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CLINICAL SCENARIO
A 55-year-old man with a family his-
tory of dementia is inquiring about ge-
netic testing for Alzheimer disease, in
particular testing for APOE. Armed with
knowledge of the basic genetic con-
cepts outlined in the introductory ar-
ticle of this 3-part series,1 you return to
your electronic medical reference dis-
cussion. Of the studies they cite, you fo-
cus on the largest study (n=6852), with
longest follow-up (up to 9 years), rep-
resenting a general, community-based
population aged 55 years and older,2 and
using the stronger of the candidate gene
study designs (cohort rather than case-
control). The authors report a relative
risk of 2.1 (95% confidence interval, 1.7-
2.7) for dementia in APOE e4 (e for ep-
silon) heterozygotes and 7.8 (95% con-
fidence interval, 5.1-11.9) for APOE e4
homozygotes compared with e3/e3 in-
dividuals.

Initial epidemiologic studies address-
ing a novel association tend to overes-
timate the magnitude of association,3

possibly as a result of publication bias
(studies addressing previously unre-

ported associations are published only
if they show significant results), and this
phenomenon is even more frequent in
genetic association studies.4 This high-
lights the importance of examining the
validity of such studies,5-9 the focus of
this article.

THE FRAMEWORK
We adopt the same framework as pre-
vious users’ guides:

• Are the results of the study valid?
• What are the results?
• Will the results help me in caring

for my patients?
Thisarticledealswith the firstof these

questions;thefinalarticleintheserieswill
address the latter 2. BOX 1 provides a

summary of our guides and BOX 2 pro-
vides a glossary of genetic terms.

ARE THE RESULTS
OF THE STUDY VALID?
Similar to traditional prognostic or
etiologic studies, genetic association
may use cohort or case-control de-
signs.10-13 Cohort studies sample a group
of people (eg, older individuals) who
vary in their genetic characteristics (eg,
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In the first article of this series, we reviewed the basic genetics concepts nec-
essary to understand genetic association studies. In this second article, we enu-
merate the major issues in judging the validity of these studies, framed as criti-
cal appraisal questions. Was the disease phenotype properly defined and
accurately recorded by someone blind to the genetic information? Have any
potential differences between disease and nondisease groups, particularly eth-
nicity, been properly addressed? In genetic studies, one potential cause of spu-
rious associations is differences between cases and controls in ethnicity, a situ-
ation termed population stratification. Was measurement of the genetic
variants unbiased and accurate? Methods for determining DNA sequence varia-
tion are not perfect and may have some measurement error. Do the genotype
proportions observe Hardy-Weinberg equilibrium? This simple mathematic
rule about the distribution of genetic groups may be one way to check for er-
rors in reading DNA information. Have the investigators adjusted their infer-
ences for multiple comparisons? Given the thousands of genetic markers tested
in genome-wide association studies, the potential for false-positive and false-
negative results is much higher than in traditional medical studies, and it is
particularly important to look for replication of results.
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APOE e2/e2, e2/e3, e2/e4) and follow
them forward in time to determine who
has the outcome of interest (eg, Alz-
heimer dementia). In case-control stud-
ies, investigators choose affected indi-
viduals (case patients, eg, those with
Alzheimer dementia) and a sample of
unaffected individuals from the same
underlying population and determine
the genetic characteristics of the indi-
viduals in each of the 2 groups.

Case-control studies in traditional epi-
demiology are subject to a number of po-

tential biases, many of which are less of
a concern in genetic studies. In con-
trast to most environmental expo-
sures, the genetic “exposure” does not
vary with age or calendar year, there is
no recall bias and no choice of expo-
sure made by the participant, and the ex-
posure is not influenced by disease (or
treatment). The case-control design also
facilitates large sample sizes and there-
fore power, which is particularly impor-
tant for detecting potentially small ge-
netic effects. Our discussion will focus
on validity issues of particular rel-
evance for genetic studies.

