \  — 5, (d)-(f) uniform, square-shaped 7 x 7  PSF (g)-(ij 

motion-blur PSF. Estim ates obtained with (b), (f). (g) the proposed StStSt method, (c), 
(g), (k) method in [Chan and Wong. 1998] and (d), (h), (1) method in [Molina et ah. 
20061. The numbers below each image are the ISNR values oi the image ( I S X  R ,  \ and



U',l til) <1 -">2,0.1_> (i) II I,, ()

Figure 5.9: Comparison on cameraman image with SNR =  2(klB and (a)-(c) Gaussian- 
shaped I’SF with variance a\  = 5, (d)-(f) uniform, square-shaped 7 χ γ  pgF (g)-(i) 
motion-blur PSF. Estimates obtained with (b), (f), (g) the proposed StSt-St method, (c), 
(g), (k) method in [Chan and Wong, 1998] and (d), (h), (1) method in [Molina et al., 
2000]. The numbers below each image are the 1SNR values of the image (I S N R f ) and 
the corresponding PSF (I S N R h )·
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Figure 5.10: Comparison on real astronomical image of Saturn, (a) Degraded image 
Estimated images using the methods (b) StGG, (c) StStG (dj StGSt, (e) StStSt, (f; 
GGG and the methods in (g) [Chan and Wong, 1998] and (h) [Molina et al., 2006]. The 
PSF was initialized as a Gaussian with σϊ ~  3 in all cases and the kernel was a Gaussian'tin
with variance <7̂  =  1.

5.4.4 Selecting the kernel width and initial values for the pa
rameters

The proposed method uses a sparse kernel model to estimate the PSF. The significance oi 
the kernel model is that it favors smooth estimations of the PSF, by forcing neighboring 
pixels to have similar values. This is important in order to enforce PSF smoothness and 
prevent the noise in the observed image to corrupt the PSF estimate. However, selecting 
an appropriate kernel is not straightforward. Here, we have considered several Gaussian 
kernels of different widths in order to determine how the proposed method is affected by 
the width of the Gaussian kernel. We have applied the proposed method on the artificially 
blurred images of the first experiment and considered degradation with Gaussian PSF or
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Figure 5.11: One dimensional slice of the true and estimated PSFs for the images of 
Fig. 5.10. The true PSF has been estimated as h(r) α  (1 +  with i  »  3 and
R  τα 3.4. The kernel was Gaussian with variance =  1.

Table 5.2: ISNR for image and PSF for various values of the kernel width for the case of 
Gaussian-shaped PSF with σ \  — 5. ________________

σ Φ =  0 . 1 σ Φ =  1 σΦ =  2 σ Φ =  3
T3 •β •«T* < -C!
o QS cd QS Οι ftS o;Xi4-3 ϊζ

Co CO CO CO Co Co Co CO
2 •-1

GGG 1.62 -0.57 1.92 0.47 2.57 2.62 2.90 5.12
StGG 3.53 6.58 3.53 7.49 3.47 7.95 2.39 1.78
StStG 3.19 7.15 3.21 7.40 3.77 10.55 2.33 0.36
StGSt 3.69 8 . 8 6 3.96 10.33 4.24 12.30 1.55 2 . 8 8

StStSt 4.00 11.32 3.98 11.36 3.94 12.31 2.48 0.71

Table 5.3: ISNR for image and PSF for various values of the kernel width for the case of 
uniform, 7 x 7  square-shaped PSF.

σ1 = 0 . 1 A = 1 σΦ =  2 A =  3
-Ό -tf -C <O ft; a; ft; a; ft; os OSX ξOP CO CO Co CO CO CO CO Co

GGG 0.70 -4.71 0.64 -3.41 0 . 1 2 -0.64 0.13 -3.87
StGG 2.17 6.69 1 . 2 0 9.09 -0.37 1.67 -2.31 -0.43
StStG 5.57 10.91 5.45 9.27 -0.29 1.87 -2 . 1 2 -0 . 2 0

StGSt 5.87 8 . 1 2 5.62 7.80 4.22 6.72 0 . 2 0 -0 . 1 2

StStSt 5.29 9.44 4.56 8.17 -0.51 2 . 0 1 -1.58 0.09
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uniform-square shaped PSF. Tables 5.2 and 5.3 show the ISNRs of the image and PSF for 
several values of the kernel width, for the case where the true PSF is Gaussian-shaped and 
square-shaped, respectively. Notice that in all cases, selecting a very large kernel leads to 
very smooth estimates of the PSF that provide poor results. In case of uniform square 
true PSF (Table 5.3) the best results are obtained when using a very small kernel. This is 
because the square PSF is not smooth at the edges of the rectangle. On the other hand, 
in the case of Gaussian-shaped true PSF (Table 5.2), it is favorable to select a kernel that 
produces smooth PSF estimation.

It must be also noted that the performance of all the variational algorithms generally 
depends on the initialization of the parameters. This happens because the variational 
bound is a non-convex function and therefore, depending on the initialization, a different 
local maximum may be attained. In order to apply the proposed method, the following 
parameters have to be initialized:

T he w eights w  o f th e  kernel m odel th a t  define th e  P S F

In BID, having a good estimate of the PSF is usually very important and many BID 
methods fail when they are badly initialized. This is a significant limitation, because in 
many situations there is no available estimate of the PSF. The proposed method does 
not rely on a good initial PSF estimation. Instead, the sparse kernel based PSF model, 
can successfully estimate the PSF from the observed image. This is demonstrated in the 
previous experiments, where we successfully estimated Gaussian-shaped, square-shaped 
and accelerated motion PSFs using an initial PSF that was Gaussian-shaped with variance 
σ\  =  3. The weights w were initialized by solving the PSF model given in (5.6), which 
gives w  =  /3ΣωΦτ /ι with Σ ω — (/?ΦΤΦ +  a l )  1.

T he w eight n o rm aliza tio n  p a ra m e te rs  a* o f th e  P S F  m odel an d  th e  hy p erp a 
ram e te rs  aa, ba

Initially, we set all these parameters to very small values, e.g. a { = 10~16, which cor
responds to a very flexible linear model. This is desirable in order to obtain an initial 
estimate of the support of the PSF using all the available kernels. The hyperparameters 
a° and bQ are set to zero, thus assuming an uninformative distribution for the parameters 
a. During inference, the parameters a , for most kernels tend to infinity, thus the support 
of the PSF is limited.

T he  noise p rec ision  β  an d  th e  h y p e rp a ram e te rs  a/3, bP

The noise precision β  is initially set to β  = 103. The hyperparameters a0, be are initially 
set to values that define a Gamma distribution with mean 103 and variance 102, which is 
a flat and rather uninformative distribution. Their values are then updated using (5.43) 
and (5.44).
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The strength of the image prior 7 and the hyperparameters a7, i>7
The parameter 7  that defines the strength of the image prior is initially set to 7  =  102. 
The hyperparameters a7  and fe7  are set to values that define a Gamma distribution with 
mean 102 and variance 104. Updating a7  and 6 7  (Section 5.3.2), usually improves the 
performance of the algorithm, at least in the first few iterations. However, we have 
empirically found that at convergence, these hyperparameters attain very small values, 
thus defining an uninformative distribution. This leads to very noisy image estimates and 
for this reason we do not update the hyperparameters a7, 67  but keep them fixed to their 
initial values. An explanation for the failure to estimate these parameters is that we use 
an improper prior for the image (5.16). Although selecting values for these parameters 
may seem arbitrary they actually depend on the characteristics of the image. Specifically, 
small values of the parameter b7  lead to  very smooth solutions, while small values of the 
parameter a1 allow few hard edges by defining a heavy tailed distribution for the image 
local differences.

5.5 Conclusions and Future Work
We presented a Bayesian approach to the BID problem where the PSF is modeled as 
a superposition of kernel functions, i.e. as a kernel-based linear model. We assumed a 
suitable heavy tailed prior distribution on this kernel model, in order to obtain a sparse 
estimate of the support and shape of the PSF. We also used a heavy tailed pdf both for 
the noise, in order to achieve robustness to BID model errors and for the local image 
differences, in order to allow the reconstruction of edges. The Student’s t  pdf was our 
choice as a heavy tailed pdf, due to its close relationship with the Gaussian. Because of the 
complexity of this model, the variational framework was used for approximate Bayesian 
inference.

Several experiments were carried out, to test the proposed methodology. These ex
periments indicated beyond doubt th a t the use of a  Student’s t  pdf to model the weights 
of the PSF kernel-based model in crucial to the success of this approach. Furthermore, 
Bayesian BID models that use at least two Student’s t  priors, one for the PSF, are clearly 
superior to BID models that use two or more Gaussian priors. It is also interesting to 
notice that the StStSt model that uses only Student’s-t priors seems to produce visu
ally superior images compared to models that use a combination of two Student’s t and 
Gaussian priors.

We also compared this methodology with TV-based and Bayesian as implemented in 
[Molina et al., 2006] BID in a number of different scenarios. From these comparisons it 
is clear that the proposed methodology is always superior to the Gaussian model based 
methodology in [Molina et al., 2006]. As far as TV-based BID is concerned, the proposed 
method is clearly superior for scenarios with small sized PSFs and low noise. In the 
case of large PSFs and high noise the two methods produce different in nature results.
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The proposed methodology produces image where image details were better preserved. It 
also yields better I S N R  values. However, it produces “ringing” artifacts in image edges. 
TV-based BID gave no “ringing” , however, many image details were eliminated.

In the future it’s interesting to explore the possibility of learning the filters Qk in 
a manner analogous to [Welling et al., 2003]. Furthermore, it is possible to explore 
extending the constrained variational methodology in [Chantas et al., 2007] to BID in 
order to avoid using the approximation of the partition function in (5.16). Finally, it 
might be interesting to learn the width parameter of the kernel function, possibly using 
the methodology described in Chapter 6.
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C h a p t e r  6

A d a p t i v e  K e r n e l  L e a r n i n g  f o r  t h e  

R e l e v a n c e  V e c t o r  M a c h i n e

6.1 Introduction

6.2 A dju sting  sparsity

6.3 K ernel Learning

6.4 N um erical E xperim ents

6.5 D iscussion

6.6 S ta tistica l M odels for A nalysis o f  Functional N euroim ages

6.7 C onclusions

6.1 Introduction
As mentioned in Chapter 3 the Relevance Vector Machine (RVM) constitutes a special 
case of the sparse Bayesian linear model that assumes tha t the basis functions are kernels 
placed at the training points. Recently, it has been used successfully in many applica
tions; for example in recognition of hand motions [Wong and Cipolla, 2005], recovery 
of 3D human pose from silhouettes [Agarwal and Triggs, 2004], detection of clustered 
microcalcifications for mammography [Wei et al., 2005], classification of gene expression 
data [Li et al., 2002, Yang et al., 2004], detection of activations for neuroimaging [Lukic 
et al., 2007], real time tracking [Williams et al., 2005], etc. In spite of this, in order to 
obtain good generalization performance, it is important to select an appropriate kernel 
function.

