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Excess Significance Bias in the Literature
on Brain Volume Abnormalities
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Context: Many studies report volume abnormalities in
diverse brain structures in patients with various mental
health conditions.

Objective: To evaluate whether there is evidence for an
excess number of statistically significant results in stud-
ies of brain volume abnormalities that suggest the pres-
ence of bias in the literature.

Data Sources: PubMed (articles published from Janu-
ary 2006 to December 2009).

Study Selection: Recent meta-analyses of brain vol-
ume abnormalities in participants with various mental
health conditions vs control participants with 6 or more
data sets included, excluding voxel-based morphometry.

Data Extraction: Standardized effect sizes were ex-
tracted in each data set, and it was noted whether the re-
sults were “positive” (P� .05) or not. For each data set
in each meta-analysis, I estimated the power to detect at
�=.05 an effect equal to the summary effect of the re-
spective meta-analysis. The sum of the power estimates

gives the number of expected positive data sets. The ex-
pected number of positive data sets can then be com-
pared against the observed number.

Data Synthesis: From 8 articles, 41 meta-analyses with
461 data sets were evaluated (median, 10 data sets per
meta-analysis) pertaining to 7 conditions. Twenty-one
of the 41 meta-analyses had found statistically signifi-
cant associations, and 142 of 461 (31%) data sets had posi-
tive results. Even if the summary effect sizes of the meta-
analyses were unbiased, the expected number of positive
results would have been only 78.5 compared with the ob-
served number of 142 (P� .001).

Conclusion: There are too many studies with statisti-
cally significant results in the literature on brain volume
abnormalities. This pattern suggests strong biases in the
literature, with selective outcome reporting and selective
analyses reporting being possible explanations.
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B RAIN VOLUME ABNORMALI-
ties have been associated with
a large variety of mental
health diseases and condi-
tions1-12 and have typically

been a key topic in the discussion of the
pathophysiology of mental disorders for the
past 25 years.13-15 The literature on brain vol-
ume abnormalities is rapidly expanding,
with hundreds of studies published to date.
A considerable number of meta-analyses
have already been published that try to sum-
marize the results from these studies of brain
volume abnormalities.1-12 These meta-
analyses identify significant associations for
specific brain volumes and structures for al-
most any disease and condition assessed, in-
cludingschizophrenia, major depression, bi-
polardisorder,posttraumatic stressdisorder,
obsessive-compulsive disorder, autism, and
personality disorders.1-8

The large number of statistically signifi-
cant associations could have several expla-
nations.Onepossibilityisthatallmajormen-

tal conditions have genuine correlates with
brain volumes. Some associations may in-
dicate specific conditions, whereas others
maybeseeninverydiversediseases.Another
possibility is that reporting bias is operat-
ingintheliterature.16,17 Reportingbiascould
includethefollowingmechanisms:(1)study
publicationbias, inwhichtheresultsofnon-
statistically significant (“negative”) studies
are left unpublished; (2) selective outcome
reportingbias, inwhichresultsofoutcomes
(in this case, the volume of specific brain
structures) that arenegativeare leftunpub-
lished, whereas the “positive” associations
withotherbrainvolumesarepublished;and
(3)selectiveanalysisreportingbias, inwhich
dataonthevolumeofaparticularbrainstruc-
tureareanalyzedwithdifferentmethodsand
in which positive results are preferentially
published over negative results. The com-
mon denominator of all these mechanisms
is that thepublished literaturehasanexcess
of statistically significant results (ie, excess
significance bias).18
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Detecting these biases is not a straightforward process.
Many meta-analyses in this field have applied asymmetry
(funnelplot) tests thatdeterminewhethersmall studiesgive
differentresults fromlargerstudies.19 If so, suchsmall-study
effectsmaybeduetopublicationbiasorotherreportingbias.
However, these tests are neither sensitive nor specific for
detecting reporting biases.20 In the literature on brain vol-
umeabnormalities, theymaybeparticularlyunsuitablebe-
cause all studies have limited sample sizes, thus the range
of“large”vs“small”studies is toonarrow.21 Moreover, there
are few studies that report data on a particular brain struc-
ture, and asymmetry tests do not work well when there are
fewer than 10 to 20 studies.20,21

A more appropriate alternative is to apply an excess sig-
nificance test that specifically evaluates whether there are
too many reported studies that have statistically signifi-
cant results.18 This test has the additional advantage that
it can evaluate the excess of significant studies not only in
a single meta-analysis but across many meta-analyses in a
given field. This could include all meta-analyses of brain
volumes for a given condition or all meta-analyses of brain
volumes for many different conditions. Herein, I have ap-
plied such a test to evaluate whether the literature on brain
volume abnormalities is subject to excess significance bias.