Was the Disease Phenotype
Properly Defined and Accurately
Recorded by Someone Blind
to the Genetic Information?

In the absence of a standardized defini-
tion of the disease or trait of interest, in-
vestigators may run association analy-
ses with varying definitions and report
only the most significant findings, re-
sulting in spurious associations.14 On the
other hand, what appears at first glance
to be a single disease entity may in fact
consist of many genetically separate but
clinically similar diseases, a situation
called genetic heterogeneity. In this situ-
ation, including diseases with different
genetic etiologies may dilute or obscure
a true association.

Even if the disease definition is well
standardized, it is important to ask
whether the disease phenotype has been
appropriately measured during the
study. Misclassification (here, catego-
rizing people as having dementia when
they do not or vice versa) may affect the
strength of the genetic association. If the
misclassification is a result of random er-
ror, the association will be diluted. If
misclassification errors are influenced by
previous knowledge of the genotype of
each individual, eg, if APOE genotype in-
fluences the diagnosis of dementia, then
the genetic effect may be overesti-
mated. Thus, individuals conducting the
phenotyping should be blind to the
genotyping result (and vice versa).

In our clinical scenario, because dif-
ferent etiologies of late dementia are
likely to have different genetic determi-

nants, researchers who do not separate
individuals with Alzheimer disease from
those with vascular dementia (com-
mon) and Lewy body dementia (rare)
may fail to establish genetic links. Slooter
et al2 separate Alzheimer from vascular
dementia and use widely accepted defi-
nitions. Moreover, the investigators
made meticulous efforts to minimize
misclassification caused by measure-
ment error by using a panel of several
tests and by blinding appropriately.

Have Any Potential Differences
Between Disease and Nondisease
Groups, Particularly Ancestry,
Been Properly Addressed?

As we have pointed out, some common
variables that, in traditional epidemio-
logic studies, can cause bias as a result
of an association with the condition of
interest and misdistribution in exposed
and unexposed populations (we call such
variables confounders) are less likely to
introduce bias in genetic epidemiology.
Genetic studies, however, may yield mis-
leading results if their disease and non-
disease populations include a different
ethnic/racial mix; this particular form of
confounding is referred to as population
stratification. The problem occurs if the
likelihood of developing the condition
of interest varies with ancestry. If ances-
try groups also happen to differ in allele
frequency of genetic polymorphisms un-
related to the condition of interest, the
result will be spurious associations.

Most association studies of unre-
lated individuals try to avoid this prob-
lem by using populations that are ho-
mogeneous in terms of ancestry. Self-
reporting will usually suffice at least for
populations of European ancestry,15-17

although there are rare examples, such
as genes that regulate susceptibility to
lactose intolerance, in which there is
marked variation. To address such pos-
sibilities, a number of techniques have
been developed to check for differ-
ences in the potential mix of ances-
tries and, if differences are found, to
make corrections; these corrections use
self-reported ethnicity, family-based
controls, or statistical techniques
termed genomic control to test for pat-

Box 1. Critical Appraisal
Guide to Genetic Association
Studies
A. Are the results of the study valid?

Was the disease phenotype prop-
erly defined and accurately re-
corded by someone blind to the
genetic information?

Have any potential differences
between disease and nondisease
groups, particularly ethnicity,
been properly addressed?

Was measurement of the genetic
variants unbiased and accurate?

Do the genotype proportions
observe Hardy-Weinberg equilib-
rium?

Have the investigators adjusted
their inferences for multiple com-
parisons?

Are the results consistent with
those of other studies?

B. What are the results of the study?

How large and precise are the
associations?

C. How can I apply the results to
patient care?

Does the genetic association im-
prove predictive power beyond
easily measured clinical vari-
ables?

What are the absolute and rela-
tive effects?

Is the risk-associated allele likely
to be present in my patient?