Although typically the kernel is selected using a cross-validation technique, there has 
been work on learning the kernel function simultaneously with model parameters. It has 
been proposed in [Quinonero-Candela and Hansen, 2002] tha t the width parameter of
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Gaussian kernels can be learned by maximizing the marginal likelihood of the model. 
Furthermore, in [Lanckriet et al., 2004, Girolami and Rogers, 2005, Sonnenburg et al., 
2006] the kernel has been modeled as a linear combination of other basis functions. In 
[Krishnapuram et al., 2004] feature selection has been achieved by learning the variances 
of anisotropic Gaussian kernel functions after applying to them a sparsity enforcing prior. 
Also, in [Snelson and Ghahramani, 2006] an alternative to the Gaussian process model 
has been proposed that learns a set of pseudo-inputs, which are similar to the relevance 
vectors, but do not necessarily coincide with points of the training set. All these methods 
attempt to learn parameters of kernels that are centered at many different locations, 
however they assume that all these kernels share the same parameter values. This might be 
a significant limitation if the data that we attempt to model have different characteristics 
at different locations, such as a signal with varying frequency.

In this chapter, we propose a new methodology to automatically learn the basis func
tions of a sparse linear model [Tzikas et al., b, 2008a]. Unlike the existing literature, 
the proposed methodology assumes that each basis function has different parameters, 
and in principle it can even have different parametric form, therefore it is very flexible. 
In order to avoid overfitting, we use a sparsity enforcing prior tha t directly controls the 
number of effective parameters of the model. This prior, has previously been used for 
orthogonal wavelet basis function sets [Schmolck and Everson, 2007], but here we extend 
it for arbitrary basis function sets. Learning in the proposed model is achieved using an 
algorithm that is similar to the incremental RVM  training algorithm [Tipping and Faul, 
2003] described in Section 3.4.3. It starts with an empty model and at each iteration it 
adds to the model an appropriate basis function, in order to maximize the marginal likeli
hood of the model. In the case of incremental RVM, selecting a basis function is achieved 
using discrete optimization over the location of the basis functions; all candidate basis 
functions are tested for addition to the model. In contrast, the proposed methodology 
uses continuous optimization with respect to the parameters (such as location and scale) 
of the basis functions. We then employ this methodology to learn the center (mean) and 
width (variance) parameters of Gaussian kernel basis functions.

There are several advantages of the proposed methodology as compared to traditional 
RVM [Tipping, 2001]:

•  There is no need to select the parameters of the kernel via cross validation, since 
they are selected automatically.

•  Because each kernel may have different parameter values, the model is very flexible 
and it can accurately solve a wide variety of problems.

•  The obtained models are typically much sparser compared to the typical RVM.

The rest of the chapter is organized as follows. In Section 6.2 we review the sparsity 
prior of [Schmolck and Everson, 2007] and generalize it for non-orthogonal basis function 
sets. In Section 6.3 we present an algorithm for learning the basis function set. In Sec
tion 6.4 we provide experiments on artificial datasets that demonstrate the advantages of
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the proposed method, we compare the proposed algorithm with the typical RVM algo
rithm on benchmark datasets and we apply the proposed method for analysis of functional 
neuroimages. In Section 6.5 we discuss the computational cost of the method and provide 
a probabilistic interpretation of the kernel function and finally in Section 6.7 we provide 
some conclusions.

6.2 Adjusting sparsity

In Bayesian modeling the characteristics of the estimation depend on the assumed prior 
distribution p{w). Thus, the sparsity of the weights w  of a sparse linear model is mo
tivated by their prior distribution p{w) =  f  p(w\ct)p(ct) d a . Since p(w\a) is given 
by (3.27), sparsity depends on selecting an appropriate distribution p(a). The typical 
RVM [Tipping, 2001] suggests the use of independent Gamma distributions, p(oc\a,b) oc 
Π Ϊ ι  a “_1e_6ai. Then, the weight prior p(w) is a Student’s t  distribution, which supports 
sparse models because of its heavy tails. Because it is difficult to select appropriate values 
for the parameters a, b of the Gamma distribution, they are typically set to a =  b =  0. 
These values define an improper uninformative distribution for a* and correspond to 
p(w ) =  Π ι= ι 1 / M ,  which again has heavy tails and supports sparse estimations.

Another approach to control the amount of sparsity, is to define a prior on cx. tha t di
rectly penalizes models with large number of effective parameters [Schmolck and Everson, 
2007]. Notice, that the output of the model at the training points y  — (y (x i ) , . . . ,  y (x ^ ) )T 
can be evaluated as y  = S t ,  where S  = Φ Σ Φ TB  is the so called smoothing matrix. The 
‘degrees of freedom’ of S ,  given by the trace of the smoothing matrix trace(S), measure 
the effective number of parameters of the model. This motivates the following sparsity 
prior [Schmolck and Everson, 2007]:

p{a) oc exp(—ctrace(iS)), (6.1)

where the sparsity parameter c provides a mechanism to control the amount of desired 
sparsity. When using specific values of the sparsity parameter c, some known model 
selection criteria are obtained [Holmes and Denison, 1999]:

c =

0

1

log(AT)/2 

log (N)

None (typical RVM),

AIC (Akaike information criterion), 

BIC (Baysian information criterion), 

RIC (Risk inflation criterion).

(6 .2)

Learning using this prior is achieved by maximizing the posterior ρ{α, β \ί)  a  p{t\ot, β )ρ(α)ρ(β). 
If the basis function set is orthogonal (ΦΤΦ =  I )  and the noise precision β  is the same

79



for each data point (B  — β ΐ )  this prior reduces to:

c
p(cifi) OC exp(

1 + < * i/0
)· (6.3)

Assuming an uninformative prior for the noise (p(/3) =  const), the use of the sparsity 
prior of (6.3) leads to the addition of a normalization term to the marginal log-likelihood 
of (3.43):

M

CCi/β '
(6.4)

Keeping only the terms that depend on a single parameter atj we can write:

n <*) =  *(«.) -
1  +  α</0 ’

(6.5)

Based on this decomposition, an incremental algorithm that maximizes the marginal 
likelihood has been proposed in [Schmolck and Everson, 2007], which is similar to the 
typical incremental RVM algorithm (Tipping and Faul, 2003]. However, because of the 
sparsity prior, setting the derivative of (6.5) to zero does not provide analytical updates 
(such as (3.57)) for the weight precisions a 4, but instead a numerical solution is required 
to update them.

In the proposed method, we consider the general case of non-orthogonal basis functions 
and heteroscedastic noise with different noise precision βη at each data point xn- Since 
trace($E$TB) =  Μ  — Σ ϋ ι we can write the proposed sparsity prior as:

p(ati) oc exp (6.6)

Learning is again performed by maximizing the posterior p (a ,0 \ t)  oc p{t\a , β)ρ{α)ρ{β), 
which leads to adding to the marginal log-likelihood of (3.43) an additional term that is 
obtained from (6.6):

M
L ' = L - c ( M  - J 2  <*Σ*). (6.7)

Setting, the derivative of L* with respect to logo* to zero,
QJJ 2

& log Oi s  2^  — Φ  =  0, (6*8)

we obtain the following update formula for a*:

Oti = Ίί
A4? — 2 c7 4E« *

(6.9)

In the regression case assuming that B  — β ΐ  we can also update β  by setting the
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derivative of L s with respect to log/? to zero:

dU
d log β  2

j  -  ||t -  Φμ\\2 -  ίΓΕ0θ (Σ Φ τ Φ) /?ο^ οβ(Φ Σ Φ ) =  0. (6.10)

Because of the sparsity prior, we cannot solve this equation analytically. However, we can 
easily obtain a numerical solution that we use to update /?.

Regarding the incremental algorithm, keeping only the terms of L  that depend on a 
single parameter on and because = 1 / ( a f +  s*) [Tipping and Faul, 2003], we obtain:

=  * (< * )-c ( l - on
Oij +  s. ■). (6.1 1 )

whose gradient is given by:

dls(cxi) _  1 

don 2
9? "  2cs,

on on +  Si (aj +  Si) \
(6 .12)

Setting this gradient to zero, we find that Is(a*) is maximized at

s?
an =

qf -  (2c +  l)s, 
a,: =  oo

if q2 > (2c +  l)sj, 

if q2 < (2c +  l)sj. (6.13)

6.3 Kernel Learning

6.3.1 Sparse infinite linear models

Consider a  linear model of the form

M
y(x \w ) = Y^Wi<t>i(x). (6.14)

i=1

Applying a  sparsity prior on the weights of this model allows us to use very flexible models, 
for example the RVM assumes one kernel function for each training point. We can even 
consider linear models with infinite number of basis functions:

y [*M O ] =  f  ™ (ξ)Φ(χ,ξ)άζ, (6.15)

which are defined by using a  family of basis functions φί(χ) = </>(*; ξ) with parameters 
ξ. Then, ιυ(ξ) is a  function whose output is the weight for the basis function with 
parameters £. In this context, sparsity implies that there will be only a finite number of
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nonzero weights:
* M

ω « )  =  Σ « 'ΐ ί(€ .β < ) , (6.16)
i=l

where δ(ζ,θί) -  1 if ζ  =  θ{, otherwise δ(ξ,θ,) =  0. Thus, under the assumption of 
(6.16), the sparse infinite linear model is equivalent to a finite linear model with weights 
w  — (wi , . . . ,  uuj\i)T and kernel parameters θ = (0χ,. . . , Θμ )τ ·.

μ

y{x\w ) = '^2,υ)ίφ {χ\θ ί). (6.17)
t=l

However, learning this model requires not only computing the posterior distribution 
of the weights w  and estimating the weight precisions a*, but also estimating the basis 
function parameters Θ. This can be achieved by modifying the incremental RVM algorithm 
in order to optimize the kernel parameters Θ a t each iteration.

6.3.2 Learning algorithm

In this section we propose an algorithm for learning the model of (6.17). Notice that 
the typical RVM algorithm cannot be applied here, since it is based on the assumption 
that θί are fixed in advance. Instead, the proposed algorithm is based on the incremental 
RVM algorithm and therefore it works with only a subset of the basis functions, which 
are named active basis functions. In order to explore the basis function space, we use 
mechanisms to convert inactive basis functions to active and vice versa.

