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H nopotoa didaxtopuny diatpy) extovidnxe oto Turua Iinpogopixic tou Ilavemotnuiov
Iwavvivey pe emPrénovta tov Avaminpwt Kodnynti x. Apoteidn Adxa xon pékn g tpi-
uerolg ouuPBouleutinic emtporrc toug x.x. Nixéhao ['ohatodvo, Kaldnynti tou Turuartog
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xat Ioadx Aayaph, Kadnynti tov Turpotoc ITAnpogoptirc tou Iavemotnuiov Iwavvivawy,
Toug oroioug da Aleha v euyaploTHow Yiat TV dptoty ouvepyasia Toue.

IBadtepa, Yo Adeha va euyapiotiow Jepud Toug x.x. AptoTeidn Adxa xau Nixdrao Toda-
T0dvo Yl TNV EmOTUOVIXY Toug xadodfynon xatd v Sidpxela e exmdvnone auThc g
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T0¢ NG mpaypatonondelong Epeuvag, péow epeuvnTixwy mpoypapudtewy. H Bornded toug
Arav xadoplatixy yia Ty exnévnor authc g datpiPric.
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nodriploug dddxtopeg tou (Blov Turpatog Baoin Xaodvny xa Apylen Kodoyepdto yio
™V ouuPoly) Toug oty dnuoupyio evde eZapetixol epeuvntixod mepBdiiovtoc. Téhog,
Yo fdera va evyapotiow Toug yovelg pou Tidpyo xar Péva, v adepgr| you Mapfa xou
) Afpntpa ToL pou cupmapacTadnxay xu pe oTipEav xatd TNV exmévnon Tng StatpiBric
auTrC.
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[IEPIAHYH

H BwtpPr| eondleton oto apaid Mrnetliavé ypaupiké povtédo (sparse Bayesian linear
model) yio npoBAfuata waAwdpdunons (regression) xo wafwdunong (classification) xat
o€ eQupUoYEC Tou ot mpofAiuata enelepyaciag eikdvag.

Apyixd, napouctdletan ouvontixd 1 pedodoroyia yia Mmeiliavr) ouunepacuatoroyia.
Y1 ouvEyewa, TpoTeiveTal €Vag UTOAOYIOTIXE am0oDOTIXGG alYbprduog Yia To REOPBANUX TNg
aparric Mretiavric madvdpdunong etxévawy. O mpotevéuevog alydprdpog ypnowtonotel Aet-
ToupYieg oo medio tou Siakpitol petaoynuaniouol Fourier xan T pédodo Pehnotonoinong
ouluywv katevBivoewr (conjugate gradient) yia vo emitiyet naivdpdunon exdvov pe eqi-
x16 uroloyloTixé xéotoc. ‘Emeita, o ahydpripog autds ypnotuonoteltor yio TV eniAvor Tou
TPOBARATOS aviy VEUOTIC AVTIXEWEVWY OE EIXGVEG, TPOTEVOVTAG fial Tapodhary) Tou povtélou
Relevance Vector Machine (RVM) nou to ovoudloupe multikernel RVM.

To apué Mrelliavéd ypopuitxd LOVTEND YPTOLLOTOLEITOL GTY) GUVEYELD YLOl VAL EXTIUHCOUUE
™V ouvdptnan Suomnopds onueiov g Y6hwong (blurring PSF) oto npdBinua e tupAris
anoouvéhi€ng ecévwr (blind image deconvolution). ITpoteivetat éva otatioTnd povtédo,
Baowxd mheovexThipata Tou orofou efvan 1 extiunoy tou peyédoug g cuvdptnong dtuoro-
pdc onueiou mou mePLYpdet TNV YOAWOY), 1 AVOXATACXEVY TWV OXUMY TNG EXGVAC XAt 1)
aviextxdtnta oto Y6pufo. H Mrebliavi oupnepacpatoloyio Uoroeitan ye TV ypron g
variational npocéyyiong.

Katomy, n datpiPr) eotidletar oto mpbPAnua emhoyrc xatéAAnlwv ouwvaptijoewr pdong
Yt 10 apatd Mrediliavd ypoppxd povrélo, 1o onoio eivor onpavtixd {itnua Tpoxeuévoy va
X0TOOXEVATOVPE cuaTAuaTa HE XY YEViXEuTN txavotnta. Tumid, n emhoyh xatéAAnwy
ouvaptiicewy Bdone mpaypatoroteitar ue v ypRon e texvic cross-validation, 6uwg N
ey v auth et udnhéc unoloyioTixég anutioel xau €tol unopel Vo QapUoaTel Yo T
emhoy1} Tou xohitepou alvolou cuvapthcewy PBdong, uévo edv o apduds Twv utoPhpLwy
ouvéhwv efvar pxpoée. Ilpotetvetar évag mpooapuootikds akydpibuos uddnong twv guvap-
trjoewy Pdang, o onoiog efvar avéroyog pe 1o poviého RVM, add extipd i mopapétpous
Twv ouvoptioewy Bdone Tautdypova e v exnaideuar) Tou povtéhou. ITo cuyxexpiuéva,
1 TPOTEWVOUEVY péBodOg exTiud DrapopeTixés TIWES Yia TIC TOPUUETPous xdde Guvdptnomg

Pdone xau étot mpoxOnTEL éva TOAD euéhixto povtéro. T'a va anogevydel 1 unepexnaldeu-

on, emPddleTon wa €X TV TPOTépwY xatavopl) mou odnyel oe apaée Aoewg, pudpilovrog
autépata Tov ovoieotiké aptiué mapauétpwy tou povtédov. H mpotewduevn pedodoroyia
eapudleTar oe drdpopa mpofifiuata taAvdpounone xa Tagvéuncne xot ypnotuonotelta yia

xi



v avéuo eixévwy Aartoypyixod payvntikod ovvroviouot (fMRI).

Eriong, npotelvetan o tponoﬁoir)on ™G nponyoluevng weBbédou, tou yenowonoel avico-
tpomixés I'xaovoaiavég ouvapthoels Baong, pe Eexwpiaty ropduetpo xAlpoxag (TAdtog) yix
x4 yopoxTNPLoTING, WOTE Vo EMTOYEL Tomikr} emAoyry xapaxtnpiotikwy. H enthoyh yopa-
XTNpioTix@v efvat Tomixt), pe Ty évvola 611 unodétoupe STt BiapopeTind yapoxtnploTixd elvou
onuavtixd oe diopopetixés neployég Tou Ydpou mapaderypdtwy. T v anakeldpoupe o yopo-
xtnpratixd mou dev ebvon ypfowa, unodétoupe wiar xatdhAnAn ex Twv TpoTépwY Xatavour yia
n¢ napopétpoug xAlpaxag. Ot napandvew pedodohoyieg ubdnong twv napauétpwy Twv cuvop-
Thoewv Bdong (pe A ywplc Tautdypovn Tomixh EMAOYY| XAPAXTNEOTIXGY) YpnotponoodyTa
yioe v ta€vépnon Sedopévwyv ard pixpoouotorytes (microarrays) DNA.




ABSTRACT

In this thesis, we study the sparse Bayesian linear model for regression and classification
tasks and for solving image processing problems.

We start with an overview of the Bayesian inference methodology and its application
to linear regression. We then develop a computationally efficient training algorithm for
sparse Bayesian regression of images. The proposed training algorithm uses operations in
the Fourier domain and the conjugate gradients method, in order to allow regression of
large images at reasonable computational cost. We then apply this algorithm to detect
objects in images, using a variant of the relevance vector machine (RVM), which uses
many types of kernels simultaneously and we call the multikernel RVM.

Next, we use the sparse Bayesian linear model to estimate the point spread function
(PSF) in the blind image deconvolution (BID) problem. We propose a Bayesian model
that estimates the support of the blurring PSF, allows reconstruction of image edges
and achieves noise robustness. Bayesian inference on this model is performed using the
variational approximation.

Furthermore, we focus on the problem of selecting appropriate basis functions for the
sparse Bayesian linear model, which is crucial in order to achieve good generalization
performance. Typically, this problem is tackled using cross-validation technique, but this
technique is computationally expensive and it can be used to select the best out of a small
number of candidate basis function sets. Instead, we propose an adaptive kernel learning
algorithm, which is similar to the RVM but also learns the parameters of the kernels during
model training. More specifically, the proposed method estimates different parameter
values for each kernel, resulting in a very flexible model. In order to avoid overfitting, a
sparsity enforcing prior is imposed that controls the effective number of parameters of the
model. The proposed methodology is evaluated on benchmark regression and classification
datasets and applied for analysis of functional magnetic resonance images (fMRI).

We also propose a modification of this method that performs local feature selection
by estimating the parameters of appropriate kernel functions. In order to incorporate
local feature selection, anisotropic Gaussian kernels are considered, which use a separate
scaling factor (width) for each feature. Feature selection is local, in the sense that different
features are assumed to be significant at different regions of the input space. This is
achieved because we learn different values for the scaling factors of each kernel. In order
to eliminate irrelevant features, we assume a sparsity enforcing prior on the scaling factors



of the kernels. The proposed adaptive kernel learning algorithms (with or without local
feature selection) are employed to the problem of classifying DNA microarray datasets.
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CHAPTER 1

INTRODUCTION

1.1 Machine Learning Basics
1.2 Image Processing Problems

1.3 Thesis Contribution

1.1 Machine Learning Basics

Machine learning is the area of artificial intelligence that attempts to give machines the
ability to learn from their environment. More specifically, in machine learning problems
we want to use a set of observations, which we call the training set, in order to make
predictions for unseen events. Typically, we separate this problem in two phases; first we
use the training set to learn a model of the observations and then we make predictions
based on this model. For example, in handwritten digit recognition we are given a training
set that consists of handwritten images and corresponding labels that identify the digits
that appear on each image. Using this training set we can learn a model that captures the
correlations between the observed images and their labels. Then, we can use this model
to predict the label of a previously unseen image. The importance of machine learning
is that it can be used to solve problems (such as handwritten digit recognition or speech
recognition) for which it is difficult to design typical algorithms.

But how do we learn a system using the available observations in the training set? A
common approach is to consider a parametric function (model) that is used to describe
the process that generates the observed data. Then, during the training phase, we es-
timate the parameters of this model by maximizing some objective function. Under a
_stochastic framework, it is convenient to assume that the observations are random vari-
ables and define an appropriate parametric probability density function (pdf) for them.
Then, we can define the objective function for learning as the likelihood of the obser-
vations, which is the probability that the observations have been generated by specific

1



values of the parameters. Estimation of the parameters is performed by maximizing the
likelihood of the observations in a process known as mazimum likelihood estimation. Al-
ternatively, Bayesian methods assume that the parameters of the model are also random
variables. This framework provides an elegant way to apply constraints on the param-
eters by assigning suitable prior distributions to them. More importantly, the Bayesian
framework provides a principled methodology to measure uncertainties of the parameter
estimates and propagate these uncertainties to the predictions made using this model.
These Bayesian learning methodologies are discussed in detail in Chapter 2.

An important issue to note is that in order for a model to generalize the observations of
the training set to unseen examples, it needs to make certain assumptions for the mecha-
nism that generates the observations. These assumptions are called the bias of the model.
For example, a common assumption is that similar inputs should be mapped to similar
outputs. The more assumptions a model makes, the larger the bias is. Models with very
large bias generally have poor performance, because they make too many assumptions,
which are unlikely to be realistic. On the other hand, models with very small bias make
too few assumptions and for this reason their predictions are heavily affected by noise that
commonly exists in the observations. How much a machine learning model is affected by
noise of the training examples is measured by the variance of the method. More specif-
ically, the generalization performance of a model increases as the bias and variance gets
smaller. However, there is a bias-variance tradeoff; the larger the bias of an algorithm,
the smaller its variance. For this reason it is important to measure the generalization
performance of a machine learning method. This is commonly achieved by comparing
the prediction of the method to the known labels of a separate set observations, which is
called the test set and should be independent of the training set.

Machine learning methods are divided in two broad categories depending on the level of
supervision that they require. Supervised learning methods assume that the observations
have the form of pairs, containing inputs and corresponding outputs. The aim is to build
a model that can be used to make predictions for the outputs of previously unseen inputs.
On the other hand, unsupervised learning methods assume a training set that only consists
of observed inputs. They learn a model of these inputs, which can later be used for example
to predict missing values of some of the observations, or to group similar observations
in clusters. Semi-supervised machine learning methods combine characteristics of both
supervised and unsupervised methods. These methods, require that some of the input
observations are associated with the corresponding desired output, but they can also take
advantage of available input observations whose corresponding output is unknown.

Supervised methods are further divided in two categories depending on the type of
the outputs. Classification methods assume that outputs are labels that describe the
category which the observation belongs to. For example, handwritten digit recognition
and speech recognition are examples of classification problems. In contrast, if the outputs
are continuous variables, the problem is known as regression. For example, predicting the
temperature based on some other measurements, predicting the value of a stock based on
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its previous values and estimating the value of an image pixel given its neighboring pixels
are regression problems.

When designing classification methods there are two general approaches; the discrim-
inative and the generative approach. In the discriminative approach we attempt to find a
function that directly discriminates the categories. For example, in binary classification,
where we assume only two categories, we may discriminate the two categories based on the
sign of the output of some function, whose parameters are estimated during the training
phase. Instead, when using the generative approach we attempt to learn for each category
a (probability distribution) function that describes the mechanism that generates its data.
Then, we can make predictions for unseen data using the Bayes law. Generative methods
solve a more general problem than required, since they also estimate a model of how the
observations of each category are generated. Thus, they typically require larger training
sets compared to discriminative methods, but they provide a framework to overcome other
difficulties, such as missing data in the training set. Furthermore, it is usually straight-
forward to extend discriminative methods for regression problems. In contrast generative
methods cannot be used for regression tasks, since the outputs in regression are contin-
uous and therefore they can take an infinite range of values (a generative method would
attempt to estimate the generative model for each possible output value).

The most common assumption that supervised learning methods make is that similar
inputs should be mapped to similar outputs. However, it is not always straightforward how
to define similar inputs. Many simple algorithms measure similarity between two input
points z;, =, using their inner product 7x,. However, this is usually insufficient and
more flexible similarity representations can be obtained using a mapping function ¥(x) to
map the inputs to some feature space of usually higher dimension. Then similarity of the
input points can be computed as the inner product ¥(z1)74(x;) in the new feature space.
For example, instead of working directly with the two dimensional input & = (z;, )7
we can map it to the feature vector ¥(z) = (x?, 2,7, 23)7. Furthermore, we notice that
inner products in the feature space can be efficiently computed using a kernel function
K(z,,z;) = ¥(x1)T¥(x2), which in the above example is K(x1, ) = (zTx;)2. In
summary, it is often useful to measure similarity using kernel functions rather than the
typical inner product approach. Such methods that use kernel functions are known as
kernel methods and have become very popular for solving regression and classification
tasks. However, their performance depends largely on selecting an appropriate kernel
function, which generally is an empirical task.

A property of kernel-based machine learning methods that has lately attracted a lot
of interest is sparsity. Kernel classifiers make predictions for a new input point based on
its similarity with the input points of the training set. The key observation in developing
sparse methods is that it is typically redundant to consider the similarity with all the input
points of the training set. Instead, sparse methods consider the similarity with only a small
subset of the input points, which are selected during the training phase. Popular sparse
kernel classifiers are the support vector machine (SVM), the relevance vector machine
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(RVM) and several sparse approximations of Gaussian processes. In Chapter 3 we describe
in detail the linear model and éxplain how to obtain sparse estimations and in Chapter 6
we propose a modification that learns parameters of the kernel function simultaneously
with the parameters of the model.

1.2 Image Processing Problems

Nowadays, computer systems have excessive storage and computational capabilities that
allow storage and processing of multitmedia content. A lot of interest is paid in applica-
tions that process and store images, since images are a very important type of information.

There are several problems of interest in the image processing field. For example,
edge detection is the problem of detecting the edges (discontinuities) in a given image.
Image segmentation is the problem of segmenting the image into regions that correspond
to different objects. Image registration is the problem of aligning two or more images.
In image denoising we are given an observed image that has been corrupted by additive
noise and we want to estimate the initial image. Image restoration is a similar problem,
where the observed image has been degraded by known blur and addition of some noise
source and we want to restore the original image. The problem is known as blind image
deconvolution when the type of blur is unknown. In image recognition we want to identify
what type of object is depicted in a given image and in the more specific problem of face
recognition we wish to recognize individuals using images of their face. Image detection
is a slightly different problem, were we want to identify all occurrences of a target object
in an observed image and we also want to find the locations were they appear. In the
tracking problem, we are given sequences of images (video), and after detecting an object
we attempt to keep track of it. In image retrieval we assume to have a database of images
and we want to retrieve images that are similar to some other given image. Furthermore,
many problems of interest involve processing of medical images.

A large variety of image processing methods have been developed in order to treat
such problems. Many of these methods are based on the discrete Fourier trasform (DFT)
that describes images based on their frequency spectrum. Another useful tool that has
been more recently used for image processing, is the discrete Wavelet trasnform (DWT),
which combines information in the spatial and frequency domains. Furthermore, machine
learning methods have been used with great success, because many of the previously
mentioned problems can be tackled by learning a model using a set of training examples.

An image can be mathematically defined as a function f :  — I° that maps input
points (pixels) from its support 2 C R? to a color space I° C R, where R is the set of
real numbers. The support 2 of the image commonly has rectangular form Q = {(z,y) :
Z € (ZTmin,Tmaz)y Y € (Ymin) Ymaz)}, Where Zmin, Tmaz, Ymin a0d Ymer are minimum and
maximum values for both image dimensions. Color images are usually encoded using
three channels that correspond to the intensities of the three basic colors (red, green

4




blue), therefore the color space is I¢ = R3. On the other hand, grayscale images assume
only one channel (/¢ = R) that corresponds to the grayscale intensity. Computers can
only process digital representations of images and for this reason, the image support and
color space cannot be infinite sets. This limitation is overcome by quantizing the image
support and color space, which can then be assumed to be integer sets, 8 C Z? and
I° C Z¢, where Z is the set of integers. The elements of the image support are then called
image pixels. A specific characteristic of images, in contrast to arbitrary functions, is that
image pixels lie on a uniform grid, which means that they are not randomly distributed,
but they have equal distances between their neighbors. For this reason, we can represent
images as vectors that contain the intensity values at all the pixels in some specified
order, without explicitly representing the pixel location. In this thesis we will only treat
grayscale images. However, it should not be difficult to extend the proposed methods in
order to deal with the case of color images.

1.3 Thesis Contribution

The contribution of this thesis is twofold. On one hand, we focus on the problem of
selecting appropriate basis functions for the sparse Bayesian linear model and we propose
methods that automatically learn the parameters of the basis functions. On the other
hand, we develop computationally efficient training algorithms for applying the sparse
Bayesian linear model to regression problems on images and we treat image processing
problems, such as object detection, blind image deconvolution and analysis of functional
neuroimages.

In Chapter 2 we provide an overview of the Bayesian inference methodology [Tzikas
et al., 2008b], which will be used in the following chapters. More specifically, we discuss
graphical models that provide a powerful approach to visualize the random variables of a
stochastic model and the dependencies among them. We then describe how ezact Bayesian
inference can be achieved if we use conjugate priors, and how to estimate the parameters
of a Bayesian model using the ezpectation marimization (EM) algorithm. Finally, we
describe the mazimum a posteriori (MAP) principle and the wvariational Bayesian ap-
prozimation, which can be used with rather complex Bayesian models. The application
of these methodologies to the linear regression problem is shown in Chapter 3. We first
describe the maximum likelihood approach and explain its drawbacks. We then impose
conjugate Bayesian priors on the parameters of the linear model to derive a model that
can be solved exactly using the EM algorithm. Furthermore, we describe how the prior
distribution can be modified in order to obtain sparse estimations using the variational
Bayesian approximation. Finally, we discuss how the sparse linear model has been used
to solve classification problems.

In Chapter 4 we consider a specific case of the linear model, which we call the mul-
tikernel RVM and which is a variant of the well-known relevance vector machine (RVM)
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model, but uses many types of kernels simultaneously [Tzikas et al., 2006b, 2007b]. Wi
then propose a fast algo;ithm that can be used for sparse Bayesian linear regression o
large scale images. The proposed algorithm uses operations in the Fourier domain in orde
to allow regression of large images with reasonable computational cost. We then use thi
method to detect objects in images and simultaneously determine their locations.

In Chapter 5 we present a new Bayesian approach for the blind image deconvolutiol
(BID) problem [Tzikas et al., 2006a, 2007a,c, a]. The main novelty of this approach is th
use of the sparse Bayesian linear model for the blurring point spread function (PSF) tha
allows estimation of both PSF shape and support. In the proposed approach, a robus
model of the BID errors and an image prior that preserves edges of the reconstructe
image are also used. Sparseness, robustness and preservation of edges are achieved b
using priors that are based on the Student’s t probability density function (PDF). Thi
pdf, in addition to having heavy tails, is closely related to the Gaussian and thus yield
tractable inference algorithms. The approximate variational inference methodology i
used to solve the corresponding Bayesian model. Numerical experiments are presente
that compare this BID methodology to previous ones using both simulated and real date

Sparse kernel methods are very efficient in solving regression and classification prot
lems. The sparsity and performance of these methods depend on selecting an appropriat
kernel function, which is typically achieved using a cross-validation procedure. In Chag
ter 6 we propose an incremental method for kernel-based supervised learning, which i
similar to the Relevance Vector Machine (RVM), but it also learns the parameters of th
kernels during model training [Tzikas et al., 2008a, b]. Specifically, we learn differen
parameter values for each kernel, resulting in a very flexible model. In order to avoi
overfitting we use a sparsity enforcing prior that controls the effective number of pararmr
eters of the model. We present experimental results on artificial data to demonstrat
the advantages of the proposed method and we provide a comparison with the typic:
RVM on several commonly used regression and classification datasets. Furthermore, w
apply the proposed approach to model spatial correlations of the activation signal in func
tional neuroimaging. Numerical results with an artificial phantom show that, in contras
to previous approaches, the proposed model can simultaneously detect the presence ¢
activations that are i) strong but small and ii) large but weak.

In Chapter 7 we propose a modification to the kernel learning method of Chapter 6 tha
performs local feature selection simultaneously with model inference. In order to incor
porate local feature selection, appropriate kernels need to be used; we consider Gaussia
anisotropic kernels, which use a separate scaling factor (width) for each feature. Becaus
we learn different values for the scaling factors of each kernel, feature selection is local, i.¢
different features are assumed to be significant at different regions of the input space. I
order to eliminate irrelevant features, we impose a sparsity enforcing prior on the scalin
factors of the kernels. Experimental results show that the proposed method has improve
performance in several regression and classification benchmark datasets.

Furthermore, we consider the classification task with biological DNA microarray dats



sets, where feature selection is very important, sinse the microarray examples are of very
high dimension. The proposed methodology first applies two popular (and computation-
ally efficient) feature selection approaches, namely recursive feature elimination (RFE)
and automatic relevance determination (ARD), to initially reduce the number of features.
Then, using the remaining features, we apply both the adaptive RVM with kernel learning
and the local feature selection approach and examine their performance. Experimental
results indicate that the adaptive kernel learning algorithm of Chapter 6 exhibits superior
classification performance compared to the commonly used RVM model. Furthermore,
the proposed local feature selection approach has similar performance and may be useful
in identifying which genes are significant for the classification task.



CHAPTER 2

BAYESIAN INFERENCE

2.1 Introduction

2.2 Graphical Models

2.3 Bayesian Inference with Conjugate priors

2.4 The Expectation Maximization (EM) Algorithm
2.5 The Maximum A Posteriori (MAP) Approximation

2.6 The Variational Bayes Approximation

2.1 Introduction

Statistical models are collections of random variables, whose behavior is determined by
their joint probability distribution. Typically, these random variables can be distinguished
as observed x and hidden z random variables, depending on whether they are included
in the training set or not. Furthermore, it is common to use parameters @ in order to
define the joint distribution model p(z, z; 8) of the random variables. In this chapter we
will discuss methodologies that can be used to achieve i) inference of the hidden random
variables and ii) estimation of the model parameters. Hereafter, the term inference will be
used to refer to the computation of the posterior distribution p(z|x) of the hidden random
variables z, while the term estimation will refer to the process of assigning appropriate
values to the parameters @, using the observations £. We will later see that exact inference
can be achieved when using conjugate prior distributions. However, in many cases of
interest it is advantageous to use more complicated prior distributions, even though we
need to resort to approximate inference methods.

Many simple statistical models do not use any hidden variables and it is easy to com-
pute the likelihood function p(x;@) that describes the probabilistic relationship between
the observations  and the parameters 8. In this case estimation of the model parameters
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is commonly performed using the popular mazimum likelihood (ML) approach. According
to this approach, the ML estimate is obtained as

6 = argmax p(zx; 9). (2.1)
6

However, in many problems of interest, direct assessment of the likelihood function
p(x; @) is complex and is either difficult or impossible to compute it directly or optimize it.
In such cases the computation of this likelihood is greatly facilitated by the introduction of
hidden variables z. These random variables act as “links” that connect the observations
to the unknown parameters via Bayes’ law. The choice of hidden variables is problem
dependent. However, as their name suggests, these variables are not observed and they
provide sufficient information about the observations so that the conditional probability
p(x|2; @) and therefore the joint distribution p(x, z; @) are easy to compute.