METHODS

EVALUATED DATA

Data were collected from recent comprehensive meta-analyses
of studies comparing participants with specific mental health con-
ditions vs control participants for differences in brain volumes
of specific brain structures. I focused on volumetric studies and
did not consider meta-analyses that used measures of gray mat-
ter density derived from voxel-based morphometry. After pe-
rusing PubMed, I selected articles using the following search strat-
egy: brain volume AND meta-analysis. I limited the search to
human studies (last search December 20, 2009) and focused only
on meta-analyses published from 2006 to 2009, because earlier
articles would be likely to miss a large number of recent studies.
The full text of potentially eligible articles was scrutinized. Of
those, articles were retained if they included at least 1 meta-
analysis for volume differences in a brain structure in which in-
formation was provided or could be calculated per study on the
number of participants in each of the 2 compared groups (those
with the condition of interest and controls) and the standard-
ized effect size (expressed as Cohen’s d, Hedges’ g, or other simi-
lar standardized metrics) for the comparison. When more than
1 article on the same condition was eligible and contained us-
able data, complementary information from more than 1 article
was used, if the usable data pertained to volumes of different brain
structures; conversely, only the most recent article was re-
tained, if the usable data pertained to the volumes of the same
brain structures.

Herein, each study data set corresponds to a separate esti-
mate of effect. The evaluation did not consider total brain and
total intracranial volumes because these are very nonspecific mea-
sures and are often treated as covariates of no or limited inter-
est. It also excluded meta-analyses with fewer than 6 study data
sets; the cutoff decision was made a priori because for most meta-
analyses with fewer study data sets, it would have been unlikely
to make solid conclusions about the presence or absence of ex-
cess significance, given the limited evidence. Meta-analyses were
accepted regardless of whether they analyzed separately left/
right structures or just the total volume of both sides. When meta-

analyses on both the total volume and left/right volumes were
presented, either the total or the left/right side meta-analyses were
kept, depending on which had a larger sample size; when the
sample size was the same, the separate left/right data were pre-
ferred. Data were eligible regardless of what imaging technique
and technical parameters thereof had been used.

EXCESS SIGNIFICANCE TEST

I used a previously developed test for excess significance.18,22 In
brief, the test evaluates whether the number of single-study data
sets that report nominally statistically significant results (P� .05)
among those included in a meta-analysis is too large based on
the power that these data sets have to detect plausible effects at
�=.05. In each meta-analysis, I calculated the power of each study
data set. The sum of the power estimates gives the expected num-
ber of positive study data sets (those with nominally statisti-
cally significant results). As previously presented in detail,18,22

the observed number, O, of positive study data sets in each meta-
analysis can be compared against the expected number, E, of posi-
tive study data sets with a �2 test or with a binomial test, and the
results are practically equivalent. The O vs E comparison is ex-
tended to many meta-analyses, by summing the O and E num-
bers from each meta-analysis. If there is no excess significance
bias, then O=E. The greater the difference between O and E, the
greater is the extent of excess significance bias.

The estimated power of each study data set depends on what
is the plausible effect size.18 The true effect size for any meta-
analysis cannot be known. In the absence of bias, one would
expect the observed (estimated) summary effect size to be a good
representation of the true effect sizes, allowing simply for es-
timation or random error. In the presence of bias, one would
expect the observed effect size to be larger than the true effect
size, and the divergence would be expected to become larger
with an increased level of bias. Thus, one has to consider a range
of values for the plausible true effect size that may not be the
same as the observed one. Herein, I considered an optimistic
scenario, in which the true effect is assumed to be equal to the
observed effect, and a more pessimistic scenario, in which the
true effect is assumed to be equal to half the observed effect.23

CALCULATIONS AND SOFTWARE

All effect estimates were expressed as standardized mean dif-
ferences for the 2 compared groups, with the metrics chosen
by the authors of each original meta-analysis. Effect size com-
putation in each study in each meta-analysis takes into ac-
count the mean volume and the variance of the volume in cases
and controls, and variances can be different in cases and con-
trols. Summary effects in meta-analyses are based on random-
effects calculations. When the standardized mean difference and
variance thereof were not given, they were calculated from the
provided sample size n, mean values m, and standard devia-
tions SD of the absolute measurements per each group (1 and
2) using the following formulas24:

.Standardized effect =
(m1 − m2) 1 − 3

4(n1 + n2) − 9

(n1 − 1)SD2
1 + (n2 − 1)SD2

2

n1 + n2 − 2

Variance =
n1 + n2

n1n2

g2

2(n1 + n2 − 3.94)
+ .