Specifically, a t each iteration we select the most appropriate basis function to add 
to the model as measured by the increment of the marginal likelihood. Therefore, in 
order to select a basis function for addition to the model, we perform an optimization of 
the marginal likelihood with respect to the parameters of the basis function. In typical 
RVM, where the basis functions are kernels, this optimization is performed with respect 
to the locations of the kernels. Furthermore, because the kernels are assumed to be 
located at the training points, this optimization is discrete. In contrast, an infinite linear 
model assumes continuous parameters for the basis functions, and therefore continuous 
optimization must be employed, which uses the derivatives of the marginal likelihood 
with respect to the parameters of the basis functions. Furthermore, in contrast to the 
incremental RVM algorithm, which at each iteration selects a single basis function and it 
either adds it to the model or re-estimates its parameters or removes it from the model, the 
proposed algorithm performs at each iteration all these three operations; it first attempts 
to add a basis function to the model, then updates all parameters of active basis functions 
and finally removes any active basis functions that no longer contribute to the model. The 
additional operations speed up convergence without introducing significant computational 
cost, since there are only few active basis functions.

The steps of the proposed learning method are summarized in Algorithm 1 and we
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next discuss them  in detail.

A lgo rithm  1 Sparse Infinite Linear Model Learning Algorithm._____________________

1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their 
parameters at random.

(b) Optimize separately the parameters of each candidate basis function to maxi
mize the marginal likelihood.

(c) Add to the model the candidate basis function th a t increases the marginal 
likelihood the most.

2. Optimize the parameters Θ of all currently active basis functions.

3. Optimize hyperparameters a. and noise precision β.

4. Remove from the model any unnecessary active basis functions.

5. _Repeat steps 1 to 4 until convergence.

Select an  inac tive  basis fu n c tio n  to  a d d  to  th e  m odel

Addition of a basis functions to the model should always be performed in a way that 
increases the marginal likelihood. This search is an optimization procedure in the space 
defined by the hyperparameters » t and the basis function parameters θ{. In contrast, in 
the typical incremental RVM method, where the set of candidate basis functions is discrete 
and finite, selecting a basis function to add to the model requires discrete optimization 
which is performed by evaluating the marginal likelihood for each candidate basis function.

In our continuous optimization framework, the required derivative for on is given by 
(6.12) and for 6ik is given by:

dla(aj)
d0ik

1 Qj +  cat
OCi +  S i (θΙί +  S i ) 2 n  + Qi

Oli +  Si
Wi i (6.18)

where

(6.19)

(6.20)

These derivatives can be efficiently computed in a similar manner as in (3.55):

Ti

Wi

1 dsi
2  d9ik 
dgi = 
d9i

= Φί(θί)τ α
-1 9φί(θί)
-  d6ik

t TC _19φί(θί)
ik δθ<ik

_  cxiRi
Γ<

(6 .2 1 )
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(6.22)

where

(6.23)

(6.24)

which gives:

(6.25)

(6.26)

Notice that since we use a local optimization method (in our case the quasi-Newton 
BFGS method), we can only attain a local maximum of the marginal likelihood, which 
depends on the initialization. For this reason, we perform this maximization several times, 
each time with different initialization and then we use the parameters that correspond 
to the best solution. The initialization is randomly performed by sampling from an 
uninformative (uniform) distribution ρ(θ). In order to speed up convergence, we can 
initially place a basis function with high probability a t regions where the model does 
not fit the data well. For example, if the basis functions are Gaussian kernels, we can 
initialize the mean m  of a Gaussian kernel at a training point x n selected with probability 
proportional to the square of the error of the model at tha t point e£:

Optimize active basis functions

Although we optimize the parameters of each basis function at the time that we add it

For this reason, after the addition of a basis function, we optimize the parameters q< and 
6i of all the active basis functions of the current model. Specifically, the weight precision 
parameters are updated using (3.57), while the basis function parameters 0* are updated 
using an optimization algorithm. Instead of computing separately the derivative for each 
$i from (6.18), we use the following formula [Tipping, 2001]:

p (m  =  x n) = (6.27)

to the model, it is possible tha t the optimal values for the parameters of the already 
existing basis functions will change, because of the addition of the new basis function.

(6.28)
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w h e re  m £;θΓ) =  D™ is  S iv e n  b y ;

(6.29)

(6.30)

D  =  (C ~1t t TC ~ 1 -  σ _1)ΦA ~ l +  2 ο Β Φ Έ Α Σ  

=  B [ { t -  Φ μ )μ τ  -  ΦΣ] +  2 β Β Φ Έ Α Έ .

O ptim ize  h y p e rp a ra m e te rs  an d  noise p recision

The hyperparameters oc of the active basis functions are updated at each iteration using
(6.9) . Similarly, in regression the noise precision β  is updated by numerically solving
(6.1 0) .

R em ove basis fun c tio n s

After updating the hyperparameters oc of the model it is possible tha t some of the active 
basis functions will no longer have any contribution to the model. This happens because 
of the sparsity property, which allows only few of the basis functions to be used in the 
estimated model. For this reason, we remove from the model those basis functions that 
no longer contribute to the estimate, specifically those with ο* >  1012. Removing these 
basis functions is important, not only because we avoid the additional computational 
cost of updating their parameters, but also because we avoid possible singularities of the 
covariance matrices due to numerical errors in the updates.

R e p ea t u n til convergence

We assume that the algorithm has converged when the increment of the marginal likeli
hood is negligible (A L S < 10-6). Because at each iteration we consider only a subset of 
the basis functions for addition to the model, we assume that convergence has occurred 
only when the above criterion is met for ten successive iterations.

6.4 Numerical Experiments
In this section we present results from the application of the proposed method (denoted 
with aRVM) to various artificial and real regression and classification problems. We 
compare our approach with i) the typical RVM with Gaussian kernel [Tipping, 2001] and 
ii) the RVM with a smoothness prior and orthogonal wavelet basis functions (denoted 
with sRVM) [Schmolck and Everson, 2007]. Notice that the sRVM approach is based on 
wavelet analysis requiring that the training data points are equally spaced. Therefore, it 
can not be used for arbitrary multidimensional regression and classification problems and 
we test it only on one-dimensional artificial regression example.

More specifically, we consider Gaussian kernel functions of the form

rrii, hi) = exp [~h~2\\x -  m ,||2] , (6.31)
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whose derivatives with respect to the mean and variance parameters are:

2/if φ{{χη\ hi){xn TYii)) (6.32)

2 m it /ι<)||*η -  m<||2· (6-33)

Of course, we can use any other type of kernel functions, as long as we can compute the 
derivatives with respect to the parameters we want to optimize. We can even examine 
many types of basis functions simultaneously, as proposed in Chapter 4.

In our implementation we use the quasi-Newton BFGS method to perform the neces
sary optimizations. Specifically, in order to select a basis function to add to the model, 
we perform 100 runs of the BFGS, each time starting from a different initialization, and 
each of these runs lasts no more than 10 BFGS iterations. Then, we only keep the 
best solution and consider adding the corresponding basis function to the current model. 
When updating the parameters of all the active basis functions we stop after 100 BFGS 
iterations.

6.4.1 Experiments on Artificial Data
Regression

In the first experiment we generated N  — 128 points from the well-known ‘Doppler’ 
function [Schmolck and Everson, 2007]:

g(x) =  y /x ( l  — x ) sin —, (6.34)
x + 6

with δ = 0.01 and added white Gaussian noise of variance σ2 = 0.1. We then applied 
the three compared methods and evaluated the estimated model on the same 128 points. 
In order to measure the quality of the estimates we compute the mean square error 
M S E  =  Y2n(d(x n) — iln)2/N , where yn the estimated value of the function at input x n 
and N  is the number of data points. For aRVM and sRVM we set the sparsity parameter 
to c =  1, c =  log(N)/2 and c =  log(TV) and for the kernel width of RVM we test several 
values and select to  illustrate the cases h =  1.5, h =  2 and h =  4. The second of these 
cases (h = 2) is the value that produced the smallest MSE among all tested values of h. 
The results are shown in Fig. 6.1.

Notice that as the smoothness parameter c increases, the estimated aRVM model con
tains less basis functions, thus it exhibits robustness to noise. The same happens with the 
sRVM and also when increasing the width of the kernel in the typical RVM. Also notice, 
that when using the typical RVM with a  small kernel size (shown in Fig. 6.1b), noisy 
estimates are obtained, while when using a large kernel size (shown in Fig. 6.1h), large 
fluctuations of the function (high frequencies) cannot be adequately estimated. Instead, 
the adaptive RVM and the sRVM (shown in Fig. 6. Id and Fig. 6. If) can successfully es-

9φί(χη\ rrij, hj) 
drrii

d<f>i(xn;m i,h i) 
dhi
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aRVM RVM sRVM

(a) c =  1, M S E  =  0.0037, R V  =  16(b) h  =  1.5, M S E  =  0.0056, R V  =(c) c =  1, =  0.0047, ΛΚ =  36
57

R V  =  12 ΛΚ = 19

(g) c =  log(AT), M S £  = 0.0092,(h) h =  4, M S E  =  0.0090, R V  =  20(i) c =  log(AT), M S E  =  0.0254, 
R V  — 5 R V  =  4

Figure 6.1: Regression example with Doppler signal. Estimates obtained (a),(d),(g) with 
aRVM, (b),(e),(h) with RVM and (c),(f),(i) with sRVM. The dashed line shows the true 
signal, the dots are the noisy observations and the solid line shows the estimate. Under 
each figure the values of the kernel width h or sparsity parameter c, the test mean square 
error (M SE )  of the model and the number of relevance vectors (RV) are shown.

timate functions tha t exhibit smoothness in some regions and large fluctuations in other 
regions. However, the sRVM gives worst solutions in terms of M S E  than aRVM, because 
Gaussian basis functions appear to be more appropriate than wavelets for modeling the 
‘Doppler’ signal.

In the next experiment, we compare the performance of aRVM, RVM and sRVM for 
several noise levels, using again the ‘Doppler’ function of (6.34). For aRVM and sRVM, 
we set the sparsity parameter to c =  log(7V)/2 and for RVM we selected to illustrate the 
cases h = 1.5, h =  2 and h — 4 for the width of the kernel. Notice that h = 2 is the 
optimal value for the width of the kernel when S N R  =  10. In Fig. 6.2 we provide the
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Figure 6.2: Comparison of the performance of aRVM, typical RVM and sRVM for several 
noise values.

MSE of the estimate of each method for various signal to noise (SNR) ratios. Here, we 
observe that the RVM model with a specific kernel width provides good performance only 
for a small SNR range. Instead, aRVM and sRVM provide effective models for any SNR 
value, but aRVM provides consistently better performance than sRVM.

Next, we applied the proposed method on a two-dimensional generalization of the 
‘Doppler’ function:

g{x l. *a) =  0(*i)0(*a), (6-35)

where g(x) is given by 6.34. We then set <5 =  0.01 and generated a 128 x 128 image by 
sampling this function on a grid. We trained the compared methods using a  subset of these 
samples, containing a proportion of r  =  0.5 randomly selected samples. Furthermore, we 
added to the observations white Gaussian noise of variance a2 =  0.1.

