Claims of Sex Differences An Empirical Assessment in Genetic Associations

Nikolaos A. Patsopoulos, MD
Athina Tatsioni, MD
John P. A. Ioannidis, MD

EX IS A FACTOR THAT HAS BEEN invoked extensively in the past as a modulator of effects in clinical research. However, empirical data from randomized trials suggest that many claimed subgroup differences based on sex have been spurious and led to serious misconceptions.¹ For example, aspirin was believed to be ineffective in secondary prevention of stroke in women for more than 10 years based on an underpowered subgroup analysis.²

In the human genome era, for many common diseases, published research has often considered that some common gene variants may have different effects in men vs women. Many diseases or traits with strong genetic backgrounds have different prevalence in the 2 sexes. For example, autoimmune diseases, endocrinopathies, and longevity are more common in women, while coronary artery disease, ischemic stroke, and high cholesterol levels are more common in men.3 These observations do not necessarily mean that a specific gene variant should also have a different effect in men vs women. For most phenotypes, many common gene variants are likely to be responsible for determining susceptibility to disease.4 Among autosomal variants, only some of them, if any, may interact with sex. However, given that sex information is always readily available in such studies, it is easy to test whether it influences genetic effects. Eventually, a large number of claims are made for sex dif**Context** Many studies try to probe for differences in risks between men and women, and this is a major challenge in the expanding literature of associations between genetic variants and common diseases or traits.

Objective To evaluate whether prominently claimed sex differences for genetic effects have sufficient internal and external validity.

Data Sources We searched PubMed through July 6, 2007, for genetic association studies claiming sex-related differences in the articles' titles. Titles and abstracts and, if necessary, the full text of the article were assessed for eligibility.

Study Selection Two hundred fifteen articles were retrieved by the search. We considered eligible all retrieved association studies that claimed different genetic effects across sexes of 1 or more gene variants for any human disease or phenotype. We considered both biallelic and multiallelic markers (including haplotypes) and both binary and continuous phenotypes and traits. We excluded non–English-language studies; studies evaluating only 1 sex; studies in which sex was treated only as an independent predictor of disease; studies that did not address any association of the investigated genetic variant with a disease or trait; studies not involving humans; and studies in which the authors did not claim any sex difference.

Data Extraction Two evaluators independently extracted data with a third evaluator arbitrating their discrepancies. Data evaluation included whether analyses were stated to have been specified a priori; whether sex effects were evaluated in the whole study or subgroups thereof; and whether the claims were appropriately documented, insufficiently documented, or spurious. For appropriately and insufficiently documented claims we performed the calculations for gene-sex interaction whenever raw data were available. Finally, we compared the sex-difference claims with the best internal validity against the results of other studies addressing the same interaction.

Results We appraised 432 sex-difference claims in 77 eligible articles. Authors stated that sex comparisons were decided a priori for 286 claims (66.2%), while the entire sample size was used in 210 (48.6%) claims. Appropriate documentation of gene-sex interaction was recorded in 55 claims (12.7%); documentation was insufficient for 303 claims and spurious for the other 74. Data for reanalysis of claims were available for 188 comparisons. Of these, 83 (44.1%) were nominally statistically significant at a P=.05 threshold, and more than half of them (n=44) had modest P values between .01 and .05. Of 60 claims with seemingly the best internal validity, only 1 was consistently replicated in at least 2 other studies.

Conclusion In this sample of highly prominent claims of sex-related differences in genetic associations, most claims were insufficiently documented or spurious, and claims with documented good internal and external validity were uncommon.

JAMA. 2007;298(8):880-893

www.jama.com

Author Affiliations: Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine (Drs Patsopoulos, Tatsioni, Ioannidis), and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece (Dr Ioannidis); and Department

of Medicine, Tufts University School of Medicine, Boston, Massachusetts (Drs Tatsioni and Ioannidis). **Corresponding Author:** John P. A. Ioannidis, MD, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, University Campus, Ioannina, 45110 Greece (jioannid@cc.uoi.gr).

880 JAMA, August 22/29, 2007—Vol 298, No. 8 (Reprinted)

ferences. However, are these claims justified and valid?

Herein, we describe empirically a large sample of prominently claimed sex differences for genetic effects. We evaluated whether these claims were methodologically robust or were made based on selected and/or suboptimal analyses and with insufficient or spurious documentation. We also examined whether claims that seemingly had optimal internal validity had been corroborated by any additional studies.

METHODS

Selection of Studies

We aimed to assemble a sample of studies that claimed sex subgroup differences in gene-disease associations and in which the claim was so prominent that it was mentioned even in the title of the article. Sex subgroup differences are a very common theme in the epidemiological literature. Assembling all of them or even a systematic fraction thereof would be prohibitive. Any electronic search would yield only a modest sample of the thousands of articles evaluating sex subgroup differences, since these are often listed as secondary or tertiary results. Conversely, by focusing on the title, we would favor the selection of most prominent perceived subgroup differences between sexes. These studies are the ones in which the authors (and apparently also the peer reviewers and editors) are most confident of the strength of the observed sex subgroup differences.

We searched PubMed through July 6, 2007. PubMed is considered highly representative and inclusive of genetic epidemiology studies.5 We used a search strategy that would have high specificity for assembling a convenient sample of eligible studies: polymorphism* [ti] AND (gender [ti] OR sex [ti]). We perused titles and abstracts and, if in doubt, also the full text, for eligibility. We considered eligible all retrieved association studies that claimed different genetic effects across sexes of 1 or more gene variants for any human disease or phenotype. We considered both biallelic and multiallelic

markers (including haplotypes) and both binary and continuous phenotypes and traits.

We excluded non-English-language studies; studies evaluating only 1 sex; studies in which sex was treated only as an independent predictor of disease; studies that did not address any association of the investigated genetic variant with a disease or trait; studies not involving humans; and studies in which the authors did not claim any sex difference. Eligible studies were included regardless of the extent of the quantitative information that they provided to support their claims. Eligibility assessment was performed by 2 independent evaluators (N.A.P. and A.T.). Discrepancies were resolved by consensus.

Data Extraction

Two evaluators independently extracted data, with a third evaluator arbitrating their discrepancies. We extracted the following data from each eligible study: first author, journal of publication, year, total sample size, percentage of women, gene(s) and variant(s) for which sex differences were claimed, and disease/phenotype(s) thereof.

For each pair of gene variant and phenotype for which the investigators claimed a sex difference, we recorded the exact phrasing of the claim and any allusion that the difference was tested based on a priori plans or as part of post hoc analyses; the type of genetic variant (eg, biallelic, multiallelic singlelocus, haplotypes of many variants); and the type of phenotype (ie, binary outcome or continuous trait). Especially for biallelic variants, we recorded if a specific genetic contrast (recessive, dominant, additive, allele-based, modelfree, or other/unclear) was used. We also recorded (per sex) the presented effect sizes and measures of uncertainty thereof or raw data that could be used to verify the presence of each claimed sex difference.

For each claim of sex difference, we recorded whether it was based on an analysis of the entire study sample or a subset thereof. If the latter, we recorded the definition of the subset and whether any a priori justification was provided for the subset selection. We specified whether subsets were defined based on genetic information for the gene variant of interest (eg, comparison of AA vs aa homozygotes without consideration of Aa heterozygotes; comparison of haplotypes 1 vs 4 without consideration of haplotypes 2 and 3), genetic information for some other gene variant (eg, selection of individuals who have some specific genotype for another gene marker), other patient characteristics (eg, age, ethnic or racial descent), other considerations, or combinations of the above.

For each claim of sex difference, we also recorded whether it was appropriately documented, insufficiently documented, or spurious. For appropriately documented claims, 3 criteria were required. First, the article had to address a genetic effect that was based on the same genetic contrast in both sexes. Second, it did not compare different subsets in the 2 sexes (eg, old men vs young women). Third, it needed to either report a nominally statistically significant (defined as a P value threshold of .05) test that examined sexgene interaction or the interaction had to be very obvious because the presented confidence intervals of effects for each sex were not overlapping. Insufficiently documented claims were those in which only the first 2 criteria were fulfilled. Spurious claims failed either one or both of the first 2 criteria.

Insufficient documentation does not mean that the claim is necessarily inappropriate and wrong. An insufficiently documented claim may be correct (a significant interaction may exist after all) or wrong (a significant interaction may not exist), but this is not clear from the analyses performed or the way the claim is made in the article.

Reanalysis of Sex Claims

For each sex claim that was not spurious and where suitable information was available, we tried to perform calcula-

⁽Reprinted) JAMA, August 22/29, 2007-Vol 298, No. 8 881

tions to test whether there was indeed a nominally statistically significant sex subgroup difference in the effect sizes (sex-gene interaction).

Whenever a dominant, recessive, or allele-based model was implied, we used for each sex the natural logarithm of the odds ratio (binary outcomes) or the absolute difference (continuous outcomes) and their variances. Whenever effect sizes were not reported for both sexes, we tried to estimate them from the presented information on published 2×2 tables and means per sex. Whenever variances were not reported, we tried to estimate them from the presented information on confidence intervals, standard deviation, or standard error of the mean and number of observations. We then calculated the *z* score as a ratio where the nominator is the difference of normalized effects and the denominator is the square root of the variance of the difference. Whenever an additive model was implied, we fitted trend models for each sex and used the resulting coefficients and respective standard errors to calculate the z score. Finally, whenever a model-free approach was implied, we used an analysis of variance with a sex-genotype interaction term.

All these analyses were performed using the data that pertain to the same subjects for which the sex subgroup difference was originally claimed by the authors. Thus, if the sex claim had been made for the entire study population, we examined sex-gene interaction in the entire population; if the claim had been made for a subset, we examined sexgene interaction in that same subset. When both unadjusted and adjusted estimates of effect were available in full detail, we used the unadjusted estimates, except when both unadjusted and adjusted estimates were reported as different claims. In this case, both were used if possible.