Once the hidden variables z and a prior probability for them p(z; @) have been intro-
duced, one can obtain the likelihood of the observations & or the marginal likelihood as
it is usually called, by integrating out (marginalizing) the hidden variables z:

p(z;0) = / p(z,20)dz = / p(]z 0)p(z; 8) dz (2.2)

This seemingly simple integration is the core of the Bayesian methodology, since in this
manner we can obtain both the likelihood function, and by using Bayes’ theorem, the
posterior of the hidden variables:

p(z|z; 8)p(z; 6)
p(z;0)

As it will be shown later, if the posterior distribution of the hidden variables p(z|z; 8)
can be analytically computed, the parameters of Bayesian models can be estimated using
the EM algorithm, which iteratively maximizes the likelihood function without explicitly
computing it.

p(z|x;6) = (2.3)

In many cases of interest the posterior distribution is not available, because the in-
tegral in (2.2) is either intractable or very difficult to compute in closed form. Thus,
the main effort in Bayesian inference is concentrated on techniques that allow us to by-
pass or approximately evaluate this integral. Such methods can be classified into two
broad categories. The first contains numerical sampling methods also known as Monte
Carlo {Robert and Casella, 2005, Andrieu et al., 2003] techniques and the second cate-
gory concerns deterministic approximations of the integral, such as the Variational Bayes
methodology.
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2.2 Graphical Models

Graphical Models provide a framework for representing dependencies among the random
variables in a statistical modelling problem. They constitute a comprehensive and elegant
way to graphically represent the interaction among the entities involved in a probabilistic
system. A graphical model is a graph whose nodes correspond to the random variables
of a problem and the edges represent the dependencies among the variables. A directed
edge from a node A to a node B in the graph indicates that the variable B stochastically
depends on the value of the variable A. Graphical models can be either directed or undi-
rected. In the second case they are also known as Markov Random Fields [Bishop, 2006,
Borgelt and Kruse, 2002, Neapolitan, 2003]. We will focus on directed graphical models
also called Bayesian Networks, where all the edges are considered to have a direction from
parent to child denoting the conditional dependency among the corresponding random
variables. In addition we assume that the directed graph is acyclic (i.e. it contains no
cycles).

Let G = (V, E) be a directed acyclic graph with V' being the set of nodes and E the
set of directed edges. Let also z, denote the random variable associated with node s
and 75 the set of parents of node s. Associated with each node s is also a conditional
probability density p(zs|z.,) that defines the distribution of z, given the values of its
parent variables. Therefore, for a graphical model to be completely defined, apart from
the graph structure, the conditional probability distribution at each node should also be
specified. Once these distributions are known, the joint distribution over the set of all
variables can be computed as the product:

p(z) = [ [ p(=lz=.) (2.4)

The above equation constitutes a formal definition of a directed graphical model
[Bishop, 2006] as a collection of probability distributions that factorize in the way spec-
ified in the above equation (which of course depends on the structure of the underlying
graph).

In Fig. 2.1 we show an example of a directed Graphical Model. The random variables
at the nodes are a,b,c and d. Each node computes a conditional probability density that
quantifies the dependency of the node from its parents. The conditional densities at a
node i may not be exactly known and may be parameterized by a set of parameters ;.
Using the chain rule of probability, we would write the joint distribution as:

p(a, b, ¢c,d;0) = p(a; 6,)p(bla; 62)p(cla, b; 63)p(d|a, b, c; 04) (2.5)

However, we can simplify this expression by taking into account the independencies
that the graph structure implies. In general, in a graphical model each node is independent
of its ancestors given its parents. This means that node ¢ does not depend on node a
given node b, and node d does not depend on node a given nodes b and c. Thus, from (2.4)
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Figure 2.1: Example of directed Graphical Model. Nodes denoted with circles correspond
to random variables, while nodes denoted with squares correspond to parameters of the

model. Doubly circled nodes represent observed random variables, while single circled
nodes represent hidden random variables.

we can write:

p(a,b,c,d; 0) = p(a; 61)p(bla; 62)p(c|a; 03)p(d|b, c; 04), (2.6)

which is also obtained by applying (2.4).

Once a graphical model is completely determined (i.e. all parameters have been spec-
ified), then several inference problems could be defined, such as computing the marginal
distribution of a subset of random variables, computing the conditional distribution of
a subset of variables given the values of the rest variables and computing the maximum
point in some of the previous densities. In the case where the graphical model is para-
metric, then we have the problem of learning appropriate values of the parameters given
some dataset with observations. Usually, in the process of parameter learning, several
inference steps are also involved.

2.3 Bayesian Inference with Conjugate priors

Conjugate priors play an important role in facilitating Bayesian calculations. More specif-
ically, assume a Bayesian model with hidden variables z, observed variables &, prior dis-
tribution p(2) and conditional likelihood p(x]z). Then, the marginal likelihood is given
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by
p(z) = / p(z, 2)dz = / p(z|2)p(z) dz, (27)

which cannot always be computed analytically. However, the marginal likelihood is in-
volved in the computation of the posterior distribution p(z|x) of the hidden variables z,
which is computed according to

p(z|z)p(z) (2.8)

PR =0

and is required in order to proceed with Bayesian inference. Thus, it is important to
find a prior p(z) such that when multiplied with a likelihood distribution p(x|z) allows
analytical computation of the marginalization integral of (2.7). A common practice is to
choose the prior distribution such that it has the same form as the likelihood, so that the
resulting posterior distribution p(z|z) has also the same form as the likelihood p(z|z),
when viewed as a function of the hidden variables. Such prior distributions allow closed
form marginalization of the hidden variables and are called conjugate to the likelihood
distribution.

For example, consider a Gaussian conditional likelihood with zero mean and whose
precision (inverse variance) is given by a hidden variable a:

p(z|a) = (2n) Y212 exp(—%aa?). (2.9)
This likelihood, when viewed as a function of ¢, has the form of a Gamma, pdf defined as

p(o;a,b) = %a"'l exp(—ba). (2.10)

Thus, the marginalization of the precision « of a Gaussian pdf (when a Gamma conjugate
prior is used for it) is possible in closed form according to

a 2 —(a+%)
p(z;a,b) = /p(:cla)p(a; a,b)da = F(ar-i(-al)/2) (2:)1/2 (b + %—) , (2.11)

and gives the Student’s t pdf. Unfortunately, given an arbitrary likelihood distribution,
a conjugate prior distribution does not always exist. Table 2.1 shows the formula of some
common distributions, and Table 2.2 shows their conjugate prior distributions and the
resulting posteriors.

2.4 The Expectation Maximization (EM) Algorithm

In the case of statistical models where inference is tractable, therefore the posterior distri-
bution of the hidden variables can be analytically computed, estimation of the parameters
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Distribution . pdf
Normal  N(z|u,X) = (2r) /32|~ 2exp [-3(x — p)TZ 7 (z — ©)]

Gamma Gamma(zla, b) = b°I'(a) 'z le b=
. . _ [ X|(r=d~1)/2 exp(trace—1 V X)
Wishart Wlshart(x ‘V, V) - zya/z,,d'(‘a-x)/-:v-n/z nfﬂ pz(,,_,,l_i) /2
Multinomial Mult(z|r) = ¢ = ::,) [T,
.. . . r{3Z,a M 1
Dirichlet Dirichlet(z|a) = ﬁ}lfﬁa‘j% je1 T3

Table 2.1: Formulas for some common probability distribution functions.

Likelihood  Conjugate Prior Posterior

N(z|u, X) N(p| 0, Xo) N(pliz, E), i = £(S5 o + nE7'8), L = (g +nZ")~!
N(zlp,0?) Gamma(o~2|a,b) Gamma (0~ %la + n/2,b+ Yo, (zi — p)*/2)
N(x|pn,E) Wishart(Z v, V) Wishart (27 v + 2,V + L0 (z: — p)T (2 — p))
Mult(z|w)  Dirichlet(r|a) Dirichlet(w|a + Y 7., z:)

Table 2.2: Conjugate prior distributions. Here, n denotes the number of observations and
Z =) .., &; is the mean of z.

can be performed using the mazimum likelthood principle. Typically the conditional like-
lihood given the hidden variables p(x|z;8) is readily computable. However, parameter
estimation should be carried out by maximizing the marginal likelihood p(a; 8), which
may be difficult to compute or difficult to maximize. In such cases, the EM algorithm
can be used to compute the parameter values 6 that maximize the marginal likelihood
p(z; 8), without explicitly computing it. The computations involve only the conditional
likelihood p(x|z; @) and the posterior of the hidden variables p(z|x; ).

Hereafter, we will follow the exposition of the EM in [Neal and Hinton, 1998, Bishop,
2006, Tzikas et al., 2008b]. It is straightforward to show that the log-likelihood can be
written as

Inp(x; 0) = F(q,0) + KL(q||p), (2.12)
with ( 6)
_ P, 2%
F(4,6) / o2 B 5 g, (2.13)
»nd (2]; 6)
_ p(z|x;
Ki(alp) = - [ az)in 225 dz, (214

where g(2) is any probability density function, K L{q||p) is the Kullback-Leibler divergence
between p(z|x; @) and ¢(z), and since KL(g|lp) 2 0, it holds that Inp(x;8) > F(q,8).
In other words, F'(q,0) is a lower bound of the log-likelihood. Equality holds only when
KL(qllp) = 0, which implies ¢(2) = p(z|x;8). The EM algorithm and some recent
advances in deterministic approximations for Bayesian inference can be viewed in the
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light of the decomposition in (2.12) as the maximization of the lower bound F(q, 8) with
respect to the density g(z) and the parameters 9.

In particular, EM is a two step iterative algorithm that maximizes the lower bound
F(g,0) and hence the log-likelihood. Assume that the current value of the parameters
is 89LD. In the E-step the lower bound F(g, 8°LP) is maximized with respect to g(z).
It is easy to see that this happens when KL(g||p) = 0, in other words, when ¢(z) =
p(z|z; 8°LP). In this case the lower bound is equal to the log-likelihood. In the subsequent
M-step, ¢(z) is held fixed and the lower bound F(q,6) is maximized with respect to 8
to give some new value 8VFW . This will cause the lower bound to increase and as a
result, the corresponding log-likelihood will also increase. Because q(z) was determined
using 6°LP and is held fixed in the M-step, it will not be equal to the new posterior
p(z|z; 8NEW) and hence the KL distance will not be zero. Thus, the E-step and M-step
need to be repeated until the algorithm converges.

OOLD)

If we substitute ¢(z) = p(z|x; into the lower bound and expand (2.13) we get

- F(q,0) = /p(z|:1:;60.LD)lnp(az,z; 0)dz — /p(z|m;90LD) In p(z|x; 6°LP) dz
= Q(0,00Lp) + constant, (2.15)

where the constant is simply the entropy of p(z|z;8°LP) which does not depend on 6.
The function

Q(oy OOLD) = /p(Z':B, GOLD) lnp(a:, z; a) dz = (lnp(:z:, z; 0)>p(z|m;80LD) (216)

is the expectation of the log-likelihood of the complete data (observations + hidden vari-
ables) which is maximized in the M-step. The usual way of presenting the EM algorithm
in the literature has been via use of the Q(0,00rp) function directly [Moon, 1996, Kay,
1997].

In summary, the EM algorithm is an iterative algorithm involving the following two
steps:

o E-step: Compute p(z|z; 8°LP)
e M-step: Update OVEW = argmax, Q(0, 6°LP)

Furthermore, it is interesting to point out that the EM algorithm requires that the pos-
terior of the hidden variables p(z|x; @) is ezplicitly known, or at least we should be able
to compute the conditional expectation of its sufficient statistics (Inp(z, 2;0)),(zjz:6):
see (2.16). While p(z|x;8) is in general much easier to compute than p(z; ), in many
interesting problems this is not possible, thus the EM algorithm is not applicable. For
this reason, approximate inference techniques are employed.
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2.5 The Maximum A Posteriori (MAP) Approximation

One of the most commonly used methodologies in the statistical modeling is the marimum
a posteriori (MAP) method. MAP can be considered as an approximation of Bayesian
inference, since the parameter vector 8 is assumed to be a random variable and a prior
distribution p(@) is imposed on 6. However, this approximation is rather crude, since the
posterior distribution is approximated with a degenerate distribution at its mode.

For observations  generated by model p(x|@), the MAP estimate is defined as

61.4p = argmax p(0}x) (2.17)
0
and using Bayes theorem it can be obtained from
brap = argmax p(z(0)p(8), (2.18) .

where p(x|9) is the likelihood of the observations. The MAP estimate is easier to obtain
from (2.18) than (2.17). The posterior in (2.17) based on Bayes’ theorem is given by

p(x|6)p(6)
J p(x|6)p(6) 46

and requires the computation of the Bayesian integral in the denominator of (2.19) to
marginalize .

From the above it is clear that both MAP and Bayesian estimators assume that 0 is
a random variable and use Bayes’ theorem, however, their similarity stops there.

The MAP approach uses only the mode of the posterior, which is found by maximiz-
ing the posterior with respect to the parameters 8. In fact, the MAP approach can be
considered as a simple extension of the maximum likelihood approach, which incorpo-
rates penalty terms for the parameters through definition of prior distributions for them.
In contrast, for Bayesian inference the posterior is used and thus @ has to be marginal-
ized. It is important to note that Bayesian inference, unlike MAP, averages over all the
available information about 8. Therefore, it is preferable over MAP, because it generally
produces more accurate estimations and it also provides measures of the uncertainty of
the estimation [Tzikas et al., 2008b).

The EM algorithm can also be used to obtain MAP estimates of 8. Using Bayes’
theorem we can write

p(6lz) =

(2.19)

Inp(0|x) = Inp(x,8) — Inp(z) = Inp(x|0) + Inp(6) — Inp(z). (2.20)
Using a similar framework as for the ML-EM case in Section we can write

Inp(6lx) = F(q,6) + KL(qllp) + Inp(@) — Inp(x) (2.21)
2 F(g,0) + Inp(8) — Inp(z), (2.22)
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where in this context In p(z) is a constant. The right hand side of (2.21) can be maximized
in an alternating fashion as in the EM algorithm. Optimization with respect to g(2z) gives
an identical E-step as in the ML case previously explained. Optimization with respect
to @ gives a different M-step since the objective function now contains also the term
Inp(0). In general the M-step for the MAP-EM algorithm is more complex than in its
ML counterpart [Blekas et al., 2005, Nikou et al., 2007]. Strictly speaking in such a model
MAP estimation is used only for the @ random variables, while Bayesian inference is used
for hidden variables z.

2.6 The Variational Bayes Approximation

Because MAP is a coarse approximation that does not consider uncertainties of the estima-
tion, more flexible approximations are commonly considered. For example, the Laplacian
approzimation [Bishop, 2006] approximates the posterior distribution with a Gaussian
distribution whose mean is assumed to be a mode of the true posterior distribution. Then,
the covariance of the Gaussian distribution can be determined in terms of the Hessian
matrix (matrix of second derivatives) of the true posterior at its mode.

More general approximations have also been considered. Variational Bayesian in-
ference is an approximate inference technique that proceeds by assuming an arbitrary
approximation g(z) for the posterior distribution. Inference proceeds using a EM-like
algorithm, which is called Vaeriational EM (VEM) and which is based on the decompo-
sition of (2.12). In the E-step ¢(z) is found by maximizing F(q, @) keeping @ fixed. To
perform this maximization, a particular form of g(z) must be assumed. In certain cases
it is possible to assume knowledge of the form of ¢(z;w), where w is a set of parameters.
Thus, the lower bound F(w, 8) becomes a function of these parameters and is maximized
with respect to w in the E-step and with respect to @ in the M-step, see for example
[Bishop, 2006].

However, in its general form the lower bound F(q, @) is a functional in terms of g, in
other words, a mapping that takes as input a function ¢(z), and returns as output the
value of the functional. This leads naturally to the concept of the functional derivative,
which in analogy to the function derivative, gives the functional changes for infinitesimal
changes to the input function. This area of mathematics is called calculus of variations
[Weinstock, 1974] and has been applied to many scientific areas.

Variational methods can be used to find approximate solutions in Bayesian inference
problems. This is done by assuming that the functions over which optimization is per-
formed have specific forms. For example, we can assume only quadratic functions or
functions that are linear combinations of fixed basis functions. For Bayesian inference a
particular form that has been used with great success is the factorized one, see [Jaakola,
1997, Jordan et al., 1999]. The idea for this factorized approximation stems from theo-
retical physics where it is called mean field theory [Parisi, 1988].
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According to this approximation, the hidden variables z are assumed to be partitioned
into M partitions z withi =1,..., M. Also it is assumed that g(z) factorizes with respect

to these partitions as

M
g(z) = H gi(2:)- (2.23)

i=1
Thus, we wish to find the g(2) of the form of (2.23) that maximizes the lower bound
F(q, ). It can be shown that this happens when [Jaakola, 1997, Jordan et al., 1999}:

Ing;(2) = (Inp(x, 2;0));4; + const, (2.24)

and with appropriate normalization the approximate posterior distributions g;(z;) are:

(2.25)

gi(%) = P (anp(w’z;e))"’”) .
Jexp ((1np(w,Z;9))i#j) dz;

The above equations for j = 1,...,M are a set of consistency conditions for the
maximum of the lower bound subject to the factorization of (2.23). They do not provide
an explicit solution since they depend on the other factors g;(2;) for ¢ # j. Therefore, a
consistent solution is found by cycling through these factors and replacing each in turn
with the revised estimate.

In summary, the Variational EM algorithm is given by the following two steps:

1. Variational E-Step
Evaluate ¢V£W (z) to maximize F(g, 8°%P) solving the system of (2.25)

2. Variational M-Step

Compute Oypw = argmax, F(gVEY, 6)

At this point it is worth noting that in certain cases a Bayesian model can contain
only hidden variables and no parameters. In such cases the Variational EM algorithm has
only an E-step in which g(2) is obtained using (2.25). This function ¢(z) constitutes an
approximation to p(z|z) that can be used for inference of the hidden variables.
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CHAPTER 3

LINEAR REGRESSION

3.1 Introduction

- 3.2 Maximum Likelihood Estimation
3.3 The Bayesian Linear Model
3.4 The Sparse Bayesian Linear Model
3.5 The Relevance Vector Machine
3.6 Relation of RVM to other models
3.7 Linear Regression Examples
3.8 Classification

3.9 Conclusions

3.1 Introduction

In this chapter we will apply the Bayesian Inference methods of the previous chapter on
the problem of linear regression. For this problem, we consider an unknown function
y(z) €R, z € Q C RN and want to predict its value ¢, = y(z.) at an arbitrary location
z, € Q, using a vector t = (t1,...,t~)T of N noisy observations (t, = y(z,) + €,), at
locations « = (z1,...,zN)7, Zn € n=1,...,N.

The unknown function y is commonly modelled as the linear combination of M basis
functions ¢, (z):

M
Y(@) =) Wmdm(), (3.1)

m=1
where w = (wy, ..., wn)” are the weights of the linear combination. Selection of appro-

priate basis functions is essential in order to achieve good performance. However, there
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is no rigorous methodology in_doing so, but cross-validation techniques can be used to
compare the performance of several basis function sets and then select the best one.

The additive noise € = (e, ...,ex)7 is commonly assumed to be zero-mean, Gaussian
distributed
p(e) = N(€|0, B™!), (3.2)

where B is the inverse covariance (precision) matrix. Usually, we assume that the obser-
vations are independent and identically distributed (i.i.d.), therefore B = BI. However,
here we retain the more general form of the precision matrix, because it is used to derive
the classification algorithm and also allows considering non-Gaussian noise distributions.
For example, if we assume independent noise, but assign separate precision 3, to each
data point t,, the precision matrix becomes B = diag{f, ..., n} and this allows design-
ing robust regression models by selecting an appropriate noise precision prior p(3,). More
specifically, assuming a Gamma pdf for the noise precisions:

p(B,) = Gamma(S,lc, d), (3.3)

we obtain a Student’s t pdf for the noise

plen) = / P(€n|Bn)p(Bn) dB» = Student(en|0, v, A), (3.4)

with A = ¢/d and v = 2¢. This pdf can provide robustness, because it may have heavy
tails [Tipping and Lawrence, 2003).

Here, we consider Gaussian distributed noise, therefore by defining the design matriz
® = (¢y,...,0m), With ¢, = (dm(1),--.,Pm(xN))T, the observations ¢ are modelled
as

t=®w + ¢, (3.5)

and their likelihood is
p(t; w, B) = N(t|®w, B™'). (3.6)

In what follows Bayesian inference is applied to the linear regression problem and
we demonstrate three well-known methodologies to compute the unknown weights w of
this linear model [Bishop, 2006, Tzikas et al., 2008b]. First, we apply typical maximum
likelihood (ML) estimation of the weights which are assumed to be parameters. As it will
be demonstrated, if the number of parameters is large (compared to the number of ob-
servations), the ML estimates are very sensitive to the noise and overfit the observations.
Subsequently, to ameliorate this problem a prior p(w) is imposed on the weights, which
are assumed to be random variables. First, a simple Bayesian model is used, which is
based on a stationary Gaussian prior for the weights. For this model, Bayesian inference is
performed using the EM algorithm and the resulting solution is robust to noise. Neverthe-
less, this Bayesian model is very simplistic, and it is possible to use a more sophisticated
non-stationary hierarchical model, which is equivalent to assuming a Student’s t prior for
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the weights, see Section 3.4.4. This model is too complex to solve using the EM algorithm.
Instead, the variational Bayesian methodology described in Section 2.6 is used to infer
values for the unknowns of this model. In Fig. 3.1 we show the graphical models for the
three approaches to Linear Regression that are described in the following sections.

3.2 Maximum Likelihood Estimation

The simplest estimate of the weights w of the linear model is obtained by maximizing the
likelihood of the model. This ML estimate assumes the weights w to be parameters, as
shown in the graphical model of Fig. 3.1a. The ML estimate is obtained by maximizing
the likelihood function of (3.6):

p(t;w, B) = (27) "N/ B|Y? exp (—-;-(t - dw)'B (t - @w)) . (3.7
This is equivalent to minimizing
Ers = ||t — dw||% = (t — dw)TB (t — dw). (3.8)
Thus, in this case the ML is equivalent with the least squares (LS) estimate

wis = argmax p(t; w, B) = argmin Ers = (#7 B®)'®T Bt (3.9)

In many situations and depending on the basis functions that are used, the matrix
®T B® may be ill-conditioned and difficult to invert. This means that if noise € is included
in the observations, it will heavily affect the estimation wjs of the weights. Thus, when
using maximum likelihood linear regression, the basis functions should be carefully chosen
to ensure that matrix &7 B® can be inverted. This is generally achieved by using a model
with few basis functions, which also has the advantage that only few parameters have to
be estimated.

3.3 The Bayesian Linear Model

A Bayesian treatment of the linear model begins by assigning a prior distribution p(w) to
the weights of the model. This introduces bias in the estimation, but also greatly reduces
its variance, which is a major problem of the maximum likelihood estimate. Here, we
consider the common choice of independent, zero-mean, Gaussian prior distribution for
the weights of the linear model:

p(w;a) = N(wl|0,a7'I). (3.10)
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Figure 3.1: Graphical models for linear regression solved using (a) model without prior
(direct ML estimation), (b) model with stationary Gaussian prior (EM), (c) model with
hierarchical prior (variational EM).

This is a stationary prior distribution, meaning that the distribution of all the weights is
identical. The graphical model for this problem is shown in Fig. 3.1b. Notice that here
the weights w are hidden random variables and the set of model parameters contains the
parameter o of the prior for the weights and the precision B of the additive noise.

Bayesian inference proceeds by computing the posterior distribution of the hidden

variables:
p(tlw; B)p(w; a)

p(t; o, B)
Notice, that the marginal likelihood p(t; e, 8) that appears on the denominator can be
computed analytically:

(3.11)

p(wlt;a, B) =

p(t;a, B) = /p(t|w; B)p(w; o) dw = N(t|0, B! + o~ 1®®7). (3.12)

Then, the posterior of the hidden variables is:

p(wlt;a, B) = N(w|u, X), (3.13)

with
u=X®TBt, (3.14)
= (®TB® + al)"t. (3.15)

If we assume that the noise is i.i.d. then B = I and the parameters of the model are the
weight and noise precisions a, § and they can be estimated by maximizing the logarithm
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of the marginal likelihood p(¢; , B):

(amr, Burr) = argmax{log |87 + a'®T®| + 17 (7L + o 887) "¢}, (3.16)
B

Optimization of the marginal likelihood can be performed using the EM algorithm,
which provides an efficient framework to simultaneously obtain estimates for a, and
infer the posterior distribution of w. Notice, that although the EM algorithm does not
involve computations with the marginal likelihood of (3.12), the algorithm converges to
a local maximum of it. After initializing the parameters to some values (a©@, 8©), the
algorithm proceeds by iteratively performing the following steps:

o E- step
Compute the expected value of the logarithm of the complete likelihood:

- QU(t,w; 0 6) = (np(t, w; &, B)) puaftyatt ) - (3.17)

This is computed using equations (3.6) and (3.10) as

N M
QY(t, w;a, B) = <-2— Ing - §||t — dw||? + 5 Ina — %||w||2> + const

N M
= T inp- g (It~ @wl?) + % e — 2 () + const. (3.18)

These expected values are with respect to p(w|t;a®, %) and can be computed
from (3.13), giving

N
QW (t, w; e, B) =5 Ing — g (It — 2p®|? + trace(®TEWP)) +

M
5 Ina — % (Ile®? + trace(=®)) + const, (3.19)
where 1 and £® are computed using the current estimates of the parameters o
and B®):
p® = gOxO@Tt (3.20)
x® = (BOSTS + 1)1 (3.21)
e M-step

Maximize Q®(t, w; a, B) with respect to the parameters a and 3:

(at+D), gDy — arg;’gax QO(t, w;a, B) (3.22)
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The derivatives of Q¥ (£, w;a, B) with respect to the parameters are:

QY (t, w;a,f) M

8o ~ % % (1@ + trace(=®)) , (3.23)
) .
99 “52”“’ b) _ % ~ 5 (It = 2BOIP + trace($TEOR)) (3:24)

Setting these to zero, we obtain the following formulas to update the parameters o
and G:
(t+1) M

lu®||? + trace(2®)’

et = Al .
It — @u®}2 + trace(BTT)P)

a (3.25)

(3.26)

Notice, that the maximization step can be analytically performed, in contrast to direct
maximization of the marginal likelihood in (3.12), which would require numerical opti-
mization. Furthermore, equations (3.25) and (3.26) guarantee that positive estimations
for the parameters a and  are produced, which is a requirement since these represent
inverse variance parameters. However, the parameters should be initialized with care,
since, depending on the initialization, a different local maximum may be attained. Infer-
ence for w is obtained directly, since the sufficient statistics of the posterior p(w|t|a, 3)
are computed in the E-step. The mean of this posterior, given by (3.20), can be used as
Bayesian linear minimum mean square error (LMMSE) estimate for w.