We consider two approaches for two dimensional regression. In the first, we use 
isotropic Gaussian kernels, which assume the same variance for each dimension of the 
input space and are given by

<t>(x,m,h) =  exp [—h~2\\x — m ||2] . (6.36)

The second approach uses anisotropic Gaussian kernels, which use a separate variance for 
each dimension of the input space:

φ{χ\ m , h) =  exp
. i=l

(6.37)

We denote the second approach as aRVMd.
We then applied on the two-dimensional ‘Doppler’ function (i) the proposed aRVM
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(a) true function (b) noisy samples

Figure 6.3: (a) True signal and (b) noisy samples of the two-dimensional ‘Doppler’ signal 
tha t was used for training.

aRVM

(a) M S E  =  0.0036

aRVM'* RVM

(c) M S E  =  0.0038

Figure 6.4: Estimation of the aRVM method with (a)isotropic and (b)anisotropic Gaussian 
kernel functions.

method with Gaussian kernels (ii) aRVM with anisotropic kernels (aRVMd) and (iii) the 
typical RVM method with a fixed Gaussian kernel that was selected using cross-validation. 
The result of each method was evaluated by measuring the mean square error with respect 
to the true function (without noise) on the whole 128 x 128 image. For aRVM, we set the 
sparsity parameter to c =  log(Ar)/2 and for the kernel width of RVM we test several values 
and select to illustrate the case h = 2, which is the value that produced the smallest MSE 
among all tested values of h. The samples of the training set are shown in Fig. 6.3 and the 
estimations of the algorithms are shown in Fig. 6.4. Observing these results, it is obvious 
that in this case using anisotropic kernels improves the accuracy of the estimation.

Classification

In this subsection we compare the typical RVM and adaptive RVM (aRVM) models on 
classification problems (sRVM has been proposed only for regression problems). We gen
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erated two-class, two-dimensional, artificial data by obtaining 50 samples from each of 
the following Gaussian mixture distributions:

p(*|Ci) =  0.25N (μι, σ^Ι) + 0.75Ν(μ2, σ \ ΐ ), (6.38)
p{x\C2) = 0.25N (μ 2,σ?Ι) + 0 . 7 5 ^ , ^ ! ) ,  (6.39)

with μ ι  =  (0.5,0.5)Γ, μ 2 =  (—0.5, —0.5)r , σ\ = 0.5 and =  0.05. It can be observed that 
each class consists of two Gaussian clusters, one with large variance and another with small 
variance. We then trained RVM and aRVM classifiers and evaluated them by computing 
the percentage of misclassified examples over Nt =  10000 test points drawn from the 
mixture distributions of (6.38) and (6.39). For aRVM we set the sparsity parameter to 
c =  1, c =  \og(N)/2  and c =  log(N) and for RVM we test several values for the kernel
width and select the values h =  0.2, h = 0.4 and h =  0.8, the second of which (h =  0.4)
is the value that minimizes the misclassified test examples. Notice in Fig. 6.5 that, when 
using the typical RVM with a  small kernel, there is severe noise in the estimation of the 
decision boundary between the clusters with large variance. Instead, when using a large 
kernel, the model fails to estimate the decision boundary near the clusters with small 
variance. On the other hand, when using aRVM both clusters can be estimated well 
because kernels of different width are used. Although the ability to use very small kernels 
may lead to overfitting, this is avoided by selecting appropriate parameter value for the 
sparsity controlling prior c (Fig. 6.5c).

6.4.2 Experiments on Real Datasets
In this section we compare the performance of the proposed method (aRVM) with the 
typical RVM method on several regression and classification datasets1. In what follows, we 
describe the experimental setup that we followed. For each dataset, in order to estimate 
the generalization error of each method, we perform ten-fold cross validation, i.e. we 
perform ten experiments using each time one fold as a test set and the remaining nine 
folds for training. In each experiment, we test several values for the parameters of the 
models, specifically h =  0 .5 ,1 ,1 .5 ,..., 10 for the width of RVM and c =  1, c =  log(N) /2 
and c =  log(N) for the sparsity parameter of aRVM. For each parameter value, we train 
nine models, using one of the nine folds as validation set and the remaining eight folds as 
training set. The parameter value providing the best average performance over the nine 
runs is selected and the corresponding model is subsequently evaluated by measuring 
the error on the test fold. In regression, the error is the mean square error, M S E  = 
ICnĈ T» — Vn)2/N , where tn is the value given by the test set, yn the predicted value and N  
the number of test examples. In classification the error is the percentage of misclassified

'Computer hardware, concrete and pima datasets were obtained from the UCI machine learning 
repository at h ttp ://arch ive.ics.uci.ed u /m l/, the Boston housing dataset was obtained from http: 
/ / l i b . s ta t . emu. edu/dataaets/boston, and the banana, titanic, image and breast-cancer datasets from 
http://Id a .f  i r s t . f raunhofer.de/proJecta/bench/.
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aRVM RVM

(e) c =  log(AT), E  =  15.24%, R V  =  4 (f) h =  0.6, E  =  23.74%, R V  =  10

Figure 6.5: Classification example on artificial Gaussian clusters. Estimates obtained with 
(a),(c),(e) aRVM, (b),(d),(f) RVM. Circles and crosses correspond to the data points of 
the two classes, the solid line shows the decision boundary and the dotted line shows the 
curves where the decision probability is 0.75. Under each figure the values of the kernel 
width h  (for RVM) or sparsity parameter c (for aRVM), the misclassification error (E) 
and the number of relevance vectors (R V ) are shown.
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Table 6.1: Com parison of aRVM and RVM on regression.

aRVM RVM

Dataset patterns features error RVs error RVs

computer hardware 209 6 22379 5.0 30004 140.5
Boston housing 506 13 11.53 13.27 12.48 69.5
concrete 1030 8 34.515 9.10 44.204 140.2

Table 6.2: Comparison of aRVM and RVM on classification.

Dataset patterns features

aRVM 

error RVs

RVM

error RVs

banana 5300 2 0.1126 6.3 0.1092 12.1
titanic 2200 3 0.2270 2 0.2292 31
image 2310 18 0.0387 6.9 0.0390 34.6
breast-cancer 277 9 0.2844 4.4 0.2818 9.6
pima 768 8 0.2303 5.6 0.243 27.9

examples in the test set.
The results in Tables 6.1 and 6.2 show the cross-validation error and the number 

of relevance vectors (averaged over 10 folds) that were obtained by applying the RVM 
and aRVM methods on several regression and classification datasets. We can observe 
that in both regression and classification problems, the solutions obtained with aRVM 
use much less relevance vectors (RV) than the solutions obtained with the typical RVM. 
Furthermore, in regression the aRVM method provides more accurate estimates compared 
to the typical RVM. In the classification datasets, the accuracy of the two methods is 
generally comparable, but the aRVM solution is considerably sparser.

6.5 Discussion

6.5.1 Computational Cost
The computational cost of each iteration of the typical RVM algorithm is dominated by 
the inversion of the N  x N  matrix of (3.33), which is 0 ( N 3), where N  is the number of 
training points, assuming that we use one basis function at each training point. In the 
incremental RVM algorithm the size of the matrix Σ  is Μ  x M , where M  is the number 
of active basis functions that are used in the estimated model and which is much smaller 
because the model is sparse. The computational cost of the incremental algorithm is 
dominated by the cost of selecting which basis function to add at each iteration, which is 
0 ( N 2M).

In the proposed aRVM algorithm, selection of which basis function to add is achieved
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using a quasi-Newton optimization method, which is in general more computational ex
pensive as compared to the incremental RVM basis function selection mechanism. How
ever, generally aRVM requires significantly less iterations, because it adds less basis func
tions than the incremental RVM. Furthermore, aRVM does not require the additional com
putational cost of performing cross-validation to select the kernel width. The smoothness 
parameter c can be set to  c =  log(V )/2 , which corresponds to the BIC model selection 
criterion and which has been observed to give very good results in most problems (this 
value was also suggested in [Schmolck and Everson, 2007]). Even if we choose to use 
cross-validation to select the smoothness parameter c, we typically need to consider only 
few values, in contrast to the RVM where selecting the width of the kernel is a much more 
tedious task.

6.5.2 Probabilistic Kernel Interpretation

As noted in Chapter 3, a  Gaussian process (GP) [Rasmussen and Williams, 2006] models 
an unknown function y (x )  by assuming tha t the joint distribution p (y(x i ) , . . . ,  y(xpf)) of 
any subset of N  values of this function y(x)  is Gaussian. Usually the mean of this Gaussian 
distribution is assumed zero and the Gaussian process is defined by the covariance function 
K (x \ ,X 2), which computes the covariance of the outputs of the function y (x )  at two 
arbitrary points Xi and x 2.

As noted in [Tipping, 2001], the marginal distribution of the observations in a sparse 
linear model is a Gaussian distribution given by ρ(£|α, β) =  iV(t|0, C ), see (3.43), therefore 
the sparse linear model is a special case of GP, with covariance function given by:

M
K {x  U X 2) =  (6.40)

1=1

This covariance function depends directly to the basis functions φί(χ). Furthermore, 
assume that the generative model p(x) of the inputs x  is a mixture model:

M
p(*) =  Σ ρ (*)ρ (* 1 0 . (6·41)

i=l

with the generative distributions p(x\i) proportional to the kernel functions <j>i(x):

p(x\i) oc <f>i(x) (6.42)

and p(i) oc a,-1 . Then the covariance function K (x  1 , 012) of (6.40) is proportional to the 
probability to generate two inputs x x, x 2 from the same component i\ — i2 of the mixture 
model:

M
K { x u x 2) <xp{x1, x 2\ii = i 2) = Σ ρ(*)ρ (χ ιΙ*)ρ (* 2 ΐ*)· (6-43)

1=1
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Such probabilistic interpretation of the kernel function has been used to construct 
kernels in [Haussler, 1999]. Here, it provides useful intuition on the advantages of learning 
the basis functions. Typically, in order to fit a mixture model to some training set, we 
learn the mixing coefficients and also parameters of the mixing distributions. However, 
the typical RVM learns only the mixing coefficients. For this reason, it heavily depends 
on a good choice of the mixing distributions—they are usually Gaussian kernels but 
their variance is unknown. Furthermore, due to computational costs, we cannot consider 
very large numbers of basis functions and therefore typically all the basis functions have 
common width parameters. In contrast, aRVM which learns parameters of the basis 
functions, can approximate p (x ) more accurately, because it is a much more flexible 
model. However, it is important to use the sparsity prior [Schmolck and Everson, 2007] 
in order to avoid overfitting.