Is the patient likely better off
knowing the genetic informa-
tion?
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terns in unlinked markers.18,19 For ex-
ample, a spurious association be-
tween the CYP3A4-V polymorphism
and prostate cancer in blacks disap-
peared when results were adjusted for
additional genetic markers associated
with ancestry in the population
studied.20

Ancestry is not the only potential con-
founder that may compromise the va-
lidity of a genetic association study. For
example, 2 genome-wide association
(GWA) studies showed an association
between type 2 diabetes and a single-
nucleotide polymorphism (SNP) in the
FTO (fat mass and obesity associated)
gene.21,22 These studies selected dia-
betic patients and controls irrespective
of their body mass index (BMI); an-
other study that matched diabetic pa-
tients and controls on BMI showed no
association. Thus, although the study ac-
curately identified the association be-
tween diabetes and the particular SNP,
the causal association is probably be-
tween the candidate allele and BMI regu-
lation/obesity, not type 2 diabetes.

Readers should consider whether dis-
eased and nondiseased groups were
similar with respect to other impor-
tant characteristics that are likely to be
genetically determined and associated
with the outcome of interest. Alterna-
tively, they may determine whether
the investigators adjusted for such
characteristics.

Returning to the clinical scenario,
one might imagine that ancestry and al-
coholism are characteristics that are
both genetically influenced and that
would be associated with Alzheimer de-
mentia. Slooter et al2 recruited their en-
tire cohort from among the white popu-
lation of the Netherlands, which is likely
a homogeneous group with little ge-
netic variability; this is verified by re-
sults from a recent GWA study from the
same cohort.23 They did not, however,
consider alcohol history.

Was Measurement of the Genetic
Variants Unbiased and Accurate?

Genotyping error is a threat to the va-
lidity of genetic association studies.
Genotyping may go wrong if there is a

problem with the biological material
(the samples) or with the application
of the molecular technique that is used
to call alleles.

The biological material that pro-
vides the source for genotyping may dif-
fer between diseased and nondiseased
participants in ways that lead to inac-
curacies in genotyping. For example,
in a GWA study for type 2 diabetes,
blood stored in 1958 provided the ba-
sis for genotyping nondiseased indi-
viduals, whereas blood drawn more re-

cently was used for genotyping diseased
individuals. The older blood resulted
in genotyping errors24 that led to some
false-positive SNP associations.

Genotyping error may occur even
when disease and nondisease samples
are drawn and stored in identical ways.
Although laboratory-based methods
and DNA information may have the ca-
chet of being absolute, these data are
subject to error in the same way as tra-
ditional epidemiologic information.
Genotyping error rates vary widely,

Box 2. Glossary

Allele
One of several variants of a gene, usually referring to a specific site within the gene

Genetic heterogeneity
A situation in which a particular phenotype may result from more than one ge-
netic variant

Genetic marker
A specific genetic variant known to be associated with a recognizable trait

Genome-wide association (GWA) study
A study that evaluates association of genetic variation with outcomes or traits of
interest by using 100 000 to 1 000 000 or more markers across the genome

Genotype
The genetic constitution of an individual, either overall or at a specific gene

Haplotype
Alleles that tend to occur together on the same chromosome due to single-nucleotide
polymorphisms (SNPs) being in proximity and therefore inherited together

Hardy-Weinberg equilibrium (HWE)
A situation in which a defined population displays constant genotype frequencies
from generation to generation, and those genotype frequencies can be calculated
from the allele frequencies based on the HWE formula

Heterozygous
An individual is heterozygous at a gene location if (s)he has 2 different alleles (one
on the maternal chromosome, one on the paternal) at that location

Homozygous
An individual is homozygous at a gene location if (s)he has 2 identical alleles at
that location

Phenotype
The observable characteristics of a cell or organism, usually being the result of the
product coded by a gene (genotype)

Polymorphism
The existence of 2 or more variants of a gene, occurring in a population