For each meta-analysis, the P value of the �2-based Q test and
the I2 metric of inconsistency were recorded. The Cochran Q test25
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is obtained by the weighted sum of the squared differences of
the observed effect in each study minus the fixed summary effect.
The I2 metric26 is the ratio of the between-study variance over
the sum of the within- and between-study variance. When the
I2 was not given, it was calculated from the formula I2=
(Q−k�1)/Q, where k is the number of studies.27 The Q test is
considered significant here at P� .05, but it should be inter-
preted with caution owing to the possibility of both false posi-
tives and false negatives.28,29 For I2, as a rough guide, values ex-
ceeding 50% are considered as large heterogeneity beyond chance,
and values exceeding 75% are considered very large heteroge-
neity.27 However, with a limited number of study data sets, the
uncertainty in the estimates of I2 can be substantial, and thus these
inferences should be made with great caution.30

The PS: Power and Sample Size Calculation program31 was
used to estimate the power of each study. Excess significance
is claimed at P� .05, and results are also presented with Bon-
ferroni correction for the number of examined conditions and
brain structures.

RESULTS

EVALUATED DATA

The search yielded 41 items, of which 22 were excluded
after perusing the title and abstract. Of the remaining 19
articles, 3 were voxel-based meta-analyses, and 5 did not
provide sufficient details of results per data set. Of the
11 articles with detailed results per data set, 3 addressed
conditions and brain areas that had been examined in
more recent meta-analyses and were thus excluded to
avoid data overlap. Therefore, data from 8 articles were
eligible for the analysis, including data on meta-
analyses of brain volume abnormalities in major depres-
sive disorder,1,2 bipolar disorder,3 obsessive-compulsive
disorder,4 posttraumatic stress disorder,5 autism,6 first epi-
sode of schizophrenia,7 and relatives of patients with
schizophrenia.8

Table 1 summarizes the evaluated data from the 8
eligible meta-analysis publications.1-8 All meta-analyses
include only magnetic resonance imaging studies, ex-
cept for that of Kempton et al,3 who also allowed the in-
clusion of computed tomographic (CT) scan studies. A
total of 461 data sets had been included in 41 meta-
analyses on brain volumes for 7 different conditions. All
studies included in the relevant meta-analyses had been
published in peer-reviewed journals, except for 1 study
(2 data sets included in the calculations) that had been
published as an abstract. There were 6 to 31 data sets per
meta-analysis (median, 10 data sets). These were typi-
cally small data sets, and cumulatively no meta-analysis
had a sample size (cases and controls combined) exceed-
ing 1000, with the exception of the meta-analyses of hip-
pocampus volume in major depressive disorder and in
relatives of patients with schizophrenia. In 14 meta-
analyses, there were nominally statistically significant dif-
ferences in larger brain volumes among cases; in 7 meta-
analyses, there were nominally statistically significant
differences in larger brain volumes among controls; and
in 20 meta-analyses, there were no significant differ-
ences between the 2 groups. Only 5 effects sizes had an
absolute magnitude exceeding 0.50 (anterior cingu-
lated cortex in major depressive disorder as well as left

hippocampus, right hippocampus, left lateral ventricle,
and third ventricle in first-episode schizophrenia). Of the
41 effects, none have large point estimates (�0.8 in ab-
solute magnitude), and the 95% confidence intervals ex-
clude large effects for 40 of 41 meta-analyses. The 95%
confidence intervals also exclude moderate effects (�0.5
in absolute magnitude) in 27 of the 41 meta-analyses.
There was nominally statistically significant heteroge-
neity in 24 of 41 meta-analyses. I2 values exceeding 50%
were noted in 19 of the 41 meta-analyses, and 5 of those
had values exceeding 75%.

OBSERVED VS EXPECTED NUMBER
OF POSITIVE STUDY DATA SETS

Table 1 also shows the observed and expected number
of positive study data sets in each meta-analysis, assum-
ing the plausible effect to be the summary effect of the
meta-analysis or half of this effect. For most meta-
analyses (29/41), the observed is larger than the ex-
pected, and in only 10 meta-analyses is the observed
smaller than the expected (2 meta-analyses had an equal
observed and expected number of positive study data sets),
even if we assume that the summary effect seen in the
meta-analysis is the most plausible estimate of the true
effect. If the plausible effect is assumed to be half of what
is seen in each meta-analysis, then O is larger than E for
36 meta-analyses, whereas the opposite occurs only in 5
meta-analyses with few studies, all of which have O=0
and E=0.3 to 0.6.