6.6 Statistical Models for Analysis of Functional Neuroimages

In this section we apply the proposed adaptive kernel learning methodology to detect 
activations in functional neuroimages, which are brain images whose intensity measures 
the neural activity of the brain [Friston et al., 2007]. Although neural activity cannot be 
directly measured, there are techniques to measure it indirectly. PET imaging measures 
the blood flow and Functional MRI the BOLD (Blood Oxygenation Level Dependent) 
signal in a brain area, which are both proportional to the neural activity in that area. 
Thus, brain regions which are activated can be identified by finding regions in a PET or 
fMRI image where the blood flow or BOLD signal is elevated in comparison to a baseline 
or control state. The baseline is the measurement of blood flow or BOLD signal when the 
brain does not perform any task. Similarly, brain regions which have lower activity than 
the baseline state are said to be inhibited.

A brain activation study aims in recording brain activity during performing a specific 
task, such as cognition, memory, sensory stimulation and motor activity or studying the 
effects of diseases or drugs to normal brain activity. A typical activation study consists 
of four parts: experimental design, image acquisition, preprocessing and analysis.

The experimental design is the step where all the parameters of the experiment are 
defined. There are mainly two types of designs: 1 ) block design and 2) event-related 
design. In block related design, the experiment consists of alternating periods in which 
a specific event or task is performed and periods of rest. Neuroimages are obtained 
continuously, and can be split into two sets, depending on whether the task or event is 
performed at the time or not. Event- related activation studies consist of a brief stimulus 
performed only once. Furthermore, other parameters, such as the subjects that will be 
tested and the machinery that will be used are determined. Usually, the signal to noise 
ratio of the obtained images is very poor and in order to get robust results many images 
are required.
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In the image acquisition step several scans of the brain of each subject are obtained 
and in the preprocessing step the data are prepared for analysis. The main objective 
of this step is to eliminate the differences in the images that are caused by extraneous 
factors. For example, the position of the head of the subjects cannot be perfectly repeated 
among scans, so an image processing technique (image registration) is used to correct any 
misalignments. If images are obtained from more than one subjects, differences in the 
anatomy of the subject’s brain should also be eliminated before the image analysis step. 
In this case, piecewise linear transformations based on a brain atlas are used to bring 
the brain images into anatomical alignment in a standard coordinate system. Then, the 
images are usually spatially smoothed by a low-pass filter.

The final step is image analysis. The aim of neuroimaging analysis are: i) characteri
zation of the spatio-temporal activation pattern induced in the brain by the stimulus, and 
ii) estimation of data model parameters that can be used to accurately predict the values 
of experimental design parameters (e.g. state labels) given the brain scans not previously 
analyzed.

There are several important factors that make it difficult to relate specific changes in 
brain activity to the experimental conditions being studied. First, the brain is always 
active therefore the experiment must be designed carefully to isolate the effect of the 
stimulus. Furthermore, the degree of activation with respect to the baseline state may be 
very slight and difficult to detect. Another problem is that the images often suffer from 
poor quality (low resolution, blur and noise). In experiments tha t involve many subjects 
additional errors may be introduced because of anatomical and functional differences 
among subjects. Finally, it is difficult to validate the results of the analysis, because very 
little prior knowledge is available about human brain activity.

These challenges have inspired the development of several image processing and sta
tistical tools to detect and establish statistical significance of studies. The predominant 
approach [Friston et al., 2007] is based on the t-test from statistics and uses pixel-wise 
comparisons between images of the control and test states of the brain to detect the local 
changes in activity. More recent methods, which have gained lower acceptance so far, are 
based on pairwise pixel correlations. Recently, Bayesian techniques have been proposed 
that model spatial correlations of the activation signal. More specifically, [Penny et al., 
2005] models spatial correlations using a Bayesian prior based on the Laplacian opera
tor and [Flandin and Penny, 2007] uses a Wavelet-based prior. Furthermore, in [Lukic 
et al., 2007] kernel methods, such as the RVM of Section 3.5, have been used to account 
for spatial correlations of the activation signal.

In simple fMRI studies two sets of volumes are acquired during an experiment: i) 
baseline volumes that are obtained when the subject rests and ii) activated volumes that 
are obtained when the subject is exposed to the examined stimulus. The problem of 
interest is to statistically compare activated and baseline volumes to find activated regions 
in the brain, i.e. regions where neural activity significantly changes when the subject is 
exposed to the studied stimulus. More complicated fMRI studies may study the effects
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of many simultaneous stimuli. ■f,· ■

6.6.1 The t-test

Typical statistical analysis of functional neuroimages is performed separately for each 
voxel [Friston et al., 2007], without modeling any correlations between neighboring voxels. 
For this reason, smoothing is commonly performed as a preprocessing step. A common 
assumption is that the intensity of each voxel is generated by the addition of i) a constant 
baseline value, ii) possibly an activation and iii) some noise source. We denote with X *, 
and X £, the intensities in the i-th voxel of the n-th volume that has been acquired at the 
baseline and activation states respectively. Then, we can write

X L  = B ,+ < ~ , («.44)

-  B, +  A  +  f,", (6.45)

where B t and A t are  the unknown intensities in the i-th voxel of the baseline and activation 
respectively and e" is the noise source. The noise is typically assumed zero-mean Gaussian 
distributed, with different variance o f at each voxel, p(e?) =  N(e”f0, o f). Based on this 
assumption, we can compute the likelihood that a voxel has been generated from this 
model:

N*
Π Ν ( Λ ί , |β ,

i \n=l

where N b and jV* are the numbers of volumes acquired in the baseline and activation 
states respectively.

The maximum likelihood estimates of the baseline Α» the activation A,- and the vari
ances o f are given by:

p{X [A i ,B ira i) =  T \ ^ Π Ν ί - ^ Ι Β ί + Λ , « '? ) ] ,  <«*>
n=l J

(6.47)

(6.48)

(6.49)

where N  — N b+ N a is the total number of acquired volumes in both baseline and activation 
states. Furthermore, it can be shown that the baseline and activation estimations A and 
A  are Gaussian distributed, with A  ~  N (A |B o j j t )  and A t ~  N (A |A i, jfc )  and that 
V =  (JV — l)o f/o f  follows a χ 2 distribution.
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Then, the  quan tity

t = ΪΝ- li (6.50)
d i/y /N

follows a Student’s t  distribution with IV — 1 degrees of freedom. Therefore, in order to 
test the hypothesis tha t there is no activation in the i-th voxel (A* =  0 ), we use the t-test

t  < T , (6.51)

where Τ’ is a threshold that is defined by selecting the probability Pfa of incorrectly 
identifying a pixel as activated (typically Pfa =  0.05).

6.6.2 Application of the Sparse Linear Model with Kernel Learn
ing to Detect fMRI Activations

In this chapter, we apply the sparse Bayesian linear model of Chapter 6  to detect acti
vations in functional neuroimages. More specifically, we use the sparse linear model to 
estimate the unknown activation signal A*. Sparsity is desirable because typically only a 
small proportion of the voxels are activated. Because this approach models spatial corre
lations of the activation signal, statistical inference is not performed voxel-wise. Instead, 
after computing the voxel estimates A  from (6.48) and their variance <5f from (6.49), we 
refine this estimation using the sparse linear model.

The main advantage of learning the kernel parameters of the sparse linear model 
is that activations of different sizes and shapes can be simultaneously detected. More 
specifically, spatial correlations are not assumed to be identical in all brain regions. For 
this reason, this method allows simultaneous detection of activations with small size and 
high intensity, or large size and small intensity.

When detecting activations in fMRI, it is desirable to know the probability of incor
rectly detecting an activation. Using the sparsity prior (6.1) we can adjust this probability 
by setting an appropriate value for the sparsity parameter c. Assuming that we train the 
sparse linear model using the incremental algorithm of Section 3.4.3, activation will be 
detected only if a basis function is added to the model, which happens using (6.13) when

T  =

qf > (2 c +  1 )5 *,
( Φ ΐ ο : ΐ ΐ ) 2 > ( 2 ο  +  ΐ ) Φ ΐ ο : ΐ Φ ί ,  

β 2{ Φ Ϊΐ) 2 > (2 c +  1 )βφ Ιφ ί,

(Φ ΐi ?
β - ιΦΤΦ>

> (2 c + 1 ),

(6.52)

(6.53)

(6.54)

(6.55)

where we assume an initially empty model, thus CL* = β  1J. Assuming that there is no 
activation in the observed signal we have:

Ν (ί|0 ,σ 2 Ι ) , (6.56)
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(6.57)

(6.58)

.  Φ ϊ * ~
4>Jt

Ν (φ 1φ ,σ2φ1φί),

N (* ft |0 ,l) ,

(Φ ΪΙ)2
σ2φΤ φ { (6.59)

We assume that the noise estimate β~ ι «  σ 2 is accurate, therefore T  follows a  χ 2 distri
bution

T  = ( Φ ΐ ΐ ) ' (6.60)
β-'Φ ΪΦ ί '

Based on this result we can compute the probability of incorrectly detecting activation as 
a  function of the sparsity parameter c. For example PpA — P {T  > 2c + 1) =  0.05 gives 
c =  1.42 and Pfa =  0 01 gives c =  2.82.

6.6.3 Experimental Setup
It is widely accepted that evaluation of the detection performance of statistical analysis 
methods is a difficult task, because in fMRI datasets the actual activation signal is gener
ally unknown. For this reason, the evaluation of statistical analysis methods is typically 
performed with simulated data (phantoms). However, in order for the evaluation to be 
realistic the simulated data must have similar statistical properties with real fMRI data.

Typically, in order to generate simulated data, we first generate a baseline volume and 
then add several instances of noise based on a stochastic noise model. Finally, activations 
are added to the volumes that are assumed to belong to the active state. Here, in order 
to generate data that have similar statistical properties to real fMRI data, we do not 
generate artificial realization of the noise. Instead, we use real baseline volumes that have 
been obtained using an fMRI scanner with the subject at the resting state. Then, we 
add known artificial activations to some of the baseline volumes, in order to generate the 
activated ones.

The activations that we add are Gaussian-shaped, given by

A (xu Vi) =  Vexp ^ - ^ 5  (x< -  *o)2) -  ^(l/<  -  i/o)2̂  , (6.61)

where V  is the activation intensity, (io»2/o) is the center of the activation and σΧ,σ ν are 
the variances at each direction.

6.6.4 Numerical Results
Next, we compare three methods for detecting activations in fMRI signals using the 
simulated data described in the previous section. The first method, which we denote 
with SPM, is based on estimating the activation signal using (6.48) and then denoting 
a voxel as activated or not based on the t-statistic of (6.50). For this method we use
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the popular software package statistical parametric mapping (SPM2). Instead of using 
the t-test of (6.50), the other two methods that we compare attem pt to model spatial 
correlations of the activation signal. They are based on training a sparse Bayesian linear 
model using the activation estimates of (6.48). More specifically, one method is denoted 
with RVM and uses the RVM with Gaussian kernels [Lukic et al., 2007]. The other 
method is denoted with aRVM and again uses an RVM with Gaussian kernels but also 
uses the methodology presented in Chapter 6  to learn the location and scale parameters 
of the Gaussian kernels. Furthermore, we assume separate variance parameter for each 
direction of the kernel, in order to allow for elliptical shaped activations.