Population stratification
Describes the situation in which a population may be composed of multiple sub-
groups of different ethnicity; case and control group differences in the mix can
confound the comparison and lead to spurious genetic associations
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from less than 1% up to 30%,25 and rates
of up to a few percent are not uncom-
mon in even the best studies.26-28 Ge-
nome-wide association studies should
aim to minimize genotyping error rates.
Another useful piece of information is
the “call rate” of genotyping, ie, the pro-
portion of samples in which the geno-
typing provides an unambiguous read-
ing. If this proportion is not high, then
information is lost. In many studies, in-
vestigators decide to avoid analyzing
SNPs in which the call rate is less than
90% or even less than 95%. Even high
call rates can, however, fail to prevent
bias if specific genotypes have lower call
rates than others, eg, heterozygotes are
more likely to get ambiguous readings
or false readings than homozygotes.

These sources of error are most eas-
ily detected by the researchers using the
raw data; it is impossible for a reader to
identify them from the limited data usu-

ally reported in an article. A reader may,
however, seek a description of how
samples were handled, what genotyping
method was used, whether any quality
checks were implemented, whether any
rules were established to say when the
genotyping results would be consid-
ered valid, and the extent of missing data.

Returning to our clinical scenario,
Slooter et al2 refer to an earlier article
from their team for genotyping de-
tails29; in this article, they state that
genotyping was performed indepen-
dently and in triplicate and without
knowledge of the outcome status.
They also state that their original
cohort had 7983 persons, and they
had to exclude 14% of the partici-
pants (n=1131) because APOE geno-
type could not be determined. There
is no mention about whether this loss
may have been related to underlying
genotype or to Alzheimer disease, but

at face value, it seems unlikely.
Although the method was not speci-
fied, given the prospective cohort
design, one may assume that samples
were stored in similar conditions
regardless of the subsequent develop-
ment of dementia.

Do the Genotype Proportions
Observe Hardy-Weinberg
Equilibrium?

Failure to observe Hardy-Weinberg
equilibrium (HWE) is one way of de-
tecting possible genotyping error, al-
though it is nonspecific and may be in-
sensitive.30-32 Investigators typically
conduct statistical tests to check
whether the observed genotype fre-
quencies are consistent with HWE;
P�.05 is the usual threshold for de-
claring Hardy-Weinberg “disequilib-
rium.”33 However, with simultaneous
testing of a large number of possible as-
sociations, as in GWA studies, it is ex-
pected that 5% of SNPs will violate
HWE simply because of multiple test-
ing. In this setting, investigators may
use more stringent P-value thresh-
olds. Empirical studies suggest that dis-
equilibrium is common and many ar-
ticles do not explicitly acknowledge
this34,35; as discussed in the first ar-
ticle, there are many reasons for dis-
equilibrium (eg, inbreeding) aside from
bias or error.

Therefore, readers should look for evi-
dence that the investigators have tested
for HWE and raise their level of skepti-
cism about the results if they have not.
Given that erroneous reports of HWE oc-
cur, they may even check for HWE them-
selves by using a simple freely available
statistical program (BOX 3). For a co-
hort study, HWE should be tested in the
whole study population, whereas for a
case-control study, it should be tested
in the controls because these are sup-
posedly representative of the general
population.

In our scenario, Slooter et al2 found
that their study population did ob-
serve HWE (P=.45 in a well-powered
study of n=6852). Given that this is a
3-allele system, we are not able to use
the online program to check HWE.

Box 3. Checking Hardy-Weinberg Equilibrium

Readers can check whether the data at a biallelic single-nucleotide polymorphism
(SNP) are consistent with Hardy-Weinberg equilibrium (HWE) by inserting the
numbers in each genotype group into an online program.36 For example, an ar-
ticle may report that among 100 controls, there are 80 homozygote wild types, 12
heterozygotes, and 2 homozygous variants. The program calculates the expected
distribution among the 3 genotype groups, the �2 value, and the corresponding P
value.