3.4 The Sparse Bayesian Linear Model

In the Bayesian approach described in the previous section, due to the use of a stationary
Gaussian prior distribution for the weights of the linear model, exact computation of the
marginal likelihood is possible and Bayesian inference is performed analytically. However,
in many situations, it is important to allow the flexibility to model local characteristics of
the function, which the simple stationary Gaussian prior distribution is unable to do. For
this reason, a non-stationary Gaussian prior distribution with a distinct inverse variance
am for each weight is considered:

p(w|a) = N(w|0, A™!), (3.27)

where A = diag{ay,...,ap}. However, such a model is over-parameterized, since there
are as many parameters a; to be estimated as the number of basis functions. For this
purpose the precision parameters o = (o,...,apm)T are constrained, by treating them
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as random variables and imposing a Gamma prior distribution to them according to

M
pla) = H Gamma(ayn,|a, b). (3.28)
m=1
This prior is selected because it is conjugate to the Gaussian.

We also assume i.i.d. noise, therefore B = BI and we use a Gamma. distribution as
prior for the noise inverse variance §:

p(B) = Gamma(Bc, d). (3.29)

The graphical model for this Bayesian approach is shown in Fig. 3.1c, where the de-
pendence of the hidden variables w on the hidden variables « is apparent. Also the
parameters a,b,c and d of this model and the hidden variables that depend on them are
also depicted.

Bayesian inference requires the computation of the posterior distribution

p(w, o, Blt) = p(tla,ﬂ)pgt(fgx)p(a)p(ﬁ). (3.30)

However, the marginal likelihood p(t) = f p(tla,ﬂ)p(wla)p(a)p(ﬂ) dw da df cannot be
computed analytically, and thus the normalization constant in (3.30) cannot be obtained.

3.4.1 Variational Bayesian Inference

Because exact Bayesian inference is intractable, approximate Bayesian inference methods
are employed and specifically the variational inference methodology of Section 2.6. As-
suming posterior independence between the weights w
and f3,

and the variance parameters o

p(w, o, Bt) = g(w, o, B) = g(w)q()q(p), (3.31)

the approximate posterior distributions g can be computed from (2.24) as follows. Keeping
only the terms of In g(w) that depend on w, we have:

Ing(w) = (Inp(t,w, o, B)) e + const

= (Inp(t|w, B) + lnp(w|a)>q(a)q(ﬁ) + const

= <_-§-(t — dw)T(t - dw)) - %'wTA'w> + const

o 9(ax)q(B)
1
= __.Q._(tTt —2tT®w + wT T dw)) — §’wT (A)w + const

= _% [w” ((B) 2" ® + (A)) w - 2(B) 'wT‘I’Tt] + const

1 _ -
=-3 [w'= w - 2wy 'p] + const. (3.32)
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Notice, that this is the exponent of a Gaussian distribution with mean g and covariance
matrix ¥ given by

= ((8)@"® + (A) ™, (3.33)

= (8) Z¥"t. (3.34)
Therefore, g(w) is given by:

g(w) = N(w|p, Z). (3.35)

The posterior g(a) is similarly obtained by computing the terms of In g(cx) that depend
on a:

Ing(a) = (p(t,w,d,ﬂ))q(w)q(ﬁ) + const
= (Inp(wla) + Inp(a)) 4oy + const

Il

“In|A| - - (wTAw) +(a-1) Zlnam -b5)_m=1May, + const

m=1

(¢

_._)Zlnam Z m(-(—u;—mz+b)+const

m=1 m=1
M

= Z naoy, — Z ami; + const. (3.36)
m=1 m=1

This is the exponent of the product of M independent Gamma distributions with param-
eters @ and b, given by

i=a-+ %, (3.37)
b=b+ §1”-2'-“l (3.38)
Thus, g(a) is given by:
M .
g(a) = [| Gamma(an|, b). (3.39)
m=1

The posterior distribution of the noise inverse variance can be similarly computed as:

¢(8) = Gamma(B|¢, d). (3.40)
with

E=c+ % (3.41)

d=aq4 = 2wl (3.42)

2
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The approximate posterior distributions in equations (3.35), (3.39) and (3.40) are then
iteratively updated until convergence, since they depend on the statistics of each other,
see for details [Bishop and Tipping, 2000].

3.4.2 MAP Estimation of Precision Parameters

In this section an alternative training algorithm for the sparse Bayesian linear model is
described, which is based on the MAP approximation for estimation of the weight and
noise precisions a and 3. Under the MAP approximation, update formulas for the weight
precisions a can be obtained by maximizing the logarithm of the marginal likelihood
p(tle, B) = [ p(t|lw, B)p(w|a)p(a) dw. Here, we assume an uninformative prior for
(p(ax) = const), therefore the marginal likelihood is given by [Tipping, 2001):

L = log p(ta, B) = _% (Nlog2r + |C| + £7Ct) (3.43)

where C = B~! + @A 1T,

Maximization of the marginal likelihood is typically performed by considering the
weights w as hidden variables and then using the EM algorithm. It can be shown that
the updates which this approach gives, are equivalent to the updates of the variational
algorithm of the previous section. However, instead of using the EM algorithm, [Tipping,
2001] suggests that in this case it is more efficient to maximize the marginal likelihood
directly. The derivative of the marginal likelihood with respect to log ¢; is

oL 1

Bloga- = 5(1 — aiEii — a,'ﬂ?). (344)

Equating this to zero and setting v; = 1 — a;X;;, we obtain the following update formula
for o;:
o =5, (3.45)
Hi
We can also compute updates for the noise precision 8. The derivative of the marginal
likelihood with respect to log g is
oL 1[N

== _|t- 2_t TP 3.46
Slogl ~ 2|8 It — Dpu| race( M, (3.46)

and by setting it to zero we obtain the following update formula for &:

f=—=52= 2 (3.47)

it — @pll?
These updates do not enjoy the theoretical convergence properties of the EM-based up-
date equations. However, it has been experimentally observed that they always converge

and, furthermore, they typically converge faster than the EM-based updates.
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3.4.3 Incremental Training Algorithm

Notice that the computational cost of the sparse Bayesian learning algorithm is high for
large datasets, because the computation of X in (3.33) involves matrix inversion and typ-
ically requires O(N3) operations. An incremental algorithm that is more computationally
efficient has been proposed in [Tipping and Faul, 2003]. It initially assumes that a; = oo,
for all 7 = 1,..., M, which corresponds to assuming that all basis functions have been
pruned because of the sparsity constraint. Then, at each iteration one basis function may
be either added to the model or re-estimated or removed from the current model. When
adding a basis functions to the model, the corresponding parameter o; is set to the value
that maximizes the marginal likelihood.

More specifically, the terms of the marginal likelihood (3.43) that depend on a single
parameter o; are [Tipping and Faul, 2003}:

_1 g
o) = 3 (loga, log(ay + i) + s s‘_) , (3.48)
where
s = ¢] CZl b1, (3.49)
¢ = ¢] C_l1, (3.50)

and C_; = B+ Y, @;@;¢] . In regression we have t = t and usually B = I, while in
classification B and £ are given by (3.88) and (3.89) respectively.
In order to simplify computations one can define:

S; = ¢TC ¢, (3.51)
Qi = ¢;C'i, (3.52)
and compute s;, ¢; from:
Q;Si .
8 = a — Si, (353)
_ouQ

Also the inversion of C can be avoided by using the Woodbury identity to write:

Si = ¢T B¢ — ¢T B®LO" B¢, (3.55)
Qi = ¢T Bt - ¢TBOLH" Bi. (3.56)

It has been shown in [Faul and Tipping, 2002] that I(a;) has a single maximum at:
o = 3?‘-3;‘-, if g7 > s, (3.57)
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o =00, ifg <s; (3.58)

Based on this result, the incremental algorithm proceeds iteratively, adding each time one
basis function ¢; if g> > s; and removing it otherwise.

An important question that arises in the incremental RVM algorithm is which basis
function to update at each iteration. There are several possibilities, for example we
could choose a basis function at random or with some additional computational cost, we
could test several and select the one whose addition will cause the largest increase in the
marginal likelihood. In the first approach, where we select basis functions at random,
the incremental algorithm may require a very large number of iterations to converge.
On the other hand, in the second approach, where we select the best basis function for
addition, much less iterations are required, but the computational cost of each iteration
is significantly increased.

3.4.4 Understanding Sparsity

As ;lready mentioned, the ‘true’ prior distribution of the weights can be computed by
marginalizing the hyper-parameters o

p(w) = [ plwlalp(a)da (3.59)
' M
- / [1 N(wnl0,07")Gamma(oum|a, b)dor] (360)
m=1
M
= H Student(w,|0, A, v), (3.61)

and is a Student’s t pdf,

1/2 97 —(v+1)/2
Student(z}y, \, ) = ﬁ(;,’(':—/lz))@ (%) / [1 + 1("‘%")—] ! , (3.62)

with mean y = 0, parameter A = a/b and degrees of freedom v = 2a. This distribution
can be considered as a generalization of the Gaussian; with appropriate selection of its
parameters, it can have heavy tails and in the limit it can become either Gaussian (large
v), or uninformative (small v), see Fig. 3.2(a).

The important issue is that when the weights of a linear model follow a heavy-tailed
distribution (such as the Student’s t pdf with few degrees of freedom v), this results in
sparse models, i.e. models with few non-zero parameters w;. The sparsity of such models
can be understood by observing the plots of the two-dimensional pdfs in Fig. 3.2(b). Most
of the mass of the Student’s t pdf is concentrated along the axes and the center, unlike
the Gaussian, where it is evenly distributed around ellipses, as shown in Fig. 3.2(c). This
observation can be generalized for vectors of arbitrary dimension, where the Student’s
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Figure 3.2: (a) The Student’s t pdf with 0.1, 1 and 10 degrees of freedom compared to
the Gaussian pdf. Two dimensional plot of (b) the Student’s-t pdf with 0.1 degrees of
freedom and (c) the Gaussian pdf.

t pdf assigns large probability mass to estimations that contain a large number of zero
elements. In similar spirit the Laplacian pdf (which also has heavy tails) has been used
for obtaining sparse models [Figueiredo, 2003]. Since most of the weights are set to zero,
most of the basis functions are pruned and do not contribute to the estimation.

There are several advantages of using sparse priors:

e The complexity of the model is automatically adjusted, thus very complex models
may be initially considered.

o The basis functions that remain on the model provide information about which basis
functions are relevant with the data. This may be useful in many applications.

e The output of sparse models is computed very efficiently, since only few basis func-
tions are involved in the computation.

Notice, that for simplicity we have assumed fixed the parameters a, b, ¢ and d of the
Student’s t distributions. In practice we can often obtain good results by assuming un-
informative distributions, which are obtained by setting these parameters to very small
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values, i.e. @ = b = 1078, In the limit, setting a = b = 0 gives the improper Jeffrey’s prior

pa) = 1 (3.69)
which is also known to provide sparse solutions. Alternatively, we can estimate the above
parameters using a Variational EM algorithm. Such an approach would add an M-step
to the described method, in which the Variational bound would be maximized with re-
spect to these parameters. However, a usual approach in Bayesian modeling is to fix the
hyperparameters so that uninformative hyperpriors are defined at the highest level of the
model.

3.5 The Relevance Vector Machine

The linear model is very efficient provided that appropriate basis functions are used.
However, there is no rigorous methodology to select these basis functions. A significant
advantage of the sparse linear model is that its estimations are not heavily affected by
irrelevant basis functions, since it has the ability to prune them. For this reason, it is
possible to consider sparse linear models with a large number of initial candidate basis
functions and let the training algorithm prune the irrelevant ones.

The Relevance Vector Machine (RVM) [Tipping, 2001] is an instance of the sparse
Bayesian linear model that assumes a particular form for the basis functions. Specifically,
it has been motivated by the popular Support Vector Machine (SVM) [Scholkopf and
Smola, 2001)], and it assumes that the basis functions are kernel functions. A kernel
function K(z;,x,) is a function that corresponds to the inner product ¥(z;)T¥(x,) at
some high dimensional feature space defined by the mapping function (). In this sense,
kernel functions compute a measure of the similarity between two input points, after
projecting them to the feature space. A common type of kernel function is the Gaussian
kernel function:

1
K(a:l, $2) = exp (—-2';2'"231 - $2”2) , (364)

where o is the width of the kernel. Notice, that since kernel functions are not probability
distribution functions we can omit the normalizing constant.

More specifically, the RVM assumes that the number of the basis functions is equal to
the number N of training examples and that each basis function ¢;(x) is a kernel K (x, ;)
that computes the similarity between the input x and the i-th training example x;. Then,
the output of the RVM model is given by

N
y(x) = ZwiK(m,mi). (3.65)

Because of the sparse prior only a small subset of the available kernels remains in
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the final model. The examples of the training set that correspond to the kernels that
contribute to the estimation are called relevance vectors (RV).

3.6 Relation of RVM to other models
3.6.1 Gaussian Processes

Gaussian processes [Rasmussen and Williams, 2006] are collections of N random variables
Z1,...,ZN, any finite number of which have a Gaussian distribution. A Gaussian process
is completely specified by its mean m(x;) and covariance function k(z;, z;), which are
defined as:

m(x:) = (f(x:)), (3.66)
k(zi, ;) = ([f(z:) — m(z))[f () — m(;))) - (3:67)

A Gaussian process with these statistics is denoted as
f(=) = GP(m(x:), k(z;, ;). (3.68)

It can be seen that the linear model of (3.1) is a special case of the Gaussian process
model. Here, we consider a zero mean Gaussian distribution for the weights with arbitrary
precision matrix A

p(w) = N(wl|0, A™Y). (3.69)
Then, the output t, = y(x.) of the model at an arbitrary point x, is given by t, =
¢Tw+e, where ¢, = (¢1(.), ..., dnm(x.))T is a vector that contains all the basis functions

evaluated at x, and it is Gaussian distributed with:

(t.) = &7 (w) =0, (3.70)
(£12) = ¢ (ww”) ¢? = 1A 2. (3.71)

Therefore the Bayesian linear model is a special case of a Gaussian process whose
covariance function is determined by the covariance A of the Gaussian prior of the weights
and the basis functions ¢;(z). In the Bayesian linear model of Section 3.3 and in the sparse
Bayesian linear model of Section 3.4 we assume that A = al and A = diag{ay,...,anm}
respectively. The main difference between the typical Gaussian process model and the
Bayesian linear model is that in the former we typically assume a fixed covariance function
while in the latter we update the covariance function by estimating the precision matrix A.

Apart from the RVM, other versions of sparse Gaussian processes have also been
developed, most of which are specific cases of a unified view proposed by [Quifionero-
Candela and Rasmussen, 2005).
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3.6.2 Support Vector Machines

Support vector regression (SVR) [Smola and Schélkopf, 1998] is a regression method based
on the popular Support Vector Machine (SVM) model [Schélkopf and Smola, 2001]. It is
analogous to to the RVM in the sense that they both produce sparse solutions using an
initially complex linear model. However, unlike the RVM which is based on the Bayesian
framework an therefore sparseness is derived by a suitable weight prior, in SVR sparseness
is derived by defining an appropriate penalty function for the noise.

More specifically, in SVR we ideally want to constraint all the errors to be smaller
than a constant €, without penalizing at all any errors that are smaller than €. However,
such a solution does not always exist and, when necessary, we may allow some errors to
be larger than . Errors are penalized using the function:

€le = {0 itk <e, (3.72)

€] — € otherwise.
Furthermore, in order to make smooth estimations for the unknown function, we seek
the values of the weights that have the smallest magnitude. By introducing auxiliary
variables &;, £, the SVR training can be formulated as follows:

. 1 9 l *
minimize §||wl| +C ;(&- + &) (3.73)
y—wlig(x)—b <e+§
subject to wi¢(z) +b—y <e+& (3.74)
gia 6: 2 O
w.r.t. w,€,&%,b. (3.75)

Here, the constant C' determines the strength of the penalty for errors larger then €. The
above maximization can be performed efficiently by constructing the Lagrangian function
and then considering its dual function.

There are several drawbacks of SVR compared to the Bayesian sparse linear regression
approach. First, in SVR we need to select appropriate values for the parameters C and ¢,
which is usually achieved with a cross-validation procedure. Furthermore, Bayesian sparse
linear modelling is usually sparser than support vector regression or classification, where
the number of support vectors scales with the size of the training set [Tipping, 2001].
Another potential advantage of the Bayesian sparse linear model is that, in contrast to
SVR, it provides probabilistic predictions and therefore it also offers estimations of the
accuracy of predictions. Finally, in SVR the kernel function needs to satisfy Mercer’s
condition, otherwise the SVR optimization problem might have no solution [Burges,
1998]. In RVM this constraint does not exist.
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Figure 3.3: Linear regression solutions obtained by ML estimation, EM-based Bayesian
inference and variational-EM sparse Bayesian inference.

3.7 Linear Regression Examples

Next, we present numerical examples to demonstrate the properties of the previously
described linear regression models. We also demonstrate the advantages that can be
reaped by using the variational Bayesian inference. An artificially generated signal y(x)
is used so that the “ground truth” is known. We have obtained N = 50 samples of the
signal and added Gaussian noise of variance 02 = 4 x 10~2, which corresponds to signal to
noise ratio SNR = 6.6dB. We used N basis functions and, specifically, one basis function

centred at the location of each observation, similarly to the RVM. The basis functions are
Gaussian kernels of the form

¢i(z) = K(z,x;) = exp (——l—nz - .1:,-“2) . (3.76)

2
204,

We then used the observations to build a regression model, using i) ML estimation (3.9)
ii) EM-based Bayesian inference (3.14) iii) sparse Bayesian inference (RVM) (3.34). For
the case of sparse Bayesian model, we assume uninformative precision prior p(a) by
settinga = b = 0.

Results are shown in Fig. 3.3. Notice, that the ML estimate follows exactly the noisy
observations. Thus, it is the worst in terms of mean square error. This should be expected,
since in this formulation we use as many basis functions as the observations and there is no
constraint on the weights. The Bayesian methodology overcomes this problem since the
weights are constrained by the priors. However, since this signal contains some regions
with large variance and some with very small variance, it is clear that the stationary
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prior does not provide the flexibility to accurately model local signal characteristics. In
contrast, the hierarchical non-stationary prior is more flexible and seems to achieve better
local fit. Actually, the solution corresponding to the latter prior, uses only a small subset
of the basis functions, whose locations are shown as circled observations in Fig. 3.3. This
happens because we have set a = b = 0, which defines an uninformative student’s t
distribution. Therefore, most weights are estimated to be exactly zero and only few
relevance vectors are finally used for signal estimation (denoted as (RV) in Fig. 3.3).

3.8 Classification

The classification exhibits analogy to the regression problem, but in classification the
unknown function maps input points z, to discrete and unordered class labels ¢, rather
than continuous valued outputs. Assuming K classes, the outputs can be coded so that
tar = 1 if z, belongs to class k, otherwise t,, = 0. Predictions can be made by assuming
that_the outputs ¢, follow a multinomial distribution, whose parameters are given by
applying a sigmoid function to a linear model with K outputs:

N K
p(tlw) = [ [ [ o(we(zalw))=*, (3.77)

n=1 k=1

where 0(z) = {zi=. For simplicity we only consider binary classification and assume
that the outputs are coded so that ¢, € {0,1}. Multiclass problems can be solved using
the one-vs-all approach, which builds only two-class models. In binary classification the
multinomial likelihood in (3.77) simplifies to a Bernoulli likelihood:

p(tlw) = [ vlr (1 —ya)' (3.78)

n=1

where y, = o(y(z.|w)).

Unlike the regression case, we cannot perform exact Bayesian inference with this like-
lihood. Instead we use the Laplacian approximation that is based on a Gaussian approx-
imation of the posterior distribution around its mode [Tipping, 2001].

We can find the values of the weights wyp that maximize the posterior p(w|t, a) o

p(tlw)p(w|a)
wy p = argmax p(w|t, a). (3.79)

We consider again a zero mean Gaussian prior distribution for the weights:
p(w|a) = N(w|0, 4), (3.80)
where A is the precision matrix. Then, the logarithm of the posterior distribution that
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appears in (3.79) is given by _
log p(w|t, A) = log p(t|w)p(w|A) + const (3.81)

N
= axgmaxz (tnlogyn + (1 — tn) log(l — ) — -;-wTAw + const, (3.82)

n=]

and its maximization can be efficiently performed using the iteratively reweighted least
squares (IRLS) algorithm [Bjorck, 1996].

The Laplacian approximation is based on a Gaussian approximation of the posterior,
or equivalently a quadratic approximation of its logarithm:

1
log p(wit, A) = —E(w - wyp)TE Y w — wyp). (3.83)
We set the covariance matrix ¥ so that the Hessian matrix —13~! of the approximation

is equal to the Hessian of the log-posterior

--;-2-1 = VuValogp(wlt, A) = —(BTB® + A), (3.84)

with B = diag{f,,...,8n} and B, = o(y(zs))[1 — o(y(x,))], which gives
T =(®"B2+ A)L. (3.85)

At the mode of the posterior wysp its curvature is zero, therefore the mode can be found
by setting the gradient of the log-posterior to zero:

v'w logp(wlt, A)I"’MP = 0’ (386)
which gives
wyp = 207 BE, (3.87)
with £ = @w + B~'(t — y).

In summary, using the Laplacian approximation, the classification problem is mapped
to a regression problem with heteroscedastic noise p(e,) = N(e,|0,8,) (Tipping, 2001},
whose precision is given by

Bn = yn(1 — yn), (3.88)
and the regression targets £ = (f,,...,in)7 are:
t=dw+ B (t-y), (3.89)

where y = (y1,...,un)T and B = diag(B,...,0n). Furthermore, depending on the
structure of the covariance matrix of the prior of the weights in (3.80) we can obtain

either the simple Bayesian linear model of Section 3.3 by setting A = al, or the sparse
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Bayesian linear model of Section 3.4 by setting A = diag{a,...,anm}

3.9 Conclusions

In this chapter we considered the regression problem using the linear model. In Sec-
tion 3.2 we described the simplest approach that treats the weights of the linear model
as parameters and estimates them using the ML approach. If the linear model contains
a large number of basis functions, it is very flexible and the ML estimations may be
heavily corrupted by noise. For this reason, in Section 3.3 the Bayesian linear model is
described, that treats the weights as random variables. In its simplest form, it uses a
stationary Gaussian distribution for the weights, which forces them to small values and
allows tractable Bayesian inference. However, there are many advantages in considering
more complex prior distributions. In Section 3.4 we presented the sparse Bayesian linear
model that uses a non-Gaussian prior distribution to provide sparse solutions that use
only few of the available basis functions.

In the next chapters, we use the sparse Bayesian linear model to treat some image
processing problems. More specifically, we use the sparse linear model to perform regres-
sion of images, which presents several computational difficulties, due to the large scale of
the problem. For this reason, in Chapter 4 we propose a training algorithm for sparse
Bayesian regression of images that is based on operations in the Fourier domain. Then we
use this algorithm to tackle the problem of detecting objects in images and the problem
of blind image deconvolution (in Chapter 5). In Chapter 6 we propose a methodology to
learn parameters of the basis functions. In contrast to the cross-validation approach that
is commonly used for selecting basis function parameters, the proposed incremental ap-
proach uses different parameter values for each basis function. We evaluate this method-
ology in several regression and classification datasets and in we apply it for detecting
activations in functional neuroimages. In Chapter 7 we extend the previous method in
order to simultaneously perform feature selection and we apply it to the analysis of DNA
microarray datasets.
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CHAPTER 4

SPARSE MULTIKERNEL REGRESSION FOR
IMAGE ANALYSIS

4.1 Introduction

4.2 Multikernel RVM for Image Regression

4.3 Sparse Linegr Regression in the DFT domain

4.4 Evaluation of the DFT-based RVM implementation
4.5 Object Detection Using the Multikernel RVM Model

4.6 Conclusions

4.1 Introduction

A major issue with the linear model is how to select appropriate basis functions. Typically,
using a large number of basis functions results in a very flexible model which overfits the
noise and has poor generalization capability. However, this is not an issue in the sparse
linear model, because it computes sparse solutions that use only a small number of the
available basis functions. For example, the relevance vector machine (RVM) [Tipping,
2001] initially places one kernel basis function at each point of the training set. In the
RVM it is important to select appropriate kernel function, for example Gaussian kernel
functions are very commonly used. Parameters of the kernel function, such as the variance
of Gaussian kernels are typically selected using cross-validation techniques.

In this chapter we propose an extension of the typical RVM, which is based on a linear
model with several different basis functions and we call the multikernel RVM  [Tzikas
et al., 2006b, 2007b]. Similarly to the RVM, each of these basis functions is placed at all
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the points of the training set, therefore the multikernel model is given by

M N

v@) =YY wnitm(z, z:), (4.1)

m=1 i=1

where N is the number of training points and M is the number of different basis function

types and ¢,,(x, x;) is the i-th basis function. For example, we might use Gaussian basis
functions of several different widths

bm(z, z:) = exp [-h 2|z — z:lf?] (4.2)

where h,, is the width of the Gaussian kernel.

We then apply this model for modeling images. Unfortunately, since N is large (equal
to the number of image pixels) the standard training algorithms are too computationally
demanding, even for small images. We notice that if the training points z; lie on a
uniform grid, the linear model can be rewritten as the convolution of the weight vector
w = (w,,...,wN)T with a vector ¢ = (¢(z1),... ,¢(:n~))T, which consists of the basis
function ¢(x) evaluated at the training points @;. The output of the linear model can
then be written as:

y=¢=*rw, (4.3)
where * denotes the convolution operator and y = (y(1),...,y(zn))T is a vector con-
taining the outputs of the model evaluated at the training points. In section 4.2 we present
in detail the multikernel RVM model and propose an alternative implementation of the
EM-based training algorithm [Tipping, 2001}. Our implementation computes convolu-
tions in the DFT domain, improving both time and memory requirements and allows to
train RVM models on high resolution images, with reasonable computational costs. The
proposed implementation is evaluated in section 4.4.