The increased flexibility of the aRVM method is demonstrated in Fig. 6 .6 , where the 
estimated activations by each method are shown. We can see in Fig. 6 .6 b tha t the RVM 
method with a small kernel size results in a large number of falsely detected activations. 
On the other hand, in Fig. 6 .6 c we observe that using a larger kernel, we fail to estimate 
the top right part of the activation, because it is not large enough. In Fig. 6 .6 d we see 
that by learning parameters of the kernel we can detect all the regions of the activation 
signal, while very few regions are incorrectly identified.

We have also performed a more detailed evaluation of the detection performance of the 
methods. For this purpose, we added 40 Gaussian artificial activations given by (6.61), at 
the baseline image and used each of the three methods to estimate them. The activations 
were added in distant locations in order to make detection of each activation independent 
to the others. Then ROC curves were generated by varying the probability threshold over 
which voxels are detected as activated. The obtained ROC curves are shown in Fig. 6.7, 
for probability of false alarm less than 0.1. In this figure we observe that aRVM has the 
overall best detection performance. However, because of the sparsity enforcing prior, it 
does not provide probabilities of false alarm larger than 0.05.

6.7 Conclusions
We have presented a learning methodology according to which the parameters of the basis 
functions of sparse linear models can be determined automatically. More specifically, we 
assume that the basis functions of this model are kernels and, unlike most kernel methods, 
for each kernel we learn distinct values for a set of parameters (i.e. location, scale). Because 
many parameters are adjusted, the proposed model is very flexible. Therefore, to avoid 
overfitting we use a sparsity prior that controls the effective number of parameters of the 
model, in order to encourage very sparse solutions.

The proposed approach has several avantages. First, it automatically learns the pa
rameters of the kernel, therefore there is no need to select them using cross-validation. 
Also, because each kernel may have different parameter values, the model is very flexi
ble and it can solve difficult problems more efficiently than the typical RVM. This was

2SPM can be obtained from h ttp ://w w .fil.io n .u c l.a c .u k /sp n i/so ftw a re /.
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i.6 : (a) Example activation pattern and its estimation with (b) RVM with small 
σ2 =  2.5) (c) RVM with large kernel (a1 =  4) (d) RVM with adaptive kernel

6.7: ROC curves that summarize the performance of t-test, RVM and aRVM 
Is.
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demonstrated in Section 6.4 where we considered regression of a function with varying 
frequencies and classification of data drawn from a mixture of distributions with very 
different characteristics. Because of the sparsity prior th a t we use, the obtained models 
are typically much sparser than the models obtained using the typical RVM. Further
more, we used the proposed kernel learning algorithm to model spatial correlations of the 
activation signal in functional neuroimages. The proposed method, unlike previous ones, 
can simultaneously detect activations that are small in size but have high intensity and 
activations tha t have low intensity but large size.

In this method, we have assumed that the basis functions are Gaussian kernels and we 
learn the location and their width parameters. However, the proposed methodology can be 
also used for selecting other types of bases. Furthermore, it is possible to simultaneously 
use several types of kernel functions and the appropriate kernel should be automatically 
selected, in a  similar spirit as in Chapter 4.
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C h a p t e r  7

L o c a l  F e a t u r e  S e l e c t i o n  w i t h  

A d a p t i v e  K e r n e l  L e a r n i n g : 

A p p l i c a t i o n  t o  t h e  A n a l y s i s  o f  

DNA M i c r o a r r a y  D a t a s e t s

7.1 Introduction

7.2 Feature Selection  based on Linear M odels

7.3 A dap tive K ernel Learning for Feature Selection

7.4 N u m erica l E xperim ents

7.5 C onclusions

7.1 Introduction

In several regression and classification problems the examples in the training set contain a 
very large number of features. For example, in biological microarray datasets, the number 
of features may be up to 100,000. In such cases, it is often useful to preselect some of the 
features, in a process known as feature selection, and then build regression or classification 
models using only the selected features. This approach has several advantages. First, the 
computational cost of training a  model is usually greatly reduced, because of the reduction 
in the number of features. More importantly, removing irrelevant features improves the 
generalization performance. This happens because irrelevant features only add noise to the 
observations, and many methods tend to overfit this noise. Finally, in several applications 
it is interesting to know which features are relevant to make decisions, for example in
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biological microarray experiments it is important to identify the gene expressions that are 
related with some condition.

An introduction to feature selection methods can be found in [Guyon and ElisseefF, 
2003]. Feature selection methods can be divided in two broad categories. First, there are 
methods that are based on variable ranking, i.e. they identify the relevance of each feature 
independently. Then there are methods based on subset selection that assess the discrim
inative capability of subsets of features. The second category is generally more powerful, 
because it can identify correlated features; for instance two features that independently 
seem irrelevant to the problem, might turn out to have significant discriminative capability 
when examined together. However, subset selection methods are more computationally 
demanding and for this reason feature selection in biological experiments with microarray 
datasets is usually performed with variable ranking methods.

In this chapter we propose a local feature selection method that is based on learning 
kernel parameters of a sparse Bayesian linear model using the approach of Chapter 6 . 
More specifically, a  sparse Bayesian liner model is assumed, whose basis functions are 
Gaussian anisotropic kernels. Local feature selection is then achieved by estimating for 
each kernel the separate scaling factor (width) parameter that corresponds to each feature. 
Because we learn different values for the scaling factors of each kernel, feature selection is 
local. This means tha t different features are assumed to be relevant at different regions of 
the input space. In order to eliminate irrelevant features, we assume a sparsity enforcing 
prior on the scaling factors of the kernels.

Furthermore, we treat the problem of analyzing DNA microarray datasets. We con
sider some typical feature preselection approaches in order to eliminate irrelevant features 
and reduce the dimensionality of the dataset to manageable size. Then we apply i) the 
typical RVM, ii) the RVM with adaptive kernel learning classifier of Chapter 6  and iii) 
the proposed RVM with simultaneous feature selection. Experimental results demonstrate 
that the adaptive kernel learning algorithm of Chapter 6  exhibits superior classification 
performance compared to the commonly used RVM model. Furthermore, the proposed 
local feature selection approach has similar performance and may be useful in identifying 
which genes are significant for the classification task.

7.2 Feature Selection based on Linear Models

Next we present an overview of two feature selection approaches based on variable rank
ing, namely recursive feature elimination (RFE) and automatic relevance determination 
(ARD). These approaches are based on training linear models on the available data. 
However, ARD builds linear models that are sparse in the number of features, while RFE 
builds linear models that may be sparse in the number of input points.
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7.2.1 Recursive Feature Elimination

A common approach in feature selection is recursive feature elimination (RFE) [Kohavi 
and John, 1997]. This approach initially builds an appropriate classification or regression 
model using all the available features, and uses the produced model to assess the signifi
cance of each feature. The least significant feature is then eliminated and this process is 
repeated until the desired number of features are obtained.

More specifically, assume that we are given a two-class classification training set 
{x n-,yn)n=\i where yn G {—1,1} determines the category that the example x n G Kd 
belongs to. RFE is commonly used with linear classifiers, which make decisions based on 
a decision function of the form

D{x) = w Tx  + b, (7.1)

where x  = ( x i , , Xd)T and w  = (w\ , . . . ,  Wd)T is the vector of weights. Using a linear 
classifier, a straightforward method to compute the significance ŝ  of the i-th feature is:

Si = Wi- (7.2)

In recent works, the popular SVM linear classifiers have been used [Guyonet al., 2002]. 
In such case, the parameters w  of the final model are given by

w  =  a nynx n, (7.3)
n€SV

where the parameters a n are estimated dinring SVM training and S V  is the set of support 
vectors. In the method proposed here, we estimate the parameters a n using an RVM 
classifier. This classifier is very similar but it has no parameters to select, unlike the SVM 
that needs the a  priori specification of the soft margin parameter C.

In datasets th a t contain a very large number of features, the above sequential elimi
nation approach may be very computationally demanding. In order to reduce the compu
tations, we can eliminate more than one features at each iteration. Especially in the first 
few iterations, irrelevant features should be easily identified, therefore we can begin by 
eliminating a large number of features and at subsequent iterations reduce the number of 
features eliminated at each step. In [Ding and Wilkins, 2006] it is suggested to eliminate 
-fr features at the i-th  iteration.

7.2.2 Automatic Relevance Determination

A different approach to feature selection is based on the Bayesian framework using an 
appropriate prior distribution and it is known as automatic relevance determination [Neal, 
1996]. This approach employes a special type of the Sparse Bayesian Linear Regression 
model described in Section 3.4 tha t does not use a kernel function. The output of the
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linear model for input x =  ( x i , . ,Xd)T is given by:

d

y{x) =  y^vjjX j =  w Tx , (7.4)
t= l

and a prior is assumed for the weights w:

d

ρ(ΐϋ) =  Π Ν^ Ι 0-α*Γΐ)· (7·5)
«=1

As explained in Section 3.4, this prior favors sparse the estimations for the weights, 
meaning that most of the weights are set to zero. As a consequence, the features Χχ that 
are associated with zero-valued weights are automatically eliminated.

7.3 Adaptive Kernel Learning for Feature Selection

In supervised learning problems, feature selection is typically performed as a preprocessing 
step, which is performed before building a classification or regression model. The general 
idea is to eliminate irrelevant features in the training set, in order to improve the gener
alization performance of the model and simultaneously reduce the computational cost of 
its training. However, it is possible to design supervised learning models that incorporate 
feature selection mechanisms, in order to perform feature selection simultaneously with 
estimation of model parameters. These models need to consider all the available features 
for training and, for this reason, they have relatively high computational cost. How
ever, they can achieve better peformance in feature selection, because they can exploit 
information that the trained model provides.

For example, Krishnapuram et al. [2004] suggest the JCFO classification method that 
jointly selects relevant features and estimates parameters of the classifier. The classifier 
that they use is based on a linear model and feature selection is achieved by estimating 
parameters of the kernel function. More specifically, a scaling factor θχ is estimated for 
each feature x i} which measures the significance of that feature. For example, Gaussian 
kernels can be used, if they are parameterized as:

K g(x , x n) =  exp
d

^  θχ(Χχ Xni)
i=l

(7.6)

Then a Laplacian sparsity prior is enforced on the scaling factors Θ — {θ\ , . . . ,  0d)T in 
order to eliminate irrelevant features.

In this section we propose a method to incorporate a feature selection mechanism in 
the adaptive kernel learning approach for the RVM (aRVM) proposed in Chapter 6 . This 
method is similar in spirit to JCFO in that they both estimate parameters of kernels that
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are called scaling factors in order to measure the significance of each feature. However, the 
proposed approach that is based on aRVM of Chapter 6 , learns separate scaling factors 
for each kernel, therefore feature selection is local, since it is performed for each kernel 
separately. This might be useful for example when different features are significant for 
discriminating examples of each class, as demonstrated in Section 7.4.1.