If we assume that the summary effect seen in the meta-
analysis is the most plausible estimate of the true effect,
then 16 of the 41 meta-analyses show evidence (P� .05)
for an excess O over E and 7 of them show evidence for
an excess O over E, even after correcting for the number
of tested conditions and brain structures. If the plau-
sible effect is assumed to be half of what is seen in each
meta-analysis, then the respective numbers of meta-
analyses are 27 and 14.

Meta-analyses that have larger estimates of heteroge-
neity (as expressed by I2) tend to also have large differ-
ences between O and E (Spearman correlation coeffi-
cient �=0.63 when plausible effects are considered to be
those observed in the summary of the meta-analyses
[Figure] and �=0.53 when plausible effects are consid-
ered to be half of those observed).

Table 2 shows the composite data from all meta-
analyses for each mental health condition. The ob-
served number of positive study data sets is always larger
than the expected, regardless of the assumptions of what
the plausible effect should be in each meta-analysis. The
difference between E and O is beyond chance (P� .05)
for 5 of the 7 conditions when the plausible effect is as-
sumed to be the same as the summary effect in each meta-
analysis (all except first-episode schizophrenia and rela-
tives of patients with schizophrenia) and for all 7
conditions when the plausible effect is assumed to be half
of that magnitude. With Bonferroni correction, the dif-
ference between E and O is statistically significant for 4
and 5 of the 7 conditions, respectively.

Table 2 also groups meta-analyses per brain struc-
ture. Of the 15 brain structures evaluated, 8 showed a
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Table 1. Evaluated Meta-Analyses of Brain Volume Abnormalities and Observed and Expected Number of “Positive” Data Setsa

Article, Condition,
and Brain Structure

Study
Data
Sets,
No.

Cases/
Controls,

No.
Effect Size
(95% CI) P Valueb I2, %

Observed
Positive

Data Sets,
No.

Expected
Positive

Data Sets,c

No.

Expected
Positive

Data Sets Under
Half-Effect

Assumption,d

No.

Koolschijn et al1
Major depressive disorder

Anterior cingulate cortex 8 181/170 −0.77 (−1.32 to −0.22) �.001 84 4 4.9 1.7e

Orbitofrontal cortex 7 373/204 −0.43 (−0.78 to −0.09) .001 73 4 2.9 1.2e

Prefrontal cortex 7 242/181 −0.34 (−0.52 to −0.16) .57 0 1 1.7 0.9
Hippocampus 31 1114/991 −0.41 (−0.54 to −0.28) �.001 51 14 10.2 3.7f

Putamen 6 192/184 −0.48 (−0.80 to −0.16) .04 58 3 2.6 0.9e

Caudate nucleus 10 467/316 −0.31 (−0.58 to −0.04) .001 70 2 2.4 1.0
Hajek et al2

Major depressive disorder
Left amygdala 20 409/482 0.04 (−0.21 to 0.28) �.001 66 6 1.0f 1.0f

Right amygdala 20 409/482 −0.08 (−0.37 to 0.21) �.001 76 8 1.1f 1.0f

Kempton et al3
Bipolar disorder

Lateral ventricles 17 375/589 0.39 (0.24-0.55) .24 19 5 4.4 1.8e

Third ventricle 12 208/271 0.27 (0.00-0.53) .04 46 2 1.5 0.8
Gray matter 14 257/310 −0.18 (−0.50 to 0.13) �.001 69 4 1.2e 0.8f

White matter 14 221/284 −0.09 (−0.32 to 0.15) .05 41 1 0.8 0.7
Left caudate nucleus 11 273/273 −0.03 (−0.21 to 0.15) .36 9 0 0.6 0.6
Right caudate nucleus 11 273/273 −0.07 (−0.24 to 0.10) .50 0 0 0.6 0.6
Left putamen 7 197/183 −0.02 (−0.22 to 0.18) .57 0 0 0.4 0.4
Right putamen 7 197/183 0.00 (−0.20 to 0.21) .63 0 0 0.4 0.4
Globus pallidus 6 135/106 0.50 (0.00-1.01) �.001 71 2 0.5e 0.4e

Thalamus 10 235/207 −0.02 (−0.32 to 0.28) .01 59 3 0.5f 0.5f

Left temporal lobe 12 258/277 −0.08 (−0.35 to 0.20) .01 56 3 0.6e 0.6e

Right temporal lobe 12 258/277 −0.16 (−0.44 to 0.12) .01 55 3 1.0e 0.6e

Left hippocampus 18 380/487 0.10 (−0.06 to 0.26) .23 18 1 1.0 0.9
Right hippocampus 18 380/487 0.02 (−0.13 to 0.17) .32 11 1 0.9 0.9
Left amygdala 11 236/354 −0.07 (−0.47 to 0.33) �.001 80 5 0.6f 0.6f