We then use the proposed algorithm to treat the object detection problem, which is the
problem of finding the location of an unknown number of occurrences of a given ‘target’
image in another given ‘observed’ image, under the presence of noise. The ‘target’ may
appear significantly different in the observed image, as a result of being scaled, rotated,
occluded by other objects, different illumination conditions and other effects.

The most common approaches to solve the object detection problem are variants of
the matched filter, such as the phase-only [Horner and Gianino, 1984} and the symmetric
phase-only [Chen et al., 1994) matched filters. These are based on computing the cor-
relation image between the ‘observed’ and ‘target’ images and then using a threshold to
determine the locations where the ‘target’ object is present. Alternatively, the problem
can be formulated as an image restoration problem, where the image to restore is consid-
ered as an impulse function at the location of the ‘target’ object. This technique allows
many interesting background models to be considered, such as autoregressive models
[Abu-Naser et al., 1998]. A different object detection approach, which has been success-
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fully applied on face detection [Viola and Jones, 2001], is to split the observed image in
several regions and train a classifier with some features of the target ‘object’ in order to
decide which regions contain the ‘target’ object.

In section 4.5 we propose a method for object detection, which is based on training a
multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM model
consists of two sets of basis functions: basis functions that are used to model the ‘target’
image and basis functions that are used to model the background. After training the
model, each ‘target’ basis function whose corresponding weight is larger than a specified
threshold is considered as a detected ‘target’ object. Finally, we provide examples of the
proposed RVM-based object detection algorithm and a comparison with the autoregressive
impulse restoration [Abu-Naser et al., 1998] method.

4.2 Multikernel RVM for Image Regression

The linear model is very efficient provided that suitable basis functions ¢; are selected
and that there exist adequate training examples. Thus, finding a basis function set that
describes the data well is an important problem, that is difficult to solve. In this paper,
we simultaneously consider M different types of basis functions ¢i,...,¢ centered at
each training point @;, resulting in the following model with M N basis functions:

M N
y(z) = Z Z Wi (T — T3), (4.4)

m=1 i=1
Although we use so many basis functions (and therefore parameters), overfitting should
not be a concern, because of the sparseness in the final RVM model.

In order to model a N; x N, image t using an RVM, we assume that the intensity
t(i,7) of the observed image at location (Z, j) has been generated from the output y(, 5)
of the model (4.4) at the same location, after addition of independent white noise €(z, 7):

t(i,7) = y(i,4) + €, 5), (4.5)
e(i,j) ~ N(0,87%), (4.6)

where 3 is the inverse variance of the noise.

Defining t = ((1,1),...,t(1,N;),...,t(N;, N;))T to be a vector that contains the
intensities of the image pixels in lexicographical order and similarly defining the noise
vector € = (e(1,1),...,€(1, N;),...,e(N;, N;))T, Eq. (4.5) can be rewritten in compact
form as:

M
t=‘I’w+e=Z<I’mwm+e, (4.7)

m=1
where ® is the N x (MN) design matrix, each column of which is a vector with the
values of a basis function at all the training points. The design matrix can be partitioned
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as & = (®),...,8u), with 8 = (Pmi1,...,Pmy) being the part of the design matrix
corresponding to basis functions of type ¢m(x) and @mi = ($m(x1 — x4), ..., dm(TN =
x;))T being a vector consisting of the basis function ¢,,(x—x;) evaluated at all the training
points. The weight vector w can be similarly partitioned as w = (w],...,w%,)7, with
each wy, = (Wi, ..., Wmn), m = 1,..., M, consisting of the weights corresponding to
basis function ¢,,(x). The likelihood of the data set can then be written as:

pltho,8) = (2r) 26" exp { -3 plt - B} «9)

Given that the described model has M times more parameters than the available
training examples, it is essential to seek a sparse solution. Under the Bayesian framework
sparseness is obtained by assigning suitable prior distributions on the parameters as men-
tioned in Chapter 2 and Chapter 3. Specifically, independent Gaussian prior distributions
with unknown variances are imposed on the weights w:

N

M N M
p(w) = H Hp(wmi) = H HN(wmiIO’ar_n::)7 (49)

m=1 i=1 m=1 i=1

where o,,,; is the inverse variance of the corresponding weight w,,;. These parameters
are assumed unknown and Gamma hyperpriors are assigned to them. The inverse noise
variance 3 may also be assumed unknown and similarly, a Gamma prior distribution is
assigned to it:

M N

ple) = [[[]r(.b), (4.10)
m=1 i=1

p(ﬁ) = F(C,d), (4'11)

where a = (au1,... 04N, - .., OMN)-

Since this model is an instance of the Bayesian linear model described in Chapter 3,
the posterior weight distribution is:

P(Wit,a,ﬁ) = N(w|p, ), (4.12)
with

T = (p®TEe+ A7, (4.13)

p = PrdTe, (4.14)

where A = diag{a} and the precision parameters can be updated using:

1 - i i
Ui = 2mt u, (4'15)
Hmi
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N-N (1-0:%y)

o TEXTE

(4.16)

The learning algorithm proceeds by iteratively computing the posterior statistics p, ¥
of the weights, given by (4.13) and (4.14) and then updating the hyperparameters using
(4.15) and (4.16). Computation of ¥ involves inverting an MN x MN matrix which
is an O(M3N?) procedure. During the training process, many of the hyperparameters
are set to infinite values and the corresponding basis functions can be punned, allowing
computation of the posterior statistics in O(L?) time, where L is the number of functions
that remain in the model. This results in significant speed-up of the latter iterations of
the algorithm, however in the first iteration all the basis functions have to be considered
and the overall complexity is still O(M3N?). For this reason it is difficult to apply this
algorithm on large training sets, such as images. Furthermore, the incremental training
algorithm of Section 3.4.3 is an important improvement, but it still cannot be used for
large scale problems, such as modeling images. In this chapter we propose an RVM
implementation based on DFT computations, that successfully resolves the problem of
computational complexity.

4.3 Sparse Linear Regression in the DFT domain

It can be observed that if the training points are the pixels of an image, or generally uni-
form samples of a signal, then the RVM given by (4.4) can be written using a convolution
as:

M
y= Z GO * W (4.17)
m=1

Equation (4.7) still holds, with the additional property that matrices ®,, are circulant.
This means that each row of ®,, can be obtained with a circular shift of the elements of
the previous row. For this reason, we do not need to store in memory the whole matrix
®,,, but it is sufficient to store only one of its rows. Furthermore, because ®,,, is circulant
the product ®,,w,, is a convolution which can be efficiently computed in the DFT domain
by multiplying the DFT F,, and W of the basis function ¢,, and the weight vector w
respectively.

M
T= 3 FuiWai (4.18)

m=1
where 7 is the DFT of the vector ¢. This observation allows computation of the output
of the model without using the complete design matrix, but using only one basis vector,
improving memory complexity from O(N?) to O(N) and time complexity from O(N?) to

O(N log N).

The posterior statistics of the weights g and ¥ can also be computed in the DFT
domain, thus obtaining the same advantage. Beginning with (4.14), the posterior mean
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of the weights can be found by solving the equation:

Ty = B8T¢, (4.19)
(BBT®+ A)u = PPt (4.20)

Instead of analytically inverting the matrix A®7® + A, which is computationally
expensive and requires inversion of the large design matrix ®, we solve equation (4.20) by
using the conjugate gradient method [Shewchuk, 1994] to minimize the following quadratic
function:

pt = argmin(u” (B®T® + A)u — uTpETL). (4.21)
I

The quantities 387 ®u and BBt can be easily computed in the DFT domain since
® is circulant, while computation of Ap is straightforward since A is diagonal. In the
ideal case, the conjugate gradient method is guaranteed to find the exact minimum after
N iterations. In practice, a very good estimate can be obtained in only a few iterations.

Unfortunately, in order to compute the posterior weight covariance ¥ we have to invert
the matrix 3®T® + A, which is a computational burden. To overcome this problem,
we notice that we only need to compute the diagonal elements of ¥ and consider two
approximations.

The simplest approximation is to consider only the main diagonal of the matrix
B®T® + A, and estimate T;; as:

T = (Blo)* + )7, (4.22)

with ¢ = (¢7,,...,¢7),)7. Although this approximation is not valid in general, it has
been proved very effective in the experiments, because the matrix A has generally very
large values and is the dominant term in the sum f®T&® + A.

An alternative approximation that has been considered is to approximate the matrix
f®T® + A with a circulant matrix and estimate X;; as:

1
a=(F87® +aud) = = ;(ﬂf}' +a)7?, (4.23)

where F} is the j-th element of the DFT of the first row of matrix ®;. Notice, that
a different (circulant) approximating matrix has to be inverted for the computation of
each element of the diagonal of ¥. For this reason, this approximation requires more
computations than the first and may be impractical for large images.
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Figure 4.1: (a) An artificially generated image with added noise. Estimates of (b) the
RVM algorithm and the DFT-RVM algorithm using (c) the diagonal approximation of
Eq. (4.22) and (d) the circulant approximation of Eq. (4.23).

Algorithm o2 =1 o2 =2 o’ =4 0?2 =8

RVM - 0.055(229) 0.038(84)  0.040(45)  0.052(70)
DFT-RVM  0.055(249) 0.039(120) 0.048(49) 0.111(12)
DFT-RVM(2) 0.058(234) 0.041(105) 0.077(165) 0.111(190)

Table 4.1: Mean square error of the typical RVM algorithm and the DFT-based algorithm
with the two approximations for several choices of the kernel width o2. Inside parenthesis
is the number of relevance vectors for each case.

4.4 Evaluation of the DFT-based RVM implementation

In order to verify the validity and evaluate the performance of the proposed DFT-based
implementation we consider the following artificial example. We sampled uniformly the

function .
o,y — Sl + v1)

lz + yli
and added white Gaussian noise of variance 0.1 to generate a 30x30 image shown in
Fig. 4.1. We then applied both the typical and the DFT-based algorithm to estimate
the parameters of an RVM model, which was then evaluated at each pixel location to
produce an estimate of the initial function f. Figure 4.1 shows the estimates obtained
using the typical RVM algorithm and the DFT-based algorithm with the two different
approximations respectively. Averages over 10 runs with different noise realizations of the
mean squared error (MSE) of each method and the number of relevance vectors are shown
in Table 4.1 for four different widths o2 of the kernel. We notice that the first (diagonal)
approximation typically gives better results than the second (circulant) approximation
and it also requires less computations. Also notice that the approximation gives excellent
results when the size of the kernel is small, because the matrix ¥ is almost diagonal.

; (4.24)

_ Unfortunately, we can’t compare the algorithms for larger images because we can’t
apply the typical RVM algorithm on larger datasets. However, we demonstrate the ef-
fectiveness of the proposed DFT-based algorithm on large scale regression problems, by
training a multikernel RVM model with Gaussian kernels of sizes 0? = 2, 02 = 4 and
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Figure 4.2: (a) An 128 x 128 image with added gaussian noise. (b) Estimate of the
DFT-RVM algorithm using gaussian kernels of width 2, 4 and 8.

o2 = 8 on a 256 x 256 image. The estimated image, shown in Fig. 4.2, is improved
with respect to the initial noisy image, having ISNR = 2.2, where ISNR is defined as
ISNR = 10log (||f —gl?/If - f||2) and is a measure of the improvement in quality of
the estimated image with respect to the initial image.

4.5 Object Detection Using the Multikernel RVM Model

In this section, we present an method for object detection, which is based on training
a multikernel RVM model on the ‘observed’ image [Tzikas et al., 2007b]. The RVM
model consists of two sets of basis functions: basis functions that are used to model the
‘target’ image and basis functions that are used to model the background. After training
the model, each ‘target’ basis function that remains in the model can be considered as
a detected ‘target’ object. However, if the background basis functions are not flexible
enough, ‘target’ functions may also be used to model areas of the background. Thus, we
should consider only ‘target’ basis functions whose corresponding weight is larger than a
specified threshold.

We denote by t = (¢(1,1),...,t(1,N;),...,t(N:;, N;))T a vector consisting of the in-
tensity values of the pixels of the ‘observed’ image in lexicographical order. We model
this image using the following RVM model:

N N
t=) wedlz - )+ > wuds(x — =) +€, (4.25)
=1 =1

where N = N;N;, ¢, is the ‘target’ basis function which is a vector consisting of the
intensity values of the pixels of the ‘target’ image, and ¢, is the background basis function,
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which we selected to be a Gaussian function. After training the RVM model, we obtain
the vectors pt; and pp, which are the posterior mean for the kernel and background weights
respectively, using (4.14). Ideally, ‘target’ kernel functions would only be used to model
occurrences of the ‘target’ object. However, because the background basis functions are
often not flexible enough to model the background accurately, some ‘target’ basis functions
may have been used to model the background as well. In order to decide which ‘target’
basis functions actually correspond to ‘target’ occurrences, the posterior ‘target’ weight
means are thresholded, and only those that exceed a specified threshold 7" are considered
significant:

|| > T = Target exists at location i. (4.26)

Choosing a low threshold may generate false alarms, indicating that the object is
present at locations where it actually doesn’t exist. On the other hand, choosing a high
threshold may result in failing to detect an existing object. There is no unique optimal
value for the threshold, but instead it should be chosen depending on the characteristics
of the application.

It must be also noted that the Support Vector Machine (SVM) cannot be used with this
approach, since the basis functions used here are the ‘target’ image and do not correspond
to valid kernel functions, since they do not satisfy the Mercer condition.

Next we present experiments that demonstrate the improved performance of the DFT-
RVM algorithm compared to autoregressive impulse restoration (ARIR), which is an effec-
tive method for object detection [Abu-Naser et al., 1998]. We demonstrate two examples
where the ‘observed’ images have been constructed by adding the ‘target’ object to a
background image and then adding white Gaussian noise. Images consisting of the val-
ues of the kernel weights computed with the DFT-RVM algorithm are shown in Fig. 4.3
and compared with the output of the ARIR method. Notice that, because of the RVM
sparseness property, the output of the algorithm is zero at most locations where there is
no target object. This property of the DFT-RVM detection method, is the main reason
for the improved detection performance.

4.5.1 Experimental Evaluation

When evaluating a detection algorithm it is important to consider the detection probabil-
ity Pp, which is the probability that an existing ‘target’ is detected and the probability
of false alarm Pr,4, which is the probability that a ‘target’ is incorrectly detected. Any
of these probabilities can be set to an arbitrary level by selecting an appropriate value
for the threshold T. The receiver operating characteristics (ROC) curve is a plot of the
probability of detection Pp versus the probability of false alarm Pr, that provides a
comprehensive way to demonstrate the performance of a detection algorithm. However,
the ROC curve is not suitable for evaluating object detection algorithms because it only
considers if an algorithm has detected an object or not; it does not consider if the object
was detected in the correct location. Instead, we can use the localized ROC (LROC)
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(f)

Figure 4.3: Two object detection examples. (a) and (d) are the ‘observed’ images, (b) and
(e) are the results of the ARIR algorithm and (c) and (f) are the results of the DFT-RVM
algorithm. The target object is the tank in image (a) and the jeep in image (d). In the
results, only a small area around the target is shown. In all cases, the output of both
algorithms is maximum at the location of the target. However, at all other locations,
where there is no target and the output should ideally be zero, DFT-RVM outperforms
the ARIR algorithm, since its output is zero at most locations.

curve which is a plot of the probability of detection and correct localization Ppy versus
the probability of false alarm and considers also the location where a ‘target’ has been
detected.

In order to evaluate the performance of the algorithm, we created 50 ‘observed’ images
by adding a ‘target’ image at a random location of the background image, and another
50 ‘observed’ images without the ‘target’ object. White Gaussian noise of variance o2 =
20 was then added to each ‘observed’ image, that corresponds to signal to noise ratio
22dR. The DFT-RVM algorithm was then used to estimate the parameters of an RVM
model with a ‘target’ kernel and a Gaussian background kernel for each ‘observed’ image,
generating 100 kernel weight images. The background basis functions were Gaussian
functions of the form ¢,(x) = exp(~ %[l — z;||*) with the width parameter set to r = 6.
The kernel weight images were then thresholded for many different threshold values and
estimates of the probabilities Pp; and Pr4 were computed for each threshold value.
Similar experiments were also performed for the ARIR algorithm and an LROC curve
was plotted for each algorithm. Figure 4.4 shows the LROC curve of each algorithm for
the two cases of background and target images shown in Fig. 4.3. It can be observed
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Figure 4.4: LROC curves of the ARIR and DFT-RVM algorithms for the two detection
problems shown in Fig. 4.3.

that the area under the LROC curve, which is a common measure of the performance
of a detection algorithm, is significantly larger for the DFT-RVM algorithm. Another
important observation is that the LROC curve is high for small values of Pr4, since
usually the threshold is chosen so that only a small fraction of false detections is allowed.

4.6 Conclusions

We have proposed the multikernel RVM model and an approximate but accelerated infer-
ence method for training the RVM model on large scale images, based on fast computation
of the posterior statistics in the DFT domain [Tzikas et al., 2006b, 2007b]. Experiments
on images demonstrate that the proposed approximation allows inference on large scale
images, where the typical RVM algorithm is too computationally demanding to run. We
then presented an application of the method to the object detection problem. Experimen-
tal results indicate that this approach is more robust than existing methods. Furthermore,
the proposed technique can be extended to solve the rotation and scaling invariant object
detection problem, by optimizing the model with respect to rotation and scaling of the
basis functions.
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CHAPTER 5

BAYESIAN BLIND IMAGE
DECONVOLUTION WITH STUDENT’S T
PRIORS

5.1 Introduction

5.2 BID Model

5.3 Variational Bayesian Inference
5.4 Numerical Experiments

5.5 Conclusions and Future Work

5.1 Introduction

In this chapter we propose the use of the sparse Bayesian linear model to estimate the
PSF in the blind image deconvolution (BID) problem [Tzikas et al., a]. In order to reduce
the computational cost of inference, the proposed algorithm uses operations in the DFT
domain, similarly to the algorithm of Chapter 4.

In the BID problem, we observe an image which has been degraded by blurring and
addition of some noise source. Such images are commonly observed in many situations;
for example motion blur might be induced by motion of the camera during the image
acquisition and in astronomy blurring is also induced by the atmosphere. Here, we assume
that the point spread function (PSF) of the blur is the same at all regions of the image,
which happens when the blur caused by motion of objects is negligible. In this case the
blurring can be modeled as a convolution of the initial image with the blurring PSF. The
process that generates the observed image is summarized in Fig. 5.1 and an example is
shown in Fig. 5.1.
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Figure 5.1: Generation mechanism of the observed image in blind image deconvolution.

Blur PSF h

Observed Image g

Convolution
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Figure 5.2: Example blind image deconvolution.

Because in blind image deconvolution both the initial image and the point spread
function (PSF) are unknown, the observed data are not sufficient to uniquely specify
both the unknown image and PSF. In order to resolve this ambiguity, prior knowledge
(constraints) has to be used for both the image and the PSF. Over the years a number of
methodologies have been employed to introduce constraints in BID. A rather old survey
paper on this problem is [Kundur and Hatzinakos, 1996a,b], while a very recent edited
book on BID methods is {Campisi and Egiazarian, 2007)].

One category of such methods is based on regularization using the total variation
(TV) principle. These methods define a distance function based on the data and use
smoothness constraints on both the image and the PSF based on the TV principle [Chan
and Wong, 1998]. A survey of recent developments on TV methods in image recovery
problems and a book containing a review of the recent developments in mathematical
tools for low level image processing problems can be found in [Chan et al., 2005a] and
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[Chan et al., 2005b] respectively. Methods based on anisotropic diffusion regularization
have been also proposed [You and Kaveh, 1999}, however they require the choice of the
diffusion operator. There are also methods based on soft constraints [Yap et al., 2005,
Chen and Yap, 2005], which are very flexible, however, the form and the type of the
used soft constraints is ad-hoc. Methods based on sparse image representations and quasi
likelihood criteria have been also suggested [Bronstein et al., 2005].

Another way to apply constraints to the image and the PSF, is through the use of
the Bayesian methodology. In this approach the unknown quantities are assumed to be
random variables and suitable prior distributions are selected to impose the desired char-
acteristics [Jeffs and Christou, 1998, Galatsanos et al., 2002, Miskin and MacKay, 2000,
Fergus et al., 2006, Likas and Galatsanos, 2004, Molina et al., 2006]. Unfortunately, since
the BID data generation model is non-linear, the posterior distribution of the unknown
image and PSF can not be computed analytically. Thus, Bayesian inference using con-
ventional methods, such as Maximum Likelihood (ML) via the Expectation Maximization
(EM) algorithm, cannot be applied.

These difficulties can be overcome using the variational Bayesian methodology [Bishop,
2006] and (Jordan et al., 1998] described in Chapter 2. To our knowledge this method-
ology was first applied to the BID problem in [Miskin and MacKay, 2000]. In that work
the PSF and the image were modeled by an exponential and a mixture of exponential
distributions, respectively. Furthermore, the support of the PSF was known, and the im-
ages were line drawings which are sparse, in the sense that their intensity is zero at most
locations. This work was recently extended for natural scene images in [Fergus et al.,
2006]) with promising results. More specifically, a mixture of Gaussians for the gradient
of the image, and a mixture of exponentials for the PSF were used. This PSF model
allows only positive PSF intensities and encourages sparsity, all of which are desirable
properties for BID. However, it does not model spatial PSF correlations. In another line
of work [Likas and Galatsanos, 2004}, a simultaneously autoregressive (SAR) prior and
a Gaussian prior with unknown mean and spherical covariance have been used for the
image and PSF respectively. This methodology was extended in [Molina et al., 2006]
to account for spatial PSF correlations using SAR models for both PSF and the image.
However, this approach fails to model edges in the image or PSF and does not provide a
mechanism to estimate the support of the PSF.

In this chapter we propose a kernel-based Bayesian approach for the BID problem
that allows reconstruction of image edges, models spatial PSF correlations and estimates
the PSF support [Tzikas et al., 2006a, 2007c,a, a]. The main contribution of this work,
is a model that enforces PSF smoothness and simultaneously estimates the PSF support.
This is achieved by modeling the PSF as an RVM model, as described in Chapter 3.
More specifically, the PSF is modeled as a linear combination of kernel functions that are
placed at all the pixels of the image. Thus, the amount of smoothness can be controlled
by appropriately selecting the kernel function. The support of the PSF can be arbitrarily
large, since we placed kernel functions at all image pixels. However, following the sparse
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Bayesian linear model approach, we assume that the distribution of the weights of the
kernels that models the PSF is a heavy tailed Student’s t distribution. As explained
in Section 3.4.4, this distribution favors sparse models, forcing most of the weights to
become zero and therefore limiting the support of the PSF. Furthermore, in order to
promote smooth image estimates, we constrain the local image differences, by assuming
that they follow a zero-mean Student’s-t distribution in order to allow reconstruction of
edges [Chantas et al., 2006]. Finally, we model the errors of the imaging model with a
Student’s-t distribution. This is important, not only because the noise in the observed
image may not be Gaussian, but also because inaccurate PSF estimates produce heavy
tailed errors, since the BID model is non-linear.

The rest of this chapter is organized as follows. In Section 5.2 the Bayesian BID model
is presented. In Section 5.3 the variational methodology is applied for inference to the pro-
posed model. In Section 5.4 we present experiments, with artificially blurred images where
the ground truth is known and with real astronomical images. In these experiments we
compare the proposed methodology with Bayesian methods that use Gaussian priors and
TV based methods and the advantages of the proposed methodology are demonstrated.
Finally, in Section 5.5 we provide conclusions and directions for future work.

5.2 BID Model

We assume that the observed image g(x) is given by convolving an unknown image f(x)
with an unknown PSF h(z). To account for errors, additive, independent, identically
distributed noise n(z) is also assumed. This model is written as

g(z) = f(x) * h(z) + n(z), (5.1)

where & = (z,,22) € Q, Q; C R? is the support of the image and * denotes two-
dimensional circular convolution. Equivalently, this can be written in vector form as

g=f*h+n, (5.2)

where g, f, h and n are M x 1 lexicographically ordered vectors (M is the number of
pixels) of the intensities of the degraded image, observed image, PSF and additive noise
respectively. Here, we introduce the M x M block-circulant matrices F' and H that
implement two-dimensional convolution with the vectors f and h respectively, so that
Fh = Hf = f xh. Then, the BID model in (5.2) can be written as

g=Fh+n=Hf+n. (5.3)

The blind image deconvolution problem is difficult because there are too many un-
known parameters that have to be estimated. More specifically, the number of unknown
parameters h and f is larger than the number of observations g, and thus reliable estima-
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tion of these parameters can only be achieved by exploiting prior knowledge of the char-
acteristics of the unknown quantities. Following the Bayesian framework, the unknown
parameters are treated as hidden random variables and prior knowledge is expressed by
assuming that they have been sampled from specific prior distributions.

5.2.1 PSF kernel model

We model the PSF as a kernel-based linear model:

M
h(z) = Z w;pi (), (5.4)
i=1
where ¢;(x) = R(z, ;) is a kernel function centered at x; = (zi1, i) € Q; and w; € R.
We denote as b = (h(z1),.-.. ,h(zp))T the vector of values of the PSF h(zx) at each z;
and with ¢; = (¢;(x1), . - -, qS,-(a:M))T the corresponding basis vector for ¢;(x). Then the
PSF vector h can be written as

M
) h= Z w; ;. (5.5)
: i=1

We further assume that the kernel is invariant to translations, i.e. R(z,z;) = R(x — x;),
thus (5.5) can be further written as

h=¢*+w=>dw=Wo, (5.6)

where w = (wy, ..., wp )7 are the weights of the linear combination and ®, W are M x M
block-circulant matrices that implement two-dimensional convolution with ¢ = ¢; and
w respectively, so that ®w = W¢ = w x ¢. Thus, the BID data generation model (5.2)

can be written as
g=Fow+n=dWf+n. (5.7)

Here, we consider Gaussian kernel function of the form R(z, zo) = exp[— 57|z —zo||’]
S

(RBF kernels), which produces smooth estimates of the PSF. However, any other type of
kernel could be used as well. It is even possible to model the PSF using a multikernel
RVM that considers many different types of kernels simultaneously, at a small additional
computational cost, as described in the previous chapter.