Corroboration of Statistically Significant Sex-Gene Interactions by Other Studies

Even if a sex-gene interaction has been presented with optimal statistical and

analytical support, it is not certain that it truly exists. Genetic effects are subject to an extensive multiplicity of testing and are also susceptible to diverse errors and biases.⁶ Therefore, replication by additional independent studies is considered essential for reinforcing the credibility of genetic effects.⁷ We examined whether proposed sex-gene interactions in our sample had indeed been evaluated by additional studies and, if so, whether the results of these studies agreed with the proposed interactions.

We focused on claims of sex differences that met all of the following criteria: their analyses were stated to have relied on a priori considerations, raw data were provided, sex-gene interaction was nominally statistically significant at the P=.05 level on our reanalysis of the data, and either the whole study sample had been analyzed or a subset had been selected based on a priori considerations. These claims were the ones that apparently had the best possible internal validity.

We perused in detail each of the articles reporting such claims and recorded whether they had cited any previous studies investigating the same sexgene interaction. Additionally, we searched the ISI Web of Knowledge for articles that cited the articles meeting the criteria mentioned above. We then retrieved these cited and citing studies and examined whether they had evaluated the same sex-gene interaction and, if so, what was found.

We acknowledge that our search strategy may not have been 100% sensitive to find all studies that tested these interactions. However, there is no documented reliable strategy to retrieve all such articles, and interactions are probably often buried in text or not reported at all, especially if not nominally significant (P > .05) and "noteworthy." However, prior supporting studies are very likely to have been cited in these articles when the interactions were the main theme and even were part of the article's title. Similarly, subsequent studies that did find the same interaction would be

likely to cite an article in which the main theme had been that same interaction. Overall, our strategy probably favors the retrieval of studies that agreed rather than disagreed with the proposed interactions.

Analyses were conducted in Intercooled Stata, version 8.2 (Stata Corp, College Station, Texas). *P* values are 2-tailed.

RESULTS Eligible Sample of Articles and Sex Subgroup Claims

The electronic search yielded 215 citations; 138 were excluded on close scrutiny: 5 were non–Englishlanguage papers, 34 studies evaluated only 1 sex, 11 used sex as an independent predictor, 28 were not association studies, 54 were nonhuman studies, 4 had no claim of sex difference, and we could not find the full articles for 2 citations. Seventy-seven articles^{8.84} were eligible and contained a total of 432 distinct claims of sex subgroup differences (median=4 [interquartile range {IQR}, 2-7] claims per article).

These studies were published between 1994 and 2007 in 63 different peer-reviewed journals with a median impact factor of 3.868 (IQR, 2.826-5.699). The median sample size of these studies was 560 (IQR, 274-921) and the median proportion of women was 49% (IOR, 44%-53%). Sixty-three different genes were implicated across the 432 claims. The claims pertained to a wide variety of diseases and phenotypes, the most common being hepatitis C virus infection (n=32 claims), high-density lipoprotein cholesterol (n=26), lung cancer (n=21), type 2 diabetes mellitus (n=19), multiple sclerosis (n=18), hypertension (n=14), low-density lipoprotein cholesterol (n=13), Paget disease of bone (n=12), and diabetic nephropathy in type 1 diabetes (n=10)(TABLE 1).

Reported A Priori Evaluation of Sex Claims

Of the 432 claims, 286 (66.2%) were reported as being based on a priori stated comparison of the sexes and 68

⁸⁸² JAMA, August 22/29, 2007-Vol 298, No. 8 (Reprinted)

Courses	Total Sample,	Women,	No. of	0	\/	
Source Méplan et al, ⁹ 2007	<u>No.</u> 75	<u> </u>	23	Gene SePP	Variant/Haplotype ^a	Disease/Trait Plasma selenoprotein P Glutathione peroxidase 3 Thioredoxin reductase 1 Erythrocyte thioredoxin reductase 1 Glutathione peroxidase 1 activity Glutathione peroxidase 1 protein Glutathione peroxidase 1 activity/protein ratio Lymphocyte glutathione peroxidase 4
Hayashi et al, ¹⁰ 2007	200	58	10	ESR1	30T/C 401T/C	Systolic blood pressure Mean arterial pressure HDL cholesterol Brachial-ankle pulse-wave velocity
Baud et al, ¹¹ 2007	612	58	4	COMT	Val158Met	Anger Anger control
Yang et al, ¹² 2007	898		2	CTLA-4	+49A/G	Cord blood IgE levels \geq 0.5 kU/L
Glorioso et al, ¹³ 2007	712	48	8	ATP1A1 Dear ATP1A1	SNP1 SNP10 SNP11 SNP12 CC haplotype SNP1-SNP2 TT haplotype TG haplotype	Hypertension Normotension
Gallagher et al, ¹⁴ 2007	1095	46	3	UGT2B17	ins/del	Lung cancer Lung adenocarcinoma
Beyens et al, ¹⁵ 2007	302 690 992	44 53 50	12	TNFRSF11B	rs1485286 C/T (SNP 11) rs2073617 rs6415470 rs11573869 GA rs2073618 TGGACGC TCGATGC haplotypes distribution	Paget disease of bone
Leung et al, ¹⁶ 2007	560	26	2	SLCIIAI	SLC6a/b	Tuberculosis
Bolufer et al, ¹⁷ 2007	897	47	9	GSTM1 NQO1 GSTT1	ins/del *2 variant ins/del	Acute myeloblastic leukemia Acute lymphoblastic leukemia
Yamaguchi et al, ¹⁸ 2007	4854	45	19	THBS2 F3 ADIPOQ PON1	T>G (3' UTR) -603A>G G>T (intron 2) A>G (Arg160Gly)	Type 2 diabetes mellitus
Russo et al, ¹⁹ 2007	1604	50	4	CYP11B2	-344C/T	Systolic blood pressure Diastolic blood pressure Hypertension
Froehlich et al, ²⁰ 2007	174	49	2	DRD4	7 allele	Rule learning and reversal, total trials adjusted Rule learning and reversal, stages completed
Dedoussis et al, ²¹ 2007	173	53	8	PPARg2	Pro12Ala	Total triglycerides Total cholesterol HDL cholesterol Apoliprotein B Total cholesterol/HDL cholesterol ratio Apoliprotein B/Apoliprotein A1 ratio
Barnett et al, ²² 2007	8707		6	COMT	Val108/158Met	Selective attention Verbal IQ Total IQ Working memory count Global score Opposite words
Schott et al, ²³ 2007	1274	52	11	CTLA-4	318C; 49A A49G	Hepatitis C virus infection

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, August 22/29, 2007—Vol 298, No. 8 883

Source	Total Sample, No.	Women, %	No. of Claims	Gene	Variant/Haplotype ^a	Disease/Trait
Asselbergs et al, ²⁵ 2006	2527	53	6	<i>PAI</i> <i>AT1R</i> Bradykinin B(2) receptor	4G/5G A1166C 58CT	Plasminogen activator inhibitor I levels Tissue plasminogen activator
Yiannakouris et al, ²⁶ 2003	118	53	2	Leptin	G-2548A	Soluble leptin receptor levels Free leptin index
Seripa et al,27 2006	1408	53	3	ApoE	e4 allele	Age \geq 60 y (longevity)
Paladino et al,28 2006	495	43	21	IL-10	G-1082A	Hepatitis C virus infection
Korner et al, ²⁹ 2007	943	52	3	FAS	Val1483lle	Body mass index HDL cholesterol LDL cholesterol/HDL cholesterol ratio
Sundar et al, ³⁰ 2006	1691	64	3	ABCA1	R219K R219K; G-17C	Late-onset Alzheimer disease
Ozawa et al, ³¹ 2006	992	62	5	KCNQ1	G643S	Heart rate QTf (Fridericia correction) T-wave interval Tpe/Qt ratio
Ben Assayag et al, ³² 2006	545	52	10	Fibrinogen Bb	G455A	Erythrocyte percentage Vacuum radius Erythrocyte sedimentation rate Plasma fibrinogen Correlation between vacuum radius and plasma fibrinogen levels Correlation between erythrocyte percentage and plasma fibrinogen levels
Kates et al, ³³ 2006	58	45	3	COMT	Val158Met	Full-scale IQ Dorsal prefrontal volume Orbital prefrontal volume
Mizuno et al, ³⁴ 2006	194	49	2	5-HTTLPR	Long/short	Sensitivity to stress (state) Sensitivity to stress (trait)
Mlynarski et al, ³⁵ 2005	794	48	9	CCR5	A59029G 32 bp ins/del A; Ins haplotype A; Del haplotype G; Ins	Diabetic nephropathy in type 1 diabetes
Derzbach et al, ³⁶ 2005	308	50	4	ESR1	Pvull	Necrotizing enterocolitis Patent ductus arteriosus Period of oxygen supplementation Intraventricular hemorrhage
Gloria-Bottini et al,37 2005	337	46	1	ACP1		Birth weight/placental weight ratio
Sjoberg et al, ³⁸ 2006	200	60	5	5-HTTLPR	l/s	Depression self-rating scale
Tan et al, ³⁹ 2005	616	36	5	Nogo	CAA insertion/deletion TATC insertion/deletion CAA+TATC- CAA+TATC+ CAA-TATC-	Schizophrenia
Shi et al, ⁴⁰ 2005	2192	49	20	MTHFR	C677T A1298C	Lung cancer
Foltynie et al,41 2005	291	40	1	BDNF	Val66Met	Planning ability in Parkinson disease
Kajinami K, ⁴² 2005	338	40	5	ESR1 ApoA1 ESR1; APOA1	Pvull–Xbal+ +83 variant Pvull–Xbal+; +83	HDL cholesterol
Kantarci OH, ⁴³ 2005	861	66	13	IFNG	CA12/G haplotype Multiple sclerosis CA13/A D12S313;3'(325)*G>A D12S313;3'(325)*G>A D12S2510 D12S2510; D12S2511 3'(325)*A I1 (761)*CA12 I1 (761)*CA12 I1 (761)*CA13 3'(325)*G	