Genotypes ∗Observed, No. Expected, No.

Homozygote reference 80 79.2
Heterozygote 18 19.6
Homozygote variant 2 1.2

Var allele frequency 0.11  

x2 =
x2 test P value = 0.42

0.65
with 1 degree of
freedom.

(if <.05 then not consistent
with HWE)

There are limitations to the hypothesis testing, whether done by the authors or
the online program. Most HWE tests are weak because most sample sizes are
small, and thus the likelihood of a false negative because of inadequate power is
high. On the other hand, with very large sample sizes, the tests can detect very
small deviations from HWE that are of no importance. In the setting of genome-
wide association studies, a large number of SNPs are expected to have nomi-
nally significant deviations from HWE. For example, with 500 000 tested SNPs,
25 000 of them may have P�.05 on HWE testing by chance alone. Therefore, in
GWA studies far more strict thresholds are appropriate to identify worrisome
HWE deviation.

USERS’ GUIDES TO THE MEDICAL LITERATURE

194 JAMA, January 14, 2009—Vol 301, No. 2 (Reprinted) ©2009 American Medical Association. All rights reserved.

 at University of Ioannina on April 2, 2012jama.ama-assn.orgDownloaded from 

http://jama.ama-assn.org/


Have the Investigators Adjusted
for Multiple Comparisons?
Oneof themainreasonsfor false-positive
resultsisinadequateattentiontotheprob-
lemofmultiplecomparisons.Thescenario
ofanexperiment testing100SNPsforas-
sociationwithadiseaseoutcomeinwhich
no real association exists illustrates the
magnitude of the problem. If the thresh-
old P value of .05 is left unchanged, then
thechanceoffindinganapparentbutspu-
riouspositiveassociation inthis scenario
canbecalculatedas((1−(1−.05)100)�100),
or 99.4%. The easiest method to correct
for thisproblemofmultiplecomparisons
is the Bonferroni method, in which the
threshold P value is divided by the num-
ber of tests. In this example, the P value
wouldbeset at .05/100,or .0005.This is,
however,probablyoverlyconservativeand
stringent, and authors have suggested
many other methods17,37-40 (BOX 4). This
potential for false-positive results also
makes genetic association studies par-
ticularly susceptible to publication bias,
in which initially strongly positive re-
sults find their way into publication
more easily, whereas studies with nega-
tive results take longer to get pub-
lished.44 Such bias is not corrected by
simply accounting for multiple com-
parisons.

In GWA studies, in which more than
500 000 SNPs are tested simulta-
neously, the multiple comparison prob-
lem takes on a magnitude never imag-
ined in traditional epidemiology. To
avoid false-positive results, a consen-
sus seems to be forming that for such
large-scale studies, a P value in the range
of 5�10−8 (as opposed to the usual
5�10−2) should be considered the
threshold for claiming what is called
“genome-wide” significance.45,46 In-
creasingly, full results from GWA stud-
ies are publicly available, providing fur-
ther insurance against publication bias.

In our scenario, Slooter et al2 have not
adjusted their results for multiple com-
parisons. They test only the APOE poly-
morphism (although they address 3 out-
comes, myocardial infarction, stroke, and
Alzheimer disease). They reasonably
consider theirs a hypothesis-testing
rather than hypothesis-generating study.

Are the Results Consistent
With Those of Other Studies?
Any users’ guide—whether for diagno-
sis, therapy, prognosis, or harm—
could include a validity criterion de-
manding replication. Although we have
not included this criterion in consid-
ering other sorts of individual studies,
the multiple comparison problem and
the forces that lead to differential pub-
lication of positive results suggest that,
here, it is particularly important. Un-
til results are replicated in similar popu-
lations, one should interpret them with
caution.8,47

Most of the genetic associations be-
tween SNPs and complex diseases are
small (much smaller than the odds ra-
tios �2.0 observed for apoE e2/e3/e4),48

and therefore even sizeable studies may
fail to detect underlying associa-
tions.49 Therefore, given that most in-
dividual studies are not large enough
to detect these small effect sizes, typi-
cally, GWA studies pick the SNPs that
have the lowest P values and test them
in additional replication samples (either
other GWA studies or focused studies
targeting only the specific SNPs) to
increase sample size and power until the
cumulative results pass genome-wide
significance or similar thresholds. Even
more teams may then continue to
try to replicate these associations,
and all these data become essential
in judging the credibility of these
associations.