Right amygdala 11 236/354 −0.04 (−0.45 to 0.37) �.001 81 6 0.6f 0.6f

Rotge et al4
Obsessive-compulsive

disorder
Left caudate nucleus 8 159/160 −0.10 (−0.37 to 0.17) .20 29 1 0.4 0.4
Right caudate nucleus 8 159/160 −0.08 (−0.40 to 0.25) .05 50 2 0.4e 0.4e

Karl et al5
Posttraumatic stress disorder

Right hippocampus 15 250/312 −0.28 (−0.42 to −0.13) �.001 63 8 1.9f 1.0f

Left hippocampus 15 250/312 −0.29 (−0.43 to −0.14) �.001 65 6 2.0e 1.0e

Right amygdala 7 131/188 −0.07 (−0.21 to 0.07) .20 27 1 0.4 0.4
Left amygdala 7 131/188 −0.14 (−0.26 to −0.00) .30 17 2 0.5e 0.4e

Stanfield et al6
Autism

Left amygdala 6 109/100 0.15 (−0.46 to 0.76) �.001 76 4 0.5f 0.3f

Vermal lobules I-IV 10 290/310 0.10 (−0.28 to 0.49) �.001 72 3 0.7e 0.5f

Vermal lobules VI-VII 12 348/337 −0.27 (−0.51 to −0.03) .02 52 5 1.9e 0.9f

Steen et al7
First-episode schizophrenia

Left hippocampus 11 300/287 −0.53 (−0.74 to −0.33) .18 28 5 4.8 1.6e

Right hippocampus 11 300/287 −0.53 (−0.76 to −0.31) .09 38 5 4.8 1.6e

Left lateral ventricle 9 262/248 0.60 (0.42-0.78) .42 2 6 5.2 1.7f

Right lateral ventricle 9 262/248 0.46 (0.28-0.64) .58 0 4 3.4 1.0e

Third ventricle 8 204/209 0.59 (0.39-0.79) .95 0 6 4.1 1.3f

Boos et al8
Relative of patient with

schizophrenia
Hippocampus 9 421/603 −0.31 (−0.49 to −0.13) .09 42 4 2.9 1.2e

Gray matter 7 249/285 −0.18 (−0.33 to −0.02) .70 0 1 0.8 0.4
Third ventricle 7 414/418 0.21 (0.03-0.40) .22 28 1 1.2 0.4

Abbreviation: CI, confidence interval.
aThose with P� .05.
bOf the �2-based Q test.
cThe expected number of positive data sets (those with P� .05) is the sum of the power of all the studies to detect the assumed plausible effect in each meta-analysis

at �=.05.
dBased on the assumption that the plausible effect is half of what is seen in each meta-analysis.
eNominally statistically significant difference between expected and observed.
fStatistically significant difference between expected and observed even after Bonferroni adjustment for the total number of tested conditions and brain structures.
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difference between E and O beyond chance (P� .05),
when the plausible effect is assumed to be the same as
the summary effect in each meta-analysis, and this in-
creases to 12 when the plausible effect is assumed to be
half of that magnitude. With Bonferroni correction, the
difference between E and O remains statistically signifi-
cant for 5 and 9 of the 15 brain structures, respectively.
The larger fold deviation of O from E was seen for amyg-
dala under either assumption.

When data are combined from all 41 meta-analyses,
there are 142 observed data sets with nominally statis-
tically significant results among the 461 (31%), whereas
the expected number would be 78.5 and 37.1 under the
2 effect assumptions, respectively (P� .001 for compari-
son with the observed for both analyses).

COMMENT

This evaluation of 461 data sets in 41 meta-analyses of
brain volumes in diverse conditions shows that, in the
literature, the number of positive results is way too large
to be true. Even if the effect sizes observed in the meta-
analyses are accurate, the number of positive results
(n=142) is almost double than what would have been
expected based on power calculations for the included
samples. If the true effect sizes are only half of those ob-
served in the meta-analyses, then the number of posi-
tive results is about 4 times the expected number thereof.
Bias may be present in meta-analyses of all 7 examined
conditions and in most of the examined brain struc-
tures. Such bias threatens the validity of the overall lit-
erature on brain volume abnormalities.