5.2.2 PSF sparseness

A hierarchical prior that enforces sparsity is imposed on the weights w [Tipping, 2001):
p(wla) = N(w|0, A7), (5.8)

where a = (v, ..., apy)7, A = diag{a}. Each weight is assigned a separate local preci-
sion parameter a;, which is treated as a random variable that follows a Gamma distribu-
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Figure 5.3: Histograms of (a) estimated weights of the PSF sparse linear model, as-
suming the true PSF is known, (b) horizontal and (c) vertical local differences of the
“Lenna” image and (d) model errors of an image restoration method using incorrect
PSF estimation. Solid lines show fits by the Student’s t pdf with parameters (a)
p=251x10"3% X =9.05x10%,v = 0.043 (b) u = 1.7x 1073, A = 4.59x 10%,» = 1.09 (c)
p=-4x10"4 A =1.03x10% v =1.132 and (d) u = 2.39 x 1076, ) = 6.68x 10%, v = 3.12.

tion:

M
pla) = HGamma.(a.-la"‘,b“). (5.9)

i=]1

This hierarchical prior is equivalent to a Student’s t pdf. In order to demonstrate why
sparse estimations of the PSF weights are appropriate, Fig. 5.3(a) shows a histogram of
the PSF weights. This histogram was obtained using a 7 x 7 uniform square-shaped PSF
function. Estimates of the PSF weights were obtained using the sparse Bayesian linear
model of Chapter 3. It is apparent that the pdf of the weights is very heavy tailed and
that there are only few non-zero weights. For this reason, we set a® = b* = 0 that define a
very heavy tailed, uninformative Student’s-t distribution. It is interesting that the hidden
variables a, of this Student’s-t distribution provide an estimate of the support of the PSF.
Specifically, the local precision a; that corresponds to kernels outside the support of the
PSF obtains very large values, therefore those kernels are pruned by setting w; = 0. This
is demonstrated in Fig. 5.4(a) where we show the estimated local variances for a BID
problem with a 7 x 7 uniform PSF. Notice that outside a limited area that captures the
support of this PSF these variances are zero.
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5.2.3 Image model

The image prior that we use is based on K filtered versions of the image: € = Q*f,
where Q* are M x M convolutional operators of the filters (k = 1,..., K). Specifically,
we use horizontal and vertical first order local differences, by defining K = 2, Q' and Q?
so that:

el(xvy) = f(xa y) - flz+1, y)’ (510)
€(z,y) = f(z,y)— fzy+1). (5.11)

Without any changes in the method, we could also use other convolutional operators Q*
[Chantas et al., 2007]. In practice, we join all operators Q* in the KM x M operator
Q =(QY,...,Q%")T that produces the KM x 1 vector € = (¢',..., e T)T:

E=Qf = (N, @A) (5.12)

~

We assume that €f is Gaussian distributed with distinct precision ~:
p(ef|7F) = N(10, () 7). (5.13)

Assuming the ¥ independént with respect to %, induces a prior for the image, which is
given by

pe(FIY*) = N(£10, (@' T*QH) ™), (5.14)

with 7% = (y¥...9%)T and I'* = diag{~*}. In order to combine the information captured
by each prior p;, we define a composite prior, which is the product of them [Welling et al.,
2003]:

K
p(F17) = 5 [T pe(F¥) = N(£10, (G7EQ) ™), (5.15)
k=1

with ¥ = (y'7,...,7K7)T and T' = diag{#}. Unfortunately, it is not possible to an-
alytically compute the determinant [QTle that is required to estimate the normal-
ization constant Z in (5.15), since Q is not square. Instead we approximate it as

IQ7TQ| ~ |TIIQ"Q|, giving:

K M
< k)2 l T ATRA
w1 o [T ) exp -3r7amras|. (5.16)
Notice, that the approximation only affects the normalizing constant of the pdf. Therefore,
this is an improper pdf, whose integral is not necessarily unity. Improper pdfs have been
used in many other Bayesian methods [Bernardo and Smith, 1994]. The local precision
parameters 7* are assumed to be independent identically distributed, Gamma random
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Figure 5.4: Example of the estimated local variances (a) @' of the PSF weights for a
uniform 7 x 7 square-shaped PSF, (b) and (c) (y!)~! and (¥?)~! of the image model
residuals.

variables:
K M

p(¥) = H H Gamma(7F|a?, b"). (5.17)

k=1i=1

Thus, the prior on the first order local differences €* is equivalent to a Student’s t pdf.

5.2.4 Noise model

The noise n of the BID model (5.3) is assumed to be zero mean Gaussian distributed,
given by:

M
p(n|B) = HN(n,-IO,ﬁ,-”l) = N(n|0, B™Y), (5.18)

with B8 = (61,...,0u) and B = diag{3}. The local precision parameters §; are also
assumed to be random variables with a Gamma prior:

M
p(B) = [ | Gamma(Bi|a®, ). (5.19)
i=1

This two-level hierarchical prior for noise is equivalent to a Student’s t pdf.

5.3 Variational Bayesian Inference

The observed variables of the proposed model are D = {g}, the hidden variables are
0 = {w, f,a,B,7} and the parameters of the model are & = {a®,b*,a”,b% a",67}. The
dependencies among the random variables that define the proposed Bayesian model are
shown in the graphical model of Fig. 5.5.
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Figure 5.5: Graphical model that describes the dependencies between the random vari-
ables of the proposed model. Circular nodes represent random variables, while square
nodes represent parameters of the model. The observed variables are represented by
double circled nodes.

Because the BID model is non-linear, the posterior distribution of the parameters
p(6|D) cannot be computed. Thus, we can not apply exact inference methods, such as
maximum likelihood via the EM algorithm. Instead, we resort to approximate inference
and specifically to the variational Bayesian methodology described in Chapter 2.

5.3.1 Approximate Posterior Distributions

Using the mean field approximation (2.23), the posterior distribution of the parameters
is given by (2.24). Because we have used conjugate priors, the approximate posteriors
have the same form as the priors. Specifically, the approximate posterior distributions of
the PSF weights w and the image f are Gaussian and the distributions of the precision
parameters o, 3 and -« are Gamma:

Q(w) = N(’UJl[,l,w, Ew)a (520)

a(f) = N(flps, Zy), (5.21)
M

g(a) = ] Gamma(a;|a®, b2), (5.22)
:!1

¢(8) = [ | Gamma(s:[a®, tf), (5.23)
1';1 o B

q(v) = [T [ Gamma(+¥ia”,57), (5.24)

k=1 1=1
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where

o = .87 (FT)(B)g, (5.25)
s, = (8T(FTBF)® + (A) )", (5.26)
ps = ;8T (WT)(B)g, (5.27)
5 = (2T(WTBW)E + GT(E)Q) ", (5.28)
G = a® + 1/2, (5.29)
B = b + 5 ud) (5.30)
i '=ad + M/2, (5.31)
=t + -;-(nnT).-;, (5.32)
@ =a’+ 1/2 (5.33)
B =67+ 5 (QXFFNI@),- (5.34)

The required expected values can be computed as:

(w) = M, ’ (5.35)
(w? ) = “1205 + Duwier (5.36)
(F) = s, (5.37)
(FFT) = psui + 2y, (5.38)
(o) = &= /b2, (5.39)
(B:) =a /¥, (5.40)
() =a"/ 52"‘, (5.41)
(nnT) = gg7 — 2&(Fw)g” + &(Fww’ FT)&7, (5.42)

The approximate posterior distributions of (5.20) to (5.24) can be computed as follows.
In order to find the posterior distribution of the weights g(w) we start from (2.24) and
keeping only the terms that depend on w we have:

Ing(w) = (Inp(g|B8, w, £IP(W|2))y( pre(a)e(B)etv)
= (lnp(glﬁ) w, f) + lnp(wta»q(f)q(a)q(ﬁ)

= <-- TBn — -Za.w

> + const.
=1 a(Ng(x)e(B)
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Then, because n = g - $w and B is diagonal and therefore symmetric, we have:

Ing(w) = 597 (B) g — 267 (BF) &w + w'®" (F"BF) $w) 1> (a:) uf

i=1

= -wT (2" (FTBF) ® + (A)) w — w"®" (FTB) g + const.

We can easily see that this is the exponent of a Gaussian distribution, therefore g(w) is a
Gaussian distribution given by (5.20). Similarly, we can obtain the posterior g(f) which
is also a Gaussian distribution given by (5.21).

The posterior g(c) is similarly obtained by computing the terms of In g(cx) that depend
on a:

Ing(a) =(In P(w|a)p(a))q(f)q(w)q(ﬁ)q(‘r)

=5 Zlna, Za, (w?) + (a® — I)Zlnoz,—b"Za,

i=1 i=1

(a - -) Zm a; — E (5 (w?) + b") + const.

i=1

This is the exponent of a Gamma distribution, and therefore ¢(a) is a Gamma dis-
tribution given by (5.22).. The posterior distributions g(3) and ¢(v) are also Gamma
distributions given by (5.23) and (5.24) and their computation is very similar.

5.3.2 Parameter Estimation

The parameters a”, b° and a”, b” of the noise and image Gamma hyperpriors can be
estimated by optimizing the variational bound F' (2.13), which is given by:

roy < {1 p(g,f,w,a,ﬁ,7)>
( ) <n Q(wa f,Ot,ﬂ,"Y) q(w,f,,B,7)

= (Inp(glw, B, f)) + (Inp(w|a)) + (Inp(f|v))
+ (Inp(a)) + (Inp(B)) + (Inp(7)) — (Ing(w))
—(Ing(f)) = (Ing(at)) — (Inq(B)) — (Ing())

and the required expected values can be computed as:

M
>~ 1) - 5{(9 - F&w) B(g ~ Fw))

1

N =

(nplgho, B, £)) =~ In(2m) +

t

N =
uMg

(Inp(w|a)) = ——Jgf— In(2m) +

(Ing;) — = Z () <w2>
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kK M IK & k k
(inp(fl) = ~5 In( zw)+§§§<lmgc> - .ékzzl@ ) (@ F)2,
T M
il o
(Inp(a)) = Ma®Int* + (@ - 1) (Inay) = b° 2:1 (@) — MInT'(a®),
i=1 o

M
(Inp(B)) = MPInb® + (o — 1) > (nf;) bﬂzlwt')*MlnF(ap),

=1

(o) = METInbT + (@ = D33 (1078 - 0Y Y () - MKBI(@),

=1 {=1
k=1 i=1

(ng(w) = -3 (1n2m) +1) - 5 1n[Z.,
(Ing(f)) = ~ 5 (@) + 1) - 51n |2y,

(Ing(a)) = Z[a Inb@ + (& — 1) (ln o) — b¢ (es) —InT@)}
M

(lng(8) = 3 [ ¥ + (@ — 1) (n ) — & (B ~ — InT(@)),

1=1

M

(ng(v)) ZZ[a”lnb” 1) (iny¥) - B (o) D@}

k=1 i=1

The derivatives of F with respect to the above parameters are:

OF ZM

a—aﬂ- = Mlnbp - Mw(aﬁ) + Z- (ln ﬁl) 3 (543)
W = M;,g"?gl:(ﬁs), ' (5.44)
aF K M .

5'0'-; = MKhd - MK‘(/)(G”) + k§=1 ‘§=1: (1!1’7' ) ’ (545)
oF

o = MK— - k§-1: }21: (5.46)

wgere ¥(z) is the digamma function given by ¥(z) = ﬁ%—@ = %(f} and I'(z) =
Jo t¥"le~tdt. We can obtain updates for these parameters by setting the above deriva-
tives to zero. This cannot be done analytically for the parameters a? and a?, thus we
find a numerical solution using a combination of bisection, secant, and inverse quadratic

interpolation methods, as implemented by matlab’s fzero function.
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5.3.3 Computational issues

The computations in equations (5.25) - (5.42) involve matrix operations, whose dimension
is Mx M, where M is the number of pixels in the image. Unfortunately, computation of X ¢
and X, involves inversion of matrices that contain both diagonal and circulant matrices
and cannot be performed explicitly for large M. However, diagonal and circulant matrices
are easy to invert. For this reason, we approximate X, (5.26) with a diagonal matrix and
3 (5.28) with a circulant matrix, as:

£, = (dieg{®(FTBF)®}+(4))™", (5.47)
5 = (D" W W)s+3)@°Q) (5.48)

o M M = M
with y = XJIT D1 i ¥ B = Xli >_i=1 Pi and

M
(WIW) = (WHHW)+1 (£,,), (5.49)
- 1=1 .
(FTBF) = (FT)(B)(F)+5;} (6) (5.50)

The diagonal approximation for matrix X,, is justified because parameters a; that
appear in the diagonal were found to dominate in (5.26). On the other hand, X; is
approximated with a circulant matrix because both the parameters 3; and vF obtain
values in the same range. The above approximations are used for computation of 5;", Ef ,
and 5;’k, in (5.30), (5.32) and (5.34) respectively, where the elements of the matrices T,
and X appear directly. Furthermore, they are used for computing the expected value

(FwwTFT) that appears in (5.42) as:

(Fww FT) = (F){(ww)(FT) + £; ) (ww"),;. (5.51)
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For the posterior image and weight means p; and p,,, we do not use the above
approximations, since we can exactly obtain them by solving the following linear systems:

Ziluy = ®T(W)T(B)g, (5.52)
e = ®T(F)T(B)g. (5.53)

These linear systems are solved iteratively with the conjugate gradient method, using
the approximation matrices & 5 and S, as preconditioners. In these iterations, products
of circulant matrices are efficiently computed in the DFT domain, while products of
diagonal matrices in the spatial domain. Specifically, each conjugate gradient iteration
requires O(M log M) iterations. Theoretically, an exact solution of the linear system is
obtained after C = N iterations, however, we typically obtain a good approximation after
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only few iterations, e.g. C = 20. The overall computation cost is O(CM log M).

5.3.4 Variational Optimization Algorithm

Each iteration of the optimization algorithm proceeds as follows. First we compute the
parameters of the approximate posterior probabilities, as given in (5.25) - (5.34) and
then we compute the expected values using (5.35) - (5.42). Finally, we may update the
parameters of the noise and image prior distributions, using equations (5.43) - (5.46). The
means of the posteriors g(w) and g(f) are used to obtain estimates of the PSF h and the
image f: h = ®u,, and f = p;.

5.4 Numerical Experiments

Several numerical experiments have been carried out both with artificially generated ob-
servations where the ground truth is known and with real observations in order to demon-
strate the properties of the proposed method. We compare the proposed method with
previous Bayesian BID formulations based on Gaussian PSF and image models [Likas
and Galatsanos, 2004], with the TV-based blind deconvolution method in {Chan and
Wong, 1998] and another recent variational Bayesian method in [Molina et al., 2006].

Hereafter, we will refer to the proposed method as the StStSt method, to imply that
three Student’s t priors are used to model the PSF weights, the BID model errors and the
image local differences. We also considered several simpler versions of this Bayesian model
that use Gaussian distributions in place of the Student’s t distributions. Specifically, we
consider Gaussian distributions for the PSF weights, p(w) = N(w|0,a~I), the additive
noise, p(n) = N(n|0, 371I), and the image local differences, p(f) = N(£0, (vQTQ)™Y).
The names of these simplified versions consist of three parts that express the distributions
of the PSF weights, the additive noise and the image local differences. For example, the
method that uses Gaussian distribution for the image local variances but Student’s t
distributions for the PSF weights and noise is denoted as StStG.

The GGG is very similar to the VAR1 method described in [Likas and Galatsanos,
2004}, which also assumes that the PSF weights, the imaging model errors and the image
local differences are Gaussian. The only difference between VAR1 and GGG is that VAR1
does not use a kernel model for the PSF, i.e. h = (w,,...,wxn)7. Thus, the VAR] method
is identical to the GGG, when a Gaussian kernel of very small size is used.

In the simplified models GGG, GStG, StGG and StStG, where Gaussian stationary
image priors are used, we consider the typical simultaneously autoregressive (SAR) prior
that has been used extensively in image restoration [Likas and Galatsanos, 2004, Molina
et al., 2006]. This prior assumes a pdf for the image residuals ¢(z, y) given by:

dzy)= Y. (flz.y) - fk1), (5.54)

(kD)eD(z.y)
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where D(z,y) is the set of four neighbors of (z,y), given by D(z,y) = {(z + L, y),(z —
1,9), (z,y — 1), (z,y + 1)}. The Bayesian method in [Molina et al., 2006] uses the SAR
prior for both the image and PSF and then uses the variational methodology to achieve
inference, similarly to the proposed method.

Furthermore, we provide a detailed comparison with the TV blind deconvolution
method [Chan and Wong, 1998]. This method provides estimates of the image and PSF
by solving the following minimization problem:

min 2h+ £ = gl + & TV(f) + exTVI(H), (5.55)

where TV (z) = [|Vz(z)|dz is a total variation regularization term.

5.4.1 Experiments with artificially blurred images

In the first experiment, we compared all the methods using artificially degraded images.
We generated a degraded image g by blurring the true image f with a known PSF h and
then adding Gaussian noise with variance 2 = 107%. The signal to noise ratio (SNR) of
the observed image g is SNR = 10log;, ‘}J“z = 45dB. In all methods, the initial PSF h;,
was set to a Gaussian-shaped function with variance 0,2,‘," = 3. Since the true image is
known, we can measure the quality of a recovered image f, by computing the improved
signal to noise ratio ISNR; = 10log,, II:; ?’llllz which is a measure of the improvement of
the quality of the estimated image with respect to the initial degraded image. We can also
measure the quality of a PSF estimation h by computing ISN R, = 10log,, "’I'l;'_l"’.':“’llz.
The PSF that was used in this experiment was a 7 x 7 uniform, square-shaped PSF.
However, we initialized the PSF as a Gaussian-shaped function with variance o7, = 3.
The kernel function that we used was set to a Gaussian with variance Ug = 0.1, which is
flexible enough to model the boundaries of the square. The ISNR values for the image
and PSF estimates of all methods are shown in Table 5.1. Furthermore, the degraded
image and restored images for some of these methods are shown in Fig. 5.6 along with
the restoration in [Chantas et al., 2006], which was obtained by assuming that the PSF

is known and a similar in spirit image prior.

Inspection of these results reveals that in general, improvement in the accuracy of the
estimated PSF implies improvement in the quality of the recovered image. Furthermore,
using a Student’s t distribution to model the weights of the kernel model of the PSF gives
significantly better PSF estimates as compared to using a Gaussian distribution for the
same task. This demonstrates beyond any doubt the importance of this selection for the
BID problem. The image estimates are also improved when using Student’s t distributions
for either the image local differences or noise. Finally, the StStSt model seems to produce
visually more pleasing restored images with “sharper” edges than either the StGSt and
StStG models, even though the /SN Ry might be slightly lower. However, it is well known
that ISN Ry does not always capture accurately the human perception of image quality.
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Table 5.1: ISNR for image and PSF for the experiments on the degraded lenna image
with a uniform, 7 x 7 square-shaped PSF.

Method ISNR; ISNR,

GGG 0.47 0.88

GGSt 0.58 0.79

GStG 0.05 1.53

GStSt 1.11 1.64

StGG 2.17 6.69

StGSt 5.87 8.12

StStG 5,57  10.91

StStSt 5.29 9.44

Method in [Chan and Wong, 1998] 3.13 5.64
Method in [Molina et al., 2006] 0.54 2.44

Known PSF in [Chantas et al., 2006] 8.63 —

5.4.2 Comparison with other BID methods

In this subsection, we describe another experiment, where we compare the method based
on the StStSt model with methods in [Chan and Wong, 1998] and [Molina et al., 2006]. In
these experiments, we use the 256 x 256 “Cameraman” image, degraded with several PSFs
and noise levels. Specifically, we used three different PSFs; a Gaussian-shaped PSFs with
variance 5, a uniform square-shaped PSFs of size 7 x 7 and a rectangular non-symmetric,
accelerated motion blur [Yitzhaky et al., 1998] given by

(u2 + 2a(z + 5,))7Y? if || < s;and jy| < sy,
h(z,y) = 0

otherwise,

with 8; =4, s, = 1, up = 0.5 and a = 0.1. We also used two levels of noise; low noise
with SNR = 40dB and high noise with SNR = 20dB. The PSF was initialized as a
Gaussian-shaped function with variance of = 3. For the StStSt method we used a
Gaussian-shaped kernel function with variance o3 = 2, in all cases except for the case of
accelerated motion PSF, where we used a Gaussian-shaped kernel with variance aﬁ = L
The degraded images are shown in Fig. 5.4.2 and the restored images are shown in Fig. 5.8
and Fig. 5.9. The parameters of all the methods were selected in a trial and error manner
in order to optimize the resulting images.

We can observe here that in all cases the StStSt method outperforms both the methods
in [Chan and Wong, 1998] and [Molina et al., 2006}, especially in the case of low noise with
SNR = 40dB. Specifically, the method in [Chan and Wong, 1998] fails to estimate the
Gaussian-shaped and motion PSFs, which is explained by the fact that the TV constraint
on the PSF has the tendency to create flat areas and discontinuities, that are in contrast
with the smooth PSFs that were used.

In terms of computational cost, the method in [Molina et al., 2006] is the most
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Figure 5.6: Comparison of the proposed methods on the {(a) lenna image degraded with
a uniform, 7 x 7 square-shaped PSF. Estimated images using the (b) GGG method, (c)
StStSt method (d) method in [Chan and Wong, 1998], (e) method in [Molina et al., 2006]
and (f) Known PSF restoration method in [Chantas et al., 2006]. In all cases the PSF
was initialized as a Gaussian with o} = 3 and the kernel was a Gaussian with variance
ag = 0.1. The numbers below each image are the ISNR values of the image (SN Ry) and
the corresponding PSF (/SN Ry).

efficient, since each iteration involves O(M log M) operations. On the other hand, each
iteration of both the proposed method and the method in [Chan and Wong, 1998] require
the solution of a M x M linear system that is solved using the conjugate gradient method
and require O(C M log M) computations, where C is the number of conjugate gradient
iterations.

5.4.3 Experiments with real astronomical images

We also applied the proposed methodology on a real astronomical image of the Saturn
planet, which has previously been used in [Molina et al., 2006]. Astronomical measure-
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Figure 5.7: Degraded cameraman images with (a)-(c) SNR = 40dB and (d)-(f) SNR =
20dB. The PSF was (a),(d) Gaussian-shaped with variance o7 = 5, (b),(e) uniform,
square-shaped 7 x 7 and (c),(f) accelerated motion blur.

ments suggest the following PSF model for ground based telescopes:

h(r) « (1 + %)-5. (5.56)

The parameters § and R can be measured [Molina et al., 2006] and 6 ~ 3 and R ~ 3.4.
The recovered images by the different methods are shown in Fig. 5.10 and the resuiting
PSFs in Fig. 5.11.

From these images it is clear again that the models with two or more Student’s t
priors give visually superior results. In these images there is less ringing at the edges,
noise in flat areas and the Saturn bands are better separated. Furthermore, the StStSt
model produces again “sharper” images. It is interesting to notice that the StGG model
does not yield good recovered images although it estimates well the measured PSF. This
demonstrates the inappropriateness of the Gaussian to model the errors of the BID model
and the image model. Notice also, that again, the TV-based methodology fails to estimate
the smooth PSF and creates edges in areas where they do not exist in the original PSF,
see Fig. H.11.
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Figure 5.8: Comparison on cameraman image with SNR = 10dB and (a)-(c) Gaussian-
shaped PSF with variance o2 = 5, (d)-(f) uniform. square-shaped 7 x 7 PSF (g)-(i,
motion-blur PSF. Estimates obtained with (b), (f), (g) the proposed StStSt method. (c).
(g), (k) method in [Chan and Wong. 1998] and (d), (h), (1) method in [Molina et al..
2006]. The numbers below each image are the ISNR values of the imaee (1SN R\ and
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Figure 5.9: Comparison on cameraman image with SNR = 20dB and (a)-(¢c) Gaussian-
shaped PSE with variance of = 5, (d)-(f) uniforin, square-shaped 7 x 7 psr (g)-()
motion-blur PSF. Estiinates obtained with (b), (f), (g) the proposed StStSt method, (c),
(g), (k) method in [Chan and Wong, 1998} and (d), (h), (1) method in [Molina et al.,
2006]. The numbers below each image are the ISNR values of the image (ISNRy) and
the corresponding PSF (ISN R},).

Ty

=

31 s | B TR % 55




&) ih 2tGG

~di StGSt

ey StStSt (fy GGG (g} [Chan andik) Molina et al.,
Wong. 199§] 2006

Figure 5.10: Comparison on real astronomical image of Saturn. (a) Degraded image
Estimated images using the methods (b) StGG, (c) StStG (d) StGSt, (e) StStSt, (f;

)

GGG and the methods in (g) {Chan and Wong, 1998] and (h) [Molina et al., 2006]. The

PSF was initialized as a Gaussian with o = 3 in all cases and the kernel was a Gaussian
with variance 02 = 1.

5.4.4 Selecting the kernel width and initial values for the pa-
rameters

The proposed method uses a sparse kernel model to estimate the PSF. The significance of
the kernel model is that it favors smooth estimations of the PSF, by forcing neighboring
pixels to have similar values. This is important in order to enforce PSF smoothness and
prevent the noise in the observed image to corrupt the PSF estimate. However. selecting
an appropriate kernel is not straightforward. Here, we have considered several Gaussian
kernels of different widths in order to determine how the proposed method is affected by
the width of the Gaussian kernel. We have applied the proposed method on the artificially
blurred images of the first experiment and considered degradation with Gaussian PSF or
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Figure 5.11: One dimensional slice of the true and estimated PSFs for the images of
Fig. 5.10. The true PSF has been estimated as h(r) x (1+ )% with 6§ ~ 3 and
R = 3.4. The kernel was Gaussian with variance % = 1.