Therefore, just as we suggest that cli-
nicians interested in issues of therapy,
diagnosis, prognosis, and harm first
seek a systematic review, so also do we
suggest that they do the same for ge-
netic associations.50,51 The Human Ge-
nome Epidemiology Network (HuGE
Net) group is emerging as the Coch-
rane equivalent for genetic associa-
tion studies. The HuGE Net Web site
lists many of the meta-analyses per-
formed to date52,53 and also hosts the
HuGE Navigator, where one can de-
termine what single studies, GWA stud-
ies, meta-analyses, and synopses are
available.54,55 Another possible aid in
searching for previous genetic associa-
tion studies is the genetic association

database maintained by the National In-
stitutes of Health.56

A MEDLINE search using apoE and
dementia as search terms and re-
stricted to English and meta-analysis,
or a search on the HuGE Navigator,
leads to 2 meta-analyses in the general
population57,58 and a Web site collat-
ing all the Alzheimer genetic associa-
tion studies as an all-encompassing syn-
opsis.59 The meta-analyses demonstrate
that results for the APOE e2/e3/e4 poly-
morphism are largely consistent across
studies. This is probably the excep-
tion even among well-replicated ge-
netic associations, and it reflects the fact
that the apoE-dementia association is
much stronger than almost any other
associations recorded to date.

Box 4. Some Options
for Adjustment
for Multiple Comparisons

The Bonferroni correction is overly
conservative and stringent, and there
have been many suggestions for other
methods. Two of the more popular
ones include the following.

False-discovery rate calculations es-
timate the proportion of associa-
tions that are seemingly “discov-
ered” (pass some required threshold
of evidence) but are nevertheless ex-
pected to be false positives. The Ben-
jamini-Hochberg method is used
when loci (or single-nucleotide poly-
morphisms) are independent,41

whereas the Benjamini-Lui method is
applied when there is correlation or
linkage disequilibrium between loci.42

Both methods work on ranking the P
values of the associations within one
study and adjusting that P value by
its position in the ranking list.

The false-report probability rate
similarly states how likely an asso-
ciation is to be false if it emerges with
a given level of statistical signifi-
cance, given the power of the study
and the perceived prior odds of an
association being true.17 The devel-
opers of this method have con-
structed a user-friendly spreadsheet
to allow easy calculations.43
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RETURN TO THE CLINICAL
SCENARIO
Slooter et al2 meet the crucial validity
criteria:

• The authors defined a homoge-
neous group of dementia patients, sepa-
rating Alzheimer from vascular demen-
tia and using proper definitions and
meticulous measurement schemes to
determine outcomes.

• They chose a homogeneous eth-
nic group and provided a table show-
ing similar characteristics in diseased
and nondiseased groups, although al-
cohol is a significant confounder that
is not included.

• They did not report sufficient in-
formation to ensure that genotyping
error has been eliminated, but the popu-
lation observes HWE and the associa-
tion is too strong to be accounted for
by genotyping error.

• They did not adjust for multiple
comparisons in their study, but they
studied only 1 polymorphism chosen
according to previous work suggest-
ing an association.

• Most important, the specific APOE
association with Alzheimer dementia
has been reproduced many times and
meta-analyses of the results show con-
sistent results across studies.

Given that we are satisfied with the
validity of the study, we continue our
critical appraisal. In the next article, we
will discuss how to interpret results of
genetic association studies and how to
apply this information in the context
of patient care.
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