Table 1. Evaluated Articles Making Prominent Claims for Sex Differences in Their Titles (cont)

884 JAMA, August 22/29, 2007—Vol 298, No. 8 (Reprinted)

Table 1. Evaluated Articles Making Prominent Claims for Sex Differences in Their Titles (cont)

Source	Total Sample, No.	Women, %	No. of Claims	Gene	Variant/Haplotype ^a	Disease/Trait
Chang et al, ⁴⁴ 2004	644	47	2	CTLA-4	G49A	Cord blood IgE levels
Cui et al, ⁴⁵ 2004	1000	48	1	TSP-4	A389P (29926G>C)	Myocardial infarction
Schrijver et al, ⁴⁶ 2004	477	52	5	TGFB1	T869C 869T;915G 869C;915C	Multiple sclerosis
Liu et al,47 2004	1949	50	4	SOD2 SOD2; MPO	Ala16Val Ala16Val; MPO variant	Non-small cell carcinoma
Szczeklik et al,48 2004	857	60	1	COX-2	G-765C	Asthma
Corder et al,49 2004	5615	44	2	ΑροΕ	Epsilon4	Senile plaque
Chen et al, ⁵⁰ 2004	745	43	2	XBP1	197C/G	Schizophrenia
Kajinami et al, ⁵¹ 2004	344	40	5	MDR1	C3435T G2677T/A; C3435T haplotype GC	HDL cholesterol LDL cholesterol
Yang et al, ⁵² 2004	1333	50	6	CTLA-4	G49A	IgE levels log IgE levels IgE levels ≥100 kU/L Allergic rhinitis
Gong et al, ⁵³ 2004	189	33	2	SP-B	Exon 4 variant	Acute respiratory distress syndrome Direct pulmonary injury
Ko et al, ⁵⁴ 2004	716	46	4	HL	–514C/T –250G/A	HDL cholesterol
Nakanishi et al, ⁵⁵ 2004	249	51	5	FABP2	Ala54Thr	Total triglycerides Total cholesterol LDL cholesterol Body mass index
Chen et al,56 2004	277	47	1	CCL2	-2518; -2076	Behçet syndrome
Espino-Montoro et al, ⁵⁷ 2003	104	43	11	ΑροC3	S1/S2	Total triglycerides VLDL triglycerides LDL triglycerides HDL triglycerides Total cholesterol VLDL cholesterol LDL cholesterol Triglycerides-VLDL/HDL cholesterol ratio Total apolipoprotein B Basal glucose Basal insulin
Vandenbroeck et al, ⁵⁸ 2003	449	54	8	IFNG/IL26 region	D12S2510 IFNGCA*13; D12S2510*8; D12S2511*9	Rheumatoid arthritis
Song et al, ⁵⁹ 2003	271	53	1	CYP11B2	C-344T	Renal survival in IgA nephropathy
Laule et al,60 2003	1000	24	3	eNOS	CA repeat	Acute coronary syndrome
Reich et al, ⁶¹ 2003	81	42	7	AGT1R	A1166C	Systolic blood pressure Diastolic blood pressure Mean arterial pressure Change in glomerular filtration rate Increase in renal vascular resistance
Watson et al,62 2003	559	36	3	ΑροΕ	Exon 4 variant	Colorectal cancer Advanced Dukes stage C and D tumors
Stankovic et al,63 2002	385	45	3	ACE	I/D	Hypertension
Gyorffy et al,64 2002	210	48	1	VDR	Bsml; Apal; Tru9l	Type 1 diabetes mellitus
Minihane et al,65 2002	135	44	1	APOC3	T2854G	Total triglycerides
Wu et al, ⁶⁶ 2001	306	45	4	MTHFR	C677T	Ischemic stroke
Lio et al, ⁶⁷ 2002	450	57	1	IL-10 promoter	G-1082A	Longevity
Liu et al, ⁶⁸ 2002	417	62	10	ESR1	Pvull; Xbal	Lupus nephritis Hematologic disorder in lupus nephritis Hypertension Glomerular thrombi in lupus nephritis Glomerulosclerosis in lupus nephritis Interstitial vasculitis in lupus nephritis Interstitial injury in lupus nephritis

⁽Reprinted) JAMA, August 22/29, 2007—Vol 298, No. 8 885

....

Table 1	. Evaluated	Articles	Making	Prominent	Claims f	or Sex	Differences in	Their	Titles (cont)
---------	-------------	----------	--------	-----------	----------	--------	----------------	-------	----------	-------

Source	Sample, Women, No. of Source No. % Claims Gene Variant/Haplotype ^a		Variant/Haplotype ^a	Disease/Trait		
Sciacca et al,69 2002	872	56	1	IL-1A	C889T	Age at myasthenia gravis onset
Ordovas et al,70 2002	1577	52	7	APOA1	G75A	HDL cholesterol
Oh and Barrett-Connor, ⁷¹ 2001	1126	59	7	АроЕ	Exon 4 variant	Total cholesterol LDL cholesterol Waist circumference Total cholesterol/HDL cholesterol ratio
Ellsworth et al,72 2001	608	48	2	E-selectin	S128R	Coronary artery calcification
Du et al, ⁷³ 2000	186	59	5	5-HTTLPR 5-HTT	Long/short VNTR	Conscientiousness Neuroticism
Bullido et al, ⁷⁴ 2000	371	62	3	LRP ApoE	Exon 3 C>T A491T (–491–427) haplotype	Alzheimer disease
Kark et al, ⁷⁵ 2000	819	36	3	CETP	Taql	HDL cholesterol Apolipoprotein A-I HDL cholesterol and triglycerides correlations
Durlach et al, ⁷⁶ 1999	406	43	5	CETP	Taql	HDL cholesterol Coronopathy in type II diabetes
Sagnella et al, ⁷⁷ 1999	1366	54	2	ACE	I/D	Hypertension
Reynolds et al, ⁷⁸ 1999	288	58	1	MPO	SpN	Alzheimer disease
Freire et al, ⁷⁹ 1998	242	43	1	AGT	M235T	Nephropathy in type 1 diabetes
Suarez et al, ⁸⁰ 1997	589		23	VDR	Bsml	Body mass index Length Weight Body surface area
Lehtimaki et al, ⁸¹ 1997	58	48	2	ΑροΕ	Epsilon4	LDL cholesterol Total cholesterol
Carter et al,82 1997	502	54	4	Fibrinogen Bb	Arg448Lys	Acute stroke Fibrinogen levels at 3 mo
Ferrieres et al, ⁸³ 1994	263	56	14	ΑροΕ	Epsilon4	Total cholesterol LDL cholesterol Total apolipoprotein B LDL apolipoprotein B VLDL cholesterol Total triglycerides
von Eckardstein et al, ⁸⁴ 1994	614	31	4	Apo A-IV	Gln360His Apolipoprotein A-I Apolipoprotein A-IV Lecithin:cholesterol acyltransferas	
Hansen et al, ⁸ 1994	782	8	3	АроВ	All haplotypes (Xbal1 and Ins/Del)	Ischemic heart disease

Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprote ^aGene variant nomenclature follows the convention used in each article.

(15.7%) were acknowledged to be post hoc analyses; in the other 78 (18.1%), the analysis plan was unclear.

Genetic Variants and Phenotypes and Genetic Contrasts Involved

The variant of interest was of a biallelic locus in 328 claims, a multiallelic single locus in 44, multilocus haplotypes in 45, and multiple polymorphisms without haplotype construction in 15. The phenotype was binary in 212 claims, continuous in 218, and categorical in another 2 (crosstabulations and other supplementary data are available at http://www.dhe .med.uoi.gr/sup_mat.php).

Among the biallelic variants, a specific genetic contrast was used in 227 claims (recessive in 33, dominant in 95, additive in 19, allele-based in 16, and model-free [all 3 genotypes considered separately] in 64). The remaining 101 were based on other, more peculiar genetic contrasts (wild-type homozygous vs variant homozygous, n=30; heterozygous vs variant homozygous, n=8; heterozygous vs wildtype homozygous, n=13; and other considerations, n=50).

Analyzed Population in Sex Claims

The entire sample size was used in 210 claims (48.6%) and the other 222 used subsets of the study population. The subset selection was based on genetic information for the gene variant of interest in 60 claims, on genetic information for some other gene variant in 2, on other patient characteristics in 101, and on combinations of the above in 59. The selection of the subset was reported to have been determined a priori in 98 claims (44.1%), it was acknowledged to have been done post hoc in 43 claims (19.4%), and the timing

886 JAMA, August 22/29, 2007—Vol 298, No. 8 (Reprinted)

of the selection was unclear in 81 claims (36.5%).

Documentation of Sex Claims

Appropriate documentation was evident in only 55 claims (12.7%). This includes 49 claims that performed statistical testing for interaction and another 6 for which no formal testing was shown, but the sex-specific 95% confidence intervals of the genetic effects were readily presented and did not overlap. Forty-four (44/49 [89.8%]) of the provided P values were between .01 and .05. The smallest P value reported was .00008.