7.3.1 A Bayesian Model for Feature Selection

We consider the sparse Bayesian linear model of Chapter 6 :

M

y(x ) =  ^ 2 ^ ηφ (χ ·θ η), (7 .7 )
n = l

where w  =  (ιοχ,. . .  ,Wm )t  is the weight vector and φ (χ;θ η) is the π-th basis function 
whose parameters are θη. In order to obtain sparsity, we assume a zero mean Gaussian 
prior for the weights w , with separate variance parameter for each weight wn:

p(w) =  N (m |0,A _1), (7.8)

where A  =  diag{a} and ct = (on,. . . ,  ocm)t , and a prior distribution may be assumed on 
a ,  following the approach of Section 3.4.

In (7.7) we assumed that all basis function have the same parametric form, but dif
ferent values θη for the parameters. In order to facilitate feature selection we need to 
parameterize the kernel function such that it incorporates the scaling factors. Here, we 
consider anisotropic Gaussian kernel functions, which have a separate precision parameter 
hni for each feature i:

Φ(χ \ m n, h n) - exp
d

J > ni)2(*i -  mni)2 ,
1=1

(7.9)

where h n — (h i , . . . ,  hd)T and m n =  (m i , . . . , τηφ)τ . Estimation of the parameters 9n =  
(m n, h n)T can be performed using the method proposed in Chapter 6 .

We notice that if we assign a very small value to a scaling factor hni of the n-th kernel, 
the corresponding feature x, does not contribute to that kernel. Therefore, elimination of 
irrelevant features can be motivated by assuming a prior distribution for the scaling factors 
h  = ( h j , . . . ,  h l f ) T that enforces sparsity. The distribution that we use is the Student’s 
t  distribution, which is known to give sparse solutions for few degrees of freedom, see 
Section 3.4.4. Furthermore, as mentioned in previous chapters, a Student’s t distributed 
random variable is equivalent to a Gaussian distributed random variable whose precision 
parameter is assumed Gamma distributed. Therefore, we can write:

P(h\d) =  Ν(/ι|0, Δ -1), (7.10)
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(7.11)

with δ„ =  . A d )7', Δ  =  diag{(5,, . . . , <5M} and

M  d

Ρ(δ) =  J jG a m m a (ini|a ,6 ),
n = l i = l

where we set a = b =  0 that define an uninformative Gamma distribution.

7.3.2 Parameter Estimation

The learning method is similar to the adaptive kernel learning algorithm of Chapter 6 . It 
incrementally adds basis functions to an initially empty model and at the same time it as
signs appropriate values to their parameters. Estimation of these parameters is performed 
using a numerical optimization method, which is greatly assisted by the availability of 
the parameter derivatives. The only difference of the proposed model that incorporates 
feature selection is that the basis function parameters h  are treated as random variables. 
This is necessary since a prior distribution is assigned on them in order to encode sparsity. 
However, exact Bayesian inference is not possible and we will attem pt to obtain MAP 
estimates.

In order to obtain MAP estimates, we need to maximize the posterior distribution 
of A, or equivalently its logarithm that can be decomposed in two terms. The first is a 
likelihood term and is identical to the case of Chapter 6 , given by (7.12). The second 
term comes from the newly defined prior on h  and is —j h TA h .  Therefore, we now want 
to maximize V \  which is given by

Lfs =  U  -  \ h TA h .  (7.12)

This optimization is performed using a general purpose optimization technique, such as the 
quasi-Newton BFGS method. The required gradient with respect to the kernel location 
m n is identical to the case of Chapter 6  and is given by (6.18). However, the gradient 
with respect to the scaling factors h n is given by adding the corresponding prior term to 
(6.18):

d U '  
dhm

d U
d K i

~  finihni (7.13)

Furthermore, we need to consider estimation of the parameters δ  that define the pre
cision of h. By setting a =  6  =  0 in (7.11), we assume an uninformative prior distribution 
for them. Then, maximization of the likelihood with respect to δ  gives

(7.14)
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1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their 
parameters a t random.

(b) Optimize separately the parameters of each candidate basis function to maxi
mize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal 
likelihood the most.

2. Optimize the parameters Θ of all currently active basis functions.

3. Update hyper parameters a  and noise precision β.

4. Update hyper parameters δ using (7.14).

5. Remove from the model any unnecessary active basis functions.

6. Repeat steps 1 to 5 until convergence.

A lg o r i th m  2 F eature Selection Using A daptive Kernel Learning.

7.3.3 The Proposed Algorithm
The proposed learning algorithm, see Algorithm 2, is based on the incremental adaptive 
kernel learning algorithm of Chapter 6, but it also updates the parameters δ tha t have been 
introduced to facilitate feature selection. Initially an empty model is considered. Then, 
basis functions are iteratively added to the model until convergence. Basis functions 
are added in a way th a t the marginal likelihood of the model is increased. The main 
differences from the adaptive kernel learning algorithm of Chapter 6 are:

1. An additional term  is added to the derivative of the precision parameters in order 
to achieve feature selection

2. The existence of parameters δηί, n  =  1 , . . . ,  M,  i =  1 , . . . ,  d, that measure the signif
icance of feature j  for kernel i and are updated at each iteration.

7.4 Numerical Experiments

7.4.1 Artificial Example
The purpose of the first experiment is to demonstrate the feature selection capabilities 
of the proposed method. For this reason, we have generated samples from two two- 
dimensional zero-mean Gaussian distributions, each corresponding to one of the classes. 
More specifically, we selected the variance of the Gaussian distributions to be Si =  (1 ,10)T 
and S2 =  (10,1)T, so that only one feature is significant for discriminating each class. In
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Figure 7.1: Example aRVM classifiers (a) without feature selection (b) with feature selec
tion. Solid lines show the decision boundary and dotted lines show the areas where the 
probability of misclassification is 0.25.

Fig. 7.1 we show the estimated models using i) the RVM with adaptive kernel learning 
algorithm of Chapter 6 and ii) the proposed modification to incorporate feature selection. 
Notice, that the model obtained using the proposed approach contains only one basis 
function for each class, with scaling factors θ\ =  (0.6,0.0)T and <?2 =  (0.0,0.4)r , therefore 
it successfully identifies the relevant features for each basis function.

7.4.2 Evaluation on Common Benchmark Datasets

In order to evaluate the method we have performed experiments with several regression 
and classification datasets from the UCI Machine Learning Repository that were also used 
in Chapter 6. More specifically, we estimate the generalization error of each method by 
performing ten-fold cross validation on each dataset. In regression, the error is the mean 
square error, M S E  = Σ η(tn — yn)2/N ,  where tn is the value given by the test set, y„ 
the predicted value and N  the number of test examples. In classification the error is the 
percentage of misclassified examples in the test set. We evaluate three methods; i) the 
typical RVM with Gaussian kernel (denoted as RVM), ii) adaptive RVM with learning 
of Gaussian kernel parameters proposed in Chapter 6 (denoted as aRVM) and iii) the 
proposed adaptive RVM with simultaneous feature selection by learning the parameters 
of anisotropic Gaussian kernels (denoted as aRVMd). The regression and classification 
results are shown in Table 7.1 and Table 7.2 respectively It can be observed that the 
proposed approach, which incorporates feature selection, provides improved performance 
compared to both the typical RVM model and the aRVM method of Chapter 6.
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Table 7.1: Com parison on regression datasets.

RVM ----------  ---------- aRVM-----------  ----------aRVMd
Dataset error RVs error RVs error RVs

computer 30004 140.5 22379 5.0 4089 13.6
Boston 12.48 69.5 11.53 13.27 13.66 17.5
concrete 44.204 140.2 34.515 9.10 28.868 42.3

Table 7.2: Comparison on classification datasets.

Dataset

RVM aRVM aRVMd

error RVs error RVs error RVs

banana 0.1092 12.1 0.1126 6.3 0.0994 4.4
titanic 0.2292 31.0 0.2270 2.0 0.2254 4.0
image 0.0390 34.6 0.0387 6.9 0.0342 21.3
breast 0.2818 9.6 0.2844 4.4 0.2629 3.0
pima 0.243 27.9 0.2303 5.6 0.2276 5.1

7.4.3 Evaluation on DNA Microarray Datasets

DNA microarray experiments have recently attracted a lot of interest. In these experi
ments datasets are constructed, which simultaneously describe the expression levels of a 
very large number of genes of several tissues. Typical experiments involve two subsets of 
tissues, one of which is associated with some disease and the other is not. The goal of 
these experiments is not only to build classifiers with good generalization properties based 
on these datasets, but it is also important to identify which are the important features for 
discriminating the categories. Usually, analysis of the obtained datasets require special 
treatment, because they contain an extremely large number of features (up to 100,000 
features).

Several approaches have been used in the literature. Recursive feature elimination with 
support vector machines has been proposed in [Guyon et al., 2002]. Also, in [Cawley and 
Talbot, 2006] sparse logistic regression has been used to identify significant features. In 
[Li et al., 2006] a relevance vector machine model that implements automatic relevance 
determination has been proposed, while a Gaussian process based classifier has been 
used in [Chu et al., 2005]. These approaches build classifiers directly on the feature 
space. Instead in [Krishnapuram et al., 2004] the JCFO classification method is presented 
that uses polynomial kernels and jointly identifies the optimal classifier and the relevant 
features.

In this section we evaluate the proposed RVM-based feature selection method on the 
task of classification of DNA microarray datasets. In this context, we performed several 
experiments using datasets that have been previously studied in the literature. The 
first dataset (Leukemia) contains 72 examples with 7,129 features that correspond to
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Table 7.3: Average Classification E rror after feature selection w ith ARD.

Method
Number of selected features

Colon
6

Leukemia
5

Prostate
6

AML Prognosis 
7

RVM (no kernel) 0.0322581 0.0138889 0.0 0.0185185
RVM (linear kernel) 0.16129 0.180556 0.0196078 0.0925926

RVM (Gaussian kernel) 0.225806 0.0 0.00980392 0.166667
aRVM 0.016129 0.0138889 0.0 0.0
aRVMd 0.0645161 0.0277778 0.0196078 0.0555556

expression levels of genes from 47 patients with acute myeloid leukemia (AML) and 25 
patients with acute lymphoblastic leukemia (ALL). The second dataset (Colon) contains 
62 examples with 2,000 features that correspond to genes from 40 tumor and 22 normal 
colon tissues. The third dataset (Prostate) contains 102 examples with 12,533 features 
that correspond to genes from 52 tumor tissues and 50 normal tissues. Finally the last 
dataset (AML Prognosis), contains 54 examples with 12625 features that correspond to 
gene expressions from 28 remission and 26 relapse cases of acute myeloid leukemia1.