The excess significance may be due to unpublished
negative results, or it may be due to negative results hav-
ing been turned into positive results through selective
exploratory analyses. If all the excess significance is due
to negative results not being published, then this means
that only slightly more than 1 in 2 or 1 in 4 negative re-
sults have been published, depending on what plausible
effect size is assumed. This would correspond to approxi-
mately 600 to 1200 unpublished negative results, be-
sides the 319 that have been published. Conversely, the
excess significance may be due to negative results be-
coming positive: given that the expected positive results
are 79 or 37, with the 2 analyses, then one can estimate
that a negative-to-positive conversion of 64 or 105 re-
sults, respectively, among the 142 observed positive ones
would suffice to cause this excess of significance. Possi-
bly both mechanisms contribute.

First, bias against the publication of negative results,
the traditional form of publication bias,17 may exist. Some
of the prior meta-analyses tried to investigate small-
study effects (whether small studies give more promi-
nent results than larger studies), which may signal pub-
lication bias. However, this association is nonspecific,20

and most studies on brain volumes are small anyhow, so
differentiating between small and large makes little sense.
Moreover, the typical investigation of brain volumes is
likely to measure by default the volume of multiple brain
structures. Because of multiple comparisons, most in-
vestigations may have at least 1 positive result to report,

even if this is only a chance finding due to an inflated
type I error. This suggests that bias is more likely to oc-
cur at the level of outcome reporting (ie, with only a sub-
set of the brain regions, among the many evaluated, being
reported in the published article, rather than the whole
study remaining unpublished). The most suggestive evi-
dence for this type of outcome reporting bias in the lit-
erature comes from the mere juxtaposition of the avail-
ability of information for different brain regions in studies
addressing the same condition. Some brain regions have
data reported from far more studies than others. For ex-
ample, although there are 31 reported results on hippo-
campus volume in studies of major depression, only 6
of them report on putamen volumes, and only 7 report
on orbitofrontal cortex or prefrontal cortex volumes.1 To
some extent, this difference may reflect the fact that in-
vestigators genuinely focused only on the hippocampus
in some studies or that interest in hippocampus abnor-
malities preceded interest in the study of other vol-
umes. However, it is possible that many studies did mea-
sure comprehensively all or many of the major brain areas
and reported selectively on a few, with reporting guided
in part by the significance of the results.

Second, one suspects that some analyses that were
negative have been presented as positive. This type of bias
has been best documented in randomized trials (eg, trials
of antidepressants).31 As noted earlier, selective analysis
reporting bias can have a very influential effect on the
results: one must convert relatively few studies from nega-

GM

6

2

4

0

0 20 40 60 80 100
I2, %

Ob
se

rv
ed

 M
in

us
 E

xp
ec

te
d 

No
. o

f P
os

iti
ve

 D
at

a 
Se

ts

Major depressive
disorder
Bipolar
disorder
Obsessive-compulsive
disorder
PTSD
Autism
First-episode
schizophrenia
Relatives of patients
with schizophrenia

A-r

A-r

OC

CN

ACC

TL-l

TL-r

CN-lCN-r

CN-r

CN-l

WM

A-l

A-l

A-l

VL1

VL2

H

P

H

T

PC

P-l

GM

GP

TV

TV

TV

H-I

H-r

A-I

H-rA-r

P-r

H-r

LV

H-l

LV-l

LV-r

H-l

Figure. Correlation between observed minus expected number of “positive”
study data sets with the between-study heterogeneity (I2). Different colors
are shown for each condition, and brain structures are also labeled on the
plot. A indicates amygdala; ACC, anterior cingulated cortex; CN, caudate
nucleus; GM, gray matter; GP, globus pallidus; H, hippocampus; l, left;
LV, lateral ventricles; OC, orbitofrontal cortex; P, putamen; PF, prefrontal
cortex; PTSD, posttraumatic stress disorder; r, right; T, thalamus;
TL, temporal lobe; TV, third ventricle; VL1, vermal lobules I-IV; VL2, vermal
lobules VI-VII; and WM, white matter.

ARCH GEN PSYCHIATRY/ VOL 68 (NO. 8), AUG 2011 WWW.ARCHGENPSYCHIATRY.COM
777

©2011 American Medical Association. All rights reserved.
 at University of Ioannina, on April 2, 2012 www.archgenpsychiatry.comDownloaded from 

http://www.archgenpsychiatry.com


tive to positive to achieve the same bias as if 10 times more
negative studies were entirely suppressed. Selective analy-
sis reporting bias emerges when there are many analy-
ses that can be performed and only one of them, the one
with the “best” results, is presented.23,32 It is also facili-
tated when there are many steps in the analysis process
that are subject to choices and measurements that can
be biased. Some biases may also be facilitated when the
assessors are not blinded33 to whether each brain scan is
coming from a case with the condition of interest or a
control participant. Information about such quality safe-
guards is often not reported in the literature on brain vol-
ume abnormalities.