A total of 303 claims had insufficient documentation. In 81 claims, the investigators said that a statistically significant effect was found in one sex but not in the other, and both effects were in the same direction. In 46 claims, they stated that there was a statistically significant effect in one sex but not in the other, and the point estimates were in opposite directions. In 16 claims, they stated that a larger

Table 2. Examples of Insufficiently Documented Claims						
Type of Insufficient Documentation	Example ^a	Source				
Significant effect in one sex only, effects in the same direction	" after stratification by sex significantly increased odds of developing ARDS were found in women with a variant SP-B allele (OR, 4.5; 95% Cl, 1.1-18.8; P = .03) [Table 4], but not in men." (OR, 1.2; 95% Cl, 0.4-3.8)	Gong et al, ⁵³ 2004				
Significant effect in one sex only, point estimates in opposite direction	"Analysis of male study subjects provided a statistically significant risk reduction for the ε3/ε3 genotype (OR, 0.53; 95% Cl, 0.32-0.89) whereas absolutely no effect was revealed in women (OR, 1.04; 95% Cl, 0.52-2.09)."	Watson et al, ⁶² 2003				
Larger or more statistically significant effect in one sex than in the other, significant effects in both	" in the male group there was a slight and significant (P <.05) increase in total, VLDL, LDL, and HDL triglycerides and an increase of VLDL cholesterol in carriers of the S1S2 genotype (P <.05) the women carrying the S1S2 mutation had much more marked differences regarding plasma lipids and lipoprotein composition." Women: P <.001 for total, VLDL, and LDL triglycerides and VLDL cholesterol; P <.05 for HDL triglycerides (data from table)	Espino-Montoro et al, ⁵⁷ 2003				
Significant effect in one sex, no information on direction in the other sex	"Regression analysis showed no association between neonatal morbidity and genotype in girls. However, boys carrying 'p' allele were at lower risk for patent ductus arteriosus (OR [95% CI], 0.24 [0.05-0.971); P < .05."	Derzbach et al, ³⁶ 2005				
Significant effect in one sex only, direction of effects not specified in either sex	"When significance was assessed separately for the two sexes, however, Taq1B polymorphism was found to affect HDL-C significantly in males ($F = 3.640$; $P = .028$) but not in females ($F = 0.947$; $P = .390$)."	Durlach et al, ⁷⁶ 1999				

Abbreviations: ARDS, acute respiratory distress syndrome; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; VLDL, very low-density lipoprotein.

^aText inside apostrophes indicates verbatim text.

Table 3. Examples of Spurious Claims

Type of Spurious Claim	Example ^a	Source	
Comparison of male cases directly with female cases, ignoring controls	"Similarly, the frequency of 6/6 homozygotes was significantly higher (<i>P</i> = .023; EF= 0.24) and that of D12S2510*8 carriers lower (<i>P</i> = .025; PF = 0.26) in female patients compared with male patients."	Vandenbroeck et al, ⁵⁸ 2003	
Comparison of male vs female cases with a given genotype, ignoring other genotypes	"As a result, the difference in HDL-C between sexes, reconsidered on the basis of Taq1B genotype, was found to be significant at the <i>P</i> < .0001 and <i>P</i> < .0005 levels, respectively, in B1B1 and B1B2 subjects "	Durlach et al, ⁷⁶ 1999	
Comparisons of different genetic groups in male vs female cases	" females of the AA genotype demonstrated the greatest fall in GFR compared with the other three groups (P = .01 vs males of the AC/CC genotype)."	Reich et al, ⁶¹ 2003	
Comparisons of one sex against a subgroup of the other sex	"The distribution of haplotypes differed significantly among subgroups of patients, mainly because of a higher frequency of the Ins/X– and a lower frequency of the Del/X+ haplotypes in female and older male patients than in younger male patients and in reference men."	Hansen et al, ⁸ 1994	
Comparison of different subgroups of gene exposure-defined categories	"For the <i>MTHFR</i> A1298C polymorphisms, the 1298CC genotype showed increased risk of lung cancer in those women who reported ever smoking (adjusted OR, 2.25; 95% Cl, 1.19-4.23)" Men: adjusted OR, 0.44; 95% Cl, 0.20-0.95 (data for table, but adjustment is not for smoking)	Shi et al, ⁴⁰ 2005	

ular filtration rate; HDL-C, high fraction of attributable risk: GFF fraction. ^aText inside apostrophes indicates verbatim text.

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, August 22/29, 2007-Vol 298, No. 8 887

ASSESSMENT OF SEX DIFFERENCES IN GENETIC ASSOCIATION STUDIES

or more statistically significant sex effect was seen in one sex than in the other, and the effects were nominally statistically significant in both sexes. In 107 claims, a statistically significant effect was shown in one sex, but there was no information on statistical significance in the other sex. Finally, 53 claims reported a statistically significant effect in one sex and no statistically significant effect in the other, but the direction was not specified in either sex. For all of these situations, the way the claim was made cannot ensure whether sex-gene interaction is nominally statistically significant or not. Illustrative examples are shown in TABLE 2. Among the claims with insufficient documentation, 9 also reported some formal gene-sex interaction testing that was nevertheless not statistically significant at the P=.05 level (P value range, .088-.983).

A total of 74 claims were spurious. The reasons for spurious claims are shown in TABLE **3**. The most common reasons were the comparison of male vs female cases with a selected geno-

Documentation	Odds Ratio (95% CI)	C	Female
Froiro et el 79 1009	1 10 (0 40 2 00)	•	Male
Fielle et al, ** 1996	4 80 (1 50 14 90)]
Pullido et al 74 2000	2.00 (0.80 5.46)		
Buildo et al, 2000	2.09 (0.80-3.40)-		
	5.00 (1.28-19.00)-		
Statistically significant (three	shold, <i>P</i> = .05) effect		
in one sex but no informati	on for other ^b		
Tan et al, ³⁹ 2005	1.54 (1.03-2.32)	-0-	
	1.07 (0.77-1.47)	-•-	
Tan et al, ³⁹ 2005	0.62 (0.42-0.91)	-0-	
	0.98 (0.72-1.34)	-•-	
Tan et al, ³⁹ 2005	0.66 (0.45-0.98)	-0-	
	0.96 (0.70-1.30)	-•-	
Tan et al, ³⁹ 2005	1.54 (1.03-2.32)	-0-	
	1.08 (0.79-1.49)	-•-	
Chang et al, ⁴⁴ 2004	2.27 (1.26-4.10)	—o—	
	1.36 (0.82-2.23)	- - -	
Chang et al, ⁴⁴ 2004	0.44 (0.24-0.79)	—o—	
	0.74 (0.45-1.21)	- • +	
Szczeklik et al,48 2004	3.08 (1.34-7.05)	—o—	
	0.27 (0.01-5.15)		
Chen et al,50 2004	1.17 (0.84-1.62)	-0-	
	1.34 (1.01-1.78)		
Chen et al,50 2004	1.24 (0.79-1.92)	-0-	
	1.61 (1.09-2.38)	-•-	
Yang et al, ⁵² 2004	2.08 (1.19-3.65)	—o—	
0	0.91 (0.48-1.72)	_ _	
Mlynarski et al, ³⁵ 2005	0.87 (0.42-1.78)	—o—	
	1.72 (0.82-3.60)		
Mlynarski et al, ³⁵ 2005	1.00 (0.67-1.50)	Ò	
	1.56 (1.02-2.36)		
Derzbach et al, ³⁶ 2005	0.81 (0.23-2.86)	o	
	3.23 (0.83-12.58)		
Derzbach et al. ³⁶ 2005	0.63 (0.19-2.01)	o	
	0.36 (0.12-1.15)	_	
Liu et al. ⁶⁸ 2002	1.18 (0.59-2.36)		
	2.60 (1.27-5.51)		
Schott et al. ²³ 2007	1.19 (0.73-1.97)		
2001	0.65 (0.40-1.05)		
Schott et al ²³ 2007	1 11 (0 47-2 62)		
2001	0.43 (0.20-0.94)		
		· · · · · · · · · · · · · · · · · · ·	TTTT
		0.01 0.1 1.0 10	100
		Odds Batio (95% CI)	

CI indicates confidence interval. Data are shown for studies in which the effect sizes are odds ratios and in which our reanalysis of the data showed no statistically significant gene-sex interaction. For the 2 claims that seemingly had appropriate documentation with formal interaction testing in the original article, our retesting of the gene-sex interaction showed non-statistically significant results. The full data are available at http: //www.dhe.med.uoi.gr/sup_mat.php.
^aBased on our recalculations.

^bWe recalculated all estimates in this section.

©2007 American Medical Association. All rights reserved.

type, ignoring other genotypes (ie, no genetic contrast; n = 28 claims), and the comparison of male cases directly with female cases, ignoring controls (n=8 claims). A wide variety of other comparisons were also invoked (Table 3).

Reanalyses of Sex-Difference Claims

Data were available for the reanalysis of 188 claims (30 appropriately documented and 158 insufficiently documented). Overall, 105 of the 188 claims (55.9%) were not nominally statistically significant based on our calculations. Illustratively, the effect sizes and 95% confidence intervals are shown in pairs for male and female participants for the non-statistically significant claims for which the effect sizes are odds ratios (n=44) (FIGURE 1 and FIGURE 2). Eighty-three of the 188 reanalyzed claims were nominally statistically significant, but the majority (n=44) had modest P values between .01 and .05. 25 had P values between .001 and .01. and only 14 had P values less than .001 for the interaction.

In 30 claims, the original investigators had provided appropriate statistical documentation and raw data were also available for us to retest gene-sex interaction. Of these, in 23 claims the sex difference was statistically significant in both the reported and calculated P values, while in the other 7 we could not replicate the alluded statistical significance. Six of these used multivariate analyses, while we could calculate only unadjusted estimates based on given raw data. In the remaining claim, the authors reported to have used a Breslow-Day test of homogeneity with P = .05. Our reanalysis yielded P = .059, while our Breslow-Day recalculation gave P = .054.