Table 5.2: ISNR for image and PSF for various values of the kernel width for the case of
Gaussian-shaped PSF with o7 = 5.

o3 =01 o;=1 02 =2 0;=3
) ) 22 ) £ o~ <2 b £
=) x e o4 a 2 o ot 2]
i 5§ EE E:o:
= 2 N ~ ~ ~ ~ ~

GGG 1.62 -0.57 192 047 257 262 290 5.12
StGG 353 6.58 3.53 7.49 347 795 239 1.78
StStG 3.19 7.15 321 740 3.77 10.55 2.33 0.36
StGSt 3.69 886 3.96 10.33 424 1230 1.55 2.88
StStSt 4.00 11.32 3.98 11.36 3.94 1231 248 0.71

Table 5.3: ISNR for image and PSF for various values of the kernel width for the case of
uniform, 7 x 7 square-shaped PSF.

03 =0.1 o3=1 03 =2 03=3

&
> >
95 wn
Py

Method

ISNR),
SNRy
SNR,
SNR;
SNR,

StGG 2.17 6.69
StStG  5.57 10.91 5. . . . .
StGSt 587 8.12 562 7.80 422 6.72 020 -0.12
StStSt 529 9.44 4.56 8.17 -0.51 2.01 -1.58 0.09

o
4
W
—~—
GGG 070 -4.71 064 -341 0.12 -064 0.13 -3.87
1.20
5.45
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uniform-square shaped PSF. Tables 5.2 and 5.3 show the ISNRs of the image and PSF for
several values of the kernel width, for the case where the true PSF is Gaussian-shaped and
square-shaped, respectively. Notice that in all cases, selecting a very large kernel leads to
very smooth estimates of the PSF that provide poor results. In case of uniform square
true PSF (Table 5.3) the best results are obtained when using a very small kernel. This is
because the square PSF is not smooth at the edges of the rectangle. On the other hand,
in the case of Gaussian-shaped true PSF (Table 5.2), it is favorable to select a kernel that
produces smooth PSF estimation.

It must be also noted that the performance of all the variational algorithms generally
depends on the initialization of the parameters. This happens because the variational
bound is a non-convex function and therefore, depending on the initialization, a different
local maximum may be attained. In order to apply the proposed method, the following
parameters have to be initialized:

The weights w of the kernel model that define the PSF

In BID, having a good estimate of the PSF is usually very important and many BID
methods fail when they are badly initialized. This is a significant limitation, because in
many situations there is no available estimate of the PSF. The proposed method does
not rely on a good initial PSF estimation. Instead, the sparse kernel based PSF model,
can successfully estimate the PSF from the observed image. This is demonstrated in the
previous experiments, where we successfully estimated Gaussian-shaped, square-shaped
and accelerated motion PSFs using an initial PSF that was Gaussian-shaped with variance
aﬁm = 3. The weights w were initialized by solving the PSF model given in (5.6), which
gives w = §%,8Th with T,, = (68T® +al) ™.

The weight normalization parameters a; of the PSF model and the hyperpa-
rameters a%, b

Initially, we set all these parameters to very small values, e.g. a; = 107!, which cor-
responds to a very flexible linear model. This is desirable in order to obtain an initial
estimate of the support of the PSF using all the available kernels. The hyperparameters
a® and b* are set to zero, thus assuming an uninformative distribution for the parameters
a. During inference, the parameters «; for most kernels tend to infinity, thus the support
of the PSF is limited.

The noise precision § and the hyperparameters of, ¥

The noise precision 3 is initially set to 8 = 10%. The hyperparameters a?, b® are initially
set to values that define a Gamma distribution with mean 10® and variance 102, which is
a flat and rather uninformative distribution. Their values are then updated using (5.43)
and (5.44).
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The strength of the image prior ¥ and the hyperparameters a”, b”

The parameter <y that defines the strength of the image prior is initially set to v = 102.
The hyperparameters a” and b” are set to values that define a Gamma distribution with
mean 10? and variance 10*. Updating a” and b” (Section 5.3.2), usually improves the
performance of the algorithm, at least in the first few iterations. However, we have
empirically found that at convergence, these hyperparameters attain very small values,
thus defining an uninformative distribution. This leads to very noisy image estimates and
for this reason we do not update the hyperparameters a”, b but keep them fixed to their
initial values. An explanation for the failure to estimate these parameters is that we use
an improper prior for the image (5.16). Although selecting values for these parameters
may seem arbitrary they actually depend on the characteristics of the image. Specifically,
small values of the parameter b lead to very smooth solutions, while small values of the
parameter a” allow few hard edges by defining a heavy tailed distribution for the image
local differences.

5.5 Conclusions and Future Work

We presented a Bayesian approach to the BID problem where the PSF is modeled as
a superposition of kernel functions, i.e. as a kernel-based linear model. We assumed a
suitable heavy tailed prior distribution on this kernel model, in order to obtain a sparse
estimate of the support and shape of the PSF. We also used a heavy tailed pdf both for
the noise, in order to achieve robustness to BID model errors and for the local image
differences, in order to allow the reconstruction of edges. The Student’s t pdf was our
choice as a heavy tailed pdf, due to its close relationship with the Gaussian. Because of the
complexity of this model, the variational framework was used for approximate Bayesian
inference.

Several experiments were carried out, to test the proposed methodology. These ex-
periments indicated beyond doubt that the use of a Student’s t pdf to model the weights
of the PSF kernel-based model in crucial to the success of this approach. Furthermore,
Bayesian BID models that use at least two Student’s t priors, one for the PSF, are clearly
superior to BID models that use two or more Gaussian priors. It is also interesting to
notice that the StStSt model that uses only Student’s-t priors seems to produce visu-
ally superior images compared to models that use a combination of two Student’s t and
Gaussian priors.

We also compared this methodology with TV-based and Bayesian as implemented in
[Molina et al., 2006] BID in a number of different scenarios. From these comparisons it
is clear that the proposed methodology is always superior to the Gaussian model based
methodology in [Molina et al., 2006]. As far as TV-based BID is concerned, the proposed
method is clearly superior for scenarios with small sized PSFs and low noise. In the
case of large PSFs and high noise the two methods produce different in nature results.
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The proposed methodology produces image where image details were better preserved. It
also yields better ISN R values. However, it produces “ringing” artifacts in image edges.
TV-based BID gave no “ringing”, however, many image details were eliminated.

In the future it’s interesting to explore the possibility of learning the filters Q* in
a manner analogous to [Welling et al., 2003]. Furthermore, it is possible to explore
extending the constrained variational methodology in [Chantas et al., 2007] to BID in
order to avoid using the approximation of the partition function in (5.16). Finally, it
might be interesting to learn the width parameter of the kernel function, possibly using
the methodology described in Chapter 6.
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CHAPTER 6

ADAPTIVE KERNEL LEARNING FOR THE
RELEVANCE VECTOR MACHINE

6.1 Introduction

6.2 Adjusting sparsity

6.3 Kernel Learning

6.4 Numerical Experiments

6.5 Discussion

6.6 Statistical Models for Analysis of Functional Neuroimages

6.7 Conclusions

6.1 Introduction

As mentioned in Chapter 3 the Relevance Vector Machine (RVM) constitutes a special
case of the sparse Bayesian linear model that assumes that the basis functions are kernels
placed at the training points. Recently, it has been used successfully in many applica-
tions; for example in recognition of hand motions [Wong and Cipolla, 2005], recovery
of 3D human pose from silhouettes [Agarwal and Triggs, 2004], detection of clustered
microcalcifications for mammography [Wei et al., 2005, classification of gene expression
data [Li et al., 2002, Yang et al., 2004], detection of activations for neuroimaging [Lukic
et al., 2007), real time tracking [Williams et al., 2005), etc. In spite of this, in order to
obtain good generalization performance, it is important to select an appropriate kernel
function.

Although typically the kernel is selected using a cross-validation technique, there has
been work on learning the kernel function simultaneously with model parameters. It has
been proposed in [Quifionero-Candela and Hansen, 2002] that the width parameter of
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Gaussian kernels can be learned by maximizing the marginal likelihood of the model.
Furthermore, in [Lanckriet et al., 2004, Girolami and Rogers, 2005, Sonnenburg et al.,
2006] the kernel has been modeled as a linear combination of other basis functions. In
[Krishnapuram et al., 2004) feature selection has been achieved by learning the variances
of anisotropic Gaussian kernel functions after applying to them a sparsity enforcing prior.
Also, in [Snelson and Ghahramani, 2006] an alternative to the Gaussian process model
has been proposed that learns a set of pseudo-inputs, which are similar to the relevance
vectors, but do not necessarily coincide with points of the training set. All these methods
attempt to learn parameters of kernels that are centered at many different locations,
however they assume that all these kernels share the same parameter values. This might be
a significant limitation if the data that we attempt to model have different characteristics
at different locations, such as a signal with varying frequency.

In this chapter, we propose a new methodology to automatically learn the basis func-
tions of a sparse linear model |Tzikas et al., b, 2008a]. Unlike the existing literature,
the proposed methodology assumes that each basis function has different parameters,
and in principle it can even have different parametric form, therefore it is very flexible.
In order to avoid overfitting, we use a sparsity enforcing prior that directly controls the
number of effective parameters of the model. This prior, has previously been used for
orthogonal wavelet basis function sets [Schmolck and Everson, 2007], but here we extend
it for arbitrary basis function sets. Learning in the proposed model is achieved using an
algorithm that is similar to the incremental RVM training algorithm [Tipping and Faul,
2003} described in Section 3.4.3. It starts with an empty model and at each iteration it
adds to the model an appropriate basis function, in order to maximize the marginal likeli-
hood of the model. In the case of incremental RVM, selecting a basis function is achieved
using discrete optimization over the location of the basis functions; all candidate basis
functions are tested for addition to the model. In contrast, the proposed methodology
uses continuous optimization with respect to the parameters (such as location and scale)
of the basis functions. We then employ this methodology to learn the center (mean) and
width (variance) parameters of Gaussian kernel basis functions.

There are several advantages of the proposed methodology as compared to traditional
RVM [Tipping, 2001}:

e There is no need to select the parameters of the kernel via cross validation, since
they are selected automatically.

e Because each kernel may have different parameter values, the model is very flexible
and it can accurately solve a wide variety of problems.

e The obtained models are typically much sparser compared to the typical RVM.

The rest of the chapter is organized as follows. In Section 6.2 we review the sparsity
prior of [Schmolck and Everson, 2007} and generalize it for non-orthogonal basis function
sets. In Section 6.3 we present an algorithm for learning the basis function set. In Sec-
tion 6.4 we provide experiments on artificial datasets that demonstrate the advantages of
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the proposed method, we compare the proposed algorithm with the typical RVM algo-
rithm on benchmark datasets and we apply the proposed method for analysis of functional
neuroimages. In Section 6.5 we discuss the computational cost of the method and provide
a probabilistic interpretation of the kernel function and finally in Section 6.7 we provide
some conclusions.

6.2 Adjusting sparsity

In Bayesian modeling the characteristics of the estimation depend on the assumed prior
distribution p(w). Thus, the sparsity of the weights w of a sparse linear model is mo-
tivated by their prior distribution p(w) = [p(w|a)p(a)dea. Since p(wla) is given
by (3.27), sparsity depends on selecting an appropriate distribution p(a). The typical
RVM [Tipping, 2001] suggests the use of independent Gamma distributions, p(ala,b) «
Hfil a? 'e b, Then, the weight prior p(w) is a Student’s t distribution, which supports
sparse models because of its heavy tails. Because it is difficult to select appropriate values
for the parameters a, b of the Gamma distribution, they are typically set to a = b = 0.
These values define an improper uninformative distribution for «; and correspond to
p(w) = ,."il 1/|w;|, which again has heavy tails and supports sparse estimations.

Another approach to control the amount of sparsity, is to define a prior on a that di-
rectly penalizes models with large number of effective parameters [Schmolck and Everson,
2007]. Notice, that the output of the model at the training points y = (y(z1), ..., y(zn))7T
can be evaluated as y = St, where S = ®X®T B is the so called smoothing matrix. The
‘degrees of freedom’ of S, given by the trace of the smoothing matrix trace(S), measure
the effective number of parameters of the model. This motivates the following sparsity
prior [Schmolck and Everson, 2007]:

p(ar) ox exp(—ctrace(S)), (6.1)

where the sparsity parameter ¢ provides a mechanism to control the amount of desired
sparsity. When using specific values of the sparsity parameter ¢, some known model
selection criteria are obtained [Holmes and Denison, 1999]:

.

0 None (typical RVM),
1 AIC (Akaike information criterion),

€= 4 (6.2)
log(N)/2 BIC (Baysian information criterion),

| log(N) RIC (Risk inflation criterion).

Learning using this prior is achieved by maximizing the posterior p(a, B|t) « p(t|e, B)p(a)p(B3).
If the basis function set is orthogonal (#7® = I) and the noise precision 3 is the same
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for each data point (B = SI) this prior reduces to:
<
1+a:/8

Assuming an uninformative prior for the noise (p(8) = const), the use of the sparsity
prior of (6.3) leads to the addition of a normalization term to the marginal log-likelihood
of (3.43):

p(ai) ox exp(— )- (6.3)

M
c
L°=L-) ———. , 6.4
g 1+0;/B (6.4)
Keeping only the terms that depend on a single parameter a; we can write:
of \ — A Y c .
1°(o) = () T+ o0i/B (6.5)

Based on this decomposition, an incremental algorithm that maximizes the marginal
likelihood has been proposed in [Schmolck and Everson, 2007], which is similar to the
typical incremental RVM algorithm [Tipping and Faul, 2003]. However, because of the
sparsity prior, setting the derivative of (6.5) to zero does not provide analytical updates
(such as (3.57)) for the weight precisions «;, but instead a numerical solution is required
to update them.

In the proposed method, we consider the general case of non-orthogonal basis functions
and heteroscedastic noise with different noise precision 3, at each data point z,. Since
trace(®XP"B) = M — Ef__l a;3;; we can write the proposed sparsity prior as:

M
p(oy) o exp (—c (M - Za.-Ea)) : (6.6)
i=1

Learning is again performed by maximizing the posterior p(e, B|t) x p(t|e, B)p(a)p(B),
which leads to adding to the marginal log-likelihood of (3.43) an additional term that is
obtained from (6.6):

M
L*=L—c(M-) aZy) (6.7)
i=1
Setting, the derivative of L* with respect to loga; to zero,
-—g!-'-.—-*-l 1 -2y 2 1 2z =0 ” 6.8
aloga""'i( -a -'QJ“)'*'C( - u)alzﬁ"' " (')

we obtain the following update formula for a;:

o= (6.9)

In the regression case assuming that B = 8I we can also update 8 by setting the

80




derivative of L*® with respect to log 3 to zero:

oL 1 P_
Y

Blogf 2 It — ®p||® — trace(zcb%)} ~ Bctrace(@LP) = 0. (6.10)
Because of the sparsity prior, we cannot solve this equation analytically. However, we can

easily obtain a numerical solution that we use to update S.

Regarding the incremental algorithm, keeping only the terms of L that depend on a
single parameter o; and because ; = 1/(co;; + s;) [Tipping and Faul, 2003], we obtain:

, -
Plog) = Hoy) —c(1 - L), .
(00) = o) = ol a,-+s.;) (6.11)
whose gradient is given by:
BZS(ai) _ 111 1 q? - 2¢s;
by 2| outs; (et s)?] (6.12)

Setting this gradient to zero, we find that [°(c;) is maximized at
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- g2 — (2c+1)s;
o; = 00 if ¢ < (2¢+ 1)s;. (6.13)

o if g? > (2¢ + 1)s;,

6.3 Kernel Learning

6.3.1 Sparse infinite linear models

Consider a linear model of the form
M
y(zlw) =) widi(). (6.14)
=1

Applying a sparsity prior on the weights of this model allows us to use very flexible models,
for example the RVM assumes one kernel function for each training point. We can even
consider linear models with infinite number of basis functions:

ylzhw(€)] = / w(€)p(x; €) A€, (6.15)

which are defined by using a family of basis functions ¢;(x) = ¢(x; &) with parameters
& Then, w(€) is a function whose output is the weight for the basis function with
parameters £. In this context, sparsity implies that there will be only a finite number of
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nonzero weights:

»

M
w(€) =Y wib(€,6), (6.16)

i=1
where §(€,0;) = 1 if £ = 6;, otherwise §(£,8;) = 0. Thus, under the assumption of
(6.16), the sparse infinite linear model is equivalent to a finite linear model with weights

w = (wy,...,wy)T and kernel parameters 8 = (6,...,0y)":
M
y(xlw) =) wig(x;6:). (6.17)
i=1

However, learning this model requires not only computing the posterior distribution
of the weights w and estimating the weight precisions a;, but also estimating the basis
function parameters 6. This can be achieved by modifying the incremental RVM algorithm
in order to optimize the kernel parameters @ at each iteration.

6.3.2 Learning algorithm

In this section we propose an algorithm for learning the model of (6.17). Notice that
the typical RVM algorithm cannot be applied here, since it is based on the assumption
that 0; are fixed in advance. Instead, the proposed algorithm is based on the incremental
RVM algorithm and therefore it works with only a subset of the basis functions, which
are named active basis functions. In order to explore the basis function space, we use
mechanisms to convert inactive basis functions to active and vice versa.

Specifically, at each iteration we select the most appropriate basis function to add
to the model as measured by the increment of the marginal likelihood. Therefore, in
order to select a basis function for addition to the model, we perform an optimization of
the marginal likelihood with respect to the parameters of the basis function. In typical
RVM, where the basis functions are kernels, this optimization is performed with respect
to the locations of the kernels. Furthermore, because the kernels are assumed to be
located at the training points, this optimization is discrete. In contrast, an infinite linear
model assumes continuous parameters for the basis functions, and therefore continuous
optimization must be employed, which uses the derivatives of the marginal likelihood
with respect to the parameters of the basis functions. Furthermore, in contrast to the
incremental RVM algorithm, which at each iteration selects a single basis function and it
either adds it to the model or re-estimates its parameters or removes it from the model, the
proposed algorithm performs at each iteration all these three operations; it first attempts
to add a basis function to the model, then updates all parameters of active basis functions
and finally removes any active basis functions that no longer contribute to the model. The
additional operations speed up convergence without introducing significant computational
cost, since there are only few active basis functions.

The steps of the proposed learning method are summarized in Algorithm 1 and we
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next discuss them in detail.

Algorithm 1 Sparse Infinite Linear Model Learning Algorithm.

1. Select an inactive basis function to add to the model (convert to active) as follows:

(a) Consider an initial set of inactive candidate basis functions by sampling their
parameters at random.

(b) Optimize separately the parameters of each candidate basis function to maxi-
mize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal
likelihood the most.

2. Optimize the parameters 0 of all currently active basis functions.
3. Optimize hyperparameters a: and noise precision .
4. Remove from the model any unnecessary active basis functions.

5._Repeat steps 1 to 4 until convergence.

Select an inactive basis function to add to the model

Addition of a basis functions to the model should always be performed in a way that
increases the marginal likelihood. This search is an optimization procedure in the space
defined by the hyperparameters o; and the basis function parameters ;. In contrast, in
the typical incremental RVM method, where the set of candidate basis functions is discrete
and finite, selecting a basis function to add to the model requires discrete optimization
which is performed by evaluating the marginal likelihood for each candidate basis function.

In our continuous optimization framework, the required derivative for ¢; is given by
(6.12) and for 8; is given by:

GO ( 1 g+en ) et —3 (6.18)

00 a; + S; (Cti + Si)2 o; + 8;
where
ri = 2 aeik - ¢1(91) C-—i aeik ) (6‘19)
8¢ 7 ~-100:(6:)
= 9% _ 19¢:\0i) 2
wi =5 B t'C, 6.0 (6.20)

These derivatives can be efficiently computed in a similar manner as in (3.55):

a; R;
i
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Ol,'Wg
. ws = @ — Wt" (622)
where
e aqx(a)
T -134%( i)
WG' - ¢1’ C aoik ) (6'24)
which gives:
R; = ¢TBa¢‘( %) ¢TB<I>2<I>TBa(g';k ) (6.25)
T 5¢‘( i) 1 r g 0¢i(6:)
W; = ¢; B——— T - ¢; BX®' B——— T (6.26)

Notice that since we use a local optimization method (in our case the quasi-Newton
BFGS method), we can only attain a local maximum of the marginal likelihood, which
depends on the initialization. For this reason, we perform this maximization several times,
each time with different initialization and then we use the parameters that correspond
to the best solution. The initialization is randomly performed by sampling from an
uninformative (uniform) distribution p(d). In order to speed up convergence, we can
initially place a basis function with high probability at regions where the model does
not fit the data well. For example, if the basis functions are Gaussian kernels, we can
initialize the mean m of a Gaussian kernel at a training point x,, selected with probability
proportional to the square of the error of the model at that point €2:

n (6.27)
Zf:l 63& . .

p(m = x,) =

Optimize active basis functions

Although we optimize the parameters of each basis function at the time that we add it
to the model, it is possible that the optimal values for the parameters of the already
existing basis functions will change, because of the addition of the new basis function.
For this reason, after the addition of a basis function, we optimize the parameters a; and
6; of all the active basis functions of the current model. Specifically, the weight precision
parameters «; are updated using (3.57), while the basis function parameters 8; are updated
using an optimization algorithm. Instead of computing separately the derivative for each
6; from (6.18), we use the following formula [Tipping, 2001]:

OL' < OL'  04i(wwif:)
-6_0:-; - Zl Odi(zn; 6;) 00 ! (628)
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where (Mi?—i’:;a’_—) = D,; is given by:
D= (C'tIC-C)®A! +2cB®PT AT (6.29)
=B |((t - &p)u” — &3] + 2cBETAX. (6.30)

Optimize hyperparameters and noise precision

The hyperparameters o of the active basis functions are updated at each iteration using
(6.9). Similarly, in regression the noise precision § is updated by numerically solving
(6.10).

Remove basis functions

After updating the hyperparameters a of the model it is possible that some of the active
basis functions will no longer have any contribution to the model. This happens because
of the sparsity property, which allows only few of the basis functions to be used in the
estimated model. For this reason, we remove from the model those basis functions that
no longer contribute to the estimate, specifically those with o; > 10'?2. Removing these
basis functions is important, not only because we avoid the additional computational
cost of updating their parameters, but also because we avoid possible singularities of the
covariance matrices due to numerical errors in the updates.

Repeat until convergence

We assume that the algorithm has converged when the increment of the marginal likeli-
hood is negligible (AL® < 107%). Because at each iteration we consider only a subset of
the basis functions for addition to the model, we assume that convergence has occurred
only when the above criterion is met for ten successive iterations.

6.4 Numerical Experiments

In this section we present results from the application of the proposed method (denoted
with aRVM) to various artificial and real regression and classification problems. We
compare our approach with i) the typical RVM with Gaussian kernel [Tipping, 2001] and
ii) the RVM with a smoothness prior and orthogonal wavelet basis functions (denoted
with sSRVM) [Schmolck and Everson, 2007]. Notice that the SRVM approach is based on
wavelet analysis requiring that the training data points are equally spaced. Therefore, it
can not be used for arbitrary multidimensional regression and classification problems and
we test it only on one-dimensional artificial regression example.
More specifically, we consider Gaussian kernel functions of the form

¢i(x; mi, hi) = exp [—-h ||l — mi|?], (6.31)

85



whose derivatives with respect to the mean and variance parameters are:

0¢i(n; My, h;)

B, = 2h72¢i(@n; i, hi) (@n — ™), (6.32)
6¢s(m,é,hm,, hi) - 2h:3¢i(wn§ m;, h.‘)“mn _ miuz’ (633)

Of course, we can use any other type of kernel functions, as long as we can compute the
derivatives with respect to the parameters we want to optimize. We can even examine
many types of basis functions simultaneously, as proposed in Chapter 4.

In our implementation we use the quasi-Newton BFGS method to perform the neces-
sary optimizations. Specifically, in order to select a basis function to add to the model,
we perform 100 runs of the BFGS, each time starting from a different initialization, and
each of these runs lasts no more than 10 BFGS iterations. Then, we only keep the
best solution and consider adding the corresponding basis function to the current model.
When updating the parameters of all the active basis functions we stop after 100 BFGS
iterations.

6.4.1 Experiments on Artificial Data
Regression

In the first experiment we generated N = 128 points from the well-known ‘Doppler’
function [Schmolck and Everson, 2007):

g(z) = v/z(1 - z)sin ?-7—%1:?—)-, (6.34)
with § = 0.01 and added white Gaussian noise of variance ¢? = 0.1. We then applied
the three compared methods and evaluated the estimated model on the same 128 points.
In order to measure the quality of the estimates we compute the mean square error
MSE =Y _(9(zn) = n)?/N, where g, the estimated value of the function at input z,
and N is the number of data points. For aRVM and sRVM we set the sparsity parameter
toc=1, c =log(N)/2 and ¢ = log(N) and for the kernel width of RVM we test several
values and select to illustrate the cases h = 1.5, h = 2 and h = 4. The second of these
cases (h = 2) is the value that produced the smallest MSE among all tested values of h.
The results are shown in Fig. 6.1.

Notice that as the smoothness parameter ¢ increases, the estimated aRVM model con-
tains less basis functions, thus it exhibits robustness to noise. The same happens with the
sRVM and also when increasing the width of the kernel in the typical RVM. Also notice,
that when using the typical RVM with a small kernel size (shown in Fig. 6.1b), noisy
estimates are obtained, while when using a large kernel size (shown in Fig. 6.1h), large
fluctuations of the function (high frequencies) cannot be adequately estimated. Instead,
the adaptive RVM and the sSRVM (shown in Fig. 6.1d and Fig. 6.1f) can successfully es-
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Figure 6.1: Regression example with Doppler signal. Estimates obtained (a),(d),(g) with
aRVM, (b),(e),(h) with RVM and (c),(f),(i) with sSRVM. The dashed line shows the true
signal, the dots are the noisy observations and the solid line shows the estimate. Under
each figure the values of the kernel width h or sparsity parameter c, the test mean square
error (M SE) of the model and the number of relevance vectors (RV') are shown.

timate functions that exhibit smoothness in some regions and large fluctuations in other
regions. However, the sSRVM gives worst solutions in terms of M SE than aRVM, because
Gaussian basis functions appear to be more appropriate than wavelets for modeling the
‘Doppler’ signal.