In these experiments we compare the classification performance of the following meth
ods i) RVM without kernel y(x) — w Tx , ii) typical RVM y(x )  =  W iK(x,Xi) with 
linear kernel K ( x i ,®2) =  * ϊ * 2 , iii) typical RVM with Gaussian kernel K (x i , x 2) =  
exp(—/ι-2 ||®ι — ®2||2), where the width h was appropriately selected in order to minimize 
the classification error, iv) adaptive RVM with learning of Gaussian kernel parameters 
proposed in Chapter 6 (denoted as aRVM) and v) the proposed adaptive RVM with si
multaneous feature selection by learning the parameters of anisotropic Gaussian kernels 
(denoted as aRVMd).

We consider two feature selection strategies. In the first strategy, we initially select 
2000 features using the RFE approach and then we use ARD considering only these 
features. ARD typically selects 5-10 features. Then we train all classifiers using the few 
selected features and we evaluate their classification performance using leave-one-out cross 
validation. The results are reported in Table 7.3. We can observe tha t the aRVM method 
gives the best results in all datasets. The proposed aRVMd method, which incorporates 
feature selection, performs worse than the kernel learning aRVM without the feature 
selection extension, probably because appropriate features have already been selected by 
the ARD approach.

In the second strategy, we initially use the RFE feature selection approach to select 20 
relevant features. Then we apply the compared methods, using the 20 selected features. 
The classification performance of each classifier (computed using leave-one-out cross val
idation) is reported in Table 7.4. In this table we can observe that using RFE for feature

'T he Leukemia dataset can be obtained at http://www-genonie.wi.mit.edu/mpr/table_AML_ALL_ 
sam plee.rtf, the Colon dataset can be obtained at http://m icroarray.princeton.edu/oncology/ 
affydata/index.htm l and the datasets Prostate and AML Prognosis can be obtained from h t tp : / /  
w w w .ailab.si/eupp/hi-cancer/projectlone/index.htm.

112

http://www-genonie.wi.mit.edu/mpr/table_AML_ALL_
http://microarray.princeton.edu/oncology/
http://www.ailab.si/eupp/hi-cancer/projectlone/index.htm


Table 7.4: Average Classification E rror after selecting 20 features w ith  R FE.

Method Colon Leukemia Prostate AML Prognosis

RVM (no kernel) 0.112903 0.0694444 0.117647 0.277778
RVM (linear kernel) 0.370968 0.0694444 0.0392157 0.277778

RVM (Gaussian kernel) 0.516129 0.0833333 0.0882353 0.222222
aRVM 0.180328 0.112676 0.029703 0.207547
aRVM^ 0.193548 0.0694444 0.0686275 0.240741

selection, all the classifiers generally exhibited worse performance compared to when us
ing ARD for feature selection. Also, aRVM exhibited the best performance in two out 
of four datasets. Furthermore, when using RFE for feature selection, aRVMd was a close 
competitor to aRVM, probably because the RFE feature selection approach was relatively 
inaccurate (compared to ARD).

7.5 Conclusions
In this chapter we have presented an approach to incorporate feature selection to the 
sparse Bayesian linear model, using the adaptive kernel learning approach of Chapter 6. 
In contrast to typical feature selection approaches the significance of each feature is as
sessed separately for each kernel. Therefore, for each kernel a different set of significant 
features is selected. This approach might be useful, for example in a classification prob
lem when different features are significant for discriminating the examples of each class. 
Furthermore, feature selection is performed simultaneously with model estimation, which 
is expected to  lead to  improved performance but at higher computational cost.

Furthermore, we have used i) the adaptive kernel learning RVM of Chapter 6 and 
ii) the proposed adaptive RVM with simultaneous feature selection to perform classifica
tion with DNA microarray datasets. Experiments showed that aRVM exhibits excellent 
classification performance. Although the performance of the proposed approach that in
corporates feature selection was inferior, the approach has the advantage of identifying 
which features (genes) are significant, which is important in such applications.
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Chapter 8

Conclusions

8.1 C oncluding Rem arks

8.2 D irections for Future research

8.1 Concluding Remarks
In this thesis we have studied the sparse Bayesian linear model and its application on 
regression and classification problems. First, we considered sparse Bayesian regression of 
images, which presents several computational problems because of the size of typical im
ages. We then used sparse Bayesian image regression on some image processing problems, 
namely object detection, blind image deconvolution and analysis of functional neuroim
ages. Furthermore, we studied the problem of selecting parameters of the basis functions, 
which is commonly performed using the computationally expensive cross-validation tech
nique.

In order to apply the sparse Bayesian linear model for regression of images, in Chap
ter 4 we proposed an algorithm that is based on operations in the discrete Fourier trans
form (DFT) domain. The conjugate gradient method was used to efficiently compute the 
posterior mean, and for the computation of the posterior covariance we considered two 
simple but rather efficient approximations. Furthermore, we considered a variant of the 
Relevance Vector Machine (RVM), which we call the multikemel RVM and uses simulta
neously many types of kernels. Finally, we used the proposed algorithm to detect objects 
in images and simultaneously find their locations. Experimental results indicate that 
the proposed method has improved detection performance compared to some common 
alternatives [Tzikas et al., 2006b, 2007b].

In Chapter 5 we presented a  Bayesian approach to the blind image deconvolution 
(BID) problem [Tzikas et al., 2006a, 2007c,a, a], where the sparse Bayesian linear model 
was used to obtain smooth PSF estimates with limited support. We used the Student’s
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t pdf for the noise, in order to achieve robustness to BID model errors and for the local 
image differences, in order to allow the reconstruction of edges. Because of the complex
ity of this model, the variational framework was used for approximate Bayesian inference. 
Several experiments were carried out, to test the proposed methodology. These exper
iments indicated th a t the use of the sparse Bayesian linear model to model the PSF is 
crucial to the success of this approach. Furthermore, the importance of using heavy tailed 
distributions, such as the Student’s t  distribution for modelling the BID noise and image 
local differences is apparent. We have also compared this methodology with a TV-based 
approach and an alternative Bayesian approach implemented in [Molina et al., 2006]. It 
is clear th a t the proposed methodology is always superior to the Gaussian based method
ology in [Molina et al., 2006]. As far as TV-based BID is concerned, the proposed method 
is clearly superior for scenarios with small sized PSFs and low noise.

In Chapter 6 an adaptive kernel learning algorithm has been proposed to learn pa
rameters of the basis functions for the sparse Bayesian linear model [Tzikas et al., 2008a, 
b]. More specifically, the proposed algorithm learns different parameter values for each 
kernel and for this reason it is very flexible. We have also imposed a prior distribution that 
controls the effective number of parameters of the model, in order to force sparse estima
tions and avoid overfitting the noise. Experimental results on artificial data demonstrate 
the advantages of the proposed method. We also provide a comparison with the typical 
RVM on several commonly used regression and classification datasets. Furthermore, the 
proposed approach has been applied to model spatial correlations of the activation sig
nals in functional neuroimaging. Numerical results with an artificial phantom indicate 
that, in contrast to previous approaches, the proposed method can simultaneously detect 
activations that are i) strong but small and ii) large but weak.

In Chapter 7 the adaptive kernel learning method of Chapter 6 was further extended 
in order to perform local feature selection, simultaneously with model inference. To 
achieve this behavior, we used anisotropic Gaussian kernels, which assume a separate 
seeding factor (width) for each feature. Because the proposed approach estimates different 
values for the scaling factors of each kernel, feature selection is local, i.e. different features 
are assumed to be significant at different regions of the input space. We have then 
imposed a sparsity enforcing prior on the scaling factors that results in eliminating features 
from kernels to which they are irrelevant. We have conducted several experiments with 
common regression and classification benchmark datasets showing that the performance 
of the proposed method is improved. Furthermore, we considered the classification task 
with biological DNA microarray datasets, where feature selection is very important. We 
have applied two common (and computationally efficient) feature selection approaches, 
recursive feature elimination (RFE) and automatic relevance determination (ARD) and 
evaluated both the performance of the adaptive RVM with kernel learning of Chapter 6 
and the proposed extension to incorporate local feature selection.
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8.2 Directions for Future research
In future work it would be interesting to consider more efficient approximations in the 
DFT-based algorithm of Chapter 4. The main computational difficulty arises in the com
putation of the diagonal elements of the posterior covariance matrix (4.13). An approx
imation that is based on the Lanczos process [Chantas et al.j appears to have superior 
performance and should be examined. Also, a large scale version of the Expectation Prop
agation algorithm [Seeger and Nickisch, 2008] has been used for training sparse linear 
models on images.

In the adaptive kernel learning methodology of Chapter 6 the basis functions were 
assumed to be Gaussian kernels and we learn the location and their width parameters. 
However, the proposed methodology can be also used for selecting other types of bases. 
Also, it is possible to simultaneously use several types of kernel functions and the ap
propriate kernel should be automatically selected, in a similar spirit as in Chapter 4. 
Furthermore, we have used an uninformative (uniform) distribution for sampling the pa
rameters of the basis function (Algorithm 1, step la). However, it might be useful to 
develop methodologies that appropriately select more informative distributions for sam
pling the basis function parameters. Moreover, instead of obtaining maximum likelihood 
estimations of the basis function parameters, it would be interesting to treat them as 
random variables and use approximate Bayesian inference techniques. This approach was 
followed in order to perform local feature selection in Chapter 7, however the MAP approx
imation was used, which is very crude. There may be advantages in using sampling-based 
approximate Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC).

The adaptive kernel learning methodology of Chapter 6 could be used as well for 
the problem of object detection, following an approach similar to Chapter 4. Using this 
method, it would be interesting to introduce parameters that control the scale and rotation 
of the target basis functions. Then, using the adaptive kernel learning methodology we 
would be able to estimate these parameters, in order to adjust for scaling and rotation of 
the target objects. This is very important in most object detection problems, where the 
target objects may appear scaled and rotated. It would also be interesting to apply the 
adaptive kernel learning methodology in real-world regression and classification problems 
and compare its performance to other methods.

Furthermore, in the blind image deconvolution problem, it would be interesting to con
sider estimating the width parameter of the kernel function, possibly using the method
ology of Chapter 6. Also, it would be interesting to explore the possibility of learning the 
filters Qk in a manner analogous to [Welling et al., 2003]. It is also possible to explore 
extending the constrained variational methodology in [Chantas et al., 2007] to BID to 
avoid using the approximation of the partition function in (5.16). The sparse Bayesian 
linear model could also be used to model the blurring PSF in the related problem of super 
resolution [He et al., 2006, Yang et al., 2008], where we want to fuse several low-resolution 
images of the same scene, in order to obtain a high-resolution image.

It would also be interesting to further examine the proposed local feature selection
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approach of Chapter 7 for classification using DNA microarray datasets. In Chapter 7 we 
have presented experiments evaluating the classification performance of the method. It 
would be interesting to evaluate the performance of the local feature selection approach 
in selecting those genes tha t are significant for the classification task in DNA microarray 
datasets.

i
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