Corroboration of Claims With Best Internal Validity

Of the 432 claims, only 37 claims (in 17 articles) were stated to rely on a priori considerations, had raw data available that documented that they were indeed nominally statistically significant, and had analyses performed on the whole study sample. We found any

⁸⁸⁸ JAMA, August 22/29, 2007—Vol 298, No. 8 (Reprinted)

kind of corroboration history for only 3 of them. One sex difference had already been described (same trend) in 2 previous studies. For another claim, a previous study had found no effect while a subsequent one replicated the interaction. The third claim had already been described in a previous study but in the opposite direction; however, 2 previous studies reported no effect (TABLE 4).

Another 23 claims (in 12 articles) were stated to rely on a priori consideration, had raw data documenting a nominally statistically significant sexgene interaction, and had analyses performed on a sample subset that was also justified a priori. Of these, 2 claims were made in an article that had at least 1 referenced study showing no statistically significant results for the respective sex-gene claim, and 1 had at least 1 reference that had shown results in the opposite direction. We found no subsequent articles replicating any of these 3 claims (Table 4).

COMMENT

We have empirically evaluated observational studies claiming to have found sex-related differences in genetic effects for common diseases and traits. Claims covered a variety of genes and outcomes. Most authors stated that these analyses had been conceived a priori. Nevertheless, the majority of these claims were insufficiently documented or spurious, and reporting of statistical interaction tests was rare. When we reanalyzed the available data, more than half of the tested gene-sex interactions failed to reach nominal statistical significance at the P=.05 level, and most of those that did reach significance had very modest P values. Even among the claims that seemingly had the best internal validity, corroboration in other studies was very rare.

Subgroup comparisons have been evaluated previously, mostly in the clinical trials literature.⁹³⁻⁹⁵ To our knowledge, no such assessment exists for genetic epidemiology, although genetic determinants of common traits represent an exploding clinical research literature.⁵ In the clinical trials literature, subgroup analyses with sex or other variables have been a common strategy used to find and report statistically significant results. Some authors have argued for the need to perform and transparently report subgroup analyses, in particular those related to sex.⁹⁶ However, the vast majority of claimed subgroup differences are likely to be chance findings.^{97,98} No-

Figure 2. Effect Sizes for Male and Female Participants in Studies With Statistically Significant Effects in One Sex but Not in the Other Sex

Documentation	Odds Ratio (95% CI)	O Female
Statistically significant (thresh	old, P=.05) other	• Male
Effects in same direction		
Chi at al 40 0005	0.15 (1.14.4.05)	0
Shi et al, * 2005	2.15 (1.14-4.05)	
Kantarai at al 43 0005	1.08 (0.65-1.78)	
Kantarci et al, 70 2005	0.95 (0.62-1.47)	_0_
Live at al 47,000.4	0.46 (0.23-0.90)	
Liu et al,*' 2004	3.26 (1.55-6.83)	
	1.37 (0.66-2.86)	
Gong et al,33 2004	4.50 (1.10-18.80)	O
	1.20 (0.40-3.80)	
Watson et al,62 2003	1.01 (0.37-2.77)	O
	2.71 (1.30-5.65)	— •—
Wu et al, ⁶⁶ 2001	6.71 (1.68-26.75)	O
	1.41 (0.48-4.14)	
Wu et al, ⁶⁶ 2001	9.49 (1.75-51.47)	O
	1.05 (0.25-4.41)	•
Durlach et al, ⁷⁶ 1999	0.97 (0.42-2.28) ^a	—Ò—
	0.31 (0.11-0.91) ^a	_
Leung et al, ¹⁶ 2007	2.54 (1.31-4.93)	—o—
	1.24 (0.83-1.84)	
Leung et al,16 2007	2.74 (1.29-5.82)	o
	1.31 (0.84-2.03)	
Bolufer et al,17 2007	1.80 (0.80-3.80)	—o—
	2.40 (1.30-4.40)	
Bolufer et al.17 2007	1.90 (0.60-5.60)	O
	6.10 (1.90-19.20)	
Schott et al. ²³ 2007	2.07 (0.62-6.95) ^a	
200101101101, 2001	3 69 (1 19-11 47) ^a	
Seripa et al 27 2006	1.51 (0.76-2.99)	
Bonpa of any 2000	2 79 (1 54-5 03)	
Serina et al 27 2006	1 71 (0 75-3 91)	
001104 01 01, 2000	3 23 (1 38-7 59)	<u> </u>
Serina et al 27 2006	1 53 (0 74-3 17)	
Compa et al, 2000	3 55 (1 82-6 91)	
Vang at al 12 2007	0.45 (0.22, 0.87)	_^_ •
Tailg et al, 2007	0.66 (0.38-1.15)	
Gallagher et al ¹⁴ 2007	2 80 (1 20-6 30)	•
dalagrior of al, 2007	1.00 (0.40-2.30)	
Effects in appealite direction	22	
Chi at al 40 0005		
Shi et al, 10 2005	0.57 (0.34-0.95)	-0-
0 1 52 000 1	1.11 (0.65-1.87)	
Gong et al,33 2004	4.60 (1.00-19.90)	0
	0.80 (030-2.30)	
Watson et al,62 2003	1.04 (0.52-2.09)	O
	0.53 (0.32-0.89)	-•-
Yang et al, ¹² 2007	0.64 (0.21-1.90) ^a	O
	0.43 (0.16-1.14) ^a	
Gallagher et al, ¹⁴ 2007	2.00 (1.01-4.00)	— o —
	0.90 (0.40-1.70)	_ _
Direction of effect not prov	vided	
for either sex ^b		
Györffy et al 64 2001	37 24 (2 14-647 53)	
Gyorny of di, 2001	0.93 (0.06-15.23)	
Bovens et al 15 2007	0.44 (0.94 0.70)	
Deyens et al, 2007	0.44 (0.24-0.79)	
	0.54 (0.50-1.49)	
		Udds Katio (95% CI)

CI indicates confidence interval. Data are shown for studies in which the effect sizes are odds ratios and in which our reanalysis of the data showed no statistically significant gene-sex interaction. The full data are available at http://www.dhe.med.uoi.gr/sup_mat.php.

^aBased on our recalculations.

^bWe recalculated all estimates in this section.

©2007 American Medical Association. All rights reserved.

(Reprinted) JAMA, August 22/29, 2007-Vol 298, No. 8 889

torious chance findings were illustrated years ago in the analysis of the ISIS-2 results based on the signs of the zodiac,99 and the principle has been further elaborated recently in simulations of subgroup analyses that highlight the major threat of false-positive results in such endeavors.¹⁰⁰⁻¹⁰² In the analysis of sex-specific effects in genetic associations, investigators very often seem to fall into classic traps. The most typical error is to claim nominal statistical significance for 1 of the 2 sexes when the difference in the effects between the 2 sexes is not bevond chance. Simulations show that a significant effect in 1 subgroup only may be a very common occurrence even in studies of modest sample size, occurring in 7% to 64% of analyses in 1 simulation study.^{100,101} The majority of such claims are expected to be falsepositive results.

Another major problem is the lack of power to detect interactions of effects with sex in these studies. Brookes et al have estimated that a study with 80% power for the overall effect has only 29% power to detect an interaction effect of the same magnitude.¹⁰¹ Meaningful pursuit of interactions may require almost a 10-fold increase in the sample size compared with the samples needed to document main effects.^{100,103,104} At the same time, these genetic association studies are already more than 10-fold smaller than what would be required to pursue even main effects, based on what is known of the plausible size of effects for common genetic variants.¹⁰⁵ Most of the main effects proposed in the last decade have not been replicated.¹⁰⁶ Under these circumstances, a nominally statistically significant interaction test at the P = .05threshold probably has very low positive predictive value for the presence of a true interaction.

Some limitations should be addressed. We used a sampling strategy that was systematic but was also heavily driven by convenience. The sampling tends to select more prominently claimed sex differences, and one may assume that these are likely to have better-than-average internal validity and better-than-average chances of external corroboration. However, this cannot be formally proven. Sex is a patient characteristic available in virtually all genetic association studies, so our sample of articles is probably only the "tip of the iceberg." It is impractical to find and evaluate all sex comparisons, even in a circumscribed sample of the literature. Selective reporting of subgroup and secondary analyses is an increasingly recognized bias that may lead to a preponderance of "positive" findings in the published literature.¹⁰⁷⁻¹⁰⁹ At a minimum, the studies that we evaluated are probably among the ones in which authors were most certain about some, if not all, of the sex claims that they presented in their results; otherwise, they would not have drawn attention to the claims in the titles of their articles.