Although brain volume measurements are sophisti-
cated, there is room for error. Magnetic resonance imaging
measurements have average errors in the range of ±1.5%,34,35

whereas changes of 5% may be introduced by scanner hard-
ware or software.34 Recognized sources of possible error in-
clude voxel misclassification during brain segmenta-
tion,36,37 the partial volume problem (when volume is less
than a voxel),36,38,39 inconspicuousness of tissue edges, and
head tilt. Nonsystematic errors will tend to dilute the ob-
servedeffect sizes, if theyarenondifferential.However,when
errors are differential (eg, measurements are performed by
observers who may favor a certain direction of the re-
sults), this can lead to inflated effects and spurious statis-
tically significant associations. Moreover, nonsystematic
mistakes may also occur during the analytic process.40 Most

studies that we assessed used magnetic resonance imaging.
However, at least 1 meta-analysis3 also included data on
CT scans, and brain volume differences tended to be larger
with CT measurements; this may be a manifestation of
higher error rates in CT studies.3 Finally, some structures
are often possible to measure using various anatomical defi-
nitions.2 Bias would be introduced if one assesses many dif-
ferent definitions and reports only the ones with the most
significant results.

Brain volume differences may be confounded by drug
treatment, inpatient vs outpatient status, differences in
age and sex between the compared groups, severity of
disease, and even disease definition per se. It is very dif-
ficult to control efficiently for all of these parameters. Se-
lective analysis reporting may be introduced if investi-
gators perform different analyses to adjust for various sets
of confounders or exclude participants based on con-
founder values and then selectively report analyses based
on the statistical significance of the results. There are many
other aspects in the design, conduct, methods, analysis,
and population characteristics of imaging studies that may
affect the accuracy and reliability of the results. Case-
control studies frequently report biased results because
the cases are not representative of those affected in a popu-
lation and/or because the controls are not representa-
tive of those not affected in the same population. It would
be useful for experts in the field to adopt more unbiased
designs, such as 2-stage sampling techniques.

Table 2. Observed and Expected Number of “Positive” Study Data Sets Across All Meta-analyses for Each Condition
and for Each Brain Structure

Study Data Sets, No.
Observed Positive

Data Sets, No.
Expected Positive
Data Sets,a No.

Expected Postive Data Sets
Under Half-Effect
Assumption,b No.

According to condition
Major depressive disorder 109 42 26.8c 11.4d

Bipolar disorder 191 36 15.6c 11.2c

Obsessive-compulsive disorder 16 3 0.8d 0.8d

Posttraumatic stress disorder 44 17 4.8c 2.8c

Autism 28 12 3.1c 1.7c

First-episode schizophrenia 48 26 22.3 7.2c

Relative of patient with schizophrenia 25 6 4.9 2.0d

According to brain structure
Anterior cingulate cortex 8 4 4.9 1.7c

Orbitofrontal cortex 7 4 2.9 1.2d

Prefrontal cortex 7 1 1.7 0.9
Hippocampus 138 44 28.5c 11.9c

Putamen 20 3 3.4 1.7
Caudate nucleus 48 5 2.0d 2.0d

Amygdala 82 32 4.7c 4.3c

Lateral ventricles 35 15 14 3.5c

Third ventricle 27 9 6.8 2.5c

Gray matter 21 5 2.0d 1.2c

White matter 14 1 0.8 0.7
Globus pallidus 6 2 0.5d 0.4d

Thalamus 10 3 0.5c 0.5c

Temporal lobe 24 6 1.6c 1.2c

Vermal lobules 22 8 2.6c 1.4c

aBased on the assumption that the plausible effect is the one seen in each meta-analysis of each particular brain structure and condition.
bBased on the assumption that the plausible effect is half of what is seen in each meta-analysis.
cStatistically significant difference between expected and observed even after Bonferroni adjustment for the total number of tested conditions or brain

structures.
dNominally statistically significant difference between expected and observed.
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Thecurrentevaluationdidnotconsidervoxel-basedmor-
phometry studies for which meta-analyses have started to
appear recently.41-43 Meta-analyses of such studies aim to
reveal differences in gray matter density at specific brain
coordinates rather thandifferences involumesofprespeci-
fiedregionsof interest.Thesearewhole-brainmethods,and
thus, in theory, they may avoid the selective reporting of
selected regions of interest. However, the technique of ac-
tivation likelihoodestimation that isused formeta-analysis
of voxel-based morphometry41 has the disadvantage that
it can use only data from studies that have significant dif-
ferences between cases and controls. This strengthens the
potentialforsignificancechasingbias.Amorerecentmethod,
signed differential mapping,43 allows for the consideration
ofnullfindingsandmitigatestheexcessiveinfluenceofsingle-
study data sets. However, even if signed differential map-
ping allows for the incorporation of null findings, this will
happen only if null findings are published so as to be avail-
able for meta-analysis.