In the next experiment, we compare the performance of aRVM, RVM and sRVM for
several noise levels, using again the ‘Doppler’ function of (6.34). For aRVM and sRVM,
we set the sparsity parameter to ¢ = log(/N)/2 and for RVM we selected to illustrate the
cases h = 1.5, h = 2 and h = 4 for the width of the kernel. Notice that h = 2 is the
optimal value for the width of the kernel when SNR = 10. In Fig. 6.2 we provide the
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Figure 6.2: Comparison of the performance of aRVM, typical RVM and sRVM for several
noise values.

MSE of the estimate of each method for various signal to noise (SNR) ratios. Here, we
observe that the RVM model with a specific kernel width provides good performance only
for a small SNR range. Instead, aRVM and sRVM provide effective models for any SNR
value, but aRVM provides consistently better performance than sRVM.

Next, we applied the proposed method on a two-dimensional generalization of the
‘Doppler’ function:

g($1, m2) = g(:z:l)g(xg), (6'35)
where g(z) is given by 6.34. We then set § = 0.01 and generated a 128 x 128 image by
sampling this function on a grid. We trained the compared methods using a subset of these

samples, containing a proportion of 7 = 0.5 randomly selected samples. Furthermore, we
added to the observations white Gaussian noise of variance o = 0.1.

We consider two approaches for two dimensional regression. In the first, we use
isotropic Gaussian kernels, which assume the same variance for each dimension of the
input space and are given by

¢(a;m, h) = exp [~h~z — m]]. (6.36)

The second approach uses anisotropic Gaussian kernels, which use a separate variance for
each dimension of the input space:

1

d
$(z;m, k) =exp |- D _(K)2 (2’ —mI)?]. (6.37)
=1

We denote the second approach as aRVM?.
We then applied on the two-dimensional ‘Doppler’ function (i) the proposed aRVM
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Figure 6.3: (a) True signal and (b) noisy samples of the two-dimensional ‘Doppler’ signal
that was used for training.

aRVM aRVM? RVM

r =R
e [
-

(a) MSE =0.0036 (b) MSE = 0.0031 (c) MSE = 0.0038

Figure 6.4: Estimation of the aRVM method with (a)isotropic and (b)anisotropic Gaussian
kernel functions.

method with Gaussian kernels (ii) aRVM with anisotropic kernels (aRVM?) and (iii) the
typical RVM method with a fixed Gaussian kernel that was selected using cross-validation.
The result of each method was evaluated by measuring the mean square error with respect
to the true function (without noise) on the whole 128 x 128 image. For aRVM, we set the
sparsity parameter to ¢c = log(/N)/2 and for the kernel width of RVM we test several values
and select to illustrate the case h = 2, which is the value that produced the smallest MSE
among all tested values of h. The samples of the training set are shown in Fig. 6.3 and the
estimations of the algorithms are shown in Fig. 6.4. Observing these results, it is obvious
that in this case using anisotropic kernels improves the accuracy of the estimation.

Classification

In this subsection we compare the typical RVM and adaptive RVM (aRVM) models on
classification problems (sSRVM has been proposed only for regression problems). We gen-
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erated two-class, two-dimensional, artificial data by obtaining 50 samples from each of
the following Gaussian mixture distributions:

p(xlCl) = 0.25N (ul, 21 ) +0. 75N(uz, 21 ), (6.38)

with gy = (0.5,0.5)7, p, = (—0.5,~0.5)7, 0? = 0.5 and 03 = 0.05. It can be observed that
each class consists of two Gaussian clusters, one with large variance and another with small
variance. We then trained RVM and aRVM classifiers and evaluated them by computing
the percentage of misclassified examples over N, = 10000 test points drawn from the
mixture distributions of (6.38) and (6.39). For aRVM we set the sparsity parameter to
c=1, c=1log(N)/2 and ¢ = log(N) and for RVM we test several values for the kernel
width and select the values h = 0.2, h = 0.4 and h = 0.8, the second of which (A = 0.4)
is the value that minimizes the misclassified test examples. Notice in Fig. 6.5 that, when
using the typical RVM with a small kernel, there is severe noise in the estimation of the
decision boundary between the clusters with large variance. Instead, when using a large
kernel, the model fails to estimate the decision boundary near the clusters with small
variance. On the other hand, when using aRVM both clusters can be estimated well
because kernels of different width are used. Although the ability to use very small kernels
may lead to overfitting, this is avoided by selecting appropriate parameter value for the
sparsity controlling prior ¢ (Fig. 6.5c).

6.4.2 Experiments on Real Datasets

In this section we compare the performance of the proposed method (aRVM) with the
typical RVM method on several regression and classification datasets!. In what follows, we
describe the experimental setup that we followed. For each dataset, in order to estimate
the generalization error of each method, we perform ten-fold cross validation, i.e. we
perform ten experiments using each time one fold as a test set and the remaining nine
folds for training. In each experiment, we test several values for the parameters of the
models, specifically h = 0.5,1,1.5,..., 10 for the width of RVM and ¢ = 1, ¢ = log(N)/2
and ¢ = log(N) for the sparsity parameter of aRVM. For each parameter value, we train
nine models, using one of the nine folds as validation set and the remaining eight folds as
training set. The parameter value providing the best average performance over the nine
runs is selected and the corresponding model is subsequently evaluated by measuring
the error on the test fold. In regression, the error is the mean square error, MSE =

S o o(ta~9.)?/N, where t,, is the value given by the test set, §, the predicted value and N
the number of test examples. In classification the error is the percentage of misclassified

'Computer hardware, concrete and pima datasets were obtained from the UCI machine learning
repository at http://archive.ics.uci.edu/ml/, the Boston housing dataset was obtained from http:
//1ib.stat.cou.edu/datasets/boston, and the banana, titanic, image and breast-cancer datasets from
http://1da.first.fraunhofer.de/projects/bench/.
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Figure 6.5: Classification example on artificial Gaussian clusters. Estimates obtained with
(a),(c),(e) aRVM, (b),(d),(f) RVM. Circles and crosses correspond to the data points of
the two classes, the solid line shows the decision boundary and the dotted line shows the
curves where the decision probability is 0.75. Under each figure the values of the kernel
width h (for RVM) or sparsity parameter c¢ (for aRVM), the misclassification error (E)
and the number of relevance vectors (RV') are shown.

~
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Table 6.1: Comparison of aRVM and RVM on regression.

aRVM RVM
Dataset patterns features error RVs error RVs
computer hardware 209 6 22379 5.0 30004 140.5
Boston housing 506 13 11.53 13.27 1248 69.5
concrete 1030 8 34515 9.10 44.204 140.2

Table 6.2: Comparison of aRVM and RVM on classification.

aRVM RVM
Dataset patterns features error RVs error RVs
banana 5300 2 01126 6.3 0.1092 12.1
titanic 2200 3 0.2270 2 02292 31
image 2310 18 0.0387 6.9 0.0390 34.6
breast-cancer 277 9 02844 44 02818 9.6
pima 768 8 0.2303 5.6 0.243 279

examples in the test set.

The results in Tables 6.1 and 6.2 show the cross-validation error and the number
of relevance vectors (averaged over 10 folds) that were obtained by applying the RVM
and aRVM methods on several regression and classification datasets. We can observe
that in both regression and classification problems, the solutions obtained with aRVM
use much less relevance vectors (RV) than the solutions obtained with the typical RVM.
Furthermore, in regression the aRVM method provides more accurate estimates compared
to the typical RVM. In the classification datasets, the accuracy of the two methods is
generally comparable, but the aRVM solution is considerably sparser.

6.5 Discussion

6.5.1 Computational Cost

The computational cost of each iteration of the typical RVM algorithm is dominated by
the inversion of the N x N matrix of (3.33), which is O(N3), where N is the number of
training points, assuming that we use one basis function at each training point. In the
incremental RVM algorithm the size of the matrix ¥ is M x M, where M is the number
of active basis functions that are used in the estimated model and which is much smaller
because the model is sparse. The computational cost of the incremental algorithm is
dominated by the cost of selecting which basis function to add at each iteration, which is
O(N?*M).

In the proposed aRVM algorithm, selection of which basis function to add is achieved
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using a quasi-Newton optimization method, which is in general more computational ex-
pensive as compared to the incremental RVM basis function selection mechanism. How-
ever, generally aRVM requires significantly less iterations, because it adds less basis func-
tions than the incremental RVM. Furthermore, aRVM does not require the additional com-
putational cost of performing cross-validation to select the kernel width. The smoothness
parameter ¢ can be set to ¢ = log(/N)/2, which corresponds to the BIC model selection
criterion and which has been observed to give very good results in most problems (this
value was also suggested in [Schmolck and Everson, 2007]). Even if we choose to use
cross-validation to select the smoothness parameter c, we typically need to consider only
few values, in contrast to the RVM where selecting the width of the kernel is a much more
tedious task.

6.5.2 Probabilistic Kernel Interpretation

As noted in Chapter 3, a Gaussian process (GP) [Rasmussen and Williams, 2006] models
an unknown function y(x) by assuming that the joint distribution p(y(zx1),...,y(zn)) of
any subset of V values of this function y(z) is Gaussian. Usually the mean of this Gaussian
distribution is assumed zero and the Gaussian process is defined by the covariance function
K(zx,,x2), which computes the covariance of the outputs of the function y(x) at two
arbitrary points x; and x,.

As noted in [Tipping, 2001], the marginal distribution of the observations in a sparse
linear model is a Gaussian distribution given by p(t|e, 8) = N(t|0, C), see (3.43), therefore
the sparse linear model is a special case of GP, with covariance function given by:

M
K(zy, @) = »_ o7 gi(@1)i(2). (6.40)
i=1

This covariance function depends directly to the basis functions ¢;(x). Furthermore,
assume that the generative model p(z) of the inputs z is a mixture model:

M
() =Y p(e)p(zli), (6.41)

i=1

with the generative distributions p(z|i) proportional to the kernel functions ¢;(x):

p(zli) o ¢i() (6.42)

and p(i) oc ;' '. Then the covariance function K(x;,z;) of (6.40) is proportional to the
probability to generate two inputs x;, ; from the same component i; = 45 of the mixture
model:

M
K(@1,2) o p(y, Taliy = i2) = Y _ p(i)p(@1]i)p(sli). (6.43)

i=1
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Such probabilistic interpretation of the kernel function has been used to construct
kernels in [Haussler, 1999]. Here, it provides useful intuition on the advantages of learning
the basis functions. Typically, in order to fit a mixture model to some training set, we
learn the mixing coefficients and also parameters of the mixing distributions. However,
the typical RVM learns only the mixing coefficients. For this reason, it heavily depends
on a good choice of the mixing distributions—they are usually Gaussian kernels but
their variance is unknown. Furthermore, due to computational costs, we cannot consider
very large numbers of basis functions and therefore typically all the basis functions have
common width parameters. In contrast, aRVM which learns parameters of the basis
functions, can approximate p(x) more accurately, because it is a much more flexible
model. However, it is important to use the sparsity prior [Schmolck and Everson, 2007]
in order to avoid overfitting.

6.6 Statistical Models for Analysis of Functional Neuroimages

In this section we apply the proposed adaptive kernel learning methodology to detect
activations in functional neuroimages, which are brain images whose intensity measures
the neural activity of the brain [Friston et al., 2007]). Although neural activity cannot be
directly measured, there are techniques to measure it indirectly. PET imaging measures
the blood flow and Functional MRI the BOLD (Blood Oxygenation Level Dependent)
signal in a brain area, which are both proportional to the neural activity in that area.
Thus, brain regions which are activated can be identified by finding regions in a PET or
fMRI image where the blood flow or BOLD signal is elevated in comparison to a baseline
or control state. The baseline is the measurement of blood flow or BOLD signal when the
brain does not perform any task. Similarly, brain regions which have lower activity than
the baseline state are said to be inhibited.

A brain activation study aims in recording brain activity during performing a specific
task, such as cognition, memory, sensory stimulation and motor activity or studying the
effects of diseases or drugs to normal brain activity. A typical activation study consists
of four parts: experimental design, image acquisition, preprocessing and analysis.

The ezperimental design is the step where all the parameters of the experiment are
defined. There are mainly two types of designs: 1) block design and 2) event-related
design. In block related design, the experiment consists of alternating periods in which
a specific event or task is performed and periods of rest. Neuroimages are obtained
continuously, and can be split into two sets, depending on whether the task or event is
performed at the time or not. Event- related activation studies consist of a brief stimulus
performed only once. Furthermore, other parameters, such as the subjects that will be
tested and the machinery that will be used are determined. Usually, the signal to noise
ratio of the obtained images is very poor and in order to get robust results many images
are required.
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In the image acquisition step several scans of the brain of each subject are obtained
and in the preprocessing step the data are prepared for analysis. The main objective
of this step is to eliminate the differences in the images that are caused by extraneous
factors. For example, the position of the head of the subjects cannot be perfectly repeated
among scans, so an image processing technique (image registration) is used to correct any
misalignments. If images are obtained from more than one subjects, differences in the
anatomy of the subject’s brain should also be eliminated before the image analysis step.
In this case, piecewise linear transformations based on a brain atlas are used to bring
the brain images into anatomical alignment in a standard coordinate system. Then, the
images are usually spatially smoothed by a low-pass filter.

The final step is image analysis. The aim of neuroimaging analysis are: i) characteri-
zation of the spatio-temporal activation pattern induced in the brain by the stimulus, and
ii) estimation of data model parameters that can be used to accurately predict the values
of experimental design parameters (e.g. state labels) given the brain scans not previously
analyzed.

There are several important factors that make it difficult to relate specific changes in
brain activity to the experimental conditions being studied. First, the brain is always
active therefore the experiment must be designed carefully to isolate the effect of the
stimulus. Furthermore, the degree of activation with respect to the baseline state may be
very slight and difficult to detect. Another problem is that the images often suffer from
poor quality (low resolution, blur and noise). In experiments that involve many subjects
additional errors may be introduced because of anatomical and functional differences
among subjects. Finally, it is difficult to validate the results of the analysis, because very
little prior knowledge is available about human brain activity.

These challenges have inspired the development of several image processing and sta-
tistical tools to detect and establish statistical significance of studies. The predominant
approach [Friston et al., 2007] is based on the t-test from statistics and uses pixel-wise
comparisons between images of the control and test states of the brain to detect the local
changes in activity. More recent methods, which have gained lower acceptance so far, are
based on pairwise pixel correlations. Recently, Bayesian techniques have been proposed
that model spatial correlations of the activation signal. More specifically, [Penny et al.,
2005) models spatial correlations using a Bayesian prior based on the Laplacian opera-
tor and [Flandin and Penny, 2007] uses a Wavelet-based prior. Furthermore, in [Lukic
et al., 2007] kernel methods, such as the RVM of Section 3.5, have been used to account
for spatial correlations of the activation signal.

In simple fMRI studies two sets of volumes are acquired during an experiment: i)
baseline volumes that are obtained when the subject rests and ii) activated volumes that
are obtained when the subject is exposed to the examined stimulus. The problem of
interest is to statistically compare activated and baseline volumes to find activated regions
in the brain, i.e. regions where neural activity significantly changes when the subject is
exposed to the studied stimulus. More complicated fMRI studies may study the effects
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of many simultaneous stimuli. _ SRR A

6.6.1 The t-test

Typical statistical analysis of functional neuroimages is performed separately for each
voxel [Friston et al., 2007}, without modeling any correlations between neighboring voxels.
For this reason, smoothing is commonly performed as a preprocessing step. A common
assumption is that the intensity of each voxel is generated by the addition of i) a constant
baseline value, ii) possibly an activation and iii) some noise source. We denote with X3,
and X2, the intensities in the i-th vaxel of the n-th volume that has been acquired at the

baseline and activation states respectively. Then, we can write

X:, = B; + E:‘, (6.44)
Xe =B+ A+&, (6.45)

where B; and A, are the unknown intensities in the i-th voxel of the baseline and activation
respectively and €? is the noise source. The noise is typically assumed zero-mean Gaussian
distributed, with different variance o7 at each voxel, p{e?) = N(e|0,0?). Based on this
assumption, we can compute the likelihood that a voxel has been generated from this
model:

N? Ne
P(XI|A, Bi, o)) =[] (II N(X%|B:, o) [ N(X2(B: + 4, a.?)) : (6.46)

where N®* and N*® are the numbers of volumes acquired in the baseline and activation
states respectively.

The maximum likelibood estimates of the baseline B, the activation A; and the vari-
ances 67 are given by:

" 1 -

Bi=1 };x;,, (6.47)
. 1 N .

A= gx::. - B, (6.48)
'____l___ b _ A\ e _ B _ AN2)

=53 ‘L:,.(x*.. B) +“§.(xﬁ, B - A) ) (6.49)

where N = N%4 N° is the total number of acquired volumes in both baseline and activation
states. Furthermore, it can be shown that the baseline and activation estimations B; and
A; are Gaussian distributed, with B, ~ N(Bi|B,, %) and A; ~ N(A(|A;, ) and that
V = (N ~ 1) /a? follows a x? distribution.
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Then, the quantity

~

Ai ;
follows a Student’s t distribution with N — 1 degrees of freedom. Therefore, in order to
test the hypothesis that there is no activation in the i-th voxel (A; = 0), we use the t-test

t =

(6.50)

t<T, (6.51)

where T is a threshold that is defined by selecting the probability Pr4 of incorrectly
identifying a pixel as activated (typically Pra = 0.05).

6.6.2 Application of the Sparse Linear Model with Kernel Learn-
ing to Detect fMRI Activations

In this chapter, we apply the sparse Bayesian linear model of Chapter 6 to detect acti-
vations in functional neuroimages. More specifically, we use the sparse linear model to
estimate the unknown activation signal A;. Sparsity is desirable because typically only a
small proportion of the voxels are activated. Because this approach models spatial corre-
lations of the activation signal, statistical inference is not performed voxel-wise. Instead,
after computing the voxel estimates A; from (6.48) and their variance 2 from (6.49), we
refine this estimation using the sparse linear model.

The main advantage of learning the kernel parameters of the sparse linear model
is that activations of different sizes and shapes can be simultaneously detected. More
specifically, spatial correlations are not assumed to be identical in all brain regions. For
this reason, this method allows simultaneous detection of activations with small size and
high intensity, or large size and small intensity.

‘ When detecting activations in fMRI, it is desirable to know the probability of incor-
rectly detecting an activation. Using the sparsity prior (6.1) we can adjust this probability
by setting an appropriate value for the sparsity parameter c. Assuming that we train the
sparse linear model using the incremental algorithm of Section 3.4.3, activation will be
detected only if a basis function is added to the model, which happens using (6.13) when

@ > (2c+ 1)si, (6.52)

(97 CZH)? > (2c+ 1)97 CZ} ¢, (6.53)

B2 (@7 1) > (2c + 1)Be] ¢, (6.54)
(¢7%)?

T = FigTa (2c+ 1), (6.55)

where we assume an initially empty model, thus C_; = 8~!'I. Assuming that there is no
activation in the observed signal we have:

t ~ N(t|0,0%I), (6.56)

97




bi't ~ N(#[t[0,0°¢] ¢4), (6.57)

AN N(¢7tl0,1), (6.58)
o/ oI ¢
(&7t)? .

T " (659

We assume that the noise estimate 3! ~ o2 is accurate, therefore T follows a x? distri-

bution
T = (¢;FD2 ~ X2
B¢l ¢ '
Based on this result we can compute the probability of incorrectly detecting activation as

a function of the sparsity parameter c¢. For example Pry = P(T > 2¢+ 1) = 0.05 gives
¢= 142 and PFA = 0.01 gives c = 2.82.

(6.60)

6.6.3 Experimental Setup

It is widely accepted that evaluation of the detection performance of statistical analysis
methods is a difficult task, because in fMRI datasets the actual activation signal is gener-
ally unknown. For this reason, the evaluation of statistical analysis methods is typically
performed with simulated data (phantoms). However, in order for the evaluation to be
realistic the simulated data must have similar statistical properties with real fMRI data.

Typically, in order to generate simulated data, we first generate a baseline volume and
then add several instances of noise based on a stochastic noise model. Finally, activations
are added to the volumes that are assumed to belong to the active state. Here, in order
to generate data that have similar statistical properties to real fMRI data, we do not
generate artificial realization of the noise. Instead, we use real baseline volumes that have
been obtained using an fMRI scanner with the subject at the resting state. Then, we
add known artificial activations to some of the baseline volumes, in order to generate the
activated ones.

The activations that we add are Gaussian-shaped, given by

A(z;, y5) = Vexp (—?'1—2(1'3@ - 29)?) — ;li(yi - yo)z) ' (6.61)
z v

where V is the activation intensity, (Zo,%0) is the center of the activation and 0,0, are
the variances at each direction.

6.6.4 Numerical Results

Next, we compare three methods for detecting activations in fMRI signals using the
simulated data described in the previous section. The first method, which we denote
with SPM, is based on estimating the activation signal using (6.48) and then denoting
a voxel as activated or not based on the t-statistic of (6.50). For this method we use
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the popular software package statistical parametric mapping (SPM?). Instead of using
the t-test of (6.50), the other two methods that we compare attempt to model spatial
correlations of the activation signal. They are based on training a sparse Bayesian linear
model using the activation estimates of (6.48). More specifically, one method is denoted
with RVM and uses the RVM with Gaussian kernels [Lukic et al., 2007]. The other
method is denoted with aRVM and again uses an RVM with Gaussian kernels but also
uses the methodology presented in Chapter 6 to learn the location and scale parameters
of the Gaussian kernels. Furthermore, we assume separate variance parameter for each
direction of the kernel, in order to allow for elliptical shaped activations.

The increased flexibility of the aRVM method is demonstrated in Fig. 6.6, where the
estimated activations by each method are shown. We can see in Fig. 6.6b that the RVM
method with a small kernel size results in a large number of falsely detected activations.
On the other hand, in Fig. 6.6c we observe that using a larger kernel, we fail to estimate
the top right part of the activation, because it is not large enough. In Fig. 6.6d we see
that by learning parameters of the kernel we can detect all the regions of the activation
signal, while very few regions are incorrectly identified.

We have also performed a more detailed evaluation of the detection performance of the
methods. For this purpose, we added 40 Gaussian artificial activations given by (6.61), at
the baseline image and used each of the three methods to estimate them. The activations
were added in distant locations in order to make detection of each activation independent
to the others. Then ROC curves were generated by varying the probability threshold over
which voxels are detected as activated. The obtained ROC curves are shown in Fig. 6.7,
for probability of false alarm less than 0.1. In this figure we observe that aRVM has the
overall best detection performance. However, because of the sparsity enforcing prior, it
does not provide probabilities of false alarm larger than 0.05.

6.7 Conclusions

We have presented a learning methodology according to which the parameters of the basis
functions of sparse linear models can be determined automatically. More specifically, we
assume that the basis functions of this model are kernels and, unlike most kernel methods,
for each kernel we learn distinct values for a set of parameters (i.e. location, scale). Because
many parameters are adjusted, the proposed model is very flexible. Therefore, to avoid
overfitting we use a sparsity prior that controls the effective number of parameters of the
model, in order to encourage very sparse solutions.

The proposed approach has several avantages. First, it automatically learns the pa-
rameters of the kernel, therefore there is no need to select them using cross-validation.
Also, because each kernel may have different parameter values, the model is very flexi-
ble and it can solve difficult problems more efficiently than the typical RVM. This was

2SPM can be obtained from http://www.fil.ion.ucl.ac.uk/spm/sof tware/.
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demonstrated in Section 6.4 where we considered regression of a function with varying
frequencies and classification of data drawn from a mixture of distributions with very
different characteristics. Because of the sparsity prior that we use, the obtained models
are typically much sparser than the models obtained using the typical RVM. Further-
more, we used the proposed kernel learning algorithm to model spatial correlations of the
activation signal in functional neuroimages. The proposed method, unlike previous ones,
can simultaneously detect activations that are small in size but have high intensity and
activations that have low intensity but large size.

In this method, we have assumed that the basis functions are Gaussian kernels and we
learn the location and their width parameters. However, the proposed methodology can be
also used for selecting other types of bases. Furthermore, it is possible to simultaneously
use several types of kernel functions and the appropriate kernel should be automatically
selected, in a similar spirit as in Chapter 4.
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CHAPTER 7

LOCAL FEATURE SELECTION WITH
ADAPTIVE KERNEL LEARNING:
APPLICATION TO THE ANALYSIS OF
DNA MICROARRAY DATASETS

7.1 Introductioﬁ

7.2 Feature Selection based on Linear Models

7.3 Adaptive Kernel Learning for Feature Selection
7.4 Numerical Experiments

7.5 Conclusions

7.1 Introduction

In several regression and classification problems the examples in the training set contain a
very large number of features. For example, in biological microarray datasets, the number
of features may be up to 100,000. In such cases, it is often useful to preselect some of the
features, in a process known as feature selection, and then build regression or classification
models using only the selected features. This approach has several advantages. First, the
computational cost of training a model is usually greatly reduced, because of the reduction
in the number of features. More importantly, removing irrelevant features improves the
generalization performance. This happens because irrelevant features only add noise to the
observations, and many methods tend to overfit this noise. Finally, in several applications
it is interesting to know which features are relevant to make decisions, for example in
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biological microarray experiments it is important to identify the gene expressions that are
related with some condition.

An introduction to feature selection methods can be found in [Guyon and Elisseeff,
2003]. Feature selection methods can be divided in two broad categories. First, there are
methods that are based on variable ranking, i.e. they identify the relevance of each feature
independently. Then there are methods based on subset selection that assess the discrim-
inative capability of subsets of features. The second category is generally more powerful,
because it can identify correlated features; for instance two features that independently
seem irrelevant to the problem, might turn out to have significant discriminative capability
when examined together. However, subset selection methods are more computationally
demanding and for this reason feature selection in biological experiments with microarray
datasets is usually performed with variable ranking methods.