We should also acknowledge that for some claims, especially the ones that were first made most recently, corroboration may not yet have been performed but may be performed in the future. However, genetic epidemiology is

Table 4. Corro	Table 4. Corroboration History for the Gene-Sex Interaction Claims With the Seemingly Best Internal Validity									
							Corroboration Studies			
Source	Gene	Phenotype	Study Sample	Male Point Estimate (95% Cl)	Female Point Estimate (95% Cl)	Male Point Estimate (95% Cl)	Female Point Estimate (95% Cl)	Source		
Stankovic et al, ⁶³ 2002	ACE I/D	Hypertension	Total	2.05 (1.07 to 3.91)	0.72 (0.33 to 1.6)	2.40 (1.30 to 4.50) 1.36 (1.09 to 1.71)	1.40 (0.72 to 2.69) 1.07 (0.87 to 1.32)	Previous study (Higaki et al, ⁸⁵ 2000): same trend Previous study (O'Donnell et al, ⁸⁶ 1998): same trend		
Bullido et al, ⁷⁴ 2000	<i>LRP</i> A491T	Alzheimer disease	Total	4.30 (1.80 to 10.20) ^a	1.50 (0.80 to 2.70) ^a	2.38 (0.81 to 7.00) 6.14 (1.60 to 23.50)	2.35 (0.52 to 9.41) 1.20 (0.53 to 2.72)	Previous study (Ahmed et al, ⁸⁷ 1999): no interaction Subsequent study (Parra-Bonilla et al, ⁸⁸ 2003): interaction		
Ordovas et al, ⁷⁰ 2002 ^b	APOA1 G75A	HDL cholesterol	Total	0.00 (-0.02 to 0.03)	0.05 (0.02 to 0.07)	0.27 (0.08 to 0.46) 0.07 (-0.19 to 0.33) 3.00 (-1.07 to 7.07)	0.01 (-0.18 to 0.20) -0.07 (-0.28 to 0.14) 2.00 (-6.61 to 10.61)	Previous study (Meng et al, ⁸⁹ 1997): opposite trend Previous study (Mata et al, ⁹⁰ 1998): no interaction Previous study (Xu et al, ⁹¹ 1993): no interaction		
Sagnella et al, ⁷⁷ 1999	ACE I/D	Hypertension	African	0.79 (0.36 to 1.72)	2.54 (1.38 to 4.65)	1.36 (1.09 to 1.71)	1.07 (0.87 to 1.32)	Previous study (O'Donnell et al, ⁸⁶ 1998): opposite trend		
Ferrieres et al, ⁸³ 1994	apoE e4	LDL cholesterol	e3/2 vs e3/3	0.31 (-0.30 to 0.92)	1.73 (1.15 to 2.31)	NE	NE	Previous study (Kotze et al, ⁹² 1993): no interaction		
Ferrieres et al, ⁸³ 1994	apoE e4	Total cholesterol	e3/2 vs e3/3	-0.05 (-0.72 to 0.62)	1.75 (1.30 to 2.20)	NE	NE	Previous study (Kotze et al, ⁹² 1993): no interaction		

Abbreviations: CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NE, no estimate presented. ^aBased on our recalculations of the raw data; the original study had claimed an odds ratio of 3.2 (95% CI, 1.2-8.6) for male cases and did not report an odds ratio for female cases.

¹²Based on our recalculations of the raw data; the original study had claimed an odds ratio of 3.2 (95% Cl, 1.2-8.6) for male cases and did not report an odds ratio for temale cases. ^b Ordovas et al reported a gene × sex × polyunsaturated fatty acids intake interaction. Data from Meng et al and Mata et al are based on a low-fat diet, whereas data from Xu et al are based on baseline data.

890 JAMA, August 22/29, 2007-Vol 298, No. 8 (Reprinted)

a quickly moving field, and replication efforts are currently typically performed very rapidly.

The issues addressed herein focus on gene-sex interaction, but their implications probably extend to any kind of subgroup analysis in genetics. Genetic epidemiology is a field that often invites subgroup analyses, not only by sex, but also by age, racial/ethnic descent, other polymorphisms, diet, lifestyle, and other exposures.^{110,111} Similar caution may be needed in the analysis, reporting, and interpretation of all of these postulated effect modifications.

We hope that our empirical evaluation will help sensitize clinicians, geneticists, epidemiologists, and statisticians who are pursuing subgroup analyses by sex or other subgroups on genetic associations. The pursuit of gene-sex interactions should not be necessarily abandoned. Ideally, sex differences should be based on a priori, clearly defined, and adequately powered subgroups. Post hoc, discoverybased analyses are also of interest, but their post hoc character should be clearly stated in the manuscript. Both a priori and post hoc claims should be documented by interaction tests and proper consideration of the multiplicity of comparisons involved. Even then, results should be explained with caution and should be replicated by several other studies before being accepted as likely modifications of genetic or other risks.

Author Contributions: Dr Ioannidis had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Patsopoulos, Tatsioni, Ioannidis.

Acquisition of data: Patsopoulos, Tatsioni.

Analysis and interpretation of data: Patsopoulos, Tatsioni, Ioannidis.

Drafting of the manuscript: Patsopoulos, Ioannidis. Critical revision of the manuscript for important intellectual content: Patsopoulos, Tatsioni, Ioannidis. Statistical analysis: Patsopoulos, Tatsioni, Ioannidis. Obtained funding: Ioannidis.

Study supervision: Ioannidis.

Financial Disclosures: None reported.

Funding/Support: Dr Patsopoulos was supported in part by a PENED grant sponsored by the EU European Social Fund and the Greek Ministry of Development–General Secretariat for Research and Technology.

Role of the Sponsor: The sponsor had no role in the

design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.

REFERENCES

1. Rothwell PM. Treating individuals 2: subgroup analysis in randomised controlled trials: importance, indications, and interpretation. *Lancet*. 2005;365 (9454):176-186.

2. Canadian Cooperative Study Group. A randomized trial of aspirin and sulfinpyrazone in threatened stroke. *N Engl J Med.* 1978;299(2):53-59.

3. Harrison TR, Kasper D, Braunwald E, et al. *Harrison's Principles of Internal Medicine*. 16th ed. New York, NY: McGraw-Hill Education; 2004.

4. Yang Q, Khoury MJ, Friedman J, Little J, Flanders WD. How many genes underlie the occurrence of common complex diseases in the population? *Int J Epidemiol*. 2005;34(5):1129-1137.

 Lin BK, Clyne M, Walsh M, et al. Tracking the epidemiology of human genes in the literature: the HuGE Published Literature database. *Am J Epidemiol*. 2006; 164(1):1-4.

6. Ioannidis JP. Genetic associations: false or true? *Trends Mol Med.* 2003;9(4):135-138.

7. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. *Nat Genet*. 2001;29(3):306-309.

8. Hansen PS, Klausen IC, Lemming L, Gerdes LU, Gregersen N, Faergeman O. Apolipoprotein B gene polymorphisms in ischemic heart disease and hyper-cholesterolemia: effects of age and sex. *Clin Genet.* 1994;45(2):78-83.

 Méplan C, Crosley LK, Nicol F, et al. Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study) [published online ahead of print May 29, 2007]. FASEB J. doi:10.1096/fj.07-8166com.

10. Hayashi K, Maeda S, lemitsu M, et al. Sex differences in the relationship between estrogen receptor alpha gene polymorphisms and arterial stiffness in older humans. *Am J Hypertens*. 2007;20(6):650-656.

11. Baud P, Courtet P, Perroud N, Jollant F, Buresi C, Malafosse A. Catechol-O-methyltransferase polymorphism (COMT) in suicide attempters: a possible gender effect on anger traits [published online ahead of print May 17, 2007]. Am J Med Genet B Neuropsychiatr Genet. doi:10.1002/ajmg.b.30541.

12. Yang KD, Ou CY, Hsu TY, et al. Interaction of maternal atopy, CTLA-4 gene polymorphism and gender on antenatal immunoglobulin E production. *Clin Exp Allergy*. 2007;37(5):680-687.

13. Glorioso N, Herrera VL, Bagamasbad P, et al. Association of *ATP1A1* and *dear* single-nucleotide polymorphism haplotypes with essential hypertension: sexpecific and haplotype-specific effects. *Circ Res.* 2007; 100(10):1522-1529.

14. Gallagher CJ, Muscat JE, Hicks AN, et al. The UDPglucuronosyltransferase 2*B17* gene deletion polymorphism: sex-specific association with urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronidation phenotype and risk for lung cancer. *Cancer Epidemiol Biomarkers Prev.* 2007;16(4):823-828.

15. Beyens G, Daroszewska A, de Freitas F, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, *TNFRSF11B*, and Paget's disease of bone. *J Bone Miner Res*. 2007; 22(7):1062-1071.

16. Leung KH, Yip SP, Wong WS, et al. Sex- and agedependent association of *SLC11A1* polymorphisms with tuberculosis in Chinese: a case control study. *BMC Infect Dis.* 2007;7:19.

17. Bolufer P, Collado M, Barragán E, et al. The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. *Haematologica*. 2007;92(3):308-314.

18. Yamaguchi S, Yamada Y, Matsuo H, et al. Gender differences in the association of gene polymorphisms with type 2 diabetes mellitus. *Int J Mol Med.* 2007;19(4):631-637.

19. Russo P, Loguercio M, Lauria F, et al; European Collaborative Group of the IMMIDIET Project. Ageand gender-dependent association of the -344C/T polymorphism of CYP11B2 with blood pressure in European populations. *J Hum Hypertens*. 2007;21(4): 333-336.

20. Froehlich TE, Lanphear BP, Dietrich KN, Cory-Slechta DA, Wang N, Kahn RS. Interactive effects of a DRD4 polymorphism, lead, and sex on executive functions in children [published online ahead of print]. *Biol Psychiatry*. 2007;62(3):243-249.

21. Dedoussis GV, Theodoraki EV, Manios Y, et al. The Pro12Ala polymorphism in $PPAR\gamma^2$ gene affects lipid parameters in Greek primary school children: a case of gene-to-gender interaction. Am J Med Sci. 2007;333(1):10-15.

22. Barnett JH, Heron J, Ring SM, et al. Genderspecific effects of the catechol-O-methyltransferase Val108/158Met polymorphism on cognitive function in children. *Am J Psychiatry*. 2007;164(1):142-149.

23. Schott E, Witt H, Hinrichsen H, et al. Genderdependent association of CTLA4 polymorphisms with resolution of hepatitis C virus infection. *J Hepatol*. 2007; 46(3):372-380.

24. Niemi M, Pasanen MK, Neuvonen PJ. *SLCO1B1* polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. *Clin Pharmacol Ther.* 2006;80(4):356-366.