Some limitations should be acknowledged in my study.
First, several of the meta-analyses had substantial between-
study heterogeneity, and the difference between O and E
was larger in those meta-analyses with larger I2 estimates.
Heterogeneity may be a manifestation of bias affecting dif-
ferentially the constituent data sets, but it may also re-
flect genuine differences across studies. It is possible that
some of these effects are genuinely heterogeneous. How-
ever, with genuine heterogeneity, one would not neces-
sarily expect that single-study data sets would pass a “de-
sired” threshold of significance (P� .05) and yield so many
statistically significant results. Empirical evidence from
other fields where many associations are evaluated (eg, can-
didate gene associations) suggests that heterogeneity is of-
ten a marker of bias.22 A better understanding of these genu-
ine sources of diversity would require that we accumulate
more unbiased data in the literature.

Second, even though the overall analysis suggests the
presence of considerable bias, one cannot assume that
all meta-analyses are equally affected. Probably the most
useful application of the excess significance test is to give
an overall impression about the average level of bias af-
flicting the field of brain volume abnormalities. The test
can also be used to interpret separately the results of single
meta-analyses, but here the interpretation should be more
cautious. As shown in my results, some meta-analyses
show strong evidence that they are affected by excess sig-
nificance bias; some others seem spared of this bias, and
their results can be considered to be reliable in this re-
gard; and still others are difficult to interpret, mostly be-
cause of limited evidence. A negative test for excess sig-
nificance in a single meta-analysis, especially one with
few studies, does not exclude the potential for bias.

Third, the evaluation relied on effect sizes that had al-
ready been estimated in published meta-analyses be-
cause it would have been very inconvenient to perform
41 meta-analyses again from scratch. The data were ob-
tained from meta-analyses published in high-profile peer-
reviewed journals, but it is possible that some mistakes
in the data may have been made, even in the best meta-
analyses. However, there is no reason to believe that these
would favor the presence or absence of excess signifi-
cance bias. No effort was made to update these 41 meta-

analyses with studies that appeared after the publica-
tion of each of the included meta-analyses. However, there
is no reason to believe that these most recent studies would
be much different in terms of susceptibility to bias. More-
over, the evaluation focused on meta-analyses pub-
lished recently (ie, in the last 4 years).

Fourth, the exact estimation of excess significance can
be influenced by the choice of plausible effect size, the
potential miscalculation of the P values in the original
data sets, and/or the miscalculation of power. This is why
I have examined the influence of different effect sizes on
the difference between O and E. Miscalculation of P val-
ues would require access to the raw data of each data set.
For example, some of the excess significance may be in
part due to P values in single data sets being reported as
nominally significant owing to inappropriate assump-
tions (eg, equal variances). Power estimates with differ-
ent assumptions (such as deviation from normality) and
different software may diverge, but they are unlikely to
change the big picture that almost all of these studies are
small and largely underpowered and that the E is sub-
stantially smaller than the O.

In conclusion, the literature on brain volume differ-
ences is probably subject to considerable bias. This does
not mean that none of the observed associations in the
literature are true. It should be acknowledged that some
meta-analyses may be more affected by bias than others
and that some may be totally unbiased. However, the av-
erage level of bias is probably large, and steps should be
taken to remedy the situation. Such steps could include,
besides the use of newer technologies, the adoption of
large multicenter studies, the standardization of defini-
tions, outcomes, and analyses, and the registration of pre-
specified protocols for these studies. Large multicenter
studies should be feasible, and it would be natural for
such studies to use commonly agreed outcomes, defini-
tions, and analyses in prespecified protocols that would
be widely visible to all participating investigators and be-
yond. For most of the examined brain structures, defi-
nitions should be consistent, and this applies also to their
subfields, which may yield additional insights if prop-
erly assessed.44 Significance testing should not be used
as a criterion for publication,45,46 and journal editors can
emphasize the need to make the full data (correlation ma-
trices) and protocols available, as in other research
fields.47-49 After more than 25 years of research in this field,
further progress requires stronger guarantees of reliabil-
ity for the ensuing results.
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