In this chapter we propose a local feature selection method that is based on learning
kernel parameters of a sparse Bayesian linear model using the approach of Chapter 6.
More specifically, a sparse Bayesian liner model is assumed, whose basis functions are
Gaussian anisotropic kernels. Local feature selection is then achieved by estimating for
each kernel the separate scaling factor (width) parameter that corresponds to each feature.
Because we learn different values for the scaling factors of each kernel, feature selection is
local. This means that different features are assumed to be relevant at different regions of
the input space. In order to eliminate irrelevant features, we assume a sparsity enforcing
prior on the scaling factors of the kernels.

Furthermore, we treat the problem of analyzing DNA microarray datasets. We con-
sider some typical feature preselection approaches in order to eliminate irrelevant features
and reduce the dimensionality of the dataset to manageable size. Then we apply i) the
typical RVM, ii) the RVM with adaptive kernel learning classifier of Chapter 6 and iii)
the proposed RVM with simultaneous feature selection. Experimental results demonstrate
that the adaptive kernel learning algorithm of Chapter 6 exhibits superior classification
performance compared to the commonly used RVM model. Furthermore, the proposed
local feature selection approach has similar performance and may be useful in identifying
which genes are significant for the classification task.

7.2 Feature Selection based on Linear Models

Next we present an overview of two feature selection approaches based on variable rank-
ing, namely recursive feature elimination (RFE) and automatic relevance determination
(ARD). These approaches are based on training linear models on the available data.
However, ARD builds linear models that are sparse in the number of features, while RFE
builds linear models that may be sparse in the number of input points.
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7.2.1 Recursive Feature Elimination

A common approach in feature selection is recursive feature elimination (RFE) [Kohavi
and John, 1997]. This approach initially builds an appropriate classification or regression
model using all the available features, and uses the produced model to assess the signifi-
cance of each feature. The least significant feature is then eliminated and this process is
repeated until the desired number of features are obtained.

More specifically, assume that we are given a two-class classification training set
{Zn,yn}_,, where y, € {—1,1} determines the category that the example =, € R?
belongs to. RFE is commonly used with linear classifiers, which make decisions based on
a decision function of the form

D(z) = wiz +b, (7.1)

where z = (z1,...,74)7 and w = (wy, ..., wqs)T is the vector of weights. Using a linear
classifier, a straightforward method to compute the significance s; of the i-th feature is:

8 = w;. (7.2)

In recent works, the popular SVM linear classifiers have been used [Guyon et al., 2002].
In such case, the parameters w of the final model are given by

w = Z QnYnn, (7.3)

neSv

where the parameters a,, are estimated during SVM training and SV is the set of support
vectors. In the method proposed here, we estimate the parameters o, using an RVM
classifier. This classifier is very similar but it has no parameters to select, unlike the SVM
that needs the a priori specification of the soft margin parameter C.

In datasets that contain a very large number of features, the above sequential elimi-
nation approach may be very computationally demanding. In order to reduce the compu-
tations, we can eliminate more than one features at each iteration. Especially in the first
few iterations, irrelevant features should be easily identified, therefore we can begin by
eliminating a large number of features and at subsequent iterations reduce the number of
features eliminated at each step. In [Ding and Wilkins, 2006) it is suggested to eliminate

i%l features at the i-th iteration.

7.2.2 Automatic Relevance Determination

A different approach to feature selection is based on the Bayesian framework using an
appropriate prior distribution and it is known as automatic relevance determination [Neal,
1996). This approach employes a special type of the Sparse Bayesian Linear Regression
model described in Section 3.4 that does not use a kernel function. The output of the
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linear model for input & = (z3, ..., 24)7 is given by:

y(z) = wa.' =w’e, (7.4)

=1

and a prior is assumed for the weights w:

d
p(w) = [ N(wi0,;). (7.5)

i=1

As explained in Section 3.4, this prior favors sparse the estimations for the weights,
meaning that most of the weights are set to zero. As a consequence, the features z; that
are associated with zero-valued weights are automatically eliminated.

7.3 Adaptive Kernel Learning for Feature Selection

In supervised learning problems, feature selection is typically performed as a preprocessing
step, which is performed before building a classification or regression model. The general
idea is to eliminate irrelevant features in the training set, in order to improve the gener-
alization performance of the model and simultaneously reduce the computational cost of
its training. However, it is possible to design supervised learning models that incorporate
feature selection mechanisms, in order to perform feature selection simultaneously with
estimation of model parameters. These models need to consider all the available features
for training and, for this reason, they have relatively high computational cost. How-
ever, they can achieve better peformance in feature selection, because they can exploit
information that the trained model provides.

For example, Krishnapuram et al. [2004] suggest the JCFO classification method that
jointly selects relevant features and estimates parameters of the classifier. The classifier
that they use is based on a linear model and feature selection is achieved by estimating
parameters of the kernel function. More specifically, a scaling factor 6; is estimated for
each feature z;, which measures the significance of that feature. For example, Gaussian
kernels can be used, if they are parameterized as:

d
Ko(z,x,) = exp [— 20;(1:‘- - xm-)z] , (7.6)
g=1
Then a Laplacian sparsity prior is enforced on the scaling factors 8 = (6y,...,04)7 in

order to eliminate irrelevant features.

In this section we propose a method to incorporate a feature selection mechanism in
the adaptive kernel learning approach for the RVM (aRVM) proposed in Chapter 6. This
method is similar in spirit to JCFO in that they both estimate parameters of kernels that
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are called scaling factors in order to measure the significance of each feature. However, the
proposed approach that is based on aRVM of Chapter 6, learns separate scaling factors
for each kernel, therefore feature selection is local, since it is performed for each kernel
separately. This might be useful for example when different features are significant for
discriminating examples of each class, as demonstrated in Section 7.4.1.

7.3.1 A Bayesian Model for Feature Selection

We consider the sparse Bayesian linear model of Chapter 6:

M
y(@) =) wnd(x;6,), (7.7)

n=1
where w = (wy,...,wy)7T is the weight vector and ¢(x;8,) is the n-th basis function

whose parameters are 6,,. In order to obtain sparsity, we assume a zero mean Gaussian
prior for the weights w, with separate variance parameter for each weight w,,:

p(w) = N(w|0, A7), (7.8)

where A = diag{a} and a = (a1, ...,a)T, and a prior distribution may be assumed on
a, following the approach of Section 3.4.

In (7.7) we assumed that all basis function have the same parametric form, but dif-
ferent values 6, for the parameters. In order to facilitate feature selection we need to
parameterize the kernel function such that it incorporates the scaling factors. Here, we
consider anisotropic Gaussian kernel functions, which have a separate precision parameter
hn; for each feature i:

d
$(a; Mn, B) = €xp | — Y (hns) (@i — ms)? | (7.9)

=1
where h, = (hy,...,hs)T and m, = (m,,...,my)*. Estimation of the parameters 8, =

(m,,, h,)T can be performed using the method proposed in Chapter 6.

We notice that if we assign a very small value to a scaling factor h,; of the n-th kernel,
the corresponding feature z; does not contribute to that kernel. Therefore, elimination of
irrelevant features can be motivated by assuming a prior distribution for the scaling factors
h = (hT,...,hT,)T that enforces sparsity. The distribution that we use is the Student’s
t distribution, which is known to give sparse solutions for few degrees of freedom, see
Section 3.4.4. Furthermore, as mentioned in previous chapters, a Student’s t distributed
random variable is equivalent to a Gaussian distributed random variable whose precision
parameter is assumed Gamma distributed. Therefore, we can write:

p(h|d) = N(h|0, A7), (7.10)
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with 8, = (p1, ..., 0nd)7s A = diag{6y,...,6u} and

M d
p(8) = [ ] 1 Gemma(éula,b), (7.11)

n=1 {=1

where we set a = b = 0 that define an uninformative Gamma distribution.

7.3.2 Parameter Estimation

The learning method is similar to the adaptive kernel learning algorithm of Chapter 6. It
incrementally adds basis functions to an initially empty model and at the same time it as-
signs appropriate values to their parameters. Estimation of these parameters is performed
using a numerical optimization method, which is greatly assisted by the availability of
the parameter derivatives. The only difference of the proposed model that incorporates
feature selection is that the basis function parameters h are treated as random variables.
This is necessary since a prior distribution is assigned on them in order to encode sparsity.
However, exact Bayesian inference is not possible and we will attempt to obtain MAP
estimates.

In order to obtain MAP estimates, we need to maximize the posterior distribution
of h, or equivalently its logarithm that can be decomposed in two terms. The first is a
likelihood term and is identical to the case of Chapter 6, given by (7.12). The second
term comes from the newly defined prior on h and is -—%hTAh. Therefore, we now want
to maximize L’/*, which is given by

L'*=1L*- %hTAh,. (7.12)

This optimization is performed using a general purpose optimization technique, such as the
quasi-Newton BFGS method. The required gradient with respect to the kernel location
m,, is identical to the case of Chapter 6 and is given by (6.18). However, the gradient
with respect to the scaling factors h, is given by adding the corresponding prior term to
(6.18):

aLf* oaL®

7 = =— — Opihni. 7.13

6 hni a h.,“ 6'“’1‘1” ( )

Furthermore, we need to consider estimation of the parameters § that define the pre-

cision of h. By setting a = b = 0 in (7.11), we assume an uninformative prior distribution
for them. Then, maximization of the likelihood with respect to & gives

1

6'“' = "'{3;‘-

(7.14)
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Algorithm 2 Feature Selection Using Adaptive Kernel Learning.

1. Select an inactive basis function to add to the model (convert to active) as follows:
(a) Consider an initial set of inactive candidate basis functions by sampling their
parameters at random.

(b) Optimize separately the parameters of each candidate basis function to maxi-
mize the marginal likelihood.

(c) Add to the model the candidate basis function that increases the marginal
likelihood the most.

2. Optimize the parameters 6 of all currently active basis functions.

Update hyperparameters « and noise precision £.

- W

Update hyperparameters § using (7.14).

o

. Remove from the model any unnecessary active basis functions.

6. Repeat steps 1 to 5 until convergence.

7.3.3 The Proposed Algorithm

The proposed learning algorithm, see Algorithm 2, is based on the incremental adaptive
kernel learning algorithm of Chapter 6, but it also updates the parameters & that have been
introduced to facilitate feature selection. Initially an empty model is considered. Then,
basis functions are iteratively added to the model until convergence. Basis functions
are added in a way that the marginal likelihood of the model is increased. The main
differences from the adaptive kernel learning algorithm of Chapter 6 are:

1. An additional term is added to the derivative of the precision parameters in order
to achieve feature selection

2. The existence of parameters §,;, n =1,...,M,i=1,...,d that measure the signif-
icance of feature j for kernel ¢ and are updated at each iteration.

7.4 Numerical Experiments

7.4.1 Artificial Example

The purpose of the first experiment is to demonstrate the feature selection capabilities
of the proposed method. For this reason, we have generated samples from two two-
dimensional zero-mean Gaussian distributions, each corresponding to one of the classes.
More specifically, we selected the variance of the Gaussian distributions to be s; = (1, 10)7
and s, = (10,1)7, so that only one feature is significant for discriminating each class. In
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Figure 7.1: Example aRVM classifiers (a) without feature selection (b) with feature selec-
tion. Solid lines show the decision boundary and dotted lines show the areas where the
probability of misclassification is 0.25.

Fig. 7.1 we show the estimated models using i) the RVM with adaptive kernel learning
algorithm of Chapter 6 and ii) the proposed modification to incorporate feature selection.
Notice, that the model obtained using the proposed approach contains only one basis
function for each class, with scaling factors 8; = (0.6,0.0)7 and 8, = (0.0, 0.4)7, therefore
it successfully identifies the relevant features for each basis function.

7.4.2 Evaluation on Common Benchmark Datasets

In order to evaluate the method we have performed experiments with several regression
and classification datasets from the UCI Machine Learning Repository that were also used
in Chapter 6. More specifically, we estimate the generalization error of each method by
performing ten-fold cross validation on each dataset. In regression, the error is the mean
square error, MSE = Y. _(t, — n)?/N, where ¢, is the value given by the test set, J,
the predicted value and N the number of test examples. In classification the error is the
percentage of misclassified examples in the test set. We evaluate three methods; i) the
typical RVM with Gaussian kernel (denoted as RVM), ii) adaptive RVM with learning
of Gaussian kernel parameters proposed in Chapter 6 (denoted as aRVM) and iii) the
proposed adaptive RVM with simultaneous feature selection by learning the parameters
of anisotropic Gaussian kernels (denoted as aRVM?). The regression and classification
results are shown in Table 7.1 and Table 7.2 respectively It can be observed that the
proposed approach, which incorporates feature selection, provides improved performance
compared to both the typical RVM model and the aRVM method of Chapter 6.
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Table 7.1: Comparison on regression datasets.

RVM aRVM aRVM¢
Dataset error RVs  error RVs error RVs
computer 30004 140.5 22379 5.0 4089 13.6
Boston 12.48 69.5 11.53 13.27 13.66 17.5
concrete  44.204 140.2 34.515 ‘ 9.10 28.868 42.3

Table 7.2: Comparison on classification datasets.
RVM aRVM aRVM¢
Dataset error RVs error RVs error RVs

banana 0.1092 12.1 0.1126 6.3 0.0994 4.4
titanic  0.2292 31.0 02270 2.0 0.2254 4.0
image 0.0390 34.6 0.0387 6.9 0.0342 21.3
breast 0.2818 9.6 0.2844 44 0.2629 3.0
pima, 0.243 27.9 02303 5.6 0.2276 5.1

7.4.3 Evaluation on DNA Microarray Datasets

DNA microarray experiments have recently attracted a lot of interest. In these experi-
ments datasets are constructed, which simultaneously describe the expression levels of a
very large number of genes of several tissues. Typical experiments involve two subsets of
tissues, one of which is associated with some disease and the other is not. The goal of
these experiments is not only to build classifiers with good generalization properties based
on these datasets, but it is also important to identify which are the important features for
discriminating the categories. Usually, analysis of the obtained datasets require special
treatment, because they contain an extremely large number of features (up to 100,000
features).

Several approaches have been used in the literature. Recursive feature elimination with
support vector machines has been proposed in [Guyon et al., 2002]. Also, in [Cawley and
Talbot, 2006] sparse logistic regression has been used to identify significant features. In
[Li et al., 2006] a relevance vector machine model that implements automatic relevance
determination has been proposed, while a Gaussian process based classifier has been
used in [Chu et al., 2005]. These approaches build classifiers directly on the feature
space. Instead in [Krishnapuram et al., 2004] the JCFO classification method is presented
that uses polynomial kernels and jointly identifies the optimal classifier and the relevant
features.

. In this section we evaluate the proposed RVM-based feature selection method on the
task of classification of DNA microarray datasets. In this context, we performed several
experiments using datasets that have been previously studied in the literature. The
first dataset (Leukemia) contains 72 examples with 7,129 features that correspond to
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Table 7.3: Average Classification Error after feature selection with ARD.

Method Colon Leukemia Prostate AML Prognosis

Number of selected features 6 5 6 7
RVM (no kernel) 0.0322581 0.0138889 0.0 0.0185185
RVM (linear kernel) 0.16129 0.180556 0.0196078 0.0925926
RVM (Gaussian kernel ) 0.225806 0.0 0.00980392 0.166667
aRVM 0.016129 0.0138889 0.0 0.0

aRVM? 0.0645161 0.0277778 0.0196078 0.0555556

expression levels of genes from 47 patients with acute myeloid leukemia (AML) and 25
patients with acute lymphoblastic leukemia (ALL). The second dataset (Colon) contains
62 examples with 2,000 features that correspond to genes from 40 tumor and 22 normal
colon tissues. The third dataset (Prostate) contains 102 examples with 12,533 features
that correspond to genes from 52 tumor tissues and 50 normal tissues. Finally the last
dataset (AML Prognosis), contains 54 examples with 12625 features that correspond to
gene expressions from 28 remission and 26 relapse cases of acute myeloid leukemia!.

In these experiments we compare the classification performance of the following meth-
ods i) RVM without kernel y(x) = w7, ii) typical RVM y(z) = 3V w;K(x, ;) with
linear kernel K(x,,z;) = x]x,, iii) typical RVM with Gaussian kernel K(z;,z2) =
exp(—h~%|lx, — x,||?), where the width h was appropriately selected in order to minimize
the classification error, iv) adaptive RVM with learning of Gaussian kernel parameters
proposed in Chapter 6 (denoted as aRVM) and v) the proposed adaptive RVM with si-
multaneous feature selection by learning the parameters of anisotropic Gaussian kernels
(denoted as aRVM?).

We consider two feature selection strategies. In the first strategy, we initially select
2000 features using the RFE approach and then we use ARD considering only these
features. ARD typically selects 5-10 features. Then we train all classifiers using the few
selected features and we evaluate their classification performance using leave-one-out cross
validation. The results are reported in Table 7.3. We can observe that the aRVM method
gives the best results in all datasets. The proposed aRVM¢? method, which incorporates
feature selection, performs worse than the kernel learning aRVM without the feature
selection extension, probably because appropriate features have already been selected by
the ARD approach.

In the second strategy, we initially use the RFE feature selection approach to select 20
relevant features. Then we apply the compared methods, using the 20 selected features.
The classification performance of each classifier (computed using leave-one-out cross val-
idation) is reported in Table 7.4. In this table we can observe that using RFE for feature

1The Leukemia dataset can be obtained at http://www-genome.wi.mit.edu/mpr/table_AML_ALL_
samples.rtf, the Colon dataset can be obtained at http://microarray.princeton.edu/oncology/
affydata/index.html and the datasets Prostate and AML Prognosis can be obtained from http://
wwv.ailab.si/supp/bi-cancer/projections/index.htm.
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Table 7.4: Average Classification Error after selecting 20 features with RFE.

Method Colon Leukemia  Prostate AML Prognosis

RVM (no kernel) 0.112903 0.0694444 0.117647 0.277778
RVM (linear kernel)  0.370968 0.0694444 0.0392157 0.277778
RVM (Gaussian kernel) 0.516129 0.0833333 0.0882353 0.222222
aRVM 0.180328 0.112676  0.029703 0.207547

aRVM*? 0.193548 0.0694444 0.0686275 0.240741

selection, all the classifiers generally exhibited worse performance compared to when us-
ing ARD for feature selection. Also, aRVM exhibited the best performance in two out
of four datasets. Furthermore, when using RFE for feature selection, aRVM? was a close
competitor to aRVM, probably because the RFE feature selection approach was relatively
inaccurate (compared to ARD).

7.5 Conclusions

In this chapter we have presented an approach to incorporate feature selection to the
sparse Bayesian linear model, using the adaptive kernel learning approach of Chapter 6.
In contrast to typical feature selection approaches the significance of each feature is as-
sessed separately for each kernel. Therefore, for each kernel a different set of significant
features is selected. This approach might be useful, for example in a classification prob-
lem when different features are significant for discriminating the examples of each class.
Furthermore, feature selection is performed simultaneously with model estimation, which
is expected to lead to improved performance but at higher computational cost.

Furthermore, we have used i) the adaptive kernel learning RVM of Chapter 6 and
ii) the proposed adaptive RVM with simultaneous feature selection to perform classifica-
tion with DNA microarray datasets. Experiments showed that aRVM exhibits excellent
classification performance. Although the performance of the proposed approach that in-
corporates feature selection was inferior, the approach has the advantage of identifying
which features (genes) are significant, which is important in such applications.
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CHAPTER 8

CONCLUSIONS

8.1 Concluding Remarks

8.2 Directions for Future research

8.1 Concluding Remarks

In this thesis we have studied the sparse Bayesian linear model and its application on
regression and classification problems. First, we considered sparse Bayesian regression of
images, which presents several computational problems because of the size of typical im-
ages. We then used sparse Bayesian image regression on some image processing problems,
namely object detection, blind image deconvolution and analysis of functional neuroim-
ages. Furthermore, we studied the problem of selecting parameters of the basis functions,
which is commonly performed using the computationally expensive cross-validation tech-
nique.

In order to apply the sparse Bayesian linear model for regression of images, in Chap-
ter 4 we proposed an algorithm that is based on operations in the discrete Fourier trans-
form (DFT) domain. The conjugate gradient method was used to efficiently compute the
posterior mean, and for the computation of the posterior covariance we considered two
simple but rather efficient approximations. Furthermore, we considered a variant of the
Relevance Vector Machine (RVM), which we call the multikernel RVM and uses simulta-
neously many types of kernels. Finally, we used the proposed algorithm to detect objects
in images and simultaneously find their locations. Experimental results indicate that
the proposed method has improved detection performance compared to some common
alternatives [Tzikas et al., 2006b, 2007b).

In Chapter 5 we presented a Bayesian approach to the blind image deconvolution
(BID) problem |[Tzikas et al., 2006a, 2007c,a, a|, where the sparse Bayesian linear model
was used to obtain smooth PSF estimates with limited support. We used the Student’s
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t pdf for the noise, in order to achieve robustness to BID model errors and for the local
image differences, in order to allow the reconstruction of edges. Because of the complex-
ity of this model, the variational framework was used for approximate Bayesian inference.
Several experiments were carried out, to test the proposed methodology. These exper-
iments indicated that the use of the sparse Bayesian linear model to model the PSF is
crucial to the success of this approach. Furthermore, the importance of using heavy tailed
distributions, such as the Student’s t distribution for modelling the BID noise and image
local differences is apparent. We have also compared this methodology with a TV-based
approach and an alternative Bayesian approach implemented in [Molina et al., 2006). It
is clear that the proposed methodology is always superior to the Gaussian based method-
ology in [Molina et al., 2006). As far as TV-based BID is concerned, the proposed method
is clearly superior for scenarios with small sized PSFs and low noise.

In Chapter 6 an adaptive kernel learning algorithm has been proposed to learn pa-
rameters of the basis functions for the sparse Bayesian linear model [Tzikas et al., 2008a,
b]. More specifically, the proposed algorithm learns different parameter values for each
kernel and for this reason it is very flexible. We have also imposed a prior distribution that
controls the effective number of parameters of the model, in order to force sparse estima-
tions and avoid overfitting the noise. Experimental results on artificial data demonstrate
the advantages of the proposed method. We also provide a comparison with the typical
RVM on several commonly used regression and classification datasets. Furthermore, the
proposed approach has been applied to model spatial correlations of the activation sig-
nals in functional neuroimaging. Numerical results with an artificial phantom indicate
that, in contrast to previous approaches, the proposed method can simultaneously detect
activations that are i) strong but small and ii) large but weak.

In Chapter 7 the adaptive kernel learning method of Chapter 6 was further extended
in order to perform local feature selection, simultaneously with model inference. To
achieve this behavior, we used anisotropic Gaussian kernels, which assume a separate
scaling factor (width) for each feature. Because the proposed approach estimates different
values for the scaling factors of each kernel, feature selection is local, i.e. different features
are assumed to be significant at different regions of the input space. We have then
imposed a sparsity enforcing prior on the scaling factors that results in eliminating features
from kernels to which they are irrelevant. We have conducted several experiments with
common regression and classification benchmark datasets showing that the performance
of the proposed method is improved. Furthermore, we considered the classification task
with biological DNA microarray datasets, where feature selection is very important. We
have applied two common (and computationally efficient) feature selection approaches,
recursive feature elimination (RFE) and automatic relevance determination (ARD) and
evaluated both the performance of the adaptive RVM with kernel learning of Chapter 6
and the proposed extension to incorporate local feature selection.
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8.2 Directions for Future research

In future work it would be interesting to consider more efficient approximations in the
DFT-based algorithm of Chapter 4. The main computational difficulty arises in the com-
putation of the diagonal elements of the posterior covariance matrix (4.13). An approx-
imation that is based on the Lanczos process [Chantas et al.] appears to have superior
performance and should be examined. Also, a large scale version of the Fzpectation Prop-
agation algorithm [Seeger and Nickisch, 2008] has been used for training sparse linear
models on images.

In the adaptive kernel learning methodology of Chapter 6 the basis functions were
assumed to be Gaussian kernels and we learn the location and their width parameters.
However, the proposed methodology can be also used for selecting other types of bases.
Also, it is possible to simultaneously use several types of kernel functions and the ap-
propriate kernel should be automatically selected, in a similar spirit as in Chapter 4.
Furthermore, we have used an uninformative (uniform) distribution for sampling the pa-
rameters of the basis function (Algorithm 1, step 1a). However, it might be useful to
develop methodologies that appropriately select more informative distributions for sam-
pling the basis function parameters. Moreover, instead of obtaining maximum likelihood
estimations of the basis function parameters, it would be interesting to treat them as
random varijables and use approximate Bayesian inference techniques. This approach was
followed in order to perform local feature selection in Chapter 7, however the MAP approx-
imation was used, which is very crude. There may be advantages in using sampling-based
approximate Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC).

The adaptive kernel learning methodology of Chapter 6 could be used as well for
the problem of object detection, following an approach similar to Chapter 4. Using this
method, it would be interesting to introduce parameters that control the scale and rotation
of the target basis functions. Then, using the adaptive kernel learning methodology we
would be able to estimate these parameters, in order to adjust for scaling and rotation of
the target objects. This is very important in most object detection problems, where the
target objects may appear scaled and rotated. It would also be interesting to apply the
adaptive kernel learning methodology in real-world regression and classification problems
and compare its performance to other methods.

Furthermore, in the blind image deconvolution problem, it would be interesting to con-
sider estimating the width parameter of the kernel function, possibly using the method-
ology of Chapter 6. Also, it would be interesting to explore the possibility of learning the
filters Q* in a manner analogous to [Welling et al., 2003]. It is also possible to explore
extending the constrained variational methodology in [Chantas et al., 2007] to BID to
avoid using the approximation of the partition function in (5.16). The sparse Bayesian
linear model could also be used to model the blurring PSF in the related problem of super
resolution [He et al., 2006, Yang et al., 2008], where we want to fuse several low-resolution
images of the same scene, in order to obtain a high-resolution image.

It would also be interesting to further examine the proposed local feature selection
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approach of Chapter 7 for classification using DNA microarray datasets. In Chapter 7 we
have presented experiments evaluating the classification performance of the method. It
would be interesting to evaluate the performance of the local feature selection approach
in selecting those genes that are significant for the classification task in DNA microarray
datasets.

IM- L
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