25. Asselbergs FW, Williams SM, Hebert PR, et al. The gender-specific role of polymorphisms from the fibrinolytic, renin-angiotensin, and bradykinin systems in determining plasma t-PA and PAI-1 levels. *Thromb Haemost.* 2006;96(4):471-477.

26. Yiannakouris N, Melistas L, Yannakoulia M, Mungal K, Mantzoros CS. The –2548G/A polymorphism in the human leptin gene promoter region is associated with plasma free leptin levels; interaction with adiposity and gender in healthy subjects. *Hormones* (*Athens*). 2003;2(4):229-236.

27. Seripa D, Franceschi M, Matera MG, et al. Sex differences in the association of apolipoprotein E and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: a population-based study from southern Italy. J Gerontol A Biol Sci Med Sci. 2006;61(9):918-923.

28. Paladino N, Fainboim H, Theiler G, et al. Gender susceptibility to chronic hepatitis C virus infection associated with interleukin 10 promoter polymorphism. *J Virol.* 2006;80(18):9144-9150.

29. Körner A, Ma L, Franks PW, et al. Sex-specific effect of the Val1483Ile polymorphism in the fatty acid synthase gene (*FAS*) on body mass index and lipid profile in Caucasian children. *Int J Obes (Lond)*. 2007; 31(2):353-358.

30. Sundar PD, Feingold E, Minster RL, DeKosky ST, Kamboh MI. Gender-specific association of ATPbinding cassette transporter 1 (ABCA1) polymorphisms with the risk of late-onset Alzheimer's disease. *Neurobiol Aging.* 2007;28(6):856-862.

31. Ozawa T, Ito M, Tamaki S, et al. Gender and age effects on ventricular repolarization abnormality in Japanese general carriers of a G643S common single nucleotide polymorphism for the *KCNQ1* gene. *Circ J.* 2006;70(6):645-650.

32. Ben Assayag E, Bova I, Berliner S, et al. Gender differences in the expression of erythrocyte aggregation in relation to B beta-fibrinogen gene polymorphisms in apparently healthy individuals. *Thromb Haemost.* 2006;95(3):428-433.

 $\label{eq:states} \textbf{33.} \ \text{Kates WR, Antshel KM, Abdulsabur N, et al. A gender-moderated effect of a functional COMT poly-$

morphism on prefrontal brain morphology and function in velo-cardio-facial syndrome (22q11.2 deletion syndrome). *Am J Med Genet B Neuropsychiatr Genet*. 2006;141(3):274-280.

34. Mizuno T, Aoki M, Shimada Y, et al. Gender difference in association between polymorphism of serotonin transporter gene regulatory region and anxiety. *J Psychosom Res.* 2006;60(1):91-97.

35. Mlynarski WM, Placha GP, Wolkow PP, Bochenski JP, Warram JH, Krolewski AS. Risk of diabetic nephropathy in type 1 diabetes is associated with functional polymorphisms in RANTES receptor gene (*CCR5*): a sex-specific effect. *Diabetes*. 2005;54 (11):3331-3335.

36. Derzbach L, Treszl A, Balogh A, Vasarhelyi B, Tulassay T, Rigo JJ. Gender dependent association between perinatal morbidity and estrogen receptoralpha Pvull polymorphism. *J Perinat Med*. 2005; 33(5):461-462.

37. Gloria-Bottini F, Bottini N, Cosmi E, Cosmi EV, Bottini E. The effect of gender and ACP1 genetic polymorphism on the correlation between birth weight and placental weight. *Placenta*. 2005;26(10):846-848.

38. Sjöberg RL, Nilsson KW, Nordquist N, et al. Development of depression: sex and the interaction between environment and a promoter polymorphism of the serotonin transporter gene. *Int J Neuropsychopharmacol.* 2006;9(4):443-449.

39. Tan EC, Chong SA, Wang H, Chew-Ping Lim E, Teo YY. Gender-specific association of insertion/ deletion polymorphisms in the *nogo* gene and chronic schizophrenia. *Brain Res Mol Brain Res.* 2005;139 (2):212-216.

40. Shi Q, Zhang Z, Li G, et al. Sex differences in risk of lung cancer associated with methylene-tetrahydrofolate reductase polymorphisms. *Cancer Epidemiol Biomarkers Prev.* 2005;14(6):1477-1484.

41. Foltynie T, Lewis SG, Goldberg TE, et al. The *BDNF* Val66Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. *J Neurol.* 2005;252(7):833-838.

42. Kajinami K, Brousseau ME, Lamon-Fava S, Ordovas JM, Schaefer EJ. Gender-specific effects of estrogen receptor alpha gene haplotype on highdensity lipoprotein cholesterol response to atorvastatin: interaction with apolipoprotein AI gene polymorphism. *Atherosclerosis*. 2005;178(2):331-338.

43. Kantarci OH, Goris A, Hebrink DD, et al. IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. *Genes Immun.* 2005;6(2):153-161.

44. Chang JC, Liu CA, Chuang H, et al. Genderlimited association of cytotoxic T-lymphocyte antigen-4 (*CTLA-4*) polymorphism with cord blood IgE levels. *Pediatr Allergy Immunol*. 2004;15(6):506-512.

45. Cui J, Randell E, Renouf J, et al. Gender dependent association of thrombospondin-4 A387P polymorphism with myocardial infarction. *Arterioscler Thromb Vasc Biol*. 2004;24(11):e183-e184.

46. Schrijver HM, Crusius JB, Garcia-Gonzalez MA, et al. Gender-related association between the TGFB1+869 polymorphism and multiple sclerosis. *J Interferon Cytokine Res.* 2004;24(9):536-542.

47. Liu G, Zhou W, Wang LI, et al. *MPO* and *SOD2* polymorphisms, gender, and the risk of non-small cell lung carcinoma. *Cancer Lett.* 2004;214(1):69-79.

48. Szczeklik W, Sanak M, Szczeklik A. Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. *J Allergy Clin Immunol.* 2004;114(2):248-253.

49. Corder EH, Ghebremedhin E, Taylor MG, Thal DR, Ohm TG, Braak H. The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and *APOE* polymorphism. *Ann N Y Acad Sci.* 2004;1019: 24-28.

50. Chen W, Duan S, Zhou J, et al. A case-control study

provides evidence of association for a functional polymorphism –197C/G in *XBP1* to schizophrenia and suggests a sex-dependent effect. *Biochem Biophys Res Commun*. 2004;319(3):866-870.

51. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Polymorphisms in the multidrug resistance-1 (*MDR1*) gene influence the response to atorvastatin treatment in a gender-specific manner. *Am J Cardiol.* 2004;93(8):1046-1050.

52. Yang KD, Liu CA, Chang JC, et al. Polymorphism of the immune-braking gene *CTLA*-4 (+49) involved in gender discrepancy of serum total IgE levels and allergic diseases. *Clin Exp Allergy*. 2004;34 (1):32-37.

53. Gong MN, Wei Z, Xu LL, Miller DP, Thompson BT, Christiani DC. Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. *Chest.* 2004;125(1):203-211.

54. Ko YL, Hsu LA, Hsu KH, Ko YH, Lee YS. The interactive effects of hepatic lipase gene promoter polymorphisms with sex and obesity on high-density-lipoprotein cholesterol levels in Taiwanese-Chinese. *Atherosclerosis.* 2004;172(1):135-142.

55. Nakanishi S, Yamane K, Kamei N, Okubo M, Kohno N. The effect of polymorphism in the intestinal fatty acid-binding protein 2 gene on fat metabolism is associated with gender and obesity amongst non-diabetic Japanese-Americans. *Diabetes Obes Metab.* 2004;6(1):45-49.

56. Chen Y, Vaughan RW, Kondeatis E, et al. Chemokine gene polymorphisms associate with gender in patients with uveitis. *Tissue Antigens*. 2004;63(1):41-45.

57. Espino-Montoro A, Barrios-Artillo M, Lopez-Chozas JM, Cayuela A, Stiefel P, Villar J. Influence of polymorphism (RFLP-sstl) at the apolipoprotein C-III gene locus on the lipoprotein metabolism and insulin resistance in essential hypertensive patients: interaction between gender and genetic polymorphism. *Nutr Metab Cardiovasc Dis.* 2003;13(4):194-201.

58. Vandenbroeck K, Cunningham S, Goris A, et al. Polymorphisms in the interferon-gamma/ interleukin-26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. *Arthritis Rheum*. 2003;48(10):2773-2778.

59. Song J, Narita I, Goto S, et al. Gender specific association of aldosterone synthase gene polymorphism with renal survival in patients with IgA nephropathy. *J Med Genet.* 2003;40(5):372-376.

60. Laule M, Meisel C, Prauka I, et al. Interaction of CA repeat polymorphism of the endothelial nitric oxide synthase and hyperhomocysteinemia in acute coronary syndromes: evidence of gender-specific differences. *J Mol Med.* 2003;81(5):305-309.

61. Reich H, Duncan JA, Weinstein J, Cattran DC, Scholey JW, Miller JA. Interactions between gender and the angiotensin type 1 receptor gene polymorphism. *Kidney Int.* 2003;63(4):1443-1449.

62. Watson MA, Gay L, Stebbings WS, Speakman CT, Bingham SA, Loktionov A. Apolipoprotein E gene polymorphism and colorectal cancer: gender-specific modulation of risk and prognosis. *Clin Sci (Lond)*. 2003; 104(5):537-545.

63. Stanković A, Zivković M, Alavantic D. Angiotensin I-converting enzyme gene polymorphism in a Serbian population: a gender-specific association with hypertension. *Scand J Clin Lab Invest.* 2002;62(6): 469-475.

64. Györffy B, Vasarhelyi B, Krikovszky D, et al. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. *Eur J Endocrinol.* 2002;147(6):803-808.

65. Minihane AM, Finnegan YE, Talmud P, Leigh-Firbank EC, Williams CM. Influence of the *APOC3* –2854T>G polymorphism on plasma lipid levels: effect of age and gender. *Biochim Biophys Acta*. 2002; 1583(3):311-314.

66. Wu Y, Tomon M, Sumino K. Methylenetetrahy-

drofolate reductase gene polymorphism and ischemic stroke: sex difference in Japanese. *Kobe J Med Sci.* 2001;47(6):255-262.

67. Lio D, Scola L, Crivello A, et al. Gender-specific association between -1082 IL-10 promoter polymorphism and longevity. *Genes Immun.* 2002;3(1):30-33.

68. Liu ZH, Cheng ZH, Gong RJ, Liu H, Liu D, Li LS. Sex differences in estrogen receptor gene polymorphism and its association with lupus nephritis in Chinese. *Nephron.* 2002;90(2):174-180.

69. Sciacca FL, Ferri C, Veglia F, et al. IL-1 genes in myasthenia gravis: IL-1A –889 polymorphism associated with sex and age of disease onset. *J Neuroimmunol*. 2002;122(1-2):94-99.

70. Ordovas JM, Corella D, Cupples LA, et al. Polyunsaturated fatty acids modulate the effects of the *APOA1* G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. *Am J Clin Nutr.* 2002;75(1):38-46.

71. Oh JY, Barrett-Connor E; Rancho Bernardo Study Group. Apolipoprotein E polymorphism and lipid levels differ by gender and family history of diabetes: the Rancho Bernardo Study. *Clin Genet.* 2001;60(2): 132-137.

72. Ellsworth DL, Bielak LF, Turner ST, Sheedy PF II, Boerwinkle E, Peyser PA. Gender- and agedependent relationships between the E-selectin S128R polymorphism and coronary artery calcification. J Mol Med. 2001;79(7):390-398.

73. Du L, Bakish D, Hrdina PD. Gender differences in association between serotonin transporter gene polymorphism and personality traits. *Psychiatr Genet*. 2000; 10(4):159-164.

74. Bullido MJ, Guallar-Castillon P, Artiga MJ, et al. Alzheimer's risk associated with human apolipoprotein E, alpha-2 macroglobulin and lipoprotein receptor related protein polymorphisms: absence of genetic interactions, and modulation by gender. *Neurosci Lett.* 2000;289(3):213-216.

75. Kark JD, Sinnreich R, Leitersdorf E, Friedlander Y, Shpitzen S, Luc G. Taq1B *CETP* polymorphism, plasma CETP, lipoproteins, apolipoproteins and sex differences in a Jewish population sample characterized by low HDL-cholesterol. *Atherosclerosis*. 2000;151 (2):509-518.

76. Durlach A, Clavel C, Girard-Globa A, Durlach V. Sex-dependent association of a genetic polymorphism of cholesteryl ester transfer protein with highdensity lipoprotein cholesterol and macrovascular pathology in type II diabetic patients. *J Clin Endocrinol Metab.* 1999;84(10):3656-3659.

77. Sagnella GA, Rothwell MJ, Onipinla AK, Wicks PD, Cook DG, Cappuccio FP. A population study of ethnic variations in the angiotensin-converting enzyme I/D polymorphism: relationships with gender, hypertension and impaired glucose metabolism. *J Hypertens.* 1999;17(5):657-664.

78. Reynolds WF, Rhees J, Maciejewski D, et al. Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer's disease. *Exp Neurol*. 1999;155(1):31-41.

79. Freire MB, Ji L, Onuma T, Orban T, Warram JH, Krolewski AS. Gender-specific association of M235T polymorphism in angiotensinogen gene and diabetic nephropathy in NIDDM. *Hypertension*. 1998;31 (4):896-899.

80. Suarez F, Zeghoud F, Rossignol C, Walrant O, Garabedian M. Association between vitamin D receptor gene polymorphism and sex-dependent growth during the first two years of life. *J Clin Endocrinol Metab*. 1997;82(9):2966-2970.

81. Lehtimäki T, Frankberg-Lakkala H, Solakivi T, et al. The effect of short-term fasting, apolipoprotein E gene polymorphism, and sex on plasma lipids. *Am J Clin Nutr.* 1997;66(3):599-605.

82. Carter AM, Catto AJ, Bamford JM, Grant PJ. Gender-specific associations of the fibrinogen B beta 448

892 JAMA, August 22/29, 2007-Vol 298, No. 8 (Reprinted)

polymorphism, fibrinogen levels, and acute cerebrovascular disease. Arterioscler Thromb Vasc Biol. 1997; 17(3):589-594.

83. Ferrières J, Sing CF, Roy M, Davignon J, Lussier-Cacan S. Apolipoprotein E polymorphism and heterozygous familial hypercholesterolemia: sex-specific effects. *Arterioscler Thromb*. 1994;14(10):1553-1560.

84. von Eckardstein A, Funke H, Chirazi A, et al. Sexspecific effects of the glutamine/histidine polymorphism in apo A-IV on HDL metabolism. *Arterioscler Thromb.* 1994;14(7):1114-1120.

85. Higaki J, Baba S, Katsuya T, et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita study. *Circulation*. 2000;101(17):2060-2065.

86. O'Donnell CJ, Lindpaintner K, Larson MG, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham heart study. *Circulation*. 1998;97(18): 1766-1772.

87. Ahmed AR, MacGowan SH, Culpan D, Jones RW, Wilcock GK. The –491A/T polymorphism of the apolipoprotein E gene is associated with the ApoEe4 allele and Alzheimer's disease. *Neurosci Lett.* 1999; 263(2-3):217-219.

88. Parra-Bonilla G, Arboleda G, Yunis J, et al. Haplogroup analysis of the risk associated with APOE promoter polymorphisms (2219T/G, 2491A/T and 2427T/C) in Colombian Alzheimer's disease patients. *Neurosci Lett.* 2003;349(3):159-162.

89. Meng QH, Pajukanta P, Valsta L, Aro A, Pietinen P, Tikkanen MJ. Influence of apolipoprotein A-1 promoter polymorphism on lipid levels and responses to dietary change in Finnish adults. *J Intern Med.* 1997;214(5):373-378.

90. Mata P, Lopez-Miranda J, Pocovi M, et al. Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. *Atherosclerosis*. 1998; 137(2):367-376.

91. Xu CF, Angelico F, Del Ben M, Humphries S. Role

of genetic variation at the Apo AI-CIII-AIV gene cluster in determining plasma Apo AI levels in boys and girls. *Genet Epidemiol.* 1993;10(2):113-122.

92. Kotze MJ, De Villiers WJ, Steyn K, et al. Phenotypic variation among familial hypercholesterolemics heterozygous for either one of two Afrikaner founder LDL receptor mutations. *Arterioscler Thromb*. 1993; 13(10):1460-1468.

93. Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis)uses of baseline data in clinical trials. *Lancet*. 2000;355(9209):1064-1069.

94. Pocock SJ, Assmann SF, Enos LE, Kasten LE. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. *Stat Med*. 2002;21(19):2917-2930.

95. Hernández AV, Steyerberg EW, Gillian ST, Marmarou A, Habbema JD, Maas AI. Subgroup analysis and covariate adjustment in randomized clinical trials of traumatic brain injury: a systematic review. *Neurosurgery*. 2005;57(6):1244-1253.

96. Rochon PA, Clark JP, Binns MA, Patel V, Guwitz JH. Reporting of gender-related information in clinical trials of drug therapy for myocardial infraction. *CMAJ.* **1998**;159(4):321-327.

97. Oxman AD, Guyatt GH. A consumer's guide to subgroup analysis. *Ann Intern Med.* 1992;116(1): 78-84.

98. Freemantle N. Interpreting the results of secondary end points and subgroup analyses in clinical trials: should we lock the crazy aunt in the attic? *BMJ*. 2001; 322(7292):989-991.

99. Collins R, Peto R, Gray R, Paris S. Large-scale randomised evidence: trials and overviews. In: Weatherall DJ, Ledingham JGG, Warrell DA, eds. *Oxford Textbook of Medicine*. London, England: Oxford University Press; 1996:21-22.

100. Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G. Subgroup analyses in randomized controlled trials: quantifying the risks of falsepositives and false-negatives. *Health Technol Assess*. 2001;5(33):1-56.

101. Brookes ST, Whitely E, Egger M, Smith GD, Mul-

heran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol. 2004;57(3):229-236.

102. Austin PC, Mamdani MM, Juurlink DN, Hux JE. Testing multiple statistical hypotheses resulted in spurious associations: a study of astrological signs and health. *J Clin Epidemiol*. 2006;59(9):964-969.

103. Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. *JAMA*. 1991;266(1):93-98.

104. Greenland S. Tests for interaction in epidemiologic studies: a review and a study of power. *Stat Med.* 1983;2(2):243-251.

105. Ioannidis JP, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. *Am J Epidemiol.* 2006;164(7):609-614.

106. Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. *JAMA*. 2007;297(14):1551-1561.

107. Hahn S, Williamson PR, Hutton JL, Garner P, Flynn EV. Assessing the potential for bias in meta-analysis due to selective reporting of subgroup analyses within studies. *Stat Med.* 2000;19(24):3325-3336.

108. Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. *JAMA*. 2004; 291(20):2457-2465.

109. Chan AW, Altman DG. Identifying outcome reporting bias in randomised trials on PubMed: review of publications and survey of authors. *BMJ*. 2005; 330(7494):753.

110. Ioannidis JP, Ntzani EE, Trikalinos TA. "Racial" differences in genetic effects for complex diseases. *Nat Genet*. 2004;36(12):1312-1318.

111. Hunter DJ. Gene-environment interactions in human diseases. *Nat Rev Genet.* 2005;6(4):287-298.